SCREW PROPELLER EFFICIENCY.
 By Profrssor A. G. Grernhill.

 No IV.IV.-Investigation of the Pressure in the Propeller W Ake.
(42) IT has already been mentioned that the action of the screw propeller should be compared with that of the pressure or reaction turbine, in which the passages are always full of water, and which can therefore work under water if required, rather than that the screw propeller should be compared in its action to the impulse turbine, as in the theories of Rankine, Froude, and the French writers; because the impulse turbine must necessarily work above the tail water, and stops its action when drowned, and in its ordinary action the impulse turbine has the passages only partly filled with water.
(43) We shall now therefore attempt the solution previously promised of the determination of the pressure of the water passing through the propeller at any point of its path, and begin, as at first, by supposing the propeller working inside a closed cylinder, in order to avoid the necessity of the consideration of the pressure and its discontinuity at the surface of the propeller wake. It will be necessary, in order to avoid shock at entrance, to suppose the leading edge of the blades of the proper pitch $\frac{u}{n}$, and to suppose the propeller of properly increasing pitch; and it will simplify the hydrodynamical equations if we suppose the propeller fixed, and the water flowing through it with axial velocity u. In practice this wil represent the case of a steamer just holding her own position against a strong tide or current by the action of the engines.
(44) Taking the axis of x in the sternward direction of the shaft, we must first transform the ordinary hydrodynamical equations in x, y, z, into corresponding equations for the so-called cylindrical co-ordinates $x, r, \theta ; r$ and θ now denoting the polar co-ordinates of any arbitrary point in a plane perpendicular to the axis of x.
Now denoting by $u, v, w, \mathbf{X}, \mathrm{P}, \Theta$, the component veloci ties and impressed forces at the point ($x r \theta$) in the direc tions in which these co-ordinates increase independently a variables, and denoting the pressure by w, the hydro dynamical equations became transformed into
$\mathbf{X}-\frac{1}{\rho} \frac{d w}{d x}=\frac{d u}{d t}+u \frac{d u}{d x}+v \frac{d u}{d r}+v \frac{d u}{r d \theta}$,
$\mathrm{P}-\frac{1}{\rho} \frac{d w}{d r}=\frac{d v}{d t}+u \frac{d v}{d x}+v \frac{d v}{d r}+w \frac{d v}{r d \theta}-\frac{w^{2}}{r}$,
$\theta-\frac{1}{\rho} \frac{d w}{r d \theta}=\frac{d w}{d t}+u \frac{d w}{d x}+v \frac{d w}{d r}+w \frac{d w}{r d \theta}+\frac{v w}{r} ;$
now denoting, instead of m, the density of the water.
(45) Supposing, as explained above, the motion conthen $\frac{d u}{d t}, \frac{d v}{d t}$, and $\frac{d w}{d t}$ vanish; also the equation of con inuity of the motion-

$$
\frac{d u}{d x}+\frac{d v}{d r}+\frac{d w}{r d \theta}=0
$$

requires u to be constant for the tube to be filled, and v to be zero; and consequently $\frac{d w}{d \theta}$ to vanish, or w to be independent of θ.
Consequently our equations of motion reduce to

$$
\begin{align*}
& \mathrm{X}-\frac{1}{\rho} \frac{d w}{d x}=0 \tag{i.}\\
& \mathrm{P}-\frac{1}{\rho} \frac{d w}{d x}=-\frac{w^{2}}{r} \\
& \Theta-\frac{1}{\rho} \frac{d w}{r d \theta}=u \frac{d w}{d x}
\end{align*}
$$

(ii.)
(46) Supposing the pressure w independent of θ, and function of x and r only, then equation (iii.) reduces to

$$
\Theta=u \frac{d v}{d x} .
$$

But supposing the pitch to increase from $\frac{u}{n}$ to the pitch q in an axial length x at a distance r from the axis, then

$$
w=2 \pi r\left(n-\frac{u}{q}\right)
$$

so that

$$
\Theta=2 \pi r \frac{u^{2}}{q^{q}} \frac{d q}{d x}
$$

Also $\mathrm{X}=\frac{2 \pi r}{q} \Theta$,
the impressed forces being supposed due to the norma reaction of a smooth screw surface of pitch q; and there fore from (i.)

$$
\frac{1}{\rho} \frac{d w}{d x}=\mathrm{X}=4 \pi^{2} r^{2} \frac{u^{2}}{q^{3}} \frac{d q}{d x} ;
$$

and integrating

$$
\begin{equation*}
\frac{w-w_{0}}{\rho}=2 \pi^{2} r^{8}\left(n^{2}-\frac{u^{2}}{q^{q}}\right) \tag{iv.}
\end{equation*}
$$

w_{\circ} denoting the pressure in the plane $x=0$, and therefor in the water before the screw has acted upon it.
(47) Then the thrust of the propeller

$$
\begin{align*}
\mathrm{T} & =\iint \rho \mathbf{X} d x 2 \pi r d r \\
& =\int\left(w-w_{0}\right) 2 \pi r d r \\
& =4 \pi^{3} \rho \int^{2}\left(n^{2}-\frac{u^{2}}{q^{2}}\right) r^{3} d r \tag{v.}
\end{align*}
$$

and the turning moment of the engines,

$$
\mathbf{L}=\iint \rho \Theta d x 2 \pi r^{2} d r
$$

$$
\begin{aligned}
& =4 \pi^{2} \rho u^{2} \iint \frac{1}{q^{2}} \frac{d q}{d x} d x r^{3} d r \\
& =4 \pi^{2} \rho u^{2} \int\left(\frac{n}{u}-\frac{1}{q}\right) r^{3} d r
\end{aligned}
$$

$=4 \pi^{2} \rho u \boldsymbol{\rho}\left(n-\frac{u}{q}\right) r$
$r^{3} d r$.
(vi).
the angular momentum generated per second in the propeller wake ; and the loss of kinetic energy in the wake per second
$=2 \pi \mathrm{~L} n-\mathrm{T} u=4 \pi^{3} \rho u \int\left(n-\frac{u}{q}\right)^{2} r^{3} d r$.
(48) With fan-shaped blades we can replace q by p, the constant final pitch of the propeller; and then

$$
\begin{aligned}
\mathrm{T} & =4 \pi^{3} \rho\left(n^{2}-\frac{u^{2}}{q^{4}}\right) \int \boldsymbol{r}^{3} d r \\
& =\frac{1}{1 \sigma} \rho^{3} e\left(d^{4}-a^{4}\right)\left(n^{2}-\frac{u^{2}}{p^{2}}\right) \\
& =\pi \rho\left(\mathrm{A}^{2}-\mathrm{B}^{2}\right)\left(n^{2}-\frac{u^{2}}{p^{4}}\right), \\
\mathrm{L} & =4 \pi^{2} \rho u\left(n-\frac{u}{p}\right) \int r^{3} d r \\
& =\rho\left(\mathrm{A}^{2}-\mathrm{B}^{2}\right) u\left(n-\frac{u}{p}\right), \\
& (12)
\end{aligned}
$$

as before in § (13).
(49) But in a propeller as usually constructed-Griffith's propeller, for instance-the blades, instead of being fanshaped, are shaved off very much to a point; so that we Suppose, for instance, that $n-\frac{u}{q}$ increases uniformly with x from its initial value 0 ; then we can put

$$
n-\frac{u}{q}=\left(n-\frac{u}{p}\right) \frac{x}{l},
$$

supposing l the greatest axial length of the propeller, and p the greatest final pitch.
Then, for the projection of the curve formed by the following edge of a blade on a plane perpendicular to the axis of the propeller, the leading edge being supposed straight-

$$
\begin{aligned}
\frac{d \theta}{d x} & =\frac{2 \pi}{q} \\
& =\frac{2 \pi n}{u}-\frac{2 \pi}{u}\left(n-\frac{u}{p}\right) \frac{x}{l} ; \\
\theta & =\frac{2 \pi n}{u} x-\frac{\pi}{u}\left(n-\frac{u}{p}\right) \frac{x^{2}}{l} \\
& =\frac{\pi l}{u} \frac{n^{2}-\frac{u^{2}}{q^{2}}}{n-\frac{u}{p}}
\end{aligned}
$$

so that the curves of intersection of the screw surface with coaxial cylinders will develope into parabolas.
(50) Therefore, from (v.), the thrust of the propeller can be expressed in the form-

$$
\begin{aligned}
\mathrm{T} & =4 \pi^{2} \rho \frac{u}{l}\left(n-\frac{u}{p}\right) \int_{\theta r^{3}} d r \\
& =4 \pi^{8} \rho \frac{u}{l}\left(n-\frac{u}{p}\right) \beta k^{8}
\end{aligned}
$$

where $8 k^{2}$ denotes the moment of inertia of the projection of the area of the blades on the disc area, about the axis of the propeller.
This is the same as for a propeller with fan-shaped blades of uniform pitch p, and in which with the previous notation, $\mathrm{A}^{2}-\mathrm{B}^{2}$ is replaced by

$$
2 \pi \frac{p}{l} \beta k^{4} .
$$

Then from (vi.)

$$
\begin{aligned}
\mathrm{L} & =4 \pi^{2} \rho \frac{u}{l}\left(n-\frac{u}{p}\right) \int x r^{3} d r \\
& =2 \pi \rho u\left(n-\frac{u}{p}\right) \frac{\mathrm{VK}^{2}}{l}
\end{aligned}
$$

when $V \mathrm{~K}^{9}$ denotes the mument of inertia about the axis of the propeller of the volume V generated by the revolution of the blades, so that in the previous notation for fanshaped blades $\mathrm{A}^{2}-\mathrm{B}^{2}$ must be replaced by
$2 \pi \mathrm{VK}^{2}$.
(51) By shaving off the bladesto a point at the tips, we make $q=\frac{u}{n}$, and therefore $w=w_{o}$ at the cylindrical surface of the propeller wake, and this will be true even when the variations of pressure due to gravity are allowed for, so that the cylindrical casing of the propeller we have introduced may now be dispensed with without introducing discontinuity of pressure.
(52) In order that the cylindrical vortex formed by the propeller should be stable, Maxwell has shown that it is necessary for $w r$, or the angular momentum of a cylindrical layer, to increase with r; if $w r$ diminishes as r increases, the vortex is unstable; the separating case when $w r$ is constant being Rankine's free circular vortex,
In order for the propeller to form such a vortex, we must have-

$$
\begin{aligned}
r^{2}\left(n-\frac{u}{q}\right) & =\mathrm{R}^{2}\left(n-\frac{u}{p}\right) \\
r^{2} x & =\mathrm{R}^{2} l,
\end{aligned}
$$

or $\quad r^{2} x=\mathrm{R}^{2} l$
where R is the radius when the pitch is p, practically the radius of the boss of the propeller.
The profile of a blade seen projected on a fore-and-aft axial plane will therefore be given by Fig. 12, and then

$$
\theta=\frac{2 \pi n l}{u} \frac{\mathrm{R}^{2}}{r^{2}}-\frac{\pi l}{u}\left(n-\frac{u}{p}\right) \frac{\mathrm{R}^{4}}{r^{4}},
$$

the polar equation of the projection of the following edge of a blade on the disc area, as in Fig. 13.
By doubling these areas symmetrically so as to curve the
leading edge, along which the pitch is $\frac{u}{n}$, similarly to the
blades curved in a manner very much resembling those of ordinary propellers in use, as Mangin's or Griffith's.

(53) Then
$\beta k^{2}=$
$\int \theta r^{3} d r$
$=\frac{\pi n l}{u} \mathrm{R}^{2}\left(r^{2}-\mathrm{R}^{2}\right)-\frac{\pi l}{u}\left(n-\frac{u}{p}\right) \mathrm{R}^{4} \log \cdot \epsilon \frac{r}{\mathrm{R}} ;$
whence the thrust of the propeller is determined by

$$
\begin{aligned}
\mathrm{T} & =4 \pi^{3} \rho n\left(n-\frac{u}{p}\right) \mathrm{R}^{2}\left(r^{2}-\mathrm{R}^{2}\right) \\
& -4 \pi^{3} \rho\left(n-\frac{u}{p}\right)^{q} \mathrm{R}^{4} \log \cdot \epsilon \mathrm{R} \\
& =4 \pi \rho n\left(n-\frac{u}{p}\right) \mathrm{B}(\mathrm{~A}-\mathrm{B}) \\
& -2 \pi \rho\left(n-\frac{u}{p}\right)^{\mathrm{q}} \mathrm{~B}^{\mathrm{s}} \log \cdot \epsilon \frac{\mathrm{~A}}{\mathrm{~B}} .
\end{aligned}
$$

Also we shall find, since

$$
n-\frac{u}{q}=\left(n-\frac{u}{p}\right) \frac{\mathrm{R}^{2}}{r^{8}}
$$

that the corresponding turning moment of the propeller is

$$
\begin{aligned}
\mathrm{L} & =4 \pi^{2} \rho u\left(n-\frac{u}{p}\right) \mathrm{R}^{2} \int r d r \\
& =2 \pi^{2} \rho u\left(n-\frac{u}{p}\right) \mathrm{R}^{2}\left(r^{2}-\mathrm{R}^{2}\right) \\
& =2 \rho u\left(n-\frac{u}{p}\right) \mathrm{B}(\mathrm{~A}-\mathrm{B})
\end{aligned}
$$

(54) The turning moment, and consequently the indicated horse-power
therefore be

$$
\frac{2 B(A-B)}{A^{2}-B^{2}}=\frac{2 B}{A+B}
$$

of the turning moment and indicated horse-power of a propeller of the same dimensions and working at the same speed, but furnished with fan-shaped blades, forming a omplete column of wiform will be the thrust in these two cases will be

$$
\frac{2 \mathrm{~B}}{\mathrm{~A}+\mathrm{B}}-\frac{\mathrm{B}^{2}}{\mathrm{~A}^{2}-\mathrm{B}^{2}}\left(1-\frac{u}{n p}\right) \log \cdot \frac{\mathrm{A}}{\overline{\mathrm{~B}}}
$$

which may generally in practice be replaced by $\frac{2 B}{A+B}$; so that the efficiency is practically the same in the two propellers.
(55) For the stability of the vortex of the propeller wake, according to Maxwell, vor or $r^{2} x$ must increase with r; so that the blades should be fuller in area, not finer, than that given above in Figs. 12 and 13. Then by pointing the blades so as to make $q=\frac{u}{n}$ at the tips, we make $w^{=}=w_{0}$ at the surface of the propeller wake. The pressure will then increase at first in going towards the axis of the propeller wake; and where the pressure is a maximum, we may assert that the blades are most efficient. Afterwards, in going nearer to the axis, the pressure will in propeller wake will tend to draw air down, this effect being variously called the sucking action or centrifugal action of the propeller.-Cotterill, "Annual" of the R.S.N.A., 1873.

THE BIRMINGHAM EXHIBITION AND SOME INDUSTRIAL LESSONS
Visitors agree in praising the Birmingham Exhibition, and it is probably one of the most entertaining that has been opened for many years to those interested in the world could present so tions and illustrations of local arts, the old by the side of the new, and in most cases struggling against its effacement by modern forms, methods, systems, and tools. In a few cases the old survives unassailed, in some others it survives but is dying an inevitable death. In some trivial instances it has been in part revived. In many cases the changes are affecting those who themselves are unable to effect a change. In illustration of some of the lessons which we think may be learned in the Birmingham Exhibition we find an example of the modern kind in the first trophy which meets the eye on entering the Bingley Hall. This is one by Nettlefolds of Birmingham. Here and on the stand of Mr. Felix Hadley we find specimens of every kind of nail, spike and tack, all made by machines that produce by the ton and without notion of number. At the other end of the building are a man and his wife and a lad making tacks and hob-nails by hand, and representing the nail-making industry, and the people now on strike. No wonder they are on strike; but how futile the struggle. The man in this Exhibition, an intelligent, and said to be an excellent workman at his trade, can earn as the result of a long day from 2 s , to 2 s . $\frac{3}{4}$ d., and the woman making wrought tacks does well when she earns 1s. per long day during those months of the year that she can work at all. These people work from about $7 \mathrm{a} . \mathrm{m}$. to 8 or 10 p.m. Yet
they persist in thus working hard for a starvation wage, pay them more for their work. They do not see that their pay them more for their work. They do not see that their
employers are practically helpless, and that their trade is a dying trade. The machine-made nails are, for every practical purpose, quite as good as those made by hand. Every year the machine-made nails are improved. Every year the
number of nail users who find that this is a fact increases Unintelligent conservatism continues to call for hand-made nails, but the call is growing less and less, and those who still demand the old article, demand it only because they fancy. The new nails have not only fallen in price, but they have so much improved in quality that factors can higher than is obtained for the wonderful but brainless machine product. The boot nails made by hand two at a time and four at a beat, must ere long become a thing of are only wasting their life in a starvation struggle to prevent the death of a doomed industry, the death of which will
hurt nobody but themselves. The nail-maker at the Bingley Hall, and the others too, could earn more money in most districts as useful labourers, and the woman could double her wages almost anywhere as a charwoman, and both of
them work several hours less per day. They are strong and willing, and yet seem to have no idea of moving out of their groove, or of emigrating to countries where willing
hands under intelligent heads are wanted. Most of the hand nailers then will probably linger on at this trade some few years longer, with decreasing wages and decreasing strength, and then be incapable of the new work to
which they might turn if they gave up their starvation drudgery at once.
Turning again to Messrs. Nettlefolds' trophy, we find a
large number of articles made from steel and iron wire by large number of articles made from steel and iron wire by machinery, while articles for the same purposes are yet
being made by hand. Some of these things are at present better made by hand; but the hand-made articles are pro-
bably doomed at least to a very seriously diminished demand. Amongst those which have now nearly displaced the hand-made article are hooks and clothes pegs
of numerous kinds, and of those which indicate the new path are corkscrews, button-hooks, small pincers, and pliers, scissors, and other things of the same order. As
an illustration of the old which could be produced in the same way, we see at the other end of the hall boot-lifting hooks being made by the method of forging, and filing, and polishing. These boot-hooks are probably not made
in very great numbers, but they afford an illustration in point, inasmuch as they are of the sort that could be made by machinery such as that used by Messrs. Nettlefolds
for button-hooks, and could be made to look as well and do the work as well in every particular. The corkscrews made by this machinery are being better made every day
as far as finish goes, but they have now been made for as far as finish goes, but they have now been made for obstinate corks as any corkscrew ever made by hand. These
are sold retail for twopence and some for one penny. Some are sold retail for twopence and some for one penny. Some can be sold for one penny, made of steel wire and brass
plated, and it is known that many people possessed of the plated, and it is known that many people possessed of the
ivory-handled regulation pattern button-hook prefer to use ivory-handled regula
these penny hooks.

Al these things and many more of the same kind indicate the way in which old industries are assailed, and
the necessity for the old to look out for new lines of the necessity for the old to look out for new lines of
activity, unless those engaged are to be left either without activity, unless those engaged are to be left either without
an occupation or with one which will gradually lead to starvation.
With respect to the pincers and scissors above mentioned, we do not for one moment wish to suggest that they are at present useful for all purposes, but the pincers are for many, and being made of steel might have their points hardened, and would satisfy the requirements of several people. The forming and roughening of the nose are performed at one operation including punching the hole for the rivet. Now, we may ask, what is to prevent the extension of this system
of manufacture by pressing and forging. In fact there is no reason why such things as seed harrows should not at no reason why such things as seed harrows should not at strong eno
wire rod.
Speaking of harrows reminds us of agricultural machinery generally, and of the surprise which a visitor feels fact, there is scarcely anything that is more necessary to horse; yet there must be a considerable quantity of farmers' requisites made within the district which the Exhibition is intended to represent. Yet this order of the manufactures of the "workshop of the world" is represented by a sent out by their makers a quarter of a century ago, and a sent out by their makers a quarter of a century ago, and a
three-row corn drill. Birmingham has not, perhaps, turned three-row corn drill. Birmingham has not, pernaps, turned not, perhaps, offer much scope, but still it is noteworthy that
what it does show is of what would be considered antiquated design.

The ATLANTA: "The new U.S. cruiser Atlanta will be ready for sea about Sept. 15th, and will shortly afterwards start on a week's brial trip at sea, going in the direction of the Gulf Coast without
making any port, The purpose is to test the vessel to her full
capacity, and with that end in view the best fuel and well-trained capacity, and with that end in view the best fuel and well-trained
firemen will be procured, Engineer-in-Chief Loring will be on
board to supervise the engines and machinery. The Naval Advi-
sory Board may also be sory Board may also be invited to make the trip. The vessel is to
undergo a trip similar to that of the Dolphin. If a storm can be
und bound light and heavy seas is to be carefully noted, Nothing has
bot been determined as to the Atlanta's station after the trial trip yet been determined as to the Atlanta's station after the trial trip until her battery is placed aboard. Her guns are finished, but have
still to undergo the statutory test before they are placed on board, and two or three months will have elapsed before that is done." results obtained with the Dolphin, it seems a little premature to ta
of a week's trip, and of what the ship's ultimate station will be.

VISITS IN THE PROVINCES.

STOKE PRIOR SALT WORKS.
On Saturday, Septenber 4th, about a hundred members of the British Association joined the excursion to the salt works at Stoke Prior, near Droitwich, which are the most complete in Worcestershire, and also the largest individual
works in England. They had caused the ruin two large companies when Mr. John Corbett, now M.P., two large companies when Mr. John Corbett, now M.P.,
took them in hand. Living on the works, he studied the took them in hand. Living on the works, he studied the
causes of former failure, and turned past experience to causes of former failure, and turned past experience to
account, with the result that, in making his own fortune, he affords the means of existence to a large population, and has given a great impetus to the general trade of the district. So important is the traffic created by these works - about a thousand tons in and out together-that the Great Western Company made a special goods branch to
the works from Droitwich, their terminus in this direction the works from Droitwich, their terminus in this direction.
There is also a siding with the Midand Rail way, while the works have grown up on both sides of the Birmingham and Worcester branch of the Sharpness New Docks Navigation Company's canal. Several arms of this canal are
carried into the works, and are in most cases overlaid by a railway siding, so that the salt may be sent away by whichever route best suits the destination of an order. department-only started on Monday week, September department-only started on Monday week, september
6 th-which will turn out 350 tons of salt weekly, in addition to the 4000 tons per week already produced.
The brine is raised by three out of four shafts, 6 ft . in diameter, and about 50 fathoms deep, tubbed for the most part with cast iron rings. In one of the shafts, however, this tubbing was superseded eleven years ago by three required sweeps, and with $\frac{1}{2} \mathrm{in}$. space between the courses filled with the best Portland cement, to resist the great pressure of water behind. From the bo water, leads down to the brine, about 166 fathoms below the surface, rising to about 23 fathoms from the surface. The brine is pumped the 140 ft . by old 40 -horse power 3 to 1 engines, with horizontal cylinders, geared to in. in diameter, raises 50 gals. at every stroke of 9 ft ., which, at ten strokes per minute, gives 500 gals. The brine is delivered into a tank 55 ft . above the works' level, whence it gravitates to a reservoir capable of holding都 18 in . deep, and vary from 30 ft . by 20 ft . to 40 ft . by 24 ft . These open pans are heated directly by furnaces undersealt , he degree of heat varying with the sized grain of 120 dis required to produce. Thus, a temperature of salt; but for fine table salt one of 225 deg. Fah. is required. The brine is continually agitated by rakes, to favour the formation of the crystals, the salt "making" on the surface and soon sinking to the bottom. It is taken out by perforated shovels four times in the twenty-four hours, and filled into tapered wooden "tubs" of irregularly octagonal section, having slits in the bottom for the water to drain
off. After setting for an hour, the "square" or block-of which about 160 go to a ton-is turned out, and placed for a day in the drying house - kept at a temperature of square, leading the gases from the evaporating pan furnaces. The blocks are then ready for loading on to the adjacent siding or canal, as the case may be.
Mr. Corbett, who retains the active management of these close conical esigned and patented some circular pans having Their dial covers, and provided with mechanical agitators. the cylindrical portion 3 ft , and the conical cover 5 ft . to the apex. A vertical shaft carrying four arms, with rakes attached, is made to revolve slowly by bevel gear and
shafting from an engine. At the sides of the pan, and shafting from an engine. At the sides of the pan, and
communicating with it under the brine level, are open "pockets" or tanks, towards which the salt is continually being worked by the rakes, and whence it is taken out. The pressure on the surface of the brine in these closed pans
is but slightly lower than that of the atmosphere. The steam evaporated from two closed pans, led in 18in. pipes, coated with Bell's asbestos, serves to heat an open pan
140 ft . by 24 ft . by 18 in ., the waste heat from some pans also serving to evaporate the water in others. There are altogether nine closed pans for making butter sal-that is a salt exported for salting butter-seren closed pans for
making "squares" for table salt, forty open pans also for "squares," and thirty open pans
salt, making eighty-six pans in all.
The brine is remarkably
The brine is remarkably pure, analysis showing that it does not contain 1 per cent. of extraneous matter-that is salt which formis on the surface of the water in the evaporating pans, a cake is deposited at the bottom. As this becomes discoloured by contact win the iron, and is at the foot of an elevator, and raised above cast iron rolls, the top pair grooved, and the two others plain, by which it is crushed, the product being again raised by an elevator at the back and tipped in.
for agricultural purposes.
wn 4 a sawn by a circular saw into bars, 6 in. by $2 \frac{1}{2}$ in. by $2 \frac{1}{2}$ in. For producing table salt, he blocks are rished blunt spikes, the pieces fapped between rol set close together. The very finest salt is divided by rolls into pieces the size of a hazel nut, and then treated in a jars, and bottles, this department being warmed by the of the product. The steam is led in pipes of rectangular of the product. The steam is led in pipes of rectangular
section designed to occupy as little floor space and give as large heating surface as possible. Salt for dairy purposes - not, however, the coarse "butter" salt, sent away loose
-is also ground ; and salt for curing is broken up between
spiked rolls into pieces the size of a walnut. All these The mills, as well as all the engines and machinery. the works, excepta 25 horse-power Tangye engine fordriving
the shops, were made on the ground, under the immediate the shops, were made on the ground, under the immediate
direction of the engineer, Mr. John Gardner. All the wagons too-of which there are about 700 -are turned out at the works, at the rate of two a week, besides repairs. New wagons and renewals are fitted with Mansell wheels; and none but B B H iron is used in their manufacture. Packing cases, \&c., are made from elm grown on Mr. Corbett's
estate, this wood being found very suitable for salt, as it becomes saturated, and thus preserved. Besides the wagon works, with their traverser, there are a foundry, smiths' shops, boiler shops for making pans, fitting shops and a saw mill. There are twenty locomotives for shunting in the works alone, and fifty canal boats engaged in bringing the raw material-chiefly coal-to the amount of 2000 tons a-week. No work is done on Sunday, although the stoppage entails a severe loss; and great solicitude is shown as to the well-being of the workpeople, of whom a-day.
MESSRS. S. ALCOCK AND CO.'S FISHING-TACKLE
Those members of the British Association who joined the Redditch excursion on September 9th first visited
the fishing-tackle works of Messrs. Samuel Alcock and Co., which gives employment to between four and five hundred persons, about half of whom are men. Fish. hooks appear to have been made to a limited extent at
Redditch towards the close of the last century; but the trade has so rapidly developed that this little country town is now the seat of the fishing-tackle as well as of the needle manufacture in England. It is astonishing to find what a large number and variety of materials enter into the composition of fishing-tackle-steel for the hooks, brass and and silk for the lines, cork and quill for the fore rons, hair greater variety of substances forartificial bait and flies. This varied manufacture has been reduced to a system by Messrs. Alcock, by far the largest manufacturers of these goods, although the mechanical appliances are not very elaborate and the excellence of the produce depends almost entirely on the skill of the operator, combined with a careful selection of material.
For making hooks, crucible cast steel wire is sheared to the required length. One or more lengths together, accordon to size, are then "bearded knife a prane surface with their ends aga its end against an upright as fulcrum, drawn into the substance of the wire, and then slightly turned so as to raise the barb from the shank-an operation requiring great skill, so as to avoid cutting too deeply or raising the barb too much. the sharp on best hooks are now formed by a flat "ile, with" point, as it is termed. The so as to produce the the required shape either by hand, singly on a metal form at the end of a stick, or several together in a simple machine, which exerts the same action. The end to be attached to the
line is either "flatted " by hand hammer on a small anvil, or by a drop hammer in the case of very large hooks; or it is " marked," that is, it receives a series of small notches from top and bottom dies in a stamping machine; or, again, it is "ringed," either by hand in a manner similar elementary of all the mechanical appliances used. It consists of a lever attached to a toothed sector gearing with a spur pinion on a vertical spindle, having an excentric pin at its lower end, which, being given almost an entire revolution by the operator pulling the lever, bends round
the end of the wire into an eve, just as would be produced the end of the wire into an eye, just as would be produced
by a pair of round pliers. The parts are brought back by a strong spiral spring; and a cam on the spindle works a pair of clamps that hold the wire firmly while the end is being bent.
The hooks are hardened by being placed, a great many together loosely, on a pan in a furnace, where they are
raised to a temperature depending on the size of hook, and raised to a temperature depending on the size of hook, and
then quenched in cod oil. With hooks of a certain size then quenched in cod oil. With hooks of a certain size
the adhesive oil is flared or burnt off; but very small hooks, which would suffer by this operation, are washed with soap and water in revolving barrels. Tempering is effected in a pan containing emery powder, over a moderate
fire, the hooks and emery being kept constantly in motion fire, the hooks and emery being kept constanty in motion
until attaining the right temper, which is ascertained by until attaining the right temper, which iolished by being frequent testing. Small hooks are polished by being
shaken in a bag with emery powder, and those of larger size by sawdust in barrels, made to revolve on a slightly excentric axis at an angle of about 45 deg . with the horizon The finished hooks are then, according to their purpose,
tinned, japanned, browned, or blued, for protecting them from the action of rust, after which they are made up in packets or boxes for the market. There are no less than 180 different kinds of hook, each with from tweuty to thirty sizes; and 6000 of the smallest go te an ounce.
The most usual materials for fishing-rods are lancewood, greenheart, hickory, ash, and hazel, with various canes and their selection for the best rods requires much care and with lightness, has recently been introduced, in building up the various joints or lengths of rod with six segments effect of irregular grain is counteracted as far as possible Tapering is effected by inserting one end of a length in the mandril of a lathe and working it down by a hinged wooden tool, like the clamp used for polishing metal rods but having a plane iron set in one half. The "butts" are frequently hollowed, by careful boring with an auger, so as to carry spare "tops." The ferrules are turned the top with stout silk; and a flat is formed on the butt and fitted with rings to receive the reel or winch. The latter is generaly made of brass or gun-metal, the
The best floats are cut out of cork, turned in the lathe,

THE LARTIGUE SINGLE TRACK RAILWAY.
For description see page 225.

smoothed on a grindstone, and "stopped" with putty,
after which they are painted and varnished. An improved form has a saw cut to the central hole, for receiving the line, which is clamped by the plug. Lines were formerly made by twisting or plaiting horsehair, then hair and hemp, or hair and silk, were used. Now the demand is fo senting a smooth surface that will not crack or peel off The best hooks are attached to lines by silkworm gut which is really the intestine of the silkworm, supplied from the firm's gut manufactory at Murcia, in Spain. In
the case of best hook q, also, a swivel is interposed, which is cast or stamped, many together, and then finished in a special machine. Messrs. Samuel Aloock and Co.-who
have a branch est.ablishment at Toronto-obtained the highest awards for their tackle at the Paris, Sydney, and Melbourne Exhibitions.

the gloudester wagon works, gloucester.

 These railway carriage and wagon works, which now form such an important element in the commercial pro sperity of Gloucester, were constructed in the year 1858 bythe late Mr. Isaac Slater, who, evidently foreseeing the great and increasing demand for railway plant, deter particular trade. At that time nearly the whole of the rail way carriage and wagon building trade was centred in
the neighbourhood of Birmingham, but there were glowing accounts spread abroad about the new docks and ship canals at Gloucester and Sharpness, and the special
facilities this had given to Gloucester for doing a home or foreign trade, and probably this led Mr. Slater to fix on Gloucester as the site of his future operations.
The works now stand on about twelve acres of land,
ituated in the Bristol-road. It has railway and canal situated in the Bristol-road. It has railway and canal
accommodation, and is intersected with a perfect system of traverse ways and tram roads. The various departments
have been skilfully laid out with a view to economy in labour in delivering the work where required. Taken as a whole, the works are admirably fitted in every way
turn out large quantities of work suitable for the presen markets, i.e, quickly, cheaply, and of good quality and workmanship. Here may be seen in full operation every
kind of labour-saving apparatus ad infinitum. Indeed, it may be said in many cases that the workman no longer has to work, but simply to watch, and that the bulk of the
real labour is all done by machinery. real labour is all done by machinery.
The present general manager, Mr. Alfred Slater, son of the late Mr. Isaac Slater who died about two years since,
has gone in specially for a full supply of all the best-known systems of steam hammers, hydraulic presses, shaping drilling, and rivetting machines, and the large smiths
shop fairly bristles with animate and inanimate Vulcans, shop fairly bristles with animate and inanimate Vulcans,
from giants to dwarfs. Trade at these works has been well maintained, in spite of the general depression, and at the present time nearly the whole of the plant and
machinery are fully occupied. There are about 1200 men machiery are fully occupied. There are about 1200 men
at work, and the company is occupied with some extensive orders, one for the Indian Government being for 500 iron-covered wagons for military purposes. These wagons
are 32 ft . long and 9 ft . wide, with corrugated iron roofs. When on the line they weigh about 12 tons each, and would, if coupled, cover a space of over three miles.
They carry 15 to 20 tons of goods, and would in time of war carry 100 soldiers in each.
There are also in course of erection some very fine vans-for South America, built on the American plan,
with seats on each side, and a walk from end to end with seats gilt-framed mirrors and coloured glass partitions, with fretwork panels and ventilators, all ingeniously beaded in principals, \&c., to match. These carriages travel on eight Wheels fitted in bogie fra iron wagons for the Oude and Rohilkund Railway, together
with all sorts of trucks, covered and open, to carry beer coal, lime, salt, \&c. \&c.
In making our bow to Mr. Slater for his kindness in furnishing our representative with every required informa-
tion, we beg to hope that he may long be spared to conduct tion, we beg t o hope that he may
the affairs of this great company.

MESSRS. B. AND G. SHORTHOUSE'S METAL ROLLING
These works, for casting and rolling brass and copper Hill, Birmingham, on a private arm of the Birmingham turning out employ about 100 men, and are capable o turning out rom 20 to 30 tons a week of rolled "strips,
sheets, tubes, and wire weekly. As many as forty different qualities of brass are made, including Muntz metal, to rather alloy, may be required to cut well for engraving, another to bear stamping, a third to draw out easily, and
The charge for a crucible is prepared, according to order, perhaps some scrap, the melting furnaces resembling those iron moulds, divided longitudinally, and having the two resulting ingots, called "strips," are rolled cold between plain rolls, being annealed after each pass, or every two tubes, one end of the narrow strip of sheet metal is turned over roughly, in a longitudinal direction, with the hamme on the groove of an anvil, to begin the tube. A mandril
is inserted in this end, which is seized by a pair of clips attached to an endless chain, and drawn through a circular hole in a plate, like that for wire drawing, completing "strips" for wire are slit in a mill like nail rods, the 8quare rods being afterwards passed through circularBrass is annealed after every successive reduction of
diameter, and copper after every three drawings.

HENRY MILWARD AND SONS'
Redditch is the seat of the needle manufacture in England; and Messrs. Milwards' factory, founded in 1730, turning out $8,000,000$ needles weekly with 800 hands when in full work. It is nearly ten years since the visited these works, during their Birmingham meeting; British Association, again paid them a visit, had the opportunity of observing a great advance in the application of mechanical appliances to what was, until about sixty years ago, a manufacture in the strict sense of the word. This machines for stamping and punching the eyes, instead of drops and screw presses, and in the use of a continuous gas furnace for tempering, devised by a member of the firm. The introduction in 1830 of stamping machines, now almost entirely superseded, led to serious riots by the hand needle makerz; but the imprisonment of the ringleaders and introduction of more machinery decided the fate of purely hand-made needles.
The raw material, that is to say, the best crucible steel wire of the required gauge, rigorously checked, is received 40,000 to 50,000 needles. Ten years ago the wire was cut to two-needle lengths by hand shears, like those used by tinsmiths, the operator holding the gauge in one hand. Now it is cut much more accurately at the rate of 500,000 a pedal, having a fixed gauge, adjustable on a horizontal arm. The lengths of wire retain, to a certain extent, the curve of the coil; they are therefore raised to a dull red inside iron rings and rolled on a face plate by a slightly curved bar. Both ends were formerly pointed by hand on a grindstone, the grinder holding several lengths in his hand at once and spreading them out like a fan, while llowing them to turn on their axes by holding them in an nclined position against the revolving stone. Now the lengths are placed in a hopper from which they are with drawn, one closely following another, by a pulley revolv ing on a horizontal axis at right angles to and above that eriphery of the pulley isng india-ubb band so as the better to draw along the needles and main tain their position; but the pulley has a steel flange the same hickness as the rubber and about sin. wide, where the points come in contact with the stone. The double needle blanks revolve on their axes during their slow passage between the pulley and the stone, and are delivered
in a shoot, when they must be passed through a second ime for pointing the other end
The old method of hand-stamping the lengths in the middle, to produce the flat of the eyes and also the mark for the holes, and that of punching the holes by a screw press, were snown to the visitors by way of contrast to the more expeditious method now generally employed. This consists in automatically feeding the still double-needle hat for making wire nails, which stamps 200,000 needle day, with the aid of a single attendant. The horizontal punch is impelled forward by a strong ash spring, when he central cam on the main shaft, horizontal and transverse to the punch, after withdrawing it gradually, releases
it suddenly. A supplementary cam on the same shaft it suddenly. A supplementary cam on the same shat works a syste allowed to fall separately on to the bed between the two dies; and another cam, actuating other links and levers hoot. The wire lengths, having thus received in their middle the print of the two eyes, are fed in under a vertical belt-driven punching machine, which pierces the two oval which the lengths having an ingenious arrangemeores their flat to the punch. Whether the operations of tamping and punching are performed by hand or by heir eyes on two wires fled at one end to retain them hhey are then filed on both sides to remove the burr mad hey are the mad the heads being also smoothed by filing; and then only has heach needle a separate existence
The needles are now hardened by being laid, many ogether, on a plate, and raised to a red heat in a furnace after which they are dropped into cod oil, which is kept at the required low temperature by allowing a portion to run of into a cistern in the cool cellar, and pumping up there taken up by two knives, having semicircular blades set in handles, much in the same way that butter is divided for being made up into pats. The needles are now so hard that they may readily be broken with the fingers; and a great deal of the former care and watchfulness in tempering is saved by the ingenious invention above alluded to. Th wire gauze, over gas flames regulated to give the degree o heat necessary for the different sizes. They have, howver, become bent to a greater or less extent in the process of hardening, and are therefore rolled over one by one detected, and the bent needles thrown out, to be afterward straightened by gentle taps of a small hammer on a steel anvil.
The needles, in parcels of 50,000 , are then washed or coured with soap in a running stream, to remove the oil which has not been driven off in the tempering furnace The eyes of the now bright needles are then "blued "to soften them, and gilded in the case of a peculiarly good of the irm's speciale. tray with standards carrying wires on which the needles play. The tray is moved rapidly, with a reciprocating
but at the four corners, the needles dancing wildly for about an hour, when the inside of the eye has become so smooth as not to cut the thread. The eyes of best needles emery lutely depended upon. The heads are then ground and the points set by hand, on a fine, rapidly-revolving stone,
several needles being held together tightly in the hand, several needles
like an open fan
In the final polishing of the shank another ingenious machine is employed, in which the needles are fed in rows one deep, following one another, every fifteen seconds, in the longitudinal direction of the needles between transverse leather-covered rollers below and holding rollers above, while at the same time being made to revolve on their own axes, thus moving sideways, backwards, and forwards. After this stage the highly polished needles are never touched by hand, or they would be liable to rust; but they are picked over with a small slip of wood to remove any that are defective. It now becomes necessary to lay the needles with their heads in one direction; and this operation is greatly facilitated by a simple though ingeniously devised machine. A gun-metal disc, slowly revolving on a horizontal axis, takes up each needle separately from a hopper by a groove in its periphery, and delivers it with a certain fall, so as to give an impetus, on to an inclined glass plate. The taper form of the point causes the needle to describe an arc in revolving, so that needles with the points one way roll to the right, and the others to the left. Owing to one cause or another, the needles are far from being of equal lengths; they are therefore laid along a straight edge gith their liftoads aginst an even back, when a straight gauge lifts off the longest. A quarter turn is given to a
screwे, bringing the gauge slightly inwards, when it removes the next longest needles, and so on, five or six different times until only the sho fort ache behn. Some machines are being perfected for performing this operation automatically. A slowly revolving dise, like that for head and-tailing, carries up each needle separately, its point being caught by a knife-shaped gauge, which delivers the
needle into one of several spouts for the different lengths. The finished, sorted, and examined needles-now com-plete-are papered in an ingenious manner. The paper, plete-are papered in an ingenious manner. The paper,
chemically prepared to counteract rust, has a strip of cloth pasted by its edges on one side, but permitting of the introduction of a kind of flat skewer between cloth and paper. The whole is placed in a machine between plates, regulated to a distance apart equal to the diameter of the
needles to be papered. Several needles together, taken up needles to be papered. Several needles together, taken up
by wooden leather-lined tongs, are thrust between the plates, and therefore between the skewer and the paper, so that on the withdrawal of the skewer the needles emain spitted evenly through the cloth. The needles are also made up in packets, the paper being cut and folded in cut to prmine fose for envepe making, and having a fap its head. Thus, the most usual tool of every-day life, apparently so simple, undergoes at least twenty-two distinct processes of manufacture, passing through many hands, though that number has been greaty reduced employment to a large number of persons, including many women and girls, whose occupation is constantly being rendered less tedious and more healthy by the improvements in manufacture which the members of the firm are needles for sewing machines; and it was supposed, on the general introduction of the sewing machine that the demand for hand needles would be materially diminished, but this has not turned out to be the case.

MESSRS. FRAZER BROTHERS' FIRE-IRON, FENDER, AND
The largest fender and fire-iron manufactory in the world is that of Messrs. Frazer Brothers, Summer Hill, Birmingham, who turn out no less than 1000 tons of brass is the manufacture though the patterns vary, and so argely are mechanical appliances made to supplement, and in many cases supersede, hand labour, that only about 300 men are employed, including those at the branch estaprincinats for making brass and iron bedsteads. The principal works, new
The frames of fenders are made both of cast and wrought iron, while polished steel is used largely for the better class, sheet iron forming the base. The moulds for castings, both brass and iron, are made with green sand;
plate-moulding, however, is not resorted to, because everchanging fashion constantly demands new patterns. Brass fire-irons are cast, and those of steel and iron are forged and finished between tools of the various forms. The lathes are made to reverse by a pedal for polishing after turning. Polishing heads, or machines with horizontal fast-running spindles, carrying wood discs covered with largely used.
At the bedstead works, Spring Hill, adjoining the Birmingham Canal, which have only been started two and a-half years, 500 of the 30,000 brass and iron firm. Thad weeky in castings; but a very handsome bedstead is now produced from comparatively large iron tube, painted black, scoured with pumice, and polished so as to have a semi-math lustre, relieved by brass ornament. The frames of pugty and having the "dove-tail"" in chills so accurate as to be thoroughly interchangeable, and so smooth as to require no finishing. The laths, rolled of a low quality of steel, are received in bulk, sheared to dead lengths, and punched cold. The studs, made in a rivet machine, have an excentric shank for drawing tight the laths passed over their heads. The heads and feet are made up of drawn tubes in the case of better goods, and of rods in that on common, or a combination ol the two, con*
nected by castings. Chills for the latter are clamped to stout
frames, in accordance with the pattern, and the rods or tubes, roughly sheared and some bent to the desired form, are laid in the chills, the molten metal being run round painted or japanned.

THE LARTIGUE RAILWAY.

Ow the site of the old Westminster prison, close to Victoriastreet, engineers will find an elevated single-line railway which
will repay inspection. The idea of using a single line of rails for the conveyance of goods and passengers is very far from being new, but it has never been carried out so thoroughly as in the present instance. The inventor is a French e egininer, M. Lartigue, who has been assisted in working out details by M. Mallet.
The general idea is that which was made familiar to engineers The general idea is that which was made familiar to elginers erected on posts, trestles, or even on a wall. On this track run wheels, and these wheels support vehicles which straddle over the rail. The centre of gravity being below the rail, the
carriages are in stable equilibrium. The Lartigue railway concarriages are in stable equilibrium. The Lartigue railway con-
sists of sets of angle iron A-shaped trestles, resting on and sists of sets of angle iron A-shaped trestles, resting on and
secured to metallic sleepers laid on the surface of the ground. The line is kept level-or, more strictly speaking, even-by varying
the height of the trestle to suit it. Very steep inclines are perthe height of the trestle to suit it. Nery steep inclines are perine in Westninster rises at the rate of 1 in 10 . The vehicles are kept steady by horizontal wheels, which bear against two continuous bars bolted to the sides of the trestles about 2 ft . rom the top. When the loads are evenly distributed in the ails. The train may be propelled by mules or horses walking along the side of the track, or by locomotives, or by electricity At the Ria mines, Pyrénés Orientales, there is a very curiou Lartigue railway, over which iron ore is carried for a distance o six and three-quarter miles. The line is worked by electricity on a system designed by Messrs. Siemens, the full trains run ning down generating a current of electricity sufficiently powerful to haul the empty train up. The details of the system have not reached us, notor on descending train as a dynamo, which generate he difference betw enough to compensate for the loss of electrical efficiency.
The railway at Westminster is worked by little locomotives constructed by the Société Tubize, Belgium. It consists of two
small vertical boilers, one at each side of the rail, supplying steam to a little double-cylinder engine stowed away between the boilers. To the engine is coupled a second piece of mechanism, consisting of a vehicle carrying a Westinghouse compressing engine and a reservoir, the passenger and other vehicles used ate
Westminster being fitted throughout with the Westinghouse brake. This little carriage is also fitted with a pair of cylinders constituting an auxiliary engine, supplied with steam from the weight of the main engine and boiler is about $2 \frac{1}{2}$ tons ; the oothed drivin. he rail. On the Westminster line this is not found necessary the engine getting up the incline of one in ten with a load of its wn weight without assistance. It would be impossible, within the space at our disposal, to describe the numerous and extremely difficulties. From beginning to end the experimental line supplies orethou great engineering ability and me ee employed with two horizontal boilers, and M. Mallet has designed a compound engine especially for the Lartigue rail way
Engineers in this country will ask of what practical line can be, and the best answer lies in stating what M Lartigue has already done. We have already mentioned the Ria line. The first line on this system was constructed in Algeria to develope the Esparto business. There are now over
cixty miles of the line at work. The Esparto grows in tufts time to time to follow the Esorto wo to speak moved fron been so successful that the Bey of Tunis has allowed the AngloFrench Lartigue Company to construct another line of sixty Russia the line has been tested for military purposes by specia committee. The rail stood 3 ft . 3in. above the ground, and it was found that three men could put up two metres of it in six minutes, at which rate thirty men could put up a mile in about ight hours. A horse drew with ease five tons. The committee xperiments says :-" T "o give an idea of the important result length of about 660 ft . a difference of level of 40 ft in 17 ; in tained, and in a distance of 3300 ft . a difference of level of 200 ft . was attained. It is easy to understand the advantages to b gained by the use of this system in our Asiatic possessions and on
he Steppes, where it is at present necessary to numbers of beasts of burden for military transport. In that particular case the Lartigue railway presents advantages whic can only be described as incalculable.
Imperial Guard at Oust-Sjord, near St. Petersburg with the most satisfactory results. A special kind of rolling-stock to ransporting soldiers and wounded men was used. Cars arranged with seats carrying three men on each side of the line and protected overhead by a tent were connected, and formed a very carry the wounded are arranged to make two stretchers on withdrawal from a field of battle, whilst providing the wounded oldiers with a secure, easy, and exceedingly comfortable mean on carriag. 223 we give several views of the Lartigue plant. Fig.
On shows a line specially designed for suburban traticic. Th short intervals connected by a airder, which would be the rai wor the metropolitan line in Paris, and also proposed to be adopted or the carry
Fit 2 shows ar
Fig. 2 shows an open passenger and a goods wagon in use on
the Westminster line. The carriage is composed at each end of very strong horseshoe-shaped wrought iron bar-Fig. 3-placed parallel with the trestles of the line till it reaches within about
ft . 3 in . of the orizontal. the ground, when it turns outward and become the part which is parallel with the trestles forms the back of the he necessary space for the wheels and brakes and for their
wrought iron bar, which stretches out from the line on each side as far as the outside of the flooring of the carriage. By uniting
this flooring with the horizontal bar by means of flat iron stay crossed, a stiff body of uniform bar by means oite symmetrical regards the line is obtained, which forms an excellent framework, to which panels, either of ornamental wood or painted an varnished sheet iron, can be fitted according to circumostances.
Fig. 4 shows a small open passenger carriage, which seats Fig. 4 shows a small open passenger carriage, which seats
three persons on each side. It only weighs about 500 kilothree pe
grammes.
Fig. 5 shows the locomotive designed by M. Mallet for wheels. Its construction will be understood almost at a glance from our engravings.
Fig. 6 illustrates the engine working at Westminster, and designed by M. Mallet. This engine is composed of two vertical tubular boilers AA, placed one on each side of the line and connected at one end by a large pipe a, which both acts as a steam
dome and carries the two boilers on the framework of the machind carries the two boilers on the framework of the machine, and at the other by a pipe of smaller diameter, which pipe is placed at a height whiob in ol water it is never empty. By this arrangement it is sufficient to toed only one boiler, which supplies the other, the pipe at the same time preventing the water in the inner boiler from rushing into the outer one, owing to centrifugal force, when the engine passes rapidly round a curve. The safety valves, whistles, \&c., are fitted on the large pipe a. The engine is carried by two grooved wheels
FF on a framework, to which the boilers are attached by the bars b and the diagonal stays d, as well as by the steam pipe a, as alread tated. The cylinders D D which occupy a horizontal positio at the front of the engine, drive the cranked axles of the wheel which are coupled, in the usual manner. The firing is done by the engine driver, by means of hoppers fixed at the rear of the boilers, who, sitting nstride of his seat N , and protected by the takes out of the bucket under his seat. The feed-water is contained in tanks placed in front of the boiler, which are conneected by a syphon which reaches to the bottom of each boiler and pre Although the machine is balanced by its construction, since is symmetrically even with the plane of the line, in order to by centrifugal force when going round curves by any accident or by centrifugal force when going round curves, horizontal pulleys
K , running on longitudinal guides attached to the trestles which carry the line, as was stated above, hold the engine in a vertical position and prevent it from leaning over to either side. Thus arranged, and in working order, this engine weighs about $\frac{1}{\frac{1}{2}}$ tons-that is, $1 \frac{1}{4}$ tons on each axle. The wheels are 15 in . in diameter, and the cylinders $4 \frac{1}{2} \mathrm{in}$., with a 7 in . stroke. The boilers have, together, a heating surface of about 70 superficial eet. Win a seam pressure 101 . to the square inch the engine wil haul about 70 tons on the level, 18 tons on an inclin ncline of 1 in 33 , at speed of five or six miles ans with a smaller load, can be increased to ten or fifteen, miles hour. This engine can easily go round curves of 30 ft . radius. It is very easy to see that the Lartigue system possesses ver great advantages, under special circumstances, over any other considerable distance above the surface of the ground, it canno become obstructed by sand or muc, a very important conhave been laid from Suakim to Berber, during the Egyptian campaign, and would no doubt have given that expedition a dif ferent result. It will be a mistake to assume that the Lartigu railway but it is not intended to supersede it but to spupe ment it. Nor will it be right to compare it with the Haddan and other systems which have gone before. The only resemblance is in principle, the differences are in details. To certain
minds principles are everything details nothing. But the engineer knows that in real life details are everything; principle are of secondary value. That is to say, whether a principle the details are worked out. Mr. F. B. Behr, C.E., the managing director of the Lartigue Company, has developed and improve hany of the details of the Westminster line, and does no hesitate to say that further improvements in detail can
effected; but the line as it stands leaves little to be desired. is a very novel and curious piece of engineering, the most nove and visit to the old Tothill Fields prison ground:

LAUNCHES AND TRIAL TRIPS
The screw steamer Abeona had her trial trip on Monday last pool, to the order of Messrs. Rickinson, Son, and Co., of the same place, and is intended for general trading. She is, built of steel,
is of the well-decked type, to olass 100 Al at Lloyd's, and is fully equipped with subsidiary machinery for working cargo. He
length is 275 ft ; breadth, 37 ft . 2in.; denth, moulded, 19 ft . 1 in ross tonnage, 2152 ; and she will carry 3060 tons of dead-weigh cargo on a draught of $20 \mathrm{ft}, 9 \mathrm{in}$. The engines have been supplied
by the Central Marine Engineering Company of West Hartlepool by the Central Marine Engineering Company, of West Hartlepool,
are of the triple expansion type, with cylinders of 2 lin., 3 Fin., and are of the triple expansion type, with cylinders of 21 in, 3 in., and
57 in., by 3in. stroke, made from the same pattern as those of the these enip Coot, which was illustrated in our number of April 16th compound engines, and still have the long main bearings, owing to he use of their dynamic valve gear and piston valves, for whic ng pressure of 150 lb . per square inch, and are cleaded with special non-conducting composition for reducing the radiation, and also for lessening the heat of the engines and boiler rooms. After adjusting compasses in the Bay, the vessel was put at full speed
ahead for Sunderland, the engines running at 72 to 76 revolutions with the greatest regularity. The absence of vibration at that very largely owing to the special form of propeller, designed by Mr.
Thomas Mudd, M. M. M.E., the manager of the company. There
was no heating of any of the parts, and the log showed a speed was no heating of any of the parts, and the log showed a speed,
although there was a 2 -knot tide against the ship, of 11.568 knots Abeona is to load for Constantinople. A large party of friends he owners and builders accompanied the vessel, and were much pleased with the result.
A new paddle-steamer, 65ft. in length, by 8 ft . in breadth, and 3ft. deep, of peeuliar construction, made in eight tections for ship.
ment to the Brazis, had a most sucoessful trial triip on Tuesday
last, between Mortlake and Putney. She was built and engined by Mr. Edward Hayes, of Stony Stratford.
On Wednesday
On Wednesday last, a new sorew steamer for the Egyptian
Government, of light draught, 57 ft , in length, by 9 ft . in breadth, overnment, of light draught, 57 ft . in length, by 9 ft . in byptian and 9it. deep, fitted with compond surface-condensing engines,
also ran a most satisfactory trial trip on the measured mile at Long
Reaeh. She was built and engined by Mr. Edward Hees of Stony

THE MAINTENANCE OF THE BELAH AND
DEEPDALE VIADUCTS ON THE NORTHDEEPDALE VIADUCTS
EASTERN RAILWAY
By Wililam John Cudworth, Assoc. M. Inst. O.E.
In a paper on the Hownes Gill Viaduct in the county of Durham, ${ }^{2}$
by the author's father, William Cudworth, M. Inst. C. Dut by the author's father, William Cudworth, M. Inst. C.E., read on
the 255 th the 25 th November, 1862 , a comparison was made between that
viaduct, which is of fire-brick, and the iron viaducts with trellis piers and lattice girders, then recently erected from the designs
of the late Sir Thomas Bouch, M. Inst. C.E., to carry the South Durham and Lancashire Union Railway over the Belah and Deepdale Valleys. The Hownes Gill and Deepdale Viaducts are of somewhat similar dimensions, but for a single line and double line
respectively and, in order to make the comparison as close as respectively, anc, in order to make the comparison as close as
possible, estimates based on the actual cost of both viaducts were
made for a double-line fire-brick viaduct over Hownes Gill, and pade for a double--line fire-brick viaduct over Hownes Gill, and
malso for a double line iron viaduct over the same valley, of similar also for a double line iron viaduct over the same valiey, of similar
design to that at Deepdale. The estimate in the former case was design to that at Deepdale. The estimate in the former case was
£20,681, and in the latter $£ 16,248$. It was thought that the the difference in cos, taken at 5 per cent., per annum, might be absorbed by the needful painting and repair-
ing of the iron viaduct, so that the briek viaduct would not in the
long run be more long run be more costly. The experience gained by over twentyfive years use of the viaducts makes it possible to compare this
forecast with the actual cost of maintenance. This cost has been ateen years:-
(Length over all, 1007ft. Height of rail from bed of stream, 1955 Ft .

Divide by eighteen 5ears $=$ per annum $£ 1964 \mathrm{ss} . \overline{5 \mathrm{~d}}$
Deepdale Viaduct.
(Length over all, 710 oft. $\begin{aligned} & \text { Heighte of rail from bed of stream, } 15 \mathrm{sft} . \\ & \text { For doubie line.) }\end{aligned}$

Total
ivide
From these figures it will be seen that the actual cost of mainpierced solids, the cost of maintenance is in the case of Relab 3s. $2 \frac{1}{2} \mathrm{~d}$. per 100 cubic yards, and in that of Deepdale 2 s . 11d. per 100 cubic yards per annum. The maintenance of the Hownes cill triennial painting of the cast iron parapet railing costing £12 each painting, and of some staging of the cast iron parapet railing, ture whatever upon it since its completion in 1858 . The will, however, require a little pointing ere long, the cost of which may be estimated at $£ 120$. Dividing this and the cost of the staging ovar rail railing, brings the to the the cost of painting the iron parapet rainng, brings the cost of maintenance to only
£9 11s. $\overline{\text { D. }}$. per annum. As the viaducts become older the cost of maintenance of the iron ones might be expected to increase in a
more rapid ratio than that of the brick one; but their life has not as yet been sufficiently long to make this apparent. The Belah nd the cane laducts were painted during the summer of 188 , shown below. One coat of paint only was given throughout, and the weather was fine:- Belah Viaduct.

Tackling, \&c.:- -
 Total̈. $\overline{£ 168} 06 \quad \overline{2 \cdot 14 \mathrm{~d}}$

Tackling

Total

c128 130 $=\overline{2 \cdot 48 \mathrm{~d}}$,
The same ropes, cradles, and other tackling are used for both viaducts, and they are reserved for them alone. Their cost is
estimated at $£ 80$, and they will last for five of the triennial paintings, great care being taken of them when not in use.
The cost of painting these viaducts compares faver
that of painting onther ithese vidiades in the same district
Sociert of Enginekrs. - Arrangements have been made, by permission of Messrs. Westwood, Baille, and Co., for the members
and associates of the society and their friends to visit, on Tuesday, September 21st, the London Yard Engineering Works, Isle of Dogs,
Dos and to see, among other works in progress there, the great cantilevers
of the Sukkur Bridge. On the occasion of the society's visit last of the Sukkur Bridge. On the occasion of the society's visit last
year, the staging for this work was partially erected, and the first year, the staging for this work was partially erected, and the first
cantilever was being commenced. There will now be the tunity of seeing the latter far advanced toward completion. Special carriages will be attached to the train leaving. Fenchurch-street
Terminus at 12.10 p.m., and to the train returning from Mill wall Dock-station at 4.55.m.m. Tickets for the visit, without which no tary of the society.

ORGAN IN THELIVERPOOL EXHIBITION. CONSTRUCTED BY MESSRS. MICHELL AND THYNNE, ADDISON WORKS, KENSINGTON.
(For description see page 227.)

ORGAN IN THE LIVERPOOL EXHIBITION.
CONSTRUOTED BY MESSRS. MIOHELL AND THYNNE, ADDISON WORKS, KENSINGTON.

ORGAN IN THE LIVERPOOL EXHIBITION. In our last issue we gave a full page illustration of the fine organ of Messrs. Mitchell and Thynne, selected by the musical
conmittee of the Liverpool Exhibition for the grand concert conmittee of the Liverpool Exhibition for the grand concert
room, where it now stands. It was originally exhibited at the Inventions Exhibition, where it gained a prize and attracted marked attention and approval from some of the best organists of the day.
The advanced taste of the present day is continually demanding deviation towards perfection from the old beaten track of organ design; and in this instrument the builders we think fairly claim
to have remedied many faults and made important in that direction. Since its removal from South Kensington it has been partly remodelled and completely finished. The best organists agree that the duplication of stops, which marks the design of most organs of the present day, is a needless complication, rendering the organ less easy of management, and occupying valuable room indispensable for the free speech of the pipes.
It will be seen that in the present organ, which has been justly termed a multum in parvo, there are but thirty-six sounding
stops, yet it contains in itself capacity and grandeur surpssing stops, yet it contains in itself capacity and grandeur surpassing
many instruments of double its size, and this is due to the fact that no two stops in the whole organ are alike, but each possesses a strongly marked individuality and distinctive character of tone. Amongst its most prominent specialities, which are peculiar to this instrument, may be named the gambas and flutes. These will be found a perfect imitation of the violoncello in the solo organ, and the zauberflotte in the choir is a stopped harmonic flute of novel character and peculiar construction, possessing a tone which when used as a solo stop is strikingly telling, but when used in comthe softest stops
the softest stops.
The instrume
and solo organs, consists of four manuals, choir, great swell, organ. The sound-boards are compass, CC to C, with a pedal ample speaking room. The choir organ, as will be seen from the front elevation, an engraving of which we publish above,
being prominently to the front, the delicate stops thus speak
directly into the room without impediment, lending a charm which no other position would render possible. Above this organ is placed the great or chorus organ with its sonorous diapasons and brilliant mixtures, and at higher level the swell organ. The manuals are placed at the side of the instrument with the basses towards the audience, and above these, as will be seen by reference to our engraving, p. 226 , is the solo organ with a portion of the harmonic flute and violoncello forming a front. At the back of this will be seen the tuba, a very fine reed able
to assert itself over the full organ. The pedal organ may be to assert itself over the full organ. The pedal organ may be
seen to the side of the player, three stops of which are placed at seen to the side of the player, three stops of which are placed at
the back of the organ, the 32 's and great flute beiug on the the back of the organ, the 32 's and great flute beiug on the
other side. Immediately above the keys our engraving shows the tubular pneumatics as applied to the solo organ, which players pronounce to be perfect in promptness of touch and repetition. Tubular pneumatics of a similar kind are now applied to the swell with equal success, the great organ being commanded through by the ordinary or French pneumatic lever. Within the organ are four large reservoirs, two being placed under the great organ sound-board, with a main reservoir on lighter wind supplying the
choir organ and basses of the great organ under these. Beneath choir organ and basses of the great organ under these. Beneath
the swell is the heary pressure wind reservoir which feeds the ree swell is the heavy pressure wind reservoir Under the orchestra on which the organ stands are the
reats bellows-six very large French feeders supplying two feed reserbeliows - six very large Frencs feeters surk by a 4-horse Otto gas engine. We give above,
vol for the benefit of our readers, the blowing action as seen when the organ stood in the small concert-room at South Kensington. The feeders will here be seen to be mounted on gun-metal wheels, which allow them to work horizontally freely with minimum of friction.
For the first time in any English organ a mechanical move ment of singularly simple and ingenious construction is applied to the great organ keys, by which the player can at will retain another manual ; and a second note or chord held on the same manual instantly releases the first one retained. Many beautifu and novel effects are capable of being thus produced. Two
entils or stops, governed by pneumatic pistons of doub.e action placed beneath the keys, will be found to each organ in addition to the ordinary composition pedals, thus rendering the manage ment of the instrument easy and thoroughly complete. We append to this description a list of stops, as given by the uilders. Every stop in this organ is complete in compass from CC to C in alto- 61 notes. The stops marked
struction :-
Choir orga
Spitzflote (metal)
2.al * Viole sourdine (metal)
Gedact (wood)
Gemshorn (metai) ...

Gedact (wood) (metain
Gemshorn (metai)
Zauberflote (metal
Great Organ, CC to C in alto-61 Notes.-Supplied with Three
1 Violon (metal)

> in alto- 1 Notes. Pressures of Wind. Feet.

Feet.
F
16
1 Sub octave choir to
Accessory Sreat.
$\begin{array}{llrl}1 \\ 2 & \text { Violon (metal).. } \\ 2 & \text { Great open diapason (metai) } & \text { 16 } & 1 \\ 8 & 1 & \text { Sub octave ch } \\ 2 & \text { Swell to great. }\end{array}$
${ }_{3}$ Great open diappason (metal)
4 Claribel (wood open through)
5 Oetave 6 Octave $\begin{aligned} & 6 \text { Flute octaviante } \\ & 7\end{aligned}$
${ }_{8}^{7}$ Quint mixture, 12,15 . 22, 26, 29 .
${ }_{10}{ }^{9} 1$ Trambab
Swell, $C C$ to C in Alto- 61 Nell Nox made in Three 1 in thicknesses, Felted between each and Lined.

Geigen
2 Mixture, 3 ranks, " $15,19,22$.
${ }^{2}$.
8
9
9 ${ }^{2}$ Oborn
Oboe $\quad " \quad . \quad 8_{8}^{8}$
Qn heavy wind.
${ }^{2}$ On heavy wind,

Peda oryan, CCC to $F-30$ Notes

The tremulants are brought on to the action of one pedal by the use of the draw stops, separately or collectively. The draw
 is constru.
manship.

LETTERS TO THE EDITOR.

We do not hold oursel cese responsiblef es.

-the problen of rigit

 at Buffalo, during their meeting from August 18th to the 2 thh.
As you have treated me with such fairness and kindness in ffair, as you, doubtless, will get others. The vice-president of the
 ENGINRRR. He pronounced my oberervations to be most important and my paper on "The Things of Biriss", finally printed in the
" A merican Naturalist,"
to be valuable.
He wished me to present the subjeect to the A.A.A.A.S. at their Buffalo meeting, I Iarreed to do
so. H He oriticised m my paper, nand I amended it to his
liking. As
 were assigned me on acount of the ery erowded condition of the
section. 1 cout out all the e mechanical portion, and read the obser ations, the greater part or on wioh you have p phire atternoon to the
receired. They kept me on the stand the entire

 preise knowledge whioh would e enable me to construct one of those
things so that I knew it would float before I tried it. Many of hem would flost, many of them would not, and I could not locate the preaise onstruation which caused the difference. That I could
not possibly spare the time needed to come to Buffalo and experit
 Ir. Chanute and to the section before and at the time the vote was taken.
They never
paper. Mr. Chanute left Bunfimo for New York on the 20th. was not in town on the 22 nd, and got to the room on the 23 rid a
ew mintuse befor the seciton met, when mppaper was the first
 perfect hubbub. They all wanted to know where my models were Wwas charged with duplicity by one, and defended in a weak way
W another. $A t$ last the president, Mr. Morse, of Salem, said
 so important a matter was presented without models." The pre-
sident of the section then told them that I had fully informed
them that I had no models, and that no blame could attach to meon that acoount; but that he had understood that I had after ing in a sort of wrangle, during which time I was in a sort of dazed hat it all meant.
After the adjournment, someone handed me a city paper, where, their reporter had arranged with me tof oloat in one of my patent
machines from the oupola of the school-house, and that T would present many marvellous devices which completely turned oved
the laws of gravitation.
This was a
Sunday Pretyy much all the morning papers took their coue from this, and
the entire Convention, as well as all Buffalo, had done the same thing. I was set down as a fraud on account of these preposterous Well, it seems to me that the officers of that Convention prefer paper suib. I except tim. Chanute, hwor thane not seen sinine
the Convention, but whom I cannot conneet in the most remote manner with any of this unfairness.
I send you y a Buffalo slip, which
w f sena

 entirely lost sight or.
Now comes the most astounding part of this strange matter As I was leaving the city the next day, this scoundrel, who had
 wanted me to give him a 10 dol. fee for doing me a great service!
I expeet to return to
 ar trying to get an order from the Navy Depart moent to permit
me to use the
to
to mont to foat planes from durng the day, which would rilieve me from
the expenso of ereocting an elevated plat form. If I werea a grogsthop
 while the keeper was asil
prity withoun arder
Chicago, August 28 f .

softrining water.

Sir, My attention has been drawn to a letter in your last issue
nder the abore headin and signed Andrew Howatson, of

 "And the siad Andrew Howatson doth herobb covenant with the company that the said Andrew Howatoon will not an any time

engage in the working of any exis ixitg or future proos
softening or purification of water in the United Kinglom Is this the same Andrew Howatson who about the same time how wuch time this or that chemical reaction took to complete
tself
the
 same Andrew Howatson, who within a few days or weeks-the ink of the above covenant was hardly dry, and the sound of his words
hardly dispersed - allo an England describing Ho watson's water softening process?
If he is, then what reliance can we place on any information which he vouchsafes to furnish on what he calls h is process?
Take away from his so-called process what
 As an example of this gent As an example of this gentleman's accuracy, it will sumiee to
single out one statement of his letter to you. For instance, he says
that the water of hills is reduced from 30 deg. to 4 deg." and that that the water of hills is
the Lambeth water could
the Lambeth water could be reduced from " 14 deg. to 4 dey." the same scale; evidently Mr. Howatson does not know that scale and no more. I have endeavoured to follow Mr. Howatson in his argument concerning my utilisation of the sediment or prefailed to see his point. My view of the case is simply this:-Why go to this or that lime kiln for a supply when we can get all we
want from the water itself? and of a quality which is surely always the same? and at much less cost than that at which i could be brought from the nearest lime kiln? Why choke up the
drains with what I have proved can be utilised with advantage? My experience as to the best way of applying the softening reagents has happily led me to a conclusion entirely opposed to that
of Mr. Howatson. I have found by two years' actual work that it is possible to regulate the automatic supply of a powder to a grain per gallon nearly, and I am afraid those who use solutions must taps. This, however, must be allowed to remain a matter of taste and experience
I shall be very happy to give all information in my power concerning my different water-softening patents to any of your
readers who will favour me either with a call or a letter, but I do not think it right to occupy your valuable space in giving Mr.
Howatson the information he desires. 32, St. Mary-at-Hill, Eastcheap, London,

MIXED TRAINS.
Sir,-I have read your article upon this subject with great interest, and I think there can be no difference of opinion as to the proper position for the passenger carriages to be placed in a train, very important points can be brought forward on either side, but I most certainly agree with the views of the Board of Trade and the
Amalgamated Society of Railway Servants, that the balance of advantages show in favour of placing the carriages next the engine tinuous antomatic brakes, and with a commune cation with condriver can without trouble stop the carriages at the platforms, whioh is a difficult matter when they are at the rear of a long coal of wagon axles, tires, and couplings, or from wagons leaving the risk of collisions will be very greatly reduced by the use of the con-
tinuous brakes, and further, we must not lose sight of the fact
that when the carriages are at the rear they are quite as liable to be run into by a followesing at
Quite recently a London and South-Western mixed train became Quite recently a London and South-Western mixed train became the passenger carriage was at the rear, and six passengers and the guard were injured. That is one instance out of many in which had the passengers been next the engine they would have escaped Cllement E. STRETTON,
Conser
Saxe Coburg-street, Leicester,
Consing Engineer, Saxe Coburg-street, Leicester, Amated Sonsulting Engineer,
Sept. 11 th.
[Mr. Stretton advances nothing to make of Ralter the view we have expressed on this subject.-ED. E.]

REDUCED HOURS.
REDUCED HOURS.
SIR,-At this critical period of our country's history, no subject is more interesting, although appalling, than the depression of around and see thousands of competent mechanics tramping the country. Messrs. Sharp, Stewart, and Co. have decided to start
their works at $8.30 \mathrm{a} . \mathrm{m}$., in order that they may not be under the necessity of discharging hands, and thus throwing more men into the congested labour market. The questions for our works the men's health, and does it pay the master? as it is often admitted by managers that the first
munerative period of the whole day.
If the example of the above-mentioned fim seems apparent that very few hands would need to followed, or shortness work; and even with exceptional firms where there is ample work, more hands might be employed, owing to the
shortening of the hours for the existing staff. Then would work-ng-men share their trouble together whilst the dark cloud depression hovers over our beloved country.

Sir,-During the past month some interesting experiments have Sir,-During the past month some interesting experiments have
been made at the Fishponds Brick and Tile Works with Hill's patent apparatus for economising fuel, \&c. This apparatus was 31ft. long. The result of these trials-extending over several in $7 \frac{1}{2}$ working hours, as against 28 cwt . of coal consumed in the same time when working by the ordinary method, the same work nearly 38 per cent. These experiments were made under the considered highly satisfactory. The apparatus is extremely insertion of the abive insertion of the above may possibly in
numerous subscribers, and will oblige
Bristol, September 15th.

A NEW ILLUMINANT FOR LIGHTHOUSES. ${ }^{\prime}$ By J. R. Wigham.
THE behaviour of the electric light in the experiments recently made with lighthouse illuminants at South Foreland, as described
in the report of the Trinity House, showed so conclusively to what

 werered to me that if a light of equal intensity but of larger sighthouses, a long-looked-for desideratum would be attained. I have had the honour of explaining to the British Association at previous meetings the construction of the gas
burners with which the lighthouses which have been lighted under my system in Ireland are supplied. They are constructed so as to required by the state of the atmosphere. The smallest power
used in Ireland is that of 429 candles from twenty-eight jets, con-
suming 50 cubic feet per hour, the largest from a triform of 108

RAILWAY MATTERS.

Lieutenant-Colonel H. J. Nuthall has been appointed engi Surveyors have gone to Algoma to arrange the details for the extension of the Canadian Pacific Railway to Sault Ste. Marie to will be made in twelve months. The line between the North-
Western States and the Atlantic Ocean will be 400 miles shorter Western States
THE entire length of railroads of the world, up to the end of
1884, as recently published by the Prussian Minister of Public
Works, was 291 .
 Yery narily one.b.
The first line of railway authorised in the Australian Colonies under the land grant system is that between Beverrey and Albany obtained the contract to construct. The whole of the line is to be constructed within three years, and a commencement will be made
early in next month. The contract price is $£ 1560$ per mile, and The country through which the line will run is very level, and

The net receipts of the railways of the United Kingdom for 1885 are only equal to the payment of 4.02 per cent. on the capital expenditure, being the lowest range of railway profits in this coun-
try since 1867, when the net receipts represented 391 per cent. on he capital expenditure. The source of loss must be sought fo evidence either that the rates and fares have been considerably lowered, or that the average weight of the train has been reduced or both together. This is with an increase during the year of about 2
160,000 tons in in the quanber of passengers carried, and of over quantity of general merchandise
a little over two millions of tons.
Accorning to a report on the Swiss railways, down to the end
of 1884 , the system was worked with 619 locomotives, 1807 pasenger cars, with seats for 80,245 persons-442 per car-and 903 reight cars with capacity for 102,322 tons- 111^{2} tons per car. The locomotive; and the number of train miles was $9,122,470$, which is equivalent to very nearly seven trains each way daily over the
entire mileage; $23,488,640$ passengers were carried an aggregate distance of $323,836,170$ miles, the average journey being 13.8 miles and the whole movement equal to 181 passengers each way daily per mile on the ordinary rail, and $38 \cdot 75 \mathrm{c}$. on the mountain roads,

which is very bigh, and is the more noticeable because only $1 \frac{1}{2}$ per | cent. of the passengers travelled first-class, and $82 \frac{1}{4}$ per cent. were |
| :--- |
| cole $1 \frac{1}{2}$ pe | The other day the ceremony of breaking through the Woy-Wo Tunnel, New South Wales, and firing the last shot was, at th Parliament. This tunnel is on the Homebush-Waratah line railway, which is to connect the Southern with the Northern

ystem of railways. The length of the tunnel is 1 mile and 4 system of railways. The length of the tunnel is 1 mile and 4
chains, the excavation of rock being 124,500 cubic yards. The
work was commenced on March 1st, 1884, the last shot to complete the line of communication being put in on July 17 th . Some
dea of the magnitude of the task may be gathered from the fact that to complete this work it is estimated some $10,000,000$ of bricks
will be required, and the number of casks of cement no less than 0,000 . From the start of the undertaking work has been carrie work of removing the rock over 100 tons of gunpowder and 10 tons f dynamite have been used. The work of perforation has been解
that up to the beginning of August 2262 miles of new track had been laid down in the United States. This mileage is larger than the mileage to that date was 3372 ; in 1880 it was 2631 ; in 1881, to main track only, and do not include additional tracks and
sidings. Judging from the present great demand for rails in the
United States, there must be a large amount of additional tracks nd sidings in process of construction and in contemplation. Th new main track reported up to the above date - 2262 miles-would
require less than 225,000 tons of rails. Assuming that 5000 miles require less than 225,000 tons of rails. Assuming that 5000 miles
of new main track will be laid during the whole of the year, the ng this from the estimated production- $1,400,000$ tons-of rails i the current year-an estimate based upon orders already executed the current year-an estimate based upon orders aiready executed
and those still in hand - this leaves 900,000 tons for renewals,
additional tracks, and sidings, or nearly three-fifths of the total production.

A serious railway accident has happened near Niagara Falls. An excursion train on the Nickel Plate Railway was on its way fo
Niagara Falls, on Tuesday; it consisted of seventeen loaded nd was proceeding at the rate of eight miles an hour, when it hour, while rounding a curve near Silver Creek, New York State So instantaneous was the shock that the air brakes of the freigh train were not set, and the slower passenger train not stopped, ar of the telescoping it up to the rear door. Fourteen occupants of the it was nearly impossible to place the remains of each body together. One account says the freight train, presuming that the excursion train was late, passed the station where it had been ordered to
meet the excursion train. Another and more probable story is that both trains were proceeding under orders, the man who intended the trains to pass one another.
Messes. R. Stephenson and Co. are now manufacturing Garrett's patent locomotive weighing apparatus, which seems to be the
quickest and simplest method of weighing engines. The apparatus
consists of short and strong hydraulic cylinders with rams, which consists of short and strong hydraulic oylinders with rams, which
are placed, one under each wheel, on a planed, level, cast iron bed, such as is usually fitted to locomotive erecting or overhauling
pits. The engine is then lifted by the crane and placed with the
wheels perfectly central on the pits. The engine is then lifted by the crane and placed with the
wheels perfectly central on the rams. The height of all the rams
must be exactly the same, and for must be exactly the same, and for the purpose of adjusting this
height a screw plug is provided on the side of each cylinder. The
weight of the engine is then read off from pressure gauges, the total weight as well as the weight on each pair of wheels being at once indicated. In shops where there are no cranes a special
arrangement of side walls to the pit is made, and the rams are
carried below the level of the rails. The rams are adjusted under the flarges of the wheels, and by means of a small hydraulic force pump the rams can in a very short space of time be raised so that adjusted perfectly level. The weights are then read off from the adjusted perfectly level. The weights are then read off from the
gauges as before. The gauges are made to register up to 5 tons
on each wheel for light engines, and to 10 tons on each wheel for
beavy engines.

NOTES AND MEMORANDA.

The production of kainit and karnallit has begun at the Vienenburg potash mines, About 1000 centners of karnallit are sent
daily to Aschersleben by rail. The railroad junction to the mines is nearly completed.
Recent experiments by Professors J. J. Thomson and Threlfall have brought them to the conclusion that, just as ozone is formed
by the passage of electric sparks through oxygen, so an allotropi ation of nitrogen is formed by sparking in nitrogen. A DIscovery which is of vast importance to New Zealand is now producing fifty barrels a day. It is believed that there is an unlimited supply, requiring only further appliances to increase the quantity obtained very largely.
Dr. LUCLEN C. Rose, of Ohio, has sailed for Gothenburg, Sweden,
where arrangements have been made for a public test of his tele phone, and his trip abroad is to enable him to be present at the satisfaction with his instrument over a distance of 2500 miles.
Crionide of tin as a disinfectant is recommended by Dr. Abbot
as being more active than zinc chloride, copper sulphate, zinc sulas being more active than zinc chloride, copper sulphate, zinc sulphate, or ferric sulphate, spores being killed after exposure to on
per cent. solution for two hours. It is cheap, tolerably safe, and wept, and to prevent formation of insoluble oxichloride, to mix it
ker with an equal quantity of ammonium chloride.
Mr. Thomas Andrews has carried out a long series of tests on pieces of iron and steel submerged at the mouth of rivers, where tests have proved that under these circumstances the corrosion is in pure ocean water. This increased action is attributed by Mr. Andrews to a galvanic action that is brought into play by the To get an absolutely clear solution of shellac has long been desideratum. The National Druggist says it may be prepared by irst making an alcoholic solution of shellac in the usual way; a
little benzole is then added, and the mixture well shaken. In the course of from twenty-four to forty-eight hours the fluid will have ectly clear int ontaining the impurities. The clear solution may be decanted o rawn off.
By a decree dated June 11th, 1882, the Government of France relating to the utilisation of electricity for any of the following purposes :-As a source of heat, of light or of chemical action; a munication in any form; or, finally, as a curative agent. The will be the latest date for entering the competition, and that the prize will be awarded in the following December. The competition is open to all without restriction,
invited to participate in the award.
Some time since a sensational paragraph went round the press concerning an ice-cream poisoning case, which occurred in New
Tersey. Professor Vaughan discovered that the cream contained yrotoxicon, and announced that, under certain conditions, milk became highly poisonous. It seems that the authorities were not content with this conclusion, and as one of the victims died, a post-mortem examination took place, and the organs of the decease
were submitted to Professor Austen, of Rutgers College. He has just announced We discovery of arsenic in sufficient quantity to -which is satisfactory, seeing how little the Professors have left us to eat and drink.
The invention is announced of an entirely new fabric called Berandine from the name of the discoverer, Berand, who has
found out a method of extracting from the outer covering of peculiar kind of peat a textile which has valuable properties. The can be produced at a far cheaper rate, are very strong and servic able, and keep their colour well; mixed with wool the result is
very satisfactory. As yet, however, the manufacture is quite in its infancy, but those learned in such matters consider that Be utilised in this country before long. The discoverecr comes from
Maastricht. The preceding statement must be taken for what it is worth. We are extremely doubtful that anything worth weaving can be got from peat.
From a paper on "Secondary Electrolysis," by E. Semmolais immersed in a voltameter containing acidulated water, in such a way that its ends are opposite the electrodes of the voltameter, and a powerful current is passed through the latter, hydrogen and
oxygen are evolved not only from the electrodes but also from the conditions, and ceases altogether when the current is not strong. but if oxidisable metals are used instead of platinum, it becomes much more energetic. The phenomena are well seen with amalgathe current passes. When the circuit containing the voltamet is closed hydrogen is given off from one half only-the negative half-of the zinc, while oxygen is absorbed by the other half. If
several pieces of zinc are immersed in the water in the voltameter hydrogen is given off from each of them. This secondary electro Mr. E. L. Nichols, in the Journal of the Chemical
aqua regia, nitric acid society, when finely-divided iron ic acid, to illustrate the phenomenon that able intensity and exposed to the action of the acid, the chemical ordinary circumstances. With aqua regia, it was found that the speed of reaction is greater in the magnetic field than without and that the heat of chemical union is much greater. With nitric acid, the effect of the magnet was to greatly increase the speed,
reducing the average time from eight minutes to less than one minute. With sulphuric acid, the reaction was uniform and com without the fluid. The magnet was found, however, to increase the speed of reaction, and to decrease the amount of heat pro-
duced. A series of measurements was which powdered copper was substituted for iron. The reaction in the field was found to be iden
the magnet was not in đction.
In 1883 the president of the Denver Water Company, one of the across Platte River, immediately Denver, on the highlands, just city, conceiving his land to be underlaid at considerable depth with valuable coals, began boring for them. At a depth, says the
Scientific American, of about 300 ft , a stream of water was suddenly projected, with great force, from the bottom to a height 30 ft . o pelling a suspension of work. At first it was thought to be but temporary; but as it continued day after day without any percep-
tible decrease of force or volume, and as the theory of its projection from true artesian sources, so to speak, became more and more apparent, Mr. Zang, owner of a large brewery near by, concluded to test the matter for himself. In due time, apparently the same water was encountered at a depth of 300 ft ,. and then followed a
succession of like enterprises, all of which were successful. Many wells are now in operation, varying in dept sunk by the county o
thing over 700 ft ., the deepest being that Araphoe, near its splendid Court-house, which well is 910 ft deep, tre whole producing about $3,000,000$ gallons per day of twenty-four
hours. The water is very pure and fine,

Tenders have been invited for the lengthening of the South er
We regret to learn that difficulties arising out of the re-organisain the loss to the new University of Japan of the services of Prof. T. Alexander.

A telegraph cable is to be laid between Cape York and Thurs-
day Island, Queensland. The tender of the Eastern Extension Company for the making, transportation, and laying of the cable
Constantinople has at the present time a water supply from
Lake Dercos, twenty miles from the city. This was introduced by a French company, and was intended to supplant or supplement the supply, which the city has had for years, from an open reservoir
six miles distant, in which the rain collected, and from which it
was brought in iron pipes. was brought in iron pipe
The germs of a new manufacture, which might become of con-
siderable importance, appear in certain special exhibits of Muntz's These are specimens of three coils of small gas tube tin., Sin., and in., which are intended for use instead of ordinary composition
piping. The exhibits are the invention of Mr. Thos. Budworth piping.
Sharp.
AT a meeting of the Waterworks Committee of the Leeds Corporation on Wednesday, it was decided to recommend the Town nection with the waterworks for the borough, at an estimated cost
of $£ 35,700$. Another scheme which was advocated would have of $£ 35,700$. Another scherne which was
involved an extension at a cost of $£ 90,000$.
SIR JOHN COODE has sent an important report to the Melbourne Harbour Trust, in which he estimates the cost of constructing a opinion that if the works were carried on with vigour they might be completed in six years. He also insists that, considering the character of the strata which underlie the West Melbourne swamp, walls, or not constructed at all.
Mr. Wm. Morgans, F.G.S., one of the examiners for mine Mining in the Merchant Venturers' School, Bristol, and Mr. Coal Associate in Mining, Royal College of Science, has been appointed as his assistant. Properly equipped workshops have also now
been added to the establishment. Mr. Sydney Everett, late a student in this department of the School, has recently been and Arded
THe following are the bids recently received for the construction pumping engines were bid on, viz.- (1) Vertical, direct-acting,
compound, duplex engine, capacity $1,500,000$ gallons ; (2) same type, capacity $1,000,000$ gallons ; (3) vertical, direct-acting, single
cylinder, duplex engine, capacity $1,500,000$ gallons ; (4) same type capacity $1,000,000$ gallons. The contract was awarded to the pipes and castings was awarded to the Cincinnati and Newport Iron The Assessment Committee of the West Bromwich Board of Guardians have presented a report upon the litigation between
themselves and the South Staffordshire Waterworks Company as to rating. It is reported that the result of the litigation has been satisfactory, inasmuch that the company will have to increase its
payments to an amount which, in the course of five years, will reimburse the guardians for the expense involved in the legal prodemurred, declaring that the committee had in the first instances made exorbitant claims, and that the results of the litigation were very small when compared with the enormous expense.
THE opening of the industrial exhibition at Minneapolis, Minn.,
August 23rd, was made somewhat memorable by the fact that the machinery was set in somewhat memorable by the fact that the Saranac Lake, in the Adirondacks. All the other arrangements for the purpose having been previously made, direct telegraphic
communication was established between the exhibition building and the Minneapolis office of the Western Union Company, thence
through Chicago, Oleveland, and New York city, with the country stopping place of the President's party, when, upon a given signal that the circuit was open the whole distance, Mrs. Cleveland
pressed a button which set the wheels turning in the Exhibition, THE
THE electric launch Volta, which was designed and built by Mr. Skelton, at Millwall, has just made a very successful trip from
Dover to Calais. The launch left Dover on the 13th inst. at 10.30 a.m. and arrived at Calais at $3 \mathrm{p} . \mathrm{m}$. After a considerable about 8 p.m., having travelled fifty miles, while the current from the accumulators still remained powerful enough for more work. On the trip the launch was in charge of Mr. Toms, pilot, who was motor, and Mr. Stephens, one of the owners. Mr. Skelton has for some years past repeatedly called the attention of the Admiralty
authorities to the superiority of the electric power over steam for the furnaces used by H.M. service, as they would be noiseless and always ready for use at an instant's notice.
On Friday, the 10th inst., the steamship Racilia, belonging to
Messrs. Stephens and Mawson, of Newcastle-on-Tyne-which has
recently been fitted by Messrs T. Toward and Co. of Newcestle-Tyne, with their "Emphresis", patent forced-combustion apparatus, aming power of the were satisfactory, and notwithstanding that the bunkers were full
of the cheapest description of coal, and the engines opened out to their full powers, the draught had repeatedly to be eased, owing going ashore to the tug, the Racilia proceeded on her voyage to constantinople, with a cargo of over 2000 tons. We may mention
that Messrs. T. Toward's system includes closed ashpits, and firebars of a special pattern, very thin, and placed closely side by side the combustion chambers and furnaces, the air pressure being produced by a jet of steam.
AN accident took place on the 14th inst. in Belfast. The Albert Quage, which spans the Lagan some distance further up than wide
Queenddenly collapsed, and, it is feared, carried with
it several persons. A gradual sinking of the structure has been observed for the past two or three weeks, and just when the cor-
poration were about to commence operations to have the defect remedied the centre buttress gave way, carrying with it an arch on accident occurred at half-past seven ocolock, and as the workpeople were then returning from business, and the bridge is
usually thronged at that hour, it is feared many lives have been ost. a child have been dragged from the ruins in a helpless condition The bridge, which was of stone, was built in 1831. It was erected as a private speculation for the purpose of developing the county
Down side of the river, and a toll of one halfpenny was charged for many years. Subsequently it was purchased by the grand juries
of Down and Antrim and the corporation, and the toll was abolished. The accident created grach alaly becoming too small for the traffic. principal gas mains pass over the bridge, their suddenly snapping
interfered considerably with the light.

FOREIGN AGENTS FOR THE SALE OF THE KNGINEER.

CONTENTS.

The Engineer, September 17th, 1886. Screw Proprller Efficikncy, No. IV.
The birmingham Exhibition and some industrial Lessons Visits in the Provinces an (II
The Lartioue Railway
Launches and Trial Trips

 A NEw ILLUMINANTT For Lighthouses..

 Tenders
TENDER
 Clarke's Automatic Bouler Clean
Thervogiert Fose, (Illustrated.)
Prooress or Mechavical Solence
Proires of Mecha
Weir with Frem

 Notes from ger
American Notes
NEw Conpants Economical Quay
Tze Patent Jour

ARAGRApHs-The Atlanta. 222 -Society of Engineers, $225-$
Invention, 2us-A New Torpedo Botat, 228 -University Co
233-The Russian Army, $233-$ The Parkes Museum, 234 .

TO OORRFAPONDENTS.

Registered Telegraphic Adaress-

** All letters intended for insertion in The Enginekr, or con taining questions, must be accompanied by the name and address
of the writer, not necessarily for publication, but as a proof of
good faith. No notice whatever will be taten of anonym good faith. No
communications.
*In order to avoid trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to the cases, be accompanied by a large envelope legibly directed by the writer to himself, and bearing a 1d. postage stamp, in order that
answers received by us may be forvarded to their destination.
No notice will be taken of communications which do not comply with these instructions.
W. R.-There was a book. publighed on the subject which you might get
through Messrs. Spon, Charing cross. See also the "Transactions" of the Institution of Civil Engineers.
J. H. H. Chief engineers get from $£ 12$ to $£ 18$ a month, according to the
service they are employed in, supply and demand; second engineers get £9
 OZZLLED STCDENT. - We have fully dealt vith the question your raise under
another form in an artice "U Pile Priving," vhich jou woill flnd in our impression for April 2nd, 18s6. No ansveer can be given to your question
as it stands because $2 t$ id incomplete. The crane jib is not rigid, and unless
the amount of deflection is known, it is impossble to say what the strain on

plativa glow lights.

HYDRaulic castivas.
SIR, -Would any of your readers kindly name the best brands of p'g
iron to use in the production of ceasting for hydraulic purpoee, suxh
castings being subject ti, heavy internal pressure, areo therefore
required to be very close and strong? Any suggestion that will assist me
in securing good results will be appreciated by
HyDRAvLIc. required to be very
in seauring good re
september $10 t h$.

THE ENGINEER.

SEPTEMBER 17, 1886.

the trades congress.
Since our last impression was published, the members of the Trades Congress at Hull have supplied us with more matter for consideration. It is impossible to read the report of their deliberations without reget, shore of as they do how entirely ignorant the speakers are o
some of the rudiments of political economy, and we might even add of common sense. Some of the motions put before the meeting were sufficiently reasonable ; such, for example, as that of Mr. Howlett, that "in the opinion of this Congress, the number of sanitary inspectors be largely increased, but that no man be appointed without pre-
viously passing a thoroughly practical examination." This was intended, no doubt, to attack certain factories
and shops in which unhealthy trades are carried and shops in which unhealthy trades are carried
on under unfavourable conditions. It may be worth on under unfavourable conditions. It may be worth
mentioning in connection with this question, that the workmen themselves have, over and over again, protested against interference - as, for example, the needle grinders of Redditch, who would not permit fans to be erected to carry away the murderous dust which
killed men oif before they were thirty with grinder's killed men off before they were thirty with grinder's
asthma, the reason given being that if the trade was less asthma, the reason given being that iter. It is pleasant to find more enlightenment among the men now-a-days. But it is to be noticed that Mr. Howlett was opposed by Mr. McIntyre, of Glasgow, and Mr. Stradley, of London, and that a respectable minority voted against the motion. We also find that the members voted against the opening of museums and parks on Sunday, so that the men appear
to desire that the public-houses shall not suffer from comto desire that the public-houses shall not suffer from com
petition. The most astounding resolution carried was that of Mr. Bloor, of Burslem, "That the large number of nemployed in this country calls for practical and imme diate legislation, and that this Congress refers the question
to the serious consideration of the Parliamentary Com to the serious consideration of the Parliamentary Com-
mittee." The notion that legislation can improve trade mittee." The notion that legislation can improve trade
would be amusing if it did not supply deplorable evidence would be amusing if it did not supply deplorable evidence
of gross ignorance. Mr. Bloor did not attempt to go into of gross ignorance. Mr. Bloor did not attempt to go into
details; possibly if he had done this the weakness of his resolution would have been made sufficiently manifest to lead to its immediate rejection. As it was, the resolution was unanimously carrica. We slan wis it curiosity Whbication of the scheme for carying into practice inimum rate of wages to be settled by law which will enable workmen to live decently and rear their families?" It is impossible, we venture to say, to name any scheme It is impossible, we venthe teachings of political economy than this. The amount available for wages in any country is derived entirely from the goods sold and from nothing not suffice to pay the wages spent on their production but if the wages are still paid, they are paid out of capital, or, in other words, as we explained last week, out ontinuance of the practice will be the bankruptcy of the individual, the firm, or the nation. Wages fixed by law must ostensibly be higher than those which would be paid under the ordinary conditions of supply and demand, for if they were not higher, legislation would be dities must go up
they are higher, then the price of commodit and, as we have already pointed out last week, the working man will be no better off than he is now. Let us suppose, for example, that wages in the boot and shoe trade go up. The immediate result will be that fittere, tailors, masons, joiners, will all have to pay more for their hoots than they did before. All attempts to fix wages by any other law than that of supply and an entire ignorance of the source from which wages are derived The popular opinion with men of Mr. Maudslay's type seems to be that wages come out of the pocket of the
Bloated Capitalist. If he could realise that they really come out of the pockets of working men he might, perhaps modify his views. Wages are paid hy the consumers, and all over the world men who work with their hands or their brains constitute by far the greatest number of consumers The employer is after all only the intermediary or middle man between the producer or workman, and the consumer We speak now of the manufacturer as an employer, not as
a capitalist. There is another objection to Mr. Maudslay's a capitalist. There is another objection to
scheme which he has, as a matter of course, passed over If wages were fixed by law at a point too high - and any point higher than that fixed by the operation of natural laws must be too high-capital would seek other investments; works would be closed; blast furnaces put out; coal mines shut up, and the last state of the British workman would be worse than the first. As it is now, capital seek investments abroad, where wages are lower than they are here. If Parliament fixed a minimum rate of wages, foreign competition would ruin the English working man If, on the other hand, all the Governments of the world united to fix the rates of wages, then, as we have explained
there would be a corresponding rise in the value of all commodities, and the wages earner would be not one bi better off than he is now. We record with pleasure that Mr. Maudslay's resolution was based on one put before the International Congress at Paris, and it proved to be to strong for his hearers. English working men are
universally idiotic, and the motion was not carried.

As we read the report of the proceedings of the Congress, we come time after time on motions which incline us to doubt whether the delegates are really working men at all. They display so absolute an ignorance of subjects with which they ought to be familiar, that we rub ou Here for exam is a resolution, moved by Mr. Swift, o Manchester, "That in the opinion of this Congress the Manchester, That in the opinion of this congress the country is an evil to the large body of the unemployed,
and ought to be discouraged." We should like to ask Mr. Swift if he ever came across an employer who liked over time or regarded it as anything but a nuisance. Overtime is always paid for at the rate of time and a-quarter to time and a-half, according to the extra number of hour worked. It is notorious that work done in overtime is usually inferior, both in quantity and quality, to that done during the regular day. From the capitalist's point of new, there is nothing to recommended and is ought to know that it is only adopted from necessity There are two or three ways by which it may be avoided Thus, for example, a firm may refuse to take work to be delivered complete on a given day provided the fulmment the con hat Mr. Swi wo go jus should refuse an order under any colty is to julo The second way out of the 1 the gangs of men, one set to come on at 6 p.m., when the da men leave ofl. Thus the night shift, if we may so cal them, would have about two hour per day. As al he cost and trouble of time-keeping, to say the jobs of another set of men, would be incurred we fear that the scheme would be highly impractic able, and excessively unpopular with the regular hands of the firm. In fact the scheme would not work at all, ve in a very few tradesindeed. This would in very many ways, be it obsen da a ystem of working day ind wificilty would be to put more hands on in the daytime. If this ould be to put more hands on in the daytime. If this oula be We solicitation. We need not explane for want of room and is just because it cannot be done for want of room and In this ind ample evidence that the members of the Congress nave not diven due thought to the subjects they undertake , be little harm done by binging forward a lot of abstract propositions; but they an do 10 ood. We imagine that the working men repre ented at Cone desire to have practical questions practically discussed. We have no doubt that if any one ad put a resolution to the meeting to the effect that it was ighly desirable that working men should all find plenty f employment at high wages, it would be carried unanimously. But such a resolution would do no good. We believe we are correct in saying that the delegates in Hul have their expenses paid. The passing of a couple of dozen abstract resolutions seems to us to be a poe return for the outlay. It would be much better to take one resolution and put it into a practical shape, and iscuss it thoroughly, than to send floating about the work a quantity of intangible-shall we say nonsense ?-so vague hat it cannot be agreed with or combatted, recommended good or dismissed as evil, save in a very unsatisfactory ay. May we suggest, for example, that Mr. Mauday hould have drafted at least the general heads of an Acto in different places and that he should have read this draft, xplaining and illustrating as he went how it would, his opinion, work. Again Mr. Swift, not content with saying that overtime was objectionable, which everyone orking scheme for superseding it. If Mr. Maudslay an Mr. Swift are not equal to such tasks, then they have no Maudslay and Mr. Swift we can also say of a good many ther delegates.

railway gauge in ceylon.

During the last thirty years the Government of Ceylon has carried out the construction of railways within the colony on the Indian gauge of 5 ft . 6 in ., the main consideration which induced its adoption being the possibility of altimate junction with the Indian system of railways by ne to be carried across a series of reets known a Adam's Bridge," which practically unite the island with he main continent. The local railways have received radual extension until an altitude of fully 5000 ft . ha been attained in the tea and coffee plancing cistricts, and
but comparatively recently a trace has been completed and estimates prepared for a further extension desired to méet estimates prepared for a urts of the most outlying of those districts. The Governor of the colony and the most influential of it public bodies have warmly advocated immediate procedure public bodies have warmy advocated immediate procedse commissions have reported that not only would the existing traffic make the extension remunerative, but that it transference from the road lines, which it at present reatly follows, to the already constructed railways, would very materially add to the general income derived from them.
Under such conditions it would seem natural to presume that sanction to immediate undertaking of the work would t once be given. But the Colonial-office has shown eluctance to increase the public indebtedness of the colony by the amount required for continuing the line on the preent broad gauge, and consequently an alternative ha been proposed to adopt one of extreme a will be so low oremove all cause for the hesitation felt by the authorities in Downing-street on the score named. It is not within our province to discuss this question in its financial aspect, but it is manifest that when it is proposed, within a comparatively small area, such as that of Ceylon, to commence a break of gauge, there are many important questions of n engineering character to be considered. It will be auge must always be production any conditions a break of o not say that it can never be justified, but the reason for its adoption must be exceedingly strong to warrant it. It has generally been held that at some time or other such a course must be followed in Ceylon. The vast extent of plain country which must eventually be traversed to unite the chief trading centres of the colony must, ituction, and
therefore that the continuance of the present broad gauge would in such a case have to be abandoned. On this ground those who now desire to break the gauge at once rge that it may as well be broken now as at some later period. This argument has, however, given rise to fuller he low country than it has hitherto received, and ther is no doubt that the present decision should be made largely dependent upon the needs of the future
It may well be doubted if in a country where neithe severe gradients, curves, or embankments, are required, and where the cost of land is nil, a narrow gauge line orfers in other respects being equal; while few will be found to dispute that the working expenses, as compared with paying load, increase in direct proportion to the narrowness of the gauge. Further, in the opening-up of districts almost entirely covered with fine forests, the carriage o timber must be looked to as one of the most paying items hardly be safely carried upon a very narrow gauge, for reasons which is not necessary to detail to the reader of The Engineer. The broader the gauge to be employed
on such lines the greater will be the facilities for utilising on such lines the greater will be the facilities for utilising
profitably the vast areas of forest through which the lines protitably the vast areas of ored in the low country of Cevlon. If, therefore, it can be shown that there can be no advan tage, but rather a disadvartage, in reducing the gaug when the development of the plain country is under taken, the argument now made use of for oreaking gauge
while still within the hilly ranges becomes materially eakened.
But independently of this point there remains the im-portant-question as to whether it will be possible to carry
the traffic required on lines destined to serve the tea and offee estates on any such very narrow gauge as that conmplated, va., The case of a line now in full wor ane Darjeeling district in India has been cited a fording antion reply to sach a quere, and an f Stat fopl Cocenill waited upon the fould be the the hat character to serve the requirements of Ceylon. Unti e are in possession the facts eport, we must suspend final judgment as to whether botimation hon it is to say the least systrem a bolk gauge, easons above given, whether it may not form the single instance of such a break throughout the present and pro pective system of the island
held that on such a as 2 ft . the demands of first-class traffic, such as that whic met. Advocates of such a gauge for that colony say, however, that this opinion is due solely to the fact that such diminutive railways have, until this Darjeeling line was constructed, been given only the character of light lines. They advance the theory that if all the attributes of an ordinary type of railway in heavy metal and sufficient posed would be as equal to the carriage and wear and tear of heavy traffic as the wider gauges are. Very care ful estimating has demonstrated that between the cost of metre gauge, in the hill country of Ceylon, there is only a margin of $£ 1000$ per mile, and it is admitted that to secure such a limited saving the break of gauge is not desirable. is brought contend approximate to $£ 10,000$ per mile. We find it impossible to realise the grounds for such an assumption. We lends itself freely to the rounding of very sharp curves such as have to be dealt with in all mountainous countries but there is the difficulty of obtaining sufficient haulage power with any class of engine adapted to a 2 ft . gauge have to be surmounted in such a country. Then, again, how is the question of the increased sleeper base, which it continuous sleepers, can hardly, we should say, be adopted upon a very narrow gauge exposed to the exigencies of a present known to us could preserve the gauge under such a trial round the exceptionally sharp curves imposed. Equally difficult must it prove to preserve the relative
elevation of the rails under such conditions. If, therefore, it must prove necessary to increase the length of the sleepers themselves, what becomes of the economy to b gained in constructive cost? For if the length of the as we have said above, it has been shown that for such a gauge a saving of but $£ 1000$ per mile can be anticipated.
We have stated enough to show that a further interesting problem in the matter of gauges is about to receive
attempted solution, and our readers will, we feel sure, watch the course of such an attempt with particular interest.

high and low locomotives.

IF the question were asked, "Given two vehicles, both having wheels the same distance apart laterally, but the
height of the centre of gravity of one greater than that of the other-which would be most likely to overturn in use? the answer would be, in most cases, the vehicle with the
narrower base in proportion to the height of its centre of gravity. The adage that circumstances alter cases applies aware of. The locomotive engine supplies an example o this. For many years engineers held the opinion that the lower the centre of gravity of a locomotive could be
kept, the steadier it would run; and the relative merits of engines with outside cylinders, in this respect, as compared with those having inside cylinders, formed subject fo
debate. The inside-cylinder engine necessitates a highe
placed boiler than does an outside-cylinder arrangement
because of leaving clearance for the necting rods, and room generally for the parts of the motion, and to give access to them. On the other hand, as an offset against the greater height could be put the action of the steam in the cylinders.
It is well known that the alternate pressure of the steam on the ends of the cylinders tends naturally to rotate the entire engine horizontally round a centre or a turning point situate in the longitudinal middle line of the engine, the bottom of the cylinder, multiplied by the distance of the centre of the cylinder from the turning point. The distance is a fixed measurement in any given engine, but the loads or stresses are constantly altering both in direction and magnitude. Thus, when both pistons are moving forwards, each crank being at an angle of 45 deg. with the o the difference between the steam pressures in the respective cylinders, which difference will depend upon the grade of expansion in use at the time. When, however, one piston is coming back towards the fire-box, while
the other is still going forwards, the cranks being gain at an angle of 45 deg the strain or steam pre ures both act to turn the engine in the same direction herefore the stress at the turning point will equal the sum of the stresses for each cylinder. A little reflection will sho that inasmuch as the centres of outside cylinders are considerably further from the engine centre than are those of inside cylinders, the stresses on the cylinder ends act with proportionately greater leverage, and therefore with entanced stess. The vibratory or "boxing movemen of small outside cylinder tank engines when running fast is very perceptible. The advocates of outside cylinders, derailment was con compensated for by the lower centre of gravity obtained In the earlier days of railways locomotive engineers did not discern apparently so clearly as is now done the differnce between strains causing an engine to overturn and hose towing torne leane rails. The risk of an ngine overtung while runaing is very slight, even when ny instance of an engine overturning when running while still on the rails and nothing broken. The danger f derailment, so far as the engine action is concerned, is to be found in horizontal lateral strains, such as hamme r grind the flanges a gainst the rails, tending of necessit oreak fandes, whe axles, or rails, and here we ma ncidentally comment on the dearth of information extan bout broken rails, as to the nature of the various example Did it ture. Did a rail break vertically or horizon tally Dia it snap Hke sealing-wax without any previous perma in this way would be both interesting and instructive.
It is gradually becoming admitted by locomotive super intendents that high engines run easier and with less ja and shock than low engines, and we venture to say that here are at this moment locomotive superintendents who if they hed to build their last set of engines over again,
would set their boilers higher. The reason why the high engine is the steadier is this-the gauge of the rails repre ents the base of a triangle, and the centre of gravity of he engine represents its apex. Now if a side strain be into two other forces on the triangle, if we regard it for the moment as a truss or as a solid body. One of these forces will create a rotating strain, resembling effect the action on a crank, if we regard the lower corner of the triangle farthest from the pushing strain a he shaft, and the apex or point where the strain is applied urning point of the strain equal to the amount of the applied strain multiplied by the sine of the angle at the turning point. But as w have pointed out, there is a lateral strain also, tending to simply push the triangular body sideways; and the magnitude of this stress will be equal to that half the top angle of the triangle or half its base. From his it will be obvious that the greater the lower angle and its natural sine, as compared with half the apex angle and its natural sine, the greater will be the oversetting or rotating force, and the less will be the lateral strain on the tions than the low. Consequently, the bursting action on the rails is proportionately reduced, while the margin of safety against the high engine oversetting is so great as to render the risk of danger from that cause altogether insig ificant. For example, a body cannot overturn until its entre of gravity overnangs its base. Before this conld take place with an engine of 4 ft . $8 \frac{1}{2} \mathrm{in}$. gauge, and whose nclined travity is 6 ft . from the rails, the engine must be lement as it strikes the outer rail of a curve with less force than does the low engine, there is less tripping action operatin oo cause an upset. The high engine, just as witk the old high, narrow mail coaches, having their piles of luggage on the roof, and generally high centre of gravity, has a long, gentle, easy swing, coming slowly into motion and slowly coming to rest again, without those jars and shock ase of traction or propulsion, as well as the diminishe risks of broken axles, wheels, and rails, and the reduce vibration influences on all parts of the engine, and thei ttendant evils in shaking nuts and joints loose, and causing crystallisation, everything is in favour of the high ngine. There may be men still alive who prefer the low ngine, but we venture to think that they do so mor rom early impressions than from any specitic reason, and hat when they really study the matter carefully they wil change the
It must not be forgotten that our reasoning is based on he fact that the locomotive is carried on springs. Th effect of the high centre of gravity is to produce an
augmented stress on the outer springs and a diminished
stress on the inner springs, and the higher the centre of gravity the greater will this downward thrust be. If it was possible for the centre of gravity to be at the same round as the rails, then the effect of the engine in passing pond would be eliminated. The high engine runs more easily than the low, because it makes better use of the elasticity of the springs on which it is carried.

he alkali manufacture.

THE makers of alkali by the older process seem to have again united to force up the price by a species of combination.
But there is still a competition between the alkali makers by the older and newer process which is not so and which shows itself in effect on the exports. In the first
seven months of the present year the exports of alkali are seven months of the present year the exports of alkali are
officially reported as $4,104,453 \mathrm{cwt}$., which is about $360,000 \mathrm{cwt}$. less than the quantity for the corresponding months of the past year ; and the exports of bleaching materials, separately given,
are also less. The imports of alkali, which are not important in point of quantity, show a significant increase, so that it is apparent that the chemical trade does not retain its importance either in the home or the foreign markets. The reason chiefly is that the makers here adhere to the older process, and that some makers abroad are adopting the newer process, and in some countries re to certain extent ariving our chemeal prodacs odt of the countrie is mortantion place: and inspection of the officin returns of exper showing that it is to Russia, Germany and Holland that the deeline is mainly due-exports of alkali to these countries showing a falling off month after month of most marked extent; argely attributable to the increased production on the continent, where the a mona process has of lat. that to United states of late thase heen a large and satisfactory Une all sent-the inquantity for the corresponding period of last yeans. But alling in the demand of the Continent is very important, and it has its teaching as to the duty of chemical makers here. Any nce of the prices of soda crystals would only result advance in proportion. On the other side the fact would not the producers of soda crystals by the older method lose by the sale of the article at present prices, and thus there is some justification for the attempt to furce up those rates. Still, the
difficulty remains that the tendency is to crush out the Leblanc soda manufacture, except so far as it is necessary for the production of bleaching powder. The situation of this old industry, for it is growing more and more critical owing to the increased and increasing competition with the alkali made by the increase home and abroad. The makers have the advantage of very cheap raw materials, and on the Tyne they have the benefit of the proximity of the salt in South Durham, which is now reducing the price of that article to the chemical makers on the
Tyne by at least 2s. 6 d per ton. If by any means the brine could be brought from the Tees to the Tyne, the difficulty would
be solved, and the cheap ammonia soda of the latter would rule the chen mon did.

ngines in the navy

ANother failure is recorded of that machinery on which so much depends. H. M. corvette Pylades went out for her trial trip
on Tuesday. The trip was brought to an abrupt conclusion
 hat it is unprecedented. Concerning the nature of the failure there is, of course, manifested the usual official reticence. Until the statement is confirmed, we shall regard "safety valves" as a misprint for something, else. The Pylades is quite a new
vessel of 1420 tons displacement; estimated speed with forced draught, 13 knots; cost, $£ 80,000$. She is under orders to pro-
ceed to the North American station.

ROWLAND MASON ORDISH
We regret to announce the death, on the 12th inst., at his residence in London, of Mr. Rowland Mason Ordish, an engineer ive in the numerous important works he has carried out. Mr. Ordish was born near Derby, at a village where his father practised as a land agent and surveyor; but excepting what he saw of building operations incidental to his father's business, the son had no special education as an engineer. Coming to London about the year 1847, when he was twenty years old, Mr. Ordish, anter a few months in the offce or an in London, and who is now in the Public Works Department of Cape Colony. While with Mr. Brounger Mr. Ordish was sent to Denmark on a survey connected with a projected railway his return to England he was engaged on structural work, and at a time when bridges and buildings of new types were needed for the earlier raikways. He soon showed conspicuous talent, men of capacity. The Victoria Bridge, over the Thames at Windsor, was hie frst nected with, and in designing the details or time structure he ing of bridge cylinders and caissons by pneumatic processes was first introduced; and in the application and development of these he thenceforth took a leading part. In 1850 Messrs. Fox and Henderson, of Birmingham, undertook the construction of the
Hyde Park Exhibition building, and Mr. Ordish, having been lent as an assistant draughtsman to Mr.-afterwards Sir Charles -Fox, proved so efficient that the important work gradually fell to him; and he with Mr. Fox made at the office in WestSoho Foundry, Birmingham. The use of cast iron for trellis girders, the bracing of columns in numerous tiers, and the then to be thought out for the first time, and the building then designed has been followed as a type to the present day. Before
the Exhibition was opened, in May, 1851, Mr. Ordish was called to Birmingham to assist in making the working drawings of the New-street Station roof, then the largest that had been made of iron, and when this was anished he was engagea on the Crystal Palace at sydenham. Although the re-erection there, with arge
additions, of the Hyde Parkk building, was successfully carried
out, Mr. Ordish never was of opinion that such light structure of iron and glass were the most suitable for permanent purposes, and the endurance until now of the Crystal Palace is mainly due
to the admirable skill with which the columns and pirders to the admiable skill with which the columns and girder are arranged and braced to transmit the various strains to which they are subjected. From this time forward Mr. Ordish was a Sir Charles Fox was Railway Bridge over the Thames at Chelsea, and the numerous bridges at Battersea by which the railways approach the river were among the works then carried out. Another was a bridge with three spans of 120 ft . for the Queensland Railway, in which the upper or compression members of the girders were of cast iron tubes, the use of these, and the skilful connections which render them trustworthy, exemplifying in a very able way the
opinion which Mr. Ordish shared with Sir C. Fox, probably against most of the profession, that cast iron properly applied married out the same depended on for such a purpose. He carried out the same idea later on in his design for the Railway, where roof trusses of 120 ft , span were made with tubular cast iron compression members. Mr. Ordish was for a time chief draughtsman at the Works Department of the Admiralty, bu having become fully established on his own account, he carried out during the following years works of various kinds, confinin himself, however, mainly to iron structures and their foundations His work at the Crystal Palace had brought him into contac nd the carrion, the aisliggished art designer and colourist, Kiosk for India designed in Moorisher. Among these wa roof, entirely of cast iron. It was in this building that Mr. Ordish first applied the plan of giving stability to column against the outward thrust of an arched roof where no abutments were available, by attaching them to founda
tion plates or girders running inwards from the bases of the columns. He applied somewhat the same principle later in 1876 when he designed the roof over the Enoch-square Station i Glasgow with a span of 198 ft . Between 1860 and 1875 Mr Ordish constructed the Amsterdam Crystal Palace, the Dublin Palace-Watson's Building in Bombay and sevea as the Alber novel and interesting features of design. Among these was an iron and glass building designed in 1868 for Sir G. Gilbert Scot to serve as a winter garden at the new Leeds Infirmary. Here without abutments or tie rods, a lofty roof was constructed as a rectangular dome. From this time till his death Sir G. G. Scott consulted Mr. Ordish on all important questions of structure An interesting case was that of the octagonal Chapter Hous at Westminster Abbey, where the ancient and beautiful vaulted roof, having shown signs of failing, is now, while apparently an unseen polygonal iron roof above, designed by Mr . Ordish. In 1868 Mr. Ordish constructed the Francis-Josef suspensio bridge over the river Moldau at Prague, with a central span o . portfolio." The catenary chain is of steel link bars. The beaut of this structure and its stability under severe test loads gaine or its author from the Emperor of Austria the gold medal of Arts and Sciences, the highest honour of the kind in the Country. A second bridge over the same river was built by Mr Singapore In 1872 a cheme for the Albert Bridge was before Parliament a sheme for the Albert Briage at Chelse that Mr. Ordish should design it. Constructed on his rigid suspen sion system, the design was unfortunately marred by the owner of the bridge insisting on having a steel wire rope instead of the ink chain that Mr. Ordish desired-correctly desired as has been ince proved, for the rope having been insufficiently protected is at the present time being removed by the Metropolitan Boar of Works, and chain links substituted. Mr. W. H. Barlow, past president of the Institution of Civil Engineers, had full con
fidence in Mr. Ordish's ability, and entrusted him with orks of importance for the Midland Railway and elsewher At the opening of the St. Pancras station Mr. Barlow state ears later the design of this roof was Mr. Ordish's. A fev somewhat on the same lines. Not only in the design of these roofs, but in the appropriate symmetry of the connections and
other details, is Mr. Ordish's skill apparent Mr. Ordish designed for Mr. J. Heywood, the engineer of the City London, the briage over Thistreet, which forms part of he roadway being formed of corrugated entirely of cast iron aulked joints like a tank. For a heavy dead load of with cete and granite, and the traffic of a heavy dead load of con may be deemed the best and most durable material.
Another of Mr. Ordish's important works is the roof over the Albert Hall at South Kensington, which he designed with the co-operation of Mr. Max am Ende, who was at that time his chie assistant. This roof, which presented many difficulties, is con-
structed as a dome elliptical in plan, the outward thrust of the structed as a dome elliptical in plan, the outward thrust of the ribs, which act also par
iron ring on the walls.
During the later years of his life Mr. Ordish has suffered from rchitects and others on important buen fully engaged in advisin ron structures. One of his recent works was a design made in conjunction with Mr. Ewing Matheson, for the Tower Bridge, a an alternative to the design of the City Architect which is now eing carried out, and about which we not long ago expresse ur opinion freely. Mr. Ordish was, as it were, born to his pro ession. With a marvellous feeling for strength and proportion hardly ever repeating himself, and able to solve difficult engiseering problems where no one else could see a way of doin number of pupils, foreign as well as English, who have passed their mark in positions of trust and importance. Mr. Ordish was ever ready to impart his knowledge to others, and would give full credit to his youngest pupils for what they could do or
suggest. The numerous engineers in all parts of the world who suggest. The numerous engineers in all parts of the world who
have served under him will hear with regret of his death, and will gratefully give credit to their old master for the solid principles of construction which they gained from his precepts an but those who were acquainted with him appreciated him pre-eminently "a man who knew," and in structural designs, haclaneyed as the common property of engineers everywhere they recognise his original handiwork. In no spirit, of exaggera-
tion we venture to say that during the last twenty years R. M. Ordish has been the ablest and most original eny years 1. M. ountry for all matters of structure. Mr. Ordish was in his
ixty-second year. The cause of death was heart disease. The funeral takes place to-day-Friday-at Has heart disease. The Cemetery

THE EDINBURGH INTERNATIONAL EXHIBITION.

No. IX.
The advantages which wall engines possess both in the atter of saving in first cost and of economy in space and fitting would lead one to expect for such a description of engine a greater demand than evidently exists, in Scotland at least, One of the very few firms exhibiting engines of his kind in the Exhibition is that of Messrs. Thoma Aimers and Sons, of Waverley Ironworks, Galashiels whose productions in this line are already pretty well known to the Scotch millowners, \&c. The engine show in motion at their stand in the machinery section is o 4 -horse power, having 6 in cylinder with 12 in . stroke, illustration page 235 , sufficiently shows the arrangement adopted, the engine requiring no foundation, is bolted vertically-or where there is insufficiency of height diagonally - to any ordinary wall. With the view of demonstrating that the engine is well balanced and free from vibration such as might tend to injure builang partition of very light construction. Although slightly to the disadvantage of the engine in running, this severe mode of fitting has little or no effect on the partition. A special feature of the engine is the high-speed governor with
which it is fitted, this being the patent of Mr. Aimers. which it is fitted, this being the patent of Mr. Aimers,
The balls are fitted on the arms of a fly-wheel, thereby ecuring perfect steadiness of motion, while at the same time the wheel acts as a guard to the balls. The direct ttachment of the springs to the balls without the inter ention of levers and joints tends to greater sensitiveness, The balls are connected direct to the valve rod. Th governor can be made to work in any. position.
We illustrate a steam hammer exhibited by Messrs. Davis and Primrose, Leith. It is what they call a 2 cwt. hamme -that is, the piston-rod with hammer head weighs 2 cwt . The diameter of the cylinder is 7in., and the cylinde allows a maximum stroke of 14 in . The anvil block cast with the frame, as is a common plan in these very small hammers; one which the makers do not adopt for those of larger size and power. This style and size of hammer is made for small shops, where the work done does not exceed pieces of 4in. diameter, and they are useful for even the lighest wr, as the stroke may be thed to less than lin. in length. It can be worked oy the hand lever A when single dead blows, or a succession of such,
are required. When the operator lets go the handle A the self-acting motion comes into operation, and a con inual series of equal blows will be given. The handle is used for regulating the length of the stroke. Thus, he handle is stroke of piston will be less than quadrant, the length of stroke of piston will be less than in., or the hortest stroke possible is giv, and in hande B stroke will be given. In addition to these methods of working the hammer, there is a motion by use of which working the hammer, there is a motion by use of hammer driver. The movements are all effected by the foot of the smith acting on the short lever seen projecting from the lot in front of the hammer near the treadle plate. Th until steam enters the cylinder and the hammer starts into motion. If the smith wants a single heavy blow he the the force, and will remain on the forging or anvil until the mith relieves the pressure of his foot somewhat when the mammer resumes making blows of ordinary force By nother movement of his foot on this lever he can suspend the hammer as above stated
Messrs. Blake, Barclay, and Co., of Greenock, exhibit combined engine and centrifugal separating machine, which we illustrate by the engravings on page 235. Th centrifugal machine is of the kind made for general purposes. The drums are of steel throughout, with cast iron centre cone. The spindle is of steel, running in hard bronze adjustable bearings. The internal lining is composed of wire cloth and perforated metal fixed to the periphery with detachable brass segments, allowing patching or re-lining lining without having recourse to sold commend itself, and needs no further description
We also illustrate the engines of the steel screw yach Sareea, constructed for the Egyptian Government by Messrs. Ross and Duncan, Whitefield Works, Govan The cylinders are 10 in . and 20in. diameter, with piston best of 14 in . The valve gear is Bremme's patent-the apt development of the old Hackworth gear-and applied in a rather interesting manner, so as to give the greatest durability and most satisfactory details of mechanism. In its elementary form, as is well known, projecting for mediate point by a latter is carried by a bracket which can be turned around a centre, this centre coinciding with the axis of the join of the guided point of the radius arm when the crank on its dead points. By changing the angle of the bracket intermedin position given with porions and In the engine of the Sareea the radius-rod or swinging link is carried by a double ba supported by a lever at one end and by a curved slot at the other, the radius of each of these being equal
the length of the radius-rod, and the line joining their centres passing through the centre of the joint of the excentric arm and radius arm when the crank is on either dead point. This arrangement gives the best distribution of stresses and proportion of parts. radius arm is obtainable, with correspondingly smal variation of angle and stress on the joints. It will be noticed that the bars are only moved in reversing or vary ing the expansion. In ordinary working they are at rest excentrics, four double joints, and one single joint con-
stantly working, or eleven parts in all; whereas a Bremme gear for one cylinder in its best form has one excentric and four single joints constantly working, or five in all.
The simplicity, durability, and beauty of mechanism of he simplicity, durability, and beauty of-mechanism The cut-off in the are now leading to its extensither be equal or unequal as desired, uniformity of lead being kept at all grades of expansion. The Sareea is a handsome steel screw yacht, 68 ft . long over all by 12 ft . beam by 7 ft . moulded depth, with elegantly fitted cabin and very complete fittings, and has been ordered on account of the
Government of Egypt, through Messrs. Bastin and Lawson of London.

ZINC PRODUCTION IN EUROPE AND THE
UNITED STATES.

The Oppeln-Silesia-Chamber of Commerce has just pub lished a report concerning the production of zinc in the above-
named countries, out of which the following is extracted. The
. weights are in English tons:

	1884.	1883.	1882.	1881.
Rhenish aud Belgian districts	130,522	123,891	${ }_{\text {119,193 }}$	110,999
Silesian do. .::	${ }_{29,59}^{76,10}$	28,661	${ }_{25,581}$	24,419
French and Spanish do. ${ }^{\text {dion }}$	15,341	${ }^{14,671}$	18,075	18,3584*
$\xrightarrow{\text { Polish do. }}$ Austrinn ${ }^{\text {do. }}$	${ }_{\substack{4,364 \\ 2,365}}$	3,733 2,867	4,400 3,199	${ }_{\text {4, }}^{4,500^{+}}$
American do.	257,767	244,228	${ }_{239259}^{23,65}$	$2: \overline{2 \cdot, 783}$
Total .	:87,767	279,018	273,0	256,78

The figures marked with an asterisk are estimated.

In the year 1885 the prices, owing to over-production, became than they ever had been since 1849, and in consequence this was consummated, the basis of which was that the Rhenish, Westphalian, and Belgian zinc smelters bound themselves from
the year 1886 to limit their production to that of 1884 . All the English and some of the French works joined the combinaion, which to begin with was to remain in force three years, eginning in 188, In the year 1885 the works belonging to the

$\underset{\text { Srench and Belgian district }}{\substack{\text { Silesian do }}}$
 Silesian do. $\begin{gathered}\text { Risish } \\ \text { REghish do. } \\ \text { Engo. }\end{gathered}$
 | Tons. |
| :---: |
| T102, |
| 80,650 |
| 37,30 |
| 37,32 |
| 21,628 |
| 21,84 |

The Silesian smelters have the right at some of the works to increase the production by 5 and in some cases by 7 per cent.
According to the report the good effect of the combination was very speedily felt. The prices immediately rose, and by the
close of the year it became apparent that the existence of the Silesian zinc works had been secured, although the price then stood much below the average of the last ten years. It is now
to be hoped that the bsorbed, when, if the demand keeps up, a rise in prices must iollow.

TENDERS.
NORTHWIOH LOCAL BOARD.-WATERWORKS-LAYING
For laying pipes, \&c., from Cote Cronk to Heywood Reservoir,

J. B. Mather, Hull-withdrawn H. W. Gould and Co., Southampton-accepted J. W. Pickthal, Yeovil and Southampton
 W. Winnard, Wigan .. William Drewitt, Alsager C. F. McCulloch, Manchester Innes and Wood, Handswort
 C. F. McCulloch, Manchester Innes and Wood, Handsworth Jumes Holland, Castle-Northwich
 James Bush, Preston
 Small and Sons, Handsworth Pick hall and SOns, Merthy Tydvil John Jowett, Rainhill
 James Dyson, Ellesmere, $\ddot{\text { Sh }}$ Geopshir
 George Law, Kiddermi Frank Dawson, Bury Walmsley and Co., Cru
 Walmsley and Co., Crumps Josiah Dale, Northwich.. Walmsley and Co., Preston
 Walmsley and Co., Preston ... Holmes and Kershaw, Bradford John Mackay, Stoke-upon-Trent Oliver Norris, Heaton, Bolton-le-

University College, London, Engineering Department. We notice from the prospectus of this Department that the examination for the Gilchrist-entrance-Engineering Scholarship of $£ 35$
per annum is to be held on the 28 th and 29 th inst. Candidates must be under nineteen, and the subjects of examination are :-
I. Mathematics ; II. any two or more of the following: (a) subject connected with engineering; (d) French or German; (e) the use of tools. The examination is intended to be of such a standard as can be passed by lads from school, who have begun to
acquire some knowledge of mechanical pursuits. The appliances acquire some knowledge of mechanical pursuits. The appliances Kennedy-have been very much extended during the past year, mainly through a grant from the Gilchrist Trustees, and are now the strength of materials, and in the economic work of engines and boilers. Laboratory work is so arranged that students go

The RUSSIAN ArMy.-From official returns which have just my during the year 1884 ame effective strength of the Russian army during the year 1884 amounted to 30,889 officers
and 798,908 men. The number of officers on January $1 \mathrm{st}, 1885$, showed a decrease of close upon 500 on that of the preceding year,
principally owing to the introduction of revised regulations for the principally owing to the introduction of revised regulations for the
officers of the higher ranks on account of age or physical unfitness. The following figures show the strength of the regular army on January 1st, 1885 , viz: - Infantry, 954 battalions, 513,861 men ; cavar, $57 \frac{1}{2}$ parks, 77,571 men ; engineers, $30 \frac{1}{2}$ battalions, 22 parks,
20,533 men ; total, 671,227 men. In addition to these must be added the peace strength of the Oossacks forming part of the standing army, viz.:- -285 mounted and 50 dismounted sotnias,
with 96 guns, giving a total of 2169 officers and 44,920 men, out of
a total war strength of 158,000 a total war strength of 158,000 officers and men. The most striking feature in these returns is the large amount of sickness and
the excessive number of deaths which occur in the Russian the number of deaths during the year being no less than 6327 , or $7 \cdot 29$ per cent. of the effective strength, a formidable percentage youth. The most fatal diseases are consumption, typhus, and inflammation of the bowels,

TENDER-NORTH BRITISH RAILWAY A

EXPRESS ENGINE-NORTH BRITISH

 RAILWAY.We illustrate above and on page 230 a very fine locomotive esigned and constructed at Cowlairs Works by Mr. M. Holmes, ocomotive superintendent of the North British Railway, and exhibited at Edinburgh.
This engine is one of six now being builtat Cowlairs and intended work the passenger service between Glasgow, Dundee, and the North, via the lay Bridge, which it is hoped will be opened for raffic next summer.
The following are the principal dimensions of the engine:-Boiler:-
iameter of barrel, outside, at fire-box end
Thickness of plates, Yorkshire ïron
Fire-box Shell:-

itside at bot $\ddot{t} \cdot$.
Length of fire-box ins:de, top ...
Lottom
Breadth of fire-box inside top
Depth" at front end
Ti.bes:-
Material-brass
Length between tube plate $\ddot{ }$
Leating surface:
Piresbox ..
Tubes..
Total...

Cylinders:-
Inside diameter of cylinders Length of ports Widih of steam ports Centre to centre of certs lind

Excentries:- Throw

$\xrightarrow{\text { Throw }}$ Diameter
Length of excentric rods
Wheels:--
Diameter of coupled wheels on tread
Thickness of all tires when finished
Wiath
Wheel base:-
From centre to centre of bogie axles of bogie to driving axle
of driving to trailing.. Total wheel base
Axles:- Bogie, diameter of journals Driving, diameter of crank pin journals
length length
diameter of journals
 Weight of engine: -40 tons 15 ewt.
Tender:-
Water capacity of tank
Coal capacity
Total weight of tender

DELTA METALSTEAM LAUNCH

DELTA METAL STEAM LAUNCH.
The Hamburgische Coirespondent contains an interesting notice on Delta metal steam launches, of which Herr Holtz, Harburg, is making a speciality. Above we give an illustration of one of these launches, destined for the German colony metal, and the stern, keel, and propeller are forged of the same material ; and in order to facilitate the transport, it is constructed to take to pieces and to be easily put together again. Another large launch is now being built, which can also be taken to pieces, it being specified that no piece should weigh more than i.stead of steel in advantage gained by using Delta metal
whilst it possesses the same strength as the latter, and can thus be made of same thickness of material, it is practically incorrodible, which becomes of great importance in countries where
skilled labour is out of all question, and where steel and iron hulls rust through in a very short time unless continually painted. The price of the finished laupches is about twenty to twenty-five per cent. more than of similar launches built of steel ; but taking into consideration that Delta alwass retains its value, it is maintained that the Delta launches are the cheaper. The editor of the Hamburg paper jokingly observes that the navigators of the Dark Continent need never be "hard up, replenish their purse.

THE CLARKE AUTOMATIC BOILER CLEANER.

CLARKE'S AUTOMATIC BOILER CLEANER. We illustrate above a machine recently invented and patented Irelend. It is designed by him for the purpose of automaticall

feeding steam boilers with water. We give a short description of the machine, from which it will be readily understood how it works. The exterior view shows the machine as it is attached
consists of a suitable closed-in chamber, and is fitted with a suction pipe, steam pipe, charging pipe, and a boiler-feed pipe yo start the machine, steam is admitted through the charging pipe, and is allowed to flow out through the drip cock. When place, and water is drawn up are shut; a vacuum then take flows down through the machine, so filling it. The suction pipe is fitted with a non-return valve. As the water rises in the machine it supports the main float, and consequently the rod and lever which are attached to it, but it cannot lift them, as the main lever is held down by the tail-piece of the second lever When the second float and its lever is lifted, the main one is released, and rises; at the same time the lever Z is lifted. The end of this lever works in a slot in the rod Z Z, and thus allows the rod Z Z to rest on the top of the balance valve. The main lever in lifting opens the steam valve, and steam flows into the
machine. When the pressure is equalised with the boiler the balance valve opens, which it is assisted in doing by the weigh of the rod $Z \mathrm{Z}$, and the water then flows into the boiler. As the water lowers, the second float is not supported, but cannot return to its place, as the tail-piece of its lever presses against the up-raised arm of the main lever. When the water falls low enough the main float sinks, thus shutting the steam valve, allowing the second float to fall into its place, lifting the $\operatorname{rod} \mathrm{Z}$ Z A vacuum now takes place and the mahine continues in the same manner working automatically. Should the water in the obvious therefore that the machine will be dormant undil the water falls low enough for it to resume working C is a slring to prevent a jar when the main lever lifts. H is a stop to support the weight of the main float; there are also stops to support the weight of the second float. The air valve in the top is to let out uncondensed vapour. A machine has been working some months on the boiler in the factory of Mr. John Donfield, Sir John Rogerson's Quay, Dublin, and we understand it gives every satisfaction. The feeders will deliver feed hot, and will work either hot or cold water, and will, we are told, lift wate 2 pump. If well made they ought not to liable to order, and they should be a great safeguard against low water.

THE RUGGIERI FUSE.

Messrs. John Davis and Co., of Newgate-street, E.C., are now inoducing the Ruggieri mine fuse into this country. It is com posed of a small tube of pasteboard A, Fig. 1, of conical shape enclosing a fuse or filament B , a bit of spun cotton coated with a powder paste. The large end of the tube is stopped by an electric detonator-a mixture of chlorate of potash, saltpetre, sul

Fig. 1.-The Ruggieri Fuse or Projectile Igniter.

phate of ammonia, and finely-granulated carbon-C, solidly fixer? on which is a wire, the ends of which, D D, remain outside. Thi tube is placed in the cavity left by the boring instrument, being its conical form. The wires D D are attached to a cable with two conductors communicating with an induction machine-from which the current is obtained-the detonator is ignited, fires the

Fig. 2.-Dynamite Cap furnished with a fmall Wooden Cylinder
containing the Filament. fuse contained in the tube, which is blown through the tube int the charge. If the fuse although burnt does not reach the bottom of the bore, as it is composed of an insignificant quantity of material-two or three grains-it is claimed that it is consumed on the way, and leaves only an ash, quite cold in five or six seconds at the most
In mines charged with dynamite, where there is no need for tamping, the process undergoesaslight modification. In the dyna mite cap B A, Fig. 2, are placed a few pieces of wick or filament C

Fig. 3.-Dynamite Cartridge and Cap.

leaving one or two centimetres projecting; the top of the copper mounting is flattened, and then the cap is placed in the dynamite cartridge D, Fig. 3,which is pushed to the bottom of the hole. There is placed at the mouth of the latter a large stopper of the admis sion of the Ruggieri fuse. The wires are attached and the shict is fired. When the fuse ignites it shoots right to the bottom of the bore, on to the filament of the cap, which causes the detonation of the dynamite. The stoppers may be used over and over again. \qquad
The Parkes Museum.-Lectures and demonstrations for the instruction of sanitary inspectors will be delivered on Mondays, Wednesdays, and Fridays at 8 p.m. October 4th, introductory, lecture, "General History, Principles, and "Methods of Hygiene,"
Dr. G. V. Poore, F.R.C.P. October 6th, "Water Supply, DrinkDr. G. V. Poore, F.R.C.P. October 6th, "Water Supply, Drinking Water, Pollution of Water," Professor W. H. Corfield, M.A., Robinson, M. Inst. C.E. October 11th, "Sanitary Appliances," Mr. Percival Gordon Smith, F.R.I.B.A. "October 13th, "Ventila tion, Measurement of Pubic Space, \&c.." Professor M. de Chaumont, M.D., F.R.S. October 15th, "Scavenging and Disposal of "Food, Good and Bad, Milk, Sale of Food and Drugs Act," Mr. C. E. Cassal, F.C.S., F.I.C. October 20th, "Infectious Diseases and Methods of Disinfection," Dr. R. Thorne Thorne. October
22nd, "General Powers and Duties of Inspectors of Nuisances, 22nd, "General Powers and Duties of Inspectors of Nuisances,
Methods of Inspection," Mr. J. F. J. Sykes, B.Sc., M.R.C.S. Methods of Inspection," Mr. J. F. J. Sykes, B.Sc., M.R.C.S.
October 25th, "Nature of Nuisances, including Nuisances, the October enth, "Nature of Nuisances, including Nuisances, the
Abatement of which is Difficult," Mr. J. F. J. Svkes, B. Sc., M.R.C.S. October 27th, "Sanitary Law, General Enactments, Public Health Act, 1875, Model Bye-Laws," Dr. Charles Kelly. October 29 th, Metropolitan Acts, Bye-Laws of Metro
Board of Works," Mr. A. Wynter Blyth, M.R.C.S., I.S.A.

EXHIBITS AT THE EDINBURGH EXHIBITION.

CENTRIFUGAL DRYING MACHINE.

WALL ENGINE.

IV. va

PROGRESS OF MECHANICAL SCIENCE. THE recent enlargement of Che scope of this section to include all branches of engineering, and the incoreasing intereest manifested objects of the section, and the means of increasing its usefulness in
the future. In marked contrast with the past the one of pronounced material development. part, the present age is
and mort gifted men devoted themgigtest
and thes to religion, philosophy politics, exploration, devoted themselves to for for thigion, philosophy,
past handred
attention of the leading men of the pears the attention of the leading men of the civilised world has been
direneced to increasing and cheapening those products
mhich and labourers live now more comfortably than did the middle classes of feudal times; the duration of human life has been
materially lengthened, and all portions of society recognise the importance of further prog
and invention in securing it
This era of material progress may be said to have commenced with the various attendant machines, takes the place of hand and animal labour, and which has increased and cheapened the pro-
duction of the necessaries and luxuries of life ; and it has pushed It may he usefnl the engineer to the front rank in modern society. It may be useful to point out the absolute necessity of verbal and
written intercourse between investigators and inventors, that the speculation and curiosity of the former may ripen into the effec-
tive invention of the latter. Nothing is more remarabable than the f even a of even a simple machine, nor how little the last man may need to
add to complete the invention. Facts and natural laws, known
for years as curiosities, are taken up py some inventor, who fails for years as curiosities, are taken up by some inventor, who fails
in the attempt ot render them of practical use ; then a seond
genius lays hold, and, profiting by the mistakes of the first, pro genius lays hold, and, profoting by the mistakese of then first, pro-
duces, at great cost, a working machine. Then comes the sucaces, at great cost, a working machine
cessful man, who works out the final practical design, and, whether making or losing a fortune, he yet permanently benefits mankind.
The faculties of invention and discovery are generally separate. One set of men observe facts, and deduce laws therefrom ; and doduction to practical account in the production of labour-saving apliances. This section should be the place where these men may
meet one another, and profit by the interchange of ideas.
Hany of the men whom I see before me are deveting ives to the study of nature, with no desire to make money out
of it, but simply to increase human knowleage; and son
their discoveries or the use and convenien be put into practical shapes for the use and convenience of man. History proves, too,
that the sientific observers have the safer and happier part.
Their success may not be so dazzling as that of some great inventors, but they do not have to bear such bitter trialas and in observing and reasoning; to make them useful in doing the world's work requires imagination and ingenuity. Sometimes song years must pass, and generation after generation of inventors wear
their lives out, before a needed machine becomes an accomplished success. Evidentally, then, the greater the number of minds that
can be brought to bear upon a particular problem, the greater is the chance of early success. I believe that it is the particular provinco of this eaction of the Association to bring these e two classes
of minds together, and to promote their intercourse, that the discoverer may learn in what direction fresh information is needed,
and that the inventor may beadvised as to what is already known. of an invention which did not spring full-grown from the brain of the inventor. History informs us that it commenced to exist two
thousand years ago, in the eolipile of Hero of Alexandria. His reatise remained hidden until translated and printed in 1557\%; and
hen Branca, the Italian architect, constructed then Branca, , the Italian architect, constructed one for pounding
drugs. Heros book ran through eight editions in different languages, and attracted the attention of a French in ventor, who tried vainly to raise water by steam pressure. Then came the Marquis
of Vorcester, who died a disappointed man after spending 250,000 ollars. Then de Morland tried using steam in cylinders, instead
of contact with the water. Papin built a steamboat, only to have on its way to England; an team direen hearted and in contact with water Sary went back to using thally Newcomen built
stem
n engine that worked, and between 1705 and 1758 quite were erected. These engines had a duty of only quite a noo.00 foot-
pounds per pound of coal, the improvements of James Watt, an instrument maker, increasing the duty to $60,000,000$.
My object in giving this sketch is to call your attention, first, to
the gradual evolution of an invention by the process of exclusion, by finding out what would not do; and second, the apparent chain of connection, running for over a century, through several gene-
rations of inventors, each evidently profiting by the failures of his predecessors, to the extent, at least, of avoiding their repetition. greater results had they had a larger range of scientific experimenta and advice; and that Watt triumphed because he had the whole faculty of the University of Glasgow at his back, to give him know-
ledge of natural principles, and information as to what had been done? So with other inventions; the steamboat was being
developed from 1760 to 1807; the locomotive, from 1802 to 1829 ; the telegraph, from 1729 to 1844 ; the sewing machine, with its
200 patents, from 1790 to 1800 ; the reaping machine, for seventyfive years, and so on; the last successful man adding generali,
but little to what had been done before. The rule is, that the basis of success lay in a thorough acquaintance with what had been done before, and in setting about improvement in a thoroughly My own obse
Meientifo way.
My own observation has acquainted me with the development of the ice-making machine. The economical production of cold by the
combustion of fuel was a matter of theory when, in 1755 , Professor Cullen experimented in Glasgow with quick-lime and spirits of
sal-ammoniac as the best volatile substance for producing oold. His discoveries remained as laboratory experiments until Jacob evaporation of ether. Then came Professor Twining, of New
Haven, Leeslie, Valance, Harrison, Pontifex, Seibe, Windhausen Telliier, Carré, and Pictet, with more or less doubtful success. Up
to 1869, the machine was in the experimental or unsuccessful stage. Then came an experimenter who deliberately read up the whole subject in a library, and made hisself master of what patent
attorneys call "the "thate of the art," and of the scientific principles oncerned, working, according to his own account, harde
than he ever had, before in his life." He disarde the
usual working fluids, and adopted anhydrous ammonia After various struggles and successes, the machine was adapted to the difficulties of the case, and put in successful operation in
1874 , since which time it has become of immense practical importance in warm climates, for making ice, cooling breweries, \&c.,
though giving an efficiency of but 70 per cent. In 1877, another inventor set thimself deliberately to improve the machine. 'He puta a
practical mechanic, a chemist, and a patent attorney to work, and He did not let the matter rest here, however, but persevered, and in 1880 built an entirely successful, machine, which did the work for which 7000 tons of liee had been required. So rapid has been
the introduction of refrigerating machines, that there are now everal hundred of various makes at work in the United States, be obtained by the melting of 20 tons of ioe, at which rate natural ice is worth only 75 to 80 cents per ton, or less than the usual cost of harvesting and storing it.
In comparing this development with that of the steam engine, 1 A bstract of an
of the m macrican
A ugust 19tit, 1886 .
$\left\lvert\, \begin{aligned} & \text { we see the difference between the scientific way of working out an } \\ & \text { invention and the former disjointed way, when each man had to }\end{aligned}\right.$ rely chiefly upon his own experiments; and also the difference
between ancient facilities and the modern advantages offered by technical societies sions, and preferer to hear of accomplished facts, bat the bunsy men
who are developing this country need something more -they nee who are developing this country need something more-they need
to keep up with discovery before it is reduced to practical account and ney need that personal contact and sympathy with men o
science which nothing can replace. Engineers as well practical men, owe it to themselves to come to these meetings
bringing accounts of what they have done and hope to do, and briuging acoounts of what they have done and hope to do, and
especialy of what they have failed to do, and why; and some
speculative pers speculative papers may well be allowed providing always that they
are on a sound basis, and stick to facts; for how often. is it that the imagived things of to-day become the accomplished results of to-morrow? To encourage good work in the preparation of papers,
might there not be established, by friends of the Association and section, prizes for the best papers on a number of important
subjects. I hope to see something done in this direction before the
close cor members, during the year or meeting, to propound queries subjects about which they wish information or discussion.
should like also to see published annually lists of subjects upon which papers are desired by the section, as was done e to some
extent in the recent circulars of the section. In this way live subjects are apt to be most beneficially canvassed, and experiment cond discovery kept in the right paths, It may be well, in this
co mention some inventions which are now, so to speaks "in the air;" of course, we all recognise that the flying-machine belongs to this class, in one sense if not in another, and a paper upon it has been presented which may prove of interest to you. which a flying machine cannot be expected to succeed. Steam
power, also, for agricultural work in its many forms, is not yet an accomplished fact, and we may mention one machine greatly street traffic, which needs further improvement; also the transmission of power over great distances, electric lighting, \&c. But 1 have said enough to indicate how large a field may, in my judg-
ment, be covered by this section of mechanical science and engineering, and how its meetings may in the future be mad
useful and interesting than they have been in the past.

WETR WITH FREE OVERFALL AND CONSTANT COEFFICIENT OF CONTRACTION FOR The following is from a paper by C. Cipolletit, in the Giornale del Genio Civile:-This paper gives the results of ine
vestigations and experiments for measuring water delivered to cultivators for irrigation purposes from the Villoresi Canal,
the discharge from each gauge being from 5 to 10 cubic feet per second. The problem to be solved was to determine the ardinary formula in its simplest form, $Q=\mathrm{K} \mathrm{L} \mathrm{H} \mathrm{H}$, in which
or $\mathrm{K}=m 2 \sim 2 \mathrm{~g}$ (m being the coefficient of contraction), the co-
effficient K remaining constant for any depth, H , over the weir and any length, L, none of the various sources of error would
give a difference of more than $\frac{1}{2}$ per cent. between the real and the discharsharge. There are eight circumstances which affect channel of approach; ; (B) the shape and thicknesp of the bottom
and sides of the weir; (C) distance of the weir from the bottom and sides of the channel of approach; (D) velocity of the water in depth of water flowing over it ; (F) conformation of the discharging channel below the weir ; (G) place and method of determining the
depth of water flowing over weir ; (H) accuracy of construction and precision in taking measurements.
that the channel of approach should be 66ft. long, and that this is sufficient to calm the water entering even with a fall of 19 in. When this length cannot be obtained perforated diaphragms shou be inserted in the channel to still the water.
(B) The water should
(B) The water should approach the weir freely from all sides, as Experiments were made as to the effeet of the width of tha cill,
and it was found that for depths of water should not exceed one-tenth of the depth, and with denths of from Sin. to 2 ft . 2 in. it should not exxeed one-fourth of the depth.
Where the depth varies, the width should be that corresponding to the least depth. The upstream face of the weir must be in a
vertical plane, which extends to the sides and bottom of the channal
of approach.
(C) It appears from the experiments of Francis, when the cill of the weir is at a height above the bottom of the channel of approach
equal to three times the depth of water over the cill, and the sides equal the whree times the depth of water over the cill, and the depth of water over the cill from the
of the wer
sides of the channel, then the flow is not aftecte by the bottom and sides of the channel. If, however, these distance are reduced, the first to twice and the second to one and a-half times the depth
over the cill, the discharge is increased about $\frac{1}{2}$ per cent. a and where the distances are further reduced, the first to twice and the
whe per cent. (D) It known that if the water before feeling the effect of the weir has a velocity of its own, the formula for discharge instead of being $\mathrm{Q}=\mathrm{KLH} \mathrm{H}^{2}$, becomes $\mathrm{Q}^{1}=\mathrm{KLL}\left\{(\mathrm{H}+h)^{2}-h^{2}\right\}$
being the head corresponding to the initial velocity v and found by the expression $h=\frac{v^{2}}{2 g}$. In practice, however, it is difficult to measure v. We may, however, construct the ohannel in such a way
that putting $\frac{Q^{1}-Q}{Q}=r, r$ shall not exceed any required fraction, and calling w the area of the channel of approach $=\frac{Q}{v}$, if the usual coefficient $m=0.62$ is taken, $w=0.50 \times \frac{\mathrm{LH}}{\sqrt{L}}$; and the author

 will not exceed Id. घdo or fov, as the case may be, of the actual
discharge. Comparing this with section (C), making the bottom width of the channel 3 H and putting slopes of 1 to $1, v=(\mathrm{L}$ H) 4 H . It is shown later on that H should not exceed $\frac{\mathrm{L}}{3}$, or
putting L $=3 \mathrm{H}$, we find $w=0.50 \mathrm{~L} \mathrm{H}$ gives $w=21 \cdot 21 \mathrm{H}^{2}$, and $w=(\mathrm{L}+4 \mathrm{H}) 4 \mathrm{H}$ gives $w 28 \mathrm{H}^{2}$, so that when the conditions of sity of approach so small, that the increase of discharge due to the (E) This is the most important point of the question. In regar to it the experiments of Francis lead to the following conclusions :
(a) The coefficient of contraction is made up of two parts, that due to the surface or horizontal contraction, and that due to the from 1in. to 20 in , is constant, and its mean value is 0.623 with maximum of 0624 , and minimum $0^{\circ} 62$, so that the possible erro
is less than 1 per cent.; (c) the lateral contraction is also constant, provided that the length of the weir is at least three or
four times the depth of the water; for shorter lengths the lateral
contraction becomes less because the contractions from the two contraction becomes less because the contractions from the two
sides interfere with one another; (d) in long weirs the side contrac-
tion is proportional to the depths of the water, and serves to diminish the effective length by a mean value approximately equal $\sqrt{2 g} \mathrm{H}^{1}$, in which $\mathrm{H}^{1}=\left\{(\mathrm{H}+h)^{\frac{1}{2}}-h^{\frac{2}{2}}\right\}^{2}$, and n is the number $Q=0.623(\mathrm{~L}-0.20 \mathrm{H}) \mathrm{3} \times \sqrt{2 g} \times \mathrm{H}^{1}$. ${ }^{1}$. His experiments were conresults obtained by other observers it appears that they are applic able to depths of from 3 in. to 24 in ., with a limit of error not ex ceeding $\frac{1}{2}$ per cent., provided that the length of the notch is not
less than three or four times the depth. In order to get over the ifficulty of the contraction varying with the depth, the notch
hould be made in the form of a trapezium; and the author found that if the inclination of the sides was made $\frac{1}{4}$ to 1 the discharge
within the above limits of depth would be given by the formula $\mathrm{Q}=m \mathrm{~L}=\sqrt{2} g \mathrm{HI}$, in which it is only necessary to take m con-
stant $=0$ 623, the inclination of the sides balancing the side con-
(F) The principal point to be attended to under this head is to
traction.
ensure the free (G) Several methods of measuring are described, the best bein that ty a suitably-arranged hook gauge with adjusting screw and
vernier. With this it is easy to read to $\frac{1}{\sigma} \overline{0}$ of an inch, and a prac-
tised scertaining the degree of acuracy required in method is given fo in order that the error in the discharge may not exceed a given Thatio.
easonaluor states that if the works are executed with such easonable accuracy as may be obtained for a moderate expenditure,
the discharge may be measured within $\frac{1}{2}$ per cent. As, however the various errors which may creep in tend on the whole towards
then giving a discharge slightly in excess of that calculated, he considers
that the coefficient m should be taken as 0.63 instead of 0623 , and he gives as his final formula $\mathrm{Q}=0 \cdot 42 \mathrm{~L} \cdot \mathrm{H} \sqrt{2 g \mathrm{H}}$ applicable to
all cases within the following limits, the notch being made trape all cases witxin the following limits, the notech being made trape-
zoidal, as explained above :-(a) H to be not less than 3 inin.; (t) H not to be more than 24in.; (c) H not to exceed in any case $\frac{\mathrm{L}}{3}$ o
$\frac{1}{4}$; and he then gives the following dimensions for the various parts in terms of H, when H is at its maximum value for the par
titular weir :- $\mathrm{L}=3 \mathrm{H}$. chen $_{\text {channel of }}$ (1); depth from cill to bottom of of the channel to the sides of the notch $=2 \mathrm{H} .$. (1); thick ness of the cill and sides of the notch $=\frac{H}{10}$ if $H<4$ 4in., and $\frac{H}{4}$ if $H>4{ }^{3} \mathrm{in}$. . . . (2) ; width of the bottom of the channel of approach $=3 \mathrm{H} \ldots$ (1); depth of water in the canal of
approach $=4 \mathrm{H}$; slopes. of channel, 1 to 1, ; area of water in the
channel $=28 \mathrm{H}^{2}$; ratio of the area of the notch to that of the water in the channel of approach $=\frac{3}{28 \mathrm{H}^{2}}<\frac{1}{9}$; length of the channel of approach $=$ from 30 H to 60 H . The dimensions marked (1) may be increased; those marked (2) may be diminished.
The author then gives the application of these investigations to the case of the gauges of the Villoresi Canal, which are illustrated
by drawings. There is also a table of discharge of weins in by drawings. There is also a table of discharge of weirs in
metrical measures.

A NEW METHOD OF BURNING OIL FOR LIGHTHOUSE ILLUMINATION.

by J. R. Wigham.

AT the South Foreland experiments recently conducted by the
Trinity House several new oil lamps were tried and reported upon, Those patented by Sir James Douglas, engineer to the Trinity House, were spoken of sery favourably in their report by the admiring these burners. I found, howport, that, like all other oil
burners heretofore used in lighthouses, they require to be seed with glass chimneys. Now, the use of glass chimneys has these disad-vantages-(1) The chimney intercepts the light; and (2) it is apt to be said to be useless. The delay in replacing a broken chimney when it is hot is sometimes very considerable, and during the time thus occupied a vessel may run into danger. With the gas-burner have used for lighthouses no such difificulty occurs, for I use no a height as not to interpose any obstacle to the light, a flue, which sucks in the oxygen of the air, and thus renders smokeless and intensely white the flame of the gas lamp. There are, as we all
know, many positions in which, for want of room, it is almost know, many positions in which, for want of room, it is almost
impossible to apply gas at lighthouses, and in such cases oil must be used. To use it without a glass chimney, of burning oil lamps in such a manner as to render the use of chimneys unnecessary. I simply brought a current of air through such orifices in the burner,
and with such deflectors as were necessary to oxidise the smoky oil flames, suing also the overhanging flue as in the case of my gas-
burner. It drical was of the table for your inspection is a four-wick oil lamp as used in a first-order lighthouse, with its air casings. [Lamp exhibited.]. Any
means of propelling air may be adopted; a blower, such as is used means of propeliing air may be adoptied, is ower, sien as is used
with atmospheric gas, worked by weight, ment, or an electric motor similar to that which I have here. equally well. I think it right to mention that Mr. Ross, of Dublin, has also designed a lamp on this priniciple. I have seen its per-
formance, and I believe it will accomplish the desirable object of getting rid of glass chimneys for great oil lights in a perfectly

A Sermon to Employes.- The following is a verbatim copy of a notice which the Chicago, Burlington, and Quincy Co. has had
printed, framed and sent to various shops and offices, where they
are posted for the benefit of the employes. The sentiment conare posted for the benefit of the employes. The sentiment con-
veyed is given as that which actuates the efficials of the company in their treatment of employés: "The servant, man or woman
who begins a negotiation for service by inquiring what privileges are attached to the offered situation and whose energy is put chiefly in stipulations, reservations, and conditions to 'lessen the
burden' of the place will not be found worth the hiring. The clerk whose last place was 'too hard for him' has a poor intro.
cher duction to a new sphere of duty. There is only one spirit that make himeself most useful, whose aim is to render himself indispensable to his employer, whose whole being is animated with the
purpose to fill the largest possible place in the walk assigned to him, has in the exhibition of that spirit the guarantee of success. perity all his days. On the other unwholesome advice of the demagogue and seeks only how little he may do, and how easy he may render his place and not
lose his employment altogether, is unfit for service, as soon as
there is aspernumerary on the list he becomes disengaged as there is a supernumerary on the list he becomes disengaged as
least valuable to his employer. The man who is afraid of doing
too much is near of kin to him who seeks to do nothing and was begot in the same family; they are eneither of them in the remotest degree a relation to the man whose willingness to do every thing
possible to his touch places him at the head of the active list."

Proc. Inst. Civil Engineers.

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS.
(From our ovon Correspondent.)
A MODERATE degree of steadiness-not, however, developing into forges this week. Shipping and country orders combined provide
sufficient material to keep the works mostly running, but ironmasters are dependent generally upon specifications obtained week he quarter upon specifications from the galvanisers, and prices are eluctance to book orders for forward delivery at the current rates. The principal shipping orders at date are for galvanised corrugated Eastern market, and tin-plates for the United States and Canada.
None of the specifications are very large, but they represent in the ggregate a considerable volume of business.
Satisfaction is expressed that the revival in the United States is
well upheld, and gives indications of assuming increased importance as winter comes on. The Canadian demand is steady ance as winter comes on. The Canadian demand is steady.
Prospects of the Colonial and South American trade are further
mproved by the continued advance in wools and some othe descriptions of produce. Ironmasters doing business with the East are rather more hopeful, by reason of the slightly improved value A few of the makers of marked descriptions of finished iron con-
tinue well engaged on Government and other work, though most of them seem now to be no better off as regards current business than he makers of lower class iron. Short times continues the rule at nost of the best bar works, and orders are not to be got without a
good deal of energy. Marked bars remain at $£ 7$ per ton, the price ixed last May. Messrs. Wm. Barrows and Sons quote : Bars round, square, and
flat, $£ 7$; best bars suitable for chain making and other purpos E8 10s.; double best, suitable for superior chains, bars, and the ike, $£ 910 \mathrm{~s}$; plating bars, $£ 710 \mathrm{~s}$; ; best angle, tee, and rivet iron,
$£ 9$; and double best $£ 10$ Boiler plates the firm quote $£ 810$ s., $£ 910 \mathrm{~s}$., $£ 10 \mathrm{10s}$., and $£ 1410 \mathrm{~s}$., according to quality ; and sheets,
$£ 810 \mathrm{~s}$. for 20 gauge; $£ 10$ for 24 gauge; and $£ 1110 \mathrm{~s}$. for 27 gauge.
Hoops they quote $£ 710 \mathrm{~s} . ;$ best, $£ 9$; and wide strips, $£ 810 \mathrm{~s}$. Hoops they quote $£ 710 \mathrm{~s} . ;$ best, $£ 9$; and wide strips, $£ 810 \mathrm{~s}$.
The New British Iron Company occupies a somewhat exceptional osition as follows :- Best Corngreaves bars, $£ 6$. 5 .s.; composite
pars, $£ 8.15 \mathrm{~s} . ;$ best Corngreaves rods, $£ 6$; best Corngreaves plates, bars, $£ 815 \mathrm{~s} . ;$ best Corngreaves rods, $£ 6$; best Corngreaves plates,
$£ 715 \mathrm{~s} . ;$ tank plates, $£ 7$; best Corngreavesangles, £6 15s.; best Corn-
greaves tees, $£ 615 \mathrm{l}$.; and best Corngreaves hoops, $£ 615 \mathrm{~s}$. per ton. greaves tees, $£ 615 \mathrm{~s}$. ; and best Corngreaves hoops, $£ 615 \mathrm{~s}$. per ton.
Ordinary merchant bars are quoted at $£ 510 \mathrm{~s}$. to $£ 6$; and
common, $£ 410 \mathrm{~s}$. to $£ 5$. Common sheets are worth about $£ 6$, though various buyers seek to obtain their suppher
Galvanised sheets of 24 gauge are about $£ 10$ per ton foob. Liver$£ 615$ s. Boiler plates are $£ 710 \mathrm{~s}$. to $£ 8$ for common qualities, and uperior sorts $£ 9$ to $£ 10$.
Scotch, as well as North
purposes. After paying 15s. purposes. After paying 15s. per ton carriage, the Scotch iron$£ 6$ per ton, which is sensibly below the price which native makers can accept. For narrow tube strips local prices are £4 15s, per ton working for 25 per cent. less than Staffordshire millmen, which
would largely account for the low competitive prices of the Scotch nakers. Common angles and tees are about $£ 5$ to $£ 55 \mathrm{~s}$. ; and hoops, $£ 55 \mathrm{~s}$. to $£ 510 \mathrm{~s}$. per ton.
The well-known tin-plate making firm of Messrs. E. P. Baldwin radually remove the bulk of their tin-plate business from the lastnadually remove the bulk of their tin-plate business from the last-
named place to their newly erected works at Newport, Mon. This
step has been rendered necessary, not only to avoid excessive railstep has been rendered necessary, not only to avoid excessive rail-
way rates, but also to provide facilities for obtaining supplies of
steel. The Wilden works will be still kept in partial operation pon best black sheets, but the number of hands will be consider-
ably lessened. The Swindon works of the firm will be kept on ully as heretofore on best sheets.
A brisk demand is finding expression for steel blooms, billets, tin bars, and similar sections, for rolling down in the iron mills, at not yet seem to be able to produce metal of perfect uniformity. Consumers are this week here and there complaining of this circumstance, and of the impediment which it affords to a still wider
adoption of the metal by them. The attention of the steel masters oncerned has been again called to the defects, and they reply that the metal which they are now supplying is made with the utmost omething to do in perfecting their processes.
Best foundry pig iron is rather firmer
Best foundry pig iron is rather firmer owing to better orders from
the engineers, but other native sorts are in quiet demand through slackness of work the pipe-making foundries. Deliveries from slack furnaces are not going away rapidly, and it is estimated that
stocks in makers' hands have increased about 20 per cent. during he past six months. Best all-mine hot-blast forge pig goes off in
limited parcels at 5 5 5 s. , and less excellent makes at 52 s . 6 d and ing to mixtures ; and common pigs, 27s. 6 d . to 32 s . 6 d .
Business between sellers and consumers of Derbyshre, Northampton, Leicestershire, and similar makes of pigs is the subject of
much negotiation. Sellers are doing their best to keep up the the stronger prices quoted are justified by the state of the market he stronger prices quoted are justified by the state of the market.
The amount of business doing is therefore only small. Vendors
are quoting 36 s . 3d. per ton delivered to works for Derbyshires, are quoting 36s. 3 d . per ton delivered to works for Derbyshires,
and 35 s .9 d . for goo Northamptons. Buyers will not give more
than 35 s . 6 d . to 35 s . 9 d . for Derbyshires, and 34 s . 6 d . to 35 s . for than 35 s . 6 d , to $35 \mathrm{~s}, 9 \mathrm{~d}$. for Derbyshires, and 34 s . 6 d . to 35 s . for
Northamptons. Lincolnshire pigs are quoted 38s. per ton, but it
is impossible to get the figure. Buyers mostly decline to give much more for them than for Derbyshires. Hematites are pretty
firm, but they have not advanced so much as was a few weeks ago expected. Tredegar brand may still be had at 50 s., West Cumber-
land forge numbers are 52 s . delivered, and foundry numbers 52 s .6 d . and forge number ton.
Coal is in a stagnant condition. Forge coal ranges from 6 s . for Coal is in a stagnant condition. Forge coal ranges from 6 s . for
best qualities down to 4 s .6 d . per ton, Good mill coal is 6 s . to
7 s ; new mine furnace, 7 s ; ; and furnace, 8 s . to 9 s , 6 d . per ton. Business in coke and iron stones is slow, Ordinary Derbyshirc
cokes are 13s. per ton delivered; North Staffordshire cokes, 12s. 3.;
South Wales superior qualities, 15s. to 16s.; and Durham foundry cokes, 20 s . to 21 s . 6 d . delivered. Native ironstone is about 9 s . to
10 s . per ton for gubbin qualities, and 8 s . for common new min orts, while Northampton stone is selling at from 5s. to 5s. 6d.
delivered in this district, and makers would book forward two year the boiler, tank, and gasometer makers are moderately engaged, and pretty satisfactory orders, as regards extent, are held by th
bridge builders; but contract prices are very unsatisfactory. Enineering and machinery castings are ordered in irregular quantities,
There are some good inquiries for heating appliances. Galvanised in hand furnish steady occupation. Wrought iron tubes for gas purposes are on order to a slightly better extent.
The light ironfounders are only moderately en
own of Willenhall splendid work in artistic light ornamental castings is just now being turned out, which has no superior even
in America. The result is the receipt of increased orders from home makers, and enlarged export to the colonies and other ship-
ping markets of goods which, only a few years ago, it was impos-
sible to obtain from this country. Importations of German
and French hardwares are also leading to improvements and
advances in local manufactures.
The chain-makers of Old Hill and Cradley Heath are still hold The chain-makers of Old Hill and Cradley Heath are still holding
out for an advance. They have become more confident of success, out for an advance. They have become more conident or success,
many masters having conceded their demands, and others having
shown practical sympathy with their cause. So determined are they in their agitation, that rather than subme.t to a reduction they state their readiness to leave the trade altogether.
A dispute is pending in Walsall between the chainmakers and their "link" men. Some of the employers have been compelled to reduce their workmen's wages to 5 d a a gross, which is a penny
less than the previous list. The men resent this, and they have consequently come out or strike.
The leading employers in the horse nail trade have agreed to an advance in the wages of their operatives of 3d. per thousand.
This is only half of the increase required by the men, but they have accepted the
increases the

NOTES FROM LANCASHIRE.

From our own Correspondent.)
Manchester.-The condition of the iron trade in this distriot remains without material change. Makers of pig iron, although perhaps not adhering firmly to the full rates Which have recently
been quoted, still hold out for a substantial advance upon the nithough not much bere be practicable at the prices they are now asking, they show little or no disposition to meet buyers, who are prepared to give out orders if they can get prices back to some-
thing like old rates. Hematites remain firm in price, but meet makers are a poor demand in this district. Manufactured iron cutting quite so low in their prices. but except that one or two Staffor shirie brands have been put up 2s. 6. . per ton as the result
of the diminished make in that district, prices do not show any of the diminished make
actual upward movement.
There was only a slow
There was only a slow business doing on the Manchester iron
market on Tuesday. For local and district brands of pig iron delivered equal to Manchester the average price was about 36 s . 6 d ., less 2ı. for foundry yualities delivered equal to Manchester, with forge
qualities ranying from 34s, 6d., less 2Δ, for some district brands, to qualities ranging from 34s. 6 d ., less $2 \frac{1}{2}$, for some district brands, to
35s. 6d., with 36s. 6 d as a nominal quotation in one instance for delivery here. In foundry qualities there are a few orders stirring,
but forge iron meets with very little inquiry, manufactured iron makers in most cases being pretty well covered for the present, and as they are not able to get any appreciable advance on finished iron,
they are not disposed to pay any higher price for the raw material they are not disposed to pay any higher price for the raw material until they are absolutely compelied to place out orders. In outside
brands there is considerable underselling, and both Scotch and
culty at under makers price
Hematites still meet with only a slow demand here, and in some instances orders are reporte but the average quoted prices
2, delivered into this district.
derate orders given out in the man factured iron trade, but I understand they have been keenly comof the Staffordshire makers are now quoting $£ 5$ per ton for bars delivered here; but £4 17 s . 6 d . is still the average current price,
with hoops to be got at 55 ss, and sheets at $£ 6$ 10s. per ton.
In the steel trade In the steel trade prices are being cut excessively low, and
have heard of cast steel cylinders, with bored and turned ends, an tested, being delivered here as 10 as as 17 s . per owt., whilst steel
sheets and plates delivered here can be got readily at under $£ 7$ per sheets and pates deilvered here can be got
ton, \&6 15s. being quoted in some instances.
As regards employment the reports of the tes about stationary societies show no appreciable change as compared with lrades union. The returns issued this month by the Amalgamated Society of Engineers show, in the total for the whole of the districts
connected with the Society, a slight reduction in the number
n the on the
reductio represent any real improvement of trade in any particular district, and does not appreciably reduce the high percentage of reports as to the cond-work members returned in the last report. The trade received from all the important
" 1 " "moustrial centres continue very unsatisfactory, "bad," or only moderate", being the general return; whilst in the important be above the segaras the number of unemployed, which seems to whatever is reported, and at many of the large engineering concerns old contracts as they run out are being barely replaced with the new work coming forward. The report of the Steam Engine
Makers' Society states that there has been no change from last month; there has been no further decline in the number of un
employed, and no improvement of any note in the condition of employed, and no improvement of any note in the condition of
trade. The numbers in receipt of out-of-work donation still average about 4 per cent. of the total membership, and the district
returns as to the state of trade still show it to be only moderate returns as to the state of trade still show it to be only moderate
throughout the country generally. The last report of the Boiler Makers' Society shows ssme slight improvement in the condition of which have put them into moderate work.
Mr. James Swift, general secretary of the Steam Engine Makers' Societs, has been elected as a representative of the engi-
neering trades to fill the vacancy on the Parliamentary Committee neering trades to fill the vacancy on the Parliamentary Committee
of the Trades Union Congress caused by the resignation of Mr. Engn Burnett, general secretary of the Amalgamated Society of as correspondent of the new Labour Bureau, the salary in connec The with which office will, I understand, be $£ 300$ per annum.
The letting of the contract for the erection of the Manchest Exhibition building to Messrs. R. Neill and Sons, of Manchester will form one of the several important attractions which Manchester will present during the ensuing Jubilee Year of her
Majesty's reign. The contractors are losing no time, and already they have a large staff of workmen on the ground. Mr. Samuel Lee Bapty, the general superintendent of the present Liverpool the Manchester Exhibition. It is to be hoped that in his official from it some of the objectionable features which have been a very serious ground of complaint against the management of the Exhipossible be eliminated, and if the Exhibition is to aim at being a means of instruction to the visitors, efforts must be made to secure a large and a complete display not only of machinery in motion, One special feature will be a collection of handicrafts, One special feaduc wim itte of which Mr Madders under the Bailey is the chairman, and which it is intended shall occupy
rooms in the structures which will represent Old Manchester and Salford. It is intended that some space shall be de-
voted to the historical development of ancient handicrafts,
especially those which illustrate the trat especially those which illustrate the trades of the distriot
of the South of Lancashire, whilst modern handierafts will also be exhibited at work. At the first meeting of the com-
mittee held on Monday, Mr. Bailey very pertinently pointed out that if they were able to exhibitiey in operation any old craft or obsolete marual art which might be profitably revived in this
district, or if they could import simple handicratts from other
districts or from abroad which might be carried on by cottagers in their own homes, such methods of work wourrd not not ooty be bige higly
interesting as exhibits, but they might further be of very great
value and possible benefit to the whole district by affording a
means of employment to people who now found it difficult to secure work through the ordinary channels. At the meeting on Bailey is the president, he he also brought the matter forward, and
asked the members to assists in section of handicrafts as complete and interesting as possible. He said, engineers and machinists, and those engaged in the develop. ment of labour and the economical use of energy, had driven out
many old handicrafts, and the committee would be very y lad to
have the benefit of any suggestions which would make their special department a success. As regards the general
engineering section, of course in an important centre like Manchester this may be looked forward to as one of the leading features of the taken up by the principal firms in the district. pendent pendent committee recently appointed are a atively engaged on the
new shemen to be summitted to to the publi, but until the holidays
are over nothing definite will be done are over nothing efinite will be done. Ata gathering of the work-
people employed by Messrs. Daniel Adamson and Co., held at
Hyde on Sunday, Mr. Digby Seymour, gestions as to working men taking up a large interest in the share capital, and expressed the belief that if five millions of the share taken up at a handsome premium. As to raising the five millions, he had the assurance of leading financial men in London that if the
public could be relied on for half the amount they would undertake in the course of a day or two to underwrite and provide the rest. As a practical outcome of Mr. Digby Seymour's address, the men at Messrs. Adamson's works have arranged to work at least two extra hours per week, the by the firm and invested for the curng in the thime to be Ship Canal. At a moderate computation it is estimated that the annual amount
will be 1000 a
trade trade, it may ran up to $£ 3000$. It is urged that if the employés of follow this example scarcely any other subscriptions would be In the condition of the coal trade there is comparatively little or no change to report, either as regards prices or demand; all descriptions of fuel still move off only slowly, with, if any thing, a tendency and the possibility of some advance next month.
and
Barrow. - No alteration of material moment can be noted in connection with the staple trades of this town and district. Order
for pig iron are pretty freely offered, and the improved tone in the demand demand for Bessemer samples especially is good, and it is notice-
able that forge and foundry qualities required for general use are also in more favour. The output of pig iron has not, however, been increased, as some of the large sales for ea onsequence, have
been completed out of stocks. The latter, as a cone been somewhat reduced. There is a steady production, however, of ano This iron is made by forty-nine furnaces, but fifty-six are there was the work to do. Prices show no variation, Mixed Bessemer samples are quoted at 42s. to 42s. 6 d . per ton, and the
makers that are best off for orders are asking 43s. per ton. Forge No. 3 and foundry iron of the same number is offered at 41s. to for three months. The steel trade is well employed, and there is a large production of rails wich are not only well ordered forward, but they are still in fair request for both home and foreign markets.
Prices are steady at about $£ 315 \mathrm{~s}$, per ton net at makers' works for ordinary heavy sections, other weights and sections are at propordepartments of the steel trade there is not much life, although a better trade is doing all round than was the case a short time ago. lop bilders are no belter of or orers, some are being negotiated which would furnish anything like adeountre large yards in this district. Engineers are still busy in the marine department only. Iron ore finds a better market ; but the large
banks of raw material which have accumulated at mines will not reased activity except in the illing of wagons, Coal and coke are in steady consumption, and prices remain at late
rates. There is a brisk trade in shipping, so far as exports are concerned, and freights are better. An attempt is being made in this district to get a reduction in railway freights corresponding with
that on the East Coast recently made by the North-Eastern Railway Company. It is contended that such a concessiou would be of great advantage to the traders of this district.

THE SHEFFIELD DISTRICT.

Correspondent.)

THE improvement in several markets for unwrought steel has as yet the additional "call" has not been felt in the high-class
crucible steels, though a considerable amount of business has latterly been done in costly grades of steel for the States. During August unwrought steel was exported to all markets to the value
of $£ 135,285$, against $£ 80,248$ for August of 1885 , and $£ 82,239$ for the simar month of 1884 . France has been a gradually decinining market, the values for August, $1884-5-6$, being respectively $£ 8394$,
$£ 7944$, and $£ 8775$ The United States, fort the ocrresponding months,
took values of
 each year
$x 839,139$.
Some interest has been excited by a reference made the other
night in Parliament by Mr. Woodall, the late Surveyor-General of Ordnance. "If the Government," he said, "could indne the great Sheffield houses to compete for the making of guns, the
ordnance of the country would be benefitted for it was well-known that there were in the town many capable manufaoturers who might be induced to enter into competition. a .esth. momactionth steel ordnance for many years, and laid downa most costly plant which has been greatly extended orke. Messrs. Crariece the great ingots needed for the guns, and make a speciality of gun carriages.
Sheffield manufacturers produced the immense ingots ordered for Shefield manufactureres produced the immense ingots ordered for
the 100 -ton guns of the Duilio and Dandolo, and the still heavier guns for the British Navy. The boring of the ordnance for the reason wh What local people, however, have to contend with is this: they lay down a very expensive plant, and sometime If the themselves becomes a business competitor of course there is an end of profitmachinery being adequately employed, and no fear of Government manufacture by wour capable firms, who would only be too glad to add another department to their establishments; bet the
directors would scarcely feel themselves justified in recommending serious outlay of capital by their shareholders without some pros. pect of its being wrought at a gain.
tended tour in Canada and the States, expressed his rom an ex it was not Germany England had to fear, but the United States, turer's views. He says he spent some years in America, and adduces some examples of the differenoe betwen the two coun-
tries as regards enterprise. "Some years ago," he says, "I
received a letter from a prominent silver-plate and Britannia manuthem in Australia, and as one large firm was getting out a new and fine catalogue, they would esteem it a very great favour if I
could procure one for them. After some trouble I did so, and this could procure one for them. After some trouble 1 did so, and this
was the result. A large stock of goods and patters were made
and forwarded to the Australian market, the teesult being they could not sell them, saying, 'that style had, gone out, and something newer was wanted.' That ended the enterprise as regards trying to
beat the Americans. Here are the reasons why they did not sell:
The first time a pattern is made in the American's works a large stock is made and sold before drawings or photograph are sent
out. That is, all the large towns and best thops are supplied,
, then photos. are sent out, and they do not get in the catalogue
until the second year, so that by the etime the Sheffield manuacturer gets his goods in the market they have been sold for four
easons. Was he likely to sell anything? So much for Sheffield enterprise. This is how the American firm in question reagard an enterprising way of doing things. Last June the head of the
firm came to England, France, Germany, and Austria, bringing with him his manager and designer. They visited all the large to them. They went through most of the siliver and plate shops
in Sheffield, Birmingham, and London-all expenses being paid by the firm. The remark they left was that " expenses beid not paid by
fear English competition," A very interesting no fear English competition,". A very interesting question was a designer, $i . e .$, a man to do nothing but make drawings for the frm,
trades, the Souneffield firms employ many designeres, and some of the
principals have themselves produced many beautiful works which principals have themselves prod
were exclusively their own design.
Is there any insurmountable obstacle to making an iron and glass
roof water-tight? Within ten days I have been under two great soructurer, and both failed to keep out rain. On Saturday, the t th
of September, between 8 and 9 a.m., in the flower market at
of Sin Covent Garden, London, it suddenly became very dark; then thunder
and lightning with execssive rains. Without any warningthe rain
poured into the building chiefl I their the iron columns, rapiclly a popsibly. I obeperred d that part of what appeared to be the
ventilators were open, but the rain did not appear to be cuming through them. On Monday, September 13th, in the Edinburgh
Exhibite in the Exhibition there was a "Scotch mist," a miserable drizzle. The
string and military band from Woolwich were playing, and it was amusing to see one of the "violins" feeling the "drops" patting
down on his carefully frizzed head. Some of the listeners, finding nding
were immediately occupied by others. These, in their turn, vacated on the musical and the explanasiciol. to fresh victims. The rain The production of large steel forgings, \&c., into which Messrs. induced them to issua a further $£ 330,000$ of the company's \&10 ifve per
cent. preference shares, in order to meet the outlay necessary for cent. preference shares, in order t t.
introducing this new manufacture.

THE NORTH OF ENGLAND.
Bur little business was done at the Cleveland iron market held hopeful as to their future prospects, and adhered to to the prices
which they quoted last week. They doo not anticipate that any
wurther advance will take place so lon further advance will take place so long as stocks continue to
increase. Makers were firm at 30.s. to 30.s. 6 . pert ton, and are when in full force. The prevailing quotation for No. 3 g.m.b. for when in full force. The prevailing quotation for No. 3 g.m.b. for
prompt delivery was 3 s. per ton. Buyers. offered 29 s. 9 d., and
some small lots changed hands at 29 s . 10 等d. ; grey forge iron could not be bought for less than 29 s . per ton.
Warrants are considered worth 30 s. per ton, but there are no buyers at the moment.
Noth wittsstanding the reduction of make which is now in proIesssrs. Connal and Co.'s stocks at Middlesbrough and Glasgow continue to increase. On Monday last their Middlesbrough stock
stood at 2088,722 tons, being an innerase of 3014 tons for the wwek,
and their Glasgow stock was 819,232 tons, or $2 n$ incease of 2026 tons.
The shipments of pig iron from Middlesbrough have certainly
mproved. Up to Monday last 36,403 tons had been exported since the 1st inst. This is about 6000 tons more than was shipped in the corresponding po
more than in July last.
Large quantities of railway material are leaving Middlesbrough
or India. On Saturday last the s.s. Rothsay sailed for Bombay with 1100 tons of rails, 1280 tons of sleepers, 20 tons of keys, and 100 tons of fish-plates, all being of steel. The s.s. Stella left the teel switches.
Nothing of a favourable nature can be said with respect to the
finished iron trade. The demand does not improve, and the competition for the few orders which appear in the market is exceedat Hull on Saturday last, was fruitful of interest to all who watched for the signs of the times. The intellectual activity and sentatives of labour were most noticeable. The Durham and Noorth deal to the front-a circumstance which will probably not when one individual differed in opinion from another, he relieved his feelings by imputing unworthy motives, and an unseemly
squabble of course ensued. But looking at the meeting as a whole, squabble of course ensued. But looking at the meeting as a whole, House of Commons, whilst in rapidity in making up its mind, and in putting its mind into intelligible words, the National Representative Assembly might well follow the example of the Trades' Union
Congress. On some of the burning questions of the day, especially o have very clear and decided views, and their resolutions thereon were usually passed by such large majorities as to indicate virtual lthough it was forcibly pointed out that free elementary educatio meant substituting rates to which their class would have largely to
contribute for subscriptions now paid by the upper classes, still they were for it almost to a man. On the difficult question of something in the way of legislation ought to be done, but what hat something should be they did not even suggest. Of their prudonbe in taking so cautious a is equally clear that their decision was of no more assistance to our legislators than if they had been entirely silent on Sundays, but they ignored the fact that besides the danger of exploOn the question of the Sunday opening of of museums, it was interests. The English wational sentiment is stronger than class
not have it so, and the latter ultimately prevailed Scotch would expected they were all against the employment of female labour petition against themselves being apparently at least as prominent
probably astonish his lordship. Perhaps it would have been a
safer course for him had he attributed the case of attempted "curder "whic trades unied to "trades unionism. Lastly, the Congress did not hesishould sit on the wencut a dissentien voice that working men view the property qualification should be abolished. But there remains something more than a doubt as to whether the decisions of
a bench so constituted would be accepted, say in such cases as trade a bench so constituted would be accepted, say in such cases as trade
outrages by the condemnend, if those deceisions were really fair ones.
ous At all events it is certain the position of a working man justice of
the peace would not be the bed of roses which he possibly now Mess peace
magines it

Withy and Co., of West Hartlepool, are reported to lave obtained an order from a London firm for a a vessel of 3200
tons capacity. Mr. Ed ward Withy, the founder of the firm, but
who retired two or three years since, healand, is now on a visit to this country. He will, however, eturn to the land of his adoption next monti,

NOTES FROM SCOTLAND

From our oun

THE Scotch pig iron market has been inclined to firmness this
week, in consequence mainly of the determined attitude of the week, in consequence mainly of the determined attitude of the
colliers on the wages question. Considering their poverty, the miners are supporting their newly-formed organisations in a way restricting the hours of labour generally, and by strikes at par-
ticular collieries, to reduce the supply of coals available for smelting purposes, hoping in this way to force the ironmasters int granting them an advance of wages. Whether they will succeed
is at present doubtful. The shipments of pig iron from Scottish ports in the week ending Saturday last amounted to 7928 tons, a sompared wwith 9192 in the preceding week, and 7557 in the corre
sponding week of 1885 . The shipments coastwise were 1832 tons the remainder of the 7928 tons going abroad. Scotland is a
present the chief market for Cleveland iron, which can be placed in the works of the consumer several shillings a ton cheaper than more iron from the Tees than we are exporting to all parts of the world. At present there is rather less Scotch iron going into the warrant stores than has been usual for some time, the quantity
added in Messrs. Connal and Co.'s stores in the course of the past week being 2287 tons.
Business was done in the warrant market on Friday at 399s. 6 d . Tuesday's market was firmer, closing with buyers at 39s. 7d. cash Transactions occurred on Wednesday at 39s. 72d. to 39s. 82d. cash. The current values of materes' pig iron are:- Gartsherrie, f.o.b. at Glasgow, No. 1, 43s. 9d. per ton ; No. 3, 41s.; Coltness,
47s. and 42s. 6. ${ }^{\text {and }}$ Langloan, 43s. and 41 s .; Summerlee, 45 s .
 nock, at Aldrossan, 42.s. and 39s. 9d.; Eglinton, 39s. 6d. and
36s. 3 d .; Dalmellington, 40s. 6d. and 38s. of the Steel Company of Sootland, held in Glasgow a few days ang that they had come to this state of things in the steel trade, that
unless the element of labour assisted them to some considerable extent in reducing costs, they should not get expenses much lower.
The shipbuilders were not busy and not likely soon to be The shipbuilders were not busy and not likely soon to be so, he
was afraid; and until they got a change in that respect, they could hardyy expect a , howerer, very gld to say that they had a and they had laid in a heary stock of raw material, principally hematite, at the lowest prices that were current, because they
thought it prudent to keep well ahead of their orders in this respect. The dividend isep per cent. $£ 14,700 \mathrm{had}$ been bpent in
rendering the works still more efficient, $£ 15,000$ had been written off for depreciation, and £1243 carried to next account. During the past fortnight the iron and steel goods shipped from
Glasgow, in addition to pig iron, embraced the iron hull of a
steamer, with boilers, steamer, with boilers, \&c., for Rangoon, valued at \&21,950; loco-
motives, \&12,000 worth for Huelva and \&6750 for Kurrachee Trinidad; sewing machines, $£ 6301$; steel goods, $£ 9700$; and general iron manufactures, $£ 42,300$
The ironmasters, or a majority of them, are still disposed to expected that if the men carry out their proposoal not to raise coals of blast. as compared with 19,310 in the corresponding week of 1885 ;
Greenock 1465 , Greenock, 1465, against 437; Ayr, 8709, against 8477; Irvine, 14,40 ,
against 2914; Troon, 500, against 6765 ; Burntisland, 17,90, 7715 , against 3492 tons.
The dispute between the colliers and their employers, as to the advance requested in wages, is apparently not yet near a settle-
ment. In Lanarkshire the men have generally received back the last 6d. that was deducted from their pay; but in Ayrshire the
advance is by no means general, and in Fife and Clackmannan it has been refused. In the last-na threatened unless the colliers adhere to the rule of working at least
eleven days a fortnight. The enginemen employed at the col lieries in the Baillieston district are also moving for an increase of wages, consideri
as the colliers.

WALES AND ADJOINING COUNTIES
THE returns for August, which have just been completed, show that an improvement has really set in with regard to the coal
trade.' February was the lowest total of the year. June showed a slight improvement over April, and since then the increase has
continued, though the difference between January total August is very slight. For instance, in January the total foreign coal shipments from Cardiff amounted to 559,095 tons, and the
August total 578,298 tons. Newport showed better. In January the coal total was 123,750 tons, , in August 183,697. Llanelly was
also better, January total 5651 tons, August 9720 . but Swansea showed a decrease, January 76,278 tons, August 34,000 tons. The returns also show that Swansea must do its best to retain its old superiority in the patent fuel trade. Formerly its averages were
double that of Cardiff. Last March and April the Cardiff totals Were only about 9000 tons, while Swansea showed 21,000 and 22,000
tons. August totals are about on a par, Swansea showing 20,791 tons, Cardiff 20,027 tons.
iron and stonsolation can be gleaned from returns in the matter of and only 2837 tons in August, yet the export for the year so far has amounted to 32,457 tons
Rhymney, shows better. May and June months totalled up
30,000 tons The steel rail the total for the year so far is is 88,248 tons.
activity
fin activity in many of the principal works is rarely known. Prices
are low, too low for the makers' good, steel reils being quoted at
f310s, and steel billets, which now form a leading future, at about $\& 3$ 15s. The cause of these low figures for billets is that minor
industries, wireworks, \&c., are stagnant. If tin-plate workers
were desirous of going
to buy than to make.
Tin-plate has indicated ins. tions. For best brands there has been a manifest hardening o
rice, makers being firm at from 13s, 3d to 13 s , 6 d I. usiness has been done for ordinary brands for as low as 12s. 6d. The cose character of the trade is shown by the fact that sales
have been effected for 12s. 7 z d. , 12 s . 9 d. ., and even 12 s . 10 d . Formerly the custom was
On the whole, though notices remain out at several large esta condition of things is not altogether unsatisfactory. There cannot ie any fault found as regards quantity. January to agust show The total number of boxes shipped during 494,000, value $£ 338,000$. The thatal number in August, 1886 , was
522,000 , value $£ 353,000$. For the last thee 52,000 , value $£ 353,000$. For the last three years the shipments
have been on the progressive scale, and the uses to have been applied, both foreign and home are on the emuneration, and makers having tried restriction of make, and failed, have now no other alternative than to keep on working There is not ones go to the wall.
There is not much that is new moving this week in the coal re moderately employed, and the Rhondda and other principa collieries are somewhat bette.
Ynysfeio is working again, but not up to its full complement of
men. Cardiff shipped 120,000 tons last week, S wansea 28,000 tons Newport Mon, showed less activity, the house-coal trade being very s. to 7s. 9d. at port. Rhondda coal is firm with 8s. 6d. to 8s. 9 d . quotations, and owners say that an advance may be regarded as a rice. Iron ore remains at 9 s , 6 d . to 9 s . 9 d . The freight from hibao to Cardiff is 3 s . 71. d. , so soducting cost and labour in
sipping, the margin of profit must be amongst the fractions. The audit is now at work upon coalowners' books, and appearance Fortunately the lot of the collier is better. If he earned mor noney in 1874 he spent it recklessly to the injury of health and o oving and steadier, and small savings still go on,
The Miners' Provide
on Saturday, Sir W. T. Lewis in the chair. The report showed that £255 had been paid during the quarter as funeral allowances
on the death of members, $£ 544$ paid to widows $£ 556$ to children, on the death of members, £544 paid to widows, $\begin{aligned} & \text { e } 5566 \text { to children, } \\ & \text { and } £ 4157 \text { to disabled members. At the end of June } 172 \text { widows }\end{aligned}$ and 342 children were receiving weekly payments from the society whe is most encouraging, as showing the substantial good done and poor law doles; but it is incumbent upon ratepayers to sub scribe to the fund, and upon the wealthy to give donations. The
colliers' periodical payments should be supplemented. It will be
seen that the item " seen theak joint in the harness. A hearty vote of thanks was given
the weal to the chairman-the founder. of the fund.
An explosion in the Bedminster Colliery, Bristol, a fiery vein,
has been attended with ten deaths. This is the largest total knowi has been attended with ten deaths. This is the largest to
for this colliery. A rigid investigation is to take place.

NOTES FROM GERMANY

From Silesia the news is a little more favourable this week, as keep the rolling mills pretty well going; but there is no change for nd smelters are complaining of not being able to produce more cheaply, on account of having to pay so highly for their coking expensive, because of the long freight. Ship plates are better
inquired after, but at prices lower than ever; M. $131 \cdot 50$ is the list price, but that is no criterion when real business is to
bee done. Bar iron and girders
ptand at
I. 87.50
list price. Zinc at Breslat is quiet at M. 220 lowest price. The
consumption has not been very great this season. During the
week the market in Rhineland-Westrhalia has . not changed materially. In some branches the outlook appears a little brighter,
whilst others remain depressed. The restriction of make in England has worked favourably over here, for since that occurence the buyers in Belgium have freely paid the prices fixed by their
combination, and this will in due course cast its reflection over into these parts. The French market is also very firm. Ores are a negected as ever. The pig iron trade is, if anything, more
contracted than last week, but hopes are entertained of some what better sales soon, as the thin sheet works have now plenty of are firmer. The same may be said of the bar mills. For wire wire and wire nails are selling below cost of production. A few very trifling orders for rails have been given out by the State Rail
ways. The Union of Dortmund took one at M. 120 p.t. Points and crossings, 190 tons, were taken by another firm at M. M. 115 p.t.
At Carlsruhe the
Belgians underbid the German firms 6 and 7 . . for 1500 tons of rails. Many Bessemer works are only working five to six turns per week, instead of the customary thirteen. The
constructive workshops are in the same stagnant position as last eported.
he brassfounders have not done quite so well last month, and have had to lower prices in consequence somewhat, so that trass
now costs $\mathrm{M} .1 \cdot 6$; phosphor bronze, M. 1.75 ; red brass, M. 1.70 p. kilo.

The house coal trade is beginning to be brisker, but in anticipation or cessation of the coke combination on October 1st, con-
tracts have been taken at ruinously low prices-as for instance, for ironworks in the Siegen and Nassau districts at M. M. $6^{6} \cdot 2$; for some
Luxemburg works, at $\mathrm{M} .5 \cdot 60$, and indeed, at M. $5^{\circ} 40$; and for the Longwy works-France-at M. $5 \cdot 30$ p.t. for 40 tons dally.
The first hydraulic coal tip on the Continent, constrin The first hydraulic coal tip on the Continent, constructed by
Armstrong, Mitchell, and Co., has lately been inaugurated with Armstrong, Mitchell, and Co., has lately been inaugurated with
ceremony at Rottterdam, by the loading of a barque with 1000 tons Westphalian coal for Java. The enterprise of the Dutchmen has set the coalowners in Westphalia in great glee. It appears that most of the sea-going vessels entering Rotterdam have to go
out again in ballast to seelk an outward cargo elsewhere, so now it they will load coal in preference to that kind of work. made that a syndicate of of Englishmen and Beligians had been formed, with a capital of
between Belgium and England. Knowing from experience that that the Belgian coals cost a great deal to that in a cold winter house coal is somewhat scarce there, and that the quality of the coal, as a rule, is of a leanish description, it looked so very like a canard that it was not reported at the time. Now the news is pub-
lished that the Railway Minister has lowered the freights on coal iished that the Railway Minister has lowered the freights on coal
from the Charleroi basin to Ostend and Bruges, which are to be the shipping ports to England; so it now becomes a necessity to mention the matter. Whether this is intended as a scare to induce the railways in England to lower their freights and charges on coals to
London, or whether the scheme can ever pay, time must show. It is also remarked that this plan hans been arranged with the object
of forestalling the Germans sending coals to England. Thus the old adage of "sending coals to Newcastle" between the two seemed

AMERICAN NOTES.

(From our own Correspondent.)
New York, Sept, 4th. THE advices from the interior as far as Chicogo and St. Louis indicate a strengthened demand for nails, hardware, agricultural implements, and
small shop machinery, such as wood-working
machinery, lathes, presses, \&c., A new machinery is also being put into New England textile mills, and considerable orders have been recelved from two or three of the Southern State there within ninety days. The earthquake disturbances have had no effect whatever upon trade, being felt only in the Southern States
The movement of merchandise of all kinds, from dry goods to hardware, is heavier this week partly because of the fact that the railroad com-
panies have come to terms with shippers. Shippanies have come to terms with shippers. Ship
ments have been held back for some time o account of the unfair classification by the trunk
lines. These complaints have been removed. Railway traffic has increased remarkably within two weeks. Large contracts are being mad
between railway managers and shippers on mor reasonable terms. There is very little danger o a disagreement between pool roads, and this fac opens the way for the closing of freight contract between large shippers and railroad companies. Steel rail blooms will be wanted to the extent o
about 20,000 tons to fill requirements in hand about 20,000 tons to fill requirements in hand
Quotations are 24 dols. to 24 dols. 50 c . Several large lots of good Bessemer iron can be sold here
at a price equal to 18 dols. 50c., c.i.f. The rush at a price equal to 18 dols. 50 c., c.i.f. The rush
for steel rails is over for the present because of the unwillingness of makers to accept contract
for delivery before January. Some capacity ye remains unsold, amounting to perhaps 150,000 tons in all, but the managers prefer to keep this capacity open in order to meet the urgent require
ments of small buyers, who might be willing pay higher prices for prompt accommodation beyond 34 dols. or 34 dols. 50 c . There is a grea scarcity of old material of all kinds, and brokers in this city are acting under urgent orders for
immediate shipments at current prices. The bar mills throughout Pennsylvania and Ohio are making more iron than they have at any time for
three years. Refined is selling at 1 dol. 60 c. to 1 dol. 90 c .; tank iron is 2 dols. 10 c .; plate the same; angles, 1 dol. 90 c .; girders, 3 c . Wrough
iron pipe is extremely active for iron pipe is extremely active for natural gas
purposes. Since the earthquake the wells in Western Pennsslvania have been acting rather
strangely; in some cases the pressure is increased strangely; in some cases the pressure is increased
while in others it has fallen off, leaving some mills with scarcely any supply of gas. This is the shock was barely perceptible there, and Pitts burgh is 1000 miles removed from the scenes of disturbance.

NEW COMPANIES

The following companies have just been regisGeorge Price's Safe, Lock, and Engineering This is the conversion to a company of the business of iron safe manufacturer and patentee
carried on by Mr. George Price, of Clevelandstreet, Wolverhampton. It was registered o the 3rd inst. with a capital of $£ 35,000$, in $£ 10$
shares, with the following as first subscribers:*Herbert Price Lavendar, Wolverhampton, engi-
neer

 George Price, Wolverhampton, manufactu er er
*W. Benson,
46, Corporation-street, Manchester,

The number of directors is not to be less than three nor more than five; qualification, f200 in shares or stock; the first are the subscribers
denoted by an asterisk and J. N. Lester and John hompson. The ordinary direct amount of dividend whenever not less than 10 per cent. is declared.

Continental Oxygen Company, Limited.

This company was registered on the 8th inst.
with a capital of $£ 150,000$, in $£ 100$ shares, to purchase certain patent rights (particulars o ciation) upon terms of an unregistered agreement between Arthur Brin and Leon Quentin Brin of the first part, S. W. Cragg of the second part,
Henry Sharp of the third part, and the company Henry Sharp of the third part, and the company
of the fourth part. The subscribers are:-
*E. Elias, 15, Great Winchester-street, merchant *Henry Sharpe, Poole, manufacturer
*Arthur Brin, 59, Brompton-crescent, engineer...
*. D. Dewhurst, Manchester, merchant L. Q. Brin, 59, Brompton-crescent, engineer, \&c.
J. Sharp, Chilworth, Surrey, electrician
W. .. The number of directors is not to be less than shares; remuneration, $£ 500$ per annum for the chairman, and $£ 200$ per annum for each other
director. The first four subscribers are directors.

Blakey, Emmott, and Co., Limited. This company proposes to carry on the business
of electrical and general engineers. It was regisof electrical and general engineers. It was regis-
tered on the 8th inst. with a capital of $£ 35,500$, in £100 shares, with the following as first sub-
E. Blakey, Halifax, electrical engineer .. J. Lakeman, Leeds, chartere
E. H. Fowle, Penkridge, Sta
E. Butler, Leeds, solicitor
S. Wilson, Leeds,
8. Wilson, Leed, worsted manufactur
C. P. Spink, Leeds, medical student

The number of directors is not to be less than three nor more than five; the subscribers are to
appoint the first and act ad interim. Directors
residing within ninety miles of the place of
meeting will be entitled to two guineas to each meeting attended, and those residing beyond
ninety miles will receive four guineas. Each ninety miles will receive four guineas. Each £20 for each 1 per cent. dividend upon the ordinary shares above 10 per cent. per annum, but so
that such further sums shall not exceed in the aggregate the sum of $£ 1000$ per annum each director. Messrs. E. Blakey and Walter Emmott are appointed manag
£600 per annum each.

Eclipse Button-hole Worker, Limited. This company proposes to acquire and work the
English patent, No. 10,192, of 1884 , granted for a self-guiding button-hole attachment to sewing machines. It was registered on the 8th inst. with a capital of $£ 60,000$, in $£ 1$ shares. An agreement of 7th inst. with the City and Provincial Contract Corporation, of 11, Queen Victoria-street, regu-
lates the purchase. The subscribers are:-
D. C. Laughton, 21, Queen Victoria-street, agent
W. H. Uhappell, 6, Herne-hill-road, printers'

 A. Kissam, 37 , Walbrrook

The number of directors is not to be less than two nor more than seven; qualification, $£ 100$ in shares; the subscribers are to appoint the
minimum remuneration, $£ 500$ per annum.

Northern Sheet Iron and Steel Company, Limited.

This company proposes, with a capital of $£ 5000$, in £10 shares, to carry on, in all branches, the business of ironmasters, iron and steel manu facturers, engineers, machinists, and general con-
tractors. It was registered on the 2nd inst., with the following as first suoscribers :- Shares.
C. F. Jackson, Newcastle-on-Tyne, iron mer-
chant Lieut.Coi. $\ddot{\text { F. F. F. Sheppee, "Ohester-le-street }}$
${ }^{*}$ B. W. Raine, $\ddot{\text { New }}$ ecastie on-Tyne, iron merchant
T. Heppell, Bentley, Durham, engineer $\because .$.
W. M. Angus, Newe sstle-on-Tyne, leather mer

F. Goddard, Newcastle $\ddot{0}$ on-Tynë, accountant \ddot{t}

The number of directors is not to be less than shares; the first are the subscribers denoted by an asterisk. Messrs. Richard Carl Cook and John Mowbray Scott are appointed managers. The
company in general meeting will appoint the company in general meeting will appoint the Isle of Man, Liverpool, and Manche This company was registered on the 4 th inst. acquire ships for the conveyance of goods and
passengers to and from the Isle of Man. The subscribers are:-
. Bell, Rumford-street, Liverpool, shipowner
. . Whase West Kurby, book-keeper
.
 master mariner Aspinall, 30, $\ddot{\text { Brunswick-street, }} \ddot{\text { miverpool, }}$. Bradburn, 53, Lord-street, Liverpool, chartered
. M. Simpson, $\ddot{53}, \ddot{\text { Lord}}$-street, $\ddot{\text { Liverpool }}$
The board is to consist of two managing and the nominal value of $£ 100$. Messrs. T. Bell and F. Aspinall are appointed managing directors,
and for their remuneration will be entitled to and for their remuneration will be entitled to
$2 \frac{1}{2}$ per cent. on the gross earnings. Mr. Henry Kelsall Aspinall is appointed general traffic agen

City Steam Laundry, Dyeing, and Carpet Beating
This company was registered on the 4th inst.
with a capital of $£ 5000$, in $£ 1$ shares, to take over and carry on the cleaning and dyeing business of
Mary Simons, late of 65 , Brunswick-road, Liverpool. The subscribers are:-
${ }^{*}$ B. Stream, 73, Berkeley-street, \quad Liverpool,
j.
J. Rurnalist
Jushon,
10
,
Danbey-street,
\ddot{t}
Liverpool,
,
${ }^{*}$ accountant Thurme, Glieston-place, Liverpool

J. Ansonia, $\ddot{\text { Seymour-street, }} \ddot{\text { Liverpool, }} \ddot{\text { tid }} \ddot{\text { adver }}$

The subscribers denoted by an asterisk are the
first directors; remuneration, 5s. each for every first directors; remuneration, 5s. each for ever -

Needles and Alum Bay Pier Company, Limited This company proposes to construct a pier o
jetty at Alum Bay, Freshwater, Isle of Wight It was registered on the 7 th inst. with a capital o £3000, in £1 shares. The subscribers are

on the 4th inst. with a capital of $£ 5000$, in $£ 1$
shares, with power to increase. The subscribers are:-
 The subscribers are to appoint the first directors, the number of which is to be three.

Steel Frame Carriage Company, Limited. This company was registered on the 4th inst.
with a capital of $£ 50,000$, in $£ 100$ shares, to trade as carriage builders. The subscribers are :J. Garden, 8, Pembury-avenue, Tottenham, secre-
 J. J. B. Caampling, Lower Tottenham
W. H. Walker, Newcomen-road. Finchley W. H. Walker, Newcomen-road. Finchley $\because \because$
R. Finlayson, 20 , St. Augustine-road, Camdens. square $\ddot{\text { stuart, }} \ddot{2}, \ddot{\text { Manor}}$-road, $\ddot{\text { st }}$. John'' \ddot{s}, clerk

The number of directors is not to be less than three nor more than seven; qualification, $£ 1000$
of capital; the subscribers are to appoint the first and act ad interim; the company
meeting will determine remuneration.

Kidwelly R. Dinas Fire-brick Company, Limited. This company proposes to acquire and carry on
the business of the R. Dinas Fire-brick and Silicate Works, Kidwelly, Carmarthen. It was registered on the 3rd inst. with a capital of registered on the 3rd inst. with a capital
$£ 20,000$, in $£ 1$ shares. The subscribers are:-

T. Hughes, 31, The Grove, Camberwell, clerk.. P. Pulling, 17, Fenchurch-street, merchant ..

 J. Bartun, 15, Walbrook, merchant, ., E. T. Gregory, 18 , Walbrook, commission agent.. J. Cartwright, 20, Leyton Park-road $\ddot{d}, \ddot{\text { E., clerk }}$ The number of directors is not to be less than tions of Table A are adopted.ECONOMICAL QUAY WALLS.
The following is from a paper by E. Pontze "Though the cost of foundations by means compressed air has been greatly reduced within recent years, there are cases where pile-work foundations are still advantageous. As quay walls
must be accessible for vessels, it is impossible to strengthen them like ordinary retaining walls by a large batter on the face, by widening out the
foundation at the outer toe, or by a mound of foundation at the outer toe, or by a mound of
rubble in front. Accordingly, as far back as 1837, rubble in front. Accordingly, as far back as 1837,
the plan of pushing forward the foundation by uays a similar system, with improvements, has been adopted for the new Rouen quay walls. The bed of the Seine, at Rouen, is about 32 ft . below the required quay-level, and a layer of silty
sand overlies the hard chalk, which is found about 25 ft . below the river bed. Instead of building a quay wall, 33 ft . high, on an unstable
foundatiou, or carrying it down to the solid chalk, foundation, or carrying it down to the solid chalk,
a wall, only 18 ft . high, has been built upon piles sloping forward towards the front, and reaching down to the chalk. The thrust of the filling for
the quay is kept off from the back of the wall by a mound of rubble stone, and by a layer of rubble stone resting upon a platform supported on piles,
carried back far enough for the natural slope of the filling behind, going between the foundation
piles under the wall, not to protrude in front of the face of the wall. The wall rests upon four rows of piles, of which the three front rows have a
batter of 1 in 8; whilst the back row, and the batter of 1 in 8; whilst the back row, and the
four rows supporting the platform behind, are vertical. The lower part of the wall, for a height
ver nd th., is composed of concrete, and is 11 ft . wide, and the upper portion is built of rubble masonry,
and has a width of $6 \frac{1}{2} \mathrm{ft}$. at the bottom. The wall has a batter of 1 in 8 , and is faced with brick-
work. The cost of this wall was about $£ 24$ per work. The cost of this wall was about £24 per
lineal foot. The latest design of quay wall, which is being now built at Rouen for extending the quays, is similar in construction, but has been carried 31 ft . lower down, owing to the increasing
draught of vessels coming up to Rouen, and in draught of vessels coming up to Rouen, and in
order to allow heavier weights to be placed near the edge of the quay. The concrete is deposited within watertight caissons of beech, 68 ft . long, on the top of the piles. The wall is strengthened by
iron tie-rods, at intervals of 35 ft ., bolted to large iron tie-rods, at intervals of 35 ft ., bolted to large blocks of masonry, placed about 66 ft . back from
the face of the wall. The last type of wall costs for placing the toe of the slope low enough for the anticipated deepening of the channel. The author then compares the Rouen quay wall with
the New York quay wall along the Hudson River, as executed since 1876 . The New York wall is
is similar in type, being a slight wall of concrete and masonry, backed with rubble, and resting upon
long vertical and sloping piles; but the piles are surrounded by a rubble mound which projects in front of the wall, and the wall, though higher
than the Rouen wall, is much thinner at the base, nd its lower portion has been built with grooved concrete blocks. The top of the wall is about 35 ft . above the bed of the channel, or about the 20ft. deeper at Now the piles are driven about 2oft. deeper at New York than at Rouen. The
cost of the New York wall, after deducting expenses incurred in the removal of old works,
was $£ 3918$ s. per lineal foot. It is suggested that he experience of Rouen shows that the rubble surrounding the piles at New York might have
been safely dispensed with, that the projection of the rubble mound in front of the face of the wall is prejudicial to vessels, and that the cheaper wall of the Rouen type would have been better for
New York than the type adopted. ${ }^{2}$ It is con-

idered, however, that for a long length of quay York would be more economical than the concret York would be more economical than the concret walls are less durable than the Antwerp quay wall, founded on firm ground, at a depth of about woft. below quay-level, or intermediate between the depth reached by the foundation piles a
Rouen and New York. The Antwerp quay wall founded by aid of compressed air,, is is strong
enough to resist the thrust of the filling at the back, and also a surcharge of 5 tons per square yard on the quay; but it cost about $£ 933$ s. per
lineal foot, or nearly two and a half times the cost of the New York wall, and more than three
and a-half times the cost of the Rouen wall. The quay wall at Ghent, founded on firm ground met with at a small depth, cost only £ 319 s . per lineal foot. The concrete well foundations of the Ninth Dock at Havre proved an economical system
under the special conditions of the site, having nder the special conditions of the site, having
cost $£ 3413 \mathrm{~s}$. per lineal foot. Different systems are, accordingly, advisable under varying oon-
ditions; but the Rouen type of quay wall has the advantage of enabling quay walls to be extended at ports which, through want of accommodation

THE PATENT JOURNAL.

Applications for Letters Patent.
When patents have been "communicated" the
name and address of the communicating party are
144. Locks, H. J. Allison.-(G. P. Whittlesey and P. Wright, United States.)
1, 341. Jaccoard, J. Widd, Halifax. Webb, Edgeley.
1,343. SAFETY Letter-box, \&c., D. T. Ratcliffe, Salford.
fi, 134. Tramway
Gripper
Slot Rpolorts or Furnaces, J. A. Yeadon and R
Rletor, Leedd.
Card Winding Machines, F. and T. Brailsford, 11, eise.. Valve Motion for Direct-Acting Pumps, \&ec.
J. E. Hainsworth, A. T. Winn, and W. E. Hains worth, Dewsbury.
11,348. FAstening Blinds to Rollers, J. Tennyson, 1,349. Steam or other Engines, L. Cooper and A Holt, Ardwick. 11,550 . Power Ejector Ventilators, J. Hall, Ma.
chester.
wicture Hangina Appliances, de., E. Cold
well, Huddersfield. Huddersfield. Ties, Bows, Cravats, \&c., J. Ferguson Washing Clothes, \&c., C. M. Linley and J.
London. Sulativg Condictors, o. Imray.-(W. W.
United States.) Averell, United States.)
356. RE Oronse Blue, O. Imray.-(H. M. Baker, United Statee.)
I, 357. Wert Fork and Mechinibm for Stoppisa Looms
for WEAVING, W. C. Priestley, Halifax.
 London.
${ }_{11,359 .}$ Saving Life from Fire, H. G. Powell, London. J. Sopor, London. Tram-oars, \&o., R. O. Gercke,
 sAVING Lines, N. C. Pond, M. O. West,
Simons, London.
364. GRIOKET BATs, J, O'Connor, London.
 Cooke. - (J. F. Fetler, France.)
$11,366$. Drying OrfaL and the like, W. P. Thompson -(V. D. Ande son, United States)
11,367. Car CoupLinge, S. A. Kilmer and E. J. Cran dell, London.
$1,368$. Jacound Looms, W. P. Uhlinger, London.
1,369 . RALLWAY Chalry, A. J. Boult. (H. C. Sint nich, Canada.) Wor, E. Tremsal and A. Dicktus, London.
1, 371 . Eneerering,
United States.) H. J. Haddan.-(c. W. Spurr United States.
1,372. GaIN CLEANERs, H. J. Haddan.-(H. Collyer
and M. Craufford 373. V1cEs, H. J. Haddan.-(W. R. Baird, United Spinning Machinery, H. E. Leetham and J
s, London. London. D. Needham and W. Smith, London. London.
,376. ENEMA and PUMPs J. Arnold. Londor
377. TILEs for Roofing, \&e, W. Bull, Londo
 Williamson and G. H. Wíliamson, London.
1,379. VIoE Prop, R. Gay, London.
Con MANFACTURE of RIBs, \&C., for Umbrellas, W Corder, London. Compensator, R. D. Sanders, London. Suplying Prepaid Quantities of Liquid, G.
W. S. Sennox, London Lennox, London.
Smoke Consumina Furnace, J. L. Peslin, London. Cuting, \&e., Finger and Toe-naids, H.
Morrison, London. Morrison, London.
Hi,855. UTilisina the Expansion of Metals, F. E
 Wi,
11, 887 . MANUFACTURE of AXEs, \&co., E. G. Odelstjerna,
London. London.
1,388. SAEETY RA Zors, H. H. Lake.-(W. H. Murphy,
United States.) United States. .
$11,390$. Sorews and Nails, H. H. Russell, London.
L. London.
London. Electric Currents and Cables, F. Wynie, London.
 1,395. Portable Bed or CovCh, J. Read, London.
1,396. DIstaNCE INDICATORs, H. Moon and W. Morgan,
Birmingham. Birmingham.
1,397. Rapidiy Boring and Sivking Wells or SHafts,
O. Torp, London. O. Terp, London.
1, 398. SLEF-ACTING Extinauisher, P. H. Sherratt,
London. 8th September, 1886.
1,399. Driving Connections for Bicyoles, dec., H.

"Harbours and Docks," p. 407, and plates 8 and
"Minutes of Proceedings," Inst. C.E. vol. 1xxx1.

 ${ }^{11} 1$, derrifild Brimry Lusve, R. L., J., and J. B. Short, West 1,413. Electric Safety Lamps, M. Settle, Man-

 11, 20. Wirp BRay for Looss, T. Burns, J. Fowler,

 E. Philips, London.
11,427. WATERPROOFING CLoth, \&c., R. Punshon,
ILondon 11.428. Automatic In and Out Gear for Reapers, J.
E. Brown, Saxilby: 11. 429 . Working Slides in Magic Lanterns, C. Lever, ${ }_{11,430 \text {. WATER-Motors, A. Norman and G. L. Pearson, }}^{\text {Len }}$ 11.41. Transmitting Messages by Magetism, J.
Holloway, London. 11,432. SToppers for Bortces, \&c., H. Barrett, London. (G. Smyers, Belgium.)
11,494. SAFTrY BIf for Horsss, H. Pfandner, London.
11,435 . Constructing Walls, \&e., of TEMPORARY BUILDiNGA, R. Bucknall, London.
11,436. HoLDNING ToGETHER Loose Documents, \&c., J.
Asten and F. E. Morris, London. 1,487. Applying Ignitiva Materi
1,487. Applying IgitiniNg Material to Match Sticks,
W. Holmstrom, London. 11, 488. Lock NUTS for SREw Bolrs, A. B. Ibbotson,
London. 11, 439. Domegstic Fire-blower and Fireguard, G. r.
f. Comont, London.

9th September, 1886.

11,440. Tin Funnel for Filling Bottles Rapidiy, G. 11,441. SMoKE Consumise for GAS Globes, F. H. Hardisty, Nottingham.

11,444. MATCH Boxes, L. A. White, Manchester.
 11,447. Matallic Pistons, R. Tonge, Manchester. 11,449. SIPRIN or BEND Traps, J. Shanks, Glaggow.
11,450. Propvorig an Optical Ilusion, W. Webe
and J. Winison, Waterloo.
11,451. MARING LUMP SUGAR, S. Vickess, Liverpool.
11,452 . DRYING GELATINE PLATES, W. Tully, Glaston-
11,453. Jonkras' Drilling and Boring Braces, W. P.
Fox, Sheffield. 11,454. Kitchen Ranges, R. Hunter and J. Turnbull, 11,455. Airinga and Bebtling Starched Fabrics, D. 11,456. VENT in Cliars, G. Adie, Newcastle-on-Tyne. 11, 458. AUCOMATIC FIRE-ALARM APPARATUS, J. H. Lynde, Manchester.
11,459. FrieveriexTER, W. Anderson and S. E. Pearse,
Gosforth. 11,460. Winpow Frames and Sashes, T. Robson,
London. 11,461. Extraotion of the Water Liquid from SEWAGE, \&C., V. L. E. Miller, London.
11,42. "GRADUS'" TOWEL RACK, H. Schooling, jun.,
London. Lindon.
11, 63. RatChit Box SpanNER, J. Moore, Newcastle-On-Tyne.
11,464. MAKING SodiUs, H. C. Bull, Liverpool.
11,465. SEAPRENING CARD TkETH, C. Roberts and s . Wood, Halifax.
11,466. Regenkrative Gas Lamps, J. E. Lewis, London.
11,4E7. Doubing or Twibting Yarns or Theads, C. Holdsworth, T. Barnes, and J. Hardy, Halifax.
11,468. CLAAP for FASTENING SHoEs, W. H. Munns.(J. Heilmann, France.)
11,469. SToves or FIRELAOES, T. Derichs, F. Weber, and E. Bender, London.
11,47. POMPs, T. Derichs, London.

 (1). D. Dougherty, United States.) Allen, and A. Ferguson, London.
11,475. PAPER BAG-MAKING MACHINERY, A. G. Brookes.
 Liesching.-(L. O. Liesching, Ceylon.)
11,47. VALYE and Cocks, W. P. Singleton. London.
11,478. APPARATUS for WABHING, \&o., LINEN, J. Eaton,
 11. Wi.lkins and P. C. Wilkins, London. London.
11,482. BARBED WIRE for Fences, H. Dalgety, London,
11 , 483. WINDOW SABH FASTENINGS, O . Groombridge and J. P. Rickman, London.
11, 184. Cookive UTRNSLL, F. Plaister, London.
11,485. BRACES for Trousers, G. R. Holding,

 W. Tipple, London.
11,40. Combingd Looring Glase, Toilet Box, do.
T. Marne, London.
 4

11,493. Preppring Colours, A. MoLean and R. Smith,
London. 11, L94. M Mring Proments, A. MoLean and R. Smith,
 11,496. Charaing Air with Vapour, de., J. F. Schnell,

10th September, 1886.
11,507. Joints of Ratlway Platrss, de., B. Hoyland
Shefield. 11,503. Sinipina Collars and Cufrs, C. H. Felton,
 $1,510$. Fobrtans and Cords, w. Willock, Halifax. Sill Open and Cloosk Arbanarment for Kitchen

 1,519. Scoring or CrRasing CARD or PAPRE, L. W. Stone, Banbury. asp, W. Banks, London.

 1,556. ANYLLS, A. MCShain, London,
 11, N5i9., Flastagew.

 and A. Rotherham, London.
1,542. ORNAMENTATION of Wood, dc., B. Ludwig,
 London. 11th September, 1886.
 11,546. TTps or Cocrks, J. Clingana Glasg

Tov, T. Ashworth

 11,550. Loming Cartridors for Breger-loading
 11,552. Trite Expanston Grar of Stbam Engangs, w
 11,554. Homo Gexsous STEzL, do., J. Morley and W. Gaskill, London.
${ }^{11,555 .}$ V VNishing a Living Person from a Chair, ,

 11,562. Circoular Knitring Machines, E. Newton and

 11,566. Prevveritig TAmpreing with Cheques, w. H.

 11,s7.0. R. Rprativa Balt-TRAP for Shootine Practiok,
G. H. Hockey, London. 11,57. Musioni Notation, A. Galbraith, Glaggow.

 11,57. MAnver Acture of Crvibibes, M. Slade and E . 11, Tso. Digby, London. LI,581. Mon. Mand for Dybing Cotron, W. G. Young 11,582. Stopping Supply of Oil to Lastp BuRnirs, w.

 11,589. FITTER PRESsEs, D. K. Clark, London.

13th September, 1886.

11,590. Indicating Apparatus for Watre-closets, E Banfield, Hove.

 W. Witham, Manchesters, do., W. and

Biker, Birmingham.

11, Minghall Manchester.

 11, Rosen. Brovocuks and Trioycluss, w. Andrews, Bir ${ }_{11}$, ming.4. ADTVERTising, A. R. Waddell and F. G. Red man, Kidderminster.
11,605 . W Wiverzs for
Si
Hastie, Clasgow satina V Essisis, J. Shaw and J. Cobich Dark roller slide for Photooraphic
 11, Go8. VIocior Patent Drawers Suspenner, A. Kahn,

 and J. G. W. Fairbairn, London.
11, 111 . CoxNECTING PARTS of
 11,612. ELLEGTRICAL SWITroHzs, T. F. Walker and J. G

 11,622. Rofele, United Statee.) G. E., and N. Smith, jun.,

 11, 630 . Box
${ }^{\text {T1, Tayio }}$

SELEOTED AMERIOAN PATENTS,

 Clais.-(1) The combination, with a crank pin and
its arms, of a hollow or recessed ring D and a pipe E Its arms, of hroiow or recessed ring D, and a pipe E.
oxtending from the ring D , and communlicating with

an opening in the crank arm, the latter being pro-
vided with an exit opening, substantially as and for

344 806. ALARM Loor, William Θ
burg, Pa, - Filed Marcch 20th 1886 ,
Claim,-(1) In a combined door look and burglar

344,806

and recess communicating with the reeeptacle from bolt h, for closing the, koy Hole, the incolined surfaces
$3 r$ on the bar m and bolt h, for releasing the hammer

cartridge d is placed, and a recess v, formed in the
rear of the lock, provided with a corresponding serem hread for securrng the thimble $t 1$ therein, as and for 344,813. Method
 ctaim.- The method heretnbefore described of con-

a submarine tube by means of a travelling caisson,
 device, and
desoribed.
344,830 GnsG PLovor, Peder Hansen, Fresno, Cal.Claim - (1) The compination of the plough beam, the
ateral arms having the esection clamps bolted together on opposite sides of the beam, and hating the ears projecting from the upper and dow er sides of the beam,
the plough standards botted to the thatran arms, the
braces R, bolted to the plough standards and to the

344,830

said handles with the upwardly projecting ears of the
rearward section clamp, substantially as deescribed.
 the lateral arms H, having the curved fection, clamp. Solted together on opposite sides or he meam, the
plough standards bolted to the lateral arms, and the lamp slates O , bolted to the said standarras and to the
 Cluiive (l) The machine organised substantially as
described, comprising a device delivering intermittently bits of soldor, a reservoir and tube delivering
drops of acid, and burner or heating device for melting drops of aid, and burner or heating devico for melting
the bits of solder, in combination with conveying mechanism, substantially as desoribed, for carrying
forward and momentarily detaining in reach of each said devices the headed ends of safoty pins phaced
upon satid convering meohanis, wherery a bit of
solder and a drop of acid are automatically delivered

344,837

thereon, substantially in the mannor and for the pur-
pose herein set forth. (2) The combination, with a
 stantially as described, of an endless arririer chain con-
structed of a double set of fist links whose upper edrge
 satety-pins, and which is made to revolve intermit
tently in line parallel with the solder device and tently in iline parailel with the soldar device and
burner, substantialy in
pose pose herein set forth
344,978. Pripr Wrevcr, Ira Morse, Danbury, Conn.Claim. - (1) A Wrench consisting, essentially, of a
bar hanig hande at one ond and ajaw at the onther
in in line with the bar, in combinatlon with an arm
pivotted to said bar, and having at its outer end a pivoted to said bar, and having at its outer end a
pivottod jaw, at hreaded pin or bol adapted to pass
through openings in said bar or armp and a nut
and

 5, adapted to engage such receess, and a scrow for hold-
ing gatd jaw in ioistion, in oombination with an arm
pivotted to the bar, and having at its outer end a
 344,978

an arm pivotted to sald bar and carrying at its outer
ond a pivotted jaw, a bolt and nut for

 tar and arm, a nut engaging said pin or bolt to move
the arm inward, and a apring, 9 , adapted to hold the
arm

adapted to pass through openings in said bar and arm,
and no nut angaging nald boti, wheroby the arm la
moved inward.

