THE APPLICATION OF THE "THEOREM OF THE THREE MOMENTS" TO THE CALCULATIO OF STRESSES IN CONTINUOUS GIRDERS
By Jas. E. Turner and T. K. MacKenzie, Whitworth Sol
The subject of continuous girders has already be Tently treated at some length in the columns of Tw Engineer, and also by Mr. Fidler in the "Proceedings" of the Institution of Civil Engineers. Neither writer has however, made any reference to the very elegant and simple method invented by M. Clapeyron, and generally in use on the Continent. Without desiring to discuss the treatment of the subject adopted by either Mr. Max am Ende or Mr. Fidler, we think that the calculation of strains in girders by their methods would be found somewhat troublesome and confusing compared with that we are about to describe.
It will be seen that two formule only are used, that every case of distribution of the rolling load on the girder is separately considered, and that the calculation of all these cases simply consists in repeated application of these formule. The subject of continuous girders is one of considerable interest, and a simple accurate method of determining the strains on them is much to be desired; that Clapeyron's formula should be so little known in this country is difficult to account for, and the fact that it is not fully given by any of our authors on strains must be our apology for introducing the subject.
The method of determining the strains in continuous girders as usually given by English authors, viz, determining the reactions of the points of support directly, becomes so exceedingly intricate and cumbersome when the number of spans is large, as to be of little or no practical use.
About 1850, M. Clapeyron, a distinguished engineer of the Ecole des Ponts et Chaussées, adopted the expedient of using the bending moments with respect to the cross sections at the points of support, as auxiliary unknown terms, in order to determine the forces of reaction and the bending moments for any intermediate points between the supports, and from this deduced the formula known as the "Theorem of the three moments." M. Bresse, professor at the same college, extended the theorem still further in its practical application, and introduced it in detail into his "Cours des Mecaniqué Appliquée." The theorem considers the load in each span as uniformly distributed over it, and the moment of inertia of the section uniform throughout, which is not absolutely correct. However, the error arising from this consideration was shown to be very unimportant in the case of the Britannia Tubular Bridge, where the adverse conditions entered with much greater force than ordinarily happens, the inference being that Bresse's method may be confidently applied in all cases. Mr. Heppel, in a paper read before the Royal Society, modified the theorem so as to remove the defect referred to; not, however, without introducing some degree of complexity into the formula, which, from the reason just assigned, seems to be unnecessary.
The object of this paper is to give the theorem in its originality, as introduced by Bresse, and more particularly to show its practical application by a simple example, and we think that its comparative simplicity, and the facility with which the strains can be represented in a diagram, will commend it to the profession.

Let A B C be any three consecutive points of support of a beam; $l l^{\prime}$ the lengths $\mathrm{AB}, \mathrm{BC} ; w w^{\prime}$ the weights per
unit of length of the segments $\mathrm{AB}, \mathrm{BC} ; \mathrm{X}^{\prime} \mathrm{X}^{\prime \prime} \mathrm{X}^{\prime \prime \prime}$ the unit of length of the segments $\mathrm{AB}, \mathrm{BC} ; \mathrm{X}^{\prime} \mathrm{X}^{\prime \prime} \mathrm{X}^{\prime \prime \prime}$ the bending moments for the cross sections at A, B, and C respectively; $x y$ the co-ordinates of any point in the mean fibre of the segment AB , referred to the rectangula axes AX, AY; E the modulus of elasticity of the material; I the moment of inertia of the cross section. Taking a cross section at any point, at a distance x from the origin A , and finding the value of the bending moment for that point, we see that the moment of the uniformly distributed weight over the length $(l-x)$ is $-\frac{1}{\frac{1}{2}} v(l-x)^{2}$, considering the direction of rotation from rising from A as positive. We also have the moment the weights of the reactions of the points of support, and ducts of the unit of weight into a distance, will be ex pressed in terms of x of the first degree and constant only. Thus the bending moment for the cross section can ne expressed by a function of the form $\mathrm{A}+\mathrm{B} x-1 v^{2}$, which A and B are constants.
Taking then the general equation between the" bending moment and the moment of flexibility, we have -

$$
\begin{equation*}
\mathrm{E} \mathrm{I} \frac{d^{2} y}{d x^{4}}=\mathrm{A}+\mathrm{B} x-\frac{1}{2} w x^{2} \tag{1}
\end{equation*}
$$

Integrating this equation between the limits $x=0$ and $x=l$, and calling the corresponding values of $\frac{d y}{d} x^{\prime}, k^{\prime}$ and $k^{\prime \prime}$, there obtains-

$$
\begin{align*}
& \text { E I }\left(\frac{d y}{d x}-k^{\prime}\right)=\mathrm{A} x+\frac{1}{2} \mathrm{~B} x^{2}-\frac{1}{6} w x^{3} \tag{2}\\
& \text { E I }\left(k^{\prime \prime}-k^{\prime}\right)=\mathrm{A} l+\frac{1}{2} \mathrm{~B} l^{2}-\frac{1}{6} w l^{3}
\end{align*}
$$

> and $x=l$, there obtains-
> E I $\left(y-k^{\prime} x\right)=\frac{1}{2} \mathrm{~A} x^{8}+\frac{1}{8} \mathrm{~B} x^{3}-\frac{1}{\sqrt{1}} v x^{4}+c$ when $x=0$ or $=l, y=0$
> $\therefore-\mathrm{EI} k^{\prime}=\frac{1}{2} \mathrm{~A} l+\frac{1}{6} \mathrm{~B} l^{2}-\frac{1}{24} w l^{3}$

Eliminating k^{\prime} between equations (3) and (4)
$\mathrm{E} I k^{\prime \prime}=\frac{1}{2} \mathrm{~A} l+\frac{1}{8} \mathrm{~B} l^{9}-\frac{1}{8} w l^{3}$
E I
Again, taking the origin of co-ordinates at B, and repre-
senting the bending moment for any cross section in the senting the bending moment for any cross section in the
segment BC by the expression $\mathrm{A}^{1}+\mathrm{B}^{1} x-\frac{1}{2} w^{1} x^{2}$ and
segment BC by the expression $\mathrm{A}^{1}+\mathrm{B}^{1} x-\frac{1}{2} w^{1} x^{2}$ and
proceeding in the same manner as before, since when
$x=o, k^{\prime \prime}$ for this segment corresponds to k^{\prime} for the first segment, we shall obtain-
$\mathrm{E} \mathrm{I} k^{\prime \prime}=\frac{1}{2} \mathrm{~A}^{\prime} l^{\prime}+\frac{1}{6} \mathrm{~B}^{\prime} l^{\prime 2}-\frac{1}{24} 2 w^{\prime} l^{\prime 3}$
Adding these last equations, since the bending moment in the segment B C is opposed to that in A B, the term $\mathrm{E} \mathrm{I} k^{\prime \prime}$ disappears, and there obtains-
$\frac{1}{2} \mathrm{~A} l+\frac{1}{2} \mathrm{~A}^{\prime} l^{1}+\frac{1}{3} \mathrm{~B} l^{2}+\frac{1}{6} \mathrm{~B}^{\prime} l^{\prime 2}-\frac{1}{8} w l^{3}-\frac{1}{24} w^{\prime} l^{\prime 3}=o$ (7) Now, the quantities $\mathrm{A} B, \mathrm{~A}^{\prime} \mathrm{B}^{\prime}$, can be expressed in terms of $\mathrm{X}^{\prime} \mathrm{X}^{\prime \prime} \mathrm{X}^{\prime \prime \prime}$, for the function $\mathrm{A}+\mathrm{B} x-\frac{1}{2} w x^{2}$ must have the values $\mathrm{X}^{\prime} \mathrm{X}^{\prime \prime}$ for $x=0$
stitutions, there obtains
$\left\{\begin{array}{c}\mathrm{A}=\mathrm{X}^{\prime}, \mathrm{A}+\mathrm{B} l-\frac{1}{2} w l^{2}=\mathrm{X}^{\prime \prime}, \\ \text { Hence } \mathrm{A}=\mathrm{X}^{\prime}, \\ \text { and } \mathrm{B}=\frac{1}{2} w l+\frac{\mathrm{X}^{\prime \prime}-\mathrm{X}^{\prime}}{l} .\end{array}\right\}$
Similarly-

$$
\mathrm{A}^{\prime}=\mathrm{X}^{\prime \prime} \text {, and } \mathrm{B}^{\prime}=\frac{1}{2} w^{\prime} l^{\prime}+\frac{\mathrm{X}^{\prime \prime \prime}-\mathrm{X}^{\prime \prime}}{l^{\prime}} .
$$

Substituting these values of $\mathrm{A} B, \mathrm{~A}^{\prime} \mathrm{B}^{\prime}$ in equation (7), there obtains
$\frac{1}{3} \mathrm{X}^{\prime} l+\frac{1}{3} \mathrm{X}^{\prime \prime}\left(l+l^{\prime}\right)+\frac{1}{6} \mathrm{X}^{\prime \prime \prime} l^{\prime}+\frac{1}{24} w l^{3}+\frac{1}{24} w^{\prime} l^{\prime 3}=0$
Or, $\quad \mathrm{X}^{\prime} l+2 \mathrm{X}^{\prime \prime}\left(l+l^{\prime}\right)+\mathrm{X}^{\prime \prime \prime} l^{\prime}+\frac{1}{4}\left(w l^{3}+w^{\prime} l^{3}\right)=0$ This is the relation which exists between the bending moments over three consecutive points of support. If we have $n+1$ points of support, $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$
$\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2} \ldots . \mathrm{X}_{n}$ be the corresponding bending moments, since the moments X_{0} and X_{n} over the two end supports are, from the nature of the problem-zero-there only remains to determine $n-1$ unknowns, which can be done from the $n-1$ equations furnished by the above formula. When these moments have been calculated they can be substituted in equation (8), and by a double integration the equation to the mean fibre may be found The shearing strain can be deduced from the bending moment in a very simple manner; for the bending moment at any point M consists of the sum of a number of terms, such as $\mathrm{Q}\left(x_{1}-x\right)$, being the product of a force into a distance, or

$$
\mathrm{X}=\mathbf{\Sigma} \mathrm{Q}\left(x_{1}-x\right),
$$

Q being one of the forces acting on the segment, and x the abscissa of its point of application ; then-

$$
\frac{d \mathrm{X}}{d x}=\Sigma \mathrm{Q} .
$$

ΣQ is the shearing force at M; hence to obtain the shear-
ing force at any point, it is only necessary to differentiate the bending moment for that point expressed as a function of x.

> It will be seen that the expression-
is the equation to a parabola, and as the curve is unaltered by neglecting the first two terms, we may construct it rom the equation-
r, writing y for x and $\frac{\mathrm{X}}{x}=\frac{1}{\frac{1}{2}}$ for X . x^{2},

$$
\frac{2 x}{w}=y^{2} .
$$

The point where the moments change from positive to negative, or vice versa, usually called the point of contrary fexure, is that point for which the bending moment vanishes. Thus, in order to obtain it, we have-
$\mathrm{A}+\mathrm{B} x-\frac{1}{2} w x^{2}=0$
A and B being known coefficients found from substitution in equation (8).
We will now proceed to exemplify this method, by calculating the strains in a continuous girder of three pans, the two end ones being 95 ft . each, and the middle itself to be one ton per foot run, and to be subject to itsell to be one ton per foot run,
Permanent load on each girder, $\frac{1}{2}$ ton per foot run ;
Permanent load on each girder, $\frac{1}{2}$ ton per foot 1.
Rolling load on each girder, 1 ton per foot run.
For the strains due to the permanent load alone we have-
$\mathrm{X}^{\prime} l+2 \mathrm{X}^{\prime \prime}\left(l+l^{\prime}\right)+\mathrm{X}^{\prime \prime \prime} l^{\prime}+\frac{1}{4}\left(w l^{3}+w^{\prime} l^{\prime 3}\right)=0$ and $\mathrm{X}^{\prime \prime} l^{\prime}+2 \mathrm{X}^{\prime \prime \prime}\left(l^{\prime}+l^{\prime \prime}\right)+\mathrm{X}^{\mathrm{iv}} l^{\prime \prime}+\frac{1}{4}\left(w^{\prime} l^{\prime 3}+w^{\prime \prime} l^{\prime \prime 3}\right)=o$ Now $\mathrm{X}^{\prime}=\mathrm{X}^{\mathrm{iv}}=0$, since the bending moment over the end supports is zero-
$l=l^{\prime \prime}=95^{\prime}, l^{\prime}=110^{\prime}$,
$c=w^{\prime}=w^{\prime \prime}=\frac{1}{2}$ ton.
Substituting these values, there obtains-
$410 X^{\prime \prime}+110 X^{\prime \prime \prime}+\frac{1}{8}\left(95^{3}+110^{3}\right)=0$
$110 X^{\prime \prime}+410 X^{\prime \prime \prime}+\frac{1}{8}\left(110^{3}+95^{3}\right)=0$.
Thus, as we might have expected, $\mathrm{X}^{\prime \prime}=\mathrm{X}^{\prime \prime \prime}$ -
Taking the general equation to the bending moment, and substituting these values-
$\mathrm{X}=\mathrm{A}+\mathrm{B} x-1$

$$
\begin{gathered}
x-\frac{1}{2} w x^{2}, \quad \text { when } x=o, \mathrm{X}=o, \\
\text { when } x=95, \mathrm{X}=\mathrm{X}^{\prime \prime}=-526 \\
\therefore \mathrm{~A}=o, \\
-526=o+95 \mathrm{~B}-\frac{1}{2} \cdot \frac{1}{2} 95^{2} . \\
\mathrm{B}=18 \cdot 2 .
\end{gathered}
$$

For the point of contrary flexure, substituting these value of A and B in the equation above, and equating to zero-

$$
\begin{aligned}
& =18 \cdot 2 x-\frac{1}{4} x^{4} . \\
& x=72 \cdot 8 .
\end{aligned}
$$

Taking now the second span-
$\mathrm{X}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime} x-\frac{1}{2} w$
when $x=0, \mathrm{X}=\mathrm{X}^{\prime \prime}=-526 . \quad \therefore \mathrm{X}^{\prime \prime}=-526$,
when $x=110, \mathrm{X}=\mathrm{X}^{\prime \prime \prime}=-526$

For the point of contrary flexure-
$=-526+27 \cdot 5 x-\frac{1}{4} x^{2}$
Thus in the middle span there are two points of contrary flexure. The condition of the third span is similar to that of the first. To represent this in a diagram, we have the equation to the parabola- $y^{2}=\frac{2 x}{v}$,
Taking a general scale of lengths, $\frac{1}{1 / 5}$, and a scale for moments 300 to an inch, we proceed to draw the parabola on cardboard, measuring values of y to the former scale and values of x to the latter. Having drawn a horizontal line
trary flexure are marked on and the bending moments moving phers measured off to the proper scale, then down, always keeping its axis perpendicular to the horizontal line, and drawing the curve, it will be found to pass through all the given points.
To obtain an accurate knowledge of the strains in the girder, it is necessary to consider the effect produced on it by the rolling load as different spans are loaded. Thus, there will be seven cases to consider. The rolling load may be on the three spans separately; on every pair of the segments; and on the whole bridge.
We shall now proceed to find the bending moments over the piers in each of these cases, and then the corresponding points of contrary flexure. With these data, all the strains on the girder can be graphically represented, so that the strain at any particular point can be determined by scaling-
Case 1.-First span loaded-
$\mathrm{X}^{\prime} l+2 \mathrm{X}^{\prime \prime}\left(l+l^{\prime}\right)+\mathrm{X}^{\prime \prime \prime} l^{\prime}+\frac{1}{4}\left(w l^{3}+w^{\prime} l^{\prime}\right)=0$. (A) $\mathrm{X}^{\prime \prime} l^{\prime}+2 \mathrm{X}^{\prime \prime \prime}\left(l^{\prime}+l^{\prime \prime}\right)+\mathrm{X}^{\mathrm{s} v} l^{\prime \prime}+\frac{1}{4}\left(w^{\prime} l^{\prime 3}+w^{\prime \prime} l^{\prime \prime 3}\right)=o \quad(\mathrm{~B}$ In all these cases $l=95 \mathrm{ft} ., l^{\prime}=110 \mathrm{ft}$., $l^{\prime \prime}=95 \mathrm{ft}$.
$\therefore l+l^{\prime}=l^{\prime}+l^{\prime \prime}=205^{\prime}$.
In this particular case $w=\frac{3}{3}$ tons, $w^{\prime}=w^{\prime \prime}=\frac{1}{2}$ ton.
Substituting these values in (A) and (B), there obtains-
Now, taking the general equation to the bending moment to find the point of contrary flexure-
$\mathrm{X}=\mathrm{A}+\mathrm{B} x-\frac{1}{2} w x^{2}$
$w=\frac{3}{2}$ for first span.
When $x=o, \mathrm{X}=\mathrm{X}^{\prime}=0 \quad \therefore \mathrm{~A}=0$,
when $x=95, \mathrm{X}=\mathrm{X}^{\prime \prime}=-1089$.
$-1089=95 \mathrm{~B}-\frac{3}{4}(95)^{2}$
$\mathrm{B}=59 \cdot 8$.
Substituting in (C) and equating the bending moment to To find the effect of this
To find the effect of this load on the second span in equation (C) when $x=0, \mathrm{X}=\mathrm{X}^{\prime \prime}=-1089$
when $x=110, \mathrm{X}=\mathrm{X}^{\prime \prime \prime}=-375$.
$-375=-1089+110 B-\frac{1}{4}(110)^{2}$
$B=34$.
For the points of flexure-
$o=-1089+34 x-\frac{1}{4} x^{2}$
$\therefore x=84 \cdot 4$ and $51 \cdot 6$.
Effect on third span-
From equation C when $x=0, \mathrm{X}=\mathrm{X}^{\prime \prime \prime}=-375$.

$$
\begin{aligned}
& \therefore \mathrm{A}=-375 \\
& \text { when } x=95, \mathrm{X}=\mathrm{X}^{\mathrm{iv}}=0 \\
& \therefore o=-375+95 \mathrm{~B}-\frac{1}{4}(95)^{2} \\
& \mathrm{~B}=27 \cdot 7 .
\end{aligned}
$$

Substituting and equating to zero-

which gives

$x=95$ and $15 \cdot 8$,
Case 2.-Third span loaded-the bending moments and points of flexure are the same in value as in the previous point.
case.

Case 3.-Middle span loaded-
From equation A, remembering that for this case $w=v v^{\prime \prime}$ $=\frac{1}{2}, w^{\prime}=\frac{3}{3} \mathrm{we}$ obtain -
$410 \mathrm{X}^{\prime \prime}+110 \mathrm{X}^{\prime \prime \prime}=-\frac{1}{8}\left(95^{3}+3 \times 110^{3}\right)$
By symmetry $\mathrm{X}^{\prime \prime}=\mathrm{X}^{\prime \prime \prime} \therefore$ we obtain $\mathrm{X}^{\prime \prime}=-1166$
Now, finding the values of A and B in equation C by means of this value of $\mathrm{X}^{\prime \prime}$ and $\mathrm{X}^{\prime \prime \prime}$, and then substituting them, and equating to zero we obtain for the points of contrary flexure-
$x=93 \cdot 4$ and 16.6.
For the effect on the third span which is, of course, equal in value to that on the first, we obtain the equation-

$$
o=-1166+36 x-\frac{1}{4} x^{2} .
$$

$$
x=95 \text { and } 49 \text {. }
$$

$x=95$ corresponds to the point of support; $x=49$ is the required point of flexure.
Case 4.-First and second spans loaded-from equations A and B substituting the values $w=w v^{\prime}=\frac{3}{2}, w^{\prime \prime}=\frac{1}{2}$ we obtain-
$410 \mathrm{X}^{\prime \prime}+110 \mathrm{X}^{\prime \prime \prime}=-\frac{1}{8}\left(3 \times 95^{3}+3 \times 110^{3}\right)$
$110 X^{\prime \prime}+410 X^{\prime \prime \prime}=-\frac{1}{8}\left(3 \times 110^{3}+95^{3}\right)$.
Solving $\quad X^{\prime \prime}=-1729, X^{\prime \prime \prime}=-1015$
Then following the same steps as in Case 1 for the point of flexure, we obtain in the first span-
$o=50^{\circ} x$.
$x=7$.
In the second span-

In the third span-

$$
\begin{aligned}
& o=-1015+34 \cdot 4 x-\frac{1}{4} x^{2} . \\
& x=95 \text { and } 42 \cdot 75 .
\end{aligned}
$$

Case 5.-Second and third spans loaded. The values will be the same as in the last case.
Case 6.-First and third spans loaded.

Equation A becomes

2,

$$
410 \mathrm{X}^{\prime \prime}+110 \mathrm{x}
$$

$$
\begin{aligned}
& 110 X^{\prime \prime}=-\frac{1}{8}\left(3 \times 95^{3}+110^{3}\right) . \\
& X^{\prime \prime}=X^{\prime \prime \prime}=-938 .
\end{aligned}
$$

For the points of flexure, we have, in the first span-

$o=61 \cdot 4 x-\frac{3}{4} x^{2}$

 $x=81 \cdot 8$.In the second span-
$=-938+275 x-\frac{1}{4} x^{2}$
This equation gives an impossible root, therefore there is no point of flexure, and the bending moments have the same sign all over the span. The point of flexure in the third span will be symmetrical to that in the first.
Case 7.-All spans loaded. The bending moments will evidently be symmetrical with regard to the centze of the bridge, therefore- $\mathrm{X}^{\prime \prime}=\mathrm{X}^{\prime \prime \prime}$
$\mathrm{X}^{\prime \prime}=\mathrm{X}^{\prime \prime \prime}, \quad w=w^{\prime}=w^{\prime \prime}=3$
\therefore From equation $A, 410 X^{\prime \prime}+110 X^{\prime \prime}=-\frac{3^{2}}{8}\left(95+110^{3}\right)$
$X^{\prime \prime}=X^{\prime \prime \prime}=-1578$
For the points of flexure : In the first span-
exure: In the first s
$o=54.6 x-\frac{3}{4} x^{2}$.
$o=54 \cdot 6$
$x=72.8$.
DIAGRAM OF STRESSES IN CONTINUOUS GIRDERS.

In the second span-

$$
x=-1078+825 x-\frac{3}{4} x^{2}
$$

$$
\begin{aligned}
& o=-1578+82^{\circ} \\
& x=24 \cdot 6 \text { and } 85 \cdot 4 .
\end{aligned}
$$

In the third span the point of flexure is symmetrical to that in the first. We must now construct another parabola from the equation-

$$
y^{2}=\frac{2 x}{w}, \text { giving to } w \text { the value of } \frac{3}{2} .
$$

In mapping the curves of moments from the data found in the seven cases just considered, one of these two paraolas must be used to draw the requisite curve, according the segment in the case permanent load only or to the additional roling load. I moments for accompanying this paper, the curves of reference to the index. The result of unequal loading the girder is by this means rendered very apparent; by measuring from any point on the horizontal line to by hatched border the preatest strain that the girder can be subjected to at that point can be found from the seale. It may be noted that the curve for the permanent scale he whole bridge, numbered 1 in the piagra, load for he whole bridge, n the 1 connection with them and is merely put in to show trains due to the weight of the We must point out that in these calculati.
Wer in pe have who when conidering the effet of the rolling lod insse ropara eases, dos ot take into a ine in the oad as acting at the same time, but draws the two ystems of curves on spite sides but draws the two the double ordinate, as the tal strain the, and take s open to the objection that it drain at any point. Thi ctually occurs, and probably our mothod of esent what ctually the permanent always existing conjointly with the
Royal College of Science for Ireland, Dublin, June 21st, 1884.

SHEAF-BINDING REAPING MACHINES

We may now resume th. It
We miving a descriptive account of the string sheaf-binding reaping machines 1884, but this is not is at least a certain amount of misgiving. Ther makes of machines which we intend to illustrat have passed through our pares, the different part will, in one or other of the articles, have received some attention, so that what is not described with refer ence to one machine may be described with referee nother. We have already alluded to the complex nature f a string binding reaping machine and it is not no ecessary to show that in comparison one of them makes hrashing machine appear as an of of simplicity But this being near apout the truth, it will perhops be vell to refer in detail to some of the parts in Messe Hornsby's machine which we did not lescribing that of Messe Thi we a o do by means of the very complete set of drawing and hetographs placed at our disposal by Messes. Hormby, photographs placed at our disposal by Messrs. Hornsby ncluding the perspective showing the rear and off sides the machine in the foreground, and Figs. 1 to 5, showing ifferent parts.
Fig, 1 is a sectional plan taken at the level of the xle of the driving or land wheel. Fig. 2 is a skeleton rawing showing the platform and elevating webs on heir rollers, the binding table, and the sheaf carrier Fig. 3 shows Messrs. Hornsby's arrangement of their gear which in Messrs. Howard's is represented in Figs. 6, 7 and 8, pp. 153, 154 ante. Figs. 4 and 4 A show the gea or driving and for adjusting the reel, and Fig. 5 show the larger apparatus for carrying several sheaves when it a desired to place them in close windrows. We shall more particularly describe the machine to which the judge warded the firt prize of $x 100$ at the recent trials or shea in 1 me main wheel marked 8 in Ig. 1 and 1 in Fig. 3 is 40 im . in diameter, and the widt wo rows of ing under the go spokes fastened to an angle iron o. is a the tire, which is made of steel. The gearing ansts of a ring 9, Fig. 1 , of external spur teeth gearing o a pinion a whe by a lutch for may be moved endwise on e spinde by the lever A, Fig. 6, to put it in or out of
 ding a bevel pinion 14 drives a spindle 15 running to the back of the machine. A chain wheel 16 mounted on extreme back end of this spindle drives the chain that works the elevator, the platform apron, and also the reel. This chain-see Fig. 6-passes over the spocket wheels H -ameas 16 in Fig. -another behind spur wheel D, over \mathbf{E} driving the reel, downand round F driving elevators, and ove he tightening wheel G, back to H. Another bevel wheel 17 , Fig. 1 , on the first motion spindle 12 by a pinion 18 drives a spindle running forward, and by a crank disc or plate 20 on the extreme front end of this spindie, and a connecting rod 21 across the front end of the machine drives the knife. The end of the connecting rod is held in the knifeeye by a turnover slide secured in position by a spring oolt. The fingers are malleable cast iron fitted with stee linings, each finger is secured to an angle iron bar by a

single bolt. By the arrangement adopted for the cutting platform and cutting apparatus, including knife and finger bar, the under side of the fingers is the lowest part of the machine, i.e., when the fingers lie on the ground all othe parts of the machine are just clear of the ground. This is
the platform and the under side of the finger bar, as shown in the accompanying section, Fig. 7. The spindles of the rollers carrying the canvas aprons or webs 3,4 , and 5, Fig. 2, all run in brass bushes, and the driver's seat, seen in Figs. 5 and 6, has two separate adjustments, one to suit the length of driver's leg, the other to suit the balance of machine. The reel 1, 1, Figs. 4 and 6, may be driven

Fig. 1.-1. Spindle for raising worm. 2. Worm and chain wheel. 3. Raising chain (endless). 4. Chain wheel and raising pinion, made
to axle 29. 5. Raising quadrant. 6. Ditto ditto. 7. Raising pinion, made fast to axle 29. 8. Main wheel 9. Gear ring and bush in one piece. 10. Clutch pinion. 11. Clutch fork. 12. First-motion spindle. 13. Bevel wheel driving back spindle. 14. Bevel pinion, ditto ditto. 15. Back spindle. 16. Chain wheel driving elevator and platform arpons and reel. 17. Bevel wheel driving front spindle. 18. Bevel
pinion, ditto ditto. 19. Double-chain wheel driving binder, on front spindle pinion, ditto ditto. 19. Double-chain wheel driving binder, on front spindle. 20. Crank plate. 21 . Connecting rod. 22 . Brass bush in
crank plate. 23. Front elevator post. 24 . Top board. 25 . Back elevator board. 26 . Back frame stay. 27. Front stay to front elevator
post. 28 . Front stay to tilting post. 29 . Main axle.

Flg. 3.-1. Main wheel. 2. Front rail of gear frame. 3. Binder post. 4. Elevator post. 5, 6. Frame tube carrying binder. 7. Packer
 Fig. 4.-1. Reel. 2. Spur wheel driving reel. 3. Spur and bevel pinions running loose on the pinion screwed on reel drive spindles. 5. T-ensed bearing carrying drive spindle; this bearing is free to vibrate in frame 17, so that spindle always runs in line. 6. Reel drive spindles. 7 . Double-chain wheel driving reel. 8. Fout-board. 9. Base bracket carrying reel supporte
10. Wrought iron bow carrying reel supports. 11. Socket for wood lever 12 to adjust reel back or forward 10. Wrought iron bow carrying reel supports. 11. Socket for wood lever 12 , to adjust reel back or forward. 12 . Wood lever to adjust reel
back or forward. 18. Wood lever to adjust reel up or down. 14. Socket for lever 13. 15. Parallel rods to adjust reel up or down. 16. Brackets to adjust weight of reel. 17. Wrought iron support for reel,
at two separate speeds to suit the crop, the spocket wheel marked 7 in Fig. 4, and E in Fig. 6, having two sets of teeth, as best seen at 7, Fig. 4. The gear that drives the reel consists of a spur wheel 2, Figs. 4 and 4Λ, mounted on
the reel centre. A spur pinion and a bevel whel the reel centre. A spur pinion and a bevel wheel 3 , cast Together, are mounted loose on the stem of a pivotted T-ended bearing 5, Figs. 4 and 4A, carried by the reel
frame. This T-ended bearing 5 carries the end of a drive
bevel wheel and spur pinion by which the reel is driven. The T-ended bearing is free to rotate in the reel-supporting frame; and this allows the reel to be worked in any position, and the bearing to accommodate itself to the line of the driving spindle. An adjustable wrought iron divider is mounted on the wood divider, and can be adjusted to suit the crop. The ear lifter, which is mounted at the inner
of corn before they are cut, instead of allowing them to be cut off and left on the ground. This ear lifter is not seen in our engravings. It is pivotted so as to allow it to follow the undulations of the ground. The framework of the machine is wood-ash, and is strengthened by wrought iron adjustable stays-26, 27, 28, Fig 1 - connecting the gear adjustable stays- $26,27,28$, Fig. 1-connecting the gear the elevator aprons run in line with the frame. The sheaf cradle or carrier, Fios 2 and 5 , is made of two bars of cradie or carrier, Figs. 2 and 5 , is made of two bars of is under the control of the driver, who by levers 15 and 16 is under the control of the driver, who by levers 15 and 16 shown in Fi a a shown in Fig. 2, or can turn it up to the position shown in
dotted lines, so that it is clear of the sheaves as they are dotted lines, so that it is clear of the sheaves as they are
thrown from the machine. The irregularly shaded circles marked 22 in Fig. 5, and which may be seen at 11 marked 22 in Fig. 5, and which may be seen at 11 and at 13, Fig. 2, represent sheaves of wheat. By during the harvest, as the cradle at each corner of the during the harvest, as the cradle at each corner of the the corner, so that the horses need not tread on a single sheaf when turning. It is also found very convenient to make a roadway from the centre of the field where the 0 make finithes to the field; this may be done by carrying away the sheaves by field; this
The extension of the cradle, as shown in Fig. 5, controlled from the seat at 8 by the foot acting on the chain 9 , is for regular windrowing, as already referred to. This apparatus was much appreciated by the judges at Shrewsbury. It is specially intended for use in the colonies, and carries three, four, or five sheaves, and ays them in rows, so that they may be either stooked or be carried away from the field without stooking. This s considered a great stride in labour-saving app so much needed by the farmer of the present day
is used to set the binding mechanism in motion. A part of the binder table is made loose, and jointed at the top end 9, rig. 2 . The bottom end hin loose of the binder table, and is carried by a lever 10, Fig. 2, made fast to the trip rod, so that when the crop is thrust ownwards by the packers, one of whe Jis through he slotis the bing and trips the binding mechanism. A second trip lever is jointed to the lever just described, and is operated upon yig 10 Fi con 16 sor Fig. 3 and 12 in Figs. 2 and 6, so that when by the packers the rop is thrust agaift the jaws, it causes the heel of the jaws to rise, and lift at 18 the rod 17, and as the latter is ind to trip, it seta tho That is to say, turning to Fig. 3, that pressure from 12 on he bent lever 13, or pressure against 20 causing it to lift he lever 17, will raise the lever 9, and allow the clutch 8 to go into gear, as described with reference to Fig. 6, 7, and $8, \mathrm{p} .154$. The train of gear $13,14, \& \mathrm{cc}$., is thus put into motion, and the knotter gear set to work to carry the string round the corn, which is packed against 20 and on board 12 , and to tie it up. The action of the trip gear thus far described is made completely clear by the descrip tion of the similar gear given at p. 154. The knotter, as used by Messrs. Hornsby, has been greatly improved during the past season by taking away unnecessary parts, and fixing some that were made loose, as also described with reference to Messrs. Howard's machine. Great attention has, we are told, been paid to the titting up of these parts,
and we are informed that special tools have been prepared, 5 ft ., but the breadth of cut was 5 ft .3 in . generally, and the and machinery built to make every part a correct duplicate. width of the elevator is 5ft. The spindles in the machine The width of the finger-bar of the machine described was \mid are made of steel.

Fig. 2.-1. Main wheel. 2. Divider wheel. 3. Platform apron.
8. Elevator apron. 5. Ditto ditto. 6. Elevator post. ${ }^{\text {4. }}$. Gear frame. 8. Bind.er post. 9. Trip board, forming part of binder platform. 10. Trip lever. 11. Ejector. 12. Compressor jaws. 13. Sheaf cradle.
14. Sheaf delivery board. 15, Rod working sheaf cradle. 16. Lever working sheaf cradle. 17. Top board.

Fig. 5.-1. Main wheel. 2. Front rail of gear frame. 3. Elovator board. 4. Tilting post. 5. Elevator post. 6. Top board. 7. Footbor
for inside half of sheaf cradlo. 12. Board forming inside half of cradle. 13 . Support for inside half of cradgle. 14 . Rod connecting and
operating the two halves of cradle. 15. Lever operating outside half of cradle. 16 . Contre of outaide half of cradle. 17. Cradle teeth lin. operating the two halves of cradle. 15. Lever operating outside half of cradle. 10. Contre of outside half of cradle. 17. Cradle teeth lin.
steel bars. 18. Front support for cradle fixed to front gear rail. 19 . Baek support for cradle. 20. Wrought iron stay to back support. ${ }_{22}^{\text {stel Shars. }}$ Shes of corn as laid by the cradle.

THE PHILADELPHIA INTERNATIONAL ELECTRICAL EXHIBITION.

THis Exhibition, which opened on September 2nd, is being energetically developed, and bids fair to change the reputation whick has hitherto attended similar exhibitions, where the opening cer emony has been a display of bare stands and unpacked shape shown on the plan, covering a space of 67,000 square feet The site is within a few squares of the Market-street Bridge on
the west bank of the Schuykill River, and is easily reached by steam and street railways. A tower, about 60 ft . high, rises from each corner of the structure. A aentral arch of 100 ft , span and 200 ft . in length, of Gothic style of architecture, covers the wide, running parallel to it on either side, join the towers. remainder of the ground is occupied by a triangular building
connected with the main hall. In addition to these the old Pennsylvania Railway depot across the street will be used as an annexe. The space has been allotted to the exhibitors, but a the entry of goods did not close these already on, he exact are the Baltimore and Ohio Telegraph Company who have a fine exhibit of telegraph instruments, which will show their method of doing business The Western Union Telegraph Company will contribute to the historical collection by sending their first instruments, including those made by Morse, and interesting contributions are also promised from the Ordnance and Signal Service Departments; also the Lighthouse Board. The project of holding an Electrical Exhibition is due to the auspices of the Franklin Institute, who have elected a Board of Examiners to conduct the electrical tests, which will be all the more reliable on account of the painstaking way all experiments undertaken by the Franklin Institute are carried out.

The programme which has been issued by the Wolverhampton Chamber of Commerce in conneection with the visit of the AssoChamber of Commerce in connection with the visit of the Asso-
ciated Chambers to that town at the end of September is very complete.
STErn-whell Steamer for the Nile.-The great experience of Messrs. Yarrow and Co., of Poplar, in the construction of shallow
draught steamers is, we are glad to see, being utilised by the War draught steamers is, we are glad to see, being utilised by the War-
office for the Khartoum expedition. In addition to the flotilla of office for the Khartoum expedition. In addition to the flotilla of
river craft which is being constructed by various builders, the river craft which is being constructed by various builders, the
Government have entered into a contract with Messrs. Yarrow and Co., for the immediate supply of a steel stern-wheel steamer for service on the Nile, and we understand that she will be shipped in the course of the next few days from Woolwich. In design she is very similar to Le Stanley, built by the same firm for the Association Internationale for the navigation of the upper waters of the Congo, and which, it may be remembered, was tested on the
Thames in the early part of this year with great success, and illustrated in our pages. The steamer just purchased by the Government was built for Central America. She is 80 ft . in length by 18 ft . beam, and will have a draught of 16 in . only. She is being shipped in pieces, all of a size suitable for hand porterage, so that she can be sent on to any section of the Upper Nile that may ultimately be decided upon, and there put together and launched. conclusion that the steamer is the one best suited for overcoming the difficulties incidental to the navigation of the shallow portions of the Nile, and especially for ascending the rapids. In order that there shall be the greatest possible despatch in rivetting up and starting the vessel, a large staff of engineers and shipbuiluers from
the works of the firm are to accompany the expedition. steamer will be furnished with an upper and lower deck, and it is estimated that she will be capable of conveying from 400 to 500 soldiers. She will be fitted with several machine guns, mounted at a considerable elevation, so as to command an extensive range over the river banks, and, no doubt, she will be found a valuable
addition to the expedition

THE INTERNATIONAL AGRICULTURAL EXHIBITION AT AMSTERDAM.
The Dutch are waking up. Only last year they had an International Exhibition, and now again they invite the world to
come and see what the Dutch can do in the way of agriculture, come and see what the Dutch can do in the way of agriculture,
and the world is invited to bring the best of its tools and implements, and to let the Dutchmen see them. On the whole, the world has responded very fairly, but with three or four International Exhibitions going last year in Europe and America, and one in Asia, the pace begins to tell. Engineers and machinists
after all live for something else than to show their after all live for something else than to show their wares.
Exhibitions are very well up to a certain point, but beyond that point they must bea loss to the exhibitors. Trade cannot be stimulated much beyond the general wants of the community,
though it may be by the introduction of novelties in districts where their advantages of one sort or another are not known until an exhibition directs attention to them.
However, the Dutch have once more got to
machines, implements, animals, and products relating tow agriculture, Implements, animals, and products relating to
anen space on the west side of the city
of Amsterdam-the site of last ents are pitched for the finest collection of live stock ever seen in Holland. But though the site is the same, this year's visitors have an advantage, in that the Royal Museom of Arts is hrough the great central hall of this building-ground is which may vie with that other vast chamber in the Stadt-
house. The museum is in what the Dutch house. The museum is in what the Dutch regard as the
best period of their art-the seventeenth century style. The walls are of brick, eatly set, but there is much monotony which is inseparable from relieve the fackarade of the alone. Along
mone carved in bold relief to illustrate Science and Art, and pne two panels of scripture subjects. The hall is immediately arches. The interior is divided in a similar manner, and the general effect is precisely that of a long cathedral nave of the later Norman style, or at the point of changing to early English.
The roof is groined, the ribs of the central nave being of stone, and those of the aisles of moulded brick. Need we say that the brickwork is set with Dutch neatness? The columns support
ing the roof are of dressed granite, and are alternately massive ing the roof are of dressed granite, and are alternately massive heavy and boldly carved capitals. On either hand about mid way, is a large square lofty hall lighted from the roof, and placed national works. When completed the building will be of the men of the nineteenth century, though it is but a reproduction of the art of two centuries since. The architect is Meinheer Cuypers, who is
well known in the low countries as the exponent of Dutch chitectur
A good example was afforded the other day of the difficulties
with which the Dutch people have to contend for want of a with which the Dutch people have to contend for want of a good
breadth of solid earth. When they build they manage to get breadth of solid earth. When they build they manage to get
foundation by piling or other artificial means of reaching througtion by piling or other artificiial means of reachind to something sufficiently solid to bear the weight of such a
building as the museum. Even this method fails at times, and of piles two centuries ago, shows signs of yielding. The piles decay, and a heavy building gives
which we call attention is of to-day
Prizes were offered by the committee of the Exhibition for grinding mills.
Amongst other things Messrs. Robey, of Lincoln, had for trial a pair of Derbyshire stones, driven by a portable steam
engine in the usual way. The hurst, on which the stones lay, was placed on a flooring of planks, bedded a few inches into the sand. In England, or, indeed, in almost any other country of
Europe, this would have been sufficiently firm for all practical purposes, but Holland is altogether another sort of place. No ooner was the mil at as indeed it did for the crust as though sand was only a few inches thick. The judges ought to have was made, for the rocking motion was so great that the man who fed the hopper on the top of the hurss could scarcely pre-
serve his balance without holding on. As for the trial, it was rather severe in other respects; for the corn given out to grind was oats, which of all grains feed the worst, and are the most
difficult to clear through the meal spout. But there are oats nd there are oats. These were such as English ostlers some times sarcastically say might be "tied up in a halter."
were long, skinny, full-bearded, and to grind them were long, skinny, full-bearded, and to grind them was like hung in the eye by centrifugal force, and when the meal was nough for ordinary meal, but not for the chaff-like stuff that these Dutch oats made in grinding, The next day a trial was made of some grinding mills of French make, and they certainly tore the oats to pieces in fine style. One of these mills was a pair of metal discs, One of these was fixed, and the other
running. These discs 'are fitted with teeth, so arranged that the moving ones pass through the others concentrically. The grooves or teeth are in series, radiating from the fewer near the centre, but are also coarser, the cutting process
becoming finer as the edge of the disc is reached. The discs vork on edges, and the conn enters at the centre, and is distri only just to say that this mill cut the long-bearded oats to owder. The tough husk was cut through and divided most effectualy, but of the power required nothing could be Possibly the dynamometer would have revealed the wats point in his very showy machine. Another point is that the working sur acemust be mathematically accurate, ora great waste of power and loss of efficiency must ensue. While they are in the hand
skilled machinists and engineers, and in a show ground, such mills may produce good results, but it is when they come to the barn and granary, to be worked by men who have no more rder, that the matter is altogether different Probably the "Excelsior Molen" of H. Gruson, of Buckau, Magdeburg-for hat is the name of the inventor of this mill -mil b Herr Gruson is rather proud of a manetic appliance fixed in the Herr Gruson is rather proud of a magnetic appliance fixed in the
hopper of his mill to arrest nails and bits of iron. Of course such things would play sad havoc with the chilled iron grooves of his dises, and the magnetic bars stop them most effectually
be made large, so that only a trickling flow of corn passes over
the magnets; a heavy stream would overcome the magnetic
Pumping machinery is not so strongly exhibited as might have been expected in a country like Holland, nor are pile driving appliances shown. Amongst the water-raisers are some the ground, and the heavier pumps are on the banks of this,
ifting the water about 20ft. One of these, worked by an engine by Western and Co., of Derby, was exhibited by a Rotterdan Körting Wijumalen and Hausman; another by a Hanover firm, Korting Brothers. It was disappointing to see so little of the
means by which Holland has been made and is maintained But on the principle that a prophet finds no honour in his own country, the Dutch think only lightly of dam-building and pilediving. The pulsometer and the centrifugal pumps are stoc of keeping their show up to the marke The same may be said of the windmill pumps, which are made to look show-like and pretty. Even in Holland the windmill of the ancient type is
ast disappearing, but the French and German machinists have ast disappearing, but the French and German machinists have brought a new type out for the pumping of water. M. Adolph
Pieper makes these mills of 12 -horse power and with wind wheels 40ft. in diameter, and one of this size is working at Cologne. M. Pieper has chosen the American form of wheel,
i.e., one which reefs by turning the vanes edgewise to the wind. M. 'Pieper has a very pretty, lofty tower with a 12 ft ., wheel upon it. Nearly at the top of the tower, and about 30 ft from the ground, is a reservoir, into which the water is pumped so as to obtain pressure for garden fountains, cascades, and other matter The advantage over steam seems somewhat doubtful. The wind notor is by no means inexpensive, either to make or to keep in repair, and, of course, the uncertainty of the winds might have the effect of establishing a water famine where they were at al relied on. M. Pieper has horse-gear pump
articles of hydraulic machinery on his stand.
The trials of thrashing machinery have been greatly delayed They commenced on Monday, and, judging from the simplicit machine was to thrash 200 sheaves of rye and 100 of wheat, of machine was to thrash 200 sheaves of rye and 100 of wheat, settle down to the work. After commencing with Messrs. Ransome's machines, on the stand of Peignat and Co., Amsterdam, the dynamometer was brought out and the trial commenced in another part of the yard on a French machine. Here the ufficiently wis were of webbing, and they were by no means getting this machine to work with these inefficient bands. Pro bably the gentlemen who conduct the trials at Amsterdam have
not yet learnt how much has to be done to bring them off of yet learnt how much has to be done to bring them on
efficiently. At all events, they have taken a lesson on the point efficiently. At all eve
during the past week.
The King of Holland formally inaugurated the show, and made a close inspection of most of the implement stands. The

AN ADVENTUROUS RAILWAY JOURNEY

The Board of Trade reports on railway accidents seldom con tain much sensational matter. One by Major Marindin, on an accident which occurred near Strathblane on the Blane Valley branch of the North British Railway, is a remarkable exception. We reproduce the evidence of the driver of the train, which ragic termination. The 8.5 pm , to Bucklyvie was on the 11th of July detained by floods, but ultimately proceeded; when approaching Strathblane station the engine ran into some earth washed out of the side of a cutting, and was upset. The guard of the train and a passenger who was on the engine were killed on the spot. The fireman was so badly scaided that he died a few hours afterwards; another passenger on the engine was badly injured, and a passenger in the train had his leg broken. The driver, Archibald Stirling, told his eleven and twelve years in the service, and five years a driver I have been driving on the Blane Valley branch for about nine months regularly, and know the road well. On the 10th July I was driving engine No. 228, a six-wheel coupled tank engine. was working the service between Glasgow and Bucklyvie, backthe Glasgow, passing Strathblane stan $9.20 \mathrm{a}, \mathrm{m}$. After arrivin at Glasgow, I took a goods train from Cowlairs West to Lennox town, and returned with a goods train to Sighthill. I then too the $5.45 \mathrm{p} . \mathrm{m}$, passenger train from Queen-street to Lennoxtown, arriving at 6.22 p.m., and 1 then remained at Lennoxtown till the 8.5 p.m. train arrived from Glasgow, due at 8.41 . It was left Lg very hown at 8,45 . The train conisted of engine, We left lesite with class carriages, and brake-van. There was a rood number passengers, When we arrived at Campsie Glen station the fore man surfaceman came to me, and told me that I would not be able to get any further because there was a tree under a bridge over the burn, and he was not sure of the bridge. He asked me o go up and see it. The guard and I went up, and he asked us what we thought of it. We told him that we had nothing to do with it, and that he must say whether we were to go on or not. The water was not then quite over the briage, butit was dammed back by the tree, and coming down very strong. The foreman platelayer would not let us go on upon his responsibility, and we went back to Campsie Glen. I then sent my freman back and on his return with this permission I brought my my train, arriving at waited there until the permanent way inspector came, and the bridge, and I went over the bridge and back again. The inspector said he considered it safe, and I brought him back to Lennoxtown. Mr. Denham, the acting the guard to tell the passengers, who were waiting in the inn, that the train was going on. We started, when every-
thing was ready, at about 12.20 on the morning of the 11 th July. There were then six or seven passengers in the train. We were due at Bucklyvie at 9.25 . When we got to Campsie Glen I went cautiously over the bridge. The permanent way men were there watching it. Atter proceeching or about ball to I must have been 2 ft . or 3 ft . above the rails, and I must have run through the water for nearly a quarter of a mile. When nearly through the water I stopped to consult with the guard what to
do. I went down one side of the train and he came up the
other we consulted what to do. He asked me if I could make did go that length I would use all my water. We then decided to light the fire again. We therefore drew forward for another quarter of a mile, to get near a farmhouse which we knew of.
The guard and I , and a passenger-Robert Younger-who knew the farmer, went up to the house and got some paraffine oil and some sticks, and went back to the engine with them. We lighted the fire, and got away again about twenty minutes to two. The guard and Younger, who had been helping to break the sticks oo kindle the fire, remained on the engine. I had not much
team, and we went slowly up the bank. It was then very dark and still raining, but not so heavily as it had been up to shutting off steam at the summit, we the state of the line, and, speed of about fifteen miles an hour. All of a sudden the engine went off the rails, first to the right, I think, and then, lurching to the left, fell over to the right and lay with the wheels in the air. It all happened in a second or two. I had been on the left side of the engine, and I fell under the engine between the
two weather boards. I crawled out through the water. I stood a minute, and could neither a hear of the as the steam was rushing out and filling the cutting. I thought they were all killed.
side of the cutting and down the line. I went straight away down to Strathhlane station to get assistance. My leg was blane after getting some people up in a house near the station. There was no one at the station. There was a yood deal of water on the line going down to Strathblane. When I came up the line in the morning it was all right. Besides those I have engine. He also had been helping at the fire. We had been obliged to break up some fencing, and he and the fireman had been to a platelayer's hut to try to find some keys or dry wood.
The hut was some way ahead. I let the man remain on the engine to save them from walking back through the water to the carriages. When 1eil Lemnoxtown 1 got no special instruc take my time He said it was more than likely his men would be out along the lin. My freman was told by his uncle, would faceman at Kirkintilloch, to watch the line at Strathblane and Blanefield. My fireman told me this after we left Lennoxtown
I do not know whether he told anyone else. I was running cautiously, but it was dark."

CONGRESS OF GERMAN ARCHITECTS AND

 ENGINEERS.The annual Congress met at Stuttgart on 22nd August, and was well attended. The business proceedings included the disin German technical circles, and it was resolved to publish at an early date the normal conditions drawn up regarding contracts eartween professional men and those retaining their services, with a view of a more definite appreciation of mutual obligations than has hitherto been possible. The question of rules for the delivery of iron structures was again referred to the societies
represented for final deliberation, and will be treated in detail at the next Congress
Amongst the papers read which bear in a direct manner upon engineering was one by Professor Winkler, of Berlin, in which
the testing of iron and steel was treated in detail s special refer ence being made to the system introduced by Herr Wöhler upon which calculations regarding iron construc the now to a great extent founded. The speaker remarked that these tests, certain disputed unted value, required to be supplemented as to a complete system. The chief result of Herr Wöhler's investiga tions has been the establishment of the fact that iron and steel can be broken, not only by a burden at one time which exceeds whie strength, but also by frequent and alternating influence cussion need not attain the limits of tension. After a short dis cussion a resolution was adopted calling upon the German
Government to arrange for the continuation of Herr Wöler' Dr. Dietric
Dr. Dietrich, of Stuttgart, gave an address of practical interest on "Electrical Transmission of Force," in which he sought to deine the advanrages and defects of extaio system ins such Even divested of much speculative efficiency, he considered the force still applicable as being of considerable industrial advan tage from the simplicity, durability, and portability of the necessary appliances. The relative lightness of electro-motor was also referred to, some now being constructed weighing onl
$92 \frac{1}{2} \mathrm{lb}$ per effective horse-powe The speaker considered that for distances exceeding 1100 yards, electrical transmission pre sents economical advantages, where the force and distance do
not render it more advisable to produce the motive power on the spot.
Much interest was evinced in Herr Lange's paper on "Build ing in the United States," which referred incidentally to many points affecting engineering work. According to the detail price of labour and the cheapness of wood combine to perpetuate certain methods of working almost disused in Europe. Cribwork is, for instance, in general use for foundations, bridge columns, shore walls, \&c. Works connected with the regulation of the stream are in course of execution on eleven rivers; the Chanoine system of movable weirs and locks being in use Opinions seem to be divided as to the canal question, as is the case in Germany as well. Some details were also given as to matters of an administrative character. An exhibition of plans was an interesting feature of the Congress.

Naval Engiserr Appointarents.-The following appointments have been made at the Admiralty:- John Yeo, chief engineer, to
the President, additional, for service at the Royal Naval College at Greenwich; Robert Browne Priston engineer, to to Colle broke, additional, for service in the Rodngey; GGorge White
engineer, to the Perber George Weight, engineer, to the Serapis; John Lake Michell, engineer, to the Duncan, additional, for service in the Hydra
John Hughes, engineer, to the Asia, additional, for service with the training school for engineer students ; Henry Thomas Ham mond, engineer, to the Asia, additional, for service in the Dread
nought: Henry Garwood, chief engineer, to the Hector; Henry
Percival Vinin Percival vining, assistant engineer, to the Malabar; Rober engineer, to the Victoria and Albert; Geo. E. M. Keey, chief
engineer, to the Indus, for the Hecate; George E. Bench, engi
neer neer, to the Malabar; Josiah H. Hunt, assistant engineer to the
Asia, for service in the Devastation; Samuel A. Sereech, assistant
engineer to the Serapis engineer, to the Serapis; and G. T. Oraddock chief engineer, to
the Rapid.

HORNSBY'S STRING SHEAF-BINDING REAPING MACHINE.
(For description sec page 173.)

ELECTRIC LIGHTING AT THE HEALTH EXHIBITION.

No. III.
"We will meet in old London. It is so lovely." The idea conveyed in this sentence frequently finds expression idea conveyed in this sentence frequently finds expression
with visitors to the Health Exhibition. One may hear with visitors to the Health Exhibition. One may hear
something similar to it continually, and great credit is due something similar to it continually, and great credit is due not only to those who started the conception of reproducing this picture of antiquity, but also to those who have so thoroughly carried the idea into effect. The whole is well supported in every detail, even to the omission of the gutters from the eaves of the houses, which those who happen to be caught in old London during a shower may have occasion to observe. But pernaps Mr. Mackie has had the hardest problem to attack in connection with thi portion of the exhibition. He has had to light old London with electric light, and yet to keep it old London. However, he has faced the anachronism, and overcome its difficulties with singular taste, and what is more, with complete success; for he has produced what is at night one or the most charming attractions of the place. But to do this he has boldly sacrificed commercial display to pictorial effect, and the public owes him a great debt of gratitude that his age of advertisement is for a time put to shame and forgotten in the glamour of a brace of electric moons. There are two moons, certainly, but no one need blame any other than himself if he sees more than oue at a time, or it has been so arranged that the two steady arc lights which supply the moonlight are not both visible from any one spot in old London itself. They are run up to a height of 70 ft . from the ground, and the light is surrounded by large spherical opalescent glass shades. Each of these moons gives a light of 2500 candles, and there are three other similar lights used for various illuminations in different parts of the old City. One having an orangetinted globe is placed in such a way as to represent a tire in the guard-room over the entrance of the Bishops-gate Another with a red glass does duty for a forge in the ironworker's shop at Pye Corner.
There are thirty incandescent lampsdistributed in various places inside the houses and shops, as well as outside, but he prominent lights are always placed in old-fashioned orn lanterns, and hung out of the windows, or suspended on brackets at the street corners and over the doorways, as was customary in the period represented by the house and other surroundings. The balcony of Dick Whittington's house is thus lit up for the reception of musicians. Altogether the effect is most pleasing and accurate, and, as ar as we can judge, thoroughly concordant with the spirit and tone of the place and time presented. The electric machinery producing all this excellent effect is composed of two Gramme machines, E type, whose fields are excited in series by another Gramme machine of the A pattern One of these E machines supplies the five arc-Lee-lights in series with a current of 21 ampères, the difference of potential at the extremities of the lamp circuit being 185 volts. This would make the effective power 3885 watts for an illumination of 12,500 candles, the speed of he machine for this result being 1050 revolutions minute. The carbons used are the cored Siemens or Berlin carbons, the upper one having a diameter of 14 mm .,
and the lower one a diameter of 20 mm ., the lengths 12 in and the lower one a diameter of 20 mm ., the lengths 12 in .
and 6 in . respectively. These lamps are said to burn for something over seven hours without requiring adjustment or interference. They have been employed at other exhibitions, but have had subsequent improvements introduced, and now burn with far more than ordinary duced, and
steadiness.

The other E machine supplies the incandescent lights to the number of about thirty. As it is constructed to supply 60 lamps, it is run at a speed of only 800 revolutions per minute. Mr. Mackie's lamps have the carbon filament twisted with a double spiral, so that the light emanation is fairly uniform on every side, and the light itself has a pointed flame-ike form which admirably adapts it to the purposes for which it is here applied, viz., to represen flames in the old lanterns.
Six of the incandescent lamps on this circuit are employed in Mr. Humphrey's corrugated iron school-room and its offices. They hang in pendants, and the actual incandescent carbon is screened from view by thick opalescent globes with wide mouths opening downwards. The perfect way in which small print can be distinguished by this light is worth attention.

The dynamo-electric machines employed have also served at the Crystal Palace Gas and Electricity Exhibition and at the Fisheries, so that they have been working almost continuously from dusk till ten o'clock at night during nearly two years without requiring repairs. The steam engine is by Messrs. Davey Paxman and Co., which actuates the main shaft in the engine-shed, but the Grammes are driven from a countershaft.
Each incandescent lamp has a nominal power of 20 candles, but from the circumstances of the case is run to rather more than this. Some of those which were in former exhibitions have a tale of as much as 1780 hours to tell. They are all fitted with Mr. Mackie's patent holders, in which, by the pressure of a metal cylinder and the peculiar form of the hooks for gripping the platinum wires of the lamps, good, firm contact is obtained and the fusing of the platinum wire through sparking is prevented. All these incandescent lamps, as well as some which are exhibited by the Hammond and Guilcher Companies, have been blown and made by means of the Wright and Mackie machine.
If we turn from old London to Mr. Tayler-Smith's exhibition at the south-west corner of the south gallery, we shall observe a good example of what can be done by means of electric light to display and decorate a modern dwellinghouse. The house itself is of the æsthetic type, to begin with, and is composed of a drawing-room, a dining-room, a bed-room, a hall, a fernery, and a card-room. Ninety lamps are distributed among these rooms, and many of them are removable from one part to another on a system which Mr. Tayler-Smith has done much to work out, but which, nevertheless, seems to entail a good deal of loose leading wire about the tables and floors.
The exhibitor employs batteries of twenty-four cells; so the lamps do not require high pressure. The batteries are charged by means of Elwell-Parker silent dynamo machines, driven by gas engines. For some reason, there are three batteries, two small and one large, and there are besides three dynamo machines and three gas
engines of corresponding sizes. We apprehend that so much machinery for such a moderate installation is not inherently necessary to Mr. Tayler-Smith's system, but may in this case be the result of unforeseen extensions in the lighting required.

VISITS IN THE PROVINCES

THE DARLINGTON FORGE.
Amone the works visited by the Iron and Steel Institute during their Middlesbrough meeting last autumn, the Darlington Forge was by no means the least interesting It covers eight acres of ground, and employs from 400 to 500 men . The speciality is heavy forgings in iron and sof steel, chiefly for vessels and marine engines, but also for rolling-mill and other stationary engines, the work being sent out machine-finished when required. No less than 4500 tons of forgings are turned out yearly for German Dutch, and Danish shipbuilders and engineers, as well as for the leading firms on the large rivers of the United Kingdom The Forge Department contains sixteen steam hammer varying in weight from 20 cwt t to 13 tons, being capable of making any forging, from the smallest up to 40 tons, in a solid piece. The lest addition is a steam hammer called "Tiny Tim," which is one ton heavier than the celebrated "Samson" hammer now working in Glasgow The hammer-head, piston, and rod weigh together 13 tons, and the fall is 9 ft , so that the effective blow is 117 foot tons, or with steam admitted on the top the piston 233 foot tons. This hammer-shown by Fig. 1 of the accompanying

illustrations-was made by Messrs. Glen and Ross, of the Greenhead Works, Glasgow. The standards are of cast iron, with end openings, as in the French hammers, for facility of working. The cross girder supporting the cylinder is built up of massive plates, strongly rivetted and the foundations, both of the standards and of the anvil block, consist of 18 in . balks of timber, all tied together The hammer is served by two furnaces, and by two powerful plate-iron cranes that lift up to 50 tons, all the motions being effected by steam power. During the Iron and

STEAM HAMMERS, DARLINGTON FORGE.

Steel Institute's visit, the hammer was engaged on a crank shaft for the Clyde, to weigh about 17 tons when finished.
All the iron used is selected from locomotive scrap bought from the railway companies. It is freed from rust in revolving drums, piled and rolled into bars, which are then cut into short lengths and cross-piled to form the slabs and uses. In the case of crank shafts and the more important forgings, this method of dealing with the scrap iron is most essential, and produces a metal of great toughness and homogeneity.
A great many vessels are disabled owing to their stern frames giving way on account of their not being thoroughly and soundly welded up. To get over this difficulty, the company has erected and recently completed a smiths' shop 250 ft . long by 50 ft , wide, wherein is erected a special steam hammer, designed and constructed at the works, which, as it is 30 ft . in the clear between standards, is capable of taking in and welding up solid the largest stern frames made. The piston, rod, and head of this hammer-shown by Fig. 2 above-weigh 2 tons and fall through 4 ft ., in addition to which steam can be admitted on to the top of the piston, if necessary, to increase the force of the blow. Steam cranes by Davy

Bros, of Sheffield, tested up to 30 tons, are erected one on each side. Lloyd's Visiting Committee came to inspect this plant soon after it was got into working order. The members

expressed their thorough approval, and permitted reference to them on the subject. In order to set at rest any ence to them on the subject. In order to set at rest any
doubt that might exist as to the soundness of welds made
thus under the steam hammer, the company, at the request of Lloyd's surveyors, made a couple of forgings, 15in. by $7 \frac{1}{2} \mathrm{in}$., and 12 in . by 6 in ., with welds in accordance with the annexed sketch, for the purpose of testing their sound-

ness. On these forgings being bent, and subsequently cut into by machine, as shown by the views on this and the preceding page, which have been prepared from photographs, they proved to be perfectly solid. This method of welding, which is a speciality with the company, is a great improve ment on the old system of hand welding by smiths. The blast for urging the fires, when heating large ship
forgings for welding, is afforded by one of Tannett, Walker, and Co.'s 3 -cylinder blowers, which give a steady pressure up to 3 lb . per square inch.
The machine shop shown by the engraving on page 180 gallery for carrying thi wide. On one side is a gantry o run four powerful overhead travelling cranes, worked by square shafting, and capable of lifting up to 40 tons Some fine lathes by Fairbairn, Kennedy, Smith, Beacock and tamett, Scriven and Co., Berry, occupy one side, and a long
drilling machines, the other
Gas, in this department, has been entirely superseded by the electric light. Four Siemens dynamo-electric machine generate the current for four lamps of 2000 -candle power each, while a fifth machine is held in reserve. They are all driven by one of the shop engines, to which a highly sensitive governor has been fitted.
In this shop a large portion of the tools are engaged in smithed. For such work as stern frames, rudders, \&c., this method affords much truer surfaces, and thus secures greater accuracy in working. A great many built-up lately supplied for the s.s. Belgravia, of the Anchor Line of Atlantic steamers. The company also manufactures a large number of locomotive cranked axles and other forgings, as well as engine wheels, \&c. There were
recently in hand a number of 20 in. diameter screw shafts and a three-throw crank shaft, which weighs about 45 tons as turned and finished. The stern brackets were lately made here for the two twin-screw gunboats
built at Kiel by the Gebrider Howaldt, for the Chinese Government, the contract having been carried off against German houses through the character for superior work gained by the Darlington Forge. The stern bract
At the Tynemouth Exhibition, the Company showed some large forgings, and secured the first prize medal, The Company is "limited," the managing director being Mr , William Putnam.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
correspondents.]

rotary air pumps.

Srs,-We see in your column of "Miscellanea," in last week's Issue, a short account of a rotary air pump, by Mr. A. Brearley, of
Batley, and applied by Messrs. J. Bagshaw and Sons. We beg to inform you we have one at work on the same principle, designed by us, which has been oonstantly in use since January last, and it engine where practicable.
Albert Works, engine where practicabie. Works, Leiester, September 2nd.
Alber
stress diagrams.
$\mathrm{SIR},-\mathrm{In}$ your issue of 29 th Angust Mr. Lean describes a method of calculating stresses, and states that it produces "the most eco-
nomical girder of this type." He adds that "some engineers not
He
 only assume that the stresses go in other directions, but foree them to do so, by making the verticals only of a section suitable for
struts, and by making the diagonals of such a form that they can struts, and by making the diagonals of such a form that they can
only sustain a tensile stress. "This course does not result in proonly sustain a tensile stress.
ducing an economical girder."
Now Sir, I think it has been
hat for spne of soft has been demonstrated by American practice hat for spans of 80ft. and upwards the most economical truss is attained by making the verticals, struts, and the diagonals so that
they can only be ties. But I cannot see how economy can be they can only be ties. But I cannot see how economy can be
secured, even in shorter spans, by adopting Mr. Lean's method of secured, even If sherter spans, members were omitted in the girder
calculation.
he sketches, the stresses in the diangonals would be slightly different he skethoes, the stresses in the diagonals would be slightyly different
hrom those obtained by Mr. Lean's method, but the total amount from those obtained by Mr. Lean's method, but the total amount
of metal in them would remain practically the same. The verticals, of metal in them would remain practically the same. The verticals, therefore, merely add useless weight to the truss. In some cases stiffen the top boom laterally. But why cannot the inclined members be made to do this?
The difficulty which "A. H." points out, and which Mr. Lean uggests a method of overooming, is not caused by there being tw sets of diagonals in the girder, but by the presence of redundant the stresses in two or more sets of diagonals, provided unnecessary members like these verticals are not introducoed. I confess to being
one of those engineers who attempt to "foree one of those engineers who attempt to "force " stresses to go in
one particular way, and in that way only, and always try to make one particular way, and in that way only, and always try to make
that way consist of the fewest possible number of parts, and to that way consist of the fewest possible number of parts, and to
proportion these parts accurately to do their own work, and resist either tension only or compression only, or both, as may be required.
irders are most likely to be produced by adhering as closely possible to this "one way" method of designing ; and I, therefore agre with "A. H." in thinking that the type of girder he refer
to should be avoided. -mansions, viot
September 2nd. \qquad
SIR, - While thanking you for publishing my letter on the above
ubject, I trust you will kindly allow me to trespass a second time on your space
I cannot yet agree with your correspondent Mr . C. Lean, that no part of the load L-see diagram in The Enginkrr of August 29th Assuming that the verticals are struts-and this is nearly ol h. the case in the type of girder referred to-a portion of the load must be conveyed through them. Thus from the load L, a portion will be taken by the member e and transmitted to the apex 3 . Now from that point is it not more reasonable to assume that it wil follow down the
inclined strut f ?
Undoubtedly this will not take place if the verticals are ties, bu in nine cases out of ten in this kind of girder they are struts ; such,
commencement of this discussion.
September 2nd
Sir, - Mr. Lean has not
tion as to the distribution of load and stress in a girder with yuerti.
ala and diagonal bracing. He considers that in a girder of this type
the stresses pass to the abutments through the and that the verticals merely transfer a portion of the load t the top flange.
But Mr. Graham treats simila
girders in a different mannergee Neath Bridge and Cardifn plat
form girders, ENGINEER, Novemer 2nd, 1883; June 20th, 1884. In the

Assuming that the stresses from the part of the load on the bottom lange pass to the abutment, through diagonals in tension and
ferticals in compression as in No. 1; and from that on the to
 as in No. 2.
m puzzled to know who is right, Mr. Graham or Mr^{2} estresses on the verticals and djagonals of this girder?
September 2nd.

hydraulic lifts

SIR,--In letters from us, which you were kind enough to publisi in your issues of July 11 th and 25 th, we stated our intention to working of the "Standard" hydraulic lift. Some of these have aiready arived, and are ready for the inspeotion of any who may
call upon us. It will be noticed that not only is the cost of power covered by these affidavits, but also all other questions of costs for repairs, packing, ropes, \&o. WM. AUG. GIBSoN, President.
American Elevator Company, 38, Old Jewry,
London, August 30th.
London, August 30th.

the clayton brake again.

Srr,-Major Marindin's report upon an accident which occurred
near Redditoh, on the Midland Railway, has now been issued, and attention is once more directed to the danger and inefficiency of the "Clayton so-called automatic vacuum, more generally known as the "two-minute leak-off brake.
The facts of the case are very
The facts of the case are very simple. The leading and trailing
wheels of an engine having a long rigid wheel base left the line wheels of an engine having a long rigid wheel base left the line
when running round a very sharp curve. Fortunately the train did not fall over the embankment or bridge at this spot, or a disaster somewhat similar to Penistone might have resulted. I saw the
permanent way and engine No. 81 after the accident, but both permanent way and engine No. 81 after the accident, but both
seemed to have been in good order ; but it is the brake power, or rather its absence,
steam brake was fitted to the driving and trailing wheels of the steam brake was nitted to the driving and trailing whels of the
engine, and to all six wheels of the tender. The whole of the carriages were fitted with the Clayton leak-off system. This brake is supposed to be under the control of the driver, guards, and self.
acting in case of acident. The facts, however, furnish a very acting in case of
different account
It has often been pointed out in articles which have appeared in your columns her the Clayton brake has but one store of power therefore if it be apphied once, that power is exhaust,
brake leaks off of itself in less than two minutes."
quently it leaks off and is rendered useless while a
quently it leaks off and is rendered useless while a train is still running. The final stop is then made by the steam brake on the engine and tender only. So much time is required to obtain
another store of power with the ejectors, that the brake is perfectly another store of power wa second or third application. In cosese,
useless if
tequired for a userefore, where several signal-boxes or junctions are near together,
 then signals are taken off and the train runs forward to the next
post, without there having been time to obtain a second vacuum. post, without there having geen time to obtain a second vacuum.
Major Marindin reports: : run by the engine after leaving the rails, shows that the automatic It had been used just previously to check speed at the signal-box, and, as often happens, when required again immediately it was
found wanting." The question has often been asked whether the directors of the Midland really know and understand the dangerous character of the brake employed upon their traimstances been to throw some doubt upon the matter. One of these gentlemen
called upom me a few days ago to ask for independent and impartial information as to the construction, practical working, and defects of the brake, also asking why failures are constantly
reported in THE ENGINER, Engineering Railuay Reviev, other papers; yet that from the Board' of Trade Returns the brake would appear almost perfect. There can be, and is, but one explanation, viz, the failures are not reported to the Board of Trade, and the direotors appear to be quite in the dark.
Sooner or later this leak-off system wif cause a fearful disaster ; it has already given many serious and emphatio warnings. Person-
ally, I consider the brake to be of such a dangerous character that I am always glad when the end of the journey is reached in safety, and this view is held by all passengers who understand the "leakoff principle." It would certainly be to the interest of the shareholders, the passengers, and the railway servants ig the directors
would at once take steps to remove such a dangerous appliance woum the trains without waiting for further accidents, failures,
40, Saxe Coburg-street, Leieester, August 30th.

the prospects of youna engineers,

Sir, - Will some who can speak with authority tell me-and no doubt many other parents who are anxious to place a son in locomotive works-which of the great railway companies gives the best instruction to pupils? If some one will knaly, thatough your
columns, give us parents some information on this matter it am sure, be gratefully received.
Glasbury, September 1st.

Srr, -I should like to express the pleasure I feel that the dis. cussion on the prospects of young engineers has been so well new point in the argument, and with your permission I should like
to ofter a few remarks. No doubt the whole question is simply a problem in polititaal economy, and there is always a tendency to
perstock the maket in alil employments that are professional, and the remedy seems to me so clear that I am surwill only allow me to touch on one or two points. It is only when ellows like myself get out of the nest and knock about a bit that they find there is a substantial difference between a genteel employ. ment and one that pays; we got disgusted, and andel we would ine to
be doing something that, although not perhaps so dignified as engineering, would bring in more, of the means than empty name
of gentleman. Having got so far, however, few care to start fresh
at any other venture, and we can only leave our case to warn others at any other v
The tenden
The rect

would lead one to suppose that young engineers cannot get berths our article and their opinions, I think that if they had the Utopian training spoken of they would not be a cent better off in so rightly puts it, that a head draughtsman has but fitters' pay in training or is not up to his work? No; it is simply because the employer knows, and he knows, that if he throws up his job, a
dozen are ready and able to take it. It is simply ridiculous for an dozen are ready and able to take it. It is simply ridiculous for an can get plenty of the finest brains in the professional world if his purse is long enough; it is simply a question of market value, and the low value of draughtsmen clearly points to a glut in the of course, interested in low prices; but employés can only hold heir own if less inducement were given to outsiders to enter the
trade-that is to say, if means were taken to place before him trade-that is to say, if means were taken to place before him
the facts of the case before a young man decided to become an engineer. A great boon would be conferred on many if they were
told when they expressed a desire to become engineers, and could not afford a large premium, that they would have to work man years in a shop, and when considered efficient as leading hand, foreman, or draughtsman, and getting on for thirty years of age,
would be offered the munificent salary of $£ 100$ a year. It seems a great drawback to our trade that there are so few berths in the majority of shops between the $£ 2$ draughtsman and the $£ 500$ a
year manager. We cannot all be managers if we would, and my year manager. We cannot all be managers if we would, and my August 28th.

Sir,-Your correspondent "C.," actuated no doubt by a laudable mechanical engineering, overshoots his mark, and visits be taught of labour, works' managers, and heads of firms with his displeasure He entirely overlooks a number of very important considerations, rguments. his arguments. Let us see what the facts are
A mechanical engineering firm consists,
principals, one of whom A. is the engineer; the other B. is the com mercial element. They employ, let us say, 250 or 300 men. As far my experience goes, firms have a horror of gentlemen apprentice purpose to do, whatever the. I may think, ask large premiums on which a fond mother, desirous of articling cite a recent instance in was immensely surprised when she was told that the fee for thre years was 400 guineas. "Why," she replied, "he can go to Oxfor hat it was not, she departed, and her son is now reading for the Church at Oxford.
Such things are so well known that I must really apologise for Let us suppose that the pupil is articled to Messrs, A. B. How Nearly all the work is piecework, and no one has the time ake the pupil and teach him for teaching sake. Suppose the work is erecting portable engines. The price paid for erecting an 8 -hors
power engine is 25 s , or 30 s . It varies with locality and from ti to time. Two men are employed on the job, an upper hand whe raws all the pay, and pays an under hand, or second man, who get rom 7s. to 8s. for his share of the work. In very many instance he is only a superior sort of labourer. Now the practice is to hand It is new pupil over to the erector, who pays him nothing at all
man's interest to make the pupil as useful as possible to It is this man's interest to make the pupil as useful as possible to
him as soon as possible, because when he has been well trained the erector can get on fast, and earn more money than he can when he has to pay his labourer or helper. Now will "C." tell m After a time, the pupil on this system?
After a time, the pupil goes, we will say, to a plane or a lathe
for instruction. Here he is almost certain to be wholly indebted to or instruction. Here he is almost certain to be wholly indebted to operations going on all round him. Finally, he pushes his way to the drawing-office. What is he supposed to learn here? Certainly have been acquired long before, In the drawing-office he ought to learn how to design, and this he can do if, as I said before, he keeps his eyes
put to draw is
At the end of his pupilage he has learnt something, more or but no one, except, I suppose, "C." fancies that an engineer can解 have much experience or much skill. It is, I submit, of little use to teach boys how to estimate or get out prices. As a rule may, however, push the argument further, and say that very. competent engineers are good commercial men as well. "C C ," will find that in almost all cases there is one partner who is not an engi
neer in every firm, and he does the estimating on a basis of figure neer in every firm, and he does the estimating on a basis of figures
supplied him by the engineer partners. It will be admitted that four years is short enough to supply a previously ignorant youth of
seventeen with a fair smattering of practical encinering ledge; but parents kick against a pupilage even as long as this, and insist that three years is enough, Now, I defy any boy to learn how to estimate and buy and sell well in three years if he did
nothing else. How in the name of common sense this also is to b taught in the time available, I must ask "C." to explain
The fact is that there are at present a very large number of very because they have spent three years in a works, My ewn experi ence of pupils is that they can learnall that they can take in in the time if they choose. Does anyone suppose for a moment that tiptop latheman can be turned out in three years? Who ever heard of a smith being a finished artisan after three yearg' training? The of the age is against this.
Finally, it may be pointed out that as the system of instruction he has been worse treated than his neighbour. The notion that firm ought to be prosecuted for not teaching is simply nonsense. I am not speaking now of " office "engineers but of manufacturing irms. There is not, I boldly assert, a respectable firm of the kind
in England or Scotland in whose works a boy cannot, if he is so disposed, learn all that can be learned in three years. Nay, more,
in nearly all cases pressure will be brought to bear on him to compel him to learn.
To assume that manufacturing firms should convert their works into training colleges, and keep a staff of instructors, is to assume an absurdity. It may be urged that, if they do not take pupils, the supply of assistants will soon fall off. This is not true, because
heads of firms have always sons or other relatives in number sufficient to more than supply the demand. The outside public are Oldham, September 1st. OLD Hand,
"Particulars of Marine Engines, Boilers, \&c."-This is a note-book, which contains printed headings for recording the
dimensions, weights, and other particulars of steamship engines, boilers, and deck machinery, and has been published to meet an
expressed want. The headings are so arranged as to cover all
types of marine engines and boilers, whether paddle or screw,

RAILWAY MATTERS

SIGNs of a speedy completion of the new railway between Sutton Coldfield and Lichfield are noticeable this week. The company the course of two or three months everything will be ready and the line in a fit condition for passenger trattic. The bridges were tested on Saturday with satisfactory results. Several heavy goods
engines had passed together along the line of route, and had opped all together on the bridge
The humour of this, from Harper's Magazine, lies in its truth - A conductor on one of the main lines running between two of church by his cousin, who was then visiting at his house. The day was unusually warm, and he being very tired, having been in two railroad disasters through the week, fell asleep. The ministe waxing warm with his subject, began to shout, and as he finished his sentence with a shout and stamp, the conducto
and shouted, "Put on the brakes, John, quick! track."
The Southport and Cheshire Lines Extension Railway was opened for traffic on Monday. It will afford additional accommo
lation between Liverpool and Southport, and ManchesterCentral Station-and Southport, besides bringing Southport into Lincolnshire, Great Northern, and Midland Railway The new line, which extends from Southport through Birkdale Palace and Altcar to Aintree Junction, is 14 miles 7 chains in Company is the, owner, and the Cheshire Lines Committee will nder a special arrangement, work it as part of their own system, and in their hands is the appointment of the officers of the line. WE learn from a recent official report from Salonica-Turkey-
that for some time past the Beys of Monastir have had the idea onnecting that town by a line of rails with the Salonica-Mitrovitz Railway, and for this purpose they proposed to offer a sum of motter, at the same time requesting the Christian population t respect to raising the necessary funds, and the project for a time made no progress. But it has recently been mooted again, and
this time in an official form, as Ahmet Eyoub Pasha, the Governorthis time in an official form, as Ahmet Eyoub Pasha, the Governorposal onfticially to the Ministry of Pubbic Works. In, reply, he ha the vilayet of Monastir has already been studied by the War-oftice, and the project for the railway branch has been submitted to the
Council of Ministers; that the Imperial sanction only is required order to carry it out, and that several contracting companie have already made offers. The town and district of Monastir
would gain immensely if the branch line were made, as it would great part of Albania.
The Russian railways are reported to have earned in 1883 five per cent. more per mile than in 1882 , and $13 \frac{1}{3}$ per cent. more than in
1881, which is very remarkable progress for Russian lines make. At the beginning of 1888 there were 14,390 miles of line and during the year 412 miles more were opened - all the additions
being parts of the Transcaucasian Railroad, 343 miles completing
it outh ort of Poti to the better one of Batoum, which was acquired Turkey in the last war. This brought the length worked up to
14,802 miles at the beginning of this year. The number of tons 14,802 miles at the beginning of this year. The number of ton
of freight delivered by shippers at stations- not including that
transferred from one railroad to another-was $26,000,000$ tons la year, which is 5y per cent. more than in 1882 , The largest
carnings on Russian railways last year, as well as the largest
earnings per mile, were by the Nicholas Railroad from St. Petersearnings per mile, were by the Nicholas Railroad from St. Seters-
burg to Moscow, 406 miles long, which earned $£ 590$ per mile.
But the next largest were but $£ 440$ per mile. But the next largest were but $£ 440$ per mile. Two others made a
nuch a $£ 40$, but only five made as mueh as $£ 200$ per mile. The company with the largest mileage has 1530 miles of road, and
earnings per mile a little less than the average. No other road has more than 800 miles. The 626 miles of the Transcaucasian
Railroad, which connects the Black Sea with the Caspian, earned Rairoad, which comnects the black sea with the Caspian, earned
but $£ 050$ per mile; tweve roads earned less than $£ 600$ and nine
less than $£ 400$ per mile; six less than $£ 300$, and two less than $£ 200$ per mile.
IN connection with the Argentine Exhibition lately held at projected railways in the Argenciane Republic. Twenty years ago,
three short lines from Buenos Ayres formed the sole available com muncication of this kind. Now, the provine of B Buenos Ayres
contains a network of railways of about 1000 miles in length. The contains a network of railways of about 1000 miles in length. The
East Argentine line has overome the dificulties of transport
caused in the Entre Rios distriet by the rapids of the Urumge The prolongation of this line as far as Pasadas- the capital of the
Misiones territory-is now decided upon. In the south-western portions of the Republic, railway enterprise is active. The most mportant lines are those which are intended to bring the western
and north-western regions into connection with the world's and north-western regions into connection with the world's com-
merce by means of the Harbour of Rosario, and the extension of these as far as Bolina is being now designed. Branches from the
main line-Cordoba to Tucuman-will open up communications with Santiago, Riooja, and Catamarca, the mineral wealth of the
last-named district thus being favourably developed. The line now running to San Luis and Mendoza will be extended within a
year as far as San Juan. With a view to the ultimate establishment of interoceanic traffic with the Pacific const, the inin from
Buenos Ayres to Villa Mercedes will shorten the route as compared with that which passes through Rosartio The The prologngation
of the Andes Railway from Mendoza to Santiago-Chili-has also of the Andes Railway from Mendoza to Santiago-Chili-has also
been arranged for. A specimen of the Quebracho Colorado wood been arranged for. A specimen of the Quebracho Colorado wood
was exhinited. This is said to be much used for railway sleepers, A RETURN is published containing the gross receipts and the work-
ing expenses of the twelve chief railway companies during the first six months of this year, as compared with the corresponding period
of last year. The gross receipts of these twelve companies for the whole six months are $£ 25,609,075$, a diminution of nearly $£ 20,000$
since last year; the working expenses are $£ 13,748,990$ an increase since last year; the working expenses are $£ 13,748,990$, an increase
of nearly
\& 80.000 . TThe net receits, therefore , $11,880,985$, this year, are less by nearly lowing six companies show an increase in net receipts. The fol. year:-London and Brighton has increased from $£ 445,193$ to
£457,289, South-Eastern, from
Eastern, from $£ 673,373$ to $£ 746,2599$; London and $£ 486,136$ Gouth-Western, from $£ 559,295$ to $£ 573,012$; Lancashire and Yorkshire, from
$£ 802,325$ to $£ 831,782$; Great Northern, from $£ 722,057$ to $£ 734,767$. On the other hand, six companies have diminished in net reeeipts.
Manchester, Sheffield, and Lincoln, from $£ 459,109$ to $£ 441,622$; Manchester, shemeld, and Eincom,
London, Chatham, and Dover, from $£ 242989$ to $£ 242,248$; North-
Eastern,
from $£ 1,594,955$ to $£ 1,470,997$ Great Western from $£ 1,875,216$ to $£ 1,869,69 ;$ Midland, from $41,668,450$ to $£ 1,653,882$;
and London and North-Western, from $£ 2,437,380$ to $£ 2,353,222$. If now we look to the proportion that working expenses bear to gross recipts, we shall find that this year the expenses of the
twelve companies, taken together, have slightly increased from $53 \cdot 4$ to 53.7 per cent. of the tross reeeits. If we take each company
separately, we shall find the working expenses bear the following proportion to the gross receipts:-G Great Northern, 58.9; London
and South-Western, 57.7 ; London, Chatham, and Dover, 57.2 ;
Great Eastern, $55 \cdot 4$. Iancashire and Yorkshire, and London, Brighton, and South Coast, $54 \cdot 5$ each; Midland, $53 \cdot 4$; Manchester, 52.3; London and North-Western, $52 \cdot 1$; Great Western, 51 . In each case the percentage is given.

NOTES AND MEMORANDA.
IN Greater London during last week 3192 births and 1949 deaths were registered,
of the population
In London during last week 2460 births and 1542 deaths were been $21 \cdot 2$ and 20.5 per 1000 in the two preceding weeks, further
declined last week to $20^{\circ} .0$.
For the week ending August 30th the deaths registered in 28
reat towns of England and Wales corresponded to an annual
reat towns of England and Wales corresponded to an annual
death rate of 25.3 per 1000 of their aggregate population which is estimated at $8,762,354$ persons in the middle of thulation, The six healthiest places were H
Huddersfield, and Portsmouth.
IT is worthy of note as a feat in animal mechanics that Mr . Nixon, of the London Tricyole Club, the week before last rod
from Land's End to John o'Groats, and followed this last week by riding from London to Edinburgh under three days. He left Hotel, Edinburgh, at 1.15 p.m. on August 31st. Distance, 396 miles; daily average, 132
Club," with 46in. wheels.
A curious instance of the behaviour of lightning occurred r cently, when the Artillery barracks at Nassirabad were struck injured two men. It then crossed to the other side of the building laving no trace of its path, but killing six men in its course out
through the open door. The buildings sustained scarcely any the centre man escaped unhurt.
The last census of Paris gives the population as $2,239,928$ in
habitants, of whom $1,113,326$ were males and $1,126,602$ females $1,988,806$, so that there had been an increase of 251,122 . There vere 68,126 inhabited houses, and $2,075,800$ of the inhabitant were
75,542 females, consisting of 45,281 Belgians, 31,190 Germans, 21,547 Italia
65 Ohinese
DURING the week ending August 9th, 1884, in thirty-two cities of the United States, having an aggregate population of 6,862,300,
there died 3218 persons, which is equivalent to an annual death rate of $24^{\prime} 4$ per 1000 . The rate in the North Atlantic cities was in the River cities, 20.9 . $18 \cdot 9$, and for the coloured, $34 \cdot 3$ per 1000 . The American Sanitar Engineer says of the decedents over one-half, or $51^{\prime 2}$ per cent were under five years of age.
THERE is a hard-working electric railway in one of the main cross-cats of the Oppel Colliery, Saxony. The cross-cut is 2365 t
long,
delive is the outlet for the coal mined in the vein, the quantity each car weighing loaded 1594 lb . A train of fifteen cars is move at a speed of from nearly five to nearly seven miles per hour, the
steam engine at the mouth of the shaft making from 225 to 250 evolutions during the rum, lasting from threo

The following, from the returns of the British Iron Trade United Kingdom during the half-year ending the 30th June, 1884 The production during the first half of 1884 is compared with that aving been collected for the first half of 1883. The first row of figures gives t' production for the first half of 1884, and the
second for the sar ended 31st December, 1883, in tons.

These give a total of 637,843 tons and $1,553,380$ tons, so that the prosuction to end of June was less than half of the year 1883.
The production of Bessemer steel rails in the United Kingdom

Here, again, the total for the half-year, 426,415 ton
half of the $1,097,174$ tons for the whole year 1883.
WheN submitting the Baku naphtha to fractional distillation carried on at each 2 deg., Professor Mendeleeff had shown that the whole together with temperature, decreases however three times namely, between 55 deg . and 62 deg., between 80 deg . and 90 deg , decrease of specific weights is displayed also by the tmerica naphtha, if this last be submitted to fractional distillation at each 2 deg., and that the phenomenon is produced at nearly the same
temperatures. The products that boil below 60 deg. were insuff ciently represented in Professor Mendeleeffr's samples ; but from ing, was $0.6642-u n t i l ~ 124$ deg. . where it was 0.7322 -there are two decreases of specific weight. Thus, at 80 deg. it was $0-7347$,
but only 077069 at 92 deg., that is, the same as at 75 deg. After
the it that it increases until 104 deg, where it reaches $0.7548 ;$ but it
soon decreases for a second time, and at 115 deg. to 117 deg. it reaches 07270 , that is, the same figure as th hiad between and deg
and 98 deg, Beyond 117 deg. it continues to rise. Both kinds of thus display the same phenomena at nearly the same temperatures; the corresponding specific weights, however, are not the same ; the portion at 80 deg. has, in the Baku naphtha, a specific weight
of 0.7486 , and only 0.7347 in the American ; and at 100 deg, the of 0.7486 , and only 0.7347 in the American; and at 100 deg , the
respective densities are 0.7607 and 0.7380 . The amounts of substance distilled at each temperature are also different. The
researches will be continued in Professor Mendeléff's laboratory. In a former paper to the Russian Chemical Society, Professor Mendeleeff had arrived at the conclusion, Nature says, that
the dilatation of liquids can be expressed by the formula $\mathrm{V}=$ $-k$, where k is a module which varies for different liquids, and Mcreases with their volatility. The researches of M. Van der
Vaals, combined with the above, have enabled Messrs., Thorpe and Rücker, in the April number of the Journal of the London absolute temperature of boiling t_{1}, reckoned from the absolute zero (-273 deg.), the volume $\mathrm{V}_{\mathrm{t}, \text { measured at a temperature } t \text {, and a }}$ communication to the Russian Chemical Society, vol. xvi., fasc. 5 Professor Mendeleef shows that, if the dilatation of gases and that $-k t$, which would give $2 t_{1}=\frac{1}{k}-\frac{1}{a}$, and the constant a be taken
equal to 2 , we receive $\frac{1}{4}=2 t_{1}+273$, where k and t_{1} are determining one another. This deduction is confirmed, in fact, by
direct measurements. The further progress in the mechanics of direct measurements. The further progress in the mechanics of
liquids, he says, must be expected from new experimental and temperatures and into its relations to the modulus of dilatation; the fundamental equation of liquids must express the relations between their volume, temperature, and pressure, as is the case
for gases. As to a complete conception of the ideal state of bodies for gases. As to a complete conception of the ideal state of bodies,
it must contain also the relations to their molecular weight and composition.

A GoLD meDAL has been awarded the Wiillesden Waterproof
Paper Company at the Amsterdam Exhibition for its roofing and Paper Company at the Am shich the Exhibition buildings are also at the Healtheries, covered.
Mr. F. Baker, of Vyse-street, Birmingham, has been awarded medal for his engineers' name-plates, letters, \&c., at an Inter
national Exhibition which has, though it is not generally known, been held in the Crystal Palace this year.
Ar the Amsterdam Exhibition, Mr. T. Corbett, of Shrewsbury, has been awarded a gold medal, two silver medals, and three
bronze medals, for his cheese presses, turnip slicer, his collection of machinery, and for winnowing and turnip cutting machines
In our recent account of the machinery at the Health Exhibi tion it should have been mentioned that the fine 18 inin. double
leather belt, transmitting the power from the 112 horse engine by Messrs. Galloway, is made by Messrs. Hepburn and

The Indian troopship Malabar, which leaves England on the 10 th inst. with drafts for Bombay, made a two hours' full-power
trial of her machinery in the Solent on the 28 th ult. Her mean traught was 19 ft . 11 in . The mean pressure of steam in the boilers was 52 lb b, and with 48 revolutions and a vacuum as high as 27 3in.
Mr. Thos. Fretorer, F.C.S., Warrington, has made a gas.tight with pure soft tinfoil vulcanised between. It is said to be perfectly and permanently gat-iticht and free from smell under all circumstances, whilst it retains sufficiently for all purposes the flexibility
and elasticity of an ordinary rubber tube. A sample sent us con. and elasticity of an ordinary rubber tube. A sample sent us con-
sists of an inner white and an exterior red rubber tube, the tinfoil At present it is made in lengths up to
The Sydney Morning Herald says :-"The Royal Commission wridges and the existing lines of railway-consisting of Mr. G. A. Morell, president; Mr. IV. . . Kernot, Professor of Engineering at the Melbourne University; Mr. W. M. D. Courtney, O.E., M.I.C.E.E;
Mr. W, H. Warren, C.E., A.M.IC. president of the Engineering Association of New South Wales-has been sitting for the last few weeks, and the commissioners have been
closely engaged in the consideration of the matters referred to them for inquiry. They are now about to test some of the bridges

We learn from Portland, Oregon, U.S., that the canal and locks WE learn from Portland, Oregon, U.S., that the canal and locks
round the cascades of the Columbia river are being construeted ander the supervision of Captain Powell, United States engineer.
The object is to improve the river at the minor rapids and give lockage round the principal rapids of the cascades, for stages of season. The plan is arranged for any extension for higher stages be about 3000ft. long. The low-water lock will have a lift of about 24 ft ., and the lock capacity will be
9oft. by 462 ft , with
least draught of $8 \mathrm{ft}$. The project for its construction was adopted by the United States Government in
1877, and modified in 1880, and a large sum has been already expended on the work.
An American official report just published refers to improvements being effected in the port of Buenos Ayres. Nearly all the
shipping from the United States, instead of anchoring in the outer shipping from the Unite, ntates, instead of anchoring of the Rio
roads of Buenos Ayres, now enters the Boca or port of the Chuelo a small stream which empties into the La Plata, just on leads to this port is not yet completed, but the opinion is expressed that this Booa improvement fully solves the problem of a port for
Buenos Ayres. The work is being vccompished under the fus Buenos Ayres. The work is being accompished under the aus
pices of thational Goorrnment, and will probably be finished in
the course of another year or two. The intention is to construct a Che course on another year or two. The intention is to construct a
basin to the northward of the north of the Rio Chuelo along the
city front, with city front, with adjacent warehouses. The whole work will be a grand improvement for Buenos Ayres, whose commerce during the
last 300 years has been transacted entirely by means of lighters last 300 years has been transacted entirely by means of ilghters,
the cost of landing cargoes after their arrival having been greater entire ocean passage
Writivg from Erzeroum, Turkey, Mr. Consul Everitt points out
that the copper mines of Arghani Maden are very rich, and capable of producong, if properly worked, millions of okes annually.
Under the present straitened circumstances of the Treasury, it is obvious that the Government is unable to expropriate an ade quate sum of money for working them, and the consequence is the ruin of all those who were formerly engaged in the enterprise
The miners, though working on account of the Government, work by contract, i.e., they have to dig out the ore, burn, smelt it, and hand the proceeds to the Government for the sum of 17 pias, toge ther with 3 okes of wheat, for every 6 okes. The furnaces in which
the ore is smelted were built by the Government. The metal smelted at Maden is not sumcienthy pere, acoorang to the ment test. Formerly it conrin the last two years, a more and the
rest foreign matter; but during process having been adopted, it has yielded from 75 per cent. to
83 per cent.; but to purify it perfectly, it has to be smelted again

A mertion of painting has been patented by Mr. F. Maxwell
Lyte, F.C.S., based upon the hypothesis that the oxidation of ire Lyte, F.C.S., based upon the hypothesis that the oxidation of iron
and steel is much accelerated by , if not wholly due to, voltaic
action. The metal to be protected is first coated with one or tww primings of an oxide of a metal electro-positive which any of the ordinary anti-fouling or oxide paints may be
applied. These latter always contain the oxide of a metal electro negative to iron ; and this oxide wil consequently always be
reduced, and the iron oxidised in time. The priming employed by ticularly the latter; and this not only protects the iron, but keep it from contact with the outer coat. It is claimed that somethin of this kind has always been used whenever painting of iron ha ise, in the first been overlooked. Red lead as a priming does fairly well for a time so. Better protection is assured by the use of a distinctly basio naterial.
A RETURN has been issued of the amount of shipping been built from the year 1855-56 to the year 1883-84, with an appendix showing the amount of monesp building in the Government dockyyards and the course of the last financinl year, as aninst a total 19,42 tons provided for in the estimates. Of these 19,279 tons, 12,864
tor were for ironclads and 6415 for wooden, iron, and composite vessel Ten ironclad ships are now in progress towards completion, to say
nothing of the Hero, Benbow, Agamemnon, and Ajax, which have hardly bo the Hero, Beinow, Agamemnon, and Ajax, which hav the Anson, $£ 31,000$ on the Camperdown, \&48,000 on the Colling n the $£ 23,000$ on the Conqueror, $£ 39000$ on Che Colossus, $£ 20,000$ Impérieuse, $£ 52,000$ on the Rodney, and $£ 62,000$ on the Warspite On 27 unarmoured vessels of various classes, of which 4494 tons
were built in the course of the year, $£ 174,000$ was spent in labour Only one armoured ship, the Benbow, is building by contract of unarmoured ships, 2843 tons were built by contract at for labour of $£ 196,000$. The total tonnage build by contract fell on the other hand, the amount actually built exceeded the estimate
by 1114 tons.
INTERIOR OF MACHINE SHOP, DARLINGTON FORGE.

FOREIGN \triangle GENTS FOR THE SALE OF THE ENGINEER

Rogrrs news Company,

TO OORRESPONDENTS.

* In order to o vooid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the inform correspondents that letters of inquiry addressed to the
public, and intetded for insertion in this colum, must, in al
cases, be accompanied by a large envelope legibly directed by the writer to himself, and bearing a 1 d. postage stamp, in order that answers received by us may be forwarded to their destination.
No notice will be taken of communications which do not comply ${ }^{\text {with }}$ these instructions.
ust therenot undertake to return drawings or manuscripts; we * All letters intended for insertion in THE ENGINER taining questions, must be accompanied by the name and address of the writer, not necessarily for publication, but as a a proof of
good faith, No notice whatever will be taken of anonymous B. -You voill find

 a coil carried round the bo
side with many small holes.

Calico Prinring. (To the Editor of The Engin

SIR, - I should be gota if if ady reanders of The Enineer.) Exarker could inform me
of the best sytem and makers of appliances for printing calico.
Milan, August soth.
heating buildings.
SIR,-Could some of your numerous subscribers kindly help me to find
out makers of the best, most economical, and sanfe heating apparatuses out makers of the best, most economical, and safe heating apparatuses
for ordinary chapels, hented by hot air, gas, or otherwise? ENQurkRe.
Tredegar, Seppember 2nd.
ball-bearings for velocipedes.
(To the Editor of The Engineer.)

The Exainerr can be had, by order,

 increased rates.
Renituace Poftifice order. - Australia, Belpium, Brazil, British
Columbia, British Guiana, Candas, Cape of Good Hope, Denmark,

 ADVERTISEMENTS.

 Advertisements cannot be Inserted unless Delivered before six
o'clock on Thursday Evening in each Week.

THE ENGINEER.
SEPTEMBER 5, 1884.

outside and inside cylinder locomotives.

The relative merits of outside and inside cylinder loco motives formed a subject for controversy at a very early
period in the history of railways. Bitter feuds have been fought out on paper; and at this moment the questions raised are as far as ever from a definite settlement. To the dispassionate observer the truth seems to be that one type of engine is just as good as the other. Nothing can be
done by one type that cannot be accomplished by the other; and so far as the cost of repairs can be ascertained, it does not appear that there is anything to choose between
them. Concerning the consumption of fuel, opinions differ, and facts for comparison are scarce and difficult to come at. It is argued by some persons that outside cylinders are
harder on the road than inside cylinders, while others urge that they give a lighter running engine. So much can be said on both sides, indeed, that of late years nothing regarded as dead and buried, and engineers have chosen
which type they pleased, with the pleasant feeling that it
was impossible to prove that they had made a mistake. The was impossible to prove that they had made a mistake. The
deplorable catastrophe on the Manchester, Sheffield, and Lincolnshire Railway, and Major Marindin's report thereon, has once more resuscitated the dispute, and the merits of the outside cylinder engine are being again
advocated with more zeal than discretion. The basis of advocated with more zeal than discretion. The basis of
argument is that crank axles are weaker than straight axles, and much more likely to break with disastrous results. This is, of course, a very important proposition,
and demands careful consideration. The first thing to be and demands careful consideration. The first thing to be done, however,
that crank axles are more liable to break than straight In
In collecting statistics on this point, it must be borne in mind that there are more inside than outside cylinder engines working in this country, and caution must be used in accepting figures. If, for example, it were proved that
twice as many cranks as plain axles broke, it does not twice as many cranks as plain axles broke, it does not
follow that this would show any superiority on the part of the plain axle, if, for instance, there were only half the number of them at work. Some persons assume that straight axles never break; this at all events is a complete mistake,
and the number of broken or cracked plain axles met with on some railways is very much greater than would be supposed. This fact effectually demolishes the theory that a straight axle gives, humanly speaking, complete immunity from accident. Men are very much imposed on by their pre-
judices, which are often based solely on appearances, and straight axle, it is quietly taken for granted that it is weaker. When iron axles were in use there was some ground for this opinion, because it was more difficult to make a crank axle sound than a straight axle; but since steel was introduced this argument ceases to have any force, and
the only question to be decided is, does the shape of a crank axle and the stresses to which it is subjected make it weaker than a straight axle? Now this is really a very complex problem, and several points have to be taken into
consideration in dealing with it. We may ask in the first place what breaks a crank axle or a straight axle? Both are subjected to torsional stress from the action of the
steam in the cylinders, but it does not appear that this steam in the cylinders, but it does not appear that this
is ever sufficient to break a sound crank. The total effort due to an 18 in . piston with a pressure of 150 lb . per
square inch on it is about 17 tons. The moment being square inch on it is about 17 tons. The moment being
13 in . long, such a stress is quite incompetent to twist 13 in . long, such a stiess is quite incompetent to twist
the crank shaft across, but to does, no doubt, spring it to an almost imperceptible extent. But the straight axle is no better off, so far as torsional stress is
concerned. The strains which ultimately break axles, whether cranked or straight, come not from within the engine, if we may use the word, but from without; and
they are mainly due to side strains on the wheels. Thus, in running at high speeds over points or crossings, powerful action is frequently set up, which can only be compared to that of pinching the lower portions of the driving wheels together, which tends to raise the axle in
the middle. Experience goes to show that it is useless to attempt to combat this action by brute strength. The safest, indeed the only, plan is to make the axle as elastic as possible; and this can best be accomplished by making
the crank webs very thin and very broad. If an excesthe crank webs very thin and very broad. If an exces-
sively stiff axle is used, the rails may be burst; but whether they actually give way or not, the permanent-way at all events, will be submitted to violent strains and shocks, which are best avoided. To show how essential it
is that crank axles should have flexibility, we may state is that crank axles should have flexibility, we may state
that of two engines, one with outside and the other with inside bearings, the crank shafts of the latter will run just twice as many miles as those of the former.
Some locomotive superintendents assert that they never break straight axles. This means, of course, not that fractures do not occur, but that they never happen while an engine is running, incipient flaws always being detected In time, and that in any case the number of such fractures and the cause of this disparity must be sought in the conditions under which the axles are used, and in the shape given to them. It has been found, for example, that the breakage of straight axles has been almost entirely stopped by reducing their diameter in the middle-that is to say, stronger by weakening them. The influence of collars, of the shape of the wheel seats-nay, even of the wheel itself,
and the way it is dished-must all be regarded as likely to and the way it is dished-must all be regarded as likely to
modify the results, Given enough metal, and not too much, and results. Given enough meti, is not certain that the crank axle is weaker or more likely to fail than the straight axle; but it is easier to make mistakes in designing crank than straight axles. The relative cost of
the two likewise deserves attention; but the extra cost of the two likewise deserves attention; but the extra cost of a crank shaft may perhaps be saved in other things.
It is highly desirable that drawings of the crank and straight axles in use on British railways should be collected, with precise statistics concerning the durability
of the various types illustrated. A paper embodying such of the various types illustrated. A paper embodying such
information would be just the thing to read before the Institution of Civil Engineers, and would, we think, be highly appreciated.

str williar thomsons address.

Sir William Thomson is President this year of Sec British -Mathematical and Physical Science-of the week in this capacity will be read with some disappointment. Those who fully understand the subjects which of his discourse in many important respects; while those not familiar with the problems he attacked will find that they have received no enlightenment whatever. Sir W Thomson is an admirable lecturer, but he lacks the power of putting his thoughts on paper in terse, forcible, intelligible
English. This is the more to be regretted because Sir William made certain important admissions, and put forward a new theory, roughly hewn, it is true, but hardly the less valuable or important. In another page we reproduce
portions of his address which appear to be most lucid and hoteworthy; and the sis sterefere Wecessary that we should follow him step by step here. We propose, however, to
put some of his ideas into a form which may perhaps be put some of his ideas into a form which may perhaps be has used, and to point out some of the defects in his methods which we think deserve adverse criticism.
For a very long period thoughtful men have perplexed themselves with questions concerning the ultimate consti tution or nature of matter. To the untutored mind, wood is wood, stone is stone, a bor of iron is a nothing more. Those whose education is more advanced mainly of carbon and nitrogen. They know that a stone mainly of carbon and nitrogen,
may be an extremely complex affir, and that a bar of iron may be an extremely complex affair, and that a any of ming but pure metal. Yet another body of refuse to rest content with this much knowledge, and they want to rest conlent with this much knowledge, and In fact, they want to know what " matter" is. The chemist asserts that there are about sixty-three elements-that is to say, simple substances-that cannot be cut up or divide bon cannot be converted into anything else, although the can be combined with something else. Water divided into two gases, oxygen and hydrogen, two gases cannot be further split up. Of what are the of chemist what is sher made A numerous bod of atoms, or excessively minute particles, and that the silver particle or atom is different from the oxygen
particle, and so on. Furthermore it is held that particle, ands of the atoms differ, that of hydrogen which is the lightest, being 1 ; that of oxygen is 16 ; tha of chlorine 32, and so on; and it may be well here to
call attention to a curious fact, namely, that elements whose weights vary as powers of eight possess many point of similarity. In other words, the atomic theory as lai down by Daton assumes that every substance is compose of atoms; that these atoms in the same element are exactly the same, alike in size, weight, and every othe property; that the atoms of any one element differ from the atoms of every other element in weight and chemical properties; and that when union takes place it must be
between atom and atom, or between definite numbers of atoms-as, for example, two atoms of hydrogen combine with one of oxygen, and form water. This hypothesis wa greedily accepted by chemists. It has proved so usefu that almost the whole structure of modern chemistry has
been built upon it. As progress was made not only in methods of thought, but in chemical and physical science it became apparent that however convement this atomi theory may be, it is probably not true. We cannot here
stop to explain the nature of the difficulties met with in stop to explain the nature of the every attempt made to apply it universally of late years every attempt made to apply it universaly of ate years
At last another hypothesis has been put forward which bids fair to be that universaly accepted in a few years It is extremely simple. According to it, the ultimate aton is the same in all substances-a hydrogen atom is identica with that of oxygen or iron, and so on; the physical differences being all due to the energy of the atom,
It must be admitted that physicists have been very slow to accept this theory. As we have taken pain to point out ere now in this journal, the atom the physicist has nothing in common with that of the
chemist, and he has not the trouble of reconciling difficulties which for him do not exist. . Sir W. Thomson, however, has apparently given in his adhesion to this view, and he seems to have very nearly reached the poin of admitting that there is nothing in the physical universe save matter and motion. The first words of his address are pregnant with this idea-"The now well-known of explaining e asingly static so important in the way motion, that it is scarcely possible to help anticipating in idea the arrival at a complete theory of matter, in which all its properties will be seen to be merely attributes of
motion." Sir William then goes on to point out that this is not a novel idea; it is at least 1800 years old "Early last century we find in Malebranche's 'Recherche de la Verite,' the statement that 'La dureté de corps' depends on petits tourbillons" or vortices. We may add that the theory has always hitherto been rejected, save by a few and we do not know of the existence of a modern text-boo n which it is more than barely mentioned. Sir W. Thomso probably hamped the theory with his seal, It has alread been given prominence in this journal, at a time when it required some courage to set forth so heterodox a notion, Sir William sets himself to show how it is possible that a perfectly inelastic body may behave as though it wer as elecand the illustration which he has used is about cience. Whanything to be met rapidly on its own plane, it acquires stability, as illustrated by the gyroscope, or, indeed, by a common spinning top
If a system of links be provided, each fitted with a scope, then the system will behave precisely as though were elastic if any attempt be made to alter the shape o the system. An illustration of the arrangement will be found on another page. In this way one of the great set at rest, and no doubt the remainder will follow this one The second remarkable admission made by Sir W agess, namely, that a proposition long since urged in ou factory-that it was, in fact, but a convenient wati hypothesis, probably very far from the truth. Nothing ore heterodox in science was perhaps ever written. Y ing the theory now:- "It would be a very pleasant temporary resting place if we could, as it were, make a mechanical model of a gas out of little pieces of round, perace occupied by the matter flying about through the and a aainst the sides of the containing vessel. This ine fact, all we have of the kinetic theory of gases up to the fresent time, and this has done for us, in the hands of

Clausius and Maxwell, the great things which constitute our first step towards a molecular theory of matter. ing of the c
d las. for mechanical model consisteach other. Let us, then, leave the kinetic theory of gases for a time with this difficulty unsolved. Thus, even if the fatal fault in the theory to which I have alluded," and so on. Exit the kinetic
theory of gases as taught by Clausius and Maxwell; enter theory of gases as taught by Clausius and Maxwell; enter
the new theory-"we must look distinctly on each molethe new theory-we must look distinctly on each mote-
cule as being either a little elastic solid or a configuration of motion in a continuous all-pervading fluid. I do not of motion in a continuous all-pervading fluid. I do not
myself see how we can ever permanently rest anywhere myself see how we can ever permanently rest anywhere
short of this last view." So much must suffice concerning short of this last view." So much must suffice concerning
the opinions and theories which Sir William Thomson has enunciated at Montreal.
Let us now consider briefly the objections which may be taken to certain portions of his address. We have said use of individual words than to the arrangement of them. use of individual words than to the arrangement of them.
Thus, for example, he actually uses the words "potential Thus, for example, he actually uses the words "potential
energy" possibly by a slip of the pen. He speaks
of distances as being "infinitely" small. We presume of distances as being "infinitely" small. We presume
that he employs the word as a superlative of very. "rus, instead of saying that a given magnitude is is an extremely vague and unscientific use of the term. Again, he uses the word "force" in the most surprising fashion, and without the smallest attempt at defining what he means by it. Apparently he employs it, not in Tait's sense, but simply to convey the notion of
push or impulse. As a matter of fact, force of this kind, standing alone, could produce no effect whatever; because he maximum limit or the force which can be exerted is invariably and of necessity defined by the resistance. Thus, for
example, the pull at one end of the drawbar of a locomotive is precisely equal to the resistance at the other end, and is precisely equal
Pambour years ago showed that the resistance of the piston of an engine was just equal to the effort of
the steam on it, and can be neither smaller nor larger. We presume that Sir William Thomson is aware that his is a natural law, yet he makes no attempt whatever to deal with it,although any kinetic or other theory of gases of push or pull-can by itself produce an effect, must be absolutely worthless. But the most astounding passages in the whole address are those in which he speaks of molecules or atoms "attracting" or "repelling" each other on
the action-at-a-distance principle. It is demonstrable that if a body can attract . ther body, the theory of the conservation of energy must be rejected. What are we to
think when we find a leader of modern scientific thought riting and speaking in this loose fashiou
We have no reason on our part to be otherwise than quite ontented with Sir William Thomson's address; he has granted much that we have long since contended for; nor do We now despair of seeing the day when the misleading word
"energy" will be expunged from the vocabulary of science and replaced by "motion." The change would do more oward simplifying the teaching of physical science than any ther which we can think of.
the industries of south wales,
Mr. J. Colquhoun, F.G.S., took the past and present conditions of the industries of South Wales as the text of
his presidential address, delivered at the last meeting of his presidential address, delivered at the last meeting of
the Institute of Engineers of that district. As might be expected from its title, the address consisted of a review of
things past, and a comparison drawn between them and things past, and a comparison drawn between them and
things present. Certain points touched upon by Mr. things present. Certain points touched upon by Mr.
Colquhoun deserve notice. Beginning his address by directing attention to the important place occupied by coal in the wealth of the district, he proceeded to point out the
expediency of developing its output by every improvement expediency of developing its output by every improvement
attainable ; he noticed many adopted of late years, in the attainable; he noticed many adopted of late years, in the
method of working the coal, in ventilation, in sundry appliances affording greater safety to workmen, and finally in preventing disastrous accidents in mines
airly hough the terrible tale of colliery explosions may of evil springs good, and the very magnitude of these catastrophes has stimulated research into their causes and the best means of removing them. It requires no great
effort of memory to recall the time when the frequency of olliery explosions at particular periods, occurring, as it were, in groups, was regarded with a species of superstixamples of that of some, and as constituting curious by others. Thoughtful men, however, educated in a faith in the simple principle of cause and effect, reasoned that there must be a cause for this grouping of explosions, and
the result of their investigations has demonstrated that explosions depend largely for their occurrence on the rapidity with which gas can escape from the seams, Assuming the pressure tending to expel gas from the hat the barometric becomes evident that the rapidity with which gas will escape depends entirely on the ratio existing at a given f the atmosphere expeling press expulsion. What there ore, was formerly regarded with superstition is now known to be governed by a fixed natural law; and, therefore, especially in all fiery pits, the barometer and its indications are attentively studied, and if a reduced atmospheric pressure is observable, measures are taken to guard gainst the consequent extra influx of gas.
In sinking operations two remarkable examples of the Aberdare Valley and in Monmouth rock drills and dyne mite have been employed to such good effect that the coal as reached with a rapidity unsurpassed in South Wales. Another point touched upon in the address under notice of ne necessity, for economy sake, of working large areas difficulties attendant upon the haulage of the coal; and difficulties attendant upon the haulage of the coal; and
experience has shown that machinery effects this more
economically than horse-power can. We presume that mine depends upon the relations existing between the interest on the capital expended upon sinking the shaft, fitting the requisite hoisting gear, and annual cost o We do not gather fost of hauling the coal underground exist such ga would enal. Colcoun whether any data his mine area became so large as to render the sinking of a second shaft into the workings a less expensive process than hauling the coal underground. Indeed, on the contrary, we gather from the address that no such data exists, for we are told that nothing is certainly known as to which system of mechanical haulage is least expensive We read that "there is a sufficient variety of mechanical haulage at work in the district to give practical results as to the best and most economical system, and the author which of these is the best," We must observe dotermine that here also the term best must be taken in wever sense. For example, a colliery may be provided with a system of mechanical haulage more expensive to work then the maxim that possession is nine points of the law may hold good here. The removal of the existing and substitution of the new method may be attended with so much direct cost, as well as with that due to interruption of business, that the hoped-for saving would vanish, Therefore, if a committee were appointed to investigate the bearings; but we fully agree with the author of the address, that inquiry into the question would be an excel lent step to take.
rowing ne treated of was the coke trade and the growing need for devising some means of coking the small by washing and grinding the coal. We learn me done mortifying thing in reference to this, namely, that although me German machine for separating the different sizes of coal prepar to separating the diferent sizes of coal preparatory to its being washed, is one alike elaborate yet invented for ren unquestio arthy mattor Carr's disintegrator, we learn, is extensively employed to Carrs disintegrator, we earn, is extensively employe
crush dry coal, but clogs if wet coal is put through it.
A remarkable incresse in the output of blast furnaces is observable, for whereas not very many years ago 100 tons per week per furnace was considered large, now, by the blast, 600 to 700 tons is a usual output. We are unable, from limits of space, to notice all the heads of the address, but one or two we cannot pass over. One is the record of the extraordinary progress being made in the manufacture and use of steel. One of the latest uses to which steel has been adapted is for tin-plates, for introduction employed fusteal ooke bars, and its that it is displacing the old material. The growth of the steel rail trade steadily increases in South wales, and of a total make in the United Kingdom of $1,097,174$ tons in 1883 , that district produced 410,676
tons. In comparison with the iron rail, a saving of fuel of tons. In comparison with the iron rail, a saving of fuel of
67 per cent. is effected and of labour cost about 60 per cent. Of open hearth steel South Wales produces about onefourth of the total make of the country, Now in the
present dull condition of many branches of business, the figures and data supplied in such an address as the one under notice are encouraging, and go far to silence those pessimists and grumblers who delight to tell us the country
has seen its best days, and nothing but poverty, if not national extinction, awaits us. At the same time, however we are induced to consider certain things that need amending. Mr. Colquhoun observes that although a system of boiler inspection exists in South W ales and is of use, ye he also points out that the Board of Trade under the Boiler Explosions Act states that inspectors should have a better training than many of them at present possess; that they
ought to have a theoretical knowledge of boiler construcought to have a theoretical knowledge of boiler construc-
tion, to be capable of taking rough diagrams, and be competent to mapale of taking rough diagrams, and be comwith the Board of Trade in this, and would suggest that a system of licensing, or of granting certificates by that Department, might easily and advantageously be intro-
duced. Under this system, which could be based upon duced. Under this system, which could be based upon lines resembling those existing for sea-going engineers, for mates and captains of merchant ships, candidates for employment as boiler inspectors might have it in their power to ask to be examined by a proper body constituted by the
Board of Trade, and such body of examiners should have the power to grant at least two classes of certificates; the granting of such certificates to be dependent upon compliance with certain standing orders, even as with the In the case of coroners' inquests on deaths caused by boiler explosions, the coroner might have power to call
men holding certificates as boiler inspectors to examine and report on the cases, such evidence being paid for
We turn now to a point which in the present stagnation of business deserves some comment. The author of the tonnage of vessels built of iron and steel in the United Kingdom during the past three years is as follows:--In 1881, 730,686; in 1882, 913,519; in 1883, 1,012,735. The the same time for classification at Lloyd's on the Bristol Channel was: In 1881, one vessel of 179 tons; in 1882, seven vessels, or 2446; and in 1883, seventeen vessels, or March, 1884, was five of steel, or 2705 tons, and seventeen of iron, or 4695 tons, Chepstow being the most important shipbuilding place. Here is a matter that deserves the attention of all who are concerned in developing our industries. Why should Bristol, a seaport whose name is aluall no shiphuilding industry? is that until the iron and steel manufacturers of the South Wales district compete with those in the North of England Wales district compete with those in the North of England
in their prices, and deliver the plates with equal prompti-
tude, no ships can be built. Now, it is familiar to every one that the shipbuilding trade of the Thames is dead, and find. The expense of bringing the plates and material generally to London was high, and as the expense of living in London entailed very high-priced labour, as a matter of course the trade on the Thames could not hold its own wernte conditions do noth as provincial Bristol seaboard. It is a locality at leas as provincial as the Clyde or the Tyne; therefore, labou closer the be clyde shipyarl to closer, than are the Clyde shipyards to the raw material so not the only difficulty or obstacl exists then in chier, bu charged by the ironesters This point the price interestes to of indiviluals but of that in the deserves investigation If so woly an the as our being involved. In so unlucky an event took place all the ship ind ability to puild and muip . abily to build and equip ships at a southern port might this, every possible chance of enlarging our home industrie deserves attention; and if inquiry would probably discove means whereby our Welsh ironmasters could be enabled to compete in price and speed of delivery with their north country rivals, and thus that a shipbuilding trade developed at Bristol, then such inquiry should be insti tuted. It must not be forgotten, however, that the river for the shipbuilding trade-a fact which Mr. Colquhoun seems to have overlooked.
hightning and lightning protectors,
The readers of the weather forecasts, issued by the Mion thog Whe instruc tood of such information as "perhaps thunder," "with thunderstorms locally," "perhaps thunder," given in the forecast for Monday week last. The present year has given us a hot, dry summer-by dry, we mean no and rainfall. It has been exceptional in this respect dents from exceptring The annual damase thrug thunderstorms is considerable, especially if loss of life and destruction of property be considered. So far as we know, there has been no systematic observation of thunder storms in Great Britain, nor are scientific men agreed upon any method of protection. The value of lightning rods in the protection of hitrins that is all. No disinterested person feels called upon to lightning compulsory upon landlords, as is the providing certain sanitary apparatus Yet it is perhaps diffieng certain sanitary apparatus. Yet it is, perhaps, difficult to people by means of water from contaminated wells, while he is allowed to leave his house unprotected from lightning Professor Tait, in the last edition of the " En cy Britannica," says three things are necessary effectually to protect buildings from lightning: (1) The points should so project from the building or ship to be protected as to prevent any great development of electrical density else-
where than on themselves ; (2) they should be effectually where than on themselves; (2) they should be effectually
connected with the earth; and (3) the connecting-rod connected with the earth; and (3) the connecting-rod
ought to be so good a conductor as not to be injured even by a powerful electric discharge. The area protected by a lightning-rod is an undetermined quantity. Authorities differ very considerably in their estimation, but it ma almost be taken for certain that there is no hard and fas rule. The area protected varies in each case with the observers, thunderstorms in some countries are essentially winter phenomena; in others, they are unknown in th winter, and only occur in the summer. There is some thing so singularly meagre in our information about thunderstorms, that it is hoped those who have any ideas
upon the subject may be sufficiently interested to express upon the subj
their opinions.

Let us assume that the ordinary theory as to the atmo spheric conditions is correct, and that the cause of
thunderstorm is the natural discharge of two differently electrified bodies. A Leyden jar or condenser is an appa ratus well known in the laboratory, and consists of tw conductors separated by a non-conductor. If the conductors be connected with the poles of a battery or othe source, a charge accumulates upon the opposed surfaces, between the of accumulation depending upon the distance force of the source. The tendency of the opposed surface is to return to the normal condition, and if the resistanc of the non-conductor be sufficiently small, or if the differ ence of potential between the surfaces be sufficiently great a discharge takes place, shown by what is known as the electric spark. The essentials to this electric phenomena, then, are two opposed and charged conducting surface phetad a non-condactor or dielectric. In the natura phenomena, we have conducting bodies in the shape of
clouds and the earth. Two clouds may be charged to different potentials, and separated by the air. They must be sufficiently distant from the earth for that to take little or no part in the phenomenon of discharge. When the of air between these clouds-or rather, when the stratum certain limit-that is, below a certain resistance-discharge takes place, giving rise to the phenomenon of lightning, and it may be thunder. No doubt the thunder depcaid for loudness not only upon the distance from the listener, but also upon the difference of potential between the opposing surfaces. If the difference is very great, a much in the shape of lightning intensity and noise of thundect In the shape of lightning intensity and noise of thunder in which the earth and its inhabitants are little interested They are only concerned when the earth forme intersted They are only concerned when the earth forms one of the
active opposing surfaces, This may be the case when the active opposing surfaces. This may be the case when the
two clouds are in pretty close proximity to the earth, or it
may be that a cloud forms one opposing conducting body,
the earth the other, when the stratum of air between is It dielectric
It has been pointed out that the intensity of the action depends principally upon the difference of potential between these opposed surfaces. In thunderstorms this difference is always great ; in violent storms it must be so great as lmost to pass the bounds of our understanding. The line of discharge between these opposing surfaces is always the person who imagines that a lightning forb ber in place and ends in another is misled by not understanding the science of light. Returning, however, to the question the science of light. Returning, however, to the question
of the line of least resistance. If we could have a perfectly level plain opposed to a cloud, the opposed surfaces being absolutely parallel, and the air between perfectly homogeneous, the resistance throughout would be the same, and if discharge occurred there would be no preference of one point over another, but discharge would PT The colitions never exist. A tree upoithe hin hill a plain, a hillock, a house, a man, a sheep, cc., gives a discharge. In the majority of cases, being in the line of ischarge means death to any animal. The accidents of and configuration, of cloud configuration, of position with egard to other conductors, an infinity of possibilities may bring a body into the line of least resistance, and so into fatal position.
Accurate information about thunderstorm phenomena is wanted. When and where does the storm commence? In what direction does it travel? What is the height of the
cloud? and so on. Then what is the electrical resistance of various trees at different times of the year? Some trees vario fave ly sess res and ectly safe to take sheller wider It specially remark--that when the earth forms one of the pposing surface-the discharge always takes place between opposing surface-- the discharge always takes place between
the cloud and the earth and danger always exists. Danger cannot be completely overcome, but it may be minimised Buildings and their contents may almost certainly be proBuildings and their contents may almost certainly be proaccording to the suggestion of Clerk-Maxwell or M. Melsen, and, of course, having the cage in good contact with the and, of course, having the cage in good contact with the
earth. Isolated lightning rods will eventually be considered as frail protections. Suggestions as to the prevenThe shelter of a tree may be more dangerous thans ion The shelter of a tree may be more dangerous than stoppin解 the open, or just the opposite. Men would not care carry chain armour, and sit in a pond of water if handyarmour, not the pond, would be at hand at the moment of danger.
The conclusion to which a careful consideration of the subject leads the enquirer, is that almost certain protection can be obtained for every building, but that no such pro ection can be suggested in the open. Is it not wort while then to enact that all buildings "shall be adequately protected ?" A further question is, Is the existing dange great enough to make legislative interference necessary Tesults of a thunderstorm will say that it is ; others, perhaps, are not so well qualified to pronounce an opinion

the vacuem brake

The vacuum brake has fallen upon evil days, Testimony to following on Major Marindin's report on the Penistone accident comese another of considerable interest. In the Penistone acci-
dent the brake went on and immediately came off again. II an ccident which occurred in Nottingham station on the Grea Northern Railway on the 19th of July, it refused to go on at all when it was wanted. In this case, the 3 p.m. passenger train
from Newark to Nottingham-consisting of engine and tender, from Newark to Nottingham-consisting of engine and tender,
one third-class and two composite carriages, a third-class brake carriage, one composite, and one third-class carriage, and a rear rake van-when entering the new arrival line at Nottingham t 3.49 p.m., overran the properstopping place, and came violently
nto collision with the buffer stops. The engine ran up the stops, which were destroyed, and came to a stand at the edge of the re taining wall of a canal, knocking down about thirty yardsof the wall The carriages did not leave the rails, but three passengers were inured. Major Marindin, reporting on the event, says:-"This collision with buffer stops was due to a failure of the vacuum brake
with which the train was fitted with which the train was fitted. There is abundant evidence that home signals, 709 yards from the buffer-stops; that, having tarted again and run with sieam on for about 200 yards, he hut of steam, and let his train run forward into the station a speed of about 10 miles an hour at the outside; that he trie
his vacuum brake when about 500 yards from the buffer-stop nd put it on with full power at a distance of about 100 yard from the buffer-stops. Ido not think he was sufficiently prompt in taking other steps to stop his train when he found that his vacuum brake was not acting, and he was running too fast to stop by the use of the hand brakes only; but no doubt he was had been working properly all through the journey. There is no evidence whatever to show why the brake failed, and it is stated that no pipes or sacks were disconnected or burst, and
that the brake was found to act well when tried after the accident. I can only surmise that in some way the flap of the
release valve must have been open, and that consequently the release valve must have been open, and that consequently the
opening of the ejector failed to create a vacuum. There have peen previous cases of accidents arising from this cause. all for the purpose of stoping at a terminal station, than to run the risk of its failing; and, as drivers are enjoined to enter erminal the hand brake only, they had better be told to use the hand brakes only for stopping, and to resort to the
continuous brake only when they find that the train is not being pulled up properly by the hand brake." In the driver. It is quite well known that trains fitted with the vacuum brake constantly overrun platiorms, When this does not happen at a terminal station, no harm may be done, and ircle. The driver is fined half-a-crown, and there is an end of
results are too serious to admit of being hushed up. It has
been argued that by fitting the vacuum brake with a tell-tale all the advantages of automaticity would be secured. If an automatic brake is out of order, it goes on and stops the train, thus giving warning that it is defective. The tell-tale is intenced to do the same thing another way, and inform the driver if anything is wrong. The Great Northern train in Nottingham station has, it will be seen, a tell-tale, which just served to deceive the driver. He said in his evidence, which was amply t Radcliffe and Colwick. I used the brake to stop with on both hese occasions, and it acted properly. I stopped also at the ome signal at Nottingham, according to rule. I stopped with the vacuum brake, and it acted properly there, I stopped dea diately, putting on steam, which I kept on for about 200 yards There is a slight fall into the station, but I generally keep steam on for about 200 yards. When I shut steam off, I was running about ten miles an hour. When about 20 yards further, I tried the vacuum, and the tell-tale came all right. I let the train wanted the brake to stop, when I found I had no power. I I sai o my mate ' 'Hold on all you can, as I can't get the brake on.' held the ejector open for some seconds, and finding I could get
no power, I let go the ejector, reversed the engine and opened the regulator. But then I was at the stops, and I struck then when running about four miles an hour

After standing for sion, I tried the vacuum, keeping the ejector on for full half-a-minute, and I succeeded in
getting 10in. of vacuum." We do not think it is necessary to add a word of comment. The facts speak for themselves.

wages in the iron trade.

Ironmasters in the several districts wherein ironworkers wages are determined by the arrangements come to betwee ordshire, may now enter upon negotiations with the assura that for another two months at least no alteration will be made in the rate of wages now ruling. The rating is upon the basis of 7 s . 3d. per ton for puddling. At such a figure the seale was
fixed until the 23 rd of last. fixed until the 23rd of last month by the arbitrator of the
Board, notwithstanding that in the district dominated by the Northern Arbitration Board the rate was 6s, 9d. The 6d. dif ference is quite regular. Ten years back the employers on the Staffordshire Board admitted that to that extent their iron paid extras unusual in the South. But the northern wages ecause of a further drop are now 6 s .6 d . When, therefore, the the dit, came, the southern employers sought the removal placed them. Before the arbitration came on, the northern masters, still suffering from continued reductions in the prices In both districts the men met their masters face to face They sought a rise of wages. This was the position when, on
Monday last, the Staffordshire. Board appeared before their arbi Matoy inst, the staffordshire Board appeared before their arbi
trator in the North, while it had strengthened the case of the South, had yet somemath altered it. 11 there should soon be another arop of 6d. than two of 3d. So they told the arbitrator that they were prepared to continue to pay the present scale, till the most and they volunteered that the consideration of their own notic should be deferred for two months. Their determination emoves all excuse for the accusation by the men that betwee the masters in the two districts the game of battledore and shuttlecock is kept up to the disadvantage of labour. Labour
was never more considerately treated by capital, and seldom has the working of industrial arbitration and conciliation been see to greater advantage.

mining accidents in cleveland

A very useful work is being done by the Miners' Association in Cleveland-the recording and tabulation of accidents in mine of the accidents for the first six months of the present year. In the time, there were three fatal accidents-against seventeen in 435 sponding half-year. These accidents took place at twenty-four distinct mines. Of the three fatal accidents, one was caused by a fall of ironstone, and two to men "caught with stone whilst barring "-using the crow bar. Of the minor or non-fatal accidents, the numbers vary from one in a mine in the six month
to as high as 112 ; but in the latter case it is the largest most productive mine, as well as the oldest. These minor acci dents include many that are far from serious, some of the njured men returning to work after eight or ten days' absen for more than as many weeks. It is noticeable, too, that where the cause of the accident is given, "fall of stone" i that which is the most frequently assigned; whilst a "fall by the careful tabulation of the causes and the nature of the accidents that there can be precautions taken against their recurrence. In the cases of fatal accident there is an enquiry that is full and ample; but there has not hitherto been so great care taken in regard to the "minor" accidents, and the record-
ing and analysis of these should be of value in the future ing and analysis of these should be of value in the future.
all the miners' associations would follow the same plan, and they would impress upon their members the cautions which some of the teachings of these records suggest, there might be he future It is avident toe the the work could be bette the farre. It lo eviden, tho, hy the be better owners, and thus it is best left in the hands of the men.

BOOKS RECEIVED.
Journal of the Society of Telegraph Engineers. No. 51 and
No. 52. London: E. and F. N. Spon. 1884. Turning and Mechanical Manipulation. Intended as a Work of General Reference and Practical Instruction on the Lathe and
the various Mechanical Pursuits folloved by Amateurs. The Principles and the Practice of Ornamental or Complex
Turning. By John Jacob Holtzapffel. London: Holtzapffel and Co. 1884.0 or a British Patent. A Manual of the Amended
How to Apply for How to Apply for a British Patent. A Mamual of the Amended
Patent Lav. By T. Wilkins, C.E. London: Charles Gilbert, Nffices of Enginecring. 1884.
Notes on Building Construction, Arranged to Meet the Require. ments of the Syllabus of the Soience and. Art
Second edition. London: Rivingtons. 1884.
Hydraulic and other Tables for Purposes of Severage and Water
Supply. By Thos, Hennell, M.I.C.E. London: E. and F. N.

STEPS TOWARDS A KINETIC THEORY OF MATTER.
By Professor Sir William Thonson,
THE now well-known kinetic theory of gases is a step so important
n the way of explaining seemingly static properties of matter by motion, that it is scarcely possible to help anticipating in idea the arrival at a complete theory of matter, in which all its properties
will be seen to be merely attributes of motion. If we are to look for the origin of this idea, we must go back to Democritus, Epicurus, and Lucretius. We may then, I believe, without missing a single step, skip 1800 years. Early last century we find in Malebranche's "Recherche de la Veritu", the statement that "La dureté de corps depends on "petits tourbillons." hese word, imbedded
in hopeless mass of tuintelligible statements of the physical, ion, elucidation, or illustration thoughout the rest of the three volumes, and only marred by any other single sentence or word to be found in the great book, still do express a distinct conception, which forms a most remarkable step towards
the kinetic theory of matter. A little later we have Daniel Bernoulli's promulgation of what we now accept as a surest article of scientific faith-the kinetic theory of gases. He, so
far as I know, thoitht only of the Boyle's and Marriot's law of the "spring of air," as Boyle called it, without reference to change of temperature, or the augmentation of its pressure if not allowed to expand for elevation of temperature-a phenomenon
which perhaps he scarcely knew, still less the elevation of temperature produced by compression, and the lowering of temperature by dilatation, and the consequent necessity of waiting for a
fraction of a second or a few seconds of time--with apparatus of ordinary experimental magnitude-to see a subsidence from larger change of pressure, down to the amount of change that
verifies Boyle's law. The consideration of these phenomena forty years ago by Joule, in connection with Bernoulli's years, formed the foundation of the kinetic theory of gases as we
tion, fow have it. But what a splendid and useful building has been
no placed on this foundation by Clausius and Maxwell, and what a beautiful ornament we see on the top of it in the radiometer of
Crookes, securely attached to it by the happy discovery of Tait cules of air in a a good modern vacuum may amount to several
inches. Clausius' and Maxwell's explanations of the diffusion of gases, and of thermal conduction in gases, their charmingly in-
telligible conclusions that in gases the diftusion of heat is just a ittle more rapid than the diffusion of molecules, because of the chief transference of heat is by actual transport of the molecules themselves, and Maxwell's explanation of the viscosity of gases,
with the absolute numerical relations which the work of those two with the absolute numerical relations which the work of those t two great discoverers found among the three properties of diffusion,
thermal conduction, and viscosity, have annexed to the domain of science a vast and ever-growing province.
Joule, Clausius, and Maxwell, and no doubt Daniel Bernoulli himself, and I believe everyone who has hitherto written or done
anything very explicit in the kinetic theory of gases, has taken the mutual action of molecules in collision as repulsive. May it no after all be attractive? Of course, it must be understood that, if
it is attractive, the particles must be so small that the ever meet-they would have to be infinitely small to never meetthat, in fact, they meet so seldom, in comparison with the number
of times their courses are turned through large angles by attrac of times their courses are turned througharison lange angles by attrae-
tion, that the influence of these purely gattractive collisions is pretion, that the influence of these purely attractive collisions is pre-
ponderant over that of the comparatively very rare impacts from ponderant over that of the comparatively very rare iopacis rested
actual contact. Thus, after all, the train of speulation suggested by Davy's "Repulsive Motion" does not allow us to escape from no consequence, nor even say this with truth, because, if there are impacts at all, the nature of the foree during the impact and the
effects of the mutual impacts, however rare, cannot be evaded in effects of the mutual impacts, however rare, cannot te evaded in
any attempt to realise a conception of the kinetic theory of gases any attempt to reaise a conception of the kinetic theory of ofasen
And, in fact, unless we are satisfied to imagine the atoms of a gas Boscoverntical points endowed with inertia, and, as accorang to boscovich, endowed with forces of mutual positive and negative
attraction, varying according to some definite function of the dis tance, we cannot avoid the question of impacts, and of vibrations
and rotations of the molecules resulting from impacts and we must look distinctly on each molecule as being either a little elastic solid or a configuration of motion in a continuous all-pervading liquid. I do not myself see how we can ever permanently res
anywhere short of this last view; but it would be a very pleasant temporary resting place on the way to it if we
could, as it were, make ${ }_{\mathrm{a}}$ mechanical model of a ga out of little pieces, of round, perfectly elastic, solid matter
flying with one another and against the sides of the containing vessel This is, in fact, all we have of the kinetic theory of gases up to the
present time, and this has done for us, in the hands of Olausius and Maxwell, the great thing which constitute our first ste should have to go on to find an explanation of the elasticity and vastly other properties of the molecules the explanation of which we assume the elastic molecule; but without any explanation of the properties of the molecule itself, wroperties, we might rest happy for a while in the the requisit of the kinetic theory of gases, and its explanation of the gaseous properties, which is not only stupendously important as a ste
towards a more thoroughgoing theory of matter, but is undoubtedly the expression of a perfectly intelligible and deeninite set of facts in nature. But alasior our mechanical model consisting of the cloud o particle have absolutely perfect elasticity, the end must be prett much the same as if it were but imperfectly elastic. The average
meffect of repeated and dually convertad all the transeatational muatual collisions must be to gra and shriller vibrations of the molecule. It seems certain that eac collision must have something more of energy in vibrations of very
finely divided nodal parts than there was of energy in such vibrations before the impact The more minute this nodal subdivision the less must be the tendency to give up part of the vibrationa energy into the shape of translational energy in the course o
a collision, and I think it is rigorously demonstrable that the whole translational energy must oultimately become transforme
into vibrational energy of higher and higher nol each molecule is a continush and higher Lot the kinetic theory of gases for a time with this difficulty unsolved in the hope that we, or others after us, may return to it armed
with moreknowledge of the properties of matter, and with sharpe with more knowledge of the properties of matter, and with sharpe
mathematical weapons to cut through the barrier which at presen hides from us any view of the molecule itself, and of the effect
other than mere change of translational motion which ond collision. TTe explain the elasticity of a a ans was the primary
in
object of the kinetic theory of gase. This object is only attainable
 and more difficult of explanation, than the elasticity of gases-
the elasticity of a solid the elasticity of a solid. Thus, even if the fatal fault in the
theory, to which I have alluded, did not exist, and if we could with the kinetic theory of gases founded on th it a grander theory which need not be considered a chimeric object of scientific ambition-to :explain the elasticity of solids
If we could make out of matter devoid of elasticity a combined system of relatively moving parts which, in virtue of motion, ha
the essential characteristics of an elastic body, this would the essential characteristics of an elastic body, this would surel
be, if not positively a step in the kinetic theory of matter, at leas a finger-post pointing a way which we may hope will lead to a
kinetic theory of matter. Now this, as I have already shown,
we can do in several ways. In the case of the last of the comwe can io in several ways. In the case of the last of the communications referred to, of which only the title has hitherto been
published, I showed that, from the mathematical investiga-
tion of a gyrostically dominated combination contained in the tion of a gyrostically dominated combination contained in the passage of Thomson and Tait's "Natural Philosophy" referred to,
it follows that any ideal system of material particles, acting on one another mutually through massless connecting springs, may be perfectly imitated in a model consisting of rigid links jointed together, and having rapidly rotating fly-wheels pivotted on some
or on all of the links. The imitation is not confined to cases of or on all of the links. The imitation is not confined to cases of
equilibrium. It holds also for vibration produced by disturbing equilibrium. It holds also for vibration produced by disturbing
the system infinitesimally from a position of stable equilibrium and leaving it to itself. Thus we may make a gyrostatic system such that it is in equilibrium under the influence of certain posisuch that it is in equilibrium under the influence of certain posi-
tive forces applied to different points of this system; all the forces being precisely the same as, and the points of application similarly situated to, those of the stable system with springs. Then, provided proper masses-that is to say, proper amounts and distribu-
tions of inertia-be attributed to the links, we may remove the external forces from each system, and the consequent vibration of the points of application of the forces will be identical. Or we may act upon the systems of material points and springs
with any given forces for any given time, and leave it to itself, and do the same thing for the gyrostatic system; the consequent
motion will be the same in the two cases. If in the one case the springs are made more and more stiff, and in the other case the

angular velocities of the fly-wheels are made greater and greater, the periods of the vibrational constituents of the motion will
become shorter and shorter, and the amplitudes smaller and smaller, and the motions will approach more and more nearly those of two perfectly rigid groups of material points, moving through space and rotating according to the well-known mode
of rotation of a rigid body having urequal moments of inertia of rotation of a rigid body having urequal moments of inertia
about its three principal axes. In one case the ideal nearly rigid connection between the particles is produced by massless exceedingly stiff springs; in the other case it is produced by the excesdingly rapid rotation of the fly-wheels in a system which, when the fly-wheels are deprived of their rotation, is perfectly
limp. The drawings-Figs. 1 and 2 -before you illustrate two limp. The drawings-Figs, 1 and 2 -before you illustrate two wheels in the gyrostatics system-Fig. 2-are indicated by directional

ellipses, which show in perspective the direction of rotation of the have been constituted of two gyrostatic members, but four are shown for symmetry. The inclosing circle represents in each case
in section an inclosing spherical shell to prevent the interior from in section an inclosing spherical shell to prevent the interior from
being seen. In the inside of one there are fly-wheels, in the inside being seen. In the inside of one there are fly-wheels, in the inside
of the other a massless spring. The projecting hooked rods seem as if they are connected by a spring in each case. If we hang any one of the systems up by the hook of one of its projecting rods, and hang a weight to the hook of the other projecting rod, the weight, when first put on, will oscillate up and down, and will go on doing so for ever if the system be absolutely unfrictional. If we check
the vibration by hand, the weight will hang down at rest, the pin the vibration by hand, the weight will hang down at rest, the pin
drawn out to a certain degree; and the distance drawn out will drawn out to a certain degree; and the distance drawn out will
be simply proportional to the weight hung on, as in an ordinary spring balance. Here, then, out of matter possessing rigidity, but
absolutely devoid of elasticity, we have made a perfect model of a spring in the form of a spring balance. Connect millions of
millions of particles by pairs of rods such as these of this spring * In Fig. 1 the two hooked rods seen projecting from the sphere are
connected by an elastic coach spring. In Fig. 2 the hooked rods are
connected one to each of two opposite corners of a four-sided jointed connected one to each of two opposite corners of a four-sided jointed
frame, each member of which carries a gyrostat, so that the axis of rotaframe, each member of which carries a gyrostat, so that the axis of rota-
tion of the fly-wheel is in the axis of the member of the frame which
bears it. Each of the hooked rods in Fig. 2 is connected to the framework through a swivel joint, so that the whole gyrostatic framowork may
be rotated about the axis of the hooked rods in order to annu the be rotated about the axis of the hooked rods in order to annu the
moment of momentum of the framework about this ax edue to rotation
of the fly-wheels in the gyrostat.
balance, and we have a group of particles constituting an elastic
solid; exactly fulfilling the mathematical ideal worked out by Navier, Poisson, and Cauchy, and many other mathematicians who following their example, have endeavoured to found a theory of the elasticity of solids on mutual attraction and repulsion between a group of material particles. All that can possibly be done by
this theory, with its assumption of forces acting according to any assumed law of relation to distance, is done by the gyrostatic system. But the gyrostatic system does, besides, what the system of naturally acting material particles cannot do; it constitutes an
elastic solid which can have the Faraday magneto-optic rotation of elastic solid which can have the Faraday magneto-optic rotation of
the plane of polarisation of light; supposing the application of our solid to be a model of the luminiferous ether for illustrating the is arranged theory of light. The gyrostatic model spring balance therefore to contribute nothing to the Faraday rotation; with this arrangement the model illustrates the luminiferous ether in a field unaffected by magnetic force. But now let there be a different of the two projecting hooked rods, such as to give a resultant moment of momentum round any given line through the centre of inertia of the system, and let pairs of the hooked rods in the model thus altered, which is no longer a model of a mere spring balance, be applied as connections between millions of pairs of
particles as before, with the lines of resultant moment of particles as before, with the lines of resultant moment of
momentum all similarly directed. We now have a model elastic solid which will have the property that the direction of vibration in waves of rectilinear vibrations propogated through it shall turn round the line of propagation of the waves, just as Faraday's observation proves to be done by the line of vibration of light in
a dense medium between the poles of a a dense medium between the poles of a powerful magnet. The
case of wave front perpendicular to the lines of resultant moment of momentum-that is to say, the direction of propagation being parallel to these lines-corresponds, in our mechanical model, to the case of light travelling in the direction of the lines of force in a magnetic field.
Imagine a s
Imagine a solid bored through with a hole, and placed in our
ideal perfect liquid. For a moment let the hole be ideal perfect liquid. For a moment let the hole be stopped by a
diaphragm, and let an impulsive pressure be applied for an instant uniformly over the whole membrane, and then instantly let the membrane be dissolved into liquid. This action originates a motion of the liquid relatively to the solid, of a kind to which I have given the name of "irrotational circulation," which remains absolutely
constant, however the solid be moved through the liquid. Now, imagine the whole liquid to be enclosed in an infinitely large, rigid, containing vessel, and in the liquid, at an infinite distance from any part of the containing vessel, let two perforated solids, with irrotational circulation through each, be placed at rest near one another. The resultant fluid motion due to the two circulations will give rise to fluid pressure on the two bodies, which, if un-
balanced, will cause them to move. The force systems-force and torques, or pairs of forces-required to prevent them from moving will be mutual and opposite, and will be the same as, but opposite in direction to, the mutual force systems required to hold at rest two electro-magnets fulfilling the following specification. The two electro-magnets are to be and to be placed in the same size and shape as the two sist of infinitely thin layers of electric currents in the surfaces of solids possessing extreme diamagnetic quality-in other words,
infinitely small permeability. The distribution of electric current on each body may be any whatever which fulfils the condition that the total one across any closed line drawn on the surface once through the aperture is equal to a ${ }^{\frac{1}{c} \pi \text { of the }}$ circulation through the aperture in the hydro-kinetic analogue It might be imagined that the action at a distance thus provided for by fluid motion could serve as a foundation for a and the the equilibrium, and the vibrations, of elastic solids, and the transmission of waves like those of light through an extended quasi-elastic solid mediuin. But unfortunately for this
idea, the equilibrium is essentially unstable, both in the case of magnets, and, notwithstanding the fact that the forces are oppositely directed, in the hydro-kinetic analogue also, when the several movable bodies-two or any greater number-are so placed relatively as to be in equilibrium. If, however, we connect the kerfetic system, by jointed rigid connecting links, we the hydrofor configurations of stable equilibrium. Thus without fly-wheels, but with fluid circulations through apertures, we may make a model spring balance, or a model luminiferous ether, either with-
out or with the rotational quality corresponding to that of the true luminiferous ether in the magnetic fluid; in short, do all by the perforated solids with circulations through them that we sau we cannot by means of linked gyrostats. Bu the perforated bodies with fluid circulation: we can make a model gas. The mutual action at a distance, repulsive or attractive according to the mutual aspect of the two bodies when passing within of direction of motion in collision, which essentially constitutes the foundation of the kinetic theory of gases, and which, as we have seen before, may as well be due to attraction as to repulsion, so far as we know from any investigation hitherto made in this theory.
There remains, however, as we have seen before, the difficulty of providing for the case of actual impacts between the solids, which must be done by giving them massless spring buffers, or,
which amounts to the same thing, attributing to them repulsive forces sufficiently powerful at very short distances to absolutely prevent impacts between solid and solid; unless we adopt the equally repugnant idea of infinitely small perforated solids, with infinitely great fluid circulations through them. Were it not for
this fundamental difficulty, the hydro-kinetic model gas would this fundamental difficulty, the hydro-kinetic model gas would
be exceedingly interesting; and, though we could scarcely adopt it as conceivably a true representation of what gases really are, it might still have some importance as a model
configuration of solid and liquid matter, by which without configuration of solid and liquid matter, by which without
elasticity the elasticity of a true gas might be represented. But lastly, since the hydro-kinetic model gas with perforated solids between the solids, let us annul the solids and leave the liquid performing irrotational circulation round vacancy, in the place of the solid cores which we have hitherto supposed; or let us
annul the rigidity of the solid cores of the rings and give them molecular rotation according to Helmholtz's theory of vortex give the same velocity the boundary of the rotational fluid cor as that of the irrotationally circulating liquid in contact with it because, as I have proved, frictional slip between two portions of
liquid in contact is inconsistent with stability. There is further condition, upon which I cannot enter into detail just now it is a condition of either uniform or of increasing molecular rotation from the surface inwards, analogous to the condition that the density of a liquid, resting for example under the influence of gravity, must either be uniform or must be greater
below than above for stability of equilibrium, All that I have below than above for stability of equilibrium, All that I have soid in favour of the model vortex gas composed of perforated cation for the purely hydro-kinetic model, composed of either Helmholtz cored vortex-rings or of coreless vortices, and we are now troubled with no such difficulty as that of the impacts between solids. Whether, however, when the vortex theory of gases is thoroughly worked out, it will or will not be found to pointed out in connection with the linetic theory have already posed of a little elastic solid molecules, I cannot at present under take to speak with certainty. It seems to me most probable that the vortex theory cannot fail in any such way, because all I have been able to find out hitherto regarding the vibration
vortices, whether cored or coreless, does not seem to imply the
liability of translational or impulsive energies of the individual
vortices becoming lost in energy of smaller and smaller vibrations. As a step towards kinetic theory of matter it is certainly most like that of remark that in the quasi-elasticity, elasticity looking smoke ring lan india-rubber band, which we see in a vibrating rings which were circular, but which have become deformed from circularity by mutual collision, we have in reality a virtual elas ticity in matter devoid of elasticity, and even devoid of rigidity, generation elasticity being due to motion, and generated by the rum of

LOCOMOTIVE RUNNING SHED, TAFF VALE RAILWAY, CARDIFF.* By Mr. C. H. Riches,
THE large increase during the past few years in the traffic of the shed from the Cardiff terminus to Cathays. The arrangements of the new shed, with its adjacent yard and appurtenances, are shown in the accompanying drawings, Figs. 1 and 2.
Main shed.-The main shed is built to accommodate sixty larg tender engines, and is 383 ft . long inside the walls, Fig. 1 . It com
prises two spans of 67 ft . each, divided by a centre wall, which is supported by elliptic arches, resting upon brick pillars, Fig. 2 There are five roads under each span, making ten in all. Midway in the length of the shed is placed a steam traverser, 40 ft . long,
which works at the floor level right across both spans of the shed, which works at the floor level right across both spans of the shed so as to remove engines from any one of the ten roads. The pits
are numbered from No. 1, on the eastern side of the shed, up to are numbered from No. 1, on the eastern side of the shed, up to
No. 10, on the western side. The same numbers hold good for the corresponding lines of road throughout the entire length of th shed-that is to say, both north and south of the traverser; and the length of the shed is divided into six divisions or tiers of berths, Commencing from the ten pairs of outlet doors at the north end, the first berth is lettered A; consequently, the ten engines against
the doors will be in berths 1 A to 10 A . The next tier of berths is lettered B; and so on to F, the last at the south end, which is invariably used for "day-in" engines. This plan of berthing the engines of each "booked train" enables the men to find their engines at once when they come on duty, and obviates delay,
which otherwise would inevitably arise in so large a shed Ehich otherwise would inevitably arise in so large a shed. Engine pits.-The main pits are 3 ft . Bin. deep, and extend
throughout the entire length of the shed, excepting under the traverser. In all the pits there are drains at intervals of unft. 10 in . each of which is trapped with a syphon box; underneath the box is a sump, 2 ft . square and 3 ft . deep, for the purpose of catching

any refuse; and the drain pipes lead away at a height of 2 ft . from the bottom of the sump. In every alternate space between th are covered with cast iron frames, having a small lifting flap for the insertion of the stand pipe, which keeps the hose clear of the floor
and when the hydrants have serewed plugs, and are of course duplicates of one another, as shown half full size in Fig. 3. Between all the roads the floor of the shed is pitched with firebrick set on edge At hard wood are let into the pited the "day-in" tier, piece rlacing lifting jacks upon; and along the wall at the south end of the shed, adjoining these berths, are the fitters' benches. Winuations of the same roofs, are placed the works covered by con Finuations of the same roofs, are placed the workshops and offices, the south-west corner, is 19 ft . 6 in . wide and 19 ft , 3in. high to the eaves. Adjoining this come the boiler shop, H, and smiths' shop, also entered from the main shed, near the longitudinal centre wall these two shops together occupy the end of the western span. In the eastern span, and having also an entrance from the shed, comes the machine shop, K , in the corner of which is placed the chie and finally a tier of timekeepers' offices. The southern extension of the main roof is 30 ft ., and consequently all these shops have an
equal width, as shown in the plan, Fig. 1. The offices on the equal width, as shown in the plan, Fig. 1. The offices on the eastern side of the entrance passage are two in number; the one,
L , nearest the shed being for the train-booking timekeeper, and L, nearest the shed being for the train-booking timekeeper, and
the other, M, for those taking enginemen's "trips" and shedmen's tickets. trainmen's waiting-room, N, where the men remain to give their

LOCOMOTIVE RUNNING AND REPAIR SHOPS, TAFF VALE RAILWAY, CARDIFF.

traverser. On the further side of the drop pits are five water cranes, placed between alternate pits, and each capable of supply Yard.-Passing out into the yard, there are cross-over roads with compound shunts, so arranged as to lead the engines out from any of the ten shed roads to the six main running lines that three junctions to get from the yard to the main line. The coal stage has a double platform, with a road for the wagons in the centre, and a road on the outside of either platform for the engines, The platforms are 133 ft . 3 in . long, and each is fitted with three Sand drying. - Between the coal cranes anding. Sand drying.- Between the coal cranes are placed tanks fo
containing dried sand, and in close proximity to the coal sta containing dried sand, and in close proximity to the coal stage
there is a sand-drying kiln. This has three furnaces, and the fles are so arranged as to kiln. This has three furnaces, and the flues which is made of fire-brick. The sand is first thrown in through ioors in the front of the kiln, ranged above the stoke-plates, and which received upon an inclined iron slide, the bottom end of moisture in the san the front edge of the kiln; any excess of into steam. The sand from the slide is cast is at once converted the kilns, and in process of drying is gradually worked by hand across to the delivery side, where, when dry, it, is cast upon a sloping screen, and the fine sand passing through is taken to the Water supply.-The stage, the rough refuse being thrown out. 1.1 .1 a well by means of a Tangye "special" pump, which delivers it
into a cast iron tank, supported by wrought iron girders that rest driving engines are a pair of 8in. cylinders, with 12in. stroke; they into a cast iron tank, supported by wrought iron girders that res
upon a stone building. The bottom of the tank is 25 ft . above the ground. The well is 53 ft . depth, of which 7 ft . is subsoil, 9 ft gravel, and 37 ft . marl. From this depth about 7000 gallons per hour are obtained. Tho water cranes are of the ordinary type, and require no special notice.
Turntable.-The main
inverted, of rivetted plate, and of treble T-section. The centre piece is supported by two short wrought iron beams. The centre pivot is composed of a round pin, as shown one quarter full size in Fig. 5 , supported by a cast iron cone in two parts, which rests
upon the centre foundation stone. Between the top of the cast upon the centre foundation stone. Between the top of the cast
iron cone and the point of the pin is inserted a case-hardened washer of double convex section, to reduce the friction. The ends of the table are carried round the race upon four cast iron wheels two at either end, which are shod with crucible steel tires of 2 ft . 115 in . diameter. The short axles of the wheels run in plummer blocks attached to cast iron frames, which support the extreme
ends of the table. The race is of ordinary double-headed steel rails, fixed in special chairs with adjustable keys ; the chairs are
have a suitable vertical boiler. In working across the shed, the ngines to be taken out of the building without passing through the northern half of the main shed. This arrangement als obviates the necessity of having large doors of the whole width of he traverser pit.
Roof.-The ma
Roof.-The main roof framing, Fig. 7, is a compound of iron, wo-fifths of slates, laid with ties of mild steel. The covering is rough ribbed glass in cast iron frames. The whole of the engine roads are covered with smoke trunking, made of galvanised sheet
iron, 2 ft . 11 in . wide by 3 ft . 5in. deep, and with outlet chimneys iron, 2 ft . 11 in . Wide by 3 ft . 5in. deep, and with outlet chimneys
carried up through the roof at intervals of 35 ft . 8 in . All of these chimneys have holes cut in them just before they reach the roof, so as to draw off any smoke or steam which may have escaped int the roof. In addition to the foregoing description of the running heds, advantage may be taken of this opportunity for mentionin the working of locomotives.
vessel at that side, and flows over the top of the syphon, and down when the we. This continues till the engine leaves the curve; and the float F will resume a uniform level in all three vessels, o its normal height.
Jet for washing rails.- For washing the road clean during dirty weather, a simple device, shown one-quarter full size in Fig. 9 ,
consists in supplying a very small jet of water from the boiler directed upon the rail in front of the driving wheels. This arrangement has been found most efficient during the past winter, and also saves a considerable quantity of sand.
High-speed air compressor.-Althou
High-speed air compressor.-Although not connected specially
with locomotive engines, a small high-speed air compressor, shown with locomotive engines, a small high-speed air compressor, shown

PART PLAN
full size in Fig. 10, may be of some little interest, and will be shown to the members visiting the locomotive shops. It was designed some five or six years back for testing the effect of air mixed with steam, and was used for a few weeks. it has wo 250 lb per square inch, delivering at each stroke its whole volume of air, 75 cubic inches, without any loss through clearances, the cylinde ciple of a water piston, sucking in and discharging acain at eacl stroke a very small quantity of water. A very similar air com pressor has recently been brought out in Belgium as something presso
new.

PROGRESS OF MECHANICAL SCIENCE.*
By Sir Frederick Bramwell, F.R.S.
AT our Jubilee meeting at York, I called the attention of the that city, they arrived there laboriously by the stage coach, and that practically the Manchester and Liverpool, the Stockton and Darlington, and some few others, were the only railways then in existence. I also called their attention to the fact that in 183 there were but very few steamers. I find the total number regis
tered in the United Kingdom in that year was only 447 . If under this condition of things, the proposition had been made in 1832 e Oxford, as it was made in 1882 at Southampton, that the next meeting but one of the Association should take place in Montreal the extreme probability is that the proposer would have been safely lodged in a lunatic asylum, for suggesting that that which migh have involved a six week's voyage out, and a four weeks' voyage more the hackneyed quotation, some few years after this, i.e., in 1836, Dr. Lardner established to his own satisfaction conclusively that no vessel could ever steam across the Atlantic the whole way A striking instance of the mistakes made by scientific speculation a branch of science widely differing in the value of its results from those branches which deal with absolute demonstration. Un
deterred, however, by such adverse opinion, the engineers "kept on pegging away," experimenting, improving, and progressing, until the scientific speculation was met with the hard fact of the Atlantic voyage steamed the whole way by the Sirius and by the Great Western in 1838. The impossible was proved to be the possible, and from that day to this the advancement of steam ocean navigation has continued. The six weeks' voyage, sailing
westward, of the year 1831, has become converted into but little over six days. And thus it is that that which would have been a mad proposition in the year 1832, became a perfectly rational one in 1882; and the deliberations of the general committee on the proposition were not directed as to whether it would be possible to convey the members with certainty, expedition, and economy general grounds to hold for the first time a meeting of the British Association elsewhere than in some city of the United Kingdom I say again that the possibility of such a meeting is absolutely due to the engineer, and that therefore, on this ground, the present is an appropriate occasion to magnify G, the Mechanical Section of this Association. It is true that the man who looks only at that
which is on the surface may say, "You arrogate too much to your selves. You ignore-to which I say Heaven forbid!-the skill and daring of your sailors, You ignore commercial enterprise. You ignore the development of iron and steel manufacture, which have enabled you to build the steamers of the present day. You ignore the increased output of the best steam coal in the world, and you attribute the whe in the condition of that man who, in answer to George Stephenson's question, "What is causing that railway train to move?" said, "Why, I suppose the coal that is burning in the locomotive ;" and who was met by that grand and comprehensive answer, that it was the sun, for the coals were a consequence, and not a first cause. Similariy I venture to say that the mecha$\frac{\text { nical engineer may lay claim to be the central source which has }}{\text { * Presidential addross, Mechanical Bection. British Association at }}$ * Presidd
Montroal.
vivified and given rise to the improvements in the manufacture of
iron and steel, in the construction of engines, and in the developirno and steel, in the construction of engines, and in the develop-
ment of our collieries. There are those I know who object that
Section G deals too little with pure science, too much with its applications, It may be, as the members of Section G might with itort
ant
that it is possible to attend so much to pure that it is possible to attend so much to pure science as to get into
the unchecked reegion of scientific speculation, and that had the
members of Section G been debarred from the members of section sciene, the speculation of Dr. Leardner might the the present day
shave been accepted as fact. I have quoted it before, but it has so have been accepted as fact. I have quoted it before, but it has so
important a bearing on this point and comes from a man of such high authority, that I cannot refrain from once more giving you
Dr. Tyndalls siews on this question. "The knowledge of nature,
and the progressive mastery over the powers of nature imply the and the progressive mastery over the powers of nature, imply the interaction of two things- namely, thought conceived and thought
executed; the conceptions of the brain, and the realisation of those conceptions by the hand. The history of the human intellect
hardly furnishes a more striking illustration of this interaction of hardy furnishes a more striking illustration of this interaction of
thought and fact than that furnished by the Associationom of Phsics
and Engineering Take for instance the case of steam knowing its properties, the thought of applying steam could not have arisen, hence the first step was physical examination. But that
examination suggested practice, and the steam engine at last saw the light; thus experimental physics was the e eeding from which
the steam engine sprang. But the matter did not end here the steam engine sprang. But the matter son reversed, for the stupendous operations of the steam engine forced men of thoughtful
philosophic minds to inquire into the origin of the power of steam Guess succeeded guess, inspiration succeeded inspiration; the eve shesent fact of our rail ways, and our power looms, and our steam ships gave the mind no rest until it had answered the question
How are heat and steam, its instruments, related to mechanical power? Had the works of the engineer not preceded the work of With the emphasis, nor pursued with the vigourn have been asked the success which have attended it. It was the intellectual activity excited by the work which the civil engineers of England had tion of energy, including the dynamical theory of heat.
The engineering genius of the future is certain to derive from this
theory strength and guidance. Thus necessarily has thought originated fact, and fact originated thought. In the develop ceasing to be a consequence, and becoming a creative cuuse ory of the physical inquirer. Here, as before, experimental physic But here also the positions of debtor and creditor have been eversed, for the work of the engineer has caused the physical
inquirer to pursue his investigations with a thoroughness and igour, and has given to those investigationsa scope and magnitude The consequence is that the stractical realisation of sending electric augmentation of our knowledge regarding electricity itself. Thus sound practice, gaining by every contact with each an accession of sound theory from sound practice, and both die of atrophy. 'Th ne becomes a ghost and the other becomes a corpse.". Ithink all
men, even although they be followers of science in its purest and host abstract form, must agree that these words are words of
 what the answer must be-whether there is any body of men who more appreciate and make greater use of the applications of pure
science than do the members of this Section. Surel every one nust agree that we engeers are those who make the greatest
practical use not only of the science of mechanics but of the
tesearches and discoveries of the members of the other Sections of this Association.
Section A: Mathematical and Physical Science.-The connection
between this Section and Section G is most intimate rdinary man I should have referred, in proof of this intimate bernection, to the fact that the president of A this year is a mem-
bremind Council of the Thst that it is Sis Witution of Civil Engineers; but when
I Thomson who fills this double oftice, you will see that no deduction such as I have hinted at can
be drawn from his dual functions, because the remarkable extent and versatility of his attainmensts qualify him for sor many exftent
that the mere fact of his holding some one double position certain evidence of the intimate connection between the two. But
setting aside this fact of the occupancy of the chair of A by a civil engineer, let us remember that the accomplished engineer of the present, day must be one well grounded in thermal science, in
eleotrical science, and for some branches of the profession in the
eces sciences relating to the production of light, in optical science and
in acoustics ; while, in the other branches, meteorological science, n acousticr;
photometrical science, and tidal laws are all important. Without a knowledge of thermal laws, the engineer engaged in the
construction of heat motors, whether they be the steam engine, the gas engine, or the hot air engine, or engines
depending upon the expansion and contration under changes
of temperature of fluids or of solids, will find himself groping of temperature of fuids or of soiids, wil find himself groping
in the dark; he will not evenderstand the value of his
own experiments, and therefore will be unable to deduce laws from them; and if he make any progress at all, it will not guide him with certainty to further development, and it may be that he will
waste time and moneein in the endeavour to btain results which a sible. Furnished, however, with this knowledge, the engineer sible. Furnished, however, with this knowledge, the engineer
starting with the mechanical equivalent of heat, knowing the
tmost that is to be attained, and starting with the knowledge of utmost that is to be attained, and starting with the knowledge of
the calorific effect of different fuels, is enabled to compare the results that he obtains with the maximum, and to ascertain how far the one falls short of the other. He sees even at the present
day that the difference is deplorably large, but he further sees in day that the
the case of the steeme engine that which the pure scientist would
not so readily appreciate, and that is how a great part of this loss not so readily appreciate, and that is how a great part of this loss
is due to to inability of materials to resist temperature and pres-
sure sure beyond certain comparatively low limits; and he thus perceives
that unless some hitherto wholly unsuspected,and apparently impos. that unless some hitherto wholly unsuspected, and apparenty impos.
sible, improvement in these reepects should be made practically
speaking, the maximum of usefup effect must be far below that which pure science would say was possible. Nevertheless, he knows
that within the practical limits great improvements can be made; he can draw up a debtor-and-creditor account, as Dr.
Russell and myself have done, and as has been done by Mr. William Anderson, the engineer, in the admirable lecture he gave at
the Institution of Oivil Engineers in December last, "On the
On on Furnished with such an account, the engineer is able to say, in the language of commerce, I am debtor to the fuel for so many heat
units, how, on the credit side of my maccount, do I ischarge that
dibt? Usently debt? Usefully I have done so much work, converted that much heat into energy. Uselessly I have raised the air needed for com-
bustion from the temperature of the atmosphere to that of the gases escaping by the chimney; and he sets himself foconsider
whether some portion of the heat cannot be abstracted from these gases and be transmitted to the incoming air. As was frrst pointed out by Mr. Anderson, he will have to say a portion of the heat has
been converted into energy in displacing the atmosphere, and that, been converted into energy in displacing the atmosphere, and that,
so far as the gaseous products of the coal are ocncerned, must,
t
 was needed for combustion of pass throuwaste which occurs when
to prevent another source of los-the waste whe
the combustion is imperet. thion to the uee of gaseous or $f f$ liquid fuel, or of solid fuel reduc
to fine dust, as by Crampton's process, as in these conditions the
supply may be made continuous and uniform, and the introduction of air may be easily regulated with the greatest nicety. He wil
say, I am obliged to say, I am obliged to put among my credits - loss of heat by
convection and radiation, loss by carrying particles of water
over over wy strangulation, in valves and pasasages, looss by exxecsive
loss briction
friction or by leakage; and he will as steadily apply himself to the extinction or the diminution of all such causes of loss, as a a
prudent Chancellor of the Exchequer would watch and cut down every unproductive and unnecessary expenditure. It is due to the
vidance of such considerations as these that the scientific engine guidance of such considerations as these that the scientific engineer
has been enabled to bring down the consumption of fuel in the
stea steam engine, even in marine engines such as those which pro-
pelled the ship that brought us here, to less than one-half of that
which it was but a few years back. It is true that phich it was but a few years back, It it ins true that the daily con
whimption may not have been reduced, that it may be even greater but if so it arises from this, that the travelling public will hav high speed, and at present the engineer, in his capacity of nava
architect, has not seen how-notwithstanding the great improve ments that have been made in the forms of vessels- to ottain high
speed without a large expenditure of power. I anticipate from the application of therral science to practical engineering, that great results are before us in those heat motors, such as the gas engine,
where the heat is developed in the engine itself. Passing awa where the heat is developed in the engine itselif. Passing away to the application of science by the engineer that the economy of
the hot blast was originated, and that it has been developed by the labours of Lowthian Bell, Cowper, and Cochrane. Equally due o this application are the results obtained in the regenerative
furnace, in the dust furnace of Crampton, and in the employment metals, the oxygen furnace and the atmospherio gas furnace, and in its incipient stage, the electrical furnace. To a right knowledge
of the laws of heat, and to their application by the engineer, must be attributed the success that has attended the air refrigerating voyage delivered in a perfect condition; and to this application we owe the economic distillation of sea water by repeated ebullitions onverting the brine that caused the Ancient Mariner to exclaim, Water, water everywhere, nor any drop to drink," into the
purest of potable waters, and thereby rendering the sailor inde-
pendent of fresh water storage. With respect to the application by the engineer of electrical science, it is within the present generation that electricity has passed from the state of a some-
what neglected scientific abstraction into practical use:--First, by he establishment of the land telegraph, then by the development
into the submarine cable, by means of which any one of us visitors here in Canada may be in instant communication with his own counrry, and may be so without a selfish exclusive occupation of the cably
for once more the application of science has solved that apparentl impossible problem of employing a single wire to be at one and the
sametime the transmitterof multiple electric messages, and messages in opposite directions. Then, thanks to the application of Faraday's
great disoover of induced electricity, there has been, during the last quarter of a century, the progressive development of th
dynamo machine whereby the steam engines, is converted into electrical energy, competent to
deposit metals, to-as has already been said -fuse them, to light not only isolated buildings, but extensive areas of towns and cities, purposes or for the railway or tramcar; and thus the miracle is peformed of converting a waterfall into a source of light, as at
Sir William Armstrong's house, or into the origin of power for a
 struction of seoondary batteries, enabling a development of elec
tricity to be continued for many hours. In the United Kingdom, general electric lighting, that is to say, the lighting of large sec-
tions of a town from a central station, has been stopped by the
most unwise, because most unjust, conditions imposed by the most unwise, because most unjust, conditions imposed by th
Government General Electric Lighting Act of 1882. 1 new and meritorious industry, which should have been granted the same
privileges as are accorded to other industrial undertakings needing parliamentary powers, was subjected to this most
unjust condition: that at the end of twenty-one years the public authority of the town or place lighted should have the
option of buying the undertaking for the then value of the
mere materials, and that if the authority did not choose to pur mere materials, and that in the authority did not choose to pur-
chase -for it was not bund to buy -at every subsequent five-year ire years for its general acceptance-fo the public is slow to take upa novelty-was, after the experimental
and non-paying stage had been passed, to be practically forthwith if the undertaling paid, but was not to be talken away if it did not if the undertaking paia, in whe whe not the teaching of Section F, is the condition
pay. Such, in
to which The next electrical matter I have to touch upon, that of the tele-
phone and microphone, with which will for ever be associated the names of Graham-Bell, Edison, and Hughes, has, as regards the United Kingdom. It has been declared to be within the telegraphic the telephone was invented, and the power to use it depends entirely upon the grace and favour of the Post-office, a grace and
favour not always accorded; and even when accorded, coupled with limitations as to distance, and coupled with a condition of payment of 10 per cent. of the gross receipts by the companies to
the Post-office as a royalty; and all this because Government has become a trader in electrical intelligence, and fears the competioving countries of England, Canada, and the United States can refrain from feeling the warmest interest in all connected with
navigation, and we know how frequently, alas! the prosperous voyage across the we know how fav frequently, alas. the prosperous
vacean ends in shipwreck
and disaster when the wished.for shore is anpronched and whe the sea is comparatively shallow. Except for the chance of collision, there is,
but on an stauring the shore, not not onlty its the liability open ocean, increased, but shoals and sunken rocks render navigation perilous,
and it is on the excellence of the lighthouses and lightships, that appliances are confided to the engineer, and to be efficient they require him to be boble to apply the thachings of Section A in
optical science, and in the case of fogs, or as regards buoys at
night time, the science of sound. I parenthetically alluded night time, the science of sound. I parenthetically alluded
soundings as one-indeed, a prinipal one-of the safeguards of ships when approaching shore. It is important in these days of
high speeds that these should be made with case and without the necessity of stopping the ship, or even of diminishing its velocity. Sir
William Thomson, by the application of the science of pneumatics, has enabled thisto bedone. Ai Aain, most important tis it that the com-
pass, midstall the difficulties attendant upon its being situated on an has aptleel structure, should be trustworthy. And here Sir William the practical purposes of navigation. To go to another important branch of engineering-water supply. The engineer dealing with
a district to be fed from the surface will find himself very deficient if he have not the power of applying the science of meteorology to
the work that he has in hand; he must know not the the work that he has in hand; he must know, not the average rain-
fall, for that is of but little use to him, but the maximum, and period of years: the maximum so that he may provide sufficient channels and b-washes for toods, what are the losses by evapora-
suffieint storage. He must know what and
tion, what are the chances of frost interfering with his filters and tion, what are the chances of frost interfering with his filters and
with his distributive plant. Coming to the mathematical side of

Section A-whether we consider the naval architect preparing his
design of a vessel to cleave the waves with the least resistance at
the highest speed, or whether we consider the unparalleled series of experiments of that most able Associate of Naval Architects, the
late William Froude, carried out as they were by means of models late William Froude, carried out as they were by means of models
which were admirable in their material , their mode of manufac.
ture with abolute raction and of record nenter should be able to apply mathematical science to their work,
and thatitis in the highest and that it is in the highest degree desirable that they should possess, ledge. Again, the mathematical side of Section A has to be applied by hips, bridges considering the strength and prlss, and in short the whole of the work with which an engineer is entrusted. Notable instances of great bridges wil occur to all our minds, especially
meeting as we are in this Continent of grand streams, Eads ${ }^{2}$ St; East River Bridge Gzowski's International Bridge and sons back to our own land, Fowler and Baker's Bridge over the Forth Passing from Section A to Section B , there is evidently so much
overlapping of these sections that a good deal that I have said in reference to Section A might properly have been reserved for in truth a branch of engineering; but to enable this to be ccomplished with certainty, with economy, involving the not hrowing away of that which is called the waste product, but
which is frequently a valuable material, it is essential that the
ngineer and the chemist should e either be engineer and the chemist should either be combined in one and the same person, or should go hand in hand. In the manufacture of
pig iron it is absolutely necessary that the chemical constituents of he ore, the fuel, and the flux should be thoroughly understood,
nd that the excellence of the process followed should be tested by an analysis of the slag. For want of this chemical knowledge nd thousands upon thousands of tons were formerly left in the issuing slag. Similar remarks apply to the production of lead and
of copper from the ores, and still more do they apply to that great metallurgical manufacure of the last few years " "stele." In the
outset steel was distrusted because of the uncertainty of its behaviour, but the application of chemical science now enables the fulfil the physical tetuss imposed by the engineer. Reverting to
the water engineer, the chemist and the microscopist have their sciences applied to ascertain the purity of the intended source, ond as in the case of Clark's beautirul process, by che appication
of chemistry water, owing its hardness to that common cause, carbonate of lime, is rendered as soft as the water from the
mountain lake. Taking that other branch of engineering commonly coupled with water, viz, the supply of gas, the
engineer is helpless without the application of chemistry the examination of the coal to be used, to the testing of the gas necessary. The consumer requires gas which shall be as nearly as
possibl possible a pure hydrocarbon of high illuminating power, and it
might well have been that a person to whom was delivered the crude gas as it issued from the retort would have sada, evtain
things may be separated out more or less, but to pactise on the
wholesaie scale the delicate operations which will be needed to cleanse the illuminating gas from its multifarious accompanying
impurities is a hopeless undertaking, and must be other reason than this-the excessive cost that would be entailed."
But what are the facts? Althong a room where gas is burnt, unless special provision is made for taking away the products of combustion, the engineer of the pre-
sent day, thanks to the application of chemical science delivers
gas to the consumer in ap state of comparative purity-although it may have been made from impure coal-which but a few years
ago would have been deemed impossible; and so far as this im provement from being attended with extra cost, that the residual products not now uncommonly all but pay the whole cost of the
coal, and in omeme rare instances even leave a slight profit to go
towards the charge for labour. Again it is by the chemical science in the dynamite and the gun-cotton of the
present day that the engineer is enabled to prepare submarine
oundations, to ble rock of a chanacter away shoals, and to drive tunnels through machines. Equally to the application of chemistry is it due that there are hopes, by the employment of lime cartridges, of breaking
down coal without that risk of igniting fire-damp which is attendant upon the use of gunpowder. Ineed hardly observe that
much more might most pertinently be said on the way in which the engineer applies chemical science. In fact, those ways are so multifarious, that a volume might be written upon them, but 1 must pass on and ask you to consider how the engineer, applies
geological science, the science treated by Section C. I have already spoken of the engineer supplying towns by water collected from the surface; $;$ even he, however, must have a knowledge of geology, for
without it he will not know what places are apt for the huge
reserus reservoirs he constructs, nor where he can in safety make his
enormous embankments. In this continent of vast lakes one feels it must excite a sensation of the ridiculous when a "Welsh lake" is
spoken of but I must ask you to believe you are in Lilliput, and to
in really "Bala lake" ss it friends at the other end of the Atlantic steam ferry, the inhabiadvice of Mr. Hawksley, a waterworks which will involve the
form, and formation, I believe one may safely say the re-formation, of a lake,
practically the same area as that of Bala , of some 80 ft , in depth, practically the same area as that of Bala, of some 8oft. in depth,
and containing between the overflow and the point of lowest dis
chan made by the throwing from side to side of the valley of solid stone bank, 100 tt . above the ground, 140 ft . above the
deepest deepest part of the foundations, and 113 tht. thick at its
thickest part. Contrasted with Lake Superior this new lake will be small, a thing demanding a microscope even,
but the bursting of the wall would liberate a body of water
sufficient to carry death district. It is, therefore, in the highest degree important that whether he be constructing the solid stone wall, or the more
common earthen embankment with a puddle trench, the enginee should soa apply geological science as to ensure the safety of his
work. But in those cases where the waterworks engineer has to deive the supply from underground sources the application of thi
science is still more necessary; he must know whether he is likely to find a water-bearing stratification at all-if so, where it receive the rain from heaven, and the extent of the area which receives it;
in what direction the water travels through it, what is the varying height of water in the different parts of the stratification giving
the "head" to produce that travel; how far this height is likely be affected by the pumping of the desired quantity; whether, if near the outllow into the sea, the pumping is likely to reverse the
direction of the current, and to bring back brackish water, and
whether the rocks whether the rocks are of such a character as to be liable to yield a
water impregnated with iron or with lime, and wheth water-bearing rocks are accessible from the surface without the lying stratifications of an unfit or it may be even of a dangerou in metalliferous mining, or in the extraction of coal or of petroleum unless he applies the science of Section C, is but a haphazar
explorer whose work is more likely to end in disaster that success. Again, the engineer when laying out a railway, has to
consider the geological features of the country in determing angles of his cuttings, and to determine where it becomes more economical to tunnel than to cut. Indeed, without the application feasibility of which the engineer would not be able to pronounce
of whom I am one, said there is a material, the compact non-
water-bearing grey chalk, which we have at a convenient depth on water-bearng grey chalk, whil materials the most suitable; if that
the English side and is of all exist the whole way across, success is certain. Then came
geological science, and that told the engineer that in France the same material existed; that it existed in the same position in line of outcorop of the gault lying below it had been checked across opinion to be expressed that it was all but certain this grey chalk stratification did prevail from side to side. The engineer
believed it, an intelligent section of the public believed it, and came forward with their money; large sums were expende declaration of the English Government-of both sides of tribute towards the cost of the work, it wateded on to to con
satisfaction the improved means of communicat with
s.t. satisfaction the improved means of communication between
England and the Continent; the experimental works were carried on from both sides with the happiest results, and then, when success appeared certain, the whole work was stopped by the incredible suggestion that in the event of a war the soldiers of England, and the science of England, could not defend a couple of rat-holes,
holes 14 ft . in diameter and 20 miles long, situated far below the surface of the sea, having a rapid dip from the shore to a low point, tunnel, so that the English end could be flooded with sea-water in twenty, five minutes up to the soffit of the arch at the dip; and in due that one of the finest instances of civil engineering work in connection with the science of geology, and as I believe one of the
most useful works that hasever been proposed, has been put a stop to To come to Section D, the botanical side of it is interesting to the engineer as instructing him in the locality and quality of the
various woods that he occasionally uses in his work. With regard
to that to that most important part of the work of D which relates
to "germs " and their influence upon health, the engineer deals pure, and that the building must be ventilated, and that exereta must be removed without causing contamination; thus the water-
works engineer, the warming and ventilating engineer, the engineer an -and do-all of them profit thing the labours of of Section D, pure science of that Seection. Section E, Geography., Probably in these days, when our
kingdom at home and the old countries near us are all but full of
the works of the engineer, there are the works of the engineer, there are few who take a greater interest
in geography than he does, and I am quite sure there are none who make a more useful application of geographical knowledge for the
benefit of mankind at large than does the enginer. benefit of mankind at large than does the engineer. Almost at the
outset of this address I claimed to mangify Section G, on the
ground that without the aid of its members we should not have ground that practical lesson in geography which we have received by our visit hare, a l lesson that not no doubt will be continued and anpmil.
fied by many of us before we return to our homes. Whether it be by the ocean steamer or by the railway train, the enterprising
geographhical explorer is acrived to or through countries which now,
thanks to the beninsinng of the engineer, nown and well knot ketwn and settled, up to the the
bight thus his labours are
lightened, he consumes his enervies beginng of the unknown and not settled; and thus his labours are
lightened, he consumes his energies only upon his true work, brings
back his report, which is, as I have said, studied by the engineer, with a view to still further development, and thus turn by turn the geographer and the engineer carry civilisation over the face of the
world. Now to come to Section F , which treats of Economic Science. The matters with which this section deals-birth-rate, deatherate, the increase or the diminution of populations, the
development of particular industries in different localities, the varying rates of wages, the extent and nature of taxation, the cost
of production, the cost of transport, the statistics of railway and marine disasters, the consumption of fuel, and many matters which come within the purview of f, are of importance to the engineer.
Guided by the information given him by the labours of this section, he comes to the conclusion that a wort having a particular object
in view should or should not be undertaken. With the information in views hould or should not be undertaken. With the information
derived from the past he judges of the future; he sees what provision should be made for prospective increase of population or of
industries; he sees the chances of the commercial industries; he sees the chaneses of the commercial success of an
undertaking or of its failure, and he advises accordingly. 1 do not propose to say anything about Section H H for I have dealt witho it
as being still included within D. I trust I have now established the proposition with which I set out, viz, that not only is Section G the section of Mechanical Science, but it is emphatically the he several sciences appertaining to the other sections: an application most important in the progress of the world, and an application most mportant in the progress of the world, and an applica-
tion not to be lightly regarded, even by the stricest votaries of
pure science, for it would be in vain to hope that pure science pure science, for it would be in vain to hope that pure science
would continue to be pursued if from time to time its discoveries were not brought into practical use,

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND
OTHER DISTRICTS.有
The pig iron market displey Correspondent.)
branch that yesterday-Wednesday-in Wolverhampton, and toGood sales were made in numerous instances, and altogether this department displays more animation than for months past. As
last week, so also this, consumers were desirons of securing last week, so also this, consumers were desirous of securing forward
supplies, and some vendors of than Staffordshire, stated that they-mines, made mad in other have sold 7000 or even offers as to price and date of delivery. Sellers wished an advance upon former prices. A few Northampton and Derbyshire brands of pigs were quoted up 2s, a ton, while one or two brands were not
to be bought at any price, the makers having determined to stand off the market until a sensible advance can be established. Northampton pigs were quoted 41s. to 42s., and Derbyshires were
41. to 42s. 6. delivered to stations. Vendors would not sell 41s. to tas. $6 \mathrm{da}$. deivered to stations. Vendors would not sell
more than four months ahead, and there is every probability of further heavy sales in the ensuing few weeks.
Hematites showed more busin
tiffer. Barrow forge was quated 56 s. delivered, and Bres Blaenavon hematites 55s. More than before the Blaenavon Company is pushing its special cold-blast pigs in this district, and lots are
going off for best foundry and roll making purposes, as well as mixtures for A1 finished iron making. The prices quoted were :-
No. 1 foundry, $£ 610$ s. per ton; No. 2 , $£ 67 \mathrm{7s}$. 6 d.; No. $3, \pm 65$.;

Native pig makers are not experiencing so much briskness as remainaterises ast week. In South Statang pigig vendors, and prices
forge thin At the end of June in this district perhaps 46,211 tons of pig iro Were held in stock by the makers, and 15,937 tons in East 31st December last. In Shropshire the iron in stock at the end of
June showed a reduction of nearly 7000 tons on the June showed a reduction of nearly 7000 tons on the preceding six stock, some of the furnaces having been blown out.
The new rates for the carriage of pigs into this district from
Cleveland and South Wales, to which 1 referred last week, are not likely to prove much more of a relief to consumers than the reduction a month ago in the rates from Midiand pig-making centres
into Staffordshire. Instead of delivering, as before, to public
wharves, the railway companies have enacted strict station to
station rates, so that the consumers have to fetch their own pigs away at a cost varying according to the distance of the works from the stations of from de . to ts. per then. Such terms will certainly not content the tracers in this district.
The finished iron market wears a steadier appearance on the further on of the wages question. Buyers can now see that there is likely to be no further ease in prices, certainly this side quarter
day, and their confidence should be strengthened that there will b day, and their confidence eshould be strengthened that there will be
no more favourable opportunity than the present for buying. It is no more favourable opportunity than the present for buying.
now expected that foreign merchants' indents will increase posenp th
preanches.
The thin sheet makers continue as busy as ever. Canadian colonial, and continental requirements are all pressing, and it is
difficult to know which orders to execute first. : Severn" single are quoted to actual consumers at $£ 11$; Baldwin Wilden B., $£ 12$ less. The demand for tin-plates is fairly active, and stocks are much smaller than lately.
Plates and sheets for bridg and girder, roofing, and galvanising
purposes are going off for local consumption, the last-named in purposes are going off for local consumption, the last-named in
particular for increased quantities. An advance of 25 s . per ton in balvanised sheets established during the past fortnight in the
yydney market will be matter for much satisfaction if it should b maintained. No. 26 gauge, a good brand, is now quoted in Sydney at £21 15s. Considerable quantities of best sheets are just no being taken by the British Government for dockyard use.
Hoops and strips are in slightly better request, re irregularly employed. The New British Iron Company mills on Monday revised price lists, showing several reductions in their xtras, The prices of bars are as follows:-Best 10 s , Lion, $£ 7$ 10s, ; best Lion, $£ 9$, $£ 10$
 best Lion turning, £11; best Lion rivet, £9; best best Lion rivet
£10; best Lion chain $£ 9$; best best Lion chain $£ 10$; best greaves horseshoe, $£ 6$ 10s.; and Lion horseshoe, $£ 7$ 10s. Srisk competition between the vendors of Bessemer for the orders offering, whether in the shape of blooms and billets, thin bars,
plates, sheets, or what not. The Blaenavon Company offered tin plates, sheets, or what not. The Blaenavon Company offered tin
bars, billets, and blooms at $£ 515 \mathrm{~s}$. per ton delivered, and plating The Iron 'Trade Wages' Board assembled on Monday in the Council House, Birmingham, to show cause before Mr. Alderman Avery, the arbitrator, why, on one part, the employers should get
a reduction in wages; ;and, on the other part, why the operatives hould geta rise. The masters' claim was based upon the disadvantag of England being called upon to pay 9. less per ton in wages than
themselves. Admitting, however, that two-thirds of that difference is covered by the northern ironworkers receiving extras whicl are not paid to the ironworkers in the south, the difference in
practically 3 d . Though the southern masters are not wholly inpreparca the mainth, they in that by the general abandonment of extras of the 9 d ., nevertheless they consented to allow their claim to remain in abeyance till the 3rd of November, when the Board will reassemble to consider it and the men's strategical counter claim.
The only new feature in the strike of colliers is the fact that the trike Committee have resolved "That those colliers at of at when their of wages demand a proportice of coal." The men appear determined to carry on the strike, and are indulging in the
hope that now the cold wer hope that now the cold weather is approaching the masters
find it o their advantage to give the old rate.
The best export markets for hard wares at the present is India but New Zealand is also expressing her wants freesy. Notwith
standing the agricultural losses in New South Wales, the Sydney market we morders are coming forward. The Cape trade shows little settled revival, and this is a maring ond axle makers of wednesbury. With band wago Calcutta howeyer these Certain of the Mediterranean and other European countries are good customers just now for miscellaneous hardwares. Complaints of a scarcity of orders from North America are made by the vice A new crucible furnace, known as Hodgkin's patent, has been adopted by Messrs. Disturnal and Co., spring and axle
manufacturers, Wednesbury, for casting the axle boxes and other portions of their manufactures, and it has also been tried by a few other makers of the district. The direct object of the furnace is to make the crucibles-whether plumbago or clay-last longer, and
it has the subsidiary advantages of effecting a saving in coke shortening the length of the several heats, and somewhat improving the metal. Users have obtained as many as sixty-five heats
out of a plumbago pot, and as many as twenty-five heats out of common clay pot. The patentee is himself a Wednesbury man,
and the osele right of constructing is now in the hands of Messrs.
Disturnal

Disturnal Major

Major Tulloch, on behalf of the Local Government Board, has of the Local Board of that place to borrow $£ 5000$ for sewag
sew works, road improvements, public baths, and steam roller. After proceeding for some time, the inspector advised the Board to quickly prepare a plan of the streets, showing what had been done posed to be done with the loon which is now required. Until this application. 11 Che Lynes, of that town, to erect sewage farm buildings at a cost of
A conference of Cannock Chase coalmasters' and miners' delegates was held in Birmingham this-Thursday-afternoon, when
the latter akked for an advanoe of wages. The demand was strongly resisted, and the meeting was ultimately adjourned for
three weeks.

NOTES FROM LANCASHIRE.

Manchester.-The condition of the iron trade in this distriet is no worse. If there is any change, it may perhaps be regarded as appear not only to have touched the limit beyond which makers are not prepared to meet buyers with further concessions, but that in some cases there is disinclination to enter into further engage.
ments at the lowest course this does not represent any actually realised improvement, but it may possibly indicate the turning point that may lead to a
better trade being done. In pig iron there is no really increased weight of business coming forward, but with the present restricted position that with local and district brands, makers are in the actually compelled to press sales, and prices have got to so low a
point that they prefer to work on from hand to mouth with the point that they prefer to work, on from hand to mouth with the
few orders that buyers have to give out, rather than attempt to force a larger trade at unremunerative rates. In the manufac-
tured iron trade there is a fair weight of orders in the market to be got at low prices, and one of the largest finished-iron works in the full output of 2000 tons per week; but the turn over of business practically leaves no profit to the producer. It is, of course, quite of depression, and buyers evidently do not as yet see any probable
improvement in the immediate future; but prices seem to have
reached the lowest point that they are at all likely to touch, and
ender present conditions it would require very little to bring about under present conditions it would require very little to
an upward movement in the market. with prices unchanged. The Lanceashire pigan aron makers are still qualities, delivered equal to Manchester, and on the basis of these figures they are doing a small business. District brands are also to be got at about the same price. Some of the makers, however, are now holding out for 1 s . to 2 s . per ton above these figures, but they
are practically out of the market, and although 41s. to 42s. is now businers is practicable where more than this is asked. Outside
but bands, such as Scotch and Middlesbrough, maintain their price; o great that competition, so far as ordinary trade here is concerned, is practically out of the questi,
For hematite there is reall s any business to be done prices are no inquiry, extremely where there
low, good
oundry brands delivered here being obtainable at about 53 ge, 54s. per ton, less $2 \frac{1}{2}$ per cent.
In the manufactured iron
nquiry stirring, and there seems to be a larger demather more orward from the Colonies, especially Canada; but there is so
nuch competition in the market that orders are very lowest possible prices. For good qualities of Lancashire and e5 12s. 6d. remains the average price, withe commonchester diands to be be
got at $£ 5$ 10s., hoops at about 66 2s. 6d., local-made sheets at $\pm 72 \mathrm{~s}$. 6 d . to $£ 75 \mathrm{~s}$,, and good Staffordshire qualities at $£ 710 \mathrm{~s}$. In the wire trade there is more doing, and the works in the
Warrington district are fully employed. The recent reduction in wages has enabled manufa cturers to compete more successfully or the colonial trade, which was previously passing almost entirely
into the hands of the German makers; and although they are of orders has been got, and in special made wire frof fencing pair weightht
ones The secretary of the Steam Engine Makers' Society, in the report for the past month just issued, states that the society is not
able to show any improvement, and regretted to record that the nemployed list showed an increase over those recently issued.
The cause for this was, however, not far to trace, as the heaviest ecords were made by branches where marine engines were the
principal trade of the district. In other localities not change presented itself, as the generality of the stationary
ongine, mill wright, and tool shops were fairly employed, and locomotive builders also appeared to have an abundance
of orders. The locomotive departments of railway companies hort time, so that they could-only conclude that the orders at private firms were being made for foreign countries,
notwithstanding the lectures they sometimes received about oreign competition. They had, however, pleasure in saying
that although trade was far worse than they cared to see it, here were no disputes pending at the present time that in any
way affected their members to a serious extent. Although their unemployed list was less satisfactory this month, they were san-
guine enough to expect that there would soon be a revival in
heir favour, and it was heir favour, and it was quite possible their next report might
bear proof of this. The impression seemed to be gaining ground est, co depression had spent itself, and the excellence of the harost, coupled with other causes, might lead to a brisk trade for
ome time to come. It was reported from the Clyde that a fait mount of orders for new ships had been given outt, whilst simi-
lar rumours were circulated on the Tyne and the Wear. New orders were also being placed in the stationary engine shops, and
the opinion as to business generally was that we should have far better winter than was anticipated a few months back. In teady, the society have only about 1 It per cent. of their members hroughout the country the average is 21 the whole of the branches ordnance work, have been made by Mosesps. Hulse and Cod for Manchester, for the gun factories at Elswick. One of these, is a
pecial machine for trepanning and for boring out steel ingots o 40in. diameter, and to a length of about 2 ftt. The machine is
double-ended, and the ingots are bored through for simultaneously. The boring bars are propelled by large steel screws, and ene ingot is held and rotated by a large hollow
central head-stock, and supported by suitable stays, by which the weight bearing upon the head-stock is greatly reduced. The
machine is 70 ft. in length over all, and massive in construction weithing about 50 tons; it is fitted with powerful spur gearing,
with very great strap power, and to ensure a perfectly true axial has been absolutely necessary throughout. The second machine an exceptionally large lathe, weighing about 80 tons. This ma-
chine is 5 5ft. in length, has a spindle of the best crucible cast steel, and double slide rests; , very powerful gearing is provided to enable the machine to remove halr a ton of metal per hour with two
tools ;it has a 40in. centre, and will take in work 5 ft . Gin. dia meter. One special feature is that the guide screw is fitted with
propeller-like thrust bearings, so as to withstand an exceptional end pressure.
Preliminary surveys and estimates have been made by Mr. E.
Leader Williams, O.E., in connection with suggestive alternative schemes for the Manchester Ship Canal, the result of which is solid is found to bo cutting a canal from Garston through the
solicable owing to the great depht and expense of the cutting which would be nece
nothing definite has yet been decided upon the construction of a channel along either the southern or the
northern shore of the estuary of the Mersey will be recommended for adoption
The coal t
the pits al trade is beginning to show a little more animation and still only dull, and most of the collieries are not running more than
four days increased inquiries. are coming forward, other descriptions of fue
for iron making and steam purposes still meting with for iron making and steam purposes still meeting with only a dull
sale with supplies plentiful in the market. For round coals prices
are hardening rates, and at the pit mouth sellers have been taking under lis common round coals. Engine classes of fuel are without improve ment, and do not more than maintain about 4 s . 6 d . to to . for
burgy, 4 s . to o s . 3d. for best slack, and 3 s . 3 d . to 3 s . 6 . for common qualities at the pit mouth.
For shipment there is a good demand, and in some cases prices
have been slighthty advanoed, 7 s . 3d. to 7 s . 6 d . being now the minimum for good qualities of Lancashire steam coal delivered at the high level, Liverpool, or the Garston Docks.
There is some poossibility of a dispute with the colliers in the Ordham distriot. Notices have been given to the men to terminate
present contracts with the view of a reduction in wages, the precis present contracts with the view of a reduction in wages, the precise
amount of which has not yet been determined upon, and the men
express a strong determination to express a a
attempted.
The Preas
The Preston Town Council, after a long and excited discussion tender of Mr. Walker, of Great George-street, Westminster
to meting her for the construetion of dook works at a cost of $£ 439,3599$, and for
the e iversion and deepening of one portion of the river at a cost of
s17 navigation.
Barrove.-There is a rather better tone in the hematite pig iron
market this week, and the number of orders which have lately
been booked are in excess of the business which has fallen into the hands of makers for some weeks past. An improved inquiry for iron has set in, not only on home, but on continental account, and
it is week or two there will be a fair business doing on shipping account, as the season is not far from closing. But it will not be until next
spring that any practical change for the better can be expected. spring that any practical change for the better can be expected.
In the meantime, however, there seems reason to believe that makers will be able to maintain the present output of iron. makers will be able to maintain the present output of iron.
Stocks, however, remain very large, and it is noticeable
that while they are not increasing, the deliveries of iron taking place at present are not reducing stocks, although it has been expected that this would be the case. Steel makers are indifier-
ently employed in all departments. Shipbuilders are expecting
one
one or two good orders, for which the arran
fully completed.
The Dalton Local Board have determined to light the streets of Askam with electricity. Askam, it will be remembered, is the locale of the works of the Furness Iron and Steel Company,
Very large banks of iron ore have accumulated at the ir.
ery large banks of iron ore have accumulated at the iron mines
the distriet. The Furness Railway Company has adopted the vacuum brake on some of its express trains.

THE NORTH OF ENGLAND,

(Frow our Correspondent.)

A QUIET tone and sparse attendance were the most noticeable Ceatures of the iron market held at Middlesbrough on Tuesday last
Makers' 'price for No. 3 is still nominally 3 s.s. per ton f.o.b., but there are scarcely any sales at this or any other prise. Merchants
offer at 36 s . 3 Cd Forge iron may be had at 34 ss , and sales have
even been made at as low a figure as 33s. 3 . d . The position, as far even been made at as low a figure as 3 s. 9 d . The position, as far
as the smelters combination goes, is one of untable equilibrium
and no one would be surprised to see it collapse any day. Mean while there is really very little being dones and any haw all. Hee men
ane complete mystery.
The manufactured iron trade remains steady and without any and general purposes, £5 2 2s. 6 d . There is is more demand for the
latter than for the former purpose. What little shipbuilding is being done is mainly at foreign shipyerds, where elabour is cheaper
than in England. Test iron is more sought after than ordinary than in England. Test iron is more sought after than ordinary
quality, and when sold is usually subjected to a very rigid inspec tion. Steel makers
them unremunerative
At the ensuing meeting of the Iron and Steel Institute at
Chester, there wil advocates of the basic and those of the Siemens process. The
gauntlet will be trown down by Mr. Arthur Cooper, of the North-
Eastern Steel Works Middlesbrough Eastern Steel Works, Middlesbrough
A meeting was held on the
3oth
A meeting was held on the 30th ult., at Scarborough, of the
shareholders of the Scarborough and Whitby Railway Company,
whose line is now under construction. The directors stated that an agreement had been made with the North-Eastern Rail way Company to work the new line for 50 per cent. of the
gross reeeipts. This wonld appear to be a very fair and reasonable gross receipts. This wonld appear to be a very fair and reasonable
bargain, and in acoordance with the interests of both parties. It
is quite out of the question to suppose that a short railway,
 The exports of pigy and mane powawerful neighighour and rand riva. steel during the
month of August have now been published. Of pig iron 71.815 month of August have now been published. Of pig iron 71, 815
tons were sent away during the month, and of manufactured iron nd steel, 31,186 tons ; total, 103,001 tons. The pig iron exports
were just two toss less than thoose of the previous snonth. Comparing the first eight months of 1884 with the same period of 1883 we have 607,648 in the first case, and 623,917 in the second.
During the month of August, 274,200 tons have been dredge from the bottom of the river Tees, at a cost of $£ 4005$. The depth
of the river is steandily increasing, and it may now be considered a
 South Gare bianeakwater is is nearly even at low water. The weted, and in in about
a month will be entirely so. The Tees Conservacy a month will be entirely so. The Tees Conservancy Com-
missioners have been discussing what kind of light should
They first proposed They first proposed a red and white
flashing light, from but the Elder Brethren of Trinity House refused their sanction. They say that experience has proved that
a red light has but little penetrating power, and they recommend a flashing light of three seconds' duration, repeated every ten
seconds. This suggestion was finally adopted, and the requisite two months' notice to mariners is about to be given.
At the Gateshead locomotive building and repairing shops posted up a short time since to the effect that from the 1st of Sep. pomber sixxy working hours per week would be expected, instead of
the fifty-four hours which was agreed to several years age, after the fifty-four hours which was agreed to several years ago, after
the prolonged agitation known as the "nine hours' movement." the prolonged agitation known as the "nine hours" movement." an attack upon the much cherished system they supposed was now permanently established. Consequently, they met in conclave at
various centres throughout the locality, and resolutions were passed to resist to the utmost the threatened innovation. In co sequence of this opposition, the notice has been temporarily
drawn, but what the final outcome will be is not yet known. The secretary of the Iron Manufacturers' Association has notice to the secretary of the Ironworkers' Union that from and after September 27 th next ensuing the employers will require relief
to the extent of a general reduction of ironworkers' wages of 5 per cent. on standard rates. Of this 5 per cent., one-half beame due
on the 1st of August, according to Mr. Wa terhouse's bi-monthly on the 1st of August, according to Mr. Wa aelling pricest to be $1 / 6$ above shillings for pounds. The otter half
of the proposed reduction is also claimed, as it certainly will become due under the next bi-monthly ascertainment. The 5 per
cent. which has usually also been claimed in consideration of the absence of a time bargain, has been temporarily foregone by the
employers on the present occasion, in view of the low level which wages rates have reached. Immediately on receiving the above nor
for a 5 per cent. advance. He
He gives no reason for his claim, and it is generally regarded only as a counterblast, in the hope that if the matter comes to a reference, the arbitrator may be induced to
split the differencee and leave the rates unaltered. The meeting of
the Standing Committee will be held on inst. to
At six of the large reversing plate mills, belonging to members of
the Tron Manufacturers' Association, notice was given to the rollers on Saturday last of a considerable reduction of wages rates, which nevertheless will leave them from 10s. to 20 s. per day clear. A
fortnight has been given to each roller for consideration. and or leave his employment. In case, as is expected, the middle course be generally selected, then if the the standing Committee fails
to come to to come to a decision, the new rates will be deciced by Mr. David
Dale, the standing referee. Should the men proved disloyia to the board on this question, it is thought the Empl.
now strong enough to enforce the lower rates. now strong enough to enforce the lower rates.
The county of Durham appears to have taken the lead of all
other counties in the yield of lead during 1883. Of dressed lead ore it produced 7696 tons, of lead in the ore, 5797 tons, of silver
in the ore, 40,360 oz, whilst $£ 62839$ was the total value of ore at in the ore, 40,360 oz, whilst the mines oclletively. The first item includes the following
figures, viz,:-Teesdale Mines, worked by the London Lead Com-
pany, 336 tons ; Green Hurth, 1049 tons; and W. B. Beaumont's produced 1879 tons, and the Greenside Mines-Helvelyn-1100
tons of dressed lead ore.

THE SHEFFIELD DISTRICT.

From our own Corre
Dr. Webster, the United States Consul at Sheffield, has recently forwarded a report to the State Department at Washing.
ton, which, on its reproduction in full in this country, will excite on, which, on its reproduction in funl in this country, will excite
general interest among steel manufacturers and users.
Dr as "cest" steel without any means of distinguishing it from crucible cast steel. "It is an open secret," he sayss "that thou-
sands of tons of Bessemer are sold annually as 'cast" steel for the sands of tons of Bessemer are sold annualy yas cast steel for the
home or foreign markets." "One of Sheffild's best makers, whose steel bears a good name in the United States, continue careful henceforth to label all his steel so as to distinguish between Bessemer cast steel and crucible cast, he applying the word
cast to both of them. This indicates how commonly Bessemer ha come to be called cast steel. It is, in a sense, cast steel, since it is run into moulds; and yet, as is well-known, the term as thus
applied is deceptive, cast steel being understood to be crucible
 range of pront secured
Bessemer at a low price, and sesel the sha same material either without
specific description or as cast steel at a very high price. He instances a case where a steel manufacturer boasted that he bough facturers to say in reply to this charge? It cannot refer to several leading firms at all, for they have no Bessemer plant on their pre-
lises. To give names would be invidious, but in the Sheffield mises. To give names would be invidious, bue sione shemiel
district, apart from the firms to which I allude scorning to deceiv heir customers by palming off Bessemer as crucible cast steel, th riginal method of making crucible steel, and therefore remain untouched by the allegations in Dr. Webster's report.
Messrs. Wm. Jessop and Sons, Brightside Steel Works, have
been awarded the diploma of honour at the International Exhibibeen awarded the neld at the Crystal Palace, Iondon, for their
tion now beld xhibit of steel castings for marine purposes. This is a speciality nd the success of the firm is most gratifying. A diploma honour is the highest possible award.
Some important evidence was given at the adjourned inquiry
nto the deaths of the four persons killed by the explosion of boiler at Messss. Wm. Cooke and Co.'s Thinsley Steel. Iron, and
Wire Works, near Sheffield. Mr. R. H. Longridge, managing director of the Engine, Boiler, and Employers' Liability Insurance Company, Manchester, made an examination of the boiler at the
request of the coroner. Mr. Longridge drew up a report, in whick he minutely explained the character and position of the boiler that the explosion was caused by corrosion of the plates in the outward part of the shell, in consequence of leakage at the seams. The plates being thus so much reduced in thickness, rendered the boiler quite unit for the pressure at which it usually worked.
What the actual pressure was at the time of the explosion was uncertain, there being no pressure gauge attached to the boiler
Mr. John Poole, the head repairer at Messrs. Cooke's Mr. John Poole, the head repairer at Messrs. Cooke's, said that he the cause of the explosion, the worthy old gentleman gravely stated that '" was because the boiler had given way "at the weakest Burt, M.P., are at the Wombwell Miners' Union and Mr. Thomas with the conclusions arrived at after the inquiry into the causes of the explosion at Wharncliffe Carlton Colliery, and they drew up a report embodying serious allegations with regard to the manage-
ment and mode of procedure at the inguest." This report wa forwarded to the Home-office, and as no notice was taken of it, they tammuncated with Mr. Burt, but had waited in vain for him not,
take action. The committee express regret that Mr. Burt did not, from his place in the House of Commons, question the Home secreary upon the matter. Mr. Surt has reppied, stating that he
had done what he could in the matter. The secretary to the Union has replied, saying that they think there was a dereliction of duty such a question as they had raised upon the attention of the Home reasons for not doing so. To this letter Mr. Burt has not replied. The first Thursday in September this year sees no Cutlers Feast. The new master, Mr. J. E. Bingham, is in America, and
will not return till October. This will throw the feast fully a month later than usual. On the usual day, however-Thursday,
the 4th September-the company will meet in their accustomed manner and go through all the formalities with the exception of swearing in the new master, which will be postponed till his
return. It will be like the play of "Hamlet" with the prince left out, but it is unavoidable

NOTES FROM SCOTLAND.

(From our

Iv the pig iron market business has again been quiet. Warrants have fuctuated very hittle, , but uppon the whole are weaker, the ments of scotch pigs are ssans 9320 in the week, and 15,683
week having been 9599 tons against in the corresponding week of 1883. For the better qualities of
makers 'iron, there is a good demand both for home use and export, but there is rather less inquiry for g.m.b., the quotations
of which are about $6 d$. lower. Since last report a furnace has been damped down at Ardeer Ironworks, leaving ninety-four in blast compared with 114 at this date last year. The stock of pig
iron in Messrs. Connal and Co.'s stores is reduced by about 120 tons. The past week's imports of Cleveland pig iron were 4150
tons, and the aggregate to date are 166,255 , being a total decrease of 8018 tons as contrasted with those of 1883 . Business was done in the warrant market on Friday at 41s. 4d. to 41s. 312d. and 41s. 5jd. one month. On Monday, transactions one month. At Tuesday's market the equotations were 41s. 4d d.
to 41s. 5d. and 41s. 4dd. cash. Business was done on Wednesday at 41 s . 5 d . to 41s. 7ुd. cash, while to-day-Thursday - transactions
took placeat 41s. 8d. to 41s. 5 td. cash. There is little change in the pigiron quotations, which are as
follows:-Gartsherrie, fo.o.b. at Glasgow, per ton, No. 1 , 53 s.;

 and 47s. 6d.; Kinneil, at Bo'ness, 44s. Ardrossan, 49s. 6d. and 43s.; Eglinton, 44s. and 40s, 9d.; Dalmel lington, 478. and 43s.
In the foundries an
In the foundries and general engineering works there is a large amount of work being done; but the past week's exports of iron
and steel goods were smaller than usual, and in value to about
and and steel. At some of the malleable works in Lanarkshire there is
E14, ample employment upon contracts recently obtained, but other
are slack, and the prices are for all articles at about the lowest. The operative ironmoulders of the Mushet Ironworks at Dal keith and Granton have, after a protracted strike, returned
work at a reduction of 5 per cent. on their former rates of pay.

The coal trade has been somewhat quieter in certain districts,
and merchants have accepted a few pence less money per ton for good orders. But the shipments of the past week are, as a whole not unsatisfactory. At Glasgow 24,181 tons were shipped, 1845 at
Greenock, 1920 at Irvine, 843 at Tron, 9200 at A Ar, 541 at
Clt for shipment in Fifeshire is reported to have been good in the course of August, with the exports over the average. Prices f.o.b at Burntisland range from 6 s .9 d . to 7 s . 3d. a ton.
Replying to a demand from the miners for an advance of wages, the coalmasters of Larkhall and Cambuslang state that the price
of coals, which has not been so low for about thirty years, will not

The first general meeting of the Boson Oil Company has bee held in Edinburgh. Mr. W. Holmes, who presided, intimated that good progress had been made with the erection of the works, 00 tons of crude oil per day.
During the past month twenty-one vessels, with an aggregate against twenty-five vessels of 34,003 tons in the same month of 1883. In the eight months 167 vessels, of an aggregate tonnage of 189,865 , were put in the water, as compared with 191 vessels and
259,820 tons in the corresponding period of last year. The new 259,820 tons in the corresponding period the places of the vessels launched, and the prospects of the trade are not encouraging.

WALES AND ADJOINING COUNTIES.
I HAD a glance at the iron and steel works last week from
Owlais to Ebbw Vale, and it was not an encouraging one. Trade Dowlais a unmistakeably flat, and if the tin works were not brisk, it would be much worse. As it is, there is a moderately good make going
on of steel bar, which sells at $\mathrm{E5} 5 \mathrm{12s}$. 6 d , and so leaves littie, , if ny, margin to the maker. Yet it helps to keep the works going, and is thus of benefit. As for steel rails, the make is very sparse,
and as heavy contracts are unusual for the autumnal and winter Managers of steel works, the property of limited companies, are placed in awkward positions. In the transformation of obsolete plant, so as to keep pace with the age, large disbursements are
mperative; and when no trade is to be done, and no returns are fraid that the bed of most managers at present is not one of roses. The continuance of Mr. Evans as manager of Rhymney Steel Works is in jeopardy, if not by this time ended. Rumour assigns
it to a disagreement between the chairman and himself; but from Whatever cause, the loss to Rhymney will be a calamitous one. the opinion was strongly expressed that they had never seen a more perfect plant; everything was in finest order, and, given a
flow of trade has given the fullest measure of time and ability to the work, and the apshot is that Rhymey will not reap the results as it
should, and some other works will derive the benefit of his skill ago to go to Barrow, but elected to remain at Rhymney. " He had advised large outlays, and would not leave." I should like,
in the interests of shareholders, a special meeting called, and a It may suit the inter made.
It may suit the interests of men who are embarking in fresh enterprise, and require public conifience and capita, to buoy up
the community with the impression that the coal trade is as buoyant as ever. A visit to Cardiff Docks and the ootices would
tell a different tale. The coal trade is not brisk, and the number of offices elosing at early hours shows this. The principal collieriis, those holding Peninsular and Oriental contracts, and others, ket
up an average amount of activity, but, generally speaking, here is rigorous kind which once characterised it. One hears of no peremptory requests, of no demurrage, and congestion is for the time out of use.
for many of the foreign ports, Malta and elsewhere.
ports, Cardes Swansea, and Newnt Figures that the last has shown the greatest liveliness of late.
 Cardiff shows a deorease of 25,000 tons per week, and Swanse Small steam does
beginning to does not maintain its firmness, and stocks I see ar advance in quantity, if not in price. At present No. 2 sells for 8s. 6 d. , and No. 3 for 9 s . 3 d . Mr . Evans, who is now working Tyla Cock, has won the Aberghorki vein, at that place, and largely increased the workable area, This ven is one of the best house
coals in the valley. Harris's Deep Navigation is doing better, and tons weekly are turned out, This, however, i not in proportion to the area and appliances, not to mention the
capital of half a million sunk in the olliery. The capacity of the
place, had the roof been good, would be nearer 12,000 tons per The dispute at Mardy has been amicably settled; that at Gelli
and Tynebdw continues though Mr.
 Tin
Tin-plates, best charcoal, are quoted at 19s. 3d.; ordinary coke The Ystalyfera Ironworks have been started by a new company sea men; capital, $£ 100,000$. Hy and the will start well.
The patent fuel trade is active; iron ore a trifle better.
The mile "of the Great Western system continues on to stop the opening of the Newport, Caerphilly, and Treforest line. Sir George
Elliott should have arranged this earlier

South Kavsington Museva.-Visitors during the week ending Aug. 30th, 1884:-On Monday, Tuesday, and Saturday, free, from
10 a.m. to 10 p.m., Museum, 13,439; mercantile marine, Indian section, and other collections, 5111 . On Wednesday, Thursday and Fradiay, admission 6 ., from 10 a.m. to 6 p.m., Museum, 1479 ;
mercantile marine. Indian section, and other collections, 310 . Total, 20,339. Average of corresponding week in former years,
20,868 . Total from the opening of the Museum, $23,320,336$. The Accident on the Highgate Cable Tramway.-On
Monday General Hutchinson, on behalf of the Board of Trade, held an inquiry into the cause of the accident which happened o the 13 ult ult. Josiah Barker, driver, said: On the day of the
accident his car worked well enough up to the last journey. On reaching the depôt, he stopped as usual to drop the cable, and again, but he was unable to take up the cable again. He was
under the impression that the slipper brake was attached all right, but he discovered afterwards that it wase was attached all right, the speed of the car and dummy increasing, he told the conductor to go into the car and apply the slipper brake. The conductor in
trying to do so fell, and he then sent a workman who was in the dummy to do it, but he in getting off fell also. Witness kept to his post, applying the wheel and foot brakes, until the smash,
when he was thrown off. He had once previously missed the cable, and came down all right, but he had the use of the slipper brakes. All the dummies are now to be fitted with the slipper
brake. The Board of Trade report has yet to appear

THE PATENT JOURNAL. condensed from the Jourral of the Commissioners

 ** 11 has come to our $\overline{\text { ontice }}$ Hat some applicants of thePatent-oftice Sales Department, for Patent Specifcations
 giving the number of the paje of THB Evoliser at which
the Specitication they require is referred to, instead of
giter
 refer, on the paopes. in plpaceof turning to to th
finding the numbers of the Specification.

Applications for Letters Patent.

 namoen and atentarsessprinted in italices.

26th August, 1884.

11,619, Selv-regulating Frep for Mulis, E. S. Beaven 11, (20. Whatrer CRANEs, Wio., W. H. Baracelough, Bir

11,624. ScRew SpanNers and Wrenoriss, E. Barnes,

Birmingham.
H1, 62. Whvo, W. Treland, J. E. Thurman, and P.
11, B33. STrichan and Hor-Water Boilers, G. H. Lloyd,
Birmingham.
ind

 11,636, STr.

 11, Honson, London.
InJEbrors,
Ind
Aude
 Nos.

 11,852. STuDs, C. D. Abel-(W. Bourke, United States,
and R. A. Kipling, Paris)
 11,654. Orasss, T. Casson, London.
11,656. Bontivo with Suluhtrs, A. Mitecherlich, United states.) , H. Revd.-(IV. W. Wilcox,

 11,662. Frxors, B. Scarles, London.
11, ,63. RIVETried Jonves , J. A. Rowe, London.
hi,6e4. Workiso CRANEs, deo., s. Butler. London. 11,G65. STExch Traps, J. Atterton, London.

 27th August, 1884.
 J.C. Stafford and G. Heap, M Mnchester. Looms, 11,676. Prop Pusion of Ships or Vessels, A . MacLaine,
Belfast. 1, 1 ,67. Picerrac the Exps of Sile, E. Rushton and D.
 11,679. Meghanically Coolixa Atr, J. J. Coleman,
 nubilin. Fkemiva Trovan for Poultry, E. R. Baller,
Birchfield.

 11,985. Cartridoss, H. S. Maxim, London.- ${ }^{266 \text { th May, }}$

 1,601. ADNUSTINa CANDLES in CANDLEsgickes, E. C. | li,692. Chasfering, dec., Barrel Stavis, F. Myers |
| :---: |
| London. |

 SURPA crs, J. N. Peake, London.
11,704. Raluwi P Ponsts, W. A. Barlow.-(L. Lutz, 1,7op. ALLOYS of Copper and Zrivc, J. W. Woote, ${ }_{11}$

and Ache stocker, London. and A. R. stocker, London.

28th August, 1884.
11,716. Fire Hose, F. Reddaway, Manchoster.

 11,722. Woodworking MAcoinery, \&c., J. Hamilton,

Jackson, Liver

11,730. Shor Guvs, W. Ford, London.
11,731. Pressina Rolikrs, A. F. Link.-(P. Rochatte
 11,733. Laytra Underaround Condoctino Wirrs, B 11,734. Prevyexivico Colusioioss at SEA, C. C. P. Fitz11,735. Conreouvxp for Extivauishiva Fire, H. Gard-
 son. Doptford. (1,73. Danvivalo 11,738. STosaase BATMRHEs, H. Edmunds, jun.,
London.
 M. do Cortenberg, London.
, J. S. Weingott,
 11,743. METNL TVBEs, A. Latch, London. 11 .

 Bi,747. ELzecrrio
Baker, London.

29th Aujust, 1884.

and G. Elliott, London.
son, London.
1, 7 fi. Card
for Mountina Traxsparescus, E. E. Kmerr, London.
11,762 , Viocreps, O . Ber, London.

 Hanover.)
11,7\%. Puxchiso the Eyes in Proks, de., J. B. Jack-
 11, Tind. Pungryynsa Booarbomate of Sodd, H. Gaskell,

August, 1884. Intri, STras Trars, J. French, J. Hayes, and T. H.
Hodge, London.

30th August, 1884.

1,781. Fluvs, \&ec., of Stras Boilers, S. Wobster,
 Manchester.
$11,784$.
PARCEL-BoX, J. Malcolm and J. Simpson,
and

 bourne, Manchestor. 11,792. Michine for Mintixa Clay, J. H. Key, Newton

11,To6. STone-breaking de., Machinery, G. Lowty,
11,797. Burnerers of Table, de., Lamps, w. B. Woolley, London.
11,798. CHise, J. Allen, Leeds.
11,

11, Poo. Pris. Posphates, P. M. Justice.-(S. G. Thoma
Paris.
11,800. Drivisa Sprisning Mules, L, and G. Baxter,
L. Rushworth, and H . Olough, London in, so7. PAPFER Cor T TBEs, A. Knox, London.

 Londion.
11,811. Ratuwavs, R. G. and F. A. Fairlee, and R. H
Hepburn London
 11, 813. Matcrenill for Stamping PADs, F. H. Markgrat Londion. Livatory Apparatus for Schoors, \&c., H. B.
Bitson, London

 11, (N. Drucbert, Fourmies).

 11, G. D. Peters, London. Ass Requators, dc., J. and w. Goodson
 1 st September, 1884
 E. Fleming, Barnaley. ${ }_{11}^{11,827 \text {. TREATINO ORES }}$ for Sulphide of Antimony, Simponand E. W. Parnenl, Liverpool.
I1. 828 . TREATINO ORES for SULPPDE of
1.828. Parnell and Jisi simpson, Liverpoool.

11,829. . LLidina SEAx for Boats, J. C. Green, Ports.

 11,8s6. SEat for Velocipedes, w. Barnwell, Birming.

 M Gluckstein, London,
11,840. SolimivyINo Unisk, w.' w. Daw, Chadwell Heath.
11, S41. Convevancer of Telegraphic Wirks, H. H.
Martyn London Martyn, London.
$11,842$. shimers, W. P. O'Neill, London.
 11,84. Piprs and Cloas-Holders, de., S. 8. Allin,
London.
lid

Losdon Skownary Battiries, E. G. Dornbusch,
 London.
11,855. Drooration of GLass, A. Lauronce, London.
11, PLovors, H. J. Haddan.-(A. Cosson, Ville

 -(N. Vogley, Lyons.

SELEOTED AMERIOAN PATENTS 302,557. Armature Wixdino por Dymaso-misorric $\frac{\text { Machines, Water K. Freeman, Brooklyn, N.Y.- }}{\text { Filed Norember 15th, }}$ Claim.-(1) In a dynamo-electric machnne or motor,
an armature coil or bobbin wound in the manne done side of the a tar division, while the portions of sidd coil upon the
divion
opposite side of the armature shall be distributed on

302557

armature wound with a aet of coils or bobbins dispose
in the manner described ww
 same armature divion, whie the remaining hall that
lies upon the opposito side of the armature is latd in
two two equal portions in division
diametrically-opposito division.
302,561. Lioudd Merre, Roger W. Wraves, Buffalo
N.Y.-Filed September 280, 1883 .
Claim. - The combination, with a measuring
cylinder A, piston H, and piston-rod a
 cylinder, intermodiate chamber B, communteatio
with the cylinder and said valve chambers, ports G G

angles to the piston-rod, valves D D1, secured to said
valve-rod and mechanism whereby the valve-rod is actuated, from the piston-rod, substantially as set
forth
pisto

 angleat to the pistonn, rod, and extending through said
anlve chambers, and provided with valves D D1, of the Valve chambers, and providod with valves DDI, of the
rock arm Iand silde M, and meehanism whereby an
and rock arm 1 and silde M, and mechanism Whereby an
intermittent rocipoating movement imparted to
the silde from the the piston-rod, substantially

the piston-rod h, having stops $p p 1$, and the valve-rod
 projections k ki, and shaft i, substantially as se
forth. Tho combination, with a measuring-cylinder piston, and piston-rod, an inlet and an outlet chamber arranged at the same end of the cylinder, an inter
mediate chamber communicating with said inlet and nediate chamber communicating with said inlet an outlet chambers, a valve-rod arranged at right angles
to said piston-rod, and extending throug said inlet
and outlet chambers, and provided with valves D D 1 and outlet chambers, and provided with valves D D1,
of a slido M, a rock arm 1, mechanism whereby the slide is set in motion from the piston-rod, and
mechanism whereby the movement of the slide i mechamism
completed
described.
302,703. Addustina Devioe por Excentrics, Alber
T. Booth, Meriden, Conn.-Filed April 20 th, 1883 .
 screw-threaded spindle d, a nut q, with connected
50870

described. (2) The combination, with an excentric
strap bearing a threaded clamping spindle, strap bearing a threaded clamping spindle, of mir
excentric having radial slots supporting bearers for excentric having radial slots supporting bearers for
the trunnions of a nut borne on the threaded shaft of
the clamping spindle, all substantially as described. CONTENTS.

Tee Enginere, September 5th, 1884. pao Application of the Theorem of Three Moments
To the Caloulation of Stresses in Continuous

 An Adventurous railway Journey
Conoress of German arohitects and Enainemris 17 Electric Lightina in the Health Exhibition.
No. III. (llustrated.) Visits in the Provinges-The Dïrlinotön Föo....
(Illustrated.)... Letiers to the Editor-
STRESS DIAGRAMS
STRDR
Hydraullo lifts
The Clayton Brake
Äaü

Rallway Maters ..
Notes and Memoranda
Miscrllanea,
Leadina Articles

Sir William Thomsons Address $\quad \because$
The Indusries of South Wales
Liomtning and hightning Protectors
The Vacuom brake
Wages in the Iron Trad
Minisg Acoidents in Oleveliand
Books Recerved
Sters towards a Kinetic Tüneory or Matter
Locomotive Rusning Shed, Cardify, (illus.)

Notes frox LaNoashire
Notes from Shepitet
Nots frox ther Nort or Enaland
Notrs from Scotiand
Notes from Wales and adjoninina Coütive :
Abstracts of Patent Americañ spegifications, 190
Stern-wheol Steamer for the Nile
Naval En ineer Ampointmen

IT is expected that the electrio light in the
tower at Hallett's Point, Hell Gate, will be in operation before the close of the present
month.

