DIRECT GRAPHIC METHOD OF OBTAINING THE CURVE OF EQUILIBRIUM IN MASONRY ARCHES.
Attention has been drawn by various authors to the fact that iron bridges of small span are much more severely strained by the same moving load than are bridges of 60 ft . and upwards, but no one up to the present seems to have done the same for that very common and cheap mode of construction, the masonry arch-brick more particularlywherein it can be clearly shown the same law obtains a in the wrought iron girder construction, as far as relates to unequal loading. Perhaps this may be because there is no concise work on the subject giving the
him to treat the halves of the arch separately, whereby he gets an erroneous result; and it is patent that the arch cannot be treated in this manner because the curve of with given weights acting at certain horizontal distances rom the points of attachment, and to arrive at the curve assumed by it under these circumstances it must be treated as a whole.
Now having the law "that the ordinates of the curve of equilibrium under vertical forces vary directly as the bending moments -which is tersely explained in Proysor Tuller's paper-the curve of equiloum for any remem of loading can be obtained; at the same time
for this loading, as shown in dotted lines $0,1,2,3$, \&c From 6, the highest point of the curve, draw two straight ines each side to any points on the line A B; on to these lines horizontally project the moments of the curve from the apices of their respective ordinates, whence the points $1,2,3, \& c \cdot$., are the projections of the two halves of the linear arch shown in dotted lines. At each of these intersections, $1,2,3$, \&c., draw down vertical lines, as shown by those dotted. It is from this evident that, if the lines 6 A and 6 B are projections of the two halves of the linear arch in dotted lines, two other straight lines starting from somewhere within the apex of the middle third of the arch ring, and cutting the ordinates in dotted lines $1^{\prime}, 2^{\prime}$, 3^{\prime}, \&c., will be a projection of the linear arch lying within

necessary data as to obtaining the curve of equilibrium ecessary but at the same time trustworthy method yet the same information exists, only in disconnected portions, Professor George Fuller, M.I.C.E., communicated a paper to the Institution of Civil Engineers-vol. xl.-in 1875, showing how the curve of equilibrium could be directly arrived at, acknowledging his indebtedness at the same

$\frac{1}{25 f^{6}}$
time to an anonymous writer in The Engineer and Architects' Journal of 1861, who drew attention to the fact "that the ordinates of the curve of equilibrium under vertical forces, vary directly as the bending moments." The above paper being written in regard to the iron arch, and as an amended method of obtaining the curve of equilibrium on Mr. Bell's tentative method-" Proc." Inst. C.E., vol. xxxiii. Rankine, in his "Civil Engineering,"

addenda page 15 , also casually refers to evidently the same writer. Subsequently, the late Professor Fleeming Jenkin, in his article on Bridges in the "Enc Britt.", 1878, refers to Professor Fuller's paper, and adapts it to the masonry arch, but only for symmetrical loading. But it is not in this latter case where the method is of greatest value ; but for showing the curve due to the moving loads, for it will be shown hereafter that nothing can be more fallacious than to treat the moving load as an equally distributed load-as some authors do-and add it to that of the structure.
The anonymous writer in The Engineer and Architects ${ }^{3}$ Journal gives a couple of examples of unequal loading, but makes two assumptions which are quite untenable, leading
on the piers or abutments-the weight above them being carried vertically down-the problem being to wedge that portion of masonry lying above the clear span, and the best way to illustrate this is by an example. Let us take a semicircular arch-Fig. 1-25ft. span in the clear; this will give a 12 ft .6 in . radius for the intrados; let the thick, and the depth at centro of bridge 3 ft . 6 in., the arch and filling being taken at 100 lb . per cube foot, the units being for 1 ft . in width of the arch ring. The unit for the moving load has been arrived at as follows:--Haking a fully-equipped tank engine weighing 45 tons, six wheels coupled, 14 ft . wheel base, giving 15 tons on each axle or sleeper; and as the latter usually run about 9 ft . in length, and giving 18 in. more at each end on the assumption that the filling will distribute the weight that distance, this will give 15 tons $\div 12 \mathrm{ft} .=25 \mathrm{cwt}$. per foot in width, or working portion of the arch ring.
From the above the units of weight for the structure itself would be: W_{1} and $\mathrm{W}_{12}=24, \mathrm{~W}_{9}$, and $\mathrm{W}_{11}=$ $13.0625, \mathrm{~W}_{3}$ and $\mathrm{W}_{10}^{1}=10.125, \mathrm{~W}_{4}$ and ${ }^{\circ} \mathrm{W}_{9}=8.1875$,

35 ft .
W_{s} and $\mathrm{W}_{5}=69375$, and W_{6} and $\mathrm{W}_{7}=6.375 \mathrm{cwt}$, The ordinates W , and W , are 1 ft . 6 in . from the face of abutments; the remainder are spaced at 2 ft . apart.
We will also suppose the locomotive is entering from the left, and has its front wheels on the bridge 5ft. 6in. from the face of the abutment $\left(\mathrm{W}_{3}\right)$. The moments for both dead and live loads would be at each point as follows :-

 As we are only dealing with the portion $\mathrm{R} r r_{1} \mathrm{R}_{1}$ of masonry overlying or superimposed upon the clear span, and also the centre third of the arch ring, produce the face lines of abutments R and R, upward to r and r, so that they may intersect the middle third of the arch, and at the points where the intrados of the midale thirr of arch ring cuts these lines, draw the horizontal line A B produced both ways. Upon this line, to any scale of parks, set oir
vertically the total moments obtained above to their verticalty the total momenhs
respective ordinates, and this will give a curve of moments
-or thereabouts-the centre third of the arch ring; as the ordinates of the curve within the arch will be submultiples of the ordinates of the arch in dotted lines, which is self-evident if the line A B is moved up vertically along with the curve of moments until it coincides with the line $a b$; for could we fix in the first instance the position of the line $a b$, we should have plotted the curve of

moments upon it. Now to see where it is possible to get the most advantageous curve-i.e., of maximum rise, and therefore minimum thrust-within the arch, project horizontally the middle third of the arch ring where cut by the ordinates in full lines, $1,2,3$, \&c., on to their respective ordinates $1^{\prime}, 2^{\prime}, 3^{\prime}, \& c$. , in dotted lines, and if the points so obtained of the extrados were connected by lines, and those
for the intrados similarly treated, it would give an enclosed
rea wherein the straight lines lying within it would be the linear arch sought within the centre third of ringthese lines are not shown on the diagram, so as not lines confuse-but in fixing the position of we are seeking the "horizontal thrust," we must adhere to what the term con-veys-ie, that the points a and b shall be at the same veys-i.e., and perpendicular over the points A and B.
Now, in this example it is impossible to get two straight lines lying with in the enclosed area-whence the reason of this example being chosen as illustration-therefore what

we have to do is to get two straight lines $a c$ and $c b$ drawn from the extremities a and b perpendicular over A and B and meeting at apex of the arch, which shall give a curve which is as much outside the extrados and as much insid satisfied by the lines $a c, c b$ in Fig. 1, for taking the ordinate 3^{\prime} in dotted lines, it is seen that at this vertical-the points f and g being the projection of the middle third of arch ring upon it-that the line αc is as much above the point f, the projection of the extrados of middle third of the arch ring, as the line $c b$ is below the point m, the projection of the intrados of the middle third of arch ring at the vertical 8 - -the points $l m$ being the projection of the middle third of the ring at this ordinate. Having determined the position of these lines and drawn them in project back again the points where the verticals $1^{\prime}, 2^{\prime}, 3^{\prime}$, full lines, then them, on to the ordinates $1,2,3$, \&c., in the nearest concentric curve of equilibrium which can be drawn within the arch ring for this loading, and which is shown in Fig. 1. by the curve in full lines. Having drawn this curve, measure its height at centre of span from the line $a b$, by the same scale to which the elevation of the arch was drawn ; in this case its depth is $6.4 \mathrm{ft} .=\alpha$.

Now to check the accuracy of the work, the momests may be run out at the centre. We know that the strain at centre for a weight placed at any point upon the arch-or any other structure-is $\frac{x \times w}{2 d}$, where $x=$ distance from
arrived at graphically without calculation by drawing the closed polygon and taking any arbitrary value for the illustrated above, there being always the difficulty of drawing the curve with sufficient nicety when beginning at either side that it shall exactly close in on the opposite point.
In all the other Figs., 3 to 7, the curves of equilibrium for various distributions of the moving load have been got out in the above manner, and it is evident, in comparing the 25 ft . and 35 ft . spans, that the former with a five ring arch is much more severely strained transversely than the latter with six rings of brickwork, the curve of equilibrium departing more from the centre third of the arch ring in the former than in the latter. So long as the curve of equilibrium can be kept within the centre third of the arch ring, and the thrust is normal to the joint, the joint are wholly in compression, but so soon as this limit is exceeded a tension is set up on the side further away from
the line of equilibrium.
A. S. H. the line of equilibrium.

THE NEW BATTERSEA BRIDGE.

In describing the fine new bridge now about to be constructer from the designs of Sir Joseph Bazalgette, and partly illustrated in our last and present impressions, we may abstrac eontract specification, and commence with the
Ping of a mow 14 in ., grooved and tongued and caulked with oakum. The
the face of the granite is to be smooth and fine axed, except the moulded courses, pedestals, and parapets, which in all case whether above or below Trinity high-water level, shall be fin hisel-dressed to the true form shown on the drawing page 65. The whole of the masonry is to be set flush in bed mortar, composed of 1 of Portland cement to 1 of san nd properly grouted. The joints not to exceed $\frac{1}{8}$ in. in thick ess. Groulng to the directions of the accoldints of the ashla dowels or joggles, 2 in square and 4 in in length to be insert without extra charge whenever such may be considered necessar by the engineer. Under the footway on each side of the abut ments are to be formed boxes or troughs for the purpose containing any pipes which may be laid across the bridge These troughs are to be formed in the concrete, as shown, an o be in continuation of the wrought iron pipe boxes over th arches. They are to be dipped down under the kerbs an in the position shown In surnished of the contractor is to form within it a 4 ft , by 2 ft . 8 in sew in continuation of the sewer

Approaches.-The raising of the Surrey approach is to commence at a point about 352 ft . 6 in . from the face of the abutment at a level of 14.78 ft . above Ordnance datum, and to ise with a uniform gradient of 1 in 30 to the abutment. The approach is to have a uniform wiath of 60 ft . for that part whic extends from the abutment to the Foly, boyond which the width is to be gradually reduced to 5%. ab Europa-place. The of 12ft except whe out the abutments, Th entire surface over the brick arches and piers is to be covere

Details of Cast Iron Parapet.

THE NEW BATTERSEA BRIDGE-DETAILS OF PARAPET.

nearest abutment, $w=$ weight, and $d=$ depth or vers. sin of arch; but as we elect to divide by d at once, the formula can be written $\frac{x}{2} \cdot \frac{w}{d}$, that is, we halve the distance from the abutments instead, which will come to the same thing Working this out, it will stand thus :-

162375
406.78125 = moment at centre

Then proceed to draw the polygon of forces, as shown in Fig. 2, by setting up the respective units. The reactions or the dead load will of course be half the total load, it being distributed symmetrically both sides of the arch left abutment, 195 cwt . on R , and 5.5 cwt . on R_{1}, therefore on R there are $68 \cdot 6875+19 \cdot 5=88^{\prime} 1875 \mathrm{cwt}$., and on $\mathrm{R}_{1} 686875+55=74 \cdot 1875$ cwt. From the point on the vertical line of loads where these reactions
meet draw a horizontal line, its value being $\frac{\text { moment }}{\text { depth }}$ $406 \cdot 78125=63.56 \mathrm{cwt} .=$ horizontal thrust, Now com plete the polygon. And by drawing lines parallel from the polygon of forces to their respective places in the curve they must coincide in direction, and if this is not so one may be quite sure some error has been made in one or other of the calculations or plotting, which will have o be rectified
The curve of moments in dotted lines could have been
abutment dams are to have return ends for the perfect exclusion of the water from the excavations, to be sunk on the land side behind them. On all sides of the excavations for the pier whole timber, 14 in . by 14 in ., grooved and tongued, and caulked where necessary above and below the ground level. The points bottom of the concrete foundations. The tops of the piles to be cut off flush with the top of the concrete, which is to be finished off to a truly level surface 18 ft . below Ordnance datum In excavating for the pier foundations the whole of the materia down to the level of 6 ft . above the bottom of foundations is to be removed. The material below this level is to be excavated crete with the least possible delay and abutments is to consist of clean Thames ballast and Port and cement, incorporated in the proportions of 6 to 1-by measure-respectively. The abutments are to be constructed of granite ashlar facing, backed with the best quality of picke stock brickwork set in Portland cement mortar, 2 of sand to 1 of cement, and with Portland cement concrete in the manner shown upon the drawings, page 46. The cast iron skew barks and the holding down bolts, \&c., are to be built in is grouted solid in the brickwork and masonry. The masonry depth shown on the drawings, each course to be composed of alternate headers and stretchers. Below Trinity high-water the headers to be not less than 3 ft . in depth from the face, and 2 ft . in width on the face, and the stretchers not more than 4 ft . 6 in . in length on the face, nor less than 1 ft .9 in . in depth from the face, and above that level the headers to be not less than 2 ft . 3in., and the stretchers not less than 1 ft . 6 in ., in depth from the face. The stones in the alternate courses are to break bond with a lap of not less than 12in. The whole of the face of
the granite which is below Trinity smooth and fine axed-excent the moulded course - the quality of the work being equal to that of the Victoria Embankment The horizontal bed joints are to be fine dressed and splayed as shown, but the vertical joints to be plain and perfectly straight and fine picked for at least 15 in . inward, the remainder of the granite to preserve its full dimensions and to be fair picked and
with Claridge's asphalte-quality No. 2-1in. thick, which is to be turned up 6in. at spandrel walls. The approach from the Chelsea Embankment is to commence at a level of 17.5 ft . above the abutment the abutment.
Ordnance datum, and arched ribs.-At a level 1ft. below which extends across immediately under the course of masonry diately under the lowest course of masonry of the abutments is to be placed the cast iron washer plates bedded in Portland cement, and the bolts are to be fixed perfectly plumb and hel in position by a template at their upper end, so that they may be in the right position for the holes in the skewbacks, and the are to be built up and grouted solid in the brickwork and and machined upon their skewfaces and in the recesses for the pivots, and each pair which are intended to butt on the pier must be fitted together in the workshops and gauged to th angles of the skewfaces shown on the drawings. There are to be five arches, each consisting of seven cast iron ribs, of the span and versed sines shown. The radius to the intrados of each cas ron rib must be 193 ft . 6 in ., and the sectional area of the ribsthe same for all arches-to be that shown on page 65 . The seg ments, forming each asment of the cast iron ribs for the centre and intermediate spans is to have three intermediate radia stiffeners, and each segment for the shore spans two intermediat radial stiffeners, as shown on the drawings. All butting surfaces of the segments are to be planed to radial lines. No bolt holes to be cast, but in all cases drilled, all bosses faced, and al bolts, either for joints or for connecting the wrought iron work to be turned to an exact fit. On the upper flange, and in the positions required, are to be cast the lugs to which the vertical intended to form the springing At the ends of the metal of tl radial flanges to be made with fillets cast on for holding tl pivot. The pivot to be of cast iron and machined to gauge, ar d surfaced, with its bed, on the arched rib, and with the recess on the face of the skewback, so as to ensure that each arched rib may have a perfect bearing and be free from any initial bendiug strain at the springing. After the supports of all the arched

THE NEW BATTERSEA BRIDGE-THE PIERSYAND SPRINGINGS

THE NEW BATTERSEA BRIDGE-DETAILS OF IRON SKEWBACKS.

face of the skewback and the end of the arched rib, the bolt time as that of the curved plates of the platform. It shall be be turned out to the required curves and to the exact form holes drilled through them, and turned bolts inserted as shown. continued over the piers and widened out at the abutments, and shown on drawing. The curves of the top edge of the coving | When the springings of all the ribs of a span have been fixed as | |
| :---: | :---: | :---: | :---: |
| shown, the radial stiffeners on the ribs are to receive the L | shall be finished of as shown on the drawings. In all cases the |
| space provided inside the box shall be fully equal to that shown | | line, and the levels of these curves at the centres such that the shown, the radial stiffeners on the ribs are to receive the L iron bracing. Upon the completion of this bracing, the con-

tractor will proceed to erect the vertical T iron pillars, diagonal bracinge, and longitudinal and crosis girders; and also the frame:work which is to support the coving and fontways, and upon the
space provided inside the box shall be fully equal to that shown on the drawings. The curved plates for supporting the concrete levgth earried directly on the cábt irón arehed ribs. These plates are to be bent to a radiues of $197 \cdot \mathrm{Fff}$. in addition to their
minimum distance from the underside of the cornice, 21 in . docp, o the top edge of the coving, must not be less than any of the spans. On the spandrel face, over the edge of the
coving is to be bolted the cast iron cornice shown on page 64.

Paving, de.-Over the whole surface of the curved wrought iron carriage-way and footway plates-wnch will have been over the surface of the abutments to the extent shown, is to be
a layer of fine Portland cement concrete to form a bed for the a layer of fine Portland cement concrete to orm a bed for the of very fine ballast to one of Portland cement; the surface shal and the concrete is to set hard before being covered by the paving. There is to be one pair of granite trams for the traffic scending the gradient in each direction, and commencing in a cene with the granite setts at each abutment, and ending at the
co bridge. They are to be of Aberdeen or Guernsey granite, $12 \mathrm{in}$. wide by 7in. deep, and not less than 3ft. in length,
all to be worked fair and fine.dressed on the top face. The kerbs and channels for the total length between the abutment aces are to be of cast iron of the section shown.
Materials and tests. - All ironwork and steel
 is to be canale of resisting ane steel for of coving plates 25 tons per square inch, and not exceeding 28 tons per square Inch, and shall elongate not less than 20 per cent. in 8 in. All wrought iron must be tough, fibrous, and uniform in $26,000 \mathrm{lb}$. per square inch. Full size pieces of round, flat, or square iron, not less than $4 \frac{4}{2} \mathrm{in}$. in sectional area, to have an
ultimate strength of $50,000 \mathrm{lb}$. per square inch, and stretch uniformly 9 per cent. throughout their whole length. Bars of a larger sectional area than $4 \frac{1}{2}$ square inches, when tested in the usual way, will be allowed a reduction of 1000 lb . per square
inch for each additional square inch of section, down to a minimum of $46,000 \mathrm{lb}$. per square inch. When tested in specimens of 10 in ., taken from tension members which have been rolled to a section of not more than $4 \frac{1}{2}$ square inches, the iron must show t least 12 per cent. in a length of 8 in. Specimens taken from ars of larger cross section than $4 \frac{1}{\text { s. }}$ square inches will be allowed reduction of 500 lb . for each additional square inch of section, down to a minimum of $50,000 \mathrm{lb}$. The same sized specimen
taken from angle and other shaped iron must have an ultimate strength of $50,000 \mathrm{lb}$. per square inch, and elongate 11 per cent
in 8in. The same sized specimen tave fromen have an ultimate strength of $48,000 \mathrm{lb}$. and elongate 11 per must in 8 in. All iron for tension members must bend cold for about ness of the piece, without cracking. At least one sample in
three must bend 180 deg. to this curve without cracking. When nicked on one side and bent by a blow from a sledge hammer,
the fracture must be nearly all fibrous and showing but few ron must stand bendecimens from angle, plate, and shape iot over three times its thickness without craekinameter not over three times its thickness, without cracking. When
nicked and bent its fracture must be mostly fibrous. nd pins must be made from the best double-refined iron. The ast iron must be of the best quality of soft grey iron. At least he cast iron ribs be cast from each running of the metal fo hoast iron ribs, skewbacks, \&c., each be 3ft. 6in. long by 1in.
broad by 2in. deep; three bars to be subjected to tensile strain and three shall be tested transversely by placing them edge ways on bearings 3 ft . apart, and loading the centre of the bar when they must not break with less than 27 cwt. or a tensile this contract, except where otherwise specially provided under be picked stock bricks, of the best and hardest quality. No granite must be Aberdeen, Guernsey, Dalbeattie, or the beest quality of Cornish.

FUEL AND SMOKE.*

Lecture II
The points to which I specially called your attention in the irst lecture, and which it is necessary to recapitulate to-day, are these :- (1) can be burned. (2) That the gas so given off, if mixed
before it with carbonic acid, cannot be expected to burn properly or com-
pletely. (3) That to burn the gas a sufficient supply of air must be introduced at a temperature not low enough to coo
the gases below their igniting point. (4) That in stoking a fire the gases below their igniting point. (4) That in stoking a fire a
small amount should be added at a time because of the heat equired to warm and distil the fresh coal. (5) That fresh coa as may be thoroughly heated by the incandescent mass above and thus, if there be sufficient air, have a chance of burning. A fire may be inverted, so that the draught proceeds through hem, of course, fresh coal is put at the top
Two simple principleses are at the root of all fire management and (2) it must have a sufficient supply of air. Very simple, ver gnored. In a common open fre that, and frequently altogethe put on the top of a glowing mass of charcoal, and the gas distilled ff is for a long time much too cold for ignition, and when it doe catch fire it is too mixed with carbonic acid to burn completely o steadily. In order to satisfy the first condition better, and keep the gases at a higher temperature, Dr. Pridgin Teale arranges a its temperature helps them to ignite. It also acts as a radiator nd is said to be very efficient
In a close stove, and in many furnaces, the second condition is violated; there is an insufficient supply of air; fresh coal is
put on, and the feeding-doors are shut. Gas is distilled off,
but where is it to get expected to burn? Whether it be expected or not, it certainly does not burn, and such a stove is nothing else than a gas
works, making crude gas and wasting it-it is a soot and smoke actory.
Most slow combustion stoves are apt to err in this way; yo make the combustion slow by cutting off air, and you run the the fuel this belver, id is customary to open a trap-door belo the oxygen will soon become CO_{2}, and be unable to burn the gas.
The right way to check the he air supply and make it distil its gases unconsumed, but to admit so much air above the fire that the draught is checked by the chimney ceasing to draw so fiercely. You, at the same time,
secure better ventilation; and if the fire becomes visible to the coom so much the better and more cheerful. But if you open purposes, an open fire. Quite so, and in many respects there-
fore an open fire is an improvement on a close stove. An
*Second of two Lectures delivered by Profess
Royal Institution, London, on 17th April, 1886.
fire has faults, and it certainly wastes heat up the chimney. A liable to waste gas up the chimney-not necessarily visible or smoky gas-it may waste it from coke or anthacite, as CO. You now easily perceive the principles on which so-called
smoke consumers are based. They are all special arrangements or appendages to a furnace for permitting complete combustion by satisfying the two conditions which had been violated in it supply to a furnace: the needful amount is variable if th stoking be intermittent, and if you let in more than the needful amount you are unnecessarily wasting heat an
boiler, or whatever it is, by a draught of cold air.
Every time a fresh shovelfull is thrown on a great productio of gas occurs, and if it is to flame it must have a corresponding reat supply of air. After a ime, when the mass has become re hot, it cant get nearly enogh air through the bars. But at firs that although no mok is visible from alowing m it by means follows that its combustion is perfect. On an open fire it probably is perfect, but not ne your furnace bars and keeping the doors shut-you will be merely distilling carbonic oxide up the chimney-a poisonous iven off from closese stoves.
Now let us look at some smoke consumers. The diagrams Gregory. You see that they all Ireland, and Lowndes, and of back of the fire, and that this air is warmed either by passin under or round the furnace or in one case through by passing bars. The regulation of the air supply is effected by hand, and it is clear that some of these arrangements are liable to admit an unnecessary supply of air, while others scarcely admit enough especially when fresh coal is put on. This is the difficulty with all these arrangements when used with ordinary hand-i.e ntermittent-stoking. Two plans are open to us to overcome
the difficulty. Either the stoking and the air supply must the difficulty. Either the stoking and the air supply must both be regular and continuous, or he air supply must be made out in any of the many forms of mechanical stoker, of which his of Sinclan's petually being pushed on in front, and by alternest moreme pros the fire bars the fire is kept in perpetual motion till the ashe drop out at the back. To such an arrangement as this a steady air supply can be adjusted, and if the boiler demand is constan there is no need for smoke, and an inferior fuel may be used. The other plan is to vary the air supply to suit the stoking.
This is effected by Prideaux automatic furnace doors, which have ouvres to remain open for a certain time after the doors a hut, and so to admit extra air immediately after coal has been put on, the supply gradually decreasing as distillation cease through partly open doors, is, that it is admitted cold, and scarcely gets thoroughly warm before it is amonk the stuff it has to burn. Still, this is not a fatal objection, though a hot blast would be better. Nothing can be worse than shovelling on
quantity of coal and shutting it up completely.
Every conditio of combustion is thus violated, and the intended furnace is mere gas retort.
Gas Producers.-Suppose the conditions of combustion are pur posely violated we at once have a gas producer. That is all gas pro ducers are, extra bad stoves or furnaces, not always much worse ordinary gas is made. There is ed-hot retort or cylinder plunged in a furnace. Into this tube you shovel a quantity of coal which flames vigorously as long as the door is open, but when it is full you shut the door, thus cutting off the supply of air and extinguishing the flame. Gas is now simply distilled and passes along pipes to be purified and stored. You perceive at once
that the difference between a gas retort and an ordinary furnace that the difference between a gas retort and an ordinary furnace
with closed doors and half-choked fire bars is not very great. with closed doors and half-choked fire bars is not very great.
Consumption of smoke! It is not smoke consumers you really want, it is fuel corsumers. You distil your fuel instead o burning it, in fully one-half, might I not say nine-tenths, of retort the heat required to distil the gas is furnished by necessary when you require lighting gas, with no admixture of carbonic acid and as little carbonic oxide as possible. If you wish for heating gas you need no o distil it, and you will have most of the carbon also converte into gas. Here, for instance, is Siemens' gas producer. The mass of coal is burning at the bottom, with a very limited coke, and takes up another atom of carbon to form the combustible gas carbonic oxide. This and the hot nitrogen passing stituents, and the whole mass distil away its volatit con Some art is needed in adjusting the path of the gases distilled from the fresh coal with reference to the hot mass below. they pass too readily, and at too lowa temperature, to the exit pipe, this is apt to get choked with tar and dense hydrocarbons. Is ydrocarbons are decomposed over much, and the quality of the gas becomes poor. Moreover, it is not possible to make the clogged. The best plan is to mass of hot coke; it is apt to get over and near a red-hot surface so as to have its heaviest hydrocarbons decomposed, but so as to leave all those which are able to pass away as gas uninjured, for it is to the presence of these
that the gas will owe its richness as a combustible material, especially when radiant heat is made use
The only inert and useless
he nitrogen of the whin like this in as a steam is often injected as well as air. The glowing coke can decompose the steam, forming carbonic oxide and hydrogen, both the use of steam in this way; all the energy can be gust come from the coke, the steam being already a perfectly burned product the use of steam is merely to serve as a vehicle for converting the carbon into a convenient gaseous equivalent. Moreover steam injected into coke cannot keep up the combustion; it
would soon put the fire out unless air is introduced too. Some air is necess any keep up the combustion, and therefore som gas producer unless pure oxygen could be ad instend of or unless some substance like quicklime, which holds its oxyce with less vigour than carbon does, were mixed with the coke well ked to maintain the heat necessary for distillation. is superheated in groducer for small scale use is Dowsonss, anthracite along with air. The gas which comes off consists of 20 per cent. hydrogen, 30 per cent. carbonic oxide, 3 per cent.
carbonic acid, and 47 per cent. nitrogen. It is a weak gas, but

Leeds, for firing glass and pottery in a gas kiln. It is said to cost 4d. per 1000ft., and to be half as good as coal-gas. must be made work, where gas is needed in large quantities, it this, that all woll-re spot. And what I want to insist upon is bustion chambers combined. You may gas retorts and comyou can't do it; you must distil it first, and you may either is to let in not too much yir may burn it properly. The thing instance, at Minton' chamber are the coal hoppers, and from. Round the central distilled, passes into the central chamber where the ware stacked, and meeting with an adjusted supply of air as it rises, it burns in a large flame, which extenas throagh the whote and swathes the material to he heated. It makes its exit by a central hoie in the floor, and thence rises by flues to a common opening above. When these ovens are in thorough action nothing visible escapes. The smoke from ordinary potters
ovens is in Staffordshire gas producer and furnace, of which Mr. Frederick Siemens has been good enough to lend me this diagram, the gas is not made o cosely on the spot, the gas retort and furnace being separate is the same; the coal is first distilled then burnt. But to get high temperature the air supply to the furnace must be heated, and there must be no excess. If this is carried on by means of otherwise waste heat we have the
regenerative principle, so admirably applied by the Brothers regenerative principle, so admirably applied by the Brothers used to heat the incoming air and cas supply. The reversing arrangement by which the temperature of such a furnace can be gradually worked up from ordinary flame temperature to some point near the dissociation point of gases, far above the meltin this place. Mr. Siemens has lent me this beautiful model of the most recent form of his furnace, showing its application to steel making and to glass working.
The most remarkable and, at first sight, astounding thing The flames do not touch the material to be heated; they burn it and radiate their heat down to it. This I regard as that to get the highest temperature and greatest economy out o only; all other heat being utilised irdirectly to warm the air and gas supply, and thus to raise the flame to an intensely high temperature.
It is easy to show the effect of supplying a common gas flame gauze which has been made red-hot. A common burner held ver such a hot air shaft burns far more brightly and whitel There is no question but that this is the plan to get good ill mination out of gas combustion; and many regenerativ rs are now in the market, all depending on this principle utiising the waste heat to make a high temperature flam But although it is evidently the right way to get light, it was no means evidently the right way to get heat. Yet so faces but, not by warming solid objects or by dull warm sur can be procured will rooms be warmed in the future. And if one wants to boil a kettle it will be done not by putting it int but buminous flame, and so interfering with using the rat near to a freely burning regenerated flame an the heating of the future, provided we regard Mr. Siemens' view as well established.
The ideas are founded on something like the following considerations:-Flame cannot touch a cold surface, i.e., one below the temperature of combustion, because by the con
tact it would be put out. Hence, between a flame and the sul face to be heated by it, there cool space, across which heat must pass by radiation. It is by radiation ultimately therefore that all bodies get heated. This being so, it is well to increase the radiating power of a thi the presence of solid matter in the flame in a fine state of subdivision, and the temperature to which it is heated. Solid matter is most easily provided by burning a gas rich in dense hydrocarbons not a poor and non-luminous gas. To mix the gas with air so to be a retrograde step-useful undoubtedly in certain cases, in the Bunsen flame of the laboratory, but not the ideal method of combustion. The ideal method looks to the use of a very the burnin of it with a maximum of luminosity. The hot products of combustion must give up their heat by
contact. It is for them that cross tubes in boilers are useful. They have no combustion to be interfered with by cold contacts. The flame only should be free
The second condition of radiation was high temperature. What limits the temperature of a flame? Dissociation or splitting up a compound by heat. So soon as the temperature reaches combustion ceases. Anything short of this may theoretically be obtained.
But Mr. Siemens believes, and adduces some evidence to prove that the dissociation point is not a constant and definite tempe
rature for a given compound ; it depends entirely upon whethe solid or foreign surfaces are present or not. These it is whic appear to be an efficient cause of dissociation, and which there fore limit the temperature of flame. In the absence of all solic contact, Mr. Siemens believes that dissociation, if it occur at all, temperature onormously higher tempera almost any extent Whether this be so frot, his radiating flames are most suc cessful, and the fact that large quantities of steel are now of th by mere flame radiation speaxs well for the
Use of small coal. - Meanwhile, we may just consider how we ought to deal with solid fuel, whether for the purpose of makin gas from it or for burning it in situ. The question arises, in what form ought solid fuel to be-ought it to be in lumps or in powder? Universal practice says lumps, but some theoretical considerations would have suggested powder. Remember, com
bustion is a chemical action, and when a chemist wishes to act on a solid easily, he always pulverises it as a first step.
Is it not possible that compacting small coal into lumps is a wrong operation, and that we ought rather to think of breakin big coal down into slack? The idea was suggested to me by Sir as a brilliant one. The amount of coal wasted by being in the form of slack is very great. Thousands of tons are never raised from the pits because the price is too low to pay for the raising ates that 130,000 tons of breeze, or powdered coke, is produced very year by the Gas Light and Coke Company alone, and its The is. a ton at the works, or 5 s. delivered.

THE NEW BATTERSEA BRIDGE.DETAILS. SIR JOSEPH BAZALGETTE, M.I.C.E., ENGINEER.
(For description sec page 64.)
CROUR N゚16.

THE NEW BATTERSEA BRIDGE.-DETAILS OF CENTRE SPAN IRONWORK
GROUR N:23.

The new battersea bridge.-DETAILS of ribs and braci
owing to the fact that no ordinary furnace can burn it. But ifted fro yourself a blast of hot air in like chaff in a threshin mill, and see how rapidly and completely it might burn. Fine dust in a flour mill is so combustible as to be explosive and dangerous, and Mr. Galloway has shown that many colliery explosions are coe not to the presence of gas so much as the presence of fuch dust is eminently combustible, and a blast containing it migh ame. $]$ Feed the coal into a sort of coffee-mill, there let it ground and carried forward by a blast to the furnace where it is
to be burned. If the thing would work at all, almost any kind to be burned. If the thing would work at all, almost any kind organic rubbish of all kinds. The only condition is that it be ine enough.
Attempts in this direction have been made by Mr. T. R. Crampton, by Messrs. Whelpley and Storer, and by Mr. G. K.
Stephenson; but a difficulty has presented itself which seems at present to be insuperable, that the slag fluxes the walls of the furnace, and at that high temperature destroys them. If it be feasible to keep the flame out of contact with solid surfaces, however, perhaps even this difficulty can be o jercome.
Some success in blast burning of dust fuel has been attained i the more commonplace method of the blacksmith's forge, and
boiler furnace is arranged at Messrs. Donkin's works at Bernondsey on this principle. A pressure of about half an inch of water is produced by a fan and used to drive air through the
bars into a chimney draw of another half-inch. The fire bar are protected from the high temperatures by having blades
which dip into water, and so keep fairly cool A totally dif ferent method of burning dust fuel by smouldering is attained in M. Perret's low temperature furnace by exposing the fuel in a series of broad, shallow trays to a gentle draught of air. The
fuei is fed into the top of such a furnace, and either by raking or by shaking it descends occasionally, stage by stage, till it
arrives at the bottom, where it is utterly inorganic and mere efuse. A beautiful earth-worm economy of the last dregs Combustible matter in any kind of refuse can thus be attained of limited application; but for the great bulk of fuel consump combustion of solid fuel can give ultimate perfection.
Coal tar products, though not so expensive as they were some
time back, are still too valuable entirely to waste, and the importance of exceedingly cheap and fertilising manure in th reclamation of waste lands and the improvement of soil is a
question likely to become of the most supreme importance in his overcrowded island. Indeed, if we are to believe the socia philosophers, the naturally fertile lands of the earth may before
long become insufficient for the needs of the human race; and posterity may then be largely dependent for their daily brea
upon the fertilising essences of the stored-up plants of the carboniferous epoch, just as we are largely dependent on the ur power. They will not then burn crude coall, therefore. The will carefully distil it-extract its valuable juices-and will
supply for combustion only its carburetted hydrogen and its carbon in some gaseous or finely divided form.
and is far more easily and reliably conveyed from place to place r. siemens, you remember, expected that coal would not even and
buoyancy to be burnt onto the surface wherever wanted. And not only will the useful products be first remored and saved, its
oulphur will be removed too not because it is valuabbe, but sulphur will be removed too; not because it is valuable, but
because its product of combustion is a poisonous nuisance Depend upon it the cities of the future will not allow people and become oil of vitriol. Even if it entails a slight strain upon the purse they will, I hope, be wise enough to prefer it to
the more serious strain upon their lungs. We forbid sulphur as much ar possible in our lighting gas, because we find it is deleterious in our rooms. But what is London but one huge room packed with over four millions of inhabitants? The air of a city is limited, fearfully limited, and we allow all thi
horrible stuff to be belched out of hundreds of thousands o chimneys all day long.
Get up and see London at four or five in the morning, and
compare it with four or five in the afternoon; the contrast is painful. A city might be delightful, but you make it loathsome not only by smoke, indeed, but still greatly by smoke. When
no one is about, then is the air almost pure ; have it well fouled before you rise to enjoy it. Where no one lives the breeze of fit to live. Is it not an anomaly, is it not farcical ? What term is strong enough to stigmatise such suicidal folly? But we
will not be in earnest, and our rulers will talk, and our live will go on and go out, and next century will be soon upon us,
and here is a reform gigantic, ready to our hands, easy to accomplish, really easy to accomplish if the right heads and vigorou The following references may be found useful in seeking fo Core detailed inturmation:-Keport of the Smoke Abatement "How to Use Gas," by F. T. Bond, Sanitary Association, Glou-
cester. "Recovery of Yoolatile Constituents of Coal," by T.. B
Lightfoot; Journal Society of Arts, May, 1883. "Manufacture
Lis. Lightfoot; Journal Society of Arts, May, 1883.
of Gas from Oil," by H. E. Armstrong; Journal Soc. of Chem
lodustry, September, Industry, September, 1884. "Coking Coal," by H. E. Arm-
trong; Iron and Steel Institute, 1885. "Modified Siemens
 Utilisation of Dust Fuel," by W. G. McMillan ; Journal Society
of Arts, April, 8866 . Gas Producers," by Rowan ; Proc. Inst,
C.E., January, 1886. "Regenerative Furnaces with Radiation," C.E., January, 1886." "Regenerative Furnaces with Radiation,"
nas "O Producers," by F. Siemens ; Journal Soc. Chem. In-
dustry July 1885 , dustry, July, 1885, and November, 1885. "Fireplace Construc
ion," by Pridgin Teale ; The Builder, February, 1886. "On Dissociation Temperatures," by Frederic Siemens; Royal Insti-
tution, May 7,1886 . tution, May 7, 1886 .
Diagrams or apparatus were lent to illustrate the lecture by
the following firms and gentlemen:-Mr. Fletcher, of Warring on, many appliances; Mr. F. Siemens and Mr. Head, furnaces and gas generator; Captain Galton, the Galton grate; Messrs.
Duncan Brothers, Sinclair's stoker; Messrs. . Donkin and Co.
Perret's Perret's furnaces; Messrs, Mintons, pottery oven; Messrs. Stee bottom-stoking grate ; Mr. B. H. Hhwaite, twin gas producer
The Coalbrookdale Company, Kyrle fire.

THE ROYAL INSTITUTION.

astronomical telescopes.

Iv addition to the Friday evening lecture on "The Astrono-
nical Telescope,", already reported in these pages, Mr. Howard
Grubb, F.R.S., delivered two oul Saturday afternoons, at the

Royal Institution, in which he gave utterance to the following particulars ;
Several countries have claimed the honour of the invention of
the telescope, which so far, as decided by accurate historica basis, belongs to Holland ; Galileo improved it ; the claims for its invention by Roger Bacon and Democritus are purely of an inferential and speculative nature. The first telescopes wer made with concave eye-piecest, and were called Galinean telescopes;
Kepler afterwards suggested the convex eye-piece, and Gascoigne, an Englishman, took advantage of this in applying wires for sights ; partly in consequence of this, and partly because they permitted a larger field of view, convex eye-pieces were instruments induced Dr. James Gregory to make a telesco with a concave reflector instead of a convex refractor, and ho published a description of the instrument in his Optica Promota,
in 1663 ; his particular form of the instrument has ever since borne his name ; the idea had been suggested before, but he first gave it a practical application. He thus completely remove obtained improved deffinition, because he did not succeed in obtaining an optically true surface. Sir Isaac Newton, in consequence of a mistake, made the first good reflecting telescope eeing that this telescopes, he tried various combinations of transparent sub-
 esults; he therefore abandoned the refractor as incapato
of improvement, and turned his attention to reflectors After great labour he succeeded in making some good
effectors; one of them, which magnified thirty-one times was in its day the marvel of the age, and was pre-
sented by him to the Royal Society in 1671 . The Society still has it in its possession. Cassegrain subsequently improved
the Gregorian telescope in some respects. Dolland, originally a the Gregorian telescope in some respects. Dolland, originally a
weaver by trade, was led to the consideration of the improvement weaver by trade, was led to the consideration of the improvemen
of the refracting telescope by a paper which the mathematician of the refracting telescope by a paper which the mathematician,
Euler, communicated to the Berlth Academy in 1747 , in whicl the possibility of making an achromatic combination wa hadowed forth, and in 1753 a paper hy Dolland was published pointing out that Euler's paper did not agree with Newton's experiments. Some discrepancies between Newton's results and ertain optical phenomena were about the same time pointed out by Klingenstierns, a Swedish mathematician. Dolland finally succeeded in making an achromatic object glass, thereby at once
raising the refracting telescope from comparative obscurity but unfortunately another difticulty stood in the way, namely hat of making optical glass sufficiently perfect, for a it was now possible to apply high powers to refracting
telescopes, imperfections in the glass made their presence more sensible than before. At first, therefore, refracting telescope were but of small sizes. Meanwhile the reflecting telescope
advanced by strides in the hands of Sir William Herschel, culdinating in the construction of his celebrated telescope o 4it. diameter and 40 ft . focus. About twenty years after the beginning of the present century the S Wiss peasant, Guinand, a warch-case maker of Neuchatel, , tritst made good opticmal some foreign nations, especially Germany, soon ecan glass ; indeed, Faraday is said to have been hampered and ment of optical glas
The "power" of a telescope is rather ar indefinite expression and depends upon two factors: (1) The magnifying power capable of being used; ; (2) the amount of light collected by the instruhese conditions depends, secondarily, upon the aperture of the bjective or mirror, the perfection of its definition, and the secondarily, upon the aperture of the objective or mirror, and the class of instruments, if reflector, and the quality of glass, if efractor. The lowest power which can be used with any of the ent is a number corresponding to five times the diamele of the eye is about one-fifth of an inch in diameter. With any lower power than five for an inch in diameter, ten for a 2 in.,
and so on, the pencil of light which emerges from the eye-piece is too large for the pupil to make use of, and consequently only portion of the objective is utilised. The maximum powe The larger the aperture of the objective the greater the powe The larger the aperture of the objective the greater the powe infinite number of points. It is well known that the larger the aperture of the objective the smaller the image it will give of a star or any single point. The picture, therefore, which we see
f any object through a telescope may be considered as a kind of mezzotint engraving, made up of an infinite number of dot or points, which dots are finer according as the aperture of the
objective is greater; therefore the inage as given in a large instrument is capable of bearing a higher power than that given by a small instrument. The highest power usable depends also to some extent on the perfection of the surface, and in the of the at.mosphere. Assuming an amount perfection uch as is attained by the finest opticians of the present day, it bearing a power of 100 to the inch. This is strictly true of the mallest instruments, and probably also of the largest; but hich will enable us to use this high power. It follows then dentically the same lens as for the smallest, for the foci are about in proportion to the aperture, and, consequently, the
same lens which will give a power of 100 with one inch aperture and one foot focus will give a power of 2800 with a 28 in. glass and 28 ft . focus. Therefore a much greater degree of accuracy is required in the surface of large than of small objectives, for magnifier, or eye-piece ; but in the one case the rays have to traverse one foot, and in the other 28 ft after refraction and
before coming to a focus. Any given error of surface therefore producing the same angular deviation of a ray from the true path, will cause that ray to be twenty-eight times further arger instruments. But the rule of 100 to the inch for both small and large objectives is subject to qualifica-a-
tion. It would be more correct to say that the rule holds good rovided the eye of the observer has been trained to the use of
arge as well as small telescopes. What is the diference large as well as small telescopes. What is the difference in
character of the images formed by small and large telescopes ? This is a subject about which there is not much information ave very hazy ideas.
ave very hazt ideas.
He had often been struck by the fact that when an observer

Grubb has been accustomed to use, he is never, as far as Mr . arger instrument at first. Wiatisf with the performance of the nity to a great number of persons to observe with the Vienn 27 in . refractor, of the three classes of persons who had that pportunity, vil., those who were not accustomed to habitually with small, but not with large instruments, and those who wer old, experienced observers with large as well as with small instruments--he found that the second class were the leas No ded with the appearance of the image in the large re the doubt there was some reason for this. What, then, the focus of a 3in. object glass, as compared with that formed by a 27 in . object glass? Suppose an equal amount of perfection in both instruments :-(1) The image formed by more highly magnified, as the focus of the object glass is larger more for this reason, and also because the column of air through Which the rayspassi is larger in diameter, atmospheric disturbance arger much greater effect on the deli number nights in the year will it be useless, owing to want of homogeneity of the air Everyone knows this, but hardly any but the most experience observers appreciate the full extent of the difference. (2) The actual brillancy of the image, if the object be a point or a star will be nearly 00 times greater it the larger than in the smalle ninute bole, eithe look at any small bright point through ppearance will way very much, weording as we lens, the diminish the brilliancy of that star in point of light. Applying instruments, we have a space of light 80 times more brilliant than in the smaller, we must expect to have a much greate mount of light surrounding the star in the form of rings; and we cannot expect to see a bright star in a large telescope in smaller instruments. There are two other reasons also why the increase of brilliancy will appear to add more to the ligh the well-known fact that aiven increase of brillingcy in a object is much more noticeable than in very bright objects It there be only one small gas jet burning in a room, the additio of another makes the illumination sensibly twice as great; but if the room be already very brilliantly lighted, the addition of an equal quantity of lights will not produce a sensible effect ore more appreciated than in the central disc itself, which wa very brilliant, even with the smaller instrument. The othe
 rargertion to the surrounding lights as in the smaller instrument.
In considering the relative merits of the various classes of arious classes of reflectability to particular purposes, the Gregorian may be put out of the question as an astronomical instrument; any advantages it possesses relate only to terres
trial objects. The choice lies between the Herschellian, Casse rain, and Newtonian reflectors. The first of these bears the palm as respects light-grasping power, but, unfortunately, th ecessity for tilting the mirror introduces a considerable amount of aberration, except the focus be long. The position of the inconvenient. The Cassegrain reflector possesses for larg instruments the great advantage of bringing the observer to convenient position at the lower end of the telescope ; it als avoids the necessity of providing a stage or platform for the ent focus being very long, the eyepiece becomes large and umbersome; furthermore, the eyepiece becomes lated wit the stop are troublesome. With the Newtonian reflector the the observer for small instruments is the best; the reflectors has been dis ussed over and over again, and probably is no nearer a settle ment than many years ago ; each form has its advocates, and so, reflectoss, that the in the future. It is argued on bedent on ccount of the secondary spectrum, but on the other hand ther e error in a reflector will injur refractor. The introduction of a silvered surface to gloss mirror ome years sine by not alone because it raised the value of the instruments a egards light-grasping qualities, but because the renewal of the reflecting surface could be effected by a simple chemical process, instead of involving skilled labour of the highest class; hence the instrument presents attractions to amateurs. A time comes, lowever, when the amateur tires of this process of re-silvering bservatory for a few months, and on his return find ready for nmediate use. Excellent work has been done with reflectors ant patent fact remains that the standa nd in America, are refractors. This may partly be due to the fact that the adjustments of a refractor are of a much more permanent character, and that therefore it is better fitted for micrometrical work; but it is also no doubt largely due to the circumstance of the permanence and
refractor as compared with the reflector.
refractor as compared with the reflector.
Mr. Grubb gave the following figures as to the light-transmitting power of various classes of telescopes :
Proportion of Light Transmitted through various Classes of

| Deseription of telescopo. |
| :--- | :--- | :--- | :--- |

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our

orty-knot ships.

SIR, -1 have no doubt that " in the judgment of the most dis driminating portion of your readers. Mr. Hurst's latest contribu--
tion will be of titself auite sufficient to show the impracticability of his desion for a ship to steam at 40 knots an hour. I may of his design for a ship to steam at 40 knots an hour. I may
therefore dismiss the subject after having made the following I call Mr. Hurst's attention to his unqualified statements in his
I Ietters of May 28 th and June 18 th , wherein he states respectively,
-"If the speed of a light vessel be quickened from 20 to 40 knots " If the speed of a light vessel be quickened from 20 to 40 knotin

crease in the weights of the engines, will generate twice the power." piston as 4000 ft . or 5000 ft . per minute ?", $\dot{\text {. }} \dot{\text {. . . "it will be }}$ time enough to assert their existence when they have been dis-
covered." And I now ask him to justify his remark contained in his "missive" of July 2nd :- "The conclusion is therefore jumped to, without any warrant from any statement of mine, that
in the engines I propose to employ this inevitable evil of deficient
strength would be encountered." From Mr. Hurst I readily strength would be encountered. From Mr. Hurst I readily
expect the answer, that although his first statement was then
his theory, yet he did not intend to make that theory his theory, yet he did not intend to make that theory his
practice. But as to this let us see. I call attention to a diagram accompanying his last letter, purporting to show reciprocating parts of an engine at 40 and 160 revolutions, and remark that not only have the primary inertia curves been wrong ${ }_{4}$ in form, but also, assuming that the curve of resultant pressures for correct, the curve denoted by A A A, which is meant to represent these combined stresses at 160 revolutions, should be displaced fright dotted curve instead of two times, or a little more, as shown. The inertia stresses seem to have been taken as the square root
instead of as the square of the angular velocity. The full lines in the accompanying figure therefore represent correctly the resultant
stresses in the two conditions instead of the dotted lines, showing that the actual maximum combined stress exceeds by at least four times that given by Mr. Hurst. But, further, looking at Mr.
Hurst's proposed engine, I first remark that a stress of 87 lb . per
 rod of infinite length, and that that quantity wouth require
increased to about 105 lb , or 110 lb . to comply with such a length of connecting rod as it would only be rational to adopt. Thr.
Hurst's ground for using simple engines, he tells us, is "that the energy of the moving parts finds its equal and initial pressure of the steam." With a considerably in the factor of safety than is generally adopted in the fastest
running engines, the weight of the reciprocating parts will not be under, 6 lb . per square inch of piston area; and the combined steam and inertia stresses will accordingly be of amounts as
represented by diagram No. 2, showing that the maximum load on the main bearings will be at least $2 \frac{2}{2}$ times that due to the maxitoo heavy ; and to increase their weight still more, he proposes to fit on balance weights, whose chief advantage (?) would be to
transfer the inertia stresses to that direction in which the shaft transfer the inertia stresses to that direction in which the shaft simple engines are to use steam at 2001 lb . pressure, cut off at
I. in., giving an average pressure of 66 lb . per square inch. I
pass pass over the 66 lb . m.p. - Mr. Hurst ought to have known to steam 3000 miles power for $41 \frac{1}{2}$ knots, or 47.8 miles, the weight of his coals will be $\frac{3000 \times 44,480}{47.8 \times 200}=4990$ tons, while her total displacement is only 3360 tons. Thus the coals alone will sink her 12 ft . below her load draught; and I venture to predict that in these circumstances the
depth of the ocean bottom will be the only correct measure of her draught. I have used Mr. Hurst's estimate of power in the above calculation; but I must again inform him that "Reech's law" is as was stated by Mr. Mansell, and that his power by that law is
much under-estimated. much under-estimated.
I refrain from noticing
his hull; here he has on y question. There is still much that is open to the gravest objection ; notably, his return to simple engines exhausting to the condenser at an absolute pressure of about 15 lb . per square inch. I would have expected that in these days of triple expansion engines Mr.
Hurst would have known something of their raison d'etre. Again, we are informed that he has discovered some engines in which the
centrifugal force at the crank-pin is greater than in the engine he proposes, though notably in the case of torpedo-boat engines the centrifugal force is much less. Presumably he has yet to learn
that the relative lengths of connecting rod and crank radius alter the inertia stresses of the reciprocating parts so appreciably that serve no purpose since he neglects to give the variations of weight per indicated horse-power, with variations of these stresses. Mr.
Hurst need never expect that an engine whose maximum stresses per square inch of piston area are three or four times those of another, can be made as light. Lastly, some extremely vague
statements about the relative weights of engines running
at the same piston speed are made. I suppose that Mr. Hurst at the same piston speed are made. I suppose that Mr. Hurst
intends to state that, in small and large engines running
at the same piston speed, the weight per indicated horse-power of
the former is a little larger than that of the latter; and if the
stroke of the large engine is increased - the piston speed still remaining constant-a further small reduction of weight may b effected. This is quite true, but it is what neither I nor any other
of your correspondents have doubted; on the contrary, it is what was pointed out to him. The case which applies to his proposed engines is that in which the revolutions of both small and large
engines are constant. Here the number of times which the maxi mum stresses per square inch of cross-section of the reciprocating parts in the large engine exceeds those in the small engine is a from the small one. Consequently, the large engine must be much heavier per indicated horse-power than the small one. Mr. Hurst has therefore evaded the point at issue. Ihave only again, and in fine, to repeat my former criticism of his designs. He is hopelessly
wrong with his estimate of the weight of machinery-his coals wrong with his estimate of the weight of machinery-his coald
alone sufficing to sink the ship-he is too light with his hull, and he yet misunderstands the estimation of power for the speed.

Edinburgh, July 13th.

Alexander Cleghorn. SIR,- -No rejoinder having appeared to Mr. Hurst's letter upon
this subject, I presume that the practicability of attaining some
such speed as he has indicated with some such power as he has such speed as he has indicated with some such power as he has
prescribed is now generally recognised and admitted. This being o, it becomes expedient to call attention to the other points of his so, it becomes expedient to call attention to the other points of his
paper in which the high speed of forty knots was merely one of the
incidents claiming public attention. His design was to show how incidents claiming public attention. His design was to show how a navy far more efficient than our existing navy might be main-
tained at far less than the existing cost, and this end was to be tained at far less than the existing cost, and this end was to be
accomplished by holding out inducements to steamship owners to accomplished
provide a class of vessels having a very high speed which in times
of peace would be available for carrying the mails and for comprovide a class of
of peace would be available for carrying the mails and for com-
mercial objects, but which in the event of war should be placed at mercial objects, but which in the event of war should be placed at
the disposal of the Admiralty for purposes of defence or aggression on predetermined terms. Lord Charles Beresin has, 1 quite recently propounded the same idea, which has also the high
sanction of Mr. Barnaby's authority, and there appears to be little doubt that the reasons for the adoption of this course are so numerous and forcible that it must before long be adopted.
High-speed vessels must necessarily be light vessels. But in hey shall carry very powerful guns, and very pow they shall carry very powerful guns, and very powerful guns of the
ordinary type are necessarily very heavy. Mr. Hurst, therefore, proposed in his paper that the guns used should be rocket guns, as on this principle of action power and lightness would be reconciled.
It is impossible to construct guns of the ordinary character but of It is impossible to construct guns of the ordinary character but With rocket guns only a small part of the gunpowder is burnt in the gun itself, producing only a very moderate amount of strain; and although this small charge would of itself be insufficient to
give a long range, it gives sufficient velocity to the projectile to give a long range, it gives sufficient velocity to the projectile to enable the
from slip.
Another matter dealt with in Mr. Hurst's paper was the production of sound castings in steel and wrought iron by employing a new method in the manufacture of guns. The Rodman system could be introduced, which has herelofo the gun from the inside while the outside is kept hot. Chiswick, W., July 19th.
the framing of iron and steel ships,
Sir,-With reference to your article upon this subject, allow me should be horizontal. Nor is the reason for this conclusion far to seek. The strength of any structure is measurable by the strength of its weakest part. It is in the transverse direction that iron and teel ships have shown most weakness, and it is in that direction as only horizntal frames will Mave. Man iron ships have broken through the middle-some from getting aground on an uneven surface where they were deserted by the tide, while others have cracked down the sides at sea. But I have never heard of any iron vessel breaking horizontally,
the strength in that direction
When I first began to build iron ships on the Clyde, in 1852 , the frames were invariably vertical, and were of heavy scantling, and set very close together. The Persia, which was regarded as the most favourable specimen of Clyde design about this epoch, had the frames set 18in. apart, and the angle irons of which they were that one could hardly see between the frames when looking upon the side of the ship. The first vessel I constructed had also vertical frames, but they were of light scantling, and were set 3 ft . apart.
The material thus saved was expended in forming the vessel with The material thus saved was expended in forming the vessel with an iron deck beneat years afterwards I saw both of these vessels in dock at Liverpool. In the Persia thousands of rivets were being cut out, which had worked loose from the great strain to which they had been subjected, and the sides had also cracked down for some distance during a rough Atlantic voyage, so that the vessel had a nar-
row escape from being lost. In the light vessel formed with a double bottom and iron deck not rivet was defective, and no repair of any kind was required, though the vessel had been performing very heavy work in the Black Sea during the whole of the Crimean
War. In wooden ships many strong ribs are needed, as there is War. In wooden ships many strong ribs are needed, as there is
nothing else to keep the edges of the planking together, But in nothing else to keep the edges of the plankes iron vessels the edges of the plates are rivetted to one another, frames of the Persia sifient and far firmer connection. If the cracked down the sides at sea, whereas vertical frames do nothing to hinder this. The most important additional element of strength
in modern iron vessels, however, is the iron deck upon which the in modern iron vessels, however, is the iron deck upon which the
wooden deck is laid. But this innovation was long resisted. I gave several lectures upon the subject more than thirty years ago,
at the Mechanics' Institute in Greenock, and had ten models of vessels constructed with and without metal decks, to illustrate the doctrine that in iron ships iron decks were indispensable to obtain
the greatest strength with the least materials. The models were first weighed, and then broken, as a beam, by the application of a heavy load, so that the strength of the two could be readily com-
pared. Nevertheless, it was only by slow degrees the of constructing vessels with iron decks came into use. Much credit is due to Mr. Brunel for having been amongst the first to him in the case of the Great Easternvessel which, so far as the hull is concerned, must be regarded as the most perfect iron vessel that has yet been built
Such are some of the reasons which may be recited for construct-
ing iron vessels with horizontal instead of vertical frames. There is still another reason of perhaps still greater cogency, which is not now generally discerned, and which I will not dwell upon now. now generally discern, I may explain in a subsequent letter, should
This reason, however I
you consider the present one worthy of insertion in your pages. you consider the present one worthy of insertion in your pages.
Sunnyside, Chiswick, July 19th.
arrangement of stationary engines with condensers, SIR, - In the arrangement of stationary compound, tandem, or
single cylinder horizontal engines, there is sometimes a difficulty single cylinder horizontal engines, there is sometimes a difficulty engineers prefer placing it below, at the front end of low-pressure pin and by a connecting-rod to the L lever on the working shaft. Others again place it in this same position, but work it from the
piston-rod crosshead, by means of links, and L lever direct. In piston-rod crosshead, by means of links, and L lever direct. In some engines it is behind the high-pressure cylinder, and worked
from piston-rod cap by means of a straight lever, giving motion to
a rod passing under cylinders to the said L lever on cross or rocking
haft. Two air pumps, with one condenser between, are ured, and
vorked in the way last described. A better vaouum is olsimed in his ase, and, through the pumps being balanced, a steadier motion cylinder, worked by by an arm from the piston rosesthead, have with Good results, but the parit trom the piston corosslead, have given
oulty when repuit adopted.
In draw attention it may produce an expression of opinion from some of your able
correspondents as to consider the subject worth the space required in your columns.
Rochdale, July 19th.

hydraulic propulsion.

Sis, -Having recently seen some letters in Tue Exaingri

 writing yout. I have had this boat loaded with 60 tons on boordhropilesed of the ooat not being more than 5 in. above water-and
prope power- -1 was not allowed to drive it any quicker. There was no
commotion in the water in the wake of the boat except a few Subles some yards astern; in fact, it was a succeess, but circoumtances ocourred that prevented me from following it up. But
can safly say from experiments I made with this boat and a alare model, that I could at up batate either for speed or towing purposes that would take the shine out of anything afloat. If anything
crops up about hydraulic propulsion the Watervitoh is a dit instanced as to the failure of the hydranlic principle as applied to the propulsion of vessels, but the wonder to me is that they go the speed out of her that they did. 1 am an engineer, and have always found an ounce of practioe worth a ton of theory. To conculude, and taking into consideration the immense advantages
that would acerue from bs dranulic propulsion, I cannot but thinkk that it must oome to the front yet, as by this than only can a great
speed be got with a mall consumption of fuel. The following are some of the advantages to be got by using a perfect hydranic
propeller:- $=(1)$ It will propel, no mater how the vessel pitches or Rils. (2) Yor war simis there is nothing outside the vessel that propelling machinery would pump out the water and pryenel at the the same time. (4) For canal boats it would be the erery riping g, as it
would would not injure the banks. (5) The machinery would be mucl
simpler than tor aserew boat, and would cost less and be more simpler than tor arerew baat, and would cost less and be more
economical. (6) More speed conld be got by this method of pro.

 $\underset{\substack{\text { (10) Any } \\ \text { prininiple } \\ \text { London }}}{ }$

London, July 20th.

feEd-water heaters at norwich.

SIr,-In your notice of machinery at the Rogal Agricultural Society at Norwich, pages 43 and 44 , of your issue of July ybth, you
 The description statess that "TThe cold water from the pump enters the coils on both sides at the top, and passes out at the bottom to the engine is running empty the temperature stands at 200 , and with the work full on it rises to 250 deg .
As the patentee, and as as rerpesenting the makers of what wo
 above. The heating pipes are entirely enclosed in a space filled with the exhausts stean, and all the heat transmitted to the water in the heating pipes must be obtained irechy from the stean surrounding them. In such a imited space 2 in in imposibibe to get a very ratus of the feed. water mest be considerably les than the mean temperature of the exhaust steam-certainly 5 deg. Fah. Exhausts steam from a small engine of this deseription is cortain to be loaded winh water insip to its and consequentily at a tempera ture exactly corresponding to its pressure. In heating the feed
water about one-fifth of its bulk will be condensed on the heating pipes; so it is evident that to obtain a temperature of 250 deg. in pine feed-water, the steam supplying the heat, if in presence of con-
the densed water, must be at least 2 200 degg mean temperature, corre sponding to a mean pressure of about 181b, above the atmosphere; back pressure of 18 lib. the feed-heater is fixed to the base of the It is also. stated that the feed-heater is is a poodion of the heat from the smoke.box," As near as I can measure it, there is abont five square feet of heating surface, which is vertical and only exposee would have to evaporate the water held in insupension in the exhaust steam, and reeevaporato all the steam condensed on the
 on the final temperature of the feed-water, and the resull will be be
identically the same as if the heating pipes were placed elsewhere identically the eame as
away from the chimney.

 Albion Works, July 2oth

 Che North of England Insitute of Mining and Melanial
Engineers visited Cleveland in order to inspect the iron-
 cheon, the ohair being ocoupied by Mrr John Rogerson, one of
the directors of the new Manchester Ship Canal sin Lothian Bell was also present, and made a few remarks in reply to a oote
 view of the prospects of the iron trade. Ho said that iron was now bein sild in inferge quantities at a price which could only involve
boss, IIf something was not done to bring the trade of the district

Pkrtourgur Vrssers. - Vessels specially arranged for the petroleum trade have already been made by Mesrs. R. R.
Craggs and Sons, of Midalesbrough, and Messrs. William Gray and Co, of Hartlepol, and are understod to be ans orng
fully the expectations of their owners. The example appars
coled fully the expectations of their owners. The example appears
now to have been followed on the Tyne A stamer
Then the Glickaun has been built at the yard of Messist Armstronse
Mitithell, and Co, for the same
 ments, as regards tanks, are similar to those of her predeeesoros
The principal difficulties to be met are:- - Firstly, the tendenoy of hhe orrudepat petroumum toe expand with nany inerease of temperature;
the scoondy, its liability to give off by volatilisation vapours which
 neting the oil tanks one with another, and by furnishing them
with vent ot otin weik fon rew Yeork, where she willt take in her first cargo of petricleum for transport to Europe.

THE MALTA WATERWORKS.-COMPOUND PUMPING ENGINE AND PUMPS. MESSRS. HATHORN, DAVEY, AND CO., LEEDS, ENGINEERC

COMPOUND PUMPING ENGINE, MALTA WATERWORKS.
THR accompanying engravings illustrate a compound pumping engine and pumps made by Messrs. Hathorn, Davey, and Co., Leeds, for the water supply works of Malta. These engravings
may be taken as illustrations of cood examples of plant for small waterworks. They include the complete plan and elevation of the engine and pumps, and also a section of the well pumps. The latter show that the water is first pumped from a well to the ground level into a reservoir, and from this it is forced to a higher elevation by means of a double-acting force-pump. The rising main from the well pumps at 0 is not shown in the engraving, but it will be gathered that the main from O carries the water to the reservoir mentioned, and that the double-acting force pump is that shown at the rear of the
engine. A side elevation of the valve gear is given in the engine. A side elevation of the valve gear is given in the
enlarged view above. The air pump of the engine condenser is worked off the rocking arm shaft by means of a rod on a separate arm. The pumping engine is fitted with Davey's differential valve gear, as shown in the larger view of that part of the engine. The pumps are of Davey's simple type, and need no description.

THE MEAT SHIP SELEMBRIA.
The importation of frozen meat to this country continues to increase, and the recent arrival in the East India Docks of a cargo of over 30,000 frozen carcases of mutton-in excellent condition-is the latest, and, as yet, the most extensive contribution that has been made in the form of a single cargo to the meat supply of this country. This has been brought by the steamer Selembria, from the Falkland Islands. It is noteworthy that East Falkland was only colonised by British subjects in 600,000 sheep in the islands. Those brought over average from 60 lb . to 70 lb . each, and sales were effected of portions of the cargo at over 5 d. per pound. The s.s. Selembria, chartered by the Falkland Islands Meat Company, which has entered into agreements with the owners of sheep for the supply of 60,000 per annum, is a steamer of 3041 tons register, and was fitted out completely by Messrs. J. and E. Hall, of Dartford and London, for this trade, with more powerful refrigerating machinery than any other steamer afloat
of Messrs. Hall's the forward 'tween decks are placed four Ellis's patent. The machines are athwartship, made under side, and conveniently arranged for access and manipulation. All the machines are connected to the two main boilers of the ship, and also to an auxiliary one of sufficient size and power to drive two of the machines. The necessary valves are fitted so as to permit any machine being driven by any boiler. The three cylinders of the machines are arranged side by side guide in the centre for the compression crosshead, and bored guides on the outside for the other two crossheads. This frame is bolted on to the top of three cast iron boxes, which are fitted as surface condenser, tubular water cooler, and tubular air cooler respectively. The crank shaft has a single throw in the centre with two outside crank pins, one at either end, fixed into the fly-wheel, and on which the steam and air expansion cylinders work, the angular position of these crank pins are similar and to such an angle with the compression crank that is the best the main and cut-off valves to be worked by enable all only. All the slide valves are balanced, the pressure being on the inside and exhausting at the outside edges. As a consequence of this arrangement there are no stuffing boxes required for the valves and spindles when they pass through the cast iron casings containing the valves. The pumps, which are horizontal, are fixed at the steam cylinder side of the bed, and worked by a rocking lever, attached by means of a link to the crosshead pin, immediately above it. The pumps are combined

HORIZONTAL CONDENSINGENGINE.-EDINBURGHEXHIBITION.

THE EDINBURGH INTERNATIONAL EXHIBITION.
No. VII.

The condensing engine illustrated by the accompanying engravings is exhibited in the Edinburgh Exhibition by Mr. John Cochrane, of the Grahamstone Foundry, Barr head. The engine is of 8 -horse power nominal, and has a ain. cylinder, with 18 in.stroke, per minute. It is fitted with per minute. It is fitted with automatic cut-off, as shown by the engravings, Figs. 1-4,
Figs. 1 and 2 show the curved Figs. 1 and 2 show the curved
face of the valve and valve face of the valve and valve
face respectively, as they face respectively, as they
would be if developed or flattened out. It will be at fatte understood that the once understood that the partial revolution of the
valve by the governor causes the V-shaped valve to cover more or less of the V-placed ports of the cylinder or of the exhaust valve. The annexed diagram is from the engine running empty. It tells its own tale. The engine is of good design and workmanship. The accompanying engravings illustrate Murdoch's combination governor for marine engines, as made by Mr. Cochrane. Its purpose specially is the prevention of racing of marine engines, but it can be used for regulating land engines where the power required is great, in an improved manner, by making the governor of a small sensitive type balanced so that the motion of the ship pitching or rolling has no effect on the governing principle. It is driven by a rope or belt from the main engines, and adjusted so that any increase of speed partially r, entirely closes the throttle valve. From the section it we seen that it cons balls running loose on a spindle and driven by a with four balls running loose on a spindle and driven by a
bevel pinion cast on the driving pulley.

MURDOCK'S MARINE GOVERNOR

the fly-wheel allows the bevel pinion to overrun it on any increase of speed, and the acquired centrifugal force in the balls maintains the position. This movement gives a th the and exhant cylinder valve spinde, opening to the steam is moved out or in, and being connected to the cylinder valve of the main engines, it is closed or opened as required. The valve is a small hollow cylinder with a longitudinal partition, which divides it into two compartments, the one
open to the top and the other to the bottom of the steam us lately with but slight intermission, it is calculated to have cylinder ; there is a helical port cut in each compartment, the worst effects. In summer there is in most houses The angular motion received from the governor opens one but one fire, namely, the kitchen fire, to make ashes; end of the cylinder to the steam and the other to the exhaust, causing the piston to move. This motion of the piston gives a lateral motion to the valve cutting of the movement caused by the governor; so that whatever

Fig. 4-VALVE AND GOVERNOR OF COCHRANE'S झ्䒑ENGINE.
movement is given by the governor to the small valve is followed by a similar proportional movement of the piston in the steam cylinder and communicated to the main throttle valve. The means_of adjustment are very simple,

DIAGRAM FROM COCHRANES ENGINE.

and can be effected while the machine is running. It has been fitted to twelve of her Majesty's ships and to about four hundred merchant ships, giving most satisfactory results.
The name of the inventor of the valve gear described last week was incorrectly given as Swain, instead of Swan.

THE DUSTBIN.

The head of the engineering department of the Local Government Board, Sir Robert Rawlinson, has the highest possible opinion of the importance of scavenging and of the dangers of neglected dustbins; but he does not seem to have impressed the suburban authorities with the same salutary ideas, for there are
districts just outside the four-mile radius from the centre of districts just outside the four-mile radius from the centre of
London where dustbins are not only dangerously neglected by the local vestries, but where even when they are not neglected by the vestries or their contractors, the collection of house refuse is supposed to be sufficiently frequent if it is made once a fortnight. It would be interesting to know whether the Local Government Board consider a fourteen days' collection of
rubbish and refuse from a moderate-sized household to be likely rubbish and refuse from a moderate-sized household to be likely
to conduce to the sanitary welfare of those in the house. to conduce to the sanitary welfare of those in the house.
In winter there may be no objection to it, but in the hot weather which we have, fortunately in other respects, had with
the worst effects. In summer there is in most houses
but one fire, namely, the kitchen fire, to make ashes; whilst, on the other hand, the vegetable and other rapidly decomposing materials are in greater quantities. Hence the necessity for more frequent removal in the summer. To reduce the evil effect of the gases arising from the decomposing rubbish it has been suggested that the ashes should be kept rubbish it has been suggested that the ashes should be kept
soparately from the vegetable and animal refuse; but a correspondent, who calls attention to this subject, says that he has tried the covered galvanised re-
ceptacle for the latter, with the result that, at the present time, matters are worse than ever. The ashbin receives but a small daily addition and is perfectly harmless, but the galvanised receptacle is after a week so noisome a producer of foul
gases that servants can hardly gases that servants can hardly
be induced to raise the cover to add to its contents. This being the case, he is worse off than when only the common brick, wood covered, dust bin was used, and in this dilemma asks what is to be doneand to whom hemust appeal for a satisfactory solution moved, will be productive of serious effects on the health of large numbers of people. We can only say that a fortnight is certainly too long a time between each collection, and ought to be reduced to one half this in the summer time. Inhabitants have to pay for the collection at proper times, and local authorities andcomings on so important and yet so simple a matter can be continually overlooked, and contractors allowed to shirk the work for which they are paid. Scavenging, as Sir Robert Rawlinson insists, is the first and chiefest neinpressed by th eLocal Government Board upon the needs to be authoinpressed by th ELocal Government Board upon the local authoanimal refuse receptacle, it may be questioned whether this is

MURDOCK'S MARINE GOVERNOR.
not of necessity productive of more harm than good in summer, for it is usually small in area as compared with the brick dust in, and decomposition is favoured by the closeness with wher
the refuse is packed and the greater heat of the foul atmosphere in the metallic box.

RAILWAY MATTERS
The Transeaspian Railway to Merv has been completed, and was A Board has been appointed by the South Australian Cabine to inquire inte the late rail way accident at Islington, by
damage amounting to $£ 1200$ was caused by a runaway engine, ThE Sofia Chamber continued the discussion on the 19th inst. of
the Ministsrial Bill for the purchase of the Rustchuk-Varna Railay, and agreed to the proposals of the Government, and appointe a special committee to examine the arrangement for the purchase
of the rail way, tand to. make a report to the Chamber. This vote,
it is said ensures the ratification by the Chamber of the concluded it is said,
The first through train to Vancouver over the Canadian Pacifi Railway was composed of two baygage, mail, and express cars, a
second-class car, two immigrant sleepers, two first-class cars, two second-lass car, two immigrant sleepers, two irst-class cars, there
sleeping cars, and a dining ear. There were erat passengers on the
the rains, and to deliver frozen salmon in Toronto from Vancouve for 1c. per pound.
The Russian Government has again under consideration the scheme for constructing a railway across the Caucasus. It pro
ides for a line from Darg-Koch to Gori, 183 versts in length, of which seventeen versts are tunnels. The longest of these will be six versts. The cost of the lie to take five or six yearrs. The rail way
roubles, and the construction to
will beo great commercial as well as strategic value to Southern roubles,
will be
Russia.
ON the 15 th the directors of the Barry Dook and Rail ways
isited the works, accompanied by the resident engineer, Mr. John Visited the works, accompanied by the resident engineer, Mr. John
Robinson, M.I.I.C.E. They inspected the Ely Viaduct, the arches
of which ast approaching completion. The masonry for the dock basin has foat approaching completion. The masonry for the dock basin has
been commened, and the dok excavation is progressing very
capidly, at about 50,000 cubic orards per week. rapidly, at about 50,000 cubic yards per week.
IN concluding a report on an accident which occurred on the
st June, near Brora station, on the Highland Railway, Major Marindin says :- "As to mixed trains, it is becoming almost demned by the Board of Trade, but I must again record my pinion that no wagon should be allowed, under any circumstances,
o be placed in a train in front of passenger carriages, unless it to be placed in a train in front of passenger carriages, unless it
be one specially constructed and fitted for running in passenger
WE understand that Mr. J. A. F. Aspinall, of the Inchicore cashire and Yorkshire Railway. It appears that the company
intends to increase its works, so as to add to its own power of selfsupply of materials and rolling stock, and the new shops Holwich are very extensive. These works will probably equal any ot cover the comprehensive dutie
operations of so large a concern.
THE Amsterdam Courier reports that as the passenger train from
Essen was approaching Winterswyk station, a train was shunted cross the main line jus in ond a disastrous collisio appeared inevitable. The ensine-driver was, however, able, by
instantly applying the automatic friction brakes-Heberlein-with
ister to bring his train to a standstill only a few paces from the shunting tran, thus affording another proof of the value of efficient con-
tinuous brakes at the command of the drivers and gund inuous brakes at the command of the drivers and guards A sERIEs of trials was made on the Colne Valley Railway, on
the 16th inst., with a passenger train fitted up throughout with the automatic friction -Heberlein-brakes, for which a goid medal
was awarded at the International Exhibition of Inventions last
year. A number of gentlemen interested in rail way appliances witnessed the experiments, including amongst others Colonel le,
MIesurier, R E., Mr. R. N. Bunnett, C.E., Mr. J. Imray, C.E.,
Mr.
Walmisley, C.E, and Messrs. Colam, Ridley, Master. Mr. Walmisley, C.E, and Messrs. Colam, Ridley, Masters,
Mackie, Lennox, Macaulay, and others. The following weree
amongst the experiments mado:-Train to be suddenly stopped by amongst the experiments made:- - rain to be suddenly stopped by
the driver o ohis remarking, when rounding a curve at high speed,
that a bridge has been carried away. A broken axle supposed to that a brigge has been carred away. A broken axke supposed to
be rumarkd by the guard, who stops the train from the rear van
with the steam full on. A coupling supposed to become ruptured n a rising gradient of $1: 70$, the train stopping automatically on
the brake cord being broken. Working a team of carriages dow nn incline without the engine, and moderating and accelerating its
speed at pleasure. Stopping suddenly from full speed whilst passing through a station, on the home signal being unexpectedty
raised.
The simplicity and efficiency of of the system gave great
the sitis. saction to all present, as showing its special applicability
railways generally, and particularly for the secondary rail ways. A GENERAL classification of the May accidents on American rail-
ways is made as follows by the Railroad Gazette :Defects of road
Defects of equipn

Uegitgence iu operating

Malitioiously e Unexplained

Total
Negligence in operating is thus oharged with $22 \ddot{4}$ per ecnt. of all
the accidents, defects of road with 18 , and defects of equipment with 26 per cent. A division according to classes of trains and

This shows accidents to a total of 120 trains, of which $31(26$ pe cent.) were passenger trains and 89 (74 per cent.) were freight
rains. The enormous proportion of derailments does not although the unexplained derailments are somewhat less.
A Board of Trade report by Major Marindin on the result of an
cident which occurred on June 24th, between Dunphail and Forres, on the Highland Railway, when a mixed train from Perth Inverness consisting of two engines and tenders, forty-one
oaded wagoss, one third-class and one first-class carriage, two brake vans-one in the centre and one at the rear of the train-
and a closed van immediately in front of the rear brake-van, was
running at a apeed of about thirty miles an hour down a steep incline
 cluding his report, he says:-"There have been three accident attributable to this cause on the Highland line within the last year, passengers were injured, ,nd some woold almor, 1885, inevitiably three
been drowned if the acident had taken place at high tide ; one and the one now under consideration, passengers were injured
position of the third-ciass carriag at the
cariage, it is assonishing that passenger whas injurec- With cirriage, it is is astonishing that no be hoped that the company will not run the risk of being called to a front of passenger carriages, a practice which has been consistently discountenanced by the Baard of Trade, and which is
objectionable, not only because of the danger of a wagon breaking objectionable, not only because of the danger of a wagon breaking
down, but beause trains so made up cannot well be properly equipped with that amount and descript,
considered necessary for passenger trains,"

In the report of the Inspectors of Explosives, the explosion of taine, Mass., who dropped his watco upon them quickly, is charac-
terised as the most turious explosion of the year. Among other explosive medicines" is mentioned nitro-glycerine, which is mad up with lozen
complaints.
Ther report of Dr. Odling, Dr. Tidy, and Mr. W. Crookes, of June, states that it "maintained the same excellent character which it has manifested for some months past. Of the 518 samples
of water examined during the past three months, no single sample was found to be otherwise than well filtered, bright, and practi cally free from colour. The mean amount of organic carbon in th Thames-derived supply for the three months was $\cdot 155$ part in
100,000 parts of the water, the mean amount in last month supply being $\cdot 152$ part, and the maximum amount in any on ple being 17 pa
A REMARKABLE example of the increase of temperature in the eepest artesian well in the world is that now being bored for the purpose of supplying the public baths and other establishment been reached, and it furnishes 800 cubic metres- 176,000 gallonsdaily, at a temperature of 70 deg. Cent. 158 deg. Fah. The municipality have recently voted a large subvention in order tha
the boring may be continued to a greater depth, not only to obtain larger volume of water, but at a temperature of 80 deg. Cent. 176 deg. Fah. It is suggested that it is thus within the bounds of probability that the time may come when a brewer will obtain his
water supply from a well of sufficient depth to yield "liquor" at water supply from a well
the mashing temperature
WITH a turbine for power transmission by cable at Ober Ursel, near Frankfort-on-
estimates tha
material wou material would become with shaft transmission as 1 to 70 of the that 1 lu. in the present carrier accomplishes. As it is, out of 104-horse power given out at the turbine, 1466 -horse power are power, and instead, of running all the eyear round, the 40 3-horse
power available at low water would not turn the shafting. Prof. Reuleaux proposes to apply rope driving not only to main transmissions, but to run all the machines of a large shop, for which he and in ease of most machines even driving the machines directly with only the intervention of a friction clutch to allow of ungear manner, and could be applied to every conceivable operation of the shop, the exceedingly high specific value of the form of transmis
sion far over-balancing the great length of carrier to be kept operation. He refers to the saving that must be effected in great cotton factory, in one of which in the United States-pre-
sumably the Pacific Mills, at Lawrence, Mass.--there are about .8 miles of shafting
Herr Fennema, a mining engineer at Buitenzorg, in Java, has ions in that island which ar on which some doubt has existed. On the authority of Junghuhn, the general belief has been that in historic times all the volcanoes of Java - and of Sumatra, it may be added-had thrown out solia
matter only, and never those streams of lava which are so charac eristic of most eruptions. But a careful examination of Smeru an notion must be abandoned as incorrect. The former is not onl the highest but also the steepest in Java. From 700 to 1400 metres 3671 metres it is more than 30 deg. For a considerable way from out regularly by the almost uninterrupted activity of the crate Up to prill, , 8858 , the e existence of torrents of lava was unknown
On the 12th-13th of that month a stream appeared on the south eastern side, and forced the eresidents on the plantations lower dow
to fly. The stream increased for several dit height on the mountain side of about 2100 metres from the level down the steep sides of the mountain thy the stream stones sent at the same time, Lemongau threw out a lava stream; but ther was a curious difference between this and the one issuing from
Smeru-the latter was andesitic in its character, while the former

The estimated total outturn by all the refineries of mineral Iluminating oils, in the United States, for the year ended Decembe 31st, 1885, was 732,650,628 American gallons, or $14,365,698$ barrel of 1 American gallons-equal to about 40 imperial gallons. The about $253,665,075$ American gallons, or $4,973,825$ barrels; and the quantity exported was $5,381,099$ barrels, and $17,254,611$ cases, collec
tively equal to $446,982,159$ American gallons.
The detailed shipping statistics give the respective quantities for the year 1885
as $6,980,637$ barrels, and $16,528,844$ cases, a discrepancy which may be due to differences in dates. On the latter basis, the total gros,
weight of the barrels would be $1,222,486$ tons. If piled six high, as they commonly are when stored, the barrels would cover a space
of about half a square mile, and if placed end to end would extend or a distance of 5038 miles. The tin-plate used in the manufactur of the cases amounts to nearly 38,502 tons, and would cover mor in Baku during the year 1885 amounted to $27,000,000$ poods, equa to $118,800,000$ imperial gallons. Of this, about $17,000,000$ poods $22,000,000$ gallons, were exported, leaving a balance of $5,000,000$ over $700,000,000$ gallons of burning oil manufactured per annum in the United States and Russia; to this the similar products manuactured at the refineries on the continent of Europe and in Scotand have to be added.
Professor Reuleaux gives the following as the result of recen investigations on diriferent means of power transmission, electricity
excepted. Circuit transmission means transmission by rope to
number of pulley being near the motor, so that there is no return or slac ope. Line transmission means transmission in a line from motor o recipient, as by a belt, the return or slack being equal to the or carrier in feet per second, $\mathrm{T}=$ tension of carrier materials in pounds per square inch ; $\mathrm{S} p w=$ the horse-power transmitted per保 and $p v=$ the speciic value of the diffe
steel rope circuit transmission to be $=100$.

Form of transmission.

Steel rope circuit transmission	98.4	21,300	$17 \cdot 48$	100.
" line	$98 \cdot 4$	21,300	8.71	${ }^{50} 0^{\circ}$
" circuit	98.4	10,650	8.71	t0.
Belts "" line	${ }_{98.4}$	10,650	${ }_{2}^{4.75}$	${ }_{15}{ }^{25}$
Hemp "'ope line	$98 \cdot 4$	241	$1 \cdot 13$	6.5
High-pressure water with steel pipes	$13 \cdot 1$	852	. 93	$5 \cdot 3$
High-pressure water with iron pipes	$13 \cdot 1$	426	-47	$2 \cdot 7$
Steam pressure, steel pipes	$13 \cdot 1$	426	-47	$2 \cdot 7$
: cast iron pipes ..	$13 \cdot 1$	142	$\cdot 15$	$0 \cdot 9$
Shafts, iron or steel..	$3 \cdot 3$	426	12	0.7

It must be noted that under no circumstances could the idea trouit be practically realised, and it may be said as to shaftin
that if roller bearings and higher velocities were used it would b t least half way up that table instead of at bottom.

MISCELLANEA.
Programares have been issued respecting the London summer meeting of the Institution of
$18 t h, 19 t h$, and 20 th August
A company has been formed for purchasing and working Simond' patents for forging iron and steel. It is named the Simond's Steel
and Forging Company, and prospectuses hares of \&j each
A sereriva has been held of the genoral passenger agents of the agreed to withdraw all cut rates throughout their territory, and to restore full tariff rates immediately.
Tre first natural gas pipe was put down inside of the city limits of Wheeling, W. V.a., on the eth of June by the Natural Gas Comssembly of citizens. The work will henceforth be pushed with the utmost rapidity.
The new twin-screw dredger Dolphin, constructed by W. Simons uccessful trial of her steaming and dredging capabilities on th Clyde on Friday last. This vessel is intended for harbour improve nents in the West Indies
The length of the S wedish telegraph lines at the end of last
year was 8578 kilometres, besides 20,967 kilometres of conductors, The number of stations was 180 . The greatest number of foreign mossages were exchanged wi
following next with 100,000 .
A tridal wave of considerable dimensions occurred off Cape Flattery, Washington territory, on Saturday night. It was
observed that the sea was subsequently covered with dead codfish, halibut, and salmon. We may next hear of some allied carth
THE contract for the construction of the Manchester Ship Canal
has been let to Messrs. Lucas and Aird for the sum of $£ 5,750,000$, or $£ 560,000$ less than the parliamentary estimate. Messrs. Rothschild have undertaken the financial part of the scheme. The
capital is to amount to $£ 8,000,000$, and is to be raised in $£ 10$ caphares.
Waterworks are about to be established at the seaside town of Southwold in suffiolk, for which purpose Messrs. Le Grand an same firm has also been intructed to make another boin, $15{ }^{\circ}$ diameter for the Basingstoke Corporation Waterworks with the view to increasing the town supply.
SHELLS seem to be much more effective as civil than as military weapons. It is reported that as a wagon-load of old artillery naterial, which a dealer in iron had bought from the Governmen public, auction, was being discharged on the 14 th inst, at the
purchaser's place of business in St. Petersburg, a 9in, shell, supposed to have been duly unloaded, burst in the midst of a number of people, killing sixteen persons, including four children, on the
spot. Others were more or less seriously injured. Acconding to a French journal, notwithstanding the difficulties met with, work on the Corinth Canal proceeded successfull last winter. In the month of December alone 500,000 cubic feet were excavated. The bridge which is to cross the canal at the highest point of the isthmus is also being pushed forward. This bridge
which will form the last connecting link between the Morea and the mainland, will bear the Athens Corinth line of railway. The wo abutments have arrived at
The Russian Black Sea fleet has been greatly increased since the abrogation of the 144 th Article in the Treaty of Paris in 1871 . Thus there are at present, according to a Russian journal, 120 war
vessels of all kinds in those waters and representing a tonnage of 70,000 tons, with 12,080 indicate hore-power. Of this number 7 are ironclads, 28 armoured and The The fleet will shortly be further struengthened with several torped oats built abroad, which will pass through the Dardanelles by

Thr magnificent pumping engine of the Mines Drainage sioners, manufactured by Messrs. Hathorn, Davey, and Co., mines, has now commenced pumping through the main borgel the water from the immense Bilston underground pound. Sinc last issue the workmen have succeeded in piercing the rib which
had been left to protect the Tipton district, and in that boring has now been placed a sin. pipe. From it and from a similar pipe in ing plant on at its maximum night and day, releasing som $5,000,000$ gallons of water every twenty-four hours. So thoroughl have the commissioners done their work, that whatever seams o coal and ironstone there now are over the whole twelve or fifteen
submerged square miles will, it is hoped, certainly a twelvemontl hence, be once again workable.
The new entrance to the great docks of the St. Katharine's Company, recently desoribed and illustrated in The Evaiverr, wa the concrete wall which excluded the water from the en entranc and extension basin. The 8000 tons of debris from that operatio inest ships to enter or depart. By the completion of this portio of their latest undertakings the Dock Company has developed the capacity of the existing dooks so as to meet the requirements o
 water at high tide. Bule margin for the dee is 36 ftt . deep over the vessels afloat. Satisfactory progress has also been made with the
Galleons Extension Basin, and important improvements in railway nd traffic arrangements are being effected
THE Manchester Ship Canal will extend from the deep water o ne Mersey at Eastham-a point on the Cheshire shore just above Eillesmere Port, Runcorn, Warrington, and Barton, to Manchester eing in length about thirty-five miles. 1 t will have a minimum
depth of 26 tit. of water, and will be wide enough for the larges vessels to pass each other at any point, and may be compared witl
the Suez he Suez and Amsterdam Canal in width and depth as follows:-
Suez: Depth, 26ft.; bottom width, 72 ft . Amsterdam : Depth 23ft.; bottom. width, 89 ft . Manchester: Depth. 26 ft .; botton
width, 120 ft . The estimates include docks in Manchester, Salford and Warrington, as sanctioned by the company's Act, with a water area of 855^{2} a ares, containing more than four miles of quays. Ther
will also be a mile of quay space and extensive shed accommoda tion near Manchester on the ship canal, in addition to wharf at many places alongside its course. The level of the docks at
Manchester, which is 6 foft. 6in. above the ordinary level of the tidal portion of the canal, will be reached by four sets of locks. The
locks will, it is asserted, be of

 of being worked together. Each set of locks will be worked by
hydraunicpower, enabbing, it is contended, vessels to be passed in
fifteen minutes. It is hoped that the rivers Iwell and MIersey which will be diverted into the upper reaches of the canal-will supply more than suffient water for the locks even in the driest
season. Vessels will, it is expected, be able to navigate the canal
ith with safety at a speed of five miles an hour, and it is estimated
that the journey from the entrance att Eastham to Manchester will be accomplished in eight hours.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

** This weck is published a Double Number of The Enginerr
containing the Index to the Sixty-first Volume, and Two Sumple ments, one being a Table of the Resistance Due to Gravity on
Inclines, the other a two page engraving of the Compound Beav Inclines, the other a tuo-page engraving of the Compound Beam
Pumpint Engine at the West Middesex Wratervorks, constructed
I MAessrs. James Simpson and Co. Price of the Double Num-

CONTENTS.

he Engneekr, July 23rd, 1886
Dirret Grapuio Method of Obtaining the Curve of Equilibrium pa

 Taz Meat Ship Sblembra
The Entaurah Istrenatio

CAvid Steverson.

 hampron, and other Disthict

Notrs froax grranan
Amkrican Notrs

TO OORRESPONDENTS.

Registered Telegraphic Address-"."ENGINEER NEWSPAPER,

* We cannot undertake to return drawings or max inform correspondents that letters of inquiry addressed to the public, and intended for insertion in this column, must, in an all
cases, be accompanied by a large envelope legibly directed by the uriter to himself, and bearing a 1 d. postage stamp, in order that No notice vill be taken of communications which do not comply with these instructions.

\section*{MEETING NEXT WEER}

 DEATH.
 On the 12 th or 13 th inst., at Ashhtien WADE, C.E., aged 53 , (By telegram.)

THE ENGINEER.

$J U L Y 22,1886$.

the river lea
Is the autumn of last year we had occasion to call atten tion to the terribly polluted state of the river Lea on the borders of the metropolis. At the date at which we wrote, some paliation of the evils referred to had been effected, fushed the sluggish stream, and swept out a large proportion of the sewage. But there was no immediate prospect of a proper remedy, likely to be permanent in its character.
The fear of a repetition in 1886 of what had happened in 1885 was enough to create both indignation and alarm. The population of the district had been excited in no small degree by the sufferings they had undergone, and the political clubs were found taking up the subject with a zeal which threatened extraordinary results. There was a great public meeting on Hackney Downs, a deputation to the Home-office, and a series of angry letters in the newspapers.
But while the Government, the Lea Conservancy Board, But while the Government, the Conservancy Board the Tottenham Local Board, and other authorities, we fiercely denounced for not rescuing the river from its pestilent condition, nobody seemed to know exactly what
ought to be done. That the sewage of Tottenham should be taken sonewhe the masily made, but not reaaily to be compried with, having for its object the construction of a sewer to divert the effluent of the Tottenham sewage works from the river Lea. There is no doubt that this effluent, owing to its very impure condition, has been the main cause of the pollution of the river. In addition to the legislative action just
mentioned, the House of Commons last February mentioned, the House of Commons last February
appointed a Select Committee to inquire into and report upon the condition of the river Lea, and to make such recommendations as might appear necessary. The labours of this Committee have been cut shor by the dissolution of Parliament, and what is intended as
 mittee recommend that inquiry Corning the Lea River Purification Act of this year, the Committee observe that the measure "is merely temporary, and will not fully deal with the difficulties of the case." They intimate that some scheme for intercepting the sewage and conveying it to a distance, after the manner of the metropolitan main drainage works, would seem to offer a remedy for the more flagrant evils complained of. In addition, the Committee offer a somewhat singular recommendation, recognising the right of the Lea Conservancy Board to pass more water through their locks than the water companies have lately allowed. The prior right thus ascribed to the Conservators apparertly means that the wate to the cleansing of the Lea
At this crisis it comes to pass that the river Lea has for the divhibited a marked improvement. The scheme been no restriction enforced upon the water companies. Yet the other day, when the Conservators of the Lea made their annual excursion up and down the stream, they were delighted to find that every trace of the former offensiveness had vanished. The hot weather was admirably adapted to intensify all the worst qualities of the river; but the whole scene was changed, and the stream, which had been so unutterably odious a year ago, was fungus could be discerned, Neither sewage nor sewage odour be detected, even where the water-wheels of the East London Water Company were churning
up the water at Lea Bridge. It might be sugup the water at Lea Bridge. It might be sug-
gested that things had been made pleasant for the especial entertainment of the Conservators. But this would have been no easy task had it been attempted. The explanation offered is that a particular process has been applied to the sewage, which not only renders the discharge innoxious when entering the stream, but prevents
the secondary decomposition which so often accompanies the secondary decomposition which so often accompanies
the use of sewage precipitants. The effluent from the the use of sewage precipitants. The effluent from the sewage works is in such a condition that it beneits rather
than injures the river into which it enters, both adding to than injures the river into which it enters, both adding to
its volume and purifying it from any polluting ingredients its volume and purifying it from any polluting ingredients
which it may contain. This assuredly is the very perfecwhich it may contain. This assuredly is the very perfection of sewage treatment. Major Flower, the Sanitary
Engineer to the Lea Conservancy Board, in a letter which he has addressed to Mr. John Hanson, of Wakefield, the inventor of the process, under date of the 15 th inst., says : "You will be glad to hear that yesterday, at the unqualified delight at the changed condition of the river Lea below the sewage works at Tottenham, which I explained was mainly due to the treatment of the Tottenham sewage by your black ash waste." Such testimony commands respect as being above suspicion, and as proceeding from a gentleman whose experience renders him peculiarly qualified to speak on the subject. The responsible position held by Major Flower is a further guarantee for the accuracy of his statement. There is also the power
possessed by thousands to verify or disprove the alleged purification of the Lea by paying a visit to the spot. On the whole, therefore, we are faced by the fact that a river which a year ago created a public sensation by its filthy condition is now, in the presence of hot and sultry weather, in such a state as to afford enjoyment to waters. The river also in its amended condition furnishes the necessary supply of clean water for a number of local industries previously placed in jeopardy by the excessive pollution of the process and the disposal of the sludge. We are informed that, so far as the purification of the sewage is concerned, the expense is considerably less than by any other method. The quantity of
sludge is stated to be small. But these are points on which more information may be expected to follow. The very satisfacsults, as aflecting the liquid sewage, avork at Tottenham for six months, and the appliances at the disposal of Mr. Hanson have been somewhat imperfect, owing to the alterations which are going forward at the Tottenham sewage works. Despite the difficulties and drawbacks thus created, the pollution of the Lea has been stopped, and it may be hoped that some fresh light has The Blue-book containine problem.
The Blue-book containing the evidence given before the Select Committee on the pollution of the Lea has been
published within the last few doys published within the last few days, and there we mee Young, the consulting chemist to the Lea Mr. W. C Board. Hanson's process is in operation at Leyton, and was at one time applied to the Aldershot sewage. Mr Young said to the Committee, "I have examined th Aldersh from the Leyton sewage works, and from the Aldershot sewage works, which were produced by Hanson process, and I a bound to say that those chlents have beeray I 1 bor for the blok ash wo la found the the waste process. On inquing into it, h duced at the alvali works, blat been exposed to the action the air for ome thal has time and has become partly oxidised The ulphides of lime containedin it we oxilised noh white The hypo-sulphites are soluble in water The sulphites are not soluble in water, but they ar and to the circumstance that the latter is acid some of the sulphite of lime is accordinoly dissolved Substance having powerful antisentic and deodorising properties thus produced attributed. "The remarkable feature in all the effluents" says Mr. Young, speaking of the Hanson process at Alde shot and Leyton, "is their perfect freedom from microscopic organisms." This result is understood to be due to the presence of sulphurous acid, which kills the anima organisms. The process is one which certainly deserve the attention of sanitarians, and if it permanently cure the pollution of the Lea, it will have established for itself a commanding reputation. Thus far it has done well,

Emergency drills for the navy

One profitable result from the growing interest bestowed upon naval matters would be an experiment and estimate of the value of the many complications and refinements which are year by year growing under the present Admiralty practice. Such an experiment as is suggested would not, it is true, be entirely free from risk; but even then the nature of an emerge would remain. An order of the of operations as are likely to occur in actual warfare, woul be instructive in more ways than one. Say, for instance, steam starboard engines with all available boiler power connect all available pumping arrangements in port engine room, and charge the fire service. The manipulation of the various steam and feed pipes, and their host of connections and interconnections, will probably engage the time of the whole engine-room and stokehole staft, even if, on the spur of the moment, sufficiently grasped by the officers in charge. In addition to this, attention must be directed towards keeping steam on the steering, electric light, and various capstan and other engines, as desired. The present system of duplication does not assist matters much, and its value may be questioned; for although double set of, say, pumping arrangements in each engineremembered that two articles are a target twice the size of one, and at the same time are more likely to fail from want of attention than one is, so that the advantage is not necessarily doubled. As most large ironclads are twin screw, duplication in such case means quadruplication. The value of even duplicated pumping arrangements in the Leander did not seem much service when she went ashore. According to pub lished accounts, she took the ground at or near a bulkhea where the double bottom and single bottom met, an although no holes of any serious size could be seen, it wa
 pumping power, that saved her. As regards steam pipes, marine to supply a separate boiler with range of pipes supplying the various small engines. This range of pipes is capable of being put into immediate communication with the main boilers if desired, and forms an arrangement easily carried in the head. The boiler, too, is usually in the 'tween decks, and away from any immediate danger from flooding. In the Navy the practice seems to be to arrange every separate engine very nearly, so as to be capa-
ble of taking steam from any or all of the boilers. This bear in mand and and and means a problem in combinations both abstract and con benefit of saving a boiler by endangering the ship is open to question.
the recent heavily armoured citadels a donke boiler can be readily and safely stowed high up-in fact in some of the foreign navies it is usual. Various chech numbers safety appliances are introduced in great numbers, but from the nature of things are only must be absolute to be of any value, and probably greate safety in practice would be attained by very much greater simplicity in arrangement, especially as the supervision in f quently changed many times even daughting understand the lead of the or ous pines is matter. of many months' constant study, and by the fortune of wat the few men having any knowledge of the subject may be the first disabled or killed. Some of our older and les complicated vessels, if kept in going order, will be found to ive a good account of themselves in action, perhaps when more imposing vessels are disabled. For various reasons
the Admiralty methods of construction and detail seem to
be very much swayed in direction by platform scientists. lepartment cease directly that a ship is commissioned does not improve matters, as a useful source of experience is thus destroyed. Any acquaintance with official systems will prove that itis to the advantage of no one to make critical observations on large scale, but unoffical conversations with engineer officers will convince anybody of the vast amount of connections alone-certainly have to bear in the matter most borough engineers have in their charge underground, and with immensely greater risk of failure. With the ponderous weapons of offence now usual, the various
requirements in the way of loading, training, \&c., depend requirements in the way of loading, training, , cc., depend
ultimately on the integrity of the propelling machinery for their proper action. The almost uniform existence o forced draught in the latest ironclads and cruisers does not
help matters much, as the various compartments are help matters much, as the various compartments are reached by double doors, and many means of getting about
are not available now as readily, and the air machinery is another charge for the engineers. The development, too of the torpedo system, of which not much is said, very wisely, with its own train of require
increase the duties and cares of oftice.
Emergency drills of a comprehensive nature are very asual in the German Navy, and are carried out without any previous notice whatever. Their introduction into
our service would no doubt render the lives of the engiour service would no doubt render the lives of the engi-
neers for a considerable time almost intolerable, but would et a flood of light into many obscure corners of officia practice; and although the result would lead to an enor-
mous expense, would be for the ultimate benefit of our mous expense, would be for the ultimate benefit of our
service as a whole. Any defects in administration, construction, and design are very much better found out in peaceful waters than when under the gun fire of a wellmatched opponent, which must always be looked upon as in the lecture-room and naval tactics afloat are very di

ventilation of passenger ships.

There are some annoyances which travellers continually experience with much discomfort, and with in
coluntary resignation assume are irremediable. these are stifling, oily, painty, stale kitchen odour, and steamers by which the shores of France, Holland, Belgium and other countries are reached. It is always there, and is associated in the mind of every traveller as a gauntlet and a purgatory to be gone through as the final destroyer of the pleasures of a continental holiday. Why the enormous numbers of long-suffering English travellers
have raised no voice on the subject is inexplicable, especially when the readiness to complain of railway shortcomings is remembered.
There is no reason wh
There is no reason why steamship berths should not be have a main deck berth can in moderate and fine weather open the side lights, especially if they do not object to a
blast that would do to serve a forge fire. Those in the lower berths cannot enjoy fresh air even by this means, and must leave the door open and ventilate with the
thick atmosphere from the interior of the vessel, which is laden with the odours already mentioned. In a rough passage, and when every part of the vessel is crowded with
passengers, the combination of smells is enough to kill off all those who are not accustomed to what any physiologist
would pronounce a poisonous atmosphere. This need not be; and as there are so many almost equally convenient routes to the Continent, it is surprising that some of the steamboat companies have not bid for the best patronage
by effectively ventilating their vessels. A steamship berth is of all places the one which, if the least attention is to be paid to sanitary welfare and comfort, should be most
plentifully supplied with fresh air; but it is the least, and natural sickness is aggravated by this unnecessary foulness. Every berth should be connected with a thoroughly effective ventilating system, or every group of not more than three
berths should have a complete and separate ventilation. Mechanically there would be no difficulty about this. One of the simplest methods would be to fix one or two powerful
ventilating blowers in suitable places for passing a large quantity of fresh air down into the saloon and passages, the exit for the air being only through outwardly venti-
lating openings, such as flat grids, with plate valve-like lating openings, such as flat grids, with plate valve-like
covers. Communicating with these should be ventilating trunks, to carry off bad air by an opening placed in every
berth. The arrangement need not involve any element of dinger in the worst weather, and the blowers might be ored by thate engine. more efficient method would perhaps be possible by means
of ventilators at different parts of the vessel, worked by means of water under a small pressure, each ventilator to
apply to one or a few berths. This system would lend apply to one or a few berths. This system would lend with which water at from sixty to seventy pounds per
square inch, and in the small quantity required, could be square inch, and in the small quantity required, could be
supplied by a pump worked by the main engines, would lead or ordinary iron piping for the conveyence of the of this kind were exhibited in the Healy laid. ${ }^{\text {bintilators }}$ one, which received a gold medal, acted either as a forcing or exhaust ventilator. There is presumably no difficulty
in ventilating cabins which could not be easily overcome. The one preventive of proper ventilation on board pas-
senger steamers is probably the cost of ventilating. The addition to the capital cost of a steamer for this purpose would, however, be small, and would soon be looked upon
as insignificant once steamship owners were taught to look on fresh air in berths or cabins as a necessity ; and it is at
least as much a necessity as fresh water for on short least as much a necessity as fresh water, for on short
voyages passengers can do without drinking water, where there are always plenty of aerated waters and other sub-
stitutes. Even in cold weather passengers will run the stitutes. Even in cold weather passengers will run the
risks of passing the night on deck, rather than breathe
through the night the stuffy atmosphere of cabins for
which they have paid. Surely it is time that some step were taken in this matter, not merely for the comfort of the passengers, but as a most necessary sanitary reform.

TYNE RIVER WORKS.

The improvement of the river Tyne affords an example of the enormous sums that may be remuneratively, if judiciously, spent on rivers in industrial districts. Ti is always interesting
to look at the position of the Tyne river works, for they are admittedly amongst the chief of the engineering works of the streams of the fingdom. "It is not many years since the some of the shoals for two or three hours at low water and
spring tides," between the Northumberland Dock and New castle; whilst " above Newcastle the navigation was only used by keels." A plan of river improvement, including the deepening, widening, and straightening the river, was sanctioned by Parliament in 1861, and that and later schemes have been carried on with comparative steadiness since. In 1861 there was dredged from the Tyne 746,932 tons of material ; and that quantity yearly rose, until in 1806 the amount of dredging reached the vast
quantity of $5,273,585$ tons. It has fluctuated considerably that time, having been as low as $1,552,098$ tons in the year 1876 but in the past year it was $2,562,486$ tons. It may be added figures being $4: 311 \mathrm{~d}$. The works which the Commission has begun and completed in large degree are well known ; but the present rate of expenditure and the nature of the works in progress are not so well known, and it may be useful to give
some of the facts. There is now practical completion of the expenditure, which has been so long continued, on the Albert Edward Dock, and the large work of the Commission is slowly sum of $£ 60,512$ on capital account on the dock named, but last year the amount was reduced to $£ 15,665$, and now the expendisiderable sum - nearly fished. The piers works still claim a condivision last year having been, on the North Pier works,
$£ 14,197$, and on the South Pier works $£ 19,97$. There are in progress also in the river two works of some moment-the Friars Goose Point works, and the Bill Quay Point works; and on the
first of these there was expended on capital account last year first of these there was expended on capital account last year
$£ 3577$, and on the latter $£ 1230$. There are several minor works on which there has been some expenditure in the past year-
works near Blaydon and at South Shields; but these are of comparatively limited cost and duration. In all, the expenditure on capital account last year was $£ 82,228$; but a portion of this
was taken from the surplus revenue fund. The sum by which the borrowed money was increased-the expenditure on capital after the payment out of revenue of a surplus-was $£ 57,726$, or
less than half of the amount of the previous year. Still, the $\notin 20,000$ of the authorised barrowing powers of the Board, and it was to this that the recent application was Leeded to Parliaso as to enable the works in progress to be completed. We have seen what these works chiefly are, and it is thus noticeable that the River Tyne Commission is fast approaching the time when and whe able to close its capital account, unless new needs arise, ment of the industries of the river. Its credit has increased, as is evident by the fact that whilst ten years ago the average rate
of interest it paid on the money it had borrowed was $£ 413 \mathrm{~s}$, per cent., the rate of interest is now brought down to $£ 40 \mathrm{~s}$. 5 d ., a reduction which saves more than $x_{24,000 \text { yearly. One in- }}^{\text {teresting feature in the results which have attended the great }}$
works of river improvement on the Tyne is this that the works of river improvement on the Tyne is this, that the size of
the vessels frequenting the river has continuously In 1854 the average size of all the vessels frequenting the river was only 149 tons; it rose in nineteen years to 274 tons, in 1875 and last year the average size was indicated by 428 tons Finally, it may be said from an official report of Mr. R. Urwin,
the secretary to the Tyne Improvement Commission, that in the jear 1863 there were only 422 vessels of over 2000 tons register; in 1875 that number had risen to 3500 , and last year
it was 5100 . The trade of the Tyne has its ebbs and flows, and
it impression on the iron and the the me an which frequent the great port of the north-east; but the facilities which bave been given to it, and the added safety and ease in navigating it, as well as the works which have enabled the larger vessels of to-day to use it-these are all omens that the Tyne
will share in the larger trade which is expected, and the justice and the need of the works still in progress on the river, but which now near completion-these will be proved. And in the future, it may be hoped that the fuller facilities will enable the remove some of those imposed to effect the works.
the fatal accident at woolwich.
As inquest took place in the Royal Arsenal, Woolwich, on
Monday, July 19th, on the body of a labourer, Daniel Moriarty, killed accidentally in the Royal Gun Factories on Saturday, July 17 th. The circumstances were as follows :-A steel casting for an 8 in. gun had been run from a 10 -ton furnace, the casting
not being far short of this weight. A time having elapsed which was thought sufficient for the casting to solidify, it was so as to let the ir pass under the base and assist in coling it so as to let the air pass under the base and assist in cooling it. dummies, when the casting, which was lifted a short distance from the iron floor of the pit,suddenly yielded at the bottom, and a swallowing the metal rushed out, knocking down, and, as io were could hardly be sure whether they heard a groan or not before
he was dead. There was then considerable difficulty in getting his he was dead. There was then considerable difficulty in getting his
remains out of the metal. Eventually the main part of his trunk, without head or limbs, came out in a mass of steel. Thisman leaves this very painful and five chiidren. 1 ids itcessary to mentio manufacturing operations. Unquestionably workmen themselves are the best judges of the time in which a casting may be expected to set, for this must be learned from experience which
only they possess in the fullest extent. Nevertheless we must bear in mind that with the best powers of judging, workmen do not always exhibit the caution which allows margin sufficient to guard against possible mistakes. Who can tell how often a
casting has been lifted with the central part still in a liquid condition, and the bottom and walls just sufficiently solid
to prevent the breaking out of the molten metal? A Saturday afternoon when men wish to get away, and a very
hot day, are conditions which tend to increase the risk
slightly, but hardly, we should think, such as would make the
difference between a really solid casting and one consisting
of a large mass of molten steel in a casing too thin to hold it when lifted off the ground. Probably stringent regulations will be issued for the future, but it is difficult to attach blame very strongly to any one for a mistake where experience could be the quate to say more than that safety had hitherto quite inadeby conditions which were carried out on this occasion. Unless more information comes out, there is little to be said. Unquestionably the Government will provide handsomely for the widow and children.

traction engines.

The use of traction engines will probably extend, but it will extend slowly in England, at least, for under the present state of
the law respecting them and their use, a law which seems to have the very willing support of most people not users or makers, money rissible that they can be used except at considerable money risk to their owners, however carefuly the engines are tramway, and steamboats, are so constantly under the eyes of
horses that they cannot fail to grow accustomed to them, but these districts are few. The Sheffield County-court Judge gave his decision in a case in point on the 15 th inst. The action was one in which Mr. Maurice Booth, coal merchant, sought to recove of $£ 40$ as dame . and the loss of orick manufacturers, the by a traction engine belonging to the defendants, and through, it was alleged, their negligence. The Judge held that it was, not necessary to find negligence on the part of the defendants
servant when the statute had so carefully preserved the liability of persons who employed a dangerous machine like a traction engine on the public road-an engine which was undoubtedly a very great nuisance and the cause of great danger to persons, seemed to him to be beyond doubt, and the case cited by Mr. Barker showed that even in a case where there was no negligence tive on the public road, still they were liable for the injury so caused, and the ground of fixing that liability upon persons who used the locomotive arose upon the 12th section, 28 and 29 Vic.,
cap. 83 , which enacted that "nothing in this Act contained shall authorise any person to use a locomotive which may be so con-
structed or used as to be a public nuisance at common law, Then followed these words, " and nothing herein contained shall injury he right of any person to recover damages in respect of injury he may have sustained in consequence of the use of a
locomotive." Therefore what was put as the was not negligence; it was the use of a locomotive. Nothing could be clearer than this. He therefore found a verdict for the plaintiif, and allowed costs. This judgment would probably hold good on appeal, and it only serves to show how great are the us that the the extended use of traction engines. It also reminds or the engines of which the fewest number are required, and on which a few pounds more or less of coal consumption per day is of the least importance.

LIT ERATURE.

The Boiler-makers' Assistant in Drawing, Templating, and Calcuand edited by D. K. CLaRK, C.E. ${ }^{\text {By John Courtser; revised }}$ and Co. 1885.
Messrs. Crosby Lockwood and Co. deserve the thanks of all students of practical engineering for the many clear and excellent treatises they have brought out and stil useful practical work, bearing all the marks of being as its author states in his modest preface, the contents of his own note-book, kept by him as a practical boiler-maker, and arranged also by him for publication, subject to the able editing of Mr. D. K. Clark. Mr. Courtney remarks in his preface, "I could not find any one book within the prachor my wages topurchasesufficiently comprehensive and practical to be at once useful to the apprentice as well as ooile journeyman, and devoted simply to the crant of the which usully such works many therefore arranged for publication what was once a private note-book for my own use. "The book is one of Messrs. Crosby Lockwood's well known Weales' series, and contains eight chapters, or 106 pages of matter, all of the The being sound, practical, and easily to be understood. definitions three chapters are devoted to useful arithmetical mensuration. The fourth chapter the simpler branches cisterns of regular and irregular shapes. The fifth refers to rectangularand circular work, cylindrical boilers, angle iron rings,
and framing. Chapter six deals with the very important subject of templating, and contains excellent and practical instructions as to how to mark out work, such as plates for elbows, knees, junction of cylinders, cc. Al or his is very as at other schools, but too frequently is forgotten again by the students after they leave. Mi. Courtney illustrates his rules where necessary with clear diagrams, so that any for himself with a sharp penknife, a pair of scissors, and some cardboard, and this method of study will convey a far clearer insight into matters of boiler and tank-making than the mere development of bodies, as it is called, on paper, as drawings. The seventh chapter deals with the have felt it incumbent upon him to give at least one rule for the proportions of boilers, so he gives the rule of 12 square feet of heating surface to 3 of a squa grate, and it is sufficiently safe to be taken in a general sense; but the adage that "circumstances and is rules for steam boilers. The rules for strength, bursting, and working pressure all appear sound ; we have checked one or two of them, and they are quite reliable, but we must reluctantly take exception to the mode prescribed for determining the amount of pressure due to the weight of the safety valve and lever. The rue given
is as follows :-"(1) To find the distance from the fulcrum at which a given weight is to be placed on the lever in order to balance a given pressure in the boiler, multiply
the steam pressure on the whole area of the safety-valve

BLAKE'S COMPOUND DUXLEX DIRECT-ACTING PUMPING ENGINE. messrs. S. owens and co., London, engineers.
(For description see page 76.)

by the distance of the centre of the valve from the centre of the fulcrum; multiply the dead-weight of the lever and the valve by half the length of the lever; subtract this product from the first product, and divide the remainder by of given weight. The quotient is the required distance itself, as regards its effect upon the pressure, will not be accurately determined by taking its half length, unless its centre of gravity lie there; and this can only be if the lever is of uniform sectional area from end to end-which is seldom the case. The weight of the valve, and its influence on the steam pressure, has nothing whatever to do with the lever. It is a factor perfectly distinct in itself, and its value will be the dead-weight of the valve divided by the area in square inches of its smallest diameter. By far the simplest and most certain method of determining the pressure that will be due to the weight of the valve and its lever, is to put both in their working position. A small hole, say $\frac{1}{8}$ in. in diameter, should be drilled through the lever exactly over the centre of the safety valve ; a hook and string can be attached to this, and the other end of the string fastened to one end of an equally divided lever, from the opposite end of which weights can be suspended sufficient to just balance the lever and valve. This weight, divided by the area of the valve, will give exactly the answer required. The proportioning of the weight and length of lever to pressure besides this is easy to determine

The eighth or last chapter is simply a collection of useful tables of weights and strengths of iron. The book is well indexed, and is clearly printed on good paper. It will be a useful reference book to all boiler-makers, and deserves the attention of apprentices. Its moderate price
places it within the purchasing power of even very small places

Introduction to the Science of Dynamics. By Professor D. H, Marshall. Wm. Bailie, Kingston, Ont., 1886. This is one of a series issued at Queen's University, Kingston, Ontario. This is an active college, working vigorously in the task of raising the standard of education in Canada. The title of the book is modest, but it contains a great deal of excellent teaching. The style of diction is simple, familiar, and easily understood; and yet clear, terse, and logical. It begins by describing the physical natures of the fundamental quantities dealt with-matter, extension, motion, time, velocity, \&c. These are taken in Thus force comes late in the development of our ideas. and acceleration of momentum. The definition of force and acceleration of momentum. The definition of force given is, "Force is that aspect of any external influence momentum." This would be entirely excellent if it did not, unfortunately, happen that forces are oftent not manifested by any change of momentum of the bodies to which they are applied. If the forces balance, i.e., if the accelerations of momentum sum up to zero, then the momentum effect of the forces is not manifest, but, on the contrary, masked from all possibility of observation. The force effect is then manifested in the strains produced in the materials stressed by the forces.
"Energy" is explained as "the power to overcome resistance through space. Work is the expenditure of energy, or is the transference of energy from one body to
rating the motions of material bodies or by changing the configuration of a material system against resistance." If the author had borne in mind these excellent sentences of his own composition he would have enlarged his definition of force in the direction suggested above. He would also have more clearly recognised that "potential energy" is energy stored up in strained substance, and existing in it essentially in consequence of the strain. We have for long thought that potential energy would be more fitly named "latent" energy. It is in a sense latent because, although the strain or change in configuration may be plainly enough visible or otherwise recognisable, still this strain being a purely geometrical condition, we cannot venture to think that the energy consists easentially and solely in the existence of substance in that geometrical condition. The geometrical condition is, we are forced to believe, merely the invariable and necessary and manifest accompaniment of some physical condition which constitutes the energy lent, of the precise energetic nature of which we are as yet ignorant. In Professor Marshall's book we are told that "when work is done against force on a body which forms a part of a material system, so as to alter the configuration of that system, the body in virtue of its new position has energy which it did not previously possess," and which is called its " potential energy." The italics are ours. Now this is inaccurate. The potential energy is not possessed by the one body here referred to, but by the whole system whose configuration is changed; that system inctuding in all probability the intangible substance or ether which fills up the
separate parts of the system.
A very large number of numerical exercises is given in the book. They are of a lively concrete kind, sure to excite interest. The numerical answers are given in an
appendix. Both the C.G.S. and the F.P.S. (foot, pound, appendix. Both the C.G.S. and the F.P.S. (foot, pound, second) systems of measurement are used throughout the
book. The author has invented several new names book. The author has invented several new names. The "tach" The unit rate of working of second is called a one tach or one $\begin{gathered}\text { arg } \\ \text { per }\end{gathered}$ one tach or one erg per second is called a "dyntach. The is called a " prem" A very useful table square centimetre version of quantities from une unit-system to given at the end of the book. unit-system to another is tachs, 1 vel, per hour $=44 \cdot 7$ tachs, 1 kilodyne $=153$ grains weight $=$ about 1 gram-weight. One megadyne $=72$ poundals $=$ about $2 \frac{1}{4}$
pounds'-weight. One megaprem, viz. one million prems., is only about one per cent. less than mean atmospheric pressure. One English horse-power = 7456 megadyntachs.
This book is so far above the average text-boox on this subject that we heartily congratulate the students of Queen's College, Kingston, on possessing so good and trustworthy a guide in their dynamical studies.

The Mechanics of Materials. By Professor Mansfield Merri MAN. New York: John Wiley and Sons, 1885 THIS is an elementary text-book on the strength and stiffness of pieces of material used in engineering struc for this purpose it has many for this purpose it has many great merits. It is simple lessons taught are enforced by a great number of numerical exercises which are generally of a useful and thoroughly practical character. In the tables of properties, such as
tensile strength, modulus of elasticity, \&c., only rough average values are given. This last is a decided advantage to an elementary student whose attention is to be concentrated on the rationale of the calculations. For students whose after business is to be real technical engineering, it is somewhat dangerous to allow any idea to grow up that there is any such thing as a fair average strength of, for instance, wrought iron. It is, in fact, rather startling to see stated similar averages for what is called, without any qualification, simply stee.
After dealing with tie-bars, short compression bars, and direct shear, a short section is usefully introduced at an early page on factors of safety. It may be interesting here to quote the table of factors of safety given as representing common American practice :-

Material.	Steady stress (Buildings).	Varying stress (Bridges).	$\begin{gathered} \text { Shocks } \\ \text { (Machines). } \end{gathered}$
Timber	8	10	15
Brick and stone	15	25	30
Cast iron	6	10	15
Wrought iron ...	4	6	10
Steel	5	7	10

These, of course, are divisions of ultimate strengths. Water and steam pipes, and cylinders, are next dealt with; but here a decided mistake is made in not referring to the yet quite that the difficulty of casting metal very thin, and boring, have, upon the practical relation between internal pressure and thickness. The student is taught that the thickness should be simply proportional to $p d$, which is wrong. Rivetted joints are explained in the ordinary elementary way. The strength and stiffness of beams is treated fully, the illustrations being thoroughly practical. The shear is taken as uniformly distributed over the section, and this is called the "ordinary" theory of bending. We trust that this does not correctly represent the teaching of engineering Professors either on this or the other side of the Atlantic. In a chapter at the end of the book, however, the true variation of shear over the beam section is satisfactorily explained. We are glad to see prominently noted the fact that the ordinary theory of bending does not really apply beyond the elastic limit, and that it is absurd to apply it to rupture by flexure. But in explain-ing-page 51-the deviation of the true law beyond the elastic limit from the ordinary elastic theory, the diagram drawn to represent the variation of stress is drawn with its upper boundary concave instead of convex. This is probably due solely to inadvertence. Considerable exception might also be taken to the table on the same page of "moduli of rupture." Continuous beams of uniform section are explained very fully and satisfactorily, but we would suggest the future omission of the statement-page 84 - that the only continuous beams used in engineering constructions are
With regard to long struts, the formulæ of Euler With regard to long struts, the formulæ of Euler Hodgkinson, Tredgold, Gordon, and Rankine are explained,
and dissatisfaction is very properly expressed with all of and dissatisfaction is very properly expressed with all of
them. A very interesting table is quoted from the them. A very interesting table is quoted from the April, 1884, giving results of an extensive series of experiments on angle and T-iron struts, with ratios of length to radius of gyration of cross section varying from 20 up to radius of gyration of cross section varying from 20 up to
480 . The writer has, however, plotted out the figures
given in this table as a series of curves on sectional paper. By this means it became at once apparent that, although the figures represent presumably the average results of a large number of experiments, they do not follow any
regular law with even a fair degree of accuracy. Whether he deviations are due to large variations in quality in th different lengths and sections of bars used, or are due to errors of calculation in deducing the results, it is, of course, impossible to express an opinion without having had an opportunity of examining the details of the investigation. The torsion of shafts and other matters are also dealt with in the later chapters.

Duncan's Manual of British and Foreign Tramway Companies, His manual contains abstracts of accounts, traffic table of the principal tramway companies, tramway tables, and tramway directory generally, giving names and adaress of capital account, reserve fund, engines, cars, horses, miles open, and miles run.

BOOKS RECEIVED.

Canada: its History, Productions, and Natural Resources. Prepared by George Johnson under the
Carling, Minister of Arcociculture, Canada. Canada : The Department of Agriculture. London: The Colonial Exhibition.
Die Bervenung des Wasserstandes des Zuerichsees Vetli. Zurich: Hofer zur Senkung seiner Hochwasser. Von K Trusses of Wood and Iron. Practical

Applications of Scienc
Weights, Scantlings, and Details of Construction. Vol. 1. By Wafe Lrifitsts,
Birkenhead: The Author, and Wilmer Bros. and Co 1S8 Constructive Geometry, of Plane Curres, with numerous exam-
By T. H. Eagles, M.A. London: Macmillan and Co. 1886 . ngine written in plain language, giving full explanations of the construction of modern steam engines, inc inding diagramems showing
their operation. By Joshua Rose, M.E. Philadelpha: Case Baird
and Co. London. Sampson In and Co. London: Sampson Low and Co. 1886. Way according to
Track: a complete manual of Maintenance of We W latest and best practice on leading American Railroads. By
W. Parsons, jun., C.E. New York: Engineering News Publishing Company. 1886.
the Propertics of Logarithms. By Lieut.-Colonel John R,

 F. Watt. Third edition. London : Philip and Son. Liverpool
W. Potter Hydraulics: the Flow of Water through Orifices over Weirs, and
hrough Open Conduits and Pipes. By Hamilton Smith, jun., Member Am. Soc. Civ. Eng.
York: J. Wiley and Sons. 1886 . the Interior, $1883-84$ By J. W. Powell, Director Washington The Miller's, Corrn Merchant's, and Farmer's Ready Reckoner.
By W. S. Hutton, C.E. Weale's Series. London: Crosby Lock-
wood and Co 1886 . Book-keeping Simplified, giving a short System of Double Entry
Iravn up in a special form to economise time and work in the counting-house, with Appendix, giving forms of books necessary for
merchants and traders. By John Adams. London: Unwin
Brothers. Brothers.

COMPOUND PUMPING ENGINE.
The engraving on page 75 illustrates Blake's compound duplex lirecting engine, as made by Messrs. S. Owens and Co., o of the other that the most suitable variation in the velocity of the pistons and dwell at the ends of the strokes are obtained.
The engines have 16 in. high-pressure, 30 in . low-pressure and 5in. pump cylinders, and 30in. stroke, for pumping 90,00 gallòns per hour. They are either made as an ordinary duplex
pumping engine, where the steam cylinder of one engine operates he valve gear of its fellow, and preferably is also arranged in uch a manner that both engines may run together, or either ne independer ne pump stop from any cause or need repairs the supply can one pump stop from any cause or need repairs the supply can
be partially kept up. Condensers are not shown with this engine, but they are usually adopted.

DAVID STEVENSON.

Three score years and ten have, we regret to record, carried away David Stevenson, one of our most eminent harbour and
lighthouse engineers, and the senior member of the firm of D. and T. Stevenson, engineers to the Board of Northern Light-
houses, and the Fishery Board of Scotland for harbours. He houses, and the Fishery Board of Scotland for harbours. He
died on Saturday last of paralysis at North Berwick ; he had died on Saturday last of paralysis at North Berwick; he had
retired during the past three years, and his brother Thomas, his two sons, and Mr. Alan Brebner, constitute the present firm. Stevenson, the engineer of the Bell Rock Lighthouse, and was born at Edinburgh in January, 1815. Educated at the High School and University of Edinburgh, he, unlike his brother Ahe first to follow his father's profession. Before entering on his apprenticeship, he was for some time in the workshops of
one of the best practical millwright engineers of his day, where he acquired manipulative skill and the proper methods of working in different materials-a course he always advocated for
those who intended to follow the proession of civil engineering. Atter serving a regular pupilage as a civil engineer, he was for
some time engaged with Mr. Mackenzie, contractor on the Liver pool and Manchester Railway, and he gave a description of this important rail way scheme to the Society of Arrs more than fifty
years ago, and was awarded their medal for his exposition. He then returned to Edinburgh, and, in conjunction with his father auld his brother Alan, began practice as an engineer. During
the year 1837 he made a three months' tour in Canada and the the year 1837 he made a three months' tour in Canada and the Works of these countries being pubished in a volume under the which was subsequently republished as one of Weale's Series of Engineering Works.
ttention engineering of rivers and harbours chiefly claimed his and, with his brother, his advice was nuch sought on this and on dock works, and he was asso aiated with most of the rivers or harbours in Scotland, t'
rivers Dee, Lune, Ribble, and Wear in England, the Erne and

Foyle in Ireland, while the Forth, Tay, and Nith were improved under his advice, and extensive works are now in progress on the estuary of the Clyde from the designs of the firm. He
wrote an important paper on the Ribble in the third volume of the "Transactions" of the Institution of Civil Engineers in also wrote much and originally on the theory of the origin of bars at the mouths of rivers, and on the tidal and non-tidal parts of rivers, on estuaries, and on the proper treatment Eng., xxi. His book on "Canal and River Engineering, giving the results of his experience in the treatment of rivers is a standard work on the difficult subject of which it treat Originally written at the request or his "Id friend-Mr. Adan Black-about thirty years ago for the "Encyclopædia Britan nd it was shorny atcerwaras pubished as a separate treatise ucceeded his brot house Board and along with his brother Thomas hern Light nd executed no fewer than thirty lighthouses, two of whichon Dhuheartach and the Chicken Rock-are triumphs of ngineering. In addition to the Scottish lighthouses, the dvice of the deceased's firm was taken by the Governments o India, New Zealand, Japan, and Newfoundland on lighthous matters, and under their direction schemes for the lighting of re now being carried out. In connection with the lighting of the coasts of Japan, where earthquakes are frequent, Mr effects of earthouake shocks on the somenh to misate the paratus used in lighthouses. On this subject he consulte Mallet, but he made an aseismic joint which Mallet considered In addition to works of the kind mentioned Stevenson an his firm were engaged on bridge and sewerage and other work. Besides his practical work he was fond of the literary side of hi profession, and added to many papers principaly, on engineering ime to write several books which have taken a permanent place in engineering literature, such as "The Application of Marin ing", "Reclamation and Protection of Agricultural Land, "The Principles and Practice of Canal and River Engineering." He also wrote and experimented on the force and action of
waves-Proc. Inst. Civ., xliii--and several articles for the ast and present edition of the "Encyclopedia Britannica, among which may, be noted "Canal," "Cofferdam,"" "Diving,"
and "Dredging." He was also the author of "Our Lighthouses," being two articles written for his old friend Dr. No nan Macleod, while editor of Good Words, and subsequentl on," published in 1878.
ected a Fellow of the Royal Society , and he subsequently acted as a member he Council of the Institution of Civil Engineers, and member of the Society of Civil Engineers of Paris, and Highland and Agricultural Society, and to the Convention of Highland and Agricultural Society, and to the Convention of
Royal Burghs. Mr. Stevenson leaves a family of two sons, as Royal Burghs. Mr. Stevenson leaves a family of two sons, as says, is married to Mr. Napier, and another to the Dean of Faculty.

EDWARD BURSTAL.
The death of Edward Burstal, Captain-R.N., the Secretary o the Thames Conservancy, at Ramsgate on the 13th instant emoves one who has long been connected with and had grea infuence on the engineering of the Thames. He was born at Stoke, near Devonport, in 1818, and was the son of Richard Trafalgar. He entered the Navy in September, 1833, and wa at once employed on surveying service on the Thames and Med way, under the late Captain Bullock. In 1838 he received the 1840, as midshipman on board H.M.S. Cambride , he wa engaged in the operations on the Syrian coast and blockade of Alexandria; for his services on this occasion he received English and Turkish medals. In 1846 he was engaged in surveying in the North Sea on board the Fearless, and later he becam eutenant in command during the famine relief on the Iris Coast. After that he was engaged in surveying the South-Eas coast of England and West Coast of Scotland. In 1802 he endered active service in laying the first submarine telegrap
cable, i.e., that from Dover to Calais; for this special service received a handsome present of plate. He subsequently wa engaged in laying the telegraph cable from Orfordness to the Hague, and in this latter case, by careful navigation, only 119 miles of cable were used to cover 114 miles of actual distance.
In 1854 Lieutenant Burstal was engaged in the war operation in the Baltic, and in the taking of Bomarsund. On this occasion his surveying experience led to his being specially recommended English and French fleets when the lights and buoys had been moted to the rank of commander. At the close of the Russinn war he resumed his work of surveying on the Scotch and English coasts. In the year 1857 the Thames Conservancy was esta blished by Act of Parliament, and Captain Bursal was appointed on the recommendation of the Admiral body. This appointment he held until the day of his death. Captain Burstal took a great interest in the prevention of the pollution of the river Thames by the Metropolitan sewage Although the Conservancy have hitherto been less successful in bringing home to Londoners and their representatives the enorabove Moulsey, it is to be hoped that the evidence given before Parliamentary ruit, and that the metropolis will not be allowed much longer o pollute to any perceptible or material extent the tidal water of the Thames. At present a large portion of the income of the Thames Conservancy has to be expended in dredging up
the materials so abundantly furnished by the Metropolitan the mate
Captain Burstal was a member of several Royal Commissions, otably, the Thames Embankment inquiry, which resulted in embankments constructed. His opinion was often in request in connection with marine engineering questions, especially with reference to harbours, docks, bridge foundations, and se defences. He was apparently in excellent health some three weeks since, and died on July 13th-after a very short illness-
in the arms of his only brother, whose life he had, when twelve ears of age, saved from drowning. He leaves one son onlythe engineer to the Corporation of Oxford-to mourn his loss,
but all to whom he was known will feel that one of those fine
upright and genial natures which are all too rare in public life has gone from their midst. On Friday, the 16th, his remains the leading members of the Thames Conservancy and a large number of sorrowing friends.

COMPOSITE CARRIAGE-INDIAN STATE RAILWAYS.
In our impression of the 27 th November last we gave in "Contracts Open" the leading particulars of some third-class

illustrated the third-class carriages, and now illustrate the first For the general particulars we must refer to page 413 of vol.

PRESSURE EXERTED BY WATER IN THE

SOIL,*

The following is an abstract of a paper in the Zeitschrift für " "The author bives the :wich were undertaken principally with a view to determinin the influence exerted by capillary attraction in diminishing the pressure of water in various kinds of earth, especially sand water can only find its way by suffusion through the mass, an that there are no large fissures present. Reference is made to various authors as regards their opinion on this subject, and the amount o
from the
floors, \&c.
Aagdeburg An orvation-recorded by Beer-in regard to a filter-basin a esistance to water, puoted, bearing upon the amount of frictiona in this instance, of coarse gravel. The basin in question, 178 ft . floor of 1 ft . $7 \frac{1}{2} \mathrm{in}$. -0.5 metre-in thickness, and was kept fille with water to counterbalance the pressure of the external ground water. On the occasion mentioned the water was pumped out to a evel of 2 in . - 05 metre-above the Hoor, when a slight upheaval of portion of the latter being noticeable the basin was quickly
refilled. The level of the external ground-water was 7 ft . 10률 in. above the under side of the concrete floor, and the weight of the floo was equal to a column of water of $3 \mathrm{ft}. \mathrm{9in}. \mathrm{high;} \mathrm{therefore} \mathrm{sup}$ een active, it would consequently have required a depth of wat in the basin oxamples of the varying resistances of different earths to
 aid of pneumatic pressure, on reaching a depth of 48 ft . below the of ace of the ground-water in a saturated clay-sand, an air-pressure
of atmosphere instead of twice that amount was sufficient to exclude the water; and at the Rheinpreussen mine near Homberg, in 1865, the caisson was sum with a pressure of only $2 \frac{1}{2}$ atmo spheres to such a depth as was calculated to require a pressure of of the wheres. the air-cer-prest is suggested that the water was held back fo some time by the thick beds of clay which it was known had bee passed through, but finally found its way through these by channels around the outer shin the caisson. In the previous case quoted, was requisite, that probably half the column of ground-water wa supported by the air-pressure, and the remainder by capillary attraction. Details are given of the sands of various size grain, together with a number of formulas column."

Royal Agricultural Society. - Silver medals have bee incoln for self cloanc Company, ensilage stack press; Smith and Grace, Thrapstone, for Smith patent convertible belt pulley, with screwed bush; the Dair Supply Company, London, for Dent fow ansomes, udges recommended that the following implements, which they deem capable of further development, should be exhibited at the succeeding show of the Nociety, and classified as exhibits for special inspection - Mayrs
Mr. William Low.-The death is announced of Mr. William and in early life was engaged as assistant engineer in the construc tion of a portion of the Great Western Railway main line. Subse
quently he became proprietor of collieries in North Wales, and devoted many years to mining enterprise. His energy and perse Tunnel enterprise. In 1866 he issued a printed circular describin his plans, and in 1867 had an interview with the late Empero Napoleon on the subject. Subsequently, other engineers were s to purchase land on his own account both at Dover and Calais, so anxious was he to push forward the enterprise. The ble time, but the project was ultimately taken up by Sir E Watkin, who invited Mr. Low to become one of the engineers.
Among other schemes he took up was a proposed England and India railw
year 1870.

* "Proceedings" Institution of Civil Engineers.

SHRINKAGE OF EARTHWORK.*
By P. J. Flynn.
Soury years since experiments were made in Dharwar, in India,
by Mr. J. H. E. Hart, C.E., on the shrinkage of earthwork, and by Mr. J. H. E. Hart, C.E., on the shrinkage of earthwork, and
the results of these experiments agree with the resultta arived at
by Mr. Specht- "Transactions" Trection y Mr. Specht- "Mransactions" Technical Society, May, 1885that of the pit from which the material a with whimech it was was con-
truoted was excavated. Mr. Hart had three pits ex wave structed was exaavated, Mr. Hart had three pits excavated, and
the material from each pit was formed into a bank. The first pit, the material from each pit was formed into a bank, 41 The first pit,
in black cotton soil, was $49 \mathrm{ft} . \times 4 \mathrm{ft}$. $\times 2 \mathrm{ft}$, $=416$ cubic feet. This. was formed, into an embankment, which measured
5oft. x 6ft. x 2ft. $=600$ cubic feet. Atte the bank was mea.
anred, some of sured, some of the earth from it was filled back into the pit, up
to the level of its edge and the balance remaining mea-
sured, and found to be equal to 191 cubic feet. We have sured, and found to be equal to 191 oubic femaining mea
We have
here, first-an increase from pit to bank of 184 cubic feet; and second, again an increasese from pat to bank op ot of 7 cubuic feet. Duning
the rainy season-and the rains in Dharwar are heavy-as the
 at the end of the rainy season the balance was measured, and
found to be reduced to to 5.5 cubiofeet. This showed an increase of
the the made ground over the pit by 5.3 per cent. The second and third
experiments were made in red gravelly sii, or moorum, which is
an iron-stone gravel, mixed with about 50 per cent, of earth. In

 again filled back into the pit, leaving a balance of 111 cubic feet $=$
25 per cent., as a first increase.
During the rains the pit was kept feet, giving an increase of $12 \frac{1}{2}$ per cent.
of some use as information on a branch of engineering that has not been experimented on as fully as the subject requires. The experi-
ments, however, would be more useful were full information given as to how the embankments were constructed and the pits filled, chat is, as to whether wheelbarrows or baskets were used for the
carriage of the material, and the earth deposited in layers and rammed; or as to whether the eerth was simply thrown out from
the pit and thrown back again after measurement in bank the pit and thrown back again after measurement in bank. From
the large increase of embankment over the excavation, the inference in India are often constructed by basket work, the material being carried in saucer-shaped wicker baskets, containing less
than a cubic foot. In the construction of embankments to retain water, this basket work is done in thin layers of less than
nine inches in depth, the earth being roughly levelled nine inches in depth, the earth being roughly levelled up as it is cast iron rammers, weighing about 12 lb . In addition, the constant trampling of the men, women, and children employed in carrying
the baskets so consolidates the bank as to make it impervious to water. The layers of earth are sometimes watered. Embankments
wat are finished this manner shrink or settle very little after they though not nearly so expensive. The writer has constructed embankments with a grading machine, tipping from wagons from work, and of all these he believes that punned basket wost the least, and is the best suited for hydraulic work; and the next Thousands of embankments, and some of them counted amongst the largest and oldest dams in the world, have been constructed in Incia by basket-work, without any puddle wall or puddle lining;
and some of them that have been looked after and kept in repair are as good, if not better, at the present day than when they were originaly constructed, hundreds of years since. This kind of work
is done much cheaper there than earthwork in this country. The writer has constructed embankments in the Punjab, the lead being
from 100ft More than forty-five pears since Mr. Fllwood Morris C.E some experiments, on a large seale, on the shrinkage of earthwork.
The embankments were formed in layers by carts and scrapers, and one winter intervened between the commencement and comin Table A.

Nature of soil.	Excavation, cub. yards.	$\begin{gathered} \text { Embank- } \\ \text { mentr, } \\ \text { cub. yards. } \end{gathered}$	Compression.	
			$\begin{array}{c\|} \hline \text { In } \\ \text { cub. yards. } \end{array}$	$\begin{array}{\|c} \text { Pro- } \\ \text { portional. } \end{array}$
Yellow clayey soil	6,970	6,262	708	$0^{0 \cdot 1015}$
" "	25,975	23,571	2404	$0 \cdot 0925$
Light sandy soil	10,701	9,317	1384	0.1293
On the whole	43,646	39,150	4496	0.1030

The total average compression in embankment being a little more than ten per cent. of the excavation. Other observations on a
smaller scale showed that gravelly earth shrank about one-twelfth. The results of these experiments; along with the experiments on rook, are given in the above Table B. With a few exceptions the resilts of these experiments have been heretofore used, and are
still in use to the present day in still in use to the present day, in American, English and Indian engineering practice. As a rule, books of reference in the English
lauguage give the shrinkage of different materials, without making any allowance on account of different methods of construction and different heights of bank. For instance, the shrinkage of earth, in general, is given at about 10 per cent, Now, if 10 per cent. be
sufficiont for the shrinkage of a bank of that material, and 30 oft. in
height, constructed from the end of bank to the full height by "tipping". from wagons, surely a similar bank only 12 ft . high, built up in layers, and consolidated by good seraper work, will
shrink much less than 10 per cent. In no other branch of civil engineering, since the time when railroads were first commenced,
has such an immense quantity of work been carried out, and expenditure incurred, as in earthworks; and in no other branch of scale adequate to the interests involved, been published.
In other branches of engineering, long, tedious, and expensive In other branches of engineering, long, tedious, and expensive
experiments are carried out without any other return resulting experiments are carried out without any other return resutting
from them than the information they give; but experiments on earthwork could be carried out on a large soale as actual work,
price of the work,
In the experiments that have been made there is a want of
general agreement, and in some cases the results obtained in similar general agreement, and in some cases the results obtained in similar
materials differ so much from each other as to point more to errors made by some of the observers than to errors resulting merely from the different methods of construction. This is well illustrated in Table B, which I now give, showing the percentage of increase or diminution from cut to fill. Some of the materials are men
tioned more than once, with a slight change in name; but I deem ioned more than once, with a slight change in name; but 1 deen
it better to give the author's own words descriptive of the material than to make a selection of the materials under a fewer number o names. The experiments of Henz, Von Kaven, and Graeff, as shown
in Table B, are taken from Mr. Specht's paper already referred to The experiments of Henz, quoted in that table, are stated to give the of a large number of observations of actual work. From an inspection of the table it will be seen that Henz gives a permanent
increase in volume of from 1 to 6 per cent. -sands and clays-for
materials of the same description as those for which Mr. Morris
and other engineers allow a shrinkage of from 8.5 to $12^{\circ} 5$ per cent. Then, again, for rook Henz allows an increase of from 8 to 12 per
cent., and Von Kaven an increase of from 8 to 10 per cent., but for the same material Morris allows 42 to 60 per cent. Searle 60 per cent., Trautwine 66 to 75 per cent., and Molesworth 50 per cent. of increase. The writer is at present engaged on the
construction of the south jetty of Oakland harbour for the United States Government. In the carefully-laid dry masonry of this work, where all badly fitting stones are rejected for face work, and , and require a derric 12 per purpose, the the laid face worl. There is no method of railroa construction by which an embankment can be made so as to have as few voids as this jetty. On the contrary, however, by the usua
methods of construction, the voids will be found to be from six to seven times more than the quantity given by Henz.

Table B.

Material.	Authority.	Per cent. of increase + or diminu- tion - of embank- ment to excavation.$\|$	Remark
Sand	Hewson Graeff Henz Specht	$\begin{aligned} & \hline-10 \\ & -10 \\ & +1 \text { to }+1 \cdot 5 \\ & +9 \end{aligned}$	$\underset{\substack{\text { After } \\ \text { finished. }}}{\text { fill is }}$
Light sandy earth Light sandy soil Sand and gravel Earth ..	Morris Molesworth Vose Miss. Miss. Levees, 1882	$\begin{aligned} & -12 \cdot 5 \\ & -11 \\ & -9 \\ & -8 \end{aligned}$	
Earth ${ }^{\text {Earth (scraper }}$ worik)		-10	Shrinkage of bank 10%
Earth (grading ma-	Canadian Pacific R. R.	-	Shrinkage of bank 17%.
Earth (carefully tamped). Loam \& light sandy earth Clay and loam..		$\begin{aligned} & -9 \text { to }-20 \\ & -12 \\ & -12 \\ & +2 \end{aligned}$	After fill is finished.
Clay and light soil. Yellow clayey earth. Gravelly earth.. Clay			${ }^{\frac{1}{3}}$ addition t height bank.
$\begin{aligned} & \text { clay } \\ & \text { Marl } \\ & \text { Hard clay :. :. } \end{aligned}$	$\begin{aligned} & \text { Trautwine-Soarle } \\ & \begin{array}{l} \text { Henzz } \\ \text { Von Kaven } \end{array} . . \\ & . \end{aligned}$	$: \begin{aligned} & -10 \\ & +{ }^{-10} 4 \\ & +5 \\ & +5 \end{aligned}$	
Hard clay ${ }^{\text {. }}$	Henz	+ 6 to +7	
Clay before subsi	Molesworth		
Clay aftor subsi.	Molesworth		
Puddled Wet soil \because..	Trautwin		
	rautwine Molesworth on Kaven		
k	Von Kaven	+ 8 to +10	
Rock ..			
Rock	$\xrightarrow{\text { Vose }}$ Graeft	+50 to -	
		+25 to +75	
Rock Rock, ments large			
	Mo		
fragments ${ }^{\text {fock, }}$, large blocks:	$\underset{\substack{\text { Morris } \\ \text { Molesworti } \\ \text { a }}}{\text {.. }}$		
Rock, medium frag.	Searlo		
Rock, medium un. selected. a	Molesworth	25	
	Molesworth	20	
	Searle		
	Trautwine	90	
Rock fregmen	Trautwine		
${ }^{\text {Rock }}$ fragments	Trautwine		
Rock mixed to to	Von Kaven	+ 9	
Rock with consider- able clay ..	Graeff		

The cifference in rock between the German and American and prove that there is something wrong with the German rock experi ments. Trautwine gives the average weight of granite at 1701 lb
to the cubic foot, and he also gives the weight of a cubic foot o roughly-scoarbbed, dry rubble granite masonry at 1251 lb . There is therefore, an increase in volume of 36 per cent. from solid rock to dry masonry. In order to reduce the increase to only 8 per cent,,
given by Henzz, the voids in his rock embankment would have to be given by Henz, the voids in his rock embankment would have to be In railroad construction, as generally carried out, this is not pos tains more than 8 per cent. of mortar. General Gilmore, in his work on "Limes, Cements, \&c.," states that ordinary masonry in If the percentace of increase allowed for rock is to he mortar If the percentage of increase allowed for rook is to be accepted a
a fair sample of the accuracy of the experiments of Henz and Von Kaven as a whole, then the conclusion to be arrived at is that any estimates based on them must be inaccurate, and lead to serious errors.
The disagreement of the German authors from the American
 and similar materials, but, on the contrary, the Americans and English give a diminution. For rook the latter give an increase from cut to fill many times more-m some cases nine times more -than the former. American and wnish authorities also differ materially on some points, as shown in the smaif table biow
which gives the percentage of increase for rock of different sizes:-

Rock, large fragments $\quad . \quad . \quad . \quad \frac{\text { Molesworth. }}{+50} \frac{\text { Searle. }}{+50} \frac{\text { Trautwine }}{+66 \text { to }+75}$
Rock, large fragments
Rock,
Rocks, smalum frages fracments
Res.
In this tete it will be sen the decrease with the decrease in the size of rock, whereas Searle and Trautwine make the voids to increase with the decrease in size of
the rock. Under the heading of "Volume of Interstices in Conthe rock. Under the heading of "Volume of Interstices in con
crete," Molesworth gives for five descriptions of small stone the crete," Molesworth gives for five descriptions of smal son
perectage of total-that is, the percentage of interstices to total volume. The mean of these five is 44 . In a volume of 100
including voids, the voids therefore amount to 44 , which is equi.
valent to an increase in volume of 79 per cent. from the solid rock.
This agrees with searle and Trautwine.
In Gilles In Gillespie's "Roods and Railroads"," he gives a quotation from
Gayffier, which says:-"A cubic metre of broken stone placed in ayater-tight box, which they just fill, can receive in the empty spaces between the fragments a volume of water fis ,or nempty
one-half of the whole, the actual solidity of the stones being therefore only sin. This does not vary for stones from lin. to 8 in to an increase of 92 per cent., and i wracticaly a loose heape of reomek framments, thich gave an increase of 90
per cent. As an instance of large percentage for shrinkage I may per cent. As an instance of large percentage for shrinkage, I may
mention the construction of the Western Division of the Canadian Pacific Rail way, where 10 per cent. .was allowed for the subsididence
of earthen embankments constructed by scraper work, and 15 to 17 per cent. for similar banks constructed with a grading machine Another instance of still larger percentage is that on the construc.
tion of the levees of the Mississippi-1882-where 17 per cent. i is tion of the levees of the Mississippi-1882- where 17 per cent. is
allowed for shrinkage of embankment, and this, be it remembered is for an embankment which is intended to keep out water. The specifications do not state the methods of construction, and no mention is made of a grading machine, but it is stated that "a sufficient number of dumping men be. kept on the levee to spread
the earth as it is wheeled or carted in." In sandy loam Mr. Specht found the volume of embankment, after completion, to increase authorities found that similar materials had an ultimate shrinkage of over 10 per cent. Therefore, to cause an equal shrinkage of
10 per cent. from cut to fill, in Mr. Specht's work, his embankment, after completion, would have to shrink about 18 per cent. In
other words, a bank of loam, 10 htt. high, built up in layers by
soraper work, would have to settle about 2 bt. An soraper work, would have to serious differences amongst the autho
the Table B will show other s. rities given in the percentage allowed for shrinkage. In such
experiments any near agreement is not to be expected, but at leas experiments any near agreement is not to be expected, but an least
it is reasonable to expect a general agreement tending one way from the same materials in similar banks. The expeaterial either a diminution or increase, and not a diminution in on case and an increase in the other. In the practice of
American and English engineers there is considerable ivvergence amongst themselves as to the subsidence or settiemen age in volume. Some authors give the percentage of shrinkage
without any reference to settlement of bank, and in these cases the inference to be drawn is that the settlement is the same a the shrinkage. Other authors give rules for the settlement which In order to show the want of accord in the rules given, I Iive three
examples from three well-known authors. Searle, in his "Field En-
 will be about in the ratios siven " Ane investigatione show this rule to be correct. Alexander L. Holley, C.E, in his stated to be as the cube of the depth; hence the necessity of due provision in lofty banks." For the purpose of illustration the shrinkage and settlement are assumed for a bank 5ft. high, and
from this the settlement of a bank 4oft. high is found. The bank shown in Fig. 1-not to scale-is 14tt. wide on top, 5ft. deep, and showin slopen $1 \frac{1}{1}$ to 1 . After ultimate shrinkage, the 5ft. bank is
has side
assumed to have settled 3in., therefore the area of shrinkage will
 feet, which is a reasonable shrinkage, being only 5 per cent. of the

Fig. 2.-Not to Scale.

area of the bank, Now, as $40^{3}: 5^{3}:: 512: 1$. Therefore, the shrinks-
ase of the
 is all ve
ment.
ment.
Therefore the settlement $=\frac{2752}{74}=37 \mathrm{ft}$, being almost the full height of bank. If the shrinkage of the 5ft. bank be taken at only
2 per cent., then by the rule of the cube of the depth the settleper cent., then by the ruil or the
ment of the $40 f t$. bank will be 14 ft . From these examples it will be seen that this rule does not hold good, and that the shrinkage is not as the cube of the depth. Mr. Holley evidently copied this
rule without investigation. There is a sort of scientific look about rule without investigation. There is a sort of scientific look about
the rule, but an investigation will show that it is nothing more over and without investigarules are sometimes glanced over and accepted without investiga-
tion, it may be mentioned that this rule was given several years singe in a work which in other respects is accurate, namely, the
"Treatise on Civil Engineoring," in use at the Roorkee Civil Engi"Treatise on Civil Engineering," in use at the Roorkee Civil Engi-
neering College, and in all likelihood it is continued in it to the present day in the last edition. It was not untic long after the its fallacy. Vose, in his "Manual for Railroad Engineers," quotes the experiments of Morris for shrinkage, after which, and under
the heading of "Subsidence," he states: "It has in some cases the heading of "Subsidence," he states:- "It has in some cases
been specified that the embankments, when completed by the conbeen specified that the embankments, when complet 3in. above the
tractor, should be finished to the full height from intended height, upon a bank 5ft. high to 9in. upon a 40 oft. bank, and
intermediate heights being in proportion." Vose here gives a rule that, in a certain case, when a 5 fft. bank subsides 3 in., a 40 ft . bank centage in proportion to their volume. As already shown, the chntage in proportion to their volume.
shrinkage of aft. bank, and corresponding ta a subsidence of 3in.,
is $5 \cdot 375$ square feet, which is 5 per cent. of the area of bank, $107 \cdot 5$ is 5.375 square feet, which is 5 per cent. of the area of bank, $107^{\circ} 5$
is
 $148=2 \mathrm{ft}$. = the depth of settlement, and not 9in. From this it will be seen that the rules for shrinkage and settlement as given by Vose do not agree with each other. I think I have
shown that there is a great want of general agreement in the on shrinkage, and also in the rules for "Correct allowancee is nade for the settling of the material of the
"etlemen as given by wre bank, and time is given for this settling to occur before the ballast is bruught on or the rails and sleepers laid. The shrinkage of
earthwork sometimes disturbs the grade at a rate of several feet earthwork sometimes
rise or fall per mile in nurmal grades of 60 att, on the New York
ne and Erie road, a distance of 500 oft. was found to rise at tue rede
$75^{\circ} \cdot f \mathrm{ft}$. per mile, this distance being approached and succeeded by the regular grade of 6 oft. In another place, for the distance of
200ft., the rise was found to be at the rate of 1167 per mile, with 2000t, the rise was found to be at the rate ow-the average grade
a level of 10oft. length, both above and below-
over the whole mile being 6oft. These cases are similar to what occurs where railway earthwork is not properly settled before being brought into use." "hat the settlement is in proportion to the
On the assumption that
INDIAN STATE RAILWAYS.—DOUBLE BOGIE COMPOSITE CARRIAGES.

referred to, as the writer has had no experience with them. In
the original construction of that part of the Grand Trunk Road the original construction of that part of the Grand Trunk Road
from Lahore to Wuzerabad, in the Punjab, provision was made from Lahore to wureerabad, in the Punjab, provision was made
for drainage-by bridges and culverts-only at the well-defined
drainage channels. After the drainage channels. After the completion of the efmbankments, the
drainage works were found insunficient to carry oft the flood waters, as before the construction of the embankment more water was
passed away over the surface of the country than by the well defined drainage ohannels. II times of very heary rainfall, the the
embankment dammed back this water, which rose behind it, embankment dommed the country on the upstream side of the tank, breached
flood od the
the orad, carried away bridyes, and impeded the traffic. In the the road, carried away bridges, and impeded the traffic. In the
construction of bridges and metalled gaps to carry off the flood construction of bridges and metalled gaps to carry off the flood
waters, the writer had to cut through the embankment in more
隹 hhan twenty-four places, making an aggregate length of more than
800fft. in a distance of fifty-eight miles. In places where the bank was built without punning, it was found that after taking off
about 2 ft. in depth of the top, the body of the bank appeared like material newly deposited, and it was easily exavavated. On the other hand, the banks which were built in layers and punned,
were found to be well consolidated and much more difficult to excavate. The difference in ithe bayks, though built of the same
material, was very marked, the punned banks, even when commaratia, was very marked, the punned balt, everatwhen wom-
paratively new, being much more dificult to excavate than the others. After each rainy season the tops and slopes of the
unpunned banks were much more cut up and fissured, and required more repairs than those that were punned. The banks were 40 ft .
wide on top, with side slopes of 2 ft . to 1 ft ., and from 4 ft to 12 ft . high. In some cases, during floods, the unpunned banks were
breached by leakage before the water reached their tops, but not in a single instance was the punned bank reached by the leakage. rose above their tops, and in flowing over then and falling to the
down stream level cut through them. After a bank was structed, the heavy and continuous traffic passing over it so consolidated its top that it acted as a roof, and passed off the rain-
water to the side slopes. The rain water was thus prevented from entering the body of the bank and contributing to its shrinkage. From the experience gained in this work, it is the opinion of the
writer that time does not so compact and solidify an old unrammed bank as to make it equal, for the purpose of impounding water, to and it is also his opinion that the top of a bank for impoundin, water should not be used as a roadway until after the lapse of suff. cient time to allow it to take its ultimate shrinkage. A few words here in explanation of metalled gaps. They are simple, inexpensive
road works, to pass off surface flood waters, and to save bridging. It was found that the bridging on the Grand Trunk Road required to pass off the flood water amounted to more than 8000it. in
length. The great expense, and the length of time reauired to
complete this work, prohibited bridging complete this work, prohibited bridging. To provide ample outlets
Eor surface drainage, portions of the embankment, varying in length
 each end, slopes of 1 in 30 were made to top of bank. The slopes and the portion on level of country were metalled to a width of of
18 ft ., and on each side of the metal a brick wall, 2 ft . deep and 1 ft . wide, was built, the top of the walls being on a level with the
metalling. A row of guide-posts 100 ft . apart was fixed midetaling. A row of guide-posts 100 ft . apart was fixed on each
side of the metalling to guide travellers and vehicles to keep on the road way during floods. During floods, which continue for only a
few days in the year, these gaps passed off the surface flood-water at a low depth -less than 2ft.- and at such a low velocity as to
permit traffic to be oarried on in sate permit traffic to be carried on in safety through the water, though
at great trouble and inconvenience. During floods the gaps were
fords, and at other times they made a good metalled road the flood subsided, the ordinary drain passed off by the well-defined and deep channels, which had bridges
or culverts built over them. This cheap or culverts built over them. This cheap expedient of gaps for
passing off surface flood-water permitted the opening of the road
during the have been done had bridges been built at the time instead of gaps for carrying off the surface flood-water.
I will now show that under certain forms of longitudinal section, and one very likely to occur in broken ground, the use of certain result. Gillespie says, in his "Roads and Rairroads" :" "Average
end areas is the end areas is sthe most useful method in this tountrys." for computage
earthwork." Morris, in his "Earthwork," says, in reference to the same formula :-"This rule has been by far the most used of any in our country. With tables of cubic yards it is very expe-
ditious, and has foand numerous advocates amongst enginers on account of its simplicity and convenenience." Searle states
that this formula is approved by statute to be used in the that this formula is approved by statute to be used in the
public works of the State of New York. The diagram repre-

curved in cross-section. For instance, embankments are some-
times finished with the side slopes concave, as shown in Fig. 4 , imes fnished with the side slopes concave, as shown in Fig. 4,
and cuttings, especially in hard ground, are left with the side slopes convex, as shown in Fig. 5 . It is therefore advisable, in cross-section-
ing the worl for at frequent intervals, and before doing this work the adjustment of the level and the length of measuring instruments, chains, tape,
\&o., should be looked to. In descriptions of shrinkage experiment zo., shonld be looked to. In Cescriptions of shrinkage experiments
on earthwork, the following information would be useful, and in addition, such other information as might be deemed of use arriving at a correct result:- (1) The description of material and
locality. (2) Method of construction, such as by scrapers, wheel.
realised. Under these circumstances it will be readily
that the privations of the colliers' families must be great.
Some coliery owners assert that the want of work i
as acutely in some of the South Staffordshire districts.
At some of the Tipto
Tipton collieries the men are now being paid at "New Mine" seams, 4s. 10d. per day. for two stints ; pond in 3s, 4d;; horse drivers, ,3s.; bobss, , , ss , day.; all for eight hours' work,
In Belgium the men work twelve and even fourteen hours per day Certain of the employers are now coming to the aid of the South Union men. At a miners' meeting at Dudley on Monday, Mr Benjamin Hingley, M.P., chairman of the Ironmasters' Associa-
tion, urged that a strong and well-conducted Union was of ad vantage alike to masters and men, for unless the men were united they were sometimes dangerous in the way, of violence, having no
cheek upon them. A strong Union, too, kept wages otolerably
steady, and a fair trade together. Upon the motion of Mr.
Upity steady, and a fair trade together. Upon the motion of Mr.
Hingley a resolution was passed, calling upon the men to
strenthen employers East Worcestershire chain trade havine South Staffordshire and months enforced a series of reductions in wages, the majority of operatives are now in a deplorable state of poverty, skilled
workmen being unable ing this week it was decided to give notice for an advance, and if The concession is not granted a general strike wimpony, Smethwick, have resolved upon the payment of an interim dividend for the
past half year at the rate of 5 per cent. per annum on the preThe m on the ordinary shares. Birmingham, is satisfactory, the improvement in the trade of the United States being regarded as a specially hopeful feature. There
is an available total of $£ 3512$, out of which 6 per cent. per annum is to be paid on preference, 10 per cent. and a bonus of 2 per cent. carried forward.
has just been issu months The capital invested in the undertaking is nearly
montho
$£ 30,000$.

NOTES FROM LANCASHIRE.
Manchester. - A continued absence of improvement is still the sum and substance of any report as to the condition of the iron trade in this district. Users of pig iron are getting no weight of
new work to bring them into the market as buyers of the raw material in any quantity, and so many of them have iron still to come in on account of old con tracts that actual requirements for there are any orders to be given out, buyers expect to place them either for deliveries extending over so long a period or at prices so
low, that, as a rule, only really necessitous sellers can be induced to low, that, as a rule, only really necessitous sellers can be induced to accept them, and some makers prefer to stand practically altogether on the unsatisfactory conditions upon which alone it seems to be pracin adhering toch cases makers assume an attitude of rigid firmness command them in the market, but because the concessions which so far beyond what they would be at all inclined to entertain, that it is practically useless attempting to meet buyers, and it is a wistr low sellers, and it is chiefly into their hands the few orders that are stirring find their way, but the prices at which they are taktn anything like their own back again out of the transaction. This applies both to common and hematite pig iron, and in manufac-
tured iron business has to be done on much the same unprofitable conditions.
The Manchester iron market on Tuesday again brought forward There were very few buyers, and the orders offering were of no
weight, with sellers in some instances prepared to take extremely low prices where bin 37 ess was to makers chester, as their list pris market, and are doing little or nothing; but if offers leading to actual orders were made, there is no doubt they would be prepared
to meet buyers with some concession. As regards district brands, to meet buyers with some concession. As regards district brands,
there is a very wide margin between the prices which some makers there is a very wide margin between the prices which some makers
quote and those which others are taking. For some Lincolnshire brands makers are not quoting under 355s. 6d. to 36s. 6d., less 21, delivered equal to Manchester; whilst others are being offered as low as 33 s . 6 d . and 34 s . 6 d ., less $2 \frac{1}{2}$, delivered here, and on about
the basis of the minimum figures orders have been placed for the basis of the minimum figures orders have been placed for
delivery over the remainder of the year. For outside brands delivery over the remainder of the year. For outside brands
coming into this market the current quoted rates remain without material change, but there are cheap sellers, and in Scotch brands there is much more than the ordinary margin in the favour of the
buyer between the price of makers iron and warrants, whilst in buyer between the price of makers iron and warrants,
Middlesbrough iron there is underselling to secure orders
For hematites there is still only a very poor demand, and prices abtainable at about 50 s . 6 d . to 51 s , less 2 t per cent., delivered equal to Manchester, and local brands at 2 s . or even 3 s . per ton under these figures.
In the mant
In the manufactured iron trade, shipping orders have brought a Intho more work into the hands of some of the makers, and here improvement in trade generally, and no better prices are being got. Makers do not openly quote on any lower basis than $£ 417 \mathrm{~s}$. 6 d . for
bars, $£ 5 \mathrm{~s}$ s. 6d. for hoops, and $£ 610 \mathrm{~s}$. for sheets, delivered into bars, 1 7. 6 . for hoops, and the are merchants who are prepared
the Manchester district; but there In some branches of the engineering trades a rather more cheer ful tone seems to prevail, and there are more hopeful ceports from
the Continent. There is, however, still nothing definite in the the Continent. There is, however, still nothing definite in the
shape of actual improvement, and amongst general engineers and weight of orders
In connection with fire brigade appliances, I may mention that fire escape as an addition to the derigned a very simple telescoppic constructed of three sliding ladders, which are elevated by mean of ropes and pulless, and the escape is carrie pant of the escape,
hose-cart, which can be tuilised to form a or the ladders can be taken off and used independently. The ropes and ladders are self-locking at any point, and can be used at
any height up to toft. or 50 oft., and the whole apparatus, which
can be added to the hose cart at a cost of about $£ 10$, wiighs less than 3 cwt . This escape is now in general use in the Manchester
Brigade, and has been found extremely useful. In addition to its handiness it is very useful in narrow passages, and can be conveyed
without difficulty under railway arches and telegraph wires, or taken through an ordinary garden gate,
sibility with the usual type of fire-escape.
The Manchester Ship Canal sheseme has this week been fairly
lanched as a financial operation, and although general surprise has been expressed at the very short period which has been fixped
 hear the promoters bave every reason to be satisfied with the
manner in which the shares have been taken up. The successful raising of the required capital being now generatily yacepepted as an
acoomplished fact, the question is being repeatedly asked, When
will the actual work of building the canal commence? It is rather
premature to offer any opinion upon this point, but as the land
which will be required has not yet all been surveyed, and has still throught, there is a good deal of prellwnary work to be go and if they commence operations soon as can reameonably operations expeded.
In the condition of the coal trade For all descriptions of fuel tho material change to extremely dull, and pits are not kept working more than about
four days a week. With this restricted output, stocks of all description of round coal are accumulatating. Prices are without quotable alteration, and exceept where sales. have to be forced to
clear away stocks, they are about as low as they are at all likely to gor away stocks, they
Shipping shows a little more activity, but no better prices are
being got, 6s. 6d. to 7 s . per ton remaining the average figures for being got, 6s. 6 . to to 7. per ton remaining the average figures for
steam coal delivered at the Mersey ports.
The The efforts to establish a sliding seale to regulate miners' wages
in the West Lancashire district have got so far that the coalowners have now made a definite and final proposal, which it remains for
the men to accept or reject.
Barronv. - There is a steady tone in the hematite pir iron trad of this district. Makers are fairly employed, and the demand is
well sustained from home, continental, and American sources. There is every prospect of a con on onnly fairly pold forward bur they are market, as receipt of enquikiries which ane are likely to lead to to contracts before the close of the season. There is of course a large number
of furnaces out of blast, but it is also noticeable that those which are making iron are yielding a heavy tonnage. The furnaces are now
producing something like 27,000 tons of pig iron per week, and all this is going into immediate consumption. Prices are still very
steady, and mixed Bessemer numbers are selling at 4s.s. per to net at works, prompt delivery. There is a poor trade in forgy
and foundry samples; indeed, forge and foundry work generally throughout the district is at a very low point. The steel trade
remains busy in the two chief departments. Steel rails home consumers, and there is still a good enquiry, especially now that prices have gone down to about $£ 3$ 10s. per ton
for heavy sections net at makers' works. The mills engaged in the tin. ppate bar trade are also very busy, and there is a geod
demand for this class of goods which is likely to lead to continued doing in steel plates for either ships or boilers, and the minor branches of the steel trade are also very inactively employed. The
shipbuilding industry is getting more and more short of orders. Engineers are ehort of employment, except in the case of marine
engineers, who are busily employed on pressing orders. Iron ore is in poor demand at from 8s. 6 d . to 11s. per ton net. at mines, but
only the better qualities of ore command any sale. Coal and coke are in steady request, but the trade generally is slow. Shipping
has found better employment of late. THE NORTH OF ENGLAND.
There are still no signs of improvement in the Cleveland pig iron trade. Itdeed prices are somewhat weater than at the begin-
ning of last weelk and as buyers believe still lower rates will be taken, they purchase only in small quantities, and for promp
delivery. Towards the close of last week some transactions too place in No. 3 , g .m. b., at 29 s . per ton. At the market held at
Middlesbrough on Tuesday last, prices were a little firmer, the
Msual quotation by merchants being 29s. 3 d . per ton. Onl or three could be found who would accept 29s. $1 \frac{1}{2}$ d. Consumers were un willing, however, to give more than been reeently taken; consequently no sales were made, and busi-
ness swas almost at a dead-lock. noss business can be reported in warrants; the price remain oominally at 29 s . 6 d . per ton
For the week ending Mond Messrs. Connal and Co.'s Middlesbrough stock was 2979 tons. The total quantity in store on the same day was 265,333 tons. The
shipments of pig iron from Middlesbrough continue very dis appointing. During the first nineteen days of the month only
33,515 tons had been exported, against 44,709 tons during the correIn the finished iron trade the outlook is no better. But few sifficultyaty that the works which still remain open can be kept employed. Prices are as follows:- Ship plates, £44 10s. per ton;
angles, £4 5s. per ton ; and common bars, $\& 410$ s., all free on trucks are well employed, but the preent.es diseount. obtan are miserably low.
Rails are offered at $£ 312 \mathrm{~s}$. 6 d . to $£ 315 \mathrm{~s}$. per ton, plates a
 pool, have secured orders for three large steamers of about 3500 Bristol firm, and one for an American company. The engines wil
be made by themselves at their Central Marine Engine Works. So made be themselves at their Central Marine Engine Works. June 30th, 1886, the quantity exported was 55,176 tons, as against 33,906 tons for the previous quarter, and 22,794 tons for the last Many hopes are beginning to arise as to the effect of the new onvention between Great Britain and Spain. The measure has
passed the Spanish Cortes by arge large majority, notwithstanding competition from Lancashire. The value of the convention to
English producers may, however, be easily over-estimated. All hat it will effect will be to place England in the same position as other countries. The import duties on manufactured articles will
still be very heavy. Notwithstanding that a considerable portion of our national debt was run up in years past, in
order to assist the Spaniards to turn out the French army under
on Marshall Soult-an act of friendliness which ought to have made nation" trade conditions. There never was a more glaring instance of national ingratitude. However, "by-gones must now be by-
gones." and we shall have onece again a chane of competing on
equal terms with France, Germany, and Belgium in supplying our

 The Northumberland coal trade seems to be in a very uncertain
Thd despondent condition. At several of the collieries work is exceedingly slack. At this. time of the year all which can produce
steam coal ought to be working full time. It is not so, however ;
stearely scarcely any of the miners having obtained their full number of
shifts sine the winter, when they suffered great privations. All
shit this is occasioning anxiety, inasmuch as it is feared tbat another
winter will arrive before either employers or workmen have been
ahle to accumulate much in order to enable them to withstand it.

THE SHEFFIELD DISTRICT.

IN the Yorkshire and Derbyshire coal districts the depression
eems to deepen. About two hundred colliers employed at the seems to deepen. About two hundred colliers employed at the
Copppic-side Colliery, belonging to Mr. E. M. Mundy, of Shipley
Hall, bave had notices served upon them, the reason assigned
being the serious depression in the coal trade. Twelve stalls at
the New Sinking Pit, Coppice-side, and others at different pits belonging to the company, are to be closed. For some time the pany is widening the main shaft at its Bayley Brook Colliery, Heanor. The work will last over three months, during which Fresh mompetition is springing up in the Bessemer and open Fresh competition is springing up in the Bessemer and open-
hearth steel, a company having been formed at Hunslet, Leeds, for the production of those grades of steel suitable to the requirement put is expected to be 1000 to 1200 tons per week of steel suitable or rolling off into finished materials in bars, sheets, plates, tires, to 2000 tons of pig iron weekly. The promoters state that the 0 tompete xceeds 5000 tons per week; and at present 600 to 700 tons per
week are brought into Leeds alone from Sheffield, Middlesbrough and Glasgow
Rails are
Rails are very quiet, at $£ 310 \mathrm{~s}$. to $£ 315 \mathrm{~s}$, per ton for an ordinary
eavy section. I heard of a small order being taken ago by a local firm in competition with foreign makers. It is expected, as the result of experimental trials on various sections of
the Midland and other local lines, that steel sleepers will form a new branch of the steel industry.
excited much interest in this which a workman was killed, ha that the Woolwich authorities had abandoned all idea of producin 1arge steel ingots for the manufacture of heavy ordnance, and on laying down new plant and adopting the finest appliances for the work. One firm alone must have spent about $£ 100,000$, and other mpanies have been adding largely to their capital on th Only the other day I heard the chairman of Messrs. John Brown
and Co., Atlas Steel and Ironworks, announce to his shareholder the satisfaction he felt that their industry was not going to be dis of his cay a Government monopoly. Mr. Mundella, in the course situated, made a feature of his energetic efforts to prevent Wool-
wich becoming a competitor with Sheffield. Mr. Wortley, another of our local members, had also the promise given to him by the Sur-eyor- - weneral of Ordnance in Mr. Tladstones siate Administration et ites were trying their hands at an ingot for a 68 -ton gun. Ther will no doubt be a searching inquiry into the matter, for it is of
paramount importance that the local firms who have so readily of money to make Sheffield equal to producing anything that may
be needed, should know exactly where they are be needed, should know exactly where they are.

NOTES FROM SCOTLAND.

The past week has been an exceptionally quiet one in the Sootch iron trade, in consequence of the clasgow Fair holidays. The pig its reopening, but the quotations of warrants have been fairly
steady. The week's shipments of pigs were 6916 tons, which is steady. The, week's shipments of pigs were 6916 tons, which is
below the average, but compares with 5311 tons in the preceding week. The home and foreign inquiry are both quiet, and the ions to stock have been made in the course of the week. There re 85 furnaces in blast, as compared with 90 at this date last year.
Business was done in the warrant market on Thursday befor closing for the holidays, at 38s, 102dd. cash. On Tuesday, when the market again opened. transactions took place at 38s. 10 It. d. to
38s. 10d. cash. Business on Wednesday was done from 38s.9.9.2. to 38s. 10d. cash, closing with sellers at 38s. 10.2d. cash. To-day
-Thursday-the market opened firm, and considerable business was done from 38s. $1 \frac{1}{2}$ d. to 38 s . 11d, cash, closing in the afternoon The values of mares

 Clyde,
39. and
Eglinton notts, at Leith, 44s. and 43s. 6d.; Kinneil, at Bo'ness, 43s, and 28.; Carron, at Grangemoutb, 46s. and 45s.
Hematite warrants are quoted at Glasgow Exchange at 41s. The past week's arrivals of Cleveland pigs at Grangemouth
were 4705 tons, as compared with 4990 in the corresponding week of last year.
In the course of the past week there were despatched from the Clyde five locomotive engines and tenders, valued at $£ 11$, ,650, for
Kurrachee ; $£ 14,493$ worth of various kinds of machinery, excluKurrachee ; $£ 14,493$ worth of various kinds of machinery, exclu-
sive of sewing machines, of which $£ 4850$ worth were despatched ; teel goods, $£ 4800$; and general iron manufactures, $£ 32,900$.
the past week, and the next week's shipping business may also be expected to be of small proportions. At Grangemouth the supplies
from the West are reported to be coming to hand slowly, but there is plenty of coals at the harbour available to make mp present argoes, and a large quantity is being de week four steamers and ten sailing vessels got away from Bo'ness
with coals, but the exports from Leith were rather below the
Terage. action taken by the iron and coalmasters in the West of
Scotland in reducing the wages of the miners is now being followed in the eastern mining districts. A few days ago the masters of which was to affect the pay of all other workmen in their employment, as well as miners. Several meetings of miners have been wards of 1000 men were present. It was stated by the chairmanminers of the Lothians had been called upon to suffer a reduction of wages. Delegates from fitteen coliieries attended a subsequent district, which has been out of existence for several years.
have obtained an order to build two steamers of 1600 tons each,
and of a high rate of speed, for a firm at New York. Messrs. and W. Goffey, of Liverpool, have arranged with Messrs. Russeli
and Co., of Greenoock, to bind a four-masted ship of 2 toon tons net
register. This will be the largest sailing vessel ever built register.
Greenock.

WALES AND ADJOINING COUNTIES. IT is currently stated that several important collieries are on the
ve of being closed. One of the managers in explanation said that present prices meant git coal away, and that it would be better to endeavour to put up with a little loss in keeping colliery
in working order than oo at aresent rate. Ahiponer at
Cardiff told me on Saturday that Monmouthshire coal was then being sold f.o.b. in Cardiff for 6s. 9 d . This means about 4s. 9 d . at
the pit's mouth. Blaenavon and Ebbw Vale coal are conspicuous fon it outhshire coals in present competition, and it is questionable I question if the four-feet, six-feet, and nine-feet of clamorgan can be mathed by Monmouthshi.
cially if the articyele is fairly good.
Cardiff showed
behind capacity of even moderate output. Shippers and coal
owners regard the times as the worst they have endured for the last quarter of century, and the outlook is bad. "European complications," as coalowners call possible war between the
Great Powers, are regarded as the only means of lifting prices, though such a curative is not desired. Some are hoping that general industries may improve after the formation of a stron onservative Government. Anyhow, conditions are critical
throughout Wales, and dry docks and various industries are uffering as badly as coal, in iron trading are doin
 These are the lowest quotations yet.
ments this week. Iron and steel exports have been large consignand little is doing. Middlesbrough is competing successfully with our works in supplying tin-plate works with pig, but a fair trade is
being done at Dowlais and other works in steel and Bessemer is taking the lead. It is fortunate for Wales that in-plate continues firm. This is the only industry that exhibits
 14s. 3d. is obtainable, and workers are not pushing trade. o Baltimore and Philadelphia, and a cargo also went to Portugal. The total shipments of tin-plates from that port amounted to
00,125 , and as only 35,000 boxes came from the works, it is eviden that stocks are being eaten into ; Siemens meet with a moderate sale at 1 1ss.
Swansea
Swansea coal trade with France has suffered of late seriously It is evident that industries everywhere are at a low ebb. Demand for patent fuel shows some improveme
shipped 7000 tons and Cardiff 4000 tons
I see that "Nettlefolds" at Newport are progressing well. There were some good clearances of coal from that port on
Saturday. I may note a few cargoes, viz, 3091 tons for Bombay 2800 tons for Spezia, 1450 tons Leghorn, 1740 tons Savona, 1600 tons Genoa.
Railway
Railway shares continue to depreciate. Taff Vale are at 217, the lowest yet known. These shares have touohed £301. Barry
Dock are at 3 to $3 \frac{1}{2} ;$ Rhondda and Swansea, 64 4. Other industries show the stagnation in coal. Bute Dry
Dock are at 29 , issued not long ago at 50 ; Gloucester Wagon Company at $5 \frac{1}{2}$.
The sale is an
The sale is announced of valuable engines and a quantity of plant at Cadexton Collieries, Neath.
and Cardiff Smokeless Steam Compth regard to the Swansea and Cardiff Smokeless Steam Company, as, while Penbre in the
Rhondda yields a steady profit, Resolven, in the Neath Valley, entails a loss.
I am glad to
I am glad to find that I was in irror last week with regard to the
Yspitty Works.- I find that they have been restarted and have Yspitty works.
been working continuously for some little time.

NOTES FROM GERMANY

IT was expected in some quarters that the restriction of outpat sellers in buyers; but up to the present, at all events, such has not been the case, and the best that can be said is that prices have become stationary, and that there are not so many sellers \dot{a} tout prix in
the market as formerly. In fact, prices have fallen to that level that it can now only be a question of ceasing production altogether for. The reports from France, on the other hand, exhibit quite a rosy hue, and as the various members composing the different industrial conventions are acting with loyalty towards each other in keeping to their agreements, not only are prices declared satis
factory, but work is abundant, especially for consumption in factory, but work is abundant, especially for consumption in Paris.
In Belgium fewer orders are coming forward, but in prices there is no alteration. To return to Rheinland-Westphalia; iron ores, both native and foreign, are in poor request, at prices if anything
a shade weaker than last quoted. The prices of spiegeleisen are unchanged, and the export demand has not increased. Forge pig
is freely offered, but at losing prices. Foundry pig, as is to be be expected when the machine-shops are slack or work, is obine to pig, and the prices are maintained with difficulty. The malleable can market is on without profit, and no sign of speedy improvement.
carit Boiler-plates have maintained the prices the last fortnight,
as there has been a better call for them; but they are unremunerative at the prices quoted. As a rule, no works
re able to work full time. Thin sheets have in some cases been in request, but on the whole the business in them has last noted. Wire rods are without call, and the export trade next to nothing. In rails the outlook is not encouraging, as since the rail combination with England has ceased, English rails may be put upon the German market; so the makers here, who are as it if the German-Belgian combination ceases too, they will have that works have little to do, and the few orders which have been lately given out, when divided amongst so many, is scarcely felt by any
of them. With the exception of a few factories, engat machines, all have little work on hand. The prices of coal and coke are beginning to weaken, on account of the breaking up of
the convention as last reported. It appears that for the first quarter of this year twerty-three applications for indemnification had been handed in to the board of management of the convention coals, which were not required to be raised according to the amount agreed unon. The indemnification amounted to M. 27,976 , but as
only M. 9000 was in hand the M. 19,000 had to be raised by a rate of M. 20 per 1000 tons on the output of the quarter.
Krupp, of Essen, has secured an order for 1500 tons of rails for China, and, as is said, for renewals on an existing railway of 15 to
18 kilometres in length. This is an insignificant quantity it is true; but, nevertheless, it is the insertion of the thin end of the German, wedge in those parts. This proves that the observa-
tions on this subject in a former letter were not made without a good reason, and when it is considered what astute
diplomacy, what personal energy and perseverance is displayed in
the are to hold our own the parties concerned must be up and doing,
keeping continual watch on what is there going on, putting forth Keeping well-known accustomed enterprising energy, courage, and
their
perseverance, and above all, keeping themselves always and at all perseverance, and above on the spot, which cannot be better accomplished
times en evidence than by estabisishing-by means of and in conjunction with int
united Comambers of perhaps-a personality permanently in the country who has touch
with our diplomacy in Pekin, knows the country, chief officials, its language, manners and customs well, and who is besides a business instance, as one of the present Commissioners in Upper Burmah,
who, as it happens, is also an engineer, which, under the circumwhances, would be an advantage
stan
riilway administrations in the country to forbid them ordering any more machiutery or parts thereof from abroad.
The first ot the vessels
which started on beginning of the month from Bremen to the EAast took ine in 850 tons
of cargo at Antwerp, and received the same quantity at Bremen.

AMERICAN NOTES.

(From our ovon Correspondent)
n Correspondent.)
New York, July 10th.
WE are now in the dull season, and but hittle
(usiness is being done by iron or steel manuacbusiness is being done by iron or steel manufac-
turers or by coal or lumber interests, and even turers or by coal or lumber interests, and even
there is very little inquiry for autumn supplies,
because of the doubt entertained in some there
beause of the doubt entertained in some
quarters that a reaction must set in. Labour gitations have abouthon mubsided on ret rairiooads and
mong manufacturing establishments. The mong manufacturing establishments. The
labour leaders are seeking legislation at Washngton, but will not secure it. The fell trade
will open about August 1 st , t wo weeks sooner han usual, beoause of the light stocks in buyerss hands, and the restricted stocks among manufac. money is stimulating enterprise in several quar-ters-a as, for instanoee, int rairproad building, house
building, and in the manufacturing of electrical ppliances. Several mamuacturing of eatectrical
companies, with capital
anging from 250,000 dols, to $1,000,000$ dols, have been organised within thirty days to supply been organised within
electric light and power. Pneumatic companies
are also being talked of, and Philadelphia is soon to be furnished with a well-organised and
equipped company. The tendency of prices is
neither up nor down in iron, steel, coal, lumber, netextile goords. The iron trade is depressed at this time, and a great many bar iron, plate, and
sheet mills are idle, while the rail mills are running full time, and orders are seeking
auceptance for early and mid-winter delivery. It more evident now than it has been for some time that railroad construction during the past two years has been in exxeess of demand. It is is
estimated that as much as 15,000 miles of road estimated that as much as 1,000 miles of road
are now in danger of bankruptey, but the impression prevails that with a continuance of the
better conditions the danger can be tided over. The evils of over capitalisation, stock waterng , and the partial failure of the pooiing system are discussed among railroad builders and
managers with more freedom than heretofore. managers with more freedom than heretofore.
The discredit which attaches to railway management is recognised, and the better class of manaprevent the repetition of much of the discredit able management of past years. It is proposed
to prevent incorporators of companies from being the constructor of their roads, directly or indirectly, and it is also proposed that all contracts provement shall, be made upon open competitive bids with substantial guarantees. No doubt
legislation of a rather rigid character will be enacted in order to as far as possible prevent the construction of new and competitive roads. The older and well established companies will endeavour to check further competitive mileage for
their own interests, and in this way work out a better management.
The rolling mills throughout the country will esume within ten days or two weeks, and the plate and structural mills will start up next week 1st of April. A large amount of bridge work running into several thousand tons is wanted. The crude ironmakers and brokers report things
quiet. The better makes of iron are firm, but oncessions of 25 to 50 cents have been made apon lower grades of forge.

NEW COMPANIES.

$\underset{\text { tered :- }}{\mathrm{The}}$

A. H. Bateman and Co. Limited

This is a reconstruction of a company of the same name-chow in course of ving on business at East Greenwich as
timen emery-wheel makers, engineers, and artificial
stone makers. It was registered on the 8th inst stone makers. It was registered on the 8th inst.
with a capital of $£ 15,000$, in £1 shares. The sub.
${ }^{*}$ A. H. Bateman, 93 , Pelton-road, East Green- Shares
Captain H. S. Pasley, East Sheen

The number of directors is not to be less than
two nor more than four; the first are the subBecks The company in asterisk, and Mr. W. H. H.
Seral meeting. will
Beriber determine
directors.
Barton Positive Water Meter Company, Limited. This company proposes to acquire and work
the letters patent No. 1561 , dated 27 th March 2876, dated 4th March, 1885, for on the 12 th inst. with a capital of $£ 10,000$, in $£ 1$ shares. The subscribers are:-
-James Jackson, 110, Ca
Kimberley Waterworks

The number of directors is not to be less than shares; the first are Sir John R. Geron Maxwell, Bart., Hamilton House, Tooting; William Mendel, of Addre, Remers, and Co., 1 , Whittington-
avenue, and the first two subscribers. The remuheration of the board is to be at the rate of $£ 100$ per annum for each director, with an additional
t50 for the chairman, and in addition the direccors will be entitled to 10 per cent. on the divi-
dends paid in excess of 20 per cent. per annum.

Benares Tramway Company, Limited.

This company was registered on the 8 th inst.
vith a capital of $\& 100,000$, in $£ 10$ shares, to
acuuire the benefit of a concession from the
Hunicipal Board of Benares, and approved by the
Indian Government, for the construction and
working of tramways in Benares. The company
will adot S. H. Robinson and D. M. Morrison of the one part, other part, and will also enter into agree the other part, and will also enter into agree
ments with George Pearson and Weetman
Dickinson Pearson and with Walter Wood. Particiulars of these agreements are not given in
the memorandum and articles of association. the memorancum theribers are:-

 N. New Burompto
D. T. Fender, 2, Traifalgar-roud, Twiokenham The number of directors is not to be less than three nor more than twelve; qualification, shares or stock in the company, but any director may
act before acquiring such qualification. The first directors are Lieut.-General G. G. Anderson, Brunton, C.E., J. Walrond Clarke, Lieut.
General T. N. Harward, and Lieut.-General J. L. Vaughan, O.B; ; the company in general
meeting will determine remuneration. The directors may appoint one of their number to the position of managing
mine his remuneratig

Cinnamon Mountain Gold and Silver Mining - Company, Limile This company proposes to acquire and work four gold and silver full mining claims known as
Golden Lode, the Pacific Lode, the Rock Creek Lode, and the Allen Lode (each 1500ft. long by
300ft. wide), situate upon the east side of
Cinamon Mountain at the junction of the West Cinnamon Mountain, at the junction of the West
Rock Oreek and Paradise Gulch, in the Elk Rock Creek and Paradise Gulch, in the Elk
Mining District, Gunniston County, Colorado, U.S.A. It was registered on the 8th inst. with a capital of £150,000, in \&1 shares, power beeng captal of acquire other property in the United
taken to
States of North America. The subscribers are :-
Burchall Carter, Abchurch-chambers, mer-
Churchall Carter, Abchurch-chambers, mer-
chant . Probert, 24, Lloyd.square, W. C. ., accountant
S.

The number of directors is not to be less than three nor more than seven; qualification 250
shares; the first are Messrs. Thomas Stevens Lindsay, J. J. Mackenzie, and Andreas Holt The remuneration of the board for the first year
will be 750 fully-paid shares, which are to be will be 750 fully-paid shares, which are to be
transferred to the directors by Mr. Levi Lincoln transferred to the directors by Mr. Levi Lincoln
Atwood out of the share to be allotted to him in pursuance of an unregistered a arreement of the
16 ulth ult. After the first year the remuneration of the directors will be $£ 1000$ per annum.

London Engraved and Etched Glass Company,
This company proposes to carry on the business of glass engravers, benders, cutters, perforators,
embossers, enamellers, stainers, \&co., and for such purpose will purchase certain inventions referred to in an unregistered agreement of the 1 st inst. It was incorporate $£ 20,000$, in $£ 1$ she 750 of which a capital issued as fully-paid, and 14,004 are to be issued ns paid up to the extent of 17s. 6d. each. The sub scribers are:-
W. B. Brand, Wanstead Park, Wanstead
G. Terry, Selhurst-road, South Norwoo

The number of directors is not to be less than three nor more than seven; the subscribers are to in general meeting will determine remuneration.

Gweek Consols Mining Company, Limited. This company was registered on the 14 th inst. with a capital of $£ 20,000$, in $£ 1$ shares, to carry
on mining operations in Cornwall. The subseribers are:-
E. Miller, 9, Vine-street, Lambeth, clerk

agent Libiby, " 101 i, Ẅnstön-road, G̈ren-lane,

 mercial traveller
The number of directors is not to be less than
two nor more than five; the subscribers are to appoint the first.

Primitiva Nitrate Company, Limited. This company proposes to purchase and work the nitrate grounds known as Primitiva, situate Carapaca, South America. It was registered on the 8th inst. with a capital of $£ 200,000$, in $£ 5$
R. R.
R. R. Lockett, 12, King-street, Liverpool, mer-i
J. S. H. Bünner, 24, North John-streèt, Liiverpooil,

The number of directors is not to be less than three nor more than seven; the first are the
subseribers denoted by an asterisk, and Messrs.
J. T. North, of Eltham, and G. Bush, O.E., of
Lee Park, Kent, , , ate of Iquique; the company in general meeting will determine remuneration,
Imperial and Colonial Marine Insurance Com. This company was registered on the 10th inst. with a capital of $£ 1,000,000$, in $£ 20$ shares-one-
half of whioh is to be treated as reserve liabilityto transact marine insurance business in all branches. Two agreements dated 10 th ult., the
irst between John Breyen Little and Olement Dirst between Leggatt (for the company), and the the
second between Clement Davidson Legratt (for the company) and Henry Charles Saunders, will Ellis Elias, 15, Great Winchester-street, merT. H. Hamiltön, $2 \ddot{1}$, Mincöng-lane, merchant
 J. Grrahant, 30 , Ennismöëgardens, mërchänt :

The number of directors is not to exceed twelve the subscribers are the first; qualification, fifty
shares ; remuneration, such sum not heing less than $£ 2000$ nor more than $£ 3000$ as will give to each director not less than $£ 250$ per annum.

Rock Oils Syndicate, Limited.
This company was registered on the 9 th inst. with a capital of $£ 5000$, in $£ 1$ shares, to search
for, extract, and dispose of mineral oils and mineral substances. The subscribers are :-

Peter Tait, 58 , St. Mary-axe, merchant .
P. Tait, jun., 58 , St. Mary-axe, merchant
P. Tait, ju,, , 5S, St. Marye.axe, merchant
Nicoll,
Nit, Richmond-road, Dalston, clerik
B. Logie. jun., 11, Park-terrace, Twickenham :
J. T. Whatmougb, 8 , Holly-place, Hampstead,

Table
to the company Companies' Act, 1862, will apply
DISTANT SIGNAL OPERATED BY A WIRE RUN THROUGH A PIPE FILLED WITH OIL.*
Is the "Proceedings" of the Engineers' Club of
Philadelphia, vol. v., 1886, p. 341, Mr. Willian H. © Dechant has described this
'In Seprember 1885, a distant signal was required to protect a new crossing over the little
Schuylkill branch of the Philadelphia and Readin Railroad, between last Mahanoy Junction and Tamanend. The distance from the operating
office to the semaphore signal post is 110 fft., and oftice to the semaphore signal post is 110 ftt, and
is partway along a 4 deg. and a 6 deg. curve. In. stead of leading the wire through a long wooden of the ground, as is usually done, it was decided to try the experiment of running the wire through
a pipe filled with oil buried below the surface of a pipe filled with oil buried below the surface of
the ground. A trench averaging 15in. in depth was dug along a carefully laid out line; stake trench, so that their tops should come to a uni. form grade line, which in this case was about int. per mile; upon the tops these stakes the 3in. galvanised iron pipe was fastened so as to to
hold it in as true a position as possible. A No. 15 iron wire was strung through each piece of pipe draw the signal wire through the pipe-line after
dran so that might be afse all was laid. The pipes were all carefully ex-
amined and cleaned: a number had to be rejected on account of lumps of iron or galvanising
material obstructing the bore of the pipe After the pipe was all laid the $\frac{1}{18}$ in. iron signal wire was stretehed out with block and tackle to straighten
it, and take out all the short kinks, and it was it, and take our agh the short kinks, and it was pipe by the smaller wire that had been strung through during the laying of the pipe. A small brass stuffing box was screwed to each end of
the pipe, through which the ends of the leading the pipe, through which the ends of the leading
wire were passed, to prevent the escape of the oil. wire were passed, to prevent the escape of the on.
The ends of the pipe being thus olosed up, it was Ailed with common car lubricating oil, mixed with thickening in cold weather. The filling was done highest end of thpright bracol atcached to the
highest end of the piphe. operated turns by the same movement four usual counterbalance on the semaphore signal post adjusted to exert its least weight would operate boards on the tower. during colder weather the Iubrication is possibly slightly stiffened, so that this same counterbalance barely turns the signal
boards in the tower and must have slight assist ance. The experiment has proved very successful the apparatus has required no attention since being placed in position.
A very perpanen and lastin of the plan are Freedom from disturbance or acoident to signal wire. (3) Entire freedom from the diffibelow the frost line; and subjected to but slight changes from changes of temperature, it laid only
1 ft. underground. (4) Suppression of the neeessity to provide angle-fixtures to change the direc cost of materials per 100itt. is but a trifile; being 5.38 for the pipe plan, and $5.42-22 \mathrm{~s} .5 \mathrm{~d}$. and 22 s.
7 d.
respectively-for the wooden-box plan. The but in most cases it would be of the ground
nearly the same

Association of Muniofpal and Sanitary EvaiNBERS. - In our report of the proceedings oi
this Society, published on p. 57 of our last impres. this society, publis made to a paper by Mr. Wiviliam This should have been the refuse destroyer.

THE PATENT JOURNAL.

\square

Applications for Letters Patent

 * When patents have been "communicated" thename and address of the communicating party aro
printed in name and addr
printed in intalic
009. Sprivos for Carriags by Insulated Bearinal
at the Ens. R. Grin at Re Nos, R. Grindle, Brimingham.
ao. Forks, R. F. Mackay, Dundee.
Oi. F.

Beliows for Forcisa Gaskous Flums, G Munro, Manchester.
O. Construcrios of Railway Trucers, w. E. Fowle
 United Stutes.)
11. Valve Apparatus for Water Closkts, H. W
 9113. Singerty Lamp for Mines, C. R. Whittaker, M.w
chester. 9114. Prxal Siarprser, G. Grainger, Lozells.
9115. STrbeorypr MArrices, A. J. Boult.- (u.

 Po Ely.-(J. H. Vinton, United States.)
Portase ApPARTUS for GATERRING HAY, W BREAKINdon. Miskrars, E. Mould, London.
CLles Nsing Tram Lives, T. P. Millett, London.
 Machivery for Finisbive Woolurn Fabrics, G.
Nussey and W. B. Leachman, London.
 13i. Dratrinta Striam Jackers, H. E. Newton.-(c)

 Li37. Ornamamental Glass Lettrres, A. and W. E. Moote
 London.
Sis. PRoperlisig Ships, G. F. Redfern. - (G. A. Pool. France)
141. Jucker or Dolasan, E. Edwards.-(P. Parmi
 14. Filliva Bortirs, , Thompson, London. 146. Biovours, WW. La F. Fish, London.
147. WIRE NAILs, C. Lovel, London. 148. ADHESIVE SUTURE APPLIANCE, F. A. Reichardt
 J. Prady, U.S.).
150.
London.
Lerratina Devices,
o. H. Gilbert, V.S.
Diswing Machines, H. H. Lake.-(A. Morehoures

 ham.
Spinning and
1100 Doubling Frames, E. Hidd 61. Sineve Exit of Atr, de., under Pressurb,

 Explosives, C. Roth, London.
Potion for laproviso the SkIs and Conplexion S. A. Perry, London. SWs-shades, L. H. Pearce,
j168. UMBRELAS and Li6. HaNDLE FAN-HoLDER, A. S. L. Newington
Iondon. London.
To. Heome for NEwsPAPres,
Hoce,
H. Hallett and J Hayward, London.
9117. Bowers for Domestrc Purposes, J. Benn,

 sticker, London.

9191. Recuprrative Lamps, B. H. Thwaite, Liverpool.
9192. SEcurnci Box LIDs, J. W. Southern, Nan
 and M. McDonald, Midd.esbrough.
9195. M. Trcc--BoxEs, F. R. Baker and J. Walker, Bir-
 Tunstall.
9198. Drawive Heativa and other Furnaces, A.
 Haacke, London.
Huddersfield.

S. Mitchell. Bradrord.
9203. Fricrios P PuLbes, J. Dean, J. Smith, and J.

 Wynne, Westminster.
9216. FAstrivivas for GLoves, \&co., w. A. Critchlow,

 Hicks, United States.)-4th May, 1886.
9219. Pock Ner Nore-rook, E. W. Schmitz and C. F. 9220. VoL. LontiLE LIquid, E. Edwards.-(J. Quiri, Ger

 9225. Workmen's Daliy Food Carrier, J. T. Parlour, 9226. SHEErss of Guass, \&e., H. H. Lake--(M. P. H

 London.
9330. Onir for Medical and other Purposes, F.
Sharpe, London. 16 th July, 1886.
9231. Conruon Hand Swespine Brushes, J. Ripley,
Boiton-le-Moors. Beiton-le-Mors.
9232. MFASTENERS for Machine Belts, H. Jewson,
Norwich.
 9234. VELocrprDes, W. Goldion, Manchester. R. Pocker, de., Protector, H. A. Macfarlane, 9236. Obrainiviva Motive Power by means of Atr, \&ce.,

9240. Pexocil Protrctors and Searpening Pencils, 924i. STEAM Exaittes, R. Woodhouse and G. G. Rhodes,
Bedford. 9242. Weavinge Siurriles , J. Campbell, Glasgow.

 924. STEAM Bourrs, A. Metcallf, Preston
9250.
CARD
Foundations,
J.
Heginbottom, Man-

 926. PRepriration of Food for Animals, de., J. w.
Hill, London.

 ${ }^{2688}$ Lo Leuid and Fluid Me

 Lemon, London. Proskcrors, J. G. Statter and S. L.
9272. HoLophotal

 9278. Convertirble Vklocipedes, F. E. Duckham, 9279. BRIICK Cutring TAbless. R. C. Robinson, London.
2880. STzering GEAR, P. J. Neate, Rochester.

Beauregard, France.)
17 th $\mathrm{July}, 1886$.

9285. Ventilation of Bulkhead Spacks, c. J. w.
Kerin and E. L. Sheldon, London.

9286. Gas Goverxors, J. T. King.-(J. S. Connelly and
T. E. Connelly, United States.)
 ${ }^{\text {9290. Anchester }}$ 9290. ADDUUTARLE Mattress Frames, I. Choriton and
 chnser, N. Macbeth, Manchester.
 OPRR

 Gi. Oprantivg Shafts or Gears in Looms for Weav-
 mayne, Sheffiela 9300. Mahing Infusions of Ted, T. L. Reeve, Bir

 9308. PLoUGHS, J. Murray and J. Hay, Glasgow.
9287. FORNACE Fire-bass, D . Mellor, London. 9310. Elıertric Shocks, N. W. Russ, London

9288. ELEET
M. Immisch, London.
 9315. NERDLEs, E. W. Harding, London.
9289. Horssemoss, S. S. Harper, London
 Halifax.
9290. ABA. Reguator, A. W. Kitsell and G. George
Birmingham.
 932. Lioulds, C. Hardacere, Liverpool. . W. Bartholomew, London.
932.. Monsy TILLS, P. M. and J. Grieve, London.
9291. Fooo for ANIMALS, F. P. Warren, London. 9323. SEcouring Percussion Caps in Cartridaes, C. D.

 Farmer, and C. Hodgron, London,
9292. Morse INKER APPARATUs, C. D. Abel.-(Messr
 9328. Turning on or off the Supply of Gas, G. Joslin,
 9330. Hexativa Roolss, F. Hilton, London.
9293. OLLCAN, J. R. C. Taunton, London.

 9335. Burrovs, E Bouron, London.
9294. PAPRE, D. Lindo, London.

19th July, 1886.
9337. India-rubber Fabrics, P. M. Matthew, jun Edinburgh. Fabrocs, J. Schofield and S. Hill, 9339. NozzzEE, J. Knott, Manchester. Belf st.
934l. Puxhing Machings, J.

Enfield.
9347. PIPr Wrecoles, J. Ruscoee, Hyde

9352. Colitipribible Bueket and Refrigerating, de 9352. Collapsible Bucker and Refrgerating, de.,
Device, T. Bowley. $-($ Southcoott and Payne South Australia.).
9353. Supportica, de., Lawn Tensis Nets, J. F. Gil-
 ${ }_{9356 \text {. SPIRA }}^{\text {London }}$
9356. Spiral Spring Non-pressure Folder, S. Pearce
F. Lione
 Davididon, London.
9358. PARER for BII London.
9359. Frapesiants of Revolvers, wo., H. A. Silver and
W. Fleteher, London.

alve, H. Davey,
 9366. AMMONIA-Soda Apparatus, O. Imray.- - (La
Societt Anomyme pour r Etude el la Criation de Sout
 Pronne.)
9369 . Writing and Drawing Slates, E. Greenfield London. Carriages, H. H. Lake.-(H. Gruson, Ger${ }_{9371 .}^{\text {many. Bekech-Loading Guns, H. H. Lake.-(C. Roestel, }}$

SELEOTED AMERIOAN PATENTS

 13th, 1886. In a machine for cutting elliptical
Claim. (1) In shlipptical guide which guides the cutter and causes it to describe an ellipse, substantially as and for the pur-
poses described. (2) In a machine for cutting elip-
 and an securtedical gureto and baring on on and duiding said
and
cutter, substantially as and for the purposes described (3) In a machine for cutting elliptical shapes, the com.
bination of a rotary disc or plate, a cutter secured oination of a rotary dise or plate, a autter seeured
thereto and movable racalialy thereon, na e elipiptical

depressing said plate or disc and the cutter, as and for elliptical shapes, the combination of a rotary disc or
plate, an elliptical guide, blok 1 , mounted on said
dise a disco or plate, movable radially thereon and bearing on
said guide, and a cutter-head secured to said block

and movable and adjustable theroon toward and away
from the centre of rotation of said disco or plate sub. stantially as and for the purposes deseribed. (5) In a machine for cutting elliptitian shapes, the combination
of a cutter mounted in slideways and an elliptical

uide which bears on and guides the cutter, causing it to move back and forth in its slideways correspond-
ingly to the shape of the guide, whereby it produces an elliptical cut, substantially as and for the purposes
described. 342,553 .
 Claim, - (1) An inductorium or converter consistin.
of two coils of wire, a core around which successive of two coils of wire, a core around which successive
convolutions of the same aro wound, consisting of
lamino of mafnetic material extending in a direction laminæ of magnetic miterine extending in a direction
at right angles to the direction of the wire of the coils,
ind
 magnetic matiorill, the euter lamina respectively
being magnutically connected with the lamine of the

forth, of a series of double T-shaped plates of soft iron arranged side secondary coils woind upo the same
primary and
lingitudinally, and plates of soft tron connecting the outer ends of the arms of the T-shaped plates, sub. stantially as deseribed. (4) The combination, sub
stantially as hereinbefore set forth, of a series of plates
s. stantiny hron having two pairs of oppositely projecting
of soft irs, coils of insulated wire wound in the spaces
arm irms, coils of insulated plates connecting the outer
between the arms, and ends of the arms, substantially as
 Claint- (i) A wheel and shart with a friction device
substantially as described, the hub of gaid whee having a groove opening at the surface of the eshaft
and recei ing said friction device and communicating

342,586

with a parsage or bore leading to the exterior surface
of the hub, as stated. (2) A wheel having in its hub a eroove and a passage or bore, in combination with
friction device, substantially as deseribed, and a plug closing said bore, the groove and bore being in conit
munication, as stated. $(3) A$ wheel having in its hub
a frove and a passage or bore, in combination with
friction device subtantially as describod, a spring and a pluy closing the bore, said spp
angint said device and plug, as stated.
ain

 Claim,-(1) The combination, wich the main cylinder or cylinders and piston or pistons of a direct-acting
engine, and a compensating eylinder or cyllinders and
 stroke and in conjunction therewith during the las
part of the stroke, of a slide valve or valves for con
proling the prorling the dedmission and exhase of othe stenm to
and from the main collinder or cylinders, the cut-off
and
 the arms 11 by the links 10 and operated from some moving part of the engine, said lever or levers, arms
and links being arranged to operate substantially a

opposition to the main pistons during the first part of
thp stroke and in conjunction therewith during the last part of the in econje, of slide valveses for controlith last parminsion and exhasust of the stean to and from
the amp
the main collinders. councections by which the slide the main cylinders, connections by which the slide
talve or valves of each side of the engine is or are
val

 acting engine provided with a compensating cylinde-
or cylinders, the combination, with eut.off valle arranged at opposite ends of the steam cylinder, of ar
arrangement of levers and arms connected with said valves and with the rod 67 , secured to the steam piiton and passing through the end or the steam cylinder
whereby opening and in closing, substantially as describe (4) The combination, with the cy inders A B and thel of the cllinder B, and the levers 61 , having arms 62 . stantially as deseribed. 342 87O. ORE CRoshpr, Mahlon Hoogland, jun, Chaim-The combination of the rod F , shaft B , pro
vide with central excentric d and excentrics d arranged one upon either side of said central excentri toggle bock E , the jow C , hela entrally by said roi
F and operated by bye central excentric upon sai shaft, the rods H, the shaft G^{2}, and the jaw G,
mounted thereon and held in the direction of the

toggle block E by said rods H, arranged near the sides
of the frame, and the links D , the said jaw beiug operated by said links D and excentrics d^{\prime}, arranged
one upon either side of the centre and between the centre and the trertical plane of the said rods H, H,
whereby the strain is oqualised between the holding. wherehy the strain is equaisised betwen the
rods, the toggle, and excentrics, as set forth.
 Claim, -(1. The ocmbination of the frame or yoke
having jaws B, with a movable block D , carrying having jaws
gripping jaw and having a movabe toot,
Dite carrying pawl pivotted to the yoke or frame, to engage with
said ratchet teeth, and a came to act on the paw1, all substantially as specitied. (2) The combination of the
yoke or frame, the sliding block D, having a gripping

jaw and rat het teeth, with a locking pawl to engage
with the teet a cam to act on the pawl, and con-
 toward the ratchet, subtantid illy as set forth. ${ }^{(3)}$
The combination of the yoke or frame, having jaws Be combination of the yoke or frame, having jaws
Bideth iblock hivina a piototer gripping jaw pro-
vided with two curved and toothed gripping faces vided with two curved an
substantilly as described.

TABLE OF THE RESISTANCE DUE TO GRAVITY ON INCLINES．
compiled by mr．J．Forrest brunton，assoc．m．i．c．e．，westminster．

	㡙
	$\stackrel{2}{3}$
	 宵
成为兑	
	 留
品品品	 多000

整

