Genniston Ironworks, of which only a very few are in use in this country, although its immense labour-saving qualities are sure to recommend it for wider adoption. nachine, by the use of which it has been found that the labour of one man per day can be easily exceeded twelvefold.
Numerous firms exhibit engines of one kind or another, each having features, small or great, which entitle them to separate attention, but which, of course, cannot be treated
of here. Amongst these firms we noticed Messrs. Thomas of here. Amongst these firms we noticed Messrrs. Thomas
McCulloch and Sons, Kilmarnock ; James Black, Auchentoshan ; S. Pollock and Sons, Paisley ; John Binnie,
Glasgow; Alley and MacLellan, Glasgow; Duncan Stewart Glasgow; Alley and MacLellan, Glasgow; Duncan Stewart
aud Co., Glasgow; Greenwood and Batley, Leeds ; Forrest and Co., Glasgow; Greenwood and Batley, Leeds; Forrest
and Welsh, Manchester ; Glen and Ross, Glasgow ; J. Copeland and Co, Glasgow. Several interesting exhibits
of boilers are made, amongst the most noteworthy being a of boilers are made, amongst the most noteworthy being a
six-horse power vertical boiler, showing Russian practice, six-horse power vertical boiler, showing Russian practice,
by Richard Snith, Moscow, Russia; B.bcock and Willcox boiler of 136 -horse power, fitted with a chain grate
mechanical stoker; Galloway boiler- -1875 patent- 300 mechanical stoker ; Galloway boiler- -1875 patent -300
indicated horse-power, suitable for evaporating 6000 lb . of indicated horse-power, suitable for evaporating 6000 lb . of
water per hour with about 600 lb . of coal. Messrs. Robey water per hour with about 600 lb of coal. Messrs. Robey
and Co., of Lincoln, show some of their portable engines, and fixed Robey engines and locomotive boiler combined conspicuous novelty appearing, however, unless we except the patent bevelling machine for angles, tees, and bulbs, gaining entrance into shipyards. There is a large number of exhibitors in the class of machinery used for washing, wringing, mangling, and carpet beating; and the Singer
Sewing Machine Company exhibits a variety of its machines at work
With respect to marine engineering and shipbuilding, ne Exhicion does not so fully represent those important industries as the near contiguity of the principal ship-
building centre in the kingdom would have led one to expect. In fact, so far as England is concerned, the repre-
sentation is almost nil, while even the Clyde and Scotland are but indifferently to the front in these departments This is doubtless to be accounted for on the grounds of the Liverpool Exhibition being the chiefest attraction for exhibitors in the industries named. Notwithstanding this shortcoming, however, of the Exhibition falling below what one is justified in expecting in an exhibition so near the chief shipbuilding centre, there are exhibits enough to impress one with the progress made in these most im-
portant branches of industry. Most of the leading shipbuilders of the Clyde send a selection of models repre senting their finest vessels.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinion

London sewage.

SLR, - When you referred to the Canvey Island scheme on a
former occasion, you were good enough to atord mesper former occasion, you were good enough to afford me space for some
comments, and as you have treated the matter with perfect fairness in a further article which you published on the 16th inst., I venture
to trouble you only with remarks on the general policy involved I would fain leave the issue between the Metropolitan Board and the complainants, who obtained judgment from the Royal Com-
mission in 1884, to be settled, as I am sure will be the case, in mission in
favour of Canvey Ise Ishd, atteder a as summer, or, at at most, two two hot hot
years trial of the experiments arranged by the Board; but experi. years 'trial of the experiments arranged by the Board ; but experi-
mental expenditure to no purpose, and to the tune of a m milion pounds or more, must be a serious consideration forthe ratepayers,
and contracts to a large amount are about to be let for permanent works and plant which will be useless when the extension of outfall recommended by the unfettered advicie of Sirir Joseph B Bazalgette
fin -in his evidence to the
In this view, the Works' Committee's report ignoring an offer of
Canvey Island, may indeed, as you say, "seem hardly fair") Canvey Island, may indeed, as you say, seem haraly fair
their constituents, and considering the excessive prices which have teir constituents, and considering the excessive prices whan town requiring land for seave
necessarily been paid
disposal, an offer of undeniably suitable land in in sufficient quantity disposal, an offer of undeniably suitable land in sufficient quantity
at the low rate of \&50 per acre seems hardly one to be rejected One would, at any rate, have thought that the idea of discharg. ing the proposed steam barges on the island, and there finally and
miraculously disposing of their filthy cargoes, after only one-third of the intended voyage to sea under all the unforeseen conditions of that experiment, might have occurred to some member of the would not be cheap at the priec, and so dovetail in with the
present views of the Board, independently of any extension of the outfall sewers, which at present they deem unnecessany. Owners of dynamite hulks, which are hardly less objectionable neighbours
than sewage works, have long found the creeks of suitable mooring places for their craft, and dits sinulation, oombined
with accessibility by land and water point with accessibility by land and water, point out this locality as the
inevitable destination to which all the nuisances on the narrow inevitable destination to which all the nuisances on the narrow
reaches of the Thames from Woolwich downwards must eventually the inevitable move are powerful interests involved in postpon situation where they serve as the scapegoat for many companies
and wealthy individuals polluting air and water, who find it conposition defended at the cost of the metronaliowed and their posinst complainants who might probably attack other nuisances in detail if the more obvious and overpowering one were removed.
Doubtless the Board consider also that any postponement of capital expenditure on a radical remedy must be popular with western and northern ratepayers, who know nothing by actual
experience of the state of the river, and do not stop to acalculate the probaboe aggregate of successive charges for litigation and
chemical paliatives, which are in one way or other good for trade, while they postpone for a short period a necessary expenditure of
capital, however reproductive it would be in the early future a voyage down east on a warm day, such as that which entailed a
succeeding nights illness upon three out of five Roval Commissioners, might move influential west-enders to sympathy with the
inhabitants of Erith, Woolwich, and other riparian places, and the press before the public. Financial considerations are, however, paramount to all others, and we all know how commonly experiments cost much more
than the estimates on which they are undertaken; indeed, Mr. Gladstone is just as likely to be able to buy out the Irish landlords
for his $£ 50,000,000$ as the Board are to keep within treble the total submitted by their Works Committee in defiance of the figures
computed by a practical man like Mr. Phillips, who has had so
much experience in shipping coal, and whose plan has the
cconomical advantage of employing coal barges on their return oyage to Newcastle over the Board's proposal to build a fleet for In conclusion, may I add to your expression "t th eferees, if we may so term them," that it is the first time I ever heard of an appeal lying, from the decision of a judicially con
stituted body, to referees consisting of three witnesses for the defendant and one member of the jury, together coming to the pressed opinion, and that the defendant can avoid the judgment of he court below by doing something quite different, and observ "referees" open their award, viz: :- "We ehave, in the first place o express our regrets that the shortness of time within which it of our making such a comprehensive examination of the matter as
its importance would have rendered desirable." Is that, I would sk, a satisfactory basis for entering upon milion or so in masory and
Hafody-Wern Farm,
Wrexham, \qquad
SIR,-Mr. Donaldson's ways priving. formule are past finding out No one but he would have attempted to calculate results from my
formulew by taking tons as the unit for P and W, and pounds for E.
To multiply words on this what is thy words on this would be useless. His sopsion. If h chooses to take etwo definitions of modulus of elasticity, and apply
them both to the so My use of t t did not net need definition, hust expect anomalous fully in in accordance with usual conventional application to cases of strain. The only points o in your editorial article, and which I neglected, such as the eneration of heat and what I may call the precession or strain,
vould interfere with the accuracy of my formule. Concerning the
 ore compelled to neglect it. I am inclined to consider, however, substance of specific heat .5 , and raise its temperature 50 deg. F we must have expended nearly 17 foot.tons of work. If this ha
veen done in twenty blows, we have lost $\#$ foot-ton per blow. But I cannot tell how far this is applicable to piles.
stand you aright in that part of your articice which refers to the th transmission of waves of compression, you suggest that work in the monkey may be absorbelow the pile has had time to come into
before the reaction from belo play. I regret that pressure upon my time is likely to prevent me It will entering upon an interesting discussion of this kind at present feel much in not surerer ty being left to abier pens than mine. I shal and shall only regret not being able to join in. I imagine the two cases of rupture named in your article will be found to be consider
ably divergent from the case of a pile. The bursting of the gun is Ithink, not due to the presence of the cork, or a plug of mud, but to the absence of a projectile, or to the projectile not being ramme
home. I conceive an explosion to be a central force from which large number of small particles are ejected at a high velocity in al
directions. If there is not at hand close to the centre of force mass free to move, and thus to absorb the work by acquiring a high velocity in a very short interval of time, the work must expend
itself a ainst the envelope or the support of the explosive. If there is no projectile, the explosive may expend itself against the

breech before the velocity of the particles has enabled them to travel along the barrel far enough to compress the air to the amoun necessary to relnowe the cork, even if pressure were transmitte | Anstantaneouril 26 th , |
| :--- |

[Guns exploded with the muzzles stopped up have had either a
builet or a charge of shot properly rammed home in them.-ED. E.]
Sir,-Your article
appeared in your issue of the 16 th ult., will no doubt be interest ing to marine engineers and shipowners, and as this is the first principle involved, and as our system has been mentioned in your article, we think an explanation of the principle will not only be interesting to your readers, but will also serve to correct any
erroneous impressions that may have got abroad. The startling erroneous impressions that may have got abroad, The startling
results of Mr. Kirkaly have no place in our experience, for we feed-water is heated directly by the steam in the boiler, the fee heater being put in the steam space ; therefore there could be no possibility of loss from radiation such as there is sure to be in the
case of the steam pipe leading to the heater and the pipe leading water to the boile
This system of feeding was applied by us for the purpose of
removin the dissolved gases in the feed-water, but as to calling removing the dissolved gases in the feed-water, but as to caliligg
feed heating we never dreamt of such a a hing, for in principle and effectit it the same as supplying the boiler in the usual way; besides, our feed heater never gave any other result than that due to the very considerable effect on reported results, in some cases as high
as you mention, in others lower than the actual saving. The as you mention, in others lower than the actual saving. The
variations are traceable to different causes, sometimes to the
Before going into the explanation of our system of feed heating, We wish to point out clearly that in generating the power for pro-
pelling a steamship two entirely distinct sets of apparatus are pelling a steamship two entirely distinct sets of apparatus are
engaged-the boiler for producing the steam, and the engine for converting the force of the steam into useful work amount of fuel, viz, the pounds of steam per pound of fuel at given temperature of feed and steam, or, in other words, the units of heat passed out of the boiler with the steam per pound of fue
consumed. The efficiency of an engine is the weight of steam used to exert 1-horse power in a given time between the boiler and the feed-water temperature, or, in other words, the units of heat used per indicated horse-power per minute. The more units of heat
passed out of the boiler per pound of fuel the higher the efficiency and the less units of heat used per indicated horse-power per minute the higher the efficiency, therefore a good engine and a bad It follows, then, that the usual test applied to engines-the pound
Ind of coal consumed per indieated horse-power per hour-gives the
combined result not only of the engine and the boiler, but also of the coal.
on the engine feed heating is solely and entirely an improvemen common compound engine, for example, from 4 to 5 per cent., in
triple expansion from 6 to 7 per cent., and in quadruple expansion
fron from to 7 y per cent. represents an amount of steam that has been wrought in a theoreti-
cally perfect engine. This is the case hecause after doing work the whole remaining heat, both latent and specific, is returned to the
boiler. The measure of the quantity is the amount the feed wate boiler. The measure of the quantity is the amount the feed-wate
can condense, and the efficiency of this quantity is the amount of work it performs previous to being condensed by the feed-water. It is specially noticeable that the steam condensed by the feed,
amounting to about one-ninth to one-tenth of the whole, has onl existence in the high-pressure cylinder of a coommon compound
engine, having passed through which it is removed again by the The amount of steam the feed-water takes from the low-pressure
receiver it puts into the high-pressure cylinder through the boilers,
nd no difterene is made on the quantity passing through the
w- pressure cylinder the heat that low-pressure cylinder, the heat that has been converted into work
and the loss by radiation being fully made up for in a manner to Wplain which would take up too mion engines, the work done
With triple and quadren etween the boiler and the low-pressure receiver is proportionatel reater than in common compound engines, therefore the saving
in direct proportion to the amount of work done before and after am is condensed by the feed.
The first trustworthy experiments in the matter were made by Mr. A. Kirk, of Robt. Napier and Sons, and by Mr. Brock, o
Iessrs. Denny and Co., of Dumbarton. The tests were made by measuring the waste heat carried off by the circulating water
The results obtained are all perfectly definite as to a considerable he exact quantity of discharge water is not easily attainable Within the last two years, however, a very exhaustive series of
xperiments has been and is still being carricd out by Nr experiments has been and is still being carricd out by, Nr.
Brock on all the cnines turne out by his firm, the
feed-waters being carefully measured, and all the temperaures noted and the fowers correctly taken under his personal supervision by a most efficient staff, the sole object
being to get at scientific truth. By these means the ent being to get at scientific truth. By these means the exac
value of the slightest improvement is ascertained, esults show the correctness of our system of feed heating. Coul would undoubtedly be a most valuable contribution to engineerin science. Besides this, it would be of substantial advantage to
hipowners, as it would determine beyond doubt the value of any ventions applied. They have been so often victimised that it i centages of certain reports, and passing over those which show smaller, but in reality a greater saving. Regarding your reference
to the Peninsular and Oriental Company, your information is entirely at fault, as they have only one ship fitted with our heater be nearer the truth. I may mention, in conclusion, that since w fitted the Queen Margaret in 1875, hundreds of our feed heater nave been in use, principally on the larger class of engines in ships
of the Orient, Union, Glen, Monarch, and other lines. Nearly all he larger class of triple and quadruple expansion engines made the boiler by pumping donkeys specially designed for the hig pressure now in use.
2, Commerce-street, Glasgow, May 3rd.

Gorty-knot speed ships

SIR, - I was present last Friday night at a discussion held at the Hurst explanatory, among other things, of the power necessary to obtain a speed of 40 knots in steam vessels. The mode of compu-
tation by which the result was arrived at will probably be in eresting to your readers. Mr. Hurst explained that the powe
 old method of reckoning the resistance as proportionate to the midship section, but was to be ascertained by Reech's law, taking basis of comparison. It is, no doubt, known to many of you readers, that according to Reech's law the speed attainable
model with any given power will illustrate the speed a a large vessel having the same proportion of power, the speed of
the large vessel being in all cases greater than that of the small in the proportion of the square root of the increased dimensions. long, 12 ft . broad, 6 ft . 3 in. draught of water, and 52 L tons dis placement, the speed, with 470 -horse power, will be 213 knots, and vessel would be of the same form and of the same proportionat power, but three times larger every way. Such a vessel will be
330ft. long, 36 ft . broad, and 18 ft . 9 in . draught of water; her dis
 have 470 -horse power, the total power will be $470 \times 27=12,690-$
horse power. We shall then have two vessels in all respects identical, except that one is constructed on three times the scal tionate in the two cases, the speed will now be the same, but b Reech's law the larger vessel will be the faster in the proportio
 we take the larger vessel as four times the size of the smaller,

 3360 tons, and the displacement due to the machinery will be
8057 tons taking the weight at 60 lb . per horse-power as i Thorneycroft's engines. The total number of horse-power required
will be $470 \times 4^{43}=30,080$ horse-power. The displacement will be $34^{4} \cdot 4$ tons per 1 ft . of herefore increase the immersion by $99 t$,., and in we take the
weight of the hull as equal to the weight of the machinery, the
draught of water with water in the boiless and the vessel reany fo draught of water with water in the boilers and the vessel ready fo 13.2 ft . for coal and stores. If we take the consumption of fuel a 2lb. per horse-power per hour, the cor ; and if we take the speed
tons per hour for 30,080 -horse power ; time required for a voyage of 30 oco statute miles in length will h $3000 \div 494=608$ hours - consumption of coal to be provided
for will be $268 \times 60.8=162944$ tons as total consumption for the voyage. This weight of coal will depress the vessel 12.12 ft ., which
brings up the draught to 23.92 it. . leaving a margin of about 150 tons for extra fuel and for stores. The result of the whole calculation is to show that a a sped of 40 knots, or thereby, is attainable
on an Atlantic voyago with a vessel of moderate size and light解 t rests with those who chailenge the accuracy of this computation
to show wherein it is erroneus if they can. In merchant vessel advantage has not hitherto been taken of the quality of lightness
for the attainment of high speed, and it is important that this Student College Practical Engineers, JAMES C. PAULSO

Chiswick, May 3rd.

SIR, - I have read with interest the article on the action of frost
on roadways in THE ENGINEER for April 30 th. As regards the macadam system, you write of side crains as an invariable part o road prepared on this plan. Would that it were so: What will
the majority of your readers think when they learn that in certain "road districts" in Scotland the policy pursued by the trustees is to fill up all side ditches, inserting a fele tile previously, of varying
diameter, in the ditch? In the district in which I have the honour to be a trustee we . uncomfortable way during thaw, when the only thing wanting to
complete the illusion that one was out a-fishing was the absence of fishing gear, the river being only too visible. I am
ware the plea on which this is done is danger, but I think an evident ditch is better than a concealed one, for there is nothing done to harden the surface.
May 3rd.
[For continuation of Letters sce page 362.]

EXPRESS LOCOMOTIVE, HUNGARIAN STATE RAILWAYS

construeted in the hungarian state railway works, pesth.

EXPRESS LOCOMOTIVE, HUNGARIAN STATES RAILWAYS
The greater portion of the Pavilion of the Ministry for Public Works at the Budapest Exhibition, held last year, was devoted These works, originally founded by a Belgian Hungarian Pest, pany in 1867 , passed in 1870, after three years' fruitless struggle, into the hands of the Government as repairing shops The extension of the States Railways in 1874 necessitated their extension and conversion into erecting shops, and in 1880 they were amalgamated with the iron and steel works in Diósgyör and since the separation of the Hungarian from the Austrian portion of the States Railway Company in 1884, have been Inder the superintendence of the Ministry for Public Work produce a miscellaneous variety of articles to provide constant employment for the workmen, but of late years the direction has been enabled to limit their competition and reduce the manufacture to certain specialities, such as locomotives, stationary and portable engines, thrashing machines, bridges and roofs. In the last three years they have turned out sixty normal gauge locomotives, three narrow gauge locomotives, fourteen stationary, and 270 portable engines, 280 thrashing machines, 409 bridges of a total weig
We illustrated last week an express engine, Category $1 / \mathrm{d}$, No. 707 and we now give cross sections of this engine above and on pag 356 . As will be seen from the drawing there are four coupled driving-wheels, and four bogie wheels. The frame in which the axles of the latter are carried swivels on a large gun-metal pan 1912 in, diameter, for better distribution of the load on the springs. The tire grate is considerably raked; the fire box and tube plate of the smoke box are made of copper, the Tubes of Rhonitz iron, and the other plates of Hungarian iron. centre to allow a free passage to part of the exhaust, whereby the smoke is carried higher than usual. The adjustable exhaust nozzle, patented by Mr. Kordina, one of the engineers of the works, relieves the counter pressure on the piston. The coupling between engine and tender is of the so-called triangular form. The brake used is Hardy's vacuum. The maximum speed allowed is fifty-six miles an hour; during the
trial $74^{\circ} 5$ miles were made with sufficient steadiness. The con struction of the bogie allows sharp curves to be passed at
speed of thirty-seven miles per hour.
The principal dimensions are as follows :-

The tender is six-wheeled, of the usual type in use in AustroHungary. The chief dimensions and weights are as follows:-

Water space..

Wheel base :
Brake pressure.
Weight of empty

Weight of empty tender $\begin{array}{ll}\because \\ \cdots & \because \\ \text { rvice } & .\end{array}$ ${ }_{282 \cdot 5}^{442 \cdot 4 \text { cub. } \mathrm{ft.}}$ ${ }^{282.5 \text { cub. ft }}$ | \because | 18 tons. |
| :--- | :--- |
| $\because:$ | 12.7 tons. |
| . | |

We shall refer to Kordina's adjustable exhaust nozzle in a later impression,

DIAGRAM FROM A SLURRY PUMP. The annexed diagram sent us by Mr. Charles Potter, of the cement manufacturers, Ndison, Potter, and Non, Portland many of our readers. It is taken from a cement slurry pump. down to a very stiff cream; its specific gravity is about 17 . The pump valves are of india-rubber, and were in good working order when the diagrams were taken. These valves are slow in
closing owing to the slurry being so stiff; the up-and-down lines on the diagram are very much sloped; this is probably accounted for by there being a considerable quantity of air in the slurry
 in the form of small bubbles. Immediately the pump stops at this slurry is high; delivery pipes 7 in . diameter, head 48 ft ."

SCHONHEYDER AND MAGINNIS' IMPROVED DRAWING PAPER CLIPS.
THE accompanying engravings illustrate a neat and useful clip for fastening paper to drawing boards, and dispensing with the use of drawing pins. It can easily be seen that such a thing must present many advantages, and amongst those claimed by the inventors are-(1) "Always ready for use, and no time
to be lost as at present in straining paper ; (2) do not make

holes in the paper; (3) do not injure the edge of T-square (4) facility in fixing or removing drawing or tracing paper; and (5) drawings having been removed may be easily replaced
exactly in their former position." It will be seen that the plate exactly in their former position." It will be seen that the plate against which the pinching screw presses may be fixed by any draughtsman to the ordinary drawing-board. They are sold by
Mr. James P. Maginnis, Carteret-street, Queen Anne's Gate, Westminster.

Naval Engineer Appointmients.-The following appointments NAVAL ENGINEER APPOINTMENTS.-The following appointments
have been made at the Admiralty:-Leonard Backler, fleet engineer, to the Asia, additional; George Sullivan, staff engineer, to the Euryalus; Walter J. Featherstone, engineer, to the Himaaya; Martin Stuart, assistant engineer, to the Inconstant; Lawrence Bell, assistant engineer, to the Himalaya; Henry B. Robin-
son, fleet paymaster, to the Eaphrates ; Henry Humphreys, son, fleet paymaster, to the Euphrates; Henry Humphreys,
assistant engineer, to the Calypso; John S. Gibson, assistant engineer, to the Rover ; and Benjamin J. Watkins, assistant engineer, to the Volage.
Society or Engineers.-At a meeting of the Society of Engineers held on Monday evening, May 3rd, a paper was read on
"Induced v. Forced Draught for Marine Boilers," by Mr, W, Martin. To test the applicability of the induced air system practically the author had obtained a marine boiler of modern construction, and set it in his factory on the same conditions as in a vessel. On this he had made careful experiments and trials, some of which were extended over long periods. The appliances used
were shown by diagrams and working models, and the results went to prove that the system was effectual in producing high rates of steam generation without sacrificing economy or injuring the tube plate and orifices of the tubes, as was the case with forced draught.
The combustion in the furnace was so complete that all the heating surfaces were acted upon regularly, and every pound of coal took up its proper supply of air.
New Iron Shipyard on the Clyde.- Negotiations have just been completed whereby the shipyard at Troon, hitherto chiefly,
if not altogether, devoted to shipbuilding and ship repairing in if not altogether, devoted to shipbuilding and ship repairing in
wood, has been let for the purpose of iron shipbuilding and repair wood, has been let for the purpose of iron shipbuilding and repair-
ing, to be conducted on an extensive scale. The new lessees are Mesmrs. McCreadie and Wallace, the former having been for some time a partner with Mr. M'Knight at the Ayr Shipyard, and latterly manager to the Marquis of Ailsa at his shipyard of Culzean. To latter is at present chief draughtsman and assistant-manage been for the past fifteen years. The Duke of Portland, from whom the yard is rented, has agreed to expend a considerable sum of money in extending it and improving its working capability, so as to enable the largest class of merchant vessels to be built. The greater part of the old buildings will be taken down and new build-
ings suitable for iron shipbuilding erected. A quay will also be ings suitable for iron shipbuilding erected. A quay will also be
formed so as to enable vessels to be finished alongside the yard Ship repairing will be continued as formerly, but the efforts of the new firm will be chiefly directed to the construction of iron vessels, work for which the large experience of both gentlemen eminently its them for undertaking. A branch of railway from the main
Ayrshire line at present enters the yard, and the contiguity of the district to the coal mines, ironworks, and new steel works of Ayrshireshould placeitatan advantage comparedeven with yards nearer Glasgow. It is not, however, expected that practical operations The announcemere the end of summer or beginning of autumn. omployed in all branches has created general satisfaction in the district, where there is a large idle surplus.

NEW SEED, CORN, AND MANURE DRILL. Excerpt in some slight modifications the English corn and seed or manure drill has received very little improvement for many years. There has been no strong stimulus to inventive effort, and the best known makers have for years practically gone to sleep in all that concerns drill development. They have so long worked in much the same groove that they have arrived at the conclusion that the absence of novelty is proof of
finality. It is very questionable if the leading makers during the past ten years would have listened with much patience to any inventor with a good novelty. They would probably have said that their drills sell as well as those of any other maker, that they lasted a long time, and that there was no necessity for alteration. The Royal Agricultural Society has abdicated its position as leader in encouraging the production of the best implements and machines, ata competitive trial, and all makers havegiven their foreign rivals plenty of time to take stock of the English articles and to beat them on their own grounds, and to replace them in foreign markets. The drill we illustrate is an example of the result of want of stimulus in this country; of an effort to strike out new paths. It is not too much to say that this drill, made by the Chadburn and Coldwell Manufacturing Company, of Newburgh, probably take the first prize in any competitive probably take the first prize in any competitice
trial with all the English makers in the field. After the American system, the ChadburnColdwell Company has taken up the drill as a thing to be perfected, and then manufactured upon a system that permits the most economical reproduction on the large scale. Several inventors,
whose names do not appear, have been employed, whose names do not appear, have been employed,
and they have devoted themselves to the several chief parts by which an excellent combination has been made, and is now offered to the English purchaser with good prospect of commercial success. We will endeavour to describe some of these, with the aid of the perspective view annexed and the detail engraviugs Figs. 1 to 11. The perspective view shows the general arrangement, and will aid us in describing the action of the parts. The
grain and seed distributors are illustrated in grain and seed distributors are illustrated in
detail by Figs. 1 to 6 . One of the complete disdetail by Figs. 1 to 6 . One of the complete dis-
tributors is shown at Fig. 7. It consists of a tributors is shown at Fig. 7. It consists of a This wheel is saucer-shaped, and runs with its convex side in the frame casting, Fig. 2, the hollow side being covered by the casting, Fig. 1. The lever A, Fig. 7, seen complete in Fig. 4, has a cam disc upon it which fits in this wheel and turns upon a pivot cast upon it, which rests in a
notch in Fig. 1, and in the notch in Fig. 6. By notch in Fig. 1, and in the notch in Fig. 6. By
placing the lever A in the position seen at Fig. 7 , the cam more or less fills one side of the hollow of the wheel, Fig. 3, and thus allows more or less of the seed or beans to pass, the quantity being minutel regulable. There does not appear to be much in this dis tributor, but there is probably not another piece of machiner with a feed wheel, cam slide, and regulator,
threading within another and then finding its threading within another and then finding its the foundry as this is. Immense pains have the foundry as this is. Immense pains have been taken to make up such a thing so as to
require no fitting, and to produce it in a shape and by patterns that enable it to be made at the cheapest possible rate for labour. A number of these distributors-as many as there are runs-are threaded up a spindle running under the seed-box, and all the lever arms A, Fig. 7, are brought up in a row at
the side of the box and there connected together by a connecting-rod, so that the feed of every one is adjustable by one movement after they have in the first place been set, every one being also separately adjustable by the simplest means. The grouping of these levers is not seen in the perspective view above, but the similar arms of the artificial manure distributor are there seen. On the side a graduated plate. This is a plate by which the position of the levers is set so as to sow or distribute any given quantity, and the quantity is, we are most credibly assured, adjustable to sow to within a few ounces of seed per acre, and the dials show pounds, bushels, and ounces for the manure, grains, and seed. It will be observed that change wheels and loose parts are entirely di pensed with, an advantage which every farmer will know best
how to appreciate. Grass seed distributors of the same form are placed either in front or behind the coulters. Turning now to the artificial manure and phosphate distributors, ove of which is seen in perspective in Fig. 8 and in detail in Fig. 9. Here, again, we have a remarkable piece of designing ; the result, however, is one of design and of painstaking tentation. The Fig 8

distributors, as seen at Fig. 8, are placed at the bottom of the phosphate box, the ends of the feed adjusting levers all turning up outside the box, as shown in the general view. In the rightthrough which the phosphate drops in quantities, which depend upon the position of the gate G on the end of the lever G^{1}. In Fig. 9 this gate is shown lifted to the highest position, and in
the complete distributor, Fig. 8, it is shown in the position in the complete distributor, Fig. 8, it is shown in the position in
Which it letk the smallest quantity pass, At the bettom of the

AUTOMATIC AND ALJUSTABLE TRIPPING COULTER

casting F is a support for a feed wheel H . This wheel simply drops into its place and fits. Above this wheel, on a cranked position shown at Fig. 8 wheel J, which always works in the castings which go together, and the only bit of fitting work is that necessary to drill a hole in the end of the cranked stud in the wheel J , and put a pin in it which shall take up an inclined
surface at the bottom of the boss in the middle of casting F The other holes are all cast in. The underneath side of wheel H is provided with a toothed ring, by which it is driven by a pinion on a shaft, which is common to, and has a pinion for

THE CHADBURN-COLDWELL COMPANY'S SEED AND MANURE DRILL.

adjustable without anything more than the flap gate or tongue G; no change wheels are necessary
Every part of this drill has some new and ingenious dodge
but we can only refer to a few more. The coulters with the Fig

tubes are arranged so that to suit wet or dry ground, heavy or light soil or character of seed, they may in an instant be placed in a row, as shown, or to any degree zigzag. The coulters are
made ass shown by Figs. 10 and 11 ; that is to say, they may be
instantaneously set by means of the lever and the notches unde ithe projection from the front of the coulter tops, so as to take sary for deep or shallow work. In the position shown in Fig. 10 he short lever connected near the coulter top is almost in line wit the pivotted piece to which it is connected. It is thus for a? by the spring shown. When, however, an extraordinary pul comes on the coulter it is enabled by this arrangement to give way, as shown in Fig. 11, and to replace itself. Wood pegs are thus dispensed with, and the coulters require no attention. The coulter points are reversible. The wheels are
mounted on a straight steel axle and communi cate power to the drill parts by ratchets to bot wheels, so that the drilling continues when turning corners, and the drill leaves no gaps There is much more that might be said of this
drill, but we must refer readers to the drill itself They will have seen enough already to get a good They will have seen enough already to get a good a clique in the Council of our Royal Agricultural Society, which is now one for the discouragemen of improvement of the mechanical appliances of agriculture.

CRAMPTON'S NEW DESIGN FOR LOCOMOTIVE ENGINES.*
Atarecent meetingof the Société des Ingénieurs-Paris-the President Crampton, M.I.C.E., being in meeting to the fact, and asked the meeting to listen to Mr. Brüll, who spoke in Mr. Crampton' name, giving a description of this veteran loco motive engineer's new express engine.
Mr. Brïll, apologising for interrupting for a
moment the course of the meeting, said :- "Our eminent colleague from London, Mr. Crampton is in Paris for a few days, and has entrusted to me the pleasant task of describing shortly his new type of locomotive. It will be remembered that in 1848 Mr . Crampton came to Paris, and brough a new locomotive which had for its object th working of express trains. The locomotive o sions of the driving wheels, whose the dimen $2 \cdot 10$ metres, and which, with a limited number of revolutions, allow of great speed being attained. These wheels are situated in rear of the fire-box The machinery is all external; not only the pistons and cylinders, but also the distribution of the mechanism, as well as the axle-boxes, being so situated as to be under the immediate view an superintendence of the driver. At that time upon by Mr. Crampton, and that was the import ance of placing the connecting-rod slides as nea the centre of gravity of the locomotive as possible for the purpose of avoiding the vertical action every one of the distributors in the row. The scraper wheel J
is operated by the teeth on the top of the wheel H, which it diable to oblique action of the connecting rod, and which was is operated by the teeth on the top of the wheel H, which it liable to cause the locomotive to jump and destroy the perscrapes. This manure distributor will distribute anything a
little less tough than close clay, and the quanti'y is minutely principal lines have adopted it where a single principal lines have adopted it where a single
pair of driving wheels give sufficient adhesion, pair of driving wheels give sufficient adhesion,
and where they are not applicable his system of outside mechanism and large wearing surof outside mechanism and large wearing sur-
faces have been very extensively applied to all classes of locomotives with marked success. The advantages gained by the application of this system have been considerable. In the first place, the express service has been very
regularly worked by these locomotives; then regularly worked by these locomotives; then the cost of maintenance, thanks to the external arrangement of the machinery with the
large wearing surfaces, has been reduced, and the consumption of fuel has been favourable. Mr . Crampton has lately obtained from the Compagnie de l'Est some statistics on these points (see note * at the end) which are highly satisfactory. The company has thirty-nine Crampton locomotiver, which have been in
regular work since 1855. They have been regular work since 1855 . They have been
during this long period subject to the most during this long period subject to the most regular observations, from which it appears,
in taking the mean of these thirty-nine locomotives, whether in service or under great repair, that the average cost of repair and repair, that the average cost of repair and per train mile. Further, the consumption of . as a general mean, or 27 lb . of coal per train mile. These two of 1848 . "But this Crampton locomotil way is much more substantial than formerly. The weight of 10,000 kilograms on the driving wheels has become insufficient.

Speed has somewhat increased, as well as the number of people who wish to travel fast-so much so, that in order not to in rease the number of express trains too much, it has been neces sary to load them more heavily. Hence the weis scheme riving arle o healon of als 14 or 15 tons or more; but that is only one forin of relief, and it was soon * Trapslation of " Proceedjngs" of Société des Ingenieurs-Civivils, Paril!
found necessary to design a locomotive having much greater adhesive power. Our express engines of the present day have nearly all two pairs of driving wheels of large diameter coupled; but this solution of the question does not give complete satis-
faction. Mr. Crampton, who so well succeeded in his combinafaction. Mr. Crampton, who so well succeeded in his combina-
tion of 1848 , might have rested satisfied; and in fact he had almost completely ceased to interest himself in locomotives, in order to pay more attention to this society, such as the researches he undertook on the establishment of submarine telegraphs; the utilisation of dust fuel, and his ingenious machine for driving submarine tunnels automatically. But during the last year, perceiving the modern requirements of economical working of railways, amongst which was a new system of locomotives, he has invented an engine for express service and heavy trains, of which he gives us
to-day the first information. This locomotive is practically the to-day the first information. This locomotive is practically the
'primitive Crampton' doubled. It has two pairs of driving wheels, about $2 \cdot 10$ metres in diameter, and between the axles, 140 or 150 square metres of heating surface, according to the desired traction and speed.
"To solve this new problem, Mr. Crampton has had recourse to a well-tried class of boiler, the high-pressure marine boiler ; that is to say, a boiler composed of two portions; the lower one
enclosing a circular fire-box without stays, which is the whole length of the boiler, and made in some cases of corrugated plate, as constructed in England at the works of Mr. Fox, and tubes are placed of the length required, the whole ending in a tubes are placed of the length re
funnel, or rather a double funnel.
"Besides the two pairs of driving wheels, the locomotive, of which the weight will probably exceed twice 13,14 , or 15 tons,
other carrying wheels will be necessary. This is a detail which can be overeome in many ways, On the board will be seen a
tank engine, and also one with a separate tender, which M. Mallet tank engine, and also one with a separate tender, which M. Mallet
has kindly drawn to $\frac{1}{4}$-scale. This sketch shows the tank engine

only. To drive these two pairs of wheels, Mr. Crampton employs
four small cylinders; the two on the right, placed one behind four small cylinders; the two on the right, placed one behind made on two crank pins, set 180 deg. apart, and as close as convenient together. In this arrangement, which till now has never been successfully used, there is considerable advantage; it
is this, that the power of the steam, in the cylinders which are is this, that the power of the steam, in the cylinders which are
placed laterally close to each other, and cast in one piece, notwithstanding that it is transmitted through two pistons and two rods, attached to two crank pins adjoining one another, only
produces the effect of a simple torsion, almost free from action on the guides of the axle boxes. Moreover, the torsion exercised
upon the axle is always produced in the same direction, and not upon the axle is always produced in the same direction, and not
first in one, and then in the other direction, as usually takes place to the detriment of strength of the axles; in fact, in this system there are no cross strains from one side of the engine to
the other-a most important consideration. The hind driving wheels are worked in the same manner by the other pair of cylinders on the left, no coupling rods being employed.
The machinery connected with these two pairs of cylinders is all external. The platform of the driver is placed at either or both extremities of the boiler, which allows, if necessary, the
fire to be fed from either or both ends, and giving ample room fire to be ied from either or both ends, and giving ample room
for placing the cylinder for working the brake-pushing-off apparatus. In order that the waste steam from the four cylinders shall not interfere with one another in the chimney,
Mr. Crampton makes use of two chimneys. He places them Mr. Crampton makes use of two chimneys. He places them
side by side; that is to say, the chimney is divided into two and in this respect all the advantages of Mr. Crampton's original creation are preserved. Each pair of cylinders can
receive the steam from the boiler direct, or they can be worked with great facility on the compound principle. One objection
would occur naturally to some people. These two cylinders, whuld occur naturally to some people. These two cylinders, of one and the same wheel might refuse to work by stopping
on the dead centre. This problem, for which Mr. Brïll believed that up to now there is no practical solution, Mr. Crampton
suggests a new means of treating. He uses a little vertical steam cylinder, which can also be used to work the brake. The stroke of the piston causes the extremities of two horizontal axles. These rods each carry an ordinary silent feed apparatus
acting on the flanges of the wheels. The starting of the locoacting on the flanges of the wheels. The starting of the loco-
motive is thus insured ; a few strokes of the piston of this little apparatus changes the position of the wheels in a few
seconds, so that the action of the steam in the driving cylinders seconds, so that the action
may come into action."
305,560 miles per engingines had run $8,250,124$ miles, or -consequently were old engines- these twenty-seven old
engines then ran $9,439,606$ miles, or 349,615 miles per engine, engines thirteen and a-half years, 1871 to 1884 inclusive, or 25,898
miles per engine per annum, also including repairs and renewals, miles per engine per annum, also including repairs and renewals,
the cost being 11d. per train-mile; these engines are still
running, and in good working order. They also ran, on an running, and in good working order. They also ran, on an
average, seven and a half years between two great repairs, average, seven and a half years between two great repairs,
254,268 miles each, or 33,900 miles per engine per annum, at a
cost of sd. per train-mile. The above results are attributable to the construction being different to that of other engines, viz., lower centre of gravity, the greatest weight being on the extreme necting-rods acting halfway along the engine instead of over the leading wheels, large wearing surfaces, and last, though not
least, great facility of repairs, the whole of the moving machinery being on the outside and in view of the driver.
difficult to make comparisons, as there are no statistics, so far as
is known, of the same number of renewed ordinary engines having run the same distances in thirteen and a-half consecutive
in Great Britain, having in operation a large number of engines which ran an average for twelve and a-balf years, 1868-1880
inclusive, of about 19,000 miles per engine per annum, at a cost for repairs and renewals of rather more than 3 d , per train-mile,
but whether they were new or old engines to commence with is but whether they were new or old engines to commence with is
not stated; whereas Crampton's engines in 1871 were old ones,
and had done a large amount of work previously, as is stated
above. Where the system of running engines for long distances by exchange of drivers is in force, it is important that the new driver, on taking charge, shall have everything requiring attention
pointed out to him by the driver going off duty. All moving parts being outside and in view in this system, this is easily
effected without inconvenience; but where the moving parts, or effected without inconvenience; but where the moving parts,
any of them, are difficult of access, such facility does not exist.

PRIVATE BILL LEGISLATION.

Sricg the House of Commons reassembled on Monday the Select Committees have not been able to make much general
advance, but one of them has arrived at a most important decision affecting the water supply of London. Having Southwark and Vauxhe East London, the Lambeth, and the mittee decided to pass all three on the condition that a clause was inserted in each compelling the company, after two years
from the passing of the Act, to create a sinking fund to be used "for the purpose of purchasing and extinguishing the share capi-
tal of the company, and for such other purposes for the benefit of the public as Parliament may from time to time determine."
To this condition the three companies demurred, and as we have previously mentioned, presented a memorandum to the Comsider in the vacation the Committee adjourned. On their sider in the vacation the Committee adjourned. On their
resumption on Wednesday morning, Mr. Pope, Q.C., on behalf of the companies, stated that his clients had considered the
decision in the light of what they believed to be the intention of Parliament, viz, to allow the existing interests of the com-
panies to remain uninterfered with, so as not to depreciate the value of the existing undertaking, while at the same time secur ing that the new capital should not be so used as to add to the
purchase value of the existing undertaking. They therefore wished to propose an alternative clause, providing that the sink-
ing fund should be established "from and after the expiration of two years from the issue from time to time of any debenture capital authorised under the provisions of the Act," instead of "from the passing of the Act;" the clause to run thus:-
"Whenever in any year after the expiration of two years from the creation and issue from time to time of any debenture
capital, authorised under the provisions of this Act, the net capital, authorised under the provisions of this Act, the net
profit for the year-to be ascertained and certified by the auditor for the time being under the Metropolis Water Act of
1871-shall exceed the net profit for the year ending the - day of -1888 , the excess of such net profit shall be apportioned rateably, in proportion to the amount of the share, preference
share, and debenture capitals of the company issued at the passing of this Act on the one hand, and the amount of any new debenture capital raised under the provisions of this Act on
the other hand; and the amount so apportioned to the new debenture capital shall be carried to a sinking fund, which shall be held by the Local Government Board, and applied by them
for the purpose of purchasing and extinguishing the share benefit of the company, or for such other purposes for the determine provid, Pariament may from time to time ascertained and certified by such auditor as aforesaid shall be this basis of calculation it was proposed to substitute for the excess of average percentage of the dividend or interest proposed
by the Committee. As to the trustee of the sinking fund to be created, the companies suggested that that office should be
entrusted to the Local Government Board rather than to the Chamberlain of the City of London, who was named by the Corporation of London, or their officer, the position of a central water authority. This clause had been submitted to the opponents of the Bills, and the City Remembrancer, replying
that the Corporation could not assent to the suggested modifica tion of the Committee's clause, proposed the following clause in lieu of both: "From and after the expiration of two years of the creation and issue from time to time of any debenture
stock under the powers of this Act there shall be carricd to a debenture stock issued under the Act as shall be equal to the excess or the average percentage of the dividend or interest paid capital or borrowed, together with an additional one per cent added thereto, for the management of the debenture stock issued under this Act, such sinking fund to be held and applied by the he Committee on behalf of the Corporation of London, and on the conclusion of the arguments, the Committee announced that they would adhere to their own original decision, except
that they would substitute a limit of three years for the two years first proposed.
The Bill authorising the transfer of the Marquis of Bute's Examiner of Petitions for Privat any came before Mr. Campion mons, on Monday, and was declared to have complied with the
The South Hampshire Railway and Pier Bill, Edinburgh read a second time ; and the Morecambe Tramways have been poration, Hyde Park Corner (New Streets), East and West Ind Dock Company, and Scinde, Punjaub, and Delhi Railway Bills have been
When the Ulster Cana! and Tyrone Navigation Bill came on for second reading in the Commons on Monday, Mr. Biggar party then in the House were only "a mere skeleton." M Sexton, however, one of the "Irish party," urged that the Bill
should proceed, and Mr. Biggar being defeated on a division $(127$ to 6), the Bill was read a second time.
In a report of rather unusual detail to the House of Com tions Bill state that they disallowed no less than twenty-nine clauses in the Carlisle Corporation Bill, and amended several other clauses, in consequence of objections advanced by the
Home Office and the Local Government Board With regard to the Charternouse Bill, which has passed rhrough the House of Lords, Mr. Walter James intends, on the order for the second reading in the Commons, to move that "it
is inexpedient to abolish the hospital founded by Thomas Sutton in the London Charterhouse, to mutilate a most interesting relic of Old London, and to cover with buildings a considerable reconstruct a charity which in its present form carries out the intention of the founder, and has not been shown to be un-
uitable to the needs of the present day, or to have given rise suitable abuses,
The death of the Earl of Redesdale is an event so intimately
associated with Private Bill legislation that it may be fitly
alluded to here very briefly. For over thirty years he has
had, as Chairman of Committees, more sway over this class of legislation than any other man, and owing to his keenness and rigid adherence to the stricter principles applica-
ble to both private and public enterprises, he has been tlye terror of promoters alike in the House itself and in the Committee rooms. Any party securing his approval was pretty
certain to win in the end; and, on the contrary, any Bill of Which he disapproved had slender chance of success, no matter
who supported it. The first Canal was really due to his action, and he has been a thorn in
the side of the Canal Company ever since. His last public act was to formulate a resolution on the payment of interestdescribed in a recent article-which was more than likely to
prove fatal to the Canal Bill, despite its having at last passed prove fatal to the Canal Bill, despite its having at last passed
through both Houses of Parliament. His death, sincerely lamented in almost every direction, largely removes that danger, for no other peer who might take up the matter will have the His successor has not yet been appointed, but the names of Camperdown are mentioned for the vacancy.

THE CONSTRUCTION AND TESTING OF AIRLOCKS AND SHAFT-TUBES.*

By L. Brennecke.

Although the question of the best method of design and of ALTHOUGH the question of the best method of design and of
testing steam-boilers is one which has been generally carefully
considered, and receives universal attention, considered, and receives universal attention, a like investigation
of a kindred subject, viz., that of the apparatus used for sinking foundations under a high air-pressure has nowhere hitherto been
carried out, although the consequences of an accident be even more disastrous in the latter instance than in the former as in this case the men are actually enclosed in the apparatus, and so its full effects. Also the strains which an air-lock bu subject of a very unfavourable che strains which an air-lock sustains are by the work proceeding in its interior, and the constant changes of temperature and of pressure to which it must be subjected
when in use. The bursting of an air-lock is instanced, where the fractured portions on examination showed a highly crystalline the best quality. known to have occurred in consequence of the bursting of air-locks is three, viz. : first, in 1865 at Zeche Rheinpreussen, where two
men were killed in the lock; second, in 1873 on the Tay Bridge works, where six men who were below in the excavating chamber , nineteen men below in the excavating-chamber were drowned, their bodies not being recovered till twelve months later. These
three accidents, spread over a period of twelve years, were the cause of a loss of thirty-seven lives, which, compared with the statistics much more disastrous ; these considerations lead to the conclusion that this apparatus should receive as much attention in the way
of periodical examination and testing as is applied to steam-boilers, of periodical examination and testing as is applied to steam-boilers, an easy matter, as those now engaged constantly in testing steam-
boilers hydraulically could equally well carry out the testing of air-
locks in a similar manner. locks in a similar manner. There should also be rules formulated for enabling the strains upon the air-lock shafting, \&c., to be easily reference to the strains upon the various parts of the whole he in this paper enters minutely, by question of the strains around the opening made in the wall of the cylindrical air-lock for the door, based upon the principle that a
cylinder with closed ends, under pressure from within, is mainly subjected to two strains, the one $\mathrm{P} \times \mathrm{R}$ acting circumferentially
and tending to split the cylinder wall vertically, and the second $\frac{\mathrm{P} \times \mathrm{R}}{\mathrm{Z}}$, or half the intensity of the first, acting at right angles to it -or in a direction parallel to the axis of the cylinder-where $\mathrm{P}=$ pressure on area of wall and $R=$ radius, from which is deduced
that if the frame around the rectangular doorway be of insufficient in all cases with either commence at the angles; and he advises that in addition to the framing at the side of the door, a ring of flat bar iron of a diameter equal to the diagonal of the rectangular door, and with a sectional area of $\frac{3}{4} p \times \mathrm{R} \times a$ (where $a=$ height of dooropening, and $k=$ unit strain) shall be rivetted to the wall of the
cylinder. This will take the main strains above alluded to. The pressure in addition to the above, acting upon the back of the door from within outwards, may be met by rivetting an angle-iron ring
on to the before-mentioned bar-iron ring. The author suggests that adoption of certain rules-of which the following is an abstract-with regard to the working of air-locks
and shafts might be of service, viz.: the iron to be of the best quality with a tensile resistance of $22 \cdot 86$ tons per square inch, and 21^{-6} tons per square inch with and across the fibre respectively;
cast-iron may only be used for the tubes, which, if subjected to pressure from within, do not exceed $12 \mathrm{in},-30 \mathrm{~cm}$.-in diameter, used for those parts subjected to vibration; pipes of brass or copper may not exceed 4in. in diameter; the coefficient of safety to be at least five times the strain; shaft-tubing, in calculation, to be
assumed as subject to occasional pressure from without. A manometer to be provided in each air-lock, also a plate affixed to the forter, giving the name of the manufacturer, the working pressure or which it is calculated, and the date of the trial test.
twelve months, while in use on the same works, the whole apparatus to be tested under a hydraulic pressure of twice the continued for at preassure. In testing, the full pressure shall be
minutes without producing signs of weakness, by the buckling of plates or escape of water other than
in the form of dew. The result of this test to in the form of dew. The result of this test to be entered in a than one thousand five hundred days, and in this amount the working time. During the second half of the above period the air-locks are to be used only in conjunction with the excavating chamber, in which the pressure does not exceed two-thirds of that
for which the air-lock was originally intended. As before remarked or which the air-lock was originally intended. As before remarked
after period of one thousand five hundred working days, a lock not under any circumstances be continued in use for high responsible person wopon the works of the number of working
hours, and the degree of pressure from day to day. Regarding the hours, and the degree of pressure from day to day. Regarding the
shaft-tubing, this may be considered serviceable for a period of five thousand working days, and a full allowance made for the are of a less not in work, as the strains to which it is subjected
character than those sustained by the are of a le
air-lock.
In conc
In conclusion the author especially urges the necessity of a
careful register of the working of the apparatus, in regard to the particulars above mentioned being imperative. By this means, disposed case of the apparatus at the completion of works being amount of wear and tear to which it has been subjected.
D. G.

RAILWAY MATTERS.

STrEL sleepers are being laid by the Midland Rzilway Company
on a mile of the main line at Kettering. The second reading of Mr. Mundella's Railway Regulation Bill
is down fifth in the orders of the day for the 19 th May A Rorist Cousprssion on railways and public works is to make The Midland Railway Company has opened the Teversall branch
for passenger traffic. Alfreton and Mansfild are the terminal for passe
stations.
Recext news states that the Singapore Tramway Company
expected to have some of its cars running by the end of April or beginning of May AT a meeting of the Institution of Civil Engineers of Ireland held on Wednesday last a paper by Mr. W. Greenhill, C.E.,
was read, giving a description of a creosoting yard for railway purposes. THE Midland Railway Company carried 383,909 tons of goods in
and out of Sheffield in 1870, and the Manchester, Sheffield, and and out of Sheffield in 1870 , and the Manchester, Sheffield, and
Linconshire line 52,60 tons. In the
tonnar 1848 the Midand
thad incered tonnage had increased to ,564, 197 tons, whilst the Manch
Sheffield, and Lincolnshire's total had fallen to 18,006 tons. THE Werribee Viaduct, the longest work of its kind in Australia,
has been tested. It is a lattice-girder structure, 1230ft. long, and has been tested. It it a lattiee-girder structure, 1230ft. long, and
125 F . above the level of the Werribee river. The bridge consists
of fifteen spans of 6oft. each and thirteen spans of 3oft., and cost of fifteen spans of 60 ft . each and thirteen spans of 30ft., and oost
£120,000. The Colonies and India says the test was highly Writive on freight cars drawn by electricity, Mr. John C.
Henry, of the Henry Electric Railway Company, Kansas City
Mo., writes to the Seientific Moo, writes to the Scienticif Amerrican as follows: :- "On January
$29 t h$, I hitched our electric car Pacinoti, to a Kansas City, Fort

 and started it without jerking on a 3 per cent. grade. 1 elaim the
distinction of being the frst to haul regular standard gauge freight
cars by eleotriciity, and would be pleased to have you record it." THE railway line to Tarsus, forming the first section of the
Mersina, Tarsus, and Adana Railway, was formally opened on Mersina, Tarsys, and Adana Railway, was formally opened on of the province of Adana, the British Viee-Consul, Mr. Collinson,
ovice.president, and Mr. Toss Taylor, engineer of the company, and vice-president, and Mr. Ross Taylor, engineer of the company, and
Sir Thomas Tancred, the contractor. Rails have now been laid for a distance of 56 kilos., and the line, the total legnth of which
is to be 6 kilos
kill be completed in about two months. Much rain having fallen in the district, the crops promise well, and the
first season's traffic over the rail way is thereforeexpected to be heavy. Two accidents caused by the failure of the vacuum brake
are reported this week-one in this country and the other on the
Continent Coostinent. A London and North-Western train came into collision
with the buffer stops at Sutton Coldifida, which it oompletely
demolished ; and the express train from Cologne to Paris posed of Northern of France Railway Compony's carriages, ran-
through the frontier station of Tergyier and left the line, after colliding with another engine. Various people were injured, aterd
Count Munster-the Cierman Ambassador to Paris-and his family Count nunster-the German Ambassador to Paris-and his family
had anarowescape. It is clear that the particular person who
must be killed before certain changes are made has still a future
befor before him or her.
me. MUNDELN 's Railway Rates and Canal Traffic Bill
mas Condemned by the railway servants in Mr. Mrand Mundelfac sown has been
-Brightside, Sheffield. The Midland Railway servants, to the number of 150 , have held a meeting at which they passed reso-
lutions against the Bill on various grounds, but chiefly beause it railway workers' wages, one speaker estimating then, of redection at
from 10 to 15 per cent. As the meeting was in Mr. Mundella's constituency, it was considered they could not very well ask him
to present a petition against his own Bill. It was therefore or present a petition against his own Bill. It was therefore
ordere to be sent to Mr. Howar Vincent, the Conservative
member for the central division. Herr benjamin vor Kallay, Minister of Finance for the
Empire, and Administrator of Bosnia and Herzegovnia, inaugurated the new line of rail betwen Doboj and Siminhan, in Bosnia, on
the 28 th
ult. The length of this line is 67 kilometres, and it was Borosch and Bafarhely. At Doboj the line croseses the Bosna over a handsome iron bridge 160 metres long. There are fourteen
stations on the way including the terminus. The first rail was
laid on May 1 1st, 1885 , laid on May 1st, 1885 , and a great part of the work has been done
by Bosnian villagers employed within their respective districts at tion of that which runs srom Brod, on the Hungarian frontier. It
will be carried on to Seraievo, and there meet the line which will be carried on to Serajevo, and there meet the line which will
go by way of Mostar and Metkovio to the sea. The Mostar Metkovic line was inaugurated last year. To Austria-Hungara a
railway crossing the whole of Bosnia has great military and comAccornirse to the return of accidents on Indian railways for the
third quarter of 1885 , just issued, about 700 accidents of all kinds are reported, more than a third of these being due to the presence
of cattle on the line-the most fruitful source of accidents in the country. On the other hand, only one railway servant was killed
and fifteen servants and passengers inured. The Rajupana-
Malwa railway has slain more cattl than is a high one at all times, owing to the long stretches of the line
unfenced. The Indus Valley State Railway-a wood-burning line -heads the list in fires on trains, the bursting of boiler tubes, and the failure of springs and machinery of engines. The casualities
to passengers from their own carelessenss, \&ce., amount to thirtytwo altogether, eight men being killed and twenty-four wounded. the discharge of their duty; while eighten outsiders com-
mitted suicide, and two were injured in attempting to do so. The grand total of people killed from causes of all kinds connected with
the working of trains is 105 , as compared to eighty in the corresponding quarter of the previous compared to eit eighty in the corre-
his death from causes beyond his own control one passenger met THE London, Chatham, and Dover Railway Company's new
bridge over the Thames at Blackfriars, which we have illustrated and described, and the St. Paul's Station-for both of which the
At was batained in 1881, but not commenced until March, 883 -
will be opand will be opened for traffic on the 10th inst. The Ohatham and
Dover Company will then have four City stations, vize, Holborn
Viaduct, Snow-hill, Ludgate-hill, and St, by seven lines on the new new and fourd lint. Paul's, which are served
latter was opened for traffic in June, 1864 . Twe old brige, which latter was opened for traffic in June, 1864. Two of the seven lines
on the new ridge will be carried on to Ludgate-hil, joining the
existing lines at as terminal passenger lines, and the remainder for engine or goods
sidings; whilst on the Surrey side there will be a quadruple junction with the old lines at Blackfriars Station, which has been
 6000 ons of iron in the bridge, which consistso of five arches, three
of which are of 185 ft . span, and two of 175ft. each, whilst the
 has a frontage of 135 ft . on Queen Vietoria-street, inmediately
opposite the Times office, and adjoins and communiaces with the
present Blackfriars Station of the District mates for the bridge, as originally designed for four lines of rails, were $£ 300,000$, but the widening has added considerably to that
sum.

NOTES AND MEMORANDA.
IN Greater London during the week ending April $24 \mathrm{th}, 3155$ births and 1765 deaths were registered, corresponding to annua
rates of 31.0 and 17.5 per 1000 of the population. Last week 320 births and 1837 deaths were registered, corresponding to annual
rates of 31.5 and $18 \cdot 1$ per 1000 . Mr. J. BuchaNAN has determined the thermo-electric power of
carbon, the value found being $e_{c}=-390-1.87 t$ C.G.S. units, carbon, the value found being $e=-390-1.87$ ch C.G.S. units,
and this shows that the place of carbon in the thermo-electric
series is between electric power of carbon was changed by keeping that substance a a moderately high temperature.
was read, "On the Equilibrium of a Fluid Mass in Rotation," by 1. Matthiessens. The author claims priority of discovery of the observed by the English geomentricians Tait and Thomson. He
refers to a series of papers ranging from 1845 to 1883 , in which he reters to a series of papers ranging from 1845 to 1883 , in which he
destribes the two rings and discusses the whole theory of these frms
IN London during the week ending April 24th, 2505 births and of population, the births were 283 , and the deaths 332 , below the average numbers in the corresponding weeks of the last ten years,
The annual death rate per 1000 from all causes, which had been 198 in each of the two preeeding weeks, declined to $18^{\prime \cdot}$, and was lower than the rate recorded in any week since the beginning of
the year. In London last week 2515 births and 1472 deaths were registered. The annual death-rate per 1000 was 18
The deaths registered during the week ending April 24th in
twenty-eight great towns of England and Wales corresponded twenty-eight great towns of England and Wales corresponded to
an annual rate of $19 \cdot 8$ per 1000 of their aggregate population Which is estimated at $9,093,177$ persons in the middle of this year Brighton, and Sunderland. The deaths registered last week in great towns of England and Wales corresponded to an annual rate
of $20^{\circ} 2$ per 1000 , estimated at $9,093,817$ persons. The six healthies places were Brighton, Hull, Bradford, Birkenhead, Sunderland and London.
Expreningsvs have been made on the cause of irregularities in
the action of galvanic batteries by H. V . Hayes and J. Trowbridge - Amer. J. Sci.- by means of an apparatus for photographing the deflections of a galvanometer needie. The authors tested a number of batteries, all variations of current being accurately registered Irreguarities were found to be caused by two separate actions,
diminution in the current strength, caused by the pores of the partition becoming filled with the base; and secondly, a diminution
of the acid at the positive pole. Both these difficulties are over come by making a partition of as large surface dimensions a AT the January meeting of the Russian Ohemical Society, tion into the thermic effects of dilution of sulphuric acid wigh water. The maximum evolution of heat and the maximum solution
 there exist at least five more or less constant hydrates of sulphurio aciid, as $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{SO}_{4} \mathrm{H}_{4} \mathrm{SO}_{5} \mathrm{H}_{6} \mathrm{HO}_{6} \mathrm{SO}_{6}$ and two more containing a large
amount of water, as $\mathrm{H}_{2} \mathrm{SO}_{4}+100 \mathrm{H}_{2} \mathrm{O}$. A mivision has been organised, under Major Powell, of the United States Qeoological survey, for inquiring into the geological States, with a view to their redemption and improvement. It is expected that by the year 1890 all available agricultural land will
have been occupied, and the tide of immigration turned from the rich frontier country to lands passed in the swift march westward can easily be drained. Similar lands in Nother square mile drained centuries ago, and now form the most fertile fields. The American lands are chiefly along the Atlantic seaboard and the valley of the Mississippi, swamps principally due to close-growing
flowering plants, especially common cane, which hold back the fowering plants, especially ommon cane, which hold back the
water, although the land has a proper incline of 2 ft . to the mile
Fen Sound there i has been easily and cheaply drained, asit mas only neeessary to
remove the dense mat of stems, roots, and deaying fragments remove the dense mat of stems, roots, and decaying fragments of
plants, closely interlaced, which prevented the speedy overflow of ppants, conl. A thorough survey is to be made so as to enable the Government to replace in the Public Do
which will then be open for settlement.
A PATENT recently taken out proposes to produce carbon dioxide
gas for liquefaction by having a solution of sodium bisulphate in a leaden container, and running into it some carbonate or bicarbonate drawn off over a drying mixture ine evolved carbon dioxide being is drawn for liquefaction by compression. Liquid carbonic acid, equal to 600 litres of gas at ordinary pressure, can be supplied for
one shilling. In using this for various purposes, it is proposed to one shilling. In using this for various purposes, it is proposed to
pass the gas that escapes after using over moist sodium carbonate, as a source of supply of the carbon dioxide. There is a bore hol near the village of Burgbroni, on the Rhine, which yields a consta supply of very pure carbon dioxide. This village is near the Lake
of Larch and the interesting volcanic district surrounding it, where there are a very large number of mineral springs and exhalations and has given a constant supply of gas amounting to about 2160 cubic metres per twenty-four hours. The Brewcers' Guardian says
apparatus has been erected for liquefaction of the dioxide, and this is now regularly carried on close to the bore hole. The water
which rises with the as is very cold, and is employed to compressing per minute into about one 1 litre of liquid. This is sent a way in
wrought irou vessels containing about eight litres. wrought irou vessels containing about eight litres.
A BRIEF abstract of the statistics of the manufacture of coke in Geological Survey, shows that in the rank of coke-producing States third, and Tennessee fourth. These four States hold the same rank as in 1884. The largest coke-producing locality in the country is the Connellsville region of Pennsylvania, in which was made
$3,096,012$ of the $5,106,696$ tons, or $60^{\circ} 6$ per cent. of the coke pro 3,096,012 of the $5,106,696$ tons, or 60 . 6 per cent. of the coke pro-
duced in the United States in 1855 . The second largest producing
district is what is called the Irwin- Thatrobe which lies Pennssllania RairIond, from Larimer to Blairsville, and is in part
the northern extension of the Connellsvill coking field. The number of establishments has slightly decreased. Part of thi decrease is due to the consolidatation of establishments, but chiefiy-
to the abandonment of works of but little importance. The num-
ber of owens in 1855 is
Wor, an increase of $559,2 \cdot 8$ per cent. There are, however, only about half the number of ovens building at the close of 1885 that there
were at the close of 1884 . While the production of 1885 has incerease iover that of 1854 , it is not as great as in 1883 , the pro-
duction in 1855 being $5,106,696$ tons, as compared with $4,783,805$ tons in 1884, and $5,464,721$ tons in 1883. There was no increase in the value per ton of this coke in 1885 over 1884, nor has there been value in 1885 over 1884, owing to the larger amount of coke pro-
dued increased somewhat during the past year, it standing at 63 per however, was given as 64 per cent., the hrgest averace yield of

MISCELLANEA.
The Bath and West of England Society's show next year will be ON Saturday two unusually large ropes were despatched by
Messrs. George Cradock and Coo, Wakefield, weighing each about 24 tons, and being respectively 8400 and 8300 yards.
IT is said some very likely looking specimens of quartz have been
found at a reef not four miles from Latrobe, Tasmania. The quartz is similar to that found at Beaconsfield, and is heavily

An exhibition of fire extinguishing apparatus was opened at the Aquarium, but there are not many noteworthy exhibits, except a clumsy escape that distinguished itself by its unwieldiness, even on
boarded floor, and extinguished itself by tumbling over and killing a man
The Bath and West of England Society's Show will be held on
the Durdham Downs, at Bristol, from the 2nd of June till the the Duraham Downs, at Bristoi, rrom the end of June slendid site has been
following Monday evening
Here The entries for implements are in numbers extremely favourable. The Royal Agricultural Society's Show will be held in July at department a total length of $10,812 \mathrm{ft}$. of shedding has been will be found to be lower than for any of the four previous shows Until the Society behaves better to the agricultural engineers, it will continue to decrease, and engineers, even those who do not
want trials, are saying that the shows are yearly less service to without trials.
The following having satisfied the examiners at the examination Surveyors in London on the 16th and 17th ult., certificates of comMessrs. J. A. Angell, of Leytonstone; H. Assmead, Clifton;
 Skelton-in.Cleveland.
AN American paper says, a new form of tin called by the inventor, special treatment of tin. It has all the good qualities of the latter, can be pressed into any shape, or cast into statuary, or used for
plate ware of any description. A beautiful bronze colour can be plate ware of any description. A beautirul bronze colvur can be nd as it does not in the least corrode, it is specially valuable as a silver solder. It melts at a temperature of 432 deg., or 18 deg. less.
than tin. We are not told what alloy it is or what process is adopted. A RETURN issued by the Marine Department of the Board of Trade as a Parliamentary paper shows the number of lives lost in
steamers belonging to the United Kingdom by casualties at sea during the years $1183 \cdot 4$ and $1884-5$. The total number of lives lost in steamers during the year 1884-5 was 707 , as compared with 614
in the year before. These 707 lives are accounted for thus-by founderings, 121 seamen and 1 passenger; by missing vessels,
388 seamen and 10 passengers; by strandings, 46 seamen and 4 passengers; by collisions, 74 seamen and 23 passengers, and from
other causes, 37 seamen and 3 passengers. The number of missing teamers in $1883-4$ was 11 , and in $1884-5$ it was 16 .
THE mining owners of Ostraw Rarwin have decided to offer a prize of
dents in iring and blasting in dusty or gaseous coal mines, or ren-
dering the operation harmless. The invention should fulfil the dering the operation harmless. The invention shou, or explosion should not cause the coal dust to ignite. (2) It should notp phace methods heretofore employed. (3) No specially difficult, dangerous long preliminary arrangements or complicated apparatus should be required in using, setting up, loading, transporting, or lighting.
4) Should not by its use and result be much more expensive than the former blasting methods. Applications should be sent before
the end of 1886 to the K. K. Berghauptmannschaft at Vienna. The ordinances, of the Plumbers' Company, dating from A.D. The observance of this ordinance has continued unbroken since that date, and by reason of St. Mark's Day falling this year upon
Sunday, arrangements had to be made for holding the meeting upon the Bank Holid ay, at the Guildhall Tavern, Gresham-street,
which was opened specially for the purpose and among the aged women admitted to the annual pension and relieved by a grant of $£ 55 \mathrm{~s}$. was Charlotte Hardcastle, who pro-
duced the indentures of apprenticeship and freedom of her father, a liveryman of the comppany, dated 1765. The quarterly returns of Ireland-numbering 3000 plumbers in various parts of the kingdom -were submitted to the court, with a communication from the general secretary, expressing the satisfaction of the executive
council of the association with the system of registration estathe Plumbers' Company.
The spring meeting of the American Society of Mechanical Engineers will be held in the city of Chicago, Ills, on the 25th-29th
inst. Besides excursions and visits of much technical interest, the
 ing," Wm. O. Weber, "Relative Efitieiency of Centrifugal and
Reciprocating Pumps," Horace See, "Production of True Crank
Stand Chas. W. Barnaby, "New Steam Engine Indicator;" F. G. Coggin, "Novel Chimney, 'Staging;" Thos. S. Crane, "Water Purification
"or Manuacturing and Domestic ".onsumption," ". T. Towne,
" The Engineer as an Economist;" H. Metcalfe, "Shop Orders
 Melting in Open Hearth Furnaces ;" Wm. P. Trowbridge, "Venti-
lation by Heated Chimneys and Fans;" Thos. D. West," "Irregularities in Contraction of Duplicate Castings;" C. M. Gidaings,
"Dynamometer for Measuring Power Required to Move Slide Valves;" J. H. Cooper, "Graing Handling in Californa," In some reorganisation in
effected, it might te able to present such a progr ins as this,
THE annual report of Mr. G. B. Jerram, A.M.I.C.E., surveyor which have been executed for the completion of the drainage of the district and disposal of the sewage. The works include
underdraining of about 35 acres of land, the construction of 1 mile 180 yards of concrete and earth carriers for the distribution of the effluent water over the south-westerly portion of the sewage farm,
so that now over 100 acres of land of good and suitable soil are availso that now over 100 acres of land of good and suitable soin ane ave
able for the purpose of deodorising the sewage, in adition to the two miles of open carriers before it is dis ham Brook. The works also comprise the erection of brick mixing ing the chemicals, and antomatic arrangements whereby the varied oow of the sewage regulates the inflow of the proper amount of Machinery has been made to effect a more convenient disposal of the virgin soil at the rate of one acre a month, and there dug or ploughed into the land at the southe-easterly portion of the farm. passing on to the sewage disposal works, $4 \frac{4}{3}$ miles of surface water
sewers have been constructed. Over five miles of sewers have seenc nave been constructed. Doer ina of the northern and
bees constucted to provide for the drainage of tion of Higham Hill and other areas,
EXPRESS PASSENG_ER ENGINE, HUNGARIAN STATE RAILWAYS. (For decerription sec page 352.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER,

CONTENTS.

The Enginger, May 7th, 1886.

 Collingwood-The Indian and Colonial Exhibition Weil $\ddot{\text { ecked }} \ddot{\text { and }}$
The Pay and Position of Draughtsmen-The Safety of
Steamers-Italian Competition-A Railway Accident in South Australia
$\begin{gathered}\text { Literature } \\ \text { Books Recerven }\end{gathered}$
 IN PIPES
THE NEW
TRIAL OF G \qquad Tha Pregrrvaiton or Timber
THE TEMPRAATURE oo THE Moon Aaviches And mberes
Ame Iron, Coal,

N, AND AND GEMER GËL DISTRICTB
Notes from Lancoshrie
Notes from Shefyield

NEW COMPANIES
The PATENT Jovr
SELECTED ATERIC
Belected Amerinan Paitents.
Parabaphs-Society of Engi
Clyde, $852-$ The Royal Agrinultural Society, 363.

TO OORRESPONDENTS.

Registered Telegraphic Address-"ENGINEER NEWSPAPER,
** All letters intended for insertion in Thr Enginerr, or containing questions, must be accompanied by the name and address
of the writer, not necessarily for publication, but as a proof of good faith. No
communications.

* We cannot undertake to return drawings or manuscripts; we **ust therefore request correspondents to keep copies. In order to avoid trouble and confusion, we find it necessary to
inform corvespondents that letters of inquiry addressed to the inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all pubic, and intended for insertion in this column, must, in all
cases, be accompanied by a large envelope legibly directed by the
writer to himself, and beaving a 1d. postage stamp, in order that writer to himself, and bearing a 1d. postage stamp, in order that
answers received by us may be forvarded to their destination. answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply No notice will be taken.
with these instructions.
Phos.-There is nothong to prevent any one from woriting C.E. after his
name. Chafr cutrer. - Letters on transmitting pover still await the application of
82\%=
 $=2=2= \pm=$ STATICS OF BRIDGES.
To the Editor of The Engineer,
simainuad

PLANT FOR COMB MANUFACTORY.
(To the Bditoro of The Engineer.)
Sir,- We should feel much obliged to any of your readers who would
be good enough to inform us where we could obtain a quotation for the
plant necessary to install a small comb manufactory?
C. AND L. plant necessary to in
London, May 5th.

Spezia of the fact that while our steel projectiles, especially in some respects, need attention, our heavy guns are second to none; indeed, we believe them to be now rather in advance of any. In another issue our readers will find a list of the 100 -ton and 105 -ton guns now being made, or made, for Italy. Some of these are nearly ten years old. They have fired projectiles with enormou energy, and with the exception of one of the first guns drawing asunder, without injuring any one seriously no kind of accident has occurred. We are all waiting to see what Krupp's 120-ton guns will do. They seem to hang fire. Up to this point no other nation has publicly pod are had for ten years past. Of course our heavy guns form only one phase of pall that previn far bohind Krupp's breech-loading guns Even thepping far behi K Kpp's bred bing time we had experimental breech-loading guns equal to a serious matter, and we have had accidents, happily almost entirely without loss of life-these accidents being chiefly of the type of the one now before us. If our bad way, they must be disheartened, we fear, about all our
bay bad way, they must be disheartened, we fear, about all our armament, for except perhaps

the indian and colonial exhibition

On Tuesday her Majesty the Queen opened the Indian and Colonial Exhibition with much ceremony and state. The weather was all that could be desired, and the attend ance was very large. The daily press has left nothing undone to render the Exhibition a success; and we have no reason to doubt that it will prove very attractive. But it is only necessary to walk through it to see that many of the statements made concerning it are, to put things mildy, statements in advance of the facts. In truth, the Exhibition is unable to give any adequate idea whatever of the importance of the countries which are supposed to represented; or of the magnitude and dimensions of their industries. Nothing of engineering interest is to be ond at South Kensington-at least, nothing sent from broad. There is a magnificent collection of photographs, and these, and these alone, give an idea of the work that has been done by engineers in our Colonies. It is imposible for any intelligent person to examine the contents of he building with care, and not to arrive at the conclusion that if the things exhibited really indicate the nature and magnitude of the industries carried on, then our Colonies re thery ind example, the great gold-mining industry of Australia. It is represented solely by certain pyramids and columns of gilded wood, intended to represent the bulk of the gold obtained during certain periods; and by a collection of quartz and other bold be pitd to deconce the ignorant who might be sceptical as to the truth of the ignorant what then gold. It might have been worth while, we think to have shown a stamp mill and a set of mining machinery employed in working gold-bearing quartz; but nothing of the kind is to be seen. The enormous wool industry of the country is represented by a few fleeces under glass cases. The same statement holds good in substance of all our Colonies.
If we regard the Exhibition as a temporary ethnological museum, there is more to be said in its favour. Great credit is due to those who have devised and arranged the multiplied and glorified reproduction of the now antiquated groups of savages and animals, which at one time formed, we believe, a great attraction at the Crystal Palace. Just inside the entrance to the great hall is a wonderful jungle scene-wonderful in more ways than one. Within a comparatively small space, intended to represent the primeval corest, are crowded together as many stuffed beasts, oirds, and reptiles as could be got into it. We need hardly tell our readers that nothing can be more unlike nature than this assembling together in one little spot of bears, panthers, anacondas, elephants, tigers, crocodiles, alligators, goats, peacocks, tortoises, and parrots. The figure of a half-naked
native stands in one corner, with his hands raised, and his mouth and eyes wide open, astounded, as well he may be, at the wonderful sight before him. We do not wish to speak severely of Mr. Ward, and we state with pleasure that the stuffing and the grouping of the animals, \&c. \&cc., is admirable; but the whole affair lacks scientific interest of any kind. It will, of course, address itself to the populace, and by them it will be keenly appreciated; yet we venture to think that by more
judicious treatment a more valuable result would have judicious treatment a more valuable result would have been obtained. In the Indian department groups have been arranged and indian shops fair the which would in Bombay invest, let us say a volue East-East-end greengrocer's shop, with an effigy of the greengrocer standing in the midst of wax and plaster cabbages and potatoes and oranges; while another engy wassupposed to ask the price of the commodities before him. All this is a low type of art, and when we are told that such things give a full idea of the life of a great Indian city, we cannot resist a smile. Such things are admissible in their way and have their uses, but the men who write about them in terms of fulsome praise shallowness, or their insincerity. The great building which occupies the site in front of the principal entrance to Old London is the most interesting, and the most valuable thing in the whole Exhibition, because in it real natives are to be seen carrying on their various handicrafts. A family may be seen seated in a row in front of the loom or frame on which they are weaving one of those wonderful carpets which are the admiration and despair of our own carpet manufacturers. In another place may be seen the copper worker producing wonderful results by indomitable patience, with the aid of half a dozen rude tools, a ferw
scraps of charcoal, and a goat-skin bellows. Here a
great deal is to be learned, but there is far too little of this in the building. We see results, but the evidences of the means by which those results are brought about are wanting. The main south gallery has been fitted up from end to end as a huge bazaar for the display
and sale of Indian wares. The shops extend so far out and sale of Indian wares. The shops extend so far out
from each side that only a comparatively narrow roadfrom each side that only a comparatively narrow road-
way is left between them, while from the roof depends a multitude of flags of all colours, arranged apparently at haphazard, without regard to congruity, and so dwarfing the hall in height at to produce a perfectly disastrous effect. The incandescent lamps, which, arranged in rows along the roof, have at other exhibitions rendered darkness lamps, which are pleasing in design, even if they are unsatisfactory in performace as the manner of the lighting is effected by Crompton arc lamps of enormous dimeusions, which differ from the Brush lamps in that while they burn very steadily, they are without exception, more hideous in design than any are lamp yet produced, and this is saying a great deal. The
power required for lighting the inside of the building power required. for lighting the inside of the Duiding
will be supplied this year exclusively by Messrs. Davey, Paxman, and Co., of Colchester, who have entirely rewe shall illustrate in an early impression. The Siemens dynamos and Goodfellow and Mathews' engines, which worked with doubtful success last year, and now form the subject of a lawsuit between the makers of the engines Arcade. The whole of the lighting outside will be done by Elwell-Parker dynamios, driven by two fine compound engines by Messrs. Galloway. New and very elaborate under Sir Francis Bolton's directions; and no stone will be left unturned to render the summer evenings spent at
South Kensington yet more pleasant than those of last year
The Indian and Colonial is the last of the series of annual Exhibitions, Some years ago a similar series on a when it died a natursed and worked for a few years, cannot pretend to feel rest the next October There has always been something mys terious about these Exhibitions; no one knows who really "runs them "-to use an expressive American phrase;
what becomes of the money received; or, indeed, anything what becomes of the money received; or, indeed, anything at all about the commercial aspect of the undertaking The Prince of Wales, we may rest certain, is perfectly sincere in his desire to make them valuable and interesting, and if he was not satisfied that everything was straightorward and above board he would not lend his name, or themselves to thank if, as we have said, an air of myster pervades South Kensington. After all, however, it is becomes of the money. So long as the public have full value for a shilling in the way of entertainment it need not be too curious; and that it will have full value this year there can be no doubt whatever.
the pay and position of draughtsmen.
For some weeks past we have published a number of letters, of which the earlier dealt with workshop drawings, their successors by a natural transition referring
to the title we have chosen for this article. We have given insertion to these letters, not because they in themselves contained anything new, nor because we expected that their publication would elicit others which would. The truth is, that the topic is trite and well-worn, and we have given publicity to our correspondents' views simply students students and pupils, Two points are involved, namely,
the advisability of making proper and complete drawing and, secondly, the qualifications, pay, and position o draughtsmen. As regards the first of these, every line of the letters dealing with it shows the writers to be enthusiastic, and, therefore, probably young. There is a total absence-if we may venture to say so, without the faintest
desire to hurt the feelings of our correspondents-of perception of the forcible truth of that to which a successful man attributed his success. "I never took the world," said he, "as it ought to be; I invariably took it as it is," In some respects we agree with the views and sug-
gestions made by "R. G. H." as to the method of getting up working drawings. Where a new tool or machine is being schemed out, of which a great number is to be made, and for which a set of standard drawings is required; or in the case-a rather rare one-where a
very large and expensive machine, such as a crane to lift great weights; a caisson; a floating dock, \&c., are in hand, the drawings ought to be got out with great elaboration. But in such examples the magnitude of the
work will admit of the cost, and imperfect drawings work will admit of the cost, and imperfect drawings
may entail very heavy avoidable expenses. For general may entail very heary avoidable expenses, For general
average drawings such elaboration is unnecessary; it causes needless expense, and is just as likely as not to defeat the object in view, and by excessive complexily
confusion. Nothing will compensate for a lack of simplicity in a drawing; and this lesson is the one most slowly earned by young draughtsmen. They enter a drawingenthusiasm. They cannot, or will not, approach the simplest question involved in their work without going asked to calculate the proper length of lever for a safety valve, all other data being given, he will cover sheets of paper with equations, and probably, after some hours
weary work, bring out a result altogether wide of the thing required. An excellent example of this was supplied by Mr. Macfarlane Gray, in a discussion before the Institution of Naval Architects. He spoke of a man who sent in six in a three legged stool, and this not in joke, but in perfect sincerity.

We cordially agree with our correspondents that things might be better done in many drawing-oftices, but then that is not the affair of any person save the "powers that be." When, as we hope for their own sakes
may soon be the case, our correspondents who hold these views come to have works and a staff of their own, they will perhaps view things differently. Some of our correspondents make complaint of managers
and foremen, and of their intense desire to have their own way th and ther intense desire to have their sme desire and faithfully to put in shane the have to do is zealously and faithfully to put in shape the ideas of their employers, and if they begin by doing this in a proper manner, of thats, when they have gained the confidence of those over herw, lif tay, in a wico ad wode out a pohb and they will be listened to way carying cussion on the poin will be histe the will learn, a dis ching The postion of presi they will learich mehing. The question of practical rersus theoretical me hold its own wiews. Poth have weful duties to fulfit and the draughtsman who is wise will twy to concilint and the draughtsman who is wise will try to conciliat can give him invaluable information not to be learne in college or the office; and our experience of these heads of departments is that they are always ready and willing to give information and explanations to pupils or draughtsmen
the proper spirit.
There is one misleading feature about some of the letters we have published which two writers seem to imply that the entire onus of the successful construction of a machine is thrown upon the shoulders of the particular draughtsman making the drawings. This is not correct. In every office having the smallest pretensions to be properly conducted, both the works manager and the foremen are consulted about the arrangement of details, so as to insure inexpensive production as well as correctness from a practical point of view As to the pay and social position of draughtsmen, these are points which no amount of paper and ink discussion
can ever settle. Like all other industrial questions, it is simply one of supply and demind If manufacturers ar so blind to their own interests as to prefer incapable men because they get them at low salaries, why that is their
own affair. One or two of our correspondents give, them selves, the remedy for the evils complained of, namely, to get out of the drawing-office as soon as anything better offers.
the safety of well-decked steamers
The reference to the question of the freeboard of well-decked teamers in The Enginger gives interest to the statement of the experience of one of the clubs for mutual insurance in the porth-east which has been formed two years ago or so for the iarge number of vessels, and for the two years ending with 1885 its experience has been shown is series of tobes which indicate the vessels lost and the causes of the loss. In the two years there were 59 losses through stranding; 29 through colinsion; 4 missing, and 2 foundered. The vessels lost
through stranding were of 66,453 tons; the tounage varied from 391 to 1886 . Those lost throush collision were 30,891 tons in
the total, the vessels varying from 360 tons to 1826 tons. The miessing vessels had an aggregate tonnage of 2539 ; and they oundering included two vessels of 807 tons and 664 ton respectively. Cases of collision and stranding are those in
which any blame for the occurrence is not attributable to type of vessel ; and hence it is of interest to notice that 93.6 per cent. of the vessels lost were lost through these causes, occasioned by causes to which the type of vessel may or may not be contributory. The percentage of the tonnage is more in avour of the vessels; 96.04 per cent. of the losses in tons being
attributable to the stranding and collision cases, and the remaining 3.96 per cent. to the cases of vessels missing and insuring equally vessels " "well- Tecked" and others not of that type, and managed in the same town or district, has been compared, and the results have been declared to be satisfactory to the owners of the well-decked type. We need not, however enter into that comparison here, as it is needless to enter int the question of the merits of the two types of vessels, The lost through stranding and collision of some hundreds must be taken as a proof that the larges part of the loss of this type of vessels, at least at sea is due to causes over which the owners cannot be said to have any contro, care of officials for they are out of their control, and under the Trade vouches. It would be an interesting feature if the experience of the great assurance clubs and companies could in alike manner be tabulated and published. We are far from lessen the loss of life and property at sea ; but one reason is the there is no endeavour to gather together the teachiogs of the experience of the past, nor to indicate and group the records
which show in individual casss the type of vessels lost, the causes, the states of the weather, and other particulars, In the cases of mine explosions we have this done yearly, and the elaborate statements of the mine inspectors from year to year,
the record of the loss of life, the nature of the accident, and the variations of these from year to year form part of a valuable endeavours to crapple with the various kinds of sceid how the been productive of good. We need something of the same kind in relation to losses at sea, and especially the information as to the type of vessel and the material. On this line the return thus of value and may lead to the obtaining of fuller and more general information.

itafian competition.

SIICE it was arranged by the Italian Government with Sir W G. Armstrong and Co. that the latter firm should put up a new engineering factory in taly, a somewhat similar understanding
has been arrived at with Messrs. Hawthorn, Leslie, and Co. An order has also been given them for the engines of an ironclad
the value of which will be very considerable, and will keep the works at St. Peter's occupied for a considerable length of time.
This policy of the Italian Government, harmonising as it does
with that of most other foreign Governments, indieates in
tentions which cannot but fill all connected with industrial operations here with concern, if not alarm. It may suit the pockets of the owners of first-class engineering works in Englan
oo pl nt competing works in countries which have hitherto our best onsting wis countries into skilled labour, and to attract thither some of the best engineering and operative talent from-this and othe countries. They may have such an immediate and heavy proft in view as to make secure their own fortunes, and they may not concern themselves with the effect on other people's interests, or worth while to pause for a moment and consider what thi policy will lead to from a national point of view? The Italia Government are avowedly "giving a sprat to catch mackerel." They are buying not only engines, ships, and but they are offering "messes of pottage for British birth rights, and are succeeding in bringing their offers to business. Indeed, to speak the truth, the holders of "birthrights" seem to be keenly competing whin one another as to who shall most folly and completely part with them for the coveted "messes pottage." Englishmen generally are complaining bitterly jus ducts formerly supplied by us ; and not only so, but they wil send their supplied undersell us there. Nevertheless, there are other Englishme doing their best to expedite a precisely similar change, and make it complete, with regard to one of the few importan foreign customers still left to us. Perhaps all this is unavoid able. Perhaps, if Englishmen did not turn instructors and
organisers and suppliers of capital to foreigners, in order that the latter should learn to do without them, and even compet with them, perhaps Germans or Americans would do it, and pocket the profit attached to the business. Perhaps it is an inexorable logic of events." It is highly probable that most o those who complain the loudest about the loss of our foreign trad and the competition of foreigners in neutral markets, would do as the above-named eminent firms are said to be doing in Italy, tion. Be that as it may, it is surely not unwise to look for moment before these leaps are fully taken, rather than suffer he consequences quietly to mature themselves, and then com plain bitterly that Italy also has ceased to be our customer
rallway accident in south australia.
IT would seem that our Colonial relatives are in a better position than many of their friends in England when enjoying excursion train containing over 400 passengers was placed in
imminent peril near Adelaide, and that but for the Westing ouse brake pleasure seekers and their friends were no doubt duly grateful,
nd the Government also are probably congratulating the and the Government also are probably congratulating them selves on having recognised their responsibility in not permitting
such valuable freight to be carried without proper safeguards It may be that in a new and rising colony human beings are more valuable than in our own overcrowded country, bu there are still numbers of trains in this country equipped with very inferior appliances which on long trains would be of comparatively little use in great emergencies. It is chiefly, per-
haps, on long excursion trains that the want of prompt and imultaneous action can be best illustrated, and at the most terrible cust, and it was no doubt owing to the singular posses解 the above accident was averted. In the midst of many changes
the laws of the universe remain fixed-at all events, for the present; and for so long will pressure brakes excel vacuum brakes in rapidity of action, and consequently in their superior capacity for saving life in those emergencies which are, and wil
do doubt continue to be, the accompaniments of the eve noreasing growth of our railways.

LITERATURE.

1 Concise Dictionary of the English Language. Literary, Scientific, Etymological, and Pronuncial. By Charless A
DALE, M.A., LL.D. London: Blackie and Son. 1886 .
This dictionary is based on Ogilvie's well-known imperial dictionary, and seems to be comprehensive. We may perhaps, be permitted to judge to some extent of efliciency by reference to words of scientific employment Numbers generally satisfactorily explained. Acceleration might however, have received a more precise and scientific definition -"the act of accelerating or state of being accelerated ; increase of velocity." Adiathermic is given "momentum." Ohm's law is not quite satisfactorily explained as " an important law referring to the canse that tend to impede the action of a voltaic battery." It is not, however, fair to judge of excellence from this poin tionary for general use, well printed in clear type

BOOKS RECEIVED.

Statics and Dynamics for Engineering Students. By Irving P.
Church. New York: J. Wiley and Son. London: Tribner and Church.
Co. 1866
The Cos
 ment, U.S.A. New York: J. Whey and London: Mrubne
and Co. 1885. Questions for the Day-No. XXXII.- Modern Armour for
National Defence. By W. H. Jaques, Leut. U.S. Navy. New York: G. P. Putnams Sons, 1886. Paper.
Earthquakes and Earth Movements. By John Milne. London:
 Builderg' Work and the Builders' Trades. By Col. H. C.
Seddon, R.E. London: Rivingtons. 1886 . ATreatise on Belts and Pulleys. By J. Howard Cromwell,
Ph.B. New York: Wiley and Sons, London: Trübner and Co Minutes of Procedings of the Institution of Civil Engineers.
Vol. 1xxxiii. Edited by James Forrest, Secretary. London: The Institution. 1886.
Rudionents of Mincralogy: A Concise View of the General
Properties of Minerals. By Alex. Ramsay, F.G.S. Third edition.

ON AN UNNOTICED POINT IN DARCY＇S EXPERIMENTS ON FLOW IN PIPES． By Professor W，C．Uniwin
Probably no series of experiments ever produced so reat an effect on hydraulic science as the experiments of Darcy on flow in pipes－unless；perhaps，we admit as the exception Mr．Froude＇s experiments on the resistance of bodies towed in water．But as regards the whole know ledge of flow of water，although many experiments have been made since－some on a larger scale than Darcy＇s－ they have hardly done more than slightly correct the numerical co－efficient of resistance for certain cases．For all practical purposes the observations of Darcy remain the standard of comparison for all later experiments，and every attempt at advance in theory has been made to rely on Darcy＇s observations for confirmation．In no other experi－ ments have the conditions modifying the laws of flow been so varied ；no other experimenter has shown equal insigh riginality of method．M Bazin has indeed equal riginality or method．A．Bazin has indeed completed Darcy＇s work with assiduous labour and marked ability The extension of Darcy＇s methods to observations on th flow in open channels is important，no doubt．But the
later work has led to no such important advance，either in nethod or in generalisation，as the earlier researches in method or in generalisatio
Darcy＇s＂Memoir＂of 1857
It is somewhat singular，therefore，that a curious and nexplained anomaly in Darcy＇s experiments has，so far as which Darcy experimented were notice．The pipes on which Darcy experimented were generally about 115
metres in length．The loss of head due to the resistance of the pipe was measured at five pressure columns．Two resent purpose be ignored．The other three were placed No． 3 at about 4.7 metres from the inlet to the pipe，No． at 50 metres beyond this，and No． 1 at 50 metres beyond No．2，and near the discharge end of the pipe．Hence， ${ }_{2}-3$ each represented the resistance of 50 metres of pipe According to all rules of hydraulics these differences of
level should be equal，and Darcy states that he expected they would be so．The middle pressure column was therefore used as a check on the other two．When the difference of level 1－2 and 2－3 was not nearly equal，it was insumed that air in the pipes or some other cause wa interfering with the How，and measures were taken to remove the obstruction；when the two differences of height were nearly equal the experiment proceeded．That possible accidental differences of diameter in the two 50 metre lengths to which the pressure columns were attached．On this it need only be observed at present that accirental differences of diameter would distribute them－ selves sometimes in one 50 －metre length，sometime in the other．Out of twenty－two pipes experimented on，it could not accidentally happen that the smaller pipes were always put in the second 50 －metre length and the larger in the first．Yet in Darcy＇s experi－ ments the greater piezometric difference is almost invari ably between pressure columns 1－2，and the less piezo－ metric difference between columns $2-3$ ．Further，in the case of the drawn lead pipes and the wrought iron gas
pipes，it is nearly impossible to believe that there could have been the difference of diameter necessary to explain the difference of the pressure column heights
The following table contains the difference of head lost between pressure columns 1－2 and that lost between pressure columns $2-3$ ．Wherever the difference $2-3$ i divided into three parts，the first containing experiment with heads less than 0.1 metre where the measured are so small that irregularities in the quantitie may be taken to be accidental and without simnificance In the second part are the experiments with heads of from $0 \cdot 1$ to 6 metres，measured with the water pressure columns In the third part are the experiments in which the head were over 6 metres，and were measured with mercur columns．
The lead pipes had piezometers at 25 metres distance and the glass pipe piezometers at 22 and 23 metres．Fo comparison Darcys numbers are reduced to equivalent numbers for 50 －metre distances，

Difference of Head Lost in two Consccutive 50－metre Lengths between Gauges 1－2 and 2－3，in metres of Water．

Total head lost．	Drawn wrought iron．			Glass．	$\cdot 014$	Lead．		New cast iron．			$\begin{aligned} & \text { Old } \\ & \text { cast } \\ & \text { iron. } \end{aligned}$	$\begin{gathered} \text { The } \\ \text { same } \\ \text { cleaned. } \end{gathered}$
Diameter of pipe．	0122	0266	－0395	01968		027	$\cdot 041$	0819	137	188	2432	2447
Less than 0.1	$\begin{gathered} 001 \\ 0 \\ - \end{gathered}$	$\begin{aligned} & \cdot 003 \\ & \cdot 006 \end{aligned}$	$\begin{aligned} & .002 \\ & -010 \\ & .001 \end{aligned}$	$\begin{array}{r} \cdot 02 \\ \cdot 010 \end{array}$	$\begin{gathered} 012 \\ 0 \end{gathered}$	$\stackrel{0}{0} \cdot 04$.002 －	$\stackrel{0}{0} \cdot \stackrel{ }{\cdot 007}$	$\cdot 011$	$\begin{array}{r} \cdot 001 \\ -.005 \end{array}$	$\cdot 004$	$\cdot 002$
Between 0.1 and 6 metres．	001 0019 002 009 0.150 150 114 107 107 150 102	.016 .025 .027 .040 .074 .052 .076 .081 -	$\begin{array}{r}-010 \\ -012 \\ .022 \\ -015 \\ -057 \\ -078 \\ \hline\end{array}$	－ 014 .050 － 081 － 220	$\begin{array}{r} .004 \\ -006 \\ -034 \\ -.066 \\ 0 \end{array}$	$\begin{array}{r} -.008 \\ \hline .012 \\ 024 \\ .060 \\ - \end{array}$	-018 -074 $\cdot 220$ $\cdot 482$ 0	$\begin{aligned} & \hline .002 \\ & .015 \\ & .020 \\ & .035 \\ & .048 \\ & .0615 \\ & -.105 \\ & .164 \end{aligned}$	－ 015 － 027 － 080 － 135 － 198 － 472 \qquad	-008 -065 .060 .070 .100 -428 -	-006 -003 -020 -030 -040 -065 -	－008 －025 －035 －035 －050 － 333
6 metres to 18 metres．	$\begin{aligned} & -\cdot 062 \\ & -134 \end{aligned}$	$\begin{aligned} & -.078 \\ & -.021 \\ & -.492 \end{aligned}$	$\begin{aligned} & \cdot 239 \\ & \cdot 407 \\ & \cdot 446 \end{aligned}$	二	－	二	二	-193 +199 -220	$\cdot 818$	－ 455	$\cdot 327$	－

Here，tabulating the whole of the results，we find
Head lost between 1.2 greater than betwee

Or taking as the most reliable the experiments betwee 0.1 and 6 metres，where the loss of head was measured with the water－gauge，
Head lost between 1．2．2 greatest in
${ }_{6}^{66}$ experiments Equal in both lengths
Hence it is clear that in eleven cases out of twelve in Darcy＇s experiments more head is lost in the second
50 －metre length than in the first，counting from the inlet

Difference of Loss of Head in two Conscoutive 50－metre Lengths in Perrentage of Head Lost in 50 metres．Diameters given
beneath Heading of Column．

Drawn wrought iron，new．			$\frac{\text { Glass. }}{0.04968}$	Lead．			New cast iron．			$\begin{gathered} \text { Ond } \\ \text { irist } \end{gathered}$	
0122	． 0266	－0395		014	$\cdot 027$	041	－0819	137	$\cdot 188$	－2132	2447
$2 \cdot 6$	$6 \cdot 3$	5.8	7.7	$9 \cdot 3$	-2.0			13.5			
6.8	$4 \cdot 8$	$3 \cdot 6$		-4.7	1.0	$6 \cdot 2$	5\％5	$8 \cdot 3$	${ }_{8.3}^{4}$	1.2	$4 \cdot 2$
0.5 10.4	${ }_{2}^{2 \cdot 7}$	3.4 3.7	-6.5	－1．1	0.9	$7 \cdot 5$	3.8	$12 \cdot 0$	8.5	$3 \cdot 4$	${ }_{3} \cdot 4$
10.4 10.9	${ }_{3}^{2 \cdot 5}$	$3 \cdot 7$ $3 \cdot 6$	8.5	$1 \cdot 2$ 0	1.1 0	${ }^{8} 8$	3.1 3.0	${ }_{11} 11 \cdot 3$	$\stackrel{6.0}{5.1}$	${ }_{2}^{2 \cdot 6}$	${ }_{2}^{2 \cdot 5}$
6.3	1.6	$3 \cdot 5$	二	－	0	－	${ }_{3}{ }^{3}$	11.9	${ }_{7} 5$	2．${ }^{1}$	${ }_{5}^{2} \cdot 7$
$4 \cdot 7$	$1{ }^{1.5}$	＝	－	－	－	－	－2 2	$9 \cdot 1$	－	$\underline{-}$	$\stackrel{\square}{-}$
＋${ }_{2} \cdot 6.6$	$1 \cdot 5$	＝			－	■	$3 \cdot 3$		－	－	－
Mean 5．5	$3 \cdot 0$	4.0	4.7	0.4	$0 \cdot 2$	$5 \cdot 3$	$2 \cdot 6$	10.9	${ }_{6} \cdot 6$	$3 \cdot 1$	$3 \cdot 6$

Here the mean difference is in every case positive－－that is，the loss in the second 50 －metres was greater than in the first，on the average，in every series of experiments． The percentages for each pipe are tolerably constant，and vary from 0.2 to 10.9 per cent．of the head in different pipes，
Consider Darcy＇s explanation，that the difference is due to accidental differences of diameter in the two lengths． The difference of resistance in pipes of different diameter for the same discharge varies inversely as the fifth power of the diameter．Hence，for a difference of 10 per cent of the diameter．Hence，for a difference of 10 per cent．
in the resistance，the difference of diameter would be about 2 per cent．，and the difference of area about 4 per cent．That is，the average diameter in the second 50 metres of the 0.137 metre cast iron pipe must have been $\frac{1}{T_{0}}$ in． smaller than the average diameter of the first 50 metres． But for the average diameter to have varied so much， the extreme diameters must have varied much more，and
end．The differences are not only almost always positive but they increase fairly regularly with the velocities of flow．Nor are their absolute amounts small．They reach at the greater velocities 0.1 to 0.5 metre，or 4 in ．to 20 in ． of water column－amounts which are enormous compared with the accuracy of measurement in these experiments． them bearing of these results will be better seen by reducing case．In doing this only thead lost for heads between 0 ． and 6 metres will be taken．The reason for trusting less the results for very small heads have already been given For the very great heads not only was there a change of mode of measurement，but Darcy speaks of the extreme difficulty of these experiments．
it seems impossible that such differences should have escaped Darcy＇s notice．Further，two measurements of each end of each length of this pipe are given by Darcy， $0 \cdot 141$－a difference of 5 per cent．But it does not see possible from the 1 the mean the table to pick out any twenty－five length like so much as 2 per cent．from the other twenty－five like so much as 2 per cent．from the other twenty－five．
Even if this could be done，it remains to be explained how all the smaller lengths accidentally accumulated int one 50 －metre length，and all the larger into the other．More than this，it is absolutely inexplicable how，in all the twelve series of experiments，the same thing happened．The proba bilitics against such an accident would not be expressible in figures．Exactly the same argument would appy to any at－ tempt to explain the difference of resistance by difference of roughness of the pipe in the two parts．Error in connect－
ing the pressure columns to the pipes might be thought of But not only was Darcy perfectly conversant with the mportance of the mode of attachment of the pressure columns，not only were his arrangements，as he describe hem，perfectly satisfactory，but no displacement of the f readin of the pressure pipes would produce difference till rror wa to be asked why，in twelve different pipes，the evelling will nays made in the same way．Direrence of ure columins not explain the discrepancy，for the pres－ It seems that it might be worth while to examin whether it wat it might be worth while to exa con tants from the loss of head in one of the 50 －metre lengths，instead of taking the average of the two 50 －metr engths，as Darcy did．By plotting the heads and velocities， it could at least be seen whether the variation of head with elocity is more regular in the one case than in the other． P．S．－Since the above note was written，some two o the ago，the a lor has ploted the resuls for sixtee In plopipes experimented on by Darcy，on a large scale都 has been used，the logarithms of the velocities being plotte or muse the points so determined should b or any one pipe ho pery ander ine，with a slope a little less than a toly on a straigh ions for the two metre leaths of poch wer plotted sately the ceng result is this：（1）I almost all cases the line for the upper 50 metre length above－in some cases considerably above－the line for the lower 50 metre length．In the few cases where the everse is true the lines are close together．（2）Th bservations for the upper 50 metre length plot much more egularly into a straight line than those for the lower 50 metre length．In the latter case there are observations which will not plot into any possible curve，and which nust be largely affected by errors．The conclusion seems nevitable that for some unexplained cause the observa－ tions on the lower 50 metre length in Darcy＇s experiments are unreliable．The author proposes shortly to rededuce he constants in the equation connecting the loss of head and velocity from the observations in the upper 50 metre length only．

THE NEW CROSS RAILWAY ACCIDENT．
AN accident occurred on the 15th of February，near New Cras station，on the East London Railway．In this case，while the 8.51 p．m．Metropolitan Company＇s passenger train from New Cross （South－Eastern）station for Hammersmith was proceeding on its journey and passing through a cross－over road which connects the
single line with the upline about 700 yards from the station，the single ine with the up line about 700 yards from the station， ballast for about 94 yards，it camein contact with one of the centre girders of an under bridge，whereby the wheels were swept from under it，six hornplates torn off，all eight axle boxes broken，and the brake gearing torn off and damaged，the train coming to rest while the last carriage was still on the bridge，its body being partly supported on the top flange of the girder．The
four leading wheels of the last carriage but one were off the rails on the near side when the train stopped．Four passengers and the rear guard were injured．In view of the frequency with
which derailments are likely to occur，as the number of small curves in and round London grows every day，the report on this comparatively rigid wheel base（ 16 ft ）of the carringe which left the rails，it is probable that the accident would not have occurred，notwithstanding the defect in the sliding above alluded to．When running round curves，the jammed，in which case，with a left－handed curve pressure of the rear off wheels against the off or right－hand rail would be this rail was lower thab it result，where，as in the present case these wheels over the right－hand rail．Had the continuous brake with which the train was fitted been automatic，it would have been within the power of the rear guard to stop the train whe he first felt the rear carriage leave the rails．As it was，it did not even occur to him to apply his hand brake．It will thus be seen that，according to General Hucchinson，a flexible wheel base instead of the rigid wheel base wouid have prevented the derailment， being attended with any very destructive effects．Specially we many mention the desirability of the early and coneral of a flexible wheel base on all the lines which have so many sharp
on ment curves as has the London，Chatham，and Dover Company between its new St．Paul＇s station and the Ludgate Hill，Holborn，and Snow Hill stations，a lot of curves which are enough to try the rail keeping temper of any but old and somewhat accommo－
datingly easy stock At the same time we may to know what General Hutchinson＇s iden of a flexible wheel base is．All the Metropolitan stock has sliding axle boxes，and con－ sidering the millions of times which these carriages traverse Major－General Hutchinson has quite grasped the merits of the case in this instance．

Alarming Accinent on the London and North－Wegtern ALAMA．An acident occurred on the London and North．
Whestern．Railway，near Nev．street station，Brminghaw， Wednesday afternoon．The engine became detached from the
carriages from a London train due at New－street at carriages from a London train due at New－street at 2.10 p．m．，
throunh the breaking of a a coupling pin．The train was proceeding at a very rapid rate，and as there is a steep incline from Monu－
ment－lan beame accelerated to an alarming degree．The driver was com－
pelled pelled to put on steam to prevent the carriages running into and over the engine，and the result was that the whole train dashed
through New－street station－according to the accounts of persons who saw it－almost like a flash of lightning．Terror prevailed
amongst the passengers endeavouring passengers，and one of them，James Repe from the train during its rush through the the
station，fell to station，fell on to the line and sustained a fracture of the skull
and other injuries，and was taken to the hospital．The train was not stopped until it reached Banbury－street station．A number of passengers were injured by the shock．Mr．Chamberlain，M．P．，．，is
zaid to have been on the platform waiting for the train to pro． ceed to Londoen，and it may be be hoped that he was sain to pro．
impressed with the desperately useless character mpressed with the desperately useless character of the brake to the lives of their passengers by high－speed trains，But for the presence of mind of the driver a fearful smash of everything would probably have resulted through the absence of an automatic
continuous brake，which would have stopped the train immediately continuous brake，whic
the coupling severed

SEGMENTS OF HERR GRUSON'S TURRET.

TRIAL OF GRUSON'S ARMOUR AT SPEZIA. No. II.
Before continuing the account of the trial of Griuson's shield, it may be well to mention a few facts with regard to the gun which attacks it, especially as several guns of trong and Cons weight have been made by and some confusion may easily exist with regard to them.
The Duilio and Dandolo have each four 100 -ton muzzle loading guns. It was one of these that attacked the Schneider-Cammell and Brown plates in 1882. These have a calibre of 17.72 in .; they are made of wrought iron with steel tubes. The Italia has four trunnionless breechloading 100 -ton guns made of wrought iron and steel, with a calibre of 17 in .; the bore is 26 calibres long. The first of these guns was fired at Spezia, in November, 1882. The Lepanto has four 100 -ton guns, nearly resembling those of the Italia, but slightly onger. The chief difference is that they are wholly made guns which is firing in the ex guns which is firing in the experiment we are now report-
ing. More powerful guns ing. More powerful guns Doria, and More the Lauria, in all These differ chiefly from the Lepanto cuns in from the Lepanto guns in
heing longer-that is, having a bore of 28 calibres in length. they weigh consequently 105 they weigh consequently 105
tons each. The only guns equal to them in power are the 110 -ton guns ordered for the British Benbow; these are also made at Elswick, and are the most powerful guns existing. Since the first muzzle-loading 100 -ton guns were tried at Spezia in 1876, then the Italian Government have received, or are in the way to receive from Elswick, eight 100 -ton muzzleloading guns all afloat in the Duilio and Dandolo ; eight 100 -ton breech-loading guns for the Italia now in commission, and the Lepanto nearly completed; and twelve 105 -ton breech-loading guns for the Lauria, Doria, and Morosini, which ships are in course of construction. To pass on to the turrets, and the shield which repre sents them. As before said, there are the two turrets to protect Spezia harbour, each mounting two 120 -ton Krupp guns, whose exact power we do not know, and cannot ascertain certainly, seeing that there are different estimates, and that Herr Krupp not long since declined to give authentic information. They have, we believe, been fired at Meppen with results which are not made public. S far as we can learn, the power of this gun is nearly the
same as that of the 100 -ton breech-loading Armstrong but same as that of the 100 -ton breech-loading Armstrong, but inferior to the 105 -ton and 110 -ton breech-loading Arm strong guns.
The machinery for working the turrets is supplied by Sir W. Armstrong and Co. The armour is to be supplied by Grison in the event of his shield coming up to the conditions specified for the trial, which, as before said, are very severe. The principal ones being, as we undertand, thile of projectile of the 100-ton breech-loading gun, without fice: The blows are te be delivered on points of the plate
not nearer to each other than one metre. The projectile which a riddled the Schneider, Cownell, and Brown 18.9 in plates in 1884
Fig. 12, page 361, gives a rough plan and section -drawn from verbal description-of the complete turret, of which we can now give the details more correctly than before. It will be seen that there are fifteen segment or sector-shaped shields, with two centre plates forming the periphery is not a circle, but is formed of fifteen The of circles, each struck with a radius of about 15 ft . or 16 ft .,
trial, to point out one thing about which there seems occasionally to be some confusion, namely, that while the attack of armour may be a very telling illustration of the power of a gun, it is no test of the gun, strictly speaking. The power of the gun is fully told by the energy of the that concerns the projectile and the plate, but clearly has no further connection with the gun itself. In the trial now taking place the gun is not concerned, at all events directly, in whether the shield is broken or not. This may be a question between Krupp's projectile and Griisons sbield, or more really between Grison's shield and what might be expected from

giving an outline suggestive of that of a pomegranate. Of th fifteen plates, twelve are similar to the shield under trial, each weighing about 87.950 kg ., or about 86.56 tons. The remaining three are lighter, being pierced by the ports; the lightest being that between the gun ports. The tweive unpierced plates will thus weigh about 1039 tons. The two centre or crown pieces weigh together $130,000 \mathrm{~kg}$., or 128 tons. The total weight of the armour is $1,400,000 \mathrm{~kg}$. plates tons. This leaves 211 tons plates, two of which will be something over and the other of shield - less than 70 tons. The entere running weight worked by Elswick hydraulic ppachinery. Our ang correspond information as freely from any of his staff, so that any lack of information is owing to his neglect in asking for it. With the from verbal dat our correspondent wes permitted to consult drawings for almost everything connected with the consult
shields.
It may be well, in coming now to the oontinuation of the Schneider's, Brown's, Cam mell's, Marrell's, or Terni armour formed into some equivalent shield. Then, again, the effect of a stee projectile as compared with a chilled iron one, when attacking chilled iron armour, naturally arises in considering such a trial, and this is we especial point that interests us in England, and in this Elswick may be interested as manufactures of projectiles. As gun makers they may be interested in the eventual con sideration of what guns may
be able to effect against be able to effect agains shields, but immediately and directly their success as gun makers is which they can energy with which they can discharge a projectile of a given calibre.
the firing was continued. Th the firing was continued. The gun on its raft was again
brought into position at brought into position at a
range from the shield of $133^{\circ} 7$ metres, or $438^{\circ} 7 \mathrm{ft}$., as indicated in Figs. 10 and 11. We can now give the details of the position of shield and gun more accurately than before. The projectile i intended to strike the shield in the same way as it would if the path of the shot were inclined downwards at an angle of 1 deg . and the shield standing on a horizontal base. For this purpose, as the gun fires slightly upwards the shield is, as it were, tilted very slightly forwards; tha is to say, forwards to the extent of $1 \frac{1}{2} \mathrm{deg}$. in compariso to its position set on a truly horizontal base, 1 deg. for the supposed descending angle and $\frac{1}{2}$ deg. for the difference in level of shield and gun. From what has been said as to the construction of the complete turret, it may be seen that the chilled plate actually receiving the blows is the only part of the target which corresponds to the turret. All other parts are substitutes. For example, the two large iron side pieces serve to give a bearing on the masonry nearly corresponding to the support which would be afforded by the contiguous portions of the turret, which should be smaller in area but more rigid than masonry of the same extent. The mottled iron piece at the top of the shield does duty for the circula crown of the turret, while the mottled piece at the base takes the place of the plate forming the base of the thrret. Even the sman wrought iron packing plates in the joints are substitates for the filling in of the joint by white metal or by keys fitting to the front plate. Lastly, chilled irop " rorpanzer," shown in the approximate crosg drawn from description, not copied from any drawing, and is therefore only approximate.
On April 24th the gun was fired under conditions as exactly similar to those existing on April 20th as possible. Having the details rather more fully and accurately now than when our special correspondent wrote before, we give them for both rounds together. In both the weight of the projectile was made up to 1000 kg ., or 22046 lb . The charge was 375 kg . (826.7 lb .) powder. The velocity taken powder. The velocity taken from the screens was in the first round 538 metres 540 metres (1772 ft second the respective energies being the respective energies being
47,620 and 47,990 foot-tons. The perforations through iron would be $31 \cdot 2 \mathrm{in}$. and $31: 3 \mathrm{in}$.
worforations through iron respectively. This does not apply to a hard target which apply to a hard target which
cannot be perforated but cannot be perforated but
must be broken. The blows estimated on the principle of shock in proportion to of shock in proportion to
mass of shield are 550 foottons and 555 foot-tons per ton of shield. The projectile was in each case a Krupp steel hollow projectile forged and hardened. The form and dimensions are shown in Figs. 13 and 14. Tool marks were visible from base to point. The projectile had, of course, been hardened subsequently to being tooled. There was a screw base

$1 \frac{1}{2} i n$., and in some places the surface of the metal was chipped off. The wide cracks being low down, and cracks generally extending downwards, it is quite possible hine may come out at the bottom surface of the seen at the back. One iron side-piece was broken through. Fig. 9 shows the back of the plate with fresh cracks ϵ, γ, and δ, and a small chip off at β. These are all near the bottom, but it may be seen if their course be considered (vide dotted lines in Fig. 8, shown as if the plate were transparent) that it is probable that ϵ and δ at back correspond with $d k$ and g in the
front. If a at back correfront. If a at back correfront, it follows that the frontion γ and a identified with point of impact 1 and of ϵ and δ with 2 One iron side piece was cracked, as shown in Fig, 8 and the supporting masonry was a very little shaken, so that a little space is opened that a little space is opened shield. The plate has now received a considerable shock. It must, however, be considered to have stood admirably. No shield has ever yet received two such blows as this. The weight of the shield is, of course, great, so that the striking energy per ton is not very large. It must, however, be remembered that, owing to the excellence of the steel, a much larger proportion of the striking energy of projectile plug somewhat resembling our own. The pressure in the gun was not taken. The \mid metal in a softer condition than the rest was said to have is impressed on the plate than usual.
actual angle of incidence of the first projectile with the been found about the centre. The cracks at the back are of course the beginning of tangent to the plate face at the point struck was 40 deg. The effect on the shield is shown in Figs. 8 and 9 . As the splitting up of the shield, which may rapidly take The projectile of the second round struck a few will be seen in Fig. 8, the shot made a more serious inden- place on receiving future blows. Up to the present time

inches to the right, and high of the point aimed at tation than before, the depth of it being about 4in., while anyone might have remained inside the shield in complete -that is, it struck rather nearer to the point of impact that of round 1 was only 2 in . Several cracks were found safety, because there is no langridge of any kind, the of the first round than was intended, with an angle of
incidence of 44 made and opened in the plate (see "2" Fig. 8). Some absence of bolts beingagreatadvantage. We have mentioned
as the last occasion, the
inside; literally, this may be urged to have been done
already, for the small scale close to the ground at β Fig. 8 already, for the small scale close to the ground at β Fig. 8 he projectiles' points are less than a metre apart. Practically neither of the conditions need be held to be broken The firing was to be continued on Wednesday, April 28th. A question was raised about changing the projectile, as it was suggested that the Krupp shells had not behaved so well as in the case of smaller calibres. There does not, however, seem to be any reason to question the excellence
of the steel, which is probably considerably better than of the steel, which is probably considerably bett er than
would be found in any other shell of this size, and it seems would be found in any other shellop projectile is to, be fired as originally intended. The cuts 6 and 7 are taken from photographs made side piee shield placed as in the tral between the iron side pieces for bearing on the masonry. This is the largest shield yo made. The smanlest shield hitherto Buckau was that last reported by us. Its form is rather more debased, and the surface rather more inclined than that of the large shield. Fig. 7 shows the indentations in the end of the shield for keying the pieces together.
Fig. 16 shows a larger section of the shield with dimensions and details in form. On April 28th the gun was
loaded and laid on the target, but there was a sufficient swell in the sea to cause the muzzle to move too much to enable the firing to be as accurate as is necessary, and we learn from our special correspondent that it was consequently postponed.

LETTERS TO THE EDITOR.

the problem of flight.
Sir, -I recently received from an English correspondent substantially the following reasons for objecting to my solution ond the
problem of soaring flight. They are extremely well put, and are, probben of toaring iiifit. They are extremely well put, and are, shrouds the case. I recognise in them an
me much trouble until I l learned its tricks.

 upward tendency and prevent it from either rising or falling? If
the plane were placed vertically the wind pressure against it would
be be, according to the text-books, 51 lb . As it is not vertical, but
inclined 1 to 5 , the pressure tending to carry it along with the wind will be $\frac{5}{6}=1 \mathrm{lb}$, and by a parallelogram of forces of the
dimensions of $1+5$ a single diagonal force of $\sqrt{5^{2}+1^{2}}=5.1 \mathrm{lb}$, on B A, or two separate forces of 1 lb . on $\mathrm{B} d$, and 5 lb . on Ba , of the
above diagram placed vertically, would produce stability. The weight of the plane must therefore be 5 lb ., and it must be held horizontally with a force of 1 lb . Therefore (1) the plane which in a current
of 47 ft . per second, is by that current's action maintained in a fixed position-that is to say, so as not to be carried along with it, nor
to fall through it, is subject to work of two kinds, viz., vertical and horizo of the current against the plane x by the velocity in feet per second at which it would rise if it had no weight, namely, $\frac{1}{\frac{1}{6} \text { of }}$
47 ft . per second. This amounts to $\frac{1}{6} \times 47 \mathrm{ft}$. $\times 5 \mathrm{lb} .=47$ footpounds per second. (3) The horizontal work is the pressure of the velocity at which the plane wlane ald be carriied if unresisted. The
wind's horizontal pressure acts on Bd which is $\frac{1}{2}$ of 1 ft . As the pressure of a wind of 47 ft . per second is 5 lb . per square foot, this
multiplied by $t=1 \mathrm{lb}$. Then 1 lb . $\times 47 \mathrm{ft}$. per second-which is multiplied by $\frac{1}{\text { a }}=1 \mathrm{lb}$. Then 1 lb . $\times 47 \mathrm{ft}$. per second-which is
the velocity at which the plane would be carried along if unsupamount of the first kind named in (2). (4) It follows, incontestably, that even if every atom of work put into the air as it rushes
underneath the inclined plane could be recovered and utilised upon the rear edge of the plane, nothing more than a fixed posi-
tion could be maintained. To get even that result friction and eddies must not exist.
I do not see how that statement could be improved. It seems
impregnable from beginning to end, and I would expect to detect a flaw in it no sooner than in the multiplication table. As a statepushed on still air, or held against a level wind, it is perfect. The soaring birds not being subject to horizontal work of any kind in
the lateral motion, and as no bird, nor plane, nor other quiescent body could be for an instant sustained in free air by the above nethod, it would be a waste of time to attempt to explain soaring
on that basis. It is an excellent statement of how soaring is not done. I will amend it to give the process by which it is done. As soaring is better explained by supposing the air to be calm,
we will so consider it. To explain it in calm air is to explain it in wind, and the above diagram will be used for the purpose, with the (1) When the plane B A is placed plane.
also slant towards A. If we suppose it to ber it will descend, and vertical motion, it will move with a velocity of $9 \cdot 4 \mathrm{ft}$. per second, and develope in the air 47 foot-pounds in one second, represented by one force of that amount normal to the plane, or two forces of
one-ifith of 47 foot-pounds, $=9 \cdot 4$ foot-pounds, horizontally, and
four-fifths four-fifths of 47 foot-pounds, $=37 \cdot 6$ foot-pounds, vertically, If,
then, the plane be held with a force of $9 \cdot 4$ foot-pounds per second, vertical fall will be secured.
(2) The vertical motion is then $9 \cdot 4 \mathrm{ft}$. per second uniform velo-
city, in which the plane is exactly balanced by an equal amount of city, in which the plane is exactly balanced by an equal amount of
air pressure, and a force of $9 \cdot 4$ foot-pounds per second is enploye to resiss the lateral thrust of 47 foot-pounds per second is employed the plane. This is the complete vertical motion as it occurs in every case of soaring of either bird or effigy.
(3) Two questions now require answer
moved laterally by the employment of an additional force acting vertical motion? Secondly, if such motion can be made on an
mon an upward incline, will weight be elevated in the translation?
from any direction above its surface would increase the velocity from any direction below the surface, the velocity of the fall would be diminished and its stability equally disturbed. It follows that
in that plane is at right angles to the force doing the work developed in the fall, and hence neither of these forces can resist
the other, and the first question must be answered affirmatively. slauting upwards from A towards B, no weight will be elevated in the ensuing motion, as it is already exactly balanced by the air
pressure, and as the lateral motion does not disturb the stability of pressure, and as the lateral motion does not disturb the stability of laterally, whatever its velocity may be, and the second question is answered negatively.
(6) As no weight is resisted in the lateral motion, and no work is done on the air but enough to overcome the skin friction on one
square foot of smooth surface under a pressure of 5 lb ., we may square foot of smooth surface under a pressure of 5 lb ., we may
suppese that 6 of one foot-pound will be sufficient to drive the plane with a velocity of 47 ft . per second, in which case it would
be elevated as fast as it descended, and a resultant of horizontal motion secured.
(7). Adding this 6 of one foot-pound to the $9 \cdot 4$ foot-pounds, re10 foot-pounds per expansion from the 47 foot-pounds, leaving 37 foot-pounds per
second to go to waste in the rear of the plane by falling to the second to go to waste in the rear of the plane by falling to the
tension of the surrounding air. ension of the surrounding air
Thus amended, the statem
Thus amended, the statement is one of soaring, as it does, as a
matter of fact, go on. The original is just 18 deg, out of the right reckoning. Put the lateral force on the incline of the bird's wings instead of horizontally, and credit the vertical motion with all that belongs to it, and the mystery vanishes. But what a peculiar delusion it is. If a boy should walk across the platform of a car in space, it would be very natural to suppose the train was going that way. In looking back over the files of The Engineer as far as $18 \$ 2$, I find abundant evidence that the mechanical experts are
caught on the horns of this fallacy. Seeing nothing but the caught on the horns of this allacy. Seeing nothing but the
resultant motion of the bird in space, and proving that no motive power is going that way, they at once pronounce the thing to be
incomprehensible. Since when is it true that the cause of the motion of a body could be discovered by observing it in the transation?
March 22nd.

Sir, -WTRESSES IN BRACED GIRDERS,
Rankine's some of your readers kindly give me details of finding and vertical bars of a bow-string girder-in the top, diagonal, nth bay, and between the $(n-1)$ th and nth verticals-in turns of the bending
moment and shearing force. The apices of the bottom boom moment and shearing force. The apices of the bottom boom are
supposed to be numbered from the left abutment; the rolling load to come on the bridge from the right, and to load all the apices up

to the nth inclusive; the diagonal braces to be in compression, and the verticals in tension; the bending moment at the nth apex
of bottom flange to be M_{n}, and the shearing force in the nth bay F $n \cdot$
P.S.by the dotted lines, what will be the stresses in them and the
verticals; and which vertical will belong to the nth bay in each case ?
educational parasitism.
Sir,-With the general tenor of your aricho on the above subject, drawn forth by the advent of a strongly supported will agree. There is, however, an aspect of the memorial to which you have not adverted, but which must strike not a few. The appeal for State aid to found an engineering school is supported employed in the vast collieries, and in the iron, steel, tin, copper employed in and general engineering works in the district. Now, all this means vast wealth, and, as a fact, Cardiff is now the third port in the United Kingdom, having last year a larger shipping
trade by a million and a-half tons than Newcastle, and by four trade by a million and a-half tons than Newcastle, and by four
millions than Hull. Surely this should have been the last place outside. But, after all, this is a natural sequence to the endowment of the college of South Wales itself, which so far, and only to yield to well directed clamour for aid, is to be deprecated. It would be a more dignified proceeding for the memorialists to
show an earnest of their zeal for engineering education by follow ing the example of others in several English towns, and found this part of the college themselves, than the appending of their signabegging petitio
May 4 th.

Self-Help.
the blackpool electric tramway.
SIR, Referring to that part of the letter of "A Borough Sur-
veyor" of the 30 th nult in which he raises an objection to the collector, or that portion of the apparatus which connects the motor cord, I certainly fail to see how there could possibly be a rigid to any portion of the tramway on which there is a siding he will observe that the centre rails forming the slot deviate a little before the car enters the siding, so as to cross the switch rail as near right
angles as possible. This, and the oscillation of the car, would to my mind certainly not permit of anything like a rigid attachment existing between the motor and the electric main.

Surveyor.
SIR,-I THE HAWKESBURY BRIDGE.
, 1 am a foreman bridge-builder in a big shop, and perhaps firm paid their guinea and sent in a design, and of course I had to and having done a lot of New South Wales work, I knew very well what Sir John Fowler's inspectors would want, and shaped my
estimate accordingly. This week the Union Bridge Company's agent asked for another guinea, for which he is going to let our copies of drawings have been eiven me to look over for a price to be made up. No wonder Americans can get work, if they can get on with his designs he made a deal to do about collapsing pres sures, in case caissons had to be pumped dry for excavation, and a
deal of stuff of that kind; but it appears he did not know much. The Yankee caissons are quite a different thing, and if we get the
ob, my men will say we had better start on milk-cans. Except the bottom lengths, the plates are Sin. and tin. thick for the outer
skin and inner tubes, with a few light braces between, that, for
what they are worth, might almost be dispensed with. Iron,

20 tons per square inch, as against 22 tons when English work is
wanted; no planing specified for edges of plates; only one piece wanted; no planing specified for colges of plates; ontea one piece of each kind to be put together; holes punched say it was a light
drilled or rimered out. Mr. Dixon might well bridge-cheap and nasty. We pay so
that I feel myself transformed into a May 6th.

THE PRESERVATION OF TIMBER.*
THg report of the Committee of the American Society of Civil
Engineers on the preservation of timber was presented in Jue, 1885. The Committee, consisting of Mr. O. Chanute and others, 1882. The present report is the outcome of long and laborious research, directed to the determination of the most successful
methods of preserving timber from decay-best adapted to the needs and current practice in America; as it appeared that several of the sources of supply were being rapidly exhausted, and that it
would soon become imperative to resort to artificial preservation of wood, as had been dune successfully for many years in Europe. The various experiments made in the United States, on which ing, or use of chloride of zinc. (3) Creosoting, or use of creosote ing, or use of chloride of zinc. (3) Creosoting, or use of creosote
oil. (4) Boucherie's process, or use of sulphate of copper. (5) From the results of various experiments, some of which lasted many years, with kyanised timber used for railway-sleepers,
fortifications, bridges and floors, it is deduced that for bridges trestles, fences, and like exposed structures, kyanising is a useful process, and may safely be relied upon to preserve the wood for from twenty to thirty years; but that for railway-sleepers, pavements, and other works exposed to constant moisture, success is
doubtful, probably in consequence of the washing out of the "because the location was very damp at and they were found, a few years afterwards, as much decayed as if they had not been so prepared.
work Committee consider Burnettising less adapted to bridgework than to the preservation of railway-sleepers, In the Havre
de Grace bridge, pine timber, Burnettised, proved to be brittle. When zinc-solutions are employed, weak enough not to impair the strength of the timber, they are likely to be washed out by the action of rain and moisture, and to leave the timber unprotected.
For instance, the sleepers on the Ohicago, Rock Island, and Pacific Railroad were externally decayed and exfoliate. Burnettising, sleepers.
Preserv
Preservation by creosoting is the standard method of treating panies in England who were addressed in 1878, ten companies used creosoted sleepers, some of which, forwarded as samples, were still sound, after twenty-two years of exposure. As a protection against marine worms, creosote is thoroughly efficient. Although,
in English harbours, a charge of from 10 lb . to 12 lb , of creosote in English harbours, a charge of from 1010. to 121b. of creosote年解 19 lb in cubic foot is required to secure immunity from attack, Though creosote is cheap and abundant in England, it is comparatively higher, and longer time is required to operate upon freshly-cut that it cost less to let the timber rot, and to replace it, than to incur the expense of preparing it against decay. "Nothing is
more curious," say the Committee, "than the way in which all the inventors of cheap processes for preserving wood quote the the case of railway sleepers, has proved to be preservative so long as the wood continued to be saturated with it, as on some of the sidings of the Oil Creek Railroad, used for loading oil; but, if
merely injected once for all, it evaporates out of the wood, leaving it unprotected.
e's process, forcing a solution longitudinally through the timber, has been extensively applied in France for many years,
with satisfactory results. But, to be successful, it must be applied to freshly-cut trees in the log only; and this treatment involves so much delay, moving about, wante, and annoyance, as to lead to its and in the Northern States the process could not be applied at all during the winter-the season for cutting down trees-as the solution would freeze. Mr. H. Fladd, of St. Louis, introduced, in 1882, a method which is the inverse of the Boucherie process. To
the cap fastened to the end of a freshly-cut \log he applies a suction-pump, and, placing the other end into a vat, filled with the desired solution, he sucks up the preserving fluid through the pores or sap-cells of the wood. Many railway sleepers have been
treated in this way with various chemical solutions, the chief of treated in this way with various chemical solutions, the chief of
which was sulphate of copper; and it is probable that the life of the which was sulphate of copper
wood was thereby increased.
She Earle experiments have been made with other substances. of sulphate of coss, by which timber is immersed in a hot solution Watervliet Arsenal. The life of the wood was lengthened, but process was abandoned in 1844. The lime process, consisting of soaking timber in lime-water, was applied in 1840 , by Mr. W. R.
Huffnagle, to white-pine sills laid in the permanent way of the Huffnagle, to white-pine sills laid in the permanent way of the
Columbia Railroad, and in 1850 on the Baltimore and Ohio Railroad. The results were not satisfactory. Salt has been experi-
mented with numberless times, with but limited success. The charring of timber is uncertain, and disappointing in its results.
In 1865, Mr. B. S. Foreman introduced the application of a dry powder for preserving wood, composed of salt, arsenic, and corrosive sleepers so The cattle died, and the line was strewed with dead cattle for ten miles. The farmers rose in arms, and forced the company to take
up and burn the sleepers. Many other processes are noticed by the reporters.
The report comprises much tabular matter; and it concludes
with a consideration of the decay of timber, the selection of preserving-processes, the conditions of success, and the question,
Will it pay? There are, in addition, twenty appendices on the In these appendices are given three different methods of estimating the
economy to be derived by using some process for preserving ties. Mr. Andrewe gives the money-saving at the end of the term of life of the preserved tie; Mr. Harrod gives the life that the preserved tie must have in order to make the cost of using preserved or
unpreserved ties equal; and Mr. Welch gives the money-value of any tie in use when compared with the wen the the cost showing the economy or the loss in use. In the first and last of these investigations, as Mr. F. Collingwood points out, the
authors have compounded the interest on the several costs; in the authors have compounded the interest on the several costs; in the
second case, simple interest only has been taken. This is a point that must be settled before any close agreement can be reached, tables, towards a solution.
In the course of the discussion which followed the reading of the paper, particular attention was given to the comparative cost of
iron sleepers and wood sleepers, including interest on outlay. Mr. Collingwood contributes an elaborate appendix on "The it is estimn of Forests. surom a consideration of statistical data, it is estimated that the supply of first-growth white pine will be
practically exhausted in the course of eleven years. The lumber
cut in a single year from the district of Michigan, Wisconsin, and
Minnesota, would load a train of cars nearly 7000 miles in length. ast 1 uabits hemlock in the north nothing but the bark; and in newly settled regions great quantities
of wood of various kinds are burned for the purpose of clearing the land. Years ago, the elms in the province of Quebec were burned for the manufacture of potash from the ashes. But the greatest
enemy is a forest-fire. It is estimated that, in Ottawa, ten times as much timber is burned as is cut. The great unknown factor, Mr. Collingwood concludes, is waste. If this be done away with timber may be secured for generations to come.

THE TEMPERATURE OF THE MOON. Iv an interesting letter in Science on this subject, Mr. W. Ferrel writes as follows:-
"Now that the temperature of the moon has become a subject of observing very small intensities of heat radiation, it may be well to The condition which determines the stand topic mean
of the whole mation whatech determines the static mean temperature
radiation from its surface moon is, that its rate of losing heat by whatiation from its surface shall be exactly equal to the rate with comparison with which the heat coming from the stars, and that
radiated and reflected by the earth, may be neglected without any sensible error., But ty the eneneally recognised principle that the
relative radiating and absorbing powers of bodies are relative radiating and absorbing powers of bodies are equal, the
ratio between radiation and absorption is the same for all bodies a given temperature; so that it is not necessary to consider the
radiating power of the moon, but to simply satisfy the condition that the moon, with a surface of maximum radiating power-such as a lampblack
from the sun.
"All bodies are so constituted that their absolute radiating power is a anction of the temperature, the former increasing with
the latter, but by no means in proportion. If, therefore, we know the relation between the temperature of a body and its rate of radiating heat, and also know the rate with which it is receiving
heat from its surroundings, we can, by means of the preeding condition, form
temperature.
"Acoording to Pouillet's determination from the experiments of
Dulong and Petit, a square centimetre of surface of maximum 1.146 calories of and at the temperature of 0 deg. Cent., radiates $1 \cdot 146$ calories of heat per minute, and hence, by the law of Dulong
and Petit, the rate of radiating heat for any other temperature θ,
 receives heat from the sun is what is called the solar constant, usually denoted by A. Putting, therefore, s for the area of the
moon's surface in square centimetres, and a for that of a great circle, the rate with which heat is radiated from the moon's surface
is expressed by $1.146 \mu \theta s$, and the rate with which it is received is expressed by $1 \cdot 146 \mu \theta s$, and the rate with which it is received
from the sun by $\mathrm{A} a$. Hence, by the conditions above, since $s=4 a$, we get in the case of the moon in space, in which it loses heat by
radiation only, and receives it from the sun only, the equation $\mu^{\theta}=\frac{\mathrm{A}}{4.584}$
for determining θ where A is unknown. Since log. μ is exactly practical form:-

$=300 \log . \frac{A}{4}=300(\log . A-0.6612)$,

"From this equation, deduced as a simple case from a more perature of the A tmosphere and Earth's Surface," the writer, with Cont. But as there is some uncertainty with regard to the value absotbod be fore reacoco some of the the solar rays may be entirely surface, and it it it sought by
sone to be oonsiderably greater than this, we shall put it here
 miore nocurately, the temperature of a surface uniormy heated whioh, of course, has very different temperatures on opposite sides
ti any giveu time. aThe lur of Dulong and Petit being an empirical one, which
atisfied tio experiments from 0 deg. to 300 deg. only, there is of Dulong and Petit being an empirical one, which
experiments from 0 deg. to 300 deg. only, there is
inty in extending it down to 79 deg.; but this is comparison with what it is in extending it in the other
to the temperature of the sun, as has been done by others, in forming an equation for determining its
The uncertainty in the true value of A, together tempersture, The uncertainty in the true value of A, together
wishi that in the extension of the law down to solow a temperature,
cavses some uncertainty in the mean temperature of the moon as thus determined; but this is not very great in a matter of this sort, for it amounts to only 17 deg . in an uncertainty of one-eighth
part in the value of A. part in the value of A.
"But when we attempt to determine the temperature of the side of the full moon exposed to the sun and earth, the uncertainty
becomes very much greater. In this case the heat is not only becomes very much greater. In this case the heat is not only
radiated from the surface, but it is also conducted inward from the surface, heated far above the mean temperature of the moon, and
stored away for the time. The rate with which it is conducted in stored away for the time. The rate with which it is conducted in
depends upon the conductivity and capacity of the lunar soil for depends upon the conductivity and capacity of the lunar soil for
heat, which are unknown to us; and the problem would be ex-
tremely complex if they were known. The temperature of the moon's surface, in this case, can only be determined for the two extreme hypotheses of infinitely great and infinitely small conduc-
tivities for heat. Upon the first hypothesis, the heat received and tivities for heat. Upon the first hypothesis, the heat received and
absorbed by the moon would be instantly distributed through the whole mass, and radiated equally by all parts of the moon's surface, and the temperature of the part exposed to the sun's rays would be the mean temperature of the moon as obtained above. it would surface teill it. Hence, in this case, instead of the radiating surface being four times as great as the surface, or normal sectional area receiving it,
it is only equal to it for the part of the moon's surface upon which it is only equal to it for the part of the moon's surface upon which
the sun's rays fall perpendicularly, and we must therefore have
$1 \cdot 146 \mu \theta=A$, or

$\theta=300 \log , \frac{A}{1 \cdot 146}=300(\log . A-0.0592)$,

instead of the preceding similar expression,
"With the assumed value of $A=2 \cdot 5$, this gives $\theta=101$ deg, from the sun and from the earth at full moon. For other parts the value of A in the preceding expression must be multiplied into
the cosine of the angle of incidence of the sun's rays upon the down as low as it is safe to extend Dulong and Petit's law same results would be obtained sensibly with any ordinary conductivity for heat if the same side of the moon were permanently exposed to the sun, for the temperature gradient by which the
heat would be conducted inward-would soon become so small in this case that the rate by which heat would be conducted inward ward from the interior of the ease in

The result above of 101 deg., which is a little above the tem
perature of boiling water, must be regarded simply as a limit
beyond which, in a large range of uncertainty, the temperature cannot go. The other limit is - 79 deg . If we suppose the tembetween these extremes, it would be a very little above a freezing temperature.'

LAUNCHES AND TRIAL TRIPS
ON the 24th ult., Messrs. Harland and Wolff launched a fine steel Company, Belfast. The steamer is of the following dimensions :Company, Belfast. The steamer is of, the following dimensions:Length, 340 ft ; ; breadth, 40 tt ; depth, $28 \mathrm{ft}$. ; about 3100 tons gross strengthenings generally is much in excess, of their requirements
She has two steel decks, extra outside butt straps She has two steel decks, extra outside butt straps on two uppe
strakes of plaiting and bige strake. All the plating is also increase fitted with very gallant forecastle forward, and a bridge-house 90 ft . long amidship
extending from side to side of the vessel extending from side to side of the vessel, forming a complete pro-
tection for engine and boiler casings ; iron wheel house and solid bulwarks aft. There are four stea windlass and capstan, also steam steering gear,
well, of Glasgow. The Inishowen Head is built on the cellular double bottom principle, to contain about 700 tons water ballast,
with trimming tank aft, fitted for cargo ; is schooner rigged, with wo stel pole masts, and will have a total carrying capacity of
about 4700 tons dead weight. Accommodation for captain and engineers, is amidships, and crew forward. The engines ar also by Messrs. Harland and Wolff, of the triple expansion type,
with all the latest improvements-three cylinders, $24 \frac{1}{2}$ by 377 by 4in. diameter, with 48 in . stroke, to work at a pressure of
The crank and propeller shafting is of Siemens-Martin steel, and the pistons are supplied with MacLaine's patent perfect rings and
springs. There are two double-ended steel boilers, hydraulicrivetted fitted with Fox's corrugated furnaces, and tested to a pressure o
320 lb . to the square inch. The Inishowen Head will 320 ib . To the square inch. The Inishowen Head will be commandec fifth steamer built by Messrs. Harland and Wolff for the Ulste Company. She will receive her complete outfit at Belfast, On Wednesday, April 21st, the s.s. Pera, built by Messrs. Earle
Shipbuilding and Engineering Company, Hull, for Messrs. Baile and Leetham, of the same town, was taken on her trial trip. The built to Lloyd's highest class, with additional strongthening by the use of steel for the upper works. The main
amidships she has a low bridge, in which are the
room casings, the whole being strongly pro
coverings, turtle back forecastle, and turtle
schooner rigged, with yards on her foremast.
for water
longitudinal system. The rudder is of steel,
and , tramed on the
and and sons, sheffield, and is connected to a combined hand snd
steam steering gear, by Messrs. Amos and Smith, fitted in a whicel
house house at forward part of bridge. With a view
and discharging of cargo, powerful steam winc
vided to facilitate vided to facilitate this. She is fitted by the builders with enpine run of several hours' duration in very rough weatiens proved herself irable sea boat.
Un Tuesday last Messrs. Raylton, Dixon, ant Co, launohod
steel screw steamer, named the Scholar, which Messrs. Thomas and James Harrison, Liverpoo dimensions are 260 ft . length over all; breadth,
moulded, 23 ft . 8 zin .; and she has a dead-weight of about' 2150 tons. She is built on spar-deck ru aft for cabin accommodation, and will in every
first-class merchant steamer. The engines, whic expansion principle, by Messrs. Blair and Co.,
140 nominal horse-power, having cylinders 20 ir diameter, and 36 in , stroke.
A steam yacht, named the Rosalind, was launched from Measrs,
Cochran and Co.'s Bidston Wharf yard on Wedneoday, inst. The yacht has gracefull lines and ver
sions are: Length, 91 ft ; ; beam, 14 ft ; d depth, 9 ft
are inverted, direct-acting, compound, surface
cylinders, 13 in . and 26 in ., and 18 in . stroke, wit

AMERICAN NOTES.

(From our own Correspondent.)
Importers are quietly negotiating for the shipment of largo of foreign iron and steel for the past thirty days havd bech rather below expectations. Brokers have been quite busy during the pust
week or so in soliciting business, but without muik success. The week or so in solicits likely to be done, will be don

near by. It is rumoured thon and steel at P

heavy shipments will mande steel consumers at Cleveland and Chicago. A genuine boom bausot Manufacturers' Natural Gas Company has de
double line of Sin. pipes, from Cannonsburg to P of Beck's Run. At an interval of four miles the pipes will by connected by cross sections. From thirty to thirty-two miles of pipe wil be required to lay the two lones. delivery will begin. The Manufacturers' Company yesterday brough a depth of 1000 ft . The People's Company is laying pipes within
the limits of Pittsburgh. The National Tube Works of McKeesport, Pa., has large contracts to furnish pipe for conveying gas from the improvement of blast furnaces throughout the country. One
the furnaces, two to be built at Birmingham, Alabama, and one at St. Louis. A Bill was defeated in Congress looking to the purchase of the Monongahela Navigation Company'sfranchises, which controls
the transportation of the bulk of the coal moved by river in the neighbourhood of Pittsburgh.

The Royal Agricultural Society.-The following table, in which the respective departments are given, shows how the imple-
ment department is falling off at the Society's Shows, and deservedly so. The Society has abdicated its honourable position, and given
itself up to a clique, some of whom profess very Free Trade and act the narrowest Conservatism :

Ordinary	7,155		8,417		0,315	
9,569			0,326								
Machinery \ln motion	2,017		2,063		2,055	1,949	2,259		

$\begin{array}{l}\text { Side sheds, including soeds, } \\ \text { models, dc. }\end{array}$	1,640	1,520	1,554	1,618	1,402

$-\frac{101}{10,812} \frac{1,80}{12,000} \frac{1}{12,904} \frac{1,31}{13,136} \frac{13,017}{13,017}$

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS.

(From our own Correspondent.)

THE most important feature this week is the strong tendency which he sheet iron makers are showing to make some stand against the
ontinued fall in prices. Several firms located especially about Bilston and the near-lying districts have not reopened their works ince the holidays, and they state that they Whether the ironworkers will recognise the wisdom of meeting the masters in a liberal spirit time will prove. Some masters who accepted for galvanising doubles has been 2610 s . per ton. Other makers this week decline to accept less deliveries at not much over $£ 6$. Lattens are selling at secure $\not 72 \mathrm{~s} .6 \mathrm{~d}$. and on to $£ 75 \mathrm{~s}$. per ton.
All the best ironmakers have now formally notified the reduction in bars of 103. per ton. The firms who, in addition to those and Co., the New British Iron Company, Messrs. John Bagnal and Sons, Messrs. Phillip Williams and Sons, Messrs. Brown and roducts of the list houses, are also subject to the 10 s , reduction. The Earl of Dudley's prices now become: bars, lowest quality
$£ 712 \mathrm{~s}$. $6 \mathrm{~d} . ;$ single best, 9.9 double best, $£ 10$ 10s.; and treble best, 1210 s . Strips and hoops and angle iron become: lowest quality, $£ 82 \mathrm{~s}$. 6d.; single best, £9 10 s .; double best, £11; ; and treble best
$£ 13$. His lordship's rivet and tee iron becomes : single best, $£ 10$ ouble best, £11 10s.; and treble best, £13 10s. Strips and hoops
7 in . and 20 gauge become $£ 9$ 2s. 6d. lowest quality; $£ 10$ 10s. single best; £12 double best; and £14 treble best ; while $\frac{10}{3}$ in Messrs. John Bradley occupy a unique position in the trade for quality, and their prices for all bars above gin. are, even with the seduction, $£ 210 \mathrm{~s}$. above those of the other list houses. Their bars amely, $£ 810$ s, and their sheets and plates $£ 110$ s, above other rms, namely, £10. For rounds and squares up to gin., the firm The new list of William Barrows and Sons shows : Bars, $£ 7$
年 angle iron, $£ 710 \mathrm{~s} . ;$ best tee and rivet iron, $£ 9$; plates, $£ 810 \mathrm{~s}$.;
best boiler ditto, $£ 910 \mathrm{~s}$; ; and double best boiler ditto, $£ 1010 \mathrm{~s} . ;$ sheets, $£ 810 \mathrm{~s}$., $£ 10$, and $£ 11$ 10s, according to gauge; and hoop The New British Iron Company now quotes:-Bars, Lion brand, Composite, $£ 810 \mathrm{~s} . ;$ slit rods, Lion, £7; C.G.C., $£ 6$ 10s.; Best
Corngreaves, $£ 515 \mathrm{~s}$. Plates are quoted: Lion, £8 10s. Best Corngreaves, $£ 710 \mathrm{~s}$; ; and tank, $£ 610 \mathrm{~s}$. Angles are: Lion $£ 715 \mathrm{~s}$.
and Best Corngreaves $£ 610 \mathrm{~s}$.; Tees, Lion $£ 8$ and Best Corngreaves $£ 610 \mathrm{~s}$. ; hoops, Lion $£ 7$ 10s. and Best Corngreaves, $£ 6$ 10s. Phillip Williams and Sons continue the exceptional position other houses. This firm's mitre bars now become £6. 15s. ; strips,
$£ 75 \mathrm{~s} . ;$ sheets, singles, $£ 715 \mathrm{~s} . ;$ doubles, $£ 810 \mathrm{~s} . ;$ and lattens, £9 10.;; angles and plating bars, $£ 75.5$. Wednesbury Oak branded qualities are $£ 1$ per ton below the foregoing.
Messrs. Brown and Freer quote H.B.
Messrs. Brown and Freer quote H.B. Crown bars, ordinary The marked bars which are now selling at $£ 7$ per ton are in every way equal to the bars which commanded $£ 16$ per ton in 1873 .
The demand for best iron is likely to be somewhat increased by The demand for best iron is likely to be somewhat increased by
the reductions. In the week immediately following their announcement, Messrs. Hingley and Sons' works turned made in any one week during the previous twelve months. Lord
Dudley's iron is in better request just now for dockyard and engineering purposes
are also attempting to obtain some second and third qualities amount of success with which they are meeting is 2 s . 6 d . to 5 s . upon some descriptions of second-class iron, but upon common qualities there is absolutely no room for any giving way. Common
bars may be had at from $£ 417 \mathrm{~s}$, 6 d . to $£ 55 \mathrm{~s}$. per ton, and a fair bars may be had at from 4417 s .6 d , to
medium quality at something under $£ 6$.
The pig iron trade is a little brisker this week than last, but the
business is still confined to small lots. Vendors are stading the market as much as possible. Derbyshire pis are standing off 36 s. delivered at works, and Northamptons at 35 s . Some Derbyshire makers are, however, declining to sell at less than 39s.
Native pigs are 52 s . 6 d . to 55 s . for hot blast sorts; occasionally
$57 \mathrm{~s}, 6 \mathrm{~d}$, to 60 s , being Native pigs are
57 d , to 60 s . being quoted. Part-mines are exceedingly varied,
and comme and common pigs are 27s. 6d. to 31s. 3d.
from Staffordshire to Hull has now been extended to the Shron from Shropshire to Hull will be charges for undamageable iron from Shropshire to Hul will be 12 s . 6 d , per ton, and upon
damageable iron 15 s . per ton in lots of 10 tons and upwards, A monthly meeting of the South Staffordshire Mines Drainage
Commissioners was held at Wolverhampton on Wednesday. The chairman remarked that the canal companies hadatlength consented from the canals, and he had no doubt that some good would result.
That Continental, and especially German, competition in the
olonies, in India, and elsewhere is no myth, is evidenced with increasing clearness every month. Local merchants are now constantly receiving orders indented for Continental hardwares, which
consumers can get at a cheaper price than native goods, and which answer their purpose in every sense equally well.
The Contract Department of the
The Contract Department of the Admiralty is just now making known an attempt at imposition upon manufacture was A London lating among manufacturers likely to tender for the Admiralty hardware orders a letter professing that they could use considerable influence in favour of any firms desiring to secure contracts for the payment of a 5 per cent. commission. The Admiralty authorities
announce that the firm who have been attempting this impositio is entirely unknown to them, and that it is beyond the power of any persons to influence the decisions upon Admiralty tenders. The annual meeting of the Birmingham gun trade was held on
Tuesday. The chairman of the Proof House Guardians, in referring to the falling-off in the business, attributed it to the general depres sion, to hostile foreign tariffs, competition with cheap Belgian
labour, and the disinclination to use labour-saving machinery. Of these combined causes the most potential was the competition with cheap foreign labour. The Belgian workmen were now, however, beginning to be more fully sensible to the value of their labour.
The West Bromwich Corporation Gasworks has made profit on the year of $£ 752$, as against a profit on the previous yea of $£ 2179$. The difference is chiefly owing to the reduced value of residuals. In consequence of a good balance from the year 1884-5,
there is still a favourable balance to go forward of £2070. The Corpan Gas Works at Stafford have made the reduction of the rates, and this payment applied toward £12,000, which the funds of the borough have received from the
The twenty-sixth quarterly meeting of the Midland Association hampton Gas Company, when the following gentlemen were elected new members :-Mr. W. S. MoGregor, Hednesford ; Mr
F. L. Ramsden F. L. Ramsden, Burton-on-Trent; Mr. P. Thomas, Buckingham,
and Mr. J. Lewis, Wellingborough. After the meeting the
members visited some of the principal works in the town,

NOTES FROM LANCASHIRE.

(From our oun Correspondent.)
Manchester.- There is still little or no change to report in the
ondition of trade in this district. "Nothing doing" is the almost condition repade in any question as to business, and although this
unvarying reply of course, is not to be taken in its absolutely, literal sense, it is a
relatively accurate tatement of the present general condition of
trade trade. The chief matter of surprise eseems to be that the protracted depression has not resulted in some serious collapse amongst makers going through solo ong a period ond unprecedentedly bad times may be
taken as an evidence of the soundness of the trade that has been
 There is is however, ittte doobt that the resources of many concerns
are being very severely tried, and the excessively low prices at
which busa which business for cash is in some instances being sought after is
taken as a sign that some of the weakest are gradually going to the
wall The Manchester iron markets have only brought together small
attendances since the holidays, and on Tuesday there was again less than the average number present on 'Change, with only a very Yess than the average number present on Change, with only a very
small weigh of busines doing. For pig iron the demand was of
the most limited character possible, and although prices were no lower than last week, this was due rather to the fact that buyers were not offering anything to really test whether makers, would
be prepared to give way, even upon the present low basis, if any-
thing like there is any general firmness in adhering to late rates. For Lancashire pig iron, prices, if anything, are a triffe easier as compared
with the rates which have recently been quoted, local makers being now prepared to accept about 37 s , and 37 s . 6 d. , less
and
foundry
analit. for forge still so completelly undersold that in the open marret they have
no chance of competing. For some of the district brands prices about the same as the above are also asked, but both Lincolnshire
and Derbyshire iron is to be got as low as 35 s . 6 d . to 36s. 6 d .
 and deilivered here. Rn outside brands very low prices are being
quoted to effect sales in this market. For the best named brands
of Middlesbrough, sellers endeavour to hold out for 39s. 4d., net cash, for foundry qualitities delivered equal to Manohester, and dd . per ton under this figure represents about the full extent of the
concession that can be obtained on special named brands ; but ordinary g.m.b.'s s. are to be got without difficulty at more than 1 s .
per ton below this figure, and for Scotch iron extremely low prices In se meing taken
are
and als
In hematites there is still only the smallest possible business
doing and although quoted prices are maintained at at ate ratees, it doing, and although quoted priees are maintained at late rates, it
is dimioult to get more than about 50 s. 6 d. to 51 s. , less 21 , for
ordinary No. 3 foundry qualitieb delivered here. If any thing, there seems to havev been rathere. more inquiry stirring
in the manufactured iron trade, but in the weight of actual business looing there does not appear to be any very appreciable inconerease,
The forges throughout this district are still only partially employed and prices show no improvement whatever. Bars deliemered into
the Manchester district can still be got at about $£ 417 \mathrm{~s}$. 6 d to $£ 5$ per ton, hoops at £5 \%s. 6 d . to $£ 510 \mathrm{~s}$., and sheets at about $£ 610$ s. per ton. Nut and bolt makers report that trade never was so bad
or prices so low an at present. The condition of the iron foundry
trades trades remains much the same as last reported. In nearly all
cases founders are so short of work that what little there is givin out is competed for at prices which scarcely, under the most
favourable conditions, can leave any appreciable margin of profit. favourable conditions, can leave any appreciable margin of profit.
With regard to the condition of the engineering trades, I may state that the results of a special journey embracing the whole of that everywhere the depression, rather than diminishing, is
intensifying itself, and the hopes which had been entertained that arevival might come with the spring have completely collapsed
There is a general expression of opinion that at no previous period in the industrial history of the engineering and iron trades of this country has the outlook been so disheartening or so critical as at
the present time. The competition of prices in the general engineering trade has become so excessive that any legitimate
margin of profit has ong since disappeared, and in many
instances the sole aim in securing
 nore discouraging than from the employerss point of veriew.. In then
thirty-fifth anual report just issued by the Amalgamated Society of Engineers, the generan secretary expresses hais regreted that the the
Society cannot be congratulated on having passed through prosperous year; both home and foreign trade had been terribly very uneasy and disturbed character. What the a actual experience
of the year had been to the Society was to be gathered from the results. .ar had been to the Society was to be gathered from the
rest indeed, been able to make some small advance as regards its membership, whioh to make some 50,681
at the close of on 884, had been increased to 51,689 at the end
of 1885 , but on the financial side of the question the result
of the year's operations has bee to of the year's operations has ben to leave the Society in a
most unsatisfactory position. The total income for 1885 was
m144, u39, as compared with $£ 157$, 484 in the previous whistst on the omparear hand the expeniture, which, with the exeap.
tion of 1879 , has bean the heaviest of any year in the history tion of 1879 , has been the heaviest of any year in the history of
the Societ, had amounted to \&188,277. The chief item of this
expenditure had been in the support of unemployed
 the previous year; whilst on superannuation the expenditure had
risen from e30.519 in 1884, to 322,608 in 1885 . The excess of
of expenditure over income during the year has amounted to the
large sum of $\mathrm{E} 43,638$, and this has reduced the accumulated funds of the Society to the sum of $£ 119,130$, or $£ 26 \mathrm{~s}$. 1 dd , per member,
which is the lowest value per member the fund have touched since
the year 1869 . Other important trades union organisations, are the year 1869. Other important trades union organisations, are,
however, in a worse position than the Amalgamated Societ
of Eng
of thers,
In Boiler-makers' and Iron Shipbuilders' Society, some idea of the present expenditure of the Society may be formed when it
is stated that, during the first quarter of the year, in
addititon to the ordinary inoome, they had not only drawn all the money from those branches that had any to spare, but since
 requirements of branches in want, and "a worse feature of the
case", the report adds, "is that up to the present time the demand
for "serd money! money! money! and their wants," have been so regularly supplied during the past two years that we are beginning
to fear they have lost very much the feeling of self-independence. iven thate of this it is not surprising the ominous warning is given that it the expenditure of the Society is on reduced immerucing the benefits and further increasing the contributions." In the coal trade there is considerable continued falling off in whilst the steam and forge requirements for the commoner classes
of round ocal remain quite as depressed as ever. The result is that week, and prices are extremely low, a very general giving way
pon late rates having taken place this month. 4 the pit mouth
 the lessened quantity of house coal now being screened the supplies of best slack are getting rather scarce at some collieries. Generally, however, supplies of engine fuel are still plentiful in the market,
and at the pit mouth prices average 4 s . up to 4 s , 6 d . and 4 s , 9 d .
 The shipping trade is only dull, and the extremely low prices at which coal is being put on board vessels at white aaven and some market, delivered at the high level, Liverpool, or the Garston
Docks, Lancashire steam coal averages 6s. 9d. to 7s. 3d. per ton.

THE SHEFFIELD DISTRICT.

Work has now been resumed after the Easter holidays, and Iron and coal could not well have been more depressed than during the last month, and May promises to be even worse for these grea industries. Staffordshire prices continue to decline, owing to the
severity of Cleveland and Scotch competition; and the fall in severity of Cleveland and Scotch competition; and the fall in
values reacts on Derbyshire and Yorkshire. It is said that several taffordshire ironmasters have out, may have a favourable influence in retarding a further drop in quotations; but it is doubtful if it
sufficient number to make it successful.
The improvement already noted in the United States markets even including rails, are stated to be unusually active, many hous having orders which will keep them running for six months. is still the rule that the favourable condition of American trade
reacts on Sheffield, and it may therefore be anticipated that an improve during the year. The other improving markets are India and foreign markets generally are much depressed, with no imme diate prospect of a change. At home, the Government orders in the leading industries are being completed, and as yet there are Coal is n house as low as 7 s . per ton at the pit, though the price generally per ton s.t per ton and upwards ath. Stean coal is about 6 ver ton at the pit; gas coal is again dull. Me Messrs. Newton,
Chambers, and Co., of Thornclifte, are now quoting at Sheffield

 at Sheffield on Tuesday to consider sliding scale for the regulatio of wages.

THE NORTH OF ENGLAND

(From our oonn Correspondent.)
THERE was a good attendance at the Cleveland iron market amount of business actually done. Prices were slightly lower than hey were a week previously. Being full of uncertainty as to the
future, buyers order only in small quantities to meet immediate reurirements, and sellers are reluctant to commit themselves Tuesday's market, small parcels of No. 3 g.m.b. were sold b merchants at £29 9s. per ton for delivery this month, and 30s, per
ton was quoted for delivery to the end of June. The leading
 igure must needs be paid. Such transactions are, however, few speedily ensues, both as regards volume of trade and value of products, more furnaces will, without doubt, have to be blown out.
Warrants have changed hands in a few instances during the la ew days at 30 s . per ton, but as a rule buyers are unwilling to operate.
The accumulation of pig iron in Messrs. Connal and Co.'s Middles rough store was on Monday last 222,282 tons, which represents a The finished iron trade is as bad as
of improvement either as to demand or price
The shipments of pig iron made last month exceeded those made In March, but they were far below those for April. Of the total, 62,700 tons, which left the river, 26,547 tons went to Sootland,
8838 tons to Germany, 5610 tons to France, 5515 tons to Holland, 2490 tons to Wales, and 2870 tons to Spain and Portugal. The principal falling-of is from foreign exports, and especially from
he deliveries to Germany. Only 28,990 tons in all were sent oreign ports, as against 33,150 tons during April last year, and 48,235 tons during April, 1884.
trade has been issued, and sets forth that the average net realisea price of coal during the first three months of the present year wa s.5.49. per ton. According to the provisions of the sliding scale Messrs. Doxford and Son's shiphuild
near Sunderland, which has been closed since last at Pallion, re-opened last week. The keel of a large four-masted sailing vessel has been laid down, and the further operations will be pro-
ceeded with forthwith. This will be welcome news to Sunderland ceeded with
workmen.

NOTES FROM SCOTLAND

(Trom mir Corresondent)

THRRE is a lack of animation in the iron trade generally tracts that have been some time in hand. The past week's ship ments of pigs are larger than for a considerable time past, amount and 11,491 in the corresponding week of 1885 . The speculative department of the pig iron trade has been very quiet during the
week, with quotations on the whole somewhat lower. Current values of makers' iron do not show much change. The export demand has shown some improvement, but is still below what
might be expected at this time of the year.
One furnace was ately blown in at Calder Ironworks, but two have since been hrown idle there by the breakdown of an engine, and the total
number now blowing is 95 as against 90 at this date last year. stooks continue to morease at an unusually rapid rate, the addi-
tion for the past week in Messrs. Connal and Co.s Glasgow tores being upwards of 6000 tons.
The warrant market was closed
The worrant market was closed on Monday, which was a Sootch
bank holiday. On Tuesday transactions occurred in the forenoon ti 38s. 6d. to 38s. 5 d d. and 38s. 51. L d. cash, the afternoon quotations

 1s. and 38s.
To date the
Trs and ate the total shipments of Scotch pigs are 119,954 tons, as
Tompared with 153,470 in the same period of last year, 189,210 in

1884, and 203,982 in 1883 . The arrivals or Mhdtleebrough plgr at There is a sood export business in iron and steel masnfnelured goods from the Clyde, the past week's shipments embraing fomm
locomotives for tram ways valued at $£ 3000$, for Singapore; $£ 10,645$ machinery, the greater part of which was sugar crushing plant for
Honohulu, Penang, and Manilla; $£ 4052$ steel goods, and $£ 24,000$ worth of general iron manufactures.
In the steel trade there

Works being well

The coal trade is backward, and in none of its departments is there so muoh business as might have been expected at this
advanced date of the spring. In the shipping branch a marked
improvement has been expected week mprovement has been expected week by week; but while at some ports the shipments , have certainly been large, at others they are
considerably below the average. Onily nominal ouotations are in most cases obtainable, as it has been found impossible to maintain the current figures.
The miners, who threatened a formidable agitation a week ago on behalf of restricted output and higher wages, have made
scarcely any progress in that direction. They are without an organisation, and the efforts now being made to reconstruct the union have hitherto been attended with little progress.
The ceremony of cutting the first zod of the worrss for the dupli-
cation of the Loch Katrine water supply was performed on Saturday by the Lord Provost in the prepence of the magistrates
and members of the Town Council. On the 14th October, 1859, the Queen turned on the water of the present Loch Katrine worke, which up to this date have cost $£ 1,100,000$, exclusive of the outlay on piping, do., in the city. The tunnel aqueducts are 112 miles in
length, open ohannenes $10 \ddagger$ miles, and the pipes in the valleys 3 miles giving a total length from Looh Katrine to Muydock entire distance thirty-fo adational 8f miles to lasgon, making the works up till now is $11,547,000$, of which $£ 331$, ,000 has been paid was given to draw 7 ft . off the surface of the Loch, and this gave a gallons a day. The Act which, was passed last year authorises the ff, and increasing the storage to $9,850,000,000$ gallons, or nearl 200 days' supply at the above rate. The first contract for tunne to Messrs. Morrison and Mason, who are at present ereeting the
new municipal buildings of Glasgow, and other contracts will be fixed shortly
During April nineteen vessels were launched from Clyde ship-
 ponding period of last year.

WALES AND ADJOINING COUNTIES

 (From our own Correspondent.)Norič was issued lately, at the important colliery of Middle
Duffryn, Aberdare Valley, that at the end of April all contraction vould cease. I am glad to see that this has been rescinded. This veek, however, notices of a aimilar charaoter were issued at various
ollieries, Abercwmboy $\mathbf{C w m p e n n a r}$, Aberaman Drift, and others nd as it is understood that some collieries will be closed permanently things look gloomy. Most of the collieries under notice are in the
Aberdare Valley, but I see that the same course has been followed

Ynysyfeio in the Rhondda vailley.
Unless we have a speedy change in Wales, there result-a train of disasters. Fortunately there has been a little change for the better. I was at most of the Dowlais collieries this
veek, from Bargoed to Bedlinog, and was glad to find that for the ast week the work had been more regular. At Vochriw, wher hipper of coals in Wales-a spurt was admitted, but no no ane nency in it. In other districts I find the same state of things, and will come is tolerably certain; the only question is whether many can survive until then.
and house coal is depressed this week; quotations are a low as 8 s .3 d . Steam coal quotations vary according to quality
from 7s. 6 d to 9 s , 6 d . The public, however, would be surprised to hear at what price even the best coal has been put on board at A fine seam of coal has been struck at Trinsaran Colliery. only slightly exceeded 20,000 tons. Cardif showed a sligh increase, but Newport trade, which is largely house coal, was no
so good, the summer weather telling as usual. I am glad, however, to report favourably of Newport industries and prospects,
Sir Geo. Elliot is to the front, literally, in that quarter.
He calcu lates with tolerable certainty on the new line being a commercia success-the Pontypridd, Caerphilly, and Newport-and is taking The Ocean Collieries have declared a reduction of $2 \frac{1}{2}$ per cent in colliers' wages, and it is expected that this will be the case with I must note that a very useful work is to be issued periodically by Dowen and Co., Cardiff, in conneotion with the great Wells
coal industry in the form of a "Coalowners' and Colliery Managers coal ind ustry in the
Guide and Directory
Steel sleepers are fairly occupying the works at Dowlais an Tredegar, and steel bar at Blaenavon, Dowlais, and Cyfarthfa.
anoy that Dowlais has the lion's share. The only drawback, ay the agents at each works, is the quotation. Prices are too low for any good to men or masters. In the matter of steel rails the
discharge of 8000 platelayers by the Great Western Railway show how much more economical these rails are than the iron, which scaled off and needed great supervision. Surely this should prompt more to go in for steel sleepers as well.
Iron ore is dull.
10s. 6 d. ., ex ship Cardiff. 1 have known it at double the price. lais Works for the conclusion of ail contracts at the end of the present month. This is reefing
the sails, and making all taut for probabe storms. I do not
imagine that stoppage is meant, only reverting to a day-to-day imagine
contract.
nen, it has had The tone femporarily stopping the colliery.
he effect of the theng a falling of The tone of the tin-plate trade is good, and thours a faling of
shipments ocourred last week at Swansea, makers say that they oond large orders, and that even if 1 13s. 3d.; Bessemer steels, as low as 13s, 6d. For Siemens' demand is improving, and prices have a tendency upwards. Some makers
have sold well at 14 s . 3d. Ternes are also firm, with upward A mass
A mass meeting of colliers was held at Aberdare on Monday, "check weighings," were discussed. It aftecting coroppings and for a new election of representatives. The formal beginning of
the Taff Vaur Waterworks of the Cardiff Corporation was made on Tuesday, when the sod was cut by the Mayor in presence of a large
gathering. It is a great enterprise, and will cost at least $\$ 360,000$.

[^0]
MBW COMPANIIES．

Tust lollowing companies have just been regle－

Costa Rica Railvay Company，Limited． This company proposes to acquire，extend mprove，equip，and work the railways in Costa Rica，between the port of Limon and the town of
Carrillo，and between Cartago and Alajuela，with the pier at Limon；also to oonstruct and work a
railway between a point on the said Limon and Carrilo Rail way，noar the River Reventazon，and the Cartago and Alajuela Railway at or near the the rights and privileges of a concession，alated
2 st April， 1884 ，made between the Republic of Costa Rica，of the one part，and Minor Cooper Keith y Meiggs，the concessionaire，of the other
part．It wa revistered on the 22da wult．with a capital of following as first subseribers：－
William Doherty，6，Great Newport－street，w．c．，${ }^{\text {Sha }}$

The number of directors is not to be less than three nor more than seven；the subscribers are to
appoint the first ；qualification，$£ 1000$ in shares， appoint the first；；qualification，£1000 in shares，
stock，or debentures．The subscribers appoint the first directors and act ad interim；remunera tion，£2003 per annum，or such other amount as
the company in general meeting may determine．

Hampshire Steam Thrashing Company，Limited． This is the conversion to a company of the William Wilkinson，of Winchester．It was regis tered on the 28 th ult．with a capital of $£ 10,000$ ，in
$£ 1$ shares．TThe subscribers are

 The number of directors is not to be less than three nor more than seven；qualincation，ten
shares；the company in general meeting will determine remuneration．

Marling and Co．，Limited．
This company proposes to acquire the businesses
carried on under the style of Marling and Co．，at carried on under the style of Marling and Co．，a
Ebley Mills，near Stroud，and elsewhere，and
and under the name of Woolright and Co．，at Stanley
Mills，Stonehouso，and to trade as oloth and linen manufacturers，and flax，hemp，jute，and
wool merchants．It was registered on the wool merchants．It was registered on the 2 1st
ult．with a capital of $£ 200,000$ ，in $£ 100$ shares． The subsoribers are ：－
＊Sir W．H．M．arling，Bart．，Stanley House，Stone－
 ＊s．man Höoper，$\ddot{\text { Redböroügh，}}$＂stroud，manä

The number of directors is not to exceed five， qualification，± 1000 of share capital；the first are pany in general meeting will determine remunera－ pany
tion．

Scarborough Pure Ice Manufacturing Company，
Limited．
Registered on the 28th ult．with a capital o
$£ 8000$ ，in $£ 5$ shares，to carry on in Scarborough the business of ice manufacturers，smackowners，
shipowners，fish merchants，and salesmen．The subscribers are：－

The first six subscribers are appointed directors the company in general meeting will determin
remuneration．

Home Calico Manufacturing Company，Limited This company was registered on the 22 nd ult with a capital of $£ 20,000$ ，in $£ 10$ shares，to
manufacture and deal in textile fabrics of all descriptions and other similar articles．The sub

James Boyd，7，Nicholas－street，Manchester，
merchant J D．McLenner Chambers，$\ddot{3} 5, \ddot{B}$ Back $\ddot{\mathrm{k}}$ George－ c．$\stackrel{\text { street，Manchester，buyer }}{ } \mathbf{W}$ Teltey， 7 ，Nicholas－street，Manchester，$\ddot{\text { ，}}$ H．Hartley，$\ddot{\text { Helson，}}$ ，manufacturer
s．Thomson，Knutsford accountante agent Newnes，83，Farringdon－street，journal pro－

The number of directors is not to be less tha two nor more than seven；the subscribers are
appoint the first and act ad interim；qualificatio for subsequent directors，five shares．The com pany in general meeting
muneration of the board．

New Emma Silver Mining Company（1886）， This is a reconstruction of the New Emma
Silver Mining Company，Limited，in accordance with the resolution passed at a general meetin of shareholders held on the 2nd，and confirmed at a meeting held on the 19th ult．The old com－
pany was incorporated on the 17 th January，1882，
with a capital of $£ 700,000$ ，in $£ 10$ shares，to tak over the Emma Mine from the Emma Silver
Mining Company，Limited．The last return made up to the 6th of August，1885，was filed o the 14th August，1885．This return shows that
the capital had been increased to $£ 785,000$ ，in $£ 10$ shares，the whole of which had been issued and fully－paid．The new company was registered on
the 28 th ult．with a capital of $£ 350,000$ ，in $£ 1$ shares．Shares in the new company credited in the old company in the proportion of four new shares to each share held in the old company Debentures in the new company will be issued to the debenture－holders of the old company for the payable on such debentures，the principal sums to be repaid at the expiration of five years from the date of issue．The subscribers are：－
W．Snell， 1 and 2 ，Gearge－street，solicitor \quad ．
W．C．Hutton， 6 and 7 ，Newgate－street，ware－ houseman
clerk Snell，The Cöhesnuts，Chislehurst，articled R．L．Hobbs，$\ddot{\text { ，Great Winchester－street }}$
S．L．Amy，Junior United Service Club

L＇Amy，Junior United Service Club eitor ．． A．Snell， 1 and 2，George－street，solicitor S．H．Newman，Devonshire－road，South Lambeth，

The number of directors is not to be less tha three nor more than seven；the first directors
need not be members of the company．The re－ need not be members of the company．The re
muneration of the board will be determined by the company in general meeting

Tauranga（New Zealand）Railway Company，
This company proposes to acquire the whole o Gast Coast，and Hot Lakes District Rai way Company，Limited，of New Zealand，and particu arly the benefit and interest of a contract date位21st August，1882，between her Majesty th o enter into an agreement with Mr．William McCandlish for the construction of a railway in
New Zealand from the Port of Tauranga to Rotorua．The company was registered on the nd ult．with a capital of $£ 250,000$ ，in $£ 10$ shares

Hy．Cecil Raikes，Mold，Flint，Privy Councillor ．．Shares， Brunlees，C．E．，5，Vict，－ria－street，，S．W．．．．．．
G．B．Bruce，C．E．， 2 ，Westminster－chanibers，
s．W．

 Brothers，Limited
Barker，Grove Park，Chiswick，merchant
The number of directors is not to be less than hree nor more than ten；qualification， 20 share he subscribers are $t 0$ no anale the first director

Mead Lodge Terra Cotta and Brick Works mpany，Limited．
This company was registered on the 28th ult premises at Acton，and the business of making carried on in connection therewith．The ubscribers are：
C．Wilson，22，Station－road，Finchley
i．Wilson，
Southfield－road，Chiswick，brick－
．E．Anold，Kensing $\ddot{0}$ on－－ourt－place，aitist

Registered without special articles．

Coal in Transylvania．－The Montan und metallindustrie Zeitung announces the discovery of an important coal field in Transylvania，near Petrosseny．Its extent，as far as has yet been scertained，is about 0 square kilomitres，and （33ft．）The quality appears to be good for gas making and coke．It is anticipated that when
coal mining is carried on in this district，the coal mining is carried on in this district，the
price of fuel at Petrosseny will be 16 frs．only
per ton．instead of 36 frs，as at present．
M．Galland．－We regret to learn from the engineer，Nicolas Galland，is dead．The sad event took place at Berlin，where he vas engaged in the erection of some large maltings on his pneumatic system．It is now some twelve years neumatic system of malting into this country but it has never been extensively adopted， although he could point to the successful work－ ing of his large maltings erected on this prin－ co convince French and English miter endeavouring ength succeeded in getting his system intro－ duced into Germany，and at the time of his death was erecting some very large maltings on the pneumatic system at the Schultheiss Brewery in Berlin
Reclamation of Land in Russia．－Large carried out for some years on a large scale in on the frontier of Russian Poland，a tract of country larger than Ireland．This undertaking now $1,620,000$ by the Government in 1870，and have been reclaimed by theconstruction of embank－ ments and navigable canals．Of this area，240，000 hectares（593，074 acres）are excellent meadow lands ； 365,000 hectares（ 901,966 acres）of woods productive ； 202,000 hectares（ 499,179 acres）of productive；
forests，which previously were inaccessible，but are now，thanks to a system of navigable canals， in communication with large towns；finally 813,000 hectares（ $2,009,036$ acres）of good arable land，of are under cultivation．In addition to acres） are under culivation．In addition to a large
number of miles of canal，and drains，and
embankments，it was necessary to construct 179 embankments，it was necessary to construct 179
bridges，and to sink 572 wells，varying in depth
from 6 to 25 metres．

THE PATENT JOURNAL．

co

56
56
5
5
5
56
56
5
5
5
5

sion
568.
and

5632．
5683．
56．
5．

Birmingham．
Sil．
5690．Fimulve Bortris，H．M．Whitefield and s
Washington，Manchester

5u9．Conpliva ald
Seeoson，Shetield．
S693．PRorphluliso Exasusting，and Movino Air，\＆o

57c3．Bortiles，B．Lay cock，Halifax．

 5709．Autoiatic Railway Couplisas，F．H．Addis，
London
5710．Dusp and other Biss，

 Jilee ands for Whaneon，Canadac．）．Quigl y and 0

donald and H．W．Woodman，Canada ）
5726．PLovers， J ．Howard and H．W．Gibs London．
Abergele

5730．Valve Gear for Gas Motor Enoines，F．W．

5739．Destions for Jacevard Cards，J．Y．Johnson．－
5740．Regorgrtion and
Harvey，London．for Books on Book－sHelves，J．

28th April， 1888.
Birmingham．
pool．

Warwick，，irming gham．
S75．t
Birsisp

5T53．Congrsed CLoogts and Cixder Sifters，
Heap，Manchester

ward，Birmingham．
5761 Thanciso the Soless of Boors and Shozs，R．H．
southall

STF2．TREATMENT
of Copper Precipitate，de．，H．B． Fulton，near flaggow．
SB3．Sprivas for RALIWAy and other VEHicless，H．R． Haigh，Derby
764．Rooluine Cyinpers and Tubes，E．Maitland， 7665．HANoing Rowiso boat Rudders，de．，R．Poore Lobnon．Stand for Wire Fexoing，F．b．W．Malet，
London．
 56．Revolving Fitrings for Wardrobes，F．Cawley
and

Preston．Gas Moror Exoines，J．Hodgkinscn and J．H． Dewhurst，London， Macoll hearth Fur
 Baird and J．T．Pitcairn，Glasgow，
 many．）Couphra Rallway Wacoss，\＆e．，T．A．Brockel－ 78．Reversing Gear for Enotises，c．Henderson 84．silsoivg Woven Fabrics，A．D．Singer and D Hunter，glasgow for Proprluiva Boats，A．McRae， Glaggow． Mordion．Remering Buldisas Fireproof，s．Stott，
Manchester． 88．Explosive Compounds，H．E．Newton．－（ A Nobel Morance．）for Wheled Verioles，de．，c．Benz，

 Syain．

 29th April， 1886.
S07．Wedorisa Hanaress，de．，to their Handles，C．

Sis．Automatio Weiounso Machines，H．Pooley und 814．THarkinson，Liverpool．APM for Screw Propeller SBafry，J．B．Fyfe，Glaggow， Scie．Tuesoon－Tweed．Trichok Pinsofortes，J．H Papps， S817．GALVANIO BATrerirs，S．F．Walker，Cardiff．
S818．METAL SLLERERE And CHAIR8 for RAILWAYs，S．

 and J．C．Goolin，London．
8828．Automatio Fine Exxinauishisa Sprinkleks，R．

 Gibbs Sewing Machine Company，United States．）

Sss8. Lumancontiso Appararves, H. Schafrstiat and A
Bergen, Loondon.

soth Apral, 1886.

5849. Applianoiks for the Optical Lantern, G. Daven 5850. Increasina the Speed of Vericles, F. A. Ruther 5851. Connectinges for Cuff, ec., Links, C. Meredith 5852. Fastening Rails to Sleepers, W. T. Stewart, 5853. Abrificial Bait for Fishing, A. W. Wamer
Habborne. 5854. Non-conducting Composition, J. Roberts, Lan 5855. Galyanic Battery, F. W. Branson, Leeds.
5850. Hook for Suspending Piotures, dC., T, and D Lister, Hudderafield.
5851. Friting of Artificial Teeth, T. Robertshaw 5858. Removal of ammonia from Coal Gas, J. Hep worth and E. Marriott, Manchester. chinery, A. H. Seggie, Edinburgh. 5860 . Distributing OiL or other Liquids, T. H
Wharton, Bradford Wharton, Bradford.
5852. Repairina Seet Music, \&c., J. W. Lomas, Yeoovil.
SLobe Holders for Chandeliers, J. Everard
Birmingham. 5863. Bobsins, J. Whalley and J. Piekup, Halifax.
5853. DEstroyiva Insects in Gardens, W. H. Keys, 5865. Braces for Trousers, \&c., R. Longdon, Man 5866. Printing Machine for Fabrics, J. H. McFerran,
 68. Potrers' Batring Maccine W. Evans, Tunstal
5854. Belting for Driving Machinery, D. Jackson Ashton-under-Ly ne.
5855. Proverties for Ordance, J. C. Sawer, London
5856. Lathes, W. P. Thompson.-(C. E. D. Winssinger, Belgium.) Thread of Screws, de., W. P. Thompson.-(c)
5857. 5873. Belts for PulLevs, de., W. P. Thompson.-(G 5874. STEAM Bollers, J. Millington and H. Jones, Liverpool.
1. Face
Liverpool 5s76. Teachina, \&c., Code of Sianals, H. Shedden Liverpool.
5S7. Roller Mill Maohinery, Messrs. Diener and
Boldt 5878. Automatic Electric Switch, J. Radeliffe, Eas 5s79. Box Cabinet for Holdina Books, D. Bryce
Glaspow, 5880. NLLVE Gear, C. H. Benton, London.
2. Toov-HoLDRs for Lathes, J. Y. John Armstrong, United States.). White, London.
5882 . Foc Signaling, E. H. Swiminno Machine for Torpedo Warfare, R Thermopmes, H. W. Look, London.
INJECOR, H. Long, London.
AUTOMATIC GA . phrys, London. Gas Heating apparatus, J. Hum 5887. Manifold or Header for Sectional Steam
Generators, de., W. Fairweather.-(The Babcock and Wilcox Company, United States.)
3. Wrest Pins for Musical Instruments, J. Semple, Glasgow.
4. OL, dc., LAMPs, S. P. and W. P. Catterson 5890. Latch Mgohanism of Locks, J. Bates and R.
Hughes, London. 5891. Dead Weight Latch, E. and J. M. Verity, and 5892. Sterrina Gear for Vessels, H. E. Newton.-(C H. D. Sincennes, Canada.)
5. Couphrse for RAILWA Wagons, W. Anderson 5894. Cutting Paste-boardos for Boxes, H. Gardner.(J. Scherbel and 7. Remus, Saxony.) 5896. Froo-pad for Horses, J. Y. Johnson.-(A. c. c 5897. Bollers Heated by Gas, L. W. Leeds, London. 5899. Gas KITchen Ranges, H. C. Turner, London.
6. Press for Mouldina Feed Cake, de., R. Sizer, ondon.
7. Warnioley and E. H. Law, London. 5901. Washing Ma Macivise, W. W. H. Nevenill, London.
8. Fire Extisotrur, C. Wells, London. 5903. Convextina a Safety Line in Cases of Fire, C
Wells, London. 5994. FIRE GRENADE, C. Wells, London.
9. FIRE GRENADE, C. Wells, London.
10. FIRE EXTINGuISHD
 London.
11. Road Vehicle, D. Albone, London.

$$
\text { 1st May, } 1886 .
$$

5910. Matehials for Respibators, J. G. Lorrain, London.
5911. FELT Hats, F. W. Ashton, Manchester.
5912. PENCLI SHARPENER, W. Appleby and T. Wood,
Manchecter 5913. Vice, G. H. Wells, London.
5913. FURNACE BARs, R. A. Wilso 9915. Prondcing Heating and Illeminatina Gas, w S. Sutherland, Liverpool.
5914. Door K Nobs or HKNDLEs, S. Bott and C. Homer,
Birmingher Birmingham. \&c., Dobsy Horses, J. Broxup
S977, GuDing,
Londone London.
5915. Wrivaing Machine, J. and J. Scott, London.
5916. CANDLEHOLDERS, , ©C, 5919. CANDLEHOLDERS, ©c., C. Wood, Birminghath.
5917. Locks for SECORINa VELoctredes, H. G. Kelly, 5921. SANTIARY Dustbin, R. T. Macan, London.
5918. OPEN-WORK BordEr in Towkr, R. H. Reade
W. Kennedy W. Kennedy and T. F. Bell, Belfast.
5919. MMKING CLoo Biocks and SoLEs, R. J. and C
Jones, Lancashire. 5924. STekl and Ingor Iron, F. J. R. Carulla, London.
5920. Coutinas for Railway, di., CArriaces, W. B.
 5927. STEPS or LADDERS, J. Strick, London.
5921. Workina Mchive on Board of Steamships, 5929. Diaphanous and Atr-tiger Paper, J. Collins,
Iondon. 6930. Chemical Compound for Destroyino Tksects,
T. Terrell, London. T. Terrell, London.
59i. WEiGIING GraN, Ec, W. B. Avely, London.
5922. RUNNING and BURNING Work of a MAGNESIUA LAMp, Messrs. H. Heine and Sohn, Baden.
5923. GAFFing or LANDING SALMON, \&C., E. L. Berthon, London.
5924. Coliapsible Boats, E. L. Berthon, London.
5925. Cotitiva Files and Rasps, R. Denison,

 and I. H. Wallis, London, J. Coxon, London.
5926. Twist LAEE FAbRics,
5927. TEIEPHoNEs, P. Ganon, London.

5928. Posstage Stamp and Label Affixek, F. Stent,
London. London.
5929. Distillation of TAR, J. Yates, London.
5930. LoADing and UnLoading BARGEs, W. Thomas 945. Loadina and Unloadina B
and J. Kitto, London.

5931. Registering the Distances Travelled by a
Vehicle, H. E. Vospor, London.

3rd May, 1886.

5950. Grimbleby's Patent Look Wing Tiles, T. and H. Grimbleby, Lincolnshire. Desk Tops, G. Perry, 052. Adjustable Book Holder for Music Stands, T. Firth, Halifiax. for Washing Carruges, \&ce., D Butterfield and G. Windows of Carriages, W. Broad hurst and S. Washington, Manchester.
5951. SEAWEED BATH GLoves, R. Galland-Mason Douglas.
Brooks Fanking Mechanism of Bag Frames, Jolt, Birmingham.
Brat Brooks and J. Holt, Birmingham,
5952. Clothes-pros, J. Westgarth, Manchester.
Nicholson arina INvisible Extaust Stean, C. J. Green Birmingh Nicholson and A. Green, Birmingham,
5953. Meting CAldrons, B. D. Healey, Liverpool. 969. Meltina Caldrons, B. D. Healey, Liverpool.
5954. Steam Furnaces, H. C. Paterson, Glasgow. 6961. STand and Action to Weiahina Machines,
Gardner, London. Gardner, London. Electric Lamps, T. J. Handfor -(B. H. Johnson, United States.). Pen, Purifying Water, W, Cotton, Peckham

 596. BHIPs
S. Bow Employed in Calendering, J. Rigby an
J. E. Rigby, London.
SUs. 5968. Suspendina Carriages, R. C. W. Horsley
Londo.
5955. Extracting Foul atr, \&c., from Buildinge, J Ramer, London Bromhead, Londoneleton and Spring Hinges, S. S. Liewisham. Electrical Batteries, de., A. W. Armstrong,
Lis. 5972. Rrisoonstruection of Frames and Runners for
PARAsols, dce., A. Ald Alded, London. Parasols, de., A. A. Aldred, London.
5956. Tenoning Appraturu, 5973. Tenoning Apparatus, J. Grant, London.
5957. Lamps, A. J. Boult.-(c. Rakenius and Co., Germany.) Mallat.) Gamble, London.
Dennett, ilford. Glis. Producing Ornaments, Letterino, de., o
Glass, 5979. INCANESEGNT ELECTric Lamps, B. J. B. Mills.-
(W. Holzet, United States.) (980. AdJustable Borisa Tool, T. R. Shillito.-(J. Uhhe Germany.
5958. Fold-UP BEDSTEAD, F. W. Diestelhorst, London
5959. REaISTERING WEIGHING M. London.
5960. LTrEbuoy, A. Smith, Glasgow
5961. Dress, IV. other Prrposes, M. McMullin, London. Bauer.-(J. Pintsch, Geermany.) for Dressina Cotron, \&c., E. Edwards,- - (C. Welte, France.)
5962. VELOCIPEDE, E. Edwards.-(E. Lhoest, France.)
5963. FASTENING the GIRTH or BELLY-BAND of a SADDLE or HARNEES by a SPRING, F. Loob, London.
O90. STRAPS or BELTS, N. Browne.-(Messrs. Wilh. Kux, Nachfolger, Germany.) Kux, Nachfolger, Germany.
5964. TIEs, BRICK, むc., J. H. and J. Edge, London.
5965. CHAFF CUTTING APPARATUS, J. Oliver, London. 5993. Electro-magetic Retovchina Pencils,
Haddan.-(L. Fried and B. Iscovits, Austria.). 5994. Preserving Timber, G. Mancion, London,
5966. Rouler for Movina Wergits, J. S. E. Ellis. H. Slatyer, Sydney.).
S996. Instrument for Laying Down Coast Lines, \& G. F. Redfern. - (H. G. J. Stang. Norvay.)
5967. FRet Sawing M. CHINE, M. D. Wischker, London. 5997. Fret Sawing Machine, M. D. Wischker, London.
5968. Hosiery, J. H. Cooper and G. Blunt, London.
5969. Circular Knittino Machines J. H. Cooper and G. Blunt. London.
5970. Production of Para-rosanilin, \&co., H. Baum 6001. Prodidotion of Chloride or Bromide of NitroBENzYL, H. Baum, London.
G002. Lining STEEL Converters, \&c., W. Perrott cos, Envelope Holder of Chain of an Envelop MA king Machine, T. J. Denne, London.
5971. Lits for Boxes, S. C. Alliboue, London.

SELEOTED AMERIOAN PATENTS

 (From the United States' Patent ofice oficial Gazette.) 337,042. Armature for Dynamo-ELectrio Michines,Foree Bain, Chicago, Ill.-Filed September 25th,
1885. Claim.-(1) In combination with an armature for
dynamo-electric generators, spacing blocks or cheeks dynamo-electric generators, spacing blocks or cheeks
secured in place by portions of the benerating coils,
substantially as deecribed. (2) In an armature for dynamo-electric generators spacing blocks each com-
posed of two cheeks which sparingly embrace the core
in combination with distinct sections of the generating
[337,042]

coils wound upon the cheeks, whereby the latter ar
held in place without additional fastening devices sub helatially as deseribed. (3) An armature for dynamo-
stan
electric generators, consisting of a laminated core with electric generators, consisting of a laminated core with
fibrous materint between the lamine, in combinatic with spacing blocks between the generating coils held
in place by portions of said coils, substantially as 337, 112. Hydraulic Ras, Adolphus Baer, Zurich, Suitserland. - Filed December 12th, 1885 .
Ctaim-(1) In a hydraulic ram the combination of a water chamber, a valve seat secured at the discharge
end of the chamber and having an outwardy project. ing guide frame formed with an inner smooth longi-
tudimal bearing and an outer screw theided tudinal bearing and an outer screw threuded
longitudinal bearing, a dischnrgor stop valve having
a stem passing through the bearings, and having a
 fitting in the threaded bearing and having a hotched
discoat its outer end, the stem sliding in the sleeve
with its disc bearing against the outaide of the dise
 anown and set torth. (2) In hyyduule ram, the com

around the stem and hald between the dises, as and
for the purpose
shown and eat
forthe

 having the drop chamber and the interior shooulder a,
of the cylindrical strainer having the seating flange

[337,54,

and its strainer end projecting into and overhanging

ing
387,1

 tioaim- - (1) In an le letrici II Iht fixture, the combina. tion of a atationary tube or body, tubo siliding
theresin
datd

 conductors, and a frictional dorico for foldidnaxinion

 tem, the ring at the lower end theroof, the phomin Surroundng sadid ring the stationary tubo carried by
 said enclosed conductors and adapted to be placed in
or withdrawn from the said shell as the sliding tube is or withdrawn from the said shell as the slid
raised or lowered substantially as set forth.
 Thomas, Jersey city, N.J.- Filed October 2nd, 1885 .
Clim.- (1) In a hydraulic air compressor, substan.
tially such as described, the combination with vessels or cylinders $d d$ of a double-acting water inlet valve,
substantilly such as H, arranged to open one eduction port to the water under pressure and the other educecion
port to the atmosphere, with eduction tubes $m m^{1}$
pind port to the atmosphere, with eduction tubes $m m^{1}$,
leading from said ports to the tops of the vessels, and
water exhaust valves, u, in the bottoms of the vessels,

arranged and operating substanti.dly as shown and
de:cribed. (2) In a hydraulic air compressor, the e:cribed. (2) In a hydraulic air compressor, the combination waln the aternately fining vessels
of the water value H, having a cylinder i, open to the
air at the ends, pistons k, inlet port p, and outlet ports
m,
cylin
and $m m^{1}$
cylind
and
cylinders, with suitable means to shift the valve as
the cylinders alternately fill and empty, substantially
as herein set forth. (3) The combination of the vessel as herein set forth. (3) The combination of the vessel.
$d d^{1}$ and rocking beam c, a double-acting valve sulb stantially as set forth arranged to open one eduction port to the air, and the other to the water under
pressure, an operating connection between the bean and the valve, eduction pipes $m m^{2}$, extending from outlet valves s in the tops of the cylinders, and wate
exhaust valves u in the bottoms of the cylinde arranged and operating subtumstantialy the cyo shown and
described. (4) In a hydraulic air compressor sulh set forth, the combination with the rocking or tiltin vessels d d 1 , and exhathaus values the rocking or tilting base thereof
of the springs w, interposed between the evel of the springs w, interposed between the valves and the supporting base, and on which the valves fall when
tee forth. 337,212. Staple Holding Implement Charles E. van
Dusen, Oneonta, N. Y.-Filed June 15th, 1885. Claim.-As an improved article of manufacture, the herein described device for holding and driving staples
consisting of a shank or handle, one end of which is

adapted to receive the blows of the driving imple-
ment, and, the opposite end is provided with a recess ment, and, the opposite end is provided with a recess
adapted to hold the staple, and a transverse slot or recess across said first recess and at right angles
thereto, substantially as and for the purpose set
forth, 337,388. Apparatus for Transferring Grais, de.
Alexander B. Fernald and David T. Lawson, Jersey
City, N. J.-Filed January 21 st, 1885 . City, N.J. - Filed January $21 s t$, 1885 .
Claim. In a device for conveying grain or other
materia, maim.- In a device for conveying grain or other
materiai, the combination, with the grain inlet pipe
or tube, of a surrounding pipe or tube forming a jet

337,388,

orifice for the compressed air or gas by which the
grain is lifted, said pipes or tubes being elongated or grain is lifted, said pipes or tubes being elongated or
oval in shape at the point of discharge, substantially
as described. 337,443. Stenam Ejector, Louis, Schutte, Philadelphia,
Pa.- Filed December 10th, 1885 , Claim.- (1) In an ejector or syphon pump having a
steam nozzle, a combining tube, and a discharge tube, a passage forming a communication between the dis-
charge end of the instrumenten and the combining tube
at a point between the end of the steam nozzle and at a point between the end of the steam nozzle an
the smallest bore of the instrument. (2) pump or ejector, the combination of the steam nozzle intermediate point in its length, the diseharge tube and a channel G, forming an external commmunication
between the opening in the combining tube and the between the opening in the combining tube and the
delivery side of the apparatus, and a valve for closing
said passage. (3) In an ejector or jet apparatus sub-

$337,443$.

stantially such as herein described, the combintion
of the steam nozzle, the combining tube divided passage G, surrounding the combining tube and compassaicating with the delivery end of the apparatus,
municating
and the check valve H. (4) In combination with the stean nozzilar or equivslent form at the outer end, the lock
ang ang washer, applied substantially as shown. the (5) The
ing
threaded squared spindle, the recessed threaded squared spindle, the recessed cap b, having
the spindle mounted therein, the locking washer, the spupplemental cap ce, covering the end of the the
spindle and confining the washer, substantially as
described spindle and confining the washer, substantially a
described.
337,543. Grann Drill, Mileden Wonser, Kingston, Claim, - (1) In a grain drill, the combination, with rotary cutters, of the shafte E, having inclined sections
to receive the hubs of the to receive the hubs of the said cutters, and a support
ing and adjusting mechanism, substantially as herein shown and described, whereby the inclination of the
said cutters can be readily adjusted said cutters can be readily adjusted, as set forth, (2)
In a grain drill, a shaft having a plurality of bearing
sections arrang In a grain drill, a shaft having a plurality of bearing
sections arranged at an angle to its axis, substantially
as set forth. (3) In a grain drill, the shaft E, made

substantially as herein shown and described with
inclined sections parallel with each other on each arm of the shaft and inclined in reverse directions upon
two arms of the shaft, as set forth. (4) The combina-
tion of a rotarily adjustabie shaft having bearings arranged at an incline or angle to its axis of revolution,
cutters journalled on said inclined bearings, and the cutters may be set at any desired incline and held at a common depth with each position or inclination

[^0]: A sunken steamer, the Cuxhaven, belonging to the Yorkshire oal and Steam Shipping Company, Goole, was floated and
 beached at Goole on Sunday last. The contract for raising and etting out the cargo was settled with the Dundee Salvage Com-

