ELECTRICAL ENGINEERING AT THE

INVENTIONS EXHIBITION.

No, XI.
The Gülcher Electric Light and Power Company exhibits several large machines of the Gülcher type, or, to speak the language of the company's catalogue, of its safety system. This word system reminds one of those early days of electric lighting when companies could only be formed and business undertaken by those who had a complete system ready to hand. Nobody asked whether the dynamo taken by itself was a good machine, or whether the lamps were such that they would burn steadily with a given current and at a given difference of potential ; all lamps should belong to the same system, and that the whole should make a good show. Although it must be admitted that an electric light installation, like every other engineering work, can only be successful if every single engineering work, can only be successsur it it adapted to its special duty, and in so far forms part of it is adapted to its special duty, and in so far forms
part of an organised system, yet too rigid an adherence to any special system may occasionally stand in the way of a natural development of electric lighting. Take, for instance, the original Brush system as first imported into this country. The dynamo was of excellent workmanshp, required hardy any repairs for years, and was eminently
suitable for lighting a large number of arc lamps in series.
employed the are becomes too long, and the light, instead of being white and steady, becomes flaring and of many colours. To bring down the pressure from 65 to 50 volts a resistance must be inserted into every branch, and this entails a heavy loss of power, to say nothing of the additional fire risk incurred by the heating of the additional fire risk incurred by the heating of the resistance coll. The latter can, of course, be awoid the heat by ventilation of the coil, but carrying away the heat by ventilation of the coil, but the fact remains that we generate the current at 65 volts and utilise
it at 50 volts, or even at a lower pressure. Here we have clear loss of at least 23 per cent of the output of the a clear loss of at least 23 per cent. of the output of the lamps could be placed in series, and a sacrifice of 10 volts in an couldion plate in an addional resistane would qe quite sufficient to enable the lamps the fiilcher properry. We dow whether the Gur lamps are several good and will burn with a market which can be so arranged, and will burn with a perfectly steady light in parallel with incandescent lamps off the same circuit. To perform this feat no special system is required, a good self-regulating dynamo driven at a constant speed, properly arranged leads, and good arc lamps, is all that is needed. In making the foregoing remarks we do not wish in any way to criticise the Guicher dynamo or the Gulcher
lamp per se, but we wish in fairness to the electric lighting lamp per se, but we wish in fairness to the electric lighting
industry generally to point out that other systems, or, for
machines, and in common with other dynamos of that class machines, and in common with other dynamos of that class
it has of late years been improved by the multiplication of its field magnets. It is worthy of note that recent improvements in cylinder machines have mostly been in the direction of heavier armature cores and stronger fields, but not multiplication of poles; whilst in dise machines the greatest improvement has been effected by increasing the number of field magnets and poles. Thus the original Guilcher machine had four poles, and gave a current of Gulcher machine had four poles, and gave a current of
220 ampères at 65 volts. The machines now exhibited 220 amperes at 65 volts. The machines now exhibited ave eight poles, and give each a current of 400 amperes nearly the same. It must not be thought, however the nearly the same. It must not be thought, however, that the multiplication of poles alone is the cause of nearly doubling the output; constructive details have also been
reatly improved. As will be seen from the annexed reatly improved. As will be seen from the annexed sketches, which show parts of the original machine in
section, the armature core consisted to a great extent of wood, there being only a comparatively small extent of wood, there being only a comparatively small amount of iron in it in the shape of flat discs or washers fastened to ach side of the central wooden ring. The attachment to the spindle was made by two gun-metal discs, between This system had all the faults of the originas wedged his system had al the faults of the original Gramme rmature, inasmuch as friction pure and simple was relied on to transmit the driving power into the core, and the
inner portion of the armature could not be ventilated.

gulcher dynamos.

The system was essentially one of high tension currents, and if the company had strictly adhered to it, it would have found it difficult to utilise to the best advantage two subsequent and very important inventions, viz, the storage battery and the incandescent lamp. It wisely determined to drop the high tension system when using incandescent lamps and to build up a special dynamo for the purpose. The Guilcher system is essentially one of low tension currents, the pressure being fixed at only 65 volts. No doubt, in the early days of electric lighting, when the danger of electric currents was but imperfectly understood and almost generally overrated, such a low pressure, on account of its supposed perfect safety, was a very attractive part of the Gülcher system. Now-a-days we know that to touch two wires between which exists a constant difference of potential of even 300 volts, may be unpleasant, but cannot be considered dangerous, whilst from a current flowing under a pressure of only 50 volts a dangerous shock is possible if the current be suddenly interrupted. The whole question of safety has shifted in the last few years, and nobody considers it in the slightest degree dangerous to maintain 100, or even 200 volts in the main circuit of an incandescentinstallation. In fact, the standard pressure for incandescent machines is now 110 volts, in order that with due allowance for the loss of pressure in the leads 100 volt lamps coupled parallel can be used. The Gülcher Company, however, still seems to adhere to its original "safety system." It builds its machines for 65 voits, and claims as a special advantage of this that it is able to burn arc lamps and incandescent lamps in parallel connection. Now, the ifference of potential on the terminals of any arc lamp is generally from 40 to 50 volts. If more pressure is
the matter of that, installations put up without regard to The cores of the field magnets were of oblong cross any special system, may be just as safe as that advocated section, and required therefore a greater length of by the Giilcher Company. As a matter of fact safety does

not depend on the system, but on the men who design and put up the installation.
The Giilcher dynamo belongs to the class of disc
exciting wire than would have been the case had they been circular. There was no cross coupling between coils of the same potential, thus necessitating the employment of four brushes. The resistance of the armature was "063 ohms, that of the magnets 065 ohms; total, 128 ohms. With the full output of 220 ampères, the internal loss of electro-motive force was therefore 28 volts, whilst the total electro-motive force developed was only 83 volts. The modern machines shown by the company are in every way an improvement upon the original type. We illustrate in Figs. 1 and 2 a longitudinal section and end elevation of their No. 6 dyname. The core of the armature consists of a central web of malleable iron, resembling a double T girder bent into a circle, and of thin iron plates laid into the two annular grooves between the outer and inner flanges of the girder. The plates are insulated from each other by distance pieces, and air is admitted into the space between the plates by a series of holes drilled parallel to the spindle in those parts of the core which are not covered by the coils. Each coil consists of twenty turns arranged in four layers of five turns each, and as the coils are placed radially, of five turns each, and as the coils are placed radially,
there remain between successive coils wedge-shaped portions of the core which are exposed to the air. The core is mounted on a gun-metal wheel with flat arms radiating from a central hub which is keyed to the spindle, and thus the driving power is transmitted in a positive way to the core. The outer flange of the girder is provided with rectangular projections filling the space between
neighbouring coils on the outer periphery, and holes are neighbouring coils on the outer periphery, and holes are
drilled into these projections in a radial direction, by
which the air entering laterally into the core may escape. holding the coils in place and of drawing in lines of forc from the pole pieces in the well-known manner of the from the pole pieces in the well-known manner of the right and left of the armature and are placed paralle right and left of the arough the and peces purround the core on three sides, it is evident that the greatest number of lines of force enter the core in a direction at right angles to the surface of the iron plates or washers, and herein lies a weakness of the bodies revolving before magnetic poles the tendency is to develope currents at right angles to the lines of force and at right angles to the direction of motion. In the present case the tendency will therefore be to induce currents in each plate in a radial direction, from the centre in those parts of the discs which at any time happen to be between one set of poles and towards the centre in those parts which are between the other set of poles. Let the shaded portions in the annexed sketch represent the polar directions in which the directions in which the up, then it will be clear that in each plate there will be a series of internal currents circulating, as shown by the dotted lines." To prevent their circulation would be necessary to cut he discs by tinuity of metal in the direction of the circumference, and tinuity of metal in the rece, and It is evident that the evil cannot be met by that remedy. Buthere The lines for plates, must leap across the air spaces which sere inner plates, must leap across the air spaces which separate the All these defects could be avoided if the core, instead of being built up of washers set at right angles to the into the shape of a ring and placed within the annular groove between the outer and inner flange of the with a band of insulating material inserted, electrical whilst yet retaining magnetic continuity in the direccoming the pron lifficulties is by the ovplor coming the present dificuities is by the employment of Mr. Fricker, the electrical engineer to the company, in the latest and most improved type of machine. Although interest, and by the courtesy of the possesses considerable interest, and by the courtesy of the company we are able
to place drawings of it before our readers. Before entering on its description we must yet say a few words about the machines actually exhibited. By increasing the number of poles from four to eight the output of the machine has been nearly doubled. It is easy to understand that by increasing the number of points on the commutator where we can draw current on-in other words, by subdividing the armature into a greater number of sections which are grouped parallel-w ind obtain a corresponding increase of current; but it is not so easy to see at the first glance whether or not this gain of current will be accompanied by a proportional loss of pressure. If we were to judge
simply by analogy with voltaic cells we should expect to simply by analogy with voltaic cells we should expect to
find such a loss, for everybody knows that by grouping find such a loss, for everybody knows that by grouping electro-motive force. Analogies, however, are often misleading, and to be safe from error we must decide the present case on its own merits, quite apart from any
semblance it may have with something else. The average electro-motive force developed in a coil whilst passing from one neutral position of the field to the other is inversely proportional to the time occupied in making the transit, and
directly proportionial to the total number of lines of force directly proportionial to the total number of lines of force which pass through the armature core on their way from one pole of the field magnets to the next pole of opposite sign. If
n coils are contained in that section of the armature which corresponds to the angular distance between the two neutral points in the field, the electro-motive force developed If we now double the number of poles there will only be $\frac{n}{2}$ coils between the two brushes, and the total electromotive force will be $\frac{n}{2}$ times that of a single coil. But the time occupied by each coil to moye from one neutral space to the other is also only one-half of its previous amount, and if the number of lines passing from pole to pole has will be doubled. The total electro-motive force taken from brush to brush has therefore not been altered, although the current has been doubled. Now, it might be asked, why not double the number of poles once more and again get a proportional increase of current the answer is that we tion of poles in the difficulty of providing polar surfaces tion of poles in the difficulty of providing polar surfaces
large enough for the passage of the full number of lines. The more poles we place around an armature of given diameter the smaller must each pole be, and the nearer will Thishbouring poles of opposite sign come to each other. This has the double disadvantage of increasing the resistleakage of lines, which, passing direct between the conable leakage of lines, which, passing direct between the poles without touching the armature core, are, of course, lost for the production of electro-motive force. To counteract exciting power on the magnets. We are inclined to the that the limit has been closely approached, and perhaps already overstepped, in the eight pole Giulcher machine, for if we neglect leakage of lines between the poles we find, on theoretical grounds, that an exciting power of 8000 ampèreturns on each horseshoe-or 4000 ampèreturns on
each of the sixteen magnets-would be amply sufficient to get the full number of lines into the armature; whilst, in
reality, the exciting power on each horseshoe is 19,000 of 400 ampères. There are fifty-six coils of 160 wire 0 the armature, each containing twenty turns, or in all 1120 turns. The mean perimeter of each coil is 527 yards, so that the total length of wire on the armature 590 yards, its weight being 140 lb . At 400 revolutions are four distinct circuits, we find that $\frac{590}{4}=147.5$ yards of wire produce 65 volts, or $2 \cdot 26$ yards of armature conThe The armature core contains 2 square inches of malleable iron and 625 square inches of wrought iron.
cores are cylindrical bars, 4 in . diameter and 12 in . long. Eores are cylindrical bars, 4in. diameter and 160 wire, there being sixty-three turns in one layer, and all the sixteen being sixty-three turns in one layer, and ane is coupled up as a series dynamo, and with the full output the density of current is 2500 ampères per square inch of armature wire and 1250 amperes per square inch of magnet wire. Since the employment of eight brushes would lead to serious
practical difficulties, the system of cross-connectionsdescribed in our impression of July 24th, p. 62 -is made use of. The connections are made by a series of coppe discs, each provided with four lugs as shown at B in our illustration. The discs are insulad from each other, an are mounted on a wooden hub. The wires leading from the armature to the commutator by soldered joints.

The resistance of the armature is 0116 ohms, and that of the magnets ' 015 ; total, 0266 ohms. The internal loss of pressure is, with 400 ampères output, 10.6 volts, and the electrical efficiency is $\frac{65}{75 \cdot B}=86$ per cent. The maguet coils contain 3030 yards of 160 wire, and weigh 710 lb . total weight of wire on the machine, 850 lb . With th full output of 26,000 watts we hind that every pound o copper produces 30.6 watts in the external circuit. At our
standard speed of 1000 revolutions a minute, the output would therefore be illustrate the new six pole Gülcher machine in Figs. 3 and 4 . Mr . Fricker has judged rightly that.in order to produce a maximum of electro-motive force with a minimum length
of wire on the armature, the core of the latter should be of wire on the armature, the core of the latter should be winding shown. iron wire into an annular tube of gun-metal, this envel prevent the creation on Foucau by radial sav cuts placed at frequent intervals. The machine is intended for an output of $12 \cdot 000$ watts when driven at a speed of 500 revolutions a minute ; current, 160 amperes ; pressure, ing to calculation, the resistances will be as follows:-
 $\cdot 0390$ ohms when at wo
efficiency, $92 \cdot 3$ per cent.

THE NEW ORGAN IN WESTMINSTER ABBEY The modern organ possesses a structure so ingenious that it presents a great deal which cannot and does not fail to interest engineers. Its mechanical details, indeed are marked throughout by a remarkable perception of the proper means required to attain a given end; and th splendid instrument which we illustrate this week
replete with mechanical refinements, which render it in every respect worthy of study.
In our impression for June 2nd, 1882, we illustrated the Crystal Palace organ as rebuilt by Messrs. Gray and the principles of an organ as a whole. It will be unneces sary, in describing the Westminster organ, to go over the ground again, but it will be well explanation, which will render what follows intelligible. The music of an organ is produced, as is well known by blowing air into pipes. These pipes may be divided and reed pipes. The first are neither more nor less than whistles; they vary in size from about 3 in . long and meter, cases they have a slot, in a flat plate or languid,
as it is sometimes called, through which the air rushes and is split into two columns by a shar edge or tongue. The column which ascends insid
the pipe is throwr into vibration in a way not clearly understood, and produces a musical note dependin for its place in the gamut on the length of the column of air vibrating inside the pipe. By stopping up the top of the pipe an effect is produced equivalent to doubling th lent to an open 32ft. pipe, but there is a sacrifice of tone quality entailed. As to the character of the note
that depends on the material of the pipe and its shape, especially at the mouth.
class are called reeds because from vibratory tongues or reeds, and they also are of all sizes, from that of a child's penny trumpet up to 32 ft , long. Here again while the position of the note in th gamut is determined by the length of the pipe, the quality of the pipe. Various pressures of wind are used fo different sets of pipes or "stops." The pressure varies
between about 4 in. and 14 in . of water. In some foreign organs very high pressures-as much as two or three pounds on the square inch-have been tried, to pro duce special effects ; but the high-pressure system has no
been successful. A common defect in organs is "over blowing"-that is to say, working with too high pressure, which always tends to produce harshness
Each pipe in an organ can produce but one note, and consequently for every note there must be a separate pipe
but besides this each key may control several stops, in
which case there is an equal number of pipes. Thus, if ones and semi-tones, and $5 \times 13=65$ five, we have thirteen is to say, we have five D's, five C's, and so on, and the D ulciana, keraulophone, a cor Anglaise, and a Suabe flute By the use of sliders--thin plates of wood with holes in them-pushed in and out by the draw stops at the side of the organist, any one or all of these pipes may be shut off: If all the five stops we have named are pulled out at onct piwes the stops we have named will spank. If they are all pushed in but one, say the Suabe flute, then that only will be heard. The organist has therefore, in a sense band under his control, and much of his talent is shown by the way in which he combines his stops to produce the best orchestral effect.
Furthermore, it must not be forgotten that every organ of any importance is composed of several distinct instru ents, each controlled by its own separate keyboard nd a set of pedals, or five organs in all, but by a very ingenious arrangement known as a coupler, the keyboari on any one organ can be made to control the keys of any or all the others. A full list of the couplers, no less than further on.
In order to admit the air to the pipes, valves, technically known as pallets, are employed, these are really hinged no matter how many pipes-stops-there are to that key The pulling down of the hinged valve admits air under ressure to a long narrow box on which all the pipes for he given note of the various stops are planted. Whel
he valve is opened all the pipes on that box would speak if were not for the sliders which, when in, stop the mouths of all the pipes; only that pipe can speak whose down the key has admitted air to the box, the air cannot et out of the box to the pipe unless the sliders are in the proper position-that is to say, unless the stop is pulled ut. It will be seen that the sounding pipe need not be lanted on the box. It will suffice if a small tabe is led diom box to it ; and in nearly all large organs this i ot be planted on a "sound-board," as it is called, of reason not be planted on a sound-board, asit is called, of reason-
able dimensions. As lightness of touch is essential to the roduction of good music, it is essential that the valve pallets) should move with very little resistance. In the is employed, a full illustration The Engineer for June 2nd, 1882. The principle volved will be readily understood. The par the proper nust be of considerable size, especially for the large pipes, and their resistance would therefore be great even far, or the pallets would not shut with sufficient prompti tude. To get over the difficulty and take the strain off the rganist's fingers, the keys control small pallets carefully wind pulls down the pallet controlling the speaking pipes. team pumps, where a very small valve admits steam to team pumps, whe
It will be understood that it is necessary to place the pipes of an organ in various positions, and a glance at ou
double-page cut will show that the pipes are scattered ver a great area; some are on the ground floor or floo level of the Abbey; others stand high up near the roof
others, again, are behind the organist, who sits in the entre of the screen facing the north. In old practic there was only one way of connecting the keys with
the pipes, namely, by light rods of wood and wire called rackers, which were always heavy to move and liable to get out of order. In the Westminster organ air tubes are the organist's finger is responded to by the key under pening of pallets all over the organ under the impulse of he air pressure transmitted through these tracker pipes is we may call them. The sliders are worked in the same way. Nothing can be more elegant in its application or
atisfactory in practice than this beautiful system of ranche prome beautiful system of aid will, we believe, render all that follows quite intelligible. Those who wish to go further into the subject we ast refer to our impression for June 2nd, 1882
The Westminster Abbey organ 18 one of the most repreentative among the great organs which have lately been
built in this country. Few chureh organs are of larger size regarding the number and variety of stops, and none ppliances more complete system of scientinc accion and organ which has now given place to the new instrument well-known and excellent builders of their time. The scope of English organ-building in the eighteenth century was, however, extremely limited, and in no way to be compared wh Germany where fine lorge organs were buil before the time of Bach. The Abbey instrument consisted of three manuals, of which the great and choir extended G G, and the "echo" or swell to fiddle G only; while no department was duly recognised a century, before among ur German and other neighbours. Avery added some pedal pipes-probably an octave only-at about the end of
ast century, and a few other alterations seem to have been made at that time
In 1828 Messrs. Elliott and Hill supplied a new swell organ to tenor C, and extended the pedal pipes to G G G,
24ft. This was not the first occasion when this old firm had charge of the Abbey organ, having obtained the car of it at the beginning of the century, since which time it
has received treatment from their hands only. In 1848 has received treatment from their hands only. In 1848
Messrs. Hill added an additional octave to the swell, thus extending its compass to C C, with extra stops of variou

```
A(\dot{)}\0 VIS \ IHHT
```


THE NEW ORGAN, VESTMINSTER Λ BBEY.

the C CC compass, and the pedal keys made to act upon the great clavier, and the pedal pipes carried down to manual, or solo organ, with a tuba, vox hadded a fourth solo stops, though great difficulty was experienced in folding room for these additions on the screen alred in finding room for these additions on the screen, already laid horizontally for want of space on the north and south side.

Although these last alterations greatly arded to the efficiency of the organ, yet there were many defects in the instrument as judged from a modern stand point, the chief being the absence of a separate pedal organ, the crampedup arrangement of the sound of the manuals. Mr. Turle, the late organist, was so accustomed to his instrument that he thought little of these imperfections, and it was only on the appointment of Dr. Bridge that attention was turned to the necessity
north side was also appropriated for the reception of the great 32 ft . pedal reed, which requires considerable space. For some time the question of blowing and blowing power remained undecided, but eventually it was determined to construct a special vault in the cloister green, which could contain the blowing feeders, and also a gas engine to drive the same; and arrangements were made for taking the wind into the Abbey by means of underground pipes of wind into the Abbey by means of underground pipes of
large size passing from the vault to the reservoirs within large size passing
the organ itself.
(To be continued.)

MISCELLANEOUS MACHINERY AT THE INVENTIONS EXHIBITION.
In the mining section, Messrs. T. Docwra and Son, London, show one of the latest types of diamond boring machines for making artesian wells and prospecting for

PLAN OF CROSS hEAD

GULLAND'S PATENT DIAMOND BORING MACHINE.
of a complete alteration in the Abbey organ. For some \mid minerals, the invention of Mr. J. K. Gulland, Westminster time, however, the scheme was abandoned, and it was not and which is under the superintendence of Messrs. Price till 1883 that Messrs. W. Hill and Son's plans for the and Belsham, Queen Victoria-street, E.C. The use of black rebuilding were finally accepted by the Chapter. It was then resolved entirely to reconstruct the organ, retaining only such stops and certain sound-boards of the old instrument as could be conveniently used again, and in doing this the most conservative spirit was manifested. The old great organ was originally on the north side of the screen, under the arch; the swell on the south; the choir and solo in the centre of the screen; and the pedal lying horizontally. It was determined greatly to increase the height of both the north and south organs; the great, solo, and portion of the pedal to occupy the former position; the swell and other portion of the pedal the latter; while it was found best to place the choir organ in the centre of the screen-towards the west-allowing the console to occupy a middle place, which will enable the player to see both the Decani and Cantoris sides of his choir in the stalls below. The space within the walls of the screen on the
diamondsfor boring purposes was commenced in this country about twelve or thirteen years ago, at which time the carbons could be obtained at about 4 d . per carat, whereas now the price is from 20 s. to 25 s ., according to the quality Since then many hundreds of bore-holes have been put down in Great Britain, while a great number of machines have been sent abroad. No doubt the special reason why the diamond drill has met with such a large degree of success is the excellent evidence it gives of the strata bored through; the solid cores obtained by it enabling geologists and mining engineers to form much more correct ideas of the chances they have of realising the object of their search than was possible with the pulverised material brought to the surface with the old-fashioned boring tackle. The ordinary core tube is about 30 ft . long, having a crown in which the diamonds
are set, screwed on the end. The weight of the bore rods
when revolving forces this crown into the strata, leaving a solid core standing up in the interior of the tube, this claws and being brought up to catching on projecting claws and being brought up to the surface. The tubeis then emptied, lowered again, and refilled by the same process, so that as the boring advances a perfect record is
kept of the strata penetrated. To avoid the possily kept of the strata penetrated. To avoid the possibility of a core dropping out, and in order to obtain a higher percentage of all cores, Mr. M. Belsham designed and patented a special core tube in 1874, which has been successfully used in many instances. It consists of an inner stationary tube pivotted to the socket of the outer or boring tube, an annular space being left between the two for the passage of water. After the crown cuts the core the inner tube forms a shield and receptacle for this core, which is effectually prevented from dropping out by means of sliding wedges, the weight of the core tending to contract the wedges. The inner tube is suspended from the first, and adjusts itself to the core as it passes up. At the Exhibition cores as large as 21 in . in diameter may be seen which have been brought up from a depth of 800 ft . below the surface. In testing ground for minerals it is, however, unnecessary to make such large borings, 4 in . and 5in.
in diameter being about the usual size. The larger bore in diameter being about the usual size.
holes are chiefly made for artesian wetis
The machine which is exhibited 1 y Messrs. Docwra and Sons, the well-known contractors, is illustrated herewith, and is remarkable for its (ereful design aud compactness. It is the smallest size mia e, and may be seen in operation at the Exhibition, bori. y...ti. a 3 in . tube in sandstone, and making cores about $1 \frac{7}{8} \mathrm{in}$. diameter. It consists of a framing of wrought iron channel bars secured by gusset plates, the base being rivetted, while the remainder is bolted for convenience in shipment and transport. The whole of the driving gear is fixed to the base, instead of being overhead as in the older types of machines, an arrangement which secures great steadiness even at high speeds of working. The power is usually applied by means of a belt from a portable engine, three sets of gearing with clutches being provided on the first motion shaft, so as to vary the speed according to the nature of the work. These three powers may be used either in boring or in drawing the rods, and are ready the instant they are required, so obviating the necessity of changing wheels. There is also a special arrangement of worm gearing, by means of which a heavy strain can be exerted direct on the bore-rods in order to break off the core, or to be used if required in cases of emergency. This worm gearing may be actuated either by power or by hand. The boring-rods are counterbalanced by means of a wire rope wound round a drum, which is caused to revolve by gearing. One of the principal and most importantfeatures in the machine is the moving crosshead, a section through which is shown. This crosshead is made to swing round on the wrought iron vertical shaft by which the power is transmitted to the boring tools, thus enabling the rods to be uncoupled with great ease, and doing away with the necessity of moving the machine, or having a raised platform at a height of from 8 ft . to 10 ft . from the ground. Greater lengths can also be drawn, which is of considerable advantage when this operation has to be performed several times during the day. For lifting the rods a chain is provided, actuated by a suitable drum, and leading over a sheave at the top of the shear legs. The usual method of setting the carbons in boring crowns is by shaping holes in the lip to suit each piece, and then securing them by caulking the steel all round. When large sized crowns are being used in a moderately hard stratum, the carbons are inserted in tapered steel plugs, which are afterwards let into the lip, the advantage of this plan being that they
 and readily be removed and re-set in a crown of nother size, thereby considerably reducing the stock of carbons. The importance of this will be more readily appreciated when it is stated that the very frequently as much as $£ 500$. The speed of working the boring-rods varies according to the nature of the stratum and the size of hole, but may be taken at about 200 revolutions per minute for holes from 3 in, to 6 in. dia meter, down to fifty revo lutions for large sizes. The ate of boring is also sub ject to great rariation, but an average working progress may be reckoned at about 20 ft , per day for the larger sizes. During the orced down that water an independent pump, in order to cool the crown and wash away the cutboring tube with crown boring tube with crown being formed into a sedibeing form a sedithe larger cuttings washed up by the water. These pass up round the outside of the tube, and fall over the upper edge into the cleared out from time to time. Fig. 2 is the same tube as the foregoing with the crown replaced by an extractor, which is used in breaking off and drawing cores. An addition to the arrangement as illustrated is sometimes made by placing a winding drum on a frame between the portable

SHONE'S HYDRO-PNEUMATIC SEWAGE P UMPS.
HENLEY-ON-THAMES SEWAGE WORKS.

engine and machine, this being used in connection with a wire rope for quickly clearing out sand or loose pieces of ock from a deep bore-hole. A special tool is provided for 000 ft . in a few seconds, and withdrawn almost as rapidly it is very much more expeditious than uncoupling and coupling up screwed rods.
The samples of cores to be seen at Messrs. Docwra and Sons stand, are all from actual borings made in London bout example of what the diamond drill can do. We understand that a large number of Gulland's patent machines have been constructed, and have been used most successfully both in this country and abroad. As already stated, the apparatus has evidently been very carefully designed, and is both neat-looking and substantial in construction. The workmanship and finish seem all that could be desired.

HENLEY-ON-THAMES SEWERAGE WORKS ON THE SHONE HYDRO-PNEUMATIC SYSTEM. We publish engravings of some of the machinery which is to be used in carrying out this system at Henley-on-Thames. The The air compressors to be in duplicate of the type known as Sturgeon'strunk air compressors, with Shone and Ault's improve ments thereto. The air com pressors to be vertical on strong
cast iron box standards, and to consist of two single-actin cylinders 14 in . diameter, bolted securely to the standards, as
shown in the drawing and fitted whown in the drawing, and fitted round the cylinders. The cylinder ends to be movable, and to act as outlet valves for compressed air, as shown on drawings. The two single-acting pistons to be securely bolted together by wrought iron pistonods connected to a centre cross head. The pistons to be fitted with cast iron piston rings pressed outwards with spiral springs. The inlet valves for free air to be in the centre of to be connected together with valve spindle in such a way a valve spindle in such a way
that one of the valves must always be open when the othe is shut. The valve spindle and inlet valves to be balanced by a spiral spring supporting the weight of the same. The valve spindle to be gripped by a friction clutch with lignum vite bearings, and fitted with a screw in such a way that the amount of friction can be adjusted while the engine is running. The combined pistons to be moved by two wrought iron connecting-rods and by two cranks, each of $10 \frac{1}{2} \mathrm{in}$. throw. The length of the compressing cylinders to be such as to allow the pistons 21 in . stroke without Steam engines.-EEach
cyliaders to be fitted with a of single-acting air compressing cyliaders to be fitted with a double-acting horizontal compound
steam engine with injection condenser der to be 11 in . diameter, and the low 19 in., both 18 in. stroke. The piston-rods to be of Bessemer steel of approved quality, ${ }^{5}$ in in front and $1_{2}{ }^{\frac{9}{\delta}} \mathrm{in}$. diameter at the back. The crosshead and guide to be made in one piece with the piston-rod, as shown in the drawing. The connecting-rods to be of the best wrought iron, orked in the crosshead end, and with the crank end of the asual marine type. The connecting-rods to act on the same haft as the air compressing connecting-rods, but on separate cranks; one of these cranks to be in the same direction as the air compressing cranks; the other of these cranks to be at right angles to the other three. The pistons to be of the same have their sides air compressing pistons, Both cylinders to jackets to be supplied with efuly steam jacketted; the steam
to be carefully drained by the most approved form of stean trap. The low-pressure cylinder to be fitted with a three-way directly to the to be moved by excentrics, and both cylinders to have separate expansion valves on the back of the main valve, formed of two flat plates, whose distance from each other can be altered by means of right and left-handed screw threads in the valve spindle, to be adjusted by a hand wheel on the high-pressure and a nut on the low-pressure cylinder while the engine i The bed-plate of the engine to be heavy and substantial 1 bin deep, the top 2 in thick, the bottom having a strong rim 2 in deep by 2 in. thick, all round the rest of the bed-plate to be thick. Each bed-plate to be securely bolted to a stone and concrete foundation by sixteen strong wrought iron foundation bolts of the best quality, $1 \frac{1}{4} \mathrm{in}$. diameter, passing through bosses $15 i n . ~ d e e p ~ i n s i d e ~ t h e ~ b e d-p l a t e s, ~ s e c u r e d ~ t o ~ t h e ~ s a m e ~ b y ~ s u b-~ . ~$ stantial ribs. The engine to have a pendulum governor, that will prevent excessive speed, but not to act under 100 revolu tions per minute, the normal speed being 45 revolutions per minute, the speed of the engine being regulated entirely by the pressure of the air in the main; this pressure acting valve pressus gover, whiches equilbrium throttle should never amount to more than 2 lb , per square inch main main crank shaft to be of the best approved description Bessemer steel $4 \frac{1}{2}$ in. diameter, having four cranks-two for the

LAN OF SHONE'S SEWAGE PUMPS.

air compressor, with $10 \frac{1}{2} \mathrm{in}$. throw, and one for each of the steam engine cylinders, with 9in. throw, as above described. Each 6 ft . diameter and compressor to be fitted with two fly-wheels, to be fitted with an air pump driven from the main shaft by 12 in . pulley and belt. The air pump cylinder to be 10 in . diameter, single-acting, 6in. stroke. All circular joints in the engines and compressors to be carefully tooled, filed, and ground together with emery, so as to fit steam-tight without any packing whatever. All bolts, screws, and studs best Swedish iron. All parts of the engines and compressors to be fitted with the greatest care, and to be of the best materials.

Steam boilers.- For each set of engines and compressors one Lancashire boiler has to be provided, 22 ft . diameter, with over all. Boile grate to be 4 ft . 4 in . long; each internal flue to be fitted up with ten Galloway tubes. The boiler to have a steam dome 33 in diameter, 43 in . high, two safety valves, and all the usual fittings. The front end plate of the boiler to be set back 9 in, in the shell, and the space filled in with silicate cotton or other non-conducting material. Boiler to be of best wrought iron plates, and Lowmoor fire-box.

———

Tramway Enginks.-A competitive and extended trial of steam engines are not fitted with condensers.

A WORD TO A FOREIGN CONTEMPORARY. The Mechanical Engineer, a clever New York contemporary, has the following:-
"If the London Enginerr is not above taking friendly advice rom u3, it will withhold further criticism upon United States cruisers and naval vessels until it knows something about them. Its issue of July 10th contains a long critical article based, as to Navy upon alleged defects in the Dolphin, which are said to be serious. The London Enginerr is, as a rule, fair-minded and onourable; being so, we do not see how it can justify itself, by risk its reputation for fair dealing, as between man and man, by vidence oriticisms upon American engineers based upon ex parce the Dolphin has been called in question, and since a board of examiners have passed their opinion upon her-based upon incomBoard, who are responsible for the plans of the Dolphin, made a response to this report to the Secretary of the Navy, which ha never been made public. Is the London Engineer willing to criticise professionally upon a matter which, from the nature of things, it can know nothing of? If our contemporary will turn it so-called report of the examiners is a matter of derision among engineers-professional constructors of engines-everywhere in this country. Our acquaintance embraces the leading members of the profession, and includes shipbuilders of long years of experi nce in wood and iron; it embraces men whose successful ship are running in all our waters, and not a solitary individual ha. We beg to remind our contemporary that, though seas roll between us, engineers are of no country; they are cosmopolitan and raternise everywhere. American members of the profession do not fear criticism but court it-when made with full knowledgehoping thereby to learn something. We may be pardoned for sayundue haste to proffer opinions unsolicited."
Fair play for the Dolphin and all concerned by all means. read some of its contemporaries now and then ? It strikes us ther good deal has been published in the United States in Mr. Roach' favour. After all, is the Dolphin a success or a failure?

The Largest Dynamite Gon, - On roughly-hewn trunnions in the centre of Ribbon and March's shops in Jersey City yesterday by the foreman to be the most powerful gun in the world It had ust been finished, and the last polish was being put on by a doze nechanics. The monster, for such it is, was cast for the New York Pneumatic Dynamite Gun Company, and if the expectation are realised, nothing afloat can withstand one of its terrible broadides. The barrel is 60 ft . long, breech-loading, and weighs with a full bore of 8 in . It was cast in four sections, 15 ft . ong, with iron collars, which are welded together with stou steel bolts. The barrel is bolted to eight reservoirs, where the compressed air necessary to fire it is stored. Brass nozzles connect the reservoirs to the barrel and the amount of air necessary to throw
out the projectile is regulated automatically. Upright castings out the projectile is regulated automatically. Upright casting
carried on 12 in . channel irons support the whole, which is moved by compressed air to any position desired by the gunner. More ormidable looking than the gun itself is the projectile fired. The cartridge, which is of brass, is 5 ft . long, and fits the bore snugly In an iron cone at the head of the projectile 180 lb . of dynamite are stored, covered with a slight cap of thin metal, which When the gun is charged the gunner takes his stand on a platform behind the barrel, and by means of a lever closes the breech. B simply turning a crank the desired elevation is obtained and ixed. The lowest of the levers opens the nozzles leading from the air chambers and instantly the shaft cartridge is thrown out is no recoil, and the position of the gun remains unchanged As soon as the carriage is completed aud the gun mounted it will be taken to Fort Lafayette, where the tests will be made nder the supervision of a commission of naval men appointed "Yes, sir," said the to report the result of the experiments gun yesterday, "that is the biggest proudly surveyed the built in the world. It puts in the shade anything ever made by Krupp, and then it was all made in this little shop. Work was begun in October, but the boring was so difficult that it required much longer time than we calculated. It has been tested and shows no signs of weakening under a pressure of modern warfare, and for coast defence I think it has no equal," The company expects to sell the gun to Secretary Whitney if it proves serviceable, and it hopes to get orders for more of the same kind.-New York World.
 o

－䓂年

否
¥isc if：

馬品第路亿．

\％．

多
 ，
最最

等

 ，层
 RAILWAY BRAKES AT THE INVENTIONS EXHIBI－ THE WESTINGHOUSE BRAKE．
a most people are travellers by rail nowadays will，
a great measure account for the interest exhibited第

今品完范 \qquad
 it is not our int this department of the Inventions Exhibition，

rise simultaneouly yall along the thin, and with ${ }^{\text {a }}$
uniformity
whicich is unifority which is remarkable Upon turning thio
handere to the left again they as simultaneously fall; hande thit the left again they as simu taneousty fatli
but has is not all The brake can beappiew with he
mated graetest niecty by simply regulating the amount of air
aillowed to escape from the drivers alloved to esape from the drivers svile, as we have our-
selves witnesed on the gauge comected to the trake
 feer pound only, the piston-rods sighthy emeregesstifieiently

 say, on ataking a curve, A further reduction in the train
pipe will give, perhapp, enoungh brake ofrece of a an ordinany pipe will give, perhaps, enough brake forece for an ordinary
statoon stop, in making which only amall quantity of air

 courre, coin
neeesary.
neeassary. be denied that in performing what has been iilustated - -oto olly at the Exxibititon, but in daily perac ticanlo orer the world - Mr. Weestinghosuse has accomplished
n reat feat.
He hes contrived, in that, without the doubt.
 removed a long way from the operator as quickly ys at one
doses to him, and has succeeded in making a large number
 Westinghouse set himself to achiere was to bring the reauisitit foreo against the wheis. over the greatest ength
of train in the shortest possible time, and his suceess is unguestionable. Quiecness of appliation, in fact, is
everything in a
a brake, for reasons wich probably require no explanation. It is not, as some have thought, quass
tion of getting more force so olong, that is as as there is sofficient-but of celerity in bringing the requisite power into action. It is obvious that whaterer may be the means
of geting the power employed, or howerer objectionable sicit means may be, one system can sooner or later bring the same foree to bear as another. It it sthe delay in doing
so, however, which viittually renders certain systems so, however, which virtually rendery certain systems
impracticable, for general use, and which, if used at all, can only be employed at the gacifife of that instantaneous
and simultaneous action which we hat int
 limit on which the Westinghouse brake can work satisisfactorily, since it is frequently used on passenger trains
in thisi country from cooft. to poopt, or even 1 10ooft. in
 United States 200oft. long. In the exxibit before us, which, howevere, is more than an avereage train, the enenth
was imited by the spaee available. We are particularin in was linited by the spaee available We are particular in
drawing attention to to these points sine brakes which may, drawing atention to these points since brakes which may,
in some respects, be well
wappted for short, are
quite

So far we have dealt with what may be actually seen and substantiated at the Exxibition, and it will be only
inght now, perhaps, to devote some space to explaining right now, perhaps to devote some space to explaining
how such admirable results are acoconplished.
Broadly thated, these are due to the use of fighth pressure and the device called the triple valve in connection with local
thres of power. Originally, as is well hoovn, the Westing. tstorese of power. Originally, asis well known, the Westing
touse brake was non-automatic-that is to seny, the power for working the brakees was stored uppon the engine only, and when it was desired to apply them the compresesed air had to pass from the reservoir on the engine through a
long pipe, and thence into the brake cylinders on each long pipe, and thence into the brake oyinders on each
earringe. Although this appliance answered remarkably vell op to to certain point, it beecame e lear that for for the wowrst

 time in getting the brake on after the neeesaity had arisen, but in inese of seporataion of the thinin or damange oto the
apparatus, both the front and rear portions were deprived apparatus, both the front and rear portions were deprived
of their brake power, and if the brake had already been applied dand injury, ensued, it itat once came offerad ruteen the gard was unable to apply the brake, and thero wes entirely inoperativive withoutt warning to to the driver, which Wasp perhaps, as serious a defect as any for rrobably the hoolld be trustworthy. It will, therefore, at onee be
 remedying the above defectes when eath vehicie was
tenipped with an auxiliary reasvoir carying its own store eof power for its operation, instead onf, iss hitherto, the
 noquired self -acting properties, and also peeame available for use by the guards sas well as the driver, and in case of an injury or defeect, which would have pereviousily rendered

 improvements which followedt this chang of prineiple, it was
found that the full a dvanatages conld not bee enioged on trains of more than a certain moderate length, sinine the

 epuivalent and the other attached th the train pipe, the
piston
ebing kept in equilibroio by the power being main. ptsion being kept in equitibrio by the power being main-
tained on both indes of it, and the brakes thereby held

 air-tight $-a$ result almost imposible of attanment
on large numbers of carriagea
The great object, there:-
fore, to which Mr. Westinghouse now directed his
attention, was the evining of time and niir, and heforl lons the triple. walve the the greatest improvement of of all - was invented. This beantitulu device consists simply yf a small piston carrying witht it a sided valve, which cant be moped up or down by inereasing or decreasing the pressure in the brake pipe, and it has the following triple functions: (1)
To chares the anxiliny ryencruin withe fin

 of the triple valate piston, the reservoir pressure being Move anc that of the train pipe below; and it is furthe clear that even for the full appication of the brakees there
 ng from ir to 4011 in beth rad reduction in the brake ipip to lee to the to be filled in the oylinders, the full pressure of the ofmer is availabli ein inthe lateter when only one-fifth of the aitr, in the brake pipe alone, has been let out, and this amounts in practice to leses than the contents or a half-inch pipe- thal
is for the full applicition of the brake but but good, ordinary stors can bee mide with even, sav, sone-third of of his samomit Not only, then, is the automatic action securred by the triple valve, butt in addition (c) instantaneous and simul. aneous appliation is produced, and the brake made avail
 the ract that the contents of the train pipe ony are
operated uppon by the driver, and therefore that a very mall quantity of air at high pressure has to be moved in order to bring the triple valves into action. (b) Graa economy of air is effected, since only a small portion of that contained in the train pipe is used in adadition to the
 piston-rod packing is entrey avoided, because air is
admitted only on one side of the piston.
From what has been said it will be quite understood that while the triple valve is by no means required for procuring automatio
 possibio reaulss Moreover, it appears to be considered by
many that the benefits of automatic action can only bo experienced when trains break in two, but from the expla, nations we have given it will be understood that thi feature, when carried out in the way described, entails many other very imporant advantazes which are entirel want
ing in brakes sonstructed on the non-antomatio system
ing in brakes onstructed on the non-automathesysemm
Perhaps the mose interesting feature in this exinitith train in our illustration, and which consists of a separate cylinder, reservoir, and triple valve, in connection with arivers brake valve. A triple valve in section is attacheed to another working valve, and the pistons of both being connected by a smal wire, the movements of the workinh
valve admit of being watehed in the section. In this Ingenious way the working of the triple valve, and there fore of the brake, is illustrated, and the truth of Mr. T. T. Harrisons, words realied, when, in alluding to this piea
of mechnimm, he stated, , There is nothing about it that of mechanim, he stated, "There is nothing about it that
can justify the term complication ; on the contrary, it is 2 model of ingenity and simplicity." The Westinghouse Brake Company claim the folowing as the broad points of excellence in theiri system, in addition to the general feature of antomatic antion:-That it is instantaneosis and
simultaneons in action ithat the surfaces are emall and simultaneons in action n that the surfaces are smal and
the parts light: flat the brake can be operated on the the parts light that the brake can be operated on the
long peat trains that power may be stored upen train for Tongest trains; that power may be stored upon a train for use in an emergeney, ready to be applied by the guarcs on automatically a feature of great value in case an unftitad engine is atached, or a vehicle not having the same brakk power admidito of entue engme and train, the brake upoi any one carriage ean bei isolated from the rest of the train; that carriages can be umcoupled without applying the
brakeas nod therefore shuntiñ and other opentions are not interfered withe the that by by this gystem the borate blo ock may be kept a considerable distance from the wheels; that the esyten is omot convenient and usefull for stiliping' portions of trains;
influenced by frost
We have left ourselves but little room to refer to various details of the brake, such as the air pump, coupling, \&c., the board signal communication which show to represent the rof of a carriage. Upon the Continent considerable use is being mado of this signal system. All those opportunity of doroting as igmal communication worked by the compresed air, no other connection between vehicles than the ordinary brake couplings being neees. sary. It is claimed that it affords the means of producing
 whiste suanaing on the engine;
by the brake thould the the warning be tisregarded ; ; 3 (3) the apparatus cannot be used without the compuratment trom which the signal was given being detected; (4) the grard can signal to the driver by a code without applying the brake
Mr. Albert K ? hlown a train-pipe indicator, invented by Mr. Albert Kaptegn, manager of the Westinghouse Brake Compay) wind is a yery ingenious anc novel instrumen
for enabimg the engine-driver to sosertain the number of vehicles under his control by the brake. When trains are re-made at jumctions, \&to, sometimes vehicles are inserted which are not fited with any brake apparatus) or fitted
only with that of d different tystem, but the driver an by this means tell exactely, by by setiming at any point of the journey, what proportion of the train he can rely ypon for
stoppiing purpoese the number of vehicles bein stopping purpoess the
on a gavge befor bim.

Two statements exhibited at either end of the stand are Two statements exhibited at either end of the stand are
worthy of attention, for they show the widespread popularity of the apparatus we have been describing. Up tc the 31st March last the increase of the automatic systen in four years and eight months amounted to 77,046 set. or engines, carriages, and wagons, while the total numbe of Westinghouse brakes in use in all parts of the world on informed that this number has since been largely increased. The equipment of freight trains in the United States now forms a large portion of the business of the Westinghouse Air Brake Company in Pittsburg
Strong as is the feeling on the brake question, there is, we venture to think, hardly one who will not con gratulate Mr. Westinghouse on the success which has
crowned his efforts, or who will deny him the credit he undoubtedly deserves of having resolutely forced this subject to the front, and to a large extent taught us all we know about brakes.

THE DESIGN OF SINGLE RIVETTED LAP

 JOINTS IN BOILERS.
By Professor R. H. Smith

A sTram boiler joint has two functions to perform; (1) to performing the first function a call is made upon the strength of the joint; the due performance of its second function depends on its stiffness. In all sorts of joints there is great and complicated inequality in the distribution of stress through the material. This makes it difficult to calculate the maximum occurring stress, on which maximum, of course, depends the strength of the joint. It is comparatively easy to calculate the the joint ; but no theory that takes vaious sections throughou stresses only can be looked on as at all rational or trustworthy or the practical purposes of design.
ccurring in metal as the stress ri the modulus of elasticity ticity" g inats the breaking icity towards the breaking stress, results in a very differen
elative distribution of stresses under a load near the breaking load than that existing under much lower stresses, such as may e fairly reckoned as under the "limit of elasticity" howeve that term may be defined. It is, therefore, wrong and delusive to attempt to calculate the stresses actually occurring under "working loads" from the results of experiments on "breaking toads. Such a calculation would probably in all cases make han it really is, because the general effect of increasing the load so as to produce very hewny stresses must be always, or f dinways, in the direction of producing greater uniformity aren oach section. practicable, to design joints according to the results of a careful and detailed theoretic calculation of the maximum careful under light loads, assuming in such calculation a constont pro portion between similar stresses and strains and investigatin ccording to this assumption as accurately as possible the exact istribution of the stresses, The maximum stresses thus calcuated are to be compared with the breaking strengths of the material in tension, compression, and shear, as found by direct experim on these primary qualitic. A suitable factor afety being adopted, a formula can then be framed for dimen soning the joint
Evidently the same reasoning will equally well apply, not nly to joints, but to all elements of construction subjected to working loads that do not stress the material beyond the limits of attacking most problems in design. The present records an attempt made some time ago to apply this method to the design of single-rivetted lap boiler joints.
The spacing of the rivets should be designed in accordance with the condition that the joint should prevent leakage of steam. If we look on the plate as a continuous beam, with uniformly distributed load due to the steam pressure, we find that the deflection of such a beam at mid-point of each spanis the steam pressure-in pounds per square inch, P the pitch and t the plate thickness. If equal steam tightness be demanded of and probably be insured by making this rise of obtain the rule for proportioning the pitch to the thickness,
we we obtain
namely-
$\mathrm{P} \propto \frac{t}{p^{2}}$
If we consider that to ensure tightness under high pressure ess rise is permissible for the higher pressure, and make the riso

The former supposition is adhered to here as giving results conistent with practical experience, although perhaps a formula the tables at the end of this paper are given the rcsults of the
$\left.\mathbf{P}=9 \frac{1}{2} \frac{t^{\frac{1}{2}}}{p^{\frac{1}{2}}}\right\} \begin{array}{r}\mathrm{P} \text { and } t \text { in inches. } \\ p \text { in pounds per sq }\end{array}$ p in pounds per square inch.

The above sketch shows in exaggerated fashion the sort of bending the rivet undergoes when the pull F through the joint
is not so great relatively to the stiffness of the joint as to bend the plate edges so as to pull the two plates in line with each other. About $\frac{2}{3}$ of the length t of the rivet (the plate thickness $=t$), or rather more than $\stackrel{?}{3}$, is under pressure on the side next the plate edge, and between $\frac{1}{4}$ and $\frac{1}{\frac{1}{t} t}$ length under an opposite pressure on the opposite side. The shaded triangular spaces
are diagrams showing the distribution of the intensity of these are diagrams showing the distribution of the intensity of these rivet pressures. The whole pressure on the side next the plate
edge is $\frac{4}{3} \mathrm{~F}$, and its maximum intensity about four times what
would be produced if F were uniformly distributed over the length t, that is, about $\frac{5 \mathrm{~F}}{t d}$. The maximum bending moment on the cross section of the rivet is about ${ }_{27}^{4} \mathrm{~F} t$, and occurs at rather less than $1 t$ distance from the joint surface. Equating this to the resistant bending moment of the rivet, using the
ordinary formula for a beam of circular section, and writing $\mathrm{F}=(\mathrm{P}-d) t f$, where f is the average tensile stress on the plate section between the rivet holes, we find:-Tensile and compressive stresses on cross section of rivet produced by bending each $=$ say $f^{1}=$ about $1 \frac{1}{2} \frac{(\mathrm{P}-d) t^{2}}{d^{3}} f$.
The shear stress at the centre of the section of the rivet is $\frac{t}{5}$ the average over the whole section, and therefore equals $\int_{3 \pi}^{16} \frac{\mathrm{~F}}{d}$. It is generally admitted that a safe shear stress in iron is about $\frac{4}{5}$ the safe tensile stress, so that what may be termed
the tension equivalent of the above shear stress $=$ say f^{11} the tension equivalent of the above shear stress $=$ say f^{11} $=\frac{5}{4} \times \frac{16}{3 \pi} \times \frac{\mathrm{F}}{d^{3}}=2 \cdot 12 \frac{(\mathrm{P}-d) t^{d^{2}} f \text {. This shear equivalent is greater }}{}$ and more dangerous than the stress f^{1} produced by bending so
long as $d>.71 t$. As the rivet diameter has always a greater long as $d>\cdot 71 t$. As the rivet diameter has always a greater
ratio than this to the plate thickness in boiler work, we must ratio than this to the plate thickness in boiler work, we must
design these joints in view of the shear stress, and not in view design these joints in view of the shear stre
of the bending moment on the rivet section.
If now the maximum tensile stress on the plate section q times the average between the rivet holes, we may equat

$$
\text { or } \quad d=\frac{1 \cdot 06}{q}\left\{\sqrt{t^{2}+\frac{2 q}{1 \cdot 06} \mathrm{P} t-t}\right\}
$$

This equation is, with suitable constants, identical with that used by Professor Kennedy for the calculation of the pitch. To show the identity, Professor Kennedy's formula may be
written written

$$
\mathrm{P}=\frac{q}{2 \cdot 12} \frac{d^{2}}{t}+d .
$$

For boiler joints, however, I have endeavoured to show that the pitch should be designed so as to give steam tightness, and the diameter of rivet is then to be calculated for strength according diameter to pitch. I have calculated the following values, the theory on which the calculation is based not pretending to be more than a fairly close approximation to the truth:-

1.08

In connection with the two factors $9 \frac{1}{2}$ and 12 in the formulas for the pitch previously given, I have used the two values of $\frac{1}{q}=42$ and 4 in calculating the following table of dimensions. These tables are, therefore, constructed according to the following two pairs of formulas :-
$\mathrm{P}=9 \frac{1}{2} \frac{t^{1}}{p^{k}}$
and
$d=\cdot 42\left\{\sqrt{t^{2}+4 \cdot 76 \mathrm{P} t}-t\right\}$
2nd Table.
$\mathrm{P}=12 \frac{t^{t}}{p^{t}}$
$d=4\left\{\sqrt{t^{2}+5 P t}-t\right\}$
The first of these tables gives results very closely in agreement with what I have been accustomed to look on as the best boiler practice except for very small and very large plate thicknesses. Very small rivets cannot be used owing to their heads
snapping off during cooling after being closed. Very large rivets snapping off during cooling after being closed. Very large rivets cannot be used, owing to the mechanical difficulty of perfectly pitches, and the second table will probably better represent this pore recent practice.
If in the formula for the pitch account be taken of the probable fact that greater closeness of joint is required to prevent leakage of the higher pressure steam, the factor 20 in the formula

$$
\mathrm{P}=20 \frac{t^{3}}{p^{3}}
$$

will give good results. This should be used along with the latter of the two formulas previously given for d, namely

$$
d=\cdot\left\{\sqrt{t^{2}+5 \mathrm{P} t-t}\right\}
$$

The results of this pair of formulas are given in the third table. All three tables are calculated for the four pressures 50 100,150 , and 200 lb . per square inch. All dimensions are in inches.

SINGLE-RIVETTED LAP JOINTS FOR BOILERS,
$\begin{aligned} P=\text { pitch } ; & t=\text { plate thickness; } d=\text { rivet diameter; } \\ p & =\text { steam pressure lbs. per square inch. }\end{aligned}$
table I.
Formuleo $\left\{\begin{array}{l}\mathrm{P}=9 \cdot 5 t^{3} p^{-\frac{1}{3}}\end{array}\right.$
$\left\{d=42\left\{\sqrt{t^{2}+4.76 t \mathrm{P}}-t\right\}\right.$
$p=50$.

t.	牥.	${ }_{8} \mathrm{in}$.	1 in .	${ }_{8} \mathrm{Sin}$.	3 in .	$3 \ln$.	$1 \mathrm{lin}$.
$\stackrel{\mathrm{P}}{\text { d }}$	1.26 .42	$\begin{array}{r}1 \cdot 71 \\ \hline \cdot 50\end{array}$	$\begin{array}{r} 2 \cdot 12 \\ \cdot 76 \end{array}$	2.51 .91	$\begin{aligned} & 2.88 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 3 \cdot 23 \\ & 1 \cdot 22 \end{aligned}$	$\begin{aligned} & 3 \cdot 57 \\ & 1 \cdot 36 \end{aligned}$
$\frac{\mathrm{P}-t}{\mathrm{P}}$	$\cdot 67$	-65		${ }^{6} 64$	-63	$\cdot 62$	$\cdot 62$
			$p=$	100.			
$\stackrel{\mathrm{P}}{\mathrm{~d}}$	$\begin{array}{r} 1 \cdot 06 \\ \hline 38 \\ \hline \end{array}$	$\begin{array}{r} 1.44 \\ .53 \end{array}$	$\begin{array}{r} 1 \cdot 79 \\ \hline .66 \end{array}$	$\begin{array}{r} 2 \cdot 11 \\ \cdot 82 \end{array}$	$\begin{array}{r} 2^{\prime \prime} 42 \\ \quad .96 \end{array}$	$\begin{aligned} & 2 \cdot 72 \\ & 1 \cdot 09 \end{aligned}$	$\begin{aligned} & 3 \cdot 00 \\ & 1 \cdot 22 \end{aligned}$
P	$\cdot 64$	$\cdot 63$	-63	$\cdot 61$	-60	$\cdot 60$	-59
			$p=$	150.			
$\stackrel{\mathrm{P}}{\text { d }}$	$\begin{gathered} \hline \cdot 96 \\ \cdot 36 \end{gathered}$	$\begin{array}{r} 1.30 \\ .50 \end{array}$	$\begin{aligned} & 1 \cdot 61 \\ & \hline .64 \\ & \hline \end{aligned}$	${ }^{1} \cdot 91$	$\begin{array}{r} 2 \cdot 19 \\ \hline \cdot 90 \end{array}$	$\begin{aligned} & 2 \cdot 45 \\ & 1 \cdot 02 \end{aligned}$	$2 \cdot 71$ $1 \cdot 15$
$\frac{\mathrm{P}-\mathrm{d}}{\mathrm{P}}$	-62	-62	-60	-60	-59	-58	$\cdot 58$
			$p=$	200.			
${ }_{\text {P }}^{\text {P }}$	-89	1.21	$1: 50$ $: 61$	${ }^{1} \cdot 78$	$\begin{array}{r}2.04 \\ \hline\end{array}$	$2 \cdot 99$ $\cdot 98$	$2 \cdot 53$ $1 \cdot 10$
$\frac{\mathrm{P}-\mathrm{d}}{\mathrm{P}}$	$\cdot 62$	-60	$\cdot 60$	'60	'58	$\cdot 57$. 60

Formula							
t.	jin.	3 in .	3in.	fin.	3in.	3 in.	lin.
	${ }_{1}^{1 \cdot 60}$	${ }_{2}^{2 \cdot 16}$	2:88	${ }_{3}^{3.17} 1$	${ }_{\substack{3 \\ 1.64}}^{\text {1.64 }}$	${ }^{4} 1.38$	${ }^{4} 1.51$
			$p=100$.				
$\stackrel{\mathrm{p}}{\text { p }}$	${ }_{1}^{1: 34} 4$	${ }_{\text {l }}^{1.80}$	${ }^{2} 77$		(\%06	-	¢3.80 $1 / 39$
$\frac{\mathrm{p}-\frac{d}{1}}{}$	${ }^{68}$	'67	.66	.65	${ }^{6} 4$	$\cdot 64$	
			$p=150$.				
	${ }_{\text {1. }}^{10} 40$	${ }^{1.64}$	${ }^{2} \%$	${ }^{2: 88}$		cos3.10 1.16	3:30
$\frac{P-d}{P}$	${ }^{67}$.65	${ }^{64}$	${ }^{6} 8$	${ }_{63}$		
			$p=200$.				
${ }_{\text {P }}^{\text {P }}$	${ }_{\substack{1.13 \\ \hline 80}}$	${ }_{1}^{1: 54}$	1:90	${ }^{2} \cdot 8$	$\frac{2: 58}{2.98}$	2.89	
	-68	${ }_{6} 6$	${ }_{6}$	'63	'62	${ }_{\cdot 61}$	61

to be accurate, and provided the reasoning used in the assortto be accurate, and provided the reasoning used in the assort-
ment and manipulation of these facts be without fallacy or flaw ment and manipulation of these facts be without fallacy or flaw
of any kind, the new results are certainly true. But if they of any kind, the new results are certainly true, But if they
are true, they can in almost every case be verified by direct experience; and since none of us can be quite sure of avoiding errors in reasoning, it is always well to test by direct experience the new results of any theory, however well founded it be. The Council have not rejected the above contribution to their " discussion because of flaws in reasoning. If they interpret "theory" according to the first of the above conceptions, they are right in rejecting all "purely theoretic" papers; but, on
the other hand, the above paper does not come under that the other hand, the above paper does not come under that
definition because it is both founded on fact and tested by definition because it is both founded on fact and tested by experience. If they adopt the latter conception, they cannot be
complimented upon their intelligence in rejecting papers that complimented upon their intelligence in rejecting papers that
are theoretical in that sense, nor upon their consistency, seeing are theoretical in that sense, nor upon their consistency, seeing
that similar papers have been accepted by them before. The facts upon which the theory in the paper is founded are (a) the facts upon which the theory in the paper is founded are (a) the
law connecting small stresses with small strains, $i . e$. strains under the "elastic limit;" (b) the fact that the steam leaks through boiler joints if the rivets are spaced too far apart, and the average ratio between spacing and plate thickness, which is found by practical experience to prevent this leakage ; and (c) the average ratio found between the shear and tensile strengths of rivet and plate iron. These are the bases from which conclusions are reached by reasoning, and these bases are well ascertained by experiment in testing machines and by the practical testing of finished boilers. The author has had a fair amount of personal experience in both these directions, but the
experimental basis of the above paper is far wider than his own personal experience. The test of the "theory" consists in the comparison of the numerical results tabulated above with the dimensions used in the best boiler practice throughout the kingdom. The writer has made this comparison to some extent, and finds a marked agreement between his "theoretic" results and those obtained by long boiler-yard experience; and he will feel greatly favoured if
Of course, the results in the above tables are not wholly consistent with the rules given in the Report of the Rivetted Joint Committee; but then it so happens that those rules could not
be followed by boiler makers, except through a small range of be followed by boiler makers, except through a small range of would not be steam-tight. The experimental results of the Committee are of the greatest possible value; that is admitted by the writer as cordially as by any one. Why are they not generally applicable to boiler work? Simply because the experiments were solely upon the tensile strength of rivetted
joints, whereas in boiler work the joint must not only have tensile strength but must also prevent leakage of steam. They are directly applicable to such work as girders, where the joints have nothing to do besides transmitting the pull. But steamtightness depends in a certain sense upon the closeness and stifness of the joint, and no formula for the design of boiler joints can give the desired results as regards leakage that does not take into account the steam pressure in proportioning the pitch to the thickness of the plate.
of the work done by the Committ wish to depreciate the value their results are useless to help the rational design of boiler joints. He does maintain, however, that they alone are quite insufficient to guide such design; that a boiler joint must not be designed to secure only maximum tensile strength ; and that so far as the Committee has intended its results to be directly applicable to boiler design, they are entirely wrong, and that common boiler-making and using experience proves them plainl to be wrong. Of course it is impossible to suppose that thi is the reason why the writer's paper is rejected as "purel

Robert H. Smith.

theoretical." Mason College
 Mason College.

A Scandinavian Electrical Exhibition.-An electrical exhibition is being held at Gothenberg, at which all the principal elec Scandinavia are represented. One of the most interesting features is a continuous self-feeding waterfall worked entirely by electricity.
Science and Art Department of the Comaittre of Counctl
on Education, South Kfnsington -The following is list of on Edecation, South Kensington.-The following is a list of successful candidates for Royal Exhibitions, National Scholarships,
and Free Studentships, May, 1885 :and Free Studentships, May, 1885 :-

ame.	Age	Occupation.	Address.	Award.
Burton, W	22	Science teacher ..	Mancheste	National Scho-
,		Assistant master.	Southampton.	
Lang, C. Clarkson, T...	22 20	Engineer Engineer ..	Johnstone, N.B.B Pendleton,	Do.
H	18	Student	Manchester..	
Scudamore, W. ..	16	Student	Northam	
Lanchester	16	Architect's assis-		larship.
			Southampton.	
Holland, T. H.	14	Student Student	Helston ..	
Blackmore, 7 W.		Student \because	Sheffield	
Bennie, H. O .	20	Engineer	Glasgo	Royal Exhibi-
K	17	St	Bradford.	tiona
Sowerbut		Student		lars
Chatta	24	Chemist	Mirmin	
Young	23	Sh	Belfast	Royal Exhibi-
Mo	20	Engi		
		prentic	Preston	
$\left\lvert\, \begin{aligned} & \text { Coote, H. H.... ... } \\ & \text { Unsworth, R. H.. } \end{aligned}\right.$	$\begin{aligned} & 17 \\ & 20 \end{aligned}$	Student		
			Manchester..	o.
Woolh	15	St		
Wilkinson, D. ..	21	Agent	Prestou	Free Student
Motteram, H. P...	19	Student	Small	
			Birmingham.	Do.
Briscoe, A. E.	17	$\begin{aligned} & \text { Machinist } \\ & \text { Student } \end{aligned}$	Birming	
McK	20	Engineer	Glasg	
C.	18	Student	Bristol	Do.

INVENTIONS EXHIBITION-DAVEY'S DIFFERENTIAL VALVE GEAR.

Messrs. Hathorn, Davey, and Co., Leeds, show at the Inventions Exhibition Davey's differential valve gear as applied set exhibited being for a large engine now being erected at the Wolverhampton Waterworks. The gear itself is well known and has been frequently referred to in these columns; but as this particular arrangement contains several recent improvements, we make no excuse for bringing it again before our readers.
The first improvement is to enable the point of cut off to be varied. On referring to Fig. 2 it will be seen that there are two from the main gear, are keyed the levers for opening and closing the steam valves. The lower shaft receives the ming and of the piston on a reduced scale, and carries a lever which forms the fulcrum of that employed for opening the steam admission valve. In working, after the steam valve is opened and the
engine has commenced a stroke, the motion communicated to fulcrum of the equilibrium lever in position. When the engine
the lower shaft removes the fulcrum of the lever, and permits the admission valve to drop. The point in the stroke at which this takes place may be varied by altering the position of the fulcrum.
Another novelty is the addition of a trip gear, which causes the equilibrium valve to be dropped suddenly, when the engine, from loss of load, exceeds its normal rate of working. The arrangement of levers is precisely similar to that described for the steam valve, the fulcrum being held in position by means of a catch; but, in this case a cataract cylinder is employed for controlling the position of the fulcrum. In Fig. 1, A is plug. Attached to its piston-rod is a small differential lever plug. Attached to its piston-rod is a small diferential lever, is held in position by means of a pair of spiral springs, a rod extending from the spring end to the catch which keeps the
is working, the plug of the cataract is adjusted until the resistA little the piston just overcomes the tension of the springs. springs to be compressed and the catch to be released, so per mitting the equilibrium valve to drop suddenly to its seat, or in other words, to be thrown out of gear.

British Manufactured Goods in New South Wales.British Manuractured Goods in New South Wales.following articles to the value mentioned:-Wearing apparel, $£ 838,591$; cement, $£ 216,353$; cutlery, $£ 53,509$; drapery, $£ 3,217,159$; earthenware and china, ' $£ 163,526$; furniture, $£ 220,810$; goldleaf, $£ 1,309,862$; hardware, $£ 716,892$; musical instruments, £179,294; boots and shoes, $£ 581,820$; books, £218, 640 ; toys and fancy goods, $£ 195,035$; and watches and clocks, $£ 129,019$. These are only a

EXPORTOIL MILL.

MESSRS. ROSE, DOWNS, AND THOMPSON HULL, ENGINEERS.

The roller process of crushing oil seeds with the special Thompson, of the Old Foundry by Messrs. Rose, Downs, and has been fully noticed in our issues of the 6th of May, 188 and 3rd November, 1883. The last article described a smal mill for export, but a still smaller kind of plant is required in some countries, where the oil mill is regarded as an agricultural implement. The export mill we illustrate was designed for this purpose. It is not generally known that seed-crushing is not effected, as in days gone by, by a single machine, and not unfrequently makers are asked for "a machine to make oil." effectual process of extracting oil consists of less than three distinct operations :-(1) The crushing or grinding of the seed with the nature of the seed, which may be either a cocoanut or in grains as small as mustard (2) The heating of the ground seed to facilitate the flow of oil and to coagulate the albuminous matters which otherwise mix with the oil. (3) The pressing which is most effectually done by hydraulic power. The mill we illustrate is designed for all the smaller varieties of oil-seeds, such as linseed, rapeseed, sunflower-seed, or castor. For cottonseed a modification in the rolls will give the required crushing power, while for olives small edgestones take the place of the rolls, and for cocoanut and palm kernels combinations of rolls and stones are used.
In the mill shown the seed is crushed between the rolls three in number, which give two crushings, the second under
increased pressure. From these it is placed in the kettle, where it is heated by steam, or in the case of a mill worked by cattle, wind, or water-power by a furnace. From the opening of the kettle it is drawn in quantities sufficient for a cake into woollen bags, which are placed in the press. This holds five cakes about 18 in . long and some 5 lb . weight when pressed. The pressure is given by a pump mounted on a cistern beside the press. This pump, which is of steel, is in. in diameter, and the lever or relief valve, thus dol σ tray 20 to 25 swt val eleven hours, and is, we believe, the smallest complete oil mill ever designed. It will be noticed that all the gearing is supported on the press, so that the erection is much simplified, a firm foundation being all that is required. The engine is one of Messrs. Rose, Downs, and Thompson's "Kingston" vertical type, and has a 7 in . cylinder and 8in. stroke.

A New Progess of Extracting Sugar from the Cane.-It is reported that Frobach has discovered a method of making sugar without crushing or pressing. According to this method the cane which leaves the saccharine to be dissolved into liquid. The alcohol and sugar are filtered out by means of lime and ohalk. It is claimed that this process of manufacture will add one-third to

GAS BEACON GANTOCH ROCKS

The gas beacon illustrated by the accompanying engraving has been erected for the Clyde Lighthouse Trust, on the Gantoch rocks, which are just off Dunoon in the Clyde, by lights Board T. Stevenson, the ene which is on Pintsch's system, consists of a receiver for oil gas under pressure, and a ight strong support for the two powerful gas light lanterns. The light will burn thirty-five days with one filling of gas, and has two red lights. The whole of the lighting apparatus

has been constructed by the Pintsch's Lighting Company, of Clerkenwell-road, and the light illustrated is one of the many and various kinds, now being used by harbour and other authorities nearly all over the world, where lights capable of burning for several weeks or months at a time unattended, are of inestimable value to the shipping.

TENDERS.

HENLEY-ON-THAMES SEWERAGE.
List of tenders for the execution of sewerage works on the Shone hydro-pneumatic system, illustrated on page 140. Mr. Isaac Shone, C.E., Westminster-chambers, S. W., engineer.
Contracts Nos. 1, 2, and 4.-Pipe Sewers, Iron Mains, and Bulldinas
John Jackson, Westminster -
G. Munday and Son, London
W. T. Botterill, London
Beadie Bros., Erith

Beade Bros., Erith Mime
H. R. Trehearne and Co., Battersea

J. W. and J. Neave, Leytonstone
S. and E. Collier. Reading
S. and E. Collier, Reading
George Bell, Tottenham ..

George Bell, Tottenham ...
J. W. Pickthall, Southampton
Thos, D. Ridley, Harwich -
Thos. D. Ridley, Harwich-accepted
B. Cooke and Co, Battersea
Contract No. 3.-AIr Compressing Machisery
H. R. Trehearne and Co.l, Battersea
H. Young and Co., Pimlico :-
J. Warner and Sons, London:.
G. Scott and Son, London
G. Scott and Son, Lond
Walker Bros., Wigan

Warsop and Hill, Nottingham
G. Waller and
G. Whamer and Co., Leeds

J. Slee and Co., Earlstown, Lancashire
Thornewill and Warham, Burton-on-Trent

Thornewill and Warham, Burton-on-Trent
F. Silvester and Co., Newwastle, Staffordshire
Coalbrooke Dale
Coalbrooke Dale Company, Shropshire
John Fowler and Co., Leeds
John Fowler and Co.,
W. and J. Yates, Black ${ }^{\text {Parn }}$

Grange Iron Company, Durham
Hartley and Arnoux Bros., Stoke-on-Trent
Galwey, Bainbridge, and Co. Warrin
Hughes and Lancaster Co., Warrington
Gughes and Lancaster, Chester-accepted
$\stackrel{\text { Pratchitt Bros., Carlisle }}{\text { J. Wolstenholme, Radeliffe, }}$, Lancashire

Progress of the Norwegian Navy,-Commander Wisbech, Director of Naval Ordnance in Norway, has been commanded to proceed to England and France, in order to report on the newest inventions of naval artillery. He will also purchase a $26-\mathrm{cm}$. gun
for a new gunboat, probably in Essen, at a cost of $£ 5000$.

RAILWAY MATTERS.

THe Board of Trade has just issued the return of railway accidents for the six months ending 30 th June last, From this it
appears that during that period 456 persons were eroprted to have
been killed, and 8309 injured upon the railways and upon the appears $\begin{aligned} & \text { been killed, and } 3309 \text { injured upon the railways and upon the } \\ & \text { premises of the companies. Accidents to trains, }\end{aligned}$ olling stock, permanent
to 200 .
The City Council of Concord, N.H., has authorised the use of
steam motors on the street railroad running from Concord to the suburban village of Penacook. There is much opposition to this action, and the remonstrants threaten to appeal to the Court for
an injunction. The parties opposed to the use of steam stated an injunction. The parties opposed to the use of steam stated
that in all cities where steam motors had been tried, their use had Dunivg the six months ending 30th June there were reported
16 collisions between passenger trains or parttof possenger trains, 16 collisions between passenger trains or parts of passenger trains,
on British railways, by which 34 passengers and 7 servants were
injured ; 18 collisions between pasen mineral trains, \&c., by which 5 passengers and 1 servant, were
killed, and 60 passengers and 7 servants were injured; 8 collisions killed, and 60 passengers and 7 servants were injured; 8 collisions
between goods trains or parts of goods trains, by which 1 servant
was killed and 3 cattle drovers and 4 servants were injureed. Av accident occurred on the railway near Brampton on Monday
night, which showed the value of the automatic brake in use on the night, which showed the value of the automatic brake in use on the
Great Eastern Railway system. Through the breakage of the coupling apparatus the rear carriages of an excursion train parted
from the erest of the train, but instead of running backwards down the indline, as they must have done under the old system of stopping
a train, the Westinghouse brake applied itself, bringing the carriges
to a standstill immediately, and thus, in all probability, prevented to a standstill immediately, and thus, in acilprobat
what might have proved a very serious accident.
AT Sutton-le-Marsh, on the East Wash, on Saturday, August
15th, Mr. Burdett-Coutts performed the ceremony of cutting the firrt, sird of the Sutton and Willoughby Railway, with which is
later to be connected the construction of a harbour for the North Stea forsing smacks. At the cold collation which followed, the
Seremony speeches were made by the chairman, Mr. Alfred Giles, ceremony speeches were made by the chairman, Mr. Alfred Giles,
M.P.; by Mr. .urdett-Coutts; the Rightron. Edward Stanhope,
Pres. President of the Board of Trade; Lord Waveney, and other
gentlemen. We purpose to give an account of the details and
merits of this project in our next issue. merits of this project in our next issue.
The New York Railroad Commissioners are proceeding with the
undertaking begun at the beginning of last year to investigate and report the strength of every railroad bridge in the State, of which there are said to be 3500. Assuming the moderata average length
of 10oft, this makes $66 \frac{1}{1}$ miles of bridging, for all of which, if the
Boards circular reauest is honoured, they will reeeive strain sheets and drawings showing the leading dimensions. Each bridge is then examined on the spot by a bridge engineer in the employ of
the Board, assisted by these drawings. Even in preparing the latter it is said, as might reasonably
have been discovered and corrected.
A NEW trans-Alpine line, the St. Bernard Railway, is likely to
be commenced before very long, and to be, when completed, a dangerous competitor for the the through tratho with the the already
disting route of St. Gothard. One of the principal features of the new project is that the indispensable tunnel under the Alps-at
the Col Ferret-will be very much shorter than any other, either
 Mq miles, the Mont Cenis
Mon thanc 20 and 19 kilometrees revpectively. The thatal length
of the St. Bernard line will be but 138 kilometres, or 86 miles, making a saving bet
route of 59.2 miles.
On the 2nd of July a train left the road on the Great North of
Scotland Railway between Wartle and Inveramsay Scotland Railway between Wartle and Inveramsay. The train,
consisting of engine and tender, one third-class, one first-class, and
one third-class brake carriages, and rear brake van, was running one tura-class arake carriages, and rear brake van, was running
down indine of 1 in 177 about 1 t north of Inveramsay, one of
the carriages, probably the second from the engine, left the rails. the carriages, probably the second from the engine, left the rails.
The train was running at a speed of about twenty-five or thirty
miles an hour, and the engine ran for about 235 yards before miles an hour, and the engine ran for about e 23 yards before
coming to a stand, when it was found that the leading wheels of
the leading carriage were oft the rails the seond carriage was the leading carriage were off the rails, the seochd carriage was apd the rear vehicle- -a brake van -had broken away from the
and
train and was lying against the bank on the let side of the e ine about 147 yards behind the rear passenger carriage. Fortunately
no one was much hurt. The interesting part of the affair is that
thone no one was much hurt. the int the train ran off on the inside of
there esems to bo doubt that
the curve because the intense heat of the sun had expanded the rails and distorted them.
Dunivg the six months ending June 30th, 435 failures of tires
and 169 failures of axles took place on British railways. Of the 435 tires which failed, 9 were e engine tires,, were tender tires, 2
were carriage tires, 7 were van tires, and 409 were wagon tires ; of the wagons 307 belonged to owners other than the railway com-
paniees; 388 tires were made of iron, and 47 of steel, 11 of the
tires were fastened to their wheels by Gibson's patent method, 6 by Mansell's, and 1 thy Beattie's, none of which pheft their wheols
when they failed; 410 by bolts or rivets, two of which left their Wheels when they failed, and seven by other methods, one of which
leff its wheel when it failed; 16 tires broke at rivet holes, 57 in the solid, and 362 split longitucinally or bulged. Of the 169 axles
which failed, 99 were engine axles, viz., 86 crank or driving, and 13 leading or trailing; six were tender alxes, $\begin{aligned} & \text { two were carriage andees, } \\ & 60 \text { were wagon axles, and two were axles of salt vans. Twenty- }\end{aligned}$, nine wagons, including the salt vans, belonged to owners other than
the railway companies. Of the 86 crank or driving axles, 66 were made of iron and 20 of steel. The average mileage of 66 iron
axles was 222,569 miles, and of 20 steel axles 202,715 miles. MAJor MARrNDIN's report upon an accident which occurred at
Swadincote, near Burton, on the Midland Railway, has now been published, and attention is once more directed to the dangerous and inefficient character of the Clayton so-called antomatio
vacuum, or bether known as the "two-minute brake." On the
On 13th June a return excursion train consisting of engine and tender,
No. 1440 , and equal to sixteen coaches, arrived at Swadlincote. The engine and tender had steam brakes and vacuum apparatus ; engine was detached to run round the train ; the vacuum brake Was applied but leaked off, and the train commenced to run back.
The line being oo a heavy falling gradient, a pair of runaway or
catch points had catch points had fortunately been provided, or doubtless the
carriages would have rua back two miles to the junction with the
main line and come into serious collision 0 as it wns the of the train was thrown off the line at the points and came into sengers in the train, but they happened wot to be in the vehicles
which left the line. The facts of the case show at a glance the which left the line. The facts of the case show at a glanee the must be remarked that when the engine was uncoupled the con-
tinuous brakes were fully applied throughout the train, but the tinuous brakes were fuly appied throughout the train, but the
whole of them must have leaked off in less than two minutes. I
cannot consider," he continucs, "that a continuous brake which cannot consider, he con to be at alla asatisfantortoryone, for it mush
leaks of in two minutes to
freguently happen, as in this case, that it is desirable to hold a frequentiy happen, as in this case, that it is desirabbe to hold a
train by means of a continuous brake after the engine has been
uncoupled, and in the case of a break-away, either on an incline uncoupled, and in the case of a break-away, either on an incline
when running or owing to a collision or other accident to the train, I can easily imagine that serious consequences might follow the
release of the brakes so soon after their application. This slight accident should, in my opinion, be a warning against reliance
peing placed upon this brake under all eventualities,"

M. Dupre has succeeded in suppressing the nitrous vapours of

 the Bunsen battery by using a depolarising liquid, consisting ofnitric acid in which 77 grs. potassium dichromate have been disnitric acid in which 77 grs. potassium dichromate have been diss
solved per litre. In contact with the zine he employs either Dulated water or potassium disulphate.
DISPLACEMENT of a salt from its solution by another salt can be shown by adding a little finely powdered ammonium sulphate to a
saturated solution of ammonium copper sulphate, and shaking well
a for a minute or two. After a few moments the solution loses it olour than the original solution.
The deepest boring yet made is at the village of Schladebach, the Prussian Government to test for the presence of coal, and was bored with diamond drills. Its depth is 1390 metres-4560ft.-
its breadth the bottom 2in, and at the top 11 in. It has ocupied its breadth at the bottom zin, and at the top 11 . . Yt has occupied
$3+$ years to obre, and cost t little over $£ 5000$. The temperature at
the bottom is 118 deg. Fah.
In some tests made with small squares of various woods buried chestnut, in four years ; maple and red beech in five years ; elm ash, hornbeam, and Lombardy poplar, in seven years; oak, scotch
fir, Weymouth pine and silve fir decayed to a depthoo thin in
seven years ; larch, juniper, and arbor-vite were uninjured at the seven years ; larch, juniper, a
expiration of the seven years.
Tre following are given by the Scientific American as dis-
infectants:-"Two pounds of copperas, or sulphate of iron, dis-infectants:- pail of water, will greatlty assist in purify ing a provivy
solved in a
cesspool. A pound of nitrate of lead dissolved in the same way is excellent for sinks, drains, or vaults. Chloride of lime is also effectual, or a layer of charooal dust will prevent offensive odours
arising from any decomposing substance. The quantity of these substances will depend upon the amount of filth t to be deodorised,
and the length of time during which they will be effectual will and the length ool time curr,
depend upon local conditions.,
Iron ores are conveniently and quickly assayed by roasting them and 4 parts of sodium carbonate-free from iron; the iron is thus
obtained in the form of ferric oxide, the formation of ferric silicate is avoided, and any organic matter present is removed, the roasted
mass is very readily soluble in hydrochloric acid, and after boiling mors is very readily soluber in hydrochioric acid, and after boiing
for thirty minutes to get rid of any free chorine which may be
formed, the solution is diluted and the iron titrated with stannous chloride. The Journal of the Chemical Society says magnesium carbonate may be used instead of calcium carbonate.
Profersor W. Orookre, F.R.S., Dr. W. Odling, F.R.S., and daily samples of the water supplied to conmosition and quality of that the exceptionally dry weather of July was not withou
effect on the character of the metropolitan water supply in respect to its degree of freedom from organic matter. Thus, the mean delivered during the past month was only 121 part in 100,000 parts of the water, while the maximum quantity present in any one sample
was only 146 part, these quantities constituting respectively the was only 146 part, these quantities constituting respectively the
smallest monthly average and maximum that have been recorded during the year.
In the Botanical Garden at Dijon there is a poplar of colossal in the Journal de la Societ Nationale d'Horticulture. The heigh of this tree is 130 ft . Its circumference near the earth is 46 ft t. and at 16 ft . above the earth, 21 ft . Its bulk is now 1590 oubio feet, but six years ago, before the fall of one of the largest branches, it was
1940. From some historic researches made by DPr. Lavelle, and a comparison with trees of the same species in the vicinity, it thas been
pretty well a accertained that this poplar is at least 50 years
pold the large branches spring. All the dead portions have been removed and the interior has been filled in with beton.
follows :-"During eight centuries-say to the time of the Norman conquest-one's direct ancestors amount to a far greater number
than would at first be contemplated. Taking three generations to a century, one has father and mother (2), grandparents (4), great.
grandparents (8) ancestors springs to 64. Following the calculation you will find that at the end of eight centuries one is descended from no less than
$16,000,000$ ancestors. Intermarriage of course would reduce thid estimate, and there is no doubt it must have largely prevailed.
But the figures are so enormous that, in spite of all, 1 venture to

Mr. O. C. Hiss, editor of the Monitor, relates the following:-
The Institute of Technology, at Boston, long the danger of steam pipes passing through and in contact with assumes the condition, to a greater or less degree, of fine charcoal,
a condition highly favourable to spontaneous combustion. Stean, was generated in an ordinary boiler, and was conveyed therefrom in pipes which passed through a furnace, and thence into retorts
for the purpose of distilling petroleum. Here the pipes formed the building. To prevent the steam when blown off from disinte grating the mortar in an opposite wall, some boards were set up to
receive the force of the discharge, and as often as the superheated steam was blown the boards wee
The following figures concerning the Great Eastern and the Ark
are of interest. Somebody is comparing the size and cost of the Great Eastern and Nohh's Ark. The ocst of building and launch company. A new company was formed, which spent 600,000 dols in fitting and furnishing her. Then this company failed, and a new close of 1880 this company sunk $£ 86,715$ upon the vessel, thus
the
making her total cost $4,703,575$ dols. Nothing ever built tan stand making her total cost $4,703,575$ dols. Nothing ever built can stand
comparison with the Great Eastern, excepting Noah's Ark, and comparison wid
even this vessel could not match her. The length of the Ark was
300 cubit of the Scriptures, according to Bishop Wilkins, was 21.0 gis in. and computed into English measurement the Ark was 547tt. Iong
91 ft . beam, 544 ft , depth , and 21,762 tons 680 ft . long, 8 sitt. beam, , 6 tit. depth, and $28 ., 093$ tons measurement
So Noah's Ark is quite over-shadowed by the Great Eastern.
In the United States only one entirely new furnace was blown
 qurnaces in other states have been rebuilt during the period in
question, and are again counted in the active list. In January last
there were 669 furnaces, which included many stacks which had there were 669 furnaces, which included many stacks which had
not been in blast for a very long time and others which could not be worked except during short periods of exceedingly high prices
for pig iron. Nineten bituminous and forty-nine charcoal furnaces, or seventy-eieht in all, are out. Making due allowance
for four furnaces rebuilt in the last six months, the net reduction
in in the total number of furnaces is seventy-four, which leaves 59
as the number of furnaces in the United States either in blast or likely to be blown in when trade shall warrant. To this number wild others in course of erection which are entirely new. These
and
con Tennessee, one charcoal furnace in Michigan, one charcoal furnace in Maine, and two charcoal furnaces in New York. Arrangements
are also being are also being made in Alabama for the erection of three coke
furnaces and in Wisconsin for the erection of ogee charcoal furnace,

MISCELLANEA.

LLorn's ComMrTrTEE, acoompanied by their chief surveyors,
Messrs. Martel and Parker, are making tour of the shipbuilding
nd steel and iron-making centres. On Tuesday last they visited and steel and iron-making centres, On Tuesday last they visited
the Eston Works, and also thoseof theNorth-Eastern Steel Company, L'Ergicito Argentino, the leading journal of the Argentine
epublic, says that Oaptain Picasso, of the Argentine Army, has made an improvement in the mechanism of the service arm, the Remington, which recuces the 1oading and firing time by a quarter. Captain Picasso's improvement is in the shell extraction, he having
adapted to the arm an extractor operating like the extractor of the Gras, the French service arm.
AvorнER Alpine town will shortly be lighted by eloctricity, and
ollowing the example of Aosta, the municipality of Vazallo have recently decided to illuminate the town by electricity. The system ocenc adopted will be that of Cruto, and the streets will be lighted
vith seventy inca y two dynamos driven by a turbine, as abundant water power is at hand in the torrent Sesia. Sesides the public lams
will supply from 90 to 100 lamps in private houses.
A curious accident has occurred at West Hartlepool. Part of
he quay wall of the Swainson Dock, which belongs to the North-
 longth. A steamer, called the Coral Queen, was discharging cargo at the time, abreast of the quay. She was not materially damaged,
but was driven from her moorings, and some of her cargo fell into the water along with the débris of the wall. No one was injured, a
he accident occurred early in the morning. Had it been two hour ater, thirty or forty men would probably have been there, and The Secretary of the United States Navy having declared
forfeited the contracts under which the Chicago, Atlanta, and Boston have been constructed by Mr. Roach, the vessels and their
Bor olongings have been placed in charge of the chiefs of the Burea
of Steam Engineering and the Bureau of Construction and Repair and they will beecompleted at Mr. Roanh's works by the Depart-
nent in accordance with the provisions of the 11th section of the contract between the Department and Mr. Roach. It is under-
stood that the inspecting officers of the two bureaus who are now cood that the inspecting officiers of the two bureaus who are now
employed on the vessels will beoctinued on that duty. Doubt the earliest possible moment. There is nothing new in regard
it

In the United States chilled tools for metal cutting machines are growing in favour. One firm engaged in turning large forgings
of steel in the manufacture of guns will only use chilled tools. In addition to the cost of good tool steel there is the waste eonneeted
vith it. Good tool steel cannot be booght now at less than 9 . per li., and, as a rule, only one half of it is consumed. There is tool steel has been heated and forged over and over again, itsy
ualities are destroyed, and it reaches a period when it is hardly worth being used at all. Cast iron tools can be made at 1d. per lb. nd when chill is worn off can be re-melted into new tools. The
principal thing to keep in view in preparing chilled tools is to have a large chill so as to get the iron thoroughly hard.
Concerning glass-making, the American Manufacturer says In t. manufacture of glass fifty years a ao 28 ll . of potash and
26 lb of wood ashes were used to every 100 lb . of sand. The rrst change from this was to burn the potash in an oven, and
work it as a puddler doos iron, in order to obtain better results; and this was used with lime in about the same proportions as
otash and wood ashes above named. Soda ash was first used in anged to 33 lb b soda ash and 26 lb . of lime to 100 lb of sand. The proportions vary greatly with. cir-
cumstances and the quality of the ingredients used. The follow
 too green, charcoal is added and arsenic reduced."
Mr. William F. Zinmerinan, of the Pittsburgh Testing Laboradory, has completed for the Detroit Dry Dock Company a test of the teamer they are building for the Detroit and Cleveland Steam
Navigation Company. The sated to be $60,000 \mathrm{lb}$. to the square inch. This softsteel is said to be of such remarkable elasticity thata pieco of plate may be stretched
ne half longer than its usual size without parting.
The Detroi Dry Dock Company recently made some experiments of its own
with the soft steel used in the construction of the new steamer Masootte at its yards in Wyandotte. They were made both with
soft steel and the best quality of iron used in the construotion of
sor iron ships. Strips of cold steel plate sin in. thick and 3 in. wide were or causing a single abrasion of the metal's surface. Angle irons
were flattened cold and bent in like manner. Another strip was ent repeatedly without causing it to break or even flaw. In the was suspended at a height of 35 ft . and allowed to drop on a ${ }^{3} \mathrm{I}$ in. The ebll was then dropped on the reverse side of the plate, and
his repeated five times without brealing the plate tis mepated five times without breaking the plate. The same tes
was made with a $\frac{1}{2}$ ini. iron plate, and it was broken the first time ng a conclusive demonstration of the comparative merits of soft respective merits as materials for the construction of modern TH Dr. R. H. H. Gis ibert, the inventor of the the in his fifty-third year, of railroad system,
The deceased was born at Guiford, The deceased was born at Guilford, Chenango county, New York,
where his father, W. D. Gilbert, was one of the associate judges
of Steuben county. Having a taste for medicine, he was tieed to a druggist in his native place, but his mind ran strongly
apon mechanics, and he soon beame tired of the apothecarys shop, and obtainedd a position in a large manufacturing establish.
ment. Here he laid the foundation of that knowledge which in ater years was to solve the problem of the present rapid transit ystem of new York. After serving in the war of the rebellion,
Dr. Gibert devoted all his time to the rapid transit problem.
He first got up the peumatic tube system, He first got up the pneumatic tube system, but abandoned it
留ally a simpracticable. He then brought out his patent for an
clevated railway, and obtained a charter for a road through Sxth-avenue and Second-avenue. The patent was for an
arch thrown from one side of the street to the other, upon
which a local train and a through train were to run on independent tracks, and which would afford a support also to the telegraph wires. It was some years before the work was begun, but $\mathrm{Dr}_{\text {r }}$
Gilbert's unremitting efforts in the United States and Euro inally created confidence, and the erequired money was eventually
obtained. The structure in Sixthavenue was begun, rapidly obtained. To she structure in Sixth-avenue was begun, rapidly
carried forward, and on May 1st, 1878, the first car was run sucessfully from Trinity Church to Fifty-ninth-street in sixteen
ninutes. Dr. Gilbert was made chief inspecting engineer of the oad, the name of the undertaking being changed from the Gilber any infringing his rights in the road, he brought an action to enforce his claims. The company replied by removing him,
throwing him out of the directorship, but it finally compromised hrowing him out of the directorship, but it finally compromised
the matter by paying him 100,000 dols. in stock, which, however, elevated railroads and the resulting lawsuits. Like many an inventor before him, Dr. Gilbert profited little from his labours,
dying comparatively poor,

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER,

PUBLISHER'S NOTIOE.

 * With this weel's number is issued as a Supplement, a TwoPage Engraving of the new Organ in Westminster Albey. Page Engraving of the new Organ in Westminster Albey.
Every copy as issued by the Publisher contains this Supplement,
and subseribers are requested to notify the fact should they not receive it.

TO OORRESPONDENTS.

${ }^{*}$ * All letters intended for insertion in THR ENaINRER, or containing questions, must be accompanied oy the name and address
of the writer, not neecsarily for pubbication, but as a proof of
good faith. No notice whatever will be taken of anonymous communications.

* We cannot undertake to veturn drawings or mamuscripts; wo ${ }_{*}^{*}$ In In order to to avoid trouble and confusion, we find it Inf order to avoid trouble and confusion, we find it teceasary to
inform correspondents that letters of inquiry addressed to the public, bund intended for insertion in this column, must, in all
case, be accompanied by a large envelope legibly directed by the cases, be accompanied by a large envelope legibly directed by the
writer to himestf, and bearing a 1 d. postage stanm, in order that
answers received by us may be forvwarded to their destination. and notice will be taken of communications which do not comply
Noith these instructions.

CONCRETE MIXERS.
 -ot

CAPSULE AND TINFOLL MACHINERY.
(To the Editor of The Engineer.)
Sir,-CCin any of your oorrespondonts kinding givo mo tho address of
the best makers of machinery for capsules and tififoil?
Lugusust 13th.

SUBSCRIPTIONS.

THE ENGINEER.

AUGUST 21, 1885.

the depression of trade

We have lying before us the Thirteenth Annual Report of the General Committee of Management of the Iron
Trades Employers' Association. This report was preTrades Employers' Association. This report was pre-
sented at the annual meeting of the members, held in sented at the annual meeting of the members, held in
London on the 23rd of July. It is impossible to read it without apprehension. Its authorshave nothingbut disaster to record; and in no direction is light to be seen, or any indication that improvement in trade is likely to take
place in the near future. The statements contained in the place in the near future. The statements contained in the
report are based on inquiries made in every direction by the Committee of Management. Over seven hundred returns have been obtained. They represent the engineer-
ing, ironfounding, boiler making, and iron shipbuilding ing, ironfounding, boiler making, and iron she to the extent of about 118,000 hands, and the general result shows "that trade is good only upon
returns representing 2500 hands, moderate upon those covering 25,000 hands, and bad or very bad over the remaining area, covering an employment of 90,500
men." The picture of the condition of trade put men." The picture of the condition of trade put
before us is one of the most deplorable that can be imagined. After referring to the efforts of the masters to
obtain work at almost any price, the report goes on:-
"The reports from the workmen's side are equally cheerless, and in regard to the depressed condition of the labour market, they are all but unanimous; so that it is clearly shown that only by the extraordinary efforts of employers are the skilled hands and the labourers in the iron trades saved from a calamity which threatens to assume wider saved from a calamity which threatens to assume wider
proportions, unless some improvement comes to the aid of masters and workmen before the next winter sets in. Whilst the capital of the employer is decreasing, the
provident funds of the workmen are diminishing, in conprovident funds of the workmen are diminishing, in con-
sequence of the extra strain upon their resources, which is being felt acutely by every trades union in the kingdom being felt acutely by every trades union in the kingdom
at this time." The report makes no mention of the causes which have induced this condition of affairs; possibly it was felt that to do this would be to travel beyond the field which the report is legitimately intended to cover. There
is no reason, however, why the subject should not be fully is no reason, however, why the subject shound not be fully
discussed in our pages. It is one nearly concerning every eader of The Engineer. To attempt to handle it exhaustively would be to undertake a herculean task, but
it is quite unnecessary to do anything of the kind. On it is quite unnecessary to do anything of the kind. On
certain prominent points it is possible to speak to the certain prominent points it is possible to speak to the
purpose within a comparatively limited space, and that is Ill that we intend to do.
In certain departments of trade it appears that there is but that the in the quantity exported or otherwise sold but that there is a great reduction in price; in other
departments both quantity and price have fallen, Now a dall in price can only be due to one cause, and that is competition. If one man has the supplying of an entire dis trict with shoes he can charge anything he pleases for
them, and he will soon find that there is a certain price which, if exceeded, the people will go without shoes rather than buy. If, on the other hand, he goes below it, he wil sell more shoes but make less money. If, however, there
are half-a-dozen shoemakers competing for custom, not one of the six can charge what he likes and yet command a market. At one time England was very much in the position of the isolated shoe maker. It seems
a strange thing, yet is no less true, that half a century a strange thing, yet is no less true, that half a century
ago foreign nations, such as France, Prussia, Italy, Russia, and America, produced nothing for themselves save the necessaries and a few of the luxuries of life. No rails spinning machinery, no cotton goods, none of the better kinds of cloth, no locomotives, or marine engines, or steamships. The list might be extended indefinitely, we
may include in it coal and iron. All that has been changed. About the year 1852 manufactures began to assume some prominence abroad. A little ball was set
rolling, and it has gone on accumulating to itself until it has rolling, and it has gone on accumulating to itself until it has
reached the proportions of a mighty avalanche, threatening reached the proportions of a mighty avalanche, threatening
to sweep English trade off the face of the earth. Under such to sweep English trade off the face of the earth. Under such
circumstances of foreign competition as now exist itis simply impossible for prices to keep up. Nor is it reasonable tha theyshould. Every effort has been made to cheapen produc tion. We must not grumble if we have to sell cheaply
Twenty years ago three tons of coal were required to make Twenty years ago three tons of coal were required to mak
a ton of iron. Twenty-five cwt. does the same work now A ton of steel cost from $£ 80$ to $£ 140$. As good a material can be had for $£ 20$ a ton now. One result of all this cheapening is that the necessaries of life-if we except
meat-clothes, houses, bread, fuel, tea, sugar, and such like, never were so cheap. In other words, the purchasing, power of wages never was greater.
fitter earning 25 s . a week now is really better o than he was a few years ago when earning 30s. Con sequently a reduction in wages is in no sense or
way as much to be deplored as it would be were the cost of necessaries high. It is not, indeed, in the matte of wages that the depression of trade presents itself in it worst aspect. It is that trade is so restricted that there cannot be any employment at any wages, however small, for hundreds and thousands of men, and the reason of this world are gradually being closed against us, either by th operation of heavy tariffs, or because of competition. The
Belgian cotton spinner will not come to England for steam engine if he can get one better and cheaper at home Whether he can or cannot, a visit to the Antwerp machinery gallery will decide very quickly. But not only competition excluding us from foreign markets,
is also hitting certain trades very hard in the home market. Within the last few days the followin facts have come to our own knowledge. One of the largest firms building marine engines on the north-east obtains all its steel castings from Germ thence by ship to the Tyye. The price paid for crossheads and such
like is, we believe, $£ 25$ per ton delivered. The casting are perfect. English steel makers assert that it is quite impossible to deliver similar articles at less than $£ 27$ or fact. Again, it is stated that it is cheaper to take iron to Norway from England and build a ship there, than it is facts as these tell their own tale
It is quite evident that if the engineering, iron, and shipbuilding trades are to flourish, prices, low as they are, must go lower still, and at the same time the quality of
the work must be kept up. It will be found that the firms with a world-wide reputation are all more or less busy, although the prices they charge are high relatively. Infinite harm has been done abroad by the attempt to palm off on the foreigner second-rate goods at a second-rate price. This is especially true of tools; and we are sorry to say that in south Europe, particularly Italy, English lathes, drills, and planing machines have come to be a byword and a reproach, and justly so. The attempt wrong basis altogether--the English tool maker trying to do what was an impossibility, when the rate of wages and hours of labour in the two countries are
compared. In Belgium a fitter works twelve hours a day for about 31d an hour. It may be said that he is not good a man as the English fitter. Perhaps this is true,
perhaps it is not; but two Belgian fitters will certainly wa a great deal more than one English fitter for the same English engine builder must lons for wages alone that the English engine builder must look for assistance; he must can be have. Wo that every penny shall be saved that which saved. We heard the otherday of a contract in Which the highest tender was a little over $£ 30,000$, the lowest a little over $£ 20,000$. The explanation of the enormous disparity lies in the fact that the lowest tender could be ter a consummate knowledge of how the himest could be turned out at the lowest cost; and the highest was based on ho such information. The difference in the same trade would be almost increlible if we in not know how little communication takes place did not know how little communication takes place
between the heads of rival firms. Again, a vigorous effort should be made to resist unfair imposts, such, for instance, as the unreasonable exactions of certain or instance, as the unreasonable esactions of cerrens,
railway companies, rendered necessary in one sense railway companies, rendered practice economy themselves. because the companies do not practice economy hemselvis.
Another point for discussion is the rating of factories, Another point for discussion is the rating of factories,
which we are glad to see is being taken vigorously in hand which we are glad to see is being taken vigorously in hand
by the Iron Trades Employers' Association. We cannot by the Iron rrades Employers Association. We connot better conclude this article than withed us with a text:"In several of the chief centres of the mechanical engineer-
and ing and shipbuilding trades, the members of our Association have, upon local grounds, joined with other users of machines to resist claims which are now being frequently put forward by overseers of the poor to rate machines which have hitherto been declared exempt from such liability. Pending the settlement of the question by the Legislature, our members in Leeds have, for mutual pro-
tection, made common cause with users of machines in industries distinct from the iron trades. In Newcastle-onYyne they have also joined in self-defence, and have sub scribed the funds required for taking the case of the Tyne Boiler Works Company, on appeal from Quarter Sessions
to the higher Courts, and, if necessary, to the House to he higher Courts, and, if necessary, to the House
of Lords. In Manchester the firm of Sir Joseph Whitof Lords. In Manchester the firm of Sir Joseph Whit worth and Co. have been placed under a revaluation of
their works by order of the overseers, and have been called upon to pay rates upon light machines and tools hitherto held to be clear of such liability, and our Manchester members have, as in Leeds and Newcastle-on-
Tyne, made common cause with employers in other Tyne, made common cause with employers in othe1
industries carried on in the township, and have agreed to raise the funds with which to try the case at Quarte sessions, and, if required, to proceed as in the Newcastle case, till a final judgment has been given in the House of Lords. It is evident, therefore, that the question of rating machinery for the relief of the poor, and for other rating purposes, is growing in importance, and is claiming attenion all over the manufacturing centres of the kingdom. The Committee about to be appointed to administer th affairs of this Association for the ensuing year will thereore, in this respect, have to carry forward the work from the point at which it will now be consigned to their hands, but with every reasonable prospect of success during the next session of Parliament."

electricity, oil, and gas

The printed report of the Trinity House Committee which has lately completed at South Foreland, a protracted series of experiments on electricity, gas, and oil as light-
houss illuminants, has just made its appearance. Some of ur readers doubtless availed themselves of the oppor unity supplied by the recent visit to South Foreland of the Smeatonian Society of Engineers, of witness-
ing for themselves these interesting trials; and most ing for themselves these interesting trials; and most
of them have been aware, from the prominence which has of them have been aware, from the prominence which has n unfortunate controversy as to the constitution of the riginal committee-that a serious attempt was at length being made to determine, for at least lighthouse purposes,
the relative merits of these three illuminants. Whether or not this result has been fully accomplished by the committee, it may, at any rate, be said of their report that it bears on
its face abundant evidence of care and impartiality. Nor, however much regret may be entertained in some quarters that Professor Tyndall felt himself under the necessity of withdrawing from the investigation-for reasons which whe no wish at this time to recall-will there, we feel of the scientific experts who were engaged to assist the Trinity House Committee, and whose names we append:
-Mr. A. Vernon Harcourt, M.A., F.R.S,, representing -Mr. A. Vernon Harcourt, M.A., F.R.S., representing the Board of Trade; Professor W. Grylls Adams, M.A.
F.R.S., for electricity; Mr. Harold Dixon, M.A., of Trinity College, Oxford, for photometry; Sir James N.
Douglass, C.E., acting for the Trinity House ; Mr. Thomas Stevenson, C.E., acting for the Scotch Light Commissioners; Dr. R. S. Ball, F.R.S., acting for the Irish Light Edwards, a Trinity House official of large experience in such matters, filled the post of secretary to the committee.
The main proximate cause of this investigation was, we believe, the desirability of putting to a complete and final Mr. J. R. Wigham, of Dublin, and largely Irish Light Commissioners. The supporters of this sys tem contended that it was specially adapted for lighthouse purposes, for the following reasons, viz: $:-(1)$ That the arger or the smaller intensities of the light could be gas ; (2) that employed by merely turning on or ofr the considerably in excess of that procurable from the larger concentric oil burners; and (3) that admitting the inferiority in intensity of the gas to the electri light, gas was, owing to the large dimensions of it penetrative in thick and foggy weather than the small violet-rayed electric light. To determine the questions thus presented, and kindred questions, the following rangements were made:-On the site of the experiments-
South Foreland-three strong wooden towers were erected
in which were installed respectively the electric light, the gas light, and the oil light. The electric light was procontaining sixty permanent magnets of horseshoe form, eight laminated pieces to every magnet, the whole disposed in five rings of twelve magnets each, and associated with five discs revolving within them, each having twenty-four coils on its outer ring, the revolving portion being run at as we have said, on the Wigham system, the burners, four in number, being each composed of 108 jets, compactly four in number, being each composed of 108 jets, compactly burners, which were superposed, was made in rings, removable, according to the intensity of light required to be invoked, by twenties in a ring, until the number of jets was reduced to twenty-eight, the others being constantly maintained at their normal power. The oil light was posed -of the Trinity House "Douglass" old pattern, consuming paraffine, having a flashing point of 154 deg . Fah. Each elight was surrounded by an optical appa-
ratus arranged for producing both fixed and revolving effects, which were witnessed at sea as well as on shore, a photometric gallery having been erected near the pera photometric gavery having been erected near the pering accurate measurements of the lights in competition. It has been explained that the oil-burners, as well as
the gas-burners, were superposed, the former being arranged as a triform and the latter as a quadriform light. This is, we believe, the first occasion of an oil light for lighthouses being so shown, the highest number of burners hitherto superposed being two, as in the new Eddystone Lighthouse-fully described in a paper by Mr. W. T. 1883-4. Of this new departure Mr. Dixon thus writes in his report: "The problem of burning three large oil lamps his report: "The problem of burning three large oil lamps
within 6 ft . of one another has been satisfactorily solved by Sir James Douglass."
We have only now to summarise, which we shall do very briefly, the conclusions at which the committee have arrived, viz.:- (1) The electric light is the most penetrative of the three luminaries in all conditions of the atmosphere, fog included, It, however, is more costly than either
gas or oil, and its dazzling effect in clear weather (2) The gas and the oil lights a (2) The gas and the oil lights are practically equal, but
the latter system is considerably cheaper, and is simpler the latter system is considerably cheaper, and is simpler
and more convenient than the former. The committee, therefore, recommend that "for the ordinary necessities therefore, recommend that "for the ordinary necessities
of lighthouse illumination mineral oil is the most suitable and economical illuminant, and that for salient headlands, important landfalls, and places where a very powerful
light is required, electricity offers the greatest advantages.'

lessened production of lead.

AT last it appears that there is a movement in the lead industry, and that prices, aftere beeng long depressed, have of
late moved upwards and retain their firmnes., It is not difficult to trace the cause of this; it is due to the reduction in the
supply of lead, in consequence of the lower price, and now also supply of lead, in consequence of the lower price, and now also
in consequence of the outbreak of disease in Spain, which has long been one of the great sources of our lead supply. The former cause is one which may be prolonged, the latter can
only be looked upon as temporary in its nature; but both only be looked upon as temporary in its nature; but both
together must for some time to come affect the lead market,
though many serious increase in price would soon cause enlaggement of our home supply of lead. Would soant cantime, howe aner,
ene have that diminution in the production which has been we have that diminution in the production which has been
showing itself gradually for some years. Last year the lead produced from British ores was 40,075 tons, or over 3000 tons
less than the previous year; but the lead imported and the lead obtained from the foreign ores brought in showed a
large increase. Spain gave us four-fifths of the total quantity of the lead we imported. Now that the great lead-producing country has had so serious an attack, the production of lead ore is being enormously lessened, though this does not show itself
at first, for the stocks at the ports will be sent out. But they
will not be so fully rentent wiln not be so fully replenished, and thus there will be for some lead which Spain sends us. It is is of to to be expected that this
will wery long continue, but during its continuance there will be will very long continue, but during its continuance there will be
a relief which the British producers of lead will make the most of; and there is, on the other hand, a benefit for this ancient
industry in the resumption of demand from China, which has industry in the resumption of demand from China, which has is onow beginning to buy more largely again after the partial
suspension through its dispute with France and the closing of suspension through its dispute with France and the closing of
some of the ports. It may be fairly hoped, then, that there
will be some improvement soon in this ancient and long will be some improvement soon in this ancient and long-suffering
trade, the dulness in which has grievously oppressed some of the lead mining dales for several years.

small mercies.

For these the ironmasters, of all traders, are just now the
nost thankful. More than small mercies they do not look for from the railway companies, yet the railway companies are not incapable of being touched by the needs of the ironmaster,
however difficult to move may still be the owners of mining royalties both in ironstone and in fuel. The small mercy which has just fallen to the lot of the Staffordshire irommasters is a
reduction of threepence per ton for the boating of pig iron from reduction of threepence per ton for the boating of pig iron from
the railway stations to works situated on the canals of the
London and North-Western, the Great Western, and the London and North-Western, the Great Western, and the
Midland Railway Companies. The charge will now be ninepence per ton for delivering by boat pig iron carried at station to
station rates, and the rate will apply to iron invoiced from ot companies'stations to the stations nearest to the anced from other the ronmasters in a less thankful mood they might acknowledge their district in the terms of the hackneyed couplet, which speaks of "dissembled love", and "kicking down stairs." "The pig iron firms would seem to be fair game for the canal and the
railway companies, who are fast becoming one and the same proprietory. The tonnage upon pig iron on the Birmingham
Canal is $1 \frac{1}{2}$ d., and the attempts of the ironmasters to bring it to 1 d . have as yet been unsuccessful. They seek that it should be a penny because that is the tonnage upon certain iron hard-
wares, curtly denominated " pots and kettles." The ironmasters do not ask for pots and kettles to pay more, but they seek themselves to be placed upon equal terms, and they have sub-
stantial ground for their claim. A boatload of pig iron may be
twenty-seven tons, but a boatload of pots and kettles is not
usually more than five tons; consequently, a load of pig iron pays 27 s. for freight, and a boatload of pots and kettles often not more than 5 s.

LITERATURE.

The Royal Mail: its Ouriosities and Romance. By Jamss Wison Hyde. Second edit
and London. 1885 .
This is an octavo book of 391 pages, which we can confidently recommend to our readers. Mr. Hyde's position as Superintendent of the General Post-office, Edinburgh, has supplied him with many of the qualifications essential to
the successful production of a work of this kind, and, in the successful production of a work of this kind, and, in
addition, he has brought to his task an agreeable style, and a keen perception of what is and is not dry reading. It is difficult, indeed, to say whether the book is mor instructive or amusing, and we have not the least hesitation in saying that young people ought to read it for the sake of the information which it conveys. The fact that the volume has found favour with the public, as it deserves is proved by the circumstance that the whole of the firs edition was rapidly bought up. To the second edition
some additions have been made to the chapters on "Mail some additions have been made to the chapters on "Mai
Packets," "How Letters "Lore Lost," "Singular Coincidences," and a fresh chapter on "Postmasters."
The sending and receiving of letters is so much a matter of course that few people realise the gigantic dimensions
of the organisation known generally as the Post-office. The of the organisation known generally as the Post-office. The
post is above and beyond all others a modern institution. post is above and beyond all others a modern institution.
Nothing at all resembling it existed in ancient times. Letters were transmitted from town to town at very early periods in history; but there was little or nothing in common with the old-world system and that now in vogue. That it should be possible to throw a mis-
sive into an iron box in the street, and, without taking sive into an iron box in the street, and, without taking
further thought, know that that letter will be delivered to further thought, know that that letter will be delivered to an address hundreds of miles distant in a few hours, never times. Indeed the existing system is to all intents and purposes, entirely novel. It can be hardly said to dat back half a century. How it grew up and what were it beginnings our author narrates in very pleasant language, prolixity of detail. Sam Weller said that the essence success in letter writing was that the recipient of one
should "wish for more," This is just the case with the should "wish for more." This is just the case with the
book before us. We frequently find ourselves wishin book before us. We frequently find ourselves wishing
that the author had told us a little more on any subject, but never wish that he had told us less.
We shall make no attempt to describe the book in detail, It is too moderate in price and too accessible to do this, the author's method of dealing with his subject is. These we take at haphazard. Here is one which presents curious picture. It is a circular issued by the London
Post-office authorities on the 27 th April, 1799 :- "Several mail coaches being still missing that were obstructed by the snow since the 1st of February last. This is to desire you will immediately represent to me an account of all spare patent mail-coaches that are in the stage where you coaches or extraether they are regular stationed mail they are, either in barn, field, yard, or coach-house, and the condition they are in, and if they have seats, rugs, and windows complete." It appears from this that, after a had not recovered the missing coaches, and had, indeed only just begun to hunt them up
Contrast the picture presented by the following extract from the chapter on mail packets with the existing conditions under whis the early tackets sailed whe of the were often in danger of having to fight or fly. The infight when they capld no longer run whe to throw mails overboard when fighting would no longer avail. In 1693 , such a ship as then performed the service was with powder, shot, and fire-arms, and all other munition of war.' A poor captain whose ship, the Grace Dogger, was lying in Dublin Bay awaiting the tide, fell into the hands of the enemy, a French privateer having seized his ship, and stripped her of rigging, sails, spars, and yards
and of all the furniture 'wherewith she had for the due accommodation of passengers, leaving not so much as a spoone or a naile-hooke to hang anything on. Trom unfortunate ship, in its denuded state, w judge from this case, the fighting of the packets does not seem always of the day, deeming discretion the Postmasters-Genera set about building packets that should escape the enemy They did build new vessels, but so low did they rest in the ' Wee doe find that in blowing weather they take in soe much water that the men are constantly wet all through and can noe ways goe below to change themselves, being obliged to keep the hatches shut to save the vessel from sinking, which is such a discouragement of the sailors that such hardshipps in the winter weather.' These flying ships determined to build 'boats of force to withstand the enemy ' adopting the bull-dog policy as the only course open in the packets were manned. In May, 1695, the crews of the packets between Harwich and Holland were placed on the following footing:-Master and Commander, $£ 10$ per mensem ; mate, $£ 310 \mathrm{~s}$; surgeon, $£ 310 \mathrm{~s}$; ; boatswain,
$£ 35 \mathrm{~s}$; midshipman, $£ 115 \mathrm{~s}$; ; carpenter, $£ 35 \mathrm{~s}$; boatswain's mate, $£ 115 \mathrm{~s}$; ; gunner's mate, $£ 115 \mathrm{~s}$; ; quarter master, $£ 115 \mathrm{c}$.; captain's servant, $£ 1$; 11 able seamen a
$£ 110$ s. each, $£ 1610 \mathrm{~s}$.; agent's instrument, $£ 2$; in all, $£ 50$ per mensem. These wages may not have been considere
encouragement to greater; valour in dealing with the enemy, allowed to take prizes if they fell in their way. They also received pensions for wounds, according to a up with a nice discrimination of the relative value of different parts of the body, and with a most amusing profusion of the technical terms of anatomy. Thus, after a
fierce engagement which took place in February, 1705 , we fierce engagement which that Edward James had a donation of $£ 5$ because a find that Edward James had a dination of efshot had grazed on the tibia of his left leg; that
musket Gabriel Treludra had $£ 12$ because a shot had divided his frontal muscles and fractured his skull; that Thomas Williams had the same sum because a Granada shell had tuck fast in his left foot; that John Cook wha sheceived shot in the hinder part of his head whereby a large division of the scalp was made, had a donation of $\dot{£} 613 \mathrm{~s}$. 4 d . for present relief, and a yearly pension of the same amount; or present relief, and a yeary pension of the same amount,
and that Benjamin Lillycrop, who lost the forefinger of his left hand, had $£ 2$ for present relief, and a yearly pension $\begin{array}{ll}\text { left hand, had } £ 2 \text { for } \\ \text { of the same amount.' } & \text { Some other classes of wounds were }\end{array}$ assessed for pensions as follows: 'Each arm or leg amputated above the elbow or knee is $£ 8$ per annum; below the knee is 20 nobles. Loss of the sight of one eye is $£ 4$; of the pupil of the eye, L5; of the sight of both eyes, $£ 12$ of the pupils of both eyes, £14; and according to these rules we consider also how much the hurts affect the body, and make the allowances accordingly'"
In 1829 voyages out and home to the places we are about Jo name occapied the accompanying number of days:-
America, 105 ; Leeward Islands, 91 ; Malta, F8; Brazil, 140; Lisbon, 28
For those who love statistical illustrations, as we may call them, what can be better than this:- "The quantity of paper used in this annual interchange of thought through the intermediary of the British Post-office may, perhaps,
be measured by the following facts: Supposing each letter to measured by the following facts: Supposing each letter
to contain a single sheet of ordinary-sized note-paper, the post-cards taken at the size of inland post-cards, book-post-cards taken at the size of inland post-cards, book-
packets as containing on an average fifty leaves of novel paper, and newspapers as being composed of three single eaves 18 in . by 24 in ., the total area of paper used would be eaves $18 i n$. by $24 i n$., the total area of paper used would be
nearly 630 millions of square yards. This would be sufficient to pave a way hence to the moon of a yard and a-half cient to pave a way hence to the moon of a yard and a-half
in breadth; or it would give to that orb a girdle round in breadth; or it would give to that orb a girdle round
its body 53 yards in width; or, again, it would encircle our own globe by a band 14 yards in width. Another way o look at the magnitude of the Post-office work is as follows: Suppose that letters, book-packets, newspapers,
and post-cards are taken at their several ascertained averages as to weight, the total amount of the mails for a year passing through the British Post office, exclusive of he weight of canvas bags and small stores of various kinds, would exceed 42,000 tons, which would be sufficient to
provide full freight for a fleet of twenty-one ships carrying 000 tons of cargo each. What a burthen of sorrows, joys, scandals, midnight studies, patient labours, business
energy, and everything good or bad which proceeds from the human heart and brain, does not this represent ! yet after all, what are the figures above given when put in the balance with the facts of nature? The whole paper, accord-
ing to the foregoing calculations, although it would gird ing to the foregoing calculations, although it would gird our earth with a band 14 yards wide, could only be made
o extend hence to the sun by being attenuated to the to extend hence to the sun by being attenuated to the
dimensions of a tape of slightly over one-eighth of an inch n width!'
The most amusing part of the book is that which describes what may be termed the internal life of the Post-
office. Here is an apology from one of the officials, which is most delicious reading: "The Postmistress of Cambridge, is very sorry that she has not sent in her
accounts before this. She will be sure to do so to-morrow accounts before this. She will be sure to do so to-morrow less grandchildren staying with her for a few days." A gain andidates for appointments are asked certain medical questions, in order to secure healthy individuals. Dr
Lewis, medical officer of the Post-office, London, for many years, records the following examples of answers received to his questions:- " ' Father had sunstroke, and I caught
it of him.' 'My little brother died of some funny name.' it of him.' 'My little brother died of some funny name.'
A great white cat drawed my sister's breath, and she died of it.' A parent died of 'apperplexity;' another died of parasles.' One caught 'Tiber fever in the Hackney-road; another had had 'goarnders;' a third 'burralger in the head.' Some of the other complaints were described as rummitanic pains,' 'carracatic fever,' 'indigestion of the lungs,' 'toncertina in the throat,' 'pistoles on the back.
One candidate stated that 'his sister was consumpted, now she's quite well again;' while the sister of another was stated to have 'died of compulsion."
To quote further would be unfair to the author of this
delightful book. We cannot resist the temptation, how ever, to give a few strange addresses:-
The address,
23 Adne Edle Street, London,
proved to be intended for
2 Threadneedle Street, London,
No. 52 Oldham \& Bury, London,
No. 52 Aldermanbury, London.
On another occasion the following address appeared on a
too dad Thomas
tehu
10 Bary. Pade.
is sefe;
Sur plees to let ole feather have this sefe;
the address being intended for
The Old Oak Orchard,
A further odd address was as follows, written, it is presumed, by a German :-
Tis is fur old Mr Willy wot brinds de Baber in Lang Kaster the English of the address being-
This is for old Mr. Willy what prints the paper in Lancaster

THE ANTWERP INTERNATIONAL EXHIBITION.
THis latest addition to the constantly increasing list of World's Fairs" may in some way be regarded as an offshoot of its predecessor held at Amsterdam in 1883, where the possibility of organising an International Exhibition by private capital, without State subventions, was satisfactorily demonstrated. A similar arrangement has
been adopted in the present instance, the buildings and grounds being laid out by a syndicate of capitalists, the cost being met by rents of exhibition space, admission
fees, and other sources of revenue among which a lottery, with prizes from $£ 4000$ downwards, which may be won by speculating to the extent of a franc, figures prominently.
Tbe administrative and international relations are placed under the Ministry of Public Works, the Commission being presided over by Comte H. d'Oultremont, as of the imposing dimensions of the gigantic Exhibitions of Paris and Philadelphia, the buildings are of considerable magnitude, and the skilful arrangement adopted by the mental character such as is not always realised in temporary structures. The site, apart from certain irregularity of shape, is an exceedingly good one, being at the extreme
south end of the town, in what is known as New Antwerp where the ground formerly occupied by the old southern are to a great extent still free from buildings ; so that it has been possible to form an area of about 50 acres, with a principal frontage of about half a mile, facing the end of interior fortifications, and on the other side resting on the basin allotted to canal traffic on the southern quays park, with numerous separate buildings erected for exhibitors-for those of eatables and drinkables, in the shape of restaurants, and more particularly ypavillonsdededgustation, havedemonstrated, are among the more important aids to the proper appreciation of scientific industry. The Exhibition gathered from the plan we published last week, of which the gathered from the plan we published last week, of which the machinery in notion. The former, or Gallerie Internationale, is of irregular shape, bent approximately to
rectangular form; thelargestdimension running nearlynorth rectangular form; thelargestdimensionrunning nearly north
and south is about 1770.ft., while the maximum breadth is a little over 600 ft . The machinery hall, a regular rectangular building, about 620ft. by 490 ft ., lies to the east of last impression. In the same way the north end of the grounds is connected by a bridge with the innermost of
the canal basins, which is enclosed to form the Exhibition the canal basins, which is enclosed to form the Exhibition
Maritime, where boats and shipping may be shown afloat. Maritime, where boats and shipping may be shown afloat.
This part of the Exhibition has not as yet found much favour, and has only had a few temporary occupants in the shape of steam and sailing yachts belonging to visitors who have only stopped for a few days at a time. The
total exhibition space is given at 72,660 square metresabout 780,000 square feet, or nearly eighteen acres-which
is distributed among the different nations taking part in the Exhibition in the following proportion :-

	. metres.		Sq. met
Belgium	$\begin{aligned} & 25,000 \\ & 20,000 \end{aligned}$	Luxemburg Spain	$\cdots \quad 600$
Germany	6,000	Switzerland	... 500
	4,000	Brazil	... 200
United Kingdom	n 3,600	San salvador	150
Austria	3,000	Hayti 150
United States	2,000	Turkey ...	
ussia		Portugal...	
Netherlands	2,000	Monaca	100
veden \& Norway	1,300		
Canada ...	1,200	Paragua	

Bef the total space more than one-half is occupied by while the United Kingdom, apart from Canada, takes only the fifth place, with only about 5 per cent. of the area. These figures are sufficient to indicate that the Exhibition
is, in its principal features, mainly one of Belgian and
Fren French products. As will be seen from the plan, the two
nations occupy about equal spaces in the main building nations occupy about equal spaces in the main building,
but in the machinery hall considerably more than half the area is filled by Belgian exhibitors.
The main calleries buildings is of the simplest character. The main galleries are divided into seven parallel aisles by
pillars built up of \square and angle irons of the smallest pillars built up of \square^{\square} and angle irons of the smallest
possible section, and which are for the most part lost in the decorations covering them. No uniform system of
ornamentation has been followed, the section allotted to each country having been handed over as a whole to its
National Commission, which has decorated it in accordNational Commission, which has decorated it in accord-
ance with the national tastes and peculiarities. This, although detracting from the monumental character of the
building as a whole, adds considerably to the interest of building as a whole, adds considerably to the interest of
the different parts. Among the more remarkable of these
decorations are those of the French section of the main decorations are those of the French section of the main
transept, or Gallerie Leopold II.; the Dutch Gallery, with its walls decorated in panels, imitating the blue and white
landscape tile work of Delft; and the Russian Court, in brightly coloured woodwork, with round arches and fantastic columns, realising the Byzantine enamel work of the
Moscow goldsmiths. The system of national decoration, though general, is not universally followed, prominent among the exceptions being the section occupied by the
United Kingdom, where there is abundant opportunity for studying the construction of the building, the national decorative effect being concentrated in the provision of
three printed red ensigns of the pocket handkerchief type, which are suspended by the corners from the centre of the roof. This absence of ornamental accessories is due to the
circumstance that the Government 'of the United Kingdom, although taking part officially like other nations, has, unlike them, made no contribution to the expense of fitting
up their part of the building, and the exhibitors have for the most part been content with setting out their wares in lines, like stalls in a market, with a complete indifference
to style or effect. This is much to be regretted, as in a puay is likely to do more harm to a country than complete passtention. Considerable want of judgment is also apparent in the prominence assigned to insignificant objects, such as mechanical toys, portable seats, and slag pottery,
the latter claiming to be the latest marvel of science, the later claiming to
occupies several stalls in the centre of the British Court, to the detriment of other and more valuable exhibits which might have been more worthily placed. In the main avenue the Indian and Oriental objects make a more
worthy display, and among these the Peninsular and Oriental Company's collection of models and drawings of the principal ships of its fleet, with a short historical account of the progress of the company, is particularly noticeable. In the machinery hail the case is different, nly on a limited scale.
Taken as a whole, the Exhibition is essentially one of products rather than of processes, inventions, or raw
materials, the most prominent portions being occupied by ornamental objects of Belgian and French origin, such a the bronzes of Thiebaut and Barbedienne, of Paris enamels and metal work of Christofle and others, tapestry
from Aubusson, and the branch of the same manufactory at Malines, the latter being represented by three scenes at
from ancient Flemish history, belonging to the Belgian from ancient Flemish history, belonging to the Belgian
Senate. The central position in the main building is Senate. The central position in the main building is
marked by a clever trophy composed of boxes, bales marked by a clever trophy composed of boxes, bales,
barrels, and packages of other descriptions representing barrels, and packages of other descriptions representing
the raw materials received and distributed by the port of the raw materials received and distributed by the port of
Antwerp. These are arranged in the form of four columns supporting a dome and central pinnacle very nearly to the whe great transept, forming an effective monument whose serenity is enhanced by the brilliancy of its surroundings, the stall immediately adjacent, that of Mr. L. Coeterman, of Antwerp, being devoted to diamonds
and diamond cutting. This includes a very remarkable series of diamond crystals from Kimberley, South Africa series of diamond crystals from Kimberley, South Africa, with specimens of the matrix, or "blue earth," and view. of the mines and wire rope hauling arrangements. Thi although it might more properly have appeared in the British section
In mineral products there is little that is new or remarkable, the most prominent displays being those of in the main building, and the latter in the machiner hall. The Belgian coal exhibit, placed about the centre of the northern limit of the main building, is due to the united efforts of the Société Generale pour favorites TIndustrie nationale, of Brussels, the Union of Mines and Works in the province of Liege, and several individua colliery companies, including those of different objects exhibited being grouped in a series of cases radiating from a central pillar of coal crowned by a statue of a collier in working costume. Below the floor of the gallery a fullbeen arranged by the Sociéte Generale. This includes "traverse banc," or stone drift, the "bouveau" of Hainault, or "bacnure" of Liège, a "costrene," or main heading, and a working face on the coal, the whole being in communica tion with the surface by a section of a circular bricked pit engineers, M. Soupart, of Mons, and M. G. Desenfaus, Charleroi.

The general impression conveyed by the examination of the different objects in this collection is that coal mining difficulty, a powerful cause being the disturbed character although the number of the latter is considerable. The folding and corrugating of the strata is very considerable over a great part of the basin, and along its southern edge the stratas are completely masked so that the carboniferous limestone and Devonian strata appear at the surface abov much dead work, in the shape of stone drifts, as a pre liminary to working the coal; and the coal as a rule bein much shattered, gives rise to an inordinate proportion of slack; so that the product of the mine requires elaborate
sizing and cleaning before it is saleable to advantage. These peculiarities are well illustrated by the exhibit of the United Companies of Mariem at the Hap, whos are representer by a surface model and numerous drawings The area of their concessions is 3890 hectares-about een or seventeen wor able seams varying from 14in. toinsin. in thickness, which
are mined at ten different points by single and grouped pits, at depths from 350 to 670 yards, producing from connected by an endless chain system of traction, with contral screening and washing establishment, where the large coal is separated from the small, and the latter the following:-Large, 160 mm .; Gailletteries, $50-160 \mathrm{~mm}$. Gaillettins, $30-50 \mathrm{~mm}$.; Tetes de Monieaux (sparrow heads), $11-30 \mathrm{~mm}$. These are all clean coal, with $3 \frac{1}{2}$ to $5 \frac{1}{2}$ per cent. of ash, and separated by the Briarte ridd The lower sizes made by perforated plate screens are
grains of $25-16 \mathrm{~mm}$., $16-11 \mathrm{~mm}$., and $11-5 \mathrm{~mm}$., and dust of $5-0 \mathrm{~mm}$. These are all mixed with dirt, and give from 10 to 13 per wer. ${ }^{2} 1{ }_{2}$ $5 \frac{1}{2}$ per cent. by washing. The slimes produced in the depositing basins of the washing machines are burnt under mixed dury boilers, the other products being sold. The mixed dust and grains, when worked, are largely used as
locomotive fuel, which is rendered sufficiently coherent on the grate by mixing the dry slack with a certain proportion of that from cokig coal. The latter quality is, herefore, of considerate importance, and special methods for determining the binding property of the fuel when
heated as well as its evaporative value. This is done by increasing proportion until the limit of cohesion in the increasing proportion until the limit of cohesion in the
coke is reached. The traction arrangements of the Mariecoke is reached. The traction arrangements of the Marielength of nearly six miles of endless chain-ways being in use at the surface, and about an equal length vnderground. The chains used are of steel, single linked, varying from 16 to 25 mm . in thickness, which take hold of the top of The tab and receive a slow motion from a steam engine. The drum wheels, originally of cast iron, with a rim shaped to the chain links, have been replaced by others rim and adjutable for wear The whe serew to the rim and adjustable for wear. The speed is so regulated as to give time for the unload and recurnor each tab before the arrival of the next. The average speed is about 14 ft . per second, and the distance between the tubs 65 ft . The
surface work is almost entirely done by women. A similar systemen of the fon is in use acseraing, where two or three women at the foot of an incline receive and discharge all the coal used by the forges and mill boilers. The Beigian of secondary and tertiary, covered in part with deposits which are, however, matter irregularly distributed. In the western part of the Mons basin, on the water parting between the Schelat and Meuse rivers, the hydrographical conditions are such that the tertiary strata capping the which have proved very serious obstacles to the winning of new pits. These have in many cases been overcome by the use of the Kind-Chaudron method of boring through the water-bearing beds to the solid ground, and tubbing out the water with solid cast iron cylinders, Examples of Coal and ings inted Company, near Mons. There are three rings intended for lining a pit of 4 metres diameter, 18 tons respectively, which are exhibited on $12,16 \frac{3}{4}$, and 18 tons respectively, which are exhibited on the ground
near the section of the Antwerp quay wall. The usual practice has been to cast these tubbing rings near to the pit, but the Strépy Company has established a large oundry, principaly for this class of work. It is rather difficult to see how such clumsy objects could be sent to any distance except where water carriage is available,
which, however, is the case in Belgium, where, in addition ot ther complem of railways, efforts are being continually made to improve the internal navigation. For instance, the principal canal tunnels are now being enlarged to carry boats of 250 tons burden. The Strepy Company also shows a machine for shaping the ends of pit timbers. This is a rotary drum carrying a series of plane irons the stick to a V edge. This machine, which is said to do the work of ten skilled men, is in the main building. A new pit at Maurage, lately bored by the Kind-Chaudron process, is now being lined with tubbing of this character 0 a depth of 283 yards from the surface.
The system of securing pit shafts with iron instead of timber or masonry is coming into favour in Belgium.
Examples of its application to both round and elliptical pits are shown in the apion to both round and elliptical generally similar to that in use at Saarbricken, namely, rings of [iron about 10in. deep put together in four shape but lighter section. The internal division of similar made either in wood or iron, but preferably the latter, the guides or the cages being usually ordinary flat-bottomed rails.
The large boring machine, or "bosseyeuse," of Dubois and François, which will be remembered as shown in the bject incton or in is sent by the Société de Marihaye, of Flémalle-Grande, near Lière, and is arranged as used in driving galleries, the position of the different holes and cuts being shown in a full-sized section. The holes are bored about 3 in . in diameter, and then broken down by wedging, a heavy sledge or mallet being substifully used that the whole of stone drifts and other levels required for laying out the coal previously to working, are production of the cemy's different mines being about 400,000 tons annually.
The increase in the depth of Belgian collieries in late years is very marked, pits of 600 to 700 yards being comare the six pits of the cover 800 . Prominent among these whose depths are $756,825,800,800,770$, and 770 metres These are all fitted with powerful drawing engines, ten hours from a depth of 1000 metres. The general type and Sulzer valve gear with hydraulic governors, which allow a large range of expansion, the cut-off being variable between the whole length and one-ninth of the stroke The steam pistons are 1 metre diameter and 1.80 metres metres deep in 65 seconds. Flat ropes of aloe or, manilla fibre of tapered section, weighing 825 kilogs. per metre by others of steel wire, weighing 7 kilogs, per metre preference for flat ropes of vegetable fibre metre. Those of cylindrical section and steel is still marked in Belgium, and iswell represented by the exhi Termas 20 a14-metre lengthof a flat rope 940 mm for winding bum. thick. Tis is, however, not intended for winding, but as a travelling table for use in hand-pick ing shale from coal. The most notable departure from the
ordinary Belgian practice is furnished by the great wind ing engine at seraing, with a spiral drum of 33 ft . maximun diameter, which draws, by tapered steel ropes, from a depth of 525 metres in 45 seconds. The drawings of this magnificent engine will be found in the Cockerill collection on the left-hand wall of the staircase leading to the Machinery Hall. Probably the deepest pit at present is that metres, and by subsequent sinking three others at 802,825 and 866 metres- 947 yards-respectively.

Coal-mining in Belgium, as in other countries, cannot at the present time be classed among profitable industries, According to two accounts furnished, one by the Societe Generale and the other by the Province of thege Union,
which together represent $8 \frac{1}{2}$ millions out of the 18 millions which together represent $8 \frac{1}{2}$ millions out of the 18 millions
produced by the whole country, the selling prices were in produced by the whole country, the selling prices were in
$1883,10.02 \mathrm{f}$. and $10 \cdot 19 \mathrm{f}$. per ton, while at present they are said to be lower than at any time since 1853. The Societé
Générale produced $4 \frac{1}{2}$ million tons, employing 28,408 hands - men, women, and boys above twelve years of age of whom 5178 were actively employed in getting coal, $3 \cdot 10$. per day. A similar disproportion is observed between the engine power actually drawing coal and that employed in accessory operations, which was distributed

Winding	\ldots	\ldots	\ldots	\ldots
Pumping				
Yentiation	\ldots	\ldots.	\ldots	\ldots
Handing and cleaning coai				
Other operations..	\ldots	\ldots		

Pumping
Ventilation
Other operations.
The number of horses employed above and below ground The number of horses employed above and below ground
is 1367 . In the Liegge basin, owing to the number of old shallow workings, the disproportion between drawing and pumping power is still greater, the seventy-seven collieries at work employing

	Engines.	H.P.
For winding		10,486
For pumping	74	12,102
For ventilation ...	81	
For other operations...	220	2,2

The wages of the 24,309 hands employed averaged 3.39 f . per day. The cost of coal at Liège is given at $10 \cdot 19$. per charges, leaving a profit of $0 \cdot 29 f$, or something less than 3d. per ton. The Société Générale gives the cost of coal per ton apart from financial charges as 8.64 f. per ton, made up in the following proportions per cent.

Wages and subventions to miners Stores and materials Colliery consun Other charges

Per cent. $60 \cdot 45$

ON THE STANDARD OF ELECTRO-MOTIVE FORCE.
The Edison and Swan United Electric Light Company has now coumulated evidence to a very large extent which indicates the depends upon the electro-motive force or pressure at which the re used, and it has just published the following information o

If a lamp is made to burn at 100 volts, its life is very consider ably lengthened by being used at 97 and 98 , and very considerably
shortened by being used at 103 or 104 . It is therefore of the greatest importance that we, as manufacturers of incandescence
lamps, should secure an absolute identity of standard, in order hat divergency of reckoning may not exist between ourselves and our customers, owing to errors and discrepancies between the seale
readings of the various voltmeters in the market. It is not suffireadings of the various voltmeters in the market. 1 te is not suffir
cient to be within or 3 per cent. The desirable thing to be
attained is that toltemeters sll over the United Kingdom should atant agree to within 4 per cent,, and our customers would then be cer-
tain that the pressure under which they were burning our lamp tain that the pressure under which they were burning our lamp ie
the same pressure as that which we marked on it as its proper the same pressure as that which we marked on it as its proper
or normal volts. There is another cause of discrepancy in existmbiguity about the standard itself.
ppoin British Association Committee on electrical standard notive force, and current, and constructed resistance, electro esistance. Thase current, and constructed many standards o by Hookin, in 1874 by Chrystal, and in 1879 by Fleming, and found blished the most probable mean value, and Lord Rayleigh's classica researohes in 1880-1883 have established the fact that this meai British Association unit is only 9867 of the true ohm, or $1 \frac{1}{\text { b }}$ per cent. too low. Accordingly, all measurements made in old B.A.
units in old resistance-boxes and measurements of E.M.F. have to be multiplied by 9867 to convert to true ohms and volts. The
Paris Congress of Electricians defined in 1882 another unit-the legal ohm and legal volt. The legal ohm is the resistance of a colum 106 centimetres long of pure mercury at 0 deg. O., having a cross
section of 1 square millimetre, and the legal volt is the E.M.F., which will maintain an ampere of current through this resistance directors therefore consider it advisable to make known to their customers the standard of electro-motive force which is used in thei lamp factory in the standardisation and testing of lamps, in orde meters and to arrive at an identity of measure. We now, there fore, beg to advise all our customers that the standards and stan dardising instruments now in use at our lamp factory are follows:-

1. Our standard of electro-motive force is the legal volt as
lefined by the Paris Congress of 1882 . Our standard of resistance is the legal ohm
employing mets standard of electro-motive force is a Daniell's cell and set up in the following manner in the form of a cell devised

STANDARD DANIELL OELL-E.M.F. $1 \cdot 072$ legal volts at 15%
by Dr. Fleming. The solutions used are a pure solution of zin copper sulphate of specific gravity 1.1 at 15 deg. 0 . The metal used are pure unamalgamated zinc and copper freshly electrotyped The exactness of the electro-motive force depends greatly upon the
solutions being of the exact specific gravity above mentioned, and solutions being of the exact specific gravity above mentioned, and
upon the copper rod being freshly electrotyped with a thin pure layer of unoxidised copper the instant before using. The electro
motive force of this cell is 1072 volts true at 15 deg. motive force of this cell is 1.072 volts true at 15 deg. C., and may
be taken as very approximately to represent the same value in legal volts.
3. The instruments used for comparison of this standard with the working pressures are Sir william Thompson's graded galvano is going to be used, and the value of its scale readings determine by this standard cell, and from time to time checked as the con trolling magnet alters its value slightly with time. The company will shortly be prepared to furnish standards of resistance, or lega onms, and to issuand stard cells of the above pattern for use up the cell and working it will be sent with it.

Naval Engineer Appointments.- The following appointment have been made at the Admiralty:-George Quick, chief engineer additional, to the Defence; Charles J. Cock, engineer, to th Kingston, engineer, to the Firm (tender), for temporary service and Thomas Agnew, engineer, to the Alecto.
A Safety Gavge Construcotion,-Last month experiment were made on the Danish State Railways at Aarhus with a a afety
gauge constructed by Hen. Lysholm, of Skanderborg, a rail way engineer, whereby accidents are to be prevented if a train crosses a point which may have been omitted to be opened, or where the
same refuses to act. The invention, not being as yet patented same retuses to act.
a secret, but the inveriments were very, ver satisfactory, a train consisting of an engine and four carriages entering a closed crossing and the broad gauge without leaving the metals. The experiment
were witnessed by the leading engineers of the Danish railways.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinims of our

the efficiency of fans.

Sir, - I hardly know how to reply to Mr. R. H. Graham ; he comes up a second time with such very ourious statements. He look again at my letter from which he supposed he was quoting correctly "from memory," he would have found that he misquoted me on all the points he raised; but he now says "I admit that I set out from the equation for compression instead of from the cor ect equation of steady motion. Where does he find this strange "admission ?" I certainly use the formula for compression work
in the complete equation I gave, but I proceeded to show that that in the complete equat was negligeable in practice and to simplify the
it equation by its omission. This is not in my letter replying to Mr. Granam, but in the original paper. Mr. Geraham may use the
terms "useful," " lost,") and "waste" work just as he ple erms "useful," "lost," and "waste" work just as he pleases, but he really goes a little too far in eccentricity, when he says that the
work done on the drag of a mine forms no part of the useful work work done on the drag of a mine forms no part of the useiur wor
performed by the fan. His reason has a delicious simplicity about t , viz, that all work done on friction or viscosity is "in the most rigorous sense of the term lost." Why! the fan is put in its place
or the sole purpose of overcoming the drag. If there were no or the sole purpose of overcoming the drag. If there were no rrag to be overcome, the mechanical work to be done would dwindle hat a cocotive drawing in a perfectly level line has no "useful" work to perform? If so the utility of locomotives musi e rated by him at a very low figure inded.
Professor W. C. Unwin complains that I
the parer" with of the paper"" with reference to him when he was not present a
the meeting. He overstates the proportion devoted to mmensely, and, the discussion on the paper having yet to place, I have not the slightest doubt that the secretary of the In situte will be glad to read to the society any reply he may wis o make. The reference to him was necessary because, instead o roubling the meeting with a tedious mathematical deduction, ast. But the treatment of the question in that letter was attacked by Professor Unwin, and it was needful that I should show that hat thicm was unfounded in order to maintain my statemen ion in your jurnal, to which my letter above ontribution he Cappel fan, which took place in the Nlining Institute's meeting that the secretary asked me to read the present paper.
Professor Unwin now states that 1 have come over to his view. ""dimply to contradict this, as also the further statement tha isely the same view as I did when Professor Unwin attacked me He did so on the ground that I used the adiabatic instead of the iso hermat compression curve, By sodoing he virtually asserted tha the difference was one of practical importance. I stated last Decemhat the dife now in my recent paper shownoy numerical examples, which the difference ocurs practical account, the whote term in Unwin's criticism even if it were correct, was, trivial. But even nd the matter of minute theory, 1 still believe him to be wrong ccording to any other calculable thermal condition. Professor Unwin now explains that in his expression ${ }^{2}$ meant p_{2} and p_{3} to be measured in feet of air at the diferent densities corresponding to these pressures. With this explanation
I admit, as a matter of course that it is correct, as, indeed, single glance shows it to be. It is an odd idea certainly to mea sure two heads of air in two different units when the one has to be subtracted from the other in the same formula, and one may be excused for not recognising that this is being done when one is siven no sort of warning of the fact. 1 . 1 practical auility of doing
oo may be doubted by ordinary people. But it is said that this odd device is "well-known," and that if I were " humble enouch to consult" "the text-books, I would be familiar with it; also that it ocurs "in the first, two pages of the ehapter on thermo dynamies in 'Cotterill's Applied Mechanics.'" It does not occur
in these two pages, nor in any part of this chapter, nor in these two pages, nor in any part of this ehapter, no
in any part of this book -at least, not in the first edition, 1884 , no
Ido not know that a second edition has yet appeared. It does not even appear in Cotterills "Steam Engine", so far as I have
been able to discover. I have read, I think, conscientiously nearly very important treatise on thermo-dynamics that has been writte in the English and German languages, and $\begin{aligned} & \text { I certainly do no } \\ & \text { remember having seen it in any one of them. } \\ & \text { But still, } 1 \text { admit it }\end{aligned}$ is correct, although very awkward and useless, and I freely with draw my statement that it resulted in a quantity three and a-hal times too much. But Professor Unwin's logic is at fault when he deduces that "my estimate was three and a-half times too small" rom the faco that 1 saia, under a misapprehension of the meaning
of the symbols he was using, that his was three and a -half times oo much. He knows, of course, that that is a false conclusion shance of misleading some of your readers.
The paper contains one easily recognised error, due to its having "But this heat not being received by conduction, the compression curve rediabatic." This is wrong. If the work done by an expanding subed by the expanding surface, then the expansion curvo in the case of a gas is isothermal. The same holds for compression east either my original position or anything in the precent paper an. \quad ROBERT H. SMITH,
Mason College, August 15th

enginemering cases in law courts

SIR, - Your correspondent, Mr. M. P. Bale, in a letter under the解 ne matter of great practical mportance, viz, the employmen Section 28 and the Court in trying cases of a tecinical natur in the aid of an assess. " Court, the Court of Appeal, or the Privy Council. As regards th Court of Appeal and the Priv Council, the power is simply dis cretionary; but the words of the clause are: "The Court may, if
it thinks fit, and shall, on the request of either of the parties to thinks fit, and shall, on the req
he proceeding, call in the aid," \&o.
號 trials of parties-owing to a want of technical power in the Court. I think it is quite a mistake to suppose that a strong bar and an imposin array of eminent scientific witnesses are all that is required to scure an efficient and satisfactory trial of difficult cases. Without ad the use mate stren the Court to control the technical evidence doubtful whether the usual mode of procedure is capable of dealing with difficult cases in such an effective manner as to prevent unreasonable loss of time, and to ensure reasonable certainty of result Thave heard the late sir W. Erle strongly condemn the practice of making one expert "Olar another evive evidence on the same Court for the Trial of Patent Cases," he says: "Upon the trial of ither of these issues-novelty or infringement-by the judge, if diagram, when understood, would dispose of questions of infringe ment and of prior use, and provision might be made for ascertain
in and farisidins to the juage oorrect modods or diagrams, and

Augutut 17 thi. 1 lane, w. c

 Trade recommend the adoption by the railway companies of such as may be favourably reported upon."
I see from the Parliamentary re
Worms ropiled to Arr. Broadhursts guestion, for tho ffereot that

 tion, butitappparars tomem that it would bealmostimposibibet toarive
 inmeation and that in order to doterermino the mote

 have avarided mea ailver medal for the oxhibit-the hibiberest wavrid

 opimion ana beobtainod.
 Railuay for pasesenger tratiof for the latat toury yarar, and is now

the laws of motion.

Str, -1 do not think anything would be gained in the way of
romoting sciontific truth by further discussion with Mr, Benson, promoting gcientific truth by further diseussion with Mr. Benson,
who spend a grat deal of time in endeavouring to prove to me
what Th hev never denied, namely, that recoil takes place when oross-bow, or a catapult, or a $100-$-ton gun is fired. I stated that a
certain experiment could be carried out in such a way that the inertia of a bodydt to be moved might be made to have a very small
influence as compared with the frictional resistance which it would influenee as compared with the frictional resistance which it would
meet with, and that in such a coase a certain reselt would be
obtained. stated result, extending his expeoriment quite beyond the range contemplated, he gets quite difterent resultt as a m
Inever said or supposed that $i t$ would be otherwise.
I must refer Mr. Benson to the first letter I wrote on this sub ject. Not one of your correspondents has adduced a shadow of
proof that my propositions are unsound. They have assumed a
great deal, proved nothing. Even if 1 admit that for
sense that the draw-bar is the is the cause of motion, in the same carriage, it would still remain to be proved that force was no
caused by motion. This as Mr. Mensin caused by motion. This as Mr. Bensòn will see, if he refers to m
first letter, I hold to bo a fundamental proposition. Neither Mr Benson nor any one else has ever attempted to disprove it. Dr
Lodge, indeed, indirectly admits it when he says that probably al energy is dynamio or kinetic.
Perhaps Mr. Benson may be able to hit on some apparatus which will disprove this proposition, or that he can devise some mathe-
matical proof that it is untrue. If he can succeed in this, I shall be glad to see his statements in print, and to comment on them. I must respectfully deoline to no no over ofld ground. Possibsly a perusal of a new work by Professor Tait, viz, "Lectures on some
Recent Advanees in Pyysical Soience, with a Special Lecture on
Koree," may serve to enlarge his views. Orce, may serve to enlarge his views.
In conolusion, you will perhaps permit me to express my thanks
竍 to those who have taken part in this discussion for the uniform
courtesy and patience which they have manifested in dealing with afforded me in your columns.
London, August 19th.

engineering in china.

Str, - In the year 1876 the Woosung Railway was opened in
China as a mere trial scheme. It proved very successful, and was xpected to have been the commencement of a gigantic railway cystem in that country; but unfortunately, just at that time, the
nurder of Mr. Margary created disputes between the Imperial Government and our own, and the Governor of Nankin, diplomatically squabbling over the little line- - nine miles long-eventually
rooted it out. The engineer of the railway, however, said he wwas
not without tope of not without hope of making
Can any of your readers kindly inform me what is now being lone in that country regarding engineering generally? Have the
been again induced to try another railway, howeer mall? What is the state of steam navigation in that empire? Have many of
our engines or machines in general been adopted in their manufacour engines or machines Does the telegraph, or telephone, or any other featuraes of Western civilisation find acceptance among the Celestials? In
short, are they much, or indeed any, better off in such matters hive they were a hundred years ago? I never hear of any locomo-
tive or steel rail orders emanating from China, and if any steamers are built for that country I suppose they are for foreign owners. engineering enterprise in that region, if we could only get the Hewever, that tit will be rather difficult to accomplisis this; and yet, the necessity of doing so on account of the very depressed state o
affairs in England at the present time. Like Alexander of old, ww
want a new empire to conquer, as it were, with railways; and if we
can only get them fairly started, I have no doubt all the othe branches of the profession will follow, and among a nation of 450 Cannot something bedy oenpect great results for accomplish concerned.
think we may anticipate, before long so, then tink we may anticipate, before long, vast improvement in our
trade and commerce.
Liver C. HALDANE. Liverpool, July 27th.
the de bange gun
$\mathrm{Sir},-\mathrm{In}$ your impression of 14th instant I see you give drawings
and illustrations of the new gun by Colonel De Bange he trusts almost entirely to the steel tube to meet the longitudinal strain, with the exception, as I gather from the description-as th
drawings fail to show itdrawings fail to show it-that he has arranged the hoops to, as it
were, dovetail, inasmuch as they are truncated cones, and in that way assist in overcoming that strain; but as the cones must neces.
sarily be at such a very acute angle with the strain, it it such a very acute angle with the direction of the hoops from acting as wedges upon the hoops encircling them, and consequently bursting them. upon the hoops encircling thel Maitland has, however
entirely overcome these difitulties by on to a collar one the tube difticulties by bayonet jo nointing his haveops the tube at all. It will be highly interesting to see the difference in the personal appearance of the De Bange gun as it now stands the inventor proposes. Lieutenant 3rd Southern Royal Artilery.

he antwerp exhibition

Sir, -We see your notice of this week on the Antwerp Exhibition, and that you will shortly say more about Messrs. De Nalyer
and'Co.'s boilers. Would you kindly mention at the same time that we have covered all the steam pipes leading from these boiler Stein, the chief engineer of Messrs. De Nayyer's, who has also used our composition at the Amsterdam Exhibition, will be able to speak
well of it -as he has told us himself. We have been awarded a well of it-as he has told us himself. We have been awarded a
silver medal at the Amsterdam Exhibition, and another silver silver medal at the Amsterdam Exhibition, and another silver
medal at the Inventions Exhibition, where we have covered the boilers and steam pipes in the Electricic where we have covered thed

August 14th.

THE WATER SUPPLY OF PALERMO.

The following correspondence has been transmitted to us by the Board of Trade for publication:-
My Lord,- I have the honour to enclose herewith for the ing. mation of the public, a notice issued by the Municipality of egarding the adjudication of the new waterworks to be constructed
ent n the neighbourhood of Palermo, for the supply of wholesome
water in addition to the inadequate supply already in existence. Any British company wishing to undertake these works should send out immediately a staff of engineers to survey the country in the neighbourhood of Marineo, whenco the water supply will no
loubt have to come from. This locality is situated behind Mont Belmonte, which is a part of the chain that forms the "Conca Oountain might be easily turned. I shall be ready to ofter all the nformation and assistance required at my hands to enable a British company to undertake these works. I have \&c. (Signed) $\begin{gathered}\text { I have, \&c., } \\ \text { H. A. }\end{gathered}$, Churchite.
The Right Hon, the Marquis of Salishury, K. G., \&c. [Copy.]
Translation of a Notice published by the Municipality of Palerno, cgarding the Water supply of that City.
In view of supplying the town of Palermo with a sufficient
uantity of drinkable water, the Municipal Administration has come to the decision to see which plan would be the best adapted
That the water come from sources springing naturally to the
2. That it possesses all the qualities of drinkable water, satisfying all the conditions reported necessary to make it agreeable to the
palate and salutary, and that the sole judge of this be the palate and salutary, an
Municipal Administration.
City, taking into account the supnly to supeady in the wants of thistence which Tity, taking into account to the suppout 13 zappe (775 gallons per hour), and the probable increase of the population
4. That the water be carried to the highest parts of the town, and be capable of reaching the upper storeys of the houses. 5. iron pipes, and be distributed in the town in similar por in cast iron pipes, and be distributed in the town in similar pipes or
in wrought iron tubes, adopting the most reasonable methods and those which practice has hitherto sanctioned.
In consequence of which, all companies connected with this business, those whose speciality it is to supply water, and others, are nvited to present the date of the present notice, i.e., up to mideday one syndic, a complete project
September next, in the hands of the with particulars relating to the technical as well as to the financial and administrative branches of the affair.
Notice is also given that a provisional guarantee of 25,000 lire (£1000) is to accompany the offers, and of an offer of a definite
cuarantee corresponding to one-tenth of the estimate of the works to be accomplished, to be paid up in case of the definite acceptance
The provisional guarantee will be retained until the complete examination of the projects, after which, to those which wilt have
been rejected, will be returned the amounts deposited, retaining only the guarantee of the accepted project, it being understoo
that the said guarantee will revert t to the Municipality if the stipulated contractor does not come forward with the definitive guarantee
The necessary stipulations will, according to law, be submitted
to the approval of the Municipal Council and of the authorities, The Municipalit they become obligatory.
and only then woll
The Municipality reserves to itself the right of the rejection
of any of
doing so.

AMERICAN NOTES.

(From our own Correspondent.)

NEW York, August 8th.
To all appearances the limit of the industrial dopresessuion has no
been reached. In certain quarters there is a strong pressure to
the programme agreed upon last December; but just now stocks

 furnaces to prevent the accumulation of unsaleable iron. In other attracts noticar statements are made. This condition of trad anticipated after August 1st. Railroad building is dull. Considerable interest is felt in the numerous projections of lines.
When the reaction takes place an enormous volume of work will When the reaction takes place an enormous volume of work will
be precipitated on the market, and probably strain the capacity
and create an artificial enhancement of values, as has been done
before. The rairood managers are no able to present bette reports. Economy is practical at the cost of durability. A sceheme
is on foot to take the Roach properties and reorganise a shiphuildng company, and secure an armour-plate plant from England.
Very little iron is selling. Coltness is offered at 19.50 dols,
 Exports of copper continue large. For year since January 1 st ,
$2,000,000 \mathrm{lb}$. refined and $35,000,000 \mathrm{ll}$. conper Large sales of lead have been made at $4 \cdot 10$ to $4 \cdot 20$. Tin-plates are ctive demand. Foundry irons are 15 dols, to 18 dols. for PennsylTextile machinery makers have received a larger number of orders since July 15 th than usual. The carpet factories are crowded with orders; the hosiery and knitting mills are busy. There are States; but just now a sluggish demand for goods due to an over-
d teel, hardware, wire, lumber, and ailding material, indicate that the thowork of shop and house building The prosecuted actively until the close of the season.
The Eastern nail makers propose to erect a Bessemer steel plant
furnish material for nail plate.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

(From our own Correspondent.)

WrrH the view of keeping prices at as remunerative a level as their works only alternate weeks. Such firms were yesterday in Wolverhampton and to-day-Thursday-in Birmingham strong in uneir quotations of $£ 7$ for doubles and $£ 8$ for lattens. The inquiries coount were numerous. Here and there ironmasters who have only one or two sheet mills were abl
orders up to the middle of Octo
A capital demand continues to be experienced by the thin makers who are receiving orders from Australia, Canada and the United States, Germany and other continental markets, South America, and elsewhere. They have not all of them so many orders tan on the makers
P. and W. Baldwin quote their Shield brand $£ 9$; Severn, $£ 10$; bpon the above. . 12 per ton. Doubles are 30 s . per ton extra

 two descriptions 20s. per ton. Crowther Brothers and Coo quote
 $£ 16$ 10s. per ton. Their steel sheets vary from \&11 to $£ 1210 \mathrm{~s}$., A moderate demand is expressed f
tralian colonies, South America, and certain of hoops, the Ausmarkets being encouraging customers. Second and third-class qualities of bars are chiefly selling, the quotations for the former
being $£ 610 \mathrm{~s}$. down to $£ 6$, and for the latter $£ 5$ 10s, down to $£ 5 \mathrm{~s}$, Marked bar makers who adhere to the full $£ 710 \mathrm{~s}$, are not generally busy. New British Iron Company quote:-Best Corngreave

 window sash bars, from best ditto, $£ 9$. Fancy irons, such as oval, convex, half round
round cornered round also $£ 610 \mathrm{~s}$, $£ 7$ 10s. and $£ 9$, according to brand.
The list of the same crm or slit rods, \&ce., is:-Best Corngreave rods, $£ 65 \mathrm{~s} . ;$ C.G.C., $£ 7$; Lion, $£ 7$ 10s.; best Lion, $£ 9$, best char-
coal, $£ 1110 \mathrm{~s}$. ; steel, $£ 8 ;$ best Corngreaves slit horseshoe, $£ 6$ 10s.; fron 15 to $19 \mathrm{~b} . \mathrm{g}$.; best Cornd best Lion, $£ 9$. Hoops and strips £9 10., ; osest charcoal, £12; and steel, $£ 810$ s.
Competition in prices among the edge tool firms keeps up,
Cutting tools, as axes, adzes, bill-hooks, cane knives, and so forth are to be had at a lower priee than ever before, yet the quality is brought about by the remarkable progress, indicated in my last which the steel-makers are showing both as to uniformity and rolled after it has been run out of the converters
less than in South Wales and in Sheffield, are all seeking tees, no amongst the large tool makers as well as amongst the rail users firms, the steel firms in Wales are perhaps displaying most enter
prise.
The Blaenavon Company, it is understood here, has gone somewhat extensively into the plating and bar trade, and has
considerably extended its productive capabilities in that considerably
department.
The pig iron trade does not show very much movement, yet on a par with the consumptained by reason of production being 7s. 6 d . and 60 s ., second-class pigs are 40 s . to 45 s , and common, The coal trade is without increased activity in the furnace and Operations at the bridge and girder works are fairly kept up at Full time has been resumed at the Locomotive Works, Wolverhampton, of the Great Western Railway Company, where for
several months the numerous hands have been upon only five days
The strike in the cable chain trade at Oradley Heath, Old Hill, and Tipton, which has lasted over two months, has now virtually
terminated. Messrs. Hingley and Sons, Messrs. Wood, Aston, and co., and Messrs. Taylor have each conceded an advance of 25 per however, at factories where an advance is refused have decided to he anchor smiths have During the week meetings of the men have been held, and it was nd also of out-workers.
The strike in the vice trade of Dudley and district, which has
sted over four tmonths operatives are now at work. At a meeting of the Birmingham and District Railway and
Canal Rates Association the case of Kempson versus the Great
Western Railway Compan Western Railway Company was again considered. It was decided
that the Association should still continue to take action, because in case of an appeal funds would have to be provided and organisa-
tion secured. It was agreed that the Association should have a more definite combination with Lord Henniker's Committee, and Iso that the committee should be looked upon as a pivot for the organisations throughout the country to work apon.
s short length of cable chamber has been put down in Snow

Hill, Birmingham, by the authority of the Tramways Committee,
to discover whether the narrow slot through which the cable is connected with the cars really causes inconvenience to the ordinary
traffic. The slot is not more than $\overline{\text { Vin. }}$ wide.
Under the head of " " New Trade for Birmingham," a writer this week, after referring to the manufacture of locomotives, which
has been allowed to pass altogether from Birmingham and district, has been allowed to pass altogether from Birmingham and district,
hopes that the manufacture of tramway engines will be secured in
its stead. its stead. This trade, he says, is only in its infancy, and
undoubtedy speedily develope into very large proportions. An action of considerable importance to chain cable makers has
just been heard at Grimsby. John Parker Hall, of Sheffield, bought from Jesse Billingham and Sons, Cradley Hoath, sixty
fathoms of tested chain cable, but when Mr. Hall sold it to a man at Grimsby to be employed in a fishing smack, the Board of Trade
surveyor refused to pass it because it was not marked as tested by the Board of Trade. Mr. Hall then brought an action against Messre, Billingham to recover $£ 17$ 18s. for breach of warranty. The plaintiff
contended that the Chain Cables Act, 1877 , required all chain contended that the Chain Cables Act, 1877 , required all chain
cables to be tested and marked by the Government. The
defendants, on the other hand, urged that all makers had their defendants, on the other hand, urged and to enforce the Govern-
own apliances for testing cables, and
ment test in every case would revolutionise the trade. If a person bought a Government-tested and officially-marked cable, it was so
understood at the time. In summing up the case, the jugge observed that the object of the Act was to make it quite certain
that all cables supplied should be tested and marked by the
Government, and a verdict for the plaintiff was given.

NOTES FROM LANCASHIRE.

Manchester.- Reports week after week as to the condition of the
iron trade in this district are practically but a repetition of the general complaints as to the continued absence of improvement,
and the market shows no variation from the persistent tendency in a direction adverse to makers and manufacturers which has so long
been the prevailing feature. So far as pig iron is concerned-both continue extremely small; and as the probabilities are certainly not of prices being any higher, these are only covered as the iron is
actually wanted. Very much the same remarks also apply to manufactured iron, and the result is that business all through drags on from hand to mouth at prices which under the most
favourable circumstances barely cover the cost of production; whilst the market is weighted down by the discouraging prospect that there is noting of improvement.
The attendance in the Manchester iron market on Tuesday was
very poor, and business throughout extremely flat. For pig iron very poor, and business throughout extremely flat. For pig iron
the current quoted rates were no lower than those of last week, slight concession on their list rates will lead to business. Where, however, buyers have orders to give out of any weight, they are care to accept them, and the bulk of the business done is confined work actually in hand. For Lancashire pig iron makers still quote firm offers some concession on these figures might be obtained District brands average 37 s . 6 d . to 38s., less 21, delivered here, and
both Scotch and Middlesbrough irons are offered in this market at
 delivered into the Manchester district are still quoted at about 51 s . to 51 s .6 d . per ton, less $2 \frac{1}{2}$.
In the manufactured iron trade there has been rather more doing in sheets, and some of the makers being now tolerably well
supplied with orders are, for certain sections, asking slightly higher prices, good qualities of Staffordshire sheets being quoted
at $£ 7$ to $£ 72 \mathrm{~s}$. 6d. per ton delivered into this district. There is, however, no general advance in prices, and local made sheets are
still to be got at about $£ 615$ s. per ton, delivered equal to Man-
chester. For bars and hoops the demand continues very poor, and chester. For bars and hoops the demand continues very poor, and
prices remain at about $£ 55 \mathrm{~s}$. for local and North Staftordshire
bars, and $£ 515 \mathrm{~s}$. for local made hoops delivered into the Man-
chester district. In the engineering branches of industry the tendency of trade
continues practically the same as last reported. The inquiries coming forward are very limited in weight, and only a very small
percentage of these lead up to actual business. Here and there in percentage of these lead up to actual business. Here and there in
some special lines establishments are kept busy, and in finishing of the works in the district. The departments specially engaged in the preparation of new work are, however, in nearly all the
large firms of the district very slack, and the number of patternmakers at present out of employment is larger than has been being constantly discharged owing to the absence of new work neering Trades Union societies show a steadily increasing number
 resulted some time back in a turn out of the whole of the smiths, is now at an end by the men having given in to the terms laid
down by the employers. Practically, so far as M Messrs. Ashbury are concerned, they have all along been masters of the situation,
as they have had no difficulty in finding hands elsewhere; and the
men, although backed up by the Amalgamated Society of Engineers, men, although backed up by the Amalgamated Society of Engineers, sought to impose upon their employers. This, although only an
isolated case, may be taken as a sign of the times. The inaugural meeting of the Manchester Chemical Club in their
new rooms at the Victoria Hotel was celebrated by a dinner on Tuesday evening, which was followed by a very interesting address
from Mr. Heys, in which he gave a description of the practical
application of telephony and its rise and progress. The chair was occupied by Mr. Levinstein, the president, and with the aid of and Cheshire Telephone Company, a very entertaining evening was
spent. The room was connected to the Princess Theatre, and the orchestra and the music and voices on the stage were heard simultaneously by a considerable number of the members. Afterwards hesteen the two places. Messrs. exhibited a collection of telegraph, telephone, and chester, also exhibited a collection of telegraph, telephone, and
electric lighting cables; also armoured cables and several special
double conductor cables for electric light cargo lanterns, which enables these lanterns to be hoisted up and down in the ship's hold without any interference with the circuit of the electric current. The promoters of curiosity attracted much interest. last week, have taken the earliest possible opportunity, after the
passing of the Bill, to call together the subscribers to the promotion expenses, and a crowded and enthusiastic meeting was held on in which he narrated the steps the promoters had taken to secure the passing of the Bill, and urged the claims of the scheme for
support, not only as a great boon to the trade and industries of the district, but as a successful commercial investment. A vote of
thanks having, on the motion of Mr. Agew, M.P., been thers concerned in the promotion of the Bill, Mr. Reuben
Spencer moved, and Mr. Mitchell, president of the Whole-
sale Co-operative Society - one of the largest trading consale Co-operative Society - one of the largest trading con-
cerns of the world-seconded a resolution expressing unabated
confidence in the scheme, and pledging the meeting to do all in its
power to raise the necessary capital for the completion of the
workr. This was supported by Mr. Alderman Husband, ex.Mayor work. This was supported by Mr. Alderman Husband, ex-Mayor
of Salford, Mr. Fielding, and in response to the calls of the meet-
ing by Mr. Alderman Bailey, who in a humorous but very forcibl speech dealt with the objections which had been raised by the opponents of the scheme, and pointed out the advantages
which would accrue from the carrying out of the canal, which, he said, if even the railway companies should so far attempt to compete with it by carrying the goods to Liverpool
would still be a cheaper means of transit, The resolution was
carried with enthusiasm, and the scheme, which is meeting with carried with enthusiasm, and the scheme, which is meeting with
very satisfactory offers for support, may now be considered as fairly very satisfactory
launched pending
shortly be issued.
o the preparatio
except that there is a slightly increasing inquir for house-fire coals for forward delivery on the basis of the present ow rates, is without improvement. Common round coals for steam
and iron-making purposes and engine classes of fuel are very bad and iron-making purposes and engine classes of fuel are very bad
to sell, and stocks as they accumulate at the collieries are forced upon the market at extremely low prices. The average quoted rates remain at about 8 s . to 8 s . 6 d . for best coals, 6 s .6 d . to 7 s s. for seconds, 5 s . to 5 s .6 d . for common coals, 4 s .3 d . to 4 s . 9 d . for burgy,
3 s .6 d . to 4 s . for best slack, and 2 s . 6 d . to 3 s . per ton for ordinary
The verdict passed by the coroner's jury who inquired into the
recent disastrous explosion at the Clifton Hall Colliery continues to be called in question, and Messrs. W. Pickard and S. Woods,
who attended the inguest on behalf of the Lancashire Miners Federation, have presented a report, in which they most emphati cally protest against the verdict as " quite antagonistic to the bulk
of the evidence produced." They also urge that the Government wners to use safety lamps, and that the present system of mining inspection is not at all adequate for present needs of the mining population.

The improvement noticed last week in the demand for
iron, chiefly on Russian account, has disappeared as hematite pig iron, chiefly on Russian account, has disappeared, a duction for the district, had been bought at the low prices ruling for delivery throughout the year. The demand from all sources is again dull, and it is fully expected that the largely augmented
stocks, the rate at which iron is still being made in excess of the as proof the indisposition of users to bay forwards, must be take down the production by the blowing-out of some of the furnaces now producing iron. The output of the district is not much more than half of its capabilities, but steel-makers, who are very badil
off for orders in all departments, are as a consequence using a maller amount of iron, so that makers of the latter are suffering the special cause of less being used by steel-makers. No new orders have been booked by shipbuilders, but it is confidently expected that a share of the Government contracts now being given
out will come to Barrow; and the enterprise which is being shown of the new limited company, with half-a-million of capital, in giving up a new route to the Isle of Man, is having the effect of impelling
up the present companies to put on new and fast steamers to compete Isle of Man Steampacket Company is giving, the order for nother fast steamer of the type of the Mona's Queen, which is steaming twenty knots an hour, and that the Barrow Barrow for another steamer, which shall carry passenger at or from Douglas in two hours. If this work comes to hand, of
which there is every probability, the trade in Barrow during th ensuing six months will be of a satisfactory character. Owing to municipal buildings in Barrow, it is found necessary to pull a po structure down to the foundations and re-build on a firmer basis,

THE SHEFFIELD DISTRICT.

There is every expectation of another attempt to agitate th weather comes on. In a letter addressed to the miners of several arge collieries in this district a few days ago, the ready "to prepare for the coming winter and an advance of wages.
If the men have not learned wisdom by recent in the coal-field, they will follow this advice. At the present simply because while former agitations were being conducted to came into this distrikes and lock-outs, the orders which usually The miners of Chapeltown, Tankersley, Thorpe, High-green, an ect on the results of the last strike before they prepare for another
Messss. Wm. Jessop and Sons, Brightaide Steel Works,
have carried off both a gold and a sils and Stacey, Heeley Bridge Foundry, have been awarded the silve medal fons, Spittlegate Ironworks, Grantham, have gained two gol their new string binders at the rate of seventy a week
Messrs. Watson, Moorwood, and Co., of the Harleston Ironworks
Harleston-street, Sheffield, are now engaged upon four chille
rolls for a Middlesbrough firm. These rolls are 36 in . in diamete by 9 ft. long in barrel, and long over all; the weight, when turned,
of each roll is nearly 17 tons. One roll was completed this week whole surface, and the chill was equal all round at both ends alike Staffordshire at one time had a monopoly of this class of work, but
recently Sheffield firms have entered into the trade, and several manufa both for the home and export business.
 over which the coal is passed, had accidentally ignited. Th
mining population were greatly alarmed when the "buzzer mining population were g
sounded through the valley.

THE NORTH OF ENGLAND.

dent.)
THE present week must be considered quite an abnormal one a element. Without exaggeration they may be described as the carnival of Cleveland. All the industrial world goes demented as This week the Stockton works have been idle in every case, and at at the Exchange on Tuesday was thin, and but few transactions took place. The general tone of the market was certainly no
worse; indeed, there were indications that a return of confidence is not very far off. The remarkable rise in the value of railway
property in the United States and Canada during the last week or two has made a profound impression, and the spectacle of British railway shares following suit has not been lost upon
those who are on the look-out for better things. Again it it certain
that the stocks in Connal's stores are increasing weel showing that capital is again flowing into the iron trade. The pig iron exports also are better, proving that the same feeling prevails
abroad; and altogether there seems to be a widely diffused dis-
position to regard the future with hopefulness and confidence.

No. 3 g.m.b. varies in price from 31s. 101 d . to 32s. f.o.b.
Middlesbrough, and No. 4 forge is offered at 31s. Warrants are 32s. 6d., and there is a considerable demand for them. The quantity in store was increassd by 2368 tons during the week, making a
total of 65,259 tons. Exports have amounted so far to 42,358 ons, against 37,536 tons for the corresponding portion of July.
In the finished iron trade prices do not improve, but the few firms who now compete for orders keep regularly employed. Plate are still offered at $£ 415 \mathrm{~s}$.; angles at $£ 410 \mathrm{~s}$.; and bars at $£ 417 \mathrm{~s}$. 6 d . which are the same prices as have been quoted for several weeks,
Steel plates and angles remain at previous prices. The Eston Monday last.
The manufactured iron trade is to witness another wages arbitrareduction of of wages. having put forward a claim for $7 \frac{1}{\mathrm{~g}}$ per cent down to the level which would be yielded by Dale's scale of 1s. 6 d Wave shillings for pounds. The last award was given by Dr.
Watson in January last. Notwithstanding that the scale then reduction equivalent to 5 per cent., he allowed nothing tion of a new scale. Several months have elapsed, and after much contention it has been found impossible to adopt the arbitrator' for they have staved off for so long the otherwise inevitable deduy tion. Recently they threw off all disguise, and appeared in their "We will hol At the last meeting of the Board they said in effect arbitrate as between that and any others. And it shall be a condition of ours that wages are not, wimy being to get immediate relief by a reduction, they would not, of course, accept any such conditions, and therefore all idea of a scale has been for the present abandoned. A regular arbitration to fix
wages' rates is the alternative to be adopted. The Board will meet wages rates is the alternative to be adopted.
on Monday next to fix who the arbitrator is to be

NOTES FROM SCOTLAND

There has been a somewhat more cheerful feeling in the iron trade this week, due partly to the rise in American railway stocks
 eding week, and 11,484 in the corresponding week of 1884 . B the blowing out of a furnace at the Wishaw Ironworks of the
Glasgow Iron Company, the number in blast has been reduced to The increase compared with ninety-six at this date last year continues, and for the past week it has amounted to 1500 tons.
Business was done in the warrant market on Friday last at 1s. $1 \frac{1}{2} \mathrm{~d}$. cash. On Monday previous market on Fritation was 41 s . 1d.
 -the market was strong in the forenoon, with business up to The market values of makers ${ }^{\prime}$ iron are as follow :-Gartsherrie,
The

 51 s . and 47 s. ; Kinneil, at Bo'ness, 44s. and 43 s . Glengarnock, at
Ardrossan, 46 s . and 41 s . $6 \mathrm{~d} . ;$ Eglinton, 41 s . 3 d . and 38 s . $3 \mathrm{~d} . ;$
Dalmellington, 43 s . and 39 s .6 d . The past week's shipments of manufactured articles from Glas gow embraced machinery to the value of $£ 2000$. Sewing-machines, steel goods, $£ 1100$; and iron manufactures, $£ 10,100$.
In the coal trade there is, on the whole, less activity, although the shipments at some of the ports have been consic 3272 at Irvine, 7339 at Troon, and 13,155 at Grangemouth. Coalcoals are being depressed by the competition, which becomes greater s the trade slackens.
The agitation among the miners for increased wages gathers
ome more strength, and in some cases employers do not disguise the fact that they would not altogether be displeased were disguise means of adding something to the price of coals. The thing to be eared is that the increase might be obtained in a few localities,
eaving the rest to sell at the old rates. In this way customer would be lost, and the wages probably forced back all over to the the various localities as that they shall act in concert, but such a Messrs. Russell and Co.. shipbuilders, Greenock, have contracted
Mas very seldom been attended with sucess. o build an iron sailing ship of 1500 tons for Mr. James Nourse,
London. Contracts are at present few, in consequence of the London. Contracts are at present few,
unprofitable nature of the shipping trade.

WALES AND ADJOINING COUNTIES.

The coal trade of Wales is getting into a very serious state Hitherto I have been able to find signs of partial activity, and even
when the house coal trade has been dull some of the large steam collieries have been busy. Now there is depression everywhere Caerphilly, is stopped altogether, and in many half work is egarded as good. At Hirwain, on the one hand, and Ferndale
the other, it is the same tale, "two or three turns per week,"
nd colliers who have been prudent and have saved a little are availing themselves of the temporary slackness by taking a holiday orcing. No. 2 is quoted at 8 s . 3d. and No. 3 at 8 s .9 d . Steam
oal quotations are unsteady, and some of the best collieries are emarkably quiet in their operations; yet I am glad to note that in he matter or shipments Cardiff last week showed an improvement o plain of dulness, asking why this special slackness should not be as special a feature of Government inquiry as weaving and ribbon work. The collier Then these are only half employed an inquiry is called for.
The iron shipments of the week from Cardiff and Newport, Mon., amounted to 5300 tons, of which the most important items
were a cargo of 1600 tons to Rio de Janeiro, and another of 300 tons to Messina.
In tin-plate substantial consignments of more than 2000 tons
have been sent to Baltimore and Philadelphia. The attitude of makers is firm, and prospects of a better trade at improved figure ree now regarded as certain. Quotations remain steady, and
makers having no large accumulations of stock to trouble them, are vidently calculating upon a fairly remunerative trade in future. Here I must record one rumour, given on authority, that a large firm have accepted a considerable order, at prices deemed below nakers are firm in refusing, and buyers are content with taking I am glad to know that there are prospects of the Penygrais Colliery difficulty being settled. The men have decided to accept bind both parties ; the manager and overman to be suspended during the enquiry; the wages now due to be paid; the workmen
to resume work forthwith, and all summonses to be withdrawn,

NEW COMPANIES.

THE following companies have just been regis-
Arthur B. Dashwood and Co., Limited. This is the conversion to a company of the
business of horticultural engineer, carried on by business of horticultural engineer, carried on by
Mr. Arthur Dashwood, 28 and 29 , S. S. Swithin's. It was registered on the 6 th inst., with a capita of $£ 30,000$, in $£ 10$ shares. The purchase consideration is $£ 3600$ in fully-paid ordinary shares,
and 3000 fully-paid deferred shares. The vendor and 3000 fully-paid deferred shares. The vendor
is to undertake the management for not less than is to undertake the management for not less than
ten years at a a salary not exceeding $£ 4$ per week, The subscribers are:-

John Freeman, Farnborough, Hants J. Clever, 54 , New Broad-street, arch

The number of directors is not to be less than four, nor more qualification, 20 shares; the company in general meeting will determine remuneration.
Indian Midland Railway Company, Limited. This company proposes to carry into effeet a
ontract dated 10th inst. between the Secretary contract dated 10th inst. between the Secretary
of State for India in Council and Mr. Thomas
Phe railway in the East Indies from Bhopal to Jhansi, and thence in one direction to Gwalior, and in another direction to Cawnpore, and in a
third direction to Marukpur, with junctions at Cawnpore and Marukpur with the system of the and Rohilcund Railway, a junction at G walior and Ronilicund Rainway Sta Railway, a junction at
with the Sindha
Bopal with the Bhopal Railway, and a line Bhopal with the Bhopal Railway, and a a ine
from the first-mentioned line at or near Etawah to Sauger, and thence to Katrir, with a junction Railway Company and the Bilaspur State Railway. It was registered on the 11th inst. with
a capital of $£ 3,000,000$, in $£ 20$ shares. The subcribers ar
Col. James Holland, The Park, Upper Norwood
-Major-Geeneral S. . Trevor, R.E., 75 , Ladbroke.
rond, Nottin.

Wieut.-General Sir H. D. Daly, R.
Wi. Rht Watt, The Briars, chislehiursi
Thenumer of directors
The number of directors (exclusive of a Government director) is to be nine ; qualification, 50 shares; the subscribers are the first. Remunera-
tion of the directors is fixed at $£ 2000$ per annum.
Amalgamated Sulphuric Acid, Copper, and
This company proposes to acquire and work
10,395 acres of mines and lands in the eastern ownship of Lower Canada; 200 acres of lands and phosphate mines thereon, situate near the St. Henri, in Montreal, for the erection of a sulphuric acid manufactory. It was registered
on the 8 th inst., with a capital of $\& 300,000$, on the 8 th inst, with a capital of 8300,000 ,
divided into 15,000 preference and 15,000 ordinary shares of $£ 10$ each. The purchase is regu-
lated by three agreements of the e 30th ult, the consideration for the property first mentioned
being $£ 75,000$, payable as to $£ 41,250$ in ordinary shares, and the balance in cash, or fully-paid
preference shares, at the option of the vendor; preference shares, at the option of the vendor,
for the seond-mentioned properties the con.
sideration is $£ 100,000$, payable as to $£ 50,000$ in sully-paid ordinary shares, and the balance in in
fur Montreal treference shares; for the property in in
Meration is $£ 10,000$, payable £2000 in cash, $£ 4000$ in fully-paid preference
hares, and $£ 4000$ in fully-paid ordinary shares Shares. Walter Bird, 7 , East India-avenue, merchant
R. Femnell, 4, Copthall-buildings, secretary to the

 B. Hastray, "Gorion" House, "Chiswick, "coal merJ. M. Kelly, 12, ' chärlotte-streeet, Bedford-square The number of directors is not to be less than
three, nor more than seven; qualification, 100 shares ; the subscribers are to appoint the first and act ad interim; remuneration, $£ 1500$ per
annum, and an additional $£ 300$ for each $£ 1$ per ent. dividend over 10 per cent. per annum.

Brown's Patent Fuel Economising and Consuming Company, Limited.

Upon terms of an agreement of the 20 th ult.,
his company proposes to acquire and work the
 to Edward Honychurch, of 52, Selwood-street, Rotherhithe, for improvements in steam boiler
furnaces and appliances for eoonomising fuel and consuming smoke. It was registered on the 11th inst., with a capital of $£ 2000$, in $£ 10$ shares. The purchase consideration is $£ 500$ cash and
$£ 1000$ in fully paid shares. The subscribers are:- H. W. Brown, 1, Waterloo-place, S.W., naval

 ${ }^{* W}$ W. O. Robinson, Belvedere, Kent, Stockbroker
Owen D. Robbinson, Beivederer, Kent
The number of directors is not to be less than two, nor more than five; the
scribers denoted by an asterisk.

Italian Ironworks and Mining
pany, Limited.
This company proposes to acquire land and hereditaments, situate at Tofe, near Civita Vec chia, Italy, together with mines and quarries of
iron, ironstone, iron ore and other metals, and iron, ironstone, iron ore and other metals, and
also foundries, works, \&c., situate at Terni, near also foundries, works, cce, situate at Merni, near
Rome. It was registered on the 7 th inst., with a capital of $£ 5000$, in $£ 5$ shares. The subscriber
F. Carrel, Woolpack-buildings, Gracechurch-

T. Wresghtsön, $\ddot{\text { Norton }}$.. Haiii, $\ddot{\text { near }}$. stocktön-ön

Registered without special articles.

TORPEDO BOATS.

THE Admiralty, having taken into considera
tion the special character both of the hull and machinery of first and second class torpedo boats, have issued a series of regulations for their more in charge of the craft. that they reminding oficen thin steel-only $\frac{1}{18}$ in. thick-and that the utmost care is required in their management, their lord ships order that no portion of the hull should on any account be devoid of paint or other anti-
corrosive composition in good condition. The corrosive composition in goo condition. The
bottom of all torpedo boats in the reserve which are not in use are to be coated with red lead only, and not with experimental composition. When ever practicable the boats are to be hauled up or
docked for examination every two months, and the interval between such examinations is neve to exceed four months. In order to reduce the the inside of the vessel be bare of paint or composition, pieces of zinc are to be placed on the
inside of the vessel, as low down as possible, so as to be immersed in bilge water should there be any. The zine should be in metallic contact with structure if preferred, and the arrangement should be made under the advice of the Admiralty chemist. Before any torpedo boat is laid up or placed in store the engines are to undergo a
tharough examination, and any defects that may harough examination, and any defects that may
be discovered are to be reported and, if possible be discovered are to be reported and, if possibbe
made good at once. If this is not practicable the defects are to be made good as soon aa
possible after the boat is stored. If the boa has been attached to a ship, before being returned to store the chief engineer of the ship is to mak
good the defeets as far as possible. good the defects as far as possible.
are to be thoroughly disconnected
the working parts are to be cleaned and oiled and re-adjusted. The internal parts are to be drained
out, and all the doors and covers are to be so left that periodical examinations may be made of the interiors. The after part of the propeller sha oiled, and the stern tube is to be drained out and painted, or otherwise put into a state of preservation before the shaft is replaced. The engines are
to be turned several times every week, the boiler to be turned several times every week, the boile and the chief engineer is to superintend the exand the chief engineer is to superintend the ex
amination and see that the fire-box and tube-plate are properly gauged, to ascertain if they have received any injury during the time the boat has
been under steam. The safety valve and all other been under steam. The safety valve and all other boiler mountings are also to be examined, but the safety valve spring is not to be screwed dow
After being washed out the boiler is to be gently warmed to a temperature well above that of the atmosphere and then closed and kept so. If un.
slaked lime can be readily obtained, a small quantity in suitable pans is to be laid on the top of the tubes before closing up the boiler, but th boiler is not to be kept open more than a day
or two for this purpose. The bilges are to b cleaned and the bunkers cleared of coal, and the interior of the boat is to be examined
throughout, the lining of the bunkers being throughout, the lining of the bunkers being
removed for that purpose if necessary. Any removed for that purpose if necessary. Any
damage to the paint work is to be at once repaired and the boat is to be put in every respect in as good a condition, both as regards her machinery and her
cleanliness, as when she was issued from store The Admiralty have authorised some important experiments to be conducted at Portsmouth with
the object of determining the value of liguid the object of determining the value of liquai
fuel for the use of ships of war. There are vari ous systems before the world, but the particular system which is to be tried is that of Baron
delsward, which has been largely introduced Adelsward, which has been largely introducee
into the French Navy. The coal oil is placed in into the French Navy. The coal it is placed
tank, where it is raised to a high temperature by tank, where it is raised to a high themperaw on thass with a et of doors, where it comes the furnace which has been previously heated in the usual
way. The inventor claims that his system is way. The inventor claims that his system in
suitable for the propulsion of armour-clads, but the experiments at ortsione of the boats of the
to N .22 torpedo boat, one largest type, which have lately been received
from prove successful, there can be little question of the superiority of the liquid fuel over coal for consumption in these small craft, quite apart
from the question of economy. In the first place
tre there will be no stoking required, thus enablin
the complement on board to be reduced, and in the next place there will be no necessity for the use of forced draught and the arrangement of fans by which it is produced. Theseare importan advantages when the confined spa.
in the torpedo boats is considered.

South Kensington Museum.--Visitors during the week ending Aug. 15th, 1885:-On Monday, Tuesday, and Saturday, free, from 10 a.m. to Wednesday, Thursday, and Friday, admission Cd., from 10 a.m. to 6 p.m., Museum, 1304;
mercantile marine, Indian section, and other collections, 305. Total, 16,589. Average of corre sponding week in former years, 19,379. To
from the opening of the Museum, $24,220,814$.

THE PATENT JOURNAL.

Con

Applications for Letters Paten

 * When patents have been "communicated," thename and adress of the communicating party are
printed in italifes.

11th August, 1885.
a a - tr ar \%

 Downing-(R. Saalfeld, Aermany.) Appleard and J. Johnson, London.

 . VETILATIIN BRICK, A. Wilkingon, London.
BURNERS for HYDROCABBON OILS, F. Plaister and
 AlVNAII BAND and
Wilkie, Glasgow.
 Adon. Weishaupt, Germany.) of R RALI, dc., C. D. -(Siemens and Halske, Germany.).

70. Generratina Currents of Voltalo Electrioity,
 United dtates. Holunisa Wers of Toilest Paprr, B. H. Lake.-
 London
L. Suspirute for Glass, w. B. Woodbury and F.
Vergara, London. Cotles, E. Edwards. - (H. Soyez,
Belgium.).
S77. Locks, W. L. Wise.-(J. Lederer, Autria.) 12th August, 1885.

 Herbert and S. . E. Jackson, Oldham.
S8s? GERING, J. H. Adamson, London.

 and J. Keatley, Aston.
 Manchester.
959n. PRERLRING FUEL for SMasitiva Purposes, J.
Mcoculloch and W. Black, Glasgow. 992. Spiral Curtain Chain or Eand, J. Empson and
J. Hewitt, Birming
 Fondu, Belgium.).

${ }^{13 \text { th A August, } 1885 .}$
9619. BaLLoons and their CARs, W. Howard, London.
962.
962.
Cisonsino Timber, R. W. Taynton, London. 9620. SEABoniso Timber, R. W. Taynton, London.
96in. CGITNET Tops and VRTLIATobs, J. A. Mac.

 spheric Pressure, G. H. H . Hamerton, Hammer
smith simit.
96curiva Handies
J . Kenyon, Manchester. 9626. NRyMM, Wrandine Frier. 9627. Counchinester. and Ungoovilisa Rallway Vkricles, 9628. Him NaERE for STovzs and Grates, J. Carpenter,
 mingham,
963. Lacks, A. P. Sharp, Dublin.
OG32

 ${ }^{9635 . \text { J.t.ck }}$ RACK, S. Bott and R. W. Cooke, Bir9636. Ramway Chair, w. B. Carr, Farnham

 E. A. Wallis and H. T. Ratcolif, London. Sellars,
APPARATOS for ADVERTIMc, J.
.
 ver, Liverpool.

 Pho
Phographic Apparatus, J. y. Johnson. $-(F$. Mader, Germany.)
SAFs, D . D . Hatclif, London.
Bookiv, S . H. Langton, London.

14th August, 1885.

9677. Hangerrs, Bearinas, de., for Suapts, H.
Smith, London.

 Haynes and T. F. Ford, Birmingham, te., J. Ellis

 chiffe, Hulme.
96S. PR Ressing and Mouldisa Butrer, J. Maude,
Halifant Gidiax.

 Tinker, United States.)
H. LOWER FRMMEs of Lasps and LaxtrRns, T

9678. AuTriscope, J. Bogle, Glasgow.
froo. KETLLES, ©c., C . Bellamy and P. G. Fletcher,
 To2. SELF-CLosing MATOH, do., Boxss, D. J. Williams,
London.
Ond
,

15th August, 1885.

A. Allan Glopply haratus for Water-closets

9714. BkD BaTH, F. Marsden, London.
9715. Tomacoo PIPE, G. H. K. Fuller,
 9717. Puliny for Buisd Cords, F. w. Micklewright, 97is. Vaniaile Cut-ofr Geak, J. Beveridge, London.
9779. ADustisg WIndow BLINDS, G. H. Wilson and R.

 ${ }^{\text {J. }}$ J. Mceill, Ayr. Ecosomising Coall, \&c., R. W. Anderson, Liver9726.' Closisa Vessels, A. Browne.-(L. Mocenik,

9730. Coarpounds for the MANUFACTUKE of Furxace
Brices, W. O. Wood, London. 9731. Apparatus for the Manufacture of Artimicia

 وfo. Thited. States.)
9750. W. H. Beck. - (G. Goddeand for Grepoirte winc. Doons: Trondon. W, Hor
 9740. Mo. ousticure protrctor and Craar Holdre, w. 974.i. Deviogs for Teliggaphic Purposss, A. M.
Rosebrugh, London
 9743. Force Pumps, M. Guggenheim.-(G. Allweiler, 9744. Aplication of Heat to Generating Stean, M.
P. W. Boulton, London.
9745. Ventilating Boots or 18 th August, 1885.

Newport.
9746 . Watch Protector, G. W. and Birmingham.
9747. Copy HouDE Birmingham.
974. Copy Hoder, J. Deakin, Birmingham.
974s. MATREsses and Frames, I. Chorlton and G. L. 974. CLosing SLide for Bakers
Thompson.-(A. Nestlen, Germany.) 9750. CLososing TAP HoLe in CABKs, J. Wilkes, Handsworth.
975. Hits, J. W. Thompson, Manchester.
9752. Boots and Shozs, W. Freeman 9752. Boots and Shoes, W. Freeman, Letcester,
 9756. Fastenings for Windows, J. Ostins, London.
975. Flower-pors, R. G. Owen, London, $N_{\text {. }}$., and L. PC., G. Chbs, H. J. Haddan.-(A. Z 9759. GRINDING Grain, I. Watkin, Liverpool

Glasgow
9761 Gas Producers, J. J. Barclay and J. Thompson, London.
9762. Portable Electrio Lamps, J. E. Liardet,
London. 9763. Machine for the Manufacture of Socks, G. F
Redforn.-(S. Pagny, France.) Redfern--(S. Pagny, France.) for CAsks, ©c., R. Gregory and T. Bushy, London.
97e5. COT NAIL and Cor NAIL MAcrines, J. W. and
J. L. Heward, London. 976. Brake Mrgenanism for Hoisting apparatus, G. Mehlis, London.
9767. BLL BIB and other VALves, A. Priest, Lewisham.
6768. FLowEr-HoLDERS, A. Kershaw, Halifax.

SELEOTED AMERIOAN PATENTS.
(From the United States' Patent Ofice Oflcial Gakette.) 322,212. Lathe For Turning Crosshead Pins,
Nicholas Thomas, Chicago, Ill.- Filed May 22nd
1885. Claim.- (1) The combination of a lathe spindle,
crank shart fitted to rotate in bearings in the head
atock stock or supporting head of said spinde, and an inter-
medtate connection whereby vibratory movement imparted to the spindle from the crank shaft, substantially as and for the purpose set forth. (2) The
combination of a lathe spindle, a crank shaft mount on the head-stock or supporting head of said spindlde,
a gear adapted to vibrate about an axis on the head. stock, a connecting-rod coupled to a pin on the crank
shaft and to said gear, and a pinion secured upon the shaft and to said gear, and a pinion secured upon the
spindle and meshing with sadd gear, substanttally as
set forth. (3) The combination of a lathe spindle, a cone pulley fitting freely thereon, a crank shat
mounted in bearings in the head-stock or supporting head of a spindle, gearing for rotating said shaft from the cone pulley, a gear adapted to vibrate about an pin on the crank shaft and to said gear, and a pinion secured upon the spindle and meshing with said gear, lathe spindie, a cone pulley sitting freely thereo back goar shaft and a supplemental crank shaft, each mounted in bearings on the head-stock or supporting
head of the spindle, gearing for rotating the back gear

shaft from the cone pulley, a pinion fitted to slide
longitudinally on the back gear shaft and to engia either a gear on the crank shaft or a gear fixed upon on the head-stock, a connecting-rod coupled to a pin on the crank shaft and to said gear, and a pinion
secured upon the spindle and meshing with a substantially as set forth. (5) The combination of lathe spindle, a lathe carriage or saddle, two tools or cutters, each mounted in an independent slide block
on the carriage, two feed screws, each governing th movement of one of said slide blocks toward and from
the centre line of the sindle the centre line of the spindle, and two pinions, each mounted upon one of said feed screws, either of said
pinions being fitted to slide longitudinally upon its
feed screw, so that said pin disengaged to enable either coincident or independen substantially as set forth.
322,399. GAs-burnkr, Orren N. Smith, Philadelphia,
Pa.-Filed September $25 t h, 1883$. Clain, -A gna-burner consisting of an outer shell
having inlet and outlet openings at opposite ends, and
$\left\lvert\, \begin{aligned} & \text { provided with a flat centrally perforated diaphragm } \\ & \text { to direct the current upward, and an inverted mixing }\end{aligned}\right.$

322,399

cup permanently fixed above the same, tegether with
the exit slots or corrugations d, substantially as cup perma
the exit
described.
322,407. Lubricator, Peter Barclay, Boaton, Mass.Filed December 3rd, 1884 .
Claim.-(1) In a steam pressure engine lubricator constructed to operate by drop feed,
oil in the cup is indirectly discharged water of condensation derived from the steam, the combination,
with the oil-cup having an oil discharge outlet at or with the ol-cup having an ofo discharge outlet as
near its top, of the lower perforated steam condensing
coil, and an inlet for the steam to said coll, substancoil, and an inlet for the steam to said coil, substan-
tially as specified. (2) In a steam pressure engine
lubricator constructed to operate by a downward drop

feed, substantially as described, the combination,
with the glass or glazed indicator tube of perforated daphragm arranged near or below the lower end of said tube, essentially as and for the purpose herein
set forth. (3) The combination of the feed nozzle b
with the with the indicator tube K , and the perforated
diaphragm O , arranged near or below said tube,
cessentially as described assentially as described. (4) The combination, with he lubricator cup A , of the steam condensing per
forated coil B, having a lower central tubular extension forming a support and inlet to the coil, and an
outer closed end, substantially as shown and described.
322,455 . Machine for Sandina Brick Moulds Roswell S. Judson and Cyrus JING Hancock, Matteawan, N, Y.- Filed November 13th, 1884 .
claim. - (1) In a machine for sanding moulds, a sand -box having a front board B, and provided nears, its
ower forward end with an inlet opening substan ower forward end with an inlet opening, substan
tially as set forth. (2) In a machine for annding moulds, a box having an inlet opening, fitted to
permit the insertion of the moulds and provided with valve controlling said opening, substantially as set
forth. (3) In a machine for sanding moulds a sand
box forth, (3) In a machine for sanding moulds, a sand-
box having on its opposite sides guides fitted to

receive the ends of the moulds, and adapted to guide
said moulds upward and invert them over the box substantially as set forth. (4) In a machine for sand-
ing moulds, a box formed with inlet openings, and having guides on its opposite sides
fitted to receive the ends of the moulds, and provided on its bottom with rails, suhstantially as set forth.
(5) In a machine for sanding moulds, the box herein described, having an inlet opening controlled by a suitable valve and provided with rails fitted to support
the moulds, and provided with guides adapted to direct the moulds upward and invert them over the box, substantially as set forth.
322,496. Multiple Incandesgent Electrio Lamp,
William Stanley, jun., Pittsburg, Pa.- Filled July 11th, 1884.
Claim. - The combination, substantially as hereinbefore set forth, with a group of incardescent electric
lamps, of an electric conductor normaly lamps, of an electric conductor normally connected
through one of said lamps, normally interrupted branch circoits in which the remaining lamps of sad
group are respectively included, a shunt circuit

around each of said lamps, and an electro-magnet
included in each of said shunt circuits, and a circuitdosing device, under the control of each of said elec-
ro-magnets, which serves to complete the connections of said main line conductor through a succeeding ong in said group when a preceding lamp becomen
limoperative.

322,498. Indandescent Elecrric Lamp, Philip K.
Stern, Toronto, Ontario, Canada.-Filed November 15th, 1884 . An electric lamp composed of a filament
Clain. (1) An or pencil connected to a suitable source of electricity
and embedded in solid glass surrounding and touching it at all points, in combination with h hermetically
sealed tube or globe surrounding the same to form a sealed tube or globe surrounding the same to form a
colosed air chamber enclosing the whole, whereby the
pressure of the air contained between said glass and

322,498

globe serves to compress the solid or inner glass upon
the filament or pencil, substantially as described. (2) the filament or pencl, substantially as described. (2)
In an electric lamp. the globe F, the wires B C, the
rings $a b$ suspended within and two or more lamps supported by said rings and
connected with said wires, substantially as described. 322,635 . Method of Making Car Whrels, Withelm Claim.-(1) The method herein specified of manumaturing car wheels, consisting in forming the
malleable rim with a recessed or interlocking inner
surface, and the malleable middle dise part or spokes surface, and
with outward projections, and then bringing the two parts to welding heat and placing them in suitable
dies, and then by blows or pressure expanding the

322.635

middle disc part or spokes, so that the same is made
to interlock with the inner surface of the rim, substantially as set forth. (2) The method herein, subecified of manufacturing car wheels, consisting in forming the rim with a recessed inner surface and the spokes
or disc separately out of malleable metal, and then spreading the metal of the disc or arms into the recessed inner surface of the rim and welding the parts
together, substantially as specified. together, substantially as specified.
322,642. Rock DriLL, Isaac Reess, Nashville, Tenn.-
Filed March 23rd, 1885 . Claim.-In a rock or coal drill, the combination,
with a shaft A, having a chambered cylindrical head B, provided with a central wedge-shaped bearing e, side
bearings $b d$, and interior bevelled ridges f, leading to bearings od, and interior bevellod ridges f, leading of the
outwardly-curved longitudinal perforations c, of the

cylindrical cutting rollers $\mathrm{C} C$, journalled in opposite bearings on the outer surface of the drill head, and
the conical rollers D, journalled centrally in the held 322,745. Electric Switch, Edmund B. Nicolaus, Claim. - (1) In an electric switch, the combination,
with the two terminals, of a switch lever pivotted to with the two terminals, of a switch lever pivotted to
one terminal and constructed and arranged to make a one terminal and constructed and arranged to make a
sliding frictional contact with the other terminal, and in retractile spring secured at one end to the switch
lever and at its opposite end to a fixed support, and arer and at its opposite end to a fixed support, and
arranged to have a tendency at all times to disrupt arranged to have a tendency at all theos the switch lever to diss open position, substantially as set forth. (2) In an electric
switch, the combination, with the two terminals and
(322.74.5)

a fusible strip interposed in the circuit, of a switch arranged to make a sliding frictional constructed and
other terminal with the other terminal, and a retractile spring connected at
one end to the switch lever and at its opposite end to a fixed support, and arranged to have a tendency at
all times to disrupt the contact and throw the switch all times to disrupt the contact and throw the syitch
alever into it open position,

322,723. Valve Indicator, Albert L. Ide, Springfield, of a steam - (1) The combination, with the steam valve of a steam engine, of an indicator operated by the
movement of the valve, and constructed to show the movement of the valve, and constructed to show the
number of inches of steam in the cylinder at the
moment the steam supply is cut off, substantially as moment the steam supply is cut off, substantially as
described. (2) The combination, with the steam described. (2) The combination, with the steam
valve of a steam engine, of an indicator showing the
number of inches of steam in the cylinder at the time

the steam supply is cut off, comprising a pointer or
index hand operated by the movement of the valve and a stationnery scale or dial hovinement of the valve, spraduated parts at either side of the blank space indigrading the number of inches of steam in the cylinder
at the moment the steam is cut off, substantially as at the moment the steam is cut off, substantially as
described. (3) The combination, with the steam descrive and excentric rod of a steam engine, of a rock
valvet for transmitting motion from the said excentric
shat shaft for transmitting motion from the said excentric
rod to the valve provided with an index hand and a rod to the valve provided with an index hand and a
stationary dial, substantially as and for the purpose
set forth set forth
322,794
322,794. Moтов, John W. Cloud and Axel Vogt,
Altona, Pa.-Filed December 9th, 1884. Claim.-In a fluid pressure motor, a casing or wheel
mounted upon a tubular axis, and a tubular valve, which does not rotate, passing through the tubular

322,794
 exhaust ports, combined with cylinders within the
casing, each provided with a weighted piston and a port adapted to communicate, at the proper time or
times, with the supply and exhaust pirts of tho
then tubular valve during the ruta inn of the cosing or
whecl around its axis substuatially as set forth. 322,859. Electric Railway, Ernst W. Siemens Claim.- (1) The combination of the suspended rail, the contact truck having brushes that press against
the under surface of the conducting rail, and the pendent socket having a flexible conductor leading to
the railway carriage. (2) In an electric railway, the combination of a conducting rail with a smooth under
surface for the contact brushes, connected with surface for the contact brushes, connected with a
stationary dynamo-electric machine, and an insulator, stationary dynamo-electric machine, and an insulator,
from which the conducting ral is suspended. (3) The
contact truck consisting of two side cheeks o C, con-

nected by bolts D and uprights E, provided with (4) The combination of the contact truck having
sockets G and stop pins o, with brushes adjusted by clamping screws, as and for the purposes described. nected, respectively, with the contact plates $a b c d e$, the contact lever N, which on being moved to the position makes the same contact, and the contact truck having revers
to the contact lever.
322,868. Shaft Coupling, Harris Tabor, Neto York, Claim.-(1) The combination of two lines or sections of shafting, and a flexible strip or band secured by
intermediate connections at different points in its length to one and the other of said lines alternately,
substantially as set forth. (2) The combination of
. two coupling heads or bearers, each secured to a line
or section of shafting, and a flexible strip or band

secured peripherally to one and the other of said
coupling heads alternately, at points separated by spaces over which the flexible band passes freely, sub-
stantially as set forth. (3) The combination of two coupling heads or bearers, each secured upon a line or section of shafting, and having a series of outer
bearing faces, said bearing faces being fixed alternately to one and to the other coupling head, and a
flexible strip or band passing over said bearing faces and secured thereto, substantially as set forth.

