SCREW PROPELLER EFFICIENCY.

By Professor A. G. Grernhill.
No. III.
III.-Investigation of the Effect of Fluid Friction. (31) According to the experiments of Froude and others on fluid friction, the drag exerted by water flowing over a plane surface with uniform velocity v can be expressed by f v^{2} per square foot, where e is some constant depending on the nature of the surface, but independent of the pressure. Froude finds-"Trans, Inst. Naval Architects," vol. xix. 1878-that with a lb . as unit of force and a foot-second as
unit of velocity, $f=.004$ when only one surface of an unit of velocity, $f=004$ when only one surface of an
ordinary propeller blade is taken into account, but this, must be doubled, and we must put
$t=008$
when the fluid flows past both sides of the surface, as is the case with the blades of a propeller when the pitch is not large enough for a pronounced eddy or discontinuity to be formed at the back of the blades.
With the poundal as unit of force, we must put $f=\cdot 008 g$ or $\cdot 256$.
(32) Now referring to Fig. 8 for the propeller of uniform pitch, and supposing l the axial length of the blade, and θ the angle between the disc area and the line A B on the blade, the development of the section of the blade made by a co-axial cylinder of radius r, so that $c=2 \pi r$; then for an element of the blade A B of breadth $d r$, and therefore of area $l \operatorname{cosec} \theta d r$, the frictional drag is

$$
\begin{aligned}
& f l v^{q} \operatorname{cosec} \theta d r \\
= & f l u^{q} \operatorname{cosec}^{3} \theta d r
\end{aligned}
$$

since $v=u \operatorname{cosec} \theta$; and the axial component of this drag
$=f l u^{2} \operatorname{cosec}^{2} \theta d r$.
so that the total frictional drag of one blade obtained by integration is

$$
=f l u^{q} \int_{\frac{1}{2} a}^{\frac{1}{2} d} \operatorname{cosec}^{2} \theta d r .
$$

If there are b blades, and F denotes the frictional drag of the propeller,

$$
\mathrm{F}=b f l u^{\mathrm{a}} \int_{\frac{1}{2} a}^{\frac{1}{2} d} \operatorname{cosec}^{\mathrm{z}} \theta d r
$$

Now

$$
\cot \theta=\frac{2 \pi r}{p},
$$

and, therefure,

$$
\operatorname{cosec}^{2} \theta=1+\frac{4 \pi^{2} r^{2}}{p^{2}} ;
$$

$$
\begin{aligned}
& \text { so that } \\
& \qquad \begin{aligned}
\mathrm{F} & =b f l u^{2} \int_{\frac{1}{2} a}^{\frac{1}{2} d}\left(1+\frac{4 \pi^{2} r^{2}}{p^{2}}\right) d r \\
& =b f l u^{2}\left\{\frac{1}{2}(d-a)+\frac{\pi^{2}}{6 p^{2}}\left(d^{3}-a^{3}\right)\right\}, \\
& =b f l u^{2}\left\{\frac{1}{2}(d-a)+\frac{8}{3 p^{2}}\left(\mathrm{~A}^{2}-B^{2}\right) \frac{d^{3}-a^{3}}{d^{4}-a^{4}}\right\} .
\end{aligned}
\end{aligned}
$$

This value of F must be subtracted from the former value of the thrust, in order to obtain the true thrust; so that now
$\mathrm{T}=2 \pi m\left(\mathrm{~A}^{2}-\mathrm{B}^{v}\right) \frac{u}{p^{z}}(n p-u)$
$-b f l u^{2}\left\{\frac{1}{2}(d-a)+\frac{8}{3 p^{2}}\left(\mathrm{~A}^{2}-\mathrm{B}^{3}\right) \frac{d^{3}-a^{3}}{d^{4}-a^{4}}\right\}$,
which can be written in the form-

$$
\begin{gathered}
\mathrm{T}=2 \pi m\left(\mathrm{~A}^{2}-\mathrm{B}^{2}\right) \frac{u}{p^{2}}\{n p-(1+k) u\} \\
-\frac{1}{2} b f l u^{2}(d-a)
\end{gathered}
$$

where

$$
k=\frac{4}{3} b \frac{f}{m} \frac{l}{\pi} \frac{d^{3}-a^{3}}{d^{4}-a^{4}}
$$

(33) Now suppose P is the pitch when for the speed u and thrust T, the revolutions have their minimum value N ; then
and then the slip

$$
\mathrm{N} \mathrm{P}=2(1+k) u,
$$

$$
s=\frac{1+2 k}{2+2 k}
$$

Then in order to keep up the thrust T at speed u with other corresponding values of n and p, we must have-

$$
\begin{aligned}
& \frac{n p-(1+k) u}{p^{*}}=\frac{(1+k) u}{\mathrm{P}^{\mathrm{x}}} \\
& \frac{p^{2}}{\mathrm{P}^{2}}=\frac{n p}{(1+k) u}-1=2 \frac{n p}{\mathrm{~N}} \mathrm{P}-1,
\end{aligned}
$$

so that we have
$\mathrm{T}=2 \pi m\left(\mathrm{~A}^{2}-\mathrm{B}^{2}\right) \frac{u}{p^{x}}\{n p-(1+k) u\}(1-h)$
where

$$
h=\frac{1}{2} b \frac{f}{m} \frac{l}{\pi} \frac{\mathrm{P}^{\mathrm{q}}}{1+\&} \frac{d-a}{\mathrm{~A}^{2}-\mathrm{B}^{2}} ;
$$

So that the new value of T, with fluid friction taken into account, differs from the original vatue
(i.) In the presence of the factor $(t-h)$
(ii.) In having $n p-(1+k) v$ as a factor instead of $n p-u$; and h and k are both omall quantities, whose squares, \&ce., may practiadly be neglected.
(34) The value of I remains the same as before (6), so that now the efficieticy

$$
\begin{aligned}
& =\frac{T u}{2 \pi L n} \\
& \frac{u n-(1+k) u}{n p-u} \frac{n v-(1)}{n z}
\end{aligned}
$$

which reduces to $\frac{a s}{}$ hefore, $t \sqrt{t}$ vhen h and k are made zero, by neglecting suid friction.
Expressed in terms of the slip ratio s
so C an representad in Fig. 1i, the ourve, wuncoting o the
efficiency as ordinate, and s the slip ratio as abscissa, is
hyperbola,

Written in the form

$$
\left\{\left(1+\sqrt{\frac{k}{1+k}}\right)^{e=(1-h)(1+k)}-\left(\sqrt{s}-\sqrt{\frac{k}{1+k}} \cdot \frac{1}{\sqrt{ } s}\right)^{q}\right\}
$$

or, by elementary differentiation, we see that at the poin A on the curve the efficiency is a maximum, and then

$$
e=(1-k)\{\sqrt{ }(1+k)+\sqrt{ } k\}^{2}
$$

when $\quad s=\sqrt{\frac{k}{1+k}}=O B$.
For practical purposes, we can then put $s=\sqrt{ } k$, since k is small.
By increasing d, the diameter of the propeller, h and are diminished; so that the efficiency of the spiral ele ments like A B increased with the radius r of the cylinder on which they are traced; and the tips of the blades are
the most efticient of a propeller when fluid friction is taken the most eftici
into account.
(35) In practice $\frac{a}{d}$, the ratio of the diameter of the boss to the diameter of the propeller, is a fraction such that
$\frac{a^{3}}{d^{3}}$ and $\frac{a^{4}}{d^{4}}$ are insensible, so that we may put

$$
k=\frac{4}{3} b \frac{f}{m} \frac{l}{\pi d}
$$

Now, according to Froude's experiments,

$$
\frac{f}{m}=\frac{.008 g}{64}=\cdot 004,
$$

so that

$$
\sqrt{\frac{f}{m}}=\cdot 02
$$

and for a four-bladed screw, $b=4$, and

$$
\begin{aligned}
& =004 \times \frac{16}{3} \frac{l}{\pi d} \\
& k=4,
\end{aligned}
$$

Suppose, for instance, the length of the propeller measured fore and aft is one-third of the circumference, measu
then

$$
\begin{aligned}
l & =\frac{1}{3} \pi d, \\
k & =004 \times \frac{16}{9}, \\
\sqrt{k} & =02 \times \frac{4}{3} \\
& =03 \text { about, }
\end{aligned}
$$

and
so that the greatest efficiency is obtained when the slip is about 3 per cent., considerably less than what is usually given.
(36) An inspection of Fig. 11 shows that increasing the slip beyond the theoretically maximum efficient value does not diminish the efficiency so rapidly as diminishing the slip.
When the slip is a little more than 50 per cent., or $s=\frac{1}{2}$ nearly, then the revolutions are a minimum, even when fluid friction is taken into account; and for those revolutions, the speed of the vessel is such that the thrust of the propeller is about a maximum.
Strictly speaking, the revolutions are a minimum, or n is a minimum, when, as above, $n=\mathrm{N}, p=\mathrm{P}$, and

$$
\mathrm{N} P=2(1+k) u,
$$

$$
\begin{aligned}
& \qquad s=1-\frac{u}{\mathrm{NP}}=\frac{1+2 k}{2+2 k} \text {; } \\
& \text { so that the percentage of slip } \\
& 100 s=50\left(1+\frac{k}{1+k}\right), \\
& \text { a little more than } 50 \text {, since } k \text { is small. }
\end{aligned}
$$

(37) Denoting as above by P the pitch corresponding to the minimum number of revolutions, then a diminution of pitch below P will require increased revolutions but diminished indicated horse-power to maintain the same speed, so that the efficiency rises in consequence of a diminution of pitch below P ; but an increase of pitch above P will require increased revolutions and increased indicated horse-power to maintain the speed, and the efficiency drops rapidly below 50 per cent.
(38) An instance of this kind was recorded in The Engineer of May 7 th and 14th, in connection with the Great Eastern, in her voyage from Milford Haven to Liverpool, when, with twenty-seven revolutions a minute, the speed of the screw $n p$ was measured to be about 12 knots-more nearly $11 \cdot 7$-the pitch of the propeller being 44 ft ; ; but the speed of the vessel was only about $5 \frac{1}{2}$ knots, implying about 53 per cent. of slip. This percentage of slip shows that the revolutions were nearly the minimum value N for the speed of $5 \frac{1}{2}$ knots. But suppose the pitch of the propeller had been halved, and made 22 ft . Then we should find that increasing the revolutions with this new pitch of 22 ft . only about 25 per cent., and thus making the revolutions about 34 a minute, would produce the requisite thrust at the same speed of $5 \frac{1}{2}$ knots, the slip being reduced to about 20 per cent., while the indicated horse-power required would be only about fiveeighths of the indicated horse-power required previously
be incrussad 60 percent thia would he exact by learing but of nccount fluid friction
(39) Taking fluid friction into accoumt however, and
supposing that 27 is the minimum value of the revolutions, so that

$$
\mathrm{NP}=2(1+k) u ;
$$

or $\quad \frac{1}{2(1+k)}=\frac{u}{\mathrm{~N} P}=1-s$

$$
=1-\frac{53}{100}=\frac{47}{100} ;
$$

or $\quad 1+k=\frac{50}{47}, k=\frac{3}{47}=0064$;
very slightly different to the value of k given before.
Then for the new pitch p -

$$
\begin{aligned}
\frac{n p}{\mathrm{~N} P} & =\frac{1}{2}\left(1+\frac{p^{2}}{\mathrm{P}^{\mathrm{x}}}\right) \\
& =\frac{5}{8} ; \\
\frac{n}{\mathrm{~N}} & =\frac{5}{4}=1 \cdot 25, \\
p & =\frac{1}{2} ;
\end{aligned}
$$

o that the revolutions must be increased 25 per cent. when the pitch is halved, and made 22 ft .
(40) Then, E denoting the old efficiency and e the new-

$$
\frac{n p-(1+k) u}{\mathrm{NP}-(1+k) u} \quad \frac{\mathrm{NP}-u}{n p-u}
$$

which reduces with the above values to-

$$
\frac{e}{\mathrm{E}}=1.5 \text { about } ;
$$

so that the efficiency is increased about 50 per cent. by halving the pitch, even when the effect of fluid friction ou the propeller is taken into account, in this numerical application to the s.s. Great Eastern. In order to predict the effect of diminishing the pitch at other speeds, it would be necessary to have a record of the number of revolutions
of the engines at the different speeds with the present of the eng
propeller.
(41) The pitch has hitherto been considered uniform in the investigation of the effect of fluid friction on the blades of the propeller. But when the pitch of the propeller increases from $\frac{u}{n}$ on the leading edge of a blade, in order to avoid shock on entrance, to any final pitch p, the investigation of the effect of fluid friction depends greatly on the rate of increase of the pitch, and requires special reatment in each case. We may, however, predict chat the allowance to be made for the effect or fuid friction will not exceed the allowance we have already investigated in connection with propellers of uniform pitch.

THE ROYAL INSTITUTION.

TELESCOPIC OBJECTIVES AND MIRRORS.
On Friday evening, April 2nd, Mr. Howard Grubb, F.R.S., delivered a lecture at the Royal Institution upon "Telescopic
Objectives and Mirrors : their Preparation and Testing." Dr Objectives and Mirrors: their Prep
William Huggins, F.R.S., presided. William Huggins, F.R.S., presided.
The lecturer said that time would not permit him to go into the history of the development of the methods of constructing glass manufacture were necessary. Dollond's discovery of the means of achromatising objectives rendered possible their struction of larger size, provided suitable material could obtained, for his discovery rendered visible faults which previously been masked. Many years then elapsed before Gus nand, a persevering Swiss peasant, succeeded in producing goo discs of glass of suitable dimensions. His secret he handod down in his own family to M. Feil, of Paris, one of his descendants, and also through M. Bontemps, who for an invitation from Messrs. Chance, Bros, and Co., of Birming ham, to assist them in an endeavour to improve this branch of their manufacture. Only these two houses, so far as he knew, could make optical dises of large size.
The glass discs when received by the optician have to be tested. Sometimes, when received, they are roughly polished on both sides; sometimes they have but small facets polished on the edges. For telescopic lenses it is best to have them polished on both sides, to avoid the risk of having to throw a lens away, The points to be looked to are (1) air bubbles, mechanical impurities ; (2) homogeneity; (3) annealing, The first of these can be seen by the eye. The test for homogeneity is somewhat equivalent to Foucault's test for the figure of concave mirrors. The disc of glass should either be ground and polished into a convex lens, or it should be placed in juxta position with a convex lens of similar or larger size, of known good quality ; a small brilliant light is placed opposite one side of the lens, so that the conjugate focus is found on the other source of light. When the image of the flame is thus brought upon the pupil of the eye by the lens, the lens should appea to be "full of light," but at the slightest movement to one side the lens should appear quite dark. If the eye be now slowly passed backwards and forwards between the positions showing light and darkness, any irregularity of density will be easily seen, but some experience is necessary. If any portion of the lens be of a different density to the general mass, that portio has a larger or shorter focus, revealed by luminosity, while th photographing such defects in the camera

photo

being examined the discs of small size plane and a Nichol's prism. Larger sizes, means of a polarising faces, can be more easily examined, and their defects becom visible in the lantern polariscope. Mr. Grubb here projected upon the screen a polarised image of a badly annealed disc, which was traversed by a black cross, and by rings of colour near the circumference. He said that opticians never expected to get quite rid of the black cross, but that if any coloured rings appeared the glass was rejected.
differs but little from the metallic mirrors of the present day alloy is now made in the proportion of four Newton. The best copper to one of tin. The curves of lenses have to be calculate copper to ons, and for the colrection of the chromatio be calculated berrations. In many pubifished works full information is giveio aberre the calculation of the curves; and, contrasy to a general
plow
Olusion, there is no difliculty or mystery about the matter. The
calculation of the curves which satisfy the conditions of achro matism and desired focus is a most simple one, and can be perknowledge, provided the refractive indices and dispersive power of the glass be known. Both Messrs. Chance and Messrs. Feil supply these data with their dises, quite sufficiently accurate for small-
sized objectives, and he accepted their figures for any discs up to ten inches in diameter. When above that size, he obtained his curves for spherical aberration are very troublesome, but fortue nately they may generally be neglected. Some years ago the Royal society commissioned one of its members to draw up tables for the use of opticians, giving curves to satisfy all the
conditions they required. The plan was abandoned because the surfaces produced by opticians are, in most cases, not truly spherical. Object glasses cannot be made on paper ; the final corrections must be left to the optician, and not to the mathe matician. A sensible difference in correction for spherical aber-
ration can be made in half-an-hour's polishing. He would be ration can be made in half-an-hour's polishing. He would be
willing to undertake to alter the curves of the crown or flint lens of any of his objectives, by a very large quantity, increasing one and decreasing the other, so as to still satisfy the conditions of achromatism, but introducing theoretically a large
amount of positive or negative spherical aberration, and yet to make out of the altered lens an object glass perfectly corrected for spherical aberration, so far as ordinary sizes are concerned. Even for large sizes it is sometimes possible to make a better lens by deviating from the curves which give a true correction
for spherical aberration, and correcting that aberration by "figuring." The work of making a lens is divided into (1) rough grinding, (2) fine grinding, (3) polishing, (4) centreing, (5) figurto a holder, and ground with sand and water. For fine grinding the tools are of brass or iron; he preferred iron, except for very
small sizes. The tools are grooved on the face, in the manner suggested by the late Mr. A. Ross, in order to allow the grinding material to properly distribute itself. If two spherical surfaces
be rubbed together, or rubbed together with dry powder be rubbed together, or rubbed together with dry powder
between, they will tend to keep spherical ; but if wet powder be used, they will abrade more on the centre and edge than in to meet the difficulty. The particles of the grinding powder are either imbedded in sliding between the two surfaces. The particles which become
imbedded are the finer, and do little work; most of the work is done by those which slide; as the grinder is made of a softer material than the glass they partially adhere to the former,
and are carried by it across the face of the latter. The best conditions for rapid grinding are-not too little emery, for then there will not be enough of abrading particles; not too much, for then the particles will roll on each other and tend to crush and disintegrate each other instead of abrading the glass, there
should bufficient to form a single layer of particles 5in. or 6 in. in diameter are usually ground by hand, and it is possible to grind by hand surfaces up to 12 in. or even 15 in ., but the labour is severe; he was gradually reducing the size
allotted to hand grinding; he found machine grinding to be more constant in its results. The machinery used is the same In fine grinding operations by hand the glass is usually cemented to a holder, having for smaller sizes three pieces of
cork to which the lens is attached ; this holder is serewed to a
" perator applies the the top of a post screwed to the floor. The the grinder over the glass in a set of peculiar strokes, the amplitude and character of which he varies according to circumstances, at the same time that he changes his position round the post
every few seconds. The grinder suffers abrasion as well as the glass, and the skill of the operator is shown by the facility with which he is able to bring the glass to the curve of the grinder
without altering the curve or figure of the latter. A skilled operator can even take a lens of one curve and a grinder of, say a deeper curve, and produce surfaces fitting together, and of
shallower curves than either. In the early stages of grinding, gauges of the paper radius,
and cut out of sheet brass or sheet steel, are used for roughly testing the curves of the lenses. For more accurate purposes a spherometer is used. It is made in various forms, generally
with three legs terminating in three hardened steel points, which lie on the glass, and a central screw with fine thread, the point of which can be brought down to bear on the centre of
the glass ; the versed sine of the curve for a chord equal to the diameter of circle formed by these points is measured, the find the points of the spherometer satisfactory for rele wot they are apt to get injured or worn, and on ground surfaces one or other of the feet may find its way into a deep pit in the lens. His spherometer, then exhibited, had three feet of about $\frac{1}{2}$ in. portions of an entire circle. After its three curved feet are placed upon the lens, the serew with the micromeder head is
turned till the point is felt to touch the surface of the glass ; the scale and head can then be read off. The screw in the instrument has fifty threads to 1 in., and the head is divided
into 100 parts, so that each division is equal to sovin. With

 mecharical contact. To show the delicacy of the instrument, he brought its movable centre and its three feet to bear
equally upon a curved glass surface; when then blown upon with air of the temperature of the theatre the spherometer
would not move without sliding bodily on the glass. He then would not move wised the spherometer by means of a string so as not to alter its temperature, and placed his hand for a moment on the
centre of the glass ; on replacing the spherometer a puff of air centre of the glass; on replacing the spherometer a puff of air
made it turn upon its central screw, because the latter rested upon the lump produced by the warmth of the hand upon the Flexure during polishing causes great difficulties, but even
the thick pieces of glass used for lenses will bend with their own weight. He placed the spherometer upon a disc of glass of about inn. diameter, and $\frac{1 i n g}{4}$. thick, so that the instrument would not
turn, the dise then resting upon three blocks near its periphery. He next placed a block under the centre of the disc and removed the three others. The spherometer would then spin round upon
its central screw. The spherometer is too corse its central screw. The spherometer is too coarse an instrument to
be of use in figuring objectives. For small sizes no special precautions but for all sisesas over 4 in. in in diameter he used the equili-
grinding,
brated levers devised time on a large scale in supporting the 6ft. mirror of Lord Rosse's telescope. He had also sometimes polished lenses while
they were floating on mercury, but it was difficult to keep
the discs sufficiently steady without introducing other chances
of strain. Very large lenses, when placed in their cells, suffer flexure from weight alone, as they then are supported nowhere telescope tube air-tight, and to in once proposed to make to the to form an elastic support for the objective, the pressure to be regulated automatically according to the altitude. His attention was directed pointedy to this matter, when ho was obliged to to ordinary rules, was much too thin. He had waited some years for the disc, and none thicker could be obtained at the time. If it had been offered to him in the first instance he would have rejected it. To his surprise he found that he was
not troubled by flexure in the working, which led him to investi gate the matter, with the following curious results.
If we call f the flexure for any given thickness t, and f^{\prime} the fexure for any other thickness t^{\prime}, then $\frac{f}{f^{\prime}}=\frac{t^{t^{\prime 2}}}{}$ for any given load or weight approximately. But as the weight increases directly as the thickness, the flexure of the discs due to their own weight, which is what is wanted to be known, will be about in any lens bent by its own weight, whatever part of its surface is made more or less convex or concave by the bending has a corresponding part bent in the opposite direction on the other surface. This is one reason why reflectors, which have not this second correcting surface, are so much more liable to show strain than refractors. If the lens were infinitely thin, moderate flexure would have no effect upon the image ; the effect increases
directly as the thickness. As the flexure decreases directly as directly as the thickness. As the flexure decreases directly as the thickness, and the effect of that flexure increases directly as the thickness, it is clear that the effect of the thre of any In other was no What has just been stated has nothing to do with the extra difficulty of supporting a thin lens during the grinding and polishing process ${ }^{\circ}$ s.
The speaker then deall with the subject of the substances used for the face of the polisher. Cloth is sometimes used, sometimes pitch, and the French are said to employ paper. The
ground surface of a lens consists of a multitude of hills and alleys. Cloth not only polishes the tops of these hills, but it has a "nap," polishes them at the same time a little way down their sides; hence the lens seems to poilish quickly wit Pitch polishes down the tops of the hills, scarcely touching their sides, and with it polishing goes on for some hours without much perceptible advance, for the hills are being slowly shaved down; suddenly the remaining greyness disappears, and the
surface is polished. He had not succeeded well with pane which indeed was open to the same objections as cloth paper, Isaac Newton was the first to use pitch for the polishing of lenses, and it seems to be the only known substance which will fulfil all the required conditions. The pitch used is not gas-tar England from Archangel. By continued boiling it can be made so hard that it cannot be scratched by the finger nail; yet if laid upon an uneven surface it will, in a few days or weeks, or months, subside and take the form of that surfacc, hence pitch polishing tool is qualities of a iquid than of a sodid prism formed to nearly the required curves by a set of squares of pitch, and while these are still warm pressing them against the
glass, the form of which they immediately take. When it is glass, the form of which they immediately take. When it is
desired to lessen the polishing abrasion in particular places it is desired to lessen the polishing abrasion in particular places it is
done by modifying the sizes of the squares of pitch in particular done by modifying the sizes
The two best known polishing machines are those of the late Earl of Rosse and the late Mr. Lassell. Many years ago his Mr. Grubbs s) father devised a machine, figured and described in Nichors "Physical Science." All these machimes, notwithstanding the curves of motion, were liable to polish in rings, so in the Here, by the aid of the electric lantern, he projected on the screen diagrams of the curves described by the variousinstruments. He also drew attention to a diagram representing a section of而fied 100 times, to show the relative thickness of matar abraded by the four por grinding was represented by a band 25 in. wide ; the fine grind-
 the quantity removed hy the figuring process could not be shown even on this scale, as it would then be represented by a line only ${ }^{10}{ }^{\frac{1}{0} \frac{1}{0} \text { in. }}$ thick. The approximate cost of the abrasion of a gramme of material by each of the four processes is $:=$ Rough
grinding, about 1d. per gramme f fine grinding, $7 \frac{1}{2} d$. per gramme ; polishing, 10s. per gramme ; figuring, $£ 48$ per gramme
The figuring process is that of correcting local errors in the ver it may be which will cause the rays falling on any part to be refracted in the right direction. It is an occasional but exceedingly rare thing for an objective to prove perfect on the first trial, but they usually gave such results when first tried that he considered them to be but three-fourths finished. The figuring consists of (1) The detection and localisation of faults; (2) the
altering of the figures of the different surfaces to cure the faults. In the case of a 27 in . objective of 34 ft . focus, say that there is an error in the centre of one surface ond ameter, which causes the focus of that part to be Toin. shorter than the
rest. For the sake of simplicity, say that the surface is generally rest. For the sake of simplicity, say therere instead of being
flat; the central 6 in. of the surface theref flat must be convex, and of over $1,032,000 \mathrm{in}$. radius, about 17 miles. The versed sine of this curve, as measured by the spherometer, would be only about $\overline{\text { zob }} 10.0,4$ millionths of
an inch, a quantity in his opinion mehanically unmeasurable. If the error had been spread over three instead of six inches, the versed sine would only be about 1000 ovo ; probably its effect on the image would not then be appreciable, but a similar error near the edge of the objective certainly would be appreciable.
No known mechanical arrangement is delicate measure these quantities ; optical devices are therefore necessary, and trials of the objective or mirror on a telescope are really the crucial test The best object to employ is generally a star of the third or fourth magnitude; but as in this climate it frequently occurs that no such star is visible, a minute image of the sun
reflected from a little polished ball, or even a thermometer bulb, will do. Small electric lamps, with their light condensed and For theon a polished ball, are useful.
For the localisation of errors, sets of diaphragms which leave separately measured, are useful, but a really experienced eye does in Dr. Draper's and other books, is useful; but is not available for convex surfaces, and only partially available for concave parabolic surfaces. The detection of one fault in an objective is
easy, but usually many are superimposed; it would be
aults, but he lecture to state all the methods of loc lising been made public. To detect faults of symmetry, revolve on lens on another, and watch the image; it can then generaily be
ascertained whether the fault is in the flint or crown lens. With ome kinds of glass the ditions of achromatism and spherical aberration are such that equi-convex and the fint a nearly play the crown. This form is most the sation of surface errors in this manner. The lenses placed in juxtaposition and tested. Certain faults of figure are detected. Now calling the surfaces ABCD in the orler in which the rays pass through them, place them again together
with Canada balsam or castor oil between the surfaces B and with Canada balsam or castor oil between the surfaces B and C, forming what is called a cemented objective. If the fault be in
either the A or D surface, no improvement is seen; if in B or C , the fault will be much reduced or modified. same foult still shows it must be not show, it will be in either

ments the fault can be localised

Sometimes a suspected error is so slight that it appears proble matical whether an aleration would mprove He had devised methods, for use in some such cases, of tempo rarily altering the surface. Ir he suspects a certain zone on a objective to be too low, he passes his warm hand six or eight too muna ana particuar zone. This usually raises the surfac results as the of , paints on sulphuric ther with a camel's hair brush blowing it slightly; this gives as much cooling effect as necessary. The ext point is the remedy. The lens is again put on the polishin machine, the pitch patches and the stroke are modified so as to to Lord Peauce the surface where desired. All thanks are due lished all about the figuring process which it is possible to com municate; but those who have succeeded in this work have ha to strike out new lines for themselves, hardly one havin by others Soll polishers and local touch in the figuring. the method is useful in removing gross quantities, but he would not employ it for the final perfecting of the surface. In working at the Vienna objective, it often happened that the figure was so nearly perfect that it was dangerous to carry on the polishing process for more
than ten minutes between each trial, but then it was sometimes necessary to wait or wek before the atme became steady enough to allow the trial to be made to determine whether days the work of weeks may sometimes be undone
days the work or weeks in making a new $2 \sin$.
Greenwich, he intended to make provision for the redutory at these troubles. The greatest difficulties are the want of atmo spheric homogeneity, because of varying hygroscopic and thermoscopic states, and sudden changes of temperature in the polishing room. The polisher must always be made of a hardness corre sponding to the existing temperature. It takes about a day the
form a polisher of large size, and if before the next day the temperature changes 10 deg. or 15 deg., as it often does, tha polisher is useless, and an one has to be made, and perhap To r it ith anor co the polishing chamber underground, and leading from it to have a tunnel formed about 350 ft l long of highy-glazed sewer-pipes at the end of which tunnel is placed an artificial star illuminated by the electric light ; on the other side of the polishing chamber is a shorter tunnel forming the tube of the telescope, terminating half-way in the long tunnel there will be a branch pipe connected to the air shaft of the fan which is used regularly for blowing of varying temperature and density. It may be found necessary keep this going during observations. By this arrange ment he hoped to be able to have trials whenever required After stating hours or days for idea that the working of a plane mirror is more difficult than one with curves is not quit correct, the lecturer drew attention to a working model of a proposed observatory for Mount Hamilton in Callo.... An page 23 Mr . m . erection of m . plete, and contains some excellent instruments of moderate size, the work already done with which favours the idea that the great 36 in . refracting telescope about to be erected there thai than any other large telescope in the world. The trustees of
the Lick Observatory had invited him to design an instrument for the 36in. objective now in course of construction by Messrs. Clark, of America, the contract for the mounting not having yet been made, and in the model he had put his ideas in in designing the observatory were that it should be possible for the observer single-handed to enter the equatorial room at any time, and that without using more physical exertion than is necessary for working the smallest sized telescope, or even a turn it round backwards and forwards, point the equatorian to any part of the heavens, revolving it in right ascension and
declination to any extent, and finally, the most difficult of all, to bring his own person into a convenient position for observing. There is generally far more trouble in moving the observatory "chair" and placing it in proper position than in pointing the to be 25 ft . high, and with its movable platform, ladder, balance weight, and so on, would weigh probably some tons. Even if very perfect arrangements were made for the working to make the most delice fact that the observerched upon a small and very unprotected platform 25 ft . above the floor, and in perfect darkness, tends to reduce his value as an observer to an extent onl personal comforts and discomforts have much to do with the of observations
He proposed that all the various motions should be effected having little vis inertia are easily stopped and started. He proposed to use four of them; one for the right ascension revolving the dome, and one for raising or lowering the observer himself; but instead of having anything of the nature of a 2 ftt . chair or scaffold, he proposed to make the
observatory movable. It is balanced by coun
and raised and lowered at will by the obs
observer can, without any effect, raise and

PROPOSED OBSERVATORY, MOUNT HAMILTON, CALIFORNIA.

and take notes, yet he could then no more expect to figure an picture because he had been sitting in an to be able to paint picture because he had been sitting in an artist's studio for the by experience, and then only by particular persons, He agreed with an experienced amateur who said that nine years' hard work was necessary to acquire the experience. It is true that some large objectives are turned out by machinery; but what kind of an objective can be turned out by a machine left to inexpe rienced hands ? At the risk of being accused of working by rule-of-thumb, he confessed that conditions often arose to meet which he seemed to know intuitively what ought to be done,
what crank to lengthen, what tempering is required of the pitch square, yet would find it difficult to give a reason satisfactory even to himself; and over every new objective he had found some new set of conditions to be then met by newly devised arrangements. A well-known English astronomer once told him that he considered a large objective as much a work of art as a fine painting.

THE RECLAMATION OF LAKE COPAIS
THE people who take any interest in the doings of Greec regard it as a plucky little State, striving its utmost by war as the descendant of the great Greece of old, doing what it can to be worthy of the traditions handed down from father to on through many centuries of gloom and deadly oppression poets; but there are not many amongst even the greatest friend
of Greece who regard it as being a land in which works of con siderable engineering magnitude are being carried out, and yet advancing to plat of all true Philhellenes, but in the estimation of such men know it within and round its shores,
If our readers will for a moment consider that the population of the kingdom is under two and a-half millions, probably less than half that of Ireland, and that it already shows such igns of strong vitality, though really only sixty years old, as may be seen in its several railways; its mines and works at Laurium; its Corinth and Kalamaki Canal; its great work of reclamation of Lake Copais; its two fine engineering workshops in
Piræus, those of Messrs, Vasiliades Brothers and of Messrs MacDowall and Barbour; its arsenal and floating docks Arrapi; its fleet of upwards of thirty first-class passenger and mail steamers; its tramway services both by steam and horses, and its harbour works at Piræus and elsewhere, they will at once see the modern Greeks do not merely sit down and hug themselves in the knowledge of the greatness of the Greeks of old, but are up and doing their best to place themselves in the front rank of the smaller nations who are eager to place cial and scientific point of view. Of course they owe commerthe fostering care of France and England, especially the former; but we conteud that a nation which is capable of inaugurating so many works, even with much foreign friendly help within so few years of its freedom, rightly deserves our congratulations and deservedly claims some admiration. We have shown in a review of the work of placing new machinery on board the

THE RECLAMATION OF LAKE COPAIS.

Profle of Hungara Turnel

Greek mail steamer Thessalia, recently published in these pages, what the general condition of the Greek shipping interest is. We adorablew weeks to be able to show our readers how the acinal is work of joining the gulfs of Corinth and Athens by cual is progressing; and at present we desire to place before d at the Lake of Copais, a few miles from thich bas been conidly, after many adversities, approaching completion. The Lake of Copais, or, as it is proaching completion.
Copaiba," is a great marshy basin, situated some miles inland rom the channel which runs between the island of Egripos, or Negripont, and the main land. It lies in the neighbourhood of Thebes and Livadia, and is situated at a considerable height watersheds level of the sea. Its waters accumulate from the watersheds from the north; from the mountains of Parnassus and Helicon; and from the overflow from neighbouring rivers plaing of Copais and forming a huget seasons, collecting in the extent. In each October this plain is only a marshy swamp; in Norember the water-level begins to rise, attaining its maximum eght in April, then falling until it has reached its normal conith unerring a dismal swamp in October, only to rise again with unerring regularity in November. The water which rises during six months of the year disappears during five other "Katavothres." To the former evaporation and the existence of Katavothres." To the former of these causes is due the disppesrance of a body of water of the whole area of the plain tity. It may be mentioned that the Katavothres are the alical fissures which exist all round the lake, but in the greatest number on the east side. Some of these Katavothres the the sea, and a very large number of them to the depths the earth. It will be readily understood that this great E18 who come within is a fruitful cause of sickness and malaria to luripg the months of July, of its evil influences; and that the avages from the fever within a distance of 15 kilometres of ts borders are very deadly. The soil of the plain under the natier is of remarkable fertility, which it owes to the great quentity of organic matter which it contains, and would in a very luot time repay the outlay required to dry it up, so that the promoters and movers in the scheme might expect to be reimbursed a a little time, while the sanitary effect on the country for it is known that in the plague spot would be incalculable. vacar was much greater, and the evil effects antiquity the depth of iew were not nearly so serious; but things have halth point Teatly since then, and amongst many others volcanic causes have operated to raise the bed of the lake, with the effect of reatly augmenting its area, reducing its depth, and multiplying in enormous degree its evil followings. It is evident from
traces which have been found that the ancients made many attempts to rid themselves of this plague, but without any have shoult, if we except the fact that the remains of the work void in mo to modern engineers the things they should ancient has been of the utmost assistance to the modern engi neer. The first attempts to dry the lake made after modern methods date back to 1847 , and were made by M. Sauvage, to whom much is owed as the pioneer of the work. His scheme was to
overflow the lake through a tunnel pierced under the neck of Larymna, utilising to a large extent many ancient works, which had evidently been used for a somewhat similar plan. It will be seen that had this plan succeeded, it would have involved the loss of the water for agricultural purposes. After this the work was many times conceded by the Hellenic Government, and to various companies and individuals; but from one cause or another, want of money or of energy, all the schemes came to grief, until dykes, and M. Moulle, civil engineer-took the matter in hand proposing to allow the waters to run away the matter in hand, and Paralimini, making Likeri a reservoir for irrigation during the summer, which scheme was really the parent of the work in its present form.
In 1880 a concession was given to M . Vouro, who, with the aid of one of the great merchants of Athens, M. Scoulondis, succeeded in forming a company, mainly French, which was intrusted to the management of M. Saratte, but unfortunately he as this latter gentleman's projects were ripe for execution 1882 by a M. Pochet, engineer of bridges and dykes, on whose plans the work was advanced to a very large degree; but in 1884 the company, at whose head was M. Scoulondis, took the whole of the work under its immediate supervision, with a result upon which it cannot be too heartily congratulated. The difficulties of great unhealthiness and distance from any victualling centre were the greatest to be overcome.
The work now
The work now consisted of two parts : (1) The construction of canals proper ; (2) the various lines of auxiliary canals, the and the rain which is to collect the water of the tributary rivers whence they should pass by the main canal and tunnel. There are three canals, which may be seen on reference to the accompanying map: (1) The great central canal, 34 kilometres in extent at present, which will follow the south bank of the ake; (2) the Melas canal, which will follow the north bank; lowest the interior canal, which will collect the water from the will converge cannot be vigorously pursued until tho passage for construction of the water at Karditya has been completed, that is to say
until the partial drying up of the lake has been accomplished The water will pass through a canal and tunnel at Karditya and will be led down to the sea through lakes Likeri (or The cons Paralimini. deep and wide ditch or dyke, and the formation of a tunne 672 metres long to Karditya, which passage will lead the water of Copais to Lake Likeri, whose level will be raised from 52 metres to 80 metres above that of the sea.
At Moriki there is a deversoir some 50 metres wide which will carry the overflow from Likeri to Lake Paralimini, the 55 metres above the level of the Gulf of Nevel of 36 metres will be conveyed by means of a tunnel 860 metres long, and which will debouch at Anthedon. It will be seen that the water from Paralimini to the sea will have a fall of 55 metres and according to the estimate of the engineers this fall will be able to yield no less than 12,000 -horse-power, and will thu supply a reason for the establishment at Anthedon of a large electricity which might be transmitted to a distance for the supply of light or power: This completes the whole scheme of drying lake Copais and rendering its present bed available for agricultural purposes, as well as of carrying away all the germs and causes of fever which now abound in the district; a work the mportance of which can only be realised by those who have seen the marsh and the district which is to derive so great a benefit.
The works, however, are not completed by this much, for a tunnel upwards of 1000 metres in length, and at a height of to Lake Paralimini, the fall of water through which will be utilised for the supply of nower to hydraulic engines which shall be capab? of raising on million cubic metres of water during the summer to Copais for the purpose of irrigating some 20,000 acres
On Friday, Jume 11th, the I'anhellenique Steam Navigation Co.'s steamer The esalis, which bad been specially chartered by M. Scoulondis and his aseociates in this great work, for the purpose of conveying a large pa-ty of pentlemen to witness the opening
of the Karditya passage, letb the Hireub, having on board M. Le Comte de Mony, the French

General Vosseur, and ome sixty other gentlemen,
After a very enjoyable run of some which the Thessalia and her new
approbation of all on board, the narrow the Gulf of Negropont was reached, and the nure chor Chascis ints the Thessalia is too long to be taken througi the dropped, for dangerous channel bout 50 ft , broad -which t.e parrow and sland of Egripos, ar Nogropont, and the main theen the company therefore left the Thessalia, and made the passage of
 embarking on board the Argolis, another of the Panhellenique steamers, which was in waiting at the other side of the narrow
channel, to convey them to Anthedon. As soon as the Argolis got under way the French ambassador's presence was recognised of twenty-one guns. After about two hours' steaming, the Argolis iropped her passengers at Anthedon, from when they were the night, going on the following day to inaugurate the opening
of the Karditya passage and to inspect the whole of the works. The opening of the Karditya passage lowers the water in Copais to a very material extent, and will allow of the immediate
cultivation of an area of from 10,000 to 12,000 acres, while the general healthiness of the district will be enormously improved, at the same time that the work of canal cutting can be pro-
ceeded with by the company under much more easy and e circumstances.
The deversoir at Moriki is well advanced, and will soon be ompleted to its full section thedon is entirely pierced, and is it will be finished during this present year, and the tunnel of Hungara is pierced for a distance of 300 metres, so that it is
clear that the most difficult part of the work is clear that the most dificult part of the work is accomplished, and that probably next year the whole of this great undertaking
will, after many disappointments and very great difficulties,
be an accomplished fact.

LETTERS TO THE EDITOR

[We do not hold ourselves responsible for the opinions of our

long carriages with flexible wheel base. SIB,-I observe that in the interesting remarks in your issuue of the rth May relative to the New Cross railway acoident, you say -in use on the Metropolitan Railway, as a quotation apparently
from Major-General Hutchinson's report-" When running round from Major-General Hutchinsons report-. When running round
curves the sliding arrangement of the boxes has a tendence to become jammod." Further on in the paragraph it is stated-"A11
the Metropolitan stock has sliding axle boxes," \&o. Perhaps it may interest your readers to know, that while it is perfectly
true that all the carriages have, more or less, a "sliding arrange ment" so far as the two inner pairs of wheels are concerned,
yet in the case of the majority of the carriages supplied to the
yetre yet inthe case of the majority of the carriages supplied to the
Mailway during the time-from 1864 to 1872 -when I had eharge of the locomotive and carriage departments of that
railway Iaplied "radial bar" arrangement to the two extreme, or
leading railng, axles, by which the weels are made to radiate -or approximately so-to the curve in place of merely "sliding" sketch showing thearrangement, which possibly you may think worth publishing as recording the eariest known application, namely, in
1866 , of the principle of the Bissell radial arm to passenger long vehicles were not as common as they are now. It will be
observed that I Iused long swing linss from the ends of the prrings
to control the radial action in place of the inclined planes peenliar to control the radial action in place of the inclined planes peculiar
to the Bissell truck. The links had the obvious advantas to the Bissell truck. The links had the obvious advantage,
amongst other features, of dispensing with the rubbing surfaces in the Bissell arrangement, which, as requiring frequent personal atten tion and oiling, were quite unsuitable for carriage or wagon stock.
I may mention, at the same time, that prior to adopting the radial bar arrangement, I applied Adams' radial axle box
to the extreme pairs of wheels of one lot of carriages, in combin to the extreme pairs of wheels of one lot of carriages, in combina-
tion with the long swing links above named -of which I also enclose a sketch-which carriages have ontinued to run satisfactorily
from that time to the tresent day. This was as far as I am
aware, the first application of the aware, the first application of the radial axxe-box to carriages, although it had, of course, been applied to locomotives prior to that
time. Although, as I I have said, it worked well, yet I considered
tin all the later long carriages added to the stock during as avoiding a special axle-box of rather awkward form to make and apply, and also because it transferred the friction from the guiding and exposed surfaces of the radial
motion at the united ends of the radial bars.
Contrivances of this kind may now-a-days be regarded as more
or less superseded by the four or six-wheeled centre pin bogies now in use on several lines in this country, which were
known to me at the time as being used in Americh which I had then by me a working drawing, but which I hesitated comparison with the radial bar arrangement. That the latter
cond arrangement has proved a complete suceoss for all purposes of the
Metropolitan Railway is evidenced by the fact to which yo fe Metropolitan Rail way is evidenced by the fact to which you refer "Considering the millions of times which these"-the Metro-politan-" carriages traverse sharp curves without derailment, we riages with radial bars was tried, in 1872, by the London and
South-Western Rail line in Portsmoath Dockyard, with the result that although the front and hind pair of wheels left the rails in attempting to run the carriage round the sharpest curve, namely $1 \frac{1}{2}$ chains radius, it
travelled safely round curves of 312 and 4 chains, on its way to the travelled safely round curves of $3 \frac{1}{2}$ and 4 chains, on its way to th
ROBTT. H. BURNETT.
spot where it left the rails. [We have engraved Mr. Burnett's drawings on page 26.-ED. E.]
Sir,-Under steel rail competition,
ournal of the 18 th ult., I observe the remarks, which Mr.Snelus made to his workmen concerning the competition of other
countries in steel rails. No doubt those were very oxcellcountries in steel rails. No doubt those were very excellent
remarks, and it would be well if they were taken to heart by theworkmen all over England. But may I venture to observe, withyour permission, that even if the English workman became ever so
frugal and thrifty,frugal and thrifty, and acoepted comparatively quite low wages, it
could not in the case before us, and probably in others too sauacould not in the case before us, and probably in others too, square
the acoount with the foreigner, nor is it very likely that betweennow and better times the masters of science, unless it be that ofpolitical economy, will have been able tointroduce such vast improveWe are haundo necessary to help to balance the account either.fight a very handichill battle, not to so syy a word about the ad yantraw foreigner has in longer hours, smaller wages, equal pricescountry where protection is the rull matters. For instance, in thistender for rails for the Berg and above was the accepted price ofin market quotations are still higher. Railway lase week, whilsenables thd with free trade, but just this extra price obtained hereown country, and this without loss to himself, whilst we migh
profit to thingquote. Then the Ge lovers at the price the foreign maker mighminerals, power by reducing railway fread frights and chargeses on
railway directors materials, which, again, our autocratio
is not loaded with royalties on on coal and ind ironstone, lastly, the for aseigne
If the are

Whilst writing the above it has occurred forcibly to me, that your way the like information, it might be useful to many of your readers, and afford them an opportunity of comparing and estimating th
costs of production of competing articles, Rheinland, July 1st
milnes' weekly problems
data ? - In your last issue, page 507, is there not an omission of any height, α and β being both equal to 15 deg. question may
July $\overline{\text { bth. }}$. July oth.
[There is not any omission of data, the problem stands as siven

ngineer would read angles on the vertical circle continuously up differences. The height is therefore perfectly defined by the four projecting lines.-ED.]
the coming-down of furnace crowns,
SIR,-The experiments lately carried out with a new furnace for high-pressure marine boilers, as reported in a recent issue of TH
ENGINEE, recalls to mind an excellent article which T read time since upon the coming.downo of furnace tops at sea in your valuabie paper. 1 intended at that time to submit to you, and
through you to the ensineering world an arrangen effectively prevent such a serious thing to occur to a boiler at all Unfortunately for myself, embarrasment throurgh a moine at all. ment prevented me at the time; but, although the same caus operates still, I will, now that attention is directed towards the
furnace and its weakness, or rather the cause thereof submit cure, or, better still, prevention
Now, sir, as you truly pointed out in the article before referred accumulation of sediment settling on the furnace inside the boile My plan consists in an arrangement of scrapers working inside the boiler directly on the furnace in such a way as to brush off and a shaft working through a stuffin. box in the end of the boiler any other convenient place, Of course anybody of experience such matters will understand at once what I am driving at, so tha Ineed not here trouble you win unnecessary details. I am certai such an arsettling on the furevent any dirt held in suspension be lying at rest in port for the purpose of coaling or taking is sores. It would also to a large extent prevent the formation of scale in a place where it is most likely to do the greatest harm.
The thing is simple, effective in action, and easily wrought, and could be applied to existing boilers with, very lititle expense.
240, Gallowate, Glasgow, July 3rd.
MICHAEL SMITH.
steel railway coaches,
SIR,-The Great Northern Railway Company of Ireland build ment, the upper part of each being composed of glass-that is say, from about the level of a passenger's head to the roof of the arriage it glass instear of wood. This must strike anyone as
being extremely dangerous in oase of accident, and last week, in the catastrophe near Portadown, it was fully exemplified, a carriage axles, and wheels, while a composite coach, which was behind the tender, escaped with much less injury.
What I mainly wish to draw
What I mainly wish to draw attention to is the use of glass in chance to the unfortunate traveller in case of collision. Your South Melbourne correspondent's letter is worthy of notice, and iages would perhaps, prove beneficial all round
July
th.

hardeastle's embossed plates.

STR, - In your notice of my system of embossing plates in you
ssue of the 2 nd inst. there is an error in the top line of the secon issue onn. The thickness of plate should be to top. instead of gin., as
columen
printed. In
 70 tons, and in another 80 to 86 tons. Both are right one cas should be noted that the lower pressure is required for plates Thomas and Gilchrist's basic manufacture, whilst the higher is for Siemens' open-hearth steel, the latter being harder than the
former, and also requiring more time for the fow of metal.

Sir, -I read ineamers' cooking hearths

Sir, -I read in your issue of yesterday's date the article,
Flame Contact,"
a new departure in water heating, and near Flame Contact," a new departure in water heating, and near
the end of it Mr. Fletcher states that some applications of this For your information I may state that it is no novelty to
Torm hater construct ships' oooking hearths with dependent rod or or points
formed on the hot plates, \&co, with the object of abstracting the formed on the hot plates, sc., with the object of abstracting the
heat from the flame.
Upwards of twenty years ago this principle wanager's Department,

Carron, Stirlingmshire, N.B., \quad Duvile CowAN,
July 3rd. July 3rd

FORTY-KNOT ships

STr, -In my letter appearing in your issue for June 25th, I
stated that by Reech's law, or the law of the late Mr. Froude, the resistance at corresponding speeds varied as the cube of the linear
dimension. Mr. Hurst's interpretation of the same law is that the resistance of vessels increases as their bulk, not, however, a the same speed, but at a speed larger in the proportion of the
square root of the increase of linear dimension. The two readings have precisely the same meaning.
Perhaps I might have been more explicit with the term " corre-
sponding speeds," but it was certainly not meant to convey the sponding speeds, but it was certainly not meant to convey the impression that the larger ship would have a resistance the cube
of that of the smaller ship, and at the same speed as the smaller
I quite agree with Mr. Hurst when he says that if we take a
s. boat four times that of another, we get sixty-four times the resist ance, and that chis resistance will be at a speed double that of the yype ship. What I wished to point out, however, was enthat we last letter I had doubts as to the accuracy of the performance of
Ir. Hurst's type ship. I refer to a speed of 21 knots with 470 I.H.P. I notioe without surprise that he has amended this
n his letter of your last issue to 20% knots with 695 I.H.P. My
doubts arose partly through considering the performances
torpedo boats published in recent journals, among which were the

ioin..

Speed.
18.3
21.75
19.5

I.H.P.
405.
469
4.5

The corrected speed and power of Mr. Hurst's type ship seriously noreases the figures for power for the forty-knot ship, stated by imseli Luestion.
Leven Shipyard, Dumbarton, June 7 th,

SIR, - Will you kindly allow me to make the following rejoinder of your cur of 2nd current:- (1) The drawing in the speciacaicons of my edged in them is the case, in consequence of the limitation of size by the Patent-office rules. But they are in terms of these rules, nd easily understood as your remarks show. (2) I do not clain in my patent No. 124, of 1884, that there is anything new in through the water-because the paddle, the screw, and the jet system of H.M.S. Waterwitch and others, are all alike propulsion
y reaction in water. But I do claim that the method of gaining heap reactionary power invented by me, and shown in that patent, is beyond question entirely new.
and other inventions an are "the very grave objections,", which you say I have "not take
not conomist Lonomist.
Lon,

ōth.

THE PHYSICAL SOCIETY
AT the meeting of the Physical Society, held June 26th, Prof,
V. E. Ayrton, F.R.S., vice-president, in the chair, Mr. E. M. Cangley was elected a member of th Society. The followin "On Certain Sourcos of
on Torsional Yibrations by ong series of researches on the torsional elasticity and internal riction of metals, the author has come across the following source of error in connection with torsional vibrations. In some of the
earlier experiments, a horizontal brass bar was suspended by a wire and oscillated, the times of oseillation being observed by the ordinary lamp, mirror, and scale. The moment of inertia wai aried by sliding two brass cylinders, suspended from the bar by
fine wires, backwards and forwards along it. It was then found that, under certain conditions, the bar executed a few vibrations decreasing amplitude came to rest, oo swing again, the amplitude increasing to a maximum, again o synchronism between the time of oscillation of the bar and that small cylinders about their axes of suspension, the absorpeffect entirely disappeared upon clamping the cylinders rigidly to the bar. On another occasion, however, the old phenomenon re ppeared, and after much time spent in investigating it, was found o. due to a somewhat similar cause-a near approach to syn
bronism between the periods of torsional and pendulous vibrations If the axis of the wire passed of the vibrator, this would not occur; but this condition it practically impossible to fulfil. Another source of error lies in he fack 13 ar een "On a Mode of Driving Electric Tuning Forks," by Professor P. Thompson. It is invariably found that the frequency of an electrivaly maintained or in in continualy changing. This great
inonvenience the author believes to be due to the fact that the namely, when they are at the extremities of their swings. It is desirable that the impulse should be given at the middle of the swing, and to effect this it is suggested that each fork should make
and break the circuit of the magnet influencing the other one, and and break the circuit of the magnet influencing the other one, and
it was shown how the electrical connections could be made to effect "A F the Dynamo,", by Professor S. P. Thompson. In a paper recently given by Fröhlich for the intensity of magnetisation in terms of he magnetising force was nearly identical with one derivable from and
has further denucoloped thy tamont. In in a recent and the present paper the
author has extended Fröllich's results, and has applied them to uth or has extended Fröhlich's' results, and has applied them to
—
Ifriek Lock. - Mr. Moor, engineer to the Thames Conservators bas sent to the Oxford River Committee his report on the com waters in the neighbourhood of Iflley. By the first or origina and the weir on the Weir's Mill stream, and to dredge the bed o the river between Oxford and Iffley to a depth sufficient for the pur. poses of navigation. By the second scheme it is proposed to rebuild
Iffley lock on the Berkshire side of the river, to construct a large new weir in the main ohannel, and to remove the narrow causeway
between the Isis Tavern and the existing overfall. The third scheme proposes to leave the lock and weir at Iffley as they are; a
new weir and overfall would be constructed on the Weir's Mill tream, and the mill stream itself would be widened and deepened
hroughout the greater part of its course. After an examination the merits of and the objections to each scheme, Mr. Moor conclude as follows:- "After careful consideration of the whoole question I Il the varied requirements of the case, and I have no doubt that the works proposed by it were carried out the district between
xford and Iffley would be freed from inundation by ordinary floods, and botht the level and duration of extraordinary fyodods would
be considerably reduced." The estimated cost would be $£ 8500$. A NEW JoURNAL.-We have received a specimen number of a
new Alanchester journal, entitled Industries. We gather from the rospectus published on the inside of the wrapper that Industrie aver a very large field indeed Not only is every possible phase of engineering to be represented,
but manufacturing processes and details as well ; wihle mining,
ilitar military, and civil engineering will be thrown in, or, to use the
words of the prospectus, "so far as they provide subjects having words of the prospectus, "so far as they provide subjects having
an industrial
or generally
dueful as aspect,"
they will
receive their specimen number, and this before aways have to be made for eneral rule. It presents no startling novelties, and seems, indeed not unlike a great many other specimen numbers which we have
reeeived from time to time. The prospectus contains the familiar rith Industries for patents, designs, and trade marks under the managenent of a patent agent of oonsiderable standing, und experi-
ence, who will also have the advantage of consultation with the nce, who will also have the advantage of consultation with the
vehnical staff of the journal.". We find, too, the usual list of ustrated abstracts of specifications. The engravings are not too
umerous, but they are well printed, and have been selected with nuch judgment from well-known collections. There is one novel iving rewards to earnest readers in engineering, electricity, and
ohemistry. The prizes will consist, as far as we can see, of free

RADIAL ROLLING STOCK, METROPOLITAN RAILWAY.
MR. ROBERT H. BURNETT, ENGINEER.
(For description see page 25.)

CONTRACTS OPEN-GIRDERS FOR THE SUKKUR BRIDGE.

CENTRAL STATION ELECTRIC LIGHTING IN MILAN.

ONE of the oldest, and perhaps the most successful installa lions of distributed electric light is that of the Societa General taliana, who own and work the Edison system in Italy. Th 1883 , numbered only 700 lamps, but now furnishes a constant ributed over a very large hree theatres-the Scala, 2566 lamps ; the Theatro Mansoni, 371 ; the Filo-drammatico, 263 ; and the Hotel Continental has仿; besides these, some 140 shops, cafess, and clubs are also rincipal streets electric mains are being laid down in th dditional 1000 lamps. With the exception of the public ighting and the theatres, where a special contract is made, the price now charged to consumers is, by the ampere hour, with vould cost 35f. per annum, and if taken by the ampère hour, 5 c . per hour, which for a 16 -candle lamp would be equal to 4 c 3o. per hour, which our, to which must be added the proportional
or about of the fixed charge. A meter is supplied at a rental of 5 ,
part of per annum up to 50 lamps, or 7 s . 6 d . for 100 lamps, and the
lamps are replaced at the company's expense, without it is learly shown that they have been destroyed through the careless duced as regards the price of gas in the district electrically duced as regards the price of gas in the district electricaly
lighted. The ordinary price of gas is 36c. the cubic centimetre,
or about 7 s , the 1000 cubic feet, and this is still paid by all those who are even a yard outside the charmed circle of electrical supply. The station is central only in name, and although selected as
The and the most advantageous situation, is really away from the district
where the greatest amount of light is required. The building, which was formerly a theatre, is well adapted for the presen work, the dynamos and engines being fixed in the very deep
basement, while the boilers are a few feet above the street level, he upper foors being used as stores and testing rooms. The orizontal magnets; and seven machines are connected to the feeders which supply the mains and cover the district in the by six Armington and 'Sims' and two Porter-Allen engines, eac connected direct to the armature of a machine by means of an
Oldham coupling, which is a modified form of the old Hool oint. The uniform speed of each engine is 350 revolutions with the exception of the spare engine and dynamo, which i kept slowly moving and ready to be switched in should occasion
demand. The starting or cutting out of circuit of these large machines requires some care. In the first place, to start it is done by a plug switch; but to throw 150 -horse power into the nain circuit would be dangerous to the lamps, so that the cur ance, which are cut out step by step, and similar care is taken when a machine is stopped. To regulate the electro-motive employed during the day with the help of the Edison tell- tale consisting of two lamps, a red and white, which light up when
the current is either high or low, and is found to be sufficient the current is either high or low, and is found to be sufficient
but when the night service is on, as it may happen that 2000 but when the night service is on, as it may happen that
lamps are turned out at once, an attendant has to carefully
年 into the field magnet circuit by moving a wheel connected by shaft and bevel gear to the various commutators. The principal difficulty to overcome in the system of distribution employed is
the equalising of the electro-motive force at the ends of the feeders, which are tubes laid down on the old Edison plan with out the return galvanometer wire which was described and
illustrated in THE ENGINEER in connection with the new three vire system. The plan devised by the company's electrician,
M. J. W. Lieb, who was formerly with Mr. Edison, is very
ngenious, and enables the electro-motive force at the evtren ends of the various feeders to be kept practicem ame, although they are of different lengths and area of
conductor. In the first place, resistance was added to each conductor, so as to equalise the potential approximately
at the ends of each line; and when working, in order
to provide for the varying amount of current each feeder, a peculiar form of commutator having a guillotine By moving the contact piece suitable resistance is either inserted or cat out; all the attendant has to do is to watch the differen number which agrees with the deflection. The instrument employed to measure the current is extremely simple, and con
sists of a horizontal needle swung between the poles of permanent magnet, and fixed at a known distance above one
the naked conductors, the current deflecting the needle in oppo sition to the polarising action of the horseshoe magnet. By
far the largest amount of current is drawn off for the lighting Iights. If If these were all suadengely turned on the the lights in the have been run, which are turned on by means of a com mutator and resistance during the performance. .
feeders still form part of the network system, as they are con nected at the theatre to the mains, but serve to equalise the pressure in a most efficient manner, and afford an illustration of
what is perhaps not the most economical, but still the only practicable way of maintaining a constant potential in a distric The flow and return conductors, which are both imbed. the same old form of Edison tube, are laid underground supply is drawn from the mains, and these are connected the feeders by means of the ordinary junction boxes, which each
contain a safety catch or cut-out. The feeder boxes have contain a safenty catch or cout-out. The feoeder woxes have have
expansion joints, and are filled up with hot bitumen. The insulation is extremely good, mainly on account of the favour enced, nor has the underground service been interrupted at andil
The cut-outs are an inprovement The cut-outs are an improvement on the old Edison form, but current is great, in that to guard against accidental melting due larger than is neceessary. In fact these safety plugs will muct the cable against a bad short circuit, but nothing else. The
original difficulty of the expansion of the lead, also of local heating at the contacts, has been overcome by giving the latte panying sketch, in next column, and by uniting the metal to incandescent
ent lamps, which are severally o in derivation, two in se conde power, 99 arc lamps are worke in crive of 45 rolts, to which 10 per cent, idide resistance is added,
constituting a total loss of current which is extremely low for a combined arc and incandescent system of lighting. The constant supply of electricity from tays in steam. In order to allow for cleaning and repairs, they common steam pipe so
chat any one boiler can be stopped without in erfering with the others. American
vater-tube boilers are the best for electric light stations. A similar type,
but by a different maker, is successfully employed
 agnie Generale's electric
lighting, and the successful report of three years' experience at Milan, where the water is extremely bad, leads us to surmise hat insular prejudice must have something to do with the
apparent want of popularity in this country of a boiler which recommends itself on account of its great portability
hrough the courtesy of Professor G. Columba, who is th the working of the arrangements in connection with the sec ighting of the Scala during the performance of the new spectacular piece "Amor,") for which many special lighting effects have been designed. Not a single gaslight is used in this theatre -in fact, on the stage all the gas fittings are removed, the wing and border lights being replaced by 16 -candle Edison lamps, the
former have each eight lamps fixed to a vertical board, which o portable that two men can suspend it to any portion o ne scenery. Under each lamp is fixed a red or green glass, amps and produce a by moving a the old india-rubber gas pipes, and connected to the batten b a hollow conical joint, which is quickly adjusted by batten brass nut. The fixing of the electric lights is entirely in the hands of the ordinary stage mechanics, only two of the company's men being told off for the special electrical work of controlling the lights and adjusting the resistances. A special room ha instructions are given by the prompter through a speaking-tube nd as all the commutators can be joined at will to a commo lights a turn of a wheel raises or lowers any of the groups re lamps, in the place of limelight, and nineteen 1000.cand rc lamps number of incandescent lamps in the theatre is as follows: In the auditorium, 1080 ; on the stage, 1486 ; or a total of 2566 , which have now been successfully maintained for the past tw years to the satisfaction of the
are the proprietors of the theatre.

CONTRAOTS OPEN.

INDIAN STATE RAILWAYS-INDUS VALLEY RAILWAY
The w
The work required under this specification comprises the supply, named in the tender, of the whole of the steelwork and ironwork or one triangulated girder span of 200ft. between centres of bea ngs, including all rivets, bolts, \&co, required to complete the ereo
tion of the bridge in India, together with an allowance of 50 pe cent. on the net quantity of rivets, and of 10 per cent. on the net quantity of bolts required. With each span are to be supplied:-iinty-hre bolts for sleepers; 1263 ditto for planking of footways
fifty-hree dozen gin. wood serews for sleepers; fifty-three dozen
tin. ${ }_{2}$ in. ditto ditto; nine dozen wood screws, 2 in . long for footways screws, 1 ivi. ling, for ditto; thirty-two dozen ditto, 2in. long, for ditto, 2in. long, for roadway. The expansion apparatus on the
ends of the cantilevers is also to be supplied. The timber wor and permanent way are not included in the contract. The span i shown on three sheets of drawings, which may be seen at the office
of the Director-General of Stores, India-office.
of these drawings we give the general drawing on page 27 , and shall give some details of interest in another impression.
The whole of the plate and angle bar work is to be of steel, with the exception of the chequered plates at the ends of the span
which are to be of wrought iron. The whole of the rivets use Wroughot the work an to the the use iron must be of such strength and quality as to be equal to the
following tensional strains, and to indicate the following perfollowing tensional strains, and to indicate the following per-
centages of elongation and of contraction of the tested area at the centages of elonga
point of fracture:

Steel plates, either with or across
the
thes rain, angle, or flat bars, not
the ple grain
less than
or more th

Wropught iron ilates
Wrought iron plates
Strips of steel, whether cut lengthwise or crosswise of the plate, aar, or angle bar, heated to a low cherry red, and cooled in water
at a temperature of 82 deg. Fah., must stand bending double ound a curve of which the diameter is not more than three time hat bars must stand piece tested. In addition to this, angle an tests. Tests for tensile strength are to be made from side and end shearings from every plate, and from at least one angle or flat bar from every charge of stel. To guard against the occasional
acceptance of brittle or dangerous steel, the manufacturer is to preserve a side and an end shearing from every plate, and an end shearing from every flat bar and angle bar, in order that it may be tested by bending cold in the presence of the Inspector-Genera or his deputy. Each such shearing is to bear a stamped numbe The test pieces are to be cut from the plates and bars in the condi tion in which they leave the rolls, without any subsequent anneal ing or other treatment of any kind. Any plates, flat bars, or angle bars which may require to be heated for bending must be carefull Thnealed after bending, to the satisfaction of the inspector-genera material and workmanship. They are to be cast with a head of sufficient size to ensure freedom from air-holes and other defects.
The castings are to be arrefully annealed. The tests are to be

ingots of Bessemer steel cast from pigs of the best description fo the purpose by manufacturers approved of by the Inspector-Gieneral
It is to be well hammered and free from defects of every It is to be expressly understood that the greatest accuracy is t being to fain every part of the work, India by perfection of workmanshin in this country All corre sponding partso of the of woinkmanship in this country. All corre
ohangeable. All plates, flat bars, and angetle barsimiar both and inter
steel and by pressure and not by hammering straightened- the and angle bare
punter they are
puned punched or drilled. All hammering - before and ant plater, that the ends of ore
bars, of every kind, must be planed dead true to the dimes all bars, of every kind, must be planed dead true to the dimensions,
or where planing in impossible, they must be dressed off fair with
hammer, chisel, and file. Every sheared edge, whether of a plate or bar, must have at least $\frac{1}{\delta}$ in, taken off it by machine or by the chisel, and any plate or bar too small to leave $\frac{1}{1}$ in. for planing or chipping holes are to be drilled, but the contractor may, if he think proper, firs in. of material all round to be subsezuently drilled out; thus th punched hole intended to be enlarged to lin. must not exoeed, at he largest end, "in. in diameter. The holes are to be slightly
arrised on the side next the rivet head. All steel or ironwor intended to be rivetted or bolted together must be absolutely in contact
unsed
use
fid figured. All rivetting is to be done by hydraulic or steam machine of approved construction, and in no case must the diameter of th he hole it is intended to fll cracked, badly formed, or deficient heads, must be cut out an replaced by others. Rivets must also be cut out when require for the examination of the work. All rivets are to be cup-headed
at each end, and the heads are to contain not less than $1 \ddagger$ diameters at each end, and the heads are to contain not less than 1 diameter full sizes shown on the drawings, and any plate or bar in which the
 he wors will be rejected. Wherever necessary for the division of xcept those hereinafter mentioned, tust in out, buses be mad ready for rivetting, and all the requisite rivets, including 50 per mtersedions of the dachals with ead India after the girders are erected. In all cover plates the fibr span. The main girders are to be built on the length of the camber of 4 in , in the arc of a circle. The underside of all earing plates must be perfectly flat, and the rivets countersunk and knuckle bearers are to be of steel, and the truck frames o forged wroughtiron. The bed-plates and knuckles are to be planed to the same diameter. The knuckles are to be planed and bored bearing surface. The saddles are to be planed to take the bearing roller and bearing gear, all meeting surfaces, inoluding the sides of the roller frames, are to be machined, all bolt holes are to b up in a style of first-class machine work, The rollers are to b urned all over and brought to a amooth surface, and accurately to
he same diameter; and the roller trucks, when complete, mustrun straight and easily on a planed surface of sufficient length to test heir truth.
The span is to be temporarily erected complete in every respect, assured. When erected in the contraction of sord all the holes which are left to be rivetted in India must be filled at one and the sam thime by temporarmolts fill, firmly sorewed or keyed up. It will thot hole cient that bolts shall be placed in a cet in number of holes a time, nor will it be sufficient that only such a number of bolts hall be inserted as may temporarily hoil the work together
The specif
Tenders, addressed to the Secretary of State for India in Council narsed, Tender for Steelwork and Ironwork for Bridges," must
e delivered at the India Office, Whitehall, London, S.W., before wo p.m. on Tuesday, the 20th inst.
ond

BATTERSEA BRIDGE,

THE new bridge about to be constructed from the designs of Sir oseph Bazaigette over the Thames at Battersea, forms the subjec engravings and a description of the whole will appear in futur impressions.

Warping The Mraning or Patent Specifications,-Attention sylvanus Thompson to the warping in the Chancery Courts of the language and the straining of the meaning of words in paten of a patentee who is backed up by wealthy supporters. He says "This evil tendency, fostered by eminent leading counsel and by a
few professional experts, who lend themselves to this mode of few professional experts, who lend themselves to this mode of
securing a monopoly for the patentee, is rapidly bringing into dis credit the administration of the patent laws. The writer instance the case in the Appeal Court of the 'United Telephone Compan
v. Bassano.' The defendants had constructed mitter in a manner which they honestly believed to be different not only in design, principle, and mode of action, but even in the materials employed, from the transmitter invented by Edison, the
American, whose atent is held by the plaintiff company. There
had been some question whether the 'tension-regulator' mechanism of the defendants' instruments was or was not substan tially the same as that described in the Edison specification. Lor Justice Cotton, in giving judgment on this point, made the follow-
ing statement: $-\cdot$ Edison had mentioned several sorts of tensioncegulators, but in that which had been ultimately preferred ther were fixed blocks and suspended pencils of carbon which acted b varying the tension according to the distance between the carbo points. That is a very clear statement of what the learne comes the extraordinary fact that not only is this passage no nothing in the Edison specification even , to support it. 'Fixe
blocks and carbon poinst,' are ot sugilsested and never were suggested by
Edison hever ment and suspenustance 'car are is never once named by Edison. The nearest approach to all this in the Edison document is tufts of silk fibre covered with plumbago That a High Court of Justice can be so influenced by eminen advocates as to be able to warp and strain tufts of metallised sill
and cases full of lamp-black
into fixed blocks and suspende pencils of carbon,' and than to that 'it was not the duty o
the Court to poont out thi exset particular of the construction to
which the

alephones, but in suits about gus
same process of judicial warpis.
Imray has taken up the cudzel.

very pretty quarrel as it stands, and
to express any opinion on its merits.

RAILWAY MATTERS,

A DAILY paper of the 5th inst, announced that on the Richmond Railway on the 4th inst. "the excessive heat caused the railway
points to expand to such an extent that they had to be disecected points to expand to such an extent that t
before the trains could run into the station.
THE Official returns for 1885 state that the number of cases in
which trains on the German Railways arrived late at their final destination was 20,303 . This represents about 88 per cent. of the total number of trains, and the result shows improved punctuality A propossa is on foot for the erection of a great oentral railway into Leeds. The proposal is to pull down the Wellington-Mid-land-station, and to acouire and clear away most of the property
between the Queen's Hotel and the Great Northern Hotel, and on the site thus available to construct
all the present stations combined.
Thr Rhode Island Locomotive Works Company, United States, locomotive, weighing 21.4 tons, and running on six, 68 in. drivers, locomotive, weighing 21 two lans, and running on six
two lors. being placed between the end and the certre
drivers, and tommunicating motion to all by friction gear. The electric locomotive is supposed to be 60 -horse power at
the motors having an electric capacity of 500,000 watts.
AN official report on the Local Chamber of Commeree at
Frankfurt-on-Main indicates the heavy expenditure which that city is now incurring and the benefits acocruing. The new rail way
station is being built at an expense of \&i, 500,000, while the
s. improvement of the navigation of the river Main will allow vessels
of 1000 tons burden to ascend as far as Frankfirt itself. Thus the oity will have vastly increased facilites for both land and water
traffic which cannot fail to exercise considerable influence upon the extension of its commerce.
The Rail rood Gazette says:--Few even yet realise the extent to
which our own Pacifc coast has become the rival of the rest of the United States in supplying Europe with wheat. In the five
months ending with May last the exports from San Francisco months ending with May last the exports from San Francisco and
 however, exports but littie flour, comparatively, while the Atlantic
ports exported the equivalent of $12,214,426$ bushels in flour this The fatal railwa
THE fatal railway accident last week near Portadown seems to have given rise to some curious suggestions as to the cause, but
from the evidence iven at the ocoroner's inquest it would appear
that the line was in the hands of the packers, was not finished, and that the line was in the hands of the packers, was not finished, and
that the elleepers were barely supported by ballast, and were not embedded, but only lay on the surface. It further appears that
the bit of line near the place of derailment-a curve-had moved or been moved inwards, which would not be the result either of
the pushing of the engine or of the elongation by heat of the rails the pushing of the engine or of the elongation by heat of the rails
too tightly laid end to end. The coroner's jury gave an open
verdict. The first of the daily through trains on the Canadian Pacific
Railway, whose arrival at its destination has already Railway, whose arrival at its destination has already been reported,
made the journey from Montreal to Port Moody on time o and
without the slightest mishap. It left the St, Tawrence seaport on without the slightest mishap. It left the St. Lawrence seaport on
Monday, June $28 t h$, about 8 p.m., and reached the Pacific terminus early on Sunday last-quicker by some twenty hours than Under present circumstances, 136 hours are considered necessary
for the journey but when the Canadian Pacific is in proper
working order the distance- 2898 miles-is expected to be done easily in 120 hours.
M. ARMENGAUD has proposed, in a communication to the
French Asociation of Civil Engineers, a system of communication which consists in placing a telepphone in each compartment in such a manner that any unusual noise or struggle can be detected in te
guard's brake. also suggests that a bell might be made ring by
telephonic action, so that no doubt would attend the transmission telephonic action, so that no doubt would attend the transmission
of any ories. The Bulletin de la Ceramique states that this combination is about to o e tried upon the Chemin de fer du Nord with
the concurrence of M. Banderali rolling-stoct the concurrence of M. Banderali rolling-stock engineer, and of M.
Berthon, director of the Societt Génerale des Telephones. Doubts are, however,
present form.
THE number of persons employed on the German railways-
normal gauge-in the business year 1884-85 was 278,583 , against 269,832 in the preceding year. The general management absorbed
14,890 , the management of the lines 99,029 , and the carrying department
officials and workpeople. ceived M. M02, 639,046 in $1885-\mathrm{M} .290,951,975$ in $1883-84-$ equal to
M. 1086 per man, agains M .1078 the M. 1086 per man, against M. 1078 the year before. The employes
 average of officials and servants of 187,495 ; in $1883-8$,
and in the workshops, $1885,35,508$; in $1883-88,31,910$.
ThE works for the widening of the South-Eastern Railway Com-
pany's bridge arross the Thames at Charing Cross are so far
advanced that the Middlesex side of the river has been reached
the advanced that the Middlesex side of the river has been reached,
the works having been commenced on the Surrey side. When
completed the bridge will be widened to the completed the bridge will be widened to the extent of 48ft.,
admitting of the laying down of four additional lines of rails.
Messrs. J. Cochrane and Sons, of Westminster, are the contractors. The widening of the bridge has neeessitated the removal of the the west of the bridge. The undertaking includes the enlargement of the Charing Cross station by widening it to a considerable extent
on the west side. This, it is said, involves the removal of the recently erected Avenue Theatre, together with the demol.
large number of houses on the east side of Craven-street.
A VIRNNA correspondent writes that on the 1st inst. the Berlin and suttgart express came into collision with the Bamberg mail
train at Rottendorf, on the line from Wuerzburg to Kissingen.
Seventeen passengers were killed, and in addition a large number
 occurred on a steep incline. Noither of the drivers had any idea
of the approaching casualty, for at the spot where their trains met
there is a curve and some buildings impede the view seen that a collision was imminent, there was no longer time to
lessen the force of the concussion by slackening speed, and the engines ran into each other. The carriages were forced one upon
another far above the height of the telegraph wires, and the ine
ine The German railways are considered, as a rule, remarkably exempt from acoidents, but slow speeds seem to be no preventive.
Was announced at a meeting of the Aberdeen Town Council on Monday, great advantages will accrue to passengers travelling
between London and the North of Scotland. The mail service to between London and the North of Scotland. The mail service to
the North $\begin{aligned} & \text { id } A \text { Aberdeen has been accelerated four hours, and the }\end{aligned}$
London papes London papers will now correspondingly earlier hour. Passengers, paper Elgin, \&c., at a correspondingly earier hour. Passengers, papers, and letters will
reach the count town of Banff at 6.25 a.m., instead of 10.20 as
formerly. In ty onnection with the opening of the new rail way along the Banff and Morayshire coosts simultaneously with the
new mail serviec, an arrangement has been arrived at between the
Highland and Great Northern Rail ways which will envble Highland and Great Northern Railways which will enable pas-
sengers from London and other places to travel with the option of
three form three routes via. Aberdeen to tor Inverness to and the the north, returning
via Dounkeld on the Highland line at the ame price as was formerly
charged for a ticket without the privilege of changing the return charge
route.

NOTES AND MEMORANDA.
In London 2617 birtha, and 1222 deaths were registered during the week ending, July 3rd. The annual death rate per 1000 from
all causes, which had been 10.1 and 14.9 in the two previous weels rose to $15^{\circ} 4$.
LAST week 2437 births and 1258 deaths were registered in London.
Allowing for increase of population, the births were 244 and the deaths 228 below the average numbers in the corrsponding weeks of the last ten years. The annual death-rate, which had been 14.
and $15^{\circ} \cdot 4$ in the two previous weeks, further rose to $15 \cdot 8$ AT a recent meeting of the Stockholm Academy of
paper was read on the new elementary body germanium, of irs combinations, by Profeemsor L. L. Fr. Nillson. The The reesearches
of Professors Nilsson and Petterson, made at the request of
of of Professors Nilsson and Petterson, made at the request of
Prof essor Winkler, the discoverer of germanium, show that his suggestion that germanium might possibly be identical with
Mendelejeff's ekasilicium is quite correct, and in acoordance with the facts.
For the purpose of illustrating a paper read at the Royal
Institution, William Anderson, M. Inst. C.E., showed two similar Institution, Wiliam Anderson, M. Inst. . .E.E., showed two similar He removed one and substituted another in its place made of the mould by a pressure of sixty tons per square inch and allowed to cool under that pressure; the two cylinders balanced showing the specifc gravity to be the same
AT a recent meeting of the Paris Academy of Sciences a paper
was read on the "Commision on Weights and Measures," by M. E.
Grime
 under arrest by the Commission on benair one of these documents it appears that, in consequence of said action, the illustrious names
of Laplace, Delambre, Borda, and others were themselves removed of Laplace, Delambre, Borda, and others were themselves removed
from the Commission on the 3rd Nivose of the second year of the
Republic-Decenher In illustration of the diffusion of gases, Mr. W. Anderson recently gave somegood examples through porous media of inconceiv-
able fineness. When two gases, such as hydrogen separated by a porous medium they immediately begin to pass into each other, and the lighter gas passes through more quickly than
the heavier. He showed a glass tube the upher end of which was closed by a thin slice of cork, the lower end dipped into a basin of water. The tube was filled with hydrogen, which is about 142
times lighter thut times lighter than air; consequently it left the tube through the
cork more quickly than the air could enter in by the same means and the result was a partial vacuum in the tube, and a column of water drawn up, proving that the cells of cork are eminent pervious to gases. The pores in the cell wais
be too minute to permit the passage of liquids.
Is his recent lecture on "Cork,", Mr. W. Anderson said: "In this
strong upright glass tube I have, at the to a piece of india-rubher strong upright glass tube I have, at the top, a piece of india-rubber, Immediately below it a piece of wood, and below that a cork; the buoyancy. The tube is full of water and is connected to a forcepump by means of which I can impose a pressure of over 1000 lb . per square inch. The image of the tube is now thrown on the
soreen and the pressure is being applied. You see at once the cork is beginning to shrink in all directions, and now its volume is so bottom of the it is incapable of floating, and sinks down to the wood does contract a little, but not sufficiently to be visible to you or to cause it to sink. I open a stop-cook and relieve the pressure;
you see that the cork instantly expands, its buoyancy is restored you see that the corr instantly expands, its buoyancy is restored, pressure I can produce the familiar effect so well known in the toy called 'the bottle imps.' It is this singular property which give
to cork its value as a means of closing the mouths of bottles. to cork its value as a means of closing the mouths of bottles. Its
elasticity has not only a very considerable range, but it is very persistent. Thus in the better kind of corks used in bottling the extent to which the corks expand the instant they escape from the bottles. I have measured this expansion, and find it to amount to an increase of volume of 75 per cent., even after the corks have been kept in a state of compression in the bottles for ten years. If
the cork be steeped in hot water, the volume continues to increase till it attains nearly three times that which it occupied in the neck of the bottle,
AT the recent meeting of the American Society of Mechanical Engineers in Chicago, a paper was read by Mr. Wilfred Lewics, of
Philadelphia, on "Experiments on the Transmission of Power by Belting." Among the conclusions reached from these experiments
are the following: That the co-efficient of friction may are the following: That the co-efficient of friction may vary unde
practical working conditions $f r o m ~$
25
per cent. to 100 per cent., that its value depends upon the nature and condition of the leather, the velocity of sliding, temperature and pressure; that an excessive antil the belt finally leaves the pulley; that a belt will seatder, remain upon a pulley when the slip exceeds 20 per cent.; that excessive slipping dries out the leather and leads toward the condition of minimum adhesion; that raw hide has a greater adhesion
than tanned leather, giving a co-efficient of 100 per cent. at the moderate slip of ftt. per minute ; that a velocity of sliding equal
to 01 of the belt speed is not excessive ; that the general use are rather below the average results obtained that the sum of the tensions is not constant but increases with the load to the maximum extent of about 33 per cent. with vertical belts and indefinitely with horizontal belts; that, as the economy of
belt transmission depends principally upon journal friction and slip, it is important to make the belt speed an high as possible
within the limits of 5000 ft . or 6000 ftt per wwist belts shimits of be beort. or 6000 ft . per minete ; that quarter
that $t i t$ is preferable in all cases,
from from considerations of economy in wear on belt and power consumed, to use an intermediate guide pulley, so placed that the belt may carrying pulleys adds to the internal re
tional to the friction of their journals.
Ir has been shown by Lord Rayleigh and others that the
velocity (U) with which a group of waves is propagated in any medium may be calculated by the formula $\mathrm{U}=\mathrm{V}\left(1-\frac{d}{d \log \cdot \mathrm{~V}}\right)$ where V is the wave velocity, and λ the wave length. It has also
been observed by Lord Rayleigh that the fronts of the wave reflected by the revolving mirror in Foucault's experiment are nciined one to another, and in consequence
wave planes of similar phase. When $a V / a \lambda$ is posit usual case-the direction of rotation is such that the following an a contemporary on this subject, Mr. M. J. Willard Gibbs calls
to wave that if we fix our attention remains a pointanged, or in other words,
toving with the group pass through that point, have all the same orientation. This interval of time betwo the two formulxe quoted above. For the of similar phase at the moving point is evidently $\lambda /(\mathrm{V}-\mathrm{U})$,
which reduces by the first formula to $d \lambda / d \mathrm{~V}$. In this time the second of the wave planes, having the angular velocity ad $V / d \lambda$,
will rotate through an angle a towards the position of the first
wave plane therefore in is thasing angle between the tho planing. The seoond
same orientation which the first had simp lifies the theory of Foucault's experimenterate and makeas it
evident, he thinks, that the results of all such experiments depent upon the value of U, and not upon that of $V_{\text {, }}$

MISCELLANEA.
IT is reported that Messrs. Caird and Co., of Greenock, expect to 15,000 ton order from the Peninsular and Oriental Company fo 15,000 tons of new shipping ThE Atlantic Giant Powder Works, near Brakesville, New
Jersey, exploded a few days ago, destroving the whole buildings and producing a conouso, den whicoing was felt whenenty miles
away. Ten persons were killed and twelve others were injured. THE Paris Municipality have resolved, by 54 votes to , 3, that
the foreigners engaged in constructing the Metropolitan Railway hould be limited to 10 per cent. of the number epployed; and, by
34 votes to 10 , that the machinery should be exclusively French. THE progress report for 1885 of the Railways of New South
Wales shows a considerable falling off in the net return capital expended. The decrease, as compared with 1884, is on 83 per
cent. The total mileage opened for traffic at the close of 1885% was
chas ent. The
4732 miles.
ThE United States Congress will, it is believed, vote $3,000,000$ dols. this session towarrs the enlargement of the American Navy
by the building of two armoured ships, of 6000 tons each, three
cruisers of from tovo to 5000 tons cruisers of from 35
one torpedo cruiser.
A GERINAN zinc combination has been formed, and will endeavour
to enforce reduction in the production of zinc. The zine industry has for a long time suffered from detion op dincession- though not ilike the ron and steel industries-but it is supposed that it will now, in all A merting of the Sout
sioners was held in Wolverhampton . lution was passed calling upon all the mineowners sto makea a return
of the minerals raised by them in the half-year just ended for the pure litto a suraco drainage rate.
A prifrry litlle suburban village named Wayne, on the main line of the Pennsylvania Railroad, will, it is reported, after next week,
be lighted with electric lamps. An electric light plant has been be lighted with electric lamps. An electric light plant has been
constructed at a cost of $£ 5000$, whioh will supply all the houses
with incandescent lamps and furnish the streets as well with with incandescent lamps and furnish the streets as well with IT appears from a notitication in the official Pelin Gazette that
the Chinese Commissioners allow that the dismissal of the foreign别 engineers from the Keelung coal mines-a step that was taken
from motives of economy " on account of the largeness of the salaries and miscellaneous expenses" -was a mistake, the subse. quent inefficiency of the working having caused a loss greater than the amount saved by dispensing with foreign assistance.
THE Pioneer states that the explorations for coal conducted by
Dr. Warth in the salt range in the Puniaub have proved so satis Dr. Warth in the salt range in the Punjaub have proved so soatis-
factory, that the Government is now arranging for the practical factory, that the Government is now arranging for the practical
working of the seams. Dr. Warth estimates that over one million tons are underlying the Plateau at Dundote. The coal is not o the first quality. It contains iron pyrites and is very friable; but
it believed that it will be very useful for the North-Western

EFForts are to be made to deepen the Sandy Hook entrance to
New York harbour, so as to afford a channel 3oft. deep at low New York harbour, so as to afford a channel 3oft. deep at low
water, enabling the largest steamers to cross the bar at all states of the tide. The Senate has voted $1,000,000$ dols, towards the years to comple. A series of permanent improvements is contemmprovements in the Hell Gate entrance.
EvgiNerRs pronounce the project of tapping the Niagara river by means of a canal and bringing the water to Lookport to b world are there such natural advantages for the creation of a gigantic water power, and that it can be delivered at Lockenport to
the extent of 300,000 -horse power, if so much shall be wanted, at a minimum of expense. Lakee Frii a and all the great upper lakes
would be the millpond for this power-Niagara river the head race and Lake Ontario its tail race.
AT the monthly Board meeting of the directors of the Suez authorisation given at the beginning of the year for vessels pro. vided with the proper electric lights to continue their passage
through the Suez Canal by night has been productive of very good results, as the traffic has thus been sensibly relieved. The postal steamers of the Peninsular and Oriental Company, which hav system of electric lighting, now pass through the can in getting thrours, whereas the average time spent by these vessel
was thirty hours the navigation was permitted was thirty hours.
Mr. DAvid VAN Nostranp, the well-known seientific and mili
tary publisher of Murray and Warren Streets New York tary publisher of Murray and Warren Streets, New York, died o
June 14 th, at his residence 23 , West Twentieth June 14th, at his residence, 23 , West Twentieth-street. He came
of an old New York family, and was born in 1811. He was con nected nearly all his life with the book trade, and enjoyed the
acquaintance and friendship of a great many leading scholars and writers, especially those engaged in scientific work. His establish.
ment has long been a resort of naval and military. men. Mr. Van ment has long been a resort of naval and military men. Miear and
Nostrand was a prominent member of the Union League and Century Clubs, and of the St. Nicholas and Holland Societies. He was twie
vives him.
A TRIAL recently took place of the fixed steam fire engine con
structed by Messrs, India Exhibition. TTe buildings are protected by upwards o
seventy hydrants on the water company's main, the presuro in which, hy sever, is insulficient for to 10 lb . per square inch, The engine pumps directly into the
main, producing a pressure of 100 lb . per square inch. The Inven tions Exhibition was protected by portable fire engines, but thi year General Festing preferred to have the pump connected to
the main, though, in case of a burst in the pipe delivery outle are provided on the pump for the attachment of a hose. The
engine is of the Greenwich type, and capable of delivering 700 to engine is of the Greenw.
800 gallons per minute.
IT is said that Messrs. Siemens Brothers have been manufac It had been remented before the glasses are filled with hydrogen glass wall had been rendered brown could be oleaned by filling hem with hydrogen and then exposing both the carbon filamen
nd glass to a high temperature. These lamps are said never to becone brown at all, anperat to lare. last logeser. TThey can be used with
bigher electro-motive forces, and consequently under cond higher electro-motive forces, and consequently under conditions
considerably more favourable to economy, without diminishing, their wear. It is thought that many evils that are found in the vacuou in an atmosphere of a gas exerting considerable pressure, but not acting chemically upon it.
CapranN W. J. L. Wharrox, hydrographer to the Admiralty,
has recently issued his report for 1885 . It gives a detailed account has recently issued his report for 1885. It gives a detailed accoun
of the work performed. Nine vessels were engaged abroad. In
onese ships seventy-one officers and 598 men were occupied in the work. The paper states in detail the operations performed on the work. one paper statesindetail at Newfoundland, and the Gulf
ooasts of the Unite Kingom,
and River of St. Lawrence, by the steamer Gulnare; in the West

Red sea, Wetta Passage, and
at Malta, in the Red Sea, at Diego Garcia, and on the coast of
China, by H.M.S. Rambler, in the Eastern Archipelago by
H.N.S. Flying Fish, at Queensland, by the Colonial gunboat
Paluma ; on the north-west coast of Australia, by the Meda ; sid

INLAND NAVIGATION ON THE CONTINENT,
(For description see page 33.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

** With this week's number is issuued as a Supplement, a TwoPage Engraving of the New Battersea Bridge, Every yopy as
issuced by the Publisher contains this Supplement, and subseribers are requested to notify the fact should they not receive it.

CONTENTS.

The Enoineer, July 9th, 1886.

Embosse
RADIps
R
RINL

RAILWAY MATTRBS
NOTTS A ND MEIORANDA

 Privatrusims in Pariniment

Aatridin Notes Corpates
The Patent Jour

TO OORRESPONDENTS.

Registered Telegraphic Address-", ENGINEER NEWSPAPER,
*** All letters intended for insertion in The Evarivern, or conof the writer, not necessarily for publication, but as a proof of
jood faith. No notice whatever will be taken of anonymous good faith. No
communications.

* We cannot undertake to return drawings or ma
** In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all cases, be accompanied by a large envelope legibly directed by the writer to himself, and bearing a 1 d. postage stamp, in order that
ansuers received by us may be forvoarded to their destination. answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply with these instructions.

J. S. Asp G. B. - No.

INJECTORS AT SEA.

SIR, - I shall be much obliged to any reader who has had experience
with injectors for feeding marine boilers, if they will tell me whether
 draming as they do from the eas, in place of a donkey. There must be
some objection of this kind to their use, or else they would be found at
sea.

${ }_{\text {Reab }}^{\text {Ryde, July }} 7$ th.

practical regularity, but regularity cannot be guaranted in any s.
All except tueekly advertisenents
are taken subject to this conditition. Advertisements cannot be Inserted unless Deilvered bofore $81 \times$

THE ENGINEER.

JULY 9, 1886.

higit-sperd marine engines,

A very excellent paper on high-speed steam engines was read by Messrs. Marshall and Weighton, on the 21st of April, before the North-East Coast Institution of
Engineers and Shipbuilders. All the papers read before Engineers and Shipbuilders. All the papers read before
this Society hitherto, with perhaps a partial exception this Society hitherto, with perhaps a partial exception
here and there, have been extremely practical and full of valuable information, and the paper in question is no exception to the general rule. Its authors have written as practical men for practical men, and the result has been quite successful. The paper does not profess to deal with that familiar class of little engines which run at a tremendous number of revolutions, but with marine
engines of very considerable dimensions, in which a speed engines of very considerabie dimensions, in as abnormally
of 130 revolutions per minute is regarded high. Its authors advocale the extension to the mercantile greatly reduced weight in the Navy. But they do not greatly reduced weight in the Navy. Aespect in merchant
propose to push matters as far in this respec as in war vessels. Messrs. Marshall and Weighton take the weight of propelling machinery, including boilers, water, and all fittings, at per indicated horse-power; in
the mercantile marine, 480 lb .; in the Royal Navy, 360 lb ; in special engines for light draught war vessels, 280 lb .; in in special engines for light draught war vessels, 280 lb .; in
the Polyphemus, 205 lb ; locomotives, 140 lb ; torpedo the Polyphemus, 205 lb ;
boats, 60 lb .; ordinary motives, $14 \mathrm{boilers}$, including water, 196 lb .; locomotive boilers, with water, 60 lb .; and they then proceed to consider the conditions, which are very complex, which determine the ratio of $\frac{\text { power }}{\text { weight }}$, or $\frac{\mathrm{P}}{\mathrm{W}}$, and a table is given showing how the weight of machinery is affected by the number of times the steam is expanded. Thus, for example, let the number of expansions be 0 , the piston area 1, the steam used 1 and the total
equal 100 , then, with a sevenfold expansion, the equal 100 , then, with a sevenfold expansion, the
area will be $2 \cdot 47$, the weight of steam u be 3528 , and the total weight, including wat ilers, will be 48.17 . If we augment the expansion to 12 , then the consumption of steam will be this it will be seen that as we augment initial pressure and ratios of expansion the whole weight of the propelling machinery must increase. Furthermore, we may point out that the consumption of steam stated here is deduced from calculation, and there is no doubt but that in practice it will be higher than the figures given for the larger
measures of expansion, because the cooling area of metal in the engine is augmented, and so are the differences in the maximum and minimum ranges of temperature. But more steam would mean a larger boiler, and the weight of expansions more rapidly than Mr. Marshall has assumed. One peculiarity of the use of very high pressures is that slide valves cannot be used. The power required to work become leaky Consequently piston valves are employed of necessity and these are of very large dimensions and great weight. If the number of revolutions were small, this would not matter much; but at high speeds just the same difficulties are encountered in dealing with these piston valves as those which crop up with the pistons and other reciprocating parts. Momentum and inertia come into play. In the case of the main pistons, these can be com-
batted by compression and lead, as ably set forth by Mr. Arthur Rigg in a recent impression of this journal. Messrs. Marshall and Weighton are the first to deal with the problems presented by the inertia and momentum of piston valves, and point out very properly that these do not admit of being fought by compression, for sufficiently obvious reasons; and they give diagrams of crank-shatt strains and moments, obtained by experiment and calcula-
tion with piston valves weighing respectively 500 lb and tion with piston valves weighing respectively 500 lb . an
1500 lb ., and they deduce the following formulæ-

$$
\mathrm{S}=\frac{\mathrm{R}^{2} \sqrt{ } \overline{\mathrm{~W}}}{50} \text { and } \mathrm{S}_{1}=\frac{\mathrm{R} \sqrt{\mathrm{~W}}}{2 \cdot 54}
$$

where $\mathrm{S}=$ maximum resistance of one valve in pounds at pounds during the whole stroke, $R=$ revolutions per minute, and $\mathrm{W}=$ weight of valve and rod in pounds. Thus it will be seen that the stresses augment as the square of the number of revolutions, and as the square roots of the weights. Consequenty, at comparatively moderate speeds, it would ve the strains to which it would valve gear whi
be submitted.
Reductions in the weight of machinery which will exert a given pressure, including in the word " machinery" the goes without saying," writes Mr. Marshall, "that forced draught is capable of very largely augmenting the power without adding very much to the weight. Indeed, the enormous increase of the ratio $\frac{\mathrm{P}}{\mathrm{W}}$ which has taken place of late years has been due almost entirely to the application of this principle." And he goes on to show how, by the aid of a plenum of 2 in. to $2 \frac{1}{2} \mathrm{in}$. in a stokehole, the in a noteworthy fact, that neither in this paper itself nor in the discussion which followed it, was much consideration given to very important points as far as the mercantile
marine is concerned. In 1881 Mr. Marshall virtually claimed that each ton of dead weight saved in a steamer represented a profit of $£ 10$ per annum for the steamer ;
and of course, if it could be shown that this was advantages, the use of liat engines and boilers and forced draught would be practically forced on the steamship owner. But however true it might be that $£ 10$ per ton per annum could be saved by reducing weight in 1881 when freights were high, it does not follow that $£ 10$ could be saved now, or anything like $£ 10$. But beyond this, it has to be borne in mind that light engines cost a great
deal more than heavy engines for the same power. Thus, deal more than heavy engines for the same power. Thus,
instead of the cast iron condensers used in the mercantile marine now, condensers of rolled sheet brass or gun-metal would have to be employed. Again, the use of forced combustion in boilers entails very serious difficulties. Experience has demonstrated that there is not now,
even in her Majesty's Navy, a single ship which even in her Majesty's Navy, a single ship which
can be run at full speed with forced draught and closed stokeholes for more than about four hours; and that it could be used continuously for a voyage, say, across the Atlantic, much less during a voyage to india or Australia, is simply preposterous. We do not, be it understood, refer here to the employment of what we may term moderate forced draught-say, something equivalent to half an inch of water; but this is height of a chimney and making better pye of wind the height of a chimney and making better use of windsails. waste of fuel Maught, propell waste of fuel. Hesss. Marshall velgh combat this view, and give the following figures, taken from a paper by 2.48 lb , the Seout 2.6 lb . 2.21 b the $2 \cdot 16$ and the Careline 2.541 ber . but Mr. Marshall has not given the consumption when working without fored drangh which is considerably less, and he does give a table which shows that the evap ration with a locomotive type of boiler was extremely small. Thus with an air pressure of 3.54 in , the totsl wely evaporated was only 6.96 lb , per pound of coal from and at 212 deg . The best Nixon's naviration, with 2 in. of water pressure, only evaporated 8.56 lb ., and it could not well be otherwise, seeing that the products of combustion escaped at as much as 1200 deg. It may be said that if the boiler was larger then the greater. No doubt it would, but the weight of the boiler would be augmented, and the very advantage which forced draught is intended to confer would be lost. The whole weight to be carried includes engine, water, and coal, and if we reduce the boiler we augment the coal, and obviously this is false economy in the highest degree. The entire question of light machinery in the mercantile marine is very complicated. The present cost of such machinery must be very high, and the result arrived at in the course of the second day's discussion, said, at the same was, conld high-speed engines be made weighing, with boilers, "ay, 300 tous? If they altered that into a high-speed engus, they would perhaps save
100 tons. Was it worth whie, ior the sake of asving that amount of weight, to put the higs apeed cugines into a
vessel instead of the other? He could sitar the design of an ordinary vessel carrying, say, 4000 tons, to enable her to take an additional 100 tons, for about $f 300$, by slightly increasing the dimensions, while he should fancy that the
high-speed engines would cost ten times that amount in excess of ordinary engines." This is excellent common sense. In speaking or writing about marine ens gines, men continually forget, not only that the whole question is one of money, but that the money can be spent in various ways to secure a given object.
The high-speed engine is a much more complex The high-speed engine is a much more complex and many-jointed machine than the ordinary compoti engine. If it is to be properly looked after and kept in order, more engineers must be carried than are carried now. The average e.gne-rim the doll chief, second, and who takes the chiers watch. The ship rakes a on of, say, eighteen days across the the the the the packed; the connecting rods taken down, and both big and little ends let together; stern tube seen to; valves examined, and a dozen other things to be done; and the engineer is happy if he is allowed elhree days to gang hr at the end of his paper. One clance at them is enough to show that no engines of the class cuuld be properly looked after by noft of three engineers. The extra cost of afterking lubrication alone would be a serious item in these hard times, and if we add the additional cost of fuel, and the rapid wear and tear of tubes and uptakes to the other expenses, it will be seen that the advantages derived from a saving of weight are illusory. No true and those in the mercantile marine. It is just as logical to say that what is good in the one service must also be good in the other, as it is to assert that because a locomotive does its work admirably on a railroad, an engine modelled on similar lines must be just the thing for marine purposes.
It is curious that in all these discussions so little is said the power and coal wasted by friction and badymade propellers. It has long been known that of every more than 450 to 500 are utilised in driving her. Here is an enormous margin which no one attacks, and yet events occur almost daily which show that something, much or
little might be done. Thus, for example, Mr. Nichol, little, might be done. Thus, for example, Mr. Nichol, which the speakers, in the discussion related an expere to go at 14 knots, with fifty-five revolutions per minute. The propeller was designed, and rejected as being too small by the superintendent engineer to the crmpany for which the ship was built. On the trial trip the ship would only make forty-nine revolutions per minute, when the bearings heate, The cause
unsatisfactory voyage as to speed was made.
was sought for and found in the undue proportions of the propeller. 10 in . were cut off the top of each blade, and ing, and with the most satisfactory results. In the case again, of the s.s. John O. Scott, the propeller was very heavy and the consumption 15 tons a day. The propeller was reduced in diameter and area, and the ship then went at the same speed, making ten revolutions more per
minute, and the consumption fell to 13 tons a day. There is, our readers may rest assured, no special isolated virtue
resident in expansion or hirh speed, or lightness, or forced resident in expansion, or high speed, or lightness, or forced
draught. Each of these things has its advantages and disadvantages, and the skill of the engineer is shown not by advocating any one of these as a panacea for all the ills shipowners are heirs to, but by so combining the best
features of all that a satisfactory result may be reached; features of all that a satisfactory result may be reached;
and the engineer ought to know that the value of the and the engineer ought to know that the value of the
result will always be estimated by the shipowners in result will always be estimated by the shipowners in
terms of pounds, shillings, and pence, and on no other basis.

ENGINEERING ACCIDENTS

Exaineers have very largely contributed to the happiness of mankind, but it must be admitted that they have much misery and suffering, both of mind and body. In the seventeenth century no one was killed by boiler explosions, and Mr. Huskisson was the first man slain by a
railway accident properly so called. Some thousands of railway accident properly so called. Some thousands of
individuals have been killed, mangled, or maimed by machinery which would have had no existence but for the engineer; and it might be argued with some show of
reason that the members of our profession have not been as careful to obviate disasters as they have been to attain the objects they have had in view. The answer to such a line of attack is, of course, that when mischief is done, it
is the result of accident; but it is worth while to consider whether this is true or not-whether disasters following on the labours of the engineer are or not unavoidable, and whether there really is such a thing as an engineering "accident" means. If we turn to the dictionary, we find "Accident, an unexpected event, chance." In other words, it means the occurrence of something unfore-
seen--something that is not and cannot be anticipated; something which, although it may be brought about by man's agency, has not been purposely brought about.
There are, however, two sides to this question. Many so-called accidents are events which might have been
anticipated and avoided, while others could not possibl have been anticipated. The latter are howd eossibly tively small in number; and a very considerable proportion sense of the word accidents at all. Take for example the Stepney boiler explosion, and the catastrophe which
happened last week near Portadown, in ireland. In the happened last week near Portadown, in ireland. In the
first case the boiler would not have dxploded if the owner first case the boiler would not have exploded if the owner
had ascertained by proper evanrination that the shell was extensively corroded. Tia the latter, so far as can be gathered from the evizence at present available, the train ran off the rails, oecause the sleepers lay loose on a thin
bed of ball 2 st, and were not packed or secured in any way. These catastrophes obviously resulted because the indis wensable conditions of safety were not present. It
may be said that ignorance lay at the root of the matter in both cases. Neither the owner of the boiler nor th gangers who repaired the road, were aware of the con-
sequences which must ensue on the line of action which they adopted. This may be quite true. Indeed, we will go further and admit that nearly all the so-called accidents result from ignorance; but this will not help us much to
prevent them, because the ignorance which leads to an previent them, because the ignorance which leads to an very great number of accidents is strictly preventible, while others are nothing of the kind; and it is to the
former that we desire to direct attention. When a ship is caught in a gale of wind and is wrecked on a lee shore that may be regarded as an accident. If a horse takes fright at a heap of stones by the roadside, runs away
and upsets the carriage behind him, killing its occupants, navoidable accident accidents of this kind are not engineering accidents, and that in one word there ought to be hardly any engineering accidents. Every possible contingency can either be guarded against now, or means can be devised to guard greater exercise of skill care, more forethought, and been brought into the service, would almost eradicate engineering accidents from the world.
A great deal has already been done in this direction deaths and maimings occurred every some years ago many of railway tires. No amount of examination could detect idden flaws buried in the substance of the metal. But Mr. Mansel, and other engineers working with the same object, succeeded in devising systems of making and
fixing tires which rendered such "accidents" impossible The old tire depended for its security on its continuity If the tire broke in any place it left the wheel, and the
carriage left the rail, and there was a smash modern tire does not depend on continuity for its efficiency places, and still it will do its duty right through in severa Derailments occur now and then through the breakel engines which will not be derailed even if the crank axl does break. This end has been very nearly attained even now; for although a large number of crank axles break every year, few passengers are killed or wounded by their
failure. The introduction of the block system and efticient continuous brakes have in like manner done a great deal to make rail way travelling safer than it was in times past. It almost everything with which the engineer has to do, and classed as strictly preventible. The engineer deals with
the forces, so called, of nature, but he does not deal with any uncontrollable force. He could not deal with an uncontrollable force. To do that is left for such geniuses as
Mr. Keely. It is quite true that the forces of nature are stupendous; but man trat the anything with them in the stupendous phase. He can only take a very little bit of each, and use it just as far as he can control it-no more. The energy which is, in a sense, stored up in a
great powder magazine is no doubt very great; but if a man can only get a thimble full out very great; bat if zine he cannot 1 not be forgotten that the force does not wear out change, while the meang by which it is controlled does and the escape of natural forces from the condition of servitude into which the engineer has brought them but to the wearing out of his fetters. A steam boiler can be made when new to resist a given powers of doing mischief are square inch-and its nothing to the nothing to the purpose that the power of steam is in the well made, and in cood order, the force of so much steam as the boi, and good wher the fore of so musean trol. If, however, the boiler is wered to wate awa become weak, then an explosion will take place; but th explosion is not due to the irresistible force the, but oxplos persons think bit to the circumbe tham, originally strong enough, has become too weak for the work it had to perform.
From what we have said it should be clear that so-called ngineering acidents result not for orces of nature, such as that which perate when a shi is driven ashore, but from neglect in some shape or form either to maintain in their integrity the power of th gency by which we control so much of a natural force we have been able to utilise, or to provide means by whic the loss of integrity of the controlling a gency may berendered nnocuous. The first is accuratel y illustrated by asteam boile When that boiler is at work oot-tons of energy locked up in it, which, if the shel piates or flues give way, will be let loose in a moment to fearful mischief. The strength of the boiler-plates fie agency by which we control the force of the steam here is an explosion; but this explosion is not an accident but the result of negligence, ignorance, or parsimony Mansel's tire is an apt illustration of the second proposition. The agency with which we control centrifugal and other forces operating on and in the tire is its strength It is possible that we may be deceived as to this, and therefore we bring in a second contingent agent to combat centrifugal force if the tire should fail because of some weakness which we cannot discern. If there were no possible means either of making sure that all tires were derailment of their failure would not result in the that would be strictly an accident. Happily it ma arts of machines is rapidly growing less and less mproved methods of construction, better materials design, and workmanship, all tend day by day to eliminate rue accidents, and induce sensible, competent engineers to regard with more and more doubt theories intended to relegate catastrophes to the category of unpreventible. In nine cases out of ten it will be found that the so-called been , instead of being the result of chance, has really ccult about them by simple agencies having nothing men are killed, we may rest assured that it did not break by "accident," but just because it was too weak for its ork; and that had proper precautions been observed it would not have been too weak. The number of railway scidents which occur is very small. Almost the only one ooth lines being fouled by the breakdown of a train on ne line, another proceeding in the opposite direction, an lose by whe he road. We do not suppose that a period will come When no one will be killed, or even injured, by the prouctions of engineers; but we venture to hope that the than it is now; and we are supported in this belief by the han it is now; and we are supported in this belief by the that desirable goal.

Spanish pig tron

SpAIN, as a producer of pig iron on any scale sufficient to
allow of her selling to other countries, is so comparatively young that the references to her in Sir I. Lowthian Bell's recent
work on "Iron and Steel" are few. But some facts transpiring his year show that Spanish pir iron. is becoming our rampeting nibe markets of the world. There is now being shipped from Silbao pig iron to the amount of from 10,000 to 15,000 ton Spanish ports-a part to the United States, and the remainder doubt. found out that it is better for them to smelt the ore in Spain and sell in the shape of crude iron, than to sell the ore to be paid at the Spanish smelting works are very small in com parison with those paid at British blast furnaces. This was to because the new industry of iron smelting had its rate of wages
bece regulated, not by that known in other countries in the industry, Sir I. L. Bell tells industries in the locality of the works where the "head keeper of the furnaces was paid 4s. 4d
for his day's work, and assistants and slagmen from
2s. 2d. to 2s. 10d." There were many women at work also and the average earnings of the workpeople, all told, were With cheap labour, and with abundant rate paid in England. xpected that the Spanish crude iron trade will grow even with coke mainly from the north-east of England; and thus it is that se is only a competitor with us under unequal circumstances. Cleetand or Wales import her ores if they want to make hema
tite iron; but she needs to import our coke if she wishes to melt her own ores; and the freight of the coke is higher than that of and that very naturally, to utilise her ores on her own soil, though under the great deficiency in regard to fuel to which we have referred; and it is probable that the United States and the will be the countries in which we shall find her opposition former because the latter because of its proximity, and the in the habit of drawi iron shape of ore. Thus we shall find that Spain will increase as a nation smelting iron and exporting it, and that increase may be
in part at the expense of our smelters, though the loss will be counterbalanced in part by the gain that the coke makers here will have.
the steel-rail trade.
IT is to steelmasters matter of importance that there are just now reports of large orders to be placed in the rail and sleeper line, which should afford improvement upon the present condition. The news from Pekin concerning the last postpone-
ment of the Chinese railway construction business is not ment of the Chinese railway construction business is not
gratifying. Yet considering the determined attempts which capitalists and steelmasters in other parts of the world, particu arly Germany and America, were making to get the work, and bearing in mind the low rates at which the continentals are now becoming accustomed to accept foreign contracts, it was not The intelligenter of concern as otherwise would be the cas tion vouchsafed by the Marquis Tseng. This distinguished member of the Chinese Empire, speaking in Lancashire, a days ago, lent ho countenance to one of the statements Pekin that the building of the line would be delayed until the Chinese were themselves in a position to manufacture the seeks to impress upon English manufacturers and capitalist that the delay is mainly due to the prejudice which still exist in the Celestial Empire against this development of Wester deas. He clearly enoug sees that the introduction of railway into China, when such an event takes place, will produce an points out that though the Imperial Go he necessity of taking such a step, it would be a mistake to think that any consicerable extent of railway is likely to be aid be deprived of the Chie. W, international schemes under development that should afford their mills good work in the near future. It is greatly to be hope evidences in this direction.

On June 22nd last, at St. Maria Bay, Spezia, experiments with the Grison shield were continued. A French steel projectile was fired at this shield, which had already received three
blows from Krupp steel projectiles fired from the 100-ton B.L blows from Krupp steel projectiles, fired ros the lo - oon B.L German, i.e., the projectile broke up. The shield is thought to be capa
shortly

PRIVATE BILL LEGISLATION

Or the total number of Private Bills introduced for the late Session, 97 have passed through all the stages and received the been rejecte with Standing Orders; and 53 have been put off for three months, or suspended under the new Order, under which the may be taken up again in the next Session, at the point a The measures which have the Ron Accrington, Clitheroe, and Sabden Railway; Alliance British and Foreign Life and Fire Assurance Company; Ardrossan Improvement; Ballymena and Portglenone, Ballymena and Larne Railways, and Ballymena and Ahoghill Tramways
Barry Dock and Railways; Beaconsfield, Uxbridge, and Harrow Railway (Abandonment); Bexley Heath Railway Bray and Enniskerry Light Railway ; Bridlington Gas ; Brighto nrighke Railway; Brighton Corporation (Loans, \&c.)
Brighton, Rottingdean, and Newhaven Direct Railway'; Bristol Corporation (Docks); Bristol (Totterdown Bridge) ; Brooke' Divorce; Burgess Hill Water; Bute Docks (Cardiff) Further Powers ; Bute Docks (Cardiff) Transfer; Caledonian Railway Cambridge University and Town Water ; Cleator and Working Company Dore and Chinley Rail way; East and West India Dock Company ; East and West haven Railway; East London Water; Edinburgh University
Uourn gate, and Hythe Tramways; Forth Bridge Railway gate, and Hythe Iramways; Forth Bridge Railway
Girvan and Portpatrick Junction Railway; Glasgow and South
Western Railway; Glasgow Bridges, \&c. Great Northern Rail wey (Ireland); Great Western Railway.; Guildford Corporation Harrow and Stanmore Railway; Highgate and Kilburn Open Dock; Kirkcaldy and Dysart Water; Lambeth Water ; Lanark shire and Ayrshire Railway; Leamington Corporation; Lee Rive Puritication; Leeds Hydraulic Power Company; Listowe
and Bally United Gas; London and sou Dover Railway; London, Tilbury and Southend Railway; Lord Walsingham's Estate; Loughborough Local Board; Manchester Ship Canal; Marple Local Board Gas; Metropostan Railway of Ireland; Midland Railway; Morecambe Tramways Mountain Ash Local Board (Gas, Water, \&c.); Newport (Monurban Railway; Nuneaton Gas; Oldham Corporation; Oswestry and Llangynog Railway; Pewsey and Salisbury Rail way
Rhondda and Swansea Bay Railway; Ripon Corporation. Rowley Regis and Blackheath Gas; Scinde, Punjaub, and Delhi Rail way Company; Scottish Union and National Insurance Com pany; Shrewsbury Hospital, Sheffield ; Sidmouth Water; Slig "West of Ireland Steam Tramways (abandonment of Sligo and Bundoran Tramway)"; Solihull Gas; Southampton Docks wouth Hampshire Rall way and Pier; ; Souttil Shields Ganshatl Water; Stapenhill Bridge Swansea Har
wark bour; Taff Vale Railway; Tendring Hundred Water; Torquay Harbour and District; Tyne Improvement; Uxbridge and
Rickmansworth Railway; Wallasey Tramways Wet Riding
(Police Superannuation); Westropp's Divorce; Wrexhamu Gas

The Bills withdrawn or lapsed were these :-Argyll Ship
Canal ; Bexhill Direct Railway; Bank of South Australia; Bedford and Peterborough Railway; Birmingham Central Tram ways; Chesterfield, Hasland, North Birmingham Tramways and Omnibus Company; Wingfield and District Tram ways; Charter-
house ; Cleator and Workington Junction Railway; Cranbrook house; Cleator and Workington Junction Railway; Cranbrook
and Paddock Wood Railway; Easton and Church Hope Railway; Eastern and Midlands Railway; Gravesend and Northfleet Docks and Railways ; Horse Guards Avenue ; Lancashire County
Justices; Liverpool, Southport, and Preston Junction Railway London, Chatham, and Dover and London, Brighton, and South Coast Rail way Companies; ; Lloyd's; Metropolitan StreetImproveEastern Railway; Oulton Church; Pontypridd, Caerphilly, and Newport Railway ; Peabody Trust; South-Eastern Railway;
South Kensington and Marble Arch Subways; Stratford-uponAvon, Towcester, and Midland Junction Railway ; Swansea Bridges; Tees Conservancy; West London Electric Lighting;
Whitehaven Harbour and Docks. Whitehaven Harbour and Dock
The schemes rejected as not proven, or for non-compliance with the Sanding Orders, were:-The Felixstowe; Ipswich, and
Midand Railway; Felixstowe Rail way and Docks; Liverpool and
Wider Midland Railway; Felixstowe Rail way and Docks; Liverpool and
Birkenhead Subway; Leicester Corporation Water; Leicester Extension; Lincolnshire Marshes and East Coast Railway; South
Maplethorpe and Willoughby Railway; Skegness and St. Leonard's Tramway
Following the precedent established in 1880, Parliament passed a special order suspending, for resumption in the next Session,
the following Bills which had reached various stages short of third reading in both Houses :-Ardrossan Harbour, Barnet District Gas and Water, Barry and Cadoxton Gas and Water,
Belfast Main Drainage, Bridgewater Railway, Carlisle Corporation, Chatham and Brompton Tramways ; Exeter, Teign Yation, Chatham and Brompton Tramways; Exeter, Peign and South Junction Railway; Hampstead Heath Enargergent, Hillhead and Kelvinside (Annexation to Glasgow), Ionian Bank,
Kensington Vestry, Kingstown and Kingsbridge Junction RailKensington Vestry, Kingstown and Kingsbridge Junction Rail-
way, Leeds Compressed Air Power Company, London Street way, Leeds Compressed Air Power Company, London Street
Tramways Extensions, Lynton Railway; Manchester, Bury, Rochdale, and Oldham Steam Tramways; Manchester, Sheffield, and Lincolnshire Railway; Mersey Railway, Metropolitan Rail-
way, Midland and South-Western Junction Railway, Midland wa, South-Wentern Junction Rail way (No. 2), Moore-street
and
Market and North Dublin Cill Marke and North Dublin City Improvement, North London Tramways, North Metropolitan Tramways, North Pembroke-
shire and Fishguard Railway, Ormskirk Railway; Plymouth, Devonport, and District Tramways ; Portsmouth and Hayling Railway, Rhymney Railway, River Suck Drainage, Rotherham nnd Bawtry Railway (Extension of Time), Salford Corporation;
Seacombe, Hoylake, and Deeside Railway, Southend Local Board, Warehousemen and Clerks' Schools.

INLAND NAVIGATION

Cavals, so long relegated to the background, appear now in a fair way of coming to the front again, additional interest having been lent to the subject by the passing of mission to pay interestout of capital. At a congress on inland navigation, held last summer in Brussels, the Belgian Minister of Agriculture, Industry, and Public Works, publiced that canals had been too long neglected, and that public attention was now being turned to them, not with immense e tuosity which, fifty years ago, created an augured well for their future. In a paper on the eventual prospects of the canal, M. Van Drunen, one of the secretaries of the congress, and engineer to the Société Générale des Chemins de fer Economiques, came to the conclusion that the true transport arrangements of a country should include both railways and canals, each taking its share of the traffic according to its aptitude, to the great advantage
of trade and manufacture. The canal would not take from the railway either passengers or goods sent by grande vitesse in small quantities, while the water transports
would comprise substances forwarded in large quantities would comprise substances forwarded in large quantities
at low tariffs, and on which the profit is insignificant. The at low tariffs, and on which the profit is insignificant. The
canal would thus free the railway from a clog upon its canal would thus free the railway from a clog upon its
action, and enable it the better to organise its fast passenger service to its own profit and the public advantage.
Reduction in the Reduction in the cost of transport is the remedy
suggested for the present stagnation in trade, it being suggested for the present stagnation in trade, it being
indispensable that the transport of raw materials be cheapened both for industry and agriculture. Ship
canals only enable the capital of a conntry canals only enable the capital of a country to engage
in commercial operations, because capital is not so easily displaced for commerce as it is for industry. A by a few ship canals of sufficient depth, where the probable traffic warranted the outlay.
The economical side of the question was well brought out by Mr. Daniel Adamson, who energetically pleaded the cause of the Manchester Ship Canal, and others in a similar
case. Cotton imported from India to London cost less for ship transit, over 4000 miles, than by railway from London to Manchester, a distance of 200 miles; and manufactured goods, sent by through rate from Manchester to Bombay,
paid 12 s . 6 d . for the 40 miles by rail to Liverpool, and only 10s. for the remaining 4000 miles. Water carriage was the carriage of the future for heavy and not necessarily fast
traffic ; and the legitimate province of the railways, with their handmaids the telegraph and telephone was for quick speed and light weight. The railways should be content to carry passengers, 14 to the ton, at 14d. per mile, rather including the loading and unloading. Mr. E. Leader Williams, ,.E., engineer for the Manchester. Ship Canal, wished it to be put on record that it was he who first
suggested the idea of lifting vessels vertically by hydrauli suggested the idea of lifting vessels vertically by hydraulic
power, having argued that, if there lad beenno difficulty with a vertical, there need be none with a horizontal water joint. The late Mr. Mulvavey, firmerimCommi ioner for Public sea as far into the sea
the Antwerp delegate cormplingived lie English for carry-
ing out public works by privien enterprise instead of
courting the furope of Goverment.
Three importuit shit cauals, the Suez Canal, the CronThree ingortout stip cauals, the Suez Canal, the Cron-
stadt and Petersburg navigation, and the canalised
River Main between Maintz and Frankfort, to be
opened on 1st October next, formed the subject of several Dutch Wa communications. M. Dirks, engineer to the International Committee, gave the results of the inquiry that had been conducted as to the deepening and voted for a width of 85 metres and the pilots for metres, with a depth, respectively, of 3 ft . and $3 \frac{1}{\mathrm{f}} \mathrm{ft}$. under the keel; while four captains estimated the speed that could be attained under the improved circumstances at 8 knots an hour, one at 9 , two at 10 , and two sailing full speed. The Committee had unanimously declared for enlarging the existing canal, with a provisional depth of
$8 \frac{1}{2}$ metres, and a final depth of 9 metres. This would permit of a speed of 8 knots an hour, so
that steamers could pass through in a single day, or that steamers could pass through in a single day,
half the time now required. For protecting the bank masonry facing was recommended-shown by the accon panying section of the canal between Suez and the Bitter Lakes-resting on a risberme, or horizontal portion, of
sufficient width to constitute a solid base, carried up to a sufficient width to constitute a solid base, carried up to a metres below, low-water mark of ordinary spring tides, (See half section of canal on page 30.)
Commander di Gioia, delegate of the Italian Government, and also a member of the Suez Canal International Committee, considered that planting the banks down to the water's edge constituted the best and most economical protection. The action of the waves was felt 2 metres below the water line, and not more than 1 metre above it,
so that the banks must be protected for a vertical height so that the ba
M. Tcharnomsky, engineer, of St. Petersburg, gave some particulars of the Cronstadt and Petersburg ship canal, 28 kilom, or 17 miles long, generally 84 metres or
275 ft . wide, and 22 ft . deep, which cost $£ 1,200,000$, and will, by saving the transshipment of goods, prevent a loss will, by saving the transshipment of goods, prevent a loss The Goutonieff dock, 365 metres long by 214 metres wide The Goutonieff dock, 365 metres long by 214 metres wide,
and the two supplementary docks, have a total area of 174 hectares, or 430 acres. The foundations of the quay walls, laid in treacherous ground, consist of caissons, formed of fir logs, about $10 \frac{1}{2}$ in. in diameter, and filled with sea pebbles, on which is a layer, about 3 ft . high, of concrete, the cross section granite-faced masonry, in accordance with height with the bottom. The logs are halved at the joints as shown by the detail also on page 30 and are braced together by half logs and tie bolts. The timber is always under water, so that it is not liable to decay; and there under water, so that it is 1
are no teredos in the Baltic.
Herr Dising, engineer-in-chief for the canalisation of the Main between Maintz and Frankfort, contributed some information concerning that work, which is being carried out by the Prussian Government at a cost of $£ 275,000$, and will permit the largest vessels--1000 tons burdenof the Main will be increased from trankfort. The depth while the locks, \&c., are being constructed for an ultimate depth of 21 metres. The distance to be regulated is 36 kilom., or 22 miles; and the total fall is 10 metres, 33ft. There are five weirs with locks, dividing the length into five reaches. The needle weirs are in the middle of the stream, the masonry sill being at low-water level, excepting the central opening, where it is 0.6 metre lower, to allow boats to pass freely when the weir is down. The locks on the left bank are 80 metres, or 262 ft . long by $10 \frac{1}{2}$ metres, or 34 ft . wide; and the raft passes on the right bank are 12 metres, or 39 ft . wide, the shoot having an inclination of 1 in 200 . On page 30 are plan and longiplanal section of the Main canalisation, tngether with plan of the Frankfort harbour and railway communicaharbour itself Partith it, and an enlarged plan of the were added by Herr Stahl, delegated by the Municipalit in the absence of Mr. Lindley, engineer-in-chief. The at the end were begun in 1884, and are to be completed Frankfort Municipesent year, are being carried out he ha bour of refuge, 570 by 70 metres $=1870 \times 230 \mathrm{ft}$. and protected $=9$ ft. deep, on the right bank, is formed and will also be fitted out for loading and unloading lood Besides this harbour for loading and unloading goods, capable of receiving fifty of the largest Rhine boats (of 1000 tons), the commercial harbour on both sides of the river, between the Main-Neckar Railway and the State
Railway bridges, will have an area of thirty acres. There Rail way bridges, will have an area of thirty acres. There
will also be 5 kilom., or 3 miles of quay, above the Main Neckar Railway bridge along the reach of the rive dammed by the Frankfort weir. Sidings will run from the goods stations all along the quays, so as to facilitat versi 1 ransfer goods fron water to rail and vice supplied from and supplied from a central hydraulic station, utilising the fall of $2 \cdot 7$ metres $=8 \mathrm{ft}$. 10 in . at the needle weir to drive M. de giving out from 280 to 500 -horse power.
of canal locks as uniform Namur, advocated the making ments of adjas and ments adjacent countries might agree upon a system of expressed the op, as was the case on rallays. He also rupted during the night, and to this end he would utilis the fall of wa o one for lighting the locks and shores He gave on outline his scheme for connecting all the He gave an outline of Europe, the Elbe, the Rhine, the Danube, the Oder, and the necting the North, Black, and Baltic Seas and malin Berlin and Vienn, e ports There would be anaking 1000 kilom., or 621 miles of canal of $£ 11,000,000$, requiring a capital of $£ 14,025,000$; but he estimates the traffic at $2,400,000$ tons per kilometre ($0 \cdot 62$ mile). Taking only half of this to begin with, and putting the dues at half a kreutzer per kilometre there would be an immediate revenue of $£ 600,000$, yielding more than 5 per cent. on the capital.

In the diagram on page 30 , showing all the navigable waterways in the North of Belgium, the canals are represented by straight and the rivers by curved lines, The cross-hatched band is in proportion to the minimum depth of water, while the increase of depth due to
tides or floods is shown by a wider band single-hatched The positions of the locks are shown by The locks of normal type are drawn within the bands to scale of 0.0004 m . per metre, their dimensions being given by a small table adjoining each, in which L represents the the measured to low-water mark in waterways connected with tidal rivers. The cumulative lengths are given in kilo-
metres (1 kilom. $=0.62$ mile) near the locks, The map also on p. (hilom. $=062$ mile) near the locks. The map als Brussels, Mechlin, and Louvain, and also the projecte canal from the existing Willebroeck Canal to th Scheldt at the mouth of the Rupel. Even now a small
steamer trades weekly between London and Brussels ; but steamer trades weekly between London and Brussels; but
the Cercle des Installations Maritimes has been formed to promote the scheme of making Brussels a seaport, by deepening the Willebroeck Canal, and giving it a new
outlet into deep water, as shown by the dotted lines outlet into deep water, as shown by the dotted lines
The canal connecting Louvain with the Rupel by Mechlin was authorised by Marie Therìse, in 1750 ; but the work was so badly executed that more expens was incurred than wold have made a new canal. It ha been improved from time to time, but still does not answe
to the requirements; and Louvain, like Brussels, is agitat to the requirements;
ing for its ship canal.
The quays of the Ghent docks, which were visited, have two lines of way in front, and four behind the The hydraulic The hydraulic principle has been chosen for the travelling cranes, which will run on. the first line of way. These
additional works are estimated to cost $12,000,000$ f. additional works are estimated to cost $12,000,000$.
or $£ 480,000$, which has already been raised by loan. There is à scheme for making Bruges a seaport, by cuttin a ship canal to the nearest point on the coast, a distance o $7 \frac{1}{2}$ miles, and making a deep sea harbour enclosed b pompany offered to carry out the Bruges. An English concession, if the Belgian Government would guarantee 3 per cent. on the outlay
During the deliberations on the technical portion of the programme of questions, M. Casse gave it as his opinion banks in as direct a manner and with as little intermediate mechanism as possible; and he described an excavator that he had devised for effecting this object. It consists of a hollow jib, movable along the bottom by chains and pulleys, carrying at one end a revolving cutter, giving ing fan. The débris are drawn through the hollow jib and delivered by tubes on to the banks, with a great saving in M. A. Huet, of Delft, advocated the making of canals on page 30 , instead of according to that usually adopted a, a, being the original level of the ground in both His reason is that, although the relative height of the bottom is greater, and therefore not so advantageous, much less land is required to receive the earth excavated and consequently the expense is considerably reduced. He also gave particulars of his water locomotive shown by the accompanying sketches, by means o
which he feels warranted, by trials on a smal scale, in expecting as great speed on the water
as is now attained on railways. The vessel's keel

(anch

is fitted with plain drums of sheet zinc, steel, or iron caused to revolve at great speed by a pitch chain and belt from the pulley of a motor. The speed is to be increased by immersing a greater number of drums, or more of theisupace, or by increasing the speed of the motor. made by M. Bazin at Paris in 1874, when discs made to revolve at great velocity presented the remarkable pheno menon of a ricochet motion directly they touched the sur face of the water.
Among the models exhibited was one of Bateman's paddle steamers, shown by plan, elevation, and detail of paddle wheel on page 30 , in which the floats are hinged, and fall down so as to leave the water easily, only
assuming a position normal to the periphery of the paddlewheel at the moment of taking the wate
Sig. J. Rigoni contributed a paper dealing with the
various methods of traction on anals, in which various methods of traction on canals, in which he referre to the system of towing vessels by an endless cable, constantly rumning, supported on pulleys in the tops of posts,
placed on the banks in a somewhat inclined position placed on the banks in a somewhat the strame of the system art high speed, regularity of traffic, optional starting and
hige stopping, prevention of injuring the banks, and great economy in a canal where the traffic is great. The installation is put at between 6000 . to 7000 f. per kilo-
metre, and the working expenses at about 1000 . per kilometre, and the working expenses at about 100f per kite is the clip, shown by the sketch on page 30, by means towing line at pleasure It consists of a portion almost towing line at pleasure. It consists of a portion almost
tubular, embracing the running cable, which enters by an opening longitudinally helicoidal. $O n$ an appendage laterally curved to the tubular portion is a lever, mounted on a hinge and working horizontally like an excentric
This lever, when pulled smartly by the tow line from the barge, acts by the end opposite to the running cable, so as to twist and tighten it against the tubular portion. The lever is capable of assuming three different positions, correalong without gripping, and releasing entirely.

THE ATHUS IRON AND STEEL WORKS

 No. IV.(Continued from page 60, vol. 1xi.)
Steel Works Casting House.-In a paper on the Holley arrangement of Bessemer steel works adapted to the basic process, M. Greiner reminded the Liége engineers of this great difference between acid and basic converters; that or more than sixty blows. As no mean have yet been found to make the lining stand longer, and as the re-lining of the converter, while in position, requires at least twenty - four hours, and would therefore, keep the works standing too long, it becomesnecessary to choose between puttingdown adouble converter plant, and making the converte emovable, so as to be quickly replaced. Th hows a hows a saving o 0 per cent. in cost of onstruction, and o 0 per cent. in cur ent labour expenses. ifting the rodily, with their ings or belts by travelling cranes, which must be very powerful, and carried t a great height, to at a great height, to difficulty of dropping difficulty of dropping the converter exactly into position, Holley should slip out of the belt while inverted being received by a arriage and lowered by ahydraulic lift to thecasting house loor, and then un along rails o the lining repairdepartment Any dividing of he converter into sections to reuce the load on he lift is out of he question, on ccount of the oss of time that ould ensue rom making the everal joints; but opinions are ivided as to the advisability of removing the bottom previous to the descent of converter. If the bottom is emoved, thereis joint to make while the converter is in posiion; whereas, if it is kept on, the entre line of the converter trunaions must be carried at a level of 3 ft . higher and the hydrauic press must have justso much
more travel.
The method adopted at Athus onverters three converters, two in use and one underrepair, and bottom before bottom before owering the converter A
 ront view of the converter was given on pare 59, and the of way leading to the rairshop are convergent. To meet repairs. In accordance with Holley s arrangement, all through the above show vertical and horizontal sections this discrepancy helicoidal guides are fitted to the inside of opposite page give details of thouse, while those on the under the supposition that the former is lowered with the bottom. Fig. 1 shows the converter received mouth down wards on its carriage, and lowered from its belt; and Fig. 2 the re-lined converter again placed in position, the dotted lines of each figure indicating the respective complementary positions. All that is necessary to release th converter from its ring, when the carriage is brought under it in the press, is to knock out the cotters of twelve bolts, a horizontal section through one of which is shown in Fig. la. Fige. 3 and 4 give transverse and longitudinal
sections through the converter, the last-named view being partly in elevation. The travel of the hydraulic lift is $3 \frac{1}{2}$ metres, or 11 ft . 6in., and the diameter of the rod 27 centimetres, or $10 \frac{1}{2} \mathrm{in}$. The weight of the converter with is about 10 tons, ans. To prevent injury to the pres from a possible spilling of the charge, the platform is sunk a few inches below the floor level, and covered with
 upright position,
the casting house
Basic converters are generally made with concentric mouths, so as to pour alternately from either side, in order to counteract the unequal wear of the lining, and also to favour the falling inside of the metal blown upwards by the blast. These advantages, however, are more apparent in theory than in practice; and at Athus the usual form excentric-mouth Bessemer converter has been retained, larger charge than 10 tons might be blown, if the rest of the plant were designed in accordance. The Cockerill Company has added a safety valve to each converter for preventing an explosion in the passagesespecially when the converter is turned wards-due to the generation of gasfrom the tar used to agglutinate the dolomite of the lining. The blast is supplied by a vertical 1000-H.P. blowing engine, of the Cockerill Company's latest design, with inverted steam cylinder above and air cylinder bedescribed and illustrated inasubsequent article.
After the lime ad ditions and the blow, basic steel is tipped from the is tipped into the ladle carried by the transfer swung round under the converter mouth This crane is then brought into such a position that its hori-

zontal jib lies in

Reference to Plan of Casting House:-
a a, Spur Pinions for Tipping Converters. $d d$, Hydraulic Cylinders for Tipping Converters. , Converter Stand , Hydraulic Cylinders for Tipping Converters. , Converter Standards. \quad Columns Suporting Converter Bridge. \quad, h, Transfer and Casting Cranes. of way leading to the repair;shop are convergent. To meet the converter standards, so that the requisite twist is given to the lift platform. The converter standards, as designed by Holley, were found too weak; accordingly the Cockerill Co. strengthened them, while at the same time introducing sake of lightness. The vertical section of casting house shows the position of the ladle, from which the molten pig iron, after its weight has been taken by a weigh-bridge, flows from the tap hole into the down-turned converter, the smaller ladle for the molten spiegeleisen occupying the same position while being tipped. The lime additions are thrown with a shovel into the converter while in its
the cranes are hydraulic ; they are also guided at the top in the girders carrying the roof, instead of being counterweighted, an arrangement which reduces the load and friction, thus lessening the expenditure of water under pressure. The hydraulic pressure for the cranes, for tipping the converters by a rack and pinion, and for drawing along the ladle full of molten pig iron from the blast furnaces or cupolas, is supplied by two horizontal steam pumping engines, made by the Cockerill Company, each capable of yielding 2 cubic metres, or 140 gallons of water at a pressure of 20 atmospheres, or 300 ib . per square inch. The eight levers for working the valves of the water under pressure, and also of the blast for the converters,

NORDENFELT GUN TRIALS A skRIEs of fring trials was carried out with Nordenfelt guns at
Dartford on Tuesday last, July 5th. The following experiments formed the programme.- (1) A single-barrel gun on on field carts
riage fired 80 steel buliets in 30 sec. (2) A five- barrel rifl calibre gun fred 100 rounds in 13 sec, and afterwards 265
rounds in 30 sec. (3) A ten-barrel rifile calibre gun fired 200 rounds
in 13 sec, and 400 in 31 sec. Some drill was and rounds in 30 sec. (3) A ten-barrel rifie calibre gun fired 200 rounds
in 13 sec., and 40 in 1 sec. Some drill was carried out with a
detachment of the Central London Rangers, and afterwards with one of the Grenadier Guards, under Captain Lloyd. Firing and moving were performer Major Wreat rapidity. Lord Charles Beres-
1oth Husara, under ford's two-wheel carriage with five-barrel Nordenfelt gun, moving
rapidy and firing both with horses in and out of the carriage.
俍 With the exception of the springs bei
by the fring, this was very satisfactory
fring was carried out with quick-firing guns for penetration, when the lin. gun projectile, at sixty yards, perforated
an iron plate 1in. thick. A1t.
perforat. perforated two lin. plates, and penetrated a third sufficiently deep
to bulge the back. A.pounder projectile perforated five 1 in.
in. plates. The quick-firing guns were also tested for speed. The
1sin. gun, on naval carriage, fired sio rix rounds in 17 sec.; the
1-pounder, on field non-recoil carriage, fired six rounds in 142. sec.; the 6 -pounder, on a recoil carriage, fired six rounds in 14 sec. Lastly, a mountain gun equipment was shown. A good account
of the trials was given in the Times, but Mr. Nordenfelt conguns are not yet adapted for land her be the statement that his guns are not yet adapted for land service, 200 machine guns being As many of our readers know, machine gun, including quicksweepi sweeping down infantry in the field or repelling boarders at sea,
(2) guns of about an inch calibre, firing steel bullets with sufficient power to stop torpedo boats; (3) quick-firing guns, for playing on
the unarmoured parts of ships. the unarmoured parts of ships.

LAUNCHES AND TRIAL TRIPS

The s.s. Eldorado, built and engined by Earle's Shipbuilding and Engineering Company for Messrrs. Thomas Wiilson, Sons, and Co.,
of Hull was taken on her ofrial trial trip on the 29 th ultion
This vessel has been constructed and equipped in the remarkably This vessel has been constructed and equipped in the remarkably
short time of four and ahalf months, in order to take her place on
the Norwegian passenger station, in lieu of the vessel of the sam the Norwegian passenger station, in lieu of the vessel of the same
name, now called the Sfaktirea, and sold to the Greek Government for a fast cruiser at the beginning of the year, as recently mentioned
by us. Her entines are triple-compound, three-crank, having
cylinders 28 in . 4 ini. cylinders 28 in, 43 in., and 70 in. diameter by 39 in, stroke, supplied
with steam of 1501 b , pressure by two large steel, cylindrical tubula with steam of 150 lb . pressure by two large steel, cylindrical, tubular
boilers, each fitted with four of Fox's patent corrugated furnaces and Henderson's patent self-cleaning fire-bars. The ship was taken
on the measured mile off Withernsea, and the result of a number of runs with and against the tide gave a mean speed of a $14 \cdot 9$ namots
the machinery working most satisfactorily the whole of the machinery working most satisfactorily the whole of the day. sail on her maiden voyage to Bergen on July 6th, for which trip a
full complement of passengers has already been booke On Friday, 2nd inst, the steam yacht Fire Fay was tried for
speed in her cruising trim on the measured speed in her cruising trim on the measured knot at Skelimor iie,
with her full equipment and 40 tons of cool on board ready for sea.
The Fire Fay bas been built for on-Thames, by Messrs. Lobnitz and Co., Renfrew, The Hamptonare her dimensions: -Length betwen perpendiculars on water-
line, 170 oft.;
witeadth h mulded. $22 f t$.; depth, 12 ft . 6 in. ditas cylinder being annular, and these indicate 630-horse power, with
128 revolutions, and 150 .b. steam pressure in the boiler. The
latter is double-ended, and has four furnaces. The latter is double-ended, and has four furnaces. The speed guaran-
teed by the builders was 13 knots per hour speed of $14 \cdot 1$ knots per hour. The amount of coal consumed when indicated horse-power, and we are further informed that wrogres sive speed trials showed that when running ata speed of 13 knots,
and indicating 500 horse-power, the consumption per hour, or 15568 horse-power, the consumption was 7 cwt .hor, of coal
of 11 knots, 230 indicated horse power per hour, and with a speed coal per hour. The Fire Fay leaves this week for a cruise in Nor-
wegian water
Messrs. William Simons and Co. have launched at Renfrew a twin-ssorew single-ladder dredger, called the Dolphin, and buyilt for
the Orown Agents for the Colonies. The Dolphin is fitted with compound surface-condensing engines and mild steel boiler of 220
indicated horse-power, having a single bucket
the
 free soil per hour. This dredger has been built under the direction
of Sir John Coode, C.E., and Mr. William Mathews, assisted by Mr. Wilson. Wingate, inspecting engineer, and Mr. W. N. Bain, resident engineer, and is the third vessel built by this firm for the
Crown Agents, and in a few days will proced to the West Indies.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND
OTHER DISTRICTS.

(From our ovon Correspondent.)

This is the week of the quarterly meetings. They were held in
Wolverhampton yesterday-Wednesday-and in Birmingham this Wolverhampton yesterday - Wednesday -and in Birmingham this
TTursday-afternoon. They drew together a good attendance
of iron and steel masters, export merchante an proprietors, and agents engaged in the sale of pig iron and steel from various parts of the kingdom. But the generall elections were
largely disussed to the disadvantage of business. Alike the
Wolver Wolverhampton and the Birmingham markets had the appearance of a predominance of sellers over buyers in all departments, and
no surprise was expressed that the sales made should have been of light account.
Best finit
Best finished iron was re-announced at last quarter's prices-
namely, 87 for bars and
the 10 .
the rate sheets and plates. This was the rate fixed at the beginning of May 1 sst, when a reduction of
10s. per ton occurred. For their

 Messrs. William Barrows and
Bars, round, sauare, and flat
making and otser

Corngreaves tees, $£ 615 \mathrm{~s}$. ; and best Corngreaves hoops, $£ 615 \mathrm{~s}$, per ton. bury Oak Works, is by Philip Williams and Sons, of the Wednesother list houses. Bars of Sin. round or square, or $\frac{1}{2 i n}$. to $\frac{1}{1 \text { in }}$ in. round or square, and. Strips from 11 in. 'to 6 in. broad $£ 7$. 5 s ,,
against $£ 7$ by other firms.
 ties are quoted at £1 per ton less than Mitre.
It is noteworthy that in 1873 Staffordshire
are this week freely quoted at $£ 7$, were strong at $£ 16$ par ton
The medium and common bar makers received a moderate amount of business this week, and so, too, did the strip and hoop
makers. Export merchants are fair customers in this line, and orders are also being received direct from Australia, South Africa South America, India, and other markets. Prices in this departand £4 17s. 6d.to $£$ for gas strip, and $£ 5$ 5s. to $£ 5110 \mathrm{~s}$ for common hoops. Superior hoops were 10s. to $£ 1$ additional. Beastead
strips
were $£ 610$ s. to $£ 7$. Compared with the prices ruling at the January quarterly meeting,
Sheets for use by galvanisers were slightly firmer in price, by
eason of the little better tone which characterised the galvanised rade. This improvement arose out of more satisfactory reports to hand from the antipodes and the Southern States of America have recovered. At present, however, the galvanisers and the black sheet makers are at only part production, and some of them are very slack. Prices are varied, and although $£ 5155$. remains
the nominal minimum for singles, and $£ 6$ for doubles, it is the nominal minimum for singles, and $£ 6$ for doubles, it is $£ 6$ 15s. to $£ 7$. Current prices are a drop on those of last January by 10 s . per ton
some local sheets, bars, and hoops, are still being placed by which local purchasers in outside districts at prices less than those ordered by local middlemen from North of England works for delivery in the Thames at $£ 5$ 15s. per ton. But the quality of the
Northern sheets is admittedly not equal to the Staffordshire make, North Staffordshire bars are being delivered in London at $£ 510 \mathrm{~s}$. to £5 15s. per ton. Large sized sheets, rolled for special purposes,
have just been brought from Warrington delivered into this district at $£ 3$ per ton less than the buyer would have had to give to Tank and safe plates are com was, however, of a special sort. of England at prices much under those of the native makers. They are mainly common qualities, a class of trade which Stafre arrivive 1 , sorts from native makers safe firms are paying prices up to $£ 9$. All-mine pigs have been re-declared this week for the new quarter without alteration for shropshire and
upon the nominal basis of 52 s . 6 d . to 55 s . for hot-blast pigs, and 75s. to 80s. for cold-blast. Very few transactions, however, took 50 s. down on last January prices. Part-mine pigs were 35s. to 40s.,
dory ity forge, 27s. 6d. to 03 s . Willingsworth make was quoted 32 s . 6 d . The number of furnaces now blowing in South nd East Worcestershire is returned at 29. The firms who are doing most are Mr. Alfred Hickman, who is blowing four furnaces
out of six built, the Earl of Dudley, the New British Iron Company, and Messrs. Roberts and Coo, each of whom is blowing
Inquiries were to-day-Thursday-upon the market for lots of Lincolnshire, South Yorkshire, Derbyshire, Leicestershire, and Northampton pigs. Buyers, however, were very chary in the
matter of price, and sellers had to accept low terms. Derbyshires mostly remain at 34s. to 33s. delivered to raileay stations in this and Thorncliffe, South Yorkshire, pigs, 47 s , to 47 s , 6 d , without business. This is a drop on the quarterly meeting six months ago
of 4s. to 5s. per ton on Derbyshires and Northamptons, and 3 s . to ${ }^{3 \text { s. } 6 \mathrm{~d} \text {. on Lincolnshir }}$
Hematites changed hands, but only in moderate quantities. quoted 52 s .6 d . delivered, and for Uliverstone brand as much as
53 s .6 d . was asked. Yet some of the best South Wales desaris tions were freely offered at 50 s ., with 41 ss . 6 d . for second qualities. These Welsh hematite prices are a fall on January last of 4s. on
No. 1 and 2s. on forge sorts, while the Cumberland quotations are a drop of only 1s. 6 d . per ton.
At Birmingham to-day-Thursday-the Galvanised Iron Trad Association declared prices up 5s., because of the largely increased colonial, South American, and Cape demand, and the rise in
spelter. Orders are much more numerous. Black sheets, \&o., also firmer, though prices were not quotably changed. Steel was and $£ 510 \mathrm{~s}$. for $\operatorname{Staffor}$ dshire bars. There was little that was encouraging in the reports of the North Stoke-on-Trent on Monday. The excessive heat of the weather seems to have had the effect of curtailing production at the forges, with the consequent reduced output of pigs. Prices showed no improvement. Not much business was transacted at the meeting,
but it was hoped that the inquiries which were made would result in increased trade.
A pleasing incident took place at Dudley on Saturday, when, retiring agent of the Earr oo Duadley, was presented with, a ser-
vice of plate, which hat viee of plate, which had been subseribed for by the heads of the
departments. Mr. Smith is retiring after a service of forty-eight years with the noble house of Ward and Dadley. Mr. Fisher address said that as coal would not grow again they must look out for fresh fields of enterprise, and he suggested that they might try and find more beyond the fault at limley
iron and steel manufacture are pretty favourably situates outside ironwork for structural purposes, machinery castings, and railway making materials being in fair demand. Engineers are better engaged on export than on home orders, and light ironfounders are Galvanised edge-tool makears, wire netting firms, and some other lian markets
The bicycle and tricycle machine industry is very brisk at date,
and the chief shops are running from six in the morning until ten at night. Export orders are being filed in heavy loots for Germany the Australian colonies, India, and even some of the Chinese
thather mith markets.

NOTES FROM LANCASHIRE.

(From our own Correspondent.)
Manchester.- - Business in the iron trade of this district, if it does not got actually any worse, still makes no progress towards im-
provement, and there has again been very little doing during the past week. There are a fow inquiries stirring in the market, but business is not always practicable, notwithstanding that sellers still show a disposition to entertain anything in the shape of a
reasonable offer. The most discourasing feature is the continued absence of anything in the future to indicate any prospeot of im.
provement, and the conplete failure of low prices to bring forward
is the very unsatisfactory one of a continued struggling on to kee put is gradually forcing itself upon producers as the only remedy The Manchester iron market on Tuesday warket.
unsettled by the excitement of the parliamentary more or less resented no special feature so far as business

 but at these figurest they are dondy practiceally little or nothing, and
where an occasional order of any moment is booked the meet buyers with some concession. Distriset brands vary sove muxh
in price that it is difficult to quote any fixed current market rate. Some brands are to be got as low as 3nys. tod current market rate
cent., for forge and foundry qualities delivered $2 \sqrt{2}$ pe cent., for forge and foundry qualities delivered equal to Man-
chester, whilst for others makers quote 36 .
cent. to 36 s . $6 \mathrm{~A} .$, eess $2 \frac{1}{2}$ per cent,, elivered here as their minimum figures, but even at the
lowest prices there is little or nothing doing. Outside brand
offering here remai offering here remain about steady as regards quoted rates, but
buyers who have orders of any weight to place have no difticult in finding sellers at under current market rates, and the best net cash, delivered equal to Manchester. For hematite there is still only a very slow demand, and prices
remain extremely low. Looal-made hematites are quoted at about 49s. less $2 \frac{1}{2}$ per cent., for No. 3 foundry qualities delivered equal
to Manchester, but they could be got at 1s. per ton under this figure, and good Cumberland qualities at about 50 s , to 51 s. per to

In the manufactured iron trade there is still only a very small sellers seem rather disposed to hold back until after the quarterly change these angh likely to bring forward That possibl to justify any anticipation of improvement, and it is scarcely pro-
bable that prices will come any lower. Although here and there bar iron is to be got through merchants at und the very minimum basis of quoted rates for either Lancashire Satcorashire bars delivered into this district. In hoops and sheet no better prices are obtained; hoops delivered into the Mancheste district can be got readily at £5 7s. 6d., and good qualities The condition of the e
factory. It is true the retineering trades concinues very unsatis a conthinued slightly decreasing number of unemployed. This month's report of the Steam Engine Makers' Society is again of
slightly improved tone, and there was a further redyction number of unemployed, which, as compared with the returns for March, shows a a cease about two per cent,, and there are of more than about 312 per cent. of the members actually in receip
of out-of-work donation. There is, however, still no perceptible improvement in the actual condition of trade, which at the best
only returned as moderate, and although the number ployed continues to decrease; the returns as to the actual amoun of wages paid in this district show that the men are actually of cases they are only being kent on short time. The increase of activity in some classes of work which is usual at this season getting into employment, but the information I get from of me meliabl the es shows no improvement whatever in the leading branches of best employed, but they are, as a rule, only moderately supplie wight of new work only very indifferently employed,
coming forward still very small.
Mest
Messrs. W. Collier and Co., of Salford, who have in hand an
order for a complete set of tools for the manufacture of cotton machinery, have introduced several improvements, which they are these they engine cylinders. In the present tools for this class of work the drills are actuated by spur gearing, which necessitates one-half
of the drills being driven in one direction, and the other half
in in a reverse direction, In
machine the spur gearing is dispensed with, and the drills are all driven in one direction by means of an archimedea
screw. This arrangement possesses the further advantage that a new drill can be put into any of the spindles without stopping
the machine, and different lengths of drills can be used. This tool is being constructed for drilling twenty holes at once, and is adjust attached to each drill spindle to make it entirely independent.
Another improved tool is a lathe for turning the outside surfaces of hicker-in or leader collers for carding engines, which is to 10in, diameter and in length up to 50 in. This tool consists of strong double bed with double fast-and-loose headstocks, and suit each fitted wox gearing. There are two separate sliding carriages, that two rollers, with two tools operating upon them, may be and diameters. This, of course, is a tool which might be applic for any purpose where two rollers or shattshave to be turned at once In the coal trade the demand all through continues extremel dull, and except where ooliieries are putting down into stock, it
only with very great difficulty they are kept going about five days a only with very great difficulty they are kept going about five eays
week. There is no actually quoted change in list prices, but to effect sales very low figures are taken, and there is a genera want forward business. At the pit mouth best coals average about 8 s .
to 8 ss .6 d .; seoonds, 6 s . 6 d . to 7 s .; common coals, 4 s . 9 d. to 5 s .3 d .
 For shipment there is only a very poor demand, and steam coal
can be hought without difficulty at about 6s. 6d. per ton delivered at the high level, Liverpoot, or tone in the hematite pig iron trade
Barrov.-There is a better and the market is more cheerful. A large tonnage of iron is being disposed of, and deliveries show marked increase, The inquiry
for Bessemer qualities of pig iron is steadily maintained, and makers are in receipt of contracts which wili keep their furnaces in blast for a few months to come, at the present rate of production,
There is a steady consumption of Bessemer iron by makers of steel who in the plate bar trade. The output of iron in this district may roughl
be estimated at 27,000 tons per week. One or two of the largest works in tho e idstrict air stopped at of blast., Stocks arenot solarge not only in reference to home but to engagentant and forenigide orders Prices show reverenange, and parcels of mixed messemer iron are offered.
 two chief departments aiready referred to. Shipbuilders are
short of work, and no orders of any moment are offering. The
yards of builders look more bare than they have done for many ears. Engineers and ironfounders are also very short of orders Iron ore finds a poor market, and large banks are stored in various
parts of the district. Coal and coke are in steady request at late

The high level bridge at Barrow has now been opened to the public, but owing to some hitco between the railway company and unfnished, which, when completed, would open out the tram
und rounte from the centre of the town to and from
It is expected the difficulty will soon be arranged.

THE SHEFFIELD DISTRICT.
Mr. MundriLA, during the course of his olectioneering cam-
paign for the Brightside division of Sheffield, dealt one evening with questions of trade and commerece. The most important item in his speech was the announcement that the treaty with Spain
was likely to be sanctioned by the Cortes, and would come into
operation on the 16 ith inst. The unfair manner in which British operation on the 16th inst. The unfair manner in which British
goods, and particularly the products of Sheffield, have been handicapped in the Spanish markets has alone been a serious
cause of complaint, and the local Chambers of Commerce, as well as the Cutlers' Company, have used all their influence to get England put upon what is, known as "t the most-favoured-nation"
treatment. In the case of Sheffield alone it is believed that our trade can be more than doubled if equitable terms are afforded
by Spain. At present, French and German goods are largely taken by Spain. At present, French and German goods are largely taken
in preference to British-made articles, and little doubt is felt that with a fair tarift most of the trades with Spain oan be recovered
from continental competition. While this prospect is exceedingly gratifying, it must be admitted that the outlook in the United
States is not so promising. There was considerable hope that the States is not so promising. There was considerable hope that the
tariff duties would have been reduced this session, but it is now
felt that very little probability of another reduction can be enterfelt that very little probability of another reduction can be entertained this year.
The elections very seriously with business in the country districts. Travellers
who in thein who in their regular course would have been visiting many of the
eastern eastern counties, have not gone on their journeys, it being Yelt tiat
they would have had their labour for their pains. In the towns
work has not been so seriously interfered with, as the artisans, work has not been so seriously interfered with, as the artisans,
having long suffered from want of employment, are not so foolish as to neglect it for the temporary excitement of a general elec-
tion. Still it will be a great relief to business houses when the
turmoil is over. There has been but a moderate business this year at the seaside resorts and other watering places. The general elections have
interfered with the holidays, and many of the leading pleasure pliled during the present fine weather, are now much emptier than usual, the result being that hotel proprietors, , restanampant keepers,
und lodging
and and lodging-house people are not nencouraged ot o repplenish
stocks of cutlery plated ware, and hardare goos generally. Although the Soctoh trade remains fairly good the demand for
Ireland is excessively light. Lioal houses continue to reeeive
letters in which the Ireland is excessively light. Local houses continue to receive
letters in which the Irish merchants complain bitterly of the evil
effects of political agitation on business. The leading firm in Cork, writing to a well-known Sheffield house, states that since May business has been extremely bad, and they did not think
they should, ever see such times.
ness with," The gentry we do busi- the firm, "are really the spending classes of the community, but owing to the utter demoralisation and
the the though of their means. Though they want obligation, are deprived of they are honest enough
to do without themg to do without them, as they cannot pay what they owe." The
same writers say: "The most honourable people completely fail to
meet their liabilities, and this meit their liabilities, and this cannot end in anything but utter
ruin. It is hard to believe, but it is the case, and money cannot be recovered from those who owe it at present; the people have
been taught so many ways to avoid their obligations. English
mere merchants must be the sufferers when
amount of credit they give in Ireland."
The fine summer weather which has at length set in has enable the farmers to get their hay in in good condition, but they com.
plain that except in favoured districts the crops will be light, and plain the except in favoured districts the crops will be light, and
Wherever one travels the root crops and spring sown cereals are
seen to be suffering from want of rain. demand for cutlery and other goods from the United States is maintained, butt is mainly in the hands of the leading housses.
The colonial markets are very fair, and good orders have been The colonial markets are very fair, and good orders have been
received, particularly from India and Australia. Continental
trade is dull in nearly trade is dull in nearly all directions,
In the iron trade the make of pis Irobability on trade the make of pig, light as it is, shows further
to furnace hands preparant and additional notices are being given
to districts mane encouraging reports are received. From the hematite steel rails
For competition gets increasingly keon, ine in spite of the towness of
present quotations, it looks as if bottom has not yet been touched House coal continues to be in very poor request. Silkstones are House coal continues to be in very poro request. Silkstones are
now making 7s. 6 d. . 0 8s. 6 d. at the pits, but other qualities can
be obtained at about 6 s . per ton be obtained at about 6s. per ton. There is a better tone, however,
in steam coal, which has been rather brisker during the last six
months. months.

THE NORTH OF ENGLAND

The quarterly meeting of the Cleveland iron trade was held at
Middlesbrough on Tuesday last, and was thinly attended. The Consett Iron Company exhibited, some fase speceimens of Siiemens
steel ship and boiler-plates of their oww manufacture there was nothing special to mark it as a quarter day. The market, and neither buyers nor sellers showed any anxiety to do business. Only a few sales were made, but it cannot be said prices were any worse than on the previous Tuesday. The majority of
the merchants quoted 29s. $4 \frac{1}{2}$ d. per ton for prompt delivery of

 the market at present.
Warrants are 29s. 6 d . to 29s. 9 d . per ton, but there is little
business Thess stok of Cleveland pig iron in Messrs. Connal's store at
Middlesbrough increase for the week bien on Monday last to 2588,852 tons. At Glasgo, the
for last week was 2716 tons, the increase
forantity in the for last week was 2716 tons, the quantity in store being
782,382 tons. iron trade. Orders are as scarce as ever, and prices are the finithed Steel manufacturers are busy. Heavy sections of steel rails can
be bought at $£ 3$ 12s. 6 d . per ton, and steel plates at $£ 6$ per tonon trucks at makers, works, cash 10 th, less 2 pat per cent.
The Cleveland ironmasters' statistics for June were
 whiole district during the month amounted to 202,131 tons, a
decrease of 8918 tol decrease of 8918 tons when compared with May. The stocks show
a considerable increase. The total quantity held in the whole
district on June 30th amounted to 689.185 tons being the of 19,413 tons for the monthe to The shipments for June were only
63,903 tons, being 734 tons less than in May, 1886, and 13,166
tons less than in June last ese tons less than in June last year. The principal items in in last
month's shipments were as follows: Scotland, 29,859 tons many, 6230 tons; Wales, 4740 tons; Holland, 3335 tons; Belgium,
 shipped last month was 34,386 tons, being 8434 tons less than in
May.
Messrs. Dorman, Long, and Co., of Britannia and West Marsh
Ironworks, Middlesbrough, commenced a fow Ironworks, Middlesbrough, commenceed a few dayss sinees to erect
two Siemens-Martin furnaces for the manufacture of steel. On Saturday last the Consett Iron Company gave its men
fourteen dayss notice, and at the end of that time the workmen
will be reenaled subjet to
 April, and May, 1886, was 4s. 7 .31. per ton, being a dercease of
-6d, upon the standard average selling price of 4 s . 8d. Under the
sliding seale arrangement, there will be no alteration in the present
rate of wages for underground workmen and banksmen The dispute between the Storkton and Middlosesbrough Water
Board and their contractors, Messrs. Walter Scott and Coo., as to Board and their contractrs, Nerisen during the execution of the
the difficulties which have arisen contrant for the Hury reservoir is not yet settled. A special
meeting of the Board was held on the 28th ult, to discuss the recommendations of the engineer, Mr. Mansergh, relative thereto. The main questions to be decided were two, viz, first, to what
extent, if at all, the contractors' claim for extl31 for extra work extent, in ane should be allowed ; and secondly, to what extent, if
alrealy done se
at all the schedule of prices attached to the contract should be modififed for that portion of the work which still remains to be done. After some discussion, a resolution was passed to the following
effect, viz: " T That Mr. Mansergh be empowered to readjust the schedule of prices for the work remaining to be done on the basis recommended and explained by him; that the clerk to the Board be instructed to take care that the rearrangement be so worded as
not to void the existing agreement and bond; and that the schedule not to void the existing agreement and bond; and that the schedule
as modified be applicable to any extension of the trench which may r appear necessary
There is a tendency to alter the method of winning salt on the banks of the Tees, in accordance with experience gained since the
industry commenced some years ago. The bore holes hitherto put down have been made by Beaumont's diamond drill. Two of the salt companies are now contemplating the employment of the for making oil wells. The system has also, it is said, been
adopted in the United States for brine, but so far it is a new application as regards England. The plan of putting one tube inside another, the annulus being for the introduction of fresh fater, and the inner tube for the suction of brine, is also now
found not to be the best possible. The salt is thereby taken firstly and mainly at the lower end of the tube, and when it is cleared away the end of the tube becomes broken or bent for want of
lateral support, and by reason of the distortion of the strata, which generally ensues. It is found better to have a single tube similar tube some distance off for the introduction of fresh water By this means the salt is drawn from a more extended area, and
the danger of damage to the tubes is not so great. Besides, if either of the single tubes break, there is not necesssarily any stop-
The Belgians are competing with the North of Engand in bridge short time since a steamer arrived in the Tees from Antwerp with 600 tons on board for India. It was immediately unloaded and transferred to a large export vessel about to sail or Bombay. A
quantity of material used in and about mines, such as girders, rails, locomotives, winding engines, pulleys, wire ropes, and so
forth, for the production of which the North of England is eminently suited, is now going to Spain from Belgium and quote. The reason for this is that the Spanish import duties favour those countries, to the disadvantage of this
country. The Belgian bridge and girder work appears, in finish and in quality of material used, much inferior to the English, but cheapness, arising from less duty, settles the question in
nine cases out of ten It is hoped that the new Anglo-Spanish nine cases out of ten. It is hoped that the new Anglo-Spanish
commercial treaty will come into operation by the end of July; but there is strong opposition from certain Spanish interests, and Sagasta, the Prime Minister, iss , howewer, an able man of broad
ideas and strong will, and does not share the unreasoning anti ideas and strong will, and doos not share the unreasoning anti-
English feeling so prevalent in the peninsular. It is much to be English feeling so prevalent in the peninsular. It is much to be
hoped he will prevail. If he does, it should do something to help hoped he will prevail. The iron trade. England, with Hair-play,
us to better times in the the the
should be able to defy competition in her own specialities in Spain all all events.

NOTES FROM SCOTLAND.

(From our own Correspondent.)

Thr excitement of the elections has been very great in Scotland For this and other reasons the iron market has been insiness. and the quotations of pigs have declined from the slight improvement established towards the close of last week. Fewer inquiries
have been received, and the amount of transactions is pronounce unsatisfactory. The shipments of pig iron from Scotch ports in the past week were small, being 6424 tons, as compain week of 1885 the preceding week, and 7410 in the corresponding week of 1885 .
Early in the week there was some interruption at the ironworks in consequence of the colliers being idle discussing the reduction of
wages; but otherwise there is no material change in the amount of production. The continued addition
land has a most depressing effect.
Business was done in the Glasgow warrant market on Friday up to 39s. cash. On Monday the quotation declined to 38s. 9 3d.
further deoline occurred on Tuesday to 38 s . 7 zd d, closing at 38 A . 8 d
 cash. To-day-Thursday-the market was quiet,
up to 38 s. 9 I2d, closing with buyers at a penny less.
For makers' shipping iron the demand is limited, and the

 Ardrossan, 42s. 6d. and 39s. 6d.; Eglinton, 39s. 3 s . and 36s. 3d.; Dalmellington, 40s. 6d. and 38s.
One or two steel-making firms now complain of a scarcity of
orders, and all appear dissatisfied with the present low prices, The shipments of iron and steel manufactered poods from
Glastow in the past week embrace machinery to the value of £2667\%; locomotives, £8638, mostly for Bombay; sewing machines, £3500; a steamer shipped in pieces for China, £2610; steel goods,
$E 7550$; and general iron manufactures, $£ 30,500$.
In the shipping department of the coal trade there has been more activity in the past week, and the aggregate quantity sent away
from the different ports is considerably larger than in the corre-
sponding sponding week of 1885 . At Glasgow 29,444 tons were shipped;
Greenok, $2411 ;$ Ayr, 7487 ; Irvine, 2219 ; Troon, $6531 ;$ Burnt island, 18,486; Leith, 4136; Grangemouth, 10,642; Bo'ness, 11,188 The continued low prices make coalmasters very anxious to sell as
much as possible the return on individaul quantities being so smail. As yet there is no difficulty in obtaining supplies to meet ing to curtaind, alth ought
Since last wee output.
more general. At the reduction of miners' wages has become much pits, the reduction is being effected, and a large proportion of the miners were idle in the early part of the week. The leaders of
the men are, however, evidently convinced that resistance is hope-
less less. Were, it resorted to in the case of the ironmasters'
loksts, a
lout would certainly be the consequence, as at most of the market for a considerable time
Returns are now available of the foreign shipping trade of the Clyde during the first half of the present year. Th he arrivals em-
 saing 8 included 752 ships, of 756,554 ton
807,75 tons in the corresponding period.

WALES AND ADJOINING COUNTIES.
From our own Correspondent.)
I have just seen a good proof of the excellenee of the steel rail Wales, taking up a rail made at Dowlais in 1870 and turning it As regards wear, it would have lasted a good deal longer but for the indentations underneath. Sixteen years is a good life for a rail, and it shows that one great item of expense in railway renewals lengthened, but the number of platelayers reduced to a
minimum. Yet steel rails at $£ 3$ 10s. do not command a free sale. The only cargo of any importance this week has been 1200 tons to Montreal. There is a slightly freer demand from home railways, The principal demand at the steel works conti
bar for tin-plate, and Dowlais and Cyfarthfa appear to to be steel share. There is also a little doing in steel sleepers, but so far to what a quantity of "pickled" sleepers the leading rain it is seen in stock, and which must be used before the question of steel
The Rhymney Iron Company shows favourably by last audit, considering the bad times that have prevailed solong; but though The prospect of one next quarter is now fairly wssured Mr. Benjamin Robert Jones has retired from the management of Rhymney on account of ill-health, and will probably be replaced
I note that. Mr. Roberts, the oldest roll turner at Dowlais, is
dead. Under Mr. Menelaus he executed some important contracts in the early days of steel making.
Tittle notice has been paid to the death of Mr . Warli of Middlesbrough, one of the most scientific and energetic of ironmasters. 1 understand that his biography is in the hands of Major
 of Mr. Menelaus
The accumulation on railway sidings of coal trucks is prodigious. an ordinary average twelve months ago, and at all the ports there is a serious falling off. I find that nearly all the large steam coal six months has only worked $2 \frac{1}{2}$ days per week, and lately Merthyr Vale Harris Navigation , neps the leading collieries in the Aberdare Valley are all slack, and though prices are reduced to in the coal trade buyers keep aloof. Men who have grown grey until the general industries of the country are more active it is useless to 100 k for improvement.
Pitwood is fairly brisk at 15 s.
The advance in tin-plate is maintained, and makers are frrm in when tin stopped in ins rapid movements. upward, tin -plate would
show signs of falling again. Fortunately, this is not the ease, and a large make is going on at satisfactory igures. The chief demand is for ordinary coke plate, and wasters especially are in request. I am sorry to record a falling-off in patent fuel. From Cardiff
especially the return last week showed badly.

NOTES FROM GERMANY

The iron business has this week been very sluggish. In bars, sellers are more numerous than buyers. The eirder trade is very
bad, although a great deal of building is going on in the large towns, where girders are in good request, but the prices have been long unremunerative, and are still going back, in spite of the above
demand. For boiler plates there has been a regular sale, and
den the prices have kept up to those fixed by the Con, consequently
wire mills complain of no demand from abroad, offers are the rule and prices in favour of the buyers. The
onand for steel rails is becoming less and less, orders are worked off there are none to replace them, but still
in be given out for native railways, but for orders for abroad no good
news is stirring, and, indeed, it is not at all likely that the works here will accept orders at M. 68 to 70 per ton, as is reported has been done in England lately. The locomotive and wagon
factories have booked some smail native orders, and more are shortly expected to be given out. In general they are all to a
moderate extent employed on old orders. The machine and
boiler shops and boiler shops and foundries all require more work to keep them
any way employed full time. The prices of the various sorts of iron and steel rails remain the same as given in the last report; to 94. It is reported here that a works near Naples will shortly The production of pig iron in Germany-including Luxemburgin the month of May, 1886, was 282,236 m.t., 138,997 tons of which
was forge pig and spiegeleisen, 37,614 m.t. Bessemer, 76,487 tons basic, and 27,038 foundry pig. The production in May, 1885 ,
amounted to 318,606 m.t. From January 1st to the end of May, 1866, there were produced 1,427,572 tons, against 1,561,400 for the The first of the subsidised steamers, the Stettin, built by the the North German, Lloyd Company at Bremen, has just, com-
pleted her six hours' trial run at sea. Her average speed is reported to have been $12 \cdot 77$ knots, whilst the guaranteed speed was to have been $12 \frac{1}{1}$ knots, her maximum speed having reached 131
knots. She will now take her station at Bremen preparatory Australia and Japan. In connection with this event a paragraph has appeared in a commercial organ which, whilst apologising for
its introduction here, it may not be uninteresting to communicate. It runs as follows:-" The approaching opening of the German circles in London a very marked feeling of anxiety. Even whilst cult conditions, the English export trade to Australia had begun to find out what a dangerous rival it had in aermany,
but now the situation is likely to beome more and more
onfavourable to English enterprise, because the attractions of anfavourable to English enterprise, because the acome greater
German ports for over-sea goods will be sure to become
as soon as the German line is opened. It is a fact that those in England who are most capable of giving an opinion, and whose
interests are most affected, are beginning to doubt whether London enjoyed as one entreatot for the rest of the world. The transit and entrepôt business of London has declined 10 per cent. within the
last five months, the greater part of which has been transferred to last ive months, the greater per per
the German North Sea ports.'
The oopper producers here are agitating for a duty on the raw duty. But in consideration of the large quantity of worked-up material which is made and afterwards exported, it is s.arcely proas the metal workers are getting up a counter agitation. It appeal 15,406 tons of metal wares were exported. Tn this connection it
may be mentioned that the metal workers' official organ declares that the German metal wares are quite shouldering out the English even in what used to be reckoned upon as our own markets abroal
and in our Colonies, and that to maintain the situation every effor must be made and advantage sought, which a duty on t.a raw must be made and advantage
material would at once cripple,

NEW COMPANIES.

The following companies have just been regle
Aireside Steel and Iron Company, Limited. This company proposes to take over the property
and effects of the Aireside Hematite Iron Company upon terms of an agreement of 28 th May of $£ 125,000$, in $£ 10$ shares. The purchase consideration is $£ 61,12410 \mathrm{~s}$. 3 d ., payable
$£ 411,12410 \mathrm{~s}$. 3 d , cash, and the balance in fully-
*Joseph Ledger, Keswick, ironmaster
*L. Cooper, Kirkstall, Leedr, ironmaster
*C. J. Valentine, M.P., Workington,
*W. Scott, Newcastle, contractor
*. W. scott, Newcastle, contractor
R. Wigram, Leeds, engineer
W. Dughton, Workington, engin
A. R. Hill, Leeds, ironfounder ..
The number of directors is not to be less than three nor more than seven; qualification, 100
shares; the first are the subscribers denoted by an asterisk.

Australasian Ice and Cold Storage Company,
This company purposes to erect factories in
Australia, New Zealand, or elsewhere, for the manufacture of ice and mrated waters and bever ages and to establish oold stores for the preser
vation and freezing of perishable artioles of food

The number of directors is not to be less than three nor more than seven, resident in England,
and not leess than two nor more than three resident in each colony. In pursuance of an
agreement of the 1st ult., the Ice Factory Con struction Company, Limited, have the right to appoint two duly qualified persons as directors,
and subject thereto the names of the first directors will be determined by the subscribers every sharenou to each member of the Lundor
f100 per annum
board, with an additional 110 each for every
1 per cent. dividend in excess of 8 per cent. per
board will appoint the remuneration of the Colo-
nial directors.
Ball's Patent Dredger Company, Limited. Upon terms of an agreement of the 27 th of May, this company proposes to accuire and wort
various letters patent granted to Uharles Julius Ball for dredgng apparatus and appliances. It was registered on the 26 th ult. with a capital of
$£ 14,000$, in $£ 20$ shares. The purchase consideraion is $£ 2000$ cash, 550 fully-paid B shares, and 50 per cent. of the net profits until a further sum
of $£ 5000$ has been paid to the vendor. The subscribers are:- Shares.
 co. J. Browne, C̈.E..., Eailing Dean
 The number of directors is not to be less than
three nor more than seven; qualification, five shares; the first are the subscribers denoted by an asterisk, and Mr. J. Jackson; the company
general meeting will determine remuneration.

Charles Nelson and Company, Limited. This company was constituted by deed of settle-
ment on the 27 th of April, and was registered on ment on the 27 th of April, and was registered on
the 28 th ult., as a limited company with a capital of $£ 100,000$, divided into 2100 preference and 200 ordinary shares of $£ 100$ each. It proposes to carry on business as lime burners, cement manu-
facturers, brick and tile manufacturers acturers, brick and tile manufacturers, quarry
wners, stone merchants, and paviors 500 shares are taken up, and upon 204 the full amount is paid up, and upon the remaining 296 shares $£ 80$ per share has been paid. The members are:-
C. H. Neloon, The Lawn, Warwick, manufacturer share

The number of directors is not to exoeed seven qualification, \&500 of nominal capital. The first
directors are the subscribers denoted by directors are the subscribers denoted by an
asterisk. The remuneration of each managing asterisk. The remuneration of each managing
director will be $£ 500$ per annum, and of the
ordiny general meeting may determine

Cycloidal Screw Propeller Company, Limited. Upon terms of an agreement of the 18th ult. this company proposes to acquire ecretain British
toreign patent rights granted to Georg and foreign patent rights granted to George
Edward Vaughan and William Charles Hallett for improvements in serew propellers. It was £20,000, in $£ 10$ shares, whereof 1100 are 7 per cent. cumulative preference shares. The purhase consideration is as follows:-£3000 in fully paid ordinary shares to Lord Alfred Paget, an 3000 in cash and $£ 6000$ in fully-paid ordinary
${ }^{\text {T. }}$. H. B. Bryant, Juniper Hall, near Dorking

The number of directors is not to be less than
three nor more than six; qualification, thirty shares; the remuneration of the board is not to
exceed $£ 300$ per annum, or be less than $£ 150$ per nnum and ar further sum of $£ 20$ per annum for each director for eve
excess of 10 per cent. \qquad
Dixon, Horsburgh, and Co, Limited. This company proposes to acquire the business
ormerly carried on by the Mendip Paper Mills formerry carried on by the Mendip Paper Mills
Company in the out parish of St. Cuthbert, in
Wells, and the parish of Wokey, Somerset. It Wells, and the parish of Wokey, Somerset.
was registered on the 24 th ult. with a capital of
c30,000 in
Joseph Dixon, Oughty Bridge, Sheffield, paper

m Horssurgb, south Darenth, Kent, paper
Horsburgh, Cullöpton, "Dëon, "päer manï-

w. Liddile, O.E., s5̈, Blünd̈ell-street, Cäledöniañ.

Groadddle, Nëtö̈ Cölliery, G̈laggow, colliery
manager
The number of directors is not to be less than scribers denoted by an asterisk, first are the sub of Scholecroft, Brinoliffe, Leeds; the qualification for future directors will be $£ 2000$ in shares; the company in general meeting will determine re

Elizabeth Tin Mine, Limited.
This company proposes to acquire and work a
mineral property situate in the parish of St. mineral property situate in the parish of St, lit. with a capital of $£ 2 \bar{\sigma}, 000$, in $£ 1$ shares. Th
F. W. Summers, 5 , Homerton-road, Hackney

 W. scott, 3, Broad-street-buildings, accountant

The number of direotors is not to be less than
three nor more than five, the first are Messrs,
Simeon O. Hadley, C. H. De Mortimer-Maconntosh,
and F.W. Summers; remuneration, $£ 1$ 1s. to each
director for every meeting attended, and 10 per director tor every meeting attended, and 10 per
cent. of the balance of net protits remaining after
payment of 10 per cent. dividend.

Horsehay Company, Limited.
This company proposes to operate upon and to
work or manufacture ores, minerals, and metals of all description, and for such purposes to acquire the business and assets of the Coalbrookdale Company, Limited, of Horsehay, Salop. It was registered on the 24 th ult. with a capital of
$£ 100,000$, in $£ 1$ shares, with the following as first subscribers :-
E. D. Reynolds, 3, Clements-lane, merchant
H. Carter, 3 , clements s lane, merchant

tered accountant
H. M. Milluer , Laurence
tary Pountney-hiil, secre tary to a company,
Alexsunder Taylor,
7, Laurence
Pountäney-hili,

The number of directors is not to be less than Frederick Nonks, Warrington the irst are Messrs. Fregery Norris, of Coalbrookdale; E. Loveli Squire, of Coalbrookdale; H. Charles Simpson, the present manager of the Horsehay Works; and
T. Abercrombie Welton; qualification, 250 shares . Abercrombie Welton; qualitication, 2.20 stares ;
the company in general meeting will determine emuneratio

Hampton Plains Syndicate, Limited.
This syndicate proposes, with a view to the
early formation of a large land and colonisation association, to acquire $1,340,000$ acres of land in Hampton Plains, Western Australia, and an Act
from the Australian Government authorising the construction of a railway from Hampton Plains to Esperance Bay, with or without a Government subvention in land or otherwise. Also to acquire land lying between Hampton Plains and Esperance Bay and 29 estern Austrana. th was registerec on the 29 th ult. with a capital of
f100 shares. The subscribers are:-

 . S. Smith II Iland Cotatae, Chiswick
a. Bush, C.E., Gracechurch-strect
Reitele

Registered without special articles.

Samuel Kidd and Co., Limited.

This company proposes to take over and carry
n the business of millers and corn, flour, and grain merchants, carried on by S. Kidd and Co., at Isleworth, Middlesex, and also the businesses
of White, Wright, and Co., of New Crane Mills Shadwell, and of Richard Wright and Sons, of 37, Mark-lane-chambers. It was registered on
the 24 th ult, with a capital of $£ 150,000$, in $£ 100$
*W. Podger, Isleworth Mill miller
W. Podger, Isleworth Mill, miller
H. R. Perry, Isleworth, miller
Wher
miller

The number of directors is to be five; qualification, 3000 of share capital, the irst are the sub cribers denoted by an asterisk. Messrs. H. R.
Perry, Wm. White, and A. R. Wrightareappointed managing directors for ten years, and will each be managing otectoon per annum for salary. Mr. . C.
entitide to
Sherriff is appointed director and salesman for a Sherriff is appointed director and salesman for a
like period ata salary of \&600 per annum. Mr.
Wit will a penses and to one-third of the surplus profits remaining after payment of 5 per cent. per annum
upon the preference shares, and 10 per cent. per upon the preference shares, and
annum upon the ordinary shares.
$\underset{\text { Naval Engineer Appointments. }- \text { The follow- }}{ }$ ing appointments have been made at the Admi-
ralty:- J. A. Smith, chief engineer, to the Ala-raty:-J. A. Smith, hief engineer, to the Ala-
crity; J. G. Stevens, engineer, to the Alacrity;
E. $\overline{\text { I }}$ down H . Cook, chief engineer, to the Acorn W. H. Gulliver, staff engineer, to the Orlando;
G. Harding, chief engineer, to the Icarus ; and F. Wain, acting assistant engineer, to the Jumna. The School of Electrioal Enginekring. The School of Electrical Engineering in Princes
street, Hanover-square, which is under the street, Hanover-square, which is under the
management of Mr. W. Lant Carpenter, D.S. has for some years been widely known through the success of those who have been educated in it. For several years it has attracted numerous students from abroad, and recently a curious
proof of the appreciation in which it is held by past students was shown by the translation into Italian by one of them, and the publication in Elettricita, of the desoriptive brochure of the school pubished under Dr. Carpenter.
Society of ARTs.-The hundred and thirtysecond annual meeting of the Society of Arts wa, House in the Adelphi. The annual report was read by the secretary, and contained the usual sum mary of the proceedings of the session of the
Society just concluded. Seventy-six meetings were held, at which papers had been read and dis-
cussed, or lectures delivered. The total number of members of the Society is now 3657; the financial condition of the Society is prosperous, the revenue of the past year having amounted to
£13,450, against an expenditure of $£ 12,000$, with $£ 13,450$, against an expenditure of $£ 12,000$, with
an excess of assets over liabilities of $£ 13,000$. A an excess of assets over liainities of and resulted
ballot was taken for the new council, ad
in the re-election of H.R.H. the Prince of Wales in the re-election of H.R.H. the Prince of Wales as vice-presidents:-H.R.H. the Duke of Edin-
burh, K.G., H.R.H. Prince Albert Viotor of Wales, K.G., the Duke of Abercorn, O.B., the Duke of Manchester, K.P., Lord Afrred s. members, of council and two treasurers were also
elected, and Mr. H. Trueman Wood as secretary.

THE PATENT JOURNAL.
Condensed from the Journal of the Commissioners o,
Patents.
Applications for Letters Patent. *When patents have been "commuunicated" the
name and address of the communicating party are
printed in italics. 29th June, 1886.
 M Conpositiox for Gosaina Linev, J. Diwson, S497. Utrilusing Electriotry, A. F. St. Gourge, 8498. Chariss, B. J. Bing, Pari
499. DRivino in MuLes, Ta

 London.
8502. FORNAOE BARs, T. Norman and H. H. S. Motteram,
shereld

 birmingham.
5005 . swirches
 OS. stoppers for Boortups, R. E. E. Phillips. $-(M$
 3510. Inspestrectible Wrigs for Lamps, G. Asher and
 512. VEATILE, W, Eaves, Birmingham.

 ton. Metal Bars or Frames, G. J. Atkins, London

 2. Roller Grivili Mille, R. Morrell, London. STouqh, United States.).
STAND for BEAM SCA

 Ling.

546. Railway Siovals, F. Stitzel and C. Weinedel

 Benninghoff, United States)
8550 . MAL BACs, H. H. Lake.-(L. W. Freeman, United
 Company, United States)
8552. Luocks, H. H. . Lake.-(The New Haven Clock Com.

 Pranoropre,
United Stute.)

 stokeoov-rent.
S61. SToprese or Aps for Tobacoo-pipss, J. Storerer
 64. ELECTRoLYTIC Production of ALLUMMINIOM, Baro

 Nottingham,

8585. Expanding, \&c., Cutters of Boring Bars, J.
Whyatt, London.

Whyatt, London. (C. Steiner, Argentine Republic.) 8588. MECHANISM of ElEGTRRIC ARC LAMPPS, F. C. Phillips
and H. E. Harrison, Londonn,
8589. GAS STOVES for Cooking, W. H. Williams and J. 8589. GAS STover for Cookivg, W. H. Williams and J.
Jacobs, London. Jacobs, London.
S590. HAT Leathers, J. Eaton, London.
S591. MEASURING WATER UNDER PRESSURE, C. S. Bilham. Permanent Ways, G. Cowdery and E. R. Thomas, London. E94. Skpprating Liquid from Solid Substanges, H.
T. Bridahl, London. T. Breidahl, London.
8595. Electricrty for Signalling, \&e., R. C. Ritson,
London.

1st July, 1886.

8596. KNEE Joints, S. Richardson, Bangor.
8597. Concerntric Argand Burners, The Ross Patent Lighting Company, Dublin.
8598. Iron Pinororte Frames, w. J. Reeve, Birmingham.
B599. Gemerating Carbonic Acid Gas, J. Mangnall
and W. Bratby Blackjey and W. Bratby, Blackley.
8599. GAs HocDERs, J. Mangnall and W. Bratby,
Blackley Blackley.
B01. FLower Holder for Coats, B. H. Joseph,
Birmingham. S60. Manguacture of Bichromate of Ammonia, J.
Park, Glasgow. Park, Glasgow.
8600. Bowls, F.W. Garrard, Ipswich.
8601. SELF-ADJUSTING RAILWAY CIIAIB,
 Middlesbrough.
S605. WAsHys
Birmingham.
8602. WIND-PowEr W 607. Sharpewner Whebl, W. Johnson, Shetland.
Machines, R. Mcte CuTters, \&e., of REAPING, \&a
 609. Transif between Two Points, H. W. Pugh and
H. F. Solaini, Liverpool. H10. HoUsEMADDs' Box and Cinder-sifter, J. Collin and H. Paine, southwick.
S611. GEARING of Broxoles, R. W. Thompson, New-
castle on-Tyne. castle on-Tyne.
S612. RoLLER Grain- GRiNDiva Mills, Sir B. Samuel-
son, Bart, and C

and M. Blair, Liverpool. ©
8603. SHIPS' SIDE LIGHTS, W. Mullan, Liverpool.
S615. SoAP FRAMEs, P. Gill, Liverpool

S617. Friction Covplive, O. F. Jonsson, Liverpool.
8604. Gear WHEEL with Coas CuT in Solid Wood
SEGMENTs, O. F. Jonsson, Liverpool.
8605. FIRE-EXIINOUISHING, W. M. Glenister, Hastings,
and J. C. Merryweather, London. and . . . Merryweather, London. Stafford.
Elinining Pulp Cavities of Teeth, J. Law
Edinburgh. Edinburgh.
8606. AvERTIING, F. G. Howarth, Liverpool. Gardner and Co, U.S.)
8607. CHIMNEY-POTS, J. Bennison, London.
8608. GAS--GURERS, W. G. Appleford, Birmingham.
8609. CENTRIFUGAL DRYING MACHINES, W. Horsfield, London.
8610. Horseshoss, E. Dejean, London.
862s. Increasing the Elastic Force Murrie, Glasgow.
8611. OPENING Botile, W. H. Lloyd, jun., London.
8612. PREvENTING INCRUSTATION, F. B. Dœering, 8631. INCOBATors, H. F. Perry.-(F. Biven, U.S.)
S632. SECoring Railway Chairs, J. H. and W. Tozer,
London. London.
863., Fasterinas for Securing Corks, J. and A. W.
Maconochie, London. Maconochie, London.
8613. MAchinery for Forming Wire Staples, \&cc., A.
Brehmer, London. S635. Mer, Londin. Tubes, H. J. Haddan.-(E. K. Koas,
F. Andrevs, and A. H. Sazotele, United States.) F. S. Andrevs, and A. H. Sawtelle, United States.)
8614. OIL BLEACHING APPARATUs, de., P. J. Davies,
London. London.
London. Holing Carriage Windows, c. G. Gümpel, Lond Nail Cutrers, D. Gestetner, London.
8615. DRIVING SEwing Machines, G. F. Beu A. A. Lateulere, London.
8616. KNITTED UNDER VEsTs, J. S. Wells, London. 8641. Courpirng Devicrs for Locomotives and
TENDERS, A. Selkirk, United States. United States.)
Und 8643. FIREPLACESS, H. Heim, London. Sage, London.
8617. TREATING Coffee to Preserve the Aroma, H.
W. Hart, London. 8646. Inart, London, Flow the Flow Large Volumies of Air,
G. Seagrave, London. 8647. Seagrave, London. HanR PNS, J. H. Lee, London.
8618. MANUFACTVRE of STOPPERS for Bottie,

Varley, London.
Tools for the Manufacture of Bottles, J. J.
Varley, London. Varley, London. Borties for Aerated Liquids, J. J. Varley,
860. Bondon.
Lomer London.
8651. PIsTons, \&c., W. C. Spurr and H. E. Smith,
London. 8652. BRACES, G. F. Redfern.- (C. Bernardon, France.)
8653. ADVERTIIING APPARATUs, P. Pobinson, London. 8653. Advertising Apparatus, P. Robinson, London.
865. Pocker Photogaaphic Camera, E. M. and G.
H. Knight, Halifax. S65. Knight, Halifax.
London. 8e55. Folding Heads of Carriages, J. Rock, Leam-
ington. ington.
867. BREAK-DOWN GuNs, F. Beesley, London.
8655. REEPTACLE for Liquids, W. Hallam and J.
Scott, Manchester. Scott, Manchester.
8659. CLEEAING KNIES, \&c., E. Appleton, Manchester.
8660. WATER GAS GENERATOR, B. H. Thwaite, Liverpool.
8661. Chain Clips for Stentering, \&c., Machines, A.
C. Adams, Glasgow. 866. ORNAMENTAL Mounts for Bedsteads, T. Causnett and R. Leadley, Birmingham.
8663. WATER WAsTE PREVENTING APPARATUS, M. Syer 8664. Rising and FALLING of a LTD or Cover
ATTACHED to the DRAWERS of a Postal and Docu-
MENT CABINET, W. Holder, Dublin Ment Cabinet, W. Holder, Dublin.
8665. SAFETY Locked Door CHaiv, W. H. Baraclough,
Birmingham. Birmingham.
8666. TAPs, for Champagne, N. S. Heeley and I. A.
Allaway, Birmingham. Allaway, Birmingham.
8667 Hot-water Heating Apparatus, J. and N.
Blezard, Padiham. Blezard, Pariham.
8668. EDGEs or FLANGEs of Baking Dishes, H. Lisle,
Wolverhampton. Wolverhampton.
Shoorining J. RLE Rogers, Trucle
Orthoptic for Rifle 8670. ReFLectivg Lrgir through Coloured Glass, \&c.,
E. Townshend and T. H. Thompson, Birmingham. E. Townshend and T. H. Thompson, Birmingham.
8671. PAPER-BAG DARK-HLDEE, C. R. King, Maidenhead.
8672. RACK PULLEYS for BLINDS, J. Wilson Glashear. 867. PAPER-BAG DARK-SLIDE, C. R. King, Maidenhead.
867. RAKK PUULESY for BIND, J. Wilson, Glaggow.
867TS, W. V. Shaw, Glasgow. 8674. PERAMBUA. MTogs, なC., C. R. Gorman and C. J.
Fleteher, Birmingham. 8675. Aperture-sighting Apparatus, H. P. Miller,
London. London.
8676. Mouthpiege for Horizontal Brick-making
Machines, W. Temple, Newcastle-on-Tyne. Machines, W. Temple, Newcastle-on-Tyne. Ashley,
8677. BortuEs, \&e., J. C. Arnall and H. M. Ashy
Ferrybridge.
8678. Preserving Watch-keys from Dust, A. B.
Wilkins, London.
8679. Drying Apparatus, W. A. F. Wieghorst, S679. Dry Apparatus, W. A. F. Wieghorst Lo. Liruid Meters, G. Teideman, London. Wolff, London. London.
8683. Connecting Sleeve Links, A. W. Agnew, London. S685. Glass Siavs, E. Glikher and F. Rose 8686. Meghan. 8687. Lamp Burners, A. J. Boult.-(W. H. Harvey, Canada.)
838. Armatures for Electric Generators, G. T. 86s9. NursEry Boots, \&c., H. Exton and A. T. BridgeWater, London.
8690. STAY Brivinge, ¿c., I. and C. Lunn, London.
8691. MECHANICAL TELEPHONES, de., W. E. Lea, Liverpool. STiok, T. Rowe, London.
8693. New Electrolyte in Secondary Celle, w. J. 8694. GuN Carriages, R. H. Hughes, London 8695. Machinery for Turning Pottery Ware, Plant, Hauley.
8969. CLLosing Dress STand, E. Gems, London.
6997. PREVENTION of SEWER GAS in DWELING 869. PREVENTION of SEWWR GAS in DWELLINGS, S. A.
Johnson, London. Du98. Condensing Steam, W. P. Green and T. W. 8699. Wood-workers' Cramp, R. Melhuish, London.
8700. PREPARING WEDDING CAKES, \&c., H. W. Hart, 8701. Shield Grafting, R. E. Bénard, London.
8702. Live Fastener, J. J. and T. I. Day, Londo 8702. LiNe Fastener, J. J. and T. I. Day, London.
8703. Automatic Weighing Machines, J.' Hart and J. L. Sampson, London. 7704. Portable Fire-EsCape, A. Crux, London.
WTin. Locomotive for Single Rail Elevated Rail Ways, F. B. Behr.- (A. Mallet. France.)
STob. Feding Apraratus for Fibe Cleaning Miohives, A. H. Death, Londor Fibre Cleaning
M707. Armour Plating of Vessels, E. C. G. Thomas. (H. S. Thomas,, India.)
(Inossel. Strande E. C. G. Thomas.
Sting Machines, J. stephens and A. Smith, London.
8709. MANTLES for Lightiva, A. Paget, London. 8711. AMMUNTITO, J. Richards, London.
8712. SHIRTS, C. E. Towell, London. 8712. SHIRTS, C. E. Towell, London.
8713. TILEs, M. H. Blanchard, London.

$$
\text { 3rd July, } 1886 .
$$

8714. Braces, G. Waiker.-(W. Greenshields, Nevo Zea(and.)
8715. Driving Belit, R. Binnall, Rochdale.
8ecuring Springs, W. D. Wilkinson, Birming. ham. AoAp, A. Macqueen, Tunbridge Wells. 8718. Nexders, G. O. Schulz, London.
8716. Pumplne Enaines, H., J. S., and H. B. Watson, Newcamtle. Enaines, H., J. S., and H. B. Water
8717. Permanent Way, T. B. Wilson, Manchester. 8720. Permanent Way, T. B. Wilson, Manchester.
872.1. PRiving Machines, G. Newsum, Bradford. 8722. Privting Machines, G. Newsum, Bradford.
Trent 872. SECURING TYPE, G. A.
R. C. Douglas, Bradford.
8718. PHospHats, E, Solv. 8723. P. Douglas, Bradford.
8719. Drivina WEs, E. Solvay, London. 7724. Driving Wherels, G. Hookhan, London.
S7igments, J. M. Bennett, Glasgow, 726. Praments, J. M. Bennett, Glasgow.
NAVIGABLE VESSELS, W. Forbes, Glasgow. 8727. Minoing Meat, J. Coppard, Landon.
8720. Plandig Tubes upon Spindles, E. Jagger,
London London.
8721. OIL CANS, T. Caldwell, London.
8722. Compens (C. A. Paillard, Sueitzerland.)
8723. Stoves, E. Abate, London.

Londor. Machine, W. Tatham and J. Hancock,
S733. Preparing Transparencies, w. Jones and R. C. Powell, London,
734. Preprang Tr
C. Powell, Londonansparencies, W. Jones and R. 8. Powell, London.
873. LAMPS, E. A. and F. S. Rippingille, London. London.
(737. Gaugating Wire, W. Walton, Manchester. 8737. Gavaing Wire, W. Walton, Manchester.
8378. Casks, H. W. Deacou and R. A. Price, London
8730 -(L Sellner, Austria.) S740. Heaninc Water, G. Boegler, London.
8741. Windows for Railway Carriages, B. Tettweile London.
874. Skif-supplying Brushes, D. D. Macpherson, S743. Compressed Air Locomotives, A. A. E. G. de V. de Cumptich, London.
S744. STIRRUPS, , F. Redfern.-(F. Musany, France.)
8745. STor Motion for Drawing Machines, R. Priebsch, London. for Drawing Machines, R 8746. Gas Lamps, F. Hochuli.-(T. Schaefier, France.)
8747. Preservativ Paint, J. Aniello, J. Kennedy, and J. P. Halket, London. Anien .
a74. MEasuring the Distances of Objects, W Farquharson, London.
8749. TEsTING WIRE, H. Bradwell, London. 8750. CHEGKING RECOIL in ORDNANCE, J. Vavasseur,
London. 8751. SELF-winding Clocks, J. G. Lorrain, London.

5th July, 1886.
8752. Leather Bands for Hats, F. W. Cheetham and J. Hague, Manchester.
8753. FAstener for MAchine Bands, dc., H. P. True man, Birmingham.
8754 G Goove Matice for the Paring of HAT Curls S. and D. Wilde, Hyde.
8755. BoILER FURNACES, \&c., P. H. Sadler, Birming
ham ham. Paraffine WAx, R. Tervet and F. Alison
Glasgow. 875. Bo Bonnets for Safety Lamps, J. Cooke, Birming 8758. Eliectric Arc Lamps, L. Hanson. Halifax. 8759. Lichting and Extinguishing Gas Lamps, w.
Pollard, Halifax. Pollard, Halifax.
8760. Shook-DEADENING APPARATUS, R. Wotherspoon
Liverpool. 8761. ARTIFICIAL FUEL, W. C. and A. A. Haigh, Man chester.
8762. MMstics for MAking Jornts, H. and W. Budiner
Paris Paris.
S763. Wood-turning Machine, S. Ingham, W. Illing
worth, and J. W. Haywood, Leeds. worth, and J. W. Haywood, Leeds.
8764. Marking FABrics, dc., J. and R. J. Foot,
London. 8765. FItTings for Convertible SAshes, dc., R. Adams
London. 8766. OPENERS and SCutchers, J. W. Makant and P.
Parkinson, London Parkinson, London,
8767. SUPPo,
T. Giting HURD T. Gidney, London. London. Soundings at Sea, H. P. Sherlock s769. Folding and Portable Leg Rest, G. E. Holland
London. 8770. LADies' Dress Improvers, E. C. Vickers
London. si7l. Looms for Weaving Pile Fabrics, J. Wade, 8772. Llever Bottle Openkr, C. L. Bemrose, London.
8773. Stirring, Mixing, dci, Apparatus, E. Quack S774. Onnibuses, \&c., J. Offord, London.
s775. CoLIIPSIBLE Hoods for VEHIOLES, E. Grimshaw,
London.
776. Trouser Stretchers, E. G. Sims and R. H.
Bishop, London. Bishop, London.
8777. Lubricators, F. Trier.-(M. Schneider, Germany.)
878. ELEVATOR, T. J. Denne, London.
8779. APPLIANCE for GENTLEMEN'S SCAR Allen, London. 8780. Saferty Appliance for Rifle Ranges, G. H.
Gordon, London. Gordon, London.
8781. MACHINES
Ho
Haddan.-J. Cunning, U S.) Intestines, H. 8782. SpANNERS. W. Martin, London.
S78. PLAYING GAMES of SKILL, G.
784. PLAving Games of Skill, G. Premi, London. 8785. OBSELETRE, BIN. HER Hale, London.
8786. DYTAMO-ELECTRICAL M MChard,

London. 8787. Centrifugal Pumps, G. Yellott, Baltimore
8788. Openive, de., Electric Circuits, H. H. Lak 8788. Opening, \&c., Electric Circuits, H. H. Lake
(. Snyers, Belgium.)
8799. Shoes and Boots, E. R. Lanonier et Cie,
London.

SELEOTED AMERIOAN PATENTS

(From the United States' Patent Ofice official Gazette.) 341,330. Sturfing Box Gland, Joseph D. Hobbs, Claim.- (1) In combination, a packing box, a piston
rod, and the packing gland having a V-shaped lower edge, and on oil chamber between said gland and the piston rod, substantially as described. (2) The com-
bination, with the packing box and the piston, of a

packing gland having a V-shaped lower edge adapted
to compress the packing, an oil chamber I, and nut C, at its upper end, Having a packing chamber D,
and packing O, contained therein, substantially as described.
$341,462$.
341,462. Whekl, William W. Dunn, Peoria, Ill.-
Filed December' Tth, 1885. Claim. - (1) The combination, in a wheel, of the rim
R, having sockets M, the hub A, having shallow
sockets B and snokets B and radial projections C, the spokes S,
adapted to enter said sockets, and the ferrules D, sub-

341,462

 the wedgo and to be turned outward at tits lower end
throught he perororation in the wood of the hande, as
hat

341,474

perforation in the wedge and to be turned outward
at its lower end into the wood of the handle, as described. (3) The combination of the hammer,
handle, perforated wedge, tapering ribs strengthening handle, perforated wedge, tapering ribs strengthening
the perforated portions of said wedge, and retaining
nail or member, the perforation turning outward nail or member, the perforation turning outward through side of the wedge to form an incline, that
acts to turn up the lower end of the nail or retaining
member into the wood of the handle, as described. 341,837. Steam Pile-driver, Augustus /J. Dupuis, Craim.-(1) A steam pile-driver provided with steam ports leading to both ends of the cylinder, and an
exhaust communicating with both steam ports, a valve xhaust communicating with both steam ports, a a auble
chamber, a rotary valve wittin the same, a double
crank on the stem of the valve, and a side bar operated by the plunger, and having cams which actuate said
cranks, substantially as described. (2) A steam pilecranks, substan a rotary valve, a double crank on the
driver having
stem of said valve, a slide bar having cams which actuate said cranks, and a collar connecting said slia bar to the plunger, the (3) A steam pile-driver having a
tially as described. rotary valve, a double crank mounted on the stem of
the valve, a slide bar actuating said crank, a collar connecting said bar to the pluanger, and projections on the collar engaging with guides on the upright, sub-
stantially as described. (4) In a steam pile-driver, the stantially as described. (4) In a steam pile-driver, the
combination, with a rotary valve and a slide bar
operating said valve, of a collar connecting said bar with the plunger, and a second two-part collar fitted
vithin a recess in the plunger and embraced by the within a recess in the plunger and embraced by the
outer collar, substantially as described. (5) In asteam
pile-driver, the combination, with the steam cylinder
and a ferrule for supporting the head of the pile, of
uprights connecting the two guides upon said uprights, 3aliz proctions agaging with saia, graucees

 341,738. Looss Putire Oimer, Oharhes w. Edereson,
 oil cup connected to the hub thereof, and having air
passage communicating with the bearing of the axle. an adjustable needle working in said airg passaga, and
a curved feed-pipe connected with the top of the oil a curved feed-pipe connected with the top of the oil
cup and having its discharge end communicating
with an opening in the hub of the pulley, substantially

as described. (2) The combination, with a loose
pulley of an oil cup connected with the hub thereof, a needle for regulating the admission of air to said
cup and a feed-pipe connecting the top of the cup
with the hub of the pulley, substantially as and for cup, and a feed-pipe connecting the top of the cup
with the hub of the pulley, substantially as and for
the purposes specified. 341,802. Horn PLate For Car and Locomotive
Frames, Samson Fox, Harroaate, County of York, England. - Filed January 19th, 1886 .
Clain.- (1) The mode or proces of manuacturing frame or horn plates for rolling stock, which consists
in first cutting a suitable plate to approximately the form of the intended frame or horn plate, after ward
heating the said plate, then pressing or forcing it by heating the said plate, then pressing or forcing it by
means of a male die into and through a female die,

341.802

$$
t
$$

thereby imparting to it the desired form and flanging
it, and afterward causing it to be held between it, and afterward causing it to be held between
pressers or holders to prevent warping or buckling,
substantially as described. (2) As a new article of substantially as described. (2) As a new article of
manufacture, a flanged frame or horn plate for rolling manufacture, a flanged frame or horn plate for rolling
stock, formed of a single plate by pressing or stamp-
ing substantially as described. ing, substantially as described
341,865. Blast-pipe for Locomotive Engines, Henry
Adamm, London, and William Adams, Nine Elms,
County of Surrey
Adans, London, and William Adams, Nine Eims,
County of Surrey, England.-Filed December 14tl,
1885.
Claim.-In an engine, the combination, with the
boiler flues, of a curved blast-pipe with its enlarged
341,865

opening C in front of the forward ends of the lower
boiler tubes, surrounded at its top by an annular boiler tubes, surrounded at its top by an annular
steam discharge orifice B, substantially as and for the
purpose set forth.

