THE MANAGEMENT OF THE ROYAL DOCKYARDS.
IT has long been the opinion of most people acquainted with the systems of management which prevail in wellconducted private shipbuilding establishments that there is something wrong in the internal economy of our Royal dockyards. This view has arisen chiefly from a study of the results obtained at those establishments when compared with the cost of their attainment, and it has been
strengthened by the occasional glimpses of information which are afforded the public through the medium of parliamentary debates upon the Navy Estimates. Such opinions bave received ample confirmation from the pages
of the Blue Book just issued containing the "Reports of Committees Appointed to Inquire into Admiralty and Dockyard Administration and Expenditure." Those who held the dockyard system of management in the least
esteem, could little have expected such confessions of failure esteem, could little have expected such confessions of failure
as those which have recently been made by the officials at as those which have recently been made by the officials at
the dockyards who have had the administration of that the dockyards who have had the administration of that
system. It is to the honour of these men that they have system. It is to the honour of these men that they have
been able to keep their intellects so free from the blighting influences of officialism during their many years of bondage thereto as to be now in a position to point out to
the Committees the defects and anomailies which should be are doubtless indebted to the fact that ships for the Royal are doubtless indebted to the fact that ships for the Royal
Navy are sometimes built in private shipyards by conNavy are sometimes built in private shipyards by con-
tract, and that dockyard officers inspect the work on such tract, and that dockyard officers inspect the work on such
occasions. The officials of Portsmouth and Chatham dockyards, who gave the most valuable and intelligent evidence at this inquiry, were happily in a position to compare the
thraldom of a dockyard constructor with the freedom of a private shipyard manager, and correctly to value the financial consequences to the country arising out of the
differences in the two cases. It is now clearly seen that the national manufacturing establishments which exist for the purpose of properly maintaining our naval and military defences cannot fulfil their functions economically or Government is prepared to adopt the methods which everywhere prevail in private firms, they had better close the dockyards altogether, and trust
and competition for our armaments.
Very wisely, the Admiralty have determined upon taking the former course, and it remains to be seen how far they will adapt their newly-organised scheme of management
to the attainment of that end. It is very clear that the changes must be of a radical character in order to be effectual; but it is not, however, so clear that they will be carried out. The first step which has been taken is undoubtedly a favourable omen in regard to the remainder,
for almost all the rest are dependent upon it A respon for almost all the rest are dependent upon it. A respon-
sible manager of the Royal dockyards has been appointed, sible manager of the Royal dockyards has been appoiuted,
and the gentleman selected for the post will approach the task assigned him with a mind altogether free from the bias of officialism-routine and red tape. Professor Elgar,
LL.D., of Glasgow University, is now Director of DockLL.D., of Glasgow University, is now Director of Dock-
yards, and responsible to the Controller of the Navy for yards, and responsible to the Controller of the Navy for
all connected with the building and repairing of ships. With Professor Elgar's experience as a a private shipyard manager, and his general acquaintance with men and
business, we may rest assured that, so far as he is conbusiness, we may rest assured that, so far as he is con-
cerned, dockyard management will become a commonsense affair. All that is now needed is that the Director of Dockyards shall have full and unrestricted powers, so
as to enable him to bring the business of shipbuilding for as to enable him to bring the business of shipbuilding for
the Navy under the operation of ordinary commercial principles.
Centralisation has been the weakest point in past dockyard control. All the strings for moving five dockyards
have been pulled at the Admiralty Office, and if the strings held thereat have not been pulled there has been no other source of motion. The evidence of Mr. R.
Barnaby, Senior Constructor at Portsmouth, and of Mr. E. B. Warren, the Chief Constructor at Chatham yard, shows
C. What orders for iron and that orders for iron and steel plates and angle bars, which may be immediately required for building a ship, have to storekeeper, the Controller of the Navy, the constructive and contract departments. In consequence of all this
elaborate procedure and the friction experienced in passing elaborate procedure and the friction experienced nh passing
through each department, happens that months elape
before the material is forthcoming. Such folly as this before the material is forthcoming. Such folly as this
would soon ruin a private establishment, and had it continued much longer it might and doubtless would have resulted in the ruin of our naval defences. This and other causes of an equally absurd character kept large inronclads in hand seven years before they were completed, while
private shipbuilders could insure delivery in less than private shipbuilders could insure delivery in liess yhears. municate direct with an iron or steel manufacturer who of materials at certain fixed rates? This is the suggestion made by an experienced dockyard officer to the committee of inquiry, and one would suppose that no argument could
stand in the way of its adoption. The difficulty of getting stand in the way of its adoption. The difficulty of getting angle bars-which are never kept in stock to a very considerable extent by any shipbuilders-but it extends to
nails, screws, and even candles. So careful have naval nails, screws, and even candles. So careful have naval
administrators been in their efforts to secure economy and prevent fraud or waste at the dockyards, that every possible
barrier now exists between the stores and those who want barrier now exists between the stores and those who want to use them. Men are often kept idle while materials are
being found for them to work upon, and an army of clerks, writers, storekeepers, "runners," and labourers is employed to perfect the muddle by getting in each other's way and discovering reasons in numberless forms and
regulations for not issuing the materials at all. Mr. Warren states that he has often been glad to send out into the town and purchase a few things which could not be got in any other way.
The difficulty of getting stores when they are wanted is,
however, not so serious a source however, not so serious a source of delay at the dockyards
in building ships for the Navy as the frequent alterations
which are made in the ordnance and other fittings.
private shipbuilder, fulfilling a Government contract, would not consent to these alterations and delays without extra payment, and this fact is found to operate very advanships. But if the Admiralty completion of contract-buis their professional advisers for changes when a vessel is building by contract, surely the same thing can be done
when she is turned out at a Royal dockyard. This source of injury to the naval service will now disappear, for the Director of Dockyards occupies the same position, relatively, to the constructive department as does the manager of a private shipyard. The constructors will design a s ship,
and be permitted to watch her construction in order to satisfy themselves that their intentions are being carried out ; but beyond this they will have no control or power of interference. The Director of Dockyards will receive drawings and take all necessary steps for the speedy and economical completion of the vessel, but he cannot be responsible for the due attainment of these results so lon It was not renerally supposed that idle go on. It was not generally supposed that idleness was common anoig dockyard workmen as the evidence con-
tained in this Blue Book discloses. Indeed, it is rather tained in this blue book discloses. Indeed, it is rather cirlous that the heads of the departments in which the
idleness occurs should be the source from which the indormation now comes. Why, it may reasonably be asked, have these officials permitted that which they condemn so strongly in their evidence? The reply to this question comes from the gentlemen themselves, and it reveals than that proposed in the Committee's reports. It seem that the constructors at the dockyards have never been permitted to exercise sufficient control over the workmen to make the latter stand in fear of the consequences manager of a private building yard finds that any of his employes are habitually idle or wasteful of stores, he soou settles the matter by summary punishment, either in discharging or fining them. The proprietors or directors may properly leave him full discretionary powers for dealing stablish cases, and if they did not, the work of the But at the Rould not go on with satisfactory results to the chief professional officer. He must bring such matters under the attention of the Admiral-Superintendent, who makes them the subject of inquiry. To show how this system works, it is only necessary to quote
the evidence of the Chief Constructor of Chatham Dockyard who told the Committee that upon one occasion when some workmen were taken before the superintenden upon the charge of idleness, the latter, addressing the men,
said :-" Now, my men, before we begin, I want you disthat I stand beeween you and your officer." As Mr. Warren said, "That alone is sufficient to undermine the responsibility of any officer." Upon man, recommended that his services might be dispensed with ; but intead of this suggestion bert man was told "not to do it again," while the Chief Con structor was reminded that he had "no business to submit what punishment should be awarded." With such mis management as that it would be surprising indeed if dockyard officers entered upon their daily duties with zeal and for satisfying the reasonable requirements of those who ndmiest what a good day's work is. The Committee o Admiral Graham reports favourably upon the Nava Superintendent system of dockyard management, and no
doubt much may be said in its favour upon some grounds. doubt much may be said in its favour upon some grounds.
But if these superintendents are retained, it must not be at the cost of effective control on the part of the proat the cost of effective control on the part of the pro-
fessional officers. The power of reward and punishment within certain limits, must be conferred upon the Chief Constructor, if his presence is to be properly realised and to find that the recommendations of the Committee lean that direction.
There seems to be a costly amount of friction existing between the heads of the shipbuilding and engineering departments at the dockyards, and this appears to be due
to the absence of any well-defined limits of their severa functions and responsibilities. In a mercantile establishment working for profit this would not be permitted to exist, nor are such difficulties experienced where a conyard. supplies the machinery for a new ship at a docktains machinery not in use which might be advantarcusl employed in the preparation of material for the ship wrights; and yet, because of a want of harmony betwee the two departments, these machines are allowed to remain idle, and the progress of the ships is hindered. Dockyard officials, whether shipwrights or engineers, should surely bear in mind that they are the servants of the nation, and that the machinery under their charge is the property of the State. At one time the engineering department was put under the charge of the Chief Constructor, but as the system did not work well it was abolished. Now it is clea that somebody must be master or manager, and if the Superintendent exercised his functions properly ther would be no difficulty in the matter. It does not seem clear how this evil is to be rectified, but Professor Elgar will doubtless find a way of reconciling the riva
While the general outcome of this last shaking-up of the Admiralty office and the dockyards, it is only right to extend to Mr. F. K. Barnes, the late Surveyor of Dockyards, the fulles sympathy in being the victim of circumstances which were and not the Surveyor of Dockyards, who, while holding the title, was prevented by pressure of other duties from giving adequate attention to the dockyards. For many
years he was practically director of naval construction, or all events fully employed upon the duties of the construc tive department. His mistake consisted in consenting to retain the title when prevented by their lordships' arrange-
ments from fulfilling the duties of his office. He tried to do too much, and he now has his reward. His defence, which is published in the Blue Book, is a manly one. It is his fitness for the office he held should have questione practical inexperience, for all who knew him and the Council of Construction, of which he was a mem ber, are well aware that he is pre-eminently a prac-
tical man, and perhaps the most practically qualified among them. Mr. Barnes has rendered excellent servic to the nation in his day, both as a scientific naval architect and as a dockyard administrator, and the best wishes and sympathies of all who know him will follow him upon his
It is to be hoped that under the present Director o Dockyards the work of building ships in our national estabishments will be conducted economically and rapidly Indeed, there can be no doubt that this will be the case.
But Professor Elgar must be granted free scope for the But Professor Elgar must be granted free scope for the
exercise of his judgment and professional abilities, and no exercise of his judgment and professional abilities, and no
traditions of ofticialism and red tape must be allowed to intervene between the manager of the dockyards and the departments which come under his management

AN AQUATIC CIRCUS.

A considerrable sensation has been created in Paris by the opening, on the 12th of February last, of an aquatic circus, portant part date back to the days of the Roman Emperors The whole arena of the Colosseum at Rome being flooded, mimic sea-fights took place, in galleys carrying gladiators, who fough
to the death. In recent times, at Sadler's Wells Theatre, the stage used to be removed, showing a lake supplied from the stream flowing close by, on and in which performances took place The Paris circus is remarkable for the beauty of the building and the ingenuity of the engineering details. The following description of it we condense from La Genic Civil.
In the Rue St. Honoré is a building known as the Salle
Valentino. This bas been transformed-almost rebuilt, indeed Valentino. This has been transformed-almost rebuilt, indeed -into a beautiful and luxurious circus, to which has been given
the title Arenes Nautiques. It is intended to fill two distinct purposes-namely, to be used as a circus for equestrian purposes-namely, to ae used as a circus for equestrian during the summer it becomes a huge and splendid swimmin ments The engravings on page 222 indicate 1 froy and Gridaine We have omitted the vestibule, foyer, \&c. The building was
Wised used until recently to exhibit the panorama of Reichshoffen, and the portion of it with which we are concerned is a great
circular hall about 110ft. in diameter. In the lower part of thi is a circular tank, 79 ft . in diameter, with a gallery running round as shown in the section on page 222 .
In the centre is placed an hydraulic ram. To the top of this am is fixed a huge iron saucer, 44ft. in diameter. This saucer can be sunk below the level of the water, the surface of
which is then available for aquatic performances ap, and the water run out of it, it supplies a firm floor for raised and men. All this seems very simple, but the details have required much consideration, and have been very ably carried
The building accommodates 3000 spectators. There are six tiers of fauteuils which are surmounted by a tier of boxes, above is a café which serves as a foyer, and several bars. The orchestra is placed in a large balcony over the entrance to the stables,
which last have stalls for twin which last have stalls for twenty horses. In carrying out the
internal arrangements the contractors had serious difticulties to internal arrangements the contractors had serious difticulties to contend with. The whole of the fittings are removable, in order
that the space may be cleared when the building is converted that the space may be cleared when the building is converted
into a bath. The amphitheatre of seats and boxes is carried on into a bath. The amphitheatre of seats and boxes is carried on
girders, supported on twenty iron columns, united by a circular girders, supported on twenty ron columns, unted y a circuar last had to be so constructed as to be quite rigid under the place now in another. It must be capable of disappearing during a performance, and without delay. It must during the bathing season be maintained at such a height as to provide a hallow bath for those who cannot swim.
To comply with theso
To comply with these conditions, the saucer is built up of twenty radial double-flanged girders, rivetted outside to a con tinuous ring of plate iron. The girders are floored with stou planks to make the bottom of the saucer. The hub or boss from ram in the centre, as shown in the enlarged section at the bottom of page 222. The rise of the ram is caused by the action and desc-barrelled pump. The saucer is guided in its ascen and descent by planed slide bars round its outer rim. When it rotate slightly on its more than its proper height it is caused to means the ends of the radial girders are brought over twent shoes, fixed to the twenty columns before mentioned as carrying the inner ends of the inclined girders which support the tiers of girder ends settle themselves down firmly on the shoes. The inner portion of the saucer is at the same time carried by five stout columns ranged round the ram at a distance of 5 ft . from the centre. Four of these are shown at A, page 222. A starupper part, where it is retained by star terminates in a collar, in which is loosely held the head of one of the columns. During the ascent of the ram the vertical columns are raised with it, by means of the star-shaped crossheads; during its descent the columns enter pipes fixed in the
ground, from which they are withdrawn as the saucer rises, until, when it is at its greatest elevation, they hang quite clear e cross-head. A movement of rotation carries
 said, a little water is allowed to escape, the saucer settles down,
its
outer edges resting on supports as described above, and the its outer edges resting on supports as described above, and the
central crosshead on the five columns. To lower it, it is only necessary to raise it a little, turn it round a little on its axis, and suffer it to fall by allowing the water to escape from beneath the Inda-rubber buffers and cushions are used to prevent noise and give the whole an even bearing on its supports
When the saucer is used for equestrian performances its floor is covered with a mat of esparto, weighing about a ton, brought
in on two iron carriages. This is said to be much better than sawdust. The rise and fall of the saucer is 10 ft ., and the power
required about three horses for five minutes,
To transform the hall into a swimming bath all the seats and

AQUATIC CIRCUS, RUE ST. HONORE, PARIS.
mons. L. EDOUX, ENGINEER.

boxes are removed, and the saucer is droped to such a depth
below the surface that the water in it is 3 jot. deep; all round it outsidid is the deep water for those who krow how to swim.
The eventilation of a building standing over a alake, as this does the water in which is almayskepeptat temperature of 7 Theg. Fah., diately drawn off, would render, by condensation, everything in the building damp. To prevent this a powerfurul fan, 1 , ixed int the
cellars, draws the air from a turret in the roof, and after forcing felars, draws the air from a turret in the roof, and arter forcing seats at a temperature of about 86 deg. This would appear to se quite warm enough, but when a hiigher temperature is wanted
the lantern on the top of the building is closed, and the air is then cuased to circulatat twice through the heating chamber. All the arrangements for renewing the water are very in
genious, and well carried out. An abundance of water it btained from a well, which supplies about 50 cubic metres, 1755 cubic feet per hour. There are two distinct deliveries
from the bath, one at the surface to draw off sum and froth and the other an the bottom, which takes off the coolded water which has sunk, leaving the hotter fresh water on the top. The water is heated by the condensers of the electric light engines.
M. Solina is is the engineer in charge of this department.
Power is supplied by two Corliss 150 horse power epgines, driving two upplied by two Colleters water-tube boilers. The lightiting is effected by twelve Soleil lamps, six arc lamps, ten JJablochkof lobes, and 2000 eight candle Edison lamps, used for decorative loues, and
purpoes.
purpoess The whole interior of the building is luxuriously fitted up, and the entertainments provided are of the highest class, on on
the 12th of February the frist part of the programme of that usual in a circus. A Atter the last act the heavy mat was removed, "And then," to quate the wordo of M. Mencenr Mamy,
"We saw the immense saucer desend slowly, and immerse itself majestically in the waves, When the water began to musuh across
 triesistitee and the warmest applause saluted this new attrac
tion which permited the nudience to realise the progress tion, wrich permitted the
modern mechanical science,

LEGAL INTELLIGENCE.

THE JUDICIAL COMMITTEE OF THE PRIVY COUNCIL. ebruary 2nd, 3rd, and 4th, 1886
(Before Lord Monkswelt, Lord Hobhouse, and Sir Richard
ahurch's pettition-wiLson's objection.
Tuis wasa a ase of considerable interest to engineers, as sigorous
 number of withesses was called, some of them werl known in the
number
marine marine engineering world, an Inree hass pearing was large.
two existing patents for a further term of fortion forten of his

 valeves and pistons, that the disiadanatage under which the ordi-
nary silid valve labours is very great, as the presure upon it producoses great fritctoin, ,ooss of powerean, and wearing of of the esurfaces
into hollow and into holows and protuberanees; that engineers irequently made
the sidide evives small in order to avoid these disad vantages ; but this expedient, by reducing the wearing surfaces and increasing the extent of the passages from the ports to the oylinder, intro-
doued greater evis than those oit was intended to avoid. The
petition then petition then goos on to say that some foreign patents had been
grantell, and that the two patents for whioh extension was asked granted, and that the two patents for wiich extension was askee

 although the licenses had disontinued acting ipon them. have been transferred to a limited opmpany, who had allo sunk a
 mouth Exxibibition, and thatit an engine on theite London and Sount Westorn Railway fited with Church's slide valves had run
120,000 miles with them, and that the use of these H.jI.S. Camel since 1877 had induceed the Admiralty to tive orders to fit them in other vessels of of the Navy, and, further thats
Mesesrs. Caird and Co. had fitted them in the Bengal and doromandel in engines on the triple expansion prins.
ciple ciple. It was therefore ursed in the petition that the proper
development of the invention was only now being ceveopment of the invention was only now being commenced,
especially a shigh pressures and triple expansion were being introduced, and that thero was every prospect of reaping sufficient
remumeration if the patents were extended. A ppended to the Petition was a voluminousus statement of acoount, the usummer wo
which showed that in the fourteen years of the patents currenoy
 salary or allowance for his time
Co application was opposed by Meesrss. Alexander Wilson and
Co, of the Vauxhaill Ironworks, Lambeth, the makers of Payton
and
 upon the patent speeification of Mr. F. W. Webb of
1869 , as an ant anticipation of all that
 Mrown, the Ato. Ar. Mcocall, and Mr. Ed ward Dove; and for the llearness emphasised the the case at great length, and with muoh Clearness emphasised the ground of the petition as above quoted.
From his
pare invention, as shown in the No. No. 563 patent of of tis2 : 1 The patent

 Valve spindle, the slide valve itself being free to revolve in the
bridee of the valve spindle; (2) a new method of constructing
piston packing rings; and (3) an application to rectangular slide
valves of the arrangement for relieving the back pressure. Ihat of Wer tob, and the dissimilarity of oh of Church's invention, the following Mr. Imray explained the action of the slide valve, and the inge nuity of the arrangement at the back of the valve for relieving the pressure. He showed that the circular shape of the slide
alve and its freedom to revolve while at work caused the rubbing arfaces to continually change their relation to each other, and so prevented the grooving or scoring common in valve and cylinde aces, and that this action was, as he illustrated, exactly the action ery useful one, as the pressure on the backs of slide valves with very high-pressure steam amounted in some cases to several tons, arrangement for relieving this pressure. He also pointed out that cir-cular-shaped steam ports reduced the length of the e passages between the valve face and the cylinder, and consequently saved steam.
In cross-examination by Mr. Mourron, Mr. Imray admitted that ther was no novelty in the general mode of equilibrating slide
therew
values by a telescopoic arrangement at the bock, novelty in slide valves of circular shape, nor in circular ports. He applied in comber, thation with novelty was in the ring, and in the the L-shaped cap riding over all on springs, and having the power of slight
oscillation so as to accommodate itself to the surface of the steam chest cover. Mr. Imray admitted that Church's provisional specihe steam ports, and that there was no difference in the lengths the steam passages under the patents of Webb and Church. In ross-examination by Sir R. Wenstren, Mr. Imray added that specification would not have shown an ordinary workman how to
make the curved port, but he would not go so far as to say that Webb's arrangement would not work.
his firm had fitted Church's slide valve answer their purpose extremely well. The L-shaped cap was in his practice assisted by placing under it a few turns of Tuck packing. In cross-examination, Mr. Rennie admitted that th
springs which held the L-shaped cap up to its work against the
theam chest cover were not S-shaped but nanner of a carrige spring, and that these lotter were what th understood to be Church's valves. He further stated that the letails of the patent drawings differed somewhat from the valves
he had fitted, but he emphasised the value of Church's invention as giving a satisfactory back balance.
, Sted the Peninsular and Oriental Steam Navigation the two shipe of his company, and that he knew very other way
than Church's of making a fat slide-valve workable under the high pressures common in triple expansion engines. He laid great
stress upon the automatic action of Church's arrangement in accommodating itself to the steam chest cover; because the former practice of setting a ring down on the back of a a slide-value, by
means of set pins through the steam chest cover, was liable to the danger of some set pins being more tightened than others, and
the uniformity of the action of the balancing ring was thereby the uniform
destroyed.
Mr. Archibald Thompson and Mr. Neville Evans confirmed Mr.
Nanuel's conclusions from experience in the Athenian, of the Union Lhine, and in one of the ships of the Leyland Line. In both these ships the valves were, they said, working splendidly, as also
in H.M.S. Camel. In cross-examination these witnesses admitted that there were U-shaped springs and not S -shaped springs in
the valves they referred to, and that the arrangement in these valves was almost, if not quite, the same as shown by the drawing
of Church's 1867 patent. The chief and secon
good worrking of the valves in that ship.
Mr. Church stated that years in perfecting his system of balancing valves. He had tried Nis earlier patents on the Midland Railway and on the Great
Northern Railway, but he had never been able to produce any thing that would work satisfactorily until he devised the arrange was now petitioning. He stated that he had never seen Webb' specification until after his own provisional specifcation in ques
tion had been filed, and in his opinion Webb's slide valve would non had been filed, and in hin opinion Weabs silde value would
not work, beeause it would clog with grease; steam would leal past it,
valve.
constru constructed by them under Webb's specification, and the Grea Eastern Railway had also paid him a royalty under threat of legal
proceedings, but they have not used any of his valves since. IIr Wilson, who was opposing this petition, had applied to him abou
his slide valves, and he had designed a valve in Mr. Wilson' drawing-office.
In cross-exan
In cross-examination by Mr. Moutron, Mr. Church stated that the important features of his patent were the mode of forming the edges of the port faces, the L-shaped packing ring, and the com-
bination generally. He admitted that Payton and Wilson, the opposers, do not use an L-shaped packing ring nor an S spring,
Messrs. Jack and Co., of Liverpool, were fitting an engine witl
In cross-oxamination by the Atronver. Geverat, Mr. Chureh
stated that the reason that Messrs. Fowler and Co and thers ha discontinued to use his valves was that they lasted too long T formo of ring as shown in Webb's specification was not the same
as his patent. Webb did not in his patent desire a lunar-shaped port, as he showed the outside edge struck from a common centre In re-examination by Mr. Astrov, the witness said he had neve bination of this kind made all the difference between success an failure, and the merit of his patent lay in the peculiar combina-
tion. A dispute had existed between himself and Fowler and tion. A dispute had existed between himself and Fowler and Oo,
and Sir Fredk, Bramwell had represented Messrs. Fowler and Mr Imray had represented himself.
long speech, the most important parts by Moulton in a ver the exception of the packing ring, there was no novelty in the specification that had been put into use; the S spring, upon which
emphasis had been laid in the specification, had never been used emplasis had been lain ring had been patented by Church in earlier and expired patents. The law was very generous to patentees known parts, or even to add to a well-known grouping a single additional part, provided such new combination contained merit But ine law was also very strict in the sense that it insisted in the
use in practice of every one of the parts forming a combination which was the subject of a patent; and if it were chown that single material part of such a combination was not included in the
practice of his patent by the inventor the practice of his patent by the inventor, the law said that merit
could not be claimed under such a patent. Now, it had been shown that the S spring, upon which so much stress had been laid, was not used in any one of the examples brought before the court to prove merit; and he submitted that the petitioner had departed in
practice from his combing manufacturing something not properly connected with his patent or included in it. The learned counsel then described the action
of a sidevalve, and pointed out what he considered features of

Mr. Flannery was the principal scientific witness called by the
Med. pposition, and he stated that, in his opinion, Webb's patent had valve capable of revolving automatically within the band that gave it the rectilinear motion requisite for opening and closing the
ports, Webb had also described a system of making the curvature
of the ports to a greater radius than the curvature of the edge of
the slide valve, and Church had adopted the same principle, and had merely stated in his patent an empiric amount of increase in
the radius of the curvature of the ports as patented by Webb; but urther stated that Webb's system would counterbalance the pre sure on the back of a slide valve, and in all essential particulars. except the use of a junk ring on the back of a slide valve, and
except the S-shaped spring, the two patents were identical. The could not possibly work, but would packing as deseribed by bo Church walls of the cylinders
In oroosse examination by Mr. Astov, Mr. Flannery admitted that
small differences were very important in mechanical arrangements and that the L-shaped packing ring was not arranged in the same witnessed the working of valyes constructed by Webb
In examination 3y the ATtorikr-GENERAL and Mr. Moulton, scopic part of the hack of the valve against the stea press the televas essentially different to the action of an S -spring, as described cification
Mr. Beldam, consulting engineer, produced a drawing of an
arrangement which he had made for the engines of the White Star teamers when he was manager of the Vauxhall Foundry, Liver-
 L-shaped ring, as described by Mr. Rennie, would transform the became quite hard and solid during us.
Mr. Wilson and Mr. Payton also gave evidence to call the
attention of their lordships to what they considered the identity
In the course of a short, but exceptionally clear speech the TTTORNEY-GENERAL regretted that the petitioner's case had not ben presented to their lordships with more candour, as it had
been so opened as to lead to the impression that certain features of veen afterwards made clear that the petito patent, lay in combination; for example, the use of a circular valve was not new, the differential radin in forming cylinder ports s novel, except in combination with each other. It was pertinent nd Peacock, and Marshall and Sons, had used the patent for a time, but had afterwards withdrawn, as, surely if it had contained the great merit claimed, some
reasonable explanation for discontinuing its use would be given. That, however, as well as the practical value of the contention patent itself, would be entirely a question for their lordships. If
they thought merit had been shown, coupled with insufficient reward, they would no doubt recommend the extension for which Lord MoNKSWELL, in giving judgment, said that the essence of the opposition lay, in the comparison between Webb's and the onsidering them similar, lay chiefly in the practical faot that it practice, whereas much evidence had been called to show that omeone who had actually seen his arrangement at work under
team, had been brought forward, their lordships would have attached more importance to the alleged similarity, but no such
vidence had been given. On the other hand, the Admiralty, and the Peninsular and Oriental Steam Navigation Company, and others, had been shown to be using the valve under the petitioner's
patent, and great weight of evidence had shown that it worked ell. It seemed therefore that there was a prospect of the nventor reaping a further reward by the use of his patents in
these directions, and on the whole, their lordships had decided to ecommend the extension of the patent for a further term of five In response to Mr. AstoN's applioation for costs, Lord Monks-
well said that the case was a very doubtful one, and therefore he
would not allow costs against the opponents.

COURT OF SESSION - FIRST DIVISION. Fiday, March 5th
Before the Lord-Presidmant, Lords Mure, Shand, and Adam.)
The pursuer, the sole partner of the firm of John and Henry Giddlesex, asked the Oourt to interdict the defenders, Drysdale nringing letters pagine Works, London-road, Glasgow, from granted to the pursuer for an invention of "improvement in
pumping engines," and, in particular, to have them interdicted rom " making, selling, or using without the pursuer's consent, an ting to pumping engines in which the pumps ar suction and discharge pipes to be swivelled and set at any angle without interfering with the driving engine, and constructed in hat the defenders had, from 1st January, 1884, until the raising of he action, manufactured and sold, or caused to be manufacture direct infringement of the letters patent. The defenders pleaded that the letters patent founded on were null and void, in respect
(1) that the alleged invention was publicly known and used prio 1) that the alleged invention was publicly known and used prior
to the date of the letters patent; (2) that the invention was of no nis letters patent to dis tinguish what is new and not claimed by him from what is new the letters patent founded on. In the Outer House, Lord M'Lare and Professor Tait, as skilled assessor, were not of opinion that Drys entitled to be absolved from the conclusions of the action, and to have the action dismissed with expenses. At
found that the pursuer's patent was quite valid
The pursuer reclaimed to the First Division, and their Lordships and gave additional expenses. The Lord-President said that the objection to the validity of the patent stated on record had no been insisted on, and the only question remaining was whether the
defenders had infringed the patent. On that point he agreed with the Lord-Ordinary that no case of infringement had been made
out. The pursuer's patent was a combination of known mechanical stitute an infringement all the essential parts of the combination must be adopted. The essential feature of pursuer's patent was a bolts and a circular groove, enabling the pump case to turn all round to any angle. The defenders, however, did not tee-headed bolt and groove, and their machines, while possibly capable of being turned to certain definite angles-though that had no infringement of pursuer's patent. Lord Shand, concurring said that defender's pumps had never been bought or sold as
swivelling pumps; had never been so used, and, what was of more importance, were not capable of being so used. The defenders, by the adoption of a D-shaped instead of a circular flange, had made
a distinct disavowal of any intention to manufacture swivelling pumps.
Counsel for pursuer and reclaimer: The Lord-Advocate, Mr, Guthrie Smith, and Mr. Young. Agents: Adam and Sang, S.S.C,
Counsel for defenders and respondents. Mr. Pearson and Mr,
Ure. Agents : Fodd, Simpson, and Marwick, W.S,

THE MATHER-THOMPSON BLEACHING PROCESS.
MESSRS. MATHER AND PLATT, MANOHESTER, ENGINEERS.

Fig. I.-MATHER'S STEAMING KIER.-TREATING CLOTH IN THE ROPE STATE.

THE MATHER-THOMPSON PATENT BLEACHING PROCESS.
By a combination of improved processes, partly mechanical and partly chemical, Mr. W. Mather, M.P., of the Salford
Ironworks, Manchester, and Mr. J. B. Thompson, of New-cross, Kent, have introduced what may be fairly described as a new method of bleaching textile fabrics. This new system is termed the Mather-Thompson bleaching process, and the successful working of the several operations for completing the process we had recently an opportunity of seeing practically demonstrated at the works of Messrs. Ainsworth, of Halliwell, near Bolton.
The main features of the changes which have been introduced are that in the first stages of the bleaching, after the usual cleansing from size and loose impurities, the entire alkali treatment is completed in one operation, in Mather's patent steaming kier, and the use of lime and soda ash in successive long continued boilings is entirely dispensed with, whilst the subsequent whitening of the cloth is effected instantaneously in passing through the Mather-Thompson continuous chemicking machine. The appliances for carrying out the Mather-Thomp-
son process of bleaching are shown in our illustrations hereson process of bleaching are shown in our illustrations here-
with and on next page. Before, however, entering into a detailed description of these appliances, the special features of the Mather-Thompson process will perhaps be better understood if we give a brief outline of the ordinary practice of bleaching with which the new process is to be contrasted. The bleaching of textile fabrics consists in the main of two operations-first, the treatment with alkaline solutions; and, secondly, the whitening process, the agent employed for which purpose is almost exclusively a solution of bleaching powder. These two operations under the ordinary system involve, however, eight
different treatments with re-agents, with eight attendant washings, and the whole process will be most readily set forth in tabulated form as follows:-

Alkali. Lime stew	Bleach.	Acid	achine Washes.
		(2) Sour.	(1) Wash.
(3) Grev bowk.			(3) Wash.
	(4) I. Chemic.		(4) Wash.
(6) Whito bowk		(5) Sour.	(5) Wash.
	(7) II. Chemic.		(7) Wash.
		(8) Sour.	(8) Wash.

In going through the above process the cloth is actually in work forty hours. By the Mather-Thompson system the processes are practically reduced to three, as shown in the following table, (2) and (2a) being merged into a single process by means of a continuous machine, and the period during which the cloth is actually in work is reduced to twelve hours:-

The first operation of the Mather-Thompson process, and which embraces the patented improvements introduced by Mr. W.
Mather, is the Mather's patent steaming kier, shown in Figs. 1 Mather, is the Mather's patent steaming kier, shown in Figs. 1
and 2, which represents respectively the method of working
cloth in a rope state and in full width state. The cloth or yarn to

be bleached full alkali treatment of the cloth in bleaching. It replaces the | soda. It is then deposited in galvanised iron open framework |
| :--- | :--- | \left\lvert\, \(\begin{aligned} \& ordinary kiers, whether of high or low pressure, and enable

\& all boiling in alkali to be dispensed with for every kind of\end{aligned}\right.\)

FIg 2. STEAMING KIER,-TREATING CLOTH IN THE FULL -WIDTH STATE,

wagons, eash holding about a ton in weight, and these are run \mid cloth or textile material. By means of this apparatus all upon rails into what is termed a "stelming kier." This steam- descriptions of cloth or yain can in a space of from five to eight

THE MATHER-THOMPSON BLEACHING PROCESS.
messhs. mather and platt, manchester, engineers.

Fig. 3.-THE MATHER-THOMPSON CONTINUOUS CHEMICKING MACHINE,
chemic and sour treatment in bleaching. The entrance door to sure, and the joint is made tight by a self-acting arrangement without the use of bolts. The loaded wagon having been enclosed in the kier, the soda held in solution in the cloth does its work with the aid of steam under a pressure of not more tion of caustic soda being kept up from the top for the purpose tion of caustic soda being kept up from the top for the purpose
of preserving the cloth moist and preventing damage from dry heat. Before being removed from the kier the cloth is thoroughly washed in hot water by a circulating pump, and as one set of wagons is taken out, another set filled with cloth immediately takes their place, so that there is no pause throughout the day in the use of the kier. This one operation, as already stated, completes the entire alkali treatment, and lime is wholly dispensed with, as well as the boiling in kiers. The cloth is then passed on to the Mather-Thompson continuous chemicking ap-
paratus, shown in Fig. 3, the paratus, shown in Fig. 3, the
main feature of which is Mr . Thompson's invention for the direct application of carbonic acid gas to cloth previously saturated with a solution of ordinary bleaching powder, the result of this application being the immediate oxidation of the colouring matter of the fibre,
and its consequentinstantaneous whitening. Our illustration clearly shows the operation of the continuous chemicking apparatus through the order of treatment: (1) saturation with weak chemic, squeeze and passage to gas chamber; (2) wash (running);
(3) soda scald ; (4) wash; (5) (3) soda scald; (4) wash; (5)
repetition of (1), but with weaker repetition of (1), but with weaker
chemic ; (6) wash; and (7) souring; that further detailed description is scarcely required, and we need only add that as the cloth travels through the continuous machine in four strands in the rope state or in the ope state at the rate of 60 to 80 yards per minute, the actual completed in a period of not completed in a period of no The next and final operationthat of souring-which is as essential to this as to every other system of bleaching, can either be included in the continuous process or made a distinct opera tion, as may be the most suit Tho meet requirements. cured by this new method treatment are that only one-fift of the water is required for washing, as compared with the ordinary system, and a saving of about one-third the chemicals is effected; there is also a great saving of time and fuel, whilst there is not one half the wear and tear. In addition to these direct advantages, the use of lime being wholly unnecessary, the cloth is less liable to the
usual stains in bleaching, whilst it undergoes handling during the process
Out of all the economy of time, labour, and material which has been effected, the great saving in the quantity of water required by the new system may, however, be regarded as perhaps one of the most important features of the MatherThompson process. Long since all the suitable and available streams for bleaching have been appropriated; and in some instances bleachers have been compelled to get a portion of their supply by pumping from the water-bearing strata below the discovery which so greatly minimised sources of water supply, a incalculable value, It is even thought that, with the present charges for bleaching, it might be found possible to establish works in Manchester or other manufacturing centres, and, with the small quantity of water required, obtain this from the ordj-
nary water supplies, which will i
lution in the bleaching industry
In closing our description of the Mather-Thompson process-
which we have dealt with as a combination of practically two classes of improvements, by the alkali treatment in the "Mathe Steaming Kier," and "Mather-Thompson Treatment" in the chemicking process-we may add that the alkali treatment is "chemic and acid" method of bleaching as with new "continuous chemicking process." It will therefore be available for calico printers and dyers as well as for bleachers, who do not care to make the necessary alterations for adopting the latter machine ; and it is, indeed, in the "steaming kier" and the caustic soda treatment, which is the really novel and striking feature of the new process, that the greater part of the saving
is effected. is effected.

HALL'S GRADUAL REDUCTION CEMENT MILL.

HALL'S CEMENT ROLLER MILL.
The above engraving is a perspective view of the roller more complete notion of the exterior design.

ELECTRIC LIGHT IN THEATRES
Evidences of the practical, as well as photometric, superiority of the electric light over all other illuminants wherever it can employed, or wherever a sufficient number of lights are great rapidity. The light is now without doubt in that state in which its merits alone will push its adoption, and that it is being adopted much more extensively than is generally thought. A good illustration of the satisfactory way in which the light is installation has now completed its second year of working, and this it has done for the two years without a breakdown or any mishap in the light, The plant consists of a 12 -horse power

Clerk's gas engine, manufactured by L. Sterne and Co.; a
Siemens L.D. dynamo and E.P.S. storage cells; and there are 350 Swan lamps, 108 volts, 16 C.P.
From Mr. E. L. Berry, of E. L. Berry and Co., by whom the installation has been carried out, we learn that the engine has maintained its high character for this work, and has during the either in starting or when at work. The great advantage secured by this engine is its regular and smooth action, resulting from an impulse at every stroke. It was overhauled in December last, and the water jacket cleared of its deposit of lime, an operation which is not perhaps as often attended to as the use of hard water makes necessary. The only renewal has been a few piston rings. Besides doing its ordinary work of driving the dynamo, it is used frequently for pumping water into the tanks to supply the hydraulic fireproof curtain and the lift The accumulators have given
satisfaction; but as a difficulty was experienced in the leakin was experienced in the leaking
of the teak boxes, it was decided about six months ago, while making a change, to put in some of the new cells, containing all the latest improvements and supplied in glass boxes; and of these new cells, although put to very severe tests, not one, we are
informed, has failed. Several of the original teak boxes have been packed with new positive plates and lead connections, and these have answered admirably. Up to January 16th of this year Mr. Berry informs us that he had one cell of the old type which has been in constant work for two years, and had not on any occasion failed; it had not been repaired or attended to in from this that there is no reason why, when carefully made, the accumulators should not last throughout this length of time without being in any way renewed, and it is expected that this result will be attained with the later cells put down. The
dynamo has run very well. A dynamo has run very well. A new commutator was put on in
December last, the old one during its run was turned up three times. There have been ten pairs of brushes used during the twelve months. The lamps show a somewhat better average than last year, on account of the electricians being able to get bons repaired. During the yearbons repaired. During the year
seventy-eight lamps were re-seventy-eight lamps were re-
newed, from the following causes: Thirty-eight failures of carbons, ten by accident, and thirty by loops breaking off. The explanation of the fact that so many loops were broken off is that eighteen lamps were used to light up a scene of "The Great Pink Pearl" for six months, the constant moving about breaking the loops, and occasionally one got put up still burning, having run for 2500 hours.
On the next page will be found an abbreviated account of the working expenses, and also the repairs and renewals for the year, which have been handed to us by Mr. Berry. This works out to 37 s . 8d. per day, taking 300 days per year, and if we take only 300 of the lamps as at work, we have a cost per day each lamp of 1.5 d ., which, considering the number of hours worked and the number of lamps destroyed owing to the special circumstances of their employment, may be taken as very satisfactory, and as showing that the cos , advantages, costs but little more than gas, and places in thations and attractiveness, to say nothing of its healthy coolness and sanitary superiority
The following certificate from Mr, Edgar Bruce as to the
working of the installation is of interest:- "I have great pleasure in again certifying to the successful working of
the electric lighting at the Prince's Theatre. It has been in operation for more than two years, and during the whole of that period it has not failed on any one occasion. I am also
greatly pleased at its adaptability for stage purposes. The greatly pleased at its adaptability for stage purposes. The,
lighting of the stage during one act of 'The Great Pink Pearl' lighting of the stage during one act of 'The Great Pink Pearl'
was most successful and original, and I hope before long to still was most successful and original, and
further try its uses for stage effects."

Total for working
Total for repairs,
sce.
Previous year
Grand total for two years' working ..

 $\overline{2460120}$

LETTERS TO THE EDITOR

[We do not hold ourselves responsible for the opinions of our
Correspondents.] STR, - Replying to ProficAN BRIDGES. current number, I would first observe that he would do well to them to press. With regard to his statement that the Britits
publio-of which Professor Smith deems himself to be the very soul, oracle, and cynosure - heartily enjoys my graphic con structions as good jokes. I need only mention that immediately
after the publication of my Statics, which is the embodiment ather the pobiaiation of my Statios, which is the embodiment
these " "good jokes," I received letters from several professors, English and foreign, congratulating me upon its value and useful-
ness. Amongst others, the late Professor Fleeming Jenkin, who ness. Amongst others, tese late Professor Fileeming genkin, whot
I white expressing his appreas an original work, not a mere compilation from other books," useful to students, \&c.
I must also resent the peculiar tooch of familiarity about the
phrase, "who do not know Mr. Graham as well as we do" for am totally unconscoious of any acquaintance with Professor Smith, he may have with my writings, in which respect he is on no better
footing than those American engineers, who, he tells us, are diligent readers of your paper.
Coming now to the more serious part of his letter, Professor
Smith is entirely wrong in supposing that Profesor W Smith is en brely wrong in suppos bes and frofessor Waddell taking the sum of the horizontal reactions at the base equal and
opposite to the total round load, he implicitly assumes that the free end of the ection bend over relatively to the ebase. Professor
Smith follows him in this assumption Smith follows sim in this assumption, and therefore commits sim-
self to the absurd deduction that a beam can be bent without a
bent bending moment. The alternative assumption that the seotion
moves sideways as a whole, piaces it in the category of a girder fixed at both ends and bulging in the middle ender the action of
wind, in which case the leeward column would wind, in which case the leeward column would be in tension
instead of compression. What Professor Smith calls my "fancy stress diagram" was shown-as I expressly state in the paper--to
fit one of Professor Waddell's formula, my own treatment of the case. Professor. Smith objects that I
have no right to take the joint K as a pin joint, to that in his own "ideal" diagram he treats not only the joint but every other joint in the section as a pin oiont. Not satisfied trusses, which have no existence in reality, and which totally alter the distribution of wind load. Professor-Smith's diagram is
based on the following three assumptions:-(1) That two king post roof trusses must be added to the real section in order to the strut D4; (2) that the reactions at the base of the columns are ticular slant which permits the thon lines must have just that particular slant which permits the constant direction of D C in the
stress diagram to bisect the line O4. Now, deny the first assumption, and the other two collapse.
Lastly, Professor Smith charges me with not knowing the distinction between plus and minus, insomuch that I ignore the principle that the moments on opposite of the section at A are equal fact that I was handling Professor Waddell's tools, and that, there fore, 1 sought to use them in his sashion. As a matter of fact, I
hold that there is no moment whatever at A exceept that arising I could imagine a bending moment to arise at A from other which was by implicitly coanging their signs. Of course, it was perfeetly with an absurd supposition, and I was obliged to discover some reason to acoount for it. By ohanging my signs, Professor Smith
merely brings us back to the well-known principle that, if two equal and opposite couples act in a plane, the sum of their moments,
$P d-V b$, vanishes but for any point whatever in the same plane ; the only logical
consequence of which in this instance is that there is no bending consequence of which, in this instance, is that there is no bending
moment at the point A, other than that due to buckling under In conclusion, I would add that, if Professor Smith's diagram be correct, it should still hold when his wing-trusses become indefinitely small so as almost to vanish into the columns; but it will be
seen that in this case the points O AB C E and F pass to infinity, seen that in this case the points OAB AE and F pass to infinity,
and, therefore, by assuming the wing.trusses indefinitely small so as to approximate to the real shape of the structure, we arrive at
the precious result that the stresses in both columns are of infinite intensity. Under the influence of such mighty stresses as these it is not astonishing that Professor Smith's diagram, together with March 15th.
free trade and no trade
$\mathrm{SIR},-$ For the information of Mr. H. Robinson, I may say that the
U.S.A. Treasury estimated in 1869 that $600,000,000$ dols. of their bonds were held in Europe. Last year the estimate rity was $12,000,000$ dols. registered bouds. If bonds, and registered bonds, mean the same thing, and ir these estimates are worth any-thing-points on which I can express no opinion-then we have
exported to the States about 98 per cent. of the bonds we held in 1869, which was probably not less than nine-tenths of the above mentioned six hundred millions.
Doubtless we have purchased in exchange title deeds to land and
miscellaneous securities, but not to miscellaneous securities, but not to nearly the same amount. The
balance has been paid to us in food, and this accounts for part of our surplus imports from the United States. Similar facts may apply to other countries,

Mr. Robinson replies to all this by anticipation, and says "it
does not matter," but this is not fair on his part. He has hitherto maintained that our surplus imports are revenue payments of freights and interest, and pronc. Now he sees uial they may be modify his optimism, it only causes him to widen his arguments; thus he commits a sin like that which he blames so severely in "Trader," for whose letters I , at least, am much obliged.
Mr. Robinson cannot reasonably assert that repayment of a loan
by a solvent debtor is as advantageous to the creditor as the conby a solvent debtor is as advantageous to the creditor as the con
tinual receipt of interest would be, unless the creditor re-lends the capital at not less interest than before, which is just the doubtfu
point in the matter before us. Our surplus imports are food. Mr point in the matter before us. Our surplus imports are food. Mr
Robinson says "they are value for our capital, so its repayment leaves us no poorer than before." That may or may not to so. 1 Since 1869 we have beautified our country greatly, and have largely increased local rates; but fine buildings, palatial offices, magnificent hotels, drainage works, asphalte paths, and endowments for litera ture and art, are only very indirectly and very precariously capital,
and interest paid by ourselves to ourselves on debts by local rates is not profit, at least as capital and profit used to be understood If need be, I will go into these points in greater detail again. Such figures as 1 have seem to show that we are not now turning food
into profit-bearing oapital by well-directed and steady labour at the into proit-bearing o,
rate we used to do.
I annex a table of exports and percentage surplus of imports, and neasure of profit on foreign triws that the latter quantity is no have made moneno on the whole, though our imports exceed our exports. The United States of America do so too with the figure the other way. Can any one give us the hi?
of Scotoh G.M.M.B. pigs annually since 1860 ?

1860 to 1884 Exports, Imports, and State of Trade.

Remarks on trade.

Cenerally prosperous. U.S.A. Civin War commed; trade quiet. Cotton famine. Taxeos remitted 1 1.8 million $£$. Clvil War ends, Cattle plague begins, Taxes re mitted 32 milition Overend $\&$ Gurney failed. Trade outragesat Sheffield. Trade depression on ontitinues. Harvest excellent. Traxes imposed 1.3 million till dull. Taxes Imposed Suez Sanal opened. Trade stil d Trade dull. Trilion. Prices falling. Taxes remitted 3 Colilie failed. continues. Taxes remitted 0.4 million $£$. Harvest better. Trade worse. City of Glasgow Bank failed. Miseradio harrest. Rents fall. Trade much better Taxes imposed 43 million $£$. million e. Trade worse. Taxes imposed $2 \cdot 8$ million $£$. E.

don Institution, Finsbury-cirous,
Maroh 15th.
Wa. Murr.
Sir, -My reply to Mr. Robinson will be very brief. He is like giving evidence. He compels me to recapitulate in order that the discoussion may. remein intelligible.
I started with the proposito
1 started with the proposition-(1) That the country in whioh
there is most employment is best off. (2) I went on to say that i. we made at home a great many things that we import ready made,
work would be found for hands now unemployed. (3) I asserted that an import duty on such goods would cause capitalists, for whose use and by whom they are imported, to buy them at home To this, Mr. Ro
positions 2 and 3 , because we paid for what we imported by commo dities made in this country; so that if Germans, let me say, worked Ior us at, for example, scissors, we worked for Germany at cotton
cloth-of course, I only use these goods for the sake of illustration sugar and pig iron, or brooms and perambulators, would do just a well. Also, Mr. Robinsoon siad many hard things of me concerning
gold. Now I do not want any mists to be stirred up, or side issued gold. Now I do not want any mists to be stirred up, or side issues
raised; and the gold question is a very obscure one, and may be made raised; and the gold question is a very obscure one, and may be mad
very, misty, and there is no evidence in his letters that very misty, and there is no evidence in his letters that Mry
Robinson knows anything more about it than I do, or could teli this minute, for the life of him, whether an abundance or a scarcity of gold makes things dear or cheap. With all this in my mind,
told Mr. Robinson that I was, for the sake of argument, or rather, for the sake of peace, quite willing to admit that gold had nothing to do with the questions at issue. Surely nothing could be fairer This is enough about gold.
Being a plain man, not versed in the intricacies of political economy, 1 turn to the Board of Trade returns to test the acouracy of Mr. Robinson's statement that we employ as many
hands in making commodities for France, Germany, and Belgium, as those countries employ in making goods for us. I have no means of getting at the actual number of men employed, but I I
think I shall err on the right side if I assume that \&1 worth of
German, French, or Belgian commodities represents as much labour German, Frenoh, or Belgian commodities represents as much labour
as does $£ 1$ worth of English oommodities. I find that we imported $£ 78,000,000$ worth of goods in 1884, and that we exported to pay for them-as I understod Mr. Robinson- $333,000,000$ worth of
goods. Naturally Iexpressed extremeincredulity, and Inow find that goods. Naturally Iexpressed extremeincredulity, and Inow find that,
my incredulity was quite justifable. According to "W. A. S. P." my incredulity was quite justifiable. Actording to "W. A. . . P.
the Board of Trade figures mean nothing ; they are simply a delusion. They represent nominal valus. valuations of the same identical goods." "W. A. S. P." kindly tell
Lest I should make any mistake, will " me whether the Board of Trade Returns do or do not supply satisfac.
tory evidence as to the real value of our tory evidence as to the real value of our exports and imports-of, in
short, our trade transactions? Whether he means that his arguments should do so or not I cannot tell, but they conclusively prove that the Board of Trade Returns are valueless; and I fancy that this discussion is well worth the space it has occupied if so important a
fact has been made clear by it. When I read the returns for fact has been made clear by it. When I read the returns for
Sheffield, for instance, in future, I shall do so with a smile, giving thanks to "W. A. S. P." knowing that they have no real meaning, wt the touch of a poltitio-ecconomical finger, and this although I

Know that importers and exporters or their agents are bound by Wh to declare what they consider to be the value of goods landed shipped at the ports where these operations take place: the
declarations being made under the provisions of the Act 39 and 40 Vict,. cap. 36 ; a penalty being imposed in case of non-compliance official statistios. If Ni the values so declared that appear in the ndeed it makes very little matter what is the value of what we export. The more we import the better we are off, and if we Your correspondents will say they do not mean this. Perhaps so but this being so, then they do not understand the drift of their
Mr. Robinson will regard all this about "W.A.S.P." as an
irrelevant digression. But it is not, because if "W.A.S. P." is right, my arguments all fall to the ground, and Mr. Robinson can has, unluckily for himself, over my body. Mr. Robinson, however, dispute the accuracy of the Board of Trade Returns. There is a ifference between the value of exports and imports, and this is It will be seen that "W. A. S. P." has proved rather too much $\underset{\text { f far }}{\mathrm{M}}$
I fancy Mr. Robinson has peculiar views concerning capital at all on-consumable value. In smashing Mr. Muir he brings his cudge on his own head. America owes England money, and pays reguarly the interest due. She takes it into her head to pay this of Ir. Robingnen the wheat has been eaten we are no poorer, say Ir. Robinson, than we were before. "It passes my understand
ing to learn how England is a penny the worse because Americ has at last paid us $£ 1000$ down instead of the interest of it .' Ingenuous Mr. Robinson. Let me ask you a question. Suppose
you hold $£ 1000$ worth of London and North-Western Railway hares, and exchange these shares gradually through the year
or commodities such as food, and coals, and wine, and and boots and shoes, are you as rich at the end of the year as you were at the beginning? Have you not spent $£ 1000$ worth of your capital through, let us say, pressure of bad times? And yet you ave had value for it ali. Now, what is the difference between in wheat? en of common sense to take his view of the matter.
A great increase is reported in the total of French exports. In February last year they amounted to $234,000,000$ of. This year
they rise to
this $108,000,000$ f. to $147,000,000$ f. There is a considerable diminution in imports. Will Mr. Robinson or "W. A. S. P." tell me whether this is a good thing for France or a bad thing, or neither? Also what paid for the extra exports. If your correspondents would doncentrate their attention or a little while on my second propo hing at a time. It gives me no pleasure to defeat "W. A. S. P." or Mr. Robinson in a war of words. I want to see what I regard as a tremendous problem discussed so that we may get hold o some practical information. I know very little about it. I do not
believe that anyone knows much. Certainly the ordinary cut-and. dry political economist does not. Is it or is it not a fact that ou men are out of work because we import what we ought to make at home? This is the question, and it is mere waste of time to bandy
words concerning side issues, such as whether I did or did not words concerning side issue
make a mistake about gold.

rotary engines.

Snr, H . I admire very much the ingenuity of your correspondent, Iurnal, but Ia deviee entirely with the opinion expressed by " Long Stroke, , that the idees of reciproating and rotary motion mus
exist in a very confused state in his mind xist in a very confused state in his mind. I cannot recall any
engine constructed exactly in the same way, but when reduced to its essential parts, it bears a close analogy to the oscillating engine,
but with the peculiar difference that the cylinder, in order to but with the peculiar difference that the cylinder, in order to
acoommodate itself to the various positions of the connecting rod accommodate
must slide instead of osoillate. So far as I have grasped the
Sol a is a horizontal cylinder constrained to move vertically in A is a horizontal cylinder constrained to move vertically in aa
sliding groove, and incapable of any movement in the direction of

its length. Pistons, as shown, work in each half, and are connected by piston-rods to the crank-pins of two revolving shafts,
B_{1} B. If steam be suitably admitted to the pistons, the two shafts will move in opposite directions. It is not necessary that the two
shafts should bo connected by external attachment, though this This being accepted as a fair deduction from " H.'s" engine, we especially so if we imagine a diaphrarm block crossing the centre the cylinder, whose introduction will not modify the action of the engine. Each engine is seen also to be very much of the characte of the oscillating engine. . .t has, as with that engine, its piston the cylinder and not one of oscillation about a fixed centre. It is, however, possible to imagine it to be an oscillating engine turning about a entre at an infinite distance from it.
I have no doubt that many of your readers have some practical
experience with high speed and rotary engines, and I should think it would be of interest to learn from these the points they have observed with regard to their durability and general working The publication of such experience would, I believe, in no sense go against such a class of engines, but would, on the contrary, serve
to render them more familiar and popular. Many of them have an established reputation and have shown that if not onem have a than the usual form of engine, yet that they are as good. I shoulc not myself be surprised to see these engines adopted for more general work as they became better known; the engine described
in your recent article on rotary engines serves to show that they may be as mucl
[For continuation of Letters see page 234.]

Royal Institution.-Professor Dewar, F.R.S., will begin a ourse of four lectures on "Electro-Chemistry," on Thursday next,
Iarch 25 th ; and Mr. Howard Grubb will pive the first ecture "، The Astronomical Telescone" on Saturday, Marol 27th. Professor W. C. Roberts-Austen will give a discourse on Triday, March 26 th. The subject of the discourse to be given by Sir Henry Roscoe, M.P., on Friday, April 16th, will be "Recent Progress in the Coal Tar Industries.

RAILWAY MATTERS

THE Glasgow Underground Railway was opened on Monday. Two hundred trains will be run daily. The line starts from Queen-
street and goes through Partick to join the Dumbartonshire street and
Railway.
The American Consul. General at Panama, Mr. Adamson, has
telegraphed to the Mayor of New Orleans, requesting hin all shipments of labourers thence for the work on the Panama Canal, as they have been induced to to bo by deception. Large
numbers have gone, but have failed to find employment. The ironwork for the Laneashire and Yorkshire Company's exchange station at Liverpool is being made by Messrs. Simpson
and Wood, who are the sub-contractors referred to in this oulun and Wood, who are the sub-contractors referred to in this column
of our last impression, and are also contractors for the Liverpool
Exhibition building. The Board of the Buenos Ayres and Pacific Railway Company
announce that the rails have been laid from Mercedes to Villa announce that the rails have been laid from Miercedes to Villa
Mercedes that is , for the whol lenth of the line-and that the Government on the 15 th of February sanctioned the opening
of the railway under their guarantee as far as Orellanos - 250
kilometres. The Railroad Gazette record of train accidents in the States,
published from month to month during 1885, contained brief notes of 464 collisions, 681 derailments, and 72 other a acidents; a total
of 1217 accidents, in which 307 persons were of 1217 accidents, in which 307 persons were killed and 1530 injured.
Derailments thus continue to form a large proportion of the whole of the accidents.
THE directors of the Preston and Wyre Railway, which is jointly
owned by the London and North-Western Rallway Company and owned by the London and North-Western Railway Company and
the Lancashire and Yorkshire Railway Company, have determined to erect at Kirkham a new station to cost over \&30,000. It is also intended to double the up and down lines from Kirkham to Preston
as soon as the operations at the former place have been completed. RoLing stock for the tramway trains, which are to be run
between the ordinary trains, at more frequent intervals and with more numerous stopping places, on portions of the Belgian State
Railways, has been ordered for speedy delivery of the principal manufacturing firms of Belgium. On Tuesday, MMI. Dubosis, , , liani.
quaert, Raymaeckers, and Goffint, of the State Railway Adminisquaert, Raymaeckers, and Goffint, of the State Railway Adminis-
tration, proceeded to (ouievrain, on the French frontier, and then
on to Valenciennes, to make themselves acquainted with the workon to Valenciennes, to make themselves acquainted with
ing of tram way trains on the Banlieue line of that city. Recrnt numbers of the Times of India and the Bombay Gazette,
contain accounts of the newly completed terminal buildings of the Great Indian Peninsula Rail way, erected from the designs and under
the superintendence of Mr. F.W. Stevens, A.M.IT.C.E. F.R.I.B.A. who has built several noted buildings in India, including the Royal
Alfred Sailors' Home. The new terminal station at Boree Bunder includes a great hall, booking offices, administrative offices, and all
other features of a great terminal station. It is built in Italian medireval cothio with Indian
the Royal Academy in 1881 .
LINEssiEN may not walk many miles per day, but a few years record makes one wonder how many miles some men walk in their
lives, and compare their life mileage with that of an engine. An American paper records that "Henry Skehan has been an employé
of the Erie road for many years, and was one of the hands who April, May and June, 1852. When the traek was laid he want the work on the LLinden section under its fract foreman, Charles to
L.
Beman, of Attica, October 1st of the same year. Since then he
 had covered 189,924 miles. This beats the record of Wm. Colary,
of Hinsdale, N.Y., recently published, by 61,444 miles. A GRNERAL classification of the American railway accidents in
December last is given as follows:-

Total

Negligence in operating is thus charged with 38 per cent., of all the
acoidents, defects of or oad with 16 per cent., and defects of equipment with 24 per cent.
The half-yearly report of the North British Railway Company
mentions that the expeniture for the half-year of \&27,4,44
includes $£ 100,000$ for the Tay Viaduct. includes $£ 100,000$ for the Tay Viaduct. The receipts per railway

 cost but $£ 7702 \mathrm{~s} .9 \mathrm{~d} . \mathrm{e}$, but the
department reach $£ 1860$ 15s.
Now that the Bulgarian question is on the point of being settled,
the Austrian press has begun again to take a lively interest in the the Austrian press has begun again to take a lively interest in the
completion of the junction railways to Constantinople. These
were to have been ready, according to contract, by the end of next were to bave been ready, according to contract, by the end of next
October, but the events of the last six months in the East have
interrupted the works, so that their completion cannot be expected interrupted the works, so that thair completion cannot be expected
till next year. The Neue Freie Presse recommends the Government to imitate France in the Eastern Roumelian Customs
question, and to withhold its definite ratifaction of the Turco-
Bulgarian Convention until Bulgaria shall hive set to work in Bulgarian Convention until Bulgaria shall have set to work in
earnest on the Zariboro-sofa iline. It it this line that causes most
anxiety, owing to the unfriendly relations between Servia and anxiety, owing to the unfriendly relations between cervia and
Bulgaira, and because eit is seen that the Bulgrians themselves
have now an obvious interest in finishing the junction between have now an obvious in
Sofia and Philippopolis.
Mresse. W. H. Bariow And SoN, the engineers of the new
Tay Viaduct, report to the directors of the North British Railway on the procresess of thene works an follows - - "Sixty e-ight cylinder
foundations, out of a total of seventy-three, have been sunk, leaving only five more to sink to complete foundations, and the
testing of them is proceeding satisfactorily testing of tiem is proceeding satisfactorily. The wrought iron
shaftsor supertructures of ten piers at the south end of the
viaduct are erected in position, and at at the first the whole of the span viaduct are erected in position, and at the first the whole of the span
is complete, with its griers.,
of thoning, and parapet. At the viaduct the gire built on the shore at Wormit-have been floated out and placed
on their piers preparatory to lifting, and the erection of the
wro on their piers preparatory to lifting, and the erection of the
wrought iron shatst of these three piers is is progres. At the
north end twenty-five wrought iron shafts of piers are erected north end twenty-five wrought iron shafts of piers are erected,
and the girders, flooring, and parapets of twenty spans are com.
pleted. During the last two months the progress of the works has been very much interfered woth by the weateter, and on some
days there has been a total stoppage of all the works; otherwise

 The viaduct is now ready to receive its permanent way for a length
of soo yards doublel line. We eonsidert that the eompletion of the
work may be looked for early in work may be looked for early in 1887, but the exact time is
dependent on the weather and other oontingencies which cannot
be estimated with certainty. In order to be ready for the opening we have prepared the specifcation and drawings for the piece of
railway required to connect the new viaduct with the existing rail-
way on the south side.,

NOTES AND MEMORANDA.

Aerthon Collapsible one Boat Company will carry a load in tension of Berthon Collapsible Boat Company will carry a load in tension of
730 lb, if the strip be out in the direction of the length of the
material, and of 570 when cut across the material The report of Mr. William Crookes. F.R.S.S., Dr. William Odling,
and Dr. C. Meymott Tidy, on the water supplied to London during February, says that the general character of the water did not
differ appreciably, in respect to the small proportion of organic differ appreciably, in respect to the small proportion of organic
matter habitually present from that of the supply furnished now
for some found in the Thames. Thus thed supply amount of the organen or was carbou 172 part
in 100,000 parts of the water, as against a mean amount of 183 part in January, and of water, past and in December, corresponding to
about three-tentho of a rrain of organ IN May lenths of a grain of organic matter per gallon,
In May last the Brevers' Journal suggested that the enormous
quantites of arabonicacid evolved from our breweries and distilleries
should be proftably util should be profitably utilised, and calculated that in our breweries
 subject has engaged the attention of a Glasgow chemist, who, in a
paper read before the Society of Chemical Industry, estimates the carbonic acid now being wasted in our distilleries as being of the
annual value of $£ 150,000$. This might be used in the MatherThompson carbonic
illustrate elsewhere.
AN extensive quarry, where the beautiful antique marbles were
obtained, covering 2000 acres, has been recently discovered in the province of Oran, near the Alediterranean coast, in Algiers. The
deposit has been obtained by an Italian who has constructed roacis contains giollo antioco, breccia, anporary sapoline, beesides black and
white marble. These fine coloured stones can be laid on the warf at Oran for about 4s. per cubic foot. The beautiful yellow marble, giallo antico, has, until this late re-discovery, bee
unknow, save by the fragments found in Roman ruins two
three enears In London last week 2697 births and 2285 deaths were registered Allowing for increase of population, the births were 238 below,
while the deaths were 472 above, the average numbers in the corresponding weeks of the last ten years. The annual death-rate pe 1000 from all causes, which had been $25^{\circ} 0$ and $26^{\circ} \cdot 9$ in the two pre-
ceding weeks, further rose last week to 28.7 , and exceeded the rat in any week since February, 1882 . During, the first ten weeks of
the current quarter the death-rate averaged $24 \cdot 4$, and exceeded by 1876-85. The killing effect of the long continued cold weather is thus shown, and may be safely taken at the greater part of the 47
Sowr time since a remarkable paper on the micro-organisms of
potable waters, by Dr T. Leone, was published in an Italian
scientific journal, in which it was asserted that carbonic scientific journal, in which it was asserted that carbonin a acid acts
as poison on most of the microbia. If, therefore, a beer becomes as poison on most of the microbia. If, therefore, a beer becomes
flat, that in, loses its proper proportion of carbonic acid, it is is
rendered especially susceptible to the attacks of the organisms of yeast, which begin to develope and multiply at an
alarming rate as the carbonic acid diminishes. If this view be correet, carbon aciad, the Brececers' (Guurdian remarks, must be the
best beer preservative, and ought to be added to or forced into the best beer preservative, and ought to be added to or.
beer as soon as the supply of this gas diminishes.
THE two lenses of an achromatic object glass are cemented away after a time, and it frequently happens that air or moisture taking the place of this, gives an iridescent appearance to the glass
and interferes with correct delineation. To remedy this fault it becomes necessary to separate and clean the two lenses and readjust
them, cementing with Canada balsam as before, H Hithert it been customary, in order to effect the separation, to apply has and, however carefully this may be done, it sometimes happens
that a lens is thereby cracked. All risk of fracture may be avoided by placing the achromatic combination in a small quantity of
benzole or naphtha-from coal tar-within a covered vessel, either of which hydrocarbons will, in a day or two, dissolve away or
soften the hardened cement without heat. The same liquid will remove the last traces of resinous matter. SPEAKING of the density of the sun, Professor Lockyer, in a recent
lecture, said if we take water as our unit of density, the density of the sun is $1 \cdot 444$. If we take the density of the earth as 1 , then the value is about 0 25-practically a quarter. These values have
been determined by taking the vilume of the sun as given by the
lianeter of the photosphere - 860 , noo diameter of the photosphere- 860,000 miles. Now, we have had the photosphere, and $1,000,000$ miles for another, and it is not fair that those atmospheres should be left out of consideration. If we
include these atmospheres, though we do not alter the mass, we alter the volume. If we put the same mass into a bigger volume, We naturally reduce the density. Now, if we take the atmosphere
of the sun as extending to 100,000 miles above the photosphere,
that will that will give us a radius of 530,000 miles, instead of 430,000 miles,
and weo shall, as nearly as may be double the suns volume.
Therefore we shall have halved the density Tnstead quarter as dense as the earth, it will only be one-eighth as dense and, instead of being just denser than water, it will be a listle
over half the density of water. The gases of the centre may put on the appearance, if they do not put on all the physical can get at, unfortunately limited to something like 400,000 miles away from the entre, we are undoubtedly dealing with masses of
gas., II
miving the edenity of the earth what height of atmosphere would Professor Lockyer include; if he takes enough, he can AT a recent meeting of the Birmingham Philosophical Society, was read by Dr. G, Gore, F. R.S. The athor shows colyclusively that the phenomena discovered by him, and to which he applied
the term "transfer resistance," are not due to polarisation, some kind of electro-motive force, or any other form of opposing differ ence of electric potential, because they's still remain when those
causes are entirely absent. He selected various cases of voltaic inversion, in which a pair of different metals in an exciting
electrolyte produced no difference of electric potential and no voltaic "rerrent, and examined them for "resistance" and differences of resistance" at the immersed surfaces of the two metals. He
first tested them by a "bridge "method, and then by a "condenser" one, also described, and gives the results; and in every case he
found that the "resistance" still existed, and was different in amount at the two plates. In each case the plates were of equal
sizes. He also took several cases in which a pair of plates of the same metal, but of different sizes, were immersed in an exciting of "resistance," different in amount at the two plates in each instance. He asks: "II the phenomenon I have discovered really
of the nature of ordinary electric conduction resistance? If it is
it characters will agree with the its characters will agree with the most essential ones of that
influence. It agres in several important topoints with that resistance.
First it is with those liquids in which ordinary resistance is small ; and thirdly it is considerably reduced in liquids by rise of temperature, it also,
when overcome by current, evolves heat.", He concludes by remarking that it performs an important part in the action of all voltaic stance that one important practical application of it has been made In the electro-metallurgical purification of copper on the large scale vats in multiple series, and thus diminish the transfer resistance.
It was in the year 1831 that the first attempt to discover this kind

MISCELLANEA.

MEDALS for long service and good conduct have been awarded to
R. J. Crabb, stoker, of the Himalaya; R. H. Huxley, leading R. J. Crabb, stoker, of the Himalaya; R.. H. Huxley, leading
stoker, of the Rupert; G. Betterige. engie.room artificer, of the

Ponterract is much agitated concerning its water supply, and a
long report by Mr. Geo. Hodson, C.E., with numerous analyses of water at present supplied and of proposed sources is being much
discussed. He proposes a new supply from the Bunter beds not ar from Pontefract.
The frrst portion of the big contract for bricks needed by the
Mersey Railway Company for the extension to New Brighton has is some 40 , woo tons, West Bromwich firm. The quantity given out tons is for the present held over by the contractors. The firm which has taken the order is, it is understood, hoping to secure a
reduction in railway rates to Birkenhead of perhaps 3 s . per thousand
SAMPLES of bevel pinions with beautifully clean, well formed
teeth, have been sent us by Mr. Alexander Dick of Cone They are 3in., in diameter, and are stamped out of a piece of $1 \cdot 2 \overline{3}$ densil metal round bar at one blow and at a dull red heat. The imit 21.8 tons, total extension $21 \cdot 6$ per cent. The bevel wheel are apparently suitable for any engineering work without any sub
ON Tuesday afternoon, in the entrance channel to the Bute
Docks, Cardift, the steamer Rhyle, of and for Bute, with iron ore from Bilbao, was in collision with the steamer International, of Newcastle, which had just left the Mount Stuart Dock. The latter
steamer was cut right down to the light water-line, about 2oft. on steamer was cut right
the port side abaft the engine-room. She soon filled and sank docked soon after the collision. Several of the crew on board botl vessels had very narrow escape
ThE War-office have recently entrusted to Messrs. Merryweather
and Sons, of London, an order for the supply of a powerful double cylinder steam fire engine for the protection of the Birmingham mall-arms Factory, and sinilar to two engines of equal powe arms Factory at Enfield in 1874 , but with all the latest improve ments, shese engines are capable or oellivering wo, hree, our,
or even six powerful jets simultaneusly and of forcing water
through several thousand feet of hose in cases where the water a distance.
partment by an unknow Oregon was run into at the third com-
 about one o'clock in the day in about twenty.two fathoms of water,
all the passengers being aafely put into vessels and landed at New Yoleged collision and going down, and one would have thought might have steamed into harbour, or at least shallow water. The
noise of the collision is said to have been like the report of a canon. Was there a colilision or was it an explosion of some kind? "Some idea," says the Bombay Gazette, "of the energy with
which the work in connection with the extension of the Prinee' Dock is carried on may be formed from the fact that nearly ten The difficulties of the work are, of course, enormons, but they ar gradually being overcome by perseverance and engineering skill.
Considerable progress has already been made, and the future Considerable progress has already been made, and the future
prospects of the scheme are most encouraging. The expenditure prospects of the sheme are most encouraging, The expenditure
on the dock extension works during the ensuing year is estimated necessary loan, and negotiations are now proceeding.
Refrrring to Sir Frederick Abel's address on mining explosions,
Mr. W. Galloway writes that Sir Frederick Abel has not fortified is statement by even one quotation from the writings of one of who have taken the variable specific heat of air into account in drawing comparisons between experimental effects obtained in practically reat explosion taking place in the practicully closed space repre
 which forbid the conclusion at which he has arrived, namely, that ooal dust plays the principal part in most great explosions in mines, They have not yet been pointed out by any author
AT a recent meeting of the Liverpool Engineering Society, a
paper on "Brick and Masonry Arches " was read by Mr. A Wharton Metcalfe. The object of the n was to contrast th and by presenting certain tables derived from the general equation to the equilibrium curve to illustrate the great advantage of the
latter mode. By means of these tables the construction of the true curve of an arch becomes an easy matter. The author also the linear arch, and gave tables derived from actual example prepared in the office, and calculated from the general equation to the linear arch. In dealing with such practical questions as the
relative merits of brickwork and masonry in arches, some valuable information was given, derived from the practice and experience of In view of the second reading of the Bill introduced by Lord report has been presented by the committee appointed to conside the matter at the instance of the President of the Board of Trade. he electric light companies should demand to be put simply in the leges and their obligations, inasmuch as they believe no satisfactory solution of the question of general electric lighting can be arrived at by amending the Act on the basis of a modified purchase option
clause, and the conclusion itself is olear and intelligible, and will commend itself to the public by its fairness and simplicity. general lighting under conditions entirely similar to those of the gas undertakings, and the committee have prepared the draft of a
Bill, which Lord Rayleigh will present to Parliament. While unable to accept any purchase option ciause, ulie committee think authorities to acquire electric lighting undertakings by agreement THE completed statistics of the steel and iron returns or $188{ }^{\text {in }}$ with $£ 24,499,035$ for 11884 and $£ 28,550,216$ for 1888. As compared
with December, 1884, the exports of iron and steel for the month show a decrease of $£ 191,199$; for the year, as compared with 1884,
the deceese is $£ 2,778899$. Pig iron has been exported to the and
nonth of December, $£ 114,278$, as compared with $£ 1545,490$ for

 cutlery, $£ 2,849,459$ for 1885 , against $£ 3,142,711$ for 1884 ; for the
 and cutlery, though, exhibitit.
improverent in December.

NEW SEWERSAND SEWAGEAQUEDUCTAT WANDSWORTH. SIR J. W. BAZALGETTE, M.I.C.E., ENGINEER.

For description see page 231.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

** With this weel's number is issued as a Supplement, a Con-
version Table for French and English Measures-No. II., Areas. version Table for French and Engitsh Measures - No. II., Areas.
Every copy as isued by the Pubisher contains this Suplement,
and subscribers are requested to notify the fact should they not receive i i.

TO OORRESPONDENTS.

Registered Telegraphlc Address-".ENGINEER NEWSPAPER,

*** All letters intended for insertion in The Enginekr, or con-
taining questions, must be accompanied by the name and address taining questions, must be accompanied by the name and address
of the writer, not necessarily for publication, but as a proof of good faith. No

* We cannot undertake to return drawings or manuscripts; we *must therefore request correspondents to keep copies. inform correspondents that letters of inquiry addressed to the public, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1 d. postage stamp, in order that
answers received by us may be forvarded to their destination. answers received by us may be forwarded to their destination.
No notice will be taken of communications which do not comply with these instructions.
S. M. - Messrs. Sal
whiat you reant.
H. T. J. (Pittsburg
H. T. J. (Pittsburgh).-(1) There is no such book as you want in existence.
(2). Royal Institution, Albemarle.strect London.
H. K. (Tower Hotel, H. K. (Tower Hotel, Liscard). -i. Marine Engon.
of Charles Griftin and Co., Bxeter-street, Lonlong," by A. E. Seaton,
G. H. B. (Newhaven). -Joy's valve gear has been repeatedly G. H. B. (Newhaven).-Joy's valve gear hus been repeatedly illustrated in
TE ENINER. See pages 68 and 73 in our last voume
MiD-AIR.-If the mercury is boiled first in the tube, and precautions used to MiD-ARI- - The the mercury is boiled first in the tube, and precautions used to
prevent the entrance of air, the vacuum ooill be practically perfect, save for
a small quantity of mercury vapour. A better vacuum exists in the globes
of incandescent lamps. The air is extracted from them by a Sprengel pump. RAILWAY SIGNALLING.
SIR,-Could any of yo
signaling?
London, March 17 th.
MOULDING AND STAMPING SOAP TABLETS.
(To the Editor of The Engineer.)
Sir,-We require the address of any makers of machinery or moulds
for moulding and stamping soap tablets.
FILTER PRESSES FOR WHOLESALE CHEMISTS. (To the Editor of The Bngineer.) Sir,- Will you kindly let me ack the address of an engineering firm
who make filter presses for wholesale chemists, with frames 2 ati. 6 in.
J. R. D. who make filter pres
to 3 ft. ?
Cork, March 11 th.

SUBSCRIPTIONS.

Tue Enornekr can be had, by order, from any newaspent in tovon or country
at the various railuay stations: or it can, if preferred, be supplied direct
from the office on the folloving terms (paid in advance):-
 If credit occur, an extra charge of two shillings and sixpence per annum voill
be made. THE ENGINEER is registered frr transmission abroad. Cleth cases for binding The Enarneer Volume, price 2s. 6d, each
A complete set of The Enornger can be had on application.
Foreign Subscriptions for Thin Paper Copies will, until
Foreign Subscriptions for Thin Paper Copies will, until further notice, be
received at the rates given below:- Foreign Subscribers paying in advance
at the publese
 advice to the P
increased rates.
Remittance by Post-office order. - Australia, Belgium, Brazil, British
Columbia, British Guiana, Canada, Cape of Good, Hope, Denmark,
Egypt, France Germany, Gibraltar, Italy, Malta, Natal, Netherlands, Egypt, France Germany, Gibraltar, Italy, Malta, Natal, Netherlands,
New Brunswick, Newfoundland, New south Wales, New Zealand,
Purtugal, Roumania, Switzerland, Tasmania, Turkey, United States,
West Coast of Africa, West Indies, Cyprus, 1 1 16 s . China, Japan, West Coast of Af
India, $£ 20 \mathrm{~s}$. 6 d .
Remittance by Bill in London. - Austria, Buenos Ayres and Algeria,
Greece, Ionian IIlands, Norway, Panama, Peru, Russia, Spain, Sweden,
Chili, It 16s. Borneo, Coylon, Java, and Singapore, $£ 2$ Os. 6 d . Manilla,
Mauritius, Sandwich Isles, $£ 25 \mathrm{~s}$, Mauritius, Sandwich Isles, £2 58
ADVERTIBEMENTS.

* The charge for Advertisements of four lines and under is three shillings,
for every two lines afterwards one shilling and sixpence; odd lines are
charged one shilling. The line averages seven words. When an advertise. charged one shilling. The line averages seven words. When an advertise.
ment meassure an inch or more the charge is ten shillings per inch. Al
single advertisements from the country must be accompanied by a Post-otice
 Advertisements cannot be Inserted unless Delivered before six

MEETINGS NEXT WEER.

four o'clock on Sunday morning, during fine, clear weather, a three-masted coasting schooner was, it is stated, suddenly discovered bearing down upon her port side. It is a noteworthy fact that no trace of the wreckage of this missing In fact, the available evidence that any collision took place is extremely small, and at the other side of the Atlantic it has been plainly stated that a hole was knocked in the ship's side by an explosion of some kind. It is indeed, very difficult to see how a small schooner could make a tremendous aperture in the side of such a ship as
the Oregon. All this is, however, for the present matter the Oregon. All this is, however, for the present matter
of conjecture. It is alleged by the officers of the Oregon that the schooner did not show her lights until it was too ate to avoid her; but it is difficult to understand how it could happen that in the light of the early morning such an object was not seen by regarding the lights is correct. Be this as it may, the schooner, we are told, struck he steanort at abo mid ships, thereby making a hole in the por side which ha and at another as large enough to drive a team of horses and at another as large enough vo drive a team of horsea
through. Whatever may have been the exact area of through. Whatever may have been the exact area of
this hole, it seems by all accounts to have been a large one, and the water thereby admitted into the damaged compartment would be sufficient to fill it in a few minutes. Now nothing can be clearer than this fact-that if the filling of the one compartment into which water wa then she must have gone down almost at once. The
molt Oregon had nine transverse watertight bulkheads, and if the ten compartments were all of equal size, the length of each would be about 50 ft . As a fact, some were longer and others were shorter than this; but it was well under stood when she was admitted to the Admiralty selected list for chartering as an armed cruiser or transport in Oregon was satisfactory, and in accordance with the Admiralty requiremente, It was only last year that the Oregon was taken up by the Government and armed as a cruiser-so that if any steamer in the mercantile marine was in a condition to suffer damage by the penetration of her side plating with comparative impunity, it must surely
have been this vessel, which has now been sunk, it is stated, by a small schooner. As we have said, the accident took place at half-past four in the morning; an immense hole was made in the midship part of the vessel, and yet she remained afloat for eight hours afterwards. It is
this remarkable circumstance above all others in connecthis remarkable circumstance above all others in connec-
tion with this case, that especially calls for inquiry. tion with this case, that especially calls for inquiry.
Whether there was care or otherwise in the navigation of the Oregon is, of course, also a proper subject for investigation; but it is one which is far subordinate in importance to the structural questions arising out of the disaster. That men entrusted with heavy responsibilities are sometimes negigent, and that they often commit errors of judgment, everygood of society that retribution should follow. Whether anything of the kind occurred in this case we do not know, nor would it be right to offer any opinion thereon with the evidence at present available. But while man will always be fallible, it is at least possible to perfect the instruments committed to s keeping, and upor by this disaster should mporally studied with a view to avoiding in the future those errors of design and equipment which led to this those errors of
vessel's foundering.
It is alleged that after the first collision between the schooner and the steamer there was a rebound, whereby further damage was done ; but it does not appear that this effects of the materially contributed to hasten the fires were put out, it seems that the Oregon was struck in her machinery compartment, and if this was the case then the injury done to her was the greatest possible of the kind, for in large passenger. steamers the machinery occupies the greatest subdivision of the vessel. Whichever compartment it was that was penetrated, the inrush of water was irresistible, and the space was quickly filled. If the loss of displacement due to this cause was sufficient to sink the Oregon, she would, as we to sink her is evident from the fact that she remained afloat long after she was abandoned, and did not go down until a quarter to one p.m. How, then, did it happen that she foundered at all? That upwards of eight hours were occupied in the inflow of sufficient water to carry the Oregon to the bottom, points to a slow rate of ingress to other compartments than that which was penetrated. In other words, the transverse bulkheads were not watertight. Now, this want of water-tightness may have arisen in one or more ways, and it is to this point that we desire
to call particular attention. Either the bounding bulkto call particular attention. Either the bounding bulkheads were not sufficiently strong to endure the pressure due to the compartment being filled to the height of the load-line in the deeply immersed condition of the vessel, were not, closed directly the disaster occurred. It is alleged by the captain that all the water-tight doors were closed, and it is possible that such was the case. But the circumstances are strongly suggestive of either the partial closing of these doors, the opening of sluice valves, or the existence of apertures for the passage of ventilation or other pipes. If neither of these conditions existed, then the bulkneads hust have given way. Cerain it is that ment that was not large enough to sink the vessel, found ment that was not large enough to sil e nough water was its way ultimately to others, until enough water was
in the hold to sink her down to her ports and other openings. When this point of immersion was reached, the ings. When this point of foundering quickly followed.
It is impossible to say what were the exact facts in this case, and it may be that the truth of the matter will never be falty determined. But the conditions of bulk head watertightness and efficient subdivision of com-
partments which existed in the ill-fated Oregon'are not
now subjects of such vital importance as those which are to be found in her surviving sisters. The great value to be derived from a discussion of the possibilities and probabilities in her case is found in the improvements which ments of other vessels built and building. A short time ago the construction of collision bulkheads was considered in the columns of this journal; and suggestions were then made in regard to the proper connection and stiffening of these bulkheads, which will apply with almost equal force
to the transverse bulkheads throughout the whole of a steamer. The transverse bulkheads of vessels are not, as a rule, made strong enough to resist the pressure due to considerable heads of water. The curvature of a vessel's
side contributes an element of stiffness, and the side plating is supported by girder-like frames spaced at intervals of about 2 ft . In addition to these there are stringers - side keelsons and beams - to keep the
plating at its work and give the necessary strength to the structure. But while the side and bottom plating may be from $\frac{3}{4} \mathrm{in}$. to lin . in thickness, the flat-sur-
faced transverse bulkhead is only about $\frac{7}{16} \mathrm{in}$, thick, and its stiffeners consist of vertical angle irons spaced 30in. apart on one side, and horizontal angle irons spaced 48 in . apart on the other. Stringers and beams there are none to support the transverse bulkhead, and, as a conse-
quence, when the latter is called upon to fulfil its true quence, when the latter is called upon to fulfil its true
functions, it is too often found wanting in ability to do so. functions, it is too often found wanting in ability to do so.
If the efficiency of bulkheads was as habitually tried as If the efficiency of bulkheads was as habitually tried as
that of bottom plating, there can be no doubt that we should have stronger and stiffer bulkheads; but because a bulkhead may never be called upon to do the duty for which it exists, it is to be feared that shipbuilders have
been contented with making them less strong than they been contented with making them less strong than they
should be. If a bulkhead forms the end of a deep ballast should be. If a bulkhead forms the end of a deep ballast
tank it is stiffened with bulb plates and angle irons. Why tank it is stiffened with bulb plates and angle irons. Why sidering that the time may come when the safety of the
ship and all on board may depend ship and
stiffness ?
But even were bulkheads always strong enough, it might still happen that sufficient care would not be taken in keeping watertight doors and sluice valves in good work-
ing order, and in training the members of the crew ing order, and in training the members of the crew
so that each man would know his proper post-whether it be to screw down a door or a sluice valve-when
i collision occurs. In the case of the Oregon, it s collision occurs. In the case of the Oregon, it contemplated by those who designed and built her. The
question before us is whether the same something may not occur again in another passenger steamer under less favourable circumstances. The case of H.M.S. Vanguard was very similar in some respects to that of the Oregon, for Duke, she yet kept afloat one hour and forty minutes afterwards, thereby showing plainly that she was not sunk because she was rammed, but because a manhole door in a wing passage bulkhead was open. That is to say, although water, she wonld and a compartment thereby mined with properly shut, as it was intended to be by her designer. What was the particular opening in the Oregon, or whether there was an opening at all, will perhaps never be dis-
covered. It is possible, and indeed likely, that the bulkheads gave way under the great head of water pressure.
But whatever may have been at fault, the Oregon should But whatever may have been at fault, the Oregon should not in our opinion have su
damage inflicted upon her.
the royal agricultural society.
Can it be said that the Royal Agricultural Society represents agricultural engineering? We think there can
be but one answer to this question. It does not. All be but one answer to this question. It does not. All
that the Society now does is to supply space to exhibitors at an exorbitant rental. Bearing in mind how much engineers add to the attractions of the annual shows, this is to say the least but, scant justice. The whole policy of
the Society is undoubtedly wrong, narrow-minded, and selfish in this respect; and it is matter for wonder that the
agricultural engineers have so long submitted to the agricultural engineers have so long submitted to the
exactions of the Society, or rather of the majority of the exactions of the Society, or rather of the majority of the
governing council, without uttering a protest in governing council, without ditering a protest in
very strong language. The Society annually gives away
in prizes for stock thousands of pounds. Less than $£ 100$ is devoted to the improvement of machinery. We maintain that this is flatly opposed to the intentions of its by a large number of its members. For what does the well-paid appointments well-paid appointments for a number of officials. Its pur-
pose is to develope, and encourage the development of, the art and science of agriculture in Great Britain. It was notfounded, and developer of stock, sheep, and horse breeding Its and developer of stock, sheep, and horse breeding. Its
legitimate range is much wider than this. England is quite as much indebted for progress in agriculture to the mechanical engineer as it is to the stock-breeder. If we were without excellent plougns, portable engines, threshing mechanical appliances now found on every well-managed
farm, what would be the position of Great Britain? All the excellence of our stock could not enable us to hold our own with other nations for a moment. Are tillage farms of so little account that a beggarly $£ 100$ is all that a great
society can devote to them, while $£ 3000$ or $£ 4000$ can be spent in prizes for horses, cattle, sheep, and pigs? The spent in prizes is absurd on the face of it.
To what shall we look for the cause? It is to be found council is not composed of engineers, but of men with whom stock breeding is a delight, the engineers forming the minority are men who, having won prizes years
ago, are fully determined that the funds of the Society ago, are fully determined that no devoted to developing new inventions which may leave their prizes worthless. That there are excep-
tions in the governing body we admit with pleasure ; but they in the governing too few to possess any weight or influence.

The earnest protest of Mr. Jenkins, who ought to know as well as any man what is and what is not good for the show to be held this year at Norwich will more than ever b \in devoted to cattle, and less than ever to the fostering of invention. It is scarcely possible that the Royal Agriculpolicy. Let us try if in a few words we can indicate some of the injuries done.
For a great many years the English portable engine every civilised country. Competitor it had practically none. One reason was that foreign engineers did not believe that anything like finality had been reached. Every year, for many years, our improvements appeared on the Con-
tinent; and as the foreign purchaser was resolved to have tinent; and as the foreign purchaser was resolved to have nothing but the best, foreign makers refused to compete. engine this year which was certain to be superseded by something better from England next year. But it has at last dawned on the continental mind that we
have reached the end of our resources, and that any portable engine built within the last six or seven years represents the best that England can do. So the foreigner has plucked up courage, and we have every reason to delieve that a strong competition is in store for us in this pression for February 5th, and compare the turn to our imwhich he will find therein illustrated with an English which he will find therein illustrated with an English design is one of which no English engineer need be ashamed. We have lying before us the circular of Messrs. Platz, Söhne, of Weinheim. This firm manufactures a years by Messrs. Marshall and Co., of Gainsborough, that it is not easy to detect the difference. In one word, we and he is going to build them. The foreign agents of our own firms know, if they would but confess it, that they are told to their faces that better portable engines can be had abroad than can be had from England. we can do no better than we have done. Have English engineers justified the assertion or not? A Agricultural Society, not long deceased, once told us that the steam engines sold by his firm were already too good for the price, and that he would certainly oppose any
action on the part of the Royal Agricultural Society which would even tend to introduce any change which would render a departure from his own standard type necessary. This ostrich-likepolicy has done much harm, and willdo more. drill trade bos himself what suits his purpose better than our drills did. There has been no attempt at improvement in drills made in England for many years. Only this week we have had simply revolutionary, not so much in its principle as in the details of its construction. It is full of dainty devices for putting work together without hand labour of any
kind-almost without the aid of a machine tool indeed. Assuming this to be only half as good as it looks, it is distinct departure which, if it does nothing else, will permit the English machine to be fearfully undersold. Can it be Royal Agricultural Society in the matter of reaping machinery helped the country enormously in beating off American competition? Can a single instance be cited in which the past influence of the Society when exerted in the
development of machinery and implements has not been an unmixed rood? We dare to say not one; and it is a noteworthy fact that the justice of the awards made by the Shan the judges of implements have met with less criticism The the awards of any other judges whatever.
before, at least enterprising a now to bring prominently As the Royal Society refuses to As the Royal Society refuses to do anything for the engidecline to exhibit at the Royal shows, and should, on the contrary, strengthen, as far as possible, the hands of some other body, as, for example, the Bath and West of
England? This latter society might very easily acquire sufficient prestige to give its prizes a very high value gold medals for the best and most economical 10-horse power portable engine. There would be no lack of competitors on one condition, namely, that the tests were staff. The cost of the trial need not be considerable, provided care was taken that it did not cover too large a
range. The publication of the results of such a trial the possession of a gold medal, a silver medal, or even an honourable mention, would prove of very great value to the lucky possessor. The value of the prizes given by the Royal Society, bul Society did not depend on the position of the trials were carried out. The fact that such men as Bramwell, Cowper, Anderson, and Rich conducted them was sufficient to impart a remarkable worth to them. A medal awarded by such judges was more valuable and more or abroad But there was nothing about the condition that cannot be followed or adopted by other bodies. We have heard it argued that medals and awards are no good that they do not help trade, and possess no real value. The men who spoke thus either possessed no trophies, or
did not themselves half believe what they said; and we have little doubt but that if medals were to be had again for the winning, they would compete just as they have done before.
Whether any action be or be not taken in the direction we have indicated, we would earnestly ask engineers
whether it is really to their advantage to go on exhibiting at the Royal Agricultural Society Shows? They are admitted to the yard, so to speak, on sufferance. They
meet with no particular attention or civility. They incur
tremendous expenses. Do they reap any adequate return would follow the one answer-they do not. If all firm Royal Agricultural Society would be taught a lesson which it richly deserves; and the hands of those who wish to see it resume the discharge of all its legitimate functions would be strengthened. If it could be argued that the engineers never did anything for the Society, the Society might have grounds for refusing to spend money on the engineers, although we entirely dispute that such a policy can be justified at all. But what are the facts? We quote from a very clever address delivered before the Farmers' Club, Leeds:-"I I through the taken," said he "the Jrournal report and cash accounts, and I find the the ten years begin ning with the Taunton Show in 1875, and ending with the Shrewsbury Show in 1884, the implement exhibitors have contributed, under the heading of entry fees, payment for shedding, and description of their entries in the catalogue the sum of $\pm 47,139$, while the total contributions of the exhibitors of stock have only amounted to $£ 6498$. In this period the amount of money awarded in prizes to imple ments of all sorts amounted to 2697 , and the cost of trial and judges expenses to $£ 2925$, or $£ 3622$ in all, including the enormous cost of the stack-fan trials at Reading. On the other hand, the sum divided amongst exhibitor $£ 61,979$. Of this sum four exhibitors of stock, Lord Elles mere, Mr. Hutchinson, Mr. Farthing, and Lord Falmouth have drawn $£ 3920$ in prize money for stock alone, than five times the amount of money divided amongst a the implement exhibitors put together. The amount as follow in prizes for the Norwich 5600 and for impled $£ 70$-with - For stock nearly ± 5600 and for implement referred. Now, I respectfully submit that a great deal of the money thus given away in stock prizes is simply wasted, and that the 'Royal' could have rendered a far greater service to agriculture by a more judicious expenmedal worth $7 \mathrm{~s}, 6 \mathrm{~d}$. at the outside, be considered a sufticient encouragement for an engineer to spend years of study, and risk large sums of money in perfecting laboursaving machinery, surely the same inducement would suffice to encourage an aristocratic horse or pig-breeder The grand object of all is the same. The horse and pigas the engineer does for his, in virtue of the award itself, and quite apart from its intrinsic value."
It is impossible, we think, to put the facts in a clearer which they have endured, they will manifest less wisdom than we give them credit for.

engineering at cambridge university.

For some years past the authorities of Cambridge University have established a school for the study of as by the distinguished Professor who presides over that branch of the University curriculum, to impart to such study a practical character. Workshops have been erecte and machinery has been provided for the training of students, and so large a measure of sucsess has attended the effort that an endeavour is now being made to secure the grant by the senate of a Tripos examination in engi-
neering. If this be accorded, it is held that, ultimately, neering. If this be accorded, it is held that, ultimately, students passing that examination will-to quote the word of a recent writer on the subje".
Now we cannot but favourably regard any effort in the direction of securing for our profession a distinct recog nition of its scientinic position. We may be sure, besides, afforded at Cambridge in such a degree as to pass a Tripos thoroughly well-grounded in that knowledge of all the bran petent engineer. But having secured that position, it may well be asked by those whose experience in practical work himself to follow in their footsteps? The knowledge which constitutes thegroundwork of an engineering education does not and cannot constitute by itself an engineer. Much more has to be acquired before anyone responsible for engineering work would depute any part of governor of the Royal Military Academy at Wolwich Sir Lintorn Simmons - addressing the cadets who had been successful in obtaining commissions in the Royal Engineers in words to the following effect:- "You will gentlemen, if you think you leave this Academy as engineers, fall into a very great and dangerous mistake. Your education in that capacity is really only about to begin well be will occupy you your lives." Such a warning may their charges who may pass the proposed Tripos examina tion will be fitted to secure at once adequately remunera tive employment. It should be remembered that a young man who has so qualified himself is scarcely Iikely, owing Universities, to be under twenty-two years old. Unde the system of pupilage which has hitherto supplied the ranks of our profession, a young man at that time of life ought himself to him during his articles some partial charge of practical work. At any rate, he must have had opportunities of peeing the theory he has stradied in the oflice carried into practical effect. The oft-quoted saying that practice is for without training in the latter the former is often erroneous. But where the two are combined, where the young student takes the design he has assisted in preparing in the office and bears part in putting it into practce, the
two elements of study are combined in such a way as to
surpass any other method of teaching．Such an advantage
we hold，cannot be secured in any of the schools with we hold，cannot be secured in any of the schools with
which we are acquainted．As regards mechanical engi－ neering，we admit a certain amount of practical detail may be learned in them；but the resources of such schools， even in that branch of the profession，must always be in the workshons of our great firms，As regards civi engineering，the training to be given can be but theoretical alone；and far more than this goes to make up the quali－ fications of a man competent to carry out large works， The management of labour；its proper apportionment，and in others is only，we believe，to be acquired by being early placed
labour．
We trust our remarks will not be misunderstood．We cordially welcome and appreciate the efforts which hav been made to establish schools of engineering．They have effected，and yet must effect，much good；but it has chanced to us to come into contact with young men just issued
from them who conceive that they have been fitted for the most responsible positions，and who have had sad reason to learn that，when they seek a market for their services，
they are＂bidden to take the lowest place，＂and are held they are＂bidden to take the lowest place，＂and are held
to be only at the commencement of their real scholarship It is well that this fact should receive recognition．Few of our more eminent engineers attach much value to the certificate of these engineering schools when they have to fill up vacancies among their staffs．They value more
highly by far testimonials showing acquaintance for a few highly by far testimonials showing acquaintance for a few
years with real work．In these days of higher education years with real work．In these days of higher education
there are few lads who do not acquire the rudiments of mathematics before they quit school life，and it must be an exceptionally dull one who does not，during a term of five years or seven years＇pupilage with an experienced engi－
neer，improve his knowledge up to the fallest standard required．What chance of obtaining employment does a young man of twenty－two，just finishing only his theoretical educaliol， ， reached that age，has for several years combined his theory
with its practical application？A Tripos examination certificate is a good thing，a thing certainly to be desired； but we doubt much if it will prove that the ranks of our profession will in the future be filled by men who have youth，strength，and valuable time in the effort to do so．

engineering progress in italy

Is 1883 a Commission was appointed by the Italian Govern－ ment for the purpose of ascertaining the state of engineering appeared says that，although undoubted progress has been made
of late years，Italian contractors are not in a position to pro of late years，Italian contractors are not in a position to pro－
duce those speciailities which Italy receives from English，French， and German establishments．A large portion of the national mestic industry，the copying of English models in torpedo boats，\＆c．，being referred to as a marked success．The general
tenor of the recommendations of the Commission is that while the imitation of foreign machines，and the construction of rela－ tively simple original models can safely be entrusted to Italian
houses，the exigencies of the naval service require in the national houses，the exigencies of the naval service require in the national
interest that the larger and more complicated machinery should ee imported．A competition was instituted－in which seven firms took part－for an engine of 6000 indicated horse－powe
for a cargo ship．The firms competing were ： and Co．，Sampierdarena；Pietrarsa and Granili，Guppy and Co．， Pattionon and Co．，Naples ；Fratelli O Orlando，Leghorn ；N．Odero，
Sestrononente ；and the Fonderia Oretea，Palermo seven designs were selected for further consideration，and that of Fratelli Orlando was finally selected as fully satisfying the conditions imposed．One cause of the relatively slow progress
of Italy in this direction has been the absence of continuous －attributes to the Commission－according to the Eisen Zeitun establishments of the work done in Italy，the backwardness of that country as compared with England，France and Germany． Hence，with a view to concentrate the Government work as far as possible，and stimulate the leading firms to more efficient
organisation，the Commission has proposed to confine the order to one or two establishments，in order to see whether greater
succeess would thereby be attained than by the existing system． In connection with this subject the new ironworks at Terni deserve mention．The attempt is being made at this establish ment to produce，with Ytaliail fuel and labour，the iron and The proposal made in 1878 to enter into a contract for this pur pose with the Elba Mining Company was rejected by the
Italian Legislature ；but the Commission already referred to has now succeeded in getting the trial made at Terni，where gun factory already existed，which had been founded in 1872 by Signor Ricotti，the Minister of War．The new enterprise has
been placed under the direction of Commendatore Vis been placed under the direction of Commendatore Vincenzo
Breda，who is satisfied that by using the water－power of the解 fuel，and a perfect system of manufacture，he can produce a great part of the armour－plates，
guns，axles，rails，\＆$⿻$ ac．，now imported，if the guns，axles，rails，\＆c．，now imported，if the contract for
armour－plates is guaranteed to him for three years． November the works employed 900 men．The pipes for the u utilisation of the water－power are about $20,000 \mathrm{ft}$ ．in length，and a pressure up to twenty atmospheres can be obtained by this
means．A motive force of 5000 to 6000 －horse power is thus developed，and can，without much difficulty，be increased to 10,000 －horse power．Part of the water－power is used for the machines，ventilators，cranes，\＆c．，and another portion for the
preparation of compressed air，which is used in place of steam．
shipbuilding in miniature
The forthcoming Maritime Exhibition at Liverpool，the Inter－ national at Edinburgh，and the Indian and Colonial
metropolis，at all of which exhibits illustrative of shipbuilding and marine engineering will form a conspicuous feature，are calling into exercise a considerable amount of activity in the
model－making department of Clyde shipyards and engine shops at the present time．Messrs．Elder and Co．，J．and G．Thomson， Messrs．Napier and Sons，Denny and Brothers，and Caird and Cossps．Napier and sons，Denny and Brothers，and Caird and small－scale presentments of their crack steamships for one or other of these exhibitions．At the Colonial the committee
models which are not full－rigged and in glass cases．The dis
play will thus be more imposing，and of greater artistic as well block wall models，The committee are also compiling full tech－ nical particulars of the various ships from which models are shown，and this will be inserted in a systematic form in the catalogue．An exceppionaily noteworthy example of the model makers art will ind a place in the Edinburgh Exhibition，o which some details may be interesting．This is an elaborate
sectional model，constructed not of the usual wood block but of thin sheet iron，and represents an internal view of a large vessel belonging to the British India Steam Navigation sented as The vessel，which is 348 tt ．by 42 tt ine from stem to stern，and revealing all the internal work both with respect to structure and outit．The model，which is on a $\frac{1}{2 i n .}$ scale，or
r th the actual size，is the work of mechanics attached to the yin th the actual size，is the work of mechanics attached to the
Science and Art Museum in Edinburgh，and has been several Science and Art Museum in Edinburgh，and has been severa ears under Aly．as ractly the arrais a parts，to the construction of the actual vessel，except that the parts，which consist of very thin sheet iron，are bound with solder instead of rivets．Thus，the deck－plating，shell－plating and framework of hull are represented in all the detail of out－ and－in strakes of plating，butt straps，main and reverse frame ngles，beam angles，cc．；；and inside of these，just as in the actua vessel，are the wood ceiling and sparring，pillars，masts，deck houses，deck fltings，state－room framing，side lights，\＆c．The whole is and fulness is further propelling machinery，engines，boilers，steam pipes，shafting propeller，and smaller details，much of the work being shown in section，and all proportionate．All the work，except a few item of deck machinery，such as steam winches and windlasses，has been done in the workshop attached to the museum，from sketches supplied by builders of the original vessel，and it is an eloquent testimony to the intelligence，n
painstaking skill of the museum mechanics．

yorthumberland coal trade．

IN a speech delivered by Mr．C．M．Palmer，M．P．，on trade land coal trade whie is ise to the position of the Northumber of consile had been corried on by ast ten years without shilling of profit－nay，at a loss＂＂He then went on to give some indication of the causes－high norma rates of wages，high royalties，wayleaves，\＆ce．；and he drew no only a gloomy picture of the future of the Northumberlan the coal field in he painted the present as extremely black．In selling price of coal，through a sliding scale arrangement which dates back for a considerable period．There is，therefore，som relief to the coalowner in this part of the cost of production a royalty rents，the wayleaves，and other such charges have bee royalty rents，the wayleaves，and other such charges have beea
unaltered，and this is one of the chief grievances of the coal trade of the North；and we may add that there are othe owners－such items in the cost of production and shement a the dock and river dues．It is manifestly unfair to expect tha the coalowner should bear the whole burden of the dulness rade．That burden would be less if it were distributed over larger area，and if the owner of the royalties，the carriers，an burden which low priees buing and there is the mer the matter，that of the pressure of the local rates，which has in－ creased，and is still very rapidly increasing．If the coalowner of the North would make a combined effort to reduce the whole有 would be enabled－possibly after some slight stoppage of pits－ to sensibly lessen the price，and that is what is needed to give relief to the coal trade，not only in the northern count named，but throughout the producing districts of the United Kingdom．Wages wil have to bear its share of the results o rally thas， for all prties He instanced very large mines in Northumberland， where the men were not worling more than two days a week and that in part to maintain a high standard rate of wages ；and he also instanced the case of a concern where the lessors of the mines received $£ 40,000$ yearly．It is quite evident that if the rade，the owner of the royalties may be fairly called un the suffer some slight reduction also Mr．Palmer＇s speech will have a good result if it direct attention to other burdens of pro duction than wages．
the railway traders and mr．mundella＇s bill．
THR railmay and canal traders have not lost any time in turning their attention to the Bill which has been brought forward b Mr．Mundella．The reception which the measure has met with not surprised．It would have been remarkable if a measure of so wide a character had，upon its first appearance，met the bespeak for the new Government attempt at legislation upo this vexed subject an unbiassed consideration．Traders must bear in mind the forces which the Board of trade have opposed to them，and further，that the department has to guard agains class legislation．The chief points to which the traders－as repre sented by their London association，which has grown out Lord Hemmikers late committee－take exception，are the pro in favour of foreign manufactures，which allow of appeal fro the decisions of the Railway Commissioners，and which dea nadequate question of canal traffic．Beyond doubt the Bill Trade evidently the subject of water carriage．The Board the matter，and the member for West Wolverhampton rectly interpreted manufacturers＇feelings concerning this part
of the Government proposals when，so soon as Mr．Mundella had sat down，he expressed disappointment with them．If manu－ facturing and commercial men are wise however，they will no be too fast at quarreling with the settlement which is no opposing Mr．Chamberlain＇s late measure，them had before the last election to return to the junior member for Birminghin and ask him to pilot fresh legislation．Wisdom will con
manifesting a spirit of conciliation towards the new Bill．

Sanitary Instriture of Great Britain．－The Autumn Con－
gress and Health Exhibition of this institute will be held in the gress and Health Exhibition of
City of Xork in September next．

THE PROGRESS OF THE IRON，METAL，AND
Susce the year 1820，when a revolution took place in the iron ndustry of Russia，it has made the most remarkable progress； ith the consumption，although the imports of iron and steel ave also rapidly increased．It is，however，most likely that ithin the next few years the latter will decrease vastly，as the teadily raising all duties doing their utmost towara that import nt new lines of railway will then have been finished and water－ ways canalised，whereby the internal riches of iron and coal will be at the country＇s direct disposal．
The first furnaces erected in Russia were those in the pro－
vinces of Ural and Olonetz／，opened in 1631－32，the work here
 1782 First，in 1806，the Russian Chamber of Mines was established．Until about the year 1820 ，most of the bar iron produced in Russia was exported chiefly to England．The latter rade must，however，now be said to have ceased almost en－ lirely ；but some is still exported to Central Asia and further East．In 1822 the exports of bar iron amounted to 22,000 tons， but in 1840 only to 14,000 tons，and at present it is only half of
that amount．The increase in the iron production of Russia in every ten years since 1822 has been as follows：－

The quantities of pig iro

The manufacture of finished iron and steel goods in Russia has progressed greatly during the last twenty－five years，some being
now even exported，for instance，to Central Asia．That this is now even exported，for instance，to central Ass
the case is doubtless due to the heavy duties which have been mposed on all foreign goods，enabling the Russian manufacturer In consequence the import of the same is now very limited．
The manufacture of machinery in Russia may be said to date rom 1860，when the first railway engines were turned out；but dready in 1872，at the Moscow Exhibition，the out－turn ha the time of the Exhibition held at that place two years ago，more agines could be turned out in the empire than could possibly e required．The manufacture of other kinds of machinery，a for instance saw－mill plants，wood－pulp makers，and agricul the last twenty－five years in consequence of the severe protec tion，and Russian statesmen confidently maintain that the day is ot far distant when all such articles required will be turned ou at home．At present most of them are taken from Sweden，
some from Germany，but hardly any from this country compared some from Germany，b
with twenty years ago．
Although great strides have been made during the last te years，the Russian shipbuilding industry is still in a backward tate，and this in spite of the duties on vessels built abroad Russian mercantile marine is either purchased or built abroad， ome of the Swedish yards，for instance，having for the last fiv years been busily employed with Russian orders，which have lately also found their way to Denmark，and even Norway．To some extent these remarks may also be said to apply to the
Russian Navy，but several large ironclads are now building in the Baltic and the Black Sea
With regard to the production and manufacture of other metals than iron and steel in Russia，it may be mentioned that 1880 there were 336 such works in operation，the manufac ng out ang in nature，employing 142,009 labourers，and turn－ copper works，turne value of nearly E70，$^{2} 00$ ；thirey－one 10 works for the manufacture of copper and bronze articles bell－casting，\＆c．，with 5000 labourers，and a production value t about $\pm 50,000$ ．
There is，however，hardly any Russian industry which has made such gigantic strides of late years as the coal trade，in
spite of the circumstance that at present only one deposit is spite of the circumstance that at present only one deposit is
worked on any great scale，viz，that of Donetz．Besides this nd some the are coals in the Caucasus，
Since 1840 the out－turn has been as follows ：$-1840,15,000$ Tons ； $1850,52,000$ tons ； $1860,131,200$ tons ； $1870,683,260$ tons 1875， $1,667,400$ tons ； $1880,2,920,000$ tons．It is estimated that the Donetz deposit alone is capable of supplying European
Russia with the necessary amount of fuel if fully worked．

EWERS IN CLAPHAM，BATTERSEA，WANDS－ WORTH，AND PUTNEY
ON page 228 we now give further illustrations of the sewage Works for the conveyance of sewaye of Wandsworth，Putney， and districts．Further engravings will appear with description in another impression

TENDERS．

OXFORD．
For the supply and erection of iron Gothic roof，columns and salleries，\＆e．，for the Anthropological Museum，Oxford．
Gardner，Anderson，and Clarke，London－accepted．．$£ 1047$

SILLOTH．

 For the supply and ereection of the whole of the cast iron columnsand other cast iron work for new grain warehouse for the North British Railway Company

Exhibtition of Barometers．－The Meteorological Society held on Tuesday night an exhibition of barometers at the Ine Institution of
Civil Engineers．A paper was Civil Engineers，A paper was read by the presid ont Mr．
Greenwich Observatory，in which the history of the barometer Greenwwe timservatory，ic which whe his othe present day was
from the the of Torricelli，in then，to the exhibis consisted of gpecimens of nearly every
treate．．tind of instrument which has been invented，from the merest
lind kind of instrument which has been invented，from the merest
glass tube fitted with mercury and inverted in a cistern of meroury
to diagrams of the King＇s self－registering barometer and the phet． to diagrams of the King＇s self－registering barometer and the photo
graphic registering barometer，parts of the－Jordan＇s－glycering barometer，and the numerous self－recording barographs and ane－
roids which have been brousht ont during the past few years，

THE WORTHINGTON PUMPING ENGINE.
messrs. simpson and co., pimlioo., engineers.

LARGE BREAK LATHE FOR PORTSMOUTH DOCKYARD. messrs. f. BERRY and sons sowerby bridge, engineers.

LARGE BRAKE LATHE FOR PORTSMOUTH DOCKYARD.
We illustrate above a very fine treble-geared, self-acting, sliding, surfacing, and screw-cutting brake lathe, constructed by Messrs. Berry and Sons, of Sowerby Bridge, Yorkshire, for Portsmouth Dockyard. The headstocks are 3 ft . 6 in . centres, with a brake to admit 12 ft . diameter, and to open out 4 ft . long from the front of the face-plate. The massive sliding bed is
27 ft , long, and 5 ft , broad across the face, and 18 in . deep. The 27 ft , long, and 5 ft . broad across the face, and 18 in . deep. The
under bed is 12 in . deep, with bolt slots. The fast headstock is under bed is 12 in . deep, with bolt slots. The fast headstock is
fitted with a steel spindle front neck 12 in . diameter and 15 in . fitted with a steel spindle front neck $12 \mathrm{in}$.diameter and 15 in .
long. The back neck is 9 in. diameter, and 10 in. long, running long. The back neck is 9 in . diameter, and 10 lin . long, running
in parallel bearings of hard gun-metal. The gearing is very
powerful. The large cone pulley has five speeds each 6in. wide The loose headstock has a spindle $7 \frac{1}{2} \mathrm{in}$. diameter. This headstock is movable longitudinally on the bed by a rack-and-pinion motion. The saddle is fitted with a compound slide rest, selfacting for sliding, surfacing, and screw-cutting, and with a rack
and pinion motion for hand traverse. There is a guide screw and pinion motion for hand traverse. There is a guide screw change wheels. The face-plate is 6 ft . 9 in . diameter, and fitted with four chucking jaws. There is a strong pillar to fix on the bed-plate in front of the brake, on which is placed the compound lathe is provided with top-driving apparatus, screw keys, \&c., complete. The total weight is 45 tons.

THE WORTHINGTON PUMPING ENGINE.
A few years ago we illustrated and described the smaller type of the direct-acting steam pumps made by H. R. Worthington, of New York. Since then the favourable opinion we expressed of
 oo widely used in America as this one. The larger forms of this pump, as made for waterworks, is in use in more than 40 per cent. of all the waterworks in America; and the economy with which it works, as described "by our special Commissioner that Messrs. Simpson and Co., the eminent pumping engine

* The Enoineer, 24th November, 1876.

FAIRBAIRN AND WELL'S SCREW FORGING MACHINE.

builders of Pimlico, have made arrangements for its manufacbuilders of Pimlico, have made arrangements for its manufacfor inspecting and testing these pumps, they are thoroughly satisfied of the efficiency of the means by which a considerable range of expansion is made possible in a direct-acting engine, and Messrs. Simpson are prepared to guarantee as high an economical efficiency from these pumping engines, such as that above illustrated, as with the rotative or Cornish engines, for which they hold so high and well-known a reputation. At present we are not in a position to describe the equalising
device by which difference of steam pressure through the stroke is approximately eliminated on the pump piston or plunger; but it appears to be perfectly satisfactory to the Pimlico firm. In the circular letter by which they announce their agreement with the Worthington Pumping-Engine Company, Messrs. Simpson and Co. give a list of 288 water works supplied with these pumping engines, and a brochure published by Mr. Worthington shows how very various are the conditions under which the engines are working. They are also used for pumping oil from Line-the oil is pumped by them through 300 miles of pipe, passing over country varying in height to 1000 ft . above the pumping station, and acainst a pressure varying, according to the speed of pumping, from 9001 b . to 1500 lb . per square inch, the normal pressure due to friction and head being 900 lb . per square inch, and the quantity pumped 28,000 barrels per day. In waterworks these engines, erected since 1872, aggregate contract pumping capacity of about one thousand millions of gallons per day. In an early impression we hope to give details of one of the steam and the equalising or compensating device

SCREW FORGING MACHINE.

The accompanying engraving illustrates a very ingenious machine for rolling or forging wrought iron and steel screws Wells, of Hardman-street, Deans Gate, Manchester. Several years have been occupied in perfecting the machines and the process of rolling large screws hot, and small screws cold, and several of them have now been at work for about nine months in the works of the New Russia Company, of Queen Victoriastreet. The machine we illustrate is for making large screws, and is fitted with three rollers, the screws being rolled hot. Screws below $\frac{1}{2} \mathrm{in}$. in diameter are made with four rollers, and are rolled cold.
The advantages of screw rolling as compared with screw
cutting, for very many of the purposes to which they cutting, for very many of the purposes t ? which they are applied,
are sufficient to make an effective machine of great importance The material which is wasted in cutting a screw in the ordinary way is utilised, and the screw blanks may be considerably shorter in consequence, effecting a saving in some screws-such as coach screws-of over 30 per cent. The threads are, moreover, much stronger when rolled than when cut out. The engravings we publish of the sections of screws are facsimiles of screws rolled by these machines, all of which are perfectly made.
The manufacture of screws by rolling has been the subject of a number of patents-the first of those of Messrs. Fairbairn and Wells being dated 1871-and the machines employed may be
divided into two kinds. We may very briefly describe these divided into two kinds. We may very briefly describe these machine under consideration more intelligible. The first kind has usually three rollers of equal diameter revolving in the same direction and at the same speed. Grooves are cut in the peripheries of the rollers of the same pitch and angle as the threads on the bolt blanks to be screwed. The rollers are placed in the form of a trigon parallel to one another, and while revolving are made to open to receive the bolt blank, and then the rollers receives from the grooves the impression of a thread, but as it simply revolves without longitudinal motion, the thread is raised half its depth above the size of the iron, and the other half sunk into the body of the bolt. Any inequality in the sizes of iron from which the blanks are made makes a corresponding difference in the screws. This machine is, therefore, useless as regards accuracy in fitting nuts.
The second class of machine is entirely different. It can have only two rollers with plain straight grooves cut on the peripheries. The axes of the rollers are then set in the machine to
give a twist to the rollers, which brings the straight grooves to the angle of thread desired, as indicated in Fig. 2. The blank revolving between the rollers receives the impression of the out or in one thread, or rather the distance between two threads. This machine also raises the thread, so that it is larger than the blank, a result of insufficient rolling or work. Thus, in making a lin. screw with eight threads per inch, and say 2 in . long, the blank would only make sixteen revolutions.
The first machine, made by Messrs. Fairbairn and Wells, had being pressed between them. It was, howite directions, the blank a screw made between two surfaces while hot is very liable to become hollow or spongy in the centre. After a great many experiments three rollers were adopted, but for the purpose of explanation we must describe the machine with two rollers.
If, instead of plain concentric grooves, as shown at Fig. 2
Fig. 6

grooves in the rollers are cut to one-half the true angle or angle of the screw thread, the angle or twist of the rollers must then be reduced, as where the angle of the grooves is increased a corresponding reduction in the angle or twist of the axes of the Whitworth threads is 12 deg., and it is desired to give the blank

say, eight revolutions in moving between two threads, then Fairbairn makes the angle of the grooves on the roller Mr 10.5 deg., and sets the roller's axes to an angle of 1.5 deg. -i.e, $10 \cdot 5+1 \cdot 5=12$ deg. In order to produce a right-hand screw, the rollers are cut left-handed. The method used by Mr. Fairbairn is thus described by him:-"Suppose a set of rollers is used 4 in . in diameter and, say, $\frac{1}{4} \mathrm{in}$. in pitch of thread, on 1 in . coach screw, then $\frac{4 \mathrm{in} .}{1 \mathrm{in} .}=4$ revolutions of iron for 1 of rollers, and $4 \times \frac{1}{4} \mathrm{in},=1 \mathrm{in}$. total and true pitch for cutting grooves on rollers. But we want the screw blank to make four revolutions while moving between two threads. Fig. 3 is a diagram of the $2-5$ becomes the basis, and instead of four threads we get three, and the total pitch becomes $\frac{3}{4} \mathrm{in}$. instead of 1 in ., the other $\frac{1}{4} \mathrm{in}$. being supplied from the twist of rollers. Generally, the less the twist of rollers the less the longitudinal motion and better finish given to the screws.
The principal objection to this machine is that the rollers are necessarily small, and so when making from 4000 to 5000 screws
per day, one after another, the wear and tear must be great.

The size adopted for the roller; is six times the smallest diameter of the screw at the bottom of thread. Thus for gin. coach screw, the largest possible size would be-diameter of diameter of roller. This is $\frac{5}{16} \mathrm{in}$. full, and $\frac{5}{16} \mathrm{in}$. $\times 6=\frac{30}{1}=1 \frac{7}{6} \mathrm{in}$. has been working eighteen months without change.
To obviate these disadvantages the four-roller machine has been made, in which larger rollers for any purpose and of one

size can be used and run always in one direction, i.e., no reversing of the machine. He obtains longitudinal motion of the screw with two of the rollers paralleled, and two smaller ones, with just as much of twist as will make up for the difference of angles due to two rollers of unequal size having the same number of grooves and cut to the same total pitch; for instance, a to $3=$
circumference of small roll, and a to 4 of large roller. The ifference in these circumferences is equal to one revolution of a

blank screw. The twist or reduction of angle on the small roller removes the line to $3^{1} 3$, which makes the same angle as the large one, or $4^{1} 4$.
The two large rollers then are parallel, while the small rollere are brought to the same angle of grooves. They make the same number of revolutions in the same time. By the twist on the maller rollers greater resistance to slipping is obtained, and the

causing the blank to screw itself out from the machine. Apparently the three and four-roller machines produce longitudinal motion by different means, but when examined closely the methods are similar.
fous on the three-roller machine, the obvious rule is to reverse the operation by cutting three grooves
the opposite angle and then twisting or increasing the angle of

the rollers until they equal four grooves. The same result may be obtained with the axes of the rollers in the same position for and their effect increased to four by the twist of the axes, In the same way, for left-hand screws, five grooves are cut on the rollers, and their effect as regards direction obtained by reducing them. The diagram, Fig. 5, illustrates the right-hand screw with three groove, 1 to 4 become - x to 4 , and for left-hand on the same axes with the rollers cut to five grooves- x to e becomes
Mr. Fairbairn proposes rolling fish bolts with right and left-
hand grooves on the same rollers, say, $\frac{3 i n}{12}$. right-hand, and 11 in.
left-hand on the point of the bolt to act as a locking nut, and left-hand on the point of the bolt to act as a locking nut, and
from the experience he has had he sees nothing very difficult in dom ine suceessfully. The two screws would be made at one
dopration of the machine, the blank being hot. Experiments made by Mr. D. Kirkaldy. show the tensile
strength of the rolled screws to be considerably greater than strength of the rolled screws to be considerably greater than
that of the cut screws. We are informed that from 4000 to 5000 $3 \mathrm{in}$. . coach screws, tin. long, can be made in a day with one machine. The wear of the rollers is very small as compared
with the wear of cutters, and a machine may work for several
weeks, any form may be made, square threads for railway couplings
with right and left-hand serews, and armour plate bolts being exceedingly well made. The section Fig. 6 shows one of this exceedingly well made. The section Fig. 6 shows one of th
kind. Fig. 7 shows smaller screws with different forms
threads.

LETTERS TO THE EDITOR.

(Continued from page 236.)
Str, -The question of working and workshop drawings is one so intimately connected with the welfare of any and every engineering
establishment that the wonder is that more attention is not paid
the to this vital branch of the business than is actually the case in many instances. One is always stumbling across intelligent work-
men who have much to say about the drawings they meet with in
m their various situations-either how good, bad, or indifferent they
have found them, and so forth-and it it astonshing to find in this enlightened age that in many places they have had no drawings
put before them, or at best only a few rough sketches to work to, put before them, or at best only a few rough skechese to work to,
and taking all their instructions verbally from foremen or managers in such cases.
taking has more to do with the sucoess of it than any amount of
succeeding must be apparent to any the case of a complicated machine this The first step in the case of o machiven is, or mhaterd bere, the preparation of a design by means of working drawings--these laid down to
a scale sufficiently large that every detail may be shown distinctly and in its place on the finished machine. When this is carried out by a practical mechanic and skilful designer very little trouble, if
any at all, occurs in ine the ultimate carrringo out of the machine in
its yarious stages its various stages from commencement to finish. Every hour spent
upon the completion of a working drawing and its details is a dis. upon the completion of a working drawing and its details is a dis-
tinet gain and saving of two or three hours in the workhops, not
of one man, but of several, and in the various departmonts. If of one man, but of severa, and in the various departments. If
this one fact was always recognised, how many vexatious mistakes would never have occurred.
A set of working drawing
A set of working drawings should consist of an absolutely com.
plete general drawing of the machine about to be constructed, plete general drawing of the machine about to be constructed,
drawn, if possibe, 3 in, to a foot, and should comprise as many
 He can thus grasp the idea of the whole job, and lay out his work
to the best advantage. On this general drawing also hhould be as many views of intricate or small details as can be separated out out
mrom the general views without crowding. Every dimension should
fre be put on in plain but neat figures, and the number, size, diameter,
and length of all screws, bolts, and nuts should be on. Also a tabulated list of gearing, pulleys, and speeds ; and lastly, the
drawing should have opious notes, legibly written where needed, relative to cores, methods of moulding, m
drawing should always be careunly inked in.
A complete forging dra wing should be made
A complete forging dra wing should be made, showing all wrought but always avoiding half, size where practioable. Each pieco should
be clearly figured in ink, and total lengths given as well as detail be clearly figured in ink, and total lengths given as well as detail
length sand diameters, When possible, all bosses, pulley hubs,
journals, or bushes should be shown in place, or if not nhown, a journals, or bushes should be shown in place, or if not shown, a
note indioating them should beplaced where they occur. All keys, screws, feathers, tapers, or nuts, shold be distinctly shown, and
dimensioned when not of standard sizes. A cuttingorff list should
he thale be tabulated in the right or left-hand lower corner of each shect of forgings, giving diameters and lengths of each picee in the rough
bar,
jumping- coup, \&o. being reserved for peoce should beararks a distinctinctive symboll, and jumping-up, co. Each piece should bear a distinctive symboi, and
its ocrresponding piece in the coting-of list hoould bear the same
symbol. All the torgings should have their names legibly writte beneath, and copious notes, especially with respect to screwouting, interspersed where needed. All such piicoes as are to be
out up in the capstan or turret rest lathe should be grouped out up in the capstan or turret rest lathe shold be grouped
together with a red line round them, and marked "Capstan lathe
work." In many instances it tis and sheet of this work, independently of showing them on the regular forging sheet, as it will save the men from running about from
lathe to lathe after the one drawing. Then there should always be several full-sized views of important details or combinations,
especially motions of all kinds, a note of which drawings especially motions of all kinds, a note of which drawings should
appear on the general drawing. These full-.ized viess, if care-
fully made and worked out and properly figured, and notes of all teeth of gears, \&c., on them, will save more of the firm's
money than can be appreciated excent by those who have been fortunate enough to use them. The whole set of drawings should absolutely correspond in every particular with respect to figures,
sizes, diameters, and length of bolts and nuts, gears, pulleys, and notes, and should be carefully checked to this end. If many of
the machines are to be made, all the dawa general drawing, should be carefully traced in toto on linen, and mounted on boardas forthe workshops, anh in these ninen tracings and front, water or damp does not injure them, and they can always be cleaned with a wet sponge and coth when dirty. It is a good plan to mark or symbol all the details of a machine
on all the drawings, with the exception of standard bolts and nuts, using numbers for the castings and letters for the forgings, for
clear distinction. All parts, if stamped thus in the works clear distinction. All parts, is stamped thus in the works, are
easily found and recognised, and confusion is avoided. If any
colouring is used it should be not too heavy on any of the various colouring is used it should be not too heavy on any of the various
details-not excepting sections-and flat surfaces should not be coloured generally. A faint line of colour around the edges of the goneral views on the complete general tracing and drawing brings
the views out with mumd distinctness, but it is well to leave off all
flat washes on full-sized work, only tinting round pieces and sections, and these not too heavily. It may seem that to follow out this system of preparing working
drawing involves a large amount of labour and time; but in reality such is not the case., An expert practical man who under-
stands his business can get through an increcible amount of work,
and in a very short while to and in a very short while too; and when the drawings leave his
hands they may be relied on, which is really the whole life and soul of working drawings.
Complete drawings mean oarrying out the work in every depart-
ment with ease, despatch, and ocrocetness; no annoying mistakes,
no running about, no time lost in making inguiries or waste material, and no excuse for blunders, and a smoothness of working from beginning to end of a job. On the other hand, unfinished
general drawings, and incomplete or obscure detail drawings, mean general drawings, and incomplete or obscure detail drawings, mean
mistakes in every department and at every turn, ancertaint of
doing the work, men running about making trivial and foolish doing the work, men running about making trivial and foolish
inquiries of their foremen and managers, fouling of motion parts,
resulting in numerous visits to both scrap resulting in numerous visits to both scrap heaps, which means new
or altered patters and forgings and new aasings all to be again
machined, discussed, and wrangled over, and with a certainty in
the end of the end of
loss of ored
loss of oredit to the draughtsmen, foremen, and leading hand
loss of temper with all of them in turn, and loss of money to the
principals, and not forgetting loss of time to customers waiting for principals, and not forgetting goss of time to customers w
their machines and loss of these customers' future orders.
drawing and get out a set of forgings for such or such a a rough we will soon straighten out the machine in the works." Well, the straightening out means doing a lot with the hammer at the scrap
heap-and heap-and plenty of it, too, sometimes. Or again, after the
forgings are all roughed, out and the castings are mostly in, the
manager insists on making a radical change in manager insists on making a radical change in some part of the
design-result, chaos ; drawings to alter, patterns to alter, forgings to serap heap, castings ditto, when perhaps an extra hour spent at the drawings would have avoided all this loss of time and material,
which is all money. It is these ruinous alterations which take off the profit, and make machines come out bad in cost estimates. we have so few really good practical engineers in our drawingoffices; such is, however, the fact. What becomes of all the
pupils, especilly the really many intelligent and well-educated
youths Youths who enter the business, and who have a good workshop
training? They cannot all be partners or managers at once. Do training? They cannot all be partners or managers at once. Do
they leave the business when out of their time, or go abroad, or
die, or what becomes of them as a whole? It is a fact that there is a dearth of really practical mechanical draughtsmen, who are
quick, intelligent, and painstaking. Those that are in good berths keep them, and their employers do all they know to keep them in
their offices. There are plenty of " their offices. There are plenty of "geniuses,", rapid and neat
draughtsmen truly, but unpractical. These are full of fads; their work requires too much overhauling and re-scheming, they are
spoiled through lack of thoroughness and practical tuition a alway restless, and wanting to begin half-a-dozen jobs before they are Then there are the men who pay, certainly not one in ten does. offices, from ink-rubbing office lads to the time they become junior hands. Some of these develope into good men, but they take a lot
of developing too and too often degenerate into tracers or second of developing too, and too often degenerate into traceers or second
and third-rate draughtsmen. There are abundance of these scores answer every advertisement. They do their best most of
them, but they never become the useful men they should be First-class practical men are in demand, not theorists, but men
whose work reaches the intelligence of the most thick-headed workmer; ; young and energetic, and whose every effort is civen to
raise the standard of their employer's work.
Manchester, March 16th.

SII,- -This subject having recently appeared in the correspondence the public against the imposition of certain manufacturers, using and supplying iron of an inferior quality, I venture to offer a few ressllts of a few experiments I have had carried out at a public testing estab
mented upon
The necessity of securing iron of the best quality for the manupatent to anyone conversant with their use, and for the preservation oi life and property, that any further remarks from me on that
ooint wouldbe superfluous. TTere are, howerer in m op opinion othe equally impson many instase and manufacture of chains, which I fear are in to of links; secondly, the injurious effect of welding. The former I fear latter is a fact admitted by all authorities, and demonstrated by testing, viz,, that it is a practical impossibility to weld chains
either on the end or the side, and retain the same quality material at the part welded as that in the other portion of the link. That being so, it follows that the very best of iron is so dete riorated at the welded part that the strength of the chain is reduced in proportion, and I would recommend all users of crane, sling and mooring chains or indeed any kind of chains, when purchasing to
specify (1) That the chains be tested at a a phbicio testing establish
ment licensed by the ment, licensed by the Board of Trade. (2) That the sample should
be selected and tested to statutory proof. In the case of the crane chains, and in chai cables, or studded cbains, at least 60 per cent. to 100 per cent.
over the Admiralty tensile test. With these preautions infer iron for chain purposes would never find its way into use
The photograph accompanying this letter is an illustration of

the result of testing ordinary welded links of the best best cable iron studd test testing ordinary welded links of the best best cable and studless link made by a process recently patented by weess The centre link in each specimen represents the patent link, and | establishment. |
| :--- |
| estex is |

" Extract of Test Master's Report.
links of the best thest link was artached tod wo ordinary welded than the patent link and sustained the appropriate brealing larger for 113 u unstudded chain cables, viz, 78 tons 16 cwt ; it was afterwards tested to 96 tons, when one of the ordinary links parted at the weld, leaving the patent link in position slightly fractured,
having sustained without parting an over proof strain of about 22 per cent.; the elonga
the ordinary also ${ }^{\text {in }}$ in
/ $N o, 2$.
of the 2 ink. - This link was also attached to two ordinary link link, studded cable iron 2 1ryin., and fours sizes larger than the paten viz, 82 tons 15 owt , which it sustained, and was afterward tested the welded link parted, 112, 116, 120, and 124 tons, at which proo fractured at a defective part. The elongation upon the patent link
is 1 inn. and on the ordinary link 1 tinin, thus showing the patent link sustained without parting

$$
\text { "No. } 3 \text { link, -Th }
$$

the same way as strain, 82 tons 15 owt., which and sustained, and was afterwards tested as follows :-86, 92,96 , and 100 tons and 16 owt., when it was found on examination that one of the ordinary wins had six
fractures in it and the patent link had one, thus showing the natent link to have sustained without parting-but showing a small fracture -an over proof strain of about 22 per cent, above the breaking
strain for 114in. stud cables the elongation on this patent link is strain for 1.inin. stud cables;
\$ina and on the ordinary link
is
as regards preparing for testing, viz, two unstudded 2 , ${ }^{2}$ in. links attached, being five sizes larger than the patent link, and was tested
as follows :- $96,100,105,110,115,120,125,130$, and 135 tons. At in the ordinary and also the patent link; the links are so thoroughly rigid and locked together, owing to the enormous strain they have unstudded cables, that I am unable to ascertain any further injur to the specimen than that described above. The elongation on this patent link is 1 13in,, and on the ordinary link 18 in.
"February 22nd, 1886 ."
The advantages my patent professes to possess over chain cables true geometrical form of link; (3) to discard the use of cast iro studs; (4) to increase the strength of cables when in use in tensile, transverse, or compound strains to which they are subjected at sea.
The Lawe, South Shields,
Warch PENMAN.
SIR, - Your leading artiole on "Good and Bad Chains" in The
ENGINEER of January 22nd, 1886 , has drawn forth a large amount ENGINEER of January 22nn, 1886, has drawn forth a large amount
of information from chain makers interested in the matter. But
there is another side of this question that will bear speaking on,
viz,, the proper working, examination, and care of chains on hand
steam, and hydraulic cranes, lifts, hoists, \&c. To our large dock companies and extensive factory owners this is an important point, Where the safety of many lives depend on the condition of chains
It would be interesting to many of your readers to have an expres. would tend to throw some light in the matter if we could get examples of the methods adopted wher largely used, to get the greatest amount of work done with safety
to life and limb, which is an important factor in the case practical readers will know it is possible to ruin a chain of the very
best mal and attention may last a, long time.
London, March 12sth

Sir, - Your leader on this important subject, and the way in
which it has been responded to by the leading makers of branded ohains, has already done good service by way of enabling consumers
to kow how, and from whom, they may obtain good and trust-.
worthy chains, and it is to by tom may seo their way to profit by it also, as their example in matter
of this kind is looked to by other Governments and the general public as being worthy of imitation; yet, notwithstanding the grea
power they possess of upholding the manufacture of ohains of a high quality, I learn, to my astonishment, on making inquiry, that which to equip and rrig our dockyards and war ships. It is not,
however, my intention to blame them, but rather to sympathise vith them, knowing the difficulty they must have to contend with in obtaining really good chains in a market overflowing with
spurious imitations of the genuine productions,
For the sake brevity I now confine my remarks to the short-link crane and rigging enain
this country
A propos of your remarks as to prices, I cite the following, just
to show you how even the Government departments themselves differ on this question :-At this moment the Admiralty is inviting tenders for about twenty miles of short-link rigging chains for the and which will doubtless range from about 13s. to 14s. per owt for 3 in, that being about the price they are now paying under
their present contracts, while the Indian and colonial departments pay from 18s. to 19s. per cwt. for the same size, with the result
that while the latter are supplied with a good fair quality for th price, the former is contented with a third-rate quality to rig ou
frst-class ships. In a letter wh
irst-chass ships.
before, Messrss. Joseph Wright and Coo, of Tipton, giv
 the cost price of their special brand is 21 s . per owt. Now, Sir,
having the published statements of these well-known firms before feel sure the general and dockyards should bow supplied with whating our own cosentily swiper in
auality than those used by our Indian and colonial departments and further, how comes it that private firms calo anal ord to to purcctase
the very best branded chains for their ships, cranes, and collieries at 23s. 6d. per owt. while our own Government is satisfied with a third-rate quality at about 13s. or 14 s , per owt. for the same size ?
Sumner-road, Edgbaston, March 16 th .
J. BARNEs.

Sis, -I dare say other readers of your valuable paper as well as myself would very much lilere to konow how M. Curtin intends to
renew one of his tubes in the vertical boiler, without taking out the furnace; or allowing he can work a tube in from the bottom of the
furnace, how will he rivet it? and in a Lancashire boiler he rivet the bottom of tubes, raked from centre of boiler to shell: may perhaps inform Mr. Curtin that we have made several vertica Galloway fanged tubethe bestfor all purposes. Perhaps Mr. Curtin will consider the cost of cutting out and putting in a Galloway
tube and also one of his patent.
H. B. BuckLAND. Tyne Boiler Weorks Compan
Tyne, March 17 th.

LAUNCHES AND TRIAL TRIPS,

The Olaf Kyrre, built by Messrs. Martens, Isen, and Co,p of
 will be fitted out in a modern way, being intended for the tourist firm, are triple expansion, the first of this kind built in Norway She is to be lighted by electricity, this being unique in Norway. On the 3rd inst. the s.s. Frampton, built and engined by Earles Fishing and Ice Company, was taken on her trial trip. The following are the particulars of the vessel:- 19 ft . 9 in . beam by 10 ft depth of hold, with flush deck aft and
small raised forecastle forward. She is built to class 90 A at Lloyd's, and has accommodation for captain and officers aft and engine and boiler being fitted for the storage of ice and fish. She is ketch rigged with pole masts, and is fitted with a steam winch
f Earles' special design and make for working the trawl gear 22i er fitted with one of Fox's patent ndicatp, giving a speed of upwards of $9 \frac{1}{2}$ knots per hour, the
inse-power being 170 and the revolutions 160 when working at tull speed. 11th inst., Messrs. Earles' Shipbuilding and
On Thursday, the Engineering Company launched from their yard at Hull the iron Leetham, of Hull, for general cargo purposes. The dimensions are
Length, 310 ft ; breadth, 37 ft ; depth of hold, 20ft. She is buil to Loloyd's highest class, with additional strength in the shape of
steel for the upper works, where
great longitudial strength is needed. Provision is made for water ballast in double bottom all needea. Provision id on the longitudinal system. The vessel has a
fore and ant framed
raised quarter-dece, bridhe raised quarter-deck, briage, and turtle back foreastle, with accom-
modation for the captain and a few passengers in the poop. The ofticers' quarters are under the bridge, and the crew are berthed in to the rapid loading and discharging of cargo, powerfulu steam
winches being provided to facilitate this. Therudder is of cast steel,
 64in. by 39in. stroke, which will be supplied with steam at 95 lh , pressure from two boilers. The engines and boilers are being con-
structed by Messrs. Bailey and LLeetham, at their Humber Iron
works, and will be fitted on board by the buildere works, and will be fitted on board by the builders.
The Union Steamship Companys
uhe nion steamship Company's new mail steamer African,
built by Messrs. Raylton Dixon and Co., of Middleshrough w, successfully launched from the shipbuilding yard of that firm
Che African is intended for employment in the Union Company' interoolonial mail service between Cape Town and Natal, and her
leading dimensions are: Length over all, 253 ft ; , breadth, 33 ft . depth, 24 ft . 7 in.; and her gross tonnage will be about 1300 tons scantlings, \&co., are of the same dimensions as those required by Lloyd's rule for an iron vessel of similar dimensions. The ship has
been built under Iloyd's special survey, and meets all the repuire been built under Lloyd's special survey, and meets all the require
ments neeessary for the 100 Al class. The African has four water tight bulkheads, and will be fitted with three steam winches and
Bow and McIachlan's steam steering gear, and in view of her being
employed on the coast of South Africa, where bad weather is fre-
quently experienced, cables and anchors of special strength will be quently experienced, cables and anchors of special strength will be
supplied. The engines and boilers have been constructed by
Messrs. T. Richardson and Sons, Hartlepool, and are of the threecylinder triple-expansion type, to develope 1000 indicated horsepower. The diameters of the cylinders are $191 . \operatorname{in}$., 34 in ., and 54 in .,
with a stroke of 36 in . The crank and screw shafting are of stel, made on the Siemens-Martin principle, and of extra strength.
The propeller is fitted with steel blades. The boilers are constructed of steel, will work up to a pressure of 1501 lb ., and have been fitted with Wyllie's patent artificial draught, as well as with
all modern improvements. It is anticipated that the adoption of the type of three-crank engine will give the greatest satisfaction,
both in regard to smoothness of working and consequent increased comfort to passengers, and in regard to decreased consumption of fuel. The ship's speed, with a full cargo and coal supply, is up in a luxurious manner for about 112 passengers, wire-wove mattresses and patent lavatories being used throughout the ship,
and she will be despatched to take up her station within the next
few months.

AMERICAN NOTES.

(From our own Correspondent.)
THIs city has been agitated for the past fow days by serious labour complications, and yesterday the entire surface roads of the sions which have been denied for a week or two. The managers are ighting the question of control as well as shorter hours and
higher pay. Numerous strikes are reported all over the United
States, and as a rule the workmen are gaining their point, increasing their pay and securing promises of shorter hours. The In the building trades the reduction is promptly conceded, and
in most cases ten-hour pay will continue. The general executive
committee of the Knights of Labour has been in almost constant committee of the Knights of Labour has been in almost constant
session for three weeks, and have work on hand that will keep them engaged for several weeks to come. They are settling strikes in
nearly all cases in favour of their comrades, and are, therefore, nearly all cases in favour of their comrades, and are, therefore,
gaining in popularity among their fellows, as well as securing the
esteem of liberal-minded employers. In trade matters there is very little new. The politicians and manufacturers are quarrelling
over tariff duties at Washington. There will be no reduction; at least the Protectionists do not appreehend any. Importers of iron
and steel are anticipating considerable improvement in impor orders. They have a great many orders for material, which are made on the supposition that material of all kinds will still further
advance. The blast furnaces are pretty well sold up, as also are the steel rail mills, Bessemer furnaces, skelp mills, sheet mills, will be necessary, it is thought, to increase importation. Prices
are everywhere firm, and brokers talk in a very hopeful frame of mind. The building trades are crowded, and at no time in the
history of the country has there been as much activity and prehistory of the country has there been as much activity and pre-
paration for building in houses, shops, and factories. The activity the interior. The railroad matters have not been adjusted, but two weeks, it is said, will
bring a great deal of uncertainty within the realms of certainty. The Pennsylvania Company offers to compromise with the Baltiagree to postpone the construction of its road five years.

LONDON WATER NUPPLY. - In his report on the London water LONDON ATER SUPPLY.- In his report on the London water
supply during February, Dr. Frankland reports that the Thames
water sent out by the Chelsea, West Middlesex, Southwark, Grand Junction, and Lambeth companies, contained in every case less
organic matter than was present in the January samples, the organic matter tian was present in the January samples, the
improvement being least conspicuous in the case of the Chelsea and West Middlesex companies. In none of the samples was the organic matter excessive for this season of the year. All the
samples were clear and bright. Of the water drawn from the Lea,
that supplied by the New River Company contained less, and that that supplied by the New River Company contained less, and that
by the East Loodon Company more organic matter than any of the oth samples were clear and bright. The rendered it well fitted for washing and all other domestic uses.
Seen through a stratum 2ft. deep, the waters presented the following appearances :-Kent, Colne Valley, and Tottenham, Sout anark, Grand Junction, Lambeth, and East London, clear and very
Belgian Engineers And Metal Slekpers.-Excepting the
Government Engineer of Mines and Ponts et Chaussées, by far the most important body of engineers in Belgium has hitherto been with its branches in the four principal cities of the kingdom. But, from the nature of its constitution, like that of the Association des Anciens Elèves des Ecoles des Arts et Manufactures of France, no engineer, whatever eminence he may attain, can become a member
of the Liége Society unless he happen to have been educated at the excellent mining school of that city. It was, therefore, thought engineers, under the title of Société Belge des Ingénieurs et des
Industriels, in connection with the Brussels Metal Bourse, and having its headquarters in the fine Palais de la Bourse, Brussels, which was built by an English company. This body began its
active work with the present year by organising a series of lectures on the capabilities of the new Congo Free State, with proposed Metal Sleepers, the opening of which arranged an Exhibition of in our last issue. The president of the society is M. F. Wellens,
Inspecter-General of Ponts et Chaussées; the vice-presidents, M. C. de Burlet and M. V. Despret; and the secretaries, MM.
Flamache and Ch. Legrand, while the organisation of the tion has been confided to a committee, of which M. Rombaut, Government Commissioner for the Antwerp and Amsterdam
Exhibitions, is president. What is most noticeable about this Exhibitions, is president. What is most noticeable about this
exhibition, at which upwards of fifty systems of metal permanent the facilities afforded for examination of the exhibits. There is none of the vexatious "Please do not touch," but, on the con-
trary, spanners are provided where necessary for unscrewing bolts. trary, spanners are provided where necessary for unscrewing bolts.
The sleepers, including some that have been in actual use for a certain number of years, models and fastenings are arranged on attached to frames between each table. At present it is arranged that the Exhibition shall remain open for a month; but it is pos-
sible that its duration may be extended, if there should be any Alredy the initine Exhivition followed by the French Comité des Forges and the Société des Industries Francais, who proposed, at the close of the Brussels
Exhibition, to hold another in the Pavilion of the City of Paris, near the Palais de l'IIndustrie in the Champs Elye City of Paris,
absence of a floor will permit of actual trials with sleepers, and of
demonstrations of packing ballast lowed by discussions, is arranged at the Brussels Bourse for Friday evenings, the inaugural lecture last Friday, by M. Flamache,
engineer of the Belgian State Railway and Professor of Railway Wo
hist year,

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM,
OTHER DISTRICTS.

(From our own Correspondent.)

A NEW feature has been introduced into the trade outlook thi week by the circumstance that the ironworkers have determined of last January, and give notice for an advance in wages in the middle of April, when the present arrangement expires. The movement at the present time as hardly better than absurd.
The operative secretary of the Wages Board has been giving
somewhat singular advice to the ironworkers. This week he publicly expressed the opinion that things were going from bad to that a generd stan period of two months would tend very much to purify the social and commercial atmosphere. He could give the names of works
at which the men had not worked a day and a-half per week during the last six months. This same leader is, however, continuing his convinced that a self-acting scale is by far the best means of regu-
lating wages, and that all classes of iron, and not bars merely, should be taken into consideration. He, however, has now raised
the minimum of 7 s . 6 d . per ton for puddling, which has been prethe minimum of 7 s .6 d . per ton for puddling, which has been pre-
viously speeified, to 8 s . per ton, and the price to be regulated 1 s . above the selling price of iron.
The men engaged at Messrs. Johnson's Ridgacre Ironworks have orks are to be closed, but the notice will not affect the other work of the firm.
What is
of the kingdom the decision come to by the Lancashire engineers to reduce wages 10 per cent. has brought about a dispute at the
engineering shops at Oakengate, Shropshire, and the Lilleshall Iron and Steel Company. Notice for a 10 per cent. reduction has
been served, but the hands have refused to consent to any drop, and the notice having expired the proprietors have for the present closed the works.
The bulk of the men connected with the Amalgamated
Engineers' Association, and are receiving 15s. per week per man, Engineers' Association, and are receiving 15s. per week per man,
while non-society men are, it is said, receiving 7s, 6d. per week.
The Earl of Granville, who is the managing director of the works, and the chief proprietor, has paid a visit to the establishment from
London, but it does not yet appear that his lordship's presence has been able to suggest a settlemen
Business in finished iron keeps
earnestly anticipating an appearance restricted. Ironmasters are would have the effect of benefiting the home demand. The uncerta
trade.
A few
A few more specifications for the best descriptions of the finished
material for export have lately been received, but in the shee trade the volume of business is considerably less than it was a yea according to brand; unmarked bars are purchaseable at $£ 5$ down
to $£ 417 \mathrm{~s}$. 6 d . as a minimum; and sheets range in value from $£ 65 \mathrm{~s}$, upwards, though some consumers are buying at $£ 6$. On the whole appear to be best employed; but even among these firms only half production, and in some cases less than half production is the order
The day.
The present prices of the Pelsall Coal and Iron Company,
Limited, are as here :-P.C. bars, £5 5s.; P.C. hoops, $£ 5$ 10s.; crown bars, $£ 6$; crown hoops, $£ 6$ 5s.; crown sheets, $£ 615 \mathrm{~s}$.; char
 German competition keeps the wire-rod trade very quiet. Export
sizes Nos, 0 to 6 of rolled rods are quoted by Shropshire firms on
the basis of $£ 6$ per ton, foob., Liverpool, while smaller sizes run the basis of $£ 6$ per ton, f.o.b., Liverpool, while smaller sizes run
down to $£ 4$ and less. Drawn rods Nos. 7 to 8 are quoted $£ 7$,

In some quarters in the pig-iron trade a further restriction of from other districts the reduced prices quoted for importations from other districts phaciness reported is for comparatively small parcels. The blast mine pigs are quoted from 55 s . to 54 s . 6 d . per ton, according to number ; part mine, 45 s , to 40 s . per ton; common iron, 35 s . to 30 s .
per ton. Northampton pigs are 36 s . 6 d . easy at railway stations, and Derbyshires 6d. to 9d. per ton more.
Welsh scrap iron, composed mainly of sheet shearings, is quoted supplies at 45 s
Engineers of
wheel mof established reputation engaged in heavy roll and demand. Orders are received not only from ironworks and other France, Germany, Spain, Italy, and other Continental Belgium, Messrs. Thomas Perry and Son, Highfield Engineering Works, briumphs as chilled roll makers. They have cast a chilled roll
trium triumphs as chilled roll makers. They have cast a chilled roll
over 13ft. on the barrel, of 281 in. diameter, and weighing 14 or 15
tons. North to be used in imparting the high polish which appears upon the best goods of the linoleum manufactures. This makes the third roll of almost exactly similar size and weight which Messrs. Perry have cast for the same manufacturers. Messrs. Perry are
the only facturers could induce to undertake this special work, all others when appealed to, declining to venture the attempt
A heavy business in railway wheels and axles on export account
continues to be done by the Patent Shaft and Axletree Company, Wednesbury. India, South America, Australi and other distant markets, are all understood to be good America, Mr. Alfred Hickman, M.P., iron and steel-master, who has lately figured in the House of Commons on the railway, rates quesInstitute of Iron and Steel Works Managers, at Dudley, on Saturday. He dwelt on the merits of the Bill introduced by Mr.
Mundella, and pointed out some essential omissions. complete the Bill might be, it would not fulfil all the requirements of traders, and the only remedy to which they could confidently
look was in the improvement of the waterways, By this means goods was in the improvement of conveyed to the waterways. By this means
goorn ports from
South Staffordshire at half their present cost, and the freightage to London
would be reduced to 7 s . per ton, including collection, instead of as now 15s. per ton. Mr. Benjamin Hingley, M.P., ironmaster,
expresses the strong hope that manufacturers and other traders in this district will have the money ready for the projected improve ment of the waterways.
The strike of the sock
wrought iron tube tradet and fittings makers in the Wednesbury largest works which were not previously directly engaged in the dispute.
The lar
Thich largest gave justolders which have hitherto been put up are thosed The two new gasometers have each a capacity ot $6,250,000$ cubic 170ft. high. They are suspended over tanks 51ft. deep. The
gasometers are supported by standards and latticework of iron.
These gasholders will be somen is being erected for the South Metropolitan Gas Company, and mingham. The new retort-house of the Birmingham gasworks is a fine building, 487ft. in length and 210ft. in breadth.
With the full number of retorts in position, there will be 11512
mouthpieces. These are fed by three systems, namely, those of
Klönne, Dr. Siemens, and Mr. Charles Hunt, the engineer of the
works. The new purifying house is about 200 yards long. These
and other applianoes mate up modern additions which mave
 rracoror for the gashold ers a are Messrs. Cutle and Sons, of London,
and Messrs, Aird and Sons have constructed the tanks. The prin. nd Messrs. Aird and Sons have oonstructed the tanks. The prinl
sipal ironwork has been supplied by the Patent Shaft and Axle Company and by the Horseley Company.
The acoounts of the Guardians of the
roof-honse for the past year show that the nemgham Gun-barrel E6015 and the expendituro to to bisos, teaving ga balanace of tooss of 222. Last year, betoro the recuction or the eharges, the receipt The annual spring Speedwell Cyole show, which has been held the large number of mach, mess which weone there ex exhbibited was ween the oonsummation of o a develolomentht iner thier bexancote of the light
machine trades which has been almost phen instance of this was the varied exhibition of Messrs. Humber and Co., Who had on view machines of all types and sizese, ranging from
the "Humber safety", to the swiftest racer. Among oither pro-

NOTES FROM LANCASHIRE.
 (From our own Correspondent.)

From our oun Correspondent

Manchester- -The closo of the first quarter of the year is rapidly
 iou than during the past three months, and the outlook continue the hands of users of iron, or even in prospeet, continues so sosmall Ihat actual requirements are kept down to the most limited possible apward movement in the market, at least for the present, execes. nely low as prices are, they offer practically no inducement for
buying beyond bare hand.to-mouth reanirements. It is, however iot ony the saracity of new orders of any weight giving out that
is making itself felt; in not a few instances consumers have bee s muen to take theiron a I ready bought, and sellers complain almot as much of suspended deliveries on old oontracts, which in many Tracts being placed out. Thae position of the pigi iron trade, so far
ns this district is ooncerned, ould sarcely be worse of of ehe as this district is oncerned, oould saracely be worse; of what may
be termed purely Lancashire brands of common pity irom the duation has now been reduced to so low a point that local inron has ceased to be an element of any importance in the market, whilst a regards distriot irons, which are ehieff represented by the Lincoln-
shire brands, not one-half of the furnaces are in blast, and even for this restricted production it is so dimitios artest to thast, an outlete that been known. The position of the finished iron trade is equally bad; several of the works in the Wigan district have been closed
entirely for a considerable time past, and in the Warrintol district, which is the centro of the largest production in Jancashire prices when ioh working he to more than half theen output, even at down to below the actual cost of production.
At the Mis
demand hanchester iron market on Tuessay extreme slackness
 quotably any lower than last week, but the general tone of th market continues weak. For Lancashire pig ron makers hold to
778. 6 d. and 38 s , , less 2 z , as their lowest quoted rates for delivery equal to Manchester, but with the present tery limited make theso arld by district brands, that exceopt tor they are so much under tomers in the immediato neiefgbourhoo vor sme the furnaces, looal

 nally pretty much the same as last week, but theres is really little ar nothing being done here either in Scotch or MTidalebbrough iron. toundry not averanging mere than aboout ordinary. bi, bleasd less 2 t per oent. Rail suyers have no orders of any weight to give out exoept for forwar
 Ior immediate delivery
In the finished iron
nouth business doing, and this this is still only a very slow hand.to-
 hester district, the minimum quatation representing the averago
 nave still sufficient work in hand to keep them about fully mployed, tool makers are generally moderately off for work, and engine building trade, bat it has not yet sinown itseff in the shopsy . the reduction in wages, are persisting in the determination not Low work overtime at the reduced rates, and this has become a
diffoulty at one or two works whiok omplete orders in hand. The returns of the varous Trades show no improvement in the condition of employment. Ther is a ontinued steady inorease in the numbers coming upon the
books of their respective societies for out-ot-work support, which in some of the leading societies now amount to an unusually large
peroentage. The Amalgamated Society of Engineers hal percentage. ithe Amalgamated Society of Knginers has now 10
per cent. of its members in receipt of out-o--Work support pereentage is about the same in the Moulders' 'society, and the
 general slackness continuest to boe the reperort from the districits in neering works ind in the London ond distroicich appeat, the country, Tower, to be bebtiter employed than ellewhere, and from some of the shipbuilding At the monthly meeting of the Manchester Joule Club, on
Wedinesday last, several interesting communications were brought before the members. The chairman, Mr. Allott, gave a desocription
 drawings indicated the amount of outting, whic had been neeces
sary, and some of the dificiention carrying out the work, notably the underpiinining of the Maypole Hotel, which neoessitated the removal of the wines and spirits to
 Budenberg, after which Mr. Bolle read a paper on Higuid fuels
showing how they were used on the Caspian and Black Sea Rusian
stew

 evaporated with 1 lb . of petroleum, as against an evaporation of
9 lb of water with 1 lb of ocal; but as Mr. Bollé was unable to
substantiate these results by actual experiments, they were, in the
discussion that followed, considered as open to some doubt,

The development of improvements in gas-lighting seems" to more
than keep pace with the progress made by electrieity as a competing system of fighting. One of the latest improvements I come- have
seen in this direction is a new lamp on the regererative principle reeently introduced by Messrs. H. Fourness and Co., of Manchester,
which, though designed which, though designed more particularly for private and public
buildings, would certainly seem a very effective means of lighting rail way stations and outside spaces, the difficulty in in the latter case being overcome by enclosing the lamp in an independent glass
shiedd to protect it from wind and storms. The lamp was first introduced last year, but it has sincee been gradually improved. above the gas flame ; this chamber consists of a series of vertical tubes, through the centre of which passes sthe chimeney. Through
these tubes the outside air or oxygen is conveyed to the flame, the these tubes the outside air or oxygen is conveyed to the flame, the
air in its passage through the tubes being heated by the products of ing up the chimney. The air entering the globe in the gas, spreads the flame out, into an incoandesent disc light of
very high illuminating power. By the special arrangement of the lamp there is neither smoke. nor smell from the ocmbustion of the
gas, and by recent improvements the ramp is made entirely self gas, and by recent improvements the lamp is made entirely self according to the quality of the egas which is being conspumed, and it
can be lit from through a small slide from the without opening the glass. The light is thrown vertically from the lamp by means of a reflector immediately anove the flame, and
it is claimed that with the same consumption of illuminating power is secured as with the ordinary lamp.
The continuede exceptionally severe weather still keeps. kp a brisk demand for house-fire coals at full rates, but the activity in the
coal trade does not extend to other classes of fuel. Common round coals meet with only the very slowest sale either for steam or forge purposes ; in fact, for ironworks purposes there is a con-
tinued decreasing demand, which is throwing such large quantities of forge coal on the market that this class of fuel is a complete
drug. Eogine fuel meets with a fair sale for mill purposes, but the salt and chemical works are only taking very restricted quantities,
and common slack is plentiful about 9 s . for best coals, 7 s . 6 d . good second qualities, 6 s . common
 3s. 9d. to ts. per ton.
Shipping is only dull, and steam coals delivered at the high-
level, Liverpool, or the Garston Docks, can be got at about 78. per ton.
Barrove.-There is practically no change to note in the demand
for hematite quallties of pig iron. The market is exceptionally for hematite qualties of pig iron. The market is exceptionally
quiet, and buyers not only have every few wants, but they are not deliveries at present. Prices certainly show a disposition in the direction of a deoline,
although mixed parcels of Bessemer are still quoted at 43 s. per ton
net at makers' net at makers' works for prompt delivery. Some quotations have,
however, lately been given from the northern part of this district quality. Stocks are much smaller that the lower standards of quakers some thime ago entered into delon they have been ; but
congagements with
consumers which practically furnish them with emplogment present moment. Steel makers are selling very little steel in the shape of railway material, and it is still a fact that orders which
it is known are soon to be placed are being held back in view of the collapse of the Steel Rail Makers' Association. Ten shiiling per ton reduction has been noted on tin bars, and the demand,
which was brisk before this decline in prices, may be expected to which was brisk before this decline in prices, may be expected to
be still brisker. The only other department of the steel trade which is busy is that in which ships' steel and boiler steel is being
produced. The mills are busy, and are likely to be even more so wroduced. The mile are busy, and are likely to eo even more so, is still a very quiet demand for iron ore, but prices are steady.
Coal and coke in slow consumption. Engineers well employed in
End the marine department only.

THE SHEFFIELD DISTRICT.

(From our own Correspondent.)

Though as yet there are fewer indications of improved trade
than one could wish to see, Ifind confidence pretty freely expresed that we are on the eve of better times. In the heavy industries there has been of late no lack of work, in connection with railway material both on home and foreign account, marine forgings and
castings, armour-plates,
enn for forgings, and similar material. Firms engaged in those specialities are fully employed. ${ }^{\text {Several markets, }}$
too-notably the United States, where regarded as a particularly good, sign-are sending better orders in
cutlery and steel. The call for high-class crucible steel forthe States during February was twice as great as that for the corresponding
period of 1885 . In cutlery there was also a decided impren period of 1880 . In cutlery there was also a decided improvement. saws, and edge tools continue in limited request. A large number sive establishment will continue idlet till theys, concede 15 one exten-
reduction, which the cent. reduction, which the employers declare absolutely necessary to
enable them to meet German competition. Now-a-days the Germans, not content with supplying their own requirements and
pushing briskly into the colonial and foreign markets, are making pushing briskly into the colonial and foreign markets, are making
themeselves rivals in our industrial centres, mainly through the
remarkably low prices at which they put their goods on the market.
The Th
charges of fraudulent trading against Sheffield in merchants to thi manufacturers in regard to the alleged falsee marking of goonds. It
is difficult to see what the Town Council can do in the absence of specific evidence against local manufacturers; and this the
acousers, having a wholesome dread of the law of libel, refuse
to furnish tons of cutlery, tools, and other wares are stamped with
the the word "Shefteld" and Shetield trarese-mare star, or imititations
the them, and sent direct to the various markets of the world.
of Occasionally these goods are coolly sent to Eng Enland to be
transhipped in British bottoms, so as to make the imposture more complete. 1 tit is whice this nefarious process is going on that seize the goods. Messrs. Joseph Roodgers and apon the pirates our celebrated
cutlery firm, have had enormous auntities of Germ cutlery firm, have had enormous quantities of German productions
marked with their name and trademarks seized in the Thames and publicly burned on TTower-hill. To strike, at the origin of the evil has been the constant aim of the Cutlers Company, and they
are at last, atter many rebuffs from the Government which would
have daunted a less determined body, within measurable distance of success. A deputation, representing the Cutlers' Company and the Tradelast week, to urge him not only to appoint a British delegate to attend the Industrial Property Convention next month at Rome, but to secure that that delegate shall be instructed to support their
request in the interests of honest trading. It has been alread request in the interests of honest trading. It has been already
decided by the Convention that the marking of "Sheffield" with the name of a maker on a blade not made in Sheffield is fraudulent,
but that the mere marking of "Sheffield" by itself is not fraudu-
 not made is deception, and ought to be declared fraudulent, whether the name of a maker is stamped on it or not. If this point can be obtained, the German pirates will be rooted out, and the home
imitators, if there are any, can be promptly crushed. But it is
little use lopping off the branches so long as the root remains Messrs. Watson, Moorwood, and Co., of the Harleston Iron-
works, Sheffield, are at present engaged upon
large cooking stoves for her Majesty's Navy. Two or three now
in course of construction will cook for some 1400 to 1500 men. This firm have obtained the contract for the cooking apparatus for the Navy, which extends for five years. It has previously gone to
Glasgow. Two large shops have been erected with a view to the work to be done under the contract,
Mheefield. A. J. Acaster and Co., engineers, Princess Works, 40-horse power inverted cylinder engines with double-throw cranks, on one base, fitted with fly-wheel and other accessories. This firm is engaged on a considerable quantity of
in the construction of the Manchester Ship Canal.

THE NORTH OF ENGLAND

From oinc minn (oneresondent)

NGLAND
There was but a moderate attendance at the Cleveland iron and despondent teeling prevailed, it cannot be said that thing were worse than they were a week ago. No arrangement has yet
been arrived at for reducing the output, and consumers hesitate buy more than they want for immediate use, whilst stocks are increasing at their present rate. Merchants are asking 30s. per to realise even at a sacritice, have taken $29 \mathrm{~s}, 10 \mathrm{td}$. per ton, but the sales made at that price are few in number, and not for large ing 30 s . 3 d . to 30 s . 6 d . per ton. Makers guotations are about 6 d . per ton higher. The demand for forge iron has not improved; on As regards warrants, buyers are offering 29s. 9 d . per ton, but The stock of Cleveland pig iron in Messrs. Connal and Co.'s Middlesbrough store increased no less than 6780 tons during the
week ending Monday last. The total stock on that day was 199,530 tons. On March 17th last year the total quantity held by shiments of pig iron are
tons Had been shipped up to Monday last, that being about 5000 tons less than during the correspondiug porion of last month. There is but little doing in the finshed iron trade. It is to be
hoped that the demand will improve when the shipyards are again hoped that the demand will improve when the shipyards are again
fully at work; for the present the weather is impeding all outdoor operations. Prices are unaltered. The strike of platers' helpers at Messrs. Raylton Dixon and Co.'s resumed on the 11th. The strike arose on account of a threatene rednction in their wages of 1s. per week. The platers abated thei helpers agreeing to the full shilling reduction so soon as they are again working full time.
yards at Middleshbor able-bodied paupers engaged in the ston Between 200 and 300 foundry-men in the employment of Messrs. Cocirane, Grove, and Co., at Middlesbrough, recommenced work
at a reduction of 7 th per cent, effect only expired on Saturday.
At a meeting of the River Tyne Commissioners held on Thursday At a meeting of the eiver lyne Commissioners held on Thursday, vessels, of a total capacity of 177,968 tons, were now laid up on seamen thrown out of employment thereby is estimated at 3000 . Messrs. Hawks, Crawshay and Co., of Gateshead, have recently,
entered two heavy contracts. The larger of the two is for about 4000 tons of iron and steel bridge work for the Indian Government 1000 tons.

NOTES FROM SCOTLAND.
THRRE has been a somewhat firmer feeling in the iron market have also been holding for slightly higher prices, and it is understood that the prospects of business with the United States are a
little more hopeful. The current shipments are, however, small
The those of the past week amounting to 6009 tons, as compared wit 6675 in the preeeding week, and 8879 in the corresponding week o
1885 . A furnace has been put out at the Langloan Ironworks, but one has been relighted at Gartsherrie and another at Glengarnock the total now in operation being ninety-five, as compared with ninety-two at the same date last year. In the course of the week
upwards of 5000 tons of pigs have been added to the stock in upwards of 5000 tons, of pigs have bee
Messrs. Connal and Co.'s Glasgow stores.
解 to 38s. 11d. cash. On Monday transactions occurred at 38s. zd, ith buy stronger, with business up to ns . jo. cash,

 Scotland was held in Glasgow on Tuesday, under the presidency of Lord Provost M'Onie, for the purpose of considering the present unsaisfactory position in which iron and steel manufacturer Britis good imported into Spain. Mr. Andrew Stewart-of
Bndrew and James Stewart-submitted the following statement

Duties Charged on Brititish Produce Entering Spain, as compared
with other European Countries

Duties.	British.		$\begin{aligned} & \text { Difference } \\ & \text { per } \\ & \text { 1000 kilios. } \\ & =22060 \mathrm{lb} \end{aligned}$	
			135	
pheets		2116	0178	
eel sheets		211		
del pars	50		1136	
al rails				
Cast iron pipeos	116			
classes of goods than that mentioned above. It appeared that ourtreaty with Spain lapsed about five years ago, but its terms were allowed to go on for another year, when a treaty was made between this country and Spain, in which the duties that were loweredto France and other countries were allowed to stand at the to France and other countries were allowed to stand at theold figure to Great Britain. The result was that the Spanish business in this country had shrunk almost tonothing. He suggested that a committee be appointed to draw up a memorial to the Foreign Secretary on the subject. The chairman said it was a fact that Great Britain and her Colonie				

Mr. Bost, Mr. Stewart said Mr. Gladstone had caused the duties ame from France. The follos received here from Spain than on those to Lord Rosebery on the subject:-M Messrs. Paul, Laidlaw, Jame Neilson (Mossend Company), Archibald M'Lellan (Steel Company
of Scotland), Cowan (Carron Company), Bost, and J. R. Cassels The malleable ironworks of Lanarkshire are now reported to bo wh-supplied with orders. But for certain contracts of old date which are in most cases nearing completion, it is understood that
the business would ere this have been in a very depressed condition.
Messrs. Laidlaw and Son, of Glasgow, have obtained an order
for 3200 tons of cast iron water pipes for Sydney, New South In the past week the shipments of iron and steel manufacture E27,470 for Caleutta; ditto, $£ 7750$ for Queensland; machinery,
£3+22; sewing machines, $£ 4070$; steel goods, $£ 9420$; and general The shipping department of the coal trade has been slightly more active in the past week. From Glasgow the shipment amounted to 21,856 tons; Greenock, 1752 ; Ayr, 7805 ; Irvine
$2000 ;$ Troon, $8328 ;$ Leith, $5100 ;$ Grangemouth, $4461 ;$ Bo'ness
295 , 290 tons. The prices of all sorts of coals are nominally unchanged,
but in reality in not a few cases in favour of buyers. Although but in reality in not a few cases in favour of buyers. Although
the colliers of Fife are only getting from three to four days employment a week, stocks are still reported to be accumulating.

WALES AND ADJOINING COUNTIES.

I AM not surprised that the Rhymney Railway directorate have a project that, however feasible, would require five yeurs to complete, was not of the most hopeful character, especially as the the virgin coal track dead against it. 1 still hold to the belief that day enlist the energies and capital of our best men; but at a time like the present, when well-developed collieries are doing so little, The rumour that operations are to be suspended at Ynysbwl has been denied, and it is well that things are not quite so bad, as this There is not the slightest i numbers.
There is not the slightest improvement in the coal trade. In
fact, it seems to be getting worse, for while Cardiff continues depressed as ever, things are represented as flagging at other ports Swansea, for instance, has been pretty brisk up to a late period; but last week slackness prevailed, the east winds preventing
tonnage from coming in. Consequent upon the falling-off in the output of steam coal, prices for small steam have advanced, an Lest week offers at 14s. 6 d . were only feebly
Lascepted.
In the manufactured iron trade only a small hand-to-mouth kind of business is being done. Some of our principal ironmasters ar
occupied with a few home railway orders, such as for the Barry ocupied with a few home railway orders, such as for the Barry
Docks, and small colonial requirements. The most important almost the only consignment of the week so far has been 500 tons to San Francisco.
Welsh makers are doing their best to win the confidence of tinplate makers, both as regards the article and the erice, though
Barrow often competes esuccessfully and imports to not unfrequent. The tin-plate industry seems forging ahead of the rail trade. Last week 53,000 boxes were sent away from Swansea, principally for New York and France.
Hopes
Hopes are entertained that the proposed reduction in the American tariff will tell favourably. The reduction in tin-plate bars has
not told well, but its action is not yet thoroughly well worked out. not told well, but its action is not yet thoroughly well worked out.
Buyers held back at once, thinking it a prelude to a fall in the price of tin plate, and a few weak holders gave way to the extent
of 3 d .; bnt firmness has been resumed and prices seem to be stiffening.
Coke plates are quoted from 13s. 9d. to 14s. 3d.; Bessemers,
14s. to 14s. 6d.; and Siemens command fully 3d, more. A reduc 14s. to 14s. 6 d ;; and siemens oommand fully sd. more. A Areduc onforce. The extent is doubtful, but is not likely to be under $7 \frac{1}{2}$ per ent.
170,000 boxes now represent the stock at Swansea. The Monmouthshire trade remains tolerably buoyant, and returns all roun previous months. Ternes are getting into good demand, I see, but
oharcoal plates, which used to be a speciality at Pentyrch Works, near Cardiff, are not buoyant
A few days ago the last coping stones were placed on the new brought to a sucoessful completion. The contractors-T. Nelso and Co., of Carlisle - will now dispose of their plant, and in a short
time the finishing details, hanging gates, \&o., will be completed time the finishing details, hanging gates, co., will be completed.
These are being made by Armstrong at Newcastle. The new dock will be a vast addition to the import and export faciilies of Cardinf, spurt may take place in the coal trade.
A new timber pond that will cover about eight acres of ground
is to be formed at Cardiff by the Marquis of Bute's management, and will be commenced forthwith. The site is on the Glamorgan I hear that the Mines' Commission have completed their great
task, and upon it the new legislation for collieries will be floated.

Protection of Wooden Piers from Fire. - Timber neces sarily entering to a very large extent into the construction of piers
for shipping, it follows that these structures are very liable to be ecent years, Queenborough Pier, forming one of the termini the continental steamboat serviee of the London, Chatham, and
Dover Railway, in this manner was totally destroyed by fire three years ago. Upon its re-erection in August last, arrangement were made with Messrs. Shand, Mason, and Co.tio to supply one of offices. The engine, necessarily a powerful one, is of the horizontal
construction, placed with the boiler in a wrought iron framing, also forming an ashipan, and is placed in an engine-house mhore, so as to be itself out of danger from fire, The neceessary cast iron
suction pipe is conveyed to deep water, a distance of 40 ft., and a fire main service is fitted along the whole length of the pier, required intervals. The hose is of leather, and this with the neces sary implements, is arranged on two hose carriages, so as to be
ready for instant use. The fire in the boiler is kept ready laid, angine can be got to work and discharging a powerful jet in a few engine can be got to work and discharging a powerful jet in a few
minutes from lighting the fire. In order too test the efficiency of
this apparatus, which has just been completed, a series of interest. ing experiments took place on Thursday last in the presence of
Mr. W. Wills, Mr. G. Reoche, engineers. and other offciais of the
company. Mr. Hedgman represented the constructors. The company. nine minutes ten seconds from lighting the fire the engine was started with steam of 100 lb . to the esquare inch, the water issuing from the jet in fifteen seconds after starting, notwithstanding the
great length of suotion pipe and depth of the water to be raised.
Various jets were used with varying results, the water reaching

NEW COMPANIES.

THE following companies have just been regis Nordenfelt Guns and Ammunition Company, This company proposes to take over the business uns and ammunition, carried on by Thorsten Nordenfelt-the founder of the company-in London, Stockholm, and elsewhere. It was resistered on the 5th inst. with a capital of
A. s. Statham, 8, Salisbury-road, Dalston, ac-
 Henry Cooke, 20, New Broad-street
H. Sparshall, 15, Finborough road, S. ..., solicito
T. Nordenfelt, C.E., 53, Parliament-street .. T. Nordenfelt, C.E., 53, Parliament-street ..
W. Weestlake, 40, Nottingham-place, accounta
T. Heckels, 9, King's-road, Peokham, clerk..

The number of directors is not to be less than three nor more than seven; qualification, 500 shares ; the first are Sir Astley Cooper, General and T. Nordenfelt, the latter being appointed managing director. The rem
board will be $£ 1500$ per annum.

Ticehurst, Tolley, and Co., Limited. This company was registered on the 3rd inst.
with a capital of $£ 10,000$, in $£ 5$ shares, to take over the engineering and manufacturing business
carried on by Messrs. B. T. Moore, F. W. Ticeand 65 and 66 , Wenman-street, Birmingham, The subscribers are :- Shares. A. R. Johnson, 14, Pakenham-road, Birmingham
A. Hirst, 110, Upper Mury-street, Birmingham...
J. S. Rhodes, 10, Newhall-street, Birmingham,

 Registered without special articles.

Wolfenden and Son, Limited.

 This is the conversion to a company of the business of cotton spinners carried on by JamesRawsthorne Wolfenden and Henry Wolfenden of Bolton, Lancaster. It was registered on the 9 th inst. with a capital of $£ 200,000$, divided into 4000 ($£ 5$ per cent.) preference and 16,000 ordinary
*J. R. Wolfenden, Bolton, entton spinner.
*Henry Wolfenden, Birkdale, cotton spinner C. ${ }^{\text {Enry Wolfenden, Birkdale, cott }}$
C. E. Wolfenden, Boiton, spinst r
M. E. Wofenden, Bolton, spinster
S. J. Wolfenden, Bolton,
S. J. Wolfenden, Bolton, , ppins
I. H. Hind, Ly that, married
C. K. Dalton, Bolton, cashier

The number of directors is not to be more than five; qualification, 100 shares;
scribers are appointed directors.

St. George Gold Mining Company, Limited. Upon terms of an agreement of 30th December Martin, of 63 , Gellatly-street, Dundee, certain mineral property situate at Nacoochee (Indian
Gold Valley), in White County, Georgia, U.S.A. It was registered on the 6th inst. with a capita
of $£ 60,000$, in $£ 1$ shares. The consideration $£ 50,000$, whereof $£ 25,000$ is payable in fully-paid
deferred shares, and $£ 20,000$ in fully-paid ordi-
nary shares. The subscribers are :- Shares surgeon, M. Toseph Pormee, 15, Fernlea-road, Balham, insurance

The number of directors is not to be less than the first; qualification, 200 shares ; remuneration $£ 105$ per annum to each director. Mr. J. Martin is appointed managing director for three years a a salary of $£ 300$ per annum, with a bonus when
10 per cent. dividend is paid. When travelling 10 per cent. dividend is paid. When travellin
or residing at the mines, Mr. Martin's salary wil be $£ 50$ per month, such sum to include expenses

Stantey Paper Fibre Company, Limited. This company was registered on the 8th inst.
with a capital of $£ 3000$, in $£ 1$ shares, to acquire from John Charles William Stanley, the British and other patents, granted for an invention for improvements in the preparation of materia
suitable for being made into paper, and for purposes, and in apparatus therefor. The sub surposes, are:-

Birmingham Central Buildings Company, Limited.

This company proposes to acquire a lease of piece of land situate in Corporation-street, Bi mingham, and to construct buildings thereon. It
was registered on the 9 th inst. with a capital of
$£ 10,000$, in $£ 5$ shares. The subscribers

four nor more than seven; qualification, 20 shares; the subscribers are to appoint the inrs; ; remunecompany ind, and such additional amount as th

Brier and Son, Limited

This is the conversion to a company of the and Size Works, Gally Wall-road, Bermondsey It was registered on the 6 th inst. with a capitai
of $£ 50,000$, divided
into 4000 preference and 1000 deferred shares of $£ 10$ each. An agreement sideration being $£ 18,000$, payable $£ 5500$ in coash
sen $£ 2500$ in 5 per cent. debentures, and the residue in fully-paid shares. The subscribers are:- shares

 leather and hide factor.: \because.............
The number of directors is not to be less than the subscribers are to appoint the first, remune ration-chairman, $£ 100$ per annum; and each

Brighton Palace Hotel Company, Limited.
This company was registered on the 8th inst.
with a captal of $£ 200,000$, in $£ 10$ shares, to carry with a capital of $£ 200,000$, in $£ 10$ shares, to carry G. J. Ponsonby, J.P Shers . Dashwood. Godstone

 The number of directors is not to be less than three nor more than seven; qualification, 25
shares; the subscribers are to remuneration, $£ 1000$ per annum.

Brooke, Simpson, and Spiller, Limited. This is a proposed conversion to a company of chants, and drysalters, carried on by Messrs Brooke, Simpson, and Spiller, at the Atlas Works, Hackney Wiek, with branch depôts at Manchester Bradford, and Hudders 6 eld. It was registered
on the 9 th inst. with a capital of $£ 150,000$, in $£ 5$ on thes. The promoters, who are responsible fo shares. The pp
£ 5 each, are:-
Wm. Shaw, Worple road, Wimblednn, stock and Share

 clerk smith, $\ddot{9}$, Westbourne $\ddot{\text { eierracice, Chiswiek }}$. Captain Leith Böhöte, Junior Üited Sërvice The number of directors is not to be less than
Cour nor more than eight; qualification 100 shares : the first are Messrs. Ed ward Mucklow,
R. J. Friswell, and H. D. W. R. J. Friswell, and H. D. Wynter. Mr. Arthur
Brooke is appointed managing director for five Srooke is appointed managing director for five
years at a salary of 8800 per annum, and a yurther sum equal to $£ 5$ per cent. on the event of net profits up to $£ 10,0100$, and $£ 7 \frac{1}{2}$ per cent. o
the excess of profits if over $£ 10$, cou.

Calcorion Decorative Company, Limited
This company proposes to acquire and work a
patented invention of Marlborough Conrath for patented invention of Marlborough Conrath for
wall and general decoration. It was registered wo the 4th ult, with a capital of $£ 25,000$, in $£ 50$ J. Livesey, 105 , Pall-mall

The number of directors is not to be less than two nor more than five; first are the sub scribers denoted by an asterisk; remuneration,
£100 per annum to each director, with $£ 50$ additional for the chairman, if any. Qualification
for subsequent directors, five shares (other than for subsequent directors, five shares (other tha
deferred shares)

Dexter, Colorado, Gold Mining Company,
Upon terms of an agreement of the 1 st inst. between George Pulling Armstrong and Leonard Beauchamp Northcote, this company proposes to
acquire interests in freehold land and mineral properties known as the Dexter Lode, situate in Gilpin County, Colorado, U.S.A. It was regisered on the th inst. with a capital of $£ 75,00$.
in $£ 1$ shares, with the following as first sub.

The number of directors is not to be less than shares; the subscribers are to appoint the first and act ad interim; remuneration, £100 per
annum to each director, with an additional $£ 100$ for the chairman, and also 5 per cent. of the ivisible profts. The purchase consideration is

Henry Crouch, Limited
This company was registered on the 6 th inst. with a capital of sicroscope and scientificio instru-
the business of mier
ment manufacturer, formerly carried on by Pearce
Henry Crouch, and Optical Works, 66, Barbican, E.C. The subOpribers are
A. Barrett, Surbiton, Surrey

Fegist i,
Registered without special articles.

Henry Gardner and Co., Limited.

 This is the conversion to a company of theusiness of Henry Gardner, of 59 and 61 . Bridge water-street, and 56,58 , and 60 , Watkingon street, Liverpool, manufacturer of lead encased
block tin pipe, \&c. It was registered on the 5 th lock tin pipe, \&co. It was registered on the 5 th
inst. with a capital of $£ 5000$, in $£ 5$ shares. Th subscribers are:-
L. Hughes, jun., 79, Tithebarn-street, Liverpool, Share

The subscribers denoted by an asterisk are the irst directors
Production of Lime in the United States. There were $37,000,000$ barrels (of 200 lb .) made being not over 500 ., or $18,500,000$ dols. The pro duction was about $5,900,000$ barrels greater than in 1838 , but owing to the fall in
value was about 700,000 dols. less.
The deathis Announced of Mr. Alexander Jack, Lorne-terrace, Liverpool. Deceased was
for many years the head of the firm of J. and Co., Victoria Engine Works, Sandon Dock Mr. Alexander Jack was afterwards the sole partner in that concern, and also carried on business as a sip X Prismatic Gunfowder-This gun-
Broner or heavy ordnance is being manufactured for the Government by Messrs. Curtis and Harve ander the patent of Mr. C. W.-Curtis, and uuantity has been accepted, having passed th
Government test with the following results :-Initial velocity of projectile 1944 ft ., mean pressure on the test crushers 15.4 ton maximum pressure on one of the crushers $15^{\text {. }}$ ons. The Government specifies a velocity of 1940 , minimum velocity 1900 , also mean pres-
sure on crushers not to exceed 16 tons, and pressure
$16 \frac{1}{2}$ tons.
Kivg's College Enginkrrivg Societr.-At a general meeting held on the 2nd inst., Mr. Brydges read a paper on Gas Engines. The
author commenced by enumerating some of the author commenced by enumerating some of the
theoretical considerations involved in gas engines, mentioning inter alia that Carnot's principle ap. plied as much to them as to all other heat engines. He divided gas engines into three
classes, hot air, those using a mixture of coal lasses, hot air, those using a mixture of coal
gas and air, and those using a similar mixture compressed. It was also explained that the
mount of this compression was varied in dif. ferent engines according to the average tempera-
ture in the cylinder. The reader next deduced the theoretical quantity of gas required per hoosend gave some fig consumed. The advantages and uses of indicator diagrams in detecting faults were dwelt on, and the main sources of loss of heat were was stated not to have been yet applied to gas engines with success. A historical review fol lowed. The early forms, Hugon, Lenoir, Otto,
and Langen, were described. Mr. Brydges then and Langen, were described. Mr. Brydges then
passed on to the details of the Otto, Tangye, tockport, Glasgow, Clerk, and Atkinson's dif erex al engines, and of the non-compressing
type of the Bischof, Syrinx, and Universal. The great advantage claimed for gas engines by the author was that they suppiied an economical substitute for small wasteful steam engines. Ata general
meeting held on Tuesday, the 9 th inst., Mr. F. M. Long read a paper on "Submarine Vessels." The paper began with a description of the earliest form of submarine boat, which was constructed by Bushnell in 1775, explaining the means used
to summerge and propel it and also the mode of attar k ng a hostile vessel by attaching a magazine authcr next spoke of Fulton's submarine boat, which was an improvement on the last mentioned. Mr. Long then briefly discussed several other sub-
sequent boats, after which he passed on to describe in detail two of recent date, the Goubet and the Nordenfelt, which were both illustrated by dia grams. After glancing generally at the former he considered the special arrangements adopted
for preserving stabilitity propelling, steering, and
ventilating screw driven by an electro motor, chable of being turned in a horizontal plane, so that steering is accomplished without a rudder. The method of using the torpedo was also explained. A descrip.
tion of the Nordenfelt boat followed. In this case the motive power is derived from highly heated water stored in a boiler and two large tanks. This water is heated while the vessel is is closes surface. When it descends the stokehold is closed and the funnel securely covered over, so
that all communication is cut off between the furnace and the external air. To sink the boat vertical propeller screws are used. The stability is insured by longitudinal rudders. In concluding the author maintained that vessels of this type were well suited or harbour defence, though not
for engaements on the open sea. A lively
discussion followed, after which the meeting terminated.

THE PATENT JOURNAL.

Applications for Letters Patent.

 * When patents have been "communicated" the printed in italics.
9th March, 1886.

3265. Regulatisg, de., Clocks, G. W. Millard and J.

 Fhe solus. of Boors, 山c., J. Willis and E. K. Heaps,
shefield sheemield.
3274 Haturon's Nall Screws, F. T. s. Hamilton, Upton
 Bronkes, and B. Garner, Cape Worke, near Birming-
hank
shis. H twd or Dust Buverks, J. Worthington, Black-
 Combraged Pipe Case and Matoh-box, F. J.
 Wher, rance
Ma Chines for Porrintiva Drsuls, J. Y. Jchnson.-
 London.
3266. jMOKe.consumino Furnaces, w. R. M. Thomson.

 Brewster, London
3267. ExTRActivo Antimony from Ores, T. C. Hunt-
 Bothroyd, London. PuNoFortes, dc., J. Brown
3268. Sound bioard of

 de., HER and C. G. Matthews, London.
 London.
3269. Lockina Deviog for Hampers, \&c., T. S. Barrows | Lonion. |
| :---: |
| 330. Moocyocrs, |
| R. J. J. and C. Francis, and F. D. |

 3305. Sinim Enaives, G. W. Price, Baltimore.
306e. Shoz-MAK ERS LAsts, A J. Boult. - (L. Arlaud

3310. HELTINQ APPRRATVS or Stove, T. H. P. Dennis,

London.
331. TRAchiva Prrsons to Read, G. J. Darrschmidt,
I Tondun.
331. KNitred or Woven Garmexts. F. Kob, London.

3315. UThissil for Heativa Watre, H. A. Galliers and
3316. Klearrivo WATER by Gas, H. A. Galliers and F.
 8. Bexding Tmaker for Boats, O. Imray.-(J. A
 Remorts, H. H. Salomuns, London. 3322. PBoDVorsa Chlorise, de., B J. B Mills.-(The
 24. Photooraphic Cameras, C. Sands and J. J
Hunier Hunter, London.

 Pollard, London
WinDow FAstenkr, H. Kingsbury and A. E.

 o. Raising sunkex Vessels, W. A. Barlow.-(M

8349. Apparatud for Activating Fioures Used in
Roundabouts, A. Waddington, Leeds. ROUNDABOUTS, A. Waddington, Leed
3350. AAsELL, M. Browne, Leicester.
3351. RING SPINNING and Doustre
Dixon and W. J. Gradwell, Manchester. 3352. SILLos, H. Lander, Mere.
3353. Portable Parallet Vice, J. Evan
3353. Portable Parallel Vice, J. Evans, sen., Shef-
field.
335. Levers for Sash Fasteners, C. Price, Wolverhampton. $\begin{aligned} & \text { S35. Nalls for Upholsterina Purposes, J. Hewitt, } \\ & \text { Birkenhen }\end{aligned}$ Birkenhead.
356. CoRk DRAWER, W. W. SChofield, Birmingham.
3557. KNIVES, W. F. Stanles, South Norwood. 3357. Knives, W. F.'Stanley, South Norwood,
3538. BLow-PIPEs, A. Lovekin, Birmingham.
3559
3359. Shuttles of Looms for Weaving, J. Booth,
Halifax.
3360. Electric Alarm Clock, J. Warmisham, Manchester.
3361. 3361. Dressing and Beaying Yarns, W. Robertson
and J.G. Orchar, Glasgow.
3362. Fastenina Down Tarpaulin on Ships' Hatches, and J. G. Orchar, Glasgow.
3362. FAstrinc Down Tarpaulin on Ships' Hatches,
W. Hewitt and T. Dineen, Leeds. 3363. Looking Nuts on Bolts, J. Roberts, Cumber-
land. 3364. Brerch-Londing Small-Arms, T. Woodward, Birmingham.
8365. Boskse for Pulurge, \&c., G. Tolson, Dewsbury.
3366. PLANs, \&c., T. P. Johnstone, Carnbee. 3367. Combivation Slater and Drawing-board, R. H.
Nhanks, Newcastle-on-Tyne.
3s68. Safety Lampe for Mines, M. Settle, Manchester. Mhanks, Newcastle-on-Tyne.
3368. SAFEEY LAMPs for MINEs, M. Settle, Manchester.
3369. Embossed, \&c., TILEs, J. D. Denny, North Wales.
3377. BIovoles, R. P. Scott, Baltimore.
3371. Solitaires, STUDs,
 fornia.
3373. Exingursina Burners of Street and other
Liamp, J. W. Buckley, Liverpool. LAMPs, J. W. Buckley, Liverpool.
337. MANUFACOURE of ACETIO and other AcIDs, J. 375. GImLETs, ©c., W. Lund, London.
3376. MouLDING FFANGED PIPEA, F. Witte
3376. Moulding Lancer Pipes, F. Witte, Halifax.
337, Der Stretching Trousers, dce., E. Parr,
Iondon London.
Substrute for Water in Gas Meters, e.
Edwards.- (C. Pottier, France.)
 J. H. Thomas, London.
330. Macinky for the Manuacture of Plates
and bars of Stekl, dc., W. E. Gedge.-(c. M. Pielsticker, Russia.)
3381. UMRELLAS, R. Thorne, London.
3382. SLUBBINA, dc., FRAMEs for Fibro
W.
W. Taubiam, Manchester.
3383. Sorew-TAPPina, dc., W. A. Pearn Materials,
3384. BEy 3383. Sorew-TAPPING, (cc., W. A. Pearn, Manchester.
3384. BEVELING and PLANING MACHINEs, H. A. Sing-
run, Glasgow run, Glaggow.
3385. Colled Sprinas and Fittinas, J. H. Weston,
London.

 London,
3991. FIIE-BRICKs, \&c., S. J. Payne, Romford.
3392. BENDING the 3392. BENDINa the EDGEs of META PLe PLATEs, W. L.
Wise. (J. R. Cummings, United States.) 3393. ANNEALING Apparatus, J. Lysaght and J
Lysaght, Limited, London. 3394. Photographio Apparatus, G. F. Redfern.-(c) 335. Labarge, France.)
London. London.
3396. Cariag Door Frtrinas, J. Edwards, London.
3397. Trioycles, H. Bligh, London. 3397. Trioycles, H. Bligh, London,
3398. Regulativa the Tmaperature of incubators, ©ce., A. J. Tyler, London.
3399., GovPowDER, C. W. Curtis and W. J. Brown,
London. London.
8400. Brech-londing Break-Down Sportina Guns
and Rifles, G. Jeffries, Londoun and Grives, G. Carfies, Flats of Carding Enanines, J.
Bullough, Halifax. Bullough, Halifax.
9402. GAs-motor Esgans, J. Fielding, London.
3403. ATACHIN HANDLES London.
3404. Presses for the ManuFacture of Covered
Butrons, J. R. Green, London.
 3406. CARBONATE of Sodius, E. F. T
3407. DyEs, J. Y, Johnson, - (The Fa
Friedrich Bayer and co, Germany.)

11th March, 1886.
3408. Spring Latches for Sleeve Links, \&c., J
Cheshire, Birmingham. Cheshire, Birmingham.
3499. SELF-ACTING Pomp. R. Wortley, Oldham.
3410. TRICYOLEs, do., O. R. Barnicott, Cambri 3410. Tricyoles, dce, O. R. Barnicott, Cambridge.
3411. STANDS for CAMERAB, J. E. Thornton, Man
chester. 3412. Coppriva Writisos, de., W. Gibbs, Halifax.
3413. HARDENTNG CAsT STEEL TEETH Used in Sill COMBS, L. E. and G. F, Priestley, Halifax.
8414. PRODOUNG FANCY YARN, J. A. Greenwood
Braford. 3415. Rivas and CAp Finishing and Roving Boxes, J
Dawson, Bradford. Dawson, Bradford.
3416. CAsT Metal Door and Frame, w. Barraclough
Glasgow. Glasgow.
3417. DLivery of Cigareqtres, ©c., on Prepaymens
of the Reqisite Conv, F. C. Lynde and J. Lees,
Manchester. Manchester.
3418. Protecina Wirgs used for Conducting Elec-
TRIC CURRENTS, M. Settle, Manchester. TRIC CURRENTS, M. Settle, Manchester,
3419. ENAMEL, ©, KCo, KILNs for Potrest WARE, W. and
H. Cartledge, Liverpool. H. Cartledge, Liverpool.
3420. BasIo BRICks, G. A. Jarvis, Salop.
341. BAIC BRITKs, G. A. Jarvis, Salop.
3422. RoTARY Exa,

3423. Bours for SECuIING NOTs, B. F. Cocker, London.
3424. LayIIN PAVEMENTS of Wood, dic., M. Macleod,
London.
 H26. ICE GRIPPRR, H. Hobson and W. W. Slack,
Sheffield. 3427. Flarsy of Carding Engines, G. and E. Ashworth,
Manchester.
3425. Musio Stand, A. C. Burdett.-(H. Durand, New Zealand.)
3426. STANS for WiNes and Spirits, dec., V. Tyzack
she Sheffield.
3427. Portale Paper Stretcher, T. R. Johnston,
Edinburgh 8431. BuNG-HoLDER, E. Richardson, Kendal.
3428. Boeriva M MCHINEs for Rock, dec., G. W. Elliott, 3433. ADDRess and WAY-bill Box for Vans, T. Elcome, Margate.
3434 Atriching Candies in Lamps, W. Whiston, Birmingham.
3429. Rkaistering Flow of Fluids, T. Thorpe, Whitefield, and T. G. Marsh, Manchester.
3430. REARING and NURSING INFANTB, \&c., W. Hillier,
Nailsworth. Nailsworth. Lisurd, A. N. Porteous and R. L.
Urquhart, Glasgow. 3438. Bortive Granolar Materials, J. Y. Johnson. (J. B. F. Trolliet, France.) .
3431. Latrer, ARRER, F. H. Bumstead,
3432. SAFETY STIRRU, J. Cope. London. 3440. SAFETY Stirbup, J. Cope. London.
3433. STrinas, BANDE, and BELTs, F. Vornbarger
London. London,
344.2. REFINING Fluids, G. H. Mooreg Liverppol.
3434. Boomeranc Toy, W. P. Thompbon, - (F. F. Bourdit, France.
$\left.\begin{array}{l}\text { 3444. CARDBOARD } \\ \text { Geiger, Germany.) }\end{array}\right)$
Boxes, \&c., W. P. Thompson.-(J.
3435. Wheel Rim Cleaner for Trioycles, \&ce, R. G. Owen, London
344e. Flexble Mud-auard Tip for Trioycles, $\& c$. G. Owen, London H. Thomson; Londensels upon a Given Course, J. 444. Shot Firina and Blastina in Mines; F, Brain
 and J. Joyce, London.
3436. AUToMATIC sALE and Delivery of Cigiakertes,
dec., A. T. Chamberlain, London. de., A. T. Chamberlain, London. J and F. Loughran, Glasgow.
3437. Tools for Sorew- Cutring, J. Norman, Glasgow.
3438. Establishing a Flow THROUGH SyPHoss, E, de Pass. - (E. Aimond, Fr) 455. Combinge Borties and Brushes for Gum, \&e.,
P. Lawrence, London. P. Lawrence, London.
3439. Name and Number Plate or Label, H. e. Brittin, London.
3440. Furvaces, W. D. Allen, London.
3441. Jonsing GLAss, J. Plenty, Wincanton
3442. Joinisg GLass, J. Plenty, Wincanton.
3443. GLAzED STrsocures and Skyliohts, J. Plenty,
Wincanton. 460. Winnowing Machines, T. H. and T. Smith, Iver. 4460. Winnowing Machines, T. H. and T. Smith, Ive
3444. ANohors, J. F. Hall and J. Verity, London.
3445. PuLveribing M Mchines, S. Collier, London. 3462. PULVERIBING M MHINES, S. Collier, London.
3463, UNITING, \&., the ENDS of RAILWY RALL,
Howard and Howard and E. T. Bousfield, London.
3446. NAVIGABLE IVEssELs, \&C., J. R. Thomson and J.
H. Biles, Glasgow. H. Biles, Glasgow.
3447. Carriag BRERE Blocks, J. Gardner, Glaqgow.
3448. Preparing Emulsions of OLLs, \&co., A. Blackie, London.
3449. Destroyina Insects, \&e A. A. Clemm, London.
3450. Sifting Apparatus, G. Kapler, London 3469. Venting apparatus, G. Kapler, London.
Prat, France.) Prat, France.) Chemicals in Wing, Spirrt, \&c., E.
Edwards. Dering. Clair and J. B. Socard, France.) 3471. STAYs, F. E. H. Clark, London.
3451. MAKINa PAPER STock, J. D. Tompkins, United States.
3452. GAs Engines, C. Davy, London.
3453. SIGHT DRop LUBRICATors, R. E. B. Crompton and W. A. Kyle, London.
34i5. DYNAMO-ELECTRIO MACHINES, R. E. B. Crompton, London.
Salvanic Batteries, A. Schanschieff and G. R. Fluddgr, London.
 12th March, 1886.
3454. Stud and Solitatre, T. E. Rennie, Sheffield.
3455. Pneumatio Door Springa and Checks, G. F. Newman, Birmingham.
3456. Locks and LATCMES, H.T. Owens, Birmingham,
3457. MANUFACTURNNG OARDS used in PkEPARING FIbrous Materians, C. Moseley, Manchester.
348ising FIBRovs Materials, C. Moseley, Manchester.
3458. FIIISHING STocintre FABRICs, G. Lendrum
and D. F. Cocks, Huddersfeld.
 Leicester.
3459. REkLING Skeins of Thread, \&c., T. Coleby,
Manchester. M47, BalL Centre Heads for Bioycles, S. Goodby,
W. 3488. Straightening Trouser Legs, \&c., J. J. Bennett, Southampton.
3460. Riveitina Chains, Belts, de., W. Birch, Man3499. Rivettina Chains, Belits, dc., W. Birch, Man-
chester.
3461. Christmas, \&c., Cards, M. Krause.-(M. Krause,

3462. VELLOCIPEDES, F. Taylor, London.
MIREBRICK BACK for Grites, dc., F.
Moore and W. J. Fieldhouse, Birmingham. 493. ProDucrive FLour from WHEAT, \&cc., R. S
MacAdam and J
 3495. Treating Hydrocarbon Oils, \&c., L. M. Becker, London.
3463. K NITED FABRICS, J. Tebbutt. London,
3464. RUDER ATACAOHENT, J. D. Hickman, 3497. Rudder Attachment, J. D. Hickman, London,
3465. Casting Metal in Chill Moulds, E. Fox, London.
3466. Smal-sized Switches for Electrio Lighting, G. Lowdon, Dundee.
3467. CIGARETtE MAKina MAohines, G. H. Smith,
London, London.
3468. KEyLess Watches, J. Phillips, Birmingham.
3469. LIDE of TEA and Coffee Pots, A. Hopkiuson, London.
250.. Raliway Wagon Couplinas, F., J. K., F. jun., and Binking Shayts, Constructing Foundations, de., F. H. Puetsch, London.
3470. TEmporary Tubbing, de., F. H. Poetsch, London.
3471. Ralway and Trastway Passenoer Carriages,
G. C. Rice, London. G50. Clurch, C. S. Scott, Cadiz
3472. Elecraic Liobt Fritidias, R. E. B. Crompton
and W. A. Kyle, London. 3509. Wire Staise, F. B. W. Malet, London.
3473. PLANING MErals on the LATHE, W. Balck, 351. TANNING Skins, J. S. Bill willer, London. 3512. LURRICANT, E. J. Digby, London. London.
3474. STEAM Bolled and Iron VARNISH, E. J. Digby, London. 3515. DRaINAOE PAVINGS, A. J. Ward, London.
3475. Holders for INCA NDESCENT ELECTRIC Li 35WW, LLondon, J. Hooker, Stockton-on-Tees.
3476. MIRors, J. J.
3477. LUBICATING ComPosition, B. J. Hicks and J. Kirkwood, Londou. for Receptacles, L. Rogers,
3478. SToppers, \&c., for
London. 3520. Locks, \&c., F. J. Biggs, London.
3479. BAKERs' and Confectioners' O ws, W. S. All cock, London.
3480. Gss Engriss, J. Atkinson, London.
3481. Compasse S524. Direct-acting Pumping Enaines, A. Boyd London.
3482. Stones for Grinding, de., G. McPherson, jun. G5lasgow, SEWING Machings, A. McCaul, Glasgow,
3483. FIre-ExTINGUISHING APPARATUS, K. McLennan 3528. FrsH-Hooks, W. A Adams, London.
3484. Frish-Hoors, W. A Adams, London
3485. WaONs. A. S. Hill, London.

- (F. W. Rosenow, Germany.) 35S2. Regulatina the Flow, \&c., of Size, J. Hibbert, Halifax.

353. Couplinas for Carriages, J. Briggs and J.
Jenkin, Halifax. Jenkin, Halifax.
353s. Hoons of CArringes, F. Davis \& E. G. Benford, London.
35Sb, Acoustic Telephones, H. G. Ellery and J. T. Gent, London, Lawn-tennis Rackets, G. F. Twist, London.
354. Spired Druxas, J. H. Vavasseur, London.
355. PERMANENT WAY of RAILWAYG, A. T. G. Brown,
 3540. Electrio Fosk, A. M. Clark.-(La Sociele Scola et
Rupgieri, Frances.) H. H. Lake.-(M. A. Sheldon,
356. Prodicina Letters on Wood, C. A. O. Tempel,
London. London.
357. Brech-Loadina Rifles, A. Chuchu, Loudon. 13th March, 1886.
358. Hangina Window-sashes, J. and J. Mason, London.
359. Movina Switches on Tramways, H. B. Pearce, Glasgow.列 Aston.
354s. Regulators for Fluid Motors, J. A. McMullen, 3549. OHISELS, S. Warburton, Burly,
360. FAsteniva Leather to Wove 3551. Drawina Oriss, \&c., D. Lane, Bradford. 355. Dearnating Amines, J. B. Cohen, Manchester.
361. Sepran
362. 3555. CoLovrinc Jew Eluery, A. Martin, Birmingham.
1. DYNAMO-ELECTRIC MACHINE, W. Hartnell, Leeds.
2. Treatina WooL, A. B. O'Connor and J. H. Wilson, London.
3. Makive Sugar by Electrolysis, E. Fahrig, Manchester.
4. Detioctino Fraudulent Transfer of Railway Trikerss, J. Crompton, Farnworth.
5. Textile Driving BaNDS or Belts, I. Jackson, Manchester.
6. Coupling, \&c., Railway Carriages, E. J. A560. GvoLies and Drain Traps, J. W. Dyson, New8561. Knipe for Cork-cuttiva Machines, J. F. Russell, London.
3562 . Felt Carpers, w. and R. J. C. Mitchell, Man chester.
7. BaLL CAstor, J. E. Beanland and W. Sutcliffe, Halifax.
8. Friction Clutches, W. H. and F. C. W. Latham,
Bot 3565. Trisue Copynv Process, T. Thorpe, Whitefield.
9. WRAPPER for Protectiva Goods, Manchester. Heat of Kilns, T. Stanway and S.
10. Testiva Hent Spencer, Longport.
11. CaLEEs, A. Vogt, London.
3569, Constructiva W,
12. Cables, A. Vogt, London.
13. Costructina WaLL Bonds, de., J. Dyson,
Wakefield Waketield.
14. Mouthiecess for Speaking Tubes, J. B. Clayton, London.
15. SIONBOARDs, \&c., F. Mellvenna and W. Thomp-
son 3572. Eivambeol.ina Material, W. P. Thompson.-(J A. Pond, Nero Zealand.)
16. LETTER FILES, J. S. R 453. LETRR FITEs, J. \&. Remer, Liverpool.
17. REorsterina, de., Liquids, G. Broadhe London.
18. Gontrollina Supply of Lieulids, W. Davies, 3576. Musio Rest, J. G. Stephens, Glasgow.
19. DEpolarising ELEctric Batteries, A. C. Hen3578. GONPOWDER, A. H Burford, London.
20. GUNPowDER, A. H Burford, London.
21. CuTrINa INDICES in Books, \&cc., P. Lawrence, London. ${ }^{\text {358, ExEcution of Criminals, J. J. de Z Marshall, }}$ 3581. Artipicial Fuel, J. A. Yeadon and R. Middle3582. DRyING, CoAL, \&c., J. A. Yeadon and R. Middleton, Leeds.
22. Frames of Carriage Windows, A. Lehmanh and
S. H. Fitch, London. S. H. Fitch, London.
23. Consuming Smoke in Bollers, \&c., H. McDowell, 3585. Oprenting Valves of Hydrocarbon Engines, 3585. Operating Valves of Hyd
de., J. J. R. Humes. London.
3586." Watering-cans, R, Foster, 3587. Vibrating Electric Motors, A. L. Parcelle,
London.-1th Logdon, -11th, August, 1885.
$\left.\begin{array}{c}\text { 3588. RALLWAY, } \\ \text { Biraud, France.)., BRAKEs, W. H. Beck.-(c. J. }\end{array}\right)$ Biraud, France.)
24. Gravity Draba, J. T. Graham, London.
25. VENTILATING Close CARRIAGEs, J. T. Graha London. Richardion, London.
26. ILLUMINANT APPLIANGES for Burners, 0 . Imray. -(C. A, von Welsboch, Austria.) Cobeldick, London. 3594. Glass Hydrometers, S. A. and A. J. Calderara, London.
27. Motive Power Ortained by Sprinos, B. M.
Plumb.-(H. E. Marchand, United States.) Plumb.-(H. . . Marchand, United States.)
28. Transporr Systea, H. M. Stanley and H. s. Wellcome, London. J, Lawson, London. 3598. Electrical 8witches, H. W. Edin. London.
29. SEcurina Spokes to RIMS of VELocipedes, w. Bown, London. in Shoeiva Hoser,
3600 . Pads 3600. Pads used in Shoeina Horses, L. Vincent,
London.
30. Parts of the Permanent Way of Railways, J. 3601. Parts of the Permanent Way
H. Tozer and W. Tozer, London. Flat illway Carriage Lamps, J. N. Flatau, W. Flatau, and A. D. Turner, London.
31. Fresenening Bek, H. H. Lake.-(J. W. Noll,

 15 th March, 1886.
32. Hot-water Circulating Bolleres, \&c., T. Wood, Stapleton.
33. Therina Wood, T. Purves, Neweastle-on-Tyne.
34. VArMin Puns, J. D. Scott and A. Scott, Glasgow, 3609. VALOUM PANs, J.' D. Scott and A. Scott, Glasgow,
35. Movina Doors or VALVEs, J. A. Mellroy, Glasgow.
36. STEPs of VEHicles, T. Woodhead, Bradford.
36l. PLUG VALVEs, J. S. Barraclough and J. W. Schofield, Halifax.
37. SAsA FAstexers, H. Hawkins, Birmingham,
38. WICKET-KEEPING GAUNTLET, A. Shaw and Shrewsbury, Nottingham. \&c., C. Fellows, Wolver-
39. STRIKER hampton.
40. Medicinal Compound, E. C. Hodggon, Dublin.
41. 3617. Taps, C. A. Tew, Smethwick.
1. Driving the Tobss of Ring Spinning Frames,
S. Nen 8619. APPLYTYNG BALL BEARINGS to WASHING MACHINES,
R. Mor R. Moore, Silsden,
2. Safety slide for Mangle Boards, R. Moore,
W. H. Murton, and 3621. HNTIFRIIITION METAL LINERS for BEARINGB, C. Billington and J. Newton, Longport.
3. HEEL Trps for Boors and SHoks, B62. HEEL Tips for Boots and shoes, F. W. Rosser,
B623. GAs Rham. Reulators, J. F. Simmance and C. R.
Bellamy, Liscard. Bellamy, Liscard.
4. SHAFrs of Picks or other TooLs, A. E. Stayner,
near Sheffield. near sheffield.
5. BAROMETERS, S. A. de Normanville, London.
6. WATER-CLOEETS, Urisals, dco., W. Berridge, 3627. Lamp. Frames, B. W. Russell and T. Huxley,
London. 2028. Souar Blocks,
Lange, Liverpool 3629. Furnaces of Steam Botlers, \&c., T. Mudd, Liverponi.
7. DVMMy Ponsts for Tramways, A. Dickenson,
Birmingham Bir
8.
9.

Ger.
3633.
Germany.)
s633. Horseshoes, W. Body, Ashford.

SELEOTED AMERIOAN PATENTS,

(From the United States' Patent oplece official Gazette.)

 ro into which tho worm garas, and which is a at toeched

Rtached to the quadrant or tiller of a rudderer the

 wet forth.
384,815. Reversible Latoi, William . . Sparke
Neve Haven, Conn.-Filed Oclober Sth, 1885. Clain.- (1) In a knob-latch, the combination of the
hub B, the silide C , tho lever D, hung upon said slide,
latch-bolt H , with which said lever engages, and

[334,815]

gravity when the case fo inverted, subbtathtilly a

m,

	\％
	？
ต ตัa゙	
	？
	琼＂餢
	－${ }^{3}$
\％¢\％	
	－${ }^{\text {！}}$
स゙y	\％
	－${ }^{\circ}$
	为
ดัํ	
	\％${ }_{4}^{\text {¢ }}$

