VISITS IN THE PROVINCES

PATENT SHAFT AND AXLE-TREE COMPANY'S WORKS.
The Patent Shaft and Axle-tree Company, whose full complement of men is 4000 , though little more than half that number are now employed, has three separate works t Wednesbury, and derives its title from an improved form of cart axle-tree, for the manufacture of which th of the past, though large quantities of railway wheels and of the past, thoug the quantites or railay wheels an ling or P , bar . mpression in connection with the Midland Carriage and Waron Company's work, covering the heated centre with washer made white-hot on both sides the whole bein wbjected to pressure in a hydraulic press This manu ure howerer, carried on at the compony's Dunswick ure, however, carried an a ure companys buring the British Association. The company's machinery for proBritish Alorilled shafting was also, unfortunately, pot operation during our visit.
The company does not now make pig iron, some old blast furnaces which have long been disused being now in course of demolition. At the Mon Bay Works, steel is made chiefly by the Martin process; but there is one old pit which receives molten metal from an open-hearth require. For the open-hearth process the Batho furnace s employed exclusively, in which-just the reverse of the arrangement in the Radeliffe furnace adopted at Wool wich Arsenal-the various portions are kept separate. The furnace proper, or reservoir, is cylindrical with a flat bottom and vaulted roof, lined with silica bricks; and the four regenerators, reversed about every half-hour, are in the form of tubes or pillars, making a quincunx with the central furnace. The regenerators are encased with boilerplate, also lined with silica bricks; but, both in their case and in that of the reservoir, there is a layer of the red ashes from slag heaps outside the silica brick lining. Thanks to this excellent non-conductor, the outside of the regenerator remains comparatively cool, while there is intense heat within. The hot air and gas from the producers mingle in the crown of the furnace, and are reflected on to the bath of molten metal. A great advantage of this furnace-with which every satisfaction was expressed by the engineer, Mr. Wailes-is that the brick ining can be renewed in a seat measure from the outside. At the Old Park Works bridges are built and erected, to be afterwards taken to pieces for shipment. Here was made the Benares Briage, with seven spans of 360 ft ., and here are now being buit a briage for Cairo and a lattice girder bridge with vertical struts for the Indian state Railways, having the diagonal tension-rods that run in one direction provided with screws and nuts for exactly adjusting their tension to that of the bars crossing them in the other direction. Holes in plates are marked of by means of a wooden template, into the holes of which are passed, first a centre punch and then a piece of pipe dipped in white paint, for showing the position of the centre mark. Hydraulic pressure of 400 lb . per square inch is obtained by short-stroke pumps, and Tweddell's hydraulic rivetters are used where possible.

MESSRS. THOMAS PIGOTT AND SONS' ENGINEERING These long-established works, situated at Spring Hill, alongside the Birmingham Canal, by which supplies are received, have of late years been increased by taking over the business of the Atlas Engine Conıpany, whose type of engines are still made. Including a separate department for welded plate tubes, the works cover more than five acres of ground, and employ about 500 men, including Antipodes. They are parss of the world, even to the Antipodes. They are capable of turning out three boilers and one engine a week, in addition to bridge, gas, and water-tube wis. ther bridge and girder work when there is repetition, the holes are marked off with the aid boilers; and in such a case the rivet holes more used for this purpose, an improved this purpose, an improved double drilling machine, suspear, drills two hep gear, drills tho holes, diametrically opposite to one another, used ; and rivet blanks are the lower die of which is brough format to reven press, by a lever and links.
by a lever and links,
The firm has been engaged in the manufacture of gas apparatus for over sixty years, during which period the capacity of gas-holders has increased
from 40,000 cubic feet to $8,000,000$ cubic feet, and the diameter from 60 ft , to 220 ft . All the rivet holes in a gas-holder sheet are punched simultaneously by a hydraulic press and in telescopic gas-holders the usual water-joint angle-iron and longitudinal rows of rivets for the hydraulic joint are superseded by curved plates, as shown in the three lifts of 36 ft . each, has been adopted for the gas-holder, 184 ft , in diameter, put up by the firm at Sydney.
Messrs. Pigott and Co. have lately turned their attention to superseding cast iron water mains by those of transport over difficult ground. They have lately taken an order for eight miles of 14 in . piping for South Africa, in which the reduced weight over a distance of 700 miles will effect a saving of $£ 20,000$ in the transport. An experience of twenty years proves that ordinary dipping and painting secures perfect immu-
nity from oxidation. In the case of cast iron water mains
it is necessary to break at least one length in order to take up any portion ; but the firm has devised an improved joint shown by the accompanying sections, for their plate iron mains, by the use of which any length may readily be taken upand laid downagain. In this arrangement, which has been adopted for the Kimberley Waterworks, a length is laid
with the joint collar passed over one end. When the

adjoining length is placed in position, the collar is brought over the joint, as shown in the sections; and the joint is caulked with yarn from both ends, over which lead is run the lead and yarn are picked out; and the collars of two joints are run back over the ends of the pipes, when the length may be taken out.
In making these tubes, powerful rolls for bending plates 15 ft . long and of any diameter have been put down at the works, and they are believed to be the largest in the country. Tubes up to 18 in . diameter are rolled with a single plate in the circumference, so as to require only one longitudinal joint. To remove the tube from the rolls, the top roll of the three is withdrawn through one standard
secret of its success, lie in the fact that the gas-whethe ordinary retort or water gas-is thoroughly mixed with the air necessary for its combustion at a point far distan from the tuyere by which the welding heat is developed. This requires that the gas mains contain an explosive
mixture for several hundred feet of their length; and the explosio of the bis only kept back from the pipes by the velocity sion backwards. Theing greater than that of the explo through ards. The air and gas are drawn togeth but, if the blower several hundred feet from the explo sion would bit should cease from any cause, a loud exploless by clarl place. This, however, is rendered has thin discs of indir-rubber explosion valves, consisting of selves, allow an explosion free access to the atmosphere without doing any damage. By proportioning the admission of gas and air an excess of gas can always be maintained, so that there is no probability of burning the iron while, owing to the gaseous fuel, no dirt or cinder can get into the weld. The consequence is that the thinnest sheet of iron or steel may be welded with the greatest ease and certainty.
A. KENRICK AND SONS' HOLLOW-WARE WORKS.

These works at West Bromwich, the frontage to which is in the Gothic style of architecture, little suggestive of the ware produced therein, cover five acres, of which more than three-fourths are built upon. Having until lately employed 1200 hands, the company has, during the period of depression, only reduced the number to 1100 , but they are working only about five and a-half days in the week The company has, with thorough confidence in a revival of trade sooner or later, ta erect new works covering six acre on the other side of the street, and buildings are rapidly approaching completion. Fuel and raw materials, chiefly pig iron, are brought quite up to the works by the South Staffordshire Canal, which also removes the finished pro ducts. From 60 to 70 tons of hollow-ware-that is to say, pots, kettles, \&c.-are turned out weekly, together with from 40 to 50 tons of small cast iron goods, such as door knockers, umbrella stands, and the like. A 1ft. 9in. tram way is laid throughout the works, which are remarkable for their order, neatness, and cleanliness. As accumu lations of greasy dirt and cotton waste are greatly con ducive to, if, indeed, not the actual cause of fire from spontaneous combustion, the rule is strictly enforced that the shops be thoroughly cleared and cleaned every night.

MESSRS. PIGOTT'S GAS WELDING PLANT.

by patent chain gearing from a separate engine. From about 9in. upwards in diameter, the tube seams are welded by a drop hammer on an arm terminating in a curved anvil, with a gas furnace close behind the hammer. Firebox flues for vertical and donkey boilers, and also the Adamson and Arnold barrel-shaped flues, are made in the same way. Indeed, the largest Lancashire boilers where absolute tightness under a high pressure is required where absolute tightness under a high pressure is required, such as to
cylinders.
The British Association members were shown a new method of welding up sugar and saltpetre pans, especially for South America. The four seams were originally rivetted, but it was found that they leaked, while the rivet heads offered an obstruction to cleaning out. The pan is now, as before, made up of four segmental plates, bent hot in dies under the hydraulic press. They are fitted together in position, the outer contiguous edge having been chamfered off by being sheared at an angle, so that the cross seam is a V-shaped the end of the pan mounted on te mors on shown in the annexed sketch The beam is carried on a counter-weighted truck running on rails, so that it may be taken up to and withdrawn from the hammer and gas furnace, while the pan may make a complete revolution on its temporary axis between the bars of the beam by means of the hand wheel, shaft, worm, and worm wheel. The pan is run up to the gas furnace, which has already raised to an intense heat some refractory material underneath it. When a portion of the seam is brought to a welding heat, a rod, with the end also at welding point, is laid in the furrow, and that portion, brought under the hammer, is made good, with the result that they can scarcely be detected, and the welds will stand any test applied to the remainder of the plate. The arrangement illustrated is capable of dealing with a pan weighing between one and two tons.
The chief peculiarity of this gas-welding apparatus, which is only worked by Messrs. Pigott, Messrs. Lloyd and Lloyd, and a few selected licensees-and probably the

All the hollow-ware is cast in green sand moulds, in ooxes made specially for the various articles and sizes hereof required. Pots are cast a full $\frac{1}{8} \mathrm{in}$. thick at the bottom and less than $\frac{1}{8} \mathrm{in}$. elsewhere. After being turned ut of the moulds they are placed, one within another, in pans, me of ana for annealing, and clay. The pans are plly thus diminishing the brittlens and and hardness or the turned The dressing is effected by ressed and the inds holding the goods against apidy revolving emery wheels antirely by hand, a very smooth surface being given After pot is placed on a fire like a smith's hearth Pure molten tin is poured in and rubbed on the inside with a cork held by a The excess of tin is then poured out, at two o three pours in such a way that it shall give a final wash all over the inside, to insure smoothness and uniformity in the lining-an operation which requires great practice and dexterity. The outside is coated with japan, after which the goods are placed in a steam-heater oven raised to a sufficient temperature to dry the varnish without melting the tin.
The spouts of kettles are cast on, the core having been made separately; but the handles are made of wrought iron, and attached by rivetting. Frying-pan handles are bent out of sheet iron, so as to be hollow, and therefore, to a certain extent, non-conducting of heat. Saucepan handles are also bent out of sheet iron, as formerly; but an improvement has been introduced in casting, on to their larger or outside end, a ring of metal which prevents any gaping at the seam liable to pinch the hand in use. In some cases the handle is fitted to the saucepan by a socket being securely locked without a rivet. Lids or covers are sometimes cast; but, for the most part, they are made of tin-plate. The blank is dished and flanged, sometimes to the depth of $1 \frac{1}{2}$ in, between dies at one stroke of a steam press, this firm having been the first to make covers stamped out of a single piece of metal at one stroke, without seam or
rivet. The rough edge of the flange is then cut off to gauge by a pair of revolving disc cutters, the cover being gauge by a pair of revolving disc cutters, the cover being
chucked in a special lathe. It is then again placed in a
steam press, when a single stroke produces a rim which rests upon the saucepan edge, to prevent the cover from slipping in. Formerly this rim was soldered on; but the edge of the flange, left raw and sharp from the press, is now cut off square by revolving dise cutters, when the cover is again chucked in a lathe-an instantaneous opera-tion-and held by a forked lever or clamp, when the too box is fed up by a quick screw. The box carries an up-
right fork, on one branch of which are a pair of rollers for thinning, on one branch of on the other a grooved rolle for twisting it edge, and on designed tool, as the two rollers are made to close and separate; and the grooved roller swivels for turning the edge over.
Small castings are finished by being chucked in lathes a rod in the poppet of which is made to advance quickly
by a lever to bore and if necessary screw the hole, while The company has brought out a well-finished dumb-bell with blind cord wound round the handle and secured a the ends by wooden pegs driven tight into holes. Cast
iron hinges are made by casting one portion-that with two sockets-separately, inserting the pin, and then dip ping the joint in oil and afterwards in finely ground sand The remaining portion is then cast on to the former, th sand taken up by the oil preventing adhesion of the metal
in those portions. ,

MESSRS. J. H. HOPKINS AND SONS' TIN AND IRON PLATE WORKS, BIRMINGHAM.
At these works, which, unfortunately, are far from unning at their full capacity, are produced such article as milk-setting pans, dish-covers, and wash-basins. Where the shape will permit, the goods are stamped from sheet iron under drops, of weight varying with the size of
article to be produced. Those for small goods are worked article to be produced. Those for small goods are worked
by belt and drum, which winds up a chain and so raises by belt and drum, which winds up a chain and so raises
the "hammer" enclosing the "force," or top die, a trigger releasing it at the desired moment. What is called the "die" is fixed in the anvil, which, in the larger sizes, is laid upon an extensive foundation of fir balks and concrete. The larger sizes of drops are worked directly by a steam piston in a single-acting cylinder, pulling the chain over a pulley, and thus raising the hammer with its "force." Generally two, but sometimes three, articles are stamped ogether, being subjected to two or three blows during on peration, that is to say, while being drawn out to ertain extent towards their finished form. Circular goods, ike milk-setting pans, are given part of a turn horizontally ith 10 befor解 nd for end, and also one on the stamping. While the die in the anvil is made the whole depth of the finished article, and serves for all the successive stampings, the force, or top die, is changed at he desired denth is obtained. The number of tam. he desired depth is obtained. The number of stamping hich may be as few as two, or as many as six, depend on the depth of the finished article. A steam press ha troke instead of by the successive blows of the drop; but this is not at present in operation.
The sheet iron article, thus stamped or pressed, is now mmersed in a bath of sulphuric acid to remove the scale, eing placed loose in the annealing oven and the good dull red heat. They are then tinned or japanned, according to destination; but a new method of finishing, admirably uited to the rethetic renden of the age has been invented by Mr. Alfred Hopkins, by which a dead granulated surface is produced resembling morocco leather. In this process the goods are coated with oil paint, neutral or semi-tints being generally selected, and, while still wet, are subjected to the action of a roller coated with some flexible composition, or are simply dabbed with a piece of rag in places where the roller cannot act. This draws up he paint in a regular manner all over the surface, producing a very pleasing effect when relieved by transfer japanning, suffices to harden and fix the coat.
The fixing of tin bottoms to ordinary earthenware plates, for forming hot-water plates, is a process in which great ingenuity is exercised. The tin blank is flanged in press; and the edge, trimmed square by a pair of on an edge stake, though it might be done in machine, as described in connection with Messrs. Kenrick' works. After the edge is thus drawn out to receive th arthenware plate, the casing is chucked in a lathe, when wood block brought up to the smooth face, and over which it slides while the plate and casing revolve gether. The thinned edge or the casing is then graduall he rings are edge of the plate by a blunt hand-too handle, on to a bar of the required triangular section thus producing a continuous spiral. Each separate turn is then cut off by cutting pliers, and the larger side in-
serted in the tin socket, which is soldered on to the casing.

COVENTRY MAOHINIST COMPANY'S CYCLE WORKS.

The most interesting portion, from an engineer's stand point, of yesterday's-Thursday, 9th-British Association Warcursion to Coventry, was the visit to the Cheylesmore Works of the Coventry Machinists Company, which employs European Sewing Machine Company, founded in 400 to 500 hands. This company originated in the tart a fresh manufachine Company, founded in 1860, to the distress which prevailed among the ribbon weaver The starting point of the cycle manufacture was the asking a price for 500 bicycles by Mr. R. B. Turner, of Brussels, from his uncle, Mr. Jos. Turner, who was then manager of the company. At first, the directors were indisposed to incur the expense of making the necessary tools, believing
that the craze, as they deemed it, would soon die out.

However, they were at length persuaded to accept the order, and thus Coventry became the seat of the cycle trades. The modern bicycle, made almost entirely of steel, as careful manufacture and fitting as a first-class rifle The annexed illustration shows the latest machine brought out by the company for the present season, in the Mariborough Club tricycle, the distinguishing feature which are the springs introduced under the sadde and shocks and deadening vibration in going over rough round. Another improvement is that by means of a hinge neck, which consists of a disc slipping in a ring so

Spokes are received in the form of coils of wire or headed, upset at one end, and screwed, generally by girls. There are several methods for attaching spokes to the hub and rim. The tangential arrangement, which would appear to possess great advantages as regards strength, in hot appear to be adopted in the newest machines rim, screwed tangentially through the hu'c, and then screwed again into the rim on the opposite side, so that, if one spoke became broken, it was necessary to renew two. The most usual method now seems to be to head the spokes where they join the rim, and screw them radially into the hub. The heading is done in a belt-driven horizontally working machine like that for making wire nails, but not revolving so quickly. The end of the wire is inserted between two jaws brought together by a lever and an excentric, stroke, pushes the end up to a gauge, and quickly brings the clamps together. The advancing punch with trun-conical head, pushes aside the bevelled gauge, which works vertically on a pivot, and then makes a head on the softened end of the wire The other end is either upset in a similar manner, or receives a separate ferrule to give greater sub stance to the screwed portion. Sometimes, again, when the end itself is screwed, a separate tapped "nipple" is screwed down against the hub over
the spoke already screwed in the holes. In any case the spokes are all in uniform tension, so that the wheel, though light, is very rigid. It is
run round on a frame so as to make sure run round on a frame so as to make sure then it receives the tire. This is an endless
its normal position, as shown in the engraving, to the vertical, for permitting a lady to mount without soiling her dress against the wheels, the fork being afterwards securely locked in position by a bolt, rod, and handle.
For lady's use also the chain is enclosed in a light guard For lady's use also the chain is enclosed in a light guard
of wire gauze. The brake is controlled by hand or foot of wire gauze. The brake is controlled by hand or foot
at option, and all working parts except the pedals are fitted at option, and all working parts except the pedals are fitted
with the adjustable ball bearings described and illustrated with th
A French satirist has described the wheel-man as "un fou a deux roues," and the wheel is decidedly the principal feature in the machine, whether "bi" or "tri," as they are distinguished in shop parlance. We will therefore begin our description of the manufacture by the wheel. The
hub or nave is received in the form of a "stamping " of hub or nave is received in the form of a "stamping" of
special steel, which is bored and turned in a lathe, and special steel, which is bored and turned in a lathe, and
then drilled and screwed to receive the spokes. For being drilled, it is held between the centres of a carriage that can be slewed horizontally, so as to be out of square with successively by a lever, the depth of hole being regulated by an adjustable stop. The carriage is then slewed in the

other direction, and the remaining holes are drilled, this arrangement being necessary on account of the setting out strength. The rim is similarly drilled by being held in a revolving frame, the axis of which is a little out of vertical, the holes in the hub being subsequently tapped rapidly by a revolving tap, the hub being held either in the hand or in a machine reversed by a pedal
The above section and elevation show a finished "dustproof" hub for a back wheel, provided with adjustable ball bearings, which reduce friction to a minimum. In modern tricycles a stamped and turned "bell", or gear box, is added to the left-hand wheel, for permitting play in going round curves. The bell encloses double driving gear, consisting of two toothed wheels fast on the
axle, and two intermediate toothed pinions revolving

loosely or independently. Below are shown the "single ball "-or rather single row of balls-bearing for the small wheel suspended from the "fork."
Steel for the rims or felloes is received in straight bars of a crescent section; and in the modern machine this is also made hollow for the sake of lightness. The bars are bent to a circular form in a hand machine of the tirebender class, solid rims requiring only one pass, but hollow rims five, the bending being started by a guide roller, and the top roll of the three being set down a quarter turn of a screw after each pass. The ends of the rims now probably overlap one another, so they are cut off to length, thinned out by emery wheels, or scarfed in the tried on a cone for circular truth, and on a face-plate for straightness, and made perfectly true in everys respect.
band of india-rubber, of circular section, put on with as
little tension as possible, so as not to favour cutting and little tension as possible, so as not to favour cutting and
gaping on its encountering sharp stones. The inside gaping on its encountering sharp stones. The inside
is provided with longitudinal corrugations, so as to is provided with longitudinal corrugations, so as to present a larger surface to the cement with which it
is attached; and tires have now lately been made with is attached; and tires have now lately been made with side slip in wet weather. The inside of the tire is farther roughened on a revolving dise covered with wire cord for affording an additional hold to the cement. The latter is applied by a small wheel with semicircular rim fitting the
groove of the cycle wheel and revolving on an axis in the pot containing the cement kept hot by a gas fire.

The cement dries, on cooling, almost instantaneously when the rubber tire is slipped on, and the wheel hung for a second or two in an oven, which again melts the cement thus completing the joint
Steel tubes for the frame are received in straight lengths they are cut to length, and bent in dies and on wood, being filled with sand, and the ends being plugged up with wood. The front fork sides are tapered and flattened in olivers and sometimes longitudinally corrugated in a press, and finished by grinding and emery glazing. They take the axle of the front wheel. The head of the back fork for a newly-patented safety bicycle that carries the fork for a newly-patented safety bicycle that carries the
crank shaft and chain wheel must be a most awkward piece to stamp, as it has four branches. Handle bars are bent to gauge out of round steel, solid or tubular, by smiths in ordinary fires. The crank bearing brackets for smicycles, received in the form of stampings, are fitted up at the works. Cranks, now made detachable to facilitate their renewal if bent or broken, are stamped out of a specially tempered steel, their key-ways
small shaping machine. Pedals are made of steel with small shaping
The shops are remarkably clean, light, and airy. There are two machine shops, one exclusively for bicycles and the other chiefly for tricycles, all tools being made at the works. For drawing out steel, and for forgings of any considerable size, a drop hammer is employed. The drop is suspended from a band passing over a revolving pulley, which slips until the band is tightened by pulling on to it, when it lifts the drop, which is allowed to fall by releasing the band. All the parts are carefully examined at everystage, especially before being put together, and the finished machine is also tried and tested in every way before being finished by painting and nickeling. The coat of black paint is dulled with pumice powder and water, so as the better to receive the coloured lines, put on by hand with great exactitude, after which a coat of varnish is given. Bright parts, to be nickel-plated, are first washed in potash to remove the grease, and then immersed for a couple of minutes in a copper bath, because nickel will adhere more readily to copper than to steel. After the copper surface is cleaned with pumice powder, the part is immersed in the nickel bath for two lours, spokes being hung, several together, in a frame. The current for the electro-deposit is generated by three dynamos, one by Erinore and with by Carlyle. The warehouse offers an imposing sight, with its vista formed of fo
ready to be sent away.
ROBERT MOLE AND SONS' SWORD AND MATCHET WORKS, BIRMINGHAM. crops, especially that of sugar cane, and generally resembles an Eastern sword in form, being wider at the lower end than near the handle, and having the cutting edge more or less rounded. It is the universal cutting tool in Central and South America and the West Indies; and each State has its own separate pattern, differing must h. present head of the firm, Mr. Frederick Mole, has so laree a collection of templates, and his men are so accustomed to making the various forms of matchet, that he is facile princeps in the trade. Moreover, by careful supervision he ensures a high quality; and all forging operations, both of swords and matchets, are performed day-work, grinding and finishing only being executed piece-work. No inquiry is made as to the history of the steel bars
obtained from Sheffield for making matchets. They arrive
system varies in a somewhat erratic manner with the span; some system varies in a somewhat erratic manner with the span; some-
times one and sometimes another determines the maximum.
Hence the determination of the greatest load to which a bridge may be subjected in the manner directed by the rules leaves a con siderable opening for error, and affords an excellent example o
the insufficiency of any rules, however perfect, to relieve the engineer of a large amount of responsibility. The origin of the rule may be traced in the parliamentary reports of the Board of Trade
and of the Railway Commissioners, who, from 1846 to 1851, exercised the powers of the Board of Trade with respect to railways From these reports it does not appear that previous to 1849 the either of wrought or cast iron. In 1847, however, a Royal Com mission was appointed in the following terms:-"To inquire int the conditions to be observed by engineers in the application o ron to structures subject to violent concussions and vibrations, ules as may enable the engineer and mechanic to apply the metal with confidence, and to illustrate by theory and experiment the action which takes place under varying circumstances in iron
railway bridges which have been constructed." The terms of this railway bridges which have been constructed." The terms of this Commission clearly indicate that as well as the safety of the public. The Commisthe Rev. Robert Willis, M.A., an eminent mathematician; Captain Henry James, of the Portsmouth Dockyard; and three civil engi-
neers, Messrs. George Rennie, William Cubitt, and Eaton Hodginson. After examining the leading engineers and ironfounders of the day as to their experience and practice, and making numer "legislative enactments which would fetter scientific men in the development of a subject as y
would be highly inexpedient."
They, however, made certain recommendations with respect to cast or cast iron, which are subshat the breaking weight should be si times the moving load, added to three times the dead load. They also made a further recommendation, applicable to all elastic hori-
zontal bridges, that provision should be made for the increase of rain in bridges und 40 ft . long, when subject to a rapidly moving recommendation which until recent years was lost sight of. These recommendations were, immediately upon the publication of their eport, embodied by the Railway Commissioners in a circular lette of instructions to their inspecting officers. On the day following
the date of this letter Captain Simmons inspected the Torksey Bridge, a wrought iron box girder bridge, of two continuous span of 130 ft ., designed by Mr.-now Sir John-Fowler, and objected o it as of insufficient strength. Its rejection was discussed by the nstitution of Civil Engineers, and the Railway Commissioner were accused of applying to wrought iron the recently published six for cast iron bridges. At the same time, a lengthy correspond ence took place between Mr. Fowler and the Commissioners, and Captain Simmons decided-after the examination of such examples as were available-that the bridge should be strengthened, so that the strain should not exceed five tons per square inch. In the subject, and that the variation in the circumstances of the law. He recognised as a principle the variation of the admissibl strain in a bridge according to the proportion of live to dead load, point which has been recently revived. In the end-after a was accepted with a strain, under the most favourable estimate, of slightly over six tons per square inch
Between 1850 and 1858 the rule fo
nee, while there is bridges appears to tructures. In 1858 wring limit for the strain in wrought iron was brought before Captain-now Sir Henry-Tyler some time before its completion, and a lengthy correspondence ensued between Captain Tyler and Mr. Fairbairn with reference to its strength.
This correspondence Captain Tyler laid before the Board of Trade, who on 30th March, 1859, issued a circular letter of instructions fixing 5 tons per square inch as the proper limit of strain fo wroaght iron. Upon this Captain Tyler based his rejection of the bridge on the 30th April. It is very important to note that this ule was explained at the time by Captain Tyler to represent
factor of safety of four for combined moving and dead load. as not since been altered, and in practice it is assumed to b Among the numerous considerations suggested by the survey-after the lapse of over twenty-five years-of the period of which a brief ketch has been given, the most striking is the confirmation of 1847. Derived from the interpretation by skilled mathematicians of the results of experiments conducted by practical engineers, combined with the evidence of the ablest engineers of the time, their conclusions were based upon a solid foundation of fact and experience. Their recommendations, although jealously
resented by civil engineers at first, notwithstanding the avoidance of legislative interference by which freedom was secured for the development of engineering science led, under the judicious interpretation of the inspecting officers, to the present rule for cast iron structures. This rule is good in principle because it derives the load-and consequently the stress-to which the structure may
be subjected, from the actual strength of the material. The present rule for wrought iron has no such foundation, and it is
ndeed only due to the high professional attainments of the inspecting officers, and the sound judgment and great moderation
with which they dealt with the difficulties which naturally arose when wrought iron first became generally used, that the present endured so long that it has obtained the sanction of what to younger engineers at least is an immemorial usage, taken for granted and stereotyped beyond reach of improvement.
Its principal fault is in allowing a fixed limit of stress Its principal fault is in allowing a fixed limit of stress without
regard to the quality of the material. This does not lead to serious esults so long as the limit of five tons per square inch is understood to represent a factor of safety of four applied to iron having a breaking strength of not less than twenty tons, as explained by Captain Tyler in 1859; but it must not be forgotten that the rule
itself is used by many who do not know its origin, and the absence itself is used by many who do not know its origin, and the absence
of any stipulation as to the strength of the material leads naturally to the assumption that five tons represents the safe working stress for any quality of iron in the market, and many inexperienced engineers do so interpret and use it, It is hardly necessary to
state that there are many qualities of iron for which such an assumption would be attended with considerable danger, but it is rial might not, under the ordinary tests, afford any indication of its insecurity. Such is, however, the case, and the safety of the suitable material by the engineer than upon the Board of Trade rule. A fixed limit of stress without regard to the quality of the design in the direction of a greater use of better material, such as angle and bar iron of superior strength and ductility. Nor does a fixed stress offer any inducement to the manufacturer to improve the quality of plates. These considerations apply with much
greater force to the present rule for steel. As a material, steel is much more variable in its strength than iron, which renders the application of an invariable coefficient more objectionable. It is tion of the Committee of 1877, appointed at with a recommendaBritish Association, allow in special cases the use of steel with a higher stress, but exceptions of this nature are naturally ill-adapted to the design of bridges of ordinary spans. The rules cannot be
regarded as suited to the nature of the material, and there can be
little doubt that they have operated to hinder the application of steel to uses for which it is admirably suited, and have thus exercised a
prejudicial effect upon one of the leading industries of the present ay. Unless the rules which determine limiting stresses or coefficients knowledge of the properties of materials, and of the laws by which their application to construction should be regulated, their entire abolition would be preferable, because it would conduce to the advancement of engineering science, and the development of the bridge-building industries. The safety of the public need in If the rules requiring the engineer to certify the quality of the material used were retained-and extended to apply to iron as well as steel-in order to provide the inspecting officer with all the information requisite to enable him to judge whether the stress
which a structure was subjected was within safe limits. Freed which a structure was subjected was within safe limits. Free prise would establish standard rules for the determination of the stress to which different materials under varying conditions might safely be subjected, to the great advantage of the professions and trades interested in bridge-building, and having in future to com pete with the Americans. On the other hand, there are many
objections to such a course, which would practically amount to a reversion, after the experience of thirty years, to the condition o 1850. It is also to be feared that, during the time which mus necessarily elapse before any rules obtained the sanction of a common assent, differences of opinion, causing much inconvenience, Would probably arise between civil engineers and the inspectin course more worthy of the scientific attainments of English engineers would be the amendment of the rules, so that, while leaving to the engineer the greatest possible freedom in the choice of design and material, and leaving in his hands the respon
sibility for the correct determination of every effect of the sibility for the correct determination of every effect of tho
loading of a structure which the most modern methods rende calculable, they should determine for his guidance, by coefficients based upon experience, or, where practicable, upon
experimental research, the proper allowance to be made severall experimental research, the proper allowance to be made severally
for each of all those effects which are usually understoo Rules so designed co the present arbitrary factor of safety the professional knowledge and skill of engineers by affording more distinct conception of the effects for which the factors of safety provide, and by abolishing the use of coefricients of which neither the origin, scope, or intent are known to the user. The of which would vary with the quality of the material and character of the workmanship, would encourage good workmanship and th se of materials of a high class without restricting the use o to which of a lower class and less perfect workmanship for purpose to which they are adapted, and would thus be in the highest degre
beneficial to the manufacturers' interest. These results can hardly be attained otherwise than by rules framed upon the recommend tions of a Royal Commission who could bring to their aid the experience of the inspecting officers and of the leading engineers and manufacturers, and institute special experimental research to be but a revival of that of 1847 to complete the work which the former Commissioners were compelled to abandon in 1849 because the application of wrought iron to engineering structures was yet in its infancy, and steel in its modern form unknown; and the sope of their enquiry could hardly be better delmed than in the been prepared to show that the views above expressed are capable of taking a practicable form and to render more easily apparen the advantages claimed for them.

APPENDIX.

Abstract of Suggested Rules for the Control by the Board of Trade of the Design of Structures of Wrought Iron and Steel.
Note.-The formulæ and numerical values inserted in italics are intended merely as suggestions of theories requiring further investigation for their establishment, or as estimates of the values
which experimental research or experience would assign to the various coefficients.
RULE 1,-Structures of wrought iron or steel to be so proportioned that he calculated stress in any part due the weight of the structure together with the moving load set at rest upor the structure, shall no
exceed that specified under Schedule D. Stresses due to wind alone no to exceed 1.5 times, and stresses due to the combined effect of wind and
load 1.25 times, the specified stresses. RULE 2.-Provision to be made for moving loads upon main girders, platforms, and bracing, according to Schedules A, B, and C.
RULE 3 .-All structures to be designed to resist lateral forces including not less than 301 lb . per square foot for wind pressure. In lofty or expose
situations greater alowance to be made for wind.
RuLE 4.-Engineer to certify both for iron and steel that the material RuLE 4.-Engineer to certify both for iron and steel that the material
used is, in his opininon, suitable for the purpose to which it is applied
 including in all cases tho
stress under Schedule D.

SCHEDULE A.
Equivalent uniformly distributed load for designing girders of which the cross section is varied; based upon the formula
in which $S=$ span in feet, and $w=$ load in tons per lineal foot for one
track estimated to produce at any point in a beam a moment of flexure track estimated to produce at any point in a beam a moment of flexure
equal to orgreater than that produced by any arrangement of the heaviest
engines and boiler trucks.

Span
Load

10	15	20	30	40	50	60	80	100	Feet.

Equivalent uniformly distributed load for
So
For spans under $12 \mathrm{ft} . . . \quad . \quad . \quad . \quad v=\frac{36}{S}$
For spans of 12 ft . and upwards $\quad w=1 \cdot 60+$
in which $v=$ load in tons per lineal foot for one track estimated to pro-
duue a maximum moment of flexure equal to or greater than that pro-

duced by any arrangement of the heaviest engines and boiler trucks. \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c}

\hline Span.. \& 8 \& 10 \& 15 \& 20 \& 25 \& 30 \& 40 \& 50 \& 60 \& | Feet. |
| :---: |
| Load.. |
| $\cdot 50$ |

\hline$\cdot 60$ \& $2 \cdot 85$ \& $2 \cdot 60$ \& $2 \cdot 45$ \& $2 \cdot 31$ \& $2 \cdot 16$ \& $2 \cdot 05$ \& $1 \cdot 99$ \& $\begin{array}{c}\text { Tons per } \\
\text { ft. run. }\end{array}$

\hline
\end{tabular}

Sobere of the greatest " panel" or cross girder loads derived from the
Table For panels over 6ft. in length .. $W=1 \cdot 60 P+\frac{}{2+\frac{b}{p}}$, in which $W=$ panel load in tons for one track, and $P=$ length of panel
in feet. Length of panel (P).
Lo to 5
Load (W)
... .. $\quad .$.

Admissible stress in wrought irden D
In cases where the material is subject to stress of one character only
(a) Limited working stress under any conditions
in which a, is the greatest stress to which the material may be suloject under any conditions of loading; mined by experiment;
product of all the tabular coeflicients of safety (p. 4 N, poost) applicable to the particular case ; stress, in the extreme case of the coincidence of all
the conditions detrimental to the resistance of the
material, represented by the tabular coefticients,
shall not reach the limit of elasticity.
For wrought iron
For steel, tensile

As it is of the utmost importance that steel should be uniform in strength, if the greatest tensile strength when tested excee
more than 15 per cent., the limiting stress shall be reduced.
Percentage of variation in tensile
strength Percentage by which the $\ddot{\text { wimiting }}$
working strength should be
reduced (arbitrary)
(b) Ductility required in order that any material may safely be subjected to the limited working stress (a) to varyy with the pe popor-
tion in which the tressis caused by a varying or live load; and
may be determined from $\delta=50(1-\phi)$,

ϕ (as in the Lavnhardt-Weyravch formuler

H ading for which the required ductility is δ, and k is a coefficient $\frac{2}{\bar{k}}=\frac{\Delta}{\delta}$.
 Table of Values of k

1 Ratio of
admissible to $\frac{\Delta}{\delta}$
1 IIII 0.694
0.667
0.640
0.619
0.578
0.537
0.143
0.000

In cases where the material is subject to tension and compression Iternately.
The admissible stress to be less than when subject to tension or com-
pression alone, aind may be determined from the formula

in which b1 is the admissible stress in a bar subject to alternate stresses of
wohich Max Ma B1 is the numerically lesser and Max B B the numericallyy greater,
and bo the admissible stress in the material for derived from that of Dr. Weyrauch by substituting for the coeficient, derived
from the primitive strength of the material by an arbitrary factor of sojety,
the value of bo determined by the preceding formula voith respect to the the value of b_{o} determin
ductility of the material.

TABLE OF COEFFIOIENTS OF SAFETY.

1. For vibration shock and other dynamic effects. For wrought

III. For ambiguity of stress or failure of continuity. Minimum
2. For ambiguous systems of bracing 1 33, for continuous girders generally 1116 .
IV. For errors in design and workmanip. Minimum 1.03 . Addi-
tional for punched holes:-In iron plate girders 1.05 , in iron tional for punched holes:- In iron plate girders 1105 , in iron
framed structures $1 \cdot 15$, in stel plate girders $1 \cdot 15$, in steel fromed Or irregularities in section and rusting generally $1 \cdot 03$.
(Product of minima coefficients for iron $1 \cdot 7 \%$; for steel 1 The specified coefficients of safety are not intended to include provision
for increase of stress due to an obvious want of symmetry in the attachments or section of members, bending stress due to their weight, or
liability of struts to buckling; these and other calculable additions to be made to the stresses estimated from external loading.
In the case of solid beams or plate girders the admissible stress to
represent the extreme fibre stress, accepting the ordinary theory of bending.
Experimental determination of resistance to flexure is recommended
in the case of solid beams of unusual section. in the case of solid beams of unusual section.
For olid round pins the extreme fibre stre
For soid round pins the extreme firbe stress may exceed the specificd
stress by 33 per cent. in iron and soft steel, and 20 per cent. in hard steel.
Shearing stress in general to be to Shearing stress in general to be taken as 4 . 5 Sths the admissible tensile
stress in the same material, but when of different materials the shearing stress in the same material, but when of different materials the shearing
strength of rivets and pins to be based upon the strength of the materials
of which they are made. of which they are made.
Coefficients applicable
Pressure on bearing area not to exceed 1.5 times the the admissible tensile
strength of the weaker material, whether of rivet, or pin, or that in
which the hole occurs.

A New Coke Oven.-A telegram from Birmingham, Ala., on the coke ovens goes on with unabated activity. There are
more than 100 nearly half done and a few almost finished. In these ovens is introduced a new feature, which, if reliable, will be a great advantage in coke making. Mr. J. H. Harris, the foreman
of the works, has introduced it, and it is an invention of his Hitherto the flue in all coke ovens has been upward, but he has reversed this order, and makes this downward. This gives more
intense heat, and the resulting difference is said to be in the length of time required to make coke. By the upward flue it can be made
in forty-eight hours, and by the latter in twenty-four, in forty-eight hours, and by the latter in twenty-four, just one-
half. This is not the only advantage of the new feature. Underneath the new ovens there is a long archway to receive all the heat given off from the ovens, which, if conveyed properly, can be utilised in running machinery, thus applying a force which has up
to this time been wasted. A sufficient amount of heat can be obtained from several hundred ovens to run a great deal of idea, and if the test with these proves satisfactory, and its merits
are shown conclusively, it will no doubt be utilised very extensively are shown conclusively, it will no doubt be utilised very extensively
in all future coke oven building.-American Manufacturer

[^0]ROBSON'S PATENT GAS HAMMER.
messrs. tangyes, birmingham, engineers.
ROBSON'S PATENT GAS HAMMER.
In our issue of May 29th, 1885 - page 424 - we shortly described and gave an external factured on this principle manuappuratus on this principle. The
ariginally
deapparatus was originally de-
signed for use in circumstances where the employment of steam would be expensive, inconvenient, or impossible; but as stated in our notice, the results of trials in actual work were such as to warrant a sanguine belief that the apparatus would enter the market as a strong compenitior or the steam hammer, the price of gas being very high, the conditions were altogether against it.
Since the appearance of our notice the hammer has been in some respects remodelled and its remarkable economy placed altogether beyond a doubt. The data which we are now in a position to give, and which have
been furnished to us by Messrs. Tangye, are of such a character that practical men, we are sure, will be glad to be furnished with the fullest possible particulars of the apparatus. We therefore supplementour shortpreliminary notice of May, 1885, with the following detailed description:Figs. A and B are side and back
sections; Fig C a plan; 1 is the sections; Fig. ${ }^{\text {che }}$ a plan; 1 is the pilar frame of good strong sec-
tion, affording easy access to all parts attached to it ; 2 is the cylinder, which is carefully arranged so that the most unskilled person may handle it without difficulty. The lower end is open to the atmosphere through holes 3 , an arrangement which altogether obviates the
difficulty common to most steam difficulty common to most steam
hammers, and which often results in the destruction of gland packing, joints, cylinder cover packing, joizts, the accumulation of water at the lower end of the cylinder. It also admits of the atmosphere flowing in and out through the action of the main piston 4, and so keeps the cylinder cool. It further allows the hammer piston to be readily
taken out. The lower end of the taken out. The lower end of the
cylinder is fitted with a suitable cylinder is fitted with a suitable
cover, which has a very long guide 26, and as no packing gland is required, this can be used to great advantage in dispensing with side and other guides ; 4 is the main piston,
which is made of the best which is made of the best hammered iron and is hollowed out at the lower side to allow
the atmosphere to play the atmosphere to play upon it
and also to reduce the weight; 5 is the hammer head, which is also made of best hammered iron, the lower end being bored to receive any tool that may be required. It is fitted with a cotter for holding tools in exact position. The main piston 4 is
secured to the hammer head 5 secured to the hammer head 5 by means of the long cross-bar 23, at each end of which is connected a shackle attached to through volute springs 6 , the function of which is to raise the hammer head 5 to its highest position against buffers 7. The springs are made of the best drawn flat steel, which, when
coiled, makes a very durable job
The convolutions are carefully kept clear of each other, and as eight springs are used on each side of the hammer, each indi-
vidual spring, it will be seen, has very little to do indeed after the springs are set to take the weight of the piston and hammer head 5 . The extreme movement on each is only ${ }^{3}$ in. and this is further reduced by the thickness of the iron on anvil when the hammer is in operation. As a matter of fact in ordinary use the movement of each spring varies, say between $\frac{3}{8}$ in. and ${ }_{4}^{3} \mathrm{in}$. Not a single breakage has taken place during many months work, and in any case the cost of replacing a spring is excessively smal. δ is a displacer or charging piston, used for the purpose of expelling the exhaust gases and re-charging the cylinder with inflammable gas and air, as shown it is at half stroke, but supposing it to be at its lowest position, it then leaves a small moved upwards it draws a charge of gas and air into the cylinder, through the supply valve 10 and tube 9 . This piston is actuated by a light connecting rod 11 attached to a disc crank 12 worked by a small hand wheel 13 . When the connecting rod 11 has moved the piston 8 near to the end of its upward stroke, the projecting roiler 25 being brought in contact with projecting arm on lever 15 -as shown on Fig. D-raises the small valve attached to the lower end of lever 15, and uncovers a small hole draws in the flame 14, which is motion of the piston 8 thus takes place. The piston 8 has by this time reached and ignition the exhaust port 19, so that the full force of the explosion

John swain

3 cwt. 'falling through a height of 1 ft ., and this can be repeated at the rate of 110 blows per
minute, Fig. E gives two diaminute. Fig. E gives two dia grams, one a light and the other
of a heavy blow. The average of a heavy blow. The average
pressure in the case of the latter pressure in the case of the latter
being 15 lb . per square inch, being 15 lb . per square inch,
and the cylinder having a diameter of 7 in., with a stroke of $6 \frac{1}{2}$ in, it follows that the work done is 313 foot-pounds. The springs do slightly more work in returning the hammer head than its weight X into the movement, say, by about 6 footpounds, hence the work of the net blow is 307 foot-pounds. xtended test in practical smith work has demonstrated that referred to above can be given with one pennyworth of gas at half-a-crown per thousand-i.e. the Birmingham price to small consumers-or over 4500 varying blows for the same consumption. This extraordinary economy will probably cause ther obvious advantages of the gas hammer over steam, pneumers to be lost sight of but they mers to be lost sight of, but they
are many, and will occur on consideration to practical men: The absence of boilers, coals, ashes, and dirt. The readiness for work at any moment day or night. The fact that a few strokes can be made at any time at the same economical rate as men the hammer is used for a dvantages must in future be taken into consideration by those desirous of having the most economical, reliable, and handy ool for forge work. The hammer is well made, and the design appears to have been thoroughly considered with a view to strength and durability. It is now being shown at work at and Industries, Bingley Hall, and Industries, Bingley Hall, onnection with the meeting of the British Association.

CAR COUPLER INVENTION.
There is something almost melancholy in the ignorance of the average coupler inventor tive to the state of the art, the amount of work that has been done, and the number of patents that have been issued for invenions of this class.
This multiplicity has been brought about to a great extent by the casual vencilation that the matter has received in the newspapers. A great deal has
been printed about the necessity of having some form of automatic coupler that will protect the trainmen from injury, and Railroad Commissioners and State Legislatures have been urged to take some action in the matter. Yet while all this was said and written not one word has been printed by these quirements that must be met by the successful inventor
That it is an easy matter to construct a device that will attach itself to another of the
used in driving down the main piston 4. The piston now pro ceeds on its downward stroke, and instantly the exhaust port 19 is uncovered, the springs raise the main piston 4 to its highest position, and the exhaust gases are driven through the passages pistons 4 and 8 being brought to their nearest positions and all exhaust gases being expelled, piston 8 commences to re-charge
the cylinder. The force of the blow can be varied by the inclined cam 16 on the hand-wheel shaft, which opens the gas supply valve at any desired point in the stroke of the piston. By this means very light blows can be made to immediately follow those of the heaviest possible character, or can be alternated with them with the greatest accuracy. Lever 18 gives complete control over the action of the hammer, even when hand wheel is kept turning. It puts the supply valve instantly out of gear, or as quickly brings it into action, enabling the
operator to miss or give any one of a series of blows. The lever and pawl 21 are for operating the hammer automatically. When the hammer head 5 strikes it takes the lever and pawl 21 down with it; the pawl thus grips the disc crank 12, and in its upward motion assisted by spring 22 attached to projecting arm of lever 21, turns the hand-wheel 13. Ordinary coal gas may be used or, in case of the colonies, petroleum spray or vapour may be employed as the combustible fluid.
The hammer described is that known as the $\frac{3}{4}$ cwt. size, and blow is very nearly that which would be given by a weight of
brought in contact, is witnessed by the four or five thousand patents that have been issued. Farmers, doctors, lawyers, merchants, and a very few railroad men have entered the race; and each has been encouraged by the patent lawyer to whom the application was entrusted to prosecute the claim and pay the
fee. And now that the ball has started there seems to be no chance of a stoppage. In the past two months of May and June the Patent-office issued sixty-two patents on car-couplers. Now, when the thousands that have preceded are taken into consideration it seems like a farce to think that any one of these sixtytwo patents can embody any new or valuable features; and even if they do, what chance have they of success? Ignorance of the essentials, we repeat, is the probable cause of the trouble. What does the outsider whose only contact with a railway has been as a passenger, know of the true coupler requirementhe automatically, and be released from the outside, but knows nothing of the strength of the draw-bar, the cushion in drawing and backing, the slack required for starting, the necessity of being automatic with all kinds and degrees of draw-heads, and above all, of the absolute necessity for few working parts. The result of the travail is a complicated piece of watchwork that is no more suited to the purpose than a baby carriage would be for reight service.
This was particularly evidenced by the hook coupler that was on exhibition at the recent Master Car Builders Convention
at Niagara, and which, by the very multiplicity of its parts

ROBSON'S PATENT GAS HAMMER.

PETROLEUM TANK WAGON.

and utter unsuitableness, attracted a great deal of attention The inventor brought it on, all the way from Kansas, an had evidently strained his resources to their utmost in orde be once seen, the whole railroad world would be at his feet for the privilege of adopting it. His contact with the cold, hard facts that confronted him and told him that he wes far behind in the race, must have been a staggering blow, and yet it is what all but a dozen or more of our sanguine five thousand patentees must receive. The coupler fiend which has so long been the terror of our railroad officials must soon become one to the Patent Commissioners, unless a little honesty is infused into their clients of patent lawyers and they can be induced to advise reach. But as this is a moral impossibility it beyond their wait until the fever has run its course and dio a natural death -American Journal of Railway Appliances.

PETROLEUM TANK WAGON

The tank wagon for transporting petroleum in bulk which we now illustrate is the invention of Mr. E. Phillips, of Bishops-gate-street. It consists of a wrought iron tank, divided longi-
tudinally, provision being made to prevent the wash of the oil Each half contains 250 gallons, this quantity being the of the oil allowed by the Government in the proposed Petrol maximum the shopkeeper to haye on his premises without other restrictions
than a properly constructed iron tank. The oil is filled through the manholes, which are so constructed as to allow for expansion. A gauge glass is attached to the end of the compartments showing the number of gallons in each. A valve from each compartment communicates with the measuring drum, which barrel. Fixed to the drum are two discs, which rise as the liquid flows in and shows when it is full A rotary pump the suction pipe of which goes to the bottom of the drum, and the delivery pipe from the top of the pump, is made to swing so as to go over the pavement .7 ft . high; this is connected to a special rubber hose with unions which are coupled up to the pipe at the door of the shop. This pipe leads to the storage tanks, which may be in the yard at the back. When the tanks are in the basement the rubber hose is attached to the valve at the bottom of the drum ; the oil then flows by gravitation. It will be seen by inconvenience, is obtained, and that the danger of keeping the oil in barrels in the shop is avoided. There is considerable saving of expense to the merchant as barrels become unnecessary. Several of these tank wagons are in use.

THE city of Newton, Mass., after a careful trial extending over a number of years, is now so well assured of the value of water meters as a waste preventer, that they have lately resolved that one be put in every house. To this end the city has ordered within

ORGAN AT THE LIVERPOOL EXHIBITION. We give an illustration this week on page 210 of the fine organ, by Messrs. Michell and Thynne, in the music-room of the Liverpool Exhibition. The manuals are placed at the right-hand
the instrument, and our view shows the opposite side.
This organ was shown last year in the music-room of the Inventions Exhibition, South Kensington, but from various causes it was not finished, the solo organ, indeed, only having been added a short time before the Exhibition closed. The organ contains several novelties and improvements patented by the makers, to which we shall refer when completing our illustrations in another impression.

ASHFORTH'S SOLID TAPER GRIP VICE.
The accompanying engravings illustrate a new vice, patented Itis claimed that this possesses all the advantages of the old leg and

parallel vices, combined with greater strength in the eye-which is the weak place in most parallel vices-and the special advantage of a taper grip, by which any taper article is held with the greatest firmness and without the possibility of slipping. This
grip istained by simply removing a wedge on the right-hand side of the vice, which can be done in a couple of seconds, and

the vice adjusted to either taper or parallel, to suit work in hand. The screw is boxed up, so that no filings can fall into it. The vice has been put together for strength and durability, the iron. Fluted Carbons.-Sir James Douglass has brought out for are
lighting a new form of carbons which are held to give a higher efficiency than the ordinary cylindrical pencils now used, and to be especially applicable to the electric illumination of lighthouses. The carbons are fluted down the sides, but are made in moulds and
baked, much in the same way as ordinary cylindrical carbons. The baked, much in the same way as ordinary cylindrical carbons. The
greater efficiency is mainly due to the fact that the new carbons do not " crater" at the points, and hence there is not the same loss of light from that cause as occurs in the round carbons. Many experiments have been made with them, and it is probable that Catherine lighthouse, England. Two De Meritens magneto dynamos-the same, in fact, which were used at the South Foreland experiments-are to be employed there, one for clear weather,
and both together for thick weather. and both together for thick weather.
University College, BristoL.-The session 1886-87 will
begin on October 5th. Lectures and classes are held every dey begin on October 5th. Lectures and classes are held every day
and evening throughout the session. In the chemical department, alectures and classes are given in all branches of theoretical chemistry, and instruction in practical chemistry is given daily in the chemical laboratory. Excursions to some of the mines, manufactories, and chemical works of the neighbourhood are occasionally courses of lectures arranged progressively, and practical instruction is given in the physical and electrical laboratory. The department of engineering and the constructive professions is designed to afford a thorough scientific education to students intending to become engineers, or to enter any of the allied professions, and to
supplement the ordinary professional training by systematic technical teaching. This department includes courses specially arranged for students intending to become civil, mechanical, electrical, or mining engineers, surveyors, or architects. Those who during the six summer months, cand, in engineering works scheme, various manufacturing engineers in the neighbourhood have consented to receive students of the college into their offices and workshops as articled pupils. The engineering laboratory is provided with a powerful testing machine, and instruction in the are given, and excursions for field practice are frequently made. The department for geology, biology, and zoology includes various courses of lectures in all branches of those subjects, together with laboratory instruction. In the botanical department practical instruction is given by means of the botanical gardens, which con-
tains upwards of 1000 specimens. Courses of lectures tains upwards of 1000 specimens. Courses of lectures and classes sophy, modern history, English literature, Greek, Latin, Hebrew, French, and German. Medical education is provided by the Bristol Medical School, which is affiliated to the college. Seyeral scholsr:
ghips are tenable at the college.

LETTERS TO THE EDITOR. [We do not hold ourselves responsibible for the opinions of our
 novel belis.

SIr, -I appreciate very much, and thank you for, the notice in our last issue unuer the above heading. I Ibeg permission to say hat bells on my ysstam are not only museal, as you sate, but havee
volume of tone which pannot be produced by a cast bell of fifteen times greater weight. One very important point I ask to supple.
ment. M My bells can be produced at - proportionate to size-from ment. My bells can be produced at -proport
one-half to one fourth of prices now charged.

ion-road, Londol,
September 7 th.
Grekvs couphivas
SIR,-By this I wish to thank you very much for your favourable notice of my point-rod joints in your issue of the eq 27 th
ult. It may possibly interest you further to toearn that Messss.
und Kirkaldy have just assertained the average breaking points of four
oinst, made of 1 In, wrought iron tubing, to be at 5074 lib, or as oints, made of lin. wrought iron tubing, the at ont h., orras
 they are sent from the mokerry read for laying, no recouss, ane eed
be made to the workshop - fact of the utmost importance where
 the principal lines, and in no case is there a aign of failure.

September 6 th.

single bogie engines.
SIR,-My a tention has been called to your issue of August 13 th,
品 being the first engine of the class combining single driving wheels This is saarcely ocrreet, as Ihave had to

 Messrs. Beyere, Peacoock, and Coin and have single driving wheels
6ift. Gin diameter with inside oylinders and a four-wheeled bogie in front, and are doing excellent work on a very low is. onssumption of coal.
Dundalk, September 6th.

MIXED TRAINS.

SIR,-The article in last week's Enginerr on "Mixed Trains" will, 1 am , be read with interest by most of your readers, an very common.
I quite agree with you that placing the passenger carriages between the engine and goods wagons must increase the danger of accident as you say. Also, is it not injurious to the rolling stoc
f the lighter vehicles are compelled to drag the heavier one f the lighter vehicles are compelled to drag the heavier one
behind them? At the same time, the fact should not be ove behind them? At the same time, the fact should not be over-
looked that where the passenger carriages are fitted with con-
tinuous brakes this power can be utilised by their being placed next tinuous brakes this power can be utilised by their being placed next
to the engine. On the other hand, if wagons are interposed, the to the engine. On the other hand, if wagons are interposed, the
advantages of such a brake power, and especially where simple advantages of such a brake pow
vacuum brakes are used, are lost.
If this practice of running mixed trains incurs greater liability of aecident to passengers, why does not the Board of Trade strike in my opinion, would be the best means of surmounting the whole difficulty, instead of recommending passenger carriages to be placed
either before or behind in such trains.
SUBSCRIBER. Belfast, September 7 th.

CENTRIFUGAL PUMPS

SIR,-In your valuable journal, of which I am a constant and interested reader, you published -vol. lxi., No. 11590, of June 18th,
1886-an illustration and description of one of Mr. Hett's 9in. centrifugal pumps, and write at the end of your article :- "The velocity at the periphery being about two-thirds of the head due
to gravity. This result is an apparent anomaly, and a similar result has never, so far as we are aware, hitherto been recorded."
Without speaking of Mr. Hett's pump, I cannot find an anomaly Without speaking of Mr. Hett's pump, I cannot find an anomaly
in the fact that the circumferential velocity does not attain the in the fact that the
velocity due to head
I designed several centrifugal pumps and always found that the alue of $\sqrt{2 g \mathrm{H}}$, where H is the total height, friction included, to value of $\sqrt{2 g} \mathrm{H}$, where H is the total height, friction included, to ing on the inner and outer diameter of revolving disc-than $\sqrt{g \mathrm{H}}$. lain, and clear theory of centrifugal pumps according with practice, and shall, perhaps, not go too far in saying that most of the a clear and p me to put it painder your critical seyes. Perhaps you may think fit I put it before your readers.
I am a young mechanical enginneer, bred at the Polytechnic
School of Vienna ; now with more than six years' practical experience.

LAUNCHES AND TRIAL TRIPS.
A stekl screw steamer was launched by Messrs. Schlesinger,
Davis, and Co., from their shipbuilding yard at Wallsend on Septemer 2nd. The vessel is named the Swift, and will be registered at diculars 110 ft ., breath moulded 19ft., depth of hold 8 ft . 9 in . The engines, with cylinders 17 in . and 32 in . diameter by 24 in. stroke, will Company at its Wallsend works. The ceremony of christening
was performed by Miss Dora Hodge. Paisley, launched from their shipyard last week the second of the two powerful dredgers that they have constructed for the Preston Corporation, for the deepening and improvement of the river Ribble. Improvement Committer Bibby, after the chairman of the Ribble powerful yet constructed for this country, and are fitted with all the most recent and modern improvements.
The second of two large steamers, buil
The second of two large steamers, built to the order of the Pacific Steam Navigation Company, by the Barrow Shipbuilding
Company, was launched on Tuesday morning. The Orizaba, which is now nearing completion, is the sister boat. Both of these to trade between London and Australia in conjunction with the Orient Company's steamers. The Orizaba and the Oroya, for so the second boat was named, are the first of the large ocean-going A great number of persons witnessed the launch, and the vessel as
she left the ways was christened by Mrs. W. G. Ainslie. The dimensions of the new steamer are as follows:-The vessel is 460 ft . in length, 49 ft . in breath, and 38 ft . 3in. depth, moulded, and has a
gross register tonnage of about 6500 tons. She is rigged with four gross register tonnage of about 6500 tons. She is rigged with four bottom principle, and fitted with four complete closed-in decks all
fore and aft, and a promenade deck extended to the ship's side.

Her superstructures consist of a short poop and forecastle, and a
long range of midship deckhouses. The deck erections and various tween decks have been fitted up to accommodate 124 first, 54 second, and 412 third-class passengers, as well as for officers and
crew. The saloons and cabins will be furnished in the best style, panelled in hardwood, and upholstered in a most luxuriant manner by Messrs. A. Blain and Co., of Liverpool, and will be electrically lighted by 400 incandescent lamps. All passenger spaces, saloons,
and staterooms will be ventilated by machinery on D. C. Green's principle, and the most ample provision has been made for the conwinches for the purpose of loading and discharging cargo, made by Messrs. Waddington and Longbottom, of Barrow; a steam steering engine, by Messrs. Muir and Caldwell; Hasties' patent screw steering gear, and Clarke, Chapman, working the anchors. The vessel will also be fitted with refrigeratbe capable of cooling 70,000 cubic feet of air per hour. The ship will be propelled by inverted direct-acting triple expansion engines to indicate 6000 -horse power, the diameter of the high-pressure cylinder being 40 in ., intermediate cylinder 60 in ., and low-pressure of 160 lb per square inch. The ship has been built under special survey of both Lloyd's and Liverpool underwriters, and will receive the highest class in those registers.

TENDERS.

 Tenders received by the Toxteth Park Local Board for curbing and channelling Smithdown-road, between Wellington and Ullet
roads. Quantities supplied by the engineer, Mr. John Price, roads. Quanticies supplied by the engineer, Mr. John Price,
Assoc. M. Inst. C.E.

$$
\begin{aligned}
& \begin{array}{l}
\text { J. Garnett, Aspen-grove, Toxteth Park .. } \\
\text { Ireland and Hurley, Brae-street, Liverpool }
\end{array} \\
& \begin{array}{l}
\text { Ireland and Hurley, Brae-street, Liverp } \\
\text { R. B. Ballantine, Everton, Liverpoor } \\
\text { W. F. Inglis, Castle-street, Liverpool } \\
\text { McCabe and Co., Lambeth-road, Liverpo } \\
\text { R. Lomax, Bagot-street, Toxteth Park }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Walkden and Co., Brasenose.road, Bootle .. } \\
\text { Catterall and Co., Phobe Ann-street, Liverpool } \\
\text { L. Marr, Aspen-grove, Toxteth Parlc-accepted } \\
\text { Engineer's estimate } \\
\text {.. }
\end{array}
\end{aligned}
$$

THE VILLORESI CANAL

EXPERIMENTS ON THE FLOW OF WATER OVER WEIRS. 2
The following is from a paper by Cesare Cipolletti, C.E.:-
The supply of water to this canal is, according to the terms of the volumion granted by the Government, subject to the condition that shall be measured and returned into the Ticino, before pery second taken for irrigation purposes, and thus not interfere with existing rights down stream. To fulfil these conditions, the head works are constructed in the following manner:-A weir $289 \cdot 44$ metres$949 \cdot 36 \mathrm{ft}$.-long, and 4 metres- $13 \cdot 12 \mathrm{ft}$.-high, is built across the
river. Immediately above the weir, and on the left bank is river. Immediately above the weir, and on the left bank, is the
entrance to the canal, a building provided with thirty sluices capable of admitting 192 cubic metres- $6780^{\circ} 67$ cubic feet-of water per second into the canal, of which 72 cubic metres2542.75 cubic feet-is the quantity granted by the concession for irrigation purposes, and 120 cubic metres to be returned as compecond is carried by a canal 600 metres- 656 yards-long, and 52 metres- 170 ft .-wide, terminating in a basin, on the left bank of which are the buildings containing the head sluices to the irrigation canal proper, as well as those of a small private canal, compensation water is returned to the Ticino. It was important
 in order to fix the exact height at which the water should be maintained in the basin before admitting any water into the Villoresi occasionally falls below 120 cubic metres per second, powers were granted by the concession to erect works at the outlet of the Lago they are abundant, and regulate their flow into the Ticino. The profile of the weir for measuring the 120 cubic metres per second is given at page 67-this quantity, however, is reduced to 112 cubic metres, as 8 cubic metres are drawn off by the private canal
already mentioned. The crest, which is divided into thirty-six already mentioned. The crest, which is divided into thirty-six
openings of 2.025 metres- 6.6 ftt. -clear width each, by thirty-five partitions 0.08 metre - $3 \cdot 15 \mathrm{in}$. - thick, is $72 \cdot 90$ metres- $239 \cdot 11 \mathrm{ft}$. in length. These partitions support a foot bridge. The openings
can be closed when required by boards placed vertically, with the can be closed when required by boards placed vertically, with the
bottom ends resting against the up-stream side of the cill, which the top ends against the bridge. The total width of the crest is 1.85 metre- 6.07 ft - of which 1.45 metre- 4.75 ft . - below the cill Ticino is 289.44 metres- 949.36 ft .-in length in the clear between the abutments, with horizontal crest, and curved breast and back, In order to establish the coefficient of reduction, to be used for calculating the discharge over the measuring weir, two measurements of the velocity in the canal, between it and the Ticino, were first taken by means of the Woltmann current meter, the
results of which were further controlled by direct measurements taken with the same instrument at the weir itself. During these experiments, it must be observed, the whole volume of water brought down by the canal did not flow over the weir, part being into the canal from the basin by submerged openings, fitted with iron sluice gates, and, previous to the experiments to be now
described, their coefficients of contraction had been determined and found to be between 0.72 and 0.74 , or a mean of 0.73 ; so that, in order to ascertain the exact volume of water that was
being admitted into the irrigation canal, it was only necessary to being admitted into the irrigation canal, it was only necessary to
measure the difference of the level of the water on each side of the The first experiments were made on the 3 rd and 4th January,
1885 , the level of the water in the basin being 0.538 metre -1.76 ft . -above the crest.

The total flow in canal leading to basin-taken by actual
measurement-being
Quantity discharged over weir.. $\overline{58 \cdot 236}$ "Proceedings" Institution Civil Engineers.
A description of this canal will be found in vol. 1xxxii. "Proceed
s" Institution Civil Engineers, p. 416,

The total clear width of overfall being $72 \cdot 90$ metres, the equation $\begin{aligned} \text { or } & \mathrm{Q}=\mathrm{K} 72.9 \times \mathrm{H}_{3}^{2} \sqrt{2 g \mathrm{H}} ; \\ \mathrm{Q} & =\mathrm{K} 214.91 \mathrm{H}_{3}^{2} .\end{aligned}$
Assigning to Q and H their numerical values, viz., 58.236 cubic the value of the coefficient $\mathrm{K}=0^{\circ} 685$ is found
A second experiment, made on the 9th Mar
ing results:-
$\begin{array}{lllll}\text { Total flow in canal leading to basin-by measurement .. } & \text { Cubic metres. } \\ \text { Volume admitted into } & 12838 \\ 4.838\end{array}$
Quantity discharged over weir
Level of water 0.895 metre- $2 \cdot 93 \mathrm{ft}$.-above crest
result-
or $\quad \begin{aligned} & \mathrm{Q}=\mathrm{K} 214.91 \\ & \mathrm{~K}=0.683 .\end{aligned}$
The mean coefficient would
$\mathrm{K}=\frac{0^{\prime} 685+0.683}{2}=0.684$.
In determining the discharge by direct measurement at the weir, the velocity of the current was taken at different depths at five stations in two of the thirty-six openings. The depth of water
in the basin above the crest being 0.835 metre- $2 \cdot 73 \mathrm{ft}$.-the disin the basin above the crest being 0.835 metre- $2 \cdot 73 \mathrm{ft}$.-the dis-
charge through one opening was found to be 3.103 cubic metres charge through one opening was found to be $3 \cdot 103$ cubic metres,
and of the other $3 \cdot 194$, giving a mean of $3 \cdot 148$, which multiplied by 36 gave a total discharge of $113: 346$ cubic metres, which gives

\section*{| $113.346=$ |
| :--- |
| 113.346 |}

$\mathrm{K}=\frac{113 \cdot 346}{163 \cdot 617}=0 \cdot 692$

which differs only from the coefficients found by the previous traction for calculating the discharge over the coefficient of con blished in two different ways. Taking advantage of two days in which the depth of water in the Ticino was alike; on the first it
was allowed to flow entirely over the weir in the river, whilst the allowed the second day part flowed over the measuring weir and part over
that in the river, this being the most reliable way of determining the exact coefficient. It was, however, necessary to take into ascertained to be 4.50 cubic metres, 1 cubic metre of which was due
to leakage of the dam, and 3.50 from the four to leakage of the dam, and 3.50 from the four sluices which serve to empty the basin if required; when, on the other hand, all the
water flowed over the river weir, it was found that there was a leakage of 2.09 by the head sluices into the canal, so that ther leakage of 2.09 by the head sluices into the canal, so that there
was a difference of $3.50-2.09=1.41$ between a full basin and an empty one.
These experiments were made on the 27th and 28th March, with an equal depth of water in the Ticino. On the first day the entire being 0.458 metre- 1.50 ft .-whilst on the second, part was passed over the river weir and part over the measuring one, with a depth
of 077 metre- 2.52 ft .-corresponding to a volume of 99.517 cubic metres- 3514540 . -whilst the 0.218 matre reduced to 0.218 metre- $0 \cdot 71 \mathrm{ft}$. The length of this dam being
$289 \cdot 44$ metres- $949 \cdot 36 \mathrm{ft}$; the leakage 2.09 cubic metres- $73 \cdot 81$ cubic feet-and the coefficient K, the equation of discharge on the first day was
$\mathrm{K} \times 289.44 \times 0.458 \times \frac{2}{3} \sqrt{2 g \times 0.458}+209$
$=\mathrm{K} \times 854.535 \times 0.458^{\frac{3}{2}}+2.09$,
Whilst on the
the formula-
$\mathrm{K} \times 854 \cdot 535 \times 0 \cdot 218^{\frac{3}{2}}+99 \cdot 517+3 \cdot 50$,
from which
$\mathrm{K} \times 884+355\left(0.4588^{8}-0.218^{3}\right)=99: 177+3.50-209$,
$\mathrm{K}=\frac{100 \cdot 927}{178 \cdot 598}=0 \cdot 565$.
The measurements of the velocity of the current at the wei
were taken with Woltmann's current meter at nine differen stations, and the discharge found to be 422.512 nibie metres$14,922 \cdot 19$ cubic feet; the mean depth above crest being 0.74 metre depth above crest to the surface of the comparatively still water was 0.928 metre- 3.04 ft ; the equation of discharge would there
$422.542=$ K $289.44 \times 0.928 \times \frac{2}{3} \sqrt{2 g 0.928 ;}$
$422.542=$ K $854.535 \times 0 . \overline{928}^{\frac{3}{2}}=$ K 763.868 ;
$\mathrm{K}=\frac{422 \cdot 542}{763 \cdot 868}=0.553$.
In a second experiment the velocity was measured at eleven vertical stations, and showed a total discharge of 239,771 cubic
metres- 846575 cubic feet-with a depth of 0.494 metre- 1.62 ft -over crest, and 0.628 metre- 2.06 ft .-in the comparatively still water up-stream; the mean
equation in this case was-

$239 \cdot 771=\mathrm{K} 854.535 \times 0.628^{\frac{3}{2}}$

This latter coefficient only differing from that found by the first method by 0002 , or less than 0.4 per cent. The coefficient From these it will was the mean of the three experiments, or 0.56 the phenomena of the movement of the water over the two weirs In the first, with the inclined crest, the coefficient is comparatively high, notwithstanding that the flow is influenced by the thirty-five partitions; whilst, on the other hand, it is belo
the river weir, notwithstanding its great length.
em of Fire-proofing.-An exhibition of the fire
A New System of Fire-proofing--An exhibition of the fire-
resisting capabilities of a new patent combination of steel and concrete was held at the Albert-street police yard, Manchester, Manchester Fire Brigade. The combination is named "s Titan-
crete" and it is the invention of Messrs. Lee and Hodgson, who crete," and it is the invention of Messrs. Lee and Hodgson, who girders, floors, partitions, doors, shutters, or slabs, and that with a perfectly fire-proof building may be erected. It has been long weakest parts have been the iron columns and girders, which being subject to expansion and contraction when a fire occurs, give way at the most critical moment, and the building col-
lapses. By this invention, pillars, girders, and floors are all made of concrete, which is well known to be ployment under the patent of a combination of steel which supports and strengthens the concrete, and embodying at the same ing had been erected in the police accion of fire or water. A build ing had been erected in the police yards of ordinary bricks with a
floor, or rather roof of slabs made of concrete and steel 6 ft . by 3 ft . 3in, thick, and resting upon girders covered with concrete There were two window openings and a door, which was also made
of concrete and steel. Inside were pillars made of the same material, 10 in . in diameter, and capable of sustaining 100 tons At 11.30 a.m. a fire was lighted, and kept burning, half
a ton of coal being consumed. At 2.30 tarred wood was
thrown in, and petroleut worked up and kept going until over it. A great blaze was thus
oclock, when the fire was
extinguished by the firemen. The trial was in every way a suc cess. It was the best test of the kind yet witnessed in Manchester and a-half hours, and the pillars which were in the middle of the furnace were only stripped of their outer covering of plaster,

RAILWAY MATTERS.

The Senate of the United States has voted 300,000 dols. toward he construction of the Hennepin Canal, to connect the Mississippi IT is expected that the new line of railway from Lucknow to
Sitapur will be ready for traffic by November next, and that the opening cerem
Sir A. Lyall.
FoLLowisg its promise of last session of the Dominion Parlia-
ment, the Government has appointed a commission to inquire into the subject of appointing a permanent Railway Commission The Commission of Inquiry appointed by the Government oon.
sists of Sir Alexander T. Galt, Mr. Schreiber, C.E., and Mr.
Sal sists of Sir Ale
Moberley, C.E.
ThE employes of the London and North-Western Railway Company in the carriage department, both at Crewe and Wolverton,
commenced working full time on Monday. All the engineers, fitters, and others in the locomotivive department are still on short time, but the men trust the activity displayed in the carriage
Iv the early days of the Great Western Railway a hollow oak
ree e temporarily served as the station-house at Moreton, Herefordshire. It stood near the platform, and fifteen people could stand
in its interior at one time. This tree was unfortunately blown in its interior at one time. This tree was untortunately blown have seen was on the Bangor section of the Belfast and County Down
Railway. This was the body of an old railway carriage deposited
by the y the side of the line.
THE Canadian Government has recently promised a land subsidy
to the Winnipeg and North Pacific Railway Company, which has to the Winnipeg and North Pacific Railway Company, which has
been organised to build a railway from Winnipeg to Fort Simpson
by way of Fort a la Corne. A Bill to grant the company 6000 by way of Fort a la Corne. A Bill to grant the company 6000
accres of land per mile for that portion of the road between Winini-
pegand Fort a Corne and 10,000 acres per mile from that point
to the foot of the Rock a peg and Fort a la Corne, and 10,000 acres
to the foot of the Reoky Mountains, will,
says, probably be introduced next session.
IN July, 1886, there occurred on the United States railways a
total of ninety-one accidents, in which twenty-three per total of ninety-one accidents, in which twenty-three persons were
Killed and eighty-eight injured. As compared with July, 1885 ,
there was there was an increase of iffteen accidents; a decrease of five killed
and an increase of thirteen injured. The seven monthh of the and an increase of thirteen injured. The seven months of the
current year to the end of July show a toal of 593 acidents-
213 killed and 827 hurt ; a monthly average of eighty-five accicurrent year to
2313 killed and ent 827 hurt a monthly
dents-thirty killed and 118 injured.
The Toronto Mail states that Sir John Macdonald arrived at
New Westminster at one oclock on the morning of the 14th ult., rom Nanaimo, Premier Sinythe and Mr. Dunsmuir accompanyirg
the party, the latter placing his steamer at Sir John's disposal the party, the latter placing his steamer at Sir John's disposal.
The journey from Victoria to Nanaimo was accomplished in three hours, the distance being seventy-two miles. On arriving half way
Sir John drove the last spike in the Vancouver Island railway. Several prominent citizens of Victoria accompanied Sir John to
The mineral traffic of the United Kingdom in 1885 kept up a regards volume, but there in a decrease of over a quarter of a
million sterling in the receipts, which amounted to $£ 15,246,200$ in 1885, as compared with $\notin 15,528,60$ in 1884 . The average receipts
per ton of mineral carried amounted to 1.6 s . in 1885 and to 1.7 s . n 1884, so that there has been a sight reduction under this head, although it is not clear whether this is due to the increased dis-
tance over which the goods were carried or to a reduction of the transport charges.
AT the end of 1884 there were 1790 miles of railway in Switzer
and, including fifty-nine miles tain lines, less than four miles having been added during the year.
They had cost $£ 41,005,920$, including $£ 719,276$ for the special mountain roads. The ordinary railways had cost $£ 23,865$ per mile,
and the mountain lines $£ 12,500$ per mile. On the 1790 miles ther were 189.7 tunnels, 1963 bridges, and 656 stations-one station for every 2.73 miles of road. The length of double track was 178 miles.
Of the ordinary rail ways $25 \cdot 9$ per cent. was level, and of the mountain roads only 8.8 per cent.
The introduction to "Poor's Railroad Manual for 1886," which
has just been published, shows that 3131 miles of road were conhas just been published, shows that 3131 miles of road were con-
struted during the year in the United States, the aggregate
mileage for the whole country being 128,976. The capital stock all railroads is $3,817,697,832$ dols. The earnings of all
equalled 772,568833 doads
ins.agan introduction says the past year undoubtedly marks a point of cost and mileage than is likely to be witnessed for some years to come, the
the past.
THE United States are now sending abroad about $3,000,000$ dols. Worth of locomotives per annum, the total value of those exported year ended June 30 th, 18pesent the number of engines shipped tid not not locomotives exported from the United States in $18883-84,65$ went
to the Argentine Republic, 49 to the United States of Colombia to the Argentine Republic, 49 to the United States of Colombia
and Panama, 34 to Moxico 32 to Brauil, 27 to the Dominion of
Canada Cuba, 6 to Spain, 3 to San Domingo, 3 to Sweden, 2 to Venezuela,
Thef first permanent electrical railway in Canada and one of the fet in America, is now, asays Railuay Life, in full operation
between Windsor and Walkerville, a distance of $1 \frac{1}{2}$ miles. The road is operated on the Vandepoele system, the same as that so
suceesfully used in the shorter line at the Toronto Industrial
Lusher Exhibition Park. The formal opening took place on June 9th last, amid great rejoicings. The proprietor of the line, Mr. John W,
Tringham, has shown most commendable enterprise in pushing formara, the work, and the results so far are believered to have beei eminently satisfactory. Trains now run regularly between Windsor
and Walkerville every fifteen minutes, and the service is reported by the public in the district to be everything that could be desired. THE Eastern and Midlands Railway Company is rapidly pushing and the rood will be opened for traffic early in incance. The miles, passes over the common lands at Kelling and Salthouse through
Waybourne to Cromer, a distance of about six miles. This section of the company's undertaking seems to be the most difficult and The metals have been supplied dist Messrs. Cammell and Constem, Workington, and are 70 lb. to the yard. They have been laid for place the line takes an eastwardly direction after emerging from a and then passing on to an embankment containing about 55,000 ham, six miles from Holt, the second at Runton, eight miles, and
the terminus at Cromer. Cromer station will cover something like eight acres. The road is single throughout, and at "Cromer the plat station premises will comprise a refreshment-roo principle. Th booking-offices, station-master's residence and the usual offices, constructed in the old English style of architecture. The plat-
forms are to be 250 yards long and will be overed in with a roof
of glass and slate. Mr. W. Marriot is the endine of glass and slate. Mr. W. Marriott is the eovedineer, wand, under
his superintendence, the work is being carrie out, Mr. R. M.
Parkinson assisting him. Wren
 and those at Runton and Cromer by Mr. Leach of the sa
Mr, Wilson, of North Walsham, is building the bridges,

NOTES AND MEMORANDA.

Grekral Ievatiref. has presented to the Mineralogioal Society of St. Petersburg a mineral recently found on his estate in the
government Elizabethgrad. It belongs to the class of aluminites, and has not hitherto been found in nature. The Russian mineralogists have named it Ignatieffite.
The largest body of fresh water on the globe is Lake Superior,
400 miles long, 160 wide at its
 greatest depth is said to be about 200 fathoms, or 1200 ft . Its
surface is about 635 ft . above the sea level Senet has devisel a mot
SENET has devised a new process for obtaining aluminium, as
well as copper, silver, \&c., by electrolysis, well as copper, silver, \&c., by electrolysis. He exposes a saturated
solution of sulphate of alumina, separated from a solution of chloride of sodium by a porous vessel, to a current of six or seven
volts and four amperes. The double chloride of aluminium and sodium is decomposed, and the aluminium is deposited upon the
negative electrode.
THE Northern Railroad of France has found by experiment that produce a material for lamp reflectors of equal brilliancy with those made of silvered copper. These reflectors are reported also not to Iust, and owing to the e greater strength of the entarerial, to be less
reasily knocked out of shape. The cost is only 55 per cent. of the The experimonts N Bill
THE experiments of M. Baille show that temperature exercises an appreciable influence upon the value of the torsion-couple of
wires. The couple diminishes very rapidly when the temperature increases, the variations amount to about one ener cent. per degree
Centigrade for aluminium and silver. Care is therefore necessary Centigrade for aluminium and silver. Care is therefore necessary
to maintain a constant temperature when making measurements with apparatus in which the effects to be measured are equilibrated
by the torsion of
The temperature of space is, at the present day, generally by artificial means; and it is interesting to to produce extreme cold. Stewart on "Heat,"" p. 110, gives an
example in which a temperature of - 140 deg. Cent. (-220 deg. example in which a temperature of - 140 deg. Cent.' .ang. Mag.,
Fa.) was obtained; but very reeently - Van Nostrand's
xxvv, p. $87-$ in solidifying oxygen, a temperature of -200 deg. Cont. $(-330$ deg. Fah.) is said to have been produced, which is
dent only 131 deg. Fah. above absolute zero.
THE applications of aluminium are now considerable, and M .
Bourbouze, a French physicist, has added to their number by employing an alloy of the metal with tin for the internal parts of opticai instruments in place of brass. The alloy he employs con-
sists of 10 parts of tin and 100 parts of aluminium. It is white, like aluminium, and has a density of $2 \cdot 85$, which is a little higher than that of pure aluminium. It is therefore comparatively light, which is an advantage or apparatus where lightness is desired. It
can be soldered as easily as brass, without special means, and it is can be soldered as easily as brass, without special me
even more unalterable than aluminium to re-agents.
Mr. A. A. Crozirer, of the University of Michigan, has published a thesis concerning the modiication of plants by climate. It has
brought together a great amount of scattered material upon this interesting subject, and-not the least valuable part of the paperconclusion reached is as follows :- "It seems to be established that as plants move from the locality of their largest development
toward their northern limit of growth, they become dwarfed in hawit, are rendered more mofruitful, and and all they bects beome dware mored ighly
coloured. Their comparative leaf surface is ofted form modified, and their composition changed. Their period of
growth is also shortened, and they are enabled to develope at a growth is also sho
lower temperature.
Hypochlorrtes, when mixed with peroxide of hydrogen,
instantly give off all their active oxygen, at the same time inserating the oof then of the peroxide oxyyen, therefore the active oxygen of either substance may be easily determined by using an excess of
the other substance, and bleaching powder apparatus used is the ordinary nitrometer. A solution is made o 10 grms. bleaching powder in 250 c.c.. water, 5 c.c. $=0.2$ grm. is poured into the flask of the apparatus, and an excess, say 2 c.c.,
of commercial peroxide of hyrogen placed in the inner tube. The flask is then connected with the apparatus, the solutions
mixed together by shaking, and the amount of measured off in the usual way. The whole operation is complete
in from one to two minutes in from one to two minutes.
replying to a question upon a durable whitewash says: :- "The best wasrel of colour wash-half bushel mhade as follows:- For one cement, 10 lb . umber, 10 lb . ochrre, 1 lb . Venetian red, 4 th. lamp.
black. Slake the lime; cut the lampblack with vinegar.; mix well together; add the cement, and fill the barrel with water. Let it
stand twelve hours before using, and stir frequently while putting
it on. it on. This is not white, but of a a light stone colour, without the
inple
unper anpleasant glare of white. The colour may be changed by adding
more or less of the colours named, or other colours. This wash covers well, needing only one coat, and is superior to anything
known, excepting oil paint. I have known a rough board barn
washed with this to washed with this to look well for five years, and even longer,
without renewing. The cement hardens, but on a rough surface
will not seale, will not scale."
Profrssor Hers has made a careful survey of the Alpine
glaciers, and reckons them at 1155 , of which 249 are each longer 144 of the metres-more than $4 \frac{5}{8}$ miles. French territory includes superficial area of these glaciers may be set down at between 3000 and 4000 square kilometres, or between six and seven times the
area of the Isle of Man. The area of the Swiss down in the official surveys at 1839 square kilometres; the bulk of the remainder falls to Austria. The longest of all is the Aletsch
glacier, which is over 24 kilometres-about 15 miles-in lenstr glacier, which is over 24 kilometres-about 15 miles-in length.
As to the thickness of the glaciers, no reliable data are forthcoming. It may be remembered that Agassiz, in the series of investigations orty years ago, excavated to a depth of 260 metres -over 853 ft . and had not got to the bottom. He estimated the depth of the
Aar glacier at a point a little below the junction of the Finster-
Aar and InterIn the Archives de Genive Puoter
interesting study on the so-called lightning holes to be found in heights of from 3348 to to theo investigators have found them at
13,000 met. above the sea level 13, ometimes the rooky masse, whish it it is supposesed has been vitrified
So shen in the passage of the electric fluid, presents the appearance of
small scattered pearls, sometimes of a series of semispherical cavities only a few millimetres in diameter. Sometimes there are
vitrified rays going out from a central point to a distance of four vitrified rays going out from a central point to a distance of four
or five inches. Sometimes a block detached from the mass appears
as if bored through by a cannondall the hollowed passage being quite virtified. The thickness of this vitrified coating or stratum
never exceed a millimetre and is sometimes not more than the never exceeds a milimetre, and is sometimes not more than the
quarter of that depth. TTh varying oolours which it presents
depend on the qualities and composition of the rock. The same may be said as to its transparency. On the Rungfischhorn the
glasss thus formed by the lightning is black, wowing to the quantity of actinolith which the rook contains. It is brown on La Ruinette,
the rook consisting of feldspar mixed with gneeiss oontaining
chloride of iron. Under the microscope these lightning holes chloride of iron. Under the microscope these lightning holes
display many interior coavities, which must beatributed to the
presence of water in the rock at the moment of melting by the presence of water discharge. This vitrified material has no influence on
polarised light,

MISCELLANEA.

MrssRS. Harpers, Limited, of Aberdeen, have removed their
London office to 60 , Queeni Victoria-street. Mr. Joserh Hambler, of West Bromwich has received the
order for the whole of the bricks required in the construction of
the Tor ther the Tower Bridge over the Thames
ON Monday, Mr. A. B. Forwood, Parliamentary Secretary to
the Admiralty, commenced his investigation into the work of the chie Admiraly, denartments of Portsm histh investigation into the work of the
Professor Flyar, Director being accompanied by Professor Elgar, Director of Dockyards.
Msssss. Joskri Wright And Co., Tipton, have determined to restart their large eable and anchor works, which have remained
cossed during the last five years. These works are very extensive, and wh.
hands.
The Birmingham Exhibition is proving an immense success. The attendances are exceeding the expectation of the promoterg, and
are os large that to prevent overorowding in the evening it will
probably be found neeessary to close the admittance doors two or three hours before closing time.
The Newcastle City Council, at a special meeting held on
Wednesday week, decided to confer upon Sir William Armstrong Weanesday week, decided to confer upon Sir William Armstrong,
head of the Ordance, Engineering, and Shipbuilding Works at Clswick, the honorary freedom of Newcastle-on-Tyne, Siit
Williams scientific attainments and great benefactions to the city
were given as the reason were given as the reason for conferring the honour.
IT is made known that the Town Council of Bumbay have
accepted the tender of Messrs. Walsh, Lovett, Mitchell and Co., of Caleutta, Bombay, and Birmingham, for the total coustruction of the Taasa Duct-conduits, tunnels, pipe-line, pipe laying, and the
bridges over the Bossein Creek, from Ghatkopar to Taasa Dam, at a cost of forty-two lacs of rupees- $£ 420,000$ nominal-and a bonus
of 800 rupees for every month. The contract is to be completed before 1st January, 1891.
IT has been decided to inaugurate on June 1st, 1887, in the machinery buildings and gardens of the Lima Exhibition, under the
auspices of the Government of Peru, and with the co-operation of the Administrative Society of the LLima Exhibition and the Special School of Mines, a mineral exhibition, the principal object of which country. All objects intended for the Exhibition will be exemp sour 10 is
Sows speculation is excited this week as to what may be the
effect upon the American iron business of the falling oft in the
nat natural gas supply in Pennsslvania by reason of the earthquake
upon the continent. Should the supply of this cheap fuel to the
Pittsburgh ironworks and foundries be but oft the consequence Pittsburgh ironworks and foundries be cut off, the consequence
will be to increase the cost of American production, and possibly to give English iron a somewhat better chance in the States. At
present the revival in the American iron trade has not much affected the Birmingham district.
ON the Continent at one works an experiment of an interesting character has been made in order to prevent the evils
arising from all the workmen being in funds at the same time. The staff is alphabetically divided into four groups, each of which is paid fortnightly; one on Tuesday and one
on Friday of one week, the other two on the same days in the
following welk the prevention of temptation to so seneral texcessive drinking, there
being about 1400 hands

The employés of Messrs. Manlove, Alliott, Fryer and Co., of
Bloomsgrove Works, Nottingham, assembled on Monday evening at the works, under the presidency of Mr. J. M. C. Paton, the general
manager ; M. E. A. Manlove, manager of the Glasgow house of the firm; Mr. Thos. Cantrell, Mr. W. Moss, act, and presented a
testimonial to Mr. Fred. H. Manlove on his attaining his majority. The testimonial, which. consisted of a valuabue epernene, bore the
following inscription:- "Presented by the employes of the Bloomsfollowing inscription. - "Presented by the employes of the Blooms-
grove Worss to Mr. Fred. H. Manlove as a token of their esteem
on the

ar 1

AN international competition of machines and implements for
e cultivation and the treatment of rural hemp will open at the cultivation and the treatment of rural hemp will open at
Ferrara on August 20 th, 1887 and will be cosed on the 31st of the
san foreign, can take part in the competition. An Executive Commission provides every thing deemed necessary for the success of the
competition. The machines and implements admitted to the competition are divided into the following classes:-Class 1 , ploughs
for deep works; Class 2 , special hemp sowers ; Class 3 , breakers, scutccers, teazers, and shakers, single ; Class 4, finishing breakers, performing by themselves the completee separation of the fibre from
the rotten stalks, and yielding at least 200 kilos. of dressed hemp per hour at a cost of labour not exceeding in the whole 6 lire per tion may be obtained at the Italian Consulate, 31, old Jewry, E.C. The Spanish oficial Gazette has published an order addressed to
the Director-General of Customs, authorising the entry into Spain of English goods on a declaration made by the shipper into spore the
Collector of Customs at a British port, the declaration to bear the visc of a spanish Consu. According to law these vises are to be
given free of charge. This resolution-says the Liverpool Journal
of Commerce-seems ing out the terms of the treaty between the two countries. As originally drawn, the stipulation in the creaty was that each
manufacturer should verify before the local authority that the goods proposed to be shipped were of British manufacture. This some expense, unnecessary trouble, and a loss of valuable time. So corious dicte matter appear that several merchants in the city
communicated through the Chamber of Commerce with the British Goverment, who in turn approached the Government at Madrid on
the subject, showing the unreasonableness of the proposed requirethe subject, showing the unreasonableness of the proposed require-
ments. TTe result has been as officially stated above, and the
merch. merchants of Liverpool have reason to feel grateful for the spirited
action taken in the matter by the Chamber of Commerce.
A NEW company has been formed to run steamers between
Liverpool and the Isle of Man. The island is distant about seventyLiverpool and the Isle of Man. The island is distant about seventy-
five miles from Liverpool, and about equitdistant from England,
Ireland, and Scotland, and has of late years become one of the most important seaside resorts in the United Kingdom, the passenger
traffic having increased to such an extent that there are fresently four or five boats despatched with passengers from Liverpool to the island the same day. The company has arranged a conditional
contract for two first-class screw steamers, handsomely fitted and furnished, having triple expansion engines of about 1500 -horse
power, and to fo fitted with bilige keels which prevent tolling to a power, ana to be the dimensions will be-length, 225 ft. , breadth, 30 ft .;
great extent. Te,
depth, 13 ft , which dimension the present screw steamers on this station, and the company further
intend building a first-class winter or spare boat of smaller dimensions, which will be useful for trips and the conveyance of pas-
sengers betwen the small towns of the island and to Douglas and
Raser Ramsey, through bookings with the large boats being arranged
during the summer season. Messrs. Russell and Coo, of Port Glasgow and Greenock, are to commence the first steamer on the
1st of October, and she is to be ready for her station by next Easter. As an, example of the low prices at which steamers may
be had now, we may state that the contract price for the large
steamers which steamers, whioh are to be built according to Loy'd L highest class
as well as to the Board of Trade requirements, and to stear at
seventeen to eighteen miles an hour, is only $£ 18,500$ each, subject seventeen to eighteen miles an hour, is only $£ 18,500$ each, subject
to any alterations that may be conidered necessary by the the
directors, and the price of the spare or winter steamer, the plans and speifications price of which are spare or winter steamer, the prepared, will he about
$£ 10,000$.

ORGAN AT THE LIVERPOOL EXHIBITION.
CONSTRUCTED BY MESSRS, MICHELL AND THYNNE, ADDISON WORKS, KENSINGTON.
(For description see page 207.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

TO OORRESPONDENTS.

 Reglstered Telegraphlc Address-".* All letters intended for insertion in The Evginere, or con taining questions, must be accompanied by the name and address
of the writer, not necessarily for publication, but as a proof of of the erriter,
good faith.
*We cannot undertake to return drawings or manuscripts; we
*ust therefore request correspondents to keep copies.
inform corvespondents that letters of in inquiry addressesed to the public, and intended for insertion in this column, must, in all all
cases, be accompanied by a large envelope legibly directed by the writer to himsilf, and bearing a a d. postage stamp, in order that
answers received by answers received by us may be forwarded to their destination.
No notice will be taken of communications which do not comply No notice will be taken
with these instructions
H. A. - Mesesrs Rovan and Co., engineers, Glasgono

PITCHOMETERS.

fields for emigration.
 Young civil and railway engineer to succeed; also to whom to apply, and
any further information. any further information.
Manchester, September 6th.

CITY OF LONDON AND SOUTHWARK SUBWAY COMPANY. (To the Bditor of The Engineer.)

the festiniog railway.

Britannia Railway Carriage and Wagon Works, Marshalls, and Co.)

a Railway Carriage and Wagon
Birmingham, September oth.

SUBSCRIPTIONS.

 If eredit occur, an extra charge of two shillings and sixpence per a a 4 complete set of THE ENarnerr can be had on application. Foreign Subscriptions for Thin Paper copies apill, untion. further notice, be
recived at the rates fiven belono
 increased rates.
Resittance oftofice order. - Australia, Belgium, Brazil, Brrtish
Columbin. Britt-b

* The charge for Advertisements of four lines and under is three shillings,
for very two lines afterwards one shilling and sixpence; odd lines are

 Advertisements cannot be Inserted unloss Dellvered before 81x
 DEATH.

THE ENGINEER.

SEPTEMBER $10,1886$.

the trades congress

The Trades Congress is sitting at Hull, and on Tuesday morning Mr. Maddison, the newly-elected president,
delivered his inaugural address. This address has been reported at greater or lesser length by our daily contemporaries, and we shall not attempt to reproduce it. It may be regarded as, in many respects, an important manifesto, and is well worth consideration. Mr. Maddison holds capital has no existence apart from labour, and that capital has far too large a share of this world's good things, grinding down and oppressing labour. "According to the theory of the political economist,") says Mr. Maddison,
"the capitalist is the great motive power of the world's the capitalist is the great motive power of the world has too often been regarded as simply a piece of machinery or producing capital. The truth is, nevertheless, however revolutionary the idea may seem to some, that the capitalist has no existence apart from labour. In a word, there is no capital but labour. Instead of capital and labour being separate, the former is but as the fruit and
the latter the tree. The order of the natural world has the latter the tree. The order of the natural world has
been entirely reversed in the industrial world. The unfair conditions of reversed in the industrial worl. Tess degree in all countries-under the Autocratic Government of Russia the Constitutional Monarchy of Britain, and the Republics of France and America. That shows that there is some
cause existing by which the workers as a body are prevented from participating in the due and legitimate reward of their toil, and the workers of the world will soon ask with an all-powerful voice, Is the labourer doomed by an
eternal law to toil that others may enjoy the products of eternal law to
There is, we need hardly say, nothing new in all this, and there are some things in th which are true as well as
old. But the statement, as it stands, is all the same, full of fallacies-or which are more dangerous, half truths. It is quite correct to say, for example, that capital is the product of labour; but all the labour in the world will not alone produce capital. Capital really consists of savings. he will never become a capitalist. If, on the other hand he spends each year less than he earns then he will accumulate property and will become in a smaller or larger way a capitalist. Capital, then, is not the creation of
labour alone, but the creation of labour and habits of saving. Furthermore, it does not appear that as the world is now organised it is possible for labour to achieve any thing without the aid of capital. That is to say, modern
labour must depend for its useful employment on the results of the thrifty habits of some person or persons who have gone before. If the capitalists were abolished tomorrow, and the money and property which they possess were to be equall sense that all manufacturing operations would be stopped and labour would come to an end for the time, or else by the natural progress of events it would begin to accumulate munity The such truism that it appears almost waste of time to pen It may be said, however that Mr. Maddison does not really mean that capital should be distributed to the last penny, but only that it should get a smaller share than it gets now of profits-that, in other words, the labourer should get larger wages. This would be effected by the thorough cosmopolitan organisation of accept wages as low as they are now. It would be quite practicable, we may assume, to carry out this resolve, wat working man would be much better off than he is now. The truth is that he would not be anything of the kind. The result would be simply to degrade the value of gold. ties was produced, the working man would be neither better off nor worse off, because of a rise in wages. The cost of everything made would increase in the same proportion. If he had double as much wages next year as he has now, he would find the value of everything produced by labour just doubled in value, for the value of everything now is fixed by the quan But Mr. Maddison holds that labour produces everything. Therefore if the cost of labour goes up, so must the price of everything. The
value of gold would be diminished. But the capitalist of whom Mr. Maddison speaks does very little with gold. The capital of an engineering firm, for example, is largely represented by the tools and other machinery, and the buildings which it possesses. But as these depend in their turn for their value on the price paid for the labour
expended in producing them, the capitalist would nct
suffer by the change, and the relations between labour and capital would remain just what they are now. The working men in the United States get higher wages than they do here, but if we are to believe them they are not one bit better off than English men. But no doubt Mr. Maddison's theory is that when wages went up prices should
not go up at the same time, for the capitalist would have to pay the difference. There is no reason to think that this result could possibly ensue, unless, indeed, we lived on our past savings, which could have but one obvious end.
The truth is that the war of labour is not against capital, but against the capitalist. Foreign working men delegates are honest enough to say this openly. We do not assert that Mr. Maddison would wish to wage war against employers. But we are not quite sure that his sympathies do not run in the direction of such a war. Fortunately or unfortunately, capital accumulates in the
hands of a comparatively small number of individuals; and hands of a comparatively small number of individuals; and the great majority do not see why the minority should be
better off than they are. They see that the heads of firms better off than they are. They see that the heads of firms live in better houses, and have more of this world's
coods than they have, and they ask, Why is this? The true answer is that it is so because the money earned by capital goes into one pocket, while the money earned by labour goes into a great many.
We have already on a former occasion called attention to this point. It is worth while to call attention to it again. We may suppose that there are two partners, who in a given engineering business make each $£ 2000$ a year. They will employ, say, 500 hands, each earning on an average, let us suppose, 30s. a week. The men say that in such a case
capital is getting a great deal more than its fair share of profits. Let gital whatever, and that the partners are only to be paid as managers, and get, because such men as they are are comparatively scarce, $£ 500$ a year each by way of salary. This leaves available for distribution among the men $£ 3000$ a year, or $£ 6$ per annum each- 2 s. $3 \frac{1}{2} d$. ets no mo meap gets no profit at all. But it does not appear that the lot of the working man would be sensibly im-
proved. The word "profit" is greatly misused, and it proved. The word "profit" is greatly misused, and it
may be shown that all wages are really profits. In such a may be shown that all wages are really profits. In such a mount to no less than $£ 37,500$ a year, assuming the work ing year to consist of fifty weeks. Thus on the year transactions labour would get very nearly ten times as
nuch profit as capital, to say nothing of the fact that the ntire loss of the capital was risked daily. Even Mr. Maddison will, we think, admit that, regarded from this point of view, capital does not get too much. The shoe pinches because the share that labour receives has to be ivided among so many, while the share that capital faffis it ded among a few. Butios is a coidion can never alter. It is inherent in humanity that men should accumulate more property than others, and it will be so to the end of time
Mr. Maddison getting away from the capitalists was on irmer ground. He would be glad if means could be adopted dsewher could be peold by ind Australia, A mench, "who by their labour would add to the prosperity, not only of themselves but of the world generally. Any such scheme nder direct Government supervision and entirely voluntary on the part of the emigrant, would, he was of opinion, be heartily supported by the Congress." Turning esults of the present restlessness of one of the inevitable capital and labour. "By that means capital would take its legitimate position as the servant of labour, and not, as too often now as the dictator and oppressor of industry and toil." That was one of the subjects they would be called upon to discuss, and he had no doubt they would be able to show that co-operation was a necessary outcome of the Trades Union movement, always providing that any scheme of co-operation was conducted on the laws of strict union principles, and also that the promoters were men and women who had the confidence of the trade societies It is impossible to take an exception to schemes of co-opera-Co-operative manufacturing concerns supply the rst prasib means of instructing working men in the ere runciples of political economy. No bloated capitalist Yet it is worth while more than a fair share of the pipts of the hands in co-operative works is greater per annum than is on the ordinary system, and if so, how much. This a point which we would be glad to see definitely

The proceedings which followed Mr. Maddison's address were not of a specially interesting character, save in so far as they showed that there is some want of unanimity among the members. For example, there was difference of opinion as to whether it was or was not right that
men should be permitted to contract themselves out of the men should be permitted to contract themselves out of the
Employers' Liability Act. On this we have not space to Employers' Liability Act. On this we have not space to
dwell. When the Congress has concluded its labours we may consider what it has taught the world.
physical science at the british association.
The addresses and lectures delivered and papers read during the present meeting of the Britioh Association, supply food for thought, and lead up in many cases to deductions and conclusions possibly not foreseen by their tandin. We have before us the utterances of many men have set befor and possessing admirable reputations. They have arrived usthe theories and conclusions ausible not to admire the skill, ingenvity, and patien with which these men have sought to compel nature to reveal her secrets. It is equally impossible to avoid disappointment. The work has been so hard, the result so inconclusive and un-
satisfactory. Is it not all vanity and vexation of spirit? We have in our midst a small body of men who are, to themselves at all events, the very salt of the earth; the very embodiment of all that is best and greatest in the
world of science. Yet to what end do they work? How
far and in what way is the world the better of their better in any way. Old ground is gone over in a new way,
and to those who dare to speak of things as they are and to estimate the value of work in terms of its results, the utterances of the British Association philosophers sometime tend rather to excite pity than praise.
Let us begin with the address of the President. It is a history of the formation of the Atlantic Ocean. Let us assume that this history is entirely accurate, and ask our-
selves what does a knowledge of that history lead to? Can it in any shape or way promote the happiness and pro sperity of the human race? The answer must be that it can do nothing. The world would be, must be, in all actually no certainty whatever that this history is true From beginning to end it may be entirely inaccurate. Men not less able in his own way than the President of the British Association will reject all his assumptions as untenable. Cognate to this address is what is virtually a
dispute between Professor Darwin and Sir W. Thomson. The latter fixed the age of our solar system at somethin comparatively small, a dozen millions of years or so. It cannot be more, we are told, or the theory of the conserva-
tion of energy breaks down. Professor Darwin refuses to be tion of energy breaks down. Professor Darwin refuses to be be of an antiquity beside which Sir William Thompson's
period is a little span. Which of the two is right? Who period is a little span. Which of the two is right? Who
shall say? Is it of the smallest possible importance to us or to our children whether either or neither is right? In
an old volume of the Philosophical "Transactions" is a report of a council meeting held to investigate the truth of the statement that a spider will not cross a line of ashes from the horn of a deer. The circle is drawn on a table, round which sit the councillors. A spider is obtained,
placed within the charmed ring, and incontinently scuttles across it. There may be some error in this experiment, so the spider is caught and recaught, and trial is made
over and over again, and the philosophers come to the conover and over again, and the philosophers come to the con-
clusion that there is nothing in the statement-that, in a word, it is not true. There is a wonderful similarity
between this experiment and Professor Riicker spending long hours and the best energies of a by no means feeble brain in measuring the thickness of a soap bubble. The
old philosophers really did better work with their spider old philosophers really did better work with their spider
than Professor Ruicker with his soap bubbles. They lived in the age of superstitions-people invested plants, stones, animals, with all manner of uncanny attributes. To prove
that a spider would, against the popular belief, cross a ring of hart's horn ashes was to break down a superstition; and superstitions are like rows of bricks set on end, overturn had told his audience that where the black ring in Riicker had told his audience that where the black ring in a soa a millimetre in thickness he had advanced the sum useful human knowledge by nothing. The figures he used convey no idea whatever to the human mind, and it is
beyond Professor Riicker's powers or that of any othe man living to prove that they are accurate. Their
measurement is based first of all on a theory of light, still taught carefully in our schools and colleges as perfectly true, although it has long been known to those who and imperfect working hypothesis. Are we to say that
Professor Riicker shall not investigate the thickness of soap bubbles? Certainly not. But let us, like sensible men, estimate the value of his labours at just what they are worth. For ourselves, we can only regret th
able a man could not find more useful employment.
Let us turn now to Mr. Crookes' speculations on the nature of the elements. We are here face to face with
labours of a very different kind. If it were possible to labours of a very different kind. If it were possible to
break up iron, oxygen, gold, \&c. \&c., into something else,
or to find in nature that which these things, the most important results to mankind might follow. We have to do here with a speculation of enor mous possibilities, in which respect it differs very
widely from Professor Ruicker's investigations, and ought to possess much value. But when we come to read Mr.
Crookes' address, we find ourselves confronted with little Crookes' address, we find ourselves confronted with little
more or less than a poetical rhapsody, a disquisition which anyone with brains and a fine imagination might produce. concerning the nature and characteristics of which neither he nor any one of his readers has the smallest concep tion. We are made acquainted with that great world of cal philosopher, and about which anything may be
said provided there is imagination enough and courage enough, and sufficient power of putting on the possession of this power is supplied by a recent and
elaborate paper by Sir W. Thomson, on capillary attrac elaborate paper by Sir W. Thomson, on capillary attrac-
tion. The author does not hesitate for a moment to speak of attraction. He deals with the attraction of one particle learnedly about attraction as a thing that must be entirely oblivious to the fact that if attraction exists then the whole law of the conservation of energy is a myth; and It is enough to make Newton turn in his grave to hear a man of science talking gravely of molecules attracting
each other. The proof that attraction is incompatible
with the law of simple. Let us have two particles constituting a system These particles attract each other, and being free to move they approach each other; therefore they obtain momentum
or in other words, energy which they did not possess before. But this energy has been developed in the system, not obtained from any external source, which is flatly tum thus imparted to the bodies can, by the law of the conservation of energy, never afterwards be lost; when
the particles come into collision, they lose their momentum and are brought to rest, but the energy which they contained is converted into heat or some other form of
energy. Thus every time one body causes motion by
attraction in another body, or in itself, it creates energy, which is absurd; therefore there is no such thing as attrac-
tion. This is a digression. Let us return to the men of science at the British Association.
Are we to be understood to assert that there should be o such thing as scientific research? Certainly not; the more after Nature's secrets is always to be glorified as a species of demi-god. In all the other relations of life a man is valued for what he does, for the results he produces; but it is not so in the case of the man of pure science. Large
sections of the public are disposed to bow down and worship such men. Nothing that we can say is likely to
disturb their equanimity. There can be no harm therefore disturb their equanimity. There can be no harm therefore in asserting that the man of "pure" science, the physical up to the present done very little indeed to promote the well-being of the world. It is a noteworthy fact that to such men the world owes practically nothing. Even the
inventions and discoveries of recent date, which most inventions and discoveries of recent date, which most
depend, it would be fancied, on scientific investigation for their origin, have sprung from the brains of men knowing nothing and caring less for research. The men of science somehow or another are always too late. When a machine
has been invented they will explain the laws on which it has been invented they will explain the laws on which it works, and supply information, sometimes very valuable;
but somehow they do not originate anything. Their func tions are analytical. In synthesis they are nowhere. The practical man will take the man of research at his true
value. He will make use of him. He will not give him arge sums of money to spend on little, useless experiments, leading to nothing but the glorification of one man in the eyes of a small section of the world. He will turn him
into better paths. He will employ him in working out the solution of problems of real importance; and a day may yet come when the speakers at the British Association will, one and all, be able to prove that they have been doing good work and making themselves useful. There will always bedreamers amongus, and they will now and then make useful discoveries, and their writings and their work may be valuable; but these men will get on without State aid or "endowments." We leave them in peace, we wish them success, but we raise our voices in protest against socalled science put forward in a cloud of words-gigantic, high-sounding words, which deceive the unwary, while all is, and how utterly useless in the long run most of the research work done really is. In the writings of one of the Fathers will be found a disquisition concerning the possible number of millions of angels that can dance o the point of a cambric needle. For angels, read atoms and exit the saint, enter the modern philosopher.

MARINE BOILERS

WHEN the compound engine had been fully developed and perfected structurally for use at sea, it was said that no further improvement in engines was possible, and that boilers. Nothing whatever was done in this direction however-that is to say, in the sense of augmenting the economic efficiency of marine generators. The invention
of the corrugated flue by Mr. Fox, or, more correctly speaking, the development by that gentleman of machinery by which such flues could be manufactured with certainty and soundness at a reasonable price, rendered possible the
use of pressures which, without such flues, could not be ase of pressures which, without such flues, could not be
carried. Various other advances were effected in the structure of marine boilers; but whether made steel plates $1 \frac{1}{4} \mathrm{in}$. thick or of iron plates $\frac{3}{4} \mathrm{in}$. thick,
whether the pressure be 150 lb . or 70 lb ., the marine whether the pressure be 150 lb . or 70 lb ., the marine
boiler as a steam generator is just what it was many years ago. We have the same huge circular flat-ended shell, the cylindrical furuace, the rectangular combustion chamber,
and the comparatively large and short tubes, extending and the comparatively large and short tubes, extending
from the combustion chamber to the up-take leading to from the combustion chamber to the up-take leading to recently undergone new developments, and triple expansion promises to eject double expansion, just as this last turned supposed, however, that no efforts have been made to improve the design of steam boilers. Every effort, how ever, made in this direction has resulted in failure, and worth while to say a few words to explain why
It is obvious that adapted; and accordingly such boilers have been tried. To say nothing of the failure of Jordan's gigantic experi promising systems have been tested. Boilers which performed well on land have been tried fully and fairly at sea. One very successful type of water-tube boiler was frry ber ond have been removed. It is not that they burn their tubes or waste fuel, or refuse to supply dry steam. In these respects they are fairly satisfactory. The defect which Space on board ship is limited, and it is of the last importance that as much steam as possible shall be generated in that space. But the water-tube boiler, at all events as hitherto constructed, will not, space for space, make more than about 60 per cent. of the steam that an ordinary wateras that the surface is not very efficient. In nearly all cases the heated products of combustion are compelled during one portion of their flight to the chimney to pass of the tubes is practically quite useless for steam generat ing purposes. Hence a great portion of each tube is of Again, such boilers will not bear forcing. When they are large, and the quantity of coal burned per hour bears a small proportion to the total heating surface, they perform firns do not exist at sea, and so the water-tube boiler has been taken on its merits and failed. Yarious other
systems have been tested. Several promised well, but they
have all been finally condemned; and it may be safely said that outside ships of war, nothing is to be found but the ordinary cylindrical or oval return flue double or singleended boiler. Over and over the use of the locomotive boiler has been urged on shipowners. It has been tried and found wanting. The tubes have been a fruitful source of trouble by leaking, and the boiler is given worked prime. Besides, it is essential that it should be this cannot be had at sea unless expense and trouble are encountered, which shipowners do not like. There are no facilities at sea for washing out a boiler such as exist on every railway. The ordinary marine boiler will run for a couple of months without being opened or examined; not only will it do so, but it very often has to do so. This For practical impossible with the locomootive that there ander, and surface from which steam can liberate itself. If we take the case of a locomotive boiler working up to 500 -horse power we shall find that the whole of the steam has to be given off from a water area of about 40 square feet. In a marine boiler doing the same work, the surface will be at least double as much. The locomotive boiler works without priming, no doubt because the water within it is violently shaken by the oscillation and jolting of the engine as it runs. No one has ever yet succeeded in getting as
much dry steam out of a true locomotive boiler when fixed much dry steam out of a true locomotive boiler when fixed can be pot say, one with small tubes and plenty of the country The motion of a boiler at sea is totally different. Except in small ships in heavy weather, the motion is an easy roll, which would have practically no effect on a locomotive boiler. Our readers interested in this question will best understand what we mean if they will nearly fill a bottle with boiling-hot water, and cork it lightly. On then shaking the bottle, the cork will be blown out by the pressure of the steam liberated from the water by the haking. It is quite true that locomotive boilers are used in torpedo-boats, but it is well known that, to use an They are always on the point of priming, and require the They are always on the point of priming, and require the most judicious management to prevent it. The experience
obtained with such boilers is not of a character which would justify their adoption in the mercantile marine
Various forms of marine boiler have been tried in which the use of brick walls, or chambers, is involved in some marine boiler must be absolutely self-contained-a thing that can be hoisted in or out of a boat complete; and the only direction in which it seems possible that any change for the better can be found lies in reducing the diameter of the boiler shells and using more of them combined in
some way yet to be found out. Mr. Howard, of Bedford, devised a boiler of this kind long ago, which was very fully tested by Lloyd's engineers. It did not comply with the more may done in this direction. Mr. Howard aimed would me v. He made woul 7 ft in l , each 7t 14 , 1 , use one shell 14 ft . in diame quite disposed to think only engineers would gladly odopt any change on exist ing boiler practice if they could see that such a change would be for the better But amateur boiler engineers have no chance of effecting such a change. It can only be done by some one who has a consummate all round knowledge of marine boilers, their management, their peculiarities, and the couditions under which they are worked in various trades Unfortunately, the more a man knows about the modern marine boiler the less hopeful is he that he can improve upon it

Akin to the subject whicl, we are considering is forced draught, the object of which, as used in the Navy, is to augment the generating efficiency of a boiler; while in the and others as a mons of increasing economic efficiency The matter has been very fully discussed before the North The matter has been very Fons Encers, and very various opinions have been expressed. It is not too much to say that the practical information possessed concerning it is very meagre at present. In itssimplest form forced draught means neither more nor less than a higher furnace temperature, and as this is not accompanied by an increase in heating surface there must be waste of fuel. Chimney temperatures as great as 1200 and even 1300 degrees have been produce a strong draught. What the effect of these furnace temperatures is remains to be seen. There is, however, evidence to show that it is troubles of a serious character; that it is, in fact, inimical to the whole boiler in a high degree. In its less simple form the size of the grate is reduced, and only the same total quantity of coal is used per hour as without forced draught, so that the whole furnace temperature is not so much raised, but there is more localised heat. The question is how far the system may or may not be confor the boiler on the other. Theoretically there is nothing about the scheme which promises any saving of fuel which it would be worth while to risk a boiler knowledge, and as experience is acquired with forced Thaught, the truth, whatever it is, will be made manifest. fault results obtained up to the present moment have the fault of being too vague, too limited in their range of comparison, or too brier as regards the duration of the tests, to be of much value. Further experiment in this
direction is desirable, and should be encouraged. There is, for example, considerable diversity of opinion as to whether the air ought to be forced into the furnace or of the two systems is the better-that is, if either is superior to the other:
the richmond (surrey) main sewerage scheme. A DEFINITR stage has been reached in the arrangements for dealing with the sewage of the parishes of Barnes, Kew, Peter-
sham, Mortlake, and Richmond. The Joint Main Sewerage Committee-consisting of six representatives of the Urban Sanitary Authority and six of the Rural Sanitary Authorityhas arranged, at a cost of $£ 2500$, to prevent opposition from the Puke of Devonshire, Captain Popham, and the trustees of Nr. that their adjoining property would suffer from the erection of the proposed works. The committee's engineer has gone into
the matter, and on Tuesday the Richmond Vestry, as the Urban Sanitary Authority, sanctioned its committee's proceedings. The arrangements embrace wharfage rights, rights of way, the
widening of a bridge, purchase of land, and similar matters. It widening of a bridge, purchase of land, and similar matters. It is announced that the Local Government Board inquiry for the
necessary $£ 50,000$ or $£ 60,000$ to carry out the works will be which sometime ago received the approval of the local authorities was that of Messrs. Mansergh, C.E., and Mellis, C.E. The buildings are to be of a plain farm-iike appearance, not higher
than 35 ft . in any part except the stacks, and surrounded by a plantation of trees. The sanction of the Local Government Board is looked forward to with confidence, and the necessary engineering operations will be commenced as soon afterwards as
possible. Much satisfaction was expressed in the district as possible. Much satisfaction was expressed in the district
soon as the proceedings of Tuesday's meeting became known.
marine engines in the navy.
According to the Times reporter, the barbette cruiser Imperieuse, Captain Fane, has made an extremely successful three hours' full-power trial of her machinery between the Isle of
Wight and the mainland. "Her mean draught was 27 ft . 6 tinn. The mean pressure of steam in the boilers was 88 1b., the vacuum $26 \mathrm{in}$. and $27 \frac{1}{2}$ in. in the starboard and port engines respectively,
and the revolutions 83.6 and 85.2 per minute. The average and the revolutions 83.6 and 85.2 per minute. The average
power developed during the run was $4805 \cdot 44$ by the starboard, 719.316 by the port engine, giving a collective power come to be revised. Although only ordinary coal was used the occasion, the mean power indicated on the trial ams anted to more than 1700 horses beyond the original contract. Her mean speed, as determined by four runs on the measured mile,
amounted to $16^{\circ} 684$ knots. The Imperieuse will leave Spithead on Saturday for a month's cruise in company with the Colossus. The Impérieuse is a ship of 7390 tons displacement, and her measured mile speed is given as 17 knots. We suppose that this to the statement above, a power of 1700 horses in excess of the contract power failed to get within a third of a knot of the nominal speed. It is desirable that the meaning of all this
should be explained. Furthermore, it will be seen that the full power trial only lasted three hours. Even the ordinary miserable six hours was not attempted. Why? It is quite as desirable that the truth about engines should be eincited as the sstem of testing our ships and their machinery the better it will be for the country at large.

gas production and distribution.

Some two years ago we gave in The Enginker a of the report of a Durham gas company, choosing it because of glance at a later report, and to mark the changes in its condition. gas portion of its undertaking of rathany has a capital in the last year, that ending with June, 1886, it carbonised or used about 16,590 tons of coals, of which all was common coal except some fifty-five tons of cannel. There were $117,230,000$ cubic feet of gas sold at 2s. 6d. per thousand, whilst the gas sold for public lighting and under contract realised $£ 3479$. In all,
inclusive of meter rents, the gas revenue was $£ 18,089$. The coals and carriage to works amounted to $£ 6042$, so that it would in contrast with metropolitan companies, when the relative distances from a great coalfield is remembered. The cost of the gas as made-the mere manufacture-was $£ 10,183$, and the cost
of distribution, \&c., brought this amount up to $£ 13,382$ gas production Jeft certain residuals-some 7629 tons of coke, in addition to that used at the works, and for which $£ 2500$ was the sum received, and there were sums for breeze, tar- $-176,643$
gallons sold for $£ 541$-and ammoniacal liquor. In all, then, the eceipts for gas and gas products were $£ 22,030$, so that there during the year. The water sale did not yield quite so profit, but even with this drawback the company paid a good value of residuals. In some degree this may be counterbal inced by the step to be taken in the manufacture of sulphate of ammonia and other products from these residuals; but it is
clear that for a higher dividend, such as it paid in the past Durham Gas Company must lookch as it paid in the past, this tion both of gas and of water. It serves a large field in which rade has been depressed, but is now recovering, and in that

THE SOUND TUNNEL

Av agent of the Paris bank, the Banque Maritime, has presented proposal to the Governments of Denmark and Sweden for the under the Sound. The plan, which has been prepared by a employed at the Panama Canal, is for the tunnel to commence little east of Copenhagen, run under the waterway called Drogden, where the depth is about 24 ft ., to the island of Saltholmen "in the middie of the Souud, thence under another the same terminating a little south of the own of Ms almost the Swedish coast. The actual length of the tunnel under wete sestimated at $6 \frac{1}{2}$ miles, and it is to be enclosed in a tube of gauge, which can hardly be correct considering that both the road gauge Thish trunk lines, which are to be connected, are and the engineer is confident of being able to finish the con struction in the course of three years, though the concession pierced to be chalk and flint, as the two above-mentioned names of the waterways indicate in Danish. above-mentioned names concession has not been granted, but in all probability leave will be given shortly for the preliminary surveys, borings, \&c. The concession is to be granted for ninety-nine years, with forty years monopoly. The promoters state that nearly the whole
capital required for such an undertaking is available, it being supported, besides the above-named bank, by the Comptoir
d^{\prime} Essocompte and the Banque de Paris, Naturally the scheme
has been received with the greatest enthusiasm in the three Scandinavian countries, as it would of course facilitate communication and assist trade. It should especially become important the continent is concerned, when the German Canal
between the North Sea and the Baltic is completed. That the tunnel, as has been started, is the first link in a through communication cetween S weden and the Continent there is which would be far too costly to pay. In fact, many competent persons in Scandinavia assert that the greatest obstacle to should be borne in mind that the articles Sweden imports are drawn from countries so far distant from her that the tunnel would in no way benefit them, and mere local traffic could
hardly sustain it. As yet therefore the Scandinavian Governhardy sustain it. As yet therefore the Scandinavian Govern-
ments have contented themselves by asking for further pay ments have contented themselves by asking for further par-
ticulars and guarantees for the prosecution of the undertaking.
\qquad
ON THE TREATMENT OF SECONDARY
By Bernard Drake and J. Marshall Gorham.
The possession of a reliable means of storing electrical power is rary or permanent, whether domestic or public, it is almost an essential-for the commercial application of electricity to motive power it is a necessity. The theory of secondary batteries or already beens so ably dealt with, and is probably so well known to all present, that it is unnecessary to enter into it in this short paper, the object of which is to bring to your notice some practical
points of treatment which are essential in order to secondary batteries commercially reliable. These points have been arrived at by experiments carried on by Mr. Gorham and myself in the course of the manufacture of the batteries of the
Electrical Power Storage Company. The three main dificulties Electrical Power Storage Company. The three main difficulties
which we had to encounter were:-(1) The destruction of the lead grid or conductor. (2) The buckling or warping of the plates. (3)
The falling out of the active material. These three failings principally affecting the peroxide plates, militated seriously
against the commercial success of accumulators, of which duraagainst the commercial success of accumulators, of which dura-
bility forms so important a factor. We therefore carried out a large bility forms soimportant a factor. We therefore carried out a arge
number of experiments with a view to ascertain their various causes, and, by removing them, to render the secondary battery with which we had to do as reliable for durability as it already was in other respects. Here I may mention that these failings, although common,
were byno were byno means uni uersal. For instance, the E. P. S. accumulators years, and continue to give excellent results. That they do so years, and continue to give excellent results. That they do so
confirms the conclusions to which experiment has led us. We will take first :-(1) The destruction of the lead grid or conductor. This was the most serious difficulty to face, as on it depended the life of the battery. The prevalent idea was that it was due to overcoarg-
ing; that after the peroxide plate was fully charged any further ing; that after the peroxide plate was fully charged any further
charge caused an evolution of oxygen which rapidly destroyed the grid. We therefore proceeded to charge some cells without cessation, in order to ascertain the exact amount of current which would entirely destroy the lead conductor or grid. It was soon evident
that the process was, at any rate, a slow one; but the experiment

was continued, until the full prescribed current had been passed was before charging. The coating of fine peroxide formed on the surface was very thin; there was no sign whatever of buckling, and,
further, the specific gravity of the solution, when the cells were left fur their then specily charged condition, remained absolutely unaltered. The conclusion thence drawn was that the oxidisation of the grid
caused by charging only penetrated to a very limited depth, and then ceased entirely, and that the coating of fine peroxide formed actually protected the grid, not only from deterioration by overcharging, It was then established that the life of the grids was not proportional to the amount of charging, i,e, to the number of ampere hours put into a cell. Was it due to the number taken ascertain this was the object of the next experiment. For this purposea a batuery was diviced into two halves, one or which A was the point at which the E.M.F ment also extended over a considerable time, but gave the instruc tive result that when exactly the same number of ampere hours showed signs of expansion or growing, whereas in those of the then was also not dependent on the amount of ampère hours taken out, or on the work done, but on the treatment of the plates, first as to charging up, and afterwards as to total or partial exhaustion.
Further, it was satisfactorily proved that there was no necessity to employ a conductor of unoxidisable material, providing the simple to avoid discharging them entively, The seond point to be con sidered is :-(2) The buckling of the plates. This had hitherto been too rapidly ; impurities in the acid or oxides employed. Experiment soon showed that the real cause must be sought for elsewhere We found that the buckling was almost invariably accompanied by further, that where the extra cells in a battery had received more charging than the remainder, the plates in these cells were frequently quite free from sulphate, and the consequent tendency to the enamelling could be prevented by charging, and was not due to impurities in the oxides or acid used; further, that when the plates were free from sulphate there was no tendency to buckle. Experiment also showed that in the case of the first use or cello, when the acid was first put in, the specific gravity dropped in spite of the charging the sulphate disappeared, and with it the tendency to buckle. The conclusion was then, that in order to avoid buckling of the peroxide plates, ells on their first use - whether new or after long disuse-should be charged incessantly until they are considerissued to users of the E.P.S. batteries. Whereas hitherto they had been specially cautioned against overcharging, they are now urgently required to overcharge new cells, and to charge inces-
santly. (3) The separation of the active material. In almost santly. (3) The separation of the active material. In almost of the plates in complete halves and in a very hard condition; and
analysis showed that they contained an excess of sulphate, due, as
hefore explained, to insufficient charging. On the other hand, in ome disin tegrated and fallen off in a fine powder, and this was specially
observable when, on account of a leak in the receiving vessel and consequent frequent addition of water, the solution had becom
 that a certain proportion of sulphate in the material is
neeessary to bind it together, but that excess must me avoided
This due proportion once ascertained, the third difficulty is This due proportion once ascertained, the third difficulty should be mentioned, however, that there is a constant demand for an accumulator which can be discharged without injury at an abnormal rate for special purposes. Such rapid discharge result plates, but as it causes the formation of sulphate, which is the binding, not the disintegrating agent, the cause of the scaling, an therefore its remedy, must be sought elsewhere, and on this poin discussion is invited. I venture briefly to recapitulate the conclusions to which our experiments have led us:-(1) That the life of
the leaden grids or conductors, and their freedom from buckling are in no way dependent either on the mount of charging or dis charging of the cells, (2) That cells on the occasion of their firs use, and also after long intervals of idleness, should be very
fully charged, and in the first case incessantly. (3) That they should never, under any ciroumstances, be entirely run out
and, in fact, should not be discharged below the point at which the electro-motive force begins to drop perceptibly (4) That the coating of fine peroxide formed during charging is
actually a protection to the plate against the injurious effect of

overcharging, and against local action. (5) That a certain smal proportion or sulphate is necessary to give cohesiveness to the bodily from the conductor. If the precautions here indicated be taken, we believe that the accumulators now made by the company with which we are connected will answer every ordinary commer ilal requirement durng a very considerable time, but an accumulator is not at presen an eficiency will stand the and times demanded. As we thought it might be of interest to giv some reliable figures on the results which may be expected from cells as they are now made, we have, during the las made very careful tests with some cells ments of an electric light installation. It will be seen from discharges, that the E.M.F. is practioally constant during a
discharge of such duration as the cells would ordinarily be called upon to give, namely, nine hours-the fall of E.M.F.
during this perio cells were discharged for $4 \frac{1}{2}$ hours, left standing for a day, and then discharged for another 4i. hours, the result was exactly the
same as when the discharge was continuous, both as regards
E.M.F. and efficiency. In fact, we wwere able to obtain a short
. time baco from a similar cell, lety fully charged for a month, an
output of 380 ampere-hours. The charging of the cells under test was always continued for about an hour after the gases commenced to be given off, so as to comply with the requirements of our work
ing instructions, and to keep the plates in good order. This naturally reduced the efficiency or return both in ampère-hour and watt-hours; but in spite of this over-charging the result of
six consecutive charges and discharges gave an efficiency of 90 per cent. ampère-hours and 80 per cent. watt-hours. Curve D show
the capacity of the cells in in ampère-hours when discharged at 2 t amperes rate, and is the mean of two continuous discharges. It
will be noticed that with 10 per cent. drop of E.M.F. the capacity lists of the company is reached with a drop of under 5 per cent. in
E.M.F. The curve marked C shows the rise of E.M.F. during the

charge, the current being throughout kept constant at 22 ampères.
It will be seen that at the commencement of the charge the E.M.F. required was only 202 volts, that after 220 ampère-hours had been
put in, representing about half the charge, the E.M.F, had risen to $2 \cdot 13$, and that when the cells were giving off gases freely the E.M.F. was as high as 2.53 volts. This curve will no doubt be of
interest to those who manufacture dynamos for use with secondary batteries, as it shows clearly the range of E.M.F. for which probision has to be made if the current is to be kept constant. In
most instances, however, we arrange for a maximum E.M.F. of most instances, however, , we arrange for a maximum E.M.
2.5 volts per cell to be ofarged, and allow the rate of charging to
to be diminished as the cells becone full. The cells tested were of
the 15 L type, and contained seven peroxide plates weighing 36 lh . the 15 L type, and contained seven perox. 31.1 . 1 These plates are
in all, and eight of spongy lead weighing
not not made to give the maximum output from the minimum of
weight, but the chief consideration is durability coupled with efficient working. They give a capacity of about 5 ampère-hours per
pound of plate, which in the S. type plates is increased to $6 \frac{6}{2}$ amperehours per pound for tramear work; and where durability is of minor importance there is no difficulty in obtaining considerably higher during discharge and found to vary from 0012 ohm when the cells where fully charged, the 0026 ohm when discharged, to 10 volts, first on open circuit and afterwards discharging at a known rate, but owing to the tendency of the cells to rapidly recover their E.M. Fi when ert partially dischargea, it is somewhat difficult to We are convinced that the above figures are absolutely trustwo thy as the strictest precautions were observed by Mr. Butler, the head of our laboratory, in calibrating the instruments used and checking
the results, The current was measured by frequent readings of a Siemens' dynamometer, checked by a voltameter, the two being found to agree within 1 per cent. The E.M.F. was measured with cells and freshly-made Daniel cell, the total resistance of the

PULVERISING MACHINES.

Profrssor von Hermann Tischere, of the Technical High School, Hanover, recently published-Zeitschrift des Vereins
Deutscher Ingenieure-some interesting and, in several respects, suggestive considerations of the action of pulverising machines in general, and on stone-breaking machines in particular. From his writings we extract much of what follows, and believe it will be found interesting to many of our readers.
Before discussing the different machines themselves, it will be better to call attention to the characteristics of pulverising, and to introduce a few practical examples. Pulverisation is seldom pushed to extremes; usually a certain definite size of the reduced substances which exist in masses perhaps, better named disintegration; the nature of the substances, its tenacity, texture, \&c., render it necessary to use different treatment-for example, the material used for making paper requires to be torn to pieces so as to pro-
duce a fibrous pulp, others, such as ores, to be reduced to fine granular powders. In the former case, the disintegration must take place in a longitudinal direction, or along the lines where the masses or bundles of fibres are weakest. In some
substances a step-by-step or gradual reduction will produce a fairly regular result. Even from an unhomogeneous body the more gentle action of gradual reduction, combined with the

separation of the sufficiently reduced particles as soon as they are formed, gives a better chance to the harder particles of being A close exanination of the action of pulverisation will be useful. Before pulverisation of any body can take place the same must be strained to the limit of elasticity. The work done in pulverisation may be divided into two parts on A_{1}, corresponding to the elastic limit, and the other A_{2} that force over and above A_{1}, which is necessary to bring about the disintegration. It is not easy to separate the two forces clearly in either very brittle or very elastic bodies, but they may be easier "flow" of the particles of which they consist. Taking two substances, one-glass-whose elastic limit is small, and the subis considered a brittle substance, and another with a wide elastic limit-india-rubber-it will be easily seen that loss of power expended in disintegrating a mixture of particles of the two substances would occur, because the work that would break up the particles of glass would simply be lost on the indiarubber, therefore for economical pulverising it is essential to
deliver the material to the pulverising machine in as homodeliver the material to the pu
geneous condition as possible.
geneous condition as possible,
The speed with which the pulverising action takes place influences the magnitude of the elastic limit, in that the internal friction of the body-of the particles forming the body-increases
with the speed of the action. The speed also influences the with the speed of the action. The speed also influences the tion to happen sooner than a slow action, so that for reducing somewhat tough or pliable bodies a quick action is of advantage.

With few exceptions, the action takes place only in a small part of the outer surface of the bodies; the pressure thus exerted, on account of the inertia of the body, can only spread gradually throughout the mass. If a body be hurled against another body at so great a speed that it may be considered as rigid, then the moving force-(?) kinetic-of the hurled body furnishes the force for its own destruction. If the body be very plastic a flattening only will take place; if slightly plastic, it will be only cracked, the action being sufficiently rapid not to allow the
particles to flow. But the whole force of the hurled body only parts on that part of the same which strikes on the surface of the resisting body, so that the body is unequally acted upon. resisting body, so that the body is unequally acted upon.
Suppose a body to lie between two rigid surfaces-Fig. 1-and let the surfaces be forced together at first within the elastic limits of the body, on further forcing the surfaces together the body will continue to alter in form; if plastic It will flatten out into a cake, or if the movement of the surfaces be too quick to
allow the particles to flow, the body will be split into many allow the particles to flow, the body will be split into many fragments. Bodies may be flattened out by
would be split into fragments by quick action.
The pressure which is exerted by the acting surfaces on the
body between them is not distributed quite equally over the

same, on one side there is the internal friction of the smallest particles of the body in opposition to the regular transmission of the force; the friction of the crushed body on the surfaces According to Kick's 'researches (Dingler's Poly. Journ., 1877, vol, 224, p, 465) the particles form into sliding cones, supporting
themselves on the pressure surfaces with their points towards one another, so that to a certain extent the body is wedged asunder. One cannot reckon on a perfectly uniform result with pressure only between surfaces as just
described. Unhomogeneous bodies split long the weakest place, perhass in split along the weakest place, perhaps in a plane verising by simple pressure, stamping mill and crushing rolls run at equal periphery speeds may be cited.
If the surfaces are pushed whilst they are approaching each other-Fig. 2-and if cient, it will roll between them, and will soon be torn asunder in a direction parallel Sometimes during of the pushing action action an unobserved tering action place. Supposed to be acted on by two place. Supposed to be acted on by two body whilst it is not in a condition to follow this pair of forces by rolling, part of the body will follow one force and part the other force, and a separation will take place along the plane of the weakest place, sup posing that the two acting forces are sensibly parallel to each other. This fact is made use of in preparing paper pulp and in the reduction of corn. Such action takes place with rollers running at different periphery speeds, and with millstones. The action of millstones is clearly shown by the cross sections-at description. The shearing action, with sharp-edged furrows running in an opposite direction to Figs. 3 and 4, is shown in Figs. 7, 8, 9, and 10 . The action is different when the surfaces are furrowed, but with furrows much smaller in proportion to the grain than before. Fig. 11 shows a cross section of a pair of grooved rolls, such as are used for breaking corn in high milling break rolls. The roll b is supposed to travel twice as fast as the roll a. It will be seen that the grains of corn are held on the
furrows of a, and are sheared off by the sharp edges of b. The action of the beaters in the paper pulp machines is somewhat

similar. The edges of the acting surfaces of these machines are shown in cross section, Figs. 12 to 14. If the bundles of fibres lay across the edges, a pinching aetion will result; if the distance
apart of the beaters be sufficient and the disc be moved, the part of the beaters be sufficient and the disc be moved, the will take place along the weakest place. In order that grinding surfaces may give the necessary friction to tear apart the bodies to be ground, they have generally to be artificially roughened. In Zippser's wheat cutting machines-Figs. 15 and 16-the rolls are formed of alternate saws and distance pieces, and are run at different speeds; the body is broken on three points-Fig. 16. Stone-breakers belong to the class of machines with vibrating jaws. It is necessary that the material as it becomes broken should fall away from the acting place, the simplest way is
by the weight of the material. Stamping mills with a revolving drum are used in Belgium for reducing fire clay-Fig. 17-the reduced fire clay is helped away by the motion of the drum. When the outgoing material is forced onward by the grinding surfaces there is doubtless much loss of power and capacity for doing work, yet this means is very usual-for example, dry stamping mills and the usual millstones; but with regard to the latter, there is a great difference in the action of over and under running millstones. Broken corn, "Schrot," will safely run down an incline of 45 deg . ; fine flour requires a much steeper angle; whole corn a less steep angle, so that 45 deg. may be
taken as the mean. The frictional resistance of the just

mentioned materials is sensibly equal to the weight. Taking 120 revolutions per minute as the average speed for the unde running stone, the throwing out force s, the radius r
then $\quad \mathrm{S}=\frac{m \cdot v^{2}}{v}=\frac{\mathrm{G}}{g} \cdot r\left(\frac{2 \cdot \pi \cdot 120}{60}\right)^{2}$
where $m=$ the mass of the body, G the weight, g the well-known number $981, v$ the periphery speed corresponding to the radius r particles,

$$
\begin{gathered}
\frac{\mathrm{G}}{g} \cdot r\left(\frac{2 \cdot \pi \cdot 120}{60}\right)^{2}=\mathrm{G} \\
r=\left(\frac{1}{4 \pi)^{2}} \cdot g=\mathrm{G}\right.
\end{gathered}
$$

that is to say, that at $60 \mathrm{~mm} .-2 \frac{3}{8} \mathrm{in}$.- distance from the centre o the under stone, the throwing-out force with the stone running at the speed named is sufficient to send the meal forward. This force increases with the radius, and soon becomes so great
that the meal will fly out through the furrows without being reduced, unless the form of the furrows be correctly designedKick, "Die Mehlfabrication," 2nd edition p., 137. It is quite otherwise with overrunners here, certainly the throwing-out force has infuence, but not to so great extent, as the meal participates ine the corser action is also due to the crossing of the furrows. Much discussion has been expended on the best form and position of the furrows, but of late years this has been found to be of secondary importance, and has been thoroughly entered into by Professor Kick-op, cit.
action water exit of the reduced material from the sphere of action water has been used--for example-in ore stamping, paper
making, \&c., and currents of air have been used with advantage meal and for gring, for the twofold purpose of forwarding the Proportional Widerstände," According to Kick "Geretz der independent of the method employed. The mechanical work

used by the machine varies between wide limits, the friction of the machine itself greatly varies, and so also does the internal
friction of the body to be reduced. Unfortunately very few if any data are to hand as to the power required. Such experiments are both costly and troublesome.
In breaking up a body with machines with vibrating jaws, such as Blake's stone breaker, the action is not purely that of crushing, it is more of the kind represented in Fig. 16, the breaking on three points, as the jaws are usually furnished with corrugations, or rather with wavy surfaces. These Haven, Conn $\mathrm{S} A$ in th 1858 Wlake, of New motion, Con., U.S.A., means of a link, a double-armed lever, and a thrust rod. Later

on the link acted directly on the knee lever. Other varieties of lever arrangements have been used, of which more will be said anon, and we will first describe the jaws themselves. Fig. 18 shows a cross The angle α must be such as to prevent the material from being thrown out upwards. Sometimes the angle is as great as 27 deg . so that the value of friction must be about 0.24 . With such an ngle there is danger to the workmen of pieces being thrown observing Fig angle, about 20 deg ., is found to any point in its surface on the line $a b$ will also move slightly upwards, this upward motion arising from the position of the centre of motion. A slight rolling or gliding action of the body on the surface will result from this motion, so that the whole of the motion will not be used in pressure on the material. Fig. 21 shows a different position of the centre of motion. Here it is

FIC. 24

situated at the bottom of the movable jaw, so that instead of tending to move the material upwards, there is a slight tendency to move it downwards; butit will be seen thatin such an arrangehind ared but this is obviated by placing the centre of motion in Fig 21. This arrangement is used by Dykhoff, Mehler, and Malter.
Mehler's machine is shown in cross section in Fig. 22, and an utline of George Malter's in Fig. 23. The form of jaw with regard to the nature of the surface to produce a more or less pure crushing action is important. Quite smooth surfaces are now rarely used. The surfaces are usually made with longitudinal waves or corrugations. Cross sections are shown in Figs. 24 and 25 . A slight difference in the form of the corrucross section, Fig. 24, is suitable for brittle substances, and the cross section, Fig. 24, is suitable for brittle substances, and the
second form, Fig. 25, is suitable for angular road metal, with furrows or corrugations 65 mm ., $2 \frac{1}{2} \mathrm{in}$. pitch, 12 mm ., $\frac{1}{2} \mathrm{in}$. deep A shivering action is given, but with 20 mm ., $\frac{13}{18} \mathrm{in}$. deep, less A shill stuff is made. The wear of the jaws is considerable, so that it is usual to make them removable and of the hardest possible material, such as chilled cast iron. The distance between the jaws at the top naturally determines the size of the pieces which the machine will take and the distance between
them at the bottom the size of the broken pieces; this disww at the bottom is about 5 to 15 mm - stro to $\frac{1}{8} \mathrm{in}$. The knee lever or toggle is the most usual means of transmitting the motion to the jaw, but as it will only give pressure in one direction a spring is provided to bring the jaw back. Some-

imes, however, levers have been introduced to bring the jaw back, ostensibly for saving the loss of power in compressing the form of Marsden is shown in the section Fig. 26. The crank shaft F acts on the lever H by means of the connecting-rod G the axis of the lever H is supported in the frame in one direc tion only, that is, vertically, but is free to move horizontally and is adjusted by the wedge blocks L and M , against which ne end of the piece X rests; the other end of X rests on the lever H; the toggle U transmits the motion to the jaw D , and gives many small supplementary blows during the forward motion of the jaw, and is supposed to imitate the action of han breaking, but there does not seem to be any proof of this simimovable jaw in the usual manner, and are held in the fixed

aw by the plate B. The return motion of the movable jaw i given by a rod and lever, and is equalised by rubber buffer W A machine of this kind, with the mouth 200 mm . by 380 mm -8in. by 15 in .-running at 250 revolutions per mize, will per hour, and requires 4 -horse power.
Another unusual system of levers by Baxter is shown in Fig. 27. The connecting-rod is attached to the upper end of an arm a, swinging at its lower end on a fixed bolt; the rod b is also attached to the upper end of a, the toggles $c c$ lie in the ower end of b. It will be easily seen that the movable jaw will approach the fixed jaw e with a jumping motion; but simplicity is certainly not a characteristic of this machine, whatever the advantages of the complex motion may be. Bigge arranges thus giving twice as mans the crank make revolutions,
The practical value of these stone-breakers consists in their capability of breaking-down large lumps of hard material into small pieces of the size of walnuts, or even hazelnuts, and it is not fair to treat them as capable of doing anything further, and they are often successfully used for reducing large pieces to a size suitable for further reduction by other more refined machines. The power required and amount turned out is shown in the next table.
From the Actien-Gesellschaft Humbolt, Kalk, near Cologne. Size of mouth in inches $\left\{\begin{array}{l}\text { length } \ldots \\ \text { breadth } .\end{array}\right.$ Driving pulley in inches $\left\{\begin{array}{l}\text { breadth } \\ \text { diam. } \\ \text { width }\end{array}\right.$ Vibrations per minute
Horse-power required
Hourly turnout in tons $\left\{\begin{array}{l}\left.\text { lin. }{ }^{1}\right\}\end{array}\right.$ Space occupied by ma- $\left\{\begin{array}{l}2 \text { ing. } \\ \text { length } \\ \text { chine in inehes }\end{array} . . .\right.$.
${ }^{1}$ Width of opening between jaws at bottom, or size of pieces, C. Mehler's Stone Breaker, Aachen.

Number of machine	1	2	3	4
Size of mouth in inches .. $\left\{\begin{array}{l}\text { length } \\ \text { breadth } .\end{array}\right.$	${ }_{13}^{23}$		${ }_{\text {12 }}^{12}$	年翟
Driving pulley in inches.. $\left\{\begin{array}{l}\text { diam. } \\ \text { width }\end{array} .\right.$.	${ }_{23}{ }_{6}{ }^{3}$	15	$11{ }_{4}$	97
Speed per minute	200	$20{ }^{4 /}$	200	$200^{3 .}$
Horse-power required	12 to 14	$8-10$	4-6	1-2
Hourly turnout in s size of pieces lin.	,	4	$2 \cdot 5$	$0 \cdot 6$
tons $\overbrace{\text { a }}$	${ }_{85}^{12}$	70	${ }_{56}^{5}$	$1 \cdot 2$
Space ocoupied by ma- $\begin{aligned} & \text { length } \\ & \text { chine in inches }\end{aligned}$.. ${ }^{\text {a }}$ width ..	85 56	70 47	56 39	44 31

[^1]
shown in Fig. 29. The connecting-rod a moves the jaw b, the placed to allow of the accidental entrance of an unbreakable

FIC. 29

piece to move this jaw back so as to avoid risk of breakage. Marsden has attained very nearly the same motion, but in a more durable manner, by the arrangement shown in Fig. 30. The connecting-rod F transmits
the motion of the crank P to the lever C, which swings

n the strong bolt D , the friction is reduced by the link the lever C takes hold of the jaw B by the bolt E, and gives a kind of circular motion ; the jaw B is supported against toggle resting against an adjustable block; a complex up-and down to-and-fro motion is thus given to the jaw B. A machin

of this kind with a mouth 380 mm . by 180 mm .-15in. by 7 in .running at 250 revolutions per minute, will break 6 tons of the hardest basalt per hour using 4 -horse power. Huet's stone-
breaker has jaws moved backwards and forwards, and at the

same time are revolved on each other; the work might be much easier done with rolls running at different speeds. Humboldt's Fig. 31 - the

METALLIC SLEEPERS

Whatever be the fastening adopted for metal sleepers, it must be better than any hitherto employed for timbe sleepers, is the conclusion arrived at by an engleepers on the Belgian State Railways. In any case cotters should be preferred to bolts, the threads of which rust up, so that it becomes impossible to tighten the fastening by screwing up the nuts. If the rails are thus securely fastened the sleepers, the impact of passing trains is transferred to the whole surface of contact between the sleepers and the ballast, and diminished by being evenly distributed. Although cast-iron hairs may have broken with double-headed rail, owing to aws being too bria th ther oting to fear mones to be lightly abandoned. If chairs be retained, it seems only reasonable to arrange, on either side of a pair of them, bars of such a section as shall offer great resistance to deflection, with a symmetrical form and the greatest possible width, which conditions are fulfilled by bars of Z section.
Figs. 1 and 2 of the accompanying sections show two forms of sleeper made up of Z bars, devised by a former railway manager, now at the head of a large manufacturing establishment in Belgium, but who wishes to remain incognito. He prefers th

form shown in Fig. 1, because it can be packed at two levels, first in the middle and then on the outside, while giving the greatest difference of level between its outer edges and the soil over a considerable width of soil. The cotters are made of iron, split while hot by the saw, so that the ends may be bent over to prevent any withdrawal; but experience has shown that, when they are fitted at an angle less than that of friction, they do not of a few cotters to each rail. When the \mathbf{Z} bars are rolled of such iron as will not deflect under a strain of four tons to the square inch, weighing with their fastenings 1 cwt .3 qrs., they may be turned out for 10 f ., or 8 s . The moment of inertia will be $6 \cdot 646$, the moment of deflection 729316, and the ratio of moment of inertia to the distance of the most strained fibre at the centre of deflection will be 120837 .
Instead of \mathbf{Z} bars, rolled joists, such as are used for the frames of railway wagons, or high rails, like those shown in Fig. 3, may be used with good results, and coarse gravel ballast would certainly not rise between the two bars. which, especially with which, after their term of service, would be nearly as valuable for re-melting as a specially rolled sleeper. The old rails would be cut into two lengths of about 8 ft ., and rivetted one on each side of the pair of chairs, so that the weight of the sleeper would

be rather over 3 cwt . While the sleeper made of \mathbf{Z} bars, arranged in the form of a trough, gives a bearing at the formation level of 62 centimetres, or 2 ft . wide, that composed of \mathbf{Z} bars in the form of a reversed trough, and those made up of joists and old rails, give a bearing of 54 centimetres, or 21 in . wide.
As to the question whether sleepers should be made of iron or steel, our anonymous author concludes his pamphlet, which has lately been issued in Brussels, by observing that, though for rails and tires, whentedly preferable; it has disadvantages deflection, stere resistance to flexile strain only is required, as in the case of bridges and sleepers. Steel is apt to become coldshort in winter, and it also requires special precautions while cooling on leaving the rolls, besides which a pour of steel may be bad, so that a lot of sleepers would require minute testing. In any case, a sleeper made of steel with higher tensile strength than 26 tons to the square inch will not stand long. But the use of iron sleepers in preference to sen steel has to be imported.

An Eleotric Lighted Oil Steamer.- The new German steam ship Gluckauf, which arrived at New York recently from Newoastle, was built expressly for the oil traffic, and will carry oil in
bulk across the Atlantic. The oil which she will land in Europe will be conveyed in tank cars to the leading markets. This will enable American oil to compete with Russian oil, which is sent to the markets in a similar manner. The Gluckauf measures 2297 tons gross and 1508 tons net; she is 299 ft . long and 36 ft . beam.
There are sixteen tanks for oil in the hold. These tanks have a There are sixteen tanks for oil in the hold. These tanks have a
capacity for 2600 tons of petroleum. The vessel is barkentine capacity for 2600 tons of petroleum. The vessel is barkentine
rigged. The only openings into the hold are manholes in the deck. The engines and boilers are in the after part of the vessel, and are cut off from the oil tanks. In order to insure further safety, the vessel is lighted throughout by electricity.

WATKIN'S AND STRACHAN'S PATENT AXLE-BOX, EAST INDIAN RAILWAY.

A NEW AXLE BOX.
IN this country we are so accustomed to the use of horn plates to keep railway axle boxes in position that it seems difficult to believe that they can be superseded. We illustrate, however, a very ingenious arrangement which
success on the East Indian Railway.
success on the East Indian Railway.
Fig. 1 shows the arrangement as fitted to a tender bearing. The holder D is an oval-shaped ring with circular guide pins at top and bottom, and fitted with steel or iron bushes H, Fig. 2, bushes, and-as will be easily seen-do the work of the cheek block. The brass bearing B has lugs on either side, through which pass the bolts which sustain the keep C, which is made of $\frac{1}{8}$ in. sheet iron. From Fig. 2 it will be seen that the holder has a projection which extends the whole length of the bearing, and as these fit into lugs cast on the top of the bearing, it is thereby prevented from turning round. Fig. 3 shows the arrangement as fitted to the driving wheel of an engine. As will be seen, the guides in this case are at the sides. Fig. 4 shows the holder as It is the and bolted together after the style of an excentric strap. A tender carrying ten tons on each pair of wheels was fitted up in this manner nine months ago, and has been running daily ever since in front of an 800-ton train, and up to the present no sign of wear has shown itself. It was thought that these guide bushes would quickly wear away ; but such is not the case in practice, and it is thought they will wear even longer than the cheek blocks. A mail engine and tender has been fitted up in this way, and is now running the mail train between Allahabad and Cawnpore. The engine is one of Beyer and Peacock's make, wheels 9 thens drawing a train of about 300 tons at a speed of about forty miles an hour.

The advantages claimed for this invention are that it is less than half the weight of the axle box and cheek blocks. The bearing and the bushes are the only wearing parts and are easily replaced, thereby effecting a great saving of labour; on account be changed without lifting the engine ; the keep being easily detached, affords the driver of a train the facility of examining an axle within a few minutes. When once a frame has been out of square with the frame and the renewal the bushes sets the wheels square without any trouble such as is experi enced with fitting up cheek blocks. It dispenses with the necessity for the use of heavy machinery such as is needed to machine large axle boxes. The invention has been patented by Mr. John Strachan, district locomotive superintendent, and Mr. F Watkins, locomotive foreman of the East Indian Railway.

The Basic Process.-G. Hilgenstock, of Hoerde, read a paper at the general meeting of the Association of German Ironmasters
on June 27th on the composition of basic Bessemer steel cinder, and gives the results of experiments showing that the phosphorus probably first is eliminated as tribasic phosphate of iron, which in why so high a percentage of lime must be added

THE SALT INDUSTRIES

HaLf-A-CENTURY ago the marshes at Port Clarence were a portion of the river delta, and were liable to floods, which rendered them unproductive, and which left them in large part but a dreary morass, which was intractable to agricultural science. It is altogether a fal acy toimagine that there were at any time brine springs in the neigh
bourhood, or that there were evidences of any kind that there was situated beneath the earth a huge bed of salt, such as was discovered in 1862. Until within quite a recent period-a decade of years at least-the Saltholme marshes were remarkable only for 5000 acres in extent. All this, however, is changed as land, some cian's wand, and there are now evident in all directions abundant signs that the time is not far distant when Port Clarence and Haverton Hill will be as busy a centre of industry, though happily of a different kind, as is furnished by the town of Middlesbrough sea. Crossing over the ferry the visitor acquainted with the former characteristics of the district will be astonished at the sudden revolution which has taken place. The Anderston Foundry has grown to an establishment of large proportions, and already employs hundreds of men. We are pleased to learn that this company has recently received large orders, and promises to be busy
for at least nine months to come. In addition to the ordinary foundry business, a large new shed is now erecting, one of a series which shall be entirely devoted to the manufacture of nuts and bolts which has been so successful in the west country and in Birmingham, but which has hitherto had but a chequered career in this locality. A little further along the railway
Messrs. Allhusen, of Newcastle, have no fewer than sixteen salt pans in working order in their large works which they have erected on the same principle as those of Messrs. Bell Bros. at Port Clarence. The bore-holes from which they draw their supply of brine are nearly two miles from the works, with which Haverton Hill and looking to the north-east, we see that the land is dotted with tripods, which is a sign that boring operations are now being carried on, or are about to be commenced. Messrs. Tennent and Co., of Newcastle, are engaged staking out a site at Hill, which, from being a decaying hamlet, is suddenly assuming all the dimensions of a town. Two or three streets of new houses have been built, and all seem in a fair way of being occupied by respectable and cleanly tenants. The salt workers appear to be a superior class of artizans, and, from all that we have seen, their physique is excellent, and they are above the average in stature, a Already there has been an addition of some 500 made to the population of Port Clarence and Billingham through the discovery of the salt rock there. As we have stated, Messrs. Tennent are already laying out their new works, which are immesite a little to the south. The works of the Haverton Hill Company are in full operation, and are connected with the NorthEastern system by a branch line which joins the main line at a point just above Haverton Hill on the west. Messrs. Tennent have a siding into the line of the Haverton Hill Company. From who works of the Haverton Hill Company a good view of the of land, almost Dutch-like in its characteristics. In foont there are rich pastures and swelling cornfields, divided from each other not by the ordinary hedge with which we are familiar in Yorkshire, but by narrow sluggish rills of water, which are in some cases holes of Messrs. Bell Brothers lend a picturesque element to the landscape, as these are, in nearly all cases, enclosed by a wooden
rection, which in the distance have very much the appearance of those wooden churches of Sweden and
attractive to visitors to these countries
The salt beds are in the form of a basin, and rest in a large hollow or depression, and that is the reason why salt may be found in plenty over a large area, whereas perhaps at a stone's throw from the nearest bore-hole it may be searched for in vain. In the South Durham salt bed this has been proved to be the case, for the suc-
cessful bore-hole of Messrs. Tennent is within a few hundred yards of the site where Messrs. Allhusen proved by their boring operations that salt was non-existent. As we have stated, it is from the western side of the salt field that we can best judge its extent and capacity of future development. From here to the Vaughan, near Grangetown, it will be a distance of fully two miles, taking a direct bee-line, from north to south, over an area at least a mile in diameter, giving an average thickness of 100 ft . for the bed. In the works of the Haverton Hill Salt Company, salt for the table and export purposes is made, as well as the
rougher kind of salt, which is used in the chemical manufacture and for agricultural purposes. Two large pans are devoted to the manufacture of table salt alone, and for this the company finds a ready market in the towns and villages between the Wear and the Tees. The special article of manufacture is Indian salt, which is made for be produced at a much lower rate than in Cheshire, and as the Cheshire field is some thirteen miles distant from the nearest water way, this gives local manufacturers a great advantage over their old-established rivals. Coal, too, is cheaper in South Durham by of manuf shiure. In visiting these salt works ene nont in the cost precaution" was taken to exclude the "Paul Prys" of trade and commerce on the look-out for hints, as in most cases boards are posted up notifying that in no case will a person be admitted except on business, and that trespassers will be prosecuted. The salt manufacturers are not likely to show all the resources of their
establishments, and any detail in new and improved machinery, to any foreigner who may be anxious to question them on the subject. There are at present fourteen different and distinct companies at work in the district, each company having a bore hole of its own. All the bore-holes at present in use are the property of four firms. There are five firms at present at work or getting ready, of which
number Messrs. Tennent are the latest. The bore-holes at present sunk or working are as follows:-Messrs. Bell Brothers, five; Messrs. Allhusen, four; the Haverton Hill Salt Company, three; Messrs. Bolckow, Vaughan, and Co., two. Other companies which down, so that in reality there are only sixteen bore-holes as yet which have reached a salt bed. All the companies which are working the salt at present, except the Haverton Hill Company, are confining their operations to the manufacture of chemical salt. Brothers, 51 cture of salt last year was as follows:-Messrs. Bell the Newcastle Chemical Company, 1040 tons. In connection with these it should be noted that Messrs, Bell Brothers were working during the whole of the year, whereas Messrs. Allhusen and the Hecerton Hill Company only worked one month, commencing in in India and America. In Cheshire the apnual output amounts to $2,500,000$ tons per year, so that the make in South Durham is as yet a mere fleabite of what it is likely to become. Of course, this value of land of a new industry has had a great effect upon the some 130 acres which was recently bought for a trifle, but has been sold at an average of $£ 1000$ per acre. The dip of the salt bed Haverton Hill and deepest down at Eston Junction, the difference
in depth being 600 ft . at least in favour of the more western site,
The deep wells must cost twice as much as the shallow, whilst The deep wells must cost twice as much as the shalow, whist
the risk is trebled. We have heard of bore-holes costing nearly
f10,000; we will not say whether the figures are fictitions or not, E10,000; we will not say whether the figures are fictitious or not
but it is certain now that these may be made at a much less cos than this, probably under £1000.
The operations carried on by
The operations carried on by Messrs. Bell Brothers occupy per-
haps the largest portion of the salt field. As that firm was the haps the largest portion of the salt field. As that firm was the
first to utitise the discovery of sate, they were also the first to erect
chemical works ture, in which, we believe, they have been singularly suacoessful.
When the coal trade went down the iron trade arose and gave new life to Midcllesbrough; now that the iron trade is apaparantly in a state of decline salt has come to our rescue. With the river close
by, and the coal of South Durham in olose proximity, the Cleve
land salt manufacturer will be enabled to successfully compete with his rivals, no matter where they may be placed, and the make of salt for this, year, instead of being onyly 60 po,000 otonnd, whill total
up to 200,000 tons, this great development being in itself but a up to 200,000 tons, , this great development being in itself but a
faint index of the forward march of the future.-Nevcastle Daily

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
(From our oven Correspondent.)
THE ironmasters meetings in Birmingham to-day-Thursday-and
in Wolverampton yesterday suffered in the matter of attendance by the holiday season beingstill on. The reports brought to.'Change
spoke of but little alteration in the demand at the manufactured ironworks on the week. The demand continues perceptibly within the supply and it is not possible to run the mills anything like fuli
time in of are than a minority of instances. time in other than a minority of instances.
The shipping trade is fairly brisk in
The shipping trade is fairly brisk in some of the branches,
more particularly in sheets, bars, and hoops. There is, however, more particularly in sheets, bars, and hoops. There is, however,
abundant room for further improvement, and inquiries are more
nom abundant room for further improvement, and inquiries are more
numerous than the actual orders booked. The reason for this is not far to seek; it is to be found in the want of strength in prices
which induces merchants to make offers that it is impossible for irommastew toaccept if they are to see any pront. The Australian and New Zealand markets continue the best export buyers.
Canada and South America rank next, but the Indian demand keeps very quiet. This is not to be wondered at when it is remembered that the effect of the depreciation of silver on the rate of
exchange is to add 49. per cent. to the cost of goods shipped from
this country this country It is only on Government an
there is any life at present in Indian trade.
The trade in galvanising sheets is well sustained, and this branch has a healthier appearance than any other. A rise in prices is,
however, greatly needed. Quotations of galvanised iron of 24 w.g. f.o.b. Liverpool, do not generally rise beyond $£ 10$, and f.o.b.
London, $£ 102 \mathrm{~s}$. 6 d . to E 105 s . per ton. For 26 w .g., 20 s . to 30 s . per ton additional is asked, and for 28 gauges further 30s. Black
sheets are $£ 6$ to $£ 7$ for 24 g . and 26 g , respectively at local makers Works. Black eheets of the Woodford brand are quoted, f.o.b. Thames

 Bars and hoops are in moderate sale, and at the Netherton
Works of Messrs. Noah Hingley and Sons, and at a few other of the best iron estabishments, a steady out-turn on export and home account is going on. Marked bars are $£ 712 \mathrm{~s} .6 \mathrm{~d}$. to $£ 7$ for first
qualities. John Bradley and Co., who, by reason of the excepany other house in the trade, price all bars above Ein. £9 10s., which is $£ 210 \mathrm{~s}$. above the price of the other marked bar firms.
Hoops they quote $£ 810$ s., which is $£ 1$ per ton advance on othe Hoops they qheets and plates, $£ 10$, which is $£ 1110$ s. more than any other best makers are asking. Rounds and squares up to ${ }^{\text {sin }}$, are
quoted at $£ 8$, an advance upon the terms of other firms of $£ 1$ per ton.
Mitre iron, rolled by Philip Williams and Sons, of Wednesbury
Oak Works, is a uniform 5s. per ton less than the make of othe

 quoted at $£ 1$ less than mitre.
$£ 510 \mathrm{~s}$. for the former, and $£ 5$ down to $£ 412 \mathrm{~s}$. 6 d . for the latter Angle and tie iron are in moderate request, but competition from Hoop are £o es. to
The reason assigned by the North of England ironmasters for a
reduction in wages-namely, increased German and Belgian com-peaition-is commented upon by ironmasters here, who anticipate
having to follow the example of the matter. For several years past the present difference of 6d. per
ton in puddlers' wages between this district and the North of England has been recognised as practically a normal state of things, existing in favour of Cleveland. It is matter for gratification that though Messrs. Nettlefolds are
intending to cease the manufacture of iron and steel and of aron and steel wire rods and wire in Shropshire, yet that the works will not lie idle. Mr. Benjamin Talbot, who up to recently held the
appointment of managing director of the Haybridge Iron Company,
is making arrantements is making arrangements for taking over the works with his sons so
soon as Messrs. Nettlefolds remove to South Wales
As the Castle Works are laid out in modern fashion, and are in themselises a a
splendid plant, Messrs. Talbot and Sons may look to make their new venture a success.
Sellers of Derbyshir
consumers point out that Cleveland pigs pire keep firm, though upon the week. Derbyshire and Northampton sellers, however, refuse to accept contracts at late minimumptrates, and for certain,
brands 1 1.to to 2 s . per ton advance is quoted. Sales are being nego-
trat tiated with consumers who had not previously corvered all nego
needs, but the new business is not being generally effected at the
full rise quoted. Best Northe
 forge. The firmness in thendry hematite mare 6 d . to . 30 s . for common
and vendors speak cheerily of prospects. pith are hardly swows no signs of a revival at present, and the
Chase collieries is now selling time. Thick coal at the Cannock
 the Cannock Chase ollierienty above and belod with great sunc. sucess at
works extend over five ings where the light is in operation are at a distance of 620 workyards from the shaft. An original feature in connection with the main and branch cables.
The small chain makers of Old Hill and Cradley Heath are struggling with indomitable perseverance to seoure the 3s. 6 d . list.
Ittobugh they have only entered on the fifth week o f the strike
their condition has become one of acute destitution, and nothing
but starvation will attend a continuance of the struggle into the
winter months, It is the general impression that if a recognised
list list of selling prices could be arranged, the dificulty which is now
so formidable would be overcome. The underselling between masters and middlemen would be abolished, and the workman in turn would not be required to recoup his employer of loss by sacri-
ficing a part of his earnings.

NOTES FROM LANCASHIRE.

Manchester. - A fairly steady tone may be said to characterise
the iron trade of this district. The recent upward movement in prices has not made any further progress, but it has not gone back
to any appreciable extent, and although buyers, having no larg pressing requirements, are rather disposed to wait than pay the ble conditions to makers than was obtainable a few weeks back The situation may be briefly summed up as this-makers on the
one hand believe that the restriction of the output will enable them to command better pricesstuntil there is some really legitimate improvement in trade, and although they are not doing much at
present, they are not disposed to go back to the low rates
they have recently been compelled to accept to effect sales; on the
other hand, other hand, consumers-except that finished iron makers ar
getting rather more work, for which, however, they are unable t getting rather more work, or why better prices - have no largely increased require
command any point was touched by the recent minimum rates, they are in
different about buying at the advanced prices now being asked The question is whether restriction of the output will be sufficien o keep up prices. Buyers seem rather inclined to the opinion
that it will not, and in this they are to some extent supported by the fact that merchants who hold iron bought at under present rates are here and there seeking business by underselling the
makers. The recent upward movement has, however, undoubtedl ad the effect of bringing more business into the market; hes tating buyers have given out orders which probably would otherwise
have been held back indefinitely, and users of iron have been induced to extend their purchases beyond the mere hand-to-mouth requirements to which their transactions have been restricted o ate. The one thing still wanting, however, is a real improveren
n trade. In some quarters a more hopeful tone seems to prevail sut it can be traced to no actually substantial foundation, and
here is a continued absence of any really encouraging outlook for the future.
mere was a fairly good attendance on the Manchester iron
narket on Tuesday, but only a small weight of business was re Lested. Lancashire makers of pig iron were holding to 36 s . 6 d .
Lheir min ble to put it was only on occasional special sales that they wer they may have to give, unless they could place them at somethin like late rates. For district brands delivered here, 35 s . . 6 d . to
36 s . 6 d ., less 2 l, , represent about the average quoted figures for forge and foundry qualities, with one or two brands to be oo a
perhaps a trifle less. With regard to the restriction of gotput which has been talked of, there seems to be some uncertainty.
One of the Lincolnshire firms has damped down, but the others who were to take a similar step have not yet done anything in this
direction. As a result, buyers are naturally doubtful as to how far the restriction will really be carried out, and decline to give the full prices which makers are quoting. For outside brand offering here makers are still asking about 1.s. to 2s. per ton above Hematites are frm Hematites are firm at about 51s. to 51s. 6d., less $2 \frac{1}{2}$, for goo
foundry qualities delivered into this district, and on the basis o these figuress a few sales are being made.
In the manufactured iron trade the
o some exten ired iron trace there is more business stirring large Staffordshire works have stopped making, which would, Lancashire makers. On hoops and sheets some of the hands of are very busy, and there is also more doing in bar iron, bua
although makers are in a stronger position to the extent that the are not under the necessity to cut prices so excessively low as the adve been aing recently, they are not able to command any actual
advance, and, delivered into the Manchester district, the current market rates remain at about $£ 417 \mathrm{~s}$, 6 d . for hars, $£ 5$, 5 , for hoops and $£ 610$ s. per ton for sheets.
Amongst ironfounder
revail, and here and there they more better supplied with work are still cut excessively low. Cast iron columns delivered into the Manchester district can be got at $£ 415 \mathrm{~s}$. to $£ 5$ per ton, and cast
iron pipes at about $£ 412 \mathrm{~s}$. 6 d . per ton. In girder work prices have gone up a little, Belgian girders delivered here being now quoted at about $£ 55 \mathrm{~s}$., and English makess at $£ 5$ 15s. per ton.
Rather more work is coming into the hands of
neering firms in this district, and boilermands of some of the engineering firms in this district, and boilermakers are getting busier.
There is, however, still no general improvement to report, and machine toolmakers who are, perhaps, better off than most other branches, of industry, have difificulty in replacing the orders that
run out, whilst to secure new work prices have to be cut extremely
In. districts like this, where works have to draw a water supply of filtration is a matter of considerable importance, and of lan good deal of attention has been paid to the manufacture of filters capable of dealing with large quantities of water. Messrs. Walter
Glover and Co., of Salford, have recently made this a speciality at their works, and under Bell's patents high and low-pressure filters ments is a horizontal filter swung between a couple of standards, and which forms a double filter working at high pressure. One
of these filters, which has been suceessfully at work for the last six or eight months, I had an opportunity this week of seeing in
operation at Mr. JJ. Walton's bleach works, in Pendleton where it has been put down for filtering the Irwell water for boiler purposes. This filter is in the form of a cylinder, 3 ft . in diameter and
about 4ft. in length. Two compressed filter-beds, separated by an open space, occupy the centre of the cylinder. The foul water is
admitted by a valve at each end of the cylinder, and is forced through the filter-beds into the centre open space by which
they are divided from whence it is discharged pure water they are divided, from whence it is discharged pure water.
In this case the water from the Irwell is pumped into
the filter at a pressure of from 60 lb, to 80 bu. per square inch, and is discharged through the filter at the rate of from 3000
to 400 gallons per hour. The satisfactory manner in which the
filter did its work was
 per haps quite as important a matter as the efficient abstraction means of cleansing the filter beds from the filth and impurities a very simple manner. To clean the filter, the action of the water water direct into the central space between the filter beds through the medium of the discoarge pipe; by this means the impuri
ties which may have beome imbedded in the filtering material are forced out and find a passage from the filter through
a couple of valves placed at the bottom.. Or another method of cleansing can be resorted to for frequent application, and this is
effected by simply raising the levers of the slush valves at the
bottom bottom, and the water entering the filter in the ordinary way
soours out the filth accumulated on the outtide of the filter beds
a quickly-repeated opening and dosing of thees valves giving an
ebullition of the water which causes it more effectually to scour
away the dirt. As an indicator of when the filter-beds ecoming choked with dirt and require cleansing, an ordinary filter; as the filter-beds become choked with impurities more pressure is, of course, required to force the water through; this is at
once recorded by the gauge, and the attendant has simply either to lift the slush valves or reverse the action of the water as
required. This operation of cleansing the filter, which, where it has to deal with Irwell water, is absolutely necessary twice
every day, I saw applied, and for simplicity and effectiveness it is certainly a very ymportant feature. The adoption of the honesizontal
in the place of the usual vertical position for the filter is also a great advantage, as it enabies every part of the filter to be got at
readily, and it can be swung to any angle desired, whilst it is
further a decided improvement in securing an equal the filter beds. The test which the filter has been put to in procuring a pure supply of water from so polluted a source as the Irwell
is perhaps about as severe as it could well undergo, and that it has siven entire satisfaction during the period it has been at work may The coal trade remains in much the same po
hast week; for all descriptions of fuel the demand continues slow with prices unchanged, but, if anything, tending towards firmaess in anticipation of the approaching winter demand.
Barrovo. - have to report this week the maintenance of the
ipproved demand for pig iron reported last week improved demand for pig iron reported last week. There is a dis-
position on the part of buyers to place orders largely for forward delivery, and makers are selling on these terms to a fair extent at the increased values now quoted, viz., 42 s . 6 d . to 43 s . per ton net at makers' works, prompt delivery for mixed parcels of Bessemer
pig iron net at makers
forks, and 41 s , to 41 s . 6 d . for forge and taken place lately, and it is probable that ordinary hematite will be more fully used for general purposes than of late. The low value of this description of iron, when compared with its quality
and usefulness in places where common iron has invariably been und usefulness in places where common iron has invariably been
used
likely
to lead to increased sales, while on the other ha thessemer samples are largely used by are arel makers, who
in tusy and likely to use a large weight of
his metal in the this metal in the manufacture of rails, tin bars, and ship
steel, which fortunately at the moment have been well
bought. There is a steady activity in the telt nd it is likely that the advance which has been noted in round, and in the rail train. A large number of orders have been booked, umberland Iron and Steel Company has acquired the Barepot order to manufacture lighter steel goods from rail cuttings and ther material produced in the manufacture of heavy steel at the large works of this company. This course was taken years ago at and Swin the establishment of the wireworks of hessrs. Cooke rade has been done, because the material is not only cheap but it iequest ; ship steel is also in fuller demand. Tin bars are in good e noted in the iron shiphuilding trade and no nervers can been booked-indeed, very few are on offer. The activity in marine engineering is maintained, but the general trade is quiet.
Iron ore in fuller demand, and prices are firmer, though not quotably higher. Coal and coke steady, and in larger sale. Ship
ping is well employed.

THE NORTH OF ENGLAND.
THE Cleveland iron market held at Middlıesbrough on Tuesday
last was but thinly attended, and prices generally showed a last was but thinly attended, and prices generally showed a
tendency to recede. Buyers seemed altogether indisposed to make ontracts except for insignificant lots, and even for these they vould not give previous prices. Makers in vaindemanded 30s. per to 29s. 101 d., and that for prompt use. For delivery over the last
uart quarter of the present year, 305. 3d. to 30s. 6 d . Was usually
demanded, but sacreely any sales were effeeted. The present
difference between No. 3 foundry and No, 4 forge qualities is inference between a shilling per ton. The chief causes assigned for the weakened tone of the market are :-Firstly, the discuieting political
news as regards the Eastern Question ; and secondly, the consider news as regards the eastern Question ; and secondly, the consider-
able increase in stocks which took place last month. On the othe and, shipments from the Tees have during the last few days bee in excess of what they were a year ago, the quantity sent away up
o Monday last having reached 15,487 tons. The stock io Connal's Middlesbrough store is still on the increase, nearly 3000
tons having been added last week. Warrants are quoted at 30 s, per ton, but no transactions have recently taken place.
The finished iron trade continues in the same languid
in which it has long been. Bars are offered at $£ 47 \mathrm{~s}$ s. 6 d , to $£ 4110 \mathrm{~s}$, angles at $£ 4$ s., and ship-plates at \&t 7 . $6 d$. per to to free on
trucks makers' work, less 24 per cent. discount. Steel trucks makers' work, less $2 \frac{1}{2}$ per cent. discount. Steel makers
have sufficient work to keep them going, but complain bitterly that rices are unremunerative. No more than $£ 3$ 12s. 6 . per ton can The extension of the Middlesbrough dock, which has for a ime been in progress, is now rapidly approaching completion. On he 3rdinst. Mr. Jackson, the oontractor, commenced to out hereby permitting the water to flow in and fill the former. The e mostly submerged. This will require several weeks to complete.
The cranes, staithes, \&o., for the new part are well forward he entrance lock also, which some time since was the cause satisfactory progress. The area of the old and new part of the A meeting of the Standing Committee of the Board of Arbitration was heid ase arfington on the 2 nd instant. After routine business
was disposed of, and certain petty disputes arranged or withdrawn, the employers informed the operative representatives that the arived when another reduction of wages was imperativel egards their foreign competitors, in four principal ways. In the frrst place, the latter paid lower wages; in the second, their men
worked longer hours; in the third, they paid lower royalties, and in the fourth, lower railway rates. The first item only lay within heir claim. The operatives, represented by Mr. Cullen, contended
that the present rates of wages should be left undisturbed, and hought the employers should seek the relief they needed from
royalty owners and railway companies. Finally the following minute was entered on the books, viz, "The operative members rade in the country and inselves as willing, in order to retain the stituents to accept a reasonable reduction in wages, provided con

The possibility of carrying petroleum in bulk WW proved by the arrival at Giestermunde, near Brantage is Armstrong, Mitchenll and Couit for this special purposese by Sir W. G. put in casks at, all. The condition of the cargo was found on
arrival to be all that could be be desired, reason why his mode of transit should not be made use of to unlimited extent. Sir W. G. Armstrong and Co. have in hand a
sister vessel to the one under consideration, and moving in the same one urrection consideration, and oteener builders are
f, ob, in the Black Sea for slightly over that petroleum can be put
sells retail in London at about 6 d. , it is evident that there is ample
room for a fall of the price. A multiplication of special petroleum room for a fall of the price. A multiplication of special petroleum
tank vessels would seem to be alone required to effect this
desideratum.

NOTES FROM SCOTLAND.

The pig iron market opened very flat this week, but improved
Tewhat on the issue of the Board of Trade returns, which somewnat on the exsports of pig and manufactured iren had had made
showed that the
some improvement. Business is, however, in an unsatisfactory condition. The past week's shipments of pigs were 9192 tons, as
compared with 8952 in the preceding week, and 7877 in the corrsponding week of 1885 . There has been rather more doing with
the United States, Canada, and Italy, but the shipments elsewhere are smail, and mimproving demand for export. The stolks any indication of an improving demand for export.
continue to increase in Messss. Connal and Co.
cash. Monday's mark the warrant market on Friday at 39 s .6 d .
 Transactions occurred on Wednesday at 399. 42d. to to 39 s . 5d. cash.
To-day-Thurday-business was done at 39 s . 42d. to 39s. 5 d . cash.

 Four furnaces, which were put out of blast lately at Carnbroe
for repairs, are again blowing. Two have been put out at Coltness The hematite pig market is likely to be affected by the increase that has taken place in the price of Biilboo ore, which is now
advanced to 6 s . 6 d . per ton, f.o.b. in Spain, while the freight to
 pigs, made with Spanish ore, as to give Cumber and pigs a better the Scotch makers have been able to keep the field with the manufacturers of steel, in consequence of the charges for shipment or railway carriage of the North-West of England iron There is a prospect of another order for cast iron water pipes
coming from Bombay to Glasgow A fair quantity of iron and steel g
Clyde in the past week to foreign ports.
The restriction in the
The restriction in the output of coals by the miners is still being gate shipments as compared with thtone of the reduce the aggre21,184 tons, Greenock, 2481 ; Ayr, 5152 ; Irvine, 2330; Troon,
 f.o.,. prices being raised since the beginning of the agitation among
the colliers by 6 d . to 1s. per ton, while an advance of 3 d to 6 d . has
taken place in the prices to the inland consumer.
The colliers held a great meting on Saturday at Motherwell,
attended by about 10,000 personis, at which addresses were delivered in support of the movement for improving thesir position by Mr. Mr.
Bradlaugh, M.P., Mr. Stephen Mason, M.P., Mr. Donald Craw-
ford, M.P., and others. The resolutions adopted were. ". TThe ford, M.P., and oniers. The resolutions adopted were :- "That continuance of low prices of coal and iron, and, as a consequence,
inadequate wages; that we urge upon our representatives the
immediate necessity of establishing by law the immediate necessity of establishing by law the adoption of the eight
hours system
that as the evading of the Truck Act is so largely in vogue in this country, we hope that energetic means will be at
once taken to suppress this monstrous evil. That this meeting once taken to suppress this monstrous evil. That this meeting
desires to thank Mr. Stephen Mason, M.P., for his endeavour to
reform the royalty rents which hang so heavily on the working classes in this country zand we further urge upon on th minerss and
iron and steel workers the absolute necessity of having the most iron and steel workers the absolute,
complete and national organisation."
miners. The prices of pig iron not having shown any improvement
alongside the advance in coals, the in not in a position to concede the advance, as it would materially enhance the cost of producing the iron. In the case of the Colt
ness Iron Company, it has been resolved to put out rather than give the increase of wages. The position of matters rather changive by the fact that one or two inenmaking firms, who
is re makinated pigs for delivery into store, have agreed to pay the are making pigs for delivery into store, have agreed to pay the
advanced rate of wages. There are eseveral co
During the month of August 138 vessels, with an aggregate
tonnage of 125,085 left the Clyde, the arrivals in the same time tonnage of 1essels, of lift the cirl tond, beine arrivalu inction of 21,225 tons
being 120 vere
in the sailings and in the sailings and of 17,206 tons in the arrivals, contrasted with of the present year was $1,044,887$, against $1,107,212$, and the
arriving tonnage 853,870 , against 936,271 tons in the same period arriving ton.
of last year.

WALES AND ADJOINING COUNTIES. IT is reported that a steamer has foundered at sea laden with
Cardiff coal, which spontaneously ignited. Considering the fiery character of some of the Welsh seams it is remarkable that more
care is not taken with care is not taken with it at sea. With ordinary care there is not
the slightest danger; but it is evident that a cargo of 2000 or 3000 tons in bulk requires more care than the ordinary seaman is capable
of giving, and hence all coal vessels should be built with the best
sointer scie arrangements for ventilation. This is the mish mishap of late, and it is possible that many a lost collier which has dis-
appeared mysteriously went down in mid-ocean from the same
The coal trade continues to indicate some hopeful features of a
change. There is partial activity; some collieries remain change. There is partial activity; some collieries remain
unaftected, but a few are doing brisk trade. Harris Deep
Navigation turned out 30,000 tons in the last four weeks, and the Navigation turned out 30,000 tons in the last four weeks, and the
manaer tells me he hopes to reach 1500 tons a day shortly.
Harrije Harris' Deep Navigation is the deepest colliery in Wales. Its
depth to tft. landing is 694 yards, and to the fitt .anding 730
yards difliculty met with up to the present, but the new manager, Mr. Price, under the skilled direction of Mr. Foster Brown, is literally
turning the corner. Some idea of the pressure may be seen from
the fact that solid masonry at the arches put in one week became the fact that solid masonry at the arches put in one week became
in the next so much dust. The new colliery at Ynysceadnwg is
progressing well, and as there is ample capital, with the experience derived from those who have essayid capit, ith the experiinse derived from those who have essayed deep sinkings with
insufficient th cientific appliances, it may be expected to figure
amongst the leading ones. amongst the leading ones.
Ynysyfeio, which has been idle on account of a dispute with the
men, is now working again, and Dowlais and Plymouth collieries men, is now working again, and Dowlais and Plymouth collieries
are busy, the former sending off large quantities to Birkenhead,
and the and the latter are so active that men are working overtime.
Cyfarthfa collieries are not so brisk as this, and for several days
last week ten of the largest Rhondda collieries also were idle. On last weak ten of the largest Rhondda collieries also were idle. On
Monday the Ocean colliries were idlo, and the men held a mass
meeting to protest against the method of tipping into the screen

The contention of the men-most unjustifiable, to say the leastget more smanal. This shishs the inerease the breakage so as to
existing amongst the and ignorance still existing amongst the majority of colliers. Not only is it the
interest and the wish of coalowers to get as much large as pos-
俍 sible, but to get it in best condition possible, an I have noticed at several arge collieries of late that men are now kept for "dressing
off" the coal on trucks, so that buyers shall have as little shale as can be.
Notices have been issuued at Gelli House-Coal Colliery, which
mean reduction or stoppage. Gwrhay Colliery dispute is mean reduction or stoppage. Gwrhay Colliery dispute is ended.
The tone of the coal trade is improving at the ports, and prices, at Cardiff in particular, are firmer. Last week sales of Monmouthshire coal at Cardiff were effected for 7., and the impression coal quotations are 8s, 6d. to 8s. 9d.; some sales at 9s. Small team easier, best, ss.
Mr. Hosgood, form scribers in the new Berthlurgd Brickworks, Swansea.
Little is doing in steel rails. Two small clearances-one cargo, Southns, from Newport for Kungsbacka, and one from Swansea to South America-are all that are reported this week, and hom newals, or of the steel sleeper, except in a few cases. I see however, that the Welsh steel-makers are going in strongly for foreign ore. Blaenavon, Tredegar, Dowlais, Rhymney, are in
particular amongst the chief buyers. The syndicate formed in Bilbao may tend to increased price; hence a freer demand. A very compact wireworks, fitted with latest machinery, is in speculation is tardy at present, and the decline in the tin-plato trade has not improved matters.
August totals show a marked falling off, and as I hinted last egarded as such by the men. Worcester Works, one of the prin cipal near S wansea; and in some others arrangements have already
been effected without notice such as a concession by the men of been effected without notice, such as a a concession by the men of Buyers are offering large orders, but at low prices, and it is 12s. 6 d . Quotations are at 13 s , and 13 s . 3a. cokes and Besseme steels. Siemens' steels, best brands, are at 13s, 6d.

THE SHEFFIELD DISTRICT.

The Sheffield Town Council had before it on Wednesday the report of the Trade Inquiry Committee appointed to investigate
the charges of false marking brought against Sheffield manufacturers and merchants. The committee, in its report, found that ouncil the charges had been proved, and recommended hat sul ect. A long and animated discussion took place, in which
was urged that the committee had been equally divided, an at the report, as adopted, was passed at a meeting when two
f its leading members were absent; otherwise, the tie whic esulted on the first motion for its adoption would have been con firmed. An amendment referring the report back to the com
mittee to have the report of the minority included in it wa mittee to have the report of the minority included up again. was pointed out that the wholesale charges brought agains
Sheffield manufacturers of selling German wares as Shefield good had completely broken down, and that the report itself exonerate respectable Sheffield manufacturers from such practices. It was ere purchased from irrs, ongers and other merchants in distan
The Cutlers' Feast on Thursday last was as successful as usual numbereral guests had next day the opportunity of witnessing a
number of our interesting industrial processes. On Saturday his workpeople in the Cutlers' Hail, when about G00 were present. Iaster Cutler of Sheffield, presented him with a pair of silve candelabra and the Mistress Cutler with a gold bracelet set with s.
pearls and rubies. The presentations were made by Mr. W. Stones, chairman to the committee representing the workmen, who
also proposed the health of the Master Cutler, to which Mr. Lockalso proposed the
wood responded.

NOTES FROM GERMANY

Authough the blast furnaces in Silesia have been increased in size and in all respects much improved, the depressed condition of lusory, and even the blowing-out of six blast furnaces in the last half-year has not had the desired effect of raising the prices of pig empt buyers to come forward and buy in bulk, as there is so little confidence in matters speedily taking a turn for the better. Foreign
purchasers, however, have paid M. 43 p.t. for special qualities. gain, the low price of castings forbids the foenders to give more
than M. 45 for ordinary, and M. 48 to 50 for better sorts of foundry pil. The rolling mills have an average output for the time of year,
all at very low prices ; indeed, within the year the price has fallen to M. 87.50 to M. 90 . .t., special sorts fetching M. 1 to 2 mor
money. Coke plates, it is feared, will get below the present figu from want of orders, but scarcity of cala mine. From Westphalia the outlook, is no better, and the
steel-works are the worst off of all, because, as mentioned last week, the orders for rails and sleepers are nearly
worked off, and at present the State railways are seeking no yew tenders, and as regards sleepers there seems to be
hitch somewhere, which is also to the detriment of the steel industry, for the Administration at Elberfeld has just sent out
tenders for 72.00 wooden sleepers, and it would appear that the made of steel. In fact it is difificult to understand how the rail rade of this country is likely, in the near future, to revive. When it is considered that Germany is already well covered with railways,
that only moderate lengths of new lines, and these for the most part secondary ones, are made each year, that the traffic is com that renewals are less frequent than, say, in England, where the wast or metal is 1 to kilo. per metre of rail per annum except Holland and Switzerland, which do not require large
quantities; that competition beyond sea at present prices would quantities; that competition beyond sea at present prices would
mean a loss ; and lastly, that when domestic orders are given out
there are a great number of large works to compete for them; ; then it seems clear that a great general "boom" must come from some distant part, of which there is no sign at present, if the rail
trade here is to become again a prosperous one. The significant fact that Borsig could see no future here for locomotives, appears and girders, the orders are momentarily satisfactory, and a number of works will be occupied for some time in executing them; but as
only a part of the works abundant from these less favoured ones; therefore prices cannot rise. The thin shee works are also better employed on autumn
orders, but prices are not affected by this at present. Plates are neglected, and the makers only half-way employed. Steel wire
rods are in better demand from abroad, but the trade, as a whole,
is anything but prosperous.
As every one at present avoids increasing his works or laying
downew ones, the machine shops, foundries, construction andboiler
works have still few orders on hand. Forge pig is in no great
request, the low-priced Luxemburg brands taking the lead and request, the low-priced uxumburg brands thening the ead and
depressing the price of other sorts; but as they have now got down
almost to cost

 110 ; hoop iron, 100 to 105 ; ordinary boiler plates, 130 ; best, 138 ; sheets, 123 to 125; fine-grained, 170 ; charcoal, 200 ; steel rails, 120
to $122 ;$ mine raiss iron, 80 to 90 ; in steel, 94 to 108 M . p.t. Sea rrights are rather lower, soit is hoped the native ores, now in
so little reauest, will soon again be able o ocompete with their
foreign foreign rivals. The prices remain as formerly noted.
The six groups of ironworks produced in July - forge pig and
spiegel, 14,412 t.; Bessemer, 38,$053 ;$ basio, 8,233, foundry,
26,849 , or 280,347 t. in all 26,849, or 200,347 .t. in all against 317,774 t. for July, 1885. From
1st of January to 31 st of July $1,933,575$, against $2,133,123$ t. last Thd present prices of coals and cokes are:-Lumps, $7 \cdot 40$ to $8 \cdot 40$;
sas, $6 \cdot 40$ to $7 \cdot 80 ;$ good slack, $5 \cdot 50$ to $6 \cdot 20$; fine ditto, $2 \cdot 60$ to $3 \cdot 20$; gas, $6 \cdot 40$ to $7 \cdot 80$; good slack,, 5.50 to $6 \cdot 20$; fine ditto, $2 \cdot 60$ to $3 \cdot 20$;
for coking, 3 to $4 ;$ anthracite, lumps, $8 \cdot 50$ to 10.5 ; slack, $4 \cdot 40$ to
5.20 , $5 \cdot 20 ;$ patent coke, 8.50 to 9.50 ; ordinary coke, 6.50 to 8.40 ; smalls,
6.50 to 7.50 . The market was dull for coke, but more brisk for It is somewhat remarkable at first sight that just at a time when the iron mining and smelting industry has been, and still is, future, and such large sums of money at disposal to make important developments in old mines and works and establish new ones in the Saar and Lorraine district. Yet such is the case, as a few
examples given below will testify. It is with the object of putting
俍 the works into a position for more successfully competing
in the markets of the world. When it is considered that the ores here, ooiticic principally, are the cheapest and most abundant burg-producing pig iron now selling to a profit at 28s. p.t.,
and that there is rail and water carriage from them to the seaboard, then this does not appear an unreasonable undertaking; and
as this may be regarded as the Cleveland district of Germany though not quite so well favoured as to carriage as its prototype in England and not on so grand a scale, it will be interesting to many of your readers to know something of what their rivals are doing.
In Duidelingen-Luxemburg-a new steel works on an extensive scale was set to work with best tresults, only a very few weeks ago.
In Redingen, near Deutsch-Oth - Lorraine elonging to the Dillinger Works, on the river Saar, will shortly be blown in. The Dillingen works were the first to make tin-plates in Germany, and still make the largest quantity perhaps. The
share company-A. Pescatore and S . Foude-got into difficulties some time since, but it atppears the Banque Liéeoise is coming to
their assistance, and then their Ruimelinger blast furnaces will be carried on more vigorously than before.
Since Messrs. Lamarche and Schwartz have acquired all the sc., which formerly belonged to Belgian proprietors, they have idronw to, and started in Aprill last, a second blast furnace at their the Moselle. Messrs. Lamarche and Schwartz now possess the largest area- 3000 hectares - of mining property in Lor-
raine, with the one exception of Messrs. de Wendel et Co. in Hayingen. The output of the mine Orme, near Moyeuve,
is shortly all to be smelted at the furnaces of Maizieres, and in order to transport the ores to the works the proprid laid on a wire rope railway of 6 kilos. in length, erected by
Bleichert and Co., of Leipzig, which will be in full working order in September. A similar rope railway will shortly be in operation
to bring the ores from the mine Glicickauf, near Deutsch-oth, to the Luxemburg furnaces near Etsch, on the Alzette river. At the nother rope railway, 3 kilos. long, has been erected to transport the coal from the Government mines Heinitz-Dechen to the fore ovens ot the irm. This is the second rail way of the kind the way the slag and cinders from the bla speaks well of the advantages of a rope railway as compared to an ordinary one for these purposes, as there has existed all the time a regular railway from the Heinitz-Dechen mines to the works of
the Brothers Stumm at Neuen Kerchen, and yet they have gone also induced a mining company Frankinholz, near Bexbach, to lay one on in preference to building an ordinary railway from their
nines to the Bexbach rail way station.
Other similar roper rail ways have been erected at the St. Ingbert Ironworks - Brothers Kraemer the Finner Works to cross the river Saar to the Louisenthal
railway station, and at the Odenwald mines of the Messrs. de Wendel and Co .
Alongside the ironworks of the Brothers Stumm, Brothers
Kraemer, and the Volknennen Company, those of the Burbach Company must be mentioned, for here the first rolled girders were Germany; besides, these works have been brought to such a high pitch of perfection, in a technical point of view, that they are destined to take a still higher place than they have hitherto done
in the world's markets. The productiveness of the mines in the in the world's markets. The productiveness of the mines in the furnaces by three within the last year or two, to put up at them Cowper hot-air stoves, and 150 new coke ovens, with such a complete apparatus for washing the coal previous to coking, as is pro-
bably nowhere else to be found on the Continent. The also ncreased the number of their puddling furnaces from 54 to 72 , put machinery of the very best and newest pattern to drive the
whole, and established workshops for fitting up materials whole, and established workshops for fitting up materials onstructed a narrow-gauge rail way 5 kilos. long from the
works at Burbach, in the direction of Forbach, for the rem orks at their slag and scorix. The Brothers Stumm are also engage n adding to their present works an extensive set of mills for roll ing all kinds of the smaller sections of iron, out of pigs made from
the clay ores of the district. Then, again, the ironworks Quint near Treves, and those of Karcher and Westerman, near Ars, on
he Moselle, are being improved and enlarged beyond their present capacity. To these must be added the Lorraine Ironworks, which appear to be already sufficiently well mounted to require no
present increase or improvement, which have orders on hand to arry them on for a length of time to com
The French ironworks just
qually desirous of entering into the world's of the border are they will be enabled to do, provided they can obtain reduced
reights on the coke and coals from Westphalia. In this connec tion it may be mentioned that the Comité des Forges de France is endeavouring to promote an International Exhibition of Railway
Permanent-way Materials, and quite recently an invitation has een sent by members of the Paris Chamber-and, indeed, by the great experience in these special articles, to procure their participation in the undertaking. The introduction of iron and steel
sleepers on the French rail way system will be most acceptable to ingaged at home, and cause them to compete less in French work ngaed at home, and cause them to compete ess in other markets.
If the Moselle were canalised - of which there is some talk-from Metz to Coblence, the STaar from Enzorot to Conz, as also the the Escher, then this district and that of Luxemburg combined
would become by far the most important iron-producing one in Germany.

AMERICAN NOTES.

(From our own Correspondent.)
New York, Aug. 28th.
THE rush of orders for machinery is encourasing the machine shop and foundry interests of
the State. A bridge is to be built across the the State. A bridge is to be built across the
Hudson river next season, which, with railroad Hudson river next season, which, with railroand
conneotions between the New connections between the New England and
Middle States, will cost $10,000,000$ dols. The
Thiltien Baltimore and Ohio Railroad Company will
expend a large sum of expend a large sum of money on terminal im-
provements at
Staten Island, a few miles below provements at Staten Island, a few miles below
the city. The Norfolk and Western Railroad
The mprovements at its terminus in Virginia. The Pennsylvania Company has set apart a large fund for commodious and extensive improvements along
its entire line. Other trunk lines will be liberal its entire line. Other trunk lines will be liberal purchasers of material during the coming winter.
Purchasing agents have been quietly placing orders for lumber, iron, , teel, , machinery, cars,
and locomotives. There are possibilities of a and locomotives., There are pors. posibilitiess of a a
aneral scaling up of prices. ©steel rails and
gen general sealing up of prices. Steel rails and
merchant iron cannot advance because of foreign merchant iron cannot advance because of foreign
selling prices. Several kinds of material have improved and production is absorbed. A sale of $8,000,000 \mathrm{lb}$. of copper is to be reported. Exports
for the year, $11,750,0001 \mathrm{lb}$. refined and $39,000,0001 \mathrm{~b}$. matte and ore
Bessemer pig is nominally 19 dols. ex ship
Eglington, and 17 dols. 75 co. ex yard; spiegel, Eglington, and 17 dols. 75 cos ex yard; spiegel,
25 dols. 50 c. for 20 per cent. Old rails are very scarce and hard to get. Quotations , 20 dols. to to
21 dols.; $;$ bloms, foreign, 24 dols. to 24 dols. 50 .; steel rails, 34 dols.s. 50c. Imports of tin-plate this pig iron, 61,000 tones at thris port and 16,000 tons at Philadelphia, 48,000 tons at Baltimore, and 23,000 tons at Boston. Steel wire, ronds,
36 dols. 50 . ; imports for the year, 71,000 tons. 36 dols. 50 o.; imports for the year, 71,000 tons.
Home makers are agitating for higher duties. Rece pes of foreign bio and of old rails 17,000 tors

NEW COMPANIES.

THE following companies have just been regis-
Patent Lock Nut Company, Limited.
This company was registered on the 27 th ult.
with a capital of $£ 50,000$, in $£ 5$ shares, to carry with a capital of $£ 50,000$, in $£ 5$ shares, to carry nuts and bolts of all kinds, and also as mechanical engineers, iron and other founders, and metal
workers. Two unregistered agreements will be adopted. The subscribers are:-
 D. Motten, 125, Camden-road,

 H. D. Brooke, $\ddot{\text { s. }}$, Eila-road, $\ddot{\text { Crouch }}$.hill The number of directors is not to be less than hares; the subscribers are to nominate the firsty. The directors will be entitled to an annual sum not exceeding £50 each out of the profits remaining,
after payment of 5 per cent. per annum dividend, and a further sum of $£ 50$ each for every additional 5 per cent. divided amongst the shareholders.

Moldacot Royalties Trust, Limited. This company proposes to enter into an agreeCottam for the purchase of eertain royalties in respect of an invention for sewing machines, and
to carry on in the United Kingdom and British to carry on in the United Kewingom and British
Colonies, the United States of America, or elseColonies, the United States of America, or else-
where, the business of sewing machine manuwhere, the business of sewing machine manu-
facturers and mechanical engineers. It was registered on the 27 th ult. with a capital of
$£ 75,000$, in $£ 5$ shares, with the following as first
subscribers subscribers :-
W. Lichfield, ${ }^{\text {E1 }}$, Leyspring-road, Leytonstone,

The number of directors is not to be less than
two nor more than five ; qualification former two nor more than five; qualification, forty
shares; the subscribers are to appoint the first and act ad interim; remuneration, fiso per
annum to each director, with an additional $£ 50$ per annum for the chairman, and a further remuneration equal to $2 \frac{1}{2}$ per cent. of the net
profits in any year in in which 20 per cent. per
annum dividend is paid. annum diviend is paid.

New Isle of Man Steam Navigation Company,
This company proposes to carry on business as
shipowners, and as carriers to and from the shipowners, and as carriers to and from the Isle
of Man. It was registered on the 1st inst. with a capital of w50, 000 , in $£ 5$ shares. The subseribers
are:-

 The subscribers denoted by an asterisk are the
first directors, and Mr. P. H. Cowley is appointed manager. The remuneration of the idirectors and
paid-up" capital" l if the dividend for the 'current
year shall not amount to 6 per cent capital; 2 per cent. if the dividend shall exceed 6 per cent. and not amount to $7 \frac{1}{1}$ per cent., and
3 per cent. if the dividend shall exxeed $8 \frac{2}{2}$ per ent. Half of such remuneration will be paid to
the manager as his fee, from which amount he will defray office and clerical expenses, provided that the manager's remuneration shall not be less
than £120 in any year. The remaining half of the said rem
the directors.

Regent Portable Electric Lamp and Lighting
Company, Limited. This company was registered on the 27 th ult.
with a capital of $£ 85,000$, in $£ 5$ shares, to purchase from Mr. Ephraim, Charles Burgess upon terms of an agreement of the 9 th ult, an exclusive licence for the manufacture and sale in the
United Kingdom of the voltaic primary battery United Kingdom of the voltaic primary battery,
known as "The Regent," patented by Mr. Samuel
Wer William Macquay (No. 15,000, dated 8th Decem-
kis
ker 185) ber, 1885) for all purposes in connection with electrio ighting. The purchase consideration is
$£ 17,50$ in cash and $£ 27,500$ in fully-paid shares. The subscribers are:-

The number of directors is not to be less than appoint the first; qualification for first director, 10 shares, and for subsequent directors 50 shares remuneration-chairman $£ 300$ per annum, and each director $£ 100$ per annum, and a further sum equal to 3 per cent. of the net profts available
after 8 per cent. has been paid to the share-
holders.

Sidmouth Gas Company, Limited.

This company proposes to manufacture and
supply gas in the parishes of Sidmouth, Salcombe supply gas in the parishes of Sidmouth, Salcombe
Regis, and Sidbury, Devon. It was registered on Regis, and Sidbury, Devon. It was registered on
the 28th ult. with a capital of $£ 15,000$, in $£ 10$ the 28 th ult. with a capital of $£ 15,00$, in $£ 10$
shares, 30 of which are 5 per cent. preference
shares. The subscribers are:--
${ }^{*}$ T. Douglas, Belford House, Underhill-road,

*J. G. G. Radford, Sidmouth, sidicitor
E. Foster, 21, John-street,
Adelphi,

*J. Hough, Cob̈häm, sürrey
The subscribers denoted by an asterisk are the
first directors. Mr. T. Douglas is appointed managing director at a salary of $£ 50$ per annum,
The qualification of Mr. Douglas will be the holding of shares. or stock. of the nominal value
of $£ 1000$, and of the other directors shares or stock of the nominal value of directors shares or $£ 100 . \quad \mathrm{Mr}$. W. H.
H. Hastings is appointed secretary.

Anglo-American Fresh Meat Supply Company,
This company was registered on the 27 th ult,
with a capital of $£ 100,000$, in $£ 1$ shares, to trade in cattle and live stock of every description, and also in every kind of agricultural and land pro-
duce, and to carry on in the United States the
busines of business of land and colonisation agents, farmers, graziers, \&c. An unregistered agreement of the
7 th July with the Columbus and Texas Meat and Iee Company will be adopted. The subscribers C. . . Hodson, 3 , The Gables, Hampstoad, N. N. S...
W. H. Harrison, 41, Flaxman -road, Brixton, com-

 The number of directors is not to be less than appoint the first, and pending subscribers are to Mr. F. H. Relph will manage the company. Mr. Relph is appointed managing director for seven years at a a salary of $£ 800$ per annum, with a com-
mission of 5 per cent. on all net profits, together With all travelling expenses reasonably incurred. he $\& 1200$ peration ornum, free ordinary directors in in to
bdditional 1100 for each 1 per went, with an 10 per cent per for each 1 per cent. dividend over 10 per cent. per annum. To any director who
may go to America on the business of the com mango to America on the business of the com-
pany, the board may pay a special remuneration
not exceeding travelling expenses.

Douro Gold Mines, Limited.

This company proposes to acquire two conces-
ions granted by the Crown of Portugal for sions granted by the Crown of Portugal for
working gold and silver mines known as Cume de
Serra de situate in the Valley of the Douro, Portugal. It was registered on the 1st inst. with a capital of
$£ 100,000$, in $£ 1$ shares $£ 100,000$, in $£ 1$ shares. An unrepistered agree-
ment of the 18 th ult. between the Fortign Mining ment of the 18th ult. between the Fortign Mining
Association, Limited, and
John Dowle Association, Limited, and John Dowle Jones, its
liquidator, of the first and seond parts, Thomas
Morton Johnson, of the third part, and James Fitzpatrick (as trustee for this company) of the
fourth part, will be adopted. The subscribers

The committee of management is not to exceed
nine members; the subscribers are to appoint the
first; remuneration, $£ 2$ 2s. each for every board
meeting attended until the ordinary general meeting in 1886, when the future remuneration of the members of the committee will be determined;
qualification, 250 shares ; 50.000 share will bic qualification, 250 shares; 50,000 shares will be
issued to the vendors as purchase consideration issued to the veniors as purchase consideration;
30,00 shares will also be issued, credited with 16s, as paid-up upon each.

Edvard Cockey and Sons, Limited.
This is the conversion to a company of the business of gas engineers, contractors, and iron-
founders, carried on by Henry Cockey and Francis founders, carried on by Henry Cockey a and Francis
O. Cockey, at the ironworks, Frome, Somerset. It was registered on the 30 th ult. with a capital
of $£ 20,000$, in $£ 10$ shares. The subscribers are :-
W. A. Padfield, Exeter, engineer
Henry Pertury, Sto
J. Lowe, Weymouth, manager of gasworks
G. Garnett, C.E., Gasworks, Ryde
H. Hams, Frome, , , woollen manufacturër R. Fish, Manor Park, streatham, gas engineer
J. Ruside, Hyde, near Manchester, engineer Henry Cockey, Frome, engineer
F. C. Cockey, Frome, engineer
The number of directors is not to be less than six nor more than nine; qualification, twenty-five
fully-paid shares, or $£ 250$ in paid-up capital.

Improved Cement Company, Limited.
Upon terms of an agreement of the 27th July and foreign patent rights relating to improvements in the manufacture of hydraulic and other
cements, mortar, artificial stone, and other similar substances; also for an improved process for setting and hardening under water. The British patents are numbered and dated respectively-
No. 152, dated 10th January, 1883 , and No. 8153, No. 152, dated 10th January, 1883 , and No. 8153,
dated 6th July, 1885. The company was regis ated 6 th July, 1885 . The company was regis
tered on the 26 th ult. with a capital of $£ 20,000$, in £10 shares. The purchase consideration is
£15,000 in fully-paid shares. The subscribers are:-
R. Bosse, Brunswick, Germany, architect .
Franz Folters, 4 . Luaborn - road, Brixton,
chemist

The number of directors is not to be less than
five nor more than seven; qualification, fifty shares or $£ 500$ stock; the first are the subseriber denoted by an asterisk; the company
meeting will determine remuneration.

PRESSURE EXERTED BY WATER IN THE SOIL
THE following is an abstract of a paper in the
Zeitschrift für Bauwesen," by L. Brennecke, "The author gives the results of a number of with a view to determining the influence exerted by capillary attraction in diminishing the pressure of water in various kinds of earth, especially sand
of different size of grain, and of clay, it being assumed that the water can only find its way by arge fissures present. Reference there are no various authors as regards their opinion on this subject, and the amount of deduction which
under circumstances may be made from the under circumstances may be made from the
theoretical pressure of ground water in designing lock floors, \&o.
oa An observation-recorded by Beer-in regard bearing upon the amount of frictional resistance o water pressure offered by the ground, even basin in question, 178 ft . -5424 metres - in breadth, had been constructed with a concrete was kept filled with water to counterbalance the pressure of the external ground water. On the casion mentioned the water was pumped out to
level of 2 in. -0.05 metre-above the floor, when a slight upheaval of portion of the latter being noticeable the basin was quickly refilled. The
level of the external ground water was 7 ft . 10 tin. bove the under ride of the concrete floor, and the weight of the floor was equal to a column of water
of 3ft. 9in. high; therefore supposing the full pressure due to the height of the ground water
had been active, it would consequently have had been active, it would consequently have
required a depth of water in the basin of fft. 10 inin., instead of 2 in., to preserve stability.
Other examples of the varying resistances of different earths to water pressure are mentioned, viz.: At the coal mine, Wormrevier, some years since, when carrying out some shaft repairs with the aid of pneumatio pressure, on reaching a depth
of 48 ft . below the surface of the ground water in a saturated clay sand, an air pressure of $\overline{3}$ atmosphere instead of twice that amount was sufficient
to exclude the water and at the Rheinureussen to exclude the water; and at the Rheinpreussen
mine near Homberg, in 1865 , the caisson was sunk mine near Homberg, in 1865 , the caisson was sunk
with a pressure of only $2 \frac{1}{2}$ atmospheres to such a with a pressure of only $2 \frac{1}{2}$ atmospheres to such a
depth as was calculated to require a pressure of 8 atmospheres. In the latter instance, however, a sudden increase of the water pressure led to a
most disastrous accident by bursting the air lock most disastrous accident by bursting the air lock.
It is suggested that the water was held back for It is suggested that the water was held back for
some time by the thick beds of clay which it wa known had been passed through, but finally found its way through these by channels around the
outer skin of the caisson. In the previous case outer skin of the caisson. In the previous case
quoted, the author is of opinion that as only half the calculated air pressure was requisite, that
probably half the column of ground water was supported by the air pressure, and the remainder by capillary attraction. Details are given of
baboratory experiments upon sands of various size laboratory experiments upon sands of various size
of grain, together with a number of formulas and tables, giving the corresponding height of the
capillary column."

THE PATENT JOURNAL.

Applications for Letters Patent.

* When patents have been "communicated" the
name and address of the communicating party are
printed in italices.

31st August, 1886.

 Litonadon. Coupling and Uncoupling Ratlway Trueks,

 H. Ayres and A. Foster, London.
Lo. Mo. Locks for WIWDows, \&c., J. Morson, jun.,
London.

 (F. H. Good, United States.)
11, Mo. Corron wast Plo
H. Goldsmith, London. 11. Goldsmith, London.
11,Oon. CADIITce MAchiNEs, H. H. Lake.-(W. Schofeld,

 Tasker, London.
II, 102.
HEEL PROTGOTORS
for Boors, I. r. Sanford,

 London.

 ster. Spranisg
rison, Mandenester. Over-bdee Sewing Machines, w. Webster I5. Stram Boilers or Generators, G. Gwinnstt, Calendar, J. W. Willis, Henley-on-Thames.
Receiving Coin and Automatically Delver articles in Exchange, J. S. Farmer, Mu G. FRames for Preparing Cotton, \&c., J. Dugdale
G. Haworth, Manchester.

Harris, Birmingham. Bodies, L. L'Hollier, Birming. ham.
hisas. Raceutrs for TENsis or other GAMEs, B. Morris,
Halifax.

[^2]11,138. Extracting Fat from Bones, \&c., T. Berliner,

 11,143. Wakinive Stick, de., Handie for Measuring

 Lindon.
11, libo. Are and
Harper, London.

Fractory Material, F. L. and W. S. Rawson,
London.
2nd September, 1886.
162 Controlung Electric Currents, w. Row-

 11,171. Mosumental SLabs, C. Mapleson and W. J.
Rolis, Londont

 PRaskse, J. T. Leighton, London.
11, iso.
London.

 London.
Hi,186. HiNDLe for Mechanical. Tools, W. H. Hall,
London. London.
List. Acuating antal Figures, w. h. Hall,
London.
 Saynor, Londin.
11, 10. T A Aspring from Photooraphic Negatives

 3rd September, 1886.
11,201. Evess for Holdivg STaIR Rods, F. A. Harrison, 11,202. Haxhames for Kertues, dec., E. Fisher and H.
W. Ludlow, Birmingham.

 11,212. MANUACCURE of Velvers, de., F. H. Wilke,
Braford
11,213. Bow-diosures for Purses, de., H. Lehmann,

 France.
1.2.2ni Coutrina Photographic Plates, B. J. Edwards,
L_ondon.
 11,234. Belt Puliexs or Dutums, A. B. Perking, Brad-
ford.
$11,235$. Distributing Grait, \&c., G. F. Redfern.-(. 11, 1 Bra. Distributiva
Brandon, France.)

 London.
1, Lifle Air Reprigerating Machines, e. Hesketh,
London. 4th September, 1886.
11, 242. Effectivg the Elecrro chemiral Genkeation
of Chlorine in Mexalurgical OpERATIONs for the
 EXTRACOTIO
11.243. SCOAR
London.

 H. Boyd, London.
11,247 . EmGinss, Li.
 Birmingham.
11,249 . WTrmpawai of Corks from Botrues, J. C.

 Glasgew.
11,259. SELE MEASURING Cock for Liquids, T. Parkin.
son. Blackburn. son, Black burn.
11,200. Ecoonvamise Fuel in Kitchenerss, F. Botting
 London.
11,263 . Fistenivg Knife Blades, de., to Handles, G. H. Wells, London.
11,264 METALLIC TTBes for Fire-boxes, \&c. of Steam

 and H. Hodgson, Lanceashire.
11,268. DRy Coss
W. Kiog, Londos.

 Fi, Bosshardt. - (A GGenouilete, France) Sutcoife, , Halifax.
$1,273$. INKSTANDS, ic
1,,273. INRETANDS, \&c., C. H. Job, London.
$1,274$. Fisk Hoors, S . James, London
in, 275. LasMPs Burning Loert, \&Co., OiLs, J. Hinks,
London. London.
L, ord. SuBaranise Mrises, D. Campbell and G. L.
schultz. London.
 , Manchester.
11,280. MovaB

 Litondon
 A. Paget, London.

 Les Incendies dite, LAvertisseur Blectro-ARitomatique,
It,289. Furniture for Door Locks, T Elsley, London.

 B. Nation, London.
11,294 . Tops or Cowis for Chimieys, \&co., T. White-
 11,296. SEARTiNas and Rings for Bottles, \&ce., H. Bar-
rett, London. 11.297. Drawivg and Shaping the Edoes of Ha
Leather, wo J. Eaton, London.

 ${ }^{6}$ th September, 1886.
11,300. Treativg Mineral Oils with Acids, A. C

Birmingham.

Manchester. 11,3netiold.
$11,313$. RAILwAY CARRIAGEs, P. Dietrich, Berlin.
 11,316. AUMOMATIC. FIE
Mafarlane, London.

11,319. RRs.LWAY Courdings, M. H. Blanchard, jun.,
London. Litand

11,324. Displaying the Elegtricic Light on Steam-
shirs, we., H. Bradey, London. 11,355, FURNTITYRE, \&ֻ., H. Tipper and H. J. C. Sum-

 strong canada.) Maring and Breaning Covticts,

 1,339. SHUT-OFF VAL
goon, Birmingham.

$\bar{\longrightarrow}$

SELEOTED AMERIOAN PATENTS.

 taapted to conduct staum between the two rings of
packing substantill
ion, with a set forth. (2) The combina-

 nd a series of ehannels leading from the edge of the
piston-rod bore to the space between the rings of
posk packing, substantiallay as set forth. (3) In a atung or
box, a packing cylinder provided with inner and outer
 ings connecting the two recesses, and stoam conduits
leading from the said openings to the edge of the
piston-rod bore on the inner end of the packing piston-rod bore on the inner end of the packing
cylinder, substantially as set forth. (4) In a stuffing-

344,349

box, a packing cylinder provided on its inner end with
a series of pertorations
ocommunicating with a series of pertorations communicating with openings
in the shel of the olinder and channoll leading from
the ends of the perforations to the edse of the the ends of the perforations to the edge of the bore,
the said channels gradually increasing in size as they
 combination, with a stuffing-box, a packing cylinder
having external and internal ring of packing and a a
hat eries of channels adapted to conduct steam

344,475. İs.J.7.oR, Waster L. Cheney, Hartford, Conn.
Filed June 1st, 1885. Claim - - (l) In an injector, the combination, with a
pair of fixed concentric nozzzes, of the annular valve
and 4, having an interior space communicating with one
of said nozzles, a passage closed by said valve and leading to the other of said nozzies, and a valve
arranged to close the interior of and to lift the said

annular valve, substantially as set forth. (2) In an plate 5 , having nozzle 8 , passage 7, and a aeat for valve
M, valve M having valve seat 11 , valve N means, subtantialy as described, for operating valve 1 , and
means, substantially as described, for operating valve means, substantially as deacoribed, or or oper
M fron valve N , substantiall as set forth.

Clain.-(1) The combination of an internal exhausted globe, an external exhausted globe, an incandescent
flament, and leading-in wires pasing through and globe, an enternai exhausted gledingin wires passing through and
fliment, and
sealed into both globes, eubstantially as described.
(2) The combination, in an electric lamp, of a loop of
carbon inclosed in an exhausted globe, which is inclosed in alosed in an exha exhausted globe, which is in.
sealed sed globe, each globe being sealed separately, thereby seouriang the inner vacuum
from leakage of air from without, substantially as from 1eakage of air from without, substantially as
deosribed. (3) The combination, in an electric lamp,
of a carbon loo inolosed in of a carbon loop in comosed in dooble e exhaustred d lypobes
which are sealed separately, and metalic connections Which are sealed separately, and metallic connections
passing through the globes and sealed therein, the

344,343

(Q)
whole arranged in such a manner as to prevent the
heating of the outer globe and expansion and contre heating of the outer globe and expansion and contrac-
tion of the conducting wires in the outer sealing, sub-
stantially as described tion of the conducting
stantially as described.
344,469. SAW Gauge, William H. Wilson, Westfeld,
N.Y.-Filed October 7th, 1885 . Claim. -The saw gauge, substantially as herein
described, consisting of the clamps B B, each having a described, consisting of the clamps B B, each having a
vertical slit a, the vertical hole b, one side of which

opens into the slit a, and the connecting wire c cl bent
as described, the ends c^{1} setting in the holes $b b$, and

 fork of the bracketend forked ats itplower end, and
the elastic pad E rigidly secured in said fork, the dis.

tance from the axis of the pivotted arm to the floor
being less than from the axis to the lower face of the elastic pad, wherebb the eveight of the door wiil act on
the arm and pad to to produce sumfieint fien thhe armand pad to produce enuficient friction on the
floor or carpet to hold the door in any desired position, floor or carpet to hold the door in any desired position,
substantially as set forth.

 a safety valve, the hinged plates surrounding the valve
seat and combined with the spring casing and vale.
and governing the openings between the valve seat

and the atmosphere, substantially as and for the pur-
poses set forth.
$($ ($)$ In
safety poses set forth. (3) In a asetety valve, the combination,
ofthe value the tension appliance, the pring casing,
the hinged plates mounted upon a
aring formed on or

 regulator mounted and made movable upon the spring
casing subetantially as shown and described.

[^0]: $W=1 \cdot 60 P+\frac{5}{N+1+\frac{5}{P}} . \quad . \quad . \quad$.

[^1]: Pulverising may be effected by combined shearing and rubbing Alden's ore-breaker, the jaws Fig. 28, has a peculiar action. The jaws are swung on fixed bolts $a a$ at the top, and are connected together at the bottom by a link. Motion is given to the link by a crank jaws move backwards and forwards through small angles. This motion gives a rubbing action, and the machine is used to reduce ores to fine powder, but it must be difficult to produce an even result. Gardiner's and Bullock's ma.

 chines are similar, and Wolf has introduced the arrangement

[^2]: "Proceedings," Institution of C̣ivil Engineers.

