ON THE RUNNING DOWN OF BATTERIES AS
INFLUENCED BY THEIR PERFORMANCE OF INFLUENCED BY THE
MECHANICAL WORK.

By Dr. Oliver Lodge.

Although there is nothing but what is perfectly well known in the relation between the running down of a battery and the amount of external work it is doing, yet, inasmuch as batteries are not unlikely to be more and
more generally used as sources of mechanical power, it more generally used as sources of mechanical power, it "Student" in your issue of and Je question of the Cromer
Student in your issue of 22 nd January somewhat fully. The correspondent describes an interesting model of an electric hammer driven by a battery, which does about 150 foot-pounds of work per minute, or has about the two hundredth of a horse-power; and he then proceeds to say that whereas the books tell him that his battery should run
down faster when the hammer is stationary than when it down faster when the hammer is stationary than when it is at work, he finds no such result; and he implies, or at
least it is not unnatural for him to think, that he would least it is not unnatural for him to think, that he would
have expected the battery to run down faster while doing have expected the battery to run
mechanical work than while not.
Now the first thing to thoroughly grasp is that the consumption of material in a battery is simply proportional to sumption of material in a battery is simply proportional o course, all local action is avoided; it depends on the quantity of electricity transmitted, and on nothing else. Tuantity.of etectricity transmitted, amd on nothing else. battery per ampère hour is accurately known, and is $1 \cdot 21$ grammes.
Hence any cause which increases the strength of current hastens the running down of the battery; and any cause which opposes the current retards the consumption of material. Now the performance of mechanical work of whatever sort, by a current, necessarily sets up an opposition EMF and weakens the current, as may be proved, and was proved by Helmholtz in 1847, as follows :Let E be the electro-motive force of a battery, supposed constant; and let C be the current flowing round a circuit of total resistance R, resistance also being supposed con-"
stant. Then, by definition of E M F , the "horse-power," stant. Then, by definition of EMF , the "horse
or work done per minute by the current, is E C.
As the current flows round the circuit heat is generated, and this heat was found by Joule experimentally to equal $\mathrm{R} \mathrm{C}^{2}$ per unit of time.
Now if we first suppose that there is no working machine in the circuit-i,., no machine actually at work-stationary machines there may be as much as one pleases, and they may be holding up weights; but they must not be moving either in the way of raising or lowering them, neither must there be any chemical decomposition going on, or any form of activity other than that already considered in the battery; I say, given all these conditions, it follows, by the conservation of energy or the $\mathrm{EC}=\mathrm{RC} \mathrm{C}^{\text {a }}$
an equation which asserts, when we compare it with the Ohm's law definition of $R\left(R=\frac{E M F}{\text { current }}\right)$, that throughout the circuit, under the supposed circumstances, there is no EMF, but E.
But now make another supposition: Suppose a working machine, or a decomposition cell, or some ofher form of activity, introduced into the circuit, whereby the currentshall be made to do work-raising weights, for instance, or turning machinery-and let the horse-power of this machine be called P. Then no longer can we equate the power of the battery with the heat produced; we are compelled to take loped, mechanical or chemical as well as thermal, and so our equation becomes-

$$
\frac{e s-}{E C}=R^{2}+P
$$

And if again we compare this with the Ohm's law definition of $R\left(R=\frac{E M F}{C}\right)$ we find that E is no longer the sole or effective E M F in the circuit, but that the total EMF is $\mathrm{E}-\frac{\mathrm{P}}{\mathrm{C}}$; that is, there is an opposition EMF, of strength $\frac{\mathrm{P}}{\mathrm{C}}$, and it is natural to consider this opposition EM F as set up in and by the moving machine ; or in and by the decomposition cell, if such it be that has been included in the circuit, in which latter case the opposition EM F is known as polarisation. And
be it noted that it matters not whether decomposition goes on in a special cell or in one of the battery cellsgoes on in a special cell or in one of the battery cells-
wherever it goes on it subtracts its full quota of EM F from the current, and is equally well called polarisation. It is plain then that, since by an active machine the total remains unaltered it follows that the current must be weakened And inasmuch as the wear of the mast be depends simply on the current, the wear of the battery is depends simply on the current, the wear of the
It is easy enough to write down an expression for the strength of the current in terms of the power which the strength of the current in terms of the power which the
machine is exerting, i.e., the work it is doing per second, by simply solving equation (2); and it is
which shows that the greatest possible mechanical power obtainable by perfect appliances from the given circuit is $\frac{E^{2}}{4 R}$; and that when this is obtained an equal amount is expended in generating waste heat. Moreover it shows that the consumption of material in the battery under these circumstances is exactly half what it is when the machine is held stationary and not allowed to work, and that no slower battery-wear than this half-rate is possible, so long as the machine is really worked by the battery faster wear is easy, up to the maximum, when the machine is stationary, of $\frac{\mathrm{E}}{\mathrm{R}}$.
The maximum rate of wear is $\frac{\mathrm{E}}{\mathrm{R}}$, corresponding to ex-
ternal power O and internal or waste power $\frac{\mathrm{E}^{2}}{\mathrm{R}}$
The minimum rate of wear is $\frac{\mathrm{E}}{2 \mathrm{R}}$, corresponding to external power $\frac{E^{2}}{4 R}$ and internal or waste power $\frac{E^{2}}{4 R}$
But if the mechanical power obtained be small and insignificant compared with that put forth by the battery, as is always the case with small size models which can wear is so nearly equal to its maximum value $\frac{E}{\mathrm{D}}$ as to be indistinguishable from it except by careful measurements. Just one point before closing. No more work is called for from the battery. Whether a solenoid be sustaining a weight or keeping a piece of iron mag
netised, or whether it is doing no such thing. Under all stationary circumstances the whole of the energy is frittered away as heat in the coil : the mere holding up of the weight or keeping a magnet excited involves no direct expenditure of energy. For a weight may be supported by a pillar, or a magnet may be struck But a weight may also be supported by a man, or by a jet of water, and a magnet may be maintained by a constant current flowing round it : : is there no expenditure of energy here? Do not the things get tired?
Yes, in truth they do, and there is expenditure of energy, but not in holding the weight or maintaining the magnet ; it is all expended in bye-issues, it all reappears as supported than by putting a man to hold it up, like Atlas we should have to pay him his day's wage and keep him working, wastefully generating heat; but we do know a simpler plan-we use a prop. Similarly, as we know no simpler means of maintaining a powerful magnet than by keeping a current constantly flowing round it we have to keep such a current flowing, although we feel that it is really all running to waste, and that a simple prop would be a far better plan. This, however, is the present state of our ignorance; we know no prop for magnetism of any real strength. Here is a field for discovery ; the field-magnets
of twentieth-century dynamos will probably be permanent of twentieth-century dynamos will probably be permanent ones, with the initial magnetic susceptibility of the softest
iron, struck into the magnetic rigidity of the hardest steel. iron, struck into the magnetic rigidity of the hardest steel
OLIVER LoDGE.
University College, Liverpool, January 29th, 1886.

ROTARY ENGINES.

The construction of various types of rotary and socalled rotary engines has recently been described in our columns, but the subject will bear further consideration. The rotary engine has always been an attraction for inventors. They have pursued, it as the belated traveller follows an ignis faturus, ever since the days of James Watt, and there is no reason to believe that they are nearer success now than they, were half a century ago. We propose in the following article to explain the reason why from our point of view, our acquaintance with rotary engines as they have existed in metal and on paper is
extensive, and consequently what we have to say may be regarded as the outcome of practical knowledge of the subject.
It will be found that almost without exception inventors of rotary engines have attempted to run their engines at a very high velocity. One of the advantages which they always claim is that the rotary engine is not only smaller, but very much smaller than any other engine of the same power. This is the principal reason why rotary engines
have not been successful. In a word, the principle on have not been successfu. In a word, the principle on which they have been constructed has been wrong. great polf the tise roaty is to the velocity but piston permis the to be run at a very high described has always been small, the high piston speed has described has always been small, the high piston speed has
been accomplished by a high velocity of rotation. This would beof no consequence were it not that, as "R." has very clearly explained, there must be a reciprocating member in every rotary engine ; and to work a stop or abutment at 500 or 1000 strokes per minute is as bad, or worse, as to work a piston and crank shaft at the same rate. The proper way to construct a rotary engine is to make the piston move through a large circle at a moderate speed of rotation. This has never been tried in practice. Until To illustraty successful rotary engine will be constructed
To illustrate our meaning we append a sketch. The

centre or body consists of a disc A. To this is joined a piston B, shown in cross section in Fig. 2. An abutment is moved in and out by suitable mechanism. The piston revolves in a ring D. Inside this is a continuous slot in which A revolves, steam-tight, by means of two packing rings, as shown in Fig. 2. Of course, it will be understood that this is a purely ideal sketch. Let us assume now that the diameter of the ring is 20 ft , its width 24 in ., and the depth of the piston, measured radially, 3in., the area of the piston will be $24 \times 3=72$ square inches. The circumference of the circle described by the piston will be, omitting fractions, 62 ft . Let the revolutions be sixty per
minute, then $60 \times 62=3720 \mathrm{ft}$. per minute. Let the
average pressure be 50 lb . on the square inch, then
$33,000=406$-horse power. The space occupied by such an engine would not greatly exceed that filled by the fly-wheel alone of an ordinary horizontal engine of like power. The design, too, is one of the most congainst the could be adopted, for the engine would st be bolted to a wall. Smaller machines moled to a line of shaftung by a universal or other flexible joint. The travel of the abutment would be very small-only 3 in. It will be seen almost at a glance that this engine, as far as size and shape are concerned, has everything to recom-
mend it. At sea, for instance, the saving of space and of weight secured by its adoption would be enormous.
Next let us consider what are the objections to be urged against it. In the first place, as it would be practically mpossible to keep the centre of the main axis in the centre of the ring "cylinder," the piston must be secured by some lexible device to the disc. This may be done in various ways, as for example that shown in Fig. 3. Here the piston is dropped, so to speak, into a notch in the edge of the centre disc, the sides of which notch are shown by C C. There are, of course, obvious objections to such a plan, but it provides a remedy for the dimiculty which we have
raised, and equivalent, but really practical devices will raised, and equivalent, bu
A piston moving at 3700 ft . per minute will, if it works with any friction, absorb a great deal of power ; on the other hand, its leakage at such a velocity will be insigificant. It is for inventors to design a piston which while lightly packed will be steam tight. With first-class workmanship, and clean, dry steam, no packing rings would perhaps be required. The piston may be made of considerable length, circumferentially, and grooved. The loss by leakage will be very small. The disc will have to be made tight in the circumferential slot, and yet the friction must be very little. Here, again, invention and good workmanship are needed ; we see no reason to think the difficulty insurmountable. The abutment can readily be made tight, save where it rests against the edge of the disc. As the disc would be very thin, say $\frac{1}{2}$ in. thick steel plate, the area for leakage would be very small. It is almost impossible to see how it could be made tight by any packing. If we compare this engine with any of the ordinary. types of rotary engine, it will be seen that it has few or none of these sisadvantages.
with pistons sliding in and out, as shown in Fig. 4. Here

A shows one piston-this has to slide in and out of the central drum B a great many times in a minute while under the full pressure of the steam, and the wear and ear at D and C must be very great, with the result that in a very little time the pistons become so loose that they win entrifugal force driving away the oil. Again, if we take the type shown in Fig. 5 it will be seen that the abutmen has a long stroke, and consequently cannot be quite closed team in A arber recrided as wasted. Further tean the of the by no posible mean be kept from hammering against the central drum. If it does not come in contact with it the leakage is enormous, because the joint is as long as the piston; if it does, then as the speed with which it moves inwards must be con siderable, it must strike a severe blow, and accordingly al engines made on this system which we have seen are noisy much greater near the outer circumference than they are nearer the centre, and so leakage soon takes place next the piston end. "R." has so fully set forth the objections to "line" contacts that we need not dwell on them.
That there are objections to this type of engine sketched in Fig. 1 is indisputable, but it must be remembered that no engineer has ever yet attempted to overcome the mechanical difficulties, the existence of which is sufficiently apparent. If such an engine can be made successfully, the reward of the maker will be very large. It is no too much to say, for example, that the moden engine would be supplanted in a very short time. A considerable expenditure of time and money and skin and patience will be needed, but no great success has ever
been achieved in mechanics without the expenditure of both.

THE RELATIVE DURABILITY OF ENGLISH AND AMERICAN LOCOMOTIVES.
Some American writers have lately been striving, by help of arguments founded on very distorted statements of the facts, to prove that American locomotives are, after all, not the overworked, short-lived, and extravagan machines that everyour oushe melly the heaviest be; and that American ralroads have bly traffic, and are the most efficiently anly wonder that admesere hos thew ther these writers further show trains are faster and subject by alleging that American merican railroads have safer than any others; and that American railce.
the soundest and most honest systems of finance.
For the present we shall content ourselves by examin For the present we shall cone ing a little more closely the facts on which a writer
in the National Car Builder builds a theory that the

American locomotive is singularly durable. That paper engine No. 137 of the Boston and Albany Railroad, but significantly enough omits to mention the numerous ion that nothing of the kind occurred to give an impresquotation, which we give verbatim:- "In doing this enormous amount of work, all the repairs effected on the engine, besides the minor running repairs, was turning the driving-wheel tires once and facing the valves once." This appears to be hardly correct in the face of the following statement of the performance of this engine which appear in another American paper, and which is said to be furnished by the

The following are the dimensions and record of passenger engine No. 137, built at the Boston and Albany shops :-

7 tons 10 cwt.
1 inin. by 22 in.
Weight...
Cylinders
Drivin w
Driving wheels, diameter
Tubes, 2in. diam
$5 \mathrm{ft}$. 8in.
$4 \mathrm{ft} 4 in.$.
. 221
This engine came out of the shop April 23rd, 1883 and was taken in for general repairs October 30th, 1885 having run daily 30 months 7 days, or 921 days, making total of 184,726 miles.

During this time the engine lost 12 days for repairs, and deducting this from the total number of days run, the average mileage per day is 203 miles. No repairs were made until April 27th, 1884, when the engine had run 78,812 miles. During portions of the months of April and June,
and the whole of the month of May, 1885, the engine ran and the whole of the month of May, 1885, the engine ran 400 miles every day, making (with extra trips Sundays) 10,910 miles in May, and a total of 26,740 miles in the month.
"The twelve days lost and the causes were as follows :April 1st, 1884 : One day. Broken equalising beam. "July, 1884: Four days. Tires turned, one broken driving box replaced, and regulator valve ground

May, 1885: Four days and a half. Broken piston-rod May, 1885 : Half a day. Broken piston-rod, front
linder cover and casing. ylinder cover and casing.

September, 1885 : Two days. Broken driving box. "The driving boxes were of cast iron, and in consequence of these failures have been replaced with steel It therefore appears that this much vaunted run of American engine was accompanied by a series of breat American engine was accompanied by a series of breakheartily ashamed. In running 184,726 miles, the engine heartily ashamed. In running 184,726 miles, the engine ing parts, disabling the engine, and rendering it incapable of taking a regular train at the proper speed. In round figures the engine broke down every 37,000 miles. Taking the annual engine mileage of the London and NorthWestern at $53,000,000$ miles, this proportion would give 1432 locomotive breakdowns per annum, or 119 per month which is very nearly 4 every day. Let us compare the
American performance with that of some English engines By the courtesy Mr . Johnson, of the Midland, and Mr. Stroudley, of the London and Brighton Railway, we are enabled to supply information of a kind which has never before beenmade public on this important question. We give the figures in the order of the dimensions of the lines concerned, beginning with
the Great Western as the largest. It will be seen that the figures have been put into a somewhat different shape by each of the three gentlemen named. Mr. Dean has had the mileage between shop repairs for the year 1885 of the first twenty engines of five different classes taken out and
Average Mileage of Locomotive Engines between Shop Repairs,
Great Western Railvay.

Class.	Mileage.		
	Highest.	Lowest.	Average.
Passenger engines- 7 ft . express engines, single driving wheels			
	71,400	24,000	52,000
$6 \frac{1}{2 f t}$ coupled express engines.	79,600	21,000	54,200
5 ft . coupled tank engines	94,000	26,000	48,000
Goods engines-			
Six wheels coupled tender engines, 5 ft . wheels .	68,300	17,300	42,200
Six wheels coupled heavy saddle tank engines, $4 \frac{1}{2} \mathrm{ft}$. wheels...	55,700	17,000	33,500

It will be understood that these engines have been taken just as they happened to come on the books, and that some others, in better condition at the beginning of 1885 than downs alone, but to wear and tear as well. We have here a 5 ft . coupled tank engine which made 94,000 miles between going into the shops-that is, 26 -tenths times as many miles as the crack American engine. A $6 \frac{1}{2} \mathrm{ft}$. coupled express engine beats the American record 2 to 1. Even the goods engines show an average record which compares most favourably with the American.
Mr. Johnson, of the Midland Railway, confines himself strictly to breakdowns. In 1885 there were sixty cases in which an engine was rendered idle for half a day or more. Among the causes was the breakage of crank and straight axles, slide valves, and valve spindles through wear and
tear; also cases of hot guide bars, due to neglect on the tear; also cases of hot guide bars, due to neglect on the up their trains. Now, the gross engine mileage for 1885 was $43,657,427$. The total number of engines 1803 . The average mileage, supposing all the engines to have
been worked, 24,200. There was one breakdown for every $727,623 \cdot 7$ miles. This includes engines of all kinds. Portions of the line are exceptionally heavy, and the trains
run are the heaviest and fastest in the world. Such a come near, in the United States
We come now to the London, Brighton, and South Coast, Mr . Stroudley has supplied us not only with general figures, but with minute particulars of the nature of the fasualties which caused the engines concerned to the six months, July-December, 1885, and there are over 400 engines on the line. Here are the particulars :-
July 25. .-Engine 228 caused 43 min . delay through excen
straps getting hot-short of oil-breaking excentric-rod. straps getting hot-short of oil-breaking excentric-rod.
July 31 - Engine 202 caused 32 min , delay through left-ha crosshead breaking.
August. 1.-Engine 13
August. 1.-Engine 13 caused 24 min . delay through steam
September 14.-Engine 38 caused 11 min . delay through tube bursting.
September 16.-Engine 75 caused 10 min . delay through tube bursting.
bember 28 .-Engine 291 caused 8 min . delay through tube bursting.
ptember 28 .-Engine 256 caused 50 min . delay through crank axle breaking.
tober 9.- Engine 73 caused 28 min . delay through valve spindle
cotter coming out cotter coming out.
tober 31 . - Engine 10
tube bursting. 100 caused 1 hour 40 min . delay through November 9.-Engine 425 caused 2 hours 57 min . delay through broken tube.
November 14.-

November 19.-Engine 93 caused 1 hour delay through draw-
bar of engine breaking, in consequence of two couplings being put on at once.

link breaking. This link had flawed in case- quadrant land ling

 link breaking. This link had flawewhich was not observed until it broke.
It will be seen that some of these failures are of the most trifling character, and that the majority involved no to be spoken of in the same breath with the failures of the American engine. There is not one record of a broken spring as having interfered in any way with the traffic. The excentric straps, which were allowed to run hot from want of oil, broke the excentric-rod; but this can hardly be put down as a fair case against the engine, as it had been running perfectly for several years. The crosshead recorded as broken had evidently been strained in putting in the gudgeon, owing to the block going into the jaw for supporting it not having been a sufficiently perfect fit holding on by one side only, but this was not discovered until it broke. It did but trifling damage, but of, course stopped the engine for the day. The crank axle which broke caused fifty minutes delay, but did no other damage of the small engines. This had evidently been taken out for some purpose, and had not been properly secured again. No. 336 engine broke the quadrant link, which
in turn, broke the excentric-rod. This quadrant link had, as before stated, flawed in case-hardening, but the flaw was not observed until it came asunder. It appears failur the Brighton line they almost never have any onfined to broken of the engine itself, The mileage is not easy to get at in a compact form, new type, and it is ny-four old engines and 338 of the which are being replaced. The total engine mileage for the half-year was $4,986,893$, and assuming that all the engines ran alike, which is not fair, however, to the standard engines, these made $4,087,000$ during the half-year ; or
supposing all the engines to be in use, which is not the case, 15,110 miles per engine per half year, or 30,220 per annum-a high average. Supposing the number of breakdowns for the year wo be twice that for the six months, or twenty-six, we have nearly 315,000 miles per breakdown.
There were, it will be seen from the list, There were, 6 dents, properly so called, namely, one crank axle broken, with the broken piston-rod and broken axle-boxes of the American engine. Dividing the mileage by three, we have the United States show any truthful record to parallel this?
The Boston and Albany engine appears to have been un continuausly on both week-days and Sundays, and therefore presumably without washing out. The wate that in parts of New England engines can be safely run for months without washing out, the boiler being filled up able to the achievement of a considerable mileage. In this country, however, even with what we deem good water, it is necessary to wash out an engine at least once a week, and a very general rule is to wash out an engine one day earlier every week. As an engine can thus only given time is effectually curtailed.
Passing from this exceptional case of great mileage, it is interesting to examine the report of a highly prosperous American railroad which we lately accidentally came across, and which may more fairly represent average
American practice than such exceptionally well-managed roads as the Pennsylvania and Boston and Albany. The road we refer to is the Boston and Maine, running north-
ward from Boston to Portland and New Brunswick. Th length of the line is not stated in the report, but the annual receipts are at the rate of $£ 25,000$ per week, and rather more than half the gross receipts are derived from passenger traffic. As each passenger was carried an average distance of $13 \cdot 1$ miles, and no less than $15,587,000$ passengers in all were carried, it is evident that, unlike most A merican roads, and like all English roads, the Boston and Maine has a considerable local passenger traffic; of 53.7 miles This is were conveyed an average distance the average on English roads, but the average for both passengers and goods is near enough to make a fair comparison of the cost of locomotive power, \&c., on the Boston
and Maine and on English railways generally. In order to fairly compare English and American railways, an American line having, like our own, local traffic and short hauls, must be taken. This done, we find that the annual mileage per locomotive is very much the same in both mileage between repairs, the English engines have a considerable advantage.
The average annual mileage of each engine on the miles per maine is 23,787 miles, which is less than 2000 exceptional results obtained in the Boston and Albany. On the London and Brighton Railway also, with local traffic and short hauls, it is, we have seen, 30,222 miles per annum.
This report is equally calculated to throw cold water on the figures given by the National Car Builder as to the marvellous mileage made by American engines between
repairs. The Boston and Maine possesses 207 engines, repairs. The Boston and Maine possesses 207 engines,
and the report summarises the annual repairs effected as and the
follows :

Renewed entirely Thoroughly rebuilt
 Thoroughly rebu General repairs "More or less re
 19 engines.
 More or less repairs

Total number repaired 208 engines.
It will thus be seen that every single engine had been in the shop during the year for more or less serious repairs, and that no less than 12 per cent, of the engines had been renewed entirely or thoroughly rebuilt. It also appears
that 97 out of 207 engines required either complete renewal, rebuilding, or general repairs during one year. The rebuilding, or general repairs during one year. The
average mileage between very heavy repairs may, therefore, be taken at $\frac{207}{97} \times 23,787$ miles, or 50,762 miles, and the average mileage between more or less serious repairs may be taken at $\frac{207}{208} \times 23,787$ miles, or 23,675 miles.
If the terms "general repairs," and "more or less repairs" are used in the sense in which they are understood in this country, A merican engines certainly do not appear to be as durable as those built here, though the Many engines are sent into the shops here before it is Many engines are sent into the shops here before it is absolutely mecessary, on the principle that a stitch in time, c. They would no doube anger valves , bions are blowing slightly, and the , and the ccasionally occasionally, and some of the stay heads are getting
burnt; the engine will, therefore, burn rather more fuel and stand a chance of breaking down on the road. In order to avoid any such risk it is just as well to take the engine in and put it in first-rate order. The mileage between repairs is thus curtailed.
It is hardly necessary, however, to analyse figures to scertain whether American locomotives are as durable as hose built in this country. When we find that the English argine has larger crank-pins, larger axle-box journals, arger springs, and larger wheels, and is generally throughout built more substantially, and more carefully and accurately finished, it is evident that, leaving on one side the smaller number of revolutions made per mile, the larger bearings and more careful finish must make the English engine more durable under similar conditions. As regards he boiler work, the comparison is even more in favour of llow a prect. tronger, greater margin against liable to leak and furrow the rivetting is hydraulic instead of hand or steam, and the boiler as a whole is better made, the workmen being more skilful, the tools better, and the standard of excellence higher. In what shop in Great Britain could sixteen men e counted caulking a locomotive boiler under test? Yet such a sight excites no surprise in the yard of one of the best American builders.
Many features in the design are, apart from any question of proportions and workmanship, fa vourable to the superior durability of the English engine. In American engines the down for the wheel seat. Such an axle, though cheaper down for the wheel seat. Such an axie, though cheaper
to make, is not nearly so trustworthy as an axle forged to hape with solid collars, the middle of the axle being maller than the journals, and the latter smaller than the wheel seat. Such an axle, with fillets of large radius, at very change of diameter has no point at which the strains any one point. The sharp shoulder where an American xle enters the wheel is, on the contrary, a weak point and must inevitably shorten the safe mileage of an iron xle, and render the use of steel highly dangerous. The 80 tons must necessarily be under a considerable compressive strain from which the rest of the axle is free. A little reflection will show that torsional and cross-breaking trains thrown upon an axle in service must also exis in pressive strain is provided for by the increased diameter in the wheel seat; but in the American axle, the part exposed to the greatest strain is the smallest in diameter, and is provide
The great number of parts, and the insecure manner in which they are attached to one another, is another weak feature about an American engine. The coupling and bolts, are very liable to fail suddenly, and weigh more than English solid rod ends with considerably larger bearing surfaces. The link motion presents the same increased number of initial points of failure. The excentric sheaves are not keyed to the axle, but are merely secured by set pins, which are, of course, liable to slip. The excentric rods in ion maner are only secured to the excentric straps by fric ion, the rod and strap being clamped together side by is rather more convenient for adjusting the length of the
rods, but the rod may slip, though the bolts and nuts are intact. The usual manner in which this connection is made on English engines is more expensive to make, but is far more secure. The expansion link in American engines is generally made in two main parts-front and back-bolted together with distance pieces top and bottom. solid link is rightly regarded as less liable to failure though solid link is rightly regarded as less liable to failure though
more expensive to make. The rocking shaft introduces yet another piece into the American link motion, and as it yebliges the expansion link to be hung on one side, it entails a further disadvantage. The strain on the die block is also taken on one side. These additional parts and defective methods of meeting the working strains must, under equal conditions, increase the chances of failure. It may, however, be urged that the superior accessibility of the valve chest placed in American engines on top of the steam chest outweighs all the disadvantages enumerated. This argument might have had some weight before the advent of portable machines for facing valve seats. While the outside steam chest is more accessible for hammer, chisel, and file, it presents no advantages over the valve chests of even inside-cylinder engines where a machine is used. It has, moreover, several palpable disadvantages. The steam is more exposed to condensation the steam and exhaust passages are longer, and the front end of the engine is somewhat heavier, as no part of the metal of the steam chest serves to brace the cylinders together, as in English engines.
American critics generally urge that English engines are too rigid for roughly laid tracks or sharp curves. It is perfectly true that the good permanent way of most of our great main lines renders the use of equalising levers and bogies unnecessary, but both these devices are very freely used wherever it is deemed they diminish the wear and add to the easy riding of the engine. On the North London, Metropolitan, Metropolitan District, London, Tilbury, and Southend, Highland, and Great North of Scotland lines, every engine has both equalising levers and
bogie. With the exception of the London and Brighton, bogie. With the exception of the London and Brighton, every important railway in the kingdom has a large proportion of engines fitted with some form of flexible wheel Adams' bogie, which compares very fes are fitted with Adams' bogie, which compares very favourably with the
various American bogies and pony trucks tried bere under various American bogies and pony trucks tried here under similar conditions. As the springs used here are longer than those generally employed in America, they are probably more flexible, and it is safe to conclude that their
greater weight makes them more durable. Judging from greater weight makes them more durable. Judging from engine, this mishap is not always caused by the tension of the spring, the only point that can be urged against the English practice.
American critics who have never seen an English locomotive invariably seem to imagine that the plate frame is more rigid laterally than the bar frame. The exact conlin. thick is stiff vertically and very flate 20in. deep and while a rectangular iron bar 31/in. wide and 3in. deep will be very much more rigid laterally than the plate frame As the vertical flexibility in all engines is supplied by the springs, the greater vertical flexibility of the bar frame confers no advantage, and renders it difficult to lift the engine without breaking the frame above the axle-box rubbing pieces. The lateral flexibility of the plate frame is, however, a very valuable feature, and in one case that came to our knowledge enabled six coupled rigid wheel base engines to work safely over sharp curves and badlylaid crossings, where American Moguls were frequently derailed. The idea that English engines are too rigid for rough roads is a mistake, and probably originated in the fact that the original English engines for the Grand Trunk of Canada were built by a firm who had little experience in building locomotives, and none whatever in making provision against the effects of a Canadian winter. It would be as unfair to judge English bridge builders of the present day by the Victoria Bridge at Montreal. Our knowledge of both bridges and locomotives has increased considerably in the thirty years that has elapsed since the Grand Trunk was built by Robert Stephenson and other pioneers of railways.
The use of inferior methods of construction, some of which have been explained above, reduces the cost of labour in building an American locomotive. The use of steel instead of copper for inside fire-boxes, cast iron instead of wrought iron for wheel centres, and iron instead of brass for tubes, enables Anmerican builders to effect a
considerable economy in the price of the raw materials of considerabie economy in the price of the raw materials of
a locomotive. Fire-boxes made of English Siemens-Martin steel are, however, in successful use in Canadian locosteel are, however, in successful use in Canadian loco-
motives, and it is evident that where the absence of lime in the water renders the use of steel possible, fire-boxes of in the water renders the use of steel possible, fire-boxes of
that material can be made more cheaply here than in America. Iron tubes are of course largely used by English Amerways for partly worn-out engines, and if the user of the engine desires the cheaper material, it can be used in the new engine. It will probably never be possible to far as we know there is no reason why locomotive builders should not generally initate Mr. Webb's example, and use cast steel wheel centres. At least one firm in Sha use makes an wxcellent and free, of course, from bad welds.
We therefore see no reason why English locumotive builders should not continue to be able to produce a more durable locomotive at a lower price than our American cousins, as the great cost of wages and materials must always counterbalance the saving effected by the use of inferior materials and methods of construction.

Thr Electric Lightisg Act.-At a general meeting of the Alectric Lighting Act Committee, recently held at the offices of the Iord Thurlow in the chair, a r resolution was adopted, on the motion of Viscount Anson, approving the action of the Executive, and expressing satisfaction at the announcement that Lord Rayleigh
had, at the request of of the Executive, agreed to ithtroduce the Bill
drafted by the oommittee into the House of had, at the request of the Executive, agreed to int
drafted by the committee into the House of Lords.

THE VYRNWY MASONRY DAM.

The design and construction of masonry dams of large dimensions is perhaps not a matter of great professional importance to English engineers, as they are not often likely to be called upon to build them at home or abroad. The masonry dam is, however, a subject of much interest, and the graphic and analytical investigation of the conditions of its stability, as well as of the nature, intensity, and direction of the stresses in its materials due to insistent or impressed forces, have often provided attractive food for speculation and determination. The most
a matter very much of taste. Calculations may be made on he assumption that a dam is of material flexible through ngenious checks, of little use, inasmuch as so except an excess of weight must be employed to prevent the initiation of any of the stresses which would occur on the assumption of even a almostunassignableamountof motion that the results of such calculations are wholly ignored in the final practical considerations.
French engineers have been called upon to design and construct some very large dams, including some of early date, which, to a great extent followed the earlier

THE VYRNWY DAM.-SECTION SHOWING MAGNITUDE AND DIRECTION OF STRESSES AND CONTOUR OF FOUNDATION.
complete investigations that have appeared in English upon the subject have been those which are published in The Enginere, and of these we may instance the illustrated articles by Mallet based upon the previous investiDelocro MM. Sazilly, Graeff, Conte, Grandchamps, and some difficult points solved by means of an ingenious assumption. Rankine also devoted attention to the subject in The Engineer. +

datum line

sections of valley in line of dam.
An important paper, by Mr. Guilford Molesworth, entitled, "Notes on High Masonry Dams," with translations from the French of observations by M. Bouvier, was published in the Roorkee College professional papers
on Indian engineering in 1883, contained a résume of the researches of Delocre, Graeff and others, and showed that within certain limits the form of the section of a dam was

Spanish dams, which were large, successful, and enormously heavy. In later times came the Furens* and Settonst reservoir dams, the former closing a valley and forming the Rochetaillee reservoir upon the torrent of the mpounded wh is affluent of the upper Loire. . its length is only about 680 ft . Dams of similar section were subsequently built; one upon the Ban, an affluent of the Gier, near St. Chamond, and another, the Ternay, near Annonay.
The Furens reservoir dam was one of the first built in accordance with the researches of M. Delocre, its section being original, and having hollow curved faces at both sides. It is built of rubble masonry laid in random courses, but every block set with and jointed with minute care. In design and construction it has an interesting bearing upon the Vyrnwy dam now being built for the water supply of
Liverpool, and in the history of which a much to be regretted phase has occurred.
The Vyrnwy dam was designed by Mr. Thomas Hawksley, P.P.I.C.E., and the construction commenced under him, with Mr. G. F. Deacon, M.I.C.E., borough waterworks engineer, of Liverpool, as resident engineer. It seems, however, that some agreement was made between Mr. Deacon and some of the Council, which enabled him to disregard Mr. Hawksley's wishes as to the method of construction or the workmanship, and to act as though he were joint engineer. This at least seems to be the ground of Mr. Hawksley's complaints, and his refusal to be further connected with the work, inasmuch as, if Mr . Deacon's method of executing the work were not found permanently satisfactory, Mr. Hawksley, would be held responsible. One result of Mr. Hawksley's retirement has been that Mr. Deacon has been called upon to make a report with the stability of the eection and fives facts the nature of the materials section, and does not seem to he nature of the materials employed, it does not seem to measure to support them. We have from time to time referred to this matter, and in our impression of the 15th January to the most recent phase, and it is unnecessary to add anything further to the matter as a dispute, or to the accusations made on either side; but we propose to say

THE ENGINEER.
Feb. 5, 1886.
a little concerning the method of construction, the materials used, and the difference between these and those which Mr. Hawksley would, it is said, employ. Mr. Deacon's report we shall not reproduce, as, although an able report, the greater part of it is occupied in showing, by means familiar to everyone interested in hydraulic masonry, that the section and has a very large factor of safety under any conditions,

would not be anything like sufficient to move it even if it were on a floor comparatively smooth and not cemented, as all the forces to have an unusually small angular departure from the vertical. The lines at the foot on either side E F, Fig. 5, show the form of the dam foot when the foundation is at the different levels shown.
The slate of which the dam is being built is quarried about a mile from the dam and brought down by a railway with a gradient of 1 in 30 to the dam in blocks weighspecific gravity of the slate is $2 \cdot 72$, or about $2 \cdot 06$ tons per cubic yard. It is hard, worked with difficulty, and is used in the form of what is known as Cyclopean rubble,
the blocks being of various forms, such as are shown at the blocks being of various forms, such as are shown at Fig. 5 and 6, theshaded portions representing those which are removed at the quarry. The face blocks are all worked to templates and have the upper and lower surfaces dressed parallel and "their sides dressed nearly or quite vertical." Ashlar for outlets and discharge tunnels is made from the same material. About 46 per cent. of the blocks used are
under 2 tons each, nearly 21 per cent. of between 2 and 4 under 2 tons each, nearly 21 per cent. of between 2 and
tons, and about 33 per cent, 4 tons and upwards. Th tons, and about 33 per cent. 4 tons and upwards. The mean crushing resistance of cubes of this slate, all of about
3in., is given by Professor Unwin, by whom they were 3 in., is given by Professor Unwin, by whom they were
tested as 823.5 tons, or rather that is the mean of eleven tested as 823.5 tons, or rather that is the mean of eleven specimens, the figures relating to which are given in his
report. It is thus a material which, when built into a report. It is thus a material which, when built into a
large masonry structure, so that a large part of it may be large masonry structure, so that a large part of it may be considered as encastre, would stand a very heavy pressure.
The gravel and sand employed in making the mortar were obtained from the valley in which the dam is being made where there is an abundance, resulting from the disdeal of clay it rocks of the valley, but containing a goo deal of clay, it has to be washed, and this, it appears, is done with great care, though with difficulty. since th pulverised by a machine, and two parts of this, 60 per pulverised by a machine, and two parts of this, 60 per
cent. of which will go through a 20 mesh sieve and even cent. of which will go through a 20 mesh sieve and even
18 per cent through a 65 mesh sieve, have been used to 18 per cent through a 65 mesh sieve, have been used to
every one part of sand. This produced, the report states, a every one part of sand. This produced, the report states, a
mortar stroncer than that made with sand alone, althongh it is usually found that fine powdery material, such as much is usually found that ind pow, er ot all advisably used
of this must be considered, is not at all with cement. Time will, however, show the effect of the use of finely comminuted argillaceous rock for this purpose. The mortar and concrete mixing is done by pase. Thery, the proportion of sand to cement, whether the sand is contained in the gravel for concrete or is separated from mortar, being 2.5 to 1 . Previous to April, 1884, it was 2 to 1 . Cubes of the Portland cement concrete were made daily from the concrete from the work commenced. Their mean dimension was 9in., and a large number of them tested by Professor Unwin and by Messrs Kirkaldy and Son. The tests showed a gradual increase of strength with age from 2 to 36 months, the mean for 32 to 36 months, being $170 \cdot 4$ tons per square foot, but Professo Unwin gives it as his opinion that the blocks when most secure a uniform distribution of pressure--that the block reach a strength of at least 187 tons per square foot in about a year after they are made. Tests made of the stronger blocks by Messrs. Kirkaldy and Sons gave a mean strength of $284 \cdot 7$ tons per square foot for the cement mortar and 224.9 tons for the cement concrete the cubes having been made about two years. These were bedded between pieces of pine $\frac{1}{2}$ in. in thickness when tested. The blocks tested by Messrs. Kirkaldy were those which showed more than average strength and required greater pressure than Professor Unwins machine would give, but although of abnormal strength, these block must be considered as fairly warranting an addition to Professor Unwin's average, but an examination of al the results, and bearing in mind that a test cube

of the blocks are of a large and heavysize, whilea considerable proportion of small blocks are also used. The method of that there is a level bed, either of rock or of previously constructed masonry, a layer of cement mortar about -in thick, and rather larger in area than the base of the stone to be laid, is placed upon that bed. The mortar is the brushed to a proper figure, and beaten to get rid of air The stone, with its flat but rough bed, is next lowered by a steam crane, and is beaten down by simultaneuus blows from heavy hand malls. The mortar is of such consist ency that during this process it fills every hollow; much of it being squeezed out around the stone and emploved for another bed. Other stones are then similarly set with their nearest points close to but not touching the first The spaces between the stones are next filled in with concrete thoroughly beaten down, and thrust with blunt ended swords into the narrower spaces. Concerning this Mr. Deacon remarks in a footnote that too much import ance cannot be attached to the proper performance of thi portion of the work. It is well known that when the materials of concrete are mixed and tipped in large quantities the larger stones tend to leave the smaller, and the water tends to carry down the cement to lower parts. On mixed in the concrete machines; but are brought upon the ground separately. A loose layer of concrete 2 in to 3 in thick is first thrown down; the broken stone is scattere over it, and the latter is thoroughly beaten into the forme until the cement squeezes up to the surface. Anothe similar layer is then formed, and so on until the required height is reached. No laminated structure is thus pro duced, as would be the case if each layer were allowed to set before the next was formed. Under the beating, while another, he sto sols is mayer interlock with those of another, and the result is much more perfect homogeneity than can readily be attained by any other treatment o concrete with the same proportion of stone. When the interstices are sumciently large they are built up with the distribution of stan and from the fatio of stone and concrete may be gathered from the fact proved futile The are of couse bothe cube has provental laye conce, but their thickness is small. The joints having thes bee filled to the level of the first stones laid upon the old work, the remaining inequalities are made up with beaten con crete, upon which other stones, bonding with those below, are set as before in cement mortar. The work within reach of each crane is thus carried on to a height of $6 f t$ o 8 ft . before the crane gauntree is moved. The joint between the highest stones of each such course are not inished to the level of the stones for three reasons; on being that a more water-tight bond is thus obtained between the new and the old concrete when, some month later, the work is further raised, than when the old concrete is continuous over a large surface ; another oeing that less damage is done to the surface when the men cannot conveniently walk on the concrete, and are almost wh when lying below the level of the stones the concreto likely happens themain damp sul areas, project above those immediately surrounding them. In such cases when, some months after the work has bee left to set, the place is again reached, the concrete is not brought up to the higher level, but the projection is dressed down to the height of the surrounding work. The front and back faces of the wall differ from the hearting hitherto desoribed in that the largest and squarest draughted to the exact batter required, and have thei tops dressed the exact batter requirea, and have sel quared as may be neeser to make close vertical joints. In the inner f be necessary, to make close verticed eve where the joints widen out; mortar alone, with broke stone beaten into it being employed for the first few feet The object of this is to secure, not additional strength, bu When treating of the forces acting upon the dam it will be seen that it any part should be more water-tight than be seen that it any part should be more water-tight than of the inner face below ground is lined with puddled clay, while the joints of the upper part are made additionally while the joi
water-tight."
Whether this mode of building is a satisfactory one remains to be seen, but it is obviously open to the objec tion that large masses of rock may be brought to bear some of the stones are of such a form as to tend to initiate movements of the superincumbent and surrounding materials. Random rubble may, as in the case of the Furens reservoir dam, be perfectly successful when no pieces ar resorvoir dam, be perfectly successftu when no pieces arl
large, interstices small, and settlement consequently large, interstices small, and settlement consequently
uniform. But with Cyclopean random rubble the case may be very different. If a large or long block rest either at its centre or at' one end upon the small area of the upper at its centre or at one end upon the small area of the upper
part of a stone of such a form as that shown at Fig. 5 and marked 3 , tons 5, and depend for the rest of its support upon the concrete or mortar, which from the support upon the concrete or mortar, which from the
system of building may be in considerable masses, the result will possibly be fracture of the stone so supported ; result will possibly be fracture of ve stone so supported
for although the pressure may be very with the crushing resistance of the concrete, the difference in the rigidity of the support of the materials may possibly in the rigidity of the support of distribution of load. Unequal settlement may, it has been urged, also result from equal system of building, and this may be supposed to be the system of building, and result of the use of stones
the more probable from the rese which have their upperorside surfaces at angles considerably divergent from the horizontal or the vertical respectively, The tendency of the load upon the material resting upon surfaces such as these is to cause it to slide down them, and to produce cracks in it. This may be the more readily imagined by reference to the form of block shown at

The rock forming the valley and the foundation of the dam is clay slate of the Caradoc group of the lower Silurian system, to some extent traversed by beds of Bala
volcanic ash. Figs. 1, 2, and 3 illustrate the dip of the volcanic ash. Figs. 1, 2, and 3 illustrate the dip of the
strata, the direction of which is towards the future reserstrata, the direction of which is towards the future reser-
voir. The arrows indicate the direction of the strix found upon the upper projecting outcrops A A , and either of glacial or drift origin. All dislocated blocks of the slate have been removed, and where the outcrop of one
bed much exceeded in height that of the next it was cut, as shown in Figs. 1 and 3. Thus formed, the foundation varied in level across the $117 \cdot 75 \mathrm{ft}$. width of the dam foot to the extent shown in Fig. 4; and thus the bed may be said to be so joggled that no imaginable force would cause
the dam to slide. The forces which will be visited upon it
is certain to be rather better than the averag of concrete or mortar in the wall, a higher average
than about 200 tons per square foot cannot be credited. This gives the strength of the rock as about 4 to 1 of the cement concrete. This great difference in the strength of modifying effect on cencenthg materaisonry a whole unless the method of construction imports conditions unde which the feebler strength of the concrete may initiate destructive strains in the large pieces of rock employed by giving it.a support which is not uniform. Mr Deacon' is likely to be so may be gathered from Mr. Deacon description of the way in which the work is done.
5 and 6 give a fair idea of the shapes of the blocks employed, and the figures already given show that a large proportion

SECTIONS OF LOCK, ROYALALBERT DOCK EXTENSIONS. MR, ROBERT CARR, M.I.C.E., ENGINEER.
(For description see page 109.)

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
Correspondents.]
momentum and inertia.
SRE,-Idonot think that anything would begained by continuing to discuss questions concerning force and motion with ir. Donaldson.
His letters are an inserutaboe problem to me. I cannot, inded.
understand how a Cambridge Wrangler can write as he does. I
. understand how a Cambridge Wrangler can write as he does.
have not, to my knowledge, made a single statement which is
opposed to the teachings of Newton or any other competent opposed to the teachings of Newton or any other competent
authority on the subjects dealt with; but Mr. Donaldson con
tinually authority on the sabjects dealt with; but Mr. Donaldson con-
tinually attributes o me the origin of old statements and proposi-
tions which should be and are familiar to every seocond-year student of physies. If Mr. Donaldson will procure from his kitchen two weights, one
1tb., the other 2 lb, , and will drop them at the same instant out
of his second-floor wind same sime ind-floor window, he will find that they will occupy the In this casethe force has varied directly as the mass, and the accelera-
tions are identical. I understand Mr. Donaldson to tions are identical. I understand Mr. Donaldson to dispute the
truth of this statement. He can settle for himself by direct experiment whether it is true or not. Clark's "Rules, Tables, and
If he will turn to pages $283-4$ of Data," he will find eight rules which answer almost every conceiv-
able question he oan ask. As this is my final reply to Mr. Donaldable question he can ask. As this is my final reply to Mr. Donald-
son, and as he may not have the book in question, I give the rules here. Let t be time, v,
Given $v o f t$ to find v,
$v=\frac{32 \cdot 2 \mathrm{ft}}{}$
Given $w f t$ to find s,
(1)

Given $w v f$ to find t,
Given $v v f$ to find s,
Given $w f s$ to find t,
Given $v f s$ to find v,
Given $w s v$ to find f,

$$
f=\frac{w v^{2}}{64 \cdot 4}
$$

$$
f=\frac{v v}{32 \cdot 2 t}
$$

I do not understand Mr. Donaldson's question about pile driving. I have not the faintest idea what "initial" momentum is. Inever
before saw an adjective fitted to the word. So far as the stress on the top of the pilie is concerned, that is found by calculating the
foot-pounds of work in the monkey at the time of impact by the well-known rule $\frac{m v^{2}}{2 \eta}=\mathrm{F}$, and dividing the amount by the distance traversed by the pile. Thus let the monkey weigh 200 lb .,
the drop be 16 ft ., and the descent of the pile one-tenth of a foot at each blow. Then, $\frac{200 \times 1024}{64}=3200$, that is to say, the monkey could exert a stress of 3200 lb . over a space of 1 ft , and dividing
this by 0.1 we have $32,000 \mathrm{lb}$, as the stress acting over one-tenth of a foot, or a little over 1in. II fear this is not what Mr. Donald-
son wants to know, but it is the only anser I son wants to know, but it is the only answer I can give him
Mr. Donaldson will find in Wiesbach, page 667 , a chapter theory of impact which may serve his purposes. He wiil there find,
for example, that at every instant of the impact, the sum of the
 In almost any text-book he will find illustrations of of little
apparatus by which all the motion in one boty can be trans ferred to another. It is a very simple lecture-room experiment. I really cannot argue the point whether matter is or is not
capable of resisting motion; I should not think of arguing with the gentlemen who maintain that the earth is a flat extended plane.
I have already stated that the stress set up when a force solicits the motion of a body is a time factor. For my views on the matter I must refer your correspondent to my letter of Aprii srd, 1885 .
I must beg Mr. Donaldson not to hold me discourteous if
decline to continue this correspondence, and once more refer him decline to continue this correspondence, and once more refer him
to such a text-book as Dr. Lodge's for an exposition of the truth that is in me.
London, February 1st.

THE FLOW OF Water in pipes.
$\mathrm{SIr},-\mathrm{I}$ should like to put a few questions to Professor Unwin
ith reference to his article on "The Flow of Water in Pipes," with reference to his article on "The Flow
which appeared in your issue of January st.
(1) Did not Hagen derive the formula quoted mainly, if not entiriel, from the experiments of Bossut, Couplet, and Dubuat?
If not, can Professor Unwin refer mo to any published details of
隹 Hagen's experiments? (2) Did not Hagen obtain the figures representing the effect of temperature from his own experiments
Oon very small pipes, and simply assume that the effect would be
the same in all cases? (3) Do not Propessor Reynolds on small lead pipes show the same marked change due to temperature at low velocities, and that above a certain critical point the discharge is almost if not quite independent of the tempera-
ture? (4) Can Professor Unwin refer me to any experiments on the flow of water, or any other fluid, through pipes in which the effect of change of temperature appears in any greater degree than
that otributable to the necesary rhange of density? In this question I refer, of course, to the region above the "critical $\underset{\text { Woint." }}{\text { Westm }}$

stminster, January 21st.

Sir,-Mr. Donald reaction wheels,
than I have, when he asks me to send for publication a copy of Rankine's investigations of the efficiency of turbines. He Steam Engine and other Prime Movers," and turn to page 189, to find what he wants. Fig. 70, on page 190, illustrates the drum to
which I have referred. As to Weisbach, I quote the following from Rankine :- "From
experiments by Professor Weisbach it appears that the greatest efficiency of a good reaction wheel is $\frac{M_{1} a_{1}}{D O}=\cdot 666$, which value, being substituted for Equation 3 , gives or the coefficient of
friction $f==136$, and for the ratio of the best speed of the orifces friction $f=\cdot 136$, and for the ratio of the best speed of the orifices
to that due to the available fall $z_{1}=97$. This result is confirmed by general experience of the working of these wheels, from which it appears that the best speed is very nearrly equal to that due to
the available fall, and the greatest effociency about $\%$."
That is to say, the water should fall down vertic
nozzle of discharge without any angular velocity.
I do not see that any general formula for the
can be constructed, because the curve must vary curving of arms the head and the diameter of the wheel; but the conditions being Let us suppose that the head is 64ft. Then the velocity, neg-
lecting friction, will be G4ft. per second. Let this also be the
angular velocity of the orifices of discharge, and let the wheel be
10 ft in circumference. Then the orifices will pass over 6 . 4 ft . in a second. The radius of he wheolwir be 1 Gft., neglecting fractions occupy $\frac{62}{15}=4$ sec. going from the centre to the orifice. When the molecule started at the centre, the orifice was at some point x while the molecule is moving outwards, the orifice will have come round to some point y. This circumferential distance will be $\frac{6 \cdot 2}{4}=1 \cdot 5 \mathrm{ft}$. If the body of the wheel were a drum, as shown, the molecule moving in a straight line,
shown dotted, would orifice at the moment it came opposite it. If it is not a drum, then a curve complying with the same conditions can render it necessary for me to occupy
space by showing how.
My sketch is not to soale, and the figures I have given have no pretensions
to minute accuracy, but they amply Ir. Donaldson may say I have omitted friction, and so on to make my mening clear to Mr. Donaldson, and this I hope have done. If he will state any case and take a drawing-board, he will have no difficulty whatever in plotting the proper curve
which will permit the molecule or stream of molecules to move outwards in straight lines.
Given all the conditions, a mathematician, such as is $\mathrm{Mr}^{\text {r }}$ curve for that particular wheel.
Your correspondent, J. W. Norman, is wrong about the driving give a driving aecion is not that best stited for a reaction wheel.
Aberdare, January 25 PYNX .

SIR,-Rankine, on pages 197 and 199 of his "Steam Engine, of turbines, and as we see nothing there to take exception to, we would respectully refer Mr. Donaldson to those pages. Weisbach deduced from his experiments on reaction wheels an efficiency of '66. In the "Proceedings" of the Institution of Civil Engineers,
vol. Ivii., a note is given on the reaction wheels at the Domnarfort Ironworks. Nine wheels are there employed to drive the mills. The largest develope en Then are estimated to give 55 per cent.,
w.
whe theoretical maxk.
W. T. the thooretical maximum efticiency.
Melksham, February 1st.

rotary engines.

STr, -It appears not a little strange that those interested in the correspondent, "Long Connecting Rod," in your issue of the $15 t 1$ " inst. to pass without comment, as it would be extremely unfo tunate to suffer his question to remain unanswered to the detrimen fotary engines generally, especially
No doubt the excellent papers of " R ." have done much towards familiarising many of your readers with this type of engine, but unfortunately he has grouped together many engines and mecha-
nical devices capable of being converted into such, which would by no means have satisfied Watt, or Murdock, or any other toiler anter continuous rotary motion. Your correspondent, "Long Connecting Rod," asks, "What ara the advantages of so-called rotary
engines with reciprocating parts?" That, of course, depends on
ent whether such reciprocating parts are absolute, or relative, as
discriminated by " R ." in his first paper ; and it should be disdifference between rotary and so-called rotary engines.
I should call the reciproating movement of the Tower, Fielding, and Parson's engines absolute, because the pressure, in order to turn the shatt, acts upon that part which reciprocates, and which rotary engines, such as those of Yule, Napier, \&o., the part whid reciprocates has nothing to do with the shaft, and is simply just as an ordinary slide valve is ; and seeing that such engines may be worked without a movable valve, and a reciprocating parts, was scarcely fair in saying such a piece is analogous to the piston and rod, these particular engines having their pistons-if they may be so termed -in a piece with the shaft, and the fluid pressure acting upon them in the direction of the desired motion
The reciprocating part here then is relative, and these, therefore are the only type of engines that can properly be called rotary. More than a dozen years ago-February 2nd and 16th, $1872-$ THE ENGINEER published a couple of articles on this subject,
which I would strongly advise all those interested to read, and in which I would strongly advise all those interested to read, and in
which occurs the following:-"The great point in favour of the which occurs the following:-"The great point in favour of the
rotary engine is that it will permit large measures of expansion to be used to the utmost possible advantage, simply because it
places at our disposal a piston speed without parallel in existin phaces as," ur disposal a piston speed
engines." piston speed which induced Watt and many lesser lights to tur heir atention towards rotary engines, as it is easy to see that
piston which moves always in one direction may acquire a mucl greater velocity than one which must make innumerable short journeys, with momentary stops between, to cover the same dis,
tance, just as a train running fifty miles without a stop will tance, just as a train running firty miles without a stop wil or
develope a greater average speed than one stopping every mile or so; and this consideration would argue ver
rocating
Now although "there is practically no loss of power as a con sequence of reciprocation alone in the normal engine" by reason o this important device, I am tempted to ask what happens when, is altogether discarded? Consider such an engine, having thre cylinders, running at 1000 revolutions per minute. Each piston is forced out by pressure and has to be returned by its fellows about seventeen times in one second; at the end of its outward stroke it
has attained its full velocity, and is then brought up, and has to has attained its full velocity, and is then brought up, and has to This happening to each piston in the seventeenth part of a second is equal to one piston passing through this ordeal at intervals of one-fiftieth of a second only. Is it true that there is no power lost
one " n a
ane here as a consequunce of reciprocation alone ar aroe writer or
the 1872 article took exception to the abutment of a rotary being, "jerked" in and out at intervals of one second. in hat
would he say to its being jerked in and out fifty times in that period?
I do not wish to disparage what has been done by makers of high-speed engines generally-under which head I would incluc the so-called rotary engines having positive reciprocating parts,
these latter being, beyond doubt, very ingenious evasions of a difficult problem; but I wish to aave the long-stroke rotary engines dreamed of by Watt and others from the possibility of identification with these by showing that the shorter we make our cylinders, or equivalents, the further we get from the true theory of a rotary engine. R., when he mentioned a ppeumatic despato
tube, hit upon a happy idea to illustrate what was wanted. Such engines may one day be produced, despite the almost insurmount-
able difficulties in the way; and they who produce them will reap no insignificant reward
Without treapassing further on your valuable space, I will briefly say to your correspondent, "Long Conneoting Rod," the advantage
of so-called rotary enpines, baving "relntive" reciprocating parion
only, is that the stroke may be miles or it may be inches, acoording" late" reciprooating parts, except as to space, are nil. January 30th.

Long Stroke.
Sir,-I free trade and no trade. versy with " "Trader," and I am not likely to have time for contro, versy at any stage. But in the interest of sound argument I wish o make at home, and we pay for what we import, not in good made at home, but in money", Al line or two further on he sp, spak of payment being made in "English gold." Now I have not timu
oo hunt up the blue-books in which, as on hunt up the bue-books in which, as of ocher commodities, the mpression that no fact is better established than that we do no pay for our imports in "English gold," the movements of gold in
nd out of the country beiug insignificant. If this is correct, ww ither pay for the German goods in goods of English malke, or w cour people, such as freight earned by English shiporyners fron German shippers, or as interest on money lent or invested i Germany. In neither case can I see that, as a whole, our people
re injured by the German importation, Those who suffer from German competition in the home market should first complain of hose other Englishmen, more enterprising than themselves, who
ucceed in selling goods in Gernany. It is they who make the Germans our debtors, and it is to satisfy their claims that German
goods of some sort have to be sent over here. Naturally when hey come they fall foul of some English maker's goods; but they to be employed in a different manner, and presumably shift it from some trade which Englishmen, from geographical or other reasons, cannot carry on so well as Germans, to a trade which they can carry on better.

Trader" - who has twioe explained that he is strictly neutral "propounds an imposing syllogism, of which the conclusion is that the statement that "under a Protective tariff there are mor men employed than would be employed under Free Trade." Thi-
may be so; but I thought it was just what "Trader"-though trictly neutral-set out to prove. So far the proof is wanting.
Surbiton, January 27 th.

Sir, -Having read a most interesting letter by "Trader" in Sour, last pring ri, Iread a mosspass on youresting valuatere space to so say a few
words on the subject. "Trader" has ably pointed out that indis. criminate Fres Trade is not beneficial to a country, and it is eviden that Fair Trade cannot be so either. I would venture to propose
the following definitions:-(1) When a country has a demand fo certain article which cannot be produced in that country, it is to a certaid article of that country to padmit that artiole in demand dree
the advantan duty
of duty. (2) When a country has a demand for a certain artiele of duty. (2) When a country has a demand for a certain articl in excess of the productive power of that country, it is inadvisable
to admit the article in demand entirely free of duty, unless the costs of importation raise the sale price of the article in the marke
0 o that the fair profit. (3) When a certain country has a demand for a certain article which ic can produce in excess or its own requirements, it i
divisable to protect this manufacture and tax all such artiel dvisable to protect this manufacture and tax all such article not already established, by offering bounties on exported produce. We may take England an to show the truth of these statements, is an enormosus demand for sugar, and as it would be atterly im. possiole to grow sugar-cane in England, we must consequentl
mport sugar from that country which can produce the best, ani sell it in our markets at the lowest priee. It it is also our interest to
import it free of dut. For where there is a demand for any import it free of duty, For where there is a demand for any their money in the production of that article, which will in itsel bring prices to their lowest.
No. 2: England again serves our purpose. Though the quality elsewhere, yet the country is utterly incapable of supplying it population with this prime support of life. "Now as "Trader
points out that the Free.Trade axiom is "that the should have what he consumes at the lowest possible price," it is
argued by Free Traders that the working classes are benefitted by permil point out that this is incorrect on the three following grounds
a) That the capital of the country is diminished ; (h) thet of the direct causes of the overstocked labour market ; (c) that increases the poverty among the labouring classes. (a) Farmin requires capital, like every other manufacture. Farming capital farming prospects, and the capitalist is either ruined or else arming prospects, and the copitanst is either ruined or else hy
must devote his capital to some other manufacture. Generally th farmer does not know sufficient of any other branch to launch into it, and naturally has to emigrate to that country where he cai follow agricultural pursuits, and with him goes his capital. (b) The farm labourer out or employment, and went elsewhere, and to so ther branch of manufacture. (c) Those farm labourers who stil continue to obtain employment on farms camnot got high wages
his master, not being able to work his farm profitably, is forced t, ive him the lowest wages that he can induce him to work for, an Ibelieve that in no other branch of manufacture are wages lowerning at 12 s. per week, out of which he has to pay 2 s. house rent.
No. 3 : Little need be said on this subiect. Our prominent positio In the the nee cold not be questioned before Free Trade wa introduced. Since, however, America, Germany, and France have
been creeping up, inch by inch, until we see Λ merice in machine tools, Germany supplying us with cutlery, and Franc provided with shipbuilding yards fitted, it is true, with Englis hydraulic appliances, but able to produce ships for herself an other countries which England would have formerly supplied, may be said against it, it has certainly induced capitalists to inves their money from abroad-an enormous amount being Englis money-and has been the cause of that large manufacturing centro round Crefeld and Eberifiela, which certainly puts food into Germa workmen's mouths, to say nothing of the increasing beet-sugar
manufacture in both France and Germany.
Hopr. February 2nd.

continuation of Letters see page 114.]

Enginekring Students.-During the current session five supplementary meetings of students of the Institution of Civil
 Measuring Instruments," For four other meetings the subjects announced are:-"Gold Mrining in the Wynaad," "The Stabilit of Voussoir Arches," "Coining Gold at Melbourne Mint," an Three other meetings will be held in the month of April, the arrangements for which are still in progress. The activity of the Local centres have Brighton, and Hull for the reading of papers, for mutual inter.
course, and for visits to works. During the present session 147 candidates have been admitted as students, and it is understoo hat the Council of the Institution now require every candidate in general education.
the vestry to revert to a scheme proposed twelve years
ago by Mr. Abernethy, C.E., the total cost of which (including ago by Mr. Abernethy, C.E., the total cost of which (including
purchase of site) would be about $£ 27,500$, or (its supporters purchase of site) would be about $£ 27,500$, or (its supporters
urge) "about half "the cost of Mr. Mellis" scheme. Although
unsuccessful with the vestry, the dissatisfied member body will have another opportunity of urging their views that the Local Government Board inquiry, which will have to be held before the matter progresses any further.

LITERATURE.

A Catcchism of the Steam Enyine in its Various Applications in
the Arts; to which is added a Chapter on Gas Engines and the Arts; to which is added a Chapter on Gap Engines and
another of Useful Rules, Tables, and Memoranda. By Jons Bourve, C.E. New Edition. London : Longmans, Green, and Co. 1885. 610 pp
Messrs. Longmans, Green, and Co. have done well to publish a new edition of this catechism, for it is a book which is very useful to a large number of readers and learners. The earlier edition had many friends; and
seldom as the catechism form is met with in modern seldom as the catechism form is met with in modern
books, it is one which has the advantage of causing the author to place before himself a number of definite questions, and thereby to give the book greater clearness, order, and system in treatment of istion subect. It has also the advantage of rivetting the attention of the reader. We may assume that Mre is sufficiently well known as a book useful to students to make it unnecessary for us to do more than record the appearance of this edition, which is in many respects a great improvement on that which preceded it. down to the recent times of Webb's compound locomotive, new compound pumping engines, and marine engines and boilers of the large and torpedo types. In style, the book, os some extent, remains a book of a bye-gone generation, but the author has done well what few writers like to do, namely, strike out a lot of their older writing for the in-
sertion of the new. This, however, must be done in engineering works, or they became useless. We can recommend the book to-day, in its new form, as the old form recommended itself years ago, to another generation of readers and learners ; but having said so much, we must remark upon a few points we have noted in perusing it.
On page 16 is-" Q. Then if mechanical power cannot be lost, and is being daily called into existence, must not there be a daily increase in the power existing in the world A. That appears probable unless it flows back in the shape of heat or electricity to the celestial spaces." This is very unsatisfactory, although supplemented by the explanation
that the source of all mechanical power is the sun, and that the source of all mechanical power is the sun, and that the combustion of coal under a steam boiler merely
liberates the power which the sun gave out thousands liberates the power which the sun gave out thousands
of years before. The ideas concerning force, motion, and power are not made to appear clear in the author's mind by the expressions used, though perhaps they
may be; witness "A. No; force is eternal, if by force you mean power, or in other words, pressure acting through space, A curious expression occurs in an answer to a
question concerning the greater velocity of a falling body during a succeeding than during the first second. "A Because there is more of the force of gravity used up in a
second when the falling body is moving fast than when it is moving slowly, seeing that the fast body will trave through a larger space in a given time." The matter is,
however, made clear by figures afterwards. At page 56 we are informed that "combustion is nothing more than nn energetic chemical combination, or in other words, it is the mutual neutralisation of opposing electricities." cerning Regnault's experiments, showing, for instance at different pressures; it is remarked that these the same at different pressures; it is remarked that these experi-
ments were elaborate and more accurate the but "nevertheless it is questionable how far it is advisable to disturb the rules of Watt and Southern, with which the practice of engineers is very much identitied, for the sake practice of engineers is very much identitied, for the sake
of emendations. which are not of such magnitude as to influence materially the practical result." Fortunately for the credit of the book, the following paragraph is devoted to showing that thirty-three units more are employed in graph on page 71, it may be remarked that a slide valve is not a sluice valve, though a sluice valve may be a slide valve. The indicator is very insufficiently treated, and the only illustration is of an old form of Richard's indicator. Chimneys are not properly dealt with. "Q. By what process do y you ascertain the dimensions of the chimney of necessary in a given time to supply to the burning fuel," \&c. Reading this and the whole paragraph, we thought we were at last to have the dimensions put before a student in a proper manner, but the author drops this tice. "A. A punched rivet-hole cannot be of less diameter than the thickness of the plate, else the punch will not pierce the iron, but will be crumpled up." For the is a departure from the truth on the safe side. In speaking of pumping engines and how to start them, very old practice is dealt with. Locomotives are still open, we greater improvement. Lxpase of engines with outsid cylinders, and, indeed, in all locomotives, a little air should be forced into the boiler to mix with the steam." For all this, Mr. Bourne thinks "the benefits of the compound system, even in land and marine engines, have been of high-pressure steam worked expansively has been erroneously imputed to some inscrutable virtue of the compound system, whereas there is no reason to doubt that the aame steam used with the same measure of expanand effective." What does Mr. Bourne think of the fact that shipowners have found it necessary to adopt the triple compound engines, or cease running some of their boats? Portable engines are illustrated by an engraving
of one in which, with cranks and cylinders in the centre
cylinders and brackets have to be too high, and the brackets having nevertheless small bases, they pull the between brackets and cylinders. The same firm of maker Messrs. Ransome, Sims, and Jeffries, makes a very different engine now; and the portable engines made by Messrs. Clayton and Shuttleworth about twenty years ago,
we may remind the author, were not precisely of the pattern made to-day. Steam ploughing is not satisfactorily illustrated by an engraving-Savory's system. Mr. Bourn is still fond of the gaseous jet or stream method of propul sion, and thinks it will come into use; and "although general incredulity will attend such a declaration, it is the impredulity of iguorance which has invariably attended al mprovements not yet accomplished. The chapter on gas
engines is new and useful. The author assumes the prophetic concerning steam engines, and their being super "discern in of the projects which have been hithert propoundel the the focts the to effect this great amelioration." What the author specially means by a "thermo-dynamic engine," or by one which is more thermo-dynamic than present engines, h does not venture to say. It must not be a combined gas, cylinder and regenerator, " the line of advance, must be in a different direction, and the innovation, when it comes will astonish by its obviousness and simplicity" Oh do tell us, Mr. Bourne; but if you will not, and if some fellow, after a time, comes along with it and startles the world do not step forward and say, "I told you so."

BOOKS RECEIVED.

Cuide pour L'Essai des Machines Economique de la Vapeur. Par J. Buchetti. Paris: Che
L'Auteur, Rue Guy Patu, 11, and Bernard Tignol. Vortraege ueber Brucclenbuu gehalten an den Technischen
Hochschulen in Pray, Wien, und Berlin. Von Dr. E. Winkler Hochscauten in Pray, Wien, und
Vienna Carl Gerold's Sohn. 1886.
By J. S. Jeans. London: Longmans, Green, and Co. 1885. A Guice to Sanitury House Inspection. My W. P. Gerharr, Theory of Stresses in Girders and Similar Structures, with
Practical OOsercations on the Strength and other Properties of Materials. By Bindon B. Stoney, LLLD.D. F.R.S. New edition.
Revised. London: Longmans, Green, and Co. 1886.0 .
Almanack fuer die k.k. Kreigs Marine, 1886 . Pola: Gerold and Oo.
Rudimentary Treatise on Coal and Coal Mining. By Warring,
ton W. Smyth, M.A., F.R.S. London: Orosby Lockwood and Select Methods in Chemical Analysis-chiefly Organic. By
William Crookes, F.R.S., V.P.C.S. Second edition, rewritten London: Longmans, Green and Co. 1886 .
The Electricians's Directory and Handbook for 1886. London The Electrician oftice.
The Strength and Proportions of Rivetted Joints. By Bindo
B. Stoney, LLL.D....R.R. London: E. and F. N. Spon. 1885.
Lightring Conductors: their History, Nature. and Moole Lightening Conductors: their History, Nature, and Mode of
Application. By Richard Anderson, F.O.S., F.G.S. Third edition.
Londont E. and F. N. Spon. 1885. Differential and Integral Calculus, with Applications. By A
G. Greenhill, M.A. London: Macmillan and ©o. 1885.

THE ROYAL ALBERT DOCKS EXTENSIONS. The engravings which will be found on pages 102 and 103 are mportant deep-water extensions now being carried of very London and St. Katherine's and Royal Albert Dock Company will appear with further engravings.

PRIVATE BILLS

AuThough some slight interruption has been caused by the progress of a kind has been made with the preliminary stages have be cins io Pariament. Several more of these measure have been passed as having complied with the Standing Orders, two Houses. The Mersey Railway Bill, which seeks powers to make certain necessary extensions of the Tunnel Railway, the Ship
Canal Bill, and one or two of the general railway Bills are amon the number allotted to the House of Commons. One Bill is already dead, viz, that of the Blackpool Corporation. To the proposed railway from South Kensington, under Hyad Park to
Oxford-street, there are now some signs of opposition, though to the original scheme, la gely because the character of the pro ject has been materially changed. On the previous occasion it
will be remembered that the chief ground of objection to the subway was that the necessary ventilators would mar the pi turesqueness of the park, while the steam and gases emitted
would injure the plants and trees. It now appears that no would injure the plants and trees. It now appears that no
openings of the kind are contemplated. In a report presente opening of the kind are contemplated. In a report presented
to the Kensington Vestry, who are, of course, deeply concerned will be 10atter, the surveyor states that " the proposed subwa the entire length of five furlongs, situate in Kensington, and the crown of the subway will average about 14ft. below the sur-principle-that is to say, by the ceation of on the pneumatic the cars will be blown, as it were, one way, and drawn back by suction the return journey.
are proposed; in fact, any such opening would destroy the
working principle of the subway; and by the enlarged drawing produced, the committee will perceive that it would be impos sible to use the subway as an ordinary rail way. In the construc
tion of the subway two shafts would be required to be in Brompton-road, the whole of the work being done by openings, the underpinning of any buildings within 100 ft . of the subway, notices of breaking up streets, to acquire vaults pro-
jecting under roads and footpaths without being compelled to jecting under roads and footpaths without being compelled to
acquire also the houses to which the vaults belong; compensa tion, and so on; the proposed capital is $£ 320,000$, in 32,000
$£ 10$ shares ; and it is proposed to limit the toll between Exhibi $£ 11$ shares ; and it is proposed to limit the toll between Exhibi-
tion-road and the Marble Arch to 3 d . each person. Looking at the matter as a whole, the surveyor recommends the vestry to approve of the scheme, expressing the opinion that the growth
of street traffic will make subways neecssary as time goes on ;
but disent work, and when the Bill comes before Parliament it will pro
bably be strongly contested from some quarters. This Bill will
originate in the House of orignate in the House of Lords. In connection with the Ship Canal and the payment of inte-
 Canal Company, held a few days a the chairman, it appears that so far only three-quarters of million has as yet been subscribed ; but this is not greatly to be wondered at when it is considered that, as the Act at pre sent stands, the shareholders can expect no interest on their money until the canal is made-some years hence. Investor are naturally reluctant to sink their money for so long a period
vithout any return, and the limited amount subscribed without any return, and the limited amount subscribed i kisely to form a powerful argument in favour of the proposal to
pay dividends out of capital during construction. If Parlianent sanctions this course Messrs. Rothschild, the chairman explained, will be ready to provide the remainder of the capital , ay, at 1 per cent. Lord Rothschild, whe ou bebect with the directors, is reported to have said: "Don nd economical for are going to do anything but what is right of the finances of this great national enterprise will do our house
reat honour, and that we, with the strength of our name and associations, will be able to find all the money that you require." No stronger testimony to the soundness of the undertakin could perhaps, it is thought by some, be given, or surer proo that the necessary money can be obtained ; but it is certail have to do all they are prepared for, for there are hundreds, and even thousands, of people who will be ready to invest larger or
maller sums in the canal if they can at once realise dividends he Salford Corporation alone propose to subscribe of a miltion. And what the Bll proposes is the payment of interest at the rate of 4 per cent. per annum during construc ion, the tota amount, by considerably aver $2 / 50,000$. The and the Bill was unanimously approved of, after these and ther sements had been made.
On the question of principle involved in the Bill, it is worth otruction the payment of interest out of capital during connd Nion was adopted in the case of the suez Canal, the Londo Great Western, and Manchester, Sheffield, and Iincolnshir Railways; the State interest-bearing railways of India; Govern ment Works; the Mer ey Docks and Harbours; the operation sigantic public undertakings All these examples point to the uthorisation of the same method in regard to the panal and is confidently believed by the company that the Bill will be passed by Parliament without going through the usual ordeal of Private Bill Conmittee. That remains to be seen; but a upport the Bill. It seems that in promoting and winning the Bill, the Provisional Committee spent or incurred a liability for 1150,000, which is somewhat less than has been generally paid ; and many of the counsel and other professional gentleme who willingness to accept only half the fees they are entitled to. The company has decided to at once put in force all its powers under the existing Act for raising capital, and on the assump tion that Parliament will grant its further Bill, the company traffic within four and a-half years from the present time.

Many merchants and others connected with the St. Lawrence shipping interest are about to memorialise the Dominion Government as to the necessity for the completion of a thorough hydro-
graphic survey of theriver and Gulf of St. La wrence. Last autumn The Imperial Government, and work was proceeded with dow
the Gulf. The Colonies and India says, it is hoped that the Dominion Government will also cause a survey to be instituted,
which will have special reference to the tides and currents, so that which will have special reference to the tides and currents, so that
greater security may be felt in the navigation of this great highway

The Indicator.-The important question of the use and abus If. James Hartley, before the mas dealt with in a paper read by ciation of Engineers. Mr. Hartley pointed out that, although
the principal use of the indicator was to exhibit the behaviour of steam in the cylinder of an engine, this was by no mons the onl purpose to which it could be advantageously applied. It was,
fact, the sole means afforded for exhibiting and recording the
changes of pressure that took place in ing chamber in whic chantics of pressure that was confined. It was well known that the action of any chamber whin an
ela steam engines working expansively, especially with small pipes
and valves, produced pulsations in the boiler sometimes of a
langerous character, and the langerous character, and the extent of these pulsations could onl pipes of certain classes of pumps the indicator might also be very pusefully applied to ascectrain wheether or not the pumps were
working satisfactorily, which, in a great many cases, was
mat questionable. If engineers and engine tenders would only
devote a little more time to a study of the use of
the indicator, and the diagrams taken by it, there would be very few of the wasteful engines that were often referred tould be we should be able to obtain the maximum amount of power for
the minimum amount of fuel consumed. Mr. Hartley, however, laid down most emphatically that trustworthy diagrams could not (1) A good indicator in thorough working order: (2) a careful and competent operator; (3) suitable taps at each end of the cylinder, not loop pipes with a three-way tap in the centre, which, however
convenient they might be, were unsatisfactory, and liable to convenient they might be, were unsatisfactory, and liable to
inacouracy; (4) a goo, sharp, metallic poont, and good paper; and,
lastly, a correct method of giving motion to the barrel of the cylinder. In the discussion which followed
cylinder. In the discussion whic
Alderman W . H. Bailey the president, pointed
in engineering was very much depend
in engineering was very much dependent upon the delicacy an
accuracy of the instrument they had to use knowledge of differences that scientific men showed their sibility useful Lavington Fletcher said that whilst the indicator was a mos to by Mr. Hartley he regarded as simply a great trap and very
deceptive. The indicator would not always tell them the amount deceptive. The indicator would not always tell them the amount
of steam passing through the engine. Very often when a complete test was made a discrepancy of 30 per cent. was discovered
and if any member of that Association could invent some kind of meter which could be applied to the hot overflow of an engine,
such an instrument would be invaluable. They must not rest content with the indicator in its present form, and he hoped that
someneone would try the testing of the heat as it passed out of the engine. Mr. Lewis did not consider the indicator as by any means some instrument might be devised for communicating the motion
of the engine direct to the indicator. Mr. Taylor said that for very high-speed engines it was questionable whether any of the mary use of the indicator was that it should record the exact pres.

10-HP. PORTABLE ENGINE AT THE BUDAPEST EXHIBITION.
CONSTRUCTED AT THE WORKS OF THE STATE RALLWAYS, BUDAPEST

HUNGARIAN ENGINE AND THRASHER. The wonder is, not that Hungarian manufacturers are begin ing to find out that, with the advantages of excellent mate ials, cheap labour, and high protective duties, they ought to be suited to the requirements of their country, than the more elaborately executed and finer finished importations which have so long been almost an English monopoly, but that they did not make the discovery and turn their attention to independent efforts in this direction years ago. It is a significant evidence of the prevailing tendency to free themselves from every semblance of foreign dependency, no less than of the advances achieved in
the capabilities of native_artisans, that in the workshops of the

Hungarian States Railways the number of foreign workmen in Hungarian States Railways the number of foreign workmen in
every branch but one, viz, coppersmiths and braziers, has been steadily decreasing from year to year, as will be seen from the 1874 and 1884:-

	Turners.	Planers.	Locksmiths.	Coppersmiths.	Smiths.	Boilersmiths.
ar.	Nat. For.					
	$\begin{aligned} & \text { Per cent. } \\ & 50 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Per cent. } \\ 70 & 30 \end{array}$	$\begin{aligned} & \text { Per cent. } \\ & 60 \quad 40 \end{aligned}$	$\begin{aligned} & \text { Per cent. } \\ & 5446 \end{aligned}$	$\overline{\mathrm{P}_{73} \quad \text { cent. }}$	$\begin{aligned} & \text { Per cent. } \\ & 51 \end{aligned}$

	Founders.	Carpenters.	Painters.	Labourers.	Average.
Year.	Nat. For.	Nat. For,	Nat. For.	Nat. For.	Nat.
1874	$\begin{aligned} & \text { Per cent. } \\ & 28 \end{aligned}$	$\begin{aligned} & \text { Per cent, } \\ & 50 \end{aligned}$	$\begin{aligned} & \text { Per cent. } \\ & 60 \end{aligned}$	$\begin{aligned} & \text { Per cent. } \\ & 56 \quad 34 \end{aligned}$	Per cent. 5545
1884	$40 \quad 60$	$70 \quad 30$	$80 \quad 20$	$72 \quad 28$	70

The specimens of portable engines and thrashing machines exhibited at Budapest last year are apt illustrations of the attention paid to the special requirements of Hungarian agri apd sombre colours of the paipt, suggestive of consciouspess of

THRASHING MACHINE AT THE BUDAPEST EXHIBITION.

CROS3 SEOTION OF PORTABLE ENGINE.

SECTION OF THRASHING MACHINE. boiler stone, owing to the expansion and contraction of the corperatures of steam. The sides of the fire-box are left plain as being easier to clean or repair than corrugated plates, To protect the tube plate from the direct action of flame, and to effect a more thorough admixture of the combustible gases, a cast iron screen is attached to the base of it, springing from the front end of
the fire-barsandcurving upwards and backwards to about half the height and a quarter of the height and a quarter of the
length of the fire-box. Instead of the rougher usage to which they are destined, gives every pro- fastening the engine direct to the boiler, which method is mise of being able to endure it. Every part has been chosen always more of less accompanied by a chance of leakage at the with a view to avoiding the necessity of highly skilled labour in boit holes, to say nothing of the general pulling necessary renewal and repairs, providing at the same time a superabund- for the renewal of any parts, the cylinder, crosshead guides, and ance of strength to compensate for the lack of this in the hands f those to whose supervision they will be entrusted.
As will be seen from the accompanying drawing of a 10 -horse have considerably larger dimensions than engines of the same class and power in general, in order to suit inferior fuel, be it either coal, lignite, wood, or straw. The leading features in the construction are as follows:-The boiler and tubes are of
"Fluss" iron, as well as the crown of the fire-box, which is cor-
rugated, after Haswell's patent. Besides the simplicity of this form of construction, it is found to offer special advantages in
preventing the formation of $/$ pressed in light steel. The boiler is fed by a pump fitted with

SECTION OF FEED PUMP.
provided with a spark catcher The steam. The chimney is provided with a spark catcher The
under frames supporting the engine on two axles are entirely of
iron. The leading dimensions of the engine are as follows, and
show that it is large for its nominal

Diameter of cylinder
Length of ftroke

Effective ho
Pressure of
Grate area
Diameter of
Number of tubes
xxternal diamester of tubes.
length between tube plates
Congth between tube plastes
Ieating surface of tubes
Total" heating surface
Weight of engine in w
 Stcam thrashing machine.-In the construction of these
machines, of which we give an illustration on page 111, the same principles have been followed as in the portable engines, viz., to fall and to met the class of habour pos will fall, and to meet the requirements and to avoid the complaints of agriculturists as to the performance of other thrashers with
regard to losses in grain, straw, and chaff, It is quite fair to regard to losses in grain, straw, and chaff. It is quite fair to
admit that considerable study has been devoted to all these points; but it would be hard indeed, if after years of observation of the best works of English importers and manufacturers,
the mechanical engineers of Hungary could not, knowing the requirements of their own country better than foreigners, adopt
or discard points of construction best suited to or least advantageous for a special class of work. The thrashing machine exhibited at Budapest had one side removed to enable the lay-
man-we will not say to understand, as there was no one there man-we will not say to understand, as there was no one there
to explain-but to feast his eyes on the complicated interior to explain-but to feast his eyes on the complicated interior
arrangements of the first mechanical process to which the raw material of his daily bread is subjected. The principal features are the use of so much iron and its careful distribution in the framework to meet the several strains at such points as they are
most felt, the attachment of all the bearings to the frame itself, most felt, the attachment of all the bearings to the frame itself,
and the adoption of spherical bearings to prevent overheating and the adoption of spherical bearings to prevent overheating,
\&c., from distortion of shafts, and it may be added to make erection easy. The drums are of iron and steel with efficient guards. The four shaker boxes are so constructed that, in
addition to shaking, the straw is from time to time allowed to fall, whereby any grain adhering to it is separated. The deep steps made with this object, as shown in the engraving, have been tried and found unnecessary by our manufacturers. Above the shakers an arrangement is introduced for keeping the straw on
them as long as possible, which seems to suggest want of effici ency in the shaker. The upper and lower fans are sufficiently large to free the grain of all impurities, even when the drum
is driven at full speed. The elevator is constructed to meet the is driven at full speed. The elevator is constructed to meet the
highest capacity of the machine. The smutting cylinder for highest capacity of the machine. The smutting cylinder for constructed for either or both operations. The grain, if the whea cleaner without passing the smutter cylinder. The wheel trucks are entirely of iron, the bearings of the axles of steel. The weight of the machine is 4700 kilog., of which 75 per
cent. is of iron and 25 , per cent. of wood, a proportion claimed cent. is of iron and 25 per cent. of wood, a proportion claimed
by the manufacturers as a valuable innovation. Whether this proportion be unique or not, there is no doubt that, with the intense difference of temperature in the corn growing districts of Hungary in summer and winter, and even sometimes between
sunrise and evening, the best timber is liable to warp, and the introduction of a material not subject to this fault cannot but be of advantage to a proprietor who has little or no chance of obtaining skilled labour in an emergency.

THE SOCIETY OF ENGINEERS

THE first ordinary meeting for the present year of the members 1st, at the Town Hall, Westminster. The retiring president, Mr. Charles Gandon, presented the premiums of books awarded for papers read during the past year. These were, to Mr. W. Newby Colam for his paper "On Cable Tramways," and to Mr. J. B.
Redman, M. Inst. C.E., for his paper "On Tidal Approaches and
Deep-Water Entrances." The retiring president then introduced the president for 1886, Mr. Perry Fairfax Nursey, who prozeeded to deliver his inaugural address. After thanking the members for having elected him to the chair, the president referred to the
satisfactory position of the Society, and reviewed its work during the past year, summarising each paper read, and supplementing
some by subsequent information upon the same subject. In like manner he reviewed the visits made to engineering works during the vacation. After noticing the leading scientific events of the
year, he directed attention to the comparatively insignificant effects produced by the engineer in work done by blasting operanature in the development of analogous forces. He cave particy
nate lars of several extensive blasting operations, including the two
leaviest on record at Hell Gate, New York, in 1876 and 1885 respectively. He also gave, by way of comparison, statistics concerning many earthquakes and volcanic upheavals. Passing on to consider the present state of engineering science and
practice, he observed that we were rather prone in the present
day to exalt ourselves at the expense of the ancients, whom we were wont to consider as possessing no science whatever according to the modern acceptation of the term. But he
pointed out that, although text-books of the ancients and other pointed out that, although text-books of the ancients and other
similar evidence had not been handed down to us, yet in many instances which he named a large amount of scientific skill and knowledge had been manifested, although of a different character from that of the present day. The works of the ancients, he said, were distinguished for their massive grandeur, and were typical of
brute force; those of the moderns for elegant lightness and delicacy of detail, indicating a higher and more refined culture, which aimed at economising material and power. Proceeding to point out that been foreshadowed in the past, and some even definitely described, Systema Cosmicum two centuries was defined by Galileo in his conductor of Franklin was used by the Etruscans. The circulation of the blood was described symbolically by Solomon
nearly 3000 years since. Bacteria were discovered and de nearly 3000 years since. Bacteria were discovered and de
scribed in detail by Leeuwenhoek two centuries ago. The Whitchead torpedo was foreshadowed by Ben Jonson. Dean
Swift, 160 years ago, credited the astronomers of Laputa with the discovery of two satellites revolving about Mars; whilst the actua discovery of Mars' moons only took place in 1877. The poet
Drummond, 260 years ago, in very precise language, indicated some of the most important naval and military weapons of the present day, and for which he obtained letters patent in 1626; and
finally, Shakespeare, in "Troilus and Cressida," had anticipated Sir Isaac Newton's great discovery of gravitation. The idealism of a bygone age had become transformed into a reality in the presen one. The dreams of poets and sages of yore had become mateit was announced the daily bread of the artisan.
It Council had nomina
It was announced that the Council had nominated Professor honorary member of the Society, and had instituted a "President's Premium" of books, which would be awarded annually, in
addition to the other premiums ; and further, that, at Mr.
Nursey's request, Sir Henry Bessemer-honorary member-
undertaken to present to the Society an annual premium of books,

MODERN PRACTICE IN SLIDE VALVES.* By Mr. Tom Westgarth, Middlesbrough.
WHEN the secretary asked me to prepare a paper to be read ore choice of subject, namely, "Modern Practice in Slide Valves,"
to I thought at the time that the subject would be one easily dealt with, but when I began to consider it more carefully with a view to framing the outline of my remarks, I found that the largeness
and importance of the subject was likely to be almost embarrassing. It will not require any argument to convince this meeting, composed as it is of engineers, of the importance of the method
adopted in a steam engine for governing the admission of the adopted in a steam engine for governing the admission of the
steam into the cylinder, and, what is of equal importance, its exit steam into the cylinder, and, what is of equal importance, its exit
therefrom. It is perhaps difficult to say which part of a steam engine requires the most careful consideration in design and manufacture, and the most assiduous attention when at work,
because the failure of almost any part, however apparently unim portant, is sufficient to stop the whole; but considering the question
of economical development of power, both as to fuel and expenses in wear and tear, I should say that the valves fitted to the cylinder are perhaps the most important part of the engine. That this fact is grasped and appreciated by engineers is proved by the almost endless variety of valves and valve gearing which are adopted with a view to economy, But, whilst engineers
are alive to the importance of cylinder valves and valve gearing are alive to the importance of cylimder valves and valve gearing,
steam users are, as a general rule, not only almost necessarily somewhat ignorant upon the subject, but to a great extent careless, and I am convinced that if they could be induced to pay mor attention to the steam valves of their engines, they would find
that they would be amply repaid. Of course it is necessery the owners of steam engines, as a general rule, should be advised and directed by competent engineers, because, if a man commence to alter or rearrange the valves of a steam engine without a prope knowledge of the subject, it is very probable he will only make matters worse. I propose offer for your consideration some to the control of the admission and exit of steam to and from the cylinder of the steam engine. I do not propose pose, except to say, that I consider, as a general rule, the slide valve is very much to be preferred in ordinary practice to the
rotary valves, and for the following reasons: The rotary valves almost invariably require to be worked by more or less complicated gearing, having a large number of working parts, all of which
require attention and adjustment, and which, if not properly require attention and adjustment, and which, if not properly
adjusted and attended to, very soon affect the efficient working of adjusted and attended to, very soon affect the efficient working of
the valve. The rotary valves are also I think objectionable, who have they are not understood by the ordinary class of workme actual practice; and again, these valves, with their gearing, are almost invariably more expensive than slide valves, and it does not appear that the extra cost and complication are warranted by any have to call your attention presently to indicator diagrams, take from engines fitted with ordinary slide valves which are practicall as good as those obtained with rotary valves, fitted with quick
cut-off gear. Now, when we come to consider the ordinary slide valve, as compared with other valves, we at once find that we have and one which is cheap in first cost, easily adjusted and repaired, thoroughly which almost every engineman and engine-fitter is does give, the most satisfactory reover, one which has given, and that, although it was amongst the earliest arrangements adopte
in connection with the steam engine, and has had no end competitors, it is still by far the most extensively used both by land and marine engineers. Of course, to give satisfac tory results, the slide valve must be properly constructed and maintained, and must also be properly set. With regard to the make the valve of hard cast iro, wo most common practice is to of the cylinder, the two surfaces being properly planed and sur faced. If the metal of which the valve and slide face are made is of reasonably good quality and kept fairly lubricated, the two will Work generally for years without requiring any other attention, but although some locomotive engineers are still using gun-metal the use of cast iron may be considered as almost universal. It is a common practice in large engines, and especially marine engines to make a separate or false face for the cylinder face, which is secured to the ports by recessed headed screws, the object of this with wisdom in the casting of the cylinder itself. These face have been made of gun-metal, phosphor-bronze, dcc., but are gene-
rally made of cast iron, which seems to be the mest suitable rally made of cast iron, which seems to be the most suitable
material for the purpose. Concerning the maintenance of the material for the purpose. Concerning the maintenance of the
slide valve, as I have already remarked, if properly constructed it requiresvery little attention; but the slidevalves of all steam engines cutting, and that the valve is properly secured to its rod or spindle It is only a few weeks since I was requested to examine an engin ralve was not orring saisfactoriy, and 1 found that the slid valve was more than an inch loose upon
owner wondered why it would not work.
The next consideration, namely, the setting the slide valve, is even greater importance. It appears to be very difficult to get a ordinary steam user to understand that his coal bill can be affected even to a small extent by the way in which steam is admitted into the cylinder of his engine and allowed to escape therefrom, be to follow in fancy the operations of the slide valve of a stem engine during one revolution. The starting point is the lead, that is the amount which the valve opens before the piston reaches the end of its stroke. As a general rule it will be found advantageous to allow the valve to be opened from $\frac{1}{\mathrm{~T}} \mathrm{in}$, to $\frac{1}{\mathrm{in}} \mathrm{in}$, at the end of the
cylinder remote from the crank, and from $\frac{1}{\mathrm{in}}$, to 3 in, at the end nearest the crank when the piston is at the end of its stroke. The steam so admitted checks the momentum of the moving parts, and what is perhaps equally important, it is anadvantage to have the valve so that there may be free admission of steam without piston travel, and loss of pressure. Then comes the full opening of the valve followed by the cut-off. If an economical result is to be obtained with a working pressure of 80 lb , to 90 lb , the steam is expanded into six or seven volumes; or with a working pressure of about consideration as to whether the steam should be expanded in one two, three or more cylinders, is outside the scope of this paper. It admission of steam and that it should close quickly. These conditions make it necessary, when early cut-off is required, that
the valve should have a long travel, otherwise it will and not very wide, the result being that the full boiler pressure will not be even approximately attained in the cylinder, and that the steam will be wire-drawn, that is, that the pressure will not be maintained even at the point reached at the early part of the
stroke. I believe that the imperfect work of the slide valve this part of its stroke is the cause of immense loss to steam users, which is more to be regretted as the fault could often be remedied, or, at any rate, much mitigated with very small trouble and expense. If, as in this case of a single cylinder engine, it is desired oo obtain the full benefits of using high-pressure steam extensively, and the engine is large enough to do its work with an early cut-off necessary to supplement the slide valve with an expansion valve because if the ordinary slide valve were set off at, say, one-seventh
of the stroke it would be found to be difficult to properly control
the exhaust. If, however, the steam is to be expanded in more
than one cylinder, as in the case of a compound engine, it will than one cylinder, as in the case of a compound engine, it will
generally be found that a satisfactory result can be obtained withgenerally be found that

Fig. 1 shows diagrams taken from a single-cylinder engine fitted With an ordinary slide valve having short travel. The engine was
ound to be very uneconomical. New slide valves were therefore fitted with an ordinary slide expansion valve working on back of very badly set and incapable of doing its work properly. With the new valves, which are of the simplest possible construction-
see Fig. 2-the steam is cut off as quickly as could be desired for

all practical purposes, and it is needless to say the saving of fuel Fery soon paid for the cost of the alterations,
working with steam 801 lb , pressure an ordinary compound engine ordinary single-ported slide valves, the steam being expanded about seal times, and the engines working continually with about 1.6 lb . o taken with the cut-off varied by notching up the link gear, and proves

that it is quite possible to get a very varied range of power well alanced upon the two cranks without the use of an expansion
valve or any other complication. After the steam is cut off by the valve it continues to expand until the valve opens for exhaust The point at which this opening takes place is another very
important matter. If the valve opens too soon, the steam is released

Fig. 4

efore it is fully expanded, or, in other words, before all the work is taken from it; if, however, the valve does not open for exhaust not run smoothly. This is of particular importance in fast runnin engines. I have found in many cases where fast running engine could not be made to run with sum negative lap on the exhaust side. It will sometimes be found that power of the engine has been increased by the same means. This next point of consideration is the closing of the exhaust, the engine is pulled up by excessive compression; if, on the other hand, you do not arrange to have a fair amount of compression, the admission of steam into the cylinder when the steam valve open will cause sudden shocks and unsatisfactory working. The only way to ascertain satisfactorily whether the slide valve is properly θ an immense advantage engines properly indicated at regular and not too long intervals. We come now to the consideration of the various descriptions of lide valves, the first, of course, being the ordinary single-porte to describe it in any way Nearly all the other forms attemp valves are modifications of this valve, the most commons of slid ordinary double-ported slide as shown by Fig. 4. This valve gives a double opening for both steam and exhaust, and therefore gives the advantages of a large area of port opening and a quick cut-off without an abnormally long travel. The same arrangement is
sometimes adopted for triple-ported valves. We then have the
trick valve, sections of which are shown by
consists of the ordinary locomotive slide, so far as the exhaust is concerned, but a double opening is given for steam, a port being cast within the lap of the steam side, carried round the back of the
valve, and admitting steam from the opposite end, the valve face valve, and admitting steam from the opposite end, the valve face being arranged so that the port opens and closes at the same time
at both ends. This valve is one of the most useful that can be Fig

Fig. 5

fitted for engines of ordinary size, and gives very satisfactory results in practice. A modification of the trick valve has
been patented by Mr. Thom, of Barrow-in-Furness. A section of the valve is shown by Fig. 6. The difference consists in a slight variation of the position of the port in the lap of
the valve, which is so arranged that, in addition to passing

Fig. 6

upon its seat when entirely covering a port, a flange K is therefore upon its seat when entirely covering a port, a flange K is therefore
formed on the interior of each part of the valve for this purpose,
and its area is determined by the width of the ports; with the exception of these flanges the yalve has no surfaces subject to steam pressure ; it is therefore balanced. The spiral springs L, shown in
the drawings, are only used to keep the two parts of the valve expanded and in contact with their port faces when steam is turned off. The joint, where the two parts of the valve meet, is made steam-tight by means of a thin strip of brass M sprung over it inside the valve, and having the pressure of the steam on the back
of it. The principal advantages claimed for this valve are its of it. The principal advantages claimed for this valve are its
freedom to revolve upon the face and thus avoid cutting, the raduction of steam pressure upon the valve chest cover, and the roduction of steam pressure upon the valve chest cover, and the
greater freedom of exhaust due to the larger port opening on outer or exhaust edge of valve.
I have here a sample valve
I have here a sample valve which was fitted to a cylinder 18 in .
diameter on board the s.s. Stormeock; it had been working nine months with a pressure of 75 lb , and was taken out for use as a sample. You will be able to observe the smoothness of the faces and the evidence of easy working. The increasing steam pressures which are gradually being used have caused a very general adoption, of late, of the piston valve. Where of the slide valve upon the face, caused by the size of the valve or pressure acting upon it, is too great to be left unnoticed, I
think it is much better to adopt the pisto think it is much better to adopt the piston
valve than to fit any of the ordinary forms valve than to fit any of the ordinary forms
of relief gear upon back of the slide
valves. These relief gears are expensive and valves. These relief gears are expensive and
require a good deal of attention to keep them in working order, and, to make them
steam into the opposite end of the cylinder from the steam chest, ther just before exhaust steam from one side of the piston to the minal pressure is admitted to the opposite side of the piston, and there compressed and so used again. It is claimed that this valve is particularly useful when fitted to the low-pressure cylinder of a compound engine, because the steam is there expanded down far place is not sufficient to absorb the work stored in the momentum sufficiently steam-tight to relieve the pressure on back of valve, they them is as great as the relief they give. The piston valve is in equilibrium, and if properly constructed there is no difficulty in making it steam-tight. Fig. 9 shows a piston valve of ordinary construction
fitted with two steel spring rings. It is a common plan, however, fitted with two steel spring rings. It is a common plan, however,
to fit only one ring, and, in many cases, no springs behind it, to fit only one ring, and, in many cases, no springs behind it,
simply a solid ring of cast iron. Fig. 9 A shows the section of a
yalve fitted with a single cast iron ring, supported by a second

cations, for a stipulated sum of money, and is invariable for all jobs of like character or class, which is not the case when labour is paid by the hour. Wherever it has been adopted, an increase of one-third more work and a reduction of cost in like ratio, without any increase of working force, together with an increase of earning
power to the employé, has been the result. some of the advantages to the employer, in addition to thos referred to above:- Protection from loss by reason of damage caused by carelessness or want of skill on the part of the work man, the damage having to be made good at his own expense all operations being inspected by the foreman in charge, when
reported finished, and credit allowed only when satisfactorily performed, the foreman being the judge. It enables the foreman to determine the qualifications of each new employé more readily than under the day system, as under that system the slow and unskilful man is usually screened and assisted by those with whom
he works, while under the piecework system each man in relation to the employer is an individual contractor and in limitci partnership with relation to his fellow-workmen, and is not dis posed to divide his earnings with any who are not as skilful and ully as able to earn their share of the proceeds of their join be unwittingly employed, because, also, he becomes as a partne responsible for and must assist in repairing any damage occasione by such unskilful or careless workman. It secures to the company isolated points good workmen. Where shops are located at ment at those shops the only means of support availabley the men, except at the expense of moving away, much difficulty is usually experienced, at a time of a sudden influx of work, to wages any increase of the working force, unless exceptionally high accept a job at such points on account of probable not inclined to the work to be done, and the trouble and expense entailed, in case they should lose their job in a short time, in seeking work elsedefinite But piece-work, in allowing increased earning power to a which can be averaged, enforced idleness of the other three, and much of this may be made up on odd jobs outside of the company's employ besides insuring steady employment to that number, and obviating the necessity of any reduction of the working force, except at times of the
most extraordinary business depression; and most extraordinary business depression; and
any increase of business or work can be met by an increase of the hours of labour, or overtime, without increasing the number of hands; hence the men, firding that their average wages the year round are as much
as they can earn elsewhere, are not disposed to change for every trifling or temporary advantage offered them. It relieves the men, and of the immediate oversight of the labours alone, enabling him results of their time to the perfecting of methods and details of shop management, and to the investiga-
tion of such questions relative to car and locomotive questions relative to car and It in a measure divides the responsibility, or, rather, furnishes him a means of self-protec-
tion against carelessness on the part of the workman, without_resultant loss to the company, or the no less disagreeable alternative of discipling by suspension or discharge. It is self-adjusting as to the relations of the
employé with the company and one another on a strictly business basis, because the skilful and industrious will naturally desire to work with those who are equally so ; and
where skill is not required, industry is the Where skill is not required, industry is the
stand, and all who are unable or unwilling to meet the requirements must give place to those who can, for the reasons more stated. The advantages to the workand skilled workman is enabled to reap the rewards of his superior acquirements, the industrious the reward of industry, each earning according to his ability and disposiion; he is freed from servile dependence
on the judgment and responsibility of his superiors, and is made to assume some of upon his own jugment, to greater extent, which makes him self-reliant. His inventive faculties are called into exercise to devise new and easier, as well as quicker, of the piston; it is also of use fitted to a high-pressure cylinder, ring also of cast iron in lieu of a spring. The outer ring is some- himself and fellows in business methods, and has every opportunity
as in both cases it saves the amount of steam required at each
revolution to fill the ports and clearances, these being filled by the exhaust steam from opposite side of piston before the lead opened. The outer ports only are used for steam; they are therefore much larger ; both ports are used for exhaust. This valve has been
fitted to large steamships, it is said with very satisfactory results

ring also of cast iron in lieu of a spring. The outer ring is some-
times put in alone and not split, and if nicely fitted will run for a considerable time, after which it can be split, and a spring fitted. Various materials are used of which to make the rings, but I
think cast iron is the best. Care must be taken that the ports in the cylinder are so arranged that the slot of the spring ring is at no time entirely uncovered; this is done by casting the ports at an angle as shown upon the drawing-
Figs. 9 B or 9 c . Mr. Thom's patent can applied to the piston valve, as shown by
Fig. 9 .

Figs. 0 요

I have not been able to bring under your notice all, or indeed a majority of the slide valves which are doing good work, but have the principal classes of valve in use. I had
then ill
both as to economy of fuel and steadiness of engines when racing in a sea-way. The next valve to which I wish to call your attention valve. The valve is shown by Figs. 7 and 8 and is circular in form, and is constructed of two rings A B, alike on their outer faces, but jointed together so as to act as one ring. The cover of
the valve chest is provided with a port face, having ports D D with passages E E E leading to the ends of the cylinder, exactly similar to and opposite F F in the cylinder port face. The valve is driven by a valve rod G connected to a circular hoop H, within which the valve fits with sufficient freedom to allow of its turning within it, should it have any tendency
to do so. As the valve moves it necessarily opens and closes two ports simultaneously at each reciprocation and acts as a doubleported valve. The steam is first admitted to the interior of the valve, from which it passes to the cylinder, and is then exhausted on the exterior of the valve into the valve chest, as indicated by the arrows, which acts as a receiver. As the width of the face of added, it has no back upon which steam can press so as to keep it
intended to refer to the use of separate slide valves for steam and exhaust, and also to discuss the various descriptions of expansion slide valves, but fear that I have already made my paper too long,
and will therefore leave these matters to be dealt with by others.

PIECE-WORK IN THE RAILROAD PAINT SHOP The following paper was read at the Toronto Convention of the Master Car-Painters' Association, by Mr. F. S. Ball, master painter of the Pennsylvania Railroad shops at Altoona. It possesses
interest as showing an American view of the piece-work question:interest as showing an American view of the piece-work question:-
Has piece-work any advantage over day-work? We hold that it has. Day-work is a contract to pay a specified sum or compensation for a cortain number of hours per day of labour, or a moiety thereof per hour. The amount of labour to be done does not usually enter into the contract, and is as variable as the will and
ability of different workmen and the varied qualifications and executive abilities of the master painters can make it. Piece-work is a contract to do a stated amount of work, as per certain specifi-
himself and fellows in business methods, and has every opportunity
and encouragement to develope any latent faculties he may possess. He learns to set a value on every minute of his time, and is not disposed to waste it, because it is a part of his capital, and a very short experience in working by this system enables him to determine the exact money value of any job he may be given. Where
it is desired to make trial of the system, the simplest method is for the master painter to base his prices for piece-work on the knowledge his experience has given him of the value of each operation under the old plan, represented by so many hours labour, and deduct 30 per cent. from the cost; the remainder will be a fair price to pay for the operation under the piece-work system. He
should first, however, make an alphabetical classification of all cars that come to his shop for repairs, to enable him to again classify the work to be done on them, all cars of one form of construction Class A, of another form Class B, \&c., then the needed repairs to these as Class 1 repairs, Class 2 repairs, and Class 3 repairs, and
more if desired, but the three classes will usually cover all ordinary more if desired, but the three classes wisuallo
requirements. This classification of work should be written or printed in form, and posted in the shop for the information of the wrinteden, and may be in form as follows :-
Class 1, repairs-outside.-Burn off old paint. (Here describe Class 1, repairs-outside.- Burn oin old, paint. (Here describe
whatever method is pursued in re-painting, from priming to finishwhatever method is pursued in re-painting, from priming to fimish-
ing.) Paint roof and block ironwork. Paint, stripe, and varnish解 ever other method is pursued, according to inside finish of car. Re-paint head line, or replace with a new one. Re-paint sash, varnish blinds and seats, stating number of coats, dc. Paitforms.
and Class 2, repairs-if hard wood finish.-Prime new work and bare sandpaper, as may be the practice; then re-paint, stripe, and varnish on surface thus obtained; paint trucks, roofs, dc. Clean down and sandpaper, touch up and putty where needed, and give
one coat of varnish, rub down and oil off. If inside is painted, give number of coats necessary to this class of repairs. Clean and touch up head linings, \&c.
Class 3, repairs-outside. - Scrub down with-here describe what is used. Touch up-under this head a detailed statement may be made, and the amount of such touching up many coats - one coat of paint on trucks, and re-stripe and varnish; paint roof and black irons.
Class 3, repairs - inside. - Serub thoroughly - describe here whatever is the practice or method. Touch up scarred places, and tops of seat arms and window sills, and paint floor and platforms.
Olean glass, \&c. This classification may be varied according to the requirements of differently constructed cars and the prevailing practice of each shop. Then the working force may be divided practice three gangs: No. 1, strippers and varnishers; No, 2, inside
varnishers, or hard wood finishers; No. 3, brush hands-one in
each gang being appointed gang leader or foreman, whose business
varnishers, or hard wood finishers; No. 3, brush hands-one in
each gang being appointed gang leader or foreman, whose business
it is to consult with the master painter in reference to all work, to it is to consult with the master painter in reference to all work, to
distribute the work among the men to the best advantage, see that they are supplied with materials and tools as soon as wanted,
keep the acoounts for the gank, and doing his share of the work when not otherwise employed, the master painter assigning to the several gang foremen the cars as they are received into the shop,
as their share of work. The account may be kept in the following manner: The master painter keeps a record of cars as they come needed or determined upon. The gang foreman also keeps a record of when car was assigned him, with class of repairs ordered; and from day to day, as an operation is completed on the car or cars,
he enters the charge on his book, with date that the o he enters the charge on his book, with date that the operation was
completed, thus-

and so on throughout until the car is completed. Each operation after being finishod is reported as finished to the the master painter,
who inspects it whio inspects it a a this onnenience, and before the next operation is
begun, when, if it is satisfactory, he accepts it, and gives credit in㲘 the last day of t his gang, and hands his book in to the master painter, who comis so marked and returned, and the master painter returrect it the office of shop clerk. In addition to keeping the accounts the gang foreman also keeps a time book, or record of the time made by each man, and at the end of each month the sum total of earn-
ings is divided by the total number of hours' labour, which will ings is divided by the total number of hours' labour, which will
give the amount per hour of earnings which each man is entitled give the amount per hour of earnings which each man is entitled
to receive for the number of hours he has worked. That there are no objectionable features to the system is not to be expected,
therefore we will close this paper with what most serious, as we have experienced them. It fosters, if it does
mot not create, intense selfishness and greed in the employe; the weak are crowded out, and the strong overwork and break themselves
down in a short time, exemplifying in a manner the Darwina theory of the survival of the fittest. It is a serious obstacle to apprenticeship, and a hindrance to teaching boys a trade, for, as
we have shown, there is no place for the unskiful or the weak in we have shown, there is no place for the unskilful or the weak in
piece-work, nor have men working in this way any time to devote picce-work, nor have men wor
to the instruction of learners.

LEGAL INTELLIGENCE.

ROYAL COURTS OF JUSTICE, LONDON
Before the Soliortor-General, Sir J. E. Gorst, Q.C., M.P. luke's applioation-Tatham's objection
Iv our last impression we gave a summary of the evidence in this case. We now give the Solicitor-Genera's judgment.
"It has not been proved to my satisfaction that S. A obtained the whole of proved the my satisfaction that S . A. Luke
W. Tatham ; but W. Tatham; but I am at the same time convinced that the
applicant is not the sole inventor, but that part at least of the merit of the invention is due to Wm. Tatham. Under these circumstances it appears to me that the justice of the case will
best be met by following the principle of the precedent set in best met my forliling the principle of the precedent set in
Russel's Pat. $12-r e$ Gex and Jones, page 130-by Lord Cran. worth, with. such modifications ans the present law reruires, I
think that S. A. Luke and W. Tatham should enter into an agreement by which the former should undertake to do all such acts as may be necessary for securing to the latter the full rights of a
oint patentee in the invention in question and the latter should undertake to take no proceedings for revocation of the patent when
granted. On the filing of such agreement at the Patent-office, I determine that the grant shall be made, and that each party shall pay his own costs of the appeal to the law officer. In the event of that the grant shasil not be made, and that S. . . Luke Luthall pay the costs of both parties in the appeal to the law officier. In the
event of W. Tatham refusing to enter into such agreement I
determine that the rant shall be made and that W, determine that the grant shall be made, and that W. Tatham shall
pay the costs of both parties in the appeal to the law officer,"

The invention patented by Mr. Luke is illustrated by the accompanying engraving. In spinning machines the bobbins and flyers
are carried on vertical studs A, called "collars." These are secured in the rail under ordinnary circoumstancoses by nuts and lock
nuts underneath the projection on the rail ; and each collar has nuts underneath the projection on the rail, and each collar has
to be specially fitted to its place that it may stand straight. The to be specially fitted to its place that it may stand straight. The
collars are tubular. Mr. Luke outs a slot E with a circular saw in each, the collar is then compressed and turned untili it will just fit on which compresses the collar until small enough to drop in, the key is then takensosft, and the expansion of the collar makes it a
tight tight fit,
We give ructive story of the time absorbed and ppposition worth while:-Luke's application, 5156 , April 255 th, 1855. Tatham's opposition patent application, May 20th. Luke put in his oomplete specification May 28th. Opposition entered
August 19th. Hearing before the Comptroller, November 20th; case not gone into by agreement between counsel, leaving open
Tatham's right of appeal. Tatham's appeal hearing before the Solicitor-General, January 18th to 21st, held in the afternoons only; decision received February 1st. An order taken and sup-
plied by Messrs. Dobson and Barlow, of Boltan, July, 1885, giving "complete satisfaction.", Actuw, of cost oolton, July, 1885,
to $£ 250$ each side, and some months of delay.

LETTERS TO THE EDITOR.

(Continued from page 104.)

the physical society

Sir, - Your issue of January 29th contains a short résume of
A Note on the Paper by Professo W. Ramsay and Dr. Young
 Ayrton and John Perry. These gentlemen think it is suifciensay and Dr. Young, viz, that the product $t \frac{d p}{d t}$ is constant, p being the pressure, and t the absolute temperature. Messrs. Ayrton and
Perry state that the law is represented mathematically by the equation
$\frac{d p}{d t}=\phi(p) ;$
but if $t \frac{d p}{d t}$ is constant, how can it be a function of the pressure? Clearly

$$
t \frac{d p}{d t}=\mathrm{a} \text { constant }=\mathrm{C}, \mathrm{say}
$$

whence $\quad p=\mathrm{C} \log _{\mathrm{i}} \mathrm{e} t+$ constant.
If P be pressure corresponding to temperature T , we have

$$
p=\mathrm{P}+\mathrm{C} \log \cdot \frac{\mathrm{~T}}{t}
$$

This certainly does not agree either with Rankine's law stated
in your paper, or with the law which states that the product of the volume of a gas multiplied by its pressure and divided by its absolute temperature is constant. Are both Messrs. Ramsay and Young and their critics, Messrs, Ayrton and Perry, wrong? I offer no opinion.
2, Westmi
, Westminster-chambers, January 3rd.
LIqUID FUEL.
Sir, -The article in your issue of January 8th escaped my notice
at the time or I should have asked you earilier for remarks on it, and I hope you will grant it to me now, as the apparatus fitted on the Himalaya, to which you refer, was fitted by me. On board this ship no "modification of the structure of the
boiler was made," nor is it neeessary to do so with any class boiler was made," nor is it necessary to do so with any class of
either marine or land boiler fitted on our system. All that is required is the construction of a brick chamber in the furnace, but this chamber does not touch the sides of the furnace, except at the
bottom considerably below where the level of the fire-bars would bottom considerably below where the level of the fire-bars would
be if coal were used, and the heat from the chamber esapaps
the through pigeon holes in its sides and arch; thus instead of the use
of oil in boilers ". practically depriving them of the heating surface of oin in boilers," practically depriving them of the heating surface
of the furnaees," this surface is inceased, as in a coal fire the space
below the bars is sractically yalueless. below the bars, is practically valueless. You naturally deduce from
your "theoretical consideration" that "the total efficiency of a your "theoretical consideration" that "the total efficiency of a
marine boiler burning liquid fuel instead of coal must be lowered," but the statement that this theory has hitherto been borne out in
practice, "for the Himalaya could not keep steam to anything ikee the proper pressuru,", must have been made inadivertently, as the fact
is that on her return from Granton she made the quickest voyage recorded on the log, and this in spite of maving lost part of one of her propelie always been difficult to keep steam with coal, but there is none with oil. The result of the trial made by Messsrs. Wigham Richardson, and Co., of Newcoastle, of the application of my
system to their new ship Flora showed an evaporation of $15 \pm .1 \mathrm{lb}$. system to their new ship. Frora showed an evaporation of 15sh 1 .
of water with oil, as against 8 lb. to 9 lh. of cool.
The using up in the application of liguid fuel for steam vessels for considered voyages, but the superheating, and consequent high expansion of
the steam used in my system, lessens this objection, and entirely the steam used in my system, lessens this objection, and entirely does away with the condensation of the steam in the furnace.
75 , Lombard-street, E.O., Feb. 1st.
PERCY TARBUTT.
[We did not refer to the voyage of the Himalaya from Granton to London, for it had not taken place at the time we wrote. On
her voyage to Granton she certainly did not keep steam.-ED, E.]

COMPOUND LOCOMOTIVES.
SIR, - I notioed that in an article on the above, which appeared
in THE ENGINER for October 30th, 1885, you said that the Webb engines did well (?) between Euston and Crewe. My object in Writing this is to show that they do not, and are very far from
doing so. The following figures are taken from the "Crewe Coal doing so The following figures are taken from the "Orewe Coal-,
sheet" for October, 1885, and will show what "utter humbugs "
s. the Webb engines are, even when working on a a nieceroad like the
London and North-Western between Euston and Crewe. I give Lhe top and bottom engines and the average for each link:--

Engines.	Milles run.	Coal used per mile.	Cost per 100 miles.	Remarks.
$\begin{array}{r} 113 \\ 509 \\ \text { Average } \end{array}$	${ }_{2394}^{2858}$	$\begin{aligned} & \substack{4 \cdot 8 \cdot 8 \\ 38 \cdot 1 \\ 35 \cdot 1} \end{aligned}$		Big compound Euston-Corewo.
	${ }_{2363}^{4947}$	$\begin{aligned} & 3 \cdot 1 \\ & 30 \end{aligned}$	$\begin{array}{llll}1 & 3 & 1 \\ 1 & 4 & 6 \\ 1 & 5 & 6 \\ 1 & 5\end{array}$	Small compound Euston-Crewe.
$\begin{array}{r} 789 \\ \text { Average } \\ \text { A } 187 \end{array}$	5270 7332	$\begin{aligned} & 30 \cdot 6 \\ & 43 \cdot 2 \\ & 36 \cdot 9 \end{aligned}$	$\begin{array}{llll}1 & 2 & 10 \\ 1 & 6 \\ 1 & 4 & 9 \\ 1 & 9 & \\ & & & \end{array}$	Precedents Euston-Carlisle.
$\begin{array}{r} 333 \\ \text { Average } \\ \text { Ave } \end{array}$	4756 5210		$\begin{array}{llll}1 & 2 & 5 \\ 1 & 4 \\ 1 & 4 & 1 \\ 1 & 1\end{array}$	Small compound Crewe-Holyhead.
$\begin{array}{r} 11045 \\ \text { Average } \end{array}$	${ }_{\text {3396 }}^{3997}$	$\begin{gathered} 28 \cdot 2 \cdot 2 \\ 33 \cdot 2 \\ 30 \cdot 8 \end{gathered}$	1 2 7 1 4 7 1 3 6	Small compound Crewe-Holyhead Crowe-Holyhead.
	5750 3285	$\begin{gathered} 24 \cdot 8 \\ \hline 85 \cdot 6 \\ 31 \cdot 6 \end{gathered}$	$\begin{array}{llll}1 & 1 & 1 \\ 1 & 4 & 0 \\ 1 & 3 & 0 \\ 1\end{array}$	Yorkshire link Rams. bottom 4 -coupled engin

The compounds burn best Welsh coal, and they have the lightest
and slowest trains. The Precedents do all the hard work and get inferior coal. Further comment is unnecessary. ANTI-CoMPound.
January 26th.
trial of patent cases
STR,-The remarks in my former letter had reference to trials gestions as to a more economical mode of trying questions that are likely to arise undere the new law in connection with patents owned yy persons who are incapable of bearing the expenses of ordinary
legal actions. In order to bring my remarks to a point, I will advert to a case that was tried above twenty-five years ago under a reference from the Court of Queen's Bench. Each party chose his own arbitrator, and these were required to choose an umpire
within ten days, or one would be named by the law officers. The umpire, however, was chosen by the arbitrators within the specified notes of the evidence as to matters of fact alone, it being supposed that the arbitrators and umpire aoting together were competent to
deal with matters of opinion on the mixed questions of law and fact-without the aid of special experts-as they were all well experienced in patent practice.

Two sittings of about five hours each sufficed, with the assist-
ance of one counsel and solicitor on each side, for the work of getting the evidence on the notes of the investigators, after which they adjourned for a day to consider the evidence, and then met,
when the arbitrators expressed their respective opinions. These being different, the umpire became sole referee, and after an interval of a few days delivered to the arbitrators a written judg. ment on the whole case. The decision was made a rule of court and an award duly recorded. It came to the knowledge of the
umpire about eight years afterwards that the decision had given satisfaction even to the losing party.
It may possibly be inferred from the fact of so few persons being engaged in the inquiry that the case was a a very trivial one ; but
this was not so, and the this was not so, and the parties were rival manufacturers of good
position. The chief reason why the cose was position. The chief reason why the case was so manageable was
that the arbitrators began by eliminating all that was not really necessary to the merits of it, thereby greatly narrowing the issues to be tried, and avoiding much of the usual waste of effort
on each side. And then another reason may have been that all the persons constituting what may be called the court of inquiry were antecedently qualified by practice to determine points of novelty
and infringement, and that their minds were quite free to be exercised in a judicial manner on the points presented to them without the ordinary contict of argument and scientific opinion. I submit the foregoing to the consideration of those of your
readers who are conversant with patents, and especially readers who are conversant with patents, and especially to those
who are interested in protecting their patents against infringewho , but would not be able to bear the expense of an ordinary
ment, action at law for the purpose. I would especially draw attention to the eparticular feature in the mode of procedure described, which coally bore in a preiminary reduction of the points raised to such as really bore upon the essential merits of the case, thereby getting
rid of the ordinary fringe that sometimes encumbers and obscures. the only material issues that ought to be kept clearly before the mind of the Court. I think this a very material distinction from the ordinary course of procedure, and it involves a principle of adaptation
be found i

the chapter of accidents a from experience that occasionally in this tempts them to raise all sorts of objections, in the shape especially of alleged anticipations of patented inventions, so that the practice is very much worse that
what is said in the text-books.
I will only add that we have not to deal simply with a question
of economy in trials, but with one involving no less + than the al economy in trials, but with one involving no less than the from any means of protecting their patents of a large number of assistance for the public advantage 8, Quality-court, Chancery-lane, W.C., January 12th.

elementary mechanics.

STR,-I have discovered a merit in Dr. Lodge's book not yet escapes giving us puzzled beginners the treadle of a lathe as an instance of the third order, which every text-book I have looked into does. Now though I have seen a lathe-an American
dentist's-with a treadle of the third order, all the lathes I am familiar with, and which I think of frst when athe is spoken of, have for treadles levers of the second order ; and so I conclude that the illustration in question has been handed down from the days when pole lathes only were familiar, for 1 find that the pole lathe figured in Holtzapffel has a third order treadle. To make is not unrepresented in treadles. W. A. S. B. London, February 4th.

SUB-AQUEOUS PHOTOGRAPHY.

By E. G. Carex, A.K.C., Assistant Engineer Forth Bridge Works, THR interest attached to recent attempts to obtain photographs
in the caissons of the Forth Bridge is due rather to the novel conditions under which the experiments were conducted than to any degree or success with aas hitherto been achieved. Before, how. and the results obtained, it will be well to describe in brief outline the construction and working of a caisson, so that the peculiar
nature of the surroundings under which the work was performed may be the more readily understood.
than its literal translation from the French, signifying ${ }^{\text {an }}$. be given "coffer." The caissons of the Forth Bridge are constructed of iron, are circular in plan, with a diameter of 70ft., and in appearance
are not at all unlike gasometers. The caisson, having been built are not ate ank is lanched, floated out to the positition of the pier, and
on shore,
ank eet above its lower edge is placed an iron foor. which divides the caisson into an upper and a lower compartment. The lower compartment is charged with compressed air, forced in through piping
by machinery on the surface, and forms, in fact, a a huge diving bell. The compressed air excludes the superincumbent water, and enables through airlocks, sinilar in principle to to the locks on a canal, and excavate the bottom on which the caisson rests. The "spoil" is
drawn drawn up in skips, an bottom is reached. The whole caisson, both
weight, until a firm bon upper and lower compartments, is th
Such, then, were the conditions under which it was desired to obtain a photograph, in the air-chamber of a caisson, a huge diving
bell, 7 ft . in diameter, 7 ft . high, sunk some 50 ft . to 60 ft . below high water, and charged with air, whose pressure was from 101 lb .
to 30 lb. per square inch highere than that of the atmosphere. The air-chamber was lighted by are clamps suspended from the
dynamos and motive power being paced on the surface
dynamos and motive power the first attempts, three arced on the surf surface.
During
tere employed, sub. sequently two more were added to overcome as much a possible
the pernicious haze-of which more hereafter-in the air-chamber.
Each total power of 6000 candles was requisitioned. The troof and sides of the air-ohamber were whitewashed to render them more con-
spicuous in the negative, and to diffuse the light thrown on them more effectively.
Before proceeding into the air-chamber, a trial was made on
shore to obtain required. A group, lighted on either side by an arc lamp, similar to those employed in the caisson, was taken on an instantaneous
plate of the same rapidity as those subsequently exposed in the air-chamber ; the lamps being carefully shaded by soreens. An
exposure of ten seconds with the le exposis period was assumed as the basis of operations in the caisson The first difficulty that presented itself inside the air-chamber was the formation of moisture on the lenses. After a few minutes, however, the glasses became warmed, and being carefully wiped, no futher trouble was experienced on this score. The author had provided himself lens to check the formation of moisture on the glass ;** but this was not required.
The frrst exposures were $12,20,25$, and 30 seconds respectively, with the largest stop; instantaneous plates of average rapidity
being used. Three arc lamps lighted the caisson, but one only being used. Three arc lamps lighted the caisson, but one only
shone directly on the objects focussed. The whole of the plates

A method due to W. D. Dalentine, of Dundeo, and employtd by him
when tenged on on submarina photog traphic experiments in connection
with the ruins of the old Tay Bridge.
were found, on development, to be considerably under-exposed.
It was decided to considerably increase the length of exposure, and It was decided to consideratey increase the length of exposure, and given; but the results. were very poor, indistinct, and blurred, and garticularly disappointing. Increased lighting power was obviously
requird and for the next attemt five arc lamps were fitted in required; and for the next attempt five arc lam
the air-chamber, being suspended from the ceiling Augmentation in lighting power was followed by an immediate mprovement in the negatives obtained; and two groups, exposure gave results of a more encouraging nature than any yet obtained, A lamp was placed on either side of the group, another immediately
behind it, whilst the two remaining lamps illuminated the rest of
In the final experiments made, it was decided to try the effect of
In plates of exceptional rapidity, and in this last attempt xxxxx
plates, similar to those in use for the most rapid yacht work, were employed. A further improvement tesulted: a considerable gain in definition and sharpness was secured, due, no doubt, in part to the
shortened exposure (one and a-half to two minutes being found sufficient), a great desideratum when figures are embodied in the subject. In this instance, the whole of the arc lights were arranged
in rows parallel to a straight line drawn from the camera to the in rows parallel to a straight line drawn from the camera to the
centre of group in front, and sufficiently far away from that line to centre of group in front, and sufficiently far away from that line to
avoid shining directly into the lens, whilst throwing as much light as possible on the objects.
There can be, in conclusion, but little doubt that the haze in the air-chamber must always render the highest results unattainable.
All that can be done is to seize the most favourable moment, when the haze is at its minimum, for the range of clearness of the compressing machinery should run slowly and steadily during the experiments, for any sudden inflow of fresh air will at once tend
to raise the haze. Similarly, any sudden expansion of the air, succh as that due to its escape, when the expavated material is
drawn up through the lock provided for that purpose, at once produces a marked accession of fogginess.
If figures are introduced into the photograph, they should wear
 the human eve, presumably from its glistening properties, has T. Thardly calculated to reassure the timorous visitor, scanning owrece his mind for a descent.
Ow it to the hazy atmospher
Cerp hg to the hazy atmosphere it will be found advantageous to as close as convenient to the subject, thereby ediacing the length of supervening fog as much as possible. So
co could be ascertained, no injury resulted to the plates, either
fom the moisture below, or from the heavy atmospheric pressure Com the moisture below, or fro

Lens used in the aboove experiments was by Dallmeyer, 21 in.
ther caisson remains to be foundad, when iting hy heped further Smay be made in this direction to secure photographs under
Tons as novel as difficult, and with more succeess than has
o attended the attempts here briefly sketched, Thi best thanks of the author are due to W. D.
falme, fho accompanied mum val on two occasions into advie and assistance, kindly afforded
o mivin in this matter.-Photographic Nevs.

AMERICAN NOTES.

(From our own Correazondent.)
New York, January 23rd.
 Thying in order to weaken the market if possible.. Prices have not Thying in order to weaken the market if possible. Prices have not
dedined and the rugent demand felt by consumers is compelling
them to place requirements for raw materials, including orude and them to place requirements for raw materials, inclucing crude and
fnit irnen, ocnstuction iron and stelel and lumer. In trade Pramane, the market from Boston to St. Louis is termed quiet,
Prac, hovever, are fully maintained atevery point. Noweakess
solervable and it is not believed by the best commercial authori S oborvable and it is not believed by the best commercial authori-
itw the there is ay probability of weakness between this and
Agril list. For this reason railroad agents are placing orders for Cpril list. Fer this reason railroad agents are placing orders for
 to $2^{* 50}$ dols. Old rails are extremely scarce and are held at 23 dols.
to 24 dols. for Amerian and 22 dols. for English . A furthe advance
seems probable. Ord steel rails have advanced to 20 dols. from 15 dols. four months ago. Bessemer pig is quoted at 20 dols; spiegeleisen,
29 dols.; plate iron, 2 dols.; beams and channels, 3 dols. There is less movement in lead, copper, zinc and antimony, and the prepara-
tions are being made in the copper field for an increased production, provided prices and demand warrant.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS

(From our ovon Correspondent.)

The reports which ironmasters attending 'Change in this town
to-day-Thursday-and yesterday in Wolverhampton, gave of the state of business were not of a more favourable e character. Speci-
fications still come to hand with unaccountable sluggishness, and new orders are for small lines in other than exceptional cases.
Prices keep unsatisfactory. Nearly every fresh order is a matter of negotiation, and a disposition has to be shown to meet con-
sumers views in every reasonable way. The competition in the sumers bar trade is such that while Staffordshire bars cannot be
common
delivered in delivered in the Thames at any proit at under $£ 6$ per ton, Belgian
bars are being freely delivered into the Thames at $£ 5$ This
circumstance is
quoted by ironmasters this week as one potent argument in favour of a larger reduction in wages than the 5 per
 upheld, while medium bars are $£ 610 \mathrm{~s}$, and ommon $£ 5$ to $£ 510 \mathrm{~s}$,
The makers of sheets appear in some cases to be moderately well
emploged in the exceution employed in the execution of contracts, common sheets-singles-
being offered at $\& 6$ 2s. 6 d and und upards. Doubes are ex
upwards, 6 d .
und lattens 20 s . additional. Rivet-making iron has been laterly asked for in fairly large quantities, and a somewhat better Hoops are abundant at $£ 55 \mathrm{~s}$. to $£ 515 \mathrm{~s}$, , and gas tube strip up
to 6 sin , is $£ 5$. The full extras of 5 . per ton for 88 lin , and of a further 15s. per ton for 100xin, and 12s in. have in times of trade like
the present had to be very largely abandoned and makers have now to be content with a fraction of such extras. There is perhaps more doing in strips than in any description of iron other
than sheets. Working-up and stamping-sheet firms are more reguarly employed than most of the other ironmasters, and
quotations stand at $£ 10$ to $£ 11$ for the former, and $£ 11$ to $£ 12$ for
 Boiler and other plates are quoted by the New British Iron
Company as- $£ 8$ for best Corngreaves, 99 for Lion, $£ 10$ for best Lion, $£ 11$ for double best scrap Lion, $£ 12$ for treble best Lion,
and
no
co

Slit rods the New British Company quotes :-£8 5s. for Corn greaves, $£ 7$ C.G.C. brand, $£ 7$ 10s. Lion, ${ }^{29} 9$ best Lion, and $£ 1110$ s, Lest charcoal. $£$, ateer rods are $£ 8$, and ion horseshoe rods
$£ 7$ 10s, and $£ 9$, acording to quality. Hops the ocmpany quote
$£ 8$, and $£ 910 \mathrm{~s}$. Steel hoops are $£ 810 \mathrm{~s}$. and best charcoal ${ }_{2} 12$. The current list of Messis. Wm. Millington and Co., Summer

 with double best $£ 10$ Rivet iron, $£ 810$ s, best, $£ 8155 . ;$ and
double best, $£ 105 \mathrm{~s}$. Angles, $£ 810 \mathrm{~s}$. to $£ 9$, and on to $£ 10$ accord-
 The proposition for restricting the make in the galvanised shee ron trade continues to be disoussed; but it is scareely thought likely that the carrying out of any definite scheme will be found Some satisfactory orders are coming to hand for South America Canal elsewhere, while the Australian marke 24 w are abundant, £10 12s. 6 d . upwards, f.o.b. Mersey
The strike or lock-out of ironworkers at the Bilston Ironworks continues, and so likewise does the strike at the Albion Ironworks West Bromwioh, of Messrs. Lees, against a 10 per cent, reduc

The pig trade is mostly slow, though some better parcels o common native sorts are credited as having lately changed hands Best sorts are also selling with a little more freedom for foundry
purposes, and for the manufacture of shot and shell. All-mine are 55 s . to 60 s . for hot blast sorts, and cold blast 20 s . per ton additional. Part-mines are still 40s. to 42s., and cinder 32s. to 35ss
Northampton pigs are 37s. 6d. delivered, and Derbyshires 38s. 6 d . to 40s. North Sta The delivered in this district from Runcorn is about 14s , per tone which is a rise of 2 s . during, say, the last three months. The advance results from the heavy purchases on U.S. account. Mines Drainage
The Arbitrators to the South Staftordshire. Mines hesday, in which they recommended the construction of additional surface works, comprising connecting conduits between the Moat and the Bradiey pumping engines, situate in the Tipton district,
and the old watercourses for carrying off the water from the various engines. The Commissioners resolved to carry out the
The South Staffordshire and East Worcestershire Association of Millmen held its second annual meeting at Bilston on Saturday,
The report set forth that the enthusiasm formerly manifested in the Association had largely collapsed. Yet the meeting pledged itself ,
form.
At the At the sheet iron rolling mills and roofing works of Messrs. More combination of the are and incandescent system has for some time past been answering admirably. The arc system is used for
all the large spaces, and the incandescent system for smithss shos warehouses, and offices. The installation comprises ten 1500 candle power arc lights, and thirty 20 -candle power incandescent
lamps, fed by three Gulcher dynamos, and worked by two vertical engines, one of which drives a roll-turn and lathe during daytime.
Railway engineers have received with much satisfaction the commenced in "a few months' time" and that works of irrigation estimated to cost $£ 300,000$ will also ""be shortly undertaken." Such works will almost certainly mean increased trade to this
district. Railway wheels and axles are being turned out in large umb Compaay, Wednesbury, which is the largest concern of the kind
is engaged upon 70,000 pairs of axles, the bulk of which are for shipment.
to the Director-General of Stores for India for girders of 150 ft pan which are just now required for the State kailways, and a
 It does not
It does not appear that any definite steps are yet being taken by
engineering shops in the Birmingham and South Staffordshire engineering shops in the cirminghan and the Lancashire ecntre
distriot in connection with the movement in it
for a reduction of wages. It is doubtful what course will by-and for a reduction of wages. It is doubtful what course will by-and-
bye be pursued, but certainly nothing will be done until after som arrangement has been come to by the Lancashire masters.
In memory of the late Mr. M. D. Bennett, managing director
the Horseley Engineering Works. Tipton, the inhaitants Ho Horseley tenineering works, hptor, hie ted to the Local
Hoarde of Heath and neighbourhood have suggeste that a Free Library should be established. The competition of the Germans in the brass cabinet branch of
the look trade is becoming increasingly severe in the London
market. The German解 a stye. and inish unpossessed by our similiar manufactures. This
circumstance is doing much to enable them to more than hold
their own in the London market, noteithstanding thet their own in the London market, notwithstanding that some
Wovverhampton and Willenhall makers are now producing from German patterns and offering the goods at the German prices.
English wages have been reduced 15 or 20 per cent. in the past two or three years.
Areport has gained currency this week that the monopoly possessed ment is that a new method of sorew manufacture has been invente by which screws can be produced at 20 pet e ent. under Nettlefolds
prices. It is further reported that Nottlefolds have offered a heavy sum for the patent rights, but that the offer has been declined, an
that the ing the patent. It is notat present ascortanined whether the report is
wholly correct. For some time past Messrs. Nettlefold have pro fessed to deny the accuracy of a report which was started last October that they had resolved to remove their shropshire hero
and steel and wire works to Newport, Mon., to avoid the heavy railway freights to the ports. Now, however, they have officially confirmed the report.
inducing the tube-makers of other districts to form themselve into an association. A meeting of delegates, representing, it was hampton on Monday, when the men on strike at Messrs. Lee's Albion Works, West Brom wich.
then

NOTES FROM LANCASHIRE.

(From our own Correspondent.)

Manchester.-A feeling of general depression still pervades the iron trace of this distrocder is a continued absence of any despondent outlook with regard to the future is beginning to show itself in a disposition to sell for long forward delivery at the present extremey ly low prices, and in some instances ever at a nerard
under makers' present rates. Low prices, however, bring forward no weight of buy
excessively
dull.
average attendance, but there was again very little business
doing. For pig iron a general absence of inquiry was reported, and quoted prices were scarcely more than nominal. Here and there smail sales are made, upon which makers get something like their
list rates, but there is no business of sufficient weight offering to really test what they would be prepared to accept for anything like good orders. For hematite pig iron, 39s. to 39s. 6d., less 2 $2 \stackrel{1}{2}$,
remain nominally the quoted list rates for delivery into the Manchester district, but 38s. to 38s. 6d., less $2 \frac{1}{2}$, represent more nearly
 ases where more than 37 s . 6 d . to 388 s . 6 c, , less 2,2, is being actually
got. Outside brands are offered at very low figures, and there is got. Outside brands are ofifered at very low figures, and there is about 40s. per ton net cash delivered equal to Manchester.
Hematites still meet with only a slow demand, and during the past week have shown a tendency towards weakness, 53 s ,, less $2 \frac{1}{2}$
being a figure which sellers would
now readily accept for good alities delivered into this district.
The manufactured iron trade shows very little alteration since pretty near full time, and for the season of the year are fairly busy ; most of the smaller makers are, however, badly off for three to four days a week. For all descriptions of finished iron or good ordinary dull demand, with prices cut excessively low. bars, delivered into the Manchester district, the average price remains at about $£ 52 \mathrm{~s}$. 6 d . to $£ 55$ s. per ton; but there are com-
mon bars offering in some instances at aslow as $£ 5$ per ton. Wages rom the men in 5 per cent., not, however, without opposition in this direction is very trifling. It is only under exceptional cases that present selling prices more than cover the cost of production,
nd in most departments makers are manufacturing at a consi

The condition of the engineering trades remains without material till reported generall nad in most but very indifferently employed. With regard to the wares
question, it seems to be generally anticipated that an amicable rang Mr. Burnet, the general secretary of the Amalgamated Society o
Engineers, has been over in conference with the Employers' ciation, and the notices for the reduction, which expired last week have been suspended until the 11th inst., and next week a second entatives of the men will be held, when some agreement will no oubt be come to, by which a settlement of the wages question wil ployers and employed. In fact, a settlement of the question is have agreed ne week, and at some of the boiler works the men ave agreed to a reduction of 2 s . per week in a fortnight, and
further reduction of 2 s . in three months. In the Liverpool district fforts are also being made to effect an amicable arrangement
letween the masters and the men, but nothing will be definitely decided until early next week.
At the monthly meeting of the Manchester Geological Society, uestions which had been hidealt with in papers previously read Ir. Clifford Smith said he was of opinion that place the gas had accumulated between strata that had parted and did not come direct from the coal. Mr. Garforth quite coin
sided with this view, and remarked that the guantity of gas whicl as frequently contained in cavities in the strata was quite suffifaf of sarety lamps considerable discussion took place, and it was
generally urged that thees ought o be provided by heme mineowners,
and also kept in proper working order by them. As to the reeent ntroduction of glass lamps in the place of ordinary gauze lamps,
M. Hall, inspector of mines, said he had found the percentage of reakages with the gauze lamps. This being so, we were still long way off a safe lamp, and it was questionable whetber pointed out by other members that the breakage of the glass
lamps arose chiefly from expansion under heat, and that the introduction of asbestos rings to the glasses almost entirely nspector of mines, pointed out that with the present slields much greater care would ie requisite in cleaning the lamps, and that
with more pieces in the lamps the necessity for careful supervision vas increasing. Another important question raised was wit which had been strongly urged by Mr. Burrows in a paper he had
read. Mr. Hall, inspector of mines, was of opinion that proper persons to inspect a mine were those who had the power to men to inspect a mine they only substituted unskilled for skilled inspection. Mr. Joseph Dickenson, her Majesty's chief inspecto
of mines, entertained, however, a very different opinion. Whe ooked upon it as a most important concession to the miners, and loked upon it as a most important concession to the miners, and
nn experience now of thirteen years of this regulation made him prize it more and more, the only drawback being that the men so In the eoal trade a aairly steady tone is being maintained, owing
to the tolerably good demand which has recently been coming to the tolerably good demand which has recently been coming
forward for house fire consumption, and which has kept the pits going on pretty near full time. Apart, however, from this, trad
is only very dull ; common round coals meet with but a slow sale for ironmaking and steam purroses, and engine classes of fuel are
in but very moderate demand, the threatened renewal of the wages dispute in the cote cotton trade tending somewhat to unsettle the market. Quoted prices al. At the pit mouth best coal can be
the tone, if anything, is weak.
 2s. 6 d. to 3s. 6 d . per ton, according to to quaility.
Fror shipment there is a moderate demand with good ordinary
qualities of steam coal averaging.about 7s. 3d. per ton, delivered auaithes of steam coal averaging about 78. 3d. per ton, deliverel
at the high level, Liverpool, or tha Garsto D Docks. The trustees of the North-East Lancaskire District Mining
Fund have issued their first annual report, in which they state that they had at disposal on the 1st January, 1885 , the sum of
$£ 2788$ ss. 11d., of which they invested $£ 2000$ in Bolton Corporation bonds,
Hall Colliery they were year the trustees had paid to the representatives of 224 persons
who died from the effect of accidents in the district the sum of £1082 10 s., viz, to 209 cases of sixteen years of age and upwards
at the rate of ± 5 each, and to fifteen cases under sixteen years of age at the rate of $£ 210 \mathrm{~s}$. The interest received from the Bolton
Corporation and the bankers amounted to $£ 6617 \mathrm{~s}$. 5 d ., and the cost of working expenses to $£ 1512 \mathrm{~s}$. 3d., leaving ga alane in the
hands of the trustees on the 31 st December last of $£ 17572 \mathrm{~s}$. Id. Last week I gave an abstract of the annual report and batance-
sheet of the Manchester Coal Exchange; ; the annual meeting of she members was held on Tuesday, and Mr. John Rawcliffe, the president for the ensuing year, congratulated the members on the
success which had attended the working of the exchange since its establishment. During the past year they had again made a very substantial profit ; the number of members had also increased, and
their membership, which was now 434 , was larger than it had ever beerroov.- The strong tone which last week characterised the iron
Der
market of this district remains undisturbed, but there are indica-
fions which lead to the belief that we shall have much more active times during the spring and summer season than those which at present are experienced. The inquiry, however, is more particuare in demand, principally for steel-making purposes. The general consumption of forge and foundry iron ing very much restrictede, as
the purposes for which this class of metal are required are in every instance for the moment in a very dull and a very quiet state. The output of pig iron has been increased during the past few days for some time, and if the indications which are at present showing
themselves are maintained, other furnaces will soon be put in blast. themselves are maintained, other furnaces will soon be put in blast.
Stocks are not so large as they have been, and some heavy deliveries Stocks are not so large as they have been, and some heavy deliveries
have been made lately, while others are arranged for. Steel makers are much better off for orders than they have been for some considerable period past, but the activity is chiefly observable in very few in number, but it is believed that the improved business in the heavier trades will soon show itself in the lighter goods. Prices of steel are firmer and quotably higher than they have been. Shipbuilders do not report the acceptance of any new orders. In-
deed, exceptionally few are on offer. The difference with the men as to the proposed reduction of wages has not yet been settled. It is not improbable that a strike will ensue. Iron ore finds a rather
better market at fuller prices. Coal and coke exceptionally quiet. Shipping is indifferently employed, although freights remain very low. Engineers, ironfounders, and boiler-makers are doing a very
slow trade, and the minor industries of the district generally are still feeling the full force of a long depression.

THE SHEFFIELD DISTRICT.

(From our own Correspondent.)

Some coalowners tell me that it is extremely difficult to get rid of "hard" coal, i.e., fuel suitable for manufacturing purposes,
and prices are slightly lower than at the corresponding period of
last year. Household sorts have not risen with the severe last year. Household sorts have not risen with the severe
weather, as has usually been the case in former years. The
explanation is not hard to find--more is being raised, and there explanation is not hard to find-more is being raised, and there is no extra demand. Gas coal is in brisk request, as is the rule at
this season of the year. Prices, of course, are not affected by any this season of the year, Prices, of course, are not affected by any
pressure at this time, as the gas coal contracts are all made in
June for the twelve months. The colliers in this district are now pressure at this time, as the gas coal contracts are all made in
June for the twelve months. The colliers in this district are now
working, taking all classes together, about four days a week It is satisfactory to know that the efforts which have a latterly. been made to bring about a sliding scale for the regulation of
wages in the coal industry are not going to prove so abortive as previous attempts. An arrangement has been come to between
the Executive of the Yorkshire Coalowners' and the Council of the Miners Association, and the consent of the general body of the coal proprietors is all that is needed to have the new and more sensible method of adjusting colliers' remuneration fairly put to
the test of trial. The details of the scheme are not yet disclosed; but is expected on both sides that the practical result will be to falling with the fluctuating values of coal. but it has decreased since the beginning of the year. In common iron there has been no advance whatever, the iron markets being
very flat, in sympathy with the languid state of the Cleveland industry.
Insteel rails there is still less doing, no work of any consequence
having been given out since the last American contract, 10,000 tons having been given out since
of which came to England.
No successor has yet been appointed to the late Mr. George
Wilson, of the Cyclops Works, in the presidency of the Steel Manufacturers' Association-commonly known as the "Steel Rail Ring," and it is freely stated that the Association may probably
not be so long-lived as its friends desired. Its operations have certainly had the effect of staying the downward tendency of prices. Rails are now at $£ 415 s$. per ton. Suppose they were to
fall to to $£ 315$ s.- which would not be at all improbable if the
"Ring" ceased its work-it would be impossible to manufacture "Ring" ceased its work-it would be impossible to manufacture at a profit, certainly by
coast and raw material
The Staveley Coal and Iron Company, with Messrs. Macfarlane, Strang, and Co., have taken together an important contract for
cast iron pipes for the Thirlmere waterworks of the Manchester Corporation. The total weight of cast iron pipes needed will be united contracts of the two firms named is $£ 233$. The value of the Company has just déclared an interim dividend of £1 per share on the A and C shares (£60 paid upp, and 3 s . 4 d . per share on the
B and D shares ($£ 10$ paid), being at the same rate as at the coring period of last year.
German competition is being more severely felt than ever. The largest house in the edge tool trade recently told his men that as
his customers on the Continent had ceased to store his goods, he could no longer produce tools to lie on his shelves unless at a
reduction of 15 per cent. in wages. This the men declined to grant. reduction of 15 per cent. in wages. This the men declined to grant. his work to such orders as might come in. The result, of course,
has been that the men have been out of work, with the exceptio of the actual orders which have been received. In this way, as has been pointed out, the English and German workmen are now
brought face to face. It is for the former to say whether they are prepared to contest the matter with the German workmen, or be
beaten out of the field. There will be a diminution e to meet the low wages and hostile tariffs he has to fight against on the oont. Two
The Australian sheep shear sean is about to open. Two
circumstances are expected to militate against its prosperity. The circumstances are expected to militate against its prosperity. The
market is already overstocked, and the results of the disastrous
drought are still severely felt. In New South Wales alone, owing to the ewes dying through lack of water, it is estimated that there are $14,000,000$ fewer sheep than would have been in these parts if
the season had been favourable. Of course, if there are few sheep the season had been favourable. Of course, if there are few sheep the wool-growers are required. The South American market,
which do not open until April, are expected to be fairly brisk, The dispute at Messrs. Hornsby and Sons, Spittlegate Ironworks, Grantham, to which I have already referred, has terminated in
the acceptance of the employers' terms, which involved a reduction of wages. Mr. J. Willis Dixon, who represents one of our oldest firms and families-being head of the great silver and plating establishment unanimously elected president of the Sheffield Chamber of Com-
merce. Mr. C. E. Howard Vincent, M.P. for the Central Division, was present, and gave an admirable address, which made a
favourable impression on the Chamber. The Sheffield Technical School, which
cost of $£ 11,500$, was formally opened last Monday by Sir Frederick
Bramwell, F.R.S. President of the Institute of Civil Engineers, and chairman of the Executive Committee of the City and Guilds of London Institute. The latter body gave $£ 300$ a year for five
years; the Duke of Norfolk, $£ 3000$; Mr. F. T. Mappin, M.P.,
£2000; Town Trustees, $£ 3000 ;$ Mr, T. Tessop, $£ 500$, Duke $£ 2000$; Town Trustees, £3000; Mr. T. Jessop, £500; Duke of
Devonshire, £500; several local iron and steel companies, £100
each. At the evening meeting a letter was reeeived from Mr.
Howard Vircent, M.P., offering a prize to the most successful pupil in the coming year in the course of study most closely conthought and work in Brussels, Berlin, Dresden, Vienna, Munich thought and work in Brussels, Berlin, Dresden, Vienna,
and Paris. The offer was received with much applause.

THE NORTH OF ENGLAND.

lent.)
The tone of the Cleveland iron trade continues exceedingly flat and gloomy. At the market held at Middlesbrough on Tuesday last but little business was done, and prices were somewhat easier
than they were the week before. Makers are indisposed to entertain present prices at all; what little business is transacted is,
therefore, done by merchants. For prompt delivery small lots of therefore, done by merchants. For prompt delivery small lots of
No. 3 g.m. .b. sometimes realise only 30 s . 9 d . per ton, but the price delivery, and it is therefore difficult to say at what figure order could be placed. Merchants ask 3d, to 6d. per ton more for for ward than for present delivery, but makers decline to quote at all, The demand for forge iron is slack, and the price has fallen
30s. 3d. per ton, or 3d. below the rate asked last week. 30 s .3 d . per ton, or 3 d . below the rate asked last week
There is a further decline in the value of warrant
able tonnage has changed hands at 31 s .3 d . per ton. Stocks pig iron in Messrs. Connal and Co.'s stores continue to increase both at Middlesbrough and Glasgow. At Middlesbrough the stock January of 17157 tons. At Glasgow it was 681,081 tons, 10,349 tons more than at the commencement of the year. The shipment of pig iron from the Tees has been much retarded by
the severe weather. Only 47,696 tons were sent away during the severe weather. Ony 67,648 tons were sent away during lows.-Scotland December. The principal items were as fol3320 tons; France, 3215 tons; Italy, 2846 tons; Belgium, 1775
Thens; and America, 1300 tons.
The output of finished iron is smaller than ever, especially as regards plates. Scarcely any of the mills are kept going full time
There is no change in prices. The steel plate and angle mill fairly well employed, but the strike at the shipyards will cause some of them to stop unless a settlement is quickly arrived at.
Steel ship, plates are $£ 610 \mathrm{~s}$. per ton, and angles $£ 65 \mathrm{~s}$., in trucks
at makers works.
The average net realised price of Durham coal during the three
months, October, November, and December, was $4 \mathrm{~s} .7 \cdot 62 \mathrm{~d}$. per ton. No alteration in wages is thereby involved.
The report of Mr. Waterhouse
The report of Mr. Waterhouse, accountant to the Board of
Arbitration, relating to the monthsof November and December, Arbitration, relating to the months of November and December, 1885,
has just been issued. The average realised price of manufactured has just been issued. The average realised price of manufactured
iron of all kinds was only $£ 415 \mathrm{~s}$. net at makers' works, which represents a fall of 2 s . per ton. But this diminution of prices, already unprecedentedly low, is not the worst part of the story. The aggregate output has receded from 30,000 tons to about
22,000 tons per month. The 8000 tons deficiency is the production of the two works at Middlesbrough which have temporarily stopped, and accounts for and justifies the action take appears to have risthem. Curiously enough, therealised price of bars rially diminished. This seeming inconsistency is, however, capable of easy explanation. There are four firms sending returns who qualities. There are two others who occasionally enter the market and secure at minimum price any large contracts which may b obtainable, of common quality, suitable for railway tie-bars and similar purposes. When any such contracts are in progress, the level, and the output is increased. During the past two months no such contracts happen to have been current; hence the diminished output and increased price.
The annual meeting of the Board of Arbitration and an ordinary meeting of the Sla Ming were in the mere was no other business of public interest.
The distress at Middlesbrough through stoppage at some of the ironworks seems to be on the increase. The number of persons in receipt of out-door rear year it was only 2295 . The expenditure in relief has increased from $£ 351$ to $£ 787$ per week. In addition to
this the workhouse now contains 793 paupers, which is an increase of 140 as comparod with lat There seems to be considerable difficulty in managing the
various stoneyards, and the men employed there do not seem to regard their occupation with any more satisfaction than do their employers the more thrifty portion of the public. It is to be
feared that there are many hundreds if not thousands of families who are virtually starving in our Northern towns.

NOTES FROM SCOTLAND.

The Scotch iron market has this week shown comparatively little activity. There have been fluctuations in prices, but a lower figure than before has again been thouched, and thopere is no business that prices will not yet go lower still. The past week'
bit pared with 6051 in the preceding week, and 8833 in the corresponding week of 1883. The total shipments from Christmas to
date are 27,940 tons, as against 39,594 in the same time last year, 46,833 in 1884, and $51,30 \pm$ in 1883 . The inquiry on the part of the
United States is backward, and that from the Continent is even more unsatisfactory; while the home consumption both of our own and of iron imported from Cleveland is smaller than was anticipated. Up to date the imports of Middlesbrough pigs are 23,179 tons less than in the same period of last year, but as merchants have had a
large amount in stock in Glasgow, it might be a mistake to assume that the falling off in the home consumption is anything like so large as the above figures would by themselves appear to indicate. The addition to the stook of Scotch pigs in Messrs. Connal and
Co.'s Glasgow stores for the week is upwards of 4000 tons. There Co.'s Glasgow stores for the week is upwards of 4000 tons. There
are 95 furnaces in blast, as against 94 at the corresponding date ; 75 of these producing ordinary pig iron, 15 hematite, 4 basic, and 1 silicious iron.
Business was done in the warrant market on Friday at 39s. $7 \frac{1}{2} \mathrm{~d}$.
cash. The market opened on Monday at 39s. 6d., and improved to cass. The market opened on Monday at 39s. 6d., and improved to
39s. 8d. cash. On Tuesday forenoon transactions took place at 39 s . 8 d . to $39 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}$., and back to 39 s . $8 \frac{1}{2}$ d. cash, while the after noon quotations. Business was done on Wednesday at 39s. 6 d . to
at 39 s .6 d . cash.
39s. $7 \mathrm{~d} .$, closing with sellers at 39 s . 5d. cash. To-day-Thursday -the market was very depressed, with business down to 39 s . 2 d . cash, closing with sellers at that figure, buyers $\frac{1}{2} \mathrm{~d}$. less.
Makers' iron, which is in limited demand, is agai

No. 3, 42s. 6d.; Coltness, 48s. and 44s. 6d.; Langloan, 44s. 6d.;

 43s. 6d.; Summerlee, 49s. 6d. and 43s. 6d.; © Calder, 48s. and land, 40s. 6d. and 38 s ; Quarter, 40s. and 37 s , 6 d . 41 Govan ; MonkCroomon, at Grangemouth, 48 s s. 6 d . and 45 s . 6 d .; Kinneil, at Bo'ness, 43s. 6d. and 42s. 6d.; Glengarnock, at Ardrossan, 44s. 6d.and 41s. 6d.; Eglinton, 40s. 6d. and 37s. 6d.; Dalmellington, In the malleabl
In the malleable iron department some of the works are fairly busy with orders, a large proportion of which are for abroad; but
in other cases there is little doing. The steel works continue well employed, mainly on shipbuilding contracts.
The past week's shipments of iron and steel manufactured good from the Olyde embraced £1460 worth of machinery, £1473 sewing machines, £2734 steel goold and
factures In the coal trade there is a great want of animation. The ship
ments of the past week embraced 19,143 tons from Glasgow, 109
at Greenock, 6168 at Ayr, 1889 at Irvine, 7091 at Troon, 4245 at
Leith, 2983 at Grangemouth, and 2500 at Bo'ness. The snowstorm has the reduced demand in the shipping department. For househol coals the inquiry has necessarily been active, but the prices of a trade is very backward at present, as a result of the continental markets being shut.
full time than they districts are reported more anxious to wor active. Very exaggerated statements have been made to the men by their leaders as to the prices obtained for coals at the ports, bat
correct information on the subject is being at the same time pleced , men through the medium of the newspapers.
Mr. Alex. Hill has read an interesting paper to the Mining
Institute of Scotland, on " Mining as carried on in the Province of
Huelva, Spain."
During the past month five vessels were launched from the Clyde
shipyards, with an aggregate tonnage of 9150 tons, as compared with 10,760 tons in the same month last year, and 6340 tons in January 1884. Several marine engineers have in hand considerable order for engines for war vessels that are being built in Russia and oti
countries, and it is hoped that some of the engines about to be col countries, and it is hoped that some of the engines about to be con estimated that there are at least 50,000 tons more shipping in just now than at this time last year. Notwithstanding this, how ever, a number of builders are doing very little.
The rivetters in the employment of The rivetters in the employment of Messrs. Russell and Co,
Greenock and Port Glasgow, have come out on strike in coonse ence of a dispute as to piece wages.

WALES AND ADJOINING COUNTIES.

From our oun Correspondent.)

REPORTS from the coal valleys are still very variable; where ao
colliery is found to be turning out an average output, many will b colliery is found to be turning out an average output, many will b
noticed as scarcely working half time. Slackness of orders an stormy weather are given as prevailing causes. Ferndale only
worked fourteen days last month, and this speaks volumes I noticed last week the number of Government contrac
are certain to come to Wales. One only has been booked and this by the Dowlais Iron Company, for the supply
Admiralty coals to Gibraltar. It is expected that a few more be placed in the course of a week.
The variable alterations of the barometer have kept the collier officials on the alert of late, and in one or two collieries explos
have been avoided by timely precautions. In the Cwm colliery Oyfarthfa, on Saturday, a fall, which may be due to a fal scientific opinion, took place, killing three men outrigh injuring another, it is feared, fatally. Numerous single are also on record, and I fear that many sufferers have ne
the precaution of insuring in the Miners' Provident Fund interesting subject of discussion in coal matters is comin
front. Cardiff now stands as the largest coaling port in the With a foreign export of nine and a-half million tons an the employment in coal mining alone of 60,000 men and bo
an enormous capital invested in the industry, query shoul an enormous capital invested in the industry, query shoul,
not be a more direct government than is afforded by the Secretary. Ministers of Agriculture a
meet with popular opinion at present,
As an illustration of the great advance in particular collie may cite Coedcae, which has come to the front as one of the if
collieries of the Rhondda, with a great area and steadily increai output. I recollect-and not long ago-when the output at
place was 120 tons a day. It now turns out 13,000 tons per
Cardiff falling-off of 10,000 tons. Newport showed an increase of tons; but the prevailing complaint is slackness.
Prices remain stationary, house and stea
bought as low 4 s , house and steam. Small steam can The slackness of the Welsh industries has naturally told or cent. bonus. This is the lowest for a longth of time. It has beed 10 per cent., and 8 per cent. bonus. The Rhymney will declare 10 per cent. I see that the agitat: for linking the Rhymney and the Taff is still going on, and I heve a strong impression thack unity and directness of action. Swansea industries are
bulerably active. 25,000 tons of coal were sent away last weel and though patent fuel is still very sluggish, yet 2500 tons loff last week, and it is hoped this trade is reviving.
to call for any comment. Waiting, hoping, and stocking may be taken as describing the condition.
Tin-plate, too, is dull. Notice is out at Ynyspenllwoh, but tlii is thought only to mean a reduction. The Gurnos Works will soon be re-started
Prices are
the failure of the combination having told more (13s. 9 d . to 14 s . Siemens vary according to brand. They can be quoted from 14s. up; ternes from 13s. 9d. to 15s. Stocks concompany for making steel and tin-plates was registered this week for Swansea, so prospects of future trade are not regarded as bad. time ago the intention of Messrs. Nettlefold, the well-known B mingham and Shropshire franch establishment there, and this is now fully decided to have secured land from Lord Tredegar, and are confident upon
manufacturing and transmitting material at far less cost than in the Midlands.
Messrs. Baldwin, sheet iron and steel makers, of Wilden and
Swindon, are also Wwindon, are also going to open a branch orks at Newport These are signs of the future. The coalfield of the future if Newport district.
A pleasing eve
A pleasing event took place at Aberdare on Saturday last, when waited on Sir W. T. Lewis with an address of congratulation. must have been highly gratifying, as the deputation represent many thousand colliers, and it had a practical earnest air about it,
without the slightest fragment of display.

Colontal College and Training Farms.-The prospectuas Limited, of Hollesley Ray, Suffolk, which is being organised under powerful influence for the training of youths intending to emigraty.
The proposal is very strongly supported, and deserves wide encouragement. The offices of the Company are at 6A, Victoria-
street, Westminster, S.W., Mr. Alex. Rivington being honorairy secretary
Naval Enginerr Appointments. - The following appoin t
ments have been made at the Admiralty:-Edward A. E Crowley assistant engineer, to the Himalaya; Alfred J. Allen and Samuel
J. Rock, chief engineers, additional, to the Excellent, for torpede course in the Vernon, and hydraulic course in the Excellent: George B. Alton, engineer, to the Indus, additional, for service an
Admiralty overseer at Messrs. Harland and Wolffe's, Belfast, during the construction of machinery of the Bramble and thin Lizard; and Joseph Langmaid, engineer, to the Indus, additionsi Lizard; and Joseph Langmaid, engineer, to the
for the training college for engineer students.

NEW COMPANIES.

The following companies have just been regis-

 Simond's Round Forging Company, Limited, This company was registered on the 26th ult. with a capital of $£ 100,000$, in $£ 22$ shares, to purchase and work patent rights relating to improvements in methods and machines for making irregularly-shaped metal articles that arecircular in cross-sectional area. The subscribers are:-
*G. F. Simonds, Royal Hotel, Blackfriars, mecha nical engineer
C. T. Cayley, Brackley-stroet,
en.
E.C., mechanical G. Chulow, $\ddot{5} 1, \dddot{B}$ Belsize-avenue, "card manü J. Allen, Seward-street, sẗ, Lukee's, Röyal Maii

 The number of directors is not to be less than
three nor more than seven; qualification, fifty three nor more than seven; qualification, fifty shares. The first are the subscribers denoted by
an asterisk, and Lord Thurlow, who is appointed chairman at a remuneration of $£ 1000$ per annum. chairman at a remuneration of $£ 1000$ per annum.
The other directors will be entitled to $£ 1000$ per annum, together with 10 per cent. of the net profits over 10 per cent. per annum. Mr. C. T.
Cayley is appointed manager and managing Cayley is appointed manager and managing
director at a salary of $£ 1000$ per annum. Woodhouse and Rawson Electric Supply Company This company was registered on the 25 th ult.
with a capital of $£ 100,000$, in $£ 10$ shares, to purchase the goodwill of the business of the supply department of Messrs. Woodhouse and Rawson,
11 , Queen Victoria-street, so far as relates to the United Kingdom, and to become sole agents for the sale of all articles manufactured by the Woodhouse and Rawson Electric Manufacturing Company, Limited. The subscribers are $-\frac{\text { Shares }}{}$

 trical engineer
Carl von Buch, $1 \ddot{7}$, Cavendish-place, $\ddot{\text { W., }} \ddot{\text {. }} \ddot{\text { elec }}$
 E. Manville, $38 \ddot{8}$, Litherland-avenue, Maida $\ddot{\text { Electrical }} \ddot{\text { eng }}$,

| The number of directors is not to be less than |
| :--- | three nor more than seven; qualification, 100

shares; the first are the subscribers denoted by an asterisk; the company in general meeting will
determine remuneration. Messrs. O. E. Woodhouse and F. L. Rawson are appointed managing directors, and Mr. Carl von Buch is appointed first secretary.

Architectural Pottery Company, Limited. It is proposed by this company to purchase the
business carried on at Hamworthy of Dorset, under the Hamworthy, Poole, count Pottery Company. The company was registered on the 23 rd December with a capital of $\pm 50,000$,
in $£ 5$ shares, with the following as first subin $£ 5$ shares, with the following as first sub

Shares county court
G. Gibson, Poole, $\ddot{\text { Dorset, }} \ddot{\text { s.cerretary }} \ddot{\text { to a }}$ ä company
W. A. Stevens, mission agent
B. G. March, 79, Queen-street, \ddot{p}
and aublic accountan *J. Richardson, 23 , Leadenhall-streeet, $\ddot{\text { merchant }}$ The number of directors is not to be less than three nor more than five; qualification, fifty
shares; the first are Messrs. A. T. Hawkins, John Bennett, E. R. Walker, and the subscriber denoted by an asterisk; remuneration, $£ 400$ per
annum. Automatic Windorv and In
This company was registered on the 21 st ult with a capital of $£ 50,000$, in $£ 1$ shares, to pur chase and work the letters patent dated 21 st
August, 1884, No. 11,517, for improvements in railway carriage and other carriage windows, and
also the letters patent dated 20 th April, 1885 , No. 4886, relating to further improvements The purchase consideration is 25,000 shares. The Arnold Pye Smith, 16, Philpot-lane, manu-
 J. C. Cottam, 39, Lombard-street, merchant
A. Jonnings, 28,' Graceehureh-street, merchant
W. S. Lockhart, o.E. , Fenchurch-street
William Shert. William Shepherd, 31 , Lombard-street, secretary to a company
William Wethered,
chant
,
, Phillimore $\quad . t e r r a c e, ~$
..
mer-

Most of the regulations of Table A are adopted.
Brin's Oxygen Company, Limited. This company was registered on the 26 th ult
with a capital of $£ 100,000$, in $£ 100$ shares, t purchase certain patent rights and inventions referred to in an unregistered agreement between
Arthur Brin and Léon Quentin Brin part, S. W. Cragg of Quentin Brin of the firs Sharp of the third part, and the company of the $\begin{array}{ll}\text { *Henry Sharp, Bournemouth, manufacturer } & \text { Shares, } \\ \text { *J, Sharp, Chilworth, Surrey, electrician } & 10 \\ { }^{\text {J. }} & 10\end{array}$ Arthurp, Brin, , ..E.,. Kensington-cerescent
S. Sharp, Connaught Mansions, Victo
 A. Cooper, Park-road, Twickenham, acc
C. Sharp, Chilworth, , surrey, bar student
William Sharp, 9 , Wallbrook, solicitor ..

The number of directors is not to be less tha
three nor more than seven; qualification, 30 or 10 B shares, or corresponding stock, The first
are Messrs. Henry Sharp and J. Sharp, and not
more than five ohthers, to be nominated by
the subseribers. Minimum remuneration, s800 pee annum, and a further amount equal to 10 per
cent. of the proits in each year in which 10 per cent. dividend is paid.

Greemvich Ferry Company, Limited. This company was registered on the 22 nd ult. acquire steamboats, ferry-boats, floating bridges \&c., for the conveyance of passengers, horses, cattle, goods, and merchandise upon the Thames he subscribers are.
eorge Smith, 16, Kitto-road, Nunhead, stock-
broker

 D. N. Arnold, End̈cliffe Mount, sheffield, engi

The number of directors is not to be less than hree nor more than ten; qualification, $£ 100$ in
tock or shares; the subscribers are to appoint the first; remuneration, $£ 900$ per annum, with an additional $£ 150$ for each director in excess of

Letts' Diaries Company, Limited. On the 27 th ult. this company was registered
with a capital of $£ 12,000$, in $£ 10$ shares, to purchase the whole or any part of the busines of Letts, Son, and Co., Limited. The subscribers 2. D. Galpin, La Belle Sauvage, E.C., publisher..
Robert Turner, La Belle Sauvage, E.C., publisher
Wist printer ${ }^{\text {W. }}$.
W. Wods, Crouch.hill, pubiisher

J. E. Viney, 6 , Kirby-street, printe F. B. King, 6 , Kirby-street, printer

The number of directors is not to be less tha cribers denoted by an asterisk and Mr. Hamer, of Ladywell, Dartmouth Park-hill. One-
half of the directors is to be appointed by Cassell half of the directors is to be appointed by Cassell
and Co., Limited, and the remaining half by Lazell, Watson, and Viney, Limited, so long a hyn are members of the company. The rethe company in general meeting.

Miller's Tanning Extract Company, Limited. asiness of tanning extract manufacturers, mer chants, and timber merchants, carried on by the
firm of J. and J. Miller and Co Mortimore, in New Brunswick, Canada, and at the New Leather Market, Bermondsey. It was registered on the 26th ult. with a capital o
£ 100,000 , in $£ 10$ shares. The subscribers are :-
A. Lafone, Leather Market, leather factor
*Lord G. G. Campbell, R.N., 2, Bryanston-
${ }^{*}$ square Mortimore, Leather Market, merchant
A. W. Lafone, Leather Market, merchant ... :
D. E. Miller, Leather Market, extract manu
f. A. Duff Miller, L̆eather Market, extract manu-
R. Cobb, 11, Lime-street, $\ddot{\text { produce broker }}$

The number of directors is not to be less than
three nor more than seven; qualification, 100 three nor more than seven; qualification, 100
shares; the first are the subscribers denoted by an asterisk; remuneration, $£ 650$ per annum,
with a further $£ 50$ for each 1 per cent. dividend above 10 per cent. per annum.

Pendleton Spinning Company, Limited. This company proposes to trade as spinners and manufacturers of cotton, silk, wool, flax
and other fibrous substances, and for such purposes will acquire the Windsor Mills, Pendleton Lancaster, the property of Hall, McKerrow, and Co., Limited, together with turning power. It was registered on the 23 rd ult. with a capital
$£ 20,000$, in $£ 50$ shares. The subscribers are:-
J. Briuge, St. Mary's-gate, Manchester, com-
mercial traveller
mercial traveller
J. B. McKerrow, 6 , Nicholas-street, Manchester,
$\ddot{2}$
manufacturer Mä Baerlein, Salford, merchänt

S. Cohn, 111, Portland-street, Manchester, merH. Lhant $\operatorname{Lightbourn,~Haÿfield~Mills,~Pendleton,~} \ddot{\text { paper- }}$

The number of directors is not to be less than
hree nor more than seven; three nor more than seven; qualification, five
shares; the first are the subscribers denoted by an asterisk and Mr. R. .llingworth. The company in general meeting will determine remuneration.

George Newman and Co., Limited.
This company was constituted by articles of imited company on the 27th ult., with a capital of $£ 50,000$, in $£ 10$ shares, 2500 of which (fully paid up) are allotted. It proposes to carry on bre business of builder and contractor in all
branches. The members are:-
G. Nowman, 51, King-street, Deptford, b
H. Newman, 61, Church-street, Deptford
H. Newman, 61, Church-street, Deptford ..
W. Newman, Chingford, plumber
Newman, 61, Church-street, Deptford, cler . Newman, Chingford, builder
H. Newman, South Norwood, builder
A. Morgan, 21, Goorge-street, Deptiford, builder...
W. M. Sholter, 91 , Grove-street, Deptford, clerk

The number of directors is not to be more than seven; the first are the two first subscribers and ir. H. G. Wright, of Ingram House, 165, Fen will determine remuneration.

THE PATENT JOURNAL.

 co
Applications for Letters Pasent.

 * When patents have been "communicated" thename and address of the communicating party are name and addrics.
printed in italics.
123. RAth January, 1886.
clay and J. Wall Transmitting Grais, de., A. Bar124. Botties, JARs, and ITIN-WARE Vessels, T. Johns, Clifton.
1125. Dismbiting Elecrricity, W. H. Snell, London.
126. Cements and Plasters, C. D. Alison, London 1126. Cements and Plasters, C. D. Alison, London.
127. Shaving Brugks, H. Hmith Birmugham.
1128. PRINTING FIGukes or MARKs INDICATING MEA.
 chester.
129. KILNs, H. H. Redfern, Hanley.
130. SAND-FACED BRICKs, ©C., W. Johnson, Leeds. 130. SAND-FACED BRICKS, \&C., W. Johnson, Leeds.
131. ORNAMENTING M Matalic BEDTEAD, 1 . Causnett
and R. Leadley, Birmingham,
 Leadley, Birmingham.
133. EAsELS, E. Tittle, Salford.
134. ORNAMENTING METALLIC B ornamenting Metallic Bedsteads, T. Causnett d R. Leadley, Birmingham.
FAsteners for Gloves and Shoes, G. H. Bliss, Paris.
136. Teaching Writing, Drawing, \&c., R. Wallwork, Manchester. Caps for Scent Bottles, L. Spiers, Birmingham. . Bergmann, Paris.
1138. Lơks, A. K.
13VER Locks and LATCHEs, T. Walton, Birming Locking Mechanism of Lock-up Spirit Frames, T. Hill, Sheffeld.
This Chamberlain, London.
141. Lock Nurs, F. Ward sherfemeld.
1143. Key and other Rings, C. T. Willetts, Birming. ham.
1144. Blind Roller, W. H. Keates, Bournemouth.
145. Automatic Coupling and Uncoupling App RAAUS, E J. Adams, London. A. J. G. Bricknel,
146. VELocIPEDEs, A. L. and A. London.
147. VELocipgdes, W. Phillips, London.
148. VALVULAR APPARATUS and FLOAT M
H. Wright, Liverpool. J. Sprague, United dtates.)
15i. (talvanio Batreries, W. W. Popplewell.-(F. L. o. Lathrop, J. W. W. Carter, and C. Fapper, U.S.)
152. RAILWAY SIGNALING APPARATUs, H. Williams and A. Williamson, London.
153. STopkrima, sc., Bottiks and like Receptacless,
B. J. Grimes, London. B. . Grimes, Lonts, ${ }^{\text {Bit. }}$. Downing.-(P. A. Laraviére and D. A. McCaskill, Canada.)
155. BRACKETS, W. Cluse, London.
156. SECURING KNOBS or HANDLES

Doors, J. H.
157. Motive Power Engines, W. Neil, Glasgow.
158. JET BRACELETS, H. Warner, Loncon.
158. JET Bracelets, H. Waruer, London.
159. CUTTING, PINIIG, and ORNAMENTN
\&c., B. J. B. Mills.- (F. Voland, France.)
de., B. J. B. Mills.- - F. Voland, France.)
160.' Smelting Ores, W. P. Thompson.-(4. H. Coveses,
United States.)
161 . Lining for the Walls of Electric Furnaces, W. P. Thompson.- (E. H. and A. H. Cooles, U.S.)
162. WRININING and MANGLNG MACHIES, J. and R.
W. Kenyon, and J. Barnes, Liverpool. W. Kenyon, and J. Barnes, Liverpool. R. Vaughan,
163 DRyIN Floors for Bricks, H. R. Liverpool.
1164. WIRE RoD Rolulvg Milss, P. M. Justice.-(C. H.
Morgan, United States.)
 1167. Troverrs Pockert, W. J. Furnivil, London.
166. AUTOMATIO DOor Closer and Check, D. T.
Winter Winter, London. G. Turnbull, London. Woodham, London,
1170. Crickrt Bats, H. Whall
1171. Composition for SHarpenina Tools, F. Ball London.
1172. LTE Boats, A. M. Wood, London.
and J. H. Hamilton, London,
1174. Mechasism for AdJusting the SEATs 1174. MECHANisM for AdJUSTING the SEats of Two-
WHEELED CARRIAGES, J. E. Standfield, London.
1775. BRAKE GEAR for WAGONETESS, J. E. Standfield, London.
London.
1177. Metallic RigaErs, A. Goodwin and A. Goodwin, jun., London.
1178. PAPRR, J. H. Oberhaensli, London.
1179. Horseshoss, dC., M. J. Rowley and
1179. Horseshoes, dc., M. J. Rowley and J. G. John-
son, London.
1180. Brekeh-LoAding Fire-Arms, L. Stackfleth
L. Stackfleth,
181. Lantres, M. F. Starke and M. Weinrebe, London.
1182. INDIA-RUBBER Boors and Shors, W. D. Hutchin-
son, London.
183. Supporting Lanterns, de., R. E. B. Crompton,
London. Water Meters, A. J. Boult.-(J. G. Richert,
1184. Wale
1185. Syphons for Flushing Cisterns, A. J. Boult.-
(J. G. Richert, Sweden.)
1186. AUTomaticaly Exinguishina Gas Lamps, A.

Le-Grand, London.
1187. Stopping and Starting Tram-cars, A. Le-Grand, London.
188. Appiying Cork Rinas to Bottles, S. A. Bull,
1189. CAR Couplers, N. W. Hawkenson, London.
1190. RoLls for REDUCING OLD RAILS to FLAT BARS,
E. D. Wassell, Pittsburgh, U S.
119. Bushes for the Bung-Holes of Casks, W. R

Lake.- (W. Kromer, Germany.)
1192. Insulating STANDS, O.E.) Woodhouse and F. L
Rawson, London.
Rawson, London.
1193. INCANDESCENT
and F. L. Rawson, London.
1195. Incandescence Gas Lights, F. L. Rawson and T. V. Hughes, London.
1196. ACTUATING
196. Actuating Mechanism for Elegtro - stati
Generators, J. G. Lorrain, London.

27th January, 1886.
1197. SIanalling, F. E. Stuart, London.
1198. Sporting Guns, W. Ford, Birmin

Roberts, Manchester.
1201. Sprivg for VELDECESS, A. Peddie, London.
1202. avtomatically Ingerting Press Parers.
Tween the Foll of Cloth, TWERN the Folds of CLoth, J. Marshall, Glasgow,
1203. SAVIN LIFE at SEA, A. Turner, Manchester.
1204. CURLED or LOopED WOVEN FABRIC, H. Lister
1204. Curled or Looped Woven Fabric, H. Lister,
Halifax.
1205. feal Skin, dc., Pilkd Fabrics, H. Lister,

Halifax.
1206. CHIMNEY CowL, G. Whitehead, Rochdale.
1207. Cork...UTITNG MACHINE, J. Fussel, London,
1208. SHoEs for Horses, J. Monk, Halifax.
1208. SRoEs for Horges, J. Monk, Halifax.
1209. RACQUETS for LAWN-TENNIS, D. R. Heap, London.
1210. Re .

1211. SpLITTING Firewood, W. B. Brooker, Bootle.
1212. RAILIN Couplings for the Protiction of Life,
W. H. Adcock, Fazely.
1212. Rallway Couplinas for the Protection of Life,
W. Adcock, Fazely.
1213. Automatically stripping Out Press Papers
from the Folvs of Wover Fanrics, J. Marshall,
follasgow Rews feroir Pex Holders, M. Myers and e.

 Birmingham
 1223. Andiachina Sorews to Ibonwork, T. s. Price,

 London
1227. Cover or Lid for Jues, w. H. Shaw, Staffordshire.
1228. Fovxacss, H. Thompson, London.
1229. BLowINs House Firks, E. Brookes, 229. BLowing Hovss Firzs, E. Brookes, London. Radford, IDADdon.
${ }^{2231 .}$ Skle Hatr-cutting apparatus, H. S. King.

London.
1237. PIPrs for Smokns, S. Watkins. London.
 Conrath, London.
 London.
124. HPDRULIO AppARatus, M. B. Fontaine and E.
 Genreau, London, other Road Enoings, r. C. Par-
1244. TRasway and oter sons, London.
1245. PREBS for TENNIS and other Bats, A. J. Altman,

 $28 t h$ January, 1886.
1256. Carding Machines, W. Cunningham, Glaggow.
1257. Laws-TENNIB RAcquEts or BATs,
W.
oykes

1259. Requatment of SEWAOE, S. D. Cox and J. Cox
Bexley
Heanth

1265. BuckLEs, J. Burgess, Manchestor.
1266. FILIING SYPHos and other Bortus, w. Bruco

 Goddard, London.
74. ENVELOPE, W. and J. s. Hughes, Portmadoc

 1278. PREBPARINGO Flax for Sprisning, J. C. Mewburn. 279. SCANDINAVIIN PADLocks, J., D., and A. Minors ${ }^{1280}$. Gavorso Machings, B. Wright, London.

Bell, London.
284. Reguting Electrical Currents, J. A. King

 United Statees.)
1293. Frivines for Malr, \&c., Llevons, C. J. Piekthall,
London.
29th Januasy, 1886
1294. Constructing Rackets for Tensis, \&c., F. L

 Birmingham.

1308. Lock-runsiture, G. and P. Hookham, Bir
 131. T. Gililiand, United States.) 1312. Rastiwai wacoon, do., Couplivis, T. Williame Stockton-on-Tees.
1313. Inconspscran
Lamp HoLDrrs, w. A. S. Benson London.
1314. Passagss for Fluids, J. C. Merryweather and C. 13i5. Whe Werms, , C. M. Merryweather and C. J. w. Jake-

 - (C. Erhard, Germany.). from Doors, \&e., J. Pick-
 1322. Portable Elegtric burglar alaras and

 1329. Forthum, (eermany) Mouvs for CAsting, F. Butterfield, London.
1330. PReserving Mur and Creas, w. McDonnell,
London.

 1336. Skevirivo in PLAck Bohts, Nuts, dc., H. A

 1342. Asysiningo or. Texpreriva Metallio Wire, A.

 30th Jamuary, 1886.
1345. Anemometrer Independent of Friotion, w. H.
 H. 8. stewart, London. field, London.

 London.
1351. PREvitrac Down- Disavarts in Chinsers,
H. B. Holliand, Black burns. 1352. F. FinN Hocks, R. Scoott, Newe 1333. Matio-LANTRER SLide Frttricke, A. Phillips

 Ssiford. Conyertibue Desks, W. and F. H. Fisher, Bir-

 A. E. Walker, Halifax.
136.2. Couplive RALIWAY Trucks, dce., B. Schofield,
Halifent

 Lisondon. Iomes, Hivaes, and Fastenimas, J. J. Mazellet,
 CABLEE, J. J. Eck and E. Archer, Clapham.

 1385. FA. F. Green, London. Consing the Exps of BaLE Hoops, J. Watson,
 1387. Wispow,

 1390. PAPER BARREL CAsivas, W. S. Boult, London.
1391. FEEDNG FURNACES with FUET, H. Maus
130.
 1393. Hondonessooss, H. J. Haddan.-(A. E. Wiemann,
 Hieather, London.
1386. Couphing RALLW WAGoss, H. H. A. Schwarz London.
137.7. Laivo MAchines, H. B. Payne and W. Campion,
London
 1400. Mivitu
 1422. SNow Plover, R. C. C. White, London,
 heim and Son, Germayy.)
1405. Preventiva Crishing at Thearres, J. H.

 London
410. IvoANDrgoent Eluctrric Lamps, C. Bake, London
 Lindon. Door Mats, P. Fraser, Glaggow

at February, 1886

1413. Oprentrg Gates by the Agency of Water, don,
 and T. Wrigley, London.
 ${ }_{\text {1418. }}^{\text {Brighton. }}$ Corbinatrox Seat Cover and Apron, w. Hussey

 1422. Brooconss, B. Pearce, Birmingham.
1414. APPARATUS for WABMING WovEN FARRICs, W.

 J. Monteith, Glasgow.
1415. Rytucror for BuLurd Gas Liohts, T. Thor
 Mal. Aubstor.

 Ardwick. 1436. Stoke Cossumina Furs Aces, H. Rosioke 1437. Boors and Sfioss, W. Yarwood, London. 1438. Ratus, C. D. Norton, London.
 144. Butrzr, W. A. Murray, London . ${ }^{\text {143 }}$.

 Neiderer and J. H. A. Kahbl, Germany.).
144s. TIPs of Sprociclus, W. Bald win, London. 449. Boriso, deo., Machines, R. stanley, Londo

${ }^{1452 \text { Oppyivg. dec., FasLionts, J. W. Shopherd }}$ 1453. RerpuLbrons, L. Sepulchre, London.
1416. TyPE-WRTrzes, R. E. Morris, Londo

 London. 1457 . Histrag Kins for Dering Maur, dec., A. S.

 London. . Theithen of berr Returns, \&co., F. Faulkner
 LLondon.
1417. HoLDERS for Pexciss, doc., K. Strössenreuther,
Lindon 1464. Mixing, de., Combustrble Chargess Opkrativg
Lievid Hyprocarbon Enoinks, J. J. R. Humes, ${ }^{1465 .}$. Blunge Water for Laundry, \&co., Purposes, i

 Doors, de., M. and
1418. Aurow Riluwavs, D. Hanna, London.

 son and w. H, strype, London.
1419. Criopse
J. J. Lane 1477. Shookr Ciratany Holders for Wisdows, J. H.

SELEOTED AMERIOAN PATENTS (From the United States' Patent oofice efficial Gazette.) 332,693. BRAKE BLock, Robert S. C. Herman, Garden
ville, Md. - Filed May 10th, 1884 . Claim.-(1) Δ brake block consisting of a brake shoe having ears b, which protect the sides of the rubber B,
provided witha facing piece, and said rubber held in provided with a facing piece, and said rubber held
place by a set serew and supported on a projection

332,693

Which also receives the thrust, all constructed and tion of a brake shoe A, having ears b and angular projec-

 Claim- In a temporary binder for straw, grain, de.,
cam lever B, having a hook $b 1$ at one end and the oye

δ at the other, in combination with the pulley c and a
cord having aloop or ring, substantially as and for the purpose described.
332, B75
STuFrive-box for Pistov-rons of Ior
 claim-(1) UTe combination, substantially as before
set forth, of the stuffing-box having an oil cavity in the packng, a pump for forcing oif into said carity
and a
a and a safety valve connected with said oil cavity,
(2) The combination, substantially as before set forti,

of the stuffing-box, the skeleton separator ring in the
packing a pump for forcing oil int int ot the eavity formed backing, aparar ring in the packing, an oill well, and
by safety paparat within the oil well and connected with
aso a safety valve evithin the oil we.
the said cavity in the packing.

332,447. Gas Evanse, Cephas

Claim.-(1) In a gas motor engine, the combination of the cylinder A Ahaing the enlarged end , the e pitaon
Chaving the enlarged head working in the entand C having the enlarged head working in the enlarged
endinder the eylinder, enobstructed port r in the
cylinder, ocmmuniasting with the
 In a gas motor engine, the combination of
cylinder A having the enlarged end, the pist
having the onlarged head working in the enlarged end

of the cylinder, port r in the cylinder, communicating

 the piston, as and for the purpose specified.
332,484. Conpousp Exarne, Peter Brotherhod, Lam. Claim-The Combination of a smallo or high-pressure
cylinder with cylinder with a larger or expansion cylindor, single-
acting and in line with the emall cylinder, and a side
acile

cylinder then discharging the exhaust, and during
thit ofrward stroke the fuid that had actod in front of
tho he smaller piston expands into the larger cylinder

acting on the larger piston, substantially as herein
described. 332,701. Axcogo Boir, ,William S. Crait, Sprinafeld, Claim. - (I) The combination, with the cylindrica
tapered piece, of the oylindrical sleeve having three or more longitudianal openings and a similiar number of
logs adapted to be expanded by said trapered pioce legs adapted to bo expanded by said tapored pioee,

sloeve, substantially as specified. (2) The combina-
tion, with the sloeve having the longitudinal opening
 through said sleovere and scorew into eaid tapered pioieoe,
which is correspondingly tapped, subbefantiall specifed.
$332,754$.
PIPE Joriv, George R. Scott, Washington,
 continuation D, and a alightly shorter hub b surround-
ing it, thus forming a recess in which are contained

the ribs a, in combination with the pipp C, , telescoping
over the continuation D of the pipe A, , subtantantilly
 hub B, with the ribs a, in combination with tho pipe c, and a rubber or packing ring d, substantially as
 tember 8 sth, 1885.
Clain.-The packing B1, combined with the wedge

rings $A^{2} A^{2} A^{3}$ and a clamping gland, substantially as
and for the purpose specififed.

 weak point. We may escape many a fatal shaft by
keeping ourselves well fortified with pure blood and a

 pathic Chemists. London,." Alps omal
Afternoon Chocolate Essence. - [ADVT.]

				（Inches		$: \begin{gathered} \text { Kilies } \\ \text { Kiloms } \end{gathered}$	${ }_{\text {ns. }} \left\lvert\, \begin{array}{c\|c} \text { No } & \left.\begin{array}{l} \text { Metres } \\ \text { Feet. } \\ \text { Fere } \end{array} \right\rvert\, \end{array}\right.$		neies．	$e^{\text {ces. }}$	$\left\lvert\, \begin{gathered} \text { Kilomss. } \\ \text { miles. } \end{gathered}\right.$	Kiloms		$\begin{aligned} & \text { Merese } \\ & \text { Feat. } \\ & \text { neet } \end{aligned}$	$\begin{aligned} & \text { rett } \\ & \text { Metres. } \end{aligned}$		$\left\|\begin{array}{l} \text { Kiloms } \\ \text { Milies. } \end{array}\right\|$	$\begin{gathered} \text { Miles } \\ \text { Kiloms. } \end{gathered}$	Feet．	$\begin{aligned} & \text { Feot } \\ & \text { Netres. } \end{aligned}$	$\begin{gathered} \mathrm{c}_{\mathrm{m} . \mathrm{m}} \\ \hline \text { neces. } \end{gathered}$	$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Indens } \\ \vdots \\ \text { Cun. } \\ \hline \end{array}\right. \\ \hline \end{array}$	$\left\{\left.\begin{array}{l} \text { Kiloms } \\ \text { Aliilese } \end{array} \right\rvert\,\right.$			Netreas．	Inches	$\overline{\mathrm{m} .}$		$\begin{gathered} \text { Miles } \\ \text { Kiloms } \end{gathered}$	$\begin{gathered} \text { Meteres } \\ \text { Feet. } \end{gathered}$	$\begin{gathered} \text { Feet } \\ \text { Metres. } \end{gathered}$	hes．		Kiloms． miiles．	$\begin{array}{\|c} \text { Kiles } \\ \text { Kiloms } \end{array}$		$\begin{gathered} \text { Meteres } \\ \text { Feet. } \end{gathered}$	$\begin{aligned} & \text { Feve } \\ & \text { Metere } \end{aligned}$	$\begin{gathered} \substack{\mathrm{cm} . \\ \text { Ineneses. }} \end{gathered}$	Inches K Cm ．	Kiloms. Miles.	$\begin{gathered} \text { Miles } \\ \text { Kilime } \end{gathered}$	No．${ }^{1}$	$\begin{gathered} \text { Metres } \\ \text { Hexet. } \\ \text { Fen } \\ \hline \end{gathered}$	Metree	$\begin{aligned} & \text { Cum } \\ & \text { Incheses } \end{aligned}$	$\begin{aligned} & \text { neneles } \\ & \text { cme. } \end{aligned}$	$\begin{array}{\|l\|l} \text { Kiloms } \\ \text { nilese } \end{array}$	$\underset{\substack{\text { Milies } \\ \text { Kiloms }}}{\substack{\text { a }}}$
	（100	cosile	$\stackrel{5}{5}$	${ }_{\text {2 }}^{25 \cdot 0}$	${ }_{\substack{20 \\ 62.8 \\ 8.8}}^{1}$	$\left.\right\|_{162} ^{160}$	cose	（8：9		\％	133	（tare		1022	${ }^{99} 9$	129	20.3					1115：							3＊3．6		${ }_{\text {21788：}}^{218}$	${ }_{202}^{202}$	${ }_{\text {201：}}^{20}$	1888.																
		37．6．6 3 31．1．	${ }_{-1}^{1}+{ }_{4}^{40.1}$			${ }^{1665} 1$			cistiot					${ }^{1076} 10$		（1ay	${ }_{\text {a }}^{\substack{203 \cdot 8 \\ 20+4}}$			${ }_{\substack{135 \\ 135 \\ 13 \%}}$	$17 \% 0$	（120：	\％			${ }_{\text {cese }}^{1685}$	$\begin{aligned} & 2178 \\ & 2018 \\ & 218 \end{aligned}$				cise 2185	${ }_{\text {a }}^{\substack{2027 \\ 203 \\ 203}}$				${ }^{1007}$ 1071．		${ }^{20595}$			cinci			890				${ }^{22258}{ }^{22585}$		
														1082．		${ }_{122} 9$			${ }_{143}$							169．4				89，	（en	${ }^{203}$		ciose：			${ }^{80} 18$		${ }_{23}^{23} 7$			，	${ }^{12}$		${ }^{292329}$			${ }^{222656}$		${ }^{1333}$.
			，				？				136			1039． 101		130.7	coick		1460．		$\begin{aligned} & 175 \cdot 2 \\ & 175: 6 \\ & 176: 6 \end{aligned}$								${ }^{366 \cdot 7}$		${ }^{2198}$		$\xrightarrow{265 \cdot 8}$	cino		coins：			${ }_{\text {che }}^{238}$		cos．	$485: 9$ $485: 6$ 185	${ }^{12258}$			${ }_{272 \cdot 5}^{2}$	${ }^{355 \%}$	${ }^{29270}$	555．5	（138．
		（ty	${ }^{43} 8$		${ }_{\text {cke }}^{67.7}$			${ }_{\text {cirs }}^{68}$		（	cis？	${ }^{357}$		${ }^{1102}$ 2． 102			${ }^{2085}$				176	$\begin{aligned} & 1,357 \\ & 1.350 \\ & \text { an } \end{aligned}$									204．		cose	1700．						cos．								${ }_{\text {22278：}}^{22280}$		
			${ }_{4}^{43}$					${ }_{\text {cis }}^{685}$	${ }^{88}$	${ }^{2}$	139？2			1105：			209					年143：									2214．	\％${ }^{5}$ \％ 7	205．8	1714：		（1088			${ }_{\substack{2309 \\ 20 \cdot 2}}^{20.9}$	（en			．	90	22030	${ }_{\substack{274 \\ 274 \\ 274}}^{2}$		${ }^{\text {22235：}}$		${ }_{\text {le }}^{1446:}$
						${ }^{188}$							40						183．			${ }^{11155}$ 1150：							${ }^{3}$		221.	${ }^{20}$	${ }^{2065}$	17192：	${ }^{420} 4$	${ }_{1089}^{1089}$	${ }_{90} 925$	边			${ }_{\text {cose }}^{2000}$							$\xrightarrow{22285}$		1435：
						${ }_{\substack{1.88 .7 \\ 188 \\ 185}}$	230	70						（1182．							$\begin{aligned} & 178 \\ & 179 \\ & 179 \end{aligned}$	$\begin{aligned} & 11,1_{1}^{1} 5_{5}^{\circ} \\ & \hline 15^{\circ} \end{aligned}$					${ }_{2}^{2233 \cdot 2}$		352．3		${ }^{222}$	$\underbrace{27}_{\substack{207.0 \\ 207.6}}$	${ }_{\substack{26 \\ 268.3 \\ 268 .}}$	1724.		1092		2595．			2093.	491.5			${ }^{2966}$ 29：	275.2		coin 2293.		${ }^{1453}$
		${ }_{7}^{7}$	${ }_{46}^{46}$	${ }_{\text {a }}^{\substack{290.7 \\ 302.2}}$	${ }^{73}$			70	${ }^{90} 9$	${ }_{\substack{58 \\ 588 \\ 589 \\ 58}}$					10	1350	213		1290．													${ }_{\text {a }}^{207}$				（0937									2969．					${ }^{1459}$
${ }^{12}$			${ }_{\text {47，}}$		7\％：618	lige．		21：3	and	${ }_{\text {coser }}^{59}$							215	${ }_{460}$				1165 ． $1168:$ 185				$1: 3$	${ }_{225}^{225:}$		${ }_{\text {a }}^{355} 5$		＋47：	${ }^{208 \cdot 5}$	${ }_{20,3}$	${ }_{\text {1733 }}^{173}$	${ }^{425} 5$	1100		${ }^{2611}$	${ }^{242}$		2021 ．	494＋6	1281		2979．	276.7	${ }_{\text {a }}^{357}$		4.2	，
						cior		年1：9				${ }_{\text {a }}^{\text {a }}$	141	1141.			${ }^{210}{ }^{210}$		${ }^{12125}$			1170.					226				250．		227	－ 1744.	${ }_{422}{ }^{26}$	${ }^{1100^{2}}$	${ }_{8}^{8}$	2618.	${ }_{\text {a }}^{243} 8$		2023：	（190\％9	${ }_{1284}$	${ }_{1}^{910}$	${ }_{2985}^{2985}$			${ }_{\text {23313 }}^{2315}$		${ }^{16464} 16$.
				cin									Stil	，								（1788．						4635：			$2{ }^{2}$					${ }^{\text {cher }}$	26.	262．	${ }_{3} .8$		$\xrightarrow{2(2) 32 \%}$		${ }^{1287}$		293．	－9		16．		${ }^{167}$
		\％．7 ${ }^{\text {as }}$			2	${ }_{20}^{20}$	（1）${ }^{9}$		city					（115s：					1532.			$\begin{aligned} & 1181_{18} \\ & \text { 1188: } \\ & \hline 185 \end{aligned}$							${ }_{360}$		${ }^{2263}{ }^{2295}$			${ }^{752}$ ．	${ }^{43} \cdot 0$	年110		2231.	${ }^{24}$	：8	$\xrightarrow{2037 .}$		${ }_{\text {cose }}^{\substack{1290 \\ 1293 \\ 129}}$		2098：	－	${ }_{360.6}$			（10：
${ }^{130}$					coso	$\xrightarrow{2077.6}$			${ }^{95}$					（168： 10														cisf：	$\underbrace{\substack{\text { and }}}_{\substack{381.0 \\ 360.6}}$		277：	1：2	272， 8	1702	－0．6	${ }^{1115}$		2012	（tis		cois．	0.2	，		cois	9.5	${ }_{361.0}$			
						${ }_{212}^{212}$		75.			${ }_{\text {l }}^{15}$		\％	cinl． 11.				cole	5120：								229				58					cile		2	${ }^{6} \mathrm{O}$		29：		cin	（10920	3015：			${ }_{\text {cose }}^{2335}$		
					21			${ }^{75}$	－ 97.2				160	，		111．7 ${ }^{1+1}$				，														边 1		$\xrightarrow{\text { liel }}$		268.							cois					
				${ }_{\substack{3 \\ 345 \\ 850}}^{\text {and }}$	21	5	（e）${ }^{5}$	75	98．0 ${ }_{\text {a }}^{\text {985 }}$				${ }^{2} 11188$									（1206：						（1939：	3ib：		100 ${ }_{1}^{202909}$			年780：	，				7．5				${ }_{\substack{13065 \\ 1308}}^{130}$		${ }_{3031} 2$.	\％	\％		－ 4.1	（ist
					cis	${ }^{292}$			${ }_{\text {a }}^{98} 98.8$		$\xrightarrow{1560}$	${ }^{403}$	${ }^{4} 4119$		（110：9 ${ }_{\text {11 }}^{11}$				${ }^{1.1565 \%}$			${ }^{12121}$.						198．			23．			$\xrightarrow{1788^{\circ}} 1$	－2	1129		2670．			（207．	\％．8	1230		238．	，	4＋6	52.	cis	
		42，7						77.4	方：			cis	${ }^{6} 1200$	200： 1111	（1115		${ }^{2} 27.4$	480	${ }^{1571}$			${ }^{\substack{1216 \\ 1219}}$						${ }^{1503} 106$			93：			$\xrightarrow{17889} 1$		${ }^{1133}$		\％			${ }^{20720}$		（ince		（0．4．	2．8	385.4	${ }_{\text {2335 }}^{235}$		${ }^{\text {1933：}}$
								${ }^{\text {cre\％}}$					8					593：－2	${ }^{78}$			${ }_{1}^{12224} 1$						${ }^{1508 \%} 10$			${ }_{9}^{6}$ 6．			${ }^{17935}$		136		退䞨：			（077．${ }^{2080}$	${ }_{8}^{8} 8$	318：	930	251．	${ }_{238}^{238} 7$		${ }^{23325}$	77： 7	${ }^{\text {Pa }}$
						${ }^{233} 5$		cis：	101．6				370					595．4	S8：	（4）	边 $190 \cdot 2$							${ }^{1515} 15$			${ }_{8}^{8} 23232$.			${ }_{\text {cher }}^{17898}$	－9	133：${ }^{\text {122 }}$					${ }_{\text {2082 }}^{2085}$	${ }_{\text {and }}^{9.5}$			575：	（is		${ }^{2356}$ 239．		$\substack{499 \\ \text { bot }}_{4}$
						${ }_{\text {a }}^{2350} 5$	260	cosp			（	cile							（1）														${ }^{279} 9$	cisis		142：		${ }^{6980}$	（e．5		2087	（0．8	（322，		${ }^{64}$ ．	1：7		${ }^{72}$ ．		
${ }^{150}$									103：3		cos．				cilto	7\％					（191．7	1237：				－2		cos．	－8		338．		280	cises：		457					${ }^{2093}$	512：0	， 326		378：	$5 \cdot 6$		${ }_{\text {2372 }}^{2327}$		${ }_{\substack{506 \\ \text { cor } \\ \text { coid }}}$
								${ }^{880.5} 8$	${ }^{103}$ ．		（10\％					（140－4，		90	${ }_{\text {cole }}^{1067}$									${ }^{\text {cose }}$			52．		288，	coise	43：3	1490：					290：	3：9	边		${ }^{\text {anc }}$					（10）
					${ }_{\substack{295}}^{25 \cdot 7}$			$\substack{\text { s1．1．} \\ \text { s1．} \\ \text { s．7 }}$			coter		380	2is： 11				1	cily：	140：2		12199：			S8．			，			5			${ }_{\text {lise }} 18$.	$6 \cdot 2$	5\％．	${ }_{30}{ }^{3} 272$	223．			ceme				${ }^{\text {cis }} 38$.			$\xrightarrow[\substack{23302 \\ 2392}]{\substack{23}}$		${ }_{16}^{14}$
							8	cis					${ }_{2}^{1} 12$					614．8										${ }^{1541}$ ．			${ }_{20}{ }^{2}{ }^{23398}$				－8			2res			${ }^{2110}$ 2113：	St	${ }_{\substack{1337 \\ 133 \\ 139}}$		${ }^{\text {20393：}}$	${ }_{285}^{285}$		${ }_{\text {2393：－}}^{235}$	S88：0	（107．
				边 308	${ }^{97}$							$\xrightarrow{435}$							${ }^{10267}$		${ }^{2} 9.5$	－ 12250									${ }_{2}^{1}{ }_{2}^{123565}$			${ }_{\text {l }}^{1883} 1$				533：	S：				${ }_{132}^{132}$		103．	${ }_{\text {cose }}^{288}$		－	cisy	
160				408	cose			${ }^{88} 8.5$	cotior				${ }^{6} 1122$	citice： 1177		cosion	${ }^{239} 29.5$	（ex											${ }_{\substack{380 \\ 380}}$					$\xrightarrow{\substack{888 \\ 888 \\ 881}}$	（en				\％									$\xrightarrow{\substack{2409 \\ 24070}}$		
					（10．7			cis					9								97．6	1272：						${ }^{15595}$			21．			¢ 8 St．		${ }^{11680}{ }^{16}$	${ }_{8}^{8}$						${ }^{1388} 1$	950	3116：			2412：		${ }_{\substack{528 \\ 650}}$
								cotist．					390			cisers			3： 1		（as）										${ }^{8}$			边				${ }^{756}$			33：${ }^{\text {and }}$		${ }_{\substack{1351 \\ 1353}}^{\substack{135}}$		123.			${ }^{2418} 2$.		${ }_{\text {che }}^{1533} 1$
				${ }_{4}^{424}$	coser			cisio								，												${ }_{\substack{1589 \\ 1552}}$			30							（16．			738．1．	（23：8	$\underset{\substack{1335 \\ 1365}}{\substack{\text { and }}}$		${ }^{33}$.			${ }^{21235}$		${ }_{\text {cosem }}^{535 \%}$
170								cise．	1111．04	cis	175\％${ }^{175}$	cise						${ }^{6}$				（1280：																										$\xrightarrow{2+288}$		
				${ }^{33}$				${ }^{86}$										－		${ }^{155} 5$														\％9\％		${ }^{18} 2$.							coisi	969				33．		
						${ }_{28}^{28}$							400							${ }_{15}^{15}$											${ }_{8}^{7}{ }_{8}^{24185}$			171．		S6\％	${ }^{5} 50{ }^{27}{ }^{27}$						coise		，			${ }_{\text {243 }}^{243}$		
							（ex	cis\％，				（eas．		边				－${ }_{\text {cis }}^{64}$					－							${ }_{4}^{4}$	${ }^{9} 9$			s2．	9：2	cile 1189.		［i92：	9．7		61．				15.			（18．		5isi：
								cosis						20，				${ }^{6} 5$													${ }^{2}$			${ }^{\text {a }}$		H1192\％					（16\％．		${ }^{3}$		116\％			53：		
${ }_{180}^{18}$				coren				cisp：					${ }_{\substack{1332 \\ 1335 \\ 1325}}$							${ }_{\substack{15 \\ 15 \\ 15}}$											\％i4．			（is）																
								边					¢	，						${ }^{15}$	（205－1，															cosine	${ }_{8}^{8}$	Slit：					138．							
														5								发1388：									${ }^{8}$				\％ 4	2035 ${ }^{36}$							${ }^{1884}$		（189：					
							300 394.39				cistiot		${ }_{1355}$	，																															${ }^{198}$					
190																		${ }_{\text {coid }}^{\substack{86 \\ 67}}$										1083：			\％			${ }^{12} 5$				${ }^{\text {238 }}$					292．							
																						$\begin{aligned} & 1396 \\ & 1350 \\ & 1350 \end{aligned}$												（12\％										980	${ }_{\text {cole }}^{\substack{32122 \\ 3215}}$					
											coile		420	S78：		（106．5 10.069		${ }^{67}$										coile			¢			${ }^{2}$											边	99．7				
																		${ }_{\text {cose }}^{\substack{689 \\ 689 \\ 689}}$										cidict			（1）${ }^{50}$			${ }^{3}$		24：		\％					（103：					200．		
9					${ }^{12}$	$\frac{1}{2}$		cers		\％ 78.9	${ }^{193.2}$	边		（1）				${ }_{\substack{68 \\ 68 \\ \text { cis }}}$			既11：4	1383：									\％${ }^{0}$ \％					${ }^{26}$		${ }^{60} 70$					106							
			5				1															$\begin{aligned} & 1369: \\ & 1374 \\ & 1397 \end{aligned}$																（78．						990	20i4					
												${ }_{4}^{3}$	430																					（1940：		23：	${ }^{8}$	（88\％												\％os：
																						$\begin{aligned} & 1381 \\ & \hline 1854 \\ & \hline 1856 \end{aligned}$												䢒：		${ }^{12323}{ }^{1235}$														\％98：
			${ }_{8}^{182}$					${ }^{97 \%} 78$																			26.	（ibex	${ }_{4}^{410.7}$							（120．							（14．29．：							
210							3 1105．				${ }^{2007}$					${ }^{11107}$		（03，3 550		coty		， 39			172\％：	${ }_{201}^{201}$	20006	$\xrightarrow{1081} 1$	${ }_{412}^{412}$	1065\％ 106	${ }^{23539}$ 2512	${ }^{2335}$	309\％	1965：			2012		${ }^{270 \cdot 0} 8$	3isp：8	${ }^{22255} \times$	${ }^{5050} 5$	$\xrightarrow{12525} 1$							

