ON VELOCITY IN BELT AND ROPE GEARING. The aćvantage of high speeds in the transmission of power by belt and rope gearing is now everywhere admitted and understood. Not so well, however, is it apprehended that a sharply defined limit exists, beyond which a farther increase of speed is not only without advantage, but actually injurious. This limit is one imposed by the inertia of the power transmitted is greatest, being quite distinct from the question of the efficiency of the band as a transmitter of power, which is determined by other circumstancessuch as its stiffness and elasticity, the resistance of the air, and axle friction.
The band in running around with the pulleys is subject to a tension, due to centrifugal force, in precisely the same of its strength is taken up in resisting this pull, the remaining portion only being available for the transmission
of force. This action was probably first pointed out in The Evaineise by the late Professor Renkine In the issue of March 5th, 1869, appeared an article by him, "On the Centrifugal Force of Bands in Machinery," from which the following paragraphs are taken:-
"(2) Centrifugal tension of an endless band.-The general principle of the tension produced in an endless band by entrugal force is closely analogous to that which forms thy foundation of the inypothesis of moalecular vorcing in a 1849 as means of deducing the hypomamical theory of heat from the general laws of dynamics, viz., that a vortex or endless circulating stream produces an outward pressure against the inside of any vessel within which it may be contained, of an amount proportional to the weight of matter contained in an unit
 independent of the figure of the stream; for it can be proved from the eleme figure whary laws of dynamics fugal force whatsoever runs at a given speed, the centrifugal force produces an uniform tension at each cross band, whose length is twice the height from which band, whose length is twice the height from which a heavy body must fall in order to acquire the velocity of the band
"In symbols let $w$ be the weight of an unit of length of
and; $v$ the speed at which it runs, and $g$ the band; $v$ the speed at which it runs, and $g$ the velocity
produced by gravity in a second $(=32 \cdot 2 \mathrm{ft}$. or $9 \cdot 81$ metres $)$; produced by gravity in a second $(=32 \cdot 2 \mathrm{ft}$. or $9 \cdot 81$ metres $)$;
then the centrijugal tension, as it may be called, has the following value:-
$\frac{w v^{2}}{g}$
There are different ways of demonstrating that proposi tion, the simplest being as follows:-Consider any pair of cross sections of the band at which the motions of the pections A and B. The weight of band which passes any iven cross section in a second is $w v$; the particles at $\AA$ are moving with the velocity $+v$, and the particles at B with the equal and contrary velocity $-v$; hence, in each change of velocity amounting to $2 v$; and according to the second law of motion, the force in units of weight required to produce that change is $\frac{w v \times 2 v}{g}=\frac{2 v v^{2}}{g}$. One-half of
that force is supplied by the tension at A , and the other half by the tension at B; therefore the tension at each of those points is $\frac{w v^{2}}{g}$; and the same demonstration may be applied to every pair of points in the band at which the motions are contrary
"(3) Effect on the band when in motion.-The effect on tension which produces pressures and friction on the pulley, or available tension, as it may be called, is less than the total tension by an amount equal to the centrifuga ension; for this amount is employed in compelling the particles of the band to circulate in a closed or endless
path. It is, of course, to the total tension that the strength path. It is, of course, to the total tension that the strength
of the band is to be adapted; therefore the transverse of the band is to be adapted; therefore the transverse dimensions of a band for transmitting a given force must be greater for a high than for a low speed.
The problem which it is now purposed to solve is this The tension requisite for the transmission of a given power, diminishing directly as the speed with which it is transmitted is increased, and the available strength of the band also diminishing, but at a different rate, to find for a band of a given working strength and weight per running foot mitted.
Let $\mathrm{H}=$ power to be transmitted, then $\frac{\mathrm{H}}{v}=\mathrm{R}=$ force to be transmitted by the band. A band when strained over two pulleys with a certain initial tension will transmit a force depending, among other things, upon such is replaced by an increased tension on the driving span is replaced by an increased tension on the driving span must of course be designed to suit the increased tension must of course be designed to suit the increased tension

## $\left(1-\frac{1}{2 \cdot 718^{\frac{u i}{r}}}\right)=\mathbf{R}$

where $\mathrm{P}=$ tension on driving span due to force trans mitted;
$u=$ coefficient of friction between band and pulley;
$l=$ length of pulley circumference embraced by the belt ;
radius of pulley
$l$ and $r$ being always taken in terms of the smaller pulley. But in any given gear the value of $1-\frac{1}{2 \cdot 718^{\frac{\mu}{r}} l}$ is a constant and independent of the velocity, let it be called $a$, then

$$
\begin{array}{r}
\mathrm{P} a=\mathrm{R}=\frac{\mathrm{H}}{v} \\
\mathrm{P}=\frac{\mathrm{H}}{a v}
\end{array}
$$

The centrifugal force of the band is $f=\frac{w v^{2}}{g r}$, giving, as Iready stated, a tension on the belt of $\mathbf{F}=\frac{v^{2} w}{g}$.
Let the working strength of the band be called S; it is taken up in resisting P and F , and when the whole of the assigned strength is utilised,
$\mathrm{S}=\mathrm{P}+\mathrm{F}^{\mathbf{y}}$
$\mathrm{S}=\frac{\mathrm{H}}{a v}+\frac{v^{2} w}{g}$.

Finding now the value of $v$, at which $H$ is a maximum,

$$
\mathrm{H}=\mathrm{S} a v-\frac{a v^{3} w}{q}
$$

differentiating we get $\frac{d \mathrm{H}}{a v}=\mathrm{S} a-\frac{3 v^{2} w a}{g}$.
and setting this equal to zero we obtain

## $v=\sqrt{10 \cdot 7 \frac{\mathrm{~S}}{v}}$.

Leather belting is commonly assumed to possess a work ing strength of 330 lb . per square inch. It weighs 62 lb . per cubic foot, or, say, 0.43 lb . per foot run, per square inch of section.
Then- $\quad \frac{S}{v}=\frac{330}{0.43}=770$
and $v=90 \cdot 7 \mathrm{ft}$. per second, or say 5500 ft . per minute
In the case of ropes we get a somewhat lower limit. Take a 2 in . cotton rope, it weighs $1 \cdot 12 \mathrm{lb}$. per foot run, and has a working strength-as taken from cases in everyday practice-of, say, 600 lb . This is higher than the yalue generally assigned, because it takes into account the fugal tension. Then $\frac{S}{2}=535$, giving the velocity at which the maximum power may be transmitted as 4560 , or, say, 4500 ft . per minute.
The expression $\nabla^{1}=200 \sqrt{\frac{S}{w}}$ gives an approximate but rather high value of the velocity expressed in feet per minute. Of course the calculations may be very easily worked out for any other proportions of $\frac{S}{w o}$.
That the speed thus obtained is really that at which the maximum power may be transmitted can be readily proved in a very simple manner. Taking in
the case of a leather belt, the three velocities 80 ft., 90 ft, the case of a leather belt, the three velocities 80ft., 90 ft ,
and 100 ft per second, and deducting in each case the proportion of the strength of the band taken up in resisting centrifugal tension $=\frac{v v^{2}}{g}$, we get as the available strength of the band $243.6,217 \cdot 65$, and $195^{\circ} 0 \mathrm{lb}$. per square inch in the three cases respectively. If now the available strength so obtained be multiplied by the corresponding velocity, the numbers $19,488^{\circ} 0,19,588^{\circ} 5$, and $19,500^{\circ} 0$ are obtained as the relative values of the power transmitted. It will be seen that the power corresponding to the velocity of 90 ft . per second is greater than that corresponding to either 80 or 100 , but that that corresponding to 100 is somewhat greater than that of 80 , indicating that the maximum value is somewhat over 90 ; the calculated result was $90 \cdot 7 \mathrm{ft}$. per second.


The same course might be followed in regard to the ope, but it is superfluous, as a series of the values so obtained are plotted on the diagram, both for a 2 in . rope
and a square inch of leather belt. It may be remarked and a square inch of leather belt. It may be remarked here that these dimensions have been assumed throughout merely for the sake of convenience. The diagram requires little explanation, the continuous rise in the curve of centrifugal tension is quite appare , as is also the rise in the power fall. It will be seen that little or nothing is gained quent fall. It will re seen belts at a speed higher than Oft. per second or 4200 ft . per minute - that is to say, unde the assumed proportions of strength to weight. If we choose to assume a higher or lower won
figures will be correspondingly altered.
igures will be correspondingly atered.
That such a discussion as the foregoing is required there
That such a discussion as the foregoing is required there or have been until recently, running at as high a speed as 000ft. per minute, at the cost, too, of a very special construction of the drums. A glance at the diagram, which goes up to 6600 ft . per minute, shows that at that speed ope would only transmit two-thirds of its maximum power at the same total strain; or that it would at the lower velocity we have obtained as the most desirable
transmit the same power with a correspondingly transmit the same power with a correspondingly
diminished total tension.
diminished total tension.

Naval Enginerr appointuents.-The following appointmenta have been made at the Admiralty:- John McUarthy, engineer, to the Sylvia; William Pearson, engineer, to the Sultan; Richard W.
Toman, assistant engineer, to the Sylvia; Andrew Watt, chief Toman, assistant engineer, to the Sylvia; Andrew Watt, ohie
engineer to the Pembroke, additional; and Robert O. Widdecombe engineer to the Pembroke, additional; and Robert,
chief engineer, to the Indus, for the Prince Albert.

RAILWAY BRIDGES IN NEW SOUTH WALES. A pretry dispute between the heads of two importan departments of the Government Railways in New South Wales, resulted, some eighteen months since, in the appointment of a Royal Commission to inquire into the subject of the disagreement, viz., the stability of certain iron bridges, and of a timber viaduct approaching the Murrumbidgee Bridge. A glance at this report will afford some instruction to our readers.
Mr. Cowdery, the engineer for existing lines, whose duty, it appears, consisted largely in the proper mainte nance of all works when once completed and handed over to his charge, in the conduct of his work seems to have thought it desirable to execute certain repairs to bridges under his supervision, varying from about one year to twenty years old. These repairs consisted largely in re-rivetting. To assist him in this, he applied to Mr . Whitton, the engineer-in-chief for railways, for drawing of the bridges under treatment, which Mr. Whitton refused to supply; who being made aware of some adverse comments in the public press on the security o these bridges, wrote a minute to the Minister of Works, recommending that this re-rivetting should be discontinued as he considered it not only unnecessary, but injurious, Mr. Cowdery, in his turn, communicated with the Commissioner of Railways, alleging that the bridges were ver defective. The Commissioner then desired Mr. Cowdery to make a formal report to him upon the matter. The eng munication, sent a counter report to the Minister, insist ing that the bridges were in good condition, and "that no better bridges with regard to material and workmanship were ever built," After some squabbling between th principals in this affair the Minister with such a pleasin variety of opinion, feeling himself unable to determine the technical question raised, thought it prudent in th public in to have the matter ref to body public and this view being finally accepted by the experts; and 1883, which bing antan appointed wactober by a report was laid upon the table of the Legislative Assembly in the beginning of September of this year.
The Commission seem to have entered upon their duties with a desire to sift the matter to the bottom; taking vidence, as far as practicable, from all persons who had been engaged upon the design, construction, erection, or aintenance of the bridges, with a view to treat each side of the dispute with fairness, and to arrive at a just conclusion as to the stability of the works considered. Their inquiry embraced a personal examination of the designs, and of the bridges as they stand, with suitable tests carefully conducted, and incidentally some experiments upon the strengths or colo Th timatinged wio reference to the timber viaduct. In estimating the section of metal required to bear the stresses imposed upon the various parts of the structures, they adopted the British Board of Trade units for railway bridges in wrought iron, viz, 5 tons per square inch in tension, and
4 tons in compression. The live load was assumed to vary from 1.5 tons per running foot for each line in the case of 60 ft . spans, to $1 \cdot 25$ tons for the 198 ft . spans, which appears to be fairly in accordance with the usual practice. The tests for deflection were made with locomotives standing on the bridges in various positions, when running full speed across, and running full speed with brakes applied coming on to the bridge. The live load taken in the calculations was never exceeded in the tests. The Commissioners narrate the results of their investigations, from which it appears that of the bridges they considered, about filteen in number, but one or two were quite free from defect, nearly all had some loose rivets, with such faults as want of contact between plates or bars, inaccessibility of cells in compression booms, want of drainage in some parts, or defective expansion arrangements. About one-half of the number were either equal to the requirements laid down as to section of booms, \&c., or in excess, whilst one-third of the bridges were deficient in this respect. The Solitary Creek Bridge girders were found wanting in the section of both booms, there being in tension and in compression about 76 per cent. only of the weak, having but 86 per cent of the section heeded in both upper and lower flanges of the 198 ft . spans. The Wollondilly Bridge, 60 ft , girders, were deficient in the flanges also, with 73 per cent, of the section proper to both members; but in the 130ft. spans of the same bridge the top booms alone were defective, there being in this case but 80 per cent. of the needed metal.
It is worthy of note, that the want of sufficient sectional area in the principal members, as found by the Commissioners, is a fault only existing in the earlier bridges xamined by them, all those built before 1870 being too ight either in the top or bottom booms, or both, and all those after this date, with one exception-the Solitary Creek Bridge, built in 1872-coming up to, or exceeding their requirements. In the Penrith Bridge, in addition to he want of sufficient strength in the booms, there appears have been a considerable lack of rivet section, the hearing stress reaching as much as $9 \cdot 3$ tons per square inch in the web rivets over the piers. The Commissioners, after stating categorically the defects, or freedom from defects, in each case, say, that they do not find the bridge in such a condition as Mr. Cowdery's representations had led them to expect; and then proceed to make recommendations with reference to the iron bridges, which consist principally, in advising that rivets where "positively" loose shall be replaced; certain decayed timber in the
floors renewed; modifications introduced to facilitate inspection, drainage, and ventilation; in one case the replacing of angle iron covers deemed defective; and the substitution in the Penrith Bridge of lin. rivets for $\frac{3}{4} \mathrm{in}$., for a considerable length of the girders near the piers; with the addition of a longitudinal runner under the crossgirders, to distribute the weight of the driving wheels of locomotives over a number of cross-girders, which are pre-
sumably weak. The Commissioners are of opinion that, considering the duties of the engineer for existing lines, his cold be provided with drawings of aling loose rivets in an $j$, and should, pree precise stresses to which it may be subject, to learn if this is immediately necessary, which Mr. Cowdery appears not to have done in those bridges he had already treated.
The Wagga Wagga timber viaduct being also carefully considered, it was found that a large number of the piles were decayed, which is attributed chiefly to the fact that the timber was felled when the sap was up; and it is futher noted that under the conditions imposid it perly soon after being put down, dry-rot having quickly made its appearance. Mr. Cowdery stated that in the three year arer the line was opened, the viaduct cost $£ 1546$ for epairs. Amongst other precautions he had thought it dhichble to place props under some of the timber girders, which, as Mr. Whitton complained, "produced an impres removal. The Commissioners deem the viaduct now trust worthy, extensive repairs having been carried out, though they express the opinion that the whole of the timbe piers will probably have to be replaced within twent years. In commenting generally upon the design and
 that though some of the earlier of these are defec ive, they are all good specimens of design and work ton is called to the dissimilarity amongst the bridges of the method of designing the joints of the top booms. In the Tamworth and Macdonald bridges they are deficient in rivet ection: though the Commissioners remark, that in this case, fortunately, the butting of the plates is remarkably close which is not so with some other joints where the rivetting is ample. But it appears to us, that as in these two examples close butting may possibly be due to the yielding of the joints, allowed by deficient rivetting, rather than to precise workmanship, it is not of necessity to be regarded with satisfaction. Though the re-rivetting is on the whole commended, this practice is deprecated unless accompanied by "positive" looseness. What does this mean? If a rivet does not fill the hole in which it has been placed, and can be said in any sense to be "loose," surely it is not doing the duty required, as it can hardly be taking stress, and in our opinion, the sooner it is replaced taking stre
The Commissioners enlarge upon the fact, that in ordinary practice, it is not expected that material and work should be perfect, and add, that if it were so, scantlings might be reduced to the extent of 30 or 40 per cent. This statement is probably open to question; but granting that it is in part true still we are convinced that it is desirable to remedy all defects in such structures as they become apparent. There is always a possibility that faults may exist, even of a serious nature, which are not to be ascertained by ordinary and practicable methods of inspection. Indeeed, the Commissioners by their own recommendations, do, to all intents and purposes, support this view, as they propose extensive repairs, some
apparently beyond the scope even of Mr. Cowdery's proapparently beyond the scope even of Mr. Cowdery's pro-
cedure. It is suggested finally that all bridges should be cedure. It is suggested finally that all bridges should be sponsibilities should not cease with the construction of the work, and on the other hand, that the engineer for existing lines should not be held solely responsible, nor should he undertake structural alterations without the sanction of the chief engineer. The Commissioners advise that the duties of these two officers should be clearly defined, and that the advice of the engineer-in-chief should be taken upon the matter; so it will be perceived, that whilst Mr. Cowdery's proceedings have been substantially approved, and Mr. Whitton's opinions negatived, Mr. Whitton has
had his horn exalted, and Mr. Cowdery has been snubbed.

City and guilds of London institute ror the Advanoes Ment or Tgohnical Edvoation.-Alderman Sir R. N. Fowler,
Bart, M. M., has consented to present the Institute's scholarships, prizes, and certificates at a meeting to be held on Wednesday E. . . The Right Hon. the Lord Mayor will preside.

Liverpool Enginekring Society. - The usual fortnightly the Royal Institociety was held on Wednesday, the 28th inst., at in the chair. A paper by Professor Hele. Sh. W. E. Mills, president, Liverpool-entitled "Recent Researches on the Nature of Friction and the Action of Lubricants," was read by the author. The uuthor, in the first place, brieny reviewed the steps which had out that in the progress of sliding and rolling contact of surfaces, published between 1830 and 1834, had until recent years been regarded as final. During the last ten years, however, many scientific men had worked at the subject, and much light had been thrown, not only on the sliding
and rolling friction of solids, but on the friction of liquids and gases. The author, in the present paper, confined his remarks solids. Commencing with the friotion of dry surfaces, it has for some time been admitted that the so-called laws of friction usually given in text-books are probably never exactly true under ordinary pressures and velocities, while they lead to very erroneous con clusions if applied beyond moderate limits, and the experiments of Ewing, Poirée, and others were alluded to in proof of this In and oussing the actual nature of friction of dry surfaces the author believed that more careful and elaborate observations of tempe rature at extreme velocities and pressures was needed. Coming to the subject of the contact of lubricated surfaces, a far greate advanoe had been made. The work of Thurston and the experiEngineers were of great value, and the main results were brough forward. A striking feature in the progress of the subject was the nereasing use of testing machines, and those of Thurston, Stapper, bailey, were exhibited and described. In conclusion, the artar stated that the question of lubricants was of immense im portance in marine engineering, and, while large sums of money the mode of judging the efficiency of lubricants used for marine lone, in lace like Liverpool, was, he trusted, a sufficient reason for bring
forward the present paper.

THE PROPERTIES OF GASEOUS EXPLOSIVE MIXTURES.

Abstracted and Translated by B. H. Thwaite

## No. II.

Preliminary Observations,
In the course of the experiments, the duration of time equired for the pressure to develope its maximum effect wa carefully woted. This maximu pressure never attained the to wasteful radiation through the sides of the cylinder, and the wasteful radition incressel in poporion the mand of combustion diminished. The loss of heat increases, course, in proportion as the capacity of the exploding cylinder Three
respectively nechanical registration arrangements were very ingenious, and calculated to give accurate results. The following tables give the duration of time-expressed in one-thousandths of a secondwhich elapsed between the moment of inflammation and that o the production of the maximum pressure:
I.--Influence of the Size of the Vessel or Cylinder, Nature of
xplosive mixtu
$\mathrm{H}^{2}+\mathrm{O}^{2}$
$\mathrm{H}^{2}+\mathrm{O}^{2}+$
$\mathrm{H}^{2}+\mathrm{O}^{2}+\mathrm{N}^{2}$
$\mathrm{C}^{2} \mathrm{O}^{2}+\mathrm{O}^{2}$
$\mathrm{C}^{4} \mathrm{H}^{4}+\mathrm{O}^{19}$
$\mathrm{C}^{4} \mathrm{H}^{4}+\mathrm{O}^{12}$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{8} \ldots$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{8} \ldots \ldots$

$$
\begin{aligned}
& \begin{array}{l}
1500 \mathrm{cc} \text {. }
\end{array}
\end{aligned}
$$

$\begin{array}{r}4060 \mathrm{cc} \\ 2.14 \\ . \quad 4.22 \\ \hline\end{array}$

It will be seen that generally, the duration of time required for the pressure to atain its maximum increases with the crease of the capacily of the cyinder,
II.-Influence of the Composition of the Mixture,

Simple Mixtures with Complete Combustion.
Oylinder of 300 cc .

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O}^{2}$ | ... |  | ... | ... |  |  |
| $\mathrm{H}^{2}+\mathrm{N}^{2} \mathrm{O}^{2}$ | $\ldots$ |  | $\ldots$ | $\ldots$ |  |  |
| $\mathrm{C}^{2} \mathrm{O}^{2}+\mathrm{N}^{2} \mathrm{O}^{2}$ | ... |  | ... | ... |  |  |
| $\mathrm{C}^{4} \mathrm{~N}^{3}+4 \mathrm{~N}^{2} \mathrm{O}^{2}$ | ... | .. | ... | ... |  |  |
| $\mathrm{C}^{4} \mathrm{H}^{2}+\mathrm{O}^{10}$ | ... |  | ... | ... |  |  |
| $\mathrm{C}^{4} \mathrm{H}^{4}+\mathrm{O}^{12}$ | ... |  | ... | ... |  |  |
| $\mathrm{C}^{4} \mathrm{H}^{6}+\mathrm{O}^{14}$ |  |  |  |  |  |  |
| $2 \mathrm{C}^{2} \mathrm{H}^{4}+\mathrm{O}^{16}$ |  |  |  |  |  |  |

Carbonmonoxide (CO) is not so rapid as hydrogen-this confrms the present knowledge of these gases-the relation of the time (12.3) being intermediate between the regime of explo-
ion $(2 \cdot 6)$ and the régime of ordinary combustion (34). The mployment of nitrogen protoxide in place of oxygen, retards the action. With cyanogen and hydro-carbons, very hydro-genated-carbures tres hydrogenes-the speed or velocity varies
very little from that with hydrogen-further conforming to the very little from that with hydrogen-further conforming to the velocity ratios already deduced from explosive waves-cyanogen,
ratio $=1.3$ in place of 1.5 ; formene, 1.23 in place of $1.2 ;$ methyl, 1.2 in place of 0.8 . There was a difficulty in estimating methyl, 1.2 in place of 0.8 . There was a difficulty in estimating but to obtain some idea of the relative velocity, we may admit that the flame reaches the piston at the moment of the maximum. The velocity would then be about 100 metres per second for hydrogen, about 8 m . for carbonmonoxide, and about 70 m . for cyanogen. This will be reduced by at least half, for the hydrogen oxidised by protoxide of nitrogen, and to a third for cyanogen oxidised with the same gas.
III.-Influencer of a Combustion more or less Completr.

Cylinder of 300 cc .
Complete Combustion.
$\left\{\begin{array}{l}\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{8} \\ \mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{8}\end{array}\right.$ 1.55
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{8}+2 \mathrm{~N}$
$\left\{\begin{array}{l}C^{4} \mathrm{~N}^{2}+\mathrm{O}^{2} \\ \mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{1}\end{array}\right.$
Semi-combustion. 1.06
$10 \cdot 35$

It appears that incomplete combustion is the most rapid, owing, it is presumed,
which retards the total combustion.
IV.-Influence of an Excess of one of the Constituents, Cylinder of 4 lits
$\mathrm{H}^{2}+\mathrm{O}^{2}$ $2 \cdot 14$
 $2 \cdot 27$
$2 \cdot 53$
241
$2 \cdot 82$
4.22
$5 \cdot 95$
$9 \cdot 67$
Excess of Oxygen.
$\mathrm{H}^{2}+\mathrm{O}^{2}+\mathrm{O}^{4}$
$\mathrm{H}^{2}+\mathrm{O}^{2}+3 \mathrm{O}^{4}$ 8.16
16.04

The combustion is retarded owing to the excess of the unoxidised gas. The retarding influence of the total oxygen being sponds with the greater translation velocity of the molecules of oxygen.
V.-Influence of the Produots of Combustion

Cylinder of 300 cc .
Carbonnonoxide.
$\begin{array}{lll}\mathrm{C}^{2} \mathrm{a}^{2}+\mathrm{O}^{2} \\ \mathrm{C}^{2} \mathrm{O}^{2}+\mathrm{O}^{2}+\frac{1}{1} & \mathrm{C}^{2} & \mathrm{C}^{4} \\ \mathrm{C}^{2} & \mathrm{O}^{2}+\mathrm{O}^{2}+\mathrm{C}^{2} & 0^{4}\end{array}$
$12 \cdot 86$
$\begin{array}{lll}\mathrm{C}^{2} \mathrm{O}^{2}+\mathrm{O}^{2}+\frac{1}{2} \mathrm{C}^{2} \mathrm{O}^{4} & \ldots \\ \mathrm{C}^{2} \mathrm{O}^{2}+\mathrm{O}^{2}+\mathrm{C}^{2} \mathrm{O}^{4} & \ldots & \ldots\end{array}$
$35 \cdot 8$
Oyanogen

| $\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{4}$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | .. | $\ldots$ | $1 \cdot 06$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{4}+9$ |  |  |  |  |  |  |  |
| $\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{C}^{2}$ | $\mathrm{O}^{4}+2$ | $\mathrm{C}^{2}$ | $\mathrm{O}^{2}$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

It will be seen that the action of combustion becomes still moreretarded-three-fold, for an equal volume of carbonmonoxide
$\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$, in one instance, and six-fold for an equal volume of carbonmonoxide $\left(\mathrm{C}_{2} \mathrm{O}_{2}\right)$ in the other case. We thus perceive
the combustion is retarded by the mixture of the products of combustion.

VI,-Influbnce of an Excess of Inert Gas.


Cylinder of 300 cc .
$12 \cdot 86$
17.78
$\mathrm{C}^{2} \mathrm{O}^{2}+\mathrm{O}^{2}+\frac{1}{2} \mathrm{~N}$
$\mathrm{C}^{2} \mathrm{O}^{2}+\mathrm{O}^{2}+\mathrm{N}^{2}$
$26 \cdot 49$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{8}$ 1.55
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{8}+\mathrm{N}^{2}$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{8}+2 \mathrm{~N}$ 6.09
$15 \cdot 4$

$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{4}$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{4}+\frac{3}{\mathrm{~N}} \mathrm{~N}^{2}$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{4}+2 \mathrm{~N}^{2}$ $1 \cdot 05$
$3 \cdot 20$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{4}+2 \mathrm{~N}^{2}$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{4}+3 \mathrm{~N}^{2}$
$\mathrm{C}^{4} \mathrm{~N}^{2}+\mathrm{O}^{4}+4 \mathrm{~N}^{2}$
$3 \cdot 20$
10.35
23.63
Nitrogen retards the combustion of hydrogen and that of carbonmonoxide $\mathrm{C}_{2} \mathrm{O}_{2}$, the first in a greater proportion than the
latter. This shows that the phenomenon is not simply the latter. This shows that the phenomenon is not simply the
result of a decrease in the temperature which is nearly the resule in both cases; but it is the result also, of the greater
same inequality of the velocities of translation of the greaten molecules. The influence of the inert gas effects at the same time a diminution in the temperature of combustion, which reduces the translation velocity of the molecules and diminishes the number of effective collisions between molecules susceptible of a reciprocal action. Thus, the notable excess of nitrogen retards the action of combustion in a greater degree than the two components of the combustible mixture. In fact, at triple volume in the oxyhydrogen mixture, the recuction of


## 10 for hydrogen <br> 16 for oxygen <br> 24 for nitrogen

The presence of an excess of one of the products retards the action still more-thus, carbondioxide $\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ retards more than nitrogen the combustion of the carbonmonoxide $\left(\mathrm{C}_{2} \mathrm{O}_{2}\right.$ ).
In all these instances the inequality of the specific heat (for $\mathrm{C}_{2} \mathrm{O}_{4}$ ) also intervenes, and the variation of dissociation which can introduce the presence of the components and their products.
ViI.-Isomerical Systems.


Combustion is slower in the systems the least condensed, which are at the same time those which disengage the least heat, both effects diminishing the translation velocity, and the probability of effective molecular collisions.
ViII.-Mixture of two Combuttible Gases.

Cylinder of 300 cc .

## Hydrogen and Carbonmonoxide.



The velocity of combustion is not in any case the mean of that of the mixed constituents; but the two gases have a result is that the maximum observed presse own velocity, the to an uniform state of combination of the system ; consequently it is produced with certain irregularities, and is
inferior to what it should be. Thus the carbonmonoxide and inferior to what it should be. Thus the carbonmonoxide and lydrogen burnt separately by means of oxygen give sensibly the same pressure; $10 \cdot 1$ atmuspheres for the one and $9 \cdot 9$ atmo-
spheres for the other. The velocity of combustion appears to spheres for the other. The velocity of combustion appears to
indicate that hydrogen, in the case of ethylene mixed with indicate that hydrogen,
IX.-Hydrocarbons-Combustible Elbments Combingd,

|  | Cylinder of 300 cc . |  |
| :---: | :---: | :---: |
| $\mathrm{C}^{4}$ | ... Acetylene |  |
| $\mathrm{C}^{4} \mathrm{H}^{4}+\mathrm{O}^{12}$ |  |  |
| $\mathrm{C}^{4} \mathrm{H}^{6}+\mathrm{O}^{14}$ | Methyl | 0.8 |
| $\mathrm{C}^{2} \mathrm{H}^{4}+\mathrm{O}^{8}$ | Formen |  |
| $\mathrm{C}^{4} \mathrm{H}$ | Methylio Ethe | ... 1442 |
| $\mathrm{C}^{8} \mathrm{H}$ | Ether Vap |  |

The velocity of combustion of gases which are highly hydrogenated is very near to that of hydrogen; from this it appears to indicate that the hydrogen is oxidised before the carbon even
in complete combustion. These effects intervene in the in complete combustion. These effects intervene in the
momentary equilibria resulting from an incomplete combinamomentary equilibria resulting from an incomplete combina-
tion, such as the re-apportionment of the oxygen between two combustible mixtures, such as, for example, carbon and hydrogen; or, better still, between the carbon and hydrogen associated in the form of a carbide, or in the re-apportionment of the hydrogen between two comburants, such as chlorine and oxygen. This re-apportionment in the initial moments, depends upon the relative velocities of the combinations, and ail can established
different from the definite equilibrium which will be in the same system maintained at a constant temperature during a convenient time. A system quickly cooled, such as that which is obtained after explosion, does not furnish reat mease
ments of the affinities, because it can produce a quite different re-apportionment of its elements-a circumstance which has hitherto not been sufficiently tiken into account.

## WEDLAKE'S ORGAN.

We have been requested by several of our readers to give a description of the most noteworthy features of the numerous Exgans exhibited during the recent International Inventions appears to our correspondents desirable, we have selected two organs which seem to be specially worthy of attention for illustration and description. The instruments in question have been constructed by Mr. Wedlake, of Berkley-road, Regent's Park, and by Messrs, Mitchell and Thyne. The latter stood in the music room, the former-which we illustrate and describe this week, is a much smaller instrument-stood in an out-of-theway corner at the end of the long music gallery, and its proportions were dwarfed by the splendid organ exhibited by
Messrs. Walker. Mr. Wedlake's organ, however, contains much Messrs. Walker. Mr. Wedlake's organ, however, contains much that is extremely interesting, not only to the organist, but to every lover of mechanism; and it is perhaps hardy too much to
say that Mr. Wedlake has succeeded in doing a nearly impossible thing, to wit, he has invented a new valve.
In order to make what follows?intelligible we must premise
given, at once establishes a sympathetic bond of union between artist and mechanism-direct contact, in fact, with the soundproducing apparatus-as direct as that which has hitherto been almost exclusively enjoyed by pianists and violinists. Moreover, the action is perfectly noiseless, there being not the least suspicion even of a click or a thud to disturb the musical rhythm. This is
especially the case in rapid repetitions of a single note, such as are to be met with in Mr. W. T. Best's arrangement of Mozart's ' $Z$ are berflöte' overture, an arrangement which organists well know is perfectly impracticable upon an organ with the ordinary pneut matic action, but which can be played with facility upon this instrument.'
This is valuable testimony from a high musical authority. He puts this in other words in a testimonial which he has given to Mr. Wedlake:-"After," he says, "giving three recitals on the organ in the Inventions Exhibition, built by Mr. Henry Wedlake, I have much pleasure in stating that the new patent pneumatic action applied to that instrument leaves little to be desired as far as touch is concerned. My previous experience of pneumatic action may be thus summarised: I have found it costly, complex, noisy, and unsympathetic. All sensation of

that in all modern organs of any pretensions to excellence what are known as pneumatic levers are fitted to reduce the labour of playing. When a key is pressed down by the organist's finger a little "pallet," or flap valve, is pulled open, against a pressure of air tending to keep it shut. When couplers are used the organist, in putting down one key with his finger, pulls down
one or more other keys with which the first is for the time one or more other keys with which the first is for the time
coupled, and the resistance is proportionately augmented. The coupled, and the resistance is proportionately augmented. The
labour of playing was well known to the last generation of labour of playing was well known to the last generation of
organists. The pneumatic lever serves the purpose of what electricians call a "relay." The organist opens a very small valve, which admits air under pressure to a little bellows, one of the boards of which, being movable, is connected with the little bellows, or pneumatic lever, does all the heavy work, and the keys of a huge organ offer no more resistance to the player's fingers than the keys of a piano do. This great gain
has not been obtained without some loss. So long as an organist


ENLARGED SECTION OF IMPROVED VALVE
opened a pallet direct by the muscular effort of his fingers, he was in touch, so to speak, with his instrument, and although it is practically impossible for the best organist to get anything equivalent to the marvellous effect of touch manifested in pianoforte playing, yet it was possible to put forth some expression, but the pneumatic lever killed all that. With it a pallet is open or shut-there is no medium-and the organist does not
know whether it is open or shut save by hearing. He cannot feel. know whether it is open or shut save by hearing. He cannot feel.
Now Mr. Wedlake's improvements in organs have resulted in restoring the connection between the organ and the instrument, while retaining all the advantages of the pneumatic lever On while retaining all the advantages of the pneumatic lever. On C. W. Pearce, Fellow and Member of the Council of the College of Organists, who, writing to us on the subject, says:- "Situated in one of the most out-of-the-way, unnoticeable nooks in the Exhibition, at the end of the long Central Gallery, is an organ which for beauty of tone and perfection of mechanism will compare most favourably with the other organs in the building, even with instruments of double its size. One only needs to sit down and play upon it for five minutes to discover the real artistic pleasure it is capable of giving the performer. A sensasation of real grip, such as no other pneumatic action has ever
grip was entirely removed, and an unseen medium seemed interposed between the player and his instrument, which, to a large extent, nullified that feeling of direct contact with the soundproducing apparatus which is as dear to the organist as to the Wedlake pr pianist. I have no hesitation in saying that Mri Wedake it is noiseless ; and which being produced by as sympathetic therefore inexpensive. His pneumatic touch enables the per former to realise that he is playing upon the very organ itself and not upon a dumb keyboard, which however quickly and effectively it acts upon the organ mechanism, nevertheless does its duty in such a cold-blooded manner as to reduce his enthusiasm to its minimum." We have now to see how the end in question is attained,
In the pneumatic levers hitherto in use, wind under a pressure of 5 in . or 6 in . of water is admitted from the air-receivers of the Wedlake the collapsed bellows, and distends it. In the The bellows are placed in a box, or chest, kept full of wind under pressure. The valve being open, the wind is thus in the bellows as well as surrounding it. On raising the valve to the flexible seat the compressed air now in the bellows is allowed to escape,


ENLARCED SECTION OF IMPROVED VALVE FOR PEDAL SOUNDBOARD AT B
and the pressure being only external the bellows collapses and opens the sound-board valve. Thus, the same pressure of wind from thases the bellows opens it again on the valve dropping system one-third more power is gained from the fact that the wind is pressing on the ribs, or yielding portion of bellows, at the time when there is most suction on the sound-board valve, Whereas in the original method, the wind does not take effect on the ribs until the bellows are partially o
having been overcome and the pallet opened.
On page 373 we give a front view and a transverse section through the organ, which is a three-manual instrument, CC to G, fifty-six notes, and pedal organ, CCC to F, thirty notes, and G, fifty-six notes, and pedal organ, CCC to $F$, thirty notes, and
contains the following stops, couplers, \&c. It will be noticed by contains the following stops, "ouplers, "c. It will be noticed by and those who have not heard the instrument may be inclined to regard the omission of these harmonic stops as a serious defect; but the general brightness of tone fully compensates what would ordinarily be considered a loss of brilliancy in the full organ ensemble.
In the section of the organ, A shows the new patent pneumatic as that supplied by the "feeders," or bellows, below. B is the
pedal "sound board," that is, the perforated board on which the pedal pipes stand at the back of the organ; C is a tremulant to the swell organ, D are the light touch valves of this organ, E and F are the same for the great and choir organ, H is the connection from the pneumatic levers to the swell organ, back falls, and octave couplers. Above we give sections of the pneumatic chambers and is clows. The bellows is now open a key, and by so doing pulls down the tracker $G$. This causes the valve M to rise from its lower seat and close the upper orifice. The result is that the air no longer confined in the bellows is squeezed out by the pressure in the pneumatic chamber-shown in solid black-the lower board is raised and the wire fixed to it operates to open the pallet and cause the pipe or pipes proper to the particular key touched to speak The valve $M$ and its seat is a very curious and ingenious arrange ment of mechanism. The valve itself is a little disc of wood covered smoothly with leather; the seat K is of soft leather glued all round the hole in the centre to the top board of the little bellows; on top of K lies a ring of cardboard, which lever, such as enougn, to support the leather seat. A pneumatic Wedlake, and its action was well worth careful study M was raised, the seat K was drawn down to meet it, the cardboard modifying the form of the curve taken by the leather. In the same way, when the valve was falling away, K followed it down for a certain distance, and then came away with a jerk, leaving a large opening available for filling the bellows, and so closing the pallet and silencing the note in a hurry. It is to this pecu liar correspondence between the valve and its seat that the special touch of this organ, named by Dr. Pearce, is due. The valve can always be felt, so to speak, as it rests on its elastic seat. The valve $M$ is kept in its place by a spring of thin wire S, hooked into the top of a wire gallows or briage shown in front which prevents M from slipping tideways. Ther elastic wood, which prevents M . the pin $P$ as soon as the lower board has gone high enough, thus admitting air, and preventing the bottom board from clapping noisily against the top board, which it would otherwise be certain to do when a rapid passage was being played
It will be seen that the space occupied vertically is extremely small; and for this reason all the pneumatic levers for a large organ can be stowed into a comparatively shallow box-which i often a matter of great importance where height is lacking
We append the specification of the organ:-

|  | Double Diapason |
| :---: | :---: |
|  | Open Diapasor |
|  | Rohr Flut |
| 11. | Echo Dul |
|  | Voix Celeste |
|  | Principal |
|  | Fifteenth |
|  | Cornopeon. |
|  | Oboe |





17. Dulciana
18. Lieblich Gedackit
19. Suabe Flute
20. Piccolo
21. Clarionet .. ...
22. Open Bass
23.
sub-Bass

## 24. Swell to great. 25. Octave swell. <br> 26. Sub-octave swel



280 pipes.

## Three to great organ. Composition Pedals. Threo to swell organ.

Tremulant to swell organ by pedal.
We feel that in describing this most ingenious mechanical arrangement we have quite failed to convey an adequate idea of its peculiarities. Indeed, these can only be realised by those
who have seen it in action, and noticed the wonderful sensitiveness of the flexible seat, and the manner in which it is apparently attracted towards the valve.
So far we have spoken of the valves in the pneumatic levers alone, but there are other valves in an organ. The pedal organ is fitted with tubular pneumatics. If our readers will turn to the section on page 373 they will see at B a section of one used for the great pedal pipe above it, an "open base" 16 ft . long. It is a double-beat valve, T T, and therefore balanced.
Enlarged Enlarged sections are given above. The pedal when put down permits air to escape from the little bellows, which
then pulls down the valve or then pulls down the valve or pallet. Then air escapes
from the trunk, and flows round to the foot from the trunk, and flows round to the foot of the pipe,
as shown clearly enough in cross section. Now, it is no news as shown clearly enough in cross section. Now, it is no news to engineers that double-beat valves are not always quite tight,
because it is not easy to seat two rigid valves rigidly connected on two rigid seats rigidly connected, and difficult as this may be in engine work, it is still more difficult in organ work, which is necessarily much less accurate. Mr. Wedlake solves the whole difficulty by making one of his valve seats $\mathrm{K}^{1}$ elastic, and we believe that the same thing might be done with very considerable advantage with steam valves. It will exercise the ingenuity of some of our readers, perhaps, to find how this can be effected. Mr. Wedlake secures elasticity by making the aperture controlled by one of the valves larger than the valve, and securing leather round its edges. Thus, when the valve is opened the discs are drawn away from their seats. That which has a rigid seat at once opens, but the seat follows the other valve a certain distance, and aids the valve to open still further, and when the meets its rigid seat and shock is entirely prevented the other cation of the same valve is also shown in Fig a which explains itself. There are several other points about the organ which deserve notice, but for which we have not space. Mr. Wedlake also exhibited a most ingenious arrangement for fitting organ pedals to pianos, about which we shall have more to say at another time.
iigheonclusion, we may add that Dr. C. W. Pearce speaks in th that is to say, as regards quality and bril oncy of tone.

THE FALL OF THE HUDDERSFIELD STATION ROOF.


HUDDERSFIELD STATION ROOF.
The following is a report by Mr. W. J. S. MoCleary, of Sunderland, on the construction and fall of the new roof during erection at Huddersfield station, 10th August, 1885 :-
All the ironwork of sixteen principals was erected complete, and
the carpenters were busy fitting sash bars, \&c., when the roof fell the carpenters were busy fitting sash bars, \&c., when the roof fell without much warning, killing four men and injuring several
others. Having been engaged by one of the parties concerned to act on his behalf as professional adviser, I had the opportunity of examining all the details of the debris which were lying upon the site abouta week after the accident. I also attended the coroner's inquiry. The following is a report which I prepared, and which I thought might be of some little interest to those in the profession: The strains of the principals have been checked by a proficient man at this particular work.
The columns were 29 ft . 3 in . apart centre to centre, 22 ft . long, 13 in . diameter at the base, and 11 in . diameter at the capital. There was a square box or post above the capital
11in. diameter, which the longitudinal girders butted against. A considerable length of the lower portion of column was reduced in diameter to allow for the con-
nection of an ornamental shell nection of an ornamental shell
base. The base of column was secured to the foundation by means of four anchor or holding down bolts lin. diametersee sketch of column. The columns were held together
with longitudinal girders con-
 structed of light lattice ironwork ; these girders butted against Fig. 1. The box is a part, and cast in one piece with, the column. The longitudinal girder is constructed as a double lattice girder as
seen in Fig. 2, not a design for strength, but more for ornament than


COLUMNS CENTRE TQ CENTRE
ELEVATION OF MAIN LONGITUDINAL GIRDER
use. This longitudinal girder holds the columns in position, and also takes the weight of the roof principals, there being two intermecolumn. This girder is connected to the column box by means of wrought iron clips on each side of the bottom of girder and at the top of the column capital. These clips are bolted together by means of two sin. diameter bolts, and are forged to fit and suit the
mouldings on the box at column top, Fig. 3; they are also mouldings on the box at column top, Fig. 3 ; they are also
shaped to take the bottoms of cast iron ornamental bracket, which is connected to main tie-rod of principals at each column. This form of clip, having so many angles, if stretched out would, of course, make a much longer strap than would be necessary to
connect girder to girder around the box at the column top. This connect girder to girder around the box at the column top. This
makes a connection of this form faulty, as there is no doubt there would be a tendency in a heavy storm to drag these clips out of shape, as shown exaggerated in Fig. 4. The safest plan to avoid
this liability would have been a link plate right through the box and bolted each side with the bolts taking the clip, as shown in Fig. 4. There was a plate upon the top flange of longitudinal girders which had a hole in the centre taking the top of box on column top, and rivetted by six rivets through each end of top of
girder, as in Fig. 5. The plates would, of course, serve to hold girder, as in Fig. 5. The plates would, of course, serve to ho RECESS FOR ORNAMENTAL CAST-IRON
BRACKET SUSPENDEO EROM TIE ROD OE

the main longitudinal girders at their tops to the box on column top, but if the clips were by any chance strained, as shown exagprobably be sheared off. The suggested link plate shown below

would prevent any ohance of the clips being strained. The main longitudinal girders are not very substantially constructed considering the rigidness required to support two roof principals,
as well as being the only ties of columns. The upright stiffeners

of these girders are composed of tee-irons, which would have added to the stiffness of the structure if they had been placed back to baok and rivetted together instead of being some distance apould have served as well as if they had been back to back

This section, Fig. 5, shows the space left between the stiffeners through the diagonals being placed inside the longitudinal angle irons instead of outside. The intersection of the diagonals could thickness of the L.I. flanges. This construction would have
also brought the upright stiffeners closer together, and a plate the same thickness as the washer for diagonals could be inserted as packing, and the
whole rivetted
together, whole rivetted together,
thereby forming a substantial stiffener, which is absolutely required for a girder of this required description. These girders being the only ties the columns have-beside the holding
down or anchor bolts-should down or anchor poits-should
be as rigid as possible. The be as rigid as possible,
columns having no longitudinal diagonal ties, should have had more superficial area in the base plate than was
actually made, and besides actually made, and besides concrete in the block which holds the column in position. The
base as constructed was of suffcient of roof to carry, but not sufficient fuperficial area for the weight naturally result in the pressure from for the strain which 7 below is an elevation of the column base as constructed, and the sketch, Fig, 8, a suggestion for a cose as constructed, and tho in question. Another great defect in the stability of the roof was the absence of extra provisional strength of the screen columns at north end of roof. These end columns were exactly the same
strength and design as intermediate columns, instead of being, as is

usual for all large roofs, enlarged to at least double the strength of the others. At the coroner's inquiry the fact was mentioned in the intermediate columns, which is, of course, perfectly true as far as weight goes, but they not only have weight to take but are also the main abutment of the whole structure, and should therefore be of sufficient strength to withstand a strong sweeping wind along the whole length of roof. The end columns as constructed were not strong enough for the purpose, and should have been been a group of columns firmly braced together. One of these
columns was found to be defective after the fall of the roof; but this was not the cause of the accident, as an able witness-who was standing close to this column at the time-proved that he saw the
roof collapse before the column was snapped. The defect found in the column was that the casting was "cold shut" nearly half-way around and for the whole thickness of the metal. This is a fault very liable to occur in the casting of columns so slender as those in
question. The brackets or corbels which supported the ends of question. The brackets or corbels which supported the ends of principals are not a very strong feature, although a most promi-
nent one regarding the safety of the roof. These corbel brackets


are only sceured to the longitudinal girder by means of two \%in. dia
meter bolts of meter bolts of a considerable length having to go through the whole
thickness of the oorbel. Where the valley of the two roofs should meet there is not such a one-sided drag as there is upon the outside longitudinal girder, there being a corbel on each side of the valley girder, and these are linked together by a plate on each side of corbel, as shown dotted in Fig. 9. In the case of the out vide longitudinal girders, the corbels are on the principal side only, and as the girders are not substantially stiffened there is a tendency
to drag the girder over from the top. The connection of shoe of principal to top of corbel is made by simply dropping a small pin principal to top of corbel is made by simply dropping a small pin
through a hole in both shoe and corbel ; the hole receiving this

pin was not slotted, and there is no other allowance made fo expansion or contraction of the principals, which in a design of thi class is at times something considerable and under the circum stances would drag the columns very much, and probably when in time the pin got displaced from constant straining the principa serious of all defects in the construction of the roof is the total absence of wind-ties or counter bracing, and also having no longi tudinal tie-rods connecting the principal tie-rods together. If longitudinal tie-rods had been used nearly all oscillation would b

prevented, and in my opinion the accident would not have happened, at least until such time as the weak principals began to
rot and rust with age. In the evidence it was mentioned that had rot and rust with age. In the evidence it was mentioned that had
the boarding of roof been completed the principals would have been well held together; but I think it is understood by engineers that an iron roof should stand sufficiently strong in itself without, what I might call, the temporary help of timber and nails. At any rate it would be outrageous to leave a roof of this magnitude trusting to the boards to do the work of substantial
iron straps. not be excusable, as timber rots sooner than metal, and has often to be renewed; besides this the roof had not much boarding, as a considerable area was to be glazed.
Strains of principals.-Span of roof, 77 ft . 6 in ; centre to centre of principals, 9 ft . $9 \mathrm{in} . ;$ (assumed for convenience of calculation), of 40 lb , per square foot is the usually assumed load for a roof of thi
description, and includes the weight of construction, possible load of snow, and resultant force from wind striking the surface of the weights at the points of support amount to 3 tons at $\mathrm{A}^{1}, 2$ tons at $\mathrm{B}^{1}$ and $1 \cdot 8$ tons at $\mathrm{C}^{1}$ respectively, as in Fig. 10. The reaction at each support arising from these weights amounts to 3 tons +2 tons + 1.8 tons $=6.8$ tons. The compressive strain in the portion B C of the main rafter of principal is 21 tons, and this part of the rafter being 10 ft . long to its nearest point of support it would be advisable
not to take more than $1 \frac{1}{2}$ tons per square inch for compression therefore the area required becomes $\frac{21}{1 \frac{1}{2}}=14$ square inches, whilst the actual area of the T.I. rafter of roof as constructed was only (T.I. $\left.5 \mathrm{in}, \times 5 \mathrm{in}, \times \frac{1}{2} \mathrm{in}.\right)=4 \frac{3}{4}$ square inches. This main rafter ought to have been constructed in one of the forms at Fig. 11. A stout channel iron would also tensile strain of the tie-rod of principal A C for the re-action as above is 19 tons, requirin $\frac{19}{5}=$ 3.8 square inches; actual area of this tie-rod as
built ( $2 \%$ in. diameter rod $)=3.97$ square inches. Therefore, this tie-rod would have been strong enough assuming that all pins, links, \&c., at

wpoints of connection were in proper proportions. been less in diameter than 2 sin . in proportion. 14 , might have reduced strains in those parts. The strain in strut F G is $3+$ tons, and being so long - 13 ft .- and both ends hinged, it would be advisable not to put more than $\frac{1}{2}$ ton per square inch, therefore requiring $=6 \frac{1}{2}$ square inches. The actual area of this, strut T.I.
31 in . $\times 3$ in. $\times$ tin. was only 2.44 square inches. These struts 31 in . $\times 3 \frac{1}{2} \mathrm{in}$. $\times$ in. was only 2.44 square inches. These struts
are sometimes made of wrought iron solid drawn tubing, which is made in various diameter thicknesses, some of them are made of considerable thickness, and used for high pressure steam boilers. This section of strut is, of course, the best-and very far superior to the tee-iron as commonly used-it offers the same resistance for an application of forces in any possible direction. The strut in question-for so great a length-might with advantage, if pre-
ferredarchitecturally, havebeen constructed by twotee-irons, Fig. 12.
be added to the safe areas to allow for all emergencies, including louvre as low as possible-of course allowing for ample ventilation - so as to offer as little vertical surface for strong side winds to play upon. In the usual construction of roof principals, both which is of at the apex and form with the tie-rod a triangle roof similar to the faulty design in question.

THE QUANTITY OF AIR REQUIRED IN THE VENTILATION OF BUILDINGS.*
By R. F. Hartrord, Member of the Western Society of Engineers THE following is submitted as addendum to the interesting paper
on "Ventilation of Stables," recently presented by Mr. A. W Wright, member of this society.
The authorities consulted have been Pettenkofer, De Chaumont Parkes, and others. From these we learn that a man at rest
exhales for each pound of his weight 0.00424 cubic feet of $\mathrm{CO}_{2}$ per hour. Under the same conditions he exhales $0 \cdot 1189$ cubic feet of air. $n=$ number of miles a man may walk in one hour-or it equivalent in other work-then
$\mathrm{CO}_{2}$ per pound of weight per hour
$\left.=0^{\circ} 000424+0^{\circ} 0\right) 211 n$
and air exhaled per pound of weight per hour
In the paper b $=0.1189+00591 \mathrm{n}$. (2) Boston Journal of Chemistry, that "a horse or cow is said to have six times the breathing capacity of a man." This is the allowance commonly made in the ventilation of mines in Europe, where the
animals used are about six times the weight of the average miner If this allowance be a correct one, and experience indicates that it is, we may assume that the larger domestic animals have the same breathing capacity as a man per pound of weight.
Now let
N Now let
$\mathrm{V}=$ cubic feet of air required in a given time,
$\mathrm{T}=$ time in hours,
$\mathrm{W}=$ weight of man


Similar and proportionate deductions apply to strut D E, the strain in which is $=24$ tons.
Ties.-The strains in ties G D, EF, and G H, Fig. 14, are $\frac{1}{8}$ tons, $1 \frac{1}{2}$ tons, and 2 tons respectively, requiring $0^{\circ} 05,0.22$, and $0^{\circ} 4$ square
inches respectively. The actual areas are $1.22,1.22,1.26$ square inches respectively.
Rafter. -The compression in the part B E of the main rafter is 18 tons, and similar results as for part B C. Therefore, the action of rafter required for B C would, of course, also refer to part B E. The remaining part of the main rafter is compressed in B G and of these parts of main rafters B G 13ft. and B H 181 ft . and the strength that was provided in same was thoroughly out of proportion to the actual requirements, more so than even in the comparatively shorter piece B C, and the depth of the T.I., viz., only in., bears an excessively unfavourable proportion of the length 181 ft . of the strut. The before described suitable section for a rafter of this description ought to have been run over this part
of the roof, and also strengthened with plates on top and bottom of the roof, and also strengthened with plates on top
flanges, as in Fig. 13. The correctness of the strain of tons found by diagram in part B H can be proved by taking moments of all forces round the centre of the
truss, viz,, 6.8 tons $\times 381 \mathrm{ft},-(1.8$ ton $\times 30 \mathrm{ft},+2$ tons $\times$ truss, viz., 6.8 tons $\times 38$ ftt. $-(1.8$ ton $\times 30 \mathrm{ft} .+2$ tons $\times$
$21 \mathrm{ft} .+3$ tons $\times 9 \frac{1}{2} \mathrm{ft} .=137.28$ foot-tons $) \therefore$ strain at centre $=\frac{137 \cdot 28}{12 \mathrm{ft} \text {. depth }}=11 \cdot 44$ tons. This difference of about 1 ton arises from the small scale- 4 ft . to an inch-in which the diagram is drawn, which, as the result is arrived at by a step-to-step way, must neces-
sarily bring an accumulation of inaccuracies. Everything stated above is based on the supposition that the
 roof is loaded in a perfectly uniform way-taken at 40 lb . on the square of the roof exactly correspond of 3,2 , and 1.8 on the right side of the roof, and in this state of perfect equilibrium the two diagonal rods in centre bay of principal, have, of course, no strain to take. The sketch diagram, Fig. 14, shows in an exag. gerated degree by dotted lines the approximate effect that a strong wind from theleft-hand side would tend to produce in the various parto of principal, and at a glance one can conclude what an excessively
ill adapted design this principal is for resisting any strong side wind. Another roof was intended to be erected on side $M$, but no part of this was commenced at the time of fall of main roof Under such altered conditions of loading the tie-rod H J-or the tie-rods $\mathrm{H}^{1} \mathrm{~J}^{1}$, when the wind is from the opposite direction-wil be strained to a very considerable degree, which would help to greatly increase the tension in the parts A F, A D, and A C of the
main tie-rod, and also throw increased compressive strain on strut F G and through tie E F on strut D E. A most serious weakening of the upper part of the main rafters $\mathrm{B} \mathrm{G} \mathrm{B} \mathrm{H} \mathrm{B}^{1} \mathrm{G}^{1}$ would follow, as these parts, besides the increased compressivestrain, would also have to bear-as there is always some amount of slackness in so many joints together-some part of bending strain ; therefore to provide against strong winds from any direction, all parts of a area over the safe strains worked out, About 15 per cent, should
$x=$ allowable excess of $\mathrm{CO}_{2}$ above that in normal atmosphere Then $\mathrm{V}=(0.00424+0.00211 n) \mathrm{W}^{\mathrm{T}}$
The best authorities have agreed that 6 parts of $\mathrm{CO}_{2}$ in 1000 parts of air should be the maximum limit with good ventilation. atmosphere, making for all practical purposes $x \stackrel{0}{=} 0.0002$.
The average weight of a car-horse may be taken at 1100 pounds $=\mathrm{W}$.
$n=\frac{1}{\mathrm{~V}}$, the formula for stable ventilation becomes $n \underset{\mathrm{~V}}{\mathrm{~V}} \stackrel{\frac{1}{4} \text {, the formula for stable ventilation becomes }}{=} 26235 \mathrm{~T}$, or
$V=437.25$ cubic feet of air per minute.
If the horse be regarded as at rest, $n=0$ and
$\mathrm{V}=3887$ cubic feet of air per minute.
Formula (3) is of general applicability.
I am aware that my resultt look large, but I believe they are no
larger than good ventilation requires, if the ventilating apparatus larger than good ventilation requires, if the ventiating apparatus tity which may pass through cracks, \&c.., is not considered. Of course, the results change with the choice of a different value of $x$. Some authorities say the limit of $\mathrm{CO}_{2}$, in good respirable air, may
be 10 parts in 10,000 parts, making $x=0.0006$, and $\mathrm{V}=7773$ be 10 parts in 10,000 parts, making $x=0.0006$, and $\mathrm{V}=7773$ cubic feet of air per hour as necessary for one horse-about 26
cubic feet per minute more than Mr. Wright gives. But if the cubic feet per minute more than Mr. Wright gives. But if the
experiments of Drs, Angus Smith, Parkes, Pettenkofer, and De Chaumont haveany value, this is much too low for good ventilation-

South Kensington Museum.-Visitors during the week ending Nov. 7th, 1885:-On Monday, Tuesday, and Saturday, free, from 10 a.m. to 10 p.m., Museum, 11,818 ; mercantile marine, Indian section, and other collections, 3264. On Wednesday, Thursday, and Friday, admission 6d., from 10 a.m. to 4 p.m., Museum, 1262;
mercantile marine, Indian section, and other collections, 204 . nercantile marine, Indian section, and other collections, 204.
Total, 16,548 . Average of corresponding week in former years, 14,145 . Total from the opening of the Museum, $24,423,323$.
Gas Engine Patents. - We understand that the actions brought by Dr. Otto, for infringement of his English patent for the wellknown Otto gas engine, may be expected to come on for hearing in the course of a few days. The first of these two actions, Otto $v$. Steel, is set down for hearing next Tuesday, and as soor as it is
disposed of, Otto $v$. Sterne and Co., Limited, will, it is said, be taken. Both of these cases will probably excite considerable attention. We understand that the plaintiff has secured the services of the Attorney-General, Mr. Aston, Q.C., Mr. Horace Davy, Q.C., and Mr. Hemming, Q.C.; while for the defendants in both cases Mr. Moulton, Q.C., has been retained. Among the expert
witnesses to be examined on behalf of the plaintiff's claims may witnesses to be examined on behalf of the plaintiff's claims may
be mentioned Sir Fred. Bramwell, F.R.S., Professor Dewar, F.R.S., Mr. Imray, and Mr. T. B. Lightfoot; and on behalf of the defendants. Sir William Thomson, F.R.S., Dr. Hopkinson, F.R.S., Mr. E. A. Cowper, M.I.C.E., and Professor Perry.

From the "Journal" of the Association of Engineering Societies.

GRESHAM AND CRAVEN'S SELF-ACTING RE-STARTING INJECTOR.
The injector has undergone many improvements since its invention, none more valuable than those intended to render its qualification to perfection, because it can be started and stopped

a dozen times a minute with perfect certainty, and if from any cause it should be thrown off, it will straightway start itselt again without attention. The large engraving is a section of

one of the two Gresham and Craven injectors used to supply the battery of Galloway boilers in the Main Gallery of the Inventions Exhibition, a motion up or down of the lever bandle shown being all that was necessary to start and stop it. The self-acting re-starting injector is very similar in appearnonce to the class of fixed nozzle injectors made by
Messrs, Gresham and Craven for many years, consisting of -(1), a steam cone ; (2) a water or combining comb; (3), a delivery cone. The only difference between these injectors and the one we are about to describe and illustrate is the dividing of the water cone into halves at about the centre of its length, leaving the smaller end of this cone free to slide to and from its larger end, which is fixe into the outer casing of the injector by means of a et screw. Its action may Steam is turned on and rushes down the steam and and through the large end of the water cone and out at the point where this cone is divided, creating a vacuum in the water chamber; the water then rushes up into the chamber and surrounds and condenses the steam, which, in the form of partially condensed steam and water, leaps across the opening between the larger and cone; this jet creates vacuum in the overflow chamber, when the pressure of the atmosphere at once forces the smaller end of the water cone-which is free to slide-up to the larger end, thus closing the space between the two halves of the water cone and making a continuous water and combining cone as in the ordinary injector. The combined jet of steam and water then passes out at the ordinary overflow, until the velocity is sufficiently great for it to enter the delivery cone and pass
forward into the boiler. forward into the boiler. The automatic action of this injector consists of the opening and closing of the space between
the two halves of the water or combined cone, this space being


HARTLEY'S TUBULAR VERTICAL BOILER.

always open except when the steam and water are both present, |received the highest award,given for $\rceil$ injectors at the Inter so that should there be any interference with the water supply the steam simply rushes out at the overflow until such time as the water comes again, when the injector immediately starts to work without any attention. Either the steam or the water ational Inventions Exhibition, and are being very extensively national Inventions Exhibition,

## HARTLEY'S TUBULAR VERTICAL BOILER.

 THE accompanying engraving illustrates a vertical boiler manufactured by Messrs. Hartley and Arnoux, California Works, Stoke-on-Trent. This is a remarkable boiler, as will be seenfrom the following description. The fire-box $W$ is similar to rom the following description. The fire-box $W$ is similar box W an internal cylinder F F extends to the top of the boiler in this cylinder is rivetted the upper tube plate. The flanged plate E separates the annular space $\mathrm{E}^{2}$ from the lower space $\mathrm{F}^{z}$ Thus the water in the cylinder F F and the space $\mathrm{E}^{2}$ is separate from the water in the space $\mathrm{H}^{2}$. The steam spaces $\mathrm{G}^{2}$ and $\mathrm{F}^{2}$ communicate with each other by means of several tubes G shown in elevation and section at A B. The working level of the water in the upper portion of the boiler is at $\mathrm{L}^{2}$, and in the lower portion the water level is at $\mathrm{K}^{2}$. The steam generated in the lower portion $\mathrm{H}^{2}$ is given off into the steam space $\mathrm{F}^{2}$. The steam generated amongst the tubes passes through a number of smal holes I I I into the water at $\mathrm{E}^{2}$ whence, it rises into the steam space $\mathrm{G}^{2}$. The water returns from the water space $\mathrm{E}^{2}$ to the top of the fire-box through holes T into passages formed by
channel plates Q Q Q, whence it returns in the direction indichannel plates Q Q Q, whence it returns in the direction ind forced in the inner cylinder through the tube B or into the space $\mathrm{H}^{2}$ at V , the tube R serving also as a blow off pipe. An overflow pipe $H$ communicating between the two steam spaces may be used, whereby a constant feed may be maintained into the upper portion of the boiler, the surplus water overflowin into the lower portion by the tube. Steam may be taken either from the upper or lower steam spaces as most convenient, if from the upper space through the annular anti-priming pipe K . Access for cleaning the upper part is had through mudholes SS, and for cleaning top of fire-box and lower part of tubes through the mudhole C and removable door $\mathrm{J}^{2}$. The advantages claimed by Mr. Hartley for his boiler are that it is wholly circular in corm, self stayed in every portion, and having no distorted flanged plates as in many other vertical tubular boilers. All plates exposed to the heated gases are easily accessible for examination or repairs. That it has a large combustion chamber, and what no other vertical boiler possesses, that is water-protected vertical tubes of sumicient length to abstract all useru must be economel That it has ansolutely ensured circu lation, the currents of flow and return being each entirely separated and independent of the other. That there must be less priming than in other vertical boilers, because there is nearly eighty per cent. more area of water surface for delivering steam than in any other boiler of equal diameter, also because in the upper portion the steam is discharged horizontally below the level of the water, and being distributed rises easily to the surface without excessive ebullition. That being accessible and vertical the tubes may be of small diameter, hence great heating surface may be obtained in small space. That the chimney is central, thus obviating the inconvenience of outside chimneys used in many other multitubular vertical boilers. We under
may be turned on first in starting this injector. Fig. 2 show the standard pattern of new injector, with flanges. Fig. 3 shows The cones can be easily of new injector, with screwed uniona any pipe joints. These self-acting re-starting injectors have


## [We do not LETTTERS TO THE EDITOR. er responsibients.]

the problem of flight.
SIB,-While attempting to determine experimentally the value o the purely frictional resistance which a amooth plane surface would Ineet in its passage through air at different velocities and pressures, flight of birds which is here egiven.
Suppose the forces to tote with. the same velocity in a horizontal
plane in the different cases, that the surface $a$ lies in the plane of the force and is of the esame weight as the air it displaces, and that
force of 2 oz . will oarry it to $b$. Suppose, also, that the motion force of 2 oz. will oarry it to $b$. Suppose, also, that the motion
is uniform, acceleration having terminated. If the same force were applied in the plane of $a^{\prime}$, then $a^{\prime}$ would go to $b^{\prime}$; but as $a^{\prime}$ is
inclined, it will pass to $b^{\prime \prime}$. From $a^{\prime}$ to $b^{\prime}$ there is skin friction only, nut from $a^{\prime}$ to $b^{\prime \prime}$ there is slight condensation and other disturb, nces requiring more pushing force. We will employ double the
mount, using 4 oz, from $a^{\prime}$ to $b^{\prime \prime}$. It is evident that no amount
evel, but by putting a similar plane above force would carry level, but by putting a similar plane above it we have $a$, and a
horizontal foroe will carry the two level. We will supose this
double plane to meet four times as much resistance on eaph side as double plane to meet four times as much resistance on each side as
from ${ }^{\prime}$ to $b^{\prime \prime}$, when a push of 32 oz. would be needed to carry it
to $b^{\prime \prime}$, The 32 oz of force flows to the rear in the disturbed air to $b^{\prime \prime}$. The 32 oz. of force flows to the rear in the disturbed air
but under no circumstancess oould $a^{\prime \prime}$ make a sooring bird. If al do no more than conserve the initial impulse, and all cannot be
utilised.
$\frac{0^{\prime}}{\mathrm{B}^{\mathrm{B}}} \boldsymbol{\square}$


## 

We will now take $\frac{1}{a} a^{\prime \prime}$, and introduoe another force acting at right angles to the horizontal one, by adding 112 2aze of weight to the prane.
It is evident that when $o$ weighted with 12 oz, is driven to $d$, there is the same foroo passing to the raer as in it $\frac{1}{} a$. The The same work is
done on the air, the oondensations are the same, and all the air done on the air, the conc
disturbances are the same
The question now arises, Does o require a 16 oz, push or a 4 oz.
push? It seems that the 12 oz. is put in the placo of the neutral.
wed pressure of the two planes, and that a 16 oz, push is demanded sed pressure of the two planes, and that a 16 oz. push is demanded
y the conditions of the case. If it yy the conditions of the case. If it be demanded, ocould never
become a soaring bird; for, like $a^{\prime}$, it would need all the rear forco. If, however, the moment the 12 oz. is added to o the rear push falls
from 16 oz, to 4 oz, then the latter could become a soaring bird with ease, as more than one-half of the force could be wasted in
obtaining the level factor. In such case the 12 oz, weight added to btainingt the level factor. In suoh case the 12 ooz, weight added to
would be putting the condensations and disturbances in excess o $a^{\prime}$ to $b^{\prime \prime}$ into the air, and not the rear push.
I freely admit that, if 16 oz, be required addition of the 12 oz,, my explanation of soaring is at fault. The birds are still in the air waiting analysis. If, however, but 4 oz . is needed, $c$ is a falling body doing work on the air without losing its
onergy of position and the atmospherio spaces all about us contain nechanical possibilititios hitherto undreamed of.
Chicago,
October 27 th.

TRADE UNIONS AND PIECE-WORK.
Sir, -You will confer a benefit on engineer employers in Lon-
don if you will open your oolumns to a thorough discuassion of the don if you will open your columns to a thorough discussion of the
rule of the various Trades Unions relating to pieco-work. These rules are prepared and revised from time to time without reference
to the masters, who in my opinion, should be consulted in
in maters that afteot their iny operimion, equally with the men, for the benefit of the trade of the country. Masters in London are more
affeeted by the Trade Union rules than in any other part of the
country. Very few really akilled workmen for the various engicountry. Very few really skilled workmen for the various engi-
neering trades can be obtained at short notioe in London who do not belong to their regpective any objection to repeco-work. Whe the
when the Unions did not raise is the state of the oase now? Y have before me the Book of Rules
of the Amalgmated Soocioty of Enincors for 1885 , revised at
Nottingham, May 25th, 1885. I find it stated at page 105, that "the ooiety considers, piece-work one of the greatest evils, th it as
to oontend with, and it therefore beomes the duty of every
member to permanently dupense with piece worlc whenever member to permanently dhspense with pieco-work whenover an
opportunity presents itself, and certainly to provent its introduc-
toin into opo into any shop or distriot where it does not exigt," The penalty
tion the first offence is a fine of 20s., and for the goond exalusion
for the the
from the olub. I am not one of those who objeot to Trades Unions from the olub. I rm not one of those who objeot to Trades Unions
because they are Trades Unions; on the contrary, I consider they
do great servioe to both masters and men, as long as they confine do great servico
themselves to logitimate obsjects.
The first point to be considered is, if the power of getting work done "piece-work" is an advantage to the masters. Speaking for
myself only, I have no hesitation in saving "yes" to this question. I find on an average that work costs 10 per cent. less if done piece-
work than by day-work. Moreover, you save indirectly in many ways. Is pieoo-work an advantage to the men ? This question is
more difficult to answer. I have never yet come workman who was unwilling to take pieee-work. If he would not
do so, it was solely on acount of the Club rules. He can earn do so, it was solely on account of the Crub rules. He can earn
morer money, and is more his own master can rest when he feels
tired, without the fear of getting into trouble with the foreman or master for so doing. Nothing is so absurd as to expect a man
engaged in severe physical labour never to require a rest from morn engaged in severe physical labour never to require a rest from morn
to eve; and yet, if you find a man sitting down and doing nothing,
you naturally blame the man or the foreman for not looking after him . Piece-work enables masters to tender with more certainty and oloser cut, and must therefore bring work to the district where
it is allowed. I have asked scores of intelligent men to explain to me on what grounds they or the Unions cat object tho piece-
work. The only answer I can get is, that it is thought that piecewant of work from getting it.
The rules of these Trade Unions are not all alike. The Society
of Amalgamated Engineers includes smiths, fitters, turners, pattern makers, millwrights, planers, borers, slotters, mechanical draughtsmen, brass finishers, and coppersmiths. Of these trades the smiths
are probably the only body who work piece-work to any extent in
俍 their separate society, whose rules vary somewhat. The moulders shop where they work before these erlules were introduced. The
members of the Boilermakers' Society take work by the piece for new work, but not for repairs. Woith the the shipwrights in London
piece-wwork is almost univeran; but as a set-off against this virtue
they have some very arbitrary ousa they have some very arbitrary customs. For instance, if men
working on the outside of a ship have to leave of work througr bad
weather, then those inside, who mat weather, then those inside, who may be under cover, must leave
off work also. Shipwrights ordered to leave one ship, and go to Work on another boat, must first be discharged by the firm who
employs them before they can do so. They must not work overtime if others of their trade are out of work, and wish to be
employed. They consider themselves entitled to choose their own plase in that position. I do not say that these rulpes are always
enforced, but I know many cases in which trouble has been caused by them.
As regards the boilormakers, 1 will mention a case in point.
took a contract to do some boiler repairs on board a vessel in took a contract to do some boiler repairs on board a vessel in
London. The men came off piece-work in the shops and were perfectly willing to do the work at the usual rates for putting in
tubes, \&o., but on account of the Club rules they were a fraid to
take take the job piece-work. It was impossible to put more than a
limited number of men to work in the confined space, and ye limited number of men to work in the confined space, and yet
imperative that the work should be done at the utmost speed. The only alternative was to put the men on time and a half, and
Trust to their honour to work as if they were on contract. In am trust to their honour to work as if they were on contract. I am
happy to say that the work was done for less than the rates offered. But does not this seem a humiliating position for both
nasters and men to be placed in? In some cases of piece-work the Masters and men to be palaed in? In some cases of poece-work the contracts which they have left without due cause. I fancy this
is done entirely with a selfish motive, to prevent the men coming is done entirely with a selfish motive, to prevent the men coming
on the funds when out of work, and not through any philanthropy on the funds when out of work, and not through any painanthropy
or sense of justice towards the master. The law, in fact, would do as much, only with more trouble and expense. I will conclude
by asking if it is legal for these so-called friendly societies to fo and expel memberg-who probably join for the sake of the legitimate purposes of the society- Who exercise an Englishman's right
of freedom of contract. If this practice is within the law, then of freedom of contract. If this practice is within the law, then
let pubbic opinion assert itself, and insist that it will not allow trade to be lost to us by such suicidal and senseless folly. At
ordinary day work the British workman does not as anle his excess wages over the Belgian or German, but at piece-work he can beat all the world, except the American, in the amount of
work done in a given time, and consequently the profit to his employer and advantage to himself of freedom of contract is
obvious. If neeessary, employers must get a Bill introduced into
Opilat Parliament making any interference with freedom of contrac
illegal. Might not the Royal Commission on Trade take this matter up with advantage to
November 6 th

THE LOcomotive of THE FUTURE.
history of the steam engine shows that
SIR,-The history of the steam engine shows that it has been
improved by men who have thought and reasoned on the matter giving their ideas publicity, and then others have been induced to turn their attention to the subject, and good has resulted from it.
I will follow in their footsteps as a practical workman who has had forty years' experienoe, and I trust something to say that will safe and economical.
My experienece tellis me that steam can be used continuously over again, and between seven and eight million foot-pounds of useful
work got out of each pound of coal consumed. I have studied the work got out of each pound ot coal consumed. Thave studied the
nature of heat, water, and steam in all its forms, and am prepared to discoss the matter fully and clearly. I have also to say that
the present engines could be made to do more work with at least the present engines could be made to do more work with at least
50 per cent. less fuel-for instance, I am sure I could make one of Ramsbotton's engines, which only weigh about 27 tons, take a
train of coaches weighing 150 tons fifty miles an hour with 151 b train of coaches weighing 150 tons fifty miles an hour with 151 lb
of coal per mile, or less than one-half what they are doing at the present time. Professor Tyndall says, "That considering the infor mation within the power of the mechanical engineer and artist
they have not done so well as they ought to have done ;", and concur in those remarks, for they are literally throwing the fue away on the railways by hundreds of thousands of tons yearly,
and they refuse to be shown how to do better. They certainly do not know how to apply that which is already known concerning heat and steam, and they are either lacking in knowledge or indif eliminated, for it is more explosive than gunpowder when ebullition takees place. I calculate that than gunpowder of water when exert as
much foree when it explodes as $1 \frac{1}{1} \mathrm{lb}$. of powder. Yet I have never seen any precaution taken against this danger. Wha explanation have our superintendents to offer why they do not
apply a remedy? The above leads me to think that it would be of, whether it would be more safe or not, it would be more econo-
mical; for by using air I would do away with both injectors and pumps, and put the water into the boilers hotter than that in the
boiler, by heating the water with the exhaust steam instead of it going into the air or before it went tinto the condenser.
In locomotives I would take the blast pipe jet from the exhaust steam after it had heated the water in th holder, which would have to be strong enough to bear 300 lb
hem ent pressure. I would also make the pistons into a brake to retara
the train, and thus get about one-half the force of the train fo useful work. To wit, force the water into the boiler and star the train with ; also to clear the rails instead of sand, for sand causes a deal of friction, and in stormy weather the wind blows it hot air would go right to the mark at once, and so clear the rails that the wheels would not slip, and this would cost nothing on a
locomotive. If tho air was compressed on the top of the water it would require ess heat to boil it, and when heat was applied the
dirt and other matter it contnins would drop to the botpo dirt and other matter it contains would drop to the bottom of the
holder, and this would provent soaleing in the boiler. This is
when only just to suit the purposes that I have suggested.
Then I have to offer a few remarks on friring up the locomotive. would utilise the heat by putting it into an engine that was going out. I would then fire the engines up with a Bunsen flame about for each and every engine. I' have not fired all my shot yet,
What I conceive to be the best plan of a steam engine is to have the cylinders as long as possible and small in diameter as
could be got to do the work. I would surround them with a hot medium, then put an exhaler to bo worked by the exhaust steam,
turn the steam through some water, and when it rises above the water send it through some hot tubes, and so impart a sufficient amount of heat to do the work. I would work the steam full force the whole length of the stroke, and thus obtain as much power as possible out of the engine. The steam extractor would
act like a condenser by causing a dilated space behind the piston An engine on the above principle would do more work than two of the ordinary engines of the same size, and
4-horse power for each pound of coal consumed.
The above is a good desoription of the steam engine of the
future. If am ancouraged I will in future show how to do without smoke, and the best form of steam raiser.
34, Chetwode-street, Crewe, BENJAMIN BAGBHAW,
November 6th.
Railway Engine Diver.
[We make no comment on the foregoing letter, except that we wink it advisable to let the "Working man" say what he has to
say. We can all learn something from such a letter as that of correspondent, although it may not be precisely what he intended

## to teach,-ED, E.]

> SIR,-It is greatly to be rese's MECHANICS,
> mathematical attainments as Mr. Donaldson possesses should be ignorant of the fundamental truths of physical science,
I will with pleasure answer as far as is consistent
> t my disposal, Mr. Donaldson's arestions. (1) With the space derivative meaning of inertia? It is derived from the Latin word iners-inaotive, slothful. (2) What is " $\Phi$. ח.'s" definition of motion? He is content with Dr. Lodge's. (3) Does the inertia of different bodies vary direetly or indirectly as the weight of these way affected by weight; it varies directly as the mass of the bodies. moving force in a given time vary directly or indirectly as theit
weights? Neither one nor the other; weight has] nothing to do
with acceleration in this sense. The ;aceleration produced in given time by a given cause will varydidirectly as the $\rfloor$ mass of the thing accelerated.
"opinion that inertin haruy be serious when he says that he is of Parnelite member of Parriament-viz, capacity for obstructing written Surely so loosely-worded a sentence 1 thing? I suspect that what Mr. Donaldson means is that regards inertia as the manifestation of a property posseseed by loose English to thank. But such an opinion is only his owrin physical truth. Matter is entirely unable to obstruct or resist ind in any way. All that it oan do is absorb it, so to the sponge does when it is squeezed. If we double the size of our sponge it will hold just twice as much as it did before. In the
same way, if we double our mass it will just take tew twice as much force to double its velocity as it did before Momentum is the "quantity of motion in any body." All authori anything in a body without oapacity to hold it, and therefore I say "capacity for motion," the reciprocal of momentum, and means capacity for motion; this sense of the word is a good one, for it viz, that matter is in some way or other able to resist being put nion a good which it is not. Dr. Lodge saw fit to think my sugges cannot tell, but he has not said a word about my defnition in his
"Elementary Mechanics," which therefore, Mr read with safety and, I should think-judging from his letten of For a full expression of my views, I would beg to refer your
tion for April 3rd, 1885.
London, November 10th. the efficiency of turbines.
Sir, -I am obliged to Professor Smith for repeating the infor that it is a numerical fraction or ratio. In the second paragyoph, fraction of an area must be itself an area. In the final paragropta he further states that the equation would in some respects be sim plifed by using $A_{i}$ and $A_{0}$ for inlet and exit water sections. It mean? Are $A_{i} A_{0}$ then sectional areas to be substituted for Professor Smith raises no objections to my criticisms, and does not either answer, or promise to answer by-and-bye, the other
uuestions relating to his flnal equations questions relating to his final equations. Is his silenoe, then, to
be taken for an answer in the affrmative? If this be so, Professor Smith ought frankly to acknowledge that the whole contents of his three papers are simply a farrago of wordy nonsense.
Westminster-ohamberi
Nov, 11 th
William Donaldson.

## LEGAL INTELLIGENCE.

## JENSEN AND TRIER $v$. SMITH

Tris was an application for injunction which aame before Mr Justice Kay on hio 2nd of November, 1885. The patent in ques February, 1878, No. 427, a communication from Stauffer for Improvements in oil-boxes or lubricators for revolving and other parts of machinery, Mossrs. Trier Brothers, of Westminster, being
the sole licensees in this country. The invention is largely used both here and abroad, and its great usefulness was proved and admitted, but the novelty was disputed. The now well-known
Stauffer lubricator, the subject of the patent, is used for semi-soli grease, which is pressed into the bearing by gradually screwing home a screwed cap containing the grease against a flat surface,
from which a small holo leads to the bearing to be lubricated. For he defence, one witness, who at the time was a boy, stated that he had made many lubrian thacordis to one form shown in the date of the patent, but the sale soon discontinued; nor was evidence tendered in the shape of proof of the thing itself thus made and sold, nor to what parties they were supplied. Evidence was
also oiven that a lubricator made by M. Delettrez, of Paria, hai been largely imported and sold here long belore date of plaintiff' hallow ensy-fitting piston, having a acrewed pistorted with hassed through a correspondingly screw-threaded lid, and wad crutch handle for turning it by. The cap being unscrewed and the grease put in below the piston, it is evident that when the piston
is put in again and the cap screwed on the grease may be orced into the outlet below the piston, and thence into-
the bearing, by screwing the piston down upon the grease This was held to be an equivalent for another form of plaintiff's he other hand, it was contended that the grease would go past Delettrez's
piston, while the screw threads of Stauffer's plug rendered this mpossible, partly because each screw thread, as it were, formed a leakage past it of a fine sorew thread is many times greater than that afforded by a piston, unless the latter is very deep or is packed. Collinge's hinge, patent No. 4617, of 1821, was also held intended as a mere stopper for an oil cavity might to some extent be used in the same way as plaintiff's. Judgment for defendant
with costs.

Enginerring Society, King's College, London.-At a general neeting held on Tuesday, November 3rd, Mr. C. H., Wordingham pointed out the importance of being able to measure physical phenomena accurately, and that means existed for doing this in only an arbitrary unit, which in the case of light there was as yet sperm candle weight $\frac{1}{6} \mathrm{lb}$, and which after burning for fifteen tioned that standards of light depended on the law of inverse squares, viz., that if two lights have equal effects, their intensities are inversely proportional to the squares of their distances photome test surface. The author then fully described various court, Bunsen, Wheatstone, Arago, and Gorham, and pointed out that defects of the standard candle were due to the variety of the atmospheric pressure. He then described other standards of light, and pointed out their advantages, including :-The Carcel
lamp, burning colza oil, and used as the French standard; Keates lamp, burning sperm oil, which is found more constant than colza, the height and pressure of the oil and the composition of the yielding a 3 in. flame ; Vernon Harcourt's pentane flame, consisting of liquid pentane to 600 of air, burning with that of a theoretical candle, and obviating the necessity of a ga supply and errors due to wicks; and Sugg's 10 -candle lamp, an his remarks by alluding to the disoovery of the action of light on selenium, tending to decrease its cium cell under varying circum stannces.

RAILWAY MATTERS.
The Wolverhampton Town Council has this week sanctioned the
e of steam power on the lines in the borough of the Dudley use of steam power on the lines in the borough of the Dudley
Sedgley, and Wolverhampton Tramways Company for a period o six months from the 15 th December.
The Minnesota and North-Western road has completed its bridge
across the Mississippi River at St. Paul. Work was commenced across the Mississippi
the 1st of last Dceember, the piers being, the Pailuvay Neves says,
sunk through the ice ; and it has been finished in the remarkably short time of ten monthss. The bridge is of iron, 1825 ft . long, and
the draw span, 412 ft , long, is the largest and heavest in the worl the draw span, 412 ft . long, is the largest and heaviest in the world American bridge builders are, for bridges of all ordinary sizes, completely cutting the English builders out of the market for
Canada and other colonies, and this is chiefly due to the baneful effects of Board of Trade caused the depreciation of our bridges, by the nse of the common material whioh will stand the four and five tons tensile and com pressive strains.
Thr prolonged arbitration sase between the Great Western Rail-
way Company and the London and North-Western Railway Company respecting the boating of trattic on the Worcesterssiine side of
the South Staffordshire district, has resulted in a deision in favour of the Company sought to require the London and North-Western Wail way Company to boat certain goods traffio
the traffic will be continued as formerly.
THe Gleaner, speaking of Jamaica, says: -"On general prin.
ciples, we heartily support an extension of railway facilities as far as practicable, because, apart from being a vast benefit to the
island, they will afford employment for the labouring classes, and prevent the bone and sinew of the country leaving for Colon, where to their homes with broken constitutions to live by preying on society. As pointed out by us some time since, the extension from
Porus to Montego Bay can be built in seotions by Jamaican contractors
The following telegram, dated November 8th, has been reeeived
from Mr. Sandford Fleming, ©.E., C.M.G... Iate Engineer-in-Chief of Dominion Government Railways, by the president of the
Canadian Pacific Railway:- " First through train from Montreal arrived at Vancouver. MMost sucressful journey. Average speed,
including ordinary stoppages, twenty-four miles per hour. Before including ordinary stoppages twenty-four miles, per hour. Before
long quite possible to travel from Liverpool to Pacifo by Canadian
National Line in ten days. Physical difficulties have come by, gigantic works skiiftully executed with marvellous
rapidity," It is, however, said that a good deal of work has been done in a temporary way so as to get trains into work.
A sYNDIATE has been formed for the purposo of raising funds
to build a line of railway whinh is to oonneoct the wealthy mineral
districts of the north of Western Australia, which lie in the districts of the north of Western Australia, which lie in in the
vicinity of Champion Bay, with Perth the oapital, and Frema vicinity of Champion Bay, with Perth the oapital, and Fremantle,
the ehief port of the colony. It is to commence at Guildford, a station on the existing Government tine-the Eastern Railway,
distant from Perth about eight miles and from Fremantle about
twenty miles, dwant from Perth about eight miles and from premantie and proceed via Gingin, Victoria Plains, Upper
trwin, and Dongarra to a junction at or near Walkaway (Greenhough Flats, with the proposed southern terminus of the Govern Chittering, and other important Iocalities. Mr. R. Price. Williams
M.I.C.E., has been appointed by the syndicate to proceed $t$
W Western Australia to make an exhaustive report upon the nature of the land to be acquired and upon the scheme generally
EvERryoDY in New York is watching with great interest the
tests of the Daft motor on the Ninth Avenue Elevated road. The
Elcetrical World says:-We have the pleasure Electrical World says: :-We have the pleasure of reporting, from
personal observation, that oo Wedmestay night in spite of the
rustiness of the track and other troubles incidental to rustiness of the track and other troubles incidental to a start of the
kind, Mr. Dafte motor, Benjamin Franklin, showed its power,
moving freely up and down the track. As we have already travelled mohing a Daft motor at other places at the rate of several miles
ben hour
and an hour we think we can now promise our fellow Now Yorkers
an carly ride on the Elevated by electricity. Meantime the
electric tramway which was equipped with the Daft motors at electric tramway which was equipped with the Daft motors at
Batimore in in reguar operation. It has now been running
for over two weeks, and nothing has yet occurred to make the undertaking anything but a decided success. Indeed the tram-
way company is so well pleased that it has ordered two more motors, which will be put upon the line as soon as possible. The
ancent of the neavy rades on this line is a remarkable feature, one
and grado being of 350 ft . to the mile ; yet no difficulty is experienced
in overooming $i$. The suceess of this undertaking marrss another
decided and it will not fail to strengthen the confidence of the advocates of
alectric railways. luy Mays.
THe Morsoy Railway Tunnel, being very nearly completed, is on
the eve of opening for traffic, and by the end of the quarter it is expeoted that trains will be running regularly and frequently
between Liverpool and Birkenhead. As the time tables and the fare tarif are undergoing final revision, advantage has been taken
of some unavoidable delay in completing the ventilating apparatus to arrange the junct on for the lines authorised in the last session
of Parliament for connecting the tunnel with the raild allons the line of docks. The ventilation is secured by means of powerful
fans, which in the air shafts produce a current of air of the foree of thirty miles an hour. Access to the tunnel for passengers
would be btained by a stairway, an inclined way, and an immense lift capable of carrying 100 persons. The line will form a conneot
ing link between the Great Northern, Midland and Sheffield
Companies on the Liverpool side, and the Great We Nompanies on on the Birkenhead, side of the Merresy and will
North-Western ond
give, for the first time, the Great Western Company a direet give, for the first time, the Great Western Company a direot
acoess to Liverpoo. There are various works to be carried out
before the system is complete and in order to fnish these the directors now offer for subscription $£ 600,000$ Five per Cent. Pre
erence Stock at par, which, after the payment of the debenter ference Stook at par, which, after the payment of the debentur
intercest, will be a first charge on the profits of the railway, and
will take priority over the remaining $£ 1,430,000$ of share capital. THE project to connect the upper and lower parts of the town of
Biella has received the sanction of the Minister of Public Works. The line, which will consist of a double track, will be 180 metres

- 590 oft.-in length, with
a difference of level between the two extremities of 60 metres- $-196 \mathrm{ft}$. . 8in.- corresponding to a a gradient
of 1 in 33 f . The gauge proposed is one metre, and the rails, which are to be of steel and of the Vignoles pattern. will weigh 36 kilo
grammes per metre- 7 thb per yard - they will be fixed on strong
oak longitudinal sleepers, connected at distances of 4 metres apar supported by brick pillars. The The carriages -one for each line will will
be capable of holding twelve passengers, and will be attal ends of a wire rope, passing over a horizontal pulley at the top end Below the floor of the carriage will be a tank, divided into three whilst the other will hold $1 \frac{1}{2}$ bubic metres of water, or in all 31 tone, in weight. The tank of the car being filled with, water at the top which is empty. The speed will be regulated by a friction brake
conneeted wwith the horizontal pulley passes, but the carriages will
also be provided with por also be provided with powerful brakes, suffcient to bring them to will be of stele, consisting of six strapds of eight wires eagh, its
diameter 23 millimetres - in.

NOTES AND MEMORANDA
IN Greater London last week 3440 births and 1884 deaths were
registered, corresponding to annual rates of $344^{\circ}$ and 18.9 per 1000 registered, corresp
of the population.
THE aggregate amount of rainfall last week at Greenwioh was
0.47 in . The duration of registered bright sunshine in the week was 711 hours, against 13 hours at Glynde Place, Lewes.

OR STokrs has been nominated as Professor Huxley's
nt the presidential chair of the Royal Society. This
fessor Stokes the successor of Nis makes Profess
presidentship
THE rapid progress of population in New South Wales is shown a larger number of inhabitants than South Australia, Queensland,
Western Australia, and Tasmania, with a combined area of ,658,402 square miles.
THE deaths registered during the week ending November 7th in
28 great towns of England and Wales oorresponded to an annual rate of 19.9 per 1000 of their aggregate population, which is estirate of $19 \cdot 9$ per 1000 of their aggregate population, which is esti-
mated at $8,906,446$ persons in the middle of this y ear. The efive
healthiest places were Halifax, Brighton, Sunderland, Leicester, heaithiest
and Hull.
AT the Royal Observatory, Greenwich, the mean reading of the barometer last week was $29 \cdot 86$ in.; the lowest reading was $29 \cdot 24 \mathrm{in}$. at the beginning of the week, and the highest $30 \cdot 17 \mathrm{in}$. at the end
of the week. The mean temperature of the air was $44^{\circ} 6$, and $1 \cdot 4$ below the average in the corresponding week of the twenty year
Buror
BEFore the Paris Academy of Sciences a note on a new process
or making hydrogen gas was recently read by MM. Felix Hembert Cor making hydrogen gas was recentily read by Min. Feorin Hembers which hydrogen gas available for numerous combinations applicable
to the arts and industries may be, they said, produced at the rate to the arts and industries may
of 0.015 franc the cubio metre
Iv London last week 2695 births and 1488 deaths were registered. The annual death-rate per 1000 from all causes, which had been During the first thive weeks of the current quarter the death-rate averaged $17 \cdot 8$, and was 2.0 below the
ing periods of the nine years $1876-84$.
Wririvg on the durability of slate when exposed, Mr. A, O.
Kimber says: "In the Granary Burying Ground, in Boston, there Kimber says: "In the Granary Burying Ground, in Boston, there
is a stone of slate erected to the memory of Captain William is a stone of slate erected to the memory of Captain wimam
Condy, who died August the 25th, 1685 . The style of lettering,
position, \&ce., all indicate that it was put there soon urial. Yet every letter is clear and sharp, even the guiding lines scratched with the chisel being perfectly distinct. In fact, the stone seems to have suffered no change whatever. There are, many
THE meldometer- $\mu$ e $\delta \delta 0$, to melt--is the name given by Pro fessor Joly to an apparatus, which consists of an adjunct to the mineralogical microscope, whereby the meting points of minerals
may be compared or approximately determined and their behaviour watched at high temperatures, either alone or in the presence of reagents. It consists of a narrow ribbon of platinum, 2 mm . wide, slamped so as to be readily renewable, passes bridgewise over a little soooped-out hollow in a diso of ebony. The clamps also take
wires from a battery, and an adjustable resistance being placed in microsoope, the platinum strip ing brought into the field of a lin.
objective, protected by a glass slip from the radiant heat. The observer is sheltered from the intense light at high temperatures by wedge of tinted glass, which further can be used in photometri-
cally estimating the temperature by using it to obtain extinction cally estimat
of the field.

Cording to a paper on the "Electrical Resistance of Alcohol," by G. Foussereau- Compt. Rend. ci, 24 - 24 -4 - the specific resistance
of different samples of commercial absolute alcohol varied from $2^{4} 47$ to 3.68 megohms. When alcohol is mixed with water, the
resistance of the liquid diminishes, and attains a minimum differ ing very little from that of water when the mixture contains only dilute solutions. In every case a considerable alteration in the composition of the mixture is necessary to produce any notable
hange in the resistance. The differences observed with commercinal alcohol tare not due to the presence of varying quantities of
water but to small quantities of dissolved saline matter. The presence of 1 part sodium chloride in $2,600,000$ parts of alcohol
owers the resistance in the ratio of 1 to 0.527 , and the addition
of potash produces of potash produces a si apidly diminishes; but if kept in porcelain
vessels, its resistance rapin vessels, the resisistanee is not affected to to anything like the same
extent. The highest resistance observed with carefully purified axtent. The highest resistance observed with carefully purifed
alcohol, collected in porcelain vessels, was $7 \cdot 031$ megolms. The
resin resistance diminishes by 0 ory of its val
perature of 1 deg. at ordinary temperatures.
A BoRE-HOLE made about two years ago to a depth of 52 metres yields a large and steady supply of carbonic acid gas, with water, which is variously utilised. In a recent paper to the Niederrheinische Gesellschaft in Bonn, Herr Heusler says the normal quan
tity of gas amounts to about 2160 cubic metres in twenty-four hours. The supply having proved constant, a compressing appa-
ratus was set up last autumnn, the gas being taken directlly vere the
to bore-hole. The present system produces per minute from 500 litres of gaseous $\mathrm{CO}_{2}, 1$ litre of liquid, weighing 1 kilogramme. As the
liquefaction depend sible at a temperature over $30^{\circ} 9 \mathrm{O}$. -the critical point-it is neces sary in high temperatures to cool the apparatus; and the water of
the spring-which keeps at 12 deg.- -erves for this. The pressure the spring - which keeps at 12 deg.- -serves for this. The pressure
employed ranges frop about 50 to 70 atmospheres.
iron vessels iro vested to about 250 atmospheres, they very rarely explode
are enormous expansion of carbonic acid with rise of temperature yields a pressure which-Nature says-is utilised for compression of steel and other casts, and Messrs. Krupp, at Essen, have thus
got, $e$. . . a pressure of 1200 atmospheres for a temperature rise of 200 deg., C. Among other uses are preservartion of beer, impregna-
tion of natural water, apparatus for fire extinotion, and motor force for torpedoes.
The following figures relating to the mean monthly rainfall at Grcenwich froservatory have been compiled by Mr. G. A. Biddell,
I.I.C.E., from the returns of thirty-nine years ending with 1879 The mean monthly fall is $2 \cdot 06$ in. $=202$ tons, or say 45,000
gallons per acre, just over one gallon per square foot. The mean yearly fall is 24 sin, about 2500 tons per acre, rather more than
10 cwt. per square yard, or nearly 13 gallons per square foot dryest year was 1864, $16 \cdot 38 \mathrm{in}$. The wettest year was 1852 , 34.01in. The seven dryest years-each below 20in.-were
$1850,1854,185,1864,1870$, and 1874. The eseven wettest years- each
above 30in. - were $1841,1848,1852,1860,1866,1872$, and 1879 . The six winter and spring months, viz, December, January,
February, March, April, and May give a fall equal to 10zin, eack February, March, April, and May give a fail equal to 10 jin., each
quarter about 5fin. The six summer and autumn months, viz. Tune, July, August, September, October, and November, equal the mean monthly averages given in the order of their rainfalls:March, ${ }^{1} 42$; February, $1.54 ;$ April, $1 \cdot 66 ;$ December, $1.76 ;$ June,
$2 \cdot 05 ;$ January, $2.05 ;$ May $2 \cdot 07$, November, $2 \cdot 23 ;$ September $2 \cdot 25$; July, $2 \cdot 40$; August, $2 \cdot 49$; October, $2: 82$. In these one day
is taken from January and one from March and added to
February, thus making them each equal to 30 days. If March is taken as 31 days the fall is 1 4 4 in., and if February is taken as 28 days the fall is $1,44 \mathrm{in}$ :

## MISCELLANEA.

ON Saturday the North.East Coost Institution of Engineers gave
a farewell banquet to Mr. W. H. White, who is leaving Newcastle a farewell banquet to Mr. Wh. H. White, who is leaving Newcastle
to take up his position as Chief Naval Constructor to the Admiralty. STex revolving shutters for closing dock shedding are now
being extensively used. At the new docks at Tilbury, now in being extensively used. At the new dooks at Tilbury, now in
courso of oonstrution by the East and West India Dock Company,
no less than 120,000 superficial feet of shutters will be used,

The fine fill
THE fine new flour mills machinery, on the roller system, in the
Phocix Mills of Messrs. John Davidson and Sons, Newoastle-onTyne, was inaugurated yesterday. The new roller mill plant, by most elaborately, ofmplete mills in Europe, and as the lare arest and most elda rately complete mills in Europe, and as there are many
new and points in the mill we shall refer to them at length
on another occasion Own
OWiNG to the want of harbour accommodation for vessels and fishing smacks in the districts between Beachey Head and Beexhill,
a proposal is being considered for oonstructing a harbour between
Eastbourne and Pevensey Bay, with a steam tram Eastbourne and Pevensey Bay, with a steam tramway skirting the
sea eastward of the redoubt for about four miles. The scheme sea easward of the redoubt for a anout our mides. Is yachu station two miles from Eastbourne.
Is view of the threatened outbreak of hostilities, and the
announcement that a fortified post is being constructed to afford a a place of af roftififed port is is being constructed at Promed
tone
be interesting to those who the district, it will district has an ample water supply the Gernment having within the past two years constructed waterworks at Prome, fitted up with pumping machinery by Messrs. Merryweather and Sons.
MEssRs. RobRRT STEPHENSON AND Co., of Newcastle-on-Tyne,
have made arrangements to take over the shipyard and works of have made arrangements to take over the shipyard and works of
Mesrrs. MoIntyre and Co. at Hebburn-on-Tyne. The principal
shareholders in McInt Core and Co will retain in the buins in MoIntyre and Co. will retain a substantial interest motive, and general enyineering works. This will probably necessitate the removal of all Messrs. Stephenson and Co.'s marine work to Hebburn, and the construction of large docks there.
Iv connection with the annual meeting of the British Association
next year in Birmingham, it has been decided to hold an Exhibinext year in Birmingham, it has been decided to hold an Exhibi-
tion of Industry and Natural History in Bingley Hall to remain open for one month preceding October 8th. The area from which
manufactures will be admitted is a radius of fifteen miles from Birming ham, and wherever practicable processes, as well as pro-
ducts, will be illustrated. Numbers of the leading manufacturers have already shown themselves willing to co-operate. To mako
the hall more attractive, streets of old Birmingham workshops will be formed.
The engineers of the French service are establishing a telephonio communication between Paris and Rheims 160 kilometres from
Paris. The Paris terminus of this line will be the Exchange. A sum of one franc for each five minutes will be chaged for conversa tion. As soon as this line is finished the work will begin of con-
necting Rouen with Paris -126 kilometres. Rouen has been
already connected with Hither phonic line. Conversation between thesee tho oilitios in, very easily.
held. It is the suceess of this system which led to further exten. THE impression gathered from the address before the Chemical
Section of the British Association by Professor Arstrong, one of
then those who supports the demand for State aid to research, has thus
been epitomised by the Chemist and Drughist: "Professor Armstrong is not an inspiring orator, and ons ade ane research in this
monotonously lugubrious. The neglect of chical country is a dire evil. Examiners are incompetent, students fail
to recognise the 'holiness of work' and the 'sacredness of accuracy,' teachers are expected to teach and professors are
expected to lecture, and so they have no time for original work, expected to lecture, and so they have no time for original work,
though they are, it would appear, the faithful few who are the salt
of our nation." Dr. Frankland reports to the Registrar-General that the
Thames water sent out by the Grand Junction and Lambeth Companies last month exhibited no material difference in charactor
from that of the previous month's samples; $;$ marked incease in
the of the Southwark, Chelsea, and West Middlesex Companies waters, but the actual proportion present was small for this season
of the year. All the samples were olear and bright. The water drawn from the Lea and distributed by the New River Company contained only a very small proportion of organic matter, the
supply being seoond, in this respect, only to the best of the deep-
well waters. The water of the East London Company ranked with the best samples of the Thames waters. Both waters were clear and bright on delivery.
A commirtre of the Royal Meteorological Society has been
appointed to take into consideration the question of the supposed diminution of water supply and the suggested increase of floods.
The committee is desirous of obtaining as much information as possible, and will therefore be very glad aceive any data bearing water supply either from gaugings of wells or springs; the height water periods ; or any historic data which may be collected relating to the subject. Information relating to the period between
1825 and 1835 would be extremely valuable, in order to enable the committee to fill up a gap in the diagram acoompanying the report should be addressed to the assistant secretary, Mr. W. Marriott, at George-street, Westminster.
IN alluding to the request of M. de Lesseps for more money to
continue the construction of the Panama Canal, the Nev York Times of the 9th inst. advocates an inquiry by Congress into the
real status of that undertaking, alleging that it is of national interest, and a proper topic for consideration, because the possible bankruptcy of the private corporation may result in the enterprise
being taken over by the French Government. The Tribune declares
 here as a gigantic failure, which was begun in ignorance, fostered
in enthusiasm, and will terminate in ruin. It declares that if M. de Lesseps desires to preserve his honour, he should place his
private property in the hands of trustees, for the benefit of those who will be ruined by reliance upon his assurances. Tre Socielle Industrielle d'A miens offers a number of medals for
new or improved machines and apparatus for session $1885-6$. -(1) A brake dynamometer to replace the Prony, and to be more simple in design and working. (2) For a simple and inexpensive
transmission dynamometer with arrangements for reading off work done direct. (3) For a disposition of the vacuum brakes so as to suppress the noise made by them as used by the railway oompanies,
(4) For a project for workmen's houses in the Ville d'Amiens. In the air of spinning and weaving rooms without causing drainghts.
 price being taken into account. (7) For an apparatus for purifying
boiler feed-water ; to be simple, not cumbrous, and not costly, (8) For a memoir on the influence of form and dimensions of steam
engine chimneys on their draught. Besides these, numerous medals engine chimneys on their draught. Besides these, numerous medals
are offered for improvements in textile machines and their parts. The society thus expends money in a way likely to be of direct. value to its members and likely to secure commercial
We have ne seciety offering similar prizes in England,


FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.



## TO OORRESPONDENTS.

* We cannot undertake to return drawings or ma
*ust therefore request correspondents to keep copies.
${ }^{*}$ In order to avoid trouble and confusion, we find ** In order to avoiot trouble and confusion, wepepies. $i$ it necessary to
inform correspondents that letters of inquiry addressed to the public, and intended for insertion in this column, must, in all writer to himself, and bearing a 1 d. postage stamp, in order that No notice will be be taken of communications which do not comply with these instructions. wiin these instructions.
J. M. (St. Paul's-churchyard)-Your letter is controveroial, but it con
tains no statement of deffinite fact tudmitting of being proved by you, and,

utilising the waste heat of cupolas.
To the Buitor of The Bngineer.)

The Enanvere subsoriptions.




Coth cases for binding Ture Enoinkre Volume, price 24. 6



 ADVERTISEMENTS.


 Advertisements cannot be inserted unless Dellivered




## THE ENGINEER.

## NOVEMBER $13,1885$.

## the future of the auxiliary fleet.

A circumstance which may be found, one way or the other, to have an importaut bearing upon the maritime nition. A Committee has been formed at the Admiralty consisting of the Parliamentary Secretary, Mr. C.T. Ritchie; the Controller of the Navy, the Director of Transports, and
the Director of Naval Construction, Mr. W. H. White, who are to advise on the best means of ntilising the mercantile marine as auxiliary to the Navy in time of war. It might have been thought that this question was settled, and that
the plans so admirably worked out by Sir Nathaniel the plans so admirably worked out by Sir Nathaniel
Barnaby were such as placed a powerful auxiliary fleet at Barnaby were such as placed a powerfus auxiliary fleet at excellent as these plans undoubtedly were, they contained one defect, of which it cannot be doubted the ex-Director
of Naval Construction was fully conscious, and for of Naval Construction was fully conscious, and for
which he was in no sense responsible. A powerful force was organised, but the connecting link between
that force and the British Government was left that force and the British Government was left
singularly weak, and so remains to this hour. When in the spring of the present year there was danger of hostilities with Russia, an alarm was raised that the
emissaries of that Power were in treaty for the purchase of
some of the fast ocean steamers which had been built in accordance with the requirements of the British Admiralty. Forthwith our own Government proceeded to charter these ships, not only for the sake of employing them as armed cruisers for the defence of our commerce, but for the additional reason that, if not employed under the British flag, they might be found under the Russian. A large expenditure was incurred for a purely precautionary
purpose. The scare passed away, and the merchant steamers, some fifteen in number, which had been hired for half a year, have now reverted to their original use. For the money spent-in all a very considerable promptitude with which the Government acted has promoted the peace which we now enjoy. There is also the experience gained in so far carrying out the auxiliary scheme. The school may have been a dear one, but the that the appointment of the Committee to which we have referred has been brought about by circumstances arising out of the recent call for the services of the Auxiliary idea that the departure of Sir N. Barnaby from White hall is taken as a signal for subverting one of his mos cherished undertakings. His successor is too strong a man to seek distinction by upsetting all that was
special to the man who went before him, and we look for something that shall develope rather than cripple or destroy what has been so well begun. We have the less fear for the future of the Auxiliary Fleet seeing that First Lord of the Admiralty, the late Mr. Ward Hunt. The task assigned to the Committee is itself of such a nature as to imply that there is a desire to remedy defects in the existing scheme, and not to get rid of it by means of an adverse report. It would not be difficult to bring about a collapse, so that the Auxiliary Fleet should vanish from among the naval resources of the country. Cold neglect would be sufficient for this purpose, and unfortunately there has been a tendency in that direction, so far nately there has been a tendency in that direction, so far
as any encouragement from the Transport Department is as any encouragement from the Transport Department is
concerned. As the head of that department is on the Committee, we hope some improvement will come to pass Committee, we hope som
in respect to this matter.
To practical minds an essential defect of the present system for securing a powerful mercantile fleet as auxiliary to the Royal Navy consists in the absence of that golden tie-a subsidy. A bait has been held out to the shipowners, but it has simply served to tantalise their expecta-
tions. They were led to hope that if they provided watertight compartments, constructed according to the Admiralty regus was required, they would have the preference when ships were wanted for che transport service. There was every reason to expect this, for if the ships were to be thus rendered safer than the ordinary class, it seemed inevitable that they would be chosen for the conveyance of troops and stores, in preference to vessels having a liability
to founder with their precious freight But the very oo founder with their precious freight. But the very
bulkheads which were to recommend the ships to the favourable notice of the Director of Transports, have produced the opposite effect. Cutting up the vessels into
these sections has exhibited the disadvantage of bad stowage, and this has been a fatal barrier to their employment in the Government service in time of peace. Where cargo has to be carried, it may seem that there is some
ground for the objection urged against such shirs. But ground for the objection urged against such ships. But
where the conveyance of troops is concerned, it might have been thought that the difficulty of stowage would be got over, and there would be the powerful inducement of security for the men's lives. The result, however, is not so, and ships laden with troops go to sea with the unques-
tionable risk that, if by collision or otherwise they receive a serious rift, the vessel must go down. A catastrophe of this kind, if ever it were to happen, accompanied by an extensive loss of life, would rase a tremendous outcry,
should it be clearly seen that proper compartments would have kept the ship afloat, so that one need have perished. The risk has been run, and is still incurred. The pitcher goes often to the well, but perhaps it gets broken at last. to be placed in peril if it can possibly be avoided. But the point we have now in view is this-that except for the recent six months' hiring of sundry steamships forthcoming in aid of the shipowner who has put himself to the trouble and expense of making his ship suitable for the Committee lead to a change of plans, what shape can it assume? There are more than 400 vessels on the Admiralty list. To subsidise all these would be imprac-
ticable. At least, we should apprehend so. We must ticable. At least, we should apprehend so. We must needs be followed by a large amount of grumbling among needs be followed by a large amount of grumbing among
those who would be left out in the cold. If there is to be a subsidy, it is extremely likely that we shall see the arge and fast steamships retained on the list, and the remainder practically struck off, though perhaps nominally the Admiralty will endeavour to bring about the building the Admiralty will endeavour to bring about the building
of steamships not only having water-tight compartments of a special kind, and complying with the other conditions already laid down, but characterised by further recom-
mendations. If able to offer an immediate and mendations. If able to offer an immediate and direct
reward, the Admiralty might be able to bring about the construction of ships with twin-screws and with underwater steering gear. A limited number of swift and powerful ships would be preferable to a rowd of vessels too nuruerous to be subsidised, and likely in some cases to
pass into the hands of the enemy just as a crisis is approaching. The soundness of this view may be inferred from the fact that when the Government wished to secure merchant steamers to serve as armed cruisers, they simply selected a few ships of the highest class,
It would be, indeed, a deplorable circumstance if there should be an absolute reversal of the policy which pre-
ocean steamships as an arm of war when engaged with a
naval Power. The utility of the merchant fleet as auxiliary to the Royal Navy must consist in the protection afforded to our commerce. The mercantile fleet of this country ha utterly outgrown the old convoy system. It will be liable to attack from light-armed cruisers of high speed; and the mischief that may be done in this way is indicated by the ravages of the Alabama when preying on the commerce of the Northern States. A single ship, with a daring commerce of may be said to have paralysed the entire com form of attack, if ever the evil day should come, except by the employment of a numerous fleet, such as we may readily obtain from the merchant service. The Declaration of Paris does not lessen the necessity for thi precaution. The privileges of the neutral flag are limited by the circumstance that anything needful to the main tenance of a struggle with a hostile Power may be declared contraband of war. When there is war we must fight for what we want. We cannot rely upon the neutral flag to bring us the food supplies which will be required if ever we are in conflict with a nation possessing the regular navy that will stop the supplies. It will be swarm of predatory cruisers, half-piratical in their charac ter, which can only be met by a well formed Auxiliary Fleet. Privateering is happily at an end, and our commerce may now be made, in a certain sense, to protect itself. That is to say, it can furnish from its own resource a certain number of armed steamers which shall enable needful communication with other countries carry on the Navy is insufficient for the performance of the twofol task in in carrying on perfar and the ewofol protecting our comme. An extravarat addition the Navy might meet the case, but it would be much more economical to subsidise the merchant service, and to perfect our present arrangements for making that service helpful when war actually breaks out
One thing we must need say, that whatever changes are effected, the Admiralty must not let go the Auxiliar Fleet. It is an arm which needs to be strengthened and developed, aided as it must be by due arrangements for
manning it, arming it, and so forth, when the time for action arrives. Men, guns, and stores must be available not only in the home ports, but on foreign stations, so that at the sound of war there shall spring up, all over the seas, a flying force ready to meet the birds of prey which will assuredly seek to attack the unarmed vessels ou mercantile marine. It is true that the Declaration of Pari is substantially favourable to the interests of this country But there is awkward exception of war. We want a supplement to this Declaration, whic may not include bread stuffs and animal food. It has been well laid down that under the new system the dut of the Navy will be principally confined to keeping open the great ocean highways, and to preserving freedom of access to the coaling stations. "For the protection of
commerce," it is said, "we must rely on our mercantile commerce,"

## he value of incandescent lamps

The value of incandescent lamps may be expressed in terms of their photometric energy, their durability, and
their first cost. The first again must be considered in connection with the amons mans a given amount of light. It will be remed in prodacing Franklin Institute recently carried out a series of comparative trials of incandescent lamps. The report produced by the committee we published in our impression for September 18th. It is to be regrected that the investigation was carried out under conditions which have all competent value. That, at least, is the opinion of was and there wo by the Dynamicables at their last meeting, mi there was no dissentient voice raised. As the Dyna tion of constitute a private society we have no intenthe general public aiscussion not intended for the ears of , but the gentlemen who took part in it tricians, that no one will, we think, be disposed to dispute the soundness of any verdict they may unanimously pronounce on electrical matters, and we may be excused for citing their opinion above in support of our own.
In dealing with this question of the value of incandescent lamps it is above all things necessary to be quite clear and precise in the use of terms. There is now a very considerable number of incandescent lamps of various constructions in the market; and the inventors of each ystem maintain that it is better than any other. If asked ow better, the reply is that it gives more light and is being the same. Now, a great deal of vague talk circulates concerning the lighting power and the longevity of incandescent lamps; and the general public may rest this that they do not hear quite the worst. Putting no one really knows except by chance how much light an incandescent lamp gives with any accuracy. Thus, for example, if we buy a 20 -candle lamp, we shall find it labelled with the volts and ampères it requires to run it to the best advantage. Thus, we may find 80 volts 99 ampères. Such a lamp will require $\frac{80 \times 9}{735}=\frac{72}{735}$ horse - power, or about ten lamps to the horse-power. These would be rated at 25 candles each. We have taken here fancy
figures, because we do not wish our calculations to be figures, because we do not wish our calculations to be
identified with any special make of lamp. The purchaser pays under the impres will, when burned according to instructions, give him 25 candees each. But the average consumer, whether of gas light, lamp light, or electric light, has not the most remote idea what 25 candles mean; and he is quite incapable of saying whether he gets more or less than he bargained for. and the consumer is compelled to trust to the good faith
of the electrician to get what he bargained for. In the case of gas it is different. The gas is tested by examiners, and when the consumer is told that he is supplied with
16 -candle gas he knows that he has a Government 16-candle gas he knows that he has a Government
guarantee that he gets gas of a definite quality-that, in guarantee that he gets gas of a definite quality-that, in
a word, he has what the company sold to him. The testing of incandescent lamps is a far more difficult matte than the testing of gas, and the work has not yet been
brought to anything like perfection. To begin with, there is brought to anything like perfection. To begin with, there is no such thing as a standard sperm candle. This has long been known to gas examiners, who no longer use it, employ
ing instead Vernon Harcourt's standard flame, which is produced by a mixture of seven volumes of gaseous pen tane with twenty of air, burned from an aperture tin.
diameter, witha flame 2 in in, high, but the Franklin Institute diameter, with a flame 21 in. high, but the Franklin Institute
lamp tests were all made with "standard" candles. The standard candles are defined in the Metropolitan Gas Ac of 1860 , namely - sperm candles six to the pound, burning at the rate of 120 grains per hour. Few people are aware
how entirely untrustworthy the standard candle is. It how entirely untrustworthy the standard candle is. It can by careful snuffing be made to vary over 20 per cent. alike, save by chance. It is only necessary to put one at one side and another at the opposite side of a photometer outset that the tests to which so much importance has been attached were made with instruments-for the standard candle is simply a light-measuring instrument-notoriously norustworthy, but in this respect the American tio very reat difference in the amount of light given out by an incandescent lamp in various planes vertical and horizontal. Do the makers always measure
Leaving the question of amount of light developed by a given power on one side, let us turn to the question of We hear of lamps lasting tremendous numbers of hours; nnd we know that very curious tricks are played with tion of two or three hundred lamps from the life of half a dozen, and so on. By the consumer the duration of a lamp is usually determined by its age at the time when either the filament or the globe is broken. Curiously enough, the condition of the lamp at any given epoch is overlooked. Butincandescentlampsare, likehumanbeings, liabletodecrepitude in old age; and, just as the most decrepit men and aged incandescent lamp. The feeble old man of ninety takes care of himself; he runs no risks. The incandescent amp of two or three thousand hours follows this good 20 -candle incandescent lamp will, by degrees, lose the power of giving light until it falls down to 8 or even 7 candles ; and it takes nearly as much power in the latter stages of phasis, because in its old age less energy by a small amount phasis, because in its old age less energy by a small amount is expended in the lamp reduction is the main cause of its longevity. It may be the worst possible economy to use long-lived lamps.
Indeed so Indeed, so far as is known, there seems to be a particular
period in the lives of some incandescent lamps which, once reached, they ought to be superannuated; but no one yet
knows what is the precise period. knows what is the precise period.
In conclusion, we may point out as a good volt or ampère meter to be had in the open market. What we mean is that the volt meters and ampère meters sold are, as a rule, not in accord with standard instruments, and this is the legitimate outcome of the circumstance that there is no place where makers can send their instru-
ments to be officially tested. A mathematical instrument ments to be oflicially tested. A mathematical instrument
maker can send his thermometers or barometers to Kew and get them tested for a small charge. The watchmaker can do the same thing by his chronometers and watches. The pound weight and the yard measure can be verified by Government standards; but there is nothing of the
kind available in a general way to electricians, and it is kind available in a general way to electricians, and it is
quite time that there was. At present, as far as incanquite time that there was. At present, as far as incan-
descent lamps are concerned, at all events, there is no trustworthy evidence to be had as to what their powers really are. Electricians are in the position of the earlier
inhabitants of this island, who, lacking foot-rules, measured lengths in terms of grains of corn.

## ohester as a seaport

Simultanzousiy with the initial proceedings for making the Manchester Ship Canal, the city of Chester is taking steps to
recover something of her old position as a port. A few generarecover something of her old position as a port. A few genera-
tions ago, when Liverool had little more than existence to
boast of, ancient Cestria was a busy and important port on the wost coast, but in time wher shipying departed from her, and
went to help to make Liverpool what she now is. The Dee
wet went to help to make Civerpool what she cantile city rapidly
began to silt up, and Chester as mercer
declined. Now, however, after a long period of stagnation, the citizens have wakened up and resolved at least to try to regein their old position. Works have accordingly been undertaken to direction of Mr. Leader Williams, CE , the engineer of the Ship Canal, and Mr. C. E. Taylor, the engineer to the Corporation of Chaster. and it will probably be completed within a few months.
math
It is proposed to provide a naviabale channel with a depth of It is proposed to provide a navigable channel with a depth of
15 ft . or 17 ft . from the sea up to the city, and with this view a continuous training wall is being constructed on the Flintshire
shore of the Dee, while an existing training wall is to be raised opposite Connah's Quay. Extensive dredging is being carried
out, and by these means it is hoped that vessels of perhaps 1000 tons burthen will in future be enabled to sail up to Chester whe Mergey and sending their freights thence by railway. The
the channel of the river has already resumed its original course to
some extent, and some portion of land likely to be of value has some extent, and some portion of land likely to be of
been reclaimed by the influence of the training walls.

## shipping legislation.

THE recent attempt at legislation against what is believed to be the shipping interest has forced that interest into the number
of those who are taking steps to protect themselves by using prrigmentary influence, There hags been sent out from several
of the north-eastern ports a very remarkable series of questions
to be put by owners of shares in to be put by owners of shares in steamships to the candidates
in their localities. The latter are asked to state their views as to the "proposal to prevent investors in shipping from insuring and insured ;" the question of employers' liability; of the competition between foreign and British vessels ; of light dues ; of natteck Commissioners Court, and of several other simila be felt in this way in many parts where it had not been pected. One of the consequences of the new method owning -that of the wide dispersion of the ownership-is shipping interest to impress itself on the parliamentary can didates at many places other than the seaports. This influence is now being attempted to be wielded; and it would
seem to be a fair attempt, if we are to allow the desirability of such efforts to impress themselves on candidates by
distinct organisations. It is one of the consequences of what has been called the attack on shipping in the last session. The widest application-the opportunity of testing their friends and their foes ; and this they will do, and they will gain knowledge and exercise an influence which will be useful to them and their cause whenever the shipping laws are to be dealt with in the
future. The attack showed one of the weakneeses of the shipowners ; but it also showed one of the sources of strength, and
that strength is being utilised now in a way that could not have been anticipated.

## the liverpool water works.

The squabble in the Liverpool Town Council respecting the Vyrnwy Water Works and the two engineers entrusted with
that undertaking-Mr. Hawksley and Mr. Deacon-is still that undertaking-Mr. Hawksley and Mr. Deacon-is still
dragging on, and at a recent meeting of the Council another dragging on, and at a recent meeting of the Councir another
rather unseemly scene took place. It being apparently impos-
sible to sible to arrange matters as between Mr. Hawksley, Mr. Deacon,
and the Corporation, Mr. Bateman has been requested to investigate the present state of the works, and draw up an independent report thereon in association with Mr. Lyster, the Liverpool ergineer. At the same time Mr. Deacon was instructed to ceport on the stability of the embankment at Vyrnwy, and the
manner in which the works had been carried out-under hi own direction. At a recent meeting some members of the report on his own work, suggesting that, if that course was pur-
sued, Mr. Bateman would possibly be unfairly influenced when making his examination. Upon this there followed accusations and retorts, and a very unworthy passage of arms
occurred before the decision was arrived at to abide by what bcurred before the decision was arrived at a abide by what
had been done. This important work promises not only to be a long time in arriving at completion, but to spoil the temper and involve the reputation of more than one eminent engineer.
ship canals at home and abroad,
The iden of resorting to ship canals as an aid to commerce is spreading on the other side of the Atlantic as well as in this
country. The latest instance of this is a gigantic ship canal to be constructed between the States of Delaware and M Mana from the mouth of the river Sassafrazin, Chesapeake Bay, to
point in Delaware Bay. The scheme is not quite new over here, for it has been on the way for several years, but the
secessary capital of a million and a half has now been subscribed, contract for the work has been made, and operations have ogun. This waterway will have the advantage of possessing no other benefits, reduce the distance between New York and
Baltimore by more than 200 miles, On a smaller seale similar Baltimore by more than 200 miles, $\begin{aligned} & \text { On a smaller scale similar } \\ & \text { projects are being worked out here. } \\ & \text { It is seriously proposed to }\end{aligned}$ enlarge the Birmingham and Worcester Canal, that small vessels and steam barges may travel direct between the sea at Cardiff
and Birmingham ; and a scheme is being examined and and Birmingham; and a scheme is being examined and
considered for connecting Sheffield with the sea at Goole by means of a canal.
fifty miles of loaded coal wagons
OUR miners who are still talking-through their leaders-of striking for a 15 per cent. advance in wages, might be invited to Sheffield Company, which does a great business with the metro 3400 loaded wigons were standing at the London depot of the Midland Railway Company, and that all the other rail way companies had similar quantities. It was added that there was twice last week-one shilling each time. Our Sheffield correspondent, who has put himself to some trouble to ascertain the facts, states that the various railway companies loading
London have no fewer than 15,000 wagons standing full coal. Each wagon measures 16 ftt . If placed in one continuous
line, the loaded wagons would extend a distance of between Torty and fifty miles. Giving only six tons to a wagon, the
quantity of coal blocked up on the rails is equal to 90,000 tons, and it is being constantly increased

## LITERATURE.

Minutes of Proceedings of the Institution of Oivil Enginecrs, with other Selected and Abstracted Papers. Vols, 1xxix. to
Ixxxiii. Session 1884s.5 Edited by JAMEs ForResT,
Assoc. Inst. C.E., Secretary. London: The Institution. Assoc.
$1884-5$.
These four volumes comprise the tangible work of the representative institution of English engineers during the working session 1884-5, and they contain a vast quantity
of information communicated by members, supplemented of information communicated by members, supplemented
by abstracts giving the essential parts of papers in foreign Transactions and periodicals published all over the world, There is no subject which has been treated in such a way as to bring out new information or to throw new light upon it by foreign authors that is not dealt with in these pages; and there is no question upon which an engineer does not feel bound to turn to these volumes for reference Institution he commences to search for anything. The Institution still attracts the best papers written, althouga only a few of those received are read and discussed. The
four volumes contain over fifteen hundred pages, fourteen four volumes contain over fifteen hundred pages, fourteen
papers which have been read and discussed, thirty-nine papers which have not been read, and 278 abstracts of foreign papers and articles. As this represents the published work of the Institution, the whole of which passes through the hands of the iron secretary, Mr. Forrest, and
shows nothing, except the annual report, of the work of administration, some idea may be gathered of the exten-
sive character of the business conducted by the secretary, and carried through by him and his staff.
The subjects treated in papers read include "Electric Lighting in Ships;" "Working Tramways by Steam;" "Comparison of British and Metric Measure ;" "The Construction of Steam Boilers;" "The Metropolitan and
Metropolitan District Railways and the Inner Circle ComMetropolitan District Railways and the Inner Circle ComElectrical R Flowing into Tideless Seas;" "Mechanical Integrators;" "Signalling of the North-Western Railway," and the paper or inciar. in some the of facts it contains in the sion; and although discussions often prove very wordy means of conveying a small amount of information, they afford the means of obtaining the most recent thought and fact on a subject, and of correcting false impressions. The discussions as printed in these volumes are very much condensed, but they do not, apparently, lose any-
thing by this. While, however, the value of discus sion must be admitted, and those of the Institution are certainly more adequate than those of any other maintaining the high character of papers to be read for the two purposes of really giving information and of eliciting it must not be lost sight of. Most of the papers which are led to the foregoing remarks by the incompleteness in this respect of two or three; they are, however, the excharacter of the papers is generally high. Vol. Ixxxi, is notable as containing several excellent papers, including those on the "Metropolitan District and Inner Circle Lines," by Mr. B. Baker, and by Mr. J. W. Barry, the the working of Locomotive Engines, with the resy Mr W. Stroudley, on "The Electrical Regulation of the Speed of Steam Engines," by Mr. P. W. Willans. Vol. lxxxii. also contains good papers on "Rivers Flowing into Tideless Seas," as illustrated by the River Tiber, by
Mr. W. Shelford ; on "Mechanical Integrators," by Professor Hele Shaw ; and "On the Signalling of the "Electric Lighting of Steam Railway." The paper on in the discussion it raised. It was the first paper it subject, and contained but little of that detailed information which might have been expected from anyone whe took the subject in hand, considering how very extensively the electric lighting of ships had, at the date of the paper, been carried out under various systems. The paper on length the Board of Trade regulations and the financial leng is the Kitson tramway engine, which is only partially described, the author appearing to be very much afraid of giving dimensions of either boiler or engine, or of the surface air condenser, or sectional irostrations, The paper, namely, to show that in all cases steam may be more profitably employed by tramway companies than horses, and of tramways which will no doubt be carried out as time overcomes sentimental and temporary objections by the cuucation of experience. This paper was by the Hon. R. C. Parsons; and one was read at the same time and dis-
cussed by Mr. W. Shellshear on "The Sydney Steam Tramways." It gave the results of experience with Baldwin, Kitson, and Merryweather engines, spoke most highly of the American engines, and amongst other things mentioned that the trains on these street rail-
ways often ran considerably over ten miles per hour, but stoppages were only made at stated places as on railways, with which they had much in common.
Amongst the selected papers, or papers not read but piren, in this wame, are some of higa value. The first Paper by the Machine, as exemplified in the Manufacture of High-class Writings and Printings." Another is by
Mr. J. Kraft, on "Compressed Air and Machinery for Utilising it;" and an impressent one is by Mr. J. G. Mair, on "The Results of some Independent Engine Tests." This is supplementary to a paper much referred to by those interested $n$ steam engine thermo-dynamics, and pub ing uncertainties paper deals wiun the somewhat perplexand its effect. The author is disposed to differ from Zeuner in some of the conclusions at which he has arrived, although Dr. Zeuners formulæ for the exchange of heat between
the cylinder walls and the working steam are similar to those he himself gave in his earlier paper. In answering one objection made by Zeuner to the results of certain experimentat tests, namely, "that owing to the violent
eddying motion of the steam during admission, and at the point of cut-off, the indicator diagram does not the point of cut-off, the indicator diagram does not give
the pressures with sufficient accuracy during these periods." Mr. Mair says:-"It is evident that if the steam ports of an engine be quickly closed, the whole flowing in with great velocity will be suddenly stopped, and therefore owing to the eddying motions then set up a cerssure will not be uniform throughour the mass, and a certain period of time must elapse before the kinetic in the cylinder is correctly shown by an indicator ; and if the engine is running very fast it may even be presumed that the piston reaches the end of its stroke before a state of thermal equilibrium is arrived at in the cylinder. But the errors made by accepting an indicator diagram as not steam-the temperature due to the pressure cannot be of sufficient magnitude to in any way nullify the general
principles of engine testing, and the measurement of principles of engine testing, and the measurement of
the heat exchanges. With steam much wiredrawnthat is, where the pressure in the cylinder is much
lower than the pressure in the boiler or steam pipe-
allowance should, perhaps, be made, but any neglect in allowance should, perhaps, be made, but any neglect in
taking this correction into consideration cannot seriously influence the action of the sides of cylinders." In this
most engineers will agree with Mr. Mair, and if eddying most engineers will agree with Mr . Mair, and if eddying had any material effect on the registration of pressure by an indicator it would certainly be shown to some extent
on the admission line, and the true line obtained from good engines would be impossible. The author gives the results of experiments with single-cylinder engines, with a Bull engine, and with Woolf engines.
Vol. Ixxx, commences with Sir , crenences with sir Frederick Bramwell's interesting address, followed by the paper on metric mea-
sures, which revives an old discussion on questions which
will will probably long remain a matter of opinion. The scientific derivation of the metric system is put forward in its behalf, but inasmuch as this derivation is as arbitrary and as little absolute as any other system, the claims on
this score are very small indeed. The metre is undoubtedly this score are very small indeed. The metre is undoubtediy an awkward length for ordinary measuring operations,
and the small divisions are equally inconvenient. The chief gain by the system is the decimal facility, more especialy as concerns cubic measures of water. The foot
and inch, divided into tenths, would be equally advantageous for measures of length, and the cubic measures, or measures of volume, are very little less simple in applica-
tion under our own than under the metric system. The discussion on the paper showed that the general opinion held by engineers is strongly in favour of our own system, and none of the speakers favoured the rejection of our
well-tried more scientific than our own. We have undoubtedly a large number of systems of weights and measures which are not wanted-such as those used for precious metals,
for different liquids, and different materials, Our English foot is the same as that of many countries. it is infinitely more convenient than the metre, and our necessities are only that the one system of weights should be used. There is not for any reason-except that countries which followed-the slightest necessity for our adopting the French metric system, for even if we wanted to make our measures of volume directly referable to volume and weight of water, we need only make a small alteration in our very handy foot length. A reduction in the length of the foot by slightly over one-tenth of an
inch would reduce the cubic foot so that a cubic foot of water would weigh 60 lb . and contain 6 gallons; but inasmuch as this would only be true for fresh water at 60 deg., it would not be true for sea water or for water at any other temperature, or for any other liquid. The advantage just as much as we like now. For a few purposes the English foot is now divided into tenths, and for very many the inch is divided into tenths. There is no reason the wishes of a comparatively small number of enthusiasts who would reduce our measures to the awkward style of the metric system, the failure of which is shown by the way in which the "demi-kilo" is used instead of the
50 centigramme, and even the "quart d'un demi-kilo" and many others, all showing that the most natural system, the binary, will enforce itself. It is a comment in itself that one, the last, of the illustrations by Sir F. Bramwell, who favours the English measures of easy conversions, that who favours the English measures of easy conversions, that
the misplacement of a decimal point makes the equivalent of 16 mm . appear ten times too high, namely, 6.5 in . instead
$\qquad$ The paper on "Steam Boilers" led to a useful discussion, but it was most remarkably devoid of novelty or complete-
ness. A paper on "The Maximum Flood Discharge from ness. A paper on "The Maximum Flood Discharge from
Catchment Areas, especially those of India," is a paper of interest to engineers engaged in water supply, irrigation,
and inland navigation. The author, Mr. James Craig and inland navigation. The author, Mr. James Craig,
objects to the use of Dickens' formula for discharge, and after investigation gives a new and much more comprehensive expression of his own, one objection to Dickens' being
that the area might be a strip infinitely long but almost that the area might be a strip infinitely long but almost infinitely narrow. Professor Unwin gives the results
series of experiments on the friction of discs in water.
Mr. Chas. James gives a paper on "Removing Rocks
Under Water at Port Colborne" and Mr. Under Water at Port Colborne," and Mr. J. A. Longridge gives a long paper on "Guns as Thermo-dynamic Machines," are three students' papers in the volume, the first being by Mr. F. Geere Howard, on "Secondary Batteries," a paper which might now be supplemented by one giving
new results of experiments. It is announced that Mr. Howard will read a paper on the use of accumulators in tramway cars. A students' paper on "Trigonometrical
Surveying," by Mr. Dalrymple-Hay, is followed by one on "Gauging Flowing Water," by Ihr. H. T. Turner.
The papers on the "London Underground Railways" are not ony descriptive of the works of these costly lines, but
they show the changes that have taken place in the practice as to construction and proportion of retaining walls since the irst of the lines was built, a notable feature being
the use of invert concrete struts from the foot of one wall to the other, thus entirely preventing their movement in this direction. In constructing the last part of this
railway the engineers and the contractors were undoubtedly much helped by the experience gained in the previously built lines, but the last part involved some of the heaviest and most difficult work of its kind ever carried out.
The paper on "Locomotives on the Brighton Railway" is remarkably complete, and will long form a valuable contribution to the literature of locomotive engine design,
construction, and performance. Our readers have been construction, and performance. Our readers have been
fully informed by engravings and description as to the design of Mr. Stroudley's engines, and to a considerable extent of their successful performance. The paper, however, supplies valuable information relating to the working
of the locomotives as steam engines and steam boilers, and upon the cost of hauling different trains at various speeds on a railway with a good track, but with many and heavy
gradients. For this information we must refer readers to the paper, but as to the performance of the boilers it must
be remarked that the reader is inclined to doubt the accuracy of records which give from 11 lb . to 13.1 lb . of water
per pound of coal as the evaporative power of the boilers Taking calorimetric values and the heat of combustion of materials as a guide, $13 \cdot 1 \mathrm{lb}$. is impossible. Are
we to doubt the calorimetric determinations, or Mr , Stroudley's figures? Is it possible that combustion at very high temperatures, as in the locomotive fire-box, obtains a higher efficiency from the combustible than has
been obtained in the laboratory? This is a view which has received some support in other directions, but it cannot be at present accepted as other than a possibility Mr. Stroudley makes a considerable gain in his coal consumption by heating his feed-water, by means of exhaust As much as 3 lb , of coal per mile is thus earned; and othe locomotive superintendents are turning their attention again to this matter-which is worth it, and would save much more that has yet been saved by compounding. On which the feed will be raised to at least 250 deg., is bein tested. The discussion on Mr. Stroudley's paper occupied from locomotive engineers from all parts of the kingdom. The paper on "Electrical Regulation of the Speed Steam Engines," by Mr. P. W. Willans, is a description of the requirements in such a regulator, and of the regulator speed of the engine so that it is in direct proportion to the work the dynamo it is driving is called upon to perform. Compound winding of dynamos was at one time the discussine much governors unnecessary, and durng laboratory or lecture-room experiments and calculations could always exceed, or indeed often approach, in value the information obtained by the practical electrical engithe walls of a technical institute are the founteins knowledge, but this idea gets very rude shakes sometimes, when they come before the men who really do make the new a dnowlestion of electrisal sovepors but for it valuable information on the dimensions, winding, and power of The first paper in vol. lxxxii. is by Mr. Shelford, upon
solenoids. "Rivers Flowing into Tideless Seas," as illustrated by the river Tiber, a paper which deals with differences between the regime of rivers running into tidal seas and of those which
run into seas such as the Mediterranean, the first having no. deltas, and the second never being without deltas which affect their flow in several ways. The principle upon which English engineers act in improving our rivers in Mr. Shelford's opinion, applicable to rivers running into tideless seas, and he points out the difficulties that obtain floods. General rectification of the channels of these
fit rivers seems to be the only conclusion to be drawn from the paper, but rectification which must be guided by
special local study, and not by any general principle. The paper is suggestive of points for consideration with reference to the parts of our main rivers above tidal effect, "Mechanical Integrators" is the subject of the paper ollowing this. It is by Professor Hele Shaw, and is probahy the most complete paper on its subject, both
descriptive and analytic, that has yet appeared in Euglish. His own investigations on this subject have been extensive afford much new information, and many suggestions.
The paper on "Railway Signals," by Mr. A. M. Thomp-
on, was discussed at great length, but we can only refer to it, and also to the last paper read last session, which was by Professor Osborne Reynolds, and by Mr. A. W. Bright-
more, on "The Indicator, and Errors in Indicator Diagrams." These papers are only given in abstract, as they were not discussed, but will appear in full in the next volume, together with the discussion, which began on
Tuesday. The subject is one of great interest, but the tendency of the papers is to exaggerate the errors as taken with existing instruments. Whatever Professor Reynolds does, he does well as far as his own work is concerned, during th paper he has so that his paper has little value during the past few years, that his paper
except for the discussion which it will elicit.
Amongst the papers not read but printed in this volume Sea Water," and deals specially with the rela of iron and steel, the results of numerous and continued experiments, being a confirmation of the extensive experioriginality and elaborate completeness which marked his experimental investigations.
We cannot and need not follow the contents of these volumes any further. We have said sufficient to show the comprehensive character of the "Proceedings" of the
Institution and of the work carried out under Mr. Forrest. These four volumes contain stores of information of which we have not been able to say one word, and it is all pre sented ink a wath as to character, completeness, finish, and facility of reference. A separate volume containing the set of lectures delivered last session on hydraulics, has also reached us, and contains the opinions of the acknowledged authorities on the various branches of the subject.

The Panama Canal: Its History, its Political Aspects, and
Financial Difficulties. By J. C. RodrIguss, LL.B. London:
Sampson Low and Co. 1885. A cittles over a century and a-half had gone by between the time that France was wildly subscribing in the eighteenth century poople to the similar South Sea bubble, and the time that France almost as enthusiastically subscribed to the Panama Canal scheme of their countryman, any yery exact likeness between the two things in which
the French were called upon to invest, but if Mr. Rodrigues' book is to be credited throughout, the financial
difficulties of the Panama Canal Company are likely to cause a very disagreeable stir before long in Paris.
The author is perhaps strongly imbued with American ideas on this subject, but this need not affect the statistics he quotes of the finances of the Panama Company, whatever it may do in affecting his opinions as to the amount of work to be done in making the canal. He tells us that in December, 1879, he accepted a special commission from the editor of the New York World to go to Panama, there to scheme in its different bearings. Since that time he has followed the subject very closely, and his impressions of 1880 have grown into conviction.
It is unnecessary to follow the author through his pages, but we may say that they lead him to the conclusion that
M. de Lesseps has " allowed himself to be used as a tool in the Lesseps has allowed himself to be used as a too bought his name, in order that they might enrich themselves out of the savings of the artless and enthusiastic mass of his own countrymen." He maintains that M. it was found that the people did not support the company, then he went to Panama with an "International Technical Commission," organised by himself, and although this commission found that the eighteen days' survey which previously had provided all the information for building up estimates, was incorrect, and that the estimated amount of forty-six million cubic metres, M. de Lesseps reduced the estimated cost before he got back to Paris by about one-fourth, bringing it down to $£ 33,720,000$ instead of also furtho red ixed by the millions sterling finally tringing the estimate down to $£ 26,320,000$. On his returi he assured the public that the Americans were favourable to his scheme, compared the work to that of the Suez Canal, appealed again for money, and received as result of firs
call nearly six million sterling, of which $£ 1,800,000$ went straight to the pockets of promoters and concessionaires. Mr. Rodrigues tells his readers a great deal about enormous sums spent for locomotives and machinery never used,
because unsuitable; tells more about difficulties not expected ; that the percentage for contingencies was reached 128 per cent, and gives what he holds to be ty ample evidence that the present company must become bankrupt.
In whe author spares none of those who have taken part finances of this scheme, and Americans come in for a pretty piece of hard hitting. He says, "As to the American syndicate, it is one of the most shameful corruption funds ever recorded in the history of financial enterprises. Imagine York might represent the company in America and cooperate with it when requested," and "so that here
in Europe M. de Lesseps might say that America wa right.

Those in any way interested in the history or finances of the Panama Company should read this book.

THE DREDGER "MELBOURNE."
Ox page 376 we give illustrations of the compound engines of machinery, which we shall give in another impression, will be accompanied by a description of the whole.

Baron Sapoive.-On the ocoasion of the Antwerp Exhibition,
M. E. Sadoine, general manager of the Socitte John Cockerill,
Seraing, was made a Baron of the kingdom of Belgium. Reprrbisg to the HuDSoN's Bax Trad R Route, we recently
mentioned that a party of engineers set put mentioned that a party of engineers set out from Wennipeg on
October 12th in ordor to survey the route of the projeoted
line of railway between that place and Hudson's Bay, The object of this line, the first section of which extends about 300 miles, is
no no less than to open up a new trade route between Great Britain
and the great North-West of Canada. It is satisfactory to be able to state, amidst all the American competition on the other
side of the Atlantic, that this line has been secured by English engineers, and is now being surveyed under the direction of Mr.

Death of Dr. W. B. Cabpenter.-Dr. W. B. Carpente C.B., F.R.S., died at three o'clock on Tuesday morning, at his
residence, 56 , Regent's-park-road, from the effects of burns caused by the accidental upsetting of a lamp whilst he was taking a vapour bath on Monday. The deceased, who was in his 73 rd year, was a
native of Bristol, where he was born in 1813, He was the son of
Dr. Lant Carpenter, of Bristol, and was educated in Bristol, Dr. Lant Carpenter, of Bristol, and was educated in Bristol, at
University College, London, and at the University of Edinburgh,
where he graduated M.D. in 1839. He commenced practice at where he graduated M.D, in 1839. He commenced practice at
Bristol, but resolving to devote himself exclusively to scientific
and and literary pursuits, he removed to London in 1843. Soon after-
wards he was appointed Examiner in Physiology and Comprative Anatomy in the University of London, and Professor of Medical
Jurisprudence in University College, which offices he held until 1856 , when he was appointed to the registrarship of the University
of London. He was the author of "Principles of General and of London. He was the author of "Principles of General and
Comparative Physiology," "Principles of Human Physiology,"
"A Manual of Physiology," "Principles of Mental Physiology," "The Microscope and its Revelations," an "Introduction to the
Study of the Foraminifera," some able papers in the "Cyclopredia of Anatomy and Physiology," in the reports of the British Asso-
ciation, in the Quarterly (Geological ciation, in the Quarterly Geological Journal, and in the "Philoso-
phical Transations." In 1861 the Royal Medal was awarded to
Dr. Carpenter by the Council Dr. Carpenter by the Council of the Royal Society for his contri-
butions to physiological science. In 1868 and two following years he took a principal part in promoting the expeditions fitted out for
deep sea exploration, which have yielded results of great importance to physical and biological science, and it was at his and Sir despatched. His reports of those expeditions are contained in the
"Proceedings" of the Royal Society, and in the "Jounal" of the Proceedings of the Royal Society, and in the "ournal of the
Royal Geographical Society. The honorary degree of LL.D. was
conferred upon the conferred upon the deceased by the University of Edinburgh in
August, 1871 ; in 1872 he presided over the British Association at
its metin its meeting at Brighton; and in 1873 he was elected a correspond-
ing member of the Institute of France. His last public appearance
was at the recent meeting of the British Association, when he moved a
expedition,

COUNCIL HOUSE VENTILATOR, BRISTOL.


THE VENTILATION AND LIGHTING OF THE BEISTOL COUNCIL HALL By Professor Hele Shaw.
The author, who has from time to time had the honour of advising the city authorities of Bristol, was recently consulted by them with reference to the ventilation of the large room in the Council House, in which the general meetings are held. This is a handsome room 38 ft . by 22 ft . and 21 ft . high, lighted entirely from above through a circular opening 17 ft . in diameter, surmounted by a top, or
lantern light in the form of a twelve-sided structure 12 ft . lantern light in the form of a twelve-sided structure 12 ft .
high, having a flat lead roof, the sides being fitted with plate glass. The artificial lighting was obtained from a
large and massive brass chandelier hanging from the centre large and massive brass chandelier hanging from the centre of the top light, and carrying twelve argand gas lamps. No special provision has been hitherto made for ventilation, the requirements of which were supposed to be met by the windows in the top light, by two fireplace openings, and the one entrance-door, the latter, however, opening only to a lobby connected with passages in the building. Thus it is not surprising that at meetings of the Town Council, lasting several hours, with sometimes as many as
sixty people present, the atmosphere became almost sixty people present, ne atmorphere became to most
unbearably close. The only remedy for this was to open the windows in the top light formed by the large sides of glass, the frames of which are simply hinged at the top. proved a more serious evil than even the vitiated air.
The author obtained fuil permission to carry out all necessary alterations, and at first only proposed to place three inlet ventilators of suitable design, one at one end of the hall and two on the side walls, at a height of 12 ft . from the ground, and to cause these to work in conjunction with an extracting ventilator placed above the central opening. The wall ventilators were made and fixed, and even by themselves effected a marked change in the air of the hall, when, at the suggestion of the Mayor, Mr. Wathen, it was determined to remove the brass chandelier, and
light the hall by a ventilating sunlight in its place. The light the hall by a ventilating sunlight in its place. The
wisdom of the step is obvious when it is considered wisdom of the step is obvious when it is considered
that, besides being a great obstructionist in the matter of daylight, the chandelier was a source of deleterious infludaylight, the chandelier was a source of deterious infa-
ences, not only on the assembly below, but on the very valuable pictures for which the City Hall is noted, one, for instance, being a Vandyck of Charles I. On investigation it was found that the roof of the top light was constructed
in the old cart-wheel style, with a central block of cast iron 12 in . diameter and 6in. thick, with radiating arms 3 in . wide, as shown in Fig. 1. This rendered it impossible to employ any ordinary pattern of sunlight, and a special design was made by the author's brother, Mr. Edward Shaw, in conjunction with Mr. A. M. Hunt, to meet all the requirements of the case, which Messrs. Strode, of London, the patentees of the sunlight, proceeded to construct. This sunlight-which is shown in Fig. 3-has forty-two burners, and extracts the vitiated air in three ways: (1) By heating the outer cone inside the perforated pendant, thus warming the air on its passage towards the ventilating shaft; (2) by drawing the air with it as it
issues into the chamber above the level of the roof ; (3) by the draught in the flue above

In order to fix the sun-burner a hole was cut in the centre of the ceiling 3 ft . in diameter, and the space round the hole between the plaster and the roof protected by sheet iron backed with plaster. This space, which was partly blocked by the cast iron centre and radiating arms, had to be divided into outer and inner concentric spaces, as shown in Fig. 1, the former for the escaping air from the room, the latter for the heated products of combustion from the burners. Every precaution has been adopted to prevent the flow of 'gases being checked, thus wedgeshaped casings have been fitted to the radiating arms and a cone to the cast iron centre. Arrangement has been made to enable the attendant to regulate the throttle ventilating valve, shown in dotted lines, Fig. 3, which acts to prevent a down flow of cold air when the burners are not lit, and this arrangement is as follows :-Outside the door of the hall is fixed a box in such a position that a person standing by it can see the sunburner. A handle inside the box can be pulled down and secured at any one of a series of holes pulled down and secured at any one of a series of holes This hed vert is connected by means of a wire rope and This handet is connected by means of a wire rope and chain to he gap le whe the whited, so off the gas. On its way from the handle to the gas tap off the gas. On its way from the handle to the gas tap
lever the chain passes over a series of pulleys, one of lever the chain passes over a series of pulleys, one of
which is fixed to the balanced arm carrying the large which is fixed to the balanced arm When the handle is ventilating valve in the 18 in . pipe. When the handue is
at the top of the box this valve is shut, but on being pulled at the top of the box this valve is shut, but on being puled
down the small balance weight is overcome and the down the small balance weight is overcome by the top
throttle valve opened to an extent indicated by throttle valve opened to an extent indicated by the top
series of numbers in the box. When the ventilator is fully opened the further pulling of the handle turns the gas on by an amount shown by a second series of numbers The arrangement is such that the gas cannot possibly be turned on until the ventilator is fully open, thus entirely preventing the gas from collecting in the flue or top light, and so causing an explosion, and should the wire or chain give way the weights cause both the ventilator and gas tap to immediately close. A thorough test has been made since the alterations, and both lighting and ventilation have given entire satisfaction.
University College, Liverpool.

## TENDERS.

For the erection of filter presses, and other machinery in conneotion therewith, for the Brentford Local Board. Mr. F. W. Lacey Messrs. Manlove, $\qquad$ $\begin{array}{ccc}\boldsymbol{L} & \text { s. } \\ 1320 & \text { d. } \\ 1200 & 0 & 0 \\ 12 & 0\end{array}$
For making up Albany-road and Bangor-road for the Brentford Local Board. Mr. F. W. Lacey, A.M.I.C.E.E., surveyor

| Nowell and Rolson, Kensington <br> S. Atkins, Twickenham $\ddot{H}$. R. Trehearne and Co., Battersea <br> J. Mowlem and Co, Wostminster <br> T. Brunsden and Co., Brentford <br> H. Splcer, Brentford-accepted <br> Nowell and Rolson, Twickenham <br> H. R. Trehearne and Co., Batters <br> T. Brunsden and Co., Brentford |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## THE GRAMME ARC LAMP

From the moment when Gramme had invented his dynamo he turned his attention to the production of a good arc lamp,
and he has worked in this direction for several years. Hi and he has worked in this direction for several years. H1s
labours have resulted at last in the production of the lamp which we illustrate, and which is in successful operation in the Antwerp Exhibition. The accompanying section will make its construction quite clear.
The whole of the "regulator" is contained in a case, through the bottom of which the upper carbon holder passes
The mechanism consists of The mechanism consists of
two parts, independent of he lom the other strikes the lamp, the other strike
thearc. Apowerful electro magnet A A commands this latter portion of the mechanism. The two side rods carry the lower carbon. They are connected to
 magnet is fixed to the frame or case of the lamp by a kind of bridge, on The springs RR antinuall The springs RRcontinualy carbon up. When a current passes through the magnet, the armature C is drawn down, the resistance of the springs overcome, and the
lower carbon is lowered lower carbon is
and the arc struck.
Let us turn now to the feed mechanism, in which we see that, as in most are lamps with gearing, a train of wheels is put in motion by the weight of the upper a rack, taking into one of the wheels of the train. five-armed fly, Themotion of this is checked by reheotome detent S , controlled by an electro-
magnet
B. This is the most important part of the lamp, as its action is such that the light does not jump, the feed being very steady. The mode of action
will be readily understood $\underset{I}{ }$ is the readily understoon I is the armature of the electro- magnet
detent $S$ is secured to the lever $L$, in which is a regulating screw M, resting on the bent spring N. The lever moves on a centre V carried on the bridge piece R. The screw M makes
contact with N; the coile contact with N; the coiled spring $U$ opposes
of the magnet $B$.
The current enters the lamp at X , which is not insulated, so that the whole regulator is in circuit. The
 shunt magnet B is, how ever, only in circuit while $M$ rests on $N$. So long as the principal current possesses sufficient intensity, the detent S prevents the revolution of the fly with which it engages. If the
main current becomes weakened by the lengthening arc, more current passes through the shunt magnet B , which then draws down the armature I, and raising S leaves the fly free to revolve, but the moment $S$ is raised, the current is cut off from B, and S is suffered to fall again. The operation is immediately repeated if the carbon has not descended sufficiently. If the parts I L were made light, we should have nothing but a rapid make-and-break action, which would not permit a tooth to escape at all, or at least without certainty ; but being heavy, the action is deliberate, and the fly being fitted with a fan, a very pretty step-by-step motion is ensured. We watched the action of one of these lamps for some timein the Antwerp Exhibition, and found that it generally fed one tooth of the fly at a time, somefeed was nearly continuous, taking place two or three times a feed was nearly continuous, taking place two or three times a minute. The lamp worked very well indeed. It is to be carbons very good; but we have no reason to doubt that the lamp would perform well even under more unfavourable conditions. M. Gramme says of his lamp:-"In all the regulators yet constructed, the advance of the upper carbon is determined by an electro-magnet and a spring pulling against each other. When the influence of the electro-magnet makes itself felt sufficiently to overcome the spring-that is to say, when the armature is attracted-the distance between the armature and the poles being reduced the equilibrium between the spring and the magnet is interrupted for a time, and the carbons run down further than is necessary." This is a defect which has often been commented on. M. Gramme has got over the difficulty very satisfactorily, but there are other expedients for gaining the same end. The most prominent defect we can find This is not in that sparking will take place between M and N . and a train of minor evils, bht sparking leads to bad contacts, have here a very simple and excellent lomp the performance of which leaves little to be desired. It external characteristics are, however, not all that could be desired, and it will be scen that no cut out is provided.

Shipbuilding in Italy.-An iron steamer of 300 tons burden will shortly be launched at Genoa, from the shipbuilding yard of Messrs, E. Oravero, marine engineers at La Foce. She has bren buit for a Genoese shipowner, Mr. A. Nain, who, since 1878, has established a regular packet service between Genoa and Rome.
This vessel will be the largest that has hitherto ascended the Tiber as far as as far as Ripa Grande. A contract has been given by the Italian
Government to the same firm for building four sea-going torpedo Government to the same firm for building four sea-going torpedo
boats. They are to be 40 metres-13.1ft.- in length, and are to be deliver
\& 40,000 .
he wealth the canal works will bring them. The land has
dy gone up in value some hundreds per cent., and, greater ease being anticipated, those who now own the acres are
ing a tight hold upon them. It is expected that through agency of this canal and its lateral branches the land
be converted from wheat fields into orchards and vineyards, se converted from wheat ields into orchards and vineyards,
soil and climate beeng suitable for that purpose, and the
sent proposal is to split up the country as far as possible into
mesteads of moderate dimensions.

HYDRAULIC BOILER TESTS.
THE substance of the report of the committee of the United
tites Master Mechanics' Association appointed to report on this States Master Mechanics' Association appointed to roport on thi
subiect is given herewith. fater reprinting the circular and ex
plaining that realiving the fact that it is the general practice t plaining that realising the fact that it is the general practice to
oxabine other tests with hydraulic they had venturd so far to
exceed their instructions as to solicit information on other tests in connection therewith, and after putting in int he oomplaint that only
tisiteen anserro had been reeived from 240 circulars sent to as
many members, the committee say :many members, the committee say
Of the thirteen replying to

 light under an equal pressure of steam. Of the ten members
rcporting who favour hydraulict etests all give decied prefence to
hot over cold water as hot over cold water as giving proper expansion to the parts, and
farour the introduction of hot water in preference to fring the
boiler filled with cold water, as the want of circulation by this boiler filled with cold water, as the want of circoulation by this
plan is likely to produce unusual expansion; and while some favour
frequent tests and others think them only necessary after general frequent tests and others think them only necessary after general
repairs to boilers, they all recommend careful inspection to detect
pititing and grooving, and hammer tests to detect defective stays and braces, The excess of tests over to working detefective stays
Tressure recoms
mended by different members varies from 25 lb. to 401 b , and

 which might escape the eye, and as often as there is reason to think that parts of the boiler may have heoome weak from corrosion or
other casees t think a pressure not exceeding one-fifth of the
tonsile strength of the boiler can do no harm to the seams." tonsile strength of the boiler can do no harm to the seams."
Mr. Johan, of the Wabash, St. Louis, and Pacifo aiil way, says
ho is deidedy opposed to the excessive cold hydraulic test, as he he
 connecting to a system of steam pipes running to the pits.
Mr. Barnett, of the Grand Trunk, favours careful meass of the boiler both under pressure and after pressure is is remomedents to
dotermine if any alteration of shape oocurs or permanent set after Tressure is removed.
Your committee
Your committee. after a somewhat extended experience in testing
both new and ol boilers, added to what information they had
sthered from other sources, would respectfully recommend that
all boilers intended to carry ordinary prest

 Troduced in any of the parts that would ind icange of shaneses is in
coeign or material; and an examination after pressure is removed
 pressurie of 1 that a Ib wew woithout moverement will not stand a hot wats parts or overstraining
not absolutely safe to stand the strain of service through its ardinary life.
For all For all subsequent tests, preceded by a careful inspection, as
pecoinlly of stay boltt by hammer testas, we would recommend a
lydraulio pressure by hot water of not less than 25 lbe above working pressure. We consider a prepssure tess than only perfect wone for
bobiler, inamuch as it reaches every point and exposes every
lefect possible to reac defeot possible to reach at reast. Defects that through inposes every
or position, might escoape other methods, will not escone this. We

 sion, we approanh the question of the frequency of now, in tests with some
trepidiation, but inasmuch as the efficiency of any method depends
 a periodical inspeetion and test every twelve months for the first
two years of the life of a boiler, and thereafter every six months of
all boilers in servico. The oomminttee, which consisted of W. N. Sprague, W. L.
Hoffecker, and D. O. Shaver, also sumbitted the following biler.
test rules of the Pennsylvania Railroad as a part of their report, test rules of the Pennsylvania Railioad as a part of their report,
as in their opinion among the best extant:
sub Boilers of locomotives. - The boilers of new locomotives must be
subjected to an hydraulio presere of 2 .
 their rated working pressure before going into servioe. This test
must bo made onoe a year for the frst two years, and thereafter
every six months. When boilers are being tested, the foreman of
the machine shop having under his chargo the repais of locomo
 examines the fire-box from the inside. A record of all tests must
be made, giving dates, and anything. worthy of mention, which
must be signed by the foreman and the person assisting. The
boiler must be heated to near the boiling point of water before the
test is commenced boiler must be heated to neoreman the and the periling pon asint of waster bing. Thore the
test is commenced. Special examination of the stay bolttof looo-
motives in service must be made not less frequently than once
every week metres week. Anvice must inse made not less frequently than once
every wecially trained for tor the servioe must
tapeach stay-bolt from the efrobot side, and judge from the sound
whioh of them are broken. When the tap each stay-bolt from the fire-bot side, and judge from the sound
which of them are broken. When these examinations are made
there must be not less than 301 lb . of steam pressure upon the there must be not less than 301 lb . of steam pressure upon the
boiler, which will produce sunficient strain upon the stay-bolts to
cuase the separation of the parts of broken ones. Should the
boiler not be fired up the examination can be made after drawing
all the water from the bian boiler not be inred up, the examination an be made after drawing
all the water from the boiler, in which case the vibration of the
sheeta teter striking the bobte will indicate any unsondess. The
latter test is preferable when it can be made withoutinconsenience latter test is preferablo when it can be made withountinuonvenvenencee.
He must keep an acourate reoord of the location of each imperfect
bolt, bolt, and report the same to the master mecohanic, who will decide,
from the position of the bolts and the construction of the boiler,
whether the looomotive must be withdrawn from the service. No
 road foremen of engines on their monthly reports to this office.
" Stationary boilers. - Stationary boilers carrying 100 1. presure
per square inch must be tested in accordance with the instructions
 square inch must be subjected to a hydraulic pressure of 50 per
cent. in excess of their rated pressures once in every yix months,
and a special examination made of the stay-bolts both before and and a special examination made of the stay-bolts bory $\begin{aligned} & \text { before and } \\ & \text { after the pressure has been applied, in the manner described for } \\ & \text { the examination of the stay-bolts of tocomotives Station }\end{aligned}$ the examination of the stay-bolts of locomotives. Stationary
boilers of odd types, such as those used over heating furnaces,
must be tested the same as other stationary boilers, so far as she pressure and dates of test are concerned, and must be examined
with referonce to the partieular construction of each boiler, It
must be understood that the foregoing rules apply to all boilers, whether located at the shops or at outying points, and that trey
are in the direct charge of the master mechanic in whose district
they may be laced be promptly reported to this office, giving also the general condition
of the boilers, and noting any stay-bolts or braces found to be
broken.

## AMERICAN NOTES.

(From our own Correspondent.)

## New York, October 31st,

Manufauturers of railway material of all kinds are excep-
tionally busy. The railmakers have closed large contracts within tionally busy. The railmakers have closed large contracts within sales, which, if placed, will probably fill the rail mills with orders
to April 1st. Bridge builders and structural iron makers are full of orders, and inquiries are received which indicate that prices will
continue firm. Locomotive works are suffering from a seriou depression, as railway companies are repairing old engines and
making them answer. Car works are running to about one-half making them answer. Car works are running to about, one-half
capacity, although in some cases two to three months' work is capacity, although in some cases two to three months
secured. The iron and steel works throughout the country are
barely securing as much business as is executed, and in some dire tions prices are weakening. The manufacturers of machines, blocks, lathes, and tools of all kinds are quite busy with orders that will keep their works busy up to the end of the year
The new steel cruisers for which contracts were by Administration with Mr. John Roach will be completed. The last Congress appointed a Commission to report upon the policy to armour-plates. The Commission has investigated the facilities of a good many manufacturers, and have sent out circulars asking or specific information, and will meet in New York on Novem-
ber 17 th to consider the answers, and to give hearings to any parties esiring to be heard
The improvement in manufacturing and trade circles is indicated by the decline in the surplus reserve since July 15 th from
$65,000,000$ dols. to $30,000,000$ dols. A large amount of capital is being called out of the vaults, though the rate of interest is very
low, and will likely continue low, because of the abundance of money. Quite a number of new enterprises, requiring a large amount of capital, are under consideration; and unless something unusually ing and railway enterprises will be undertaken on the opening of spring.
THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,
OTHER DISTRICTS.

## (From our own Correspondent.)

The iron market is disarranged by the notice for a reduction of wages which has been given by the ronmasters, Buyers anticipate
that the reduction will lead to lower prices. Ironmasters explain that there is no room for further ease, but consumers are preferring
to delay the distribution of orders until after the arbitration, which, it is expected, will occur early next month. Meantime, the
netration ander works keep fairly active, although specifications are not so brisk as good deal of work in hand. Prices are very varied, and range from lattens.
Black sheets of the Woodford brand delivered to out-ports are Black sheets of the Woodford brand delivered to out-ports are
quoted $£ 8$ for 20 gauge, $£ 910 \mathrm{~s}$. for 24 gauge, $£ 11$ for 26 gauge, and $£ 1110 \mathrm{~s}$. for 28 gauge. Woodford crown close annealed sheets
are $£ 910 \mathrm{~s}$, for 20 gauge, $£ 111$ for 24 gauge, $£ 1210 \mathrm{~s}$, for 26 gauge,
and $£ 13$ for 28 and $£ 13$ for 28 gauge. For best qualities 30 s . per ton more is
demanded on each gauge, and for double best a yet further 30 s per ton. Siemens-Martin steel sheets stand at $£ 13$ for 20 gauge,
$£ 1410 \mathrm{~s}$, for 24 gauge, $£ 16$ for 26 gauge, and $£ 1610 \mathrm{~s}$. for 28 gauge.
Charoal sheets of the Woodford make are $£ 16$, $£ 1710$., $£ 19$, and $£ 19$ 10s., according to gauge. In tin-plates there is a good business doing, and makers speak
confidently of prospects. Prices keep firm, and Orowther Brothers and Co. quote best charcoal plates, 22 s . per box; ordinary charcoal 20 s .; best coke, $18 \mathrm{~s}, 6 \mathrm{~d} . ;$ common coke, 16 s . The extras for each X are 5 s .6 d . per box on best charcoals, 5 s . on second quality, 5 s .
on best cokes, and 4 s .6 d . on common cokes. In lead and terne
coated sheets, of which Crowther Brothers coated sheets, of which Crowther Brothers and Co. make a
speciality for the use of hardware manufacturers, the firm are
fairly well occupied, and quote No. 3 lead singles, $£ 13 ;$ B lead cold rolled and close annealed, $£ 17 ; \mathrm{B}$ terne, $£ 18$; charcol $£ 20 ;$ C C lead, hard singles for cotton can manufacture, £12 10 s .;
doubles, £13; and lattens, £14 10s. Annealed tin sheets the firm quote: Best coke, $£ 24$; best charcoal and best soft steel, $£ 26$; and Marked bars remain steady at the standard quotation of $£ 710$ s,
whilst for the common sorts $£ 5$ is about the minimum, Secondclass sorts are $£ 610 \mathrm{~s}$. down to $£ 6$.
Shoe and tie bars are realising fair sales, though export demand in the last-named branch have not much increased. Angles and tees are in moderate demand at $£ 510 \mathrm{~s}$. to $£ 512 \mathrm{~s}$. 6 d . for common
sorts. Inquiries for good lots have come to hand in those sections, but without much augmentation in sales so far.
Hoops are pretty well inquired after for the colonies, and there
is a moderate business doing in girder iron and plates for use. Common hoops are abundant at $£ 510$ s. at works ; gas tube
strip, $£ 52 \mathrm{~s} .6 \mathrm{~d}$. to $£ 55 \mathrm{~s}$. Tank plates, $£ 615 \mathrm{~s}$, to $£ 7$ and on boiler plates, $£ 710 \mathrm{~s}$. to $£ 8$ and $£ 810 \mathrm{~s}$.
Steelmasters are not finding that Steelmasters are not finding that amount of custom from
makers of ordinary merchant and galvanising sheets which they makers of ordinary merchant and galvanising sheets which they
had hoped for. Sheet makers state that it pays them better to
continue to use puddled iron. The introduction and billets into the sheet mills the output at once of something like one half. The outlook for the puddling process is, therefore, better than it had at one time
been imagined was likely. Neither is steel making rapid progress among constructive engineers here. Engineers, indeed, reiterate iron will continue to hold its own for a long time. The increased serious drawback is the want of reliability which is declared to be still a ch of pigs are slow. Prices for the better classes show a little more firmness than those for mixed and cinder pig, of which there
are still, here and there, heavy stocks on hand. A good many buyers have completed contracts which will last them until after Christmas.
All-mine pigs are still 55 s . to 57 s .6 d . ; part-mines, 42 s . to 45 s . and cinder pigs, $32 \mathrm{~s}, 6 \mathrm{~d}$. to 35 s . Hematites are mostly quoted for second quality. Northampton pigs are 38s.; and Derbyshires, 39s. to 40 s .
There are
increase now thirty-five furnaces in blast in South Staffordshire, furnace has also increased. A good attempt will be made by certain of the constructive iron
work manufacturers here to obtain a contract which the City of Liverpool is intending to give out for the wrought iron girders and Waterloo tunnel of the London and North-Western Railway. present time as $£ 12$ per ton and upwards on trucks in Staffordshire,
and for iron rivetted girders £10 per ton and upwards. Galvanised shedding for agricultural purposes is priced on the basis of $£ 35$ for 40 ft . length,

Railway wagon builders in Birmingham speak of a much better
demand for iron underframes and wagon ironwork generally than demand for iron underframes and wagon ironwork generally than
for complete carriages and wagons. Some concerns are very well for complete carriages and wagons. Some concerns are very well
off in the ironwork department, while in the body-building shops they are very quiet.
Railway fastenings are in slow demand. The Patent Nut and Bolt Company, Smethwick, however, on account of the unique position which it has established, keeps a favourable exception, and is still able to command a good deal of work of one sort or
another. The increasing extent to which our home trunk line are manufacturing their own railway fastenings is regarded by makers as accounting for not a little of the present quietude, and at the same time the competition of the Gresent quietude, and French makers is increasing in neutral markets. A revival in
foreign railway construction would be heartily welcomed by the Cast inon makers
Cast iron pipe manufacturers are mostly well engaged, but the The wrought iron tube trade is not as active as it usually is a this season, even in the gas branch. The competition of German firms is still formidable on the Continent ; but in this country and the colonies English makers have now got prices at a level which
defies competition. Large rivetted tubes for waterworks are in orisk demand for colonial and other markets.
Some interesting experiments with a new fire extinguisher presence of the Birmingham Watch Committee. The apparatus is specially designed for household use, and consists only of a cylinder no larger than a big wine bottle, fitted on to a small hose pipe, which may be attached to a water tap. The cylinder con
tains a chemical preparation, which being dissolved as the jet of water shoots through it, generates carbonic acid gas.
In the school recently started in Birmingham by Mr. George nical education has been put into the hands of the operative classes, on a level with those of foreign countries in this respect. The school already contains 200 boys, and in its first year earned nearly The Birmingham Trades Council have just discussed the ques
Thand tion of fair versus free trade, and have given an adhesion to th continuance of our present commercial policy. The Council also
resolved: "That they viewed with regret the answers given by the resolved: That they viewed with regret the answers given by th unions and the laws affecting the hours of labour have been some of the causes of the present depression.

## NOTES FROM LANCASHIRE.

Manchester.-Business throughout all branches of the iron trade nhis district still drags on the remainder of the year, and the tenduncy of prices is downwards. Makers do not openly quote reduced list rates, but these are only really adhered or in a fow
instances where they have still a considerable weight of iron to deliver against old contraots, and are content for the time being disposition, in face of the present discouraging outlook of the
dise market, to accept very low figures rather than allow business to pass, and in some instancos prices are taken that are almost, if no quite, as low as those ruling prior to the recent rise in the marke Exchange on Tuesday, but there was again very little busines done. The Lancashire pig iron quoted rates remain at about
38 s . 6 d . to 39 s ., less $2 \frac{1}{L}$ per cent., delivered equal to Manchester and local makers show little or no disposition to come below theso ligures, although they are considerably above what buyers are pre
paredt ot ive, and also above the prices at which some of the
Lincolnshire brands are being oftered. For district brads quotations range from 38s. to 38 s . 6d. and 39 s , to 39 s . 6 d ., less 2 , deivered here ; but even the minimum figures do not bring
forward any buyi district at louying. North-country iron ind being ored brands of Middlesbrough foundry are to be got at under 41s. net cash delivered equal to Ma
Hematites continue in very poor demand and low in price, good foundry qualities being obtainable at about 51 s .6 d . per ton, less 2 I , delivered into this district.
In manufactured
and with wooksedting there is still only a very slow trade doing, and with works getting short of orders there is a growing weakness
in prices. The average basis of quoted rates remains at $\sum 55 \mathrm{~s}$, per
the the leading makers still hold to this figure as their minimum shie, and North Staffordshire bars who are prepared to come a low as $£ 52 \mathrm{~s}$. 6 d . per ton, with hoops to be bought at $£ 512 \mathrm{~s}$. 6 d . The condition of the engineering trades continues without exceptional cases there is activity on special work, and as ind ilustrations of this, I may mention that Messrs. Hulse, of Salford, who have large orders in hand for special tools, are under the neoessity
of again extending their works by the building of an additional ereeting shop, which
yard. Messrs. Goodfellow and Matthew, of Hyde are also busy and amongst other orders have in hand a pair of special engine 350-horse power, for Indian mills, together with the requisite earing; also a pair of 400-horse powcr engines and mill gearing
ior a local firm, two travelling cranes, one for Liverpool and the other for the Admiralty, together with a number of small high
pressure engines, and a high-pressure condensing engine of pressure engines, and a high-pressure condensing engine of
70 -horse power for the South of England. Other similar instances might also be mentioned, such as Messrs. Hetherington and Co. of Manchester, who have a very large order for cranes in hand;
but these are exceptional cases, and do not at all represent the general condition of trade
When so much stress is being laid, as at the present time, on the
importance of a more practical training in our schools, mportance of a more practical training in our schools, especially
in connection with mechanics and engineering, it will be of inter to note a visit last Friday by a number of pupils under Mr. Central Board Schools, Manchester, to Messrss. Wm. Barningham and Co.'s Ironworks, Pendleton, Salford. The visit was for the
express purpose of seeing the process of iron manufacture in actual express purpose of seeing the process of iron manufacture in actual
operation, and the pupils saw the pig iron puddled, hammered operation, and the pupils saw the pig iron puddled, hammered
under the steam hammer, and then rolled out into puddled bars
after afterwards cut up into short pieces, re-heated and rolled out int in watching the various processes and in listening to the explanations which were given by the managing director, Mr. I. Bowes,
and the foreman of the works. To the pupils an opportunity was render much more intelligent their school studies of the woul and if similar visits to works, where available, could become a systematic portion of ordinary school instruction, it would probably importance of which in industry has been so much urged of late.
The practicability of workin
hitherto has been generally th coal at much greater depths than in the course of a paper on "The Long Wall System," by MIr.
W. E. Garforth, a mining members of the Manchester Geological Society on Tuesday. The
two main difficulties to contend with were, he said, (1) The pressure due to the weight of the superincumbent strata; and ( 2 )
the increase of temperature owing to the greater depth from the
surface. With regard to the first difficulty, it had been shown
that a proper system of working allowed the subsidence of the overthat a proper system of working allowed the subsidence of the over-
lying strata to be regular, and by the weight being the goaf, a large portion of the pressure was taken from the face, and
the coal was saved from being crushed. A further advantage might be obtained by holeing in the dirt above and below the coal, which tended to lessen the resistance. By packing the goaf close up to
the roof and rippin ebone the same, the height of the roadways the root and ripping above the same, the height of the roadways
could, at a reasonable cost, be maintained sufticiently long for the coal to be won, and road ways made in the goaf, which gave off no
inflammable gas, when consolidated, were preferable for ventilation to those driven in pillars of crushed coal. The orea of of the
road when road ways could be maintained, and sudden outbursts of gas avoided,
either in a system of working which caused frequent breaks, by
bore holes, or by driving return air ways in the overlying seam bore holes, or by driving return air ways in the overlying seam.
There were other matters connected with the working of deep mines which should also be considered, for instance--that th strata, and the number of laminations was more regula
than in shallow workings; that the average yield per for per acre would prove to be more in many mines in the future tha maintained, as he believed they could, large volumes of fresh air
main could be circulated through the mine, and by increased splitting
could be changed more quickly; that men were now working at upwards of 1000 yards deep without experiencing the difficulties
that were at one time feared. There were also the tages connected with deep mining, such as less water than in past had been ; greater than the extra outlay for keeping the roadquantities at 10 ; that inf the temperature had not increased at the same rate as anticipated And in the case of the of the deepest mines now being worked anth the case of the Ashton Moss Coliery, near Manchester, the The last continue to be worked as deep as it was proved to exist about winning coal at 500 yards, and their fears were probably of equal value with the doubts expressed by some people of to-day.
The coal trade is without material change; the colliery pro prietors in the Manchester district main tricts there has been no appreciable upward movement. Hous steam, and general trade requirements continue bad to sell, and plentiful in the market.
Shipping has been
seing got in some instances mot Liverive, with slightly better prices Following the 10 per cent, advance in wages that b
to the men in the Manchester district, the miners' conference at Manchester last week decided that notice should be given generally for a simar advance. So far as the colliery proprietors in south entertaining any advance of wages in the present state of trade. at the present moment by political considerations, which are exercising the minds of all classes. But trade is so dull in all its
branches that if any new orders of moment were offering the would readily be pieked up by soores of mere offering they work, and whose establishments, speaking generally, are very which of hematite pig iron are very limited, and the marketi metal, aro now in many instancess cocosed e either actually or practically, For instance, very little is being done with America, and
only a limited trade is being done with continental users, who imported Spanish ore or by the adoption of the basic process, which in many cases has taken place on a fairly large soale. On colonia with a view to further orders are not only few in number, but are accompanied with a total absence of either spirit or enterprise.
Many people are entertaining the belief that the trade of the point; but it is dis if iron is concerned, has not reached its lowes matters to a lower point except means are found for getting cheaper raw material on the one hand and cheaper labour on the other.
Vorking men are now paid very low wages, and it is equally difficult to soce how they can take less wages, unless they can ge prospect. Stoel makers and shipbuilders are alike very indif
ferently at lato values. The enginecring trades are fairly employed in th
marine department, but are doing very little in general orders.

THE SHEFFIELD DISTRICT.

## (From our oven Correspondent.)

Earl FitzwiLlias has promptly corroborated what I mentioned
ome time ayo as to the Milton and Elsecar Ironworks, Admiral somo time ago as to the Milton and Elsecar Ironworks. Admiral
Douglas, his agent, noticing the statement that threo distinct offers had been made from persons desirous of taking and carrying on the works, writes to the Sheflicld Telegraph to say that at the
time of Mr. Dawes' lease expiring in 1879 , time of Mr. Dawes' lease expiring in 1 1879, every endeavour was
mado to ie-let the works, and amongst others ITessss. Newton, Chambers, and Co. were invited to take to them; but after inspec-
tion and due consideration they deolined, stating that they oould not be worked to advantage. Admiral Douglas adds :- No
distinct offer was ever made to either Earl Fitzwilliam or myself, and no terms were ever suggested or discussed." This ought to Mr. George Wilson.
works-Messrs. Charles Cammell and Co.-has returned from
St. Petersbor St. Potersburg, where he has been on business connected with the to an arrangement with the Russian Govpennment, whereby armour The coal trade continues very dull, in spite of the raw Novem weather, and there are no indications whatever of any improve-
ment.
The Board of Trade returns for October again show a serious decerease, as compared with the corresponding month mow of a serious
the different productions which interest the Sheffeld district. In hardware and coutlery the total value exported was $£ 2661,313$, as
compared with $£ 284,856$ and $£ 328,141$ in the corresponding month of 1884 and 1883 . The decreasing markets are: Rusia, from
$£ 5068$ to $£ 4684$ : Germany, from $£ 18,413$ to $£ 12,678 ;$ Holland,


 In steel rails the values for October of $1883.4-5$ are respectively
C329, 635, , 2i30, 392 , and
last October with Russin G51. Nermy No business was done during




$£ 345,539, £ 313,123$. Spain and Canaries has deoreased from
$£ 12,601$ to $£ 1809 ;$ United States, from $£ 2141$ to $£ 692 ;$ Brazil,
 $£ 73,004$ to $£ 37,655$. British East Indies shows a very decided
 cotober, 1884, , the value dropped to $£ 3185$, and last month it ha
risen to $£ 8158$.
Unwrought steel shows slight improvement, the value last mont being $£ 99,272$, as compared with $£ 97,414$ for October, 1884
France fell from $£ 9089$ to $£ 6906$, and the United States from $£ 25,176$ to $£ 21,263 ;$ but the trade done with other countries has
advanced from $£ 63,149$ to $£ 71,103$. In October of 1883 the value exported was
Pig iron was exported last month to the value of $£ 200,590$,
against $£ 282,910$ and $£ 385,192$ for October of 1884 and 1883 , respectively. The chief decreasing markets are Russia, Germany,
Holland, Belgium, France, Italy, United States, and all other countries except British North America, which has increased from
$£ 17,223$ to $£ 18,979$. Hoops, sheets, and plates are also lower though not to the same extent, the, values exported last Octobe
being $£ 325,476$, against $£ 333,450$ for the corresponding period o being
1884.

## THE NORTH OF ENGLAND.

From our own Correspondent.)
ThE Cleveland pig iron trade continues in an extremely dull and sales. Very little was done at the market held at Middlesbrough
ather on Tuesday last, and prices remained without appreciable alteration Merchants price for No. $3 \mathrm{~g} . \mathrm{m} . \mathrm{b}$. was 31 sis . 9 d . per ton, which is
about the same as they asked a week proviously. What little business passes is for prompt delivery only. Merchants occasionally offer to book forward at 32s, to 32 s. 3d. per ton, but with the
present dismal outlook consumers are in no hurry to commit themthere provided delivery be promptly taken. Forge iron is steadily main tained at 30 s . 9d. per ton.
Warrants are to be had at 32 s . 6d. per ton, but there are few nquiries for them
lessrs. Connal and Co's Middlesbrough stock of pig iron
nereased 1125 tons during last week, the quantity held on Monday last being 114,586 tons. On the same day their Glasgow stock
was 635,298 tons, being an increase of 2533 tond The shipments of pit iron from the Tees oontinue very unsatis-
factory. Up to Monday last only 15,832 tons had been shipped factory. Up to Monday last only 15,832 tons had been shipped
since the 1st inst,, as against 25,179 tons during the corresponding portion of last month.
The Cleveland ironmasters' returns for October, published on they do an increase in stocks of pig iron of 14,182 tons for the month. Of the 154 blast furnaces in the district, only ninety-ffive
are now at work. The output of pig iron of all kinds was 204,391 output during September. The stocks in the entire district at the end of October amounted to 444, toon tons, representing an increase of about 155,000 tons during the last twelve months.
In the finished iron trade the prospects do not improve. The demand is poor, and at prices now obtainable makers are not eager to book orders. Many of them have in fact deided to suspend are as follows: - Ship-plates, £4 10s, to $£ 412 \mathrm{~s}$ s. 6d. per ton; angles,
c4 5 s . to $£ 47 \mathrm{~s}$, 6 d .; common bars, $£ 415 \mathrm{~s}$, to $£ 417 \mathrm{~s}$, 6 d . steel plates, ship quality, $£ 612 \mathrm{~s}$. 6 d .; and steel angles, $£ 65 \mathrm{~s}$.-ail f .o.t. The Weat Marsh and Britannia
 rrangements are being made to start again shortly, the men being or an indefinite length of educed wages rather than remain ide Messrs, Jones Brothers, Middlesbrough, have decided to close
their works entirely for a time. Their plate-mill has been stand ing for several weeks, but hitherto they have had two sheet mills in meration. The ever-increasing difficulties of carrying on the profit, have now compelled them to suspend operations altogether
and wait for better times. At the moment there are no finished ronworks of any kind in operation at Middlesbrough, and the ironworkers are walking about the streets.
down in one of their large steel mills at Eston. The repas break progressing rapidly, however, and by next week they expect to be The Cleveland blast furnace men have expressed their willingness to submit to a $2 \sqrt{2}$ per cent. reduction of wages, but positively
refuse to have anything to do with the sliding scale. Indeed, sliding scales seem unpopular with the workmen in almost every Great attention is now being paid to the reduction of cost of
production of iron and steel products of all kinds. If the elements of cost of a ton of bar iron be carefully analysed, it will be
found that when royalties and railway carriage onall raw materials found that when royalties and railway carriage on al raw materials
used are paid for there is only sufficient left to provide for the labour of various kinds necessary to produce the bars at current
rates. In other words, there is now no margin at all for interest on the capital of the coalowners, mineowners, smelters, or manufacturers, nor anything for profit. This is rather a serious state
of thingg, and cannot last indefinitely. It is on such grounds that strong appeals are likely to be made to railway companies and
royalty owners to lower their rates, and so help to save the trade from the unprecedented difficulties which now surround it.

## NOTES FROM SCOTLAND

There has been a good deal of speculative business in the
warrant market, but the legitimate inguiry for pigs shows no imwarrant market, but the legitimate inquiry for pigs shows no im-
provement. The shipments are small, amounting for tho week to 7611 tons. against 7818 in the preceding week and 6783 in the been sent to Russia and a large shipment to Italy, but the othe countries are buying sparingly, and the trade with Germany and France has become much contracted. Since last report one furnace has been relighted at Coltness, but another has been put out of blast
at Calder, so that the total number in operation remains at 91 against 96 at this date last year. There is a considerable reduction in the impurts from Cleveland, but large stooks of this iron are held in
Glasgow. The deliveries of pigs into Messrs, Connal and Co, Clasgow stores are larger than usual, the addition in the week amounting to between 2000 and 3000 tons.
Bushess was done in the warrant market on Friday at 41s, 6 d .
 in the afternoon 41s. 7 dd do to 41s. 8d. cash. Business was done on transactions took place from 41 s . $10 \frac{\mathrm{~J}}{2} \mathrm{~d}$. up. to 42 s . 6 d . cash, the advanoe being due to some coalmasters promising advanced wages



 The total shipments for the
against 479,275 in the same time last year.
The past week's shipments of iron and steel manufactured goods from Glasgow embrace machinery to the value of $£ 7070$; sewing
machines, $£ 5126 ;$ stel goods, $£ 3750 ;$ and general iron manuactures, $£ 33,000$. The latter, including $£ 12,450$ worth of iron Japan, and $£ 3880$ pipes, sheetts, and roofing for New Sounth Wales.
In the coal trade there is a good business doing. Shipping coals re stil in request, and the inquiry for household sorts is improv GJ. The week's shipments incluced 25,332 tons despatched from
Glasgow, 159 tons from Greenock, 1750 from Port-Glasgow 1812 rrom Irvine, 6062 from Troon, 7816 from Ayr, 3425 from Leith,
and 17,320 from Grangemouth. In Fifeshire the business is active both in shipping and inland orders, and the coals are for the most part cleared away as they are brought to the
bank. A large proportion of the coal shipments on the east coast are for northern European ports, and it is anticipated
that the inquiry for this trade will slacken at an early date. slightly upward. The increase in the price of coals intimated two weeks ago in the Glasgow district is not likely to become at all
general. No advance has been obtained either for main or steam coals, and it is only the very finest qualities of household upon
which a rise can be obtained, and even as regards these the full amount of the 1s. advanee is not regularly paid. miners of Lanarkshire are again agitating for an increase of pay. The men talk of a strike at their meetings now to entorce the
advance. As the rise in the price of coals affects only a very few present, and the general belief among coalmasters on 'Change in present, and the general belief among coalmasters on Change in
Glasgow this week is that the colliers will make no serious movo

## WALES AND ADJOINING COUNTIES.

## (From our oun Correspondent.)

Ir exports fairly represent the condition of the coal trade, I are not the surest gauge, as one week steamers come in plentifully anderear off the sidings, while coalowners' books do not show any ateration for the better. Yet, so ofar as Carciff is concerrened, a
better tone is beginning to be shown, and coalowners of position have openly acknowledged their impression that "wo have reached and small steam there is more animation, though not yet suffiNewport does not show quite so well as it did, house coal having again drooped. At Caerphilly there are rumours of a sale of the
Black Vein Llantwit Colliery, which have disturbed the neighbourOther colliery speculations, principally in house coal are haging fire. This is to be regretted, as now would be the best time for sale, and money is abundant. A small start in house coal has
begun at Wanut Tree, which will be a boon to the district, as the Works Colliery at the Drift is stopped.
I am informed that
1 am informed that No. 3 seam has been struck at the new colliery at Ynyscadidng, proving 2 2ft. 6in; and that the 9 ft. is now
safe at Ynysybwl. This latter colliery having now all the seams in splendid form, promises to be one of the finest in the district. Tylor's coal company, Penderyss Rhondda, is being floated as a
limited company, capital $£ 200,000$ in $£ 10$ shares. The iron companies appear to be fortunate in securing coal contracts. Dowlais holds several, Oyfarthfa and Ebbw Vale are also fortunate, and
last week the Tredgar Company secured one for the Waterford Railway.
I have no general improvement to record in connection with any
branch of the iron and steel trade. In fact, things appear to be getting worse, and the lower classes of labourors on the works,
principally Irish, are suffering considerably. Rhymney is very quiet of late; Oyfarthfa shows little signs of stagnation, but the carrying out the traditions of the family, making freely in the most depressed times, and I hope will be repaid for their courage.
The lament amongst ironmasters is that the life of a steel rail is so long that unless we can get Burmah, China, or some other country opened out for railways there is not sufficient demand to keep all going in this country. It has been suggested that a
maxim of Mr. Menelaus should be carried out-"If there is no demand for steel rails, make what there is a demand for." The
query is, to what purpose can steel be applied, and one "Constant Reader of The Enginekr" says, get a good malleable article as substitute for pitwood. We import a great proportion of the
pitwod used, and to use malleable steel would be a double benefit. I give the idea place for what it is worth. In many places-on the
face, for instance-it might be used in coal. working with or without a wooden shoe.
It is reported that the scheme to transfer one of the iron indus-
tries of the North to Newport, Mon.- that of the Messrs. NettleThere is to be abandoned. There is to be a resumption of work at Tondu, both at the forges
and furnaoes, next week. The wtoppage has iasted nearly seven
months, and the men will now resume work at a reduction of 5 per cent.
Speaking to a tin. plate manager a few days ago, he expressed
himself as dissatisfied with the tone of things. He admitted that "n the past few years there had been a great increase in demand is," he added, "there aro too many in the trade, and great as is
the use of tiniplate, increasing, one might say, daily, make nher
increases too. The stop week has told wigell, buy, when the men men
work they dash away, and soon make up for lost time." There
is, emphatically, too much capital embarked in the trade. is, emphatically, too much capital embarked in the trade.
Prices have slightly drooped since my last, and ordinary cokes Prices have silghy drooped since my last, and ordinary cokos
have been sold as low as 1 s , to 14 s . 6 d . This, however, doess not
represent market quotations.
Siemens' and Bessemer's have

At a meeting held in Swansea last Saturday, it was agreed to pay the legal expenses of all workmen who defend themselves
rom paying money to employers that is not due. The attention of workmen was also called to the mode of payment at Morriston. Trust is going in for powers in the next Parliament to carry out mportant extensions, dc., of the Prince of Wales Docks. The Rhondda and Swansea Bay line ha
Oymmer, and is generally progressing.

Launch or the PalamigD,-On Novernber 6th the e.s. Palamed
built by Messrs. Andrew Leslie and Co. for the Ocean Steamship Company of Liverpool, was taken on her trial trip. The
dimensions of the vessel are as follows :-Length, 320 ft .; breadth,
36 ft , 36 ft ; and depth, 27 ftt . 9in. Her engines, constructed by Messis.
Robert Stephenson and Co., are of the Holt's tandem design, having eylinders 27 in . and 58 in. diameter, with a stroke of 5ft.,
and indicating 1500 -horse power. Steam is supplied from one large double-ended steel boiler, fitted with Fox's patent corru-
gated furnaces, weighing 75 tons. The engines worked smoothly and well on the trip, and, we are informed, gave the highest satis action. Immediately on the adjustment of her compasses the
vessel proceeded to NIiddesbrough to take in a cargoo of iron for
Liverpool. This is the first of four similar vessels now being built

## NEW COMPANIES．

The following companies have just been regis－
A．Tylor and Co．，Limited． This company proposes to take over the busines
A．Tylor and Co．，of the Pendyrys Colliery ituate at Tylorstown，Glamorgan．It was regis－ tered on the 30 th ult．with a capital of $£ 200,000$ ， in £10 shares．The purchase consideration is and 000 in fully－paid shares，and the paymen and discharge of the debts and liabilities of the perty．The subscribers are：－
Isabella Tylor，Mayfield，Sussex，widow ．${ }^{\text {A．}}$ A．E．Tylor，117，Leadenhall street，colliery

 ＊J．J．Tylor，2，Newgate－street，engineer The number of directors is not to be less than abscribers denoted by an asterisk，and Herber Kirkhouse and John Albert Bright．The com pany in general meeting

Anglo－Canadian Asbestos Company，Limited． This company proposes to purchase from Messrs， of a contract of the 26 th ult．，certain lands known s the Eureka and Emelie，situate in Quebec，fo he raising of asbestos and other minerals．It wa egistered on the 2nd inst．with a capital o | Henry Bayliss Worrell， 14 ，Linden－grove，Nun－ |
| :--- |
| Shares |


 The number of directors is not to be lase then three nor more than six ；qualification， 50 shares three nor more than six；qualification， 50 shares
the subscribers are to appoint the first．Remune ration，$£ 200$ per annum to the ohairman，$£ 200$ pe
annum to any resident director，and $£ 100$ pe annum to any resident dire

Beaumont Machine Tunnelling Company，
This company was registered on the 3rd inst．
ith a capital of $£ 10,000$ ，in $£ 10$ shares，to pur hase the plant and business of tunnel driving arried on by Colonel Beaumont and Thomas and to extend such business．An unregistered agreement of the 28 th ult．regulates the purchase． ．E．Blockett Beaumont，26，Kensington－ $\mathrm{Wm}_{\mathrm{m} .}^{\text {gardens－torrace，engineer }}$ Pott， 33 ，Duncombe－road，Hornsoy－rise， accountant
J．Bowick， C ．．E．， Haydon Bridge，Northumber

 A．A．Cubitt，69，Mercersspoad，Holloway，clerk The number of directors is not to be less than
two nor more than five；the subscribers are to appoint the first；qualification，shares or stock of he nominal value of £200；remuneration，£8 per annum，and a further £ $£ 100$ for each 1 per
cent．dividend on the preference and ordinary hares over $£ 7$ per cent．per annum．

Bilton Portland Cement，Blue Lias Lim
Brickworks Company，Limited This company proposes to purchase the business
of Portland cement，hydraulic lime，and brick manufacturers，carried on by Mr．J．Dumbleto infold，at New Bilton，near Rugby．It was registered on the 31st ult．with a capital of
$\pm 40,000$ ，in $£ 10$ shares．The subscribers are ：－ FitzGerald A．Arbuthnot，34，Fenchurch－street，


Registered without special articles．

## George Richards and Co．，Limited．

This company proposes to purchase the letters patent，dated 13th January，1884，No．169， wood by revolving and fixed cutters ；and also to ake over the business of George Richards and Benjamin Chew Tilghman，trading as George lowhere．It was registered on the 29th ult elsewhere．It was registered on the 29th ult．
with a capital of $£ 50,000$ ，in $£ 10$ shares．The J．E．Mathewson，Upperthorpe，Sheffield，engi－
 A．Simpson，Bow Bon，$\ddot{\text { irran merchant }}$ T．Ashton，Moss Side，Manchester，cashie
R．Johnstone，Hulme，Manchester R．Johnstone，Hulme，Manchester，bookkeeper The number of directors is not to be less than three nor more than eight；the first are the sub cribers denoted by an asterisk；qualification，one share；the company in general meeting wil
determine remuneration．The purchase con－ sideration is 2400 fully－paid shares．

J．B．Orr and Co．，Limited． Upon terms of an agreement of the 16 th ult． this company proposes to acquire the business of
manufacturers of，and dealers in silicate paint and other articles，carried on at OLarlton，Kent，

 paid hhares．The subseribers are ：－





．A．Willoughby，4，Lan coster－plicac，solicitor The two first subbseribers are appointed director
long as they may each hoo 1000 ordinary hares；qualification for other directors， 50 shares The company in general meeting will determin

Linde British Refrigeration Company，Limited Upon terms of an agreement of the 28th ult． this company proposes to aequire and work th 876，for improvements in refrigerating an freezing apparatus，and Provisional Letters
Patent，No． 9612 ，dated 12th August，1885，for mprovement in the manufacture of ice，granted registered on the 31st ult，wrussia．It wa registered on the 31 st ult．with a capital of
$£ 100$ shares，with the following a first subscribers：－
Carl Linde，Wiesbaden，and Royal Hotel，Black－ G．Heriars，engineer Lloyd̈，シ̈pringhiil，Birmingham， W．Feltman，Royal Hotel，Blackfriars，and R．Hetterdam，brewer 22 ，Great $s t . \ddot{\text { Heilen＇s，East India }}$


The number of directors is not to be less than The number of directors is not to be less than the first are the subscribers denoted by an asterisk， and five others to be appointed by the above will determine remuneration

Metallurgical Association，Limited．
This company was registered on the 29th ult．
with a capital of $£ 300,000$ ，in $£ 1$ shares，to acquir and work patents，and to act as patent agents and brokers．The subscribers are－
Wm．Adams，85，Gracechurch－street，public

 H．G．Barlow Älexänder，ï25，＂Hampton－road， Forest－gate，mercuant
J．Rohr，44，Barrington－road，Brixton，Merchänt
P．Thaine，51，St．John＇s Park，Blackheath，

## Liout．－Col．R．P．＂Hare， $12 \ddot{12}$ Queen＇s Mansions，

The number of directors is not to be more than seven nor less than three；the subscribers are the
first；the company in general meeting will deter－ irst；the company i
mine remuneration．

Railway Sleeper and Steel Company，Limited Upon terms of an agreement of the 22nd ult．， this company proposes to purchase certain inven－
tions of Mr．Samuel Rideal，of Wards－buildings， Deansgate，Manchester，and patents in connection herewith，for improvements in the manufacture of bolts，nuts，spikes，screws，rivets，and similar articles used as permanent way fastenings；for improvements in wheel tires，and for improve－ ments in the manufacture of metal sleepers and
chairs combined，for railway purposes．Upon chairs combined，for railway purposes．
terms of an agreement of the 23rd ult．the com－ pany further proposes to purchase from Mr．James Hartley Procter certain lands，buildings，machi－
nery，and effects，at Droylsden，Lancaster．It hery，and effects，at Droylsden，Lancaster．
was registered on the 31st ult．with a capital of £10，000，in $£ 5$ shares，to carry on the business of The consideration for the inventions，\＆c．，is $£ 500$ cash and 700 fully－paid shares．For the property referred to in the second agreement，the con sideration is a perpetual yearly rent charge of $£ 7315 \mathrm{~s}$ ．，the payment of £1500，and the allot－
ment of 60 fully－paid shares．The subscribers are：－
J．Hartley Procter，Bolton，architect，toc．
S．Rideal，C．E．，Deansgate，Manchester
W．Jukes，West Gorton，ironfounder
R．Procter， 22 ，Booth－street，Manchester，solicitor J．Ashworth，Haslingden，cashier $\ddot{\text { T．}}$ Humphreys，SAle，Cheohire，skip and hamper
T． T．Humphreys，Sale，Chesh
manuacturer
J．Morris，Salford，engineer
Most of the regulations of Table A are adopted Directors＇qualification，£100 in shares or stock．

Parker＇s Electric Wire Corporation，Limited． Upon the terms of an agreement of the 23 ra September，this company proposes to acquire the Letters Patent，No．4781，A．D．1883，granted to Mr．J．G．Parker，for improvements in con－ tered on the 2nd inst．with a capital of $£ 100,000$ ， in $£ 5$ shares．The purchase consideration is 7500 fully－paid shares．The subscribers are ：－ Shares Edward Easton，C．E．，11，Delahay－street，West－
 E．Andrew， 9 ，$\ddot{\text { Bridge－street，}} \ddot{\text { arcestminster，}} \ddot{\text { Parlia－}}$ J．8．Gentary agent $\ddot{\text { Greesham－buildings，Basinghail－}}$ W．Etreet，menkinsont．， 15 ，Eärlsfield．road，wänds－ Worth－common，manufacturing chemist
Herbert Morris Winch，43，Horsleydown－lane，
 Registered without special articles．

Production of Aluminum in the United States．－The amount made in 1884 was 1800 troy duction in 1883．At 75 c ．per ounce，the total value was 1350 dols．

THE PATENT JOURNALL

## Applications for Letters Patent．

 ＊When patents have been＂communicated，＂thename and address of the communicating party are
printed in italics． 3 rd


1
13，
13,



## Martin，Paris． 13，233．SToNE Cu

13，234．AUTOMATTC SELF－ADJUSTING ELECTRIC Ind Cators，P．Jolin and T．Ballard，Bristol．
13,235 ．SMOKER＇COMPANIONB，W．Singleton and 13，235．SMokers＇Compa
Priestman，Sheffield．
3，235． Priestman，Shefield．
3，236．SEwING NEDLES，R．Chidley，Middlesex． Robinson and U．J．Smith，Northampton． 13，zs8，APPARATUS for INDICATING TEMPERATURE，
Murrie，Glasgow

13,239
and
13,240
Eas
Ea俍 2s，
C．L．L．Lloyd－Jones，London． 13，246．ELECTRIC LAMPs
E．G．Craven，London．
E．247．SMOKE－PREYETTM
3，247，Smokerpreventing Chimeney Pot，H．W．Head
land，Leyton．
3，249．Sopply Valves for Cisterass，W．Carr，London
3，249．Compound
3，250．PUMps for Liquids，W．Jarvis，Banbury．
3，251．CASH Trays for CASH Boxes，de，W．Jarvis， s2．Hary．

13,2

$$
13,
$$

15


n 12
13，
${ }^{13}$
 12，207．Lonortudinal．Orlulurar Dounle Botroms for
Water Ballast，H．Withy and（G．W．sivewright，
London 13，268．Workina Fans，dc．，J．Y．Johnson．－（G．E．E．
Bozírün，France．）
13，TE．
Londichion． 13，277．OrL Laxpr，A．Kiesow，London．
13，271．Tlle Grate

> London. 13,272. Eonomising Foer and Cosser

Eoonomising Fuel and Consomina Smoke，
Holden，London． 13，273．Corn and bunion Protectors，E．Ellenband， 13，z74．Collectiva，Comprissina，te．，Air Power，
\＆c．，M．Whipp，Luidon． de．，E．M．Whipp，Luidon．
13，275．FURNACEs，APPARATUs，\＆e．，W．Deighton，
sheffeld． 18，276．Garden Hand Liohts，E．Horley，London．
13，z77．Sharts of Wheled Vehicles，E．Edwards．
（L．Sanier，France）
13，278．Borler Fornaces，C．B．Davison，London．
13，274．INSULATORS for TELEORAPH WIkEs，太C．，W．
13，27y．Insulators for Teleoraph Wikes，dc．，W．P．
Thompon．（E．A．Müller，Germany．）
13 280．Treatino Substances containino Alusina or 13

## L3v． 13,28, 13,28 Con 13

13，284．Divided Car Axles，H．Thitelsen and H．W．
Dilg，London，
13，280．EYE－BARs，C．L．Strobel，London．
13，286．SAFETY LAMPs，J．Urwin and J．
13，287，Produensa Desiens on Glass，S．T．Gough， London．
13，288．Dryina and Brushina Iron Shemts，J．Lysaght，
London． 13，289．FIxiriva Loose Cuyfs in Coat Slegyes，C．A．
Whall，London． 13， 5900 STEAM ENGINES，P．W．Willans，London．
13，291．GRAVITY SWITCH BACK RAILWAYs， 13，291．Gravity Switch Back Railways，La M．A．
Thompson，London．
13，292．WIDDow Faster 13，292．Window FAsTENER，H．H．Denne，London．
13，29．GriNDING MILSS，L．Gathmann，London．
13，294．Preserving Wood，H．H．Lake．－（J．H．Youn
 Le，Raq．CALLovLATiNo and Adding Machines，E．Halsey，
London． 13，299．Hzating Mile，J．Brown，Manchester．
13，300．Invalids＇Electric Call Bkile，T．G．Usher，
Sunderland． 13，301．Treatina Cotron，de．，E．H．Hargraves，Man－ 13，302．SKIRTs，J．Walker，Manchester．
13，303．Oxidimio LiNsked OiL，T．J．Flynn，Man－
chester BLAst Pipes，R．J．Billinton and R．M．Deeley，
Derby．

13，307．STERRisa Tricycless，dc．，H．J．Brookes and W．R，Kettle，Smethwick．
13，308．PAVING STREET3，J．Donald，London．
 13，${ }^{13234 \text { ．PIarsorortes，A．Eason，London．}}$ Webb，London．
13，325．Socket Joint，H．Davidson and H．Hart 13，326．Kiliss for Burning and Drying Bricks，W
Whitwell，J．E．Swindell，and W．B．Corliss，Stour bridge．
13，
323 ， 328 ．Dry Closers and Commodes
 Restall，Lond n．
13，330．Cleansing and Dyeina Old Felt Hats，A．
Savage，Londun． Savage，Londun．

13，311．Thaets for Rifle Practice，T．B．Ralston | lasgow． |
| :--- |
| 332．Ventilating Apparatus，C．Lawrence，London |
| ． | 13，334．Shandescent lamp Holder，J．Lee，London，

Berlin 13，335．BALL Valves，E．C．Urry，London．
13，336．Ventiating TuNNELS，H．J．Haddan．－（c． Raventos，Spain．）
13，337．PERMANENT WAY of RAILWAYs，T．von Bagge sen，London． Courlander，Croydon．
3，339．PIsTons，S．Butler，London．
18340 ．Costinino Matresses with
 Black，London．for Trees，\＆c．，J．Makin and J． Southern，London．
13， 342 ．Illuminatina Substance，C．A．von Welsbach， London．
13，343．Dynamo－electric Machines，S．P．Thompson， Losid．Ball Castors for Furniture，de．，W．H．Seear， 3，345，Pipks，de．，for Smokina，J．E．Park and S．J． B，346．Doort．Locks，W．R．Lake．－（c．A．Andersson，
Suede．） Sweden．）
13，347．HArvester Binders，A．J．Boult．－（J．and T． 13，348，Copyiso Machines，A．J．Boult．－（W．F．McKay， Canada．）
13，349．Fireman＇s Dress，A．J．Boult．－（J．W．Elliot，
Canada．） Horsk Collars，A．J．Boult．－（T．G．Gillespie
H．S．Casan，Canada．） Aprisisino on Steke，de．，A．J．Boult．－（G．J．
well，Conada．） Chimay lop or Ventlator，E．Aldous，
hot－air Sroves，E．Aldous，London．
WAtER－closets，Bathe，\＆c．，E．Aldous， Water－clobets，Bathe，
Lakm Apparatus，A．Barrett，London．
Wabhino Ores，Minerals，dc．，C．Sheppard， Bradawis，Cursels，and like Tools，W．H． London．
Gas and Oil SToves，S．Drewett and S．P． Pittern or Dress Charts，P．M．Ju
atiof U．S．）．
Ascesion Pips，C．Hunt，London． Ascrasion Pipes C．Hunt，London．
REFINING VEGEABLE OLIS，L．T．Hall，London．
MECHANICAL TELEPHONE，L．N．Loeb－$-(C$ ． M．S．） SUBMarise Boats，A．P．J．Stourton，London．
Hat Bodigs，dc．，A．M．Clark．－（A．J．Korn． France．） Brack and Strap Attachment，D．L．Brain，

5th Norember， 1885.
Botrling Macuisis，J．F．Smyth，Belfast．
Slide Valves，C．Stout，Liverpool． ith，Liverpool．J．Cadbury and F．W．Lam Lisen Butrons，J．Cadbury and F．W．Lam
Birmingham，
BalL Tope，W．and H．Sutcliffe，Halifax．
Rotary Motons and Poaps，J．H．R．Dins－ Liverpool．
Distaces Indicator for Cabs，de．，G．B



 Ter．
Twiskrs，Tor and J．T．Totlow，Manchester．
LITNINa for CANDIED PEKL PACKAOEs，H．
 Regolativa Weir Sluices，w．Barrington，
ick． crick．
Bugrexpers for Fixing Gas PexDants，G．
ell and F．Denby，Bradford．
 Prpse for suokisa，J．Cartor，Glaggows
SpIsta Burcon Fastexkrs，w．Frost，Worcester．
Exickstics for HAY PMBsEs，J．Bradbury， Comproums Stean Exaines，H．J．H．King，
market． ${ }_{\text {M }}$ marketanical Race Gane，I．Greenbury，Edin－








13,407. Centrifugal Bolting Machines, R. Ufer, 13,408. CoLouring Matters, the Leipziger Anilin-
ffabrik Beyer and Kegel, 13,409. SIGNALLING KPPARATUS, G. S. Buchanan, Glas.



 13,416. Auron 13,416. Atrouxtro swrours, L. Clero, London.




 Edge, jun., Birmingham.
13,426. Propeling MECHANism for Bicyoles, dcc., W.
Cift Clift and J. Vale, Birmingham.
13,427. SHaft BEARINas, W. Hornsby and R. Edwards,
Grantham. 13 428. Coupling Ladders, G. A. Kennedy, Man 3,429. PACking CAses, J. G. Watkins and W. H. Tyther, 3,430. Cog-Wherls and Pinions, J. Johnson, Spenny
moor. mori. Wet Spinnina Frames, J. B. Pirrie, Carrickfergus.
3432. Asphalted and Bituminous Felf, G. Rogers, 3,43. Bunsen and other Gas-burners, T. Fletcher, Manchestor.
3,434. SCREW-GLL Boxes, G. W. Douglas and J. Shaw,
Bradford. 3,435. Lockina Bolf, J. Fagg and F. Stanley, Mar
13,436. Aerated Bleaohina Lieqor, J. Appley and E
13,437. BLEACHING Cotron, de., J. Apsley and E. 13,438. Wasmino Machinery, J. Apsley and E. Lumb 13,439. Steam Turbines, C. Blagburn, London.
18,440. Preparina, \&c., Cotron, $H$. Stevens
 G. Hurdle, Southampton.
13,442. Simplex Mechanical Horse, S. H. Oram, 13,442. Simplex Mechanical Horse, S. H. Oram,
London
12,443. Button-hole Attachment, H. W. Pollock, Glasgow.
13,444. Trewscopio Sromis, dce. D. Fraser, Edinburgh.
13,445. EJEOTors, M. W. Household and G. F. Janes,
London, ${ }^{\text {London. }}$ L46. OLotres-pEO, S. J. Pocock and F. H. Freeth, 13,447. Drivina Gear, A. C. Nagel, R. H. Kaemp, and 3,448. Agtoatino the Tailess of Plasino Machines, R. C. and J. C. Mollon, London.
3,449. Boors and SHoEs, G. F. Hutchings and F. H.
Inman, London.
 45l. Neutralisiso the Rebidual Magnetism
EEbotro Maoners, E. G. Colton.-(F. and
O
 H. Pittman, London. Haenichen and 0. Seebass, United States.)
3,454. Bookninding, W. J. Hopkins, Worcester. 13,455. Bookbinding, W. J. Hopkins, Worcester. W. H. Dunkley, London.

3,456. OAns, \&C., T. D. Gilbert, London.
13,458. Break Cranks, G. Anderson, Glasgow,
13,459. Decorticatina Corn, Alakeney, Glaggow 13,459. Deconticatino Conn, \&c., G.: Magaulay-Cruik 13,460. SExoLisi a and FLiser, G. Macaulay-Cruikshank (G. A. Buchholz, Germany.)
13,461. ADvERTBIsIO, Caille-Cashmere and E. A.
Jahncke
 13,464. Latcmes for Doors, \&c., H. T. Johnson, Man 13,445. Liohtino the Interior of Ovens, J., J. A., and
W. K. Baker, London. 13,466. Prodecino, ©c., Extreme Temperatures, E Solvay, Liverpool.
13,467. Crimpren's Cradles, F. Pearson, jun., and E. 13,468. Uarbon, G. A. Moore and C. do Cardi, London 13,469. CoLlar STUDS, R. Willoughby, Liverpool.
13,470. Ominubsks, \&C., G. F. Redforn. - (F. Audiger 13,471. Moulds for Castina Type, de., W. Rayment 13, i72. Treating Copal, A. and M. Mackay, London.
13,473. Boots and Shoss, W. R. Lake.-1G. W. Cope land, U.S.)
13,474. Reprating Guns and Rifles, F. Bisson and
M. Runkel, London. 13, 475. SEWING NERDLES, A. T. Boon, London.
13,476. BARED Wre, F. B. W. Malet, London.
13,477. WLEETRTACAL, SW. B, Swirci Boandondon. A. Scott, W. 13,478. ELEctrical Swirci Boards, R. A. Scott, W
T. Goolden, and A. P. Trotter, London.
13,479. BLAckiso, E. Edwards.- $(M$. Schauenberg Belgium.)
13, 450. Hotsting, \&c., Apparatus, J. T. Parlour
London. 13,481. Borrtino Beer, de., G. Barker and A. E.
Daniel, London. 13,482. Propklling Stbamsiups, \&c., H. St. G. Wilkin-
son, London. ,

7th November, 1885
13,483. Ciurn Bungs or Stoppers, J. Wooldridge,
13,484. Pross. PLOUars and Shares, J. Mealor, Ness.
18,486. INCANDESCENT LAMPs, W. Maxwell and T. v.
Hughes, Hughes, London.
13,46. METAL FAsteninge, C. Poters, Birmingham.
13,487. SELF-ROCKING CRADLE BASSINETTE and Cot, E. 13,488. GAs Litghting and Heatino, T. G. Marsh
Failsworth. 13,489. Elevators, T. Hunt, Birmingham.
13,490. Portable Tooth Buerf, H. W. G 13.491. Utilisina Waste Flue Dugt, C, H Birmingham.
13,492 . Winnow Bunns, J. A. Macmikan 13,492. Window Blinds, J. A. Macmeikan, London.
13,493. Concined Bedstrad and MATTRESs, J. B. Row-
cliff, Manchester. 13,494. Curtains and Dress Flounces, J. Edelston, Manchester.
13,495. Ormamentina Velvets, H. Heywood, Man13,496. Bumper for Power Looms, H. Marsden, Man13,497. Fixisa Window Sasmes, R. Hunter, skel 13,498. Compressisiva into Shape Packets of Hackle Gtiss, W. Worrall, Dundee.
13,499. LAMP BURNERS, J. Lind, Liverpool.

13,500. Saddles for Bicyoles, dce, H. Grunwell,
Farsley.
13,501. Stay Busks, \&c., Fasteners, R. H. Wall, London. Busks, de., Fasteners, R. H. Wall, 13,502. OLips or Holders for Filing Papers, \&c., J. S
Downing, Birmingham. 13,503. Hatt, W. H. Akestor and R. R. Kelly, London.
13.504. FLoorcloth, \&c., W. H. Akester and R. R. Kelly, London.
13,50. SUBSTITU
Kelly, London. for Cork, W. H. Akester and R. R 13,506. Treating Paper, te., with Dissolved Nitro
Cellulose, W. H. Akester and R. R. Kelly, London 13,507. Dry Gas Governors, W. Lyon, London.
13,508, METAL Rims for Earthenware, J. W. Johnso and M. W. White, London. Buell, London. 13,512. Rotary Pumps and Enoines, W. Wadsworth, London.
13,513. Controlling the Supply of Gas, D. Orme 13,514. Boardings for Surfages to be Plastered, W.
Heinrichs and K. Wildhagen, Halifax. Heinrichs and K. Wildhagen, Halifax.
3,515. Indicatina Mehanism, \&c., H. W. Rhoads, Halifax.
13,516. Distributina Steam for Heatina Purposes, G. G. M. Hardingham.- P. J. Grouvelle, France.) 13 517. SIZEs of LAsTs, A. Hannibal, London, London.
13,519. SoLDEREMENT for Boors, A. Hannibil. Lond SHEET METAL CANs, E. Edwards, 13519. Solderiva Sheer Metal dans, E. Edwards,
(B. Norton and (B. Norton and J. G. Hodgoon, U.S.).
13,520. ORNAMENTAL JEWELLERY, E. Edwards,-( Anthony, Belgium.)
13,521. RINO-PPINNING, P. Eadie, R. Eadie, and J. Eadie, Manchester,
13,522. MECHANICAL MoTOR, J. J. Defalque, Belgium,
and J Oppenheim and J. Oppenheim, London.
8,523. Boors and Sboss, W. F. Grifith, London
3,524. Heatino Railway Carbiaks, de., W. Glasgow.
13,525. OHArs, J, Wardrop, Glasgow. London. 13,527. Cleansina Bottlles, G. Burges, London.
13,528, Btoppering Bottles, G. J. Chambers, Lo 13,528, JToppering Bottles, G. J. Chambers, London.
13,529. GAs Governor, T. A. Greene and C. M. Walker, 18,520. Gas
London.
 13,531. Waterproofino Woollen, de., Fabrice, H. J.
Haddan 13,532. ADJUstably FAstenina Rails to Slerpris, 13,533. TExTILE FABB
abics, C. D. Abel.-(F. C. Glaser 13, S34. Pkrasmulators, F. Beauchamp, London.
13,535. Artificial Bait, A. M. Clark.-(J. J. Eskil, United States.)
13,56. Irmoatina Attachment for Bottles, A. B 13,537. PICKERS for Looms, D. Roebuck, London.
 Capowell, London.
13,50. Retuan Tune Bolikrs, e. P. Plenty, London.
13,541. Filiterina or Puriytina Water, T. Archer jun., Loudon. London.
18,54., Applyino the Electrio Searcu Lioht to Guns,
 18,545. Umbrellas, Parabols, de., I. K. Mogor
London.
13,546. Loms, F. B. Fischer, London. 13,546. Looms, F, B. Fischer, London.
13,547. LUBrICATORs, J. McL. MoMurtrie, Glasgow. 13,548. AXLE, G. H. Needham, London. Bracks or SUspenders, W. A. Barlow.-(c 13,550. Oprenisa or Closina Windows, W. R. Lake.-
(N. Couland, France.) 13, NSi. Transportise.) Casm, de., W. R. Lake.-(The
Kenney Electrical Cosh Carrier Company, 9th November, 1885.
13,552. Internal Fire-box and Cross Tume, T. Staples, 3,063. Internal Flues of Boilers, T. Staples, Bir 13,564. Rallway Chair Vibration Key-holdpast, R. Barker, Whitohavon.
13,555. DUPE Heald-MAKina Machine, W., J., T., J.
 ford, Manchester.
f,658. Drawisc off, do., Liquids, R. Stanley, Birmingham. London. land. Tricroles, C. J. B. Ward, Rocheater.
13,561. Th. Double Cuain Continuous Elevyators, W. H. 13,603, Tondon. France.)
13,564. Cuin
Lent de., F. D. Bradley and H. Snow,
 13,567. Distribution of GAs, G. Anderson, Durham. 13,568. Mixing TEA, E. Burke, Dublin.
13, 59.9 Sprisa Motors, L. A. Parrock, Birmingham. 13,559. SPRING Motors, L. A. Parrock, Birmingham.
13,570. PRopeller ApERUREs of SHIPs, M. H. Taylo and L. Benjamin, Birkenhead. W. Maxwell and T. V. Hughes, London. York.
13,573. Preskrving Meat, M. Olosset, Paris.
13,574. Rollina Plates, ce., J, Guest, Smet
 8,576. Wrivina Macaines, O. R. Nitsch, London. MAchnvery, J. Briggs, Halifax.
13,578. TenNis BaLLs, W. Sykes and F. Fowkes, Wake
field.
field. Sepparatino, ec., Middlinas, F. Bosshardt. (C. C. Huth, Germany.). Tipping, Liverpool.

Glasgow.
3,582. GUNPO WDER, B. H. Remmers and J. Williamson, Glasgow.
3,588. Heating, de., Apparatus, B. H. Remmer 3,584. Co-actino appargatus for Signals, J. Cock burn, London.
3,585. Motors
Kaselowskers with one or more Cylinders, F Kaselowsky, London.
358. NoN-EXPLosive Mineral Oil Lamp, E. Sund
borg, London. borg, Loncos of SEwaog, A. A. Common, London
3,587. Dirposil
3,588. Polo Stick, F. B. W. Malet, London 15,589. Arranaino the Mins and MIzen Sires Blocks
of Fishina Smacks, dce., W. Sisgons and P. P. White, London.
13,590, Socker for PICKs, \&c., J, Urwin and J, F Barlow, London.
13,691 . Preventina the Entranoe of Wind, dee.,
 Lond Guards for Protectino the Leas, F. H. Ayre London.
13,594. Presses for Rackets or Bats, F. H. Ayres
London. London.
13,595. Artificial, Stones, A. G. Brookes.-( . .

13, 596. Boller FUrNacks, A. Mackie, London.
13,597. GREASE Proor CAEss, M. Rouet, London.
13,598. DISCHARGING WATER from Flushing T P. Winn, London.
13,599. BEATERS, W, Richardson, Manchester.
13,600. SYRINEE, P. A. Newton.-(T. J. Moore A. Warren, United States.)
13,601. HAND TyPO

London 3,602. Mixing Tea, A. E. Jarvis, H. Smith, and E. H. Frannis, ApPLYING GAS Lamps to Pianos, F. J. Harris,
ing 13,604. HAND MINoER, M. Simmen, Glasgow.
13,605. Bottie Stoppers, E. W. Rippin, Lond 13,606. Stereing of Carriages. F. L. Smidth, London
13,607. Telephonio Recivers, de., C. A. Gisborne - (F. N. Gisborne and D. H. Keeley,' Canada.) 13,609. Producing Copres for Lrthooraphy from
Phoroorapas, M. Walker, G. E. Walker, and J. B.
Germeuil-Bonnaud GHorograprs, M. Walker, G. E. Walker, and J. 13,610. Connecting Electric Currents, F. B.
Hawe, London.
13,611. Media for Photographic Development, Imray.-(B. Jacobsen, Germany.). 13,612. Aro Lamps, E. A. Ashcroft, London.
13,613. Facilitating the Usk of Printing Plates, IM
Jaffe, London. Jaffé, London. Motive-power Enaines, J. Y. John
13,614. RoTary Min son.-(V. G. Bell, Jamaica.)
13, L15. Looms for WeAving, A. Wright and E. Firth 13,616. Treatment of Jerusalem Artichore, A. Z Champy, A. N. Champy, and L. P. Champy, London.
13,617. Mowing and REAPING MACHINES, E. Pratt 13,618. Shower Baths, E. J. C. Baird, London.
13,619. Measuring Water, dc., E. Craddock, L. 13,620. Frames of Tricycles, A. E. Briant, London.

## SELEOTED AMERIOAN PATENTS

326,632. Machines yor Making Claw Ends or HAMMER8, J. Dodge, Nevoark, N.J.-Hed
Clainc. -The formation of the matrices in the face of
the roll, or, by preference, the dies thereon, for the

purpose of forming the claw ends of hammers, and
the knives for splitting and dividing the same, substantially as described and shown.
326,748. Grain Drile, John F. Keller, Shepherdstonen, Clai., - - (1) The combination, with a fertilisor-dis-
tributing hoper, tributing hopper, or a regulating silde for cont
the discharge openings, an elbow lever which engages
with the with the regolaning silide, an adjusting screw which
ongages with the elbow lever to adjust the slide , angages with the elbow lover to adjust the slide, and a lever which engages the elbow lever, and operates
independently of the slide adjusting mechanism

## [326.748]


either to increase the area of the discharge oponing or to restore them to the dimensions to which they fortiliser distributor, the combination, with a discbarging mechanism, under the ordinary operation of
which the outfow is continuous and uniform, of a which the outflow is continuous and uniform, of a
means, substantially as described, wheroby the outmeans, substantiany as described, wheroby the out-
flow may be instantly increased in volume, and then
with equal facility and celority may be restored to its with equal facility and celority may
former regulated rate of diseharge.
328,7 regulated rate of diseharge.
Iscron, John Loftui, Albany, N.Y.-Fited Jlaine 17 th, 1885. Claim. - In an injector, the combination of the
injector-body having the four diametrically opposite brunches, the overflow chamber fitting upon the upper
branch, the overflow valve playing upon the upper end of the upper branch, within the overflow chamber, the
suction pipe fitting upon the lower branch, the steam suction pipe fitting upon the lower branch, the steam
plug fitting in one horizontal branch, having a flange pat its outer end bearing against the outer end of the
said branch, and having a said branch, and having a tapering steam nozzle at its
inner end, a feed pipe entering the boiler and secured

to the other horizontal branch, and provided with a plug fitting in the discharge branch, and having a plange bearing against the end of the said branch, a
feduced portion formed with an upwardly pointing reduced portion formed with an upwardly pointing
overflow suction nozze, and a discharge tube opening overnow suthor interior of the said reduced portion, and a
in the
combining tube or plug fitting in the end of the reduced combining tube or plug fitting in the end of the reduce
portion or the dischargo plug, and having a nozzle
pointing into the said portion, as and for the purpose pointing into the sald
shown and set forth.
326,768. Suenrs, Benj. F. McCarty, Rolling Prairic,
Ind. - Filed July 10th, 1885 .
dise $D$, the connections $\mathbf{F}$ F, the shear arm $\mathbf{E}$, the
cutters $G \mathrm{G}^{1}$ and $\mathbf{H}$ and $\mathbf{H}$, the adjustable bar $\mathbf{M}$, provided with the arm N, and the lever K, substantially
vis shown and described. (2) The frame C, the cutters as shown and described. (2) The frame C , the cutters
H and H , the adjustable bar $\mathbf{M}$, provided with arm H and H , the adjustable bar M, provided with arm
N, in combination with the disc D , provided with the offset J, the arm J1, the lever $K$, the connections $F$ F
the pivotted shear arm $E$, and the cutters $G$ and $\mathrm{G}^{1}$, the pivotted shear arm E , and the cutters G and $\mathrm{G1}$,
substantially as shown and decribed. (3) The frame
C , having an aperture ${ }^{\mathrm{Cl}}$, the dise D , the lugs $\mathrm{Dl}^{1}$, the

326,768

offset $J$, the arm $J$, and the lever $K$, in combination with the connections $\mathbf{F}$ F and the shear arm E, sub-
stantially as shown and described. (4) The frame $\mathbf{C}$, having an aperture $\mathrm{Cl}^{1}$, the dise D , the lugs $\mathrm{D}^{1}$, the offset $J$, the arm $J$, the lever $K$, and the gide $\overline{\text { gid }}$, in
combination with the connections $F$ and the shear arm E, provided with the extension $\mathrm{E}^{2}$, substantially as shown and described.
326,804. Blast-F URNace, Fictor O, Strobel, Phila-
delphia, Pa.-Filed April 15th, 1885 . Claim. - (1) In a blast-furnace the combination of
hopper B, having integrally formed therewith the hopper B, having integrally formed therewith the
conduit D in its extreme lower edge and passages $M$ conduit $D$ in its extreme lower edge and passages $M$
within the wall of the hopper and leading from said
conduit to the rim of the hopper, the chimney E , and the pipe L , connecting one of said passages M with the chimney, substantially as and for the purpose set forth.
(2) In a blast-furnace, the combination of the bell A , having integrally formed with it the conduit C , in its
lower edge, and the passage $G$, formed within the wall lower edge, and the passage G, formed within the wall
of the bell and leading from said conduit upward to of the bell and leading from said conduit upward
an outlet near the apex of tho bell, and the passago J,
formed within the wall of the bell and leading from said conduit to the apex of the boll, and the pipe Hi,
secured to the apex of the bell in communication with secured to the apex of the bell in communication with
the passage $J$, substantially as and for the purpose set






 air, and a pipe loading from ono of said openings in
each cavity to a devico adapted to produco $a$ circula-
tion of air, substantially as and for the purpose set forth of air, substantially as and for the purpose set
fo a blat-furnace, the combination of soveral series of flat segmental platos disposed horizon-
tally within the brickwork of the bosh and provided
with cavities, each cavity having two oponing with cavities, oach cavtry having two oponings for the
passago of air, pipes conneeting a plate of one ring passage of air, pipes conneeting a plate of one ring
with plates of the other rings, and a pipe conneeting one polates of the other rings, and a pipe connecting
ong patas with a device for produc-
ing acreuhating of air throush the plates and ing a circulating of air through the plates and connected
pipes, substantially as and for the purpose set forth pipes, substantially as and for the purpose set forth,
(6) In a blast furnace, the combination of a pipe $Q$. soverul circular series of fat segmental plates diaposed
horizontally within the brick walls of the bosh, and
pipes pipes connecting the several circular series of bosh-
plates with tho pipo Q, substantially as and for the
purpose set forth. purpose set forth.

## 326,908. Art or Maring Rairs, William" R. Jones, Braddock, Pa.-Filed July 20th, 1885 .

 Claim.-(1) An improvement in tho art of makingrails, which consists in heating the rail and then cooling, the head more rapidly than the remaining parts
thereof, substantially as and for the purposeddoscribed.

(2) An improvement in the art of making rails, which
consists in pur cially cooling the head of the hated cril consists in par pality cooning the heal of the heated rail
as it comes rom the finishing rolls by contact with a
cooling liquid substantially as and for the purpose
described.

