THE TRIANGULATION AND MEASUREMENT OF THE FORTH BRIDGE.
by Reginald E. Middleton, M.I.I.e. No. I.
The writer proposes in the following paper to give a description of the setting out of the Forth Bridge, the tools and instruments used, and the amount of accuracy obtained, along with some remarks on the instrumental and personal errors.
General description of site.-It is necessary, in order to be able to understand what follows, that a short description of the site of the bridge be given, which will be further illustrated by the accompanying diagrams, Nos. 1 and 2. Diagram No. 1 is a plan showing the centre line of the bridge by a line A C, and the system of triangulation in linesA O, CP, \&c. Diagram No. 2 is a section through the centre line of the bridge showing the different stations on line A C. The total length of the bridge between centres of abutments is $8080 \cdot \mathrm{fft}$, and the level at these points is
 Oery rapidy in each case to a level of about 15 ft . above
Ordnance datum. The distance from the south abutment o high-water mark is about 560 ft ., and from the north abutment 1785 ft ., the distance which is inaccessible at high-water being approximately 5735 ft ., or one mile and one-twelfth nearly. At low water this distance is about 120 yards less. A high water the Island of Inch Garvie, at the centre line of the bridge, is covered but a small brick pier had been built by the contractors for the old Forth Bridge, which is $54 \cdot 7 \mathrm{lft}$. north of the centre line of the northern Inch Garvie piers, which gives an accesobe point there at all times B is 4024 ft froint, called , is 2 an 1711 ct fo hore and 1711 ft . from the orth shore, or thereabouts. Base line to be measured. o South Queensferry in o South Queensferry in the early part of January,
1883 , it was desired to make an immediate start with the foundations of the piers on both sides of the Firth, and to this end it was necessary to fix, at the earliest possible moment, the south side and their relative distance from the point on the Island of Inch Garvie. To effect this purnose base line must be measured of suitable length and a careful riangulation made. The writer therefore ordered the materials for making three standard rods 12 ft . long, and he inspected the borders of the Firth of Forth on both sides, in order to decide on the direction and approximate length of the base line to be measured and the position of
down, bringing with him a 12in. transit and a 7 in . Everest's theodolite; he picked up the old stations, and inserted the new ones A on the south side, B on the island, and C on the north side, and at the writer's suggestion also includen the position marked out for the observatory at O . The distances thus measured were given by the Ordnance Department, as being :-A C, $7607 \cdot 37 \mathrm{ft}$. ; A B, $5401 \cdot 45 \mathrm{ft}$. ; $\mathrm{BC}, 2205.92 \mathrm{ft}$. The sergeant of Engineers also gave the distance A I, as measured with standard chain, as being $846^{\circ} 75 \mathrm{ft}$., and C D-D being a point near the Fife piersas 501 ft .
Commencement of setting out piers on north side.-It being desired to commence operations on the north side, the above measurement from C to D was taken as correct, and the centre for the northern Fife piers set out from it; this distance, when measured with standard rods, was found to be 0.79 ft . too short, the true dimension being $501 \cdot 79 \mathrm{ft}$., and this caused the whole structure to be set out 0.79 ft . south of the setting as originally proposed.

Standard rods.-The rods when delivered had to be corrected to a standard length, but for this purpose no adequate preparation had been made, and the writer was ooliged, for want of better appliances, to content himself with a female gauge made of iron tipped with steel, fitted at the time of measurement to two 6 ft . boxwood rods sup-

Fig. 1

posed to be standard, and checking the same by means of steel tapes and boxwood scales. The boxwood rods being was made to fit them and immediately transferred to the rods to be made standard, which were adjusted to it by means of hard wood wedges provided in one end of each rod for this purpose. Each rod was treated in this manner, and the whole were then checked with the steel tapes and a length set out with 12 in . scales on the machine bed and rods and put by for future reference ain adjusted to these would be likely to exist in these standards would not have

Fig. 2

the observatory from which the main triangulation should be made.
Position of base line and observatory.-The writer soon found that there was only one satisfactory course for the centre line of the bridge, near the a point of called I in the south abut ments down the centre of a siding laid by the North British Railway Company from South Queensferry station to the Forth Bridge works, which is straight for about 2000 ft ., when the line begins to curve to the right; along the platform of South Queensferry station, across the line, up the side of the cutting diagonally, over a bridge over the line, down a short lane, through a fowl pen, and then across a steadily rising open country
for about 1500 ft., and finally falling slightly for the last 500 ft ; the end of the base line thus laid out being called P. The two ends of the base line were, unfortunately, not visible from each other at the ground level, therefore high poles had to be used for sighting; and though every are was taken to place and keep the poles vertical, some slight error may have crept in, and it would have been etter to have constructed a timber or masonry stage at P , whence the bottom of the pole at I could have been seen The approximate length of the base line was 4000 ft . The author also decided that, within a few feet, there was only one place suitable for an observatory, namely, near
the outer end of a rough stone ${ }^{-j e t t y, ~ r u n ~ o u t ~ b y ~ t h e ~}$ the outer end of a rough stone-jetty, run out by the
North British Railway Company for about 1300ft. into Noith British Railway Company for about 1300r. ordanance survey.- In the meantime Mr.-now Sir John the general measurements across the Firth, arranged with the general measurements across the Firth, arranged with down a qualified man to take up some of the points in the ain rriangulation, and insert in the measurements three stations in the centre line of the bridge, one being on the Island at B. Accordingly a sergeant of Engineers came
been of the least importance, as both the foundations and steel work would have been set out from the same standards, if it had not been that the main points of reference were set out from the Ordnance Survey, necessitating whole. What the differences were, and how they for the the structure, will appear as the work progresses.
Measurement of base line. -The measurement of the base line commenced about February 25th. At first the rods were supported on blocks of wood, each rod being approximately levelled transversely, and then brought to a level longitudinally by means of packings of wood laid under it, the level used being an ordinary mason's level. This arrangement was found to be both tedious and liable to accidents and error, owing to the difficulty in bedding the blocks firmly, and to the inexperience and carelessness of plumbed assisting, and though frequent bench marks were to be done over again. Wooden trestles, with two cross bars each and of varying lengths, were therefore made and driven into the ground, and the rods rested on them, two trestles to each rod. The line from the works to South Queensferry Station is straight, but falls with an even gradient of 1 in 70 towards Queensferry, and this gradient if followed regularly, is just enough to prevent the rods facing. It was therefore necessary to lay a length of three or four rods level, and then make a drop, which, in order to introduce a plumb bob or the square, which was fre quently used for bringing the faces of the rods into a vertical plane, and which will be described with the other tools, could not be less than 5in. The rate of progress was at the commencement about 24 ft . an hour. The highest rate attained was about 86ft. per hour, and the average
about half the last amount. At the end of each period of measurement a strong peg was well driven into the ground, and a nail put into the head of it where the measurement ended. The distance from the last peg and
nail was taped, and that distance added to former nieasure-
ments and recorded. The total length of the base line I.P. as measured by the rods was $4013 \cdot 2 \mathrm{ft}$. While the above measurment was being made a staging was in course of erection at O, sufficiently large to support an observatory, and a platform two planks wide was laid vatory; main land along the jetty to the site of the obserwriter ; and when the main base line was completed the termination preded to make a rough measurement from the tory at O. This line PO was nuch more difficult than the former, the fall being rapid, and it being necessary to cross the Queensferry branch of the North British Railway on a slight skew, where it is in some 20 ft . of cutting; to cross a gulley on a considerable skew; to get down a steep bank, and to cross a quarry hole full of water, and about 120ft. wide. As this measurement was only required as a check, the same amount of accuracy was not attempted as in the main base line, only the portions of ground which were easily measurable with the standard rods being set out with them ; the rest of the distance, about 900 ft ., was measured with a steel sounding wire.
Measurement with wire.-In order to use the wire, a distance of 300 ft . was accurately measured with the rods on the stage leading to the observatory. The wire was laid on this, a mark having been previously made near one end by means of a piece of copper wire twisted round the steel and soldered on; it was pulled straight and a similar mark was made at the other end. The wire was then transferred to the place to be measured, stretched from the last fixed point, set, straight with the theodolite, and held in place by its being lashed to two of the trestles already mentioned as being used to support the rods, these behind blug mheshed thor thes behind them. He accuracy of the starting point was tested by the plumb in the corrected by P The ${ }^{\circ}$ or loosening the lashings of the treste carcst. The difer with in lis mark down with a spirit level, and the distace was maked down, calculated, and booked. laid down on the stage, and the error, which was a gradually increasing one, and eventually error, which was., graduals booked.
amounted to 9 in., was also
mounted to 9 in., was also bonked.
ene measurement between P and O , amounting in distance to about 3000ft., could only be looked on as an approximation. It was, however, eventualy found to be correct within about 2in.
Triangulation.-The next step to be taken was to ascertain the value of the angles to be measured, and for this purpose a 7 in . theodolite, constructed by Messrs.
Negretti and Zambra, had been procured, and the writer Negretti and Zambra, had been procured, and the writer proceedod the base line, at P its termination, at O the ment of the base line, at P its termination, at O the the fixed point on Inch Garvie Island, and at C a pole put in by the Ordnance Survey Department in the centre line of the lide on the north side of the Fith and of the bridge, on the north side of the Firth, and so calculate the lengths I B, I C, from the base line I P. In at with those made by the Ordnance Survey Department between A B, A C, it was necessary to have the distance A I accurately measured, and when this was done it was found that A I was $846 \cdot 77$ as a arainst $846 \cdot 75$, as given by the chaining of the Ordnance Survey Department ducting this length from A C, the distance I C should have been, in order to agree with the Ordnance Survey, $6760 \cdot 62$. It was, however, found to be by triangulation from base line I P $6759 \cdot 46$, or $1 \cdot 16$ shorter. If reduced to the same terms, the proper length of base line would be 13.77 , nd I C will be 6760.48 , and the base line 4013.80 It is, however, proved elsewhere by comparison with 10 ft . rods, that the length of this base line was $4013 \cdot 897$, the final length arrived at by triangulation from Ordnance Survey being 4013.693 . The error in measurement, or rather the difference between this standard and that arrived at from the Ordnance Survey, in which a possible error of 3 in . is allowed for in 7609 ft ., is 0.204 ft . or $2 \frac{7}{7} \mathrm{in}$. in 4013 ft , or $\cdot 386=4 \frac{5}{8} \mathrm{in}$. in 7607 ft , or $086=1_{\frac{1}{3} \frac{1}{2} \mathrm{in} .}$ in 1700 ft ., the 10ft. standard rods being shorter to this extent than Ordnance measurement. It was, as has been before stated, necessary to accept the distance given by the Ordnance Survey as correct, and this triangulation and subsequent not 4000 ft .
Setting out piers on north side.-The piers on the north side were set out by direct measurements with the standard rods, making C the fixed starting point in each direction. At each pier four stones were set in concrete and marked ock built where convenient, and permanent theodolite stat XIX and XX.

- Setting out piers on south side.-On the south side a similar course was pursued, starting at I; the difficulties, however, were much greater, owing to the rapid slope of sible to measure lengths of 10 ft , and exceedingly difficult to keep the rods steady. The measurement of the first 436 ft . was therefore repeated three times, but in the meantime No. 1 pier, station IV., had to be commenced with such information as was then obtained. As none of the measurements I E agreed absolutely, a station was fixed at the bottom of the slope by triangulation from a short base line, and the further measurement carried on from this point; this proved the setting of pier No. 1 to be 2in. out. At $436 \cdot 14$, according to this measurement, a brick pier was erected to serve as a theodolite station and a standard bench mark for levels; also at this point, which was close to high-water mark, it was necessary to transfer the survey line from the centre line of the bridge to a line parallel to the centre line, so that it might pass along the stage erected alongside the piers. A point was therefore squared off and marked down on a stone, and in order to maintain a parallel line, sighting poles were placed in cor spictous 1 ositions in this line on the vorth and south
sides, and at the same time poles were fixed accurately in masonry piers 60 ft . on either side of the centre line of the bridge on both sides of the Forth to maintain the centre ith the caisson piers. All these poles were set ou hey were fixed in a substantial manner in stone, brick or timber piers from 6 ft . to 8 ft . square, and a railing wa un round each, to which the pole was in many cas tretched to protect the instrument anvas screen could in stormy weather. a line parallel to the centre line of the bridge at $436 \cdot 14 \mathrm{ft}$ fom I, and poles on both sides of the Firth to maintain the parallel line throughout, the measurement was proceeded with up to the centre of No. 5 pier, or to $839 \cdot 14 \mathrm{ft}$, in the measurement, and was subsequently carried
Wire measurements between stations XVIII. and XIX.theodolite station having been erected on Inch Garvi Island, in the centre line of the two northern caisson piers, station XVIII., at 54.7 fft . south of station B, Mr XIX heasurement, and this he proposed to do by means of sounding wire of steel about $\frac{1}{20}$ in. diameter and weighing about 9 lb . for a length of 1800 ft . It thus became the author's duty to make this measurement in conjunction
with Mr. P. W. Meik, M.I.C.E., the resident engineer ho represented Sir John Fowler and Mr. Baker at the Forth Bridge.
Measuring wire on North British Railvay.-A suitable site for the measurement of the wire was found alongside
the railway between the Forth Bridge Works and Dalmeny tation. The distance, viz., 1700 ft ., was first measured a Iready described, and was subsequently checked by squarin off at both ends and running the rods along a rail in the line and calculating the error due to gradient, and the ifference between the two measurements was $\frac{1}{2}$ in.
Marks on wire, means of fixing. - The distance between was two posts carrying wooden clips in which the wire as to rest having been measured from face to face o clips, a point half way between the two stations was marked and a platform laid down 25 ft . below the level of he clips, a mark having been made on the wire by mean a copper wire twisted and soldered on, and a furthe lip the point thus mark. we blastby to the fa a brass lip; the point thus marked was brought to the face of the orthern clips and fixed there, the wire was paid out and carried through the southern clips, and then tightened until he centre was 1 ft above the central platform, thus giving marked by wire twisted on and soldered, and by a clip 6 in. wire was then coiled on its drum and was ready for use.
e similar posts were builtinto stations XVITT To use th Pire similar posts were builtinto stations XVIII, and XIX. nd clips were fixed on them in the positions fixed for the centres of the piers. A theodolite station was fixed in ment should be 24 ft . below the centres of the clips, and on ment shorth side a marked board was fixed at the same level, so that it was only necessary to sight on the board, and the line thus obtained would give the proper deflection for the wire. It is true that there is a slight error for curvature but it is so small that it may be ignored. On a perfectly alm day arrangements were made for preventing any hipping passing through the northern channel, the wir was fixed in the clips at station XIX., and was hauled that the mark on the wire touched the face of the clips; was however, found necessyry to draw in the wire 18 in before the proper deflection of 24 ft . was obtained. The span then appeared to be 18 in. too short.
Result of wire measurement unsatisfactory.-This result ccepted it was necessary to refer the wire to its could b the railway, where however, it fitted exactly It wace on therefore necessary to look for the error elsewhere, and the writer proceeded at once to test the rods on the 300 ft , standard laid down on the stage leading to the observatory when he found that the rods were $\cdot 173 \mathrm{ft}$. longer in 300 ft , in 300 ft . is $\cdot 9067$ in 1700 ft ., or $10 \frac{7}{\mathrm{z}} \mathrm{in}$., leaving 7 in. stil be accounted for. It may here be stated that the write can in no way account for the whole of this enormous erro in the rods at this particular time, for it was abundantly proved by later measurements that up to that time, with , the maximum diver bee the origina setting had not exceeded 024 ft . in 300 ft . At the time of the wire measurement, that is, in the end of October, 1883, the rods were checked from the iron gauge, and a small error may be accounted for by difference of temperature; but as the average temperature in February, when the gauge was ccount for an error of about 014 ft . in 300 ft ., or ${ }^{\circ} 078 \mathrm{ft}$. in 1700 ft . The writer can therefore only suppose that the gauge had suffered some injury just at that tro. The 60 deg., or 17 deg., which would give ${ }^{\circ} 0335 \mathrm{ft}$. in
to
300 ft ., or $\cdot 19 \mathrm{ft}$. in 1700 ft .; and it will be seen from he records of the rod tests that they do not increase in length with increased temperature to anything like this extent-indeed their tendency is to become sborter known and it effects on the setting out had already been called attentio to, this tendency was counteracted, as far as possible, firs by keeping the gauge in the most even temperature posof the 18in. difference between the wire and the distanc set out for a span of 1700 ft . between stations XVIIII. and
XIX., $10{ }^{7}$ in. has been accounted for, leaving 7 ${ }^{1} \mathrm{in}$. unaccounted for. It has already been shown that to agre with Ordnance measurement, the base line measured as $4013 \cdot 2$ ought to be $4013 \cdot 80$. If this be true, then the
ods when the 300 ft , base line was set out were $\cdot 0523 \mathrm{ft}$.
too long in 300ft., and this will account for 2965 ft . in
1700 , which, added to still to be accounted for ; but if the rods were long when the 300 ft . standard was set out, the distance C-XIX. must also be long to the extent of 0838ft., also the distance as used for the measurement of the wire ; therefore this distance was 0896 ft . too long, therefore the distance XVIII.-XIX. was not 1700 ft . but $1699 \cdot 8266 \mathrm{ft}$., and the error in the wire was not 1.5 ft . but 1.3266 ft . ; or, to $1 \cdot 5 \mathrm{ft}$. are : $-9067+\cdot 2965+.0838 \mathrm{ft}+.0896 \mathrm{ft} .=1.3766$ leaving error still unaccounted for $1234=1 \frac{1}{3} \frac{5}{\mathrm{i}} \mathrm{i}$. These are the calculated results. As a fact, the distance XIX.-C was proved to be somewhat longer than stated here-see table in appendix. As a further check on this calculation the marks on the poles on the railway were set back 1320 and the distance rods and found to be 1700.0078, therefore the set-back should have been 13281 as against 1342 by former calculation, difference 014 or ${ }^{\frac{3}{3} \frac{1}{2}} \mathrm{~m}$. In order to verify the esults thus obtained, Sir John owler determined to procure three rods which should be standard, and when these arrived a length of 540 ft . was measured along a rail on the railway, and marks were cut in the rock on both sides of the line, at each end of the standard, so that a string or
wire being stretched from mark to mark the termini of the wire being stretched from mark to mark the termini of the standard could be transferred on to the rail at all times, without reference to any movementin the railitself. A stone bed was also laid down in the cellar of the offices, carefully dressed level, and with brass ends leaded into the stone, the whole being made to fit the 12 ft . rods when at their standard length. This was, however, found to be quite useless, owing probably to the stone being in two pieces and laid ettled towarde the exphrad, and the settled towards the ends. At any rate, whatever the cause, this gauge in a comparatively short space of time was found to be one-sixteenth too long, and fro that tim orward the rods were always refered to the 5tott. stan dard. They were not altered in length, except on one wo occasions for special purposes, but a record was kep of the error, and all man the then existing error in the rods. When this standar 5int. had boen laid ha, ho let. rods were checked gainst the 300t. standard and found to be 8 m . shorter tha

 sions, it
$=27_{1}^{7} \mathrm{in}$.
ance concluded from the above remark hat as the rods were too long in the first instance, and herefore station . was set out 16 tt . too far north and side the foundations of the piers had been set up to pier No. 5, station IX., some readjustment was necessary. The rror to be corrected was found to be $\cdot 24 \mathrm{ft}$. betwee stations IX. and XXI. - a length of $5349 \cdot 50 \mathrm{ft}$. This erro was, for the sake of uniformity, divided up between sta ions and XXI. No actual alteration was require nit the dimension which will be found in the tables he same time as the 10 ft , standard rods were procured by Mr. Fowler, a 12in. transit theodolite was ordered from Messrs. Cooke and Sons, of York, and this instrument was used in the further triangulation.

THE CORINTH CANAL

By an Engineer.

During the recent blockade of the Greek ports by the Powers, our steamer happened to be in durance vile in ront of the recky hill of Acrocorinth 4 th your readers who have ever visited this part of the world -and most travellers who have been to Athens will hav very difficult it would be to ret through even a few day at so sleepy, so slow, and at this time of the year so hot a place, and they will be able to sympathise with one who as been condemned by the exigencies of the times-which equired the combined fleets of England, Austria, Germany, Italy, and Russia, to coerce poor little Greece-to n enty of the wearly five weeks. The our of hills, with their ever-changing colours; the perfect clearness of the atmosphere; the little modern houses of Corinth, with their green windows and rich vine verandahs, and the sometimes quaint, and always picturesque, fishing boats and fishermen of the Gulf of Corinth, gave much to please the eye and disturb the monotony. The sunsets, oo, were glorious, more so than anyone who has not seen a Grecian sunset can realise. But after all, if one is unfortunately not a poet, it is quite possible to get so notice of changing tints on the "everlasting hills," the beauty of the water, or the glory of the sunset. Justin McCarthy, in one of his recent novels, says something might make a waiter poetical to look upon those mountains, outlined against the sky, of many, many tints-of all tints, from pearly grey and faintest green Justin McCarth's waiter did not have to stay lookin at one lot of hills for upwards of thirty days, the only excitement open to him by way of a change being a morning and evening swim, and the wild pleasure of going twice a day to the railway station to see the train come
or go. If he had, he would no doubt have given up the poetic line, and elected to go back to his normal duties "to fetch and carry, come and go." A stay at Corinth, how-
ever, imposes certain duties, and they are, to lovers of the antique the site of the ancient city; and to those, on the other hand, whose interest centres more in the advance of
science and of great modern engineering, an inspection
is imperative of the progress of the canal which will unite the Gulfs of Athens and Corinth, and shorten the With thonsiderably to Constantinople and the Black Sea.绪 one broiling day in June determined on doing the canal from end to end, and having arrayed himself in the thinnest garment imaginable, set out on the tramp. From Corinth with foot. heats, the walk can hardly be supposed to afford unlimited pleasure. There is a so-called carriage-way from Corinth to Posidonia-the new town at the entrance to the canal -and carriages can be had at Corinth ; but as the road at this time of the year is little less than 6in. deep with dust, a tramp along the sands, with the option of cooling one's feet, boots and all, in the little waves now and then, is certainly the lesser of two evils. The town, or rather village, which rejoices in the very magnificent name of
 houses of barn-ike architec ture, apparently designed by the same architect who prepares the elevations of the
houses which toy tradition has taught us to believe were These at the time of Noah. have houses at Posidonia ero a peculiar effect, as they are thrown on to the ground winout any preguished one from another by the huge figure which each one bears on its end wall, and which covers it nearly one-third. At present these numbers reach to ninety-two or ninety-three, and it is a speculation whether the houses must be increased in size, when the necessity comes for three figures, or the figures be reduced. Already, however, a ew really handsome stone houses have been added, but their number is less than half a dozen. Still they no doubt indicate what Posidonia is going to be, and it may safely be taken that when the canal really opens a more or less popular and important town will spring up, for not only wirn wipe cial purposes, but will be no doubt largely used as a resort for pleasure-seekers in the autumn months, when the seabathing and the shooting in the hills are at heir best, the the bay fuls sur baths at soutri, aboul a rie the bay when yachting and fishing in the Gulf of Corinth can bo indulg best prospect of sport.
Posident Posidonia, is protected from the effects of westerly winds, which ber very hard in the gulf and soon get up a considerable sea, by a small harbour surrounded ships will stone and con are warr, entranco whins not mor than from 80ft to 9oft. across, The harbour not is iself, from the entrance to the and its apparently does not exceed 700 ft . It is in shape something like a quarter circle, the canal starting from what would be the centre, or twelve of clock, and the entrance for ships being at what we might call half-past ten of the circle. Within the there is a depth from five to eight fathoms; immediately it reaches to a depth of 160 fathoms; indeed, the litle steam toge the harges a very earth which has been taken from the lower or water level of the canal. As we enter the canal we see on the right or south bank, first a substantial, though small, stone house, for the accommodation of the foreman or entrance keeper of the canal, and a few yards further on an extensive fitters, turners, been built, in which are deprovided with necessary lathes, drilling machines, forges, hammers, \&c.., for the conduct of any repairs which may be necessary to barges, dredgers, wagons, permanent way, or engines. A workshops, fitted with all necessary winches and gear for the lifting of anything in use in the workings, and under which the great steam dredger Posidonia was placed, having her buckets changed or repaired on the day of perhaps write. On the northern side of the canal, and cut ips yards above the workshop, a recess has bed a little flo any of the smaller craft, including the tug boats and mud barges. When 1 saw it, it was occupied by a floating crane of considerable size, which was undergoing a clean up and having a new coat of paint. Behind the little dock is a beautiful stretch of canal and the ranges of grand hills on either side, those travellers who associate the name of canal with the dreary passage from Port said to suez will bo aneeably dis appointed when they first tike the from Posidonia to Isthmia. With the exception of the little floating dock, the northern side of the canal at this end will be without houses, or work of any kin, so that all the space is avail able for depositing the earth and stones-in the form of a big plateau-which has been, or will be, taken from the workings above the wat low toubl the great plateau will be turned into use ornament when the canal has been finished, for the earth is more or less rich; there is an absence of sand or stones, and vines or corn will flourish on it. Continuing our walk on the souther
bank, we come, after the workshops, to a great store of patent fuel, which is used in all the tugs, dredgers, locomotive and portable engines and about 100 yards further up a large, handsome stone house, fitted with verandahs, balconies, gardens, arector and officers of the western end of the canal. For a distance of

THE ISTHMUS OF CORINTH CANAL.

VIEW FROM THE TEMPORARY BRIDGE.

VIEW FROM THE RAILWAY BRIDGE.
quarters of a mile altogether, the canal is finished and dredged to its full depth; its sides are formed of very hard clay-so hard, indeed, that the men are obliged to face it with picks-and it looks as though it had been really cut flat, even, sloping sides. The sides are parallel so far as the work is yet finished. Up to this point the work has not been of a very heavy kind, as the level of the surrounding and is low, the water not being more than about 12 ft . to 14 ft . below the level, but from this point the land rapidly rises, and the great work of the Corinth Canal begins. At the present head of the waterway of the canal, so far as it goes, a large steam dredger is working, with a line of barges on either side, into which the earth is thrown. The bed is formed of some peculiarly hard earth or very soft stone, and the cutting edges of the buckets of the dredger are fitted with a number of heavy sharp iron or steel teeth, which usually bring up the earth in small pieces, but very often a bucket comes up carrying a huge piece of solid earth or stone, which necessitates the whistle of the machine, while in answer to the shrill whistle of the captain, men come forward armed with great long chisels and heavy hammers for the purpose of
reducing this before-mentioned big piece to such pieces of \mid or 15 ft . to 17 ft . above the water level, and this third level a smaller kind as will adapt themselves to the size of the is now the position of the main work at the Corinthian tipping part of the machinery above and that of the shoots. end. This level, which we may call the third, runs for a The dredger is moored securely by means of heavy distance at present of perhaps a little more than a mile, chains and anchors ashore, and round steam gear on board; the captain occupies a little house at the bows of the craft, and by means of a whistle, upon which he can blow different calls-a species of boatswain's whistle-he directs the work, pulling on the port or starboard chains, or stopping the whole of the huge machinery, as he pleases At the place where the dredger works, the level of th ground in front has been brought down to about 5ft, above that of the water by means of hand labour, the loose earth being thrown into little wagons running on De Cauville portable rails, which wagons are pushed along to the edge of the level and tilted, allowing the earth to drop in front of the dredger, by which it is again lifted, deposited in the barges, and taken out to sea. So far, therefore, we have two levels, that of the canal in which the dredger is working, and the level 5 ft . above that on which the first system of De Cauville wagons is working. This second level extends at present about half a mile, and then rises to a third level, which is approximately 10 ft . to 12 ft , above it, dock on the northern side, and there discharged. Nothing
railways, for the lines are so quickly laid, and the little wagons, though capable of carrying a very good load, are so light, that should they upset they can be easily replaced on the line by one man. It may perhaps be fair to remark here that works are magnificent specimens of Montenegrins, who come from the Black Mountains, and are known in Greece as Mavro Vrunies. They are, generally speaking, peculiarly tall men, and of light, though p owererful physique; the average height of any hundred of them would not be less than 6 ft, and more probably 6 ft . lin. In physiognomy
they are more like the Danes than any of the southern they are more like the Danes than any of the southern
nations, and they are remarkable over all the Mediterranean for their personal beauty and great pluck. They are skilful navvies, and it is no uncommon sight
to see one of them standing on a little projecting to see one of them standing on a little projecting
piece of earth 50 ft or 80 ft . above the level, and with his crowbar or pick, literally hacking the ground from under his feet. He , is, however, always ready to leave the projection exactly at the right moment, and the
next stroke after he has left it seems to send it crashing next stroke after he has left it seems to send it crashing
and tumbling down below. Should the fall be soft or short, he will not trouble to move, but will work away until he goes, he never seems to fall, with the projection.
No Greeks are employed in the works, as they are found No Greeks are employed in the works, as they are found
to be too faint-hearted, besides lacking in muscular power, to render them of much service; and the main amount of the labour is supplied by the Montenegrins, supplemented by some hundreds of Italians, who are also excellent
navvies, and a large number of Austrians. The officers, navvies, and a large number of Austrians. all Frenchmen, the foremen and overlookers are generally Italians, and the men are as we have mentioned above-in
all probably about 4000 men being employed in the
work.
being left for the new one, and the line at that part was laid down to lead to the new bridge, being only for the moment deflected so as to cross the old makeshift bridge. At present the main carriage road between Corinth and
Ralamaki, and so on to Magera, Eleusis and Athens Ralamaki, and so on to Magera, Eleusis and Athens, crosses the canal workings at a great height, a little more than a mile to the east of the new bridge, passing over a
wooden bridge erected for the convenience of the moment; wooden bridge erected for the convenience of the moment but as the road runs beside the canal, it can be carried over the new bridge as arranged with ease.
Beyond the railway bridge, not more than 300 yards, the and reaches its highest point, and the cutting at either side is, or will, be a perpondicular precipice upwards of 300ft. deep to the level of the canal, and extending for a distance of about a mile and a half. At present the greatest work of the canal is being carried out in this cutting, where some 3000 to 4000 men are employed digging, cutting, blasting, and shovelling earth, sand, clay and rocks from three levels or stepz at each side. Two lines of rails run along the bottom of the cutting, and upon these an ever changing series of trains of wagons are ready to receive and steam away with the hundreds of tons of earth, \&.., coming down every day. The top step, on the day under notice, stood about 75 ft . above the rails, and from it the labourers were throwing the earth over the heads of the men working on the lower steps into the wagons, and it would be very difficult to convey any idea the engines, the dust, the shouting, the shrill shrieking of the engines, and the blingo, sweltering heat of the whole scene. A small army of boys is engaged supplying wate to the thirsty labouress from wooden barres, which are carried on the head, and which very quickly warm up great Montenegrins, seem to work with untiring industry great Montenegrins, seem to work with untiring industry,
clothed in a thick flannel of marvellous architecture, and

The floor of the level which I have called the third level is quite square and smooth, and carries three lines of heary wooden wagons for the removal of the earth; these auge, and on a broad gauge, that ank say, a 1 s. built by the Societé des Ponts à Travaux en fer, Paris. The earth from the sides at the upper end of this big cutting is thrown from above into the wagons, which, when full, are drawn away by their engines in long trains, and emptied into the great northern plateau at Posidonia. At
the head of the cutting a tunnel capable of carrying one the head of the cutting a tunnel capable of carrying one line of rails is driven into the hill for a distance of about a mile. It is lined and supported by means of heavy
timbers placed close together. High above the tunne timbers placed close together. High above the tunnel and from the top level of the ground a number of craters, looking like enormous funnels, have been dug or blasted with dynamite or other explosive; the apex of these
inverted cones pierces into the tunnel below, the opening being heavily shored ; the the tunnel below, the opening about 80 ft ., and the opening about 4 ft . square. All round the sides of these funnels, of which there are about eight or nine, the men are hard at work, picking, digging, and
blasting, the wagons below being moved as rapidly as they blasting, the wagons below being moved as rapidly as they are filled. Half a dozen of the best men are employed round the discharging hole at the bottom of the funnel to keep it clear and always in working order, and it can
readily be imagined the lively time they have of it, for not only have they to attend to their own business but be ready ten times a minute to get out of the way of the valanche of "" ans "" corn, which comes tumbling down on the cry of "garda!" from the men above. They, however, never seem to come to grief, and have learnt by experience to judge to an inch where any great piece o rock or lump of earth will fall, and while working themselves industriously they seem to have eyes all around, and to know almost by instinct where to look out for danger from. Of course when the blasting charges are all
ready to be fired, the men are called up from the funnel ready to be fired, the men are called up from the funnel, as they seem to draw the line of danger only there. A
few yards to the east, along the canal, and from the last of the craters, and about $11^{\frac{1}{2}}$ to two miles from Posido last splendid piece of work is to be seen in the iron road and railway bridge which will carry the railway line across the canal on its way from Corinth to Athens, as well as the high road between these places. The present railway line crosses the new one on the west side ; the old bridge was merely put up as a temporary makeshift, the best site of course
with only a cap of the smallest dimensions-if they at all indulge in the luxury of head gear. The work in this Pandemonium of a cutting is directed by a number of
gangers, or charge men, who carry their wishes to the men immediately under their orders by means of peculiar whistle calls, after the style of a man-of-war's boatswain. This cutting may be said to be bounded on the west by the new railway bridge, and on the east by a ramshackle temporary wooden bridge, which at present serves to carry the highway traffic between Corinth and Kalamaki across the workings. A sketch which I took from this bridge, looking towards Corinth, gives a very fair idea of the cutting, with the railway bridge in the distance; but I have left out the picturesque crowd of workers. from the temporary road bridge the ground rapidly dow to the sea, and after a few minutes very hard end of the work, the new town of Isthmia at the eastern apex of a small brached. ine Gulf of Athens, or Acquia, and is about a mile round the beach from the town of Kalamaki. When the canal has become a fait accompli, Isthmia and Posidonia will rise to importance as Kalamaki and Corinth decline.
A breakwater has been constructed across the entrance to the canal at this end, which will protect it from the effects of an easterly wind and sea, and will allow of vessels entering at any time without consideration for wind or weather. Behind the breakwater which joins the northern shore, a V-shaped bay, faced at either side with heavy stone walls, leads to the canal, and as this bay is of considerable area, several steamers waiting to enter the canal could be anchored within it in safecy. On the southern side of the bay a beautiful residence has been built for the general director of the canal, and as this house is provided with very extensive well-planted gardens for fruit and flowers, having extensive conservatories and verandahs, as well as a private pier into the waters of the gulf for bathing, boating, or, as it is fitted with a lice summer-house, for far as he appoin far as his quarters are concerned, is not one lightly to be refused. Abuting the grounds of the directors house a large stone building las this is a floating dock for boats, dredgers, cran below the other side of the harbour and at the entrance to On canal, there is a large workshop, containing departments which the, blacksmiths, carpenters, fitter, which the steam dredger Isthmia lay, receiving some
necessary repairs. On the southern hills, and within varlas distances of the canal, a large number of pretty houses-home of which might claim to be called handsome the engineers engaged in the works or by present occupied by admire the natural beauties works, or by gend appreciate the fresh breezes from the hills, and the almost perfect bathing which is here to be had. The earth taken from the upper workings of the canal at the Isthmian end is deposited on an already huge embankment on the northern side of the town, and certainly robs that part of the country of any claims it might have advanced to beauty or picturesqueness. As at the Corinth end, the waterway of half a mile seen tere completed for a distance of about work alre, a destion a repetition of the the more rapid rising of the land at the eastern end, the tunnelling begins much sooner than was necessary at the western end. That the canal will be a great work of engineering when finished there can be no doubt; but that it can ever pay as a commercial investment is a question of quite
different character. No doubt it will be used to large ent chan tor. No doubt in bed to a very large extent by vessels to or from the Adriatic, but the Black Sise Cul heor en route for Gibraltar, will beyond question prefer to pass Capes Malia and Matan to incurring the delay and the expense of a passage through this canal. The projectors have gone into this question fully it may be will pay, but to a mind unsupplied with ficial dota to probabl ta prowsessed the gher hare as a making enterprise making enterprise

Naval Enginemr Appointments.-The following appointments have been made at the Admiralty:- Robert Harding, engineer, to Hunt, engineer, to the Hecla ; Edewarr J. Rutter, assistant, , to the
Devastation; Georg White chief engineer, to the Scout; William Devastation; George White, chief encineer, to th. ©So.oun; William
F. Stewart, engineer, to the Scout ; William H. Gale, engineer, to
 the Helicon; James J. Walker, engineer, to the Grappler; James
B. C. Warrington, engineer, to the Cherub; Henry Lane, engineer,
to the Hotspur ; Charles A. Harding, assistant enginer, to the
隹 Fearless; Fotspur; Hore, assistant engineer, to to the Soout; ; Wolliam
Gilbert, staff engineer, to the Belleisle ; Thomas J. Comber, engineer, to the Penguin;, and Albert Martell, engineer, to the Asia, as
supernumerary. supernumerary.
Death of Mr. E. A. GErrard.-We regret to record the
death, through an accident, of Mr. Ernest A. Gerrard the engineer death, through an accident, of Mr. Errest A. Gerrard, the engineer of the mines at Rochebelle, near Alais, France. The Mémorial de
la Loire, in a lengthy account of the accident, which happened August 20th, states that Mr. Gerrard, in company with one of the foremen, was examining the mine, when the side of the gallery
they were in was suddenly broken through by a rush of water, liberating a quantity of carbonic acid gas. The water carried with
it masses of coal, \&c. The lamps caried by Mr. Gerard foreman were, unfortunately, put out. A rush was made for the
bottom of the shaft, and the foreman escaped, but Mr. Gerrard, falling against a wagon, was caught in the debris and killed by the gas before assistance could be rendered. Though only twentyeight years of age, Mr. Gerrard had won a high reputation in the
French mining world. He was widely known in the profession, rrench mining world. He was widely known in the profession,
and greatly beloved in the Rochebelle mining district. His funeral was attended by many thousands of all classes, by nearly all the engineers of the basin, and various delegates and deputations.
The Panama Canal.-Mr. Nathan Appleton, United States
Agent on the Panama Canal, has made an important and hopeful Agent on the Panama Canal, has made an important and hopeful
report respecting the Panama Canal, which, the New York Herald report respecting the Panama Canal, which, the New York Herala-
says, will be published in the next bulletin of the American Geo-
and says, wiill he published in the next bulletin of the American Ger
graphical Society. Mr. Aplleton says:- "Now comes the natural Eupestion when the canal is likely to be finished and open for navi-
quation. While we all hope, to please M. de Lesseps, that it may gation. While we all hope, to please M. de Lesseps, that it may
be done in 1889, should there be no convulsions of nature or unbe done in 1889 , should there be no convulsions of nature or un-
expected hindrances, all the same, looking at it philosophically, few years more or less can be but of little sig and to last as canal is this be built for all the nations of the worrl, and tol last as los as
this planet endures. As soon as possible it will be opened for ships of from 10 ft t. to 20 ft . draught, and then with time will be
completed to its full depth of nearly 3 oft. completed to its full depth of nearly 30 ft . The idea of this
is to lose no time in earning some revenue from it. Next is to lose no time in earning some revenue from it. Next
comes the question of what it will cost. Looking back at the comes the question of what it will oost. Looking back at the
deliberations of the Paris Congress of 1879 , one is astonished to find how correct was their estimate of the expense. It was
then calculated that the total cost for, say, ten years of conthen calculated that the total cost for, say, ten years of construction and maintaining, with interest on the money, would
reach about $240,000,000$ dols. In this was not taken into considera tion the purchase of the Panama Railway, nor the erection of hospitals, habitations, and many other necessary expenses which cannot strictly be considered as part of the digging, but which run up to some tens of millions. All this has been done, and well done. The work is completely under way, and the din and hum of
men and machines resound from one end of the isthmus to the other. Steam and human labour to-day represent there a force of
half a million men. Should the canal cost 500 . 000 , half a million men. Should the canal cost $500,000,000$ dols., it will easily be worth that to the world and be a fairly paying investCanal amounted to about 31 million tons. It is $9,000,000$. The Congress in 1879 estimated the probable traffic of the Panama Canal in 1889 at $7 \frac{1}{2}$ million tons. I do not hesitate to state as my personal conviction from the great increase of trade that $10,000,000$ tons at the outset is a fairer calculation. Dues at 3 dols. a ton for shipping alone wil give a revenue of $30,000,000$
dols. A glance at the map of the world, or better still at a shows it will cause a saving in distance of about 10,000 miles between the great ports of the different nations, or three times across the Atlantic Ocean from Havre to New York, South America stretches much further south than Africa, and the Panama Canal can be reached in a straight line from almost
any direction. An objection to the Suez Canal is the long detours ships are compelled to make at either end. During the last few months the work on the canal has been much
simplified by giving it to five well-known firms of whereas before there were not far from thirty in all. These five yyndicates report directly to the administration of the canal work they making arrangements with the smalet to them. This has involved some complica-
thater tions in relation to past agreements, but they are being straightened out so that all shall go smoothly in the future. It is in the
interest of the contractors to work as fast as possible, for they interest of the contractors to work as fast as possible, for they are
paid so much a cubic metre for soil excavated or dredged. It is for the advantage of the canal company to have the canal completed and open as soon as possible, as this means a saving of
interest on the stock and bonds. So increased activity is interest on the stock and bonds. So increased activity is the
object of all concerned. Of the five firms of contractors three are French, one American, from New York, and one Anglo-Dutch. and the prices vary from $15,000,000$ to $30,000,000$ cubic metres, remain in all not far from $100,000,000$ cubic metres to be removed,
the cost of which can be put down in round figures at $100,000,000$ dols.

RAILWAY MATTERS.

The new rail way on the Queensland side of the border will con-
tect Adelaide, Melbounne, Sydney, and Brisbane. isbane.
THE Colonies and India says it is probable that the net revenue
from Indian railways will exceed the Budget estimate by fully 50 from Indian rail
lakhs of rupees.
IT is said that the Midland Railway Company is about to adopt
east steel diso wheels, with flanges cast on, for their new carriages cand wagons and renewals.
AFTRR an extended trial of systems of lighting their carriages,
the North British Rail way have adopted the Pintsch system, and
about 250 coaches are to be fitted up at once. of the Hudson's Bay Railway, and that 2000 men are now employed
in connection therewith. The new line will shorten by 1000 miles in connection between Liverpool and the Pacific coast,
The Sutton and Willoughby Railway, of which we gave an
account some time since, was opened for traffic on Monday, and aplaces the Midland Counties in direct communication via Boston with Sutton-on-Sea, situ
and nine from Skegness.
The additions to roiling stock, and the capital expenditure ing June last were 144 encines, at a total value of $£ 361,958$, and averane arlue of $£ 2514,500$ coaching vehicles, $£ 301,512$, average
$£ 603,1073$ goods train vehicles, $£ 80,033$, average $£ 75 ;$ total,
$£ 743,503$ £743,503.
THE scheme for the construction of a railway from Wolverhampton through Bridgenorth to Craven Arms has now been
finally abandoned. The necessary powers for making the line were obtained in 1883 , when theressas was a prospect of a successful future, obtained in 1883 , when there was a prospect of a successsul future;
but trad sinee that time having become so depressed, the pro-
jectors believe that their venture would not prove remunerative.
IT is the intention of the Highland Railway Company to have
the short line between Inverness and Aviemore completed about the short line between Inverness and Aviemore ocmpleted about outh. The Forth Bridge will save one hour between Edindurgh south. The Forth Bridge will save one hour between Edinburgh
and Perth, and the Highland Company will save another hour between Inverness and Aviemore.
The Newcastle Daily Chronicle, of the 29th ult, remarks that
Monday-the 27 th- "was the anniversary of the opening of our Monday-the 27 thi "was the anniversary of the opening of our
first passenger railwy, and though it has been merged in the
greater North-Eastern, local patriotism will remember that the greater North-Eastern, local patriotism will remember that the
line was the old Stockton and Darlington, and that Newcastle had much to do with its making and equipment. It is sixty-one years
since that railway was opened, and the locomotive has revolu-
tionised the old world. Mankind will not forget to trace tionised the old worl. Mankind will not forget to trace the
birth of the great civiliser, the railway locomotive, to the Tyne,
The and the birth and the devel
of Darlington and the Tees.
 ailway and Batoum. This is sufficient and tangible evidence of
the progress made in that quarter by the Russian Government in difficulty of conveyance over large tracts, covering broad surfaces on maps, may be surmounted by the aid of modern science. The in light wooden structures rolling on the line itself as is it was pro-
gressively constructed, the materials and everything necessary for
the works being so carried forward for use on the spot as required."
 THE Jubilee of Railways will be celebrated in Paris next year.
There will be held :-(1) An international exhibition of railways, and of industries connected with them, which will be open from
May to october, 1887. (2) An International Congress, composed May to October, 1887. (2) An International Congress, composed
of delegates of railway companies, chambers of commeree, syndiof railways is under the patronage of the ministers of public Works, industry and commerce, agriculture, post and telegraphs,
war and marine, of M. Ferdinand de Lesseps, and of over 150 gentlemen representing the Municipal Council of Paris, the Senate, can be obtained at the London offices, New Broad-street House,
London, E.C., of the Commissioner-General for England and the Colonies.
Soms very interesting experiments have been made in the
United States to test the effect of open and close couplings upon the ability of a locomotive to start a train. This has been a
matter of hot dispute for a good while, and it is strange that the
matter was not long ago determined by actual experiments Burlington it was found that the locomotive could start level fortynine loaded cars close coopled and forty-eight with ordinary link
and pin coupling. Afterward, on the grade, the engine started thirty-eight cars with each method of coupling. The general
results seem to establish the conclusion that the loose slack of open couplings is of no advantage in starting a long and heavy
train, and that the draw-bar springs give all the slack that is needed. This is opposed to the results of English experience,
which show that slack in the couplings is essential to the starting of heavy trains. How much slack is an open question
The Russians seem to be pushing their railroad enterprises in
far-off Turkestan with something akin to American energy. far-of Murkestan win something akin to Ameriean energy,
Wethin a month they have crosed the Murghab river at Merv,
very near the Afghanistan border ; and from there will complete very near onth eastwardly to Chariui on the river Oxus, a distance
the line northe of about tro miles further. This latter length thexexpecect to finish
in November next. With the road to Oharjui completed, the in November next. With the road to Charjui completed, the
Russians will have an all-rail line extending from the Caspian Sea
about goo about 900 miles eastwarc, well into the heart of Central Asia.
From Merv, just north of the Afghanistan border, to the Bolan Pass, on the southern boundary, is anout 700 miles as the crow
flies. But as Kandahar, towards which point the Indian railways
are now being pushed through the Bolan Pass is are now being pushed through the Bolan Pass, is 200 miles nearer,
we can say that but 500 miles of road must yet be located to connect he Caspian Sea with the Indian Ocean. The construction of
this missing link of railway will be diffult and very expensive work; for the line will have to cross the mountainous watersshed
dividing the rivers of the Indian Ocean from those flowing into the Caspian and northward; and these mountains are high and abrupt
and the various ranges cover a wile extent of country
and
A NEW rail way in the United States will traverse a natural tunnel,
The tunnel, which has been formed by the action of Stoc Crek
the The tunnel, which has been formed by the action of Stock Creek,
the largest fork of the clinch River, extends in a slight corve 933 ft ,
through the solid rock of a hill, with perpendicular sides, and 480 ft. high at one entrance and 592 ft . at the ether, The spring of tits
spacious arch is from 100 ft . to 110 oft. spacious arch is from 100 ft . to 110 ft . above the floor, and the width
is about t10ft. Through this broad and roomy passage the waters
of of Stock Creek flow in a gentle incline, occupying but a portion of
the space, and so slight is the grade that the track of the new road
can be a hard limestone, and countlesss ages muttl have passed beforere the
waters of the creek burst through the adamantine barrier, and cut out a noble arch. The new road, which will make a practical use
of the tunnel, will run from Bristol, Temn, of the thunnel, will run from Bristol, Tenn., Big Stone Gap, Va.,
on the Kentucky State line, a distance of eighty miles. About
forty mile forty miles of it have been graded, and it it is under contract to be be
finished in two years. Had it been necessary to tunnel through
the mountain, the company must have spent at least 500,000 dols. the mountain, the company must have spent at least 500,000 dols.
The coal found in the ountry is cannel, bituminous, and spint,
and will be carried to the seaboard by the Norfolk and Western
Railroad for arime

NOTES AND MEMORANDA.

In a recent number of the Oryan fïr, die Fortschritte des
Eisenbahnevesns is a paper, by M. Kriuger, "o "Conical Tires of
Railway Rolling Stock," in which the author shows these to be a Eisenbahnvesens is a paper, by M. Kriger, on "Conical Tires of
Railway Rolling Stock, in, in which the author shows these to be a
cause of resistance to traction and of the travelling of the rails. IT is claimed that by a new process white wood can be made
remarkably homogeneous and tough. The result is said to be obtained by steaming the timber and submitting it to end pressure,
thus compressing the cells and fibres into a compact and inextricthus compressing the cells and fibres in
ably interwoven or interknotted mass.
Mr. E. D. WASSELL, of Pittsburg, Pa., has invented a new process of welding steel, by which steel bars of any content of carbon
can be piled and welded together. The Engineering and Mining Journal says he has demonstrated this weld of a pile made of bars containing 0.65 per cent. of carbon, and
the carbon reduced to any point desired; that is to sav, he oarbon reduced to any point desired; that is to say, steel of
0.65 per cent. an be reduced to 0.10 per cent. carbon while in the solid form without remelting.
Two of the largest castings in the world are siad to be at Nara
and Kamakura, Japan, the one at the e latter place e eing 47 ft. high, and the other, at Nara, being 533 ist. from the base to the crown of
its head. The statue at Nara is supposed to have been erected in gi. In endeavouring to was destroyed and recast about 700 year when at last success come, some thousand tons of charceal, had
ween used. The casting, which an American contemporary says is Leen used. The casting, which an American contemporary says is
an alloy of iron, gold, tin, and copper, is estimated to weigh 450 ons.
THE reports just returned by the Vienna Central Commission for statistios on the state of the population at the end of 1885 yield
very unfavourable result. The rate of births has considerably decreased, while that of deaths has increased, and there has been a diminution in the number of marriages. The number of births
last year amounted to 860,663 , against 878,321 in the year 1884, and the number of deaths amounted to 689,493 , against 666,523 .
The number of marriages amounted to 175.23 in 1855 , against
179,171 in 1884 . 179,171 in 1884. Clearly Vien
extension of its public works.
IN a paper read before the British Association, "On the
Chemistry of Estuary Water," by H. R. Mills, D. Sc., the salinity -ratio of total dissolved matter in water-was given from point to point in the Firth of Clyde and Firth of Forth. The distribution
of salinity was shown to be constant all the year round, whilst in of salinity was shown to be constant all the year round, whilst in
the Clyde there ore periodical variations through the whole mass
of the water. In the Forth river entrance it is evident a mixture of the water. In the Forth river entrance it is evident a mixture
of river and sea water takes place by atrue process of diffusion,
maintaining a constant gradient from river to sea. The dissolved matter of fre
sea water.
Mr. T. Turner, of Mason College, Birmingham, states that no general rule can be laid down as to the influunce of re-melting on
the properties of cast iron; chemical changes take place during the
melting the amount of silicon is reduced whilst that of the sulphur is increased, and the effect of re-melting will be dependent upon the proportion of these elements present in the cast iron ; a
single melting will be sufficient to produce a deterioration in the qualities unless the silicon is in excess. Addition of silicon to hard
white makes the iron weak iron can be made of any desired degree of hardness.
Profrssor Dr. Meidingerr states that Professor Poleck has discovered that timber procured for him purporting to be
winter-felled wood, was in reality raft timber floated down the river, and he has ascertained that timber which has been thus so is this the case that in Alsace it is customary to specify that only raft timber shand be employed. The water slowly dissolves out
the albumen ald salts and thus deprives the fungus of the nutri the albumen and salts; and thus deprives the fungus of the nutri-
ment needful for its development. A French savant has found ment needful for its development. A French savant has found
by experiment that whereas fresh sawdust, when buried in damp cy experiment that whereas fresh, sawdust, when buried in damp
earth, rots away in a few years, sawdust which has been soaked for some time in water, and has been thereby deprived of soluble matters, will remain in the ground under similar circumstances
wholly unchanged, and only slightly tinged on the exterior with wholly, unchanged, and only slightly
warthy matters dissolved from the soil,
THE iron used for bridge construction on the Bavarian State Railway must possess a tensile strength of at least 320 tons per square decimetre- 20.5 tons per square not
for rivets must be capable of being bent double and a a cylinder of height equal to two diameters must be capable of being worked
cold to half its height without, in either case, any cracks or signs of extreme distress being visible in the iron. Only cast steel is
used where steel is required. To prevent the formation of rust, the iron is treated in the following way before e eing put together,
It is dipped in dilute acid, washed in lime water, well rubbe until clean, immersed in boiling water, and when it has acquired the temperature of the water, , it it is aken out, painted with hot
linsed oil, and then with non-corrosive paint. As deteriorating linseed oil, and then with non-corrosive paint. As deteriorating
agents, the vibrations and sudden shocks due to a live load are In an article on "Old Bridges Under New Loads" in the
Journal of the A ssociation of Engincering Societies, 1886, p. 159 , an abstract of which is given in the "Proceedings" Institution of Civil Engineers, it is stated that with the increased speed
demanded by the development of traffic in late years, both locomotives and cars are now constructed of considerably greater
weight than was customary when the largest percentage of existweight than was customary when the largest percentage of exist-
ing bridges was erected. In freight and passenger locomotives the
increase in increase in weight during the last ten years has been about 50 per
cent., and in cars nearly 80 per cent. Bridges built for standard loads in 1876 are now therefore overstrained from 25 to 50 per
cent. in different members. This is in relation simply to dead load. cent. in different members. This is in relation simply to dead load.
With regard to thie mechanical effect of moving load, expressed by the formula $\mathrm{E}=2 \frac{v^{2}}{2 q} \mathrm{~W}$ sin. . α, E being directly proportional to the square of the velocity, where the speed is doubled
the mechanical effect is multiplied by 4 . With a speed increased within the last ten years by nearly 50 per cent., and the increased dead-weight of rolling stock, the strain on
the old conditions is now multiplied by 3 .
M. G. A. HirN recently presented to the Academy of Sciences of
Paris a new work entitled "Modern Kinetics and the Dynamism of the Future," together with some remarks explaining its general purpose. After replying to the various objections raised against
his general principles, he deals with the arguments which, as he maintains, render henceforth indefensible the kinetic theory of the gases, referring to molecular movements most of the properties of
these bodies. Three arguments are advanced, of such a a nature that he believes future physicists will wonder how this kinetic theory could ever have been accepted for a single moment. Even were it
correct, it would not follow that light, radiant heat, electricity, magnetic attraction and repulsion, and gravitation were due to
movements of ponderable matter, far less that thought itself mothing more than a molecular movement. But the reverse is not true, so that with the collapse of the kinetic theory of the gases
fall the kinetic theories in general, which claim to explain all possible phenomena of the univerres by invisible movements of
matter. The doctrine here substituted for kinetic force he thinks matter. The doctrine here substituted for kinetic force, he thinks
explains quite as easily, and much more rationally, the universal
pheno explains quite as easily, and much more rationally, the universal
phenomeno of the physical world. He doos not, owewer, hope at
once to convince all minds of what they should have long ago been themselves convinced. Interpretations formulated a priori, and apart from experience and observation, have, unfortunately, more
vitality than truths gained to science by the patient study of
Nature,

The Liverpool C
THE Liverpool Corporation have adopted the Pintsch system of A NEW edition of Trautwin's "Civil Engineer's Pocket-book"
is announced by Messrs. J. Wiley and Son, and by Messrs, E. and is announceed
F. N. Spon.
AN experimental attempt to carry logs from Canada across Lake
Huron on a huge barge fitted up for the purpose has, it is said, proved a failure
A nEw edition, the 12th, of Traut wine's "Curves for Railroads,"
is announced by Messrs. J. Wiley and Sons, and by Messrs. E. is announced by
and F. N. Spon.
Mrsshs. Follows AND BATE announce that their address will extensive works.
AT the quarterly meeting of the Company of Plumbers, Alderman
Stuart Knill was elected Master, and Messrs. F. Machin and W. H. Bishop Upper Warden and Renter Warden respectivel

Messrs. Hartiey and Arvoux, of the California Engineering Mr. Walter H. Fanning, the name of the firm being now Hartley, Arnoux, and Fanning.
MESSRS. YARROW AND Co. are completing a stern wheel steamer connection with the Burmah expedition which will take place next winter. This vesel will be of the same type as those constructed
for the Nile expedition by the above firm, and which proved so invaluable during the operations in Upper Egypt.
THE Kimberley Waterworks have been connected telephonically
with the reservoirs and out stations, the greatest length of wire in with the reservoirs and out stations, the greatest length of wire in
one circuit being seventeen miles. Over this distance verbal comone circuit being seventen miles. Over this distance verbal com-
munications can be dispatched wwith the greatest facilitity and the result of the trial is so satisfactory that a moven
establish a regular telephone company in the city.
IT is said that a cement manufactory will be established in Macao, China, an agreement having, it it reported, been signed by a
solicitor of Hong Kong with Bishop Medeiros for the concession, Ior a term of twenty-five years or more, of the pleasure-ground known as the Iha Verde, the property of the mission, at a royalty
of 10 dols. for every 100 tons of cement made, in addition to a small annual rental. An American contemporary says the com-
pany to work the factory will have a capital of 50,000 dols., and the head office will be in Hong Kong.
A MeETiNG of the Chesterfield and Midland Counties Institution Nottingham, and the following papers will be open for discussion: Mr. G. S. Bragge"s paper, "The Geology of the South Detrbyshire
and East Leicestershire Coalfields;", Mr. James Mansergh's paper,
"De ing Station, \&c;"Mr. A. H. Stokes' paper, "Notes upon the
Report of the Royal Commissioners on Acoidents in Mines," and a paper on "The Theoretical Action of Steam Injectors," by Mr.
Henry Fisher, Nottingam, will be read or talken During the approaching winter a course of lectures on the
"Properties of Metals and Alloys and their Uses in the Arts" will be given at King's College, London, on Mondays, from 8 to 9 p.m.,
and a course on "Fuels: their Uses and Economy," from 7 to 8 on the same evenings. Both courses will be addressed chiefly to
young engineers, and to those who have to deal with the appliyoung engineers, and
cations of the metals or of of fuel to the arts and manutactupres.
The Metallurgical Laboratory for practical work and metal testing will be onen Friday evenings from 7 to 9 . on fuels will be given on Monday, October 11th, at 7 o'clock, that .
AT a meeting, on the 1st inst., of the shareholders in the London
Traders, Limited, to whom the Great Eastern steamship now belongs, a dividend of 20 per cent. on the the fully paid up up \&10
shares was declared. This will not be dividing the profits realised stares was declared. This will not be dividing the profits realised to 31 st August last, since the registration of the company on the
31st October, 1885 , by some 3 to 5 per cent.; so the steamer Great Eastern is now bringing in her present owners about 28 per eent.
per annum. The number of visitors on board at Liverpool to 25 th ult. since the opening on the 12 tho of last May Mis 522, , 44 , and after
the termination of the present oharter with Messrs. the termination of the present charter with Messrs. Lewis this
company intend exhibiting her themselves.
Mr. Jasres T. Mirtos, well known as one of the principal advisers of the Engineering Department of Lloyd's Registry, has,
we understand, entered upon the management of the st. Peter's
Works of Messss. R. and W. Hawthorn, Lestie, and Co Milton's professional career was begun in Portsmouth Dookyard.
He distinguished himself as a student of the Royal School of Naval Architecture, and previous to joining Lloyd's reister he had con-
siderable experience at sea in the Royal Navy. Besides his connection with Lloyd's Register, he is well known from the papers he
has read and the part he has taken in the discussions on professional
 take the management of the works of the Hawthorn-Guppy Com-
ON Wednesday, the 29th ult., an illustration of the fire-extin-
guishing power available at the Colonial Exhibition was given the guishing power available at the Colonial Exhibition was given the
Commissioners. The first engine tested was one of Shand, Mason, and Co.'s metropolitan pattern engines, part of an equipment of three
constructed for the Fire Insurance Companies' Brigade, of Melbourne. Steam was rapidly raised from cola water, and the
engine threw, first, one 1 18in. jet to a height of about 160 th the engine threw, first, one 1 gini. jet to a height of about 1 Soft., this
being replaced by two and subsequently four jets, showing the ease
with which the engine could powerful engine engne Messsr.s. Shand, Managon, and Co., of a m type
known as treble equilibrium, familiar to the manufacturing dis. tricts of Yorksshire and Lancasshire and the North, was then set
to work. Eight minutes only were taken to obtain from colt to work. Eight minutes only were taken to obtain from cold
water the full working pressure of 100 lb . of steam, when a powerful 1 inin. jet, throwing 900 gallons per minute, and rising to
a height of over 2000 tt, was thrown. Four 1in. jets were sub-
sequently brought into sequently brought into play with equally good results.
A correspondent of The Marine Journal, U.S. A., criticises the A corkespoxDenTor he Harine Journat, U.S.A., criticises the
hull of the Scotch built yacht, the Galatea, reently beaten by an
American yacht in the International contests which have attracted so much attention. Speaking of the Galatea in dry dock, he says
". What surprised me most was to sea the marks of corrosion somen deeply eaten into to the steelt wast to sling. The the bottork was corrosion sed to
have been quite foul with parnacles. Tomebody's patent composition for preserving against the atcotion of the elemements has been of of
little use in the case of the Galatea, as in so many other cases of
metal bottoms. It me cff in spots and let corrosion take the model is capable of attaining This impairment of surface constitutes a strong objection to building racing yachts of either iron
or steel for salt water use. Of course there is a great difference in metals and in methods of preservation, but the best way to seeure
a smooth and lasting surface is to build of weod But the worst defect in the skin of the Galatea is the collapsing of
the plating between the frames; in the plating between the frames; in other words, the colakingsing of a
corrugated form from the inward pressure of the water corrugated form from the inward pressure of the water. The
worst of it is, that for speed, the fluting of the skin is at right
angles to the run of the water angles to the run of the water, and the worst spots have thei
location just forward of the mast, right where the head resistance
is the is the greatest, and where the leverage of the bow in pitching
and scending has the mosteffect to wrinkle the plating. In such
places manifestly them places, maniresty, the metal should be of greater thickness. There
are plates on the Galatea, at this early period of her lifetime, that
should be condemned for a racing surface, if not for weakness,"

BUENOS AYRES AND ENSENADE PORT RAILWAY BRIDGE OVER THE RIACHUELO. MR. EDWARD WOODS, PRES. INST. C.E., ENGINEER.

Pare sectionat nitin of Bridae with Timbers removed

PETERSFIELD SEWERAGEAND WATERWORKS.
mr. HENRY ROBINSON, M. INST. C.E., WESTMINSTER ENGINEER.
(For description see page 290.)

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our Correspondents.]

THE SWEDISH AND NORWEGIAN RAILWAY COMPANY. Sir,-The prominent article which appeared in your paper of August 6th last, although headed " Northern of Europe Railway,"
the former name of this undertaking, is no doubt intended to refer the former name of this undertaking, is no doubt intended to refer to the Swedish and Norwegian Railway Company, Limited. My
directors have had their attention called to this article, which appears to them to have been written with the intention of
seriously damaging this great enterprise, and they fail to under seriously damaging this great enterprise, and they fail to under-
stand your reasons for so writing, considering that the difficulties stand your reasons for so writing, considering that the difficulties
which an English company have to contend with in carrying out large works in a foreign country are always sufficiently great
without the adverse criticisms of the English press. My company have shipped and are now shipping to Sweden about
12,000 tons of rails and fastenings, eight or ten locomotives, over eighty wagons, and large quantities of other material
so long a line of railway. In addition to this there
delivered sufficient for the first section of 120 miles. The line, although for various reasons an expensive one to con-
struct, offers no engineering difficulties. There is but one viaduct of considerable dimensions; and this, owing to the depth of the gorge to be crossed, requires a clear span of 320 ft . On the Nor-
wegian side there are about thirteen short tunnels through rock, deep water, vessels drawing 22ft. being able to lie anstructed in
diongside the
dailway. Those at Victoria Havn, Ofoten, will allow vessels of 30 ft Instead of "about hal
Instead of "about half a million sterling being expended " by a
company formed some fifteen years ago in "canalising certain iners flowing down to the Baltic," an insignificant sum was spent
the attempt to build a lock on the Lulea river. With the
exception of this trifling outlay, the chief part of whatever can exception of this trifling outlay, the chief part of whatever capital
the company referred to possessed was exhausted in the purchase of enormous tracts of forest land, in acquiring mining rights, and in
the erection of furnaces and rolling mills. The only proposal ever seriously entertained to build a railway in connection with the
ore-deposits was that for a short line starting from a point on the iver some forty miles above the town of Lulea. No work o this line was done; butabout 2000 tons of rails were sent to Lulea,
lay there several years, and were eventually purchased for and having been expended, as above mentioned, in purchase of land, their mineral and forest products; and in consequence of the
financial panic of 1866 the company was wound up; the subse-
quent concern-the present Gellivara Company-being founded quent concern-the present Gellivara Company-being founded
upon it. So much for the so-called financial failure of a former proposed railway.
The total length of the Swedish and Norwegian Railway from
Lulea on the Baltic, to Ofoten on the Atlantic, is estimated at 291 Lulea on the Baltic, to Ofoten on the Atlantic, is estimated at 291
miles 20 chains ; and though during the course of construction this
length may probably be reduced, it will certainly not be ength may
As to the allegation that the parts through which the Swedish and
Norwegian Railway runs are terra nova from an engineering point of view-whatever this may mean-it may be remarked that the ground over the whole length has been carefully examined and the
line surveyed. As regards the cost of the line, and the allegation that various
estimates have been made, none of which can be called trust-
worthy, the directors are aware of but one estimate, that of their engineers.
As to specific contracts existing between the company and the
owners of the mines for a guaranteed minimum traffic, the directors are unable to perceive how it can be alleged that the
figures set forth in their prospectus should be received with great
caution, as, of course, they are only the outcome of irresponsible caution, as, of course, they are only the outcome of irresponsible
"estimators." An allegation of this description is a random and unsupported one, calculated simply
having no pretence of justification.
There is no ground for alleging that the line can be worked for
only eight months of the year. According to the most reliable information procurable, the fall of snow during the winter is never and there is therefore nothing to prevent the line from being
worked all the year round. This being so, the alleged insufficiency arising from this cause falls, of course, to the ground. As regards the amount of traffic the line is capable of carrying, the writer of
the article appears to be astonished at the notion of 5000 tons per俍
diem. But is this impossible on a first-class line of 4 ft . 8 perin.
gauge, such as the Swedish and Norwegian Railway? A total of 600 wagons, representing 552 in running condition, is sufficient to
allow of the dispatch of twelve trains daily from Gellivara to
Lulea, each train consisting of twenty-three wagons carrying 20 Lulea, each train consisting of twenty-three wagons carrying 20
tons each. This gives a total ore transport of 5520 tons daily,
and represents the possible traffic between Gellivara and Lulea only, no account being taken of the traffic from Gellivara to Ofoten, only are the conditions under which the Swedish and Norwegian cound, the amount of daily traffic required to produce the esti round, the amount of daily traffic required to produce the esti-
mated annual freight of one million tons is greatly reduced, and
the erroneous nature of the criticism becomes still more conthe errone
spicuous.
A considerable parade of figures is made with respect to the percentages of iron contained in the ores examined some years ago by Luospecting the value of the ore from Gellivara, Kirunavara, and
incorrect and misleading. The official examination extended to numerous other sources of ore in the surrounding districts, many of the samples doubtless containing as little as
50 per cent. of pure iron. But at the three places named, to which
alone the company's estimates refer, there exists deposits of ore containing 70 per cent. of pure iron, sufficient to supply for
centuries to come the utmost traffic requirements of the line. According to the terms of the concessions, the company have five
years more-up to the end of 1891-in which to construct the line; and their engineers estimate that it can be completed in half that
time. To characterise the announcement that work at both ends would be continued throughout the winter as misleading, and toassert that the first rails could not be laid before May 3rd this year, and
that no work could be begun till May this year, is simply untrue The works have never once been stopped by reason of the severity of the weather or the hardness of the ground during the winter; the
first rails were laid at Lulea before the end of last year ; at the end of July this year nineteen miles of the main line-exclusive of
sidings-were laid, and it is expected that by the first week of October the permanent way will extend continuously thirty-seven
miles from Lulea. It has never been asserted on the part of the miles from Lulea. It has never been asserted on the part of the
company that the darkness, or semi-darkness, which prevails for
some three months, will contribute to the easier working of the line; but it is a fast that the absence of the sun is largely com-
pensated by the brightness of the aurora borealis, and that during pensated by the brightness of the aurora borealis, and that during
the winter it is rarely necessary to light the street lamps in Lulea.
However, the writer himself effectually ments by ssaying that he does not for a moment dispute or doubt the possibility of constructing the line, and with this abandonment
of his position the objections on the question of time may be dis-
n issed from further consideration n issed from further consideration.
The writer of the article must be ignorant of the official statistics
of population and trade in the districts traversed by the railway,
$\left\lvert\, \begin{aligned} & \text { or he would have hesitated before penning the statement about } \\ & \text { their being inhabited only by a few }\end{aligned}\right.$ their woing inhabited only by a fow hundred poor Lapps.
The extension northwardsof the Swedish States Railway, destined to join the Swedish and Nor wegian Railway at Boden, is steadily in progress, and aiready open for tramic to a point some forty miles
north of Hernosand. A statement appeared in the Times of 31st August "that the Finnish States Railway is open up to Uleaberg,
a distance of 160 miles from Lulea;". and it may be pointed out that the distance from Lulea to Wasa is not, as stated, 700 miles, but 360 miles only
To legitimate and fair criticism the directors have no word of objection to offer-nay, they invite such criticism, in the firm con-
viction that the more the enterprise is examined the more its genuine merits will become apparent. But the natural and taking of such magnitude as the Swedish and Norwegian Railway are sufficiontly great with aut artificial aggravation by the publica-
tion of statements entirely at variance with the facts of the case. Those statements, deriving a show of bond fides and authenticity from the fact of appearing in the columns of an influential profes
sional paper, are calculated to mislead public opinion and seriousl injure the company; and the directors trust that a full correction
to which they do not doubt the Editor will sladly give insertio -may appen without doub the minent a position as the article containing the mis-statements.
Swedish and Norwegian Rail way Company, Limited,
3, Vietoria-street, Westminster, S.W., September 25th.
[We willingly insert the foregoing statement of the directors, and we assure them, though it scarcely seems necessary to do so,
that we have no wish to injure their line; on the contrary, in common with all interersted in in engineering, on the contrary, in
anticipations will be fully realised. Ev. E.]

equilibrium of masonry arches.

SIR, - T regret having been prevented answering "F. E. R. S "
letter in your number of August 6 th earlier. I have perused Mr. Grene's exhaustive treatise, and with all deference beg to differ itr him, for he, atter having deduced some very elaborate
formule for the iron rib, takes these same formule and them to the masonry arch. Now, iron is a material well calculated to sustain compression, tension, and deflection, and vastly different from masonry, which can only withstand compression and such an iron rib you have a homogeneous mass to deal with whereas in the masonry arch each joint in the voussoirs may be looked upon as a hinge, which, when inverted, would be represented by a chain made up of a number of short links, whose length would equal the distance between the joints in the arch. Therefore, the nearest
approach we can get as to the curve of equilibrium is by treating it approach we can get as
as a funicular polygon.
October 5 th.

Effictenct of centrifuall pumin

SIR,-Mr. C. Brown pretends in his letter, which you published in your issue of September 24 th, page 245 , that the form of the
blades in a centrifugal pump materially influences the efficiency of the pump. Certainly it does, but only when the pump is disinfluence on efficiency as the breadth or width of the wheel has. I am sorry that Mr. Brown did not mention what sort of wheel he
used for his experiments, if of constant or of diminishing breadth towards the outer periphery. But I will for simplicity's sake suppose he used a wheel of constant breadth; that is to say, a wheel
the blades of which are between parallel discs. Now the curve of the blade Mr. Brown found best in every respect meets the outer circle at an angle of about 90 deg. Relatively to the revolving
wheel, water in a centrifugal pump rushes out of the wheel in the direction of the last element of the blade; with Mr. Brown's blade
therefore nearly in a radial direction, and the therefore nearly in a radial direction, and the passage open for
outlet is nearly equal to the circumference multiplied by the ored or equal
breath of the wheel. Hut the passage open for the entrance
of water is equal to the inner circumference multiplied by
breadth and maltiplied by the sine of the angle at which breadth and multiplied by the sine of the angle at which
the last element of the inside of the blade cuts the inner the last elemena one for inside or is therefore considerably
circle. The passage for entrane is ther
smaller, and the relative velocity of the water at the inlet much sreater than at the outlet. If the relative velocities are called
ι_{1} for the entrance of water, and u_{2} for the water rushing out at u_{1} for the entrance of water, and u_{2} for the water rushing out at
the outer periphery, we gain the height of pressure $\frac{u_{1}^{2}}{2}-\frac{u_{2}^{2}}{2}$. A pump with a wheel of constant breadth and blades of Mr . same circumferential velocity, but to a higher lift than any other This advantage disappears of course if there is no discharge at all,
and the pump only holding up or balancing a column of water beause then no velocity of the water exists relatively to the wheel. We have then only a revolving body or ring of water, which may
hold up at a certain circumferential velocity v a column of water,
the height of which cannot exceed the value of $\frac{v^{2}}{g}\left(1-\frac{1}{m^{2}}\right)$, if the inner and outer diameter of the wheel is as 1 and m. The
best result one may obtain from a wheel with diameters as 1 in 3 when water is to be held up at a height h without discharge given by the equation: $v=0.75 \sqrt{ } 2 g$ h, whatever may be the
form of the blades, and whatever breadth the wheel has.
Fienty KRATSS,

- mixed trains

SIR, - Ithink with "C. R. I." that Mr. Stretton may know some-
thing about railways, but he is certainly a little mixed in his notions as to mixed trains. My opinion with regard to mixed that being the most dangerous place in case of accident, but should always be behind the goods, with the guard's van last. This
van passengers, and should have an elevated seat and look-out to allow the guard to view the whole length of the train. One composite
carriage consisting of one first, one second, and two third.clas carriage consisting of one first, one second, and two third-class
compartments is generally all that is required in a mixed train ; if more is required it would pay to run a separate train.
All carriages intended to run with a mixed train should be built with extra strong under framing, and have a moderately short wheel base, short couplings, and the same class of wheels, axles, and
springs as the ordinary ten ton goods trucks. Mixed trains should not run more than twenty miles an hour, especially over short up
and down gradients such as are usually found on lines where mixed trains are necessary, and should not, if possible to avoid it, be ran with heavy coal trains. I agree with "C. R. I." in thinking
that traffic managers know their business quite as well as any that traftic managers know their business quate as well as any
officer of the Board of Trade; if they did not, it would be rather ous thing for
October 6 th.

visits in the provinces.

Sir, -In the report of the British Association's visit to Birming ham, noticed in your impression of September 24th, you were good
enough to refer to Piercy and Co.'s Engine Works, and to my reports to the Corporation of Birmingham respecting the com-
pressed-air scheme, and the burning of the town refuse. With regard to the latter, owing to, I presume, a printer's error, the commencement of the article would convey the impression that
50,000 tons of refuse are consumed annually in Birmingham, and that the whole of the excreta collected by the pan system is turned into saleable manure, at a total cost of thd per ton. It should,
however, read that the consuming of the 50,000 tons of refuse

4d. per ton" simply being put in the wrong place. The whole
sentence should read as follows: "Whereby 50,000 tons of such refuse are consumed yearly, at a total average cost of only 4 d . per
ton, the heat being utilised in firing 650 -horse power boilers for reducing to a dry state the excreta collected on the pan system to be used as matare.
way is that the the rosult of the excreta being treated in this manure at about $£ 6$ 10s. per ton, which of course could not be produced for 4d. per ton! Perhaps you would be good enough to
insert this in your next impression, as the figures quoted may berhaps mislead.
Broad-street Engine Works, Birmingham.
SIR, -I shall be very glad to be better informed on the above
 ject. I have a somewhat fixed opinion of my own, which I am
artaid will take some converting to the new-fashioned theory. My
idea idea on the subject I beg leave to give your correspondent in a
conversational form, as it occurred some nine years ago with of the heand of the first emgineering works in this country. I was
corrected in a similar manner to our friend "Lead Pencil," thinking I was ignorant of the correct (?) theory-which I was not. I was told " that by the screwing on of the ' outside' nut, the
'inner' one had screwed off the thread, thereby transferring the To his surprise I agreed with him that such would be the having gone through the same reasons with other engineers, I was
again prepared to maintain my poit again, prepared to maintain my position by observing, in that
case, Where is the lock nut? For if the one is screwed off the, and its add ditional surface friction is all that hiece or ferrule, No wonder then that the outer nut should be the full depth. But, it off the thread, when it is put on by the same spanner and with the same power as the 'outer' one? Does the putting on of the
latter in effect increase the force put on the former and by the same spanerer His answer was a complete surrender, although he
somewhat suemtiat qualified it, with an apparent desire to "eave it an open
question, and did not insist upon me altering my "thin nut on the Itt has been my experience, Sir, to find that there are not many that one nut screwed on top of another is a "lock nut." It may or it may not bewe," They do not llook to the one all-important point, i.e., the "finish," or "break", of the threads in each nut on the
surfaces next to each other. If it is is directly opposite to one
and
 finish or break of the thread of the inner one before it can possibly be locked. It was the practiee in the shops where the writer served his time to make the threads of the outer or thin nut easier, so
that it could be put on the whole way by the finger and thumb, and finally nipped up.
In conclusion, Sir, if the nuts are put on in a common-sense way, case of a small split pin doing the same duty. J. T. W.
October 1st.
Sir,-I have read in The Engiverr of to-day a letter from you correspondent "Lead Pencil" asking for intormation as to the
practice in other shops regarding the position of lock nuts. I believe it is the general practice to place the lock nut outside, i.e., now serving my time, I can only say that it is the custom in every case, t think I may say without exception, to put the lock nut outside the main nut, the idea being that the nut nearest the work-
contrary to the opinion of "Lead Pencil's" chief draughtsma stands all the strain, while the lock nut "a the draughtsmaneffectually prevents the main nut from shifting.
West Kensington, october 2nd

Sir,-I notice in last week's Engineer a letter signed "Lead requires which evidently comes from a young draughtsman who his chief. In a well organised factory the chiefs of departments are responsible for the work under their care, whether the work
be in drawing or in handicraft, and the journeymen who work under them simply do as they are told; or the chiefs, who are
responsible for their work, may be led into all sorts of dificulties. It is therefore a great nuisance for a chief to have to contend
with a disputing young man such as " Lead Pencil." The chief, of course, was right in stating that in lock nuts the working strain
is taken by the top nut, and therefore the top nut should be this deeper of the two.
I find that it is the practice in t_{1} large marine shops on the Clyde and in many other places to put the large nut on the top. Theoretically this is right, but in practice it is a nuisance, because neath they are a bother to be got at with a spanner. I therefore think that in practice the nut makers should make their lock nuts about three-quarters the depth of the other instead of about half practice would reap the benefit in larger sales. an important although apparenty after in an ordinary factory that the experience of others would
be interesting. be interesting.
Gloucester,

October 5th.

Srr,-If "Lead Pencil" and his fellow-draughtsmen will consider the question carefully, they will, I think, hold the same
opinion as their chief about the relative positions of the thin and thick nuts where used together for locking purposes. If the outside nut of the pair is tightened on its bolt, as it should be, the inside
nut will act as a washer on distance piece, the thread in it being almost entirely relieved from pressure. It necessarily follows that the thick nut should be outside.
October 5 th.

Sin tha

SIR,- In a copy of your valued newspaper for September 3rd, on tives now said to be under construction in the Grand Trunk shops at Hamilton, Ontario. The writer of this paragraph professes to a great deal of knowledge on the subject of tail rods, and assumes that locomotive sperinencents in the United States are very ledge of tail rods does not exceed his knowledge of geography, I
should think the locomotive superintendents of the United States need
You miight let him know that Hamilton, Ontario, is not in the he is criticising is an Englishman, with strong English proclivities, who served his apprenticeship in his native country. Chowbent.
Montreal, September 20th.

Sir, - In reference to Mr. Find ARSSURES.
Sir, -In reference to Mr. F. A. Campbell's paper on "Wind
Pressures" in your issue of the 1st, I would beg to correet his statement as to maximum wind presssure in England. This was
recorded at the Bidston Observatory on the 9th March, 1871, and amounted to
551 lb and 57 lb by per square foot. 1 have proved pressures of
etevater of my own construction, at an eld 26 th January, 1884, respectively, when the corresponding
Bidston pressures were 71 lb . and 70 lmRYY . . Dibbin, M, Inst, C.E.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER,

PUBLISHER'S NOTIOE.

* With this week's number is issued as a Supplement, a TwoPage Engraving of an Express Engine for the North British
Railuay. Every copy as issued by the Publisher contuins this Rupplement, and subscribers are requested to notify the fact should they not reccive it.

CONTENTS.

The Enoinker, October sth, 1886.
fap Tranaodation and meastrement of the Forti Bridoe.

Skeected american Patents

TO OORRESPONDENTS.

Registered Telegraphic Address-".ENGINEER NEWSPAPER,

** All letters intended for insertion in THE ENGINERR, or conof the writer, not necessarily for publication, but as a proof of good faith. N
** We cannot undertake to return drawings or manuscripts; we
must therefore request correspondents to keep copies.
inform correspondents that letters of inquiry addressed to th inform correspondents that letters of inquiry addressed to the
public, and intended for insertion in this column, must, in all cases, be accompanied by a large envelope legibly directed by the writer to himself, and bearing a 1 d . postage stamp, in order that answers received by us may be forwarded to their destination.
No notice will be taken of communications which do not comply No notice will be taken
with these instructions.
J. K. S.-A letter awaits the application of this correspondent.
TAx Bridae. The engine was got up very little the worse, and is on the North Britush Railuzay.
F. H. H. (Leek).-Certainly
. H. H. (Leek).-Certainly. Every particle of the fange below the rail
level is moving in a direction opposite to that of the train. Why do you not think such questions out for yourreelf?
ENGLAN AND AULD Scotia."-A letter.
correspondent's intended communication more comprehensible than is poss
sible on the limits of a post-card, but we will take note of vohat appears to
be hus leading idea. se has leading idea.

LUCOP'S PULVERISERS.

Sre, - Can any of your
about these?
London, October 7th.
PEN-MAKING MACHINER
(To the Editor of The Engineer.)
SIr,-Can any of your readers give me the address of the makers of
pen-making machinery?
SHOT POLISHING MACHINES.
Sir, -I should feel obliged to any reader who could get me some
didresses of makers of machines for polishing and separating lead shot
H. after it has passed in the ordinary
Birmingham, September 30th.

AN OPTICAL PROBLEM.

SIR,- The beneath figures give constructions for images in plane and
spherical reflectors. The image in a plane reflector is virtual, i..., the
rays do not actually pass through it, but the image in a spherical reflector

is real, i.e., formed by the actual intersections of the rays. "Lux" does not mention if the image was inverted or not. The subject is elucidated
very well in Professor Everitt's "Dechanel," 8710 , $\begin{aligned} & \text { do., which "Lux" } \\ & \text { had better consult. }\end{aligned}$
F. A. HACKETT.

The Enginere can be had, by order, from any neoosagent in toon or country at the various railuay stations; or it can, if preferred, be supplied direct from the office on the folloving terms (paid in advance):- Holf.yearly (including double numbers).. $£^{0} 14 \mathrm{~s}$. $6 d$.	
Year arly (including twoo double numbers)..	
Cloth cases for binding The Evernerr volume, price 2s. 6d. each.	
reign Subseriptions for Thin Paper Copies woill, until further notice, be received at the rates given belono:-Foreign Subscribers paying in advance	
of	

 Greece, Ionian Islands,
Chili, 先1 168, Borneo,
Sandwich Isles, $£ 25 \mathrm{~s}$

ADVERTISEMENT8.

For very two lines aftercearrds one shilling and sixpernce ; odd shines charged one shilling. The line averahes seven woords. When an advertise-
ment measures an inch or more the charge is ten shillings per inch. All minle madusures an inch or more the charge is ten shillings per inch. All
single advents from the country must be accompanied by a Post-ofice
order in payment. Alternate advertisements order in payment. Alternate advertisements voill be inserted woith all
practical regurarity, but regularity canot bo gouranted in any such case.
All except weekkly advertisements are taken subject to this condition All except weekly advertisements are taken subject to this condition.
Advertlsements cannot be Inserted unless Dellvered before 81x Letters relating to Advertisements and the Publishing Department of the
paper are to be addressed to the Publisher, MM. George Leopold Riche, all
other letters to be addressed to the Editor of THE ENGINERR, 163, Strand paper are to be addressed to the Publisher, Mr. George Leopold Riche; all
other letters to be addressed to the Editor of THE ENGINEER, 163, Strand.

MEETINGS NEXT WEEK.
North-EAst Coast Instryution of Enganerrs AND Shipruildiders.-
The annual general meeting will be held in the Lecture Hall of the
iterary and Philosophical The annual general meeting wil be held in the Lecture Hall of the
Literary and Philosophical Society, Newcastle-upon-Tyne, on Wednes-
day, October 13th, at 7.45 p..., when the Council wil submit its report
for last gession, and the President, Mr. W. T. Doxford, will deliver his or last session, and the President, Mr. W. T. Doxford, will deliver his

THE ENGINEER.

OCTOBER 8, 1886.
INERTIA OF MANUFACTURERS.
The altered conditions under which manufacturing trades are carried on in England now, as compared with a quarter of a century ago, do not seem to be yet as fully or generally realised as it is necessary that they should be
if one of the chief causes of depression is to be removed. if one of the chief causes of depression is to be removed.
The age of mechanics has robbed England of the unique position she held as the workshop of the world. England now holds only the position of the greatest manufacturer with the oldest and widest connection. Now and then, when the fluctuating race between demand and means of supply result in the lowering of prices until the race is less unequal, this as a fact is forcibly placed before our manufacurers; but in many cases the lesson is soon forgotten, and every time with loss to the country. When demand strains the means of supply and trade is said to be good, new capital is invested to obtain those means and to enter a profitable trade. In this age of mechanical progress it seldom happens that the capital so tivested fails to secure plant which is some improvement of that of the older establishments in the same trade, and each periodic fluctuation tends to leave the older establishments a step behind. This is proved as soon as the race is again won by the means of supply. Then it is that those manufacturers whose inertia is great, rapidly experience depression in trade and low prices. The more enterprising manufacturers, those whose inertia is not great enough to prevent their overhauling production, production, possible means of reducing cost, and careful consideration new methods with enterprising spirit, these feel the depression last or not at all. We frequently have strong proofs of the fatal results to a business of a disinclination to look into new proposals, machines, or proconcern than a restless desire for change to all established concern than a restless desire for change merely for change, many businesses have been lost, and some languishing now,
in consequence of refusal or inability to see the value of improvement in method or design, even though it may of improvement in method or design, even though it may be The improvements or novelties which are always turning up, or the desirability of which are always becoming apparent, will certainly be made, and be adopted by somebody at home or abroad, and if the latter, so much the worse for English manufacturers. This is true of manufactures, from the small and almost frivolous, to steam engines and bridges. following extract from a trade letter:-"The Staffordshire brass cabinet lock manufacturers have for some time rienced severe German competition in common coods in the London market. By the adoption of steam pooder and otherwise cheapened production, however, several Wolver hampton firms are now winning back the trade. Yesterday it was announced that they are meeting with increased success. It was some time before the workmen could be imported goods are being imitated in design and finish the offered at lower prices. Makers express every confidence in further recovering lost ground." Here is a case of an old-established English trade being beaten by means which the manufacturers themselves might, but for their inertia have themselves possessed. After losing trade and market they adopt the machinery which in greater or less extent they might have had some years ago. After losing money by loss of trade, they spend the money on the improved means of production, and have to spend more to get back their markets. During the time that they were, to their discredit, being beaten by the Germans, they no doubt complained loudly of trade depression. Even now they only though at a lower price. To be able to make at the lower price is to their credit, but it is not to their credit that they are satisfied to imitate either design or finish. Our people must go on, and must not shelter themselves by saying they cannot get men to work on the new lines. Judicious action with firmness will always get over the instance, mane workmen, just as when a change became necessary in a large part of their works, and if no other way can be found of getting the men to act wisely, then let the manufacturers take a leaf out of Mr. E. H. Bentall's book.
We have on previous occasions spoken of the loss to builders. Some fts builders. Some of this is due to the out-of-date regula-
tions of our Board of Trade; but so far has the British
bridge-building trade become wedded to old methods of manufacture and terms of business, that American and Canadian bridges are now being bought by English civil engineers for railways in course of construction, though not in either of those countries; but we need not say in which. The orders are going to those countries because really satisfactory bridges can be obtained to carry a given load, and with a guarantee for ten years, for a sum which is not more than 60 per cent. of the price demanded by English builders. The American and Canadian bridges are well-designed, pin structures, in every way satisfying the engineers of the railway; and the builders' price is for the bridges placed upon the piers and finished, the engineers having very little more trouble in the matter than to order them and test them; while for bridges for the same places, if ordered in England, the engineers would have to provide designs and specifications, follow the structures throughout their whole history to completion, and then pay about 40 per cent. more for them. In railway matters, again, the transatlantic constructors will provide rolling stock for prices and terms which afford facilities that probably not more than one English firm give.
In many ironworks in England there are yet at work antiquated engines, machinery, and tools which for sake of economy should have been on the scrap heap long since. Where this sort of thing exists trade is bad. On the other hand numerous engineering works in this country can be pointed to that have been well provided with work throughout the whole period of depression. In these works money has been spent in order to make more
by means of good tools properly worked, and by making machinery of new and improved design and construction, produced at as low a price as those of poor or ordinary designs in less energetically conducted works. In these days it does not pay for any length of time to try to make purchasers suit their requirements or wishes to the manufacturers, the latter must make what the purchaser prefers. No manufacturer can afford to continue to make a given machine of the same pattern as that he made ten years ago. He must improve it wherever possible, or another manufacturer at home or abroad will do it for him, and save him the trouble after awhile of making any.

SOURCES OF POWER.

In the older treatises on mechanics we find the sources of power classified under the heads "Wind, Water, Steam, Animals;" and, broadly speaking, these are still the only sources of power we possess. But when we deal more in detail with the subject, we find that wind in all probability owes its capacity for performing work to the sun, while water
is absolutely inert save as actuated by gravity, and steam is of course merely an agent by which heat is converted into work. Concerning the methods by which animals perform work, we are entirely ignorant, no physiologist having as yet succeeded in tracing the sequence of processes by which food is converted into mechanical energy. Enough is known, however, to show that the process has nothing in common with that by which work is performed by heat engines. So that the analogy sometimes drawn between a man and a machine must be rejected as far-fetched, permissible to the poet, indeed, but not to the philosopher. Furthermore, it is known that the work got out of food by men and animals is much greater on the whole than can be obtained from fuel consumed in the best steam engines. That is to say, a man or a horse may be more economical sources of energy, in one sense, than any machine. Be this as it may, it is sufficiently evident that we depend for the performance of all the work done in the world on two main sources of power-heat and vital energy. The action of gravity, it is true, causes the falling raised before it can fall, and this raising is effected by the raised before it can fall, and this raising is effected by the heat of the sun, which evapora
directly gives us clouds and rain.
directly gives us clouds and rain.
It appears to be not unreasonable that men should ask whemselves now and then if there are no other sources from which power may be derived-is there no other force of nature that can be made the slave of man? The question The see put in hand The seeke after motive power have been nearly as search of the philosopher"s stone With the "perpetual search of the philosopher's stone. With the "perpetual scarcely nan waps about to speak of something very different indeed from the ordinary notion of perpual motion. Tnventors who have sought or perpetual inost part, Inventors who something ut of nothing; that is in word onpted get There is wid diffence, however areat gulf indeed between this and an bite to gill furth nature's secre in oxplore say, of worl question of sow af possible that a misppreng, it the nature and of the laws of the conservation of energy may do a great deal of harm. It may be said for exmple that it is quite useless to search for a source of energy which an be quite or more economical than what we have now and much more to the same effect. But let us and much what is this law of the conservation of energy what is it based, and what would be the consequences to the universe if it did not exist? Such questions are very seldom asked, because the number of men who are at the pains to think for themselves is small But when they are asked, the answer is remarkable There is really no reason at all why energy should be conserved, and so far as our senses supply evidence far from being conserved it is being profusely wasted from day. Of course, if we go a little behind the evidence of our senses, we find that the waste is only apparent, not real. It is much easier, however, to form of energy a universe in which the law of the conservation dimension in space, or even the life of the inhabitants of Flatland. As a help to the realisation of such a universe we may point to the fact that the sun has been giving out
energy for millions of years, and that there is no reason
whatever to think that he has lost any portion of his whatever to think that he has lost any portion of his
original heat. In other words, it is simply impossible to original heat. In other words, it is simply impossible to
prove that what we call energy in ot created in the sun.
Again, let us take gravity. We have here the most stuAgain, let us take gravity. We have here the most stu-
pendous force in nature. There is no reason to imagine penat it is capable of degradation. If all the planets fell into the sun, gravity would of necessity have performed an enormous amount of work; but no one can say that
after it was done gravity would be any the weaker. It may indeed be said that the law of the conservation of energy has only just missed being disproved, if the words So far as can be seen there is no reason why
the line of magnetic fore should not behave like lines of electrical force or heat force, and admit of being
intercepted or stopped. It would then suffice to a permanent magnet under one end of a beam, the with a crank and fly-wheel. Then, by interposing and withdrawing a thin intercepting plate at the proper intervals, we was worn out, without the expenditure of one farthing for fuel. In the popular sense of the word, we should create power; and the perpetual motion men would spend their
lives in patenting details, while the principle would be public property. Has any one the least idea why magnetic
force lines should traverse every known material? Can ny one assert that if this was not the case the existence of the universe would be impossible or even difficult? Can any one assert with certainty that no means will ever be found for intercepting or dissipating magnetic rays, without expending energy in doing so? Finally, is it not possible his very peculiarity of its behaviour? To put an extrem case, it may be urged that the law of the conservation of energy being true, it is impossible to intercept a magnetic
force line. What, then, is the nature of the force which will comply with this condition? On the other hand, it is possible to intercept a heat, light, or electrical line, and
yet the law of the conservation of energy is not interfered yet the law of the conservation of energy is not interfered
with-ergo, magnetic force must possess features which with-ergo, magnetic force must possess features which
distinguish it from the other forces we have named ; from all other forces, indeed, save gravity. One deduction seems to be consistent with facts-namely, that magnetism and
gravity are original or primal forces, and that the remaingravity are original or primal forces, and that the remaining forces-such as light, heat, and electricity-are derived,
built-up, or composite forces. That, in a word, gravity and built-up, or composite forces. That, in a word, gravity and magnetism are elements, while light, heat, and electricity s "forces ;" perhaps it would be more strictly correct to speak of them as manifestations of force. But what we
have written will serve sufficiently well to convey our have writ
The sum and substance of what we desire to convey is hat there is nothing known which renders it absolutely certain that mankind may not yet find new sources of energy in nature. No one can assert positively that must always be impossible to make electricity work for us. If a man had shown Socrates a lump of coal, and told him
that it could be converted into work, he would have laughed at him. Our purpose will be served in writing this article at him. Our purpose will be served in writing this article east no finality in science. There is no reason, for example o conclude that it is absolutely and physically impossible hat sources of power may yet be discovered which are no forest oak, or brings down the lofty edifice in a hideous ruin may yet be taught to light our towns. Chemical ruin may yet be taught to light our towns.
science may give us new reactions which will supply large science may give us new reactions which will supply large
sources of power. The world does not yet know everything; sources of power. The world does not yet know everything; cally that things which do not exist now never can exist in time to come.
echnical schools in the united states.
Technical education is a subject which each year attracts an increasing amount of attention from the
thinkers of all civilised countries. In former times the length of the sword and the efficiency of the army-in ther words, the fighting powers of a nation-formed the wealth. They still continue to constitute an important factor in the well-being of nationalities. They happily, shows that the arts of industry pursued in peace contribute more to the well-being of peoples than the art of war. If properly considered the chief function
of the latter will be found to consist in protecting the former, and any nation or Government regarding it in any other way-using it, in fact, for wanton aggression -ussualt that, other things being equal, the best technically ducated nation must eventually become the wealthies and the most powerful. The lessons taught by Archimedes at the seige of Syracuse hold good to this day. Our to this, and are extending and developing technical education. An interesting paper on "Technical Training at the Society of Mechanical Engineers last year, and well dis cussed. Its author, Mr. George J. Alden, of Worcester, Mass, refers first to the origin of the Institute, opened seventeen years ago, and then to its course of study and pracdistribution of the time devoted by the student to each study. The chart includes a scale diagram showing
graphically the relative time assigned in the whole course graphically the relative time assigned in the whole course
to each branch or department. This is followed by diato each branch or department. This is followed by dia-
gram analyses of the several departments, showing the course more in detail. Finally, Mr. Alden gives an ex planatory reference to special features of the school trainapplies only to students resident in Worcester County, in pay tuition fees at the rate of 150 dollars per annum

County Free Institute of Industrial Science," and Mr. Alden dealt with it especially in its relation to the training administrators of the school addressed themselves to solve was how best to combine theoretical with practical instrue tion. Mr. Alden tells his readers "that the first dreams of the possibility of such an institute were entertained by men who were unfamiliar with schools either of science or of any other department of higher learning. John Boynton desired to give 100,000 dols. to found a school free to the youth of Worcester County, where studies could be puryued which were not usually taught in the public schoolsand which would fit them for the practical duties of life." ifty-nine to sixty-eight per the working hours are from close mental or study work. Ten hours a week are given to practical work in the machine shop. From six to ten to laboratory practice mental labour is reduced to five or six hours per day We learn from Mr. Alden's paper, that of the 2376 hours of practice, 800 hours are made in the apprentice half-year preceding the regular school course of three years, and 336 leaving bummer practice made outside of by regular term time. This is much less than the time given to the study of mathematics or language during the same period, and only one-sixth of the student's working time during the term
Of course Mr. Alden gives a synopsis of the various branches of study at the Institute, and they cover a wide technical schools in this the same as those of the best about the curriculum it is that it embraces too many subjects. They are nine in number, and of these that of practice or work in the shops includes instruction in all the departments save and except, strangely enough, the blacksmith's forge and boiler making. One of the chief points discussed in connection with the paper was whether it was best or the reverse to attempt to combine the practice section partly or wholly with theoretical instruction. The contention on both sides is pretty much such as we have known in this country, and which may be thus be so called can ever is unacquainted with the practical conditions attending the embodiment of paper designs in the shops. With this contention every sensible person must agree. Against practical work in school is urged its tendency to degrade. Extending this a little, the advocates of practical rraining in technical schools truthfully observe that it is impossible to judge exactly the mental bent of any pupil till developed by training, and thus for at both theory and practice; by the end of that time a judgment can be formed as to which branch the pupil is bes suited for, and that should be given the leading place in his remaining studies. If those sentimental folk who
regard practical work as degrading would but think a ittle, they could not fail, if possessed of any intelligence to see that practical training will, and indeed must, assis mparted ades. in the pracical then dissecting rooms of hospitals form a leading and absolutely essential part of the education of physicians and surgeons Are engineering students to be regarded as such heaven books and dawgs with the mightient erces of nature or olify them to design and superintend orces onature, orto qualy han whornd hess and eficiency multitudes of human lives may depend Would the passengers in an express train feel especially comfortable if told that the engine drawing them and the track over which they were moving had respectively been made by men who never got any but theoretical ical training are themselves divided in their views-one party contending that it ought to progress contemporaneously with theoretical tuition; the other averring that no really efficient practical instruction can be obtained outside regular engineering shops, where everything is done with they assert that students in technical mixed schools canno be taught how to produce the lowest cost. From this we must dissent. As technical schools are now carried on it may be that "reducing cost of production" is not in their curriculum; but that it cannot be included remains o be proved. We are of opinion ourselves that no technical school dealing with constructive matters can get along without some sort of means of practical illustration nor, to do them justice, do they try. As yet, however, the idea of making the practice shops of schools mone Weing undertakings has been tried without success. We cannot, from lack of space, attempt even to supernotice or the discussion thereon, but we recommend all who are interested in technical education to peruse it. We can only add now that we believe the time is approaching, if, indeed, it has not already arrived, when a regula codification of the systems of teaching the higher or proessional, as well as the working branches of mechanical engineering, must be effected, and some such method as that sugaid : "There are really three kinds of schools which at the Philadelphia meeting of the American Association I posedted, and which were likewise simultaneously pro First, a school of mechanical engineering where the object is to produce the engineer, who must know all the highe parts of the business. Next, we have the school for super workmen, and must know intimately all the processes de does not need to know the higher parts, for which he can depend upon the engineer. Lastly, we have a third have not yet chosen their business or profession, and the majority of whom will never engage in mechanica
pursuits; in fact, for all boys who are in public schools. We cannot better
out the truth of the conting is done above, the prudence engineering care a peliminy and traing to ascertain his real fitness for it. We are sure that many engineers in this country, both civil and mechanical, could testify to pupils of their own who, after years of apprenticeship and much expenditure of time and money, They uad the profession and adopted some other caree., occurs the sooner it can be found out the better,
miners' wages in yorkshire.
Though the Yorkshire coalfield has been pleasantly free for ome time from strikes and lock-ouls, on an extensive scale, it has been felt that the danger still existed, and now and again in
isolated cases recourse was had to the old baneful practices. To avert the peril, once for all, a vigorous effort was made to effect an arrangement by which wages should rise and fall according to the fluctuations in the values of coal. A committee of the South Yorkshire Coalowners' Association has met deputations of the miners, and it seemed almost certain that an amicable agreement would be come to. Unfortunately the negotiations
begun in December of 1885 have terminated in October of 1886 in what appears to be a collapse. From the correspondence between Mr. F. Parker Rhodes and Mr. Benjamin Pickard, M.P. - pervaded, it is evident oy a regrettable tone of asperityagain for some considerable time. The rock on which the scheme has wrecked is the old one of "standard." The miners wanted the then rate of wages to be considered the minimum, and the appointment of a Board of Conciliation to whom further no scheme could be referred. The coalmasters considered that panied by a fair and equitable sliding scale. They also objected to the then rate of wages being accepted as the minimum rate payable under the scheme. On these points of difference the representatives of the two parties engaged in a very long controversy, in which each party charges the other with being public are more concerned about is this, that the first turn of prosperity may tempt the mines' offlicials to seek higher wages,
which, resisted by the coalmasters, would involve the district in the old trouble, with all its attendant loss and suffering.
the cable tramway in birmingham.
The cable tramway in Birmingham, which is exciting great interest, is about to be commenced from the designs of
Mr. E. Pritchard, C.E., and Mr. Joseph Kincaid, C.E., of London, engineer to the Central Tramways Company. There will be two miles and five furlongs of single line, the cost of constructing per mile. The line frst to be commenced will extend fro Colmore-row to the borough boundary in Hockley. It is to be laid upon a 3 ft .6 in . gauge, corresponding with that of the
newer tramways throughout the town. For driving it there will be provided at the company's premises in Whitmore-street, Hockley, two engines of 300 -horse power each. These, however,
will suffice to work another circuit of will suffice to work another circuit of cable. The aid of elecany of the strands of the cable, so that he may know when to expect the damaged portion to pass through the engine-house It is hoped that the line will be ready for opening by May. It will, it is intended, be a marked improvement upon the cable tramway on H
of particulars.

ENOS AYRES AND ENSENADE PORT RAILWAY BRIDGE OVER THE RIACHUELO.
The engravings on p. 286 illustrate a fine bridge constructed from the designs of Mr. Edward Woods, President Inst. C.E., to carry the Buenos Ayres and Ensenade Port Railway over the Hiarseley Company, at. Tipton, and of it we shall give further
Hors the

PETERSFIELD SEWERAGE AND WATERWORKS. On page 287 we publish engravings illustrative of part of the
new waterworks of Petersfield, from the designs of Mr. Henry Robinson, M. Inst. C.E., Westminster. Other engravings and description will follow in another impression.

The Navies of Great Britain, France, Italy, Grriany, and
Russia.- The late Director of Naval Construction, Sir Nathaniel Barnaby, has prepared a sheet of diagrams, bringing clearly before the eye the salient features of the superior portions of the fleets of
five European Powers, with a view of assisting the public to form judgment on difficult technical questions of great national
moment. The diamrams are now in the pross, and will shortly be moment. The diagrams are now in the press, and
published by E. Marlborough and Co., 1 , Old Bailey.
BEDFORD PIT. - The death is annound BEDForD PrM.-The death is announced of Rear-Admiral Bed-
ford Pim, at Deal. He was the eldest so of the late Mr. E. Bedford Pim, and was born in the year 1826. His mother was
Sophia Soltau, daughter of Mr. J. F. Harrison. He was educated
at the Royal Naval School, and then entered the Nows Sophia soltau, daunt shar ohol, and then entered the Navy. He was
at the Royal Naval Lent
popularly known through his brave exploits in the Arctic Seas when populariy known through his brave exploits in the Arctic seas when
lieutenant, and for very forcible partiality to the old ssstem of war
vessels and seamanship. Having risen to the rank of captain vessels and seamanship. Having risen to the rank of captain, he
changed his vocation and entered himself a a a student at the Inner Temple, and was called to the Bar in 1873 . He sat as M.P. for
Gravesend, in the Conservative interest, in the Parliament chosen in 1874, defeating Sir Charles Wingfield. His name still standing in the Navy list, he subsequently obtained the rank of rear-admiral.
He was well known in literara and scientific circless, and he occa-

 sage, by passing from the vessels which had entered the
Arociio regions from the Atlantic, to that of Maclure, whoo
had penetrated from the Pacific He did exeellent service at
the Peiho Forts, as a little earlier he did with his gun-boat at the had penetrated from the Paciinc. He did excellent service at
the Peiion Forts, as a little earlier he did with his gun-boat at the
bombardment of S weaborg, where also he was wounded Admiral
Pim Pim was a bisterousy english partisan, Ho was,
the last of the old Guard. The Standard observes of him that, though latterly reconciled to steam, , he, like Admiral Rous, never
failed to look back on the decay of thre-deckers as a sign of the
decadence of the Navy. Foreigners in merchant shins decadence of the Navy. Foreigners in merchant ships, Free Trade,
dandy ooficers on the quarter-decks, luxuries such as preserved
meats, and other new-fangled notions, had the hearty contempt of mhe sturdy old tar, who had begun life on board a merehant ship,
then
and regarded the British seaman as best reared on salt junk, pead
soup, his regular lime juice, and a liberal allowance of rope's end
soup, his regular lime juice, and a liberal allowance of rope's end

THE ARLESEY PORTLAND CEMENT WORKS.
the pulsometer engineering company, engineers.

NEW PORTLAND CEMENT WORKS AT ARLESEY.
THE above illustrations show the side nearest to the Great Northern Railway of the Portland Cement Works recently erected at Arlesey Siding, Great Northern Railway, by the Arlesey Lime the opposite side. A company, and the smaller engraving show whole of the building, machinery, \&c., were designed by the Pulso meter Engineering Company, which has also manufactured and supplied the machinery. The works are now turning out Portland cement of the highest quality. The machinery already erected meter of cylinder by 36 in . stroke, running at 60 revolutions per minute, fitted with variable expansion gear, and each capable of indicating from 93 to $180-$ horse-power. One of these is used for driving (1) the slurry mills, each 18 ft . diameter ; (2) the slurry wheel 18 ft . diameter, for raising the slurry by new differential gear: (3) a by new differential gear; (3) a
set of special rolls through which all the cement slurry is which all the cement slurry is
passed; (4) the mixer, a new machine for incorporating the slurry; (5) slurry plunger pumps, 10 in. diameter by 16 in . stroke, which raise the slurry, after it has passed through mills, rolls, and mixer, to the engine actuates (1) a specially engine actuates (1) a specially duces the cement clinkers to pieces about $\frac{3}{8}$ in. cube, so as to diminish the work performed by the stones; (2) the mills, which are of the Pulsometer Engineering Company's selfcontained pattern - already illustrated in The Enginger, A single Lancashire boiler 7 ft . by 28 ft .-steel-working at a
pressure of 80 lb ., furnishes pressure of 80 lb ., furnishes tion. It is fed by a Deane steam pump $5 \frac{1}{2} \mathrm{in}$. by $3 \frac{3}{4} \mathrm{in}$. by 10 in . stroke. Special interest attaches to these works, costly and fruitless attempts having been made in times Cement from materials on the estate. This is, we believe, the only locality near London in which gault clay and chalk are found together. Careful analyses made by Mr.G.M. R. Layton, the managing director, proved that these materials were capable of being manufactured into cement of high quality, and the subjoined tests will show that with care and judgment no materials can be more beneficially employed for the purpose. Average breaking strain after seven days of 100 briquettes of $1 \frac{1}{2}$ in. by
$1 \frac{1}{2}$ in. by Adie's machine, $1020^{\circ} 42 \mathrm{lb}$. Average of 501 in , briquettes, 398 lb . The cement is already in far greater demand than can be supplied by the present kiln power, and additional kilns, patented by Mr. Layton, are now being erected. The result of the substitution of the special rolls and mixer for the ordinary wet stones has been highly satisfactory. The arrangements are specially made with a view to saving labour, and the progress of the material in the cheapest way direct through the works.

NEW CATTLE MARKET, NOTTINGHAM.
THis town has suffered very considerable inconvenience and annoyance in consequence of the position of the old cattle-mar least a mile from any railway station, and all cattle therefore brought in by railway had to be driven through the principal streets of the town in order to reach the market. About two

VIEW FROM KILNS AND ENGINE HOUSE SIDE.
road referred to is 60 ft . wide, and is divided for "in" and "out" traffic. It contains very extensive accommodation, and the whole of the pens and stalls are of iron. The pigs and calve and be accommodated in a covered building about 140 ft . long and 48 ft . wide; the building is lighted from the roof and the walls loor level. Lairs for beasts are also provided where they can remain for a day or two prior to or after the large market which is held on Wednesdays. The arrangements for the sale of beast by auction are very complete, and have been carefully planned; there are stands for six auctioneers, the largest connlog accommodation for the sale of about 250 beast. The umerog platform is 410 ft . long and 45 ft . wide, and contain efrens pens or docks into which the cattle are collected before being driven into the market; the sidings adjoining the Glatform are in direct communication with the Midland, the ines. On the platform are railway North-western companies room for the drovers to shelter in while awaiting the arrival of cattle. The cattle stalls and auctioneers' stands will accoommodate about 1100 beast, besides the accommodation provided in covered lairs. The sheep pens, 180 in number, will accommodate 2500 sheep, and there is a space provided under cover for about

450 pigs and calves in 47 pens. The market is so arranged and 450 pigs and calves in 47 pens. The market is so arranged and
planned that the accommodation can be doubled at a comparatively small outlay, as the whole of the main roads and approaches are laid out in view of an immediate extension being required. The offices and refreshment rooms are in two blocks; the former block contains offices for auctioneers, a public room for the settlement of accounts, and also a bank; the latter block contains a refreshment room 50 ft . by 18 ft ., also one of smaller dimensions, a dining room, kitchen, and other appurtenances. The horse fair and hay and straw market will be held on a piece of ground adjoining the main entrance road, and has an vided, one for weighing hay and straw, the other for weighing cattle. The drainage is thoroughly efficient, the pipes used were Hassall's patent pipes, and the upper end of each length of drain is supplied with a tank which is fitted with one of Field's automatic flushing syphons ; the market is lighted with gas, and water is laid on to numerous hydrants in all the va
stalls.
One of the most important features in the market is the paving; the whole of the platform, and also the subslidiary roads, which are 30ft. wide, are laid with Portland cement concrete composed of finely broken granite and two of the former to one of the latter. All the cement used for the work was tested and had to stand at least 400 lb . on a briquette an inch square, or was rejected; the concrete for the roads was 3 in . thick, the remainder was $2 \frac{1}{2}$ in. thick, and the whole of it was laid on a foundation of Port6 in . thick. The surface of concrete paving was grooved, except in sheep and pig pens, so cept in sheep and pig pens, so and the area of the concrete pavement altogether is 20,000 square yards. The main roads in the market were paved with 4 in. by 4 in . granite "setts" thick; the joints in the paving were run in with a composition of pitch and tarposition of pitch and tar;
the area of the granite "sett" pavement is nearly 9000 square yards. The entrance gates are a very good example of wrought ironwork, and are made by Messrs. Smith and Co., of Birmingham; at each of the two entrances is a lodge for a caretaker. The buildings are of brick with Hollington stone dressings, and are covered with red tiles.
The The site chosen for the market had one disadvantage, inasmuch as it was low lying meadow land and had to be filled up
from 6 ft . to 7 ft ., requiring from 80,000 to 100,000 cubic yards of material. This rendered the foundations costly, and also necessitated the continuous use of a steam roller to consolidate the material. The works were commenced in July last year, but the contractors were very much hindered by the severe weather last winter, and the completion or the work was delayed at least two months thereby. The estimated cost of the works, including cost of land and filling up site, was $£ 32,000$; the actual cost will be about $£ 30,000$.
The new market was opened by the Mayor of Nottingham,
Mr. W. Lambert, on the 28 th September, and on that occasion Mr. W. Lambert, on the 28th September, and on that occasion
he was presented with a very handsome gold key with which to perform the ceremony. The company present at the opening included Earl Manvers, Sir Henry Bromley, Colonel Seely, the majority of the members of the Town Council, the magistrates

THE ARLESEY PORTLAND CEMENT WORKS—PLAN.
(For description see page 291.)

for the borough, and a large number of gentlemen in the town and county interested in farming and agriculture. After the opening eremony the company very closely inspected the market, an arm to the Cou
the Mayor.

The bo

he chairman of the committee, by the Mayor, and by oth peakers upon the successful completion of the market and on the manner in which the work had been designed and carried out. The new market has been designed by and has been carried out under the immediate superintendence of the Borough ngineer, Mr. Arthur Brown, M. Inst. C.E., assisted by the deputy engineer, Mr. Charles Mason.
Bell and Son, of Nottingham; for the stone wore Messrs. G Bell and Son, of Nottingham; for the stone work of bridge Barry, of Nottingham ; and for the ironwork, Messrs. E. C. and Keay, of Birmingham. The concrete pavement has been lai by Messrs. Cordingley and Sons, of Bradford, and Mr. W. Holloway has ably acted as clerk of works.

THE ${ }^{\prime}$ IRON ANJ STEEL INSTITUTE
The Autumnal meeting of the Iron and Steel Institute, commenced on Wednesday, Dr. Percy, the President, being in the chair. There was a fair attendance. Dr. Percy announced that Mr. Daniel Adamson, of Manchester, had been nominated President for the ensuing year by the
Council, and the nomination was confirmed with acclamaCouncil, and the nomination was confirmed with acclama tion by the meeting. Mr. Adamson, in returning thanks for the honour conferred on him, said that he believed he as the hist engin or iron user, who had ever filed the hair, and he would leave nothing undone to promote th est interests of the society
Dr. Percy then delivered his address, which was less interesting in some respects than that which he gave at the last meeting of the Institute in London. He began by explaining that the meeting was held in London to ive the members an opportunity of visiting the Indian and Colonial Exhibition; and for their guidance a report British Colonies by Mr. P. C. Gilchrist and Mr. Edward Riley, which would be placed in their hands. We may say here that this report is a pamphlet of 137 pages, full of valuable information, the results of no fewer than fifty analyses of ores made by Mr. Riley being contained in it. or. Percy then went on to speak in high terms of the icular, on apers and he called attention to three in par casting chains, and on alloys of iron and chromium. He then reviewed at some length the history of chrome teel, which seems to have been first mentioned by Bertier in 1821. He found that steel alloyed with 1 to $\cdot 5$ per cent. of chromium forged well, carried a good edge, and presented a beautiful damask appearance when reated with dilute sulphuric acid. After referring to the labours of M. Rolland, Dr. Percy went on to speak of the Chrome Steel Company of Brooklyn. It was also made in Sheffield and in France. The special peculiarity of chrome steel was that it was not spoiled by being heated to a high
temperature for a long period, while its tenacity exceed that of every other steel. It pierces, but cannot be pierce by, every other steel. Chromium makes steel hard withou making it brittle. Dr. Percy then called attention to piece of ploughshare which he had obtained from Mr. D. Greig, of Messrs. Fowler and Co., Leeds, which Mr. Greig said was made in the United States, and was quite unequalled by any English share. It seemed it. He then dealt at consider lh with it. He then deal at considerable length win a paten being introduced in Alt for the use of aluminum an Aluminium possesses the thant ing the melting point of wrought iron and steel. Tin practice wrought iron was raised to the melting point and was ther bur per cent. of aluminium the metal became suddenly as luid as water, and the occhuded gases escaped reely. The being tried with ros being tried with gin opperare when the clay was reduced the oxyen eming to the carbon while the aluminium alloyed itself with them which it was subsequently easily ith the copper, froy extended experiments on the effect of other metals iron-curiously enough he omitted all reference to Delta metal an alloy of copper and iron, the copper largely in xcess and spok the celebrated column at Delhi exowing a needle forged from a small piece of the pilla which proved that it was wrought, not cast, iron
Dr. Percy then plunged into statistics, which he possesses a singular aptitude for making interesting and even amus Mr. Jeans. We shall not attempt to follow him through his Jeans. We shaurs ; a few hower, will be found this maze of forth ; and 1879 the United Sto and 2000 lb - of United States produced $2,41,000$ tons-of 2000 wa.-of pig reduction the The capacity of all the blast furnaces in the United State is equal to $6,960,000$ tons per annum. Of Bessemer steel there was made in $1879,928,000$ tons; and in 1885, $1,707,000$ tons The total capacity of the steel works is $4,102,000$ tons per annum. There are eight works running the Clapp Griffiths process with thirteen converters, capable of turn ing out 200,000 tons per annum. There are also eighteen pen hearth plants with a yearly capacity of 5000 tons open
each.
In
In Great Britain there were 500,000 tons less pig iron made in 1885 than in 1880. Of Bessemer metal there was made in 1879834,000 tons, in 1882 1,763,000 tons, and last ear $1,300,000$ tons. There are 119 converters in Great all worked up to their full capacity, they would produce not less than $5,000,000$ of tons of ingots per annum. There are besides 276 open hearth furnaces, with a capacity of 3500 tons each per annum. It is worth adding that 200 tons can be got out of one of these furnaces in the same time
that 50 tons could be got at first. On every side we saw reduction of cost of by rual labour. Thus it has been stated that one Nottingham lace machine can turn out as much work as 8000 women. The planing machine has reduced the cost of true iron surfaces from 12s. per square foot to a couple of pence. The work on gold chains which used to cost 30 s . is now done for 3 s .6 d . A gross of steel pens used to cost $£ 7$, they now cost 4 d .; and one steel firm alone supplies 20 tons of sheet steel per week to be converted into pens. Dr. Percy gave some statistics concerning the railway system of the United States, which has a larger mileage by two-fifths than that of all the rest of the world put together. Not a pound of tin plates is made in the States. Bessemer iron ores are becoming so scarce, that not less than $2,000,000$ of tons are imported annually from Europe
Dr. Percy concluded with an eloquent peroration, in which he said that if we would be true to ourselves, and not make the mistake of underrating the powers of our adversaries, we need not fear the "demon, foreign competition."
Sir Henry Bessemer proposed a vote of thanks, seconded by Mr. Adamson, and carried unanimously
The first paper read was by Sir Frederick Abel, C.B., F.R.S., and Colonel Maitland, superintendent of the Royal Gun Factories, Woolwich,
On the Erosion of Gun Barrels by Powder Products. The peculiar action of powder products upon the inner surface or bore of a gun, as they rush from the seat of the charge towards the muzzle, whereby more or less irregular scoring or erosion, is produced, is ascribable to the cooperation of three causes, viz., a softening if not a fusing effect, exerted upon the surfaces of the metal by the high heat of the explosion, an increase of this softening or fusing effect by the chemical action of the sulphur upon the metal at the high temperature to which the surface of the latter is very rapidly raised, and the mechanical action of the rush of gases, vapours, and liquid products upon the softened or fused surfaces. The great increase which has been taking place during the last twenty years in the power of artillery has brought the subject of the erosion of gun barrels into prominence, and it is not too mnch to say that it now forms one of the chief difficulties to be encountered by the maker of a heavy gun. As far as can be seen at present, its sufficient mitigation is the one great difficulty which seems likely to impose a limit on the size and power of ordnance in the future. Erosion is of two kinds, technically known as muze-loaing scoring and breech-loading scoring, though both kinds occur some extent in all ginernloading. Muzzle-oading scoring is produced by the rush of the powder products, over the top of the projectile, through the clearance, or wine, whe the for facility of ramming home the shot along the bore in a muzzle-loader. Brech-acts behind a shot, acting as a gastight plug, during and immediately after its passage through tight plu

the gun.

a upper surface of the bore, and that its effect diminishes greatiy as the velocity of the advancing projectile increases. Breech-lowally all moun and oxtends towards the muzzle till the till the press. It is evident

It is evident that, coet. par., erosion will increase with the amount of the powder products, with pressure in the bore, and wirst began to be seriously felt in the 7 in muzonvenience first of 7 tons weight which fired a charge muzzle-loading gun of tons weight, which fired a charge of 30 lb . of powder whe a strides which have since been made in the fired from heavy jectile and the resulted in increased rapidity of the deterioration of guns from this cause; and now, that it is proposed to arm the Benbow with 16 tin. breech-loading guns of 110 tons weight, which will fire a shell of 1800 lb . weight with a charge of 900 lb . of powder, the question of erosion becomes one of paramount importance. The 7in. gun above-mentioned was able to fire about 600 full charges before the bore had become so badly scored as to require its interior to be fitted with a new tube; this number of rounds was increased to about $\$ 1000$ by the introduction of an expanding copper gas check, fitted on the base of the projectile. The adoption of breech-loading further increased the life of the gun by sealing the muzzleloading scoring still more effectually; but on the other hand, it permitted the use of greatly increased charges of slow-burning powder; and the extensive erosion now speedily produced in some of the heavier breech-loading guns renders it probable that the interior surface of the 110-ton gun will require renewal after only a brief existence. Under these circumstances it becomes of very great importance to ascertain what material best resists erosion by powder products, or what treatment of the material is best calculated to in crease its powers of resistance to erosion. It has long been known that pure copper possesses high power under certain circumstances of resisting wear by powder productsin motion. For many years guns have been vented by having a plug of copper screwed tightly home into a hole driled throug the body of the piece, a fine vent-hole being then drilled through the centre of the copper plug. This description of vent resisted the wear of the gas better than vents of either cast iron, wrought iron, or steel.
In 1885 Captain Noble, C.B., F.R.S., of Elswick, conducted a series of trials!with vents fitted to vessels other wise closed, so that the whole rush of the powder products should pass through the vent. The experiments were carried out with varying charges of powder, and with vents made of steel of different qualities. Three kinds were employed, viz.:-

Hard steel, containing about 0.9 per cent. of carbon.
Medium stee
Gun steel
In Captain Noble's "opinion the results showed that the milder the steel the less the erosion.

EXPRESS ENGINE, NORTH BRITISH RAILWAY.

The subject was now seriously taken in hand in the Royal Gun res experiment as comw wher the found to exist in the resistancenced to material teel barrels, of 0 if each with $10^{1} 1 b$. fitted with service driving rings. the powder and 6 lb . shot, into the mouth of the chamber of a 22 cwt breech Gutta-percha impressions were taken after wenty-five rounds. During the prepation of the bar specimens were cot in prolongation of the bores and tested mechanically, and the proportions of carbon, silicon and manganese were determined in samples of the metal, The verage pressure of the gas was about 13 tons per square inch, measured in the powder chamber The following table gives the results

1	8568	$1 \cdot 9$	$\cdot 219$	-529	'107	$32 \cdot 6$	
2	8570	$2 \cdot 1$	-233	not	$\xrightarrow[\text { not }]{\text { neter- }}$) $25 \cdot 2$ \{	Unhar-
3			${ }_{-414}$	${ }_{\text {mined }}^{\text {mined. }}$	mined.	$\}_{44.0}^{25 \cdot 2}$	dened.
4	8705	${ }_{4 \cdot 1}^{2 \cdot 1}$.$_{-333}$	- 086	.059 .093	$44 \cdot 0$ $47 \cdot 6$	
5	7494 2124	${ }_{6}^{6 \cdot 0}$	$\stackrel{216}{ } \cdot$	-475	\bigcirc	${ }^{35}{ }^{\circ} 0$	
6 7	${ }_{2047}^{2124}$	$6 \cdot 2$ $6 \cdot 4$	$\cdot 160$	- 320	-042	${ }_{27 \cdot 1}$	
${ }_{8}^{7}$	${ }_{7380}^{2047}$	${ }_{7}^{6 \cdot 9}$.172 .891	- 2785	- 119	$28 \cdot 2$ $52 \cdot 4$	
9	1624	8.0	- 520	1.050	deter-	66.2	
10	7647	9.8	-241	$\cdot 664$	$\underset{\cdot}{\text { mined. }}$		
11	7188	11.0	$\cdot 347$	-407	. 051	${ }_{40 \cdot 6}$	
12	8938	12.0	-182	$\cdot 050$	-330	$27 \cdot 4$	
$13\{$	$\begin{aligned} & \text { tool } \\ & \text { steel. } \end{aligned}$	$\}^{13.0}$	$1 \cdot 144$	not determined.	$\begin{aligned} & \text { not } \\ & \text { deter. } \\ & \text { mined. } \end{aligned}$	not determined.	

chemical examination and machine testing fail altogether to account for the position of the barrels in order of merit Thus the worst and the worst but one are respectively the highest and nearly the lowest in carbon, the hardest and nearly the softest. The first, the fifth, and the tenth are Wery closely allied, both in analysis and machine testing. be, whatever effect of carbon, manganese, or silicon might be, whatever effect hardness or softness night have, in promoting or retarding erosion by powder products, and became evident the projectile through the bore, it now became evident that some agency, hitherto unsought for
Thewed then and
these results to take up two independent lines of inquiry. One entered those metals which had exhibited simil of in tion and considerable differences in theiry in composiron and and instituted an as developed by chemical reats. Tnformation was als sought for by the careful determination of the aspeif orvities of specific menter guided by the shape and size of the piecesperiwhich the barrels had been ant of work done on the metal by forging and to determine its effect on resistance to erosion. The results of the two inquiries are given in the peper in the words of the offial quirts made by the writers
"The lo bi
The results obtained may be summarised, though not equally consistent throughout the series of specimens thus in the extent to which the incint bat the difference by powder charges we ther degree, to be referred to the amount of a considerabl ment which the metal had received and to the consequent extent to which uniform fibrous structure had been deve loped. It appears that the more steel is worked or forged, the less it suffers from the eroding effect of powder-ges There may be some slight difference in the resisting power
of the surface, due to high or low carbon, but that is small compared with the effect of putting plenty of work upon the material.'
Since the foregoing report was submitted, a careful determination has been made of the specific gravities of the four specimens therein referred to, and the following results were obtained:-

$\begin{aligned} \text { Specific gravity of } & a & =7.844 \\ " & \quad b & =7.847 \\ ", & c & =7.849 \\ ", & d & =7.850\end{aligned}$

These results appear to confirm the correctness of the inference in the first of the quoted reports-that the comparatively high specific gravity of the specimen in the large series, which ranked first in its power to resist erosion, was due to that metal having been worked to a also undent. A barrel of Parson's of working, with a different description of metal, upon its power of resisting erosion. During the early experiments, given in the table, a barrel of cast iron was also tested; it broke up at the sixth round, but the experiment was conclusive, nevertheless, as it was found that the erosion was very considerable-being greater, in fact, than in the best of the steel barrels after fifty rounds.

It is to be regretted that the discussion which followed was of very little utility. This is not remarkable, however, as no one had any experience to go on except the authors of the paper. A letter was read from Lieutenant Jacques, of the United States Navy, asking if the specimens referred to were all cut from the same ingot or taken promiscuously. . Nr. Vickers, of sherfield, pointed out that the chemical composition of steel could not alone account for its peculiarities, contradictory results being often obtained. 1 mr . Adamson held that the quantity of foreign matter in the shape of carbon, \&c., in to und steel mus also to und.rtand whe the means. He als tempering steel in oil was a great mistake and did much harm. in. Markim conde and did Sir cussion. Si F . Bran int explained that the expermental barrels were screwed into the chambers of guns, in order that the action of the powder gases might oe intensified, so as been observed that the exharst pipes in oscillating engines leading straight to the condenser were much engines leading straight to the condenser were much were wubjected to the subjected to the erosive action or the powder gas diminished augmented in arg with small sorts of guns. Mr Hall of was now making a gun spially constructed to prevent was now making a gun specialy conss would to prevent public in due time Sir Her Bessemer said the madion was possibly like that of the sand blast, and suggested that experiments should be made with meal powder to test this point Colonel Dyer stated that the said erosion took place in the pipes of hydraulic press pumps, where no sand blast action could possibly occur. Mr. Vickers added to his former remarks that fifteen years' experience with steel led him to conclusions entirely opposed to those of Mr . Adamson on oil tempering, which he said gives the highest elastic limit to steel.
Colonel Maitland, replying on the discussion, answered several questions, and pointed out that the products of fired gunpowder are either gaseous or liquid, and that as tempered, Mr. Adamson's argument fell flat. Sir Frederick Abel supplemented the remarks of Colonel Maitland. Sulphur did no doubt act on the gun, for he had found sulphide of iron in powder deposit taken out of a gun. As to the sand blast view, he did not think that would hold water, because gun-cotton behaved even worse than gunpowder in the matter of erosion, and there were certainly no hard particles with it. The steel used was taken from that actually in the service. He concluded by saying that the paper was imperfect because the experiments were not complete, and it had only been read at the earnest request of Dr. Percy. This concluded Wednesday's proceedings.

EXPRESS ENGINE, NORTH BRITISH RAILWAY. In our impression of the 17th ult. we gave illustrations of the fine bogie engine exhibited at Edinburgh by Mr. M. Holmes, locomotive superintendent of the North British Railway. We plan of this engine, and also two half cross sections statement of dimensions will be found on p. 234, Sept. 17th

The Invention of the Sextant.-Dr. J. L. Dreyer points out, in the Astronomische Nachrichten, No. 2739, an historical error which has crept into several astronomical works, although it was communicated to the Nautical Magazine. In the books referred to, it is stated that the principle of the construction of the sextant was communicated to John Hadley by his brother, a Captain Hadley, who had in his possession a sextant given to him by Captain Godfrey, brother of Thomas Godfrey, of Philadelphia, the such a Captain Haders instrument. But it appears there never was a barrister, the other a physician; and he himself was not an instrument maker by profession-as has been asserted-but, as an amateur, occupied himself with mechanical pursuits, and was the first to bring the polishing of reflecting telescopes to any perfection. On May 13th, 1731, John Hadley communicated to the Royal Society a description of his reflecting octant; and, after some
hesitation, Halley declared himself satisfied that Hadley's idea was quite different from that of Newton, who had invented an instrument founded on the same principle. It is no doubt true that Thomas Godfrey, a glazier of Philadelphia, had invented an instrument of this kind about the year 1730; but the first intelligence of his invention did not reach England before the month of
May, 1732, in a letter from James Logan to Halley. Godfrey's instrument was made of wood by Emund Woolley, a carpenter, about November, 1730, and had been tried on board the ship Truman, of which John Cox was master. The first model of Hadley's octant had, however, been constructed by his brother

AIR-COMPRESSING MACHINERY, BEAUMARIS SEWERAGE WORKS.
the british gas engine and engineering company, engineers.

ATKINSON'S AIR-COMPRESSOR, BEAUMARIS SEWERAGE WORKS.
The machinery we illustrate above comprises Atkinson's air-compressors for low pressures, such as those required for Shone's sewerage system. Air-compressors for, say, 50 lb . pressure and upwards are common commercial machines, which are of compressors to work at pressures below this and higher than can be obtained satisfactorily from a fan or blower. A suitable compressor for over 50 lb . pressure is a very unsatisfactory compressor for 10 lb .; valves suitable for the higher pressure would probably cause a resistance of at least one pound in drawing in the air, and another pound in expelling it--say two pounds in all. This amount on a mean pressure of 40 lb . or 50 lb . is not a very serious proportion, but on a mean pressure of seven or eight pounds is a very considerable per-
centage of the power put into the air. The aircompressor shown at Fig. 3, is specially designed for dealing with these low pressures, and in conjunction with Atkinson's differential gas engine, is the arrangement of two-horse power combined engines and pumps supplied by the British Gas Engine and Engineering Company to the Beaumaris Corporation to compress air for working Shone's pneumatic sewerage system, which has been adopted by that town.

It will be seen from the illustration that the pump is single-acting; there is a short passage at the the suction and delivery valves. These valves consist of annular thin rings of phosphor bronze or Delta metal, closing annular passages in the seatings; ribs on the under side of the delivery seating guide the suction valves, and a guard plate guides the delivery valves. The whole of the valves, seats guides, \&c., are threaded on a central bolt, having a handle at the top, and are so arranged that, presuming anything should top cover and lifting out the valves by the handle; a duplicate set can be put in and the cover replaced, the whole operation being done in two minutes. The valves are very light, and have only $\frac{1}{1-\mathrm{in}}$. lift to give a very large valve opening, and, as will be seen by the indicator diagrams, the suction line cannot be defined from the atmospheric line excepting at the commencement of the suction stroke caused by the resistance of the air to being put into motion. It will also be seen that compression
commences coincidentally with the commencement of the return
stroke. The delivery line, in diagrams Figs. 5 and 7, is not parallel to the atmospheric line, but this is due to the fact that the diagram was taken when the compressor was being tested at the works, and for this purpose was coupled up by a very small delivery pipe to an old boiler, and is due to the excessive resistance of this small pipe.
stored up in a reservoir, from which the the compressed air is supply as they require it, so that the demand for the compressed air is intermittent and variable; for economical reasons, therefore, it is necessary to be able to regulate the supply to suit the

pressure main or in the reservoir is admitted below this valve, which is held down by the adjustable spring ; if the pressure in the reservoir rises above what the spring is set to it lifts the small valve and lets this pressure pass on to the diaphragm, which then stops the suction valves from closing and prevents the pump from delivering any more air until the air pressure in
the reservoir falls, when the easing valve is closed by the spring, the reservoir falls, when the easing valve is closed by the spring, through the small leakage valve, which is always left a little open for this purpose. It is sometimes necessary to start these compressors when the air reservoir is charged ; if they were allowed to compress air this would be difficult with a gas engine, but by opening the starting valve the air pressure is allowed to pass round the easing valve, and so long as there is any pressure at all in the reservoir the suction valves cannot者e until this starting valve is closed
urprising, as shown by the series of diagrams, Fig. 7 , taken when the reservoir is charged to the Fig. 7, taken when the reservoir is charged to the
desired pressure to which it is set, and the diaphragm governor was acting on the suction valves. The successive discharges of air take place later and later until the suction valves are held firmly up and the diagram becomes a straight line. The instant air is drawn off from the reservoir the suction valves commence to work so as to give liveries if the pressure falls more than a fractional part of a pound. It is also evident that excepting the diaphragm itself, which is trifling in cost and easily replaced, there are no working parts subject to wear or that can get out of order. The valves of the compressors, owing to their small lip,
demand, and for this purpose the easing gear is specially applicable. It consists of a lifter sliding on the end of the bolt rise up close to valves and seats, and has rios or ingers that ifted upit holds up the suction valves so that the air drawn in to the compressor, instead of being compressed, is expelled out hrough the suction valves so long as these are held up. The uspen lifted by the diaphragm shown below it, and which is dmitted from the valve-box by a couple of bolts; if pressure is to hold up the the diaphragm the lifter is forced upwards so as easing valve shown in the separate view, Fig. 4. It is a small easing valve shown in the separate view, Fig. 4. It is a small
valve fixed in any handy position; the pressure of the air in the
show no sijn of wear beyond being just bright ompressor themselves. The combined engine and charge of any intelligent man or lad. The engine room at Beaumaris is 16 ft . by 12 ft ., and contains two of them, besides the air reservoir and cooling tank, leaving ample room. Each of these engines will lift 10,000 gallons of sewage 26 ft . high at the furthest ejection station per hour, at a cost of threepence per hour with gas at four shillings per thousand feet, a result which speaks well for Mr. Shone's system and for the subject of our notice. The engines and air compressors this company are supthere are similar in construction but ware Mr. Shone's system pressors and the engines are larger.

THE IRON, COAL, AND GENERAL TRADES
OF BIRMINGHAM, WOLVERHAMPTON, AND
OTHER DISTRICTS.

the salient points in their report. Furnaces at the bottoms o
shatts he remarked, should be provided with dumb drifts, and
fant fans should be so placed that an explosion would net render them
useless. Mr. Scott pointed out how gratifying it was that South useless. Mr. Scott pointed out how gratifying it was that South
Stafordshire had succeeded in reducing the number of deaths from falls of roof to so low a number, but there was still room for
improvement, and he commended the subject to them as mining engineers. the Birmingham Trades royalties was discussed at a meeting of endee staple industries of the country, and the consequent lowering of the workmen's wages. Its bearing on oompetition with forelgn
countries was explained, and it was stated that whereas English roonaties ranged from 3s. 3d. per ton in this distriet to 6s. 3d. in
Cumberland, those of Germany and France were only 6d. and 8d. Cumberland, those of Germany and France were only 6 d. and 8 d .
per ton respectively. The chairman remarked that when coal was
dear they heard nothing tion whether owners could be dispossessed of them.
The members of the Midland Association of Gas Managers, at
their quarterly meeting at Birmingham, have elected Mr. Henry Hark, Birmingham, president for the ensuing year. During the meeting Mr. J. F. Bell, Stafford, read a paper on "Coal-tar as a,
Fuel for Heating Retorts," which gave particulars of Mr. Bell's experien
cussion.
cussion.
In consequence of the decreased value of residuals, the Wolverhampton Gas Company has announced an advance in the price
their product of 2 d . per 1000 ft t, making it 2 s .6 d . per 1000ft. An attempt is being made to unite the operatives in the trades with a view not, it is stated, to bring about trtireses , ,ut to
devise more reasonable methods for protecting their interest devise more reasonable methods for protecting their interests.
The ironworkers and miners of Oldbury have expressed themselves in favour of such a scheme, and it is stated that a conference of Counties to consider this question, will shortly be held.
The operatives in the Walsall chain trade have decided to accept no modification of the masters' terms which shall be lower than
their recent wages. They declare their intention of living on the their recent wages. They declare their intention of living on the
"starvation allowance" of 2 s , 6 d a week rather than make any

NOTES FROM LANCASHIRE.

(From our own Correspondent.)
Manchester:-The iron trade of this district is certainly developing a decidedly improved tone, and the better feeling to which I
have made reference in previous notes finds an increasing and more definite expression, at least so far as makers and merchants are
concerned. As regards users of iron I do not find that there is any appreciably increased weight of business coming into their hands to bring them into the market at present for any much larger
quantity of iron than has been sufficient to cover their requirements for some time past, but there is unquestionably more inquiry in the market and more disposition to buy, with better prices
obtainable than have been got recently. All this of course sives a more hopeful tone, and if it continues - although the immediate outlook does not point to any definite
substantial improvement
to trannot fail to give some stimulus to trade. The chief factor in the stronger tone which has
come over the market is still, however, the restricted output, and it still needs to be forlowed up by a really better trade. There seems to be a disposition to take a more sanguine view of the
future, and the reports from America are more encouraging. This iron trade who has gone across specially to malke himself person-
 and he writes most favourably of the outlook there, the prospects
of trade being better even than he anticipated. Before, however, any vere there must be some substantial movement in the large industrial branches which are the chief consumers of iron, and this
does not yet show itself. does not yet show itself. The condition of the engineering trades
remains without appreciable improvement, anything like real remains winout appreciable improvement, anytung like real
active employment being confined to a very few concerns, and
these chielly engaged on special work; ; the general complaint is still that orders are very scarce, and any new work coming upon the market is competed for at quite as low prices as ever.
In the iron market a fairly animated tone has characterised business during the past week, and there was again a full average attendance on the Manchester iron exchange on Tuesday, with a
tolerably good inquiry for both pig and manufactured iron. Lancashire makers of pig iron have sold a moderately large weight of iron during the week, and they are now asking an advance of 6 d . t 1s. per ton apon the prices they were taking last week, No. 4 forge
being quoted at 36 s . 6 d and No. 3 foundry at 37 s ., less $2 \frac{1}{2}$ per cent. being quoted at 36 s . 6 d . and No. 3 foundry at 37 s ., less $2 \frac{1}{2}$ per cent.,
delivered equal to Manchester, and they are indifferent about booking further orders even at their advanced rates. In district brands there has been a moderate business doing in foundry quali-
ties, which are firm at 38s. 6d. for Derbyshire and 36s. 6d. for Lincolnshire, less $2 \frac{1}{\text { L }}$ per cent, as the minimum for delivery equal
to Manchester, but forge qualities meet with only a very limited on Manchester, but forge qualities meet with only a very limited
inquiry, and for Lincolnshire brands, to which what business there is doing is chiefly confined, it is difficult to get more than 34 s . 6 d . brands there have been some fairly large sales of both Scotch and Middlesbrough, and sellers
late rates without difficulty.
are meeting with a better demand, and are firmer in price, 51 s .6 d . to 52 s s. less 2 , 2 , being now quoted for No. 3 foundry
delivered into this district In manuactured iron there is more business stirring, and makers, who are mostly pretty well supplied with orders, are asking an
advance of 2 s . 6 d . per ton upon the recent minimum rates, bars delivered into the Manchester district being now quoted at $£ 5$, hoops $£ 57 \mathrm{~s}$. 6 d , and sheets $£ 67 \mathrm{~s}$. 6 d . for singles, and $£ 612 \mathrm{~s} .6 \mathrm{~d}$.
for doubles. These prices are not being held to in all cases; but it would be difficult to place out orders at quite the old rates. It may be of interest to point out in connection with the recent gone up $£ 2$ to $£ 3$ per ton during the past fortnight-that buyers are beginning to realise that, although there are heavy stocks of
Chili bars, these are not in a useable state for actual consumption Chili bars, these are not in a useable state for actual consumption,
and a spurt in the demand might very easily overtake the present and a spurt in the demand might very easily overtake the present
means of refining, with the result that there might be a sudden means of refining, with the result that there mig.
rise in the price of ingot and manufactured copper.
Substantial progress is being made with the erection of the Manchester Jubilee Exhibition buildings, and this week the prospectus
has been issued. In this it is stated that the plans of the buildings has been issued. In this it is stated that the plans of the buildings,
which have been approved by the executive committee, are exceed-
 370ft. long and the same height, and two lower transepts near the ends of the nave 60 ft . wide. At the intersection of the nave with
the central transept is a dome 90 oft. diameter and 140 ft high, and at the intersection of the nave with the low transepts are square pavilions of a lower altitude. The spaces between the nave and
the arms of the cross are filled with exhibition courts, in bays 30 ft .
wide wide. The machinery in motion is to be provided for in a large
annexe, separated from the main building by a 70 ft. road way with a covered fireproof gallery of communication. The Exhibition is
to be opened early in May, 1887, and is to continue open about six to bo phen No exhibits are to be received before the 15th March,
months. except by special permission, and all goods are to be delivered
before the 15th April, and be in order by the 25th April under
penalty of forfeiture of the deposit and space allotted. I underpenalty of forfeiture of the deposit and space allotted. I under-
stand that Meesrr. W. and J. Galloway and Sonss of Manchester,
have received an order for ten of their boilers to be laid down the Exhibition.
A very compactly arranged combined engine and boiler, sfit.
able for agricultural requirements, has just been introduced
by Messrs. Richmond and Chandler, of Manchester, and which
俍 can either be mounted on wheels or made stationary. The
engine is carried on the foundation bed independent of the engine is carried on the foundation bed independent of the
boiler, to which it is only connected by the necessary steam and
water pipes. By this arrangement not only are the earious part water pipes. By this arrangement not only are the various parts
more accessible, but there is a freedom from the wear and tear of vibration, expansion, \&c., which are inevitable under the old
system of mounting the engine on the boiler. Another improvesystem of mounting the engine on the boiler. Another improve-
ment is in the arrangement of the pump, which is usually an annoyance in small engines; this is driven at half the speed of the
fly-wheel shaft, and is thus made reliable. A 1-horse engine and
 introduced an improved water cartridge for blasting in mines,
to which I have previously referred in my "Notes," has now turned his attention to the production of a perfectly safe eleotric
lamp for mining purposes, in which he has also carried out his
object with the aid of water. type, and the special feature is that it is carried for incandescent glass bowl filled with water, and the contact for completing the arccian of theat rectring current is kept up the means of an ingeniously
arranger in the glass bowl. In the water is of course liberated, and the light is at one glass bowis the by the float dropping and thus breaking the electric circuit; or in
the event of the lamp itself breaking inside the glass bowl the light would at once be extinguished by the surrounding water. This
arrangement is applied both to lamps to be used in the working places or for lighting roadways, and Mr. Settle has certainly made an important step in solving one of the difficulties connected with conveying the electric current to the lamps are carried in an india"sparking" in the mine. The annual meeting of the Manchester Geological Society was
held on Tuesday, and Professor W. Boyd Dawkins. was elected president for the ensuing year. The society, which is largely de-
voted to matters connected with mine engineering, and has taken in a very healthy position, both financially and as regards the In the coal trade there is a fairly steady demand for house fire classes of fuul, upon which in some instances a slight advance upon
last month's srices is being got, but all other sorts continue in slow Barrov. -The tone of the hematite pig iron trade is firmer than it was, and there are hopes that at last a revival has set in which the district. Makers have booked orders well forward at current prices, and it is noticeable that users of iron are offering contracts
of some magnitude at present rates, but these are not being readily although heavy contrats are offering all round. Prices are quoted at about 43s. per ton net for mixed parcels. of Bessemer iron
prompt deliveries, and 1s. to 1s. 6 d . per ton on these prices for forward deliveries. Forge and foundry iron in quoted ant ths. per
ton. Stocks are less than they have been for a considerable period, and large deliveries have lately been made out of stocks gated at makers' works and in the hands of which has congre-
But the fuers generally.
 With this view a few furnaces will shortly be put in blast. There for some time. Makers are well sold forward, and have work in
hand which will keep them hand which will keep them busy for something like six months, of they are experiencing a demand which gives every indication by America and other countries during the early future. Prices in quiet demand, buta a fair traide is not doang in merchant requt. stelat. Shipbuilders are still in an unsatisfactory position for orders. Their yards are poorly stocked, and workmen are being discharged to a busy in the marine department only. Iron ore finds a better market, and stocks are being still further reduced, prices
ranging from 8s. 6 d . to 9. pers. per ton at mines. Coal and
coke a trifle dearer. coke a trife dearer. Shipping fairly employed. Mr. J. T.
Smith, speaking at the Mayor's Banquet held at Barrow on Monday, in reply to the toast of ""The Town and Trade of Barrow, said there was a good time coming, and they could
depend on it it was not very far off. Not only had the trade with
which Which Barrow was associated, but, unfortunately, every other sec-
tion of trade throughout the Empire, had been much depressed for some time, but every other country in the world had beeen going
through a similar occasionally of going abroad, and he found distinct evidence that
the depression which existed in other countries in nection with trade and industries was far more keenly felt than in his country; and the forccast of the future with them was not so
hopeful, or by any means so comforting, as it was with tho in Barrow in connection with the hematite trade. On Thursday next he was going up to London, and intended to bring before a Com-
mission sitting there certain facts which he had been gathering for some time past in connection with the he had been gathering.for trade with which this part of the country was interested ; and he the demand for hematite ore would be feyond before us before of this or any other country to produce. The requirements
of America alone were increasing to such an extent that the trade Was coning over to Europe, and the resources of this country were ore, pig iron, and steel had been shipped from Barrow alone to and more than half a milion of tons of supply was rapidly exhausting itself, and the whole world had
been ransacked during the last hematite deposits of a similar character for the purposes of the
steel trade. It was well known that steel required this particular class of ore, and therefore with the increasing prospects of the
growth of trade in the States, and the natural growth of trade that would follow when one country began to move, he believed he unexampled period of depression through which we had passed
in the iron trade of Great Britain would very soon be at an end Whatever might be the state of depression for the moment, they
could look forward to the future hopefully, and feel thankful they coluld look forward to the future hop.
were coming to an end of bad trade.

THE SHEFFIELD DISTRICT.

Mrssrs. Willans, Arnold, and Co., Spanish Steel Works, furnace bars for steamships of the Guion and Monarch lines.
These bars are the invention of John Nepomve Moreath, C.E., late chief engineer of the Austrian Navy, and permanent member of to be very simple and effective method of prey are said The system consists of the automatic of preventing of a smoke.
bined with the formation of vapour in a portable cister the ash-pit, which together are mixed in proper prable cistern in
at the proper temperature, with the developed cartiond
ans thereb gas, thereby producing perfect combustion and consumption of
smoke, while at the same time smoke, white at the same time effecting an immense saving of fuel.
A licence to manufacture and use the German patent at the Essen Works has been purchased by Krupp, and thie system is in operation
in London, Liverpool, Glasgow, Edinburgh, Sheffield, and other
At the Spanish steel works here a trial resulted in a great saving
of fuel and in the entire absenee of black smoke. 1 had an oppor
tunity of withessing the operation of the invention last week. The boiler in trial was a double-flued Lancashire boiler of a nominal 28-horse power, and at the time it was generating steam for driving the entire machinery at the place. On every side the tall chimneys
were sending forth black smoke, while that at the Spanish works
was limited to a thin vapour, which was scarcely perceptible to the eye. The importance of the invention in diminishing the quantity of smoke will be more valued here with a view to a purer atmo-
sphere than to its undoubted merits in economising fuel, as coal is so very cheap in this quarter.
Sir Frederick Thorpe Maffin, Bart, M.P., chairman of Messrs. Thomas Turton and Sons, Sheffield Works, Sheffield, was precongratulating him on the attainment of the dignity of a baronetcy, ties which have distinguished Sir Frederick's connection with the Sheffield Works for over a quarter of a century
On Saturday a deplorable disaster occurred at the Wharncliffe, Coi, at Altofts, near Normanton. Twenty-one workmen were destroyed. The pits were considered about the safest in the destroyed. The pits were considered about the safest in the
district, employing altogether about 1100 men and 600 boys. The
proprietors a year ago, acting upon a recommendation from the proprietors a year ago, acting upon a recommendation from the
Home-office, introduced safety-lamps of the most approved type. to their giving a dim light; and it is said-though it has not yet with naked lights. Another cause is given-the escape of gas fron old fittings. It is alleged that the form of light preferred by the men is the ordinary candle, stuck into a lump of clay for a candle-
stick. If this is the case, with such close muggy weather as Friday and Saturday last, it is no wonder that explosions occur, particularly if a fall of roof liberated any quantity of gas.

THE NORTH OF ENGLAND

The Cleveland iron market was exceedingly firm during the whole of last week, and a considerable amount of business was
done at advanced prices. There were, however, but few trans-
actions at the market held at Middlesbrough on Tuesday last, not or want of buyers, but because sellers were reluctant to commit stemselves for forward delivery. Prices are consequently still
steadily advancing. Buyers now freely offer 30s. 9 d . per ton for
No. $3 \mathrm{~g} . \mathrm{m} . \mathrm{h}$. for early delivery, but the majority of sellers ask No. $3 \mathrm{~g} . \mathrm{m} . \mathrm{h}$. for early delivery, but the majority of sellers ask
31 s, which is an advance of $7 \frac{1}{2}$ d. per ton on the market price of a
week ago. For delivery over the first half of next year makers week ago. For delivery over the first half of next year makers refuse to entertain less.
Glasgow speculators are said to have given 31s. 3d. per ton for
Cleveland warrants, but the volume of business done was not large, holders so believing it to be to their advantage to keep possession ittle longer.
Shipments are proceeding satisfactorily, 13,915 tons having been
ent away between the 1st and 3rd of October. Orders for finished iron have recently been given out with rather
more freedom than for some time past, for consumers are beginning to fear that prices may rise in sympathy with pig iron. Manufacarers, however, have not yet altered their quotations, and
angles, and bars can still be bought at the prices last quoted
The stock of pig iron in Messrs store was on Monday last 299,871 tons, which represents an increas
of 844 tons for the week. At Glasgow they hold 823,809 tons, o The Cleveland ironmasters' reported.
rerns Ser Sember were issued n the 4th inst. They have been anxiously looked for, and prove the month there were eighty-four furnaces in blast against ninety-
two at the end of August. Of these only fifty-two are now naking Cleveland iron, or twelve less than in August. The mak of Cleveland pig iron was 116,109 tons, or 23,990 tons less, and
the make of hematite and other kinds of iron was 74,611 tons, or 624 tous more than in August. The make of iron of all kinds
was 190,720 tons, representing a net increase of 16,366 tons. The pig iron in stock at the end of the month in the whole district was
720,422 tons, being a decrease of 7672 tons. These statistics are egarded as highly satisfactory.
ncrease of 8741 tons over those Scotland took 31,043 tons ; Germany, 14,158 tons ; America, 7080 tons; Russia, 5080 tons; ; Holland, 4295 tons; and Norway and
Sweden, 3113 tons. Shipments of manufactured iron and stee were somewhat less than in August, only 35,700 tons having left, as against 37,260 tons previously. India has been by far the best
customer, no less than 14,881 tons having been sent to that country. tration for the North of England finished iron trade, an epitome of which was given last week, showed that realised prices wer 2s. above shillings for pounds. With this report in their hands, Manufacturers' Association met on Thursday, the 1st inst., to conOn whether or not they should demand a reduction of wages. wages have been relatively as much as 1s. per ton, or 10 per cent. would afford enormous relief to the employers. On the e effected without going through all the loss of time and worn
incident to an arbitration. Then it is exceedingly unlikely that the award wourd be in the employerrs' favour to any considerable
estent. Another alternative would be to give notice to terminate the existence of the board itsolf- - astep which a majority of the employers are averse to take; although all of them are well ing of the cost of production, as might be expected to result in workers. Whilst considering their future policy as regards the
wages of their workmen, the employers have been compelled to take account of what would probably occur if a substantial imprices. Would not the operatives at once demand still higher
wages, without giving credit for the proportionately high
ones they are now enjoying? It is almost certain that they would do so; for the demand for their services would be situation. The value of the necessaries of life would also be tending upwards, and the purchasing power of money downwards, so be distinctly worse off than at present. This is a state of matters they could not be expected to put up with, if they had any power
to alter it. Under all these circumstances, the employers decided on the following resolutions, copies of which were duly forwarded
to the operative secretary, viz: - "That if the operatives undertake not to claim any advance in wages until the
Dale sliding scale applied to the average net selling price justifies it, no formal notice be given at present for a further
reduction in wages. This resolution shall not hereafter be inter preted to mean that the employers are debarred from claiming a
reduction below the present rate if a still further fall 'in the net average selling price takes place." "That the secretary communiof Conciliation, with an intimation that the employers intend to
bring the subject forward for consideration at the next general
meeting of the standing committee." Judging by past experience,
it is probable that the operatives will agree to these proposals, as
affording them freedom from present disturbaneo of their wages
rates. But it is greatly to be feare that, all the same, they will
fore force the hands of their leaders, as they did in 1880, should the especially as the individual members of the Board may then not be the same as those who belong to it now

NOTES FROM SCOTLAND.
 (From our oum Correspondent.)

THE Scotch pig iron trade has been excited this week, in consemoved up last week considerably, and just at the same time an accident occurred at Gartsherrie Ironworks, which threw eight of produced additional excitement in the market, and a very large
speculative business was reported, prices advancing beyond what was anticipated, or what the circumstances of the legitimate trade appear to justify. The past week's shipments were porr, being
only 7645 tons, as compared with 7861 in the preceding week, and
ond 11,297 in the corresponding week of 1885 . At the same time the
arrivals of Middesbrough pigs at Grangemouth were 8320 tons arrivals of Middlesbrough pigs at, Grangemouth were 8320 tons
against 5790 in the preceding week, and 7635 in the same week of 1ast year. The iron sent into Messrs, Connal and Co.'s Glasgow
stores in the past week is 1294 tons, and it is probable that it will decrease in amount.
Business was done in the warrant market on Friday at 40s. $4 \frac{1}{2} \mathrm{~d}$.
to 40s. 9d. cash. Monday's market was strong at 40 s .10 d . to 40s. 9d. cash. Monday's market was strong at 40s. 10d. to
41s. 3d. and 40s. 111 1 d. cash. On Tuesday transactions occurred
 from 41s. 11d. to 41s. 3d., closing at 41s. 7d. cash. To-day-Thursday-being a hhlididy, no iron market was held.
The prices of makers' iron are advanced all round, as follows :-
Gartsherrie, f.o.b. at Glasgow, No. 1, 46s. per ton, No. $3,42 \mathrm{~s}, 6 \mathrm{~d}$.

 37s. 6d. ; Govan, at Broomielaw, 43s. 6d., and 37s. 6d.; Shottt, at
Leith, 45s. and 44s.; Carron, at. Grangemouth, 46s. 6d. and 43s. Gd.; Glengarnock, at Ardrossan, 43s. 6 d .and and 40s. 6 d ; Eglin-
ton, 41 s . 6 d . and 37 s . 6 d .; Dalmellington, 42 s and 38 s . 6 d . ance occurred this week at Motherwell in connection with the strike of stell workers at the works of Messrs.
Colville. The men having declined to work at terms the emplogers it justined in paying, and remaining out for a succession of weeks, conas resolved to bring workmen from England to execute the arrival of the men by train they were attacked by the strikers, and the town has since been in a state of confusion.
The past week's shipments of iron and steel yoods from Glasgow embraced locomotives and tenders worth \& 10,70inor Kurrachee; a
steam launch, $£ 778$ for Monte Video ; machinery, $£ 10,000$, including a sugar mill valued at £7074 for Havana; sewing machines, £25,10,
In the
In the coal trade there has been rather less doing in the past
week. As the miners still keep to short time of eight hours week. As the miners still keep to short time of eight hours,
working only five days a week, supplies are difficult to obtain at may have, the men wit not raise more than the mayd anve,
and are are practically yo so stocks at the Westo of Scotland pits, the restriction is making itself felt. the the eoal masters can manage
to tide over the present month, their dificiculty is likely then to cease, as the pressure for shipment will then be over for the season. as soon as eady to put out more coal than is required. The total
will be real
shipments of coal for the past week are 16,000 to 17,00 tons less than in the same week of 1885 . They include 20,340 tons from Glasgow, 122 at Greenock, 4121 at Ayr, 995 at Irvine, 18,190 at
Burntisland, 4152 at Leith, 11,190 at Grangemouth, and 4307 at Burntisland, 4152 at Leith, 11,190 at Grangemor
Boness. The prices are nominally without change.
A strike of miners which has lasted eleven weeks at the shale
pits of the Clippens Oil Company has now concluded. The occa sion of the strike was a reduction of 3 d . per ton of shale, and the
men have gone in on the compromise of only $1 \frac{1}{2} \mathrm{~d}$. being deducted, men have gone in on the compromise of only $1 \frac{1}{2} d$. . .ek.
and they are to work five days of eight hours a week.
A ctions have been raised in several of the Sheriff Courts of Fife
by coalmasters asking for damages a aganst individual miners by coalmasters asking for damages against individual miners for
failing to work eleven days a fortnight in accordance with the egulations of the collieries. The Miners' Union has resolved to appears to be that as the masters do not give them eleven days in Ir. Weir, the miners' ew days ago that the foob. price of coals had been advanced 3d.
and the price of household coals 6 d . to 1 s .6 d . per ton, and it was resolved to send deputations to the masters to. solicit an advance of
wages equivalent to the amount by which they were reduced in February last.
The Oakbank Oil Company's shale miners, to the number of ing of the Midlothian shale miners, whose object is to obtain 6d. a day advance and reduce the working hours. II is stated that the months.
During, September 28,421 tons of new shipping was launched
from Clyde yards, as compared with 13,331 in September, 1885 . For the nine months the launches aggregate 138,890 tons, against
139,209 in the same period of last year. But the outlook of the 139,209 in the same per
trade is unsatisfactory.

WALES AND ADJOINING COUNTIES.

(From our own Correspondent.)

A slightur better tone has characterised the coal trade this week at Cardiff and at Newport, but has not been so marked at
Swanse. In the matter of rrice there is no change, except in
small steam, which commands 3 d . to 6 d . per ton more than late quotations on account of the improvement in the patent fuel trade. Cardiff sent away nearly 8000 tons patent fuel last week. A
slight move for the better is shown in house coal collieries. This is about the time for working contracts, and usually an improvement sets in. Another colliery has been struck of the list- -the Old
Brithdir, one of the Dowlais pits. This was worked out last week, Notices are
tates that outher n am sorry to learn, at Cymmer, and rumour unless prices move out of the low level they are in coalowners who can afford to colose will do so. It is not everyone who can afford
to close and wait until better times; but the more who can the more hopeful it will be for a change. Present prices mean giving does not make up for price.
Newport coasting trade last week showed more favourably than the previous week, 25,000 tons of coal being despatched.
There is a good healthful feeling at Newport shown in building, improvements,
few days ago on visiting the place.
Sir George Elliott is evidently bent upon great things there. I see his collieries in the Rhymney Valley are doing well.
The Monmouthshire
, old briskly a unless railway enterprise diverts that mineral wealth to Cardifft, have arranged its water supply. The present arrangement is ,
course, admirable, and a bountiful supply of the purest water wil
be secured, but the expense will be over $£ 300,000$, and the hardcan now be obtained from the Suficeerncy of excellent spring water town of twie the size. I have heard that Bristol was offered the
the
supply, but did not require it supply,
springs.
With
With respect to the tin-plate trade, there cannot be two opinions
but that the make has been too great. Since the stoppage and notices prices have gone up, and even wasters at 11s. 6 d. have been caught at eagerly. Good plates now are quoted from 12s. . d. ., and
the figures 12s. appear to have gone out of the market, having had a longer permanance there than was good for men or masters. This week's tin-plate exports from Swansea will be large.
The reforming of the Ystalyfera Works promises well, Mr. managing director of the new; Colonel Sheppard chairman.
The Barry Company is advertising for 2000 tons of rails, 65 tons
f fish-plates, and 135 tons of fastenigg

NOTES FROM GERMANY.

IT seems that this country is the last to be affected by the upward tendency of other markets, for whilst the iren trade is
decidedly hetter in decidedly better in America, and in England, France, Belgium, and
Austria it shows encouraging features, all that can be noticed here is that prices have no more such a downward tendency as hereto-
fore. Yet most of the finished ironworks both in Silesia and Rheinland-Westphalia are at full work on season orders, the excep-
tions being those which make rails and wire rods, though steel rods are rather those which make now. The State Railway Administration at Cologne has sent out tenders, to be awarded on the 20th inst, for 5150 t . of steel rails, 7100 . fish-plates railway requirements Further, a tender for twenty luggage and 604 goods wagons. This is so far welcome news for the respective works, but as the compe-
tition will neeessarily be severe, especially from Belgium, which is near at hand, prices wit be cut to the finest point, and most Frorge pig in Silesia still costs 38 to 42 and foundry 48 to 50 M . pt., but maintains its price with difficulty, though more forge is now being sold than some time back. The rolling mills have plenty of
orders in hand, and are working full time. Below 85 M . p.t. the orders in hand, and are working full time. Below 85 M. p.t. the
works would not book any more orders for forward delivery.
Plates are not in tuite for coke 130 , and for superior qualities 140 M . p.t. In RheinlaridWestphalia, buyers are still holding back orders for the new quarter in the hope of securing concessions on prices, but this the cases the present quotations leve noed, if the expected relief des not soon come the financial position of the works will be a difficult one this winter. Foundry
pig N Nos. . to 3 cost 43 to 50 , forge 39 to 41 , , eessemer 40 to 43 , Spiegeleisen 45 to 46 , Luxemburg forge 28 to 29 M. p.t. Common
merohant bars cost 9 to 93 , girders 85 to 0 Boile Blates 130 to 138; thin sheets 123 to 125 ; stiee rails 115 to 125 M . p.t. American orders have reached the latter country, but even with the eaddition of theese the works have not now full work, so the
combination has decreed a reduction of output of 10 per cent., but of course without altering prices.
There has been a sal
There has been a sad accident at the coal mine "Consolidation" impressions, by the ignition of coaldust, by which fifty men lost There were paid in wages to the mual mined.
The line Rhenish-Westhparian coalfield last yeoar M. $88,030,000$, and as
there were 101,700 recipients, that makes M .806 there were 101,700 recipients, that makes M . 806 per man, and it
appears that wages make up 60 p.c. of the cost of getting the coal. The Cockerill Steel Works project at Nicolajew has received a temporary check, inasmuch as the Mimister of Communications has selected, because the Government might eventually require it for the commercial docks.
by the erestricted output of furnaces, there is neeessarily less move. ment, and prices for all sorts of coal remain unchanged.

NORTHERN SHPPrivg. - The feeling that the great shipping interest of the North-eastern ports, and the industries allied
therewith, have passed the worst and are beginning to improve, gathers strength. Wherther there are ane sustantial grounds
for so pleasant belief, or whether the wish is father to
the thought, and the idea rests merely whon street talk the thought, and the idea rests merely upon street talk
and newspaper paragraphs, is not at all colear as yet. On
the other hand, there is the undoubted fact that numbers of vessels lately laid up in port are now out at sea. Thus, three months since there were twenty-five steamers, aggregating over
20,000 tons, lying idle at Sunderland; now there are only two, with a capacity jointly of 2000 tons, and one of these is on the eve
of her departure. The 600 seamen who at the same date were of her departure. The 600 seamen who at the same date were
lounging about the streets have dwindled down to about 100 . Freights are certainly better. A typical case is that of ore ships
from Bilbao, which command 1s. 3d. per ton more than they did. Shipbuilders are receiving daily inquiries for new vessels, and now
and then business results. A case in point is that of Messrs. will employ a number of idle hands, and change destitution into comfort in many a cottage home during the ensuing winter. On
the other hand, it must not be forgotten that the Baltic and Black Sea navigation will shortly be suspended by ice. This may bring a reaction. There will be keener competition for freights to other
ports. The advantage gained may be lost, and with it the hopeful
feeling which the
Afloat in a Cratrr.- Captain C. E. Dutton, of the U. S. GeoIogical Survey, has been recently engaged in making a stuay of show that he has discovered probably the deepest body of fresh
water in the country. Leaving Ashland, Oregon, on the 7 th of July, his party, escorted by ten soldiers, provided through the
courtesy of the general commanding the military department of
thr 13th, having brought with them boats so mounted on the running gear of wagons as to bear transportation over a hundred miles of
mountain road without injury. The boats bore the transportation without strain or damage, and preparations were at once begun for very great, being at the place selected about 41 deg. or 42 deg., and the descent partly over talus, above covered with snow, and rocky, broken ledges lower down. The boats entered the water quite un-
harmed. The process of sheathing them, rigging the tackle, and lowering them occupied four days. A couple of days were occupied possible way-and in examining the rocks and structures of the wall in its various parts. Next followed a series of soundings.
The depth of the lake considerably exceeded the captain's anticipations, though the absence of anything like a a talus near the the water-
line already indicated dep water around the entire shore depths range from 853 ft . to 1996 ft ,, so far as the soundings show and it is quite possible and probabbe that depthe soth greater and
andllower may be found. The average depth is about 1490ft. The descent from the water's edge is precipitous; at 400 or 500 yards from shore, depths of 1500 ft . to 1800 ft are found all around the
margin. The greatest depths will probably exceed 2000ft., for it is not probable that the lowest point has been touched, The sound-
ings already made indicate it as being the deepest body of fresh

AMERICAN NOTES.

(From our ovon Correspondent.)
New York, Sept. 25th.
THE railroad companies, large and small,
hroughout the States continue to be heavy hroughout the states continue to be heavy nd all kinds of construction material. The purcompanies are now in Eastern markets negotiating
for supplies, part of which are wanted immeiately. The peculiarity of the railroad demand at this time is that requirements for the next six
months are being provided for-a policy which is having an inspiriting effect upon the industries generally. Heretofore rail way managers have
deemed it unwise to buy for forward requirements on account of the uncertain tendency in the material market. Within the past few weeks
Western rairroad builders have placed contracts with railmakers for rails to be delivered in March, April, and May at 34 dols. Large orders have been placed within two weeks for passenger and
freight cars, and at this writing there are negotiafreight cars, and at this writing there are negotia-
tions in progress by the purchasing agents of the tions in progress by the purchasing agents of the between 2000 and 3000 cars for coal, grain, lumber, and similar purposes. It has been stated on good authority that there are not half a dozen and guarantee delivery of cars within sixty days. -one in Illinois, and the other in Tennessee. The makers of car
wheels report a similarly active demand for wheels report a similarly active demand for wheels; car axle manufacturers have secured
contracts from some fifteen railroad companies uring the past two weeks for repairing purposes, The locomotive builders are busier than for two years, and ten locomotives have just been turned
out at Philadelphia-where the largest locomotive out at Philadelphia-where the largest locomotive guaranteed speed of a mile in forty seconds. There is a great deal of urgent inquiry Railroad earnings are improving. Reports from forty-five roads for the month of August show
earningsat $18,000,000$ dols., against $15,560,000$ dols. for August of last year. During the past eight months the railroad earnings show an increase, as against the same eight months of last year, of
$6,000,000$ dols. The consumption of all kinds of manufactured products and cereals is much in pparent increase figures, but a portion of the tocks larger than have heretofore been carried. Pig iron quotations are 19 dols. for No. 1
foundry, 17 dols. for No. 2, and 16 dols. for gray o quality. The store demand for finished iron is decidedly stronger than last week
Reports from Pennsylvania, Ohio, and farther Western States this week show a very heavy
demand for all kinds of manufactured products, demand for all kinds of manufactured products,
covering iron, steel, hardware, cutlery, machinery, covering iron, steel, hardware, cutlery, machinery, demand for cars, car wheels, locomotives, and
railway material generally. All of the locomoive builders who have been consulted within three or four days admit that their orders for the
past thirty days have been larger than for the previous six months, and that their assurances or work for the coming winter and spring are such as to lead them to place large orders for
future delivery with the manufacturers of matefuture delivery with the manufacturers of mate-
rial. Reports just received from the leading car rial. Reports just received from the leading car
manufacturers in the Western States particularly, and specifically at Detroit and Chicago, show that railway companies are hastening in large orders, and that there will be no idleness or dulness during the next six months. Our leading trunk and lumber shippers are in many cases making grievous complaints about delays. Material is
dvancing from 1 dol, to 2 dols. per ton, and even nthracite coal will be advanced 10 c , and even October 1st, and 15 c . to 25 c . per ton on Novemer 1st. The effect of this announcement has s well as of bituminous and coke, to secure themselves by the placing of orders at fixed pricesWhich is being very gonerally done-the cumula-
tive effect of which is to create the appearance of great scarcity of material in the market, and to alarm the rank and file who are unable to secure early deliveries, with the strong probability of higher prices. Building material of all kinds is in very active demand, and in some lines there is
an advance. The receipts of lumber are enormous at all Atlantic ports. The cause of this is, that in primary markets in the North-West and South-East there are attempts at combination by which prices will be advanced in November and not attach much importance to these rumours of advances in iron, steel, and lumber, but it is only proper that the tendencies in that direction should oe recorded. There is a good deal of inquiry for Treign material this week, but very little business.
The railroad companies are heavy purchasers of naterial, and construction is being crowded along retty close on to the 4000 mile limit by October sail hailoms at 27 dols. 50 c .; plate iton, 26 dols. to c.; old American rails, 22 dols.; English rails, market presents a very animated appearance this week, and there are indications of increasing for lead and tin-plate. Western buyers and ordering tin-plate very freely, but the stocks in second hands are sufficient for all current demands.

NEW COMPANIES.

The following companies have just been regisHolden (Railway and Tramway) Patent Chair This company proposes to acquire the whole or No. 3778, dated 17 th September, 1880 , granted to No. 3778, dated 17th September, 1880, granted to
John Holden, of Nelson, Lancaster, for improve
ments in the permanent way of railways and
tramways. It was registered on the 24 th ult. tramways. It was registered on the 24 th ult
with a capital of $£ 2000$, in 80 shares of $£ 25$ each The subscribers are:-

Horsfall, Brierfield, brewer
Horsfall,
Brierfield, brewer

. Cuden, Burnley, wine and spirit merchà
Most of the regulations of Table A of
panies Act, 1862, apply to the company
West Australian Midland Land Grant Railvay This company proposes to adopt an agreement of 31st August between the Midland of Wester Australia Land and Railway Syndicate, Limited,
and John Profitt (as trustee for this for the acquisition of a contract or concession granted by the Government and Colony Western Australia to John Waddington, for the construction of a railway from Guildford to th Greenough Flats, in the said colony. It wa $£ 500000$, in $£ 10$ shares. Power is taken to pro mote and effect emigration to Western Australi by the establishment of depôts and agencies for
emigrants in any part of the world. The subemigrants in
scribers are :
B. Chapman Browne, C.E., Neweastle-on-Tyne.. Share B. Chapman Browne, C.E., Newcastle-on
Stephon Mason, llassow, manuatarer
o. J. Trinder, 4, St. Mary-axe, shipowner

The number of directors is not to be less than five nor more than ten; the subscribers are to
nominate the first; qualification, 100 shares; the nominate the irst; qualification, 100 shares; the
company in general meeting will determine remuneration.

This company was registered on the 28th ult This company was registered on the 28th ult. with a capital of $£ 5000$, in $£ 1$ shares, to carry
into effect an unregistered agreement of the 31st August between Henry Porter, John Thomas Thomas jun, of the other part, no particulars which are given in the memorandum of associa
tion. The subscrivers are:-
C. Barker, 37 , Gracechurch-street, suirveyor
Porter, stockton-on-Teses, engineer T. Thomas, Redcar-, accountant

s. T. Jenvinings, ii4, G̈reshäm Ḧouse

The number of directors is not to be less than
three nor more than seven; qualification, 500 shares.

Pilgrim's Rest, Limited.

On the 23rd ult. this company was registered acquire and work mineral properties, and generally to trade as miners, smelters, and dealers in metals; power being also taken to develope the to lay out towns and villages, and to construy public works of all kinds. The subscribers are :
Cecil Buckland, 8, Chadwick-road, Peckham, Share
 E. clerk Chürchouse, $\ddot{16}{ }^{\text {en }}$, C̈larënce-roäd, L̈ower Herbertit Mott, 27, Brewster-gardensens, Nörth $\ddot{\text { Ken- }}$ sington, accountant
Arthur Cohen, 49 , Buckingham-pläce, Brighton,
 H. Newman, 47, Waterton-road, Westbourne

The number of directors is not to be less than three nor more than seven, the subscribers are to appoint the fir directors (any subscriber being
eligible), and an .oo act ad interim t the director eligible), and ar. co act ad interim; the directors so appointed are to retain office until the ordinary
general meeting in 1888. The qualification of director will be fixed by the shareholders at the first or any subsequent general meeting, and until so fixed, no qualification will be necessary. Th remuneration of the board is to be at the rate of 5 per cent. of the net profits, but in the aggregate
is not to exceed a sum equivalent to annum to each director. No director is to receive a less sum than $£ 100$ per annum, and in the event of the percentage of profits being insufficient for
the purpose, that the purpose, that amount to be paid or made up
out of the assets of the company irres out of the assets of the company, irrespective o
profits. This remuneration is to be exclusive o any special remuneration to the managing director, or to any director for extraordinary services ren-
dered. dered.
ESt. Leonards-on-Sea Pier Company, Limited, This company proposes to construct and mainSea, and in connection therewith to Leonards-onsaloons, pavilions, waiting.rooms, and rooms fo was registered on meetings, exhibitions, \&c. It was registered on the 23 rrd ult. with a capital of
$£ 25,000$, in $£ 5$ shares, with the following as first subscribers:-

 John Bray, 13", south "Colönnäde, "̈t. Leoöarders,
 The number of directors is not to be less than three nor more than seven; qualification, ten
shares; the first are the subscribers denoted by an asterisk; the company in general meeting wil appoint the remuneration of the board.

THE PATENT JOURNAL.

Whenlications $\overline{\text { for Ler Letters Patent. }}$. ** When patents have been "communicated", the
name and address of the communicating party are
printed in italics. name and adaress
printed in in italics

12,274. Mahisiso R
 8th September, 1880

O. Pihlfeldt, Birming ham.

 Si. Fag Beatrrs, G. H. Thomas, London. 12,2s3. Nuw ALARUM, T. Glennie and R. Glennie 2,284. Wisshive Machines, J. Summerscales and H.
 12,286. SEwinc together the Ensp of CALTco, dec., for
 2,288. SEcURing Ho
 ,

 Mahaffy, Lendon.
 2,2996. Ralluway Signalung Apparatus, w. J. Tripp,
 W. J. Boor, London.
12,299. HYpRavino Prss for Bendina Copper Pitrs, 2,300 Mansminionky for Curing Prolapsus, \&co., C
 A. Cohen, and E. Cohen, Londoni, A. M. Wood, 22,303. Fire Kindirbs, F. Edenborougb, London. H, Humphrys, London.
12, 305. Comikined Trachers' Desk, \&c., J. C. Mewburn.
 London.
12,307.
O_{R}
L2,307. Ornameattation of Wood, dce., G. W. Ley,
London.

 Londid.
12,34. Diging Machings, H. de Mornay, London,
12,315. AUToMATIC ELEeTric CUT-oots, A. Bernstein, London Aomatic electric Cur-outs, A. Bernstein,
12,316. Couphing and Uncoupling Shaft, J. W. Lee,
12,317. Reorivisg, dre., Prepaid Messages, P. Everitt,
 Londing
12,319. Treathent of Raw or Manupactured Antmal

 United States.) Machines, N. Wheeler and W. F. Dial,

$29 t h$ Septenber, 1886 .

2,330. Waste-remventing Cistern, J. J. Tylor
London.

Oldham.
2,36. AUTatatic Arr Fitier and Ventilator, J.
Wood, Bartow-in-Furness.

 Manchester. 2,343. Fire-extinguishing Apparatus, J. B. Hannay,
 d. F. Hessing, Manchester.

30th September, 1886.

12,385. Fixing and Securing the Lids to Jugs, Clarke, Cobriage.
12,388. Looms for WEAving, C. Thompson, Halifax.
LoNTroLING Hoises when Driving, C.Thomp son, Halifax.
12,388. REEEPTALES for Ashes, C. Thompson, Halifax.
12,389. PREVENTING AcCIDENTS in Opening and CLosing Railway Carriage Doors, , D. Thompson, Halifax.
22,390. Tram Way Cars, \&c., W. E. Fowler, Westminster. Chorlton-cum-Hardy.
12,392. STERINE PERAMBULATORS, R. J. Urquhart, Chorlton-cum-Hardy.
12,393. LUBRICATME the SpindLes of Spinning and
Doubing Frames, J. Taylor, Manchester. 394. Springs for Road Carriages, H. F. Lloyd,
 12,397. Regulating the Opening and Closing of Fan2,398. ADJubtable Ball Bearings for Bicycles, \&c.,
J. Alward, Coventry.
2,399. Bicycles and Tricycles, w. Andrews, Birmingham.
m, inou. Indicator for Railway Carbiage and other Door Fastenings, . Whithead, Birmingham.
2,401. OPENIG, \&C., CASEMEATs, \&c., E. W. Taylor,
Birmingham. Birmingham.
2,402. EEGGTOR for Breech-Loading Small-arms, E.
G. Hanson, Birmingham G. Hanson, Birmingham.
12,403. AvTomailcally Tightening Gearing Chains,
W. M. Trousdale, Leeds. 2,404. Reflecting Telemeter, W. H. M. Chribtie, London.
poo. Granulating Grain, \&c., J. Ritchie, Liverpend
pool. 2,407. Fixing Pipes to Buildings, de., W. Macfar-
lane, London. 2,409. Collar, đce., Polishing Machines, T. Cudlipp,
Lond London. London.
2,411. Bathing Machine, H. Maples, London.
2,412. SMoKe-consuming Stoves and Furnaces, Hoblyn, Cornwall.
2,413. Pousishing Lrouid for Brass, \&c., W. C. Boult
and F. J. Ryan, London. Robinson, Northampton.
2,415. ElECTRo-MOToRs, O. W. F. Hill, London.
2,415. ELECTRO-MOTORS, O. W. F. Hill, London.
2,41. RATCHET Braces, T. Bass, London.
2,417. AUTOMATIO GAUGE Cock, P. Barclay, Lon
 12,419. Producing Distilled Water from Sea Water,
A. L. Normandy, London.
2,420. Therao-eyectrical Apparatus, B. Boothroyd, London.
2,42. Cementitious SLabs, W. D. Curzon, C. B.
Wiliams, and the Patent Paving and Construction
Company London
 2,423. Sprivgs for SADDLES, C. C. Cotton, London.
2,424. SToppers and NEcKS of Bottles, A. Johns,
Manchester. 12,425. Cooking, T. James, London.
2,426. SAFETY Apparatus for Steam Generators, G.
Downing.-(E. Brouillet, France.). 2,427. BURERS for MINERAL OLLS, G. Loberg and T.
S. Perkins, London. 2,428. Extracting Gold from Ore, E. R. Cummins.

- (G. Ph. Schzeder, Portugal.)

1st October, 1886.

2,429. Ends of Beer Taps for Barrels, J. Morley,
Upper Saltley. Upper Saltley.
2,430. PPILEY Boss for Grasping Various Sizes of
SaAFTS, T. Sugden, Manchester. S.431. OPERATIRG the PIIE CUTTING KNIFE in Looms,
W. E. B. Priestley and W. Deighton, Bradford.
2,432. SWEEPING, CHIMNEYS, W. Q. Portbury, Shanklin.
2,433. CURTAIN Hooks, J. G. Rollason, Birmingham. LaMPs, F. R. Baker, Birmingham. Roilason, Birmivgham.
2,436. LadY's SaFEY Pooket, F. Hughes, Ruabon.
REFRIGERATING MACHINE, E. Buss, Man2,438. SAFETY Guard for Tram Engines, \&c., S .
Collier and R. Plant, Birmingham. 2,439. KEYLESS WATCHEHE, H. M. Robottom, Shustoke.
2.440. SToP MortoN for Doubing WINDING Frames,
H. Wren H. Wren, Manchester.
SI4EVES, BETIER LACNG of H. F. Hitcheock, Coverivas to Flour
Selfast. Sirvers, \&c., H. F. Hitchcock, Belfast.
S. J. Anson, AUTOMATIC Height MEASURING, Birmingham.
e,443. SHIPs' Loas, W. J. Kent and A. King, London.
,44. Borthe and JAM JAR CASES, R. Rear, Man2,445. Shuttles used in Looms for Weaving, T.
Martin, Halifax.
2,446. Starting and Stopping Tramcars, ec, G. Robson, Livergool.
12,447. PREVENTING SLippriva of HANDIEs of TMENIS
and other BATS, T. G. Beaumont, Halifax.

 L.ondon
12,45t. GLoves, F. J. Martin, London.

 Fraser, London.
12,459. Houbrive Shaving Soap, K. G. R. Vaizey.

 J. Heldmann, London.
12, 63 .
Siws
 McLean, Glasgow
2,466. Interlocking Raflway Sional Levers,

 C. F. Metcalfe, London.
12,474. SBoks for Horsss,

 many.).
12,478. Regnerative GAs L.aps, D. Hulett and R.

Hirst London | Hirst, London |
| :---: |
| 2, 2 , 7 T. TNDA-RLBB |

 Gossage, T. T. Mathieson, and J. Hawliczek
London. 12,4s1. Foniding or Co. Lapsible Receptacles, E. J.
Feiden, London.

 Manchester.

 Beck. (E. Labois Prance.)
13,491. Elecrrio Clooks, V. Reelus, London.

2nd october, 18s6.

12,492. Imitatron of Stonss on Wood Furniture, w.

 and A. Moors, Ashton-under-Lyne.
12,993. Composition for Removina Sc,

I, B. Hannay, Glasgow.
12,too. METAL Hooss, S. Bott. Birmingham. 12,501. STRerohiva YARN, T. Frusher, Bradford.
12,502 CRUTOHES and WALKING STAFFS, W. Daniels, 12,5ho3. CErditin Parts of Metal Bedsteads, E. Peyton, London. 7 th August, 1886.
12,504. FRicrion Couruine, W. Pollard and J. Pollard, London.
 2. 5hef. Spinining and WISTING SpindLes, s, Lucas,
 chester.
12,50. PEN CLEANER, H. P. Miller, London.
12,511. CABBINEIS for Books, de., B. L. F. Potts,
 SHAFTS, A. R. Waddell, Kidderminster.
12. $513 . \mathrm{RALLWA}$ CHock, , S. Snow ball, Neweastle-upon12,544. Lever Sash Lock, T. E. Lane, Birmingham.
12.515. Cutrisg and Skwing. Butrox-Holes, de., C.
 Sainty, Norwich. Tablets for Memorial Wreath

12,522. GAs--ritrincas, E. Harrison and T. Chilton, London.
L2andon.
LiL
Lamps, 12,524.t. Loock Nors, J. Dunbar and J. J. D. Cleminson,
London.
Lon

 12.55.5. Manteacture of SUGAR, A. and L. Q. Brin,

 12.538. Constructiox of THRoptrie Valves, w. Jones,
London,

12,539. Decoration of Wrovart Iron Girders, E. C.
Allam, London
12.540. SHow Bonsd for Advert:sing, E. C. Allam, L2,500. show Bo
London.
12,511. Fornaces for the Mantfacturb of Steri, R .
Miiler
 Siret and J. L. F. Saulnier, London. A. Couchman,
22.544. ADJUSTABLE SPANERE, H. A. London.
12,545. Lock-strtch Sewing Machines, F. Clift.-(E. Bardilh, Germany.).
12, 5 thr Chyvina Forks and Gcards, H. A. Couchman,
London. London.
12,57. Matives for Packive TEA, J. M. Day, w. R.
Green, and H. C. Walker, London.

 London.
2 2,551. Supporting JARS containing HoNEY, E. Jones, L2,552. Sine . Sk-wrivging Mop and Cleaner for Windows, de... J. J. Warner. London.
12.55.. ExPANDIICG DRILL and Rose BIr, D. Gillies. jun., London.
 King, United States.)

 12561. Cartr paes an
Maxim, London.

4 th October, 18\%6.
 12,564. Woopten Hoops for Casks, T. E. Morgan, 22,565. Gulur for Excludina Stwer Gas, R. Atkinson,
South Shields. South shields.
12,566. AAs Friks
Clare, Mancheste Clare, Manchester.

 Londion. 2,575. MEAsurisa TAPS, P. Skidmore, Sheffield.
2,576 Discorerrs
E. H. G. Brewstor, London. 2,577. Producina Dividmd Images for Photograp
 579. Churning, W. Swarbrick and T. Houghtin, Li, erpori. Foraming Sockets in Blanks for Shovers, H. M. Myers, London.
2,581. CHEST PRoTE

 12,589. ATMTCos.

Riedel, London.
12,592. Restoring the SURFAcE of Ratsed Akticless of
 Boby, London.
2,59. CRAR AGE, J. Marston, London.

 the spers of Cars in Randways having Tractio CABbes, J. H. Pendleton and C. Tiers, London.
2,597. Lock-UP VENTIATToRs for BUILDING, H. J.
 dein, London.
2,599. Sminving Har and other Fibres, J. J. Delmar
and F F. Tucker
 London. 12,S02. Cutring Up Butrs or Hipss of Leathre, E
Whateott and E. and W. Bridgewater, Leicester. 22,603. SUPPLYYNG WATER to WATER-ClosEmts, E. Gotto
 12, Ave6. Botictule and Jar Stopper, W. A. Larlham,
 12,608. Prepraling Food from Cereals, J. Law
12,609. ${ }_{\text {Printing Music, }}$ S. Samper.-(D. Fallon 12,610.0 Perfuomery, P. H. Lecornu and A. Raynaud, 12, London Bottring Carbonated Beverages, f. A Re612. Cockle S
Hovecl, United States.)

SELEOTED AMERIOAN PATENTS

346,048. Tramporary Centre and Templer Instro MENT, Frank A.
Claim, - (1) A tool for establishing and maintaining
centre over or within a cavity, provided with a serie of excentrically pivotted swinging arms uniforml adjustable about a central disc or prate supporting an
axially disposed centre or indent, which is is adapted to receive the foot of a compass or similar tool, sub-
stantially as hereinbefore set forth. (2) A tol
 mark, a series of swinging arms excentrically pivottee
to said plate and uniformly adjustable by means of centrally disposed gear, means for rotating said gear
upon the plate, and a clamping device for retaining the parts at position of adjustment, substantially as
set forth. (3) The combination of the plate A, the curved arms B, pivotted on said plate, and provided
with pins b, the gear wheel D, the thumb bar F, comvected indentor entreing point, and the clamping nut H, substantialy as and tor the purposes set forth.
(4) The plate provided with the ourved slots f the (4) The pationg provide d projecting turveugh said slots,
Whe hand the thumb bar F, having recesses f, in combina-
and
tion with the arms B and dlamping devices, as and for
the purpose set forth. (5) In a centreing tool the the arms , curved in the manner shown,
or swing sing oury of the
supporting outward beyond the periphery

346,048.

(6) In combination with the plate A, having slots
humb bar F , and clamp nut H , the gear wheel havin the lug i and studs d, and the centre stud E, provide with recess for engaging said luy, whereby said
centro stud is acaused to rotate with said gear and
thumb bar, substantially as and for the purpose set centro
thumb
fortb.
346.184. Rhf IGerating And Ior Machine, william
H. Wood, Noo
Horks,
N.Y.

Claim- - (1) In combination with the diffusion valve
chamber K, the valve and seat $K 3$ with spring sub chamber K , the valve and seat K^{3} with spring, sub
stantiall
forth. (y) and for the purpore dembination withe described and set forth. (2) In combination with a receiver and sepa
rator for a refrigerating machine, the sections B with the pipes Br, substantially as deseribed for the pur-
pose pose set forth. (3) In combination with a refrigeratin machine the distributing chamber C^{2} with the flange
$\mathrm{C5}$, double cone Cl^{4}, the pipe C^{3}, and the coner for + b佸s outlet pipes C6, C7, C8, substantially as deseribed

grooves 38 , and the threaded part 39 and 40 , sub
stantially saserribed for the purpose set forth. (5)
sin combination with a vapour cook for operating part of
the machin, the vertical hole 32 , connecting holes
 orming the passage for the gas, substantially as and
for the purpose described and set forth. (6 (In combination with tecomprossion pump valve-box, the the
recesse recesses 42, encircling the threaded part, for receiving
theribeges, substantially as and for the purpose de-
coribed. 346,251. Tobse Expanper, Chas. Wicksted, Kettering,
Claim, - (1) The combination, substantially as herein described, of the mandrel A, screw-threaded at one
 sockets or sleves C Cott, the of thate H, and spring G, for
the purpo the purpose specified. (2) The combination, substan-
tially as horein ecsibed, of the mandrel A, secrew-
threaded threaded at one end, tand having a tapering portion
A1, the nut B, and the grips or gripping bocks D,
 q, and the guide
346,251

 having their ends rivetted over into said recesss, and
the set serew Ft, for the purpose specififed. (t) The
combinatio, subs to tioly

 structed for eoo-operation, substantially as set forth.
(5) The combination, substantially as herein described,
with the mandrel with the mandrel A, the sleeve or socket C , having an excentric groove W formed partly around its periphery
and the sleeve or socket F, having ratchet teeth formed around its periphery, of the nut B, having a ratchet
flange $B 2$, the lever I, pawls K, the pin U, and spring

V , said parts being arranged for co-operation, for the 346,379. SAxD Mouding Machine, Mathew R. Claim-- (1) A yiedioing presser, platen, or follower
comprising, essentially, a series of contacting independent movable sections, each section held against
pressure by the constant force of a suring aud the whole arranged to serve with a fask and patterns and
to yield irregularly to the sand, as set forth. (2) A oo yield irrevularly to the sand, as set forth. (2) A
yielding presser composed of independent movale
and Yielaing presser composed of independent movalie
sections havig contat with each other, acch setion
held a against presssure by the constant force of an indeheld against prossure by the constant force of an indee
pend donts spring and menens, substatatialy as ouscribed,
for adjusting the resisting force of each section independently, , h herein specitied. (3) A yielding presser, laten, or follower composed of a frame or containing
piece \AA, in combination, movabie sections or rammers,

346,379.

as $c c$. held out against pressure by means of springs,
as $h h$, when adapted to be used in connection with a flask, and pattern for the production of sand
foulds for castings, as set forth. (4) In a machine
mole moulas for castings, as set forth. (4) In a manhine
for making sand moulds for castings, the springs $h h_{\text {, }}$ provided with separate and independentent means, as 9 g,
for adjusting their tension, in combination with the for adjusting their tension, in combination with the
movable sections or rammers $c c$, and with the frame Movabie sections or rammerss co, and with the frame
or containig piee Athe whole ofrring on yielding
platen, operating in the manner and for the purpose platen, operating in the mat
substantially as described.
346,423. Eliectrical Conngecrion And Guard Thrie-
For, George D. Button, New Ipsocich, N.H. - Filed January 2nd, 1886.
Claim. The combination, with an air brake hose

346,423.

by the coupling, which acts as a shield and prevents
the hand of the operator from coming in contact with the metalic portion of the coupling.
346.433. Maching for Wrinding Lead Tape upons
TElegraph Cables, F runcis P. Duplain, Chicago,
 Winding tape upon telegraph cables, of the revolving
head g a bobbin carryivg the lad tape mounted
heroon, the receptacle carrying the shellac and heron, the receptacle carrying the shella, and the
shellaa, wheel, over which the lead tape is guided, sheelac wheel over which the lead tape is guladed.
whereby that ied own on to the cable and
shellaced at the same time, substantially as and for

head provided with bobbins for the tapes, a shellac cablel is ocovered antacese the joints of the lead tape shel.
laced as the cable passes longitudinally through the laced as the cable passes . ongitudinaly through the
machine. (3) In a cabbe. covering machine, the com.
men bination of the revolving head, the beind which revolves
tape, and areeptacl for the shena, which
around the core of conductors and shellacs the tape as around the core of conductors and shellacs the tape as
it is wound on to the cable. 346,434. Stran Valve, George H. Duthie, Muskegon,
Mich. Filed September 1st, 1885 . Claimim.- ($)$ The combination, with a hollow oscillat.
in valve having the longitudinal openings G and F and the balance openings $g g$, arranged diametrically
opposite thereto, and the exhaust chamber E , of the optoam cylinder A, , having the steam ports a and b and
sxhaust port copening into said valve chanber and
exhe 346,434.

the piston and piston head. (2) The combination,
with hollow oscillating valve having oopenings G and F and exhaust chamber E^{\prime}
cylinder A, having steam and exhaust ports a, b, and cylinder A, having steam and exhaust portsi b, b, and
c, of the valve chamber C, having its interior ocresponding to the shape of said valve, and having a,
steam supply pipe opening into one end thereof, sujJ steam supply pipe opening into one end the
stantially as and for the purpose set forth.

