AMERICAN BRIDGE DESIGN.
By Robrrt Hudson Graham,
No. II.
The subject of transverse sway-bracing is of such vast importance, and its study has been so deplorably neglected, Waddell has to say about it. After taking account of the stresses set up in the bracing by a side wind, Professor Waddell proceeds to deal with those arising from inequality of dead-load distribution when only one line of rails is covered by a rolling load. We are glad to be able almost wholly to endorse his treatment of this case ; although, as we shall presently show, his results are attainable by a much more direct and obvious method. Taking Fig. 4,

FIC. 4 Professor "When only one track of a double track
bridge is covered by bridge is covered by
the moving load, ac cording to the law of the lever, one truss the other. Now, if the two trusses could act independently, this distribution would hold while the load covered
the track; but if the the track; but if the
two trusses were con nected by perfectly
inelastic vertical sway inelastic vertical sway
bracing they would have to deflect equally, which could only occur
when the loads on each truss were equal, so that a portion of the load equal the difference between the greater division by the la load wou have to be transferred by the vertical sway bracing. In reality, neither of these conditions will exist, the true condition lying between the two ; for the trusses do not act independently as if there were no vertical sway bracing, and the later a is it is impossible to . What it will be making an error on the side of safety if it be assumed that the load is equally divided between the trusses; any extra iron that may be thereby used in the vertical sway bracing will be well employed in resisting vibration. Under this assumption let us investigate the stresses in the bracing. Let the notation be as in Fig. 4, R and R^{1} being the reaction due to the weight W, dis. tributed according to the law of the lever, so that

$$
\mathrm{R}=\mathrm{W} \frac{2 a+b}{2(a+b)}
$$

Let G be the weight transferred by the bracing, then

$$
\mathrm{G}=\mathrm{R}-\frac{1}{2} \mathrm{~W}=\frac{\mathrm{W} a}{2(a+b)}
$$

The stress in the vibration rod is, therefore,

$$
\mathrm{T}=\mathrm{G} \text { sec. } \theta=\frac{\mathrm{W} a}{2(a+b)} \cdot \text { sec. } \theta
$$

The stress in $J K$ is found by passing a plane to cut G H, J K, and J H, supposing that the only weight acting is $\frac{W a}{2(a+b)}$ at E , and taking the centre of moments at H. This gives

$$
(\mathrm{J} \mathrm{~K})=\frac{\mathrm{W} a}{2(a+b)} \cdot \frac{2(a+b)}{f}=\frac{\mathrm{W} a}{f} .
$$

Again, taking the centre of moments at J, and using the same cutting plane, we find the stress in $\mathbf{G} \mathbf{H}$ to be zero ; for the moment of increase of weight at F is balanced by the moment of increase of reaction at that point,* making
the resultant moment of the external forces zero. To find the bending effect upon the post at K let us pass a plane cutting K F and J E , and take the centre of moments at K , then

$$
\mathrm{M}=\frac{\mathrm{W} \alpha}{2(a+b)} \cdot 2(a+b)=\mathrm{W} a
$$

If h be the distance between centres of gravity of post channels and an intensity of 4 tons be employed, the area of one channel necessary to resist this bending moment will be $\mathrm{A}=\frac{\mathrm{M}}{4 h}=\frac{\mathrm{W} a}{4 h}$
But as this effect does not exist at the same time as the maximum load stress upon the post H F, it need be considered only when the post is very light. To ascertain whither needs consideration, find the stress on the post remote end of only on the bridge, reaching fron and unde the supposition of an equal distribution of the train load between the trusses; then proportion the post to resist this stress according to the usual method, and to one-half
of the section thus found add the value of A in the last of the section thus found add the value of A in the last
equation. If the sum exceed the area of one of the post equation. If the sum exceed the area of one of the post
channels required to resist the maximum live and dead channels required to resist the maximum live and dead
load stresses when both tracks are partially covered by the assumed moving loads, then the post section is to be increased accordingly. The vibration rods should be proportioned to resist the transferred load stress, using an intensity of 5 tons, or to resist the sum of the transferred an intensity of $7 \frac{1}{2}$ tons. In double track bridges without sway bracing the trusses will probably act nearly indesway bracing the trusses will probably act nearly inde-
pendently, but of this one cannot be certain, so it may be pendently, but of this one cannot be certain, so it may be
well to calculate the formula for the bending effect on the upper lateral struts due to the transferred load under the assumption of equal distribution between the trusses, and apply it to a practical case. Let the notation be as in
Fig. 4, but let s have the same signification as in Fig. 3 ante, then the bending moment upon the strut will be-The above treatment of transferred load is unassailable

except in two points, and in so far that the results can be derived by a much quicker method, without previously finding the reaction \mathbf{R} or making any sectional planes loading, then
$\mathrm{M}=\mathrm{W} a=\mathrm{G} \cdot 2(\alpha+b)$,
whence

$$
G=\frac{\mathrm{W} a}{2(a+b)}, \mathrm{T}=\mathrm{G} \sec , \theta,(\mathrm{~J} \mathrm{~K})=\mathrm{G} \tan \cdot \theta,
$$

all of which results agree with those previously obtained

 But now I should like to ask what difference in fact or principle lies between a torsional moment due to wind and the due to dead weight? In both cases, Figs. 2 and 4 turninge is in torsion under a left-handed couple. Repaper, it will be seen that the centre of application of the total wind force, $R=2\left(P+P^{1}\right)$, is applied excentrically at a height, say y, above the half-depth, or more correctly speaking, above the centre of gravity of the section, hence the frame is under a torsional moment due to wind expressed by $\mathrm{M}=2\left(\mathrm{P}+\mathrm{P}^{\mathrm{t}}\right) y$. There would then passthrough the neighbouring strut J K a transferred load derived from the equation*

$$
\mathrm{G}^{1} \cdot f=\mathrm{M}, \text { or } \mathrm{G}^{1}=2\left(\mathrm{P}+\mathrm{P}^{1}\right) \cdot \frac{y}{f^{2}}
$$

The tension in the diagonal G Kwould be G^{1} sec. θ^{1} where $\theta^{1}=90 \mathrm{deg}$. - θ. The equal and opposite stresses in the columns would be each equal to $V=G^{1} \tan \theta^{1}$, wind couple $R y$, as can be immediately proved by making the given substitutions, and noting that tan. $\theta^{1}=f \div b$.
Whether this treatment be right or wrong, it has the Whether this treatment be right or wrong, it has the merit of being consistent and not self-contradictory. It
depends
upon the assumption that the wind-loading is excentric, for under even loading, that is, when the centr of wind forces coincides with the centre of gravity of the section, the scheme of stresses would be different, being
determined on the assumption that the frame determined on the assumption that the frame moves sideways as a whole. In any transverse system the safest plan is to follow the effect of a given for
step by step. Let us, for instance, take the case unequal side loading, Fig. 4. Thus, if I impress a force G upon the toe E of the frame it will deflect, and G will distribute itself into a pull G sec. θ along J H, and dig or thrust $\mathrm{G} \tan \theta$ along J K. Following the tension G tan. θ along $G B$, which as the bar meets it is a thrust and a downward force G along $H K$, under the influence of which the toe F deflects to the level of the depressed toe E. The frame rests in this depressed position till the that is the toe E , being suddenly reaction takes place rises and impresses a tension G sec. θ upon the other vibra tion $\operatorname{rod} \mathrm{G} \mathrm{K}$, and a thrust along $\mathrm{G} \mathbf{H}$. The tension G K then resolves itself into a dig along $J \mathbf{K}$ and an upward force along F K, under the action of which the toe F force along FK , under the action of which the toe F
rises to the level of E , and the frame is once more in state of equilibrium. An analysis of this kind gives us very clear notion of the reason why the rods GK and and J H go by the name of vibration rods. It agrees It will be seen on reference that the professor holds that the horizontal component of $G \tan \theta$ at H is free to produce a bending moment $G \tan . \theta \times H \mathrm{~K}$ at K ; whereas met that the horizontal component at H is not free, but thrust $G \tan \theta$. This thrust is equal and opposite to the thrust in J K, and between them they represent a couple

$\mathrm{G} \tan . \theta \cdot f=\frac{\mathrm{W} a}{2(a+b)} \cdot \frac{2(a+b)}{f} \cdot f=\mathrm{W}$

or the moment of torsion in the frame
A glance at the expression in Equation 4 immediately convinces us how it was that Professor Waddell came to section A in the strut G H Fig. 3, when under wind load He drew the conclusion from a false analogy. It is quit true that if the frame, Fig. 3, were acted upon by a down ward force G in the line H^{F}, this force could not be transferred to the opposite column without creating moment at A, if not exactly equal to that given by Professor Waddell, at least equal to $G \times \overline{\mathrm{ACC}}$. The torsion couple woung the is in column, but from strut to strut, and the torsion couple then in the columns. The difference between the two cases is simply that the struts and columns have inter changed places in virtue of the load veering throug 90 deg. Although I have in this article dwelt at some lengt upon the nature of the stresses in a more complex system of tranverse bracing, I view the results with diffidence and should like to see the question of stresses in trans verse bracing thoroughly threshed out, taking into account the many conditions which tend to alter their natures and amount. It had been my intention to deal with Professor Waddell's ideas upon rivetting, and to criticise his peculiar system of calculating rivet-sections to resist bending instead of shear ; but the subject of cross-bracing has carried me so far that I must conclude with the remark that engineers will find a vast collection of useful tables and plates in these memoirs, such a list of all the forms of TI and Σ sections rolled by the best English, American, and Belgian firms, some of which were collected for the author by the indefatigable secretary of the Institution of Civil Engineers, Mr. James Forrest, and others were collected by the author himself. There is also a series of plates giving the details of a whipple truss, the stresses and corresponding scantlings in whipple trusses of different spans, and other ready-made data of more or less value. But the reader must pick his way, and take nothing for granted the accuracy of which he has reason to suspect.

* Here I take $\mathrm{G}_{1} f=\mathrm{M}$; but if the vibration rod extended to the foot
of the column, we should obviously have $G \cdot 2 f=\mathrm{M}$; and even in the given case G_{1} might be less than tiven in the toxt. 2 M ; and even in the the stress in
any member we must find the algebraical sum of the any member we must find the algebraical sum of the atresses arising from
the transferred load A1, and the remaining direct load R anc 2 applied at
the ecntre of gravity of the section. The total lhearing load at the top

THE IRON AND STEEL INSTITUTE.
On Friday morning, the 14th inst., the first paper read was by Mr. Hamilton Smith, on

Wrought Iron Conduit Pipes.

This was a description of the wrought iron pipes exten sively used in the United States for hydraulic pump and ther purposes. They are made up to 30 in . diameter. These pipes, as a rule, are made at the mine, the requisite machinery costing less than $£ 100$. The iron is from 065 1.134 in . (Nos. 16 to 10 Birmingham gauge) in thickness,
with a double row of cold rivets for the longitudinal seam with a double row of cold rivets for the longitudinal seam when the pressure is to be large. The only test made of the quality of the iron is the judgment of the pipe-maker
who can generally discover and reject sheets of bad quality by defects manifested when the plates pass through quality by defects manitested when the plates pass through
the rolls ; in fact, this is one of the chief reasons why the mine-owners have preferred to make the pipes themselves. The length of the separate joints is from 18 ft . to 25 ft ., on end being slightly smaller than the other end. As a pro tection against rust each joint is immersed for several
minutes in a bath of boiling asphaltum and coal-tar ; minutes in a bath of boiling asphaltum and coal-tar; sometimes a little fish oil. This immersion results in thorough coating of the pipe, both inside and outside, and is vastly superior to any application of paint. When the pipes are coated properly the protection appears to be perfect. The several joints are then joined together, stove pipe fashion, the lower joint being shoved firmly into place by jack-screws. When the fit is slack a piece of tarred pine wood are sometime the small end; wedges of sof one. Such pipes are laid on the surface of the ground, and can be put together or taken apart with great ease and a small expense. When a line of such pipe is laid by skilful men with ordinary care, although the length may b several thousand feet with a pressure at the lower end a great as 450 ft ., there are but trifing leaks, which generall can be stopped by putting sawaust into the inlet end o the pipe. As an illustration of the tightness of such rough joints, the author cited a main laid by himself for
supplying water power, having a length of two miles and supplying water power, having a length of two miles and
a maximum pressure of 550ft. The leakage from this pipe did not average more than three or four cubic feet a minute, although the only protection from changes of temperabu was couple of boards tacked togethe and placed over the pipe. the extreme range 107 deg. Fah. in the shade
perature was from 10 perature wansiso, a place of some 300,000 inhabitants, receives its water through two lines of such pipes, and a third pipe, many miles in length and of large diameter, is now being laid for an additional supply. For permanen conduits the joints of a pipe of considerable diameter ar generally rivetted together; for small diameters with hig course, placed in trenches, and covered with earth in order to avoid excessive alternations in contraction and expan sion; slip-joints need not be used, as the pipes are sufficiently elastic to permit changes in length due to variatio of the temperature of the water. The following statement will illustrate the Pacific Coast practice with conduit pipes, the flow in all cases being caused by gravity

The two Virginia City pipes are laid side by side; the lead joints for the rivetted pipe, under the enormous pressure of 1700 ft ., at first gave considerable trouble; the lawsile strain on the Texas Creek pipe is about $16,500 \mathrm{lb}$. per square inch.
The discussion which followed was very short and of small importance ; its drift was that these pipes could be made just as well in this country as in America if a demand existed for them.
Dr. Sorby then delivered a lecture on
The Application of Very High Powers to the Study of the Microscopical Structure of Steel
We call this a lecture, for although Dr. Sorby had prepared a paper he did not read it, but gave its substance
instead. He first described the methods of research he had used, and then went on to speak of the results he had obtained
Speaking generally, a power of 650 linear is about ten times that previously employed, which is, of course, enough to open out a new field for research. This great increase has, however, shown little or nothing more in the case of malleable iron containing little or no carbon, or in the case of the intensely hard constituent of spiegel iron, of white
 little more in the case of enclosed slags, or of the graphite fection in tha enabled silico ser to great pera flood of light on the proabl character of that constituent on the meeting he described as the pearly compound. High powers show that it really has a structure closely resembling that of pearl, the surface being marked by fine straight or curved parallel lines, due to the presence of altynating very thin plates of varying hardnes. Ater only a few hours of observation, he feltalmost certain that
these thin plates were iron free from carbon, and the
intensely hard substance seen so well in blister steel ；but the facts were so extraordinary，and so unlike anything he had ever seen or heard of in any mineral substance， careful study of all the chief kinds of iron and steel the he felt confidence in the results．The chief facts are best seen in the case of an ingot of steel of medium temper． radiating from the surface to the interior．When properly prepared microscopical section is viewed with a moderate power，it is easy to see that，after having crystal－
lised out from fusion at a high temperature，these large crystals break up on further cooling into much smaller，as described in his lecture．What is now seen with very high powers is that these smaller crystals finally split up into alternating very thin plates．Taking all the facts into consideration，it appears as though a stable compound of iron with a small amount of carbon exists at a high temperature，which at a lower breaks up into iron com－ bined with a larger amount of carbon，and into iron free in hardness，or if tho products had not differed so much siderably thinner，or if definite plates had not been formed， such a compound structure would never have been sus－ pected．It has probably never been specially looked
for in other substances，and might exist without being visible，even with the highest and best magnifying powers． To give a good idea of the size of the plates，he would
refer to what is seen in a longitudinal section of medium steel forged from an ingot 3 in ．in diameter down to a bar lin．square．When broken，it shows a very fine grain； power，this prepared section e due to crystals often about one－thousandth of an inch in diameter，which about drawn out or distorted，as they would have been if they had existed previously to final cooling after hammering， and as they are distorted if the steel be hammered at a
lower temperature．Examined with a power of 650 linear， these crystals only one－thousandth of an inch in diameter are seen to contain something like sixty of the alternating plates，and even this extremely delicate structure shows little or no trace of distortion．His reason for concluding that the hard plates contain combined carbon was that they are not seen in iron free from carbon；they increase in amount with increase of carbon，and are seen to the greatest perfection when there is a considerable amount in a combined state．The relations of this unstable compound to all the different kinds of iron and steel were too complex to be described now，but he might say that when no graphite is present，a long－continued moderately high tem－ perature may cause the two constituents to segregate int pound pound and aggregations of free iron；whereas when graphite is present，the combined carbon appears to be set This is one of the and cast iron．It als stituent probably also seems that this remarkable con stituent probably plays the chief part in the hardening of steel．What he had been able to see with high power combine，and when suddenly chilled there is nents again that they separate，though it is possible that no evidence because the particles are too small to be that this may be It，however，seemed to him very probable that in hardening process the unstable compound may not break up into soft iron and the very hard and brittle substance but may be suddenly fixed，so as to give great hardness peculiar properties of Mushet＇s self－hardening steel may be due to the presence of tungsten preventing this usual separation．That the softening of hardened steel depend on a separation of the two constituents seems proved by what is easily seen when the heat has been maintained for considerable time．
This lecture seemed to be quite over the heads of Dr discuss it．Sir Henry Bessemer，attempt was made to welve years ago he tried an experiment by heating that ingot of steel to a high temperature and allowing it to cool very slowly，for ten days ；at the end of that time，although 7in．in diameter，it was easily broken in two with a sledge hammer．Its structure was coarsely crystalline，the crystals measuring from a quarter to three－eighths of an nch on the side．With a light hammer these crystals ould be knocked off in showers，they were so loosely held ogether．But tested on the anvil each crystal was found to quite tougn，flatting out under the hammer as thin behaviour of sugar and iron．If we analogy between the behaviour of sugar and iron．If we want small crystals of
sugar，then the syrup must be cooled quickly and stirred constantly；on the contrary，when sugar candy is wanted he syrup is kept hot for thirty hours and quite wanted， The time of cooling and the heat of the mould had a powerful influence on the grain of cast metal．The whol powerful influence on the grain of cast
The next paper read was a very short one by Mr．F．W Webb，of Crewe，on

The Endurance of Steel Rails

This referred to a diagram showing the comparative urposes on the Lond and Noll used for relaying 1867 to the end of this year，the last year being，of course the estimated requirements．On the same diagram was shown the quantity of coal burnt yearly in the locomotives， as the author takes it that this is the only trustworthy way in which we can arrive at the amount of work done on the line in each year；and，as a check upon the coal consumption，he also showed on the diagram a line repre－ senting the train miles along with the engine miles，and it closely follows in proportion to the train miles and the engine miles run in each year，the quantity of rails used for renewals has been a constantly decreasing amount since 1877．From 1868 to 1877 they were putting down noticed that in 1868 the quantity of iron and steel rails
required for renewals was，roundly， 16,400 tons，and that the largest weight of rails required for renewals was arrived at in 1876，twelve months after which iron rails that yo disappeared－the total number of tons used in ments for this year are only 11,600 tons．Practically the whole of the main lines are relaid with steel ；and while in past years，they have been putting down steel rails as fast as iron ones wore out，they are now putting dow steel rails as fast as steel rails wear out，except on some branches，where iron rails，of course，last a much longer time than on the main line．From what he could see by watching closely，he believed they had now reached the
minimum required for renewals，and that the minimum required for renewals，and that the renewal will rather increase than otherwise，but at a much les rapid ratio than they did up to 1876．The small quantity Wester required for renewals on the London and North Western Ralway，if other companies have relaid thei roads with steel at anything like the same rate，will rail trade；and as the rail trade；and as the steel rails wear out，the quantity pig iron required to keep the road going will in weight between the rails when put down when taken up for renewal，plus $7 \frac{1}{2}$ per cent．for loss in re－manufacture．This will also represent very closely the quantity of iron required for the bath in the lemens＇furnace for re－melting the old steel rails，so that for a considerable period，the quantity of iron required on such a line will be much less than it has been during the the author saw no reason sleepers are found to an they would，in a great measure，fill up the want of order for steel rails in our various large works．On the main line，up to the present time，they had put down 45,000 steel sleepers，and，on recently examining those first put down on the Chester and Holyhead line six years a he found they were in very good order，with no signs of loose rivets，though these sleepers were made with a much less chair base and leverage for the rivets than those they are making now．There was no discussion．
A paper by Mr．F．Gautier was then read
On a Neutral Lining for Metallurgical Furnaces， The object of this paper was to call attention to a
efractory material which is not acid，nor basic，nor reducing，nor oxidising，but which，nor basic，nor employed，may be very useful for furnace when properly ron is a chemical combination of oxide of chrome and protoxide of iron－ $\mathrm{FeO}, \mathrm{Ce}^{2} \mathrm{O}^{3}$ ．Chemically speaking chrome ore is very hard to dissolve．Acids have no action apon it；potash and soda alone can smelt it，with the it intolk itho alkalne chro ates or bichromates．Carbon has，at and the practically mployed， the name of ferrohrome in or to important properties of horder to impart to steel the f chom he bath of melted stel in Siem furnace，hithoug on alteration．From a physical point of view，chrome ore is essentially refractory．Heated in view，chrome ore is essentially refractory．Heated in lumps it does not general metallurgy，where no alkalies in notable quantities are present，chrome iron is refractory metantitie specially neutral character，since neither acids nor base act upon it．The first trial of the chrome ore in a natural state as a refractory material was made in 1879 by IM Pourcel．This was followed in 1880 by its employment on a large scale at the Petershourg－Alexandrofsky Steel Works，which were under the technical superintendence of the Terre－Noire engineers．In the basic open－heath pro cess the chamber is always composed of dinas or silica bricks，whereas the walls of the furnace must be basic The result is that a critical point is found at the contact between the acid and the basic material．This difficulty was overcome by introducing at that point blocks of chrome iron．A new use of chrome ore in metallurgy was in pray M．M．Valton and Remaury，and is now adopted of chrome iron in contact with the smelted metallic
materials or silicates．Since chrome iron is highly refrac tory，and cannot be smelted by silica，why could it not be a constituent material of the furnace hearth and walls The prime cost of this substance，though relatively high－ ± 4 a ton－does not interfere at all，since the wea whi tear is trifing．We thus realise a kind of crucible which plays about the same part that platinum does in －inatories．The chrome iron is employed in two shapes ron lumps，and in mortar with lime．In lumps，chrome and in natural state，is without distinct crystallisation nd very hard ；it can，however，be cut easily enough to lumps of for masonry purposes．In open－hearth practice togethe with melting of wrought iron din mixed of walls，for of wrought iron and iron ore The result is a very soft steel and，according to M ．Deshayes，the manager of th Tamaris Steel Works in France，these steels are softe than their carbon percentage would at first sight indicate Amongst the works where such open－hearth practice wit Meuse；Blagny，Ardennes；Morvillars，Territoire de Bel fort • Thagny，Ard

ort；Iamaris，Gard

The discussion which ensued was brief and of small mportance．Mr．Windsor Richards said that chrome or culty wa thed it was very hard to basc steel．The diff mbly Mr．Pormir could get it now in blocks of sufficient size．A lining of could get it now in blocks of sufficient size．A lining of the Steel Works of Scotland，said he had a similar experi ence．Tar is used to make the bricks，not lime Professor Huntingdon said that a ore，and found that it could be fluxed，if intensely heated with silica provided oxygen enough was present to con vert it into chromic acid；but in a furnace there was no oxygen available，hence its refractory property．M Gautier，in replying，produced a species of chrome ore which freely scratched glass．He stated that a lining of it 8 in ．or 10 in ．thick was sufficient．
Mr．Turner，demonstrator of chemistry，Mason College， then read in abstract a very long and valuable paper on

The Constituents of Cast Iron．

The most important feature in this paper was the nnouncement that it was possible，without any extr expense，to impart to all cast iron a tensile strength of a which tons per square inch，or nearly double that on only necessary to have sufficient silicon in the metal．The author＇s own experiments were made with iron of mor than usual puri y specially prepared by heating South Staffordshire wruught iron in crucibles with charcoal The product was then mixed with various amounts of silicon pig，and the resulting metal examined chemicall and mechanically．The materials employed had the following composition

$$
\left\lvert\, \begin{aligned}
& \mathrm{f} \text { tal } \\
& \text { carron } \\
& \hline
\end{aligned}\right.
$$

silicon pig

The total carbon was purposely kept as nearly as possible due to variopions in that elo ther than silicon was mangenese but in this to any considerable exten rather less than one－fifth of the variations in silicon，and would not appear to have introduced an appreciable error would not appear to have introduced an appreciable erro collected together for the first time．In addition to ar has been previously published，there is added a specimen has been previously published，there is added a specimen his earlier experiments to be of considerable interest There is also given the calculated transverse strength， which is of importance in connecting together tensile and rushing strength．The tensile and crushing tests were performed by Professor A．B．W．Kennedy，of University College，London；while he was indebted to Mr．J．P． Walton for assistance in the analytical part of the work

Table A．－Effect of Silicon on the Properties of Cast Iron．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& $$
\begin{aligned}
& \text { Cylin. } \\
& \text { ders. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Turn. } \\
& \text { ings. }
\end{aligned}
$$ \& \& $$
\begin{gathered}
\text { stren } \\
\text { sq4 }
\end{gathered}
$$ \& pror \& Modulus of
elasticity． \& $$
\begin{gathered}
\text { Crushin } \\
\text { per squ }
\end{gathered}
$$ \& strength \& \& $$
\begin{aligned}
& \text { rog, } \\
& \text { the }
\end{aligned}
$$ \& \& $$
\begin{aligned}
& \text { 部 } \\
& \text { 品 }
\end{aligned}
$$ \& \& $$
\begin{aligned}
& \text { gi } \\
& \text { 总 }
\end{aligned}
$$ \& \& 家穯 \& ，

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline ${ }_{0}^{0.5}$ \& \& \& $$
\begin{aligned}
& 72 \\
& { }_{52}^{72}
\end{aligned}
$$ \& \& 12．31 \& \& \& \& 3280 \& 1．206 \& \& \& \& 0.19
0.45 \& \& － $\begin{aligned} & 0.14 \\ & 0.21\end{aligned}$ \&

\hline ${ }_{1}^{1}$ \& ${ }_{7}^{7.6541}$ \& 7.630
7.473 \& 42 \& $\underset{\substack{28,490 \\ 81,440}}{ }$ \& － $12 \cdot 72$ \& $31,180,000$
$23,500,000$

2， \& 207，300

188,000 \& | $92 \cdot 54$ |
| :--- |
| 82.08 |
| 18 | \& ${ }_{\substack{3370 \\ 343}}$ \& 1．504 \& \& 0.24 \& 1．85 \& ${ }_{0}^{0.96}$ \& 0．33 \& 0.26 \& 崖

\hline ${ }_{2}^{2}$ \& ${ }_{7}^{7} \cdot 4.518$ \& ${ }_{7}^{7 \cdot 350}$ \& ${ }_{22}^{22}$ \& cisise \& $15 \cdot 70$
$\substack{15 \\ 18}$ \& ${ }^{23,565,000}$ \& 137，300 \& ${ }^{81}$ 61．29 \& ${ }_{346}$ \& ${ }_{1}^{1.5688}$ \& 18 \& － 1.62 \& ${ }^{1.758}$ \& ${ }_{1}^{1.97}$ \& － $0 \cdot 30$ \& $0 \cdot 60$ \& ${ }_{\text {－}}^{\text {O3 }}$

\hline ${ }_{3}$ \& 7.258 \& ${ }_{7} 7.279$ \& ${ }_{22}^{22}$ \& \& ${ }_{12}^{14.28}$ \& ${ }^{20} 21,450,0000$ \& 128，700 \& ${ }_{57}^{77 \cdot 185}$ \& ${ }_{2850}^{3534+}$ \& ${ }_{1}^{1.5772}$ \& 23 \& 19 \& | 0.68 |
| :--- |
| 0.80 | \& | 2.51 |
| :--- |
| 2.96 | \& | 0.26 |
| :--- |
| 0.34 | \& －75 \& －0．05

\hline \& \& ${ }_{7}^{7.218}$ \& ${ }_{32}^{27}$ \& ${ }_{22,780}^{25,280}$ \& ${ }_{10}^{11.28}$ \& 15，640，000
$18,720,000$ \& 106，900 \& $47 \cdot 74$

46.16 \& ${ }_{234}^{2543}$ \& \begin{tabular}{l}
1.135

1.046

\hline

 \& $\substack{2.01 \\ 2.03}$ \& cis

1.88

1.68

\hline
\end{tabular} \& O．

0.38
0.37 \& \& \& 0．84 \& －05

\hline ${ }_{10}{ }^{7.5}$ \& 7.128

6.978 \& | 7.138 |
| :--- |
| 8.924 | \& ${ }_{5}^{42}$ \& 11，950 \& ${ }_{6}^{5.84}$ \& 14，750，000 \& 111，000 \& ${ }_{99}^{49} 5$ \& ${ }_{1505}^{2342}$ \& ${ }_{0}^{1.046}$ \& 2．03 \& \& － $\begin{aligned} & 0.37 \\ & 0.38\end{aligned}$ \& 4.74

7
7 \& 0．30 \& ${ }^{0 \cdot 95}$ \& 0．05

\hline \& \& 6．924 \& \& 10，630 \& 4.75 \& 13，930，00 \& 76，38 \& \& －1205 \& 0.65 \& \& \& \& \& \& \& －

\hline
\end{tabular}

The tensile strength will be seen to vary with remark wo uniformity，attaining a maximum of 15.7 tons，with for cast iron，of silicon．This is an unusually high value x in the Woolwich author boliod experiments of with with 3 tons．The careful mixing a tensile stringth good materials，by inch，as measured by bars strength of tons per square regularly assured．In one inch in diameter，could be value is obtained with modulus of elasticity a maximum even members of the one per cent of ill obtained，which are probably connected with the low per centage of total carbon．

The crushing strength also shows a very considerable uniformity，the only exception being the 2.5 per cent．specimen，which is probably rather too high maxi the small amount of graphitic carbon．The ent of sivalue of 92.54 tons was obtained with one pe with cast iron，has been exceeded by SirW．Fairbairn，who in 1853 recorded a crushing strength of nearly 96 tons． The author concluded－（1）That pure cast iron，i．e．，iron and carbon only，even if obtainable，would not be the most suitable material for use in the foundry．（2）That is equally unsuited for foundry purposes（3）That the il effects of an excess of one constituent can at best be only

THE BIRMINGHAM GAS WORKS.-240ft. GAS HOLDERS. MR. OHARLES HUNT, M.I.C.E., BIRMINGHAM, ENGINEER.

and 4 in . by $\frac{1}{2} \mathrm{in}$. flat ties a top by girders formed of two channels $9 \frac{7}{8} \mathrm{in}$. by $3_{1}^{3} \mathrm{i}$ in., to which is rivetted a 16 in. by ${ }^{5}{ }^{5} \mathrm{in}$. plate. To this p'ate are fixed handIn group 2, p. 409 , is a back elevation of standards
e sloping columns tied together by flat bars, these diminwing from 9 in . by $\frac{5}{8}$ in. at the base to $4 \frac{1}{2} \mathrm{in}$. by $\frac{5}{5} \mathrm{in}$. at the top. Double wing plates with a distance packing piece between them are bolted to the columns, and the bars rivetted to them as shown.
vertical stiffening booms is also on plate 4. The construction of
the inner holder, diameter 230 ft ., depth 50 ft ., rise of crown 20ft., is shown in group 5 below. The top kerb is formed of $\frac{1}{}$ steel. The obtuse angle 6 in . by 6 in . by $\frac{3}{4} \mathrm{in}$. is double rivetted, by $\frac{5}{8}$ in. thick-these are in lengths of 27 ft . 9 in .-and also to first row of top sheets 36 in . wide by $\frac{5}{5} \mathrm{in}$, thick; to the outer edge of this steel plate is rivetted a 5 in . by 3 in . by $\frac{5}{8} \mathrm{in}$. steel angle. The ends of all steel plates and angles are planed and butt-jointed, having steel cover plates and angles as shown.
bottom rollers of inner lift work-the channel iron thus forming part of the boom and adding additional stiffness to it. The details of outer lift, 236 ft . diameter, will be given in Group 7. The bottom kerb consists of a plate 24 in . deep, ${ }^{7}{ }^{7} \mathrm{in}$. thick, apart, between which are fixed the bottom rollers. mediate between the rollers the angles are stiffened by uprigh 6 in . by 3 in . by $\frac{1}{2} \mathrm{in}$. T iron brackets. A view in plan of the top plating and of the columns and roller guide and frames was given at p. 393. The capacity of each holder is $6,500,000$ cubic feet,

ELEVATION OF SPECIAL JUNCTION STANDARD

DETAILS OF JUNCTION STANDARDS.-GROUP 3.

PLAN AND ELEVATIONS OF TOP GIRDERS, GUIDE ROLLERS, AND FIXINGS.-GROUP 5.

Group 3 above shows the elevation of the standard that is situated at the junction of the two holders and is common to both, making the twenty-sixth standard round each; its construction is similar to the ordinary standards, with the exception
that both columns are vertical and each provided with a roller that both columus are vertical and each provided with a roller guide. The two vertical columns are connected at the top by a girder formed of channel irons and a top plate, and serves as a footway from one holder to the other. It is claimed for this and simplicity of erection great rigidity of structure is material Both during and after erection the framing has been severely tested by heavy gales, with the result that no perceptible vibration is noticed. An elevation of ladder leading to the top of standards with platforms on each girder was shown in group 4 p. 393. A projecting landing fixed on the kerb of inner holder opposite the ladders affords means of access to the top of at its full height, showing arrangement of elevation of holder at its full height, showing arrangement of side shects with the

The kerb is further stiffened at fifty-two points in the circumference by $\frac{1}{2}$. gusset plates bolted to each side of vertical booms and to top plates. The second and bottom rows of side heets are of $\frac{1}{4} \mathrm{in}$. iron, the intermediate are No. 10 gauge. The by 3 ft . 3 in ., thus dispensing with a considerable amount of jointing. The vertical booms are bent out of $\frac{3}{16} \mathrm{in}$. plates and rivetted to a strip 18 in . by $\frac{1}{4} \mathrm{in}$. The top guide carriages of thi and tangential pulleys; these, by means of adjusting screws, cal be fixed to suit any inequality of the guides. All the cups and grips, formed out of \%in. plates, are 18 in . deep by 12 in . wide. Group 6, which will appear in another impression, gives part elevations and section of intermediate lift, 233 ft . diameter. The vertical booms project from the sides an 18 in by in stries, the bent plate being rivetted to about 5 ft . apart is fixed a channel iron guide-in which the
making $13,000,000$ cubic feet in all. The total weight of iron in the two holders and guide framings is about 3250 tons. The pressure thrown by the holders when the three lifts are in operation is $8 \frac{3}{10} \mathrm{in}$. The contractors for the work were Messrs, Cutler and Sons, of Millwall, London. These holders will no doubt form one of the chief attractions of engineering interest during the meeting of the British Association in September.

WINDING ENGINES FOR AUSTRALIA.
Thr winding engine illustrated by the engraving on page 416 has been constructed by Messrs. Tangye, Birmingham, under the instructions of Mr. J. D. Baldry, M.1.O.E., for the Australian Agricultural and Mining Company, New South Wales. On a pevious occasion we illustrated some machinery of a similar nother impression wy the same makers to Australia, and in particulars of the engines now illustrated.

RAILWAY MATTERS,
The Railway Oommittee of the Paris Chamber has resolved on
sending some of its members to London to study the working of the Metrooolitan Railway.

A colutision between a passenger and a goods train occurred on the 2tth inst. at Mall, in the province of Antwerp. Four persons

 The Railway Commissioners, with their registrar, will attend athe Four Courts, Dublin, next week, to hear two cases in which the parties are Irish railway companie THE railway is now complete through the Bolan Pass. At date
of recent maii, material was being rapidy carried up, and the line
was being laid towards The Canada Dominion House of Commons has passed a resolu-
tion in favour of constructing a railway through Cape Breton Islant, which would make the shortest route between this conti-
nent and England.
THE Wolverhampton Chamber of Commeree has just determine to memorialise the railway companies serving this district praxing
that the reduced railway rates on the carriage of finished iron to
London might be extended to two ton lots and being, as at present, confined to lots of ten tons and upwards
THE recent fatal collision near Monte Carlo brought the brake
question to h head in France. The Minister of Public Works question to a head in France. The Minister of Public Works
has requested the French railway companies to fit up their pas-
senger trains with continuous brakes. This applies not only to senger trains with continuous brakes. This applies not only to
regular passenger engines and cars but to all engines, and to milk, trorse, and fish carss liable to be occasionally used in passenge,
frains al vehicles used in fast and express trains are already
fitted with Weestinghouse brates fitted with Westinghouse brakes.
A com forsonvent of a contemporary at Lisbon says : :"There
Railway of Spaid.
Rable improvementin the service of the Northern Railway of Spain. The service on the so-called direct Madrid
to Lisbon line, via Caceres, could not be worse, as regards organis tion, time of starting, stations, carriages, or speed -the last for an
 sula, thoupgh half the time would be ample, if the spanish Gevern
ment, instead of being intimidated by the political passengrs who ment, instead of being intimidated by the political passengers who,
unfortunately, form part of every railway directorate, would only keep the railway companies in their territory strictlly to every
condition of their charters. Such a scandal, prejudicial to public
and international communication, would then son and international communication, would then soon cease to exist." A NEW line has been opened by the London and North-Wester
Railway Company from Stalybridge to Diggle over which the com-
rany has been running its express trains betwe Tany has been running its express trains between Leeds and
Manchester. The line was opened for through goods traffic early in the year, but is now being used for through passenger and goods
and locoal goods traffic, but the local passenger service has not yet
been started, because all the stations are not ready. The new line been started, , ecause all the stations are not ready. The new line
is nearly seven miles long, it is double throughout, and is made on
a steep gradient, and there are four stations and two tumnels. It a
leaves the main line a little to the north of Stalybridge, and is
expected to materially improve the communication between Manexpected to materially improve the communication between Man-
chester and Leeds, and between the Yorkshira town and the South
of England. Mr. Buck, engineer, has superintended the con of England. Mr. Buck, engineer, has superintended the con-
struction of the line, Messrs. Taylor and Thompson being the
contractors. IT is said that severe economy is the order of the day on the
Australian railroads. The great drought made the wheat crop last winter so small that not more than 50,000 tons can be exported, of cattle that can be sent to market. This has greatly reduced the
traffic and earnings of railroads. The train service has been reduced as much as possible. In the rail way shops the men are
put on three-fourths time, working 4al days a week; men in
superior places have been siven lower superior places have been given lower positions for the time, and
enginemen, firemen, and cleaners, like the men in the shops, have
been put on three-fourths time. Matters have been keep the men, so far as possibibe, on the reduced time, and some new privileges have been given; as where men lived in a town
whenee they rode to the shops on the railroad, paying 9 s . for a
nonthly ticket, they are now carried free nonthly ticket, they are now carried free.
THE following companies have the distinction of having more
than 50 gas coaches fitted up and running with the Pintsch
system of oil-gas lighting :-The Great Eastern Railway, with 621

 Che Uper Silesian Railway, with 1072 coaches; the Imperial
German Post, with 800 vans; Royal Railway of Saxony, with 1024
coaches ; the Dutch Railway Company, with 569 coaches coaches ; the Dutch Railway
it is known that the lighting by these means costs verys much less than the barbarously inefficient and troublesome oil lamps, to say
nothing of the enormous cost every year for broken. glasses, it is remarkable that so small a quantity of English stock is so fitted. The International Railway Commission at Brussels and the
Executive Committee elected by that body-of which Sir Andrew of the new International Railway Congress, which is to continue
of the work commenced last year by the first Contress me work commenced last year by the first Congress. The com-
mittee is charged with-(1) the preparation of the rules and pro
ramme of the next Congress; (2) the organisation of gramme of the next Congress; (2) the organisation of future rail-
way congresses; ; (3) the compilation of technical railway statistics; way congresses; (3) the compilation of technical rail way statistics;
(4) correspondence with the various railway administrations, with Congress ; an agreement as to the questions to be exrangement of infined by the
the Congress, and the formation of a libration which may interest
ther the Congress, and the formation of a library of works of reference,
(6) the preparation of a history of various experiments made; (7)
the keeping of the accounts of the Compission of a publication which is to serve as the organ of the International Commission. This publication is to contain all the reports pre-
paratory to the next Congress, and will be published in French
either monthly or quarterly. The financial resources of the Comeither monthly or quarterly. The financial resources of the Com-
mision and of the committee, which are both presided over by M.
Fassiaux, Seeretary-General of the Belgian Ministry
Pof Posts, and Telelaraphs, consist of an annual subsidy of 50001 . from
torem
the Belgian Government, and of contributions paid by certain
State and private railways, Mone railways are proposed in Nova Scotia. A dispatch from
Halifax, N.S., May 4, sayy: "The Goverment traiload scheme
was submitted to the Serish syndicate and all other Canadian and Aday. The Maine Central
jected, and the offer of the shemes are rejected, and the offer of the joint stock association of London is
acoepted. The main propositions are that the Governent wwill
acuire and transer to this tompany the Windsor and Annapolis
and the Western Counties and the Western Counties railroads, and obtain a transfer of the
Windsor Branch from the Dominion Government. The new
company is to onstruct the missing link betweem Digby and Annw
polis, and will thus have company is to construct the missing link between Digby and Anna-
polis, and will thus have a though line from Yarmouth to Halifax,
with steamer counections with Boston at each end of the province
 on the company's debentures for twenty years, and to make up any
defieinect in earning below astated amount. This company will
also have the option of acquiring the Niotanx and Atlantic road,
 also proposes to give a subsidy of 3200 dolos. and 2800 acres of
crown lands per mile in addition to the Dominion subiy to the
road between the Straits of Canso and Sydey
also give give 3200 dols. and 2000 aores of road between the Straits of Canso and Sydney or Lowisburg, and
also give 3200 dols. and 2000 acres of land
company building any railroad in Nova Scotia," per mile to any

NOTES AND MEMORANDA.

 IN Greater London during the week ending the 15th inst., 3132 $30 \cdot 8$ and 17.0 per 1000 . Last week. in Greater London 3486 births and 1717 deaths were registered, corresponding to annualrates of $34 \cdot 3$ and 16.9 per 1000 of the population.
 at nearly all the stations of the Meteorological Society in the winte
months is almost the same as that of the air, while in the nonths is amoseat same as that of the air, while in the othe
months of the year the temperature of the soil is higher than that months of the year the temperature of the soil is hig
of the air at all except that of the London stations.
AT a recent meeting of the Academy of Sciences a paper was
read, "on the Penetration of Light into Deep Sea-water, by MM.
H. Fol and E. Sarasin From the uth H. Fol and E. Sarasin. From the author's experiments it appears
that layers at a depth of 300 metres are illumined every day for the ight ime that esun remains above the horizon; at 350 metre he actinic rays seem to reach considerable depths.
$\mathrm{W} \Delta G O$ makers or repairers can save their stock from worms by
oiling with linseed oil. The Lumber World
says: :"Single trees double trees, neck yokes, spokes, and cross bars that are of whit hickory, and are kept in stock for a year or more, will be eaten by
worms if not kept in a dark place or otherwise protected. worms if not kept in a dark place or otherwise protected. Coat
and kerosene oil are good also, and the expense of applying is but
little. Linseed oil is is preferable, as it it acts to some extent as wood filler, filling the pores, and thus aiding the paintint whic ollows in its proper place. Some, manufacturers oil all thei
white hickory stock before shipping." In London 2424 births and 1414
The weelk ending the 15 th inst. 1414 deaths were registered during from all causes, which had been $18 \cdot 4,18 \cdot 5$, and $18 \cdot 7$ in the preceding three weeks, declined to $17 \cdot 8$, a lower rate than has been
recorded in any week since October last. Last week 2690 births and 1379 deaths were registered. The annual death-rate per 1000
from all causes further declined to $17 * 3$, a lower rate than has been recorded in any week since October last. During the first seven
weeks of the current quarter the death-rate averaged $18 \cdot 6$ per 1000 and was 3.4 below the mean rate in the corresponding periods o
The deaths registered during the week ending May 15th i twenty-eight great towns of England and Wales corresponded to
an annual rate of 19.1 per 1000 of their aggregate population, which is estimated at $9,093,817$ persons in the middle of this year Sunderland, Nottingham, and Plymouth. Last week the death registered in twenty-eight great towns of Eng and and Wales cor-
responded to an annual rate of 1877 per 1000 of their aggregate population, which is estimated at $9,093,817$ persons in the middl
of this Bristol, Hull, Sunderland, and Wolverhampton.
Iv applying Siemens' principle of heating by radiation, or free
development of flame, to boilers, it is necessary to prevent the flame in its active stage of combustion from touching either the free space to burn in, and thus good combustion is obtained, after which the products of combustion are brought into intimate con-
tact with the surfaces to be heated. While tact with the surfaces to be heated. While combustion is going
on in the open space, heat is transmitted by radiation only, but after active combustion is completed it is be
and it is in this manner that flame must be applied to boilers, an may may
IT does not appear long since the telephone was supposed to bo paper recently read before the Society of Telegraph Engineers, by Mr. W. H. Preece, F.R.S., it appears that speech has been trans.
mitted over 1000 miles of open wire, although it is difficult to phones in the United States has been enormous. At the pesen time 325,574 instruments are in use, while in England there ar
only 13,000 . London is not even the chief centre in Europe Berlin exceeded it, while Stockenolm had nearly as many sub instruments as the United Kingdom. Speech is now perfectly United States ances or extemsive, from the 42,461 miles of wire and they earn 538,000 dols. a y yar. The longest distances are
about 100 miles, the toll 25 c ., or 1 s ., for five minutes' conversa THE
THe vast beds of coal of New South Wales are proving of im specimens on view in the Nepment of the Colt Wolony, and the numerourt at the Indian
and Colonial Exhibition for visitors from the British mining districts. There are two cubes samples of coal from Bulli, Newcastle, Coal Cliff, and other places, ness. According to the oftimens representing a seam 12 tt. in thick the coal-bearing strata is estimated at 23,950 square miles. The ing conformably on the marine beds of the lower coal-measures, and overlaid by more than 500ft. of Hawkesbury sandstone. Eleven seams of coal have been counted in them; the lowest,
which is 10 ft , thick, lies about $2 \overline{\mathrm{ft}}$ above the marine beds, and i it the same seam worked by the B
and Vale of Clwydd collieries,
Iv a circular note to wire and wire rope manufacturers and col
liery proprietors, Mr. James B. Wilson, of Haydock, St. Helens who claims to be the inventor of wire rope, notes that in 1832 wire rope was a new manufacture, difticult to introduce, and very
difficult to sell ; indeed, there was scarcely anyone who would give it a trial. About this time, however, Mr. Thomas Sherratt, of to lift a large engine beam. The rope was made without any twis
the in the individual wires. This was an event to be legitimately wondered at, as it may be at the present day, when it is borne in
mind that at that time nothing was known of wire rope. It sub sequently transpired that about the year 1835 Mr . Albert introHartz Mountains. At the meeting of the British Association, at Newceastle-on-Tyne, in 1838, Mr. John Taylor, F.R.S., read a pape
Wy Count Brenner, on "Wire Rope." Now, in 1886, wire rope by Count Brenner, on "Wire Rope." Now, in 1886, wire rope is
in general use all over the world, and has almost entirely superseded
THz annual report of the American Iron and Steel Association
ust issued shows that the American production of pig iron in 1885 amounted to $4,529,869$ tons, as compared with $4,589,613$ net ton in 1884. The output of all deseriptions of manufactured iron,
including iron nails and excluding iron rails, was $1,789,711$ tons against 1,91, 1 nait tons in 1884. The total mannatacture of iron and
steel rails amounted in 1885 to $1,094,215$ tons, against $1,144,851$ $1,917,350$ tons, as compared with $1,736,985$ tons in 1884. The above figures show that the deorease in the production of iron and
steel in the United States during last year was inconsiderable Ste foreign trade of the States, on the contrary, suffered a a serious
Tedountion, The value of the American impors of iron and steel
in 1855 was 31945,52 dols, as compared with 38 , 211 son dols, in in 1884 that of the exports, of iron and steel, and induding asricul.
tural implements, $19,163,066$ dols., against $22,685,706$ dols. in 1884 . The report of the Association also sives correct figures of the con
struction of railways in the United States, from which it he struction of railways in the United States, from which it appears
that the number of miles of railway completed in 1885 was 3000 , bringing the total mileage of
of 1885 up to 128,279 miles.

MISCELLANEA
THE Belgian Society of Engineers has arranged a historical and emonstrative exhibition of various forms of lighting apparatus, $t \mathrm{t}$
open at the Brussels Bourse this-Friday-evening, May 28th. THE frrst number of a monthly magazine, edited by T. C Camera, has been published by Messrs. Wyman and Sons.
AN illustrated sheet of rolled joists and built-up girders and trusses has been issued by Messrs., Gardder, Anderson, and Clarke,
the list comprising rolled girders or joists up to 22in. by Bin, and the list comprising rolled girder
the strengths of various forms.
THe new harbour opposite the island of Urzambada, south-west way, was opened on the 24 th inst., in presence of Generals Komaroff and Annenkoff.
In a paper on dissociation temperatures, Mr. Frederick Siemens says:- The conclusion at which 1 have arrived is, that solid sur-
faces, besides obstructing active combustion, must also at high
temperature

In our report of the paper on the Mersey Tunnel Railway, by Iv our report of the paper on the Mersey Tunnel Railway, by
Ir. F. Fox, read at the Institution of Civil Engineers, we referred to the ventilating machinery, but we omitted to mention that this
machinery was made by Messrs. Walker Brothers, of Wigan, and that special reference was made at the meeting to the excellen orking of the fans.
ONE of the largest photographic views ever exhibited is to be
sen in the New South Wales Court at the Indian and Colonial Exhibition. It is 20 ft . in length, and furnishes a complete pano ramic renresentation of the citto of Sydneys. Port Jackson, and the
ruburbs. It was taken from the cupola of the Garden Palace, sub suburbs. It was taken from the cupola of the Garden Palace, subsequenty sed
graphic skill.
MessRs. BuckLEY AND TAYLOR, engineers, Oldham, have during the past fourteen days started two pairs and one single engine, allo
the horizontal compound tandem type ; one pair for the Leesbroo Spinning Company, Lees, near Oldham, capableof driving 1200 indica ted horse-power; ; one pair for Messrs. Jno. Smith and Son, Holyrood
Mill, Oldham, capable of driving 1000 indicated horse-power; and rill, Oldham, capable of driving 1000 indicated horse-power; an one single engine for the Crown Spinning Company, Oldham,
capable of driving 600 indicated horse-power. These engines ar were in every respect equal to the best productions of these well know

A Maching for shearing sheep is said to be in successful opera-
tion in Victoria. It is made of brass, in the shape of a small rowel. The motion is actuated by a small turbine wheel, abou untter. In front is a comb, serving as a guard against cutting the skin. The steam is conveyed from the boiler by an india-rubber
tube, which is double, having one inside the other. The inner one is the injection, and the space between the two the ejection. The machine is used in the same fashion as the sheores, but outs, it is
stated, much quicker and far cleaner, without the least danger of injuring the fleece or shee
The Bath and West of England Society's Show opens next
 exceeds 40 acres. There will be a good show of implements, the ntries numbering 320 , against 203 at Brighton last year Brighton there were only fifty entries, and this year there are bighty-two. It is said that there evilil probably be at this show the
largest exhibition of this class of machinery in motion ever held argesis exuntry. From a comparative statement of entries, i
then ppears that there are of machinery in motion eighty-eight con
partments; seeds, 441 ft . run ; agricultural implements, 4499 ft run; cattle foods, artificial manures, \&c., 740 ft . run; miscellaneous articles, 1470 oft.; open space for hay barns, greenhouses, \&c., 211
square yards. The show closes on Monday, the 7 th of June.
ONE of the leading men in Sunderland, Mr. James Hartley. J.P., died at ine Langham Hotel, London, on the the and when., a young mingh of manufacturing rough plate glass, which he patented, and, in
conjunction with his brother, commenced in 1833 the Wear Glass Works at Sunderland, which have attained a world-wide celebrity. ehrch of making \&c., The work occupy a very large tract of land, and have for many years afforded
employment to large numbers of men and boys. In 1865 Mr Hartley was returned to Parliament for Sunderland as a Conserwas a Deputy-Lieutenant of Durham, a county magistrate for about forty years, and a borough magistrate for forty-six years, lso connected with other public bodies in Sunderland, and director of the North-Eastern Railway Company.
Constiderable interest centres in the works now progressing at
the great Nile Barrage. This work of the French engineers of the the great Nile Barrage. This work of the French engineers of the more than a useless impediment to navigation so long as French
engineers presided in the Public Works Department. A Times correspondent says, "Colonel Soott Moncrieff, though recognising
that the work was of defective construction, considered that it might be utilised with care. In this opinion he was opposed by might utilised with care. In this opinion he was opposed by
native and French, and even by some English engineers, of
acknowledged authrity acknowledged authority. Last year his experiment succeeded,
and the Barrage proved to be of considerable utility. But it is asserted that it thas sume toredist the pressure of the next thigh, Nind
that tit will be niall
-about the midde of July. Colonel Scott Moncrieff and his assistants are doing their utmost to strengthen the structure. Arrangements have been made to work at night by the electric
light. The time is short, and unfortunately the fast month of Ramadan intervenes, during which the prosecution of the work
will be difficult. But though it is admitted that there is cause for ome an xiety, the Colonel yet hopes to prove that the work of his some anxiety, the Coolone be mape to fulfill the object for which it
French predeessor can
was oonstructed at enormous cost. With its usual generosity, the was construated at enormous cost.
local French press vilifies the Colonel for end its ungering the architec-

ON Tuesday, the 18th inst., an interesting and important stage in
the course of the execution of the improvements being carried ont in the Butterley Company's Codnor Park Works was attained in a trial start of the new sheet mill. This mill is believed to be one
of the finest yet put down in the kingdom; and, indeed, it has been said that this mill is at present the largest in
Europe. It is driven hy a high-pressure horizontal engine made
at the Butterley Works, with cylinder 30in. diameter and 5 ft stroke, having double slide valyes to cut off at any desired proportion of the stroke. The mall has two pairs of chilled rolls 2 Sin.
and 26 in. diameter, and is intended for the rolling of iron and teel sheetes from İin. thick down to almost any thinnesss that can The engine was started by Mrs. Fitz-Herbert Wright in the presence of several of the proprietors and the managers of the works, and the ponderous fly-wheel of nearly 70 tons looking really majestic in evidence of irresistible power. The Butterley Company will now
proceed forthwith in the erection of two new three-high merchant mills, on the completion of which the Codnor Park Works will be every branch of the manufacture of iron and steel.

COMPOUND ELECTRIC LIGHT ENGINE.
messrs. GALLOWAY and sons, manohester, engineers,

THE ELECTRIC LIGHT AT THE COLONIAL AND INDIAN EXHIBITION.

No. I
Last year we published an elaborate series of articles on the electric light as displayed at the Inventions Exhibition. These articles dealt not only with the practice of electric lighting, but with its theory as well. They covered to render it quite unnecessary for us, in dealing with as lighting of the Colonial and Indian Exhibition to do more than the Colonial and Indian Exhibition, to do been done. Broadly speaking, the whole of the lighting may be classed under two heads, namely (1) the lighting of the gardens, and (2) the lighting of the buildings. It is with the first we propose to deal this week with the first we propose to deal this week. Concerning
The lighting of the gardens may be divided under three heads-(1) incandescent decorative lighting; (2) arc lighting; (3) the illumination of the fountains. Last year the gardens were lighted by Messrs. Siemens, power being driving Siemens' dynamos direct. Steam was obtained from a three-furnace Babcock and Wilcox water-tube boiler, the plant being placed in the west corridor
close to the conservatory. This year the whole of the electric lighting of the gardens, including incandescent arc, and fountain lighting, is being carried out by Messrs. W. and J. Galloway and Sons, Knott Mills Ironworks, Man chester. Hitherto this firm has been best known as maker of boilers and engines. In takiug up electric lighting Messrs. Galloway have broken entirely new bibly distinguishes some English engineering firms, and which places them in a position of considerable advanta those who, getting into a groove, continue to run in it yose are, yen and are the entirely dependent on two branches of trade. Messrs, Galloway hold certain views concernifg electric lighting which appear to us to be so sound that we do not hesitate to place them before our readers. They are no doubt based on careful observation of the results which have hitherto been obtained by various engineers and firms who have made electric light ing their business both at home and abroad
Messrs. Galloway hom and home abroad
Cessful electric lightin, then, that the first essential to successfar electric be available. They believe that and sufficient curand disappointment that have been experh of the failure has been due to the irregular nature of the cuenced hitherto and that this irregularity can be traced to defects in the
engines supplying power. They argue, and justly, that in cotton mills engines can be found which year after year run with perfect steadiness for nine or ten hours a day that these engines do not get hot bearings or break dow, or give any trub principles, being observel it is posibl to produce engines for electric lighting purposes which shall give results quite as rood as those used in cotton mills Messrs Galloway have designed an entirely new type of compound engine for electric light ing; and three of these engines are in use at the Indian and Colonial Exhibition-two in a special shed near the end of what was last year the music gallery, and one in the corridor close to the Goodfellow and Matthew engines, which, with the dynamos and the Babcock and Wilcox boilers, have become the property of Messrs, Galloway On page 413 will be found a general view of the Galloway electric light shed, and above we give an end and side view of one of their engines.
The engines are of the Woolf type, that is to say, the cranks are placed opposite one another, or at an angle of 180 deg ., so that the steam exhausts directly out of the high-pressure cylinder, 15 in . in diameter, into the lowpressure cylinder, 26 in . diameter, the stroke being 2 ft .6 in .

 a,

 Ma ded A) gund in

 2.

of an organ on a small scale. These communicate witi Sir Francis Bolton takes his stand every night, and for half-an-hour, by playing on these keys, so to speak, produces the almirable effects which delight and surprise thousands of spectators. No fewer than nineteen men are gallons of water are used per minute, under a pressure equivalent to a head of 160 ft . Under Sir Francis Bolton's room is the switch room. Of its arrangements it would be impossible to give an intelligible idea without drawings. Beyond any question this is the most remarkable electric
light installation in the world, and the arrangements from beginning to end reflect the greatest credit on all concerned.

FUEL AND SMOKE.*

Lecture I

I make no apology for bringing before a Royal Institution audience a subject having more connection with the improveAs a rule, it is no doubt best for a devotee of pure science to knows ; but two things determined me to that which he best when honoured with a request from your secretary to lecture in this place. First, the strong desire which has long possessed me to do something towards helping forward the movement against the physical evils, the paltry and unnecessary evils, under which
we dwellers in cities too patiently suffer ; and secondly, the remembrance of the spirit and object with which this august Institution was founded, and especially of the labours of Count Rumford in the precise direction towards which my own thoughts had been for some time tending.
The pollution of the atmosphere existing in Count Rumford's
day, though it very properly excited his disgust and apprehension for the future, must indeed have been trivial to what it is now. Had he been effectively listened to, much of the present evil would not exist; but he was not, and the result is that the
vast majority of d wellers in a city-those unable to leaze their vocations and retire in the summer to the country-scarcely ever breathe the pure air of heaven or behold the unveiled face
of the sun. They eke out their pallid existence in slums and courts into which the sun scarcely ever penetrates and no fresh breath ever blows. There among sweltering filth they live-
they die ; and so long as they remain sufficiently quiet and But perhaps we are not content ; pers.
But perhaps we are not content; perhaps we only acquiesce because we donot clearly see a remedy. It is in the hope, rather that I have determined to urge the consideration of the subject in every way that I can and upon every convenient opportunity. and instantaneous remedy, immediately practicable; but I do feel able to indicate the main lines on which gradual, I hope
rapid, improvement is possible. And that is what I shall try to
First, I wish to direct your attention to what is usually called the "combustion" of coal. There are certain bodies which
when you heat them melt before they begin to do anything else; when you heat them melt before they begin to do anything else ;
such bodies are ice, butter, lead, and iron. There are certain bodies which take fire and burn when you heat them, before they do anj thing else; such bodies are hydrogen, phosphorus, and gunpowder. There are certain bodies which chemically decompose are marble, feathers, wood, and coal. Bodies in this last category cannot properly be said themselves to burn. Their products of decomposition may or may not be combustible, and if combustible they may or may not burn. The products of decomposition
of marble are two-one solid, one gaseous (quicklime and of maribe are two-one solit, one gaseous (quicklime and
carbonic acid), and both are absolutely incombustible. The products of decomposition of coal, though far more complex, are
likewise roughly separable into two classes, the solid and the gaseous; and both are thoroughly combustible under favourable conditions, neglecting the ash for the present. It is easy to
distil coal, however, without allowing either its solid or it gaseous constituent to burn; it is done every day with full knowledge and design at a gas works. It is likewise done every
day, not in knowledge but in ghastly ignorance, on our so-called day, not in
coal fires. will see the for a few minutes the structure of a coal fire; you wou empty on a shovelful of coal. sery, good; this has first
You enter
to be heated and decomposed, separated into its aseous and solid constituents in fact, and the gase they are being distilled they may catch fire and burn; but they commonly do not take fire for some time, because they are
scarcely hot enough to begin with. And even if hot enough, they are so mixed with carbonic acid from the smouldering mass It is not a fire at all; it is a still: a sort of crude gasworks. warms nobody. So far from that, evaporation consumes deal of heat, and the fire itself below is like to be put out unless it be pretty vigorous. The coal gas is just evaporating or dis-
tilling up the chimney; you can sometimes start it burning by simply applying a match to the ascending stream of gas, but
more frequently the carbonic acid soon quenches an incipient more requent the carbonic acid soon quenches an inipipient
flicker, and the poker has to be brought into requisition to increase the supply of air.
(The effect of feeding
by lighting a by lighting a spill at the chimney of a paraffine lamp; also by
supplying an ordinary gas jet with burnt air by holding it over a tin plate chimney with a large "solid flame" burner below it. once precisely imimotated, and the cause of their flickering is per-
ceived. It is easy to put a fire nearly out by burning newspaper ceived. It is easy to put a fire nearly out by burning newspaper
under its bottom bars ; whereas burning bir under its bottom bars; whereas burning a bit of paper on the
top of a dull fire helps it, sometimes to a surprising degree.) But is it pure gas which is thus ascending? Good heavens!
look at it; smell it. You have not far to go. The only diffllook at, smell it. You have not far to go. The only diffi-
culty in smelling it is that we get so accuastomed to it ; our lungs are full of it every winter day of our lives. I believe that if you could suddenly transport a Highlander off his native
heath into such a city as, say, Manchester, on a dull day, without the graduall initiation of the train or the suburbs, he would
feel nearly suffocated. How often wol and lungs, and inhale invigorating breezes, in a city? We can sometimes almost do so with a strong west wind; but,
ordinarily, people parade the streets with their ordinarily, people parade the streets with their mouth grimly
shut, filtering the air steadily through their nostrile shut, filtering the air steadily through their nostrils.
The products of a gasworks are not
The products of a gasworks are not gas and coke alone; they include ammonium salts in large quantities, sulphur also, and
tar, in which are latent a multitude of useful aniline dyes Two lectures in the Royal Institution, London, by Prof. Oliver Lodge,
Saturday afternoons, April 10th and 1 $17 t \mathrm{th}$, 1886 .
other coal tar products, creosote, naphthalene, and asphalt,
The number of compounds now otatainable from coal tar is quite astonishing; not only colour materials, but some medicines also, the pleasing name "benzyl-sulphonic-imide," which is able powerfully to excite the nerves of taste in much the same manner as sugar, but some 200 times more powerfully. week tell you nuch more, it is proposed to call " saccharie ne and Sir Lyon Playfair hopes it may replace sugar in the diet of gouty old gentlemen and diabetic patients. Thope that it may thus subserve beneficent ends, but, with the inscrutable customs of trade at present in vogue, it seems just as likely to lend itself to purposes of adulteration, and to confer sweetness upon sand, or some other cheap, and let us hope inoccuous, material The stuff we distil from our incipient fire contains portions of all these ; it contains the potentialities of great indus tries and of fertilising manures-the gasworks is now the main source of ammonia required by plants-and what becomes
of it all? Some little is happily deposited in the chimney; the rest hovers about in the air--a veritable plague cloud, the sigu of the neighbourhood of a multitude of civilised men.
Walking in some unknown part of the country in the autumn, gathering, it may be, the blackberries as you go, you find the must be appro hust be approaching a village, whose children have been happy
here before you. Travelling in some countries abroad, a deep toned bell or a glistening spire announces the proximity of town. In England its neighbourhood is otherwise heralded to you. You have been riding in a train, perhaps, through bright gloomy than it did, that the trass does nat so happily flourish that the trees look stunted gads miserable; ; you conjecture you must be near a town. Yes, the gloom deepens, the air feels chill you can now no longer see the sun. It must be a city ! You which perpetually enshround of the and you realise that the gloo which the inhabitants have raised, either to beautify their common home, or as the symbol of the worship of their commo comm
god.
The
The smoke from factories, indeed, is more appalling than the smoke from houses, but I must confine myself to house smoke
this evening, though it is essentially all one ; and what I say of house fires applies in great part to factory Ires, and vice ver fore lin settle gradually as smuts, some
length but
and which dirty our books, our clothes, and our furniture, and kee one or two maids in each moderate-sized house busy in movin it about from place to place. I suppose an energetic housemaic would be happy if she could manage to prevent dust from ever settling-could keep it permanently suspended in the air.
Plenty is in the air as it is-we cannot move in a room without knooking out clouds of it , which are visible enough in a brigh not seeing, we breathe this filth exnd call it air ; our lugs and marvellously constructed, or they would be absolutely clogged matted together with the reeking abomination we pass through them. We live, but that we live thus healthily and pleasantly is not true. Plants experience the evil no more than we do, but they have less rapid power of adapting themselves to outward circumstances. They must have clean and open-pored leaves-
lungs that is-or they flag and fade. They must have sunlight, or they die.
the enrb 200 odd years since apple trees grew and bore fruit in the Barbican. How far are we from such a state of things
now? Yet there is no necessity against it. The neighbourhood of human beings is rather beneficial to vegetation than otherwise that which slays them is the tarry and sulphurous compounds the smoke. The tarry products of caal smoke are abundantly evident in the atmosphere; our buildings, our statues, our hands
are coated over with a black grease, and washing four or five times a day scarcely keeps them pleasantly clean. And then the sulphur-sulphur burns to $\mathrm{S}_{2} \mathrm{O}_{2}$ and this soon oxidises and dis solves to sulphuric acia-oil of vitrion. I do not care much sulphuric acid You have only to find out how much coal is burnt in a day, and then the average percentage of sulphur in coal -2 per cent.will give you the result ; 6 tons of sulphuric acid are produced per 100 tons of coal burnt. Think you that oil of vitrol is and gradually undermine the strongest constit to must corrode books, pictures, buildings, most visibly ; it is dissolving the capable of.
Well, so
ch for the first stage of our coal fire, when it is stage. The gas coming off now is of a more easily combustible nature, and being also of a higher temperature it burns, and to far as it completely burns it constitutes a gas fire. Now many people abuse a professed gas fire, thinking it gives a dry
unpleasant kind of heat and an evil smell. I admit that it is possible for a gas fire or any other fire to smell if it be ill-lighte iessed gas fire smells any worse than a gas fire which that a protends be something else. If your gas fire smells, something or someit is the to be abused lights it should be held in the chimney opening to see that the draugh oup the chimnney and not down. If you light the fire with down draught in the chimney no gas fire can help smelling, and o coal fire can help "smoking." No fire ought to be expected exist beforehand or it must be made If the chimust eithe regular use, and if it be built with thick enough walls, its bricks usually keep warm enough to maintain a steady up-draught air helps to night, especially as the nidf a but if the room be only occasionally used, as is often the case with a gas fire, and other stoves in the house are at work, you
will generally find a stream of air being sucked down the wil generally find a stream of air being sucked down the chimney-an air supply, in fact, for the house. The room is
thus ventilated-especially if it is an upper room with a short chimney-much as if its window was open. It is for a bedroom desperately careless how we get air for our houses. We ar light with some care and lavishness if indeed we hewe wadmit in the matter, as commonly in this "dishonoured nation" we have not; but we let the air leak in as best it can, down chim neys, through coal cellar grids, up drain pipes, and-till quite lately-often through sewers. The cut-off system of drainage prevents this last now, and sink traps are intended to prevent
scullery pipes from officiating as air shafts. But even without scullery pipes from officiating as air shafts. But even without them, if you examine how air is admitted to your house you
will not be pleased. Through the coal-cellar grid, near the ash.
pit, you will probably find it in a plentiful and constant stream,
You may also find it coming in through grids interded to ventilate the spaces between the floors when the bell-hanger disports
himself. You seldom find shat, arranged so as to supply the whole house with deliberately chosen air ; most convenient is such a shaft to warm in winter and to cool in summer
What we want about a house, and everywhere else, is for each coal cellar to be be conite function and to preserve it. You want to act as amateur air shafts as well. You do not particularly relish your bedroom being ventilated through a chimney; thoug dmit light, and not draughts as well : and doors to admi people, and not bronchitis, Similarly I prefer a gas fire tha professes to be a gas fire, and not one that shams that it is

Well then

Wraught in the efore you light any fire you should turn the chimney if it be wrong way by burning a bit of possible fear of setting the chimney on fire if you use a real
gas fire, because there is no soot. But suppose you have lighted he fire properly and it even then smells, the next thin to con sider is whether there is a sufficient air supply to the room because if the room is nearly air-tight a gas fire will smell and
coal fire will technically "smoke." Into most eaks through chinks, through the keyhole, and under the door keeping one's feet delightfully cool ; nevertheless, it is better so than to have no air at all, though a branch from a main air shaft would be best. is sufficient, and the gas fire still smells, then abuse the fire
but do not abuse gas fires as a class, abuse that partieula specimen, or suse gas fres as a class, abuse that particula for some better kind. The old arrangement of clinkers and fire-clay held together by asbestos packed into an ordinar good form, it consumes a lot of it takes some time to heat up, and it is apt to smell. It extravagant because of the solid or deep arrangement of it. An open fire can only warm a room by radiation, and to this en all hot surfaces should have an unobstructed view of the room.
Combustible hot clinkers at the back do indeed help to maintaii fire but they cannot emit hent directly. led hof a gas fir the clinkers are not combustible, the amount of burning materia $i s$ strictly regulated by the gas tap, and all hot others are useless, except to warm the chimney. By arranging stopping as far as possible all unnecessary air draught, thes improved. Or you may have vertical inta of flire-clay, with filaments of asbestos protruding
from it into a flame sheet, whose function is to heat them white hot instantly, so as to give a good radiating surface. I do no suppose that gas fires are yet perfect, but the best kind I know
at present in the market are those made by Mr. Fletcher, of Warrington, on these principles,
Here are specimens
of fire in the thes whether anything comes out and sec if you can smell it in the room. Some of Mr . Fleteher' il stand this test.
People further complain of the "dry-heat" of a gas fire. the air, dries it undoubtedly, but a gas fire working by radian convenient here that I explain the main difters. It may b heating by convection and heating by radiation. Any conveetion method, stoves, hot water pipes, hot air, \&c., proceed
upon the plan of warming objects in a room by means of the The air is first warmed, and it warms them. Accordingly air than system, walls and furniture are always liable to be coole objection air in contact whin them. Now there are certain apt to be deposited on comparatively cold surfaces and to trickle down detrimentally. Not only so, but as Mr. Clark and I have
recently discovered, simultaneously with Mr. Aitlen recently discovered, simultaneously with Mr. Aitken of Edin burgh, dust is bombarded out of warm air on to cooler surfaces
in contact with it. It is for this reason that ceilings get black over gas lamps, that walls get dirty above hot-water pipes, that If a flame smokes extra solid matter is provided by it; but there is usually plenty in town air to make a black patch on a ceiling above a clear flame, or even above an incandescent electric lamp fixed near enough to it. All suspended solid mat'er is faces warmer than the air drive the dust away and keep them sives almost free. A large flat horizontal surface may inde receive a deposit of dust, even though slightly warm, but it pro
tects itself a good deal, especially from the smaller particles. vertical or inclined surface may protect itself almost completely one full of hot water, the other of cold, both covered by a bel jar full of thick white smoke. After some ten minutes the col one was found thickly covered, as with hoar-frost, while the hot fire or sun-light, brings about the opposite conditions. The ai warmed and communicate heat solid objects; they are firs them. Accordingly on this system no such effects as we have The only objection to this system is that to do the whole of one, heating in cold weather by pure radiation is unnecessarily ex travagant, and leads to a closing of apertures and deficient ven being sow and indirect proes, when once hot it is desired to keep it and not let in fresb. This is decidedly and the best plan of warming a house is no doubt a combination
method, both radiation and convection. The air supply slould be ample, but it should have the chill taken off as it is intro as always to maintain them should be heated by radiation, so air. By properly adjusted arrangements of this sort an exceed ingly pleasant and uniform temperature can be attained; and tended to aid in the accomplishment of this method I shal shortly direct your attention to. I have not spokeu of the
cheap and nasty gas fire without flue-no escape for products of cheap and nasty gas fire without flue-no escape for products of
combustion. I would not bring such abominations near the place.
A coal fire in the flaming stage is thus essentially a gas fire but it is a very bad gas fire. The gas is, so to speak, mad
on the premises and made badly; it is absolutely unpurified of course, and it is so mixed with carbonic acid that it only burns in a flickering, undecided, smoky way. Flames interesting to watch Yes, in a camp fire in the back woods, or in a fine old isolated country house, they are very harmonious and picturesque. But coal fire flames that they are content to defile and render
law from polluting the common air for their own amusement,
just as one can already stop in some measure the pollution of rivers.
I shall suppose it admitted that the home manufacture of gas is not every thing that can be wished, and that it is better,
on the whole, to have gas made properly at some central station,
purified of its valuable but deleterious products, conveyed to on the whole, to have gas made properly at some central station,
purified of its valuable but deleterious products, conveyed to
the house silently and cleanly in pipes, and then burnt comp'etely and smokelessly under perfect control; the fire being able ing to need. It is better to have such a fire as this than to have a sort of amateur gasworks on every hearth, the supply for
which is carted about the streets, shot down with dust and noise into your cellar, carried thence by female labour to the various rooms, "Do just attend to the fire; it's going out,"
"The scuttle's empty." "Then ring the bell." What a round"The scuttle's empty." "Then ring the bell." What a round-
about way of keeping warm! And when fresh coals are put on,
what is the result? Frequently a smoky still for some twenty minutes, over which you may sit shivering, not daring to poke mit, until a welcome tongue of flame shoots cout, and you know
that the gas-burning stage has fairly begun. But there is yet the third stage to be considered-the red-hot or glowing stage-when flames have ceased, and the carbon alone
is quietly and smokelessly burning. Yes, this is the best and only perfect stage of a coal fire. But what is it really that is
burning? It is not coal at all, it is coke. You have consumed or distilled away into the air the volatile products of the gas-
making process, and naturally the coke remains ; and if you making process, and naturally the coke remains ; and if you
thus like a coke fire, why not try one, or why not burn anthra-
cite which is cite, wid in favour of anthracite. They burn it largely in Canada,
said the
and their cities are accordingly a pleasant contrast to ours ; but and their cities are accordingly a pleasant contrast to ours; but
they don't know when they are well off - the manufacturing mania has seized them, and by Protection they deny themselves comforts in order that they may achieve manufactures. Accor-
dingly they hanker after bituminous coal, and have erected a few cessfully rolls out of them they rub their hands smoke "sucha! we are not yet quite a manufacturing nation, but we are beginning to look like one."
of the future, this greed of people for markets. It is not that of the future, this greed of people for markets. It is not that
they want the goods themselves-no, they will keep them out of
their country by taxation. It is not to supply raged children with boots and clothing that they labour hard and deny themselves the breath of heaven and the light of day-ofr then it
would be noble ell-sacrifice. No, it is to ship to China, Africa, Burmah, anywhere; and if a shipload of their sold handiwork
were sunk they would not lament, they would rejoice, and say, "Lo now we can make more." Remarkable human nature! burned than it is; and it is a very fairly smokeless - not quit smokeless-fuel. What are the objections to it it It it difficult
to light and to keep burning. You want special grates for it,
sut to light and to keep burning. You want special grates for it,
and so on. Quite true. I admit all this, and I admit that no solid fuel can for an instant compare in comfort and convenience
with gaseous fuel. Solid fuel needs carting to the house, with gaseous fuel. Solid fuel needs carting to the house,
carrying about the house, the fire needs attention at intervals, to be raked out, carried down, and carted away, and the ash of coke is considerable; and every morning, or indeed, without
regular attention oftener, there is the somewhat serious trouble of lighting the fire.
Contrast all this with a gas fire. A housemaid brushes up the
ironwork once a week when she cleans the room, and that is all the attention that need or can be given to it. You have an illness in the house; a coal fire has to be banked up so as to go
on distilling half the night in a black and sulky condition, unfit even to boil a kettle; and yet, if you poke it, it flames and burns makes the room too hot. If you have banked it up very
scientifically it may last in this gloomy state till morning, but, if not, the nurse has to get up, and probably wake the patient with the rattle of fire irons. With a gas fire you light it once
for all, and need never look at it again for a month; unless the room gets too warm, when you lower it, or too chilly, when you
raise it If you want hot water or toast it can be cooked mmediately. No noise, no dust, no anxiety, and no attentio I said the red-hot stage
perfect stage; but how short a time is it allowed, or, indeed, able to last? You know by experience that, as soon as only glowing coke is left, it is time to start the gas-manufactory again. The
heat required to distil fresh coal checks the ardour of a stron heat required to distil fresh coal checks the ardour of a strong
fire, and utterly damps a weak one. It must not go too low. You therefore have some more coal put on, and unless you do
it yourself, or unless you are in blissful ignorance as to how it it yourself, or unless you are in blissful ignorance as to how it
should be done, your nerves will be tormented with the bungling nd stupidity exhibited in the process.
same in allhod employed for stoking a fire is not the
ane kingdom; the orthodox Londo method is not the same as the Staffordshire method. There are two general cases depending on the state of the red-
hot fire. It may have burnt into a red-hot hollow cave with a black top, or it may be more solid and red all through. The
method commonly adopted in the former case is to beat down the hollow with a poker, and to put the new coal on the top; in the latter case, it is customary to rake the elowing mass a little
forward and to put the fresh coal at the back. In Staffordshire being still in a sound and healthy red-hot condition, two scuttles are brought in, one full of lumps, the other of small coal or slack.
The fire is drawn forward, a row of lumps is arranged on end all along the front, and then the other scuttle is emptied on the back, filling the grate up to the chimmey opening with a nicely
sloped pile of smoll coal, till it can hold no more and beris to sloped pile of smoll coal, till it can hold no more and begins to
dribble into the ashpan. Then with a brush the ashes are whisked about from the front bars a bit, and the whole is complete. In two hours that room is untenantable, except by a Now all this is wrong. The proper theoretical place for fresh
coal is at the bottom of a firs not at the top The hent above will then gradually distil it upwards, and the gas as it is given off, having to pass through a hotter mass above, may be
almost completely burned. It is scarcely possile e in a domestic grate to stoke it really at the bottom, though, indeed, gratestic on
this plan have been attempted; so a compromise is nee this plan have been attempted; so a compromise is necessary.
The next best place to the bottom is the middle, and next to hollow in its heart be thankful, and stop your fire with a fine that would beat it down. Feed the fresh coal into this hollow either through the bars, or, what often is more practicable, by gently raising a little ethe top crust. The coal will then take fire almost at once, and smoke will be reduced to a minimum.
There will still be smoke-there must be smoke when crude coal is burnt just as it is dug out of the ground, as a savage
might burn it; but it need not be excessive. Next time you
feed the fire it will probably be solid, and you must then rake
it back as much as you can and put the fresh coal in front
becase because, as the draught goes a good deal fro
putting it in the front is a fair imitation of
bottom. And if you want of putting it back, And if you want the coal to burn and not to distil u the chimney, you will never put a great quantity
"Little and often" is the motto for all good stoking.
Little and often" is the motto for all good stoking.
But this is troublesome. Yes, indeed, and I I don't care how troublesome it is. The more bother the better. It is our one hope
of curing the smoke evil as caused by domestic fires. You attack manufacturer by means of his cash-box, sometimes his only vul nerable spot. You bully a householder by causing him trouble.
When people get tormented about smoky chimneys they must do one of two things -they must either take the trouble to stoke properly, and so make a little smoke, or they must have
some form of gas or coke fire, and so make none. I need not say which course of the two would be the better for the
But there is yet one objection-gas fires are expensive. Well at present they are. Yes, it will never do to attempt them; far better live in dim and smoke-laden air half our lives, getting
away when we can for a whiff of something fresh and a glimpse of something green, far better to choke each other with the prod.
doubled.
No, you say rightly, that's not fair. We cannot legislate for
the rich alone. What are the poor to do if smoke is forbidder Well, to this I may reply firstly that the very poor camnot, I fear afford to make very much smoke even now; they have very mainly a cooking fire, and that cooking by gas is even to-da actually and considerably cheaper than cooking by coal, beside being so much more cleanly. I would also say that for really cheap
warmth an open fire is quite unsuitable $; 2$ stove is the cheap warmen, an open fire is quite unsuitable; a stove is the chea
thing, and muite well be smokeless. An open fire is thing, and it may quite well be smokeless. An open fire is a
luxury, by reason of its radiant heat and its ventilation; it is not, and never can be, cheap.
Do I then mean that the
from such a homely luxury working classes are to be debarred have few enough luxuries at present. I would far rather add to them rather than diminish them. But I cannot compare such a paltry difference as that between one form of fire and anothe
and the far higher and more ennobling luxury of being able to breathe fresh air, to see a distant view, to feel the brightness of the sun; not once or twice a year on a laboriou
holiday, but at their very doors, and every day of their lives, What then are we to seek for? We must have cheaper gas The gas we now burn for illuminating purposes is far too expen tinually being invented. I hope next time to speak of the Dowson gas, the water gas, the Siemens gas producer, and others. 1s, 6 d, , a thousand feet is the ultimate thing that science can desideratum is cheap gas, and hundreds of inventors are turning their energies in the inction. Besides, regular coal gas can be really a bye-product; it is the main pipes and purifiers that are costly, and most of the twenty-four hours these are, at present almost idle. When gas comes to be used all day long for warming and cooking, instead of only a few hours in the evening for lighting, the same mains will serve for a much greater quantity
of gas, and one may hope that its price can then be profitably of gas, and one may hope that its price can then be profitably
reduced. Before next century begins I for one hope to see gas displaced altogether from its domestic lighting function, which it ill and unwholesomely performs, but employed, ten-fold more
plentifully and a million-fold more beneficenty in replocing th barbarous, wasteful, dirty, and then, I hope, illegal, semi combustion of solid fuel.
That which streams from our chimney is no product of combus tion; it is a product of incombustion.
Factories are savage sinners
Factories are savage sinners in this respect, and them also I must tackle; but now I want to call your at
tention to some fireplaces which tention to some fireplaces which have been devised
mitigate or abate the smoke nuisance be satisfied with smoke abatement. What I I hope to see smoke abolition; but meantime the contrivances gating the evil are worth attention, and will serve to illustrate the principles I am trying to enforce. Understand that I bring as being any one of them a perfect and heaven-sent contrivance.
If one knew of such a piece of perfection, one's task of urging reform would be easy. But that is not the way things generally
happen. Progress is commonly gradual, and we must try to go
via less smoke to none at all.

(To be continued.)

ON CERTAIN DESCRIPTIONS OF INDIAN By C. Purdon Clabke, C.I.E., Keeper of the Indian Section,
South Kensington Museum. THE importation of partly manufactured material is at present
oxercising considerable influence over many of the native arts exercising considerable infuence over many of the native arts of
Oriental countries and India. The supply of machine-made thread gold threa compete with the imitation brocades sent in from Europe. In some handicratts, however, the supply of European material has produced a contrary effect. displaced an ancient ind and steel, bar and rod, have robbed the founder of half his work. Formerly the only means of producing sheet metal was by hammering cast plates, an expensive
method, only resorted to when thin flat coverings were require for wooden or other objects. For very large vessels, where weigh wheet was used, but generally the founder was employ to to which much as possible the labour of forming the furnished castings Which required but little beating out, trimming, and brazing. In would prepare a cast not unlike in shape and thickness that of an ordinary flower-pot saucer, from whioh, by constant hammering,
the bulbous sides would be formed, projecting beyond the which would remain of its first diameter and thickness. When cast, and a remarkable example of the native knowledge of the composition of bronzes and annealing processes, It is worthy of noting that the chief means of detecting modern from old Persian
and Saracenic metal vessels is by examining the brazing joints, which in ancient vessels are rare. When not found, a close examination will show the vessel to be a thin casting, the orna-
mentation being by inlay or chasing and hammering, which, being done after the cast is made gives the reverse side t inh, being

So far as I could ascertain, there are three methods of casting practised in India. The first by moulds in sand; the second
noulds in clay not unlike plasterers' piece-moulds; the third, cla moulds formed on a wax model, the cire perdu of Europe. The
first of these is well known in Europe, but the second is, I believe
now deseribed for the first time. In preparing the mould, impres these of the various pare taken in clay, an together, and kept in place by several layers of mud, in whicl some fibre is mixed. The mould when ready has but one vent of bottle neck, If the objent is small several moulds are attached together, and the vents united by a single short neck of clay, t t
which a crucible, enclosed in an egg-shaped ball of clay, is attached The size of this orucible depends upon the exact amount of metal required to fill the mould or moulds; and this quantity being
known by experience, the founder places it inside before closing up No provision is made for the escape of air from the mould when the metal is poured in. The mould and crucible (now in one piece) is
allowed to dry; and after several coats of clay, tempered with ibre, have also been well baked on by the sun, the furnace is pre
pared. This is simply a circular chamber about 2 ft . 6 in. Half filled with eharcoal, a a good heat is obtained by the use of
Her everal sheepskin bellows from beneath. When ready, as man noulds as the furnace will hold are placed in it, the crucible end o fire kept up until, upon examination, the moulds are found to be red hot. They are then taken, one at a time, and replaced in a
reverse position, the crucibles being now above. The metal flow down into a red-hot mould, and penerates the finest portions of the surface without suffering from air or chilling. The fire is allowed
to gradually cool, and when the objects are broken out of their clay covering, the metal is soft and malleable
The third manner of casting-
which is destroved in the moulding-is well particular case the process has been carried further than would be at first believed, and of this I will now attempt a description. The made from an endless curb chain. Such curb chain trinkets ar ommon
ings in anglet is of bronze, and consists of a complicated chain of forty three detailed links, the whole being cast by a single operation,
The first part of the process is the preparation of a pattern in wax he list part of to bear three small knobs or rosettes. These are in two instances hu ornaments; the third, however, serves as a channel for the metal to enter each ring. Then commences the most dificicult part of the by painting in a thin coat of fine clay until there is sufficient to form a partition. Other coats of clay are added until a thickness of about $\frac{t i n i n, ~ i s ~ a t t a i n e d, ~ w h e n ~ a ~ g r o o v e ~ i s ~ c u t ~ r o u n d ~ t h e ~ u p p e r ~ s i d e ~}{\text { of the }}$, ring, and deepened until the row of knobs is bared. The wax is then melted out, and the mould attached to a crucible as
before described. When cast, and the mould broken away, the chain comes out inflexible, being attached to a rod which runs is complete. Having been consulted respecting the trades to be
represented in the Indian courts of the Colonial and Indian
 e sent. Dr. Tyler, wb present the foundry is not in working order. I submit for your nspection one of these combined crucible moulds, with fragment. of another, also a cast curb chain anklet; and now conclude by
thanking you for this opportunity of publishing an interesting

Civil and Mrchanical Enginkers' Societr.--Permission has been granted for members and their friends to visit the new
Vational Agricultural Hall Works, adjoining Addison-road Station to-morrow, the 29th inst. Mr. Am Ende and Mr. Walmisley will
meet the visitors at the entrance in the Hammersmith-road at The New Putney Bridge. - The Prince and Princess of Wales will formally declare the new Putney Bridge open to the public
to-morrow-Saturday-afternoon. A programme of the route and to-morrow - Saturaay-afternoon. A programme of the route and opening eeremony has been drawn up under the superintendence
of the Metropolitan Board of Works. The Prince and Princess of as's Park and Buckingham passing over to the southern end of the bridge to a covere pavilion. Sir James M'Garel-Hogg, M.P., the chairman, will
present an address to the Prince and Princess, and introduce Mr rancis H. Fowler, deputy chairman of the Board; Mr. Willian Shepherd, chairman of the Bridges Committee; , ,irt Joseph
Bazalgette, O.B., engineer; Mr. Edward Bazalgette, assistant ngineer; and Mr. Waddell, contractor
The PANAMA CANAL. - At the meeting of the Academy of a committee to report on the alleged differenece of sea level on the two sides of the Isthmun of Panama. A similar objection to the
Suez Canal had, he said, proved unfounded; and if the present objection were also disposed of, no lockss would be necessary in the suggested that the tides might be higher on one side of the Isthmus stro on the other, the question was referred to the navigation and astron shany sections. Considering, says a Times correspondent, that
the shares of the Panama Canal Company are held in France by
nearly 400,000 persons, that these shareholdes. nearly 400,000 persons, that these shareholders belong to the most
influential and trusted class in the country, that the work is bound Frenchmen, and that by general ad aission the canal will be the most glorious work of the nineteenth century, it will be easy to
understand the excitement produced by the paragraph in the Temps, in which the ereport of M. Rousseau, the engineer intrusted unfavourable to the enterprise. The Government itself was disturbed by this announcement. It is clear that a Government is granted as are solicited by the Panama Canal Company. It is no immense majority of the nation by allowing unpleasant rumours to find currency and to circulate as if their truth were admitted. This accounts for the spread of the excitement just referred to.
At first the Bourse was alarmed, and the question was asked if the At first the Bourse was alarmed, and the question was asked if the
shareholders, frightened by this unexpected news, would rush into shareholders, frightened by this unexpected news, would rush into
the market and give importance to the rumours. Fortunately for this great undertaking, nothing of the kind has occurred. The
shareholders kept their self-possession. They soon felt that there must be ers kept their self-possession. der ; how otherwise, in fact, could they explain the course taken by M. Rousseau? At a drank to the prosperity of the work. Could he have drunk to the prosperity of an undertaking of which he was a few weeks after-
wards to declare himself definitely the adversary? Besides, it was understood that the principal question to which he had to reply was, whether or not the work was practicable. On this point his
report is distinctly affirmative, so that other questions become secondary. When so cautious a man declares the work practicable, the shareholders have simply to consider whether they should
finch from the diffulties flinch from the difficulties yet to be overcome. M. Rousseau was
bound to make reservations, and he would have shown great heedlessness if he had not seen the difficulties of the enterprise. This originally produced. The shareholders have made a stand, and
or stopped the fall; while the Government seems inclined, on hearing the company's replies to M. Rousseau's objections, to follow the
stream of public opinion and grant the facilities asked for by the company. It feels the necessity for putting an end to the uneottery debentures. Those who have watched the enterprise with interest will rejoice at this solution,
COLLIERY WINDING ENGINE FOR THEAUSTRALIANAGRICULTURALAND MINING COMPANY. CONSTRUCTED BY MESSRS. TANGYE,

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER,

CONTENTS.

 The Endurance of steel Batils
On a Neutral Lining for Metall
On a Neutral Lininn mor Mer Metallurgicail Fürnaces
The Constituents of Cast Iron

 Annual Report of the Metro
The Royal Agricultural Society

New Companies
The Patrent Jour

TO OORRESPONDENTS.

Registered Telegraphlc Address-.". ENGINEER NEWBPAPER,
** All letters intended for insertion in The ENariekr, or conthe name and addres good faith. No notice whatever will be taken of anonymous
commen cannotions. undertake to return drawings or man
*uust therefor request correpsondents to keep copises.
mut
inform correspondents that letters of innuiry addreseds to the inform correspondents that letters of inquiry addressed to the
public, and intened for insertion in this ocoumn, must, in all
cuses, be acompunied by large envelope legibly directed by the cases, be acompanied be a arge envelope legibly directed by the
writer to thimself, and bearing ald. postage stamp, in order that ansvers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply with these instructions.
T H.-See Stoney's sook "O. Stresess in Girders." London: Longman and
Co. Adams .4. Stroins in Ironuorke." London: E. and P. N. Spon.

 181, 241 . N . To calculate moments for all the various conditions of
pressure, momentum,

 enamelding iron.
 steel castings.
 any material
May 26 th.
[Try a core made of Opre Hearth.
[Try a core made of pulverised chrome ore and lime. A
Dinas fire-clay, properly burned, ought to stand.-ED. E.]
THE Enowner can be had, by order, from ans.
at htio e various railuay
from

If credit occur, an extra charge of two shillings and sixpence per annum will
be made. THE ENMINERR is registered fr transmission abroad. Cloth cases for binding The Enainerr Volume, price 2s. 6 d. each.
A complete set of THe Exorinkrr can be had on application. Foreign Subseriptions for Thin Paper Copies will, untill further notice, be
recieved the rates given below: Foreios subseribers paying in advance
at the pubbiseled rates will

THE ENGINEER.

MAY $28,1886$.

the collingwood accident and our guns,
How can Mr. Campbell Bannerman form a new committee to go into the question of our guns such as appeared
to be contemplated by the members of the House? In our issue of May 7th we mentioned the peculiar constitution of the committee that had been assembled to decide what steps should be taken to enable our guns to utilis slower burning powder, while keeping within the limits of safety. The bursting of certain smaller guns forward,
coupled with the obvious tendency of affairs, were matter of sufficient importance to make it desirable to call in al available orthodox counsel, both for the sake of its genuine
value and, we suspect, also for the sake of involving all value and, we suspect, also for the sake of involving al be done. The Ordnance Committee was reinforced on that occasion by the judgment of Elswick, as represented by Sir
W. Armstrong and Captain Andrew Noble, of Whitworth' W. Armstrong and Captain Andrew Noble, of Whitworth' and of the Chemical Department by Sir F. Abel. Thu we have gun construction, steel making, and research as
to explosives, represented by the most powerful authorities to explosives, represented by the most powerful authorities,
Truly on this occasion our War Department was wider Truly on this occasion our War Department was wider
awake than usual. What orthodox men possessed of practical skill remain to be called in? Mr. Vavasseur un doubtedly might be named. He saw the Collingwood
accident too, an advantage if anything is to be learned by accident too, an advantage if anything is to be learned by
propinquity; but he now belongs to the same firm as Armstrong and Noble, and practically his nomination would not be in the direction of the demand raised. Mr. Rendel comes under much the same category, though he is of one orthodox authority who is not can hardly think of one orthodox authority who is not more or less com new departure and muster what we may with truth take new departure, and muster what we ay with truth call dissenting commictee, unshackled by oncial trammels, un invite say Messrs. Longridge Lynal Tpomas An migh and Palle We. Longridge, Ly ala mall 1 , and Palliser. We might go further and call in Col. Hope Could any We should loo suggested or a new com startling and interesting writing if such a committee wer assembled. The question, however, is a serious one for the War Department and for the country. Let us consider and first, as to the position in which
We hold that England's position is peculiar. In quality we are really ahead of other Powers, if it be judged by actual achievements. Elswick nearly ten years ago sen which scarcely Krupp, and certainly no one else, has rivalled to this day; and, in gun development, nine or ten years is a long span. To come to definite facts and figures In 1876 the Armstrong 100 -ton muzzle-loading gun wa fired at Spezia with about 33,000 foot-tons energy. In 1879 Krupp with a 71 -ton gun obtained 34,500 foot-tons; but by this time an Armstrong muzzle-loading 100 -ton gun had accomplished 43,920 foot-tons. In 1882 the Armstrong Krupp's gun was, for its weight, a remarkable one; but it was long, we believe, a solitary experimental piece. Armstrong has for years been delivering 100 -ton guns, which
are mounted for service in the Italian war ships Duilio Dandolo, Italia, and issued for the Lepanto. Krupp has now made four 119 -ton guns, said to command an energy of 46,061 foot-tons ; but there is some delay about their actual delivery, and they are not yet expected. In the meantime thswick has gone on with 10s-ton guns in pro
gress for the Lauria, Doria, and Morosini, twelve in all and two 110-ton guns for the British Benbow, the latte to have an energy of 61,190 foot-tons. So much for big guns. These are the best to take, because the bery large and try the powers of manufacture and surely ery large guns try the powers of manufacture and quality of steel most severely. Krupp has very excellent long
guns of smaller bore, but so have we; and if experimental guns are to be taken we might instance our steel wire o riband guns, and we know of nothing that comes nea hem in power in proportion to weight. The service three Italian men-of-war are now carrying English 100 -ton guns on service, to say nothing of those that are nearly finished; that 100 -ton guns are in battery at Malt find nothing to insist on this faptrohen so many of use. Is right to down what we have ourselves. We might go further, and say that in price as in power we stand ahead of all. Our power is reater, our price is lower than that of Germa guns, and no others can yet be compared with ours.
We have spoken of quality only so far; if we come quantity we are undoubtedly behind. This concerns our waited too long before meking steel guns, and now, to recover our lost ground, we have to make guns of various types as fast as we can, and we grapple with steel at once on a large scale, and make mistakes wholesale in conin a large 43 -ton brought now face to face with failure smaller pieces. We do not want to make little of this,

The circumstance that we have insisted on putting the favourable side of our gun manufacture forward ought to enable us to speak plainly and strongly in the opposite

To what is such failure to be attributed? It must be either wrong calculation or fautt in manufacture. Mr. Anderson would say, and naturally, that he has maintained that w have entirely under-estmated the strain in the forwar part of the gun; that he spoke as plainly before the event as
is possible to do now; and that he has a right to command it is possible to do now; and that he has a right to command
attention. This position we think is valid, and we ought to attention. This position we think is valid, and we ought to
give weight to what Mr. Anderson may say, though, of give weight to what Mr. Anderson may say, though,
course, not necessarily to adopt his conclusions. Before w had the new powder, our guns were more liable to yield i therdirections, and thisdoes not suggest the total dispropor tion he complains of. Other causes undoubtedly act to propoint; but he may fairly urge that we certainly did not point, but he fairy ung tha wo certaily do not ither a
 ined to mid flaw in the met, Two frammens come to Woolwich, but most re lost we believe so we may not leorn much, of cours unless there is flaw somewhere or some excep ional action discovered, all the authorities in England will not convince us that their calculations were correct. The were aware of the increasing strain liable to be thrown o the forward part of our guns, and considered that the made allowance for it. As pointed out in our article of May 7th, the batch of guns to which the Colling wood piece belonged were in a sense superseded, but they were unques tionably believed to be equal to more strain than was throw apon the a charge of 295 lb ., it burst with one of $221 \frac{1}{4} \mathrm{lb}$
Many suggestions are, of course, made to account for the bad and unexpected behaviour of this gun. Softer stee, we are told, should be employed, and it should be dif ferently treated. An abrupt shoulder is a source of weak ness; steel shafting is known to go from such a cause. The ront hoop would cause such a shoulder, and by gripping the tube would make matters worse. Then, again, cylinder in hydraulic machinery subjected to such pressures as 2 ton per square inch are never considered safe unless they are ion ion; but there can hardy be anything in them that was not well known to those who designed the Collingwood's gun. On the last point we may naturally be inclined to lay stres because hooping was the principle wat eaid enabled stee to be safely substituted for coiled iron in our articles on gu manufacture in 1880-especially in The ENannelar foly the 30th. Three advantages may specially be claimed by hooped tube over a single one of the same thickness (1) Shrinkage etter (2) The power of ins shas of the strain better. (2) The power of inspecting the faw in grat , (3) Shonld ance ner theless exist, its effect only extends to half the thickness of the tube instead of the whole
The matter will be investigated, we believe, by the same committee that before met-we could hardly suggest any other course. They possess almost all the experience with steel gun tubes in the country, and are too widely repre sentative to be committed to any particular system. They will probably recommend the hooping principle to be carried further, and the guns to be still furthe strengthened forward, and no doubt they may arriv that, we fear, is hardly likely to follow; but we hop it will be sufficient. This will be a specially favourable time for Mr. Anderson and the others we have mentioned to put forward their views. Foreign critics will naturally and properly watch the matter closely, and see how we progres. n our ordnance manufacture ; but from what we have saia, it may be seen that we can afford to bear this. We fault less experience in steel tubes than Krupp, but thi will mend rapidly, and everything has not bee thing smoothly with guns on the Continent. Enormou failos are now expected of guns, and dificulties an ares must be met with occasionally. These we hope to ong attained with our heavy, and latterly with our mediun guns.
the annual report of the metropolitan board
$\mathrm{W}_{\text {ITH }}$ a jurisdiction extending over four millions of people, and that population growing at the rate of 65,000 per annum; with a basis of rating which now exceeds $\pm 30,000,000$, and wio Metrool, Metropolitan Board or Works may well present an Annual Report corlhg soong wor conderation. many people the governe the system sit is it mab myle the
 its excellence. The machine works so smoothly, that he cannot tell where or what it is. He simply has to pay, and he need trouble himself no farther, unless he choose If the dust blows freely in the streets, or the mud and snow annoy him in the winter, or if the water supply runs the dustme gas burns dimy, the householder, or other ggorieved party, can write to the newspapers, and if his letter appears, he rests assured that an effect will follow. At all events, the sufferer will have some vent for his feelings and with that he will probably be satisfied As for hunting up the Vestry, or the District Board or the Metropolitan Board of Works, only a small minority will ever undertake such a task. It is easier and more dignified to "write to the papers," and so add to the impetus whereby the press is generally running a-tilt against the local authorities. These said authorities are not faultless; but whether London will ever see any much better than those which now exist is a matter for speculation. If only the ruling powers will be honest, we may allow
them to be a little stupid. As the grandest outcome of local self-government in London, apart from the Lord Mayor and the Corporation, we have the Metropolitan Board of
Works. In the matter of display this Board is denied the medieval splendour which appertains to the ancient civic authorities. The Imperial Government exercises an occult influence over it, helping it on the one hand and snubbing it on the other. The Board is threatened with extinc-
tion, but still it lives; and its continued duration is tion, but still it lives; and its continued duration is favoured by the political turmoil which now so largely
affects the state of public affairs. Sir James McGarelander Chairman of the Metropolitan Board, with royalty, nobility, and high dignitaries to give him countenance,
the Lord Mayor himelf being present as a distinthe Lord Mayor himself being present as a distin-
guished guest. So far as we can see the feast may be often repeated, and assuredly the banquet of the other day will not be the last of its kind. The Board has added to its strength during the past year by enlarging the representa-
tion, the number of members being augmented tion, the number of members being augmented by more
than a dozen, equal to an addition of about one-third. The darkest feature in its future is probably the threatened discontinuance of the coal duty. This tax expires in 1889, and if it were extinguished now, the rate levied by
the Board for 1886 would be $9 \frac{1}{2} \mathrm{~d}$. instead of 7 d . Those who pay the rates, and who are not engaged in processes requiring a large consumption of coal, prefer that the coal
duty should be renewed. It is clear there interests which prefer that the coal duty should die a natural death. The theory which governs local taxation in the present day is opposed to the nature of a coal duty, and we may expect to see this impost expire. It has done good service in its time, and the money is still want There can be no doubt that the cessation of the revenu from the coal duty will be a check to the progress of metropolitan improvements. From this source the Board now
derives as much as $£ 300,000$ per annum may be left out of consideration, as yielding only a very of the Metropolitan Board, but also of the Corne income the latter body taking fourpence per ton, and the Board ninepence. According to a Parliamentary return issued a
few days ago, the quantity of coal carbonised last year by the three London gas companies was and last year by Hence these three companies would benefit by the extinction of the coal duty to an extent considerably exceeding $£ 100,000$ per annum. Some suburban gas companies
would also be relieved by the cessation of the duty its incidence extending to localities outside the metropolitan boundary. The practical value of the coal duty has been shown in the past by its aid in the formation of the
Thames Embankment, and the extinction of the tolls on the metropolitan bridges. Three years ago the Board endeavoured-not for the first time-to obtain support
from the Government to a proposal for a prolongation of the coal and wine daties, but met with a refusal of such a nature as to occasion the abandonment of some costly
works which the Board had previously contemplater works which the Board had previously contemplated. The
projects thus surrendered included the widening of Parlia-ment-street and improving the approaches to the new Law Courts. Additional means of communication across the
Thames below London Bridge had long been recognised by the Board as necessity, and in 1883 the plans contemplated for adoption included a high-level bridge between Shad well and Rotherhithe, and a tunnel between Black wall Shad wel and Rotherhithe, and a tunnel between Blackwall
and the vicinity of Greenwich and Woolwich. The total estimate was $£ 5,000,000$. Discouraged by the policy adopted at the Treasury, the plans of the Board subsided from Nightingale-lane on the north side to Dockhead on cestablish two steam ferries for thiver it was proposed to establish two steam ferries for the conveyance of vehicles,
with proper approaches on each side. In 1884 Parliament rejected the project for the subway, and the Board
withdrew the proposal for the establishent ferries. In a special report to the House of Commons, before whom the proposals of the Board had been laid expressed an opinion that two crossings over the Thames were immediately required, and should be sanctioned by Tower-hill. withe was to be a low-level bridge at Little swing bridge. As the Bridge House Estate was possessed poration of the City would undertake the building of the poration and that the Board would construct a subway at Shadwell. The Board, however, saw fit to let the subway alone, and limited its ambition to two steam ferries, one between Greenwich and Poplar, and the other between the other hand, resolved to undertake a bridge at the Tower, and having obtained parliamentary sanction, they are now proceeding with the scheme, the Prince of Wales
undertaking to drive the first pile on June 21st. Our undertaking to drive the first pile on June 21st. Our
opinion of this bridge is well known to our readers. Less fortunate than the Corporation, the Metropolitan Board only succeeded in getting its Woolwich ferry fairly through
Parliament last year, the Select Committee of the House of Commons, and also the Lords, requiring such compensation to be given in respect of existing ferry rights at
Greenwich that the Board refused to consent, and thereGreenwich that the Board refused to consent, and there-
fore abandoned that part of its project. After all the expectations previously entertained, and the magnificent plans espoused, the schemes of the Board for crossing the Thames below London Bridge resolved themselves into a
steam ferry at Wool wich. Higher up the river the Board has been more successful. A new bridge has been built at Putney, and is to be opened to-morrow under royal auspices. Hammersmith Bridge is being re-built, and a new bridge is just about to be commenced at Battersea.
The proceedings of the Board with reference to the main drainage outfalls of the Thames have lately been ing it unnecessary for us to repeat the record of last year.
the Board has based some of its decisions. Reference is
made to the project which Sir Joseph Bazalgette laid before the Royal Commissioners, for conveying the sewage to Thames Haven. The report states that it was by no means clear to the Committee of the Board, especially when consideration was given to the estimates of cost, that the carrying of the sewage to Thames Haven would be either with it. There was also the danger of local opposition, as
wist promptly shown by the protest of the Southend Local Lieutenant-Colonel Jones and Mr. Bailey Denton the proposal that the Board should deliver the whole of the London sewage over to Messrs. Jones and Denton, and should make them an annual payment of $£ 110,000$, was held to be inconsistent with the duty of the Board, and as To meet this objection, Messrs. qu meet this objection, Messrs. Jones and Denton subsequently offered to transfer to the Board a right of option which they had obtained for the purchase of abouk fivesixths of ""The area ord, howeyer, was not of opinion that it
are told-"The Board was either necessary or desirable that it should become the possessor of this land." With respect to the proposal of Mr. J. O. Phillips, on behalf of the Gas Light and Coke Beckton, 0 lieary the sewage sludge "Out to sea in the however, it was found that the expense which thination, ance of this proposal would involve was greater that necessary for effectually disposing of the sludge than wa would be better for the Board to endeavour to deal with the sludge independently." Leaving this topic, and proceeding to a consideration of what the Board has to say on the subject of the water supply, we meet with a strong expression of regret that the Bill, whereby the Board was to have power to introduce a scheme for purchasing or failed to reach a second reading. We may add that the Bill introduced for the same purpose in the present Session bas been thrown out in a very decided fashion, and the prospect that the Board will have any power to interfere on the main question as to the water supply of the metropolis is now more remote than ever. The Board though it is not permitted to initiate anything of that nature. Thus it has effectually prevented the Kent Company from furnishing a supply of water to certain localities outside the original boundaries of the company, the inhabitants of which were anxious to enjoy such a provision.
At the date of the report the Board was still engaged acquiring properly required for the formation of the new street frona Tottenham Court-road to Charing-cros authorised by an Act passed in 1877. The law, as originally framed, placed obstacles in the way of the
Board, which occasioned this lamentable delay. The sam remark applies in respect to the new street from Picca-dilly-circus to Oxford-street. The wisdom of Parliament has singularly failed both with regard to new streets and the erection of artisans' dwellings. A strange financia history appertains to the latter. The Fire Brigade also furnishes a striking illustration of how awkwardly our Acts of Parliment sometimes work. While enormou sums have been lavished in order to provide dwellings fo miserable hlf peny Government ind rate, supplemented by a grant from companies. There is a Bill before Parliament which, if it passes, will set this matter right; but it is only too possible that the Bill may drop through again as it has done before. The Metropolitan Board requires an increased scale of contribution from the insurance companies, and the friends of the latter are blocking fire ilf. The Home Secretary takes sides with the draw its demand upon the Board consents to withmay continue for at least another year in its present em barrassed condition. A pleasant feature in the repor consists in the account which it gives of the 1834 acres of parks, commons, and open spaces under the Board's control, in the maintenance of which about $f 22000$ were pended last year. There are many other items in the Board' report, including such widespread subjects as petrole tramways, gas supply, telephone and telegraph wires, infant life protection, theatres and music-halls, slaughter-houses, explosive substances, and cattle diseases. The duties of the Board correspond to the magnitude and complexity of will metropolis, and we can only wonder at the story that under the be tord if ever the metropois shouthorit, having charge of water, gas and other huge interests in addition to those already controlled by the Board at Spring Gardens.
tite royal agricultural society.
The Royal Agricultural Society is beginning to feel the effects of its suicidal policy. For some time past English
agricultural engineering has increasingly suffered through the up the position theful activity of the Society. Without giving up the position the society held and nominally holds for the in agriculture, it has ceased to do the work. It has now itself ceased to grow, and has commenced on its downward path meeting held last Saturday showed that there was during the past year a decrease in the number of members. A decrease in the number of members of a society of this kind indicates the cessation of its popularity, and that there must be some cause for so arge a decrease as 173 members. The fact is the Society
no longer offers the attractions it once did. It has given itself no longer offers the attractions it once did. It has given itsel up to the sophistic arguments of a harmful section of its
council, and its work in the encouragement of the manufactures of its best supporters has become nominal and trivial. In the at Preston last year did lhat the cheesemaking prizes offere Perhaps next year's report will lament that only one competito appeared for the prize for rings for pigs' noses, or in some other equally wide field for the exercise of ingenuity, without running the risk of calling forth the wrath of some of the makers
of the implements which gaincd them prizes a generation
ago. The Society must look to itself ere its backsliding ends in the complete loss of its prerogative and the assump-
tion of its position by one which is doing, as all healtiy societies should, namely, increase in numbers. Substantial prizes should now be offered, and properly conducted trials made of steam engines, steam ploughs, thrashing machines, and food-preparing machinery. Is the Royal Agricultural Society
going to do this, or wili it allow itself to sink entirely into
insignificance by the insignificance by the suicidal policy of the past ten years? The
Norwich meeting will begin on Monday. July 12th, and close the 17th, but the implement yard and working dairy will be open to the 19th. It has been decided that the country meeting of 1887 shall be held at Newcastle, and the country meeting for 1888 in the district including the counties of Derby,
Leicester, Lincoln, Northampton, Nottingham, and Rutland.

LITERATURE.

Mineral Resources of the United States. Calendar Year 1883 and 1884. By Albrre Whlians, jun. 8vo., pp. 1016.
Washington: Government Printing-office. 1885. This volume is the second of the series of statistical publications having special reference to the mineral proFedion of the United States, issued by the newly orgut of Federal Geological Survey, and deals with the outpes the results for 1882 were given toether with an estimate for the first half of 1883 , so that to some extent the two volumes overlap, but in other respects they are independent. The results abstracted from the general summary given in the introduction are as follows:-

Quantilies.			Value.	
	1883	1884	1883	1884
			,	
Pig iron, to	4,59,510		$91,919,200$ $46,200,000$	$73,761,624$ $48,800,000$
Gold ${ }_{\text {Sild }}$, troy ozs... ..	1,451,299	${ }^{1,489,949}$	30,000,000.	
Copper, ewts.	1,1,45,909	1,207,399	18,064,807	17,789,687
Lead, tons		124,908		
Zinc, tons ${ }_{\text {M }}$			- $1,2351,106$	${ }^{3,422,707}$
Nickel, pounds			${ }_{52,920}$	
Aluminium, troy				
Platinum, ",	200	150	600	
			203,116,859	188,097,599
Coal, tons \because..	,531,500	73,730,599		77,417,066
$\xrightarrow{\text { Anthracite, tons }}$ Petroleum, burrels		- ${ }^{33,175,756}$	$77,257,055$ $2,740,252$	(ex
Petroleum, barrels	3,40,229	$24,089,758$	${ }^{2,}{ }^{4}, 740,250,000$	
			185,710,107	165,704,872
Salt, lime, stone, clay, and				
of all kinds ...				
Or at 5 dols, per $\ddot{\text { stererling }}$			e90,440,9	+

From these figures it will be seen that the fall in value of mineral products current in Europe has been no less marked on the other side of the Atlantic, and the year, will doubtless show a further considerable diminution. The values in the grand total are also subject to reduction by the discount on silver, which is here takeu at the mint coining price, whereas it is really worth about has fer cent. less in the market. The production of lead the difference about 4000 tons imiten, which represent cipal region Colorado, Nevada, Utah, and the Uppe Mississippi Valley, together about 11,000 tons, and the increase of 7000 in the other Western States. The pheno menal region of Leadville, in Colorado, has declined from about 40,000 tons in 1882 to 35,000 tons in 1884. The rich and easily reducible carbonate of lead, forming the bulk of the ore when the mines were first opened, has now given place to mixtures of galena and blende, which are exceedngly intractable in the smelting furnace.
The chief feature of interest in the statistics of copper is the rapid advance in the production of this metal in the United States, the increase having been about eightfold, prom 8000 to 68,500 tons between 1864 and 1884. Thre principal districts have contributed namely, Lake Superior, the Butte district of Montana, and Arizona, the first figuring for about 69 millions of pounds the second for $40 \frac{1}{2}$ millions, and the third for $26 \frac{3}{4}$ millions, In the returns for 1884 , out of a total The Lake Superior region, though still paramount, now gives less than one-hal of the total, though a few year chiefly to the fom 85 rich sulphides are produced in enormous quantity and smelted on the spot to a 65 per cent. regulus, much of it containing silver, which is almost entirely exported to refiners at a distance. The Lake Superior mineral, on the other hand, is entirely native copper diffused through rock, incot entirely smelted and refined on the spot, producing ingot copper of almost absolute purity. The Arizona
minerals are in great part oxidised products derived from rich sulphides, red and black oxides, malachites, \&ce having a general resemblance to those raised in the early days of copper mining in South Australia, although in some of the mines yellow ore and other sulphides are increasing in proportion with the depth of the working Up to the present time the treatment has been a concentrating smelting to black copper, and a small amount of rich regulus, which are entirely exported. The circumof water-jacketted blast furnaces, the fuel used being in great part English coke imported by way of San FranciscoThe first place among the copper mines is still kept by the Hecla and Calumet, of Lake Superior, which alone contributes about one-third to the total make of the year; but the Anaconda, a mine of Butte, seems to be rapidly advancing to a position of equality, as its dressing floors are laid out for the treatment of 500 tons of ore daily, and it is regulus in its smelting furnaces annually. In spite of the argely increased production, the consumption of copper in the United States has kept fairly in advance, 108 out of 142 millions of pounds having been retained for domestic
Zinc mining and smelting is restricted to a comparatively
small number of localities, which are principally in Illinois, small number of localities, which are principally in Ilinois,
Kansas, and Missouri. The ore treated is now principally
blende with some calamine derived from irregular deposits blende with some calamine derived from irregular deposits
in limestone. There is also some production from the ore in limestone. There is also some production from the ores of Franklin in New Jersey, although that is principally converted into oxide for paint. The largest zinc works are those
of Matthiesen and Hegeler, at Lasalle in Illinois, who have of Matthiesen and Hegeler, at Lasalle in Illinois, who have
3200 retorts in four double gas-fired furnaces, with capacity 3200 retorts in four double gas-fired furnaces, with
for production of 13,000 tons of spelter annually.
for production of 13,000 tons of spelter annually.
Mercury mining is practically restricted to California, and the account for the period under review is decidedly depressing. The number of active mines had diminished from thirty in 1876 to eleven in 1884 . Of the total pro-
duction of 31,913 flasks of $76 \frac{1}{2} \mathrm{lb}$, 20,000 were contributed duction of 31,913 flasks of $76 \frac{1}{2} 1 \mathrm{lb}$., 20,000 were contributed
by the New Almaden Mine, which alone works at a profit. by the New Almaden Mine, which alone works at a profit.
This depression is in great part to be attributed to the This depression is in great part to be attributed to the
competition of Spain and Idria, and also to the falling off competition of Spain and Idria, and also to the falling off
in the demand owing to the substitution of smelting for amalgamating processes in the treatment of the ores of the precious metals. The excellent paper by Mr. Christy on
the reduction furnaces at New Almaden, has been reprinted from the "Proceedings" of the American Institute of Mining Engineers, in connection with this subject, but its utility is diminished by the omission of the illustrations. Tin mining is as yet a subject of only speculative interest
in the United States, the ore having been found in minute quantities in many localities, but up to the present time in appears to be the Etta location, in the Black Hills of appears to be the Etta location, in the Black Hills of
Dakota, where tinstone is found under conditions similar
to those obtaining in Cornwall and Saxony This part of the subject is extremely well treated by Professor W. P. the subject is extremely well treated by Professor W. P.
Blake, of New Haven, one of the most eminent mineral geologists of America.
As regards the precious metals, the information is confined St an abstract of the report of the director of the United those subjects. Iron and steel manufacture has been treated by Mr. J. M. Swank, of the American Iron and Steel Association, who gives, among other subjects, an excellent geographical analysis of the ore deposits of the country.
The coal fields have been treated in the same way by Mr. Armstrong, and there is a very full account of the Pennsylvania coke trade by Mr. Weeks. Each of the nonmetallic minerals comes in for a descriptive account, even where the production is insignificant and numerical returns are not available, so that the whole volume presents a very
faithful picture of the state of mineral industry in all its branches on the other side of the Atlantic, and is likely to be permanently valuable even when the immediate interest of the returns for the year treated has gone by.
The volume, of more than a thousand pages, is in accordance with the statute founding the survey, issued at
the price of publication, i.e., cost of paper, printing, and binding, which is placed at the very low rate of sixty cents, or about half-a-crown. If it can be obtained at any moderate
advance upon this price in England, it should have a large advance upon th
circulation here.

Constructive Geometry of Plane Curves. By T. H. Eagles, M.A.
This is a book which we can heartily recommend to teachers and students of engineering who wish to attack pro-
fessional problems with someapproach to fessional problems with someapproach to scientific precision.
For success in that endeavour nothing seems to be more For success in that endeavour nothing seems to be more
advantageous than a thorough training in geometry, proapplied practically to the solution of concrete problems, will do st what we may call "abstract mathematics rather have an evil influence in forming a habit of believing that a knowledge of principles alone is sufficient to enable a man to do good work. Such a belief is entirely fallacious. But, on the other hand, if each theorem is carried out in
the actual construction on the drawing board or in the modelling workshop of a number of illustrative problems, the student gets a real insight into the detailed facts and uses of geometry and mathematics generally which will uses of geometry and mathematics generally which will
be of immense value to him throughout his whole practical life. In his preface, Mr. Eagles expresses this opinion, and adds, with reference to existing methods of geometrical
teaching, "A great deal of attention is devoted to the construction of regular polygons, circles packed into another circle, and similarar fancy figures, by methods which no practical dranghtsman ever uses", This is very true,
and we only wish our author had carried his revolt against ancient geometric pedantry even further than he has, especially with regard to elementary constructions. If his
volume had treated of solid as well as plane construction, he would probably have entered a similar protest against the inanities in vogue under the title "Descriptive Geometry." We entirely agree with some of his elementary
instructions, instructions, e.g., those regarding the dividing of straight
and curved lines, but not at all with others, e.. ., in the and curved lines, but not at all with others, e.g., in the The meaning and uses of harmonic ranges and of points in involution are explained early. In treating the circle, the pole and polar are introduced at the outset, and constant use is made of them in the series of problems given
in this chapter. In explaining the properties of a system of two circles and those of a system of three circles, effective use is made of the "radical axis," the "centres and axes of similitude," and of the "radical centre." Pass-
ing on to conic sections, their properties are deduced in the ordinary manner, namely, from the constancy of the proportion of radius vector to distance from directrix.
From the point of view of generality, of course, this is the most convenient method, but we cannot help regretmost convenient method, but we cannot help regret-
ting that in so good and practical a book a short preliminary chapter was not here introduced, dealing specially with the ellipse, and deducing its most important properties by considering the ellipse simply as a parallel projec-
tion of the circle. The ellipse is infinitely to physical students than the other conics and encinertant least usually arrive at ellipses by projection of circles. Again, the properties of the circle are so familiarly known, Again, the properties of the circle are so familiarly known,
and the passage to the corresponding properties of the
ellipse by means of parallel projection is so eminently simple and easy, that it is a pity that this connection Metho not be elaborated until it becomes very familiar explained very fully. Thus, four methods of construction from given conjugate diameters are shown, In a later
chapter MacLaurin's, Newton's, and Chaste's methods chapter MacLaurin's, Newton's, and Chaste's methods of drawing conics are proved. The pole and polar and the harmonic and anharmonic properties of couics are very
fully dealt with. There are also chapters devoted to the more important special curves, such as cycloids, spirals, curve of lines, catenary, elastic curve, magnetic and
equipotential curves. These, considering their extreme importance in all physical science, might have had advantageously more space given to exposition of thei properties, and to graphic methods of making physical given for drawing out a catenary is clumsy and tedious The book finishes with a chapter on the graphic solution of equations. This is a subject of high importance, especially or the solution of transcendental equations, those of hig degree, and generally for equations of such difficulty that
all ordinary algebraic methods fail. We hope this final chapter may be extended in a future edition.
We conclude by again recommending this volume to the attention of engineering students on all points it deals with, excepting only the technique of skill in draughts manship.

PRIVATE BILL LEGISLATION.

IF the widely prevalent rumours of a speedy dissolution arliament prove true, that will not occur without there being to private Bills. During the last few weeks these measures have been pushed onwards with vigour in the Committee rooms ; the same time opposition has given way in many directions, and
thus the formidable array of private schemes presented in January last is rapidly dwinding away. Right and left oppo-
nents to Bills have been defeated before Committees, or mollified nents to Bills have been defeated before Committees, or mollified
by promoters, or retired where further fighting only meant use by promoters, or retired where further fighting only meant use
less expense ; and the next batch of measures stamped with her Majesty's approval will embrace a considerable number of private Bills. The apparently irrepressible Ship Canal Bill is still
awaiting final treatment, but it is the only project of firstrate importance still to be dealt with. As we pointed out in our last article on these measures, the death of Ear
Redesdale has benefitted the Canal Bill, for instead deciding adversely to the payment of interest out of capital
during construction, as they probably would have done had Lord Redesdale been with them, the Select Committee of Lords upo the proposed new Standing Order has reported in favour of such alterations in the present rules as will enable the Upper House
to allow such payment of interest if they choose, just as the House of Conmmons can. Somewhat strangely, the only witness
whom the Committee examined was Lord Rothschild, who believed to be arranging to supply the capital for making the canal; and it may be assumed that he strongly advocated the
change. The sequel to the decision of the Committee is that the Lord Chancellor proposes to amend the present prohibitive Standing Order of the House of Lords, so as to permit payment the Committee on the Bill thinks fit to allow it-subject to the it is paid only during the time allowed for the completion of the work, that at least two-thirds of the share capital have been issued and accepted, that no interest is paid on shares in arrear
that the amount of interest paid be stated in the half-yearl ncounts, and other precautionary conditions. Once more the Canal Bill seems to have a chance of success, but it has had so many vicissitudes that prophesying is dangerous. The pro
moters, at all events, are sanguine, and have lately been button moters, at all events, are sanguine, and have lately been button-
holing as many noble lords as they could get hold of, with a view holing as many noble lord
to winning their support
The anticipations as to Lord Redesdale's succession as Chair man of Committees in the House of Lords were all falsified, fo neither Lord Camperdown nor Lord Monson nor Lord Balfour Chandos. That noble duke had not been in the least associated with such work, and the selection was a surprise ; but his Grace
 most recently advanced a stage, and in regard to most o Houses, and only await the Royal Assent:-Third readwan and Portpatrick Jun Railway ; Radstock, Wrington, and Congresbury Junction
Railway (Abandonment); Solihull Gas; Wrexham Gas ;
London, Brighton, and South Coast Railway; Midland ; Greatt London, Brighton, and South Coast Railway; Midland; Great
Western of Ireland; London, Chatham, and Dover Railway ; Great Northern Railway (Ireland); Kirkcaldy and Dysar
Water; Liverpool United Gas Bills. Third readings in the Water; Liverpool United Gas Bills. Third readings in the
House of Commons-Bray and Emniskerry Light Railway House of Commons-Bray and Enniskerry Light Railway
Dublin, Wicklow, and Wexford Railway; Exeter, Teign Valley and Chagford Railway; Sligo and Bundoran Tramway
Brighton and Dyke Railway; North Pembrokeshire and Fish guard Railway; Ormskirk Railway; Ripon Corporation; South Shields Gas; Bridgwater Railway; Leamington Corporation
Carlisle Corporation; Oldham Corporation; Sidmouth Water East London Water; Lambeth Water: Southwark and Vaux
hall Water; London, Tilbury, and Southend Railway: Guildford hall Water; London, Tilbury, and Southend Railway: Guildford
Corporation; Barry Dock and Railways; and Nottingham Sub urban Railway Bills
Since we last referred to them, the several London Wate Commons, and there been read a third time as House of above. In respect to the Southwark and Vauxhall Bill, it may be explained that apart from the question of raising additional capital, which was the chief matter of difficulty before the Comthe passing of the Bill. Among these the company is authorised, for the purposes of preventing and detecting waste, to affix stop cocks at the consumer's expense to all service pipes within its
district connecting with its. mains. The Bill also sanctions istrict connecting with its mains, The Bill also sanctions laying down of a line of pipes for the purpose of giving an Wimbledon. The clause in the Bill concerning the compulsory purchase of the dust-sifting yard near the company's filter-beds
at Battersea has been struck out, and in its place an agreement with the London and Brighton Railway Company, the owners of the dustyard, is scheduled to the Bill, in which an undertaking
is given to discontinue its use as a dust-sifting yard upon certain is given to discontinue its use as a dust-sifting yard upon certain
terms contained in the agreement.

In the end the opposition offered by the Metropolitan Board of Works and the Tottenham Board to the River Lea Purification transformed the measure. These, however, were arranged, and the Bill passed the Chaiman of Ways and Means as an unpxplained to the Metropolitan Board by Mr. Selway, who prohe discharge of rom Tottenham was to be allowed to enter the Board's sewe during the four hottest months of the year: and a standard of
purity as regarded the eflluent had been fixed by the Board's purity as regarded the eftluent had been fixed by the Board's
chemist. Penalties would be inflicted on the Tottenham Board f the eflluent water to be poured into the sewer was not suffiiently pure. The duration of the agreement was limited to thre years, and was subject to the power of extension for two years
more, the Tottenham Board paying f1000 a-year towards the expenses incurred. As a result of this agreement he hoped the river Lea would be considerably purified this year nd that the water next year would be entirely pure. Mr. Sel
way further said the eflluent would be discharged into the rive during the cold and wet weather, when it was presumed it would cause no nuisance, until a comprehensive scheme wa arranged for draining the whole Lea Valley, which was outside the area of the Metropoitan Board. The euly Auttest months
of the year were deemed to be June, Jugust, and Sep; but power would be gi proportionately shortened. This arrangement was sanctioned by the Board, and the Bill may be regarded as certain to pass, The object of the London, Brighton, and South Coast Railway Bill, included in the list of third readings in the House of Lords,
is to authorise the company to construct short junction railways is to authorise the company to construct short junction railway
t New Cross, to stop up level crossings at Mitcham and Eden at New Cross, to stop up level crossings at Mitcham and Eden-
bridge, to extend the time for the purchase of lands and for the oridge, to extend the time for the purchase of lands and ar
completion of the Oxted and Groombridge Railway, to authorise the making of further agreements between the company and the sle of Wight Marine Transit Company, and of the South sea Rail way.
The Various Powers Bill of the Metropolitan Board has also passed unopposed through the Committee stage in the Com-
mons. By this Bill the Board are authorised to construct oot bridge from the Thames Embankment to Hungerfor Bridge, and to carry out certain street improvements in Lamconstructing the new bridge at Battersea, and further power are conferred on the Board with regard to the already sanctioned park at Dulwich and the acquisition of Little Wormwood Scrubbs. The same good fortune has fallen to the Crichlewood Kilburn, and Harrow-road Tramway Bill, the threatened opposishare capital of $£ 100,000$, and power to borrow $£ 25,000$ for the purpose of constructing tramways from Cricklewood along the and thence along the Cambridge and Chippenham roads to the Harrow-road, and on as far as Lord Hill's Bridge.
Parliament Hill estates to sell, and the Metropolitan Board Works to acquire, the lands known as Parliament Hill, Parti ment Fields, the Elms Estate, and the East Park Estate, to be added to Hampstead Heath, and to be devoted for ever to the public use. The Corporation of London, the Charity Com-
missioners, the trustees of the London Parochial Charities, and nd lon berds are to the purchase money if they see fit. In like manner the Bill to the Metropolitan Board of twenty-two acres of land, comprising Little Wormwood Scrubs, to be devoted to purposes of
public recreation, has been passed by the Chairman of Ways and pubic
Means.
After rousing a vast amount of public feeling, the Bill for empowering the Governors of Charterhouse to sell a portion of
the property for building purposes in order to obtain funds to prove to accommodation for an increased number of pensioners Webster) having moved the second reading of the Bill in the House of Commons, was met by Mr. W. James with an amendment deprecating the proposed "mutiation" of this interesting motion to adjourn the debate. This motion was defeated, and
then Sir R. Webster cut the Gordian knot by withdrawing the Bill voluntarily
The Bill to transfer the Marquis of Bute's Docks at Cardiff to a limited company having weathered the storm of opposition
before a Lords' Committee, has now got safely into smooth water, for the only remaining petition has been unconcitionally
withdrawn. As amended by the Lords, the Bill sanctions the transfer of the whole of the Bute Docks at Cardiff into the hands of a joint stock company, of which the first directors will
be the Marquis of Bute, Lord Edmund Talbot, Mr. Frederick Pitman, and Mr. George Edward Sneyd. The capital of the new
company will be $3 \frac{1}{2}$ millions, divided into 35,000 shares of $£ 100$ each. Of these 9000 will be 4 per cent. preference shares and
18,000 ordinary shares, the remaining shares being issued either 18,000 ordinary shares, the remaining shares being issued either
as preference or as ordinary. The borrowing powers of the company are limited to $£ 1,150,01$, and in consideration of the
transfer the following sums will be payable :-To the estate trustees of the Marquis 9000 fully paid 4 per cent. preference
shares; to the Marquis himself 18,000 ordinary shares, fully paid, and 4 per cent. debenture stock to the nominal amount of raise the sum of $£ 550,000$, to be applied in the discharge of mortgages ; to the Marquis certain royalties, \&cc., on shipments, Dents, and dues. The transfer will take place from the 31st December next, and provision is made for the purchase of the
company's stock by the corporation of Cardiff and the Great Yet another instand Taff Vale Railway Companies. The Select Committee of the House of Lords, presided over by the of the opponents of the Bill promoted by the Hull, Barnsley, and West Riding Railway, this measure has passed as an un-
opposed Bill through their lordships' House. By this Bill the Hull and Barnsley Railway Company is authorised to abandon Hull, sanctioned in 1883, owing to the company having been, as stated in the preamble, "unable to raise the necessary funds for the the company to raise six per cent. preference stock to such a nominal amount as shall be sufficient to produce $£ 500,000$ at the payable on this stock are made cumulative for the first seven years. A clause in the Bill extinguishes all powers to raise any
capital or debenture stock authorised by the Act of 1883, which capital or debenture stock authorised by the Act of 1883, which
capital, together with that sanctioned in 1882, the preamble

THE MANUFACTURE OF SOAP.
The first manufacturer of soap lived in prehistoric times, before the age of bronze or of worked stone, and possibly before the advent of man upon the earth, for the first sheep was a maker of potash soap. The experiments of Maumene and of pure potash, of which they consider nearly 6 oz , to be recoverable, although it is at present often wasted. This potash on the sheep's exterior mixing with a portion of the greasy matter of the skin produces a certain amount of soap, consequently by washing a sheep with a limited quantity of pure water it is possible to get up a lather. Thus the agricultural labourer of the future, advanced in scientific education, may, in washing the faces of his proverbially numerous children, utilise the pet lamb of the family as a large sponge charged with soap "sope," refers to potash lye ; and the word nether, translated "fuller's sope," refers to mineral lye, or soda. Pliny and Galen are the earliest secular writers who speak of soap; Pliny says that it was made by the Germans and the Gauls, that it was sometimes hard and sometimes soft, and that it was made of goat's fat and the ashes of the beech tree. Galen says that it was made of the tallows of the ox, sheep, and goat, strengthened
with lime. In those early times it appears that soap was not with lime. In those early times it appears that soap was not
used for washing purposes, but to dye and beautify the hair used for washing purposes, but to dye and beautify the hair,
also as a medicine; sometimes it was made as required for use, ashes and oil being rubbed over the head; thus it is fossible that the ancient sayings about anointing the head with oil and custing ashes upon the head, may, contrary to the general impression, have had reference to a process of beatification by saponification. Geber, in the second century, speaks of soap, and Arab writers mention that it was used for cleansing purposes, also as an ointment. Strabo states that in his day alkaline water was employed by the Armenians for washing
clothes. The ancients also used saponaceous plants, as well as clothes. The ancients also used saponaceous plants, as well as
seeds, bran, and fuller's earth for washing purposes. Much water was not always considered essential in these cleansing operations, white or c loured earths being often rubbed into the
the pipe of a pump is inserted, and the liquid pumped into an iron spout, down which it runs into the vessel in which it is to be boiled, which is made of iron, but called by the workmen
"the copper." At the same time a warm solution of caustic soda is pumped from the floor below into the same spout; the oil and alkali mix in the spout, then fall well mixed into the copper. The alkali used is caustic soda, which arrives at the
works in a solid state in iron drums, having been poured therein at a great heat at the alkali works, Caustic solid soda exerts no chemical action upon bright iron. Each drum contains a solid cylindrical lump of soda weighing 5 cwt. Several of these hug s lumps are placed in a large iron vat, water is added, and the whole left for about forty-eight hours, for after the water
yellow, more especially where exposed to the air and in part adjacent thereto; this is probably due to the evaporation of water. The cost of the caustic soda used is about $£ 10$ a ton;
its chief impurities are sulphate and carbonate of soda, varying from 8 to 12 per cent
When the saponification is complete, the soap is disseminated in the spent lye as a mass of globules, which have to be boiled "thiskly until they coalesce. Strong lye is then added which "throws out" the soap insoluble in that medium. The coppe large built-up rectangular wooden or iron moulds, within which the soap solidifies, but is stirred occasionally with a kind of a wooden crutch to make it homogeneous throughout, hence the

has taken up a certain amount of soda the remainder of the mixing of soap is technically called "crutching," and varieties mass is but slowly soluble. When the solution commences of apparatus for mixing it go by the name of "crutching at its maximum next day; in fact, the warmth of the soda lye when it is first mixed with the oil in the spout is due to the hydration, and not any external application of heat. Additional heat is generated by the more complete union of the alkali with the acid oil in the copper, a maximum of over
200 deg. Fah. being thus reached, if necessary, without the 200 deg. Fah. being thus reached, if necessary, without the
application of any fire at all. There are five coppers at the sides thereof are unscrewed and removed from time to time from the top downwards, leaving the block of solid soap exposed and ready to be cut into bars by wires.
The soaps made at Messrs. Fields' Bermondsey Works have long been known to dyers and cleaners under the name of "pure oil soap." While all other soaps are mixtures of stearates,
palmitates, oleates, and resinates of soda in various propertions palmitates, oleates, and resinates of soda in various proportions, oleate of above described is almost pure in view of the far higher price of the solid stearic acid, leading them to extract it as thoroughly as possible from the cheaper oleic acid. This is accomplished by freezing and cold pressing, processes
which inventors of late years have carried to great perfection. The saponified oil produced from the lime process described than the oil yielded by distillation, ines much as the latter process tends to break up the oxy-acids into unsaponifiable hydrocarbons. The presence of the latter in an oil soap becomes apparent on dissolving it in water. If pure, the solution is perfectly transparent and bright; if hydrocarbons be present, the liquid is opalescent and murky. As hydrocarbons are quite insoluble, dyers and
spinners dislike them by reason of their spinners
permeating the fibre under treatment and permanently dimming the same. It will be evident to anyone who has followed the details of the process of making pure oleic acid soap that it must be far more alkaline than such soaps as are "cut" with salt liquor, which washes out the excess of soda. This preponderance of alkali is no who find it serviceable in cleaning the somewhat intractable materials of their trade; indeed, some will not look at a soap which is not incrusted with the carbonated alkali; it is a guarantee to them that no unsaponified fat is present, for such fat would be bad for their purposes. For delicate colours, especially of aniline origin, pure oil soap is unsuited,
works, each holding five tons of lye and five tons of oil. The ten tons of liquid in the coppers are boiled for about twentyfour hours, then the mixture is allowed to cool; the spent added. In the boiling a scum, consisting chiefly of imper fect soap charged with minute air bubbles, forms at the surface of the mixture; this is skimmed off and boiled down with the next make of soap. The treating of oils with alkaline lyes is termed "salting," and as oils vary, the salting is performed again and again until an approximately neutral stage is is applied to it. A small surplusof alkali, such as is usually present gives soap the well known strong alkaline taste. The strength of the lye used is one part of soda to six parts of water in the first boiling; in subsequent boilings the strength of the lye is considerably greater. One part of oleic acid soap usually contains sixty-eight parts oil, seven parts soda, and twenty-five parts water. Olive oil soap is at first green; afterwards it turns
acid from the brilliant salt, leaving the colourless base. Messrs, Fields, however are engaged in experiments which promise Fields, however, are engaged in experiments whic
shortly to give the world a chemically neutral soap.
The toilet soaps of Messrs. Fields, the manufacture of which we are now about to describe, are not made at Bermondsey, having nothing in common with the class of soap there proWuced. The machinery is fitted up in a part of the Ozokerit Battersea Soapworks is chief of the many products of the samphire enters as little into the composition of its soap, but honey or Windsor into their respective synonyms The name has been selected as that of the best known sea plant, and typifying sea air and water, the qualities of which are condensed oil whioap of that ilk. The body of this soap consists of olive oreside has been saponified with potash obtained from burnt soda slants, and afterwards "cut" with salt, thus forming a soda soap, with sufficient potash to impart softness and mildness
to the otherwise hard and insoluble soda compound. This is
melted in a special steam pan, with palm oil and other refined soaps. When thoroughly liquid the mass is subjected to a process which neutralises the free alkali present in all crude
soaps ; this result is further assured by the addition of several vegetable acids, such as thymic and salicylic, and a proportion of iodised and brominated eucalyptol. About 20 per cent pure glyce-
rine is finally worked in, and the whole stirred for several hours the highest possible temperature. The soap is then allowed to cool a couple of days in iron frames holding about 3 cwt . each When cold the block is cut into slabs, and then into bars, which in their turn are finely shredded in a machine to be hereinafter described. These shreds are first dried on wire netting, in a
hot-air chamber at 200 deg. Fah. for twenty-four hours, during hot-air chamber at 200 deg . Fah. for twenty-four hours, during
which time they lose 25 p per cent. of their initial moisture,
retaing retaining about 2 or 3 per cent. held by the glycerine. The
chips are now passed through the mill- - . infra-four or five times, till perfectly homogeneous, and thence removed, now as ong strips greatly resembling seaweed, to the plotter, or screw of a deep green tint. This is cut, while still warm from the pressure of the screw, into cakes suitable for stamping, which operatiou is not performed before they are a week old, and capable of rendering the engraver's work in sharp completeness of outline. Thus the completion of the process in which the crude oil attains to fulness
The above description
The above description applies to all soaps treated in this mase soap, and the colouring and scenting. Samphire soap has no artificial colour and scent, but the public eye and nose demand these adjuncts, and the populace sometimes obtain them at the expense of their skins. The colour, generally a solution of some aniline or anthracene compound, and the scent, which may perhaps be cassia, citronelle, cloves, or storax, are sprinkled on the chips while in the hopper of the mill, the action
of which is quite sufficient to theroughly incorporate of which is quite sufficient to thoroughly incorporate them with
the soap.
The milling and plotting portions of the above process were

SOAP STAMPING MAOHINE,

perfectly and thoroughly shown by Messrs. Cleaver, at the our readers perhaps remember the ingenious stamping appliance, the mould the common soaps, such as are sold retail at 6d. a pound, by this method. A certain class also, known as Windsors, lose some of their characteristic qualities when milled ; for their manufacture the crutching machine is employed, with the addition the well-known United Service soap-a typical brown Windsor -is made as follows :-Scraps and cuttings from previous boils, and from all the finer toilet soaps turned out at the factory, are melted down with a proportion of palm oil, or skin soap and Cook's primrose. The mixture is thoroughly crutched,
framed, cooled, stripped, shredded, and again melted. By this framed, cooled, stripped, shredded, and again melted. By this
double melting the soap is very thoroughly united or welded, and acquires emollient qualities. A strong solution of pearlash being now stirred in, in about the proportion of one pound to each hundredweight of soap, the paste, which heretofore was dark and transparent, becomes light yellow and opaque, much
resembling butter in appearance and consistency. The philosophy of this action of the pearlash is at present unknown. Of the marked nature of the change there is no doubt; possibly an interchange between the potash and soda takes place, or double oleates of potash and soda are formed. Who knows? At any
rate, it is not possible to make a good re-melted toilet soap in rate, it is not possible to make a good re-melted toilet soap in
this manner without pearlash, although that compound is undesirable because of its tendency to throw out or incrust the soap, thereby spoiling both the appearance and the sale. There delicate skins, to a considerably less extent, though, than is sometimes asserted. After the pearlash has done its work the Brown Windsors generally, consists of vegetable gums and balsams, with civet, ambergris, and so on, according to the taste and opulence of the manufacturer. The mass is then framed and caked as before.
The soapmaking machines used at Battersea were constructed by Messrs. Morane and Co., Rue du Banquier, Paris. The soaptions per minute, and is fed with bars of soap by means of a wooden guide placed at an angle to the cutter. The disc on which the cutters are mounted is slightly conical, and about 12 in . in diameter across the face. The cutters are usually four
in number, and are fixed radially from the centre of the disc an ordinary spoke-shave. The operations in much the same fashion as has to be taken not to shave them too finely, or they would so cling together in the wooden receptacle below the slicer as to
form an almost homogeneous mass, and thus defeat the object orm an almost homogeneous mass, and thus defeat the object and placed upon the wire netting in the drying cupboard until they are dry and brittle.
Fig. 2 represents the granite rolling mill. It consists of three granite rollers, each about 2 ft . long and 12in. in diameter, supported on a strong iron framework; the rollers, as already stated, rotate at different speeds relatively to one another. The spur gearing by which this is effected is so arranged as to give the first roller about 20 , the second 32 , and the third 48 revoutions per minute. The driving of the rollers themselves,
added to the milling they have to perform, is heavy work, and added to the milling they have to perform, is heavy work, and to regulate the thickness of the milling; as a rule they nearly touch each other ; the first and second are slightly farther apart, if anything, than the second and the third. Rollers one and three move from left to right, and the central roller in an opposite direction. The soap chips from the hopper pass
between the first two rollers, forming a thin film on the under surface of the second roller; this film is further reduced in
thickness by the pressure between rollers two and three.

made by R. Houchin and Co., and consist of a steam jacketted ainingsel of about $2 \frac{1}{2} \mathrm{ft}$. in diameter and $2 \frac{1}{2} \mathrm{ft}$. in depth, conmotion by shifting the driving band from a loose to a fixed pulley, the axis of which carries slow speed gearing; the lowest two small bevelled cog-wheels facing one another, both with circular clutch on their inside faces Between these two clutches, and mounted on the shaft, is a double-ended clutch which evolves with the gearing, but is capable of being guided along the shaft by means of a hand lever loosely fitting it, so as to work into either one or other of the bevelled cog-wheel clutches, and thus, since both the latter gear into a larger bevel wheel a ight angles to them, effect the forward movement or reversa of the stirrer, which is carried by a spindle descending from the
larger bevel wheel. Passing through a bearing in the centre of the crosspiece of the machine, and through a stationary cog wheel bolted thereto, the spindle terminates in a light cross piece bearing the perforated U-frame, to one edge of which i fitted a scraper, which is in close contact with the pan during the entire revolution, and prevents any soap from sticking to it the other edge of the scraper being a couple of inches away from the pan, and assisting to stir the soapy emulsion. When the pan is full the frame is driven at about 15 revolutions pe minute, the spiral-bladed twister travels the same number of its motion the U-frame; this arm ends in a bearing above which, and gearing at a slight angle into the aforementioned stationary cog wheel, is a small spur wheel, on the end o whose spindle is the spiral twister. Both the internal and external pans are of iron steam at low pressure circulates betwee
the two to keep the soapy emulsion at a temperature of about 200 deg . Fah any excess of pressure is relieved by a small safety valve
Chevreul, whose brilliant discoveries in relation to the chemistry of the fatty acids dandle-making to establish the soap and basis, is still living and towards the close of this year will be one hundred years of age, when some kind of international cen held in his honour. Michael Eugen Chevreul was born at Angers in 1786, and studied in Paris under Vauquelin. He became director of the dye works and pro-
fessor of special chemistry at the Gobelins where he studied the laws of the influence of adjacent colours upon the appearance o each other. The results of his researche were publl deserve the perusal of thos manufacturers who desire to produce th most pleasing effects with associated colour His first scientific memoir was written so long ago as 1814-15. His discoveries in relation to the chemistry of the fatty acid were very complete; he was the discovere of oleic acid, the basis of the fat oil soap a substance which although so largely use pure state only by troublesome chemical pure state only by troublesome chemical
operations. It can be obtained from the fat of man or the fat of the goose, as well as from that of the ox, sheep, pig, and some other animals ; it is present in animal fat but in small proportion, but is plentiful in the oon-drying vegetable oils. To obtain it pure, oil of almonds is saponified, the

SOAP MIXING MACHINE

Clamped against the outer edge of the third roller is an iron comb, with teeth about $\frac{3}{3} \mathrm{in}$. wide and the same distance apart,
which divides the coating of soap, and throws it off in the form which divides the coating of soap, and throws it off in the form
of narrow ribbons, which are caught by a wooden receptacle. The remaining coating on the roller is removed, and the roller entirely cleared from soap by means of a scraper clamped with its edge against the roller, and immediately beneath the comb. Fig. 3 represents the bar-shaping or "plotting" machine, in which the ribbons from the milling machine are pressed into bars. In the interior of the cylinder is a spiral conical screw with its threads in close contact with the surrounding casting this screw is driven by gearing at a speed of about twenty
revolutions per minute. The screw tapers from about 12 in. revolutions per minute. The screw tapers from about 12 in . in
diameter at the feeding end to about 6 in . at the ejecting end the thread has seven turns in an entire length of about 15 in Our engraving represents one of Messrs. Morane's machines with an ordinary, not a tapering cylinder, but the machines are made in both forms, and Messrs. Field prefer those which taper. closely as possible with small holes about $\frac{1}{2}$ in. in diameter, through which the soap is pressed after being fed along the spiral conical screw. Over this disc is screwed a nozzle, at the extremity of which is the aperture through which the soap is the perforated disc and the exit opening. In this space the cylinders of soap forced through the perforated disc are squeezed together, and as the cylinders meet the pressure naturally forces them into hexagonal form, or the shape of the cell of the bee; cellulose cells seem to be naturally round, as in soft fruits like the strawberry; the hexagonal forms they take in parts of the shoots of the elder tree may be due to the same forces which produce the same forms in Messrs. Field's soap machine. The exit nozzle can be of any desired shape to give the desired form Fig. 4 represents
cut from the bars are stamped and lettered in which blocks prefer a machine with a lever, rather than with a horizontal wheel, to apply the necessary force. Two rods attached to the stamping spindle pass down through the table of the stamping machine, and the cross-piece which unites them beneath carries in its centre an upwardly projecting rod, which, under the control of a spring, serves, on the return of the upper die to its normal position, to loosen and nearly eject the soap tablet, the lower 5 bigh
Fig. 5 represents one of the soap mixing machines in use at crutching" machine, no doubt in consequence of the prinitive way of mixing soap having been by stirring it with an instruused at the Bermondsey works, to stir finished soap while it is hardening into massive blocks. The Battersea machines were the resulting oily acid is digested in a water bath for severa hours with half its weight of oxide of lead, the mixture is the agitated with twice its volume of ether, and left for twenty-four hydrochloric acid, when the oleic acid rises to the surface dis olved in ether. The ether is removed by gentle evaporation, and the oleic acid aqain saponified by soda. It is then further purified by chemical means, and afterwards by occasionally crystallising it by cold at a temperature of about 20 deg. Fah., and separating the more impure portions by the aid of blotting paper. It is afterwards crystallised from alcohol, and dried in a current of carbonic acid gas, for pure oleic acid absorbs oxygen
somewhat freely. The pure acid is, at temperatures above 57 deg Fah smell or taste. It does not redden litmus. It solidifies at 39 deg. Fah. or 40 deg. Fah., and below 39 deg. Fah. it is very hard. It is insoluble in water, soluble in alcohol and ether, and miscible with oils and fats; by absorption of oxygen it turns
brownish yellow, and acquires a rancid smell. As an acid it is brownish ye
monobasic.

rTs Conyers

Society of Arts Conversazione,-One of the two Fridays for which the right of excluding the public has been reserved by the
Royal Commission for the Colonial and Indian Exhibition has been allotted to the Society of Arts for their Annual Conversazione, which will be given at the Exhibition on Friday, the 16th of July. Arrangements have been made for the purchase, by members of
the Society only, of tickets to the fête, on the same system as that which proved so successful last year. Members, who will receive the usual invitation for themselves. and a lady, will thus also be price of the tickets has been calculated so cost of the entertainment, and to leave sufficient margin to repay
the Royal Commission for the loss resulting from closing the Exhibition for the evening.

Society, King's College, Lonpon.-At a general meeting, held on Tuesday, May 18th, the president in the chair,
Mr. V. J. Boutar read a paper on "Steam Boilers." The first part of the paper was devoted to the consideration of combustion in its practical aspects and to the prevention of smoke. The
author here pointed out the impossibility of obtaining the theoretiauthor here pointed out the impossibility of obtaining the theoreti-
cal evaporation with a given amount of fuel ; next, the dangers of priming, corrosion, incrustations, and explosion were described, with the means of preventing them or counteracting their effects. The second division of the paper was then begun, its subject being
the materials used in boiler construction, the defects of rivetted the materials used in boiler construction, the defects of rivetted joints were explained, and the superiority of welding over rivetting
was proved by reference to various carefully conducted experiments. The construction of furnaces, flues, and tubes was then
dealt with, especial attention being paid to Fox's corrugated furnaces and flues. The paper ended with des ciptions of several typical forms of boilers, including among others the Whittle,
Bone, and Galloway stationary boilers, Dunn's marine boilers, and the ordinary English locomotive boilers.

LETTERS TO THE EDITOR

We do not hold ourselves responsible for the opinions of our

FORTY-KNOT-SPEED SHIPS.

Srk, -I am glad that you have given insertion to Mr. Bleasby'
letter challenging the accuracy of my determination of the speed obtainable in large vessels of the torpedo-boat type, with a given
power of engine. The subject is obviously one of commanding importance to the interests of this maritime country. Letters
which I have received show that the discussion is already attracting attention in influential quarters, and the articulate defence of
demonstrable error affords the fairest opportunity of effectually exposing its real character, and so accomplishing its extirpation. Che nature of my proposal to establish lines of light and swift
ocean vessels, capable of performing voyages of 3000 miles at a speed of forty knots an hour, is already known in outline to your readers. Mr. Bleasby contends that the feat is impossible, and he
bases his incredulity on the hypothesis that the weight of 60 lb. per indioated horse-power, which I have set down as an adequate weight for the machinery of such vessels, the bottom, seeing that the weight per horse-power taken would
require to be three times greater than that which I have assigned. Here, however, Mr. Bleasby is confronted by the fact that in various torpedo boats, and other light vessels, the weight of machinery per
horse-power is even less than that which I provisionally adopted. Thus, in torpedo-boats of the first class the weight of the machinery per horse-power has been experimentally ascertained to be 57.7 lb .
In the Miranda yacht it is 62.81 b, and in the Gitana yacht 43.5 b . - or on an average of all the examples cited, 54.7 lb . To escape
from the confutation afforded by such evidence, Mr. .leasby tries from the confutation afforded by such evidence, Mr. Bleasby tries
to make us beiieve that small engines are intrinsiclly lighter per
horse-power than large, and that although, "wwere there a very large number of high-speed engines applied to drive the ship, this
[weight of 60 lb.] might be sufficient,", yet that, as this cannt be done, "we are obliged to have recourse to large, engines as in other
ships "-such as the war-ship Trafalgar, which engines, from their slowness and otherwise, are of about three times the weight per horse-power of those which I propose to employ although we may make very light engines so long ase th, is that,解 the size, so that the engines proper for a light vessel of three or
four times the lineal limensions of a first-class torpedo-boat must not only be large and heavy in proportion to the tonnage, but must
have three times the weight per horse-power of engine that the smaller boats require to have-a doctrine not merely without any
species of justification, but in direct opposition to all experience. If this be not Mr. Bleasby's meaning, his statement expermere juggle of words, and I cannot proise his ingenuity
is a mext at the expense of his sincerity. If, on the other hand, it is
except his correct meaning, then, incredible as the statement may appear,
he commits himself to an absurdity which any tyro can confute It rests wholly with Mr. Bleasby himself to determine which horn of the dilemma he elects to embrace.
That large engines, other things being equal, are lighter per
horsoc-power than small ones, is too elementary a proposition to require demonstration in your pages. When Boulton and Watt
first settled the proportions of their was. heating surface of 15 square feet per horse-power in the 2 horsse
hoiler, and 9.8 square feet per horse-power in the 30 -horse, while the respective weights were nearly in the proportion of the surfaces. The engines followed much the same law, and all engines and
boiliers follow this law at the present day. But the main condition of lightness is speed. If a pair of torpedo-boat engines were put
into a coal barge which they could hardly move, they would cease to be light engines, and, contrariwise, the engines of the Trafalgar or other languid leviathan, if placed in a hull which they could
drive at three timest the existing speed, would cease to be heary
den engines. Yt is the high speed of piston which a high speed of hull permits stat if the main cause of the lightness of torpedo-boat
engines, and if the speed of a light vessel be paickened from 20 to
40 knots the pistons will run twice any increase in the weight of engines, will generate twice the
power. Under such conditions it is obvious that, as my engines power. Guer
will be faster than torpedo boat engines, so also they will be lighter instead of being three times heavier, as Mr. Bleasby has assumed.
The allowance of a weight of 60 lb . per horse-power must consequently be rocognised as adequate, and Mr. Bleasby's disquisition,
based upon the opposite hypothesis, becomes merely "so much based upon the oppos
leather and prunella."
It only remains that I should explain for Mr. Bleasby's benefit the speed that would be produced by by given power, instead of the older method, according to which the resistance is measured by
the immersed section. The reason was because it has been found
that although un to such speeds as that although up to such speeds as 10 knots torpedo boots demean
themselves similarly to large vessels, their conduct becomes quite different beyond that speed, especially when they begin to rise in the water and thus to alter their immersion. At first the resistnee varies as the square of the speed, according to the law obtain-
ing in larger vessels. Thereafter it rises to the 3 .5th power, and further on falls to the 1.5 th, and eventually to the 1st power, or
to the resistance answering to the simple speed. At some such to the resistance answering to the simple speed. At some suc
speed as 35 or 40 knots large and light vessels, it is believed, wi comport themselves in precisely the same way as torpedo.boats do
at 20 knots
Recot hat that their performance may bee prediacted by
Rut not yet been experimentally verified. It should further beo explained
that in all torpedo-boats the boiler has, for the sake of lightness, been overtaxed, and that where voyages of any considerable length
have to be performed, it would be proper to alter this state of things by the use of more boiler power, which in its turn will But the change would, by diminishing the consumption, simul.
taneously reduce the weight of coal which would have to be carried by the vessel, and I have therefore allowed the figures to
stand without rectification on either side, on the assumption that one weight would balance the other. It will be seen by a referencece
to former figures that the consumption of coal was taken at 2 lb . per horse-power per hour. Less than this would certainly be sufficient, and if we suppose that 111 ll b. per horse-power could be made
to suffice, we should save over 400 tons of coal on every voyage of the larger vessel. This would much more than balance the
nereased weight of any larger boilers that it might be considered The dageous to employ.
The details of the proposed vessels I will give in a subsequent
etter, should you consider that they would be of interest to your readers.
Studen

Chiswiok, Wollege of Practical Engineering (May 25th.

pUBLIC SURVEYORS
SRR, -In advertising for surveyors the Metropolitan Board of
Works and the varions Vestry Boards of the metropolis generally stipulate that candidates must either hold certificantes from the
Institute of British Architects or must have passed some cramming xamination beld by of the numerone sanitary institutes or
I have the doubtiul honour of being an Assoo. M. Inst. O.E. By
doubtful" I mean that although that diploma was conferred on me in respect of nearly twenty years' experience in many branches
of the profession, it goes for very little when compared with many ther qualifications. If there is any value whatever in the distinctions conferred by
the Institute of Civil Engineers, Ithink it hish time that the
authorities of that body looked after the legitimate interests
of the members. Why should members of other societies or insti-
tutes have ary advantage over theiriss?
could lt be brought to leart the Metropolitan Boards. It may perhaps be urged that the duties of public surveyors per-
tain more to the science of architecture than to its sister profession, but I do not believe so. Proficiency in the latter necessarily includes a general and sufficient knowleyde of the forneer. Besides, the
duties of a surveyor are varied and many, and more likely to be carried out efficiently by a practical en gineer than by an architect My object in writing this letter is chiefly to point out the diffcollty that competent men of experience have in getting their
claims recognised as candidates for public surveyorships. just emancipated from a few years' experience in the art of throwon india-rubber about; glorified brioklayers' apprentices, starting second hand "cumpy", the son-in-law of the local builder and
chairman of the Vestry Board-these ore the of of men who chairman of the Vestry Board- these are the sort of men who
would defeat a Brunel or a Hawkesley in a competition before a Board of third-rate grocers and bakers, who pin their faith on
some examination certificate not worth the paper it is written on as
In the interests of those younger members of the profession who may be really going through a careful course of training, and are
duly qualified by circumstances of education and breeding, and some able pen may taktious devotion to a noble calling, I trust that system that too often allows the expression "Town Surveyor", to represent to the mind of well-regulated iudividuals a personage
chiefly remarkable for ignorance, incompetency, cheek, and doubt al sobriety
May 27 th.
IOur con
correspondent seems to have lost not only his appointment but his temper. He is not likely to work reforms in the method o
gaining the former until he has recovered the latter.-ED, E.]

THE INSTITUTION OF CIVIL ENGINEERS.
MODERN MACHINE TOOLS AND WORKSHOP APPLIANCES, FOR
THE TREATMENT OF HEAVY FORGINGS AND CASTINGS,
AT the last ordinary meeting of the session, held on Tuesday,
the 18th of May, Sir Trederick Bramwell, FRS. President, the chair, the paper read was on "Modern Machine Tools and Workshop, Applancees, for the Treatment of Heavy Forgings and Castings," by Mr. William Wilson Hulse, M. Inst. C.E.
It was stated that the greatly extended employment of steel, and the increase in the weight and mangitude of forgings and cast-
ings both of steel and of iron, characteristic of late years of various branches of engineering, had led to important changes in machine tools, in order to prevent a decrease in the quantity of work turned
out. out. For not only was steel specially obdurate to the action of
cutting, but it was usual, in steel forgings, to leave an excessive forging, and of the enhenced value of the salke of economy in the melting, as oompared with fine ones. The author had selected the following for illustration and description:-A 40in. lathe a a 34in.
lathe; a large universal planing machine; a horizontal boring machine and lathe; a vertical and horizontal planing machine;
horizontal drilling, tapping, and boring machine; a vertical mill ing, and drilling machine; a ribbon-sawing machine; a 30 -ton power travelling crane ; and spirit levels. The 40in. lathe, with
four cutting tools, was 75 ft . long, and weighed about 100 tons, and would take in objects between the eentres and over its sliding
carriages, vp to 6oft. in length and sti. in diameter. It had dis-
tinct single, double, and treble five different changes of strap power in the cone pulley, and two the top driving apparatus, making in all thirty various powers or
speeds available. The main spindle was of steel, 13in. diameter by 2 lin. long, and the outer journal was formed with. grooves, 1 like
a propeller shaft, to take the end thrust. The face plate had both external and internal gearing, and was fitted with four steel jaws, operated by independent screws, for gripping the work. Two
sliding carriages were provided, each carrying a pair of duplex compound slide rests and two cutting tools, or four in all. Each
tool took a "cot" 1 Izin. deep and over tin. thick at the rate of by twin fixed guide screws. placed one at the batk and othe other
at the front of the bed on the outside, and of rotating nuts, which worked upon the sorews. The guide screws were made in two lengths, joined together to insure their alignment one with the
other; but as aecol hength was held fast at the outer end, the joint
was not subiect to torsionl was not subjected to torsional stress. The complete independenc
with which each sliding carriag could be traversed in either dire tion was an important advantage resulting from the employmen of stationary instead of rotating guide screws. The 34in. lathe,
with eight cutting tools, had fixed guide screws inside the bed nected with only one of them. The spindie was of similar construotion, but of greater strength than in the 40in. lathe. The
bed was in two lengths bolted together. The two front girder bed was in two lengths
supported and guided the front sliding carriages and tools, and the
two tro back girders those at tund slide rest fitted with two top slides riale carried one compoung one uting tool each. The eutting tools might te actuated
holdion
conjointly or independently. The lenth of the lathe was $45 f t$. 6 in conjointly or independently. The length of the lathe was $45 \mathrm{ft}$. . $6 \mathrm{in} .$, ,
and the weight about 80 tons ; and it was specially designed for An illustrationts or heavy steel forgings in the rough.
of planing 30ft. long, 1 ft . wide, and 10 ft . high. The bed was 40tt. long, made in two lengths. The table was 33 ft. long, cast
in one piece strongly ribbed underneath. The machine was
Ther in one piece strongly ribbed underneath, The machine was
arranged for planing bjects lengthwise, or rosswise, or vertically
as in slotting. The possesssion of these several functions rendere the machine capable of treating, at a single setting, heavy objects, which otherwise might require several removals to, and re-settings on, other machines. The table was reciprocated by means of a
large steel screw and travelling nut, the screw being driven at one end of the machine. The screw, being of great length and weight, rollers, placed at each side, at intervals of about 10 ft , apart. The
rollers dipped in oil, and carried up oil to the screw. The travelling nut was partly out away, so as to allow it to pass by the supand bed were inclined to an angle of only 15 deg., and for lubri cating them a series of other cclindrical rollers, dipping in oil, and mounted upon axles parallel with the inclined surfaces of the γ slides, were introduced. The mechanism for producing the
cutting feed, when planing longitudinally, was actuated by adjustable stops secured to the table, which, as the table traversed to an a greater or less distance, according to the positions in which they were secured to the table, the arrangement being such that the feed serews remained stationary during the cutting traverse, and
were rotated only during the backward or non-cutting traverse. The extent of the feed was regulated by the distance the rack was make. By this means the "out" might be varied by gradations of din. up to 2in. broad
ward traverse of the table,
The horizontal boring machine and lathe was designed mainly for boring and facing medium-sized engine cylinders. Fast and
movable headstocks were provided as in lathe. The main
and
 receiving the bolts which secured the horizontal bed to them,
The boring bars, with cutters, were held between the centres of the
headstocks and rotated by the face plate and a driver, the object to
be bored being fixed to the ete-groved table. The machine was
cander capable of boring engine cylinders up to $30 \mathrm{in}$. . in di
turning and surfacing work up to 4 sin. in diameter. horizontal planing machine weighed about 90 tons, and was capable of operating over a vertical plane
20ft.
long by $155 t$. hish, and overa horizontal one 200 ft . long by 3 ft. wide. The eutting tool was fixed to a a compound slifid, which was
traversed vertically by a guide screw, The vertical slide bed was secured to two carriages, which traversed upon two horizontal slide beds. The traverse along these beds was produced by means of two guide screws, rotated simultaneously from the driving appa-
ratus, operated alternatively the vertical guide screw. There were
three distinet automatic cutting feed actions, one for planing wise, and the third for planing vertially crosswise. The whole
of the veniently placed at at one side of of the one machine. For some descrip-
tions of work it was usefle to tions of work it was useful to fix on the bed a T-grooved table
about Sft. square, having compound rectilinear and circular slides,
as in a slotting machine table, to enable circular and curved, as well as flat work, to be planed. The universal horizontal drilling, tapping, and boring machine would operate over an area of 16 ftt . long by 10ft. .high. There
were two standards which could be traversed horizontally to and fro along a slide bed; each was provided with a spindle, mounted on a carriage, movable up and down the standard automatically. For drilling and boring, the spindle was provided with variable
automatic feed and quick-hand actions, and, when tapping work, the automatic mechanism was put out of gear, the spindle being
left free to slide inwards and outwards under the influence of the ap. In the combined vertical milling and drilling machine the main frame was of strong box form ; the spindle projected 24 ini, and
had a vertical movement of 18in. The spindle worked in two throu bearings within a hollow square slide, movable vertically through square guides formed in the body of the machine. The
lower bearing was close to the head of the spindle, and a locking screw was provided for tholing the square sidide firmy in position
at any desired point of the vertical adjustment. A separate selfboring, to be brought into play when required. The table on which the work was secured consisted of a tee-grooved top and two pairs of horizontal transserse slides, with a worm-wheel between them. In the ribbon-sawing machine for sawing off ingot heads, and frame nearly 8 ft ., was 2 sin . wide, and was carried by two pulleys, each 8 ft . in diameter, with the centres about 9 ft . apart. The upper pulley was secured upon a revolving spindle carried by a in the standard of the machine. The blocok was actuated by serew held the ribbon saw in tension. The lower or driving pulley had a large spur-wheel on one side of it, and was rotated by a cone pulley and double gearing. For carrying the work there were two sliding tables, parallel to cach other on the same horizontal plane.
The greatest depth of work through which the machine was adapted to saw was 15in.; the pitch of the teeth varied from $\frac{1}{\text { sin. }}$, to in. Whe of the distinguishing features of the 30 ton traveller crane
was that the crab was a fixture upon the traveller, instead of being movable along it. This enabled the crane to operate over
a wider area of workshop floo than was possible with the mova
anran
in on in one length, but led in two symmetrical lines, so that the load always hung centrally between the two transverse girders, and
strained each line of chain, and each transverse girder, equally with the other. A quick-running rope was employed for diriving
the crane, and all the various movements were transmitted through a horizontal shaft in the crab. This shaft was provided
with three sets of friction-clutch bevel-wheels; through one set the barrel was acouated for lifting and lowerng; through another the bogey carriago was traversed transversely; and through the
third the traveller was traversed longitudinally. The three together, worked by an attendant standing upon the thers. These cranes were in some cases arranged to be driven by a long
shaft, or else by a steam engine carried upon the crab, either of
these these systems being preferable to the quick-running, rope for
steel and iron foundries. For steel melting houses, foundries dco., this type of crane was well adapted, because the attendant
was not exposed to the fumes and heat rising direct from the murnan metal as he stood at ne side of the buildng opposite to the furnaces. Of two kinds of spirit-levels used in the author's fitting
and erecting shops, one was for testing horizontal lines and surfaces, raduated with divisioncical ones. In both cases the tubes were graduated with
In concluding the paper, the author explained that his object had
been, thet the to been, not to give an exhaustive account of the subject treated, but
rather to make prominent such portions of it as appeared of chief

The GAs Instrivis.-The twenty-third annual general meeting
 Mr. Denny Lane, M.A., President, will occupy the chair. On
Tuesday, June 8th, the chair will be taken at 10.30 a.m. Inaugural address by the president; presentation of the Birmingham medal
and premiums ; reading oo papers and communications. The meeting will adjourn ai 2 o clock. Wednesday, June 9th, the munications continued. Adjournat 2 'clock, to permit of visiting
the Indian and Colonial Exhibition. Thursday, June 10th, the chair will be taken at 10.30 a.m. The reading of papers and com-
munications, and the transaction of other business ; election new members and officers for the ensuing year, The meeting will then be made special, in order to elecet a trustee. Friday,
Jnne 11th, visit to Woburn Abbey. Members will meet at Euston railway station at 10.25 a.m., and proceed by special train to
Ridgmont, where vehicles will be in attendance to Experimental Farm of the Agricultural Society. From thence, by the kind permission of the Duke of Bedford, they will visit the Park Farm, and subsequently be conveyed to the spot where
luncheon will be served. After luncheon, an inspection of Wobur Abbey and grounds will take place. The return journey will be expected at about 7.15. Price of tickets, including luncheon and conveyances, bot not including wine,
sold after 2 o'clock on Wednesday, June 9 th. The tollowing papers and communications will be submitted to the meeting: :-"
"Statistical Information in reference to the Manufacture of Gas," by R. H. Jones, Beckenlam ; "The Utilisation of Residual Pro Ammonia Process of Purification," by C. Hunt, Birmingham; "A Cork ; "On the Application of Tar and Breeze to Retort Furnace Firing," by W. R. Jones, Rome ; "A New Departure in Water
Heating," by T. Fletoher, Warrinton; "The Relative Calorific
Values of Tar-with and without steam-and Colee for Peto
 So-called Elaborate Regenerative Retort Furnaces a Failure?" by
R. O. Paterson, Cheltenham ; "To what extent is it advishble R. .. Paterson, Chetenham; To what extent is it advisable
for Gas Counpanies to work up their own Residuals," by J. Oham-
berlain. Reokton. Annual general meeting of the donors and sub. seribers to the Benevolent Fund, Thursday, June 10th.

\section*{AMERICAN NOTES.}
 (From our oow Correspondent)

New York, May 15th.
making interests in
Brokers representing iron and steel-makking interests in Now
Tow
Ork and Pennsylvania are quietly awaiting the expected resump tion of activity throughout the country that is believed will grow out of the settlement of labour troubles everywhere. A number tions for large quantities of iron and steel have been submitted, though it is not the intention of purchasing agents to close con
tracts much before June 15 th, if so early. The latter half of the year will be a very active one in railroad building, iron-making,
bridge building, and car and locomotive building. During the past year over 100 schooners were destroyed, and io car omly about ten have been built to take their place. Shipbuilders are now in nego ell as to provide increasing tonnage facilities for the Atlantic and Gulf coasts. The plate mills throughout Pennsslyvania have recently received orders for several thousand tons of material,
sufficient to keep them running up to midsummer at latest, and unilders of bridges are now submitting specifications for material will be undertaken this year. Prices every where are rather weak in small lots, but manufacturers believe a reaction will set in, and ail strike continues throughout se in Penneslvani is holding 20,000 men in mese the 40,000 anthracite miners are waitiug for an advance in coa before insisting upon a 10 per cent. advance in wages. Throughout
New England a sight improvement in business is developing, and manufacturers in all branches are preparing for an active fall trade. first of the month, which were held back during April, and the opinion is expressed by good authorities that the summer orders
will be far in excess of last year. Labour troubles have been will be far in excess of last year. Labour troubles have been
mostly settled on a basis of nine hours, benefitting about half mostly settled on a basis of nine hours, benefitting about half
million workers.
Mr. James Black, representing a syndicate of British capitalists Mr. James Black, representing a syndicate of British capitaliste,
was in Baltimore on Thursday with letters from the Manchester Chamber of Commercee and the Glasgow Association of Under-
writers, representing a syndicate which writers, representing a sydicate, which proposes to build the
Chesapeake and Delaware Canal, at a cost of of,000,000 dols., pro s of Maryland subsc

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS

Expork demands for finished iron are not finding vigorous expres-
sion. Still the trade may be said to be of about the same volume as in the corresponding period last year. A few firms who have a good connection with Australia and other distant markets are
receiving satisfactory lines for bars of medium quality and for sheets and hoops. The Indian and South American trade is under
the average, but the United States demand is not without feature of improvement.
The home trade does not exhibit much sign of expansion, and so far this year it has been of a disappointing character.
Buyers continue to restrict themselves to the satisfaction of early recessities.
The effect upon unmarked iron of the late reduction of 10 s . per
ton in marked bars has been to weaken prices about 2 s .6 d . pe ton. In sheeds, howeverer, this to weetect is counces about 2s. . 6 d. per
torbalaneed by the
smaller supplies. If the restriction continues, as seems likely smaller supplies. If the restriction continues, as seems likely,
sheet pricess should revive. At present 20 gauge is to be had at
\&5. 17 b . 6 . Best working-up sheets are quoted $£ 910 \mathrm{~s}$, upwards, and stamping sheets $£ 1$ per ton additional.
Prices of galvanised sheets
of increased local competition. Angle iron and girder plates are finding rather more purchasers,
Chain and cable iron is in limited request. bars are maintained pretty frmly on the new basis of $£ 7$. Good merchant bars are quoted at $£ 5$ 5s., but common orrts are froely
offered at $£ 5$ level, and buyers reported this week that they were sometimes buying at $£ 415 s$.
The competition of Lancas
are more faveurabably situated for getting to the ports than South are more favourably stuated for geting to the ports
Staffordshire, continues severe, and with those buyers a a distance
with whom price is the first consideration, irrespective of quality, with whom price is the first consideration, irrespective of quality,
Staftordshive makers find themselves greaty handicapped.
Bessemer steel is still
 \& 4 15s. delivered, and plating bars $£ 4$ 17s. d. to $£ 5$. Mild steel
bars rolled in Welsh works are offered this week, delivered in Bir-

 hampston, have just set going, their new galvanised sheet works.
These have been erected adjoining their black ironworks, and the laying out of the ground commenced with the new year. The
new plant is particularly well arranged. The sheets are conveyed from the black iron mills to the annealing furnaces by a
stout line of railway. These furnaces are worked upon a new principle, being heated by gas, supplied by patent producers,
instead of by ordinary coal frimg. This is a distinct advantage in
the processes of manufacture. Atter passing through the pickling the processes of manufacture. After passing through the pickling
vats, the water tanks, and the roller baths, \&o., the sheets enter atrit. corrugating machine, and lastly are passed through the
straightening rolls. Steam power is supplied by a pair of 60 or 70 nominal horsse-power hhirizontal enginesp, which are or the make
of Messrs. Ormerod, Grierson, and Co., Manchester. The engines have a very complete appearance, and are mounted on an enamelled brick foundation. The new works start with a capacity
of 150 tons of galvaised sheets per week, and, if needed,
ofditional plant will be laid down additional plant will be laid down at an early date. Orders are
mainly anticipated from Australia, the Cape, and South America. The pig iron market is waking up. Bayers with capital at their
disposat bolieve that they cannot do wrong to lay in stocks at present 1ow prices. They are, therefore, in several directions
operating with freedom. Derbyshire, Lincolnshire, Northampton, and North statfordshire irons are being purchased in preference
generally to South Staffordshire brands. It is estimated that in one locality the arrivals of pigs in the last fortnight or so have
agregated quite 10,000 otons. FFor cash against delilevy, sales are
taking place much below the market taking place much below the market figures. All-mine hot air pigs
are 52 s . 6 d . to 57 s . 6 d ; cold blast, 75 s . to 80 s .; part mine, 3 s .

 The South Staffordshire Mines Drainage Arbitrators have just
considered applications for graduations of the new draft mines drainage award for the Tipton district. The rate on ironstone, coal, and slack is 9 d . per ton, an increase of 3d. on previous years,
The necessity for the increase arosesout of the lessened amount of
coal heing raised simultancously with ture by the Commissioners for pumping. The rate proposed on fire clay and limestone is 3 d . per ton as before.

The ironworkers at the Trench and Stiohley, Ironworks, Shropwages, and so, too,
Walsall. Happily the proprietors of the Clough Hall Ironworks,
Kidgrove threat to permanently close their establishment. The men have agreed to resume work at the old rate of wages, subject to seven The bridge-buildina
ontracts for Japan, \&cc. Contracts such as that which has this week been upon the market from the Indian Midland Railway Company, for a supply of steel and ironwork for four 100 ft . clear pere the to brias and six fil. span briages, wount we weicomed of certain of the other Indian lines for pumps and boilers, iron coliery tubs, springs f
Pump engineers report an increase of orders, but at present the
ncrease is not very pronounced and American and continental ncrease is not very pronounced, and American and continental
competition has to be fonght. There is a slight impetus in the vice competition has
and anvil trades.
The
The important works at Witton, near Birmingham, of Messrs, Kynoch and Co., ammunition manufacturers, are in a flourishing and new shopping erected. An area of twenty-five acres is now Imost fully built upon, and the result of the extensions
double the firm's capacity for producing sporting ammunition. The manufacturing of solid drawn brass cartridge cases is carries
on at the Witton Works in the following manner :-In the firs instance, blanks varying from the size of a threepeny piece to
5.jin. in diameter are stamped out. These blanks are next treated by a maccine which, by means of a punch-iike contrivance, oon-
verts them at one stroke into shallow pans. A repetition of this treatment in a similar machine brings the pan into the proportions,
though not into the shape, of a thimble; and so the process goes though not into the shape, of a thimble, and so the process goes After each stage in this process the metal is annealed, so that whe
the last stage is reached a perfectly homogeneous tube of brass, closed at one end, is obtained.
The strike in the fitting branch of the Wednesbury tube trade promises to end satisfactorily. Some of the men have accepted
reductions ranging from 5 to 10 per cent., and the fitters at the
works of Messrs. prices fixed by the company. In the Wolverhampton tube trade The Council of the Birmingham Chamber of Commerce hav
隹 determined to memorialise the Premier to resume the negotiations
suspended in 1881 for an international monetary agreement, or, in the event of further inquiry being thought desirable, to appoint a samal bomm hassion do to exided tomine olace the the following currences quation unpon the
same
programme for the Congress of Chambers of Commerce of the programme for the Congress of Chambers of Commerece of the by the selection of eminent men from the various colonies and dependencies of Great Britain to represent their respective countries in the Imperial Parliament.'

NOTES FROM LANCASHIRE.
 (From our own Correspondent.)

Manchester.-It is still the same monotonous report-no improvement either in prices or aem future. If there is any change a
the prospects for the immediate futur all in the condition of the iron trade in this district, it is certainly
not for the better; if anything, the excessively low cutting in prices to which some sellers have resorted to recently to secur orders, has tended to disorganise the market by stimulating
amongst buyers notions as to prices on such a depreciated basis anongst buyers notions as to prices on such a depreciated bas
that very fow makers would be at all willing even to entertain. The result has been that buyers have shown even less disposition
to give out orders, whilst some makers, recognising the futility of attempting to follow buyers in their constantly receding ideas as t prices, have at length resolved to make a firm stand against any
further concessions, There are, however, sellers who still show susceptibility to pressure when buyers have actual orders to place, and although prices are nominally without alteration, there is a
continued weak tone in the market both as regards pig and manufactured iron.
There was very little inquiry of any description stirring on the recorded were extremely small. For Lancashire brands of pig iron
makers still quote 37 s . for forge and 37 s . 6 d . for foundry, less $2 \frac{1}{2}$, delivered equal to Manchester, but for open sales they are, on the
basis of these figures, completely cut out by the low-priced district pig iron are confined to occasional small lots sold to regular costomers. In Derbyshire irons there seems to be a tendency
towards weakness following upon the extremely low price at which towards weakness following upon the extremely low prie at whic
one brand has for a few weeks past been offering here, and in Lincolmssiire iron very low figures are also mentio

 both Scotch and North of England iron can be bought here at quite as low prices as ever, notwithstanding the somewhat firmer tone reported from Glasgow and Middlesbrough.
I do not find any reflex
reported in some districts in the hematite trade. Buyers here are not putting forward any increased weight ore bet, and where could still place orders at about 49s.6d.f or Lancashire and 50 s . 6 d .
for Cumberland, No. 3 foundry qualities, less $2 \frac{1}{3}$ per cent., delivered into the Manchester district, although in some instances quotations are about 1s. per ton above these figures,
The manufactured iron trade remains in a stag
throughout. Trade is no worse, and in some instances the orders given out are reported to be, if anything, rather heavier in weight,
but the forges generally throughout this district are still very bacily off for work, and the prices at which business is at all pracvery into the Manchester. district remain at $£ 417 \mathrm{~s}$. 6 d , to $£ 5$ for are orders for prompt specification to be got there are needy sellers
who would be who would be prepared with some con
to get work to keep their forges going.
Here and there
some ranches of the engineering trade, but 1 do not find that there is any real improvement generally, and the returns which I guoted last week from the reports of the Trades Union Societies as to the
lessened number of men out of employment have been received with some surprise amongst the representatives of the engineering
hranches of industry with whom Ihave come in contact. There is
certainly certainy no increased weight of actually new work giving out to
warrant any appreciably increased demand for labour, and where better employment for the men has been found it is probably on
small, odd jobs that are frequently given out with the close of the winter, but
general trade.
The Manchester Association of Engineers have once a year an
xcursion to some engineering centre of interest within accessible excorsion to some engineering centre of interest within accessinle Sons, and Co., at Thainsborurion, weat the most numerous that has has
for inspection.
yet been orgaised by the Societty about 120 members availing thenselves of the opportunity, on Monday last, of visiting Messrs,
Marshalls' works, and they were very generously entertained at
dinner and tea by Messrs. J. and H. D. Marshall. It would be
impossible in the brief space of these "Notes" to enter into any detailed description of the extensive works at Gainsorough,
where, as agricultural engineers, the Messrs. Marshall have built up one of the largest and most completely fitted-up establishments
of their kind briefly upon one or two of the main features which chiefly attracted the attention of the members of the Association. The visitors were conducted by Messrs. James and Henry D. Marshall through
the various departments of the works, and their extensive character was a surprise to all who had not previously an opportunity of inspecting them. The works themselves occupy an area of sixteen acres, of which nearly twelve acres are covered in by the various shops; and although nearly three hours was
devoted to the visit the time was barely sufficient for even the most cursory inspection. Perhaps the feature which, next to the sisitors was the orderly the establishment, most impressed the visitors was the orderly arrangement of the various operations
carried on throughout the works, which have been designed hroughout to economise labour to the fullest extent, the work, as progress, and the parts seldom traversing the same ground twice.
The different branches of the manufacture of stationary and portable engines and boilers, agricultural macheninery, cornm mill and one opinion as to the general high-class character of the work
turned out, the excellent finish of the boilers being noticeable. The modern character of the plant throughout the , nachinery for economising the cost of production, was also
feature which attracted general notice, and the visit all through , eedings to a close, Mr. Jas. Marshal prosed suceess to the Manchester Association of Engineers, coupling with
it the name of their president, Mr. Ald. Bailey. They had, he said, felt a considerable amount of diffidence in inviting so imporwhich they considered the cradle of engineering. The trade depression which had been passing over England, and, indeed, one
half the world, had affected agricultural engineering to a very material extent. There was, perhaps, some chance of this being times in store for them for a considerable period to come. In thei works they had found one of the absolute necessities of the times was the cheapening of production, and with this end in view they
had organised their labour and their plant to produce their goods on the most economical principles possible. In carrying out tha saw around them that day, and they felt that their thanks were due to them for the great assistance they had reeeived in fitting their works with labour saving appliances and special machine tools
for various classes of work. Mr. Hy. D. Marshall, having ing, expressend the pleasure which all the members had felt reservedly thrown open to them that day. As bad trade had bee nentioned by Mr. James Marshall, he might just remark that it was perhaps not quite so much what they called bad trade as the
increased, the enormous, power of distribution which had bee brought into existence by the engineer, that was responsible fo
the bad times they had been passing through. It was becaus everything was cheaper that times were bad, and because of the
mechanical inventions contributed by the engineers of the world
 the engineer had done. It was, however, hard for the capitalists,
although it might be better for the world ; but if there was any blame for bad trade he thought it must rest on the engineer, world were, however, now spread so rapidly, that there would never again be a dearth over any particular region, and they had had no resources of the engineer had not been brought in to assist in the foo distribution. Ingoing through Messrs. Marshalls works he had been
delighted to find the names of so many of their members on the tools leisure, because it was by means of the tools made there they
were enabled to work only fifty got still more civilised, they might work only forty-eight per week, with his head. A vote of thanks to Messrs. Marshall was, on the motion of Mr. M. S. Aslury, O.E., supported by Mr. John
Craven, Mr. Alderman Buokley, Mr. Mr. Concillor Asquith, and the
Rev, CCnon Hodgkinson, unanimously passed, and the proceedings then closed. The coal trade remains dull throughout, with all descriptions of nd very low in price. The tendency in tentiful in the marke nnd it is not improbable that with the close of the month there
may, in the Manchester district, be reduction both in prices and Barrow. -A better tone is reported in the hematite pig iron trade, but the actual trade done is not commensurate with the
general improvement noticed in the demand and in the ments of consumers. Makers in this district have booked themany further sales at present prices. They are firm in maintaining at works, and 41s. for No. 3 forge and foundry iron. The Cumberand makers have been selling more cheaply, and needy sellers have
pulled down prices somewhat, but the general disposition of trade is one of firmness, and it is probable that prices will not only be
fully maintained, but the improved demand which is now eve noed from America and elsewhere will help to raise prices
to a still higher point. The stocks of iron held in Fur ness were reduced some time ago to nul, but at, Carn-
forth and at Whitehaven very
againge stoks are held, whilom they are very low. The district generall while that rather less than two-thirds of the furnaces are in blast, but at Barrow ten out of fourteen furnaces are blowing, and it is probable
others will be put in blast if the demand continues. In Cumber and during the past fortnight two furnaces which have been out
of blast some time were relighted. TTe aggregate output of the outlook in the United States, and large sales of iron ore, pig iron, employed in anl departments except one. There is a good demand
for steel rails, and makers are not only fully employed in this department, but they have orders in hand which will keep them
employed for something like ten weeks. Prices are steady at S iss., and buyers are endeavouring to secure stiul owwer rater.
Tiniplate bars in full demand, but ship steel is very quit. Ship-
builders are likely to secure one or two small orders, but th trade generally is quiet. Engineers, boiler-makers, and iron a temporary activity obser quiet business indeed, and there is only
ore quiet. Coal and colke steady. Shipping bepartment. Iron
onter

THE NORTH OF ENGLAND

(From our oov Correspondent.)
The Cleveland pig iron trade is still in an almost lifeless con dition. There was a fair attendance at the market held at
Middesbrough on Tuesday last, but the amount of business actually transacted was quite unimportant. The leading firms decline to accept present rates, and indeed show little anxiety to
sell at any rrice, as they believe they will shortly do better, seeing

 tapialy, both at Nididlesbroungh and dilagrow. At Middilesbrough
 or an increase of 6 G5og tons. It will wo notioed that the total quans tity held by thisisirm is. very nearly a milillinat tones. A doenidid imporement has at ast taken place in the shipments of pig iron of this month was 57,802 tons, as againgt 49,393 tons in the corree
sponding portion of April and 51,40 tons in that of A Aril) 1855 . The finished ironmakers who are still keeping their works in operation have great difificulty in seeuring sutulicient orders, even at
the reduced prices now current. Ship plates are now $E 410$, and
 ton. Steel makers are busy, and have sufficient orders on their books

pits belonging to the the Earl of Durham are likely to be olosed plmost immediately. The number of ooliliers who will be thrown
ald out of work thereby is estimated at from 1000 wo 130. They have
received a fortaights notice to terminate their engagements. received a forthights notioe to torminatee their engagements.
MTany of them have passed the whole of their lives hitherto in the neighbourhood of the collieries. The canse generally asisinged for
the cesastion of operations is the depression of trade and a lack of diemesasation of operations is the dipressio
held on the the menth insting of the Newcastle Northumerland Miners' Union was ceedings of publicio interest wast whe re-appointment of Mr. T. Brort,

 paying him, for a motion was submitted to the meeting, proposing
 showed when they rejeoted
seoretary
It would
orth a
apod
It would appear that the promised works for the defence of the mout or the river yyne have already been oommenced. A number are excavating op it for the foundations noeesasary for placing in in
position a modern Wool wich gun of considerable weight and long position a modern wool wioh gun of considerable weight and ongy
range, simiar guns are intended to be plaeed in the Castle entrance to the harbour will be so oo completelyy oommanded that no hostile shii can approach without liability to be immediately sunk.
Mr. Waterhouse, accountant to to the North of England
Iron Trade Board of Arbitration, has just issued his report for the two months ending April 30 th. The total makk of all cinds of ffinished which is 5045 tons more than the output for the previous two monthes This increase is entirely in the item of plates, the output tons in the previous return, the difference being 5080 tons. it is collee , acounted for, not by by any revival of demand, properly so-
chat that
cut current at the shipyards, which caused a temporary interference
with oonsumption of bari ronn, and a slight derrease in the make of rails and angle

 which is the erratest, is is. 10. 10. per ton. This differenco could must have equally affected both of these specialities. Wages will
 of England.

 long, but for the moment work is mostly susended

THE SHEFFIELD DISTRICT.

(From our oun Correspondent.)

BEFFRE the sliding seale soheme, upon which so much depends for the paaceful and protitable working of the Yorkshire coanfold,
can be settled the
Vorkshire Miners

 months upwards of 2200 corves of coal have thus been conftsated.
Messrs, Ward and
Payne, edge tool and sheep shear mand-
 of labour arrangements. On Wednesday night the firm were
rattened, rattened, and though the ratener was seen at work burring the the
wheel bands, he got olear off. His face was recognised, and the

 have it-by their own workmen, for preferenee, if not by them
by German labour, which they will import for the purpose. Wages reduotions are not confined tor in or and dutpel production.

 Messss. James and Robinson, a shefitied firm, hame the What they consider an important improvement in bieycles and

 riven, whilst it is further claimed that, by its use, additional and the wear of the machine roducocd too one-half.

injury to horses, to do a away with all sharpening in winter and
injury to hoofst, and by recucuing the conousson on thar roods,
ind save the hores's shoulders. The grip shoe was tried on several of the Sheffeld roads during the severe winter. A horse drawing
a heavilyweighted hansom was able to aseend and desend at a canter, without slipping, a very steep hill which was covered with ice, down which boys were ekating
The makers of heary goods in railway material-except railsare well emploged, many of them working full time, and several
 work. Onn tirm is working seven days a week, No rail orders to quote against coast estabishments and continental competiCors, Home oompanies may continue to be applied from inland
distritets, but the large export orders are certain to be taken by
 or enjoy the advantages of inland water navigation.
The oolliers are in straits in ther
The coliiers are in otraits in reveral districts, the men having only about two days work a weekp, Any propecto of advancod
wages is entirely coloes by the supply, even at this reduced rate of employment, being far in exceoss of the demand. Hundreds of Ioadeot wagons an be seen at the railway sidings wherever acoom-
modation can be found. The foreign demand tor hard coall has also fallen off. There can be no real activity in the coal trade till
the iron industry has improved; and, low as values rule now, it is the iron induastry has improved; ,and, low as values rule now
not tuite eertain that " bootom" has been tooched deven yet.

NOTES FROM SCOTLAND.

(From our own Correspondent.)
Two things have contributed to ingrease somemhat this weik the quotations of pig iron warrants on " Change in Clasgow. One of
these is the ereort that at teast nine funnaces are to be put out of of other is the fact that tons, as ormpempared with 7 Tong 3 in the pare reeeding week, and 9130 in the corresponding week of 1885. There have, on the other hand, been
larger additions than usual to the toock in Messra, Connal and Co?s

the guantities of pigs despatehed abroad are 2800 tons
1264

The values of makers', pigs are without quotable alteration, as

Rummours are still current on 'Change in Clasgow of further prospective dififieulties in the epig iron trade. TTe negotiations for
restriction of output having failed it wast later that individual firms would be obiged to put out furnanes Selling for the store has now been proceeding so long that merchants are becoming alarmed at the great and steady increase of stocks, and it was stated this week that as sales could not now
be effected in the case of several descriptions of iron, the stoppage of a number of furnaces making it is only a question of time. This latter remark has no special reference to the case of the Colnnes in blast and intimating a putting out four of the twelve furnace the company is all the same a sign of the times, and it is intimated that other five furnaces are being put out at other works. A samber of firms are doing a good business in the manufacture and that of iron in Scotland, those firms who are preparing to tale their share of the work have the best chance of not being left in course, look upon the change with complacency, seeing can, addition to pig iron they have an important interest in coke, coal,
and chemicals; but the rest have evidently hard times encounter, unless there should come a marked and speedy revival of trade.
Some time ago general attention was called to the circumstance order for a bridge in New South Wales. How they had been able to go below the other tenders was a mystery, but this is now explained by the fact that they have placed sub-contracts for the be built in Glasgow, and afterwards taken to pieces and shipped direct from the Clyde to New South Wales.
Within the last few weeks several of the large engineering firm discharging
short time.
There is now considerable activity in the Scotoh coal trade, and would not be much reason to complain. At present, however, thi tons at Glasgow 4683 . The past week 5845 at Troon, 18,704 at Burntisland, and 13,752 at Grangemouth There is no movement of any consequence at present among the intelligent amongst the men must be convinced that at present The launches from Clyde shipyards in the
ten vessels, of an aggregate tonnage of 8640 . Nine week embrace steel steamers or yachts, representing 7490 tons, and the other tw being used in shipbuilding is now becoming much larger than the of iron. Among the new contracts is one given by Messrs. Bell
Brothers, and M'Lelland, of Glasgow, to Messre. D W and Co., also of Glasgow, to construct two first-class steel cargo
steamers of 4000 tons dead-weight. Messrs. Barel Co. have obtained from Messrs. Burns, of Glasgow, Curle, and cross-CCer for their Clyde and Belfas draught for the tourist service on the Nile, and it is said they are to be fitted with boilers for raising steam with liquid fuel.
It may be of interest to state that the Association of Scotch Steel It may be of interest to state that the Association of Sotch Steel orders at whatever terms they please.

WALES AND ADJOINING COUNTIES.
(From our own Correspondent.)

1. AM told of no lees than sixteen candidates for the position of
H.M. Inspector of Mines, vacant by the death of Mr. Wales Many good men are named. Mr. Wales was ine inspecto appointed for the district, and was previously oolliery manager at

sustained. Coalowners are beginning to entertain a belief in the
improvement, although the week before last some falling off was noticeable, and, 1 am told, have decided to fight against the pressure brought to bear in keeping price down. Some coalowners, who
at one time only worked the eftr, and were generally 1s. ahead of other coalowners, still maintain a commendable frmness in ounta. tions. Their present figure is 9 s .3 d ., and they get this. The
peres.
 coessity, or not of prompt clearanae
It will take some time, even if the improving tone continues, experienced. It is remarkable that so few bad results have come to the front-a proof that the majority of coalowners are substanthe hist of the the tintory of the ooal trade. 1 regret to note a strike in the
patent fuel trade. The various oompanies in the Cardift district -Crown Preserved, Cambrian Star Company and Anchor Com.
 Tuesday of an outbreak, mend a resisort to to phyitical foroce, bint at the

 resisted, the men being intercepted
of 725 tons
left
last week for
Oran.
An industry associated closely with coal-that of pitwood-is beginning to suffer severely. A common figure in the moderately
good times was 18 s , to 20 s., but present quotations vary only from 13s. to 13s. 6 d illl of expectancy in the steel trade, and men are anxious nating on the 31st of Nay at the whole of the works. It is feared
that a reduction is inevitabe, there being no change in the con dition of things. Rails are being sold for 53510 s, but I am assured by a competent authority that they are not made for that t gure.
Probably two ends are made to meet by getting a little better tigure for hom supppies and small quantitiest. One of the principal plate, and targe guw ities of these are being turned out for tit t it satiof actory to note that C Cfarthff is tolerably well employed on
these end is turo these, and is sturning out a bar that is certainly of the A1 class, and Therer is not much said about steel Ileepers for home rail ways at
Tresent. T he fact is that railwwes are in being very small, and, until there is a revival, renewals and all posible expenditure will be kept tow.
 Jar are given at $t 5$, angles E 6 ; coliery rails were $£$
 what shall be eaid of the Gadlys A berdare Works, a compact place, in a neighbourhod where labour is sheap, being put up for sale
and withrawn again
now no buyers "? At the sale, whioh took place this week, there was a clearane of the "properties" on the
spot, and it is to be hoped, for the good of Aberdare, that the spot, and it is to be hoped, for the good of Aberare, that the
works will soon find a purchaser. There is an abundance of tin. plate works at present, and large sales are effected, prices being Cokes run from 13s, 3d. to 14s. Beasemers are quoted from.
 oined in a vote of condolence to the widow of Mr. Wales, the late ingpector.
Sir Geo
Sir George Elliott is taking the most prominent place in New-
port trade, and in the event of a disosolution will be bronght tovewis port trade, and in the event of a dissolution will be brought forward Coal was struck at Lla
A. Thomas.

LAUNCHES AND TRIAL TRIPS.
On the 2 1st inst, Mr. Skelton launched at Mill wall a amall pas.

 and Co., of Gloucester. The vessel was launched with steam up nd immeciately ran a very succeasful trial trip, the speed attaine seing geven miles per hour. It has been built to the order of Mr
I. White, of Seville, to which port she will steam out in the ourre of a few days.
 Earlees Shipbuilding and Engineering Company's Yard at Hull on
Saturray lasti. The vesel has been built to replace the ettemer Saturay last at at vesel haas been built to replace the steamel
Ei Dorado, oold at the begining of the present war to the Greel Government, for an armed eruiser and deespatch vessel. She io Very fine Ines, to e enable her to attain a high rate of speed. He
 partments, and is excoeptionally strong.
A fine steam trawler, the Margaret, was launched last week
from the yard of Mr. Ald. Choriton, ensineer and shipbuider Hull. The Margaret is a aistet-ship to the Catherine, Neweastle

 tered tonnage 6.1 she is lassed dod at hoid
and engines have been built under their special survey, ay
 The leader is by Etienne Lamy. The course of the development. of modern naval warfare is traced. Ironcolad ships, with their

 its importance can hardyy be overrated. Mhe vessels contemplate
could be quiokly built, and it is most neecesary to be prepared to

 he special oharacter of the scheme by ever calling for larrer and
 Sive to it, and far beyond her present position in the matter

(

NEW COMPANIES.

The following companies have just been regls-

Southgate Engineering Company, Limited. This company was registered on the 13 th inst. on business as mechanical engineers, machine and engineering tool-makers, boiler-makerers, iron and
brass founders, \&co. The subscribers are:A. Wright, The Creacent, Syderham, accountant
D. Ghar
G. Brown, 160 , King iland-road, , clerck .

 Registered without apecin artiole

Self-Winding and Symchronising Clock Company, This company proposes to acquire and work the
etters patent No. 15,500 , dated 25 th November, 1885, for improvements in clocks, and apparatus for actuating or controlling the same by elee-
tricity; and also No. 7548, dated the 20th June, tricity; and also No. 1548 , dated the 20th June,
1855 , for "improvements in synohronisers for
 clocks, the inventions of Chester Henry Pond,
of Brooklyn, New York. It was reistere on the
19th inst. with a capital of $£ 100,000$, in $£ 1$ thares. The subscribers are :-
J. H. A. Macdonald, 38, James.street, Bucking. J. F. Ram-gatemañ, $31 \ddot{\text {, Chesham-streeï, s. }}$ s. \ddot{w}., secre.

 managing director of a company
The subscribers are to appoint the first direotors. The number is not to be less than three nor more
than seven; qualification, 200 shares; remunerathan seven, qualification,
tion, 20500 per annameres and a further sum equera- to
10 per cent. of the amount divided amongst the members in excess of 10 per cent. per annum.

> Cudlip and Sons, Limited.

Upon terms of an agreement of the 17 th inst.
this company proposes to purchase from Mr. Joseph Stevens Crondip the business of paper Joseph stevens Cudirp the business of paper
manuatacturer and merchant, carrid on at the
Brook Paper Mills, Little Eaton, Derby. It was registered on the 19th inst. with a capital o
$£ 25,000$, in $£ 5$ shares. The consideration is
 debentures, bearing 5 per cent. per annum interest, and $£ 351215 \mathrm{~s}$. 8d. in cash. The subscribers are:*J. S. Cudlip, Little Eaton, Derby, paper manu- Shares

The number of directors is not to be less than two nor more than five; qualincation, one share, the first are the subscribers denoted by an asterisk;
the company in general meeting will determine remuneration.

Gasking Patent Driving Belt and Leather Company, Limited.

Upon terms of an agreement of the 4th inst.
this company proposes to purchase the various this company proposes to purchase the various
patents of Mr. Alfred John Gasking, of Lime patents or Mr. Alfred John Gasking, of Lime
Villa, EEssex-road, Enfiel, for the manufacture
of bands or chains for the transmission of work. It was registered on the 14 th inst. with a capita of $£ 20,000$, in $£ 5$ shares. The purchase con-
sideration is $£ 4000$ in fully paid-shares, and $£ 200$ sash. The subscribers are:-
J. Aldawinckle, 18 , Hosier lane, E.C., manuD. Gilsenon, Sydnoy-road, Enfieid, rood surveyor s. Woollen merchant's agent ${ }^{\text {Chasen }}$ Brougham-street, Birmingham, $\ddot{\text { four }}$
 G. Bhyrker, $77, \ddot{\text { colmorere-roäd, Birminggham, }}$ " con

The number of directors is not to be less than three nor more than seven, qualification, ten
shares. ${ }^{\text {Most of the }}$ thegulations of Table A are adopted. The vendor is appointed managin
director at a salary of $£ 4113 \mathrm{~s}$. 4 d . per month

Great Grimsby Incorporated Chamber of Com This association was registered on the 15 th inst.
as a company, limited by guarantee to $£ 5$ each member, for the promotion of the trade, com
merce, shipping merce, shipping, and manufactures of Great trade of the United Kingdom generally. The
word "limited" is omitted by Board of Trade licence. The subse
J. Reed, Grimsby.

J. Robinson, Grimsby, mercantile agent.
Walfordre, Grimmoby, hippping agent.
H. Smethurst, Grimsby, smack owner.
D. H. Bunz, Grimsby, merochant and consul.

The management will be vested in a council of
twenty-seven elected members.
Macnab Patent; WateriTCartridge Company,
This company proposes to acquire and work provements in getting coal and other minerals blasting or disintegrating rook, and in mine appais,
ratus to be employed therein, parts of whiob apparatus are also applicable to other purposes'
$(\mathrm{AD}$ D 1876$)$, No. 3150 , It was registered on the

The purchase is reagulated by an unregistered agreement of the 29 th ult. between the Paten of the one part, and Oscor Jemes Perline recre of the one part, and
senting this company, of the other part. The
H. J. Budd, 121, Shooter's-hill-road, 8.E., book Share
 countant Horton, 31 , "Oxiordiroä, Fïnsbury P̈ark, shorthand writer $\begin{aligned} & \text { Jizzard, } 47, \text { vincent. } \\ & \text { önd, " wood-green, }\end{aligned}$ G. W. W. Ruffte, F.R.M.

The number of directors is not to be less than to appoint the first and act ad interim; qualifica tion for subsequant directors 50 fully--paid shares.
One-tenth of the divisible profits of the company One-tenth of the divisible profts of the company
(provided such profits do not exceed $£ 50,000$ in provided such proits do not exceed £50,000 in
any one year, in which case the fixed sum of
and nembers of the board.
London and Manchester Contract Corporation, This company proposes to acquire and carry at contracts for public and other works, to a with real and personal property, and to transac business as bankers, merchants, financial, estate, and general agents, or as stock, share, bill, or or
produce brokers, or as promoters, founders, and
 on the 15th inst. with a capital
shares. The subscribers are:-
Norris Cooper. Ardwick, commission agent
Duck worth, West Gorton, cummissi n ngent. Cuckworth, West Gorton, cummise
Coope, resturict, etanher of music
Hirrst, Ardwick, bookkeeper
I. Hirt, Ard wick , ,ookok keeper
pattorn card maker

The number of directors is not to be less tha hree nor more than seven; qualification, 100 -emuneration, $£ 33 \mathrm{~s}$, each per meeting.

Nevada Nickel and Cobalt Company, Limited This company was registered on the 15 th inst. work, and develope nickel and cobalt mines Iocated in the Table Mountain Mining District,
Churchill County, Nevada, U.S.A. The sub cribers are:

The number of directors is not to be less than three nor more than five; the subscribers are to appoint the first and act ad interim ; the directors
other than the managing director) will be entitled other than the maraging director), will be entitied
£ 1000 per annum, and a further sum equal to 45 per cent. upon the surplus divisible profits in each year, after payment of 10 per cent. per
annum upon the share capital.

Queensland Export Company, Limited. This company was registered on the 15 th inst with a capital of $£ 100,000$, in $£ 10$ shares, to curing meat, carried on by Messrs, Gray, Dawes, and Co., at or near Bowen, in North Queensland, nd the freehold and leasehold properties, machinery, plant, and effects s sed in connection there-
with. The purchase is regulated by an unregistered agreement of the 6 th inst. The subscribers re:-
SIr Robert Burnett, Bart., Leys, Crathes, Aber-

 3. Steuart, 2, suffolk-lane

The number of directors is not to be less than shares or stock; the first qualification, $£ 500$ in denoted by an asterisk and Mr. George Sutherland Mack anzie, The remuneration of the board
will be fixed at the first general meeting of the will be fixed a
shareholders,

Castillon (Pyrenees) Mining Company, Limited. Upon terms of an agreement of the 12 th inst. this company proposes to acquire certain lead,
silver-lead, and zainc mines situate in the arrondissement of St. Girons, department of Ariege,
France. It was registered on the 14th inst. with rance. It was registered on the $14 t \mathrm{inst}$. which are 10 per cent. preferenee shares. The purchase
aonsideration is $£ 49,993$ in fully-paid ordinary consideration is $£ 49,993$ in fully-paid ordinary
shares and $£ 2600$ in fully-paid preference shares.
A. Long Jeffree, 14, Great Winchester street, con-
 J. Coockburn, ii, Heäthcoote:-ströet, $\ddot{\text { Meckiklenburg }}$
 J. Wractrer, Hainhauit Ḧouse, croydön :

In lieu of special artioles of association, Table A
${ }_{6}^{6}$

THE PATENT JOURNAL.

Condensed from the Jourral of the Commiesionern

${ }_{*}^{*}$ Applications $\overline{\text { for Len Letters Patentent. }}$ * When patents have been ". communicated " the
name and address of the communicating party name and adare
printed in italics

18th May, 1886.

 666

6
6

6
 Currier, London. E. stout, London
Box Náluna Machines, H. J. Allison.-(W. s. Coithe United states.),
 Hoore, Liverpool.
 Purnell, London.
E64. EXPLLosive Compoovns,
H. Schöneweg, London. Si66. AUTosario LUBRICating APPARATUS, R. Hoff Copmanatys Lond Exhibiting Maps, Piotures, dec.,
 MeDonald, Londun.
os. TREATIG LEARER Soless, A. A. B. Boult.-(G. E.
Kit

 667. Buit. - (x. N. Rogers, United states.).

 Cllenos, United Siates)
Boring for WATRe, we., by the Aid of Electrr

 betates.). Houndabouts, T. Blinkhorn and W, United

 6698. Manvencture of Cements and Plastrers, L
 G700. UNITVERSAL CRAMP, H. Greggon, London

19th May, 1886.
6701. Makina Oil-serd Cakes, J. Garrett and Son,
6702. OIL Ferpers, R, Ramsay, Durham.
6703 . APPARATEs for

67055. ATMnospathic Gas-burankrs, T. Fletcher, Man

67o7. Maching for Clenanina the Outside of Wispows,

670. couplina Rallway Trucks, dce., T. Melvin,
G7o9. joinviss for Metallic Tubes, J. Wotherspoon,

G71. Juate Ividoarons, J. J. Raggett, Birmingham.

 H71.

 Gondon. WHEEL, C. Wells, London.
672. ORDNASCE, C. Wells, Londo
Fino. Coviting and Trimaisa Woolly or Fibrocs
 ${ }^{67}$ shire. Treatanest $^{\text {s. }}$ of Sewage Sludae, T. H. Cobley,

6735. Retitinino Carbiaoe Windows at any Hzioht

T39. Prodoction
6740. SonLes
London
Sor Measubing, de., J. H. Fraser, 6744. OnL Layps, M. Graetz, London.
6722. $L A M P$ WIoks, M. Graezz, London.

 LJondun.
G750. GAs Formaoes, A. B. Cunningham, London. 20th May, 1886 .
6751. Mountina Rollers in Brick-makina, do., Ma cirves, R. Bradehaw, Swint n.
6752. Gas Globe and Gas Jet Holdrre, T. Eatun G73irmingham. Avertira upon Postal Esvelopes, we., W Pope, London.
DJurnam. Movidsa Dovai, J. Melvin, Glaggov
S6. Doors to enable them to be OPENED from the Pressurg of a Crowd, G. Walker, Glasgow,
S757. BANDAL for Batikrs and SWimakres, W. Auid

 Tarbotion
 766. Takating Cotton Waste of Lithooraphers, de, C. O^{\prime} 'Neill, Manchoster
763. SAD IRON and oth
 B. E. Cooke, and W. Eccles, stallybridge.

 Melsun and W. E. Addis, Birmingham.

 (777. Sirris, w. S. Finch, Liverpool.

Foster, London,
Si. Reokrincus for Pesclis, w. Jones and T. She
field, London.

Hatilifax. Jonina Metaluio Pipes, R. H. Taunton,
 and H. and E. W. Lewis, London.
F877. ADJustiva the BAck of an Ars-chatr, R. H.

 Glasgow.
O. Macines
for Drilina, \&c., c. Burnett,
91. Holidisa trixas in Posirton, f. Bennett
 3. Faskl-gTand, R. Cross, Crewe. R. Cross, Crewe.
gi.
LTAs Len. Lamps and Pedrestals, J. H. Sheldrake, 6. spaing Washers for Sorew Bolts and Nuts, J.
799. STor M Morrovs for Loons, F. Paas, London.

 S80., E. Edwards.-(M. Ramos-Garcia, France.).

 London.
Bog. Paciva and Protrctiva Goods, *c., c. H. Ruselu, London.
B810. EXTRACTING
Gold, dc., from OREs, J. Nood, London
bili. Combusion of Gas for Illuminativa Purposes, J. Mactear, London.
B812. CHopping or REDVCIsa Machines, E. Graddon,
 Vehioles, A. J. Blew, London.
$212 t$ May, 188.
6815. Whurise, W. Corbould, London.
6816. Formisg Groovss around the END of Boxes, \&e.,

6818. B.owiso Exarrse, J. F. A. Paum, Potter.
 son, Manchegeseri: and other Ruceverss, 1. T. Town.

 Grondon ELicritan Appanatys for Isprantriso the

 6843. CAsrons, W. Bralley, London

 ${ }_{c}^{\text {Lesondon }}$ ET,

 West, London.
6869, TransForing Heat into Elegtrictis, c.
Clamond, London. May 22nd.
6870. Coupling Apparatus, G. A. Nussbaum, London,
and E. G. Matthewson, Willesden. on-Trent.
687. Making Metal Planing Machines, F. B.
Welch, Manchester. 673. EARTHENWARE PIPES, F. Holt, Manchester.
6874. FLOWER BASKET, R, Burtles, Manchester. 6874. FLOWER BAskET, R. Burtles, Manchester.
6875. MACHINEs for MOULDING Wood, J. Saga
Halifax. Halifax.
6876. ADJ ham. ixing Plates on Planing Machines, C. Carter,
687. Finchoster.
6878, Revering Mintic Brake, E. 6879. Blind Roller Brackets, c. Homer 6880. Nose-saois for Horses, de., G. P. Lempriere and
T. Askey, Birmingham. 6881. AsAFETY STEERAGE of Perambulators, J. Ayl 6882. Hot Air Apparatus, \&e., A. P. Holland, Black 6883. Vessels for Boiling Liquids, A. P. Holland
Blackburn. 6884. Card Clothings of Carding Machines,
Holden, Paris. 6885. AERATED Liquids, J. P. Jackson, Liverpool.
6886. Compressina Machinery, J. Whetnall and G H. Richmond, Manchester.
87. Mrxing MAchinks, G. E. Sherwin, Aston.
8. SLEEPERS. T. Child, Leeds. 89. PLerprrs. T. Child, Leeds. 6890. Prigko TrAPs, W. O. Greener.-(IW. Hinman
Uniled States 6891. PACKING RINGS, C. Carter, Manchester.
6s92. STorper FAstenkr for BoTrLEs, F. W. Pittuck,
Hebburn-on-Tyne, and J. C. Snowdon, Neweastleons.Tyne. Apparatus for Purifying Fluids, G. Sagasser
65ond 6894. Mental Batten Pin, C. F. Whale, London.
6895. Miling Machinery, J., G., J., T., and J. W

 6900. Combined Lathe, Circolar Saw, and Anole 6901. Cramps for Puting Together Picture Frames, 693. Manday, London Bri. Mechanism, H. J. Haddan.-(J.
Werner, Germany.) 6903. STEAM ENoyNEs, P. F. Hubner, London.
6904. CALORIC ENGINEs, W. G. Hudson. Manch 6904. CALORIC ENainEs, W. G. Hudson. Manchester.
690. Lock Mechanism for SAFEs, E. P. Alexander. (H. Gross, Dnited States.)
6906. BuRULAR-PROOF SAFES, E. P. Alexander.-(H.
Gross, United States. Gross, United States.)
6907. SAFE, \&C., E. P. Alexander.-(H. Gross, U. S.)
G908. MANUFACTURE of BITUMINOUS FELTs, W. B 6908. Manuracture of Bituminous Felis, W. B
Ritchie, London. Germany.)
6990. ANoHors, E. Reynolds, London.
6911. VELOCIPEDEs, London. 6912. Manufacture of Wood Mouldings, G. W. Butt, London.
6914. Corkscrew, E. Blacking, London,
GHEDDNNO Motions for Looms, sce., E. Brook 6914. SHedD
Londun.
6915. Shuttle-pec for Use in Bobbins, R. Martin,
London,
6916. Construe 6916. Construotion of Vessels, do., T. R. Oswald, 697. FLvorrde of Aluminius, W. L. Wise.- (Oester
reichische Anilin-fabrik Strakosch and Co., and C. O. Weber, Austria.)
6918. AUTomatio Shaft Support, W. H. Vaughan and T. Foster, London.
699. HEATING SToves and Furnaces, E. Edwards,(K. Wehse, Germany.)
6920. AcruTing the Bouts of Doors \&c., E. Edwards.6921. Baking-tin or Pan, H. W. Hart, London.
6922. Stamps for Fiscal di. PURPoses, W. O. Homersham, London.
6923. BaLavoed Slide-valves, E. P. Plenty, London.
6924. Working Electrioal BAtTeries, J. T. Armstrong, London.
6925. Elizotrical Intercommuniontion between Car
R. riages of Railway Trains, A. M. Clark.-(M. M.
Bir, , France.) United States.)
Unines, A. M. Clark.-(J. H. Whitaker, 697. BoBta WINDERS, H. Lefeber, London.
6928. Lotion, A. Barber, London.
6928. Lotion, A. Barber, London.
6929. SADDLE of BIVYCLEs, \&c., J. Clay, London.
6930. FIRL-PLACES, H. Heim, LLondon. Horn, Germany.)
6931. Rotating SHAFT, J. Thorne.-(T. Hon, May 24 th.
6932. Woven Figured Fabrics, T. Taylor and J. War-
burton, Manchester burton, Manchester. bas3. OUTRIGGERS for Boats, H. Dickinson, Burton-on6934. SAW-Filing Machines, S. C. Rogers, Hamilton, 6935. TYR Writers, A. P. Eggis, Manchester.
6936. Photooraphic CAMERA STAND, J. Brown, 6937. Cuttina Machines for Cloth Finishing, 6938. RABBIT and VERMIN TrAPS, G. D. Wood, Wednes-
field G939. Lirts or HoisTs, S. and T. Newton, Manchester.
6940. SpINNING, \&c., MACHINERY, J. W. Midgley, Yorkshire.
694. CLir Hooks, W. O. Walley, Manchester.
6942. ORNAMENTING TUBES for Structural Purposes, F. R. Baker, Birmingham,
Conical-shaped Tube Ventilator, E. G. 643. Conionl-shaped TUBE VENTLLATOR,
Wright, Portsmouth.
6944. CARDING of Fibes, G. Goldthorp, Halifax. 6945. Flushing Tanks, J. M. Lamb, London.
6946. Chemically Treating Rags, \&c., J. Priestl W9.akefield.
W9ally Treating Rags, \&ec., J. Priestley,
Woodect and Stoppr Combined, W. J. 6948. CARBURETTING AIR, Y. A. Gaston, Liverpool.
699. RoLLER MARKING or PBINTING APPARATUS, T. B.
Sloper, London. Sloper, London.
6950. Rotary DUsT Collegror. G. Kiofer, London.
6951. BeErives, A. W. Rollins, Birmingham. 6950. Rotary Dust Collector. G. Kiefer, Lon
6951. BEEIVES. A. W. Rollins, Birmingham.
6952. Tipring Wagons, G. R. Turner, London. 993. VuLCANISED Rubber, de., Fabrics, E. M
Freeley, London. 6954. Castors for Furniture, de., E. W. Hughes and 6955. OARs or SwEeps, G. W. Green, London. J. Wal1ace, Glasgow.
6957. GALvANIC Batreries, M. Kotyra, London.
958. Acitativo Lieuips, J. Gamgee, London. 6958. ALALVANIC BATTRRIES, M. Kotyra, Londo
6959. Splat Rin Lievids, J. Gamgee, London. 6959. Split Rine, J. Webster, London.
6960. Sectional Steam Generators, C. A. Knight
 STEAM GENERATors, C. A. Knight, Glasgow.
6962. Musical Bookss, . Fornachon, London. 6963. STAIR RoDs, J. W. Spurway, London.
6964. SHEET METAL Buckets, W.J. Howcroft and A. C. Moore, London.
695. Provocing Compounds of Lavvelic Acid, C. D.
Abel. - (The Farbverke vormals Meister, Lucius and Brüning, Germany.) Dibinfectant, H. M. Caldwell,
6966. DEoDorANT and
London London.
6967. Boors and SHozs, J. McGuigan, London.
6968. ConDurrs for ELECTRIC CABLEs, H. H. Lake.-(J . F. Munsie and H. N. May, Onited States.) London. 6971. Clinometers, G. P. Evelyn. London.
6972. Crinoline, dc. StEEL, W. E. Whale, London.

SELEOTED AMERIOAN PATENTS. (From the United States' Patent office official Gazette.) 337,979. Method of Temperng Metal, Samuel E.
Mover, Nev Haven.- Filed August 31st, 1885 . Clainver, The herein described method or process of
hardening or tempering steely metal, which consists hardening or tempering steely metal, which consists
in passing heated metal through water or other fluid
between a packing of asbestos or in passing heated metal through water or other fluid
between a packing of asbestos or other non-combus-

tible material, whereby the said fluid is prevented
from reaching the metal above the packing, thereby from reaching the metal above the packing, thereby
tempering only a part of the said metal, substantially
as described. 338,021. Driling Machise, Franklin Bennett,
Marshallvile, Ohio.- Filed November 12 th, 1884. Marsshallville, Ohio. Filed November 12 th, 1884 .
Claim. - (1) The combination, with a head block provided with hinged pendant hooks and having arranged to slide therein, of a hollow feeding screw
fitting said hut, provided with a hand wheel and
inclosing a drill shaft provided with driving mecha-

nism, substantially as shown, and for the purpose
hereinafter set forth. (2) The combination, with a hook connected with the head block of a hand drill press, of a plate I having two flanges ii, with inter-
mediate formation arranged to fit on sad hook, sub-
stantially as shown, and for the purpose specified. 338,215. GAVGE Cook, James B. Atwood, Boston, and
Samuel H. Hoves, Chelsea, Mass.-Filed Augus' 20 h,
1885, 1885.
Claim.-(1) The gauge cock body C, constructed with
he perforations J and K and perforations for pin I. the perforations ${ }^{\circ}$ and K and perforations for pin I.
(2) The spindle D, constructed with the bore and
internal scrow thread at F , said thread being twice as coarse es the external thread near the centre of said
spindle, used in in spindle, used in connection with and working upon
the external serew thread at end of spindle E, or to
purpose of transmitting from the said spindle
said spindle E a positive, equal, and simultaneous
motion in a direction epposite to that traversed by 338,215,

the said spindle D, substantially as and for the pur
poses in our said specification described.
 Springifeld, Mass.-Filed June 1st, 1885 . tight receptacle A, motor gas inlet, and the main m, mater mith an
opening from said receptacle and provided with cutwardly-opening valve to allow grain in said recep

tacle to pour into said main, and a receiver for the
transmitted grain provided with an elastic or yielding medium to receive the grain without injurious impact,
substantially as described. (2) A pneumatic tube in
sections. substantialy as described. (2) A pneumatic tube in
sections, each provided with a valve or gate hung
pendulous within said section, and an air escape vent

between said gate and the contiguous section, sub-
stantially as system, a double main $M \mathrm{M}$ M for a transmitting material
in opposite directions, combined with a sing in opposite directions, combined with a single supply
pipe P and valvular connections therewith, substantially as described.
338,276. Dir for Swagiva Scraws, Burr. A. Kennedy,
Lake Vievo, Ill.- Filed January 5 th, 1885. Claim.-(1), The herein-described method of forming
screw threads, consisting in passing the blank slowly in an endwise direction between a pair of converging
dies, which are threaded internally and reduced in
dimen dies, which are threaded internally and reduced in
diameter from the receiving toward the delivery side,
whereby the thread whereby the threads are gradually developed on the
blank. (2) A pair of screw converging dies with complementary forms or cavities therein, said cavities diminishing in siie from the reeein, said cavitios
delivery side of the dies, and provided with internal delivery side of the dies, and provided with interna
threads of increasing size from the receiving toward
the delivery side, the deliivery side, whoreby each portion of the thread
upon the blank may be gradually developed as it is pre upon the blank may be gradually developed as it is pre-
sented to the developing portions of the die thread.

338,276

(3) As an improvement in the art of forging screw blank between tapering internally-threaded forming surfaces, and subsequently between forming surfaces
of smaller internal diameter having threads of con-
stant stant form and size thereein. (4) Complementary
screw-forging dies provided with tapering internally. screw-forging dies provided with tapering internally-
threaded forms or cavities to produce the crude
thread, and the finishing form of smaller internal
 screw. (h) The complementary dies for finishing
screw threads, having the internal forms or un-
threaded recesses F F of semieing threaded recesses F F of semiciracular section and
uniform diameter, and the internal threads of uniform
size size throughout their entire length, whereeby said
dies are adapted to finish the threads for use and at
the the same time to maintain the serew in a perfectly
straight 338,310. Armour for Rubrer Hose, James M. Smith,
Sycamore, $l l l$.- Filed June Syycamore, Ill. - Filed June 15th, 188 .
Claim. (1) The combination of a rubber or other
fexible hose with a series of oxerlapping metalio fexible hose with a series of overlapping metalue
rings, substantially as described and shown, about the
same, as a protecting cover there same, as a protecting cover therefor. (2) A hose cover
consisting of a series of rings dovetailing with each othis, subsstantially as described and and shown, whereby
twisting of the hose is prevented. (3) A hose cover consisting of rings B, in wardly beevelle d from one end
for substantially their whole length, and provided at
the other end with the conical projection C , of a length
 338,310

at one end, bevelled inwardly at the other and pro-
vided with projection E , and receiving indentation F , at one end, bevelied inwardy at the other and pro,
vided with projection E, and receiving indentation F ,
substantially as described and shown. 338,322. TooL HoLDER, Elisha Waters, Troy, N.Y.-clame.- The tool holder, consisting of the jointed
frame, provided with the supporting roll and a tool [צa32]

clamping device at opposite ends, and with means,
substantially as described, for adjusting the angle of
the jointed parts with respect to each other. the jointed parts with respect to each other.
338,571. Valve STopper For Bortues, Arthur B. $1 s t, 1885$.
Claim.-(1) A stopper in which the valye consists of a rigid flange or disc on the bottom of the body of
the stopper, combined with an elastic ring or washer supported on such flange, said stopper having on the supported on such flange, sid strupar rib or projection
upper side of said flange a
b2, adapted to embed itself against said rubber and

338,571

$4 \underbrace{2}$ body, having the bottom flange with a rigid stopper
rubber valve ring d, fitted in such groove and having rubber valve ring d, fitted in such groove and having
in it one or more small perforations e^{2}, all as and for
the purposes set forth. the purposes set forth.
338.588. Electrric Merer, Sebastian Z. de Ferranti,
Weest Kensington, Middlesex, England. - Filed octo-
ber 6th, 1884. Claim.- (1) The combination in an electric meter of
a a bath of mercury, or other conducting liquid,
then through or across which the current to be measured is made to pass radially; b a magnet or a coil of an insu-
lated conductor through which the current is also
lise passed, in the magnetic field of which the bath is
located; and c mechanism for recording the rotation located; and c mechanism for recording the rotation
set up within the mercury bath by the passage of the
current current. (2) The combination in an electric meter of a
cath of mercury, or other conducting liquid, through a bath of mercury, or other conduecting liquiqu, through
or across which the current to be measured is made to

pass radially; b a magnet or a coil of an insulated
conductor through which the current is also passed, conductor magnetic field of which the bath is located; ca,
in the
solid totally submerged in the mercury contained in
 said solid to the recording mechanism. (3) In an
electric meter, the combination of a body of mercury electric meter,
or other conducting liquid, through which of the curcurent
to be measured is passed a magnet or electric coil, in to be measured is passed, a magnet or erectric cori, in
the field of shid body of merury or other con-
ducting liquid is disposed, so that when a current passes the mercury is caused to move or travel in it
receptacle, and recording mechanism for making record of such moveriment or achanism for making a
other conducting liquid. mercury or
338,508. HYDRAULid. Jack, Charles Huebner, Brooklyn,
N.Y.- Filed January 20th, 1886. Brief-An apertured bushing in the lower part of
the cylinder, forming an annular chamber through

which the return water passes into the cap of the
piston, over the valve therein, and thence to the cylinder bore above the piston, thus avoiding the
closing of the valve by the pressure of the water. In
operation the cap only of the piston enters the bushoperation the cap only of the piston enters the bush-
ing, so that the apertures in the latter cannot cut the
packing.

