SUPPLEMENTARY TRIAL OF GRUSON'S SHIELD AT SPEZIA.
We have received the following account of the further trials at Spezia alluded to in The Engineer of July 9th last.
The programme was drawn up to carry out the suggestions spoken of in our report of May 14, made with a view of testing the excellence of the Krupp projectiles which had been used in the trial, and consequently establishing the estimate which had been formed of the resistth pow jectiles fired behave in such a way as to showld the proectiles fred oehave in such a way as to show that those previously employed were good in quality, the victory of the hiend to lo be finy conirmed, whether it now might be ound to give way or not, because it had already borne three Krupp forged steel projectiles fired from thpact of three Krupp forged steel projectiles fired from the Armstrong 100 -ton breech-loading gun projectiles whose existed of two kinds of test (1) K rupp programme con (5.9in.) should be fired taken (1) Krupp 15 cm . projectiles ar .) This had been suggested by M Otto Budde Krupp's representative. If these projectiles should break up in the same way as those already fired from the 100 -ton gun, the natural inference would be that there was no ground for supposing that the large projectiles were inferior in quality, at all events, the fact of their breaking up affords

no such ground. It zuust be conceded that it was most reasonable that Italian officers should wish for a guarantee on this head, seeing that the difficulty of making good steel projectiles increases with the scale on which they are made to such an extent that it is desirable that those of any weight approaching 1000 kilogs., or 2200 lb ., should establish their character in every possible way
The second test was the firing of a steel projectile sup-
plied from St. Chamond for the 100 -ton breech-loadin plied from St. Chamond for the 100 -ton breech-loading gun. This would furnish a comparison between the large projectiles made in France and Germany. Thus, supposing it were to be concluded that Krupp's large projectiles had broken up more than his small ones, or had shown an inferior fracture in any part, it would be possible to see
whether the French manufacturers had been more successwhether the Fre
This trial, then, while it had a bearing on the resisting powers of Griuson's shield, did not touch the question o the trial in A. This had been settled at the conclusion of the trial in April. The commission for the supplementary experiments consisted of Colonel Scapparo, president onntti Spelta, and Captains Cabiati, Calcognini, and anott. If we recollect right, Colonel Scaparro was the senior artillery officer on the commission on the April trial, further test of had especially pressed the necessity for shield, as befor Krupp's pry cuis. The weight of the tructure had lightly as well as the shied up, the masonry having yielded ignty with steel wedges. The cracks in the latter were opened with steel wedges, and filled up by running in zinc.
The first firing consisted 3.9 in) Armstrong cun 38 two rounds from a 15 cm . carriage, which had been 28 calibres long, on an Albini Armstrong breech-loading gun, on the raft with a 100 -ton as before at a range of 133^{\cdot} metres ($438 \cdot 7 \mathrm{ft}^{2}$.) In both rounds with the 15 cm . gun the projectile was a Krupp rounds with the 15 cm . gun the projectile was a Kru
hardened steel shell, made up to 36 kilogs. ($79 \cdot 37 \mathrm{lb}$.).

First round with 15 cm . gun(No. IV. in all).-Charge, 15 kilogs. (33.06 lb .) progressive Fossano powder ($20-24 \mathrm{~mm}$.); striking velocity, 500 metres ($1640 \cdot 45 \mathrm{ft}$.); striking energy, 459 metre tons ($1482 \cdot 1$ foot-tons). The projectile struck 13 cm . above the edge of the avant cuirasse (glacis plate), triking. to the right of the projectile broke up, making a small chip in the shield.
Second round (No. V. in all).-Charge, 18 kilogs. 39.68 lb .), progressive Fossano powder ($20-24 \mathrm{~mm}$.) striking velocity, 564 metres (1850*43ft.) ; striking energy 584 metre tons (1885.6 foot-tons). The projectile struck 23 cm . above the edge of the glacis plate and 102 cm . to the right of the centre of the shield; angle of incidence, 50 deg. 30 min . The projectile broke up, and produced
about the part marked V. (Fig. 1) a chipping off the surface.
The fourth round from the 100 -ton gun (Round VI. in all) was now fired. Charge, 375 kilogs. ($2 \cdot 2 \mathrm{lb}$.) Westphalian (cocoa powder); projectile, hardened steel, St. Chamond ; calibres weight, 1000 kilogs. (2204.6 lb .); nitial velocity, 539 metres; striking velocity, 535 metres (1755.3ft.); striking energy, 14,603 metre-tons ($4715 \cdot 4$ marked with a cross in Fig. 1, but the movement of the raft by the swell of the sea caused the projectile to strike close to the spot struck by the second round fired in April (see VI. on Fig. 1.) Owing to the injury the shield had suffered already, the surface was struck nearly normallythat is, at between 80 and 90 deg . The projectile broke up and dislodged portions of plate of different thickness up to 50 cm . One crack was lengthened, and some other

Sweden refusing the concession, as far as her territory was concerned, the promoters had to accept the inevitable, and agree to continue the line to the Baltic. There can be no doubt to any one not interested in this scheme that such a railway might
have been made to pay, at all events if the prices of iron ore have been made to pay, at all events if the prices of iron ore
and iron should revive somewhat, although the distance from and iron should reve somewhat, although the distance from the latter place and the Baltic, for this reason-that this disad vantage is fully counterbalanced by the more favourable weathe conditions on the Norwegian side, an open port all the year and lesser engineering difficulties. The total length of the rail way, from the Baltic to the North Atlantic, is estimated at about 350 miles ; but it would not be surprising if, when actually con structed, the line should prove considerably longer, as the part through which it runs are wholly terra nova from an engineering point of view, though it is stated that the line has been surveyed. As regards the cost of the line, various estimates have been made, and nonecan be called trustworthy; but the cost may be nealties in Narwa it As an exap mate the cost of the 120 miles between Luleä and Gellivara to be equal to the 28 miles on the Norwerian side of the frontier These figures are exclusive of the purchase of land and rolling stock.
Before proceeding to discuss the practicability of this railway and whether it can become a profitable undertaking, we will give some particulars of the celebrated iron deposits in Swedish Lap land, taken from official sources.
The deposits are situated near the Norwegian frontier, in lat. 67 deg . N., the chief being those of Luosavara and 632 samples taken by the Swedish authorities some nears and of 632 samples taken by the Swedish authorities some years ago,
298 showed a contents of under 50 per cent of pure magnetic iron, 159 between 50 and 55 per cent., 109 between 55 and 60 per cent., 45 between 60 and 65 per cent., 15 between 65 and 68

section
NSIDE OF Shield
local injury effected in front (vide Fig. 1.) At the back were two new cracks μ and ν and also o, also a larger scale between γ and δ wasdetached (vide Fig. 2), thesmall fragments of which it was composed fell vertically, and would not have injured men behind the shield. A small triangular portion above a projected about 6 cm . The lower portion of the plate had given back and projected beyond the upper part about $3 \cdot 5 \mathrm{~cm}$. ($1 \cdot 4 \mathrm{in}$.) along crack γ, about 6 cm . (2.4in.) along crack ϵ, and 4 cm . ($1 \cdot 6 \mathrm{in}$.) along crack o. The left buttress or shoulder was slightly displaced. The general condition of the shield was good. In spite of the fracture of the left bearing plate or cheek, and some displacement, the shield might have borne a further attack; but there were no more available projectiles for the 100 -ton gun.
The object of this programme may be said to have been attained, as far as the chief practical bearing of it for Italy is concerned. Clearly all steel hitherto known must be expected to fly in pieces against chilled iron, whether the projectile be large or small. The St. Chamond' projectile, however, did not strike in such a way as to admit of a comparison of its effect with that of any of Krupp's projectiles.
The comparatively small effect produced by the French shot, when striking exactly on the most injured spot in the shield, speaks well for the resisting powers of the latter, even when much cracked. We have no conclusions to add to those expressed on the April experiments. We
would only emphasise what we then said on the desirability of firing at Griison's armour in this country.

THE NORTHERN OF EUROPE RAILWAY.

THE railway which is now in course of construction in northern Europe is a very remarkable line, both on account of the engiieering difficulties to be overcome and the purpose for which it of Luleï is, in brief, a line of railway from the Swedish town brated iron deposits in Swedish Lapland, and thence to the Ofoten Fjord on the North Atlantic Ocean, whereby a direct The or communication is established between these two sea munication with the iron doposits referred to, a scheme which has been before the Swedish public for many years in variou forms. Thus, for instance, a company formed some fifteen year ago attempted to solve the problem by canalising certain rivers flowing down to the Baltic, but without success ; a sum of about half a million sterling being expended in this undertaking, and a subsequent concern suffered the same fate. There was also a proposal made to build a railway from the port of Luleä, on the Baltic, to the deposits; but this plan also fell through, as it was account of the seven or eight months' winter prevailing in the north of Sweden, which would prevent all exports of ore, and almost the working of the line, during such a period. Now, however, the plan is to open up the deposits from the Swedish as well as the Norwegian side, whereby the advantage is gained of having a port open all the year round, as it is a well-known act that the Gulf Stream keeps the fjords on the west coast of Norway open all the year. The first plan was for a railway from
the Ofoten Fjord, in Norway, to the Gellivara deposits alone ; but
per cent., 5 between 68 and 70 per cent., and 10 more than 70 per cent. One contained as much as 74 per cent. The ores lie generally in eurite, often red in colour, and occasionally some what gneissic. They are marked by an exceedingly distinct striping, caused by the alternation of pure iron veins with seams of eurite or quarzite. The ores contain a large amoun of phosphorus, and are, in fact, almost richer in this element than any other in Sweden, withe or two exceptions. They are consequent-iron, but good enough for the production of Bessemer steel With regard to the extent of the deposits in Swedish Lapland, it appears from the estimates of the Royal Commission dis patched thither some years ago, that the Kirunavara mountain contains down to 450 ft . above the surface of the lake by which it lies about 100 millions of tons of ore, from this height down to the lake four million tons, and below about 500 tons of ore per perpendicular foot, the surface area of the mountain being estimated at three and a-half millions of square feet. The Luosa vara mountain, on the other hand, is estimated to contain twenty it 70,000 隹 deposits reported to be that it is stated that in two parishes alone 850,000 tons of ore may be broken out annually for 100 years before the level of the lake is reached. These are figures which might frighten iron manufacturers, contractors, and engineers; but there is every hope of reality proving stranger than fiction-at all events, we may safely leave the next generation to deal with the dangers of such an enormous output.

The company constructing this railway has, we learn, arranged with the owners of the Gellivara iron mountain to work the ore for not less than fifty years, at a royalty of 8 d . per ton for the first 200,000 tons per annum, and at 6 d . per ton above the
quantity; whilst the owner of the mining rights of the quantity; whilst the owner of the mining rights of the Luosavara mountain has guaranteed a minimum trafic over the
company's line to Ofoten of 240,000 tons the first year, 360,000 tons the second, 480,000 tons the third, and afterwards 540,000 tons per annum. These are, however, figures which should be received with great caution, as of course they are only the outcome of irresponsible "estimators." But the promoters of the line put forward another "estimate," which seems to be dangerous and misleading, respecting the yearly trafic.
Estimate of Yearly Traffic.

1,000,000 tons of irimo ore a
Timber and general traffic
$£ 250,000$
72,800
Gross revenue ${ }^{\text {.. }}$ $£ 322,800$
161,400 Estimated profit $£ 161,400$ After providing interest at 5 per cent. on the debenture stock of the company, there remains-so the estimate says-sufficient of $£ 48,900$ for distribution among the ordinary shareholders. of $£ 48,900$ for distribution among the ordinary shareholders.
This would doubtless be the case if the above figures did prove correct. For, firstly, believing, as will presently appear, that the traffic on the line cannot be sustained for more than eight months of the year, no less than 125,000 tons are to be carried per month, which is equal to nearly 5000 tons a day. With the conditions under which this railway will work this is next to impossible. But the second item is far more serious. The company puts the charge of the transport of iron ore at 5 s . per
ton; but how can such a charge be sustained by an article which will, after paying cost of loading, steamship freight, insurance,
unloading, and duty, only fetch about 12s. per ton in German and English ports, including profits? This calculation - the basis of the estimate-being unsound, the whole falls to the ground. As an example of the prices now paid for iron ore, we may state
ports from Centrals weden last year, whence the cost of transport,
se is only half of that inthe Far North, resulted in aloss on account \&c.,.is only half of that in the Far North, resulted in a loss on account
of the much lower prices at which Spanish ores were offered. of the much lower prices at which Spanish ores were offered.
Still, these ores contained an average of 65 per cent. of Still, these ores contained an average of 65 per cent. of
iron, a figure which we may safely assume the million tons
隹 shipped yearly by this company will hardly exceed, taken all
round. It seems to be a great fallacy on the part of the proround. It seems to be a great fallacy on the part of the pro-
moters of this scheme to argue that because a few of the deposits moters of this scheme tor argue that because a
contain 70 or more per cent. of iron all the ore will have this contents, seeing that some boasts only between 50 and 60 per
cent. Moreover, it is a mistake to assert that because the cent. Moreover,
Gellivara ores contais 4 or 5 per cent. more iron than others
they will fetch a much higher price than the latter. Recent years have disproved this, for above a certain contents the richer ores have failed to obtain a proportionately higher price.
We now come to the question of time required for the conStruction of this railway. The company has, by the concession, ndertaiken to have the whole line- unosovara ready by the of 1891. But this must now be considered to be outside the sphere of possibilities, as although three years have elapsed since the concesions were granted, not a rail has as yet been laid on
the Norwegian side, whilst in Sweden-where the work up to the Norwegian side, whilst in Sweden-where the work up to
the present year has been confined to expropriation, erecting landing stages, \&ce.-the first rails could not be laid before May 3rd this year on account of ice, snow, and water, and it
may be doubted whether twenty-five miles of rails will be laid down this summer. At this rate of progress it should take ten years to complete the line-a pleasant prospect for the ehare-
holders. Last autumn we were told by the promoters that the line would be opened as far as Gellivara- 120 miles-" in a few months. Up to the present, only some fitteen miles have been
fulfilled of this absurd promise, which gives a fair idea of the manner in which the concern is managed. We were further
told that work at both ends would be continued throughout the winter. This is another assertion equally misleading-as we have stated, no work began till May this year. Nothing could
be more ridiculous than to assert that any work can be done in be more ridiculous than to assert that any work can be done in
the winter in a country where the ground freezes as hard as asphalte, where ice and snow cover it for yards deep, where
there are no habitations or means of existence, and where the thermometer frequently freezes in the bulb, whilst terrible snow storms sweep the land for days; and there are also the causes which we referred to when maintaining that the line-when completed-cannot be relied on for transport for more than
eight months all round of the year. This opinion is one which the promoters make light of, but we need only remember the
frightful blocks which occurred last winter on our own railways to know that this is a very serious point. Another almost equally disadvantageous feature is the darkness, or semi-dark-
ness which prevails for some three months-which will certainly not contribute to the easier working of the line. It must, howdispute or doubt the possibility of constructing the Luleä-Ofoten ine. That would be absurd with the examples before us of the skill of the engineers of our century; but what may be reasonably
doubted is, in the first instance, the possibility of the undertaking being profitable, the time for its completion, and the necessity for its existence. Having dealt with the two former
points, there remains only the latter. Putting aside the absurd assertions that the railway will be the means of
personal intercourse and trade in a part which has justly
been by a few hundred poor Lapps, we come, in the first
instance, to the great iron treasures and the splendid primeval forests which, it it stated, it will open up. As regards the facturers nor contractors or engineers desire to have more iron into a market which is already so depressed through over pro-
duction, and with no prospect of improvement; whilst it is a duction, and with no prospect of improvement; whilst it is a
well-known fact that the timber trade has suffered from the same disease for the last ten years. Secondly, we are told that Apart from the questionable advantage of such to Russia,", Apart from the questionabe a avantage of such a " highway,
the prospect of this becoming an accomplished fact is so far remote that it hardly will bear discussion. For, although work is to be continued this year on the Great Northern Trunk Line
of Sweden towards Luleä, and ultimately the Finnish frontier, it will only progress in slow stages. The length of the
line to Luleä alone is estimated at 320 miles-or about the length of the Northern of Europe Railway-the cost being put down at nearly $£ 2,000,000$-an enormous sum when it is con-
sidered that it will run through almost uninhabited parts. In fact, so little disposed is the Swedish Parliament towards the project, that it is hardry likely to be carried out in the present
century. ", o much for the Swedish part of the "international highway." On the Finnish side of the Baltic the railway now a railway-cannot be estimated at less than 700 miles, allowing for the circuit along the coast; and at present this line has as much chance of being constructed as the Channel Tunnel. It
will therefore be seen what the value is of the statement made will therefore be seen what the value is of the statement made
by the promoters of the Northern of Europe Railway-that by the promoters of the Northern of Europe Railway-that
this line would place Stockholm, St. Petersburg, and the interior of Russia in direct communication with the open North
Atlantic Ocean all the year round. Before this will be the case, Atlantic Ocean all the year round. Before this will be built. There is also another side of the question which is of strategic value of this railway to Russia, for when it it is constructed, Russia could seize it without the least opposition, and
embark an troubles which may result to Sweden and Norway from the existence of this line are so great and incalculable that it is a mater for surprise that the Governments of those countries
should have encouraged the scheme, particularly in view of its almost certain commercial failure. A point equally surprising is representative in Scandinavia officially to support it. Finally, it is very strange that the Scandinavians themselves, and substantial support to the undertaling. This is ar forty being the case, as nearly all iron manufacturers and forest
owners are against it, for they argue-and very naturally-that the opening up of these deposits and forests at present can only have one eftect, viz., the complete ruin of markets already in a
frightfuly depressed state. However, the undertaking is one
which will undoubtedly be wat .
THE occurrence of tin in New South Wales was first made
known in 1852, butt it was not commericilly worked until 1872 , although the tin is of the best quality, and ta
Strait Settlements tin in the English market.

THE ROYAL INSTITUTION.
RECENT PROGRESS IN THE COAL TAR INDUSTRIES. Sir Hexry Roscoe, M.P., in his lecture upon the above subject, at which Sir William Bowman occupied the chair, said that Gcothe burning hill," near which he met an old philosopher engaged in collecting therefrom oils, resin, and tar; the labours of that
hilosopher were not successful. Times have changed since then, for now some branches of the coal tar industries may be valued at millions sterling per annum, and keep thousands of men in employment.
All organic compounds, said the speaker, may be referred to compounds are known as paraffinoids and benzoids, for from these hydrocarbons they can be built up by synthesis. In rock oils is the world's largest supply of almost natural paraffinoids, supply of the ben used of which the benzoid hydrocarbons may be obtained from coal, furnaces of this country. Recently methods have been adopted to collect the oils from these sources, but so far the attempt to collect the benzoid hydrocarbons from such sources has been attempted but in few instances. The gasworks of the country have to be resorted to for benzoids, which might be extracted om coal in special ovens, and the coke be atterwards left for dug out at the ironmasters. The coal from the same pit, bu paraffinoid oils are not easily oxidised ; when nitric acid is poured upon petroleum spirit it scarcely alters it at all, but when nitric acid is poured into coal naphtha red fumes are given ofl, so the benzoid oil is more acted upon. In 1825 Faraday prepared he cid so in the 1 g point of the Ropal Instituctionsons-and large quantities of it were made for the first time, under Hof mann's direction, and the next step was the production of manufactors in every year, yet this substance at first, like benzene, remained for years but chenical curiviity. The coal tar dye industry was
started by Perkine mauve. Cheap wagou gresse gradually rose in price till it sold at 18 . which is now manutinctured to the value of more than $£ 2,000,000$ annually; this induasy has nearly driven the madder plant out cultivation of the mapheren in the Coner now be built up by sputhesis, and it is artificially manufactured to some extent.
The colours derived from 1 1 b. of coal will dye a full shade:-
 Benzoic aldehyde is largely used for flavouring ; oil of bitter coal distilled in cas retorts yields an average of:-

Twelve gallons of coal tar yield

The colours derived from 1 ton of coal will dea a full shade :. Magenta, 500 yardo of flannel 27 in. wide Aurin, 120 yards, 27 in. wide (orange).
Alizarin, 225 yards, 27in. wide calico, Turkey
Perkin discovered mauve when he was tryin artifcially ave been made by chemists from coai ta products possess febrifuge qualities of value,
discovered in 1881 by Otto Fischer, of Munich
, of Musi; it 18 not quinine is, that it does not produce upon the patient the unpleasaneffects of large doses of quiniue. A dose of 30 grains of it is
found to lower the temperature of patients afflicted with typhus fever 3 deg. upon an average. Thallene is also a febrifuge, it has Coal tar perfumes are now in the treatment of yellow fever. ing the artificial perfume of the Tonka bean, of the sweet woodruff, and of a variety of sweet grasses; the perfume of new mown hay"-as it is marked in the shops-really comes scent, and of that of the Tonka bean. Vanillin, the active principle of vanilla, is now made from coal tar, and by mixing
some of the coal tar perfumes with oil of bitter almonds, a scent some of the coal tar perfumes with oil of bitter almonds, a scent
is obtained resembling that of white heliotrope. Mr. Rimmel ad forwarded him some of this perfume, and by means of the pray distributor before them he had the pleasure of scenting ficial perfumes, he continued, are gradually driving out the industries of extracting the natural perfumes from the plant. About 150 tons of nitro-benzene are used annually for the per fuming of cheap soaps.
marvellous productions from coal tar, the next one crystalline body artificially prepared from coal tar (toluene) and possessing an intensely sweet taste. It was discovered by Dr
Fahiberg. It is not a sugar, does not produce any appreciable physiological effect on the human body; does not act as a food flavour, and passes away unchanged. It contain follow, oxygen, hydrogen, sulphur, and nitrogen, combined a

Co

of saccharine have been given to dogs, and one dog had as much f it daily as was equivalent in sweetening power to a pound of sugar, but it did him no harm. There are human diseases,
during the course of which sugar must not be taken. In such cases the use of saccharine may prove to be advantageous.
Sir Henry Roscoe here Scharine, and invited the listeners to come cups of tea with taste the same He likewise produced some bon Swedish punch, flavoured with orthobenzoyl sulphonic amide.

THE CHEMISTRY OF THE ALKALOIDS.
Professor James Dewar, F.R.S., in the course of three lectures upon "The Alkaloids," said that the alkaloid department was ne of the most recondite of organic chemistry, and for what is orkers. The alkaloidal bodies are easily separated, becous hey form compounds with acids, and in general the esert violent physiological influence upon the system. At present chemists are very close upon making them artificially, indeed me of the simplest of them have already been built up synthetically; therefore, if the Legislature exerts itself to stop the cultivation of opium, there is no guarantee that morphia may not hereafter be made artificially. All the alkaloids contain itrogen, probably in the form of ammonia, from which form there is reason to believe that all alkaloidal bodies are built up.
Ammonia has to be heated before it will burn in air. It can also be burnt at low temperatures, for ozone has remarkable power of attacking it in the cold. Another way of burning it is by means of a hot spiral of of ammonia is formed by the combustion set up. Where do the nitrates come from originally? The inference is that they come from the vegetable kingdom, for when antiseptics are neans of a cold of -80 C . ammonia can be liquefied; it will then dissolve the metals potassium and sodium, and form deep blue
solutions of them ; aiterwards it will evaporate from them and eave them as before. The blue solutions transmit the viole nd ulic silver Am The lecturer here built up chloride of ammonium synthetically passing an electric dischrge through a mixed atto ydrochloric acid, nitrogen and hydrogen gases; the newly ormed salt then condensed on the sides of the tube. As a test
or the presence of ammonium, Professor Dewar allowed one drop of a saturated solution of the chloride to fall into a large in a solution of potash, and a brown colouration was set up. The test, he said, is sufficiently delicate to detect ammonia whe In his second lecture Professor Dewar said
hat the action Which takes place when sunlight acts upon the leaves of grow-
ing plants, is not accurately understood; but it is believed that ing plants, is not accurately understood, but it is belid water, in some way or other through the agency of chlorophyll. Oxygen is set free, and starch and sugar formed; the sugar seems to be formed before the starch. Plant life is not so economic an engine as might be supposed at the first blush; a large amount
of energy seems to do little work in proportion ; in the leaf of energy seems to do little work in proportion; in the leaf
the process is one of reduction, oxygen being removed. Uxalic the process is one of reauction, oxygene eang at the same time as
acid is believed to be formed in the leaf starch and sugar; oxalates occur largely in the juices of plants, tending to prove that oxalic acid is an agent of reduction in the leaf. When oxalic acid is oxidised in the presence of a salt of iron, carbonic anhydride is given off. This is a
In tracing out the chemistry of the evolution of the alkaloids, the inquirer wants to get nitrogen connected with carbon cyanogen consists of carbon connected with nitrogen, and is pro-
duced synthetically by the electric arc in the presence of air and moisture. Magnesium has the peculiar property of uniting with nitrogen as well as with oxygen, when it is burnt in air. If the and ammonia is liberated. Titanium is another metal which has the power of uniting with nitrogen by combustion
ds cxanples of various classes of products obtained from awduat in one retort distillation, Professor Dewar put some frazments of quill in a third, then applied heat. The indiaacid distillate from the production of ordinary vinegare the
retort half full of cuttinge of quill pens gave off a distillate trongly alkaline, consisting of carbonate of magnesia and In his third and last lecture Professor Dowar said that the chemist other than it did to the ciec.it of earlin times, romatic compounds are recognised as derivativer of benzole. Take away an atom of hydrogen from benzole and substitute one of nitrogen, the pyridine nucleus of the aikaloids is then formed. If aniline be mixed with strong sulphuric acid and some glycerine, quinoline is formed when the mixture is heaved,
consequently is thus made artificially; the hydrogen in this base doss not unite with nitrogen in the form of ammonia Corrosive sublimate precipitates alkaloidal bodies as a class, and she excellent reagent; tin trong nitric ceid a dour being produced thereby sulphuric acid has no apparent action upon strychnine, but if bichromate of potash, an oxidising body, be also added, a fugitive violet colour is produced. All the alkaloidal bodies combine with chlorate of platinum; quinine, for instance, may be taken and acidinied with a litle hydrochloric acia, that is called "the platinum salt of quinine" is thrown down; there is a corre spondiug gold salt, but that of platinum is ordinariny used fo-
the purpose. The alkaloids have remarkable optical properties, which have been worked at by Professor Stokes, many of them being fluorescent. Quinoline exercises a Messrs, Macfarlane, of Edinburgh, said the speaker, have manufactured these alkaloidal bodies for nearly half a century

THE INSTITUTION OF NAVAL ARCHITECTS. On the morning of Wednesday, the 28th ult., the business f the meeting was resumed. The only paper read being by Professor Elgar,

Notes upon Losses at Sea.
An attempt is made in this paper to analyse the loss of ife caused by the wrecks or total losses of British merchant ships at sea during the three calendar years 1881 to imits of space would in detail, as far as the f loss and the extent to which they operated in producing loss of ships, and of lives, at sea A general analysis had been made of all losses for the three years named, and it had been continued for the two succeeding years 1884 and 1885, so far as steamers and iron sailing ships of and above 300 tons gross register are concerned. It is very difficult o cive an abstract of this paper, because the information which it contains has already been condensed by the author as much as possible. We can do no more within the limits of space available than give the more important conclusions at which Professor Elgar has arrived. In order to show what proportion the losses of ships, and of lives, by foundering at sea bears to the total number of osses recorded in the official returns, it is necessary to take as a starting point the total number of losses from various causes in all classes of vessels that occurred during he period under consideration. The author therefore commenced by taking the whole number of and of the lives lost in them, during the hree calendar year 1881 to 1883. The total number of live ost at sea and in harbours and rivers by wrecks of and casualties to British and colonial ship during the year 1881 was 3531 seamen and 596 passengers ; in
1882,2305 seamen and 151 passengers
and in 1883,2986 eamen and 215 pas engers. The figure or loss of life that are here being deal with are confined to osses by wreck and casualty. There were also losses of life by rowning, or by accident other than rowning, where here was no wreck of, or casualty to, the ships in which they ccurred. These are not included. The term " ship" applies to every description
of vessel that is used in navigation, and is ot propelled by oars. It. includes fishing essels, yachts, arges, and all other mall craft. "Wreck means the absolute destruction of a ship o some form o asualty whichresult her removal from the register of British ships; and "casualty" means any occurrence which though more or less serious to the ship hersel her removal from the register. Ships that are described her removal from the register. Ships that are described as lost at sea include those that are lost upon any coasts and harbours. At the end of the paper Professor Elgar and harbours. At the end of the paper Professor Elgar gives a long series of tables, supplying all available par ticulars, save one, concerning the ships lost. The missing information concerns the engine-power of the steamships, a proint on which we may havesomething to say atanother time. foundered ost in them were missing, and of 4036 lives that were appears that 344 of three years 1881 to 1883; and as appears thats 344 e left them gross register, chiefly employed in coasting trades, men attention to the ives were lost The 264 ships thus ships in which 3006 British vessels of foundered at sea-all that are not bortaw 300 tons have register-and also the vessels from which the grons gross portion of lives are lost. Out of the the greatest proBritish and ces anil of that were totally lost, and 8048 lives in them during 1881 , 882, and 1883, we thus fin 8018 ives int dith 1881 and missing ships registered in the United Kind bove 300 tons gross register, in which 3006 livdom, of and The 264 ships under consideration which 3006 lives were lost all of which are iron, 47 iron sailing ships 127 wooden sailing ships, and 9 composite siling ships 127 wooden 3006 lives lost in these ships, 1295 were lost in. Out of the in iron sailing ships, 779 in wooden sailing ships, 101 composite sailing ships. Taking the 43 vessels that were lost with grain cargoes, we notice that 23 were steamers and 21 sailing ships ; 9 out of the 23 steamers were laden with wheat, and 8 with barley; 15 out of the 11 sail ing ships were laden with wheat, and 3 with rice ; leaving only 3 sailing ships that were lost with grain cargoes other
than wheat and rice. Thirty-three steamers and 53 sailing ships were laden with coal, 34 of the latter being wooden vessels. Only 6 steamers were lost laden with cargoes other than grain, coal, metal, and general. Thirty-eight timber-laden wooden sailing ships. Their average age was 23 years, and 27 were not classed in any register society. Thirteen were all sailing vessels, 4 being constructed of iron and 9 of wood. The 4 iron ships will be commented upon further on ; but as regards the 9 wooden ones, it may now be pointed out that their average age was 24 years, and 5 were not classed in any register society. The author then considered at great length the influence of cargo on following conclusions:- (1) The shifting of at the is one of the chief causes of the foundering of steamers and iron sailing ships at sea, independently of mere depth of loading. (2) Dangerous shifting of grain sometimes takes place, through hasty and imperfect stowage, inefficient shifting boards, or weakly constructed end bulkheads, or through the omission to fit end bulkheads where such are required on account of the density of the cargo; and dangerous shifting of coal sometimes takes place, because it is carried in compartments that are not fitted with shifting boards. (3) Many steamers carrying grain and coal cargoes-notably the class of narrow grain and coal cargoes-notably the class of
at the conclusion of the paper, that the stability of vessel when laden with the various cargoes they are likely to ancele determined by calculatio that enfoceeding to sea, and clear instruction based upon were responsible for their loading. Supposing that a vessel were responsible for their loading. Supposing that a vesse have placed in his of the empty spaces he should leave stability, particular weight of ballast spaces he should leave between decks, the mation which would be of the utmost value to him, and would in many cases prevent those value to him, and would in many cases prevent those losses which they builders and shipowners of the country when they wer pending such vast sums on their ships that they weuld not go to the little additional expense of having that infor mation supplied
Mr. W. H. White, said that, in the shipbuilding yards of this country, within the past seven years, there had been vast improvement in the endeavour to place within the owner's hands the best information that could be given hem as to the stability of their ships. He endeavoured or nine years to get all the information he could as to the four years vessels. He could not get very much, while in a great measure to ments which were then used, and with which work could be got through that it was formerly hopeless to could be done It was of no use, how ever, to have in kind if shipowner would not act on it He criticised at some length the practice of the Ad miralty Courts Experts giving evi discredited, and the so-called practica man had it all his own way. He did not propose that should supersede even interfere with such investigations as those carried on by Mr. Rothere and assessors, bu the Board of Trade ought to be in position to supply any ship whose loss was made the sub ject of a lega inquiry, so that th Court would be in with some certainty The assessors now employed, howeve able they might be as captains, did no and could not know enough about the ship lost to be able to give valu
able assistance in arriving at a cor rect verdict. Proper legal investigations
would be of much walue, be of much isting system was isting

vessels that have insufficient stiffiness, when fully laden,

 resist heeling to a dangerous angle in the event of carro shifting or of water getting below. (4) The effect upon such vessels of the shifting of cargo and of water below is generally to hold them over at a considerable angle of inclination, but not to completely capsize them. (5) Pumping power at the bilges is often an essential con-dition of preventing loss in such circumstances, and of dition of preventing loss in such circumstances, and of getting a vessel righted. (6) The stability of these vessels, carry, should be completely determined by calculation before they are sent to upon the information so obtained should be framed for the guidance of those who are responsible for their loading. Such instructions should include particulars of the empty spaces to be left in the tween decks, or of the weight of ballast to be carried, or both, for each class of cargo. (7) All the authentic particulars procurable of ships that have foundered and are missing, and of the circumstances and the manner in which the foundered
ships were lost, should be collected and published periodiships were lost, should be collected and published periodically, for the information of the shipping community. (8) The losses of steamers through the shifting of cargoes seem to be chiefly among the narrow steamers of the three-decked type that were built several years ago. The steamers of that type that have recently been built have more beam and much greater stability than those formerly built, and it may be confidently hoped that the attention which has been given to this matter of late, and the im provements that have consequently been introduced into amis type of
The discussion was opened by Mr. Martell, who complimented Professor Elgar on the valuable and carefully digested information which he had supplied-information accompanying the paper would be read with great interest, and that very the paper would be read with great interest them. He agreed with the observation in the summary

Mr. West said that it should not be taken for granted that want of stability was always the cause of loss. Collision and total loss might be caused by a ship becoming derelict and then being run into by, and so sinking another vessel at night, when the derelict could not be seen. Ships, too, were lost because their coals were run out; and again, in considering the cause of loss, it should not be forgotten that a ship's freeboard augmented daily as she
was at sea as her coal was burned. The date of sailing ought always to be taken into consideration, and the daily consumption of coal.
Sir T. Brassey said that going about the sea as much as he did, he frequently came across cases of ships which appeared to him to be overladen. He knew it was a delicate point. Unless the ship carried a considerable cargo it was impossible for the business of the shipowner to be remunerative. Even with the amount of cargo now carried, the business of the shipowner had been very melancholy in its results. He was bound to say he was of opinion that in many cases the cargoes carried were excessive. Anybody who had lain at anchor as long as he had in the Bosphorus, and watched the vessels coming rapidly out, must have been of opinion that not a few of them were overladen. If it were possible to obtain a recognised line of loading, he would venture to
suggest that shipowners should be compensated suggest that shipowners should be compensated by a reduction of the insurance charge, which now bore so heavily upon them. A considerable number of vessels were lost with their crews from the spontaneous combus-
tion of coal cargoes. We had not yet reached perfection tion of coal cargoes. We had not yet reached perfection in the mode of carrying coal at sea. He had himself the privilege of carrying the crew of the Monkshaven off the no point to which science might be more properly directed than to providing for the safety of ships employed in carrying that description of coal which was in demand on the owner of Liverpool, said he was of opinion that many
ships were lost through being loaded more deeply than of the Wreck Commissioner had increased the loss of life at of the Wreck Commissioner had increased the loss of life at
sea. Gentlemen might laugh, but he bad watched the matter himself very carefully for some time. He believed the best remedy for the offences they endeavoured to reach by the Wreck Commission was to leave them to be dealt with by the common law. As to supplying captains with scientific information, as had been suggested, he held that it would be of little use. Every captain who understood his business knew when a ship was rightly or wrongly loaded, and if they neglected old and well understood rules for loading, it was certain that scientific information would not make them more careful. Mr. Samuelson, after sharply criticising the methods of Mr. Rotherey's Courts, held that much mischief was done by shipbuilders permitting owners to dictate to them as to the kind of vessel they wanted The shipbuilders knew what was right, and the shipowners did not. The builders ought in all cases to fix the load Jine. This proposition, we may add, was received with some amusement by the meeting. Mr. Withy criticised the law courts, and condemned careless loading.
After a very brief reply from Professor Elgar, a vote of thanks was passed, and the members proceeded by special train to Crewe, where they were hospitably received by Mr . Webb, and after luncheon proceeded in a special train to the Bessemer steel converting house, thence past the Siemens-Martin furnaces to the spring mill and the rail mill; through the points and crossing department into the boiler shop; then into the plate flanging shop; through the plate stores, into the boiler fitting shop, and on to the iron foundry; and from there through the engine repairing shops to the steel forging department, the first objects being the plate and angle mills; the 8 -ton vertica hammer, and 30 -ton and 10 -ton duplex hammers; then past the tire mill into the iron forge, and through the stee foundry; after which visitors entered the train and were conveyed to the testing shop, passing through the mill wrights' shop, joiners shop, and saw mills, and on to the old forge, through spring smithy into the locomotive erecting repairing, wheel, and fitting shops, and then by the specia train into the station. The special train conveyed the members back to Liverpool in the evening. An At Home was given in the evening by Sir David Radcliffe, the Mayor of Liverpool, which as already reported in our columns, was largely attended.
On Thursday, July 29th, the first paper read was by Mr. W. Parker, of Lloyd's,

On the Progress and Development of Marine Engineering.
The author began by referring to papers read by Sir F Bramwell and Mr. F. C. Marshall, the latter in 1881, and went on to say that, since that time, a still further improvement has been made by the introduction of even higher steam pressures, and of triple and quadruple expansive engines for the proper utilisation of these higher pressures; but up to the present little, if any, improvement has been effected in the method of making the steam, the marine boiler of the present day being almost exactly what it was in 1872, except, of course, that it has been possible to make it stronger than was then deemed to be practicable, owing to our having command of improved materials and appliances. It is of course difficult to foresee what the future has in store for us, or to be sure of anything, except that there is no finality in invention; but in the author's opinion there are good reasons for believing that so far as the use of steam is concerned-that is to say, the conversion of the heat of the steam into work by means of the engine itself there is not now so much room for improvement as there appears to be in the other operations of transferring the enplying the wris the or applying the work of the engine, when it has been produced, to its useful purpose of propelling the vessel. A coal still disappers up the coal still disappears up the funnels of all our steamers, doing no useful work, except producing the necessary draught-which could be produced mechanically with very much less heat, if only the funnel heat could otherwise be usefully employed; while there still remains a wide field for improvement by the production of more nearly perfect regard to the economical application of themselves. In has has been produced, to the propulsion of vessels, there is also room for great improvement; for according to the late Mr. Froude, the greatest authority upon this subject, only about one-half of the total power exerted by the engines is effective in propelling the vessel, the remainder resistances. Advance in this direction would, he thought, resistances. Advance in this direction would, he thought,
be attained more from the results of direct experiment than from theoretical considerations. Already some marked improvements resulting from experiments with screw propellers have been made in some few isolated cases in which the performances of the screws first fitted were considerably below the expectations of their designers, and in these days, when such immense powers are exerted in our large and fast ocean passenger vessels, it is very probable that the cost of a few experimental screws would soon be repaid by the economy of power they would effect. It must not be inferred that because the marine boiler of the present day is practically identical in design with that of 1872 , except, so far as regards strength, no attempt has been made to in this direction matter of mad, very to show this he had only to mention have been the Howard, the Root, the Jordan, the Perkins, the Herreschoff, and the Turner boilers besides others in which brick combustion chambers, brick furnaces, \&c have been used. All these forms, however, have either completely failed or have given so much trouble at sea, from their inability to fulfil the requirements incidental to oceam steaming, that none of them are likely to be repeated. Most of them were designed more with the view of enabling high steam pressures to be safely carried than with the idea of obtaining a high evaporative
efficiency, and the six first-mentioned types mostly consisted of tubes or of cylindrical portions of relatively small diameter, which consequently possessed great strength, even when made of comparatively thin material. The small dimensions of the parts, however, materially assisted in rendering them unsuitable. The introduction of steel as a material for boiler plates, and the use of a stronger form of furnace than the plain cylindrical one, combined with improvements in manufacture, have now admitted of steam pressures of 150 lb . to 180 lb . per square inch being safely carried in boilers of the ordinary type, so th: there will be now no incentive for engineers to design these novel types of boilers so far as strength is grounds for sups it can be shown that there in iz., from 250 lb . to 300 lb . per square inch, can be conve iently and economically used. Mr. Parker next sketched he history of the triple expansion engine, and, coming down to recent times, stated that during the present half-

H.P. Cylinder, Mean Pressure, 59:56.-Scale, $\frac{1}{88}$.

Intermediate Cylinder. Mean Pressure, 28.44.-Scale, 1 .

L.P. Cylinder. Mean Pressure, 8.23.-Scale, 1 ,

Steam Pressure, 150 lb . Ratio of Cylinders: $1: 2 \cdot 5: 7 \cdot 11$. Mean Pressure of three Cylinders reduced to
Cylinder, 25.61 lb . per square inch.

Steam Pressures above Atmosphere.
year there have been no less than forty-one sets of triple expansion engines built, as compared to sixty pairs of compound engines, and there are at present 128 sets of triple expansion engines building, as compared to seventythe British and foreign Navies. For the British Royal Navy there are twenty sets being built, expected in the aggregate to indicate 130,000 -horse power. As to performances, he gave some facts. Two large pas senger steamers of over 4500 gross tonnage, having engines limen 6 in dimensions, from the same lines, with similar propellers, are exactly alike in every respect except so far as theiple machinery is concerned. One vessel is flted 145 lb . per expansion engines, working at a pressure of 145 lb . per quare ind, whins the other 90 lb per ompound engis, wore a a and steam at the same rate of speed, viz., 12 knots per hour. The latter vessel on a round voyage of eighty-four days burns 1200 tons more coal than the former. The performances of two other vessels do not compare on a question of decreased consumption, but on one of enhanced carrying capacity, with an equal speed, and the same con sumption of coal. The first vessel has a gross tonnage of
about 2220 tons, and is, comparatively speaking, a modern type of ship. She is fitted with ordinary compound engines, working at a pressure of 90 lb . per square inch and carries, when fully loaded, 3000 tons of cargo, including bunker coal. She steams 10 knots per hour, and burns 20 tons of coal per day. The second vessel has a gross tonnage of 2800 tons, was built last year, and fitted with triple expansion engines, working at a pressure of 150 lb . per square inch. She makes the voyage to India in the same length of time as the former vessel, burns the same amount of coal, viz., 20 tons per day, and carries 4200 tons, or 1200 tons more cargo, with the same working expenditure. The next case is that of a mail steamer, the engines of which have been converted from ordinary compound to triple expansive, the propeller not being altered. The vessel is of 3500 tons gross register. She was originally fitted, in 1871, with ordinary compound engines, working at a pressure of 60 lb . per square inch. These have been altered into triple expansion engines, and new boilers have

H.P. Cylinder. Mean Pressure, 527.7-Scale, $\frac{1}{9}$

L.P. Cylinder. Mean Pressure, $11 \cdot 45$.-Scale, ${ }^{1}$ It

Steam Pressure, 135 lb . Ratio of Cylinders : $1: 2 \cdot 5: 5 \cdot 28$. Mean Pressure of three Cylinders reduced to Low-pressure

been fitted working at 150 lb . per square inch. The vessel still maintains her original speed, and the consumption of coal has been lessened 25 per cent. In the case of another mail steamer, the engines of which have been altered in a similar manner, the decrease in consumption is 33 per cent., whmption ques speed is maintained. In for galley, steering engine, and other purposes, so that the economy gained in themain enginesis greater than that given by these figures. In order to fully utilise the principle of expansion, it is nercery to have engines of sufficient size for the steam to fully expand into, and so relatively large engines will be, within proper limits, more economical than smaller ones doing the same amount of work. To show this the author referred to two sets of indicator diagrams taken from two engines made by two well-known engineering firms, who have each attained celebrity for the excellence of their productions; yet a comparison of the results obtained in the two cases shows a marked difference between the two engines. In each case the diagrams were taken from the engines on the trial trips. In engine No. 1 , the cylinders are proportioned as $1: 2 \cdot 5: 7 \cdot 11$; the boiler pressure is 150 lb , per square inch, and the mean pressure of the three cylinders reduced to the low-pressure cylinder is 25.61 lb . In engine No. 2, the cylinders are proportioned as
$1: 25: 5 \cdot 28$, the boiler pressure is 135 lb . per square inch, and the mean pressure reduced to low-pressure cylinder i engine No. 2 is not using the steam so expansively as engine No. 1, and in proportion to the size of low-pressure
eylinders it is doing $\frac{32}{2}: \frac{1}{4}$, or $1 \cdot 253$ times as much work as No. 1. On measuring the amount of steam used per revolution, as shown per indicator diagrams, it will be
found, however, that engine No. 2 is using 1.494 times much weight of steam as engine No. 1 , and as it is only doing $1 \cdot 253$ times as much work, the efficiency of No. 1 engine must be $\frac{1}{1}: \frac{19}{1} \frac{9}{5}$, or $1 \cdot 19$ times greater than that of
No. 2; in other word, 1 engine would give 19 per
cent more power than No. 2 from the same weight of cent. more power than No. 2 , from the same weight of
steam used. To show more clearly the effect of the internal or cylinder condensation upon the efficiency of the
engine, it will perhaps be interesting to refer to Fig. 3 , engine, it will perhaps be interesting to refer to Fig. 3,
It is known from theoretical considerations that, supposing no practical difficulties intervened to prevent its realisa-
tion, the utmost efficiency possible with a steam engine would be represented by the difference between the temperature of the boiler steam and that of the condenser divided by the absolute temperature of the boiler steam.
This ideal efficiency for steam of various pressures, assuming, as is usual, the condenser temperature to be 100 deg., is shown by the curved line in Fig. . 3. It will be seen to rise slowly as the pressure increases, being $\cdot 261$
at 50 lb ., $\cdot 270$ at 60 lb ., 298 at 100 lb ., 321 at 150 lb ,, $\cdot 339$ at 200 lb . 353 at 250 lb , and 365 at 300 lb . per square inch. The actual efficiencies of steam engines, in
practice, must, for several reasons, always be considerably less than these figures indicate; the principal one being
the inevitable condensation in the cylinders. If, however, the inevitable condensation in the cylinders. If, however,
the various elements contributing to the reduction of the actual efficiency below its theoretically maximum amount
be proportional to the work actually done in the steam be proportional to the work actually done in the steam
engine, the form of this curve will still represent the relative efficiency of engines working with the different steam
pressures. From this we see that in advancing from 60 lb . pressures. From this we see that in advancing from 60 lb
pressure to 150 lb ., we ought to increase the efficiency by 19 per cent., or, what is the same thing, to effect an
economy of 16 per cent. The fact that an increase of economy is actually obtained considerably above this
amount, when using the triple expansion engine, shows amount, when using the triple expansion engine, shows
that this engine is working under conditions more nearly approaching to those required for the maximum efficiency
than the other. The spot A in Fig. 3 lying above than the other. The spot A in Fig. 3 lying above
the curve represents the height to which the efficiency has gone in starting from 60 lb ., if 25 per cent.
economy has been effected; while the spot B, still further above the curve, shows the similar height upon the assumption of an economy of 33 per cent.
It must be remembered, howerer, that every addition to steam pressure increases the temperature of the steam.
At 150 lb . the temperature is 366 deg. Fah., at 300 lb . it is 422 deg. When it is remembered that the boiler plates which have to transmit the heat to the water must neces-
sarily be hotter than the steam temperature, and that steel is considered to be untrustworthy when it is at what i called the blue heat, which commences at about 470 deg .
Fah., it will be evident that at a pressure of 300 lb . there will be less than half the margin between the stean temperature, and the temperature of untrustworthiness of
the plates, than there is at a pressure of 150 lb . per square inch, and only one-third of the margin there is at 80 lb probably be felt in the working of the engine itself, as enduranst endurance of cast iron will cease, and we may be nearer
that limit than we think. He believed that our friends the locomotive engineers found a limit of this kind in their cylinders at lower pressures than we are now working at, cynt they changed the method of casting them. There is until they changed the method of casting them. These
the further consideration that the higher pressures advance, the less margin there is to work upon in that
direction, as is evidenced by the tendency to flatten itself shown by the efficiency curve in Fig. 3. Mr. Parker mineral oil fuel. In every case in which oil has been muccessfully used up to the present time as a fuel for successfully used up to the present time as a fuel for
boilers, it is blown into the furnace and at the same time converted into a spray-or pulverised, as it is technically
called-by means of a steam jet, this jet being obtained caled-by means of a steam jet, this jet being obtained purpose of pulverisation has never been definitely ascerper cent. of the total production of steam in the boilers. mean that for every 92 tons of water evaporated for use in supplied from the sea. If this is supplied from the main 1000 I.H.P. will require about 14 tons of sea water say put into the boilers per day. What amount of scale this would produce he would leave others to calculate, but it is evident that such a system is wholly impracticable for
extended ocean steaming. It is, of course, possible to use an auxiliary boiler working at a comparatively low prese but this complication is not likely to be carried out When, however, the price of oil falls so low as to render Parker does not doubt that it will be easy to find means burn it, without employing steam to "pulverise" it. He believed the ultimate solution of the problem would be
found in the uss for the purpose of pulverisation. This paper was followed by a very brief discussion
which elicited no information which elicited no information of much importance.
It turned principally on the history of the use of high-
pressures at sea, the Thetis being cited pressures at sea, the Thetis being cited as an example of tendency of furnace crowns to come down, all the speakers seemed to be agreed that the higher the pressure the
greater was the tendency of deposit to adhere with stony hardness to the furnace crowns. There was
no time available for discussion, because another
paper-our notice of which we tust reserve until
next week-by Mr. W. John, manageer to the Bartow Shipbuilding Company, had yet to be read, and a latge
number of the members who had been specially invited by Messrs. Ismay, Imray, and Co. were due at a little after 1 p.m. on board the s.s. Germanic. For the remainder of Committee at the Grand Hotel, and at 2.30 p.m. a visit was paid to Messrs. Cope Brothers' great tobacco works in various processes of manufacturing tobacco and cigars of every kind. About 1000 women and 250 men are employed, and much care is taken by the proprietors to pro-
vide for the health and comfort of their employés. Later in the afternoon an official visit was paid to the Exhibition by a considerable number of the members, and at $7 \mathrm{p} . \mathrm{m}$.
the annual dinner of the Institution took place in the Institution building.

LETTERS TO THE EDITOR
 [We do not

SIR,-The Fontr-knot Ships.
Cass of light steamers of purport of my proposal for the creation of a
f 40 knots an houre of maintaining a valuabeed of 40 knots an hour, as a valuable and inexpensive reinforcement of the strength of our Navy, has been sufficiently described in my
former letterss to obviate the need of further explanation; but as your correspondent, Mr. Cleghorn, does not yet appear to be able
to discern the practicability of such a speed, it is proper that I should expend a few remarks in the hope of resolving his difficulty. Some years ago such a speed as 40 knots infivessels of any class experience with torpedo obats, coupled with the acquission of our
knowledge of the law that, in vessels of whatever size but of the same proportionate power, the larger vessels will always be considerably the faster, has so completely inverted our conceptions
of the probabilities of the case that the maintenance of the per-
sistent senticim able. If it be the case, as according to Reech's law it confessedly is, that by increasing the linear dimensions of a steamer four times,
with a proportionate speed, and if, further, , it be the fact, as it alsom confessedly is, that many torpedo boals realise a speed of over 20 knots , then it is plain
that we have only to enlarge one of these torpedo boats four times in every directionf to get the 40 knots we require. Nobody can
pretend that such an enlarged torpedo boat cannot be built, and with these points of knowledge before the pubirc, the onus mani0 knots, to specify wheroin lies the practicability of attaining the If we accept Reech's law, then, sofar as II am aware, the only objection of the least plausibility that has yet been mooted is, that
whereas the strength of the working parts of engies whereas the strength of the working parts of engines increases
imply as their sectional area, while the momentum strain put upon them by excessive speeds increases as the square of the outrun the strength that some of the parts will give way. To this the simple answer is, that it is not proposed in these engines more
than in any other engines to employ such excessive speeds as could lead to any such result, and in my last letter 1 specified severaa engines, which hard been working for years without accident, with be disposed to permit. I have already shown that up to such seeds as 1 propose to employ the effect of the inertia or momentum
of the working parts will be to equalise strains, and therefore to reduce rather than to augment those which are most considerable.
No doubt we have not any vessels yet working at a speed of 40 knots through the water, but we have innumerable examples of and it signififes nothing to an engine, so far as its strength is con-
cerned, whether the resistance it has to surmount is situated on the land or on the sea.
The accuracy of Ree
The accuracy of Reech's law as a measure of the resistance of ben conclusively demonstrated in this country by the late Mr .
Froud Froude. At page 5 o this obituary memoir given in the "Minutes
of Proceedings" of the Institution of Oivil Engineers for 1879-80, Part II., the following remarks will be found on this subject:-
"Mr. Froude's firss step in connection with his inquiries touching the resistance of ships was to enunciate the true principle of the relation of the resistance of a ship to her model-namely, that the
resistance is in the proportion of the cube of a linear dimension-in other words, as her bulk-at speeds proportionate to the square
root of the linear dimension. He demonstrated this matheroot of the linear dimension. He demonstrated this mathe-
matically, and by experiments with different sized models, some of e nearly half a ton in displacement.
arger in each a torpedo-boat as the model, then a vessel four times will be the breadth, and four times the depth; while her capacity will be 43 , or 64 times, her displacement 64 times, and her engine
power 64 times; but with these proportions her speed will be knots, then that of the larger vessel of thill be smaller vessel be 20 knots. In vol.
xxxix. of the British Association Reports for 1869 , and in various recent tracts and papers by Mr. Froude, ample information in regard to the accuracy and applicability of Reech's
law is afforded, and to these I refer Mr. Cleghorn if he should consider further evidence necessary in verification of the doctrine I necessary consequence that by the introduction it follows as a power, a speed of 40 knots will be practically obtained, and this
power may be introduced without employing such a speed of engine power may be introduced without employing such a speed of engine
as would jeopardise its strength and safety, or be otherwise inconvenient in any respect.
The two points, then, of the speed that will be generated in enlarged vessels by the introduction of the same proportion of power o tonnage which existed in the model, and the practicability of
running engines of the necessary dimensions at the speed required oo generate the power, are in reality the only questions requiring rest is all but leather and prunella." But as Mr. Mr. Oleghorn is
obviously of a different opinion, as he has raised various petty points which he may consider important, and as there may be some of your readers who participate in his incredulity, I propose to
offer a few words of reply to his various objections, which I shall deal with seriatim:-
First, "I now ask him to justify his remark" that in the engines
I propose to employ the evil of deficient strength would not be ncountered. - A. The best justification is the fact that multitudes of engines have been for years at work without fracture or incon-
venience in which the momentum strain upon the working parts is considerably greater than would exist in the engines 1 have
recommended. In my engines the momentum strains would not be quite as great as the eteam strains.
Secondy, I call attention to a diagram purporting to show the
ombined stresses due to the steam and inertio of the parts." This diagram is alleged to be erroneous in some respects -A. It was stated in the letter in which this diagram was given nore competent than I am to vindicate the relevancy of his ow
work. Whether accurate in all respects, however, or not, the law
created by throwing the steam on the piston in the case of an
engine working expansively, and to surrender in the second part of the half stroke the intercepted force, so that while the total force Is the same, the maximum and minimum will be so far equalised.
Among those who have given most attention to the subject of fast-moving engines, Mr. Charles T. Porter, of New York, has occupied an eminent place for many years. To him Mr. Hett'
diagram was submitted, and in a letter dated May 10th of the present year, while correcting an arithmetical error in Mr. Hett'
computation, he says, "Mr. Hett's diagram I have stated to be computat."
correct."
Thirdly, "Looking at Mr. Hurst's proposed engine, I first remark that a stress of 87 lb . per 1 lb . of reciprocating parts due to
their inertia assumes a connecting-rod of infinite length, and that that quantity would reguire to be increased. "A. In reply to this same objection, noted by Mr. Porter in his examination, Mr. Het
says, "The angle of the connecting-rod was not overlooked, but for the purposes of calculation the connecting-rod was assumed to be infinitely long," as by such assumption the calculation was
simplifed, while the ultimate result was almost the same. The aftectation of minute accuracy in such preliminary disquisitions a
the present is, it seems to me, little less than absurd. It is as i one made the objection that the distance between London and
Edinburgh had been given in miles instead of in feet, inches, and decimals of an inch
Fourthly, "The weight of the reciprocating parts will not be
under 61 lb . per inch of piston area, and the maximum load on the under 6 lb . per inch of piston area, and the maximum load on the
main bearings will
ste路 hea June 18th, reference is made to recent investigations by Mr
of
Risg Rigg regardng the inertia of the working parts of fast engines, and
it is concluded, on a review of the whole matter, that the weight of the reciprocating parts of those engines "cannot well be less
than 31b pers quare inch of piston." This appeared to me to be
a fair and iudicious estimate of the quantity in auestion, and a fair and
accordingly I adopted it as the basis of my computation. But Mr Cleghorn at onece doubles the quantity thus udaicially a arrived at
without condescending to offer any explanation of his imperial assumption. If such a style of controversy be permissible, any
thing may be proved or anything may be confuted feats of legerdemain the engineering community has no admira-
tion, nor will it accept Mr. Cleghorn's unsubstantiated dicta in lieu of proofs.
Fifthly, "His simple engines are to use steam of 200 lb . cut off sumption of fuel will certainly not be under 4lb. per indicated horse-power per hour." - A. I should certainly
than to commit the folly of recies of engine which woumd entail so orarge a consummption of auel as Mr. Clegh.orn
has specified, when all ordinary marine engines work with half this consumption, or less. But will any one suppose that I have din this? In my early letters I put donn the consumption at 2 lb . the weight of the reciprocating parts of the machinery so easily, it
will no doubt be an easy feat to Mr. Cleghorn to double or treble the weight of the coal
sion engines Mr. Hurst would have known something of their raison d'etre.". A. I certainly do not know, as the faot is clearly
otherwise, that the amount of power which is generated by a give weight of steam of a given pressure expanding through a given space it is passed, the result being the sa number of cylinders through which plished in one or in fifty. This was long a demonstrated by Mr. Watt when Hornblower's design of a compound engine first came out a century ago; and I should have expected that such an elementary truth in engineering science as the immaterial character of the
number of cylinders for the generation of the power would have fallen within Mr. Cleghorrs's cognisance. The compound system
has been several times revived, notably by Woolf. by Mesrs Simpson, of Pimlico, about forty-five years ago; in the compound
engines designed by the late Mr. David Thomson for the New Rive Whaterworks; and subsequently ty Messrs. Randolph and Elder who applied the method to steam navigation. The compound simple engines erected by Boulton and Watt, both having the same species of boiler, working at the same presssure. The performance
of each class of engine was ascertained by careful experiments, conducted under the personal supervision of the late Mr. Joshus
Field, and it was found that on the whole the best performance was got from the simple engines, and not from the compound. In words of my suggestion were that each serew engines; but the should be "driven by a triple expansion engine or by three simple engines," believing the nature o t the decision upon this head to be not very
material. Whatever style of engine were adopted, there would of course be adjustable expansion valves, which would cut off the beneficial. It will be obvious that where very high initial pressures of steam and large expansion are dealt with, the same ultimate
pressure is not to be expected that is due to the volume and pressure
weight; and this will be especially the case if the engine be also a
fast will be generating power at the expense of the heat in the steam, the emperature of which will consequently fall to a lower point
than if such power were not exerted; and if the engine is a fast of the expended heat can be recovered from the jacket. In regard to the strength of the hu material yielded by the numerous decks and bottoms of the small, it is proper to observe that while in all metals the tensile strength is pretty nearly constant for the same area of cut section whatever
the thickness of the metal may be, the strength to resist com-恠 very small when the metal is thin, whatever be the area of the cut section. We all pression strength being insufficient to sustain its own weight ; and experiments on the compression of rivetted rectangular iron tubes,
of the same dimensions as one another, but of different thickneses, quare inches the crumpling weight per square inch of section was 6786 tons, it
rose to 12.015 tons per square inch of section when the area of section amounted to 7.326 square inches. It follows from this that
the thick plates of the deck and bottom of the enlarged vessel will as the thin plates of the small vessels can be ; and as the compression strength is the weak place in small vessels, it also follows
that the enlagze hull will be twiee as strong as it would be if it that the enlarged hull will be twice as strong as it would be if it
inherited the special weakness of smaller vessels, arising from the inherites of specian weakness of
Such, then, are some of Mr. Cleghorn's most prominent contentions, and such my reply. The enterprise of establishing vessels
upon the sea which shall be capable of attaining a speed of 40 knots is confessedly one which will tax to the utmost our engineering
resources, but will not outrun them; and the importance of the general emulatit prestill be created amon sation of so beneficent a design. Mr. Mansel's thoughtful letter of June 4th is a contribution in this direction as it pointed out a want
of congruity between some of my figures, and estabished facts in his great perspicacity, for the speed and power from which my
figures were deduced I afterwards found were erroneous, and the rectified figures gave a result which more nearly accorded with Mr,
Mansel's estimate.
College of Practical Engineering, Chiswick, WHAs. F. HURST,

August 2nd,

AUSTRALIAN STRIPPER AND THRASHER. messrs, Hornsby iand sons, grantham, engineers.

-

)

 factured by Messrs. Mather and Platt, of Manchester. Type, manuin all eight machines, but only six are at work, the remaining two being spare machines available for any work required of them.Four are the 10 in . long size for an output of 105 volts, 320 amperes Four are the 10in. long size for an output of 100 volts, 320 amperes
at 750 revolutions per minute, three of which are employed for lighting Old London, the Hong Kong Pavilion and Tea-gardens, the vestibule and the Indian Palace sections, while the fourth is run at a higher speed to give 130 volts, and is used for charging the E.P.S. accumulators. It was on machines of this size that the efficiency experiments were made which we referred
mented upon in our issue of 5 th March, 1886 . We then showed mented upon in our issue of 5 th March, 1886 . We then showed
that a commercial efficiency of over 93 per cent. had been attained, and the satisfactory working of the machines at the Exhibition confirms the opinion we then expressed, for good efficiency shows itself not only in economy of power, but in good lasting qualities,
as power wasted is always more or less destructive. Two of the remaining machines are for an output of 55 volts and 280 ampères at a speed of 850 revolutions per minute, and are employed in lighting the Exhibition dining-rooms. One of these is the same machine which underwent the special test of three weeks ${ }^{s}$ uninterrupted run, the part
23'd January, 1886.
\qquad
Trials of Seed and Manure Drills.-An international competition of so wing machines, i.e., drills, is to be opened at Foggia All national and foreign inventors, constructors, and agents can take part in the competition. All agents, national and foreign, taking part in the competition are considered only as representatives of the constructors, and, in case of merit, the prizes shall be awarded to the latter. Co the competition are admitted machines to sow in rows and to scatter the seed, as well as those combined
both to sow seed and to distribute manure. An executive commission provides everything necessary for the success of the competition. The Commission is composed of the director of the professional school at Foggia, who is also the president, of a delegate of the provincial council, of a delegate of the municipality of Foggia, the Royal Economical Society of Capitanata. The prizes are as follows:-(a) A diploma of honour and the purchase made by the Ministry of Agriculture of five sowing machines the system of which shall obtain the first prize; (b) two silver medals with 200 Italian lire each; (c) ten prizes of so falian lire each to those driving and regulating the machines, and that shall give proof of having best learned their management. All sowing machines presented to the competition must be subjected to all the experiments prescribed by the jury both on flat and on hilly ground. All sowing machines that have already obtained a prize in other com-
petitions are admitted, but cannot obtain a new prize, unless they petitions are admitted, but can
present some useful alteration.
Junior Engineering Society. - On Monday, July 26th, this society visited the Royal Small Arms Factory, Enfield, by special permission of the authorities. The party were first shown the process of manufacturing the several parts of the new pattern Enfield rifle soon to be issued to the service, the manner of proving
the barrels for accurate boring and sighting being particularly the barrels for accurate boring and sighting being particuard
explained. The finished rifle apart from the stock was seen and fired with the usual test of a double charge. The various processes employed in the manufacture of the new pattern bayonet and sword, from the rough steel to the finished weapon as it leaves the polisher's hands, were then inspected, alcer which the visitors wore conducted to the shop contans of which were fully explained. The wood-working shops were next visited, and the turning of the gunstocks from walnut wood by means of Blanchard lathes was seen in course of operation, the rapidity with which the lathes performed their work attracting much attention; the time occupied or roughing on the forging machines, one being provided with tools sufficient to work up the rough sword blade or bayonet from the steel as supplied from the manufacturer to the proper thickness, width, and length, for machining. The visitors then entered the barrel-rolling mill where the barrels are passed in the rough bar at the proper hea for boring, three being rough-bored simultaneously, in which process the barrels revolve and the tool remains stationary. The finished boring takes place at other machines, the barrels are turned outside and rifled. An inspection of the 560-horse power main engine-by Fairbairn-brought the excursion to a close Society, the address of the hon. sec. is 64, Reedworth-street, Kennington, S.E.

ENGINES AND BOILERS OF THE S.S. MATABELE. messrs. hall, russel, and co., aberdeen, engineers.

LETTERS TO THE EDITOR.

 (Continued from page 107.)GRAPHIC TREATMENT OF MASONRY ARCHES, Sir, -As "A. S. H." does not accept my correction, will you
permit me to define in as few words as possible the limitation to permit me to define in as few words as possible the limitation to Taking first a three-hinged arch, Fig. 1, we can draw the equilibrium polygon at once, because as no bending moments can exist at the hinges A B C, we know it must pass through these points at springing only, Fig. 2, we know that the polygon, as before, passes through A B and intersects on W. But we cannot determine the point of intersection without calculating the ordinate y, when we can draw the stress diagram and find H , the horizontal hrust, or obtain it by calculation. The abutment reactions are those of a sim
the last case.

But when we come to the arch continuous at crown and fixed in except that it intersects in the vertical of W. Indeed, judging from the analogy of a beam fixed at the ends, we shdeed, judging that with a partial load there will be bending moments at the abutments, and that the reactions will not be those of a simple beam. To prove whether this is the case, we must calculate $y_{0} y_{1} y_{2}$, or find if the latter exist. To do this three conditions
are required, Let DE be ordinates to the arch, and D F to the

polygon, then the conditions are :- $-(\alpha)$ The sum of all products
 the arch must equal the sum of all within. (γ) The sum of proither springing must equal the sum of all within from the sam springing.
These three equations being solved, we shall find that most case of partial load produce a polygon as shown in Fig. 3. We can then, only draw the polygon and find H and the reactions, which ment of these equations of condition is far too long to give here

If "A.S. H." is not satisfied with my objections, I can only
efer him to the works of Greene, Dubois, Chalmers, \&c., for the refer him to the works of Greene, Dubis, is too often made in treating masonry arches; it is, in fact, making the polygon fit the arch by an arbitrary assumption instead of making the arch to fit the polygon. To obtain correct strains even caused by friction at the hinges, as they would probably be coniderable. This point does not appear to be noticed in the wor August 4th.

BULKHEAD DOORS.

SIR, -Now that the question of bulkhead doors is being ventiowing ideas of mine in regard to the construction of bulkhead oors. The sketch 1 send you will explain itself. The iron doo In case any water or force rushes in, from whatever side the pres sure against the door would make the door shut by itself, and the greater the force the more water-tight the door will press on to it

sides. The rims of the doors can be lined with india-rubber, and keep the door shut if wanted, and when the water closes the doo ky itself. The length A. B should be wide enough to let coalinen pass.
San José, Costa Rica, July 10th.

HORIZONTAL FRAMES IN SHIPS
SIR, - With reference to the letter of your correspondent
"Delta," diagonal iron bars such as he describes were habitually Delta," diagonal iron bars such as he describes were habitually
used in wooden ships. They were scored into the timbers within I do not see how diagonal frames of angle iron could be con
veniently introduced in iron vessels, nor do I think their presence would be beneficial. I admit the accuracy of "Delta's" axiom, that ships require greater strength vertically and transversely
between the longitudinal frames than is given by the skin plating of the ship. But this necessary strength is imparted by the bulkheads, and by a single strong transserse frame between every two bulkheads. Supposing the vessel to have five bulkheads, which is not an unusual number, then between each two there should be strong transverse frame in lieu of a bulkhead, and the horizontal
frames should run from bulkhead to transverse frame, and from transverse frame to bulkhead. By this mode of construction the necessary vertical and transverse strength would be afforded. The deck beams, in common with the frames, should run fore and aft, beneath the iron deck, and should rest on the bulkheads and transship so formed will be virtually a Menai tube, and will attain the consummation of possessing the most strength with the least materials.
Chiswick, August 2nd.

CORLISS VALVES,

Sir,-The Corliss valve has been so long in use for the admission of steam to and exhaust from the cylinders of stationary engines, that the question can be answered as to whether it has the best
form for its work that can be adopted. The sketch diagrams-not drawn to scale-given below illustrate the arrangement. Let A
be the cylinder, B , say, the port for admission, C the valve, D be the cylinder, B , say, the port for admission, C the valve, D
being the centre of spindle for twisting valve, the arrows showing being the centre of spindle for twisting valve, that arrows show F is
the direction of motion. Let it be supposed that the shell at F is to fit the same accurately. Now it is clear that the valve O having

motion given to it across the port B concentrically by the spindle D and its connections, the wear will be to increase the diameter of valve, somewhat like the diagram given below-for which the same letters of reference may be used as before-each surface producing a further departure from the true circle in proportion to the time. the best for keeping the circular motion of the valve as short as

and though the metal may be hard in both shel and valves, the wear will be as before noticed. The same tendency to destroy the true form is also in piston valves, when the outer
ring is set out with V-sbaped wedges and springs to fit the shells, a partially rotative motion is employed. Rochdale, July 27th. Thomas Spencer Sawyer,

TECHNICAL EDUCATION.-" BOOK ENGINEERS."
SIR,-I have read your several articles on technical education, I am afraid is a growing race in these latter days, viz., " engineers," or those who have subordinated practice to theory. have come across several of these lately, who can do any amount of abstruse calculation, talk glibly on the theory of motion, and or put a pump in order that refused to work. At the risk of being considered out of date and old-fashioned, I am strongly of opinion that, in technical education, practical technical instruction in the workshop is of far greater money-value in this practical age than or may not be found to accord in its results with absolute practice I do not wish it to be understood from this that I underrate the value of theoretical instruction generally; but in many engineering colleges I think that theory has been forced into undue prominence at the expense of practice. This may arise, in some
cases, from the Professors or teachers being themselves "book cases, from the Professors or teachers being themselves "book
engineers," and therefore more or less incapable of teaching anythingeers, and else. Another reason, probably, why theory is in the ascendant is the scarcity of really practical engineering books.
Many of the more recent books appear to have been written rather Many of the more recent books appear to have been written rather to show the learning and mathematical knowledge of the authors than to instruct younger men, who-when in business, at any rate
-have not the time, and perhaps not the knowledge, to work out with which or less accurate, but certainly very intricate, formulæ present time, there is ample scope for a series of books on the different branches of engineering science, written in a plain,
straightforward way, and in which we shall not have to dig down straightforward way, and in which we shal not have to dig down
through a mass of more or less "clever" but involved verbiage to get at the grains of practical information which may or may not be found below. In my own case, I may say I have been in business now some twenty years, and have found the greater proportion of the stuff I was crammed with at college absolutely useless. In urging tion practice receive at least as much attention in technical world owe its greatest inventions-to practical or theoretical men? take it there can be but one answer. M. Powis Bale. Appold-street, E.C., August 2nd.

HYDRAULIC PROPULSION.

Sir, - "Goahead's" letter of July 23rd, on hydraulic propulsion, is perhaps of a much more interesting nature than he is aware, muneration; but he, being an engineer, need not be reminded that
invention, and inventors are too apt generally-I speak from ex perience-to over-estimate the value of their ideas, and even when fair to they fail, are inclined to say that the trial has not been fair to the invention. But I don't say this to discourage, for, with
"Goahead," I believe, and have always done since W was launched, that some such mode of propulsion would yet tak front rank.
The Waterwitch, with all her faults, could nearly hold her
own with a sister screw gun-vessel own with a sister screw gun-vessel, and had her propelling system been arranged in a more scientific manner, so as to get rid of a lo
of bends in the piping, with its attendant friction, and so utilise fully the force of the water, this, combined with suitable trim of vessel, might have caused her to do so well as to have induced th commercial world to take the matter in hand, in which case the best adaptation would have been quickly discovered, as it is not to
be supposed that in Ruthven's invention the matter had reached finality. Just now, with the depression in shipping trade, it i needless to expect any company to take it up, but some of the wealthier men of the yachting world could do much for their own comfort and the benefit of science by fitting up some auxiliary yacht with hydraulic propellers and triple expansion engines, and screw; and only fancy the difference in having a nice clean-buil boat, with nothing to interrupt the flowing lines from stem to rudder when cruising-for projecting nozzles are not indispensable, and the water inlet can be so made as to close flush with bottom -with no screw aperture to spoil the steering of the vessel when a head sea, no shaft bearings under the after cabin floor, with their drawbacks; the circulating pump for condenser could be dispensed with, the machinery department would be compact and self-contained, and as nearly as possible silent when working. These and al the advantages detailed in "Goahead's" letter, may, I hope, induce
some of our yachtsmen to fit up a vessel, and I feel persuaded that even if they did not do better running than a serew steamer, they would find other advantages that would cause them to admit that the system was practically superior. But to bring this to pass it
would be necessary to place the work in the hands of a thoroughly would be necessary to place the wor
competent and unprejudiced firm.
It may be remarked that an exhaustive trial was made some few years ago with a torpedo-vessel, but the public learnt so little about the construction of the machinery, or about the matter generally, that I don't think the system deserves total condemnation on that
account. W. H.

THRASHING MACHINES
Sir,-Referring to the article in last week's Engineer on "Improvements in Agricultural Machinery," I beg to say that my
finishing thrashing machine-a full account of which will be found finishing thrashing machine-a full account of which will be found
in THE ENGINEER of July 6th, 1883-is neither so heavy nor so in The Engineer of July 6th, 1883-is neither so heavy nor so I amprepared to supply my machine considerably cheaper than any now in the market. Society of England to arrange a thorough trial with thrashing machines, but failed to induce it to do so. If any well-known agricultural society will arrange a trial, in which the points to be
decided should be efficiency, simplicity, durability, and price, I am decided should be efficiency, simplicity, durability, and price, I am in existence.
If you would kindly give this challenge prominence, perhaps
some result might be obtained, and we may be able to show some result might be obtained, and we may be able to show
foreigners, who assert that finality has been reached in English foreigners, who assert that finality has been reached in Englis
thrashing machines, that such is not the case. Queen Victoria-street, E. C.,

London, August 3rd.
A. W. Mantle.

FEED-WATER HEATERS AT NORWICH,
SIR,-With reference to Mr. James Atkinson's letter on the above subject in your issue of last week: Supposing that the tem.
peratures given are correct, viz., 200 deg. when the engine is peratures given are correct, viz., 200 deg. when the engine is
running empty, and 250 deg. with the work full on, Mr. Atkinson runging empty, and that there must be a mean back pressure of 181 lb . in consequence, but he does not take into account how much this is neutralised by the partial vacuum which is being created through
the condensation of the exhaust steam. As this raises a very the condensation of the exhaust steam. As this raises a very
interesting point with regard to the relation which the heat bestowed on feed-water should bear towards the heat to be taken
from the exhaust steam in order to produce the most economical results, I hope that you will be able to obtain indicator diagrams of this engine running with full work and when empty, in order that your readers may see what back pressure, if any, there really is, and form their own conclusions as to the most economical rela-
tions between heating the water on the one side and condensing tions between heating the water on the one side and condensing
the steam on the other. Cannon-street, London, E.C., July 29th.

SCREW PROPULSION.

Monsieur, - Vous avez publié dans les colonnes de votre journal un intéressant mémoire de Professeur A. G. Greenhill sur l'utilisaauteur, par votre intermediaire, une légère erreur qui s'est glissée dans le numéro iii. de ce mémoire inséré dans le numéro du 9 Juil. let. On voit au paragraph 31 que M. Froude a trouvé pour la con stante f la valeur 0.008 , d'où $\frac{f}{m}=0.004$, or M. A. G. Greenhill donne pour $\sqrt{\frac{f}{m}}=0.02$, tandis que cette racine est carrée est $0 \cdot 063$. Dans l'example cité au section $3 \check{5}$ le result serait done $0.063 \times \frac{4}{3}=0.084$ au lieu de 0.03 . Et les conclusions à en tirer rectification aurons sans do quelque intérét pour vos lecteurs.

Juillet.
SIR,-In your article on this subject in your issue of July 30 th, you end up by saying that, but he has not succeeded in sho wing that such energy obtained by means of a prime motor requiring luxurious-other it is not." You call attention to many points of great importance in your article, and I have not time for this week's issue to attempt to do justice to it in these remarks; but permit me now to say this, that the quotation I make from your article would lead many to suppose that you are of opinion that
electric power transmission from a steam engine is not practical and economical This would shut out tramways and light railways. There is no system existent of working tramways and light
railways so cheap as electric transmission, even though it be from railways so cheap as electric transmis
Take a system of tramways in a town worked by direct electric transmission-one steam engine station may operate many miles-
there is only one set of boilers and engines to look after. The coal consumption per horse-power is far less on a large stationary steam engine than on steam tramway engines, which, in addition to their high rate of depreciation, are letle coal eaters. In addition to this, 7 or S tons, or less, the electric motor weighs only a few hundredweight, and the net weight of rolling stock-and consequent wear and tear and necessary first cost of the road-is greatly reduced per passenger carried. Here then is a vast field for electric transAugust tth,
August th.
[Our correspondent is, we gather from his letter, in possession of figures which show the actual working cost per mile of electric railways. The publication of these figures would do more no doubt to carry conviction to the minds of his readers than pages of argugreat pleasure in publishing these figures if Mr. Ward will place the information he possesses at our disposal,-Ep. E.]

RAILWAY MATTERS

THE German rail works are losing heavily by the dissolution o the international
land and Belgium.
THE aggregate railway mileage of the world is estimated, at the
end of 1884, at 290,750 miles. Not less than 60 per cent, of the end of mileage of the world is in Eng Enish-speaking countries.
whole
Australia has the largest amount of railway acoommodation in proportion to population.
Ir is stated that the administration of the Prussian State Rail-
way has proposed to the Russina way has proposed to the Russian and Austrian Junction Rail ways
the making of mutual tariff concessions. Unless measures of an extraordinary kind are speedily taken, the iron industry of Silesia will, it is thought, be irretrievably ruined.
THE cost of the railway system of the world is estimated at
$£ 4,800,000,000$. The highest expenditure was in Great Britain, where it amounted to $£ 41,168$ per mile, as compared with $£ 24,797$ in Belgium, $£ 24,928$ in France, $£ 21,041$ in Germany-State rail-
ways- $£ 20,885$ in Austria, $£ 16,449$ in Russia, and $£ 12,650$ in the ways- 520,885
THE Rail road Gazette remarks that no less than five explosions
of hollow cast iron pistons have occurred in French workshops in of hollow cast ron pistons have occurred in French workshops in
the last twenty years in reheating these pistons-generally for the purpose of removing the piston rod. Investigation into the interior substance containing fatty matter, oxide of iron, peroxide of iron, been forced into the cavity in service either through the iron through imperfections in the plugs with which the original core
support cavities were filled. This water in forming oxide of iron set free its hydrogen, which filled the piston cavity. The recomproduce the explosion, and it is recommended that all such pistons should be tapped before reheating.
AT present New South Wales is expending three millions annually
permanent public works. More than 23,522 miles of commo roads are open, affording intercommunication with every part of the interior, and greatly facilitating the carrying of farm and othee in ten years on common roads alone, and construction is stil rapidly going on. Mail coaches run through every district.
During the last quarter of a century more than fitty miles of public
bridges have been constructed. bridges have been constructed. About 5000 miles of road are
metalled, 1600 miles are graded mountain passes, and the remainder, for the most part, drained and cleared, with bridges where reworked by steam, and the number is yearly increasing, notwith standing that many of the most important are being replaced by
iron and stone bridges. Every part of the colony is rapidly being Tw N.
THE North Shore Cable Tramway, Sydney, has been opened. It concrete throughout, excepting the longitudinal sleepers for rails. There are seven curves in the line, and the radii of these vary from
100 ft to 264 ft . At Milson's Point terminus the rope runs round a sheave 10 ft . in diameter, and along the straight portions of the line On the curves horizontal pulleys carry the rope, and these are fixed from 8 ft . to 16 ft . apart. At the crown of all streets where there are heavy down grades large sheaves are provided. The grippers
in the dummy pick up the rope at each end automatically, and no delay occurs in shunting from one line to the other. The cars will run at a speed of eight miles an hour. The ascent of the line from
Milison's Point to the terminus at the Reserve is equal to about and a similar rolling stock at present of consists of some eight dummies and each car sixteen persons.
THE capital invested in the Indian railway system, with its consum the Government have spent directly \&\&2,255,391. The capital othay or guaranteed companies stands at $£ 71,032,838$, and that or
the "assisted" companies at $£ 3,808,232$. Native States-the principal in this respect being Mysore and Hyderabad-are respon-
sible for an outlay of $£ 4,821,379$ on lines within their territories. When the construction of railways in India was first mooted there were esome who warned the projectors that caste prejudices would
prevent the natives from using them; but it is an antonishing fact passengers, who paid for their fares $£ 5,538,126$, In 1884 the number of passengers was $73,815,119$, and their freight was valued at
$\& 5,070,74$. The chief income of most railways, however, is derived from its goods traffic, and in this respect the Indian lines yield
more than doubbe the receipts obtained from passengers. No less than $18,925,385$ tons of goods were carried, the receiptsfrom whioh
amounted to $£ 11,915,375$. Both the tonnage transported and the returns show an increase over the iigures of the previous year, which was credited with a goods traffic of
therefrom amounting to $£ 10,565,941$.
Distrivor progress is being made in the task of completing the network of railways designed to cover the region separating the
Mersey from the Dee. from and above Birkenhead. A company,
named the Wirral named the Wirral Railmays Company, has acquired the Sea-
combe, Hoplake, and Deeside Railway, at a cost of $£ 112$, 450-the
line yielding 5 , line yielding 5 per cent. per annum-and all the rights and - privi.
leges of the Wirral Raiway Company, at their actual cost. They
have also secured the thr and the bridge over the Dee at that point will shortly be commenced by the Manchester, Sheffield, and Lincolnshire Company. Hoylake Railway, and from the Hoylake terminus to the jo jint These preliminaries having been effected at Birkenhead Park. company is to oonneot the Hoylake and New Brighton lines with the within eighteen months. Bridges and other works have been commenced, and rapid progress is being made in several directions
towards the completion of a series of lines which will be of incalculable benefit, not only to that part of Cheshire, bu
and Lancashire and the Principality across the Dee.
which occurred, on the 26thert hane, near Dalmally, on on the Callander and Oban Railway, when, as a special excursion train from Falkirk 75 , the e was running at moderate speed down an incline of 1 in
left sind the engines left the rails thewards the one if the carriages had left the re migha a few yare been a vefery serious they did,
as they would then have fallen over into a stream or on to a
deeply-cut
 Where a stone had been on this rail, crushed pieces being found on of a wheel flange running along the top of the rail. Eastward from this point there was, for a distance of about 60 yards, marks on been trailing along, striking the ground at intervals, and there can of the stay-rod on the left mide of the eaved by the trailing end
front of the first vehicle which left the ban immediately in front of the first vehicle which left the rails, which rod was found
to have become detached at the trailing end. It appears from
the evidence that it is not an unusual occurrence for these and other bolts and nuts to be found loose, and looking ar the serious
results in this case, the company is recommended to take steps to results in this case, the company is recommended to take steps to
have all such bolts properly secured by having the heads rivetted
over, or in some other

NOTES AND MEMORANDA.
THE increase in population in New South Wales in 1885 was 59,305, being almost equal to that of Victoria, Queensland, South
Australia, West Australia, Tasmania, and New Zealand combined. THE density of liquid atmospheric air has been found to be 0.59 from the
figure 0.6.
Coppre lodes are found in many parts of New South Wales. Some of the ores are extremely rich. The quantity of copper raised
in the Colony was 5746 tons in 1885 , valued at $£ 264,920$, against THE production of American pig iron in the first half of this year amounted to $2,954,209$ tons-an increase of 424,844 tons.
The stock in hand on July 1st was 470,421 tons, or 222,500 tons less than was in hand on the corresponding date of last year. The American Iron and Steel Association reports that this country will M. Coiladon suggests that the thunder-storm electricity generated principally by friction of air and water vapour During
a thunder storm, the rain-drops formed in the storm cloud descend y air to the earth, causing a partial vacuum, which is replaced caused by this movement is the principal cause of the generation of electricity.
To get an absolutely clear solution of shellac has long been a
desideratum. The National Druggist says it may be prepared by first making an alcooholic solution of shellac in the usual way; course of from twenty-four to forty-eight hours the fluid will hav separated into two distinct layers, an upper alcoholic stratum per-
fectly clear, and of a dark red colour, and under it a turbid mixtur containing the impurities. The clear solution may be decanted o drawn off.
M. Paimikri, the director of the Vesuvian Observatory, has succeeded in exhibiting the negative electricity developed when
steam is condensed by cold, and positive electricity liberated when evaporation takes place. A platinum shell is placed in communi-
cation with one of the plates of a condenser. The golden leaf is separated when a piece of ice is placed in the shell, and also when it is full of water if exposed to the rays of the sun. Nature says
the electricity has been proved positive in the first instance, and negative in the second.
A PAPER was read on the 12 th ult. on the relations that exist between the geodetic and geological sciences, by M. Faye, before
the Academy of Sciences. The author's remarks are intended on show that the distinction formerly drawn between these two sciences can no longer be maintained hus in geodesy, for not be considered apart from those incessantly modifying its relief. dealt with, onot from the egarding the Quatenarical standpoint, but from thation is special the attraction exercised by them on the seas.
AT a recent meeting of the Paris Academy of Sciences M. M. de Saint-Venant's manuscript memoir on "The Resistance o till the year 1885, a short time before the author's death, embodies historical, physical, and practical considerations regarding th
problem of the mutual dynamic action of a fluid and a solid, espe prolly in the state of permanence supposed to be acquired by their
cial novements. It comprises three parts, the firs of on solid bodies encountered by them ; the second showing theoretically that this impulse is connected exclusively with the "imper-
fection of the fluid," that is, the development of friction, which to be surmounted requires a higher pressure on the upper than on the tical calculation of the impulse experienced by a body in any in

Mr. W. FosTRR, jun., of New York, has succeeded in sinking shaft to the salt deposits of central New York. The shaft was sunk water which drips down the shaft. A $1_{\text {ting }}$ in. pipe removes all the water. The salt is remarkably free from impurities for refined salt sents the purity of a stratum 14 ft . thick, which is now being mined without hindrance from any causes. Other strata of salt were yound both above and below this one. The upper stratum was
reached at a depth of 991 ft ., and was so mixed with shale as to be reached at a depth of 991 ft ,., and was so mixed with shale as to b
unprofitable. The lower stratum was reached at 1047 ft ., and is there was also a 4ft, stratum of y within a distance of 200 ft, , not far from 80ft. of solid sale at a
depth of a little over 1000ft. below the surface. The shaft begins in Hamilton shale. The following is the record :-Shale, tofift.
 clear salt, $22 \mathrm{ft} . ;$ lime rock and shale, 28 ft ; second bed clear salt
4 ft ;
THE best wheat-growing districts in New South Wales are to be found on the table-lands, from 2000 ft . to 4000 ft . above the sea-
level. The fine quality of the wheat grown on the Australian continent is well known, and New South Wales can claim to proWales under grain crops, and the quantity of produce obtained in $1884-85$ were as follows:- Wheat, 276,250 acres, , yielded $4,203,394$ bushels; maize, 115,600 acres, yielded $2,989,585$ bushels s, barley,
70352 accres, yielded 148,869 bushels; oats, 19,4724 acres, yielded 425,920 bushels, rye, $1110 \frac{1}{2}$ acres, yielded 16,739 bushels ; milled
$118 \frac{1}{2}$ acres, yielded 1843 bushels; sorghum and imphe, 41 ares yielded 187 owt. The acreage and produce of hay crops was :-
Wheat, 86,584 acres, yielding 87,328 tons; barley, 2173 acres,
 green crop for cattle was:- -Maize, 6771 acres; barley, $3744 \frac{1}{4}$ acres
 quence of the prolonged dry season; but there is every reason for believing
recorded.
The principal telescope of the new Lick Observatory is approaching completion. Mr. Lick bequeathed $£ 140,000$, with the expres
wish that the observatory should be equiped telescope that could be manufactured. It has taken five years to have the lenses finished. They were made by a French house, cost
25,000 dols, each, and have been polished by Mr. Alvan Clarke, of Boston. They will be set in a steel tube 3ft. in diameter and
57 ft . long, and have taken more than two years to polish. The
observatory is situated on California. For the convenience of visitiors a road has been made
up to the observatory at a cost of $£ 15,60$. The contract for up to the observatory at a cost of $£ 15,600$. The contract for
mounting the 36 in. objective has been awarded by the Lick trustees telescoper is and be 57 ft . long, theveland, O ., for for 42,000 dols. The the the
the 4 Phe
sions are made by which it will be possible for the observer at the eyeneend of the teleescope to command all the possible motions, and
these same motions can also be controlled by an observer stationed these same motions can also be controlled by an observer stationed
on a small balcony 2 aft. above the flor. It it expected that the mounting will be completed in April, 1887, and that the glass will
be brought to Mount Hamilton and put in place some time during
the summer following. The total coost of the equatorial and dome the summer following. The total cost of the equatorial and dome
will be about 16,4500 dols.; the cost of the dome being $5,6,50$ dols.s the mounting, 42,000 dolss,; the vest of of the objome being 56,850 dolss,
thditional photographic lens, 13,000 dols,

MISCELLANEA
ON the 25 th ult. the completion of the 100,000 th repeating
military rife was celebrated in the Arsenal at Spandau, near militar
Berlin.
Messrs. Barford axd Prrkiss, Peterborough, have taken
into partnership their sons, Mr. J. G. Barford and Mr. J. E. S. into part
Perkins.
Sir T. Spencer Wriss, Bart., has accepted the presidentship
of the Sanitary Congress to be held in York, commencing Sep. of tember 21st.
AT the last meeting of the South Wales Institute of Engineers coalowners on economic washing, and remarked that in these days,
who When new motive powers were sought in electricity and in petro-
leum, too much caution could not be shown
THE National Lifeboat Institution has now 292 lifeboats under
its charge, and no less than 555 lives were saved last year from shipwrecks on our coast through its instrumentality. Pecuniary help is particularly needed at the present time, as, owing to the
badness of trade, there has been a falling off in the receipts. THR United States Government has authorised the building of
two 6000 tons armoured ships, costing $2,500,000$ dols. each, one 5000 ton swift cruiser, costing $1,500,000$ dols, and one torpedo boat, all
built of American steel. It also votes $3,178,046$ dols. to complete the our double-turret monitors now building, the armour and mate ing, and in addition 350,000 dolls. to build one dynamite-gun
cruiser. These votes are spread over three years, and $3,500,000$ dols. are available this year:
ares
THE members of the Association of the Birmingham Students of works of the Horseley Company, Tipton, when, amongst other wrought iron pipes for the Sydn Ayres Railway, and wrought iron pipes for the Sydney Waterworks, were inspected
with much interest. After the visit a meeting was held, when
Mr. E. Pritchard, M. C. Mr. E. Pritchard, M.I.I.C.E., was elected president, and Messss. J.,
W. Gray, M.I.I.E., C. Hunt, M.I.C.E., and W. S. Till, M.I.C.E.,
were elected vice. A NEW shaft is being sunk at the Channel Tunnel works, Dover. The shaft is only a few yards distant from the other pit, which
communicates with the whole underground works and submarine gallery. The work is stated to be of an experimental character with regard to the formation of strata in this district, taken place on the other side of the Channel that a mineral of valuable description may be discovered here. The shaft will be sunk
to the level of the existing shaft, a depth of 160 ft . Boring will then be continued about 6000 ft .
A NAPLESS correspondent of the Times remarks that three years have passed since the cholera made such havoc in Naples, and
since the King and his Prime Minister declared that no time should be lost in 'disembowelling' the city, yet the projects for the most important reforms have not yet been approved and the necessary
decrees await the Royal signature. A hundred times or more has decres await the Royal signature. A hundred times or more has
the Synndic been summoned to the capital to discuss some disputed
 lente' in Italy must be understood demand for bricks for building purposes in New South Wales is considerably in excess of the ries in that colony. Brickmakers receive from $£ 1$ 2s. 6 d , to \&1 10s. per 11000 ; bricklayers, 12 s . per day. Where employed in
connection with machine-made bricks, the remuneration is from 8s. to 10s. and 11s. per day. Pipemakers average from $£ 210 \mathrm{~s}$, to

THE rates of wages in the iron trades in New South Wales at
 1s. 2d. to 1s. 6.'; pattern-makers, 1s. 3d. to 1s. 6d.; boiler-makers,
1s. 2d. to 1s. 4d.; boiler-makers' assistants, 9d. to 10 10 d.; youths
1s.
 10d. to 1s.; dressers, , d. to 1s. 2d.; machine men in fittinc-shop,
1od. to 1 s. 2 d. Country blacksmiths receive from $£ 75$ to $\& 80$ per

THERE are reasons for believing, says the North. Western Lumberin the factories of the North-W West, white pine will not much 1onger be the only material used. Poplar is commonly thought of
as the most available substitute, and so it probably will be as long as it remains at anything like its present price; but there are othe facturer is now ming priming coat of paint, and sending them out to his regular
customers. They are said to give good satisfaction in every customers. They are said to giv
espect, and particularly in price.
GLass bearings and bushes for loose pulleys are being made by
Messrs. Powis Bale and Co. Mr. Powis Bale's description say hat with the object of reducing the working friction to its lowest and experimenting with various materials, he determined to try glass, and, being highly satisfied with the results in his early
trials, adopted it. "The bearings are grooved or crenated in suld a manner that the lubricating material is kept in circulation
between the top and bottom half of the bearings; at the same time, a current of air is allowed to pass through the bearing, thus
keeping it cool whilst in work." It might be expected that frictionLess hearings would not need ventilation.
THE Committee which has had control of the Birmingham
Corporation Gasworks states that the adoption of the three-lift system in the construction and erection of the immense new gas. holders sately built has effected a a saving of 33 per cent., besides a
reateconomy in space. The Committee will shortly report to the great economy in space. The Commitee whers and other extensions ust completed. Altogether amingham Corporation upon its gas-
been sanctioned by the Birmingham been sanctioned by the the commencement. Some time ago the
works property from
works were making a profit of between $£ 50,000$ and $£ 60,000$ pe annum, but now, in consequence of the decrease in t t
residuals, it is found difficult to make any profit at all.
TEE city of Breslau celebrated the 500 th anniversary of an
courrence which was memorable in the history of the town, and ocurrence which was memorable in the history of the town, and
is known wherever German poetry finds a home. The bell which angs in the southern tower of St. Mary Magdalen's church, and
named "St. Mary's bell", but is usually known as "the poo is named Sti, Nary s bell, but ans usualy known as "the poor
sinners's bell," rang out morning and evening on the 17 th of of July,
to remin all who heard it that it was cast on that day 500 years
ago. When all was ready for the casting, the bell-founder with. drew for a few moments, learing a boy in charge of the furnace
warning him not to warning him not to meddle with the catch that secured the seeth-
ing metal in the caldron. But the boy disregarded the caution,
and than terrified on seeing the molten metal beginning to flow and then territed on seeing the molten metal beginning to foow
into the mould, called bell founder for help. Rushing in
and seeing what he had intended to be his masterpiece ruined, as he thought, angered to madness, he slew the boy on the spot.
When the mould was opened, the bell was found to be perfect in finish, and of marvollous sweetness of tone. He gave himself up while his beautiful bell pealed an invitation to all to pray for "the

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

CONTENTS.

 $F_{\text {Le }}$ HANDLE. (Illustrated.)

 mission of Energy

 Scale
$\substack{\text { Litren } \\ \text { NTUR } \\ \text { NEW WARER }}$

HITRPsolet Exibition No. IV.

TO OORRESPONDENTS,

Abstract

* All letters intended for insertion in The Enginekr, or con taining questions, must be accompanied by the name and address of the writer, not necessarily for publication, but as a proof of communications. eannot undertake to return drawings or manascripts; we must therefore request correspondents to keep copies. inform correspondents that letters of inquiry addressed to the ases, be accompanied by a large envern, must, in all writer to himself, and bearing a $1 d$. postage stamp, in order that No notice will be taken of communications which do not comply

MACHINES FOR MAKING STRAW BOTTLLE CASINGS Sir,-Can any of your readers favour me with the serve to protect the small glass bottles ustraw casings or or envelold sapes maker which desire to purchase such a machine, and have exhausted the usual means of obtaining such info
Glasgow, July 29 th.

ADVERTIBEMENTS

THE ENGINEER.

AUGUST 6, 1886

groynes on shifting beaches,
There is perhaps no subject that presents greater difficulty to engineers than the designing of works to arrest
the travel of shingle. If the line of that travel were always
determinate-if the causes operating to produce it followed but in dealing with such agencies as wind and werienced constancy can be relied upon. It would seem therefore that the engineer whose advice may be sought to stay the denudation of any part of a coast line has to consider the means for arresting the travel of shingle from whatever quarter the wind may blow. But it must be apparen be wholly impossible to avert entirely the effects of a force so constantly shifting its direction of attack. We can co consider how far the maximum orevalent or most powelated during the winds most phich the demand which must infallibly be made when the attack come from other quarters, may be met in a degree which wil insure leaving of a residuum sufficient to guarantee safety o the coast it is desired to guard
The experience gained during many years of struggle with the ocean around our coasts has not enabled us to pass the limit of defence above pointed out. We must always be prepared to see the accumulations of one season very materially reduced during the next. That that reduc tion admits of modification there can be no doubt, and the works which have of late years been constructed on the Hove and Brighton beaches seem to prove that a material step has been made in advance towards our known means for extending that power of modification. The lapse of a sufficed to show the relative efficiency of the severa systems of groyning which have successively been tried and it is only after such a lapse that any conclusive opinio can be justly formed. As we have pointed out, the shingle which the currents may deposit during the pre valence of westerly-i.e., in the case of our southern coast -offshore winds is liable to entire removal from the effects of the south-westerly gales which are so frequently experienced, and with such violence, on those shores. It is not their ore until both the best and the worst have had effect how far measures adopted to retain the beach have served their purposed ends.
When Sir John Coode was called in to consult with Mr. Ellice-Clarke upon these works, the former authority differed from the latter as to the principle Mr. ElliceClarke had adopted with his groynes. These had been built at varying angles with the shore line following the
set of the prevailing current up channel, and their effect set of the prevailing current up channel, and their effect on the lee-side of them-to assist the run of the sea in the removal of the shingle on their weather side. They, in fact, no longer afforded "pocketing" for the beach brought by the prevailing currents, and their intended function
had become reversed. Sir John Coode appears to have somewhat compounded Mr. Ellice-Clarke's procedure in that adopted by himself, though it is possible that course was adopted only with the intention of saving the expense of entire removal of the groynes built upon the trending system we have named. But whatever may have induced the engineer to such a course, we now see that the roots of the groynes remain at their former angle, while their extenshore. This middle measure between the two systems of the respective engineers appears to have had rather suc-
cessful results, and it may prove that the divergence of cessful results, and it may prove that the divergence of
opinion, and the adoption of a composition of those systems, opinion, and the adoption of a composition of those systems, Coode's changed line of extension has afforded a deeply embayed pocket for the lodgments of shingle, the lee trend of the roots has evidently done much to prevent that scour
behind them which has always proved such a difficult behind them which has always proved such a difficult groyning. We could not fail to perceive to what a very considerable extent the varied trials experienced during the past twelve months had left a residuum of beach, and we came to the conclusion, on the occasion of a recent
visit, that the engineers have now secured the certainty of a good shingle protection for the base of the fine of a good shingle protection for the base of the fine
sea-wall recently constructed at Hove. Without some such protection the best designed and best constructed of sea-walls must be always exposed to the chance, at least, of injury; and howeve soldaly our inest breakwaters are berm of some sort or other upon which the mass of incoming waves may be broken somewhat before striking the solid masonry and digging at its footing. In the case of the Hove wall we may now say that this. provision for safety has been secured by the run over the shingle, which all waves must make before they strike the wall itself
Hove works, we still have to refer to the comparative foilure whis, n the Brightoprect th aterd the crors made time we have rifect of the foreshore. The lapse of ingular phase in the history of the Brightone ra singular phase in the history of the Brighton beach. The the combined front the easter and western extrenities of might more fully be termed-assumes in a considerable degree the crescent form. While the western turn of that degree the crescent form. While the western turn of that
crescent has been subject to attacks of late years which have now been successfully guarded a against, the eastern horn-whether as the result of extensive past groyning at that spot, or from occult natural causes, it is impossible to decide-has experienced a large accession to its formerly hollow of the crescent, deepened as this is of course by the pushing out of the artificial works on the Hove or western horn, and the extension of the beach at its eastern extremity above named, that the full action of the sea is now experienced, and we scarcely exaggerate when we say wall there is practically no beach left. It is at thi poin that remedial measures have to be adopted, and it is interesting to note the result of the commencement with these which has already been made. We wish we could
nay that any prospect is apparent of these fulfilling their intended purpose ; but we see no evidence to justify
us in doing so
While against each groyne there is a the whol of the very slight deposit of beach, nearly a run of coarse sand right have named is stilecut earth bank, upon which have been built the new rnamental gardens and band kiosk. The danger we before pointed out as threatening this site appears to us to have become greatly intensified by the increased embaying given to it by the seaward extensions named above of the extremities of the crescent. Several timber groynes have now been run out at this threatened point but, as above remarked, they have had apparently but little effect. It would seem that the shore is now too deeply embayed to permit the current to sweep the travelling shingle within the line of their influence. It is doubtful if this difficulty can be overcome unless these groynes receive extension much more to the seaward than they at present reach. At all events, the bareness of this embayment proves that they fail to arrest any shingle within their present limits. A trial has been made with a novel system of groyning which has in its theory received much intelligent support, viz., that of open groynes. Several of these have bolid character. Thwe spaces between those of a morvals of some 8 ft . or 10 ft ., which are united at their heads by timber railing at a height of about 6 ft . The open spaces are filled in with vertically placed iron rods spaced some 2in. apart. It is held by those who have advocated the use of this description of groyne that they would retain true larger and more solid shingle, while their open conrevcion, permitting the free passage of the water, wond prevning trat breakage and heavy wash of the sea when case of solid groynes does so much to remove the shingle. he action of such groynes must, however, necessarily be slow, and as yet they have secured but a trifling amount of shingle. Assuming their principle to be correct, we yet or its develo their present poreased embayment we have spoken of, and the consequent throwing more seaward of the line of travel of the passing shingle, must, we fear, militate as fully against their successful trial as it apparently does with the groynes of more solid type. But it is certain that, as adding to our knowledge of possible means for meeting the difficulty named in our opening remarks, the works commented upon possess a particular value. These works are in the hands of able engineers, and we yet hope to see their efforts result in success extension of the present design.

the panama ca

If undaunted courage and bold defiance of all adverse circumstances could insure success, it might be safely nhed that the Panama Canal will be actualy complete till not the slightest doubt this point M. de Lesseps has the slightest doubt, and on the question whethe M. Rousseanal can be carried out, he has the support of Government, an eminent engineer, whom the French lementent sent out to investigate the matter. Anothe has within the past week completely regained the cosseps解 influences the shareholders. As against these promising cheme he want of money. It has been said that with time men, and moneney. It has been said that with tainl be carried oney, this gigantic undertaking cance, but th time is limited by M. de Lesseps' reiterated assertions that three years will be sufficient, and the necessary money had to be subscribed. In this state of things, it is worth while to glance at the latest spect of the subject without going far into the past history of the venture, which is now an old and familiar story. With a view to replenishing his exhausted coffers M. de Lesseps rather more than a year ago endeavoured to
raise the $£ 24,000,000$ then required by means of lottery debentures. This plan, however, involving, as it did, an Act of Parliament, gave an opening to his opponents, o which they took full advantage, defeating the Bill in the Chamber, after first causing a year's delay. In the meantime, as will be remembered, M. de Lesseps, accompanied by a number of experts and delegates, went out to Panama
in order to see precisely the condition of the work-with in order to see precisely the condition of the work-with
the object, of course of reassuring the French people. As the object, of course, of reassuring the French people. As
we pointed out at the time, more than one adverse report we pointed out at the time, more than one aaverse repore
was hurried over by some of the party; and since then was hurried over by some of the party; and since heen issued to proved that the scheme had already broken down In face of these their was not surprising the lay ; but at last M. de Lesseps has himself spoken out, and the project is once more in the ascendant. At a meeting of the shareholders held last week in Paris M. de Lesseps presented his report, from which we wil make a exe report states first that the upon their own merits. the rorks since the beginning has total net expenditure on the works since the beginning has
been $471,000,000$ f., and that the amount of shares and bonds is $712,000,000 \mathrm{f}$., leaving a balance of $241,000,000 \mathrm{f}$., $147,000,000$. of which consist of uncalled-up instalments on shares, $13,000,000 \mathrm{f}$. of such instalments on bonds, from time to time about the heavy mortality among the workmen; but M. de Lesseps asserts that the death-rate wast year was only $5 \frac{1}{4}$ per cent., "which is not more than last year was only 5A. per cent., "which is not more than
the average of mortality on public works in Europe." He admits, however, that among the victims have been some of the chief engineers. Having bestowed a few hard hits upon his adversaries, whom he describes as "little more than speculators," M. de Lesseps quotes a number of qualified authorities to show that traffic of at least $7,250,000$ tons a year, yielding a revenue of at least 108,000,000f., may be confidently expected from the canal, and then turns his attention to the question of quantity of matter to be excavated. The first estimates, he says, put the amount at $75,000,000$ cubic metres - the assumption being that
there was a large quantity of granite to be removed at a
cost of $1,200,000,000$ f.; but subsequent experience showed
that the ground was by no means so difficult to work, and that the ground was by no means so difficult to work, and canal, sloping sides could be made, and that would increase canal, sloping sides could be made, and that would increase Next he explains that the programme of execution decided upon was this. A canal of 9 metres below the average
sea level, bottom width of 22 metres; a direct trench open to the sky between two seas ; a chamber with a flood-gate on the side of Panama; ports at Colon and Panama; a bar at Gamboa And then, in order to refute the cona bar at Gamboa. And then, in order to refute amount o material already exponenated, he points out that the rate of extraction increases with the use of improved machinery trate this argument he mentions that at Suez, with $75,000,000 \mathrm{~cm}$. to be extracted, while $25,000,000 \mathrm{~cm}$. dicted that twenty years would be required for the remainder, the other $50,000,000 \mathrm{~cm}$. were extracted
in two years. In like manner he shows that the in two years. In like manner he shows that the a month in 1882 , to $658,090 \mathrm{~cm}$. in 1885, and to
$1,079,000 \mathrm{~cm}$. a month during the first half of this year. From this he argues that with a monthly output of
$2,000,000 \mathrm{~cm}$. next year, and $3,000,000 \mathrm{~cm}$. in the following years, the whole of the $110,000,000 \mathrm{~cm}$. may be ex-
tracted and the canal completed by July, 1889! By a similar process of reasoning he deals with the question of cost, pointing out that the greatest expense is that of The rest is only a matter of fuel and wages, and remarking than half the expense has been paid, he again points to Suez as an analogy, stating that in that case, while the
first third of the excavation cost two-thirds of the total expense, the remaining two-thirds cost less than half the first $50,000,000 \mathrm{~cm}$. cost. So, he contends, it will be at vincing to the meeting, that the report was adopted with enthusiasm and absolute unanimity. The loan was issued a few days ago, and it now remains to be seen whether whether it will evaporate, as was the case in regard to the Manchester Ship Canal. Whether the canal, if made, will pay, is a problem that must remain open for at lea
years, M. de Lesseps' calculations notwithstanding.

sir edward watkin objects to the ship canal.

 Sonewhat late in the day, it must be admitted, Sir EdwardWatkin has been criticising and condemning the ship canal Speaking at the last meeting of the Manchester, Sheffield, and Lincolnshire Railway Company, he vindicated that company from the charge of having-in common with other companies-
opposed the canal, except so far as was necessary to protect the interests of the concern, and he was pleased to say next that
personally he was in favour of an improvement in the water personally he was in favour of an improvement in the water that gracious concession, he denounced the canal scheme not
only as a delusion, but as the worst engineered business he had known during forty years' experience. Why was it a delu
sion? Because, he averred, the public had been grossly
deceived as to the financial part of the matter, had been told that Messrs. Rothschild would provide the capital at 1 per cent., whereas all they had undertaken
to lend their name, and only charge 1 per cent. upon any
capital subscribed. The scheme having failed so far, would capital subscribed. The scheme having failed so far, would
never succeed, he predicted, for the capital would never be
raised. But the worthy baronet is yet more severe upon the engineering question and the effects of the canal. It seems tha holds that the first thing to do is improve the entrance to th port of Liverpool. There is danger enough already, he
observes, of the bar being silted up; but if this canal be
carried out, and the channel down which the silt narrowed, the bar will certainly be choked, and sirt passes i port will be destroyed. Therefore the canal ought not to be pany had better wind up the concern at once before they become remedy for the disease which Sir Edward offers. Nothing so simple as keeping the bar well dredged will suffice. A more
heroie plan must be followed, and that is to simply cut across the "Birkenhead peninsula," and in coming out in deep water he is satisfied would effectually avert the chance of failure of access, or any other impediment to the commerce of the port.
Sir Edward Watkin is a man not easily abashed or daunted, and he has a place among railway financiers, but he is not renowned as an engineer; and, at all events, the "Birkenhead
Peninsula "is pretty well occupied, and the inhabitants might
object to being "cut through" thus unceremoniously even if object to being "cut through" thus unceremoniously even if
the ship canal did ultimately collapse. Meanwhile the canal company is not daunted by one failure, but is taking fresh
steps, which it intends shall succeed, to raise the requisite shoal of replies, and at last Mr. Daniel Adamson, chairman o On the financial part of the controversy he declares in the first place, that he never doubted Messrs. Rothschild's capacity to get sulted in Lancashire and in London. Then he says Messrs Rothschild themselves have not lost confidence in the project,
and no doubt, when the critics have done their worst and the conviction of subscribers has become more firmly established,
they will, if solicited, lend their aid to secure the money
required. As to the failure to obtain the sequr required. As to the failure to obtain the capital, Mr. Adamson
attributes that mainly to the fact that four days were not suffi-
cient time to raise the money condition was imposed by Messrs. Rothschild explains that that thought four months would have been a more reasonable time, he acquiesced because of their great experience. The prospectus
issued he says, was the work not of Messrs. Rothschild, but of the company's directors. In reply to Sir E. Watkin's allegation
that Mr. Adamson had stated that Messrs. Rothschild had undertaken to find the capital upon a commission of one per
cent., he says that is entirely untrue, for no such statement was ever made by him. "I took great pains," he says, "at the first
half-yearly meeting of the Manchester Ship Canal Company held in February last, to mane it clear beyond doubt to the
shareholders that Messrs, Rothschild undertook only to finance
this matter-to put it through their house as a financial enter-
prise; and as compensation for their services and experience they were to be paid a commission on the capital that they secured a
the rate of one per cent. This was established by the prospectus, hen they asked the public to subscribe $£ 7,250,000$, which ogether with the $£ 750,000$ already subscribed in the Man hester district, made up the $£ 8,000,000$ required for the canal.
Mr. Adamson then criticises in caustic terms Sir Edward Vatkin's claims to engineering knowledge, his motives and hi past action in the direction of the Manchester, Sheffield, and inectors ons enailway, and in conclusion he says, disappointed, and to some extent discouraged, they are not seriously disheartened nor dismayed; and, after a thorough investigation of the prospects and chances of further Lancahire support, they hope to lay before the public such evidences of real determination that this great waterway will be carried
out as to influence the outside investing public to come in and out as to influence the outside investing pubric to come in an support it, not only as a necessity, but as a nationar undertaking factured goods to every country under the sun.'
the bucharest turret competition.
Major Movern has published a pamphlet in which he reviews the publication of M. Von Schütz on the Bucharest competitive discuss this revian in detail because we did not so discuss M. Schütz's work, on which it is framed. The account given in The Enarvier was partly based on a number of French and German publications-many obtained directly from those most
interested on each side-and partly on information very frankly iven by our own British officers who were present throughout The trial, and who had no reason to be prejudiced in favour of features specially characteristic of English armour, while as to internal fittings, there was nothing to provoke any bias that we re aware of. Major Mougin's pamphlet is ably written. It wishes to reply to the German reports. Without allowing ourselves to be drawn into the details of the controversy, in which Major Mougin exhibits the characteristic smartness of his nation, we would give his final summary in an abbreviated form, which is as follows:-(1) From an economical point of view it nust be admitted the universal practice of putting two guns in
cupola is right. (2) Complete control and accuracy of fire is a cupola is right. (2) Complete control and accuracy of fire is
absolutely necessary. (3) The interior mechanism must be independent of, and separate from, the turret wall, so as not to suffer from the necessary deformation of the latter under fire (4). The Schumann cupola does not satisfy any of these con
ditions ; practically for curved and delicate forms of fire it ma be considered as providing only a single gun. (5) The French necessary conditions. Doubtless it was on this account the Bucharest Coinmission rejected unanimously the Schumann cupola and accepted by six votes against three the French one.
These conclusions are ably expressed. We are inclined to agree generally with 1,2 , and 3 , though it is amusing to find a French micer insisting as a fact on the universal adoption of two guns in such an axiom, we should feel that we ought to account for the universal adoption of single guns in all the fixed turrets in the rench men-of-war. The question of guns in barbette towers is o nearly related to the other that we could not have ignored its treatment in an opposite sense by the designers of all the most authorities as the models we ought to copy absolutely.
Undoubtedly Major Mougin is right, and especially so from his point of view, to insist on efficient fire from two guns. The weakest feature in the German design is the fact that the recoil
of the first gun fired rotates the turret to which it is rigidly attached, and throws the fire of the second gun wildly off the mark. This forms the gist of the conclusions. Nos. 1, 2 , and 3 , ver almo we agree in a great measure. Major Mougin, how think admirable. It is, as regards armour, an improvement on the German rival cupola. The form is almost identical. It is however, made wholly of wrought iron and keyed together with
out bolts. The German turret armour behaved very well, with the exception of its bolts. This one has no bolts to fly. The steel face plate on the German turret became detached. Doubt less it is calculated to throw off projectiles which glance, but a y some that wrought iron alone would have acted better Altogether it appears as if Major Mougin had formed conclusion Itogether it appears with those we expressed in our article April 16th last. It is not our object to discuss how far each design retains its identity after adopting the features displayed e Frenc and German turrets would be very similar in all their prineipa eatures.
the improvement of the tees.
On Monday last, the 2nd inst., the Tees Conservancy Comrough and Stockton, and of the South Stockton Local Board, together with a number of the most influential payers of dues, to accompany them in steamboats down the river Tees, in order ccepted the works in progress there. About a gensant run was made to the South Gare breakwater. There the party anded and examined that important work. been and of enormous size and strength There is a parapet all round or the protection of persons going to and fro to the lighthouse Encircling the end of the pier enormous blocks of concrete have been deposited in a helter-skelter fashion, the object being to break the force of the waves and to prevent any displacement tructure is is itself composed of solid concrete through which
then vertical piles pass at intervals. The light is of the dioptric kind flashing at brief intervals. A short way back from the light-
house is the dwelling of the light keeper and the fog-signal ouse. In the latter is a steam boiler and a clockwork arrange ment, whereby a powerful fog-horn is sounded when needed his breakwater and on the bar, which is a little further out, i now 18 ft . at low water spring tides. Thirty years ago, when At high water spring tides there is usually $33 f t$., and at high water neap tides 30ft. Up to Middlesbrough Docks there is at present a minimum low-water depth ofter point is for the present this is completed, dredging will be continued further up the tream, and a minimum depth of 14 ft , may be eventually
expected as far as there are wharves on the banks of the
iver. On the northern side of the estuary, exactly opposite the South Gare breakwater, may now be seen the North Gare breakwater in progress. It has not yet been carried to a
point where any engineering difficulties have been met with. As soon as it is completed, the entrance to the river will be comparatively narrow, and the depth of water on the bar will then probably be deepened and widened, so as to make it one then probabiy be deepened and widened, so as to make it one
of the best harbours of refuge on the East coast. Already Clarence and near the dock entrance. At thepe place to Port 4000 tons burden, and fully laden, may lie afloat at all times of the tide. Further inland from the fog-signal house on the South Gare breakwater, the Government are building a torpedo
house and station. The object of this is to provide means of protecting the entrance of the river in time of war against the approach of an enemy by means of torpedoes. These arrangepleted. After inspecting the works described the party pleted. Atter inspecting teamers and took a cruise out to sea as far as Hartlepool. Something like a scare took place a few weeks ago lest the large quantity of slag which proceeds daily to sea to be tipped at a point about three miles from point. Soundings were taken, ard it was found that the depth at one place had diminished very considerably. Still,
as at the shallowest place there was 60 ft . of water left, there was evidently no ground for immediate alarm. As a precaution, however, the precise locality where tipping is permitted
is now changed from time to time by order of the Commissioners' engineer, so that any undue accumulation in one place is prevented. The steamers then brought timissioners have to the wooden building and other accommodation. A sumptuous banby thas thereround ready, and the morning's work, supplemented ortune it happened that the Trinity House steamer, Galatea, on a voyage round the coast, entered the river just at the same
time as the other steamers, consequently Captain Ladde, who commands, and General Sir George Bourchier, who was on board, disembarked and joined the company at the fifth buoy by Mr. Fallows, chairman of the works committee This gentleman is actually ninety years old, and yet holds perhaps the most mportant and responsible position amongst the Commissioners. His memories of the past history of the river were most enterworthy of a man one-fourth his age. The party returned to
wats Middlesbrough at five o'clock, well pleased with the way in which the large revenue of the Commissioners was being laid out for the benefit of the trade of the river and the district.

sliding scales and wages,

Ir is now an open secret that the coalowners of the North propose in at least one instance to endeavour to have an alteration have not given that relief to the employers which it had been hoped would have been given in periods when coal was generally alling in price-whether it is because the collieries selected to ascertain the selling price from are the best of their class and command the highest price in the market, need not yet be discussed. Taking the Durham ond trade as instance, we find that for the irst three mon 5 the present year werage realised price was close upon 5s. $\frac{1}{2}$ d., and the then prevailing
rate of wages was reduced by $1 \frac{14}{4}$ per cent. The succeeding report of the accountants has just been published, and the price is now reported for the second quarter of the year 4 . $4 \frac{3}{2}$ d. per then long period-during the current quarter-the coalowners will have no further relief, and whatever may be the fluctuations of wages in other parts of the coal-producing area, the associated coalowners of Durham will have had this year only the small reduction of $1 \frac{1}{4}$ per cent., though there is no doubt that it is nuch less than the reductions whis Scotland. Thus the trade is in a market in coallelds such as hoh was wase are maintained, and it naturally gravitates to the districts where coal is cheapest, other things being equal. If the sliding scale system is to continue it should give to the coalowners as full a reduc-
tion when times are bad as they could obtain in the open market; and it ought, on the other hand, to give obtain. Its use is simply to adjust wages to the state of trade cheaply, quickly, and without a suspension of labour. As the state of the coal thade is much worse now than it was at few months to an extent sufficient to induce the coalowners of the North to apply for special relief to the railway companies, it from the sliding scale we have instanced. Possibly it may be that the slowness of the working of the scale system may be to blame for the fact; but it remains. If that is the reason, there could be a more frequent audit than one of three months. In of two months, and that quicker record is now approved; but in any case the basis of the sliding scale in the coal trade will be proposed to be altered, and it is evident that if the system is of the case. No system can long retain the basis of wages above that of neighbouring districts without great harm being done to the trade, and in the end to the wages and prospects of those employed in it. In the next few months there is time to fully discuss the merits of the case and the needs of the situation; but it is apparent that the sliding scale will need to reflect the
fluctuations of trade, favourable and unfavourable, if it is to continue.
the navies of the world.
A most important Return, asked for by Lord Charles Beresford, has just been made public. The Return shows in detail and Greece. The value of this Return depends on its accuracy and trustworthiness, and concerning these points we are not question of speed, it will be found that the information supplied is vague, and may be misleading. For example, we are told that the speeds given are measured mile speeds; but we have no Most ships make many measured mile trials, and very different results are obtained. Some of these trials are made with much modifies the results materially. We shall have occasion to return to the consideration of this paper, which meanwhile we commend to the attention of our readers interested

LIT ERATURE.

Modern Steam Engines, Described and Illustrated. By Joshu Rose, M.E. Henry Carey Baird and Co., Philadelphia
Sampson Low, Marston, Searle, and Rivington, London. 1886 THE above is but a brief epitome of a very comprehensive title-page. The book is a handsomely got up quarto, but as the margin round the letterpress is $2 \frac{1}{2}$ in. wide at top the sides, it will be readily seen that the dimensions of the olume might easily have been reduced without detract grom its appearance or utility. There are 318 pages of letterpress and engravings, divided into twelve chapters, with a table of contents and an index. The author in his hose who desire to acquire a knowledge of the construc tion of modern steam engines, and to thoroughly understand the distinguishing features of each class of engines and their most important parts." The book is illustrated by 422 engravings
In very many respects this is a thoroughly good and een written by a practical man. If we are reluctantly constrained to comment adversely on two or three thing contained in it, thereby implying that it is not perfect, we only say that it is a human production. Fortunately praise in it. Some of our criticism is directed must be borne in mind, not against Mr. Rose's book but against certain details of American practice. First, ad therefore misleading tille is somewhat hexact arious forms of valves and valve gears, as well as cer tain forms of automatic cut-off governors. Certainly, the valve gear is a most important feature of a steam
engine, but it is not the whole of it. The first chapter is evoted to a rudimentary description of the plainest form of direct-acting engine with a simple slide. Diagrams of its valve and excentric, with curve tables showing the proportionate areas of opening of the supply port at different of diagrams for designing valve motions or mechanisms and shows very clearly in the simple examples selected the manner in which the obliquity of the connecting rod affects the relations between the respective relative posi-
tions of the crank pin and that of the piston. This is a very important point, and needs to be thoroughly compre hended by all students of the steam engine. We doubt i it is universally understood, even by engineers, as it should
be. Had Mr. Rose rested content with his simple diagrams, he would have done well; but, unfortunately for the practical character of his book, he has followed in Zeuner's track, and indeed quotes and refers to him. So against Zeuner, but he is far too mathematical and abstruse for the practical hurry and worry of busi ness men or drawing offices in the present time. Mr,
Rose in some of his diagrams for setting out laps, leads, \&e., gives five circles, one of them fulfilling the double duty of representing the throw circle of the excentric to one scale, viz., full size, and also the path of the
crank pin on a proportionately smaller scale. Of the other four, one is called the exhaust lap circle, another the steam lap circle, while the two others are called the valve This is very confusing. In another diagram he introduces much more complication than there Zeuner's, examples of whose methods he gives. Engiand that supply and exhaust take place at the least want to plot out curves of gear they do not in the points in the stroke; whatever they are they cannot be altered. Besides, the study of such complex diagrams chief-at least on and head chier-at least, of an English engineering departmentheads of most pupils or apprentices. All that can be plotted off on Mr. Rose's elaboration of Zeuner's diagrams can be done just as well with two circles, or even semi circles, one showing the path of the crank pin and the We will turn now to point
England have long since discard design which we in would not answer their intended purdery because they is the balancing of slide valves. Mr. Rose gives an illustrated description of the Buckeye engine valve. It is a rather peculiar arrangement. The main valve is hollow, and two plates, connected together by a pair of rods, work within it, being actuated by means of a spindle moving inside the tubular spindle of the main slide. The steam gets access to the ports through a cylindrical opening at is prevented from acting to force the valve to its face by a modification of a plan often tried in this country, and of the valve by a spring, and fitting a cylinder in the lid of the steam chest. This piston rests on the planed back of the valve, and no steam can act on the area covered by
it. Two of these are fitted to the Buckeye valve contrivance never worked well in this country, because, as fast, and then unequal expansion and wear soon edily sticks between the piston and the back of the valve; therefore no good effect is derived by using the contrivance-unless, frequently. Another point of American and adjusted relieving pressure of slides on their faces, is in an encine called the "Straight Line," from all the lines of the bedplate being straight. The slide is much shallower than put in the chest, one at each side of the Two bars are exactly the same depth as the valve. The valve works between them, and over both valve and bars is laid a elsewhere on the back of the valve. Its face next the valve has certain recesses, and the double ports in the
valves correspond with these in such a way as to give
double supply and exhaust openings at the proper times In fact, for the slotted valve, and the theory, of course, is that the pressure of the steam on the valve as ordinarily fitted forcing it to its face and causing so much friction, is taken on the side slips only, keeps all the faces steam-tight, but causes no friction.
The mode of piston packing adopted for this and other pistons had best be described in Mr. Rose's own words:--The piston packing is constructed as follows: The rings ightly in the grooves, and faced off even with the pisto surface. The joint openings are made very narrow, and as the joint faces are horizontal"-by which Mr. Rose means that the ends are so bevelled as to be feather edged as the rin place, therefore these openings do not increase sper parts open out to compensate for the wear. The heper parts are made one-eighth of an inch larger than the bore of the cylinder, and sprung into their places, and wo parts, the ring will conform itself much more readily and correctly to the cylinder bore than is the case when the ring has a single split." We must altogether dissent from Mr. Rose's reasoning here. His premises are incorrect, because the ring is not in two pieces. On his own as to enable it to be faced-in a lathe, we presume It is therefore in no sense part of a packing ring. The other portion of the packing is not a ring, it is only a segment and as such, of course, it will conform to the cylinder bore but forasmuch as that the greatest wear takes place o the lower part of the cylinder and piston, the result wil be that the cylinder will have a groove worn in it answer ing to the fixed block, which, being of an ever reducing adin, will wear the cylinder more unevenly than it utside radius is always the same by a proper ring whose Besides this, is always the same however much worn. he piston round a little in the cylinder from time to time as thereby wear of ring and bore might be more equalised, in the plan described this could not be done if it is neces sary to keep the block always below
There is a number of simple and excellent diagrams showing how to set out valves, excentrics, and their fittings, both for single valves and for separate cut-offs. Nothing can be better, and the influence of the obliquity of the connecting rod is clearly shown. Various forms of separate cut-off valves are illustrated and clearly explained. A good deal of space is devoted to the illustrations and explanations of what Mr. Rose calls "wheel governors," of which he gives a number of examples. These governors all ction, some of them acting by shifting the excentric round the crank shaft, thereby altering lead and time of cut-off while others operate by moving a slotted excentric across the shaft, altering its throw and the travel of the slide. portion of the book is devoted to a description and etting-out of various link motions, both for reversing motion and for cut-off expansion gear, the Porter-Allen Theing very completely described.
The latter part of the book gives general particulars of number of types of American engines of the fixed order. Various modifications of the Corliss gear are
described, condensing engines and compound engines, high peed engines, one or two forms of pumping engines, and xamples of marine engines, all British types, are illus precludes our noticing Mr. Rose's book more fully in recludes our noticing Mr. Rose's book more fully in detail. The subject matter is clearly expressed and free rom perplexing formulæ. We have already criticised th iagrams. The engravings with one or two exceptions are book might, as we have said above, been reduced in super book might, as we have said above, been reduced in super-
ficial size with advantage. The student, and even the professional engineer, will find much in it worth study.

An Introduction to the Differential and Integral Calculus, Examples of Application to Mecha
Millar. Blackie and Son. 1885.
This little work is deserving of recognition from engineer tudents, because it embodies an effort to provide them examples of the the principles of the calculus" and in practice. The value of such a work has long been admitted, and Price, Hall, Tate, and De Morgan wrote more especially with a practical end in view, rather than in the fashion of other, perhaps better known authors, lik Todhunter, Williamson, \&c., whose books are preferably number ore larg tages of collegiate training and therefore the advanexpected to waste their time in "getting up" the thousand and one dodges for examination work. They require information which can be directly applied in their practice purpose which like the multiplication tables in arithmetic, must be known by heart, and the nomenclature are explained by the aid of examples that are eminently practical. The clature of the subject, then to explain the rules of differ entiation giving practical examples of their use. That the differential of a maximum or a minimum is equivalent to , is next shown and applied, concluding the first part of on the integral calculus. One misprint may be noticed here :-10 and 5, p. 11, line 15, should be 2 and 1 ; and paragraphs; thus line 2, p. 13, reference to paragraph 7 is quite sufficient, without referring to paragraph 12, p 19 that on differentiation. The latter half of the book is devoted to the application of the calculus to areas of sur-
faces, trigonometrical ratios. We would suggest as a useful addition, without adding much to the size or cost of the
book, that one or two similar, but unworked examples practical given immediately after every welieve the thoroughly understand all that is said, but when put to the proof fail to obtain the wished-for result. A similar example to be worked will, when worked, assist to impres more forcibly each step of the argument and operation.

NEW WATERWORKS FOR LEEDS.
During the last few years many of our largest towns have been driven, as we have at various times pointed out, to increase and to an increased consumption by factories, mills, and othe works, as well as an increase in the allowance per head for
domestic use. Manchester, Liverpool, Glasgow, Oldham, and many other growing centres have obtained Parliamentary power ago the existing works were constructed to supply three million gallons per day; the inhabitants and the consumption have per day are now required, and the demand is still growing. This amount reaches Leeds mainly through a tunnel passing under Blackmoor Ridge from Eccup, and considering that this
aqueduct has already been made to do three or four times the service originally intended, it is obvious that a first step towards increasing the supply is an enlargement of, or Water Committee have for many months been giving seriou and Mr. Bateman the those gentlemen upon several schemes submitted to the com mittee and upon the question generally. From these reports it appears that the average consumption per head per day in Leeds is at present thirty gallons, or twice the average twenty-five years ago. Thirty gallons per head these eminent engineers umption hate, and the population. But taking a period of thirty years to come as the basis of calculation, and assuming the population to then number
700,000 , they suppose the consumption to amount to 21 million 700,000 , they suppose the consumption to amount to 21 million
gallons a day. They do not think it necessary to provide for a longer period in advance or a greater quantity, very wisely observing that by that time the circumstances of the case may mode of carrying into effect these ultimate extensions may not be advisable, or even practicable. Having visited the ground and the existing works, they state in their first report that no parallel difficulties exist either to constructing a new tunnel speak favourably of all the schemes submitted so far as ially one by Messrs. Filliter and Rofe-but they discard them all, because none of them seems to meet in the simplest, cheapest,
and in other respects the best way, the practical requirements of the case. In lieu thereof they submit a scheme unneceir own. "We are of opinion," they say, "that it is even to meet unforeseen contingencies, than twenty-five million gallons of water per day, and for this purpose a 6 ft . tumnel, conthe existing tunnel, will be amply sufficient. A tunnel of this size and this inclination will, indeed, pass forty million of gallons
of water per day; and we are also of opinion that, including its pproaches at both ends, a tunnel of this dimension may be to landowners, or any special constructions which they may equire." In the instructions from the committee they were present supply to the the absolute necessity of preserving the quality as well as quantity to be meant, they express the opinion mpossible to preserve the "quality" of the water intact manner enlargement of the present tunnel by the means, and in the that a new tunnel, amply large enough, and quite independent of the existing one, should be constructed, and at such distance from the p
injurious p
njurious percolation from either. For this purpose, and on account of the dip of the strata, they are of opinion that the ne, and at about 100 yards distant therefrom." Finally, they submit for consideration the question whether in the construction of a new tunnel it would not be well to make it with a smaller inclination than the present one. If this were done, and the lower or discharging end were kept at the same level as at present, it would have the advantage of drawing the water
from the Eccup reservoir to a greater depth, and so increasing its available capacity. A tunnel of 6ft. clear diameter, having
fall of only 1 ft . in a mile, may be relied upon to discharge fall of only lft. in a mile, may be relied upon to discharge
upwards of twenty-five millions of gallons in twenty-four hours, and may be completed by an energetic contractor in twelve months or thereabouts. In the Loch Katrine scheme for Glasgow last year, we may incidentally mention a second queduct was adopted as the best means of increasing the supply some questions to Messrs. Hawkesley and Bateman, one of which was this, upon the last point in their report:ion of a tunnel with a gradient of only 1 ft . in a mile, if no alteration is made in the present level at the outlet, the Corpo-
ration could only pass about $12,000,000$ gallons of water per day through the existing 40 in . main to the Weetwood filter beds whereas, having regard to the present rate of consumption, whieh exceeds that quantity, and to the probable future require provide for a daily supply through the 40 in . main of not less
han $15,000,000$ gallons." To this they replied, that having bee informed that the 40 in . main delivered $12,000,000$ gallons per ower at or near the existing outlet, the now alleged quantity of $12,000,000$ gallons can be increased to $15,000,000$ gallons withou
involving a considerable loss of storing ability in the Eccup reservoir. This remedy, they add, would be worse than the disease; and then in answer to the inquiry how they proposed main, they say it is obvious that this end can be attained by means of an additional cast iron pipe or pipes eventually
capable of conveying from the outlet of the new tunnel to
Leeds as much water as will complete the full quantity of $25,000,000$ gallons per diem. The present 40in. pipe is stated to convey about half the stated quantity of $25,000,000$ gallons; the
other half must therefore be conveyed by one or more other pipes. There the matter for the present rests, but it is highly probable that at the earliest moment possible Parliament will be Bateman's scheme

THE LIVERPOOL EXHIBITION.-HIGH-SPEED ELECTRIC LIGHT ENGINE.
messis, robey and co., Lincoln, engineers.

THE LIVERPOOL INTERNATIONAL EXHIBITION.

No. IV.
Messrs. Robey and Co. send an interesting collection of their well-known engines, including a horizontal engine especially intended for electric lighting, and provided with Proell's automatic expansion gear, which was fully illustrate 1 and described in The Engineer on August 7th and
known to need description, and the firm have now turned their attention from agricultural to nautical matters, and exhibit a small vertical boiler and engine intended for use on board fishing smacks for hauling in nets, everything being made as simple as possible, and all the working parts are well protected.
Messrs. Simpson and Denisons, of Dartmouth, who Messrs. Simpson and Denisons, of Dartmouth, who
have made the construction of small steam engines for
rotary engine, though it is not a rotary engine in the ordinary sense of the word, as the motive power is obtained by means of a reciprocating movement; still, as every part of the engine with the exception of the bed plate and bearings rotates, perhaps the name is not misapplied. The engine consists of a cylinder placed at an angle of forty-five degrees, and supported at one end by a trunnion through which the steam is admitted and exhausted, and at the

December 11th, 1885. A high-speed engine, which is illustrated at the top of this page, is intended principally for working electric light machines on board ship, but is equally suitable for any purpose where great power is high steam pressure, and may be run at from 150 to 250 revolutions per minute, and it is well furnished with means of self-lubrication. When used for electric lighting it is mounted on a cast iron bed-plate, as shown in the drawing one end of which carries the dynamo; the base plate is provided with lugs and adjusting screws, so that the driving belt can be tightened without stopping the machinery. Robey's compound special semi-fixed engine is too well-
yachts their speciality, have two exhibits, one in the main avenue and the other in the Machinery in Motion Court

KINGDON'S ROTARY ENCINE.
One article in the latter exhibits is certainly the curiosity of the Exhibition. It is called Kingdon's patent

END VIEW OF CYLINDER AT B.B.
HOWING PORTS \& PASSAGES TO OPPOSITE END

THE LIVERPOOL EXHIBITION.-MESSRS. CLARKE, CHAPMAN, AND CO.'S STEAM WINDLASS.

the cylinder C^{1} and the bottom end of cylinder C^{4}, as for the Lancashire and Yorkshire Railway to the designs prominent among them is the stand of Messrs. Clarke, shown by the arrows. The exhaust at the same time of Mr. W. Barton Wright, the locomotive superintendent Chapman, Parsons, and Co., of Gateshead-on-Tyne. The passes from the bottom end of the cylinder C^{1} and the top of that company. This engine is of a similar type to that most important of their exhibits is a small steam windend of cylinder C^{4} through port E^{4}, then through the illustrated in the supplement of The Engineer of June lass, over three hundred of which have been supplied to centre of valve D to the exhaust at F. There is only one 11th, but the dimensions are slightly different, the follow- steam and sailing ships. The principal features of this valve in the engine, which is marked D , and it does not rotate, but is controlled by the lever G, which is held in position by means of the quadrant H. By moving this lever the engine rotates in either direction, stops and reverses with remarkable ease and rapidity. The action of this machine is extremely curious, for although the motion of the pistons in the cylinders is an ordinary reciprocating one, the entire momentum of the engine is rotary. The cylinders are not likely to become grooved in working, as the pistons have a spiral movement in one direction when travelling forward, and on the return stroke a similar motion in the other direction, the effect being that the cylinders be-
come evenly polished by the opposite motions. Any required opposite motions. Any required degree of expansion can be arranged for by the form and position of the
valve, and drawingsare given show valve, and drawings are given showThe cut-off can be forms of valves. The cut-off can be varied to any extent while the engine is running. compact and light, and works at a very high rate of speed with very very high rate of speed with very can prove whether thisence alone can prove whether this engine is regards the consumption of steam and durability of working parts In the main avenue these makers show a yacht's steam gig 25 ft long show a yacht's steam gig 25 ft . long
by 5 ft . 6 in . beam, carvel built, of mahogany, fitted with Kingdon's mahogany, fitted with Kingdon's engine, double $\frac{1}{2}$ A size, with two $1 \frac{1}{2}$ in high-pressure and two $3 \frac{1}{2}$ in low-
pressure cylinders, and Kingdon's pressure cylinders, and natural draught koiler, and fit denser, suitable for carrying on a yacht of outside conupwards. The weight of this boat is " 8 cwt , and the machinery, including the boiler is only the same weight as the hull, making a total of 16 cwt . A yacht's dingey, 16 ft . long and 4 ft . beam, is shown, fitted with a smaller engine and boiler of the same description. A larger engine with a 4in. highpressure and 10 in . low-pressure cylinder is exhibited without a hull. These engines are all sur-face-condensing, the condenser being formed of solid drawn copper tubes of D section placed outside the boat, which are connected at the forward end with the exhaust pipe and at the after end with the air pump. It is stated that a vacuum of 25 in . is easily obtained with these condensers. The boilers are somewhat unusual in design ; they are vertical, and the diameter of the steam space is considerably greater than that of the water space, which is said to entirely prevent priming; and although it gives them a topheavy appearance, the centre of gravity is really very low. The engines are beautifully finished, and from this cause, and their diminitive dimensions, they attract a good deal of attention. The boats are fitted with propellers on shafts having universal joints, and by means of a lever rudder formed of two brass alates thing through the lowered below the keel or raised above it in shallow water. Messrs. Sharp, Stewart, and Co., of Manchester, have sent a bogie passenger tank locomotive, built by them

PEPPER'S STEERING GEAR.
ing being those of the engine exhibited at Liverpool :Inside cylinders, $17 \frac{1}{2} \mathrm{in}$. diameter by 26 in . stroke ; leading carried on bogie with wheels, 3 ft in. diameter;; hind end

wheel base, 7 ft .7 in . ; total wheel base, 22ft. 11in.; heating surface of fire-box, 90 square feet; and of tubes, 935.4 square feet ; capacity of tanks, 910 gallons; weight, empty,
44 tons 3 cwt. ; in working order, 53 tons. Fitted with the automatic vacuum brake.

Steam winches and steam steering gear form a very prominent feature in the machinery in motion court, and windlass are the spring riding and a special form of friction cone used for obtaining the lifting purchase. The special advantages of these features are shown outside the building near Galloway's boilers. Here Messrs. Clarke, Chapman, Parsons, and Co. have placed one of their steam windlasses with a boiler attached under a pair of sheer legs. From the top of the sheer legs one of Martin's anchors is suspended by means of a chain attached to the windlass; while the anchor is being lowered rapidly the brake is suddenly applied, so that the momentum of the falling anchor may show the manner in which the riding springs relieve the windlass and cable of all dangerous strains when a vessel is riding at anchor in heavy weather. The Pepper diagonal steam steering gear is of a substantial and simple character, though somewhat bulky; it is readily accessible in all its parts, and is fitted with chain barrel and spur gear. A special eature of the machine, which is illustrated here, is a novel form of slide valve of a double D type, steam being admitted into one or the other chamber according to the way it is desired to run the engines. This arrangement has been found to possess many advantages over the piston valves which are troublesome to keep tight. This steering gear ccupies but little space in a fore and aft direction. It is manufactured by Messrs. Robert Roger and Co., of Stockton on-Tees, who also exhibit a model of their patent rudaer holdfast. As will be seen on referring to the annexed engraving, it onsists of two ratchets of semicircular form bolted to the deck; two palls are attached to the quadrant on the rudder head. These pawls are held up by means of chains such a position that they may be unhooked such a position that they may be unhooked
without any risk of accident to the person employed. In the event of the steering chains preaking, both pawl chains are unhooked, when the pawls will drop into the ratchets beneath them, and hold the rudder securely in position. It may happen that the position of the rudder when thus held is one which would throw the vessel out of her course. In this case one or other of the pawls may be lifted, allowing the rudder to move by the action of the sea in the required direction, while the other pawl being in gear, will prevent any backward movement.
Messrs. Vosper and Co., of Portsmouth, have in the main avenue a steam life cutter, as supplied tike that of the lifeboats of the Lifeboat Institution, is of mahogany, and in two thicknesses, the inner plank being diagonal, the outer fore and aft, with linen and marine glue between the planking. Teak fittings inside of double thickness form seven air-tight compartments on each side of the boat, in addition to the air-tight compartments at the bow and stern. A deck is fitted forward and a platform aft, each adapted for carrying a gun. Under all reasonable circumstances, it is claimed that this boat is unsinkable with all her machinery and gear on board. The machinery consists of a double-cylinder engine of the high-pressure
type, having cylinders 43in. diameter, 5in, stroke, steel
multitubular boiler, with oval furtace and brass tubes. multitubular boiler, with oval furnace and brass tubes.
The total weight of the boat and the machinery complete
 has been provided by Messss. Merryweather and Sons,
who have furnished two steam fire engines, one manual engine, and a large number of small hand pumps, buckets,
sc. Owing to the elevated site of the building, the pressure in the water mains is extrememely small, and it has beenfound advisabe to provide several small manual pumps,
eacht ob be worked by four ment, the suction pipe to be
connected to the hydrant on the water main, the pump connected to the hyrant on the water main, the pump
thus acting as a pressure augmenter." The stean fire
and engines are of the well-known types made by Messrs
Merryweather, one being on the Greenwich pattern used by the Meatropolitan Board of Worke and the Corporation
of Manchester, the other being of the direct-acting pattern adopted by the Corporation of Liverpool and other large Lancashire towns.
When describing the double-bogie carriage exhibited by
he Lancashire and Yorkshire Railway Company, it should have been mentioned that one of the bogies of this carriage rests on eight of Messrs. Pooley and son's locomotive
engine balancing tables. These tables, eight in number are arranged in pairs, and so adjusted as to to give separately the weight distributed on each wheel of an eight-whee tions are dispensed with. They are fitted with hydraulic automatic indicators, giving a total maximum indication action of the indicators under the control of one person.

THE STRENGTH OF STEEL AND WROUGHT IRON GIRDERS.
The following is printed by permision, and is abstracted from a

 deffection was prevented by four angle irons which supported the
horizontal flanges sideways. The sale
pan at the extremity of

 calculated, but with the above strain they became equal to itt

 metallic surface without any blemish which could explain the "On the 19 th and 20 th of Maroh two longitudinal girders of the

 first of these girders was loaded to a alcollated tension of 152 tons
per square
indh -24 kilogs. per square millimetre. The
towe

 square inch -12 kilogg. per square millimetrei The deflection then
was but small; the fracture could not easily be found, and the
 20 hilogs. per square enillimetre-a rent was disor sered in one of 22.2 kilogs. per square millimetre -caused the pewer flange plate

 plate and angle bars were fractured for the third time. The girder
with its
lower the augmenting load until a strain of 24 tons per square inch- 37
kilogs. per square millimetre- had been reacheod, when total frac ture ocourred. Immediaterly after this parts of the broken girder
near the fracture were
drilled out and
submitted to toests in pression and tension. These last gave satisfactory results on th.
whole, indicating an ultimate strensth of 38 tons- -60 kilogs.${ }^{t}$

 three steel ongeitudinal beams were tested at the Union Works.
near Dortmund. The beams were supported at their extremities on steel rollers resting on piers of masonry, and were loaded by
dead-weights Laid on a
a four rods. In order to place the weight on the platotormsilowly
and without shaking, the rails, which served as weights, were first laid over an iron beam placed on each side, and arranged to be
lifted or lowered by means of sorews. The lifting or lowering fixed in ordeed to trate of of in, par minute. Four angle irons wer
 on the botom flange by direct measurements, and on the top fange

 per square inch -33 kiloss. per square millime tre-were left on for
some minutes before
soliding to them. The three girders tested

 per square inch - 38 second girder tested stood a tension of 24.1 tons had increased to 25 tons per square inch- 40 kilogs. per square
millimetre-the platform was found to be unevenly loaded. Before millimetre the plat form was found to be unevenly loaded. Before
it could be lifteded provious to readjustment, \mathbf{a} snap was heard, and rent found in the lower angle bars on the overweightee side of
he liat ment, and a a eoond fracture wase found in the tower angle bars
the irder broke in two when the calloulated tension had reached the girder broke in two when the ealculated tension had reached
27.9 tons per square inch -44 kilogsa per suare millimetre. In

 metro- without any alarming symptom being obberved, the
actual surpassed the caloulating deflection howerer to a coniderable extent. As soon as the total load, amounting to 144 .8 tons 147.03 . kilogs. - had been imposed, and the tension had
attained 22.9
aten
then metre-the girder broke in two with a loud report. A rent in 2
ower anlle.bar, and a crack in the vertion we wee ditonered.
 warning senppo or reports were hearr. The dimensions of the coross
jirders had been calculated on the understanding that the extreme amina were not to be strained beeonde 6.34 tons per suaare inch10 kilogs. per square millimetre. The four steel girders, tested at
Dortmund, broke when the ealcolataded strain amounted to three and -half times this tension. The ultimate strength of the steel was found to be over $38 \cdot 1$ tons per square inch -60 kilogs. per square
millimetre. Whereas wrought iron girders bear a load in the centre without breaking or showing signs of shearing in the rivets, till the calculated tension in the extreme lamina approaches the limit of train reaches only half that due to the direct tenacity of the steel he different authorities on iron and steel manufacture declare that they had encountered phenomena which they could not explain, and it was determined to extend the experiments by means of some rejected girders of larger dimensions, which could
be cheaply obtained. These were made of soft steel, of hard steel and of wrought iron, and it was also determined to ascertain the ngly the following beams were experimented on:-Twenty longitudinal girders intended for the bridge across the river Waal at Nymegen. The component parts of three of these girders were
annealed before rivetting, while two of the girders were nivetted but bolted. Three cross-girders, three rivetted girders hree rivetted girders of soft steel as above; three rivetted against tension of $47 \cdot 6$ tons per square inch- 75 kilogs. per square millimetre - was prescribed, and an elongation on
fracture of at least 14 per cent. The requirements for soft steel - 50 kilogs. per square millimetre-and an elongation with fracquestion arose as to whether it would be practicable to anneal the rivetted steel girders without injuring them. From the steel
manufacturers in Westphalia no satisfactory answer could be
obtained; consequently an investigation into this important matter became necessary, and one of the pieces of a girder broken in testing was used. It had a length of 13ft. 6 in . -4128 millimetres-and centre lines were marked, and the width was measured on each side of these lines at distances 10 in , - 2 гu centimetres-apart. All rivets The girder was then laid on its side in a roomy annealing furnace, which had been heated for thirty-six hours, and was considered to
have attained a temperature of 1112 deg. Fah.- 600 deg. Cent. Care was taken to prevent sagging by packing with stones. The inserted and packed. To prevent unequal cooling the furnace was fired for five minutes after closing the doors, after which all openings were bricked up, and all joints and cracks were thoroughly The girder was left for sixty hours in the furnace, and was by that time completely cooled. It was then taken out and laid on the ines. The girder proved to be warped over its full length; the $0 \frac{1}{8} \mathrm{in},-51$ millimetres-and 5 zin. -16 millimetres-from the
original centre line. The web was buckled in several places. The cutting off one of the rivet-heads a slight layer of dust was found between the plate and the rivet-head. With other rivet-heads this phenomenon was not observed. The red lead, with which the
girder had been painted, was partly burned, and partly remained in flakes adhering to the metal. The deformations were so great fixed or strutted during annealing no satisfactory results could be expected. The results of the
(To be continued.)

LAUNCHES AND TRIAL TRIPS

The powerful dredger Gilbertson, lately launched by Messrs. Fleming and Ferguson, of Paisley, has now been set to work cutting ook place last week in the presence of Mr. Garlick, engineer for Committee; Councillor Atherton, vice-chairman; and a number of ther gentlemen connected with the Corporation of Preston. The powerful machinery has no trouble in dealing with it. She filled a
350 -ton barge in twenty minutes, and the representatives of the corporation who were on board expressed themselves highly satis-
fed with the manner in which she did her work and with the Mal parts of the machinisy ghout the vessel. Milding yard on the Clyde a torpedo cruiser, named the Destructor,
designed and built by them for the Spanish Government. The
vessel is the first example of a new type of war ships, and in her
design are several noteworthy features. The special function the design are several notewortry features. The special function the
cruiser is meant to discharge in naval warfare is the capture and With a high sub speed, she will at the same time have ample accommodation for 350 tons displacement, and will be propelled by two sets of triple expansion engines in separate compartments. The boilers, four
in number, are of the locomotive type, and each, like the engines, occupies a separate water-tight compartment. The machinery is protected by steel plates, 1 倠in. to gin. in thickness, and as a
further protection the coal bunkrs are arranged round the engine
room. For destroying torpedo boats the Destructor will rely room. For destroying torpedo boats the Destructor will rely
chiefly
on the eleaborate and quick-acting armament with which and two revolving Hotchkiss cannon, and aft four 6 -pounders, all of which can be fired at the same time, and on either side of the
ship. She will carry five torpedo tubes, two forward, one aft, and one on each broadside, and a 9 -centimetre gun, which is capable of an almost complite all-round fire. Her magaines are wel
below the water-line, and are fully protected. She has a threeof the masts and spars can be hinged down and stowed on the deck in about three minutes. The offcerss quarters are orward and are very capacious. The quarters of the crew are aft, and by an
ingenious contrivance their bunks are made to act as a complete water-tight inner skin to the vessel
On Tuesday afternoon Palmer's' Shipbuilding and Iron Company,
Jarrow, launched the first of the new class of belted cruisers building in private yards for her Majesty's Government. Great preparations had been made for the launching of the vessel, which was number of ladies and gentlemen. The Orlando is the first of seven vessels that are being built of this type for her Majesty's Navy, Both hull and machinery are built by Palmer's Company. The following are the dimensions of the vessel:-Length between
perpendiculars, 300 ft ; ; breadth, extreme, 56 ft. ; depth,
moulded, 37ft; normal draught, 21 ft ,; and displacement, 5000 tons. The when working under forced draught, and will maintain a speed of
19 knots. The Orlando, with the other belted cruisers, are quite a new departure in war-ship design, and while superior to any thing of this class of war-vessel afloat in point of speed, are
much more heavily armed and have much more defensive from a constructive point of view, the chief difference consist ing of a belt of armour at the water-line, which is fitted in
the Orlando class, and from which they derive the name of belted cruiser. On a level with the top of the belt there is a protective
deck, which extends throughout the whole length of the vessel. By means of the armour belt amidships and the protective deck plating, all fore and aft the whole of the vessel under this deck is
rendered invulnerable to shot and shell, and forms an unsinkable rendered invulnerable to shot and shell, and forms an unsinkable
raft, in which are placed the engines, boilers, magazines, shellrooms, and steering gear. The hull is built of Siemens-Martin steel, ment is exceedingly powerful, and consists of two 9 -2in. 22 -ton guns, ten 6 in. 5 -ton guns, six 6 -pounder and ten 3 -pounder
Hotchkiss quiek-firing guns, and numerous boat and field guns. The accommodation of the main deck. There are two sets of engines to the up with all the latest and most complete improvements.

AMERICAN NOTES.

(From our own Correspondent.)

Ratlroad traffic and earnings exhibit a furthe Jork, July 24th, week over last week, and against the same week last year. The week, and reports that have been given out serve to stimulate confidence in the improving condition of railway securities and traffic. A pool is to be formed among the Southern railroads, and meanwhile freight rates will be firmly maintained. A large amount of rail-
road stock is being bought on foreign account, and offerings are liberal, and prices good. The Reading Railway troubles are stil Pennsylvania Railroad Company is looking for a New England line Western railroads just published show a large increase in traffic receipts, and smaller lines are gaining in business, with the The lumber markets, both East and West, are well supplied with lumber from Western and southern markets, and prices remain firm under the heavy building and railroad demand The iron trade has not improved of late, and inquiries are rather slight, especially for merchant bar, sheet, and plate iron.
Crude iron is very dull, and is selling at 16,17 , and 18 dols. for forge, two and one foundry. Between three and four millions of twelve months, Manufactured iron is very firm, owing to the summer suspension of mills. The demand for architectural and
bridge iron is sufficient to keep all mills on double turn. Steel rails are worth 35 dols.; 5000 -ton contracts have been placed this Week; $18^{\circ} 50$ dols. is offered for foreign tee-rails. Bessemer pig is
worth 19 dols., and in moderate demand. Very little Scotch iron is selling.
There is
There is a general resumption of industrial activity throughout ning double turn in Philadelphia, and through the State of New Jersey. There is a very urgent demand for carpetings, cloth, and all the medium grades of dry goods. Large orders have been booked within ten days for passenger, freight, and coal cars, and
all the larger manufacturing companies will, by August 1st, have 10 pufficient business to run them into October. Prices are from 5 to turning out 1000 tons per day, and could readily double its sales
if it could supply rails. The trade movement throughout the country is v.
every hand.

THe latest quotations of builders wages in the Sydney building trades were:-Carpenters and joiners, 9 s, to $11 \mathrm{~s}, 6 \mathrm{~d}$. per day,
standard price 10 s . per day; stonemasons' labourers, 8 s , to 9 s, standard price 10s. per 11 s. ; plasterers' labourers, 9 s .; bricklayers, 11 s . to 12 s . bricklayers labourers, 8 s . to $9 \mathrm{~s} . ;$ painters, 9 s . to 10 s ; ; plumbers,
10 s to 10 s .6 d .; gasfitters, 10 s . to 10 s . 6 d .; sawmill hands, 9 d . to 1s. per hour.
Hand v. Machine Cut Files.-An interesting series of tests in regard to machine versus hand-cut files has just been concluded. machine and the other by hand, ten resulted in favour of the machine-cut sides, eight in favour of the hand cut, five were bracketted equal, one elav soft and was rejected. The result is files selected were bastards, second cuts, and smooth-the three great classes of large files. The tests prove that in the smooth files
hand cutting is superior. were sent out; of the eight smooth files four were in favour of eighth was the soft file, which was not counted. This latter result comprises the policy of many of the machine houses who cut their
smooth fles by hand instead of by machine. The tests are of special
interest

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS

(From our own Correspondent.)

THE ironmasters' meetings in Wolverhampton yesterday, and in
Birmingham this-Thursday-afternoon were influenced in their Birmingham this-Thursday-afternoon were influenced in their
character by the prevalence of the August Bank Holidays. Many others not until wednescay night, and at a few estabishments the machinery will not be set going this week at all. The orders on tinue to mostly order from hand to mouth, The aggregate of and a better tone generally prevails. The sheet makers are receiving increased specifications alike for shipment and for country
consumption, and a few works are quite busy and are prepared to
 manufacturers. If prices could be got up the present condition of demand would not leave much room for complaint.
Specifications were to-day reported by the galvanisers to be
arriving more briskly for corrugated sheets. The demand continues mainly on account of Australia, New Zealand, the River Plate, and Considerable Indian specifications are going about the market, but many makers allow them to pass, since the price often attached is
 f.o.b. Thames.
basic, and mild steel in the form of blooms, billets, tin-bars, and other partially manufactured shapes. The chief buyers are the makers of thin sheets for stamping and working-up purposes,
tin-plates, merchant sheets, hoops, and small rounds. The steel is being imported particularly from South Wales and the North o inland waterways. The metal generally gives every satisfaction, particular, than was formerly possible when hematite pigs had to be purchased, and the labour of the puddler employed. These
importations of steel in a large measure account for the lessened business doing in hematite pigs and Staffordshire and Shropshire all-mine pigs. North of England and Welsh blooms and billets are selling at $£ 47 \mathrm{~s}$. 6 d . delivered, of 2 in. sizes and above, while
Staffordshire basic steel blooms and billets are quoted $\& 410 \mathrm{~s}$. to £4 15s. per ton.
together with plates, are still passing by local ioeng senmasters in large numbers and are being placed in the North of England. Tank sheets, for example, are being purchased by Staffordshire brokers
from Northern ironmasters at $£ 55$, per ton delivered in the from Northern ironmasters at $£ 5$ 5s. per ton delivered, in the
Thames, which is some 15 s , per ton below local ironmasters' prices. joists in this district notwithstanding the advances in manufactur which the Northern ironmakers have made. In a building now going up in Birmingham some 150 tons of rolled joists are required,
mainly of the sizes 5 in. by 12 in., and the people who have the work in hand anticipate being able to place the order with Belgian repre North of England masters are at a disadvantage when soliciting the custom of Staffordshire and Midland buyers by reason of the Long distance inland carriage.
Merchant
sections of are in only moderate demand as bars, hoops, strips, and the like ter anticipations are this week indulged. A more hopefu freeling is beginning to make itself manifest regarding the export months of the year for shipments, an improvement is looked fo before long. Marked iron is unchanged from the quarter-day price
based on $\& 7$. Second-class bars are abundant at $£ 6$, and common at $£ 415 \mathrm{~s}$, to $£ 5$.
discussed in some ciroly revival in the United States iron trade wa gratifying indication. It is conceded that American revivals are not likely to bring so much advantage to English iron and stee
works as aforetime they did. Still, it is felt that to our works must be directly advantaged, both by the se exten orders from America and by some lessened competition.
The demand for native pig iron is not at present improving, and
deliveries from the furnaces are being made only slowly. The im portations of Midland pigs continue to take the cream of the
demand. Staffordshire all-mine pigs are quoted 55 to 5 the nominal, while Shropshire makers are freely offering their make at
 quoted on the open market 33s, to 34s. at station, and Derbyshir sorts $34 \mathrm{s}$. to 35 s., while Lincolnshires keep at 38s. In actual sales,
however, particularly for cash against delivery, lower prices are being accepted.
in Midland pigs for speculative purposes, and buyers cannot be far The South Staffordshire pig frm who are doing yise before long Hickman and Son, Spring Vale Furnaces, This frm are blowing all their four furnaces, and are turning out about 6000 tons a
month. They report this week that their make is steadily, but that an advance in prices is greatly needod. any margin of profit in price, and it is difficult to do business with per ton delivered here-a figure upon which buyers ask for a sensible The South Staffordshire Mines Drainage Commissioners were
informed on Wednesday by Mr. Edward Terry, the mining enginee informed on Wednesday by Mr. Edward Terry, the mining engineer
who has just carried out the splendid feat of tapping the main
Bilston underground pound up to the present. The magnificent Bradley engine is kept fully employed in pumping the water through the three bore-holes, and
the effect on the pound has already become hat others 11 ft ., at others 9 hitherto submerged collieries 15 ft . 7in., flood at the highest point the water now stands in thept district is
177 ft deep, and at the lowest point the depth is 99 tht. in. chairman, Mr. Walter Bassano, was loud in his praises of the
benefits which and in his expressions of the debt of gratitude under which Mr. entry had laid the mineowners. Mr. Terry had, he said, been
entrusted with the responsibility of the most important mining engineering operation ever undertaken in this country. the annual meeting, recommend the payment of a dividend of 4
per oent. per annum. The Metropolitan it is believed, declare a dividend for the past hagon Company will, ordinary and 6 per cent. on the preference capital are the dividends and Wagon Company for the past half Tha three railway companies serving South Staffordshire-the -have just intimated to the Wolverhampton Chamber of Com reduceed rates upon the coarriage of fany to apply the recently
Liverpor to lots of less than ten tons. The information has and this
weels week occasioned much complaint among the Staffordshire iron. alteration in their parcel rates. They intimate that the advisa-
bility of placing Wolverhampton within the 100 mile radius of
London would be considered, but the eletter containing the intelliAncin intimation has been received by the Wolverhampton Chamber ment had determined to impose heavier duties on certain classes of articles, , but at the es ame time tom make a reduction on such as were
imported chiefly from Great Britain. The Chamber express satis imported chiefly from Great Britain. The Chamber express satisfaction at this concession, and suggest that nails, on which an
increase is to be made, should be placed in the same category as The aritation in the chain trace the men's resolving to come out on strike in the event of the
masters declining to increase their wages. At the meeting masters declining to increase their wages. At the meeting at
which this decision was arrived at the men were encouraged in their action with the statement that some of the employers a
inclined to make the desired concession.

NOTES FROM LANCASHIRE. (From our own Correspondent.)

Manchester. - As regards the general trade of this district there is stil no improvement to report; there seems, however, to be hich may possibly be some indication of a turn for the better. he fact that makers both of pig and manufactured iron have for suarantee that prices cannot get any lower, buyers who have orders o give out would of course have little hesitation in placing them, een misled when apparently the lowest possible prices have empted them into anything like speculative transactions, that an mequirements has kept business down to the narrowest possibl taken in some this is in any way being broken through may be what may be termed the ordinary run of trade that there is mor oinsumats, and where users of iran have acture being made to over there is a disposition to buy for forward delivery rather tha take further risk of the market. It is, however, only in exceptiona cases that users of iron have actual requirements of such weight hat they are not aiready covered by iron they have still to come ,o get any lower, it will require a considerable accossion of new usiness to give any appreciabie mpetus to trade. That maker rrom the fact that preparations are being made for blowing out or
damping down a number of furnaces in the district, but the least heck in the long-continued downward current is not to be neglected r lost sight of in the present cheerless condition of trade part frand again brought forward only a very slow business, here was very little doing. For the ordinary local and distric n weight; whilst prices were quite as low as ever, some of the district brands seing still offered by by low sellers at 33 s . 6 d . to 34s. 6 d. , less 2 t , for forge and foundry qualities delivered equal to
Manchester, although for local makers of pig iron 3 s , and for one two of the district brands 2 s., per ton above these figures varrants has little or no effect wion the price of minained which can be bought at quite as low figures as ever; and there is irn.
As regards hematites, judged by the low prices which sellers in o be much real response to the firer the the would not see of in the market, and 50 s . 6 . to 51 s ., less $2 \frac{1}{2}$, delivered here, still represents the average price for good foundry, qualities where sales
of any weight are made. Makers, however, in some instances are aking a deoidedly less yielding attituwe towards buyers ; and the during the present year, can scarcely fail to have a stiffening effect upon the market.
In the manufactured iron trade, so far as inland requirements are oncerned, there is no real improvement to report, and the slightly increased shipping business doing in hoops and sheets has not
resulted in any better prices being obtainable, the basis of quoted or bars delivery equal to Manchester remaining at about $£ 417 \mathrm{~s} .6 \mathrm{~d}$ plates are in firm demand for bridge and girder work, but prices are cut up by the exceessively low figures at which North makes are delivered here at under $\& 5$ per ton.
In the general condition of the engineering trades there is still no improvement to report. Perhaps where there are orders to give out there is not quite so much hesitation in placing them, as prices
are cast so excessively low that further holding back could scarcely are cast so excessively low that further holding back could scarcely
result in any more favourable terms being obtained; but the weight of work coming forward continues very small, and it is only her there that works can be said to be at all well employed.
leted an improved continuous speed indicator, which has bee patented by Mr. Norman Macbeth, of Bolton. The object of this pparatus is to record automatically the variation of speed and the
topping and startings of steam ensines or machines in which volving shafts are used. One special feature of this recorder that provision is made for multiplying the variations of the ordinary pencil drawing on the diagram in the case of very steady
running engines, or for diminishing in the case of engines which running engines, or for dimisishing in the ease of engines which
run very steadily. In ordinary use the rise or fall of the pencil drawing on the diagram is approximately one-sixteenth of an incl or a variation of 1 per cent. of the speed that the engine or shaf of an ordinary engine-house clock, where it can be fixed under lock and key, so that it cannot be tampered with by the attendant.
At the annual meeting of the Iron Trades Employers' Association, of which a summary was given last week transacted included the election of the following gentlemen as the General Committee of Management for the year 1886-7: Messrs,
C. J. Copeland, Barrow-in-Furress ; J. FFarrar, Barnsley; Tomlinson, Huddersfieleld, P. Bristol; D. H. Wadmes Hald A. E. Seaton, Hull:
 Shield, Liverpool and Birkenhead; J. Field, C. N. Moberley
and G. Waller, London; B. A. Dobson, R. Peacock, , M.P., and H
Wren, Manchester; W. Boyd, J. Price, and Percy Westmacott Newcastle-on-Tyne; J. Croper, Nottingham; Goo. Clark, J.
Dickenson, and J. H. Irwin, Sunderland ; and G. Rhodes, Wakefield. On the motion of the president, Mr. C. D.
Holmes, seconded by Mr. W. Boyd, of Newastle-on.TYne, the Collowing resolution was also passed unanimously:-"That th Mr. John Robinson for the pains taken by him in preparing and
giving evidence, on behalf of its members, before the Select Com mittee appointed by the Legislature during, the past session to nd for his continued labours in regard to the important question the existing law in rearard to the rating of machinery used for
industrial purposes, and that it is the earnest hope of this meeting that he may long continue his important servioes in the interests
of the Association, and of the employers in the iron and engineer
ing trades of the country generally,

In the condition of the coal trade of this district there is stilt
little or no change to report. For all descriptions of fuel the demand continues extremely dull, and with pits not working more
than an average of three to four days a week, supplies are considerably in excess of requirements. Pit prices remain at about to 5s. 3d. for common coals, 48. 3d. to 4s. 9 d . for burgy, 3s. 9 d . to
4s. 3d. best slack, and 2 s . 6 d. to 3 s . for common sorts ; but although colliery proprietors are steady in maintaining their quoted rates, it can scarcely be said the market is so frm that buyers who are in a
position to give out orders in anything like quantities for prompt Two powerful steam fire engines have been built by Messrs.
Merryweather and Sons, of London, for the Manchester Cor-well-known Grigade. well-known ireenwich patern, in which several improvement
have been introduced, and they may be said to be of the newest type. One special feature of the enginesis is theire lightness
of construction, the loaded weight being only 58 cwt., and betwees the two engines there is only a difference of 141 lb. in., weight. Each engine is capable ofliler
of trials which of trials which they were put through in the Albert-square
opposite the Town Hall to tost the the the the and distance to
which a stream of water could be hrown, results were obtained. It required eleven minutes after light ing the fires to get steam up to the working pressure of 1001 lb . to
the square inch, and under the direction of Mr. Superintendent Tozer experiments as to distances were then made. The results a strong breeze which was blowing oaused a loss of guite poss per but when the jets had to be worked against the wind. The greatest
distance the water was projected in a horizontal line with the wind was 200t., and against the wind 150 ft . This was From the No, 1 engine the water from two ?in, jets was thrown

 by the fact that there wame bof wing at the time a high wind,
which interfered materially with all the tests that were made To gauge what height the water would reach, hose pipes had been he cloct the front of the Town Hall, as far as the platform over by the engine below, was discharged from a hose on the platform of the tower, a total height from the of the bund of over 286 ft .
The general opinion was thet add, have been built from drawings executed in the Surveyor's
Office of the What oflice of the Water Department-were a great improvement on the
oattern, being easier to start, more powerful, and more under control.
of pig iron -There is a steady but quiet trade in hematite qualities of pig iron, and the business done in the earlier part of this week
was restricted, owing to the observance of Bank Holiday and the temporary cessation of communication between buyers and sellers materially influence the trade because sales are always made well forward, and makers have Seneraly
not much trade in forge or foundry iron of Bessemer steel is noticed, and as the causes of this demand are likely to be maintained, so is the make of this kind of iron likely to may be noted at three-fifths of the actual capabilities of the district. From the Cumberland district reports are to hand of a very dull and trade. Many mines have been closed and others are only being partially worked. Employment is therefore scarce, and a large The condition of things which affects America and elsewhere. nfiuences for the worse the pig iron trade generally. The output the case some time ago. The condition of affairs industrially and commercially in Furness is dull and depressed, but not to so per cent of furna as in blast and a, aequent great proportionate output. There is no overlooking the fact, however, that very heavy, but in other cases large producers have practically the largest orders for forward delivery are held. Prices remain steady at 41s. 6a. or tas. 6a. per ton net at makers works for goods, and makers are not so well off for orders in this in heavy they have been. There is also a quiet trade in the lighter articles of steel produced in the district. The shipbuilding trade is also
extremely dull, and builders have fewer orders in hand than at any previous time. Engineers are busy on marine work, but not
many new orders are coming in. The iron ore trade is quiet. Coal and coke steady. The Barrow Tramways have now been com pletely opened, the section to Ramsden Dock station over the
new High Level Bridge was last week inspected and passed by Inspector Hutchinson. There are now about eight miles of tramintervals of about twenty minutes in all directions along the principal thoroughfares.

THE SHEFFIELD DISTRICT.
THE severity of the competition in the rail trade may be judged considerable contract, and being desirous of obtaining it, put their tion was 15s. per on ton above the the market. informed that theit these rates inotaa
tind
production of steel production of steel rails becomes impracticable. Several firms on
the coast find the struggle for work so keen they can scarcely looks as if we were rapidly nearing a time when people who wan steel rails will not go through the formality of soliciting tenders,
but simply send on their work with the price attached. That is to ay, they will dictate terms to the makers.
hear wagon companies, which are now issuing their reports,
Tpeave had a better half-year than was anticipated. The Cutlers' Company has elected as its Master Cutler for their
orthcoming year, which commences on the first Tuesday in ember-the traditional dammences of the Cothe thrst Feast-Mr. Georg
Francis Lockwood, of the firm of Messrs. Lockweod Francis Lockwood, of the firm of Messrs. Lockwood Brothers, stee manufacturer,' Cornish Works, was elected Senior Warden, and homan Turtonpind Sons, Limited, Sheaf Wanuacturer, of Merks, Junior Warden.
Tive new members have been added to the ive new members have been added to the company-Mr. Burridge,
J.P., Mr. Alexander Wilson, J.P., Mr. John Marshall, Mr. Wm. Lockwood, and Mr. J. O. Wing.
The Midland Institute of Mining Engineers met at their offices,
Barnsley, last week, when the following appointments were Barnsley, last week, when the following appointments were offices,
Previent Mre
R. M. Chambers, J.P.; vice-presidents, Mr. C. E. Rhodes, Mr. W. E. Garforth, Mr. G. J. Kell council, Mr. J.
Gerrard, Mr. E. Bainbridge, Mr. G. B. Walker, Mr. J. F. Thomp.
son, Mr. J. Nevin, Mr. A. B. Southall, Mr. C. E. Jeffcock, and Mr.
 Master Cutler of Sheffield-Mr. Charles Belk-proposed the toast
of "The Institute." He pointed out that the mining engineer was
the husbandman below the surface, His skill was brought to bear
to amiliontat the oondition of the thounands whoos ilies werol

 A mong the oxhibitors, Mesesr. Nevton,
 ap

 Shefied Cas o onmany. Ho hasa hargaly Messrs. Joseph Rodgers and Sons, the well-known cutlery manufacturers of Sheffield, have just succeeded in tracing and stopping a Ballarat firm, " to restrain the defendants from infringing the
plaintiffs' trade mark and name, and from selling any cutlery other plaintiffs' trade mark and name, and from selling any cutlery other
 stamped thereon; and also for delivery to the plaintiffss of al cutiery in the defendant's possession so stamped." The
plaintiffs also asked for the delivery to them of the invoices
of these and an ment of the plaintiff trade name or trade mark, together
with the names of the persons from whom the cutlery had been purchased and to whom it had been sold. After the writ had against them, and to payt the plaintitiffs costs as between solicititor
and client. Aplication was made that judgment should be for the plaintiffs on this consent with costs, in accordance with the
claim of the plaintiffs. The defendants had stated that the obtainedte gous from irm in Melbourne. His honour directed judgment to be ente.

THE NORTH OF ENGLAND.

There was but a poor attendance at the iron market held at Middlesbrough on Tuesday last, and little business was done.
cannot be said, however, that things were worse than on the pre
vious Tuesday. Sellers same extent that they lately were, and prices on the fairly well main-
tained. Merchants continue to ask 29a, g.m.b., for delivery to the end of the present month. Some con sumers are prepared to pay that figure, but the majority do not
offer more than 29 s . 12 d d., and a few will not entertain anything higher than 29s. per ton., The quotation usualy given by makers
is 29 s. 6 . per ton for No. 3 , but there are two or three firms who
are willing to take 3 d. per ton less for small lots. The stocks of forge iron are very heavy, and will probably increase materially by
the end of the month, as the approaching Stockton races will certainly interfere with the consumption at the finished ironworks The current price is 28 s . 3 d. per ton, but some sales have been made
at 288 .
There are no transactions to report in warrants. Their value is nominally 29s. 6 d . per ton.
The stock of of Cleveland pig iron held by Messrs. Connal and Co
July 31 st was 272,552 tons, being an increase for the
 The an incouse 15,654 tons.
as regards volume and price. Makers quote $£ 4$ 7s. 6d. for ship-
 specifications can sometimes be placed at even lower rates.
The shipping returns for July have just been issuud. They show tons in June, and 67,413 in July, 1885. The principal items wer as follows :- To Scotland, 23,080 tons; to Germany, 8041 tons ; to
Wales, 5035 tons ; to France, 4670 tons ; to Russia, 4375 tons ; to Holland, 3120 tons ; to Newcastle, 2330 'tons; and to Sweden and amounted to 33,545 tons, as against 34,386 tons during June. The chief customers were India, which took 11,542 tons; Arg
Republic, 2681 tons; Wales, 1955 tons ;and Italy, 1874 tons,
The accountants to the Durham Coalowners Association issued their certificates for the months of April, May, and June
The net average selling price of coal appears to have been 4s The net average selling price of coal appears to have been 4s. $4-79 \mathrm{~d}$. The North-Eastern Railway Company has just issued its annual
report. The dividend announced, which is only at the rate of ${ }^{4} \frac{1}{2}$ per Another in producers and distributors to force more for their services out of the and demand, has just been afforded by the failure of the combina-
tion tion to maintain shipping freights for Baltic ports. A meeting o
shipowners was held on the 31st ult. at the Three Indian King Mr. MoCarthy moved, "',That the combination hitherto existing should now be abolished." The chairman seconded the motion made had been utterly unsuccessful. He attributed this to failur to act up to the general understanding by several owners who had
signed it. Only that morning he had learned that two of them attempted to keep seeretet, but which rate of freight which they had not to be in acopordance with the an berangement. He He considered
that to sign an agreement and then break it was not what was to that to sign an agreement and then break it was not what was to
bo expected from honourable men, and it was useless to attempt
to maintain a combination composed of other elements. The reso lution, on being put to the meeting, was carried unanimously. Only seven gentlemen, including the chairman, were present, and
therefore it is pretty clear that anything like cohesion among the members of the combination was, as usual, conspicuous by its The trade in Cumberland hematite ore seems to be extremely
depressed at the present time. In the Cleator Mo and Egremont districts a more complete stagnation prevails than
has ever been previously known. The Carron Iron Company has given
ments. The Crossfield Iron Company it and the mines of Mr. Stirling, which are amongst thy haff hime, sive in the district, are about to be put on short time. The Eskett
mines have been olosed, and those belonging to Messrs. C. Cammell and Co. have also ceased working, a large number of men being
thrown out of work at this mine alone. pig iron and steel trades which utilise these ores are not so has befallen the hematite ore trade is not so much due to the lack
of demand as to the competition of Spanish ore, large quantities
of which are now being imported. On equal terms, Cumberland ore being somewhat richer and equally pure, ought certainly to gain a preference over spanish ore. Biter, and the hours of working much horter, than in the north of Spain. Again, the railway carriage finally, the royalties are preposterously high. Consequently, not-
withstanding the cost of sea freight, Spanish ore appears now able of course, the only thing to do is to let the mines stand until the three above-named elements of cost come down to the Spanish
evel. It is strange that the parties interested should be so foolish ss to resist the inevitable until they are starved into it, yet that is
the process which seems to have commenced in Cumberland, and to the process which seems to ha
be likely to go on to the end.

NOTES FROM SCOTLAND.
 \section*{(From our own Correspondent.)}

The tone of the Scotch pig iron market this week has been he iron exchange in consequence of the Bank Holiday; and athough the market resumed at steady rates, there has only been smail business, and the quotations have since evinced a tendency equal to the averace of what has been usual this season, was rather disappointing, as there was some expectations that they might now take a deciced start. They were 7510 tons as compared with
11,120 tons in the preceding week, and 7598 tons in the corresponding week of 1885 . The demand is reported to be somewhat more brisk for America, but the impression is that the extended require
nents there will be met with hematite rather than with ordina pig iron. For hematite pigs there has indeed been an improve nquiry, and the prices have exhibited a slight improvement in the course of the past week., Stocks of ordinary pigs are still on the corease, and the week's addition to the quantities in Messrs.
Connal and Co's Glasgow stores amounts to 3500 tons. There are eighty-five furnaces in blast in Scotland, as compared with ninetywo at the same date last year.
Business was done in the warrant market on Friday at 39 s . $1 \frac{1}{2} \mathrm{~d}$,
 transactions occurred at 39s. 12 d. to to 39s. 2d., and 39s. 112d. cash;
the afternoon prices being 39s. 1d. to 39s. Jd. cash. Business was one on Wednesday from 39s. 2 d . to 39 s . $\frac{1}{2} \mathrm{~d}$. cash. To-day-
Thursday-the market was flat at 39 s . 2 d . to $39 \mathrm{~s}, 1 \mathrm{1}$ d. cash, the atter being the closing quotation.
The values of the
The values of the special brand of makers' pig iron are not quite so at easier rates. Free on board at Glasgow, Gartsherrie quoted at 43ss. per ton; No. 3, 40s. 6d.; Coltness, 46s. and 42s. 6d.;
 nnd 36s.; Shotts, at Leith. 43s. 6d. and 43s.; Carron, at Grange-
nouth, 46s.
and and and 43s.
nd

The malleable iron trade continues in a depressed condition nly some of the works having sufficient orders to keep them full ain masters complain of a scarcity of fresh orders.
ighteen vessels with an aggregate tonnage of 17,700 10,210 tons in July, 1885. For the seven months the tonnage put the water has been 10 , the corresponding period of last year. The number of vessels now compared with br vessels of 110,000 tons at the end of July, 1800 . ast week, and owing to the frequent idle days of the colliers, and the wages agitation, merchants have occasionally found it difficult
to get their orders implemented, and coalmasters have been holding or firmer orters implemented, and coalmasters have been hal bing
for firmer rates, although no general advance in prices has been estabishec.. Tie past week s shipments of coals embraced
tons at Glasgow, 2158 at Greenock, 2440 at Irvine, 4251 at Troon, tons at Glasgow, 2158 at Greenock, 2440 at Irvine, 4251 at Troon,
The miners of the East and West of Scotland, particularly the have been thoroughly aroused by the reduction of 6d. per day in their wages which was carried out last month, and many years men appeared so determined in their opposition. In the Lanarkf s. day and they are doing everything in their power to bring pressure to bear upon the masters. Were the colliers ow believed that tunds and able to hold out for a litte time, it is they are ill circumstanced for a strike. But in many places they taught to regard as a means of bettering their position. Its only frect hitherto has been to send orders to the Tyne and elsewher
which might have been dealt with at Scotch ports but for scarcity of supplies.

WALES AND ADJOINING COUNTIES.

(From our own Correspondent.)

A MOVEMENT is on foot to start a Boiler Insurance Society for
Wales, and judging from the promoters, all men of considerable influence, it promises well. Of course, this would affect existing insurance companies materially, as most boilers are insured.
A leading engineer connected with an important foundry that an effort will be made to foster engine and boiler work in the principality in opposition to Leeds and Manchester. The finest oxcellent engines and general work at Treherbert Foundry and at -ewport. Now he says the idea is to go on the line of barte-
"We undertake supplying collieries with boilers, engines, repaiing shafts, \&c., and do so more expeditiously, being on the spo It is evident that "hard times" are awakening the faculties utilisation is the order of the day, and is shown everywhere in the
neighbourhood of the great steel works. The only places where it iless visible is at collieries. Probably the serious straits now over roducts oleurs and tacharine
I visited a large part of the iron and coal district a few days ago ncluding Swansea. The contrast between Cardiff and Swansea
was forcibly shown. Cardiff is almost dependent upon its steam coal trade, and that last week fell to 100,000 tons. Swansea, on than thirteen metals are turned out there, and its copper works are usualy busy. Landore, with its famous siemens steel plates, is
active, the tin-plate trade is brisk, patent fuel improving. Even in

The tin-plate business is fairly maintained, and prices for best are not quite so firm. Common cokes in some cases have been sold as low as 13s. 4 4d., but a good brand still fetches 14 s ., though
hear of quotations at 13s. 9 ad . The healthy character of the trad is shown by the preparations making to start some of the stopped
works,
tinch as Kidwelly, which was announced last week as get

Bessemer steels are the most in demand; coke wasters fetch
12s. 6 d . Shipments last week to America alone amounted to 7000 12s. 6 d . Shipments last week to America alone amounted to 7000
tons. The quantity brought from works consisted of 40,000 boxes, and the stocks were reduced fully woonks onssisted of for fine of this, to the nare atloat that prices must go lower. If so, it is contrary is due to Bans or Holiday.
The coal trade generally is quiet, and but for the certain loss that would accrue rrom closing a colliery a number would follow Duffryn was one of the first collieries taken by Mr. Nixon, and where most of his inventive faculty has been brought into opera-
tion. It has been carried on with rem xrkable immunity from
disaster, and has been one of the great feaders of navy coal for a disaster, and has been one of the great fesders of navy coal for a
quarter of a century. I hear that the Al
At Harris's Navigation, 6000 tons per One day last week 1300 tons came to bank. These are the bright
lights amidst gloom, for, generally speaking, the coal trade could lights amidst gloo
scarcely be worse.
On ruesday an explosion occurred in a Norwegian barque at burnt, but the vessel was not much injured. It is attributed to a
sailor having brought a candle light in contact with gas in the hold. An explosion in one of
this week, injuring several men.
this week, injuring several men.
The steel works are quieter than one likes to se away 240 tons steel plates coastwise, and from the rail works of Glamorganshire and those supplying Newport some consignments to Natal, Gothenberg, and Warberg, amounting to 2000 tons, com-
plete the total plete the total.

NOTES FROM GERMANY

THE market for iron continues in an unsatisfactory condition in Thk market for iron continues in an unsatisfactory condition in
all districts. There are twenty-seven furnaces still in blast in
Upper Silesia. Since the smaller works have had to succumb a struggle for the survival of the fittest has sprung up between the
well-funded works ; but let this end how it may, the victors eyen well-funded works; but let this end how it may, the victors even
must pay heavily for it. Only one or two rolling mills are working to a profit at all, but they still keep in activity to work up the few orders they do receive. Plates command the best sale. Forge pig costs M. 41 to to 4 ; bars, M. 925 to 95 ; plates, M. 135 to 145 p.m.t.
at works. The boiler, bridge, and roof builders are pretty well engaged, and foundries have momentarily plenty of work
on hand at low prices. In Rheinland-Westphalia business is not so good as in Silesia, and prices remain nominally as last quoted. The number of works which can show any profit on their output is beooming every week less and less. 500 men were dis-
charged last week from one works at Dortmund, 300 from the Union "Iron and Steel Works, and 200 from another, which has half-year as it did the last, numbers more works will have to give up the struggle than was then the case. When mortgages are fore-
closed, or otherisis more funds are require, it is excedingly difi-
cult to raise thiem, as the public are not disposed to risk their cult to raise them, as the public are not disposed to risk their
money a second time. Ores are dificult of sale. Pig iron only plates sem to be slightly in the ascendant, and therefore maintain their price better than other sorts. Thin sheets are in no great request. Wire rods are in a depressed state, as the export becomes smaller
ard smaller in volume. The steelworks complain loudly, and as the Belgian Convention has come to an end there will now be this as well as the English competition to contend with-that is to say, the question has been asked in some quarters whether the Railway Minister will ratiify the tender of the Darlington Company for the wagon or machine works to report. The Rail way Administration to the works, and on coal and coke to the iron mines, in the interest of the mine-owners. This is very acceptable to
the latter, no doubt; but as the railways have not yet paid the guaranteed dividend promised when the State
took them over, some one will have to make up the difference, and pay for this preference shown to the mining inter-
est, and, as usual, it can only be the ever-suffering general
taxpe taxpayer. The proposition to revive the coal combination again
for five years, from January, 1887, has fallen through. Zine is pretty frm at Breslau, coke, M. 278 to 280, according to brand;
sheets, M. 340 to 345 for thick, for thinner M. 5 to 10 high, oxide, M. 320 to 345 p.m.t., according to quality. The news from
 at 130f, the the bination of the whole of the rolling-mill masters in the country. It plaints are rife of some of the works having broken faith and sold under the statutory price, as they oould not withstand
the German competition. The Cockerill Company has launched out into South Russia, where it proposes erecting steel works at
Kamerstoi, and a shipbuilding yard at Nikolajeft. The six groups of blast furnaces, Rheinland-Westphalia, Niesia, Saxony, Province of Saxony, Brandenburg-Hannover-Brunswiik, Bavaria-Wurtem-
berg-Luxemburg, Hessia-Nassau, Saar-District-Lorraine, produced

 metric have to be added to the 289,421 as estimated, for returns not sent in up to date, making 291,221 t. for the month. In the seand quarter of this year there were raised in the Westphalian
basin $6,487,431$ t. of coal, againt $6,721,355 \mathrm{t}$. in the same quarter
last year, or $3 \cdot 4$ per cent. less for this year. In the same quarter of this year 98,553 persons were employed in the mines, against Since the new line of steamers has been opened hence to the
East, and two or three sea-going vessels have been ordered in the North of Germany, the press has never ceased to remind its reader what alarm this great development of commerce is causing in ship
owning and shipbilding circles in. England, because of its being likely to militata against their interests. On perusing these nhouncements, to one acquainted with the accuan side se asks himself
things come up in his mind for reflection. Firstly, he where this great increase of goods to be carried is to come from,
and what is to be its character? Secondly, he remarks that England surely must have wasted her many millions, and cannot require her arrangements to facilitate her commeree, if, thirdly, Germany is
going to carry on all this talked-of expansion of trade without such going to carry on all this talked-of expansion of trade without such
accommodation, which she certainly does not at present possess. It would therefore appear that, for the present at least, the parties
concerned in England need be under no such great fear as is here concerned in
represented.

THE ENGINEERING TRADES' REPORT.
The following is from the half-yearly report of pression and low prices continue to prevail in alosost all the manufacturing trades, and this at
time when money is abundant and capitalists a time when money is abundant and capitalists
are seeking investment. The great fall in values are seeking investment. The great fall in valuee scarcity of gold and the demonitisation of silver causing and acting upon a superabundance and
consequent low prices of all kinds of produce. o engineers, and trades depending on them, progress is essential, for the mere replacement of
the wear and teaar of the world does not provide sufficient employment, and new enterprises are sufficient employment, and new enterprises are
neeosary. Fortuanately there is hardly any kind
of undertaking in which money can be invested of undertaking in which money can be invested
that does not, directly or indirectly, require the aid of the mechanical trades, and as capital canpostponed. There are already signs of improve ment in the greater couraage of investors, which may be expected to take effect when the present
political crisis is over, and the latest Board of rade returns show an appreciable advance. In are the same complaints as in Great Britain, and in many cases without the same alleviations. In
Germany there is the severest competition, proGermany there is the severest competition, pro-
duction is being curtailed, and manufacturing companies are ceasing to pay dividends. In while the long hours and low wages of the
workmen allow no scope for saving in the cost of Workmen allow no scope for saving in the cost of
abour as is possible here, the high prices of all ecessaries of life, caused by protective and octroi
duties, render the workmen miserable and disuties, render the workmen miserable and dis-
contented. In the United States some of the staple trades, notably those connected with
railway material, have slightly improved, but he peculiar tariff arrangements of the country almost entirely prevent an export trade, and
consequently retard the development of manufactures hhich would otherwise take place. team purposes, has fallen in value, but with the present rates of royalties and wages, further "I Iron.-The continued
reduction of oumedied by the voluntary or forced quitable osysterput, but no common agreement or he stocks of pig iron continge this seems possible. Tiddlesbrough and Glasgow, and ase both at collapse of some of the holders may be looked for. the saving in cost by the cheapness of material and wages, although in the latter respect the sliding scale arrangement admits of an adjustment
wanting in other trades. In the desire to expenditure into accord with current prices there is a falling off of quality in some of the cheaper
kinds of iron which cannot but cause harm in the kinds of iron which cannot but cause harm in the foreign markets of this country.
"Steel. - Amidstthe further
during the last six months, steel has moved faster twan iron, and the due proportion between the among the English and the continental rail makers, which last year prevented prices falling
below e4 10s. per ton, came to an end early in the spring, and at a few of the best situated works,
with the latest appliances, steel rails have been sold at less than $£ 1$ per ton. As the present rates, with freight and duty added, only exceed the a resumption of shipments to America is not improbable, especially as the rail mills there are
well employed at firm prices. The output of steel plates and bars has been considerable, the falling off in shipbuilding having been met more largely than heretofore by the increasing demand for
bridges. The producing copacity is, however,
still in excess, and the the fact that the cost of production is conimarms governed by the advantages arising from geoyraphical position. Cumberland, Algeria, , Spain,
and Elba are practically the only sources of supply and Elba are practically the only sources of supply
for the non-phosphoric hematites suitable for English works near the ports of arrival are ores at as to reduce greatly the advantages which the
basic process promised to afford for utilising ordinary English ores. Mild steel, equal to a
strain of 26 tons per inch plan, is trust orthy, and admirably suited for poliers and other purposes; but where harder
qualities equal to strains above 28 tons are preferred for ships and bridges, the ordinary facture of steel in Spain and Italy is extendinguthis t el and iron shipourlding. - The statistics of last traelve months less than half that of 1883, with a corresponding effect on the many subsidiary
trades, but there is no branch trades, but there is no branch of engineering in tain its supremacy, and a slight prepared to main freights, which will come as the prices of produce
improve, will cause an increased demand for improve, will cause an increased demand for
steamers as well as for the large steel and iron sailing vessels which are remunerative in certain
trades. The builders of torpedo boat very busy, and the naval armaments of this and other nations are likely to afford increased employment to private builders here.
steel and iron bridges
curtailment in the but with the growing facilities of manupractured, given tonnage occupies less time than formerly,
and competition even than the cheapnought down prices lower would jastify. The low price of steel and the
advantages it affords, both in manufacture strength, are rapidly increasing its adoption instead of iron, for though at present it is only in bridges over 100ft. span that the saving in weight
allows a total cost allows a total cost as low in steel as in in iron, yet
even for small steel spans of equal weight an extra expense of five tof equal weight to iron, bestowed to obtain thirty per pent. cent. is weal
strength. At home there is a per railways. And other there is a pablic works, baty of new
roofs and buildings for bridges, roofs and buildings for maintaining, widening,
and extending existing lines are afto siderable employment. For export the best cus
tomers for this branch of engineering are
the Colonies, and South America. In Australia
the encouragement by protective duties of local the encouragement by protective duties of local
bridge making is still popular, but for some time bridge making is still popular, but for some time
to come this will still allow the importation by local contractors of partly finished work, rather than the complete manufacture in the Colony.
American bridge builders who are not now busy American bridge builders who are not now busy
at home, are competing in Canada and Australi at home, are competing in Canada and Australia
by buying bridges cheaply here and utilising their by buying bridges cheaply here and utilising their
experience as erectors, to contract cheaply for the work completely erected on the site.
"Mechanical engineers and ironfounders are not very busy, but there are numerous exceptions among the makers of speciaities. To compensate for the dulness in the railway, shipbuilding,
chemical and agricultural trades, makers of arsenal plant have been well employed; there is a considerable development in mining enterprise ; there are important improvements in ice-making and refrigerating apparatus; and the modern systems of milling machinery introduced in Germany and
America are receiving more attention here. country still takes the lead in the designing and manufacture of machine tools and metallurgical plant, in both of which ingenious novelties are continually being brought out, and these, Britain, continue to be sent also to con ineal countries and the United States, where high protective duties shut out general manufactures. such oils and gases for fuel and other purposes, are greatly extending and are likely to develope new industries. Wrought-iron lap-welded tubes in America than here herto more generally used or oil pipe lines, and will probably be required in larger quantities for the oil mining district opening up in various parts of the world. Electri is takng its proper place, and under faire mand more capital and afford employment to numerous mechanical trades.
Locomotives and rolling stock.--Locomotive escaped the extreme depression of the other trades, but who are now completing the contracts given out during the last year, seem, in the scant
prospects of new work, to be approaching the worst condition of 1879 , which was then onl The regular maintenance of the Indian and home lines, do not together afford employmen for all the factories in Great Britain, and when as at present, there is a lull in the demand fo new
tells
extended rail ways, the lessened outp the manufacturer. On the Continent there is th same condition of. On the Continent there is the are closing for want of orders. The leading firm busy durna and wagon builders have been fairl prices, but the lessened year, though abroad, th growing tendency of the English railway com panies to make their own rolling stook, and the compenicon of wases same rail ways in keeping up private firms.
"Agricultural engineers.-Manufacturers who are entirely dependent on this one branch of trade complain bitterly of the state of affairs, which ha only have prices as printed in lists fallen greatly but che competition to secure a share of the results. The cheapened costs of all materials of manufacture somewhat lessens the loss from low seling prices, but nothing can compensate for the
greatly reduced output due to the want of mone among agriculturists, and considerably the depression in the Australian colonies.
rosperit merely by the rise and fall of prices, but by tha remains to reduced values is diluted by being spread over wide area, and manufacturers are largely comby the cheapness of all they puy yet, however, that accord bet buy. There is not is necessary to sound trading, for such preferential charges as rent, mining royalties, wages and raild soy carriage rates remain almost constant,
and if this country is to hold its own with Germany and other competing nations. There is no country where mining royalties are so high as in Great Britain; wages remain high, while all that a rates of railway carriage to and from the port The a direct bounty to the foreign manufacture . Trade will, investigations of the Commission o , 1 is hoped, tend to a reduction trades are numerous. In. India the growth of railways and their traffic will lead to still further kinds; the Colonies, at present depressed by low prices of produce, drought and other causes, are
likely to show an increasing demand for and machinery, while the recent dind for ironwork in Western Australia and the proposed extension esonveys there will open out the large dormant China, though for tharsely populated colony aaval armaments and way ail ways, will certainly in the near future obtain
from this country rail acturing appliances way, mining, and manu country of Upper Burmah now under British guidance may be expected to still sooner develope
its wonderful natural resources. If peace be main tained a general and steady improvement may be tained a gen
anticipated.

NEW COMPANIES.

THE following companies have just been regis Great Eastern Steamship (Exhibition and Enter-
This company proposes to enter into an agree
nent, dated 26 th ult., with the London Traders ment, dated 26 th ult., with the London Traders,
Limited, for the purchase of the Great Eastern Limited, for the purchase of the Great Eastern
steamship, her tackle, apparel, and furniture and
to utilise her for exhibition, entertainment, advertisements, sale of refreshments, or other like pur
poses. It was registered on the 26 th ult, with poses. It was registered on the
capital of $£ 100,000$, in $£ 1$ shares, with the follow ing as irst subscribers :-
A. Cutler, 83, Shenley-road, Camborwell, clerk. Sh

mision ald

The number of directors is not to be less than three nor more than seven; qualification, 100 David R. Comyn, R.N.K., Messrs. Shackleton, Hallett, and William Holland; the remuneration of the board will be at the rate of $£ 2.0$ per annur for the chairman, and dillo per annum for each
director: the board will be further entitled to divide $£ 50$ for each $£ 1$ per cent. of net profits in excess of $£ 10$ per cent. per annum.

Baldwin, Son, and Co., Limited.
This is the conversion to a company of the business of Bald win, Son, and Co., of Southport, ironfounders and manufacturers of articles made
of cast and wrought iron. It was registered on of cast and wrought ron. It was registered on
the 23 urd ult, with a capital of $£ 00$, ,ut, in $£ 10$
shares, with the following E. Bald win, Stourport, Woroester, ironfounder Sh
A. Bald win, Wiluen House, stourpurt, iron.

 W. J. Gilliver, King' Heath, Worcester, cashier The number of directors is not to be less than appoint the first; the company in general meeting
will determine remuneration.

Chubut Company, Limited.

This company was registered on the 27 th ult.
with a capital of $£ 105,000$ in 1050 shares of $£ 100$ each, to construct pubnc works of all kinds, and water, electric light, telephonic, telegraphic and power-supply works, in the Argentine Re-
public, or elsewnere. The subscribers are :-
Thomas
chant Best, 17, James-street, Liverpool, mer-

Phikingion Belli," c.E., ï4, C̈ook-strëet, Liver

The number of director three nor more than eight; the subscribers are to company in general meeting will determine remuneration.

F. Williams, Limited

This company was registered on the 22 nd ult with a capital of $£ 10,00$, in $£ 1$ shares, to carry cal, gas, and electrical engineers, and metallur-
ists. The subscribers are:-
C. T. D. Crews, 33, Throgmorton-street, stock-
briver
Aust
suck brok

 Most of the regulations of Table A of the
Companies' Act, 1862, apply,

South Wales and Liverpool Steamship Company,
Registered on the 27 th ult. with a capital of ett,000, in $\& 50$ shares, to purchase and work the
teamers Llanelly, Burry, Fawn, and Orpheus. The subscribers are:- Shares,

A. G. smith," Chapel-street, $\ddot{\text { Liverpoö, cottön }}$

The firm of Robert Gilchrist and Co., of LiverMr. D. A. Williams Baile, of Llanelly, is appointed joles. Wales.
Monk Bridge Iron and Steel Company, Limited. This is the conversion of the partnership firm
of the Monk Bridge Iron Company, of Leeds, into a joint-stock company, composed of members of the firm and other persons associated with them.
It was registered on the 28 uth ult. with a capital It was registered on the 28th ult. with a capital
of $£ 250,000$, in $£ 100$ shares. The subscribers
Sher
James Kitson, Gledhow Hall, Leeds, ironmaster
E. A. Jeffress, (Hipton Looge, Leeds, ironmaster

three nor more than five; qualification, fifty saares; remuneration, $£ 25500$ per annum, unless meeting. The first three subscribers are appointed

Patents, Designs, and Trade Marks Defence
This company was registered on the 24th ult. with a capital of 25000 , in 50 shares of $£ 100$ each, to form and dispense a fund for obtaining for subof patents, trade marks, coopright, and other patents, trade marks, copyright, and othe
similar privileges. The subscribers are:-

The number of directors is not to be less than three nor more than five; the first are the sub
scribers denoted by an asterisk; the compy in scribers denoted by an asterisk; the company
general meeting will determine remuneration.

THE PATENT JOURNAL.

Applications for Letters Patent.
$*$ When patents have been "communicated" the
name and address of the communicating party are
printed in italics. ${ }^{27 t h} \mathrm{July}, 1886$.

649. Fuldiva Casp Benstreans, J. Pope and W. T
Bumpstead, London.

Bumpstead, London. Rolled Grass, J. Armst ong

shire.
G3iling MAchines used for Boots, de., s. W. W.
Robinson Paris.
 P. Stirn, United States)
Oculuting stram Valves, g. H. Duthie and

Birmingham.

Bet Kifas.
hinting Machines, W. Westmorelaua, Notting
ham.
Magina SAND Moolds for Casting Metals, M. R.
oore, London.

 960ndon. FIRwors, J. Pain, London.-
9693. Convonsers, P. A. Newton.-(W. Craig, United
Sut

 Manchester.
9719 . Stringing Lawn Tennis and other Racquets, I 9720. Binnd Rack Pultey, S. J. J. and M. E. Rooke

 9r2uty

 9733. Heating and Cooling Fluids, A. G. Meeze, 9734. Purification of Pig Iron, A. G. Meeze, Redhill
9735. Tricycle, J. Key, Birmingham. 973. Tricycle, J. Key, Birmingham. 9. Rate Indicator or Calendars, J. J. Raggett, Birmingham.
9737. REGULATING the Flow of OxyGen and Hydrogen,
\&c., GASES, A. Brin, London. 9738. Preserving Milk, A. Brin, London.

9740 . Find H. A. Mavor, Glasgom indicators, W. C. I. Balbi, Croydon. London.
9742. MUSICAL Boxes, F. E. P. Ehrlich, London. Farbenfabriken vorm. Bayer and Coo, G.ermamp.) 9744. Rabbeting Cardboard, F. T. Pillivant, London.
945. Signaling Raflway Trains, W. R. Holyoake,
London. 9746. Working Rallway Points and Signals, W 9747. SPINNiNG. Fibrous Materials, E. W. Wrigley
and R. Patterson, London. 9748. OPEENing and Closing Fanlights, H. Whiteley
Halifax. 9749. Clexaring Railway Tunnels of Smoke, H. J.
Spooner, London. 9750. Closing Railway Carriage Windows, J. C.
Taite and T . W. Carlton, London. 9751. INDICATING the Speed of Motors, J. Y. Johnson 9752. (E. Dambinet, France.) Dimparic Grinding Apparatus, L. Phillott 9753. Morors, J. Bureau and H. Héndlé, London. 9755. ATMOSPHERIC GAs BURNER, O. Imray.-(C. Auer
von Welsbach, Austria.) 9756. STands for Photographic Cameras, H. H. Lake (G. McLaughlin, United States.). MLLU
9757. Elecrric Mexers, S. Pitt.-(J. J. A. Aubert,
Switerland.) 9758. Controlling 29th July, 1886. Clare, Manchester.
9759. FIITER PRESSES

9762. ONE-WHEELED SAFETY UNICYCLE, C. and J. Clark, West Hartlepool.
9763. BeLl for Velocipedes, \&c., H. Lucas, Birming-
ham ham.
9764. LAMPP
ham. 9765. Lathes, J. P. Binns, Halifax.
9766. Foot and other Hollow Pla

Martin, Birmingham. 9767 . Fasteners for Gloves, \&c., S. R. Barnett,
Birmingham. 976. Invingid Bedsteads, C. Latimer, Birmingham.
9769. Regulating the Distance between the Uarbon of Electric Arc Lamps, G. A. Grindle, London.
9770. Copper-Plates and Electrotyes, A. F. Wenger, London.
9771. Tables of Leather-dressing, \&c., Machines, J.
Vassie, Glasgow 9772. CLEATS for Ships' Hatches, \&c., J. H. Bell and
W. Rockliffe, Monkwearmouth, W. Rockliffe, Monkwearmouth.
9773. Jointivg Endess Belts of Leather, T. Wheel9774. TIITINI CASE
J. Winder, Liverpand Barrels, W. Ellison and J.
 E. and G. E. Sutcliffe, Halifax. Halifax.
977.. Verilating Drains and Buildinges, A. E. Black,
Inverness. 9779. Ancoror, F. J. White.-(J. o. Morrison, Nova 9scotia.) Holding and Releasing the Leaves of Books,
80., J. Blakey and J. M. Porter, Leeds. de., J. Blakey and J. M. Porter, Leeds.
9781. NEGTIES, \&c., A. G. Speight, London,
9782. WHEELS, A. Dickinson, Birmingham.। of Furnaces, N. Evans, Liverpool under the Grates 9784. FAATENINGS for Raits and Sleepers, H. Rumsey 9785. HEATING SkTEAM BoILER FURNACES, S. Smithson,
Bradford. 9786. Supplying Steam to Engines, J. D. Churchill,
London. 9787. Finitreing Liquids, P. D. and M. J. Bywater,
London. 9788. Photographic Shutrer, A. Phillips, London.
9789. Railwa Carriage Coupling, W. J. Penn and
F. J. Ryan F. J. Ryan, London.
9790. Trung HaNDLEs, A. M. Clark.-(J. B. Dollier,
France.) France.)
979. SEWING MACHINE, A. F. Wileman, London.
979. CoNFECTIONERY SHAPING MACHINES, G. C. Snyder, 9793. GLass Globes for Incandescent Electric
Limps, H. Lea, London. 9794. Hoisting Ashes from the Stokeholes of Ships,
T. Loudon, London. 9799. Sigetrs for OrDNANCE, C. A. McEvoy, London.
9796. Mow.NG MACHINEs, W. J. and C. T. Burgess,
London. 9797. Fastening for Revolving Shutters, W. Ham-
mond and J. Turner, London. 9798. LeNses, H. Defries, London.
9799. Hypravuio ELENATORS, C. H. McEuen.-(N.
Selfe, Nevo South Wales.) Selfe, Neve South Wales.)
9800. Ske-ADJUstivg Machine for Cleaning Knives,
W. Hewett, London. 801. Forming Handles for Umbrellas, W. Danger-
field and J. F. Ferrabee, London. field and J. F. Ferrabee, London.
9802. BAIT Hook for FISHERMEN, de., I. K. Rogers,
London. 903. CLippina Lace, J. H. Johnson.- (The Willcox
and Gibbs Serving Machine Company, United States.)
 805. Carbonising Filaments
Max well, London. Maxwell, Lond.
9806. ObTAINing Compounds of Metal for Illuminat-
ing. Purpest ING Purposes, C. A. von Welsbach, London.
807. AUTOMATIC Governor for Marine Engines, D. Ragg, London.
OURTABE FURNACE, W. P. Thompson.-(H. Wellington, United States.)
s09. FAStENIN for GLoves, B. Bradford, Liverpool.
 London. July 30th, 1886. 812. Knitting Machines, J. A. Claringburn, London,
813. Inda-rubber Tobacco Pouches, C. Moseley, M14. Looks for Railway, \&c., Doors, F. Jones and J. S. Foster, Bloxwich.
981. Hapeniv, \&c., Steel Wire, J. Pinder and B. W. Hardening, dc., Steel Wire, J. Pinder and B.
W16. Usek and Adford.
Splication of Materials such as CuTGH, \&E., M. Hilton, Prestwich.
Sil. Protecting and RunNING Ele
 Parkhurst.
 Brown, Manchester.
82. PkN DIPs and Holders, J. T. Green, and W.
Rocklife Sunderland 823. Shedding Motion for Looms, J. Horrocks and E. Horrocks, Bradford.
Sitreing Boardine for Mitreins, \&c., A. Muir Glasgow.
8825. SRING Dollie, S. Davey, Birmingham. 9826. Chatr or Stool, C. Chatfield, London.
9827. HAT, \&., Hook, F. A. Harrison, Birmingham,
9828. SHIPS' BERTH, F. H. Street and C. Ellis London.
L829. WIND 20. WINDow Fastener, J. D. Tucker, London.
830. Shutties for Looms, J. Mounsey, London. 831. Securiva the Exclusion of Air from Casks, W. Beard London. Attaching Ray Chatrs to Wooden SLEEPERS, W. Davison, London.
9833. EFFEGTING the more EFFrcient Employment of
GASEOUS FUEL in DRIVING Motive. GAS C. S. Bailey, London.
983i. PACING for Stuffing-boxes, D. Wulff and J. 9835. Primary Batteries, O. March, London
${ }^{8} 8$ 288 and Cigarette Cases, H. Allday, London
 R. M. Ritchie, Glasgow.
Sid. Fire-proof Starch and Paint, G. Harrison, London. 542. Stabtive Cona London.
9843. Permanent Way of Railways, H. White, London.
9844. Instrument for Measuring Angles, G. P. Evelyn, London.
9845. Fuel-feeding Apparatus, P. A. Newton.
 Maiche, France.)
9847. Treatment of Sewage, T. H. Cobley, London.
9848. OrNAMENTING, \&C., the Edges of CURTAINs, C. J. Cox, London.
9849. Foraing by Rollers Conoidal Projectiles, \&e., 9849. Forging by Rollers Conoidal Projectiles, \&c.,
C. Fairbairn and M. Wells, London.
9850. Forging Screws by Rollers, C. Fairbairn and M. Wells, London. 9851. Pisros Rods, A. Collmann, London.
9852. Tass for Laces, H. E. C. Way, London
8853. Eleotrical Condict

985 E. Fox, London. 854. Telephonic Apparatus, D. Boyd and S. Wil 9855. Shutrles, Bobbins, \&c., H. H. Lake.-(L. Stone 9856. Pocket Sewing Machines, J. C. Cottam and A D. Moll, London.
9857. Pocokr SEwiva Machines, J. C. Cottam and A
D. Moll, London D. Mond Pocket Sewing Machines, J. C. Cottam and A
D. Moll, London. 9859. Intergepting Gululys 1886. Dean, London. London.
Dind Ventilating Traps, H. Dean, London.
98862. Mropeling Ships, \&cc., J. Darbyshire, Longton. Stidder, London.
9863. CASE for 9863. CASE for NeEDLES, \&c., J. Cottrill, Birmingham,
9864. OPENING the PATENT STOPPER Bottles, A. F. Smith, Hailsham.
9865. Preservation of Butter, \&c., in Packages, J. Mekenzie, Cork. A. Stuart, Bletchley.
9867. Extracting Parafine from Petroleum Dis TILLATE, J. T. King. - (C. Vose, United States.)
9868. HoEms CUTTER, J. Park, Peterhead, N.B. 9869. WINDow Blisving , C. E. Fessant, Rochadale.
9870. Grain Binders, W. P. Thompson.-(c. H. Mc mick, junn., Undited States.) Thompson.-(c. . Mc Mcor-
9871. SEparating Chafe, \&e., from Grain or Seeds, W. Rowlandson, Liverpool.,
9872. CARTS for the Conveyance of ReFise, J. W. Wood, Liverpool. Conveyance of Refuse,
9837. INDOTIIN Coils, W. J. Muller, London. 9874. Colouring upon Cellulord and Analogous
ProDUors, A. M. Clark.- (La Compagnie Franfaise duo Cellutloid, France.)
9875. ATP-TIGHT Applinces for SHiPs, \&c., W. J. N. Neale, Perry Barr.
9876. Mechanital Tox, I. Greenbury, Glaggow.
9877. VAPoRISERS and INHALERs, I. Greenbury, gow.
9878. Watch Glasses and Casks, J. Brodie, Leeds.
9879. Washing Machines, G. K. Bell. 9880. PIIKING Straps, W. Atherton, Halifax, and T. Bessant, Birmingham.
9882. CArriage Doors and Windows, W. Kneen, Barrow-in-Furnace.
988. NEW GMAE, W. Ryves, London.
9884. FRIOTIMNAL Couplivas and Clu
9884. Friorions, C. Couplings and Clutches, J. M
Coon, Manchester Con, Manchester.
9885. MACHINERY for Grinding, \&c., PAPER, R. Kron, London.
9886. Coasting Glass as a Support for Photographio
Emulsions, J. W. T. Cadett, London 9887. Fastening the Extremities of Spiral Metallio Springs, H. Spuihl, London.
9888. METALLIC BEDSTEDS
988. METALLIC BEDSTEADS, \&C., C. W. Torr, London Burners, A. Bermbach, London. 9890. Moving SpanNER, J. Brawn, Birmingham.
9891. MANIPULATING Pots for Shaving, A. Poh Halifax.
989. Adustable Folding Easy Chairs, T. Ope 9893. ADVERTISING, F. Bosshardt.- (G. NBel, France.)
9894. SALAMANDER FTRE-BARS, T. Lineker, Notting 9895. Retaining Catches for Doors, G. H. Rayner London.
9996. Nals or Spinks, T. W. Smith, London.
9897. Look Boir and NVT, F. W. Keen, London.
9998. Looking Nuts on BoLts, S. de la G. Wili

2sig. Atriching Broor Haxdurs, L. Bradshaw,
䢒

SELEOTED AMERIOAN PATENTS.

(From the United States' Patent ofice official Gazette.)

 343,291. STRam Engine Indicator, CharlesBarnaby, Salem, Ohio.- Filed October $29 t h, 1883$. Claim.-(1) The combination of a motor-cylinder frame parts connected therewith, a paper carrier sup-
ported thereby, a piston within the motor cylinder, a pencil in connection with said piston, and a couplin attached to the frame parts at a point between the motor cylinder and the pencil lever, and adapted for
coupling the instrument to an engine, substantially as coupling the instrument to an engine, substantially as
and for the purpose set forth. (2) In a steam engine
indicator indicator, the combination of a paper carrier, an
oscillating pencil lever, a sliding pencil holder fitted oscillating pencil ever, a slider, of the pencil lever, a spring adapted to
to the end
push the pencil and pencil holder outward, and a stop push the pencil and pencil holder outward, and a stop
adapted to limit the outward projection of the pencil when in use, substantially as and for the purpose set forth. (3) In a steam engine indicator, the cormina
tion of a segmental or concave tablet adapted to receive tion of a segmental, ard curved flexible paper-clips
a sheet of paper,
disposed across the curve of the tablet and secured at one end to the tablet and provided with latchments gainst the tablet, substantially as and for the purpose set forth. (4) In a steam engine indicator, the com-
bination of a moving paper carrier, a rotary spring-axle

fitted to be revolved as the paper carrier moves in one
direction, and to be revolved in the other direction by the recoil of the spring, a drum fitted to 1evolve on an xle, and provided with notches in its periphery, by tor's grasping finger motions a spring coiled within the drum and attached to the axle and drum, and a detent pawl engaging said notches and adapted to prevent
the reverse rotation of the drum, substantially as and for the purpose set forth. (5) In a steam engine ndicator, the combination of a moving paper carrier,
rotary spring axle fitted to be revolved in a rotary spring axle fitted to be revolved in one
direction by the paper carrier, two winding drums provided with peripheral notches, by means of which the drums may be separately revolved by the operator's finger grasp, detents engaging said notches and
adapted to prevent the reverse rotation of the drum, and a separate spring coiled within each drum, and
each spring secured to its drum and both springs to the axle, substantially as and for the purpose set forth. (6) In a steam engine indicator, the combinet
tion of an oscillating motor cylinder, an oscillating tion of an oscillating motor cylinder, an oscillating
piston therein, an oscillating pencil lever conpiston therein, an oscillating pencil lever con-
nected with the piston, a tubular body or frame
projecting upward from the cylinder and slotted projecting upward from the cylinder and slotted
for the play of the pencil lever, frame arms,
projecting at right angles from such frame or body, projecting at right angles from such frame or body,
and paper-carrier mechanisms supported by such arms, substautially as and for the purpoose set forth. (7) In a steam engine indicator, the combination of a body
piece, paper-carrier supports connected thereto, piece, paper-carrier supports connected thereto, a
changeable tubular extension below the body piece, a changer cylinder secured to such extension, a torsion
mpring reaching upward from the motor cylinder pring reaching upward from the motor eylinder
through the body, a removable extension piece attached above the body, around the spring, and a retaining
block for the spring, adapted to seat in the top of said block for the spring, adapted to seat in the top of said
upper extension piece or in the top of the body at the
foot of said extension piece, substantially as and for upper extension piece or in the top or tie body at the
foot of said extension piee, substantially as and for
the purposes set forth. (8) In a steam engine indicator the purposes set forth. (8) In asteam engine indicator
the combination of an oscillating motor cylinder, a the combination of an oscillating motor cylinder, a torsion-spring reaching upward from the motor-
cylinder within the body portion. and a block firmly but adjustably secured to the spring and adapted to
lide within said body portion, substantlally as and or the purpose set forth.
343,325. Machine for Roluing Tubes, Bdgar Little,
Philadelphana, Pa. - Filed February 11th, 1886 . Claim. - (1) The mandrel C, in combination with the
rolls B , each of the latter having bevel-gearing substantially as and for the purpose set forth. (2) In substantialy as and for the purpose set forth. (2) In
a rolling mill, a hollow mandrel having a diaphragm
with a port therein substantiall with a port therein, substantially as and for the pur-
pose sef forth. (3) Hollow or chambered rolls B , the pose set forth. (3) Hollow or chambered rolls B , the
hollow shaft E , bearings $\mathrm{B1}$, with bores a a ${ }^{2}$, the shaft
EI^{1}, with groove b and bore c, the bearing B^{2}, with bore E^{1}, with groove b and bore c, the bearing B^{2}, with bore
d, and bearings B^{3}, with the discharge bore e, substan-

343,325

tially as described. (4) The mandrel C, provided with
exterior rollers N, substantially as and for the purpose set forth. (5) The hollow mandrel C, having commu-
nicating compartments H, in combination with rollers L, slightly projecting at the perionhery of said
mandrel, rolls B, and rollers N, substantially as mandrel, r
described.
 1886.
Claim. The combination, with the grooved bed.
plate provided with the backing die I and the gauge
screw, of the tool-holder having the slot and set screw,
and the tool provided with patterns extending
throughout its entire length and the nivotted hand
343,443.

lever for moving the tool-holder, substantially 343,448. Converter for Making Bessemer Metal,
Henry L. Gantt, Baltimore, Md.--Filed Novembert Hethy L. L. Gantt, Baltimore, Md.-Filed November Claim.- (1) A stationary converter, combined with horizontal dimensions with the interior of said con
verter at bottom, said tuyere-box being provided with a conduit blast pipe and in its top with a series of tuyer or jet holes for the discharge of the air jets in
vertical direction. (2) A stationary converter vertical direction. (2) A stationary converter A,
combined with a tuyere-box E , adapted to fit the comerior of said converter at its bottom, and provided
inth upwardly-directed tuyere holes e, distributed

over all the cover of said box, and a blast pipe F
inserted at the centre of said box, the whole being weighted sufficiently to cause it to sink into and to
the bottom of the molten metal in said converter. (3) the bottom of the molten metal in said converter. (3)
The flat-topped tuyere-box E , corresponding in dia-
meter with the internal diameter of the converter at meter with the internal diameter of the converter at
its bottom, provided with tuyere holes e, distributed its bottom, provided with tuyere holes e, distributed
over its cover, a hole h in its bottom, and an induction over its cover, a hole h in its bottom, and an induction
blast pipe F , substantially as and for the purpose set
forth. 343,46 343,466. Rock Drill, John B. Maas, Humboldt, Mich.
-Filed December 31st, 1885. Claim. - (1) The combination, with the piston-rod of
the drill, and the pinion at its rear, of the long pinion, having a boss at its rear journalled in a suitable
bearing, the rotating screw sleeve, and feathered bearing, the rotating screww sleeve, and feathered
sleeve sliding thereon, and the interlocking lugs,

[343.459.

the yoke for tripping the weighted arm and with.
drawing the boots, and the tumbler having the arm $/ i$

