HURDY-GURDY WHEELS

The relative merits of impulse, and reaction, and gravity water-wheels have been frequently discussed, with the general result that the impulse wheel is condemned by mole whe case of the mpulse wheel, motion is communicated by a jet of water trikine is a true reaction whee, Whitelaw and stirrit arbine is a true reaction wheel; the overshot and breas ystems of construction represent the gravity wheel; whil Ronke Rare pt it ald $4 \frac{1}{2}$ ft. it should not be used, although it is the best type for onler fails. 1 t must not be forgotten that the experience neen limited They have had to deal only with sect ha ively small heads and thare to deal only with compara inciy small heads, and there is some reason to think tha For headsong may not apply in practice to very great falls, or water-pressure engines have hitherto been employed, which are necessarily expensive, especially in the matter of

foundations and maintenance. The comparatively rude miners of California have, it would seem, almost unwittingly hit upon the construction of a wheel which we are told on ood authority gives as high a percentage of useful effect as the best and most expensive turbine. The efficiency, indeed under some circumstances has risen to 82 per cent., and this, be it remembered, has been obtained with mechanism of extreme simplicity, small cost, and exerting very considerable power. The motor to which we allude is known

The Knight wheel is made of cast iron with curved buckets set close together. The nozzle is a narrow silt arved to fit the outer edge of the wheel, the idea being to make the jet strike the buckets at as small a distance a is possible. With muddy water the wear on this form a et of becomes objectionable, according to Mr. Smith, probably show better results. At the Providence gold quartz mills, near Nevada City, a Knight wheel did actual work amounting to about 54 per cent. of the power of the water, in addition to overcoming friction of machinery, Mr. Browne, a Professor of Engineering in the University of California, found, in experimenting with curved buckets-section arc of circle-a maximum efficiency on the wheel shaft of $65 \frac{6}{10}$ per cent., with a periphery speed of about 44 per cent. of theoretical velocity of water This was with a $\frac{3}{8} \mathrm{in}$. tapered nozzle, and a head of 50.4 fft . The Collins wheel, when placed at the Providence Mil as a substitute for the Knight wheel, did the same work with $\frac{94}{14}$ ths the amount of water. This mill has forty stamps, each weighing 750 lb ., drop 8 in., ninety-two drop per minute, aggregate work of lifting the stamps $1,840,000$ minute foot-pounds. There are also one rock breake and sixteen Frue vanners-concentrators-requiring fully 8 -horse power more, making in all say $2,104,000$ minute foot-pounds-64-horse power. This work is done by Collins wheel 6 ft . in diameter, running 250 turns minute ; the water is conducted to it tirough 1856π. wrought iron pipe- 1156 ft . being 222 in . and 700 ft . 15 in . in diameter-and discharged under a head of 389 ft . through a $1 \frac{3}{4} \mathrm{in}$. nozzle. The water used amounts to very nearl 136 cubic feet per minute. Assuming 2 ft . head as lost by friction in pipe, $387 \times 136 \times 62 \cdot 4=3,284,237$ foot-pound

per minute ; $2,104,000 \div 3,284,237=64$ per cent. as use ful effect in moving machinery
In the Pelton wheel the jet is split as it strikes the bifurcation of the bucket. The line of the jet should be tangential to the wheel. Where much power is needed two discharge pipes can be used, and any desired form of nozzle applied. Mr. Browne found with one of these wheels, which was not built on the most approved model the following results: Wheel, $15 \frac{1}{2} \mathrm{in}$. in diameter; nozzle, ths in. tapered; head, 50.2 ft .; maximum efficiency on wheel shaft, $82 \frac{1}{2}$ per cent.; best speed of bucket, very near one-half the velocity of the jet (substantially $\left.\frac{1}{2}(2 g h)\right)$ t With the same nozzle, and a head of only 8 ft , he obtained

as the "hurdy-gurdy wheel," and we are indebted for all the information we possess concerning it to a very able the information we possess concerning it to a very able paper by Mr. Hamilton Smith, jun., read befo

We need scarcely tell our readers that in California We need scarcely tell our readers that in California gigantic mining operations have been carried out by the
aid of water. The sides of ravines and gorges, wide aid of water. The sides of ravines and gorges, wide
stretches of level land, rivers and channels, are traversed and crossed by flumes and pipes leading the water from the course of a mountain torrent to the locality where it is wanted. It is here used in varions ways. A favourite plan is to fit to the end of the pipe a jet like that at the end of a fireman's hose but much larger. This is provided with a ball-and-socket joint, and the tremendous stream 4 in . to 8 in . in diameter, propelled sometimes with a head as great is 600 ft ., thunders against the side of a cliff of ore and disintegrates and brings down the mass in a suitable condition for further operation. Mr. Smith's paper describes a different system of working. He dealt with tunnels of considerable dimensions, such as the Bloomfield Tunnel, 8000 ft . long; pumping machinery at the Idaho Gold Quartz Mine, and Texas Creek pipe and aqueduct. The water is in all these cases led through wrought iron pipes of comparatively thin material, made up in 20 ft . lengths, slightly tapered, and secured together by forcing with screw jacks. Leaks are made good with small pine wedges. Thus, for example, one pipe described by Mr. Smith is 8764 ft . long and 22 in . in diameter. At present, however, we are not dealing with pipes but with wheels, and to these last we must confine our attention
Figs. 1, 2, and 3 illustrate respectively the Knight, Collins, and Pelton wheels. Fig. 4 is a section through one of the buckets of the Pelton wheel, which is said to be the most effective yet tried.
a useful effect of 73 per cent.; with a $\frac{1}{3}$ in. nozzle, the best result was $75^{\circ} 6$ per cent.; with a $\frac{7}{10} \mathrm{in}$. nozzle, best result was 82.6 per cent. A number of tests of various hurdy gurdies was made at Grass Valley some months since, unde charge of disinterested parties. These experiments, accord ing to Mr. Smith, appear to have been properly made with a Prony brake and weir measurement of water, and
showed for the Pelton wheel while doing $107 \cdot 4$ showed for the Pelton wheel, while doing $107 \cdot 4$-horse power of work, under a head of 386 ft ., the wonderfully high efficiency of 87.3 per cent. The other competing wheels showed a much lower rate of duty. These experiments were made with a Pelton wheel 6ft. in diameter nozzle, 1.89 in . in diameter; supply main, 6900 ft . long, 22 in , in diameter, with a head of $386 \frac{1}{2} \mathrm{ft}$, above nozzle The water used was measured over an iron weir, $\frac{1}{8}$ in, thick, 3.042 ft . long without end contractions. The depth as measured by a Boyden hook gauge, reading to "00lin., was $\cdot 4146 \mathrm{ft}$. The discharge by formula $\mathrm{Q}=3.31 l h+{ }^{\circ} 007 l$, Would be 2.709 cubic feet per second. With water section of $\times 3.04 \times 1.5$, velocity of approach was ${ }^{\circ} 6 \mathrm{ft}$; with $h^{a}=\frac{V^{2}}{2 q}$ head due to this velocity would be 0056 ; to be safe, ${ }^{0} 0056 \times 2={ }^{\circ} 0112=h^{n}=$ additional head due to velocity of approach. Fteley calls in general $h^{a}=1.5 \frac{\mathrm{~V}}{2 g}$ This makes a total head of $\cdot 4146+\cdot 0112=4258$; then with same formula as before, $Q=2.819$ cubic feet per second. The head lost by friction in pipe, with formula $\mathrm{V}=50\left(\frac{d h f}{l}\right)^{\frac{1}{2}}$ would be $1 \cdot 8=h f^{\prime}$, reducing total head of 3865 to effective head of $384 \% \mathrm{ft}$. The Bourdon gauge used showed a pressure of from 165 lb . to 162 lb ., indicating a head of say 380 ft . The work done was measured by a Prony brake, bearing vertically down upon a plat-
form scale, and which showed a weight of 200 lo . upon the scale beam when the brake gear was suspended by a cord from the point a immediately above the wheel shaft; this malle a constant minus correction of 200 lb . cold water, did not heat much, and ran without much jumping. There were thirteen tests made, showing pretty even results. The first four were as follows:-

	$\begin{array}{\|c} \text { Weight } \\ \text { shown by } \\ \text { scale. } \end{array}$	B. Net weight (-200 lb .)	c. Revolutions of wheel-shaft per minute.	BC.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 665 \\ & 665 \\ & 660 \\ & 660 \end{aligned}$	$\begin{aligned} & 465 \\ & 465 \\ & 460 \\ & 460 \end{aligned}$	$\begin{aligned} & 254 \frac{1}{2} \\ & 255 \\ & 256 \\ & 256{ }_{2}^{2} \\ & \hline \end{aligned}$	118,342 118,575 117,760 117,990
		Totals	1,022	472,667
		Means	$255 \frac{1}{2}$	118,167

The arm of the brake was $4^{.775 \mathrm{ft} \text {. from centre of the }}$ wheel-shaft to the point resting on the scale, and hence described a circle with a circumference of 30 ft . The work done was therefore $(118,167 \times 30) 3,545,000$ minute foot
pounds $=107 \cdot 4$-horse power. The theoretic power of the

water was $\left(2.819 \times 60 \times 384^{-7} \times 62^{4}\right) 4,060,253$ foot pounds ; useful effect was, therefore, $87 \cdot 3$ per cent. The effective head being 3847 ft ., the velocity of the escaping jet due to gravity would be 157 ft , per second, or 9420 ft per minute. The wheel was 6 ft . in diameter, hence circumference $=18.85^{\prime}$, with $255 \frac{1}{2}$ turns par minute, ratio of bucket speed to theoretic velocity would be 51 per cent., or $51(2 g h)^{2}$. The nozzle of 1.89 in . diameter had an area of 0195 square feet; hence its co-efficient of dis charge was 32 . The hook gauge was only 2 ft . back from the weir, and doubtless gave a slightly too small depth of

water; the co-efficient of 92 for the nozzle, as above, is rather small, also indicating slightly greater discharge than that estimated. However, these experiments show in any event a duty of fully 85 per cent., which agrees with the results found by Mr. Browne
An inspection of a small Pelton wheel, running at a very high velocity, showed that it "carried over" a surprisingly small amount of water. This fact proves the excellence of this particular form of bucket. Mr. Smith at first found it difficult to believe in such high percentages, but from the evidence before him is now satisfied that, with a wheel properly designed, and with heads above 100 ft . or even less, a larger amount of work can be got out of water by the hurdy-gurdy than by any other form of wheel. Water pressure engines may possibly give as good or better results, but their great cost-due to the solidity with which their working parts and column must be built to which their working parts and column must be built to
withstand the shock of arresting the moving water-will withstand the shock of arresting the moving water-will
prevent them from coming into general use. Where a prevent them from coming into general use. Where a
wheel is so placed that it will at times be submerged by wheel is so placed that it will at times be submerged by
back water, the turbine is, of course, preferable to any back water, the turbine is, of course, preferable to any
other wheel. In other regards, however, the hurdy-gurdy possesses almost every advantage. The chief misappre hension as to the hurdy-gurdy has been in considering it simply as an impact and not also as a pressure wheel which, when properly designed, as Mr. Browne point out, it clearly is, An examination of a hurdy-gurdy with either flat, recessed, or curved buckets whil at work shows that the wheel carries over a large amount
of water, the force of which is consequently lost, and in fact becomes an additional load to lift.
A description of the mode of using water-power for driving the North Bloomfield tumnel in California, some years since, will give a good illustration of some of the advantages of the hurdy-gurdy. This tunnel was originally about 8000 ft . long, through a slate highly meta morphosed, with its general line passing under a goodsized stream at a depth of about 190 ft . There are eight working shafts, each about 200 ft . deep, which, with the lower entrance or portal, gave sixteen working faces, Diamond drills were used at the lower heading requiring power; the other fifteen headings were driven by handwork. It was uncertain how much water would be encountered, but from the location it was evident that a large quantity might be struck in any shaft, and hence it became necessary to have ample power at hand at each opening in readiness for such an emergency. A pipe main was laid along the general line of the tunnel, with its penstock 285 ft , vertical above the surface of the upper shaft and 549 ft . above the lowest shaft. It was made of single rivetted sheet iron, No. 14 Birmingham gauge, in lengths of 20 ft. , put logether stove pipe fashion, with the joints made tight by cloth tarred strips and pine wedges. This pipe has a diameter of 15 in . at the penstock, diminishing from this to 13, 11, and 7in. at its lower end. From his short branches, in . in diameter, were extended to the several shafts; it was in one place carried across the stream by a light suspension bridge, some 150ft. long, the runk of a tree on either side forming convenient towers. The aggregate length of the main and branches was 9960 ft ., with some 2500 ft . additional for the branch to the diamond drills. The water was brought to the wheel by a discharge pipe some 9 ft . long, having a vertical movement by ball-and-socket joint, so that at pleasure, by dropping the pipe, the machinery could be run at various speeds or entirely stopped. At the end of this discharge pipe was a cast tapered nozzle, about $3 \frac{1}{2} \mathrm{in}$. in diameter, into which was inserted a ring of saw-plate steel having the desired diameter, and which was held in place by an annular screw cap. By changing the ring, which only required a few moments' time, any desired amount of water, up to 3 or 4 cubic feet per second, could be discharged against the wheel. The stop-gate was left wide open while the machinery was running. The pumping was done by eighteen pumps of Cornish pattern; the largest amount of water pumped from any one shatt was something over 30 cubic cet a minute; the power at hand, however, was ample to have pumped more than twice that quantity. It was rather curious at this shaft to see more water coming from the pumps than was used on the wheel. The two diamond rills were driven by a small hurdy-guray set on the rear of the drill carriage. This, but at another tunnel, wa afterwards modified by placing a separate hurdy-gurdy on a sleeve of each drill rod, the advance movement of the drill being given by hydrostatic pressure on an annular piston, thus doing away with all gearing. These eight ets of machinery were run for nearly $2 \frac{1}{2}$ years, the only break being that of a spur-wheel, doubtless caused by the careless dropping of a steel bar between it and it pinion. Aside from this acceident, practically not dollar was spent for repairs, and the machinery, including he pipe, was in about as good order when the tunnel was inished as when it was first erected. One man, on a 12 hour shift, operated the machinery at each shaft, besides dumping the cars; two men kept the eighteen pumps on the line in order, the principal work being in keeping the action pipes for the down grade headings tight, thus a orce of eighteen men was only required for the eight hafts. The cost of the pipe, gates, \&c., when put in place, was 14,631 dols., and of the machinery about 60,000 dols.
Our readers must not suppose that we assert of our own knowledge that the Pelton wheel is as efficient as stated. We give the figures supplied by Professor Browne, and during the discussion which followed the reading of Mr. Smiths' paper no one impeached their accuracy. It is worth notice that Mr. Browne says, "When a jet of water so soon as the motion becomes permanent, the wedgeshaped portion of the water, shaded with horizontal lines, becomes practically stationary." "When such a bucket is used for a wheel, it is plain that the shaded portion of the water is 'carried, and must subsequently escape with nearly the full velocity of the bucket."" The wedge which is inserted in the Pelton bucket takes the place of the jet affects the results not improbable 397 sections of the nozzles used, with particulars.
The whole subject is one of considerable interest. It will be seen that the hurdy-gurdy wheel is very simple and inexpensive, and in our slate quarries and in other lish engins where large heads of water are available, Eng tage the example set by their American brethren.
\longrightarrow
Publio Works in Grsoa.-The new harbour works at Genoa have lately been pushed along actively, and a limited number of
passenger vessels as well as cargo steamers can now lie alongside and could be discharged by cranes if there were any; but at present they are discharged in the old way by means of lighters, except coal, which is in part discharged direet into the trucks. The outer mole is now above water for nearly its whole length, and many of the quays and moles in the interior of the haid round the quays at in use. A double eline of rails has been laid round the quays at
present in use; but it is stated that the great evil connected with the railway management at Genoa, viz., want of trucks, continues without any improvement being made. Several very important Works which the Municipality of Genoa had projected for oxecu-
tion in concert with the tion in concert with the Government have been decided upon and the contracts signed. The fortifications on the east side of the
town, known as the " Fronti basse," are to be pulled down, and the ground gained will in part be converted into a military parade ground, and the reat be built over. The "Marble Walk," which extends round the bottom of the harbour, is also to be pulled down and the space gained given up to trade. The Custom House is to be removed to a new and more suitable building, and the present one will be turned into an art museum. Many other changes are
to be made with a view of fitting Genoa for its increased and increasing trade, and some of these changes will destroy much that is pieturesque, and recalls the great days of the old Republic.

MACHINERY AND MECHANICAL APPLIANCE AT THE INTERNATIONAL HEALTH EXHI BITION.

No. IV.
The Blackman Air Propeller Ventilating Company Limited, Fore-street, E.C., show several of their propellers two of which are driven from the main shafting, one o 48 in. diameter, blowing air into a building which repre fitted inside the same building, from which it exhausts, discharging by a louvred turret on the roof. Since its

atroduction from America last year the construction of this propeller has been considerably improved. We illus rate the latest form above ; and it will be seen that he three arms supporting the spindle are duplicates of which has been set true. The bearings are of cast iron, four diameters long. A spanner is the only tool required for fixing the frame, or for replacing any part of it, the bolts throughout each machine being of the same size. The bject of this propeller being to move large volumes of ai
into one of Pfleiderer's sifting machines, in which, by the aid of a spiral brush, a sack may be sifted in a very few minutes, and from this into the dough-maker or kneading machine, the sponge or ferment being added at the sam FIg. I
 ime. This latter machine is illustrated in Figs. 1 and 2 It is arranged to act as a mixer, stirrer, and kneader, so tha the sponge can be set and the dough mixed in one machine instead of requiring separate ones for each operation, as is generally the case. It con sists of a pan of sheet steel or gun-metal, in which are which is mounted sets of pecuhat it can be tipped by hand or steam power, according to the size of the apparatus. The blades are revolved by

FIg. 2-PFLEIDERER'S DOUGH MIXER.
gearing outside the pan, and can be reversed by an inge-nously-arranged friction clutch, in order that they may eject the dough when the pan is tipped. The dough and erment are thoroughly mixed and worked up together into a homogeneous mass, the operation lasting some three
or four minutes, after which it is delivered into a truck

ith as little increase of pressure as possible above that of the atmosphere, in order to keep down the horse-power required for driving, it is desirable to arrange the inlets and out. Wo as to maintain the full area of propeller throughrule, find no difficulty in attaining this, and there is, therefore, seldom occasion to provide more power than that necessary for moving free air at the required velocity, plus the friction of the apparatus, a 48in. propeller only taking one actual horse-power for moving nearly 6,000 cubic feet of air per minute at 20 ft per second, epresenting about 7687 foot-pounds of work done per horse-power. Where pressure is not wanted, this fan ives a and expeditious method of ventilation, and ives a cheap and expeditious method of ventilation, and and foul air from buildings, and in producing currents for drying purposes, where it ${ }^{\circ}$, to bring large volumes of ger a compatively low tem prature in ontact with the material instend of cem peraller quantity heated to a high degree. The propeller is smaller quantity heated to a high degree. The propeller is very easily fixed, and can be placed wherever an opening can be made in a wall, ceiling, or floor, the chief points to be observed being to keep the air ducts up to the full area between the blades, and co allow a clearance of about In the diameter all round the outside of the fan.
In the mechanical bakery department, which is entirely driven by Otto gas engines, many well-known firms have contributed to make a very interesting display, the various processes of bread, cake, and biscuit-baking being shown in their entirety. We now propose to describe these in
terms such as we think will be acceptable to most of our terms such as we think will be acceptable to most of our
readers, but without entering into minute details, and we readers, but without entering into minute details, and we
will commence with the hygienic bakery of Messrs. W. will commence with the hygienic bakery of Messrs, W.
Hill and Sons, Bishopsgate-street, E.C., which seems to have been fitted up with great care and completeness, All the water used in this establishment is filtered through one of Johnson's filter presses, in which arrangements are made for readily changing the filtering medium, so as to avoid the possibility of the carbon itself becoming a source of contamination, as is often the case in ordinary filters, The flour is stored above the bakehouse, and is delivered
and allowed to prove. When the dough is sufficiently proved, it is then cut up and divided into pieces, according o the use to which it is to be put, and made up into the desired form. For making rolls, as well as for some other purposes, Pfleiderer's dough-dividing machine is used. this apparatus a piece of dough of the necessar weight is placed in a circular metal box, in which

Fig. 4 -MELVIN'S DOUGHING MACHINE.
by a movement of a handle, a number of knives are caused to rise through slits in the bottom, and these passing through the dough divide it into thirty distinct pieces, each of the same weight. The operation only takes about half a minute, and when it is considered that in many bakehouses several thousand rolls are made every night, it will be evident how large a saving there must be over the ordinary method of breaking up by hand. The ovens are the invention of Mr. W. F. Mason

Longsight, Manchester, and consist of a two-decker and a all the bearings within the machine are fitted with the bottom of the casing, so as to treat the whole mass single one, the latter being fitted with a travelling baking self-lubricating bushes requiring no oil. The flour plate. The heat is generated in a furnace at the back, is then passed into the sponge stirring machine, and from which run a number of flues arranged so that the front of the oven is always kept at the highest temperature. In many other systems the reverse is the case, and as the bread which is set first comes out last, it is not only exposed to heat for a longer time than that at the back, but the heat itself is more intense Another important feature is the arrangement by which the heat can be diverted wholly to the top or bottom, and by which it can be turned direct to the chimney as soon as the oven is sufficiently hot. The introduction of the travelling baking plate is also a step in advance. It enables the whole of the batch to be set and withdrawn at once, thereby ensuring an equal baking and a uniformity of colour, besides preventing drynes and loss of weight, which cannot well be obviated when the batch is slowly withdrawn by the use of a peel. Besides this, the expense of an expert setter may be dispensed with as any lad can fill the baking plate and run it in and out, and the labour of setting and drawing at the mouth of an oven, with its stream of hot air and steam issuing into the baker's face, is avoided. The furnace being placed at the back, all dirt arising from the fire and ashes is kept away from the bakehouse, and as coke is ased the fire is smokeless. The oven doors are made to close quite tight without caulking, and an arrangement is provided for allowing the steam to escape direct into the chimney. Each oven is fitted with a pyrometer to enable the attendant to maintain the temperature at the proper degree We illustrate by Fig. 3 one of Mason's patent continuous two-decker ovens with travelling baking plates. Such an oven occupies no more floor space than a single one, and will turn out twice as much work for nearly the same consumption of fuel, while the first cost is very much less than that of two single ovens. The baking can proceed continuously without waiting for firing up between the batches, and the cost of fuel is stated to be not more than 2 d. per sack of
 dough. The three driving shafts are arranged at such pass through avoid all leakage at the points where they The machine is emptied by tilting it over by means of worm gear, the rotation of the blades assisting in discharging the dough. In some instances this machine is used for preparing the sponge, but the makers used for preparing the sponge, but the makers the two operations separately, as here described. The dough thus prepared is ready for dividing, this being done by hand or by machinery according to the articles it is desired to produce. Mr. Melvin also exhibits a biscuit brake, consisting of a pair of 8 in . diameter rollers, 24 in . long. The oven used by Mr. Marshall is heated by gas, on the patent of Messrs. Gilson and Booer, London. The system can be very easily applied to any ordinary oven of good construction, and it consists in the introduction of a number of atmobelow the roof, the stream of burning gas flowing over to a flue at the farthest end, while the products of combustion, still at a very high temperature, are led back along one side to the chimney. The consumption of gas at the Exhibition is said to be about 270 cubic feet per hour, and the result seems in every way satisfactory the apparatus being easily managed, and well under control. The patentees not only claim the advantages result ing from increased cleanliness and facility in working, but say that there is an actual saving in flou which is sufficient to pay for the which is sufficient to pay for the and we understand that Mr Marshall's experience in his ow1 bakehouses fully confirms this state ment.

Messrs. J. Hughes and Co., Great Dover-street, S.E., exhibit in the bakery department a small flour-mill, with stones 3 ft . diameter, having a ittle crane attached for convenience in raising the top runner when it requires dressing, as well as various other improvements. They also how several specimens of mil furniture, among which we may Mr. Marshall, Shat different system of baking is shown by and in the meantime a second and third batch may be mention a nicely made dressing machine, with mahogany supplied by Mr. T. Melvin, Glasgow. The flour is deli- tation is sufficiently advanced, salt, and a little more rating the bran and pollard from the flour. Messrs, vered into a patent mixing and sifting machine, which water are added, and the dough stirred again for a couple Hughes'object is to illustrate to many of the large agriculconsists of an iron casing bolted to the underside of the of minutes. It is then passed into the doughing machine, turists who may visit the Health Exhibition, and who

OTTO GAS ENGINE AND FEARN'S PUMP.
bakehouse roof, within which a number of blades revolve of which we give a section in Fig. 4, in which seven mixing and thoroughly blend the whole in about a couple of blades of Siemens' steel, rotated by strong gearing outside minutes. A shutter is then opened, and the contents the casing, press, and cut, and turn over the dough in such discharged into the sifting apparatus, which is placed a manner as to form it into a perfectly homogenewhich agitating blades revolve sieve of large mesh, above ous mass, every particle being brought under their which agitating blades revolve sapidly in close proximity to the surface of the sieve, and break down all lumps at phery of the blades and flour is driven towards the periphery of the blades and through the sieve. For cleanliness,
influence. The blades are so formed that when they approach one another, their action is not simultaneous over their whole length, but gradual, thereby reducing the strains on the machine, and they extend to
generally possess a portable engine or some other source of motive-power, how they may, if they choose, prepare their own flour, and save the expense of sending back and forwards to a mill, situated perhaps at a considerable distance from the farm. This is a difficulty frequently experienced in this country, as well as in the Colonies The machines are made specially light and portable, and are easily fixed by bolting to the barnfloor. The mill wil grind oats, barley, and other grain for cattle and poultry.

The Dowson Economic Gas Company exhibits a complete set of plant in operation, the gas being used for describing the twin-cygsee of 16 hth inst. This engine indi described in The ENGINEE of 16th inst. This engine ind cates about 20 -horses, the space occupied by the gas plant being only 10 ft . by 7 ft . by 8 ft . high, and the cost erected complete $£ 175$; so that it is not only cheaper than an ordinary horizontal steam boiler of equal power set in brickwork, but it requires no chimney and occupies less space A point of still greater importance is that this combina tion of Otto engine and Dowson gas is mories and boilers and bearing in mind the superior efficiency of the inter nally-fired gas engine compared with the steam engine, thi exhibit marks a distinct advance in the development o this important subject. The gas is made by passing a mixture of superheated steam and air through a mass of incandescent fuel, about 131 lb . of coal and 7 pints of wate being required to produce 1000 cubic feel in the apparatus, or it can be taken from a neighbouring boiler. The average cost of the gas when made on a moderate scale is ance for wages of attendant repars, For general purposes about four times and for the Otto engine about five times as much of this gas as of ordinary coal gas are required; so that in making be lost sight of. Even then, however, the saving would seem to be very large.
In our annual review of 4th January last we mentioned that Mr. Dowson had succeeded in obtaining a horsepower for $1 \frac{1}{3} \mathrm{Ib}$. coal per hour, this being the average works of Messrs. Crossley Bros, where eight Otto engines are worked daily with his gas. This very satisfactory result has since been confirmed by an interesting trial made in the presence of the engineer and four members of Local Board, who desired to make a comparison with team power for a pumping station. In this trial the there being a loose water joint in the vertical pipe conveying the gas to the quite free to move up or dowi nd reading were taken of the actual fuel consume during the trial. The engine was kept fully loaded at a speed of 160 revolutions per minute, and frequent indicator diagrams were taken. The general result was that the engine indicated about 32 -horse power, while the fuel conumed, including ashes, and waste during the night, wa er bre hersepor per howr. The engine had been in daily use for nearly two years, and was not of the new type, which gives the best results with Dowson gas. We fffered with steam by all th weroeting firms, and showe an annual saving of $£ 230$ in working cost compared with steam engines of the best makers; and we believe the committee have therefore recommended the Board to adopt this system of motive power, especially as Mesars Crosele showed their confidence in the result by guranteeing under a heavy penalty, that the fuel consumption should no exceed 1.5 lb . per indicated horse-power per hour in regula work. The Dowson gas is applied to many industrial pur poses, and at the new County Lunatic Asylum, Gloucester baking of bread, heating of water for kitchens, laundry baths, \&c., and for driving two 12 -horse power Otto engines, and the architects have reported that the general result shows a saving of about 50 per cent. in the conHealth Exhibition, the circulating boiler, specially made for heating by gas. In circulating boiler, specially made for heating by gas. In on page 399 an improved double ram pump made heing in He lion is being shown in operation driven by a belt from the gas engine. This pump is capable of delivering about 8800
gallons of water per hour against a head of 200 ft ., the rams being 7in. diameter and 9 in . stroke. A number of them ave been supplied for both water and sewage pumping, as well as for fire purposes. The same design of pump is
used for driving direct with mortice gearing from the Otto engine, a friction clutch being provided for throwing it in and out of gear. This arrangement we illustrate on page 399.
Mr.
Mr. William Whiteley, Bayswater, W., shows a refrige-
rator van for transporting perishable foods in warm rator van for transporting perishable foods in warm
weather. The cooling apparatus is placed in a movable box entirely below the floor of the van, and consists of a small fan worked by a belt from one of the hind axles which sends a continuous current of air over ice contained in a series of four trays, arranged in such a manner as to
expose a very large cooling surface. The refrigerated air is then introduced through a hole in the bottom of the van, and, of course, the supply continues as long as the vehicle is running, the ice being easily replenished as required. At the Exhibition the apparatus is shown at work driven by a Bischop gas engine, which is too well known to require description here.
Cloth-cutting and ironing machinery is exhibited by two cutting machines is driven from the overhead shafting, and in principle is essentially the same as an ordinary band saw, only with a much greater overhang of knife is used and similar material ans scc, a saw with teeth about lin. pitch is adopted. This machine is capable of cutting the heaviest canvas, linen, leather, \&c. It is and an improved spring arrangement, which allows the upper pulley on which the band runs to give a little when snapping of the knife. The small cutting machine is constructed to be worked by treadle, hand-power, or by larger one, though not quite so complete in details. As an
example of its capacity, it is stated that 500 dozen complete shirts have been cut out in one week by one cutter and three assistants. The ironing or pressing machine, Which is worked by hand-power, consists of an iron an adjustable board, which can be raised and lowered by a treadle. The iron is hollow and heated internally by an beaspheric gas burner, which can be easily ru fumes direct from the iron into the room where they would be likely to be inhaled by the operator, advantage is taken of the tubular arm for conveying them away to a ondensed steam and other matters carried off by it
Mr. John Stones, of Ulverston, shows a steam-power hoist of usual construction fitted with his patent safety shutters and doors, the main feature being that at each floor the openings to the hoistway are always closed unles the cage happens to be at that particular floor. The doore are worked by the cage itself in a very simple manner in charge. In this way it is elaimed that it is next to mpossible that any accident should occur from persons falling through the openings, while in case of fire, comnd the between one floor and another wo through the hoistway and spreading to the upper storeys of the building. Mr. Stones exhibits a number of revolving Exhibition, but these hardly come within the scope of the present series of articles.
Messrs, S. H. Johnson and Co., filtering engineers, Stratthe form of a fixed water filter for attachment to the main

service pipe, which seems to be exceedingly simple and efficient in action. Two 3in. tubes have been arranged to how the effect of filtration, and looking through a depth of 8 ft . the contrast is very striking, the service water being clear blue-green, showing a marked reduction in organic nd other colouring matter. A view, showing the manner in which the apparatus is used, is given above, Fig. 8. The chemical as well as mechanical filter, which would be so simple, and so easily accessible for cleaning, that it might be left with safety to the care of an ordinary domestic ervant; and it is claimed that these objects have been attained in the following manner:-The filtering medium mployed is a disc of thick paper of close texture, formed of a pure vegetable fibre pulp, with which is incorporated
a certain proportion of animal charcoal from which the a certan proportion of animal charcoal filter consists of a wall plate provided with a raised rim truly faced, and the recess thus formed is the supply chamber of the filter, which is put into communication with the main. On the
wall plate is placed a disc of the prepared paper, which is wall plate is placed a disc of the prepared paper, which is
kept in position by a cover plate, which nips the paper all kept in position by a cover plate, which nips the paper ah
round the raised rim, and makes a water-tight joint, the whole fixing being accomplished by means of a single central bolt, as shown in the cut. The price of the paper is 4 s . per 100 , so that the cost of replace-
ment need be no bar to its being frequently done It is stated that through a filter of this kind only 12 in . in diameter, fifteen gallons of water will pass per hour, and there is therefore no necessity for any store of filtered water, as it can be drawn off continuously as fast as is
required for an ordinary drinking fountain required for an ordinary drinking fountain. One of the special features of advantage claimed for the apparatus is replaced, the importance of which is strongly urged by the introducers, the intention being that the paper should be replaced at short intervals, say, every few days. That this is a step in the right direction will probably be maniest to every one who has ever taken the trouble to examine the state of the filtering medium in the old fashioned filters where the impurities were allowed to accumulate for a long time. The removal of the phosphates is also considered important, for not only is the animal charcoal rendered ten times more active, but the foul growths which are promoted by the existence of the phosmates are avoided. Other forms of this filter are showi,
an ordinary filter press, and by means of these it is proand since the resistance occasioned the the filtering medium is small, the ordinary pressure of the main is not only enough for this purpose, but affords a sufficient residual pressure to meet the requirements of ordinary services. 50,000 main filters are now made sufficiently large to carbon paper on this scale is said to be only one halfpenny per thousand gallons.

LEGAL INTELLIGENCE.

QUEEN'S BENCH DIVISION

Sittings in Baneo, before Mr. Justice Grove and Mr. Babos westinghouse v, lancashipe anio

THIs was an action brought for the infringement of letters patent Tor two inventions of the plaintiff, and was tried before Mr. Justice the defendants upon one patent, and for the plaintiff upon another. The defendants had thereupon given notice of motion to set aside the plaintiff, on the ground of there being no evidence of infringement, and the verdict being against the weight of evidence. The motion involved misdirection by the learned Judge, on the ground that he ought not to have left the question of infringement to the jury. Both of the patents taken out by the plaintiff relate to
vacuum brakes, his 1873 patent being for brake rigging, and that taken out by him in 1874 being for the brake cylinder. The verdiet was for the plaintiff on the brake rigging, and for the defendant on the brake cylinder. No question was now raised as to the correctness of the finding of the jury in the defendants' favour as that all the vacuum brakes in this country are practically speak ing, infringements; the question whether the jury were justified in finding that the defendants did not infringe the patent of 1874 and that this had in certain particulars not been new, will have to be argued next term. In brakes by compressed air, or brakes which air working upon a piston bead and driving the brakes onesed power of atmospheric pressure acting in some way where there has been a vacuum, or a partial vacuum, in the pipes underneath a
train; and the patent taken out by the plaintiff in 1873 was for the invention of the gear by which the power is brought to bear upon
the sides of the wheels. The arguments in the present case were the sides of the whed
heard last week, and
Mr. Justice Grove, in delivering a judgment lasting over an hour, on Wednesday, in the case with reference to the 1873 patent, infringement to go to the jury had been adduced at the trial. The learned Judge who had tried the case had informed him that if ho had had to decide the question without a jury he would have
arrived at the same conclusion, but he had considered himself bound to leave the question to the jury. The question of the alleged infringement by the defendants of the plaintiff's letters patent was partly one of law and partly one of fact, and he was of opinion that the plaintiff had failed to estabish that his combination had been infringed. The only other question which had to be
now decided was whether or not the Court had materials before it on which it could order a verdict to be entered for the defendants on the issue as to whether or not they had infringed the patent taken out by the plaintiff in 1873. He (the learned Judge) was of opinion that it had such materials, and must order the verdict and Mr. Baron Huddleston concurred.
The Solicitor-General, Mr. Aston, Q.C., and Mr. Chadwyok Moulton were for the defendant company.

The Royal Agricultural Society's Show is likely to be held at Mr. R. Sellar.-The death is announced of Mr. Robert Sellar,
of Huntly, a successful nericultural implement maker. Deceased was born in the year 1821 . Following the business established by his father, he speedily enhanced its reputation by his numerous inventions. At a great trial of ploughs held under the auspices of the Highland and Agricultural Society of Scotland, the Sellar
ploughs carried off all the prizes, and in 1862 they were awarded a ploughs carried off all the prizes, and in 1862
prize medal at the International Exhibition.
Les Canaux du Midi et Lateral.- Referring to a recent article
in the Times as to the practical utility of a canal following the route of these, a correspondent says:- "It would be interesting to know how aqueducts can be constructed - except at a prohibitive cost-sufficiently deep to carry large vessels across the rivers men-
tioned. We recently put the above canal to practical use by send. tioned. We recently put the above canal to practical use by send-
ing a small steamer- $5 f f \mathrm{ft}$. by 12 ft . by 7 ft . 6 in .-through it, and the son of a member of our firm accompanied her, with instructions to keep a careful log. This, however, is too long to send you, but
it may interest some of your readers to know that the length of the waterway from Bordeaux readers cette is know that the length of 115 locks-some of which have two chambers, others three, and one at Fouserannes has nine-and we are informed the summit
level is 800ft. above the sea. The little vessel we sent through, of the canal. The time occupied in the on some stones in part days, owing to the delays incurred passing through the locks, Wo days, owing to the delays incurred passing through the locks.
should like know if more practicable levels have been found for
the proposed maritime canal than were found by the engineers of the proposed maritime canal tha
the existing ancient waterway."
University College, Bristol.-Mr. Robert Gordon, Mem. Inst. C.E., chief executive engineer, British Burmah, delivered an
address, on Friday last, to the engineering students of the above address, on Friday last, to the engineering students of the above
college, on "The Irriwaddi River and the Burmese" There very good attendance of past and present students, presided over been for Charles Richardson, M. Inst. C.E. Mr. Gordon, who has aceount of the nature of the engineering work on which he had
acters in been engaged, and took as illustrating this the special task of
dealing with one of the mountain torrents. The Kantha, which
dise rises in the Pegu Voma mountains, and passing under the Prome
and Rangoon Railway, flows through the Heine VVal and Rangoon Railway, flows through the Heine Valley and the
Pega Sub-Goma plains. This had caused great destruction of property by its channel becoming obstructed, and a consequent
overflow of its banks. The flow of the Irriwaddi itself was then discussed, and the reclamation and embanking works, which are in process. The lecturer concluded with some remarks on the
country and people of British Burmah, and showed some specimens country and people of British Burmah, and showed some specimens
of native handiwork. Professor Hele Shaw, in supporting a vote of thanks to Mr. Gordon, stated that he hoped this, though the first,
was was only the first of a series of such addresses, which must be of the highest value and interest to young engineers. Their school had most satisfactory and encouraging progress to report. The
number of engineering students was thirty-two, and no less than number of engineering students was thirty-two, and no less than
twelve were this year students of civil engineering, as against three iwelve were this year students of civil engineering, as against three
in that department last year, when it was specially formed. The
opening of the college workshops to the students had been much opening of the college workshops to the students had been
appreciated, and the number who had attended was suoh
necessitate building a larger one, in which there would shor a 50 -ton testing machine and other necessary appliances for an
engineering laboratory.

RAILWAY MATTERS.

The Caledonian Railway Company has issued a circular in-
creasing the working hours from ten to twelve hours. The creasing the working hours from ten to twelve hours. The
propopal is strongly objected to by the men, and strong action will
be taken by them e taken by them.
AT Denmark-hill is a cutting in sloping strata which has given
the Brighton Company lots of trouble. On Wednesday night or rather early yesterday morning, the tunnel which joins the
cutting fell in. The driver and stoker have been got out, THE Dore and Chinley Railway Bill has passed the Committee
of the Hoase of Commons. This railway will popen up to travellers of the Hoase of Commons. This railway will open up to travellers
some of the most beautiful parts of North Derbsifire; and Mr.
Ruskin will a again say something about " machine and devild Ruskin will again say something about " machin
England " and scenery spoilt by the vulgar gate
The 5 ft .3 ft . gauge of the Great Southern and Western Company of Ireland has enabled it to build some capital first-clas carriages, with lavatory accommodation and seats convertible into
beds, for its night mail trains between Dublin and Cork. The
convertible seats occupy about three.fourths of the widt convertible seats ocoupy about threeefourths of the widh. of the
whole compartment, and when turned completely over disclose soft whole compartment, and when turned completely yo
woollen mattress and pillow, and a comfortable rug.
THE fiftieth anniversary of the establishment of railways in Belgium was celebrated on Saturday, May 24th, by the closing of
what is called the Arsenal, that is to say, the Locomotive Wo of the enelgian State Railways, and the issuing of free passes to enable the 2309 men to visit the principant towns of the e kingdom.
Belgium, it will be remembered, was the first country to follow England in adopting ramembere, and the first continental locomotive
was made by John Cockerill at the Seraing Works. Accordingly was made by John Cockerill at the Seraing Works. Accordingly
a movement is on foot to add to the usual fetes a special railway celebration like that held at Darlington in 1875 . of the Bourse des Nettaux has voted the sum of $£ 1000$ towards the fetes, and has callede upon the irommasters to co-operate, and thu
IN a report on a collision which occurred on the 15th February, at Doncaster station, on the Great Northern Rallway, Majo Marindin says :- "This silight collision was due to the adoption of a trupid practice on the part of the driver of the $10.40 \mathrm{a} . \mathrm{m}$. down
train. In order to save himself the trouble of holding up the flap-valve for releasing the vacuum-brake, which he had used for stopping at the ticket platform, he put a piece of wood under the
flap and then forgot all about it. Consequently, when he had started again and tried co stop his train at the platform, as usual, continuous brake, he was unable to tet a vacuum and andying the was useless. It should be remarked that, with an automatio brake, the fact of such an important part of the machine becing in
wrong position would have applied the brake, instead of making t of no value whater
A map has been published by the Board of Trade showing the passenger duty of 2 per cent. The area embraces 116 miles of rail. Forest Gate and Plumstead on the most distant points ar Stroud Green on the north; Hammersmith and Shaftesbury-road on the west; and Wandsworth, Herne-hill, and Nunhead on the
south. The following shows approximately how far the operation of the clauso affeots the different companies owning lines within stations; Great Eastern, $14 \downarrow$ miles, 24 miles of rations rilway and
stand Brighton, and South Coost, 18 miles, 18 stations ; London, Con ham, and Dover, $12 \ddagger$ miles, 20 stations; London and South-
 London,
stations.
Is a report on an accident which occurred on the 26th January the Londonderry and Lough Swilly Railway, when, of a mixed train, running slowly round a curve of fifteen chains radius, up an
gradient of 1 in 57 , and on an embankment about 15 ft . high, all the venicles composing the train left the rails, owing probably to a
violent gale prevailing at the time, having blown over the three arriages-which had less stability than the other vehicles-and brake van behing, Major-General Hutchinson says :-"The lesson to be derived from this accident, and from the almost similar one portance of not using vehicles of a great length on narrow-gauge
lines, as the power of resisting wind pressure decreases rapidly as lines, as the power of resisting wind prossire decreases rapidly as
the length increasess; and it is a question deserving the most whether they should in future provide any carriages or other vehicles with a greater length than about 18 fat, and also as to
what means they should adopt to increase the stability of the long
carringes on in carringes now in use on the line
A REPoRT has been published on the explosion of the outer shell
of the fre-box of a pilot engine at Exeter station, on the Great
Western Railway, on the 13th February. In concluding it Major Marindin Rays:- It is seldom that so accurate a deseription of the where the leading fitter and the driver actually saw the exact tape where the plate first commenced to give way. This spot was at box shell, and at a point about 18 in. from the back of the box.
An examination of the boiler shows that at this point, and more or less all along the joint, here was an old nlaw on the minside face of the thickness of the metal, and it is evident that the explosion was sponding joint on the of other sise joint. is also flawed in a sit-stimilar at the corree
This form of joint is This form of joint is a bad one, as where there is only one butt.
strip an unequal strain is thrown on the two sides of the metal, and any small flaw is sery liable to develope to a dangerous extent.
The metal of the boiler-plate itself was in good condition. There are in all eighteen engines belonging to the Great Western Railway
Company with similar joints, the whole of them having been built fompany with similar joints, the whole of them having been buil
for the Eristol and Exeter Reilway Company between 1870 and
1875 . The joints in these are being strengthened by removing the 1875. The joints in these are being strengthened by removing the
outside ? ${ }^{\text {g in in. butt-strips and fitting instead two }}$ रहin. strips." ON Tuesday Major.General Hutchinson, on behalf of the Board
of Trade, made an offficial inspection of the new line of tramways from Dudley to Stourbridge. The line is 5 F miles in length,
single, ou Barker's system, which consists of a steel rail fixed with
keys to cast iron constem keys to cast iron continuous sleepers resting on lias lime concrete.
Ench single rail weighs 421 l . per lineal yard, and each sleeper
1121 b . or thereabouts, giving 66 tons of steel rails and 176 tons of cast iron sleepers for each milie ength of single line of two rinis.
The depOt and grounds contain an area of some 1200 swiperficial Yards, and is situated closely adjoining the London and North-
Western Railway Station in the Tppton-road, Dudley. Accomodation is provided for eight engines and eight cars, and there are
also erected suitable building for boardroom, offices, repairing
shop, ons w whe and oil stores, kc. The engines are Kitson's, about eigh of Birkenhead. The They hare been speciallyp const by the Started for stecam Company, traction,
on with powerful brakes, which can be applied by the driver of the engine or by the conductor on the car from either platform to the
whole of the ight wheels at the same time. The works have
been
from the design and under the personal supervision of Mr. E.
Pritchard, M. Inst. C.E., Mr. Robert Dodd and Mr. M. Seawari
have been the engineer's inspectors; while Mr. Robbins and Mr.

NOTES AND MEMORANDA. IN London, for the weak ending May 17th, 2256 births and 1536
deaths, or 15.2 and $9 \cdot 14$ per hour, were registered. The births
vere three and the deaths were three an
last ten years. and the deaths were twelve below the average of the
The annual death rate from all causes, which had
$20^{\circ} \cdot \mathbf{~ p e r ~} 1000$ in the two preceding weeks, declined last week to 19.19
The time occupied in running the Derby on Wednesday was The average speed of the horses was thus 322° miles per hour. The maximum speed was probably 45 miles an hour. Last year the
time occupied as measured by benson's Chronograph was 2 min . $48^{\circ} 4 \mathrm{sec}$, not quite so fast as this year.
ThE Central RhineTowing Company possesses eighttowing barges
running between Bonn and Bingen, and seventeen working betwee Rotterdam and Bonn, and between Bingen and warking betwee main towing cables were renewed in 1879 and 1880 . In the space of three years, the new cable, made of galvanised wires, broke but
three times, while the previous cable, of wire not galvanised, broke nine times in the three years. The old cable was sold for 16 per
Sore
Some paper-making statistics have recently been compiled on thet there are 3985 paper mills on the face of the earth, in which annually 1904 million pounds of paper are manufactured. Half of this paper is used for printing; 600 million pounds only for
newspapers, the consumption of which has risen by 200 million pounds during the last ten years. As to the use of paper by
individuals, an averageof 112 1 lb. is used by ban Englishman, 10f 1 th. by
 2 lb . by a Mexican,
PapEr bottles are now, it is again reported, made on a large
cale in Germany and Austria. The paper must be well sized The following is said to be a good receipt for the paper: Ten part of rags, 40 of straw, 50 of brown wood pulp. The paper is im
pregnated or coated on both sides with 60 parts of defibrinated
 Ater drying, ten or twelve roiled leaves are coated again, placed
over each other, and then placed in heated moulds. The albume In the blood forms a combination on pressure with the lime which is perfectly proof against spirits, \&o. The Paper World says the
bottles are made in two pieces, which are joined afterwards.
Fof the week ending April 26th, 1884, in thirty-two cities of the
United States, having an angregate population of 704,60 , there United states, having an aggregate population of $7,304,600$, there
died 2880 persons, which is equivalent to an annual death-rate of
 the Lake cities, $18{ }^{\circ} 4$; for the River cities 15.9 ; and in the
Southern cities, for the whites, 19.7 , and for the coloured 36° per 1000. The Sanitary Enginecer says:-"Of all the deaths, $35^{\circ} 5$ per ent. were under five years of age, the proportion of this olasu
being highest in the Lakeo cities viz., 45^{-4} per cent. Consumption caused 17.9 per cent. of all deaths in the North Atlantio cities, and
17.8 per cent. in the Southern cities among the coloured.? Therr is a good deal of waste sawdust in America, and so two American says, for the use of sawdust instead of sand in plasterin compositions, and this, it is conceived, may be a matter of con-
siderable importance to the owners of sawmills in the principal siderabe importance to the owners of sawmils in the principal
lumbering towns. One patent is for the use of nearly equal part of plaster of Paris or cement and sawdust, with the ordinary about 4 thb each of slaked lime and sawdust to 1 lh of the use Paris, , thb of glue, and I 1 lb . of glycerine, with plasterer's hair
Whether or not either of these described plasters would be cheape than those made in the ordinary way, they would certainly be
lighter, and it is believed that they would better adhere to the walls, and not be so liable to chip, seale, and crack. Sifted saw dust has before been used to some extent by experienced workmen for mixing with mortar for plastering external walls, exposed to
the alternate action of water and frost, as a preventive of scaling. AT a recent meeting of the Berlin Physical Society, Dr. Frölich seen applied to the measurement of the electric resistance of galvanic elements and batteries. Wheatstone's bridge consisted
as was known, of a wire quadrilateral and two wire diagonals, the two diagonals one contained a battery of constant electro motive force, the other the galvanometer. In these circum tion $\mathrm{W}_{1}: \mathrm{W}_{3}=\mathrm{W}_{9}: \mathrm{W}_{4}$ For the purpose of measuring the resist
ance in a galvanic battery, the arrangement was so ance in a gavanic battery, the arrangement was so far empirically
changed that the battery to be measured was inserted in one of the lateral wires. A second empirical method consisted in insert-
ing the galvanometer into one diagonal wire and interrupting the second, the battery to be measured was placed on a lateral wire.
Dr. Frolich showed that both arrangements were only modifice tions of Wheatstones' bridge. The way int whiche only modifice modifica
tions originated might be conceived by sumposing that tho brids tions originated might be conceived by supposing that the bridge
was formed of cords, and that the angles of the square were successively shifted; the proportion which appplied to Whantstone'
bridge would still hold in the new case. Dr. Frolich laid down general law applicable to all individual cases. If in a Wheatstone bridge an element be inserted into each wire, while one diagonal
wire contained the galvanometer, and the other was interrupted, if, moreover, on opening this wire, the electro-motive force in the
other diagonal remained unchanged, then the proportion above Whether this general law included such a case as could be applied practically and with certainty to the measurement of the resist-
Wrru the help of carbolic acid pigments, colours for glass and
porcelain can be prepared without difficulty and without any noticeable separation of any insoluble metallic compound. The
Deut. Ind. Zcitung gives the following:-" For bismuth: Ten grammes of metallic bismuth are dissolved in aqua regia, and
vaporated in a porcelain dish to a thin syrup. Whien cold evaporated in a porcelain dish to a thin syrup, When
50 grammes of carbolic acid liquefied by gently warming in hot water
are added. It is then left standing tew stirred at once an energetic reaction takes place with violent foaming. At the end of this time it is well stirred with a glass rod and hydrochloric acid vapours. It is taken out of the steam bath as son as a drop taken out on a glass rod will dissolve clear in nitro-
benzol. Whe this point is reached, the mass is dissolved in nitro
benzol or a mixture of nitrobenol paration will be ready to use. For tin: Ten grammes of pure tin are dissoived in aquar regia and the solution evaporated to described. The remainder of the operation is the same as for bis-
muth. For uranium: Fifteen grammes of nitrate of uranium are mixed with 40 grammes of hydrochloric acid and dissolved. This and treated as already described. For iron: Fifteen grammes of excess of water removed by evaporation, so the solution when cold
will have the consisteneo of a thin syrup. To this are added 50 grammes of carbolio acid; and it is then treated as described under
bismuth. A manganese pigment can be made from the chloride of ismuth. A manganese pigment can be made from the chiloride
manganese; and nickel and cobalt pigments from their chlorides in
precisely the same manner as that of ifon is mady f The finished preparation can be diluted to any desired extent, as the concentration of the original preparation leaves plenty of play
for the dilution. The different pigments above described may be mixed with cach other to form all kinds of combinations.

MISCELLANEA
The South-Eastern Brush Electric Light and Power Company
The Glasgow Town Council have confirmed the decision of a to carry wires overhead, or in tubes beneath the ground, for the Pupse sapim erodic ing eso THE report by Professor Wanklyn and W. J. Cooper on the
water supplied by the London water companies during April gives he albumenoid ammonia, which is the real test as to purity, as hree one-hundredths of one part in a million for the Kent chalk the other companies except the West Middlesex.
A NEW sorew steamer, the Engineer, recently built by Messrs. Howden and Co., of Glasgow, who were the cont Messrs, James ship complete, made her trial trip on Tuesday, the 27 th inst., at the neasured mie at skelmorie, when a speed of over 11 knots wa
bbtained, everything working smoothly. This vessel has been buaile expressly for the conveyanceof larger packages below deck than any steamer afloat, it being possible to put below two ordinary
torpedo boats of 85 ft. each in length. The eighth annual report of the Inspectors of Explosives,
Colonel Majendie, Colonel Ford, and Captain Cundill, has jus been published, and it contains an unusual record of mischievou sions took place, causing 39 deaths and 109 cases of injury. The new Explosives Act came into force during the year, and four new explosive factories were established. The dynamite trade has
grown considerably and the number of licensed storage magazines grown considerably, and the number of licensed storage magazines
has increased from 320 to 329 , and the total of registered premises has increased from 320 to
in the kingdom is 19,386 .
Iv an article entitled "Two Centuries in Bath," in the Enolish Illustrated Magazine-which is, as usual, well illustrated-it
mentioned that an entry in the Bath Council-book records ution by "generall consent" of the City Fathers "that five resi twenty shillings shall be quarterly paid for a Neves-Letter to be sent to the Mayor of the City for the tyme being, and to remayne
at his house for the publigue view of this Corporation, the firs quarter beginning from the sixth day of the present, February 10 this ancient forerunner of the piles of "dailics" which the
5.30 a.m. train from Paddington now delivers each morning, the visitor, it seems, was permitted access.
On the 17th inst., at the West Riding Court at Doncaster, the
 given by his traction engine on a road at Stainton. Evidence wa Andrew Burniston, traction-engine proprietor, Conisbro, wai an the evidence against the traction engine was not 1 l this cao that the damage had not been sufficiently troukht border, stating Tuls
uiet Isthmus into a scene of active engineering now converting the quiet 1sthmus into a scenco of active engineering operations. A new the shore of the Gulf of Egina. The dredging of the approaches 5000 cubio metres of sand and soil every twenty-four hours, and a large number of men are employed on the central portion. To
convey the material a railway of 15 kilometres in length is worked by four locomotives, and 180 tip wagons. Two large dredging 13,000 cubic metres per day.
ThE colliery owners in the Dortmund coalfield have agreedthe quantity to be oe ofter Taped foldatt-upon a general limitation of between 1st April, 1884, and
31st March, 1885. Ench quantity than during the year 1888 or during the period from 1st
April) , 1883 , to 31 st March, 1884 . Conls exported to or sent through the St. Gothard tunnel are not included in such computations of quantity. A fine of 2 s. per ton on the
excoess is imposed for the contravention of this regulation. The final confirmation of the regulation was made dependent upon the
adhesion of colliery owners representing 90 per cent. of the output or 188
A NEW steamer, forming a valuable addition to the new coaling pation at Perim Island, left the Mersey on Tuesday week. She
was built by Messsss. .ochran and Coo, of Birkenhend, of steel, and
is fitted with a pair of inverted direot-acting compound surfacestroke. The boiler, which is allino made of steel, is of Cochran's
patent multitubular twhe patent multitubular type, and gave an abundant supply of steam.
The vessel, which is called the Midge, was built for the special requirements of the new coaling station at Perim, under the per-
somal superintendence of Messrs. Hinton, Spalding, and Co., and their consulting engineers, Messrs. Harvey and Bower, of Liverpoond
The speed on trial which could be steadily maintained was about 9.3 knots per hour.

MEssRs. Pontivex Axp Wood are introducing what is named
the "Farringdon" patent blowing lamp, for blowing joints, burn-
ing off paint, and loosening metal ing off paint, and loosening metallic joints when set with corro-
sion, and more especially for putting india-rubber tires on bioycles and tricyeces. The novel part of the blowing lamp consists of a these pipes-about 1 isin. long-is attached to the top of the cylinder, and has a very. fine jet formed upon it oup uperend. The
other and longer tube, which slips closely over the e ixed pipe, has two lateral openings, through which a proper admixture of air with the gas takes place, so as sto obtain a pure blue flame, and
around the bottom end of this pipe a mall sainer is former hold spirit for starting the flame. When in use the colinder to is
filled with pure benrine, and then the saucer nearly filled with
methylatelt methylated spirit. When this is ingited sufuncient hent is con-
veyed to the cylinder to cause a stream of spirituons vapour to issue from the orifice with considerable energy, when it at once secomes ignited by the flame from the methylated spirit in the
saucer, nad can be applied as desired. The lamp is much safer escape of thench blowing lamp, as, unless the ajerture for the vapour can be vapour is open, there is no heat by which fresh
vand an explosion from this cause is there-
A great variety of building stone is available in New South
Wales. In and around the city of Sidnay there Wales. In and around the city of Sidney there aro numerous
quarries in the sandstone of Hawkesbury formation, which is one of the upper members of the carboniferous group. The sandstone,
is most commonly used in public and private buildings in sitney.
Extensive deposits of marble of Sillorian occur in several places in the colony. The black varioty from the
Marulan, and the white from the Cow

 coraline limestone of very pure quality. It forms a compact
marbe of various tints white, cream, and dove-coloured, and
sometimes with pink markings. It dresses well, takes an excellent sometimes with pink markings. It dresses well, takes an exeellent
polish, and may be obtained in blocks of almost any required size
and quantity. Situated as it is, only seven miles from the Waller and quantity. Situated as it is, only seven miles from the Waller-
awang Railway Station, it will be available for the iron-smelting works in the districts, and will afford a source of large sumply for
the Sidney market. The limestone conssists almost entin corals-Favosites Gothlandica, Favosites polymorpha, Lithostro-
tion, and others, and molluscs as yet undetermined."

LOCOMOTIVE FOR THE BUENOS AYRES AND PACIFIC RAILWAY.
mr james cleminson, mi.i.c.e., westmin:ter, engineer-in.chief

We illustrate this week by our supplement and the engraving above and on page 403, ono of several locomotive goods engines built from the designs of Mr. J. Cleminson, M.I.C.E., engineer-inchief for the Buenos Ayres and Pacific Railway. The gauge of railway is 5ft. 6in., constructed by Messrs. R and W. Hawthorn, of Newcastle. These engines are mounted on eight wheels, of which six are coupled together, and have a diameter of 4 ft . 3 in . on the tread, the middle pair of wheels being without flanges. The leading wheels are 2 ft . 8in. diameter on tread, and are mounted on Mr. Cleminson's arrangemont of radial axle, and the cylinders are 16 in diameter, with a stroke of 22 in . The working pressure is 160 lo . per square inch. The whole of the plates strain of not less than 25 tons per square inch with 25 per cent. of elongation. The barrel of the boiler has a minimum internal diameter of $4 \mathrm{ft}, 1 \frac{1}{i n}$., and a length of 9 ft .6 in . The holes for the rivets throughout the boiler are drilled, and all rivets are fixed in place by hydraulic pressure. The fire-box is made of selected copper plates, and stayed by copper stays. The fire-box is made extra large for wood fuel. The tubes are all solid drawn brass, and 197 in number by 1 in. in diameter. The safety valves are of the equilibrated type. The main frames are of best Yorkshire plates, shaped out to the required form. The buffer beams are also of wrought iron plates. The cylinders are castings of a hard mixture of metal;
they have the steam chests on the top. The cylinder covers are fitted with polished casings. The slide valve, glands, bushes, \&c., are of phosphor bronze. The piston-rods are of steel The crossheads are of cast steel, and fitted with phosphor bronze slippers. The slide bars, of which there is one of strong proportions to each cylinder, are also of steel. The connecting and coupling rods are of forged steel, and fitted with phosphor bronze. The valve gear is of the Joy type as illustrated above, forged of steel. The reversing of the gear is effected by a wheel and screw working through a phosphor bronze nut.
The wheel centres are of cast steel, and are fittted with cast steel tires secured in place by set screws. The axles are of mild Bessemer steel. The crank pins are of cast stecl. The axleboxes and hornblocks are of tough cast iron fitted with welladjusted bearings and phosphor bronze bushes. The bearing springs are made of cast steel, and are balanced on Mr. cast steel. cast steel.
donkey pump, fed by means of two No. 8 injectors and a donkey pump, and the feed pipes are of large size and made of
good solid drawn copper. The steam pipes are also made of copper, the exhaust pipe being of cast iron. The engines are fitted with the usual mountings,
The cab is built of wrought iron, and fitted with hinged lights in the front and slide windows on each side. The cab covers the footplate, the roof extending well back over the footplate of the tender. The engine is fitted with a brake equilibrated throughout and with the brake gear of the tender, the whole of which is worked by a steam cylinder fixed on the engine. The brake blocks are of cast iron throughout. The front of the engine is fitted with side buffers having wrought iron cases, also a cow-catcher, which is built of pitch pine. The tenders of the engines are fitted with central buffers as well as side buffers,
owing to the railway joining at its western end a network of lines, whose stock has only central buffers, whilst at its eastern end it unites with railways having only side buffers.

The Buenos Ayres and Pacific Railway will bring into direct communication the whole of the railways in the Argentine
Republic save the East Argentine Railway, and is destined to become an important feature in the development of this wonderfully rich region. But its greatest importance lies in that it will become the highway between Buenos Ayres and Valparaiso, for it is part of an original and complete scheme conceived by Mr. Mateo Clark and his brother for the uniting of these two leading centres in South America. Messrs. Clark held the concession for the construction of this railway and for that portion of the system represented by the line under consideration, as
well as of the railway now being made by the Government well as of the railway now being made by the Government
from the Andes termination of the Buenos Ayres and Pacific Rail from the Andes termination of the Buenos Ayres and Pacific Railthe railway from Mendoza, cher the andes to join the Chiling lines, the work of which latter section will involve some of the boldest feats in engineering.
When this gigantic scheme is completed-and it is now in a fair way to that end-the journey between the cities of Buenos Ayres and Valparaiso will be shortened by ten days, a boon which travellers and commerce alike will hail with satisfaction. We shall have more to say in reference to this trans-continental undertaking at a future date.

IMPROVED VALVE OILER
Ths accompanying engraving shows an invention-which we copy from the Scientific American-recently patented by Mr. S.

D. Mershon, of Rahway, N.J., which is designed to facilitate the oiling of the moving parts of machinery, and also to secure regu-
larity in the amount of oil delivered. Through the centre of the larity in the amount of oil delivered. Through the centre of the
oil passes a tube B, which may be made solid with the
top and screwed into a hole in the bottom. Oil is introduced into the cup through an opening in the top that is closed by a cap , Fig. 2, in order to admit it, as shown in the sectional place of the oil as it is discharged. In the lower part of the tube B is an opening E, through which oil passes to the interior and enters the recess F in the rod G. This rod fits accurately in the tube, and its lower portion is made up of two halves held together by screws passing through short slots in the extension part G^{1}, as indicated in the longitudinal section, Fig. 3. When the rod is raised, the recess comes opposite the opening and becomes filled with oil; as the rod moves downward, the oil in the recess is carried with it, and flows out The upper part of the rod is jointed and its upper end is outached to a crank formed upon a joft J, revolving in berings as shown At each revolution of the shaft therecess F discharges its contents. On the shaft is secured a ratchet wheel L, into the teeth of which meshes the end of a pawl M, which is pivotted to and operated by the swing of the pendulum N . The pawl is held in gear with the wheel by the weight on the arm O . The jar of the engine will keep the pendulum in motion ; but it may be extended as indicated by the dotted lines and actuated by an arm attached to some moving part of the machinory. The swing of the pendulum is limited by the set screws P, passing through the upper ends of the standards Q. By means of the set screws the movement of the pendulum can be regulated so as to move the wheel through the space of one or more teeth, thereby increasing tion, and thus regulating the time biat the liserarges of tion, and thus regulating the time between the discharges of
oil.

COMPOUND ROLLING MILL ENGINE.
The engine which we illustrate on page 406 has been made by Messrs. Tannett, Walker, and Co., of Leeds, for the new platerolling mill of the Butterley Iron Company at Codnor Park. In tion of the mill designed by Mr. Hollis, the engineer of the works.
Nayal Enginger Appointments.-The following appointments have been made at the Admiralty :-David Wilson, chief engineer, to the Belleisle; James A. Shawyer, Edwin J. Comley, Alexander F. M'Intyre, George E. M. Key, and William T. C. Brewer, chief engineers, to the Vernon ; William H. Grant, engineer, to the
Belleisle. Belleisle.
Railway Acoment.- - A New York Central Railroad express
train coming from St. train coming from St. Louis was crossing the branch line at the a goods train on the branch line ran into it, throwing seven sleeping coaches from the line. Twenty persons were injured, including Prince Yamashina, of Japan, and eleven members of his suite.
The Forth Bridge.-On Monday afternoon the South-West Queensferry caisson of the Forth Bridge was successfully launched in the presence of the Lord High Commissioner to the General Assembly of the Church of Scotland and a large number of
spectators. The caisson is 70 ft . in diameter, and the total weight spectators. The caisson is 70 ft . in diameter, and the total weight
is about 200 tons. Its depth, when launched, was 44 ft ., and when finished it will be about 55ft. This is the first of four caissons required for the bridge. The ceremony of launching was per-
formed by Miss Phillins, daughter of the managing partner of the formed by Miss Phillips, daughter of the managing par
firm of contractors, Messrs. Tancred, Arrol, and Co.
LOCOMOTIVE FOR THE BUENOS AYRES AND PACIFIC RAILWAY. Mr. JAMES CLEMINSON, M.I.C.E., WESTMINSTER, ENGINEER-IN-CHIEF. (For description sec page 402.)

RAILWAY CARRIAGE AND WAGON BUILDING HARDLY any one of our industries is busier at the presen of the large firms are full of work. Some have orders sufficient to occupy them full time for many months, even should
they receive no contracts in the interval. Foreign railway lines they receive no contracts in the interval. Foreign railway lines are supplying the bulk of the business. Believing that a notice
of the current activity as exhibited at one of the largest work of the current activity as exhibited at one of the largest work few days ago the establishment of Messrs. Brown, Marshalls, all through the works, and found the company busy in most lepartments. The number of operatives engaged on the day of our visit was close upon 700 , and some of the departments were, we were informed, kept rumning at night. The wor duction of carriages and wagons, and carriage and wagon iron frames in the best style. We were taken first to the smiths' shops, where the forgings for the carriage ironvork are made
from superior scrap iron. These are two extensive shops, with from superior scrap iron. These are two extensive shops, with arty fires, and they are fitted with some ten steam hammert, or nother powerful steam hammer, which is employed for heavy forgings. In the same shop are two circular saws for treating sectional iron. The floors are laid with rails, over which the workmen's wagons were passing to and fro, conveying the forgings from one spot to another with the utmost facility and this system of conveyance prevailed, we noticed, in nearly bolt shop, this we found to be fitted with excellent machinery or turning out every description of nuts and bolts necessary in railway carriage or wagon making. One of the machines for
heading bolts was especially noticeable. It was made by Ryder, heading bolts was erpecially noticeable. It was made by Ryder,
of Bolton, on Marrden's patent. The bolt was held fast by the machine in a perfect manner.
Finer than either of the foregoing shops is the finishing shop. It is crowded with lathes, shaping machines, slotting machines, drills, and other automatic appliances. For the product of some of these machines the company was much pressed. The drills, for instance, were, we were told, on night and day. After glancing at the timber yard, which is all under cover, mahogany, we came to the spacious wood mill. Here the timber is sawn into the requisite shapes and sizes. The circular saws, planing machines, and other apparatus were running briskly, one corner of the building. This drew all the sawdust as it fell from the machines into iron piping running across the workshop, and whirled it into an accumulator. From this the sawdust was discharged into a hopper in the timber yarc, and
is then loaded into sacks for transport. The fan keeps the floors perfectly clear, and allows of the uninterrupted continuation of work at the machines for, if necessary, weeks together. We next looked in at the log mill, where a frame saw and a rack
saw were erected for splitting baulks of timber into panels or boards, and where there were two overhead travelling cranes. The machinery employed in all the shops hitherto passe through is driven by a pair of condensing beam engines, each of
50 -horse power nominal, but which will work up to 500 -horse power. They are located off the finishing shop. The fly-wheel by set of three boilers. The tons 10 ot . Steam is supplied and made throughout by the company upon its own premises, a circumstance upon which it justly prides itself. A small engine is erected close by for cases of emergency, but the beam engines have worked so steadily and well ever since they were
laid down, that there has been but little necessity for employing the lesser engine. The workshops of the company are fitted up
with the electric light upon the Brush system, the installation having been carried out by the Hammond Company. Some forty lamps aro seattered throughout the shops. They are
supplied by a forty-light dynamo or a six-light dynamo, according as several departments or only one department is required
to be kept on at night. The dynamos are driven by an to be kept on at night. The dynamos are driven by an engine, In the carriage body shop, which we visited after.
into the company's system of lighting we found inquiring carringes and goods wagons in almost every stage of construction. Certain of the covered wagons are for use upon the Santiago
and Valparaiso Railway, and are 15 ft. long by $8 f$ wide by 7 ft . 6 in . high on the inside. As it is fast becoming the rule with wagons and carriages for uke on foreign lines, the frame. work is made entirely of sectional iron. The bodies are sheeted
with red deal. The roofs are to be of galvanised corrugated iron carried upon T iron roof bars. The wagns have sliding doorways on either side, and aro fitted with Newhall's patent
brake. Wo also noticed third-class passenger carriages for Jamaica, the body made entirely of teak with sectional iron frames, These are provided with arched ribbed timber roofs
of light construction, and are about 26 ft . long by 8 ft wide by of light construction, and are about 26 ft . long by 8 ftt , wide by
7 ft . high to the inside of the roof. A little further we came upon Iong pasienger carriages, which at once proclaimed theme
uelves intended for the Metropolitan Underground system. The bodies are of teak with iron underframes. The leysth of the carriages is $39 \mathrm{ft} 6 \mathrm{in} .,$. the width 8 ftt . 3in., and the interior
height 7 ft . 2in. They travel upon four pairs of wheels, and to allow of the more easy turning of curves the springs are hung in long link fashion. Before we passed out our attention
was called to some first, second, and composite carriages and brake vans which were being completed for the Buenos Ayres and Pacific Railway. All the carriages and wagons intended for foreign despatch are fitted together complete upon the
premises, and are then taken to pieces and packed for shipment. In the paint shop were ranged some twenty different carriages for Buenos Ayres we found, upon lines. The first-class carriages for Buenos Ayres we found, upon entering and taking our seats,
to be perfectly complete and in every way comfortable. of course, there were the usual cane seets, but upholstered in the same manner as an English first-class compartment. The
louvre blinds, with which the windows were fitted for the admission of air without the rays of the sur, are of sycamore.
This wood formed a pleasant contrast to the timber of the carriage bodies.
We took a hasty view of the upholstering shop, and then left the buildings, only, however, to cross an open space to the iron Irame shop of the company, where all the heary ironwork is put
together. This is an open brick building of large sive, and the greater part of it is new. The roof is of iron, carried by iron principals and girders, and the new shop is perfectly clear of
any pillars or other supports, which would obstruct the easy any pillars or other supports, which would obstruct the easy
removal from place to place of the work in hand. In these removal from place to place of the work in hand. In these
shops the company can put down at one time a hundred large iron frames for goods wagons. We found the operatives engaged chiefly upon heavy underframes for goods wagons for the
Western Railway of Buenos Ayres. The frames are of angle
and T iron, of Staffordshire make, and are very substantial. The punching, shea by hydraulic power. The weather being fine on the day of our inspection, numbers of the hands were carrying on operations in the yards outside the shops proper. Some of the underframes are for immense bogie wagons for the carriage of timber in Santiago. The wagons will carry 25 tons

each, and the iron of which they are built is of massive proporions. The bogie sole plates, indeed, looked as though they were intended more for engine than wagon work. Theunderframesmay be justly termed one mass of channel and angle iron, the latter ot the foreign work which was going on inside and outside these the foreign was golion for the London and South Western Railway, the Metropolitan Railway, and other home | lines. |
| :---: |
| Lea |

Leaving this yard, we gained the railway siding, where carliages packed in cases ready for shipment were being loaded up
ato trucks by means of a steam travelling jib crane Thus wo orucks by means of a steam travelling jib crane. Thus wo uilding trade fre carrying on of the rail way carriage and wago and despatch of the finished manufactures by rail. Our inspec ion was of the greatest interest, and satisfied us that in the blished in Mid-England, we have a further proof of England's industrial greatness. And that greatness we have not the lea foreign competition. "Come the three corners of the world in arms, and we will shock them.

THE ROYAL INSTITUTION

Flame and Oxidution.

ON Thursday last week, in the course of one of a series of Dewar gave attention, in the first instance, to the properties of Dewar gan. He pointed out that it is a colourless greous hydro carbon, very rich in carbon, easily decomposed, and but slightly soluble in water. It has great illuminating power, and were there more of it in London coal gas, the amount of light from the latter would be greater than at present. It unites with
copper, and thereby forms a compound which is exceedingly explosive. Acetylene readily suffers new changes, and can be condensed into liquid benzole without any change in chemica composition; three molecules of acetylene condense into one of benzole; this change takes place easily, and it occurs in the
flame of coal gas. The speaker next showed it to be possible to name of coal gas. The speaker next showed it to be possible instead of diminishing, the supply of air; for when a jet of air was steadily blown into the flame with carefully regulated velocity method of colouring a hydrogen flame by blowing into it small particles of various liquids by means of a spray producer, worked by a small bellows. In this way a compound of chromium gave a very white flame, with white-looking smoke, yet when the smoke was condensed on a white plate held over
the flame, it proved to be the bright green oxide of chromium the flame, it proved to be the bright green oxide of chromium. Salts of sodium applied in a similar manner gave a yellow colour
to the flame. Professor Dewar remarked that in research it is to the flame. Professor Dewar remarked that in research it is
often convenient to use a flame free from superheated steam, anten convenient to use a flame free from superheated steam,
and a convenient flame for the purpose is one in which chlorine and, hydrogen are burned, but care must be The products of the combustion of common coal gas are burns intormless; the gas always contains sulphur, which ing of books, leather, and suchlike things, and in course of time disintegrates them. It also gives off some nitrous acid at low temperatures, and much at high temperatures. He added that the problem of the cause of the luminosity of flame has given actions. Davy said that it is due to small particles of carbo liberated in the flame. Frankland states it to be due to highly
condensed vapours of hydrocarbons, and there is some truth in condensed vapours of hydrocarbons, and there is some truth
both these allegations. Pressure increases the luminosity both these allegations. Pressure increases the luminosity of
flame. Ho here repeated Frankland's experiment of burnin oxygen and hydrogen under gradually increasing pressure up to thirty atmospheres, and the luminosity of the flame increase greatly with the pressure. In this flame, of course, solid par-
ticles were not present He added that mixed in a closed glass cylinder are highly luminous, and he exphibited apparatus for measuring the maximum pressure during such xplosions. Professor Dewar also proved that the luminosity of air, but added that a variety of hypotheses will explain the cause of the effect, so that the determination of the primary cause or causes is a matter of difficulty. Some hydrocarbons
readily enter into combination with other substances others d so with great difficulty. A little bromine will rapidly absorb all the olefiant gas in a large jar. It also unites with napltthaline, of mixing vapour of naphthaline with coal gas greatly improves the luminosity of the latter. As to the various explanations of the luminosity of hydrocarbon flames, there is no doubt that the light is chiefly due to finely divided carbon
Regent Resbabches on the Distances of the Fixed Stars, Last Friday night Mr. David Gill, F. R.S., H.M. Astronomer at the Cape, lectured at the Royal Institution on "Recent Probeches on the Distances of the Fixed Stars, and some Future chair. Mr. Gill said that the study of sidereal natronomy is specially fascinating; we look upon the galaxies and suns which surround us and wish to learn whence we come and whither we
are drifting in the realms of space, and what is the position of our own sun in the concourse of the stars. Are the nebule ever suns? The disconeries of fhe life is The ""scoveries of the past hiow that art is long and superior to the most brilliant speculations. He would not, truth, fundervalue the imaginative mind which seeks after or can be sustained during the watches of the night in his nons labour of love. Before 1832 the parallax of no fixed star had been rendered sensible, and by regular observations between
November, 1835, and August, 1838, it was discovered that a Lyrx had a parallax of \ddagger second of arc, a point as difficult to determine as the measurement of a globe lft. in diameter at a distance of eighty miles. He also stated that a silver threepenny piece a mile off would represent the size of the orbit of the
earth as seen from 61 Cy . earth as seen from 61 Cygni. These early measurements were
taken by ascertaining the changes of position of taken by ascertaining the changes of position of certain
stars in relation to each other, but the firt stars in relation to each other, but the first to make a
direct measurement of their parallax was Henderson, of the Cape Observatory; the second was Bessel. Of late years
been measuring the distances of some fixed stars in the southern hemisphere by means of a telescope with a divided object glass years in which light travels as expressed in the nuarthr α Centauri, $4 \cdot 36$ years; Sirius, 8 .6; Lacaille (9352), $11 \cdot 6 ; \epsilon$ Indi, 150, 02 Eridani, $19 \cdot 0 ; \epsilon$ Eridani, $23 \cdot 0 ; \xi$ Tucanæ, 54.0 . So the fixed stars and eye-observations as to the relative brillianc of stars are no guide to their relative true distances. He believed, with Mr. Lockyer, that the future of astronomy depends much upon photography, especially since the recent
feat of exquisitely photographing the nebula of Orion had been so efficiently accomplished. It would take ten years to make complete photographic map of the heavens, Dr. Elkin wa willing to do it in the northern hemisphere, and he -Mr. Gillapparatus were supplied; this, from the kind consideration he had always received from the Lords of the Admiralty, he anticipated would be done. He concluded by quoting the words of Sir John Herschel, that such things are quite as worthy of struggles and sacrinces as many of the objects for which nation contend, and exhaust their physical and moral cencries and resources. They are gems of real and durable glory in the
diadems of princes, and conquests which, while they leave no tears behind them, are for ever unalienable.

DISTRIBUTION OF ELECTRICITY.

AT meetings of shareholders of electric light companies it has
lately been freely stated that a great difficulty in the way of carrying out work was owing to the rules and conditions of the
Board of Trade, and the Electric Lighting Act. Some have known otherwise, and we think that one difficulty lay in the engineering question of distribution, viewed from the com mercial standpoint. It was shown in our impression of Februeconomy in outlay should be studied was the weight and insulation of the conductors, and that whatever tended to reduce tion of the conductors, and chat whatesed
these was so much saving of capital invested
Many systems of distribution are in existence having for their object economy in cost, combined with the no less important ceccuric feature of providing for an electro-motive force prack.
cally constant along the line, when the quantity of current used. at different points along that line is varying from hour to hour but, so far as we know, not one of these systems has proved to be the success that its inventor hoped. As we mentioned, Pro fessor Forbes had stated that under any then existing system of
distribution the size of conductors for large installations would distribution the size of conductors for arge install
be something enormous and practically impossible.
The inventor who first conceived the idea of distribution on a large scale, and the date at which he did so, will probably neve actual application--or rather formulation of the idea into actual
 in 1877, and from that time systems of distribution have been devised, each perhaps an improvement on what has gone our adopted countryman, Richard Werdermann, did as much as any in this pointed out the systems of running or laying conductors that We daily see ascribed to Edison, now pretty generally known as
the "single or double line of centres system." This system is supposed to have the drawback of inadaptability to extensions, and that is the reason why up till now the net-wor system has been generally adopted. The line of centres system has advantages which the net-work system has not them, although at first sight it has a similarity to the distribu tion of electric energy on small scale, known in the telegraphic world as the "open and closed circuit system.
thas more than once been proposed to economise in conby havin using high tension currents, as in the Sawyer system, tiple;" but this system, while effecting a great saving in conductors, does not readily lend itseif to extensions, and moreove one lamp is cut out, a corresponding artificial resistance must be put in. A new system is one patented by Mr. J. S. Beeman, in series, the circuits between them being closed by,

say, lamp

Our readers will easily understand the diagram, and that, course, the same amount of current must be circulating on both parallels, and that, granting that there is an equal number of
lamps on both parallels, and that they are equally distributed and of the same resistance, they must all be of the san brilliancy. If we consider the parallels as rails, and a
motor train be placed on each, it is obvious that the motor will have equal efficiency at whatever point it may be on the line and by this system any number of trains can be run on the same paralel ast the same time, thus supplying a want that was
clearly demonstrated in the discussion after the lecture on telpherage at the Society of Arts a few days since, for, by Mr. Beeman 8 system, through the electro-motive force along th one another, $i, .$, , if they are of the same weight and their moton equally efficient of course special means would always havo to be employed when such was not the case
In his report on this subject, Professor Forbes says the invention," and histant addition to the practice of electrical distrivin special value for the extensive abable wo invention as hav transmission and other purposes, which are too costly by pre
zent arrangements. sent arrangements.

TENDERS.

For extension of ballast bank, Portmadoc Harbour. Mr. Thomas
\qquad

\qquad
Tris Salterhebble Viaduct engraving, which we recently pub

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our

railway signals.
SIR,-I was glad to see that you thought the subject of our space to a leader on it. Your correspondents seem entirely to
ignore that part of my letter in which I say that there are exceptions to every rule, and that I am aware there are lines on which the signalling is defective, for the reasons I stated. I
merely disagree with Mr. Stretton, that I do not consider railway signalling deserves such wholesale condemnation as he seems to think, although, as I inferred, it was not perfect. I also quite concur with you in thinking that drivers are a far more intelligent tates that he thinks I have entered into this important discussion ease, as it is a matter which I have and have had for some years almost daily before me, which is perhaps more than he can say. No good purpose can, however, be served as you justly remark in we require to do is to arrive at facts.
distant signals. To be more explicit. Somds my point about the distant as a home signal, by making it a stop signal, as wel as the home, instead of allowing trains to draw past and stop at he home as usual. I quite believe that some of the oldest I stated, they were opened before the Board of Trade had it present authority, and before railway working had become as much of a science as now. I know from experience, and any railway man who has been present at the Government inspection of a new
line will concur with me, that the Board of Trade officers are most exacting and particular-and rightly so-about the signal signal can be seen by the driver, whether there is a good back round, or any intervening objects, and in the case of a signal not being visible from the cabin, they insist upon a repeater. To give you an example. I remember the case of two starting signalsnain and back platform-being on one post, the top signal being
of course left-hand road. The inspector would not pass the post but insisted on a bracket post being substituted. In your article you mentioned electricity, and cited some instances where it could be applied.
I have
aking the railly made some experiments with regard to this, by your article on the Chicago Railway Exhibition. I found notice not good enough contact, and of course separate great, there was oint mean expense. I think for course separate contacts at each is a good arrangement. The North London have fitted all their stations with a platform fouling bar. The great difficulty with o get out of order and the rieat care required in maintemine On a railway nothing should be left to chance, and careful watching means expensive maintenance. To prevent the error you mention, of the signalman forgetting he has a train "on" and giving line clear, "there is a beautiful system of electric locking in vogue, called "the union of the block and interlocking
systems" and the "electric slot signal." At the time of the koyal Show at Kilburn, Messrs. Saxby and Farmer, the owners of he patents, opened their museum to visitors, and explained the working of this arrangement. It has, I believe, been adopted on the London, Brighton, and South Coast, and on some French lines. They summarise its advantages in the following way :- (1) Points
and outdoor signals must be in proper position before "line clear" can be telegraphed for an expected train. (2) No movement points can be made for shunting or giving access to a line signalled by telegraph as clear for an expected train, the points remaining firmly locked until the train has passed out of the block section. (3) Having once sent "line clear" on the telegraphic block instrument, and the permission to send a train on having been
accepted, and acted on by the signalman at the next station, it is impossible to transmit a second message of "line clear" until the expected train has passed; thus two trains running on the same
line of rails cannot be signalled to enter the same section at once, the first train must have left the section before the second one can ge permitted to enter. (4) The outdoor starting signal cannot be
given to permit entrance into a block section without the consent and concurrent action of the signalman at both ends of such block section; and by means of the electric slot the outdoor signal at one station can be instantaneously changed from the "safety" to the "danger" attitude from any other station, irrespective of distance. (5) The mechanism makes it compulsory
that the outdoor starting signal shall be reset to "danger" behind every train ; and that upon the entrance of a train into a block signalman at the station in the rear the proper signal of line signaiman at the station in the rear the proper signal of line
blocked behind the coming train. (6) The signal "train on line" must be transmitted to the station in advance before the outdoor signal for a train to enter a block section can be given, so that it is
not possible for a train to enter a block section unannounced by not possible for a train to enter a
telegraph to the station in advance
I find I have wandered rather far from the original starting point, though I am on the same subject; but the largeness of the
May 21 st.
Assoc. Mem. Inst. O.E.
THE PRESENT PROSpECTS OF YOUNG ENGINEERS Sir, - The present prospects of our young engineers can hardly be
considered satisfactory-in fact, one columns of any of our engineering papers to be assured of the fact further proof, let him insert on advertiseyment ; and if he need draughtsman at even nominal salary, and he will have, perhaps,
200 or even 300 answers; then will his cyes be opened to the true state of affairs, and he will ask himself, "When will all these appliIf he take any fur
to find out anything at trouble in the matter, as the writer has, applicants, he will find that a nuamber of them are men not only of high character, but also of considerable ability and experience,
and men who would prove an acquisition to any staff to which they might, be appointed.
It is sad to think
years in study and that these men may have spent not only many years in study and hard work, but also a great portion of their younger ones, having paid large premiums to be apprenticed to
learn their professions, and having served their time creditably, are
turned into the wrid turned into the world to seek occupation how and where they can,
their late master thinking he has done his duty conscientiously their late master thinking he has done his duty conscientiously when, on returning them their articles, he promises "to do what
he can to further their interests," and then thinks no more about them. This to some will appear hardly credible, but nevertheless it is a fact; and having carefully looked into this subject, I know several instances where such has happened, and will quote one. A tailor having saved a little money, and having given his son a
good education, resolved to apprentice him to an engineer. He good education, resolved to apprentice him to an engineer. He
nccordingly paid this engineer a premium to take him into his a little practical experience as well. From the day the boy anything, but left it entirely to his manager. The manager was
a man who thought that, as he received no portion of the premium, it was not incumbent upon him to take any great trouble with the boy, and simply taught him how to trace and copy drawings.

The boy, however, being an industrious lad, attended evening classes in designing and mechanical drawing ; he also took private instruction from an engineer in estimating, taking out quantities,
strains on girders, \&c., thus spending a great deal of money, although he was receiving no salary at his office. The result was hat at the end of the four years he turned out a good draughtsman experience in shops, he was competent to accept any situation in the drawing-office. His master, on returning his articles to him, promised to try and get him a place, and wished him every success; engineer-thought no more about him, and for nearly two years the young man was without employment, and at the end of that time he went abroad, and is now doing well.
I could quote several other instances, but feel confident that his one will be quite sumficient to show what a serious matter it employment.
And now, How can this be remedied? It can be partially remedied in two ways: (1) A certain firm with which I was once
connected used to get their assistants all the way from Germany! connected used to get their assistants all the way from Germany Surely this is quite unnecessary. It is easy enough to get just as
good assistants at home; and if German employés are a little cheaper, they cannot be much cheaper, and it becomes a duty for those firms which send abroad for their assistants-and I believe there are many-it becomes a moral and patriotic duty, to assist our own countrymen, and those who may be near at hand, perhaps in want, instead of passing them by to go to forelgners. (2) Could not an agency be started for the purpose of inviting all engineering
assistants in search of employment to send such particulars as their names, ages, copies of testimonials, work previously employed on, \&c.; such agency to publish weekly or monthly a journal containing these names, and send a copy to most of the chief engineers, and to charge no preliminary fees, but a small commission on the
first year's salary to all for whom they should find employment? And now I must conclude. This is a subject which I have lon wished to see introduced into our engineering papers, and if by these few lines I have caused any readers to interest themselves on the subject, I shall be more than rewarded for my trouble.
42, Devonshire-chambers, Bishopsgate-street,
May 27th.
LEAKAGE IN TORPEDO-BOAT BOILERS.
SIR,-One of the inconveniences experienced in the boilers of boilers, as is well known, are of the locomotive type, and The boilers, as is well known, are of the locomotive type, and a longi-
tudinal and cross-section of one of them, as made by Messrs.
so as to permit its elongation with the expansion of the tubes tubes, instead of being quite straight when inserted, might also b somewhat bent, the holes being made slightly oval to permit
tight fit being made at the ends. Instead of bending each tube, however, it might be made somewhat spiral, when the holes in the tube-plates might be round, as at present, but be placed a little
H. OANNING. urther apart.
Muswell Hill Engineering College,

May 21st. TORPEDO boA

Sir,-Now that torpedo warfare has become a national institupeare In 1868 I explained to the Floating Obstruction Committee the plan I read a
burgh in 1871
In a letter from the Admiralty, dated the 26th August, 1868, Onsiderable ingenuity, they are not of opinion that it is likely to be of use to H.M. Navy

In The Engineer of 20th October, 1871, a communication from on of ains these words:- "There is no doubt that the introduche whole system and efficient-plated ships, whose weight and nwieldiness would only favour their own destruction, without I nabling them to evade or paralyse this mode of attack. 68 is th best, and the discussion at the United Service Institution still further strengthens that opinion. Philip Brahas. 7, Miles's-buildings, Bath,

May 26th.

NOMINAL HORSE-POWER,

SIR,-With reference to the letter you have received, and the sicle you have written commenting on the indeterminat haracter of a nominal horse-power, allow me to suggest that would be the simplest and most judicious course to discard alto
gether a unit of measurement the magnitude of which is unknown, and the retention of which, in technical parlance, only perpetuate confusion. There are two rules for nominal horse-power we known to engineers, and from which all the others have, I think been derived. The first was given forty years ago by the principa of this College in his multiplied by the cube root of the stroke in feet, and divided by 47 , will give the nominal power. The second is what is called the

Thornycroft, are given in the annexed figures, whero A is the
furnace, B the bridge, C the tubes, D the longitudinal stays, E the crown stays, and F the furnace door. In this boiler the furnace Was originally made of copper and the tubes of brass, nothing being
left undone to make the boiler as efficient as possible. through the tubes was, as usual meitintained by ba The draught into the stoke-hole, and it was found on repeated trials that, so long as the fan was kept going, there was no feakage at the ends of
the tubes within the furnace, but when the fan was eased or stopped at the conclusion of the experiment the tube ease once began to leak, and soon leaked so much as to put the fire out attogether. On examination of the boiler when cold, it was found
that the tubes were invariably slack in the furnace tube-plates, and

in some cases were oval in the vertical direction, and in other cases
in the horizontal direction; in one case one of the tubes was found in the hor
broken off
Sow what is the cause of these anomalies? They have never
Now been explained, and the perpetuation of them has greatly embar-
rassed the construction of Thornycroft had to Dumore the copper fre -bor and the brass tubes, and to substitute a fire-box and tubes of iron, by which, for the
time the evil was surmounted; but surely the conper and breat time, the evil was surmounted; but surely the copper and brass
would have been much better but for this intractable leakage and it is very important to find out what is the cause of it. My belief is that the evil arises from the unequal expansion of the shell and of the internal parts of the boiler, consisting of the fire-box and temperature, and the internal parts, being hotter, will also expand more on that acoount. The consequence is that the tubes are comprosed endways, and bend sideways, under the strain, making the holes oval, sometimes in one way and sometimes in another.
So long as the high temperature is maintained the bent tuber So long as the high temperature is maintained the bent tubes in
the oval holes remain tight, but immediately the temperature is
redued the recuuced the tubes, being released from the bending strain, become
straight again, when the tubes, boing left slack in the sarily leak. If this diagnosis of the ailment be correct, the proser
remedy appears to me to lie in the corrugation of the boiler-shell,

Admiralty rule, which was given to the Admiralty by Mr. Laurie, Barnes, which is expressed by the formula $\frac{(d-1)^{2} v}{560} v$, where d is the diamoter of the cylinder in inches, and v the velocity of the piston in feet per minute. The first of these rules was applicable to paddle and geared screw engines, the speed of which in feet per
minute was about 128 times the cube root of the stroke. The second was appicable also to direct-acting engines, as it took into account the element of speed, but not the element of pressure,
and so it would not express any uniform relation between the and so it would not express any uniform relation between the
actual and the nominal power. I see no reason, indeed, why we should perplex ourselves by trying to esta blish such a relation, or
why we sheuld retain so indeterminate a unit as the nominal horsepower at all. The power of an engine is the dynamical energy it is able to exert, and if the expression nominal power occurs in Acts
of Parliament and other documents, the common sense course is of Parriament and other documents, the eommon sense course is,
submit, to translate the phrase into sueh an equivalent of actual
horse.power horse-power as the date of the document would approximately fix
hy by the prevalent ratio then subsisting between the actual and the
nominal horse-power.
A. E. A. EDWABDS.

College of Practical Engineering,
Muswell Hill, May 27th.
HYDRAULIC LIFTs.
STR,- We have read a letter in your last week's issue under the
above heading from a correspondent who signs himself " "Fono above heading rom a coter your use of that word in deacribing own patent hydraulic balanced lift. We do not know whether your corre spondent does not understand the nature of the patent and desires
information, or whether he merely desires to criticiese but if he will information, or whether he merely desires to criticise; but if he will
give his name and address to us direct, we shall be very pleased to give his name and address to us direct, we shall be very pleased to
show him lifts working on our principle and explain to him wherein为 ditions is economical as well as effective. Though what we chiefly claim for it is its safety and efficiency rather than economy; thoug
on the latter point also it will compare favourably with the system of other manufacturers. Daver-street,
Falmouth-road, Great Dol

London, S.E., May 28 th.
Royal Metbobological Society.-The usual monthly meeting of this Society was held on Wednesday, the 21st inst, at the Innti
tution of CivilEngineers, GreatGeorge-street, S. W.; Mr. R. H. Scott, t.R.S., president, in the chair. The following papers were read
F. Confere "Notes on the Proceedings of the International Polar Conterence, held at Vienna, April 17th to 24 th, 1884 ," by R. H
Scott, F.R.S., president. This conference was held to welcome the several expeditions on their creturn from the Arctic cregions, and
to discuss the best mode of utilising their labours. (2) "Meteoro lodiscuss the best mode of utilising their labours. (2) "Meteoro-
logical Observations on the Maljo. Plateau, Uper Engadine
Onate Maloja Platean is situated at the higher extremity of the Upper Maloja Plataua is situated at the higher extremity of the Upper
Engadine, and is protected from northerly, esaterly, and southerly winds. The author gives some account of the meteorology of thi
plateau, and also the observations made during the four months, platean, and also the observations made during the four months,
November, 1883 , to February, 1884. (3) "On some Results of an Examination of the Februmetric variations in Western India," by A. N. Pearson, F.R. Met. Soc. (4) "Mlustrations of the Mode
taking Meteorological Averages by the Method of Weighing Paper
Diagrams," by R. In wards, F.R. Met. Soc., F.R.A.S. (5) TTe Years' W
Met. Soc.
 MESSRS. TANNETT WALKER, AND CO., LEEDS, ENGINEERS.
 (For description see page 402.)
 $\frac{5}{5}$

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

*With this weel's number is issued as a Supplement an
Engraving of a Locomotive for the Buenos Ayrres and Pacific Railuay. Every copy as issued by the Publisher contains this
Supplement, and subscribers are requested to notify the fact should they not receive it.

TO OORRESPONDENTS.

** In order to avoid trouble and confusion, we find it necessary to public, and intended for insertion in this column, must, in ald
cases, be accompanied by a arrye evvelope legibly directed by he
vriter to himself and bearing a 1d, postase stamp, in order that answers received by us may be forvaraded to their destination. No notice will be taken of communications which do not comply ${ }^{\text {with these instructions. }}$
must therefore request corventurn dravings or manuscripts; we
 taining questions. must be accompanied by the name and address
of the woriter, not necesarily for publication, but as a proof of good faith. No notice whatever will be taken of anomymou .H. H. $-B a x$ " on
H. H. H. - Box "On Mill Gearing."
Hoas - We cano give you better advece than to try for yourrelf in Stookton
or sunderland.

 points raied in your letter. dsa rut
can hare yours teted if you desirv it.

ARROWROOTMACHINE
(To the Editor of The Enginerer.)

TURBine tallrace.

(To the Editor of The Engineer.
Sine, Woolan nome of your readers kindly give mo the solution ot the
oillowing problem? What depph will the water stand in a tailrice if

SUBSCRIPTIONS.

 1, eredit ocecr, an extra hargo of two siluings and sixpene per a 1 complete ut of Tug Tus Exorskar Votume, price 22. 6 d.

 ADVERTISEMENTS.

THE ENGINEER.

MAY 30, 1884.

LIVERPOOL DOCK ACCOMMODATION.

The large and progressive development of the trade of the port of Liverpool is daily making it more evident that more dock accommodation is required there, and it is equally certain that the available land faced by deep water
in its immediate vicinity on the eastern bank of the Mersey is entirely occupied, and that consequently any extension of that accommodation must be sought upon its
western shore. The river Mersey undoubtedly presents western shore. The river Mersey undoubtedly presents
difficulty of access. Large vessels arriving are, owing to ifficulty of access, Large vessels arriving are, owing to cient depth of water over it at low tide from proceeding up the river, and have therefore either to anchor or to beat
about until the tide shall have risen. This obstacle is not felt by outward bound vessels, the masters of which can at their will choose the hour of their departure; but incoming ships are exposed during the hours of waiting to considerable dangers, not the least of these
being due to fogs. Many losses have arisen from this cause, and a remedy for the defect is most earnestly desired. We have had submitted to us a
scheme with which the name of Mr. Henry C. Baggallay C.E., is nssociated for providing such a remedy; and it appears to us, after full consideration, that his scheme may be found to be practicable, and that it offers an easy
and certain means of surmounting both the difficulties as have above pointed out. This proposal contemplates the cutting of a canal three miles and a-half in length from the head of the Wallasey pool, in connection with the Great Float, through the solid land, in the direction of the Horse Channel, which channel it is proposed to make the entrance for all incoming vessels, those outward bound still adhering to the present route. As the Horse Channel does not receive any of the mud-charged waters of the rivers Dee and Mersey, it is anticipated that there will be no already almost sufficient for the largest vessels at the lowest state of the tide; while by the inexpensive system of guide banks proposed by Mr. Baggallay, such system of guide banks proposed by Mr. Baggalay, such
maintenance will not only be ensured, but increased depth will be obtained by the scour induced. Between the deep water of the Horse Channel and the western end of the proposed canal-at which a pair of locks will be provided is 13 ft , above old dock sill at Liverpool-there intervenes flat known as the Mockbeggar Wharf, through which it will be necessary to dredge a channel to be provided with the guide banks above named, and breakwaters, for slightly over a mile, and this chamel and the canal before referred to will ensure deep-water communication between the Great Float at Birkenhead and the Horse Chamel, the latter being then available for incoming vessels during all states of the tide. The strip of Cheshire which inter venes between the Dee and the Mersey offers practically unlimited scope for extension of dock accommodation. In the neighbourhood of the proposed canal the land is quite at, and its surface only a foot or two above sea level at high water, conditions which not only favour the construction of the canal at a cheap rate, but would also greatly lessen the cost of any docks which it might be found desirable to make
Having thus briefly sketched out the leading features of Mr . Baggallay's proposal, which appears to us to presen litle or no difficulties of an engineerng charader it will be work. It refer to the probable cost onstruction at Liverpool has always been costly, owing to the fact that-each dock has had to be provided with expensive river water and of the tide in the Mat owing to the great rise and 30 ft , such works have had to be made of a very sul stantial, and consequently expensive character; but as, according to the present scheme, the entrances to the nev docks would be from the canal, in which the water woul expenditure would be avoided. Then, again, as vessels would enter at one end of the canal and proceed outwards rom its other extremity, the necessity existing in the present docks for ships to enter and leave by a single the tide will not be experienced; in fact, as Mr. Baggallay puts it, this arrangement would give "all the advantages that a double line of railway has over a single line in acilities for working, as the two lines of traffic do not pass each other." The facts above quoted afford prima facie with past experience in dock construction for Liverpool
The canal itself, it is suggested, should be 30ft. dee and 150 ft . wide at the bottom, with side slopes of 2 to which figures are in considerable excess of those existing on the Suez Canal, and of those proposed for the Manhester ship canal. The estimated cost of this work $\notin 300,000$. The pair of locks, each 600 ft . long and 80 ft . wide Horse Channel end of the canal, are estimated at $£ 350,000$ and an additional lock which would be required to that already in existence at the Mersey end is set down at already in existence at the Mersey end is set down at
$£ 200,000$. The estimate for the thiree locks, $£ 550,000$, is $\pm 200,000$. The estimate for the three locks, $£ 550,000$, is
certainly not a high one; but then it must be borne in mind that all excavation, both for them as well as for the mind that all excavation, both for them as well as for the
canal itself, would be in soft and sandy soil, an alluvial deposit only, which is easily removed by the shovel. Progressing westwards from the Horse Channel end of the canal, we arrive at the channel it is proposed to dredg the deep-water entrance. To this channel it is intended to assign a width of Gooft. as a minimum, greater width being The shoal to be removed is sandy, and the cost of the dredging to be done is set down at $£ 150,000$. Two mile of guide banks would have to be provided; but for more
than half of this length they low water, and their cost would from that fact be relatively small. Mr. Baggallay put this down at $£ 350,000$, sum which he considers may be made to include the proper
lighting arrangements for the entrance between the banks lighting arrangements for he entrance between the banks, $€ 1,350,000$; and if for so moderate a sum the advantages et forth can really be attained it seems a trifling price to pay for getting rid of the difficulties now existing, and for which relief is certainly urgently demanded. That the advantages
can be secured for the amount named, Mr Baggal can be secured for the amount named, Mr. Baggallay expresses himself to be confident; and when it is remembered that the value of the imports and exports for one year at Liverpool is now $£ 200,000,000$, we can hardly anticipate that the amount to be expended will be found prohibitory.
There is another and important consideration, apart
rom those of an engineering and financial character, which from those of an engineering and financial character, which Increasing diffiniliered win reference to this providing employment for convict labour. We should have to look forward for a long time to state any period at which employment for a large amount of such labourers could not be found on these proposed works. Not only on these themselves, but on the extension of dock accommodation, which we may regard it as almost certain would years beir execution, a very large force could for many which it is proposed to cut the canal would be admirably suited to the requirements of a convict establishment.

Such a site would be healthy, for the sea breeze would at little 1 From the same establishment also could be undertaken reclamation works in the estury of the river Dee which would furnish employment long after such had been required on the works immediately proposed, or on the prospective extension of dock accommodation.
It may be as well briefly again to review what would be secured by the execution of this work. First and most important, we should have the ensured provision of the docks should theng trade of Liverpool urgently demands. We has arisen enormous loss to prife and property in the detention of vessels outside the bar at the entrance to the Mersey, while the additional risk at present entailed by the outward and inward streams of traftic passing each other in a crowded river would be
avoided. Further, we should have dock entrances no longer exposed to the disabilities of being only available at exceedingly limited states of the tide and to crown all we have the question solved of "What shall we do with believe that it will be generally a yrear that such results from the proposed expenditure of $£ 1,350,000$ are far more course, pledge ourselves to the opinion that the estimated expenditure would suffice; but having regard to the very favourable conditions of soil, \&c., the cost does not appear to us to be stated unreasonably low. Presuming that frther inquiry justifies this opinion, and that Mr. Bag have to be considered under what circumstances of financial responsibility such a work should be carried out. Should it be left to a harbour trust, or committed to the tender Imperial work in view of the certainly Imperial character of the interests involved in the maintenance at a high standard of efficiency of a great national port like Liver pool? The advantage that we have pointed out would
accrue to the Goverument from the field of labour these works would provide trongly in favour of the last-named alternative. Under Government direction there would be no scope for the intrusion of those merely local interests which, while deserving of the most ample consideration in this case, have in many instances been found to seriously hamper premature perhaps to discuss the matter in this direction, Our immediate object is achieved by laying before the public what appears to be a well-considered scheme

the breakage of screw shafts.

In our impression of March 21st we published an article on the breakage of screw shafts, a subject of such mportance that we feel no apology is necessary for returu on the dearth of information available for the guidance of engineers as to how best the percentage of failures may e reduced. Let us further analyse the conditions attending the working of screw shafts. In the case of a large
ocean steamer, her shaft, as usually fitted is simply zontal column of iron or steel of, it may be, 80 ft . long and ft. in diameter. Practical conditions of manufacture and handling necessitate its division into a number of length These are united together in the most rigid and unyielding manner possible. On the one end is tixed, also in the nost rigid method practicable, a propeller weighing several tons, intended to rotate at-considering its weight and the conditions of its working -a very considerable velocity Such a propeller, when at full speed, has a very large amount of power stored up in it, and under fair conditions it acts, in its relations to the engines and the ship's hull, as well as to the sea, as a fly-wheel. It operates, therefore, at least theoretically, in a favourable manner towards the shaft and engines, in so far as its inertia hinders that racing of the engines which ensues when it is rased out of the
water by the pitching of the ship. The power it thus water by the pitching of the ship. The power to thus
absorbs it returns in aid of the shaft as soon as it is itself again plunged into the water. Its vis viea helps to overcome the arresting action opposed by the water to the momentum gathered by the engines during the time the propeller was out of the water, and wish icient to nsufficient to absorb altogethe
This suggests the idea that if it were in any way practicable to tit a heavy fly-wheel close up to the propeller, it
would probably act beneficially as an equaliser of stress. would probably act beneficially as an equaliser of stress. in this direction is to give the propeller, as much as possible, the character of a fly-wheel. At the same time it must be borne in mind that this sort of action, operating as it might for some revolutions, at a speed in excess of that to which the then speed of the ship is due, would cause some thrashing action on the water and consequent vibration. On the other end of our shaft we form cranks whose weight and disposition are out of balance, and to these cranks we connect a number of heavy working parts often weighing several tons; and we cause these to reciprocate at a high velocity, say, at a speed of 450 ft . or more per minute on an average, revolution of the , attaining a of no less than 900 ft . per minute, and this high speed is operating when the steam is acting, in the case of the pitching of piston, with its maximum efect. 1, by instant submerged perhaps much below its normal depth, we have a combination of conditions operating against the shaft so great as -under present modes of fitting- to
render a fracture not only likely, but extremely probable The endurance of a propeller shaft depends on a variety of conditions, some of them, of course, beyond our control others, however, are not beyond it, and about these we may speak. The material of a shaft as well as its disposal are controllable, and of these we may say that all is bein done that can be done to improve things, so far as securing
excellence of material and workmanship are concerned.

This is not enough, however. The steel-maker and the shaft-forger do not get fair play for their work, nor will they receive it so long as naval architects and marine eng1-
neers devote themselves wholly to attaining one end, namely, neers devote themselves wholly to attaining one end, namely, accept our remarks in the spirit of courteous and polite criticism in which we write-have done nothing to help
propeller shafts. They seem to think that so long as they propeller shafts. They seem to think that so long as they obtain or provide the best shafts that can be procured,
they have done enough. It is time they took broader they have done enough. It it time they took broader
views. The finest shaft that it is humanly possible to make must fail if improperly put to work, and we do not hesitate to say that the existing method of fitting up propeller shafts is opposed to all sound mechanical principles,
What is the existing method? A shaft or column of 70 ft . or 80 ft . long, is laid horizontally in an iron trough, as we may define the ship's hull to be. We bind this rigid; as we may define the ship's hull to be. We bind this rigid;
or nearly rigid, column into the trough at certain points as tightly and inflexibly as it is possible to do it. This column we prevent moving in any direction, save retating, Experience has taught engineers how difficult it is, with the most staple foundations on shore, truly and accurately a centre a part, by being in one and the same casting capable o being bored coincidentally; and even in this case truth is not attained unless the casting is carefully designed, of not attained unless the casting is carefuly
sufficient strength, and most accurately bedded.
Neither the naval architect nor the marine engineer can, with our existing knowledge of rivetted ironwork, ever obtain a perfectly inflexible set of bearings for propeller matter how strongly and carefully the hull of an iron ship is built, it will very soon begin to "work" in a seaway, We have just shown that in its conditions of working a propeller shat is, th every sense, very severely ally, it is called upon to act the part of another in an extreme degree to three different, and at times violently opposing forces, namely, torsion, compression and lateral bending, while it is deprived as nearly as possible of all power to accommodate itself to
resist these diverse strains to the best advantage. What can be done to remedy all this? In our last article we advocated the adoption of flexible couplings, or of universal joints in the shaft. The fact that the encourage us to try them. If well and carefully mat encourage us to try them. If well and carefully made,
there are excellent reasons for their adoption. We will be glad to hear, and we will publish in our correspondence them. Experiments on a large and practical scale, too, ought them. Experiments on a argeand practical scale, too, ought
to be made. To this suggestion we will perhaps receive a to be made. To this suggestion we will perhaps receive a
reply as to the great cost of such experiments; but if the reply as to the great cost of such experiments; but if the
enormous loss of property involved in the destruction of even one large steamer and her valuable cargo be conof even one large steamer and her valuable cargo be con-
sidered, we camnot but think that money may be prudently sidered, we camnot but think that money may be prudently
expended on testing different forms of flexible shafts and expended on testing different forms of flexible shafts and
couplings, and on other methods of conveying the power couplings, and on other methoc
of the engines to the propeller.

The present system of trying to guard against broken shafts only by making them thicker and sounder is not the most scientific method to pursue. Under existing
modes of fitting we should try to use thinner, not thicker modes of fitting we should try to use thinner, not thicker
shafts, because thin shafts will be more flexible than thick, shafts, because thin shafts wis be more fexible than thick,
and less liable to break, because of the springing of the and less liable to break, because of the springing of the
bearings caused by the working of the ship. The scienbearings caused by the working of the ship. The scien-
tific as well as the common-sense course is to admit that tific as well as the common-sense course is to admit that
rigidity of bearing cannot be maintained, and, recognising the unpleasant fact, to ascertain by experiment what is the best mode of giving flexibility to the shaft so that
it may accommodate itself to its bearings. The shaft of a it may accommodate itself to its bearings. The shaft of a
large steamer in anything of a sea is on a foundation for ever in a state of earthquake, and should be fitted accordingly. A committee of shipowners, insurance representatives, and engineers, as well as shipbuilders, ought to be
formed, a subscription list opened, and a sum of money collected to defray the expense of experiments having for their object the determination of the best method of transmitting the power of the engines to the propeller.

brighton elegtric railway.

Soxs time since we gave a short account of the electric rail-
way made and worked along the Brighton foreshore by Mr. M. way made and worked along the Brighton foreshore by Mr. M.
Volk. Since a few days before Easter this line as laid out this year has been in successful operation, and some figures have
been obtained which must be looked upon by electrical engineers and the public as of much importance, as well as of considerable interest. As we have already said, the line is built and worked under conditions which are in iome respects unique. The Cor-
poration granted to Mr. Volk, for limelf, and not for any poration granted to Mr. Volk, for himself, and not for any
syndicate or company, the right to construct and work an syndicate or company, the right to construct and work an
electric railway along the upper part of the bench. Mr. Volk electric railway along the upper part of the beach. Mr. Volk
constructed about a mile of light single railway, and put down one 8 -horse gas engine, and one Siemens generator and exciter.
With this plant, and With this plant, and one car to carry thirty people, and with
the necessary small terminal structures, one of which is not yet finished, no less than 34,000 passengers have been carried during eight weeks, The line includes 230 yards on a gradient of 1 in
$100 ; 1100$ yards with gradient of 1 in $45 ; 50$ yards at 1 in 16 ; 100; yards at 1 in $30 ;$ and 200 yards at 1 in $150 ;$ the remainder
being nearly level being nearily level. The car is titted with an epicycloidal driving
pulley, by means of which the gradient of 1 in 16 is worked at
one-third the usual speed eight miles an gradients being worked direct. This gear is brought into action by a simple friction clutch, and is very simple.
Along the level the power consumed is but 1.75 brake horsepowg the The working of the line has been most satisfactory, and
power.
the financial results are very encouraging. The whole cost of the line and equipment was 82500 , exclusive of whatever charge the owner, Mr. Volk, would add to this as electrical engineer of
the work, which, of course, occupied a good deal of time, and the work, which, of course, occupied a good Teal of the design of than have been $£ 278148.3 \mathrm{~d}$, or $£ 3415 \mathrm{~s}$. per week, while the
expenses have been \&17 198 , per week, leaving a profit of $\begin{array}{ll}16 \\ 168 \\ 160 & \text { per week. The expenses include the cost of about }\end{array}$ $\ell 110 \mathrm{~s}$ per week; lad driving engine, 12 s ; car driver, $£ 14 \mathrm{~s}$, ;
conductor, $£ 14 \mathrm{~s} ;$ station clerks, $£ 110 \mathrm{~s}$; ; lineman, $£ 11 \mathrm{~s}$,
labourer, 18 s ; $;$ electrical and general management, $£ 310$, 10 ; repairs, $£ 1$; depreciation and interest, $£ 5$; and rent of an arch seating thirty passengers. It will be seen that the working expenses are small, but are such as can be repeated for any pany with itstaking, which does not belong to a limited com to be added, a turnout being provided at mid length of the line Though this will double the carrying capacity, the working
expenses will be increased to but a small amount, as may be gathered from the above figures. The popularity of the line may a mile in length the figureway shows what may be anough onl plant economically and carefully worked. It shows that when excellent profit may be made, but with anything like the publi company ideas of capital, the profits would be lost. From it nstance, be seen that what is done on this one mile, which however, will probably be increased to two miles, may be repeated
on any number of miles, and for large traffic much lighter stock on any number of miles, and for large traffic much lighter stock
can be used than can or is used on steam lines, and the cost o can be used than can or is use
maintenance should be small.

the manufactured iron trade.

THE falling off in the shipbuilding industry is now beginning Orth of England the manuractured iron trade. So far as the extent and value of the trade. At present there is a monthly production of manufactured iron to the extent of 37,500 tons, whilst about six months ago the total production was 58,000 cons; and the average value of the iron sold by the associated
rms is much less-it was $£ 6$ Os, $6 \frac{\mathrm{~d} \text { d per ton in October, it is }}{}$ is firms is much less-it was $£ 60$. 6 ysd. per ton in October, it is
now $\& 58$ ss. 11d. Since the last ascertainment of prices the fall now 2588.11 d . since the last ascertainment of prices the fall
has not been so large, but it is appreciable. That return was has not been solarge, but it is appreciable. That retunn was fall in two months is nearly 5 s . per ton. As in the same time the extent of production has fallen, it must be evident that the trade is much worse than it was. The return of February was the one on which the arbitrator-Dr. Watson-based his award, but it is evident that the reduction then given was inadequate; and it must be looked upon as a certainty that an attempt will be made to reduce wages further, though it cannot be said when pidly to atcempled. The fact is that the trade is sinking adjustment of the cost of production to that level before the trade can have any revival.

LITERATURE.

The Scientific Papers of James Prescott Joule. Vol. I. Pub lished by the Physical
Francis, London. 1884.
Dr. Joule in his short preface which he has written for this volume explains that its publication was due "to the flattering proposal of the Physical Society of London to collect and reprint the papers on scientific subjects which have appeared in my own name, and those under my own
in association with the Rev. Dr. Scoresby, Sir Lyon Playfair, and Sir William Thomson. In this the first volume I have endeavoured to fulfil the former part of the design." These sentences explain pretty clearly of what the volume consists.
Every engineer, man of science, nay, every student of science, has heard of "Joule's Equivalent," but their ideas
of the life work of Joule himself are in many cases extremely hazy. A perusal of the volume before us will do much to dissipate an ignorance in some respects excuseble. Joule is by no means a voluminous writer, nor did he ever belong to the ranks of those who are never so happy
as when they are attracting public attention. This collecas when they are attracting public attention. This collec-
tion of papers written at various times during a period tion of papers written at various times during a period
extending from the 8th of June, 1838, to 24 th June, 1878, Is remarkable evidence of the versatility of the author's mind. The range of subjects which he has handled is methods in which he has handled them. As far as in him lay, Joule exhausted every inquiry he entered upon. lay, Joule exhausted every inquiry he entered upon.
While anything remained to be known he was unsatisfied; and one result is that his inquiries anticipated much that
has been done during recent years, while another is that has been done during recent years, while another is that
even those portions of the volume written nearly fifty even those portions of the volume written nearly fifty
years ago will be found full of instruction, and extremely suggestive. At an early period he commenced the study of electro-magnetism, and it may almost be said that what
he did not learn about electro-magnetism is not worth he did not learn about electro-magnetism is not worth
knowing. Some of his experiments point to conclusions which may be useful to those who design dynamo-electric machines, while others bear on Mr. Hughes' theory of
magnetism. It is quite beyond our power to do more than refer briefly to a few points which deserve attention. The is simply a record of facts, and desperiptions of the methods by which the facts were ascertained. We can take examples of his facts at haphazard. For example, it
is tolerably well known that an electro-magnet even if made of very soft iron retains its magnetism after the current is cut off, provided the keeper is left in contact with the poles. But Joule has gone further, and shown that a surprisingly minute current will suffice to keep an electro-magnet excited, if we may use the word, "Having,"
says Joule, "subjected magnet No. 1 to 90 deg of electric force, a quantity adequate to bring its power to 560 lb , reduced the current to a lower intensity, and then found the weight requisite to detach the armature
quite sufficient size of a common sewing thimble, was No. 1, and about 300 lb , and it is easy to perceive that by increasing the size of the electro-magnet and the quantity of conducting wire, this minute source could support a magnetic virtue of indefinite amount." This was written in 1840, when volts and ampères were unknown, and Joule had to construct a standard of current for himself.
Joule at this time was earnestly labouring to construct important discovery that what is very early made the resistance was "the principal obstacle to theperfection of the
come will the motive power increase. It therefore claims
our first attention." resistance of the : augmentation of the intensity of each element of the battery is very important, as it is attended by a proportional increase of duty
Some of the results obtained by Joule with electro magnets are sufficiently remarkable. He seems to show, power of an electro-magnet increases with the breadth of its poles. To make this clear, let us suppose that our electro-magnet is made of a strip of boiler plate, tin. thick and 6 in . wide, bent into a horseshoe shape, the whole bar being 2 ft . long. If, now, we take a bar similar
in all respects, but 12in. wide instead of 6in., then, the current and wire remaining unaltered, the econd magnet will be much more powerful than the first. the most noteworthy feature, perhaps, about all nis to produce an intense magnetic field, and we would pecially direct the attention of modern electricins to th papers on matmetic forces pages 27 ed One the magnets he tested was made of stub iron, such as that used for making the barrels of fowling pieces, coiled on a mandril, and welded into a thick tube A slice was then planed off this so as to open the internal hole by a long slot, and an armature was planed to fit, so that when the wo were put together the whole formed a tube 2 ft . long in. in diameter inside, and $1 \cdot 42 \mathrm{in}$. diameter outside. Into it could be suspended in a horizontal position, with the slot down. The armature was fitted with To excite this magnet-which weighed 6 lb .11 oz , the veight of the armature being 3 lb .7 oz .-a copper rod side of the magnet, brought back through the inside, and again passed down the outside in a shape somewhat similar to a very long S . Through this rod a current effective surface of two square feet, was sent presented an
It will be seen that the inductive influence of the wire must be small, because it made really but one turn round the magnet; yet this magnet sustained a weight of no less teen 1350 lb . The magnet No. 1, to which reference has was a wrought iron cylinder 8 in. long, with a hole 1 in . diameter bored down its axis, and a piece planed slot forming the poles. It was wound with four copper wing of the cylinder This mamet carried 8 ewt when the current geremtel by a sole pair of 4 plas of current generated by a single pair of 4in. plates of iron pair of platinised silver and zinc plates, giving only two parere piaches of area, gave an attraction so great that it was square inches of area, gave an attraction so great that it was
almost impossibleto slide the armature by hand. On .43 of the volume will be found a drawing of Joule'sring magnet, in which the exciting wires are used much as the coils of tape re in the Ferranti dynamo. This magnet weighed but 1 l ., and it sustained 2710 lb . Including the armature, the whole weight of magnetised iron was 11.57 lb ., and these results and others like them with those obtained from the field magnets of dynamos, we are tempted to ask whether in these latter days we get nearly as good results out of a given weight of wire as did Joule.
In one sense, the most interesting part of the whole oluze is that devoted to a description of the successive pounds per British thermal unit. The last paper in the volume contains a long description of the apparatus finally used-similar to one devised by Hirn-and particulars of the results of numerous experiments. The final conclusion of the author is: "The equivalent at the sea level and the latitude of Greenwich will therefore be $773 \cdot 492$ foot-pounds, defining the unit of heat to be that which a pound of water, weighed by brass weights when the barometer stands at 30in., receives in passing from 60 deg. to 61 deg.
Fah., with water weighed in vacuo, the equivalent is Fah., with water weighed in vacuo, the equivalent is finally reduced to $772 \cdot 55$ foot pounds.

We have said the range of subjects dealt with by Dr.Joule is very large. Besides those on his magnetic engine, we find electric origin of the heat of combustion; the calorific effects of magneto-electricity; the changes of temperature produced by the rarefaction and condensation of air; specitic heat; matter, living force, and heat; the velocity
of sound : some amalgams ; the utilisation of the sewage of London and other large towns; the surface condensation of steam, \&c. \&c. Joule's views on the dispoeal of sewage may be briefly summed up by saying that he is fully impressed with the value of sewage, but he holds that cesspools should be used in which to collect it, and from which it should be pumped in a more or less concentrated state. The arrangements which he proposes that the doubt be efficient, buthe we do not dispute the value of sewage; but assuming it to be worth 30 s. per ton, it will not pay to spend $£ 2$ in collecting it and putting it on the land. This is really the whole difficulty in the disposal of sewage, or at least is so great a In 1888 that all others are comparatively insignificant. " Fros Dr. Joule added a curious note to this paper. "From the estimates," he writes, "of loss by our sewage systems there ought to be set off the immense stores which
return to us in the shape of mollusks and fish. It has return to us in the shape of mollusks and fish. It has
been observed that the best and most nutritious fish are boend in seas contiguous to fertile land, where rivers bring down organic matter. On the whole, considering the enormous quantities of imported food, this country must be acquiring great fertilising potentiality at the expense of
America and other lands which are being impoverished to supply our present needs.
The paper on surface condensation is probably little
point alone we shall mention in connection with it. By
putting spiral wires round vertical copper condensing putting spiral wires round vertical copper condensing words, the efficiency of the apparatus-from 166 to 413, or nearly three-fold.
The volume contains 657 octavo pages. It is fairly well indexed, and admirably printed in large type on good paper. Wherevess. The frontispiece is a capital portred on steel, engraved by Mr. Jeens. It originally appeared in Nature. The volume should, and no doubt will, have
place in the library of every one interested in science.

SOLUTIONS OF IODIDES IN MINERALOGICAL RESEARCHES

Two important papers on the use of solution of the two double iodides, potassium and mercury iodide, and barium and mercury iodide, for the above purposes, have recently been published by
V. Goldschmidt and C . Rohrbach. It is to be regretted that he subject of the separation of the constituents of a rock has been neglected of late, in consequence of the success which has
attended microscopic investigation, as the excuse in which the latter method cannot be relied on. The attempt to describe
lone the constituent of a section of a rock by microscopic examina tion is greatly overrated. The separation may be effected taken of the difference in the specific gravity of the substances In 1877, Mr. Church, in a paper in the Mineralogical MagazineOn a Test of Specific Gravity "-proposed to separate the help of an aqueous socution of the iodides of mercury and
potassium. The papers give at some length an account of J. potassium. The papers give at some leng
Choulet's researches on the same subject.
On investigating the subject further, Goldsehmidt decided to employ a solution in which the weight of potassium iodide pre-
sent is to the mercury iodide as 1 is to 1.239 ; and this solution sent is to the mercury iodide as 1 is to $1 \cdot 239$; and this solution
has a specific gravity of 3196 , so that fluorspar floats in it, while the solutions of Thoulet and Church gave as the maximum pecific gravity 2.77 and 3.01 respectively. The maximum f the atmosphere and on the temperature. In summer the naximum was $3 \cdot 196$, whilst in winter it was only $3: 17$
The difficulties which attend this simple method of separation of the rock constituents according to the specific gravity are due mineral ; the close combination of the constituents; the smallness of the grains; the great similarity, or, in some cases, the
identity of specific gravity of different minerals occurring logether, such as quartz and oligoclase, the tendency of the with them to the surface and the liability of the solution change by evaporation or by taking up water.
the specific gravity constant enough for the mineral to be deter nined by it; and if a separation is effected between narrow nineral sought for has been separated! Theoretically it is so In order to answer the question practically, Goldschmidt sub nited the felspar grains to the strictest investigation, and came to the conclusion that, with fresh material and perfect separa-
tion, the determination of the specific gravity gives an fexact Thesion as to the nature of the felspar
The apparatus used for the separation of the rock constituent
roposed by Thoulet is described, but Goldschoid proposed by Thoulet is described, but Goldschmidt prefers to
effect the separation in small beakers of about $40-50$ c.c. capacity, the principal advantage of which is that the parts swimming puently, the heavier grains which are enslosed more easily separated. A number of minerals whose specific gravity has The powdered rock and the indicators are introduced into about ubside, and the lighter parts removed. The success of the separation depends on the skill of the experimenter, on the
choice of the indicator, but, above all, on the nature of the abstance to be separated
It is evident, then, that Thoulet's opinion, that the constituents of a rock can be qualitatively and quantitatively separated,
holds good only very rarely ; and it would be necessary also in nost cases to make use of auxiliary methods, such as treating he powder with various re-agents or with the magnet.
Rohrbach's paper appeared late last year
has employed the barium salt and mercury ; iodide for the separom the great resemblance that exista between the says, that of the mereury iodides and the alkaline iodides with the iodides of the alkaline earths, it appeared to him desirable to prepare
the barium and mercury iodide for use as a dense solution; and provided it was found to be equally soluble, , tit was to be
expected that a still denser solution would be obtained than in expected that a still denser solution would be obtained than in
the case of Thoulet's liquid-corresponding, in fact, with the greater density of barium over potasium. In turned out that
the maximum density of the new solation was 3.558 . he maximum density of the new solation was 3.588 .
In preparing it, recard must be
In preparing it, regard must be had to the fact of the ready
decomposibility of the barium iodide, and it must be made quickly; 100 parts of barium iodide, which may be obtained in a state of great purity from Tromsdorf, in Erfurt, and about
130 parts of mercury iodide-hydrarg. bijodat. rubr.- -are to be and after the addition of about 20 ch.cm. of distilled water, the flask is to be placed in an oil bath heated to 150 deg. to 200 deg.
Cent. The rapid solution of the materials and formation Cent. The rapid solution of the materials and formation of the shaking and stirring with a bent glass rod held between the
fingers. When all has dissolved, it is to be boiled for a short
 until a crystal of epidote from the Sulzbach Valley, used as an
indicator, swims in it. On cooling a small quantity of a yellow indicator, swims in it. On cooling a small quantity of a yellow
double salt separates; but in spite of this the specific gravity of double salt separates; but in spite of this the specific gravity of
the solution increases by the combination, and in the cold liquid a piece of topaz will swim. To remore, the double salt, which
has separated, it is best to let it stand for several days in a closed flaske, and then carefully decant the clear liquid. Filtration of this liquid has certain disadvantages, especially in the
case of large quantities of it, for the paper is converted by the solution into qual leather-like material which does not adhere to the platinum cone. The solution, thus prepared, without diffculty attains at ordinary temperature a specific aravity of
3575 to $3: 588$; it strongly refracts light, and has a very high
dispersive powe dispersive power, as the following numbers show:- $\mathrm{nC}=1 \cdot 7752$,
$\mathrm{nD}=1 \cdot 7928, \mathrm{n}_{\mathrm{D}}=1.8265, \mathrm{~F}=1 \cdot 8488, \mathrm{nF}-\mathrm{C}=0.0736$,
$\frac{\mathrm{F}-\mathrm{nC}}{\mathrm{n}^{\mathrm{C}}}=0.0409$. In the violet strong absorption takes place.

The high index of refraction, which exceeds that of arsenic
bromide $=1.78$, and that of the Thoulet's solution $=1.733$, recommends the use of barium potassium iodide in a high degree for the dection.
reflect
The ready decomposibility of barium iodide by the carbonic acid of the air supplies an exact test of this solution in that
respect; a current of pure carbonic acid passed through for a respect; a current of pure carbonic acid passed through for a
space of two hours did not produce the slightest change in it, or was a fragment of calcite or of chalk in powder, which was slightest degree
By means of this liquid, as opposed to the other at present in general use-the liquid referred to by Goidschmidt above-a Whole series of minerals can be separated at ordinary tempera-
tures. epidote, the black micas, some garnets, almost all the hornblendes, jade, olivine, orthite, ottrelite, almost all the members of the
pyroxene group, some spinels, staurolite in part, most of the pyroxene group, some spinels, staurolite in part, most of the
titanites, topaz, and pyknites, black turmaline, vesuvian, zoisite, and among the rocks all the basalts and some felsparless rock Centrated solution deposits crystals of red mercury iodide whied do not redissolve in the cold. To prepare, therefore, a liquid of definite density it is most convenient to add some diluted solution prepared
boiling point and adding to it water drop by drop. There are
several
other precautions to be taken to which attention is drawn. Quite recently, since writing the above, we hear of the use of cadmium borotungstate, recommended by Daniel Klein in the Bull. de la Soc. Chim., 35, 492, and Compt. rend., 93,318 .
The solution has a density of $3-28$.

FOREIGN NOTES.

The following ships-of-war have been launched for various Governments during the last few weeks, viz.:- At the Finnboda or the Siberian squadron of the Imperial Russian Navy. The Siwitsch is 187 ft . Iong by 36 ft . wide, and will be propelled by
twin-ccrew engines of 1000 indicated horse-power. She will twin-screw engines of 1000 indicated horse-power. She wil
carry eight guns, and her cost is 800,000 Swedish crowns. The carry eight guns, and her cost is oclad gunboats for the defence
Fusee, the first of a batch of ironcla of the French coast, was launched at Lorient on-the 8th inst, The class to nich chis vessel belongsisone chince the days of the Viper, Vixen, and Waterwitch, as it was found that a far more vailable in the gunboat in sanctioning the designs of the Fusee, the French Admiralty have had in view the German gunboats of the Wespe type; but it must be remembered that these latter boats are intended for very different field of action, viz, the shallow coasts of the the French vessels are intended for operations in the Mediter ranean, for covering landing parties, \&e., for which, owing to
their light draught, they are no doubt well adapted. The dimensions of the Fusce are:- Length between perpendicularis, 16 ft . 11 lin.; draught of water, 10 ft . Gin.; displacement, 1045 tons material of hull, steel and iron; guns, one 10 gin . and one 31 in. breech- Thears, the irme armour is 9 tin , thick, and she is provided with a tube for discharging torpedoes. Her cost, including armament, is the chief dimensions, of of this may be interesting to compare German prototype, the Wespe. This boat was built at Bremen
in 1876 , and is 142 ft . 9 in. long, 35 ft , wide, 11 ft . 2 in. deep, draws 10 ft . of water, and has a displacement of 1109 tons. She is pro tected by 8 in. armour, and carries a 12 in . breech-loading gun, as
well as apparatus for discharging torpedoes. Her total cost was
 course of the present month, is the third ironclad added to the Warspite, has been launched during the same period, and the displacement is 18,148 tons and 7390 tons respectively. The
French Government have at present thirteen ironclads with total displacement of 70,119 tons, on the stocks; whereas only Ive ironclads, with a total displacement of 49,200 tons, are ressels. The Cosman is sary, exctusive of so-calted protectec in length, 59 ft. in breadth, $24 \mathrm{ft}$.8 in . deep, and a draught of
24 ft of water. She will be fitted with twin-ccrew engines of 800 indicated horse-power, and is expected to realise a speed $14 \frac{1}{\mathrm{~L}}$ knots. Her armament consists of two 13 yin . breech-loading
guns and four small guns, besides which she is fitted with apparatus for discharging torpedoess The maximum thickness
of her armour is 19 in. A small ironclad, named the Bremse,
 has a displacement of only 870 tons, and as she is provided with comparatively powerful engines, viz, 1500 -horse power, it if Her hull is built of steel, protected by 8 in. compound armour and she ca
torpedoes.
Messrs. Normand and Co., of Havre, have obtained an order for six sea-going torpedo boats from the French Government in sample boat built by them. Two well-known firms at Stettin and Bremen have each been ordered to build a number of large
torpedo boats for the German Government. Some of the boats are now ready for trial, and they will probably give very satisfactory results -at least in so far as can be judged from the high class of workmanship which a close inspection of their
construction, both luuls and engines, proves to have been expended on them.

THE MANCHESTER SHIP CANAL BILL.
The decision of the House of Lords' Committee upon this scheme was announced too late for our last issue, but although specilly learnt what the result of this protracted inquiry was, there is yet something to be said which is certainly not without forty days of the investigation over which the Duke of Richmond so ably presided, we have kept our readers informed of
the leading features and incidents of the inquiry, and as this is a scheme which, if carried out, would affect very much wider interests than those simply of Liverpool and Manchester and the intervening districts, it is well, if not indeed necessary, to
show how the examination of this scheme ended so far as the Committee of the Upper House was concerned. During the
inquiry no less than 151 witnesses were heard for or against the
Bin inguiry no less than 151 witnesses were heard for or against the
Bill, and nearly 26,000 questions were asked, while Mr. Pember's
concluding speech on behalf of the promoters lasted fully twelve
hours, spread over three days, So powerful and able speech
has rarely been heard before a Parliamentary Committee, and the learned counsel's mastery of the most minute details of the scheme, and of every point of evidence, throughout was very striking and effective. An advocates speech cannot, of curse, bo taken as shling how the veraict is to go, but when Mr. Pember ended, falling hopes on the part of the promoters wer vigoruly ring faiter. The Con mittee assembled on Friday last to give their decision, but they sat in close conference for more than two hours. Meantime, a crowd of counsel, agents, witnesses, and other interested parties waited with more or less patience outside the doors, anxiety and doubt increasing as the time advanced-the prolonged conference suggesting difficulties and controversy among the five noble lords. When at last the room was thrown open, there was a rush and a scramble for places, and some moments elapsed
The Duke of Richmond briefly and concisely announced that with the Pill were to the insertion of a clause which Mr. Pember hal phevioly offered, staying the conse the work until five millions of the required capital of ten millions had been subscribed and issued. Upon this declaration there arose what is most irrecular and most umusual-a hearty cheer from the friends of the Bill. Then there followed a helterskelter scamper along the corridors, down the lofty staircase, and across the public lobby, to the telegraph office; and in a few minutes Lancashire was apprised of the triumph. The scene was exciting in the extreme, and altogether unparalleled in the history of Private Bill Committees. But to return to the form indicated, some further information was required, and it was explained by the Chairman that the Committee intended that some limit of time should be fixed for raising the five millions, and that one-fifth of that amount must be absolutely paid up, and that the subscribers of that amount should be made responsible for the rest. Following this elucidation came another novelty, both in Lords and Commons Committees Mr. Pember, on behalf of the promoters, and also of all the counsel engaged in the case, expressed their sense and ability with which their lordships had conducted this inquiry. This sentiment being endorsed by general assent the Duke of Richmond, so far from resenting this piece of attery, or even disroging it, reponded been foirl and properly put before them with immense ability on both ides, and further, that the parties had been perfectly justifieel in occupying the length of time they had. After this exchang of civilities and compliments, the Committee adjourned fo awhile. On resuming, they proceeded to deal with the clauses, eported to the House of Lords
Upon the consideration of the clauses, all the petitioners save one withdrew from further action, and that one was the Man chester Racecourse Company. If the scheme is carried out the racecourse will be approprated, and for the protection of the company" interests it was eventually agreed that the promoter and before they had raised the five millions, and should deposit during the cover any loss the company might suffer during the period of notice by interference with thei
arrangements or from other causes. The clause required by the Committee was drawn up and agreed to in the
following terms:- "The company shall not execute any of the canal orks, docks, or of the estuary works under the powers of the Act unless and until within three ycars after the passing of and 40th section of the Compsies Clause Consolidations A 1843, that shares for the whole of the said sum of before £5,000,000 had been issued bona fide, and are held by the executors, administrators, successors, or assigns, and that such persons, or corporation, or their executors, administ production or assigns are legally liable for the same, and upon such other evidence as he shall think sufficient, he shall grant a certificate that the proof aforesaid has been given, which certificate shall be sufficient evidence thereof
In the course of the evening of Friday intelligence reached London from Manchester that the required five millions were
already virtually provided, and in view of that circumstance it is pretty certain that the promoters, despite the enormous sum they have already spent, are prepared to fight the thing out
when it comes, as it soon will, before a House of Commons' when it comes, as it soon will, before a House of Commons
Committee. No one but the Committee themselves can tell absolutely how their lordships went in regard to the Bill, but opposed to passing the preamble, and was supported by Viscount Barrington; but Lord Dunraven, Lord Lovat, and Lord Norton and especially the last-named, were sufficiently in favour of the
Bill to carry it against their colleagues.

South Kensington Musbem. - Visitors during the week ending May 24th, $1884:-$ On Monday, Tuesday, and Saturday, free, from
$10 \mathrm{a} . \mathrm{m}$. to $10 \mathrm{p} . \mathrm{m}$. ., Museum, 12,118 ; mercantile marine, Indian section, and other collections, 3269 . On Wednesday, Thursday and Friday, admission 6 d ., from $10 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$., Cuseum, 1545
mercantile marine, Indian section, and other collections, 162 Total, 17,094. Average of corresponding week in former years
17,589 . Total from the opening of the Museum, $21,051,171$. A Watch made to be Pounded.- When a visitor to the office
of the American Bank Note Company sat down to talk to Mr. Lee, that gentleman put a piece of white paper under a stamp to go away, Mr. Lee put the paper under the stamp again, and
pounded it once more. "You talked eight minutes," said he; "that wasn't bad." He showed the piece of paper to the caller, at four minutes to four o'clock, the other showed them at four
at minutes past four o'clock. "We keep that stamp," he said, "so
that you sha'n't go away and say that you came here at eleven oclock in the morning, or that you had to wait an hour and a-half "No," he added a moment later, "that stamp is the latest attachment. The hour hand is simply a raised point apon a movable circle. The minute hand is an arrow on another revolving
circle. The usual inkel tape passes over these indicators and tle outer circle of hour figures. Besside over the clock indicators and the is a cylinder
with several faces, each bearing a with several faces, each bearing a word-one is 'approved,
another is 'wired,' another is 'answered, others are 'delivered,
'Lee,' 'received.' Thus a business man is able whenever her away a letter, telegram, or package, receives an order, or trans acts any business whatever, to record the precise moment at which
the thing was done. It costs 20 dols. I did not invent it; I the thing was done. It co

OFFICIAL PHOTOGRAPHS OF COPENHAGEN COMPETITIVE ARMOUR-PLATES.
The competitive trial of steel and compound plates at Amager, near Copenhagen, on March 20th and 21st last, was reported in The Engineer of March 28th, the report being accompanied by sketches. We have had a good deal of correspondence on the subject of these plates and the effects produced by each round, and we have had some detailed features in our own sketches objected to.

SCHNEIDER STEEL.

$2^{\text {N }}$ round

No sed Round was Fibzd at Scinemeris Platt
We have now seen other sketches made on the ground, as well as the Government photographs. We find that the other sketches also differ slightly from the photographs. In one case-the second round at Brown's plate-there are wo independent sketches showing a long crack, of which there is no trace to be detected in the photographs, even with a powerful magnifying glass, until the third round.

MARREL STEEL-FACED.

Under the circumstances we think it best to give an engraving depicting the visible effects, copied carefully from the photographs, especially as an important competitive trial of this kind calls for a brief review.
Our engraving shows the plates not quite as they stood in the actual trial. We have, for the sake of convenience, arranged themso asto show in the upper engraving the effect of the first round, in the second place that of the second
round, and in the third that of the third round at each plate in the cases where a third round was fired. The nature each round is entered near the point of impact.
The following is a brief summary of what took place :The plates were all $6 \mathrm{ft} .6 \frac{1}{2} \mathrm{in}$. long, 5 ft . high, and nearly 9 in .
thick; they were curved, so as to represent a portion of thick; they were curved, so as to represent a portion of

CAMMELL STEEL-FACED

$2^{\text {no }}$ round

Tarjet Shot away by 3rd Round-10ts. Solid Chilled Iron
a turret 10 ft .9 in . inside radius. The backing was oak with iron skin and bolts-shown in detail in our report of March 28th last. Krupp's plate was solid steel, held up by sixteen bolts ; Marrel's, Cammell's, and Brown's were soe's patent, Marrel's and Cammell's being made on's hal eleven bolts, and Cammell's and Brown's twelve each. The position of the bolts is shown by white spots. The first round at each plate was fired with a Krupp's 5.9in steel shell, with a striking velocity of about $1742 \cdot 2 \mathrm{ft}$. weight, 112.44 lb .; and striking energy of 2364 foot-tons Estimating the plates at about $5 \frac{1}{4}$ tons weight, this would amount to about 450 foot-tons per ton of plate. The second round at each plate consisted of a Krupp steel 10 in . shell, weighing 402 lb ., with a striking velocity of 1410.8 ft , and consequently a total energy of 5551 foottons, or nearly 1041 foot-tons per ton of plate.
The effect on all the plates of the first round was more considerable than might have been expected. At Ochta the lightest blows were 427 foot-tons, and the heaviest 711 foot-tons per ton of plate. At Spezia the lightest were 654, and the heaviest 1046 per ton of plate. At Shoeburyness in 1880, a blow of 541 foot-tons per ton of plate produced an insignificant effect on a steel-faced 18 in compound plate. The results of this first round are decidedly greater than those of the lighter Spezia or Ochta rounds. This is true of the whole of the plates, and as we cannot conceive for an instant that Schneider, Cammell, and Brown, have all deteriorated in their manufacture, we must attribute it to the fact that Krupp's steel are better than the English or Italian chilled iron projec-tiles-a very natural conclusion, but one which we wish was fully impressed on England. Comparing the plates together, we see at this stage little to remark. The steel of Schneider's plate appears to be good, the lower crack exactly resembles those made at Spezia in its character; the short broken lines are very characteristic. We understand that Cammell's plate had a harder steel face than Brown's, and that the penetration in it was less deep; but Brown's exhibits less cracking, and looks peculiarly but
well.
The second round of course tested the plate much more severely, being 1041 foot-tons per ton of plate, instead of 450 only. The effects are proportionally great and their shape is instructive. The makes an absolute breach or nole through the steel-faced plates, and we have no doubt that had the plates been harder, more of the shock would have been distributed through them. They yielded, in a measure, locally. On the other hand, half of Krupp's plate was bodily carried away. There are three possible reasons for this-one, that, as a mass, the steel is harder than the compound plate-in fact we repeat what has been said bere now, haty we have never seen a hole made in steel; secondly, the flank target is a little less strong and less well supported at its outward end; and thirdly, we believe that cracks in steel are almost always through cracks, whereas in steel-faced plates they are very often confined to the steel surface.
The third round at Cammell's broke it up, being another round with the 10 in . gun. The third round at Marrel's and Brown's consequently was fired with the 59 in . with a chilled iron projectile. The effect appears to be as great as that of the first round; but if the fact of the plates being so far broken up is taken into account, we think it may be said to be actually a weaker blow, as we have stated above; but no comparison can really be made.
On the whole, we think that the compound plates must be said to have held their own. Brown's and Cammell's appear to have held together better than Marrell's. The tests were not very well suited to exhibit the powers of the plates, but may perhaps have answered the particular object of the Dansh Government better than something
which was more truly matched to the powers of the plate To exhibit the actual powers of the plates on service, the backing should correspond as closely as possible to the iron or steel structure of a ship, or to the wall of a fort. As more through its mass, the strength of the supporting

BROWN STEEL-FACED.

$2^{\text {no }}$ rouno

structure is called more into play. A hole in a plate generally means a hole in the backing, and the passage of ome langridge into the interior, but the movement of a hield bodily tests the supporting frames as a structure.

Navigation of the Weaver.-The members of the Manchester Association of Employers and Foremen, to the number of about 150 , on Saturday week paid a visit to the important works which have been constructed for the improvement of the navigation on the river Weaver. For the conveyance of the members along the
river a steamer had been kindly placed at their disposal by Mr. Lionel B. Wells, C.E., the engineer to the river Weaver Trustecs and the first portion of the programme was a visit to the river and canal hydraulio boat lift at Anderton, which was designed by Mr. Williams when acting as engineer to the trustees, and as he proposes to construct two similar lifts in connection with the projected Wanchester Ship Canal, a few details of its arrangement will be of
interest. The lift is constructed to enable boats to pass from the inierest. The lift is constructed to enable boats to pass from the
river to the Trent and Mersey canal, which is 50ft. 4in. above the river and vice versa. The works consist of a basin opening into the canal, from which a wrought iron aqueduct leads the water to a lift pit which is connected with the river Weaver by a side channel. The lift is double, so that one barge or two canal boats can be
passed cach way at one operation. Each lift consists of a trough constructed of wrought iron, the sides forming girders. At each end of the trough or caissons, and at the end of the aqueduct, are lifting gates, which are all closed when the lift is in motion, The troughs are each 75 ft . long by 15 ft . wide, capable of holding one barge or two canal boats. The weight of the caisson and load is 240 tons. The depth of water in trough in descending is 5 ft .,
and in ascending 4 ft . 6 in ., self-acting syphons abstracting the 6 in . and in ascending 4 ft . 6 in ., self-acting syphons abstracting the 6in.
of water as the caisson rises, and the time occupied in the lift to the total height of 50 ft . 4 in . is three and a-half minutes. The rams are 60 ft . long by 3 ft . diameter, and the pressure 530 lb . per square inch. The diameter of the pipes between main presses is Sin., thence to accumulator 4 in ., and waste pipes 2 in . The accumulator has a stroke of 13 ft . 6 in ., and diameter of ram 1 ft . 9 in .
When working the caissons neary balace When working the caissons nearly balance each other, one
descending as the other ascends, and the extra power required to work them is comparatively small. The work, which was let and put in hand when iron was at about its highest price, cost $£ 48,428$ and was carried out by Messrs. Emmerson and Murgatroyd, of Stockport. The new locks on the river, and the flood sluices which
have been erected at Dalton from the designs of Mr. L. B, Wells, have been erected at Dalton from the designs of Mr. L. B. Wells,
C.E., the present engineer to the company, were next visited. The largest of the new locks is 220 ft . long, 40 ft . wide, and has 15 ft . of water on the sills, and is of sufficient capacity to pass one steam barge and three loaded flats in tow, representing about 1000 tons at one lockage, the average time occupied in passing vessels through being about eight minutes. The lock gates are opened and shut with hydraulic power, obtained
from turbines, and the water, if desired, can by a sluice arrangement be run from the full lock into the empty one till both attain the same level, thus saving about one-third of the water. The flood sluices at Dutton have been erected in a most substantial manner, a series of lifting gates being carried on massive abutments of masonry, and upon which is worked overhead a travelling crane for raising the gates in succession as required.
These sluices have been constructed to prevent floods in the Weaver, and in this they have been most successful, for while in 1852 a flood recorded 12ft. of extra water at Nortwich, since the new sluices have been in operation the water has never risen above $3 \mathrm{ft}, 6 \mathrm{in}$. By an arrangement of telephonic communication with various points on the river the engineer receives timely notice of for them, thus preventing any backing up of the fool once got ready

THE INSTITUTION OF CIVIL ENGINEERS.

heat action of explosives.

The sixth of the course of lectures on "Heat in its Mechanical Applications," was delivered on Thursday evening, the 3rd April,
by Captain Andrew Noble, C.B., F.R.S.; M. Inst. C.E., the subject being, the "Heat Action of Explosives," The chair was occupied
by Sir J. W. Bazalgette, C.B., the president. liarities of some of of the best-known explosivias might ralient pecudefined to be the instantaneous, or at least the extremely rapid,
conversion of a solid or fluid into a gaseous mass occupying a volume many times greater than that of the original body, the
phenomenon being generally accompanied by a considerable phenomenon being generally accompanied by a considerable tant part not only in the pressure attained, if the reaction tooik
place in a confined space, but in the energy which the explosive
was capable of generating. Fulminates of silver and mercury, was capable of generating. Fulminates of silver and mercury,
pierate of potassa, gun-cotton, nitro-glycerine, and gunpowder were cited as explosives of this class. The lecturer asserted that substances such as those just named were not the only true explo-
sives. In these solid and liquid explosives, which consisted gener-
olly ally of a substance capable of being burnt, and a substance capable
of supporting combustion, in, for example, gun-cotton or gunpowder, the carbon was associated with the oxygen in an extremely
condensed form. But the oxidisable and oxidising substances might themselves, prior to the reaction, be in the gaseous form carbonio oxice, of marsh. gas with oxygen, or of hydrogen and
oxygen. He added that these bodies did not complete the list, and that, under certain circumstances, many substances ordinarily con--
sidered harmless must bo included under the head of explosives making a reference to fincly-divided substances capable of oxidaatmospheric air, formed mixtures which had been the cause of many serious explosions.
These insta solid, liquid, or gaseous, or any combination of these three states of matter. In In the first place, a brief account was given of the
substances of which some the composition of one or two well-known types. In the second place, the lecturer showed the changes which occurred when explo-
sives were ffred and gave the subtances formed, the heat de-
velo pressure realised, if the products were absolutely confined ine made, and the apparatus which had been used either to had been or to verify the Pacts required by theory. He further supposed all
the explosives to be placed in the bore of a gun, and traced their sehaviour in the bore, their action on the projectile, and on the
zun itself. He also described the means and apparatus that had and on the walls of the gun, and to follow the motion of the prile jectile in its passago through the bore. He mentioned that the
potential nergyy storod up in a mixturo of hydrogen and oxygen
forming water was, if taken with reference to its weight, higher forming water was, if taken with reference to its weight, higher
than that of any other known mixture, and explained why such not employed as a propeclling or disupptive agent, , the main objec-
tion being that if a kilogram of gunpowder, forming a portion of a chargo for a gun, was assumed to occupy a litre or a decimetre
cubed, a kilogram of hydrogen, with the oxygen necessary for its combustion, would at zero and at atmospheric pressure occupy a olume sixteen thousand times as great,
The lecturer next passed to gun-co
position and the various forms in whith it wase wanutactured reforring especially to the forms which were so largely due
to Sir Trederick Abel. The various forms of guncotton were
exploded, and the lecturer remarked on the small quantity of exploded, and the lecturer remarked on the small quantity of
smoke formed, as an indication of the small amount of solid smoke formed, as an indication of the small amount of soin
matter in the production of combustion. Also, that instead
the explosions which took place when gascous mixtures were fired guncotton appeared rather place when gan volentlys mixane exploce. This
was due to the ease with which the nascent products the atmosphere, so that no very high presssuro wast sectup; but
was pointed out that by a small charge of fulminate of mer ther means, a high initial pressure was produced, and the harm most violent and destructive character. This transformation di fered materially from those which hhe had hitherto considered. In
both of these the elements were prior to ignition, in the gascous state, and the energy liberated by the explosion was expressed
directly in the form of heat. In the present instance a very large directly in the form of heat. In the present instance a ver
but unknown quantity of heant disappeared in performing the
of bringing the products of explosion to the gnecous state. of bringing the procucts of explosion to the gaseous state.
Captain Noble then showed that gunpowder, the last and most Captain Noble then showed that gunpowder, the last and most
important sample selected, was also by fart the most difficult to
experiment with as well as the most complicated and varied in the decomposition which it underwent. One great advantage for the
artillerist which gunpowder possessed, in being a mixture not a artillerist which gunpowder possessed, in being a mixtare not a
definite chemical conbination, was that when fired ut did not
explode in the strict sense of the word, It could not, for example, be detonated as ounld gun-cotton or nitro-glycererine, but tit defla-
brated with great rapidity, that rapidity varying with the pressure grated with great rapidity, that rapidity varying with the pressure
under which the explosion was taking place. As a striking illus
tration of the effect of pressure in increasing or retarding combus. tration of the effect of prossure in increasing or retarding combus-
tion, he showed an experiment devised by Sir Frederick Abel. It
 reached. He exhibited the various forms under which gunpowder
was manufactured, and ignited some samples of powder, pointing out the essential difference between their combustion and that of
gun-cotton, namely, the large quantity of what was commonly gun-cotton, namely, the large quantity of what was commonly
called smoke slowly diffusing itself in the air. He also exhibited a portion of the so-called
collected in a closed vessel.
Captain Noble next described at some length the experiments
made with gun-cotton and gunpowder by Sir Frederick Abel nnd himself. With roference to the latter, he reiteratedict their opinion that, except for instructional purposes, but little accurate value
could be attached to any attempt to give a general chemial expression to the metamorphosis of a gunpowder of normal composition.
He further pointed out that hat played the whole role in the
thene phenomena. Ho explained that a portion of this heat, to use the
old nomenclature, was altent; it could not be measured by a
celorimeter that was, it hand dianpeared or been consumed in
 powder on a performed an
After descoibing the apparatus used by Sir Frederick Abel and
himself, Captain Noble iflustrated the progress that had bed made in arattlery Noby mentioning t that thirty years ago hat the largest
charge used in any gun was 16 lb . of powder. The 32 -pounder
 gun-ototion.
The lecturer next referred to erosoion and its effectes, and added
that he was not one of those who advocated or recommended the
use of gunpowder giving very high initial tersions. If If such a
courso were followed, mudh would be lost and litle gined.
The bores of
The bores of guns would be destroyed in a very few rounds.
There was no dificulty in making guns to stand presures much
higher than those to which they were normally subjected, but higher than those to which they were normally subjected, but
then they must be in a servicoable condition. Nine-tenths of
the failures of guns with which he was aepuainted had arioen, the failures of guns with which he was aequainted had arieen,
not from inherent weakness of the guns when in a perfect
state, but from their having, from one cause or another,
been placed in a condition in which they were deprived of
a large portion of their initial strength. He added that, with a large portion of their initial strength. He added that, with
a given weight of gun, h higher effect could be obtained if the
maximum pressure was kept within moderate limits. He stated that the actual pressure reached by the explosions of
sun-cottons experimented with by Sir Frederick Abel and him gun-cottons experimented with by Sir Frederick Abel and him-
self, assuming the gravimetric density of the charge to be unity,
would be between 18,000 and 19,000 atmospheres, or say 120 tons on the square inch. While at the same density, in a closed vessel with ordinary powder, the pressure reached about 6500 atmospheres, omeasure the pressures due to the explosion of charges at 50 tons with a density of about 1 .
The lecturer then considered the case of a charge of gunpowder paced in the chamber of a gun, he supposed the gravimetric oxhibited on a tension and the density of the products of combustion when diagram the tension was represented by the ordinates, the expan sions by the abscisse, and the energy developed by any given
expansion was denoted by the area between the correspondin ordinates, the curve, and the axis of abscisse. He said that if this theoretio curve was compared with the curve deduced from
experiments in the bores of guns, after the charge might be supposed to be completely consumed, the agreement was mos cemarkable, and afforded ample evidence of the and
correctness of the theory. He had stated that he could not agree with those who were in favour of the strongest-meaning by the advance that had been made by moving in exactly the opposite direction, he exhibited diagrams of two guns of precisely the same
weight, but differing in date by an interval of ten years. One of these guns was designed to fire the old-fashioned R . L G., the was nearly double that in the modern gun, while the velocity times, that of the former; and if the foot-tons per inch of shots ciroumference were taken to represent approximately the respec ive penetrating powers of the projectiles, the superiority of the
modern gun would be still more apparent. He directed attention, however, to one point. The new gun was, as a thermo-dynmmic
machine, much less efficient than the old. This arose chiefly from the fact that although the new gun was absolutely much longer
than its, rival, it was, taken in relation to the charge, much horter; that all the gases were discharged at the muzzle at a muc energy stored up in explosives. In the case of the most important, gunpowder, he stated that the total energy stored up was abou measure a little under soo foot-tons per pow. of porder. He said
that if the potential energy of 11b. of gunpowder was compared with
that stored the enormous pressures developed by gunpowder, might be somewhat astonished at the ressults of the comparison. The of that of 1 lb . of coal, and 工力. of that of 1 lb , of hydrogen.
was not even cqual to the encryy stored up in the carbon whick was not even equal to the energy stored up in the carbon which
formed one of its own constituents. As an economic source of power coal had the advantage by at least two thousand to one. Hetlle under 500 foot-tons per loeretic of work of gunpowder but it was
light be
desirable to mention what desirible to mention what proportion of this theoretic work was
renlised in modern artillery. He concluded by arguing that were dynamics, ho urge the claims of the modern science of thermethe progress of artillery during the last quarter of a century. Twenty-five years ago our most powerful piece of artillery
was a 68-pounder, throwing its projectile with a velocity of 1600 t. was a 68 -pounder, throwing its projectile with a velocity of 1600 ti.
per second. Since then the pright of our guns had been in-
creased from 5 tons to 100 otons, the proiectile from 68 . areased from 5 tons to 100 tons, the projetile from 68 lb .
2000 lb,., the velocities from 1600 tht. to 2000 tht. per second, th as
as these filures were, and astonishing as were the energies which
in a small fraction of a second could be impressed on a proiectil of nearly a ton weight, they sank into the most absolute insigniff velocities, and energecies existing in natured with other projectioltz had given
an estimate of the heat that would be develoed if the arth wer suddenly brought to rest; but if, looking at the earth in an artil.
lery point of view, and following the principles he had laid down the earth was considered as an enormous projectile, and if, it was proposed further, that the whole energy stored up in gunpowder
could be utilised, there would yet be required a charge 150 times
reanter than its own weight, or 900 times greater than its yolume o communicate to the earth her orbital motion.
The Pe endered to Captain Noble for his exceedingly valuable lecture and also expressed the indebtedness of the Institution to the other
lecturers who had taken part in this course, namely, Professor Fleeming Jenkin, and Mr. Anderson, Mr. Kirk. The motion was carried by acolomation, and having been acknowledged by Captain Noble,
the proceedings terminated.

ON THE COMPARATIVE MERITS OF VERTICAL AND HORIZONTAL
ENGINES, AND ON ROTATIVE BEMI ENGINES FOR PUMPING.
AT the Ordinary Meeting on Tuesday, the 22nd April, Sir J. W. Bazalgette, C.B., president, in the chair, the paper read was "On
the Comparative Merits of Vertical and Horizontal Engines, and an Rotative Beam Engines for Pumping," by Mr. Wm. E. Rich, The author commenced by enunciating the principles that "
single pair of brasses forming a bearing should be subjected
single pair of brasser forming a bearing shoold be subjected to
wear on two or more axes at right angles to one another, and all
bearings wear on wo or more axes at right angles to one another, and all
bearins should be adjustable in the direction in which they
wear.s
He pointed out the several ways in which a horr. zontal engine almost of necessity departed from these prin. ciples, while it was ensy to observe them in vertical engines,
whether they were direct-acting or of the beam type. The main bearing of a horizontal engine necessarily had to
withstand the alternate thrust and pull of the connecting hinistand thy and at the same time the load of the fly wheel and
horizontall, and
crank shaft verticilly, and possibly the resistance of crank shatt vertically, and possibly the resistance of some driving
gear in another direction. This bearing ought, therefore, to be made in four or in three pieces, as wos usual in good portable was more frequently made with two brasses, inclined at an angle of 45 deg., which could not possibly be kept in perfect adjustment.
The wear of the cylinder, piston, and glands vertically, and the ne cessity for supporting the weight of the piston and rod by means of
blocks working on guides, both fore and aft of the cylinder, were also alfuded to. Aus of eco in line was the difficulty of disconneot ing their working parts, and a horizontal was not so efflicient as a vertical treble-valve air pump, and sometimes caused accident in starting, in consequence of the condenser overflowing into the enyine, some complicated driving gear was necessary. Usually this was a bell crank, whici also wore its brasses both vertically
and horizontally. A horizontal engine of the ordinary, type, not ally if the valve-chest was on the top of it. Messss. Donkin avoided this by keeping the valves low down on the side, while in
Corliss engines separate exhaust valves were provided at the bot. tom of the cylinder. Some compound horzontal engines, with
two cylinders working on cranks at right angles, with Cowper
reheater, made by Messrs. Easton and Anderson for Messrs.
Siemens, and a
three-cylinder compound horizontal engine working sixteen pumps for the ship lift at the Victoria Docks,
were then illustrated and described. The compound horizontal pumping engines, made by Messrs. Simpson for the Odessa type as those for Meessrs. Siemens, but were much larger and
fitted with a doubleacting pump behind each cylinder. The author argued that most of the above blemishes were avoided by adopting vertical instead of horizontal engines.
The several bearings required vertical adjustment only the pistons The several bearings required vertical adjustment only, the pistons
and cylinders were free from all load, except that due to the spring rings, and they wore uniformly round their circumferences, and the air pump was on the vertical principle. The engine could be
easily made self-contained on a compact bed-plate; it occupied ittle floor-space, and the foundations were very simple. In many vinding and factory driving engines, and in several centrifugal tical marine and blast furnace pumping engines were generally of the inverted cylinder type. Beam engines were specially suited for pumping, as they permitted a high piston speed and a low pump from one engine. They were also easily balanced, and were conve-
nient for the introduction of the Woolf compound principle. Their ongevity and steadiness of working, when properly balanced, also kep them in favour for factory driving in many parts of England, and in Rouen and Ghent on the Continent; though in consequence of they were almost universally adopted on the Conzontal engines, they were almost universally adopted on the Continent for such
duties. The universal adoption of the vertical cantile marine, and the recent introduction of it in the Royal Navy, even at the cost of additional armour-plating to protect it, in
order to obtain the advantages which vertical engines possessed over the horizontal engines formerly used, were then discussed and allusion was made to the extravagant wear of the largest class of the paper, discussion was invited as to whether the modern continental engineers were right in adopting horizontal engine or nearly all purposes, or was the author right in advocating a and using them almost invariably where large pumping power wis equired. He admitted the very low first cost of the horizontal engine in its simplest form, and that for small high-pressur densing and fitted with quadruple or triple main bearing brasses
dent it wecame as dear as a vertical engine, and not so enduring; and i pumps in a well, the cost of it, with its buildings and boiler, would be very nearly, if not quite, as much as a Woolf beam cost twice as much. The author then proceeded to describe the type of beam engine constructed by Messrs. Easton and Anderso in recent years. Their aim had been to make it, as far as possible and to carry the cylinders, valve gear, main bearing, beam car so as and engine entablature entirely on this foundation casting he engine-house walls, which could then be of a much lighte construction than was necessary when the entablatures wer supported by them. The bed-plate took the place of the shallow pumps could be bolted direct to the underside of it. The general effect of the self-contained principle was to add to the cost
of the engine proper, but to reduce that of the engine-house and foundations to a greater extent; so that the total cost of the pumping station was reduced. In the earlier engines of this type
the entablature was carried on six round vertical columns ; but the angularity of the connecting rod caused vibration longitudinally of the superstructure, and the two centre columns were therefore replaced by ornamental A-frames, which in the most recent examples had given way to cellular A-frames of a very stifl box
section. In all first-class engines the cylinders were steamacketted, and usually the high and low-pressure cylinders were sion slides of the Meyer type, improved by the author, on the high pressure cylinder. The cylinder-capacity ratios were usually from to make the low-pressure more than three times the size of the high-pressure cylinder, as, if larger, the diagrams would be very
attenuated and almost valueless, in consequence of the lodgment experiments were then given, showing the slow rate at which an unjacketted low-pressure cylinder warmed. At one hour and aat a temperature of only 150 deg.; at three hours it was 175 deg. and only after about five hours aid it reach The necessity for the accurate adjustment of governors when adopted was then referre to, and the cases in which governors were frequently dispensed
with when an attendant was always close at hand in the engine room. The regulation of the expansion by the governor was
rarely necessary or desirable in pumping engines, which had
usually tolerably uniform work. When an engine through a long main it was best to keep the stop valve wide open, and to remulate the engine by the expansion gear alone.
The Hartley colliery disaster led to the adoption of wrought iron beams, but they were costly and not entirely satisfactory. Latterly heas a mistake to burden a pumping engine with an abnormally. If only carefully balanced, and the work indi-
cated and work to be done on the up and weary one. several engines of moderate dimensions than one or two of colossal worked faster than had been the usual practice, if they were well were fitted with pumps having large valve area. With shallow pumps they could be worked faster than with deep well pumps.
The Brighton engines worked at 14 revolutions, the Winchester at
24 , the Lambeth, Antwerp, and Sutton at 22 , and the Portanouth 24, the lambeth, Antwerp, and Sutton at 22, and the Portsmouth
at 22 to 26 revolutions per minute. It was not only necessary that engines should be ccoat as much as possible of the power indicated equally important that as much as possible of the power indicated
should be utilised for useful work. The position of the pump
under an engine beam had much to do with the loads on, and friction of, the working parts. The principles on which air vessel assistance of diagrams showing the variations in the discharges of various types of pumps, the practical result being that 23 gallons of water per revolution, or 42 gallons for four-throw pumps, were author considered that all machinery was impaired rather than improved by the introduction of ornamentation in the wood and stone, and that symmetry with such outlines as congood castings and workmanship, constituted the elements of bestow it on the engine-house and chimney, and to call in the architect to assist in designing those structures which were essen-
tially different from the machinery. At the same time, if economy of first cost was important, it was better to have an undecorated
engine-house and high-clas perfections of the engines, in order to get means for ormamentin the buildings. Some engine and boiler-houses could be built for
about one-third the cost of the machinery, but not unfrequently they cost considerably more than their contents. Illustration.
constructed by Messrs. Easton and Anderson and their predecessors, commencing with the four Woolf engines at the Brighton
Waterworks. Each of these worked two 33 ing. deep-well low-
service pumps, a 24 in , high-service pump, and a middle-service service pumps, a 24 in . high-service pump, and a middle-service zones at different levels. The four engines at the Portsmouth works had each a double-acting piston pump, 20in. in diameter, with a ength of stroke of ftt . The South Essex Waterworks engine
had two $16 i \mathrm{in}$ high.lift pumps. All of these depended on the
engine-house walls for their stability. Then followed the self-engine-house walls for their stability. Then followed the self-
contained Doncaster Sewage and Saratoff Waterworks engines, acting pump between the engine centre and the crank. In the acting pump between the engine centre and the crank. In the
Winchester No. 2 engine, working two deep wel pumps, two
A-frames replaced the centre columns in the last-named examples. A-frames replaced the centre columns in the last-named examples. cylinders on separate bed plates, each working a dowble-acting pump, placed between the cylinder and beam centres and crank
at right angles. The pumps sucked their water through a sur
face condenser, and the condensed water from the steam face condenser, and the condensed water from the steam
jackets passed direct into the feed pump suction. There were two pairs of such engines in the same engine-house, and they were
supplied with steam by five double flue boilers. The steam in its passage from the high to the low-pıessure cylinder was re-heated,
as in the Cowper system, by an inclined tubular heater. The beams were of wrought iron, and were surrounded with entabla-
tures forming chequered plate platforms, which were supported by A -frames and polished wrought iron columns, and were entirely independent of the walls. A basement floor, 10ft. below the main
ongine-house floor, gave free access to the surface-condenser and engine-house floor, gave free access to the surface-condenser and
all the pumps without artificial light. In the first trial of these engines they worked with 17 lb . weight of steam per indicated The temperature of the water in passing through the condenser rose about 1 deg. Fah. per 100ft. of life. The Antwerp Water-
works engines were to the same centres as those at Lambeth: but they had both a high and a low-pressure cylinder on each bed plate ; the beamsand connecting-rods were of cast iron and the main bearing
were cast on the bed plates. No. 3. Sutton engine wasan example of ne fitted with threepumps, all sucking from the same well, and work ing under lifts of 182 ft ., 291 ft , and 526 ft . respectively, and inter
changeable in their duties. The Buenos Ayres sewage pumping changeable in their duties. The Buenos Ayres sowage pumping maximum of 17,500 gallons of sewage on a lift of 50 ft . in one minute. The A -frames were extended to include the beam car riages, and, together with the bed-plates, were of very stiff box
sections. The beams were constructed of a mixture of cast iron and steel, having a transverse strength 65 per cent. greater and an There were two lift pumps 41 in . in diameter, 46 in . stroke under each engine. One of these was worked from a prolongation of
the high-pressure piston rod, and the other by a rod from the beam, which was turned upwards at its outer end, to enable a
single rod to be introduced for the pump, without fouling the house, and the engines were guaranteed to give a duty o 100 millions of foot-pounds in water raised per owt. of coal. matio despatch system, each other, the lower one supporting two 35 in . double-acting air pumps tively, or toge worked separately pressure and vacuum respec tively, or together for either purpose. Two engines of simple
design, and smaller dimensions, for a similar duty at the Prudential Assurance Office, were also described. Finally, an example of small compound beam engines working at 45 revolutions per minute
to drive, by means of gearing, two sets of three-throw pumps at 24 revolutions per minnte, was given in those at the South Hants

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS,

(From our ovon Correspondent.)

Busingss is quite as good as a week ago, but this is not saying a great deal, since there
of orders arriving, and more especially in the prices realised. In this last particular, indeed, trade was scarcely ever so unsatisfac tory as now
England, keeps up, and if the northern ironmasters should obtain another reduction in wages they will be in a still better position to compete with South Staffordshire for orders. orders show a little improvement
Australian and some other shipping orders are coming forward with encouraging freedom, but they are light and are soon cleared off the books. Earl Dudley's bars are $£ 82 \mathrm{~s}$. Gd.; other best quali-
ties, $£ 710 \mathrm{~s}$. to $£ 7$; second-class, $£ 610 \mathrm{~s}$; and common, $£ 65 \mathrm{~s}$. Messrs. N. Hingley \& Sons' bars were quoted to day-Thursday-in
Birmingham; Netherton best horseshoe, $£ 710 \mathrm{~s}$; best rivet, £8; double best plating, $£ 9$ double best crown Netherton, 8810 s ; ; treble best crown Netherton,
$£ 910 \mathrm{~s}$. These prices applied to rounds and squares $\frac{1}{2} \mathrm{in}$. to 3 in . 2 and flat bars lin.
The bars of Messrs. Bagnall \& Sons were quoted: -1 in . to 6 in . flat

 makers' order books. Merchant singles, however, are about an
average of $£ 7$; galvanising doubles, $£ 712 \mathrm{~s}$. 6d. to $£ 715 \mathrm{~s}$.; and average of $£ 7$; galvanising dou
lattens, $£ 810 \mathrm{~s}$. to $£ 815 \mathrm{~s}$. easy.
Bridge and girder and roofing manufacturers are drawing a good
deal of their supplies of iron from the North of England and other

to close the Bradleyfield establishment and concentrate their operations at Bankfield. Notice to this effect has been gi,
the hands, some 200 , who will consequently be thrown idle. Wolverhampton into operation. The company states works in 10,000 conces with orders on hand amounting to something like tons a week. It is the intention of the company to produce sheets of best quality. The corrugating machinery is of local manufacture and the engine for driving it is one of Robey's, of Lincoln.
Northampton pigs are this week about Northampton pigs are this week about 42s. to 42s. 6d. per ton
the average of Derbyshire pigs, 43 s .; and superior Derbyshires 44s. per ton in actual business. Thorncliffe pigs are quoted all-mines, 45 s . to 42 s .
common cinder sorts.
The ironworkers in the West Bromwich district are trying to wish to stay the depression; and they think they can do it by restricting the output. At a meeting of the men this week several suggestions were made in this direction; but they were told by
their chief representative upon the Wages Board-Mr. James their chief representative upon the Wages Board-Mr. James
Capper-that in their present disorganised condition they could Capper-that in their present disorganised condition they could
not possibly give effect to the proposals. However, it was ultimately resolved "That in future puddlers should only charg 4 cwt and 2 owt . of iron per heat;" and Mr. Capper promised to
recommend the men in the other districts to come to a similar reso There have been placed in Birmingham orders for portions of
ution lass in China. The plant is to be very complete and will embrace ll the recent improvements. The limited liability compan which has been formed to carry out the undertaking has engage
wenty-five men from the Birmingham and Stourbridge districts wenty-five men from the Birmingham and Stourbridge districts to go out to Hong Kong, where the manufacture will be first intro
duced. The silicate found in China is said to be peculiarly adapted

the successful manufacture of glass.

out some Daston Bridge and Roofing Company is just now turning extension station, Birmingham. The ground and buildings under station will be supported by a strong bridge of iron girders. The first of these is a box girder, 76 ft . long, 2 ft . wide, and 8 ft . 6 in high, and weighing about 30 tons. It was placed in position thi ubway in Worcester, with another heavy box girder on its oppo ither side of the upper end of Great Queen built into position on ther side of the upper end of Greao queen-street. The girder o will also be of box pattern, with flanges of eight thicknesses of heet iron. That on the south side will have a span of 160 ft ., an will be 15 ft . in depth, weighing 160 tons.
Traders in the Midlands do not
Railway Bill which has been brought into the House of Common mingham and District Railway and Canal Rates Association, Birin Birmingham on Tuesday, the following resolution was passed:"That this Association views with surprise and extreme dissatis-
faction the Railway Bill recently introduced into Parliament, as containing clauses that would deprive traders of the few advan ages they now possess under the existing law, and give railway
companies powers to impose additional charges to their presen xcessive rates. This Association therefore pledges itself to exercise every legitimate means in its power to oppose a measure
which, if passed, would be disastrous to the trade of the town and district." The Dudley Chamber of Commerce incline to the same opinion. At a meeting held at Dudley on the same day, they deter introduction of a terminal clause in the new Bill.
A gas engineering undertaking of some magnitude-involving,
indeed, the expenditure of nearly $£ 12,000$-is that which has been ntered into by the Local Board of Fenton, North Staffordshire to procure a supply of gas independently of the Corporation of the
neighbouring borough of Stoke-on-Trent. The engineers-Messrs. Stevenson and Son, of London-have pushed on with the work, so that the manufacture of gas was begun on the 22nd. The retort house contains thirty-six retorts, whose maximum capacity is
$200,000 \mathrm{ft}$. per day. A 12 in . main is used to convey the gas to the ndensers. At present there is only one exhauster, but provision
being made for the erection of another. Adjoining the exhauster house are three boilers of 40 -horse power each. The reason of so irge a reserve of steam power is that the Loca to use a portion of the gasworks as a pumping station. Laidlow's centre valve is used Considering the
Considering the opposition which is being shown to the use of
the traction engine on the highway, it is strange that owners drivers do not take the requisite care to keep out of the hands of the law. For permitting a traction engine to travel without the requisite license through Burslem on the 12th inst., its proprietor,
William Pickels, of Meltham, near Huddersfield, was fined 40 s and costs by the Burslem magistrates on Tuesday, and a similar penalty was inflicted upon the driver.

NOTES FROM LANCASHIRE.

(From our own Correspondent,
Manchester.-Throughout all branches of the iron trade in this istrict business continues dull, and the approach of the Whitsun
tide holidays has tended still further to restrict operations. In view of the general closing of works-which in many cases will extend over nearly the whole of next week-there has not been
much buying going on, whilst deliveries against contracts are also being suspended until after the holidays, and practically there will be little or nothing doing until well into the second week of June.
So far as prices are concerned, quoted rates are nominally unchanged. In pig iron, however, the tendency continues downwards have been ruling for the last few weeks, the actual transactions on There was only a very inanimate market at it There was only a very inanimate market at Manchester on
reached ing iron a few sales were reported, but when they nominally quoted in the market. Lancashire pig iron makers still quote 43 s . 6 d . for forge, and 44 s . for foundry, less $2 \frac{1}{2}$ per cent.,
delivered equal to Manchester, and as they are fairly well off for deliveries against contracts, they are not at all anxious to press sales at less money. At the above figures, however, they are to consumers in the neighbourhood of works. Quotations for Lincolnshire brands remain at about 43 s . 4 d . for forge and 44 s .4 d . for foundry, less 24 per cent., delivered here; but makers who hold some cases 6 d . to 1s. per ton less. would be taken. For North-
sore country iron makers are maintaining a tolerably firm tone, and
good foundry brands of Middlesbrough cannot be got for less than 44s. 4d. net cash, delivered equal to Manchester; but in Scotch iron, makers are gradually getting down to the low prices at which
merchants have been recently selling. In the finished iron trade quoted prices remain at about $£ 515 \mathrm{~s}$. and $£ 75 \mathrm{~s}$. for sheets, and it is only in exceptional cases that orders
could be placed at much under these American orders for hoops have recently been given out; but gene rally the shipping trade continues quiet, and the home demand for In the wages of the finished ironworkers a reduction
In the wages of the finished ironworker
cent. is being put into force in this district.

The activity in the machine making trade to which I have
referred in recent reports continues, but the orders that are being got are not being given out in this district. Recently large order or the fitting up mills that are being erectel
Glasgow.
Tool ma
ave still so mure also kept well employed, and locomotive builders like early delivery have had to be declined.
Messrs. W. Collier
ew arrangements into cond Co., Salford, have introduced several new arrangements into bar-cutting machines, and they have jus be of interest to notice. One of these is a horizontal bar-cutting machine with engine attached, especially designed for heavy work, and at one end is constructed to cut bars up to oin. by 2 in . The
frame is of the box trunk pattern, and very strong; the machine has a steel excentric shaft slide block and massive cast iron ram a continuous bearing on all sides to ensure The other machine is a double-geared excentric double-ended barcutting and shearing machine of the ordinary pattern, with the
xception that one end is so arranged to cut barsup to 2 fin. square or rails up to 60 lb ., whilst the other end is provided with a patent which gives two cution 1 in. square bar or plate scrap up to \sin. thick; the double-stroke shears being placed at an angle to admit bars of any length. The passing of the Manchester Ship Canal Bill by the House of in business circles during the past week, and Mr. Daniel Adamson who has been the chief and most active promoter of the scheme has received most hearty congratulation upon the success which
so far has attended his efforts. No one doubts that the construcion of the canal would be a great benefit to this district, and the passing of the Bill has been received with general satisfaction, but he possibility of raising the money requisite for carrying out th have, however, heard it reported that a syndicate has already bee formed who have promised to raise a large proportion of the
capital required, but as to the terms on which they would raise capital required, but as to the t
In the coal trade business may now be said to have quieted kept working more than three, and it is very exceptional where hey exceed four full days a week, and at many of the collieries lecks are going down. For bouse-f. purd and for gere is very slow equirements, even engine fuel, notwithstanding the lessened proluction of slack, being fairly abundant in the market. Quoted prices remain at about 9 s . for best coals, 7 s . for seconds, 5 s .3 d . to
ss .9 d . for common coal, 4 s .6 d . to 4 s s 9 d . for burgy, and 3 s .6 d . to 4s, for good slack, with
figures for quantities.
The usual season for placing out gas coal contracts has now There is less disposition to entertain contracts for long forwar delivery; but the prices which would be taken are quite as low as last year. For better qualities of gas coal at the pit mouth prices and ordinary gas coals about 6s. 9d. per ton. On about the basi The shipping trade is quiet, with 7 s , to 7 s . 3 d . about the average price for Lancashire steam coal delivered at the high-level, Liver pool, or the Garston Docks

THE SHEFFIELD DISTRICT.

(From our ovon Correspondent.)

A Disputs in the iron trade at Elsecar, which has now lasted Dawes, to turns upon the refusal of the owner, Mr. George ot stand the full test of bending. At a further meeting of the men, recently held, the matter was again fully discussed, and it
was decided that work should not be resumed unless the firm would pay for the iron, which was stated to be the general custom of the trade.
There is still a rupture between the Stanton Coal and Iron ood and Silver Hill collieries remain firm to the resolutions passed t the first meeting after the strike, namely, that they should not
to on as they had been accustomed to do. Mr. Clarke, the managing irector of the company, it was stated at one of the men's meet ings, had been asked to withdraw the home coal question for six
months, and had replied, "Not a day." He was then asked whether he would withdraw the question for three months, but to mas also Mr. Clarke objected. A further proposal to refer the
matter to arbitration was also refused. On hearing this report of matter to arbitration was also refused. to remain out until the
the interview, the miners resolved the
employers conceded their demands. There were about 1000 men omployers conceded their demands. There were about 1000 men
on strike. Eleven horses were drawn from the workings to the onface on Saturday at Silver Hill, and it is feared that this i
only preliminary to a general exodus from the pit in a few days.
A patent has been issued under the new Act to Mr. Arthur Benjamin Ball, of Sheffield, for improvements in the construction of spring cutlery. The invention consists in the making of the
hafts of pocket and pen-knives in one solid part, and under this new process the two scales, the back, and the bunters, can bo
turned out altogether in nickel silver, aluminium, or other suitable turned out altogether in nickel silver, aluminium, or other suitable
substance. In the old process the different parts are held together by means of pins or rivets, and the knife is thereby less firmly con as a permanent substitute for the ends of the springs, and upon the knife is made very strong, and breakage made as near im palready been sold, and arrangements made for the manufacture of management of the patente.
The Midland Railway Company is at present trying two experi-
ments on the fast trains between St. Pancras and Sheffield. "The other night"-writes a correspondent-" I left London at half past
five in a train lighted with electricity, which yielded a continuous and without the engine whistling during the journey. which other companies-the Lancashire and Yorkshire,
boon to example-might turn its attention with comfort to their
A pleasing evidence of the good feeling exasting between emworks was afforded on the 28th inst. Mr. W. A. Matthews, one of the partners, is about to marry a Beverley lady. The managers
and workmen, on learning the news, presentation to Mr. Matthews. The wedding gift consists of a
magnificent cabinet of cutlery in pollard oak. The cabinet conmagnificent cabinet of cutlery in pollard oak. The cabinet con-
tains every possible requisite, and is valuable in itself, apart altogether from the kindly feeling which prompted its presentation. Which was also embellished with photographs of the home of bride
and bridegroom, and their future home at Sheffield. The cabinet of cutlery was produced by Messrs. William Hutton and Sons, of
High-street, Sheffield, and is highly creditable to that old-esta-High-street, Sheffield, and is highly creditable to that old-esta-
blished firm, who, by the way, are removing to new and most
commodious premises in West-street, which are rapidly approach ing completion.
It is not generally known that Joseph Gillott made the first
steel pens in Sheffield, and might have continued the production

Blonk-street, but I hear that an enterprising local firm, for pur-
poses of business extension a are about to pull them down poses of business extension, are about to pull then down.
In a Scotch paper-the H untly Express $-I$ notice the death of Mr. Robert Sellar, of the Huntly Plough Works, who has had for many years a remarkable reputation for ploughs, which hes supplied
chiefly for the colonies, and devisel several useful inventions, to chiefly for the colonies, and devised several useful inventions, to
which he applied Sheftideld stel very frel. One of his ideas has
been practically carried out by the Carron Iron Company, who, the been practically carried out by the Carron Iron Con
Express states, paid him a handsome royalty for it.
Messrs. Newton, Ohambers, and Co., Thorncliffe Collieries, on
Wednesday reduced the prices of their household coals by 1s per ton.

THE NORTH OF ENGLAND.

(From our oun Correspondent.)

AT the Cleveland iron market held at Middlesbrough on Tuesday and a moderate amount of business was done. Merchants having disposition to buy than to sell. Most of the sales mat on thore were therefore by makers, W.m. b. prompt delivery. A f few lotst were sold at 36 . 9 . 9 . per ton
but the quantities were not considerable. Makers have been of late confining themselves mainly to the production of foundry iron, and consequently forge qualities have become relatively scarce,
and the price has stiffened. Less than 35 s. 6d. per ton is nowhere accepted.
Thiddlestock of Cleveland pig iron in Messrs. Connal and Co,'
 tion of 250
590,974 tons.
Shipments from the Tees are proceeding actively. The exports
for May up to Monday last were 75,057 tons, being about 10,000 more than the corresponding period of April, and about 4000 tons more than that of May last year.
inquiries continue sarae exhibits no new feature. Orders and Makers appear determined to close their works rather than reduce further. The prices which have been quoted for many weeks past
are still adhered to, and are as follows:-Ship-plates $\& 5$ to £5 2 s . 6 d . per ton; shipbuilding angles, \&4 15 s . to to ep 417 s . 6 d .; and common bars, $\sum_{5} 2$ 2s. 6 d . t
cash 10 th, less 24 per cent.
Owing to the Uhitsunt
held at Middlesbrough until helidays, the iron market will not be The accountant to the North of England Board
and Board of Arbitration has just given his certificate fon the two monthis ending Aprit 30th. It shows the average net selling price of rails-iron-plates, bars, and angles to have been $£ 58$ s. 112 d . per
ton. This is equivalent to a a reduction of 4 s . 7 d d . per ton since the The decline for the whole of last year was but 10s. There has also been a great diminution iu the quantity produced.
The total for the two months ending April 30 th was 75,044 tons, as against 90,616 tons for the similar period ending February 29 th , and 109,220 tons for that ending December 31st.
The employers connected with the North of
Arbitration puddling, and 10 per cent. on all other forge and mill wages, to take effect on Juue 28th, when the present agreement terminates A meeting of the Board to decide what a ction is to be taken in
view of the said notice will be held on an early date. view of the said notice will be held on an early date. Mars. an
Messr, Dorman, Long and Co., of the West Marsh
Britannia Ironworks, Middlesbrough, gave the whole of the me employed by them seven days' notice, to terminate envagements o Saturday last. This step has been taken owing to the continued
depression of trade. Both works will be colosed next week, but j, depression of trade. Both works will be closed next week, but it
is expected that the West Marsh works will be re-opened the week after. About 1000 men have hitherto
Britannia works and 600 at West Marsh.
The Darlington Steel and Iron
during the whole of next week.
The mills and forges at Witton P onders, , and it is not known Park are idle this week for wan The Middlesbrough Galvanising Company is extenging
works, and adding the manufacture of iron tubes to its businges The North-Enstern Railway Company is adding other two aores to its docks at West Hartlepool, at a cost of
TTe present arca of the dock is about thirteen acres.
In the opinion of the North of In the opinion of the North of England iron manufacturers the
time has now arrived when plate-rollers should be asked to submit to a special and considerable reduction in the tonnage rates
hitherto paid to them. A return recently issued proves the men have been in the habit of receiving from 158 s. to 62 s . per shift clear, after paying all their helpers. They are all paid at the same rate per ton, and the difference per shift, or day, arises from the
varying outputs of the mills, according to their power, and according to the pature of the orders upon which they work. A claim
in
will probably Arbitration to have a separate tonnage rate fixed for cach plate mill, according to the conditions thereof, and such that the clear
remuneration to the roller will be about 15 s. per shift. The standing committee have power to decide such quustions, either by
arrangement or by reference to Mr. David Dale, the standin referee. Should the employers obtain what they ask for, it will
assist them to the extent of several pence on the ton of finished plates. It is contended that it is absurd that in times so disastrous as the present ones to the iron trade, rollers should not be content with such handsome wages as 15s. per shift.
The Cleveland district has lost one of its ablest engineers in Mr.
Edward Hutchinson, who died of fever a few days since. Being in delicate health, and thinking that a change to a warmer climate would prove beneficial to him, he accepted an appointment in
December last from Mr. John Dixon, of Laurence Pountney Hill, to superintend the erection of a pier at the mouth of the Amazon.
U_{p} to a month since the reports he sent home were highly satisfactory, and a letter received even after his death had actually occurred was written in a satisfactory and hopeful tone.
But his physical constitution had previously been seriously
weakened weakened by the inroads of pulmonary phthisisis, and he huickly successfully battled with. He leaves a widow and six children,
resident in Darlington. Mr. Hutchinson served his resident in Darlington. Mr. Hutchinson served his apprenticeship
with Messrs. Gilkes, Wilson, and Co., locomotive builders and general engineers at Middlesbrough, between the years 1850 and
1855 . He then entered the Stephenson at Newceastle, and became one of the best tras. Rown and
ablest draughtsmen in the locomotive again entered the service of his old employers at Middlesbrough and for them superintended the erection of soveral iron treilis
bridgesonthe Darlingtonand Tebay line. These bridges weredesigned by the late Sir W. Bouch, and were the prototypes of the sub-
sequently unfortunate Tay Bridge. After this Mr He devoted himself to the study of rolling mill machinery, and in
1861 established the firm of Pease. Hutchinson, and Sedward, and built the Skerne Ironworks at Darlington. These works were
successfully conducted until about 1873 , when his old partnet retired, and they were then transferred to a limited company, entitled the Skerne Ironworks Company, Limited. This company
was not very sucoessful, and after various vicissitudes the works fell into the possession of the debenture holders, and still remain
idle. About the autumn of the year 1879 , MI. Hutchinsen enoouraged by the improved prospects in trade afforded by the
American "boom," aoquired the Bishop Auckland Ironworks, then inoperative, and commenced rolling Auckland Ironworks,
sction in prices soon succeeded, however, and in in little more than two years he was-compelled to discontinue operations and

Cleveland Bridge and Engineering Company, of Darlington, and
so remained until obliged by weakened health to soek an engage ment in a warmer climate as already stated. Mr. Hutchinson was a cal subjects contributed to the Institution of Mechanical Engineers founders of the latter society in 1864 . He was also a very interesting treatise on bridge building, published a few years
since and bearing his name. To his inventive powers was also due since and bearing his name. To his inventive powers, was also due
the ingenious and effective appliance known as the "Hutchinson the ingenious and eftiective appliance known as the "Hutchinson
steam lift," now largely used at the roughing rolls in North of
N completed the fiftieth year of his age.

NOTES FROM SCOTLAND

The Scotch iron trade is dull in most of its departments, and a yet the esigns of improvement are not visible. In the warrant
narket of Glasgow in the past week, business was exceedingly quiet, and comparatively little pig iron, changed hands on specula
tive account. The demand for makers' iron for consumption is also quiet. There was, however, a large increase in the ship nents last week, the quantities despatched being upwards o l,000 tons. At the same time the general prospects of the pig
ron business are not considered to have at all improved. The decrease of stock in Messrs. Connal and Co.'s stores in the course
of the week has been fully 600 tons. There are now 95 furnaces blast, as against 117 at this date last year.
sh. On was done in the warrant market on Friday at 41s. 4d 41s. 3d. cash, and 41s. 5d. to 41s. 42d. one month; the afternoon quotations being 41 s .3 d . cash, and 41 s . 4 d d. one month. The
uotations on Tuesday forenoon were 41 s . 2 d . cash, and 41 s . 4 d , to 411s. 4d. one month; while the afternoon prices were 41 s . 2 d on Wednesday, with transactions at 41s. 1d. to 41s. 22d. cash, and 41s. 3 d . to 41s. 4d. one month. Thursday, business in the forenoon
was from 41s. 2 d . to 41 s . 2 d cash, and 41 s . 4 d one month ; afterThe values of the special brands of makers' omewhat easier, the quotations in the market being as follow :-

 40s. 6d.; Shotts, at Leith, 52s. and 51s. 6d.; Carron, at Grangemouth, 48s. (specially selected, 54s.) and 47s. Cd.; Kimneil, at 4s.; Eglinton, 44s. 9d. and 41s. 6d.; Dalmellington, 47s. 6d. an The demand for hematite is quiet, without change in prices.
Continued progress is being made at W ishaw with the erect of the new steel works in that town and neighbourhood At the moment the demand for steel goods has materially fallen off in
consequence of the slackness in the shipbuilding trade, and at one large works some furnaces have been put out, but the promoters of uch works as theso have evidently faith in the expectation that purpose for which the latter has hitherto been in use. Besides the Glasgow Iron Company's new works for the manufacture of steel
on the basic process, the Belhaven Iron and Steel and Patent Nail Company is engaged in ereeting premises at Wishaw.
The manufactured iron trade is quiet, with very few fresh orders, nd the prices nominally without alteration
In the Glas
as far as the shipments are concerned. Large and numerous cargoes are presently being despatched. Those for the past week are heavy, and the quantities now being loaded are much greater than
usual. The prices at Glasgow are, however, without change. Hitherto the coalmasters have managed to meet their engage-
ments with the men to cause embarrassment by a restriction of labour; but their success in this matter does not occasion much surprise, on account
of the wide field from which the coal is now drawn by rail. A fair business is done in coals for shipment on the Ayrshire and Firth of
Forth coasts. The Lanarkshire quotations are:-Main coal f.o.b.
 colirieried.
The action of the miners' leaders both in the western and eastem mining district at present is, to put it mildy, wantonly mis-
chievous. If these men are at all acquainted with the circum-
stances of the or the quently out of their power to grant an advynce of wages. Yet the men are daily exhorted to restrict their labour, with the object of
forcing higher rates of pay. In order to be sucessful) eve from orcing higher rates of pay. In order to be successful, even from the men's point of view, restriction wound The only effect of the
instiad of local, as is the case just now. Thil
policy now bieng pursued will be to cause still further depression in the trade.
In Fifeshire and the neighbouring county of Clackmannan serious dispute seems to be impending. There the men demand or rather their leaders for them, an advanoe of 15 per cent.,
alternation being that they will work only four days a week.

WALES AND ADJOINING COUNTIES.
1 have just heard that the Cardiff and Monmouthshire Railway Bill is to be withdrawn for the Session. The Barry draga to enable members to recruit, and to ponder again the the
pros and cons. The battle is one of giants, and must be exhaus.
tive to those in the thick of it. The sooner over the better, and then all energies can be bent to that steady development of minerals which is so much to be desired.
In the meanwhile the Taff V
In the meanwhile the Thaff Vale is broadening itself out to meet arger tonnage than it now has. To the outsider, who has no interest either in Barry or Cardiff, there can be but one conclusionincrease your rail way arrangements to Penarth, dock the west
mud, and if this does not do, then go east to the mouth of the Rhymney. There is no earthly reason in going twelve miles away rom Cardiff to the west. I should be glad to see such an alterna ment and shaking hands all round would follow.
In the matter of parliamentary committees an ingenious friend submits that they should be abolished and Government Commis. sions be appointed to be held at the very spot where it is sought to make railway, dock, or other matters. A few such incidents as
the Manchester Canal Bill would soon awaken the necessary breeze The iron trade still flags, and I should not be surprised any day to see the initiative of Middlesbrough in the paying off of hand Iollowed. The make of steel is 50 per cent. in excess of demand it
we take the life of a steel rail into consideration. One good resuld of the unionism of ironmasters has been the improvement of prices while ago they might be bought for about $£ 410$ s. to $£ 415 \mathrm{~s}$. This would be all very good if requiroments showed any increase; bu industry is as bad as it can be
As for the coal trade, business is steady, and prices for best
qualities firm. House coal and secondary steam coal are rather
unsteady, but there is little reason for complaint, and the progress year the area of coal yield will be considerably increased. The Newport Abercarn Company is advertising i see, for the sinking
of a pit 170 yards deep; ;yfarthfa, too, is progressing well with Western, and other railways in the increase of facilities, doubling A meeting of the sliding scale jopment to a marked extent. A meeting of the sliding scale joint committee was held at CarKirk, Leeds, and Mr. Parsons, Newport, to send in their estimate of the average selling prices during the four months ending April, With regard to the Fleuss life-saving apparatus, the committee,
after full consideration, came to the conclusion not to take it up as an association, but they commended it to the consideration into use in the district in order to try its efficacy.
The complaint of the Plymouth hauliers to the effect that they were not being paid according to the standard rate was adjourned
for further information. At the condusion of the meeting it was resolved to call a gathering of all engineers and stokers connecte
with the collieries of Monmouthshire and South Wales on Monday ext, to formulate the hours of labour and rate of wages. I note an instance of quick despateh at Cardiff which does not apposin in the new sere steamer, the County of Salop, came in on Wednesday to load
3000 tons cargo and bunkers for Singapore, and it was done in twenty-two and a-half hours. The coal was put in from two
novable tips and the movable crab. Tylor and Co. and Riche and Co o. were the shippers.
On saturay the new hopper and cone invented by Mr. Hunter tipping crane at the Roath Basin, and was highly satisfactory. bly. Mr. W. T. Lewis, Mr. Abernethy, Mr. McConnochie, and others were present.
The tin-plate trad
The tin-plate trade has been unaffected by the American failures. For a few days, perhaps, prices were not quite so firm, but now
they have rallied. Llantrissant Works are to be restarted. Best coke is quoted at 15 ss . 9 d .
fenerally is a fair average.
THE Times says Mr. J. S. Forbes, of the London, Chatham, and Dover, and Mertropolitan District, and Mr. Swarbrick, the late
general manager of the Great Eatern, have joined the board of
the Hull, Barnsley, and West Riding Junction Railway and Dock Company in the capacity of managing directors. The River Humbri.-On Saturday afternoon last a lecture was
given at the Royal Institution, Hull, by Mr. A. O. Hurtzig. O.E.,
on "Some Tidal and Engineering Features. of the Humber."
After describing the After describing the characteristics of the Humber estuary,
comparing it with the Severn, Mersey, and Clyde, Mr. Hurtyig pointed out its unsurpassed navigabsey, and and tidal conditions, and,
having briefly touched upon the insufficiency of its. the facilities it afforded for attack, passed to the consideration of its tidal features. He explained the formation of the tidal wave in the Humber, copious tables being given in illustration of its
range and duration, It was shown that the turbidity of the brought down from the 10,500 square miles of country which the
Hung Humber drains, rather than from the washings of some eight miles of the Holderness coast, which the lecturer said only repreat various states of the tides and the results of their analyse were given in support of the statement. The great tidal variation range of tide was 5 ft . 7 in ., and the highest reached 27 ft .6 in . H tidal variations, illustrating his remarks by reference to enlarged weather charts, \&c. Turning to engincering questions, the con
struction and working of the high lighthouse at Spurn, as carried struction and working of the high lighthouso at Spurn, as carried
out by John Smeaton, were described fully, and the excellent carried out under the dighting and buoying of the Humber wa highly commended, no other estuary, in the lecturer's opinion,
equalling the Humber in this respect. The application of hydrau equadog the Humber in this respect. The application of hydrau
lio power to civil engineering works was refered to at length,
several interesting photographs of hydraulie cranes, dc., bein several interesting photographs of hydraulic cranes, \&c., being
shown in illustration. Afact was pointed out which is no
sowell had been constructed; and that at New Holland the first hydrauli accumulator was built, and the present form of hydraulic
machinery there inaugurated. The Humber Tunnel, as proposed and the drift-way as now proposed, were next described enabled to place before the meeting diagrams of some interesting borings ncar North and South Ferriby, referring to this latter
scheme. He concluded the lecture with an account of the pro posed Ouse improvement line and the Humber Conservancy lines explaining the position of sandbanks from Hull to the mouth of
the Trent, and the probable effect which the diversion of the
stream and their consequent shifting would have on triftc in the cstuary. Ngw Scrgw Gex VEsskL yor The Navx.-On the 7th
Tnst. H.M.S. Reindeer, screw gun vessel, which was built port and launched in November last, was taken into the Channe for a preliminary trial of her machinery, which has been fitted hy
Messrs. R. and W. Hawthorn, St. Peter's Works, Newcastle. The Reendeer is one of ive vessels of a class which is an improvemen ness. Four of the ships, includur, recently the come triisd, have been or aro
being constructed at Devonport theose on the being constructed at Devonport, those on the stocks at present
being the Mariner, Racer, and Icarus. The fifth, the Acorn, is being built at Pembroke Dock. The Reindeer is itted with, six
Sing guns, two on either side, one forward, and the other aft.
When the start was make the weather was very threatening, and before the ship had been long outside the wind rose to a
年vertheless the trial proceeded yery coot smoothy, the machinery 5impound, surface condensing, with high cylinder 32in, and low
5in. in diammeter, with 3tf. stroke. The engines are fitted with
Mr. F. ©. Marshalls patent valve gear, for each cylinder, which reduces the number of working parts to a
ninimum. The engines are so arrant between 17 per cent. and 60 per cent. of stroke without expansion valve. The ship is itted with three boilers $7 \mathrm{tt}$. . Sin. diameter by
16 fft . in . long. When the trial commenced the steam in the
boilers was 90 Ib, the vacuum in the condeners revolutions per minute 74, mean pressure in the the higher 981 ll . in
the low cylinder 124 lb . For one hour the engines were worked the highest grade of expansion, giving 106-horse power in the highpressure cylinder, and 384 in the low-pressure cylinder-total 490. with satisfactory results. The machinery was then gradially
worked pup to full power, the steam in the boilers being 821 lb ; the pressure in the high cylinder, 23 lb ; in the low cylinder, 1433 lb ;
 19 in ; ; revolutions, $75 \cdot 8$ per minute; mean pressure in the high
cylinder, 17.4 lb ; in the low cylinder, $11 \cdot 4 \mathrm{lb}$; horse-power, high, cllinder, $17 \cdot 4$ 4.; in the
193; low, $361-$ total, 505 . Stopping and starting were next tried
The The engines going fuil speed ahead were stopped in three econ
being stoped, they were started asten in three second; go
astern, they were stopped and started ahead in five seconds.

THE PATENT JOURNAL.

Applications for Letters Patent. * When patents have been "communicated," the 20th May, 1884.
7941. Automatic Governina OLl Can, J. Pearson,
Proston.
7942. Frit Hats, W. Whittaker and W. Wilkinson, North Denton.
7943. VkNtiLAting Waterproor, de., Coats, C. Spil7044. Tor Gase of Skill, J. Pomfret and W. T. Fox, Preston.
7045. Gas-duragrs, J. Ainsworth, Darwen.
7946. FLUE Bricks, H. Talbot, Higher Broug 794. FLUE BRICKs, H. Habs, I. Sherwood, Birmingbam. 7948. Metallic Coverinas for Roors, dce., G. A
Nebeling, Remsheld.
7949. Steam-HEATED BLocks for Corsets, W. H. Milles, moon caulwa
 T953. Vent Faveers for Botrles, H. E. Newton, IV. Clark, Brooklyn, U.S.)
To54. Law Tenvis Poles and Fixivas, H. E. Hol-
brow, Gloucester. 7955. SLIDE-VALVEs, E. C. Peck, Old Charlton.
7906. WATER-HRATERS, J. Osgerby, London. 7957. Tube Expander, R. Barnard and E. Miles,
London.
7958, Con 795s. Compound for Remoyino Marks of Grease, de.
A. R. Hanco, Haverhill
7os9. Dhyino stereotype Matricrs, G, Pepé London
 Short, Coloraido, Arc. Liampg, P. B. Justico.-(S. I

 Glaggow,
Tge9. Tool-holders for Dental Enarnes, A. Weber,
New York, U.8. 7970. FLowke-pors, J. Crute, London.
7971. TyPE, A. R. Lenst, A. Thompso Lond. WATER-CLoBETS, \&c., D. T. Bostel, Londer 7.973. Butinso Dress, H. J. Haddan.-(K. Klemm,
Russia.)
7974. Prodecina Printiva Plates, H. J. Haddan, . Ridrath, Germany.)
BRACBS, P, W. Martin, Birmingham.
Treatment of PBAT, W. H. Tooth, London 7976. Treatimat of Pbat, W. H. Tooth, London.
7977. Treativa Lead, dc., W. H. Tooth and J. E.
Rooker, London. Rooker, London. Sortuse, \&c., E. H. Baxtor, Bir-
mingham. mingham.
7979. Curtino, Paistino, de., Letter Forme, B. C.
Scott, London. H. Pullan, London. Silos, E. Hernulewiez and W.
Ho. Cowncorion

 P. Turner, Ipswich. Barritt, London.
potions, PLNoporte ActoNs, A. G. GIgney, London.
fosi. Cowstructios of METALLIC BATHE, J. W. and R.
W. Perkins, W. Porkins, London.
7987. BRAKIN STONDS,
Gates, Chicago, U.S.)

21st May, 1884.

70ss. Clerical Coat Collars, G., F. D., and A. J.
Tonkin, Bristol. 989. Fixino, de., Collapsing Landino Net Rinas,
R. Heaton, Birmingham. R. Heaton, Birmingham.
Top0. Covers for Drawrias, dc., J. J. Raggett, Bir-
mingham.
 Tog. A. C. Harven, U.S.)
Hinchloy. Hinchloy.
T993. Frtivo Metal Surse, dec., wheroby they are
made Waterprooor, W. Welch, Portgmouth.

 W. Spours and C. D. Martin Heaton.
To97. Soup Por, M. Mansey, Kidderminstor.
T908. STERRINO APPARATUS for Tricyct.

 London.
soos, Cosirpuction of Pipes for Smokina, M. Bur-
. chardt, London.
Coathorper Feber for Fursaces, T. L. Ellis,
Cor Coatbridge.
so0s. Prigianer WAX of Rallways, s. W. Smith,
near Coventry near Coventry.
8006. Diskrotile Fizs, L, Mullor, Dresden.
8007. BABY Jumpers for Nunsery Use, C. T. Gardner, Canada.
soos. Frak-clay Gas Retorts, B. and W. P. Gibbons,
Lower Gornal.
 Michise, J. M. Black, London. Tesmis, J. Marshall,
sol1. RAckers for use in Lawn Tenne Hol2. Letrino-ory Apparatus of Looms, H. Lomax,
Darwen. Darwen.
Sol3. Caskorso Blast Fursaces, A. Attwood and T.
W. Barbor, Ulverston.
 Lumsden, Manchester.
8015, SaFE-BURNINO Pertioleva, L. A. Groth.-(T. N.
Ficect. Fleech, Germany.)
soi6. Nerde for Skwino Shoss, L. A. Groth.-(F.
Schumacher, Germany.)
 8019. Ratlway Courlisos, J. B. Hannay, Loch Long and J. Cowan, Glaggow,
8020. Co fr for Hyorgsic Purposes, A. F. Westerlund,
8 weden. 8weden.
so21. PRistiso and Writiso Isks, de., A. D. Cohon,
London.

WW.J. Wakeofold, Lonono
Thantakest of SuLphatr of Ihox, E. de B. Lukkif

Distuluartion
Germeny,$~$

so3? Sunerirutr for Caourchooc, dce, A. M. Clark.

 Fiultham soaky Baxse, Exvs, or Tans, G. F. Hall, Bir
 Soice finhumeinusus, E. A. Paris, London, and W. H. Soct wimbledon of Bats, E. Wright, Handworth.
 048. Raisino and Lowerina Healds in Clay, Rastrick.
8049. BliLIIRD CUEs, E. Colling, Birmingham.
S050. ORAMMENTAL Woven FABIICs, H. Lee and
Hollas, Bolton.
8051. SIZINo MACHINEs, J. Thompson, Haslingdon.
3062. Looms for Weavino, J. Thompson, Haslingdo
 mingham, for Crusura and Grixdiva, W. H. Sobempson, London. Puricatov of Watra, A. Irving, Wokingham.
8057. 1 interlockina Rallway Points, J. Steven, 8058. Quintino Frames, H. T. Davis, New York.
8050. Jacouvid M Mcmines, K. I. Mayer.-(W. and A. Bernsmiller, Germany.)
so60. Fekd-water Reoulator, K. I. Mayor.-(IW. Grosman, Baden.)
sobi. Cocks, W. M. Llewellin, Bristol.
so62. OrNAMENTATION of CHiNA, E. P. Evans and T. Sanday, Worcester. London, and T. Crabb, Chelmsford.
L064. Forks, W. S. Skelton, Shefied.
 Heselwood, Leeds.
8066. Propelling Ships, de., R. J. White, London.
8067. Metallic Permanki WAY for RAILWAYM, B. Vogdt, Vienna.
8068. Toot-HoD.DEs, G. B. Taylor, Birmingham N. Buchanan, and A. R. Wallis, Mellourne.) 807. Openisa, \&c., SLidina Windows, W. Leggott 8072. Caprspininino, \&e., Macienery, W. Foster and
D. Sugden, Denholme. D. Sugden, Denholme.
3073. Latcinivo and UnLatcnisa Doons, J. Kaye
Kirkall Kirkstall.
soli. SkiF-yedisa Eyelet Machines, J. Buchanan
Bristol. Bristol.
8075. Curoso-lithoomaphy, A. C. Henderson.-(P. P Guillaume jun, Paria.)
ontr, Trusks for RURE, E. Capitaine.-(E. Wes
phal, Berlin.) 80 pha, Inserlintiso Compounds, A. Muirbead, London. So79. Printivo upon Uneves, Wavy, de., Suryaces F. Baker, Birmingham.
8080. GAs OVEN, S. Looni, London.
BOS1. Nox-conductiva MATEIIALS
8081. Now-conductivg Matrizials. to Prevent Radia-
tion of Heat, \& Leoni, London.
 London.
8084. Boxss or Casks for Jewelerry, H. H. Lake.
 Reddng, and H. A. Salvesen, Blafr Bank.
8086. Circular Slide Valvea, W. Payton and A Wilson, London.
sos7. Locks, W. Payton, London.
8088. GAs Liohtiso, H. G. Perry. 8088. GA8 Liohtivo, H. G. Perry, Lowor Clapton.
8089. Homble for Honsiss, dc., F. K. Smythies
Hathern, near Loughboro. Rathern, near Loughboro.
8090. ELEGRRRCLLY Trassmivina Drawinas, \&e , I
A. Schaffer, London. 8001. AUTomatio Flusiino TaNk, F. Cuntz, Karlabad
8092 . SAvETY Suootiva SuEs, R. Morris, Blackheath.
809 . 8093. Sroxoy Iron, G. Bischof, London.
8094. Purifyino Water by Sponay Iron, G. Bischof, London.
sops. VALVE Cocks, H. P. J. Kossler, Germany.
8006. FIXINO INCANDGGCENT LAMPs in Postion, 8096. Fixiso
 Couteau, France.
soge, Stoppersa for Haymeks, dc., L. A
soc., J. B. O'Callaghan London.

23 rd May, 1884.

8100. StEan Borlkrs, J. Burrell, Bristol.
8101. Tricyolss, G. Hookham, Birmingham.
8102. Fancy Metal Tassexs for Crains, de., J. Wood,
Birmingham.
8103. Preventina Breakage of Yars, S. Green,
8104. Bottle Lock Stopper, W. Kershaw, Kingston-
8105. Krepina the Spouts of Tea-pots Cleab, e, Kennett, Southampton.
s10. Brows Bread, J. Pointon, Horsforth.
8106. Boots and Sross, I, Blakey 8107. Boors and Suoss, J. Blakopy, Leods.
s108. Bumbinos and Miterials, W. M. Hawkins,

Birmingham.
8109. Govkrsors, J. Burrell, Bristol.
8110. Mercurlal Gas Goveriors, T. Redman, Bingley,
811. Travelivo Grates, T. Milbura and C. W. Haydon, Stalybridge.
si12. RACCUET Frams, H. Hodkinson, Coventry.
8113. Sconina NUMBER of GAMEs, H. J, and J. Rogers, Watford.
8114. Covingo Apparatus, H. Stephenson, Beighton.
8116. INsulatiso Electric TElEorape Wires, むc., 8116. Insulatiso Electric Telegraph Wines, de.,
J. S. Sellars, Birkenhead.
s116. Producing Moulded Articles, de., F. Thiemer, 8117. Hats, dc.; H. W. Browtnall, Thelwall.
118. Foldiva CHatrs, A. A. and R. Naothe 8119. Solprivira HEATED Ain to GAs BunNEIS, A. H.
Hearington, London.

 London.
8125. Hzatiso, Cooliso, de., Buildisos, J. G.
Smeaton, London.
 8128. Cutting Wooden Shives or Bunge, W. Jones
London.
8129. Stratohtening Threads, B. J. B. Mills.-(Duranfoon ated P. Lapierree, Lyobs.) J. B. Mills.-
130. Triger Gear, C. J. Galloway and J. He Sis0. Trioger GEAR, C. J. Galloway and J. H. Beck
with, Manchester.
S131. STAT1ONARY Fire-Escape, L. G. F. Pyne.-(W. Pyme. Trinidad.)
8132. NoN-ALCoHoLic Beverages, A. C. L. Weigel
Briphen Brighton.
8133. WrmDow SAsh FAsteners, R. Taylor, Dennistoun
8134. TeACHINO the ART of SwimMINo, F. K. Smythies, Hathern.
S135. Cleaning Bones, t. Berliner, Germany. 8136. MECHANICAL MoTIIN, H. S. Parry, Hechryd.
8137. HANOING BELLS of LARGE DIMENSIONs, S. B. Goslin, London.
8138. Botrte and JAR SToppers, F. Barclay, London.
8139. HYDRAULIC Presses, J. E. Hopkinson, H. Prince and A. Muir, London.
8140. DABBino Brushes, I. Lister \& T. Brown, Leeds 8141. Rabidy Pubirising ing News, F. R. Spark, Leeds
8142. Mountina Cranks of Velocipedes, H. W Godfrey, Staines.
8143. Swirch for Electric Lioht Circuits, H. Fara day, London.
8144. SETTING Rerorts and Murples, A. W. L. Reddie

- Stettiner Chimotte Fabriks-Actien-Gesellschaf, cor -(Stettiner Chamotte Fabriks-Actien-Gesellsehaft, vor
mals Didier, Germany.)

8145. Looms for WEANING, J. Cowburn and C. Peck,
 8147. STop VaLves, J. A. and J. Hopkinson, Hudders 8148. Chloroyorm, de., T. Kempf, Berlin.
8146. Botrle Wasumes, A. J. Boult.-(G. P. Rochester, Nev York.)
8147. FuLive and Closing Bottres, 8150. Filising and Closing Botrles, \&c., J. Phillips,
London. 8151. Dividing Rails into Longirudisal Strurs, A. and
R. Hill, and C. M. Bevan, Middlesbrough.
 26 th May, 1884.
8148. Twist-lace Machines, E. Cope, Lenton.
8149. Take-ory or Windino UP Apraratus, E. Cope,
Lenton. 8157. Tricycle Boat, J. Brown, Coventry,
8150. Manalina, de., Woves Fabuics, W. and J. G. Orchar, Dundee.
8151. Fgedino Sqekts of Paper into Macuings, W. Arecher, Edinnurgh. Later Lock and Latch Furniture, J. Walker,
Bitmoner Birmingham,
8152. Cord Rack for Window Blinds, T. Tronberth
 son, $-(G$. Koblinaly, Berlin.)
 Leiprig, Germany.)
8153. Rkort for Beazina, \&c., T. Duncan and D.
Mill, Heywood. 816. Opesiva and Closisa Lids of Boxes, J. W. Wood, Birmingham.
8168, Carviva Forks, A. J. Jones, Moseley.
8154. Incandescrs Elecruic Liont LaMr Holde
C. G. and F C. G. and F. Smith, Birmingham,
8155. MAstractons, W. B. Hatfield, Heeley.
8156. TANKA for Cooirno YEAST, J. W. Johnstone,
sheffild.
 SiJ3. Lawn Tknsis Markers, dc., A. Gowans, jun.,
Edinburgh
si74. HRativo and Coolina the Air, J. M. Lamb, London.
8157. FLoon Crasp, A. Dobbing, Darlington.
8158. Nut and BoLt Lock, W. Morley, Plumstea 817. Not and BoLt Lock, W. Morley, Plumstead.
8159. Spran Spowso SwIVEL, J. and W. E. Hemming,
Redditch.
 don, and W. Hickin, Birmingham.
S180. Musical Isstuiments, dc., E. Captaine.-(W, Spaethe, Germany.)
8160. Locks and Liscrss, W. A. Pierce, Woolstone.
8161. Cooliso Muk, J. H. Fergusson, Dumfries.

 186. Condensaino Hydrochloric Actd Gas, J. Har-
 8. Botrie Stoppers, R. Boughto, London.
Supportivo Hasms, H. C. Lory, Cressing 5189. Supportiva Hayss, H. C. Lory, Crossing.
8162. Frediva Sikers of Parer to Phinting Machines,
F. Hoyer, Liverpool. F. Hoyer, Liverpool.
819i. VELocl-thoycle Safety Boat, de., A. Biver,
L. 8192. Drivina Gear for Bonbin Net Machises, e. Cope, Lenton.
8163. Kxos, \&c., Bours for Doors, F. A. Harrison,
 H195. Dryingo Tea Leaf, dc., J. A. R. Main and J. Dick, Glasgow.
8164. Fastervos for Bracklets, E. Michardson and
R. Hall, Birming R. Hall, Birmingham. J, Pearson and T. Hale wood, near Stourbridge.
8198, Prevextina Davours from Enterina under Doors, B. Baron, Accrington,
8165. Locks, G. Boton, Wolverhampton.
8166. Coxsumina Smoks, J. Cornforth. 3201. Rasisiso and LowEriso the sharts of Two Whekl Carts, A. Reading, Southsea. A. Mactarlane,
S202. Spaina Bolt SAsm Fastexiso, A. 8203, AUTomatio Saddle Girths, W. Rachler, Vienna.
S204. AUTomatic Stamping Arparaive, W. H. Beck. - (J. Milller, Russia.) 8206. Trawliso Nets, S. Kemp, London.
8167. Sewinc Machives, W. Jackson, Lond
8168. GAs KINs, E. Cutler, Birmingham.
8169. PREvENTINO the Escere of IsYctious
from Ambulaxces, W. Gayton. London. Dibeases 8210. Gexeratino Steam, M. P. W. Boulton, Tow Park,
8170. Conpousd Gas Motor Enoins, H. P. Holt, 8212. Deodogisisa the Fuses of Cruest Kisss, E
Ashby, Southampton, and A. Ashby, Orantham. S213. Ponous CKLis for Galvanic Batteries, 8214, Smootirivo Iroxs, W. Beceroft, Leods. 8215. Closisa Leaky Tunss, J. Buchenheim, Kiel.
8171. Tarasmina Macmines, A. J. Boult.-(. Morris, Canada.)
8217 PRRQUETs, \&C., A. J. Boult.-(c. Witthoicaky 8218, PkTMANAOATEs, T. Kempt, Berlin.
 8220. Butros FAsteske, A. J. Boult.- (O. W. Ketchum,
Canada.) 8221. Avpomatic Drinkina Figure, tc., W. Britain
London.
8172. Merourial Exhaustino Pump, F. L. Willard, 8222.
Lond
8173.

Nort
8224. 8223. FUR
North 1
8224. ELEC North Africe.

ABSTRAOTS OF SPEOIFIOATIONS.

 1553.3

Tho oblicet sptember, 18ss, vid. Thu object it to provido that the gum for the eall of
 to provido apparatuan for remoring the evvelope wien
mado, and ofor drying the gum theroon

 ceeded with.) $4 d$.
Relates to the arrungement of a fan or oxhaustor,
amber or fireplace, and a drying chamber. 4753. Wasmiso Macmines, J. Donald, Glaggove.-6th Consists of a box or vessel, having its interior sur-
face plain, corrugated, fluted, or undulated, in comblnation with a board, tray, utensil, or tub, having or not a concave or otherwise dished part, the interior
surface of the dish beling either plain, corrugated,
fluted, or undulated.
 Consista partly of a pair of roverso conos and two
sets of conical rollers contained within a nest ring, the conical rallers of each set rolling upon one of the
cones and along a conical surface within the nest ring. Modifications are described.
4756. Mouldisg and Cabtino in Metals Articles
conamtino or two on monk Joistid on Hisoki
cossistiso or Two on monk Joistro on Hisoes
PARTs, F. Gill and W Rocklife, Sunderland, 6 oth

 Briggs, Burtom-on-Trent.- 6 th October, 1883. 188 (Not
proceded vith.) $2 d$. Consists of tubes of oval or somewhat flat shape
with slightly rounded upper surface, and also with a with sightly rounded upper surface, and also with
slightly bellied under surface, whose centro in the
line of the length of the tube is ribbed or forme will line of the length of the tube is ribbed or formed wit
a gutter or channel. Tubes thus made may be drawn a gutter or channel. Tubes thus mado may be drawh
seamless, or have. lapped or brazed scams on the
uppor or other surace uppor or other surface.
4760. Prodecren

 cation from M. Honignann, Aachen.)
Consist in producing steam under presure by
menns of chemical compounds, whose solutions have menns of chemical compounds, whoso so
a higher bolling point than that of water.
4761. Guindiso. Apparatus haviso Traversing
Grinders, J. S. Drompleld and C. Buttericorthin Otdham,-6h, October, 1883. $8 d$ d.
Consists partly in mounting two grinding pulleys to slide upon a hollow shaft, and connoctugg tnemi
together, so that when one pulley is slid along the
shaft by tho action of the scrow, thio other pulloy will shart by the act
move in unison.
4762. Appalatus ror Cleangino and Separatino
Impurities y ros Macmineay Oil AND Gmeass,
 oturr Similar Material, J. Devids, Manchester.
$6 i h$ October, 1883 , Gd. Relates to improvernents in the general construe-
tion of the apparatus, and to a heating apparatus. 4763. Steast Esornes, L. Chapman, Brith.-6th OetoUer, 1883 . - (Not procteded with.) 2 . 2 .
The steam which escapes by the exhaust port before the piston has comploted its stroke does not go to th
condenser, but is allowed to oscape into the reservoit or direct up the funnel, so as to produce a steam blast,
or it is otherwiso utilised. When or just before the or it is otherwise utilised. When or just bestore tho
piston has completed its stroke the oxhaust is by
suitable valves connected to the condenser and the
vacuum therein assists the return of the piston as at suitable
yacuum
present

Paris.). $4 d$.
Consists is in impregnating the goffered or
that ombosed fabrics with, or completely immersing them
in, solutions of agents or substances capabio of pro-
serving the sald fabrics from the aetion of water.

 in the form of a V.

In block signalling apparatus the bridge spring is
provided with an finsulator so as to disconnect the provided with an insulator so as to disconnect the
line when the apparatus is not being used. In tole.
graph circuits gonerally the apparatus is arrangod ao

 $4779 . \sin$
Biani,

 gaseous fuel on being eliminated is conducted directly
nto a melting or metal working chamber mingled
with a requisite quantity of air heated to a degree of emperature necessary for bringing about a perfect uperfluous heat or induced products of combustion pass thenece into and through a regenerator or third
Chamber filled with openly arranged fire-brick or other ehractory
4780. Dysaso or Maoneto-klectric Generators,
H. B. Ford, Lomilon.-9th October, 18s3.-(Not proThe attractive power of the field magnet upon the
armature while approaching the pole is utilised to compress a fluid, the power of which is exerted in
carrying the pole of the armature past the opposing 4782. Apparatus yor the Transmis8ion of Loads,
C. Hodgaon, London. $-9 t h$ October, 1883.-(Not proRelates to the transmission of loads by wire ropes, 784. Coatino the Surpace of Iron or other Metal
with Metallic Copper, Lead, Zing, Aluminiua,
 desired to obtain, has the metal precipitated by pyrophosphate of soda. The phosphate, dissolved in a
solution of caustic soda, is used as the electrolytic 4785. Calico Pristiva Machings, J Millar and T.
MeKillop, Glasgove.-9th October, 1883.-(Not proceeded with.) $2 d$.
The object is to enable such fabrics as searves and
"serongs," having a transwerse border between each serongs, having a transverse border between ench
piece, to be printed continuously in one machinn and
in one operation, instead of having the border sepain one operation, instee
4786. Froo Pads yor Horsss, C C. Baird, Edin-
burgh,-9th October, 1883, - Not proceded aith, burgh,- 9 th October, 1883. - (Not proceced with.) 2d.
The frog pad is formed of rubber or rubber com.
pounds or similar materials, and it is andapted to it
oetween the heel parts or calks of the ordinary iron 4787. Electhical Syncmonous Teleoraphic Axd
otuer Systems, S. Pitt, Sutton, $-9 t h$ October, 1883 , U.S.) 18.
The aparas at the different stations are provided with tuning forks so arranged as to be caused to
vibrate by their independent local circuits. This specification also describes at length a system of non-
vibratory circuit breakers to be used with the syn-
4789. Ladiss' Work-boxps and Tables, Le., W.
Tioen and E. Renaudin, London.- $9 t h$ October, 1883. Relatos to a wooced-work frame and pasteboard sides.

Consists of a strip of paper or suitable material
folded to form two flaps, between which the fabric can
be interted bo inserted, and having a pin formed with a head,
which is concealed between one of the flaps, and
having a face or covering strip, which is pasted or having a face or coverin
cemented to the said flap,
4792. Bleschiso, Dykiso, de., Hanks or Yans, P,
Thomas and J. Zirejel, Manchester.-0th October, Relates to the arrangoment of the vats, and the con-
struction of apparatus connected therewith. 4797. Arn Compressons, dc., C. W. Potter, London,-
9 Oth October, 1883 .
Sd. compressor without stopping itsp motion or the motion
of the engine which drive it, when the pressure of
The air in the rwcelver towhide the the air in the roceiver to which the compressor delivers
the compressed air oxceods a certain degree. Several
ther improvements are described.

 charged, so as ot obring the entire oxodised coating up
to a peroxide state. 4802. Vklochprdss, IH. J. Haidan, Lonion. -96
October, 18s3.- (A comanunication from A. H. Over This relates to a suspension saddle, the covering of
which can be loosened or tightened as required; to
soat spring the tension of which can be adjusted ; to oat spring the tension of which can be adjusted; to
steering apparatus for velocipedes; to improved a ${ }^{\text {pdals capable of longitudinal adjustment to compen- }}$
sito for wear; to roller bearings for the axle; to
means for coupling a sectional axle: and, lastly, to means for coupling a sectional axle ; and, lastly, 4805. Bearisos ror Joursals, dec, W. R. Lake,
London. -9 oth October, 1883. - (A communication from R. W. Traylor, Virginit, U.S.) Gd.
Theobject is make aself-lubricating bearing which, while it acts as a non-conductor of heat, will we free
from grit and provide a smooth bearing surface, and
consists in constructing the bearing of sheets of mica mranged side by side, and while subjected to power
ful pressure, placing them in the casing of the bearing

 mixemoniaw ixaw minn
 This relates to an automatic coupling composed of a
pair of hinged or pivotted hooks at equal distancees
rom the centro life, one on each side, a sliding pin to ongape said hook, and a lever or scrow arrangement
for sliding or withdrawing the pin, and so releasing the 4812. Catch por Uybrel.ass, W. P. Thompson, Liver.
pool. - oph October, 188s. - (A comununication from V. D. Stoeditridge, Wastington, U.S.) Gd.
The stop or catch is made of sheet metal, and workn
in a slotted plate secured to which a rocoss is made, and a spring arranged to act 4813. Sizisc

Gersany.- (Prorisional protection not allowed.) $2 d$
This consists in the use of a solution of chloride of
tuagnoestum or sulphate of magnesia, elther instead of
or in combination with the sulphate of alumina or
sulphate of finco employed in the
for the panautacture of paper
 Thistober, 1.lases. ehiefly to engines of the type described This reatees chienty to engines of the typo doscribec
in pantents No. 1692 and No. 3885 , AD. 1880 , and
No.
 body of which is asbestos covered with a thin sheet-
metal cap to protectit rit rom the hot gases; secondy,
mit

 menns of gas introduced from the power rylindor int
an metal tube heated by a powerful gas-burner ; Firthly,
in in the arrangement of ports of engines having the line, two sets of ports being employed and arranged
circumferentially; Sixthly, in emploging two cylin
ider circumerentiafly, sixd plyding the eports, pistons, and
ders side bo side and
cranks so that the pistons act ans all cranks so that the pistons ant as silid valves;
Soventhly, tin gas ongines having a vacuide cylinder,
the use of a catch in conjunction with the exhaust vene use and actuanted by the governor, , so that when the
vengine runs too fast the exhuust valve will be held
 vacuum cylinder at the proper moment.

 a carriage orce shall be be varied in approximate accordance
and 4818. TREATMENT

Claudet, London. - 10th cetober, 1883., 4d.
Relates to tho treatnent of copper mattes contain ing siliver or siiver and gold, for the purposeo of obtain
ing silver and gold therefrom by grinding or disinte grating the mattes, and rowating or calcicining of them, an
 gold thererfoom, and afterwards separating the silver
or stuble iond
aold
gold from this solution by means of a 4819. Skwiso Machises, J. McHardy, Dollar, N.B.-
 romove the from the sina tuting for the drag hooles in the sides of the shuttle
slot through which the slot through which the thread pasees from tho spool
Thirdy, ITh a spring attanhent for driving tho me
ehine. Tho invention further relates to menns for 4823 and his

 1883.-(A communication from Mesms. R. Hoe and The obeect Tisto. timpility tho mode of "insetting
 pamphlet. Soveral arrangements aro described.

 Wuildod while befing held angundit tho face of the wheol

 vesaels boilg oxposed to the action of air when part
ouch liquid s. withrwn and it consists in the ueo ap platon which rests on the liquid.
 cation from J. To enable varying curronts to oo taken off without
Yasyring the speod of the armature, the coils aro wound coupling these up as desired.

 Relates to improvements in tho general construction

 4843. Apparatus yor Maktyo Gas, E. Brook, Wigan. Tho lower part of the apparatus is constructed of
metal and tis i ide formed to rocolve water for keop.
ing then ing them cool, and in conjunction therowith a revolv:
ing grate of conical form is provided and so constructod as to move the ashes and Incombustiblo matter to 1
outer odge, where they drop over into the asheppit.
 Ground asbestos is used in conjunction with sumf-
cont indi-tuber to holod dit together and impart the
requisite elasticty to the maternl produced 4847. Apranatus por Ispleatiso tue Hentiso or
Braivas

An iron tube containing mercury is let into the
 This, relas.ese sio. appliances for fring the torpedo
harge on the impact of a passing vessol. A weight charge on the impact of a pasasing reseol. A weight
placed on tho top the torpelo it dislodged on inpact,
and may either complete an olectric cirvuit or put

 and regulates the pressuro of the gas. A hot air motor
is doseribod having two cylinders, one of which also
serves

 This relates to a press for cuttlng out, the table upon
 haft. The knives
the upper press plate.
4888. Hol.Ders For Pexcins, de., S. Moore, Man
chester.-12lh October, 1883.-(Not proceded with.)
 pencil, knife, or other article.
 Thitis. 2 elate to dorop-down guns, and consists, First In means for coeking the gum ns the barrels sial; and
Secondy, in anrangina spring or apriss undor the
barrels for the purpose of making hammerless guns
 This relateo to the use of a rack and pinion under
the controt of the pull of the closet, and aso arranged
as to create a n vacuum in a dome and cause a regular tush and after flush,

The locket consists of a acylindrical case provided
witha a bow tor attachment to a chain and a a hinged cover at each end. The case contains a number ol
short sections capable of siliding telescopically on short sections capable of siliding telegacopically one
over the other, so no to close into the case or Jroject
the heruerrom, the smnilest section
nd the
targest an object gluse

 tion of galvanic currents in conenection with the
charge. Mlechanism for frimg these cartridges is des-
cur
 4873. Puxps on Sypross yon Drawisa Acti ynow

Thisi relates to a syphon or pump, consisting of
tube to fit over tho carboy, and in which works a piston, the rod of which is hollow and bent at it
pper emad to form a syphon through which the con

 n a modification a double-acting pawl engnges a spur
Wheel gearing with the racked uppor carbon-holder.

 4881. ELectrucal Briss, C. B. Harnes, London.-
 miner surface of the belt and adapted to make a con
thet with the o ody of the warer
 Reilates to the construction of perforated tiles.

The fiventor clidms a sweeplng machine, consisting
 hine in win or scoop, is collectud therwin by rovolving
nto a box or biades, axd or so theop, taken ty betwd an
deliverod into a cart or wagyn.

 propelling, and consists in novel means or attachments merged to sucha depth that they ananot bo damanged
by tho projectlle of machine guns and other sim inar
weapons usually emploged for the destruction of such
4896. Ton

Con, 18ss. in the use of mercury and another metal
soluble therein to effect the puasige of the torpedo
 remains undissolved by the former, the hammer, by
whiht the fring of the chargis enfected, is securel
retained, and will not be sot froe by the impact of
pasing
4898. Couplixo Electric Accuyelators maployzi

The armaturo circuit is supplied with a constant current, whilio th
varied as desirod.
4000. Looss fon Weviviso, A. G. Bateman, Mancheter

of lamps, and particularly to the handle, which may
bo disengaged from the body for the purpose of con
verting
 The yielding roller, is carried by two bearings
attached to levers pivotted to the frame of the machine.
By suitably arranging the position of the pivots
variable pressures By suit
variable
rollers.
490
904. Apparatus for Heating and Cooling Liquids,
G. and G. Laigrence, London.-15th October, 188s,

This relates generally to the construction of heating
or cooling apparatus from tubes or corrugated surfaces whereby the circulation of liquid both internally and xternally is more perfect, the parts of the apparatus
re readily renewable and easily cleaned, and the 4905. Preparation and Treataent of Papgr for CHEqUES, NOTEs, STAMPs, AND OTHER Documents
The paper is saturated with a solution of gallc, tannic, or gallo tannic acid, mixed with gum and
alum, and printing and writing on such paper with an ink containing ferri-sesqui chloride, or other similar 4907. Treataent of the Respratory Oranss, W.
P. Thompaon, Liverpool. $-15 t h$ October, 1883 . $-(\mathbb{A}$

The patient is enclosed in a box, in which a partial
vacuum is maintained, and apparatus is applied to his nouth and nostrils, to enable him to breathe air at its normal pressure, and charged with medicinal or
remedial agents suitable for the disease to be treated, 4908. Flat Wirg Ropes, de., . W. Weott, near Stock.
port. $-16 t h$ October, 1883 ., (Not proceded with.) $2 d$. This relates to the formation of flat wire ropes of a direction, or with each alternate strand twisted in the reverse direction, the strands being placed side by side, and united by strips of flat metal passing alter-
nately over and undor the strands. A kind of loom is ately ovor and undor the strand
described for making these ropes.
4909. Skates, A. G. Brookes, London.- 16 h october,
1883.- (A communication from J. A. Dodge and U. This relates to fiting skatos with independent
mechanism for grasping boota at the toe and heol, the former being actuated by turning a plate, whereby caused to approach or recede from each other, while the rear or heal clamp is awt blod by turning or tilling
vertically on a pivot on the blade. 4910. Construction of Motive Power Apparatu Specially Deviber yor Proplling Tharacles
Tramcars, and otier Road Vbicles, W. Fletcher This relates so a hydrumilc, motor, and as applied to
tricycle an accumulator is placed in front of the back steoring wheel, and contains a ram abutting against
powerful pring. Pipes from the upper part of tho
peumblor the ram the accumulator is connected by a pipe wit force pumps which force water from a tank on the
vehicle into the accumulator, and the hydrauli pressure created is by suitable mechanism caused to
actuate the tricycle. The pumps are actuated by the 4913. Writino and
 from K. Weieftog, Girmany.) $4 d$,
An elastio slocevo is itted over the end of the index
nger, and to it is secured a pen or pencil. 4914. Elvcrric Arc Lasurs, H. J. Haddan, London.-
110th October, 1853 .- (A Boetteher, Lipstig.) (Not proceded with.) $2 d$.
The regulation is effected by that part of a cone
hich "while protruding from the coll corresponds to an approximately uniform electro-magnetic attraction
for a given strength of current." The motion is upper carbon being compensated by the unwinding of
ander los. 4917. Barness, A. J. Boult, London,--16et October,
$1883 .-(A$ communication from G. O. Manning and Two thin sheets of wood are placed with their grait ough wood provided with metallic tips are secured
nd the whole rolled into a cylinder on a former, an strip of veneer covered over the joint. The heads a by means of retaining strips. Machines for man 4918 . Appaing the of these vessele are described.
 (Not proceeded with.). $2 d$.
Tho wood is reduced by means of two vertical rumners operated by one spindie to which they are
ndeustably attached, the periphery of the rumners
being bevelled and the outer portion convex and fluted. 4919. Modrraton Lasps, W. P. Thonpaon, Liverpool.

- loth October, 1883.- (A communication from A. The object is to ailow liquided hydrocarbons to be used is moderator lamps, and it consists in the special con-
atruetion of such lamps to render them suitable for
 This consists, First, in proventing laibility to the ormation of mould in a solution containing calcium econdly, in increasing the solubility of calciumi
odato by tho use of sodium or potasium citrate: and
Thirdly, in the combination of the two first features, so as to obtain a mould proof and relatively strong
solution. The proparation is used for the destruction 4021 R-bucteria or microzymes.

4921. Remdring Fabrics, Flarous Materals of
all kind, and Leatika Impemmale, F. Wirth, Oermany. - 16th October, 1883.-(A communication
from Mars. Gademann and Co., Germany.-(Not 30 to 50 grammes of oleate or palmitate of alumina
ro dissolved in a litre of petroleum, ether, benzine or are dissolved in a litre of petroleum, ether, benzine or
 Consists partly in the combination in a nipper head of two nippers placed one in advance of the oether in
the nipper head, and through both of which the sliver pasce, whereby the fibre of the siliver is more effec
tively struightened before the twist takes place, and is
brought into better condition for twisting. Sevenal
other improvements are described.
 The object is
To make an improved lace on twist warps to one bobbin thread.
4922. BakRRs' Ovexs, A. F. Link, London.-16eh Oeto-
Ger, $1853 .-(A$ communication from H. Brwnwald, The oven is providod with two or more furnaces for
4923. Signal Lamps, J. I. Coates, Leeds.- 16 th October Consists in combination with a signal lamp of a
passage for lateral rayss with reflector and lens arranged at either or both sides of the lantern.
4924. Transmitting Electrical Impulses to
Distance, especialiy applicable to Submarini
 verselle d'Electricité Tommasi, Paris.) $8 d$. The cable is constructed in sections, and each section 4927. Pavina Streets, de., J. S. Gabriel, London.-16th Consists of a compound pavement of wooden block below, and over the wod an upper pavement o
granite blocks or asphalte. 4928. Atrachino Butrons to Fabrics, de., S. Pitt,
 Consiss ank of a buton, ond the fabric around the eye or shank of a button, and then passing a metallic
fastener completely through the creased fabric and
button eye. button eye.
4925. Foldiso Carriacrs por Cmidpren, W. Singer
and F. Hinterleitner, Berlin,- $-16 t_{h}$ October, 1883.and t. iceded with.) $2 d$,
(Not pren ,
Rolates to improvements in the general construction Rolates to improvements in the
and arrangement of the framing.
4926. Obtarising Aluminium rrom its Ore, de., H.
A. Gadsden, London.-16th October, 1883,- (A communication from E. Foote, New York.) $4 d$.
The inventor simultaneously gonerates sodium eparate a volatile compound of aluminium in two soparate vessels or retorts, and mingles the vapours
thus obtanined in a third vessel., wherefin they react apon each other, producing metallic aluminium, which
 Clough a and B. Goodman, Neow York.). Bd.
Relates to a buckle or similar fastening devico made in one piece, and consisting of a loop, a soparating
bar, inwardly projecting arma, and toeth projecting at a proper angle to engage with, and hold a strap pressed
against them, and strained or pulled towards the eeparating bar.
4927. Obtainino Heat and Motive Power prom 1883. - (A communication from H. H. de M. Me Ballore, Lyons.) - (Not proceded with.) $2 d$.
Water is decomposed into its constituont elements, and tho gases aro used to generate steam. Suitable
4928. Syors yon Horses, \&c., T. D. Richardson, Relatos to the mothod of rolling the shoes.
4929. Treating Phospuate or Soda, or Potasi, to
Proovce Phoprate or Ime, C. Hum frey, Choder.-10th Oetober, 1883.-(Not procceded with.)
4930.

Redates to improvements in the general treatment. 4936. Draw-bars and Couplino Apparatus for
Rainar Waons, dec., S. Keeton, Lentom. 17 th October, 1888 . - Not proceceded with.) $2 d .1$
Relates to the construction of an automatic coupling 4937. Mrrcurtal Babometrre, IF. F. Alexander,
Glaggov. -17 th October, 1883.-(Not proceded vith.) Consists in causing the indication to be marked by 4938. Shart Couplinas. T. L. Ellis and C. Leonard,
Coatbridge, N.B. 17 th October, 1883, 6d. A hollow circular box is borod with i double conical and the large diameter at each end. is in the outside of
the box is serow-thrended nt ench end, to recelve a pair of hollow box nuts, which bear upon two tapered
semi-circular wedges, fitting into the base of the box sem--circular wedges, fitting into the base of the box,
no as to cause them to grip the ends of the shafts to bo
coupled.
 The contral portion of the bridgo is made high enough to allow vossels to poss, and at the sidos apps.
ratus is providod for raising and lowering the side
portions to and from the level of the central portion.
 from S. Le, Windsor, U.S.)-(Not proceded with.)
$2 d$. One of the main levers of the nipper is in sections,
extending the full length, and of such shape as to allow the other lever to work between them on
fulerum formed by a boss on the inner face of each section. The invention further rolates to the position
and shape of the receses in the lever jaws to receive
removable and roverible cutters 4941. Skparatino Amsonia prom Gases and Vapours,
Ec., G. Chapman, Glagour.-12lh October, 1883. Thot proceded with.) 2 d.
The pases pass successivel
The gases pass succesidvely through a series of
vessels, In which a shant is arranged at right angles to
the inlot and outlet the inlot and outlet, and carries a series of vortical discs with spaces botween. In the lower part of the
vesell a solution of sulphuric acid is placed, and covers the discs witho same as they rovelve. The liguor when
saturated is treated with an excess of alkali, and air saturated is trated with an excess of alkali, and nir
and steam forced through the vessels used, after which
the liguid is allowed to settle and steam forced through the
the liquid is allowed to settle.
4942. Macazine Rivles, de., O. Jones, London.-17ih
October, $1883,10 d$. The main object of this invention is to prevent the
bullet of one cirtridge from coming into contact with the cap of another as they pass from the magazinin to
the breech. It further relates to mechanism by which the feeding, londing, extracting, and ejecting, wand, if
desired, tho firing, is effected by the to-and-fro motion dosired,
of a slide.
$4943 . ~ C o$
4943. Couplisva ron Smatiso, P. Brotherhood, London. The object is to couplo two lines of shafting so as to
allow for error of alignment and give cartain freedom for end play, and also certain clasticity for driving,
and it consist in the use of a daphragm of somewhat
flewible and elostic mote and it consists in the use of a diaphragm of somewhit
flemiblo and clastic material clamped at its periphery
to a flange on one shaft, and at its middle to a flang flewible and elastic
to a flange on one
on the other shaft.
 cation, Germany. -17 from M. October, $1883 .-$ (Aeyer, Noricay.)-(Not proceeded
avith.) $2 d$. The apparatus consists of two or more steep
ing troughs and a set of open tubs for germi ing troughs and a set of open tubs for germi
nating, nll attached in rows one close to the other
The tubs have two bottoms, the upper being per noted, and warmod or cooms, the and filtorod being perfo- is forced
through the malt or steeped grain in the tubs. 4949. Machines for Cuitivativa Land, A. Greig ana
R. H. Foncler, Leds. $-17 t h$ October, 1883. Gd. The object is to enable implements to be hauled by and it consists in constructing such implements ngine, the slack rope being laid between the rows of its roturn journcy by the other engine.
 netal surrounding the card cylinder and secured to
discs at each end whith carry the boarings for the
oard oylinder axle, whereby the current of air caused
is directed so as not
the other cylinders.
4950. Treatment of Asbestos, J. Devorance, London This consists in soaking asbes of caustic soda, and subsequently washing the same 30 as to purify
action upon iron.
4953. Indications of Speed and Direction of Rotating SHarts, E. J. P. Gallwey, Thirsk, York
shire.-17th October, A shire.- 17 th October, 1888 . A smail electric generator supplies its current to one
or more indicators, the indexes of which are arrangel or more indicators, the indexes of which are arranged
to move according to the increase or decrease of the current.
4954. A 4954. Application of Chemical Agents to Natural
or Artiniohal Stones and to Stucoks in order
 Ro diminish their Porosity and increase their
Resistasce to External INFLUENces, W. Spence,
London.-17th october London,-17h October, 18ss., (A communication
from Meare and Kessler, France.) td 4 . This consists principally in the use of fluosilicate
for hardening stones, stuccoes, or moulded plasters. 4955. Elzcrrac Belss, F. J. E. Clarke, London.-17t The frame is of cast iron, and forms one terminal. electro-marmet attached to one ond of the vibratin
4956. Printino and Decoratina, E. C. Beaumont and
A. Doig, London.- 1 thth October, 1883.-(Not proThis relates to a frame to receive type and blocks,
and by means of which margins or borders may be decorated or printed on.
4957. Croars, F. Wirth, Germany.-17th October, 1883. Eo, Germany.)-(Not procecded vith.) $2 d$. Easch cigar is provided with a kind of holder, con end bofore being finished, the outer leaf covering suc)
4958. Decoration or Glass, H. J. Haddan, London. Saint-Remy, Betpium.) (Not proceded vith.) $2 d$. The glass is roughened by alds, or is ground, and
then vitrifable colour or enamel is appliod and vitri fied in a muffle.
 (Ac., H. H. Hanication, from Sachs and Howorka, Ger-
many.)-(Not proceeded with.) $2 d$.
water, which they transfer to a thrd spong, and absorb against a perforated cover over which the article to bo
moistened is pased. moistoned is passed.

October, $188,-(4$ communication from A. Guilbert
Martin, France)
Martin, France.) bd.
In order to enabie the height of the column of 1iquid In gauge and other glasses to be moro rendily sen, the
glasses are provided with a white stripe of oname applied at the rear of the liquid column, forming in
bnckground for a narrower stripe of some bright boloured enamel.
coll
4963. Boxes von Postal Purposss, \&c., J. J. Hamil
tom, Liverpool. -17 th October, 1883.-(Not proceded velith.). 2d. Rolded flat when not in use.
4965. Apparatus for Heating and Cookivo Food, R
Jackoon, Leeds. $-18 t h$ October, 1883.- (Not proceded Relith.) 2 d . $\bar{\longrightarrow}$

SELEOTED AMERIOAN PATENTS. 296,755. Spisple Beaniso, John Kilburn, Lovell, Brief. The lower end of the of the step are connected by profections and notohes
and the stop and bolster

296755

rotated in the bolster case by a projection or stud
upon the lower end of the step engaging an opening in the chamber of the bolster case.
296,914. Stoss Crusurr, Theodore A. Blake, Nen Haven, Conn,-Filed January 21 st, 1884 . more, parallel guides, upon which onid jaws are
arranged and made movable in a path parallel to said

guides, and mechanism, substantially such as do
scribed, to impart movement to the said soifes of the said guides serving to support the said jaws in the samo incination with relation to each other through
out their entire movement, substantially as deseribed. 296,884. Method or Manofacturino Mretal Allove,
Gustan Solve, Alena, Westphalio, Prussia, Germay, Claim. - (1) The method of smelting alloys, mor particularly thoose of zince, in closed crucibles that are
situated with their lower parts in the furnace, while

296884

their upper parts project out of the same, consisting
then quickly adding zinc in proper proportion and
brass waste, then closing the crucible and applying
heat to the lower part thereof, while the upper pert is heat to the lower part thereof, while the upper part is
externally exposed to the air, whereby the zine
vapours generated in the lower hotter layer of metal vapours generated in the lower hotter layer of metal
become condensed in rising up into the upper cooler become condensed in rising up into the upper cooler
layers, as herein specified. (2) In smelting zincalloys,
the method herein described, consisting in supplying lhe method herein deseribed, consisting in supplying
the crucible with copper and melting it, then adding zinc in proper proportions and brass waste, then closing the crucible and applying heat to the lower portion
of the same, and thus effecting the condensation the zinc vapours generated in the lower part of the
crucible by means of the cooler upper layers of metal rucible by means of the cooler upper
therein, substantially as herein specifiod.
297,269. Electric Lioht Fixpure, Philip H. Klein,
Jun., New York, N. Y.-Filed December 12th, 1883 . Jun., New York, N.Y.- Fited December 12th, 1883.
Claim.-(1) The combination of a ointed or ing bracket having open wiroways through its joints and continuous flexible electrical conductors extending through said bracket from end to end, substan-
tially as set forth. (2) The combination of a jointed or swinging bracket having open wireways through its joints and two continuous flexible separately.
insulated electrical conductors extending through sald rracket from end to end, substantially as sot forth.
3) The combination of a jointed or swinging bracket aving open wireways through its joints, continuous
 he bracket-arms from making a complete revolution,
substantially as set forth. (4) In an dectrical swin, ng bracket, the combination of two parts, one turn-
ig within the

them together, substantially ns set forth. (5) In an
dectrical swinging bracket, the combination of the app on one part, the flanged sloove on the other,
fitting into said cap, and the flexible plate holding them together, substantially as set forth. (6) The
combination of the cap forming one side of the joint, the sleceve turning therecin, forming the other side
and the shell f, covering said aleove, substantially a set forth. (7) In a swinging brackot containing con-
tinuous floxible electrical conductors extending tinuous floxible electrical conductors extending
through the bracket from end to end, the tubes of the through the bracket from end to end the tubes of the
bracket oxtending from the ends of the joints, substantially as set forth.
97,273. Field-shangt fon Dysamo-Electuc Ma-
ciuse, Johin W. Laveion, Harrison, N.J.-Filed Claim.-(1) In a field.magnet, the combination the hollow yoko Λ, tubular cores B, pole pieces C , and
wiro bundle D , and clamps for binding the said wir

997273

bundlo to the pole-pleces C , as specifiod. (2) In a
field magnet, the combination, with the wire bundle field magnet, the combination, with the wire bundle
D and pole.pleces C , of a clamp for binding the said 297,310. FAX Blower, James E. Studley, Osthkoth Wis.-Filed May Sth, 1883 .
Claim.-(1) A fan blower, provided with a sories of partito form, the beginning or saidg partitionst being at
volute for
equal distances from each other and from the axis of equal distances from each other and from the axis of
the fan roppectively, and corresponding in number
to the blades of the fan, substantially as and for the 297310

purposes set forth. (7) \mathbf{A} fan blower in which the air
purposes set forth. (i) A fan blower in which the aif
is recelved from opposite sides, , provided with a serie
of partitions within the shell, arranged in volute form of partitions within the shell, arranged in volute form,
and terminating in parallel lines in the eduction pipe in combination with the fan G, having the centri
annular disc H, substantially as and for the purposc set forth.
297,312 .
297,812. Suart Bearisa, Harris Tabor, Allegheny.-
Filed February 28th 1884 .
Cluim- - (1) The method of forming and finishing
soft metal linings for bearings, which consista in frit casting a lining around a core mandril of less dinit
meter than the journal which the lining is to meter than the journnl which the lining is to receive
and thereafter expanding said lining into its bearing

or box, and coincidently truing and finfahing its bore
by the internal prossure of a fintahing mandril largor diameter than the core mandril, substantially as set forth. (2) As a new articlo of mannufacture,
shaft bearing having a soft metal lining which is
expanded into position into the bearing and coin-
cidently trued oxpanded into position into the bearing and coin
cidently trued and finished by the application of
internal prossure, substantilly
combination of a shaft bearing and a lining of soft
metal, having the wearing surface of its bore trued and finished by compression exerted upon the natural forth. N. Y.-Filed December 17th 1899 Fuller, New York Claim.- - (1) A marine engine governor, constructed sisting of the shell B, tha and described, and conseat H I, having flanges J and perforations K L R the apherical valve M, having perforations N O, and
provided with a weighted valve stem P, and the forth. (2) In a marine engine governor, the com bination, with the shell $\Delta \mathrm{B}$, of the two-part spherical valve seat H I, having flanges J and perforations
$\mathrm{K} L \mathrm{R}$, and the spherical valve M , having perforations N O , and weighted stem P S, substantially as herein shown and Coscribed, whereby the admission of
steam will be regulated stoam will be regulated and stopped by the rocking
and pitching of the vessel, as sot forth. (3) In ain
marine engine marine engine governor, the valve constructed sub stantially as herein shown and doscribod, and con-
sisting of the two-part spherical seat H, having

flanges J and perforations K L R , and the spherica
valve M , having perforations N O , and weightod stom P , whereby the pocking and pitching of the vessel will move tho said valve to partly or fully shut off stom,
as set forth. (4) In a marine engine governor, the combination, with the valve seat $H I$, having vertica
alot U , nad the valve M , of the pin T , herein shown and described, whereby the sald valvo is kept from turning about the axis of its stom, and
taking its perforations out of registor with tho per
forations of the valvo seat marine engine governor, the combination, with the
mat collar F of the shell $A B$, and the valvo stom, P, of the
stuffing box V, and the flexible hose W, substantinly as herein shown and described, whereby the escape of
steam around the oscillating valve stem will be prevented, as sst forth.
ve7,449. Fire-proor Buildino, Gustavis W. Rader
 Brief-A briek arch extending between and sup-
ported by I-beams has a keystone with a downward

oxtension. Fire-proof tiles are supported by the across the bottom of the beams and are supported by
the tiles. the tilles

CONTENTS.
The Enginere, May 30th, 1884.
Hurdy-qumd Wheris, (IIlustrated.) 397
 Lboal Intrilitagxci
Railway Mattrrs ..
Sotss AND MEMORANDA
Locomotive yor trie bugzos Ayres asd Picific
Ratiwar. (Mustmede
 Raliway Carriae and Wacos Buildina
The Roval. Imativion The roval institetion

Letters to tie Editor-

Hydrallo Lifts
Compousp Reversino Rolitso MiLL. Exoine (Illustrated.).

Batgitos Eleotric Railway
Manupacturd Iros Tean
Litmatura
 he Manctisster sür Caxal
COMPETITHOLOMAPIS or THE Copenhain SAVIOATIOX OF ABMOR-PLATES WEAVER

 givahas, Wolveruamptos, and District -
Votss from Lancasimes and

Yotrs yrok the North of Enoland
Yots yros scotlasp Notrs prom Falrs amd añonsino Countibs
Tus Pateat Jourval

Ies Carnax do Midi et Latema University College, Bristol Naval Engineer Appointment Naval Engineer AI Railway Accldents The Forth Bridge.

The Yorth Bridge.
Rognt Meteorological Bocloty
Δ Watch made to bo Pounded..

