THE IRON AND STEEL INSTITUTE.
In our last impression we gave an account of the proceedings of the Institute on the two days-Tuesday and Wednesday. Four papers were read on the latter day, and the time left for discussion was taken up by Dr. Siemens and Sir Henry Bessemer, and by a brief reply by Colonel Maitland. In the afternoon the members visited the Woolwich Arsenal. On Thursday morning the discussion on the papers read on the previous day was reopened, Mr. C. Markham being the first speaker. He thought that it was to be regretted that Dr. Siemens and Sir H. Bessemer had made the papers of Mr. Butter and Colonel Maitland a pretext for showing that the Woolwich authorities had not always treated inventors fairly. Mr. Vickers said the remarks which had been made on Wednesday were not in any way personal, but
only described what had been done by Colonel Maitland's
recently written to a number of bridge builders, and found that they knew very little as to the elastic limit of the material used. He had lately caused a number of test pieces to be sent to the Tees-side Ironworks Company's works to be tested for this purpose; but the results were not yet made known. Mr. Head referred particularly to the strain at which permanent set, as indicated by accurate experiments and minute readings, seemed to take place, and not so much to the strain at which destructive extension commenced. The latter is the strain always taken to be the elastic limit for structural purposes, and we may remark that unless the experiments to be made for Mr. Head are conducted with great accuracy and care, very little trustworthy information will be obtained as to what we may call incipient permanent extension, as indicated by Professor Kennedy's experiments, and some others that had preceded his, by Mr. E. A. Cowper.

Mr. Chas. Cochrane said he had found the elastic limit
they had received at the hands of the Woolwich authorities. He had made some experiments on hardening steel in oil, and had found that with some steel it was destructive. Hardening in oil put the greatest possible amount of work on the steel in the least possible time. The outside was cooled and contracted in a liquid not a good conductor, while the inside, unable to get rid of its heat, resisted the contraction of the exterior, and thus caused great final internal strains. He thought that a rather high ductility was of more importance than great ultimate strength, and as the highest tensile strain was accompanied by lower ductility, great ultimate strength was not a desirable quality for steel to be used for guns. The test pieces used at Woolwich were, he thought, much too small -mere toys-and gave an untrustworthy and too high a result. He compared the Woolwich system of placing a comparatively hard tube inside wrought iron rings of material which would only carry at most 22 tons per

LARGE PLANING MACHINE IN MESSRS. MAUDSLAY, SONS, AND FIELD'S WORKS.-(For deseription see page 292.)
predecessors. He said that the Vickers steel referred to materially modified was made in furnaces wiemens-Vickers or Vickers-Siemens' furnaces. In 1862 some 20 -pounder guns of solid steel were sent to the Arsenal, and tested with service charges of powder and shot, commencing with 20 lb ., and increasing by that quantity up to 200 lb . Three guns burst, one was slightly injured, and two uninjured. In one gun the permanent expansion was 0.008 in ., and another 0.0125 in . Though such good results were obtained, it was more than ten years before they received any orders for their steel for such purposes. Mr. J. Head referred to that part of Mr. Butter's paper which described the gun carriages built up of plates and angle iron as better than those made of fewer pieces by the use of large channel and other rolled sections, and elicited the fact that the iron was in both cases of the same quality, which showed that the built-up structure was much more capable of elastic flexure than the solid structure. He also referred to the importance of ascertaining the elastic limit of materials employed, and to the low limit which Professor Kennedy's recent paper read before the Institution of Mechanical Engineers had shown to be common. He was interested in this subject, and had
in Staffordshire iron to be as low as from 6 to 8 tons, and in best Yorkshire iron lower than this. With respect to often impossible to carry them out. Testing and inspection became almost a personal matter, as to whether the material should be accepted or rejected. Such breaking loads as 27 tons, which were mentioned in one of the papers, were perfectly nonsensical, and could not be fulfilled under any circumstances.
Mr. I. Lowthian Bell remarked that Col. Maitland had failed in the historical part of his paper, but he agreed to a great extent with the caution shown by the authorities in the adoption of steel, for it was not adopted very rapidly outside Woolwich Arsenal.
Mr. Snelus, referring to Col. Maitland's paper, said that the figures therein given showing the great difference in the strength of different parts of steel ingots, remarkably Joseph Whitley said that many years ago he had made steel tires solid by having "neither top nor bottom to the ingot," the tire ingot moulds being made to revolve at a speed of about 2000 ft . per minute.
Mr. D. Adamson thought Sir Henry Bessemer and Dr. siemens were right in calling attention to the treatment
square inch, as like covering them with shoddy. He could not see why the diameters of the Woolwich guns should increase by such great jumps, for it was quite certain that the pressures to which they were subject by the powder gases did not decrease from breach to muzzle by jumps which would warrant such sudden changes in the thickness in the reinforce rings. He was of opinion that steel was much improved by the Whitworth process of compression, and would be by the stirrer described by Mr. Allen.

Mr. E. A. Cowper said with respect to specifications prepared by civil engineers, and especially some Great George-street engineers, that absurd conditions were stipulated. He had lately seen cold blast iron stipulated for gas and water pipes, but of course the contractors had ignored it. In the early days of steel at Woolwich a 3in. gun was tried with four shots without bursting it. It was then placed upon a piece of 3 in . shafting, so that the gun became the projectile. The gun then burst and the steel gun was condemned.
M. Gautier considered Whitworth's process of compressing steel valueless, for it did not increase the specific gravity. In France, he said, the A tubes for guns were bored out by cutting an annulus out, thus leaving a solid
core instead of cutting the whole out in shavings, as was done at Woolwich
Mr. Butter, in replying to the discussion as far as it eferred to his paper, said it was true that Dr. Siemens had suggested the use of the hydraulic compressor, but what he had stated in his paper was that the necessary details for the apparatus were worked out in the department into a practical shape. He might, however, inform Dr. Siemens that shortly before he had made his suggesion to the Woolwich authorities, they had received a proposition for a hydraulic buffer from a Mr. Munroe, of Devonport. Referring to the specification question, he said that the specifications now issued only contained conditions which could be practically and fairly worked to, and all these conditions now laid down had to be fully carried out. The building-up system for gun carriages had been adopted in preference to making them out of solid bars, as was done in Germany, because they thereby attained much higher elastic flexure ; one of the carriages on their system having stood over 2000 rounds without being injured, while one on the German system had taken a permanent set of 2 in . after the sixth round. When they first commenced the use of steel, they carried out a large number of experiments at Mr . Kirkaldy's, and nearly drove him mad by insisting on ascertaining where the permanent set commenced, a matter which occu pied a great deal of time, so that Mr . Kirkaldy came to the conclusion he had made a remarkably bad bargain with the authorities in this matter. They aimed to get the ame proportion of elastic limit in their steel structures a was found lin oak, where that hol almost corncided wit the point of rupture. It may be here remarked that it is not that the Woolwich authorities are able to get a highe elastic limit by one method of construction than by another but by one method a greater range of elastic flexure may e obtained than with another. Mr. Butter gave some rather surprising information with regard to rivets. They had found, he said, that B B B Staffordshire was th most suitable to their requirements as long as they used ron only, but they had now found Siemens steel to be fully 20 per cent. stronger than the iron, besides having the important advantage of not being so easily spoiled by overheating as iron, and they also observed that the lowe the quality of the iron the more it deteriorated by overheat ng. Steel rivets would not do if rivetted over cold, they must be rivetted hot. At present almost three-fourths of al the material they used was iron, and one-fourth steel ; in field gun carriages, where weight was of importance, they lways used steel; but in garrison gun carriages, wher weight was not important, they used wrought iron. H eferred to a carriage axle shown in one of the diagrams, and of which a specimen was placed in the lobby of the neeting room, which was an exceedingly difficult forging, being very thin in the middle, with thick heavy ends such a forging, if made in best Yorkshire iron, would most probably break owing to the jar, but with Siemens stee hey had not had a single fracture, although they had been most severely tested by travelling over very rough round at Dartmoor
Mr. Thomas, in replying to the remarks made on his paper, said Mr. Bell and Mr. E. Riley were both correct eference to the following analyses of the rails previously referred to by Mr. Bell

	C.	S_{1}.	S.	P.
Acid process	0.434	0.065	0.091	0.053
Basic process	$0 \cdot 451$	0.094	$0 \cdot 095$	0.053
Acid $\} \begin{aligned} & \text { Sheffield } \\ & \text { Darlington }\end{aligned}$	0.338 0.457	0.055 0.047	0.090 0.057	0.056 0.047
\int Bolckow \& Vaughan	$0 \cdot 521$	0.083	$0 \cdot 107$	0.053

Mr. Riley had spoken of steel made on the Continent which was much purer, particularly in silicon. Messrs oled all for economical reas ans, dvantage when the steel was used for rails. He said he dantage when the steel was used for rails. He said he he process, but had specially omitted introducing that question into his paper from motives of expediency that propriety, as he considered it was much better for his eaders to judge for themselves from the facts mentioned in the paper. This concluded the discussion.
It was then announced that a paper on certain physical ests and properties of steel, by Mr. E. W. Richards, would be next read. So large a number of the member and visitors, however, immediately showed that they had had enough of papers, by getting up to leave the theatre hat the president, remarked that there was no eason why more papers should be read if members were rotes of thanks to the authors of the papers, which were otes of thanks to the authors of the papers, which were rospity seconar wher ospitable manner in whe ute, and also to the War-office and South Kensington uthorities for the facillies they had given them for seeing he establishments at Woor holding the conversazione. The Local Reception Com res, the parts they had taken in maling the meeting so he parts
On Thursday afternoon, after luncheon at the West minster Palace Hotel, a visit was paid to the Enfield mall-arms factory, which we described in our impression of the 30th September, and also to the Great Eastern Railway Works at Stratford, which we described in our last mpression. On Thursday evening the Local Committee gave a conversazione at the South Kensington Museum, which was well organised, and, considering the very nclement weather, well attended. The visitors wer received by Sir H. Bessemer, Dr. Siemens, and th president.
On Friday last an excursion wasmade by special train from Victoria at 9 a.m. to the Newhaven Harbour Works, and to the locomotive works of the London, Brighton, and

South Coast Railway Company's Works at Brighton. The Harbour Works we described and illustrated in The Engineer for the 13th December, 1878, and give below described in our impression of the 7 th inst.

THE NEWHAVEN HARBOUR WORKS

since we described the Newhaven Harbour Works a great deal of the work has been carried out. The works are of great importance, and are interesting as the work of a private company, though the largest portion consists of a long breakwater, a work which has probably never efore been attempted by other than national funds. It is believed that the Newhaven harbour and docks will constitute one of the most important sources of traffic for the London and Brighton Railway, as Newhaven is the earest sea-port to London, and is in a direct line with London, Dieppe, and Paris. Already the London and Brighton Railway Company possesses a fleet of 11 steamers with a daily passenger service between Newhaven and Dieppe. Although the sea passage occupies about four hours, which is about double the time occupied by the shortest passage, though much less than by that to Antwerp, Rotterdam, or Flushing, the route is greatly

PLAN OF NEWHAVEN HARBOUR WORKS.
avoured, especially as it is much cheaper than by Dover and Calais. The works are being executed under the direction of Mr. F. D. Banister, M.I.C.E., engineer to

SECTION OF NEWHAVEN BREAKWATER.

the London, Brighton, and South Coast Company. The following are given as the chief features of the harbour works :- (1) A breakwater, about 1000 yards in length, to we run out seaward from the shore at Barrow Head, west-
of the harbour from the prevalent south-western and southern gales. About 300 yards of this breakwater are now completed. (2) The extension of the two entrance piers and widening the entrance from 150 ft . to 250 ft ,

Mill Creek and the Eastern entrance pier, affording addi tional quay space-about 600 yards in length. It is intended to widen the harbour opposite this new quay, and deepen it to 12 ft . at low-water spring tides. (4) The construction of a dock, with entrance lock and gates, on the marsh land between the harbour and Catt's Tide Mill with a water area of 24 a mile in length. (5) The construction of durable sea walls to protect the foreshore and works, ex tending from the break water on the west to Catts Mill on the eas (6) Dredging the whole of the existing harbour to uniform depth of 6 ft . a low water spring tides, and the entrance and ne portion up to the Mill Creek to a depth of 12 ft . and also the dredging by the breakwater to depth varying from 12 ft to 18 ft . at low-wate spring tides. In connec tion with these improve ments, all the necessary wharves, landing-stages, tramways, cranes, sheds and all appliances for carrying on a large trade are being provided. The breakwater at Newhave is being constructed en tirely of concrete, and se walls of the same materia are being constructed to protect the foreshores and to lengthen the entranc piers of the harbour and widen the entrance. The breakwater is founded on bags of concrete weighing each 104 tons, and de posited from hoppe barges towed out and each bag. The concrete consists of four of shingle, three sharp coarse se sand, and one of cement When the bed is thus formed, the superstruc ture, which is also o as a monolith, the in terior concrete beingfive shingle, three sand, and one cement, while ex terior is three shingle, two sand, and one cement The concrete is mixed by machinery patented by with A. . E Cry tons in twenty-five minutes It consists mainly of thre tons in the whels of such a thickess that the spaces between the spos, being fitted with hinged bottoms form measuring boxes of the required capacity. One of form measurng boxes of the shingle, and the next the sand, and as they revolve they drop their contents into the sand, and as where they become mixed together and with the cement, which is delivered mixe the sam somparts by areeper The into the sal jects out from the sta un which the machinery is jects out from the stage, upon wich the In this ovinder is a ser bater being Idded at the added at the upper end, and the without an unnece thar charge of water, which is an important point for concret to be of 48 ft of water The method of construction adopted has the of water. little plant ${ }^{2}$ be mives a very perfect double little plant. The machie give a mixing-dry and wet-latter being about fifteen times steam hopper barge 100 tons in 25 minutes. It is designed stew hopper to in 20 minutes, but one feeding platform however to do this 20 of only is now used instead of the A second placom is be brought into use when the works are reconoing after the winter. The ony dinculy is in bringing up materials to the machine rapidry eno co be 600 tons yet obtai The a cnough to enough to employ more hopper barges if from othic
making concrete for the superstructure has also been designed by Mr. Carey. It is a light portable machine, intended to follow its work and deliver direct into the
timber framing, within which the superstructure is built. t is designed to produce an output of 70 yards concrete per hour.
The position of the breakwater and other works is well shown in a perspective plan, published in The Engineer for the 13th December, 1878, but it may also be gathered from the small plan on the preceding page.
The breakwater has the section shown, and is a massive structure, which received, as far as completed, a considerable testing in the severe gale and heavy sea of the night of the 13 th and morning of the 14th. The sea bottom t the shore end of the breakwater is 2 ft . above low water. At the extremity of the breakwater it is 18 ft . below low water. The roughness of the weather on Friday made it impossible for the visitors to inspect the piers and breakwater and the method of construction from barges, as they would have done if it had been fine. It was difficult to keep a footing on shore, and crowded barges would have been positively dangerous, and indeed could not have been used for any purpose in the heavy surf which was running. The dock will be constructed under considerable advantages, as much of the land is below mean sea level, and the excavated material will be sent away as ballast. One of the redgers used was constructed by Messrs. Simons and Co., of Renfrew, and is capable of carrying 500 tons of spoil to sea per trip. In consequence of the he construction of the breakwater will soon be stopped for the winter months.

PATENT LAW REFORM

DURING the recent meeting of the British Association a report was read in Section G which we publish. This is the report of the
committee, consisting of Sir F. J. Bramwell, Dr. A. W. Williamon, Professons in Wir Wiliam Thomson, Mr. St. John Vincent Day, Mr. Abel, Captains, Douglas Galton, Mr. Newmarch, Mr. E. H. Carbutt, Mr. Macrory, Mr. H. Trueman. Wood, Mr. W. H. Barlow,
and Mr. A. T. Atchison, appointed for the purpose of watching
and reporting to the Council of the British Association on Patent Levislation. The report states that the Bill of this session 1881 ,
by Mr. Anderson, Mr. Brown, Mr. Hinde Palmer, and Mr. Broadurst, was read and considered.
This Bill which as it stands is a mere sketch, and not likely to prove a working piece of legislation, is identical with the Bill
introduced last year by the same gentlemen, and referred to in the last report-B. A. Report, $1880, \mathrm{p} .318$-of this committee. It
was, however, read a second time in the House of Commons and subsequently reached a further stage than in 1880 .
The Bill proposes the appointment of a Chief Commissioner and assistants. It would reduce the f
tion to 10s., and on sealing to $£ 1$.
It extends the period of provisional protection to twelve months. It gives a patentee power to add (apparently by way of supple The committee certainly approve the proposal to appoint paid
They think the proposed reduction in fees much too large
They approve the principle of letting a patentee amend his patent, but it would be necessary that proper provision sh.
made. The clause in the Bill would be quite unworkable.
The committee have also to report that a carefully prepared Bill
had been published by the Council of the Society of Arts for dis cussion, with the view of its being introduced into Parliament next
year. he Society of Arts' Bill are shown in the following memorandum 1881:-
Commissioners of Patents.-The Patent-office would be removed from under the charge of the present Commissioners, who are the
Lord Chancellor, the Master of the Rolls, and the law officers. Lord Chancellor, the Master of the Rolls, and the law officers.
Three Commissioners would be appointed on account of their Apecial knowlication for. Letters Patent. - Hethod of granting same. - The method of apppication for a patent would be somewhat as follows -The applicant would file a provisional specification, which would see that the invention was proper subject matter for a patent;
hat the specification fairly described the invention, and that it was generally intelligible and properly drawn. They would not inquire generally meltilitibe and properly drawn. They would not inquire
int
be shovelt to thility. They would report, and their report would be shown to the applicant before being seen by the Commissioners.
The applicants would then have an opportunity of conferring with The applicants would then have an opportunity of conferring with
the examiners as to any required alterations. Provisional protection would be granted immediately on receipt of the application, and would last for nine months. Before the end of that time the applicant would be required to file a complete specification, fully
describing his invention. This would be referred to the examiners and treated in the same manner as the provisional specification.
The applicant would be enabled to amend his specification in accordThe applicant would be enabled to amend his specification in accord-
ance with the recommendation of the examiners, and on his doing aplication was in res granter application was in respect of matters which could not properly be
nade the subject of a a patent, and if the applicant still persisted, a patent would still be granted, but the ob
would be endorsed upon the specification.
Duration of Patent.- The duration of letters patent would be nucreased to seventeen years-the duration being as now contingent
upon the payment of fees at or bofore the expiration of each period.
Fecs. The fees would be half the present amounts, namely:-

Fee for provisi Fee for grant
 Fee or grant ö o fouth $\ddot{\text { Fear }}$ Fee at expration of for Fee at expration of eighth year

Existing System.- Under the present law there is practically no
examination whatever. Applications for patents are referred to examination whatever. Applications for patents are referred to
one of the two law officers, who reports whether a warrant may be issued for the granting of letters patent. The only point upon
which the law officer decides is whether the invention is proper subject-matter for a patent, i.e., whether it comes within the
definition of the Statute of Monopolies-21 Jac. I., cap. 3-of eing a new manufacture within this realm. The complete speciata lano, by anyon which the patent is really granted, is never examined
Subject Matter.- The following is the definition of " subjet matter" adopted in the Bill:-(a) Any manufacture or any
product not being a natural product; ; (b) Any machine or any neans of producing any manufacture, product, or result; ; (c) Any process or methicd of producing any manufacture, product, or result;
(d) Any part of a machine, means, process, or method of producing ny manufacture, product, or result, At fact, the question of subject matter depends wholly on the deci-
Opposition.-Under the proposed Bill, opposition to the granting
of letters patent would be limited to
of letters patent would be limited to persons who could state that
the applicant had obtained the invention from them by means of
fraud. Under the present law any person can oppose, the general ground of opposition being that the person opposi
patent for the same or nearly the same invention.
Amendment.-The Bill provides that the inventor should be Under the present system this power is very restricted.
Prolongation.- It is proposed to continue the system of pro-
onging patents in special cases, the Bill being framed in such a nanner as to give greater facility for this than now exist,
Under the present system, prolongations are granted by the Priv Council, and are considered a matter of special favour, whereas the effect of the newsidill would, it is hoped, be to give them as a
right to any inventor who could show just cause for having his right to any inventor who could show just cause for having his
privilege prolonged, on the ground of his not having had sufficient reward, or the time having been insufficient to enable him to bring is inventionimto action, or similar grounds. The period for whic years which the Bill would add to its original term.
Obligatory Licences.-The Bill would compel a patentee to gran cences in cases where it could be clearly shown that the inventio Was not being worked in such a way as to supply the reasonabe
vants of the public ; but the clause has been so worded as to pre the rights of the over what is considered to be his own private property.
Trial of Patent Cases. The Bill would provide for the trial of
patent cases in an entirely new manner. They would be tried, in patent cases in an entirely new manner. They would be tried, in
the first instance, before one of the Commissioners, and an appeal the first instance, before one of the Commissioners, and an appeal
would lie to the whole body. The Commissioners would have power to call in assessors, and would hame such other powers as would greatly simplify the patent litigation, and would prevent the enormous expense which is now incurred by having to bring complicated questions of lav and fact before a jury, won are pro-
bably ignorant of the scientific or mechanical considerations preparation of models, which are only necessary to illustrate mechanical questions to persons unaccustomed to deal with such
questions. For experts in such matters drawings would be suffiquestions. For experts in such matters, drawings would be suffi-
cient ; indeed, an engineer would generally much prefer proper cient; indeed, an engineer wochide
drawings to any model of a machine
Anticipation.- It is proposed that a mere publication more than thirty years old, unaccoed sufficient to invalin the thirty years shject of this is to remove the hardship, which now not infre quently occurs, of a patent being invalidated, or a patentee being
put to great expense in order to prove his claim, by the discovery of some ancient and probably incomplete description, a description time it was made for want of necessary appliances to carry it into effect.
Patents to Forcigners.-It is proposed that patents should be granted to foreigners, or persons resicent abroad, on precisely the resident in the United Kingdom they are granced to British subject to British subjects in respect of communications from abroad
 not being, in any sense, the inventor. In practice, patents for patent agents, whose clients are resident out of the taken out by the patent, as soon as it is taken out, is assigned to the real foreign inventor. Cases of injustice have occurred through the action of this system, in which a patent had been granted to a person who
had no moral right to it, but who anticipated the original inventor had no moral right to it, but w
in obtaining the English patent.
Effect of Foreign Patents on Enolish Patents.-At present a
ish patent lapses at the expiration of any foreign patent take out by the same inventor for the same invention. It is proposed
in the Bill that English patents should not in any way be affected by foreign patents.
to wat they may be re-appointed in order to watch the progress of this Bill through rariament, as well as which may be introduced
at the commitstee have not expended any of the sum of $£ 5$ placed grant renewed.

\longrightarrow

ON THE ECONOMY OF METAL IN CONDUCTORS OF ELECTRICITY.*
Tric most economical size of the copper conductor for the elec-
 the performance of mechanical work, would be found by comparing
the annual interest of the money value of the copper with the alue of the energy lost in it annully in the heat generatei in it by the electric current. The money value of a stated amount
of energy had not yet begun to appear in the City price lists. If E10 were taken as the par value of a horse-power night and day - it might be very much greater. or very much less-according to nces, it was easy to estimate the right quantity of metal to be put into the conductor to convey a current of any stated
strength, such as the ordinary strength of current for the powerful are light, or the ten-fold strength current--of 240 webers-which he-sir William Thomson-had referred to in his address as prac-
tically suitable for delivering 21,000 -horse power of Niagara for 300 miles from the fall. He remarked that-contrary to a very prevalent impression and belief-the gauge to be chosen for the con-
ductor does not depend on the length of it through which the ductor does not depend on the length of it through which the
energy is to be transmitted. It depends solely on the strength the current to be used, supposing the cost of the metal and of a unit of energy to be determined. Let A be the sectional area of metal ; and c the strength of the current to be used. The energy converted into heat and solost, per second per centimetre, is $s c^{2} / \mathrm{A}$
ergs
Let p be the proportion, of the whole time during which, in ergs. Let p be the proportion of the whole time during which, in
the course of a year, this current is kept flowing. There being $31 \frac{1}{2}$ million seconds in a year, the loss of energy per annum is

$$
\begin{aligned}
& 315 \times 10^{\circ} \mathrm{psc}_{\mathrm{c}} / \mathrm{A} \text { ergs } \\
& \mathrm{E} \text { be the cost of an erg, is }
\end{aligned}
$$

The cost of this, if E be the cost of an erg, is
$31.5 \times 10^{6} \mathrm{psc} \mathrm{c}_{2} \mathrm{E} / \mathrm{A}$
Let V be the money value of the metal per cubic centimetre. (2) The
cost of possessing it, per centimetre of length of the wire, at 5 per
Hence the whole annual cost, by interest on the value of the metal Hence the whole annual cost, by

$\frac{1}{20} \nabla \mathrm{~A}+\frac{315 \times 10^{6} p s c^{2} \mathrm{E}}{4}$

The amount of A to make this a minimum-which is also that
which makes the two constituents of the loss equal-is as follows:-

$$
\mathrm{A}=\sqrt{ }\left(31 \cdot 5 \cdot 10^{6} p s c^{2} \mathrm{E} / \frac{\mathrm{V}}{20}\right)
$$

Taking $£ 70$ per ton as the price of copper of high conductivity \&.00007 as the price of a gramme. Multiplying this by $8 \cdot 9$-the
specific gravity of copper-we find, as the price of a cubic centimetre,
$\mathrm{V}=£ \cdot 00062$
and the assumption of $£ 10$ as the par value of one horse-power day
and night for $36 \bar{\sigma}$ days gives, as the price of an erg, $£ 10 /\left(31 \frac{1}{2} \times 10^{6} \times 74 \times 10^{8}\right)=1 \quad$ of
Supposing the actual price to be at the rate of $e \times £ 10$ for the Supposi
horse-p

$\mathrm{E}=\frac{e}{23 \times 10^{14}}$ of $£ 1$
 (8)

Lastly, for the specific resistance of copper, we have (9) Using (8) and (9) in (5) we find,

$$
\begin{aligned}
& \text { mee of copper, we nave } \\
& \mathrm{d}=1640 .
\end{aligned}
$$

(9)
$\mathrm{A}=c \sqrt{ } \frac{63 \times 10^{7} \times 1640 \times p e}{23 \times 10^{15} \times \cdot 00062}=c \sqrt{ } \frac{p e}{1.38} \quad$ (10) Suppose, for example, $p=5$-that is, electric work through the
conductor for twelve hours of every day of the year to be provided conductor for twelve hours of every day of the year to be provided
for-and $e==$. These suppositions correspond fairly well to ordinary electric transmission of energy in towns for light, according $\mathrm{A}=c \sqrt{ } \frac{1}{27 \cdot 6}=\frac{c}{5 \cdot 25} \fallingdotseq{ }^{-2} 19 . c$.
That is to say, the sectional area of the wire in centimetres ought to be about a fiftieth of the strength of the current in webers:
Thus, for a powerful arc-light current of 21 webers, the sectional area of the leading wire should be 4 of a square centimetre, and therefore its diameter-if it is a solid round wire-should be 71 of
a centimetre. If we take $e=\frac{27}{27}$, which corresponds to $£ 1900 \mathrm{a}$ year as the cost of 5250 -horse power-see Presidential Address, Section A-and if we take $p=1$, that is, reckon for continue
night and day electric work through the conductor, we have--

$\mathrm{A}=\frac{c}{\sqrt{381}} \doteqdot \frac{c}{19 \cdot 5}$

and if $c=24, \mathrm{~A}=1 \cdot 24$, which makes the diameter $1 \cdot 26$ centi-
metres, or half metres, oven at Niagara it is not probable that the cost of an ery can be as small as $\frac{1}{2} \frac{1}{2}$ of what we have taken as the par value for
England ; and probably therefore a larger diameter for the wire than half an inch will be better economy if so large a current as to whed by it.

The LandsLip Catastrophe at Ela has caused attention to be been previously y . which overlooks Schleitheim, in Schaffhausen, shows it to be in a very precarious condition. The cantonal Government has ordere should the earth slip become imminent, the people of the valley timely warning.
The Institution of Civil Enginerrs. -This Institution has just issued to its members of all clases the fourth and concluding
part for the current year of its "Minutes of Proceedings" being the 66 th volume of the series. This has been accom-
panied by a subject-matter index to fifty-ight volumes of the wroceedings, and to three volumes of the "Transactions," which been discontinued. The papers in extenso, with the discussionsoral and written-upon them, as well as other selected and abstracted papers, being given in the publications in their present
form. The first meeting of the next session will be held on the sth of November, and the meetings will be continued weekly until
the end of May, with a short interval at Christmas, as prescribed by the bye-laws. The annual general meeting, o receive the ensuin or the outgoing Council and to elect the officers for the During the recess the Institution has been put in telephonic communication with the Exchange system of the United Telephone
Company, and its registered telegraphic address is "Institution,

Hydraulio Machinery on Board Ship.-Messrs. Brown, Bros, and Co., of Cannon-street and Edinburgh, have recently
fitted up the steamship Quetta with the most elaborate and plete set of hydrauiic machinery ever put into a ship. A pair of engines capable of working up to 100 -horse power is employed to maintain a constant water pressure of 700 lb . on the square inch, kept under a steam accumulator, and from the accumulator pipes
are led to all parts of the ship where power is required. The Quetta belongs
of 3302 tons driven by four pendulous hydraulic cylinders, collectively of 50 -horse power. A similar but less powerful capstan is placed at the other extreme end of the mains on the poop. The ship is
steered from the bridge amidships by a wooden tiller similar to that of a small yacht. By moving the tiller, a slide valve is
opened, which is in connection with the hydraulic rams and cylinders aft. When the valve is opened to either port or starboard cylinder, a corresponding movement of the rams and rudder
takes place, strictly controlled, however, by mechanism which pre vents the helm from running away from the steersman. Th rudder itself is connected with the rams in such a way that the over, when this leverage is, of course, most needed. A hydrauiic cylinder with a similar arrangement of valve and automatic con-
trolling reversed or stopped in three main engines, by which they and The water-tight door of the shaft tunnel is also opened and closed by a hydraulic cylinder, the valve of which is near the deck, so
that in the event of an accident this door can be instantly closed. In the stokehole elose by is fixed a hydraulic hoist for, lifting the ashes. The most valuable application of the Quetta's hydraulic
machinery is to the loading and unloading of the cargo. It may be mentioned that at Colombo, in the course of the single voyag which the Quetta has already made to Calcutta and bacik, 1250
tons of rice were discharged in ten hours. On the Quetta's deck there are four hatches. Those at the extreme ends fore and aft are fitted with single hydraulic hoists, the two main hatche capable of raising a ton and ansts. Lallath of through a height of 7 toft.
at a speed of 5 ft . per second. The hoists consist of hydrunt rams, fitted into cellinders, and working through stuffing
boxes. Each ram is connected to three chain pulleys, while the other three are carried by the cylinder base-plate.
foot of rise in the ram raises the load 6 ft . The water is admitted to the cylinder by a slide-valve worked by a single lever, whereupon
the load is lifted ; while, by reversing the lever, the water is ment prevents the load from running from one extremity to the other, through the unskilfulness of the driver, and thus risking Camage to the cargo. A wholly inexperienced man can thus work
the apparatus without any danger. The hoists will discharg cargo at the highest speed of 5 ft . per second and be brought to a state of restages of the Quetta's hydraulic machinery,
the advanir of the advantages of the Quettas hydrauic machinery, a pair o
engines in one place do, with no nise and half the consumption of
fuel, the work usually performed by, perhaps, a dozen donte engines; while usuatly performed by, perhaps, a dozen donkey 40 a voyage is saved in wear and
tear. The increase of speed obtained in loading and discharging
the cargo practically insures a quicker voyage. The rapidly-working
machinery necessitates double gangs of men in the hold; but, thought the hands are more numerous, they are paid for a shorter
time; and the cost of labour per ton of cargo is thus less than usual. The prime outlay is considerably greater than under the
ordinary system; but it is calculated that in at most three years

VERTICALSLOTTINGMACHINE.

In our impression of the 7th inst., we shortly described the machinery in Messrs. Maudslay, Sons, and Co.'s Works, in view of the visit which some of the members and visitors of the Iron and Steel
Institute would probably pay them. We spoke of some new tools of large size, of which we them. We spoke of some new namely, a screwing machine to screw up to $5 \frac{1}{2} \mathrm{in}$. at one cut. We now give illustrations of two other machines, prepared from photographs furnished us by the makers, Messrs. Smith, Beacock, and Tannett, of Leeds. The largest of these machines is the vertical and horizontal planing machine shown on page 298 This machine planes vertically 17 ft . 6 in ., and horizontally 21 ft .; the one motion can be changed for the other in half a minute. The work is secured to a base plate, which is so fastened to the framing of the machine that the strain of a large cut at any part of this large surface is effectually resisted. The various at right angles to each other, so that the bed-plated and secured cylinders of a very large engine have been put together from this machine with the accuracy which must be obtained to satisfy Messrs. Maudslay, Son, and Field. It will be seen that while one job of moderate size is being planed, another may be fixed ready for the tool to come to it, and the loss of time in setting and re-setting, which ordinary planing machines incur, is in this machine avoided. The finishing cut, which may be as much as 1_{1} in. at a stroke, is put on by hand, but we understand that Messrs. Smith, Beacock, and Tannett, now include a patent broad feed which obviates dependence on the attendant. This Another machine for dealing with large forgings is the slotting machine with a 4ft. stroke, illustrated above. The verti
cal slide of this machine is adjustable, so as to deal with the various thicknesses of the work to great advantage. The slides which carry the table of the machine are worked by double One great advantage of this machine is that the workman can change the stroke from 4 in . to 4 ft , in a few seconds.
A very fine tool which has recently been fixed is a self-contained vertical cylinder boring machine, in which the attendant from below can raise and lower the socket on the bar at a quick speed, or with a feed, or without for facing, while the bar itself lifts up out of the way to put in or take away the work. There are two screws to the bar to secure steadiness and accuracy. A special treble-geared lathe, 25 in . centre, which we have not noticed, is for dealing with shafting up to 24 in . diameter, with four tools, each capable of cutting a 4 per inch feed, takes in haft in of wrought iron, and the teeth are cut from the solid. There is also large universal double boring, drilling, and tapping machine with two heads, each having a range of 10 ft and 15 ft , apart This is a very fine tool, and most useful for drilling the holes in condensers and bed-plates, and for drilling and tapping the holes for and for screwing in the studs of cylinders. There are also two of Barrow's patent screw-cutting and turning machines, one for work up to $3 \frac{1}{2} \mathrm{in}$. diameter, and the other up to $5 \frac{1}{2} \mathrm{in}$. diameter, which we noticed in our last impression.
These and other tools are covered with a very powerful travelling crane by the same makers, to lift up to 40 tons, and matically as the crane passes, rising again, and locking into
position either way in a very effective manner, swinging bearers being dispensed with. This crane is driven by a couple of small cylinders, 5 in. bore and 10 in . stroke, by Messrs. Tangye Brothers.

THE PARIS ELECTRICAL EXHIBITION.
No. X.

The Italian section has been conducive to surprises, We have taken considerable credit to England as having been the home of Cooke and Wheatstone, the pioneers in telegraphy. Italy, however, shows that her children had in 1837 produced better work than the cumbrous fiveneedle instrument of these inventors, and in the more modern development of the application of electricity to electric light purposes, Italy again shows that modern magneto-electric machines were ins 660 sen trat sunny land. Dr. Antonio Pacinoti 1860 constructed for the physical and technological cabinet of the University of Pisa an apparatus which has attracted probably more description of this machine was printed in June, 1864, in description of this machine was printed in June, 1864, in the Italian scientific paper, I Nuovo Cimento. Of course the designers of the parious dynamo and magneto-electric mach that their machines a some point with that f cally some point with that of Pacinotti or any other inventor. not hesitate to openly remark that they could see no

SMITH'S DYNAMOMETER.

difference in principle, and hardly any in detail, between the machine of Pacinotti and some of more recent construction. Whether this arose from a too cursory examination and comparison is not for us to say; the decision will some day or other be pronounced legally from the tribunals of the country. Meanwhile it will need little elaboration of detail to enable each reader to judge for himself. Among the most important machines of this description in the Exhibition are those of Pacinotti, Gramme, Schuckert, Brush, Weston, Bürgen, Hopkinson, Andrews, Juingerson, Meritens, Edison, Siemens, Jablockkoff, Ball, and Giilcher.
The machines of Pacinotti are models, the others are on a working scale. We do not know that Pacinotti ever constructed a working machine, but the question is more one of principle than of size. In his description, as a special feature of the apparatus, he pointed out the pecu-

PACINOTTI'S DYNAMO MACHINE.
iron ring, in which, contrary to the case with the armatures previously in use, the magnetic poles did not remain stationary at a particular point in the iron, but moved, so possible different positions. assuming in it successively all had the shape of a spur wheel of sixteen teeth, and was firmly secured to the axis of the machine by means of four strips of brass MM. Small wooden wedges W W were placed upon the teeth of the ring, and the space

PACINOTTI'S DYNAMO MACHINE.

formed between two successive wedges filled up regularly with insulated copper wire. These spools were all wound in the same direction, and the terminal end of the one was soldered to the beginning of the one next to it, so that the whole system of sixteen spools virtually formed a single
coil of wire surrounding the ring in a regular manner and coil of wire surrounding the ring in a regular manner and
returning upon itself. Wires were soldered to the separate returning upon itself. Wires were soldered to the separate
points of junction, and were led parallel to the axis of points of junction, and were led parallel to the axis of rotation, to an equal number of insulated pieces of brass
mounted in two rows upon, and slightly projecting from mounted in two rows upon, and slightly projecting of a disc, was firmly secured upon the axis.

The iron ring with the bobbins wound upon it in the manner already described was mounted in a horizontal position between the two legs of a powerful electro-magnet, the distance of which from the ring could be adjusted at pleasure by means of a set screw and a slot in the lower connecting cross piece. Contact rollers K K were made to press one on each side of the axis against the lower wooden disc carrying the strips of brass, so that during the rotation of the ring all of the latter were brought successively into contact with them. When, therefore, the terminal posts $H^{H} H^{1}$ are placed in connection with the poles of a battery the current will pass, supposing it to enter at $H(+)$ by way of the binding post L to the roller K and through the strip of brass on the dise, against which the roller may happen to press at the time up the two wire coils of the armature, whose point of juncture is in connection with this strip of brass. The current here divides, each portion passing in an opposite direction through the coils surrounding each half circumference of the ring, to meet again to form one current at the left contact roller K, whence the united current passes to L1. From here the current passes through the coils of the electro-magnet, passing then by H to the negative pole of the battery, Magnetic poles thus become developed in the ring at the points N S. In order to obtain the best effect from the electro-magnet, Pacinotti provided the two poles with electro-magnet, Pacinotti provided the two poles with
soft iron extensions A A A, B B B, which were made to soft iron extensions A A A, B B B, which were made to
surround the ring very closely for over two-thirds of its circumference. Strips of brass E E, F F were attached to these pole pieces to give them greater rigidity. In the elevation of the machine here shown the pole pieces are left out in order to show the ring more clearly. Pacinotti indicated, in the article above mentioned, the way by which this machine might be made into a magnetoelectric machine, to produce continuous currents of a constant direction.
On substituting for the electro-magnet A B a permanent magnet, and on rotating the ring armature, the poles induced in the ring by the proximity of the magnet will when produced, through the poles of this exterior passing, when produced, so that the colls alone may be taken as rotating, while the poles prod in will in the motion of the atter ${ }^{2} \mathrm{~S}$ prese , N, until it reacer , un which new direction is preserved till the coil takes place, point midwa betw S and N we point midway between S and N, when a reversal to the collected by brushes upon the commutator at right angles collected by brushes upon the commutator at r
to the magnetic axis of the rotating armature.

In the British section Mr. Paterson shows the transmission dynamometer of Professor Ayrton and Perry, which has been so recently illustrated in our columns that it is unnecessary to refer more to it. Another transmission dynamometer is shown by Mr. F. J. Smith, of Taunton. The construction of this instrument is as follows :-The two pulleys A B, each carrying a bevel wheel, and running loose on the same fixed shaft, are in gear with a third bevel wheel, the axis of which is carried at right angles to the axis of the other two by the sector-shaped casting C. This casting, while carrying the intermediate wheel, is capable of angular displacement, this displacement being controlled by a spiral spring within the case F , which spring is attached to the sector in such a manner that its pull always acts tangentially to it. An upper sector of wood H, fixed to the under sector and counterpoiser, carries on its edge a light rod G D, attached to the sector by two cross cords. At D a tracing point records on the drum E an ordinate, which is a measure of the extension of the spring. The drum is driven by a screw and tangent wheel at a given ratio to the speed of the pulleys A or B. A counter K is used to record the number of revolutions. The force transmitted during the investigation is known by finding the area of the diagram. The wheel and handle L is connected to the pulley B by a bell, to show how the apparatus works. The tracer D indicates the tension of the belt. The time during. which the investigation lasts is shown by a lever M, which carries a tracer. The lever is actuated by an electro magnet connected to a seconds pendulum, so that the record is given in seconds. The dynamometer shown at Paris is a model, suited only for simple laboratory work, but the constructorstates that other instruments similar in design have been used to transmit from 5 to $10-H . P$.
In a previous article we described Saxby and Farmer's
block signalling apparatus. Messrs. Clark, Muirhead, and Co. show a system of single-line block apparatus, designed by Mr. C. W. Winter, telegraph engineer to the Madra Rairway, or indich apparatu. consists of an indicator, of which Figs. 1 and 2 show a

Fig. I .

front and side view. This indicator has two dials and two pointers, the pointer to the left-hand is painted red, and refers solely to incoming trains; the other pointer is painted black, and refers to outgoing trains. Each

Fig. 2.

needle has two positions, namely, "cleared" and "on line." Underneath the one needle are the words, "Train coming from," while underneath the other are the words, "Train going to," the name of the station to which the instrument is connected completing the sentence. It

may be here stated that the lines for which this system is devised are principally single lines, the semaphore instruments of Mr. Preece having been adopted on some handle double lines. Winter's indicator has a plunge give the signal to the distant station ; a bell E , to receive

signals ; and a switch handle S, by means of which the signalman controls the movements of the pointer indicating the incoming train-also that referring to the outgoing train.
The pointers are deflected by means of a local batters. The circuit of this battery is closed by the action of relays. In order to obtain the opposite deflections of the needle the direction of the current through the coils must be
changed. This Mr. Winter can do by two or three
methods. Thus Fig. 3, B B, are two equal parts of the battery connected by opposite poles to the relay tongue, which makes contact either at C or D, as shown by the dotted lines, and makes the apparatus ready for the current
through the influencing coil, the direction of the current through the influencing coil, the direction of the current
depending on which contact is made. In order to secure depending on which contact is made. In order to secure
the joint action of the signalmen Mr. Winter arranges the joint action of the signalmen Mr. Winter arranges
that two contacts shall be necessary to complete the that two contacts shall be necessary to complete the
circuit; the second relay A is actuated by the second signalman. Another way of reversing the local current is obtained by winding the coils differentially, and making the relay send the current through one branch or the other, as shown in Fig. 4. The general arrangement of the indicators is shown in Fig. 5, where A represents
a key or plunger of the ordinary form with the line a key or plunger of the ordinary form with the line
wire joined up to its middle terminal. Then if the

Fig. 5

polarised relay for reversing the direction of the outgoing train indicator is placed at D between the back contact which is always chosen when the key is at rest and the earth, it is evident the signalman at the distant station commands the action of this relay. But the local circuit is closed only when the second signalman makes contact with his key on plunger at A. For incoming trains the action is reversed, so that in both cases the conjoint action of the signalman is necessary. By this arrangement no signal is completed till it has been acknowledged. Suppose a train from A to B. The signal "line clear" is given from B to A by the instrument at A , and B indicates nothing till the acknowledgement is sent, when the one at A shows train going to B11, and the one at B shows train coming from A1. In order to have greater protection there s connected to the instruments a starting semaphore, which, by means of locking gear, cannot be lowered till the instruments indicate that the line is clear.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
PRICE'S RETORT FURNACE
SIR,- It has pleased Dr. Siemens to claim the retort furnace as an emanation of his, and to characterise the steel furnace now at
work in the Royal Gun Factories as a Siemens furnace, from hich circumstance I should say the retort system is in luck. When this system was first discussed, Dr. Siemens did not avow claim nor consideration, but deemed it a thing safe in the regions of experiment and without hope of a future. Since then it has
accomplished much in puddling and reheating, and has reached accomplished much in puddling and reheating, and has reached
the daring and aggressive altitude of steel mading, and after a the daring and aggressive altitude of steel making, and after a siemens
Ekless treatment has not received at the hands of Dr. Siemens it is neither on the one hand an abortion, nor a piracy on for ther. It is simply a useful adaptation of two existing things for a set purpose. It is an ordinary reverberatory furnace of the most ommon type, with an addion ir the escaping products of combustion.
This is all the description I have to give ; it is all it merits. object to its being foisted up into the regions of genius ; its highest pretence is utility and not fame. Dr. Siemens, not content with claiming its origin, pronounces judgment on its merits, and, ccording to one report, says it is "expensive, slow, and unwhich he claims putative rights.
I affirm the cost of the furnace is less than one-third of the Siemens for equal capacities; it is its equal in efficiency even for place to reply to the narrative of the Siemens furnace in the my factories ; suffice it to say the correct one has yet to be written Enough for me that I assert the retort furnace had no existence or years after the stoppage of the Siemens furnace, and was not permitted a chance until other experiments had been exhausted. I conclude by saying I never hoped to encounter the charge that
the retort is the outcone of a Siemens furnace. WM. PrICE. 2, St. John's-terrace, Jarrow-on-Tyne

October 18th
Sir, - Dr. Siemens occupied a good deal of valuable time in claiming the Price furnace as his during the recent meeting of the
Iron and Steel Institute. The question was one which possessed no interest whatever for Dr. Siemens' audience, and I do not propose to say much about it. I only wish to ask Dr. Siemens why, if in the law courts? This is the crucial test of a man's belief that
he has been injured.
London, Oct. 20th.
-
Sir,- I regret that I have not sooner been able to read your address you on the subject.
While I admit that your article very correctly represents the While I admit that your article very correctly represents the majority of cases, yet the rule is by no means universal. My own fointed out to what may be called the old style of specification,
and I venture to suggest that a general adoption by and I venture to suggest that a general adoption by Civil Engineers the wants of the case. In the first place it may be taken for granted that an engineer who shirks his responsibilities is not
worth his salt, and if it is desired to have work done fairly and well, and to avoid disputes, it is necessary to be fair to the unjust or one-sided. For these reasons my firm years ago abandoned the practice of making oursolves sole arbitrators. An engineer cannot be an unbiassed referee unless he knows there is
a court of appeal. I do not mean to say he will naturally lean
towards his employers-indeed, in many cases his anxiety to be fair
to the contractor will lead him to be hard upon his employers. vided, acts as an incentive to the settlement of disputes. The main reason why engineers object to appointing another man arbitrator, is most probably because it is an unpleasant thing to have another, and perhaps rival engineer, called in to works in progress. If the arbitrator is so disposed, it is often not a difficult matter to make
matters very unpleasant for the engineer, or, as has sometimes matters very unpleasant for the engineer, or, as has sometimes into his shoes. Even if there is no such disposition on the part of the referee, what happens may be bad enough. Pending the settlement of the dispute the contractor may stop the works, the
case may go into the law courts, the work may stand for years, or case may go into the law courts, the work may stand for years, or
as is more likely, will go to wreck, the result being loss to all concerned. This is not a hypothetical case, but actually occurred within my knowledge. The appeal to law, cost both sides a large sum, and the engineers lost reputation, and I expect also part of their fees, the only gainer being the arbitrator. The difficulty suggested is, however, easily obviated. We name arbitrators in
the specification, with consent of the contractor pre specification, with consent of the contractor; but we
provide that no appeal to themis to be commenced until the whole contract is completed. Thus the appeal can only be as to the amount of money due; the arbitrator cannot interfere with the conduct of the work, and there is a direct incentive given to the
contractor to push on the work. If by this means the cost of the work is increased beyond the estimate, that is a matter entirely between the engineer and his employers. Having employed
him they ought to be bound to trust him till the work is done, and then if they have fault to find they can dismiss
lim. It is clearly for their interest that they should not be allowed lim. It is clearly for their interest that they should not be allowed
to fight until the work is safe. On the other hand, the contractor to fight until the work is safe. On the other hand, the contractor
cannot complain, he has agreed to work under a certain engineer, cannot complain, he has agreed to work under a certain engineer,
and he must do so. If he is asked to do work for which he considers he did not contract, he has his remedy in appealing for adopting these principles we have carried out a large number of contracts of large and small amounts, and in no case as yet have we bad an arbitration. Acting on the same principle of recognising
our own responsibilities, we do not throw the risk of the quantities being correct on the contractor. The work is measured finally from the plans as they may have been amended by order, and the contractor is paid according to such measurement, irrespective of the original quantities.
The only other important point in your article to which I wish to refer is with regard to very low tenders, and here it is only
necessary to state my firm's practice. As you say, there is alway a disposition in employers to accept the lowest offer, and indeed it is right that they should do so, provided that the offerer is a man of good standing. In the event of such an offer being. materially
below an estimate, we return the schedule and quantities to the below an estimate, we return the schedule and quantities to the contractor, asking him to satisfy himself that he has made no
mistake, and at the same time call his attention specially to such mistake, and at the same time call his attention specially to such
items as may be prominently at variance with our own ideas. Of items as may be prominently at variance with our own ideas. Of
course, until his reply is received he is not told the amounts of the other tenders. In giving you, Sir, at greater length than I originally anticipated, the results of my own experience, it is not my desire to clain our practice, or something like it, is that of many other engineers but there can be little doubt that it would be all the better for the profession if it were more generally adopted.
Glasgow, October 6th.
Glasgow, October 6th
LONDON, BRIGHTON, AND SOUTH COAST RALLWAY SIR,-Your descriptive account of these workshops, and the going repairs, to which your attention was directed, are all highly interesting matters to me, inasmuch that the accredited result o the engine first built by Mr. Stroudley far outstrips anything have ever witnessed or before heard of. Your report states :tinuously ever since, almost without cessation, and has not had any renewals except new leading axle brasses, new connecting rod end brasses "-whether large or small not stated - " and new stays round the lower part of fire-box. The ferules have not been taken from the tubes, nor have any other repairs worth mention description and-if not asking too much from that gentleman-a section or sections of axleboxes and brasses, whether of passenger or goods class, and how coupled, he would confer a favour upon many of your readers which, no doubt, would be highly valued many, but by no

trains on crane posts

Sir,-Your correspondent, Mr. Pendred, asks for an expression view of the case is wrong. Let him imagine his crane post to be bent lever, as in Fig. 1, communicating strain to a rocking shaft Then referring to Fig. 2, he will probably see at once that thi
altered form of the lever does not alter the amount or character of the strain at the root B , and that this will be the same as for A in Fig. 1, for the vertical leverage is the same. Passing to Fig. 3 cutting off the leg of the lever will leave the strain at C the same as it previously was at B, the vertical length of lever being still
the same, and we now have a clear case of a girder supported at

one end. This Mr. Pendred would treat as he did the strains on D , and quite properly. But $\mathrm{C}=\mathrm{B}$ and $\mathrm{B}=\mathrm{A}$, therefore a and D are
similarly situated. The error made by your correspondent arises from an assumed analogy between the crane post and the safety valve system, which
does not really exist. In calculating the strain upon the fulcrum does not really exist. In calculating the strain upon the fulcrum
pin of the valve lever, the head of the valve is taken as an axis. For the strain upon the head of the valve, the pin is taken as an flange of the post as an axis to calculate the strain upon the back flange; but when the breaking strain is approached, if the front is the limit at which the back fails. Similarly, to calculate the strain upon the front flange, the back flange is taken as an axis; the front flange fails. This is "every man as good as another, and better too.
But Mr. Pendred doubtless intended both his flanges to fail-or reach their limit of elasticity-simultaneously; and then evidently neither could act as an axis for the other, for both would be moving
about an axis lying somewhere between them-midway if the post were properly designed.
For the purposes of design the neutral axis should be assumed It should be cortre, as leading to the best distribution of metal. cantilever, as implied by the term, is a line where the material is
subjected to no strain of extension or compression, and is the line
of demarcation between the two classes of strain. About this axis all the moments of strain and resistance must be calculated. Any line where the metal is subjected to severe strain, such as the faces of Mr. Pendred's crane post, obviously does not fulfil the condition of a neutral axis, and moments calculated about it will
be incorrect. Treke-roa
Treke-road, Lavender-hill, S.W.,
SIR, -In reply to your correspondent's query on the above
subject, in THE ENGINEER of the 7 th inst., it appears to me that Mr. Pen crane which he illustrates, would be correct in principle if th valve conditions were present; but they do not apply, for inas much as the back and breast of the vertical member or mast are rigidly connected, and therefore practically one, it follows tha half the distance between them is really the neutral axis o imaginary fulcrum, and the girder behaves like a lever of the firs neutral axis or fulcrum being equal, a weight acting on the jibor long arm of the imaginary lever-will produce a compressiv strain on the breast, which must be balanced by an equal tensil strain on the back or short arm of the imaginary lever.
6, Cowley-street, Westminster, October Sth.
Sir, -My attention was attracted by a letter in your last week's issue on the above subject, and having considered to which the box girder forming the crane post and jib

illustrating my result, and have traced thereon the path of the neutral axis Assuming my diagram and mode of dealing with the strains to the centre line of the girder which forms the
crane post, so it cannot be altogether calculated
as a bent girder; and again, it will be obvious
that the neutral axis ean never touch or pass
through the breast of the crane post; so in
this case it cannot be altogether calculated as
a safety valve lever would be.
Whist advancing arguments to bear out his
theory to his fellow-engineer, your correspon-
dent should have borne in mind that it would
be simply impossible for his safety valve lever
theory to hold good for any jib crane of similar
construction. For example, his jib or rake may
be so very short, or his crane post may be of
such a height, that he would find that the prin-
ciple of the safety valve lever would be entirely
lost at the bottom of the crane post Fig. 2.
So, also, his opponent in argument should have
borne in mind that an opposite case may
happen which would almost entirely overthrow
his theory of the neutral axis and the centre
line of crane post, being one and the same.
For example, the jib of the crane may be so
very long, or the crane post so very short, that gests, viz., as a safety valve lever-Fig. 3
\qquad
Fic. 3.
the same as he would for the jib, the lines of strains.
Crewe, October 10th
inle. the same principle as regards the ten-
sile and compressive strains will be embodie in the triangle A D E a
in the triangle A B each having its neutral
axis-not shown in diagram. Your correspon-
dent, in reproducing my
diagram and calculatin his strains, will proceed

Sir,-Your correspondent, Mr. Pendred, has raised a question which was keenly discussed by engineers many years ago, and which can hardly be said to be settled yotes were wrong. The strain on th back and breast of a bent crane jib are not equal, Those who saic the contrary, no doubt, regard the jibasa girder, and point out that as
the strains on the top and bottom flanges are equal and opposite so the strains on the top and bottom flanges are equal and opposite so
must the strains on the back and the breast of a orane jib; but the analogy is not fair. The strains on the top and bottom flanges are only equal because the neutral axis passes through the centre of gravity of the girder, and the girder is
ture in which motion cannot take place
In the crane post the load is not at right angles to the Let us suppose that a crane
 jib is made as in the sketch. B is a vertical box girder, A is another box girder, at D is a
liner of hard iron, C is a covering plate rivetted on to A and arrangement the strain on the breast of the crane in
the direction of the arrow
E is greater than the strain at by the arrow F. I do not think this will be disputed. If
now, while the maximum load is on the crane, a heavy angl iron, shown by dotted lines, were put in place and bolted
firmly the jib A and post B_{2} we should have a so-called
igid connection made between the two，but the conditions so far breast of the crane would carry more strain than the back．
In a word，the assumption that the strains on the back and breast of a crane post are identical，is based on the theory that the two re absolutely homogeneous and rigid，conclusions which cannot possibly take place in a built－up crane，and are barely true of a cas
It may also
解 the safety valve cited by your correspondent is purely statical，
and exists on the assumption that the valve with its lever and veight is a homogeneous whole．
Consequently it is clear that in a crane in which any power of nternal adjustment exists the result must be as supposed
y your correspondent．It is，however，possible to show in theory that in a perfectly rigid homogeneous jib the strains on back and breast would be equal and opposite，but this is a theoretical，not a practical case，and in dealing with a practical case your correspon－ ent reasoned accurately，and acted with propriety in preparing his
LouIS SEGUIN． lesign，
Liverpool，October 10th．
ouis Seguin

SIr，－If your correspondent，Mr．Pendred，will examine the accompanying diagram of the strains on his 40 －ton tubular crane， he will see that the post CD is as much a beam or cantilever as
the jib A B，and subject to a cross bearing strain at right angles， oad on the crane jib． ccupy a similar position in either part．The diagram is con－ 40 tons to any scale，join D A，and draw F G parallel to D A，
cutting E A in G ，then E G to the same scale as E F measures 7 tons．So the load of 40 tons hanging on the crane jib produces strain of 47 tons acting along the line E A，and tending to over－解 the whole crane．The section at D must then be calculated as for a cantilever，of length E D，loaded with 47 tons at E．
Next，to find the strain at C，the lower end of the bend，join C A，

and draw F H parallel to it，cutting E A produced in H；E H calculated for a strain of 125 tons acting with a leverage E C．In the bend the strains are of the same nature．Take any section K ；from K set down K I M L M perpendicular and parallel to $J \mathrm{~K}$ and intersecting in M then K M will be found to scale 28 tons，and the section at EI must be calculated to meet 28 tons，acting with a leverage J K． may be calculated，but I have preferred to use the above，as it renders the nature of the strains more evident
In conclusion，if your correspondent comprehends the foregoing
think it will be hardly necessary to go further and explain at length why a tubular crane does not act like a safety valve．
Portsea，October 10th．
A．C．Pain．

Sir，－Respecting the difficulty of your correspondent，Mr． Pendred，I venture to offer a solution．Take any section A B of the post and draw
tangents $A P_{1}$ and $B P_{1}$ at the points A and B nd inner plates take al he tensile and compre解 stresses，and that he side plates simply the direction of thes， resses at and B thil in the direction t C ，and introdut AB that point two equal and

W_{1} and W_{2} equal and parallel to W ．The force W_{1} forms Resolve the force W_{2} parallel and perpendicular to A B ． The parallel component will represent the shearing stress
along A B．Taking A B to be the direction of the radius of the along A B．Taking A B

Thrust perpendicular to $\mathrm{AB}=\mathrm{W} \sin . \mathrm{ACD}$
Therefore，tension along $A P_{1}=P_{1}-\frac{W}{2} \sin . A C D$
Compression along $\mathrm{BP}_{1}=\mathrm{P}_{1}+\frac{\mathrm{W}}{2} \sin$ ．A C D．
If we take a horizontal section in a vertical part of the post，the
angle AC D becomes 90 deg．，and if P2 represents the forces of the couple，the

Tension along outer plate $=\mathrm{P} \Omega-\underset{2}{\mathrm{~W}}$

Compression along inner plate $=\mathrm{P}_{2}+\frac{\mathrm{W}}{2}$

Hence，so far as the vertical part of the post is concerned，and granted we may make the above assumptions，the analogy of the
safety valve lever will hold；but it does not follow that the neutral 4，Palmerston－road，Ipswich，Oct．11th．

SIr，－I am inclined to think that the proposed discussion on the above subject will be all on one side，as I doubt that your corre－ him，and I am afraid the＂eminent authority＂was right after
all．I should like to know where your correspondent would place the neutral axis of his crane supposing the post was solid， and not of the box form．As I understand him，he would place it ension to produce equilibrium？Your correspondent＇s idea would －if there were no side plates of connect the two members of the post．Being connected，the strains are exactly the same as in an apply，as the lever itself is the crane post，and the fulcrum the
point of support or the overturning point of the crane supposing
it stood on the ground，or was made in halves and bolted topether stood on the ground，or was made in halves and bolted together．
Merrion，Co．Dublin，October 11th．
$\mathrm{Srrp}^{\text {r，－Your correspondent，Mr．W．H．Pendred，in your last }}$ eertain description of crane．Perhaps the following briefstate in a may interest him ：－For purposes of calculation，suppose the crane to be divided into three portions as follows：－（1）The jib，between
ef and $g h$ ；（2）the rounded head，between $c d$ and $e f$ ；（3）the $e f$ and $g h ;(2)$ the rounded head，between $c d$ and $e f ;$ ；（3）the
mast，between $c d$ and $a b$ ．The first portion is simply a canti－ hast，between $c d$ and $a b$ ．The first portion The second portion， or the rounded head co $d f$ ，is someverhat more difficult to calculate accurately．However，it，will be sufficient to make the web
between $c e$ tha between $c e$ and $d f$ strong enough to resist the thrust caused by
the flanges $c e$ and $d f$ tending to meet，＋the shearing force the flanges $c e$ and $d f$ tending to meet，+ the shearing force due to the weight W．For the vertical portion，or mast between action due to the wr．Pendred and his friends have neglected the be taken simply as a bent girder．Mr．Pendred would no doubt be correct in his＂safety valve theory＂if there were no web
be mirn ．

between the back and breast of the mast；but as the section is box girder he is not quite correct．He has，however，erred on the measured from the centre of gravity of the weight the length axis of the mast，multiplied by the weight itself．The strains the breast of the mast will of course be＋，or compression，and on the back－，or tension．To these，however，must be added the
strains caused by the weight，which may considerably modify strains caused by the weight，which may considerably modify
those caused by the bending moments．Thus，calling A the area of the section of the mast，the strain per square unit from the weight will be $\frac{W}{A}$ ，and it will be uniform，or nearly uniform，in
the mast，between $c d$ and $a b$ ，and of course will be + ，or com－ pression．The amount per square unit so found must be deducted
from the strain at the back of the mast and added to that at the breast caused by the bending moment．To take a numerical
Suppose the length $x=16 \cdot 25 \mathrm{ft}$ ．，suppose the weight $\mathrm{W}=20$ tons， suppose the section of the mast to consist of back and breast flang
plates 20 in ．broad and lin．thick，the web plates－two－a broad and $\frac{1}{4}$ in．thick，and the four angle irons joining these plat together at the corners to be $4 \mathrm{in} . \times 4 \mathrm{in} . \times \frac{1}{2}$ in．each；
The bending moment will $=\mathrm{W} x=20 \times 16.25 \times 12=3900$ inch
The moment of inertia $I=11,814$ inch－units；
The area of section $A=69$ square inches；
The moment of resistance R of the section $=\stackrel{\mathrm{X}}{\mathrm{B}} \times 2=787$ inch -
tons at 1 ton per square inch on the extreme fibres， B being the depth of the section and equal to 30 in ．
Therefore the strain on the back and breast of the mast from the bending moment alone $=\frac{\mathrm{W} x}{\mathrm{R}}=\frac{3900}{787}=4.95$ tons per square inch
Th

The compression caused by the weight－supposing the pressure to be uniformly spread over the entire section $=\frac{W}{A}=\frac{20}{69}=0.29$ tons per square inch．
Ard the total strain on the extreme fibres at the back and breast of the mast $=4.95 \pm 0.29$－being 4.66 tons per square inch for the
back，and 5.24 tons per square inch for the breast．Mr．Pendred＇s back，and $5 \cdot 24$ tons per square inch for the breast．Mr．
values for the same parts would be somewhat different．
13A，Great George－street，Westminster，S．W．Alfred Fison．
Sir，－The case proposed for investigation by your correspondent，
Mr．Hamilton Pendred，seems to me Mr ．Hamilton Pendred，seems to me a very simple one；and，not－ think he is perfectly right about the stresses

Let B be any section normal to the centre line A B C，and inclined at an angle
θ to a herizontal plane．Let x be the dis－ tance from the centre of section B to the vertical line AW．Let h be the distance
between the lines of action of the result－ between the lines of action of the result－ post．Now，the stresses at the section B must be in equilibrium with the weight W ．
These stresses must therefore supply a vertical reaction，－W acting at centre of moment $\mathrm{W} x$ ，and the remaining stresses at section B must form another couple of opposite kind and equal moment，in order that the weight and stresses may be in
equilibrium．Let P and -P be the result－
ants of these stresses，having a momere $\mathrm{P}=\frac{\mathrm{W} x}{\mathrm{P}} \boldsymbol{\mathrm { P }}=\mathrm{W} x$ ；therefor
The resultants of the stresses at section B are $\mathrm{P},-\mathrm{P}$ ，and -W ； $\frac{\mathrm{W} x}{h}, \frac{-\mathrm{W} x}{h}$ ，and -W ．

Let this latter be resolved into components tangential and normal to B ；the former component gives a tangential resultant stress， W sin．θ ；and the latter a normal one，$-W$ cos．θ ．The former $\frac{W x}{h}-\frac{W \cos . \theta}{2}$ and $\frac{-W x}{h}-\frac{W \cos . \theta}{2}$
the negative sign indicating stresses due to compression，and the positive those due to tension．If the section B is vertical $\frac{\mathrm{W} x}{}$ and $-\mathrm{W} x$ ．
If the section is horizontal，$\theta=0$ and $\cos , \theta=1$ ．The resultant
$\frac{\mathrm{W} x}{h}-\frac{\cos .}{2}$ and $\frac{-\mathrm{W} x}{h}-\frac{\mathrm{W}}{2}$ ．
Glasgow，October 12th
J．H．H．

Sir，－In your issue wind PRESSURE，
SIR，－In your issue for 26th August，1881，you publish the
report of the committee to consider＂The Question of Wind report of the committee to consider on the 30th September you publish a paper read before the British Association by Mr．Thomas Hawksley＂On the Pressure of Wind upon a Fixed Plane，＂with a table annexed to both report and paper．The difference in these
tables is remarkable．As an instance－the committee which is composed of one or two leading engineers，state＂that the wind the square foot，＂while Mr．Hawksley，who is also a leading engineer，states＇s that the wind with a velocity of 102 miles per
hour only gives a pressure of 56.25 lb ．to the square foot．＂This is hour only gives a pressure of 56.25 lb ．to the square foot．This is dilemma as to which to follow； of the committee he may，have an extravagant design，
and if he takes Mr．Hawksley＇s formula he may not be safe．Is our knowledge on this subject still so vague，or can you account
for this difference？
A．M．I．C．E． for this difference

12th October

［Very little indeed is known with accuracy about wind pressures The report to which our correspondent refers cannot be said to have
materially augmented the store of information on this subject， such as it is，which is available．－ED．E．］

PRACTICAL AND THEORETICAL ENGINEERING．
SIr，－I read with much interest your articles on Cooper＇s Hill College，and your remarks on the value of an engineering colleg training．My own experiences are still fresh in my mind，and yo may perhaps care to place them before your readers，as bearing on
the case under discussion．This experience commenced when I entered some mechanical ersineering works，on leaving one of our first engineering colleges，where I had taken the full three years course，and as during that time I obtained，in addition to a long
list of honours，an exhibition，and finally my engineering degree， list of honours，an exhibition，and finally my engineering degree I think I am entitled to say that I made the most of my time．
From all the glories of being a third year man，I suddenly as it may now appea My estimate of myself fell－and pretty considerably too，when on entering practical life，I compared myself with those with whom I had now to measure myself．I frankly admit my disappointmen was great．I passed through the shops，then through the drawing
office，in each experiencing the same chagrin．Mechanics who probably had not even＂heard tell＂of Euclid，and whose brain probably the various sections of the cone，possessed a knowledge of the lay ing down of centre lines，setting of valven was not yet mine．
calculated the hismen，who to save their lives could not have the two sides－but yet by laying down the triangle to a scale，and measuring the hypotenuse，never failed to obtain it－ found possessed of those rough－and－ready rules of thumb，tha power of designing to please the eye，and that confidence whic enabled them to be of service in an office，my lack of these qual
fications rendering worthless，almost to ridicule，all the math matics and mechanics I was prepared to bring to bear on the design．Do I then regret my college education？In ten or twenty years I may be able to answer authoritatively．But even now see that it enables me more readily to acquire，and most certainl more readily to understand，all that practical knowledge，the
acquisition of which was the object of my entering mechanical engineering works．W Whilst I look to but believe that it will give me opportunities for utilising much the knowledge I acquired at college，now lying unworked，an which when least expected will prove most serviceable to me，mor
especially now that it is backed by practical training．C．G．E． especially now t
October 17 th． \qquad
Patent Law Reform．－Efforts are being made in Mancheste to form a society with the object of obtaining a reform of the
patent law，and on Friday evening a meeting with this purpose in patew was convened at the Cotton Waste Dealers＇Exchange，Man chester；but the very small attendance which was got togethe did not afford much encouragement as to the success of the move ment．A start，however，was made，and，under the presidency of Mr．G．Redson，resolutions were passed affirming the desirability of urging the Government to undertake，without delay，the reform of Arts，on the ground that it would place too much power of interference and control in the hands of a few officials；and
recommending Mr．Anderson＇s bill，with certain modifications，as recommending Mr．Anderson＇s bill，with
calculated to produce a satisfactory law．
Steel Rails．－Some of our friends，says the Boston Advertiser are unhappy about the duty on steel rails．It is a tax levied on
transportation，they say．If we were to admit it for the sake argument，what does it prove？Only this：that we choose one way of taxation，while other countries prefer another．For in stance，Great Britain levies an excise tax upon all railways at th rate of 5 per cent．of their gross passenger receipts．This tax has brought in about $2,500,000$ dols．in 1874，and must have increase to more than $3,000,000$ dols．by this time．Such a tax laid upon
American roads would have yielded $5,000,000$ dols．in 1880 ．Ten million tons of steel rails would relay every rod of railroad in the United States with rails as heavy as those of the New Yor Central Road．The gross amount of tariff such a weight of stee would yield is $210,000,000$ dols．，which capitalised at 5 per cent
would bear interest only twice as much in amount as would be raised by direct taxation under the British system．As a matter of fact，however，only a small part of our railroad system is using steel rails，and in spite of the presumed heavy taxation the charges for freight and passenger business are very low
Set Rivettivg．－At the recent convention of railroad master
mechanics，Mr．Wells read a paper upon the subject of＂se mechanics，Mr．Wells read a paper upon the subject of＂se ＂locomotive boilers，an epitome of which we give．The plan o set＂rivetting consists in placing upon the inserted hot rivet set，mounted upon a handre，as smiths＇sets，flatters and hot chisels are，and having a cavity of the shape and dimensions o strokes from one or more sledges upon the other end of the set， heavy holding iron being used to meet by its inertia the force the sledges 9 lb ．to 10 lb ．，while the holder or anvil placed upon against the work by the short arm of a stiff lever of the
first order．The work consists merely in properly placing the holder，holding the set squarely upset the body of the rivet in the hole more effectually than blows struck with light hammers directly on the rivet point，and twenty four blows in all，at the rate of about eighty per minute，finish
the＂setting＂of the rivet，and half－a－dozen blows upon a
＂she ＂flatter＂placed on the lap near the rivet completes one rivet， acoording to the taste of the workman．Thus are driven on the shell of a boiler thirty rivets per hour，or an average of twenty－ two on all parts，including changing bolts，drifting holes，and ad justing the work．Hand rivetters average about 125 rivets per day
of twelve hours and a－half，or ten per hour，under similar condi－ of twelve hours and a－hals，or ten per houre
tions．Mr．Wells＇paper shows that the rivetting of a locomotive boiler containing 1722 rivets will occupy 65.85 hours，at a total cost for labour of 4477 dols．，or an average of 2.64 cents each rivet， against which stands 5.84 cents each for rivets driven by hand at
the rate of ten per hour．The difference in favour of set rivetting the rate of ten per hour．The difference in favour of set rive
is shown to be 54 per cent．in cost and 51 per cent．in time．
SIXTY-QUARTER BREWERY FOR MESSRS. H. MITCHELL AND CO., CAPE HILL, BIRMINGHAM.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER. PARIS.- Madame Borvenv, Rue de la Banque.
BERLN. -AFER and Co., 5 , Unter den Linden.
BIV N.

TO OORRESPONDENTS.

* In order to avoid trouble and confusion, ve find it necessary to inform correspondents that letters of inquiry addressed to the
pubicic, and intended for insertion in this column must, in all
casse, be accompanied by a large envelope legibly directed by the cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearng a 1 d. postage stamp, in order that woriter to himself, and bearing a $1 d$. postate stamp, in ordder that
ansvers received by us may be forvarded ot their destination. No notice will be taken
* We cannot undertake to return drawings or manuscripts; we must therefore request correspondents to keep copies. containing questions, must be accompanied by the name and
address of the trititr, not necessarizy for pubbication, but as a a
proof of good faith. No notice whatever will be taken of adiress of ghe faith No
proo oo
anonymous communications.

 piston sped, and
turning moment.

MINERAL OIL FUEL.

CUPOLA PRACTICE.

SUBSCRIPTIONS.

If creait occur, an extra charge of tro shillings and sixpence per a Cloth Cases for binding The Exanserr Volume, Price 2s. $6 d$
Many Volumes of The Exainer can be had price 18s, each

ADVERTISEMENTS.

 Advertisements cannot be Inserted unless D Delivered
o'clock on Thurschay Evening in each Week.

MEETING NEXT WEEK.

 BIRTH

THE ENGINEER.

OCTOBER 21, 1881.

train resistances.
At a very early period indeed in the history of railways, experiments were made to ascertain the resistance offered to traction by trains of various descriptions of vehicle.
The first record of such an inquiry is to be found in Wood's "Practical Treatise on Railroads," and few investigations have been more carefully conducted. Wood, however, arrived at conclusions very different from those now accepted as correct. For example, he says that "the resistance by
the rolling of the wheels is an wniformly retarding force, both with respect to velocity and weight." He carried out two sets of experiments. The first on the friction of railway axles. This he found to be constant, whatever the velocity, and amounting, in the most favourable cases, to one-twentythird of the insistant weight. That is to say, the coefticient of friction was 0434 . Under less favourable conditions it was 05 . The second series of experiments determined this also resistance of wheels onstand at all velocities, and amounting to one-thousandth part of the load. Adding these table he gives such figures as these-Weight of carriage 8540 lb .; total resistance, 39 lb .; resistance of wheels on rails, 8.54 lb ; resistance of the axles by attrition, carriage along a railroad,

$$
\mathrm{P}=\frac{\mathrm{W}}{f}+\frac{\mathrm{W}^{1}}{f^{\prime} d}
$$

where $f=001$, or the 1000 th part of W, the whole weight of carriage and wheels, $f^{1}=01666$, the 60th part now very well weight resting on the axles. It is known that it augments rapidly as the speed increases; but it does not appear that there is any incongruity between this
fact and the result of Wood's experiments. Axle friction is no doubt very nearly a constant, and so is the rolling friction. Wood's conclusions are based on the theory that axle friction and rolling friction represent all true. In 1838, Dr. Lardner induced the British Association to appoint a committee, and to appropriate funds to make a series of experiments on railroad resistances. The experiments consisted in despatching trains at high existing down an inclined plane. According to the the stances would continually increase. Of course it was found that nothing of the kind took place; the train moving nore and more slowly until a certain velocity stances," writes Lardner, "supplied at once the conclusion that the principle generally received by engineers, that the resistance to railway trains was independent of the speed, was altogether erroneous, and that, on the contrary, that resistance varied in a very high ratio with the speed of
the train." We think that the credit of first discovering and announcing this important fact is due to Lardner. As it is clear that axle friction is constant, and almost certain that rolling friction is constant, it is evident that the cais than on the rails or the axle boxes. Lardner's further experiments, made by Lardner, Hardman Earle, and and "established the general principlo that the the of the atmosphere to railway trains, other things being the same, depends on the volume or magnitude of the loads." Those who wish to go further into this subject may contion for 1838, page 197, and 1841, page 205. There are however, other causes of resistance besides the air which vary with the velocity. All the jerks and jumps, and power and loss of tractive ffort and these no doubt increase in a rapid ratio with the speed. Into this question we do not propose, however, to go. Our object is to show that the question of train resistance has been closely investigated from a very early period.

We are not aware by whom the attempt was first made ascertain the pull of the former on the latter. At an early date, however, Babbage fitted up an experimental brake van with a dynamometer; this registered the pull on an endless paper band by means of a pencil, and
several experiments were made with it on the Great Western Railway. Since then various experimenters have pursued the same line of inquiry. The most noteworthy experthe s in this conmection were, no doubt, those of which. Vuillemin, Guebhard, and Dieufamiliar. The most recent, and we may, perhaps, add, the most elaborate inquiry made the Chemin de Fer d l'Est, by Mr. M. L. Regray, locomo tive superintendent of the line. The experiments have been made with the aid of a van fitted with special and may now be seen in the Electrical Exhibition at Paris. The apparatus is very elaborate, and by the aid of elecThe apparatus is very elaborate, and by the aid of elec
tricity there is recorded in the van, when it is attached to a train, the hour, the place of the train on the line at any given moment, the pressure in the boiler, four diagrams showing the action of the steam on the four faces of the two pistons-the degree of opening of the regulator, the
opening of the blast pipe, the number of revolutions per second, and the tractive resistance of the train. It is an ployment of the ether the advantages gained by the emworth the trouble and expense incurred. Those who wish Worth the trouble and expense incurred. Those who wish
for further information than we can find space for, confor further information than we can find space for, con-
cerning this van, will do well to procure a "Note on a cerning this van, will do well to procure a Note on a
of France Railway Company," published at 49, Quai Des Grand Augustins, Pars
confined to the results obtained. The tables in which they
Tive the esse forth are supposed to made with engines 502 and 503 ; but the tables require made with engines 502 and 503 ; but the tables require
very careful examination before anything can be made of them, and certain averages which they contain are not more trustworthy than averages generally are. The experiments were made with 18 trains, being for
greater part expresses ruuning between Paris ind Chaumont. As it was possible to conpare with the greatest precision the diagrams taken at a given instant with the draught at the same moment, no difficulty has been met
with in ascertaining how much of the work of the ste with in ascertaining how much of the work of the steam is
expended in pulling the train, how much in overcom expended in pulling the train, how much in overcoming
the resistances of all kinds of the engine. We are not the resistances of all kinds of the engine. We are not
aware that this has ever before been done with such accuracy. It appears that engine No. 502 appropriated $34 \cdot 2$, and engine 503 as much as 356 per cent. of the whole
indicated power. The engines are four-coupled. This indicated power. The engines are four-coupled. This waste is much higher than would be expected, and it is
very desirable that the experiments should be repeated with other types ar far typ affects the question. Thus, for instance, single and coupled engines might be compared.
As regards train
As regards train resistance, M. Regray has a good deal to say, but he very prudently begins by telling us almost at the outset that "the causes of error are innumerable, which we can very well believe. Notwithstanding the
elaborate character of the appliances at M. Regray's elaborate character of the appliances at M. Regray's
disposal, he has not succeeded in giving the world much disposal, he has not succeeded in giving the world much table shows, as the result of 381 observations, that the resistance of trains of 60 to 100 tons, running at 41 miles an hour, is 7.39 kilos., or 16.258 lb . per tonne of 2222 lb . Again, 365 experiments with trains of 100 to 120 tons, show that at 35.8 miles and more the resistance is 6.83 kilos., or 15.026 lb . per tonne; while with trains of 120 to 200 tons the resistance, ascertained from 164 experiments, at 35.3 miles an hour is 6.52 kilos., or 14344 lb . per tonne. M. Regray deduces the following formula:-Let $r=$ the resistance in kilogrammes per tonne ; V the speed in kilometres per
hour ; P the weight of the train in tonnes. Then $r=$ $0.0843 \mathrm{~V}+2.34-\frac{\mathrm{P}}{200}$. It seems, however, that within the limit of weight dealt with by M. Regray, the influence , that is to say, the resistance per ton is practically independent of the number
of tons in the train ; therefore, $r=.0843 \mathrm{~V}+1.83$, or this equation may be put in the form of $r=\frac{3(2 V+43)}{71}$.

As M. Regray proceeds with his investigations he will, no doubt, accumulate more facts of value; but to go on shoul testing train after train will do little good. vehicle offers be irected to ascertaining what type of bogie stock compare with four-wheeled ordinary stock; and Furthermore, the investigare with six-wheeled carriages. ought to be pushed on. A great deal may be learned in this way, and we are much mistaken in M. Regray if he suffers his ingenious experimental apparatus to rust for want of work. While the mere multiplication of observations, without any precisely defined object, can do no good, kinds of rolling stock can hardly fail to possess very great value.

It is a novelty to hear of such a point being in dispute as whether an agreement entered into for the construction of a railway at a cost approaching a million sterling, is one involving the payment of a certain fixed sum, or is the contractor is only to be schedule contract, under which the contractor is only to be paid for work really executed at certain specified rates. It seemed almost incredible to
us, when reading the outline of facts recorded in The Colonies and India, that any legal document could be so drafted, after all these years of experience in railway dratted, after all these years of experience in railway
matters, that there could arise a possibility of misapprehen sion on such a point ; but, observing it to be gravel stated by our contemporary to be existent, we have devoted some pains to inquiring into the circumstance under which so curious a dispute has arisen, and we find them interesting and instructiv
Government Government some two years back for the construction of an extension of a line of railway in a leading colony, on
which the works are of a more than ordinarily heavy character owing to the mountainous nature of the country through which the railway passes. Considerable progres that been made by the contractors, whan that the provision made in the estimated quantities for th anticipated proportion of rock cutting that would have to
be executed was considerably in excess of what proved to be executed was considerably in excess of what proved to
be requisite. Statements by the local press induce the belief that it was not until this fact became apparent that any question as to the nature of the contract was
mooted, it being then intimated to the contractors' local agent that payments due would be calculated only upon the amount of work executed, and at the rate set forth in the schedule of prices attached to the contract for specific
items in the event of extra works being ordered. To this the agent at once demurred, and reference to his principals elicited a statement of their surprise that such a decision had been arrived at. Th will of course, be apart from our purpose to discuss in this article who may be right or who from expressing any opinion because it is at least possible from expressing any opinion because it il a t east possible that the matter in dispute may eventually have to be dealt
with sub judice. We are only concerned with the with suples of public procedure under which any contract admitting of such diversity of interpretation could have been made with a Government department. Should it
is ill-founded, it will only be natural to ask in what quarter responsibility rests for a blunder, which, according to the contention of its officers, will entail a far heavier
payment than was contemplated. We have seen the docupayment than was contemplated. We have seen the docu-
ment which has given rise to this difficulty. For the reasons stated above, we shall abstain from any reference to its provisions beyond stating that it at all events contains a clause expressly setting forth that in the event of the
contractors having, for the due execution of the works as designed, to do more rock-cutting than was surmised might prove to be necessary, they shall have no claim on the
Government for remuneration for such extra work. The point that will have to be argued is, therefore, whether a contract which excludes remuneration for work done beyond a certain fixed and arbitrary sum, can be determined to be consideres only as a schedule contract when
the advantages are disposed in a reversed direction. The contractors' contention is, we believe, that from local knowledge obtained by inspection of the ground, they came to the conclusion that the quantity of rock-cutting provided they discounted that expectation by so pricing their estimate hat their tender was accepted.
This short sketch of the circumstances brings us to the proper subject of this article, and we want to know
who it is that draws up contracts for works of this nature in the colonies, or, at all events, what department is responsible for them, and we are the more urgent in
this query, because, side by side with the voluminous this query, because, side by side with the voluminous
document embodying the collective wisdom of our Govern ment officials, we saw one containing the conditions under which offers were sought, for a line of very similiar character and length in a foreign possession, but for which an eminent engineer was alone responsible. It was less not a fact that for all such railway contracts for our responsible? We cannot, of course, look to those gentle men to possess personally the technical knowledge which may guard absolutely against any mistake,
but the system under which they work seems to be one which is giving rise to much adverse comment just now.
We hear, in fact, that they deal with contracts entrusted to them pretty much as the old representatives of close calling for tenders. A selection is made ore is no open leading firms in any special branch, and to them are addressed applications for tenders. Naturally, this course as that taken as the text of this article, but the complaint made are too numerous to leave room for doubt, and special nstances of favouritism have of late come under our own door to the whole trade interested, ever appeared. Indeed none but a few privileced parties ever heard that certain supplies were needed.
he Crown 4 yents' since we commented favourably on the Crown A gents Department, and we believe now that
it is diligent in itw desire to faithfully serve the important constituencies it represents; but considerable changes the task intrusted to it seems to be outgrowing its capacity In these days our colonies are developing with marvellously rapid strides. But few of them are now in the longclothes of infancy, and their wants are growing day by
day to such an extent that agencies which formerly day to such an extent that agencies which their needs now no longer meet their requirements. The Crown Agents' Department, we fear
is somewhat over tasked. To a great extent circumlocution as to public affairs is not altogether an evil. It is indeed, a safeguard, and may be of use when the dispatch is ensured, and questions in their passage do not ditogether get lost sight of. But nearly every colonial paper we now take up speaks of works long sanctioned of uncertainty for months and months. "What has become of the matter?" "Oh! no one knows; th
Colonial-office don't know, they say there that it is Colonial-office don't know; they say there that it is in
the Crown Agent's hands." There is undoubted truth in the Crown Agents hands." There is undoubted truth in the matter of a contract, everyone has a finger in the pie and it seems to be no one person's special business to
expedite its passage. When it leaves the consulting engineer it goes into the Crown Agents' Office ; the gentlemen there send it on to the Colonial-office with some leading remarks, and it sometime or other-returned with a few observations in reply. This may continue for
an indefinite period, backwards and forwards. Then the an indefinite period, backwards and forwards. Then the
engineering department of the Crown Agents 'ffice does engineering department of the crown Agents Office does escaped the observation of the consulting engineer Agents tackle the subject, and these generally find matter Agents tackle the subject, and these generally find matter
for argument with the consulting engineer, whose life thenceforth becomes a wearisome burden, until, wrapped
up in a mass of verbiage, the document returns to the Crown Agents, who in their turn forward it once more to the Secretary of State, which high official-when more grave matters admit of his doing so-affixes his signature by deputy to a communication with which it returns to the
Crown Agents, who are then at liberty either to place the Crown Agents, who are then at liberty either to place the
matter before the public, or, as we have stated above matter before the public, or, as we have stated above
to address the favoured few whom they choose to ask to to address the
tender suffrage.
Such, or very similar, is the course of such transaction with colonial contracts. No wonder that our brethren-
north, south, east, and west-are calling out and that every north, south, east, and west-are calling out and that every
colony possessing a responsible Government is establishing agencies of its own ; and no wonder, also, that under such a system, important contracts are entered into
giving rise to diverse interpretation, such as that giving rise to diverse interpretation, such as that
we have referred to above. It really seemed to us, when reading the lengthy, and, to a great extent recapitulatory provisions of that contract, as if every
person into whose hands it had fallen during its circumperson into whose hands it had fallen during its circum-
locutory career above described, had deemed that he
would not be earning his salary if he did not add to it as many words as he could possibly by hook or
crook introduce. Who can be surprised, therefore ct the muddle things have got into, and that when the contract left the consulting engineer's hands he had in contemplation a schedule contract, the result of all the scraping, and refining, and polishing it has had on the circumlocutory wheel is to render his bantling almost
unrecognisable by himself? Such, at least, is the report unrecognisable by himself? Such, at least, is the report
current in this matter. One thing is certain. The difficulty has served to demonstrate that our colonies have some foundation for the complaints they are
putting forth as to the delays which attend the carrying putting forth as to the delays
out of important public works.

vienna city railways.

A project and plans for the "Wiener Guirtel Eisenbahn," Vienna Circular Railway, was submitted to the Austrian Govern-
ment in May last, and it is anticipated that the definite conces nent in May last, and it is anticipated that the definite conces
sion will shortly be obtained. The lines projected will supply a want long felt in Vienna, as there are at present no suta provisions for the requirements of the city passenger traffic
beyond tramways and omnibuses, and they will also effect conbeyond tramways and omnibuses, and they will also effect con-
nections with the six important railways at present terminating
in in Vienna. The main or "girdle" line will be a little over $8 \frac{1}{2}$ miles a branch of the Danube flowing through Dienna Canal, which river Wien to the new Giurtel Strasse, which is being formed on the line of the old fortifications, and back through an inferior part of the city to the Donau Canal. Very little private property has to be expropriated throughout, the railway being
chiefly carried on ornamental iron viaducts, with spans of from 60ft. to 8oft., at an average height of from 18ft. to 20 ft . although in some places the viaduct rises to as much as 36 ft . in height. In the new Gürtel Strasse, on the western side of the
city, the line will, owing to the rapid rise of the ground, be for city, the line will, owing to the rapid rise of the ground, be for
the greater part in open cutting, with only a short length, about the greater part in open culting, with only a short length, about
400 yards, of tunnel. The line is to be served by means of nineteen stations, which are situated at the principal points of traffic, comprising a central station about 750 ft . long by 250 ft . in width, with six lines of rails, two important junction stations each 500 ft . long, with four lines of rails, and sixteen ordinary stations, each about 360ft. long. There are several junction and branch lines projected to the terminal stations of the existing railways, which are inconveniently situated at a considerable
distance from the central city or "Stadt Wien," viz., the distance from the central city or "Stadt Wien," viz., the
Northern, North-Western, Southern, Western, Franz Josef, and Northern, North-Western, Southern, Western, Franz Joset, and
States Railways, all of which will be thus connected with the States Railways, all of which will be thus connected with the
circular line, so that their passenger traffic will be brought into circular line, so that their passenger traftic will be brought into
the central station in the heart of Vienna, close to the Bourse. Eventually it is proposed that the trains of these important lines shall start from and run into the central station, thus preventing much present inconvenience and loss of time. The whole length of the circular line and the branches is about sterling. A provisional contract construction about four millions stering. A prothschild and Messrs. Guttmann Bros, of Vienna,
Messrs. Rot
ioint proprietors of the Witkowitz Ironworks, of Austria, for joint proprietors of the Witkowitz Ironworks, of Austria, for the supply and erection of 70,000 tons of cast and wrought iron
work. The period of construction is taken at three years. The scheme has been designed and supervised throughout by Mr.
Ioseph Fogerty, M.I.C.E., F.R.I.B.A., of 1, WestminsterJoseph Fogerty, M.I.C.E., F.R.I.B.A., of 1 , Westminster-
chambers, London, aided by a large staff of English and Austrian engineers, who have been engaged thereon for over twelve months at the offices of the English Association for promoting and constructing the railway, 11 , Volksgarten Strasse. The
requirements of the Austrian Railway Department are so minute, that detail drawings of all the important structures and stations have to be submitted and approved even in the preliminary stages before steps are taken to grant the concession. We propose to give chastrations of some of these structures, which descriptive particulars from time to time. A "Trace Commis-
ion," consisting of over one hundred persons appointed by the sion," consisting of over one hundred persons appointe bayine the proposed line on the ground. This commission was attended by the engineer and several representatives of the London
Syndicate who are finding the funds for this most important project, which, if carried out, will be the largest and most comlete the space beneath being devoted to flower, spirit, and fish markets, with a covered playground for children, ath well lit by It is intended to work these lines by flreless locomotives on the Lamm and Franck system, with surface condensers. The whole scheme is at present under consideration berore city. The
Municinlity and excites intenso interest in the city Neue Freie Presse, of 8th inst., devotes three columns to the subject, prints a map, and warmly approves of the scheme,
which also has the support of the Government as well is that of the local railway authorities. We wish it ever

electric lighting in liverpool.

The works in connection with the proposed lighting of the principal thoroughares of Liverpool by means of the electric
light do not appear to be making satisfactory progress. Nearly six months have elapsed since the whole was to have been com-
pleted, and at the present time only a few of the lamps have peen lighted, and those only for experimental purposes, with the exception of a few on the pierhead, which have been used regu-
larly. Great dissatisfaction is felt with this delay, and also with the unsatisfactory nature of the posts employed to carry the
wires. These posts are formed of cast iron sockets let into the ground ; they are only about 13 in. square at the top, and into them are inserted four upright posts, presumably wrought iron
tubes, 2 fin. external diameter, connected by wrought iron collars 3in. wide, at intervals of about 2 ft . 6 in . In some instances these posts carry the lamps in addition to the wires, and in other
cases they support the wires only. As many as thirty-four insulators are attached to one of the posts, but the greatest number of wires at present connected with any one post is eighteen, the increases. The height of the posts varies considerably, but the arerage appears to be about 30 ft . Although the full number of attached to them, they do not appear capable of supporting the strain to which they have already been subjected, and nearly all
of them are out of the perpendicular, and where the base has resisted the strain the post itself is bent. No doubt this has been caused principally by the fact that the wires are not in a
straight line as is usually the case with telegraph wires on rail straight line, as is usually the case with telegraph wires on rail-
ways or public roads, but form frequently considerable angles at
each post, and the owners of property very naturally object to
stays being carried from the posts to their buildings ; it seems stays being carried from the posts to their buildings; it seems
strange that this difficulty should not have been foreseen by the authorities when the plans of the contracting company were
approved of. Recently approved of. Recently the wires hald to be rapidy in detachent
from a post in front of the Town Hall, which was imminent danger of falling; and on another occasion the fire-escape, when being driven along the streets, came in contact with the wire, thereby obstructing the passage of the escape and deranging the wires. Had this occurred at night the consequence would have
been serious. Therecent gale did great damage to the wires, and had the electric system been in operation, and the gas lamps disused the effect of the town would have been in total darficus. to wat the effect of a heary fall of snow will be is not difficult to prog
nosticate, and it is to be hoped that other towns will profit by the experience gained in Liverpool, before they allow an electrio lighting company to disfigure the streets and endanger the to that adopted on the banks of the Mersey.

LITERATURE.

The Elements of Plain Analytic Geometry : A Text-book including mumerous Examples and Applications, and especially Designed
for Beginners. By Geonar R. Brigas. New York : John Wiley and Sons. 1881.
Exercises in Analytical Geometry. By J. M. Dyer, M.A. With We have carefully read the greater portion of Mr. Briggs "Elements of Plain Analytic Geometry," and its perusal helps to convince us that in America there is being gradually compiled a series of school books that will compare favour ably with any issued in England. De Morgan says the application of algebra to geometry, of which some instance have been given by Bonebelli, and many more by Vieta,解 It drew the attention of mathematicians completely awa from the methods of the ancient ceometry, and considerin the latter as a method of discovery, the change was very much for the better. But English mathematicians, as rule, ignore the new science, looking upon it with sus algebra, however, so far as expressions of the first and second degrees are concerned, apply with great facility to large classes of questions connected with straight lines, circles, and other cone sections We have a very strong impression that, although to many minds the study of algebra may be fascinating, the ordinary student finds greater delight in the subject when having obtained a fair knowledge of such books as Todhunter's "Algebra and fingonometry," he commences analytic conics. He the finds that his simple or quadratic equation co tains hitherto ings utterly unknown him bero. He has hitherto looked upon a simple equation as anknown quantity, and till now has heard nothing of the equation to a line, nor has he understood that a line under conditions can be represented by an equation, and under conditions can be represented by an equation,
vice versúd His idea upon the question of " position " becomes more definite, and it is here that in the course of his studies mathematical knowledge is really seen to be a powerful agent, and not merely an elaboration of unmeaning symbols. Mr. Briggs, writing of the problems treated
in this branch of mathematics, says: "We shall see that this use of algebra shortens our work and generalises our reasoning.
He treats the subject in the natural order, commencing with the point, then passing respectively to the straight hne, circle, and the conic sections. Even considering that this is intended for an elementary work, introductory to
such as that of Todhunter or Salmon, we must credit the author with great clearness of expression and a judicious author with great clearness of expression and a judicious
arrangement of the subject, as well as with a carefullyselected series of questions appended to each chapter to test the progress made by the student
There is one point, however, about which we have decided opinion, viz, in referring to other special books. We continously note such examples (as- The trianglo metry,'sec. 22)"- $v . \mathrm{p}$. 20 ; and "Now (v. 'Wheeler's Trigonometry, sec. 220 RM is always a triangle of reference student should be supposed to and erstand ment "a triangle of reference" or any similar triconometrical definition, without naming a special book, which it is improbable that 1 per cent. of students out of a certain district will ever have heard mentioned, much less seen.
Assume, then, that the reader has a fair acquaintance with trigonometry, and define where necessary any special terms used.
We presume that this is a first edition, and as such it would be wonderful if all signs, letters, and formulæ were
found accurately printed. We have, however, detected but few errors of this description-much fewer than is ordinarily the case, and these all of such a relation as to cause little trouble, such, for example as $-\frac{B}{C}$ for $-\frac{C}{B}$ in the fourth line, p. 41. The faults we have indicated-if faults they are-must be considered of minor importance, arrangement.
The second work mentioned above is merely a collection examples. It is well known that hardly any text-book gives, nor can it well give without becoming cumbrous and costly, a sufficient number of examples for the student to work out to test his knowledge of the principles of the subject. In almost anniled to be used with any text-book questions only work is the one before us. We find generally that compilers are satisfied with giving one or two questions similar in nature and depending on the same principles for simiar in nature and depending on the same principles for
solution. This is insufficient. Frequently the pupil is shown how to solve one question, and he may have only of its kind ; the examples are fairly numerous, and sufficiently diversified to test the student's grasp of the subject.

RAILWAY MATTERS.

Genfral Klapka's scheme for the construction of a railway
rom Constantinople to Bagdad has been revived, and is exciting a good deal of attention,
A third London and North-Western train in about a fortnight
left the rails near Leeds on the 12th inst. The London and orth-Western flanges are not so deep as those of some lines.
Sanction, in principle, has been given to the junction of the
Servian and Turkish lines. The chief obstacle, which was that no binding assurance could be secured respecting the junction, appear

The amended railway tariff of South Australia has been pub ished, and contains several large reductions. The carriage of wheat is to be only 2 d . per ton per mile for fifty mile
seventy-five miles, and 1 d . only over seventy-five miles.
The French Government have accorded to the railways a further extension of time for the introduction of the block system, with months from this date every line on which the traffic shall attain minimum of five trains an hour will be compelled to adopt the
A orroular has been issued by the Oude and Rohilkund Railwa Company intimating that the Secretary of State for India in from Moradabad to Saharanpore to of oin the Sompany's railway
Delhi Railway. Panjab, and
Tenders are invited for the superstructure of a Dridge over the Ganges at Benares.
ber and
THE Minister of Victorian Railways has been revising the railway
tariff. Considerable concessions are to be made to farmers and implement makers. Refrigerating cars are to be provided for carrying milk and meat to Melbourne, and, according to India and specially
from this.
WITH the completion of the Forth Bridge and the construction Valley, the distance between Edinburgh and Perth, via Queens ferry, would be reduced to about forty-seven miles, being twenty-
three miles shorter than by the Caledonian route via Stirling, thus ringing Perth within an hour's journey of Edinburgh, as compared
with two and a-half hours under the present arrangements, and holding out a great inducement to tourists to adopt the Queens ferry and Glenfarg route to the Highland Railway,
In the United States there was a total of 129 railway accidents njured. Twenty-one accidents cansed the death of one or mor persons; nineteen caused injury, but not death, leaving no less than eighty-nine, or 69 per cent. of the whole number, in which no the eight months of this year to August 31st a total of 937 acci dents, thirty killed, and 122 injured.
much greater than in the previous year.

The Manchester, Sheffield, and Lincolnshire Railway Company is being asked to support a scheme for constructing a tramway Yorkshire, on the principle already adopted in the few districts o a feeder to the Manchester, Sheffield, and Lincolnshire, as it would heap "py potato traffic of the villages between Crowle and Goole It is proposed to make the tramway commence at Swinefleet, about down through "the Isle of Axholme " to a suitable point on the railway system. The intention is to place the tram on
the road, and to provide plant for passengers and goods.
The following accidents occurred upon the premises of the railof this year, in which the movement of vehicles used exclusivel upon railways was not concerned, namely:- 51 passengers injured whilst ascending or descending steps at stations; 18 injured by platforms ; 17 injured by falling off platforms; and 36 injured from
other causes. Of servants of companies or contractors, 3 were killed
and 469 injured whilst and 469 injured whilst loading, unloading, or shunting wagons; $1 \check{ } 6$ killed and 67 were injured whilst working at cranes or capstans; 1 was killed and 126 were injured by the falling of wagon-doors, getting on or off, stationary engines or vehicles ; 10 were killed and killed and 126 injured by stumblirg whilst walking on the line 1 wa platforms ; 62 were injured whilst attending to stationary engines r in sidings ; and 106 were injured from various othg on the line persons who were transacting business on the companies' premises of accidents of 21 persons killed and 1951 injured. The total number of personal accidents reported to the Board of Trade by the personal railway companies du
A report on the collision which occurred on the 3rd ult., at
Bow-road station, on the Stepney and Stratford branch of the Great Eastern Railway, has been made by Major-General Hutchinson. In this case, the 9.25 a.m. made by Major-General Hutchin-
Fenchurch-street to Stratford-which carriage train from posing the train, but not to the engine--having by some accident Bow-roud down home signal, and the engine about forty yards enchurch-street to Forest-gate, fitted with Clark's train from Eleven passengers were returned as injured. The driver and
fireman of the Forest-gate train died on the spot. In giving Stepney, he felt the train drawing more and more heavily, and was finally pulled up at Bow-road station aqainst steam full on. It
wheels of each that the brake-blocks had become applied to the fourteen vehicles. deny having in any way made use of the Westinghouse brake.
'There is no doubt if either of them had once applied the air herefore it is extremely unlikely thateased from either van, and intentionally. It is, however, possible that the tap in one of the applied the brakes, though these taps are not in a position to render this probable. If the stoppage was not caused by the
action of either of the guards, it must have been due to the
occurrence of a leak. The Westinghouse brake is provid leakage arrangement which will allows of a small is provided with a without causing the brakes to be applied, and a few deaks after the collision I made an experiment to try and ascertain whether a small cause them to become applied with the train in motion. With a
leak not quite sufficient to set the blocks, the blocks remained off
the wheels, therefore, seem probable that a small leak eound have It does not,
on the occasion of the collision, whereas hlocks going on for some length of time, the whole of the air would have of any other explanation, it seellisis reasonable to suppose that one and applied the brake, which he was then powerless to release,"

NOTES AND MEMORANDA

Paper is being used in some Berlin restaurants for plates for dry
and semi-dry articles of food. Possibly papier-maché, with a suitble glaze, may come largely into use for such purposes. There are in Canada and the United States twenty-two match
factories, which turn out 25,000 gross, or $3,600,000$ boxes, of factories, which turn out 25,000 gross, or $3,600,000$ boxes, of
matches daily. The average is about 100 matches to a box, and the daily consumption is, therefore,
average of $131,580,000,000$ matches
The average life of an English gold sovereign is about eighteen years; that is, this coin loses three-quarters of a grain in weight
in about this length of time. It then ceases to be legal tender. It is said that of the one hundred millions sterling of our
gold coinage, forty per cent, is in this condition,
At the Royal Observatory, Greenwich, the mean reading of the 49.0 deg., and 2.8 below the average in the corresponding week of the twenty years ending 1868 . The mean on Tuesday was 55.4 ,
and exceeded the average by 3.5 , whereas it was below on each of
Borings at the Park-fields, Nantwich, in connection with the proposed sanatorium and salt baths scheme for Cheshire, have
reached a depth of nearly 70 ft. from the surface, and stone flag, strong flow of brine through an upper stratum of gravel already exceeds 300 gallons per day, and its strength is reg
satisfactory. There seems to be an unlimited supply
Captain Belknap reports from Callao the details of soundings
in the Pacific in a run of 112 miles off shore. At a distance of 102 in the Pacific in a run of 112 miles off shore. At a distance of 102
miles he found a depth of 3368 fathoms, or nearly four statute miles, the deepest water yet found in the South Pacific or in the en miles further to the eastward, but only found 3168 fathoms In both casts the cylinder brought up clay and greenish sand, and the bottom temperature of the deepest was $34 \cdot 2$ deg. Fah.
A paper was recently read before the Paris Academie des
Sciencés, on the magnetic metals, by M. Gaiffe. He experimented with nickel and cobalt, obtained electro-chemically and variously reated before magnetising; some bars being kept hard, others a comparatively great coercitive force these metals-and especially the same means, gives inare state, while pure iron, obtained by neter. The annealed and forged samples produced the greatest the metals on issuing from the galvanoplastic bath is attributed " presence of hydrogen in combination with them.
A "MEDICAL hydrotelephone," contrived by Prof. Sabatucci is and $\frac{1}{2}$ ctm. thick -are closed each with two very fine iron lamine. To the anterior part of each is fitted a wooden mouthpiece-like
that of a Bell telephone-connected to a caoutchouc tube, through that of a Bell telephone-connected to a caoutchouc tube, through
which one may hear at a distance. The posterior part has a very sensitive electro-magnet communicating with a microphone and battery. One tube is applied to either ear. Words or sounds pro-
duced before the microphone, and heard but faintly, are rendered intense and distinct by introducing liquid into the cylinders-the
less dense the liquid the better. Two sounds may be compared, nd their intensity exactly measured, by varying the quantity o cations of the apparatus, in clinical medicine especially, are looked M. Picter has lately taken the magnetic power of seven varieties of steel, and finds that it depends on the presence of carbon in
the iron, and the aggregation of these substances. One of the two steels giving the best results had $\frac{7}{8}$ th per cent. of carbon
Samples with $1 \frac{1}{2}$ and $1 \frac{1}{8}$ th per cent. were inferior. German spring steel of poor quality made a good magnet; it had little homogeneity, and consisted of an intimate mixture of iron, and in
cemented with a small proportion of carbon. A too small p portion of carbon suppresses or weakens the sidual magnetisin
M. Pictet also finds that the increase of magnetic power in magnet through the mere presence of the armature in contact is a magnetic passes develope nearly the whole of the remanent mag-
netism in all artificial magnets. Detachment of the armature by the dynamometer seemed to have no action on the magnetic
power, but Nature says the slipping of the armature when near power, but Nature says the slipping of the armature when near
rupture must be avoided.
The following figures relating to the diamond and mineral of diamonds contained in packages passed through the Kimberley post-office in 1880 was 1440 lb . 12 oz . avoirdupois, the estimated
value being $£ 3,367,897$. These figures compare with 1174 lb . and $£ 2,846,631$ in $1879 ; 1150 \mathrm{lb}$. and $£ 2,672,744$ in $1878 ; 903 \mathrm{lb}$. and annual value of the mines in the Kimberley division owned at the end Exploration Company is estimated as follows:-Kimberley,
$£ 4,000,000$; Old De Beer's, $£ 2,000,000$; Du Toit's Pan, $£ 2,000,000$; Bultfontein, $£ 1,500,000$. At the end of last year 22,000 black and 100 white men were employed at these mines. From the Kim-
berley and Old De Beer's mines alone diamonds to the extent of berley and Old De Beer's mines alone diamonds to the extent of
$3,200,000$ carats are annually raised, while the other two mines above named yielded 300,000 carats last year. At the diggings on
the Vaal River about 250 men were at work last year. The other important mining industries of the colony are the copper mines of
Namaqualand, from which last year 15,310 tons of copper were exported, valued at £306,790. From the manganese mines in the
Paarl division 206 tons were exported; while at the coal mines,
according to according to India and the Colonies, in the Wodehouse and Albert divisions about 1000 tons were raised. The salt-pans in Simon's
Town, Malmesbury, Piquetberg, Fraserburg, Uitenhage, and
Cradock yielded about 900 tons of salt. Mineral springs abound cradock yielded about 9000 tons of salt. Mineral springs abound
in the colony, many of them being well resorted to, though accomin the colony, many of them being well resort.
modation for visitors is, as a rule, indifferent.
The system of underground telegraphy devised by Dr. Stephan, March, 1876, the first line of cable from Berlin to Halle was 14 t) menced, and on the 26th June, 1881, the system was completed by
laying the cable from. Cologne to Aix-la-Chapelle. In fiftyeight months eighteen lines have been laid, comprising 3394 miles
of cable, costing $30,200,000$ marks, or $£ 1,510,000$. The eighteen lines connect 221 towns, including the most important places of these lines were laid by Messrs. Felten and Guilleaume, of 101 ,
Leadenhall-street, London, and of Cologne, and the remainder by Leadenhall-street, London, and of Cologne, and the remainder by
Messrs. Siemens and Halske, of Berlin. The conductors in the
3394 miles of cable have 3394 miles of cable have a total length of 23,213 miles. The
weight of the materials consumed in manufacturing these cables
wis. copper, 837 tons of gutta-percha, and hemp, and, 383 tons
asphalte. In the crossing of rivers seventy cables were The cables are of great strength, and, being of great carrying
capacity, will probably do the whole of the telegraphic work for very many years. German main lines are now no longer
subject to the effects of wind or snow, and are, in fact, reach of harm of any kind. In France a similar system is
adopted for underground cables between Paris and Marseilles The trenches for receuiving the iron pipes in which the cables
are laid are 1.20 metres-nearly 4 ft .- deep. These cables contain three conducting cables, with seven conductors in each, giving
twenty-one conductors altogether. Facilities for examining and reparing the cable are provided at every 500 metres distance.
The work has not been all plain sailing, as forests have had to
be cut through, and from time to time large rocks, which could be cut through, and from time to time large rocks, which could
not be removed in any other way, necessitated blasting operations.

MISCELLANEA

The first sod of the new waterworks at Ringstone Edge for A portion of the Mansion House is to be lighted by Messrs.
rompton and Co. with the Crompton arc and the Swan incanlescent lamps.
A rirst prize has, we are informed, been awarded at the
Adelaide International Exhibition to Messrs. Priestman Brothers for their patent dredger and excavator, which obtained similar awards Melbourne and Sydney.
The Mayor of Wolverhampton, Mr. Jno. Jones, who has occupied the civic chair for three years in succession, has presented
$£ 500$ to the town, to form a nucleus of a fund for an industrial exhibition to comprise specimens
arts and manufactures of the town.
AT a meeting of the North Riding justices, held at Northallerton,
on the 18th, for the transaction of county business, a resolution was passed, by 39 votes to 24 , to the effect that the sum of $£ 5000$ should be contributed by the North Riding towards the cost of con structing the proposed new bridge at Stockton. This was the sum
recommended by the Committee of the House of Lords, before whom the Bill was argued last session. The promised funds are
still short by some $£ 4000$ or $£ 5000$ of what is required, and the deficiency will have to be defrayed either by the Stockton Corpora-

The aggregate amount of earnings from the Indian canals for
the year 1879-80, after paying the working expenses, was $£ 882,414$, being at the rate of $£ 7 \cdot 9$ per cent., on the capital outlay of
$£ 17,696,348$. The results thus arrived at are, as in the case of the railways, exclusive of the charge for interest on the capital expenditure, which, in the accounts, is usually deducted from the receipts before they are accepted as net earnings. A recent report says :-
"The present purpose is to show their actual earnings during the year, and not their financial position according to the system of very pris has been and the Madras Presidency the receipts were at the rate of 28.3 per cent.; in the North-W est Provinces, which includes the Ganges
and grand canals, they were £.03, and in the Punjab 3.9 per cent.;
but on the Bengal Canals they were only at the rate of 4 , and in but on the Bengal Canals they were only at the rate
Bombay there was a loss at the rate of $£ 12$ per cent
The Great Eastern steamship was submitted to auction at
Lloyd's Captains' Rooms, Royal Exchange, by Messrs. C. W. Lloyd's Captains' Rooms, Royal Exchange, by Messrs. C. W.
Kellock and Co., brokers, under instructions from the Great
Eastern Steamship Company, on Tuesday Eastern Steamship company, on Tuesday, The first offer was
$£ 20,000$, followed by one of $£ 25,000$. At this bid there was a pause, and the broker stated that if there was not an immediate
advance he should withdraw the ship. Two offers of $£ 26,000$ and $£ 27,000$ followed, and the last bid made was $£ 30,000$. The broker then withdrew the ship, and expressed his readiness to receive
offers by private treaty., There was a large attendance, but it was解 his audience, the proceedings only lasting twenty-five minutes. It may be mentioned that the capital of the Great Eastern Steam-
ship Company is $£ 100,000$, and that she stood in the books of the

Returns are just issued by the local United States Consul on the trade between the United States and Birmingham and the
surrounding district, including Redditch, Kidderminster, and Wolverha district, quarters of 1881. The total value of the trade during this period The figures for the four quarters respectively, in the order of
chronological succession, are, $£ 206,875, £ 209,513$, $£ 191,756$, and $£ 267,177$. The deccreases that affect the total occurred in the two
middle quarters ending with March and June respectively. The last September quarter shows an increase on a year back of
$£ 33,26 \overline{5}$. Very nearly one-half of the total coods exported during the four quarters are classed under the two heads (1) "hardware, cutlery, steel, and iron," and (2) "guns and materials." Under
the first head the value is $£ 209,546$, and under the second
$£ 190,196$. The Welland Canal, connecting Lakes Erie and Ontario, which
was successfully opened on the 16th ult., by the passage of the was successfully opened on the 16th ult., by the passage of the
steamer D. A. Dickenson, is an important event for the corn grower of Manitoba. The Dickenson is 300 tons burden, 150 ft . long, 25 ft . beam, and of 15 fft . draught. As soon as the railway
from Prince Arthur's Landing, Lake Superior, to Winnipeg has
been completed, which will carried direct from the landing to Kingston. On the other hand
canpled, which will doubless be next year, grain can be carried direct from the landing to Kingston. On the other hand
it only requires the canals between the latter place and Montreal enable Canadian shiuners to and from Manitoba and the Canadian North-West territory to Europe in specially built vessels without transhipment. Such craft would traverse upwards of
2000 miles of inland navigation before entering upon their ocean 2000 miles of inland navigation before entering upon their ocean
voyage. The distance from Chicago to Montreal by the Canadian route is 150 miles less than that from Chicago to New York vid teen more locks and $89 \frac{1}{2} \mathrm{ft}$. more lockage than by the former.
The last sale of ivory at Liverpool was the largest which has taken place for a long time. Manufacturers who were present tell
us that the prices realised showed an advance of from 20 s. to 80 per ewt. All the lots were sold. There were buyers not only from the English towns, but from America and the Continent. Ivory is hafting cutlery of all kinds. The demand for billiard and bagatelle balls, as well as for piano keys, has greatly increased of late years One leading cutlery house made a calculation some time ago, estimated that to supply themselves with the ivory they neede for the handles of their cutlery, \&c., they needed 1280 elephants
every year, and that even on the basis that each tusk weighed ${ }_{23} 3^{3} \mathrm{lb}$. In a magazine the question was recently put, "What becomes of the ivory waste?" There is no ivory waste. In the making jelly. It has long been used abroad, and is now getting pretty well known in this country. It is sold at 4 d . per lb., mader jelly, particularly in the country, where calves' feet are nct

The Cork correspondent of The Times, writing on the 14th inst.
says:- "The Inman steamer City of Rome, from Liverpool for New York, arrived at Queenstown about 4.30 this evening. She course she ought to have arrived at Queenstown in sixteen or seven
teen hours. Her passage down Channel was, however, a boisterors
one. About two this morning, when off Arklow Light, she one. About two this morning, when off Arklow Light, she
encountered the full force of a fierce gale. The seas, which were very heavy, swept the decks, sende, and for a short time she was
funnels. Her speed was moderate, only driven with sufficient power to keep her head to the sea
The maiden trip of the new vessel has certainly been commenced ander circumstances well calculated to test her sea-going qualities Those whe came over in the vessel for the purpose of noting care-
fully her movements state that the trial was perfectly satisfactory
The engines worked smoothly, she rolled but little, and behaved The engines worked smoothly, she rolled but little, and behaved
well. The vessel came to anchor at Queenstown between Carlisle
and Camden Forts, and here embarked 59 steerage which, with the number already on board, made up a total c 1198 steerage and 238 cabin passengers. The total number of souls
including the crew, was over 1600 . The vessel was detained at Queenstown until 9 o'clock, to have some slight repairs effected in
the electric light machine,

THE BREWING EXHIBITION

The third annual exhibition and market of machinery and appliances used by brewers, maltsters, distillers, aërated wate
manufacturers and those who sell or use their productions, wa manufacturers and those who sell or use their productions, was
opened on Monday at the Agricultural Hall, and remains open
to-der and to-morrow to-day and to-morrow. The whole of the ground floor and part
of the gallery space is covered, and it is said that about 1100 more square yards of space are let than last year. In the first year of the exhibition it was calculated that 35,000 members of
the beer, wine, and mineral water trades visited it, in addition to twice as many of the general public, and last year the numpresent occasion 300 exhibitorss are showing their products and manufactures, and they exhibit more than 2000 different kinds of articles. The frontage occupied represents over a mile, and brewing introduced in consequence of the removal of fiscal restrictions last year are illustrated on a larger scale than in 1880 , ne they form an interesting feature. Malt is no longer taxed, substances, and the tax gatherer only looks to finished beer, whatever may have been used in its production. On the
Continent the trade has been freer, or subjected to different restrictions from those imposed in England, and this perhaps

exhibitors are of foreign origin. M. A. Manbré exhibits a set of plant for brewing from raw grain. It is made by Messsrs. un, converter, grain strainer, wort purifier, and wort filter. The progress of the materials through the process being in the order is at work at Birmingham on this system.
The process is really very similar to Johnson's brewing appa-
ratus, described in our impression for the 11th February, 1881 ratus, described in our impression for the 11th February, 1881,
but it is carried out in a slightly different way, and with perhaps more simple plant. The plant as exhibited is illustrated in the mnexed woodcut. The grain to be treated, maize or rice senerally, is kibbled and charged into the mash tun. Here a small quantity of dilute acid is added to tit, or some malt is mixed
with the grain. A fin. copper coil of two rings is heated by steam at the bottom, and a revolving screw propeller is employed as a rouser. After a certain length of time the mash is passed into the converter, which is a copper vessel containing a coil and rouser. In this vessel steam is admitted, and the starch that was contained in the raw grain is converted into dextrine and passed to he vessel below, in which it is neutralised by a certain quantity of some reagent, as chalk, and boiled by steam, circulation being effected by the rouser, from this vessel the wort either runs to the wort filter or is pumped thereto when the filter is above
This filter has a perforated wood bed, similar to that in the grain This filter has a perforated wood bed, similar to that in the grain cloth, laid on the wood. From the filter the wort runs away to the wort copper, the remainder of the process of beer making being conducted in the ordinary way. This process produces saccharine and other wort-producing materials now largely mported into this country. In Johnson's system a filter press is employed to express all the wort from the grains, and this would probably be employed in the system described above.
The Johnson Saccharum Company exhibit their system as already described by us. Several other brewers' engineers are engaged in developing this system, and amongst these are Mr. A. Kinder, C.E., who has arranged his plant in such a way that the necessary of prejudicially high obmperature This herter without the use air which is forced into the converter by a pump which is 1 otherwise alternately employed to maintain a partial vacuum for certain parts of the process. This system we may desibe nother time. Amongst other drawings exhibited by Mr Kinder is a drawing of a twelve quarter brewery which has been built for $£ 2700$. And another is of a machine for turning malt on the growing floors. A fine collection of drawings of executed breweries and maltings is exhibited by Mr. W. Bradford, C.E.
Messrs. H. Stopes and Co. also show drawings of maltings conMessrs. H. Stopes and Co. also show drawings of maltings con-
structed by them, and as proposed to be constructed with certain structed by them, and as proposed to be constructed with certain
improvements. Messrs. Stopes are also exhibitors of brewers, machinery, including a machine of German origin for cleaning the outsides of casks. The casks are caused to revolve upon rushes. These makers have also adopted the grooved roller mill with rollers having differential speedsfor bruising or kibbling malt A well-made machine of this class is exhibited, the advantage derived from the use of the grooved chilled rollers being that the malt is granulated and not powdered, only a very small per-
centage of flour being made. There is also on their stand a combined Simon's automatic weighing machine and a magnetic apparatus for separating nails and other pieces of iron from
grain. A small bottling machine or tool is sold for 25 s. It is a very simple machine, and thougli made at solow a price will save great deal of time in bottling on a small scale. Some remarkable new form of continuous still by Messrs. J. Shear and Sons in a coil for evaporating sugar and concentrating glucose, \&.e., in a Wetzell's pan. It is about 3 ft . in diameter, and contains about
fifteen coils of $3 \frac{1}{2}$ in. copper pipe bent or coiled without any irregularities or corrugations. They also show some excellent
copperwork in a converter for Manbrés process for the conversion of raw grain. A well-made centrifugal yeast and sugar drying machine, with a suspended cage and arrangement of valve door in the bottom for the easy discharge of its dried contents is also

SHEAR'S CENTRIFUGAL DRYING MACHINE.

belt from shafting in the ordinary way, but one machine shown with a combined steam engine. Some excellent copper-
work is also shown by Messrs. Bindley and Briggs in a large open work is also shown by Messrs. Bincley and Briggs in a large open brewing copper, steam coils, and attemporators.
The gas engine made by Mr. F. W.
referred on previous oceasions is exhibited which we have referred onter previous occasions, is exhibited on the stand of zerated water machinery of Messrs. Barnett and Foster, who as
usual exhibit a fine collection of well-made machinery of this class. Mr. Turner's engine is of the vertical type, and possesses
the advantage of being at the same time a fast running engine and giving an ignition at each revolution. The engine will, moreover, run at high or low speeds, and is very economical in price. As it will run at a high speed and receives an impulse at
every revolution, this engine should be applicable for driving every revolution, this engine shoula be appicall
Lhinford's gas engine is exhibited in motion by Mr. J. Lilley. This is, as is well known, a high-speed engine, and runs very
steadily. It was the subject of an important infringement case, reported in The Evgineer of April 1st, 1881, which was of 3 -horse power.

Amongst the aërated water machinery is a large collection o of the chief features of this system is that it dispenses with the usual gasometer or gasholder, and renders the generation of carbonic acid gas continuous and automatic and self-regulating. We shall illustrate some of these machines in another impression. A mashing machine, with self-revolving perforated rakes, is
exhibited by Messrs. Whitlock and Smale. A cylindrical cxhimber is attached to the lower part of the grist hopper, and within it is an upward continuation of the cold liquor pipe. This vertical part of the pipe is fitted with a number of hollow radial anms aiser parts of its length, the arms being perholes causes the arms to revolve, and thus a spray is forcibly thrown upon the falling grist, and the arms thoroughly mix the

grist and liquor, and prevent the formation of lumps. The same makers show a number of attemporators made of corrugated plates, rivetted together, so that the corrugations form adjacent channels, in which the water entering at one end runs backwards and
forwards until it finds its way out at the other end. These attemporators give a large surface at a low cost.
Messrs. Lawrence and Co show some of their now well-known capillary wort refrigerators for from three to sixty barrel plants.
Messis. Hayward Tyler and Co. exhibit a fine collection of Messrs. Hayward Tyler and Co. exhibit a fine collection of
their well-known soda water and other machinery, and brewing plant and utensils. Amongst the former is an ingenious machine known as MacDonell's rotary syruping, filling, and corking
machine. This machine is supplied with bottles and then per forms these functions at the rate of from 30 dozen to 160 dozen forms these functions at the rate of from 30 dozen to
bottles per hour, according to the size of the machine.

Mr. James Galloway also exhibits soda water machinery,
one machine being capable of making no less than 8000 dozen one machine being capable
or 96,000 bottles per day
Messrs. J. MacEwen and Co. show some well made soda wate pumpe, with glass cylinders. The piston and the cylinder ends there is the advo that these pumps are likely to remain clean, an there is the advantage that the state of the inside of the pump
barrel can always be seen from outsids. Messrs. Eugene Geraut and Co. are also amongst the exhibitors of aërated water machinery and apparatus.
filter Co Aresses. Amongst these are Messrs. S. H. Johnson and and Messrs. Musto and Co., Messrss. Hayward Tyler and Co., large filter presses with square plates, number of which have been made for a very large grape sugar manufactory in the United States. The most curious of the very many purposes to which these presses are now put in the arts and manutactures and
industries is the filtration of sewage sludge. The sludge is dried and caked, so that it is easily removable and ready for use in what ever way it can be applied. Messrs. Johnson and Co ne now ever way large peeapplieo. Messis. Johnson and Co. are now
making large presses for the Coventry Sewage Works for this purpose. By brewers they are used largely now as yeast presses,
and will probably be more used for expressing wort from the mash in the raw grain process of wort making
A simple grain measure is shown by Messrs. G. Waller and Co., who also exhibit Smith's steam stoker as applied to a
Cornish boiler. The fire-bars in this arrangement have a slow rocking motion given them by excentrics arranged so that the horizontal movement is much greater than the vertical move ment. Steam engines are exhibited by several makers, and amongst them is a small 2 -horse power vertical englne, by Mr
E. S. Hindley, fitted on a bed-plate with a hoisting drum worked E. S. Hindtey, fitted on a bed-plate with a hoisting drum worked
by friction gear, put into or out of gear by the brake lever by friction gear, put into or out of gear by the brake lever.
The arrangement is simple and well adapted for lifting casks, sacks, \&c.
It should be here remarked that credit is due to Mr Dale for his successful organisation of this exhibition and market and for the satisfactory catalogue of the articles exhibited and of the exhibitors' names. This is tolerably free from intrusive interleaved advertisements; they are nearly all in the proper place, at the end. The index to exhibitors is seemingly without fault, but the subject matter index could be considerably improved if Mr. Lucian Wolf, the editor, would employ a little
technical assistance. Exhibitors should insist on this catalogue technical assistance. Exhibitors should insist on this catalogue will preserve it from yor to year so to have means of refer will preserve it from year to year, so as to have means of refer
ence to the names of the manufacturers of the articles they saw in the exhibition.

BREWING AT CAPE HILL.

On page 296 we give a perspective view of a very fine brewery erected at Cape Hill, near Birmingham, for Messrs. H. Mitchel and Co., from the designs and under the superintendence of Messrs. Scamell and Collyer, consulting engineers and architects,
Westminster. Of this brewery we shall give further illustrations and description in another impression.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

Business on 'Change in Birmingham to-day-Thursday-and in Wolverhampton yesterday was not conspicuous in extent, but
prices were generally very strong; and the hope of which I last prices were generally very strong; and the hope of which I las
week wrote as distinguishing the market, that there will be further rise this year, was ripening into conviction. Most mill and forge proprietors reported themselves well to do in all leading departments but boiler-plates; and for boiler-plates the current demand is larger than for some time past.
The chisef feature of this afternoon's market was the strength of the best thin sheet makers. All these asked the full rise of $\dot{1} 1$ per
ton, which a week or two ago I reported that some of them wer obtaining. The new prices at works for singles, to 20 w.g., of Messrs. E. P. and W. Baldwin, of the Wilden Ironworks, near Stourport-one of the leading houses in the trade-were as follows
"Severn"" brand, $£ 12$; Baldwin-Wilden brand, B. $£ 13$; B.B - Severn" brand, 112 ; Balawin-Wilden brand, B., $£ 13$; B.B. $£ 14$; B.B.B., $£ 15$; charcoal, $£ 1710$. 10 s.; best charcoal, $£ 2010 \mathrm{s}$. ; and
E.B. charcoal, $£ 22$ 10s. The prices of doubles, 21 to 24 w .g., are E.B. charcoa,
30s. above singles ; and the prices of trebles, 25 to $27 \mathrm{w} . \mathrm{g}$., are 60 s . above singles. And one or two houses are refusing to book more orders than they already have on hand teven at the $£ 1$ rise. Messrss.
Crowther Bros. and Co., of Kidderminster, for instance, have Crowther Bros. and Co., of Kidderminster, for instance, have
issued the following circular :- "Adverting to our circular of the 28 th ult., notifying an advance of 20 s . per ton, orders have since come are obliged to withdraw all quota agreed." This firm started a new mill ten weeks ago. Booked two months ahead, they do not care to commit themselves further. It is satisfactory that a good proportion of the orders recently
booked are upon home account, London and the North of England booked are upon home account, London and the North of England
taking a good supply of sheets for stanping and for working-up Galvanising sheets remain in brisk request. A good quality
of singles were quoted at from $£ 8$ to $£ 810 \mathrm{~s}$; doubles, $£ 910 \mathrm{~s}$.; and latens, $£ 11$. Whilst the majority of the firms were content with the difference of from 20s. to 25s. between singles and doubles,
there were some who to-day required the full 30 s ., as well between singles and doubles as between doubles and latens.
The makers of galvanised sheets sought, some of them, a furthe rise of from 5s. to 10s. upon the rates of a fortnight ago, but as a rule last week's declared prices ruled both yesterday and to-day. Still, makers did not hesitate to declare that if spelter continues to
rise, galvanised sheets must be which shipments are now mostly going are New South Wales,
Victoria, Valparaiso and the River Plate, the Cape, India, and Canada, with Norway and Sweden.
Hoops keep in request. The prices to-day at works are $£ 6$ 15s. as a minimum, but the more general quotations were $£ 7$ to $£ 75$. For export to the United States, the hoops being mostly cut to
lengths, the they are of the fifteen-sixteenths width.
The tin-plate makers reported themselves busy on account of
Australia, the United States, and several European markets. The Australia, the United States, and several European markets. The leading merchant firm which ships these goods to the United States
was credited yesterday with having recently bought no fewer than was credited yesterday with having recently bought no fewer than
4000 boxes. The demand runs mostly upon coke sorts, which were quoted to-day at 17s., up to 19 s. for best. For charcoal 22 s . per
box was the general figure. These figures are a rise of from 1s. to 2s. per box upon three months ago
The local demand for steel in most shapes and of most descriptions is steadily increasing, most activity being seen in mild stee
billets for rolling down into sheets. There were a large number of steel sellers present last week, representing the principal centres of production, including Lancashire and South Wales and York shire, but the bulk of them came from Sheffield and Rotherham and other parts of South Yorkshire. Alike crucible and Besseme steel of all sections and qualities were on abundant offer, and the
manufacturers of the crucible metal were selling Bessemer material
alongside their own. This kind of thing has become customary
now in consequence of the large amount of Bessemer which, as 1 have reported long ago, is being used hereabouts for purposes Which two or three years ago only crucible steel was applied.
The prices asked for Bessemer were an advance of between nd 7 s . 6 d . per ton, according to quality, upon the rates whic prevailed a fortnight or so before the quarterly meetings came off,
and this advance was the first which the makers of cultivating tools nd other buyers in the midlands have had to pay since the revival In trade set in. Bessemer bars ranged from ± 710 s. to $£ 8$ and vorks in Sheoffield to quality, and delivered in the Midlands, or a $£ 7$ and $£ 710$ s. per ton.
Crucible steel varied ing to the purposes for which it was intended to be applied. The quality mostly used for "steeling" shovels and spades was about
± 22 per ton ; pick steel $£ 25$; and a axe $£ 35$ to $£ 40$. The highest
priced steels were bought chiefl priced steels were bought chiefly for tool turning purposes. The
steel made by MMessss. Osborne and Coo, Sheffield, and which is
Known nown as " Mushet's Patent," was priced as usual at 1s. per lb insufficiently confident of the permanence of the revival to make them eager to place large orders. It often happens that at Ine quarterly yatherings a good quantity is bought for export to very cheap quality, and that on Australian account
Ind ome fair orders are placed, and a large business is done likewise said that on this
Piteriron was not universally to-day as strong as it was this day
veek ; yet there were no quotable alterations. Part-mine melting week ; yet there were no quotable alterations. Part-mine melting
ron was 47 . 6. ., and forge iron of the same quality 45 s s.; while est, made by the same firms, was 60 s. All-mine iron was strong
t 65 s.; hematites were 72 s . 6 d . to 75 s , but without securing much

Coal was in active demand at the recent rise The Patent Shaft and Axletree

The Patent Slaft and Axletree Company, of Wednesbury, on Tuesday, adopted experimentally the Brush system of electric
lighting, in lieu of gas lighting at the section of its concern
lonown as the old ngines supplied the motive power, and worred one of Brush's ifferent shops, foundries, and yards, and a steady, soft, mellow ight was obtained. With one or two extra lamps, the men will he old system, As the men look upon the new system with avour, it will, in all probability, be eventually adopted throughout the whole establishment.

NOTES FROM LANCASHIRE.

Manchester.-The iron market here so far as the demand for pig
ron is concerned seems to have quieted down a little during the past week. The easier tone reported from Glassow, and the ascer-
tained fact that there is a good deal of iron in second hands which must sooner or later come into the market, have no doubt in-
fluenced buyers in holding back, whilst most of the large consumers re so well covered for the present hat hey are in a position to Here and there sellers have been easier to deal with, but it connot be said that the market is really weaker, as makers, have so little
iron to offer for this year, and are still disinclined to sell forward iron to offer for this year, and are still disinclined to sell forward;
that they are not at all anxious to press sales, and where any busithat they are not at all anxious to press sales, and where any busimakers of pig iron have made a few small sales during the week at
meir full list rates of 48 s , for No. 4 forge and 49 s , for No 3 oundry, less 2 2 delivered equal to Manchester. Outside brands
coming into this market are still practically limited to the Lincolncoming into this market are still practically limited to the Lincoln-
shire and Derbyshire makes, but of these the quantity offering is ow very limited, and for some brands buyers with orders of any considerable weight to give out find great difficulty in placing them.
or delivery equal to Manchester quotations remain at 49 s , to 50 s . or Lincolnshire, and 50s. to 51s. less $2 \frac{1}{\text { for ordinary brands of }}$
Derbyshire iron. Middlesbrough iron delivered equal to ManDerbyshire iron. Middlesbrough iron delivered equal to Man-
hester is quoted at about $\overline{\text { Is. }}$. to 51s. 3d. per ton net cash fo chester is quoted at about 51 s. to 51 s . 3 d. per ton net cash for
f.m.b., but at these figures little more than a nominal business can Hone with ore in ors here.
less 2 年 for foundry qualities delivered into this district 0 s. per to
In the finis. the activity which has prevailed for the last few months. Makers all through this district continue as busy as they can possibly be, and in many cases could fill their books far into next year if they Inquiries for export are not quite so brisk as they were, and the
increase in freights which is coming into aperation at may probably tend to check further new business; but there are
still large deliveries to be made on account of old orders, whilst increasing activity in many of the leading iron consuming branches now quoted at $£ 610$. to $£ 7$ per ton, and $£ 615$ s. represents the
actually realised price for good local brands, whilst for small parcels, or anything like deferred deliveries, some of the makers
will not now take anything under \&7 per ton. Other descriptions in proportio
Following the personal inquiries which I have made amongst the principal employers as to the condition of the engineering trades
in this district, and the results of which I briefly gave last week, it will be interesting to add a summary of the lass reports sent in by
the men from the various branches of the A Analgamated Society of Engineers. These continue to show, if only a slow, still a stead improvement throughout the United Kingdom. There is again ployment, and of this decrease a considerable proportion is crediter
to the Manchester district, where out of about 4500 members there are now but a little over 100 on the books receiving donation as out
of employment, and there is a decrease of twenty as compared with the previous montis returns. Throughout Lancashire, the reports satisfactory, are, on the whole, more favourable. All through the Manchester district trade is returned as moderate, with in some
cases improving; Liverpool, Birkenhead, Bolton, Bury, Chorley, cases improving; Liverpool, Birkenhead, Bolton, Bury, Chorley,
Blackburn, Darwen, Heywood, Hollinwood, Oldham, Patricroft, Radcliffe Bridge, Staleybridge, and Widnes are also all returned
as moderate, whilst Barrow-in-Furness is reported as moderate and good, Farnworth and Ramsbottom as good, St. Helens improving, and the only pla
port, and Wigan.
branches. In the north of France work appears to be good, as al branches. In the north of France work appears to be good, as all
the members are reported in employment, whilst in the United
Sta f an American engineering firm has during the past week been endeavouring to hire men i The engineers , strike to the United states.
firms enve notice of a reduction in warn district, where several men returning to work on the old terms.
By the death of Mr. E. T. Bellhouse, which took place last wee at southport, there has passed away one of the early founders of
the engineering trade in Manchester. The deceased gentleman, Who held a high position in his profession as an engineer, was born
in 1816, and was the grandson of Mr. David Bellhouse, wh established the was the Foundry, which, Mr. Daver the Bellhouse, whanageent of
Mr. B. T. Bellhouse, who entered the establishment forty years ago, was ultimately developed into the large engineering works
under the style of E. T. Bellhouse and Co., who have been long
known for their hydraulic machinery and presses, and their iron houses and bridge work. Amongst the work turned out by the firm were the whole of the iron houses for the Peruvian Railway;
the bridges for the South Junction and Altrincham Railway; a umber of stations for the Lancashire and Yorkshire Railway; and more recently, the new bridge over the river Irwell at Throntle
Nest, of which a description was given in THE E FGINEER Aest, of which a description was given in THE ENGINFER; whilst
the firm have been largely engaged in important local Corporation In the coal trade of this district a steady demand is maintained
Int for all descriptions of round coal, both for house-fire and iron-
making purposes, and the pits are kept on full time. Engine making purposes, and the pits are kept on full time. Enco gan
classes of fuel, although going off fairly for mill purposes, hang coals prices are firm with an upward tendency but engine classes of fuel if anything are rather weak, although not
actually quoted actually quoted at lower rates. The average prices at the pit are
about as under:- Best Wigan Arley, 9 s . 6 d ; seconds and Pem-
ber beout as under :- - Best Wigan Arley, 9s. 6 d. ; seonds and Pem-
berton four-feet, 7 s . to 8 s .; common, oound coal, 5s. 9 d . to 6 s . 3d.; according to quality. Steam coal delivered at Liverpool or Preston is quoted at about
7s. 3d. to 7 s . 6d. per ton, but the business doing during the week Barrov.
Barrow.-There is no doubt that we shall have a very good winter's trade in the hematite pig iron department, as the
demand coming to hand for forward delivery is not only that of the past fow weeks, but shows even a better inquiry still.
Prices are steady and firm, although practically unchanged from Prices are steady and firm, although practically unchanged from
last quotations; No. 1 Bessemer, 62 s .6 d . per ton; No. 2, 61 s . 6 d , The production of pig iron at the furnaces is the same as for some makers are preparing to put into blast in a very short time, as works which have been for some time undergoing a thorough
repair, and they are already lighting them. The blowing-in of these furnaces will further increase t ways, which have during the past week or two showed a very
appreciable increase in the revenue. The demand from America and the Continent is well maintained, but orders are now being
booked for forward delivery In steel, makers are well sold forward, and new orders are being booked for contracts that cannot eompleted this year. The demand for steel rails shows an
 were a short time ago. New orders are being negotiated as the industries doing a fair business. Iron ore in good demand. Coa

THE SHEFFIELD DISTRICT
The first note of dispute in the coal trade has been raised this meeting of the miners employed at the Thorncliffe Collieries has
mecided to ask that the 5 per cent r, in other words that the cent. recently conceded be returned, extent of 5 per cent. One of the resolutions passed ran thus. " That a strong organisation amongst the miners of the district is necessary
in order to enable them to obtain a fair proportion of the frust their labour." Mr. William Chappell, secretary of the Rotherham District Miners' Association, said he had not yet lost hope that the miners of South Yorkshire would become united as one body. The
lessons they had been taught during the last few years were suffi lessons they had been taught during the last few years were suffi-
cient to make men sacrifice almost anything to better their position cient make men sacrince ealmost anything to better their position.
Men were joining their ranks in various parts of the district, and he had confidence that a better state of affairs was approaching The miners knew perfectly well they were being subjected to all sort of tricks, by which to reduce their wages. When miners get an
advance of wages all the world knew, but the world did no know to what extent miners' wages were reduced on the mos absurd grounds. The outlook of trade, he held, was exceedingly
promising; more so, indeed, than it had been for several years. The best judges of trade in the kingdom were sanguine that a good run o business would be experienced during the next five or six months, The iron trade had improved, and prices had advanced considerably, weeks, and coal was at present selling in the London market at 26s. per ton. Coalowners and merchants had advanced their price 1s. 6d. a ton, and a portion of these advances was due to the miners. 1 anticipate that the agitation at Thorncliffe will be the
beginning of a general mone Yorkshire for an advance of wages
Admiral Skestokoff, of the Russian Imperial Navy, who paid
one day visit to Shefield last week, was the guest of Iron Admworks (Messrs. Charles Cammell and Co., Limited). The
Admiral, who was attended by Captain Leontief, Lieut. Portetch kin, and Lieut. de Ribas, is the recently appointed Chief Constructor
of the Russian Navy. He witnessed the principal processes at the of the Russian Navy. He witnessed the principal processes at the
Cyclops Works, including the rolling and casting of armour-plates, was much struck. The Admiral and suite afterwards lunched a the offices of the company.
appeared that the Dodworth Silkstone Colliery has ber wiich ha perty has. Whitworth and Brothers, of Manchester. The pro the order of the Court, and no order of sale has yet been made, or is There is no change to report in the cutlery and general stee trade this week. Trade is brisk, particularly in the higher classe Messrs. W. Wes. Harrison and Co., Montgomery, Wales, have
rece received the
Exhibition.

THE NORTH OF ENGLAND

From our own Corr
lite develand iron market held at Middlesbrough on Tuesday last might be described as, on the whole, a steady one. The slight
fall of prices at Glasgow has had the effect of the anxiety lately evinced by buyers of all kinds to contract fo future supply. Shipments continue to be very. good, and thi
taken in conjunction with the diminished production now in full operation, will probably cause a considerable diminution in stock at the end of this month. No. 3 g .m.b. pig iron was sold on
Tuesday at 42 s . 9 d . per ton f. f . b ., but towards the end of the market no more than 42 s . 6 d . could be obtained. The price o desire on the part of the holders to realise, and indicating a fea on their part that we shall see lower prices before long.
The reduction of output of the blast furnaces has been effecte in most cases by allowing the blast to enter the furnaces through
small tuyeres specially constructed. Inasmuch as by this mean small tuyeres specially constructed. Inasmuch as by this mean
the total quantity of air entering the furnace in a given time tionately retarded, and consequently the amount of iron smelted is diminished. In two cases furnaces have been altogether put out
but this but this. would have taken place in any case, as they needed
re-lining. The third plan for limiting the output of Cleveland
iron which has been adopted by Messis. Bolckow, Vaughan, and Co., Witton Park, is simply to change the furnace from smelting
Cleveland ironstone io smelting hematite. This method tends to

increase the quantity, and, therefore, lower the price of hematite

 ${ }^{\text {pig iron. }}$ The st The strike at the Clay-lane Ironworks has come to an end. The future only have to charge eighteen rounds per shift instead of twenty-four, which they did previous to the restriction. Thisstrike lasted about three days, and must have heen a serions loss so the owners of the works as well as to the workmen. Manu-
the factured iron remains in steady demand. The contracts made week by week are considerably in excess of the quantity worke
off. The minime $£ 65 \mathrm{~s}$, but $£ 610$ s. has been obtained in severall cases for large
quantities. Angles are to be had at $£ 515 \mathrm{~s}$, and bars about the quantities.
same price.
a meetin
the advisangility weld at Middlesbrough on Monday to conside John Vaughan, partner of Mr. Bolckow. the memory of the lat and influentially attended, and a great deal of enthusiasm was
displayed for the object in view. A committee was form obtain subscriptions, and several large sums were promised then
The recit damage in the Cleveland district. The most serious case is that a foundry belonging to Messrs. Smith and Stoker, of Stockton-o including thition of the building was blown down, killing six men, foreman manager, who was also son of one of the partners, others. , and chimney stacks we upset, and either lay helplessly on the roofs or fell down bodily boats, has been something fearful. Although the storm in fishing from the south-west, the gusts of wind which did most damag were from the north, indicating that the storm was a rotating one The he
gradually coming to an en Now that they are efting beaten they are beginning a distance At a meeting held day or two since, they passed a resolution that a section of them filled by others, and it is doubtful whether they will be received at the yards on any condition whatever

NOTES FROM SCOTLAND

From our ove Correspondent

THE tone of the Glassow warrant market has been less firm this
week, and both warrants and makers' iron have been in less week, and both warrants and makers iron have been in less
demand. As the season for continental shipments is now almost at an end, the consignments in that direction are getting small. This
has, of course its influence in diminishing the has, of course, its influence in diminishing the genereal bulk of the
shipments abroad ; but those of the past week, which were unexpectedly small, were likewise reduced by the extremely violent a large quantity of Scotch pig iron, and also increasing quantitie With respect to these latter, too it which are at present large they usually increase at this season, on account of merchants pre-
paring for the probable interruption of the canal navigation. The the storing of curnaces for in the cas, as yet, had no effect upo 4000 tons were added to the stock in Messrs. Connal and Co stores. These now contain upwards of 600,000 tons, or abou
140,000 tons more than at the same date last year. This state matters, together with the small shipments and moderate deman for makers 'iron, has this week induced a number of holders
sell, with the result that prices are easier all round sell, with the result that prices are easier all round. There are
105 furnaces in blast, as compared with 111 at the same time las
year. Business was done in the warrant market on Friday at 52s. $1 \frac{1}{2} \mathrm{~d}$. per ton. On Monday, owing to the influences referred to above,
there was a rapid fall from 52s. to 51s., whilst on Tuesday the mand 51s was irregular, with th to y, when business was don at 50s. 10d. to 50s. 3d. cash. To-day-Thursday-being a holiday As indicated above, makers' quotations, or rather the prices of

 51s. 6 c .
The factory the malleable iron trade continues very satis from the Clyde. The past week's shipments comprised $£ 45,000$ of tives for Calcutta, and a mill, valued at $£ 4800$ for New Zealand o Rouen, and $£ 500$ to Montreal ; $£ 39900$ to Gothenburg, $£ 138$ which $£ 13,000$ were steel rails f Galveston, $£ 9900$ for Rangoon $£ 8500$ for Mont
$\& 1000$ for Spain.

解 good demand at the slightly advanced prices. The stormy weathe
has to some extent impeded operations in connection with the shipping department of the trade, but there appears to have been
rather more doing in houselold coals for home use ; steam coals for home manufactures also being in ar ascertained that in the course of the past nine months $3,220,000$ tons of coals have been brought into Glasgow from the various
colliery districts in the West of Scotland. Of this quantity
between 300 . In the West the miners are expected to keep quietly at work promised them. The Executive Board of the Fife and Clackmannan miners met at Dunfermline on Saturday, and, after districts, passed a resolution to the effect that if an advance of 6 d . per day is not conedork more than five days per week
be held bound to Ir. Ralph Moore, Inspector of Mines, presiding-towards the close of last weee, when Mr. F. J. Rowan, of Glasgow, read a
paper on the subject of firing boilers by gas. Mr. T. LGalloway afterwards read a paper on mining surveys, and
nications were favourably critioised by those present.

WALES AND ADJOINING COUNTIES

The western part of Wales has been en fete this week owing oo the visit of the Prince of Wales, and the opening ceremony
of the new dock at Swansea. When completed I shall notice the dock at greater length. At present the date having been fixed for
the opening at too early a time, and carried out so as not to
inconvenience his Royal Highness, I onl
notice it cursorily. It is situated notice it cursorily. It is situated on the eat
of the river Tawe, in Fabians Bay.
will be called the Prince of Wales Dock, wi will be called the Prince of Wales Dock, wi
contain 23 acres of water, length 2320ft., an breadth from 500 ft . to 340 ftt ; depth 35 ftf . ordinary spring tides there will be 23 ft . In addition there is to be a dry dock, which will shortly be commenced. Some idea of the work accomplished is given from the fact that as much as a million and a-quarter cubic yards of earth
have been excavated within the old east pier, while the excavation outside of the pier amounts
to 300,000 yards. Six coal tips are to be erected, five for the Great Western and one for the Midland. The whole of the bridges for this work have been supplied by Messrs. Brettell, of Shrub
Hill, Worcester. I am assured by a prominent gentleman at
Swansea that every every effort will be made at the next session to carry the Swansea and
Rhondda Railway Bill. Having greater accommodation, Swansea must prepare vigorously to find more exports. At present the coal total
remains under 20,000 tons considerably, while Cardiff rarely falls below 100,000 tons per week. A new line has been sketched out, which seems to me an easy one. It is from Swansea to Neath, then, utilising the Neath Canal, will get by easy
gradient to Penderrin; leaving Hirwain on the gradient to Penderrin; leaving Hirwain on the
right, reach the Taff Vaur Valley near Cefn, and be in direct communication with the London and North-Western; Brecon, Great Western; and
with the Rhondda by way of Taff Vale. This will open out to the Great Western an alternative route for that of the Abernant Tunnel, which
some day I expect to see abandoned. Still some day I expect to see abandoned. Still
another line is to be brought forward at next session, and this by the Taff Vale Railway Company, which proposes to construct a line from ther collieries intle Pit, Cyfarthfa, then by the ine will enable the Taff Vale orks. This new Cyfarthfa traffic.
The staple trades of the district are in good condition, though a little interfered with by the There has been an important meeting of coalowners at Cardiff, when amongst other questions the new regulations with regard to blasting were upon the supply from the important collieries of Wales must fall considerably short of the demand, especially if, as now appears probable, that deThe Welsh ironstained throughout the winter. The Welsh iron and steel trade is good, and
prices still continue to look up. Like the coal prices still continue to look up. Like the coal animation exists.

THE PATENT JOURNAL.

** It has come to our notice that some applicants of the Patent-afice Sales. Department, for Patent Specifications, ave caused much unnecessary trouble and have caused much unnecessary trouble and annoyance both to themselves and to the Patent-office ofticials by giving the number of the page of THE ENGINER at which the Specifcation they pequire is referred to ins ohich the Specifcation they require is referred to, insiced of giving the moper number of the Specifcation. The mistake has been made by looking at THE ENGINEER Index and giving the numbers there found, which only refer to pages, in place of turning to those pages and flnding the number's of the Specifcation.

Applications for Letters Patent.

 * When patents have been "communicated" thename and address of the communicating party are
printed in italics. 406 Knimued Fabrics, T. Thorper, 1881.
 4408. Componsd Matrerials, W. Cailender, London.
449. TELEGAPH Conducrors, W. Callender, London.
4410. Woopen Hoors, W. Morgan-Brown.-(H. F.
Campbell, . Campbell, U.S.).
4411. MAsH TUNS, G. G. Cave, Castle Green, Bristol.
412. Food for ANIMALS, E. Wylam, Southwark 4412. Food for Animals, E. Wylam, Southwark.
4413. Worf Finter, G. G. Cave, Bristol.
4414. Thermometers, E. A. Brydges.-(Dr. Kronec 4415. Colliery Wagons, R. Hadfield, London.
4416. Furnaces, T. Hudson, Manchester. 4417. Music Stavi, J. J. Gilbert, Neew Romney.
441s. CalCINIG Ores, R. Mackenzie, London. 4418. Calcining Ores, R. Mackenzie, London.
4419. Paper Pulp, D. O. Francke, Sweden.
4420. Tel ephonic Apparatus, S. Pitt.-(W. Pat

 4425. Heating Rooms, T. Stokoe, Headingley.
4426. Knitting Maghines, H. J. Haddan.Creelmant, Canada.)
4427. PIE Joins, E. Mawbrey, Market Harborough.
4428. TELEPHONIC AppARATUS, A. Bennett, London.
4429. PRESERVING HAY, C. W. F. Swarhrick, London. 4428. TELEPHoNIC Apparatrey, A. Benkethett, LLondong.
4429. PRREERVING HAY, C. W. F. Swarhrick, London.
430. BICYCLES, T. T. Harrison, Bristol.
 4432. Looms, J. Barbour.- (A. Coulter, Kacan.)
4333. STREET RALWAYs, A. Clark. (C. Rasmusen, U.S.)
4434. TRICYCLES, A. M. Clark.- (S. N. Silver, Auburn
 12th October, 1881 .

 4444. Coating Surfaces, H. Lake.- (H. Reusch, Germany.)
4445. Screws \&., W. R. Lake.- (Harvey Screvo Company, Incorporated, Jersey, U.S.)
4446. Woring PUMP, L. Lee \&T.Alison, Huddersfield.
4447. Food, W. White, London Wall. 4444. Elecrro-magners, J. Imray.- (J. Stearns, U.S.)
4449. BrusRing, F. Stansfield, Bradford.
4450. TELEPHONIC Communications, J.

Maven

Inventions Protected for Six Months on deposit of Complete Specifications.

 4420. Telephonic Apparatus, S. Pitt, Sutton.-communication from W. R. Patterson and C. E Scribner, Chicago, U.S. - 11 the october, 1881 ,
4221. TEEEPHONELNES, P. Pitt, Sutton.-A commin
cation C. E. Buell, New Haven, U.S.-11th October cation C. E. BueH, Lake, Southampton-buildings,
181. 443. Hats, W. R. Lake, Southampton-buildings
London.-A communication from W. A. Baglin,
Brooklyn, and G. Yule, Newark, U.S.-11th October
18si. 18S1. MANGFACTURE of Sorews, \&cc., W. R. Lake, South ampton-buildings, London-A communication from
Harvey Screv Company, Incorporated, Jersey, U.S.
$-12 t h$ October, 1881. Patents on which the Stamp Duty of
\&50 has been paid. 3996. Collecting Rarn-water, W. Buck, Kilburn.-
10th October 1878 3997. Gas, J. E. Dowson, London.-10th October, 187s.
400s. HeEs. for Boots, W. H. Dorman, Stafford. -10 th October, 1878.
4012. DECANTER, \&., STANDS, G., G. W., and J. Betje
mann, London.-10th October, 1878. 4014. APPLYING CFINEEING to SLIVERS, W. A. Barlow 4045. DIIE or Mourds, W. B. Ensor, West Bromwich.
-12th october, 1878 . 4054. SELF-ACrING Mules, B. A. and W. Dobson, and
R. C. Tonge, Bolton. -12 th October, 1878 .
 4093. Brakes, G. Westinghouse, jun., London. -15 tht
october, 187 S.
4107. Long-range Sights, G. M. Lowe, Lincoln. $-16 t h$ Octover, 1878. BRakes, G. Westinghouse, jun.
4389. RAILWAX Brand
London.-31st October, 1878. London.- 31 st October, 1878.
4056. Rotary Pumps, S. Pitt, Sutton. -12 th October,
1888,
4068 . Pulping Fibrous Materials, J. Cooke and 4068. Pulping Fibrous Materials, J. Cooke and G.
Hibbert, Richmond, and C. E. B. Cooke, London.-
1tth October, 1878.
4075. GAlvalic Batteries, J. He 14th October, 1878.
4112. WATER-CLosETs, G. Jennings and G. Jennings,
jun., Stangate.-4th october, 1878. jun., Stangate. - 4 th October, 1878 . October, 1878 .
4199. WheEs. of Tramcars, E. Perrett, Westminster.
$-222 n d$ october, 1878 . 4070. FILTERING, AIR, A. R. and J. W. Harding, Leeds.
 Vienna. - 19th October, 1874.
4251. ENELOPES, C. S. Britain and H. King, Liver-
pool. $-24 t h$ October, 187 s . 407S. BLANKS for ANMAL's Shoe-vails, G. C. Hopper,
London.-14th October, 1878 . 4081. REGEIPTS of FARES, \&C., J. Bailey, Wandsworth

4106. Carding Wool, E. Wilkinson, Marsden.- 16 th
October, 1878. 4115. Driving Belts, J. Heap, Ashton-under-Lyne.-
16th October, , 187 S.
4122. SHAPING. TeETH of Bevet 4122. Shaping Teetr of Bevel Wheels, W. W.
Urquhart \& J. Lindsay, Dundee.-17th october, 187s.
4128. Roarways, C. Bremerkamp, London.-17th
 Patents on which the stamp Duty of
\&100 has been paid. 3519. Loovis, I. J. Knowles, Massachusetts, U.S. -13 th 3562. Covering for Carding Wool, \&c., R. Thorton,
Cleckheaton.-16th October, 1874. 3612. ExpLossive Compouns, S. Mackie, London, C.
Fauré \& G. French, Faversham.-20th October, 1874 .

Notices of Intention to Proceed with Last day for fling opposition, 5th November, 1881. 2487. Mowivg
J.ine, 1 BSI.
2490. SELSKIN

 2505. Sealskins, C. M. Lampson, London.-9th June,
1815. Taps and Valves, A. Pullan and J. R. Meihé, London.-9th Jure, 1 Ess.
2527. PRINTING SvRFACES, W. B. Woodbury, London.
-10th June, 18s1 2533. LEAMHER, J. Hall, Leeds.-10th June, 1881.
2534. SECTION KNIVES, T. Heiffor, Sheffield. $-10 t h$ June, 1881.
253s. Electric Brakes, M. R. Ward, London.-10th June, 1881 .
2542. InsULATED Wires, S. J. Mackie, Peckham.-11th
June, 1S81. June, 1881 .
2544. Zivc frer Preventing Corrosion, J. B. Hannay,
Glasrow Glasgow- 11 th June, 1881.
255l. STrAps or BAND, H. Studdy, Waddeton Court.
2553. Fevt Hune, HATS, W. W. Lake, London,-A communi 2553. Fell Hats, W. R. Lake, London,-A communi
cation from C. P. Marin. - Ith June, ISA1.
2561. BARs for Houdna GLAss in WINDows, C. H Pennycook, Glasgow.-13th June, 1881.
256s. REGLLATING PATtrass of Work, F. E. A. Büsche,
Germany.-13th June, 1881. Germany.-13th June, 1881. 14th June, 1881.
2619. BALC Cocks, S. Owen, London.-13th June, 1881.
2623. TraNsport of CARRIAGES, I. Bell, F. G. Stoney,
 mouth, -1 1 th June, 1181 .
2639. Bessemer Converer Lininas, D. Evans and A
E. Tucker, South Wales.-
 mingham.-17th June, 1 181.
2669. Covstruction of GAs Retorts, G. Anderson,
London.-1Sth June, 1881 . London.- 1 Sth June, 18S1.
2674. TYPCCOMPosition, I. Delcambre, Brussels.- 18 t June, 1881. W. E. Everitt, Birmingham.-18th June,
2683. TUBEs, W.
1881 . 2717. Feed-Water Apparatus, H. H. Lake, London.-
A communication from E. J. Hall.- 1 Is June, 18si.
2722. Wax-thread Sewing Micuint W, A communication from E. . Hall.-21st June, 1881 .
2722. WAX-THREAD SEWIN MACHIES, W. R. Lake
London.-A com. from G. Copeland.-21st June, 1ssi
2727. HEALDS, W. E. Ged. 2727. HEaLDS, W. E. Gedge, London.-A communica-
tion from N. and J. Chaize. 22 2nd, June, 1881.
2738. Compact Incorss, P. Jensen, London.-A com
munication from H. Tholander.-22nd June, 1881 . munication from H. Tholander.-22nd June, 1881 .
2760. TooL-HoLDER, W. R. Lake, London. -A com. from
E. Dervaux-1bled \& G. Shoenberg. $-24 t h$ June, 1881
2786. KILNs, T. Carder, Chudle
 2932. WhrIE MEIAL, J. C. Mewburn, London.-A com
munication from La Societé Raynaud, Bechade Gire
 communication from A. B. Clarin.- 6 th July, 1881 .
M2. Mordantivg Textie FABRICS, J. Knowles, 3 J
340

3
-3. August, 1881 .
3407. CHUNs, N. Stewart, Hayward's Heath. -A com-
munication from A. Stewart.-6th August, 1881. 3t97. PIINos, J. M. Lewoissière and C. L. Daujon,
Paris.-12th August, 1881 .
 3655. Burrons, G. Phillips, Clehonger, Hereford.-24th A749. BARROWS, B. Green, Mitcham,-24th August, 18s1.
3839. FIrE-GRATS, C. D. Abel, London.-A communi-
cation from A. Godillot.cation from A. Godillot.- 3 -d September, 1 SSI.
3975. Catryiva Electric WIres, J. W. Smith, Edin burgh.-14th September, 1851 ,
4013. CTGARETTEs, D. Nicoll, Strand, London.- $17 t$ in
September, 1881.
 4330. Knitting Machine Needles, W. R. Lake,
London.-A com. from S. Peberdy.-5th october; 1s81. Last day for fling opposition, 8th November, 1881.
2554. Reoelving, \&c., Audible Signals, A. F. St.
 June, 1881.
2563. ELECTRIC Lamps, G. G. André, Dorking.-13th
June, 1881. 254. Locomotive Engines, J. R. Wigham, Dublin.-
133th June 1881 . 2571. LooMs, J. Pickering, Batley.-A communication
from G. Pickering.-14th June, iss1 2585. Machine Hammers, H. J. Haddan, Loondon.-
A communication from A. Beaudry.-1th June, 1881 .
2594. Burners, G. Lauckner, London.-A commul nication from N. S. Wax. -15 th J June, 1881.
H. MANUL Levers, J. Cuthbert, Landport, and G
 1881.
2646. Vehicles, J. Wilson, London.-17th June, 1881.
2650. SEwINa Books, G. Brown, Giastow 1881.
2654. Book CAses, W. T. Rogers, West Dulwich. -17 th
June, 1881. 2656. Governors, J. Bourne, Bayswater.-17th June, 2681. LAMPPs, F. R. Baker, Birmingham. $-18 t /$ June, 1881. Ackling Flax, \&c., J. C. Mewburn, London-
269. Hammunication from. Dequow.-20th Jund, 18S1
6994. Lamps, W. H. Bulpitt, Birmingham.-20th June 18S. Pressing Wads of Wax, W. Lorenz, Carisruhe.
2689. 2700. RoLLER MMLLL, M. Benson, London.-A commu-
nication from O. Oexle.2701. Canvas Stretchers, M. Lazerges, Paris.-20th June, 1881.
2709 CoppER CAPS, \& \&c., W. Lorenz, Carlsruhe $-21 s$ 2725. Forming Moulds, F. Ley, Derby.-21st June,
181.
2729. Butron, \&c., FAsteners, J. Harrington, Brix-
ton, $-22 n d$ June, 1881 .
273. Spinning Machinery A. M. Clark, London.-A
communication from P. Townson. 2 Ahth June, 1881.
2777. Railway Srenalling, G. Brockelbank, Anerley. Communication from P. Townson.- 24 the June, 1881 .
2T7. RaIwAY SSoNallisg, G. Brockelbank, Anerley.
$-25 t h$ June, 1881 .
 Kingston- - Tth July, 1881.
3123. Drilling Shelis of Boilers, W. Allan, Sunder land.-15th July, 1881. G. Grove, Berlin.-25th July,
3250. STEAM Cooking, D.
1851. 1857. Pugaing Clay, C. Walton, Bournemouth.- -3 rl August, 1881.
3383. LAvATories, J. Shanks, Barrhead.-4th August,
1881. 3463. Protecting Cables, F. R. Lucas, London,--10th 3504. Polychromatic Pristing, J. R. Meihé, London

- A com. from F. C. Hoesch.- 1 th August 3599. Etem. from Fic Lamps, C. Lever, Bowden.-18th August, 1881 .
3649 JIGGING,
August, 1881 August, 1881 .

3907. Rotary Motion, J. J. Read, Dublin.-9th Sep-
tember, 1881 . teimber, 1881.
3908. LAMP BURNERS, J. S. Fairfax, London.-A com-
munication from W. Painter.- Itth September, 1881 .
3909. STEAA SteErivg Machine, H. Muir and J. Caldwell, Glasgow.- 14 th September, 1881 .
3910. BATHs, J. Shanks, Barrhead.-16th September; 1881. leys. -17 th September, 1880 .
3911. GLas Bottles, H. Codd, London.-19th Sep tember, 1881.
3912. Woopen Boxes, J. Womersley, Norwich.- 21 st
Septenber September, 1881 . Wopdsor Scores of Operas, W. Lake,
3913. Exhibirisg Words
London.-Com. from T. L. Jones.-21st October, 1SS1
 4120. Telephonic Apparatus, S. Pitt, Sutton.-A com.
from W. Patterson \& C. Scribiber.- 11 th October, 1881. 4421. TELEPHoNe LLNESS, G. Pitt, Sutton.-A comm
nication from C. E. Buell.-1th October, 1881.

Patents Sealed.

(List of Letters Patent which passed the Great seal on 1514. Steering Ships, F. W. Wilcox, Sunderland.-6th April, 1881.
1560. DIsTributing Liquids, W. Wells, Earlswood.
9 9th April, 1S81. 9th April, 1881.
1671. REGULATING Flow of Liquids, G. H. Flood and
D. Young London D. Young, London.-16th April, 1881 .
1680. Hot BEd Frames, A. Tyson, Lancaster.-16th Amil, 1881 .
1683. SigNaling, A. M. Clark, Chancery-lane, London 1685. ELEETRIC LAMPs, Λ. M. Clark, Chancery-lane
London. -18 th April, 1881. London.- 18 th A April, 1881 .
1688. Boot Protectors, W. Beverley, Aberdeen.-19th April, 1881.
1689. SinNing Frames, J. Erskine, Strabane, Ireland 1692. Registering Distance Travelled, W. Thomp son and A. Morten, London. - 19 th April, 1881.
1722. RING FRAMEs, W. Lumb, Rochdale, and J. Smith, Bagslate--20th A Amril, 1881. . Nach
1757. SAFETY-VALVE PLUGS, A. Maylor, Dumbarton. 1812. Covcrerte E. E. Carey, Newhaven, and E.
Latham, Birkenhead.-27th A mil, 1S81 1844. FILTERRNG Chemicat Solutions, H. E. Newton,
London.-28th April, 1881. London.- 28 th April, 1881 .
1860. TricycLes, J. Harrington, London,-29th April, 1871. VELocipedes, A. G. Meeze, Redhill, and N.
Salamon, London. 30 th April, 1881 . Salamon, London. 30th April, 1881 .
1890. Potrery, J. H. Johnson, Lincoln's-inn-fields,
London.-2nd London.-2nd May, 1881 .
1910. SHApric, de., METALS, H. E. Newton, London.1917. SEPARATORS, B. J. B. Mills, Southampton-buildings, London.- $3 \cdot d$ May, 1881 .
1942. ELectric Arc Lamps, J. Brockie, Brixton.-4th May, 1881 .
1950. Etecrrophonic Apparatus, W. R. Lalke, South
ampton-buildings, London.- 4 th May, 1881. ampton-buildings, London.-4th May, 1881 .
1956. RESPIRATORY APPARATES, W. R. Lake, London 1965. Electric Lighting, W. R. Lake, London.-5th May, 1881 ,
2161. Mechanism for Tricycles, A. Burdess, Coventry, 2312. Pipe Joint for Fire Engines, E. Cooman and P Dallard, Paris.-26th May, 18SEs, E. Cooman and
2603. WASHING. Woos, J. Clough, Keighley.-15th June, 1881. . 185. Mining Machine, W. Mather, Lancaster, and F
M. Lechner, U.S. -15 th July, 1881 . M. Lechner, U.S.- 1 th Juty, 1881.
3324. CLEANSING TuBs in STEAM BoLers, E. Lofts and
H. J. Barker, Cherry-Hinton. - -30th July, 1881. York.-2nd August, 18s1.
3409. Pronuction J. U. Mackenzie, New London.-6th August, 1881 . -6th August, 1881 .
3422. PIANoForte Actions, F. L. Mitchell, Halifax.-
Sth August, 18si. Sth. Roor Principals, F. H. Beattie, Soho.-Sth August, 1181 .
3431. Mountiva of Ordnasce, A. Longsden, London. 3434. RAuLWAY Brakes, G. Westinghouse, London.8th. August, 1881.
3436. Regulating Valve, G. Westinghouse, London. - Sth August, 1881 .
3411. Generativg Electricity, R. R. Moffat and S.
Chichester. Chichester.- $-9 t h$ August, 18S1.
3525. Reaping MAcHINES, P. C. Evans and H. J. H
King -King.- 13 th August, 1881 .
3564. L. Jps for Rasivay Carrages , J. F. Shallis and
T. C. J. Thomas, London.-16th August, 1881 . (List of Letters Patent which passed the Great Seal on
the 1Sth October, 1881.) 1704. Refining Camphor, G. Atkinson, London.-19th
 April, 1881.
1732. Rotary Pumps, P. Jensen, London.- 21 st April,
178s. Grinding Machines, M. Bauer, Paris,- $22 n d$ 1736. Grinding Machines, M. Bauer, Paris.- $22 n d$
April, , 1881.
1746. .otary Pcmps, J. Lyle, London,- $-22 n d$ April,
1881 . 1898. Boller
A pril, 1881. 1766. Reel Firtings for Fishing Rods, W. Hardy, Anwick.- 23 d. April, 1881 .
1767. Dyes, F. A. Zimmermann, London.- $23 r d$ April, 1769. Withdrawing Fire-damp, W. and J. Morgan, Pontypridd.-23rd April, 1881. Wirth, Frankfort-on
1786. Provocron of AcDs, F. Wirth,
the-Main.-26th April, 1888. the-Main. -26 th April, 1881 .
17s. BLock Slensluing, J. W. Fletcher, Stockport.26th April, 1881 .
1805. GRINDING, \&c., Grain,
the-Main.- 25 th A April, 1881. 1815. Water-closet CIISterns, H. and W. Sutcliffe
Halifax.-27th A pril, 1881 . 817. Artificial Stone, W. E. Gedge, London.-27th

1873. Telegraph Cables, W. T. Henley, Plaistow.-
30th A pril, 1881. 1931. Treating Textile Fabrios, H. J. Haddan,
Londen.- 4 th May, 1881. 1953. Controlling Water Level, C. Pieper, Berlin.5th. May, 1881. . May, 1881.
2180. Distill Victoria Docks.- 18 Apparh May, 18s, A. L. Normandy,
183. Lock-sTITCH 183. Lock-stitch SEwing Machines, C. Pieper,
Berlin.-19th May, 1881 , Berlin.-19th May, 1881.
2185. CHronograpys, L. A.
1881.
189. Digaring Land, W. E. Crossby, Chelmsford, A53. SToves, W. Barton, Boston,-17th Juire, 1881 .
2939. Mivernc Meat, H. Dollman, Birminele July, 1881.
3062. Treating Wood, C. D. Ekman, London.-13th July, 1881.
3099. Cutring Screw Threads, W. R. Lake, London 3208. Preparing Corrmon, J. Higgins and T. S. Whit-
worth, Salford. -22nd Juily, 1881. 3270. BICYCLEES, J. H. Johnson, London.-26th July, 3311. Preparing Vegetable Substances, J. H. John son, London.-29th July, 1881 . riages, W. Walker 469. Rallway Brakes, A. M. Clark, London.-10th August, 1881 .
3528. Fog-sIGALS, F. H. Holmes, London. $-13 t h$ August, 1sSI.
3603. Preparivg Colouring Matters, J. H. Johnson,
London.-18th August, 1 SSI
List of Speciffications published during the
week ending October 15th, 1881.

** Specifications will be forwarded by post from
the Patent-office on receipt of the amount of price and postage. sums exceeding 1s. must be remitted by
Post-office order, made payable at the Post-oftice, 5,
High Hilborn, to Mr. H. Reader Lack, her Majesty's Patent-olfice, Southampton-buildings, Chancery-lane,

ABSTRAOTS OF SPEOIFICATIONS,

 Prepared by ourselves expressly for The Engineer at theoffice of Her Majesty's Commissioners of Patents.
235. Sampling Liouids in Casks, \&c., J. $0^{\prime} N$. Mackle. - 20 th J January, 18s1. $4 d$.
A tube with open truncated conical ends contains a nised as the tube is depressed into the liquor, and to
close as the tube is withdrawn close as the tube is withdrawn.
 The object is the production on universal feed sowing or embroidering machines of a new ornamental seam, which is obtaimed by the
seond, which iaid like a serpentine line under th
upper embroidering seam of said machine. It con

sewing or embroidering machine, of a second thread needle, and following in its oscillations the direction shaftor sleeve P having a longitudinal reciprocating
motion on the shaft C (which directs the feed of the machine) and imparting an oscillating motion to the or vertical screw gears or screw shafts ; Thirdly, the combination of the wheels K W, shaft S , crank Q,
pitman U , and slide block X , with hollow shaft P
sliding upand shaft C 747. SToves, H. Defty.-22nd February, 1881.-(Not This relates to an encased furnace, and consists of a tect the fire from cold air, and permit a clear view of
teate series of ovens on or boing from the back and bottom. A
be placed immed domestic purposes may 803. Improvements over the flame.
 The inventor's improvement in. 10 d .
giving a rotary or other motion to plates, cylinders
or other forms, whether composition materials and metals used in the production of cof of varis. His improvements in dynamo machines are
vescribe one of them below. The figure shows a dynamic electro machine, I with one arma-
ture composed of two hollow and one solid magnet on each side of the armature. The outer magnet A is
covered with wire ; the coils D D nearly cover the half, and if the she poles D I uncovered with there The armature B is in six sections. Each section is a coiled can be hollow so as to receive pieces of turnings, cast or wrought iron, or pieces of wire. Two checks
are fixed and joined to the wood smaller machines the insulator, and in which grooves
are cut to receive the copper connections which unite
the wires of the coils of the armature and the com-
mutator. The armature thus works nearly all covered
by the outer field magnet. Various modifications of 969. Grates and Stoves, R. Cane.-7th March The grate has the same appearance as an ordinary open fire register, but on each side a flue passes down
under the bottom of the fire and then up the back. well under the bottom receives the ashes. A raised hearth is formed up to the underside of grat clean out the ashes
1016. Improvements in Weber-meters or Devices
for Measuring and Registering the Curbes

FLowing Through Converors, E. G. Brewer.
9th March, 18S1.-(A communication from T. 9 Mh March, 18S1.- (A communication from T. A One part of this invention describes a meter
actuated by gases evolved by decomposing water witl a definite part of the current. The figure shows a current decomposing the water, the liberated gases
rise into the second vessel, causing the vessel itself to

1015 ? ?

rise in the same way as a gasometer rises. At a cer tain point of fulness a contact is made, the gases are
recombined, and the vessel returns to its original position. Another method described is by means o
the electro-deposition of copper. The electrode upon which the deposition is to be made is carefully been deposited the electrode sinks down deeper into the containing vessel. This action reverses the cur-
rent, and the coper deposited is now taken off till rent, and the copper deposited is now taken off till
the original condition is reached, when reversal again the original condition
takes place, and so on.
1036. Obtaining and Supplying Gases unden
Pressure to Metallurgical Furnaces, dco., J. H

Johnson.-10th March, 18si.-(A communicatio from C. Pernot.) 6 d.
for burning coal or any other suitable substance are caused to pass through a flue or chimney B provide with suitable valves or dampers. This flue com
municates with a fan or other suitable blowing

apparatus C , which delivers the gas to the furnac at the same time through a corresponding flue or passage G, similarly provided with a blowing appa-
ratus D, which may be actuated by the same shaft as 1046. Hydraulic Apparatus for Punching, EmBosting Pressing, Moulding, dc., J. M. Blair.-
1th March, 18s1. Gd. This consists of a large central cylinder and an
annular space, with two or more side cylinders, all being provided or arranged with the necessary ram
below or at the back of the follower. The follower i

1046

constructed or provided with a frame or plate, so
adjustable that punches or the like may be spaced required at regular or irregular distances apart. To
release plates from multiple punches used in hydrauli apparatus bars are employed, arranged longitudinally or transversely. The drawing is a
elevation, parts being in section.
1049. Apparatus for Pickling and Swilling and
Washing Metal Plates, \&ce., D. P. G. Matthenos.This consists, First, in constructing baths or cisterns of wood or metal, or both combined, such baths being
separate or coupled together, and suspended and
partially counterbalanced; Secondly, in suspending
or supporting in said baths on a table or platform to
1049

receive crates containing plates to be operated upon The drawing shows a section of No. 2 bath. 1057. Looms, C. Catlow. - 11th March, 18s1. Sd.
This relates to means for stopping the loom absence of weft when the shats the the box neares
the weft fork; to bar temples; to the action ; to mechanism for operating the healds in plain weaving to letting-back appliances ; and for counterbalancin
the strain of the heald springs of the dobby. Also to aptliances for working the peg or barrel. ; to guide
studs and plates in contection with the heald cords

and heald staves; to appliances in pile or terry tension rollers, so as to reverse the ordinary direction of rotation of taking-up and cloth rollers. Fig. nection with the weft hammer 1 isa lever acted upon by shaft, so that when weft is absent, the fork 4 and fork-box. Fig. 2 shows the apparatus for working the pattern barrel 12, and the use of guide studs 18 , on or
over which the heald bands are received and worked

These studs ensure the heald staves being maintained at proper distancese apart, and likes studds 19 steady the
lower heald staves. To work the barrel 12 a pair of pendant catches 13,14 are attached to the lifting bar engaged and pulls up the notch 16 , catch 14 is being
raised into position to act upon, by depressing the raised into position to act upon, by depressing the
notch 17, and so on at each motion of lever 15 . 1052. Boots, Shoes, Cloas, \&c., K. Proctor:-11th March, 1881 . 4 d. ring secured by taper-headed nails or pins, the ring
being cast with pins to steady it while being driven into position. The sole is also fitted with irons similarly secured.
1058. Pnevuatic Brake Apparatus for Railways,
F. W. Eames.- 11 th March 18si. 1s. This relates to improvements on patent No. 225, dated January 20th, 1879. A is a duplex valve box
shown in vertical section, A^{1} is a flexible diaphrag

carrying a hollow stem, which is closed at top by which opens and cuts off communication between the vacuum reservoir and the pnoumatic lever. A poppe
valve is seated in the bottom of the valve box A and
held down to its seat by the stem of the flexible dia-
phragm. B is the ordinary working train pipe conphragm. B is the ordinary working train pipe con-
nected as usual with the ejector. B 1 is the automatic
train pine connected train pipe, connected with the top of the duplex valve
box. © is the vacuum reservoir connected with the
duplex valve box below the dianter neumatic lever connected through the supplementary valve box E with the duplow valve box A by means of
the pipes D^{1} and D^{2}. 1066. Straining Pu
G. Tidcombe, jun.-11th March, 1Ssí. 6il. Paper, The plates, instead of being formed with a groove
for each slit therein, have one counter-sink or cell to a for each slit therein, have one counter-sink or cell to a
series of slits, by which means more slits can be made
in a given are in a given area of plate.
1069. Date Powder, F. Pool.- -12 th March, 1881. 6d.
The dates are put whole into a vat with about oneeighth quantity of water, and left to ferment for two days, after which they are subjected to hydraulic or other pressure to remove moisture, and then through
heavy rollers and a centrifugal rejector to further
clear them of moistur heavy rollers and a centrifugal rejector to further
clear them of moisture and reaject the stones. The
dates are then divided into cakes and dried by air when they are roasted and ground to powder.
1071. Elastic Webs, H. Booth.-12th March, 1881.(Not proceeded with.) $2 d$. . 121 March, 1881. the rubber from slipping in the fabric. An extra
shaft is employed in the corresponds with that of the rubber shaft. The threads of an extra cotton warp are passed through
the harness of the extra shaft in such a way that the different warp threads are arranged in the reel in the following order:-1, face ; 2, back: 3, binder; 4
rubber; 5 , face ; 6 , back; 7 , extra warp. 1073. Producing Tension in Cords or Bands o March, 18s1.-(N. Lempriere. - $12 t$ In the axis of a coiled spring is a screw, the lower
end of the spring forming a tooth to engage with such screw, while its upper end is the axis on which passes. The screw and spring are contained in a cas fastened to the frame, and by turning the screw the 1076. Regulating the Speed of Steam Engines,
\&tc., H. Charlton and J. W. Wailes.-12th March, This relates to apparatus for regulating the speed of engines by controlling the amount of motive power
admitted or by applying a brake or other device. A clock regulated by an escape motion causes a numbe
of bolts to operate every minute on mechanism so

arranged that each bolt causes a certain slip. By this ator causes a certain amount of slip on the mechanism driven by the varying speed of the engine, and the
difference is made to act as a means of regulating the uncertain motor.

March, 1881. Gd.
n a wooden handle a metal tube is fixed, such tube In a wooden handle a metal tube is fixed, such tube ring. In the tube is a cylindrical stock, with a pulley the pulley and the end of the tube turns a shaft carry ing rollers on its opposite ends to guide the driving cord and force it to lie close to the arc of the pulley he lower end of the stock is fitted with a lock nu
below which is a socket, from which three arms pro ject and carry cutting rollers composed of steel discs
driven by pinions gearing with a wheel in the bass ariven by pinions gearing with a wheel in the bas
ring. In the latter is fixed a second ring attached to ring. In the latter is ixed a second ring attached
a third ring of steel, which lies in contact with the
under side of the cutting rollers, which are pressel under side of the cutting rollers, which are pressed
thereon by springs. Outside the base ring is a solepiece sharpened to form a cutting blade, and an it are arranged two cutting blades which cross each other. 1080. Floating Bridges, B. P. Stockman. - 12 th This relates to bridgos which require to be opened for the passage of vessels, and consists in arranging
the floating bridge in two halves, each made to float by pontoons and propelled from opposite sides of the river, meeting in the cen
form a continuous bridge.
1081. Manuracture of Gas for Lighting, Heating,
de., W. L. Wise. -12 th March, 1881. - (A communication from N. F. Deleau and La Socieled Huber:

This consists, First, in causing the air or gas or rases to be carburetted to circulate through the appa
ratus in the opposite direction to carburetting fluid

emitted in the form of a shower from a horizontal conduit perforated with holes at its upper part
Secondly, in the use of a permeable mass consisting horsehair and sponge ; Thirdly, in forming the ter-
mination of the air or gas inlet pipe by a reservoir of
iron wires wound in iron wires wound in the form of a spiral or of wir
gauze. Various other improvements are described. 1082. Stoppering Botrles, dre., W. R. Lake.-12th
March, 1881.-(A communication from F. Bohman.)
(Not proceeded with.) ${ }^{2 d}$. flange to surround the
stopper is made with a flan
neck of the bottle, and is convex at its upper side,
being held in contact with the bottle by a bow-piee
bin being pusthed over the stopper, such piece having in
the centre a bend extending downwards and entering 1083.

cation from the Automatic Music Peper Compony.)
 movement of the paper sheot and stencil by means or
an extended frame supporting a belt passing over rolls an extended frame supporting a belt passing over roins,
and having detachable clamp tosecurs the paperand
stenciil togetheer at any point on the belt, to which an stencil toge ther at any point on the belt, to which an
intermittent movement is imparted Mochanism is
in atsormovided to automatically cut the rack in a blank
stoncil sheot, the arrangement being such that the
sthe sheet is fed to the rack cutting punches by the same
mechanism, which thth same time feeds the paper
sheet to the perforators. 1084. SELF-Governisg Gas

The prosesure of gas is cuased to act on a bell, from
which a tube depends, such tube having aslit in it to
 of the gas is regulated.

The jacquard cards are formed with notches instead
of holes, and are securred together by means of cords of hises, together in the ontathes. A machine ords
twist
effecting the fastening of such cards is described. 1088. WooL Conbisa Machivery, I. Bailey. - 14 th
 oot more plates or bladese curved to the radius of the
comb, and secured to a rod sliding in brackets. A cam on the driving shaft, assisted by a a springes, imparts a
vertical reciprocating motion to the plates. 1087. Rotary Hawse Pife for kebing S

 bearings ins tlanges or framing fixed to the ship's bow, The pipse consist of a large one concentric with the
rotating asting and intengeo for the ships cable , and
the smaller one at one side for the passagipe of telegraph roter mat
thab
cables.

 charmeis on thin surk , lattice giriders, and perforated
form of truss
Sheets or bass, direct by hot rolling.

the crank shaft bearings at the other end. The piston
15 is in the form of a hollow plunger fitted with

 jacket water circulating yround such suace ande cylinder
11. The air and gas enter cylinder 11 by inlet 30 , and

the exhaust takes place through ports 31 leading to
exhhast exhaust piper ani
Below the inlet is arlve boo so bed having two cheock
valves, the space between which communicates with displacement cylinder. A box 40 is placed below the
ower valve, and air enters it through holes, the obiect
 silide 4 is rectangular and works across the back end
of cylinder, biigy bept in position by a plate acted
upon by springs. It is actuated by bell arank 49 , upon by springs. It is actuated by bell crank 49,
operated by har connected to excentric on crank
shaft. In the back plate is a chamber in which a
 charge, also controls
displacement cylinder
1090. Friction Gearing for Calespers, F. Wiverth.
14th March, $1881 .-(A$ communication from F Voith and A A. Niethammer.)-(Not proceedel with.)
rd The object is to give to paper the so-called friction
gloss by pressing
siriction \mathbf{y}
 liams.)
The of jectis to apply tiles so as to prevent the pas
sage of water, and it tonsists in forming the tiles with grooves or rebates in their side and end edges, and connecting them with metallic feathers or dowel plate nserted in such grooves or rebates and bedded in wit
elastic cement, whereby the tiles are kent in positio and the joints made water-tight.
 The piston is of the hollow split ring kind, and the Invention consists of a curved segmental plate with a
hemispherical socket in its concave face, which plate is pressed outward against the inner ring by a blook
provided with a central stud which fits the socket, the plate and blocek being pressed outward by backin piecest diven between them and the piston hub. A
elastic concavo-convex circular plate is laid between the follower and edge of the outer rings. The piston
consists of an end plate with hub to fit the piston rod, consists of an end plate with hub to
and having on one side lateraza lugs
1095. White Lead, H. J. B. Condy.-14th March Crystalilised. acetate of lead is mixed with best litharge, water being added, and the whole ground to
gether, after which it is allowed to settle for twenty Iour hours. The oxide of lead combines with the ace lato of lead, forming tri-basic acetate, which is then dis
solved in water and allowed to settle till bright, whe the supernatant liquor is decanted from the sediment and bicarbonate of soda added to it, forming a precipi-
tate of white lead and acetate of soda in solution, the

 glue or other rutitable surustanate ise isadadded to to tourghen
the same. The compound is poured on to a phote transparency or other smoonth surface unpon which in taglio designs have been formed. The design will
stand out in relief on the block, and impressions may 1097 from it on papen

 Yessels, narrow at the obttom and wide at the top,
the evssols being filled with the exciting liquid, and
arranged one within another so the
 1097

column, in which deep and taper vessels of a conical | column, in which eep and taper vessele of a |
| :--- |
| form ane employed. In the case of batteries in which | two liquids are used, porous partitions may be em-

ploved haviuly a form similar to the gunsi-pismati vessels employed in the Regnier system, their shap being modified, in order to obtain the requisite taper
form The porous partitions smay be made from discs
of of felt pressed out in the form of bags, such as are
used for fittering purposes, and combined soas of orom
cell of the renured form and anacite Both metheds
 of construction are shown in the figure herewith.
This invention applies as well to secondary batterios inary ones.
1098. Wa Arer-closers, J. Elms.-14th March, 1881.(Not throceded with.) $2 d$.
an upper water-coses of the ordinary make is fittee
with a second chamber underneath With a second chambor urderneenth. Mne npper on
will work in the ordinary with or winay pull
but with the add ition of a double action crank or othe but with the addition of a double-action crank or othe
contrivance, so that when the contents of the uppe contrivance, so that when the contents of the uppe
closet are emptied into the lower chanber the eant
the o ower ome will become closed, but on the return o the pull the lower one will then open and allow th contents to fall through the pipe. By beeping the
lower oloset thlus close, it will prevent or chioct the
upflow of noxious smelis or gases into the upper phan.
und 1099. Device for Holdiva Aside io Globe on

This consists in the combination of a cap with plate having arms attached thereto, the said cap and
arms having hooks connected bys prrings, by means
of arms having hooks connected by springs, oy means
of which the cap with its attached shad or globe is
drawn down towards the plate as the candle burns ${ }^{\text {away. }}$
1102. Take-off Apparatus for Cylinder Printivg
MAchinss, D, Phillips, jun. -14 th March, 1881.-
 giving the thamp massion, and carries the printed paper
up to the grippers carried by a first roller or discs, and
and up to the egrippers carried by a first roller or discs, pand
releases it; the grippers carried by the first roller in
 and nipped by the frist and second rollers or disses, ,
which $i t$ is carried forward and nipped between smal friction rollers and the second rollers or discs, a a curved
guide direeting it over the seond roller or iscss and on to the receiving table at the front of th
machine. 1103. Fastenings for Stuns, Souttares, \&c., J. M. This consists in the thech, combinination with a flat hollow tongue or guide projecting from the underside of on
part of the stud or other like article of inclined teeth having pushers and having springs betwen them,
the fastening of the two parts or ends of the article being effected by the engasing of the sid teeth with
the ond of a slot in the other part of the article. 1104. Compressiva ind Balisg Hay, Corron, de., This relates to a baling press in which the bales are
made by the compression of successive quantities or sections, and which has a bale chamber formed with
one or more of its sides or portions of its sides
adjustable to expand or contract the said bale chamber
the side plateos being constructed to form the angles or
tor corners of the said chamber.
1105. BEDS
 This relates partly to means for raising or lowering the bed, and locking apparatus for securing it in posi
 This relates to a 2 men of a circelates knot to means for stopping the movement of courses of work have been made on it.
 from B. Barda. . 6.1.
This invention relates to an improved electrical bath apparatus suitable for public estabisishments, of
hydrotherapeutic institutions. It consits of voir constructed of woon, and provised of with the the
usual means for letting water in and out. t the usual means for letting water in and out. At the
front end of the reservoir are fixed seven copper ter minals. The two lower are connected by wires with the e electric generator. The five upper ones are con-
nected to two terminals, which are themselves in con nection with carbon poles let into the interior surfac
of the bath, and corresponding with the princip
pat parts of the body which it is required to electrify.
device is also described device is also described for electrifying the whole o
the body if desired. In order that the bather may thur tode current on or off at will, a commutator is
provided.

 This consists in the empiovment of stationary rings
or guides R for the yarns in combination with spindles
[108

S. which are moved up and down through the bosses
of their driving whirls W , while they revolve there1109. Cutring and Clearing Passiaes ns Ice, \&ce.
J. F. Flannery.- 15 th March, 18si.- (Not proceeded This consisis in applying to a ship gearing for
driving a sufficient number of circular or other savs, and in providing an arrangement on eech hitide of the
bows, somewhat similar to a plough or to a cowcatcher.
1110. Fastexivas for Bale-TIEs or
Jenkins. -15 Brd
Marchers,
 of eyes or loops in the bale-ties or
reception of the fastenings or latches.

 left open or filled with grit and cement.
1113. Oansibses, do., H. Gardner:- 15 th March, 1881 . 1113. Onsibuses, de., H. Gardner:- 1 Sth March, 1881.
(A communication fron F. F. de Moraes.)-(Not This relates partly to fixing a frame to carry the
fter or hind wheels so that it can turn like the frame by which the front wheels are carried. Other improve
1115. Charrs, P. Leone. -15th March, 1881.-(Not pro This relates to invalid chairs, so constructed that they may be usea for diferent puiposa.

This consists essentially in an apparatus in which

1116

discs connected together at their edges, causes a
pointer or index to indicate on a dial face the depth to which the apparatus has been immersed.
 NERY, $\begin{gathered}\text { N. } \\ \text { This consis }\end{gathered}$
This
This consists of a plough-like machine having a
beam adapted to lie upon the land it is linked , front with a snatch block, around which the rope of a winding engine passes. This beam carries a pair of coulters and a slade so connected together that when
the machine is drawn forward they cut out a ditch like channel. The coulters are placead one in the rear
like the other. Beaind the mould boord hiere spipe
of the guide, by which the drain pipes
ditch immediately it is formed.
 The First part of the invention relates to the con-
ductors of an electric or telephonic circuit, and to a method of organising them whereby inductive action s prever ine invention is based upon the dis
covery that if one portion of a circuit be surroundo by the other helically, one portion passing through
the mathematical axis of the other, and being pro the mathematical axis of the other, and being pro
perly insulated therefrom, thus forming a solenoid perly yinsulated therefrom, thus forming a solenoid
and either portion be used for the direct, and the
other portion for the return conductor of a circuit ond er portion fort the return conductor of a a circuit
othduced currents will be entidy induced currents will be entirely prevented. Figss
to 4 will give a better idea of the principle of this in
 sents the two portions of a circuit organised in accord
ance with the principles of the invention. Fig. 2is . modification of the same, more suitabion. for pratatica
use. Fig. 3 is a theoretical diagram illustrating the

application of the invention to a telegraphic circuit.
Fig. 4 the same for a telephonic circuit seen on referenoe to Fiti it that the length of the
helical conductor necessarily exceeds that of the heliical conductor necessarily exceeds that of the
other, consequently where of equal conductivity per
unit
 greater that that of the other; ;although even in this
cosse inductive effects would be provented still it is
better to have the two conductors of equal resistance better to have the two conductors of equal resistance.
This is done by constructing the overlappit con
ductor, as shown in Fig. is of a compound heilix con.
 such thickness and conductivity ass to render theil
joint resitance approximately the same as that of
hie direct conductor. from one another can, bye being enclososed in in iron pities
be easily adapted for subterranean uses. The Second be easily adapted for subterranean uses. The Second
part of the invention refers to their usi for the trans
misen
 a part of the direct conductor, and other
stituting parts of the helical conductor.
 This consists chiefly in so twisting or shaping an
elastic wire, or equivalent material that while it has wings that can be sewn on the scarf and remain im movable in regard to each other, the contimamition of
the wire at each end is looped round and forms two parts pressing or naturaply standing colose to each
other, but which can be pushed to one side to allow the stad to pass through potween them when their
tesilience causes them to lose and hold the tutu 1123. Driving the Rollers of Roller Milus, P. Van This consists, First, in driving the rollers by chain
vearing; Secondly, the combination with the roller mills of apparatus for separating iron particles fron granulatitig materinl passing down spouts or orthe
passages to the rolling mills formed of a series o
 at pleasure and the magnets thrown back with it, and
then cleaned of their adhering iron and let down int
the spout
 The drawing is a vertical longitudinal saction of a atus, B B are the cylinders formed upon the top of the ox rrame; CC are the piston rods, each terminating in a T-head with a transverso slot formed in it. IV
each slot is a slididing block, through which works tho

pin of one or other of the cranks of the crank shaft D. E is a cylind rrical valve rotated at the same speed as
the crank shaft by toothed wheels F ; the valve turns within a corresponding valve case. The rotating valve wi dima corresponding idivo two compartments; one
is ivided longtudinaly into
compartment has steam at all times supplied to it the
 two opposite endis of the two cylinders alternately
have steam admitted to them and are open to the
exhaust. Where the piston rods pass out from the
 is secured by packing introduced into the cavities B
around the piston rods through passeges, the ends of
 orce into the cavities Bl as desired.
1125. Bottles for Containing AErated Liquors,
H. Codd. -15 th March, 1881. 6d. This relates to improvements on patent No. 2621,
A.D. 1872. Inclines are provided in the neck of the
bottles to receive the dien bottles to receive the dise stopper as it falls.
1126. Sharpening Pencils, dec., J. Darling.-15th
March, 1881. 6d. This relates to a combined pencil or sharpener, con-
sisting of a tube, or its equivalent, capable of use a one end as a protector, and having in its interior, so
as to be protected by the said tube, a sharpening blade
or blade and file.
1127. Apparatus for Producing and Injecting or
Forcing a Mixture of Air and Water Spray or

Forcing a Mixtree of Air and Water Spray or
Vapour INTo FUraces, Wai. Fairveather.- 15 the
March, 1881.-(A communication from J. Glasier.)March, $1881 .-$ (A communication from J. Glasier.)-
(Not proceded vith.) $2 d$. The ash-pit is made close so as to be practically airfront immediately under the fire-grate to lead in the
admixture of air and water spray or vapour. This admixture of air and water spray or vapour. This
admixture of air and water spray is produced and inadmixture of air and water spray is produced and in-
jected or forced through this inlet tube or pipe by
means of a fan or blower, into which water is admitted means of a fan or blower, into which water is admitted
in the form of spray or jets through small perforated in the form of spray or jets through small perforated
openings or gratings around the periphery of its
casing. The furnace bars are made of unusual breadth casing. The furnace bars are made of unusual breadth
and laid close together, but finely perforated for ad-
mission of the air and water spray 1131. Skates, S. V. Wheatley.-16th March, 1881.(Not proceeded with.) 2dd.
This relates to appliances adapted to grip the heel and sole of the boot.
1132. Marking-oty Lawn Tennis Courts, Creases
for Cricket, \&ce., E. Coote.-16th March, 1881.(Not proceeded weith.). $2 d$
This relates to means for controlling the supply of
the liquid whiting or other marking liquid to the 1133. Milk CaNs, T. W. V. Harte.-16th March, 1881.

- (Not proceeded vith.) This relates to means for preventing the person in
charge of the locked can, provided with a ventilator, charge of the locked can, provided with a ventilator,
from withdrawing a portion of the milk and intro from withdra,

1134. Lamps for Miners; J. Fyfe.-16th March, 1881. This. consists, First, in making the wiek tube of
 can or holder; Secondly, in making the lamp with a
jacket or sereen; Thirdly, fitting the perforated casing
or jacket round part of the wick tube or jacket round part of the wick tube.
1135. Umbrellas, Sunshades, And Parasols, W. .
Gedge. 16 .

Messieur's Revel, pere et flls.)-(Not proceded with.)
4l. This consists in the application of a catch or clip
hook fixed to each rib, and of a runner with hollow cap intended to receive the said hooks or catches and
secure the perfect closing of the ribs ; this capped runner slides upon a second runner which holds the 1137. Manufacture of Sheets and Plates of Tin,
Zince, and Lead, de., F. H. F. Engel - 16 th March
1881.- (A communication from the Nero York Ham burger Gummizaaren Compagnie.) $2 d$.
This consists in the production of sheet metal and metal plates with smooth or with ornamented surface bringing the metal or alloy in the mof these metals, state to to pair of revolv
1139. Feed Water Regulators for Steam Boilers,
A. M. Clark.-16th March, 1881.-(A communicaThis consists of a chamber A placed level with the entering below the lowest water level, so that water is at the same level in chamber A as in the boiler. A
second pipe leads from the top of chamber A to the
steam space of boiler. In the chamber is a float B
[139

with a stem connected with a cock in a pipe passing
through the side of the chamber. Over chamber A is a small cylinder D and above this is a smaller cylinder
E , the pistons of each being connected. The pipe pass-
ing through the chamber A also enters cylinder D, and the pipe from the feed pump enters the top of cylinder float falls steam passes to cylinder D, and the water that passes into the boiler, the pist
then passe raised over the waste pipe C.
1142. Appliances for Operating Venetian and
other Blinds, R. Marshall.-16th March, 1881.-
(Not proceeded with.) $2 d$. which is slotted. In this slot a spindle carrying the top
and with it the other laths of the Venetian blind is
carried free to move. carried free to move. The upper part of the slot is of
greater area, so as to allow, if neecsary, of the blind
being withdrawn being withdrawn. The top rail is supplied with
the usual cords and wheels for raising and lowering the blind.
1145. BrTs For Horses, G. W. von Nawrocki.- 16 th
Marchh, $1881 .-(A$ communication from G. W. W.

2d.
This relates to bits with broken mouthpieces, and
the device consists of a double hoop of steel, each forming an eyelet, through which possses the mouth-
piece on which the hoops are capable of turning. 1146. Water Heaters, A. Sweet. -16 th March, 1881. This consists essentially in the combination of four
or more heating chambers connected together in con1148 unction he and J. A. Wanklyn.-lbth Marchn , 1881. Fid. Bolton
This consists in the method of abstracting ammonia
from coal gas by the dry way by causing the gas from coal gas by the dry way by causing the gas
to pass in intimate contact with any one or more of
the following the following substances:- Porous commercial superof phosphate of lime and phosphate of iron, or porous chloride of calcium, the
absence of free a aid from the superphosphate, when
such is used, having been previously ensured. 149 W , 1149. WatEr Pipes, L. S. Povell and C. V. Boys.-
16th March , 1881.- (Not proceeded vith.)
d 1150. Nairs, \&c., J. Noad.-16th March, 1881.-(Not This reedates to the employment of leather, gutta-
percha, wood, india-rubber, or their equivalents, in percha, wood, india-rubber, or their equivalents, 1152. Instruments for \quad Opening Internally
Stoppered Bottles, H. Codd. 16 Ith March, 1881. The opening instrument is formed of a disc or head
having a short stem or shank projecting from the a cap of elastic vulcanised india-rubber is placed. The Whtwards from the cap and forms a flange around it When the end of the shank with the elastic cap upon
 the cap comes down on to and rests upon the top of 1153

 monay valuo of that stamp is recoraded upon a recorri
ing apparatus common to all the stampe.

1156. Postal Wrappers, J. A. and C. M. Elstob.-
16th March, $1881.6 d$. . This relates to the manu
1157. Cop Spindles, G. W. Stafford.-16th March The spindle is made detachable from its base, and suitable means are provided for attachment, detach-
ment, and adjustment, the spindle being tapered at
each cnd so that it can be rever
each end so that it can be reversed.
1158. Aparatus For Measurig Heights of
Objects, Fu. MacDermot.- 17 th March, 1881.-(Not This consists in suspending a hoop or ring of suit-
able material horizontally between the expanding ends of a suitable handle, which latter is held verti-
cally in the hand of the observer, and within this hoop or ring is a gain suspended horizontally a disc or circular rame by pivots, the line of which is at right angles to hoop or ring. From the centre, and also from the
outer ed ce of the outer edge of the disc or circular frame, rise two ver-
tical rods or standards differing in height, so that a sight vane placed on their extremities will form an
angle of 45 deg. at the periphery of the disc or circular
1160. Caloric Motor Engines, H. C. F. Jenkin and A. C. Jameson.- 1 Tith March, 1881.4 . 4 .
This consists of an engine, the cycle of whose opera tions is, in the the main, that of the Sycle of whose opera which differs from the Stirling engine in the internal combustion und
simultaneously.
1161. Purification of Alkaline Solutions, E. Carey,
H. Gaskell, jun., and F. Hurter.-17th March, 1881 .

This consists, in the purification of alkaline solutions, 1162. Furnaces of Steam Generators,

Theth March, 1881. 6a. The object is to effect a more perfect combustion
and prevent the emission of smoke, and also to obtain a better equalisation of the action of the furnaces.
Behind the bridge A a wall B is placed, the space between them forming a combustion, chamber.
Between them several gratings Cxtead, the lower
one being fitted with a sliding shutter also pierced

with holes, and serving to open the holes in the
 door. On the top grating a layer of clinker, fire-brick
or other hat-absorbing material is placeed, and over it
the prod catt or ot her heat-absorbing material is placed, and over it
the provucts of combustion pass. Below the bottom
grating is a layer of charcoal or sawdust K kept
constantly 1165. Treatment of Wheat, T. A. Marshall. -17 th
March, 1881.- (Not proceded vith.) $2 d$.

This relates to dealing with the constituents of the
wheat which have been separated from the flour formwheat which have been separated from the flour form-
ing part, and more particularry with the germ or ing part, and more particuarly with the germ or
embryo which ann besearated soas to be praticaly
free, not only from the fiour, but also from the bran nd other less valuanhe products.

The steam pipe is fitted with a stop valve, whicl
nay be shut by means of a stel hand may a pulley on the spindle of a cam, which keeps the
ovalve
zale open in it valve open in its normal position.
 The steam admission to the engine is regulated in
proportion to or in accordance with the resistance en countered by the upper portion of the propeller, ,
he portion the portion at or near the surface of the water, or
acocrance with the immersion or otherwise of the
propeller, and especiully the upper portion of same.
1170. Looms For W EAviNG, T. Singleton. -17 th March
1881, This relates to to impecocedements in the shuttle-box; an improved pieking stud and bowl; an improved crank
arm; ant improved strap fork ioint and an improved guide for strap fork shank; a self:acting rising and
falling heald motion; regulating stay brackets and stop brackets for wing rods; regulating the reee and top
and bottom; regulating the stay cap; locking the
the eed; fork holder arrangement for sliding weft fo adjustable back breast beam; regulating the position
of the cloth roller; knocking off the spring handle on
1171. Cooks. Valves, \&e., J. H. Johnson.- 17 tht March
1881.- (A communniction from J. Zeleny.)
 Aurd aetivered, as well as the d
of shutting or closing the valve.
1172. Producing Strips or Prigess of Wood for
Printers' Use, J. Bryceson. -17 th Marcl, 18si.The rotating saw wised is caused to act not only so a to cut out the piecess to the size and shape required,
but also to give them the neesssary finish 1174. OrNamentation or Mouldnsas, de., F. A. C.
Koenemann. 1 Tth March, 1881.-(Not proceeded

Thitch. 22.2 iss in producing an open design in plaster
or other onits or orher suitabie material, and applying it to a plain
surface or ground and attaching it thereto by glue or
nails.
 This relatest to machinern used in rivetting or fixing 1179. HEurcai Sprisas, L. Sterne.-1sth March, 1881. This relates to the construction of helical springs so
as to reduce the size and weight necessary to provide a given elastic range for ar ariven n ressury. The bar,
of which the spring is made has a thin and dee
middie the
at one edge, and a lip or bead projecting inwards at
the other edge. This bar is coiled in an inclined 1179

position, so that each convolution presents a conica
 This consists in arrangements by when the needile is pushed in to the right height, it comes
against a solid abutment, and when turned round and pushed up at the same time is locked or stopped at 1181. Taps or Cooks, S. Hands and W. Weaver:-1st This relates to improved means for tapping barrels,
 The moceched we o oonsists of a frame, the upright posts
Tf which support a crank shaft carrying a band pulley which by means of a cord or band drives a palleleane and
fy-wheel fixed on another shaft which carries foul revolving hrushos. the threre firirt of which chirrares are ued
or brushing off the dirt and polishing the blacking for brushing off the dirt and polis
the last for applying the blacking.

The chains are composed of links of a simpler form friction when in use is loss. The chain consists

[186]

$\overbrace{\square} \int_{\square} 5$

\section*{| B A

 $A A$ |
| :--- | :--- | :--- | :--- |}

ing to engage with the toothed wheels, and links
without hooks waving such oponings.
shows
shows one form A theing the the double-hooked dink , and shows one form A, being the double-hooked link, an
B, the links with the openings.
 augmented when desired, and pit ononsists in memens tor
dirvin either one or both of the large wheels of the
dricycle.
1189. Traveluing Ruas or Wrapper, I. Picl:-1stin

A foot-warmer or muf if is formed at the bottom
the rug, and a bag or pockets and a hand-muff nea
1191. Hats, W. R. Seaton.-18th March, 1881.-(Not

This realetes to o hats with frames for supporting the
utside covering, and it consists in perforating the tame so as to provide better ventilation
1192. STopprp For Borthes, c. Warner.-1sth March A metal cap is screeved into othe mouth of the bottle
 1193. Locks, W. S. Smith. -18 th March, 1881.-(Nou

 it forward acting as an ampedion ont the spring pressing the closing of
the door. For this purpose a sprin catch the door. For this purposea spring catath is combined
with the lock and when the biot is withdrawn by the
turning of the handle it springs in front of the end of curring of the hande it springs in front of the end o
the bolt and prevents it from being again shot fo
ward by its spring when the handle is

 segment of
different boxes.
1195. Balloons, \&c., E. G. Breever.-18th March, 1881 The objects are to propel and guide balloons, and following accomplished by the raveraction of air in the A fan or screw is laced at the
on point of the apparatus in the direction it is desired to
be propelled the the pressure of 'the armopusshorere on the the otherer stide or ond end
of the balloon, that at which the rarefaction or partial of the balloon, that at which the rarefaction or partial
vacuum of air is produced by the fan or screw. 1196. Non-condoctiva Confostitons or Matrrials
for Covering Stram Boiller Surfacs, \&c., D. H.
 moss or similar glutinous substance with or without the admixture or thin boiled starch, or or of a deoction
of silicicate potash, or of a decocoction of silicate of sooda Of silicate potash, or of a decoction of silcate or soinh
to whinch glutinos deoction, especiall for resiting
heat, may be added a solution of trass, so as to rende the silicate cotton sufficiently self-adhesive and co herent, all for the purpose of doing away with an
outer casing for holding the sili aate cotton in place

 ${ }^{\text {Meessrs. }}$ vith.). 2 H . .
The embossing or perforation is accomplished by means of rollers having the required pattern engrave
on their surface or on sheets fastened thereto. 1198. Preserving Egas, F. Wolfi:- 18 th March, 1881.

1199. Wheil Aphicable to Cirriages, for Pre.
venting Acoidents Axd Clearisg the Track, L.
 In (Not proceeded with) $2 d$.
Ind carriage another wheel if slaced and runs freely on its centre, its
such aifht to being
such to rests against the carriage wheel soas to revolve in the pposite direction, at shill houd diverted from the track of
contact therewith it will the carriage.
1200. Wrieks for Verricles, E. A. Brydges.- 18 thl
March, 1881 . - (A communication from U. Goetzen-
 several parts, and it consists in forming the hubin two
parts, one the outsio of the wheel, and the other
on the inside next ne the vehicle. The outer half is recessed and provided with a female serew to recive a
educed threaded part on the imner half. 1201. Empryvis Cesspociss, EA. A. Brydges.- 18 th
March, $1881 .-(A$ communication from U. Gootzen-
 by forming a vacuum in the vessel to receive it by
meann of a doule-acting air pump. The whole is
mounted on a suitabale frame with a m motor and mounted on a suitabie frame with a motor and fur-
nace, the foul air drawn off being burnt in the latter.

 successive charges of ofld air or other which engine
eceistic fluid
ocharsing vessel were by the received in a a charging vessel were by the movementa
therevin of a cisplacor passed throughy separate heating
vessel back to to the charrving vessel, whence the vessel back to the charging vessel, whence they
exppanded in a cylinder performing work. This inven
tion const ion consists in dispensing with the separate heating
vessel, by bemploying the internal combustion of vaseous or liquid fuel.
1203. Prinvira $1 \mathrm{INK}, ~ H$. . Brackedensch. - 18 th March,
18s1.- (Not proceded ${ }^{25}$ parts paramine oil and 45 parts colophonium are trituration at the ordinary temperature, 15 parts soot
or lamphack being added
For coloured ink the soot or lampblack being added. For coloured ink the soo,
or lampblack must be replaced by the desired colour. 1214. Apparatus for Holdivg Photographic or
other PIctures, de., R. Shervin and G. Evanss.-
 The pictures are applied to frames or mounts, which
at one edear are each oomnected by canvas or other
guards or hinges to step-by-step risisa pieaes or or to an guard or hinges to step-by-step rising pieces or to an
inclined surface, so that at one time the frames or or mounts with their pictures may be sustained uprigh
fronting each other and then for the examination o the picture carried by them respectively the frames
may be progressively folded down, and then returned
ta may be progressively fold
to their upright position.

Tharis relutises. to to the trenesment of marine vegetables
for the separation of their saline, celluluse, and gelatinous constituents, and it consists in washing the
vegetables, then drying and plucing them in closed
 which, when acid treatment is employed, contain.
about. 10 per ceot. of acid, proferably hydrochloric
acid. The cellulose, fibres, and woody ingredients
and remain on the screen with the principal portion of the

 acetates of alkaline bases.
1231. Combined Kilin or Oven and Boiler, R. This consists in constructing lime or other kilns
with a spanee to oontain water, othat the heat of the
kiln may be utilised to to enerite toen
 Thisi. $6 d$.

and supporting the sliding breech-block, and for ex-
tracting the empty cartridge cases, and in conjunction 1256. Colouriva Marters, G. W. von Nawrocki.
22nd March, 1881-(A communication from J. R.

This rilates to the production of a series of colouring bination of amidoazo bodies or their substitution pro ducts with bodies of the phenole or the chinon classes
or their substitution products, either alone or in the or their substitution products,
presence of a condensing medium.
1260. Reversible Gamments, W. F. Gedge.-22nd
March, $1881 .-(A$ communication from S. Rosenthal.) This. relatest to reversible garments of cloth having a
different pattern on its f face either being adapted +1
 class arranged to be
turned on its edges.
1397. Compound Field Rolerrs, R. Maynard, jun.-
soth March, 18s1. 6 .d.

1397

[^0]parts, one consisting of an oblong plate scrowed to
the frame, and having at the middle near one edge a hollow half-cone with an internal fange at the outer
narrow end, leaving a nearly semicircular hole at this narrow end, leaving a nearly semicircular hole at this
end. The part of the fixing plate in fronto for that falf
cone is cut away, the side being dovetailed. and form-

 one half-cone the two can be approached or separated.
The two half-ocose are corew.traneded, and over them
fits a screwed ring, by which they can be made to bind fits a screved rins, by which
on the spindle of the pillar.

more parts, and of larger internal size than required,
and after introducing therein a core of such a size as anc leave a space at all points between it and the interior of the casing, rumning into such space the
non- corrosible material required for forming the

 The apparatus consists of an outor and an inner
vessel, thor torner to tilled with water, so as
reach above a gridid in the the same, on which vegetablos reach above argiri in the same, on which vegotathlos
may be placed, meat being placed in the inner vessel.
 ture has a central pin projecting do diewe orrass , and
terminating in a conical point to to
to corresponding terminating in a conical point to tita a corresponding
socket in the entro of the swivlling forked brackets
or horns, the two being secured together by a pin or horns, the two being secured topether by a pin
passing through the socket, and entering a groove
pasing round the pin.
 from Dl. K. Koenig $)$ the
this reates partly to the orion of meta-oxy-
benzaldehyde from meta-nitro-benzaldehyde by rebenzaldehyde from meta-nitro-benzald dehyde by re-
duction of the same to amido-benzaldehyde, and
den decomposition of the diazo ocmpounds or derivatives
of this amido-benzaldehyde with water.
 Thiomplete.). 6 d.
This onsists in a method of mechanically moulding paper-pupp or pasty or othe

Hill.) (COmplete.) 6 d.
The First port relates . inprovents in the inlet
valves for air compressors, in which dise or puppet valves are ured for ingots valves to thi thisc inter cyluppet
undinder, and comprises the formation of a recess in the inner
face of the head of the cylinder of sufficient size and depth to receive the valve at its greatest "throw" or the said space, the innere face of which plate may be
flush with the ther face of the hedid os that the valve
may not be drawn into the chlinder if its stem should may not be drawn into the cylinder if its stem should

shown in elevation. The Second part comprises the
formation of the cylinder proper with the required
 is a partial orme combination of two or more air or par
 whee shaft, in such a manner that the piston rod of
the steam ensine will be in lin with the piston rod of
the eom thession pumps, and either below or above the the ectampressino pumps, and either below or above the
thy-wheel shaft, and the said shaft will be in line with
fit the centre of the crosshead wrists that drive the fly.
wheel shaft. Fig. 3 is an elevation partly in section.
 The object is to produce from ferruyinous aluminous from iron, and consists in the addition to a solution of
the ferruginous sulphate of alumina of prussiate of the ferruginous sulphate of alumina of prussiate of
potash or other soluble prussiate and sulphate of
por copper or other soluble salt of a metal, and in the
separation of the sulphate of alumina solution from the precipitates by slitable means, and in the concen-
tration of the said aluminous solutions. 3058. Journal Bearivas, W. R. R. Lake--12th July, plete.). 6 d.
The bearing br
The bearing brass A is formed with a convex bearing
surface B in the centre of the upper side. Surround ing it is a curb Cenconcentic with the bearing surface,
and extending from the front and rear sides of this
curb are curbed and angular surfaces terminating in
semicircolur ourbs D near the onds of brass
concentric with and
ourbs C. On the outer sides of the

brass midway between its ends bearings are formed.
The under surface of the brass is lined with an anti-
The friction metal as usual To the brass 4 is fitted a
steel diss E , the underside of which fits the bearing
ster
 plete.) $6 d$.
The hammock is constructed of longitudinal cords that convergeck tas the constractected of of cross bituands having
tubular passages, through which the cords are drawn. 3137. Lactria Aotid And Lactares, H. J. Haddan.-
19th July, 1881. (A communication from C. .
 acid and lactates by the formentation of a sugar of
vegetable origin with al actic ferment in in the eresence
vof of nitrognous math ars coiciofly of vegetable orizin,
ond of a substance suitable to gradually neutrailise the
and acid as fast asf formed.
3160. Loosss, H. J. Haddan,-20th July, 1881.-(A This consists, , Firstr, in the combination of a con-
vertibe f fast and loose driving pulley with a brake Wheel and brake, the interval mechanism of the looss pulley being converting thin drom direct control of of the
brake by means of a rivid projection therefto brake by means of a rigid projection therefrom,
Secondy, min the combination of a convertible or fast
or loose driving or loose driving pulley and brake wheel and brake
with an ordinary loose pulley and a belt-shifting mechanism, in such manner that when the loom ha
been stopped by the brake and brake wheel and the conversion of the driving pulley into a loose pulley,
the belt may be shifted to the pulley which is constantly loose, thereby allow
again in the ordinary way.
3182. Boimer Furnacrs, P. F. Dundon.-21st July, This consists (crine. 6 ipaly in the method of securing
the frame or mud ring which forms the floor or the frame or mud ring which forms the thoor
bottom of the water space between the wall sur-
rounding the fre-bor, known as the water-lew, whereb rounding the fire-box, known as the water-leg, whereby
the said floor may be easily removed for the purpose clearing the water space, or repairing
 Thish rile ates more particularly to the apparatus for
effecting the admixture of the lighter with the heavier worts in the process of brewing, and consists of a tube
to lead the lighter portions to and distribute it to lead the lighter portions' to and distribute
through the lower portion of the heavier liquid. 5282. Preparaation of Vanilline, G. de Laire.-16th This consits in the process for producing vanilline from eugenol.

SELEOTED AMERIOAN PATENTS.

From the United slates Patent office ofticial Gazette
245,933. Apparatus for Electric Liguting, Joseph
Best, Montrecl, Quebec, Canada.-Filed March 9th
Claim.-(1) In an apparatus for electrical lighting
 the geared sectors, in combination with a friction-
sector mountect on on of sian rook-shafts, nad with
means for actuating it, sabstantiall sector mourted on one of said roct--shats, and with
means for and
described. (2) The combination of the the alectro-ma mand

the ermature lever H, provided with flexible insulating
piece $\mathrm{H1}$, the support $M 1$, and shaft E , provided with Price ion-sector K , all substantially as described and for the purpose set forth. (3) In combination, the
electro-magnet C , armature lever H, provided with the
lent insulated piece H', and with a retractile spring
support Mi, having means for its adiusment as
described, and the shaft E , provided with a friction deseribed,
sector K.
246,010. Magergo-mirctrric Machine, otto Heikel Jersey City, N.J., assignor to the National Electric
Light and Poover Company, Neev York, N. Y.- Filed November $14 t h, ~$
$15 t h, 1877$, clain, - (1) In a magneto-lectric machine, one or
more ran of armatur helicees conected in one or
men more ranges of armature helices connected and one or orit
more closed circuits writhin the machine and
connectitions
 or more common econnuctors, substantiailly as sefforth.
(2) The ammature or elcectr-magnet cores in a magneto clectric machine, projecting at each side of a disc o
central support, in combination with the helix-wires wound supportt the combinination with the thert hend at the sides of the cores and around the ends, substantially as set
forth. (3) The combination, in a
ond maigeto-ecectric
(i) machine, of a range of cores and helices connected
together in a closed circuit, insulated rings upon the revolving shaft, connections from the rings to th thit
respective helices, a circuit spring, and separate circuit conneections to each ring, return circuit connections,
commutar for the return circuit connections and a field-offorce magnet in the circuit from the commutatar, substantaaly as set forthi (4) other deviceso operated by electricity, a dynamo-electric
generator having an armature with two or more
helices or sections, collecting springs, and circuit con-
neetions, substattinily
current passes in both directions far, whereby the the nections, substantialy
current passes in both diseciited, whereby dhe
directions from the springs,

through the working devices, and then through the
helices of the field-magnets, substantially as specified. 245,972. Mercury Terainal for Telegapi Casies, William R R Patterson, Chicago, Ill.
assignor to the Western Electric Manyuacturne Company, same place.- Filed April 1 st, 1881 .shaped
Claim.-(1) The terminal consisting of a U-shape pipe in combination with mercury, through which on
or more conductors are or more conductors are run, substantially as and for
the purpose specified. (2) The terminal consisting of 245972

standard pivotted together, the rack and pinion
device, for adjustment substantially as specified. (2) 246169

The rack braneh or branches of the standard, in comrespectively connected with the head and d thrirans
end of said clamp-bolt, substantially as described. 246, 218 . Telephone Central Ofice Apparatus,
IVliam H. Suryere, Providence, R.I. - Filed June
olet Brief:-Communication between different switch

Soards at a central oftice is effected by means of balls, balls being then conveyed to the desired table through
nube.

CONTENTS
The Enginerr, October 21st, 1881
The Inow and Steri Instruver

Practical And
Leading Articless-
Train Resigtandegs
Colonial Contracts.:
VIENNA CTTY RAAWY

$\because{ }^{297}$
$\because: 297$
$\because: 298$
298
Litrerature-
Elements of Plain Analytic Gəometry. By g.

and arranged to operate substantially as specified. (2)
In combination with the shell D, plates, and friction rollers, the face-plate D, provided with spiral grooves and the parallelel ribs on, theo outer rurfacee of said face
late, the pivotted bar housed between said ribs, and Plate, the pivotted bar housed between said ribs, an
the lugs on the shell, all adapted to operate sub-
tentioly in the the lugs on the shell, all adapte.
stantially in the manner specified.
246,093. Or--CaN Trp, Nicholas R. Dennys, Singapore
Straits Settlements, British Indic.-Filed July Sth,
1888. The combination, with the tube B, provided
withim a shoulder at its outer end and a cross pin below

said shoulder, of the tip C, provided with a flanged
cap and orifices, and the spring fitted in the tube cap and orinces, and the spring fitted in the tube
between the lower end of the esaid tube and the pin,
substantially as and for the purpose set forth. 246,169. PLovah Standard Frank: B. Manby, Malta, Clcion.-(1) In combination wit

R
Railway Matte
298
299
299
299
300

Be Iron, COAL, AND GENERAL TRADES OF
BIRMINGHAM, WoLVERHAMPTON, AND DISTRICT..
Notes FROM LANNOASHIRE.

Abstracts of American Patent Spegifications.
(llustrated.)..
Hydraulic Machinery on Board Ship .
The Institution of Civil Engineers
The Landslip Catastrophe at Elm.
Set Rivetting
Steel Rails
Patent Law Reform
COAL IN AMERICA. - The officials at Washingto by the United States in the Western Territories About 50 per cent. is located in Utah, and 20 per cent. in Colorado. These lands can be sccured under the pre-emption laws at a rate of 20 dols. er acre atter complying with certain legal con
South Kensington Museum.-Visitors during Tuesday, and Saturday, free, from $10 \mathrm{a} . \mathrm{m}$. to 10 p.m., Museum, 12,091 ; mercantile marine, On Wednesday, Thursday, and Friday, admission $6 \mathrm{~d} .$, from 10 a.m. till 4 p.m., Museum, 1565 ;
mercantile marine, building materials, and other collections, 601. Total, 17,649. Average of corre sponding week in former years, 16,890 . Total
from the opening of the Museum, $20,430,629$.
Epps's Cocoa.-Graterul and Comforting which govern the operations of digestion and nutrition, and by a careful application of the has provided our breakfast tables with a delicately flavoured beverage which may save us use of such articles of diet that a constitution may be gradually built up until strong enough to
resist every tendency to disease. Hundreds of resist every tendency to isease. Hundreds of attack wherever there is a weak point. We may scape many a fatal shaft by keeping ourselves well fortified with pure blood and a properly simply with boiling water or milk. Sold only in packets labelled-"JAMES EPPS AND Co.,
Homeeopathic Chemists, London."-Also makers of Epps's Chocolate Eisence for afternoon use.

[^0]: with elongated projecting bosses which carry th

 The part fixed to the frame of the glass is in two

