OUR COMPETITORS IN IRON SHIPBUILDING. By Captain Gambier, R.n. No. II.
The Marine Engines constructed, and being constructed by the Orlandi, are of the largest and most recent type. $13 \frac{1}{2}$ knots with 1300 indicated horse-power. The design is a compound of high and low-pressure, with four cylinders. The Vega, torpedo boat, made 20? $\frac{9}{10}$ knots on her official
trial at Spezia. The Birmania, before-mentioned, of 5000 tons, 1100 -horse power, made $11 \frac{1}{2}$ knots. Thestionese of excellent results, and certainly entitle this firm to rank
high as constructors of marine engines. From the design to the finish of the last nut all these engines are the exclusive work of the firm. They have also constructed several locomotive engines of the first-class, besides a
variety of other machines, mills and crushing presses for olive oil, washing machines, and a variety of agricul tural implements, in the construction of which the workmen acquire that technical skill which fits them
to take in hand any other kind of engineering work. It will thus be seen that not alone in shipbuilding is a formidable competitor gaining ground against England,
but in our particular speciality, namely, agricultural implements and tools of every kind. Nor must the fact be lost sight of that, up to the present, these Italian workshops have
laboured under great disadvantages in procuring the raw material, and in having unskilled labour to deal with. These disadvantages are, however, rapidly disappearing, will soon be on their side in the balance of advantage will soon be on their side in both respects. The Italian
Government are fully alive to the importance of fostering and developing home industries, and repeat on this side of the Atlantic the example set by the United States. Strenuous efforts are being made to render Italy en-
tirely independent of foreign aid, and with commendable and patriotic enterprise the Government have con-armour-plates to an Italian firm, whose works are at Terni. The Island of Elba supplies the iron--an ore deposits of not less than $12,000,000$ tons are still above average of 58 per cent. of metal, and though containing certain quantities of sulphur, are found to make excellent pig iron, of good quality, by an admixture of the the supply of which is inexhaustible, and can be
cheaply worked. ${ }^{\text {The }}$ output of the Elba mines has increased from 50,000 output 1871 to 403,000 in 1881 and to nearly double that amount in 1885. There are also other sites containing valuable ores in Italy; but these have not been thoroughly examined nor officially re-
ported on. The net cost per ton in producing this
iron has been from eight to nine francs-an average iron has been from eight to nine francs-an average
of about seven shillings. The freights to England were five and to the United States eight shillings per ton.
The lignites in Italy are in very large deposits and of good quality for smelting purposes. At the present rate of consumption it is estimated they would last two
centuries-sufficiently long for their purposes. It will centuries-sufficiently long for their purposes. It will
thus be seen that in dealing with the capabilities of the San Rocco firm to turn out work of excellent
quality everything shows that this firm may be the quality everything shows that this firm may be the dustry second to none in Europe. Some further details of this establishment may be interesting. As regards its
astual work, we believe that this firm has been much astual work, we believe that this firm has been much
criticised by English experts for the extreme care and labour bestowed on it, and it has been held that this excessive exactitude of measurement and this accurate
planing of the edges of iron plates is so much time and money thrown away. The Orlandi, however, take a
different view, and insist on having the rivet holes of their plates as mathematically exact as machinery and patience other good workmanship will be found to stand where bad other good workmanship will be found to stand where bad
fails, and it is hardly too much to say that in this respect they put to blush many of our English manufacturers. trivances used by the Orlandi, is a truck running on trivances used by the Orlandi, is a truck running on
rails, which brings the plates through which the holes for the rivets are to be bored directly and with mathematical precision under the drill, so that every hole is within the thousandth part of an inch of where it should yards it is still necessary to employ six, many of our twelve men, to pull and haul about, with clumsy and extemporised appliances of ropes and wedges, to bring the plate mnows the time that is wasted over this bungling kind of work, and frequently the drill is brought down
out of the centre of the chalk mark, which is, inout of the centre of the chalk mark, which is, in-
deed, not surprising when one cousiders the weight of the plate that has to be wriggled about to the fraction of an inch. But with the Orlandi truck all this is obviated, and mark the result. Orlandi's plates, when they come to be rivetted on the ship, lie with the rivet holes exactly in the right place; the rivets go easily into their
place, and are immediately rivetted whilst still hot and place, and are immediately rivetted whilst still hot and
malleable. The rivet holes bored on the other system do not fit, and every one accustomed to watch iron shipbuilding will have seen the frantic efforts of the rivetters to force the rivets through the holes which do not exactly correspond. It is true they do force
them in, but the rivet is made to take a twist, and before the final hammering and rivetting has been accomplished is so much cooled that the work is necessarily imperfect. But the mischief does not end here. The
vessel goes to sea, and under the severe strain of rolling vessel goes to sea, and under the severe strain of rolling
with the enormous weight of the ship and her cargo, the maltreated rivet gives way; the head comes off, and the rivet falls out. The strain then comes on
tha next rivet, and if two or three of these rivets happen to be in a part where the form of the vessel brings
an extra strain on the plate from its curvature, the plate a shadow of doubt that mising ship has foundere from her plates coming off, and there is no more certain method of effecting this catastrophe than bad rivetting. To continue some further details of the Orlando establishment, it may be mentioned that the iron foundry is capable of turning out castings of 25 to 35 tons weight. It is fitted with three revolving cranes-one of 20 tons, one of
and one of 8 . In the workshops, the present machineryand one of 8 . In the workshops, the present maccuinary-
which, however, is being greatly enlarged-is calculated work up about 350 to 400 tons of material per month, giving employment to about 1200 to 1300 men per diem. workshops, with three travell machines a 40,10 and 5 tons respectively. The turning lathes are capable of turning the largest screw shafting. Amongst other work going on now in this workshop is a Government marine en-
gine for a ship of nearly 8000 tons. The boiler shop is very capacious, and conveniently situated close to the jetty. It is a covered area of 1300 square yards. The carpenters internal fittings of ships excellent cabinet work or to copper foundries, are all on the same scale. All the workshops and the slips, are lighted with electricity. From
the above details it will be seen that the dockyard of San Rocco should be able fairly to compete with any of our esta blishments in England or Scotland. Nothing is spared to make their enterprise successful in all respects, and during
the years 1882 , 1883 , and 1884 , no less than $£ 27,000$ was expended by the firm on plant and workshops, and this in expended by the firm on plant and workshops, ared by the
the face of a dead loss of nearly $£ 40,000$ incurre failure of a company for whom they had built two large
steamers. Amongst other works entirely developed out steamers. Amongst other works entirely developed out
of their own resources must be mentioned the patent slips. They are worked in each case by 20 -horse power engines operating on four hydraulic presses, which are arranged to work alternately, so that there is no cessation of pul at any one moment of the vessel coming up out of th about three hours' time. For other repairs the well sheltered basin affords every facility, and here the firm have lately constructed a large revolving hydraulic crane capable of lifting 70 tons, so that the largest pieces of machinery or lifting 70 tons, so that the largest pieces of machinery in the workshop.
Much attention has been turned in this establishment to the delicate and difficult art of building tor pedo boats. Those constructed by the Orlandi may now be seen lying side by side in the Royal Arsena
of Spezia with similar boats built in England impossible to award the palm of superiority to the latter, whilst on the measured mile the Italian boats have run th most speed. They are somewhat fuller in the tion ins the figures were not obtained. As a guide, however, in estimating the relative cost of building ironclads in England colossal ironclad before alluded to cost at the rate o If. per kilo of material employed, or about $4 \frac{1}{2}$ d. per
English pound. The Italian Government are now having the following vessels constructed by the Orlandi, viz, the Provana, Veniero, Vesuvio, and the Clio, Vega, and
Rigel torpedo boats. These vessels will be completed ready for sea by the firm, who hitherto have only
built the hulls for the Government. In adiation to built the hulls for the Government. In adaition to
the above mentioned, the Orlandi have built and launched some of the largest and most successful steamer of the mercantile marine, which can bear comparison wit anything turned out by the best firms on the Clyde.
Whether the predilection for British workmanship is likely long to remain an idée fixe with British shipowners remains to be seen, but to buy vessels in the
dearest market will be a severe strain on their patriot ism in view of foreign freight bounties. Cheap and intelligent labour, sobriety, and minding their own busiindustry, and as the day is not far distant when Italy will be independent of foreign aid for the raw material the dream of the Brothers Orlando that they will some day build steamers for British owners may not be so very chimerical. It is only insular prejudice which leads us to underrate the foreign work an, whereas adaptive Japanese at Yeddo or Osaka; the clever, quickwitted Chinese artificer, in the Naval yard at Hong-Kong; the patient and thoroughgoing Russian in the Arsenal at Sebastopol, and the Tuscan at San Rocco in Leghorn, has led the writer to form an exactly converse opinion. And why should it be otherwise? What special claim have we fellows? On thall these handicratts over and above our climate which drives men to the public-house for shelter, and many other causes, militate against that steady, sober, contentment, without which no good work of hand or of the British accomplished. Nor is the growing tendency come on the "public good" for support whenever he for us the supremacy in manufactures which have hitherto been exclusively our own. The decrease in last year's iron and steel shipbuilding- 150,000 tons-must seriously affect trade throughout the kingdom, and it is a national dis-
aster that our own Colonies place their orders in America aster that our own Colonies place their orders in Amer.
and Germany, paid for by money borrowed in England.
The Italian Government have recently placed very large contracts in the hands of Italians for the delivery of next rails of Italian manufacture extending over the Royal Arsenals. In a short space of time Italy will be able to build as many ironclads as they and the rest of Europe are likely to require; and in this respect the arsenal and building yard of Spezia will eventually become of the highest importance, from the impregnability of its
situation. It is doubtful if we have a single building yard situation. It is doubtful if we have a single building yard
of any importance safe from sudden and unexpected attack.

It is true works are being tardily thrown up on the Clyde, and that Chatham, being far inland, may be considered safe but in the absence of a fleet at Spithead, Portsmouth is practically defenceless; whilst the guns on Portsdown Hill and the neighbouring forts might thunder away in vain before being able to strike a rapidly moving vessel shelling the dockyard; and Devonport is no better. But this of the aly a side issue. Tllowing is, head of us that must not be lost sight of. Every segregation of human beings in the entire world, from the puniest State in the Pacific to the giant Empires of Europe and Asia, is banded together to exclude British manufactures by prohibitive tariffs; whilst, with hardly an exception, all countries are training thousand of workmen to produce what has hitherto been almost our monopoly. In a short time every European market Britain But there oremans one outlet-an outlet which ow lies ready to hand -the vast and undeveloped Chines Empire. But even here we are likely to be forestalled by Germany.
An important Bill passed by the Italian Parliament just before the Christmas recess gives bounties to shipbuilding and navigation for a period of ten years. The chief feature of this Bill are-(1) a bounty of 24s. per ton for iron and teel ships built and registered in Italy; (2) a bounty o 8s. per indicated horse-power on machinery, and of 2s. 5 d . coal brought to Italy in Italian ships from ports lying utside Straits of Gibraltar, provided the argo is no less than three-fifths of the ship's burthen. A bounly o the navigation of $6 \frac{1}{2} d$. per net ton for every 1000 miles ru Canal and the Straits of Gibraltar. Further, the Italian coasting is hips may be admitted on condition of reciprocity. The doption of the bouties cearly oppest to the principles of free trade, will injure British shipping engaged in the coal trade, as well as the importation from England of machinery and marine engines.
That a policy of self-effacement, or rather of self-obliteration, should be one that recommends itself to a manufacturing nation, is incredible. That the redistribution of and which experts cannot make pay amongst men who for the misery produced through the a universal panacea and other manufactories standing silent and empty-is one of those malicious inventions which ruin nations. The cost of living in England is certainly not dearer than in many foreign countries, but the habits our working classes have engendered and rendered it so to them. There is an absence depit amongst us which tells painfully when the pic than the comes, and nothing can be more now in dispute, amounting to arthern cities between the trades union managers and their subscribers. It is obvious that the savings of the men have been hitherto, and are still, looked on merely as a means to carry on the war against capital in supporting and aiding strikes. Thus a
double evil is effected, for the savings are wasted which should have stood the men and their families in need when bad times overtook them, and business is driven from the country. However, this is a voice crying in the
wilderness, for as long as there are officials and other wilderness, for as long as there are officials and other functionaries making a good thing out of the working
man's gullability, so long will this unfortunate state of man's gullab
affairs last.

PROFESSOR R. H. SMITH'S KINEMATIC DIAGRAMS
The following two examples have been selected from a considerable number of kinematic diagrams that have been worked out by Prof. Smith's new method. As these diagrams, if drawn to any readable scale, occupy considerable space, it is impossible to give here more than two, but these illustrations cught to be sufficient to enable narily occurring in others, can give skill and facility. The draughtsman will find the working out of a few examples not only very interesting, but also extremely instructive. The principles 31st method have already been explained in our issue of 31st July of last year. For a fuhter exposition, and especirin dealing with particular mechanisms, the reader must be referred to the original paper itself, read before the Royal Society of Edinburgh at the beginning of last year and printed in the volume of the proceedings of that institution ust issued. The diagrams are reproduced here on about half the scale to which they were originally drawn, but the scales marked on the engravings are those of the engravings, not those of the original drawings.
Fig. 1 shows the set of diagrams for a Stephenson reversing link motion for a single slide valve with two speed are stated on the diagram. The angular velocity of the crank shaft is taken as uniform.
P_{1} is the crank shaft bearing. A is the forward and B the point E by the suspenc. The link CD is suspended at point regulated in position for forward or backward gear by the rocking shaft $\mathrm{GP}^{\text {, }}$
The velocities $p a$ and $p b$ are first calculated and plotted velocity and acceleration shown for position 12 of both construction being placed separate on the paper from the main diagrams for the sake of clearness. Through α and b are drawn the lines $\gamma_{1} \gamma_{0}$ and $\delta_{1} \delta_{2}$ perpendicular to AC
and BD . It is known that the and $p d$ the velocities of C and D , must lin , giving $p c$ From any points $\gamma_{1} \gamma_{2}$ on the first of these lines are drawn $\gamma_{1} \delta_{1}$ and $\gamma_{9} \delta_{2}$ perpendicular to CD , and $\gamma_{1} \epsilon_{1}$ and $\gamma_{2} \epsilon_{2}$
perpendicular to CE . Then $\delta_{1} \epsilon_{1}$ and $\delta_{8} \epsilon_{4}$ are drawn perpendicular to CE . Then $\delta_{1} \epsilon_{1}$ and $\delta_{2} e_{\&}$ are drawn
perpendicular to DE , and determining the intersec-
similar to CDE , and therefore the point e, giving $p e$ the velocity of E , must lie on the line $\epsilon_{1} \epsilon_{2}$. But $p e$ is perpendicular to $\mathrm{P}_{\stackrel{\rightharpoonup}{ }} \mathrm{E}$. Therefore from p is drawn pe perpendicular to $\mathrm{P}_{2} \mathrm{E}$ and intersecting $\epsilon_{1} \epsilon_{q}$ in e. From e
barallel to CA and DB. These are extremely small. From the points so obtained are drawn lines $\gamma^{1} \gamma^{1}$ and $\delta^{1} \delta^{1}$ perpenpoints c^{1} and d^{1}. On the first of these two lines are taken any two points $\gamma_{1}{ }^{1}$ and $\gamma_{2}{ }^{1}$, and from them is plotted parallel
point P_{q} is calculated and plotted off from p^{\prime} parallel
to EP_{q} It is named in the diagram $p^{1} \epsilon^{1}$. From ϵ^{1}
is drawn $\epsilon^{1} e^{1}$ perpendicular to $\mathrm{P}_{q} \mathrm{E}$ and meeting
the line $\epsilon_{1}^{1} \epsilon_{q^{1}}^{1}$ in e^{1}. This is the correct position
of e^{1}, giving $p^{1} e^{1}$ the acceleration of E . The accelera-

thus found is constructed the triangle $e d c$, similar to EDC, with corresponding sides perpendicular. The point f is then found by making triangle $c d f$ similar to D F. This completes the velocity diagram.
to DC the centripetal acceleration $\frac{(c d)^{2}}{\mathrm{CD}}$ of D round C,
which is calculated in the usual way. From the points so which is calculated in the usual way. From the points so
obtained are drawn lines perpendicular to DC to intersect
tion of C is now found by plotting from $\gamma_{1}{ }^{1}$ and $\gamma_{2}{ }^{\prime}$ in any parallel directions, the lengths $\gamma_{1}^{\prime} \gamma_{3}$ and $\gamma_{2}^{1} \gamma$ equal to the "errors" $\epsilon_{1}{ }^{1} e_{1}$ and $\epsilon_{q}{ }^{1} e_{1}$. The line draw through $\gamma_{3} \gamma_{4}$ intersects the line $\gamma_{1}{ }^{1} \gamma_{9}{ }^{{ }^{1}}$ in the correct posi-

 lated and plotted off. The centripetal accelerations $\frac{(\alpha c)^{2}}{\mathrm{AC}}$ and $\frac{(b d)^{2}}{\mathrm{BD}}$ are then calculated and plotted off from a^{1} and
imilar to CDE.
The centripetal acceleration $\frac{(p e)^{q}}{\mathbf{P}_{\mathrm{y}} \mathrm{E}}$ of \mathbf{E} round the fixed
tion of c^{1}, and from this the position of d^{1} can be obtained by making the triangle $c^{1} e^{1} d^{1}$ similar to C E D. This construction amounts to "linear interpolation" between the above two "errors." The point f^{1} can then be found directly by the construction of similar triangles.

In proceeding with the construction of the motion paths of C and D in the mechanism diagram, use is made of the
directions of the velocities of C and D , already found in directions of the velocities of C and D , already found in
the velocity diagram, these directions being those of the tangents to the motion-paths of C and D. The deflection from the tangents is estimated with the help of the acceleration diagram.
Fig. 2 is for J
Fig. 2 is for Joy's valve gear, as arranged by Mr. F. W.
Webb in the Crewe compound locomotives, shows the Webb in the Crewe compound locomotives, shows the diagrams when the reversing lever is in full forward gear. The crank shaft bearing is at P_{1}, the crank-pin is A, and B is the cross head. From the intermediate joint, C , in the connecting-rod a link stretches to D , at which joint it is guided to move in a circular path by the suspension-
link $\mathrm{P}_{2} \mathrm{D}$. From the joint E in the link CD , another link stretches to F, at which joint it is guided to move along a motionless circular slot, whose centre of curvature is at P_{3}. This circular slot is moved into different positions for forward, mid, and back gear. The valve-rod
GH is driven from the joint G in the link EF produced. The end H of the valve-rod is guided in a straight line by The end H of the valve-rod is guided in a straight line by
the P_{4}. The motion of H is the same as that of the valve.
In the velocity diagram, the construction is shown in full lines for position 6, the whole crank-pin circle being speed of rotation, and $a b$ is drawn perpendicular to A B to speed of rotation, and $a b$ is drawn perpendicular to A B to
meet the horizontal through p in b. Then $a b$ is divided meet the horizontal through p in . Then $a b$ is divided the point c. From c is drawn a line perpendicular to C D and from p a line perpendicular to $\mathrm{P}_{2} \mathrm{D}$. The intersection then $c d$ is divided in the same ratio as CD is in E to obtain the point e. From e is drawn a line perpendicular
to E F, and from $\quad p$ a line perpendicular to $\mathrm{P}_{3} \mathrm{~F}$. The intersection of these two gives f, and then of is produced to g in the ratio $\frac{\mathrm{EG}}{\mathrm{EF}}$. From g thus found a line is drawn perpendicular to GH to meet in h the horizontal line trrough p, i.e., the line through p parallel to the guide surface P_{4}. This last part is not drawn in on Plate IV. in graving. In the acceleration diagram $p^{1} a^{1}$ is the centriis equal to $\frac{(a b)^{2}}{\mathbf{A} B}$ and parallel to $B A$ and $\beta^{1} b^{1}$, perpendicular to BA, meets the horizontal through p^{1} in b^{1}.
Then $a^{1} b^{1}$ is divided in c^{1} similarly to AB in C. Then $c^{1} \delta 1$ is made equal to $\frac{(c d)^{2}}{\mathrm{CD}}$ and parallel to D C, and from $\delta 1$ a line is drawn perpendicular to CD. Also from p^{\prime} is drawn a line parallel to $\mathrm{D} \mathrm{P}_{2}$ and equal to $\frac{(p d)^{2}}{\mathrm{P}_{2} \mathrm{D}}$ and from its extremity a line is drawn perpendicular to $P_{q} D$. This meets the line drawn from δ^{1} in the point d^{1} which
is thus determined. The line $c^{1} d^{1}$ is then divided in e^{1} is thus determined. The The points $f^{\prime} g^{1} h^{1}$ are then found
similarly to CD in E. The
by repetitions of precisely the same process as has just by repetitions of precisely the same process as has just
been described, but these are left out in our plate in order to leave the rest clearer.

BRAKES AT THE INVENTIONS EXHIBITION. the automatio friotion brake (heberlein Three important systems of automatic railway brakes were shown at the Inventions Exhibition last year, and
obtained gold medals, namely, the Westinghouse Air obtained gold medals, namely, the Westinghouse Air
Brake, the Gresham Vacuum Brake, and the Automatic Friction Brake. Descriptions of the first and second will be Friction Brake. Descriptions of the first and second will be
found in our impressions for Aug. 21st and Oct. 16th, 1885. Tound in our impressions for Aug. 21st and Oct. 16 th, 1885. means to be confounded with the original Heberlein brake, as tested some years ago in this country. Indeed, there is only a general resemblance between the two.
The principle involved in making a running train apply
its own brakes is very old. As far back as 1853 at all its own brakes is very old. As far back as 1853 at all
events, a brake was devised in which one axle of every carriage in the train was fitted with a roller, on which a chain was wound up when a clutch was brought into gear.
This chain was coupled to two sets of brake blocks-that This chain was coupled to two sets of brake blocks-that
is four blocks for the four wheels of the coach. The clutches is four blocks for the four wheels of the coach. The clutches
were thrown into gear when a continuous cord, running the length of the train, was pulled The rbakes could also
be put on by shutting off steam and applying the tender be put on by shutting off steam and applying the tender
brake. Then as the carriages pushed against each other and drove the buffers home, levers from the ends of the
buffer rods threw the clutches into gear. This was, howbuffer rods threw the clutches into gear. This was, how-
ever, a very crude and unsatisfactory arrangement, and the invention came to nothing. Several patents for brakes of this kind were taken out, and the original Heber-
lein brake attained some popularity on the Continent. The lein brake attained some popularity on the Continent. The
Clark brake and the Clark and Webb brake followed. Clark brake and the Clark and webb brake followed.
The automatic friction brake is without the disadvantages which have hitherto attended the use of chain
brakes, the objections to the system having been got brakes, the objections to the system having been got
over by very ingenious methods, which deserve attention over by very ing
and explanation.
It will be found on examination that there is one fundamental principle underlying all successful automatic brakes,
which is that a constant effort shall be exerted to keep the which is that a constant effort shall be exerted to keep the
brakes off, and that they shall go on as soon as this effort brakes off, and that they shall go on as soon as this effort
is suspended. Take, for example, the Westinghouse brake; is suspended. Take, for example, the Westinghouse brake;
in it a constant pressure of air must be maintained in the pipes under the train, or of the brakes will go on. In the pipes under the train, or the brakes will go on.
automatic vacuum brake a constant vacuum must be main-
tained, or the brakes will tained, or the brakes will go on. In the automatic friction
brake it is necessary that a cord shall always be kept tight throughout the length of the train, to prevent the brakes from applying themselves. The result in each case is the
same-if the train parts, the pipe or cord gives way, and same-if the train parts, the pipe or cord gives way, and
the brakes go on. In the simple or non-automatic brakes, the positive effort has to be made to put the blocks against
the wheels. Thus, in the original Heberlein brake and the Clark brake a cord has to be pulled when the train is to be stopped; in the brake which we illustrate the cord has
to be released. This is a most important difference, and
by the adoption of this system a very bad brake has been converted into a very good one.
Before going on to describe the
Before going on to describe the automatic friction brake, it may be well to dispose of certain objections which may be urged against it. The first of these is that it is impossible to use the cord on a long train so as to apply all the
brakes. This was only true so long as the cord had to be brakes. This was only true so long as the cord had to be
pulled; it has no existence when the cord has only to be slackened out. A second objection is that the chains putting the brakes on are liable to be broken by the home before the momentum is taken out of the rotating wheels. This is guarded against in two ways-first by using a chain of very peculiar construction, and secondly by taking care that the friction wheels shall not be forced home too hard. A third objection is that flat places wear on the friction wheels. As a matter of fact, a great deal of trouble was at one time caused in this way, the wheels wearing int was found that steel friction wheels working against sofl cast iron axle drums will run for many years without loss of shape. The result of the adoption of the various improvements to which we have alluded is that the automatic friction brake now plays an important part abroad, where it has been adopted on all the Prussian Government subsidiary lines, and is also in use on the following railways and light railways:-Jura-Berne-Lucerne Swedish States ; Bahia and San Francisco ; Gefle-dala
Harz-Mountain; Saronno-Como; La Sarthe; Kiel-Flen burg ; Saxon States ; Orel-Witepsk ; La Guaira and Ca raccas ; Brunswick ; Java; Oldenburg ; Puerto-Cabello and Valencia; Mecklenburg Southern; Arezzo Fossato.
In this country this brake can be seen in use on the Colne Valley Railway
The brake blocks are applied to the wheels by the apparatus shown in Fig. 4 of our supplement. The friction roller b, mounted in a frame d, which hangs from support g, fixed to the under-frame of the vehicle, can be lowered oy means of the rod h into contact with the drum a, which
is keyed on to and therefore revolves with the axle of the is keyed on to and therefore revolves with the axle of the
vehicle. The roller b is thus caused to revolve, owing to vehicle. The roller b is thus caused to revolve, owing to
the friction between it and the revolving axle drum a, and consequently to wind up on its shaft the transmission chain e, which is so constructed as to wind clear of itself at each revolution, and thus transmit the force in a constant ratio to the brake chain f by turning the multiplying roller c, to
the shaft of which the latter chain is attached. To the opposite end of this chain f the brake rod itself is attached against the wheel tires. The chain is of the watch fuse type, but as will be seen from the end view-Fig. 4-each link is so made that it winds up a little to the left of the preceding link, so that the links can never ride on one the On the frame d being again raised by means of the liftin tightening the brake cord, the friction roller is drawn out of contact with the axle drum, and the action of a counterweight unwinds the chain and releases the brake blocks Fig. 6 shows the small apparatus used for light rolling stock, the multiplying roller c and chain e being dispensed with, and a roller with double friction surfaces employed with a corresponding axle drum, and with a forked brake chain, constructed on the same principle as the transmission chain e of Fig. 4, but winding up in the centre of the

The brake cord plays a very important part. It is a small, strong, flexible rope, and the way in which it is passed over pulleys attached to the lifting rods, by
The brake is applied from the foot-plate by a very elegant device, illustrated by Fig. 14. This is one of the most ingenious friction clutches ever made. It has always
been an objection to chain brakes that their action cannot be graduated train rope suddenly released, all the brakes would go hard on at once. To prevent this the friction clutch reel is
used. A cast iron drum, having at one end a conical used. A cast iron drum, having at one end a conical
internal surface, and divided into two parts c and d by a partition, in the edge of which are four slits $i i$, runs loose apon a spindle b, which is supported on a cast iron frame a, and has mounted on it at one end a crank handle and at the other a cone, fitted with a ratchet A. On the crank hande being turned, a screw thread on the spinde draw tion clutch by the action of which the droming a fric tion clutch, by the action of which the drus made to revolve, the lifted woun up, and the friction brake apparatus is lifted out of contact with the axie drum, and so maintained by the cone being held by the ratchet and
a click attached to the frame a. When the cones are again separated by the screw being turned in the opposite direction by the crank handle, the reel drum is again free to run loose upon the spindle, thus slackening the brake
cord and permitting the brake apparatus to drop into cord an
action.
The handle can be so used as to allow the reel drum to revolve backwards as fast or as slow as may be wished, so as to keep the train cord at any desired degree of tension, blocks to come into play. In this way the brake is used with perfect success in running down long banks. To use the brake reel the engine driver, after the engine has been coupled to the train, and the train brake cord attached by means of the coupling hooks-Fig. 7-to the portion of cord fastened to the reel, proceeds to wind up any surplus cord on the left-hand or larger division of the reel c, and then passes the cord through one of the slits in the partition on to the smaller division d, thus obtaining greater with a mor tightening the cord and taking ond of the cord on the last carriage should, if with carriages on the American system, be hooked into the slip catch, Fig. 8, fixed on the platform rail, any passenger being thus able to apply all the brakes in case of emergency by simply turning over
the weighted handle of the catch, upon which the cord will be slipped.
By means of the apparatus which we have described,
the following conditions are fulfilled:-(1) When the
system is employed as a continuous brate system is employed as a continuous brake the engineapplyin all th hake in the any ment of the brake-res in the train by one simple movect control over the amount of brake-power to be given, and can thus regulate at pleasure the speed of the train. (2) It is also in the power of each guard to apply, in any can be y, the if the brakes; and the same power (3) In case of any accident, the rupture of a coupling is nstantly followed by the snapping of the brake-cord, when (4) whole of the brakes drop automatically into action. rapidly-applied and efficient hand-brake than the ordinary screw-brake, which can therefore be dispensed with-the friction system thus comparing most favourably with all systems with which supplementary screw-brak be fitted. (5) Vehicles not fitted with brakes, on ithoutio any manner interfering with the working of the brakes since the continuous connection, and consequent control can be maintained by passing spare lengths of brake-cord over any such vehicles. (6) Since each apparatus forms of itself a perfectly independent brake, any injury to one in no way affects any of the others in the train. (7) The against dangers resulting from neglect on the part of any employés when making-up the train, because unless the continuous brake-cord is duly coupled up the train cannot leave the platorm, as the engine-driver is unable to take off the brakes; so that it follows that no train can be in motion at all without its brake-power being at command. (8) The friction-brake system is specially suitable for goods trains, either continuously from the engine, or else The in groups with a brakesman for each group only. motive question of braking the driving wheels of the loco retarding fors thus making use of its great weight as a but may now be said to be practically decided in the affirmative by the consensus of opinion of the leading railway engineers of all countries. It is, however, still an open question as to the advisability, or otherwise, of connecting the engine brake with the automatic train-brakes,
so as to make it also self-acting in case of danger. Should so as to make it also self-acting in case of danger. Should high speed, it must, doubtless, be unadvisable to apply any excess of brake power in front of the disabled vehicle, ince it would cause the danger to be increased by the notice therefore, the engine drivers' driving wheel brake is invariably treated as an independent emergency brake, under his sole control; the tender-brake, on the contrary -should there be a tender-coming under the continuous control of the driver and guards, and also acting automatically in case of accident.
tes very clearly the way in which senger locomotive with different conditions:-Fig. 1 is a pasfriction brake-reel and cord for the continuous control of the tender and train brakes. The engine brake is worked by hand separately as a special emergency brake only. Fig. 2: Goods locomotive, with driver's emergency engine the control of the continuous brakes. Fig. 4: Friction brake apparatus for ordinary rolling-stock- a, axle-drum ; b, friction roller; c, multiplying roller; d, frame; e, transrod; g, support; h, lif carriage, showing the mode of working the brakes with the brake-reel in the van-see Fig. 9 - or of applying the brakes, in any emergency, from the brakesman's seat on thu carriage by slipping the hook on the lifting-rod, and Fig. 6. Friction brake apporatus for light railways, \&c.a, axle-drum ; b, friction roller; c, apparatus frame, with rod connection. Fig. 7: Cord hooks, showing the method of coupling together the continuous brake cord, as well as of fastening the cord by a knot jammed in the conical
head of the hook. Fig. 8: Slip for letting go the cord on the last vehicle of a train so as to apply the brakes in any emergency. Fig. 9: Guards van brake-reel, to enable the guard to work the cord and control the brakes, if required, as well as the engine driver. Fig. 10: Lifting-rod support with bell-crank lever and lifting rod. Fig. 11: Friction
brake as applied to an eight-wheeled bogie vehicle. Fig. 12: brake as applied to an eight-wheeed bogie vehicle. Fig. 12 :
Lifting pulley and rod, showing slip arrangement for brakesLifting pulley and rod, showing slip arrangement for brakes-
man in cases of sudden emergency, and also handle and ring for working as a hand brake. Fig. 13: Portable cord-guide support, to be carried in the van and used when several strange ve the train and engine. Fig. 14: Engine drivers friction frame ; b, shaft; c, d, drum, in two divisions of different diameters; e, f, cone with ratchet and click; crank handle; h, stop for limiting reverse movement of crank handle. Fig 15: Passenger train and engine with engine hand brake and continuous tender and train brake, and with a wagon, without any fittings, coupled in between train and engine. Fig. 16: Mixed train, showing use of to be worked over several goods wagons. Fig. 17: Goods wagons, coupled in brake groups, each under the control of So much prejudice has been raised in this country against the chain brake system, owing to its notorious failures on the London and North-Western Railway, that we feel in a manner bound to justify ourselves for devoting so much space to the brake we have just described. We therefore give some extracts from statements made by independent engineers, which speak for themselves. Mr. James Livesey, engineer-in-chief of the La Guayra and miles there is a continuous gradient of 1 in 27 , with a succession of curves and reverse curves of 130 ft . radius from
one end of the line to the other. To convey an idea of the
aerial character of the railway at certain points, it may be stated that the line is there carried along a mere ledge
cut into the face of the perpendicular rock, some 3000 ft . high, and that a biscuit dropped from the train would fall high, and that a biscuit dropped from the train would fall 1800ft. before touching the ground, On such a railway trains, and both drivers and guards must be provided with means to meet all emergencies. The greater proportion of the traffic being up, the engines are all heavily laden. Each wagon carries, as a rule, from 10 to 14 tons, and is provided with two powerful brakes, a hand screw brake, so arranged that both the engine-driver and guard have command over the train; and any passenger may in an instant put on the brakes throughout the train. If by accident a carriage or wagon should break adrift, not only is the brake on that wagon instantly applied automatically by the very fact of its breaking away, but the brakes are applied throughout the train, which is then brought to
a standstill. The engines weigh 33 tons each, and are capable of drawing up a weight of 80 tons, exclusive of their own weight. The concession for the line having been granted in 1880, the work was commenced in January, 1882, and was expeditiously executed by Messrs. Perry
and Co." The brakes referred to are those just described. and Co." The brakes referred to are those just described. The screw brakes were fitted as a reserve until the
men became accustomed to the Heberlein gear, but rolling stock recently ordered for this line and others in South America is without screw brakes.
Probably one of the most important features about a goods train brake is that it enables guards to be dispensed with, and thus reduces working expenses. On this subject we give the following statement, dated Elberfield, March
20th, 1885 :- "The groups of brake wagons fitted with the 20 th, 1885 :- "The groups of brake wagons fitted with the Hochdahl-Erkrath line, with an incline of 1 in 30, have answered until now extremely well. The first group is in regular service since December, 1883, and the second one the brakes of which each group consisting of three wagons, in brakesmen has so far been effected, that those stationed at Hochdahl, who, on certain days with much traftic, were not sufficient for the heavy goods trains, and had to be supplemented by extra brakesmen, can now, since the assistance, or, at any rate, do not require it to the same extent. We also hereby certify that the Remscheid passenger trains which were fitted in 1878 with Heberlein brakes, under the immediate and sole control of the enginedriver by means of a brake-reel, perform their daily service without any extra brakesmen, and without any difficulty whatever, as well on the Hochdahl-Erkrath incline, as also on the Ronsdorf-Rittershausen line, which is full of curves, and has an incline of 1 in 40 ." (Signed) "BrandHoff."
Heavy votes have been passed for the construction of an Royal Prussian State Railways or branch lines of the was read before the Society for the Promotion of Railway was read before the Society for the Promotion of Railway
Science, in March, 1884, by M. Stambke, Chief of the Technical Department in the Ministry of Public Works in which the following passage occurs:- "As is well when planning new railways, been brought forward more prominently than that of main lines. As regards the law proposed on May 15th, 1882, May 21st, 1883, and now again quite recently, the lines proposed to be built consist almost entirely of such subsidiary lines. According to the 'Railway Archives,' of March 1884, No. 2, the sum of $273,992,390$ marks has been granted by the Prussian Chambers since 1879 for building or subsidising new railways, and of this sum $225,522,690$ marks are for $2962 \cdot 7$ kilometres of subsidiary lines, and only $48,469,700$ marks for 373.9 kilometres of main lines.* In addition to the above a number of lines which were originally con-
structed as main lines are now worked, under the law of June 12th, 1878 , as subsidiary lines, so that at the present time all the Royal Directions have subsidiary lines under their supervision, of which some are in traffic and others are being constructed, whilst others are being surveyed. On such lines, in order to save the expense of special brakesmen, the trains are fitted up with a continuous
brake. As the trains on subsidiary railways are generally brake. As the trains on subsidiary railways are generally
mixed ones, and as the goods' wagons coupled in between mixed ones, and as the goods' wagons coupled in between working of the brakes by the engine driver, + the working of the brakes by the enow whieh, culd Heber ployed, has reference to the above, the following rolling stock has already been fitted on the Heberlein system for the Roya Prussian States Railways :- 368 engines, 169 vans, 1034 carriages and wagons.
otice of the railway brake systems reasons we have instituted Kensinglon. Fotween them and expressed no opinions concerning their relative merits. They one and all embody very ingenious ideas, and are the utcome of experience collected with much expenditure of ime, patience, and money. We have done our best to we have taken every care to arrive at the truth by personal investigation, and to put forward no statements made by nventors or exhibitors that did not appear to be founde from the history of the Westinghouse, the vacuum, and the chain brake, namely, that they can spend their talents, the invention of a brake intended to take the place of any one of the three. They probably represent finality as much as does the locomotive engine itself.
> * Further sums of 49,484,000 and 57, 542,000 marks have been granted
or 1885 and 1886 for the construction of additional subsidiary railways. +This necessarily refors only to the air-pipe connections of the other
system of compressed air brakes (Carpenter system) adopted by the
Prussian Government for the express trains on the main lines, and with
which the che Prussian Government for the express trains on the main lines, and with
which the coupling in of any one vehicle without the air pipes at once
ronders all the brakes in rear of it useless.

THEATRICAL MECHANISM AT THE LYCEUM HEATRE.
The mechanical engineering of the stage has been recognised in the columns of The Engineer on several occasions. In February, 1884, we published an illustrated description of the machinery used in the Paris Opera House, and later we illus trated the new aquatic circus in Paris, and we now propose to give an account of a visit behind the sc.nes of the Lyceum
Theatre during the performance of "Faust." In our account of the Paris Opera we mentioned the very conservative nature of the theatrical machinist's craft, which, perhaps, has been handed down from father to son, each having to pro-
duce more astounding and marvellous effects with increasing difficulty, owing to the cumbrous machinery that is usually employed. These remarks cannot fairly be applied to the
modern stage as illustrated by the Lyceum under Mr. Irving's management, who, assisted with a most efficient stage manager Mr . H. . Loveday, and an army of well-drilled stage workmen,
has defied the rule of precedents, and takes advantage of all kind of mechanical devices most successfully
Some of our readers may be unacquainted with the proporbriefly describe, with special reference to the Lyceum. The width of the proscenium arch is 33 ft . 5in., and from this for distance of 40 ft . is the stage proper, the apparent distance being greatly increased by the inclination given to the floor, which is
about $\frac{1}{2}$ in, to the foot. The total height was formerly 48 ft ., but on account of the very large quantity of scenery which has failing other stowage space, has to be suspended, it was found necessary to specially raise the roof of the theatre 12 ft ., thus
making the total available height inside 60ft. The scenery employed is nearly all "built up," instead of painted on the fat, to give a perspective appearance-that is to say, constructed of moulded cardboard coloured to imitate stone or brick; this although a great improvement on the usual plan of painted much heavier to move if the friction were not overcome by the use of small india-rubber covered wheels, The "wings," side scenes, are held in place by braces, iron supports covered with leather to prevent noise, jammed against the framework,
and secured to the floor by a stage screw. This small matte occupies the attention of a man whose sole duty is to attend to perhaps, six braces, and to fix and remove the stage screw at
the word of command.
The lighting is obtained from gas, the side lights, which are removable, being produced from gas battens, vertical pipes
containing a number of argand burners, the top lights being similarly produced by horizontal battens with batswing burners It is usual to have two sets of pipes so that two qualities of lighting can be produced, and the chance of a total extinction obviated, The batten lights can be enveloped from below by a framework of calico, known as a medium, the colour of the
light being changed by rotating the framework and presenting a medium of the desired shade. Besides these lights,
it is necessary to have some ready means of illumination which can be quickly set up in any desired spot. The plan on heavy vertical stands, with arrangements for coloured mediums, and connected with the nearest union by means of a leather hose; any leakage between the gas tap, which is let in flush with the stage, and the hose is prevented by a simple water to overcome the pressure of the gas. This very old device appears to answer admirably, and besides being easy to connect the gas bubbling through. India-rubber has for some time been discarded on account of the difficulty in keeping it gas
tight; well-oiled leather appears to last well, and is not easily damaged. So far we have only considered the gas lighting, but as the spectacular effects of the Brocken scene require the combined display of twenty-five lime lights, the arrangements for their production must of necessity be on a large scale. The
oxygen and hydrogen gases are stored in large vertical cylinders in what might be termed the stage basement, the necessary
in pressure being produced by partly filling the cylinders with water ro, so that to produce the light it is only necessary to connect the limelight burners to the two pressure mains; the advantage of this plan will be readily understood by those who have had ome gas cylinders which gre purpose. We must confess to a slight feeling of disappointment when we were told that the electric light was not used at the Lyceum, having been much impressed by the extremely vivid lightning, which appeared somewhat tame, when it was explained powder burnt in a ly better effect than nature. A fifty cell Grove battery is used on several occasions; in the first scene, to illuminate the book which Faust signs, and also to produce the sparks of Valentine who is fighting the duel with Faust. This effect is easily produced by the two performers each wearing a metal sole to
one of their boots, which is electrically connected to their swords by means of an insulated wire, contact being made by stepping are joined. The 90 volt intermittent current which is generated, however, caused an unpleasant shock to Valentine at the firs
performance when he inadvertently grasped an uninsulated portion of the sword hilt. Steam takes a very important part in the play; by its aid Mephistopheles is apparier in the study scene, and throughout the piece disappearances of his satanic majesty are assisted by the same
agent. The first question we asked was, How do you get rid the noise, as the vapour appears to spring up silently and
mysterious from the stage floor? On being led below we found the appliances to consist as follows:-A gas heated boile
supplies steam at 60 lb . per square inch pressure, which is led py in. pipes to a valve near the point of escape, from which the
penlarged to 4 in ., and on it funnel-shaped also provided with taps, look upwards. This effect, as well
as every other stage device, is controlled by the promper as every other stage device, is controlled by the prompter
by means of a "pull" or signal string, to which a small weight is attached. On the prepare-for-steam signal the stopcock is opened, the contents of the small pipe are allowed to expand into the larger one, and, on the second pull, other
assistants open the several cocks which control the admission to assistants open the several cocks which control the admission to
the stage. Nothing can be simpler or more effective, yet the many experiments. The appearance of fire spurting from the ground where the enchanted wine has been dropped is produced diately under a grating on the stage. The prompter turns up
the gas, which is kept lighted, by means of a bye-pass, and the
particles of burning paper give a realistic appearance to the
ame
 and gave details of the shipwreck scene, in which a mass of having an area of 2000 square feet, had to be brought on the distance of 22 ft . This and the subsequent lowering a
distance of 6 ft . although trimp what is nightly undertaken at the Lyceum. It is true no such ponderous weight has to be moved in a mass, although both in the representation of the St. Lorenz Platz and the
ubsequent cathedral scene is probably much greater. On the Continent long waits between the acts are the rule, but at the Lyceum the curtain rises after twelve minutes' interval, so that be kept ready slung in the flies, and are immediately lowered by rignal on to the framework, which is quickly fitted together. There is no noise or bustle on the drop curtain descending, the respective places much like men-of-war's-men at station drill all doing their allotted work at the word of command, which is given by signs. In this scene a very curious effect is produced
which has puzzled many professionals, in that on the curtain rising the stained-glass windows of the cathedral appear to be transparent, discovering Marguerite at prayer, also the priests gregation at mass before the high altar. To produce one on very fine gauze ; the stained-glass windows are made of silk, and are let into the opaque cloth which, on being drawn up,
leaves the semi-transparent gauze only. The whole of this scene is supposed to take place at night, so that it is necessary
to fully illuminate the interior of the cathedral and leave the to fully illuminate the interior of the cathedral and leave the
outside street in partial darkness; this is ingeniously accomplished by lowering a curtain from above which shuts off all the , the curtain being removed the Brocken is is again revealed. The scene on the summit of been described as a study in black and white and grey: "a mass of time-worn rocks on one hand, two weather-beaten pines on
the other, between them a snowy valley, the distance a mystery of vaporous cloud, through and across which the lightning plays." After this description the reality appears rather prosaic. The rocks are of moulded cardboard, and are deftly
built into one another so as to overlie a timber framework which rises at about an angle of 20 deg . from the front of the stage. On planted, and on the spectators' right a timber framework, which, when expanded like an open parallel rule, forms a substantial foundation for the huge rock on which Mephisto stands. The
peculiar lighting of this scene, imitating that from frequent lightaing flashes, is produced by gas flares and groups of Argan ourners turned up and down at frequent intervals ; the lightning,
if openly displayed, would be too vivid, so the effect is produced behind a suitably painted transparent screen hung before the driven clouds. The finale of the mountain on fire is perhaps the easiest part of the act, and is due to some twenty-five limelights with red glass slides blazing through every portion of the tableaux is also assisted by a shower of gold tinsil distributed from the bridges above by men carrying baskets and walking to and-fro. Two hundred and fifty persons take part in this scene
which necessitates great care that the framework should be whing enough to bear their weight in motion as they climb over
strong
he rocks. This is successfully accomplished, yet the whole superstructure is cleared away, and the bare stage prepared for the dungeon scene in less than ten minutes from the fall of the curtain. Stage thunder has always been a subject of ridicule,
but somenovelty has been introduced at the Lyceum in that the 6 in . sin., and oin. cannon balls, besides roling considerale distance downaninclined shoot, are firstof all placed in several hoppersfrom which they fall about sit. on to a 1n. boiler-plate when released by slides either singly or, as in the final crash, a ton at a time.
t is curious to note the prejudice against iron existing amongst theatrical machinists; out of all the hoisting drums used at the theatre we only found two whe prevails, and the same the old applies to the ropes, which we were informed constantly have to more durable; a wire rope is used in the last act to support a Jacob's ladder arrangement of T-iron, and was pointed out to us as a veritable curiosity on accoun ins small diameter and guaranteed strength. One other point we think is worthy the hydraulic power to lower the heavy curtain and drop, which we believe the Hydraulic Power Company has not succeeded in inducing any theatrical proprietor to try the experiment, which,
if successful, would render the services of the six men who attend the curtain available for some other work.

NAVAL Engineer Appointments, - The following appointments to the President, additional, for temporary service at the for temporary service as Admiralty overseer on the Clyde ; and
Joseph H. W. H. Ellis, to the Vernon, additional, for temporary Algerine ; John Hale, staff engineer, to The Tourmaline ; William Algerine ; John Hale, staff engineer, to t.
S. Coope, chief engineer, to the Royalist.
Royal Institution.-Dr. Lodge is about to give a course of
two lectures on fuel and smoke, considered with reference to the scientific ppinciples underlying the use of the one and the avoidance of the other. They are to be delivered on the following days, at
three o'clock. Lecture 1, Saturday, April 10th: The requirements three o'clock. Lecture 1, Saturday, April 10th: The requirements
of perfect combustion; The three stages of a coal fire: distillation gas burning, and coke burning; Products of combustion and of ing air to houses ; Principles involved in any proper system of Objections to solid fuel in any form as involving attention, labour and dirt; Principles involved in proper stoking ; Reasons why
gaseous fuel may be expected to become more generally used.
Lecture 2, Saturday, April 17th, 1886: Principles involved in the management of furnaces; Various kinds of 's smoke consumers ; Various kinds of gas producers; Gas producers and furnaces com-
bined ; Minton's oven for pottery; Siemens' regenerative furnace
The use of powdered fuel, Principles involved in the deposition of
soot; Effect of crude coal burning on pictures, buildings, vegeta-
tion ; Effect of smoke on water vapour ; Formation of offensive ; Defensive system of treatment.

RAILWAY MATTERS. Thes total length of the Norwegian railways at present is 1100 THE Sootch railways are joining with those of England in the
opposition to Mr. Mundella's Railway and Canal Traffic Bill. The opposition to Mr. Mundellas Railway and Canal Tramic Bill. The
principle it embodies of fiving power to to Board of Trade to fix
rates compulsorily is severely condemned by all in any way con nected with the rail way interest.
The North Metropolitan Tramways Company notifies its intention of applying to Parliament in the present session, by petition,
for leave to insert in its No. 1 Bill now pending in the House of
Com Commons, a clause or clauses authorising the company to use elec
tricity as a power for moving carriages on portions of its existing
or authorised tram ways in West Ham, East Ham, and T eyton
A report by Major-General Hutchinson on the collision which
pocurred on the
8th February, at Ings Junction, near Wakefield -Kirkgate-station, on the Lancashire and Yorkshire Railway, has been issued by the Board of Trade. After describing the circum
stances, the report concludes :- "Had his train been fitted with good continuous brake, which the driver could have himself applied
oe would very probably have been able to stop his train short he would very probably have been able eto stop his train short o
the junction crossing,' whereat the collision occurred.
Mr. ThoMas RAY, chief goods manager of the London and
North-Western Railway, died at the North-Western Hotel, Crewe, ing in the M, Crewe his fellow passengerspobsserved him to to fall forward, appa-
rently in a fit. When the train arrived at Crewe he was moved rently in a fit. Ahen ne, rrain arrived at Crewe he was moved
into the Railway Company's Hotel and attended by Drs. Atkinson and Athill, but he gradually sank and died, the cause of death being
apoplexy. He had been in the company's service forty-three years. DERALIMENTS continue to be the chief of the frequent accidents
on American railways. The accidents on American lines are on American railways. The accidents on American lines are
classed as to thir number and causes as follows by the Railroad
Gazette:-Collision : Rear, 20; butting, 10; crossing, 5 . Derail

 unexplained, 4. Other accidents: Boiler explosion, 2; broken
parallel-rod, 1; caving of tunnel, 1 ; iar burned while running, 1 ,
Total number of accidents, 94. Five collisions were caused Total number of accidents, 94. Five collisions were caused' by standing of orders, two by failure to to use signals, one by fog, and THE most frain breaking in two.
THE most frequent cause of railway accidents is the failure of
axles. Besides the 773 accidents on our rail ways reported last year
解解 Oernose wjure killed and forty-nine injured by batiling between
carriages and platforms; seventeen killed and 470 injured by carriages and platforms; seventeen killed and 470 injured by
falling on to platforss, ballatt, sce;
thirty five were killed and leven injured while passing over the line at stations, Besides these
who were all actually passengers, fifty-eight persons were killed and Who were all actually passengers, ,ifty-eight persons were killed and
twenty-one injured while passing over rail ways at level crossings
250 persons were killed and 126 injured while trespassing, and t to this number must
suicide on railways.
Ths third main division of the report on the railway accidents
in the United Kingdom in 1885 deals with accidents to servants in the Unithed of companies or contractors, caused by the travelling o
 2036 injured, while the causes of injury are too numerous to be
mentioned in detail. The The most fatal risk to which the servants are subjected is working on the permanent way, sidings, \&c.,
whereby 107 were killed and 126 injured, while walking, orossing, or standing on the line on duty caused 79 deaths and 108 injuries,
Altogether, what with servants, the total number of persons killed during the year 188
was 957 , against 1134 of the year before, and oof inured 3467
persons, against 4100 in 1884 . It is satisfactory to persons, against 410 alm
only the totals but alm
fiom the year before.
THE total length of the Austro-Hungarian railways in 188
was 21,980 kilos., against 20,818 in 1884, showing an increase of 1162 kilos, equal to 5.6 per cent. During the same period the
traffic had decreased to the extent of 4.8 per trafic had decreased to the extent of 4.8 per cent. for passengers,
1 per cent. for goods, and the return per kilo. had fallen oft by 5 ,
per cent. The gross receipts show an increase of only 0.3 per cent. . for passengers and luggage an advance of $\mathrm{f} \cdot \mathrm{T}$ per cent.,
cent., tho
whereas the goods traffic declined 0.4 per cent. The reduced rate or goods traffic introduced on many lines was accompanied by simultaneous decline of the traffic in merchandise and other goods,
and both circumstances naturally contributed to a reduction of the gross receipts. The average receipts per kilo. were less than in
1884 , year already distinguished by low average returns. They
amounted to 12,223 floring in in 1882, 12,268 florins in $1883,11,718$ florins in 1884, and to only 11,155 florins in 1885 , and have, con-
sequently, fallen off by nearly 9 per cent. since 1882 .
A remarkable instance of the effect of competition by sea and
land which at present exists has been brought to our notice within the last few dayss. The Railveay News says a contract has just been entered into between the agents of Italian railways for the
delivery at Venice of coal shipped at Cardiff and Swansea, free of all charges, at 20 s. per ton. This is exactly the prien at which the
same coal is delivered to the Metropolitan Railway Con same coal is delivered to the Metropolitan Railway Company in
Iondon, the competition between sea-going ships being so severe that the freight is little mere than nomininal. Another ing illustration
of the effect of competition by sea with our own railways is ant of the effect of competition by sea with our own railways is afforded
by the fact that the quantity of coal brought by coasting vessels
into
soriouslon from Welsh ports has increased to such an extent as seriously to curtail the quantity carried by the Great Western to
London. For the two months of the London, For the two months of the current year the decrease in
coal carried to London on the Great Western was over 20,000 tons as compared with 1884. There is sea competition also with other
ports as well as with London. At the meeting of the Great Western Company Sir Daniel Gooch stated that coal was conveyed
from Cardiff to London at 4s. per ton, or equal to ar aiiway fare from Cardift to London at 4s. per ton, or equal to a railway fare
of one farthing per ton per mile-a rate with which the railway
companies could not profitably compete. A somewhat novel design for a convertible sleeening and day car
is described by the Railiond Gazette, introduced by Mr. H . K .
Tubman, of Baltimore, Md. The main feature is a series of com. partments, formed by removable partitions, along one side of a
car with an aisle along the other, and removable yielding berths
athwart the car supported upon springs, Curtains separate the
and athwart the car supported upon springs. Curtains separate the
berth sections. The berth supports attach to the plates instead of
to the roof ; the beds are of a single thickness of flexible woven wire, and bothe the supports and bed bottoms are, at the same time, made taut, to prevent swinging, by a single ratchet and pawl. stored in a space beneath the windows, under the floor or in a
locker at the end of the car, Folding chairs are used. The bed frames are composed of hollow metallic rods lin. in diameter,
covered with woven wire and supported by four coiled springs.
The mattress is 3 in. thick, The mattress is in. thick, a netting surrounds each bed, and is
attached to the tube supports inclosing springs. The tubes turn down upon the bed frame when the berths are folded up and
stowed away under the floor. The folding chairs used by day are stowed away under the fioor. Mhe folding chairs used by day are
stowed a way at night in a similar manner. The greater room for
dressing and the absence of any partitions by day appear to be the nost salient advantages conferred by this style of car. The
inventor claims that the method of suspending the berths will give
particularly easy motion favourable to sleep.

NOTES AND MEMORANDA.
The Times' obituary of March 23 ra included advertisement
notices of 81 deaths, of which number 44 represent a total of 3133 years, or an average of 78 years each.
HERR A. BLUEMCKE has published determinations of the specific heat of soda solutions containing more than so per cent., as pos
sessing a paratical value in connection with Honimmanns soda
process. The specific heat incereases with the concentration until it reaches maximum at a 73 per cent. solution ; thence it decreases THE Colonies and India says :- "Great satisfaction is felt by
the press throughout Western Australia at the satisfactory condinearly $£ 90,000-2$. Department is advertising for tenders for a large number of extensive public works in various parts of the colony, and the
rospects of the ocolony never looked brighte than at present."
Engineers ought to find a field in Australia that would employ Engin
A recent number of the "Journal" of the Russian Physico Chemical Society con tains an elarnarate paper, by ky. Kraenitith
on the relation between the elasticity and density of the air in arified condition. His experiments on the velocity of sound show hat, at a temperature of 17.5 deg. Cent., the velocity decrease 2.6 mm . Ata pressure of 280 mm . the velocity is about the same as the mean air pressure, but it diminishes rapidly below 280 mm
He concluded that gases below this pressure do not obey the Boyle Mariotte law
Is a note read by ML. Sarrau at the Paris Academy of Sciences, formula

$p=\mathrm{RT} \quad \mathrm{K}$

$p=v-a-\mathrm{T}(v+\beta)^{2}$
$\begin{aligned} & \text { proposed by M. Clausius for carbonic acid, in which } p=\text { the } \\ & \text { pressure, } v=\text { volume, and } \mathrm{T}=\text { absolute temperature, is applicable }\end{aligned}$ ro other gases. He also stated that for these gases he had deduced of MM. Wroblewskli and Olszewski.
A curious phenomenon has been observed by M. Blondlot, and platinum and a disc of copper, 0.00 metre in diameter, were fixed vertically in front of each other by help of two platinum stands.
The discs were three or four millimetres apart, and both were placed inside a bell jar of porcelain, open below. The apparatus and although there was no electric current, it was found that the ace of the platinum diso was blackened with a deposit containing copper and platinum. In short, the copper had crossed from the oopper plate to dife patinum found that the nitrogen of the air was the agent in this transport of matter. The nitrogen combines with the copper, and lodges on the platinum, either incorporating itself
with the latter or decomposing in contact with it under the influnce of its high temperature.

From a large number of determinations of the electro-motive couples in various simple saline solutions, B, C. Dam-platinum Chim. Phys.-finds that the electro-motive force as a rule decreases with the time the couple is immersed. In the case,
however, of the zinc-copper couple in solutions of the chlorides
the the electro-motive force at first slowly increases. The electro
motive forco of the current yielded by a zinc-opper couple in a solution or duin twelve months, and is not appreciably aftected by
-017 volt during changes either of the strength of the solution or of temperature.
By introducing an exterior resistance of 20,000 ohms the curren By introducing an exterior resistance of
becomes practically invariable, even when the couple is kept in becomes practically invariable, even when the couple is kept in
circuit. The author proposes to employ this couple for the enera tion of currents of standard strength. The zinc-copper couple members of any class of salts containing a given acid, but varie
 rapidy than is the case when unamalgamated zinc is emploged

The following is suggested in the Electrician as a perfectly fair arc lamp carbon test:- Take a dynamo machine, with its full com
plement of lamps, and trim the lamps with the same make o plement of lamps, and trim the lamps wirt the same make of
carbons ; note the speed of the dynamo careully, and during the test mea
see that
with with arce so long as to fo fame. Measure the eleatro-motive force around each arc with a voltmeter. Burn the lamps until all the
carbons are consumed, or burn them, say, for four hours, and then measure the length of carbons consumed, and calculate the tota ime that they would burn, taking the average result. In testing
another make of carbon pursue the same course. You will now b able to note the difference between various grades of carbons, them uneconomical; others will be of such high resistance that the machine will not run its full complement of lamps with good lon aros, without increasing its speed. In such a case a lamp or two
could be cut out of the circuit until the arcs are normal, and this would show the degree of economy of the first carbons over the
others. It is not infrequently the custom to mix several different the results entirely by the length of lamps, and then judge Nothing could be further from a real test. A carbon which would burn nine hours would frequently be less economical than a carbon you to burn, say, two more lamps on a thirty-light circuit than the would be found that they would more than make up the differen due to more rapid consumption of the eight-hour carbons,
A NRW sweetening agent has been produced from coal-tar. It is
known to chemists as ""benzoyl sulphuric imide", but it ispron and
to name it "sacocharine.". The dispoverer is is Dr. Fahberg, a
German chemist in America, and its German chemist in America, and its preparation and properties
were recently described by Mr. Ivan Levinstein at a meeting of the Manchester Section of the Society of Chemical Industry. Saccha rine presents tue appearance of a white powder, and crystalises
from its aqueous solution in thick short prisms, which are with
difficulty soluble in cold water, but more easily in warm. Alcohol, ether, glucose, glycerol, \&c., are good solvents of saccharine. It
melts at 200 deg. Cent.t. with partial decomposition; its taste in
dile
 endowed with moderatelys strong antiseptic properties, and is not decomposed in the human system, but eliminated from the body
without undergoing any change. It is about 230 times sweete than the best cane or beetroot sugar. The use of saccharine will
ther naerefore be not merely as a probable substitute for sugar, but it permissible. One part of saccharine added to 1000 parts of glucose price is 50 s . per pound; but although very high, this is not prohinitory, as its sweetening power is so so great; but it is is very
probable the
 will be of great interest to brewers, for not only is it perfectly
whoolesome, but it possesses, in addition to its intensely sweet taste,
decided decided antiseptic properties, and there
safely, and advantageously added to beer."
 supply, at a cost of between $£ 2000$ and $£ 3000$, dock gates for
 about forty journeys per hour, and is probably carrying more
passengers than any other lift in London, the estimated number eing over 1000 per day
OpRRATIONS which have been proceeding for some time at the
Marquis of Lothian's Newbattle Colliery, with the object of developing the workings, are now almost completed. The presen
output is about 1000 tons daily, and it is expected that it will be considerably increased. About 700 men are engaged in this col
liery, into which the electric light has just been introduced. IN accordance with the recommendation of Sir John Coode
 at first projected. Messss. Brand and Dryboro, the lowest tenderers for the former contract, were the successsful tenderers
in the latter instance. This will greatly advantage Cleveland. Messrs, SChafrer AND Budenberg, of Manchester, are supply with the engines at the Colonial and Indian Exhibition. A portion of these will be of the ordinary type, but amongst them will be four of a new type, which Messsss S. Schafter and Budenberg have
termed their "perfect re-starting injectors," which will each eliver 450 gals. per hour.
ErForts which proved futile a couple of years back are again being made in the West Lancashire district to establish a sliding
scale for the regulation of miners' wages. The employers and the men appear to be now dealing with the question in a very con ciliatory manner, and with an evident desire to arrive at some settled arrangement, which, it is to be hoped, will have good
vesults upon the future relations of capital and labour in this sesults apon the future
Mr. Witerhouse, accountant to the North of England Board of and February, The average net realised price of plates, bars angles, and rails was $\& 414 \mathrm{~s} .964 \mathrm{~d}$. per ton, being a reduction of
2dd per ton when compared with the previous two months. The utput was 44,518 tons, being an increase of 1500 onss. In January ponding period of 1884 it was 90,616 tons. This enormous falling off is principally in the item of plates.
WATRRWORKs are about to be established at Abbots Langley,
Herts, and Messs. Le Grand and Sutelift, of Bunhill-row, London, ave been instructed by the company to sink one of their Artesia, 100,000 gallons per day of ten hours Hessrs. Le Grand and Suteliff, the site of the Abbots Iangle pridging station will be contiguous to the gasworks at Hunto AT the Edinburgh International Exhibition, which is to be opene AT the Edinburgh International Exhibition, which is to be opened
in May and continue till October, the manufacturers of Sheffield been formed, and many of the most skilled artisans of the town many departments there will be a capital show of Sheffield' he most prominent and best position in the committee conside Exhibition-has been secured for the Sheffield workmen. It i intended to have examples of old Sheffield work placed side by
de with the specimens of skill made by modern artisans
On 28th inst. the s.s. Talisman, which has just been built by rder of the Ocean Steamship Co., and engined by Messrs. Rober tephenson and Co., Newcastle, had a very successful trial on the neasured mile at Hartley. The dimensions of the vessel are as fol-
ows :-Length, 320 ft ; breadth, 36 ft ; ; and depth, $27 \mathrm{ft} .9 \mathrm{in}$. . He ngines are of the Hois tandem design, having cylinders 27 in . an 8 in . diameter, with a stroke of it t., and indicating 1265 -hors
power. Steam of 80 lb . pressure is supplied from one large double nith Fox's patent corrugated furnaces. A mean result oon $12 \frac{1}{2}$ knots was attained at full speed during several runs,
Writ regard to the rating of machinery question which is in olved in the important appeal case now in progress against the
ssessment of the works of Sir Joseph Whitworth and Co., of Manchester, it may be of interest to state that the Iron Trades Employers' Association have published the text of a Bill which it is
proposed to introduce into Parliament for amending the law of proting. In this Bill it is proposed that in the rateable value of any purposes only the following machinery and fixtures shall be taken into consideration:-(1) Fixed motive powers, such as water-wheels and steam engines, and the steam boilers, donkey engines, and
other fixed appurtenances of the said motive powers. (2) Fixed power machinery, such as the shafts, wheels, drums, and their
fixed appurtenances which transmit the action of the motive powers to the other machinery fixed and loose. (3) Pipes for steam, gas, and water. Save as above provided, no machinery,
whether attached to the tenement or premises or not, is to be taken into consideration in estimating the rateable value.
The discussion session of the Manchester Association of EngiDaltry read a paper on "Certain Motions used in Weaving" The paper was confined to a description of the various drop-box
motions in use, with a narrative of the progress which had been made by different inventors, and in conclusion Mr. Daltry briefly problem of a good drop-box motion, he said, was no easy one to
solve; his aim had been to devise a motion that would run at practically any speed -160 picks, for instance-and slip from one
box to any other of four boxes. This, after considerable trouble he had worked out mainly by the introduction of ex he claimed that one great merit of his invention was the narrow.
ness of the space which it occupied, whilst with the excentric motion, however high the speed, it did not bang the boxes, but
lifted and lowered them quite gently. The chair at the meeting was occupied by the president, Mr. W. H. Bailey, and a vote o
thanks to Mr. Daltry, moved by Mr. Thos. Ashbury, C.E., and

The plans and proposal of Mr. W. H. Radford, C.E., of Not Eighteen competitive plans were sent in. The scheme retains those sewers which are in good condition, and utilises the remainder for surface water only. New well ventilated and flushed sewers
will be placed in those streets where they are required. The a main outfall to a point away from the town and near the mouth of the river, where it will impound in a concrete storage tank during hidal river at half ebb, so as to take advantage of the powerful entered the river while there is still one and a-half hours of the ebb tide left to wash it far out to sea. On the east of the river
the present sewers and outfall at the mouth of the river will be utilised; but the sewage will be prevented from backing up the
sewers by a tank, and the sewers will be well ventilated and
flushed. Provision is made to connect this outfall at some future time with the main outfall on the west by means of a syphon
under the river,

THE MESSER ROLL CORRUGATOR.

THE MESSER CORRUGATOR
The above illustration represents a machine for grooving rolls, and described in the Age of Steel as the "Messer corrugator for corrugating mill rolls," casual mention of which was made in their columns a short time ago. A brief description
will enable the reader to understand its working. "The roller to will enable the reader to understand its working. "The roller to
be cut is held firmly by both ends, and travels straight up and down through an opening in the tool head, which, rotating is accomplished by means of a worm operating on a large worm wheel, which forms the outside of the base of the tool-head The degree of rotation of the worm shaft being governed by a set of change gears, which can be combined similar to those used in screw-cutting on a lathe, the broad base of the tool-head is graduated as an index plate with a sufficient number of circles, properly divided, to enable any practicable distributions of corrugations per inch of circumference, thus making it certain that at the completion of the roll there will be no extra wide or way with a large universal combination chuck with eight jaws ; each of these jaws carries a tool. One motion of a lever jaws all the tools forward to the work on the down stroke of the roll, while a reverse motion of same draws them back on the up stroke to prevent wear or breaking. Besides this universal motion, each tool can be given an indépendent adjustment if desirable. The tools used are of ordinary tool steel, and as easily made as a chaser for cutting threads in a lathe. The setting of the tools on the tool-head requires no special skill or
experience, the arrangement being such that once put in the experience, the arrangement being such that once put in the
tool post it is bound to find its proper place. After making the starting cut on the roll, the tools need no further care until the roll is finished. As each tool is required to cut only one-eighth of the face or circumference of the roll, the wear, and consequent grinding of tools so common to chilled ironwork, are dispensed with, and a smooth, uniformly cut roll is the result. It is well known that on machines only using one tool it becomes neces-
sary to grind and reset them several times before a roll is finished. Grinding takes time, and proper resetting is a delicate operation.
operated upon by a single tool, there is naturally only, and
tendency to spring away from the cut. In this machine the roller being held at both ends, the manufacturers overcome the spring or torsion of the gudgeon tools spaced diametrically opposite one another, each serves as a support to the other, thus relieving each from an unnatural and injurious strain. Besides being used as a corru-
gator, this machine is very efficient as a means for scraping off old rolls before grinding,
which makes a marked saving which makes a marked saving prominent merit of this corrugrotor is the quantity of work which can be accomplished with it. Six rolls can be cut per day
by a good man on rolls not by a good man on rolls not and the workmanship be correct Nevertheless, the manufacturer twenty corrugations as average ten hours' work. Some corrugations, of course, will admit of a larger output and some-for example, two per inch less-depending somewhat on the operator. The manufac turers do not claim that the than others now in general use but they do claim that it increased first cost is more than counter-balanced by the superiority of its merits. The Messer corrugator, though in constant practical use for over a year, ha only lately been placed on the market, and has received a
very flattering reception from very flattering reception from
the very best firms in the the very best firms in the
country. Messrs. Hill, Clarke, and Co., of St. Louis, are the makers."

A CRUISER FOR SPAIN Ir may be remembered by many of our readers that the Spanish Government issued invitations to some of the invitations to some of the
largest ship constructors in Europe to submit designs and tenders to build two third-class cruisers of 1000 tons displace ment and one first-class cruiser of 4300 tons. Unlike the Eng. lish naval constructors, the to private enterprise and com petition rather than to their own skill exclusively. By this means they placed themselves in the happy position of critics instead of acting the martyr-like part of the criticised. The principal necessary conditions were clearly and fully laid down, and the left to produce the highest results in coal endurance, speed, and protection at the most reasonable price. A committee consisting of some of the most eminent naval officers and naval architects in Spain has been sitting for some months past, and has at length decided that Messrs. J. and G. Thomson have produced satisfactory. This eminent firm has associated itself with high-speed steamers for many years past, and is second to none in success in this interesting but risky business. It is only necessary to say that they are builders of the Servia, Aurania, America, Columba, Scout, \&c., to justify one in saying that the Spanish Government have a sufficient guarantee that whatever can be done to produce the highest possible speed will be done by these constructors. We find by reference to the programme that the design of Messrs. Thomson is of the following particulars and dimensions:-

Length between perpendicular
Depth, moulded ..
Sisplacement under natural draught
I. H. P', of engines...

Draught of water... draught...
 Complement of men and officers 30000 knots Armament:- 412 -ton guns of Hontarios type ; $\ddot{6}$ 5in. guns of
Hontarios type 86 -prs. rapid firing ; 8 Nordenfelt machine
gun ; 5 torpedo tubes $; 10$ torpedoe

A complete protective deck will be constructed from end to end vessel. This deck is 6 ft . below water-line at side, and rounds up to the water-line at the middle. This deck is $4{ }_{4}{ }^{3}$ in. thick on flat part Before and aftery and magazines, and in. thick on lin. in thickness. The vessel is very completely sub-divided in the greatest practicable number of compartments. In the vicinity of the water-line above the protective deck the whole space is cut up by bunker bulkheads and cofferdams, so that when the ship is fully laden it will take a considerable amount of destruction of the thin plating to render the vessel in anything like a critical condition as to buoyancy or stability.
The above outline description will enable any one familiar with the subject to say that this vessel, for her size, is very
formidable. In the descriptions of the belted cruiser orimpreved

Mersey type we have already published, it will be found that the speed of these vessels is to be 18 knots, their armament is Oin. side and ten 6 in . guns, their protection is a partial belt of These vessels are 300 ft . long by 56 ft . wide, and are of 5000 tons displacement. We place these facts in juxtaposition to the description of the Spanish cruiser not to disparage the former so much as to show that when matters of ship designing were which is obtained by the united wisdom of the naval officers and naval constructors of our own Admiralty.
We may remark that this is the second high-speed warship entrusted by the Spanish Government to Messrs. Thomson.

THE JASPAR ARC LAMP.
Among the most satisfactory lamps at the Antwerp Exhibi tion of last year must be included the Jaspar, which, althoug by no means a pretty lamp to look at, burns with perfect steadi ness, and is very simple in construction. The lamp is made in two patterns, one for suspension, while the other, which we illustrate, is intended to be supported on
a stand. It is of the Archereau type improved. Our engraving shows the lamp when the carbons are nearly burned out. The

$\operatorname{rod} \mathrm{A}$ is coupled to the positive wire, and is thoroughly insulated from the rest of the lamp. The upper end of the rod is which will be understood at a glance. The rod A can slide up and down in the guide tube which supports it, as shown. A fine cord passing over a pulley serves to connect the two carbon rods. The iron rod B is connected with the negative wire of the circuit. The cord from B passes over a pulley F , half the size of that before mentioned, and as the two pulleys are fixed on one axis the ascent of the negative carbon takes place at half
the rate at which the top carbon falls, because the top carbon burns away twice as fast as the fottom carbon. A dashpot D is filled with mercury. The piston of this is coupled by a link L to the rod B. A counterweight P adjustable on a lever is coupled by a cord to a third pulley keyed on the same axis as those carrying the other two already noticed by means of the button K. The position of the weight can be adjusted on the lever carrying it.
The action of the lamp is as follows :-As soon as the current is turned on, the solenoid C acts on the iron rod B, which forms its core, drawing it down and striking the arc. When the arc and the carbons so urged by the weight of the rod A approach and the carbons so urged by the weight of the rod A approach
each other. The current then becomes stronger in the solenoid, and the further advance of the carbons is prevented. The counterweight F pulls against A, and as it can be adjusted for any current, the same regulator can be used on different currents through a wide range. The dashpot prevents the carbons from jumping. At first sight it would appear that the distance
between the carbons would augment as they became burned between the carbons would augment as they became burned
away. This is prevented by the varying action of the counteraway. T.
weight P.
It will be seen that this lamp is entirely dependent for its efficiency on the mercury dashpot, and there is no provision for working it in series. The lamp we illustrate is intended to run alone with a current of 25 amperes. The lamp can, it is extremely simple, but it will not commend itself to English electricians, who have set their faces against the use of dash-pots in any form, whether filled with glycerine or any other liquid.

RICE MILL AT RANGOON.

EREOTED FOR MESSRS. MOHR BROTHERS AND CO., BY DOUGLAS AND GRANT, ENGINEERS, KIRKCALDY, SCOTLAND.

RICE MILL AT RANGOON.
This mill, which, we understand, is the largest rice mill in the East, has been in operation for the last two years. It is capable of turning out 400 tons of Straits quality white rice in twenty-four columns, erirders ind ing was exing together with the engines and boilers, and the whole internal machinery of the mill, were supplied by Messrs. Douglas and Grant. This firm has been known for many years as the
most extensive makers of this most extensive makers of this
class of work. The engines are class of work. The engines are
compound surface condensing compound surface condensing,
and
develope
indicated and develope 700 indicated
horse-power. The boilers, five horse-power. in number, are fitted with paddy in number, are fitted with paddy
husk burning apparatus, which supersedes the use of coal as fuel. Messrs. Douglas and Grant are at present erecting a large rice mill, in the French settlement of Saigon.
DYNAMO WINDING MACHINES. This machine for winding the wire on dynamo arma-
tures is designed so as to wind the wire tightly and evenly the armatures ; the machine is arranged with friction-feed for wire, hand-reversing motion to feed-slide, and pedal-stop motion to spindle. The whole of the machine is under the command of one attendant, who does not require to move from his place,
the stopping, reversing, \&c., the stopping, reversing, sc.,
being under easy control. The machine will no doubt be very useful for makers of dynamos. The machine as shown will admit 20 in . diameter and 3 ft . between the centres. It is made by Messrs. Wilkinson and Lister, Keighley.
INTERCOLONIAL RAILWAY OF CANADA. AT a meeting of the Associa-
tion of the Manchester Students of the Institution of Civil Engineers, held on Wednesday, 17th
inst., MI. W. T. Olive, Assoc. inst., Mr. W. T. Olive, Assoc. Corporation, read a paper on "Some Featant to the Manchester Railway of Canada." The author at the outset dwelt at considerable length on the difficulties that were experienced in regard to the question of the boundary line between New Brunswick and
Maine, through the
become known that a direct railway between Quebec and St. John it was forced to make a considerable detour to avoid entering the was in contemplation. The drainage areas of the country being State of Maine and for military purposes, thus necessitating the involved in the negotiations which followed, an enlarged map
showing the various watersheds was supplied, to which frequent reference was made in following the several routes that were from
time to time surveyed and proposed. At last, in 1842, the Maine time to time surveyed and proposed. At last, in 1842, the Maine
boundary was finally settled by the Ashburton Treaty, whereby instanced in detail (1) the negotiations which took place ere the boundary was finally settled by the Ashburton Treaty, whereby necessary capital was forthcoming - eventually a Bill in 1867 prosition encountered by the engi-neer-in-chief, Mr. Sandford Fleming, C.E., C.M.G., the chief engineer also to the Canadian
Pacific Railway, in determining Pacific Railway, in determining be of iron instead of wood; (3) the detriment to the line, for all time, coming through turning it a long way out of its course to
serve private interests; (4) the interference of the commissioners appointed to manage the railway as to the basis on which contracts should be entered into;
(5) the lack of any surveys or (5) the lack of any surveys or
maps of the country passed through, \&c. The engineering character of the line was next
dwelt upon, and was illustrated dwelt upon, and was illustrated
by pen-and-ink sketches, showing by pen-and-ink sketches, showing
(a) the system of deep drainage in embankments and cuttings to prevent damage from the severe frosts; (b) the clearing of the
line in forest land to avoid obline in forest land to avoid ob-
struction from falling trees or risk of bush fires; (c) the form of cutting to allow for the heavy snowfalls of some districts and
of the action of snow ploughsof the action of snow ploughs-
cuttings generally were 30 ft . cuttings generally were 30 ft . to 1 ; (d) the type of box culverts, with deep apron walls; (e) the arch culvert for streams requiring a waterway from 4 ft . to 20 ft ;
(f) iron pipe culverts bedded in concrete, with masonry crosswalls; (g) the arrangements for
diversion of streams in crossing diversion of streams in crossing
ravines; (h) the detail of the ravines; (h) the detail of the permanent way-steel rails, 57 lb .
to the yard, with scabbard joints, and spiked to cross sleepers; (i)
the forms of piers or towers used, the forms of piers or towers used,
in place of abutments and wingin place of abutments and wing-
walls as in this country, with a contrast of the cost, showing a great economy in the adoption of this system; (j) ice breakers for the river piers of bridgea, \&c. In

WILKINSON AND LISTER'S DYNAMO WINDING MACHINE.

the boundary was carried some hundred miles to the north of that defined in the treaty of 1783 , thus ceding to the United States sharpest curve- 1432 ft . radius-the steepest gradient- 1 in $100-$ 1,000 square miles of British territory, equivalent in size to twis the highest bridge, and the deepest embankment. On the Interof the smaller States, its effect being almost to sever the geographical

CONTRACTS OPEN-IRONTIMBERTRUCKS.

CONTRAOTS OPEN.
INDIAN STATE RAILWAYS-PUNJAB NORTHERN RAILWAY. thork requred uncer this spechion comprises the conampd, supply, and delivery fa england, at one or more port tting the work together India, for fifteen iron timber trucks, 18 ft . long. The contract prings.
The whole of the materials used to be of the best quality, with their hooks and nuts complete, safety chains with thei ooks, eyebolts and nuts complete, sorew couplings complete, and oupling shackle, are to be made of Lowmoor iron, supplied dired for each article ; and each piece is to bear the stamp or brand of he Lowmoor Iron Company. All other wrought iron to be best best, or iron of similar quality in the opinion of the InspectorGeneral. No iron of foreign manufacture is to be used in any par he angle bars and plates may be me channel bars of steel an nd quality that it shall be equal to a tensional strain of not less than 26 tons, or more than 29 tons, with contraction of 35 per ent., and must be capable of being bent double on itself without showing any signs of fracture. Every piece of iron or steel mus

Tutal weight of stecl channil bai
ironwork
inforen
buffer ironwor)

$$
\begin{aligned}
& \text { Luffer ironwork } \\
& \begin{array}{l}
\text { cast ion } \\
\text { brake gear }
\end{array} \\
& \begin{array}{l}
\text { body ironwork } \\
\text { bolts and nuts }
\end{array}
\end{aligned}
$$

vets for one underframe and bady
Tenders to be sent in by the Gth April, 1886

LETTERS TO THE EDITOR.
[We do not hold ourselves responsible for the opinions of our AMERICAN BRIDGES,
Sir, -The two letters appearing in your issue of this week do mir. J, Reilly merely repen Waddell's treatment in greater detail; and I must congratulate him both on the good tone of his communication and on that large apacity for swallowing Waddell's assumptions, with which, I regret o say, nature has not endowed me. First, I deny the assumptio bacing; on the contrary I hold that the frame, in righting itsel nder excentric load, casts about an equal share of the wind load pon the upper and lower systems. In other terms, I treat the utlined this ides in to cove both at head and foot. I hav Then, again, the assumption that the shearing force can leap the
outined this in my second paper, which now in your hands, unbraced panel and reach the feet E and F, without giving rise to ocal bending moments at those points, is simply preposterous. rofessor Smith's diagram depends on this assumption, which he cknowledges ccept Professor Smith's treatment of an unbraced beam as a Bollman truss. Then Professor Smith compares his "ideal" bar o "imaginary quantities" in algebra. Here I am disposed to tak him at his word; for, as everybody knows, an "imaginary quantity" means is, of course, a "subsidiary quantity." Then, why not use the correct term, and avoid having to " paraphrase", loose expres sions? But the fact is Professor Smith does not use his bars a subsidiary quantities, which, having served their purpose, are cas aside in name but retained in value under other forms. Take, fo he downward pull O F or 6 , the upward pull 9 , the eastward pul , the westward pull 11, and the eastward thrust 12. If we take away any one of these stresses the joint ceases to be in equilibrium herefore, I strongly object to Professor Smith taking an axe an uthlessly chopping away his bracing. But let us look at the ver the point F is a double point at which the two bars 5 and 6 meet considers that the two forces 1 and 2 compound into a single resultant force R , resolving itself into a downward pull UF , or 6 along the lower part of the calumn, and a dig or thrast along th
that the joint F is not a double but a single point with only one bar 6 ternd and respo that the system reduces to a force and a couple incapable of further simplification. To these objections Professor "Smith can find no better answer than that they are very funny.
ir. Reilly is not correct in taking the stress in the column a OF or 6 in the lower half, and DE or 9 in the upper half of the column, or what Waddell calls "the released weight V., and would cease to exist with the tensions of which it is the difference. It will be seen by the figure that lines OF^{1} and columns, becoming infinite when the former vanish into the latter In my last note I put O and C at infinity in consequence of F and E passing to infinity. This, of course, is merely a mathematica deduction depending on the fact that an indinte line must have both its ends at infinity. The, same mathematical result can be to infinity, for then $V=O F-D E=\infty-\infty$; that is, the tensions

in the column both above and below joint K are infinite, and there fore their resultant V is zero. I would, however, easily pass ove
a mere mathematical singularity of this kind, if the assumption made were tenable under other aspects.
I would ask Mr. Reilly to pass a horizontal section above the strut $J \mathrm{~K}$ in his figure, outting the two columns and the
vibration rod $G \mathrm{~K}$, and then apply the test that the horizontal projection of the stresses in the severed bars should balance the horizontal projection of all external forces between the section and the free end of the cantilever. The column stresses, being vertical, have no horizontal components; that of the vibration rod is, when horizontal forces is only 2 P . It will be scen that this is merely an analytical repetition of the objection I put into graphic form in my article of the 5th, where it is worth notice that the reciproca figure of the joint K , drawn to fit Waddell's formula for the stress
JK , given vs V tan. $\theta=2 \mathrm{P}=$ summ of external horizontal forces,
whereas the same value, as deduced from his formula for V , gives is $\mathrm{V} \tan , \theta=2\left(2 \mathrm{P}+\mathrm{P}^{1}\right)$
Further, Professor Smith remarks that my assumption that D bisects $\mathrm{O} 4(\mathrm{O} z)$ is incomprehensible. Here Professor Smith fails ounderstand his own diagram; for, by the figure, since by hypothesis
$y=0 y$.
Lastly, Professor Smith charges me with attacking Professor Waddell in his absence. Now, he must know that the "attack"March 27th. was not perfectly spontaneous on my part.

Sir,-Mir. Graham and Professor Smith are doing a great deal m to cause of graptic statics. results. Their discussion has, so far, gone to prove that graphic will not enable an engineer to calculate stresses with any certainty this view is rejected, and we are to assume that graphics are al Professor Smith are unable to use them.
To calculate the stress in a trussed bridge is not a very dreadful peration, yet I find that your correspondents are each unable to perform the operation in a way that satishis opinion; and unless your correspondents can advance something newer and more valuable than they have yet done, the sooner the liscussion is closed the better. Up to the present it has been most. anedifying, and well calculated to convince students that neither party understas clearly what is writing about. Birmingham, March 30th. \qquad
SIR,-I think it might interest some of your readers if Mr: Graham would explain why it is that " the tension along the post. F H is not a constant quantity, but varies from the value at the oot to a much less value in the neighbourhood of the joint K." (See The Engineer, page 180 ante).
Cardiff, March 28th.

pile driving.

Sir, -My equation $\mathrm{P}=\sqrt{\frac{2 \mathrm{~Wh} h \mathbf{E A}}{\mathrm{E}}}$ is obtained by equating the work in the monkey at the time of impact with the work stored in the pile during elastic compression, clearly shown in my last letter, where the expression is given from whieh equation (1) is
derived. If that expression needs further analysing for Mr. Donaldson, I must say that $\frac{d l}{\mathrm{~L}}=\frac{\overline{\mathrm{A}}}{\overline{\mathrm{E}}}, d l$ being the shortening of the pile by compression. Multiplying $d l$ by $\frac{\mathrm{P}}{2}$ we get the work latent in the pile when compressed. We might add to this a similar term involving the work latent in the compressed monkey. But the length of the monkey in the numerator of the term being mall, and its elasticity in the denominator being large, the difference in the result would not materially affect the practical constructure of a man's body, as in Mr. Donaldson's extraordinary suggestion. Natural history alone should have taught him that what applies to a monkey does not always apply to a man. The
134 tons and 190 tons and any other loads evaluated from equation 134 tons and 190 tons and any other loads evaluated from equation (1) are contingent values only attained when piles soon after their
entry into the ground come upon some unyielding obstruction, such as a large boulder, in such a way that the shoes are not broken up. How far or how little a pile would be damaged by such a load I am not prepared to say. The practical experience adduced to show that a 10 cwt. monkey may be allowed to fall 4 ft . on a pile which may still be a virtual value of d, which is an amount to be measured by some special arrangement attached to the pile near ground level. This value of d is due to elastic compression of the ground, and is probably of important magnitude when we reach such lin. unless precautions have been taken to prove that it includes the absolute advance of that part of the pile at ground level before any recoil. If this has been done I see no reason for doubting that the loads as calculated by the formulie are correct, We must remember, too, that the value of I will be aftected. we consider the pile when any considerable length of it is in the ground. If wo assume the resistance of the ground to be equally spread over the buried length of the pile, the value of L will be andig out or the ground plus hall the buried length. The interpretation of the equation $m v=\mathrm{W} \sqrt{2 \mathrm{H}}$ is a very different thing from the interpretation of the result after using it
to a particular case. Algebraic equations are true only of abstract
numbers. The equation in question is true only when each letter represents a number. We may easily show this by taking as our unit of mass the mass of a body weighing 161 lb , instead of that
of one weighing 32 lb . With this alteration, the equation $m v=\mathrm{W} \sqrt{\frac{2 \mathrm{H}}{g}}$ is not true. If the momentum of a body was equal to a certain number of tons, why should it be equal to twice
that number of tons by only changing the value of one of our units? It is the same body, with the same velocity, and has moved through the same height. The fact is the momentum of the body is not
equal to 100 tons, but to 100 units of momentum, and changing equal to 100 tons, but to 100 units of momentum, and changing
the unit of momentum changes the numerical result. If I solve an me that x equals an abstract number. The interpretation of that result does not depend on any other term of the equation, but on
the original assumption of the representation of x. Let W, H, and g represent quantities as before with reference to any one pile
driver Mr. Donaldson likes to take. Let $x=$ the number of gallone contained by a vessel I have. Given $x=\mathrm{W} \sqrt{\frac{2 \mathrm{H}}{g}}$, will Mr. Donald son calcolatat this out and tell m ?
the result in tons or in pounds?
I am at a loss to know where the method first came from of multiplying m by v or W by v, and getting the result in tons
There is no doubt it is constantly quoted, and in places one would cerrainly expect not to find it. I I have before me, on page 85 of
"Molesworth's Pooket-book" of a few years ago, the "theoretical force of the blowo of a falling weight,") yealculateded by multineoreting the
weight by the velocity, and the result tabulated in tons. If this weight by the velooity, and the result tabulated in tons. If this
has over been used-and if so, how applied practioally $-I$ should
muoh like to know.
ScRUTATor. March 29th.

compound Locomotives.

SIR, -It may be of interest to some of your readers to know
that several Dreadnoughts are now working on the Crewe-Carlisle section. They have had new connecting-rods for the high-pressure , of the whole.

Number of engines.	Miles run.	${ }_{\substack{\text { Coal per } \\ \text { mile. }}}$	Cost per 100 miles.	Link.
$\begin{array}{r} \begin{array}{r} 513 \\ 511 \\ \text { Average } \end{array} \text { (} 48 \end{array}$	${ }_{1011}^{4975}$	$\begin{aligned} & 4 \cdot 9 \\ & 47 \cdot 9 \\ & 39 \end{aligned}$		Large compourds
$\begin{array}{r} 857 \\ 2181 \\ \text { Average } \end{array}$	5266	$38 \cdot 3$ 8.2 38.2 35 3.20 35.50	$\begin{array}{lllll}1 & 3 & 8 \\ 1 & 5 & 1 \\ 1 & 5 & 1 \\ 1 & 3 & 3\end{array}$	Precedents Preston and Carlisle.
	4366 4565	$\begin{gathered} 28 \cdot 7 \\ \text { s3.7. } \\ 30 \cdot 8 \end{gathered}$	1 1 4 1 3	Small Compounds Holyhead (Irish Mail).
$\begin{gathered} 231 \\ \text { Average } \end{gathered}$	3900 $\begin{gathered}3163\end{gathered}$	$\begin{gathered} 27 \cdot 3 \cdot 8 \\ 34.8 \\ 34 \cdot 9 \end{gathered}$	$\begin{array}{lll} 1 & 1 & 10 \\ 1 & 10 \\ 1 & 4 & 6 \\ 1 & 3 & 4 \end{array}$	6ft. 6 Rin, 4 Recoupiled ens engines

I fancy this will rather astonish the gentlemen who think that
by adopting Mr. Webb's system they will effect a asaving of fuel. Comparing the precedents and the large compounds it will be seen compounds are in the shops for repairs so. long. According to drivers there is in ond to the list of failures. But their heavy coal
consumption is, Ithink, the most ocolusive proof against them.
Comparing the precedents with the compounds in this respect the Comparing the precedents with the compounds in this respect the your admirable articles on compound locomotives, "if they are not should have no place on our railways, because it can be ehown that they possess no other advantage." On this point I entirely agree
with you. Mr. Webb has simply elaborated his engines all to no
purpose. Here we have two engines, one with 175 th boiler presssure, cylindeer area equal tongines, one with 175 lb lb. boiler
20 orduare feet of grate, and weighing 42 to tons in workinders,
2 tons in wing order;
 grate, and weighing about 30 tons, both doing the same work, and
the small engine being far and away the best. The compounds
seldom keep time with Sarmatian brought the 8.30 into Euston with ffteen carriages four minutes late; again, the Ajax lost fffteen minutes from Rugby to
Willesden with twelve oarriages on, the train being the up Scotchman due at Euston at 7 p.m. It is, I think, quite clear now tha
the Webb engines are complete failures. March 20th,
difficult search
Sir,--For many years there was looated in the darkest and stuffiest part of the dark, stuffy place called the South Kensington
Patent Museum, a set of patent specifications, to which access could be had without payment every day in the week. As such
specifications oould be examined upp to 10 p.m. on Mondays, Tues-
days, and Saturdays, it suited my convenience during the last ten ears to make many searches amongst them, and I have a ver lively recollection of the many disoomforts, and petty miseries 1 I
have suffered whilst doing so. However much it may be my mishave suffered whilst doing so. However much it may be my mis-
fortune, I hope it is not my faut that I am a biggish man,
measuring fift. in height and weighing some 14 stone, that I am obliged to wear spectacles, and that I am hour at a time without much discomfort. But whatever my per-
sonal imperfections may be, I never could understand why the Museum officials should, in, the way they arrangerstand why the specificaonly purpose of distressing me and others like me. Why, fo only purpose of distressing me and others like me. Why, for
instance, should they have compelled me to ou upon my knees in
dark, dirty corners with a dripping candle in one hand and a pooket-handkerchief, to serve as a duster, in the other, and then
painfully double over my long back till II got my spectacles within of books some 9in, above the floor? Why, again, should I have been obliged to risk my neck by having to balance my fourteen
tone on the top of a ricketty ladder, in order to reach heavy book overed with dust and placed on shelves some 12 ft . or 14 ft . fron ENGINEER, located upon the highest shelf of all? I should also like to know why the officials always selected the lightest and never required, and carefully retained the darkestand most unable. to-be-got-at places for those in the greatest demand; and why the
sequences of their years and dates could not have been arranged in a manner more intelligible than the disconnected, hap-
hazard, and difficult-to-follow one always adopted. I could say much more of the strange mismanagement which per-
vaded the place, were it not the prinipal object of this
letter to call attention to changes recently ltter to call attention to changes recently made, and a state of
things ow existing which appears to me, if possile, still more objectionable than the old one. A few evenings since I went to
the Museum to make a search, and expected to have to do so after the old pattern, when I was surprised to find that it had been
broken up, and that the library was closed. On inquiry, I was told my way there, ary of the
number of ladies and gentlemen deeply engaged in reading or
copying books, some of which I noticed were of a very advanced and abstruse character, I was then invited to take my seat at a
table amongst them, and informed that as the way in which the table amongst them, and informed that as the way in which the
specifications had been arranged would not permit of my personally searching amongst them, they would be brought to me be by the examine. Feeling a presentiment of what was of what I required to of the few vacant seats at a table where I t thousht I should cause the
least trouble to others, and having handed in list of some 160 specifieast trouble to thers, and having handed in a list of some 160 speciif-
cations I required tosee, my search began. Now it so happened to me cations 1 required to see, my search began. Now it so happened to me to patents taken out under the old law, the printed specifications of which are bound together apart from their drawings, all of which later are mounted in large separate volumes moasuring 2 ft . by
18in., and weighing some 10 lb. or 15 lb . each. For four hours that evening and three more the next, with more politeness than I could were engaged in getting down and bringing me from a long distance these heavy volumes. I kept no statistios of the soores of journeys
they made, the miles they walked, nor the many hundredweights they carried to and fro upon their shoulders. I did not count the hey carried to and fro upon their shoulders. I Idid not count the
heavy bangs which resounded all over the room when the books were dropped upon the table, nor did I measure the number of
square feet, or rather yards, of table and floor space I had to appropriate to the exclusion of readers and others better entitled
to it than I was. I am also thankful to say that I have no record of the looks of astonishment and the evidences of whose studies I was interrupting and whose comfort I was
so unwillingly disturbing; but this I do know, that through out those seven hours I felt ashamed of my position, dis gusted with the commotion I was causing, and indignant to think
that those who have charge of these specifications cannot arrange them in such a way and in such a place as to permit of my exam ining them without having to put myself in the incongruous posi tion of a bull in a china shop, and without compelling me to
destroy the comfort and spoil the studies of all around me ordeal, I at much inconvenience find y search to the office Library, the arrangement of which would be very nearly perfect if the specifcation boxes were dusted occasionally.
In conclusion, I would add that although the South Ke
In conclusion, 1 would add that although the South Kensington sixpence is now made on each of three days of the week. I do not know whether this charge is a legal one, but at any rate it seems strange that London, unlike most of our large towns, can-
not have, as
it should do, a free patent library open till ten oclock very evening of the week,
March $22 n d$

a condenser puzzle

SIR,-The air pump of one of our engines-compound Corliss horizontal-has given me considerable trouble ever since it started,
and I would be greatly favoured if any of your correspondents would help me in the matter. The pump is 36 in. diameter, and is of rods and a bell crank lever in the ordinary manner. The stroke is 3 ft., and the engine makes fifty revolutions a minute, so the piston speed of pump is 300 ft . per minute. There is no separate
vessel for a condenser, the exhaust pipe connecting the bottom of the cylinder with the bottom of the pump being used instead of condenser pipe, just immediately below the low-pressure cylinder
and 8 ft above the bottom of the pump, so that the water and con densed steam go tumbling down this condenser pipe together through the foot valve and into the bottom of the pump. The
foot valve is 3 ft . 6 in. wide and 16 in. deep. What perplexes me vith this pump is the fact that it works very well and very easily for ten or twelve strokes, when, on a sudden, there is a very
heavy thud or knook, first at the bottom of the pump, and then at he top. It works gain for a few strokes all right, and the knock t the top on the upward stroke. I have a small pet cock imme diately below the delivery valve, and I put another air cock in
detween the bottom of the pump and foot valve. These two cocks between the bottom of the pump and foot valve. These two cocks
helped it a little, but still it knocks, although not quite so bad as竍 fred it a little, but still it knocks, altthough not quite so bad a pump, I cut the valve into six parts across its width, and left lin. etween each piece open. Each part could then act independently ook out the foot valve altogether, and that just about made it ight. Bet when I worked without the foot valve my vacuum
ighe
ame down a little, and that would not do. How the vacuum came down I cannot make out, unless it was that some of the exhaust steam blew right through into the pump. I enclose a
diagram taken below the delivery valve, which speaks for itself. There is no doubt but that the pressure on discharge is excessive nd I am afraid it may break a rod or somedisce ane pres I hope that some of your correspondents may help me in the matter.
March 30 th.
[No diagram acoompanies our correspondent's letter. So far a is can see, the pump loses its water from time to thme, and thi for its work. As a rule air pumps are always made much too
large.-ED. E.]

good and bad chatys.

Sir, -The admirable article in your issuue of the 22nd January ing to both makers and dealers in iron chains, has also at last stirred into activity the society known as the South Staffordshire nd hasters Association, who have issued a circular on the subject well, but may not the users and buyers of chains exclaim - "Surely,
 degraded and your business transferred to other makers. And if this be so, should not your circular contain something more than a
warning to buyers? Ought you not in their interest, and for you own protection, to state distinctly that the sooiety will occup. will undertake to prosecute any and every case perpetrated agains any of its members?
That there is need for such a notice, those who are engaged in the iron trade are but too well aware. It was iron from Staffora and it is still that brand which commands the readiest sale. But is the brand to be relied on? Unfortunately not, because it is quite a common occurrence for manufacturers to be asked by merobants
to supply inferior iron branded Staffordshire best. Where the lie -for you can call it nothing else - originates, whether with th possible to be put a stop to there can be no question, for by its
action both the maker and consumer are defrauded, and if the lav egulating trade marks is not sufficiently comprehensive to punish such unjust acts, the present President of the Board of Trade
The English manufacturer has hitherto relied on the merchant or the sale of his goods in foreign parts, but he must in future, if modity which brings much profit to a merchant, and it is therefore English he reaps more advantage, he should neglect the latter favour of the former.

It is unfortunate perhaps that a new order of things should be
necessary, but there is no doubt that if old-established houses, such as Lord Ward's, Barrows, and the New British Iron Company wish they must follow the advice given in the Times of the thard May outs by Mr. T. R. M fthe foreign
March 31st.
Sir, - I am glad to see that your correspondents, Messrs. J. Wright and Co., Tipton, have noticed my letter of the 12th inst., chains. But they are professional chain makers, and recommend
chen the very best quality chains replacing them with new ones when
strained and worn, which no doubt is the right thing to do. But strained dand worn, which no doubt is the right thing to do. But those who use chains for lifting purposes in large quantities and at
great cost would like to take out of their chains the greatest pos. great cost would like to take out of their chains the greatest pos-
sible amount of work consistent with safety to life and property. And as the treatment of chains for lifting purposes is an importan ractor, it would be interesting to your readers if we could have the plans adopted by the various large docks in and about London here there are large numbers of cranes of all kinds; also our large on the banks of the river Thames. In these large concerns it mus位 the work of a number of men to have constant supervision o lifting chains, making daily inspect
stantly lifting various substances.
If your readers connected with the various dock companies, $\& c$., olong with our large crane makers, who must have a large practical knowledge of the proper handing of chains, it will prove of grea service to those who have not as yet made any provision for the
security necessary in working with lifting chains where men's live are at stake. Bad treatment of the very best chain will ruin it in a short time; good treatment of an ordinary crane chain may proa short itsers tiill it has paid itself in work wone done and all the pime
with perfect safety from the careful attention given to it when at work.
London, March 27 th.
SIR,-Messrs. Joseph Wright and Co., of Tipton, having honoured of the 19th inst., permit me again to refer to this subject, and will be brief. In their letter of the 24 th inst., addressed to you, they say I am entirely wrong in supposing that public tests can, in
any way, improve the quality of branded chains. Now, Sir, I did ot suppose anything of the kind. What I say is this: Publi tests, as prescribed by me, will prove the quality of any chains, sympathy with the monopoly of created brands, makers' tests, an makers' examinations, believing the public test the proper place to
brand the quality of every chain. "Facts are recorded there, not opinions" (Kirkaldy)
I have no knowledge of the conditions of purchase of chain
by the Indian-office or the Colonial Department, but I I do know ,at at the present moment the Admiralty have chains proved a Co. say that the Admiralty contract Messrs. Joseph Wright and Wood and Co., of Saltney, and that chains are not tested at the Saltney public test house, in the presence, and to the satisfaction of an Admiralty inspector?
Wright and Co., I will not attempt, the conditions being so numerous; but 1 will venture to say that he is a courageous The Lawe Sounth of of 20 owt. with a sin. sling chain.
W. Perman.
Sir, - I see a letter furriv's Mr. Moilemens.
tubes in boilers in accordance with last number den from clear, I will endeavour to Mr. McDonald makes the assertion that "the flanging of the tue--10s woula a great hindrance to the method eve
 this I may say that two of the largest firms in the country have
also offered to do this work for me. What Mr. MeDonald means "sixty tube strakes in one plate" I fail to underan an terrific piece of work. This gentleman also assumes that my tube re 10 in. diameter at large end, and 5 in. diameter at small end This is not correct, neither do I punch the rivet holes in the
flanges from templates, but drill them and mark off the tubes langes fro
afterward
I again beg to repeat that I lay no claim to the flanged uptake work, I do not intend to "defy" it, but invite it at all times,
The Bristol, March 31st.
[We can publish no more letters on this subject.-ED. CURTIN.
dr. otto's patents and the korting gas engine. SIT, - -Referring to the article on the "Körting Gas Engine," that so far from its inventors being, in the opinion of Dr. Otto, beyond his reach, the latter gentleman has begun another action atent. This claim was affirmed to be good in the recent judg deolared to mark an era in the history of the gas engine. That this is true, none who know anything of the subject will dispute.
The fact that Messrs. Körting have again been obliged to defend hemselves is significant. It shows how difficult it is to make a Körting's former engine would not have infringed the construetion claim referred to, but it has been abandoned for that type which Dr. Otto holds that the Co
Manchester, March 30th.

BOILER EXPLosions.

Sir,-Kindly allow me to say it is not correct for you to publish SIR, Kindily allow me to say it is not correct for you to pubiish Msurance Association was by the correct to say that that gentleman
Manchester." It would be more cor and high authority did not advise boiler insurance at all, but did first association for the prevention of-not the insurance of, or
dealing in -boiler explosions. The principal originator, I believe, of the first Boiler Assurance oryth, who was hisself kilied by Ayrfield, Stanm
nmore-road, Birmingham,
draughtsmen in london
SIR, - Sometime since I saw in The Exarverr that a Society of
Draughtsmen had been formed in Neweastle-on-Tyne, and I think Drom opinions I have heard expressed, that if a similar society vere startughtsmen would join it. Perhaps some of the numerous readers of your paper could give some particulars of the Newcastle Society. The society might be formed with similar objects to the iscuss papers, keep reveister of members wanting situations, and o. provide a superannuation fund for members. .W ould youce insert this in your valuable paper, and perhaps it may induce some insert this in
more qualifie
March 17th.
[For contimuation of Letters see page 272.]

SEWERAGE OF CLAPHAM, BATTERSEA, WANDSWORTH, AND PUTNEY. SIR JOSEPH BAZALGETTE, M.I.C.E., ENGINEER.
(For description see page 270.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

With this week's number is issued as a Supplement, a Two-
Page Engraving of the Automatic Friction Brake-"Heberlein Pyytem." Every copy as issued by the Publisher contains this Supplement, and subscribers are requested to notify the fact
should they not receive it.

CONTENTS

Trie Exoriskr, April 2nd, 1888.

 Laxixase (Mustrated.)

 Lexinime Arrio

Norres frou fus Ronra io Exiouix.
Tew Corranizs inis
 PARAGRAPHS-Naval Engineer Appointments, 260 -Royal Institution, 260
Kings College Engineering Society, 275 -Copper in the United
States,

TO OORRESPONDENTS.

Reglstered Telegraphic Address-".ENGINEER NEWBPAPER, ** All letters intended for insertion in The Engineer, or containing questions, must be a ccompanied by the name and address
of the uriter, not necessarily for publication, but as a proof of communications.
com
**We cannot undertake to return drawings or manuscripts; we A.-James Watt. R. A.- James Watt.
K. Bros. (Delfshaven)
S. W, \& (Brighton)
 large number of patents begin noith provisionat puticientetly detailed. A A very.
tively fero are complete from the frst, and there is no separate list of com-
pleted patents avplatable. pleted patents avaulable, but you can alvaays obtain injormation concerring
any particular patent or patents, by applying to the Great Seal Patent-
onfice, Southampton-buildings.

NITRIDE OF ZINC.

SIR,- Will any reader tell mee if nitride of zinice is a marketable liquid,
PYRITEs,
as make a large quantity as a bye-product?
London,

ALANCING LOCOMOTIVES.

SIR,-Can any of your correspondents give information as to the
existence of a translation in English of a pamphlet written by Le
Chatelier in 1849, "On the Balancing of the Reciprocating Parts of a Locomotive?'
Canada, March 16 th.

MASTER MECHANIC.
The Enoineer can be had, by order, fromans.
at the various railway at the various railucay stations, or or com any, if peosagent in toron or or ountry
from the supplied direct
 If credit occur, an extra charge of tooo shillings and sixpence per annum will
be made. THE ENoINEER is registered for transmission abroad Cloth cases for binding THE ENGINEER Volume, price 28 . 6d. each.

 increased rates.
Remittance by . Post-ofice order. - Australia, Belgium, Brazil, British
Columbis, British Guiana, Canada, Cape of Good Hope, Denmark,
 Remittance by Bill in London.-Austria, Buenos Ayres and Algeria,
Greoee, Ionian Islands, Norway, Panama, Peru, Russia, Spain, Sweden,
Chili, E1 16s. Borneo, Ceylon, Java, and Singapore, £2 Os. 6d. Manilla, Chili, el 168. Borneo, Ceylon, Java, and Singap
Mauritius, sandwich Isles, \&2 5 s ,
ADVERTISEMENT8.
** The charge for Advertisements of fourt lines and under is three shillings,
For every tho lines afteroards one shilling and sixpence; odd lines are
charged one shilling
 advertisements from the country must be accompanied by a Post-ofice
in payment. Alternate advertisments voill be inserted woith all
cal regularity but regularity cannot be guaranted in ans such case.
cept woekly advertisements are taken subject to this conditition.

Societr of EnoIneERs,-On Monday, April 5th, at the Town Hall,
Caxton-street, Westminster, at 7.30 p.m. a paper will be read "On Obscure Effects of Reciprocation in High Speed Steam Engines," by Mr.
Arthur Rigg, Past-President, of which the following is a synopsis:-
Effects of load and compression of exhaust in retarding the reciprocating Effects of load and compression of exhaust in retarding the recinpopsating
parts. Exact data given from actual work. New form of circular
pressure diagram introduced. Causes of the same engine working well parts. Exact data given from actual work. New form of circular
pressure diagran introduced. Causes of the same engine working well
or bady at high speeds investigated, and the results shown graphically
and simply, so as to be intelligible to the practical engineer.

North-EAst Coast Institution of Engineers and Shipbuilders.-
The eighth general meeting will be held in the Lecture Hall of the
Literary and Philosophical society, Newcastle-upon-Tyne, on WednesLiterary and Philos.ophical Aociety, Newcastle-upon-Tyne, on Wednes-
day, April 7th, at .7.4. p.m. A Ajourned discussion on Messrs. Patterson
and Sandison's paper ${ }^{\text {OOn }}$. Society of Chesical Industry.-On Monday, April 5th, in the Lecture
Theatre, Central Institution of the City and Guilds of London Institute, Exhibition-road, South Kensington, at 8 p.m. L Lecture "On the Prin-
ciples and Methods of Testing Cementing Materials," by Professor
Unwin, M.I.C.E. Unwin, M.I.C.E.
SocreTY or Arrs, John-street, Adelphi, London, W.C.-Monday,
April 5th, at 8 SociETY or ARTS, John-street, Adelphi, London, W.O.-Monday,
April sth, at 8 p.m.: Cantor Leetures. "TThe Arts of Tapestry-making
and Embroidery, by Mr. Alan S. Cole. Leeture I. Foints of resemblance
between weaving, tapestry-making, and embroidery. Special technical and Embroidery," by Mr. Alan S. Cole. Lecture I.-- Points of resemblance
between weaving, tapestry-making, and embroidery. Special technical
peculiaritites of each process. Ornamental effects as characteristic common to decorative textiles. Namenal styles. Works by Cavemen
and Eskimos. Types of cosmopolitan ornamental derices. Coincident
similarity between ornaments produced by different people at various

On the 24th March, WILIIAN DEATHS.

THE ENGINEER.

APRIL 2, 1886.

wages.

During the present depression in trade the sufferings of the unemployed appeal most keenly to the public sympathy, and it may be instructive to see how far the men are themthey hinder attempts at amelioration. The fall in the value of almost all kinds of produce, of minerals, and of every variety of manufactured goods, has been unprecedented and continuous, to the loss of everybody engaged in trade, and indirectly to other classes or the community. How is the anomaly to be explained, that while in former times hunger and misery were the result of famine, now misfortune seems to attend a plethora of food and mer class so great as the fall in prices suggests, because it is so widely diffused. An engineer, or ironfounder, if he has to sell cheaply buys cheaply also, and the lessened gain is partly due to the fact that a customary percentage by pronu is earned a a cialities who are doing as well as formerly, for though they are selling at lower prices, the difference is only that of the material, and they stil majority and obtain the old profit. But in the great in the power of production, as great a fall in the rate of profit as with the grower of produce or the maker of the iron and steel. The advantage of low prices must, however, fall to somebody, and the unalloyed benefit is while they share in the reduction in price of food clothing, and everything else they buy. Therefore, the classes who have annuities, fixed salaries, or preferential dividends, are enjoying in the greater purchasing income. Amongst this class, forming, indeed, the principa part of it, may be placed those workmen who are stil employed, and whose wages remain unaltered, for they are in this enviable position, that while their masters and the capitalists who provide the factories in which they work and the ready money for each Saturday's wages, have seen their incomings slowly dwindle and in many the changes so eagerly and fiercely demanded by the Socialists, namely, all to the worker and little or nothin to the capitalist, seem in the way of fulfilment if the
present state of things continues. The shareholders in many of the large manufacturing companies have received no dividends for some time past; and the whole of the earnings have gone to the workers who have none of the anxieties arising from bad debts, deteriorating machinery, and lost investments. For the industrial class, the dis charged workmen, and those dependent on them, alone seem to suffer. If in a town with 10,000 working men and boys with an average wage of $x 1$ per week, half are unemployed, the total income is $£ 000$, to the great suffering not only of the men and their families, but of all the tradesmen. If by a reduction of $7 \frac{1}{2}$ per cent. in the rates number, the wages fund of the town would be at once men bed to $£ 9250$, and yet the cure recommended to th of workinge of their lead ascore hour employed, employed, as though the masters, already handicapped by
40 per cent. dearer labour than on the Continent, would obtain more orders with the difference increased.
The workmen and their advisers are too apt to consider the manufactories of this country as engaged in supplying must in any case be done, and that if only they remain firm, "fair wages" must be paid to them. The enormous extent of our foreign commerce and the large proportion of the total wages fund that comes from abroad seem unheeded. The workmen see the orders that come, but appear to know or care little about those that are lost by foreign
competition. This is not a question of Free Trade. No
system of Protection will alter it, or, for instance, induce Brazilian merchant to buy at high prices here rather neering low prices on the Continent. Taking the eng ocomotivades alone, at the present time bridges, rails, and our foreign are being made in Germany and Belgium for of the buyers colonial markets that would onl accept their share of the reduction in wages that their employers and all the trading classes associated with them have had to bear for the last two years. A reduction of 10 per cent. in wages would to-day probably add 30 per It to the gross earnings of the working class.
It may be said that cause and effect will by natural laws produce a remedy, and that if there be less demand for labour wages will irresistibly fall. This may prove so in the long run, and is already the case where no artificial restrictions prevent it; but, unfortunately, there are cir loss of thes that prolong unnaturaly the loss of the commane In this country some of the larges workmen themselves. lan this coungre of skilled
 have no balance-sheets froluring departments, and ther similar centres the railway companies are every year trenching more deeply on the province of the manu acturers, and are acquiring a larger share of influence in determining the rates of wages. When, then, the private firms and manufacturing companies attempt to reduce wages to a level corresponding with that of prices, and the railway managers decline, as they are in most cases doing, to join in the change, the railway workmen support by their earnings the trades unions in resisting the reduction proposed by the real traders of the country, and the latter unable to compete with continental manufacturers, see their accustomed trade leaving them, and have to discharge more and more of their men. It is hardly too much to say that the want of co-operation by the carrying companies is not only damaging the interests of the manufac turing classes, but is reducing greatly the tonnage of raw material and finished goods that are carried to the ports. We are by no means disposed to take up the case of the masters against the men, and to a large extent sympathise hey he latter in their desire to retain the adva great mistake in classing tor past. But importance the present rates of wages and the hours of working The present limit of hours, including the Saturday half holiday, we believe to be of advantage not only to the men themselves, but, in many ways too numerous to mention here, to the whole community, although we think a further reduction impolitic and, indeed, for a long time to come, impossible. But when the value in money of what the workman creates falls-and at the same tim he buys-it is time he acknowledged the greater value of he buys-it is time he acknowledged the greater value We believe that one great cause of the present depre ion, or what may be even designated a degradation of prices, is likely to pass away, namely, the low wages of oreign workmen. Belgians, Frenchmen, and Germans will not always go on working 20 per cent. longer hour or 20 per cent. less wages than Englishmen, and there re already signs of alteration. The riots and destruction are but been raging in Belgium during the last few week despair of ignorant miners and artisans, goaded to crime by the hopelessness of their lot, of that condition which alone enables their masters to send iron to England at starvation prices. Not only in long hours, but in the absence of those conditions which in England mitigate the position of the working classes, is the difference between the countries to be seen. The Mines Regulation Act, the Master and Workmen Act, and the Truck Act are wanting across the Channel. The abour of women and children is still permitted at the mines in Belgium and Northern France, and tends to reduce the wages of the able men, while inflicting irretrievable injury on their families. The sensational description given by Emil Zola in his "Germinal" and other recent works does not exaggerate the evils he deplores. But while English workmen may assist in redeeming the lot of their fellows abroad by retaining the shortened hours of labour, they will be foolish if they do not concede to their masters as an which will, at any rate, help to retain here the trade of India and our Colonies, which is in danger of slipping from us.
pile driving.
As interesting discussion has been going on in our pages for some weeks concerning pile driving. For the benefit of our younger readers it may be well to explain what it is all about. It turns on a question
often asked, namely-What is the force of a blow? It is a remarkable circumstance that this question seems to persons, although the solution of the problem present no difficulties of any kind to those capable of undertanding fow very simple phyical laws As, her we know that the whe plo many students; and that even have quite failed to underen engine larger growth such an explanation of it as will, we hope, suffice to clear up all obscurities and render its solution perfectly easy. To simplify matters, we shall assume that the blow with which we have to deal is caused by gravity-that, in a word, it is due to the arrest of a falling weight, such, fo example, as the monkey of a pile-driver, blow is a blow, no matter how dealt; whether it be delivered on a target by a shot projected from a 100-ton gun, or with a tiny hammer on the head of a tin tack. In their nature both blows are the same; they only differ in degree. A falling body cannot do more work when its progress is arrested than has been done on it in lifting it up to the
height from which it has fallen. Thus, for example, let
us suppose that the monkey of a pile engine weighs 1 ton,
and that it falls 4 ft . on to the head of a pile; then the work in the monkey cannot be either more or less tha equivalent to four foot-tons. A foot-ton is simply an arbitrary unit. The proposition may be expressed in various ways. Thus, the work in the monkey at the
moment it touched the head of the pile would be sufficient to raise the monkey fell; or to raise a weight of 4 tons a height of 1 ft ; ; or to raise 1lb. through a height of $2240 \times 4=8960 \mathrm{ft}$.; or to raise a weight of 48 tons through a height of lin., and so lence be clearly understood. To drive it home still further, we may say that a horse-power is equivalent to lifting a weight of $33,000 \mathrm{lb}$. through a height of 1 ft .
in a min in a minate. But the result would be the same if 1 lb . was raised $33,000 \mathrm{ft}$. in a minute. We may, in short, go on ringing the changes how we please between weight and height. The cin invariably be the sane, one element in the calculation being a employed to raise 1 ton through a height of 4 ft . it must exert a force or push of 1 ton throughout the distance 4 ft . If it id not, it would not move one
ton at all, for it would be overbalanced. If it were called upon to raise 4 tons through a height of 1ft., 1 ft . If to lift a wush of 48 then push of 48 tons through a distance of lin., and so Bearing this in mind, there will be no difficulty in understanding the following simple rule. The force of a blow by the monkey before impact, by the distance y passed through after impact, and multiplying the reight by fall x be 48 in., let the pile descend $1 \mathrm{in} .=y$ at each blow then the force of the blow-or, in other words, the push or effort exerted by the monkey on the top of the pile-will be 48
and $48 \times 1=48$ tons. If the fall was 20 ft ., or 40 in ., then the effort would be 240 tons, and so on. It of the buderstood that this is the mean or average forc terminal effort may be much less, because at the instant of mpact the monkey is moving at its full velocity, while at no motion at all, and consequently will exert no push except that due to its weight. With this aspect of the quesill, however, the student need not now concern himself. It will be seen that the force can be varied by altering either xamplance passed through before or after impact. For he pile the monkey weighing 1 ton and falling 48in., let and this leads ony. infinitely small, the force of impact will become infinitely great. We are led thus to the ancient problem, If an irre sistible foree encounters an insurmountable obstacle, what will happen? No such condition can by any possibility occur in practice. Some movement must take place after impact. will see that to ask how to calculate the force of blow giving only the weight and the fall, is to put an absurd question. Three factors are in all cases necessary, namely, the weight, the height of fall, and the distance through
which the body which receives the blow moves tice it is by no means easy to ascertain the latter with precision; and the energy in the falling body can be expended in more ways than one. For example, when the head of a pile is struck, two effects take place simultaneously-the monkey is shortened and so is the pile. The elastic jumps up from the top of the pile. Again, the top of the pile becomes highly heated. In very dry weather the top light monkey rapidly repeated. The elasticity of the pile plays an important part in influencing the rate of it 50ft., will have stored in it on impact $50 \times 100=5000$ foot-pounds, and if the progress of the pile were lin., its driving force would be $600 \times 100=60,000 \mathrm{lb}$. A monkey oot-pounds of work in it, and would exert a driving force of $60,000 \mathrm{lb}$. over a space of lin.; but it does not follow that the former would be equally effective in driving the pile. On the contrary, the lighter monkey striking th he two a higher velocity mithe blow would not be trans mitted through the pile, but would be expended in compressing the top of it, probably in shattering the wood We do not propose to go here into any questions concerning ate a statement which we desire to keep so simple that it may be understood by those who only possess the most elementary mathematical knowledge; but this article
would, on the other hand, be manifestly incomplete if we would, on the other hand, be manifesty ingomplete in we values of light and heavy monkeys and hammers, and high and low falls.
When a pile is struck on the top, what is known as
wave of compression passes through it. requires time for its passage. Such a wave is set up in all columns when stress is suddenly brought on one end. Thus, for example, if the muzzle of a fowl-
ing piece containing a column of air is plugged up wh a cork, or with snow or mud, the barrel may be burst when the weapon is fired, simply because, while the pressure at the muzzle is yet too smaat move the cork, the rel. The wanc ion of a lump of dynamite on a rail will break it, the action being so sudden that the wave of transmission of pressure has not time to pass through the air surrounding the dynamite, and the air really plays almost the same part as a block falling a short distance on a pile-head resembles a push, in a sense, and gives time for the transmission of the effort
throughout the whole pile; but when a light monkey falls,
the effect may be confined to the top of the pile, which i shattered. In order to make this quite clear we must take into account the element time, concerning which we have said nothing yet.
menkey strikes a ram in feet and extracting the square root of the height of all 4 ft .; the square root of 4 is 2 , and $2 \times 8=16 \mathrm{ft}$. pe second. If the monkey fall as stated in our last example-50ft.- then we have 7 as the nearest whole number square
root, and $7 \times 8=56 \mathrm{ft}$. per second as the velocity with root, and $7 \times 8=56 \mathrm{ft}$. per second as the velocity with
which the monkey would strike the pile. If this speed which the monkey would strike the pile. If this speed was greater than that at which the wave of transmissio could pass through the pile, then little or no effect would be produced in the way of causing its descent; nearly th the of whe of the pile or in shatlerig , and the driving effect woul be . This, and there is plenty of room for discussion, because very little seems to be really known concerning a great many practical points connected with pile driving The efficiency of the pile driver is affected by the length, weight, and material of the pile, the condition of its head, and the character of he ground in which it is being driven. The effect of the element time is not sufficiently well understood. About, indeed, the only thing fully recognised is that a heav equal, much mroma modich then from a great height.
the institution of civil engingers.
The annual dinner of the Institution of Civil Engineers took President, Sir F. Bramwell, was in the chair, and among the guests were the Prince of Wales, Prince Albert Victur, and the Wales, the President, the Duke of Cambridge, and Lord Charle Beresford. The lighting of the Hall, library, council-rooms, and aproaches with 220 Swan lamps of twenty-candle power was and Co of Gateshad the steadiness and brilliancy of the result. The current is generated direct from one of Parson's turbine electric generators unning at a speed of 9000 revolutions per minute, the stean being supplied from a boiler of locomotive type in the adjoining
eellar. These cellars measure only 16 ft . by 7 ft . bin, each, yet there is ample room for access to all the parts of the machinery the electric generator, consisting of motor and dynamo com hined, measures 9 ft . long by 12 in . wide, by 2 ft . 6 in . high, and
having a total weight of 15 cwt .
the rating of machinery and the proposed amend
MENT OF THE EMPLOYERS' LIABILITY ACT.
WITH regard to the above questions, which so vitally affect he industrial interests of this country, prompt and energetic representing the leading branches of industry throughout the kingdom. A numerously-attended meeting was held on Thurs-
day last, at the Westminster Palace Hotel, to consider-first, day last, at the Westminster Palace Hotel, to consider-first, the question of the rating of machinery, which is already
ccupying the attention of the law courts, with reference several important appeals taken up by the Iron Trades Employers' Association against the rating of loose plant and machine-tools in engineering works; and secondly, what steps ntroduced into Parliament by Mr. O'Connor and Mr. Burt, for the amendment of the Employers' Iiability Act. The meeting was composed of representatives of the National Association o
Occupiers of Factories and Workshops, the Iron Trade Employers' Association, the Clyde Shipbuilders' and Engineers Association and Glasgow Shipowners Association, the Agricul Emplo Builders, and the Central Association of London Builders. Upon the question of the rating of machinery, the meeting unani
nously expressed its approval of the Bill which Mr. Brinton I.P., proposed to introduce for exempting from rating certain classes of machinery, and it was resolved that the executive of
the Associated Chambers of Commerce be requested to take charge of the Bill, and to procure its presentation in Parliament, of Commerce as desirable ones to back the Bill:-Sir Bernhar Samuelson, Mr. Brinton, Mr. Houldsworth, Mr. Jackson, Mr Lewis Fry, and Mr. Ruston. The various associations repreor the purpose, were also asked to take steps to urge upon al nembers of Parliament in every constituency where the severa associations have a seat or branch to support the Bplicat votes the Associated Chambers of Commerce. With regard to the trongly expressed its Act Amendment Bins, the meeting cipal Act in the direction of imposing additional liabilities or pecuniary responsibilities upon employers of labour towards industries of the country, highly inexpedient;" and it wa resolved "that the passing of the two amending Bills, bearing to be opposed in the interests of the trade of the country.' With this object in view a committee, consisting of the repre. the various associations forming the meeting and of others willing to co-operate with them, was appointed to before the Select House of Commons Committee, to which the wo above-named Bills have been referred, and also to watch the proceedings of the Committee. That the various employers associations are thoroughly in earnest with the determination to resist the proposed amendment of the Employers' Liability
Act may be gathered from the strength of the committee hich they have appointed to carry out their opposition to the which they have appointed to carry out their opposition to the
wo Bills of Mr. O'Connor and Mr. Burt. This committee conists of representatives of the National Association of Occupier of Factories and Workshops, the Iron Trades' Employers Association, the Central Association of London Builders, the
Agricultural Engineers' Association, the British Iron Trades Association, the Mining Association of Great Britain, the
National Association of London Builders, the Hull Iron Trades ational Association of London Builders, the Hull Iron Trades
Employers' Association, and the Manchester Cotton Spinners' Association, with Mr. Henry Whitworth, of Manchester, as the
secretary. The various associations throughout the country are
aso requested to urge upon the members of Parliament in the
onstituencies where they are located to resist the passin nstituencies where they are located to resist the passing
hrough Parliament of the two Bills referred to, or of any others aving like objects ; and further, the various associations are directed to prepare petititions against the passing of these Bills,
which are to be presented to Parliament when the proper time rrives.

LITERATURE.

Guide pour l'Essai des Machines à Vapeur et le Production Coonomique de la Vapeur. Par J. Buverbrtr, Memb. de la
Sociéte des Ingenieurs Civiles, Paris: Bernard Tignol. 1885. There is, we believe, no book like the one before us in the English language. It is a carefully written descrip
tion of the instruments, apparatus, theory, practice, and tion of the instruments, apparatus, theory, practice, and or the work done, by steam engines, boilers, and fuel. It st the "Complément du Traité 'Les Machines à Vapeur Actuelles,' " by the same author, and is a systematic treatise which might be very usefully translated, and sent to some of our engineering colleges. The order in which the
subjects are treated is, firstly, a description of all the nnown or practically useful indicators, and their construc Macnaught type those with an amplified Wat and Macnaught type; those with an amplified movement o range, and with mechanism for multiplying that range in the pencil-beginning with the Richards indicator; continuous indicators, beginning with Richardson's; and totalising, or power integrating indicators, such as the Ashton-Storey. These descriptions are accompanied by a lear exposition of the theoretical and practical reasons for the alterations and improvements which have been the bject and work of the several inventors.
The mounting of the indicator follows these descriptions, illustrated descriptions of the different methods of mountng the indicator on various kinds of engines being given in a very satisfactory and practical way, including, o to the indicator drum. Several kinds of reducing pulleys re described.
The third part is on the working of the indicator, and of the things to be considered in using it. The effect of
 the parts to which any movement is communicated eithe by the string or other connection or by the steam; the scillations of the spring, with different relations between pressure area of indicator piston and revolutions of engin -are very clearly set forth in this part. Of this part i may be mentioned, as bearing upon a paper recently read before the Institution of Civil Engineers, that the autho gives the possible inaccuracy due to the difference when cold at from 2 to 3 per cent. in excess of the true iagram area. H. also describes his method of testin ndicator springs for pressures above and below atmospheric oressure, and obtaining therefrom a characteristic curve ine if they are equal. The effect of friction of pencil parallel motion, and piston, and of the oscillation period o springs, is also briefly but clearly described, and reference i effect of inertia of the drum, and of the lengthening of the tring are also here dealt with, and it is pointed hey are nullified by the Garnier-Martin indicator, in the spring for returning the drum being upon the worm spindle, which is worked by means of a light pulley
In the second chapter the author deals with the analysis diagrams of various kinds, and the causes of various inperfections and characteristics, and the action of steam thermal questions relating to the properties of steam saturated and superheated.
The discussion of the various illustrations of early and ate or slow admission and exhaust; of expansion unde nd compound engines; adiabatic and hyperbolic expansion he steam jacket, and the construction of adiabatic and yyperbolic curves, is very satisfactory.
The third chapter is on work indicated, and deals with the measurement of diagrams by the various usual methods; he consumption of steam, and the quantities of water in eylnder as shown by the rise of the expansion carv解 Industrielle de Mulhouse-"Bulletin" 1880-are also decribed
The brakes of Prony, Thiabaud, Balk, Deprez, Cadiat, Amos, Beer, and Brauer are well described and illustrated in this third chapter, and carefully-written accounts given trials or tests by indicator and brake.
Chapters four and five are on evaporation, and steam enerators; the former dealing with the calorific value o uels, combustion, quantity of air necessary for differen fuels, and the proper methods of stoking, reference being made to the instructions on the means of minimising the
production of smoke issued by the Conseil d'Hygiene de la production of smoke issued by the Conseil d'Hygiene de la Seine; instructions which might be usefully posted up in
every boiler-house in this country. In the chapter on every boiler-house in this country. In the chapter on boilers are first estimated, and then boilers, chiefly of the ontinental types, are described in detail. The Galloway boiler is described, but even th. putting two long water vessels in the two low side flues, proper. The methods of conducting boiler tests are neys, although the sizes of chimneys, determined by the eys, althoughle given, would in many cases, as they are in this country, be larger than is usually necessary. The author's treatment of the flues is, perhaps, the only unsatisfactory part of the book. The gist of his remarks on this subject is that the flue sections should be at least equal

075 to 05 of the area of the open part of the grate. The 075 to 05 of the area of the open part of the grate. The
book concludes with the French law concerning land boilers, given as an appendix. We commend M. Buchetti's the use of the indicato

Notes on the Chemistry of Iron. By Masaus Troilus. 8 vo
pp. 97 . New York: Wiley. London: Tribner. 1886 . pp. 97. New York: Wiley. London: Trüner. 1886 .
In this volume, which is little more than a pamphlet in dimensions, the author gives in plain language a description of such chemical methods of analysis of iron and steel as have come under his personal notice dur'ng several years of
practice. The text is mainly devoted to the analytical in the laboratory routine of iron and steel works such as the examination of cast and wrought iron, iron ores, slags, limestone, and fuel, together with some notes on gas analysis. There are also some useful
tables for the rapid calculation of analytical results which display considerable ingenuity. Although there is no want of similar works already published, both in this country
and abroad, the volume will be found of value to the and abroad, the volume will be found of value to the
special class of chemists to whom it is addressed, as the special class of chemists to whom it is addressed, as the bewildering number of modifications contained in larger treatises are avoided with advantage. The description of
the mode of determining carbon by combustion is the most interesting part, several ingenious modifications, which in detail. A mong these a shaking apparatus for facilitating in detail. A mong these a shaking apparatus for racilitating specially noticeable. The author seems to work with specially noticeable. The author seems to work with
rather large samples, and is somewhat free with his rather large samples, and is - somewhat free with his
reagents. Thus "a few cubic centimetres of bromine" are stated to be used for the precipitation of manganese in an In the introductory chapter we should have been drops. iron forns alloys in any proportions with, among other elements, copper, sulphur, silicon, and arsenie. Here the
word alloy does not seem to be used in the sense ordinarily attributed to it in this country.

4 Rudimentary Treatise on Coal and Coal Mining. By W. W. SmyTh, F.R.S. 6th Edition. London : Crosby Lockwood and Co. 1886.

THE steady demand for this well-known treatise having exhausted the former issues, it has been reprinted for the sixth time, with such revision as was compatible with the maintenance of the text substantially in its original form,
the alterations and additions being mainly in the form of notes at the foot of the page. The principal additions are, however, to be found in the excellent preface, which notices
some of the chief points of interest that have arisen in some of the chief points of interest that have arisen in
connection with the safe working of collieries-such as the use of mechanical means for breaking down coal, instead of gunpowder; the modification of the older form of safety lamps, called for by the high speed of modern ventilating danger in fiery mines. As regards the first of these questions, the author calls attention to the fact, which is apt to be neglected by outsiders, that by shortening men's time of labour at the face of the coal, gunpowder undoubtedly pre--
vents many disasters from falls to which they would be vents many disasters from falls to which they would be
exposed if mechanical means of breaking down the coal were relied upon exclusively. As regards the safety-lamp question, reference is made to the exhaustive series of ex-
periments made by the Royal Commission on Accidents in periments made by the Royal Commission on Accidents in
Mines, under the presidency of the author, whose report will probably be issued to the public in a few days, time.

PRIVATE BILL LEGISLATION.
Substantial progress has been made during the last fortnight has, of course, been made in the Committee.roomse , but in the
two Houses a fair number of these measures have been forwarded a stage onward either prior to or after being dealt with by Select
Committees. These may be mentioned first, it being assumed Committees. These may be mentioned first, it being assumed
in each case that the Bill has already passed through one House.
First readings in the First readings in the Commons: Rhondda and Swansea Valley,
Leamington Corporation, Dublin, Wicklow, and Wexford Railway Bills. Second readings in the Commons: Cleator and
Workington Junction Railway, Halifax High Level and North and South Junction Railway, Haiieax Ligh Level Lond, Brightol, and North
and South
Coast Railway; London, Chatham, and Dover Railw Coast Railway; London, Chatham, and Dover Railway; Kensing-
ton Vestry, Moreombe Tramways, Rowley Regis and Blackheath Gas Bills. Third readings in the Commons: Listowel and Ballybunion Railway, Beaconsfield, Uxbridge and Harrow Rail-
way (Abandonment); way (Abandonment); Forth Bridge Railway, Kirkcaldy and
Dysart Railway, Metropolitan Markets, Bridlington Gas, Highgate and Kilburn Open
sion Tramways Bills.
Second readings in the Lords: : Hull, Barnsley, and West Eastbourne, Seaford, and Newhaven Railway; Brist the Lords : down Bridge), Chatham and Brompton Tramways, Southampton Docks, Rhondda and Swansea Bay Railway, Newport (Mon-
mouthshire) Gas, Leamington Corporation, Swansea Harbour mouthshire Gas, Leamington Corporation, Swansea Harbour,
Bray and Enniskerry Light Railway, Dublin, Wicklow, and
Wexford (Docks), Highyate and Kilburn Open Spaces Bills.
The Examiners in the House of Commons have reported that the North Lindon Tramways, Cricklewood, Kilburn, and Harrow-road Tramways, London Street Tramways, and StapenThey have accordingly been referred to the Select Committee on Standing Orders for further consideration.
The Bill promoted by the Corporation of
The Bill promoted by the Corporation of London for providing
open spaces at Highgate and Kiburn has passed unopposed open spaces at Highgate and Kilburn has passed unopposed
through the House of Lords. Having already been sanctioned by the House of Commons, it is expected that it will receive the
Royal Assent immediately, after which the work of preparing Royal Assent immediately, after which the work of preparing
the lands for public use will, it is understood, be pushed forward as rapidly as possible. A report was prepared for the Lords,
Committee by the Attorney-General on the provisions contanined Committee by the Attorney-General on the provisions contained
in the Bill, in which he speaks approvingly of the echeme, whioch
is to is to enable the Eccolesiastical Commissioners to transfer to the
Corporation the land known as Gravel Pit Wood at Highgate Corporation the land known as Gravel Pit Wood at Highgate,
comprising about sixty-nine acres and certain land at Kilburn comprising about sixty-nine acres and certain land at Kilburn
containing about thirrty acres, lying within and forming part of containing about thirty acres, lying within as
a large area belonging to the Commissioners,

The Standing Orders Committee of the House of Lords having refused to dispense with the standing orders not com-
plied with by the promoters of the Gravesend and Northfleet Docks and Railways Bill, this measure cannot be proceeded with
session. By this Bill, which met with a similar fate last session session. By this Bill, which met with a similar fate last session,
it was proposed to construct a main dock 380 yards in length and 300 yards in width, with two branch docks 626 yards long an entrance from the river Thames, on the site of the grounds known as the Roshervize. The including borrowing powers, was $£ 2,000,000$, out of which nearly three miles of railway were to have been constructed to Gravesend branch of the London, Chatham, and Dover Railway A clause in the Bill sought powers to pay interest out of capita We turing the constraion of the work
Metropolitan Railway Bill will not be further proceeded with but a few words of explanation are desirable. The principal object of the measure was to compel the London and SouthWestern Company to proceed with the construction of the bridge across the Thames at Putney, authorised for the pur-
poses of the Kingston and London Railway, so as to allow the railway of the promoters, sanctioned in 1882, to be constructed Metropolitan District Railway at Fulham by running powers -ver the bridge at Putney. This object having been fully Company, which has undertaken to construct the whole of the authorised Wimbledon and West Metropolitan Railway, which rendered it unnecessary to obtain sanction to the Bill now abandoned. In connection with this Bill, it may be mentioned
that the five petitions deposited against the London and SouthWestern Railway-Various Powers-Bill have been withdrawn he House of was to have come before a Select Committee od the House of Commons, will pass unopposed. Among othe the abandonment of almost the whole of the Kingston and London Rail way, which was authorised in 1881 for the purpose of constructing a a aiil way from Fulham under P Putney Heath, skirt
ing Wimbled ing Wimbledon Common in therear of the rifle-butts, from whence
it was to have passed direct to Kingston. Powers are also given to the company to acquire the sole ownership of the authorised where whareandoned Kingston and London Railway between Putney and Fulham, thus giving access to the City via the Metropo empowers the company to Waterloo Station; and it is completing the widenings near system the Swanage Railway, which was constructed about two
years ago. The Bill does not authorise the raising of any fresh

The Bill which proposed to construct a number of short tram ways in extension of the Southwark and Deptford Com pany's system
as abandoned
A Select Committee of the House of Commons has passed the which was to Rain funsworth Railway Bill, the first purpose of ised in 1881, to connect the Great Western Railway at U xbridge with the London and North-Westeru Railway at Rickmansworth. The Bill also sanctions a deviation of the line at Rickmansworth,
for the purpose of having a joint station there with the NorthWestern Company. Powers are also given to raise $£ 30,000$ authorised in 1881 the company is to be permitted to borrow $£ 58,000$. The company is also to be allowed to pay interest
out of capital during the construction of the railway, the aggre gate amount to be so expended not to exceed $£ 20,000$. The most important railway Bill of the session-viz, the
Bedford and Peterborough Bill - has been withdrawn in the face Bedford and Peterborough Bill-has been witharawn in the face
of strong opposition. It proposed to incorporate a company with a share capital of $£ 800,000$ and a loan capital of $£ 266,000$ with powers to construct a railway from near Bedford, where
junctions were proposed with the main line and Northampton branch of the Midland Railway to Peterborough, where conneetions were to be made with the North-Western. The line was to be over thirty-one miles in length.
Bexley Heath Railway Bill as extends the time for the con letion of the line sanctioned in 1883 , rejecting that portion the Bill which proposed to extend the existing line at Eltham to Blackheath.
By a House
Bill a House of Lords' Committee has also been passed the Cardiff into the hands of a joint stock company, with a capital of $£ 3,500,000$, and borrowing powers not exceeding $£ 1,150,000$. The promoters, at the request of the opponents, consented to Vale, and the Rhymney Railway Companies to purchase the stock of the new company. The effect of this will be to make
these companies come to Parliament with a Bill of their own these companies come to Parliament with a Bill of their own
for leave to purchase and hold stock, which Bill will then be

All opposition to the Bill dealing with works and agreements the measure will now pass as an unopposed Bill.
A similar result has ensued with respect to the Accrington, Clitheroe, and Sabden Railway Bill for making railways in con-
nection with the Lancashire and Yorkshire Railway between Accrington, Clitheroe, and Sabden, to enable them to run over and use portions of the Lancashire and Yorkshire Railway, and
to pay interest upon calls during the construction of the railway. o pay interest upon calls during the construction of the railway
The East and West Yorkshire Union Railways Bill, which we ave previously described, has passed the Commons' Committee measure, a Bill authorising the construction of a railway in the Chale Wight, nearly eleven miles in length, commencing at yet constructed nating at Freshwater. For the construction of the railway which will run along the coast for the whole distance, it is pr posed to raise $£ 100,000$ share and loan capital.
The shareholders of the London B
Railway heholders of the London, Brigh, and South Coast (1) A Bill for making a railway from Brighton to Rottingden and Newhaven, in the county of Sussex, and for other purposes, Seaford, and Newhaven Railway, and for other purposes, (3) Bill to authorise the construction of a railway between Ports-
mouth and Hayling Island, with a bridge available for road mouth and Hayling Island, with a bridge available for road
traffic over the southern entrance to Langstone Harbour and other works, and for other purposes.
Among the schemes before Parliament this session is thas
entitled the Horse Guards Avenue Bill, the object of which is to pposite the Horse Guards to the south-western end of the ornamental gardens. This road formed part of the original
scheme for the Thames Embankment, and was authorised by cheme for the Thames Embankment, and was authorised by
the Act of 1862 , but in consequence of the expense which would ave been incurred at that time in buying up the interesto time. During the past year most of the leases on the sit equired for the new road having fallen in, the freeholders to whom the adjacent land belongs have offered the ground required free of cost to the ratepayers. The land abutting ha been let for the purpose of erecting first-class mansions in lat tarted these works have for some months past been arry on their operations, but a number of capitalists have orks t reas of the contemplated opposing the Bill, but they will probably not ontemplated opposi
persist in that course.
Besides the various schemes above referred to, there are many
thers which might be mentioned as having passed through Committees or been rejected, but as having passed throug s, after all, the most interesting measure of this session, as it has been of three previous sessions, viz, the Manchester Ship Canal Bill. When we last alluded to it this Bill had safely
 the efforts of the opponents to obtain a locus standi to appear before the Select Committee. The promoters lodged petitions not injuriously affected by the payment of interest out of capital, and there was for a time every prospect of a furthe contest. Happily, however, the threatened action of the oppo esday the Bill passed the Commons' Committee on unoppose billh, and was reported to the House for third reading. The recent divisions on the second reading of the Bill, and the hope recent divisions on the second reading of the Bill, and the hope-
lessness of inducing a Committee to reject the Bill after the decided opinion expressed by the House. It is, however, understood that this action on the part of the petitioners will in no way prejudice their right to oppose in the House of Lords, where
every opposition will be offered to the passing of the Bill. The
The uestion of the locus standi of the petitioners to oppose the Bil

in any form will

The Manchester Ship Canal (payment of interest) Bill has House ouse is concerne passed. So far, therefore, as as the to through the House Lords, and will probably have to fight again the objections which failed to defeat it in the Commons. In reporting the Bill to the
House from the Committee on Unopposed Bills, Mr. Courtne House from the Committee on Unopposed Bills, Mr. Courtney
says :- "The Bill does not authorise the construction of any ew works. The object of the Bill is to authorise the Mancheste Ship Canal Company to pay, during the period of seven years, from time to time paid up on their shares, from the respective times of such payments." A report from the Board of Trade, nittee and considered by them. The report states that the pro isions of the Bill with respect to such payments are in accord ance with those required by Standing Order 167, to be inserted ontained in the Regent's Canal, City, and Docks Railway Act, with regard to the mode of raising the capital for the construc tion of the conal apeared to the Bord of Trade to be deserving of the favourable consideration of Parliament. There are no other circumstances of which, in the opinion of the Committee, it is desirable the House should be informed.
A rather serious blow has been given to the Bill authorising Ship Canal by a report to Parliament from the Local Govern ment Board. The Board expresses disapproval of the Bill. Referring to the clause by which the Corporation propose to considerationoney for this purpose, the Board submit for the it is desirable that the Corporation should be allowed to take that course, and whether, unless it be shown that the construction of the docks and works will be a direct advantage to the f raising mosiab the purpose of taking shares in the Company. They urge that the construction of canals and docks are
matters not coming within the scope of the ordinary duties of matters not coming within the scope of the ordinary duties of
municipal corporations and urban sanitary authorities, and that the rapid increase of late years in the indebtedness of urban uuthorities, and the many calls likely to be made upon them in expedient to instances in which similar powers have been refused by Parliament. The Board further advise that before this Bill is sanctioned the Committee should be very fully informed of the probability of the success of the undertaking, and also as to the
extent to which the Corporation are likely to require to borrow extent to which the Corporation are likely to
money for sanitary necessities of the borough.
The opposition threatened to the Horse Guards Avenue Bill, described above, is understood to have now been withdrawn, the opponents finding little support, and but slight grounds for On the other hand, the South Kensington and Marble Arch Subway Bill has met with some opposition from the Office of Works, and is in consequence suspended-not withdrawn-as
the promoters hope to overcome the objections of the Department.
The
The London, Brighton, and South Coast Railway, the London, Western Railway Bills have passed through the Commons unopposed ; while the Metropolitan Markets Bill to convert the Farringdon Fish Market into a general market, having aiready through the Lords, and now only awaits the Royal Assent. Mr. Cobble, clerk to thr evidence of the River Lea Committee, and in the course of his evidence he admitted a very striking circumstance, viz, that the Board had not hitherto exercised their full powers, simply contenting themselves with securing
sufficient water for navigation purposes, One or two more such confessions would well explin purposes. Odition of this river. Up to the date of the last official report on the progress of time in the House of Commons, 31 had been reported for third reading, and 79 had been read a second time. Eight Bills had proved, and 2 had been rejected for non. compliance with. Stand,
bith ing Orders.

SEWERAGE OF CLAPHAM, BATTERSEA, WANDSWORTH, AND PUTNEY.
SIR JOSEPH BAZALGETTE, M.I.C.E., ENGINEER.

SEWERAGE OF CLAPHAM, BATTERSEA, WANDSWORTH, AND PUTNEY.
Some very extensive and important works for the drainage of the above-mentioned places, which have been constructed by the Metropolitan Board of Works, are now nearing completion. The work has been done by Mr. John Waddell, as contractor under and 19th ult, we published features of the work, including the sewage aqueduct at Wands worth. Of the latter, and of the sewers at various parts, we
worth, along Wandsworth Plain, and Frogmore-lane, across the Parish Wharf situate on the tidal portion of the river Wandle, to the tidal portion of the river Wandle," and illustrated by plan and sections of the branch and overflow at p. 210, and by one of the engravings on page 266, the main line and branches comprising an aggregate length of $42,156 \mathrm{ft}$. run of sewers. There is also the sewer aqueduct at Wandsworth for carrying above the ground a portion of the main line-see p.p. 210, 228, and 266 length, all in the parishes of Clapham, Battersea, Wandsworth length, all in the parishes of Clapham, Battersea, Wandsworth
as represented on page 266. They were executed in open cutting, and include two splays of 10 ft . run each, and for the whole of 4 ft . 6 in ., or together 460 ft . run of that size, and these culverts for the short length where they cross over the existing Falcon Brook sewer are constructed with cast iron inverts or bottoms supported by cast iron girders, as shown by three sections on page 266. See also above. The main line, part 2, includes 4340 ft . run of 7 ft . 9 in . by 5 ft . 2 in . egg-shaped sewer, brickwork Oin. thick, executed in tunnelling except where the sewer worth-common. This part also included 340 ft , run of 7 ft . 9 in

now give further engravings, together with a map, showing the locality of the main sewer, more particularly that of the aqueduct across the Wandle valley. There are in all $27,876 \mathrm{ft}$, run of main line sewer. Commencing at the Bedford Arms, Clapham, Che sewer passes along High-street, Clapham, across street, Wandsworth Wandsworth Common, St. Anne s-hill, South nearly the whole length of Ringford-raad, Merton-road, Upper Richmond-road, across Putney-hill, Putney Park-lane, and grounds, to Roehampton-lane. Besides this, there are also 2060 ft road, Battersea, to Battersea Rise ; 2730 ft , run of sewer from the same place southwards along Webb's-lane, Broomwood-road, Gayville-road, Thurleigh-road, Winchelsea-road, and Nightingalelane, to the Falcon Brook sewer-see page 266 and above-also 1320 ft , run of sewer from the main linenear Allfarthing-lane, along Geraldine-road to East-hill, Wandsworth ; also 5460ft. run of sewer from the main line at Merton-road, along Merton-road, Wimbledon Park-road, West Hill-road, Melrose-road, and Sutherland-road, across Granville-road, and into Wimbledon Park-road; also 300 ft . run of sewer from the main line into the Putney boundary sewer ; also 2410 ft . run of sewer from the main line at or near Merton-road, under High-street, Wands-

The sewers are partly of brickwork in Portland cement-mortar and partly in Portland cement concrete, and of the lengths, sizes, and forms shown by the cross sections and plans, we give numerous sections at page 266 and above. The main line, part 1, commences with 700 ft . run of 7 ft . 3 in , barrel sewer near the Bedford Arms by a connection with existing sewers, The brickwork is $4 \frac{1}{2} \mathrm{in}$. thick, executed in open cutting. There is next 7420 ft . run of 9 ft . by 6 ft . egg-shaped sewer, in continuation of and along the main line route to a point at the western brickwork being 9 in thi and eastern end or length the sewer passes at, considerable depth under Clapham common. There is next 330 ft . run of 8 ft . 3 in . by 5 ft . 6 in , egg shaped sewer in continuation of the main line route, with briek work 9 in . thick, executed in tunnelling. There is 25 ft , run of splayed sewer between the lastly-mentioned and next-mentioned lengths, brickwork 9 in . thick, and concrete outside squared off and extending to $7 \frac{1}{2} \mathrm{in}$. above, $7 \frac{1}{2} \mathrm{in}$. below, and $7 \frac{1}{2} \mathrm{in}$. on each side, executed in open cutting. Next is 160 ft . of 6 ft .9 in . barrel sewer in continuation, brickwork $4 \frac{1}{2} \mathrm{in}$. . thick, executed in open cutting. By reference to page A the difference in thickness and character cutting and in tunnel, are clearly shown. The 250 ft, run in sewers in Chatham-road, Battersea, are of special construction
by 5 ft . 2 in. egg-shaped sewer in continuation, the brickwork $4 \frac{1}{2} \mathrm{in}$. thick, executed in open cutting, 20 ft . of splayed sewer brickwork to be 9 in. thioned and next-mentionside of it squared off and extending to $7 \frac{1}{2} \mathrm{in}$. above, $7 \frac{1}{2} \mathrm{in}$. below, and $7 \frac{1}{2} \mathrm{in}$. on each side, and executed in open cutting; 130 ft . run of 6 ft . 3 in . barrel sewer in continuation. The brickwork above the springing $13 \frac{1}{2}$ in. thick, and below the springing only $4 \frac{1}{2} \mathrm{in}$. thick, and executed in open cutting.
The sewer and eastern approach to the aqueduct include 128 ft . run of 6 fl . 3 in . barrel, and other work. sewer, with sewer viaduct of the same length carrying it above ground, the length comprising twenty-four arches or spans east of South-street, Wandsworth, one straight span over Southstreet, sixty arches west of South-street, and eighty-six piers, including the end or abutment piers; total, eighty-five spans. The span No. 25 is a skew iron girder bridge, 44 ft . on centie ine on plan.
The sewer bridge, span No. 25, and cast iron sewer, shown particularly on page 228, is over South-street, Wandsworth, and is oblique, or skew 68 deg., on plan. The span in the clear
between the abutment piers is 40 ft . 10 in ., measured on the square or 44 ft on the skew, and the headway at the centre

SEWERAGE OF CLAPHAM, BATTERSEA, WANDSWORTH, AND PUTNEY. SIR JOSEPH BAZALGETTE, M.I.C. E., ENGINEER.

about 17 ft . above the middle of the carriage way of South-street. \mid being 50 ft ., with uniform depth of 9 ft ., measured from back to \mid by plates and strips of the lengths, widths, and thickness as The abutment piers are built on a bed of concrete 3 ft . thick, and of the dimensions and forms shown generally in our engravings. The cast iron egg-shaped tube or sewer is carried by eight wrought iron cross girders resting on two wrought iron main girders, and a footway is formed over the sewer by wrought iron curved plates, supported by sixteen cast iron page 228. The two main girders are single web-plate girders, placed 7 ft . 7 in . apart from centre to centre, their total length bottom flange 18 in . wide; the upper flange of each girder con- by two angle irons, 4 in . by 4 in . by $\frac{5}{5} \mathrm{in}$., with rivets $\frac{1}{8} \mathrm{in}$. diameter, sisting of one plate 15 in . by $\frac{1}{2} \mathrm{in}$., extending the whole length of having a pitch of 4 in . as shown. The web of each girder is conthe girder, and one plate 15 in . by $\frac{1}{2} \mathrm{in}$., extending for a distance
of 15 ft . 1 ilin . on each side of the centre line of girder. The of plates 9 ft . in length by 3 ft . in width, excepting at
the ends, where the plates are to be 2 ft . in width, the thickness of 15 ft . 11 in . on each side of the centre line of girder. The bottom or lower flange to consist of one plate 18 in . by $\frac{1}{\frac{1}{2} \mathrm{in} \text {., }}$ extending the whole length of the girder, and one plate 18 in by in., extending for a distance of 15 ft . 11 in . on each side of the to back, and by angle tro irons 6 in . by 3 in . by $\frac{1}{2} \mathrm{in}$, pliced back centre line of girder. The joints of the flange plates are covered back, fastened to stiffening plates sin. thick. Each main girder
is built with a rise or camber of 2 in . The rivets through top
and bottom flanges throughout are $\overline{\mathrm{l}}$ in. diameter, and the rivets through the webs, stiffeners, and cross girders are $\frac{3}{3} \mathrm{in}$. diameter. All abutting joints and edges of plates and joints of angles are
planed, and all holes through flanges and main angles drilled. planed, and all holes through flanges and main angles drilled.
The cast iron egg-shaped seever is 7 tt .9 in . high by $5 \mathrm{ft}$.2 in .
wide in the clear. The total length is 56 ft . The tube is cast wide in the clear. The total length is 56 ftt . The tube is cast
in five sectional segments, each ftt in length, excepting the end phe sides $\frac{7 i}{}$ in., and the upper crown portions 3 in.; and of the ribs to be 1 iin., lin., and $\frac{3}{3 i n}$. respectively. The whole cast
with flanges 6 in. in depth - including thickness of platesbolted together by ${ }^{\frac{7}{8} \text { in. . bolts. The lower plates or segments }}$
have supporting lugs with chipping pieces cast on them at intervals, so as to rest on the cross girders, and these lugs and pieces are made variable in depth suitable to the 2 in. camber of
the main girders. The invert of the cast iron sewer is kept the main girders.
level throughout.
The sewer and western approach to aqueduct, as shown especially at p. 210 , includes, as shown, 70 ft . run of 7 ft . 9in. by
5 ft 2in. egg-shaped sewer in continuation of the aqueduct
 walls.
The footway over and other works connected with sewer aqueduct and eastern and western aqueduct approaches,
including the top surface of the concrete over sewer extending along the 1911 fft. run of the eastern approach, the $2064 \frac{1}{2} \mathrm{ft}$. run of aqueduct, and the
ing a short length over the South of street Bridge, is weathered or
formed to curvature formed to curvature generally as shown, but with a slightly
grooved channelling on each side, and the entire surface rendered with Portland cement mortar 3 ini. in thickness.
The weirs, penstock chambers, \&c., at Merton-road, as shown at pages 210 and 228 , include, as described in the specification,
140 ft , run of special works at MMerton-road, including a spur or junction for the Wimbledon Park-road, branch, as shown. level. Those at the upper level consist of 9 ft . run of bellmouth, widths, 3 ft . run of two lines of penstock culvert openings, $4 \mathrm{ft} .3 \mathrm{in}$. by 4 ft t, 5 ft .6 . 6 in. run of two penstock chambers, also on
the northern side 37 ft 6in the northern side $37 \mathrm{ft} .6 \mathrm{in}$. run of "weir"culvert, including a
third penstock chamber in the length, 50 ft . run of 5 ft . 9 in . by $6 \mathrm{ft}$. 3in., and 21 ft . run of splayed sewer to complete the 140 ft .
"through" length; and on the southern side 47 ft "weir" culvert, including a fourth penstock chamber in the length, and extending by a curve or spur junction to the commencement of the Wimbledon Park-road branch. There is also a cross or equalising culvert, 3 ft . 9 in. by 3 ft ., at the western
end of the works, between the two "weir" culverts ; also an entrance-shaft to each of the " wwir", weirverts at the third and fourth penstock chambers respectively; and in each of these
chambers a penstock opening, ft . 3 in . by 2 ft . 9in., is constructed - on one side-to communicate with the lower level. The works at the lower level constitute a third or middle line, and consist
of 34 fitt. run of a 4 ft . 9 in . by 3 ft . 9 g in in . egg-shaped overflow sewer or discharge culvert, and 37 fift. run of varying size situate between and below the upper culverts, and partly open to the roof or covering over the three lines of culverts, the last-named
length including an entrance-shaft from the surface, which is formed to give access to the lower level. The whole of these works are executed in brickwork and concrete, in accordance
with the cross-sections and drawings, with Yorkshire stone floors and roofing in certain parts, and with Yorkshire stone capping to the side walls.
5 ft 2in. egg-shaped sewer, in continuation from the special. by struction at Merton-road. The brickwork, 4 lin. thick, executed in open cutting; also 1177 ft . run of of 7 ft. 9 in. by
5 ft . 2 in . egg-shaped sewer, and 1500 ft . run of 7 ft . by 44 ta . shaped sewer, also 9 in . thick, and executed in tunnelling; 1080 ft . run of 7 ft. by 4 ft . 8 in . egg-shaped sewer, and 1200 ft . of other
sewers, 6 ft 9 in . by 4 ft . 6 in .

THE VIENNA CITY RAILWAY.
In spite of the numerous rumours pervading the political in the House of Commons-in which, amongst other grave charges, allusions of anything but a playful character were made
to the motives by which he had been actuated in granting and to the motives by which he had been actuated in granting and
upholding the concession for this railway-the public was hardly prepared for the double event which, whatever may have been moment, is too suge for the minister's sudden resignation at thi cause and effect to enable any but the purely legal mind to entirely separate one from the other.
The Vienna Gazette of March 17 t
of Baron Pino's resignation on the 16th, contained the follow ing:-" Decree of the Minister of Commerce of the 14th March, 1886, repealing the concession for the Vienna Circular Railway
-The concession for constructing and working a Vienna Circular Railway, which formed the subject of the Imperial Decree of sequence of the non-fulfilment of the conditions respecting the prof of the subscription of and payment on the share capital,
herewith repealed. (Signed) Pivo, March 14th, 1886." The fact that the concession, which was granted under the conditions that $£ 1,000,000$ of shares should be subscribed, with
40 per cent. fully paid up by July 25 th, 1883 , and that the remainder of the shares $(£ 1,500,000)$ should be subscribed b January 25 th, 1884 , with $£ 300,000$ paid up on the same date, and
further $£ 300,000$ by April 25 th, $1884-$ none of which have, unfortunately, been fulfilled-has not long ago been repealed, is less a matter of surprise than that the minister who, from the porters, and, in fact, so far identified himself with its fortunes as to provoke accusatory interpellations from his opponents,
hould have chosen the last moments of his official career to con ummate an act whose consequences to himself and Vienna wil perpetuate in future generations as mournful a recollection of
failure as the execution of the railway would have established a lasting monument of his success and the city's prosperity. The it was first presented to the public in issi, and the numerous phases it has asessumed to tho less than its in somewhat and the numerdy, but still unexpected collapse, although hardly calculated to point a moral
or adorn a tale, are not entirely devoid of interest, is throwing aside light on matters which have hitherto been subjected to no other than the direct and directed rays of official and other
luminaries. From its earliest infancy, through all the wearying stages of its ripening maturity, in its decadence as in its its fina
dissolution, it has equally suffered from and been and foes, Every difficulty that the ingenuity of mata, to singly and
collectively, could invent, was thrown in its way. Its promoters
were subjected to open and surreptitious opposition, or pestered
with offers of assistance, the burden of whose eternal song was give. Its supporters- and this perhaps will form the single
pleasant recollection amidst a host of painful experiences that amongst them were numbered a chosen few, whose assistance
was proffered and steadfastly given with no other object than to promote a good cause and further the interests of their cityWhether actuated by the purest motives, or following more selfisi
views, were alike abused and calumniated, and its more violent opponents revelled in the depths of absurdity to which the gift of speoch could be prostituted in inventing popular cries by which to tickle the panity and captivate the support of , ignorant believers in their boasted patriotism and convictions.
Through every grade of society, educated and uneducated; from prominent members of the Corporation down through the
various societies, scientific political various societies, scientific, political, and æsthetical, even to the
gailds of milkmen, saddlers, and cabmen, the downfall of Vienna, the loss of trade, the depreciation of property-in shor nearly every "ill that flesh is heir to," were predicted as the natural and inevitable consequences of a Metropolitan Railwa
in Vienna, constructed by foreign capital and managed by foreigners.
It may seem almost incredible that the influx of so large a
sum, and its expenditure on a construction which would have sum, and its expenditure on a construction which would have
placed Vienna on an equal footing with other capitals, and in ime have become the property of the State, should have met with so much opposition; but something more than a super cial acquaintance with a city, and a deeper insight into the nder current of its life, than can be obtained from the front of ion of its inhabitassary to enlist the sympathies and co-operain no city of the world is this axiom better understood and appreciated than in Vienna. The boasted possessions of others
and the anticipation of success have no charms for Viennese capitalists unless they see some chance of participation in the profits ; when this is denied them, and their assistance, even er if the proffered, ostentatiously repudiated, who can blame them mpathy and support they were anxious to give should of the face to antipathy and opposition. The sources of this and than the shallow channeme must be sought in deeper current political popularity-mongers.
This was only the outward
deeply rooted intention to and visiole sign of an inward and profit to those who teo they hed at son now taught has been a severe one. The decree of reat s inal, and extinguishes the hopes of as fair a scheme as was heavily felt by the Viennese themselves, as their sole chance of regaining their old ascendancy over their rivals on the Spree has been relegated to future ages. A wiser and more sober-minded generation may yet arise who will learn to hate the memories of the progress of their city; but if not, and if the same spirit o mistrust, suapicion, and wholesale denunciation of everybod classes, as it has been of late--if every question of improvement and utility be converted into one of party politics-the future instorian of Vienna will have little to chronicle beyond the of character. Time alone will solve the problem. For the present it will be better, adopting Mr. Gladstone's advice to
inquisitive members "to receive any rumours" as to whether there be any real connection between the resignation of the impelled to so severe a measure in the interests of his party, or persecutors and whether the caution money will be refunded with prudent reserve and wholesome scepticism,

LETTERS TO THE EDITOR.

SIR, -With your permission I should like to make a few com-
ments on the letter signed "R. G. H." on the above subject, which appeared in your issue of the 19th inst. There can be no doubt o the truth and value of much of the advice given by "R. G. H." as cannot help thinking that it is the advice of one who rather wishe than hopes to see it carried out. It would, in my opinion, be replies to the following question:-Why is it that in the majority drawings, and the drawing-office is looked upon rather in the ligh of an expensive, but almost useless necessity, costing more than it is worth, and not as one of the most important departments in the
manuactory? I have been in the shops and drawing-office of one of the largest engineering works in this country, and for some year
Iocupied the position of leading hand in the drawing-office of two other large firms, and I must confess that in none of these works
were the drawings turned out in the way in which "R. G. H." would have liked to see them.
It seems to me most improbable that dra wing-ofices should be
almost universally regarded in the light indicated by the foregoin question, unless there was a good and sufficient reason for causes, which react on eash other. They are :-(1) The want i the drawing.office of not only draughtsmen, but engineers. (2) The
malliness of the salary offered to the so-called first-class draughts men, usually from 35 se . to 50 s . per week. This latter cause pre
vents really vents realy good men-engineers as well as draughtsmen-
accepting such posts, and this in its turn brings the drawing-office
into int ob repute. We all know that the draughtsman's labour market is woefully overstocked, but the nature of the applications
received in answer to an advertisement clearly show that a large majority of the applicants are men who turn to a drawing-office for employment, not because they are fitted for the work to be done
therein, but because such work is more genteel than that to done in the shops.
Can one wonder that a man who has not brain enough to conquer
such false pride as this should be deficient in the brain powe necessary to successfully design an intricate machine? I feel con-
vinced that if the better salaries and better treatment to the workers in their drawing-offices they would have no difficulty in procuring men who would turn out the drawings in the thorough and satisfactory
manner suggested by "R. G. H.," and the drawing.office would and over again the cost of keeping it up. One word more and I have done. Why is it that, of late, so
many writers have such a love for the adjective "practical," and such a contempt for the adjective "theoretical" before the noun man"? 1 had hoped that this absurd wordy war would have
ended long ere this. I have read pages and pages of rinting in Mhich practical men are held up as shining lights, and neorecical
men are condemmed as ilitle better than fools ; but none of the
writers prove, at least to my mind, that the foolishness of the the is the result of his knowledge of theory, or that the wisdom of
therived from his ignorance of this much-laughed-a
accomplishment. "A definition by such writers of what is meant
by the ajjectives " praction " " and "theoretical "would add greatly
to the to the clearness, if not to the value, of their productions.
London, March 22nd.

SIR,-Your correspondent "R. G. H.," in a very interesting
letter on " Workshon Drawings," asks?" 1eter on "Workshop Drawings, asks
the pupils, especilly the really many intelligent and weomesteduocoted
youths, who enter the business, and who have a good workshop training?" May I return the compliment, and ask him where
does the demand for first-class practical men exist? and also inform him that that demand can be supplied by paying the first. class men a fair remuneration, and not the beggarly pittance
which employers think is sufficient for men who have spent several which employers think is sufticient for men who have spent seereral
hundred pounds and some years of their lives in their professional training. The same thing is exemplified by Cooper's Hill College. of good engineers for serviee in India under the Stanley rules, and
so were obliged to establish Cooper's Hill College. And what was the reason? Simply that they did not offer advantages enough to My own experiences is as follows: After an expensive training
in the shops and drawing-offices of a large Iancashire engineers, I applied for a position in the drawing-ofice of a well
known firm of engineers and bridge builders. I fing principals, who informed me that my testimonials and experienc per annum, and on my saying that was not enough to give me $£ 5$ answered me with, "Oh! your friends can keep you." Now I ask is this fair? Is it likely that pupils will be satisfied with a salary of that description? After several applications with a like result,
I had to accept very little more than the amount mentioned above and on the first opportunity I left that branch of engineering and took up one that offered more advantages.
It is the employers themselves who are to blame for this state of
things. When they have a vacancy, they find that they can get any number of men who say that they can do the work, and who meet the really good men with, "Oh, we cannot give you tha salary, we can get any number of men for half the money," with
the result that the applicant either takes the berth with, a small salary, is dissatisfied, and constantly on the look-out for another ncompetent man who, with a vast make a drawing that, will pass muster until it comes into the fitting and erecting shops, where it is the occasion of enormous
waste of time and loss. of money. The employer then cries out, "I cannot get a good draughtsman." No, certainly you cannot
ny friend, if you only pay him labourer's wages. $£ 1$ saved in drawing-oflice salaries often means a very large amount lost in the shops; besides, a head draughtsman should not be employed in
constantly overlooking his subordinates.
He will have quite constantly overlooking his subordinates, He wil have quite
enough to do working out the general lines and arrangement of
the work, withowt being constantly referred to casting or the diameter of a bolt. A man who is not capable of
grasping and working out the whole machine is not capable of working out the details in a satisfactory manne
I quite agree with " $\mathrm{R} . \mathrm{G}$. H " in hat
is quite agree with $\mathrm{N.G}$. H. in his remarks on drawings. It to produce a good machine. A good drawing saves not only the time of the men, but the time of the draughtsman as well. Then
a man who makes a bad and indistinct drawing must of necessity pend a great deal of time in the shops explaining matters.
Wandsworth, March 23rd.
AN PUPLL.

Srr, -The subject of workshop drawings is one of great and
ncreasing importance to every engineer, and any suggestions which ncreasing importance to every engineer, and any suggestions which
would lead to improvement in this part of engineering work would be eagerly received by many principals, managers, and other
The important points to be kept in view in tho preperation o
working drawings were very clearly set forth in "R. G. H.'s letter which recently appeared in THE ENGINEER-viz., complete drawings, fully dimensioned; general drawings, drawn to the
largest possible scale ; full-sizad detail drawings ; copious notes as to cores, moulding, machining, \&o. These points are absolutely
Regarding theses. style in which dra wings should be esent into the
Rops, much difference of opinion exists smong leading men, and shops, much difference of opinion exists among leading men, and
the method of mounting tracings on boards has been rejected as cumbrous, and liable to tear the tracing, by many first-class firms. The method of fixing the tracings to rollers is probably the mosi popular, and has the advantages of portability, stowage in small
space, and keeping the tracing in good condition. The remarks of R. G. H." will be justly taken exception to by many first-class, has evidently great faith in that blatant and obstructive individual known as the practical man. We hear very little of the practical
man at the present time, and it is to be hoped we shall hear less of him in the future. Indeed many shrewd and thorough engineer of theoretical principles, and are no longer disposed to encourage him. It is well known that there is a dearth of really good draughtsmen, who combine a goo practical knowledge with men. Employers will be gratified to learn from " R . G. G. H.'s" letter that there are plenty of "geniuses." They have doubtles been under the impression that genius was rare, and when found was to be prized, especially when embodied in a neat and rapid
draughtsman. Men who combine a first-class theoretical raughtsman. Men who combine a irst-class theoretical an
practical knowledge with reliability, energy, and comparative youth, who are not restless and full of fads, whose work does not
require to be overhauled and re-schemed - except in the narrowninded opinion of the practical man-are occasionally met with minded opinion of the practical man-are ocaasionally met with,
and when found are well worth their money, and are justly prized by their employers.
Birmingham, March 26th.

SIR,-There are a few remarks contained in "R. G. H.'s" letter the last paragraph, ippear thich colam special latentantion. the dearth of good nechanical engineers who are willing to offer their services a
draughtsmen. This may, I think, be attributed to several cause nd as the prosperity of this country is so closely conneteces with the ekkill a and genius of its engineers, a few wordd on the subjeot
from one who has served in the drawing offices of several firm of good standing mas mot boo out of place.
In passing, I would remark that the
In passing letter-that which refers to the draw ding your corre-
pondent's le the main my hearty approval, though, in my opinion, the amount of
elaborate detail which he appears to consider necesary in the elaborate detaid which he appears to consider necessary in the
drawings would in many instances be quite superfluous. Much, degree of intelligence possessed by the men who have to make uso of the drawings. So far as my experience goes, the first great cause which has brought about the state of things which your
correspondent describes in the last paragraph of his letter is the want of appreciation by employers of the qualities which go to
make a good draughtsman. The draughtsman is looked upon by nany as a mere tool, a kind of necessary evil, to be dispensed with wherever porsible., It is not to be wondered at, therefore, if the
tendency is for the draughtsman to become more of a machine and less of an engineer. In other words, there are few "intelligent
and well-educated "
araughtsmen, for the simple reason that the awas active and pushing men, arty, rat least-though nearly
pecial education which is so desirable possesseed of that special education which is so desirable in an engineer, and there-
forer fail to appreciate it in others. This may appear a danning
charge against the profession, but it is only partially so. The
early engineers, the men who did so much to make England a great
and prosperous nation, were almost without exception men of defifurnished by experience, and surmounted great obstacles more by the day could furnish them with. Their field was a wide one, and the pioneering work which fell to their share did not require that
attention to detail which your correspondent rightly judge sary in these days of economy. It is the old law of supply and
demand. If there was a call on the part of employers for ability and education, and if sufficient inducements were offered to really good men, there would be no lack of skilled engineers who
would be glad to offer their services. As it is, there is not a single man of any ability in the drawing-office whose one aim and object though this may involve a pecuniary loss,
The great tendency,
work by rule of thumb, and and to follow old examples, or the examples of some enterprising neighbour, and this, perforce, with any other rule, and are unable to check the calculations of those who possess a better knowledge of theory. And here I
would remark that this same "theory" is at a terrible discount amongst many who pass as competent engineers. These gentlemen look upon anything of the kind with the utmost disdain, after the
manner of the fox who had the misfortune to lose his tail, a related by Esop, the only difference being that in their case the defect is congenital. A lack of practical experience is certainly
much worse, but why divorce practice from theory? This leads to another remark, viz, that in the drawing-office out of work is taken away. The draughtsman's connection with a
ob usually ends when the designs leave his hands, unless h happens to have made a mistake, in which case he is sure to hear something further of the matter. The remedy for the presen
state of things is a closer connection between the shops and drawstate of things is a closer connection between the shops and drawthat the man who designs a work of construction is the fittest
person to supervise the execution of the design. Were this the person to supervise the execution of the design. Were this the purposes, and, as a consequence, infinitely less waste of time and require men of a higher stamp than are often, if not usually, found
in drawing-offices ; but if the status were raised, and if it were nderstood that the drawing-office was in reality the brain, so to speak, of the works, the place where the best positions were to be
obtained, there would in time be no lack of good men to fill every vacancy. The rising generation of engineers would soon discover educated, draughtsmen would be more practical, and managers
would be highly skilled engineers, the result being shown in better designs, more skilfully carried out, and in a vast improvement, not
only in the morale of draughtsmen, but in the tone of the profes sion generally. At present the chief desideratum in a manager
appears to be practical experience in carrying out work, a draughts-
man being valued according to his previous experience in work of man being valued according to his prrevious experience in work of eing a minor consideration, as though the chief object in engaging dency, as before stated, is for the draughtsman to get into a groove becoming more limited in his experience and less practical in his ighest sense of the word, and more of a
Under the present circumstances, my ad get as great a variety of work as possible whilst in the drawing
office, and to this end do not stay in one office too long, and get out of the drawing-office at the first opportunity.
EX-Draughtsman.
heating railway carriages.
SIR,-Will you allow me to call attention to a matter which I the winter of $1886-7$. I refer to the entire absence of any goo
 which is almost ignored by most of our companies, and which at
its best is practically a failure, besides being most injurious to
health. Why should we, who think we rank first in rail way health. Why should we, who think we rank first in railway
accommodation, be among the most backward in the item of
warmth in travelling? I am not prepared to say what is the best warmth in travelling? I am not prepared to say what is the best
system to be arrived at, or whether that in use on the German
State railways, the Russian railways, or the trains of the International Service-Germany, Belgium, France-are without their
faults. I know this much, that I have travelled in winter in Germany and France, when I have found the carriages so hot that has been necessary to remove my second coat. In fact, over with the inconvenience of this, rather than perish with cold, as we have up to now wit
adopt.
London, March 20th.
Sir,-I have just read Captain Gambier's article on shipbuilding
in Italy; a few pages further on I find the statement that In Italy; a few pages further on I find the statement that in I still incline to believe there may b story at the end of the article as to the super-excellent cheap German steel so exactly fits the statements recently made in your
editorials, that I am tempted to ask whether the English makers re the Engish merchants are at fault in this matter; and whether the steel and workmanship that is good enough for the engines of
the Lepanto is too poor for her hull; and lastly, whether Messrs.
Thorneycroft or Yarrow find it necessary to go abroad for steel when they propose cutting the record in torpedo boats? Any way STEEL RAILS FOR ITALY STEEL RAILS FOR ITALY.
SIR,-The following is from the Journal of Public Works and
Railvays, published in Rome 24th inst.: - A tender has been
eeceived from a foreign firm for the supply of 27,80 . received from a foreign firm for the supply of 27,800 tons of steel
rails, at 118f, delivered at Leghorn. In 1873 the Italian railways had to pay 500 f. per ton for steel rails. Such a large difference
cannot be entirely attributed to improvements in means of produc-
cont cannot be entirely attributed to improvements in means of produc-
tion alone, but must be due to some extent to the industrial crisis
generally prevalent in Europe. Such a state of things, in our
opinion, renders the prospects of the manufacture of steel rails in opinion, renders the prospects of the manufacture of steel rails in
Italy even more remote, and we doubt not but that the efforts of
energetic men of business in this direction will prove illusory, energetio men of businsss in this direction will prove illusery, unless
tho Govermment intervene with a protective duty, such as has been

AMERICAN NOTES.

From our own Correspo
NEW York, March 20th.
Mrgchants and manuacturers have heon Mork, March angod and

 has taken up the causo of the waaker side, it is likely the oontest
will contiume, and probably result in forecolosure. The antithraite coal trade shows no signs of improvement so far as prices are con.
cerned, but
 divance priees 15 cents per ton next week. A suspension is talked

 the same time, the manufaoturing estatiolisumentst throunboost the
country are running full time, believing that the demand will soon
 distribute their acumulations without sacrifices. The strikes
are drawing to an end The iron trade has
ane
 rospects are spoken of as favourable. Several large engineering requirements are soon to be brought on the market for pipes, rails,
plates, building material, as well as for merchant steel and crude on. Steel rails are 35 dols. to 35 dols. 50 c . The demand for old Neither side expects any legislation this spring, but the manufacturing interests are a unit in position, and have canvassed the
members of Congress pretty well, and have, it is believed, secured anomesition vote, that has discouraged the revenue reformers, or, t least, deprived them of all the enthusiasm with which they on railway have been recently placed in this city for several hundred miles of orth-west. A great in some of the Nouthern states and in the has been opened up, and the supplies of those products will be considerably increased during the coming season. Ore is high, and the bulk of the Lake Superior product already so
tracts are being placed for summer delivery.

HE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

From our ovon Correspondent,

AN attempt to meet Belgian competition is the action which the ing in the laying down at great cost of a new steel rolling plan tits Brunswick Works, for the manufacture of channel and girder hopes to have the new works ready in a few months, and the steel orth basic methods. This will be the only works of this special character in Staffordshire; engineers
Belgium.

nmasters' Association have appointed a special sub-com-

 mittee to deal with the question of the fraudulent marking of iron and the fraudulent manufacture of chain cables. The more the matter is investigated the more evident it becomes that this dis-honest style of trading is being carried on to a greater extent than e hears supposed. The seretary of the instances of the mal practices. There are ironmasters who have recently been in receipt of communications from shipping merchants, offering them ny quantity of orders if they will only put a brand of some leading circulars, too, issued by merchants, offering to supply consumers with the iron of the Earl of Dudley, Messrs. W. Barrows and Sons, no such thouses, at between $£ 5$ and of per tied at such price no doubt that the
The demand for iron has not perceptibly increased since last
operations wherever possible.
Marked bars keep at $£ 710$ 3. to $£ 82 \mathrm{~s} .6 \mathrm{~d}$., with some houses still quoting $£ 7$. Second-class bars rolled by the branded houses are superior. Tube strips are $£ 417 \mathrm{~s}$, 6 d , to £5. Sheets remain at $£ 6$ to $£ 65 \mathrm{~s}$, and lattens $£ 7$ to $£ 75 \mathrm{~s}$. The usual differ-
ence of 25 s , which formerly existed between singles and doubles has now almost wholly vanished. Wire rods are quoted $£ 6$ per ton for No. 6 f.o.b. Liverpool for export purposes.
Consumers of native pigs offer as low a price now as 29 s . for
common pigs, which were recently commanding 32 s . 6 d , and 35 s , per ton. Makers declare that such prices mean a loss. Part nine pigs are 35s. to 42 s .6 d .
The competition of Midlan
sales of Derbyshires are being made at as low as 36 s . and $3 \mathrm{ks}, 9 \mathrm{~d}$ delivered at railway stations here, while for other Derbyshire brands nothing less than 39s. at stations will be accepted. Many
Derbyshire and Northampton firms are selling at a full 2 s . 6 d . pe ton loss. All-mine hot blast can scarcely command more The notice which has been served upon the operatives at the
works of the Staffordshire Steel and Ingot Iron Company for termination of contracts is, I am informed, in a very fair way of being settled, by the workmen consenting to a reduction in wage some time been a growing necessity, if the works were to continue running, in the face of the sharp competition from other steel making districts.
Mr. Alfred His
Mr. Alfred Hickman, M.P., has just submitted in writing to the
President of the Board of Trade, on behalf of the ironmasters the alterations which they suggest should be made in the new Pail Bill which the Staffordshire deputation urged upon Mr. Mundella new clause is required providing power for a trader to deman through rates over different railways and canals forming a being granted by the different companies interested, that the Com missioners shall have power to determine its legality. At presen only the companies, and not the traders, have power to make this
demand. The traders also suggest an enlargement of Clause 24which provides for a revised schedule of maximum rates as regard such revised schedule is quite as necessary for water ways as fo railways.
Some.
managing the engineering concerts for the now Western, Great Western, and Midland Railway Companies for con which are upon thel and other shipping centres of special contract which are upon their books. The carriers are showing wisdom in
ittempting to meet traders in this way, for it is only by extraordinary efforts aiming at economies first in one direction, and then
in another, that engineering concerns are able to make both ends neet. Small-arms Factory at Sparkbrook, Birmingham, formerly
The owned by the National Arms and Ammunition Company, has now capacity for output, it is undergoing large structural alterations,
and is being slocked with new machinery. As the old floors were not deemed strong enough for the heavy kind of work which is now to be undertaken, the building has been fitted with new floors, which are supported by strong iron girders, at a cost of some
thousands of pounds. The order for machinery has just been
executed by Messrs. Archdale and
 War Office to an expense of more than incluoo. Yhe contract slotting machines, one screw-cutting lathe, one drilling machine, three copy milling machines, one body or shoe drifting machine,
one barrel spotting lathe, three rough turning lathes, four finished turning ditto, oue sofa bush running apparatus, one planing machine, one large profiling machine for die sinking, one cutter
milling machine, one shot drilling machine, and one cutter grinding ditto. These are for the most part of the patterns known to the trade, save where the ingenuity of the makers has introduced minor improvements. A 20 cwt . steam hammer is also being
made for the factory by Messrs. B, and S. Massey, of Openshaw,

At a meeting of the Dudley Chamber of Commerce on Tues day, a discussion took place on the circular sent out on the iron
trade frauds, and the disreputable proceedings were fully commented on, after which the discussion was adjourned.

NOTES FROM LANCASHIRE.

(From our own Correspondent.)
Manchester.-The rapid upward movement in Scotch warrants
has during the past week lent some little excitement to the dull has during the past week lent some little excitement to the dull
monotony of the iron trade in this district, but apart from this has been a somewhat agitating problem, for which it has been difficult to find any really satisfactory explanation. As, however, I have pointed out in prenally low point that they are very sensitive to any influence likely ooperate for a rise, and in this instance the remot effect upon trade here of the strikes in Belgium, and the renewed aggestions for a general reduction of the output of pig iron, seem prices. The advance, however, not being backed up by any actual and this is a fact which buyers here do not fail to recognise. Here nd there buyers who have been holding back show more readiness place out orders, and so far as sellers are concerned, there is, hich some brands of pig iron have been offered recently ; but the weight of actual business doing has been very small, with sales only practicable at extremely low prices, and the effect has been rather
to unsettle the market, buyers and sellers being both uncertain what to do. Should, however, the upward movement of prices in ringing hesitating buyers into the market, whilst it may also bring out a good deal of buying on account of uncovered "bear" Thes, which would very soon force up prices here.
There was again but a small business doing in on market on Tuesday, and pricos were without material change rices remained at about 37 s . 6 d . to 38 s . 6 d ., less $2 \frac{1}{2}$ per cent., for delivery equal to Manchester; but in one or two moderate sales which were reported a little under these figures had to be taken, and there are still some brands of lincoinshire inon which are
offering at fully 1 s . to 1 s . 6 d . per ton below these prices. What
business there was doing in Middlesbrough iron was also at no preciable advance upon late rate nd any actual busiess offering is little inquiry in this district, sted; nominally 51 s . 6d., less $2 \frac{1}{2}$ per cent, premains about the for No. 3 good foundry qualities delivered here. ather more hopeful, seems to prevail in some quarters; but there nothing in the market to indicate any actual improvement, and prices remain quite as low as ever, $£ 5$ per ton being the average
igure for bars delivered into this district, $£ 57 \mathrm{~s}$. 6 d . for hoops, with local made sheets to be got á about $£ 6$ lus. per ton.
Some of the tool makers report rather more inquiry stirring ut there is no appreciable increase of actual new work giving out, and with the exception of three or four large firms who are
engaged on special work, slackness generally is still reported
throughout all branches, with the tendency, as a rule, rather in he direction of lessened than increasing activity.
Messrs. W. and J. Galloway and Sons, of Manchester, have the gardens and fount cons the foring Colonial ndian Exhibition in London. I may add that at this exhibition the illuminations are to be carried out on an even more elaborat scale than at the Inventions last year, and Messrs. Galloway are
putting down an entirely new plant for the purpose. The engine re to be of the twin compound type, specially adapted for runnin different kinds are to be employed. The Galloway engines which emain to drive the Canada section in the Colonial Exhibition Cessrs. Galloway have also received orders for engines to be pu they put down for the Inventions Exhibition last year An improvement in pressure-reducing valves has also just been
introduced by Messrs. Schaffer and Budenberg, which I may briefly notice. In this impres manner that the passages or ports of the throttle valve may a wholly or partly covered by the cut-off valve. By this means the area of the passage corresponding to the lowest position of the
governor may be adjusted at will-that is to say, a constant initial hrottling may be obtained, while for the further and variabl whole lift of the governor remains available. This improved con struction consequently enables the same variation to be obtained valve for one of different capacity.
In the coal trade a fairly steady tone has been maintained with fire coals are only very small, dell the curre orders still keep the collieries in most cases tolerably wel employed, and there has been no announced reduction in prices,
The tone of the market is, however, weaker if anything, and wive when little. Common round coals, so far as the inland requirements for steam and iron-making purposes are concerned, oontinue in very poor demand, but there is a tolerably good ship ping trade doing. Engine classes of fuel burgy, upon which a reduction of 5d. per ton in the delivere rates has been made this month. At the pit mouth prices average
bout as under :-Best coal, 8 s . 6 d . to 9 s ; ; seconds, 7 s . to 7 s .6 d . common house coal, 5 s .6 d. to $6 \mathrm{~s} . ;$ steam and forge coals, 5 s . to
5 s . $6 \mathrm{~d} . ;$ burgy, 4 s . to 4 s . 6 d .; ordinary slack, 3 s . to $3 \mathrm{~s} .6 \mathrm{~d} . ;$ and The effects of the present depression of trade as regards the iro industry were very forcibly set forth at the annual general meeting of Messrs. Bolckow, Vaughan, and Co., at Manchester, last Friday The report which was submitted stated that the depression had
continued throughout the past year with increasing severity, with the result that pig iron on the history of the trade, Mr. H. D. Pochin, the vice-chairman
onpany, adding that the price of pig iron had been 3 s .6 d e60,000 to the company. Barrovo. -There is no change to note in connection with the
hematite pig iron trade. The demand is confined to a very few purchases which are necessary for immediate requirements of con sumers, but apart from this there is no life in trade. The con
umption of pig iron does not represent more than half of the
indeed almost wholly, employed in the production of iron to meet
delivery engagements entered into some months ago. Makers furnish employment at the present rate of production for a few months to come, and therefore
meantime they are not pressing sale at the now ruling. Prices remain at about 42 s . 6 d . per ton, net at makers' works, for mixed parcels of Bessemer pig iron, although in some
instances sales are noted at trather lower values than these, but of course this is in instances where needy sales have had to be made
to clear ; 41s. 6 d. is about the market price for ordinary hematite pig iron, net at works, but sales of this class of metal have of late
been more than ordinarily limited, and as a matter of fact, makers are producing very little beyond the Bessemer qualities and the
requisite spiegeleisen which is wanted for purposes of steel converwill remain the case until the dissolution of the Railmakers' Asso. ciation is accomplished. This cannot take effect until the second
week in April, and then a better demand is expected to spring nu
alike for pig iron and steel, but prospective buyers are expecting alike for pig iron and steel, but prospective buyers are expecting
cheaper prices all round. Whether theeir hopes will be realised or new orders, and very few are offering. No change can be notedi in
the engineering trade, which is busy in the marine department and slack in the general branch. Iron ore finds a very poor market, but prices remain steady at from 8s. 6d. to 11 s. per ton net at
mines. Coal and coke yuiet, but in steady consumption. The
tonnage of imports and exports at local ports is very low.

THE SHEFFIELD DISTRICT.
(From our oun Corressondent.)
Throbgh the kindness of a friend, who has been favoured by Mr. Charles McLaren, M.P., with a proof-obtained from the
 duction of coal in the United Kingdom during the twelve months. tons for 1882 tons for 1884, $163,737,327$ tons for 1883, and $156,499,977$ rensectively $520,632,50,376,541,933$, and 503,978 , the number on
tone produced percollier being $306,309,318$, and 311 . The production of coal in Yorkshire was $18,497,778$ tons against 19,220, ,44 tons in
orser
1884. For Derby, Nottingham, Leicestershire, For Derby, Nottingha, L, Leiestershire, \&c., the weight
was $16,963,684$ tons against $16,080,682$ for 1884 . It will be noticed that the production of coal in Yorkshire decreased in 1885 , as
compared with 1884 , by 72,366 tons, while Derby and Notting.
hamshire hamshire show an increase in the same period of 883,002 tons.
The miners 'strike, which caused a stoppage of about two months, the adjoining coalfields, from which supplies were drawn when the pits in Yorkshire were olosed. Yorkphire, which gained in pro-
duction a million tons in 1883 over 1882, now shows a less output than in 1882, which is not a satisfactory feature for South Yorkshire.
The committee appointed by the Sheffield Town Council to consider the letter addressed to the Mayor in regard to the alleged held its first meeting on Monday, when a chairman was appointed.
It is intended to be a very secret committee, the members having It is intended to be a very secret committee, the members having
pledged to each other not to reveal their deliberations until they are presented to the Corporation in the form of a report. Meanare presented to the Corporation in the form of a report. Mean-
while our American and other rivals are making the most of these
sococalled "d disclosures." The Chicago Tribune of the 8th ult. contains a letter, dated, "Sheffield, England, February 25 th.
Special correspondence," headed
Perridy at
Shenfide sub-heads running thus :- The "Greal
Playing Havoc with their City's Reputation," "Importing
Inferin Inferior Garman Goods and Re-eepporting them as Home Manu Mand
factures," "Some Revelations that American Dealers will do well to Ponder Over." This is the danger that was foreseen. Of
course, no " rreat" Sheffield frem does anything of the kind. The
Sheffidd who never had Craerman goods inside their premises or fousese,
marked a knife in their lives. But the "lie" has got a start, and marked a knife in their lives. But the "lie" has got a start, and
it will be hard to overtake it. German rivals are at the same been found where factors or makers were not areful to distinguish
botween Sheffeld between Sheffield and German goods. There are, it is is feared,
tricks in the uttery as in all other trades; but the buyer who is
willing to pay willing to pay a fair price for a good article can yet rely on in honest and upright dealing with any other trade in the country. Some capital orders in military material have recently been
received here. One firm has been able to secure a contract for guns and gun jackets, and similar work, which will run up to six
figures, and it is no seoret that the same firm have excellent figures, and it is no seoret that the same firm have excellent
orders
and similar hathiphuilding firm for propels.

THE NORTH OF ENGLAND

THE amount of business done in Cleveland pig iron last week was sonew better than those which have recently ruled. At. At the iron
slightly
matret market held at Middlesbrough on Tuesday last the tone was still
firmer, no doubt in sympathy with the rise in price which has taken place at Glasgow, Consumers were generelly willing to pay
3os. 6 d . per ton for No. 3 g.m.b., but makers hope for better
things price. In most of the transactions which took place on Tuesday the sellers were merchants, and the price agreed on was 30 s . 6 d . per ton for prompt delivery. Only in one or two instances was 3 d .
less accepted. For delivery over the next three or four months 31s. is now the usual price quoted
Holders of warrants are less anxious to sell, and have advanced their price to 30 s. 6 d . per ton.
The stocks at Mes.
The stocks at Messrs. Connal and Co.'s stores continue gradually
to rise. On Monday last the stock at Middlesbrough had reach to rise. On Monday last the stock at Middlesbrough had reached
209,787 tons, being an increase of 2594 tons. At Glasgow, on the same day, the quantity held was 714,224 tons, or an increase of
8035 tons, same dayy,
8035 tons
Shipme
Shipments have improved since the mild weather set in, but
they are still below the average for the time of year. The quantity ent to foreign ports is especially deficient. The total pig iron shipped ap to and including the 29th
The total for February was 52,754 tons.
Finished
Finished iron manufacturers are no better off, and there is no
present prospect of the works which are standing being restarted present prospect of the works which are estanding being restarted.
Prices do not fluctuate much. The quotationson Tuesday were as
follows : Shio
 free on trucks at makers' works, less 21 per cent. discount.
Notices were posted up at all the thast furnaces in the North of England on Friday last, stating that engagements with workmen
would terminate on the 17 th of April. This step wis been would terminate on the 17 th of April. This step has been taken
with a view to obtaining a reduction of wages, but to what extent has not yet been announced.
The directors of to
Midland, Lancashire and Yorkshire, as well as of sexeral of the other leading rail ways in Great Britain, are much exerevised in their
minds about the Bill entitled "The Railway and Canal Trefir
in Bill," just introduced into Parliament by Mr. Mundella, forthe Board of Trade. The Bill proposes a revision of traffic rates
fore the Board of Trade. At any future time a new revision may take
place by the same authority, should it be petitioned to that effect
 once consider their position and decide on a course of action. In the convening circulars they profess to invite consideration of the matter by their constituents; but it is quite clear from the directors have made up their own minds in a kind of panic without much, if any, consideration at all. They designate fiscatory powers," and they seek to invoke and direct against the promoters something of the horror and antipathy which citizens naturally feel towaras robbers and bandis. The sudden volubiity of these public administrators, as manifested in shareholders' meetings contrasts most strikingly, and almost amusingly, with the lofty quietude and dignified reserve with which they have hitherto been wont to receive applications for the redress of grievances relating to traffic rates. Sir Bernhard Samuelson, in his recent report to the Association of the Chambers
of Commerce of the United King Kom, says that after the fullest investigation he has failed to find any principle regulating railway rates beyond "the haphazard estimate by traffic managers of what the traffic will bear.", If there is water or other competition than the freighters. to 5 d . per tom that merchandise rates vary from 6 of a penny nental rates. Now it is this sort of thing which freighters, acting
singly, and in bodies, have long endeavoured to persuade railway directors to modify. But to a great extent they have endeavoure naturally directed to everything tending to prevent a revival Rates which, though unduly high, might be tolerated in good times, cannot be tolerated in bad ones. Hence Mr. Mundella's
new
Bill.
It is is brought for ward in the interest of the public Wariance as to their way companies appear to be much
may be used by both sides. Had not the companies through their officials been systematically demanding and taking
more than they ought whenever they thought the "traffic would bear it," the present Bill would not have been necessary, and public cannot resist are surely instances of "confiscation," if that term is ever applicable at all; unless, indeed, railway directors as to the traffic on their particular routes. The flutter which has taken possession of the railway mind and has made it for the
moment forsake its oustomary dignifed taciturnity and take to almost indiscreet volubility, has revealed in an amusing manner the railway administrator's views of his company's rights.
That view seems to be that railways should be conducted just as private enterprises are-namely, solely or mainly in the interest and firms have not the advantage of Acts of Parliament to shield them from competition. Indeed they are fully subject thereto and are thereby held most effectually in check ir too greedy of
gain. Railway companies, on the other hand, are specially protheir own districts iamentic carriers: and this advantage given them by the public, acting through their representathemselves to parliamentary control, and conducting thei Railway directors are indeed, or should be trustees for the pub lic, who are their employers, and only after competent tribunals, fied that all reasonable public demands have been attended to, have they any right to amass wealth for their shareholders. Viewed in
this light it is olear that all Mr. Mundella's Bill proposes to to restore to the public that proper control of railway and cana traffic rates to which they have a right, in return for the special been sufficiently exercised by them, and which has been virtually ignored by the companies.

NOTES FROM SCOTLAND.

THE Glaggow pig iron market was very excited in the begining consequence was that prices advanced by Tuesday afternoon to
41s. cash, being a rise of 2 s , 10d. a ton as compared with the rates current that day week. Two brokers having found it impossible to oover their "bear" accounts were obliged to suspend payment, an action occurred in prices. These occurrences confirmed the im pression formerly entertained that the upward movement in price was largely due to the state of brokers' accounts, and in a very
small degree, if at all, owing to legitimate trade influences. At the same time the labour sir ine tone to the market, and this feeling has been heightened by the
effort of the British Iron Trade Association to bring about an agree effort of the British Iron Trade Association to bring about an agree In the meantime the of the output of pig iron.
In the meantime, the voume of business continues unsatisfac-
tory. The shipments of pig iron from Scottish ports during the week ending Saturday last amounted to 6013 tons, as compared with 7142 in the preceding week, and 10,877 in the corresponding
week of 1885 . One furnace has been relighted at Glengarnocks and there are now ninety-six in blast, against ninety-two at this course of the week to the stock in Messrs. Connal and Co. Glasgow stores.
Business
was
Business was done in the warrant market on Friday at 39s. 3d. ness up to 40s. 7 dd. cash. The excitement continued on Tuesda orenoon, when the cash price of warrants further advanced to to 40 s . 1 l d ., after the failures had been announced to which allusion has been made above. Business was done on Wednesday a To-day-Thursde -tranactions occurred down to 39s, 8d, but at The values of makers' iron were affected by the state of the warrant market, and are higher, as follows :-Gartsherrie, f.o.b.
 Clyde, 43 s . 6 d . and 40s. 6d.; Monkland, 41s. and 39s. 4 Quarte Hs. and 39s. ; Govan, at Broomielaw, 41s. and 39s, , Shotts, a
Leith, 468. 6d. and 46 s . ; Carron, at Grangemouth, 48s. 6 d
 There has been rather more doing in the shipment of manu factured iron and steel goods from the Clyde. Those of the past part was sugar crushing plant, $£ 7560$; sewing machines, steel goods, of which $£ 18,500$ were for railway sleepers and bolt
to for South Australia, and $£ 29,900$ general iron manufactures, in cluding £7750 sheets, pipes, stoves, and plates for Brisbane, and 8830 worth of similar goods with the addition of bars for Sydney. Maefarlane, Strong, and Co., of Glasgow, for the Bombay Water 27,000 ton them in employment for a long time. The same day they got notice
of their success at Bombay, they also received a moderately good
contracts will be brought from the Cleveland district, and the time years.
Several orders for vessels have been placed within the past few days with Clyde shipbuilders, but they were of comparatively small size.
There is a somewhat more cheerful feeling in the coal trade. nd an increase in the shipments of the past week were 22,824 tons from Glasgow, 1200 tons from Greenock, 9068 tons from Ayr, 3397 tons from Irvine, 7934 tons from Troon, 3202 tons from Leith, 7149 tons
from Grangemouth, and 3987 tons from Bo'ness. The f.o.b. pricrs
 The Clyde shipbuilding trade has been quiet during the part the present state of the trade may be had from the sul jointd gigures of the compar
water :

In previous years the tonnage was smaller than in 1883 , but we we find it so low as in the past three months.

WALES AND ADJOINING COUNTIES.
There was a larger export of coal from Cardiff last week, an excesk of colose a uong 30, oxport of of coar thom earain thast week, an
week, and still the prevailing feeling at Cardiff is one of evious
gloom. Week all sides, from shipperss, coalowners, and railway managers, the engthy and startling list of collieries working the best steam coal in the Rhondda and other places, where it means unceasing loss to
the coalowners and almost starvation to the men. Some of the collieries-Caedcoe and Ocean, for instance- which. have inveriably seen in good work when the coal trade has been quiet, are now
carcely doing anything. It is the same in house coal valleys, In scar Rhymney Valley this has been the case for several weeks.
therna colliery is quiet, and look where one will, semi-stagnation is the prevailing feature.
There is another bad item, too, coming into account. Hitherto in price, caused by the small output; this especially in smal steam. Coalowners, too, seeing that only a limited quantity of best three and four-feet was sent to bank, were naturally able in
cases of necessity to exact even slightly improved prices aases of necessis and firms, in order to secure business, are lowering
this is changing, and quotations. The market is perceptibly drooping, and not for secondary coals. The best steam shows an appreciable difference
in price in the course of the last few days, and that difference is in price in the course of the last few days, and that diference is
on the wrong side. To add to the troubles of coal workers, with only scant work, they have had a great deal to put up with of late with floods and storms,
and the storms have hampered the transport of coal wagons and delayed steamers.
I fear that all this portents financial difficulties to the weaker
men. The wonder is that Wales has been so long and singularly men. The wonder is that Wales has been so long and singularly,
free from colliery breakdowns. Rumours are prevalent enough, Thost too prevalent for public confidence., Provident Fund was
The fifth annual meeting of the Miners' held on Tuesday, Mr. Llewelyn presiding. Mr. Own, the secre-
tary, read the report, which was one of reat interest and encourage. 37,459 , and the orinary revenue of the During the past year there had been 7805 coases of disable-
ment, and seventy-eight fatal accidents by which 141 member ment, and seventy-eight fatal accidents by which 141 members
had been killed. These fatal accidents placed on the funds had been killed. These fatal acidents placed on the funds
sixty-two widows and 117 children, and at the end of sixty-two widows and
the year 143 widows, and 261 children, and were in receipt of
annitites annuities from the society. Amongst the speakers who highly
commended the society was the Bishop of Llandaff, who testified o the excellence of its aims, and the great vigour and succes with which it was conducted. Mr. Tylor, who regretted the
abseneo of Sir W.T. Lewws, who had founded the sliding scale and one in which employers and employed fought the tht institution together, and the record wherein they side by side fought the battle of death, and he reached the strong point of excellence in
remarking that these institutions had doone more than any before in bringing labour and capital in good social feeling together energetic protest against interference by Parliament with the arrangement entered into by coalowners and workmen in the
matter of the Employers Liability Act of 1880 . The tendency o interfere is well sarked, on the asssumption that it would be
better for the men so to do, but this is a fallacy, and the men know
Tynybedw Colliery, Rhondda, has now been stopped six months, and the Rhondda collieries generally are suffering. On Monday leven pits were the, one number. Bute Colliery has only worked
there was about the same number one day during the last two weeks. Colliers are planning emigration in large numbers.
Turning to the iron and steel trade, there are no signs of ncouragement, though things are not quute so bad as represented
For example, it has been widely rumoured that the converters and mills at Cyfarthfa were to stop this week, but though one con some mill are less aptive the he other reson is stocktaking, is being the end of the financial year. Cyfartufa, Dowlais, Trede-
gar, and Ebbw Vale are tolerably suceessful in getting a share of the small existing trade.
It is only a question of time for all the old-fashioned ironworks Ironworks, Aberdare, are to be brought under the hammer, and as the plant is of that excellent quality of cold blast iron which wo the support of Sir Wm. Armstrong, I expect that buyers will flook of old castings, low-pressure blast engines, \&c. A good deal
dates from $1827-30$, before the time when ironmasters began to alloy their metal with cinder
Kindred industries are
bas told detrimentally on the tin-plate trade this. The weather exports; otherwise the tone continues fairly satisfactory, and prices are sustained, especially for best brands.
Inst week 60,000 boxes of tin.
Last week 60,000 boxes or tin-plates left Swansea, and as only
 siemens command 3d. more. The dispute with the forgemen is $17 \frac{1}{2}$ per cent. The men are willing to 10 per cent. Two failures
in the trade are reported this week. Orders in this week include a lot of squares, as well as the ordinary cokers sheet.
An explosion ocoured last week at the Werfa, causing thre deaths.
There is a probable strike of engine-men and stokers at hand. Agitation is spreading, and at a late meeting it was determined to
resist the reduction that begins April 1st. Like other resist the reduction that begins April 1st. Like other classes of
workmen, these see no inconsistency in striking, though work is considerably diminished. I hope better counsels will prevail. A bad trade and fettered action would be disastrous. A Newport firm of

NEW COMPANIES.

The following companies have just been regisMitis Company, Limited.
Upon terms of an agreement of the 9 th ult. this company proposes to acquire from Thorsten
Nordenfelt certain inventions and patent rights for an improved method for castings in wrought iron or steel, and also to acquire from Henry
Daniel Davies the freehold premises known as Hamilton's Windsor Ironworks, situate at Garston, near Liverpool, with the dock machinery,
furnaces, plant, and fixtures belonging thereto furnaces, plant, and fixtures belonging thereto. It was registered on the 19th ult. with a capital
of $£ 250,000$, in $£ 10$ shares. The purchase congage debentures, an allotment to Mr. Nordenfelt of $£ 124,750$ in fully-paid shares, and an allotment of fully-paid shares of the nominal value of
$£ 124,750$ to Mr . Davies £124,750 to Mr. Davies. The mortgage debennot exceeding $£ 120,000$, being a first charge upon not exceeding $£ 120,00$, being a first charge upon
the whole undertaking of the company. After the interest due upon the debentures has been provided for out of the annual net profits, Mr.
Nordenfelt will be entitled to a royalty of one Nordenfelt will be entitled to a royalty of one
arthing per lb. weight upon all Mitis manufarthing per lb. weight upon all Mitis manu-
factured under the said patents. The subscribers factur
*T. Nordenfelt, C.E., 5^{2}, Parliament-street... Sha
E. Brueewitz, \&, Prince's-street, Hanover-square,

The number of directors is not to be less than three nor more than seven; qualification, £1000 William Arthur, C.B., Colonel the Hon. W. J. Nordenfelt; remuneration, $£ 300$ per annum for
each ordinary director, with an additional $£ 200$ each ordinary director, with an additional £200 ployed as "special agent" may receive such
further remuneration as the directors may determine.

Weighing Machine Company, Limited. This company was registered on the 24 th ult.
with a capital of $£ 20,000$, in $£ 5$ shares, to acquire the exclusive rights under provisional protection No. 1968, dated 10th February, in so far as the
ame is applicable to weighing machin 3 . The same is applicabl
subscribers are :-
John Davis, 23 , King Henry's-walk, Dalston,
desigarer

 F. W. Ann, 3, Broau-street-buildings, Merchant
G. Paullan, 184, St. George-street, E C., engineer
A. Dokerill, 83, Winston-raad, Newington-
green, secretary to a company green, secretary to a company
Most of the regulations cont
Most of the regulations contained in Table A of
the Companies' Act, 1862, will apply.
American and Continental Sanitas Company,
This company was registered on the 18 th ult. with a capital of $£ 75,000$, in $£ 1$ shares, to acquire
and work the American and Continental patents of the Sanitas Company, Limited, upon terms of an agreement of the 19 th ult. The purchase
consideration is $£ 5000 \mathrm{in}$ cash and 25,000 fullypaid shares, and also one-third of the shares of any increase of capital. The subscribers, who
render themselves liable for $£ 1$, are as follows :-
$\underset{\text { *W. H. Bosanquet, }}{\text { solicitor .. }}$. 11 , Queen Victoria-street,
 secretary to a company $\ddot{2}$
M Mjor A. Wood, Abbey Wood, Kent, manäing
director of a company R. M. Cunningham, $14, \ddot{ }$ Earl's-court-road, $\ddot{\text { secre }}$ -
tary to a company
 The number of directors is not to be less than of the nominal share capital; the first are the subscribers denoted by an asterisk, who will after allotment elect Messrs. C. T. Kingzett and M. empowered to appoint from amongst themselves a managing director and chemist at such remuneration as they may think fit. The remune-
ration of the ordinary directors will be $£ 450$ per ration of the ordinary directors will be $£ 450$ per
annum, with an additional $£ 100$ for each $£ 210 \mathrm{~s}$. per cent. dividend in excess of $£ 5$ per cent. per Cowley's Ship Share Company, Limited. This company proposes to acquire shares in the Eddiside Shipowning Company, Limited, the
St. Patrick Shipowning Company, Limited, the St. Patrick Shipowning Company, Limited, the
Mirzapore Ship Company, Limited, and in any other shipping companies managed by P. H.
Cowley and Co. It was registered on the 18 th ult. with a capital of $£ 10,000$, in $£ 10$ shares. The

P. H. Cowley. Ifiverpool, shipowner

W. Driter Lloyd̈, $1, \ddot{ }$, Easst India-avenue, $\ddot{\text { shipowner }} \ddot{ }$
$\underset{\text { director. }}{\text { Mr. P. H. Cowley is appointed managing }}$
D. F. Tayler and Co, Limited.

This is the conversion to a company of the
businesses of D. F. Tayler and Co., and of businesses of D, F. Tayler and Co., and of Birmingham, and
manufacturers of
89 , Newgate-street, London, colour printers, manufacturers and rollers of
copper, brass, and other metals, wire drawers and copper, brass, and other metals, wire drawers and
manufacturers, and galvanisers. It was regis'ered
on the 23rd ult. with a capital of $£ 200,000$, in $£ 5$
shares. The subscribers are:-
*W. Williams, Edgbaston, Birmingham, manufacturer ..̈s, "̈dğbastön, " Birminghä̈, manü H. Wiggin, M. M. ̈., Ḧarbörne, stäforödshire, manu

The number of directors is not to be less than the company in general meeting will determine remuneration. The subscribers denoted by an
asterisk are the first directors. The purchyse asterisk are the first directors. The purchase of
the business, \&c., is regulated the business, \&c., is regulated by an agreement,
the consideration being $£ 90,000$, payable as to $£ 22,500$ in cash, $£ 22,500$ in 5 per cent. mortgage debentures, being part of a first issue of 450 mort gage debentures of $£ 100$ each, and the balance o
$£ 45,000$ in e45, ,000 in fully-paid shares. Messrs. Wilfred
Williams and Francis Williams are appointed managing directors for five years at a salary of
$£ 2000$ per annum, to be divided as they may mutually arrange.

Aycliffe Steamship Company, Limited. $£ 24,000$, in $£ 75$ shares, to acquire the steamship Aycliffe, of Middlesbrough. The subscribers are:-
W. Hanson, Middlesbrough, ironmaster .
G. Chapman, Aycifife, Durbiam, lime merchant W. Chapman, Ayclifife, Durham, Lime
W. Putnam, Darlingto, forgemaster
Putnam, Darlington, forgem
. Putnam, Darlington, for

The number of directors is not to be less than
two nor more than three two nor more than th.
Table A are adopted.

Herts Steam Laundry Company, Limited.
This company was registered on the 2ind ult with a capital of $£ 5000$, in $£ 1$ shares, to carry on with a capital of $£ 5000$, in $£ 1$ shares, to arryy or
steam laundry works at Harpenden. The subscribers are:-
J. Wilsher, 42, Byrove-street, Poplar, contractor

Registered without special articles.

Enginerring Society, King's College LoNDoN.-At a general meeting held on Tues
day, March $23 r d$, the president in the chair, Nr A. Collins read a paper "On Sanitary Houses." The author commenced by stating the importance
of this branch of engineering, and dwelling on of this branch of engineering, and dwelling on
the benefits accruing from a general knowledge of the benefits accruing from a general knowledge of
the subject. But in his paper he proposed to the subject. But in his paper he propose
confine himself solely to the description of sani-
tary appliances and their uses. Atter iscoussin tary appliances and their uses. After diseussin
the importance of the trap, Mr. Collins briefl touched upon the question of water supply, and
then passed on to the subject of water-closets. then passed on to
These, it was stated, were first introduced into England during Queen Elizabeth's reign by Sir
John Harrington under the name of latrines John Harrington under the name of latrines or
ajaxes. Many kinds were described, and among those mentioned were the ellush-out combination, Pearson's turn basin, Hellyer's optimus, and the
hygienic closet. The nses and modes of fixing were next explained of housemaids' sinks, flush-
ing tanks, baths, lavatories, and gullies, after ing tanks, baths, lavatories, and gullies, after pipes were considered. The sylhoning action pipes were considered. The syphoning action of
traps place one above the other, and all connected to the soil pipe, was noticed, a working model being used by way of illustration. The
systems of carrying awa waste water were touched upon. Details were next given of the
methods employed in laying drains, including methods employed in laying drains, including a
description of the Stanford joint, a model of which was shown, kindly lent by the agent, Mr.
Henry Ough, C.E., 16, Austinfriars. The paper concluded with a few remarks on ventilation dustbins, and the modes of locating leakages o drawn for the purpose illustrated the paper, and a collection of omodels kindly lent by Mes
Doulton, of Lambeth, were also exhibited. Doulton, of Lambeth, were also exhibited.
Copper Ix THE UNTITD STATES. - The extraor dinary increase which has taken place in the the
production of copper in the United States has completely revolutionised the European market, just as was the case forty years ago with the production of precious metals, In 1850 the copper
mines procuced from 40,000 to 50,000 tons per mines proauced from 40,000 to 50,000 tons per 120,000 tons in 1880 , and is now just double. The Michigan mines have produced the largest quanti-
ties and the centre of the industry is now the ties, and the centre of the industry is now the
basin of Lake Superior, where there are twentysix copper mines of varying richness, the mos mine, which contains copper in a state of almos absolute purity, its output for 1884 being abou 20,000 tons. The copper industry in the United
States is various mines profitable, the shareholders in th half millions sterling in the way of dividends last year. Next to the United States, Spain and
Chili produce the most copper-about 40,000 tons each-Germany and Australia coming atter with years ago produced 15,000 tons, now has an output of only 3000 tons. Russia, Sweden, and
Norway have an output of about 6000 tons, while Norway have an output of about 6000 tons, while
a good deal of copper has recently been discovered a good deal of copper has recently been discovered
in Venezuela, the consequence of this being that there has been a very great fall in the value of ton a few years ago, is now worth little more than a third of that sum. Owing to this great fall in
the price of copper the price of copper, several mines are being elosed
in New Orleans and California, their owners finding that it does not pay to extract the metal at
its present price, and even in the basin of Lake Superior, the cost of deepening the mines and the
increased prico of labour increased price of labour are making the
very much less profitable than it was.

THE PATENT JOURNAL.
Applications for Letters Patent. *When patentrs have been "commusicated" the
name and addross of the communicating party are
printed in italics.

23rd March, 1886.

$$
\begin{aligned}
& 419 \\
& 4019 \\
& 4019
\end{aligned}
$$

$\underset{40}{ }$
 Glasgow,
Gil. Crosiden, J. and W. Hamer, J. Hampson, and
E. Crosley, Manchester. E. Crossley, Manchester. son, Manchester. Soring Knife, \&c., J. Perry, Ban-
bainy
buble 4024. Apparatus for Shaping Hat Brins, L. H. Hoyt,
London.

 Maschaster. Verioles for Roand, W. Kermeen

 H031. Hearax.
 Halifax.
403s. BRAKs, R . Mercer, Glasgow.
4034. BPINDLEs, T. L. Dait. y, Manch
 ton, Wolverhampton,
4036. SEcurisa Geimstons from Breaking, E. Chat ham, Ruabon.

 Brown, London. 0 . T. Pessel and H. J. Mills,

04t. Cork Boring Machines, J. Dakin Lond
 (043. BRLir Fastenere, W. W. Popplewell. (E .

London.

4050. Apparatus fur Makiva Papar, R. Hoirox,
405ivepoob Open Ends of Sacks, dec., D. A. B. Murray, jun.,

 Co5. Portable Blast Furanack Plant, C. L. Harts
feid, Londo Cos.. Latrachonkentr for Velocipkdes, J. Goldschmidt,
jun., Loudon.

4061. Renoving Pexcil Marks, dece, F. Wittram,
4062. Treatmant of Rancid Butter, J. Y. Johnson.-
(C. Marchawd. U.S.).
OB3. Bend
B. Fuchs, Londo

France.) Drils, A. M. Clark.-(H. L. de Lapparent,
(079.

 Johnstone, United States.)
408s. WATRR-WASTE PREvever, de., A. Emanucl,
${ }_{4084}^{\text {Lindon. LAyps, T. C. J. Thomas, London. }}$
24th March, 1886.

4089. Cikeciriva Farks, H. Blamires and M. Horsfall,

Liversedge, Glasgow.
4097. Wramina Michinss, R. W. Brownhill, Aston

Northampton.
4099. PVRTrying and Enrichisa Coas Gas, A. Demp-
stor, Elland.
4100 Howrg and Reapisg Machines, S. B. Bamford,
Uttoxeter.

4103. Setina the Terth of Saws, r. Elliott, New castle-on-Tyne.
4104. Boluk PiPE Composition, J. Taylor
Cum

 112. Iron trlegrapl 4133. Speon.
Leeds. 414. Bevkrage, A. S. Krueger, Lenzie.
4115. PIINsorobres,
H. Allen, London.
4.16. Friction siumal, do, Bomb, J. Farnsworth,
Manetester.
dili.

London.

Lond ${ }^{4124 \text { Conibinep Flower-stand and Table Lasp, C }}$ C 1125. Bita, Li HoLDERS for OIL LAMPs, C. Kempton
 Loudun.
 4. 29. Cooking Apparatus, E. Edwards - (J. Sabourdy,
France) I30. Kgcordina the Nomber of Messabes Transmitred
over TELEPhonic Circurr ,

Veasey, London.
413s. REvolving Lasps, w. S. Oliver, J. Roots, and
 4139. ORDNN NOR, G. Quick, London.
440 KEYBEARDS for PILANOS aud ORANS, S Stewart,

L141. Phootooraphic Lens Shuttrens, C. Suuds and J

144. Aik
445. Motive Force for Des, M. Delmard MCArthur, London. Flow of Gas to Gas-burnere,

 4pool Frames for Writing Slates, J. and H. Owen

 J. Holt, Liverpool
4154. PRosecturs for Fire-arass, , Studer London.
 4157. LADides' Surpers and Boors, W. Hemsl y Liondon
4. S5s. Prepration for Renovatino Hats, A. and E.

 46.2. ArRaxing
Christiani, London.

> 25th March, 1386. the Frow of Gs
4163. Requlating the Flow of Gas Tar, A. Thomas West Cowes.
4164 . Solobering METaLs, D. Brecknell and T. Mallett, 4165. Automatio Water-gauge for Steam Boilers, T.
 chapminning Ediuburbh cosifositios of Types, G
 4169. TRIMMINE GRAIN in Shirs' Holds, W. Goodwin,

 4174. Ascerthinisa the Percentaog of sand in Raw

 ${ }^{4177 \text {. Foton }}$ Funaces for the Production of Stere, J. W

 Williams, Greenfield.
4180. Comstrisp scapre, Brushes, MAT, and Trav, Fisi. James, Dresden.
4in
I 4152. Koa Whisss, G. Baker, jun, London.
4183, Colus Blurt, B. Barrett, Keighley.

 4192. Fotbinac Poitale Table, B. c. Hope, Scarborough.
4193. DITINCE and FARE Indicator for CABs, dec., J. 4194. AEkRATriso Dinavory Ales, de., W. A. How, New

4198. SELF-Active MULEs and TWingrs, J. Drabble
and
H. Brandon, Manchester

${ }_{4204 .}{ }^{\text {pool Protrctiva }}$ Ships' Sides, M. M. Kelcey
 . MAkINo GAs, E. Brook, London. arshall, Clasgow.
Glasgow stop AppAratus for Loons, D. Morrison
 4212rimg and L. Geofroy, Lindon.
 Londonbination shipwreck Reoordre, C. Wells,
4216. Carrying

 ${ }^{2}$ TMELEPRoNss, A. M. Rosebrugh, London. 15 th ${ }^{4232}$. TRLEGRAPHS, J. Y. Johnson.-(A. M. Rosebrugh, Canada.)
4233. Onserv

26th March, 1888
4234. Gas Exarkss, P. Niel, London.
4235. G Irpmers, R. A. A. Stoffert and T. Dykes, Glaggow.
 423. Pulprso and Grindixa Fiber, G. Hibbert
Gateshead-on-Tyne
 4239. Ladorrg, wc., A. W. H. Wod. Ullesthorpe. Man 4241ster. IVDICATors for Machines, H. Moon and P.
 423.3. Orxanerstina Wooden Floors, J. Brierley,
Halifax. 424. Fikedisg and Ferd-heating Apparatus, A. C.
 246. Gaximina Metallic Surfaces, D. Johnston, Thwast Genreator and Bollerr Furxace, b. H.

 250. Prodvoisg Forced Dravort, T. and w. 4251. Drop-Dow SMEALL-ARMs, R. C. Chaplin, Birming${ }^{\text {han }}$ Thim Broshriso MAchise, W. A. Suteliffe and G. 233. Skrting the Iron Flangess of Weavers' Warps
 235. Ensuvisa an
mouth.
 4257. Cooksing AppaRatus, T. Shipton, Handsworth.
4258. RAIsINQ-oros, J. Walker and T. G. Beaumont, 459.. Pow. PR Loon Werr Stop notrow, R. Ackerman
and W. Shore, Grimbury. and W. W. Shore, Grimsbury.
420. FL.AX PREPARING FRAME RUBBERS, A. Dawson,

curts, B. Herissé, London. Li6. Exhibitina Advertisements, J. Bradley, 4267. Heating Apparatus, J. Lockhart, Sheffield.
4288. Bath Bohers, E. Hadley and C. Darrah
Iond 4269. Hoods, \&c., for Hansom Cass, G. Finney, Liver-
pool. 4270. HAnson Cabs, G. Finney, Liverpool.
4271. SCREW-DRIVERS, A. W. Tipper.- Z. United States.)
4272. Coring Tongs, T. Crookes, Sheffield.
4273. Cycist's TIre Cementer, A. C. P.
 Saunders and A. C. Brown, London.
276. Fire Alarm Telegraphs, H. A. C. Saunders and
 Glaggow. Spring for Watches, \&c., C. E. Jacot and
E. Bovy, London. 4280. Elegcrondo. Maongtio Apparatus for Curative
Purposes, J. R. Chislett, London. 4281. BRICREMOULDINe MACHINER, W. Hellier, London,
4282. Moulds for BENDING PLATE and SHEET GLASS, 283. Salery Appliances for Wherled Vehicles,
Vincenzo, Count di Tergolina, London. Vincenzo, Count di Tergolina, Liondon,
4284. MooLDING BreAD, A. Pentzel, London.

Wenham,
286. Rivetting Machines, C. Litchfield, London.
287. AkRiLL Navioation, J. H. W. Stringfellow and
H. Lane, London. H. Lane, London.
4288. SASH, CAsEment, dc., FAsteners, J. Walker
and H. B. Worsey, London. 4289. Drop-Down SMall-arms, J. Deeley, London.
2290. GUARD for Circular Saws, R. Willoughby, 291. SAFFTY VALyEs, W. Bragg, London.
292. LAMPG, D. C. Defries, Londen.
4292. LAMPs, D. C. Defries, Londen.
4293. COokIN APARAVO, J. Margets, London.
4294. SAFES and STRONG Rooms, J. M. Hart and J. Swann, London.
4295. Souport for Boots and Shoes, J. J. Crocker,
4226. Closing Botrles, H. Oodd, London.
4297. Jack Tricks, J. Mosley, London.

4800. Pencils, N. S. Burnell and R. W. Charlesson,
London. 4ond. Convertres, E. Servais, London.
4302. OIf Botrles, \&c., J. Robinson, Lo 27th March, 1886.
4303. Railway Chairss, H. Barlow, Walsall.
 306. Butrox Trimsingos, H. Vollmer.-(Messrs. Blsass
and Bocks, Rhenish Prussia.)
307. Hars, \&c., G. W. Wilson and E. Wilson, Manchester. 4308. Dental Eraines, A. Kirby, Bedford.
4309. Mesurina SNov, B. G. Fux, Hunslet.
4310. Botrles and Botrle-stopers, W. Sherar, Bi mingham.
4311. Maturing Alcoholic Lieuids, W. W. Crawford, Glaggow.
312. MINERS' SAFETY Lamps, A. Howat, Manchester.
313. Combine Benzine Lamp and CIGAR Cutter, W. Fischbach, London. M14. Automatic Syphon Cisterns, \&c., J. Jaffrey
M15. Honter. Sections, L. W. Stone and J. Perry, Ban 31. Dryina Clothes, W. H. Cartwright. Rowley.
317. Trousers Braces, J. Moynan, Dublin. 4318. Dovark-kNEADING MACHINES, W. F. Mason, Man chester.
4319. WeAving of "Dhootas." W. Gadd, Manchester.
4320. TRANSPARENT Der, W. Wi. Nightingale, Loudon. 4321. Gas Engines, E. T. Hughes.-(W. Gavillet an L. Martaresche, France.).
4322. Staying the Plates of Steam Generators, \&c.,

A3. Prepamation of Fibrous Spun Material, B Fiegel, London.
4324. Elecraic Liartina, R. C. Hanrott, London. 22. Colouring Glass in., H. Norris, London.
 ${ }_{4329,}^{\text {Liverpool. }}$
4329. Book-binding, F. Schubert, London.
4330. BRICK, , ©t., WALLs, G. H. Couch, London
433. RoorING TILEs, \&c., G. H. Couch, London,
4332. RIDEE, \&c. THES, G. H. Cuch L
4332. Ridae, \&c., Tless, G. H. Couch, London.
4333. STEER-GEARING, J. H. Biles and J. McKechni

Glasgow.
434. Perforatina the Sides of Capsules for Bottles 4335. Perrambutators, J. A. Macdonald, London. 4336. PERAMBULATORS, J. A. Macdonald, London.
4336. BRED and BIcUITs, J. Montgomorie, Glasgow.
4337. BUNDING, \&c., BTRAw, \&c., G. F. Redfern. (Joly-Michel, France.). Dehaye, London,
4338. STEAM ENaINEs, E. D.
4339. SLIDE VALYES of EnaINEs, J. Gas 4340. Power Hammeres, A. Beaudry and F. H. Cunning ham, London. . G. Goward, London.
4342. FIRE-ARMS, J. GTERING GEAR of VESSELS, \&c., London.
4343. Combined Match box and Craar-cutter, R. 4344. InJector for steam Boller, \&c., Furnaces,
H. Smith, London. H. Hmith, London. Richards, LLondon.
4346. TANDM Tricycles, \&c., G. Singer and R. H Lea, London Tr
4347. ADVERTIIING
Potter, London
4348. NEGKitig, O. Engau, London.
4349. Combustible Compound, W.

London. -15 th December 18s, W. von Ruckteschell, 4350. Candle-holder, R, Rlazenger, London.
4351. Combined Newspaper Staxds and Files, w. 4352. Voltaid Batteries, T. J. Jones, London. 4353. HanNEss, F. L. Hemry. London.
4354. LIFting Apparatus, H. H. Lake.-(Bohl
and Co., Austria.)
435. Wookiva and Interlocking Points and Sionals
4356. SCrew-Driver, J. E. Tonks, London.
th March, 1886.
4358. Extinguishing Fire, J. Purrett, Worle
4358. Extivgishing Fire, J. Purrett, Worle.
4359. FoorbaLL, S. E. Statham, Manchester.
4360. Tongues for Boots and Shozs, H. Willis, Wo cester.
4361. Door Knobs, J. Walker, Birmingham.
436. Coupliva and Uncoup
 in-Furness.
4363. Combined Seackle and Swivel, L. G. Moore 4364. GAs or AIR Pressure Gauars, M. Piper, Oldham. 4365. Uandlesticks, T. Briggs, Darwen.
4366. Floats or Buoys for Fishing, \&c., W. A. Smith, Glasgow.
4367. Cutina Circular Millina Tools, t. Gare 4368. Reservoir Penholders, M. Reschke and Leutner, London.
4369. Oleaning Tin and Terne Plates, T. H. Johns 4370. Windarils., J. Grifiths, Caergwrle.
4371. Cricket Bat Handus, G. H. Whit 4371. Cricket Bat Handless, G. H. White, London,
4372. Wet Gas Meters, J. Brown and A. C. Fraser, 4373. CAST STEEL Wheels and Trirs, S. Osborn, G. J.
Smith, R. Woodward, A. Pye-Smith, and A. E. Wella, London.
4374. Scoring, Reistering, and Marking, J. R. 4375. Optical Instruments, C. E. M. Rohrbach 4376. Music-stools, W. Hillman, W. H. Herbert, G. B.
Cooper, R. A. Dalton, G. F. Twist, and A. Rother ham, London.
4377. Packina for Engine, \&e., Glands, J. Kirkman 4378. Sypron Cistern, J. Barnes, East Dulwich.
4379. HARDENING or TEmpering Stek Bullets, C. T. Cayley, London.
4380. OIIL LAMPs, J. Roots, Tottenham,
4380. OiL Lamps, J. Roots, Tottenham,
4381. BuTrov Fastenke, J. McDonnell, London
4332. OrGANs, J. Clark, London.
4383. SALGROMMETs, W. W. Wilcox, London.
4384. SWIVEL BLocks, W. W. Wilcox, London.
4385. THATCH SEWING, MMchinNs, F. C. Londe, Lake, London.
4386. MILLS for RoLing WIRE, \&c., F. Rosenbaum,
438. Mills for Rolling Wire, \&c., F. Rosenbaum,
London.
4387. Colouring Matters, H. H. Lake.- (A. Leonhard and Co., Germany.). T. Capper.-(s. Pick, Austria.)
4388. AmMoNIA SodA,
4389. DYEING and BLEACHING CotTon, \&c., J. Y. John son.-(N. Lecomtte, France.). Wade and J. Cherry,
4390. Rotary Enoline, J. A. Wint London. Londonnin and Vegetable Extracts, A. Morand
4393. Disinfectant and Toilet Paper Cabinet, G. W. 4394. SkLf-acting Fire Alabm, C. F. Hilkier, London 4394. Sklf-ating Fire Alabm, C. F. Hilkier, London
4395. Angular Iron Frame Phaton, J. E. H. Col clough, London.
4396. Sound Sterl Shaft for Liaht Drauoht Vehtcles,
w. 4397. Stiffeners for Wearing Apparel, J. G. Ingram, 4398. Dextrine, A. Rossi and C. Hellfrisch London. 4398. Dextrine, A. Rossi and C. Hellfrisch London.
4399. Tramonse, dec., J. Menzies, London.
4400. Properlling Torpen and other Vessels, I 4400. Propelling Torpedo and other Vesskls, I
Sanderson, London.
4401. TELEPHoNEs, E. Edwards.-(B. A. J. Rosoon 4401. Tele,
France.)
4402. Regenerative Hot-blast Stoves, B. Ford and
J. Moncur, Glasgow. 4403. Strainners for Wire Frinoing, W. Orr, Glasgow.
4404. Lubricating Compound, J. L. Wade, Glasgow. 4405. Extingouishing Fire and SAViNa Life, de., J. F.
Haskins, London. Haskins, London.
4406. Boukrs, \&c., W. Schmidt, London.
 United States.)
4409. AxLE or Shat Bearings, J. Gibbons, London.
4410. Centrifual Apparatus, E. F. M. Farcot 4410. Centrifugal apparatus, E. F. M. Farcot,
London.
441. Enamelied Letters, \&c., W. N. Sears.- J. Cesar, United States.)
4412. Testina Boxes for Electrical Conductors, 4412. Testing Boxes for Elegtrical Conductors
J. Lorrain, London,
4413. Air Guns, A. Arbenz.-(Me isrs. Flurscheim and Bergmann Germany.) A. M. Clark.-(E. Fourlinnie,
4414. Beam Engines, A. France.
4415. Cyocometers, T. W. Short and W. J. Mason,
London.

SELEOTED AMERIOAN PATENTS.

(From the United States' Patent ofice official Gazette.) 334,949. Metallit Felly For Wheeles, James W. Wher
Havorth. Decatur. Ill.-Filed November 10th 1885. Havorth, Decatur,
Claim. - Filed November wheels, the combination of felly. c,
concave in cross section, cross braces $e f$, embossments

aon braeoes fand tired dhing longitudinal concavity

 tiearing for the axlo and counter shiatt, and a seat

orth. (4) The conbination of the boiler, the sheet B, Corth. (4.ed thereto, the eara frame or axle provided with
applith
a suitable bearing upon its top for the engine bed, the a suitable bearing upon its top for the engine bed, the
flanges G, and the bearings for the counter shaft and faxle, and which has suitable openings through it sub-
atantially as specifed. (5) The combination of the oiler, the sheet B, the gear frame or casting C,
provided with a bearing upon its upper end for the engine bed, suitable openings through it, bearings for the counter shaft and axle, and the lugs or projections
R , substantially as shown. (6) The combination of R, substintially as shown. (6) The combination of
the engine bed provided with the bearings Xat one
end, a suitable support for the rear end of the engine bed, the boiler, the bearing W, upon the boiler and a
coupling pin or bolt for connecting the bearings X W
hereto substantially coupling pin or boit for connecting
335,172. Cut-ope Valve, George W. Anderson, West-
port, Ind.- Filed May $25 t h, 1855$.
Cloim. - (1) An zutomatic steam actuated exhaust
cut-off valve, located within the exhaust chamber of a cut-off valve, located within the exhaust chamber of a
sliding valve, substantially as set forth. (2) The com-
bination, with a sliding valve havin bination, with a sliding valve having a depending pro-
jection in its exhaust chamber, of a pair of siliding blocks seated in said projection and adapted to alternately
open and close an exhaust, substantially as set forth pen and close an exhaust, substang valve, of a pair of
(3) The combination with a sliding
steam actuated sliding blocks, located within the exhaust chamber of the valve, and adapted to open and cose an exhaust port substantially as set forth.
(4) The combination, with a cylinder provided with (4) The combination, with a cylinder provided with
one exhaust and two steam ports, and a sliding valve, one exhaust and two steam ports, and a sliding valve,
of blocks operated by steam and adapted to alternately
form a steam joint and an exhaust space, substantially [335,172]

as set forth. (5) The combination with a sliding exhaust chamber and provided with an exhaust port extending through the projection, of a pair of blocks
connected by bars or rods seated within the said port and adapted to open and close the port substantiall alve harth. (6) The combination, with a slidin hamber ang a a pair of slidijng blocks connected by
bars or rods seated in the said projections secured the backs of the blocks and adapted to work in sockets formed in the ends of the valve, and steam ports connecting the socke
substantially as set forth.
335,188. Balasoed Rotary Valve, John S. Glenn,
Chicago, Ill.--Filed November 6th, 1885 . Claim. (i) The combination, with casing A , having
ports $g g^{1}$ and cavities h, h, of valve B, , having ports ii
and $j j$ and cavities q, substantially as described, for
 and cavities q, is deseribeou. (3) The com tination

 casing A, having ports $g g_{1}$ and cavities $h h^{1}$, of valve
[355.188.

 casing A, of valve B, having ports i and j, and cavities
 nicathg throggh hananols s, all substantially aa an
for the orpopese set torth. 335.418. Mrus.soxy Brosi, Donid A. Bellows, Muleery

$335,418$.

 335.317. Ferd Warte Heatre, Frederick Shickle, S L

335,317

the tubes C, the chamber D, and the pipe G, said pipe
being wound partially or wholly around the tubes before being carried out of the heater, substantially a described. (4) The combination of the tubes C, the
steam space F, the chamber D, and the pipe G said pipe being extended from the chamber D, down
ward through the steam space toward the lower end ward through the steam space t
thereof substantially as described.
335,325. Dynamo-klegrric Machine or Motor,
William L. Voelker, Morton, Pa.-Filed June 15th,
Clain.-In a dynamo-electrin machine or motor a
cylindrial armature made up as set forth, from sheet
iyn iron plates or disss having an electrical or mechanical
plating of diamagnetic material, as described, and plating of diamagnetic material, as describes, and
held or secured totether upon their shaft ty suitable
clamping devices, the whole constituting an armature

body made up of separate or individual plates in
contact with one arrother, so that the armature shal be mechanically subdivided or laminated in planes
coinciding with the lines of magnetic foree, and magg cometically subdivided by films of diamagnetio metal
neach united on one side with a disc or plate of iron,
eat each united on one side with a disc or plate of iron,
and having its other side constituting a plane surface
neal nd having its other side constituting a plane surface
esting in contact with a separate plane surface to

THE AUTOMATIC FRICTION BRAKE.-"HEBERLEIN SYSTEM."

