THE HORSE-POWER OF TURBINES

By Professor R. H. Smith
No. II.
Is my first article on this subject I showed the relation between volumetric flow and section and velocity. In using it we generally need a knowledge of the
velocity. The velocity may be found either by direct velocity. The velocity may be found either by direct
instrumental measurement as previously mentioned, or instrumental measurement of calculation from other measured data. For means of calculation from onher the law governFor this calculation we must know the law govern-
ing the variation of the velocity along the stream. ing the variation of the velocity along the stream. The variation of velocity depends on the variation of pres-
sure, because momentum is generated or destroyed only in sure, because momentum is generated or destroyed onsy in
consequence of the want of balance of applied forces. It is easy to deduce the well-known elementary equation-
where w is the weight per unit of volume, and $\frac{1}{v}$,therefore, the volume per unit weight of water. This is an incomplete equation, and its real meaning is not commonly enough understood.
energy per unit weight of water flowing from one section to another in the stream. The equation states that this gain of kinetic energy is equal to the work done
on the water between those sections per unit of weight flowing past them. h is the work done by gravity per unit of weight. $\frac{p_{0}}{w}$ is the work done on each unit weight of water by the water flowing behind it in passing the first section. $\frac{p}{v}$ is the work done by each unit weight of water on the water flowing in front of it in passing the second section.
The equation evidently leaves out of account any work the water may do on the walls of the stream between the two sections considered. This work is chiefly done in two ways: firstly in overcoming the frictional resistance to the flow over these walls ; secondly, in pushing these walls from one position to another, as occurs in the passages of
t urbines, viscous resistere is also an amount of whinto account as part of the "frictional" resistance. The frictional and viscous work is partly spent in heating the walls and the water, and partly in creating eddies.
Let the work so done per unit weight while flowing from the first to the second section be called F, and that
done in moving the walls be called W. Then the complete equation is-
$\frac{v^{2}-v_{0}{ }^{2}}{2 g}+\mathrm{W}=h+\frac{p_{0}-p}{w}-\mathrm{F}$.
In a "steady" stream, as, for instance, approximately in the head race and inlet guide blades and in the tail race of a turbine, the walls do not move, and therefore W of a turbine, the walls do not move, and therefore W
becomes zero. In the turbine wheel, if W represent the becomes zero. In the turbine wheel, if W represent the
work done on the wheel by each unit weight of water passed through it, then v_{o} and v may be taken as the inlet passed through it, then v_{\circ} and v may be taken as the inlet
and outlet velocities of the water over the earth, and p_{0} and p the pressures at inlet and outlet.

The flow of water obtainable depends largely on the frictional resistances in the head race. Here our equation (5) is simplified by the omission of W, but even omitting also F , i.e., putting aside all the effects of friction, we find certain limits of possible flow dependent on the sections o the passages. So far as I know, the limits here referred to have hitherto passed unnoticed, and it is, therefore, the more important to consider them. They are deduced from the fact that the pressure p cannot diminish below zero; it cannot become negative. Putting W, F, and p equal to zero in equation (5), we find that at any and every section after S_{0} where the pressure and velocity are p_{0} and v_{0} the velocity cannot be greater than

$$
v \leq \sqrt{v_{0}{ }^{2}+2 g\left(h+\frac{p_{0}}{w}\right)}
$$

Since $\mathrm{V}=v \mathrm{~S}$, and $v_{0}=\frac{\mathrm{V}}{\mathrm{S}_{0}}$, this limit may be written as one within which the volumetric flow at any part of the
stream must lie, namelystream must lie, namely-
$\mathrm{V} \leq \mathrm{S} \sqrt{-\frac{\mathrm{V}^{2}}{\mathrm{~S}_{0} \mathrm{z}}+2 g\left(h+\frac{p_{0}}{w}\right)}$
Squaring and bringing the terms involving V to one side, w
$\mathrm{V} \leq \mathrm{S}_{0} \mathrm{~S}$

$$
\left.\frac{2 g\left(h+\frac{p_{0}}{w}\right)}{\mathrm{S}^{2}-\mathrm{S}^{2}} \text { where } \mathrm{S}_{0}>\mathrm{S}\right)
$$

In using these limits it must be remembered that h is measured positively downwards from S_{0} to S . The limi to \mathbf{V}, so far as it is affected by a length of uniform section
S , is determined by the highest part of this length-i.e, S , is determined by the highest part of this length-i.e.,
where h is least-if $\mathrm{S}_{0}>\mathrm{S}$. So far as it is effected by a level (h constant) length of channel, it is deternined by the furthest forward end of this level length, because at that end S will be least and the divisor in the square root greatest. This limiting equation is inapplicable wherever streamwards,
If the channel be so constructed that the pressure at no part of it can fall below atmospheric pressure, similar,

The limits of possible volumetrie flow are still further restricted by frictional resistances to be immediately explained. If in equation (10) below, where friction is taken account of, the mechanical work done W be omitted and the pressure p be put $=0$, we obtain the limit-
$\mathrm{V} \leq \sqrt{\frac{h+016 p_{0}}{0155\left(\frac{1}{\mathrm{~S}^{2}}-\frac{1}{\mathrm{~S}_{0}{ }^{2}}\right)+0001 \Sigma\left(\frac{\mathrm{~L}}{\mathrm{~S}^{2} \delta}\right)}}$ Eqn. (6a)
the units being feet, square feet, cubic feet, pounds, and seconds; or-
$Q \leq 1000 \mathrm{~V}$
$\frac{h+{ }^{0} 016 p_{0}}{\frac{1}{d^{4}} \cdot \frac{1}{d_{0}{ }^{4}}+\frac{1}{3} \Sigma \frac{L}{d^{5}}}$
Eqn. (6b)
where Q is in gallons per hour, h and L in feet, p_{0} in pounds per square foot, and d and d_{0} in inches.
If p_{0} be atmospheric
If p_{0} be atmospheric pressure, then $016 p_{0}$ may be
taken as 34 ft . If the pipe or channel be so laid as to prevent p falling below atmospheric pressure, then ($016 p_{0}-34$) must be used in these formulas instead of $.016 p_{0}$; and this becomes 0 when p_{0} is atmospheric
The frictional and viscous-probably mostly viscousresistances increase rapidly with the velocity of the water, but are practically independent of the pressure. The law has not been carefully investigated by thorough experiments, but the rough approximation to it commonly adopted by engineers is that the resistance, considered as distributed over the area of the walls, is proportional to the square of the average velocity, the average being taken over the whole section. As the rules based on this assumption do not lead to calculated expectations extravagantly at variance with the actual results of practice, we wil follow this hypothesis. The results of practice give the following average value to the frictional coefficient as viewed above.
f pounds per square foot $=0065 v^{2}$,
here v is taken in feet per second
From this we can calculate F, the work done on viscosity or friction per unit weight in passing from section \mathbf{S}_{0} to S, the length of which passage we will call L, "he fall being friction." The most useful results are the following where V is in cubic feet per second, and all the dimensions in feet. F is in feet:-
Rectangular channel open at top, breadth b, water
depth d;
$\mathrm{F}={ }^{\circ} 0001 \mathrm{~V}^{2} \mathrm{~L} \frac{b+2 d}{b^{3} d^{3}}$
Round pipe of diameter d running full bore-
$\mathrm{F}=00066 \frac{\mathrm{~V}^{\mathrm{a}} \mathrm{L}}{d^{\mathrm{s}}}=\frac{2}{3000} \frac{\mathrm{~V}^{\mathrm{V}} \mathrm{L}}{d^{s}}$
or $F=\frac{1}{3 \times 10^{5}} Q^{2} \frac{L}{d^{s}}$; where Q is in gallons per
hour, F and L in feet, and d in inches.
Channel of any shape with water section S and mean hydraulic depth $\delta-$
$\mathrm{F}=0001 \frac{\mathrm{~V}^{2} \mathrm{~L}}{\mathrm{~S}^{*} \delta}$
If there are in the pipe, lengths of different diameters, the sum of the F's for the various lengths must be found accord ing to the formula (7). This formula only applies to a round pipe if it run full bore. In a length of uniform diameter, in order to run full bore there must be no increase
of velocity from end to end ; that is, the expression for of velocity from end to end; that is, the expression for
$\left(v^{2}-v^{2}\right)$ in equation (5) must be zero. If it be not zero, $\left(v^{8}-v_{0}{ }^{2}\right)$ in equation (5) must be zero. If it be not zero,
the velocity will increase, less and less of the section bein filled with water, until the rapid increase of friction, due to the increase of velocity, balances the further generation of forward momentum.
As an example of this increase of velocity until furthe increase is balanced by increased friction, we take an open rectangular channel throughout which the pressure remains constantly atmospheric. Here the depth of wate decreases until a limit is reached, given by

$\frac{d^{3}}{b+2 d}=\cdot 0001 \mathrm{~V}^{2} \frac{\mathrm{~L}}{h b^{3}}$

If the depth of water be small as compared with the
breadth, this will give nearly

$$
d=\frac{1}{21 \cdot 5} \sqrt[3]{\frac{V^{2} \mathrm{~L}}{b^{2} h}}
$$

when the velocity in feet per second would be

$$
v=21 \cdot 5 \sqrt[3]{\frac{\mathrm{V} h}{b \mathrm{~L}}}
$$

Taking an average frictional coefficient, we find that the horse-power spent in overcoming friction in the length I
of a round pipe running full bore is in terms of \mathbf{V}, the of a round pipe running full bore is in terms of V , the
volumetric flow in cubic feet per second, and L and d both in feet;
Frictional horse-power $=000076 \mathrm{~V}^{3} \frac{\mathrm{~L}}{\mathrm{~d}^{5}}$.
(8)
or frictional horse-power $=\frac{1}{6 \times 10^{11}} \mathrm{Q}^{3} \frac{\mathrm{~L}}{d^{5}}$
(8a)
where Q is the flow in gallons per hour, L is in feet, and d in inches.
F the will now write over again equation (5), inserting for F the last and most general expression given in (7). We
will also write $\frac{\mathrm{V}}{\mathrm{S}}$ and $\frac{\mathrm{V}}{\mathrm{S}}$ for v and v_{0}; also the value $\frac{1}{2}=$ -0155, and $\frac{1}{v}=\frac{1}{62^{\prime} 4}=016$ cubic foot per pound. We obtain
$0155 \mathrm{~V}^{2}\left(\frac{1}{\mathrm{~S}^{\frac{1}{2}}}-\frac{1}{\mathrm{~S}_{0} \mathrm{x}^{\mathrm{y}}}\right)+\mathrm{W}=h+0.016\left(p_{0}-p\right)$

$$
-0001 \frac{V^{2} L}{S+\delta}
$$

The last term indicates a frictional loss in the length L throughout which the section is supposed to remain S, As the section may vary, however, we must, in order to make the equation general, add all the frictional resistances for the different lengths L with different sections. This summation we indicate by the usual summation sign \sum,
and since this term involves V^{2} we bring it to the lefthand side, and so obtain-
$\mathrm{V}^{2}\left\{0155\left(\frac{1}{\mathrm{~S}^{2}}-\frac{1}{\mathrm{~S}_{0}{ }^{2}}\right)+0001 \Sigma\left(\frac{\mathrm{~L}}{=}\right)\right\}+\mathrm{W}$ where the units are linear, square, and cubic feet, and pounds, and seconds. The similar equation for a flow through a succession of round pipes all running full bore is the following, where Q is the flow in gallons per hour, L, h, and \mathbf{W} are in feet, d_{0} and d are in inches, and p_{o} and p in pounds per square foot:-
$\frac{Q^{2}}{10^{6}}\left\{\frac{1}{d^{4}}-\frac{1}{d_{0^{4}}{ }^{4}}+\frac{1}{3} \sum \frac{\mathrm{~L}}{d^{5}}\right\}+\mathrm{W}=h+\cdot 016\left(p_{0}-p\right)$ Eqn. $\left(9_{a}\right)$
The extra resistance to the flow occasioned at "bends" is
to the actual length of the part in which the bend occurs in the formula ${ }_{S^{2}} \mathrm{~L}$
We must now investigate more closely the quantity W , namely, the work done on the blades of the turbines per unit weight of water passing through the machine. To do this most simply we use a well-know theorem of mechanics regarding what is called the moment of momentum of a moving mass. This is precisely analogous to the moment of a force. Each part of any mass is moving at a given instant in a definite line, which gives the direction of its momentum. If the perpendicular distance of this line from any chosen axis be multiplied by the momentum, i.e., if the momentum bemultiplied by itsleverage round the chosen axis, the product is called the moment of momentum round that axis. The momentum may be looked on as made up of two components, one radial or directed straight away rom the axis, and therefore having zero leverage; the other ta
 most conveniently looked on as due to the tangential component alone; and as being, therefore, the product of the mass, its distance from the axis and the tangential component of its velocity. If the different parts of a large mass move at the same time in different directions, and at different distances from the axis the moment of momentum of the whole mass is obtained by adding up the moments of momentum of all its parts.*
If, now, any mass move in a certain fashion round on axis, and be controlled in its motion by a force or a number of forces, then the moment of this controlling force, or the combined moment of the different forces, round the same xis, equals the rate at which the moment of momentum of the mass round the same axis is changed by the action the force; because the radial component of the forte which has no leverage, and therefore contributes nothing to the moment of the force round the axis-changes only not affect the moment of momentum. The tangential not afrect the of the the cenctial component of the force measures the rate of ciege of the tangential conponing distance of the moss the plying each by the rawial dista fie , This rate of change of the moment of momentum. This, at any rate, proves the equality for a small mass, the dimerent parts of which may be looked on as nem ane distance from the axis. For a large mass we add up the moments of the forces applied to all its small parts, and also add up the moments of momentum of all these small parts, and obtain a total force-moment equal to the total rate of change of moment of momentum of the whole mass. The water in passing through the turbine presses on its blades, which return the pressure-re-act-so as to change the velocity and momentum of each portion of water as it flows through. The total moment of all the blade pressures round the axis of the turbine equals the rate at which the moment of momentum of the water round the same axis is being changed in consequence of it doing work on, i.e., driving, the blades. The driving moment of the water pressure on the turbine is the exac negative of that of the turbine blades on the water. We have, therefore, to find an expression for-a means of cal culating-the rate at which the moment of momentum of the water round the axis of rotation is being changed in its passage through the wheel.
In Fig. 2 let the fuli lines $a c$ and $b d$ represent portions of two successive blades in the positions they occupy at the beginning of a small
time, such as cond, through which we will follow the motion. The figur drawn as if for an outward flow turbine but the argument ap plies equally well to If the passares do If the passages do represents the free represents the free
surface of the water surface of the water
partially filling the passage. Let, the
water occupying the water occupying the
space $a b c d$ move in the small time con sidered into the posi
tion $a \beta \gamma \delta$. The blade points $a b c d$ have moved t $a^{1} b^{1} c^{1} d^{1}$, and the water at point a has moved $a a^{1}$
along with the blades, and $a^{1} a$ over the blades ; simialong with the blades, and $a^{1} \alpha$ over the blades; simi-
larly for the water at the points $b c d$. Of the mas of water considered, namely that originally in $a b c d$, the portion originally in $a^{\prime} \beta^{\prime} c d$ had at the beginning of the
small time exactly the same moment of momentum round small time exactly the same moment of momentum round the axis of rotation as the portion contained at the end of the small time in the space $\alpha \boldsymbol{\beta} c^{1} d^{\prime}$, provided the relative small time. The change of moment of momentum in the mass originally in position $a b c d$, and finally in $\alpha \beta \gamma^{\delta}$, consists, therefore, in the difference between the moment of momentum of the portion $a b a^{1} \beta^{1}$ at the beginning, and that of $c^{1} d^{1} \gamma^{\delta}$ at the end of the small time. These two masses are evidently equal, because each is the whole mass considered, less the portion contained in the equal volumes $\alpha^{1} \beta^{1} c d$ and $a \beta c^{1} d^{1}$. Let the average distance of the small mass $a b a^{1} \beta^{1}$ from the axis be r_{1} and that of $c^{1} d^{1} \gamma^{\delta}$ be r_{q}, and let the v_{r} and that of the latter be v_{r} then the above difference of moments of momenta is either small mass multiplied by $\left(r_{g} v_{t,}-r_{1} v_{t}\right)$. The rate of change of moment ll, divided by the small time. But the small mass referred said small time througl any section of the passage, such
as $a b$ or $c d$. In our previous notation this mass is $\frac{w}{g} \mathrm{~V}$ multiplied by the small time. Dividing then by this time, we obtain force-moment of the blade pressure on the water between the sections $a b$ and $c d=\frac{w}{g} \mathrm{~V}\left(r_{2} v_{t_{2}}-r_{1} v_{t_{1}}\right)$; and the force-moment of the water pressure on the blades is the exact negative of this. To obtain the effect over the whole length of the blade we have now simply to consider the sections $a b$ and $c d$ as coincident with the inlet and exit sections. In inward and outward flow turbines the r and the v are both the same all over the inlet surface, and again the same all over the exit surface. In parallel flow turbines an average value of $r v_{t}$ must be taken for the inlet area, and another average for the exit area. Equation (2) gives the radial inlet velocity in terms
of the volumetric flow and of the inlet area for an inward of the volumetric how and of the inlet area for an in ward or outward flow turbine, and a similar equation will give
the radial exit velocity if we substitute for r and d the the radial exit velocity if we substitute for r_{i} and d_{i} the
exit radius and axial depth, which we will call r_{c} and d_{e} exit radius and axial depth, which we will call r_{e} and d_{e}
If θ, be the angle between the inlet edge of the blade and If θ_{i} be the angle between the inlet edge of the blade and the forward tangent of the wheel inlet surface, and θ_{e} be the corresponding angle at the exit surface between the discharge relative velocity of the water and the velocity of the discharge edge of the blade; and if w be the angular velocity of the wheel in circular measure-i.e., in radians-then the tangential component of the water's relative velocity over the blades is the radial velocity divided by the tangent of θ, and the tangential component of the water's velocity along with the blades is $r w$. The tangential component of the water's velocity over the earth being the sum of these two, we have for this component velocity,
For inlet surface $\frac{V}{m_{i} 2 \pi r_{i} d_{i} \tan . \theta_{i}}+r_{i} w ;$
and for exit surface $\frac{V}{m_{e} 2 \pi r_{e} d_{e} \tan . \theta_{e}}+r_{e} w$
To calculate the force- noment of the water pressure round the axis of rotation, the first of these is to be multiplied by r_{i} and the second by r_{e} and the difference of these products multiplied by $\frac{w}{g} \mathrm{~V}$. The rate at which the forcemoment works-that is, the work done by the water per second on the wheel, is the moment multiplied by w. To
obtain the work done per unit weight of water passed through the wheel, we must then divide by $w \mathrm{~V}$, because this is the weight passed per second. This work done per equations (5) and (9). Performing the above operations we find

$$
\mathrm{W}=\frac{\mathrm{V} \mathbf{w}}{2 \pi g}\left(\frac{1}{m_{i} d_{i} \tan . \theta_{i}}-\frac{1}{m_{e} d_{e} \tan \cdot \theta_{e}}\right)
$$

$$
+\frac{w^{2}}{g}\left(r_{i}^{2}-r_{c}^{2}\right) \quad . \quad \text { Eqn. (10) }
$$

as applicable to both inward and outward radial flow turbines.
The analogous calculation for axial flow turbines is somewhat simpler. In terms of the notation of equation (3) it is
$\mathrm{W}=\frac{\mathrm{V} \omega}{2 \pi g\left(r_{\mathrm{a}}\right.}$ \qquad $\left.r_{1}\right)\left(\frac{1}{m_{i} \tan \theta_{1}}\right.$ $\left.\frac{1}{m_{e} \tan \theta_{e}}\right)$ which θ_{1} and θ_{0} aie the (11) xit blade edges, we the angles made by the inlet and latter are in this case perpendicular to the axis of the shaft.*

THE SUKKUR BRIDGE.

The Sukkur Bridge, which we described and illustrated some time ago, will be the largest span bridge yet erected in India. It
is in course of manufactureat the works of Messrs. Westwood, Baillie, and Co., London-yard, Isle of Dogs, and was on the 16th inst. visited by the Society of Engineers. Although particulars of the work were given some time since, we may mention that this bridge will be constructed over the Rohri Pass of the Indus at Sukkur, on the
line of railway from Kurrachee and Attock. It is designed on the line of railway from Kurrachee and Attock. It is designed on the
cantilever principle initiated in the Forth Bridge, but it is much cantilever principle initiated in the Forth Briage, but it is much
smaller, the Forth spans being 1710 ft , span. The Sukkur is of one span only, but that span is 790 ft . in the clear between the abutments, and 820 ft . between the vertical pillars. The centre lines of the main horizontal tie and the top of the large pillars and struts are 169 ft . above the bed plates. There will be a space of 200 ft . on foundations on each bank of the river-which will be filled in by a girder, thus uniting the cantilevers and completing the span The main guys, which have to hold back the whole of the structure, are 302 ft . long, and are connected to anchors which are constructed of steel plates of very large dimensions, built in masonry below the surface of the ground at either end of the bridge.
The superstructure includes raking pillars 174ft, long which incline inwards to a point 169ft. high, where they will meet the guys. There is also a series of struts inclining at an angle of 35 deg . towards the centre of the bridge, and also inwards, these struts being 210 ft . long and 16 ft . square at the centre. The platform for carrying the rails consists of two horizontal girders running from end to end, placed 18ft. apart, and having cross girders every 8 ft ., the platform covering being of
Westwood and Baillie's trough flooring. The bridge will be constructed of steel, of which material the cantilevers will absorb 3200 tons ; this is exclusive of the 200 ft . centre girder. Each of the cantilevers has to be erected complete in the contractor's yard before being sent out to India, and in order to comply with this condition of the contract a staging or scaffold has to be pro-
vided. This staging, which is in course of construction, will consist of about 300 piles, 14in. by 14in., driven into the ground and on these will be built up in some cases four lengths of 40 ft . timber, one above the other, braced together with horizontal and diagonal bracing. This staging covers an area of 400 ft . long by 120 ft . wide, and will be 180 ft . high when completed. It will absorb m
and nuts.
Besides the Sukkur Bridge, Messrs. Westwood, Baillie, and Co. have in course of construction 32 spans of iron bridges, 100ft. each, and weighing upwards of 2000 tons, for Indian railways.

* Here it is assumed that the axial inlet velocity is uniform over the
inlet area, and that θ_{i} is the same all along the inlet edge of blade similar assumption is made regarding the out.et area, and $\frac{1}{2\left(r_{2}-r_{1}\right)}$ is taken as nearly equal to $\frac{9}{3} \frac{r_{3}^{3}-\eta_{3}^{3}}{\left(r_{2}^{2}-r_{1}^{2}\right)^{2}}$. In the practical application to
turbines, the approximation is a close one, and introduces great simplicity in the above expression.

MISCELLANEOUS MACHINERY AT THE INTERNATIONAL INVENTIONS EXHIBITION

A neat and efficient working model of Tweddell Platt, and Fielding's patent hydraulic forging press is exhibitel by Messrs. Fielding and Platt, who are the sole makers, and who claim for it, among others the following advantages:-Economy in consumption of water by the employment of several cylinders which may either be used together or separately, according to the power required to be developed ; great convenience in operating, as the cylinders are all placed below the ground, and therefore do not interfere with the manipulation of the work.
short and quickly following squeezes can be given. The advantages claimed for the use of hydraulic pressure fo forging are numerous, and have been strongly urged by Mr. Tweddell for many years past. As a matter of fact however, though hydraulic presses have frequently been applied, until quite recently no machines have been designed with any particular reference to economy of water in work ing. The arrangement illustrated permits of a very ready alteration of the "daylight," or space between the moving block and anvil, and also of the length of the stroke, by a simple manipulation of the tappet gear. We understood that Messrs. Fielding and Platt have made a number of forging machines on this principle, of sizes varying from 150 tons upwards. Our illustration represents a press

TWEDDELLL, PLATT, AND FIELDINQ'S HYDRAULIC FORQIN3 PRESS.

As will be seen from our illustrations herewith, the machine consists of a main standard or frame, on which is placed the anvil block, and which carries three vertical hydraulic cylinders having their rams working direct on to a bottom crosshead common to all. This crosshead is connected by suitable side rods to an upper head carrying the movable tool or die, which may be used either for drawing out, forging, or stamping, according to the form of the ployed. In work ing, the movable head is raised by means of a return upon the lower crosshead, the work to be operated upon being placed on the pressure is the pressure is then returning cylinder returning cylinder, and this being exhaust, the lower crosshead lower crosshead,
and with it the
three rams and the upper head carrying the mould or die, descend by gravity, drawing low-pressure water into the cylinders from a tank. When the resistance of the material being pressed or forged prevents the further descent of the head, pressure water from an accumulator is admitted to the cylinders, the centre one alone, the two outer ones, or all three being used according as pe ver required to be exerted is small or great. In certain kinds of work only one effort or stroke is necessary; but it is, of course, obvious that when desired, a succession of very
capable of exerting a total of 5000 tons, i.e., 1666 on each ram.
In a recent article we illustrated and describel the Inest design of Tweddell's fixed rivetting and plate-closing cester, necessary to ensure good rivetting in boiler work. It is necessary to ensure good rivetting in boiler work. It is that even with the automatic plate closing gear a described, the difficulty of properly closing the plates would be much lessened if the plates were properly plates were properly previous to the previous being brough to the rivetting to the rivetting machine. In order to ensure this, Mr Tweddell some yearsagointroduced hydraulic flanging machines into this country, and thesuc cess which attended he use of these machines in their application to locomo tive and portable engine boiler work has led marine boiler makers to wish for similar tools. The large dimensions, the great variety of shapes, and the depth of the flanges proved great obstacles to the treatment of plates for marine work in a similar manner to those for agricultural and locomotive boilers, the cost of the dies and moulds becomingso greatas to be absolutely prohibitory, unless there was a great amount of repetition work. To overcome these objections the machine illustrated on page 236 was designed.

HIGH PRESSURE HYDRAULIC PUMPING ENGINES.
miessrs. fielding and platt, gloucester, engineers.

throttle valve for hydraulic pumping enaines.
a progressive action is adopted; in fact, by the combined action of three hydraulic cylinders the action of hand flanging is very closely imitated. The mode of working is extremely simple. When flanging the outer edges of circular boiler fronts, the plate is centred on a pin so as to bring the edge under the ram of the outer of the two vertical hydraulic cylinders. This ram carries a closing or nipping block, which when it descends holds the plate firmly against the small bottom block or die, which is formed to suit the desired radius or curve of flange. While the plate is thus held, the inner ram descends, the
tool on it being shaped so as to turn over the edge of the plate without causing undue stress, these operations being repeated, until about 8 ft . or 9 ft . of flanging-this being a convenient length to heat at one time-is done. The inner ram is then withdrawn into its cylinder, and the
horizontal ram brought forward. This, with a succession of short rapid strokes, squares up the flance, and the plate

In it, instead of the wholeplate being flangedinoneoperation, is then lifted by a hydraulic crane placed above the do five times as much work in the same time at one machine, and deposited in the furnace for another length to seventh the cost. All the flanges for from sixty to seventy be heated. In this way flanges 8 in . to 9 in . deep are finished large boilers per annum can be made with one machine t the rate of 90 ft . to 100 ft . in nine hours. When it is assisted with three ordinary fires for odd flanging. It should esired to flange furnace mouths, the two vertical rams are be added, however, that this is not the only saving, since the oupled together by a block or die, and a suitable mould putting together of the boiler is much facilitated by the accusubstituted in the bed-plate in place of the blocks used in racy of the various parts when flanged in dies by hydraulic anging the edges.
The quality of the work turned out by these machines is most excellent, and they are now used by most of the leading marine boilermakers, as well as by some of the large steel companies, such as the steel Company of Scotand, Messrs. Beardmore and co., and the Llandore Steel Company. In general terms it has been stated by a large user that such work as steel boiler fronts with flanges 7 in . or 8 in. deep is flanged at four times the speed and at onesixth the cost of hand work. When it comes to 9 in . or
10 in . flanges hand work is, of course, out of the question. In flanging dome ends and similar work the machine wil
pressure. As will be seen, the machine forms a very mportant feature in Mr. Tweddell's system of workshop machinery, and the many neat devices and excellence of workmanship reflect equal credit on the designer and manufacturer.
Besides themachines specially described, a numberof portable and other rivetters are shown, the whole plant being supplied with water by a pair of neatly designed vertical pumping engines forcing into an accumulator of variable pressure. These are shown by three engravings on thispage, are each placed above a double-acting force pump, which
forces the water into the accumulator against a maximum pressure of 100 atmospheres per square inch. The pressure is, however, capable of alteration by varying the number of load rings-a plan which is found to have considerable advantage in an installation with only one machine working at a time, or when it is desired to reduce the pressure all round for a certain class of work. The method of automatically stopping and starting the pump by means of the rise and fall of the rams is exceedingly neat. When the accumulator reaches the top of its stroke it opens a two-way cock, by means of suitable striking gear, and permits the pressure wate to enter a small hydraulic cylinder, having a rim connected with the steam throttle valve The valve is thus closed, and the steam shut off. On the accumulator tilling, the cock is reversed and the throttle valve opened. The two sections through the valve and hydraulic cylinder on page 235 will show how this is accomplished. This arrangement is nicely worked out, as the usual hand-wheel and gear is not interfered with, so that the engi neer in charge has as complete contro as under ordinary circumstances, and can start and stop his engine quite indepen dently of the position of the accumulator The general design of the engine is exceed ingly neat, and the details have been well considered. All the exhibits, including the portable rivetters, are illuminated in the evening by electric lamps. Messrs. Fielding and Platt have been awarded a gold medal for their exhibit, while Mr. Tweddell has received the special prize of the Society of Arts.
Messrs. Thomas Broadbent"Tand 'Sons, Huddersfield, show a patent direct steamcourt, which presents several special features in design. In order to dispense with the usual massive and expensive foundations, and to counteract the effect of unequal loading of the basket, the whole machine is suspended from three upright pillars by means of rods passing through them, and having ball joints ooth top and bottom. In this way, within move freely in the machine is allowed to being so much reduced that in some being so much reduced that in some cases hese balanced hydro-extractors have been placed on the second-loor of a building. drawn by a small steam that the basket is on the spindle, the engine being constructed at a very high velocity. The spindle is made to run with a balanced crank forged spindie is made of steel, long conical bearings firmly fixed in the centre casting, special arrangements being made is from the up the wear. All lubricapin and excentric being that of the crank pin and excentric being automatic, a few rops of oil being taken up every time the machine is started. The arrangement allows of very great compactness, chiefly owing to he absence of belts and other driving gear. Messrs. Thornewill and Warham, Bur-ton-on-Trent, show the "Model" steam pump. In this the steam cylinder, which worked by a circular slide valve, is placed behind the pump, the crosshead being connected to the crank by a long forked con-necting-rod. The design has been well worked out, and forms a great and pleasant contrast to the usual run of small steam pumps, which generally appear to be made with the view of reducing the cost of construction rather than with any idea of fitness or work. The same firm also exhibits a neat vertical steam engine with wrought iron framing, Inskipp and Mackenzie's patent triple disc cask washer, and several other brewers specialities for which they are well known, but which space prevents our noticing in detail.
At the Western entrance to Old London Street, close to the building containing the machinery for electric lighting and supplying and Co's semi-portable boilers will be noticed the Stanhope patent water softener and purifier which is exhibited by Messer Cord ur, All, which is exhibited hy hesss. Cord er, Allen, and Co., 20, Bucklersbury, a.C. practically auture in this apparatus is the the precipites from the he pradily understool by waf. This will be readily understood by reference to the two engravings we give herewith. The eagents generally used are lime, caustic oda, sulphate of alumina, or aluminate of oda, according to the nature of the water to portions in These are mixed in suitable proportions in small iron tanks placed above the clarifying vessels, the tanks being in duplicate, so that the mixture in one set may e prepared while the other is in use, in order to prevent the continuity of the process eing interrupted. The water to be softened and purified is admitted to the clarifying essel by the mixing pipe, shown herewith, a proper proportion of the liquid containing the reagents passing in at the same time and mixing with it, the amount of each being kept con stant after final adjustment by causing the feed in each case to pass through tanks in which a uniform water level is preserved, and by graduated cocks,

The clarifying vessel consists, as will be seen, of a large V-shaped trays placed at an angle of about 45 deg , and fixed alternately to opposite sides of the casing, one or more
the angles at the bottom of each alternate tray, opposit the connections to a series of cocks by which it i run off. In this way by the time the water reache the upper part of the vessel it is rendered quite clear, and is fit for immediate use. We understand that in actual practice this apparatus gives th most satisfactory results, the hardness of th water being reduced in many cases from 20 to 2 degreesata very trifing cost for chemical Owing to the peculiarity of the clarifyin apparatus clogging is impossible, and whil the space occupied by the plant is extremely small, the surface for clarification is very large. Permanent as well as temporary hardness is removed, a matter of consider able importance for steam boiler users, the coating of sulphate of lime which is often deposited from partially softened water, frequently gives more trouble than when the carbonate is also present

THE ANTWERP EXHIBITION.
In our last impression we gave some general particulars of the Société Cockerill's exhibits and a detailed account of an expe riment made to test the economical effi ciency of the engines of the steamship Concha in 1878. We now give similar in formation concerning the steamship Prince Albert de Belgique, built for the same ser vice as the Concha by the same firm engines of this ship by the same firm. The those illustrat ship are nearly identical wit exhibited at Antwerp. in our pages and will be found in this impression elevatio The Prince Albert de Belgique is a 242 vessel, and the of which we experiment, the particular table, took place during the accompanying werp to Dover, made this yen left Antwerp on Sund this year. The ship 3.10 in the on Sunday, the 1st March, a 3.10 in the afternoon, and reached Dover on Monday, the 2nd of March, at $8 \mathrm{a} . \mathrm{m}$. She is 267 ft . long between perpendiculars, 32 ft . 10 in beam, and 16 ft .5 in . deep. She was calculate to carry 2100 tons on a draught of 19 ft . 5in During the trial she had a cargo on board of 2240 tons, consisting of coal, rails, girders and sugar. Her displacement was 3500 tons Her draught forward was 18 ft . 6in., af 19 ft . 11 in .; mean draught, $19 \mathrm{ft} .2 \frac{1}{2} \mathrm{in}$. He compound engines are intended to develop 750 indicated horse-power at 65 revolutions vessels being used according to the size of the plant. The I The high-pressure cylinder is $33 \frac{1}{2} \mathrm{in}$. diameter, the low $\begin{aligned} & \text { water, entering the vessel at the bottom by means of a } \\ & \text { pipe connected with the funnel, is by this time charged }\end{aligned} \left\lvert\, \begin{aligned} & \text { pressure } 55 \mathrm{in} \text {., stroke } 3 \mathrm{ft} \text {. } 31 \mathrm{lin} \text {. The screw is four bladed } \\ & 14 \mathrm{ft} \text {. Tiameter and } 18 \mathrm{ft} \text {. pitch. Steam is supplied by }\end{aligned}\right.$

THE "STANHOPE" WATER PURIFIER AND SOFTENER.
with the solid particles of the precipitate. It is then, caused to flow past the trays, the motion as it passes during pair being first upwards and then downwards, two boilers 12 ft . long, with three furnaces in each boiler. The total heating surface is 3336 square feet ; the working pressure, 75 lb . This trip was made in 9 hours, which gives a mean speed of 9 knots, the distance run being 89.5 knots The \log confirmed this result. The sea wa a little rough, though the wind was light The performance of the vessel as a sea-boat left nothing to be desired.
The trial was caried out with great care. Unfortunately the fuel was bad, consisting of briquettes of indifferent quality. The fremen were inefficient, and the pressur weigh all the fuel, it was mensured in baskets The safety valves were not tight and steam was lost through theor, and some steam were the whole voyag quar of an hour durin the whole voyage. The average indicated power was 678 horses; with better fuel and stokers a higher speed could have been obtained, but this was not necessary, the ship already exceeding the conditions of the conract under which she was constructed. The total weight of fuel burned was 7624 kilogs. or a little over 7 tons, the boilers being unde steam for thirteen hours fifty minutes. Th consumption therefore was 813 kilogs. pe horse power, or 1779 lb . per I.H.P. per hour In this is to be included steam used for work ing the steering engine. This is really an admirable result, and it is particularly note worthy, because it was obtained with steam of moderate pressure and fuel of indifferent quality.
In the table on next page all the French measures are reduced to the nearest English measures without the use of small fractions; thus the cyinder pressures are correct within less than half a pound in all cases. This table and that published in our last impression deserve careful study, containing as they do a great deal of information on the relations which exist between speeds and pressures. It is worthy of notice that the pressure in the boilers and in the valve chest of the Prince Albert de Belgique were always so nearly alike that it has not been thought necessary to give the fraction expressing the difference.
If our readers will turn to the engraving of the piston valves of the great Russian war ship Tchesma, which we published last week on page 211, they will see that these are neither more or less than cylindrical Trick valves, as we stated at the time. We have received a letter concerning them from Mons. Bellefroid, the president of the Société Cockerill, in which he says, "The engines of the

Tchesma have a special feature which might escape super－ ficial observation．The screw engines we built for our cargo steamers－ 800 indicated horse－power，an example of
which we exhibit－have slide valves with a supplementary passage at the back，so as to afford a double admission for the steam as soon as the slide valve begins to uncover the port．This valve was devised almost simultaneously by Herr Trick，a German engineer，and Mr．Allen，of America． When we got out the designs for the engines of the Tchesma， we wished to introduce the Trick system，and we succeeded． It is sufficient to take the section of the Trick valve and cause it to revolve on its longitudinal axis to form a corps
de rotation．The engines of the Tchesma have accordingly been fitted with piston slide valves having a supplementary or Trick passage．It so happens that Mr．J．Thom，of Barrow－in－Furness，took out a patent on the 21st April， 1885，for exactly the same thing．The engines of the

Tchesma were erected in the Antwerp Exhibition in March and April of the present year．We did not attach sufficient importance to the improvement to patent it． However，we made the valve a year before hr．Thom patented it，and so we have here another instance of two Before taingly Before taking leave of the Societe Cockerill for the moment， we must express our sense of the courtesy shown us by this firm in placing all the information in their power at our disposal．The engines of the Tchesma they cannot for obvious reasons say much about．We would once more impress on our readers the extreme desirability，to say nothing more，of examining the Société Cockerill＇s exhibits without delay．Young engineers in particular can learn lessons in the Antwerp Exhibition which they may not have the chance of acquiring at other times，and this should not be missed．

Table of Observations made on the Working of the Engine and Boilers of the Steamship Prince Albert de Belgique，on a
Voyage from Antwerp to Dover，the 1st and 2nd of March，1885．

Time．		$\begin{gathered} \text { Pressure } \\ \text { in } \\ \text { engine. } \end{gathered}$	$\begin{aligned} & \text { Vacuum } \\ & \text { in } \\ & \text { inchos. } \end{aligned}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { revolutions } \\ \text { per } \\ \text { minute. } \end{gathered}$	$\begin{gathered} \text { Degree } \\ \text { of } \\ \text { admission. } \end{gathered}$	Average pressure．		Indicated horse－power．		
Hour．	Minutes．					$\begin{gathered} \text { Small } \\ \text { cylinder. } \end{gathered}$	$\begin{gathered} \text { Largé } \\ \text { cylinder. } \end{gathered}$	$\begin{aligned} & \text { Small } \\ & \text { cylinder. } \end{aligned}$	Large cylinder．	Total．
3 3	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\overline{66}$	26^{-7}	$5 \overline{58} 0$	$\sqrt{50}$	34．0	13．0	348	361	709
3	30	68	$26 \cdot 7$	60.0	＂	$34 \cdot 5$	13.5	364	382	746
3	45	67	$26^{7} 7$	59.0	＂	34.0	13.5	349	371	720
4	0	68	26.7	59.0	＂	34.0	$12 \cdot 5$	351	355	716
4	15	72	$26^{\circ} 0$	61.0	＂	35.5	13.5	386	384	770
4	30	68	26.0	60.0	＂	$34 \cdot 5$	12.5	355	357	712
4	45	68	$26^{\circ} 0$	60.0	＂	$34 \cdot 5$	$12 \cdot 5$	367	365	732
5	0	68	26.7	59.0	＂	34.5	$12 \cdot 5$	357	351	708
5	15	67	26.7	59.5	＂	34.5	$12 \cdot 5$	363	354	717
5	30	65	26.0 26	58.0 59.5	＂	34.0 35.0	11.5	346	317	663
5	50	－	－	－	\because		12.	369	346	10
6	0	68	26.3	59.5	${ }^{\frac{5}{6}}$	34.5	$12 \cdot 0$	360	350	710
6	15	65	$26 \cdot 5$	58.0	\％	$34 \cdot 5$	$11 \cdot 5$	348	321	669
6	30	70	26.5	$60^{\circ} 0$	＂	36.0	$12 \cdot 5$	381	361	742
6	45	68	$26 \cdot 3$	54.0	＂，	36.0	13.0	343	340	683
6 7	50	二	二	二	－	－	－	－	－	－
7	5	79	$26 \cdot 3$	$54 \cdot 0$	10	$30 \cdot 5$	11.5	290	295	585
7	15	72	$26 \cdot 3$	51.0	＂	$27 \cdot 0$	11.5	279	303	582
7	30	70	$26 \cdot 5$	53.5	＂，	28.0	11.5	270	293	563
7	35	－		－	\because	－	－		－	－
7	37	－	－	－	－	－	－	－	－	－
7	38	－	二	二	二	－	－	－	－	
7	42	$\stackrel{ }{3}$	－	－	－	－	－	－	二	－
7	44	吕	－	－	－	－	－	－	－	－
7	45		－	－	－	－	－	－	－	－
7	47	－	－	－	二	－	－	－	－	－
7	53	H	－	－	－	－	－	－	－	－
7	551		－	－	－	－	－	－		
10	30	－	－	－	－	－	－	－	－	－
10	32	－	－	－	－	－	－	－	－	－
10	35	$\stackrel{\square}{0}$	$\overline{-1}$	50.0						
10	45 0	62 56	$27 \cdot 1$ $27 \cdot 5$	59.0 58.0	15	$32 \cdot 0$ 29	$12 \cdot 5$ $10 \cdot 5$	338 300	355	603 597
11	15	57	27.5	${ }^{5} 9^{\circ} 0$	＂，	29.0	12.0	300	293	${ }_{6} 631$
11	30	56	27.5	$58 \cdot 0$	＂	29.0	$12^{\circ} 0$	303	317	620
11	45	56	$24 \cdot 8$	57.0	＂，	29.0	10.5	289	288	577
12	0	57	$26^{\circ} 0$	$57 \cdot 0$	＂	30.0	12.0	302	312	614
12	15	57	26.0	58.0	＂	29.0	11.0	298	305	603
12	30	64	$26^{\circ} 0$	60.0	＂	$32 \cdot 0$	12.0	343	340	683
12	45	64	$26^{\circ} 0$	$60 \cdot 0$	＂，	26.0	12.0	269	340	609
12	46	pilot	－	－	－	－	－	－	－	－
1	55 0	$\overline{66}$	25^{-0}	$\overline{60 \cdot 0}$	$\overline{8}$	$\overline{-7 \cdot 5}$	13．0	357	377	734
1	15	76	$25 \cdot 6$	$61 \cdot 5$	＂，	$37 \cdot 0$	$15 \cdot 0$	406	446	852
1.	30	66	25.6	60.0	＂	32.0	13.0	342	369	711
1	45	67	25.6	60.0	＂，	32.0	12.5	345	357	702
2	15	66	25.6	60.5	＂	32.0	12.0	349	347	696
2	45	69	26.0	61.5	＂	35.0	12.5	380	370	750
3	15	63	$26 \cdot 3$	59.0	＂	31.0	12.5	327	351	678
3	45	61	$26^{\circ} 0$	57.0	＂	$30^{\circ} 0$	11.0	302	304	606
	15	61	26.3	58.0	＂	$30^{\circ} 0$	12.0	308	317	625
4	45	61	$26 \cdot 3$	59.0	＂	30.0	11.0	315	315	630
5	15	62	26.3	59.0	＂	31.5	12.0	327	323	650
5	45	58	${ }^{25} 5.6$	57.0	＂	30.0	11.0	294	296	590
	15	58	25.6	57.0	＂	$28 \cdot 5$	10.5	286	288	574
6	45	72	$26^{\circ} 0$	61.5	＂，	34.0	13.0	370	378	748
7	15	70	$26^{\circ} 0$	61.0 61.5	＂	35.0	13.0	371	384	755
7	30	72	$26^{\circ} 0$	$61 \cdot 5$	＂	35.0	$13 \cdot 5$	377	399	776

THE INSTITUTION OF CIVIL ENGINEERS． Subjects for Papers，－Session 1885－6．
Tus Council of the Institution of Civil Engineers invite original communications on any of the subjects included in the following 1．Recent Experiments on the Strength of Materials．
2．Machines and Apparatus for testing Metals，and the Equip－ ment generally of Mechanical Laboratories． 3．The Thermic Properties of Metals commonly used in the Arts，
especially with respect to Conductivity and Diathermancy especially with
temperatures，
4．The manufacture，properties，and use of castings of Malleable Cast Iron and Cast Steel．
5 ．The Effect of Cold－hammering and Cold－rolling upon Iron＇and
Steel． Steel．
6．The Present Position of the Manufacture of Steel－its defects， and suggestions for its improvement．
7．The various Processes of
7．The various Processes of Tempering Steel，and their effects．
8．Modern Machine Tools and Workshop Appliances for the treatment of Heavy Forgings and Castings．
9．The Testing of Work do
10．Analyses of different types of Steam Engines as shown by Independent Testing．
11．The Production of Heating－gas from Coal．
12．The Production of Ammonia and other useful substances in
13．The heating of Steam Boilers with Producer－gas．
14．The Manufacture of Artificial Fuel from small Coal．
15．The Application of the Compound Principle to Locomotive and Portable Engines．
16．The Driving－axles of Locomotive Engines．
17．High－speed Engines for Dynamos and Launches，
19．Machine Guns．
20．On Built－up Crank Shafts for Marine Engines，and on the liability of crank and screw shafts to fracture．
21．The Structural and other 21．The Structural and other Defeots to which Iron and Steel 22．Recent Investigations on the Tides．
23．Descriptions of recent Graving Docks，Gridirons and Floats 24．Promenade and other Piers；with referenoe to the effect of
sea－water on wrought and cast iron structures，and the best means
of preserving the same．
25．Dredging Machinery for Small Harbours，and for Drainage
and Irrigation Canals．The Economical Construction and Operation of Railways i countries where small returns are expected．
27．Descriptions of recent Metallic Arch Bridges．
28．The Machinery and Labour－saving Appliances used in the
Execution of Public Works and Buildings． 29．The Ventilation of Sewers，with a Summary of Experiment as to the motion，pressure，\＆c．，of gas in sewers． 30．Filter Presses for Separating Solids from Fluids，particularly for the treatment of Sewage Sludge．
31．Explosions in Coal Mines；
31．Explosions in Coal Mines；their Causes，Warnings，and
Provention．
32．Winding Machinery and Balancing Apparatus for Mines，and the cost per ton of winding under different conditions and varying 33．Underground Haulage，especially on the application of com－ pressed air and of electrical power．
34．The Methods Employed in Securing Large and Irregular－
shaped Mineral Workings．Common Salt，including the Mining of Rock Salt and Brine Pumping．
36．Gold Quartz－crushing and Amalgamating Appliances，
87．The Manufacture and Desilverisation of Lead． 38．Appliances for the Rapid Shipment of Coals，with a com－ parison of different methods．
39．Electro－motors；their th
and power．
40．The Construction of Dynamo－electric Machines and their
Prime Movers．
41．The Working and Cost of the Treble and Double Wire
Systems of Distributing Currents for Electric Lighting．
42．Thermo－electric Batteries，and their Application to Electrio
Premiums Awarded．－Session 1884－85．
The Council of the Institution of Civil Engineers have awarded e following premiums ：－

For Papers Read and Discussed at the Ordinary Meetings．
1．A Watt Medal and a Telford Premium to Professor Henry

Selby Hele Shaw，Assoc．M．Inst．＂C．E．，for his paper on＂Me－
chanical Integrators，＂ 2．A George Stephenson Medal and a Telford Premium to William
Stroudley，M．Inst．C．E．，for his paper on＂The Construction of Locomonve A Telford Medal and a Telford Premium to Peter William
Willans，for his paper on＂Electrical Governors．＂ Willans，for his paper on＂Electrical Governors．＂
4．A Telford Premium to David Salmond Smart，for his paper 5．A Telford Premium to Andrew Jamieson，F．R．S．E．，Assoc． M．Inst．C．E．，for his paper，＂Electric Lighting for Steam
6．A Telford Premium to William Shelford，＊M．Inst．C．E．，for
his paper＂On Rivers Flowing into Tideless Seas，Illustrated by his paper＂On Ri
The special thanks of the Council were voted to their col－
leagues，Messrs．Benjamin Baker and John Wolfe Barry，for theires，Messrs．Benjamin Baker and John Wolfe Barry，for
their paper＂The Metropolitan and the Metropolitan District
Railways．＂ Railways．＂
For Papers Printed in the＇Proccedings without being Discussed． 1．A Telford Medal and a Telford Premium，to William George
Brounger，M．Inst．C．E．，for his paper on＂The Cape Government Brounger，
Railways，＂
2．A Telford Premium to Professor William Cawthorne Unwin，＊
B．Sc．，M．Inst．C．E．，for his paper，＂Experiments B．Sc．，M．Inst．C．E．，for his paper，＂Experiments on the Friction D．A Telford Premium to Thomas Androws，t F．R．S．E．，Assoc．
M．Inst．C．E．，for his paper on＂Corrosion of Metals during long Exposure in Sea－water．＂
4．A Telford Premium to John George Mair，\＃M．Inst．C．E．，
for his paper on for his paper on＂The Results of some Independent Engine 5．A Telford Premium to James Craig，M．Inst．C．E．，for his 6．A Telford Premium to Claude Wreas．Kiam Kinder，Assoc．M．
Inst．C．E．，for his paper＂Notes on Electric Blasting in China．＂

For Papers Read at the Supplemental Meetings of Students． 1．A Miller Prize to Frank Geere Howard，Stud．Inst．C．E．，for
his paper on＂Secondary Batteries．＂
2．A Miller Prize to Harley Hugh Dalrymple－Hay，Stud．Inst．
C．E．，for his paper on＂Trigonometrical Surveying．＂ C．E．，for his paper on＂Trigonometrical Surveying．＂
3．A Miller Prize to Frederick Wilfrid Scott Stokes，Stud Inst． 3．A Miller Prize to Frederick Wilfrid Scott Stokes，Stud Inst．
C．E．，for his paper on＂The Iron Bridges of the Hull and Barnsley Railway，Miller Prize to Henry Tudsbury Turner，Stud．Inst．C．E． for his paper on＂The Gauging of Flowing Water．＂ paper on＂The Blasting and Removal of Rock under Water，and the Construction of a Deep－water Quay at Blyth Harbour．
6．A Miller Prize to Sidney Richard Lowcock，Stud．Inst． 6．A Miller Prize to Sidney Richard Lowcock，Stud．Inst．C．E．，
for his paper on＂The Water Supply，Sewerage，and Sewage－
disposal Works at Wellington College， 7．A Miller Prize to Edward John Mines Davies，Wh．Sc．，Stud．
Inst．C．E．，for his paper on＂Heat Envines＂ Inst．C．E．，for his paper on＂Heat Engines．＂
8．A．Miller Prize to Frank Herber
8．A Miller Prize to Frank Herbert Hebblethwaite，Stud．Inst． C．E．，for his paper on＂The
Foreign Locomotive Engines．＂

South Kensington Museum，－Visitors during the week ending Sept．19th， 1885 ：－On Monday，Tuesday，and Saturday，free，from $10 \mathrm{a} . \mathrm{m}$ ．to 10 p．m．，Museum， 12,410 ；mercantile marine，Indian
section，and other collections， 2784 ．On Wednesday，Thursday section，and other collections， 2784 ．On Wednesday，Thursday，
and Friday，admission 6 d. ，from 10 a．m．to 6 p．m．，Museum， 1279 mercantile marine，Indian section，and other collections， 206 mercantile marine，Indian section，and other collections， 206.
Total，16，679．Average of corresponding week in former years，
18,352 ．Total from the opening of the Museum，24，309，468， 18，352．Total from the opening of the Museum，24，309，468．
Death or Mr．Walter W．Weldon．－Mr．Walter W．Weldon，
F．R．S．，Chevalier of the Legion of Honour－one of the five men， F．R．S．，Chevalier of the Legion of Honour－one of the five men，
and the only foreigner whom the French Société d＇Encouragement has deemed worthy of its＂grand medal，＂died on Sunday，at the age or inder，due，it is said，to over work．He went to Aberdeen a fow
disord
days previous to the meeting of the British Association，with a days previous to the meeting of the British Association，with a
view to attending the meetings，but he was unable to attend any of them，and only left Aberdeen early last week during a temporary improvement in his health．To him the country is indebted for
the process by which alone bleaching powder is now made．The the process by which alone bleaching powder is now made．The
peroxide of manganese employed to liberate chlorine from the hydrochloric acid obtained in the first step of the soda manufacture was formerly thrown away．By a very simple process Mr．Weldon
recovered from 90 to 95 per cent．of the manganese in a form recovered from 90 to 95 per cent．of the manganese in a form
available for renewed use，and thus saved nearly $f 6$ on every ton available for renewed use，and thus saved nearly $£ 6$ on every ton
of bleaching powder made，quadrupled the total manufacture， made the industrial world the richer by some three－quarters of a
million sterling per annum，and，as the French chemist，J，R． million sterling per annum，and，as the French chemist，J．R．
Dumas，publicly observed，
every yard of calico made in the world．＂No neet of paper and
No neme was better every yard of calico made in the world．＂No name was better
known among the practical chemists in England，France，and Germany．
The Repatr of Ironolads．－The Lords of the Admiralty have issued some important new instructions with reference to the
repair and refit of her Majesty＇s ships．The existing regulations repair and refit of her Majesty＇s ships．The existing regulations
enforcing the annual survey of ships in the dockyards are can－ celled，and triennial surveys substituted．A number of new
clauses are added，among which may be named the following：－ On a ship receiving orders to return to England to pay off，the commanding officer is to prepare，on the way home，full and
detailed statements of all defects known to exist in the ship，as detailed statements of all defects known to exist in the ship，as
well as of all alterations or additions he may have to suggest；and
these lists are to be sent in on her arrival at the port As son as possible after the ship＇s arrival，and before she comes into harbour to be paid off，a full power steam trial of at least one hour should be made，if practicable．The usual dock－
yard and Steam Reserve officers will attend to watch the yard and Steam beserviously furnished，if possible，with the lists of defects．Notice of the trial is to be given to the Admiralty．
The stores that remain on board are to be charged by the store The stores that remain on board are to be charged by the store－
keeper to the Captain of the Reserve，and the warrant officers＇and engineers＇store accounts are to be closed．All coal is to be removed from the ship．The tanks will be examined in place by
the dockyard officers，if practicable，and if found to be in good the dockyard officers，if practicable，and if found to be in good
condition should remain on board，unless required to be removed condition should remain on board，unless required to be removed
for the examination of the hull．The guns will be examined by the War Department，and the carriages by the War Department or removed for repairs，they are to remain on board．The machine guns and small－arms are to be returned to the Gun－wharf．The machinery is to be opened up for inspection，as laid down in the Steam Reserve instructions．A navigating officer，a chief engineer， and warrant officers will be appointed to the guardship of Reserve
for the ship before she pays off，in order that they for the ship before she pays off，in order that they may make
themselves acquainted with her condition，and be ready to take charge of the stores which remain in her．When ships in com mission come into the dockyard hands to have defects made good， only such defects as have been represented by the officers of the ship，or have been apparent to the examining officers，and which may be approved to be taken in hand，will be made good．No
special examination will be made in search of further defects． The examination of the hulls of ships in commission by the dock yard officers，which has hitherto been held annually，will in future take place only once in three years，the annual and quarterly ex－
amination by the officers of the ship being considered sufficient in amination by
the interval．

Has previously receivod Telford and Watt Medals．

+ Has previously roceived a Tolford Medal．
Has previoussly rocecived a Tolford Medal．

CONTRACTS OPEN-INDIAN STATE RAILWAY BRIDGES.

CONTRAOTS OPEN.

INDIAN STATE RAILWAYS (NAGPUR AND CHATISGARH RAILWAY), SFT. 6IN. GAUGE.-CONTRAOT FOR
STEL WORK, IRONWORK, \&c., FOR BRIDGES, SPANS OF 170 m
The Indian State Railways require tenders for the supply, con-
struction, and delivery in End struction, and delivery in England, at one or more of the ports
named in the tender, of the whole of the steel work and ironwork for six triangulated girder spans for openings of 170 ft. in the clear, including gll rivets, bolts, se., , required to complete the erection of
the bridges in India, together, with an allowance of 50 per cent, on the bridges in India, together with an allowance of 50 per cent. on
the net quantity of rivets, and 10 per cent. on the net equantity of the net tuantity of rivets, and 10 per ecan. on the net quantity of
bolts required. With each span are to be supplied 200 sleeper bolts reguired. With each span are to be supplied 200 sleeper
bolts, 490 dozen coach screws, gin. diameter, and one ton of service bolts and 10 owt. of ordinary platers' washers, to be selected by
the Inspector-General of Railway Stores for use in the erection of the inspector-Gcieral of Railway stores for use in the erection of
the work in India. With the whole six spans ten steel connecting plate are to be supplied for the bed plates. The timber work and permanent way are not included in the contract. The spans are The whole of the girder work
The whole of the rivets used throughout the work are to be of steel. The steel and wrought iron are to be well and cleanly rolled to the full sections shown on the drawings or in the specififation, and free
from scales, blisters, laminations, cracked edges, and defects of from seales, blisters, laminations, cracked edges, and defeets of
every sort, and the name of the maker, and the distinguishing every sort, and the name of the maker, and the distinguishing
number of the plate or bar, are to be rolled or stamped on every piece.
The stel and wrought iron must be of such strength and quality as to be equal to the following tensional strains, and to indicate
the following percentages of elongation and of contraction of the tested area at the point of fracture :-

Steel plates, either with or across the grai
angle, or flat bars, not less than
Or more than
Wrought fron, round and square bare, and flat
bars under fin wide
Wrought iron, angle and T bars and flat bars
6in. wide and upwards
Wrought iron plates
Wrought iron platos, across grain
Strips of steel, whether cut lengthwise or crosswise of the plate,
bar, or angle bar, heated to a low chery red and cooled in water
at a temperature of 82 deg at a temperature of 82 deg. Fah., must stand bending double round a curve of which the diameter is not more than three times the
thickness of the piece tested. In addition to this, angle and flat
nars must stand oars must stand the tests known at Lloyd's as the ram's horn testas. Tests for tensile strength are to be made from side and end shearings from every plate, and from at least one angle or flat bar from
every charge of steel. To guard against the occasional acceptance of brittle or dangerous steel, the manufacturer is to preserve a side and an end shearing from every plate, and an end shearing from
every flat bar and angle bar, in order that it may be tested by bending cold in the presence of the Inspector-General or his deputy. Each such shearing is to bear a stamped number corre-
sponding to the plate sponding to the plate or bar from which it was taken. This
number is to be stamped by the contractor to the satisfaction of the Inspector-General. It is to be understood that the Inspector-
General will insist on this inspection with regard to every item, Genera will insist on this inspection with regard to every item,
and no piece of steel will be permitted to be used in the work until its corresponding marked shearings are forthcoming, and pronounced tobe satisfactory by the Inspector-General or his deputy.
The steel used for rivets must be of a special quality softand ductile, The steel used for rivets must be of a special quality, soft and ductile,
and must stand bending double, both hot and cold, and also flatand must stand bending doubbe, both hot and coid, and also fats
tening down from the head without thowing crack or other defets. for bending must be carefully annealed after bending, to the satis-
faction of the Inspector-General, All cast iron must be from a good mixture of such strength that a bar of the same, 3 ft . 6 in . long shall not break with a less weight than 30 cwt. applied in the middle. The tests are to be conducted by some person to be approved by the Inspector-General. The cost of the tests is to be
borne as provided for in the conditions of contract. The steel used for the rollers is to be made from ingots of Bessemer steel cast from pigs of the best description for the purpose by manufacturer and free from defects of every kind. No material is to be used which, in the opinion of the Inspector-General, falls short of the
tests and other requirements of the specification, and no iron of tests and other requirements of the specification, and no iron of
foreign manufacture is to be used throughout the contract. foreign manufacture is to be used throughout the contract.
observed in every part of the work, a main object of the designs bein to facilitate as much as possible the erection of the cirders in Indi by perfection of workmanship in this country. All corresponding parts of all spans must be made exactly similar and interchangeable. angle bars to tha full widths and weights per foot shown on the drawings. All angle bars which do not hold their full widths and weights from end to end, or which have rough, jagged, or imperangle bars must be carefully levelled and straightened-the angle bars by pressure, and not by hammering-before and after they
are drilled. All edges of all plates, and the ends of all bar are drilled. All edges of all plates, and the ends of all bars
of every kind must be planed true to dimensions, or, where planing is impossible, they must be dressed off fair with hammer, chisel, and any where throughout the work. Throughout the work all holes are to be drilled, but the contractor may, if he think proper, first punch a smaller hole of such diameter in each case as to leave at least punched hole intended to be enlarged to lin. must not exceed, a the largest end, 3 in. diameter. The holes are to be slightly arriced
on the side next the rivet head. All steel or ironwork intended to be rivetted or bolted together must be absolutely in contact ove the whole surface. Although the word rivets may be used on the drawings, the rivet holes are to be made to the sizes figured. Al rivetting is to be done by hydraulic or steam machines of approved the head be more than 3 in. less than the diameter of the under is intended to fill. The rivet steel must be of such of the hole it rivet, when inserted hot, shall be a tight fit in the hole. All loose rivets, and rivets with cracked, badly formed, or deficient heads, must be cut out and replaced by others. Rivets must also be cut out when required for the examination of the work. All rivets are
to be cup-headed at each end, and the heads are to contain not less than $1 \frac{1}{4}$ diameters of the rivet. The gussets and cover plates must be shaped to the full sizes shown on the drawings, and any plate or shown on the drawings will be rejected. Wherever necessary fo the division of the work for transport, the rivets are to be left out,
but the holes, except those hereinafter mentioned, must in all cut the holes, except forse hereinafter mentioned, must in all including 50 per cent, extra, must be sent with the work. All with holes at the intersections of the diagonals with the struts an drilled in India after the girders are erected. In all cover plate the fibre of the material must run in the direction of the length of the span. The ends of all plates, cc., to be rivetted in India must whole of the meeting surfaces, to the true radt accuracy over the specified camber, and any joint which fails to form a perfect butt all over will involve the rejection of the plates and bars which cannot be made to fit without being shortened. Where cover plates are used to connect flanged plates of different thicknesses, so much of the covers must be planed off as will make them fit fairly over the be left in the corner, as shown on the drawing. are to be built on the blocks, with a camber of 31 in main girder a circle. The underside of all bearing plates must be perfectly flat, and the rivets countersunk. All bolts are to be screwed to Whitworth's standard thread, and all nuts must fit too tightly to be turned by hand. The heads and nuts of all timber boltsexcept where otherwise shown on the drawings-and service bolts head and body of all bolts are to be forged out of one piece of rod or
bar iron. All bolts are to be screwed for a length of three diameters. The rollers are to be of Bessemer steel. The bed-plates,
saddles, and knuckles are to be of cast iron, and the truck frames of forged wrought iron. The bed-plates, saddles, and knuckles are to be planed on both top and bottom. The rollers are to be turned accurately to the same diameter. The knuckles are to be planed and bored, and if the Inspector-General think necessary, ground to a true bearing surface. The saddles are to be planed to
take the bearing plates of the girders, Generally, in connection take the bearing plates of the girders. Generally, in connection
with the roller and bearing gear, all meeting surfaces, including with the roller and bearing gear, all meeting surfaces, including
the sides of the roller frames, are to be machined, all bolt holes are to be drilled, and all bolts are to be turned and fitted, and the whole got up in a style of first-class machine work. The roller are to be turned all over, and brought to a smooth surface, and accurately to the same diameter, and the roller trucks when comlength to test their truth. Each span is to be temporarily erected complete in every respect, so that accuracy of fit and perfection of workmanship may be assured. When erected in the contractor's yard, all the holes
which are left to be rivetted in India must be filled at one and the
same time by temporary bolts, tin. less in diameter than the same time by temporary bolts, 1 in. less in diameter than the
holes which they fill, firmly screwed or keyed up. It will not b sufficient that bolts shall be placed in a certain number of holes only at a time, nor will it be sufficient that only such a number of olts shall be inserted as may temporarily hold the span together The whole of the steel and iron work, with the exception of the olts, nuts, and rivets, is to be scraped perfectly free from rust oil. It is afterwards to be painted with two coats of good oil. It is afterwards to be painted with two coats of good oil
paint, the first being of red lead and the second of colours to be specially approved by the Inspector-General. All machined sur faces, including turned bolts, are to be coated with white lead and tallow. All bolts, coach screws, and rivets are to be heated to th emperature of melted lead, and then dipped into boiled linseed with paint, and marked with the punch, for guidance in stencilled in India, and every piece or bundle of steel or iron is to be similarly marked, and all packing cases branded, with such shipping mark as the Inspector-General may require. All parts of the work are to be stamped with the letters "I. S. R." A neat casting bearing he name of the manufacturer, with place and date of manufac ture, is to be bolted conspicuously on each main girder.
The top and bottom booms of the main girders are ent out to India in six lengths rivetted up complete. each to be and end pillars of the main girders are to be sent out rivetted up complete. The cross girders and the end girders are to be sent out ivetted up complete. The rail and roadway girders and the curb are to be divided as shown on the drawings, each length being ivetted up complete. The ends of the various sections of the
girders and curbs are to be sufficiently protected by timber chocks orders and curbs are to be sufficiently protected by timber chocks
or angle irons bolted or rivetted to them. The ends of the end pillars and booms, and generally all protecting plates or angle bars, are to be kept in shape by timber, plates, or angle irons, bolted to them, as may be directed by the Inspector-General. The planed surfaces of the bed plates and knuckles are to be protected by alanks bolted to them. All straight bracing bars and angle bars, 2 in . square, are to be sent out in convenient bundles temporarily ivetted or bolted together, or bound with rod iron, as may be directed by the Inspector-General. The corrugated floor plates may be sent out loose. All bolts, nuts, and washers, and all rivets equired for erection in India, including 50 per cent. extra, al coach screws, all plates under 12 in , square, and generally such
small articles as may be selected by the Inspector-General, are to e packed in strong cases, weighing, when full, not more than cowt. The cases are to be made of 1 tin. deal boards, with elm ends, nailed with $3 \frac{1}{2} \mathrm{in}$. wire nails, and strengthened by battens nd the whole made secure for transit to India. The cost of all oiling, painting, temporary erection, marking, packing, and Fery is to be included in the price named in the tender.
For the convenience of the Inspector-General, a statement of ppended her of iron and steel required has been prepared and is nspector-General, nor neither the Secretary of State nor the their behalf, will be responsible ior the accuracy of these quantities, and if the contractor make as he will not be entitled to make any claim or demand, or raise
any question whatsoever, on account of any errors, miscalculations in, or misunderstanding of the said quantities. The contracto will not be paid for any excess of weight due to the steel or iron having been rolled thicker than specified or shown on the drawings,
but should the weights fall below the estimate, either a deduction will be made from the contract amount equivalent to the deficiency, or the iron will be rejected, at the option of the Secretary of State, The contractor is to supply, without charge, seven sets of neatly executed hand-made tracings on cloth of the spans as constructed drawn to the same scale as the contract plans, They must be fully
dimensioned and contain all erection and shipping marks, notification as to the colour the bridge has been painted, the name of the manufacturer, and any alterations from the contract drawings which may have been made in carrying out the work. The tracing must not exceed 25 in . in width, and must not be folded in any way, but be rolled on a wooden roller. The first set of thes tracings must be submitted to the Inspector-General for approva
before the rest are proceeded with. The contractor is also to supply twenty large well-executed unmounted photographs of the spans as erected, taken from two points of view, and showing the erection marks very clearly.
Bill of Supposed Quantities in One Span of 170ft.-Steel in Girder

No. 10 steel connecting plates-total number roquirco for six spang
 Th

Tenders, addressed to the Secretary of State for India in Council, hin the words "Tender for Steelwork, \&c., for Bridges," on the beforo 2 p.m. on Tuesday, October 6th. If delivered by hand, the are to be placed in a box provided for that purpose in the Store Department.

LETTERS TO THE EDITOR

[We do not hold ourselves responsible for the opinions of our
correspondents.]
invention of the hot blast.
Sir, - For the last thirty years I have read The Enginker with ncreasing interest and pleasure, but never perhaps with greater pleasure than on reading of the characteristic and kindly welcome
fiven to the members of the Iron and Steel Institute at "Auld Carron Side," the birthplace of so much that is good and great in onnection with the iron history of Scotland, if not of the world.
I should esteem as a favour the insertion of the following in ext issue:-In Dr. Percy's address I observe that the invention of the hot blast is imputed to Mr. James Beaumont Neilson. Now, that gentleman may have been the inventor of the application of the hot blast to the smelting of iron, but-and 1 speak from an
intimate knowledge of the case-the idea of the hot blast itself did intimate knowledge of the case-the idea of the hot blast itself dia not originate with him. Many years before Mr. Neilsons applica Carron a country blacksmith's shop. The smith himself was known far and wide by reason of his talent and mechanical ingenuity. His smithy was full of curious contrivances for reducing or aiding labour, while in the every day work of his forge he used a hot blast. The man of whom I am speaking was John Buchan, and his hot blast was obtained by placing coils of iron
tubing immediately above the heat and flame of his forge riving the blast from the ordinary bellows through these coils to the fire. He was thus enabled to get a heat in much less time on a larger piece of iron, and more uniformly soft and mellow for welding than by the common method. In those days this proved o be a desideratum which brought grist to his mill from all parts in repairs to the anchors, \&c., of the smacks plying between the distilleries around, and it was not till after Mr. Neilson had paid a risit to "Johnnie's shop" that the invention of the hot blast was siven to the world.
This was well known in the country round at the time, but poor Johnnie had neither the means nor the inclination to establish his claims, though the members of his family have ever been, and are
still, jealous of securing to their ingenious relative the honour of his invention among his many others
His bellows were driven by a condensing engine, the cylinders of which once formed part of an old ship's pump chamber, supporte upon four uprights of wrought iron, fxed at the ends with lead into a block of natrve sandstone. An old Carron tea-kettle served
for the hot well. Steam was applied to the underside of the piston only, and everything made of wronght iron save the tea-kettle. only, and everything made of wronght iron save the tea-kettle.
This engine did duty for many a day at Carron side, and its
remains may still be viewed at Grangemouth, in the possession of its inventor's namesake, a worthy scion of the family. John Buchan was also one of the "canny chields" who were Forth and Clyde Canal without the aid of sails, horses, or an other visible motor. He likewise constructed an iron boat, the propeling mechanism of which was modelled apon the aotion of the swan's feet as they paddled past his shop up and down the Carron. Indeed, the vat the products of this teeming brain. His works are to be heard of and looked at still throughout the country side. Such was the renown of the simple country blacksmith, the inventor of the hot blast-John Buchan.
As a proof of his genius, I enclose, with my card, a copy of a
letter writen to him in 1821 by one of his supporters.
September 21st.
an Old Carronade
Copy of a Letter, sent to John Buchan, Blacksmith, near Carron, concerning his Iron Ploughs.
Dear JoHn, my Plough is come to hand And shall be paid upos demand.
And the For my coarso Cotters
But Lord, man, had you seen the stee
Of men and boys come to see'r!
The very auld wives came to speer
And Blacksmiths measurdat an her gear $\begin{gathered}\text { Beam, stilt, and Cuttor, }\end{gathered}$
But let them use their utmost powo
And stand, and stare, and ggapo, and glour,
In end the'll spit and gio it
Her every joint is so exact,
And then so strong!-yet she may
But still, altho man san to to wral
The very brutes that yooket at'er.
shrown sae saucy since they gat'er,
They will not stop to mak' their water,
And nelbo At head or en
And out σ^{\prime} ken! $!$
As sure as night brings on the morn,
As sure as brutes wear hoof and horn,
As suro I ll grow mair bear and corn,
And laugh the neibour Carles straw ;
Baith
Ano and
An
Your arty works in Iron and steol
And then the Iron Spinnung Whicel

Your Iron-Works aro turn'd sae rifo,
That shou'd you still improve thro, life,
That yo will makil an to seon ITGUE
But silk hard hokk shall not bo thine,
You'll kot a Wifo mair to our min',

TII Si'o my warran',
That yo shal g got the bonniost quean
That stops by ARrRos.
But dinn tig wi' ilk light hizzic
That wi' daft duds thoir heads aro dizzio,
For wi' sic sort tho De'll's ay bizzie
To got you nicket:
Instead thon of od deont Lizzaie,
You'vo déilbelicket.
But you that studies stucko brains,
And overy other, ill that tatain
The human life,
It will not cost youm muackifo, pains
Give my kind love to your Mamma
And to your Sisters nno and n',
And to your Love, tho far awa'

I am yours, tho B. P

P.S. - Now, Jounsy, if it be your will, Step oro the gato to Munat Mat Gi'o my kind wishos to my whit
 Step or thn gato to Mungat Milt, Git my kind wishos ny Wrut And, or yo leavo that,
 I hopo ho'll tront yo wir agil

Scottsmill, the 19th Jan., 1821.
Yours, William Lillie.

block signalling.

Sri,--Before proceeding to discuss the invention of block signalling on rail ways it is necessary to define what is meant by the expression. Your correspondent, Mr. Hugh Brown, who writes in your last issue, seems to regard the system of maintaining a con-
stant distance between trains travelling in the same direction on the same line of rails as the "block system." This idea must have occurred to many persons at a very early period in railway history. In the Mechanic's Magazine for February 22nd, 1840, p. 372, Mr. W. J. Curtis proposes to place a series of signal posts at short intervals along the line, for the purpose of giving warning of an
approaching train. He also shows a modification why which the spranas may be worked by the train itself. Supposing a, b, and 0 to represent three successive signals, he says:-"The engine in passing a is made to open or show the signal at δ; on arriving at δ, to shat a and open 0 , and so on, so that it exhibits the signal a mile before it and a mile behind it. Thus, a second train must on no account pass a whilst the signal remains on, until the train given time-say, three minutes-if an engine on arriving at a, and after waiting or going very slowly, the signal does not shut off, the engineman must presume that either some permanent cause of deranged has happened on the line or that the apparatus is arrives at the nether case he must go on very cautiously until he invention in 1838, N. No post. ${ }^{2}$, urtis took out a patent for his description of the mechanism for operating the signals, the importance of blocking not being insisted upon.
In 1841 Ohas. Berwiok Curtis, whose relationship with W. J. Curtis 1 am unable to determine, took out a patent for self-acting
railway signals-No. 8803 -the distinguishing character of which was that at every time when a train travels along that part of the railway where any suoh self-acting apparatus is situated, so as to
pass by that apparatus, the same will exhibit a simgn limmediately on the said train so passing by such appatus, and will continue to exhibit this said signal without alteration in the appearance thereof so long as there will not have been sufficient time for the said train to have advanced far enough along the line beyond the said apparatus topermit of any succeeding train to follow after the said first-mentioned train; and the signal so exhibited will give
information to the driver of any such succeeding train which may
happen to come up in sight of the apparatus that he is to stop and signal was taken off by an automatic arrangement. Mr, Saxby' patent of 1856 for working the points and signals in conjunction is well known. September 23rd.
Sir, -There appears to be some mystery respecting the inventor of the block system of signalling. I have examined the patent first signals in rear of trains; date of patent 15th July, 1863. The principle of Funnell's system is to indicate space and time fo passing trains. Thus, the train on passing the first signal post raises the signal arm to danger, and in passing the second signal
post also raises the signal arm to danger ; but at the same time releases the signal arm of the first signal post to an oblique position; and at an interval of three minutes the signal arm falls to vertical position and displays a white light at night.
Lhittles system of signaling was pubisished 29th December, 1865 The principle of following tring Thus, the an adequate interval first signal post raises the signal arm to danger, and in passing the second signal post raises the signal arm to danger, and in passin the third signal post would raise the signal arm to danger, but a the same time would lower the signal arm of the first signal post to line clear by electricity or equivalent, so that there would alway be at least the space bedcen dwo signal posts for the drivers to unless the signals were out of order
The Board of Trade memorandum of requirements is :-(1) The requisite apparatus should be provided at the period of inspec tion for insuring an adequate interval of space between following trains. (2) Home signals and distant signals for each direction should be suppied ased either for the arrival or for the departure of trains. With Funnell's and Little's systems of signals they were, of course, worked automatically, as in those days railway companies would not think of fitting up signal cabins for controlling the traffic. Funnell's system, I believe, failed on the Brighton Railway over twenty years ago in a fog. The first train having
broken down after passing a signal post, the driver of the second train was of course, unable to see the signal till close to the ponst, and could not pull up in time to prevent a collision. I then altered the system of signalling, so that there would always be an empty section between trains.
London, E., September 23rd Ohristopher J. Littie, M.S.A.

the continuous brakes return.

SIR,-The Continuous Brakes Return-c. 4565 -for the first half of the present year has just been issued, but, as upon many previous occasions, the information orsect of the adoption of any
that there is no immedial system; it is, however, satisfactory that the brakes recently fitted are, or are said to be, automatic in their action. of stock fitted and The following table shows the total amount of stock fitted and unfitted on the 30th June, 1885 :-

	$\begin{gathered} \text { Enyines } \\ \text { fitted with } \\ \text { brakes. } \end{gathered}$	Encines fitted with apparatus for working the brakes.	$\begin{gathered} \text { Carriages, } \\ \text { do, fitted } \\ \text { with frakes. } \end{gathered}$	
Total amount of stock with brakes which $\underset{\text { appear to comply conditions }}{ }$				
Board of Trade fittod with frakes which do not comply	2726 1190	670 626	20,086 13,274	4104 3388
Totals fitted	5212		40,852	
continuous brako ..	${ }^{1705}$		10,707	
Total passonger roll ing stock therefor	6977		51,559	

The above amount of fitted rolling stock is provided with brake as follows, exclusive of those vehicles which have through pipes \&o., only

Namo of brake.	Engines fittod vith brakes.	$\left\lvert\, \begin{gathered}\text { Engines fitted } \\ \text { with a ppara- } \\ \text { tus for }\end{gathered}\right.$ work'g brak 579	Vohicles fitted with brakes.
Automatio vacuum	${ }^{63}$	579	6395
	573		
steel-McInnes..			
Westinghouse automatio	${ }^{1434}$	89	0,795
Clark and Werb's chanin	t85	-	3922
Wilkin and Clark's chain			
	-	-	2164
wall's	-	-	20
W. P. Smith's			
${ }_{\text {Smith's vacuum }}^{\substack{\text { Smoum (Webbs) } \\ \text { Vin }}}$	1142	89 637	${ }_{1878}^{5650}$
Westinghouse prossuro ${ }^{\circ}$	- 48		350
Total	3916	1296	33,360

*These engines aro placed under the wrong heading, they having only
steam brakes and "apparatus for working" the vacuum brake. \pm Eighty-five engines on the North London are e ecorded in the wrong
These totals do not include 129 goods engines on the NorthEastern Railway fitted with the Westinghouse brake. In conse quence of the different systems used by companies working il
connection, it has been necesary to fit no less than 784 vehicle with double apparatus, but they are, of course, only included once in the above totals.
The following table shows the amount of rolling stock fitted with two complete systems of brakes, so that both act on the sam blocks:-

N.E.	Tenengines,	Westinghouse automatic
G. W	Vehiclos. 73	
West Const J. S. Caledonian	275 15	Westinghouse automatic and
L, and N. W.	${ }^{68}$	
Midland S. J.	85	Westinghouse automatic-auton
Midland	114	
G. and S. W.		" "
Enst Coast Joint Stock I.	89	Westinghouse automatic-Smith's
N.E. ${ }^{\text {N. }}$... $\quad .$.	${ }_{13}^{44}$	Westinghouseautomatic \& Midland" ${ }^{\prime \prime}$
N.E.	8	Westinghouse automatic \& L. N.W. v
Total	784	

and S. W., number not given.
Fifty-one engines on the North-Eastern Railway are also fitted with appliances for working two brakes, and a very large number vehicles have two, or even three, kinds of connecting pipes.
vehicles which were fitted with each system during the half-year
ending 30th June, 1885:-

	Engines.	Vehicles.
Westinghouse automatic	90	${ }^{586} 6^{\circ}$
	${ }_{109}^{64}$	${ }_{491}^{333}$
smith's vacuum ${ }^{\text {a }}$..	70	224
Vacuum, L. \& N. W.	4	${ }_{952}^{69}$
	=	6
Chain brake	4	

satisfactory; the total stock fitted shows but a mall increase ; many of the brakes fitted are inefticient; for instanae, the " "leak-
off" and the simple vacuum, and in the case of the London and North-Western vacuum, the large nominal increase is not progress,
but simply the change of brakes from the chain to the vacuum. but simply the change of brakes from the chain to the eacuum,
To remove one rake and fita another which does not fulfil the Board of Trade conditions is but a use less was
still further alteration must ultimately be made.
A comparison of the two last Board of Trade A comparison of the two last Board of Trade returns shows that
during the half-year the undermentioned brakes were removed or
changed :-

Brake.	Railway.	Engines.	$\begin{gathered} \text { Vehicles } \\ \text { with brakes. } \end{gathered}$	$\begin{gathered} \text { Vehicles } \\ \text { with chains, } \\ \text { pipes, \&c. } \end{gathered}$
Clark-Webb chain Clark's chain Fay's Fay and Newall. Smith's vacuum ditto	L. \& N. W Belfast C L. and Y . G. E. Taff V.	$\frac{2}{\square}$	$\begin{gathered} 761 \\ \hline 9 \\ 5 \\ 83 \\ 19 \end{gathered}$	$\begin{aligned} & \frac{301}{2} \\ & \frac{12}{12} \end{aligned}$

The fact that in six months the companies should take off such a large number of inefficient brakes shows the absurdity of money
having eere been thrown away upon fitting them. Out of a total
of 6977 engines and 51,559 vehicles, only 2726 engines and 20,086 vehicles have brakes which even "a apear,"," to fulifil the conditions,
and, to quote the words of the return,", "some of the brakes but
very imperfectly fulfil that designation." The most unsatisfactory part of the return is again that portion relating to the "failures." The information furnisised is in many casess incorrect, and in in some
absolutely false. It is a well-known fact-in support of which I absolutely false. It is a well-known fact-in support of which I
should be happy to furnish ample evidence - that there have been
numbers of failures, especially numbers of failures, especially upon the Midland Railway, yet
under the head of failures or partial failures the word nil is
recorded. Such a return is clearly misleading recorded. Such a return is clearly misleading, especially when it
is remembered that during the six months in question the acoident
at Swadincote occurred. Taking the figures as they stand, the following details can be
obtained. No case is recorded under Olass 1 of actual failure when obtained. No case is recorded under Class 1 of aetual failure when
required in case of an aciont to a trian, or a collision between
trains being imminent. Under Class 2 , fallure to act under orditrains being imminent, Under Class 2, in
nary circumstances, the following are given:

	Railway.	Class 1.	Class 2.	
Smith's vacuum	cis	Nil	5	
", ",.$:$. $2 . .:$.:	L. C. ${ }^{\text {G. }}$ D.	",	$\stackrel{22}{2}$	
", ". $\quad .$.		"	,	
", ", ..	Mid.	",	${ }_{1}^{4}$	
". \quad. $\quad . .8$	N. E.	"	$\frac{1}{8}$	
"., ", ..	D. W. W. of I.	"		
" "	G. B. W. of I.	"	$\stackrel{2}{-}$	
Newall ..	L. \& Y.	"	$\stackrel{1}{1}$	
Westinghouso automatic..	G. E.	"	1	
Smith's sutomatic vacuum	L. es S. W.		$\frac{1}{1}$	2
			-	
Total ..				

The Great Southern and Western Company of Ireland also
report a case under the wrong heading, in which Smith's vacuum report case under the wrong heading, in wid
pip became uncoupled, and a train ran 100 yards past thimerick
Junction station. Junction station. From these figures it wif be seen that non-
automatio brakes failed to act no less than fifty times in running
$22,072,882$ miles, whereas automatic brakes only have three cases in 31,573,582 miles. Now, with reference to these three instances, one is a neglect of the coupler when attaching the engine, another
was a defective washer which affected the engine wheels alone, and
the third exphaind cose, the thain vacuum pipe broke, but it is is not statec
whether the train overran Reading station delays are recorded; those relating to automatic brakes, however
are the best possible proof that they are in proper working order, and the fact that good automatic brakes will not permita a train to be run
with a brake out of order is not a defect, but the greatest proof of It would be of the greatest advantage if the returns con
tained a summary showing each incident under one of the three heads:-(1) Failure in case of emergency; (2) foilure under
ordinary circumstances; and (3) cases of delay; clearly showing
if the ordinary circumstances; and
if the failure was due to defective cases of material or the the fallt of of com
panies servante. All instance in panies' servants. Als instances in which continuous brakes avo
or mitigated accidents should also be recorded in the returns.

Hon. Mem. Amalgamated Soc. Railv,
40 , Saxe Coburg-street, Leicester, September 18th.

BRITISH ASSOCIATION AT ABERDEEN.

The following address was delivered in the Mechanical Science
Scotion by Mr. B. Baker, M.I.C.E., president of the scction:Scetion by Mr. B. Baker, M.I.C.E., president of the section :-
Two hundred and fifty-seven presidential addresses of one kind and another have been delivered at meetings of the British Asso
ciation since the members last mustered at Aberdeens hardly say that the candid friend who informed me of this interesting fact most effectually dispelled any illusion 1 may have
entertained as to the possibility of preparing an address of sumficient
novelty and suggestiveness to be worthy of your adtention. I labour novelty and suggestiveness to be worthy of your attention. Tabour
under a double disadvantage-firstly, that only two addresses inter vene between the presentone and that of my partner, Mr. John Fow-
ler, and secondly, that within the same period I have read before this getcond two somewhat lengthy papers on the work which is at pre-
sent chiefly engaving the attention of Mr. Fowler and myself-the sent chiefly engaging
great Forth Bridge.
Although for the reasons, aforesaid I am conscious that my
ndress may fail in novelty, I cannot honestly yrofess to feel a
differlty in frepaing difficulty in preparing an address of some kind, for the subjeets
embraced under the head of "mechanical science" are so inexhaustible that even the youngest student might safely accept the responsibility of speaking for an hour on some of them. Professor
Rankine, addressing you thirty years ago, said it was well underRankine, addressing you thirty years ago, said it was well under-
stood that questions of pure or abstract mechanics form no
part of the subjects deate with in this setion With cha-
racteristic elearness of conception and precision of language racteristic olearness of conception and precision of language,
he told you what the term "mechanical science" meant, and,
after thirty years interval, his words may be recalled with
advantage to every one proposing to prepare an advantage to every one proposing to prepare an address or report
for this section: ""Mechanical gcience," said Professor Rankine, "enables its possessor to plan a structure or machine for a given purpose with out the necessity of copying some existent example;
to compute the theoretical limit of the strength and stability of a
structure or the structure or the efficiency of a machine of a particular kind; to
ascertain how far an actual structure or machine fails to attain
the ascertain how far an actual structure or machine fails to attain
that limit, and to discover the cause and the remedy of such short coming; to determine to what extent, in laying down principles for practical use, it is advantageous for the sake of simplicity to
deviate from the in the deviate from the exactness required by pure science, and to jo judge
how far an existing practical rule is founded on reason, how far on how far an existing practical rule is founded on reason, how far on
custom, and how far on error." There is thus an ample text for many discourses, but, as I am not writing a treatise on engineering, at present to a particular case of the branch of mechanical science referred to in the last clause of Professor Rankine's definition, and will ask you to consider how far the existing practical rules
respecting the strength of metallic bridges are "founded on reason respeoting the strength of metallic bridges are "founded on reason,
how far how far on custom, and how far on error.
The first question obviously is-
engineers and Government departments at the present time? by it is one not easily answered. I have for some time past been receiving communications from leading continental and American engineers asking me what is my practice as regards the admissible intensity of stress on iron and steel bridges, and in replying I have
invited similar communications from themselves. As a result 1 am able to say that at the present time absolute chaos prevails. any agreement respecting the rebuilding of the structure. The variance in the strength of existing bridges is such as to be apparent
to the educated eye without any calculation. If the wheels of a to the educated eye without any calculation. If the wheels of a
miniature brougham were fitted to a heavy cart, the incident would excite the derision even of our street boys, and yet equal want of reason and method are to be found in hundreds of bridges in al
countries. It is an open seceret that nearly all the companies are strengthening their bridges, and necessarily so, for exceeded by 250 per cent. that considered admissible by leading American and German bridge buiders in similar structures.
In the case of old bridges the variance in strength is often partly due to errors in hypothesis and miscalculation of stresses. In the present day engineers of all countries are in accord as to the
principles of estimating the magnitude of the stresses on the different members of a strucuture, but not so in in proporsersoning the the
members to resist those stresses. The practical result is that a bridge which would be passed by the Eng Enish Roard of Trade
would require to be strengthened 5 per cent. in some part 60 per cent. in others before it would ber eant. in some parted by the German
Government
 that in our own and some other countries many engineers still per-
sistently ignore the fact that a bar of iron may be broken in two ways, namely, by the single application of a heavy stress or by the muscles have often been likened to a bar of iron, but if "fatigue" be in question, the simile is very wide of the truth. Intermitten action, the alternative pull and thrust of the rower, or of the
labourer turning a winch, is what the muscle likes and the bar of ron abhors. Troopers dismount to rest their horses, but to
reliciove bar of iron temporarily of load only serves to fotigue it
Half a century ago Briif waite correctly attributed the failu some girders, acrrying a large brewery vat, to the vessel being
sometimes full and sometimes empty although imperceptibly slowes and why, the repeaty fred deflection,
drom veroriorating the meta, until, in the course of yeration, deteriorating the metal, until, in the course of years, the girders
broke. These girders were of cast iron, but it was equally well known that wrought iron was similarly affected, for in 1842 Nasmyth called strain" "in axles rendered them weak and brittle, and suggested annealing as a remedy, he having found that an axle which would
snap with one blow when worn would bear eighteen blows when
new or after being annealed. So important a matter as the action of intermittent stresses could not escape the attention of the
Royyal Commissioners appointed in 1894 to consider the application
of iron to railway structures, and some significant and conclusive experiments were made by Captain Douglas Dalton and others. Cast iron bars 3in, square and 13ft. Gin, span between the
supports were deflected, both by the slow action of a cam and the percussive action of a swinging pendulum weight. When the
deflection was that due to one-third of the breaking weight, about deflection was that due to one-third of the breaking weight, about
50,000 successive bendings by the oam broke one of the bars, and tion was increased from one.third to one-half, about 500 applica
tions of the cam and 100 blows sufficed to rupture two of the specimens. Slow-moving weights on bars and on a small wrough by the experimenters at the time was that "iron bars scarcely without injury, hence the prudence of always making weight
wapable of bearing six times the greatest weight that could be laid
caper

upon them.

Although these experiments were entirely confirmatory of al previous experience, they would appear to have little influence later, in a communication to this section, said that opinions weere
still change of load which many wrought iron structures undergo has any permanent effect upon their ultimate powers of resistance. To
assist in settling the question he communicated to the Association the results of some experiments carried out by himself and Pro Cessor Unwin on a little rivetted girder, 20itt. span and 1 Gin. deep
Once more the same important but disregarded facts were enforced on the attention of engineers. About 5000 applications of a load equal to four-tenths of the calculated breaking load, fractured the
beam with the small ultimate deflection of sin., and subsequently when repaired, the beam broke with one-third of the load and
deflection of but tin, which sufficiently indicated how small deflection of but in, which sufficiently indicated how small
margin the factor of safety of four then currently adopted
allowed for defective manufacture, inferior material, and errors in calculation. Still nothing was done, and the general practice of engineers and the Board of Trade regulations continued unaltered,
Soon after the introduction of wrought iron bridges on railways, the testimony of practical workng was added to that of experi-
ments. In 1848 several girder bridges of unduly light proportions were erected in America, and one of 66 ft , span broke down under little experimental girder. Again, in early American timber bridges the vertical tie rods were often subject to stresses oscillating of these broke, as did also the suspension bolts in platforms sub jected to similar stresses. In my own experience, dozens of broken
flange plates and angle bars, and hundreds of sheared rivets, have been the silent witnesses of the destructive action of a live load in girder strength. Under the alternatited iron ships deficien action of the waves, weaknesses not at first apparent would, in the
course of time, be developed, and additional strength, in the way of stringers and otherwise, become imperative.
If none of the preceding evidence had been forthcoming the for the Prussian Ministry of Commerce would alone be conclusive For the first time, a truly scientific method of investigation was
followed, and an attempt was made to determine the laws governing the already proved destructive action of intermittent stresses. In previous experiments the bar or girder was alternately fully loadee
and wholly relieved of lood. Whler was not satisfied with this but tested also the result of a partial relief of load. The strikin
fact was soon evidenced, on testing specimens under
tensions, that the amount of the variation was as necessary to be considered as that of the maximum stress. Thus, an iron bar,
having a tensile strength of 24 tons per square inch, broke with
about 100 , 00 a but resisted $4,000,000$ applications of tharying from nit to 21 tons, stress was varied from nil to $11 \frac{1}{2}$ tons. The alternations of stress in the case of some test pieces numbered no less than $132,000,000$ for the ingenuity and patience which characterised his researches As a result, it is proved beyond all further question, that any bar or beam of cast iron, wrought iron, or steel may be fractured by the continued repetition of comparatively small stresses, and that, as the differences of stress increase, the maximum stress capable
of being sustained diminishes. Various formule based upon the preceding experiments have been proposed for the determination
of the proper sectional area of the members of metallic structures These formulee differ in some essential respects, and doubtles many experiments are still required before any universally accepte rules can be laid down. Probably at the present time the engineer who have given the most attention to the subject are fairly in
acoord in holding that the admissiblo stress per square inch in a wrought iron girder subject to a steady dead load would be one and load, and three times that allowable in members subject to alter nate tensile and compressive stresses of equal intensity, such as
the piston-rod of a steam engine, or the central web bracing of lattice girder. If the alternations of stress to be guarded against are not assumably infinite in number, but only occasional-as tionally high waves-then the aforesaid ratio of 3,2 , and 1 would not apply, but would more nearly approach the ratios 6,5 , and 4 .
Hundreds of existing railway bridges, which carry twenty trains day winh perfect safety, would break down quickly under twenty trains per hour. This foct as forced on my atcention nearl twenty years ago by the fracture of a number of iron girders o
ordinary strengh under a five-minute train service. Similarly
when dreds of York last year 1 noticed, in the case of some hun thrust and pull on the central diagonals from trains passing
every two or three minutes had developed weaknesses which every two or three minutes had developed weaknesses which
necessitated the bars being replaced by stronger ones after necessitated the bars being replaced by stronger ones afte
a very short service. Somewhat the same thing had to
St be done recently in this country with a bridge over the
Trent, but the train service being small, the life of the bars wa measured by years instead of months. If ships were always
amongtt great waves the number going to the bottom would be largely increased, for, according to Mr. John, late of Lloyds,
irgany large merchant steamers afloat are so deficient in longi sea to be atrained in the tons per square inch, and to a compression of from 6 to 7 tons" stresses which the experiments already referred to prove would taking ground or being dry-docked with a heavy cargo on board, it has been shown that vessels are liable to stresses of over 11 to per square inch on the reverse frames, but no permanent injury
results from such high stresses, because the number of repetitions is necessarily very limited. It appearg natural enough to every
one that a piece even of the toughest wire should be quickly broken if bent backwards and forward to a sharp angle; but, perhaps, on to locomotive and marine en gineers does it appear equally natura
that the same result would follow in time if the bending were smalr as to be quite imperceptible to the eye. A locomotive crank amour amount of tyin. under the heaviest bending stresses to which they
are subject, and yet their life is limited. During the year 188 one iron axle in fifty broke in rumning, and one in fifteen was
renewed in consequence of defects. Taking iron and steel axles
together, the number then together, the number then in use on the railways of the Unite
Kingdom was 14,848 , and of these 911 required renewal during th year. Similarly, during the past three years no less than 228
ocean steamers were disabled by broken shafts, the average eafe lifan of which is said to be about three or four years. In other
words, experience has proved that a very moderate stress alter. words, experience has proved that a very moderate stress alter
nating from tension to compression, if repeated about one hundred million times, will cause fracture as surely as a sharp bending to many experiments with a view to elucidate the laws affecting the strength of iron and steel work subject to frequent alternations of stress. Perhaps the most suggestive series was one in which 1 sub-
jected flat steel bars about 3 ft . long, in pairs, to repated bendings until one bar broke, and then testing the surviving bar under direot
tensile and compression stresses to ascertain to what extent the metal had deteriorated. It had come under my notice, as a practical engineer, that tif the compression members of a structure were
unduly wealk, the fact became quickly evident, perhaps under the test load; but in, on the other hand, the tension members were weak no evidence might appear of the fact until frequent repetition of
stresses during several stresses during several years had caused them to fracture without
any measurable elongation of the metal. In the case of crankshafts, also, the fracture is invariably due to a tearing and not a crushing action. It appeared to me, therefore, eminently probable that repetition of stresses might be far more prejuiciaial to tension than to compression members, and if so the fact ought to be taken
account of in proportioning a strueture. This proved to be the case in my experiments. For example, the companion bars to those
which had broken with 18,000 reversals of a stress less than half the original breaking weight, behaved when tested as columns thirty diameters in length, precisely the same as similar bars which
had done no work at all, whereas, when tested in tension the elon and the fracture appeared to indicate that the bars had been made With a stress reduced by one-fourth the number of bendings required to break the bars was increased to 1,20 , fibres was 43 per cent. of the direot turkimate tensile resistance of of
the steel, and about 30 per cent. of the stress the bar was capable of sustaining as a beam under the single application of a load Of course, the bars failed by tension, and the extreme fibres ha
thus deteriorated as regards tensile stresses to the extent indicated by the above percentages. Tested as a column, however, th by the above percentages. fecen from the $1,200,000$ bendings was in
injury the bar had recive
apreciable. The ductility was of course very largely reduced, bu appreciable. The ductility was of course very largely reduced, bu
ductility is a quality of comparatively little importance when material is in compression. There is no ductility in the slender Gothic stone columns of our cathedrals, which though heavile
stressed have carried their loads for centuries. As I found repeated bending raised the limit of elasticity, I rather anticipated findin not proved resistance from this cause in long columns. This dic columns four diameters in length. In addition to the precedin experiments with rectangular bars, 1 have tested the endurance many revolving shafts of cast iron, wrought iron, and steel with
similar results. About 5000 reversals of a stress equal to one-hal the static breaking weight sufficed generally to cause the snapping reduced and the number relative endurance of solid beams to be more nearly proportional
to the tensile strength of the metal than to the breaking weight the beam, a distinction of great importance where axles, springs, singularly suggestive. Thus it was instructive to see a bar of iron loaded with a weight which, according to Fairbairn's experi ments, it should have carried for a long series of years, broken in two minutes when set gently rotating. Also to find a bar of the rotation as to offer no advantages either in strength- or toughness over a new cast iron bar of the same section
(To be continued.)

COMPOUND ENGINES AT THE ANTWERP EXHIBITION. LA SOCIÉTÉ COCKERILL, SERAING, ENGINEERS.
(For description sce page 236.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

Rogrrs News Cospany,

TO OORRESPONDENTS.

All letters intended for insertion in The Enginerk, or containing questions, must be accompanied by the name and address
of the vriter, not necessarily for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous Communications.

sChmidts decorticating machine.

coke crushing and flange joints.
 miterini for making the
noderrauound and und for
Halfifax, Soppember 21st.

THE ENGINEER.

SEPTEMBER 25, 1885

the management of high-pressure marine bollers, Engineers at sea have to contend with two special difficulties in the management of marine boilers. They have to prevent corrosion and to prevent incrustation. Now,
incrustation is the great remedy for corrosion, while it is the more usual cause of furnace collapse. On the one hand, then, if the incrustation be obviated, corrosion will make short work of the boiler. On the other hand, if incrustation becomes excessive the furnaces will collapse. The engineer has, therefore, to steera difficult course between Scylla and Charybdis. Constant practice, combined
with intelligence and common sense, has rendered engiwith intelligence and common sense, has rendered engi-
neers so skilful that we seldom hear anything about corrosion now. As regards collapsed furnaces the case is
different. Collapsing occurs so frequently different. Collapsing occurs so frequently and persistently that it cannot be regarded in any other light than as a dangerous nuisance ; and we make no apology for returning to a subject with which we dealt very recently, but by no
means exhaustively. We desire at present to call attention means exhaustively. We desire at present to call attention
to the fact that there is good reason to believe that boilers working with the very high pressures now in vogue, are much more liable to dangerous accumulations of lime deposit than were boilers working at comparatively low pressures, such as 70 lb . or 80 lb . per square inch. Consequently a system of working which may answer well in very great importance that the truth or error of this proposition should be established; and we shall be glad to going engineers, or, indeed, anyone who can supply it, which may be of use to set the matter at rest.
It is well that our meaning should be made quite clear;
once more. Sea-water contains numerous constituents.
Those with which the engineer is concerned are common salt, sulphate of magnesia, and sulphate of lime. In $100,000 \mathrm{lb}$. of sea-water there are 2806 lb . of salt, 229 lb . of sulphate of magnesia, and 141 lb . of sulphate of lime two new boilers are filled up for a voyage with 44.5 tons of water. Then we have put into each 1403 lb . of salt, lime. The water by the salinometer shows of that is to say, for every 32 lb of water we have 1 lb . of saline and with salt. Indeed, salt will nor is not neared in a hoiler save in very small quantities unless the salinometer shows $\frac{9}{3 y}$, at which time each of our supposed boilers would conThe case is entirely different as regards the $5 \frac{1}{2}$ tons of salt. magnesia. These are soluble in cold water, but they are not soluble in hot water, and the hotter the water the less soluble do they become. To put this in another way, cold water will hold a certain proportion of lime in solution temperatures reached with steam of 130 lb . to 150 lb namely, 350 deg. and 358 deg. respectively, it will not hold any in solution. Besides the earthy constituents which we have named, sea-water contains a small quantity of carbonate of lime, about 3 lb . present in the water. This gas is driven off by acid gas and the carbonate of lime is doposited and probably play and the carbonate of lime is deposited, and probably plays
a mischievous part in more effectually consolidating the sulphates of lime and magnesia incrustation. M. Cousté has carefully investigated the phenomena, and his statement of what takes place is so clear that we reproduce it

First," he writes, "a few moments after ebullition has commenced the water in the boiler grows muddy and holds in suspension firstfree magnesia, then carbonate of magnesia.
These two substances are light, flakey, and have no tendency to agglomerate. They form with the other impurities in the
to water the mud which is found in boilers, especially on the bottoms of them. Secondly, as the boiling goes on the water soon arrives at the point of saturation with regard
to the sulphate of lime, and from this moment, if the degree of saturation is allowed to pass the point where the motion of the water is sufficient to keep the sulphate in suspension mechanically, its particles will be deposited as a crystalline crust on all surfaces in contact with the water. Thirdly, the heating surfaces impart to
the water in immediate contact with them a sufficiently high temperature to make a supersaturated solution as far as the sulphate of lime is concerned. This sulphate is then deposited in a thin scale on the plates,
whatever may be the degree of concentration of the great whatever may be the degree of concentration of the great
mass of the water. Subsequently, when the concentration mass of the water. Subsequently, when the concentration
extends further through the volume of water by the rise in temperature as steam gets up, the swimming particles of lime cling to this layer and increase its thickness. It appears that in case these particles, which are precipitated
without being in contact with the heating surface, did not have such a layer of scale to cling to, they would not adhere, but would form a loose deposit instead of a scale. Fourthly, when the fires are drawn and the water is allowed to cool down, the mud before held in suspension by the violent motion of the water, now falls down and forms a very thin layer, filling up the roughness of the lime crust. This does not seem to be disturbed when steam is again got up. As soon as the new water is heated up to saturation point, more lime is thrown dow and the from the first by the thin coating of mud, consisting principally of carbonate of magnesia and
The saturation here spoken of, it must be clearly understood, is not the saturation due to the removal of water by evaporation such as takes place in a salt pan. It is saturation due to temperature. One hundred pounds of water at 212 deg. can hold in solution 0.60 of a pound of sumpate
of lime ; at 251 deg., corresponding to 15 lb . pressure, it can hold only $0 \cdot 23$, or less than one-fourth of a pound; and at 285 deg., corresponding to 38 ., the
any sulphate of lime at all in suspension.
Returning now to our two boilers referred to above, we find that as soon as the pressure has reached about 15 lb . all the sulphate of lime, namely, 70 lb ., is in a condition to be deposited forthwith, nothing is required for this but time stance, and distribute it in a thin, more or less evenly disposed scale, all over the heating surface. The quantity 70 lb . of common lime made into limewash would suffice to 701 b . of common lime made into limewash would suffice to
give the heating surface of a marine boiler a couple of thick coats. It may be taken for granted that thi first layer is sufficient for the purposes of protecting
the boiler from corrosion, provided it is equally distributed. The common salt will do no harm, as it will not be deposited. If waste could be prevented the boiler might now be worked in safety for any period,
provided no more sea-water was admitted. But waste provided no more sea-wates . Steam escapes from safety takes place in various ways, iteam escapes from safety
valves and stuffing-boxes. It is used for driving donkey and steam winches, \&c., and the result is that sea-wate has to be added by the supplementary feed from time to
time. Thus fresh quantities of sulphate of lime are introduced and the scole thickened. As the wage paced the engineer finds his water growing denser. It cannot be otherwise, because the waste is all pure steam; but the waste is made up by introducing sea-water, and thus more salt is thrown into the boiler every time the donkey is
started. As soon as the density reaches it to be deposited, in small quantity it is true, but every little helps to add to the scale, and so at last the engineer opens
his scum cocks and blows down his boilers two or three inches; then he shuts the cocks, and restores the leve with water from the sea pumped in by the donkey. This reduces the density as shown by the salinometer, because a great deal of salt has been got rid of, strong brine being
blown out, and weak brine pumped in. But this weak
brine carries with it another dose of sulphate of lime, and the scale is thickened up once more. Thus it follows that the careful engineer, who holds by his salinometer, and will by no means permit the density of the water to rise beyond a certain point, is all the time doing as much harm as he possibly can by pumping into his boiler the sulphate of lime, which he cannot get rid of by blowing down. The result is, of course, that scaling and chipping must be resorted to.
All that we have said up to the present is quite simple by any man of ordinary intelligence. If the phenomen invariably presented themselves in the same way and under the same conditions, engineers would know exactly what course to pursue in managing the boilers under their care. At the end of every voyage the boiler would be opened and chipped and scaled. It would never be suffered Beyond question this is couple of weeks without this boilers get in very many instances. For example, Atlanti bolers get in very many instances. For example, Atlantic
steamers have their boilers scaled and washed out in steamers have heir boilers scaled and washed, out the
Liverpool. They are filled up with fresh water, and the supplementary feed is afterwards used every watch to a greater or less extent. In New York the boilers are emptied, but not scaled. They are filled up with fresh water, and the donkey and blowing down are used on the voyage back. Then the boilers are emptied, opened scaled, and again filled up with fresh water. This is not an invariable practice ; every superintending enginee is best has his own plan. That which we kedescribe like marinects. Sut to all appeare scale boin. For exaple, ine 1 cases it can only be obtained with the utmost difficulty We could name a ship which went to the Mediterranean with a new boiler, and nearly six weeks elapsed befor the engineer could get a scale as thick as a sheet of
writing paper, and to get this he worked persistentl writing paper, and to get this he worked persistently
with the supplementary feed. He got plenty of mud, bu
fed no incrustation. Again, it is well known that a boiler may be beautifully coated with an even scale about as thick as a sixpence, and that the whole of this may be removed, to the engineer's intense chagrin, by the injudicious use of the donkey. It seems, in short, that while in one ship the introduction of plenty of sea water during a voyage will cause incrustation to take place with dangerous
rapidity, in another ship the use of the supplementary feed will positively prevent tect the boiler from corrosion from being formed
This brings us directly to the proposition with which w started. Although it is quite true that the whole of the sulphate of lime ought to be thrown down in the shape of a hard scale when a temperature of 280 deg . is reached, it is matter of fact that this effect does not invariably take place ; if it did ships could not be kept as they are for long periods under steam. But there is reason to believe that when very high pressures are employed, that which is indicated by theory does take place in practice, and we believe that most engineers who have to deal with the new type of engines in which pressures of 120 lb . to 160 lb . are used will admit that they are more likely to get hard scale in quantity than is the case when pressures of half the amount are carried. Recent practice with some of the long voyage triple-expansion engines goes to prove this,
and there is no doubt something yet to be learned as to the best method of dealing with marine boilers carrying heavy pressures on long voyages.
have more to say at another time

the standard of hight

Nearly half-a-year has elapsed since we drew attention a valuable report which had just then been laid before he Metropolitan Board of Works with reference to the node by which the lighting power of gas is tested. One untrustworthy cht very clearly in that report was the a standard of illuminating power. If it was difficult to decide as to the best substitute for the legalised candle, there was no difficulty in coming to the conclusion that of several competing methods, any one of them was better than the system which existed. It is a singular fact that while a candle of some kind or other-wax, tallow, paraffine, stearine, or sperm-has long been accepted as the unit of light, the uncertainty attending the use of such standard has been recognised from an early date. Some thing like twenty different devices by way of improvement may be distinctly specified, and the actual number is no
doubt still larger. The sperm candle was condemned in 1881 by the committee appointed by the Board of Trade in 1879 to investigate the subject, Mr. Vernon Harcourt's pentane or air-gas flame being recommended in preference A committee appointed by the Council of the Gas Institute subsequently recommended Mr. Methven's screened Argand
flame. This committee considered that sperm candles had flame. This a change since their introduction so as to give brighter flame than formerly, to the detriment of the cas companies. Later on, Mr. Dibdin expressed his oubts on this point, being rather inclined to believe, from his own experiments, that the tendency was the other way. But whether sperm candles burned brighter than formerly or not, Mr. Dibdin was convinced that they gave a variable light, and he recommended that they should be ousted rom their position as the legal photometric standard. As standard which, by an oversight, had not been fairly dealt with by the Board of Trade Committee. Thus the authorities were considerably at variance as to the proper candle, as a photometric standard, was simply to be looked apon as "the light of other days," to be got rid of-as Mr. Dibdin expressed it- " as speedily as possible."
The circumstance that the Board of Trade Committee reported in favour of Mr. Harcourt's pentane standard metric controversy. The subject was in a state
quiescence when, early in the present month, a letter with
the unmistakeable signature of "A. V. . ."." appeared in the Times, calling attention to the Board of Trade report, and stating that the committee, while condemning the sperm
candle, recommended "another standard." What this candle, recommended "another standard." What this
standard was, "A. V. H." did not say, but spoke of it as "described in the report." Despite the recommendation which had been given to it, the pentane lamp remained unadopted, the Board of Trade not being disposed to take any action until some public demand arose for them to do so. Accordingly Mr. Harcourt proceeded to set the ball
rolling himself, and did so with considerable effect. In order to interest the consumers of gas in the matter, he ventured to suggest, not merely that sperm candles were untrust-
worthy, but that they were subject to an artful intervention on the part of the gas companies, who managed in an indirect way to get candles of inferior lighting power
brought into the market, whence they ultimately passed into the hands of the official gas examiners. As might be expected, this accusation, though put in a somewhat guarded form, was followed by an explosive outburst on chairman of the South Metropolitan, and Mr. H. E. Jones, the engineer and general manager of the Commercial, at absolute denial. Mr . Sugg came afterwards, with a long
and interesting letter, and interesting letter, giving a large amount of informa-
tion, and discrediting the notion that sperm candles were otherwise than as good as they should be, though subject
to a degree of unavoidable imperfection. Mr. F. W. Hartley also wrote, declaring the suggestion that candlemakers had lent themselves to the production of a debased article in the interest of the gas companies was, "not only
untrue, but ridiculous." But it is observable that while the gas companies and their friends fight against the charge of having played tricks with the candle, they all
admit that the present standard is unsatisfactory companies themselves have sought to do something better, and are making extensive use of Methven's lamp. With respect to Mr. Dibdin, it is satisfactory to find that he is
about to carry out the further series of investigations mining the relative value of the the purpose of determining the relative value of the proposed standards, as
mentioned in our former article. Mr. Dibdin has no standard of his own to recommend, and has no other of measuring light. By means of a four-way photometer he will be able to test four standards simultaneonsly upon one gas flame, and the results, in such able hands, cannot
fail to be of signal service in determining the important Mr. Harcourt follo which he made a rejoinder to the reply which he elicited from Mr. George Livesey and Mr. H. E. Jones. He repu-
diated the idea of any direct collusion between candlemakers and gas-makers; but he signified that gas managers were quite aware of the difference in lighting power which
prevails among the photometric candles, and gave their preference to candles of minimum brilliancy. The facts of the case, it may be presumed, are well known to manu-
facturers, and it is reasonable to suppose that they will make such candles as find the readiest market. But on this point there is a strong denial from Mr. Leopold Field,
who asserts that the consumption of standard candles is too small to lay a manufacturer open to any temptation for the sake of gaining the trade. Of course, if
gas of diminished lighting power is enabled to pass
the standard, the consumer has to burn more gas in order to get the same quantity of light, and has to pay for the excess. Mr. Harcourt states that on a recent occasion a gas engineer of eminence complained to him of certain
candles with which he had been supplied, their fault being that they seriously reduced the apparent lighting power of his gas. By way of remedy, this gentleman had purchased
some other candles for future use. Mr. Harcourt tested both some other candles for future use. Mr. Harcourt tested both
kinds. The first sort were found to give 7 per cent. more linds. than an average candle, and the second lot more
light
cent. less. The former might be considered unfair to the gas company, the latter were clearly unfair to the con-
sumer. Mr. Harcourt observed in his second letter that there appeared to be no difference of opinion as to the necessity of legalising some other standard of light than may assume that the gas companies would themselves prefer an unvarying standard of comparison. It has been
contended that if such a standard were provided, they would be able to fone their gas down to a lighting, power compelled to give a wide margin, lest by chaney are compelled to give a wide margin, lest by chance they
should suffer from comparison with a candle of high lighting power. Respecting the part which Mr. Harcourt referee, he is bound to be an impartial as well as a competent authority, and that his impartiality is prejudiced companies, as well as by the hast that he is seeking the gas companies, as well as by the fact that he is seeking to obtain
official preference for an invention of his own wherewith to establish a new photometric standard. Granting that Mr
Harcourt's position as a gas referee is somewhat affected by Harcourt's position as a gas referee is somewhat affected by
this circumstance, it must be acknowledged that he appear as a public benefactor, while at the same time seeking nothing that would injure the companies in their rightful interests. Had he not insinuated that the gas companies were introducing a debased standard, no storm need have
been raised. But Mr. Harcourt apparently thought the storm was wanted in order to overcome the inertia of the Board of Trade. This inertia he excused, on the ground that Government Departments felt the hopelessness of
carrying any measure through Parliament until it was demanded by the force of public opinion. Whatever view may be taken of the course pursued by Mr. Har-
court, it is to be hoped that the requisite reform in this case will not be long delayed. At the same time it seems inevitable that the result of Mr. Dibdin's further experiments must be awaited before a new standard is offered
for the approval of Parliament. A few months will doubtless serve to finish these investigations, and the data
will then be sufficient to warrant further action. Something also has to be said as to the practical nature of the might be devised whioch. would not be the best for ordi nary purposes. Mr. Harcourt's device, excellent in many respects, is open to some objection on this score. The pentane lamp seems, perhaps, better adapted as a check on
other standards, than as the actual working standard for daily use. The officers of the Metropolitan Board hav large experience in this matter, and whatever may be said happily no suspicion that the Board itself is unduly influenced in favour of the gas companies. Hence the conclusions proceeding from this quarter are entitled to
the more respect, especially when founded upon a long and careful examination of the subject by an expert of acknowledged ability.

suceessful men.

The causes that have led to success are not always discernible in men that have risen, and there is, indeed room for much difference of opinion on the mere abstrac question of what are the necessary que see whom friends and acquaintances would hardly dicted so much, and it would be interesting, and perhap instructive, to find by a process of retrospection what career. It is certainly not the rule that men who rise to the top of their profession do so by superior technical knowledge, although, as a matter of propriety, or accordthe part of outsiders may be tacitly approved, On the contrary, it is generally by the display of qualities which would have led to success in almost any pursuit that they might have entered that engineers of eminence have s. of the surprise and disappointment which are felt when men of whom much was expected fail in the race. That a full technical training is needed for professional men is too obvious to need discussion, and what is, or ought to be trouble in after life. But that which is merely one of several means to an end is often unduly exaggerated, and the clever student, who is at the head of his class, or who ing, is heard of no more when the real struggle of life begins. First, the very ordinary and common-place virtues punctuality; but they are at the command of all. Then come fertility of resource, self-reliance, temperament that forgets temporary failure in the hope
of ultimate success. Opportunities for the exercise of these qualities come to all men in time, even though the occasions may appear petty or uninteresting; but if these qualities be wanting, no ability however gre
knowledge however profound, will prevail.
Some of the qualities that command success can hardly be classed as virtues; indeed, when carried to excess they might be deemed the very opposite. The concentration of strong-willed men - to what the world may deem selfishness. It cannot be denied that those who rise to the top in any trade or profession are the masterful men, who, being determined to get their own way, do so with apparent dis-
regard of others. Very often it is not really wilful disregard of others. Very often it is not really wiful disregard, but an absolute unconsciousness of the effect which
their conduct has on other people. This masterful quality in men has many aspects, and shows itself in various ways, Sometimes it is distinctly a saleable quality, and one
which, when used on behalf of others, commands a special fee. Thus the counsel at the parliamentary bar or elsewith the greatest indifference to the feelings witness, discredit and demolish him, will be eagerly a thick-skinned man who does not know the sufferings he causes, or it may be sheer cynical disregard. In a more justifiable way there are engineers of eminence who baffling the keenest counsel and upholding in the witness-box their own or their client's schemes. Intense belief in oneself and the courage to force one's views on
others is a form of masterfulness that leads often to success. The implicit trust of a patient in the ability of his physician is necessary if a rno, and the confidence in his own diagnosis and methods. So an engineer can hardly expect a client to trust him if he does not show that he trusts himself. The faculty of putting acquires allows one to use liberally the talent of others who may lack this faculty while possessing great technical skill. In a recent well-known case in the Law Courts a sculptor was accused of being merely the broker of other entrusted to him. In the case of an artist whose individual handiwork is sought, such deputing of it may be deemed, if not dishonest, at any rate uncandid. But an engineer with an established reputation, and whose individual skill is really contined to one branch of the profession, must
either refuse work of a different kind when offered to him, either refuse work of a different kind when offered to him,
or have it done for him by others, using, of course, his best judgment in the selection of his assistants, and taking upon follows the latter course ansibility, and if he judiciously Nothing succeeds like success, and if the public find that work of whatever kind entrusted to certain men goes well they will continue to employ them, careless of the method and assistance by which they gain their ends. There are occasionally men who seem capable of doing everything themselves. Isambard Brunel, for instance, was certainly an all-round man, who could, and did, as far as the time at
his disposal would allow, do the veriest details of his varied work.
But what avails an analysis of the causes of success if
few for ordinary men ? The engineering profession is said to be too crowded just now ; parents who seek some occuNever heless, and even in the face of the depression, we think that the business of an enginee resents as favourable opportunities for earning a ivelihood as any of the trades and professions now available. We know that there are many who think otherwise ; there are those who associate success in engineering only with certain kinds of employments no longer at command, and of which there are no engaged on the survey and construction of English rail ways, who can compare the activity of twenty or even ten years ago with the dulness of the present time, may appear have departed to return no more. But events seldom repeat themselves ; conditions alter, and a revival, if and when it comes, will not follow in the old grooves. Bu are standing idle, new careers have opened out elsewhere If railway extensions in England are almost at an end-a any rate for those outside the staff of the existing com-panies-are there not the English colonies and foreign countries where railways are yet to build and Englishmen are wanted?
解 profession that the whole world is open to those who prac-
tise it. No one can for a moment suppose that there will be any lack of engineer recruits, notwithstanding the prognostications of evil. Just as all English boys are supposed to be born to the sea, so are large classes of them entered the to be engineers; and though many who their early choice, none the less do we maintain that the rofession, as a career open to all but the very stupid oes more than hold its own.

miners' wages.

As the crisp touch of autumn begins to be felt in town and country, an increase in the value of house coal takes place,
and with it an improved demand for steam fuel. The reasons for this regular revival in the great industry are simple enough. those who have laid in supplies earlier in the season fill u, an Christmas ; then in steam coal there is a pressure to malko deliveries before the Baltic ports are closed. Both circumstances therefore, work together for good in the coal trade. The discouraging aspect of the situation is that with the usual fillip the miners, or rather their leaders, reopen the warge extent, and disturb an industry which more than any other needs rest for recuperation. In Yorkshire-South and West-there have
been many extensive contracts lost in consequence of the strikes causing ships to go north for supplies. This has grievously
center affected capital as well as labour, with the result that the miner generally not only made no profit, but positively lost money in working their pits. Now, as the business begins to feel the animating effect of winter demand, the note of discord is again the whole mining community idle, and the limiting of the output by the reduction of the hours of labour. This is the old folly tried again and agaiu, and followed every time by defa nd good times fore recovery of lost trade, would do more to restore meetings which could be held. It is impossible, by heroic comunity turn adversity into prosperity. To benefit a whole to other districts, is about as wise as it would be for a man before setting out on a long journey, to have both legs amputated.

steel consumption in staffordshire.

There is interesting information this week from Staffordshire噱 of steel. Inquiries have just been made of some of the eading constructive engineers the mong consumers of bridge and girder work of the preference which it was thought they would manifest for structures of
steel over iron. The reply which has been given is that the change of taste is making only slow progress, and that wrough Singularly that even when steel is ordered they find a difficulty in gettin it. If this circumstance argues an imbility on the pert getting masters to supply constructive engineers' demands with of stec alacrity needed, it is somewhat remarkable. Simultaneously, finished ironmasters in Staffordshire decline to be frightened into the idea that the days of the puddling furnace are gone They argue that steel masters have yet much to do before they plied from perfect regularity in the quality of the material sup this week some thating their own experience of experimental steel. Neverbillets, and the like is being steel in the form of ingots, blooms, quantities in the iron mills of Staffordshire alike into sheets tin-plates, bars, angles, tees, and hoops. The solution, doubtless, is that in that part of the kingdom the newer metal making such strides, either for engineering work or for ordinary purposes, as some people had believed was certain to occu

The Production of Feldspar in the United States in 188 Its value at the quarries was 55,112 dols.

Cooper's Hill.-A Parliamentary return has just been issued by the India Office showing the working of the new scheme for the college at Cooper's Hill during the last two years, the annua
expenditure andrre the college siture

app per now

now
stu
rep repents in the college on July 18th this year, the date of the
report, was 105 . who have presented themselves, 99 entered the college afte
examination. Thirty appointments examination. Thirty appointments were made in the same time,
of which 26 were to the Public Works and 4 to the Telegraph
Department. It appears that the average cost to India of each

THE IRON, COAL, AND GENERAL TRADES
OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS,

(From our oun Correspondent)

The state of the iron trade has not shown much alteration this week. No further accession of strength has generally taken place,
and opinion is divided as to what we may expect in the next two or three weeks, On October 7 th and 8 th the quarterly meetings mportant of the whole year. It is not now thought likely that prices at thone meetings will show much increase upon the rates
rets will
no, but marked bartedy are be firmer than any other description of iron, but marked bars are likely to be re-declared at $£ 7$ 10s., with
£8 2s. 6d. as the Earl of Dudley's quotation. Ordinary bars will be $£ 6$, and common $£ 510$ s. down to $£ 57 \mathrm{~s}$. 6d., and occasionally a ,
The galvanised sheet makers keep busy. Merchants are making
more forward inquiries than for a considerable time. Australia New Zealand, South America, India, and the Cape are all buying. There is a fair amount of unanimity among makers in demanding the 5 s. advance. The Wolverhampton Corrugated Iron Company
are making an extension of premises, and their capacity of output are making an extensis.
is 1400 tons per month.
Plate makers are still subject to a good deal of competition from structive engineering, and other purposess, are being orderec from the North by consumers in this district.
The business of Messrs. John Knight and Co., Cookley Ironworks, makers of best sheets and tin-plates, is being converted into
a limited liability company, with a capital of $£ 50,000$, in $£ 10$
Pig iron is without much alteration on the basis quotations of
39s. to 40s. for Derbyshire sorts. 41s. Gd. for fininoolnshires,
55s, to 57s. 6 d . for best Staffordshires, and 32 s . 6 d . to 35 s , for common.
Some fresh bridge work on colonial account has recently come into the distriot, and with one important firm a fair
this description has been placed on account of Japan.
The Horseley Engineering Company, Tipton, has secured the contract or the supply of 4300 tons of wrought iron pipes for the
Government water supply at Sydney, Now South Wales. The
pipes are of fitt. mean internal diameter, and of 12ft. .enoths, and will be sent away in four segments. They will reach a distance of nearly five miles. The plates are to be capable of withstanding a
tensile strain of not less than 20 tons, with an extension of not less than 8 per cent. of the tested length. The bars are to withstand a strain of 23 tons, with an extension of 15 per cent.; and the rivet
iron a strain of 2 tons, with an extension of 18 per cent. The
work will be delivered in about twelve months. Tenders for the contract were invited in New \&outh Wales as well as ins in England,
and nine colonial tenders were received, in addition to ninetee English tenders. The colonial tenders, however, were so much
higher than thenglish, that the Minister of Works, had no alter
The bridge and girder work which the Horseley Company has recenty ide weighing in all 750 tons, for the Buenos Aypes and
32t. wide,
Cort Consenada Port Railway. The company is also builang about
20 tons of heavy wrought iron box girders for warehouse erections
at the Brunsivk Dook, Liverpoo, on the London and North-
Western Railway Western Railway. A two-lift gasholder which they have in hand
for Wrexham is of 28 ft diameter and 120 ft . in depth. Or Wrexham is of 28ft. diamoter and 120ft. in depth.
The Patent
its shaft and Axletree Company is stead
any special activity. It anticipates to benefit by-and-bye from
the increased railway the increased railway extensions in the Indian Empire. The triangulated girders of 177 oft. span for the
with brass boiler tubes and other work. with brass boiler tubes and other work.
A largo business continues to be done by the Patent Shaft
Company in railway wheels and axles for home and foreign railways,
The railway carriage and wagon builders are experiencing a good
demand for heary wrought iron carriago and wagon underframes demand for heary wrought iron carriago and wagon underframes
and other frame ironwork on account of the Indian and south and other frame ironwork on account of the Tnian and
American lines, and for some other export markets. The demand
for finished rolling stock is , however, slack. Meesrs, Brown, Mar-
 Also ocntracted for a couple of magnificent saloon carriages, which
will be fitted with dining and drawing-rooms and other complete apartments, for the Western Railway of Buenos Aydres, The com-
pany has just sent away twelvo saloons to London and South-
Western Railway, The demand for electrio light machinery keeps good. Mossrs. contracts indude a dynamoo of 2 ar-horse power, and fifty accomu-
lators, each weighing about 2 cwt., for tho San Paulo Railway. The accumulators are of power. to run about 300 incondesoent
lamps, fut it is the intention of the railway company to employ are lights when repairs are going on. Thay company to employ
sent oft a consignment of olighting batteries for a fro have lately
facturing company in Switzerland which facturing company in Switzerland which would supply anout
fifty or sixty lamps. The are also supplying two of their
now typo four-pole vertieal ayname dynamo eaph capable of running
about too lamps to Lloyd's about 400 lamps to Lloyd's Register for their new buildings in
London.
Engineers who eater for the corrugated aheet Engineers who oater for the corrugated sheet makers are toler-
ably well omployed. The re-start of the extensive Osier Bed
ironworks in Wolverhampton, by Messrs. J. Lysaght, may possibly bring out a fow engineering orders.
The limited amount of railway operate unfavourably on the businese ox onsion abroad continues fastoning makers.
The Patent Nut and Bolt Co., Smethwick, seems, however to
favourable excention and is underscopod to bo be making concern, is still running briskly,
Mesers. Mossrs. Clark and Bunnett, London and Birmingham, have just
ereoted two hydraulic lifts of improved form at the new Birming.
ham Liberal Club. The main lift is said to be the finest specimen
in existence Its ham Liberal Club. The main lift is said to be the finest specimen
in existene. Its principle is very simple. The cage rests upon
piston coft. spiston boft. iong, which rises from a cylinder sunk to a corre-
sponding depth below ground. The pressure acts directly on the
piston, and as there is machinery from above, the speed of the
lift in rising cannot become excessive
 Messrss.0nt is equally safe. The poatent "Oto" power is ace
The evevin has not yet reached the wroug
although the season is rapidlly areach thanceng wrought iron tube firms,
filled with winter orders. Thave books should be filed with winter orders. Thave information, howover, that the
annual
will shopors of one or that two exceptional firms, shortly to be issued, annual reports of one or two exceptional firms, shor
will show that capital dividends aro being earned.
The Birmingham and Wolverhampton Chambe
have taken action on the list of questions issued by the Royal Commission on Trade. Both Chambers have appointed a special com-
mitteoto consider the document, and report back. The nitroutions
of Wolverhsmpton
 assist in a conference of the whole of the Chambers of Commedree
of the Empire, promoted by the London Chamber, to be held in of the Empire, promoted by the London Chamber, to be held in
Iondon probably in July, 1886, in conjunction with the Indian and Colomial Nosephi G. Wright, principal in the ironmaking firm of
Messrs. E. T. Wright and Sons, Monmoor Works, Wolverhampton,
has this week been selected for nomination to the office of
next November. Mr. Wright has accepted the nomination. At conference of miners, to which most of the mining districts in Staffordshire and the Midlands have appointed representatives,
commenced to-day-Thursdy to press for an advance of 15 per cent.

NOTES FROM LANCASHIRE.

(From our ovon Correspondent.)

Manchester. - The market has pretty nearly returned to its previous normal condition of quietude, and although prices do not on at the rates now being quoted. There are, however, buyers in the market who would be prepared to place large orders for pig iron even at some advance upon old rates, but they are not dis
posed to give the full prices that are being asked, and as maker are not at all inclined to give way, business is held in suspense The general tendency seems to be rather in favour of waiting
makers are apparently content to work on with the orders the makers are apparently content to work on with the orders the
have on their books-which in some instances are full up to the end of the year-rather than meet buyers with any concessions t t
effect further sales, whilst buyers prefer to hold back from furthe effect further sales, whilst buyers prefer to hold back from furthe purchases at present rates until they can see what turn the marke
is likely to take. The manufactured iron trade, which has no been appreciably affected by the recent spurt so far as any upwar steadier business doing, and makers firm at late rates.
There was a full average attendance on the Manchester iro
market on Tuesday, but generally only a slow business was
reported. Lancashire pig iron makers have been selling pretty freely in forge iron to the finished iron works in the immediat and they are yery firm at this fin, delivered equal to Mancheste for foundry qualities. For district brands the minimum quotation are also on the basis of 39s. to 39 s . 6 d ., less 2 L , for forge an
foundry qualities delivered equal to Manchester, but no sales o any weight are reported at these iigures. Outside brands ar 40s. 10d. to 41s. 10d. net cash, acoording to brand, for deliver For hematites only a very poor demand is reported at 52s. to 52 s. $6 \mathrm{~d} .$, less 24 ; good foundry brands are to be readily got fo delivery into this districh
In the manufactured iron trade a fairly good demand is reported not there is no pressure of orders in the market, and makers are
not able to hold out ffrmly for any general advance in prices.
Here and there late rates is being quote now quoting from $£ 6$ 15s. to $£ 7$ per ton delivered, but for good
specifications the minimum figure remains about the average basi on which business is done. Bars are only in moderate demand, and
it is exceptional where more than $£ 5$. 5 s. is being got, and for hop exceptional where more than $£ 5 \mathrm{ss}$. is being got, and
hoops, although orders have recently been coming in more freely,
nrices do not averaze more than $£ 515 s$, per ton delivered into tly Manchester district.
The condition of the engineering trades remains without mate
rial change. Here and there works are busy, and I hear that further large orders for textile machinery are coming into this dis trict from Scotland, but the general position is one of slackness, With no present indication of improvement.
fuel economiser in which several improvements in hand a ne being intro duced. One of the principal features is the construction and arrangement of the pipes; these have been reduced in diameter
from the 4in. pipes that are usually employed, to 3in., and this enables a zigzag arrangement of the pipes to be introduced without olocking up the draught in the flue, whilst a thinner pipe can
ald results from the waste heat. The distance between the centres of
the pipes across the flues is 9 in, and 6 in, in the depth, so tha while os large a surface as possible is exposed, against which the heat actually impinges in pasing through the flue, a sufficiently
clear space is left to prevent any serious obstruction of the draught clear space is left to prevent any serious obstruction of the draught.
The pipes are fixed into bent ends at the top and bottom and held in position by a top plate, which provents the draught escaping into the flue without passing round the pipes, whilst it can be readily removed for replacing pipes or scrapers without the necessity of going into
the flue. The scrapers are also of improved design, and are made in three sections with an aoute angle, so that they act as a knife against the scale of the pipes. The gearing for actuating the
sorapers has also been very much simplified, and the whole apparatus is carried complete on an iron frame. This economiser is of the rapid continuous circulating type, but Messrs. Glover intend applying the same arra
circulating economiserss
Improvements in high and low-pressure filters, for dealing with large quantities of water required for works' ${ }^{\prime}$ purposes, have also filters is that they are fitted with horizontal and vertical filterin beds, by means of which an exceptionally large filtering surface is
obtained in the smallest possible space. The horizontal bed is termed the first filter bed, and this is charged with an inexpensi material, which, when saturated with deposits from raked raked out and thrown away, and the bed recharge with fresi
material, an operation which can be ffected in about fifteen minutes. The vertical filter beds are arranged in double sets, and mere called second filter beds. The vertical position of these beds
prevents the deposit of dirt on their surface, and it falls to the bottom of the cistern, whence it is blown out through a slush trap These vertical ilter beds stand immersed in the water, whitering material to the centre from both sides at the same time; it then passes through valves Into a longitudinal pipe, and forward to where it is required. To
cleanse the vertical filter beds a back-presssure bed is applied to one end of the longitudinal pipe, which conveys a pressure of steam or
water to the inside of the vertical filters, whence it drives the filth water to the inside of the vertical filters, whence it drives the filth
which falls to the bottom outwards, and thence through the slush which falle
trap. Several low-pressure filters of this type have recently been supplied to works in this district, for dea the river Irwell water and in another canal; water, with, I understand, excellent results. Another filter for dealing with 10,000 gallons of canal water per hour is being erected at Huddersfield.
After the statements recently made that in face of the superiority

 Belgium, which are to be constructed of their most recent type with automatio link expansion gear, and controlled by Porter
governor. The engines are of 40-horse power, and have a pair of
Of 14in. © yroughout, and all the working joints are case-hardened In the coal trade anticipations of an advance in prices next
month is bringing forward an increasing demand for house-fire coal, but in no other class of fuel is there any improvement Requirements for iron-making and steam purposes continu
extremely limited, and common round coals are as bad to sell as extremely limited, and some in the cotton trade, and the depressio
ever. The continued strike in other branches of industry, are throwing a large quantity engine fuel upon the market, and slack is quite a drug, with lowe
prices being taken to clear away stocks than have been known in the market for years past. At the pit mouth prices average abou
as under:-Best coal, 8 s . 6 d. ; seoonds, 6 s . 6 d . to 7 s .; common, 5 s
 with common sorts to be got at from 2 s .3 d . to 2 s .6 d . per ton.
Collieries here and there are still tolerably busy with orders fo
quiet, with extremely low prices being taken to secure orders, and
steam coal delivered at the Garston Dooks and the high level,
Liverpool, can be got at from 6s. 9 d . to 7 s . 3d. per ton.

THE SHEFFIELD DISTRICT

our ouon Correspondent.)

THERE are additional indications that another agitation is about ime the note of warning comes from Derbyshire. On Saturday a conference of Derbyshire miners' delegates was held at Chesterfeld, when the report of what passed at the Manchester meeting in July last was submitted. At that conference et was resolved to bring before another gathering, to be held at Nottingham, the quesvages, and the best means of obtaining it. The committee xpressed the opinion that the best way to secure the advance will be by laying the whole mining community idle, and afterwards limiting the output, either by working shorter hours or fewer days per week. The Derbyshire miners have approved of this prothe Nottingham Conference. The miners of the St. John's Colliery, Normanton, have been trongly advised by a circular issued
Yorkshire Miners' Association to join together for the purpose of securing an advance in wages. They are told that the advanoe
obtained three years ago was lost because they became disorganised obtained three years ago was lost because they became disorganised, and the masters took advantage of the opportunity to lower wages.
If they became united again, the men are assured "there is no combination of dollars that can ever equal the power of the work-
The Sheffeld Chamber of Commerce tion a series of questions propounded by the Royal Commission cn the Depression of Trade similar to thoso which have been sent to the ouncr Cuambers throughout of a political character about the manner in which the various Chambers have treated theso requests of the Government Commission. This diversity of opnion has, no doubt, arisen out of the controversy popularly
known as "Fair-Trade v. Free-Trade." There was less of this at known as "Fair-Trade v. Free-Trade. The
the Sheffield Chamber of Commerce than at others, but still there ajiority of the Chamer however, did not feel at liberty to treat the request of the Commission in this fashion, and they therefore appointed an influential committee, consisting of the President, Iaster Cutler, and Mr. John Marshall; with Mr. F. Brittain, Mr. J. E. Bingham (ex-Master Cutler), Mr. G. F. Lockwood, Mr. E. M such of them as relate to facts, and to report upon others that they consider cannot be correctly answered. The committee were also
authorised to issue a circular to the members of the Chamber, who are more or less directly associated with all the trades carried on
in the Sheffield district, asking for information to be supplied on The Sheffield Chamber of Commerce have also had unde
sideration a communication from the Birmingham and District public conference at Birmingham, under the presidency of the Right Hon. Lord Henniker, with reference to the recent decisions preferential rates granted to foreign traders by English railways, and to ascertain the best means of protecting the interests of reighters in Parliament. Mr. E. M. Bainbridge and Mr. W. © Leng were requested to attend on behalf of the Chamber and
report the result of the conference to some future mecting of the
Our commercial relations with Spain do not seem to improve,
While the British Government has obtained the sanction of Parlia ment to the extension of the alcoholic sale to the Spain, the Government of that country has neglected to carry out their side of the engagement, to admit British commerce to most favoured nation treatment throughout the spanish1 domimion This is regarced as a matter of serious interest one thit Sheftiel
district, where a much larger trade can be done with Spain in other matters were equal, and competition with German and By what appears to have been the neglect of the engineer at tho Oakwell Coliiery, Ilkeston, Derbyshire, last Thursday, the cages
were overwound and smashed, one against the headstocks, were overwound and smashed, one against the headstocks, and the
other to the bottom of the shaft. Three hundred miners were entombed for several hours, butt were subsequently rescued by
means of a bucket via the ventilating shaft. Coniderable dem was done to the engine-house, but work was resumed on Monday

THE NORTH OF ENGLAND.
THE attendance at the iron market held at Middlesbrough on
Tuesday last was small, and but littlo business was transacted. Tuesday last was small, and but littlo business was transacted.
The tone was, however, steady, and as less iron was on offer than at the previous market, prices did not fall below the minimum 32s. 9 d. per ton for No. 3 g.m.b. Makers quoted 6d. to 9 d . per ton more than that figure. and could not bere tempted to toducuce. Secing
mhat they have orders which will last them some weeks, there is no present need for them to press their iron upon the market.
Warrants are firmly held, the price quoted by most tholders being
The stock in Connal's Middlesbrough store continues to increase a rapid rate. On Monday last the quantity held was 94,360
On Mo eir stock is 23,188 tons, the increase last week being 2537 tons. Shipments of pig iron from the Tees are eso far larger than in
any previous month this year. Up to Monday last 59 Sof tons had eonding portion of August.
There is no improvement in the finished iron or steel trades, and

 The direotors of Messrs. Armstrong, Mitchell, and Co. have
declared a dividend at the rate of 8 per cent. for the year ending Mae 30th last. Schlesinger, Davis, and Co., of Wallsend, have been
Mast placed on the Admiralty list as builders of vessels for the British Dr. Spence Watson, of Newcastle, has again consented to officiato
as referce to the North of England Board of Arbitration. The employers claim a reduction of $7 \frac{1}{2}$ per cent., the men objecting to
any further reduction whatever. Tho date of the arbitration has not yet been fixed.
Two eminent and old-established Tyneside firms have just
decided on amalgamation and re-construction as a private limited company. The firms in question are Re and W. Hawthorn and
Co., locomotive and marine entine ron and steel shipbuilders. The style of the new company will be
R. and W. Hawthorn, Leslie, and Co. Mr. Lestie, who estavithed indomitable shipbuilding business some thirty years since, and worked it up to a high state of prosperity, retires. His partner and d-in-law-Mr. Coote-will assume the chief control of that
department. The engineering departments will be department. The engineering departments will be conducted
precisely as before. There are many advantagts in the
application of the limited principle, even though the pro-
prietary and management remain unaltered. Not the least of
these are the facility afforded for transferring shares, for resigning ting successors to them, and for associating together capitalists of varying means without unlimited
liability. The above firms evidently appreciate these advantages pany at Elswick and many others have done. There is little pany at Elswick and many others have done. There is little been in the past.
the iron remarkable quiescence which has succeeded to the spurt in the iron trade, and in the value of publio securities, which set in paper boom., All are now agreed that it began at the wrong end; was any increase in the consumption of any increased activity in those trades wherein pig iron is used. On the orer hand, side capitalists. This is a solid advantage so far as it goes, but it lasging wheels of industry going. The managers of the daily newspapers in the North naturaly lay themselves out to
supply whatever information their readers are eager to obtain. for some tidings, some signs of better times. It cannot be wondered at, when hopeful news does arrive, it is made too much of. That which recently came from America to the effect that railway proexpanded, enlarged upon, speculated upon, and operated upon, until great expectations were excited as to returning prosperity
here. These expectations have not been realised -at least, not et- considerable disappointment has naturally ensued. The "bears especially sneer at the newspaper boom, and are hard at
work at their old game of bearing prices. It is to be hoped, however, that the better feeling wil not altogether pass away. It is
something to have disturbed, even for a brief. period, the dead somel of depression which had seized upon the industrial world be well for the prophesying journals not to be in such a hurry to magnify it. Such a policy cannot do any good, and may
do great harm. In the boom of 1879 the workmen in the iron trade in the North were excited prematurely by what they read in the papers, so that they struck in all directions, until they obtained
heavy advances of wages, and that before their employers had reaped any advantage whatever. Three montns afterwards another strike took place, when the above unwarranted advance had to be taken off, owing to the disappearance of the short-lived boom. It is therefore to be hoped that the newspapers will throw their
influene on the side of moderation and caution, and will not
ercourage, much less initiate, booms of any kind.

NOTES FROM SCOTLAND
There has been again a rather better feeling manifested in iron hipments-several thousand tons greater than was anticipated. They amounted to 12,214 tons, as compared with 7557 in the preering week, and 11,021 in the corresponding week of 1884. The tralia. An additional furnace having been put in blast at Gart.
sherrie, there are now ninety in operation, as compared with inety-four at this date last year. In the course of the week about , tons of pigs w
Business was done in the warrant market on Friday up to 43 s .
cash. On Monday forenoon transactions occurred from 42 s . 10 d d.

 which was the closing quotation.
The values of makers' irnn are generally firm, and certain

 Grangemouth, 51 s . and $47 \mathrm{~s} . ;$ Kinneil, at Bo'ness, 44 s . 6 d . and 42s. 6d.; and 40s.; Dalmellington, 4ss. and 41s. 42 s . 6 d .; Eglinton, Pig Iron Trade Association to have haeir Ayrshire brand M. and C. will be no difficulty about this, provided the analysis of the iron is sufficient to warrant its classification.
The annual meeting of the Monkland Iron and Coal Company
was held in Glasgow on Tuesday. The report, already published, showing a loss on the year of $£ 11,000$ and on three years of $£ 58,000$, was held as read; but when the chairman, Mr. Reid, proposed its
adoption, Mr. George Wilson, of Dalmarnock, moved that it be received but not adopted. The amendment was duly seconded,
and Mr. Wilson produced proxies sufficient to carry it. The directors proposed by the chairman were rejected in a similar way, and
others put in their place. It will be necessary to call another neeting to see what should next be done.
The past week's shipments of iron and st
have inoluded $£ 3414$ worth of machinery, $£ 6400$ sewing machines $£ 2200$ steel goods, and $£ 41,000$ general iron manufactures, the tota being rather less than usual. The iron goods embraced $£ 9400$
worth of cast iron pipes for Monte Video, and $£ 6400$ pipes, \&co, for In South Wales In conse Wence of the serious depression in trade, notices have
been posted at the ironfounding works in Johnstone of a reduction
of 1 s. per week on the wages of moulders, dressers, and labourers of 11. per week on the wages of moulders, dressers, and labourers.
On Saturday a number of the moulders were discharged, and the prospect is the reverse of cheering. Dale Stol Works of Messrs.
Some trouble has ocourred the the Dalzell Steel Whe or
David Colville and Sons, Motherwell, as the result of an intimation David Colville and Sons, Motherwell, as the result of an intimation of a reduction of the wages of levermen and hammermen. The
sooking pits recently wonstructed at the works save a considerable
amount of labour formerly and it was on this account that the employers determined to reduce wages. In this then appear to have been fully justified.
The intimation resulted in a strike, but the men have since gone Speaking at the annual meeting of the Steel Company of Scotand, held in Glasgow a few days ago, sir Charles Tennant, Bart.,
M.P., reminded the shareholders of the opinion he expressed twelve months ago, that the gloom which had so long overhung the iron and steel industries was nearing its end. He was sorry to
say that his hopes had not been realised, for from that date up
to the olose of their financial year the depression had been of an almost unparalleled character. The dividend of of 4 per cent. now to be paid he considered a reason for congratulation in the cir-
cumstances. The application of steel for all works of a constructive nature continued to increase, and while the productive
power of the steel works was also extendiny, Sir Charles said he power of the steel works was also extending, Sir Charles said he
did not doubt that this company would continue to receive a fair share of the orders in the market. He paid a high compliment to
Mr. Riley, the manager, for the excellent way in which the works The
he amootch coal trade is in a satisfactory condition as regards materially increasing, the shipping demand is well maintained, and
ironmasters have been in the market this week trying to fixquarterly
contracts for splint coals. Coalmasters report, however, that they contracts for splint coals, Coalmasters report, however, that they
have as yet failed to obtain any advance on prices. The past week's

012 at Greenock

At the last weekly meeting of the miners' delegates at Hamilton,
it was again resolved to approach the masters for an advance of it was again resolved to approach expected that the the men will be a
6. a day in wages. It is not once successful, but the coalmasters state that the mind should it
holiday is now being more generally observed, and shol become universal, it will create a scarcity of coals that will foree up prices and enable them to concede the increase of pay. The
best feeling exists among the masters on the subject, and they wil no doubt give the men the 6 d. . at the earliest possible opportunity,
The Executive Board of the Fife and Clackmannan Miners Board learns with satisfaction that strenuous efforts are being made to establish the eight-hours' day in Lanarkshire, and expresses the hope that success will attend the effort, believing that if the time
were restricted generally throughout the West of Scotland an were restricted generally throughout the est
advance of wages would assuredly be easily obtained."

WALES AND ADJOINING COUNTIES.

I Aave passed over a great breadth of country during the last few days, and from one end to the other the prevailing tone is one
of depression. Every industry is flagging, and yet coalowners and of depression. Every industry is flagging, and yet coalowners and
ironmasters remain hopeful, and think that with the autumn a desirable change will be forthcoming. In the matter of coal it is the small coalowner who suffers most. As for the larger men, they come in for Government contracts, which if taken at low figures, yet leave a small margin, and keep the coliers employed. Oriental contracts have been given out, and as usual some of our leadin coalowners have secured share. Amongst Ferndale are indluded, and the senior institution amongst collieries
Locketts Marthyr, which, if I am not mistaken, had a steam coal trade prior to to the Taff Vale.
I may be allowed to
1 may be allowed to claim some small prescience in the forecast of coal sinkings. A month ago, and gloom to a areat extent extended
itsolf over Pontypridd. Menof ability told me that thegreat Ynysbwl sinking, in which Ocean Davies was engaged, had proved a failure they had gone a long way below the depth where it was thought
that coal would be found, and still no coal. Having confidence in the Messrs. Beith, and judging from the character of the locality
 6it., such as has proved so remarkably well at the Ocean Colliery
and it has been found at a depth of 545 yards. It is in capitaa condition for working, having a holing of soft shale beneath, which renders the collier's task an easy one. Great credit is ine to the
sinkers, Messrs. Beith, and to Mr. William Jenkins in the undertaking, and Mr. Morgan Joseph, too, must not be forgotten. The
sinking was begun in June, 1884, and now a fine new coal-feld wil sinking was begun in June, 1884, and now a fine new coa--1ield wil
be opened out The Taff Vale Railway has long prepared for the
event and will now reap the reward Generally speaking the the steam cowal of trade forethought is in its old inanised
conate means so firm in price as it has been
House coal is in little rea
House coal is in little request, but a few weeks may be expected
o tell upon this trade, and October totals will certainly be better Patent fuel, singularly enough, is an industry that shows more activity in degree than coal, and at Cardiff and Swansea good
cargoes have been despatched. The trade is yet too young at for much commen
In respect of the proposed amalgamation of the Rhymney and
Taff Vale Railways, a correspondence has taken place between Mr. Boyle, the chairman of the Rhymney line, and Mr. Sayce, who
issued a circular letter in advocacy of the amalgamation. Mr Boyle, while admitting the advantages of a fusion to some extent yet insists upon the directors being left to their own judgment. any outward influence which would foroe them to agree might be
prejudicial to the interests of the Rhymney. Mr. Boyle evidently
believes in ono for all parties, and influential shareholders on both railways take the same view.
There is not much the hopeful view is still price in the iron and steel trades, only that from Newport were 1699 tons to Montreal, 836 tons of rails' and
730 ton of tie bor steel sleepers, to Madras, 126 tons of machinery, 82 tons not omit to note that the pair of horizontal engines used at the sinking of Ynysybwl were made and erected by Lee and Co., of
Patricroft. Six steel boilers already placed are by D. Adamson and Co. The winding engines to be supplied early in October are
by Daglish and Co., St. Helens. 2000 tons of tin-pry has been restarted, and under hopeful prospects America. Tin-plates are decidedly looking up. Stocks are getting
very low, and buyer sing very low, and buyers soon will have no alternative but to put in
orders. Prospects of the trade are better at Swansea, and I am orders. Prospects of the trade are better at wansea, and
glad to note this, as the coal trade there is flat. The falure of the
Lower Res collieries and Neath Merthyr, make things look black for the port of Swansea, which has been the outlet.

AMERICAN NOTES.

(From our own Correspondent.)
EW Yo September 12th.
The Government is taking steps for the transfer of an immense Carson City, St. Louis, and other distant towns, to New York city and one or two other commercial centres, where it is probable it
will soon be wanted. Twenty millions of dollars are to come from New Orleans, five millions of which are coming by water and the
balance by rail. The possibility of financial stringency is recognised in high financial circles. A vigorous effort will be made to repeal month. permitting the coinage of silver at $2,000,000$ dols. per
muestion and the Tariff question promise to create unusual interest in Congressional circles this winter.
The Silver question is to be the subject of special consideration at the annual oonvention of the American Eankers' Association Chicago, on September 23 rd. Among other questions that will

come up there are reforms in extradition treaties; the avoidance panics ; the unprecedented growth of wealth, material, and motive | power, especially in the West and South; the developments of the |
| :--- |
| Tron and coitl | Iron and ootton manufactures in this section. There are 8000

banks throughout the United States, and representation has been

The volume of

 portion of it. One hundred thousand pounds in sovereigns arrived from Australia at San Francisco. Uarge shipments are expectedfrom across the Atlantic. The United States Treasury has at
present present $517,000,000$ dols., of which $250,000,000$ dolss are in gold
and $170,000,000$ dols. in silver dollars and bullion. The industrial interests are apprehensive of agitation upon the silver question,
and the consequent unsettling of values. Various organisations inaugurate radical measures by the banking interests will be
vigorously met. The manufacturing interests will request that tariff duties be permitted to remain where they are; but it is
evident that there is a powerful body at work, which will be able A bitter cention to the very last.
uence of the cut of 55 per cent. in eass in the south-west, in conse Tenn. It was met by a competing cut of 60 per cent. The Louis Nille and Nashville, and other roads, are being thrown into the
aght. Thus far it is confined to the passenger rates. The Unio Pacific has borrowed $6,000,000$ dols. on favourable terms. Severa ther roads are in the market for money, and this demand wor
serve to absorb some of the surplus which has been begging fo mployment for montha.

Te manufacturing interests throughout the country are inclined to believe that the present improvement will continue throughou the autumn and winter. Rolling mills, rail mills, sheet mills, bridge ment establishments have, within a few days, received large order or material to be delivered during the rest of the year. Price not improve, bar manu acures every here are more anxiou or machinery for textile mills. The rail mills are crowded with ders for the rest of the year. Heavy exports of copper continue
 English Bessemer and spiegeleisen aren quieo, at at 19 dols. for Beesse
ner and 25 dols. for spiegeleisen. Receipts of tin-plates sine
 oxes. The consumption of iron and steel is steadily improving pretty well absorbed for the next ninety days. Labour strike continue with increased frequency because of the industrial improvement. Labourers are taking advantage of the activity to
demand higher compensation, and in the majority of cases slight has been made in products.

LAUNCHES AND TRIAL TRIPS.
On the 14th inst. Messrs. Oswald, Mordaunt, and Coo, South register, and of the following dimensions:-Length, 323 ft , 6 in , breadth, 38 ft. . 6in.; depth of hold, 26 ft . 9in. The vessel has been
built for Messrs. Lmport and Holt, of Liverpool. She is brigan ine rigged, having pole masts of iron. Accommodation is pro
rided for captain and officers in full poop; engineers and petty officers under bridge deck; crew and firemen under togallant fore astle. She is fitted with Harfield's windlass, with capstan com ships; screw winches for working cargo The engines and boilers are by the cylinders 34 the engines being compound surface condensing, with crank-shaft; steam and hydraulic reversing gear. Steam is gene aving four furnaces, at a pressure of 100 lb . per square inch. The vessel has been built under the superintendence of Mr. John
Russell. As the vessel left the ways she was named the "Spenser" The steamship Shi
on, of steamship Shieldrake, built at Dundee, by Mr. W. Thomp- and Dundee, made a steam trial outside the rive Tay on Monday, the 14th inst, when very satisfactory results were
obtained. The Shieldrake, which has been built of steel for the Cork Steamship Company, is of the following dimensions: 250 ft .
by 32 ft ., by 15 ft . Sin., with compound surface-condenis of 160 nominal horse-power; cylinders, 29in. and 37in, stroke 4in.; seam being supplied from a double-ended steel boiler, at on's Tay foundry. Leaving Dundee in the forenoon, the steamer nade airect for the Bell Rook, where the Ferdinand Brum, rriving close to the rock. Mr. Thompson and Mr. Anderson, his nanager in the Caledon Shipyard, who were both on the steamer
boarded the stranded barque-the weather being favourable-ani rom the examination they made came to the conclusion that the put about for the Buoy-of-Tay, and from that point ran to the per hour. On the return run from the Carr to the Buoy-of-Tay peed of about $12 \frac{4}{4}$ knots, during which the engines indicated
1326 -horse On reaching the Buoy-of-Tay on the northward run, the Shieldanke made again for the Bell Rock, which was reached shortly before
flood tide. By this time the stranded vessel appeared to be afloat and a boat containing Mr. Anderson and some of the hands put of rom the steamer, and were soon aboard the wreck, from which
hawser was passed on to the steamer, and a little before sundow the barque was successfully towed off the rock. It was now found that the chains having fallen through the broken bottom were
dragging, and until these were cut little progress could be made in owing, the Shieldrake stood by the barque all night, nd ac aylight a number of men under Mr. Anderson boarded the he wreck had a heavy list to port, and floated only on her cargo which consisted of pitch pine loge cry little progress was made. About nine oclock the tug, Iron
King, came up, and an anrement being entered into for her assistance, good progress was made in the direction of the rive
mouth. When about half way to the Buoy-of-T the wind away with increasing force from the south, and the services of
second tug, which by this time and later on a third tug appearing was also engaged, and with the Shieldrake, and the three tugs towing, a good speed, was obthined,
and during the course of the afternoon the barque was successfully eached in the West Ferry bay, about three miles below Dundee The vessel had suffered damage to such an extent that repairs will
probably be considered impossible, but the salvage of her cargo, part in the work.

Drcline in Shipsuiding, - The official report of the Registrar there were added to the registers of the United Kingdom and the Colonies 114 vessels, the net register tonnage of which was 38,974 .
In the same time the number of vessels removed from the registry was 166 , the net tonnage being 37,915 . Out of the vessels adde only thirty-six were steamers, and many of these were of smal
dimensions, for river or special service-five iron steamers being dided to the register for the United Kingdom of less than 100 ton ani, while all the wooden steamers added to the United Kingdom onnage were less month was in the each. The chief addition to the
tosels-fifteen bein tdded to the register for the United Kingdom, of the net registered
tonnage of 19,787 . All the wooden sailing vessels added to the United Kingdom register last month were of small dimensions register, and only one above that tonnage. Similar remarks apply to the colonial registers, so that it would seem that there are now very few large vessels being built, and that the building carried o loss of vessels is more varied, the iron steamers removed from the registry being fourteen, of a net tonnage of 9485. Taking both
home and colonial registers, the horse-power of the vessels added mat thonth was 2708 , and that of the vessels removed was 3158 , so

NEW COMPANIES.

The following companiea have just been regis-

Venezuela Western Railway Company, Limited. On the 16 th inst. this company was registered with a capital of $£ 300,000$ in $£ 10$ shares, to
acquire concessions granted by the Venezuelan acquire concessions granted by the Venezuelan
Government for the construction and working of a railway from La Fria to El Brazo or Encontrado3. The subscribers are :-
Emil Josaphat, 11, Duke-street, London Bridge, Shares, wine merchant
$\begin{gathered}\text { Smuel Sumuels, } \\ \text { broker } 8 \text {, old } \\ \text { Broad-street, }\end{gathered}$ stock.
 F. Fowler, C.E., Aylesbury _. ..
J. A. Eaton, C.E., 4, Starch-green-road -
E. Frainge,
bank secretary

The directorate is to consist of not less than four nor more than seven members; the sub-
scribers are to appoint the first. Qualification scribers are to appoint the first.
for subsequent directors, 20 shares or equivalent for subsequent directors, 20 shares or
stock; remuneration, $£ 1500$ per annum.

Ulpha Copper Mining Company, Limited. This company proposes to acquire and work the Long Garth Copper Mines, in the parish of Ulpha, with a capital of $£ 12,000$, in $£ 1$ shares, with the with a capital of $£ 12,000$, in
following as first subscribers :-

S. Birkett, M.E., Millom, Cumberland .. T. Cock, Dalton-in-Furness, mining agent M. L. Boundy, Millom, turner
 R. L. Boundy, Millom, turner \cdot. R. Dinnis, Millom, turner R. MGewan, Millom, auctioneer W. Voisey, Millom, miner W. Visowan, Millom, auct W. Sharpe, Millom, millor miner

Registered without special articles.

Garw Water and Light Company, Limited. On the 14th inst. this company was registered
with a capital of $£ 30,000$, in $£ 10$ shares, to carry on the business of a water, gas, and electric light company, in all branches, for the purpose of sup
plyingeveral parishes in the county of Glamorgan C. L. Waugh, M.E. J. Walters, Treherbert, grocer ... $\because \ldots$
E. T. Kynns, Rhondda Valley, grer
E. \&. Pike, Rhondda Valiey, gas and water
manager D. Roberts, Y norre V̈ale, overman
. Barrow, M. The, Malstey, Glamorgan
The number of directors is not to be less than three nor more than seven; qualification, share cribers are to appoint the first directors, and act a interim. The company in general meeting will determine remuneration.
Talk o' th' Hill Colliery Company, Limited. This company was registered on the 11th inst with a capital of $£ 50,000$, in $£ 10$ shares, to carry on business as colliery owners and working iron-
masters, brick and tile manufacturers, The sub scribers are:-

A. F. Wallan, 8, Austin Friars, merchant Y. H. Birloy, E.ast Grinstoad, barrister.. T. H. Birley, 66, Petar-street, Manchestor

. Bincy, 66, Petor-street, Manchester, com

eter Dunn, 53, Brown-street, Manchester
The number of directors is not to be less than three nor more than five; the first are the sub
scribers denoted by an asterisk. The company i scribers denoted by an asterisk. The company i
general meeting will determine remuneration.

Atlas Soap and Candle Works Company, Limited. This is the conversion to a company of the
business of soap and candle manufacturer carried on by Mr. Richard Thomas Gray at the Atla It was registered on the 14th inst. with a capital t was registered on the 14 th inst, with a capital
of $£ 5000$, in $£ 20$ shares. The subscribers are:R. T. Gray, Lemon Quay, Tiuro, chandler C. Furnip, Lemon-street, Truro, man
John, Boscanenstreet, Truro, grocer
W. Rowe, Falmouth, steamship owner
Dixon, Truro, merchaut
J. Colmor, Truro .. ${ }^{\text {. }}$.
I Chirgwin, Trururo, chartered a

The number of directors is not to be less than five nor more than seven; qualification, shares or in general meeting will determine remuneration.

Iguana Gold Syndicate, Limited.
This company was registered on the 10 th inst
with a capital of $£ 2750$, in 55 shares of $£ 50$ each to advance moneys to Messrs. J. F. Guignes and P. Quartier, upon the mortgage of six concessions
of lands situate in the Commune of Mana, French Guyana, known as the Iguana concessions certain lands, sugar plantations, and also of certain lands, sugar plantations, \&c., in the
Island of Guadaloupe, the property of Mr
Guignes, Power is taken to Guignes. Power is taken to take possession of and to explore, work, mine, and cultivate such
lands. An agreement made between J. F Guignes and P. Quartier of the one part, and T
S. Godman Kirkpatrick and \mathbf{D}. Forbes of the other part, will be adopted. The subscriber J. D. Gord, 1, Guildhall-chambers, chartered

 A, Barlow, 5 , Williams-pla
Melbourne Jackson, 2 Feu-court, E.C., me
The numbers of directors is not to be less than five nor more than seven; qualification, one
share; the subscribers are the first. In the event
of the mining engineer or expert of the company
reporting that the said concessions may be success. fully worked for the production of gold, it is in Iguana Gold Company, with a capital of $£ 120,000$, in $£ 1$ shares, to purchase the six concessions for
$£ 104,250$, of which $£ 100,000$ will be payable in fully-paid shares.

ENGLISH IRON WORKS IN RUSSIA Russia has made many great efforts to develope the resources of the mineral basin of the Donet2, Ironworks were established at Lugan, but the manufacture of pig iron proved unsuccessful, and
iron had to be procured from Siberia. In 1865 a large sum was expended in erecting coke ovens,
brickyards, \&c., at Petroffsky. After several brickyards, \&c., at Petroffsky. After several
years of experimental working with the assistance of French and German artisans, as well as with the best workmen from Siberia, the authorities pig iron. The machinery was then removed t Lissetchansk, where coal and iron ore were said to be abundant, but the old story was repeated, the works were razed to the ground and the machinery sold by public auction. Then, in 1868 ,
the experiment of concessions was tried, and the experiment of concessions was tried, and
several failures followed. Notwithstanding these repeated and costly failures, the Government was still very anxious to establish ironworks in the Donetz mineral basin, and about this time a con cession was granted to Mr. John Hughes, of the works, and to construct a railway fifty-seven min in a southerly direction towards Mariupol or Berdiansk from Constantinoffka station, on the Koursk-Kharkoff-Azoff Railway. It should be mentioned that Mr. Hughes has been connected with the Russian Government for many years in supplying armour-plates, \&c., and in erecting
1864 -the first iron fortifications at Cronstadt the Constantine Island, now called the "Constantine Fort." Mr. Hughes formed a company with wealthy English capitalists in London, under the English Limited Liability Act, called
the New Russia Company, Limited sons personally undertaking the superintendence of the erection of the ironworks, which were com menced in 1869 on the banks of the river Kalmius, in the Province of Ekaterinoslay. The railway was constructed under a separate company formed by Mr. Hughes according to the Russian law. energy, the first blast furnace having been erected enargy, the first blast furnace having been erected
and started within nine months, in accordance iron was produced of a very superior quality at the rate of 200 to 300 tons per week
The works now possess three blast furnaces capable of producing together from 900 to 1000
tons of pig iron per week. All the plant for the blast furnace department was supplied by the Lilleshall Iron Company, Shropshire. Mr. Hughes' concession required the erection of ron tons of iron rails per annum, with the requisite guantity of fastenings. Mr. Hughes was also to erect a merchant bar mill and mechanical shops to sink coal pits capable of producing up to 2000 tons per day, should it be demanded by the
Government. The puddling and rolling mills, dc., were all completed in accordanco with the machinery for the mills being supplied by Messrs Thos. Perry and Sons, of Bilston, Staffordshire. The Fronstein concessions were eventually transy Mr. Hughes, as was also Mr. S. Poliakoff's oncession, and these obligations have been completely fulfilled by the New Russian Company
several years since. The operations of the works were very successfully carried on under the peror several years, exclusively in the production of ron rails, \&c. But in 1878, the Government having decided that all rails for Russian ranlways Company had to reconstruct their works and dapt them to the new requirements. Mr. Hughes adopted by preference the open-hearth or Siemens-Martiu principle, the plant and machinery being obtained from England. been in uninterrupted operation, producing stee ment has lately given the New Russia Company second contraut for 32,000 tons of steel raiss, The production of steel rails at the present time is about 700 tons per week; merchant iron and rail fastenings are also p oduced in very large
quantities to meet the requirements of the American Manufacturer.

The Royal Commission on Trade.-On Monday, at a meeting of the Sunderland Shipowners' Society, the secretary read the answers proposed to be sent in reply to the questions submitted to It was stated that the value of shipping belonging to the port and its resident owners was between
$£ 3,000,000$ and $£ 4,000,000$; that from 1866 to 1872 the shipping interest had suffered generally from the extravagant action of Mr . Plimsoll and the Board of Trade, the older classes of wooden eessels being indiscriminately condemned; that severity, and was felt the more because steamers when idle cause much heavier loss than did sailing ships ; that it was doubtful if the depression had yet reached the bottom; that the only special circumstances to which the existing condirion rade could be attributed were that the Legiswho really knew little about shipping, were perpetually devising crotchets which disturbed the trade and added cost and loss; that the prospects for the immediate future were very discouraging and that measures proposed by the Board Trade tend seriously to increase the shipowners it was pointed out that English shipping suffered from foreign competition, and the countries that derived advantages from our trade gave our shipping no equivalent in return. It was una
resolved to send the answers as framed.

THE PATENT JOURNAL

Applications for Letters Patent

 ** When patents have been "communicated," thename and address of the communicating party are name and adares.

15th Eeptember, 1885
0,896 Photographic Shutrers, C. D. Durnford ${ }_{10,897 \text {. CHANG }}^{\text {Edinburgh }}$ ng Plates, \&c., for Photographic Pur. Greene, Bath. yers, Northampton.
and BEARINGs, F. 0,899. WHEELS,
Northampton. 10,900. ADJUSTA
Blake, London Dake, London,
10,901. STovEs,
10, 902 . Spoon Bu G. A. J. Schott, Bradford.

10,903. Decking for Bridars, W. E. Wood, Darlaston.

10,903. Decking for Bridges, W. E. Wood, Darlaston,
10,904. Wind Gauges, A. Allen, Guildford.

SAsf Weights, C. Fellows, Wolverhampton.
10,900. Stekring and Propeleing Bicycles, T. Bayliss,
Thomas, and J. Slaughter, Coventry.
0,907 . SEPARATING VAPOURS from Liquids, J. Murrie,
Glasgow.
$10,908$. Usi
10,909 . GAL
虽
10,911. Boxes, L. Myers, Birmingham.
10,912. MeASURING, \&c., LiquIDs, A. Dt. J. W. Wriford,
London.
10,913. Securing Fasteninos on Stay Busks, de., J.
Jac
10,914
Hal
Halifax.
10,915. Door Checks, H. Hartung, London.
10,916. CLLoks, C. A. Richard, London. London.
10,917. GAs Moror ENGINES, J. Robson, London.
0,918. CLEANING and SHARPENING KNIVEs, dce., A. J.
Sediey, Hammersmith.
10,919 . PAPER PULP, E. Davies, C. F. B. Birchall, and
A. Wood, London.
10,920. LENSE for Optical Instruments, E. G. Colton.

10,921. Preventina SEA-sick NESs, \&c., A. C. Calmour,
London.
10,922. Buckles for Braces, \&c., J. and J. A. Wise,
London.
10,9.3. Anchors, G. B. Hingley and J. R. Curry
London.
10,924. Power Distribution, W. Lowrie, London.
10,925. HIGH Speed ENoINEs, W. Lowrie, London.
10,926. JUstiryend Tvpoaraphical Composition, P.
M. Justice.-(W. H. Knooles, France.)
10927. Cleaning the Rails and Grooves
WAYs, J. . . Part., (M. J. Doso, Belgiun.)
$10,928$. Water-CLoset, A. A. Common, Lond

10,928. WATER-CLOsET, A. A. Common, London,
lv,929. Homsting and Lowering APPARATUB, J. J. Pike,
London.
10,930. Inducing the Flow of Air or Gases at High
10,931. Applying Gem Balata to Issulativg Wires,

10,932
Lon
10,933
10,934
London.
10,933. NUT-Lock, W. Clark.- (J. W. Morton, U.S.)
10,934. CEMENT, R. Stone, London.

10,936. Removing GUM from Grass and Plants, H. J
Haddan. $-(L$. E. Vial, France.)
10,937. Paranitro-benzaldehydes, H. J. Haddan.-
(F.Bayef and Co., Germany.)

U.S.)
FiLfrs, B. Dukes, London.
ILTER Presses, dc., J. B. Alliott, London.
nasteninges for Umbrella Cabes, T. R. Croger,
Musical Spinning Tops and Boxes, E. Parr,
Case for holding Newspapers, \&c., E. Edwards.
Glass and Co., Germany.)

K, L. V. Sone, London.
Convirs for the Cabes of Cable Railways,
Lake.-(A. Bonzano, U.S.)
10,949. AUTOMATICALLY REOULATINO the FLow of
Wor, \& č. from Coolers, \&c., E. Fielding, Londen.
10,950. TELEPHONIC APPARATUS, O. Imray.-(W. Burn-
ley, U.s.)
10,95i. Electrical Regeiving apparatus for Relay
©c., W. P. Johnston, London.
10,92. ELECTRICAL Lockino APP
U. E. Spagnoletti, London
10,953. Fililina Screw-mouthed Bottles, H. Barrett,
London.
10,954. Drivina Bands, H. Barrett and J. J. Varley,
London.
London.
10,955 screw Stoppers for Botrles, H. Barrett,
10,956. HARrows, F. Mote, London.
10,957 . APPLYING LABELS to the
10,957. Applying Label
G. Wright, London
10,958. Apparatus for Press-copyina Letters, A. W
Watson, London.
10,959. GALVANIC BATTERIES, T. J. Jones, London.
10,960. FATENINGS for PIPE HEAD, D. Law, J. Law
jun., J. Law, and J. Jackson, Gaagow.

16 th Soptember, 1885

10,961. Metallic Bedsteads, F. Hoskins, Birmingham,
10,962. Scaew Hooks, \&c., G. J. Williams and F. R.
silk, Birmingham.
Silk, Birmingham.
10,96. Pormable PUMP, T. Wolstenholme and C. Gaul,
Bradford
Bradford.
10,964. Whers of Velocipedes, J. Appleby, Dunham
Massey, near Altrincham.
Massey, near Altrincham.
10,965. INCREABING the SPEE
R. Whittle, Pendlebury.

10,966. AUTOMATIC FIRE-Extinguishers, W. Wood-
Mechanically Feeding Fubl into Furnaces,
Mills, Altrincham. 10,968. Witherivg the Leaves of the Tea Plant, a
Bryans, London.
10,969. FISHING Hooks, W. H. Brookes, Iondon.
10,970. RAOKS for FORWARD and BACKWARD Move-
Ment, W. H. Pike, Lanark.
London.
10,972. Quilted and Wadded Material, dc., A. C.
Henderson.- (J. F. Grambois, France.
Henderson.-(J. F. Grambois, France.)
10,973. ADVERTISING, A. S., H. J., and G. A. Syratt,
10,974. STEAM Insectors, J. Miller, London.
10,975. OrNAMENTING Boots, \&c, J. B. F. Clow
London.
10,976. Sheath for Match-boxes, dc., T. R. Ablett,
Blackheath.
10,977. Casks for Protectiva Maps, Δ. Saloway and
10,978. Regetlatina Dynamo Machises, A. Bernstein,
London.
10,979. SEwino Machine Needle, A. T. Boon, London.
10,980 Attaching Torpedo Nets to Ships, W. M.
Bullivant, London.
$10,981$. LEvER FASTENing for Gloves, dc., J. R. Speck,
10,982. Lines or Cords for Suspendive Pio
G. Hookham and W. H. Tonks, London.

Lindiner bricatino Journala, H. J. Haddan,-(M,

 0,9866, LUBRICATORS, J, L. MeMurtrie, Glasgow,
0,987 . RETIFOBM WOODEN SHEETS for FLUOH MAT Ting, ©c., T. Robb, Glas
0 988. Mounting, de., Window sashes, W. Wright, 6,989. SKates, G. Powell, London.
0,990. Boxes for Holding TIN-pL Loudun,
10,991. Boots and Shoes for Cricker W. Williams London.
0,992 . Channelling the Soles of Boots and Shoes, W. Jackson, Lundon.
10,993. Locks, J. J. Still, London.
10,994. ColLECTINU YURE RAIN W
G. Roberts

W,995. Axle Boxes for Railway, de., Rollina Stock,
W. Walker, London. 9, War. Transport and Mioration of Exhbitions, w.
Pritchard-Morgan London. Pritchard-Morgan, London.
0,99 , Boottles for Containino
Codd, London.
098. Hydrailic Apparatus for Openina and London.
Lo, 99. Finishing Pile Fabrics, s. c. Lister and J. Reixach, Bradford. Washing Guns, A. Noble, London.
Gement for Jointina diunkware, de., W.
 17th September, 1885.
11,004. CAses for Clocks, E. Light, London.
11,005 . Chin-HoLder for Viouns, ©e., W. J. Cattell, London.
11,006. LAMPs, S. Watts, Bath.
11,007 . ConNEOTING SPRINOB

Connecting Sprinos to abtificial Tekth, J.
S.acarborough.
Combined Float Requlating Check or Stop
Hitchon, Acerington.
Blocking and Displaying Frilifinas, J. Making Fish Hoors, A. Stratton, Birmingham.
Military Compass, F. Bosshardt.-(c. Ros, France.) Cure of Pulmonary Diseabes, A. Lynch, Manchester.

Buckles, T. Evans, Birmingham.
URNITURE Castoks, J. Parry Bi
Furniture Castoks, J. Parry, Birmingham.
Holding Wool, do., for Kitrino, A. G.
derson, Elgin. Challis, London.
BuTrons, C. E. Celforen
Openino Envelopes, \&ce., K. W. Salfo-(A.

Preventina the Rattlino of Sasies, H. Smith,
try.
auxiliary Compensation for the Continuous

PIPE for Smokina Tosacoo, W. Britain, jun.,
Open, de., Cooking Ranae, G. W. Grove, Lea
Lining Converters, B. Versen, London.
Cutining the Teeth of Whekls, E. Shippey and T. O'Maher, Manchester.
032. Sprinos for

Harringon, London.
,033. Lock-UP Sirit and Liquor Stands, G. Betjo-
London.
PrepariNo Moulds for Casting Hollow-ware,
Payton, J. Mason, and A. J. S. Cresswell,
London.
Dhavernas, France.)
,036. Composition for Preventiso, de., Incsusta
TIon in STEAM Boilers, A. Pople and R. M. Bryant,
TIon in Steam Boilers, A. Pople and R. M. Bryant
London. London.
,3chool Bench, L. Gustav-Fogel, London.
038. Deodorising, dc., Gasks, E. D. Lathan,
. Blowing apparatus for Spray Producers, J.
urchill, Lodon. Hand Ambulance Wagos, E. Lee and W. Tay
London.
Punching and Eyeletting Machines, M. H.
Filiverp, J. Howie, Glaagow
Gridiers, H. C. Turner, Pary, London.
Grillers, H, C. Turner, London.
OVEN, ©C., FASTEINos, H. CTurner, London.
BLAST PIPEs for Locomotive Enoines, H, aud Adams, London. .
48. TYPE WRITERs, J. P. Smith, London.
49. PRODUCINO, de., PRESGURE to CLIPs for
Messenger, London, Pressure to Clips for Letters,
Messelin, London. Paccaud, London.
052. automatically Playino Tunes, E. Part Treatina Rhea or Rayeh, o. W. G._Briegleb.
Plaisier, Holland.) Plaisier, Holland.)
Boors and Shoos, Chambers, London.
Protoraphic OMERAs, A. M, Clark, London
TELEPRHONIC TraNsamters, G. L. Anderb Lepponic Transmittino Instruments, G. L. Anders, London. FEEDING Bottles for Inyants, J. Hix, London,
Requlators for Water Suply, J. Hix Metallic Casks, A. Montupet, London.
Cuttino Bevele on Mirrors, L. de Coster,

Rope-hauling apparatus for Towing, te., J.
London. O64, Grapmels for Cutting and Holdino Submarin
Cables, W. C. Johnson and $\$$. E. Phillips, Loudon. 18th September, 1885.
1,065. Conical Deronating Shells, G. H. Johnston, 11,066. Mexal-Framed Lawn Tensis Racket A. 1
Chapman, London. 1,067. Reovering Tis from Waste Tinned Iron, W.
Beatson, Rotherham. Beatson, Rotherham.
1,068. CutTiNa THIN Boards, T. N. Robinson, Man-
chester. chester.
1,069 Braces, J. W. Seddon, Manchester,
110 ton, Glasgow. ton, Glasgow.
11,07. Elininating SNow from Cotd AIr, W. P.
English, London.
11,0;2. WATERPROOF Garment, I. Frankinburg and J
Grounowsky, Mauchester.

11,073. Wagon Coupler, G. Turner, Ashton-under-

 Hundingon. .ind Paper in Printing Machinss, G. A.
Wilison, Liverpool.
 Rarrow,
11,0.0. Demilisg Machiags, T. H. Ward, Tipton.
11.0s2. Reks, G. and E. Ashworth, Manchester.
 11,084. GLLAZINO C

 Liverpool.

 Pickles, London. P. Speak and J.

 11,104. Boass, H. Gillespie, London
 11, io. Forrey. Loodon. chester, London.
ni, Loot Couplion Toakther Pipes or Tuges, W. Lea,
London.
 Praag, Byypt.)

 11,116. Wishivo MAchinss, T. Frater, Glasgow. 11, H, Holeroft, Uondoniat
 London.
11, ind Consecriso the Wires of Acovstio Teleprions
Circorrs, G. L. Anders. London.

$$
\text { 19th September, } 1885 .
$$

11,124. Fancry Weaviso, J. Eccles and R. Westwell,
Manchosester.
,
 I1, 126. Reipina Machines, P. C. Evans and H. J. H.
King, Stroud.

 11,138. Fish-plates and FAstenens, G. H. Wells, 11,139. Frisisg and Corkisa Machines, J. P. Jack-

 1.153. Thantivo Wingsand Liquons with Electuciry
E. J. Fruser, San Francisco.

 B Payne, London.
 11,183. Combina M Mchinse, J. J. Richardson, Bradford,

$$
21 \text { st September, } 1885 .
$$

11,184. HATs, R. Wallwork, Manchester.
11, $185 . \mathrm{CL}$.
.

,188. Purifyino Waste Gas Lime, de., T. Lowe, old
 Pettigrow, Darilington.
11, 191. BEvELLED BEARINos for Lookivo-oLAsses, H. 11,991. BEvELLED BEARIMos for Lookivo-gLasses, H.
and C. W. Bessell, Bristol. 1.192, Skip-acting Direct-action Motor, S. 1
Waticing 11, 19.3. EEPRANAIION.
Wardrop, London. 11, ard. Smop, London.

ton, London. ${ }^{\text {Lit. } 2000 \text {. Vent }}$. Howarth, London.
H1,201. Sin Sivie Bolstres for Spinyiso, C. A. Allison.
 Frsinsoc, A. Williams, Redditho
$11,204$. SUsPENDERS, H. H. Leigh.-(c. H. W. Ien, Germany.)
11.2055 PRintina Musio and Colours, N , Pratt, Bromley.
$11,206$. Firklaces, F. G. Dutoit and A. Burkart,

 11,215. ExPELOSIVE AGERNT, J. Graddon and P. Harding, Li, 116 . Apn. Aplying Paint to Textile Fabices, Wood,
1,

 11,219. Generatina Carbonic Acid Gas, F. G. Riley,
Lodonom
11,220، Looring Nuts, O. Imray.-(F.S. D. Broughton, 11,220. Looking Nuts, O. Imray.-(F.S. D. Broughton,
United State.).
11 ,221. Drito Mrisa Arr for Divisa Purposse,

 Cleinim. - (1) In In adynamo-electric machine or motor
a field magnet core having an extension or a field magnet core having an extension, as as a, and
sheet iron plates secured to such extension and forming the pole pieces acting on the armature. (2) In a
dynamo-electric machine or motor, a field magnet pole piece constres, which anumber of superimposed
sheet iron plates. which bent in a plane rarallel to the piane of the rotation and having a
curved edge prosented to the armature. (3) The combination with the field magnot ore of the perforated
extension α, and
a series of thin sheet iron plates extension a, and a series of thin sheet iron plates
bolted to said extension and forming the fild-of-foreo
pole p piece pole piece. (4) In a dyamoe-ectrio machine or
motor, an armature having a series of magnets sup. ported in a suitabie frame and revelved bodily yaround
the axis of said frame, each of said magnets having a core composed of a number of H.shapagned pieces of of iron
mounted so that the edges of their legs shall form the mourted of the magnots. 15 In In n gynamo-electric
poleh
machine or motor machine or motor, an armature consisting of al frame
carrying a series of electro-magnets, each consisting of carrying a series of electro-magnets, each consisting of
a bundie or pril of thinep rron plates wound with
insulated wire. (6) Ah prmature pore mounted on a

323, 975
 (2)=

revolving carrior with its magnetio axis transverse to
the plane of rotation, and provided with spaces, as s s extending radially through itt poles for the papes, ase
bolts, whereby it may be fastened to its carriag. The combination with the fartened to its carrier. (7 on a suitable frame with the magnetic axees parallel to
the shaft, by which sodd frame is revolved, of fasten-
 the purpose deseribed. (8) The combination with
non-magnetic carrier mounted on series of magnets having their axes parallel to the shaft, the insuluted plates or wases paraill the and the
fastening bolts passing transversely through the fastening bolts passing transerraely through the
magenet pooes and the phates L, as and for the purpose
described magniet poles and the patases L, as and for the purpose
descibod. (9) The combination with the maneot core.
made up of a series of thin H-shaped pieces of iron, made up of a series of thin H -shaped pieces of iron, of
the side plates D, having rounded body, and retaining
 mounted on a suitable frrme of connene ming links,
as
as , for the the purpose described. (11) The combination with the series of armature magnets having laterally
proje
pron

 armature shaft of bolts passing transversely through
the poles of the mannets for the polos of the magnets sor securing them to the
frame, and a rotaining band G less 8 in width than the
length of the magnet
 removal of an armiture magnot or magnets, as and for
the purpose deseribed. 323,982. ELEscrrato. Moron, Chrles J. Van Depoele, Claim.- () An armatura consisting of a core, suitable coils upon sald ocre, and insulatod ring, to which
each of snid coils is attached dy lop extending there
from, and a commutater from, and a commutator formod of motallic segments
sufficiently suumicionthy elongated to bo adaptod, when perma-
nently securod by their outer ends to tho loops of the
armature coils, to form spokes radihting from the
 as described. (2) The combinatito of of an insunulating
hub secured to the driving shaft, L-shan

outer ends of said short arms, and a series of armature
coils provided with loops, to which the longer and
 as doscribed. (3) In an electric motor., a fifld magnot
having a substantinly diamond-shaped core, and pole haning a substantinly diamond-shanpd core, and polo
piocos a xtunding from the oextronitites thereof at right
angles thereto. (4) In an oloctrio
 enlarged or diamond-shaped core, and pole pieces
extending at right angles therefrom, a commutator mounted upon a shant journalledrom, vertically between bent
said pole pieces and having conducting said pole pieces and having conducting arms integral
with the commutating segments, and extending
 their respective conducting arms
323,983. Incaspescrus Lasp, Charles J. Van Depoele,
Chicago, Ill.-Filed November 3rd, 1884. Claim.- (1) An incandescing fliament consisting of
a non-homogenous aggregation of carbonised fibres, substartially ns deccribed. (2) An incandescing filai
ment composed of no indefinite number of smal ment composed of an indeennte number of smani

323,983

wedge having bevellod flanges extending along th
outer edges of its inclined faces adnted to the outer edges of the contiguous ends of the felly sections, and having its larger end provided with a
cap having ahoulder upon its undor side addedte
fit within the hollow interios of tho whed fit within the hollow interior of the wedge, substan
tially as and for the purpose specifed.
out the entire length of the filament, but inter-
mingling with each other and affording numerous
conducting passages through the conducting medium substantinilly as set forth. (3) An increasing filament composed of an aggregation of short fibres interlaced
so as to form numerous continuous pasages through so as to form numerous continuous passages through-
out the entire filament, said fibres being united at
their extromities, wheroby the filament is adapted to
be comnecede by suitable clamps with the line wires
竍 entering the lamp, substantially as set forth.
 Claim, - (1) In a system of suspended electrical con
veyors, the combination, with two supporting con
 two supporting wheels running on said conductors
one of said wheels being in electrical one polo of the motor and the other wheol with the the
other pole of the same, and each supporting whe
 he conductors and connected to and supporting a caa ystem of suspended electrical conveyors, the combi nation, with two supporting conductors and an
electro-motor travelling thereon, of two wheels run ning on said conductors and supporting a car, one of
said wheels being in electrical connection with one of he poles of the motor and the other with the other pol
thereof and carryin y ar below the conductors by connection passing between the same, substantially
as described. (3) In a system of sumpe, as described. ${ }^{(3)}$ In a system of suspended electrical
conveyors, the combination, with two-supporting

conductors, of a car and motor both suspended below nad by said supporting conductors, and axle carrying
upporting and driving wheels, one of which acts as n electrical comnection between the supporting con substantially as dotoreribed, betwermed inte the motor and and the
oxle possing axle passing between the conductors for transferring
motion from the motor to the axle, substantiall deseribed. (4) In a system of suspended electrical conveyors, the combination of the uprights A croan
bar B , the hangers D , the conductors supported on said hangers and insulated from the cross bar, and the car Gig hung below said conductors by standard
passing between them, and carryink bearings for the upporting and driving axles. (5) In a system o
flectric cable conveyance, and in combination with the car and electric motor thereof, the posts A , the
cross bar B , the hangers D , insulating slooves E , and
亚 324,0
324,000. Honse Hav-Rake, Trederick Bentel, Hamil

pair of lugg stradaling the tooth to the rear of said
wrist, and adjustable supports above and bolow the tooth at said lugs, combined substantinilly as specifled. 324,005. Fonvacn yon Bunnivo Liquid and Gaszous
FUELL, David H. Burrell, Little Falls, N. Y.-Fled

Claim. In an apparatus for burning 1 Iquid or
gaseous fuel, the combination of the conical nozzle B_{i}
324,005

having internal scrow.thraaded ring b, the steam pipe
C, and oil pipe D, arranged concentrically within sind C, and oil pipe D, arranged concontrically within sand
nozzie, and the stem F , paseod loggitudinilly thrould nozze, and the stam r, passed
tho of il ipe all substantially as and for the purpose
spociffed. 324,339. Lubricaron, Robert Ruddy, Mount Vornon,
and Leopodl Kactander, Neto York, - Filed July 9th, Claim.-(1) The combination, with the oil cup, the sight feed glase, and its ocnnoctions of of the manin
steam conduit A and the channel B, located withitit. and cast in one with the body of the oil coup and ox.

 sight Teed ghas and its eonnections, the main steam
conduit A tho channel B, locato within and formed
in one with the body of the oil cup and extending

