LABOUR IN EUROPE

No. I

The standing instructions of the United States Government to its agents in foreign countries call for periodical information on all matters of commercial and public interest. In addition to the general subjects upon which the consular and diplomatic officials are expected to inquire and report, at times special instructions are given to them concerning matters of distinct importance. Of the special questions, that of labour and wages is most important, since an understanding of the conditions of the existing relation of labour and wages to capital in other countries is necessary to form a correct judgment upon questions affecting both the working classes and those who employ them.
The importance of gaining such knowledge of the labour conditions of other countries was early recognised, and a compilation of the reports of the several consuls was presented to Congress in 1879. This compilation, though the inquiries upon which it was based were of a limited nature, proved a valuable contribution to statistical knowledge. tts publication attracted much attention, and frequent and publication of similar information. These demands resulted, in 1884, in the creation of a new administrative office, called the Bureau of Labour. Its duties are to collect information on the subject of labour, its hours, its relation to capital, and the earnings of both men and women. A part of these duties had been anticipated by fiers in . fircers it foreign countries, directing them to obtain and transmit the necessary information concerning the condiins uch labour and it of obtaining similar information. It is means in England orls in various foreign countries suls in various foreign councries are expected to furnish upon any system, we have to depen for our now done upon the reports of private inquien or upour knowledge upon the reports of private inquirers or upon those of the and worthy of imitation. An inquiry into the conditions of labour and wages in foreign countries, to be of any value, must be carried on simultaneously in all the the difficulty of obtaining trustworthy reports, \&c., few private inquirers are in a position to undertake the subject with any chance of success, and should they be successful, the results of their inquiries are published at a price that is virtually prohibitive. The collection and publication of periodical statistics as to the economic and social conditions of foreign countries can be only done properly by the Government, or some society to whom cost is no object. The necessity for the information is daily becoming greater, and in a short time the attention of Parliament will be called to it, and the establishment of an office simiar to that recently erected in the United States proposed. The expense would not be great, the most part of of the numerous consuls and agents abroad
At the present time, when there is so much depression of trade and so many conflicting theories as to the causes of it, there is the greatest want of a book giving the conditions of the working classes in the various countries of the world in a concise aud popular form, and containing the facts only, being free from speculations and theories,
and above all published at such a low price as to be within and above all published at such a low price as to be within from the consuls of the United States in relation to the state of labour in Europe. In a little fewer than 200 pages it contains full information as to rates of wages, ditions of the coond cont ditions of the people generally in Austria, Belgium, France, Germany, Greal Britain, Holland, Italy, Portugal, Russia, Switzerland, and Turkey. In the reports from the various countries there is much difference. Though he same instructions were issued to all concerned in the The same features are not of a uniform length or nature. ge same fer pres are variously deals wis. Some reports gite greater prominence than others to particular trades, relations between employers and employed. They literally bristle with figures and tables, and may be safely probristle with figures and tables, and may be safely pro-
nounced to be the most valuable contributions towards a knowledge of the facts of the labour question that has ever appeared, and it should be in the hands of all engaged in industrial occupations or in any way interested in the tled "History of Trade Guilds in Europe," dealing with the questions relating to organisations of Jabour in Europe, their history and present state, apprenticeship, trades their history and present state, apprenticeship, trades
unions, technical education, and all conditions and regulations relating to trade. Though not so interesting as the labour report, it is equally valuable. The two works together contain almost everything on the subject which first-named work is interesting to the general reader, the latter is rather heavier reading, consisting chiefly of information on technical subjects. Those interested in while the and labour statistics should read both the works, work much that is profitable in the consular reports, from Leipsic, in the history of trade guilds; from Genoa, on trade economy in that town; from Venice, on the trade guilds of the province; and from St. Petersburg on the Russian Artils, or associative labouring societies. That prising. It may be partly due to the system under which the books of the United States Government unswering in description to our Blue Books, are published. They are neither advertised nor sold, only exchanged for the similar works of foreign Governments, and presented to certain institutions and museums. The consequence is that in the country of their origin the valuable information that they often contain is practically buried, while here their existence is unknown, except from casual references to them
the more modern ones can only be obtained with the greatest difficulty
A perusal of the labour report will prove to any impartial reader that, whatever may be the conditions of the labouring classes of Great Britain, it is much superior to that prevailing in many if not in all the continental nations. In some countries the artisan receives less than half the wages per hour that he obtains in England, while the number of hours he works are longer by 50 per cent., the cost of what he considers the necessaries of life being equal if not greater. The foreign artisan contrives to live upon much lower wages than the British, because he lives in a different manner. The cost of the necessaries of life, according to our idea, do not show anything in the foreign artisan's favour, as will be seen by the table of prices of
food in Europe at the conclusion of this article, But in food in Europe at the conclusion of this article. But in many countries he hardly ever uses any of them. The daily cost to the Italian workman is estimated at $8 \frac{1}{2} \mathrm{~d} .$,
made up as follows :- Coffee or liguor, $0 \frac{1}{2} \mathrm{~d}$; ; bread, $2 \frac{1}{d}$. ; made up as follows :-Coffee or liquor, 012 d. ; bread, 2 $\frac{1}{2 d .}$; salted pork or fish, 1d. ; cheese or fruit, 1d. ; maccaroni, $1 \frac{1}{2} d$. ; beans, cabbage, or other greens, $0 \frac{1}{2} d$. . ; wine (one
pint), $1 \frac{1}{2}$ d. ; total, $8 \frac{8}{2}$ d. This diet is suitable to the climate, and is plentiful, much of it, especially vegetables, being within reach of the poorest. But again the Russian artisan who lives in a very severe climate, and requires food
approaching nearer to the English standard, pays for food approaching nearer to the English standard, pays for food on an average 5d. a day, or nearly only one-half of the
above. This would seem to point to a very low price of above. This would seem to poi

There is an advantage to the continental workman in rent, it generally being lower than in England. One cause of the lowness of wages abroad is the great quantity of female labour. In some countries there are as many many hours, males working in mines, factories, \&c., for a the wages of males. Into the importan
 confining itself strictly to be interesting to know 0 condions in facts. It woul receives two-fifths only of the wase of an Englisn one what are the proportions of the pount and value one work done in each case "There are certain artificial natural conditions which so generally affect the direct ditions of wares as to be entitled to consideration any analytical examination of the conditions of labour, but from their abstruseness they are less evident to the general mind than the simple relations shown in the reports from the various districts."
Germany.-The German labourer excels in perseverance patience under the most trying circumstances, industry, and economy. These virtues enable him to sustain exist ence in his own land on very low wages, and to acconplish the greatest results in almost every field of labour The relations between employer and employed, though in some districts pretty good, are, on the whole, violently antagonistic. But the entire labour conditions of Germany are in a transition state, In addition to the unions, the indsal military service, socialism the tav concerning it being continually changed, and consequently the regulations and rules of industrial organisations hav to be constantly altered. On the establishment of the Empire a general trade law was passed, and all the old reguations upon industries and their exercise abolished. bee the legislation since, some of the old restrictions have son restored. Guilds are permitted, and have recovered sul their ancient privileges relating to trade contro and though membership of these bodies is purely volunby prohibiting any master whe to render it compulsory guild from taking apprentices. Strict attention is to a the subject of raising the education of thention is paid to enable him to compete with foreign workmanship Apprentices compete with foreign workmanship. Apprentices are encouraged, and in some States compelled held in the evenings and on Sunday mornings. The fee paid in the evenhgs and on Sunday mornings. Tort the pupils are admitted free, especially those who left their primary school with a testimonial of proficiency in their studies. In some trades an apprentice before becoming a journeyman has to pass an examinatiou before he may be sent back to serve a further period until quadnily are daily becoming more visible. In the last few years he German artisans have made great advances, and in take the the Empis. Wages vary much in the different parts of the Empire. They are highest in Alsace-Lorraine, where and lowest in Silesias for a week of sixty hours 24s. 5d., In Hesse a nailmaker with not two-thirds of that amount. childrens and by working from five in the his wife and eight in the evening An in evening, can earn from 100. to 1s. 2d. a day An important factor in the labour question of Germany is haulage flabour dogs. The principal part of the harnessed the country is done by women and dog labour, even in mining and foundry work. In sonal they accompany the coal carts through the some parts put the coal in the cellars while the the seat Their wase avera male driver sits on men. The effects of such a life is not favourable to the development of domestic qualities, and the hould of the working classes is of a most primitive kind Th Germans are a labouring people in the strictest sense of the term, lead a frugal life, and are inadequately remunerated.
Average Wages Paid per Week of Seventy-two Hours in Ironworks
Forgeman and first puddle
Welder and hammerman
Puddlers and shearers.
Shearmen, smiths, and firemen
Unskilled

Average Wages Paid per Week of Sixty-three Ho
and Machine Shops in Barmen.

Average Wages Paid per Week of Sixty-six Hours in
Ironworks, and Machine Shops in Thuringia,
Foundries
Casters

Moulders Labourers

Locksmiths and turners
Boiler-smiths
Blacksmith
Machine-
Engineers
Apprentice
Labourers
In the iron and steel works in Rhineland and We phalia mechanics earn on an average 17s. 3d. a week. In wages paid per day to his mechanics at 2s. 6d. Average Wages Paid per Week of from Sixty to Seventy-two Hour
in Mines in Silesia.

Average Wages Paid per Month in Mines in the District of
Uolliers :
Underground, eight hours a day
Hewer, first-class, eight hours a d
Labourer, twelve hours a" day "
Labourer, twelve hours a day $\ldots \ldots$.........
Woman (in lead and silver mines), twelve hour
a day $\ldots \ldots \ldots$
Boy, ten hours a day
$\begin{array}{ccc}2 & 0 \\ 111 \\ 10 \\ 9\end{array}$
Average Wages Paid per Week of Sixty Hours in Shipyards.
Iron shipbuilding:

THE ROYAL INSTITUTION.
the great ice age.
On Saturday, January 23rd last, Professor R. S. Ball, LL.D., "On the Great Ice Age," of which the following is a summary He began by exhibiting some stones scratched and furrowed by glacial action, found in the boulder clay of Clew Bay, Ireland and said that the markings were analogous to cuneiform writing,
for they were indentations which scientific men had interpreted for they were indentations which scientific men had interpreted
by long and assiduous research. At some prehistoric period, by long and assiduous research. At some prehistoric period, shere, sphere, had been its own as pol by present thick, having Every square inch of a column of ice 500ft. high would exert pressure of 200 lb . to the square inch upon the soil beneathpressure as great as that inside the boiler of an express engine In its slow motion it crushed some of the rock beneath to powder, and scratched and furrowed other pieces, to form beds of clay and stones like those at Clew Bay. The presence of these continents of ice implied great heat at another part of the world, for unless heat evaporated water at one place, it
could not fall at another as rain and snow, to form Alpine glaciers are small as compared with those of the great ice age, but at present the Southern hemisphere is passing through a sub-glacial epoch; in such epochs, great and small, have experienced earth is affected at one time, and both pole which a temperate climate has prevailed, as indicated by geo logical strata.
After setting forth that changes in the earth's axis, changes in solar heat, and changes in temperature caused by an assume occasional nearness or other suns, are in his belier untenable a explanatory of the great glan bations set up by other planets, especially Venus, Mars, an Jupiter, cause variations of these in which the earth travel ellipse never varies, and the sun is always in one of the foci of the ellipse. The perturbations cause the ellipse to vary in breadth, so that it has a kind of breathing motion, but extending over vast lengths of time. At present the orbit of the earth a circle unless it were measured. Assuming, however, that it ellipticity were now large, the position of affairs may be explained gram. In this diagram assume Eto represent the sun, H the summer posi tion of the North Pole of the earth when the earth is moving in an elliptical orbit, and K its winter
position; the black spot marked on the earth indi

a mathematically demonstrated fact that in passing ove
earth would receive as much heat as when passing over the greater length of orbit to the right of that line. The same holds good with the lengths of orbit to the right and left of the line Also, in passing from A to B it receives as much heat as orbit. passing from C to D, but its velocity of motion is much greater the nearer it is to the sun. Under these conditions the heat of the North Pole is intense during the short summer, and the cold of that Pole equally intense during the long winter; in fact, then giving a sufficiently low temperature to account for a
glacial epoch. But, said the lecturer, the objection has been glacial epoch. But, said the lecturer, the objection has been
raised that as the earth receives the same amount of heat in all during its short summer as it does during its long winter, these two conditions should balance each other, and keep up an equable temperature. The reply, he said, is, that its motion being so much slower in the winter, it receives that same amount of heat in a different way. For instance, if a horse wanted 30 lb . of year and 20 lb . a day during the other part, he would feel that in the latter part of the year he was passing through a glacial epoch, and that its extra length was no compensation. Taking these facts into consideration, also the precession of the equinoxes, nately through glacial epochs, and that it takes 13,000 palterwhich is nothing in astronomy, to transfer the maximum of glaciation from one pole to the other. In causing perturbations of the earth, Jupiter being so far off exercises an attraction half that of Venus. Even the host of little planets between Mars and Jupiter have each a trifling influence; the smallest of them gives a pull strong enough to break a chain cable like that over the Brooklyn Suspension Bridge. Sirius, one of the nearest of Venus, Mars stars, exercises a strain of perhaps 7 or 8 tons, but enus, Mars, and Jupiter are exceedingly potent agents. These planets, by setting up glacial periods, once ground down and into bricks to build the mighty city of London.

THE WAVE THEORY OF LIGHT.
On Friday, January 22nd, Professor Tyndall delivered a lecture on "Thomas Young, and the Wave Theory." It was largely a
digest of Peacock's " Life of Young." Sir W. Bowman presided. digest of Peacock's " Life of Young." Sir W. Bowman presided.
Among the listeners were the Earl of Rosse, Earl Percy, and Among the listeners were the Earl of Rosse, Earl Percy, and
some of the leading men of science of the day. Young, it was stated, was a Quaker, and a man of good conversational powers, although he never became so popular as a public lecturer as his successors at the Royal Institution, Davy and Faraday. He did not originate the wave theory of light, but did much to establish it, in the face of the opposition of such high authorities
as Newton and Lord Brougham. Young was the first to as Newton and Lord Brougham. Young was the first to
divulge the philosophy of the causes of the colours of motherdivulge the philosophy of the causes of the colours of mother-
of-pearl, and other striated surfaces. He officiated at the of-pearl, and other striated surfaces. He officiated at
Royal Institution at the beginning of the present century.

impurities in metals.

On Thursday, January 28th last, Mr. W. Chandler RobertsAusten, F.R.S., Chemist of the Mint, delivered the first of four lectures upon "Metals as Affected by Small Quantities of
Impurity." He said that metallurgy has to deal at once with arge masses and with small particles, for the influence of the latter upon the former is out of all proportion to their relative quantities, and their action may be chemical, or physical, or both. Minute impurities in metallic copper would render, he said, ocean telegraphy impossible. Geber proved that the "cry" by purification. Arsenic in the most minute proportion will by purification. Arsenic in the most minute proportion will
restore the cry of tid, and its action in this respect has been known at least since the third century of our era; arsenic makes tin as brittle as zinc. The fact that such small proportions of foreign matter so alter the character of metals, tended more than anything else to confirm the alchemists in the doctrine of transmutation, and encouraged them in their attempts to make gold by artificial means. A little arsenic in melted lead will say, of white paper, the lead will roll itself into small shot plane, the arsenic absent, it will merely chill in a small shot ; with the paper. The speaker proved this by experiment, and invited attention to the following figures :-

Analysis of Lead Shot.
Lead, with small quantities of antimony, iron,
Lead, wi
Copper.
Arsenic
This proves what a very small proportion of arsenic is necessary to produce the effect.

Zinc, said the lecturer, melts at 412 deg. C., and standard gold at about 900 deg. C., but if less than 0.2 per cent, of silica
be added to gold, it will soften in the flame of a candle. This was demonstrated by experiment. A trace of antimony in melted lead will cause it to oxidise on the surface much more rapidly than would otherwise be the case, and by stirring the mass it is soon transformed into a kind of pasty oxide. Cadmium also promotes the oxidation of pure melted lead, and that
too with a play of the most beautiful colours. Mr. Robertstoo with a play of the most beautiful colours. Mr. Roberts-
Austen proved this by illuminating the surface of the melted Austen proved this by illuminating the surface of the melted
alloy with a beam of parallel rays from the electric lantern, and projecting upon the screen an image of the surface of the molten mass; as the films of oxide formed they were removed with a little, scraper, to make way for fresh surfaces, having be generally known that copper can be gilt as well by the application of an alloy of lead and gold to its surface, as it can by an amalgam of mercury and gold. On the application of heat the copper absorbs the lead, and the gold is left on the surface.
This process is recorded in a papyrus of the third century, now preserved at Leyden.
The alchemists, he said, through several successive generations down to the year 1746, authoritatively taught it to be a
fact that all metals were composed of mercury and sulphur fact that all metals were composed of mercury and sulphur
combined in different ways, and those of them who claimed to have made gold, almost invariably said that they , had done so "by the aid of a powder received from a stranger." Dr. James Price, of Guildford, a Fellow of the Royal Society, was the last of the alchemists who believed in the transmutation of the
baser metals into gold; he lived in the eighteenth century. Raybaser metals into gold; he lived in the eighteenth century. Ray-
mond Lully was confined in the Tower by one of the English kings, in order that he might make gold for the Mint.
tion of metals, because in the usual orthodox transmutation of metals, because in the usual orthodox way he had 1000 times its weight of gold into a baser substance, and he did not see why the operation might not be reversed. He had gold and lead. The lecturer here melted down one hundred sovereigns, and cast a little of the molten metal into a small bar, to show that the metal was strong and malleable, and
tough. To the remaining greater bulk of the molten gold he, however, added a trace of lead, and cast the mixture into a
large thick bar, which when almost cold, and when held in the palm of the hand, broke into pieces upon being tapped with a hammer. A small trace of lead, he said, will reduce the breaking strain of gold from 20 tons to
He then stated that palladium will absorb 900 times its volume of hydrogen gas, and give it out again when heated. A an alloy of rhodium and lead will absorb nitrogen and oxygen, and when heated give them off, as gun-cotton does, with explosive violence. He placed a small piece of rhodium, containing 17 per cent. of lead, in a tube, and next withdrew the air from the tube by means of the Sprengel pump. The heat of a spirit flame was then applied to the end of the tube containing the piece of rhodium and lead, and the alloy broke up dust. The gases liberated were chiefly the same as those given off by ignited gun-cotton.

PETROLEUM LAMPS,

Is many homes-even in those of the well-to-do-gas is supplanted by the petroleum, or, as it is very commonly, however truly termed the poor man's light. Improved methods of refining, and more perfectly developed sources of supply and means of transport, have jointly rendered it a cheap and convenient source of domestic light, as well as as safe a one, on the whole as gas. It has also to the poor the distinguished advantage over the latter that it is paid for in detail, or just as it is used; it is therefore divested of the evils of the credit system attending on the use of gas. In using the latter, the consumer is periodically called upon to pay a more or less heavy
lump sum, the call being sometimes made at a very ind lump sum, the call being sometimes made at a very inopportune time for the poor debtor. A supply of petroleum, on the other
hand, may be purchased for as small a sum as twopence at a hand, may be purchased, hor as smale a sum as twopence at a
time. The commodity, however, depends greatly for its usefulness upon the lamp provided for its consumption; and concerning lamps, it must be said that far more attention has been bestowed by those engaged upon their manufacture to make them beautiful than calculated to render them efficient light producers. We are willing to admit that the difficulties attending the designing of a thoroughly good lamp are not easy to
overcome, but that they are insurmountable has not yet been overcome
proved.
One chief drawback is the frequency with which the reservoir proportion replenished; the oil chambers are usually so roughly hours' light before they are quite emptied. No reasonable fault can be found with this, and some of the larger lamps contain as much as a twelve or fourteen-hour supply, theoretically. Practically, however, not more than half this, even of the very best, petroleum can be burned, if the full lighting power of the
burner is needed-and when is it not? After burning some burner is needed-and when is it not? After burning some
time the flame becomes reduced in size and brilliancy the time the flame becomes reduced in size and brilliancy, the
reduction taking place in a time short in proportion to the reduction taking place in a time short in proportion to the
inferiority of the oil. The cause is not far to seek, the failure of the flame is due to insufficient supply of fuel, owing to the increased height which it has to rise to reach the flame. In fact, it may be said that, if the distance between the surface of the oil and the foot of the flame exceeds 3 in ., the maximum power of the burner will not be secured. Of course a lamp will yield light, and tolerably good light, at a greater distance ; but we repeat, not its maximum light. In order to attempt improvement with any prospect of success, it is necessary first
to study the conditions present in the problem to be solved. A wick of a certain size must of necessity have a proportionate air supply, and this must reach the flame between its foot and the cover of the reservoir; at least, such seems the assumption of all existing lamp makers. How far it is justified we shall see presently. Judging by all existing lamps, it seems that a certain length of pipe or wick casing is considered necessary to preclude any danger of the heat of the lamp reaching the petroleum in the reservoir in a degree high enough to cause explosion observe that the necessity for the great length of pipe present in large lamps has not been proved. To this also we shall in large lamps presently return.
Supposing the maximum distance between flame and fuel to requiring a fresh supply, evidently the to the not, as is now generally the case, some point about half-way down the reservoir, is the distance or space available for air space and fuel; we say nothing of wick pipe, because it will
stand within the air space. Now the object aimed at, or which stand within the air space. Now the object aimed at, or which should be aimed at, is the production of a lamp that will burn
some considerable number of hours without replenishing. Some standard of duration, however, must be fixed, and it must be a real, not an imaginary one, as is the case at present where the capacity of a reservoir which is never emptied is the nominal standard. If the vertical space at command is restricted, so also are its lateral dimensions, owing to the shadow thrown by the reservoir, and the extent of this shadow is, of course, measured by the distance apart of two lines drawn from the centre of the flame and produced tangentially past the
diametrical points on the reservoir or to the table. We will now row on the reservoir or to the table.
must reach the flame above the reservoir. We, air supply respect for practical lamp makers, would ask why no attempts have been made to convey air up through a central pipe fixed in the middle of the reservoir to the flame? We leave the suggestive query to lamp makers to consider, contenting ourselves with observing that the method may probably be found to facilitate considerably the reduction of distance between flame and fuel-admitting, however, that in propor-
tion as the flame is brought near the reservoir, so also tion as the flame is brought near the reservoir, so also
is the shadow enlarged; but then, if transparent glass receivers are used, its intensity will be almost totally done away very shallow receivers of large diameter may be reduced, and also, coming to the short wick pipe danger, the central air pipe would have a sensible effect in keeping the receiver and its contents cool, and thus counteracting the supposed danger due to the use of such a pipe. In any case, the danger of a short pipe cannot be ascribed to its high temperature acting on the oil, because there is always an air space between the two, and if the oil be of the legally low-flashing point, no danger need be A prize might well be offered for a petroleum lamp whose
overthrow alight, shall be least likely to prove the origin of a fire. Apropos
also of this subject, we would point out that one element of safety lies ready to the hands of lamp makers, viz., the filling up of at least half the capacity of all the reservoirs of the lamps they now have in stock with some light incombustible material; the oil usually in such places is never burned in any other way
than when set alight in the manner we have just indicated, and
therefore better that it should be conspicuous by its absence by excluding the petroleum from access to the incombustible subcase of overthrow it could serve to absorb but arranging that in case of overtbrow it could serve to absorb and keep in tolerably safe custody a portion, at least, of the petroleum at present free
to flow flaming over and between the boards of the flooring Thus at once, space at present only forming a magazine of combustible stuff, to the common danger, would be converted into a tolerable source of safety.

WATER SUPPLY OF SMALL TOWNS. WALLINGFORD
For some years past the Corporation of Wallingford, Berks, them, the establishment of an improved water supply for the

town, which was dependent almost exclusively upon shallow
wells or land springs. Mr. W. A. Ripley, of Bracknell, Berks was consulted as to the most practicable scheme, and a gravitation cost, he determined to ascertain whether a supply could not be economically obtained upon the spot. Accordingly in Decsmber,

THE WATER SUPPLY OF WALLINGFORD.

1883, Mr. Ripley instructed Messrs. Le Grand and Sutcliff, of
Bunhill-row, London-who had recently procured an abundant supply of water for the Moulsford County Asylum in the adjoining parish-to sink one of their artesian bored tube wells, The site selected is a field adjoining the railway station and gasworks just outside the town, where the upper greensand formation outcrops. This tube well consists of an outer tube or cylinder $8 \frac{1}{2} \mathrm{in}$. internal diameter. carried down to a depth of 16 ft . well tube proper was tightly driven thrace water, and then the and soft stone to the depth of 40 ft , below which beds of clay was continued into the denser beds of stone to the total depth of 58 ft ., as shown in the accompanying section of strata which has been sent us. In these lower beds an ample supply of water was found which rose to within a few feet of the surface, and which upon analysis proved pure in quality and suitable for domestic purposes. A trial pump was applied to the tube well, and run for seventy consecutive hours at the rate of 6000 gallons per hour, without making any appreciable effect upon the far satisfactorily ascertained, the of a copious supply being so dry pump pit, 10 ft . 9 in . deep, 6 ft . diameter, constructed of brickwork set in cement, and encased with puddled clay, with a bottom of alternate layers of concrete and cement; and upon its completion the upper tubes of the tube-well were removed and a stop-valve put on to keep the water from overflowing into the pump-pit. A water tower, of which an illustration is given, was built by Messrs. Brasher and Son, of Wallingford, the total height of which from the ground line to the top ridge is 58 ft . The brickwork reaches to the height of 45 ft ., upon of holding 15,000 cast iron tank 6 ft . deep, 21 ft . square, capable mental tiled roof. A small building extending to the rear of the tower, as shown in the plan, forms the well-house, while the base of the tower constitutes the engine-room. The pumps, consisting of two 6 in , ram plungers 18 in , stroke, and capable of raising 6600 gallons per hour through a 6 in . rising main deliver to the top of the tank 50 ft . above the surface. These were supplied and fixed by Mr. S. Griffith, the Railway Foundry, Rearing, who also furnished the two 6 -horse power Otto gas engines, one of which easily works the pumps while the other is night, and raise over 150,000 gallons in twenty-four hours, The consumption of gas to raise 6600 gallons in an hour is 135 cubic feet, which at the high figure of 5 s , 5 d . per 1000 cubic feet charged by the local gas company, only comes to $1 \cdot 33 \mathrm{~d}$. per 1000 gallons of water raised.
Taken as a whole these waterworks may be considered unique, the supply of water being obtained by Le Grand and Sutcliff's tube well system, dispensing with the usual costly shaft, while the introduction of gas engines as the motive power does away with the boilers, boiler-house, and chimney shaft, and secures a and dirt. The trifling of the place in the absence of all coals engine reduces the cost under this to a minimum total cost of the artesian tube well, pumps, engines, and tower, including the cottage for the attendant and the boundary walls, amounts to but $£ 2850$. The cost of providing and laying the street mains, hydrants, valves, standposts, \&c., was £1450 Messrs, Evans Brothers, of Wolverhampton, being the contrac-
tors, making the total cost of the whole scheme $£ 4300$. Thus
it will be seen that where a supply of water is obtainable within a reasonable distance below the surface, it is within the reach of very small communities. Pumping for the supply of the town was commenced in April last, since which time everything has worked satisfactorily, while as to the supply of water, it may be mentioned there has not been the least sign of falling off not population of We exceptional dryness of the last summer. The bout 10 or allingford is about 3000 , and the rateable value mall rity mall rate to pay for them.

ROOTS' IMPROVEMENTS IN BLOWERS AND PUMPS.
The Roots' blower now being a well-known machine in this country, though of American origin, some account of its caree may be interesting to our readers. It consists of two revolving contact with each other, and with the internal periphery of a pair of half cylinders. Its success is well-known-so much so

that the Roots' blower is as much an article of commerce in the The binery world as is a portable engine or a screw-cutting lathe abutments of a form not unlike the figure eight around each other, their relative positions being determined by wheel gearing, This form, though not scientifically correct, was sufficiently so to ensure an approximate contact when made of wood, and hence it formed an efficient machine for a cold blast but when used, as is now frequentlythe case, for exhausting hot gases, it became necessary that the revolvers be formed of iron. Then a difficulty arose as to the form of revolvers, as if made ccurately to a semicircle they would not pass round each other, necessitated theing of correct form, and besides that, it should be swept over by a tool, rendering the formation very expensive process.
This want of scientific accuracy in the original form led Mr.

Roots to improvements, and fresh patents were taken out in
1881 and 1882, and again in 1885. We will now shortly notice the four patents, which will possibly be the simplest way of
 pointing out the various improvements which have led to the
1885 patent. This last seems to have reduced the dificulties of construction and manufacture so much, and is of so simple a

nature, that it is difficult to see how it is that the present form should not have been the one originally adopted. That years of should not have been the one originally adopted. That years of
another illustration of the fact that even in the design of mechanical tools per oection is only attainable by perseverance and thought. Our iillustrations slearly stow the a various stages which have been passed through, and we think the improvements will at once be appreciated.
Fii. 1 representst the original Roots' blower as constructed by
Mesess. Thwaites and Carbutt, of Brad Messrs. Thwaites and Carbutt, of Bradford, and now by others. It is not an accurate form- that is to say, that if the curves are
true semicicles and closely geared the revolvers will not pass rrue semicircles and closely geared the revovers wil not pass
round each other. Fig. 2 is an illustration of the patent of

1881 The curves in this instance are more accurate, and only the convex surfaces are tooled over. In their formation, however, they require the use of several different centres
and radii, which involves a difficulty in setting out, and hence expense in manufacture. Fig. 3 shows the mode of tooling the convex surfaces on an ordinary planing machine.
Fig. 4 represents the next improvement and the mode of drilling Fig. 4 represents the next improvement and the mode of drilling
out the curves. It will be seen not to differ much from Fig. 3 . out the curves. It will be seen not to differ much from Fig. 3 .
Fig. 5 shows the last constructed curve, which far exceeds those preceding it in simplicity of construction and efficiency. In this case both large and small curves are struck from one com-
mon centre, thus reducing the construction to the utmost simplicity. By reference to Fig. 5 it will be seen that each half of the vane consists-on each side--of two large and two small curves, and that to produce these four curves only two centres

and two radii are employed. The centres are represented by the points A B and radii A C-A E, B D-B F. Thus the two smaller curves are struck with radii $A C$ and $B D$, and the larger
with radii $A E-B F$ from the centres A and B, which are found by exceedingly simple means, and also the radii. These being
fully described in patent No. $10,323,1885$, it will be unnecessary fully described in patent No. $10,323,1885$, it will be unnecessary to describe them more fully here.
As a pump, Messrs. Mather and Platt, of Salford, have taken a license to manufacture, and, we believe, have supplied several
to her Majesty's Government, the contractors of the Tay to her Majesty's Government, the contractors of the Tay
Bridge, and others. A very neat design of a combined engine Bridge, and others. A very neat design of a combined engine
and pump is being brought out by Mr. Okes, of Queen Victoriaand pump is being brought out by Mr. Okes, of Queen Victoria-
street, the engine being by Mr. A. C. Mumford, of Colchester, who is acting as Mr. Roots' agent in this country.

THE EXPLOSIVE FORCES IN GAS ENGINES. On Thursday, the 28th January, Professor Ewing, University College, Dundee, exhibited before the Dundee Mechanical
Society the model of a high-speed friction driving gear, which,

Maximum pressure, 21 lb . per square inch above atmosphere. Mixture, , 1 volumee of gas to 2 v volumes of air.

 Temperature before iggnition, 7 deg. deg .Temperature after ignition, 400 deg .
Time taken to describe diagram, 4 seconds,
in conjunction with the late Professor Fleeming Jenkin, he had
invented. The gear was stated to be specially
cases in which power had to be transmitted from a low speed to a high speed shaft, or vice versa, as in driving dynamos, fans, motor. Professor Ewing, and illustrated by a number of diagrams. In addition to its high efficiency or small loss of power in transmission, the invention is stated to have the advantage of giving
great multiplication or reduction of speed in a very limited space.

ATMOSPHERIC LINE
Maximum pressure, 33 lb . per square inch above atmosphere.
Mixture, , volume of gas to 20 volummes of air. Temperature before ignition, 5 deg. C.
Temperature after ignition, 618 deg. c .
Temperature after ignition, 618 deg. C.
Time taken to describe diagram, 4 seconds.
Mr. Geo. C. Douglas, Douglas Foundry, then read a paper "On the Explosion of Gases, and the Rates of Cooling of various Mixtures of Coal Gas and Air." It was illustrated by experigas to air varying from ${ }_{10}^{1}$ th to $\frac{1}{30}$ th. A two-chamber eudiometer was used, the one chamber being separated from the other by means of a diaphragm of oiled paper, which was broken through by the explosion of the gas and air in the adjacent
chamber when the mixture was ignited by the electric spark.

ATMOSPHERIC LINE
Maximum pressure, 631 b . per square inch above atmosphere.
Mixture, 1 volume of gas to 10 volumes of air. Temperature before ignition, 5 deg. C .
Temperature after ignition, 1176 deg. C .
Timp take
An indicator moved by clockwork at a uniform speed gave a
diagram showing the rate of cooling diagram showing the rate of cooling. Three of these diagrams are given. He stated that so far as he knew he was the first
who had investigated into the rate of cooling of such dilute ratios. The papers were attentively listened to, and the usual votes of thanks were accorded.

A REVERBERATORY FURNACE HEATED WITH

 GASEOUS FUEL.Messis. John Shewell and Co., engineers, Darlington, have just succeeded in making use of liquid fuel for the heating of a plate-bending furnace. The liquid fuel used is derived from gas tar, and is simply the residue after the more valuable con-
stituents have been taken out. The burners and the general stituents have been taken out. The burners and the general
mode of application are similar to those adopted by Dr. Saddler, mode of application are similar to those adopted by Dr. Saddier,
of Middlesbrough, for treating boiler furnaces, and substantially the same as were illustrated and described in a paper read before the Institution of Mechanical Engineers, on the use of liquid fuel, two or three years since. Messrs. J. Shewell and Co.' furnace was originally built and used to burn coal. It then had a fire-grate running the full length on one side, the products of combustion being drawn off by a chimney on the other side, connected by several converging flues. The body of the furnace
was made 15 ft . by 3 ft ., and the coal-burning grate 15 ft . by 1 ft . 3 in . This furnace, though it worked well enough for heating plates up to a certain moderate temperature, was not
found efficient when required to heat them up to a full red-heat for severe bending. It is obvious that it would be difficult to secure equality of temperature through. out the whole length of so narrow a grate, the ends whereof were, of course, further from the chimney than the tity of The consumption of fuel was excessive, and the quanmonths since, having in hand an order for bridge work, requir ing flooring plates $\frac{1}{2}$ in. thick by about 2 ft . 6 in . broad by 12 ft . long, and very deeply dished into the form of a trough, Messrs. their furnace, so that it should be heated by liquid fuel. After their furnace, so that it should be heated by liquid fuel. After
many difficulties they seem to have succeeded perfectly in many difficulties they seem to have succeeded perfectly in
attaining their object. The old coal-burning grate was bricked up, as also the old flues. A new flue at the end of the furnace now connects it with the same chimney. There are three burners placed in a row at the other or door end of the furnace, but placed high enough not to interfere with the entrance or exit of the plates, The blocking appliances are immediately in front of the door, and in a line with the furnace, so that
no time is lost in dealing with the plates after no time is lost in dealing with the plates after they
are drawn out. Distant about 30ft. from the furare drawn out. Distant about 30 ft . from the fur-
nace is a small vertical boiler, which supplies steam at 50 lb . per square inch above atmospheric pressure for injecting and spreading in the form of spray the liquid fuel, and induoing the air necessary to insure complete combustion. It has been found necessary to have a small drain pipe at the lowest part of the steam pipe between the boiler and the injectors, to make sure that the entering steam is free from water. It has also been found necessary to perforate the furnace door with a number of holes, so as to give easy access for the large quantity of air required for combustion. A steam jervice to increase the draught before the furnace has obtained its higher temperatures. The liquid fuel is pumped into a small reservoir near the furnace, so situated that it can flow thence by gravity to each of the three injectors, where the supply is
regulated by small taps. The liquid fuel is warmed in the supply reservoir to about its boiling point by a steam coil, and the steam is superheated to some extent by passing it through a circuitous pipe situated in the furnace chamber before it finally enters the injectors. The air is indeed the only requisite of combustion which enters cold. The time required to get up the heat of the furnace is about one and a-half
hours. When the furnace is hot the time necessary for heating hours. When the furnace is hot the time necessary for heating
a $\frac{1}{2}$ in. thick plate to a full red heat is about twenty minutes.

The value of the liquid fuel is at present $1 \frac{3}{4} \mathrm{~d}$. per gallon. The consumption averages 11 gallons per hour. When the furnace is up to its full heat there is no smoke visible, indicating perfect combustion; but naturally there is smoke and imperfect combustion so long as the inflammable gases proceeding from the
volatilisation of the fuel encounter chilling surfaces. The volatilisation of the fuel encounter chilling surfaces. The success of the whole system seems to depend on securing as tion as they enter the furnies. has been made to utilise the waste heat of the furnace for this purpose. If it could be done it would no doubt lead to considerable economy of fuel. Messrs. J. Shewell and Co. find however, considerable advantage from the alteration of their furnace, irrespectively of fuel economy. They can heat twice as many plates per day as formerly, employing only the same
number of workmen, and by reason of the higher and more number of workmen, and by reason of the higher and more
equable temperature, fewer plates fail in blocking. Altogether equable temperature, fewer plates fail in blocking. Altogether
Messrs. J. Shewell and Co. seem to have made a valuable and Messrs. J. Shewell and Co. seem to have made a valuable and
successful experiment in what would appear to be a new direction.

LEGAL INTELLIGENCE.

HIGH COURT OF JUSTIOE-QUEEN'S BENOH DIVISION. (Before Mr. Justice Mathew.)
Musgraye and Sons (Limited) v. Hick, Hargreaves, and Co The trial of this action extended over six days. The was brought for an alleged infringement of two patents of the plaintiffs, dated August 24, 1881, and February 6th, 1884, for improved safety starting gear for steam engines. The gea in question, which is known as a "barring engine," is applied
to the fly-wheel of a larger engine in cases where the fly-wheel is too big to be started by the inconvenient and dangerous process of rom an arrangement by which the barring engine was automati cally thrown out of gear with the fly-wheel as soon as the latte attained a sufficient momentum of its own to move independently of the barring engine. In their first patent the plaintiffs effecte -that is to say, a small pinion geared into cogs on the circumference of the fly-wheel, mounted on a radial arm or lever pivoting on the
shaft from which motion was to be communicated to the fly-wheel, shaft from which motion was to be communicated to the fly-wheel the shaft itself also carrying another pinion gearing into the smal second patent there was the same arrangement of a shaft driven by a worm and worm-wheel, but the connecting link between this shaf and the fly-wheel, instead of being formed by the sun-and-plane movement, was formed by a single pinion mounted loosely on the shaft by means of a radial slot, which enabled the pinion to be
moved into gear with the fly-wheel by means of a lever, motion being communicated from the shaft to the pinion by means of catch or tooth on the shaft bearing against a corresponding pro jection on the pinion. In both these machines the movable pinio was held in gear with the fly-wheel by its own action against the soon as the fly-wheel became the driver the pinion was thrown off and retired out of gear, partly by the impetus given to it by the
fly-wheel and partly by the force of gravitation. In their specifi-
cations the plaintiffs claimed the invention generally as described, cations the plaintiffs claimed the invention generally as described and particularly by the 1884 specincation laid claim to the use of
slot which admitted of the pinion being moved and thrown out of gear by the wheel of the large engine, and the employment of pinion "so mounted or supported that the pinion is kept engage with the wheel of a large engine while driving it, and is allowed by means of a slot to move so as to be disengaged and thrown out
of gear by the action of the started wheel when it becomes the of gear by the action of the started wheel when it becomes the
driver." The machine which was alleged to infringe these patents was patented by the defendants in April, 1884. In this machine worm similar to that in the other two acted upon a "worm-whee pinion," which, instead of communicating motion to a shaft, wa itself capable of moving into and out of gear with the fly-wheel, it to and fro horizontally. On setting the machine in motion a leve or brake was applied to the side of the pinion opposite the worm, the effect of which would be that the worm itself would roll the pinion forward until it came into contact with the tly-wheel. The pinion was throed ofi, as in the plaintifas machines, when then further drawn away by means of springs. The defendant denied that this machine infringed either of the plaintiffs patents, and they further contended that if the plaintiffs' specification were to be construed so as to include the defendants invention, tiffs contended that prior to their patents there had been no starting gear driven by power in which motion was communicate to the Hy-wheel by means of a pinion capable of retiring automati cally in the plane of the fly-wheel or a parallel plane. They urge that the defendants machine embodied all these essenting eatures, the defendants' pinion moved into and out of gear as a mechanical equivalent for the slot specifically claimed by the 1884 specification. The defendants' case, on the other hand, was that their machin differed from the plaintifs in several important features, among which were (1) that the pinion retire plaintiffs' 'it retired at a tarizon and (2) that in the grooved or slotted bearing the object of the side guards was to prevent any lateral movement of the pinionotally different purpose to that served by the slot in the plaintiffs pinion. As a resur mainly of the former difference, the defend plaintiffs'-namely, that of the pinion jamming on its bearing when its teeth came end on against the teeth on the fly-wheel, when it disengaged itself in certain relative positions of the notch on the shaft and that on the pinion. A great deal of evidence wa plaintiffs had discovered this defect and made various alterationsnsuccessful and quite outside their specificationwith the view of overcoming it, and the plaintiffs alleging that if such a defect existed at all it could be obviated by ordinary intelligence in construction. To illustrate this poimt experiments wer machine shown by the plaintiffs in a room adjoining the Court, It was proved that no machine had yet been made for sale in accord ance with the plaintiffs' specification. A number of previous nventions were relied on by the defendants as showing an antici pation of the plaintriss patent if was to be construed as covering Galloway to marine engines as early as 1870 , in which Messra actuated by a worm acted directly upon the large engine wheel, the worm in this case retreating by means of a slot in the worm shaft. Models were also shown of an invention of the defendant shaft driven, as in the machines in dispute, by means of two shaft driven, as in the machines in dispute, by means of two pawls
or arms bearing alternately upon the teeth in the fly-wheel, great mass of expert evidence was given on the various mechanica questions at issue, among the witnesses being Sir Frederick Mr. Mr. Justice MATHEw, who had taken time to consider his
decision, on the 3rd inst. delivered judgment in fay ants. His Lordship expressed himself as satisfied that there was danger of jamming attached to the plaintiffs machine, and that in the defendants' this danger was avoided by the employment of mechanical means essentially different. Whether, his Lordship said, the plaintiffs' specification of 1884 was to be regarded as
claiming a combination of old mechanical means for a new and
useful purpose or of old means and an essential part-viz, , the
slotted pinion-which was new, he-the learned J Jugge-failed t
dise discover any imitation of the whole or of the essential new part in
the defendants' invention, and the plaintiffs, therefore, failed to patent of 1881 , his Joment . patent af far removed from the defendants' as that of 1884. The plaintiffs and defendants seemed to have advanced on lines of
invention that did not cross each other. His Lordship added that he desired to guard himself a against being supposed to to have ex-
pressed any opinion upon the validity of the plaintifs' patent of pressed
1884.
Ind
Judgement was accordingly given for the defendants, with costs.
Sir FARRER HERSCHELL, Q.C., Mr. Aston, Q.U., and Mr.
 (SARGREAVES for the defendants.

OHANCERY DIVISION.
(Before Viek-Chancellor Bacon.)
the drifyield and east riding pure linserd cake company THis case raised for the first time the question whether a person for damages if the threat be contained in a private letter. The VICE-CHANCGLLLOB decided that the plainififs were
entitled to an injunction preventing further annoyance, but not to damages. The defendants must pay the costs of the
action.

CONTRAOTS OPEN

PADDLE-WHEEL ENGINES FOR THE INDIAN
The Indian Government requires tenders for paddle-whee engines for the
tract are as usual
(1) The work required under this specification consists of four
pairs of compound diagonal direct-acting paddle-wheel engines, fitted with surface condensers and feathering wheels, with inde pendent centrifugal pumps for circulating water in condensers.
Two pairs are to be placed in one boat. The engines are to be arranged in general conformity with the drawings on page 124, and which are to be taken as merely showing the desired arrange-
ment of machinery. Parties tendering may do so, if they please, ment of machinery. Parties tendering may do so, if they please,
upon designs more in accordance with theor own patterns, but they must submit
(2) Cylinders.--To be two in number for each pair of engines, to
be of hard, close-grained iron, a mixture of Scotch No. 1, Blaenavon and good clean scrap, the high-pressure cyinder to be 28in. in diameter and the low-pressure cylinder 53 in. in diameter, both
cylinders arranged for a 48 in . stroke. The cylinders to be fitted with escape valve at either end having guards to prevent accidents.
Drain cooks to be fitted at ends of cylinders and high-pressure slide casings with copper pipes to bilge. To be worked from the starting plath a . pressure slide casing to assist in starting the engines. The gear for working the same to be led to starting platform.
The reservoir between cylinders to have a relief valve fitted capable of adjustment whilst engines are at work. Indi-
cator pipes with the necessary oocks and gear are to be fitted to cards. The cylinders to be felted in all parts neatly covered with palis. Med teak wood, tongeed and grooved and securued by porelished
brass bands. The piston-rod and slide-rod glands to be fitted with brass bushes, and the stuffing boxes lined with brass, as shown in drawing. The high-pressure cylinder to be fitted with a false face
for slide valve, of hard close.grained cast iron, secured with brass pins having countersunk cheese heads.
(3) Cylinder Covers.- The cylinder covers to be in cast steel of single plate form ribbed, fitted with polished loose covers in steel plate secured to cover, the space between to be filled with felt. cylinders. The high-pressure valve to be single-ported and fitted with expansion valve on back, and the low-pressure valve doubleported, with an approved arrangement for relieving pressure on
back of both slide valves. Valves to be arranged to cut off at twothirds
steel.
(5) Expansion value.- To be in cast iron, working on back of high-pressure valve, of the gridiron form; to be so arranged as to two-thirds. The hand gear for working the same to be led to ${ }^{\text {starting platform. }}$ (6) Pistons.
 of junk ring to be flanged. The metallic rings to be in cast iron
fitted with the usual steel springs, having solid blocks to carry weight of piston. Junk ring bolts to screw into brass nuts and the heads of bolts to have secure stops.
(7) Piston-rods. - To be in steel,
tons per square inch breaking strain. The nuts to secure rods to beon outside of piston as shown, to suit ordinary spanner. The upper end of piston-rod to be forged solid and cut out to to take brasses
secured by steel cap bolts and nuts. The lower edge to be formed so as to reecii
brass, No. 2.
(8) Connecting-rods.-To be of forged steel of the same quality as piston-rods, of not less length than 9 ft. 6in. centre to centre, to
have Tond with steel caps, bolts, and nuts. Brasses to be lined with Parsons white brass, No. 2. in drawing. The connecting-rods, brasses, straps, and bolts to be
interchangeable. The lower end to be forked, long enough to allow of connecting-rod being turned up clear of piston-rod cap (9) Guide bars.- To be in forged steel, securely bolted to cylinder
bottom and crosss stay as shown in drawing. Oil ways to be cut on upper surface, and care to be taken to prevent them being run to outer edge.
(10) Se
(10) Siperer for puide Lar.-To be in two parts, joggled and
bolted together, lined with Parsons' white brass, No. 2; to be in cast steel.
(11) Slid
(11) Slide valve rods. -To be in steel, secured to valves by double end. The rods to be guided at both ends, at lower ends by brass bush secured by pins to slide valve casing, and independent of the
coverover end of rod. The upper ends to have an eye forged solid, fitted with steel bolts and nuts for adjusting rocking brasses carrypurpose of guiding the upper end ; to have cast iron guides fitted to casings as shown in drawing.
(12) Lxxentrics.- To be in cast iron, in halves to be bolted together with steel bolts and nuts carefully stopped. The straps
to be of gun-metal, fitted with steel bolts and nuts brought as taking T ends of exoentric rods, with through steel bolts and nuts. Lubricators to be cast on straps.
ends fitted with adjustable brasses, steel bolts and nuts for forked ment to sweeps. If found necessary, these rods are to be trussed. centres. To be made of two bars with pins forged on the solid. to go-ahead excoentric pins, and to be fitted T-ended with adjustable orasses, steel boits and nuts stopped. The starting shaft and levers
to be in forged steel, the pins to be stopped in end of levers.

Blocks for carrying starting shaft to be in cast iron, with steel bolts and nuts.
(15). Expansion gear.-Lever links and rods to be in steel ; the
inks to be double, arranged generally as shown in drawing. The Hkss to be double, arranged generally as shown in drawing. The
excentric and ring to be cast from same pattern as used for main slide gear. The e ear for shifting raadius bartern to be carried to start.
ing platform, having index plate marked to show the amount of
(16) Starting gear.-To be a combined arrangement, as shown in rawing, of hand and steam, with water-controlling cylinder, so
that by placing the starting handle in any position the links may stand at the same proportionate part of stroke, to be so arranged that the steam or hand gear can be used independently, the steam cylinder to be not less in diameter than 11in. All packing glands
to be lined with brass, and all rods and pins to be in forged steel. the lined with brass, and all rods and pins to be in forged steel.
The starting gear to be efficiently supported, and in general con-
(17) Crank shaft and crankk pins.-To be arranged as shown in
drawing, the crank pins and coupling to be cut from solid, the
wing crank pin to be long enough to enter eye of padde shaft
crank, and to have the sides flattened for driving against gun-metal
cod-piece in eye of paddle crank. The bearings of shaft to be no less than 101inin diameter and 141in. long; the orank pins to be not less than 10 jin . diameter and 11 lin. long. The couplings to be
used for coupling the two engines together are to have bolts fitted into taper holes, rimered out so as to insure good fitting bolts.
(18) Main stay.-The main stay running from the plummer bock to cylinders to be in forged steel. The main plummer
hlock bolts to ogo through upper end, and the lower end fitted
onat against faced provision cast on cylinders, secured by four-screwed
pins having nuts at either end, turned and fitted into rimered oless; to have boss forged on for taking supp
(19) Support, foach guide bar to have separate supports, consisting of two steel stays extending from bottom frame to main stay, having nuts to carry cross beams
supporting guide bar. The cross beams to be I-section cast in supporting guice bar. The cross beams to be 1 -section cast in side rods to be in stei. The main links to te TT-ended, fitted with brass bearings and steel caps, bolts, and nuts. The air-pump rod
through plunger and top nut to be in steel, with gun-metal box throgg plunger and top nut to be in stel, with gun-metal biax bolts to have solid collars.
(21) Paddle shaft and crank,- To be in forged steel, the crank to be shrunk and keyed on to paddle-shaft. The crank eye to be with fled with gun-metal side piecess dovetailed into crank for taking
flattened sides of crank-pin. The shaft to be not less than 102 in. diameter and 145inin long in entablature bearing, the outer bearing to be 12 in . in diameter and 24 in . long, the shaft to taper as show (22) Condensers.- To be in cast iron, generally of the form shown in drawing. The tube-plate to be in rolled Muntz's metal,
drilled and tapped for for
fin. outside diameter tubes, 18 B. W.G. thick, fitted with brass screwed ferrules, the ends of which next phick. Tubes to contain not less than 70 per cent.. of copper. The
thick cooling surface to be not less than 1250 square feet. The steam to be condensed externally and the circulating water to run twice
through the tubes, entering top rows of tubes first from centrifugal pump. A brass cook to be fitted on to exhaust pipe for injecting
soda solutions. All bolts, studs, and nuts inside of condense soda solution, Ant molts, studs, and nuts inside of condensed
to be of Muntz's metal. Drain cocks to be fitted as directed The condenser, with tubes packed in place, to be tested with cold
water pressure to \hbar lb. per square inch before putting on doors. supplementary supply pipe with regulating cock into condenser, fo making good any loss of feed-water. The gear for opening and
shutting same to be led to starting platform. Provions to be cast shutting same to be led to starting platform. Provisions to be cast is to be bolted to is to to be in steel and holes rimered out.
(23) Air pump. -The barrel, plunger, and bucket with guard to be in gun-metal, the top and bottom chambers in cast iron, and so disturbing other than the two doors. The cover reides and blout for crosshead to be in cast iron. The cover to have gun-meta glands, the stuffing-box to be lined with gun-metal. The air pump be fitted with air valve and adjusting serew. The guides to be
to made in two pieces bolted together top and bottom, secured
to faced provision on air pump cover. Cover to be ribbed below
(24) Foot and delivery valves.-The seats and guards to be in gun-metal, the valves in india-rubber, and so arranged that the valves can be removed without lifting the seats.
(25) Hot well. - To be in wrought iron, arranged with olosed top and manhole door and air pipe, as shown on drawing.
(26) Feed and bilge pumps.-To be one in number of each, the barrels in oast iron, plungers, glands, and bushes in gun-metal, the
stuffing-boxes to be lined with gun-metal, each pump to less capacity than 4tin. diameter and 2oin. stroke. The feed pumps to be fitted with suction cock and snifting valve on pump
and escape valve on delivery pipe. The valves and seats to gun-metal, with adjusting screws for regulating lift of delivery
valves for feed, the feed pump to draw direct from hot well. Th bilge pumps, two in number, fitted off same pattern as feed pump to deliver overboard, fitted with roses suction pipes in lead, (27) Entablature.-To be in ppert
generally of the form shown in drawing, to be bolted to top To be fitted with gun-metal bearings for main shaft lined with
To mind caps to be in steel. The distance through stay with nuts to be in steel, and the thimbles in cast iron. The forward end of entablature to be secured to box beams by at least six steel bolts and nuts,
with cast iron washer plates on fore side of beam; bolts and washer plates to be provided. The palms of the two midshi drawing, for bolting together, but no bolt holes are to be drilled (28) Bottom connecting frame.- To be in cast pron of the bo ford, cylinders with turned steel bolts and nuts, the holes to to be in machine. (29) Holding-down bolts, nuts, dogs, and rasahers. - The necessary
holding-down bolts, \&co., to bo in teel, and the whole to be pro vided for use with engines. Holes to be cast in flanges about 15in,
apart for lin. bolts. (30) Paddele-whecl.- The diameter of wheel to centre of motion
to be 14 ft . TTe floats to be feathering, with rings attached to arme inside and outside floats. The floats, eight in number, to be no less than 9 ft . 3in. by $3 \mathrm{ft}$. . 3in., to be American elm, in two planks,
with through hin. galvanised bolts and nuts, planed and chamfered as shown. The pins for the floats to be cased in gun-metal,
and the arms to be bushed with gun-metal. The gun-meta covering to pins is to be turned and the bushes to arms to be
bored and turned. The arms to be in centre of bosses for carrying floats, and to have stops fitted to arms and
rivetted on to rings behind each arm. Diagnal stays to be fitted through holes castin bosses with double nuts on each side, to
have T ends on to rings with two through bolts and double nuts, The rings to be butt jointed, with double butt plates and bolts and double nuts and rivets as shown. Athwartship stays to be as
directed as with T heads. All holes to be rimered out and the bolts to be a driving fit with square nuts, the bolts to be placed (31) Levers and brackets.-To be as shown on drawing. The
holes for pins to be bored out taper, and the pins turned in to fit,
rivetted over to secure them in place, fitted with washers otters beyond angre brackets. The The pins for radius rods to be be cased in brass, turned, to be fitted into lever in same manner as (32) Radius rods.-To be round bushed with gun-metal at both ends, and swelled in the entre.
(33) Material for paddle-erc.
evers, and brackets to be in wrought iron. The gun-metal to be of the following mixture:-Tin, 20 ; copper, $112 ;$ zinc, 6 .
size. (34) Excentric whecl and support.- To be in cast iron, with steel
pin coned and cottered into cast iron support, as shown in drawing. in coned and cottered into cast iron support, as shown, in drawing.

The excentric to be bushed with gun-metal, and the pin cased with sun-metal provision to be cast on carriage for taking fore and aft un-metal, and to have split cotter pins at end with stops under , luts, and wasiess to be found | seouring same $l o$ |
| :--- |

(35) Paddle boss.-To be in cast iron. Provisions to be cast on bored and fitted on to shaft with three keys, with thickening
ovisions cast on boss in wake of keyways. Diagonal holes for liagonal stays and facings for nuts to be cast on, to have two
Wrought iron rings bored and shrunk on to ends of boss, to be at east 4 ft. 9 in. .
(3e diameter.
outer bearing. -To be in cast iron with gun-metal brass at lower side, on top side a light cast iron cover forming tallow-box,
and secured into place by two wrought iron straps, one on each and secured into place by two wrought iron straps, one on each
ide of tallow-box, and fastened with lin. screws and double nuts. To have loose plate in asstened with with the serews ane ang joughles, keys.
bolts, and nuts for holding block and plate to outer bearing. (37). Stupfing-box for paddle shaft.- A stuffing gox and gland, in
halves, of cast iron, to be fitted on side of vessel as show. fited to steam pipe, and the - gear taken to starting platform. easy of removal. (39) Lubricators and pipes.-Brass lubricators to be fitted to al older to be used; where necessary to be hard soldered. Pipes to ead oil as required, neatly fastened with brass clips for both ends
of connecting rod. The lubricators to be fixed on supports and vipers to be fitted, slide valves and cylinders to have lubricator (40) Donted.
(4) of sufficient dimensions so as to be able to feed the boilers easily to
pump from sea and hot well. To have delivery to deck, fitted with pump from sea and hot well. To have delivery to deck, fitted with
stuffing-box on under side of deck and deck-plate, with short and long goose necks. Pump to have escape valve fitted. The valves nd seats to oe in gun-metal, capabie of easy removal, and the
elivery valves to be fitted with adjusting screws. All sea and hot ell connections to be fitted. Three-way cocks are not to be used.
screw stop nozzle to be fitted on steam branch. TTo exiaust either in ocondenser or overboard, to be fitted with all pipes and con nections.
(41) P ipes. - Main steam pipes to be in copper in four lengths o 10ft. each, with flanges and bolts and nuts, the flanges to be left
loose To be Thin. internal diameter, and thikness No. B . W.G.
The bend shownin drawing to be 6 tin dine eed pipes to be in copper 2 zin in. in diameter, No. 10 B.W.G. thick ix lengths of 10 ft. , with loose flanges, with bolts and nuts. Don-
 suction and delivery pipes to have loose flanges, except where they oin condenser, and pumps to be No. 10 B. W. G. Exhaust pipe from ow-pressure cylinder to be
No. 10 B.W.G. Pipes to starting engine for steam and exhaust. The steam pipes to be in four 10 ft . lengths, with loose flanges, bolts, Donkey steam pipes, in four 10 tt . leangths, No. 10 B. W.G., with all langes loose, bolts and nuts.
Donkey exhoustint
Donkey exhaustinto condenser and overboard to be fitted in place. Bilge suction pipe and rose box to be in lead, arranged as shown in
drawing. Bilge discharge pipes to be in copper, in two 10 ft. lengths, with flanges, bolts, and nuts ; thickness, 12 B.W.G Steam and exhaust pipes to circulating engine. Steam to be in
Oft. lengths, with all flanges left loose, and bolts and nuts. Exhaust pipes fitted in place. All bends, pipes, \&c., shown in
drawint to be fitted independent of those specified. All pipes
subjected to the pressure of steam to be proved to a pressure of 80 lb . per square inch by cold water
(42)
(42) Cir roulating pump and engine.-An independent centrifugal
pump to be fitted of an approved form, with an approved singleacting expansion engine
(43) Gaumes.-One
gauge, and one compound gauge for receiver, the whole to be Bourdon's own make. The gauges to be arranged on a mahogany
board, French polished, with 3oft. of piping in 10ft. lengths, with nions complete. Lamps to be fitted for night work (44) relegraph.-One telegraph of approved construction, with
answering dial in engine-room, and all connections for 100ft. in ength, complete in all respects, lamps, \&c. (45) Screw stop nozzle for circulating vater.- The casing to be
in cast iron. Valves, seats, ccrews, nuts, to be of gun-metal; to be so arranged with two separate and distinct valves, one for pumping
rom sea, and one for pumping from bilge. The bilge valve to be ree sea, and one for pumping from bilge. The bilge valve to b
free of (46) Hand pump. - One hand pump to be fitted, single barrel
4 (inin diameter, to pump into boilers and on to deck. To be fitted with ail the necessary cocks, pipes, deck plates, \&c.
(47) Drawings. The contractors, provious to commencing work, plete drawings showing arrangement of engines, with details of plete drawings showing arrangement of engines, with details of
pumps, paddo-wheel, wo., and the starting gear in position with
all connections.
Two drawings showing the arrangement of seelsons and all in and out board work necessary for taking and fixing the engines on board vessel for the use of the shipbuilders in
ndia
(48) Painting.-The machinery where usual to have two coats of paint. (49) Working pressure on boiler. - To be 901 lb . per square inch. (50) Completion.- It is to be understood that this specification
shows the quantities for one pair of engines, except in list of tools shows the quantitites for one pair of engines, except in list of tools
and spare geart, which is to be considered as applying to and suff. cient in quantity for two pairs of engines. Each vessel is to be
fitted with two pairs of these compound engines, and care is to be taken that the two pairs necessary for one vessel are to be madhe
right and left-handed. The four cylinders being placed aft. The engines and wheels are to be erected in shop and the spare gea Gieneral, are to be dismantled as required for the purpose of pock-
ing, and all the different pieces are to be carefully painted and packed in suitable cases, and to be marked as may be directed The whole of the materials and workmanship are to be of the very
best quality, and this specification is intended to include all fitting ready for service in every respect. It is therefore to be understoo that ail minor fittings not mentioned herein, and considered neces-
sary by the Inspector-General as requisite for the proper completion extra charge . The thre be provided by the contuactors without The engines whilst manufacturing and erecting in shop are to
remain at the risk and expense of the contractors until accepted by the Inspector-General.
Tenders to be sent in before $2 \mathrm{p} . \mathrm{m}$, on Tuesday, the 16th of

CONTRACTS OPEN.-COMPOUND PADDLE ENGINES FOR THE INDIAN GOVERNMENT.

HYDRAULIC MACHINERY FOR SLIPWAY AT HIOGO FOR THE JAPANESE GOVERNMENT. mR, henry J. COLES, SOUTHWARK, ENGINEER.

HYDRAULIC SLIPWAY AT HIOGO.

We illustrate above a set of hydraulic machinery for a slipway, which has been erected and set to work at the Imperial Japanese Government Yard at Hiogo. It was designed and constructed by Mr. H. J. Coles, Sumner-street, Southwark, for hauling vessels of 1300 tons up a slipway having an incline of 1 in 20 , and consists of a set of double rams coupled to a massive forged steel crosshead to which a
smaller crosshead is coupled by heavy steel links. Wrought iron smaller crosshead is coupled by heavy steel links. Wrought iron
links are attached to the smaller crosshead, which are carried between and extend beyond the ends of the main hauling cylinders, the links being supported at their extremities by a carriage fitted with wheels running on rails. The cradle links are attached to the carriage. The crosshead and links are all connected by turned steel pins fitted in holes carefully and accurately bored out, so that a perfectly central and divided resistance may be met by each ram. The holes in the crossheads are also arranged so that should either ram by any means precede the other during the operation of hauling, and thus mediately fall on the forward ram and equilibrium be restored. The large rams have a stroke of 10 ft . 6 in , and the length of the cradle links is 10 ft . A smaller cylinder and ram fitted with a ram and bucket is fixed opposite the centre of the crosshead connecting the large rams, for the purpose of returning the large rams, also for lowering the cradle and hauling it up when empty, the latter operations being performed by means of a strong chain passing under the cylinder and returning over the top, by which means the cradle can be moved 20 ft . at each stroke of the ram. Pumping power is obtained by a pair of direct-acting horizontal engines having steam cylinders 15 in . 3 in. diameter respectively, the whole being suitable for a work ing pressure of 2000 lb , per square inch, should this pressure be required. The engines and rams are manipulated by two levers placed in close approximation, one lever being coupled to the slide starting valve of the engines, and the other to an extremely simple form of valve for diverting the current of water from the pumps to either the large or small rams, according to the operation which is being performed. When working the empty cradle the only alteration necessary is to close a stop valve on the pressure main leading to the large rams, ram. Extremely satisfactory reports have been received of the working of this machinery since its erection in Japan.

MANN'S HIGH-PRESSURE CISTERN VALVE. The valve shown in the accompanying illustrations has been designed with the object of utilising the power given by the force with which water propels itself through mains from any elevated point. The pressure, which varies according to the head of water-say, from 20 lb . to 100 lb . to the square inchis, in this invention, used as a means for stopping the supply
the moment the cistern becomes full; the shutting off and sealing power of the valve being equal to the siven force of the supply, the water leaving the cistern by design, defective outlets, or from any cause whatever, has no effect on the valve; the valve having filled the cistern, remains firmly locked until released by stopping the pressure of water on the main or service pipe, when it unlocks itself for refilling the cistern. On the intermittent system of supply the pressure is taken off by the turncock each day; on the constant service a small $\frac{s}{4} \mathrm{in}$. stop-cock-conveniently placed for the householders use-will,
by turning off for a short time, renew the supply when turned
source of supply.
The illustration
on, and fill any ordinary cistern in a few minutes. The supply is then stopped by the water pressure itself, and no more water. can enter the cistern until the pressure of the supply is taken off: It is consequently a compact water-waste preventer at the
ratus. The water enters the valve at the section of the appaup the stem B, and issues, at full pressure, from outlets C until the cistern is charged. As soon as the level of water in the

MANN'S CISTERN VALVE.
cistern has reached and covered the lower half of the ball F , the \mid required. The free inlet and outlet passage of the valve and its ball and cylinder D commence rising from the base-plate E. Having risen $\frac{1}{4} \mathrm{in}$., the force of water, by the partial closing of the outlet ports C, immediately takes possession of the interior of the cylinder D, by passing down the annular tube between the cylinder and the stem B into the pressure receiver G. The force of water from this receiver being directed upwards, strikes the upper internal portion of the cylinder D, thereby water in the cistern to the rubber seating H at the top of the valve. This at once seals the outlets C. The full pressure then acts instantaneously between the internal head portion of the cylinder D and the loose flange collar I resting on the rubber seating J. This seating, by the pressure of water on the flange collar, expands, and effectually closes the lower portion of the cylinder D; and thus, in conjunction with the air confined in the cylinder, the supply is immediately stopped in a silent
and is free of any kind of packing. On an intermittent service a cistern of 150 gallons is filled and the supply cut off in a few minutes; drawing off or emptying the cistern directly after filling has no effect on the valve, as it will not give a further quantity by the falling of the ball The day's supply having been delivered, the valve remains locked until released by the turncock in the roadway, when it
resets itself for the next supply. On constant service a supply of fresh water need only be admitted by the householders when
equired. The free inlet and outlet passage of the valve and its ability for shutting off instantaneously while full on rent hissing apparatus noiseless in its action, and the made by the water in passing through the house to the cistern is removed. The supply is under the consumers' control, and the quickness of delivery being equal to about 800 gallons per hour, cisterns of 50 gallons will be of sumich its
capacity for any premises. It has been severely tested, and its capacity for any premises. It has been severenyies. It is made by Mr. F. W. Mann, Stonenest-street, Tollington Park, Holloway,

Royal Meteorologidal Society.-The Council of the Royal Meteorological Society have arranged to hold at
street, S.W.-by kind permission of the Council of the Institution of Civil Engineers-on the evenings of March 16th and 17 th next, an exhibition of barometers. The committee will also be glad to show any new meteorological apparatus invented or first constructed since last March.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our espondents.]
flow in open channels,
Srr, -I wish to draw attention to and disprove what I conceive
to be a gross fallacy, namely, that in an open stream the water in any long hollow in the bed, or upstream of and below the crest of a water in such a case is different from what it would be if the bed or bar extending across the channel. In a paper on "The Roorkee Hydraulic Experiments," read before the Institution of
Civil Engineers by Major Allan Cunningham, R.E., the author, Civil Engineers by Major Allan Cunningham, R.E., the author,
referring to the Ganges Canal, says that there has not been much referring to the Ganges Canal, says that there has not been much
silting above the raised crests of the falls, and that "this disproves causes a still-water pool above it, roughly flush with its crest" causes a still-water pool above it, roughly flush with its crest
("Min. Proc." Inst. C.E., vol. 1xxi., page 3). In the discussion on
the paper Mr. J. W. Stone says-page 85-that this assertion must the paper Mr. J. W. Stone says-page 85-that this assertion must
be accepted with caution, and that the large amount of silt which that the author's deduction was not invariably correct." The author of the paper also appears to be of opinion that obstructions extending across a channel have some peculiar influence on the
flow, for he says, when speaking of the sites of his experiments, flow, for he says, when speaking of the sites of his experiments,
that "it is desirable to avoid complication of the motion by obstructions below the site, so that experimental sites should not
be situated in marked hollows in the bed slope" " be situated in marked hollows in the bed slope" "Roorkee
Hydraulic Experiments," Chap. I., Art. 7); and he also-Chap. III., Art. 13a-speaks of the Belra site as being disadvantageously
situated, because the bed of the channel was about 2 ft . lower than the site. The above remarks are sufficient to show that the fallacy the site. The above remarks are sufincient to show that the fallacy which can be brought against it.
If a very short portion of a channel be widened, the water in the
wide portion will be still, or will move only in eddies; but if the length of the widened part be great, compared to the amount of
widening, then the whole of the water will move forward. If a channel whose width is 20 ft . be widened to 30 ft . for a length, say,
of 100 yards, not only will the whole of the water in the wide portion be in forward motion, except perhaps near the points where cate to an observer that the width is not 30 ft . every where. What can be more reasonable than to suppose that what applies to
hollows in the back applies also to hollows in the bed? If a hole whose length is not many times greater than its depth be dug in
the bed of a stream, the water in the hole will be practically still, but it will not be still if the length of the hollow be great compared to its depth.
Next let us consider a fall in a uniform channel. If the crest of
the fall be flush with the bed-Fig. 1-the water surface will be drawn down for a great dis-
tance in a convex curve; but tance in a convex curve; but
if the crest be built up to the
per proper height-Fig. 2 -the be just the same as if no fall
existed. The water leve slope, section of stream and
discharge being all the same as if no fall existed, the flow
must be in every respect the

The above arguments appear to me to be pretty conclusive, but
there is yet another. In a silt-bearing stream a short recess in the back or hole in the bed silts up almost immediately, but a long hollow or reach upstream of a weir or raised crest of a all does
not necessarily silt at all, as it most certainly would were the not necessarily silt at all, as it most cl
lower layers of water still or nearly still. And more than this ; if the velocity of the stream is too great for the comanenel, hollows in
the bed are frequently formed by the current. On the Ganges
 cases been scoured out to a depth of 3ft. or 4ft. below the floor
which is left standing up like a weir. Similar instances could be quoted without number. In the cases mentioned by Mr. Stone the silting doubtless occurred owing to the checking of the velocity
of the whole stream-the weirs were from 8 ft t to 11 ft . high-and not because the lower layers were still. Any hollow in the bed of stream is very course, more likely to silt up if the discharge or may then be nearly still; and silting occurring in this way has very
probably given rise to the idea that there is always a still-water probably given rise
pool in such hollows
E. S. Bellasis.

Sir,-For the plLe drivivg. better for Mr . of the readers of The Enginker, would it no Tice journal letter-writing to the study of text-books of mechanics Thi questions which seem to trouble him are such as must have before they have fully grasped the laws they study by experimen nd analogy. It is only necessary to refer to th Then question in the problem is, "What is the maximum momentum
which a pile of given length and given sectional area can stand without receivin dvanced student to tell Mr. Donaldson that there is no " maximum by means of monkeys at different velocities with very different results to the pile.
"Is the load which the pile has to support as a pillar at the
instant of impact simply equal to the weight of the monkey, plus the weight $\mathrm{W} \sqrt{\frac{2 H}{g}}$?" Since the writer has assumed W $\sqrt{\frac{\overline{2 H}}{g}}$ to bs the product of the mass of the monkey into its velocity, it is absurd now to call it a "weight." Moreover, the expression of the value of the force of compression under impac M_{r} Dove the elasticity of the material or the pile.
Mr. Donaldson then makes a statement about the extension of nelastic string, and asks may we, reasoning from analogy,
conolude that the maximum load the pile would have to support as a pillar would be equal to $2 \mathrm{~W}\left(1+\sqrt{\frac{\overline{2 H}}{g}}\right)$?" Certainly not. Your correspondent then proceeds: "I do not know how to calculane the initial momentum imparted to the pile," to which to elementary student would reply, "Since the pile is at rest, its
initial momentum is zero, and that, after impact, the momentum of the combined monkey and pile is reduced to zero during the advance of the pile by the resistance of the grow Dinalason is going to set " the initial momentum imparted to the
pile against " the downward moving force of the wight of the pile,"I do not know
To the remainder of the "Problem" I must reply by asking the Writer to put his two ideas of the elastic reaotion between monkey and pile and resistancour two make four.
two
I had expected of place this before your readers much more briefly,
but the little extra space I hope you will excuse so that I may ask but the little extra space I hope you will exucuse, so that I may ask,
Why should not Mr. Donaldson's "Problems" be relegated to less Why should not Mr. Donaldson's Problems be relegated to les
valuable space than the pages of THE ENGINER ? SorUTATOR. valuable space
February 3 rd

free trade and no trade.

SIR. -I am not quite clear whether your correspondent,
"M. H. R." does or does not mean to discuss Protection with me. He asks me to verify certain statements
which Ihave made but he adds that he has no time for discussion Am I to assume, then, that he will take my verification as final I hope so, as it will save my time and your space.
The statements which he wants me to verify pay in gold for German goods; (2) that under a protective tariff there are more persons employed than would be employed under Free Trade. "M." H. contends plausibly that the Germans could not supply us with goods if we did not supply them, and that for each
article we buy from them we must sell then something of equal value artice we bly from them we must sell them somenething of equal value.
If we employ Germans, say, in making cutlery for us, they employ Englishmen in making calicoes for them, and so it all cornes night
in the long run. Before going further, I may state that I have the best possible reasons for knowing that, the German steel castings to
which
wheferre were paid for in English gold ; but I Im quite which 1 referred were paid for in English gold, but 1 am quite
willing to handle the subject on a broader basis than this fact involves.
First, then, all that I contend for is that that nation is best off in which the greatest number of the population can find remunera, is right, and that England does not pay Germany in gold, but in goods. I will suppose, then, that we give Germany a ton of pig
iron, worth $£ 2$, in return for $£ 2$ worth of table-knives. The labour expended in producing a ton of pig iron is very small compared to that
expended on $E 2$ worth of table-knives. The value of the raw expended on $£ 2$ worth of table-knives. The value of the raw
material of the knives is little or nothing in comparison with the value of the labour spent on that material. The labour of one man will suffice to produce many tons of pig iron in a a day, but by
no possible means ould one man produce $£ 2$ worth of cheap cutlery in a day. We give, so to speak, the labour of one man fo a day in return for the labour of two or three men for a week. On
this footing alone, and without any neecssity whatever for alluding to gold, it is clear that the balanee is against us. Before
"M. H. R." can establish his proposition, he must prove that we find employment for as many hands in manufacturing goods for Germany as Germany empioys in manufacturing goods for us. If in his argument, but not till then.
I turn now to another phase of the assertion that we pay in kind,
and not in money, for what we imports. Will "M. H. Ry" explain and not in money, for what we import. Will "M. H. R." explain
how it is that the value of what we import enormously exceeds the value of what we export? In 1884 we imported from France good to the value of $£ 37,000,000$; from Holland, $£ 26,000,000$; from
Belgium, $£ 15,000,000$ or a grand total of $£ 78.000000$, for this we sent to France $£ 17,000,000$; to Holland, $£ 10,000,000$ and to Belgium, $£ 6,000,000$ worth of goods, or in all $£ 33,000,000$. That is to say, we paid for $£ 78,000,000$ worth of commodities wit for. How was this paid? Is it a purely fictitious figure? Did the路 importers in France, Belcium, or Holland buy from us for
$£ 33,000,000$ what they sold to the French, Dutch, and Belgian producers for $£ 78,000,000$? I must really ask "M. H. R." t occupy a sorap of his time in explaining this puzzle to me. It may
be answered that the difference is represented by interest o Britsh capital lent in France, Holland, and Belgium, which is paid us in kind, and not in gold, by the borrowing nation; but to con-
cede this is to concede exactly that which 1 assert, namely, that cede this is to concede exactly that which 1 assert, namely, that
British capital lis, under the operation of Free Trade policy, finding The Buard of 'I rade fveuras for Jounuary, 1ssuc, Lave just been
made public. I I hope your correspondent likes the story they tell.
In January, 1885 , we imported goods to the value of $£ 35,669,000$; in January, 1886 , the value of imported goods was $£ 28,983,000-$ a Yalling-orf of $86,600,000$. In January, 1888, we exported goods to
the value of $£ 21,875,527$; this year,
month
month we received
 them. "M. H. R.'s" contention is simply fatuous. By no con-
ceivable line of argument can he escape from the dilemma that ither the Board of Trade figures are delusive, or that there is an foreign labour, in excess of our exportation of goods representing English labour.
I will advance
I will advance another step, and point out to "M. H. R." that
the hostile tarifts of Germany, France, \&co, are specially intended the hostile tariffs of Germany, France, \&c., are specially intended
to prevent us from paying with goods for goods received. I have already argued that the producer, and not the consumer, may pay the tariff. It is quite certain that we have to sell goods to Ger-
many at a less price than we could get for them if no hostile tariff many at a less price than we could get for them if no hostile tariff
existed. Therefore, we get a maller return than we otherwise goods, to pay for them in something not taxed, namely, gold. It is indisputable that this country, under the operation of free trade, is a paradise for the man witha fixed income, and for the capitalist
whose money is not embarked in trade, but these men do not Whose money is not
Iepresent now notion. he last part of "M. H. R.'s" letter. He asks me to prove that under Protection more hands are employed than
could be employed under Free Trade. I think I have already partly done this, but I will go further.
In 1885 we imported goods to the value of, in round numbers,
$£ 374,000,000$, and we exported to the value of $£ 213000,000$. balance against us, therefore, was $£ 161,000,000$. Let us assume hal orted not $£ 100,000,000$ is represented by raw material; goods for goods paid for by the British capitalist-as, for example, silk this represents goods manufactured abroad. Al, now, a tariff had existed, by far the larger portion of these goods would have been made at home, and so employment would have been found for our working classes, instead of for German, French, and Belgian workmen. should like to see him try, Does he fancy for one moment, that if foreign tariffs were removed to-morrow the working classes of Europe would be benefitted? The capitalists would care nothing or the workers. They would buy in the cheapest market-pos-
sibly England-and whole hosts of men now earning their living in Germany would be left destitute, mills would be cosed, and manufacturers would be ruined. There would be no resource left but I repeat, and "M. H. R." has not urged a single argument to
prove me to be wrong, that Protection distributes wealth by com. prove me to be wrong, that Protection distributes wealth by com-
pelling those
pho ate not manufacturers to purchase at home aid his rents, not in kind but io gold or its Protection he will spend that gold in employing the labour of his fellow-countrymen to produce rrom raw materials what herequires. but under Hee iade he employs foreign workmen to labour foim, while his own countrymen stand lios kindst is true of the the millowner, the shipowner, \&c., to say nothing of the vast mass
of the population paid salaries, not in kind but in gold, who buy of the popula
freely abroad.
Be it remem
Be it remembered that I am not for one moment oontending that
Protection is a good thing for the world. About that I say nothing now. My argument is that Protection would give employment to men in this country who now have none; and, to prove the contrary, "M. H. R." must show that the difference between the value of
our imports and our exports has no real existence ; and that for very foreigner working for us there is an Englishman working fo
ve foreigner. When he has done this I will admit that he is right, not before,
February 8th.
tunnelling lines.
Sir, -In your acoount, January the 22nd, of the Mersey Tunnel, you say:- One of the most creditabie Ceatares of this work is
the almost absolute accuracy with which the two sections of the unnel under the river-being bored, of course, separately, and dependent upon correctness of calculation-were eventually brought
together, Engineers, at all events, will appreciate the merit of the work when they learn that the deviation where the two section met in the middle of the river was only lin. Neither of the shaft t Birkenhead nor Liverpool was in the centre line of the railway, and the greatest length of base line that could be secured fo
working from was 12 it . The distance across from shaft to shaf was 1770 yaras, or rather more tian a mile.
It would be interesting to have further particulars, and to know north and south instruments respectively. Assuming that the deviations were in opposite directions, then the average error of in extremely good result. If, however, the deviations happened o be compensating-that is, either both to the east or both to th sreater than the above.
Last year, in tunnelling through Knightsbridge and Piccadilly for metropolitan main drainage works, the following results were
obtained:-All the shafts were 12ft. in length clear of timbering east of open cutting work at Albert-gate. No. 2, 34tt. deep, a St. George's-place, 644 ft east. of No. 1; and No. 3, 45 ft . dee
opposite Apsley House, Hyde Park-corner, and 576 ft t. east of No. 2 No. 1 shaft line going west wards showed a deviation of one-tent
 measure. Between No. 1 and No. 2 shafts there was a curve, and and two-thirds of the curve completed, and upon the junction eadirg being afterwards driven, the No. 1 shaft tangent came to instrument error of ${ }_{01} \frac{1}{2 / 24}$. No. 2 and No. 3 shafts were both o ne-tent to fangent, and the deviation of lines at the junction wa of क्172. In this case the lines were not produced to the opposit but the lines sppeind pallel for a lenth of louft, at the junc. tion, and hence it is taken that the deviations were non-compensating.
The average of the last two fractions is almost identical with That given above for the Mersey lennel, and ef resuls are to to be in both cases the same. GEO. P. Culverwelr, B.A., Assoc. M. Inst. C.E. 3, Victoria-street, Westminster, February 5th.

hiquid fukl.

SRr, -With reference to the editorial note appended to my letter, pubisished in your issue of the 5th inst., I beg to state that 22nd November last whe Thames from Granton on Sunday, the your issue of January 8th last.
Going down to Granton the oil-burning apparatus was too small frem the boiler, so, of course, she could not keep up full pressure of
stam; but returning to London, they made all the steam they wanted. Percy Tarbutt.
75, Lombard-street, London, E.C., February 9th.
[Fer continuction of Letters see page 134.]

RAILWAY MATTERS

A contraor has been signed for the continuation of the Manitoba
Central Railway from Brandon to Battleford.
IT is stated that Sir Edward Watkin means to persevere with
In Trade to oppose it
The Jury on Railway Appliances at the Antwerp Exhibition have awarded the gold medal to
silver medal to the Cleminson car.
THE Metropolitan Board of Works has decided to oppose the West Metropolitan Junction Railways Company
THE work of extending the tramway from the centre of the town
Barrow to the Ramsden Dock, a distance of a mile and a-half, has been commenced, and will be completed in about a month, or May next.
The Metropolitan Board of Works, it is believed, will not oppose
the Hyde Park Subway Bill, but they will oppose the Millwall and the Hyde Park Subway Bill, but they will oppose the Millwall and tion Bill, and
Avenue Bill.
AN agreement has been made by which the Manchester, Shefthe West Lancashire Railway and the Liverpool, Southport, and Preston Railway, and to purchase the rolling stock of the West
When giants come together suddenly and as in a tearing rage,
there is usually something to look at. Two goods trains came into collision at Dava, on the Highland Railway, on Saturday night, and great was the effect thereof. The drivers and firemen were
seriously injured, and there was a considerable destruction of A
 iron merchants, Glasgow, had deaured the oontrat from the Indian,
Government for a railway bridge over the river Juman. We now
. learn that they have placed the steel, , obout toon on ons in amonow,
with makers in Weest Cumberland, where they will obtain it on with makers in Weat Cumberland, where they will
cheaper terms than they oould have done in Sootland.
Thr annual report of the North Staffordshire Tramways Com.
 luring the year was $£ 430$, but this is more than made up by the

 consider the question of rail way rates as affecting the northern
ron trade. It is probable that a petition to the Depression of Trade Commissioners will be adopted praying for an in investigation.
 Samuelson, and embodied in his report to the
of Commerce, meet with general approval.
The traffic through the Mersey Tunnel during the first week of

 is said, on Sa urday, and many persons were compoleled to take the the
boats.
The receipts were at the rate of Esoo, at traftic will have to
THE London, Brighton, and South Coast Railway has deolined ooses with the Loondon, Chatham, and Dover Railway. The
Biil for that purpoese, thereforere, annot proeed. Negotiatione are, however, proceding for fefieting an arrangement for a division of
profits at competitive points, and the joint use of certain stations, similar to the arrangements existing between the Brighton Com.
pany and the South-Fastern and South-Western Companies.
Thr Hoodsworth Leoal Baord have deided to oppose the Bills
dissolve the Tram ways and Omibus Cocmpany, and to empower the Birmingham Central Tramway Company to acquire existing
 tion of the Central Tramway Company to oonstructa donble line
of raiss in the place of the single ine now laid in Birchhifel-rond,
in was decided at the last meeting of the Board to take no further action until a
been received.
Owivg to the breaking of a point lever bolt or rod on Tuesday total wreck was made of a goods train Treat Northern Rail way,

 nain line. The engine-driver and stoker miraculously escaped injury, but the engine is a total wreck.
General Annenkoff, who is in charge of the railway which is to connect the Caspian with the Amu-Daria, has contributed a
paper on the subject to the French Geographical Society. The Russian officer describes the railway as a purely military route,
and dwells on the fact that the work has been entrusted to army the paper, and quoting it, says:-"Economy has thus been practised, as Russia is not rich enough to sacrifice hundreds of millions for a political object." It may be said that if this is true
Russia has learned a new lesson. "The railway, as you are aware, is now open as far as Askabad; but the line to Ghiaours is ready. exception of the bridges and stations. General Annenkoff adds
that the line which is to connect Merv with the Amu-Daria will解 have everywhere sprung up, and that it will develope into a beautiful city."

Fogs have been taking their turn at railway work this week, and, effects, though these are the result of not being able to see. The twelve o'clock express out from Euston had a narrow escape when carriage which was being shunted. On Wednesday morning, ng ing, an alarming accident, ivstation, the junction of the Great Northern and North London
Railways. The accident took place a little before half-past eight, a time at which all the City trains are very crowded. The gate-street at nineteen minutes past eight, was slowly moving at a high rate of speed, dashing into the rear of the outgoing
one. The shock was severe, the windows of carriages in some the passengers were badly shaken, while about a dozen had severe ous nature. The guard of the Great Northern train was injured, mainly by the plate glass in the roof of the van breaking and fall-
ing upon him through the violence of the collision. It is supposed hat in consequence of the fog some misunderstanding existed on At thè time of the accident there was a large number of people on the platform, and great excitement prevailed. The traffic was, as
result of the collision, considerably delayed.

NOTES AND MEMORANDA.
In no part of the southern hemisphere is population increasing
so rapidly as in Sydney. In 1870 the population of the city and so rapidly as in Sydney. In 1870 the population of
its suburbs was about 140,000 ; at the close of 1885 it wa
at 290,000 , having more than doubled in fiften years.
The rainfall of New South Wales, as compared with some other countries, does not support those who regard the Colony as
peculiarly arid: but diminished rainall is not so disastrous in its peculiarly arid; but diminished rainfall is not so disastrous in its
consequences in more temperate climates as it is in Australia. The meteorological records of England between 1740 and 1750 there was only 71 per cent. of the average
rainfall In In som Sweden and Russia-the rain fall is as low as 15in. per annum ; the average for twenty years at
Marseilles was 12.8in., and at Alicante the total for the year has allen as low as $7 \cdot 1 \mathrm{lin}$
A currous note comes from abroad, but as it is electrical, we
need express no surprise at its being not need express no surprise at its being not quite creaible :
tenant Immer Gosende, of the German Navy, and Dr. Kummel have explored North.-East Guinea. They report that they reached a spot twelve days' march from the coast, and dis covered that
their compass was useless, owing to the presence of a tree which possesses the properties of a highly
Dr. Kummel was knocked down showed it to consist of almost pure amorphous carbon. It has been named Elisassia electrica.
THE amplitude of the oscillation of chimneys has been exactly measured by observation of their shadows cast by the sun upon the
ground. The oscillations of a chimney 115 ft , high and 44 th ground. The oscillations of a chimney 115ft. high and 4ft. in
diameter externally at the top, near Marseilles, were observed last summer by the shadow, during a high wind, to attain a maximum of 20 in . It was stimated that the chimney deffected by an initial
impulse, would have made four or five oscillations before returnin to a state of rest. On the contrary, by a succession of impulses mney may finally be ove himneys such is the exptaness, all the conditions of statioal sta bility were fulfilled.
HITHeRTo no substance amonggt those which exhibit diamagnetic properties has been observed to possess any permanent diamagnetio
polarity analogous to the permanent paramagnetic polarity of hard steel. The property of retention of diamagnetisation is, however crystal. Both those specimens which show right-handed and left. handed optical properties are alike in this respect, and the axis of
diamagnetisation appears to be independent of the crystallographic axis, and dependent only on the axis of initial magnetisation. Dr Tumlirz, whose investigation is published in We Wedemann'
Annalen, appears to think that these facts negative Becmuere heory of diamagnetism.
DURING some experiments on the laws of compressive strengt nne of which the pressure wase applied to a portion only of the end
ond surfaces of the prismatic test-pieces, and uniformly distributed,
while in the other the distribution was not unifo while in the other the distribution was not uniform. For the
former experiments small steel cubes were used for concentratin the pressure on a portion only of the surfaces of the test-pieces. When one surface was entirely supported, while pressure was
applied to a part only of the other, fracture resulted in a pyramid having the smaller surface under pressure for its base being drive into the test-piece. When two steel cubes of equal dimension were used at either end for applying pressure to a cubical test
piece, the results showed that the force required for crushing w the same as if the test-pieces were a prism with a base equal only
to that of the steel oubes and of the height of the test-cube, the to that of the steel oubes and of the height of the test-oube, the
material surrounding this prism appearing not to affect the material
strength.
A CHEMICAL process for making carbon filaments for incandescen J. 257, 338. Hydrogen chloride is passed through furfuraldehyd or fucusaldehyde, and a black liquid is obtained which is placed separates after eight or ten hours, and the thickness of the layer regulated by inserting wires between the plates. This layer is
removed, cut into strips, and twisted, and heated to 100 dea Afterwards these flaments are heated in closed crucibles, through which a current of marsh gas is passed. Their electric resistance
can be changed by the addition of 2 per cent. of lamp black to the furfuraldedyyde. For the preparation of carbon rods for ar of furfuraldehyde, and the mixture subjected to powerful pres sure in suitable moulds. The rods thus formed are exposed to the
action of gaseous hydrogen chloride after which they are highly action of gaseous hydrogen ohloride, after which they are highly
heated in closed crucibles covered with powdered carbon.

Coppar mining is largely carried on in New South Wales, the most important mines being the Great Cobar, situated 497 postal
miles west of Sydney, in the centre of the vast plains which lie别 until a very recent period, notwithstanding the great distance the mine from the settled portion of the colony. The produce e
the mine has to be hauled by wagons a distance of eighty miles t. Nyngan, the nearest railway station. The industry has within aradiun of three milies the population is wititinated 300 and
and
moon. The Great Cobar Mine gives employment to about 900 persons. The company working the mine at present experiences grea
difficulty in getting the copper to market copper produced during the year was 4765 tons. During the year 1884 the Great Cobar Company raised 21,561 tons of ore, and of the year the oompany had ready for smelting 1000 tons of 10 per cent. ore, 5000 tons 8 per cent., and 2233 tons 5 per cent. Up to
the close of 1884 the company had'smelted 122,795 tons of ore, the average yield of which was 1317 . per cent. of fine copper.' The greatest depth of the main shaft is 564 ft t, and from that diamond
drills have been sunk 60 tit. further. The lode at this depth is said

The following are among the prizes offered this year by the Paris A Aademy of Sciences:- Geemetry: A study of the surfaces
admitting all the symetrical planes of one of the regular poly-
hedrens. progress of the pure and applied mathematical sciences-1000 Mrechanics. Extraordinary ppize of 6000 . for any work tending
most to increase the eftioiency of the French naval forces Montyon-700f.- - invention or improvement of instruments useful to the progress of agriculture, of the mechanical arts or sciences
Plumey-250f.-improvement of steam engines or any othe invention contributitig most to the progress of steam navy ation
Dalmont- 3000 . - the best work by any or the Ingenieurs des Ponts et Chaussies in connection with any section of the Academy Astronorny : Laland prize-gold medal worth 540f.-for the mos astronomy; Damoiseau- 10,000 f. - best work on the theory of Jupiter's satellities, discussing the observations and deducing the
constants contained in it, especially that which furnishes a direct determination of the velocity of light; Valz-460f.-for the mos the year. Physics: Grand prize of the mathing the course 3000f. for any important improvement in the theory of the appli cation of electricity to the transmission of force. Statistics :
prize of 500f. for the best work on the statistics of France the progress of organic chemistry. Geology: Yaillant prize, on
the influence exeroised on earthyuakes by the tion of a country by the action of water or of sayy other physical
causes,

MISCELLANEA
THe Manchester Ship Canal Company has lodged the $£ 20,000$ was required te is hotio The American Elevator Company has obtained the contract for oour in number. The water is to be furnished by means of a RAPID desiccation of timber by means of cool air is being tried, and is said to efiect a complete "seasoning" in about three days.
Some holders of large stocks of timber are somewhat alarmed at Some holders or farge estocks of timber are somewhat alarmed at
the announcement of the invention, but they need not be. Very There were twenty-nine shipwrecks reported during the past week, five of which were steamers, making the total for the
present year 170. Ten were lost off the British coasts, three were abandoned at sea, three foundered, three sank by collision, and one The death
THE death is announced on the 1st inst., , 22 , St. Helen's.road,
of Captain John Kell, in his eighty-second year,, late of East Indiaroad, London, and Plumstead-common, Kent. Captain Kell was gamemnen which returned disabled, and had to re-land the cable IT is doubtful whether the Corporation Tower Bridge, which out. The bridy authrised was an opening bridge but the dues tion has now arisen whether a solid bridge should not be constructed. If that plan is decided
and a new Bill must be promoted.
Mr. DEpUTY Whitr has proposed-"That a special committee wharfingers between London Bridge and the of property and the Wharingers between London Bridge and thoppos whe th bridge of similar elevation to that of London Bridge could be sub. stituted for that proposed, and to report.
The Blackwall Galvanised Iron Company has started working a
new galvanising bath, which is the largest bath in England. It is onstructed to galvanise large tanks, plates, and machinery of al kinds, cast and wrought. In many casest the size of such work a there was no bath large enough to galvanise it.
The prospectus has been issued of the West Gloucester Water Company, formed for the supplying of part of Bristol and several outlying districts with spring water. Works are at present in
course of construction for supplying one district within the area and containing aboat 40,000 inhabitants. The capital is to be
860,000 in 600 shares. Mr. H. J. Marten, M.I.C.E., is the engineer, and the offices are in Alliance-cliambers, Bristo
Mr. John CLAYToN, of the Soho Ironworks, Preston, who made
nd fixed the boilers, and carried out the ventilation system in the House of Commons, the boilers in the British Museum, and large number of boilers for the Royal arsenals and dockyards the gold medal at the Inventions Exhibition, and the enormous fleating gates for the East and West I
recently died in his eighty-fourth year.
The Admiralty authorities, considering that the torpedo boats and Co. Poplar, resest a notable adyance in the construction of vessels of the class, lately ordered a special report to be made of their performances. The practical result of this has been that Messrs. Yarrow have received instructions to immediately put in
hand and to finish with all despatch a similar boat for her Majesty's Navy, but subject to several important improvements.
A Boasd of Trade Report, by Mr. G. Carlisle, has been published Works, Todmorden, of Messrs. Lord Bros. From this it appear that the explosion was due to high pressure and thinness of pipes, Green and Son it was stated that the economisers are tested to from 350 lb . to 400 lb . per square inch when intended to work at 60 lb to 80 lb , that the bursting pressure when new would be abou
1000 lb , and that the life of the apparatus is from twenty to wenty-ive years.
THE Custom House of the harbour of St. Petersburg has recently Brid soundigs to be made in the Now thanel from the Palac found in some places to be no more than 11 ft . The Custom House any quantity of water, which are obsiged to land at the Gran sense of the necessity of allotting a eredit of 3000 roubles for the exver from the entrance of the maritime canal to as far as the Exchange, and also the channel
Exchange to the Toutchkow Bridge
THe Duke of Edinburgh on Saturday afternoon took part in a Nordenfelt, on a submarine torpedo boat. He thought that the not like ide of being under ware, but he evidently doe things a little. He said that before the submarine boat could be adopted it must be shown that the explosion of the torped
was not as likely to injure the crew of its own boat as the iron clad against which it might be directed. He did not quite seo
how such craft were to be used against vessels in motion, an thought that for this purpose their speed must be greatly
noreased, a matter which he commended to Mr. Nordenfelt attention. He was, however, of opinion that it was on the surfac
of the water that the boat proposed could be most successfull employed
A PAPRR was read at the last meeting of the Chemical Society Part III., by Mr. Thomas Turner. The paper considered in
detail the Woolwich Report, "Cast Iron Experiments, 1858." This report included the ehenl analyses and mechanical test of seventy specimens british cast author classifie of the more important results are as follows:-(1) Only eight these contained under $0 \cdot 9$ per cent, of silicon, while the eighth wa rich in phosphorus and sulphur, facts strongly supporting the
author's conclusion that a softening effect is produced by a suitabl proportion of silicon. (2) The six best specimens mentioned in the author, from his own experiments, recommended about 1.4 pe cent. These and other resuls (3) When the shecimens classified according to their proportion of phosphorus and arrange noticed as the silicon increases until a certain point is reached beyond which point the metal deteriorates in quality. In the dis cussion on the paper, Professor Unwin noticed the popular pre
judice that silicon is a very injurious constituent of cast iron This prejudice arose a long time ago, apparently from silica. Thus, the Turkish Government in 1844 wished to utilis an exceedingly rich ore-magnetic ore containing 12 per cent. of
silica-found at Samakoff, but could not smelt it, and the diffioulty was and to improve cast iron guns, and Mr. Cochrane advise the use of Nova Scotia iron. This was tried at Woolwich, but round that it contained too much silicon, notwithstanding that grairbairn's mechanical tests were in its favour,

DETAILS OF TIMBER WORK, ROYAL ALBERT DOCK EXTENSIONS. MR. ROBERT CARR, M.I.C.E., ENGINEER.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

CONTENTS.

The
Labour in Eviore .iö

- The Soaring of Birds-Anothe

 LTreRAưR b-Ancient Rome in 1885

New Compantis
The Patext Jouri

Sewarage, $135-\mathrm{He}$
Carpenters, 136 .

TO OORRESPONDENTS.

Registered Telegraphic Address-". ENGINEER NEWSPAPER, * All letters intended for insertion in The Enaivere, or containing questions, must be accompanied by the name and address
of the writer, not necesariy for publication, but as a proof of
good faith. No notice wolutever will be taken of anonymous good faith. No
communications.
$*$ * In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressesd to the
pubbic, and intended for insertion in this column, must, in all
 writer to himself, and bearing a 1 d. postage stamp, in order that
answerss received by us may be forvoarded to their destination. ansvers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply No notice wint be ctions.
with thes instrus.
D. - Does not comply weith

 Foreipm Subseriptions for Thin Paper Copies will, untili further notioe, be
recived at the rates given below: Forreion subseribers paying in advance
 increased rates. Post-afice orreer. - Australia, Belgium, Brazil, British
Remitume
Columbia, Britith Guit Guiana, Canada, Cape, of Good Hope, Denmark,

 chili, , 1 16s. Borneo, Ceylon, Java, and
Mauritus, Sandwich Isles. 22 sis.
ADVERTISEMENTS.

 dvertisements cannot be Inserted unless Dellivered bofore $\mathbf{8 1}$
Letters relatiococon Thurs.

MEETINGS NEXT WEER.

THE ENGINEER.

FEBRUARY 12, 1886.

collision bulkheads.
The principle of bulkhead subdivision of a vessel's hold, considered as a source of safety, originated with the em-
ployment of iron as a material for ships. There were, of ployment of iron as a material for ships. There were, of
course, bulkheads in wooden ships before the use of iron course, bulkheads in wooden ships berore the use of ron
was introduced, but such partitions were for division of cargo, stowage of stores, and separation of the habitable
parts from the remainder of the vessel. It is doubtful parts from the remainder of the vessel. It is doubtful
whether in those days the idea of keeping a damaged whether in those days the idea of keeping a damaged
vessel afloat by means of her original bulkhead subdivision vessel afloat by means of her orignnal bulk ever entertained, although it is well known that stranded vessels were often floated by means of temporary arrangements of the kind. The materials of such vessels and the consequent modes of combination were not such as
would be likely to contribute to the trustworthiness of would be likely to contribute to the trustworthiness of
bulkheads under such circumstances as a collision either with a rock or with another vessel. Water-tightness of the kind being secured by fastening and caulking long lengths of planking, it is clear that any penetrative shock received at one part of a plank would start the remainder, and so the effect of the dage would be widely distributed an probably extended beyond the bulkhead partition which heads were, therefore, not adopted simply because they heads were, therefore, not ander rare and exceptional circumstances. But the methods of combination rendered necessary by the employment of iron in shipbuilding, together the conditions of the case. The effects of a penetrative blow on the hull of an iron or steel vessel are local in their character, and usually confined within limits which do not extend far beyond those of the absolute contact of the penetrating body. The form and fibre of wood materials are determined by the growth of a tree, but iron or steel can be bent, rolled, or forged to any shape whatever, and
the limiting conditions of dimensions are overcome by the aid of the rivet. Hence with the advent of iron find provision made for their safety in the form of bulkheads. This was no doubt partly due to a sense of timidity in venturing upon the sea in a vessel built of such an unlikely floating material as iron-especially with a shell relatively so thin when compared with that of a wooden
ship. The man who first ate an oyster has been generall ship. The man who first ate an oyster has been generally
credited with much courage and enterprise-but to us it credited with much courage and enterprise-but to us it
seems that far higher qualities of that kind were exhibited by those who first ventured to embark upon the ocean in a vessel of iron.
Transverse water-tight bulkheads, and collision bulkheads in particular, date then from the earliest sea-going iron ships. Indeed, as far as concerns sailing vessels,
water-tight subdivisions were carried to a greater extent water-tight subdivisions were carried to a greater extent
thirty years ago than now. Very few iron or steel sailing ships built at the present day have more than the one transverse bulkhead, which is known as the collision bulkhead; but steamers are better provided in this respect,
having also bulkheads at the fore and after boundaries of their machinery spaces, a bulkhead aft, and in larger their machinery spaces, a bulkhead aft, and in larger
vessels a bulkhead dividing the fore and main holds. The vessels a bulkhead dividing the fore and main ints.
machinery space bulkheads are primarily intended to machinery space bulkheads are primarily intended to
separate the engines, boilers, coals, \&c., from the cargo; separate the engines, boilers, coals, \&c., from the cargo;
but all the transverse bulkheads are expected to serve the purpose of keeping the vessel afloat in the event of any of purpose of keeping the vessel atoate in the event of any of
the compartments being penetrated so as to admit water. This being so, it becomes a matter of importance to insure -(1) that no single compartment may hold enough water to sink the vessel; and (2) that each transverse bulkhead is strong enough to endure the pressure due to the compartment which it bounds being filled with water to the load line. Except she be in the Royal Navy, we are not aware of any vessel afloat which fulfils the first of these conditions, although many of those on the Admiralty selected list fo closely thereto in their structural arrangements. To fulfil the condition is, in fact, very difficult, and commercially speaking impracticable. It may be attained in regard to most of the compartments, but rarely in that which contains the machinery and boilers; and even in the cargo spaces, an extensive subdivision is found to be a costly arrangement when the questions of storage, loading, and discharging are taken into account.
The problem therefore resolves itself into one which chiefy concerns the efficiency of the collision bulkhead, pose whi of which sufficiently indicates the valuable pur vessel afloat when through collision. This duty is a possible one, and the value of the collision bulkhead has very many times been satisfactorily demonstrated by the preservation of life and property. The volume of the fore peak space will never
be very considerable when the position of the bulkhead is wisely fixed, and therefore the quantity of water which it will contain-or rather the loss of buoyancy due to its penetration-will not seriously impair the seaworthiness of the vessel. At the same time it is prudent to fit the bulkhead sufficiently far from the stem to be well abaft any damage which the bow would be likely to receive from such a cause as collision. A happy mean has therefore to
be struck between the limits suggested by these considerabe struck between the limits suggested by these considera-
tions; there must be neither too much space in the fore tions; there must be neither too much space in the fore peak, nor must the bulkhead be too close to the stem.
We have next to consider the structural qualities of the bulkhead, which, when the bow is broken, becomes the shell of the vessel. This is a subject which has not until recent years received the attention whichit merits. There is no more fertile source of damage to shipping at the present day than collision. A large proportion of the total losses, regarding which no particulars come to
light, are doubtless due to this cause-both the parties light, are doubtless due to this cause - both the parties that in collisions between two ships it almost invariably that in collisions between two ships it almost invariably
happens that the bow of one strikes some part of the other,
it would appear that one at least of the colliding vessels should, in most cases, survive with injuries not too considerable to prevent her from reaching port. That this is often the case must be admitted, but it might perhaps happen oftener if the collision bulkhead were properly placed and properly made. The position of the bulkhead is usually more satisfactory than its construction, although both are sometimes at fault. When we hear of a bulkhead being unable to endure the pressure of water against it without the assistance of shores on its aftermost side, w may be sure that either such a bulkhead is insufficiently stiffened or else that it is so close to the seat of damage a vessel. Now where it is connected to the side of the head being insuffistly excuse for an iron or steel bulk head being insufficiently stiff, for with such material Mr. Clarke Russell in in as stiff and rigid as one please
 Yarn," describes a shipwreck through collision, in which
the vessel, which was of iron, had to be abandoned because the vessel, which was of iron, had to be abandoned because,
with all their shoring, the collision bulkhead could not be kept in place. But this collision bulkhead was of wood, and probably the only one of that material that was ever fitted in an iron ship. Such a thing should never happen to an iron or steel bulkhead-nor do
The stresses to be resisted by a collision bulkhead whe the bow is damaged are, hydrostatically, the same as those acting upon the steel plating, but the dynamical stresses are generally much less considerable, as the force of blows from the sea will be much broken by the portion of the bow still remaining in place. But the direction of the vessel's motion in the water being perpendicular to the plane of the bulkhead, it consequently happens that the plating composing it endures greater pressure, under such circumstances, than the ordinary plating of the bow, Now, remembering that the shell of the vessel is of a curved form, while the plating of the bulkhead is flat, it wil at once be seen how much superior is the former, on that account only, to the latter, in its ability to resist the stresse, acting upon it. The shell of a vessel may, indeed, be likened to the cylindrical portion of a boiler, and the col lision bulkhead-when the bow is damaged-to either of the flat plates of the ends, which require the assistance of with the order to put them in an equal condition of strength of the vessel is stiffened with ribs composed of frame and reverse bars spaced 4 in nart besides deck stringer \&c., the collision bulkhead was, until of late, stiffened with comparatively small angle bars, spaced as much as 30 in . apart. The vertical stiffeners now used are much larger, and the enforced use of horizontal stiffener on the opposite side of the bulkhead, still further contribute to equalise the strength of the collision bulkhead
 than bas hitherto been sims still, to bend order to 1 lo pectly tur order to make to pectity trustworthy nare punctured partly caried away. should $w o$ ir more completely side there would in that case be no fer of the bulkhead being deres defle by when Weal very deep holds, by reason of hold beam stringers and widely-spaced beams taking the place of decks, it certainly seems necessary to give more support to the collision bulkhead than is afforded by the vertical and horizonta stiffening angle-bars. The stresses upon the buokhead
when forced through the sea and made to perform the when forced through the sea and made to perform the
functions of a stem, are much greater than the bulkheads of deep ballast tanks are called upon to endure. The latter are stiffened with plate bulb iron rivetted to the vertical stif feners, and such an arrangement would furnish all the support that the collision bulkhead is ever likely to need Under any circumstances a horizontal plate stringer should be rivetted to either the fore or after sides of the bulkhead whenever a tier of widely-spaced beams is fitted in lieu of a laid deck flat.
The contingency against which the bulkhead provides may, perhaps, by some be considered remote; but as long as the risk exists, if we provide against it at all, w should do so thoroughly. But the contingency is not remote one, as the owners of cargosteamers, and the under writers too, have good reason to know. That so many vessels are saved every year by these bulkheads is the mos satisfactory proof of their importance, but that any should be lost because their bulkheads are not strong enough is a reason for giving still further consideration to the subject, Re matcer has not escaped the attention of Lloyd requirernents in this respect, and there can be no doubt should it become apparent to that body that furthe strengthenge necessary to collision bulkheads, provision for the same will speedily be made in their Rules.

domestic fireplaces.

Many months have elapsed since our old friend, the domestic fireplace, has been made the subject of newspape controversy. Mr. Pridgen Teale has been the first to disturb public repose this year. On Monday night he delivered a lecture on "The Domestic Fireplace," at the Royal Institute. Mr. Teale had literally nothing new to say on the matter; all the old stock arguments in favour of a system of warming our houses different from that in general use were furbished up, made to look as bright and attractive as possible, and placed before a more or les sympathetic audience. The lecturer admitted that he could say nothing that had not been said to our forefather by Count Rumford. He has devised a fireplace in which coal is to be burned at a dull red heat. This result is obtained by reducing the admission of air. Unike many engineers best results best results are got by burning coal at a low instead of a
high temperature. By the use of his fireplace he high temper sor. By the use ous in oplo He produces no smoke to pollute the air, and he has no inders to go to the parish dust heap. He urges otners to go and do likewise. It is no disparagement of Mr. Teale
to say that we have heard something closely resembling his arguments, his description, and his advice a hundred times before. The result on the London mind of all this Teale and his fellow-workers claim our admiration; but we cannot resist the temptation to smile even while we
admire. The weak spot in their arguments possibly is that they have missed the whin their arguments possibn tissue In one word, the public are so well satisfied with what they have got that they do not desire a change; and
men of reasoning powers not inferior to that of Mr men of reasoning powers not inferior to that of Mr .
Teale will see in this placid satisfaction something that needs explanation. If only mankind was discontented with its domestic fireplace, the fireplace would vanish like a dream. Mr. Teale and his fellow-workmen have to
combat content with things as they are before they combat content with things as they are before they can bring about a change. They must persuade the householder that the hearth which he loves is really a very bad thing. It is waste of breath to tell him that other things
are better. For the matter of that, it seems to be equally is shameful. Mr. Pridgen Teale would dorns his coals is shameful. Mr. Pridgen Teale is not well founded. Most men accustomed to look below the surface of things know that most so-called abuses, when they enjoy popular favour, are not so bad as they sase. Let us see.
cater
Mr. Teale and his fellow workers advocate alterations which, as the main bod for two principal reasons, round which, as the main body of attack, skirmish a multitude with at present. The first of the two reasons is that with improved fireplaces we should save coal; and the second is that we should avoid the production of smoke, and so leave the air of our great towns pure. Now as regards figures concerning the saving of fuel effected by improved grates and fireplaces; but such evidence as is available goes to show that it. is not large. We have no doubt whatever that Mr. Teale can himself, by looking after his own fires, save a good deal of coal; and this would be true even invention. But would it be true of his invention, in the hands of the ordinary householder and his servants? mittee, and an exhibition was held at South Kensington in 1882 under the auspices of this body. It is a suggestive circumstance that the Committee was threatened with legal proceedings, under the Smoke Nuisance Act, by those
who lived near the Horticultural Gardens. But this is perhaps a digression. Very elaborate tests were carried out with a very large number of open fireplaces and
close stoves. The close stoves were more economical than any of the open fireplaces. Among these last, however, there seems to have been very little to choose. Let us, for example, take the results obtained with a few of
the inventions tested, and compare them. The value of each is estimated in terms of the rise in temperature pro-
duced in a room per pound of coal burned. Mitchell's common grate, with a fire-clay lining and floor, which is extremely like Mr . Teale's arrangement, raised the
temperature $3: 56 \mathrm{deg}$. per pound. Barnard and Bishop, with a "glow fire," and rather rapid combustion, did better, having as a figure of merit 4. Taylor's fireplace, with a
perforated fire-brick back, $3 \cdot 12$. M. Perret, radiating firegrate, fire-brick lining and roof, 2 . Some fireplaces were tried which heated the air sent into the room. Two of
these gave 2.66 and 2.16 as their figure of merit. In one word, fireplaces with all sorts of additions and improvements did not prove better or more economical than
ordinary fireplaces. As to smoke, attem ordinary fireplaces. As to smoke, attempts were made to
measure the quantity of carbon carried up the chimney, measure the quantity of carbon carried up the chimney,
with only one result, namely, that it was so small that it could not be measured; thus bearing out C. Wye suffice to account for the black trail, miles long, left behind her by a steamship. Let us take it for granted
that Mr. Teale saves one-fourth of his coal bills. If he burns 20 tons a year he must have a large house and many fires. The saving in money will be in that case year to warm his house will regard $£ 6$ as a very insignificant affair. Mr. Teale's fires are, moreover, not
cheerful ; and besides, it is not necessary to have one of Mr. Teale's grates in order to have what is popularly known as a "bad fire;" the same result can be
obtained by "slacking down a fire." It requires a deal of faith to believe in Mr. Teale's system in this weather. He wald be more successful in making conmind, uneducated in the matter of domestic fireplaces, as being very much like that of the man who kept down the cost of his horse by giving him very little to eat. Mr.
Pridgen Teale saves coal by limiting the supply of air He does what he can to keep his fire from burning up. Here is the description of his invention, nearly in his own years. The last stage in his education was the discovery that the burning of coal in an ordinary fireplace could be controlled and retarded by the adoption of a very simple and inexpensive contrivance., This contrivance, which he had named an "economiser," was simply a shield of iron, standing on the hearth, and rising as high as the level of space under the fire into a chamber closed by a movable door. One of the effects of this was that combustion went on at an orange, not at a white heat. A white heat in a
fire meant rapid combustion, owing to the strong current of air which passed under the grate, through the centre of the fire, and up the chimney. An orange heat meant that the coke-i.e., the red hot cinder-was burning with a
slowly applied stream of oxygen, a degree of combustion which was only possible when the coal was kept warm by the hot chamber beneath. He had applied economisers one by one to all his grates, kitchen included. The result
had surpassed his expectations. There was a saving of at

least a fourth of his firmed his own results,

The simple answer to all Mr. Pridgen Teale's argument is, that there is nothing new in tireplaces with what engineers call ash-pit dampers; and that the average British householder likes a bright, cheerful fire in cold weathe Instead of saving $\not \pm 0$ a year "rang fires, he would be more likely to pay Łち a year extra if only he could secur substance of the for the outlay. This is the sum and introduce new-fangled domestic firenlaces all those who against. The British householder likes a big bright, ope fire, and he british householder likes a big bright, open to have it with the least possible amount of trouble. He doesnot wanthoppers orscrews orantomatic shovel devices to get out of order and worry himself and his ser vints. The ordinary fireplace meets all his wants and hi wishes, and so he is content. It is almost impossible to per suade people in such a state of mind that they are reall fools. Besides, it is evident that if economy is actually worth considering, that can be secured at once, and the largest possible measure, by adopting the German tove for reducing coll bills The Teale freph we thin stove for whe the will persuade the English householder that he ought to have will persuade the English householder that he ought to hav stoves instead of open fireplaces. In this case instinct speaks,
and instinct is right. All things considered, we see no chance of success so long as Mr. Teale and his co-workers base their claims to a hearing on economical grounds. As regards the smoke nuisance, we have over and ov again shown that, in so far as soot is concerned, little or nothing can be done, because the evolution of soot per chimney is extremely small. By far the larger proportion produced goes away in the sweep's bag, being collected in the chimney. That which really makes smoke objectionable is the carbonic acid and the carbonic oxide which ar evolved when coal is burned. These are the resulting po man has yedients in the products of comb to to bur coal so that these gases will not be evolved.

London fires.
Captain Shaw's report on London Fires for 1885 is remarkable as showing the smallest percentage of "serious fires" on record. The ratio is now down to 7 per cent., the lowest previously being 8 per cent., and the average much
higher. This speaks well for the increasing efficiency o the Brigade, and the result, we apprehend, may be partly attributed to the more extended use of the telegraph and the telephone for purposes of fire alarm. Something perbas may also be said for the extent to which hydrants which Captain Shaw's report gives us no direct informa tion. The account given of the yearly operations is ver concise, we might say painfully so. There are pages of ings. No doubt Criest possible summary of the proceed of enthusiasm in describing what the Brigade have done during the year subject, and the reader has to exercise hi imagination in order to realise what is covered by the cold official phrasen and the impassive array of figures. There are even some During the year there hare to bede acquainted with. During the year there have been thirteen cases of short like to be water. is more to blame than the rest ar parliar company re some of the compaies so exemplary that they ail to give a good supply? Captain Shaw says that "all opanies have made great efforts" to serve th Brigade, and he offers them "the warmest thank or their successful exertions in this respect." But in the turncock has been late on seventee in the twelve months, and has been altogether absen nine times, so that there are altogether thirty-nine nsious fires it must be bone in mind that porian of affected by the total amount of fires, serious and slight. The number of tires recorded as "serious" was not in itself so low as on some previous occasions, though less than in most years, and decidedly less than in the year was somewhat less than in 1884 . But number of fire unfortunate in having more fires than any of the year that had gone before. Captain Shaw states that the fire of 1885 , compared with the averace of the previous ten years, show an increase of 441. The actual number we 2270. We observe en passant a statement that the abolition of payment for calls has been attended with very satisfactory results, having appreciably reduced the num ber of unnecessary alarms. It is evidently believed by Captain Shaw that nothing has been lost in the opposite direction. The introduction of alarm circuits round the fire stations has facilitated the calling of the Brigade These circuits furnish more than 260 "call points," and the system is being extended. Telegraphs and telephone cases connect the fire stations with each other, and in some angs seems to summon the Brigade by touching a button in some imply the height of civilisation, though we may start the electric signal.
The reduction in the number of "serious fires" may strike the reader as singular, seeing how often the newspapers tell of a conflagration such as cannot be called slight. These seem to have been particularly numerous of late. But the reduced ratio of last year permits of three such fires in a week, and this number would make an impressive appearance in the morning papers. Taking fires of all degrees, it is an awkward fact that 659 are specified out of the 2270 as arising from causes "unknown, creating an untoward percentage of 29. This figure gives oncernine appeal for the establishment of ifre inquests, Payne held them for a time there was a perceptible diminution in the number of fires in his district. Captain

Shaw is opposed to the idea of an official investigation into the origin of fires, as unnecessary and expenwith ; but the Metropolitan Board are in favour of it, some officer other that the coroner. Among the ascertained causes of fires, that of "light thrown down" takes the highest number, accounting for nearly one-tenth of the total. Next in order we have the upsetting of spirit lamps, followed by accidents from candles, which slighty excee the cases characterised by "spark from fire." These four causes combined accountfor considerably more than one-third the cases in which the origin of the fire is known. If w look to the trades concerned we find a large number of cause undetermined. Half the fres in nine cases is this are of the ambiguous class Serious damage figures high in the trades of the oil and colourman. Taking the range o the twenty-four hours, fires prevail most between nine and the oclock at night, but there is no great difference among the several days on wrek. It 1 day of fewest fires is Friday. Do these Sunday fires arise in night? To a certain extent this may be the case, bu Sund are a good many fires after bo block on except, strange to say, between eight and nine o'clock on a Thursday. Such was the case last year, though Thursday was not the day of fewest fires. 1o those believ may commend the fact that the greatest number of fire in any week of last year was between the 23 rd and 30th of December. Looking down the list of months we find that May had the greatest number of serious fires, and June the greatest in the total of serious and slight, while February was the least fiery of the twelve. The brightest feature in the year's history, as written by Captain Shaw, consists in the deeds of heroism performed by his officers and men, five being commended for special merit. The personnel of the Brigade is excellent, and so is the materiè, so far as it goes. But a stronger force is needed, and it present absurd restriction of a half-pe purposes of the London Fire Brigade. If another farthing except the roundabout process of an indemnity granted by Parliament in the clauses of the Board's annual Money Bill.
canterbury water supply.
Castrrbury is one of those towns which are provided with water from wells. Canterbury is ind danger Conterbury sempage obtained an Act to supply Canterbury with water, and spee on the works down to $1866 £ 7500$. The water was pumped filtration or any purifying process whatever. In 1866 thes works had to be abandone, and the company obtained an Ac or new works, which have been erected and in operation during the last sixteen years. $£ 50$ sum spent upon
present time is about
500,000 , and an average daily quantity of 382,000 gallons of water is supplied to 3611 houses and about four-fifths of the inhabitants of the water district. The water in the new supply is obtained from deep wells or boreholes sunk
525 ft into the chalk, and the pumping station is placed outside the municipal boundary in the parish of Thanington, at a epo where no danger was apprehended from pollution. But it appears that about four years ago certain lands were sold for get rid of the sewage by percolation into the ground. The soil here is gravel and light loam overlying the chalk, and therefor admirably adapted for absorbing and carrying the sewage dowi
to the chalk. Attention was drawn to the matter by the company's engines as it is asserted that the sewer is not big enough for more
houses, more cesspools have been built. It has been found that by measuring the rise and fall of nomerous welis in the vicinity, that they fall with the water company's pumping, and tion bow wee whe enably between wells and cess pools. ALocal Government inquiry is being madeinto the matter, ofon which a dispute has arisen in consequence of the failure f the authorities to provide proper and adequate sewerage to prevent water pollution. The water company had better se in thean be done wis siderable difficulty will be met with in the endeavour to preven contamination of the well water in that is to be measured
or indicated by rise and fall of other wells.

ORDENFELT'S SUBMARINE BOAT

Mr. Nordenfelt read a very interesting paper at the United boat. He introduced his subject by touching sumarile designs for boats made with the same end in view. The mo remarkable of these was one made in the American War togependence in 17\%, in the form of two onether, in which a miserable man was supposed to creep,
propeling the boat by a hand screw, pumping in the water order to descend also a hand screw, pumping in the water in ballast when he wished to rise to the surface. He was sup posed to creep under to cotam of an enemy's ship and scre to be exploded by clockwork after he had derpated in wa turtle. We need hardly add that this never "came off?" A man was found sufficiently sharp and enterprising to undertak to have simply disposed of himself in some less dangerous manner for the night and claimed his reward in the morning. Nordenfelt's. subsequent designs, we may come at once to
He certainly grasps the question with a bold hand. His position is that previous designs have failed-(1) because they were small and weak, (') they tried to act by
actual contact with the enemy's ship's bottom, which was very cunual contact with the enemy s shp st bottom, which was very
dangerous and diffleult, especially it the ship was pitching at all; (3) black powder was used, whech is an unsuitable power, which taxed the crew too ssverely ; (5) the means of carded the idea of the furtive fragile boat, and made one to act in a systematic way on o cuuch larger scale. A boat that
would show fight and hold its own, and under many circum-
stances, so he maintains, would be a safer vessel than an ordinary one. This fast boat was $64 \mathrm{ft}$. . long, 9 ft . beam, over sponson
12 ft , with 60 tons displacement, and 100 -horse power engines. 12 ft , with 60 tons displacement, and 100 -horse power engines.
Speed, 9 knots, capable of going 150 miles without re-coaling. It carried a fish torpedo outside to be discharged mechanieally,
It is intended to run on the surface, but blowing its smoke It is intended to run on the surface, but blowing its smoke out
under water, till it nears an enemy, when it descends and moves "awash," with a cupora alone above water. When this is liavele to be seen she descends altogether under water by means of
propellers. The vessel is kept in the horizontal position longipropellers. The vessel is kept in the horizontal position longi-
tudinally by means of rudders in the bow, which by the action of a plumb weight bring the boat back to this position shoul anything suddenly make her leave it. Three features are specially emphasised by Nordenfelt:-(1) The employment o
heated water to give off steam as any unfailing reservoir heated water to give off steam as any unfailing reservoir
energy; (2) the submersion of the boat by mechanical meanis, ben is much safer than depending on specific
gravity, because practically the density of water alter gravity, because practically the density of water alters
so slowly with the depth that a vessel that descends
below the surface may descend to a great depth. The hori-华 downwards, and the mere cessation of working the special pro-
pellers causes the boat to rise. () The use of rudders to keep the vessel always horizontal. There is no difficulty as to sufficiency of air and heat. After fourteen miles run, when
the crew had been enclosed for three hours, the temperature was only 32 deg. C. or 90 deg. F., and a tallow candle even on
the flor burnt without visible diminution the boat can be protected arainst machine or quick-firing guis by an inch steeel lpate, but it it os obligque to the direction of fire
that it would, Mr. Nordenfelt believes, resist it without. When "awash" the water would protect the vessel. Two Whitehend fish torpedoes are carried, but more is expected from an
electrical controlled torpedo, which would push in any pro-
tecting netting tecting netting and would fire 300 lb . of dynamite. There is a
quick-firing 2-pounder for use against torpedo boats if neees quick-iiring 2-pounder for use against torpedo boats if neces-
sary. Finally Mr. Nordenfelt prognosticated the employment of declaring them to be most sober, business-like avfairs, although they might be suggestive of the conceptions of Jules Verne.

an important engineering soheme.

The agitation in the matter of sea communication with the
Midlands continues. The traders of Birmingham and South Staffordshire will never rest until they have that communication clear. The latest scheme is that of Mr. G. W. Keeling, Birmingham and the Bristol Channel, by deepening the Birmingham and Worcester section of the Birmingham and Gloucester Navigation sufficiently to accommodate vessels
of from 150 to 200 tons burden. This would allow coasting vessels to be brought by steam haulage direct from Cardiff
or Sharpness to Birmingham, vid the Gloucester Ship Canal, the river Severn, and the Worcester and Birming. there occurs a distance of three miles with a flight of that six locks. Here it is proposed to subsstitute an incline by which
a tank trough containing the vessel could be raised or lowered a tank trough containing the vessel could be raised or lowered
by hydraulic power. The cost of the work is estimated at $£ 600,000$. The scheme would involve the alteration of sixty
bridges and culverts, at an estimated cost of $£ 45,000 ;$ the widening of $184 \frac{1}{2}$ chains of tunnel, $£ 203,000$; the construction
of hydraulic incline and works, $£ 52,000$; the construction alteration of locks, $£ 96,000$; the widening of the canal in many parts, $£ 144,000$; and the provision of additional water space
and wharf accommodation at Birmingham, $£ 60,000$. Mr. Keeling hopes to reduce the cost of the canal transit from Sharpness to to
Birmingham of grain and timber from 6s. to 3 s .6 d . per ton and for other distances and materials in proportion. It is stated that there is reason to believe that the Birmingham and Gloucester Navigations would, under guarantees that it should not
fall into the hands of the railway companies, transfer their fall into the hands of the railway companies, transfer their
interest in the Birmingham and Worcester Canal, on the new company undertaking the existing liabilities with respect to it,
Mr. Keeling will probably explain his scheme in time to a meeting of Midland merchants and manufacturers presided over by the Mayor of Birmingham.

GOOD AND BAD WORK.
The views expressed in our leader last week upon "Good and
Bad Work" have been borne out in a striking manner by inde Bad Work have been borne out in a striking manner by inde-
pendent authorities. At about the time the article was being
penned, Mr. W. W Walker, of the firm of Messrs. T. W. and J. penned, Mr. W. W Walker, of the firm of Messrs. T. W. and J.
Walker, hardware merchants, Wolverhampton, was addressing a special, meeting of the Wolverhampton Chamber of Commerce
"On the Effect of Continental Competition upon the English Hardware Trades in the Colonies." Good workmanship and good material, we last week urged, were essentials to success,
What is the testimony of the Midland manufacturers? Mr. Walker said that in steel toys the competition of German firms
was most severely felt, and in answer to a communication which was most severely felt, and in answer to a communication which
he had addressed to Messrs. Timming and Sons, of Birmingham, that firm, after giving their views of the causes of German
success, had complained of a lack of good workmen. There was not a man within fifty miles of Birmingham who could make a spring divider, and there were only about two men who could
make wrought iron vices. In fact, for tools which required clever make wrought iron vices. In fact, for tools which hequired clever,
handiwork, the rising generation were not filling their fathers' places, the principal reason being that they did not begin to
learn early enough. And Mr. Walker further observed that as to the quality of the German goods there could be no doubt.
The Germans had introduced the best machinery, and their workmen had received good technical instruction. Now, and their remarks-whether or not they can be accepted in their fulness doubtedly the need for the lesson we last week tried to enforce as to the necessity for good workmanship and good machinery.
Undoubtedly, if these points are attended to, the complaints of German competition will be less loud and less frequent. During the address and the discussion that followed, both of which
were most instructive, other remedies for continental competition were suggested.

working guns by electricity

Thr question of training and working heavy guns by means
of electrical motors has for some time occupied the attention of of electrical motors has for some time occupied the attention of
the War-office authorities, who have carried out a series of experiments. The system of employing small motors, actuated by a dynamo machine driven by a steam engine placed under
cover in a sheltered position, will probably be adopted in preference to the present plan of transmitting the motive power by means of shafting. We understand that , the guns of the Spithead forts are to be immediately fitted with the new
elecetrical training gear.

LITERATURE.

Ancient Rome in 1885. By J. Hexry Midderpos. Edinburgh: Adam and Charles Black. 188
For adding one more to the long list of works on the
archeology of Rome, Mr. Middleton makes needles excuse. He reminds us in the introduction that the last few years have been extraordinarily fertile in discovery by recent excavations. To say nothing of the complete exposure of the Forum Romanum, the determination of
the form of the Rostra of Julius Cæzar, the discovery o remai the Touse o the Vestals, the line of the Via Nova, and of the grea Servian Agger, with countless early tombs and houses of all dates, and perhaps the most important of all from the standpoint of primitive history, of the large Etruscan
Necropolis on the Esquiline Hill, and the results of Necropolis on the Esquiline Hill, and the results o excavations elsewhere in former times and more recently,
have been found sufficient warrant for innumerable guidehave been found sufficient warrant for innumerable guide books, large and small, and learned papers addressed to
various societies. Mr. Middleton's work properly used is various societies. Mr. Middleton's work properly used indeed an excellent guide-book for existing remains of
"Ancient Rome" and vade mecum for the student of Ancient Rome" and vade mecum for the student of history and archæology; but it is something more than
this; and his modest apology for publishing his work may be gratefully allowed and the pork itself heartily wel only for the descriptions of the buildings of Ancient Rome, as he himself says, passed over too lightly by those antiquaries who are with out practical acquaintance with actual processes and out practical acquaintance.
materials used in building.
The first chapter, in some respects the most valuable in the book, treats (1) of the geology of the site of the surrounding it ; thght reference to the country immediately construction and decoration, of architectural styles, of methods of construction, of the use made of stone and bricks, and of the composition of mortar, cements, origin of the seven or more hills of the famous city from softer quality which can be cut with varying to a concreted mass about as hard as Bath stone. This badly weathering stone, probably, however, al ways simply peperino externally with stucco, was very early succeeded by the Alban Hills and at Gabii; and lastly, by travertine from Tibur, a very hard pure carbonate of lime. With chiefly for paving, these seem to have been the only stoned used in the earliest constructions of all-those in opve quadratum, or masonry in rectangular blocks. For other purposes, granites, porphyry and morble, and others, the Romans had to go further afield. The primitive opus quadratum, though never entirely superseded, began very
early to give way to the use of faced concrete, by far the most 1 git rials of Rome. Matchless, indeed, were the Roman builders, or rather engineers, in concrete. The massive opus quadratum, with its perfectly fitting masonry in
joints and beds, scarcely needing the cardboard-thin lining of slime or mortar, has perhaps made their reputation as builders with most of us; but in concrete the Romans
The builders had, in Rome, the finest materials in the world on the spot, and their skill and daring in the use of
concrete, not only for foundations and walls, but for vaults and domes of the magnitude of the Pantheon, are perfectly astounding even to the engineers of our time. Mr Middleton, indeed, in describing the various sorts of concrete employed-consisting in the earliest form of broken
lumps of tufa and peperino, or again, of travertine and lava, with lime and sufticient water to reduce the whole to fluid state-later on, of broken bricks and marble from earier buildings-does not hesitate to say that pozzolana,
lying in thick strata just as it was showered down from the lumps of the size of coarse gravel, when mixed with lim setting hard even under water, more than any other mate-
rial contributed to make Rome proverbially the "eternal city," for without it the vaulting and large domed build ings would have been impossible. Their daring use of concrete, and confidence in the tenacity of materials, enabled the Roman engineers to achieve feats most astonishing; and the discovery that a concrete vault o dome is really an arch without lateral thrust rendere
possible such a building as the Pantheon, which is tially nothing but a big pot with a lid popped on the top. baked, Mr Middleton says no solid wall is to be found i Rome. They wer nsed simply as inner facing found to form a smooth level surface, upon which was laid in cement the decorative outer face of stucco, and rich slabs of marble or other imported stones. The bricks merely which few inches into the enormous masses of concret apart from the The method of building with concrete, same as that employed now and always, and casts of the hollow boxes into which this was poured, where not concealed by brick facing, are to be seen to this day. Through out the book there is constant reference to the employ ment of concrete even as the core for 7 in . party walls with the double facing of triangular bricks, and stucco, or marble; and to the so-called relieving arches of 2 ft . tiles, surface of a 20 ft . concrete wall is not very clear. These cannot be for ornament, for they are always covered over and add nothing to the constructional strength. Are they simply level-guides for the bricklayer
An excellent and exhaustive description, both as to
material and methods of use, is given of the famous Roman cements and stucco. How the smooth brick facing was keyed for the cement, not as now, by raking out the joints of the bricks, but by driving large iron nails or marble plugs through the brickwork into the solid concrete
behind, the projections left being afterwards concealed by the marble or other outer coating embedded in the cement thus laboriously keyed :-how the marble itself was often surfaced with beautiful cement of finely pounded marble:how a quick-setting stucco surface was rapidly moulded in relief figures by the hand of the artist, assisted by a few simple wooden tools :--how the surface was prepared for fresco and surface painting-all this, and much more of of his etail, is tola by Mr. Middleton partly as the re the ccounts left bservations, partly from close stady the use of concrete siilled servile labourers, the shell of enormous structures was speedily and substantially run up, and the field left clear for artincers and artists in stucco, sculpture, and painting, and Nero, Caracalla, or Vespasian, with ruthless spoils of
Greece, Asia, and Egypt for surface enrichment, would ave a huge palace or therma finished in a time which vould put builders of Law Courts to the blush. From Vitruvius and Pliny-Pliny, it seems, is often a mere plagiarist of Vitruvius-and his own acute observation, Mr. pera, varuish and encaustic paintings with which surfaces pera, varuish, and encaustic paintings with which surfaces
of stucco and the exquisite marble cements were ornamented. In street-paving, roadmaking, drainage, warming appaknow a little by our ow uried cilies on sichester and Uriconium, water supply, puge Coliseum, Mr. Middleton is equally at home whether ccomplished antiquarian, draughtsman, or engineer: Aqueducts, quaiity of water, reservoirs, sizes of pipes, names-with drawings and illustrations of makers' marks on brick, tile, and pipe, are discussed in detail. Lead pipes, we are told, are found inscribed with the capacity of the pipe, the name of the estate, the imperial owner, and the plumber who made them. What better evidence amusing to learn, was not unknown; but the it ime deposit of the water, as now, was trusted to render lead pipes safe, and they were extensively used. Mr. Middleton makes 4o mention of chimneys; no ancient chimneys, indeed xist. The flues of hypocausts, however, were carried up the walls in baths, and occasionally in private houses, and how they were cleaned is a mystery unsolved; possibly, the use of charcoal and wood left little deposit which Marble, porphyry, basal thorough draug the harder and more precions stones, did not come into use until the last he roo the Republic and of the eary These, of course, were requisitioned from conquered countries-poor Greece and Asta Minor were swept of their choice sculptures, and proMiddtheir best artists compelled to slave labour. Mir. were may take ane reason why be brought in safety until Pompey had cleared the seas of pirates.
Indeed, they did come into common use immediately after In the primitive buildings on the Palatine, the great Servian Agger, the typical Roman temple, on podium or
raised foundation, with surrounding porticus - not to be confounded with portico, as of the Pantheon-enclosing the domed cella, or sanctuary, containing the statue of the god in the basilica, illustrated in Mr. Middleton's book by
plan and sectional drawings of concrete, brick inner faciug, and surface of ornamenting stucco or marble slabs, the various uses of tufa blocks, peperino, and the
harder travertine for keystones, capitals, joints, voussoirs, and points of greater pressure, are constantly referred to of descriptions in detail, as also in the later stroture of thermb or amphitheatre, palace or vila, and must be of Roma y one octure. Of co trile all phabet the gman architecture. Of such details, unearthed almost completed, as it now is, from beneath the 40 ft . of rubbish which incumbered it, compiled from ancient sources and the knowledge gained by recent excavations, and rendered easy for study by the author's well executed coloured map. 'The plans and sections, if one may form a judgment by their intelligibility, are aments the destruction of past ages, and what is now being done. The Church he often stigmatises as the robber of temples, passing over a little too lightly the fact which he constantly establishes, that Pope atter Pope may have robbed without scruple, but has, at the same lime modernised into porches and immense quantities from other building of scolptured relics and material which would otherwise have been ruthlessly burnt in lime-kilns or adorned a pigsty. Over and over acain he shows how the ancients themselves, whether under Republic or Empire, did not not scruple to pull down, and break up for concrete the buildings and fine marbles of their ancestors. Yopes and railway station builders are merely following Middleton is obliged to pavements, foundation, or wall, after long ages, is but the signal of disintegration by frost and weathering by exposure; and page after page of his book is tilled with descriptions of buildings laid bare by the spade in the 14 th and 15 th centuries, now mere crumbing rabbish and measurements of those who have preceded him in his work
Mr. Middleton gives long lists of classic authors-contemporary, or nearly so, with the buiders-whom he anted, and also of more modern flige a Pliny, Canina, and Mr. Parker by the way-for those to consult who have leisure, opportunity, and inclination. His own book recommends itself. Mr. Middleton is neve tempted into fine writing or the bye-paths of legend Mention has been made berore on drawings, and it may be added that his itterary style, a bents the subject and workmaulike.
adorne
EXPRESS LOCOMOTIVE, BELGIAN STATE RAILWAYS.

BELGIAN EXPRESS LOCOMOTIVE.

BELGIAN LOCOMOTIVE.
In our last impression we gave a two-page engraving of a
Belgian locomotive: above we give an external view of this engine. On page 132 will be found cross sections, which complete our illustrations of this engine, a complete description of which will be found on page 101. Our illustrations this week show very clearly the peculiar grate and enormous firedoor rendered necessary by the use of very small coal. They show
how the quality of the fuel used modifies the type of locomotive. how the quality of the fuel used modifies the typ

DOUBLE-REFLECTING GONIOGRAPH
To avoid the errors and sources of error arising from the complicated method of measuring the position of vessels with the compass, Lieutenant Constantin Pott, commander of H.I.M. ing on a similar principle to that of the sextant, enables the observer, however, to measure two horizontal angles instead of one at one operation. By means
of a system of straight.edges of a system of straight-edges working in combination with the mirrors, when the images of
three objects, whose position is three objects, whose position is
known, cover one another, the known, cover one another, the
angles formed by their line of direction with the po nt of obser vation, recorded by the three ${ }^{\text {apex. }}$ The Pothenot problem of de termining a fourth position from three known points is thus graphically solved, as, when an
observation has been, made the observation has been made, the
instrument can be laid down on instrument can be laid down on vation be fixed by the apex of the angles recorded.
The construction of the instrument is as follows:--Figs. 1 and 2, a straight-edge A is fixed to the horizontal circle F, its left-hand edge is in the axis, and forms the basis of the instru-
ment. Two movable arms BB ment. Two movable arms BB_{1}
are jointed at the are jointed at the point of in-
tersection of their bevelled tersection of their bevelled
edges with A at the centre of edges with A at the centre of
the horizontal circle F by the thinge Dinizontal circle F by the of the instrument. The centre of the hinge is bored at d for the convenience of transferring measurements direct to a chart or survey. The straight-edge A
is prolonged behind the hinge D is prolonged behind the hinge D ,
and widened out and streng and widened out and strengthened on both sides A_{1} to support
frame G , into which a telescope or diopter can be inserted, so that its axis is parallel to that of the instrument. On eithe side of G, and as near as possible to it, two movable mirrors S S and $S_{1} S_{1}$ working on two axes b and b_{1} perpendicular to the plane of the instrument are fitted; equidistant from the centre
of the hinge D the left-hand mirror is raised its own height above the right-hand one. Two studs $\mathrm{Z} \mathrm{Z}_{1}$ turning on the vertical axes a and a_{1} are fitted to the upper surfaces of the distance from the centre d of the hinge D as the axes of the distance from the centre d of the hinge D as the axes of the
mirrors S_{1}. Two cylindrical slide bars I_{1} are fixed at one end to the base plates of the two mirrors S_{1}, and the other ends are free to slide in guides drilled for the purpose in the studs $\mathrm{Z} \mathrm{Z}_{1}$, by which means the movement of each mirror is made to coincide with the movement of the straight-edge on the same side of the instrument. Two small fixed mirrors 8 s, one above another, are fixed in a housing N between G and D in the axis of the instrument, in such a position that one receives the $\mathrm{S}_{1} \mathrm{~S}_{1}$, and transfers the same in a parallel direction to the axis towards the telescope. The housing N is slotted front and back the middle of the front opening W coinciding with the axis of the telescope P, so that the observer can see through N , and at the same time see a portion of the upper and lower mirrors $s s$. When the movable arms B B_{1} are set at zero and their bevelled edges coincide with the left side of the straight-edge A, each of the larger mirrors will be exactly parallel to its respective smaller mirror. For the purposes of correcting any error of parallelism, and as the larger mirrors are fixed to their base of the housing N for the purpose of adjusting the smaller mirrors as in a sextant. In the same manner the vertical adjustment is

DOUBLE-REFLECTING GONIOGRAPH.
corrected by the small screw C. The clamp screw on the top of C and the button r at the point of junction of A with F are handy for moving the instrument about. H is the handle for holding the instrument while taking an observation, held in place by a and n, for snap f. The arms B B_{1} are also fitted with knobs n instrument has two eyepieces, one over the other the with the for observing the left-hand, the lower one the right-hand angle The principle of construction is shown in the following Fig. 3 in which A B represents the axis of the instrument, 88 the upper fixed mirror-S on Fig. 1 and 2-and the dotted S S the corresponding movable mirror S S when the arms are at zero and
the mirrors parallel. The full S S represents the movable mirror in such a position that a ray of light falling in the direc tion $\mathrm{R} b$ is reflected on to the fixed mirror s at e, and thence towards A in the direction $c \mathrm{~A}$, coincident with a second ray coming in the direction BA. As the angle of incidence equals
the angle of reflection $\alpha=\alpha^{\prime}$ and $\beta=\beta^{\prime}$, also as opposite angle $\beta=\beta$. In the triangle $b g e, \alpha=\gamma+\beta$ therefore $\gamma=a-\beta$ or (I.) $\gamma=a^{\prime}-\beta^{\prime \prime}$. As, however, the angles δ and ϵ as opposite angles are equal to one another, the sum of the two supplementary angles in the triangles $g h e$ and $f h b$ must also be equal, i.e. (II.) $\gamma+\alpha=\omega+\beta$, or by amalgamation $2 \gamma=\omega$, i.e., in
words : The angle which the two mirrors S S and $s 8$ form, when the ray $\mathrm{R} b$ is reflected in the direction $e \mathrm{~A}$, equals half the angle formed by the ray and the line $e \mathrm{~A}$. It is therefore necessary that the angle described by the movable straight-edge must be double, so that the observation may be read off correctly at once. This is the case, as will be seen from Fig. 3. d is the centre of hinge, $b a$ indicates the cylindrical slide bar attached to the mirrors S S, when the latter, as shown by dotted lines, is at zero ; $d b$ indicates the position of one arm B, forming with the axis of the instrument the angle ω. In this case the point a the position $b a^{\prime}$ and forms the angle $a b a^{\prime}$. As the distances from the hinge d to the movable mirrors S \dot{S} and to the centres of the studs $Z Z$ are equal $b d=a d$, and a circle described from d with a dia. $d a$ will pass through a and b. As, however, the angle ω^{\prime} described by the motion of the arm B from a to a^{\prime} is central, and the angle $a^{\prime} b a$ described by the slide bar I over the same distance peripheral, the former is twice as large as the latter. It is, therefore, evident that the angle described by the $\operatorname{arm} \mathrm{B}$ is equal to that formed by the lines R b and $e \mathrm{~A}$ or $\omega^{\prime}=\omega$.
In actual construction the instrument is somewhat different, In actual construction the instrument is somewhat different, arms. Their actual position is shown by dotted lines, where a becomes a^{\prime} and a^{\prime} becomes $a^{\prime \prime \prime}$. The relative proportions of the
angles described by the arms and by the slide bars remains the same, $2: 1$. It will readily be seen that this instrument is not

only applicable to measurements at sea, but may be used for various operations on land for which the sextant is not adapted.

PRIVATE BILLS IN PARLIAMENT.
THE latest report of the Board of Trade respecting the promotion this session of railway, tramway, subway, canal, gas, and water Bills, furnishes details respecting those measures more extent and precise than could otherwise be obtained. "o some résumés, but there especially interest investors in in this report which will more confirms our own statements as to the material falling off in the number of Bills in most of the classes set forth, mentioning that the new tramways proposed are only slightly more than half the with respect to many of the Bills is less than half the amount proposed last session. The Bills advanced by existing companie are only seventy, as against ninety-seven last year, the new mileage being 120 miles instead of 148 , and the estimated capital $£ 9,934,400$ as against $£ 15,661,026$. Last year ther were thirty-five Bills promoted by new companies; this year the number is but twenty-one, the length of lines projected being as against $£ 28,726,963$ The discrepancy betwed the esti mated capital in each year when compared with the relative lengths of new railway will strike most people as remarkable but the most probable reason is a difference in the character o the districts affected and in the nature of the property to be interfered with. The combined Bills of old and new companies thus number ninety-one, the total mileage being 366 mile against 540 miles, and the aggregate of capital to be raise amounting to $£ 18,169,283$, as against $£ 44,387,989$, or a decrease of $£ 26,218,706$. The $£ 18,000,000$ odd, however, includes
the capital required for the acquisition by a company of the the capital required for the acquisition by a company of the
Bute Docks, viz., $£ 3,850,000$. Next to this sum the highest Bute Docks, viz., $£ 3,850,000$. Next to this sum the highest
amount proposed to be raised is $£ 800,000$ by the Mersey Rail way Company, and then come the Manchester, Sheffield, and way Company, and then come the Manchester, Barnsley Company with $£ 500,000$. From that point the sums drop to $£ 400,000$--by three companies- $£ 320,000$ $£ 300,000$, and so on till they reach $£ 160,000$, which the South-Eastern Company proposes to raise. In view of the controversy respecting the payment of interest out of capital during the construction of the ship canal, it is well to tion propose to take that power. Parliament will thus have ample ground for laying down some clear and even final decision upon this question. Of the existing companies' Bills fifty-nine relate to England, and propose to construct 117 miles of new line at a cost of $£ 9,534,400$; seven are for laying down thre miles of rail in Scotland at a cost of $£ 325,00$, and the remain ing four propose an outlay of $£ 80,000$ in Ireland. The twenty one new companies' Bills include seventeen for laying down 215 miles in England at a cost of $£ 7,631,883$; and four for the construction of thirty-one miles in ireland it appears that there are nineteen for England and one for Ireland, their object being to authorise the construction of fifty-eight miles at an estimated cost of $£ 1,472,000$ - thatis, $£ 730,000$ less than thetotal capital proposed by the Bills of last session. In this connection it will be convenien to refer here to the Provisional Orders respecting tramways, fo applications have been made to the Board of rrade. Of these there are twenty-the same number as of Bills-proposing the construction of seventy-one miles of new tramway, or an increase
of twenty-nine miles upon last year. The estimated cost is of twenty-nine miles upon last year. The estimated cost £45 the Provisional Orders project the laying down of 129 miles of new tramway ; and in stating this, the report refers to the recently published return, which showed that up to June, 1885 1161 miles of tramway had been authorised by Parliament, and 811 miles had then been opened, of which 117 miles were in the metropolis. Besides these railway and tramway Bills, there ar eleven Bills and eleven Parliamentary Orders for the supply o gas alone ; eight Bills and one Parliamentary Order for supplyirg gas and water ; seven Bills and nine Parliamentary Orders for the supply of water only ; and one Bill and two Parliamentary Orders relating to electric lighting, one of Some of the tramway Bills and Parliamentary Orders make provision for the use of locomotive or other motive power, from which it may be inferred that the promoters have in view, if not in actual intention, the use of electricity as a means of propulsion. Again, a number o the Bills relating to gas, water, and subways contain provisions with respect to the laying of electric lighting wires, pro to the supply of electricity, under the general powers already pos sessed by the promoters for that purpose.

South Kensington Muskum. - Visitors during the week ending Feb. 6th, $1886:-$ On Monday, Tuesday, and Saturday, free, from $10 \mathrm{a} . \mathrm{m}$, to 10 p.m., Museum, 12,714; mercantile marine, India section, and other collections, 2860 . On Wednesday, Thursday
and Friday, admission 6 d. , from $10 \mathrm{a} . \mathrm{m}$. to 4 p.m., Museum, 115 L mercantile marine, Indian section, and other collections, 74 Total, 16,799. Average of corresponding week in former years,
14,059 . Total from the opening of the Museum, $24,623,006$.

LETTERS TO THE EDITOR．

（Continued from page 126．）

ZINC IN MARINE Boilers．
SIR，－It was not my intention to trouble you again on this sub．
 struction and Preservation，＂I have to ask you to allow me to tane
upa little more of Jour valable space，In the frist place，I am
not aware of ever havin up a litile more of your valuable space．In the first place，I am
not aware of ever having claimed originality in the matter of pre－
serving iron by zinc．What I claim to ohave done，when zino was serving iron by zinc．What I claim to thve done，when zinc was
all but given up by enginers，are＂Improvements in the Mode of
and Means for and Means for the Protection against Corrosion of the Internal
Surfaces of Steam Boilers and other Iron and Steel Vessels con－ Surfaces of Steam Boilers and other Iron and Steel Vessels con－－
taining Water，＂for which I obtained the protection of the Patent oflice early in 187 T．．In my specification， ，oopy of which I beg to
onclose，I pointed out the necessity of insuring metallic contact enclose，I pointed out the necessity of insuring metallic contact
between the two metals，and showed in many ways how this could
be effected，and with be effected，and with certainty，and by which the remotest part of
the boiler would be brought under the influence of the zinc．The part 1 have taken since in bringing this important matter to the treating their boilers differently，as aneers，and the advisability of recent leader，I Ineed not again go into，further than to observe that
with scarcely an exception， with scarceely an exceeption，all whom I came across were at if ifst
incredulous，which foeling，if has not disappeared，it it if ast
disappearing disappearing，although many of them will tell you even now that metallic contact is unnecessary．
In regard to Mr．Rowe＇s
reference to the protection of boilers by zinc which the ne in it in mony with what I have said．The eighteen months＇experience of the engineer of an establishment on the Tyne，＂which Mr．Rowe
 produce sufficient，if any，electrical effect，either by the＂electro－
gene＂or any other mode of applying zinc to protect iron from gene＂or any other mode of applying zinc to protect iron from
corrosion．What effect salt may produce on the deposit complained of I am not in a position to psay．There mingt be other things
present which would account for the softening of the deposit，were the matter investigated by a competent person．Only a few dayg ago I was written to by a firm who are troubled with lime deposit，
and who were using the＂electrogene＂and a fluid composition in their boilers，
Mr．Rowe；
who tweve monn experience and that of the＂several engineers
faith whate＂－from the date of his paper－＂had no faith whatever in the efficiency of zinc，＂but who＂after twelve they would not abandon its use for anything，＂fully confirms wha I have said in my previous letters．Their experiences，in point of
time，amount to twenty－one months only．But it is not this I time，amount to twenty－one months only．But it is not this 1
complain of；it is the way in which the matter was brought befor complain of；it is the way in which
the publi．，
Chipping Sodbury，January 21 st．

MOMENTUM AND INERTIA．
SIR，-I quite agree with＂Φ ．Π ．＂in the conclusion at which he further；and if I knew for certain that he is merely what his letters justify me in believing him to be－a young student in
engineering－I should not reply to his last．From some remarks whioh have been made to me， 1 am compelied to conclude that he their interest I ask you to give me a a little space to exposes，not only
the gross blunder in which he still persists，but the fresh ones y e the gross blunder in which he
has perpetrated in his last leter．
It is clear that＂＂\＄．＂
It is clear that＂\＄．H．＂，does not know the difference between acceleration and moving force．Leaving resistance of the atmo－
sphere out of consideration，the statement about the bodies falling
from the kitchen window is perfectly correct from the kitchen window is perfectly correct．Surely＂$\$$ ．Π ．＂
must see that the result of the experiment proves that the accelera tions produced in different bodies by a given moving force during iven time do not vary as the masses of the bodies accelerated．
they did，the rate of acceleration of the $2 l \mathrm{~b}$ ，weight， the same moving force as the then owe weight，would be double that o acceleration is the same in both cases．although the moving forcees
are proportional to the masses． objecting to the term initial momentum．II ought to have said
maximum momentum．The＂well－known rule＂quoted by＂ϕ, Π＂ viz．，$\frac{m \mathrm{~V}^{2}}{2 g}=\mathrm{F}=$ foot－pounds of work in the monkey is one which I have never seen before，and is certainly utterly wrong．In the
beginning of the discussion＂Φ ．π ．＂stated that mass and weight had no conneotion with each other，but now we find him weighty
substituting mass for weight．The foot－pounds of work in the monkey at the instant of impact are equal to $\frac{\mathrm{W} v^{2}}{2 g}=\mathrm{WH}$ ．Again， what about F ？In a continuous discussion the same symbol must
have the same meaning throungout．In a previous letter＂Φ ．Π ．＂ quotes the equation $\mathrm{F}=m f$ ，in which F is a moving force，How
 $\mathrm{RS}=\mathrm{W}(\mathrm{H}+\mathrm{S})$
as the correct measure of the＂stress $\mathrm{s}=$ his own word－on the top
of the pile．Suppose，instead of the case of fithe pile．Suppose，instead of the case of a 200 lb ．weight falling
16 ft and driving the pile 1 lin，，we apply the rule to a monkey falling 4 ft ，and driving the pile only tin．- not atall an common instance．The＂stress＂on the pile would be，according to＂Φ ．Π ．＂$\frac{10 \mathrm{cwt} \text { ．}+48 \mathrm{in} .}{\text { in．}}=192$ tons．Is＂Ф． П．＂prepared to A load of 192 tons without suffering permanent injury？Sounch stand penetration without injury，except，of course，the bruising of the head．
If two bodies
$\mathrm{M}_{1} \mathrm{~V}_{1}$ two bodies are moving freely in a vacuum with momentums vie．， $\mathrm{M}_{1} \mathrm{~V}_{1}+{ }^{+} \mathrm{M}_{2} \mathrm{~V}_{2}$ ，is is equal to the sum of momentums before
impact．But surely＂$\$$ ．Π ．＂）must see that there is no analog between this case and that of a monkey falling on a pile．
It is utterly impossible to impart the whole of the momentum of one body to another unless both bodies are perfectly elastio，and
then only under special conditions．The masses of the bodies nust be equal，and one of them must be at rest before impact． In closing this discosssion with＂＂Φ ．Π ．＂，I wish to impress upon him，with all courtess，the absolute neecessity of cultiviting a andour
and exactness of statement．＂$\Phi . \pi$ ．＂has a second time，notwith and exactness of statement．＂Φ ．Π ．＂＂has a second time，notwith－
standing the explanations given in my last letter，affirmed that tions．I have，as a matter of fact，attributed to him the author－ ship of only one definition，of which he himself claims to be the oripinal propounder，viz，the definition of＂inertia＂＂as＂capacity
or mot motion．＂
WILIAM DoNALDSON．
2，Westminster－chanbers，February 6th．
REACTION WheELS．
SIR，－It is a pity that＂PYyx Gryph＂has been guilty of the
nconsistency of stating that he has very little faith in our powers of indulgence and of wasting your space by quoting Rankine＇s ipse dixit on the subject under discussion．＂Pynx Gryph＂，should
not have entered on the discussion if he was not prepared to fight his own battle owthout sheltering himself nohind prepared to tight
suthority．His having done so renders it ne nee authority．His having done so renders it necessary for me to
disious the authority．In my opinion the whole of Rankine＇s
investigations on the impact of fluids and on the turbine theory
are not only founded on misconceptions，but in some cases the
actual calculations themselves are erroneous，I I have for a long time been endeavouring to prove this point，but have never yet candour and frankness．Last year，it is true，the gentleman who reviewed my work＂On Water Wheels＂，＂amitted that I had con－
victed Rankine of one gross blunder，but I have never yet been able to get either a reviewer or a controversialist to tackle my proof of is equal to the relative velocity before impact．This is，however
int the very keystone of the whole question．If no flaw can be
detected in my proof，all claims for a total turbine efficiency of more than 70 per cent．must be abandoned．
I feel now pretty confident that I am about to reap the reward of
my labours in the shape of a reconition principles for which I have been fighting，and an acknowledgment that the only result of the study of Rankine＇s works on those students who profess to understand them and find them correct
must have been the addling of their brains．What has＂Pynt Gryph＂to say about Rankine＇s solution of Case V．，page 169，and of matter of much more importance in a teaching point of view－ cannot be obtained from the general solution equation（9）page 166 ．
I wonder how many engineering students have read this chapte and worked themselves into the belief that they thoroughly nderstood it and that all was right．Education will never b Liaced on a sound basis＂until schoolmasters recognise the two
time－honoured maxim，＂Non multa sed multum，＂＂Non cuivis contingit adire Corinthum．＂If the examiners to whom is entrusted the duty of selecting the best men to fill public posts would cease放 set cram questions，and set only such as would test the intelli－ be examined－the number of which ought to be much reduced－ there would soon be an end of the evils of the present system of education under which parents pay twice as much for the addling
of the brains of their children as they ought to do for a sound and efficient training．
Revenons ì nos moutons．If means cannot be devised for doing velocity of discontation of the water，the head due to the relative r，adopting＂PYyx Gryph＇s＂notation the net head due to the fall， absolute velocity of the orifice is only equal to $\sqrt{2} 2 h_{1}$ ，the issuin water will still have an absolute velocity equal to $4 \sqrt{4} \sqrt{2 g h}$ ． The curves of the arms would in all cases be similar，and could
therefore be represented by a general equation．The sizz onl would vary．I cannot follow the reasoning of the whole of the rest of＂Pynx Gryph＇s＂letter，but will point out where I think he is
The theoretical velocity due to a height of 64ft．will be 64ft． How can an angular velocity be represented by linear the orifice But for the sentences which follow I should of course put this down as a slip of the pen．Angular velocity is measured by the
angle swept out in a unit of time．But supposing that the 62 is n abstract number representing the enumber of angular units swep divided by ten linear feet be equal to a linear dimension of 6.2 ft ． The best absolute velocity of the orifice would be 62 ft ．per second，
nd this divided by 1oft，the circumference of the wheel and this divided by 10ft．，the eiroumferenoe of the wheel
gives $6 \cdot 2$ the number of revolutions swep out by the wheel in
second．The angular velocity per second will therefore be equal to The angular velocity per second will therefore ab to 372 ．The next statement is to me simply incomprehensible．
A moleule of water moving from the centre to the orifice will occupy $\frac{6 \cdot 2}{1 \cdot 5}=4$ seconds，going from the centre to the orifice； the decimal point is，of course，a clerical error．Taking，for the
ake of argument，＂Pynx Gryph＇s tangential velocity of the orifice as correct，the number of revolu tions made by the orifice，whilst the molecule is passing from the centre to the orifice，would be equal to $\frac{6.2 \times 4}{10}=4.5$ ．If we adopt the same principle，and $62 \mathrm{ft}$. ．as the correct value of the velocity
of the orifice，the corresponding number of revolutions would be $62 \times 4=248$ ．
The required curve must satisfy the following conditions：－ 1）It required curve must satisfy the fuch a shape that every sewing conditions：－
which is at any distance ρ from the centre，reaches the radial line of outflow at the same instant as the molecule of water reaches the point distant ρ from velocity，and θ the angular interval the final radial direction of outflow，and a radius through the point distant ρ from the
centre when the molecule is at the centre，the time of sweeping
out the angle θ will be equal to $-\frac{\theta}{\theta}$ and we must have the follow ing equation of relation $-\frac{v \theta}{\omega}=\rho$ or $v=\frac{\omega \rho}{\varphi}$ ．If，therefore，B represents the radial distance of the orifice from the centre the mean radial velocity must have been equal to $\frac{\omega \mathrm{R}}{\theta}$ ． Assuming that the curve of the arm should not extend
beyond a quadrant，we get for the minimum value of the mean velooity $v=\frac{2 \omega \mathrm{R}}{\pi}$ ．In the example selected this would be equal to $2 \times 12 \cdot 4 \pi^{\pi} \times 1 \cdot 5=37 \cdot 2 \mathrm{ft}$ ．If the curve extended over the whole circumference the mean velocity of flow would be 9.3 ft ．
per second．If＂Pynx Gryph＂cannot find a flaw in this calculation he must admit that no arm can be devised to do away with the creation of angular momentum in the water．（2）The tangential component of the relative velocity of the water must at every
point be equal to the absolute velocity of the corresponing point point be equal to the absolute velocity of the corresponding point
in the arm and in the opposite direction．It is quite out of my power to conceive how the result can be achieved．It is evident
that if it can，the relative velocity must bedueto the net head h ，and the absolute velocity of the orifice must be much less than $\sqrt{2 g n,}$
since the radial velocity of flow，likewise due to the head h_{l} ，must e considerable．The conditions of the problem none of the ead must be expended in doing work from the centre
to the orifice of discharge．If any part was so expended，the final relative velocity and the corresponding angular velocity of the oneel would be proportionately diminished．The moving forces will，as explained in my paper，be equal to the difference between解基 of the arm normal to a plane passing through the axis of the wheel and the nozzle．The relative velocity of the water in pass－ ing over this section，cannot，under the assigned conditions，be appreciably different from that of the relative velocity of discharge，
so that even if an arm could be designed to satisfy conditions（1）and （2），it is evident that the water would have no effect in making the would therefore have to be perfolocit than that of the water flowing through the wheel．
In the case of the drum，＂Pynx Gryph＂states that his omission of the work of friction is quite beside the mark．But surely a very the effect of friction is at the root of the whole matter．Is he no aware that if a cylindrical vessel containing water，with its axis vertical，is made to rotate round that axis，every particle of the
water－owing to surface and internal fluid friction－rotates with the angular velocoity of the vessel in which it is contained a and that the surface of equilibrium is not a horizontal plane，but
paraboloid of revolution in which the vertical height of the surface
in contact with the vessel above the vertex is equal to the heigh
due to the velocity of rotation of the sides of the vessel？Sup．
posing the sides were perfectly smooth，and＂Pynx Gryph＇s＂ ieture represented a possibility；what would happen directily the ater entered the outlet？Would it not by impulse at once very little reflection ought to convince＂Pynx Gryph＂that a
ough interior which would cause the velocity of rotation to be rough interior which would cause the velocity of rotation to be
communicated to the water gradually would make a much more communicated to the water gradually would make a med
efficient machine than the imaginary one he has described．
Connot＂W．H．T．＂give your rea one of Weisbach＇s experiments．I have consulted the paper in the
＂Proceedings
＇neferred to by＂W．H．T．，＂but could find no more fformation about the Domnarfort turbines than that given in heir letter．
2，Westmi

Sir，－H．C．Wyme soaring of birds．
$\mathrm{SIR},-\mathrm{H} . \mathrm{C}$ ．Wynne Edwards，，in your issue of the 25th December， the friction of the air can be overcome without any expenditure o work＂in the case of soaring birds．On the other hand，I have
persistently shown how this friction was antagonised by the persistently shown
activities of the case
It is very easy to account for soaring flight by ignoring the fact Edwards that the idea of constant change in the centre of gravity of the bird in the iar is born of pure fancy．As a matter of fact The explanation of＂son The explanation of＂soaring＂offered by me applies to a board
of the same weight and general dimensions as the bird，which is upposed to float in air as the bird floats，and，in my judgment any explanation which would not explain a soaring board is of no
value．A bird merely makes use of mechanical forces which exist alue．A bird merely makes use of mechanical forces which exist n absolute independence of that creature．Given a highly elastic fluid like air，a plane surface，and a asingle force acting in a straight
line in one direction，and the operation of＂soaring＂is self－evident at every step in the process．The gravitating force need not be
used．The action would go on in space far removed from the earth or any other body．
I call Mr．Edwards＇attention to a letter of mine in THE whinker in the early part of November last，which contains the
whole matter in a nutshell．The question is asked，if on adding 12 oz ．of weight to the plane the rear push would continue at
16 oz，or fall to 4 oz？？If it falls to 4 oz ．＂soaring＂is explained． t is explained as completely as the motion of a grindstone is uns it If it ces the to ion of energy ceases to merit the consideration of any man． omenon ofr．Edwards that if he be interested in the phe vorthy of his best attention
It is best to dismiss the bird entirely in seeking reason for its action．After having explained soaring by framing forty－seven instinct theories，all of which were based on suppositions of bird or blong rigid sheet of metal about 12 in ．by 72 in．，as thin as possible nd weighing 12 lb．With this＂soaring＂could be examined on Mr．Edwa when it is left with no support in free air the matter is ended．H nust explain such level motion in all conditions of atmospheri notion whicu are relati to the earth－in a dead calm，in any or vertically downwards，or at any sort of obliquity and with any velocity．He must meet the issue squarely，and presume to rest on no vague hypothesis which flatly contradicts the plain facts．
Chicago，January 7th．
I．LANCASTER．

another indicator problem

SIr，－I can readily believe your explanation of the diagram vuzze，the great secret of which was the very exceptional circum－ stance under which the compound engine was working，but which
exceptional circumstance would hardly ever be met with in actual ractice，and，therefore，would not occur to one person in twenty can，however，give you an instance in my own experience of enclose you copies of the diagrams，and will invite，with your

ATMOSPHERIC LINE
 ATMOSPHERIC LINE

kind permission，the opinions of your readers taking an interest in was originally a single cylinder engine，afterwards compounded and if your correspondents will express their opinions as to whethe the compounding was properly or improperly done，\＆c．，I will reply
and tell them what was done，which will probably nd tell them what was done，which will probably be surprising as
JoHN SWIFT．
vell as instructive to most of them． Stanmore－road，Birmingham，

January 26 th．

belgian rolled joists．

Sin，－With reference to your statement of last week on this subject，what led to Belgian iron rollers going so largely into
the manufacture of rolled joists is this ：When the Belcine he manufacture of rolled joists is this ：When the Belgian railway
sytem was nearly complete，and steel rails began to supersede hose of iron，there was no work for the mills put up to roll iron rails；so the makers took to rolling joists for whish the mills were
best adapted after rails．They soon flooded the home market，and he low price attracted English iron merchants．Belgium can com－ pete wind cngland in this article，because Belgians work longe English rollers demand fancy prices for all sectional iron－that i to say，anything beyond flat，round，and square bars，Moreover，
the freight from Antwerp to Birmingham，via Bristol and then per anal，is very low，notwithstanding transhipment．Each Belgian
 nd the merchant makes up his varied order by taking althle from
Brussels，February 9th．

wind pressure．

Sir，－Amongst the＂Notes and Memoranda＂in The Evginger ale on the Minot＇s Ledge lighthouse on the North American cosst and while reading it，it occurred to me that the account would ave gained in inserest and usefuness if the strength of this gale
ad been expresseá in pounds pressure per square foot．Although the highest wind pressure is for structural purposes generally agreed as to the correctness of this datum，and it seems to me，
therefore, that lighthouses, owing to their exposed situations, weorfore, be especiailly yuiteses, for the applicetion ofposed semometerts, as
no near objects ocould either obstruct the full force of the wind or no near objects could either obstruct the full force of the wind or
interfere with the direction. Comparisons between different instruments might also be instituted, as doubts have sometimes been expressed
lighthouses are for the above-named. reasons particularly well
adapted for meteorological observations in general, and that they adapted for meteorological observations in general, and that they
should be supplied with barometers, thermometers, and hygroshould be supplied with barometers, thermometers, and hygro-
meters as well; and as lighthouse keepers cannot be constantly are always on the spot, they would be the best persons for making continuous observations, and could be easily
trained for the purpose. For instance, an unbroken serles of
observations on the force of gales on the eastern and western observations on the force of gales on the eastern and western
coasts of England, Sootland, and Ireland, would be of great
value that effect?
that effect?
Fenborough-road, West Brompton, February 9th
SIR, - Our attention has been called CHATNS. issue of 22nd ultimo, consisting of a a circular from the New British "chain cable makers," trading under the style of $W \mathrm{~W}$. Ingley and Co. It appears to be thought that the similarity of name may
oause confusion and lead to the supposition that we are in some oause confusion and lead to the supposition that we are in some
way mixed up in this matter; we therefore beg to state that we way mixed up in this matter; we therefore beg to state that we
have no connection whatever with any firm bearing the same or a similar, name. We also consider that the tearing the ehame or a
maker," as used in the apology, is misleading. It would certainly be anderstood by this experession that the people in question were manufacturers of ships' cables, whioh is not the case.
We have read your article on this subject with.
and, as the largest makers of chain and cable iron in thi interest, we thoroughly endorse the statements you make. We suppose there is on form who have suffered morers yeu maverly in this particular
line than ourselves. For nearly forty years we have made line than ourselves. For nearly forty years we have made this special class of iron, and have acquired a considerable reputation
for it. It is a usual thing for merchants and engineers to specify that their chains are made from "Hingley's" iron, and they would doubtless be surprised to hear that they very often do not get it at
all ; it it they do, it is a small proportion of "Hingley's," and a good deal of some inferior make. "Netherton iron, ana you may im abroad as being made from with in consequance, and yot the great ingine why that we hone done to contend which it is very difficult to obtain sufficient evidence to convict
With regard to the testing of chains, and even cables, we do not
exaggerate when we say that one-half of the private test certifiexaggerate when we say that one-half of the private test certifi-
cates that are issued in this country are worthless. It is not only that the bulk of the ohain so certified is untested, but even when proved it is not properly examined, and any expert knows that the
chain is almost worse than if it had not been tested at all. We also can bear testimony to the good work done by Mr. Traill,
of the Board of Trade; but there is more to be done yet. In our opinion it should be compulsory for all chains for engineering and mining purposes, \&ce., and all rigging and winch ohains for Britishbuilt ships, to be tested at an authorised public proof house, and
Lloyd's surveyors should call for an official certificate in the same way they do tor the bower and stream cables.
As regards the export trade, it is difficult to remedy the evil, ds regards the export trade, it would be a step in the eright diriection to to made it it a fevony
to issue a false certificate for a chain. Until something of the sort
tion to issue a false certificate for a chain. Until something of the sort
is done, it wwill beimpossible for those manufacturers who keep
onsting testing, machines and a large staff of men going to prove and
carefully examine their chains, to compete with their less scruN. HINGLEE AND SONS.
cares.
pulous opponents.
Netherton Iron Chain Cable and Anchor Works,

Near Dudley, February 10th.

flow in pipes.

Sis, -Mr . Thrupp asks me in your last issue some very definite
questions, to some of whioh perfectly definite at present be given. He will find nearly all the information he requires in Lampe's article, "Civilingenieur'," 1873 . Mr. Thrupp seems to have got into some confusion about the
effect of temperature on flow. With stream line motion the effect of temperature is very large, and is well understood. With eddy in any case what the size of pipe has to do with it-excent ini ieed, so far as it determines the velocity at which the kind of motion
Whanges.
W. UNWIN. February 10th

\longrightarrow

TENDERS.

Fon the construotion and erection of two puriflers and two oast

R. J. Dempster, Manchester T. Piggott and Co., Birmingham Jesse Tildesley, Willenhall Stafto-Tweed W. R. Renshaw and Co., Kidggrove. Willey and Co., Exeter Clapham Brothers, Keighley Newton, Chambers, and Co., nearr sheffield . ${ }^{*}$ O. and W. W. Walker, Midland Ironworks, Donnington. The engineer's estimate

Alpreton Rural Sewerage.-A meeting of the alfreton Parochial Commintee wean held at - twelve ocolock of on Wednesday,
February 10th. Mr. Roberts was in the chair, and there were a February 10 th. . lirg. Roberts was in the chair, and there were a large number of members present. Tenders were opened from
contractors for executing the necessary works for a small sewage
irrigation farm of 10 an acres at S wanwick, together with two fall pipe sewers leading to the farm. The works were designed by
Mr. W. H. Radford, sanitary engmeer, Nottingham. The highes tender was $£ 2250$, and the lowest tender fortinghan. The hize highest
R. and J. Holmes and Co., of Shirland, near from Messrs. R. and J. Holmes and Co., of Shirland, near Alfreton, was
acoepted. It was deoided to advertise for a temporary clerk of the works at 3 S. a week. A printed report and lithographed plans
vere received from Mr. Wh. n which he proposed to deal with the sewage of Gre the method Riddings, Lower Somercotes, Lower Birchwood, and PYe Bridge. Cone, and construot certain outfall pipe sewers to convey the sewage be dealt with by irrigation, the land being specially lightened, pre pared, and drained. The cost of these works was estimated at
\&1850. To the south of Lower Birohwood a sewage farm of $12 \frac{1}{2}$ acres is proposed to be laid out, and the sewaene of East Ridding,
Lower Somercotes, and Lower Birch wood would be brought to thi, site by various pipe sewers. The sewage would be purified by irriga.
tion as before. The cost of the whole of the works with the outfall sewers would be $£ 2790$. Mr. Radford also proposes to sewer Pye
Bridge, and take certain land for a sewage osier bed, the osier plant being peculiarly suitable for sewage purification. The cost
of the works would be $£ 725$. It was also proposed to efficiently ventilate the present system of sewers in the district, and construct
a sewer from the Windmills to Seabrooks at a further cost of £550. It was proposed these works s.arouks be ourried out as the
necessity arises. The discussion of this report was deferred to a urther meeting, when the members will have had time to study

AMERICAN NOTES.

NEIV York, January 29th.
LEADING authors and publishers from all over the country have been at Washington several days this week, testifying before the
Senate Committee on Patents concerning the advisability of an international copyright. The American Copyright League is
taliking the lead in the movement, but there is not perfect unanimity. The Government is fully prepared to prosecute its
case against the Bell telephone patent.
Four cases are now pend. ing in the Supreme Court, viz, the Molecular, the Overland, the Several foreclosures are still threatened in railway properties.
First comes the Reading talked-of foreclosure, which has been gaining strength during the past few days. Next in importance is the nickel-plate default. The Central Trust Company, holding
the first mortgage bonds, is seeking for a foreclosure. The Pennsylvania Company is in excellent condition. The Baltimore and Ohio has been defeated in the first round of the coming railroad
fight in the New Jersey Legislature, for the erection of a bridge New Jersey. The Pennsylvanien staten Island and the State of New Jersey. The Pennsylvania Company, in order to strongthen
the friendly relations between itself and its several thousand employés, has completed a plan for sick or disabled benefits and
death beneits. The monthly assessments range from 50. to 2.50 dols, as wages run from 35 dols. per month to 100 dols. and to the monthly earnings. The traffic prospects for the trunk lines both East and West are improving, and the industrial condition throughout the country is being daily strengthened. Notwithstanding the fact that we are in mid winter, the apprehensions are
not confined to the few that a higher range of prices will be forced not contined to the few that a higher range of prices will be forcee
upon buyers by the opening of spring This upard tendency
cannot be permanent, beeause of the large amount of idle capaity in mills, furnaces, shops, factories, and mines.
The industries throughout the country are
tion will are being run upon the realise larger margins. As long as this is carried out better
margins will be realised, the demand for higher whis advantage is seriously offset by throughout the country. The textile workers of the New England and middie states have succeeded in advancing their wages from 5 to 10 per cent. already. Further advances are probable not only
in this branch but in others. Railmakers have voluntarily advanced the wages of their workmen 10 per cent. in several mills Railroad builders are sending in fewer orders this month than in December, evidently apprehensive that a reaction in prices will set in during the coming sixty days. This will likely prove to be a mistake. The present upward tendency, not only in rails, but
in wool, textile products, machinery, and raw material, will likely The price of coke has advanced in Eastern markets from 10 to 25 cents per ton, by reason of a general and successful strike among
10,000 cokemakers. 10,000 cokemaker
weavers, and other branches shoemakers, cigarmakers, handloom to furnish a basis for the inference that industrial activity may be
checked by an advance in prices, which business sentiment me

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
(From our own Correspondent.)
Busingss wears only a quiet aspect this week, whether at the opening quietly, and the inquiries are not up to the average of this
time of the time of the year.
The weekly ex
The weekly exchanges in Wolverhampton yesterday, and in Birminuiries were made with a view to test prices in the finished iron department; ;indeed, it is clear that there are some orders to come out, but that the holders are determined to place them only upon
terms more favourable to themselves than those which regulated the last previous transactions. Makers were, however, generally the prices which are being offered they would close until better times coiner ound.
There are consumers who boast that during the week they have
been so far successful in bearing the market that they have bought been so far successful in bearing the market that they have bought price which a few firms of high standing declare they must have for singles. Such cases are, of course, few, but the fact that they exist shows the tendency of the market.
Strip iron is easy at $£ 415 \mathrm{~s}$, as a minimum, and latens are not
c arce at $£ 72 \mathrm{~s} .6 \mathrm{~d}$. A few sales of bars at over $£ 6$ are Rounds for rivet irn purposes likewise fetch a good price for Rounds for rivet iron purposes
Admiralty and engineering needs.
Some inquiries are about for plates and angles for bridge and
girder use. It is to be hoped that they will result in business, A girder use. It is to be hoped that they will result in business. A
few good orders of this class have lately come into the district, and others would be very welcome just now.
Some relief would be afforded to iron.
in this district to the long-weight system, which a general return on a ton of 2400 lb . instead of 2240 lb . The short-weight arrangement came in with the eight hours' system at the pits, and its
general removal would be hailed with satisfaction by many
masters.
It
is not without expressing congratulation that ironmasters learn the result, of the strike at the works of Messrs.
W. and. . S. Sparrow, the finished ironmasters of Bilston. The men have been out for a fortnight and have just resumed work on
the short-weight system. The firm have had, however, to agree the short-weight system. The firm have had, however, to agree
to pay the same rate of wages as were paid previous to the last
award of the president of the Wages Board. Now that the thin edge of the short-weight wedge has ben. got in, the masters throughout the district will not be slow to drive it home.
The Bilston Iron Company, sheet iron makers, have given their men a fortnight's notice to terminate contracts, consequent upon not recommence direotly the notices are up, but it it not likely
that the works will remain closed long enough to cause suffering to the hands.
A personal A personal item of local interest is that Mr. Tucker, the manager of the Lilleshall Steel Works, has resigned, and is suc-
ceeded by Mr. Ellis, who will also have charge of the Sneedshill Works,
In orude iron business continues dull. Pigs of best quality are unchanged on the week, Barrow being firm at 55 s ., and of the
high-class sorts at from that figure up to 60 s .; Derbyshires run high-class sorts
from 87 s . upwards.
Prices of forge
more than ts. ceal are mostiy js. into boat, which means scarcely mills range upwards to about 7s., whilst slack may be had at various prices from 2 s , 6 d . to 4s., according to quality.
There is much satisfaction that South Staffordshire
ecure heavy contracts, the fine order recently obtained by Messrs Bayliss, Jones, and Bayliss, of Wolverhampton, for India, being
oollowed by the contract which has been secured by Messrs. Coch rane, of the Woodside Ironworks, Dudley, for supplying the work
in connection with the bridge to be constructed in London across Ma connectios.
Makers of
Makers of high-class hardwares report a slightly better inquiry, manufacturers busy. The improvement, such as it is is, would doubtless be much more distinct but for the prolongation of winter
weather and abour disturbances

The ironworkers of Wolverhamptonand district continuetoexpress expect to resist employers in theiriy organising themsands tor reducees wan wages, A Meeting to consider this question was held at Wolverhampton on
Monday, but, as usual, no definite conclusion was arrived men were urged to comnect themselves with the Warrived at. The were recommended to form lodges at the works at which they were engaged.
Yollowin
Following the lead of the Wolverhampton ironworkers, those of
the Oldbury district have decided to organise themselve The at steps will be taken to secure a federationof varioust it is public to suain-makort the men locked out at Mr. Millspeal to the neeting was held on Wednesday night, when an appeal by placard was draughted, and subject to a cla use being inserted that the men
when working full time received only 188 a a week. The draught The twelfth annnal meeting of the Union Rolling Stock Company was held in Birmingnam on Tuesday, when Alderman
Chamberlain, M.P.-chairman of the board of directovs He moved the adoption of the report, and stated that the railway anxiety, but they States had caused the directors considerable and there seemed every indication of future prosperity for the company. The accounts were in a satisfactory state. The com-
pany deciared a dividend of 12 per cent. per annum on ordinary
and 6 per cent. on preference shares. It was stated on pref eren
Commerce held on Monday, that the Coventry Chamber of which had sprung into existence since 18650 , had and increased 100 per
ent. in volume and in the cent. in volume and in the amount of capital invested and labour
employed during the last five years. The Walsall Uhamber of Commer
considered the programme of business to a me bring on Thursday,
Associcite Associated Chambers, at their annual meeting in London. The delegates were instructed generally to support Free Trade, inquiry
into railway rates, into the working of the Bankruptcy Acts, and atters of commercial interest.
The question of German competition has received further atten-
tion this week at the hands of Midland manufacturers, by means of an adaress given before the Woiverhampton Chamber of Commerce by Mr. W. W. Walker, of the firm of T. W. and J. Walker, English manufacturerss were handicapped by the Faoctory Acts, and if they were to maintain their position the working classes wauld have to work longer hours and accept lower wages. The master
themselves would have to be more thrifty and less luxurious, The report of the Bromsgrove Gas Company read at an ordinary declared to be most satisfactory. The charrman, Mr. W. Jefferies said that considerable additions having been made to the works, great progress in the manufacture and sale of gas had been made.
During the last five years the sales had increased by as much as 50 per cent. A dive yeard of of $7 \frac{1}{2}$ per cent. was ordered to be paid,
and it was decided to increase the The foundering of the steamship Flamingo, in the Mersey, on Wednesaday, is a matter of local interest. She had on boand a
portion of the exhibition building which is being erected in Liver portion The purchase of the Antwerp structure and its re-ereection
pon Liverpool was in the hands of a well-known firm in this district.

THE SHEFFIELD DISTRICT
The Board of Trade Returns for January still lack any evidence
 for January of 1886 was $£ 1,606,448$, as compared with $£ 1,572,178$
for January, 1885 , and $£ £ 1,10,603$ for January, 1884. In pig iron we exported a value of elob,003, which is a considerable increase
 United States-from £ $£ 2,842$ to $£ 65,363$. 411 the others show a
decrease, Germany falling from $£ 12,871$ to
$\sum 5039 ;$ Holland, from $£ 29,743$, to $£ 15,169 ;$ Belgium, from $£ 7892$ to $£ 4832$; France, from steel the figures are just about the same as in January of 1885 , consespective values being $£ 73,083$ and $\$ 73,142$, which show a £98,641. The business with France has fallen from $£ 7028$ in have taken a value of $£ 22,545$ against $£ 20,433$ in January, 1885 other co
of 1885.
In hardware and cutlery the values for January, 1884-85-86,
were respectively
$£ 283,446$, the opening months of 1885 with 1886, the decreasing markpets are found to be Russia, Germany, France, Spain and Canaries, th Africa, and British East Indies; the increasing markets foreign,
West Indies, Brazil, British North America, and Australasia West Indies, Brazil, British North America, and Australasia,
The United States has fallen from $£ 229,873$ to $£ 244,618$, and Aus tralasia has increased from $£ 49,807$ to $£ 60,356$. It would b see the particular a the diminution has taken place. There should be no difficulty in giving more detal where the gooas, as in the items of cutlery Steel rails decreaseur.
the value exported was leaps and bounds. On January of 1884 , January, $1866, £ 1110,215$. No busincss was done with Russia, Italy, or Holland in any of these periods. Sweden and Norway
had $£ 84$ in January, 1884 , and $£ 60$ last month. Germany took $£ 195$ in January of 1884 and then left off. Spain and Canarie had $£ 11$, , 38 value in the same month, and then ceased ordering
till last month, when the amount taken was $£ 2300$. Egypt, Mexico Cill last month, when the amount taken was $£ 2300$. Egypt, Mexico,
the United States, and British Possessions in South Africa had no rails last month. Brazil had $£ 16,012$, and the Argentine Republi $£ 24,811$ (values on corresponding month of 1885 , $£ 7437$ and
$£ 16,3361$; Chill has fallen from $£ 9663$ to $£ 846$, and Peru from $£ 700$ from $£ 24,599$ to $£ 118$. British East Indies have advanced from rom $£ 24$, , 99 to $£ 14$. British East Indies have advanced from
$£ 26,965$ to $£ 34,674$; and Australasia has decreased from $£ 38,062$ to
Imentioned Jast week that the coal trade was in an unsatis. factory state. Further evidence is afforded this week, first by the
Board of Trade returns, which show the exports of coal and coke during January of $1884-5.6$ to show distinctly diminishing valuethus, $£ 331,616$, , 4762,401, and $£ 685,728$. Uoming nearer home,
Yorkshire collieries have sent a much orringire conureries 84,872 tons an a
corresponding month
The National Irades Exhibition, in co-operation with the Societ of Architects, opened an exhibition on Monday, at the Norfol Artillery Dril Hall here. The exhibition has maimy to do wit the building trades, and includes a large number of articles in
which the sheffield manufacturers are interested. There are, in consequence, many Sheffield firms represented, as well as other from a distance. There is an excellent collection of gas fittings of tools, stonemasons tools, electri screw-cutting lathe, for which it is claimed that it cuts serews and taps nuts to any thread, without change of wheels, by which tim is economisel. It is set to work by means of a lever, which glide in order to obtain a given thread, it is simply necessary to move
set screw. set screw. The exhibition, which remains open three weeks, was
opened by Mr. H. Roumien Gough, F.R.S., B.A., F.R.H.S., pre
sident of the Society of Architects.

NOTES FROM LANCASHIRE．
（From our own Correspondent．）
Manchester．－Throughout all branches of the iron trade in this prospect of improvement quite as remote as ever，but in some respects the condition of trade would seem to be，if anything，
even worse．A complete want of confidence in the future is one even worse．A complete want of confidence in the future is one
of the most noticeable features in the market，and although sellers are prepared to accept lower prices than have been known within the experience of perhaps anyone at present engaged in trade， buyers are quite indifferent，even prices that are admittedly below
the actual cost of production fail to convince buyers that they have yet reached their lowest point，and consumers go on from hand o－routh，just covering small requirements as they arise．One
verystantial reason for the indifference of buyers is，of course that there is very little new work coming into the hands of users of iron，and low prices do not offer much inducement for buying
what they do not see at present they will actually require．The condition of trade was probably never really worse than it is a
present，and the depression has extended over so long a period that feeling of utter despondency as to when any improvement may really b
market．
The ironmarkets at Manchester bring together tolerably good well represented，both as regards buyers and sellers，but the weight ccasional moderately large sale is reported，but this is a rar exception．For the most part transactions are confined to very
small parcels，and these are fee in number．For local and district
俍 brands the average prices that are being taken for delivery equal
o．Manchester are about 37 s ， 6 d ．to 38 s s，less 2 L ，and even at these low figures there is underselling．One or two makers keep up
their quotations at about 1s．per ton above the prices I have named，but except for odd special sales they are practically out o the market．In outside brands prices are being cut very low，and
both Scotch and Middlesbrough iron can be bought readily at ander the current quoted rates．
For hematites there is still
hing，prices are easier．For good foundry qualities delivered her 3s．，less $2_{\text {a }}^{2}$ per cent．， with orders to give out would not have much difficulty in placing
them at about Gd．per ton under these tigures．
In finished iron business is excessively dull，and it is becomin not so much a question of price ass of an almost completete absence
of orders．Delivered into the Manchester district the average
 who are prepared to come below even these figures． The wages＇question in the engineering trades of this district may
now be considered as practically settled，and as I have intimated now be considered as practically settled，and as I have intimated解 affected by the notices showed a large majority in favour of not acoepting the reduction．This result was communicated by the
representatives of the men to the Iron Trades＇Employers Asso ciation at a meeting held on Monday，and if the employerss per－
sisted in enforcing the notices which had been temparily sisted in enforcing the notices which had been temporarily
suspended at the request of the men，a strike against the reduction seemed to be the inevitable result．On Tuesday the Employerrs＇
Association held another meeting to consider the decision arrived at by the men，and unanimously resolved not to withdraw the notices．Within a few hours of the meeting of the Employers＇
Association the men held a meeting and reversed the deision arrived at by ballot ；under protest，they resolved to accept the reduction in wages on the condition that they do not work over－
time at the reduced rates．That the men have taken a wise course time at the reduced rates．That the men have taken a wise course
in submitting to a reduction in wages which the depressed condition in submitting to a reduction in wages which the depressed condition
of trade has rendered imperative must be evident to themselves， of the various trades union societies are in with any chance of success．In other districts the same wise
discretion is being exercised，and on both banks of the Mersey the men engaged in every department of marine engineering and iron on weekly earnings exceeding 30s，，and 1s．on wages of not less than 20．s．per week，
the assessment of their engineering works at Openshaw，which has been taken up by the Iron Trades Lmployers＇Association as a test
case as to the liability of certain in the valuation of engineering works for rating purposes，was for the seond time before the Quarter Sessions of the earpolford Hundred
on Saturday，and the chairman intimated the iudgment would be given at the Quarter Session to be held in Anpril．In the meantime
both sides are preparing a case which will be submitted，in the first instance，to the Court of Queen＇s Beich，and ultimately to the House of Lords．
The Bridgewater Navigation Company，whose undertaking the made a net profit on the last year＇s working of \＆559，000，and a
dividend of 8 per cent．is being paid to the shareholders，besides being divided．In compliance with the provisions of the Act under which the Ship Canal Company purchases the Bridgewater
Navigation Company＇s undertaking，the sum of $£ 20,000$ which Navigation Company＇s undertaking，the sum of 420,000 which
they are required to deposit has already been paid．The most
important matter now before the Ship Canal Company is the obtaining of an Ater of Parliament for the paymenpony of isterest
out of oapital during the construction of the canal，and this is a vital point in conneetion with the raising of the necessary capital．
The actually subscribed capital still falls considerably short of a million，and until the promoters obtain the powers they are seek
ing under their new Act of Parliament further progress seems
to be practically checked．The promoters are，however，sanguine
that Parliament will grant them the power to pay interest out of capital，and with what power they the power practically pay assured of raising out of
chat the requisite capital for carrying out the undertaking．
In the coal trade the extra winter requirements consumption still keep up a fair demand for the better qualities of round coal，but there is not more than a moderate business doing
for the time of the year，and with pits generally not working more than four to five days a week．Colliery proprietors
are not doing more than move away their present output，
whilst prices are already beginning to show weakness，although there is no actual reduction in the quoted rates．Other descrip－ tions of fuel for iron－making，steam，and general trade purposes
continue in very poor demand，with no prospect of improvement； and as soon as the extra winter consumption for house fire purposes
 slack，from 2 s． 6 d ．to 3s． 6 bd ．per ton，according to quality．
In the eshipping trade there is a fair business doing in house fire
coals，but for steam coals there is only a slow demand，and for good，qualities not more than about 7s．3d．per ton is being got for
delivery at the high level，Liverpool，or the Garston Docks． He annual report of Andrew Knowles and Sons，one of the
 ings of \＆8s64u．this wis，hoek，and shows a net loss on the year＇s work
nearly all accounted for by the explosion at the Clifton Hall Colliery；but the directors state tha ane demand for coal during the past year has been very slow，in
great measure owing to the general trade in the surroundin distriot being far from satisfactory．In the summer months of the
year the competition was keener，and lower prices had to be taken
than at any other time since the formation of the company．By
the accident ，the the Clifton Hall Colliery，and an underground fire
at the at the Allen＇s Green and Green Lane collieries，the output of ooal
for the year had been considerably reduced，the get having been a as it has been during the past few weeks，and makers have not booked many new orders．
There is a steady tone，however，and it is thought by many that the present lull will not very materially check the improving ten dency of trade．It is significant，howeve， uality of iron has been in demand to any extent，except Besseme descriptions．This has no doubt been caused by the improved tone
of the steel trade，and so long as that department keeps good，there of the steel trade，and so long as that department keeps good，there
must be a large consumption of Bessemer iron from which the steel is made．The value of pig iron is steadily maintained at 45s． 6 d ．pe 43．6．for No．No．forge and foundry iron．Stocks are large，but
are not so heavy as they have been of late．The steel trade is only omparatively busy in the heavy rail department，as only a smal very quiet so far as merchant qualities are concerned．A fair business is being done in steel sleepers，and a fair number of orders
are held for tin bars，while a contract or two has lately been let for are held for tin bars，while a contract or two has lately been let for
teel plates for shipbuilding purposes．No new contracts can be
 better demand at firmer prices．The Manx steamers Mona＇s Isle and Mona＇s Queen are at Barrow undergoing alterations，with vew to increase their speed next season．It is anticipated tha
the new high－level bridge at Barrow will be opened for tratific into Duke－street in about two or three months．

THE NORTH OF ENGLAND．

THE usual quiet feeling prevailed throughout the Cleveland iron market，held at Middlesbrough on Tuesday last，but no actual
reduction in prices was made．Merchants offered small lots of
 Consumers，however，do not seem anxious to buy，believing，no doubt，that lower rates will be taken if the present rate of produc－
tion is maintained and stocks continue to increase．Makers，on tion is maintained and stocks continue to increase．Makers，on
the other hand，look forward to an improvement so soon as the shipping season commences．The leading firms are not quoting at less than 31s．per ton．The mills and forges being badly off for
work，there is but a moderate demand for forge iron．The prio Work，there is but a moderate demand for forge iron．The price，
however，remains the same as quoted last week，namely，30s．3d． per ton．
Several
of warrants are anxious to realise，and are willin
 Middalesbrough store at present．On Monday last the stook was
160,340 tons，being an increase of 510 tons during the week．At
GI when last reported．
The finished iron trade is as lifeless as ever．Scarcely any new work has come into the market，and no change has taken place in
prices．The continued strike at the shipyards is affecting adversely prices．The continued strike at the shipyards is affecting avversely o suspend
A meeting of the shipbuilders of the Tyne and Wear was held
t Sunderland on Friday last，in order to receive a deputation from at Sunderland on Friday last，in order to receive a deputation from
the Boilermakers＇ When the deputation had withdrawn the employers passed the given by the deputation of the Boilermakers＇Society，this Associa－ tion is prepared to take into favourable consideration any modifica－ the whicint tie men may propose of the reduction airealy notined， line．The builders strongly recommend that deputand－fast to treat for a settlement＂The conference was then adjourned until Thursday，the 11 th inst，
The ironmasters＇returns for
show that ninety－nine furnaces are in blast．The total make of pig iron of all kinds was 214,005 tons，being a decrease of 486 whole district amounts to 573,830 tons，which is an increase of 56,342 tons for the month．This enormous increase is due to
falling off in shipments，and to the strike at the shipyards． The value of goods exported from E53，461 over the exports during January， exports from Newcastle was £157，686，or £229，757 more than
during January， 1885 ．The clearances of coal and coke from yiddeesbrough how an inc Mr．John Gunter，who for nine years has occupied the position
of works manager at the Britannia and West Marsh Ironworks Middlesbrough，belonging to Messrs．Dorman，Long，and Co．，has just retired．It is understood that his place will be supplied by a re－arrangement of the existing staff．The demand has consider－
ably fallen off for all the specialities made at these as well as for those made at all other works in the district．A large stock of clear it off．

NOTES FROM SCOTLAND，

PIG iron warrants，which were very flat last week，declining to 39s．O Od．cash，were rather more in request in the early part of the
present week，with the result that there was a partial recovery in quotations．The bulk of the operations were merely speculative，
however．In one case an operator purchased 30,000 tons warrants in in the forenoon，when the market rose 2 d ．a ton，and
sold 20 ， sold 20,000 in the afternoon，after which prices again gave way．
At present transactions of this description are oommon，and they
have little bearing upon the actual condition of the they Merchants and makers reeport that inquiries from abroad are few，
and for the most part unimportant．The past week＇s shipment and for the most part unimportant．The past week＇s shipments
were 5621 tons，as compared with 6511 in the preeeding week，and were 5621 tons，as compared with 6511 in the preceding week，and
6506 in the corresponding week of 1885 One furnace has been
damped at the Eglinton Ironworks，and the against 93 in the same week last year．The week＇s addition Business was cone in the warrant market on Friday at 29s． 3 d ．
cash．On Monday there was more animation whil cash．On Monday there was more animation，while quotations
advanced to 39s． 5 ．d．，and on Tuesday there was a further increase
to 39s． 9 d ．cash，closing at 39s．
 To．day－Thur
39s． 4 I d．cash
The current values of makers＇iron are again somewhat lower
 5s． 6 d ．and 4 s s．6d．；Summerlee，49s．6d．and 43s．6d．；Calder
48s．and 42 s ．；Carnbroe，43s． 6 d and 41 s ．；Clyde，44s．6d．and 41 s ．
Tond
 Bo＇ness，43s．and 42s．6d．＇，Glengarnock，at Ardrossan，44s．6d．an
4s．；Eglinton，40s．and 37s．6d．；Dalmellington，24s．and 39s．
Mes． Messrs．Laidlaw and Son have secured an orde
ons of cast iron pipes to the Glasgow Corporation
Mes
Inessrs，William Baird and Co．，the well－known Scotch iron－
bourhood of Santander in Spain．They will now be in a position，
as they have long been in West Cumberland，to control the
St Sanish mine from which they derive their ore for the purpose of oriching the quality of their pig iron．It is also expected that
the Santander mine will yield them a considerable surplus what they will require themselves for export to America and the Continent．
In the course of the past week there was shipped from Glasgow
five locomotive engines and tenders，valued at $£ 12,250$ ，for five locomotive engines and tenders，valued at $£ 12,250$ ，for Kurracheo ；$£ 20,900$ worth of machinery，of which the greater
proportion went to machines，and $£ 22,030$ general iron manufactures．
The coal trade in several of its departments
The coal trade in several of its departments is in a backward tate，although some more activity is expected to follow upon the
disappearance of the snow．The week＇s shipments of een at Glasgow 14265 tons，as compared with 22 ， 022 in the have week last year ； 1101 tons，against 311 ，at Grenock ； 10,363 ， against 8420 at Ayr； 2840 at Irvine，against 1119,6467 ，against
4221, at Troon；498，against 3373 ，at Leith ； 3455 ，against 1339，at Grangemouth；and 3091 ，against 2468，at Bo＇ness，For steam
coals the inquiry The wages ${ }^{\prime}$ maintain．
workmen in the question is again exercising both employers and A few days ago the masters in the istricts of Glasgow，Carslang，and Rutherglen withdrew the 6 d ． There is a proposal also to withdraw that amount in the Hamilton． district，where the colliers，on the other hand，are expecting a second 6 d advance on the 1st of March．
Notices have been posted at all the Fife and Clackmannan colieries，
a seam of ell coal， 2 ft， 8 in thick，has been struck by the Bourtriehill Coal Company at Broomlands，near Irvine．
Mr．J．M．Ronaldson，who acted for about twelve years as assistant to the late Mr．Alexander，has now been appointed chief inspector of mines for the West of scotiand．
The new shipbuilding contracts placed with
on the Clyde embrace a steel paddle steamer of 1909 t．in length，to be built at Ayr by Messrr．M＇K Kight and Co．，for Captain Camp－ bell of Glasgow，for the Clyde passenger service，and a steel screw
tug boat oft．in length，placed with Messrs．D．J．Dunlop and Co． The Graasgow，for he hames．
satisfaction to the Scotch manufacturers，who now produce much large amount． was 104，462） was 104,462 ，a decrease of 7886 tons as contrasted with the same
month of last year while the sailings gave a tonnage of 99,052 ，or
31,308 less month of last year，while
31,308 less than last year．

WALES AND ADJOINING COUNTIES．

THE half－yearly meeting of the Taff Vale shareholders is gene－ tions．When it was announced that instead of a dividend of 15 per cent．， 10 per cent．and 2 per cent．，bonus only would be
forthcoming，there were loudly expressed fears that the Taff had entered upon its decline；but 1 am glad to know that the directors
do not share that view．There has been a falling off，it is true do not share that view．There has been a falling off，it is true；
the coal trade has suffered，and it simply＂stands to reason＂that hie coal trade has suffered，and it simply＂stands to reason＂that
if shipments at Cardiff show a decline of 20,000 to 30,000 tons a rail ways must suffer in proportion．But the chairman took
保 dividend might easily have been paid．
The amalgamation between the Rhymney and Taff Vale still The amalgamation between the Rhymney and Taff Vale still
hangs fire．It was suggested that if the Rhymney received a guarantee of 10 per cent．，there would not be much difficulty．I
should scarcely imagine there would．The Taff Vale Company is about adopting the Mardy branch，and in a few weeks I expect the Pontypridd and Newport line will carry pawsengers，and the
Ryhmney and Great Western branch to Cyfarthfa be opened． Ryhmney and Great Western branch to Cyfarthra be opened．
The coal trade generally is quiet，and the only item of note is the fact that a few leading coalowners have secured some addi－ Valley，has obtained a good proportion for home supplies and for
Malta；Burnyeal，Brown，and Co．have secured the Ascension orders；，Worms and Co．，orders for Halifax ；and Hickle and Co．，
of London，orders for for of London，orders for Jamaica．Cardiff sent away last week
144,734 tons of coal，foreign，and Newport，Mon．， 34,800 tons，both showing a slight increase．Swansea，on the contrary，exhibited a decoline，there having been only a seant arrival of tonnage．Pit－
wood is very depressed，and quoted prices are as low as 15 s ． 6 d ． and steel trades．Things really appear to be getting worse instead of better．At Newport，for instance，there were no shipments during the last week，and only 30 tons from Cardiff，This week all，and very use．There are strong fears entertained that with a continuance
of this state of things ironmasters must begin to curtail expendi－ ture．They can never keep on making for stock．Already at
Tondu and Blaenavon signs of distress are being shown，and it is only too probable will become general．
Patent fuel is looking up slightl．
Patent fuel is looking up slightly，Newport sent two cargoes
respectively to Valencia and Bordeaux；and Swansea，steadily increasing its exports，reached 8000 tons last week．This is hopefulu． Swansea，too，is showing better in tin－plate，and this trade gene－
rally is better．Prices are firmer， rally is better．Prices are firmer，and shipments having been
large，stocks are lessening．Thus，at Swansea last week 49,771 boxes were brought down，and 53,819 boxes shipped，so that stook
now amount to 144,798 boxes，as compared with 158,271 botes hand last week．Anything like a spurt，it will be seen，would send
 margin of prices is increasing．Holders of best brands in every case
get
Sid．more than ruling figures． discussed at Cardiff．

$\underline{\longrightarrow}$

HEUSINGER VON WALDEGG．－We regret to have to record the decease of the eelebrated German railway engineer，Edmund
Heusinger von Waldegg，who died at Hanover on the 2nd inst．，in his sixty－ninth year，atter a short illness．The funeral， ，which wai
largely attended，took place on Saturday last，the 6 th of February
Herr von Well aldegg，besides his official labours as Government rail country．Perhaps the work for which he winn，be best remembered
is＂Handbuch der Ingenieurwisenschaften，＂a book deservedly opular in England as well as on the Continent．
Worshiprul Company or Carpenters，London Wall．－A course or free
delivered at Carpenters＇Hall，London Wall；each lecture to com－ mence at eight o＇clock p．m．February 17th，Mr．T．T．Blashill，
F．R．I．B．A．，＂Timber：its Growth，Seasonh
 March 17th，Mr．John Slater，B．A．，＂Concrete；＂March 24th， Mr．H．H．＂Statham，＂The Fine Art Aspect of Woodwork；
March 31st，Mr．James Doulton，＂Terra Cotta，＂April
Tth，Mr．
Banister Flecther，M．P．，F．F．I．B．A．，＂The Influence of Architec
ture upon Carpentry．

NEW COMPANIES.

Thr following companies have just been regis-ered:-

Limatents.

The with a capital of $£ 2000$, in $£ 1$ shares, to carry on business as agents for the commercial and indus-
trial advancement of new inventions and disoveries, The subscribers are :-

 Registered without special articles.

Astrop Patent Company, Limited.

 This ompany proposose to acquire and work theetters patent No. 11,901, dated 2nd September, letters patent No. 11,901, dated 2nd September,
1884, granted to William Astrop for an improved process of deodorising, disinfecting, precipitating,
drying, and pulverising the solid portion of sewage do render it a marketable manure. It was regis-
tered on the 29 th ult. with a capital of $£ 30,000$, tered on the 29 th ult. with a capital of $£ 30,000$,
in $£ 1$ shares, with the following as first subWilliam Wigginton, Jermain's'-rond, Forest-hill
C. J. Fox, gl, King s.cross-road, engineer

Directors' qualification, 250 shares. Most of
the articles of Table A of the Companies' Aot, the articles of Tab
1862 , are adopted.

Charles Tebbitt and Co., Limited. This company, with a capital of $£ 5000$, in $£ 22$
hares, proposes to establish and carry on in shares, proposes to establish and carry on in
Smyrna, Asiatic Turkey, the business of manuSmyrna, A Aiatic Turkey, the business of manu
facturing and dealing in ice in any manner what soever, and also to trade in fish, meat, fruit, wines, spirits, beer, or any perishable food and
products. It was registered on the 29th ult., with products. It, was registered on th
the following as first subscribers:

The number of directors is not to be less tha
two nor more than five nualifation ton two nor more than five; qualification, four
shares; the first are the subscribers denoted by
an an asterisk; maximum remuneration, $£ 100 \mathrm{pe}$ annum, with an additional $£ 10$ for each 1 per
cent. dividend beyond 10 per cent. per annum.

Indigo Company, Limited

This company proposes to acquire and work the
following letters patent for British India, viz: No. 97 , of 1880 , for the complete separation and conversion of the Indican of the Indigo Ferol, and increasing thereby in the presence of alkalies and rapid oxidation the production of indigo. split-up Indican and its derivatives other indigo-producing compounds in the plant for the formation of indigo blue in the presenc of ammonia and other alkalies and oxygen. I was registered on the 3 rd inst. with a capital of
$£ 150,000$, in $£ 5$ shares, whereof 2200 are 10 per cent.
shares. The subscribers are:-
*Walter Butler, Oriental Club, Hanover-square,
indigo proprietor ${ }^{*}$ * Indigo proprietor Macconald, 50 , öfordi-terracee, w., indigo *D. Normañ Rëid, $\ddot{\text { on }}$, CÖeveland̈-gardenens, Eäling

The number of directors is not to be less than
three nor more than twelve : the first director three nor more than twelve; the first directors
are the subscribers denoted by an asterisk and are the subscribers denoted by an asterisk and
Messrs. W. B. Hudson, Henry Bollman Condy, and John Allen; qualification, 50 shares. Rethe chairman, and $£ 200$ per annum for each inary director.

James Budgett and Son, Limited. This is the conversion to a company of the
business of dealers in sugar and dried fruits now carried on by the above-named firm at 3 and 4 Laurence Pountney-lane. It was registered on
the 29 th ult. with a capital of $£ 160,000$, in $£ 100$ shares, with the following as first subscribers:*J. s. Budgett, Laurence Pountney-lane, merare
 c. Whanters, G̈rafton "House, "Forest-hinl," mer-
 E. Ah follode, $\ddot{4}$, G̈aüen-road, Claphäm, " merJ. Glynn, 247, Evering-road, Claptön, mëchänt"'s o. Page, Cavenäish $\ddot{\text { rooad, Merton, Me accoütañ }}$

The number of directors is not to be less than
three nor more than seven; qualification, ten three nor more than seven; qualification, ten
shares; the first are the two signatories denoted shares; the first

Luchana Mining Company, Limited. On the 29th ult, this company was registere
with a capital of $£ 200,000$, in $£ 10$ shares, to
acquire and work mineral property in Spain or elsewhere. An unregistered aghent between Benjamin
Pochin of the second part, Bolckow, Vaughan, and Co., Limited, of the third part, John Brown and Co., Limited, of the fourth part, and the
company of the fifth part, will be adopted. The subscribers are :-
Benjamin Whitworth, J.P., 22, Daleham-gardens, Stephen Bürräge, \&̈hhëfield, irön merchänt W. S. B McLaren, B E. W. Richards, Marton, Midd̈lesb̈rough, engiJ. Hart, clairviile, "̈outh N̈orwood, mänager

The number of directors is not to be less than three nor more than seven; qualification, fift
shares ; the subscribers are to appoint the first shares; the subscribers al meeting will determine the compation.
remuneration.

Orlando Jones and Co., Limited.
This is the conversion to a company of the
business of starch, blue, and blacklead manufacturers, millers, rice cleaners, manufacturers o germless maize, \&c., carried on by the firm o It was registered on the 30th ult. with a apital or 45 per cent, cumulative preference shares, an 1400 are B or deferred shares. An agreement o the 20 th ult. (unregistered) regulates the pur
chase. The subscribers are:-
$\underset{\text { *Wm. Evill, J.P., Worcester Park, Surey }}{\text { *Stanley }}$

The number of directors is not to be less than three nor more than eight; the tirst are the sub-
scribers denoted by an asterisk and Mr. Henry
Sen scribers denoted by an asterisk and Mr. Henry
Kemp Welch, of 52 , Leadenhall-street; qualifcation, shares or stook upon which $£ 500$ has been
paid up or credited as paid up; the company in general meeting, will determine remuneration,
Messrs. Wm. Evill, S. K. Welch, and J. Walton Messrs. Wm. Evill, S. K. Welch, and J. Walton are appointed managing directors until the 31
of December, 1895 , at salaries of $£ 750$ per annum each.

Production OF SALT IN THE UNITED STATES.The production in 1884 was $6,514,937$ barrels of
280 lb ., equivalent to $1,824,182,360 \mathrm{lb}$, or $32,574,665$ bushels, or 912,091 short tons, according to the unit used. The total value, compute duction, was $4,197,734$ dols. The apparent out put was 322,706 barrels greater than in 1883 , while e the value was 13,308 dols. less; but the
production figures do not inolude a conrict, not officially reported because not in spected.
CANAL Projects iv the United STates.Several important waterways are projected in the north-western States of America. One of these is a proposed artificial river 200 ft . wide, to run
from Chicago south-west to the Illinois river This would practically unite the Mississippi and Lake Michigan. It has further been suggested to turn the trade of the Canadian North-West authward to the United States by constructing lake system. The Red River of the north, which forms the boundary between Minnesota and Dakota, and which runs north into Lake Winnipeg, is navigable from Fargo, if not from Breckenby the St. Louis river, cross over the divide to the Mississippi river, follow that river up strea 150 miles, cross over to Red Lake river, and go west on that to the Red River at Grand Forks. On this route, observes Demorest's Monthiy, a waterway requiring less than fifty miles of artiif-
cianal could be constructed. This would make a channel with 6 ft . of water, which would connect the Mississippi with the lake system, and connect both the lake systems with Lake Winnipeg and country. This scheme contemplates the uniting of three basins, that of Lakpe Superior, of the Upper Mississipipi, and of the Winninerger irver and
lake. It is estimated that it will cost about 300,000 dols. to construct the canal, which would be about as long as the Erie Canal in New
King
general meetinge Enginkering Societr.-At Mr. O. W. Atkinson read a paper "OOn Hydraulics," in which he described the theoretical considerations involved in the designing of water
motors. The author commenced by enumeratin the various sources of loss from "skin friction" and "eddies," and the ways in which these losses might be reduced. He then proceeded to the consideration of water motors, which he divided engines, and impulse or reaction machines. After briefly describing the action of weight machines, bet ween the the great differences whichex highpressure steam. First, the loss from friction in the pipes and passages being enormously greater
in the former case, owing to the much greater density of water compared with steam; secondly, the great waste of energy arising from the incompressibility of water, necessitating the expendi-
ture of the same volume, and consequently of the lure of the same volume, and consequently of the
same amount of energy each stroke, whether the same amount one large er small; and, thirdly, the much greater effect of the inertia of the flud in the pipes and reservoir, which reduces the
pressure on the vane at the commencement of the pressure on the vane at the commencement on rise very considerably above that in the accumulator.
The author then referred to the inefficiency of reaction wheels, and showed the way in which this had been remedied in turbines ay giving the
water a forward motion before the wheel. The paper concluded with a detailed desocription of the designing of the guide-blades and van
both impulse and impulse-pressure turbines.

THE PATENT JOURNAL.

 Condensed from the Jourrala of the Commissioners
Applications for Letters Patent

 ** When patents have ben "communicated" thename and address of the communicatiung party are
printed in italice printed in italics.

2nd February, 1886.
1480. Coupling, de., Railway Wagons, G. Gaskell

 Lister and W. Carter, Halifax.
A86. Cosstruction of BAatelle Applunces, D.
 MenT for VELACIIREDES,
R. Kettle, Smethwick.

L. Voelleamo-ziectric Machines, H. J. Allison.-(W.
 4955. Skeroh-books, W. Duppa. Croteb, Richmond.
496. ELEcrric BELIS, T. P. C. Crampton, London.
 righton. ilkinson, Halifax.
Leicester. Fabrics, G. F. Sturgess
 . Gilmore, London, Chor CBarss, W. Bendall, Aston.
 Ragg and A. Smith, Chester. London
1505. Tis CAsks, G. Tomkins, To
abanently Facita with hemi Hard Rubber
 S. Washington, Hulme. FAstrenings for Articus of Dress, s. Alford,

London.
151.1. DIsriluina Turpextine, \&o., E. W. McClave,
London.

 Cantero, Spain.).
1516. Rorary Esanss, J. A. Wade and J. Cherr

 152l. Rengulating Gas Supply, L. A. Groth. - (A. Silbermann, Germany.).
152. W. Wisplso APPARATU, J. Lysaght and J. B.
H20llom, London. . 1 . 1524. Makisiva Dies, A. J. Boult.-(J. Brady, United 152tates. Luprianting Conspownds, C. Fink, London.
1526. Nioht Comsooks or PANs, V. O. Browne.Cave

 United Statese.) (iss, de., G. Macaulay-Cruickshank.-
(J. O. J. and A. A. J. J. Kollen, Sweden...)
15Si. FURNACE-Doors, J. Parker, Glasgow.

R. Thomson, Glasgow,
154. Coungination Locks, A. M. Clark.-(A. J. Calhoun

London.
1540. Metalio Fabteninos for Trouser Frosts, C
Bathias, London.
15t. Porkicme Frie-Escape, J. Wall and H. Rundeill,
London

 Flarke, Glvasg for
Allen, London. brets, T. R. Rossiter and C

 London.
155. ALASS, R. Frost, London.
1551. MARUFACTVRE of
Smith, Hong Kong.). Glivar, do., o. Imray.-(J.

 1554. Potrinco-out and Strikina-out Machines, W.R

3rd February, 1886.

 ${ }^{1563 \text {. }}$ Bingham. W. Coterell, Glasgow.
1564. Wopkiva of Reversule Desks, R. Smith
Padihm

1566. Doulv for WAstiss CLorruss, A. R. Strachan
and W. Byers, Gateshead-on-Tyne.
I.

 157.2. Gass 1 Aps, Messsrs. Samuel Greatrix, jun., and
 Hattan, Glasgow. Melereredino Brushes, t. Cox, Leeds.
157.
Mindisa
Manchestar Esaises, J. Thompson and T. Barker, M77. Phestrer.
 G. A. Hazelehurst, Liverpool. Gloves, CVYYB, ColLARs, \&co., R. Bach, Bir-

 1555. Toriprbo Lausohes, dce., H. Harford and C. F.
Sutetifet Sutoliffe, London,
1586. WLECTRICAL Comatutators and Switches, F. R.
 1588. Sowverious PURses, I. Brager.-(Feldmeier and

 1591. TELEERPOXIO Switohisg AppARATUS, A. R.

 1595. Hypravil Coxxtroulusa Gear for Gux Mount

1598. Revolutiva the FLow of Fluids, A. J. Boult.-
(J.G. Richert, Sveden.)
 pooi. Mica Flar Ventlators, do., J. W. Gibbs,
Liverpool.
 West p hal, Germany.)
1603 Roonarisa for Horsssioss, F. S. Lepinte,
London.

4th February, 1886.

160s. Wooden Boot and Shoe Finishise Last, J. H.

 Jennings, Heeley
1614. UTTWISTIT Waste Ropk, \&co., J., R., and J

 ${ }^{\text {hedead. Couphase for Rallway Vehicles, R. C. Sayer, }}$ Newport.
1619. BANDING, Cord, Twisk, \&c., T. Unsworth, Man

 Gilasow. P. B. Wilson, Glasgow
1628. Lubricators for Bloyoles, de., E. H. Baxter,
 1630. Tubular Metal Frame Lawn Tensis Raquet,

 H. A. K. Davis, East Dulwich.

 London.
1699. CANsistrgs, de, H. H. T. Bond, London.

 1655. HoNsivectiva tookrikr sort Metal Pires, do.,

 London.
1662. RALIWAY Brakes, T. Sloan and E. Hawks,
Glaspow.

1664. Socker Coupling for Pipes, T. Wright, London. 1666. Deliyering Cigarettes or Ciaars, J. Breeden London.
167. Storage of Aerated Beverages, F. Walter
1668. Gas Lamps, J. Bartlett, London.
1670. Pases for Pencils, de., J. Spear, London.
1677. "PREVENTS VILEs, Wor the Fyfe, London.
W. Carter, London.
1672. Releassing the Bolts of Doors, E. Edwards.
(L. Radi, France.) 167.3. VELocIPEEEES, A. Hunnable, London. Child and G. B. Childs, London. other Busts, A. W London. 1676. Boilers, C. Wells, London.
1677. Portable Gas PLILAR C
1678. Tobacco Pires, C. G. Robertson, London. 1679. Doubling and Winding Michines, J. Horrocks,
Manchester. 1693. Permitting the Use of Trlegraphio and Tele
pronio Appanatus upon the Samp Line, He H,
Iake.-(La Societé des Telephones í Grande France.) 1681. Relay Apparatus for Telegraphic Purposes,
H. H. Lake.- (La Societe des Telephones ì Grande 1682. VELOCIFEDES, W. Scantlebury, London.
1683. COVERED WHALEBONE, \&c., W. L. Wise.-(E. Leroux, France.)
1684. SECoNDARY Batreries, B. Weise, London.
16RANE for VELocIPEDES, J. Harrison, Londo
 5th February, 1886.
1687. Rarsina, \&ce., Pulley Blocks, \&c., C. A. Jones, 1688. Fasterning Handles to Table Cutlery, de., J. 1689. B. Matrer, Shestileld. I. Chorlton and G. L. Scott, Man1690. Knitted Ribbed Fabrios, W. F. Baines and S. C. Baines, Leicester. W. Helliwell, Halifax. 1692. Window Blisd Rollers, W. Starley, Coventry. 1694. TAD-POLE Lock Bours, s. Houghton and w.
Hardwick, near Wolverhampton. Gardwick, near Wolverbampton.
1695. Fire-LIAGTERS, D. Yates, Halifax.
1as Enoines. M. Welch and F. Ro 1697. SELF-Activg Enoines, G. E. Dorman, Stafford. 1698. Collecting Waste Steam, A. Marshall, London.
1699. Rotany Scekens, J. Hornsby and H. Palmer,
Grantham. 1700. Automatic Compensator for Rallway Signal WiREs, J. Eccles, Warrington.
1701. OuL CHANDLIIRR, ©J., J. Phillips, Leicester.
1702. RINBINO BotTLES, J. Alabaster, Barnsley. 1702. Rissina Botrless, J. Alabaster, Barnsley, 170. Lugage Carrier, F. W. Lambert, Birmingham.
1704. RaILWAy CArriage Roor Lamps, E. H. Grifiths,
Birmingham. 1705. Hoanizontal Turnip Slicers, W. Dewar, near Dundee.
1706. Sypion Cisterns, J. c. Cooke and A. W. Cooke,
Birminghe 170. RACKET BATs, T. O. Attreed, Glaggow.
1708. SNow PLovich, J. Ireland, Glasgow,
1709. MINERL' SAFETYY Lamprs, A. Howat, Manchester,
1710. Clearing Tor Rollers of Spinnino Machinery 1710. Clearing Top Rollerg of Spinnino Machinery,
B. A. Dobson, R. Hardman, and E. Gillow, Man-
171. ExHaugt for tbe Bettre Consumption of Fuel, 1712. Stenewett, Birmingham.

London.
1714. AXE BLANK, H. Hammond, United Statos.
1716. Safety bicyoles, J. K. Stariey, London.
1717. Fekd Apraratus for Chafe-cutting Machines,

Mine

1723. Attaohing the Presseer-feet of Sewina Maclinise, J. Mehlich, London.
1724. Borties, T. Herb, London.
1724. Boitles, T. Herb, London.
1725. Traveluig Trunks R. Challenor, London.
1726. INCANDEsCENT ELEOTRIC LAMPs, L. S. Powell
and R. P. Sellon, London. 1728. Sea Anchor, J. Waters, London,
1729. RAlwhay Slekpers, A. Little and W. Percy, 1730. Balanced Spring Blinds, M. H. Robottom and
 Liverpool.
1783. Dryina Grars, do., T. Parkinson and J. G. 1734. Barked Wire for Fenoes, J. Westgarth, Liverpool.
1735. Water Gavag, C. Wells, London.
1736. SigNaLLiNo tho Outrreak of Fit London.
17Si. Cosest-seat Guard and Tollette Paper, C.
Wells, London 1738. Sporing HAwk, C. Wells, London.
1739. WING Compasses or DIVIDERS, C H. D. B. C. and
 Machines, R. Maynard, London.
1744. PIPE COTTER, D. Bauer, London.
1743, VALVE, G. F. Redfern.- La Compa
1744. Floorings and Sopports for Bridges, icc, T, I
 1746. Slates, \&o., O. Schwenck, London.
74. Conveying Parcels, de., from Place to Place, 1749. TUBOLAR ELLAsTIC SUPports for VAricose Veins, Ec., J. H. Cooper, London. White. London. 1750. Dyeing Fabrics, W. G. White, London.
1751. GUN Mountinge, T. Nordenfelt, London.
1552. Lock-UP BotTLE StANDS, W. H. Brand, Lo 1751. GUN Mountings, 1. Nordenfelt, London.
1752. Lock-UP BotLe STNDS, W. H. Brand, London.
1753. SANITARY or Tollet VEssel with OUTER PAIL, M. A. Law, London.
Clark.-(M. Avomatic Teleoraphio Apparatus, A. M. M. 6th February, 1886.
OunTERs of Boots
1755. Moulding Counters of Boots and Shoes, S. H.
Hodges, Street Hod. LAYINe Dissolved Glue or Paste upon Sheets
of PAPER, dec. S. H. Hodges, Street. of PAPER, \&CC., S. H. Hodges, Street.
1757. MEDICAL PLASTER, E. L. Sheldon, London.
758. CARDING ENGINES, W. Lord and J, Stocks, chester.
759. PIPE for Smokers, W. Lewis, Sheffield.
1761. DIstributiso OIL, dC., upon Fibrous Sub-
stincres, A. Benn and P. Firth, Bradford. stancrs, A. Benn and P. Firth, Bradford
1762. Bremwaters, J. D. Wilson, A. Ambler, and J.
C.
 Position, H. . .. Miller, London.
1764. Holder for CandLes, F. Ashwell, Truro.
1775. Weatherproor Tile, J. Chapman, Milve

1767. Fermenting Tea, H. H. N. Martin, London.
176.
Rotating Pistoss, G. M. Parly, London. 1769. Washing, Mixing, and Blendina Butter, de. J. Sidewelin, London.
and E. Eaves and Doubling Frames, H. Ashworth 1771. Foroing SEwage, de., by Pumps driven by ElecTric Molers or Proukorices, A. d. MacLeod, London. Mines, H. Kirkhouse, London. 1774. BaLbe Valves, H. H. Sporton, jun., London.
1775. VELocipedes, W. Hillman, W. H. Herbert, an G. B. Cooper, London.
176. SHIrs' and Moorivg Anchors, W. H. Gales, London. 1778. AUTOO 778. Automatio Starting Gear for Locomotives, 779. Drawinc, orf Ori from Barrels, \&c., G. A. J.
schott, London. 8chott, London.
1780. WATches, S. Sunyon.-(E. Belon, France.)
1781. Seuring the INNER BANDs to HATs, F. W Durham, London.
788. Requating the Heat in Gas Cookers, H. T Kirby, Lnndon.
1733. Ligetiva Cigars, \&c., E. J. Wimshurst. London
 Belgium.)
1755. Permanent Way, L. Somzée, Liverpool.
17S6. Printers' Galleys, A. J. Bouit.- (D. W. Whitaker 17s. Printers Galleys, A.J. Joult.-(D. W. Lyon, United States.)
and. Screw
1787. Sher (The Russell and Brwin Manufacturing Company, United sites.) London.
789. Couplinas for Screw-propeller Shafts, J. F.
Hall aud J. Verity, London. 790. Coupler, T. V. Riordan,
7.

Lond Automatio Weiohina MAchines, c. C. Clawson,
Lon 1792. Materials for Use in the Treataent of Sewage, 1793. Fitrerina Media for Purification of Liquids,
F. Candy London. F. Candy, London. Muters, \&c., W. B. G. Bennett,
1794. MIxing SoLid Mater 7795. Extracting Motsture from Pulp, J. T. and J. MeDougall, London.
1796. PURFITATION of Iron, T. Twynam, London.
1797. Cooulva the CyLnNDERS of GAs Motors, T. R. Shillito.-(B. Capitaine, Germany.)
1798. APPARATVS for RELIEVING SEWERS from Pressure T98. Apparatos for Religeing SEw.
of Gases, W. Greenhill, London.

$$
\text { 8th February, } 1886 .
$$

799. Apparatus for Syruping Artificial Beverages,
J. H. and J. W, Galloway, London Gil. Automatically Coupling Rallway Trucks, w 1801. GLass Coping for the Protection of Trees, H C. Board, Bristol.
800. BICYCLEs, W. E. Hart, jun., and C. Lee, Wolver hampton.
Ao3. Apparatus for Producing Lings of Paint, T Heighway and J. Smithies, Manchester,
801. WInvows, W. Howie and R. Henderson, Ecclefochan. Whitehend and C. F. and E. D. Tanner, Birmingham
802. BrusHing Michines, G. Thomas, Halifax. 180. Brushing Machines, G. Thomas, Halifax.
803. Removing Materials. Used in GAs Purifiers,
W. S. Morlund, Hempstead. W. S. Morlund, Hempstead.
804. Conveying Biscuits Throvar Ovens, J., T., and 1. J. Vicarre, jun., Liverpool.
1sog. STopping the Ratcing of Carriaee Windows, 1810. Spinning Cotton on a Ring Frame, C. Butterworth, Oldham.
805. NEcks of Internally Stoppered Botrles, D
Ryands, Barnsley 1812. Locking Nuts and Bolts, J. B. Meeson, Shefficld,
806. PERForated Hollow Balis, A. S. King, N14. Piokina Motion of Looms, J. and E. Horrocks, Bradford. ${ }^{\text {185 }}$ Soup Plates, W. F. Drew, London.
807. Skats for dnalers, A. George, Lond
808. SUCTION PIPEs for POMPS, A. Tozer, Manchesto
809. BAKERS' OvENs, A. Gates
 822. Applyina Sealing Wax, C. T. Mackley, London
810. One-way Plovehs, J. Huxtable, London. 1824. Show GLassks, E. W. Searle, London.
811. Steam Enaine Governors, J. D. Ohurchill, 1826. Lamps, G. F. B. Lukin, London.
812. Foundry Ladles, G. A. Good win and W. F
 1829. STrainers for Pulp for Paper Makina,
Woodley, London. 1830. Flying Machine, J. Whelde, London.
813. Manuracturina Sulpates of Met their Oxides, A. M. Graham, London. Byckens, France.
is3. Couprase
L83y. CoupL
London.

-

HHETED AMERIOAN PATENTS,

 (From the Onited states Patent oflce oplcial Gazette.) 332,773. SAsit Cord FAstener, William Altick,Dayton, Ohio.-Filed June 20th, 1885 , Claim.-The combination, in a sash cord iron, of a
shell Δ, with tapering bore, outer recosses a, and

inner slots b, and an anchor or styy piece B, provided notches g, and retaining points h. the whole con-
structed and adapted to be applied in connection with assh cord, substantially as described
332 900. Nati Extractor, Isaac H. Kiser, Riverside,
Cal.- Filed September $23 r d, 1885$. Claim.- (1) A nail extractor having a boaring surinclined faces, the surfaces of which intercept th for grasping the nail, substantially as described. (2) A nail extractor having a bearing surface and a notch
in one of its sides, said notch having inclined face in one of its sides, said notch having inclined faces,
the surfaces of which intercept the bearing surface of the extractor and form edges b1 b11, one of suid edges
beipg at substantially right angles to a line drawn
而 lengthwise through the extractor, and the other bein
inclined thereto, substantially as described. (3) nail oxtractor having a notch in one of its sides, saic
notch paving inclinod faces, which intercept each
other at the inner limit of the notch, substantially as
described. (4) A nail extractor having a bearing sur-
face and a series of notches of various dimensions in face and a series of notches of various dimensions in
itt sides, each of said notthes having inclined faces,
which intercept the bearing surface of the extractor which intercept the bearing surface of the extractor
and form edges b1 b1 for
tially as described. (5) A deving the nail, for pubstan-

having a nail-extracting notch at one side thereof, a
hole for the insertion of a handle, a collar surroundin said hole, and a brace or fin extending from paid
collar to or near the end of the device, substantially collar to or ne
as described.
332,929. Electrical Railway, James F. MeLaughlin,
Phildelolphia Pa Philddelphia, Pa.-Filed October 7th, 1885.
Claim.-(1) The herein described method of operating a series of electrical railway cars with motors in
multiple arc, said method consisting in intermitting
the current the current in the derived circuits between the line
conductors, some of the motors being thrown out of

332,929

ircuit while others are in circuit. (2) The herein railway cars with the motors in multiple arc, said mode consisting in intermitting the current in the erived circuits between the line conductors, some of
the motors being thrown out of circuit while others are in circuit, and operating the crrcuit breakers ynchronously, substantially as set forth. 332,953. Isjecror, William J. Sherri0, Allegheny
City, Pa.-Filed December 10th, 1884 . Claim.-The combination, in an injector, of a lifting

 communicating with tho sadd iititrg head, eubstan 332,738, straan Vacount Poxp, Georpe IH. Nyg,

grooves $d d m$, steam pipe C, and partition N, in com-
bination with the valve having the four cut-offs through the heads $J J$ for alternately directing steam into the cylinders B D, as specified
332,742. Mechanism For Finisuing Enarne Bed-
Frames, Wm. F. Parish, Minneapolis, Minn.-
Claim.-(1) The combination, with the arbor, of the plates $\mathrm{COL}^{\text {C }}$, means for securing said plates to the
arbor, and the adjusting screws f, all substantially arbor, and the ajusting screws f, al substantially
as described, and for the purpose set forth. (2) The
combination, with the arbor B E, baving the two combination, with the arbor B E, baving the two
parts at right angles to each other, of means for contreing said arbor in an engine bed-frame, rovolving
tools, as described, mounted on said arbor for truing
the end of the bed, the plates C C1, secured to said
arbor for preparing the supporting projections to
receive the croshead
described described. (3) The combination, with the arbor B E
having the two parts at right angles to each other, o means, as described, for centreing said arbor in an engine bed.frame, and revolving tools mounted on
said arbor for truing the end of the bed-frame, all
substantiall substantially as described. (4) The combination
with the arbor B E , having the two parts at right
angles to each other, of means for centreing said

arbor in an engine bed-frame, and the plates C C1 secured to the arbour for preparing the supporting
projections for the crosshead guides, all substantially
 having the longitudinal grooves b^{2}, of the plates O
having a corresponding grove, the key c, bolts b, having a corresponding groove, the key c, boits
bolt d, and screws f, all substantially as doscribed
(6) The combination with the arbor B, of mean (6) The combination with the arbor B, of means
for centreing said arbor in an engine bed-frame, the for centreing said arbor in an engine bed-frame, the
cutter head J, mounted on the arbor and carrying
the tool T, and means for revolving said cutter-head, as and for the purpose sot forth. (7) The combination
with the arbor B E, of means for contreing said with the arbor B E, of means for centreing said
arbor in an engine bed-frame, and means mounted on
said arbor for truing the end of the bed, said mean said arbor for truing the end of the bed, said means
consistigg of the part R , clamped to the arbor and
carrying the consisting of the part R, clamped to the arbor and
carrying the shatf s , pulley M , and gear L , and the
cutter-head J, adapted to revelve freely on said arbor cutter-head J, adapted to revolve freely on said arbor
nnd provided with a gear K, and cutter T, all sub-
stantially as described. (8) The combination with stantialy as described. (t) ope portions $n n$, of the
the bed-frame A , having the projection
arbor B , centrer D , the plates C , having recesses arbor B , centrer D , the plates C , having recesse
fitting the arbor. means for securing said plates to the
arbor, the bolts b, and screws f as and for the fiting the bolts b, and scrows f, as and for the purpose
arbor,
set $\begin{aligned} & \text { orth. (9) The combination, with the bed.frame } \\ & \text { A. of the arbor B, the tapering threaded split sleeve }\end{aligned}$
, of A, of the arbor B, the tapering threaded spind sleove
H, the cutter-head J, mounted on the arbor and carry
ing the tool T, and means for revolving said sliderest, as and for the purpose set forth.
333,371. Process of Fusing Metalio Plate
Jonts, Chas. Hileon and J. Sieuart, Detroit
Mich Mich. . Fited October 29th. 1885 . method of fusing
Claim. - The herein-described methe

333,37]

off to an edge the interior faces of two plates, then bringing together the points formed by such beveling,
leaving a space between the inclined faces of the plates, and then filling in said space with molten
metal, substantially as and for the purpose specifiod. 333,261. Adustable Vice Jaw, Edgar Shav, Lynn,
Mass.-Filed Narch 19th, 1885., Claim.--(1) An adjustable support composed of two
pivotally-connected and independently rotatable pivotaly-coneccedions in contact with each other,
wedgeshaped setions
set forth. (2) An adjustable support composed of an inner wedge-shaped section having means, substant support, and an outer wedge-shaped section pivotted

to and baring upon the inner, as set forth. (3) The
combination of the wedge-shaped sections pivotaly connected and in contact with each othher, , and a spring
whereby one section is pressed against the other, as whereby one section is pressed against the other, ${ }^{\text {as }}$
set forth. (4) The combination, with the jaws of a
vin vice or clamp, of the two independe
wedge-shaped sections 23 , as set forth.

[^0]
[^0]: Epps's Cocon.-Graterol and Comprorting.-" By a
 thorough knowledge of the natural laws which govern thorough knowledge of the natural laws which govern
 the operations of digestion and nutrition, and by careful application of the fine properties of well
 selected Cocoa, Mr. Epps has provided our breakfast
 tables with selectes with a delicately flavoured beverage which may save us many heavy doctors' bills. It is by the judicious
 use of such articles of diet that a constitution may be gradually built up until strong enough to resist every tendency to disease. Hundreds of subtle maladies are weak point. We may tescape many a fatal shaft by
 weak per maty
 keeping ourselves well fortifed keeping ourselves well fortified with pure blood and
 properly proporly nourisied frame, - Cevir Eervice Gazettl in packets, labelled-"JAmps Epps \& Co., Homooo-
 pathic Chemists, Lodond." Also makers of Epps's
 Afternoon Chocolate Essence.-[ADVT.] pathic Chemists, London." Also mak
 Afternoon Chocolate Essence,-[ADVT.]

