THE NAVIES OF BRITAIN AND FRANCE． A portion of the French Press has latterly adopted a threatening tone towards England．Our occupation of Egypt has lasted too long，and has excited the jealousy of our neighbours．Hence we are told a war with England would be popular，seeing that＂no general mobilisation would be necessary＂－we quote from the Standard－＂as an invasion of France was not to be apprehended，and contemplated．The rebject of the war should be to vindi－ cate the rights and position of France as a Mediterranean Power，and to effect this only the navy，and perhaps a landing of twe certainly not more，would be needed．The not be a work of insuperable difficulty，and this would entail the capitulation of the small British force engaged there．That once effected，England would probably be glad to sue for peace，especially as her navy was not now in a position to cope with that of France．＂Taking this as a sample，it is interesting to examine the data on which the soundness of this statement can be tested；that is to
say，to look briefly at the relative strength of the French say，to look briefly at the relative strength of the French
and British navies，and at our general position in the Mediterranean．Lord Brassey＇s＂Naval Annual，＂which is on the eve of making its appearance，deals with the rela－ tive strength of the fleets of Britain and those of other Powers，and puts a quantity of statistics in a compact form Until this appears we must make the best of such infor mation as we pick out and shape to our purpose．
The first part of the statement we quote we may pass likely to invade France，and that the French are not likely to invade England．The matter to consider seriously is whether France could so easily dislodge us from Egypt by anding thirly thousand men in that country．，There are strength of our fleets as to fighting power．（2）Power of organisation of transport．（3）The geographical position of our possessions and ports on the Mediterranean．These questions are too large to deal with except in the merest outline within the space at our command；but perhaps it may be useful to furnish this so far as means admit of it We will commence with the fleets．
The statistics of the British
ingularly elastic of the British and French fleets are pose in view and a robust conscience a writer can classif the ships so as to show almost any result he likes Sir Edward Reed，by reckoning only the citadels of our ships， and ignoring the whole tonnage outside the citadel，and by selecting a limit of 15 in．thickness to the armour，which just took in the French Devastation and Foudroyant，and was able to show in his first class 126 ，and Dreadnought， shipping against 51,570 British．On the other hand w have seen the line drawn at such a point as to tonnage that the proportion may be reversed．Then the reckoning of coast defenders tells，and whether these should be taken into account depends on the operations contemplated． Again，in a short time the French wood built ships may be號 list of ships，then，is liable to objection on one or anothe ground．We submit lists of British armour－clad ships，which may，we think，be as fairly representative of their strength British coast defenders of the Glatton class are From this the French are included as beitton class are omitted．The generally．All ships launched since 1884，including five British and three French armour－clad vessels，are struck out， because they would not be completed in time for any war coming on us shortly．England had two ships launched in 1884，and one in 1883．France had four ships launched in 1883－France therefore gains by drawing the line at the end of 1884 rather than 1882．Drawing it at the end of 1883 would suit her best of all，so far as armour－clad ships are
concerned．The list annexed shows thirty－two English and twenty－one French ships ；the English tonnage being 250,640 tons and the French 163,790 tons．These list may be modified more or less according to the view taken
by any writer．We are inclined，however，to believe that no fairly drawn estimate at the present to belient would epresent the power of the French armoured fleet withi 20 per cent．of the British．The proportion of ou narmoured cruisers is very nearly the same．The relative September 10 theets varies slightly from year to year．On September 12th， 1884 ，we published a list showing these to ertain future time，when vessels now building are com－ hat will b bon efe present moment；and it is a condition by our Governmen if the shaid down in the hope a nthe hope of a change of this kind that the impending afterwards by Sir E．Reed at the United Service Institu－ tion and in Parliament．
Assuming then that the British fleet of regular fighting hips is about 20 per cent．stronger than that of France hips．In the former we fear the French are crtand troop in advance of us，though fear the French are considerably published on the subject，and progress is rapid in this branch of building．In transports，on the other hand， France is very weak；and，we think，depends a good dea on her Navy for carrying her troops，and as to supply of
stores she is under difficulties．In Sir Nathaniel Bar naby＇s paper read at the United Service Institution，in han one－eighth of our own．
To place troops in Egypt the Frency Navy would have make good a landing，which would constitute a serious operation of war．It seems to be thought in France that because their troops muster in hundreds of thousands， where our thousands are reckoned in tens and twenties， an expedition consisting of thirty thousand men across the
be found far－reaching and quick，if not very heavy；and that no Power could carry out this class of undertaking with the ease and speed of England．Abyssinia，Ashanti，Egypt， and the Zula War have all called into play the necessary machinery for this class of operation，while such machinery is habitually working in India．At the present moment we have about thirty thousand men in Burmah．The state of the country，no doubt，has been the object of a considerable measure of public attention；but who has heard of any trouble or effort in sending the troops there， or supplying them？The French，who come next to our－ selves，make more fuss about the transport of ten thousand men from Marseilles to Algiers than we do if we send double the
It may be argued，however，that France lies between us and Egypt．To this we should promptly reply that practically we are between France and Egypt．It is only necessary to take a step forward to prove it． France，to send an army to Egypt，must get them past Malta and our Mediterranean Fleet，then land them． French writers appear to think that they could defeat our ships，a thought which we regard as only admissible on the supposition torpedo boats with caught us at a disadvantage，and used torpedo boats with all the success that their advocates anticipate．It is necessary，however，to dispose of our fleet completely and beat us very bady to get their force land＂Ti Wou N to a ist of wal stato the＂fustrated aval and niilary hagazine－or picks 1 out of the Navy List，will find in Mediterranean at this moment the Dreadnought，the Agamemnon，Alexandra， Thundererb， force to diate of complety that the whery force to dispose of so completely that the whole expedur The Polyppis has 17 lng ．if tornedo hipung． The Polyphemus has 17 knots speed，if torpedo ships are to prove so good as to give the French a great advantage， to to be borne in mind that any delay either before or after war is declared，greatly increases the difficulty India is a few days more distant from Egypt than France but practically it is very much closer，seeing that forces and supplies could be poured in with the ease and security much trouble after it Egypt，then，France would have to muster her fleet unper ceived in the Mediterranean，to make war without week＇ notice，and then，without any delay，to destroy the Britis Mediterranean fleet entirely．Otherwise，she would be cut up at sea，and also have a force overmatching hers waiting for her in Egypt．It may be objected that part not face Europeans．The French have not found their own＂Chasseurs Indigènes＂much inferior to their own men when well officered and led，and they would be quite deceived if they reckoned on mal advanta this kind．In fact，if truth must be told，our Indian troops in China were anything but impressed with Europeans，they would remarked that if these were of European at any time．This doubtless was the hasty impression produced on them by the small stature of the Frenchmen．Nevertheless，moral effect depends sometimes on positive error，and we are inclined to think morally，would be in any idea the French might gain their own men that they were going might impres on native Indian troops．If it came to landing，undoubtedly moral effect has its weight．Marmont said that a battle was won not by the actual number of men killed but by the number of men frightened．It is said that when the French were falling back before Wellington，the＂Rifles was not in to occupy a village held by the French．th Rifles were consequently rma d the desperate resistance they encountered，and still more when the French re－formed， and most gallantly returned again and again in the
endeavour to recapture the village．Eventually a wounded man explained that the new dark uniform of the Rifles had not been known，and that the French refused to be dislodged from a village by Portuguese，as they supposed． This incident，if accurately related，shows how very much harder Portuguese must have fought than English to gain To ry al that
to return to the general features of the question，we think that if our power of supplying Egypt from India， without disturbance or trouble，be compared with the pro ject of the French crushing our fleet and landing and supplying an expedition from the Mediterranean operation more calculated to fail than this atter devise an operation more calculated to fair than this attempt to drive as Ity If se．can it be that she reckons on the help Does it not appear probable，on the other hand，that Italy would be more likely to go the other way？Sooner o later Italy fears the necessity of a war with France．Might she not hail this as a favourable opportunity？Italy has some splendid ships．It may be questioned if she could provide them with． monstrous quantities；but allied with us this difficulty would be met．We do not，however，wish seriously to press the consideration of Italy going to war，because th oo danterous．where we could help her but little，would b France she hopes it will be with continental allies．
We must，however，look at war with France in a genera aspect．It does not at all follow because Egypt is th What if France declares war，and at once strikes in Egypt， she of all Powers can hit hardest，in our soft place，our matter．This is the danger to which we and many in this country have long called attention．Jt is to meet this that we have latterly been so much more in earnest in buildin swift cruisers．Undoubtedly this is the question of the day
as to England＇s defence，and in the case of France as the enemy，raised in its most serious shape．Suffering and loss would be entailed on England，but nothing decisive could be effected at once，and it is hard to say what would would It might be that gradually the French vessels to captured．This is the more likely，as in order to further frame from the West they would have to act again from their base of operations than our own，Then we find ther nations would suffer as well as oursel ves．When is in Brititseven－eighths of the carrying trade of the world to attack undoubtedly but at the a very vulnerable object concerns the world ， Would the world put up with this？The world in the abstract is a useless element；but would the world remain in this abstract condition．We can well believe that some Powers are jealous of us，and would bear a good deal；but this is hardly true of all．America，for example，would suffer much，and apart from the Irish element，America would probably wish us well．At all events，the stoppage of the cotlon trade to England would cause a serious pinch， and this might soon lead to sympathy，which would be the more valuable as it might take the shape at first of assist－ ance by telegraph inortall and then possibly it might swell into something much more dernite．The consideration of this，however，would draw us on into the discussion of a large question anconnected with the immediate subject of our article A war in this shape with France would be serious nough．France herself would feel the stoppage of popular for long，in spite of the light－hearted way in popular for long，in spite of the light－hearted way in wre this langen with the pafers that we have not suffeet ships and that on ficconst wo to the shith and that on that account we ought to have war with France，seeing that in imes past our navy was largely strengthened by sources is supply fou a the was decidedly inferior to that of Fr ape both is number and quality．All this sort of langue ber with quality．Al this sork language being put aside，war with doubt that there is too much good feeling and rood sense in France to provole such a cotre sibility oubt to spur a to be bare pos classes of vessels specially suited to protect our commerce．

Name．	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { of } \\ \text { aunch. } \end{gathered}$	Displace ment．	Speed．		Armament． Primary guns．
Hercules．．			$\underbrace{}_{\substack{\text { knots．} \\ \text { 14t．}}}$	${ }_{\text {ing }}^{\text {in．}}$	
Morcules．：${ }_{\text {M }}$	${ }_{1868}^{1868}$	$\begin{aligned} & 8,680 \\ & 8,350 \\ & 8,350 \end{aligned}$	$14 \cdot 9$	10	${ }_{2}^{8-24} 8$
	${ }_{1869}^{1869}$	${ }_{6}^{6,010}$	${ }_{14}{ }_{12 \cdot 1}$	${ }_{8}^{8}$	（10－12
Sultan ．．．．	1870	9，200	14．1	9	8－18
Iron Duke ．．．．	1870	6，010	${ }^{13} \cdot 6$		10－12
	${ }_{1870}^{1870}$	ci，${ }_{\text {4，010 }}^{6,910}$	$12 \cdot 7$ $13 \cdot 8$	${ }_{8}^{11}$	2－25
Triumph．．	1870	6，640	12.0		10－12
Devastation	1871	9，330	$13 \cdot 8$	14	
Thunderer	1872	9，330	$13 \cdot 4$	14	边
Rupert ．．	1872	5，440	13.6	14	18
Alexandra ${ }^{\text {Dreadnought．．}}$	${ }_{1875}^{1875}$	（9，490	${ }_{14}^{15 \cdot 2}$	${ }_{14}^{12}$	$\xrightarrow{2-25} 4$
Sreadnought．．	1875	5，390	${ }_{12}{ }^{2} 4$	1	
	1876	11，880	$13 \cdot 8$	24	4－s0
Téméraire	1876		14．5		${ }^{4-25}$
Selson	${ }_{1876}^{1876}$	${ }_{7,630}^{4,870}$	${ }_{14}^{12 \cdot 4}$	12 9	－
Northampton ${ }^{\text {a }}$	1876	7，630	$13 \cdot 2$		$4-18$
Neptune	1878	${ }_{9}^{9,3170}$	14：2	18 12 18	4－38
Agamemnon	1879	8,510	${ }_{13}{ }^{3} \cdot{ }^{\text {a }}$		4－38
	1889	${ }_{8,510}^{4,870}$	13．0	12 18	${ }_{4-38}^{4-25}$
Conqueror	1881	${ }_{6}^{6,200}$	$15 \cdot 5$		
Collingwood	1882	9,150	${ }^{16 \cdot 4}$	18	$4-43$
Sossus inbur	${ }_{1882}^{1882}$	9，150			
Imperieuse	1883	${ }_{7} 7,390$	$17 \cdot 0$	10	${ }_{4}^{4}$
dney	${ }_{1884}^{1884}$	，	17.0	18	
arspite．．	1884	7，390	17.0	10	
	－	250，640			

Name．	$\begin{gathered} \text { Date } \\ \text { of } \\ \text { launch. } \end{gathered}$	Displace－ ment．	Speed．		Armament． Primary guns．
${ }_{\text {Ocean }}^{\text {Marengo ．．}}$ ．．	1898	${ }_{\substack{\text { c，} \\ 7,1850}}^{7}$	${ }_{12}^{13 \cdot 7}$	${ }_{8}^{87}$	${ }_{4}^{4-23 .}$
	${ }_{1873}^{1870}$	\％${ }_{9,100}^{7,600}$	（14．3	${ }_{8}^{84}$	${ }_{6}^{4-23}$
$\underbrace{\text { a }}_{\substack{\text { Friodaand } \\ \text { Colbert }}}$	${ }_{1875}^{1878}$	¢，${ }_{\text {8，540 }}$	$\xrightarrow{13 \cdot 4}$	${ }_{8}^{84}$	¢
Tonnerre．：．．	1875	${ }_{6,574}^{8,407}$	${ }_{12}^{12.3}$	${ }_{13}{ }^{88}$	$\xrightarrow{8-23}$
Redoutable ．．	1876	9，200	14.7	14	4－28
Trident ${ }^{\text {Pulminant }}$	${ }_{1877}^{1876}$	¢	12．3	${ }_{13}^{88}$	$\xrightarrow[8-28]{8-23}$
Amiral Duperre	1879	11，100	14.5	L21／	4－48
${ }_{\text {Devastation }}^{\text {Turenne }}$ ．．	${ }_{1879}^{1879}$	co， $\begin{gathered}10,100 \\ 6,400\end{gathered}$	${ }_{14}^{15 \cdot 1}$	15 10 10	${ }_{\substack{4-48 \\ 4-151}}$
Bayard ．．	1880	${ }_{5}^{5,8881}$	14.5	${ }^{10}$	4－15
Courbet ．．．．．	1882	${ }_{9} 9,700$	${ }_{15}{ }^{\circ}$	${ }_{15}{ }^{19}$	${ }_{4}^{2-49}$
Aminan ${ }^{\text {a }}$	${ }_{1883}^{1882}$	5，900	14.0 15.0	$\underset{21}{10}$	${ }_{3-75}^{4}$
Furieux－．．．	1883	5，560	$12 \cdot 0$	17	2－47
Indomptable	1883	¢，	14．5 ${ }_{14}$	${ }_{10}^{194}$	4－18さ ，
	－	163，790	－	－	－

Norz，－French ships are generally better furnished with secondary
＂

THE TRIANGULATION AND MEASUREMENT F THE FORTH BRIDGE．
By Reginald e．Middleton，M．i．d．e．
No．III．
Instruments and tools：Standard rods．－The 12 ft ， standard rods used in setting out the greater part of the oundation and steel work were of white pine 12 ft ．in by 3 in square with sel faces one，being segmental in plan with a radius of 5 in．，the
ther, which was horizontal, made an obtuse angle. The segmental end was fixed with four screws; the other, though also fixed with four screws, could on slackening motion of tin. in each wedge of the three rods producing motion of $\frac{1}{8} \mathrm{in}$. in each wedge of the three rods producing an alteration of $\frac{1}{8} \mathrm{in}$. in a length of 540 ft ., the length of the
fixed standard. The wedges were held in place by split pins. The wood of which these rods were made became pins. The wood of which these rods were made became
somewhat warped after three years' use, and this caused an error in the perpendicular of the faces; therefore three new rods were made to replace them while they were being corrected. These rods were made of similar wood
supplied at the same time as that for the old rods, and were otherwise similar except that they were 10 ft . long instead of 12 ft ., and the adjustment was made by means of a screw and nut between two collars working in the standard at 68 deg. were 10 ft . long of pitch pine, about $2 \frac{3}{4} \mathrm{in}$. by $1 \frac{1}{2} \mathrm{in}$.; the ends were of brass, without any means
of adjustment, and were struck to a radius of 5 ft . in every of adjustm
The following is a table showing the alterations in length of these rods at different dates:-

The writer hoped to have been able to obtain such information as would enable him to follow the rods through their several changes and formulate the variations, but he has not found it possible to do this. It is believed that the first, and that the shape of the ends is satisfactory;
perhaps the radius of the segmental end might be perhaps the radius of the segmental end might be suggested. In working up hill the segmental end should go first, as it is more easy to plumb to the square edge of
this face than to the obtuse angle of the other face. In this face than to the obtuse angle of the other
going down hill the position should be reversed.
seeriter after his arrival at Queensferry the writer called attention to the errors likely to arise by the use of wooden standards of length in the setting out of
the steel work, and advised that steel standards should be used for this purpose, standardised by the fixed standard at used for this purpose, standardised by the fixed standard at
a received mean temperature, as steel rods when in contact with the manufactured steel would follow its temperature pretty closely, and thus the steel work when onstructed would have a uniform ratio of length at all emperatures. To meet this purpose a steel standard about 400 ft . long, made of bridge rails 68 lb . per yard, rivetted together at the joints, and firmly bolted to a mass centre of one of the roads in a timber box with a movable cover ; the 12 ft . standard rods were corrected for length to the temperature of the steel rail on a particular day, the correction being $\frac{5}{8}$ in. short in 540 ft .; the rail was marked at the end of each rod, and the 12 ft . divisions so marked were divided up by means of a pair of compasses. The Mr. Meik's rods, corrected for their known error, and by
Mre teel standard corrected for temperature, was 00013 ift., or $\frac{1}{60} \mathrm{in}$., and between the mean of two measurements of was $0019=\frac{3}{1 \frac{3}{28}}$.
Steel rods.- \qquad steel rods were constructed of $\frac{5}{8}$ in. square steel, each 10 ft . long, the ends being shaped as for the ordinary rods. One prepared centres in a lathe, and the steel rods were brought to the same length ; each set was then tried separately on the steel standard over a length of 200 ft . and corrected until the error was not more than $\frac{1}{1-1} \mathrm{in}$. in 200ft.; the rods were also interchanged between themselves, the distance being measured first by rods Nos. 1 and 2, then by Nos. 1 rod was correct; finally one set was kept in the office for reference, the other being sent into the works,
Plumb bobs.-The writer after using plumb bobs of all shapes, does not think that one sort is superior to another; it is of more importance that the cord should fit the hole
and that it should be thin and strong, and he believes plaited cotton cord to be the best for the purpose ; silk braid is not satisfactory, and any twisted material fails. The points of plumb bobs should be of steel and hardened, which, however, is seldom if ever done. In plumbing the ness, and to remember that these must be allowed for; it is natural to try to plumb the exact edge of the rod, which is incorrect, and as the correction must be estimated, the
use of different thicknesses of cord is sure to lead to error. The square for bringing the ends of the rods into a vertical plane is shown at Fig. 3, see page 281, in The Engineer, October 8th; it is a useful tool, but requires care in using as its accuracy depends upon the absolute straightness and it is difficult to make quite sure of the first and last conit is diffl

Steel bands.-Three steel bands were used at different times, their lengths being $200 \mathrm{ft} ., 150 \mathrm{ft}$., and 100 ft . ; they are exceedingly useful for checking purposes, but must not checking the results, as their great care being taken in checking the results, as their changes of length-except in

grey, still weather-are sudden and great. When used in | grey, still weather-are sudden and great. |
| :---: |
| G Corrected for setting steel standard. \dagger Reset. |
| \ddagger Frequent snow |

contact with large masses of the same material they take up the temperature of that material, and the thermometer should be put between them and it, and the results obtained will be satisfactory if the sun does not strike the wind: bere is no change in the force or direction of the variation of the steel bands from standard was equal to about $1 \frac{1}{2}$ degrees of temperature.
Steel tapes.-The same remarks apply to the use of steel measurement of short lenge quite indispensable for the found both with steel bands and steel tapes, and that is the inaccuracy of the ends, which, if even right to begin with very soon become incorrect. The author suggests that instead of using the ordinary ring or handle, a brass end with a square face accurately cut to length and rivetted to the tape or band should be used ; a hole might be drilled in the brass for holding by or hooking on to anything. It was found necessary, in all cases where accuracy was required, to hold the tape or band a foot up, and this practice is apt to lead to error in booking the lengths.
Theodolites. The theodolites used were a 12 in . transit made by Messrs. Cooke and Sons, of York, divided to 10 sec., and fitted with a central plug for supporting the plumb bob, which when removed pave place to a centreing telescope fitted with cross hairs, by means of which the instrument could be centred without the use of the plumb bob. The author is not aware if this arrangement has been used before; he suggested it to the makers, and found it to be of the greatest value, as he was able to be quite certain of the accurate setting of the instrument in all weathers. This instrument was provided with a traversing table actuated by three horizontal screws, which allowed of a motion of about lin.; the legs were constructed of angle iron, with a cast iron top plate filled with grooves, in which rested the three quick pitch screws of the traversing table, which again rece the instrument itself. A table of errors is given in the append
them.

A 7in. transit theodolite, by Cook and Son, divided to 10 sec . with three verniers to each circle, specially designed for the work, the vertical circle being 83 in. diameter, the telescope sighted to read an object as near as 6 ft . distant, extra provid 's, centreing telescupe, and all the tangent som provided with reaction springs, which are a great help in
accurate work. Where screws without springs are used there is always a certain amount of play, and it is much more difficult to sight exactly on an object, and if the instrument be touched there is an error. A 7in. transit theodolite divided to 10 sec . with two verniers; with this instrument much of the setting out was done. It was not, however, very well adapted for the purpose, as it would not read anything nearer than 22 ft . distant; the verniers also were not well designed or fitted, they were not sufficiently firmly attached to the instrument, and it was nearly impossible to get them to cover the right length on the circle, and when they were correctly adjusted the adjustment was not maintained. The legs sent with this instrument were of the ordinary type in use in England, and did not give satisfaction, as they were not sufficiently stiff ; they were therefore replaced by others of the same type as supplied with the other instruments, namely, where With this of support are directly under the three screws. legs, if the bolts be kept moderat ordinary type was used more particularly for centreing the tubes on the drilling roads.
Levels.-A 20 in . reversible level, tripod type, was used for levelling from station XVIII. to XIX. and XV.-a distance of 1700 ft . in one direction, and of 2125 ft . in the read; and when the instrument was reversed it would read on it again sides and Inch Garvie Island was with this norlling between $\frac{1}{8} \mathrm{in}$. and $\frac{1}{4} \mathrm{in}$. A great advantage in this instrument is that it the adjustments required in vol. lix., page 278 , of the "Proceedings" Inst C.E The other., page ned of the described. The 12 in . and 7in. theodolites and the 20 in evel supplied by Messrs. Cook and Sons were fitted with glass diaphragms, on which the cross lines were scored These were very clear and fine, and were practically indestructible.
Instrumental errors.-The readings of the 12in. theodolite were all taken one way; that is to say, the A vernier readings of the four verniers were taken. the instrument was moved to the ruired point, and all the four booked; it was then brought back to bear on the original point and these four roding moved through 90 deg., so that the A vernier read 270 deg. and the same process repeated, and the same again with
the A vernier at 180 deg . and 90 deg .; then the telescope The total number of vernier rer brought to zero, and so on. is, with the 12 in . theodolite, ninety-six, and with the 7 in . theodolite, which has three verniers fifty-four. In the following tables ${ }^{5}$ of errors, those in Table I. refer to the divergence of the different verniers from aceur to perhaps, it would be more true to say that they refer to inaccuracy in dividing the circle. The differences between the different blocks of readings and the means must not be taken necessarily to be errors, as there is a tendency to read high or low according to the light; and the second table shows how much of these differences may be considered to be error. This is again exemplified in the third and fourth tables, where the errors in the three angles which form any triangle are given, and also the difference between the observed and the corrected angles is given. By Table II. the error in reading zero is found to be in the 12 in . theodolite - 653 sec ., and in the 7 in . theodolite +03 sec . By Table III. the maximum and minimum errors in reading are found to be -0.27 sec . and - $0 \cdot 10$ sec. respectively. By Table IV. the maximum and minimum average errors are respectively per angle 3.81 sec. and 0.90 sec.

Setting out lines.-In setting out long straight lines which have to be observed from one station, a plumb bob liwe is better to sight on than a pole, but it must be thoroughly
protected from the wind. A moderately thick line, chalked, protected from the wind. A moderately thick line, chalked, and with a suitable background, say a black board, can be easily seen at a distance of half a mile. The writer has found considerable difficulty in setting out straight lines with the 12 in . instrument when the focus has to be much altered, as the movement of the rack on one side of the telescope has a tendency to deflect the instrument to one hand or the other ; and he is of opinion that where large telescopes are used a tangent screw arrangement should be provided for altering focus which will not tend to deflect the instrument out of line, or if this be not attainable, then it is better to use a small instrument than a large one. In observing angles the focus should be adjusted before the instrument is clamped, in order to avoid any error from the cause above mentioned. When triangulating from successive points on a supposed straight line, it is straight straight, each one should be observed separately
not to be relied on thoroughly for very accurate wood are not to be relied on thoroughly for very accurate work; it bolt and mark down with a centre punch, and for copper bolt and mark down with a centre punch, and for marks on same results: a broad arrow may be cut in alongside to the same resul a may be cut in alongside to thank Mr. W. N. Bakewell for this information.
Poles. Fixed poles should be of the same diameter throughout, and securely fixed plumb, and must at the same time be easily movable; if they are not made of one diameter it is probable that some part of the pole may be
out of centre. The writer has found white poles with three or four black rings painted on them, each ring being some 2 in . deep, the best for sighting in; if there be a larger amount of black they become dim and are not easily distinguished. The writer has to thank Mr. W. R. Martin, of the Forth Bridge Works, for his kindness in supplying him with information which his notes failed to afford.

VISITS IN THE PROVINCES.

HENRY POOLEY AND SON'S WEIGHING MACHINE
These works, in Manchester-street, Liverpool, were started at a very remote period, as a general millwrights' shop for doing all kinds of what is now called engine work, the lease having been renewed by the Corporation in 1786, and that pendy having been added in 1803 or 1804 . Id millwrightiod weighing machines were made by head of singly as ordered; but the father of the presure, and, as his machines became more and more appreciated, gradually restricted his business to their production, so that for many years this firm has stood pre-eminent in this branch, as it certainly is the originator of the trade. The works, employing from 450 to 600 men, have been added to from time to time as occasion required, to keep pace with the ever-increasing demand for the accurate balances of all kinds, which have made the firm's reputation.
The great bulk of the parts, even the steelyards, are cast, a suitable mixture of pig, arrived at after long experience, being used, with more or less cast scrap, according to circumstances. Strange to say, this latter is just now West West Indies, one of the draughtsmen having recognised therein some of his old designs. The charge is lifted to the melting stage by a hoist raised by admitting steam on the top of the piston of a long-stroke steam lift. This was made at the works, as also were the engines which have converted three hand cranes into steam cranes in the foundry. As many parts constantly recur, plate moulding machine for various parts in which the simple pattern is raised is raised above the plate by a lever and again wered after with b. Green sand is used exclusively for the mouns with baked loam cores, and an emery grinder greatly malleable inon more generally into use The knives or "centres" of more generiptions of lers iron in those of large size. They are inserted in the sand moulds so as to be enveloped by the metal when poured. After the lever is removed from the foundry, it is dealt with in the fitting shops; and the knife edges are there tempered and hardened, when properly "gauged" or positioned.
For the quantity of work turned out the proportion of but it must not great compared with that of an engine;

All parts of the smaller weighing machines are made interchangeable, so that any required part may be supplied and is sure to fit. Platform weighing machines are made for stock; but orders only are executed for large weighing machines and weighbridges, some of which latter have been made up to 100 tons. There is one now in the shop
for a London tramway; but the position was so awkward that it was found necessary to curve the platform to the radius of the road. The side thrust is counteracted by links, arranged so as to cause as little friction as possible. The firm considers, however, that no weighbridge should be placed upon a curve, as such a position sets up an amount of vicious action in the suspended parts as to interfere with the accuracy of results, and also the life of the apparatus. In times of slackness, rather than discharge old hands accustomed to the work, the firm puts hem to making machine tools and special appliances, which are thus designed and carried out expressly for the work they have to do. Jigs are largely used, especially some in the form of a cradle, mounted on centres like hose of a lathe, for holding parts to be planed or otherwise machined on more than one face. With their aid, a single setting suffices for all the machining, and the faces are abso
utely true one with another.
There are two dividing machines for graduating steelyards; and they are kept in almost constant use. They have a series of change wheels like those of a screw-cutting
lathe; and an endless screw, set at an acute angle horilathe; and an endless screw, set at an acute angle hori-
zontally with the bed, gives some divisions that cannot be obtained with the change wheels. The actual dividing is performed by a fine tool set in a box at the end of a horizontal reciprocating bar like that of a shaping machine, the figures being stamped with punches by hand. In the larger machines, the steelyards are not merely marked with the divisions for the various increments of weight; they have an ctual nick or recess cu ponding projection on the underside of the poise. It is found more expeditious to set the sliding pois oughly at tens of pounds, for instance, and then ge the exact weight with the mall slider. For sliding the large poise along the beam, a bent lever bring pair of small rollers down pon the face with a weep, raising the poise lear of it. In machines or two denominations, such as pounds and kilo rammes, for instance, the ollers above mentioned work in a groove between worizontal face ired with the respec ing scales; and the lock the nicks, which engages in erselys, is drawn trans
 hich over that scale for a given weighing or a given weighing making a simple and efficient machine that prints its own weight
is provided with a ride
is provided with a rack which rotates vertical discs mounted on horizontal and transverse spindles, and carry ing figures like those of a numbering stamp, being so ference shall always correspond with the weight ind When the a holder below the dises and brought against thiserted an with below the discs, and brought against them by a figures. A novelty this year is a platform weighing figures. A novelty this year is a platform weighing
machine, fitted with what the firm denominates a disappearing pillar. The pillar, which carries the indicating arrangements, has one of its sides made flat ind of the same pattern as the flooring. When not in use it is turned down on a hinge joint, so as to be flush with the floor, thus presenting no projection whatever.
The firm is going largely into machines for weighing grain continuously and automatically. So far back as 1854-5, the father of the present head of the firm saw room and, however, forbade the mode of automatic grain-weighing stores; but now grain merchants have taken a leaf out of the book of their American cousins, while improving pon transatlantic models, and are erecting storehouses for grain with vertical binns instead of the former flat floors. This new departure has given an impulse to the design of grain stowing machinery, such as that for lifting it from the holds of vessels, disposing of it over floors, and so forth. Under the altered circumstances, apparatus for weighing automatically becomes a matter of necessity, not only on account of economical working, but also on the ground of accuracy. It thus happens that the thirty-four or thirty-five years' experience which Messrs. Pooley have had in this matter is now likely to at length bear fruit. There are at present in the shop several new machines for this purpose to be used in one of the large granaries inLiverpool. Anequal-armed beam carries the weight plate atone end and hopper, divided longitudinally and vertically, at the other. is quantity of grainit is desired to weigh at each operation leduction ion but a slight eduction is made therefrom by a slider on the weight side. The grain, though exerting its influence on the grain being directed by a swing and reversible shoot, and, as
soon as the quantity received in the hopper overbalances by by the slider, it raises the weight plate clear of its support. cut-off, the orifice through which the grain flows. The reduced stream flowing into the hopper now causes it to overbalance the total weight on the plate; and a trip on the falling hopper, striking a stop, releases a catch which has hitherto held up the cover at the under side of the compartment being filled, allows the grain to fall out, thus shifting over the swing cover so as to close the other compartment, and also shifts over the shoot for directing the grain into this other compartment. At the same time an index is moved forward one division on the recording dial; the cut-off is raised so as to lay open the whole orifice to the grain; the beam is again brought, by a link, under the influence of the deducting slider; and the weighing goes on continuously, without any attention.
The present extensive importation or frozen meat, and the transference of the carcases from the vessel to the cold store, along an overheau track, like those used in rolling mills, have brought into being a new form of weighing machine, to ascertain the weige of length of the bar is hung on a beam, so as to permit of the weight passing over it being taken by a checker.
Messrs. Henry Pooley and Son maintain by contract nearly
the whole of the railway weighing apparatus in the United Kingdom ; and probably nine-tenths of the goods and mineral traffic of the kingdom is weighed over their machines.

PJOLEY'S WEIGHBRIDGE AND COVER AT BRIGHTON,
The above illustrates the ornamental cover by means of which Messrs. Pooley have covered the steelyard of a
weighbridge which they erected between Brighton and weighbridge which they erected between Brighton and
Hove, and by which coal entering from Hove is weighed for toll.

BEYER, PEACOCK, AND CO.'S LOCOMOTIVE WORKS
These famous works, which are now capable of turning out four locomotives a week, were started about thirty Stewart, and Co., and Richard Peacock, manager to Sharp tewart, and Co., and Richard Peacock, locomotive superin Railway on the Manchester, Sheffield, and Lincolnshire with s. ngines the works is laid down for testing tramway near Manchester, a joining the M S I line with Gorton, they are connected by a siding M.S.L. line, with which three gauges, an 18 in tramway is now being laid throug out the works, the pramway is now being laid through occur consisting of cast iron where points and crossings of men is over 2000; and nearly 1500 are now One of the latest bars boxed in for excluding dust, bears the number 2791 corresponding to the total number of locomotives constructed by this firm up to the present time.
Nearly everything is made "at home;" and all materials are subjected to severe tests, for which purpose a hydraulic testing machine has been supplied by Buckton, of Leeds The foundry is light, spacions, and lofty, and is provided with an overhead traveller. The horizontal engine which drives the fan for blowing the cupolas runs at 240 a minute with 75 lb . steam, which is admitted through a $\frac{3}{4} \mathrm{in}$. hole in a $\frac{1}{8} \mathrm{in}$. plate inserted between the flanges of the stop valve and the pipe. The very tenacious moulding with formed by grinding red sandstone and mixing it fine in a dust, the mixture being afterwards sifted vely casting hexagonal bars and then cutting them off to length in the same lathe which drills and taps the holes.
Tube plates are flanged bodily in a hydraulic press; and
1 rings, such as angle iron rings and the strengthening
rings for dome seatings, are welded up, raised to a moderate heat uniformly all over, and then placed over a form condrivin of four separate segments, which are expanded by In ing a conical plug into a conical hole in the midde. degree of tension in the case of shrinking on, are secured.
All forgings that are not of steel are made from wrought iron scrap, carefully picked over to exclude pieces of steel, for which the pilers receive a premium. There are several steam hammers of various sizes by Massey and by Rigby; but that most approved of is one made at the works with a single-side standard, divided in the middle to permit of getting all round a forging. A great deal of stamping is now done under the hammer, as, for instance, Whe crank boss and counterweight of driving wheels. Wheels are built up from the separate parts previously forged under the steam hammer. The spokes, after being forged, with their wedge-shaped ends, which meet in the centre, having V-shaped grooves on both inclined sides of he wedge, are placed with the wedge downwards and enclosed between hammer, the other end having been raised to a welding "dabbed on-also brought to welding heat-is then dabbed on," and beaten down form part of the rim. Such a joint has been slotted through and tested in every way without showing a sign of unsoundness. When the the inclined sides of the wedge-shaped ends form squar re me-shaped ends form square, keys. The centre is raised to welding heat, when wash is welded, first on one side and then on the other, to form the boss. Tires are borm by being made to revolve horizontally on a table while being acted upon simultaneously by three tools set in boxes, self fixedarms, Tires forbeing fixed arms. Tires, for being shrunk on the wheels, are heated uniformly by a ring of gas jets, when the wheel is dropped in, and the tire cooled by a stream of cold water applied by hose.
All wearing parts not hardened, for which operhardened, for which oper-
ation there are six furnaces, and also six cast iron crucibles for receiving such parts as the journals of axles. Where parts are finished in pecial emery- orinding machines, the spindle of the emery wheel in all cases being made to shift slightly while revolving, so as to secure uniform work. There is a machine of this kind for finishing the inside of slot links, the small vertical emery grinder rising and falling lightly while revolving, and the link being made to follow its arc by being tied by a radius bar.
All plate edges are planed; and rivetting is done as far as possible by Tweddell's hydraulic machines. All holes are drilled through templates; in fact, everything is machined to template, so that corresponding parts are interchangeable. A machine has been made by the company for boring cylinders, turning and facing their flanges, and planing the valve face at the same time. Coupling rods are finished by cylindrical milling tools, the radius of which is equal to that of the curve. In the event of a curve with gradually increasing radius, such as that always stipulated for by the late Mr. Beyer, being adopted by the designer of a locomotive, the machine can still be used with a "former," as in copying lathes. Of course so celebrated a locomotive company as that of Beyer and Peacock may be supposed to know their own busins lest, but we should have thought they might save time and abour in setting coupling rods for maching by hem on centres once for the four sides, and then simply present each side in succession to the milling cutters. A capstan lathes, are by Smith and Coventry; but a great many have also been made at the Th. Indeed, the office is lighted se both sides, and has two desks drawing side for forty boards in all, besides the chief draught man's office with a in ald besides the chief draughts and Co, employ cirls rularly for tracing in a separate office, giving them 15 s, a week. In the case of new draw ings, where the lines are perfectly distinct they are found to get through more work than men, while the tracin leaves nothing to be desired. This company has made for itself a great reputation, so that its tenders are often accepted even when far from being the lowest; and no precaution is neglected, in selecting materials, in careful supervision of work, which must be of the best, and in testing finished engines and machines, to maintain this high reputation. NAVAL ENGINEER ApPOINTMENTS.-The following appointments engineer, to the Mistletoe; William T. Allen, engineer, to the
Humber; William F. Hinchcliff, assistant-engineer, to the
Humber; Robert Ford, acting boatswain, to the Firefly,

THE BRAKE RETURNS TO THE BOARD OF TRADE.
There can be no question as to the interest in the subject of continuous brakes disappearing so long as the half-yearly returns to the Board of Trade continue to be issued, though that they are not necessary for this purpose is occasionally made clear by the recurrence of those railway accidents which such appliances were specially designed to prevent. The return for the half-year ending June 30th is one of considerable interest, not only as showing the progress of brakes adopted by those companies which have accepted the Board of Trade conditions, as vell as by certain others which obstinately refuse to do so, but also as pointing out the weakness of the various systems.
The total carriage stock in the United Kingdom amounted at the end of June last to 51,790 vehicles, thus showing an in crease of 543 , or rather more than 1 per cent. on the last return. Omitting vehicles fitted only with connecting pipes, 22,230 o the total strck, or 43 per cent., were fitted with brakes, which as it is called, "appear" to comply with the Board of Trade
conditions 13,111, or 25 per cent., with brakes which there is conditions; 13,111 , or 25 per cent., with brakes which there is
no doubt, even to the official mind, do not do so ; and 16,449 , no doubt, even to the official mind, do not do so ; and 1,
or 32 per cent., are not yet fitted with any brakes at all.
As to the progress made, it can hardy be considered that the proportion of automatic brakes-43 per cent.-is anything like Board of Trade for the last nine years. This amount is made up practically of three systems, as follows:-Carriages with
brakes: Westinghouse, 11,558 ; Automatic "Leak-off," 6690 ; Vacuum Brake Company's Automatic, 3374.
The Westinghouse brake is in use, it appears, on some fifteen ail ways in England and Scotland: it is common to the joint stock of the three great routes-viz, the East Coast, the West
Coast, and the Midland-and every confidence is felt in it by coast, and the Midland-and every confidence is felt in it by those who have to depend upon it. The Automatic Vacuum and railways, and that it should inspire distrust is not to be wondered at. So far as this system is concerned, it seems clear that the pressure of the Board of Trade has not been an unmixed good, and if all the brakes "appearing to comply" were of this type, there would be cause for congratula-
tion that such poor progress had been made. We have never oncealed our dislike to this system, which we consider a snare and delusion, or our opinion that it does not really comply with
the Board of Trade conditions. It would appear that our views the Board of Trade conditions. It would appear that our view confirmed in another way for we note that the Midland Compan has changed 466 vehicles from the "leak-off" to a "non-leakoff" brake during the half-year, with what result we shall examine later on. The system will then be practically
the same as the Vacuum Brake Company's automatic brake with ball valve, which is only fompany's automatic on the London and South-Western and Lancashire and Yorkshire railways; and so far as the returns of faults go, it is clear that however strong the reasons which the Midland and
Great Western may have had for taking to the leak-hole there ireathing to justify their reverting to their old system is nothing to justify their reverting to their old system, just as
there was nothing to justify the London and South-Western here was nothing to justify the London and South-Western party on the brake question when a brake was in the market
which had never jeen beaten. A large proportion of the increase of fitted vehicles during the half-year is to be ascribed to the on-automatic vacuum system, and mainly through the action of the London and North-Western Company.
Proceeding now to examine the bulk of the Board of Trade returns-viz, the report against the various brakes-we find
some interesting and instructive matter. The Vacuum Brak Come interesting and instructive matter. The Vacuum Brake miles run per fault of every kind recorded, with what object it is not difficult to see, though their figures will not bear examina tion. We have frequently pointed out that this method can never be a test of the merits or the capabilities of a brake, since the returns only profess to deal with the irregularities and ailures, and not with the successes ; and consequently, as to the hain point-that of efficiency-there is nothing in the return to guide us. Everything, too, depends on the nature of the men or material or in the are to be attributed to defects lear, moreover, that nearly principle of the apparatus. It is basis, and that each has its own idea of what incidents should be reported. Taking the returns as they stand, however, if the method alluded to is applicable at all, it can only be used to compare brakes which profess to fulfil the same conditions and are censtructed on similar principles. In the following table
this has been done, and we think the absurdity will strike this has be
Brake Returns for the Half-year ending June, 1886.-Comparison
between the Brakes on various Systems.

Name of brake.	Carriage stote fitted writh brakes.	Miiles run.	Reports.	Miles per report.

Continuous non-automatic.

Westinghouse non-auto	350	729,081	Nil.	729,081
All non-auto vacuum .	9,207	$17,696,654$	135	1 in 131,086

automatic Vacuum "Leak-ofy."

Great Western system.	3,556	$5,952,005$	102	1 in 58,352
Midland system	2,475	$5,129,897$	20	1 in 170,996

Midland non-leak-off.
Continuous Automatic.

11,558	$18,882,152$	454
3,374	$4,746,106$	149
466	555,801	15

1 in 41,590
1 in 31,853
srgtional brake.

| Clark-Webb chain | .. | 1,843 | $\|2,730,642\|$ | 8 | 1 in 341,330 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

All non'auto vacuum. \square
Although the Westing
nearly three-quarters of a million miles without a single report,
no one suggests its extension. The chain brake, the simple vacuum, and the automatic vacuum leak-off, which are the next highest, as everyone knows have been condemned, and therefore such a system of comparing brakes must also be condemned.
The Westinghouse and the Vacuum Company's are the only brakes which can be held to comply in any sense result is il in or trade requirements; and, such as it is and Yorkshire Company again distinguishes itself by its professed inability to give the mileage of its engines, and we are therefore compelled-as on previous occasions-to credit them
with the average miles of all the other engines fitted with the same brake amounting to about one and three-quarter millions They have further included in the Westinghouse return fourteen transferred to their proper quarter. Turning to the natua the reports, we find that the non-automatic vacuum has dis tinguished itself by one collision with the buffer stops at Kirk stead, on the Great Northern Railway, one on the London and North-Western at Sutton Coldfield, and another at Birmingham station on the same line ; making, along with sixty-eight cases of overrunning, no less than seventy-one "failures to act" during the six months. No great encouragement, ordinary minds would think, for the extension of such a system. The report on the Birmingham case is too good omit
May 5 th: The 1.35 p.m. passenger train, Wolverhampton to London,
was travelling near Monument Lane station, when the encine counplin broke, causing the engine to part from the train, and the onrake appaparatus on the train did not bring the vehicles to a stand clear of the engine.
This appears to have boen partly owing to the gurrd in the rear rikee
van having taken off the automatic brake with which his van was provide
The value of the automatic tell-tale in use on the London and North-Western Railway is further apparent from the fact of
trains having eight times overshot platforms through the brake "failing to act.
fit appears
it appears that all vacuum brakes have been considerably affected by frost and water, there being forty-
five cases of this nature, compared with only one slight delay from the same cause reported against the Westinghouse We have before drawn attention to this serious defect of vacuum brakes, which is due to the enormous volumes of air required to operate the brake, and the natural tendency to create ice rarefied vessels. We give a few cases out of many recorded.
Great Western Rcilucay. -January 20th: Nine minutes' delay at Melk-
sham. The brake could not be released, owing to the air-pipe of engine .ing partially choked with ice.
 Londozen fast il obia No. oit

With the winter almost upon us, and its prospect of frost and fogs, the reflections induced by these extracts are the reverse of omforting
Another peculiarity in vacuum brakes appears to be their ten with cot absorb a good deal besides air, and to gorge themselve cies, for instance :
Great Western Railuray-June 13th: Five minutes' delay at Oxford,
owing to borake block binding on the wheels of milk truck 441. On
oxamination a large piece of waste was found in T-piece of continuous exami.
pipe.
Luncaskire end Yorkszire Reihcay.--February 3rd: Delay of six minutes
between Hellifield and Manchester, piece of lead getting into ejector of London and North-Western Railuay.-May 28 th. The 8.50 p .m. train
from Euston had a late start, owing to something being wrong with the vacuum brake, and on subbsequent exa
ound to have got into the vacuum pipe.
London and South. Western Railway.-April 1 1st: Sponge cloth in vacuum
pipe, No. 11 guard's van, 11.30 a.m. train, Waterloo to Richmond. Two April 9th: S
April 9th: Sponge cloth found in clapper valve of
engine, 10.30 p.m. up Windsor train. One minute delay.
The last two cases caused "failures to act.
Another feature entirely absent from the Westinghouse re turn, and which has given some trouble with the automatic vacuum brakes, is the cases of brake-gear requiring readjustment. This is of more importance than might at first sight appear. The stroke of the piston must be kept as short reservoir space and as a high proportion of leverage is require owing to the low pressures available, the blocks must be kept very close to the wheels, and consequently require frequent adjustment to compensate for wear. This operation would appear to have been sometimes overdone, as may be seen from
the following sample out of twelve given in the London and the following sample out of twelve given in the London and
 It is found in practice that the blocks of the vacuum system require readjusting three times to once of the Westinghouse, the practically unlimited press
always to hang quite free.
Carrying our investigation further, we are struck with the serious length of the delays in the vacuum compared with the Westing house returns. Aven the leak-of system on the Great Western is subject to delays of $20,17,13$ minutes, the average all round being four minutes per case, which is certainly bette Londone Soll South Western rail ways, Amongst the returns the former we find the following :-June est De Delay of ofrty-five minintes at Midge Hall. Rolling ring
twisted and jammed in brake cylinder, engine No. 5 F .
Failure of
Nearly three hours delay were caused by five cases !
The average of the Lancashire and Yorkshire is 6.6 minutes ence the same sort of thing, such as the follow amongst others:-
 train. Twenty-eight minutes delay
The average for this line is $6 \cdot 2$ minutes per fault. These tworailways therefore using the ball- -valve brake average nearly six and
a-half minutes percase, and theyrunnearly fourmillion miles cost of 904 minutes, or an average of 4352 miles per minute The London and Brighton and Caledonian Companies having the Westinghouse system, run nearly five and a-half million mile with an average delay of $3 \cdot 3$ minutes per report, or a total cost of 198 minutes, which gives an average of 27,404 miles per
minute, or a proportion of six to one compared with the vacuum minute, or a proportion of six to one compared with the vacuum.
The disadvantages of stuffing boxes, or their equivalent, is also strikingly apparent. By the use of the triple valve in the Westinghouse system, the necessity for having the pressure on
both sides of the brake pistons is avoided, and consequently the poston-rods do not require packing. Other systems of automatic brakes, having power stored upon both sides of the piston,
eported against the automatic vacuum brakes on this account.
For instance, on the Great Western :-

 carriaases, .37 p.m. down Reading tran. 1 wenty-eight
 stoppod by leakatese at improperly packed piston-rods.
Further it would
Further, it would appear that the Westinghouse system may be congratulated on not requiring auxiliary valves in the guard's vans, such as are rendered necessary in the vacuum systems for cases in which the preene of these 1 ition la cases in of causing delay. There are also thirty have been the valves against only one on the part of the Westinghouse. The Westinghouse system certainly possesses brake cylinders and piston packing, but whereas these have only caused two delays and those through carelessness, there are no less than fifty-three cases in the automatic vacuum returns referring to cylinders and pistons and rolling rings, in addition to the forty-eight cases already mentioned of glands, \&c. There are four cases where the rolling rubber packing-rings alone caused 127 minutes' delay.
Having now shown of what the et us examine of what they do consist This is reports simple matter, first, because the whole of the apparatus in use is uniform in character, and because the special parts peculiar to this brake are practically conspicuous by their absence. Burst hose alone is responsible for 61 per cent. of the reports, and these with broken copper pipes make about 70 per cent. of the total; of the remainder, about 20 per cent. are due to leaks and care10 essness or inexperience, and the special parts form only about 10 per cent., compared with 76 per cent. against the special cases of damed pipes reported anain the rewum and if we eliminate the 70 per cent. alluded to on the part of the Westinghouse, instead of 1 in 41,000 miles ner repart of already given, the average would be increased to 1 in 132,000 miles, compared with the 1 in 31,000 for the Vacuum ${ }^{2}$ ball valve brake. Including all cases, however, the reports against the Westinghouse average only one incident for every The following
The following table gives a summary of the reports against the special parts of both systems:-

Westinghouse.

It is not easy from the returns to get at the number of parts uniformity and there being three kinds employed. Many engines and tenders are fitted with only steam brakes-against which we may mention there are no reports, since they form no part of the continuous brake system--and there is evidentiy more than one kind of apparatus in use on the same railway, whereas the Westinghouse system is entirely uniform. The figures given mention that we have excluded from the above list twenty-three reports of "triple valves sticking" on the Midland Railway This company continue to persist in reporting three or four times as many cases against triple valves as all the other lines put miles with the Westinghouse brake out of nearly nineteen millions in all. The delays referred to are due to entirely different causes, as every other company has discovered ; and this persistent attempt to injure the reputation of such an
admirable device is little to the credit of such a corporation admirable device is little to the credit of such a corporation as the Midland Railway. This company enjoys a decided advantage in making the returns of its own appliance as well as of
that of its rival, and we think it quite possible that if the Westinghouse Company are allowed the privilege of reporting all cases against the Midland brake, the returns from this line to sticking, they could never perform the work they do on the 120,000 engines, tenders, carriages, and wagons for which fittings have been sold. What this work amounts to is evident from another of the interesting returns made by the Lonaon and Brighton Company, which is to be found in the appendix. On a certain day in June, it seems the Westinghouse brake was
applied 20,167 times-that is, 8302 times for ordinary booked stoppages, and 11,865 times for signals, \&c. The movements of course of the fact, this number only eight have once resulted in delay.
That the want of uniformity in the vacuum system is a serious hindrance to traffic is clear from the extracts already given. It
was thought at one time apparently that the adoption of a was thought at one time apparently that the adoption of a so-called "universal" coupling was all that was necessary to
harmonise conflicting systems-a ludicrous idea enough. The harmonise conflicting systems-a ludicrous idea enough. Nith
returns show that "leak-off" carriages do not work well with the "non-leak-off;" and further, that the non-automatic vacuum when run in automatic trains give occasion for trouble. Various cases are reported of the brakes being applied on North-
Western vehicles under these circumstances, although fitted with a special cut-off valve to prevent such mishaps; and, of course, the latter would do the same if run in trains worked on the former system. We make no apology for speaking strongly in favour of the Westinghouse brake. It is a duty we owe to ourselves and the public, and the matter is too serious a one not to be in earnest. Where no the same test as the Westinghouse, or will climates. It is practically the same now as it was years ago, it has proved victorious in all contests, and we have ourselves no doubt that ultimately it, or something very like it, will be universally in use in this and other countries.

RAILWAY MATTERS.

The Board of the Brighton Railway Company has appointed
 A NKW central railway station, said to be the largest in the
world, is nearing completion at Frankfort-on-the-Main. It has
 Kailway Company the balance.
ThE London Commission appointed to invite the co-operation of English companies and corporate bodies in the Railway Jubilee good progress. Some joint action in the matter will be discussed already been suggested to be broughtstbefore the projectectecongress. from Paris on the Decasion
the Northern of France.
Errctrric lights have been used for three months past in a dining
ar running between Paris and Brussels, TTe electricity is sumar running between Paris and Brussels. The electricity is sup
plied from the constant batteries of Desruelles. Forty-five of these phed from the constant waighing neerily 14400 lib., are are artached under the the
in fitten boxes
car. They are said to afford light for seventy hours to twenty-one car. They are said to afford light for seventy hours to twenty-one
lamps with 100 agregate candle-power. The light is very steady
for the first twenty hours, and then begins to grow weaker. It is remarked that to supuly the same lightfrom an accumulator nearly
fwice the weight would have to be carried. AN examination of the steel sleepers made by the Barrow Henia-
tite Steel and Iron Co., and laid on the North-Eastern Railway Company's 1330 yards of Train Valley Railway in March, 1885, has factory. The inspector is of opinion that the sleepers will kee good for twenty or twenty-five years, whereas the old-fashioned good on ones only lasted from twelve to fourteen years. The cost
of the wooden sleepers is certainly but half that of the steel ones, of the wooden sleepers is certaily but half that of the steel ones, and are not so tronheso
sleepers give less trouble.
The directors of the South Staffordshire and Birmingham Dis
riet Steam Tram ways Company have just paid a dividend of 6 per cent. per annum upon the preference shares for the half-year to
the 31 st July last. The wagons on order for rail and road goods raffic will, the directors state, be delivered to the company
hortly, and negotiations for a considerable traffic are now pending shortly, and negotiations for a considerable traficicare now pending.
The alteration of the line belonging to the Birmingham Centrai Tramways Company from Handsworth will probably, the report adds, be completed in a year, whe
running powers into Birmingham.
According to a recent report, the following are the numbers on
vhicles fitted with each description of continuous brakes, the percentage so fitted to the tot
run by trains so fitted :-

The percentage of miles run by the Fay and Newall is exclusive of
the Lancashire and Yorkshire and some minor rail way companies' rain mileage, which could not be supplied.
The Scotch express from the North had a narrow escape near
Masbro' station, on the Midland Railway, last Sunday morning. Masbro', and had passed to the down main line trucks for Masbro, and had passed to the down main line of the Masbro Two trucks, however, remained foul of the Shesfield line, and
these being caught by the express engine were smashed to atoms A portion of the wagons struck the Pullman sleeping car, and
carried away the footbard and steps, while a coupling of the express also gave way. On reaching the next station, Holmes, the behin, The expresseras was brought to a arrages , and the train
horoughly examined. Nobody was hurt, many of the passengers
 Breakdown gangs from Sheffield and Masbro' were soon on th
spot, but the Chesterfield line was blocked for three hours. A Board of Trane report has been published on the collision
which ocourred on the 1st ult, at Penistone Station, on the Manchester, Sheffield, and Lincolnshire Railway, when a portion of the 5.30 p.m. down passenger train from London, while standing at
the platform at Penistone Station, was put into backward motion yy the engine, and ran into a siding, at the back of the ticket plat ing against the buffer stops at the end of the siding. Twenty-three passengers and the rear gaard complained of injury, The portion
of the train which ran back consisted of a third-class carriage, a cilass saloon, a composite charriage, a third-cass carriage, a compass carriage, a third-
clasite carriage, and a
brake van, all fitted with the non-a report is to the effect that "this ollision ocourred from the want
 IN reporting upon a collision at Berry Brow, near Huddersfield,
on the Lancashire and Yorkshire Railway, Major-General Hutehinon says :-"This collision was the result of a dangerous mode of falling towards Huddersfield at 1 in 100 ," and he describes what the circumstances which led to the oollision, but he concludes by
saying:- Nor would the oollision have ocourred had the runattached, been provided with automatic brake appliances, as the nncoupled from the train. The Lapplied before they had been
pany have and Yorkshire Com. Pany have, however, been making good progress in fitting their
rolling stock with automatic brake appliances. During the six 331 vehicles, making the total thus fitted at that date 309 engines and 1328 venicles. In addition to this they have a large number
of vehicles still fitted with Fay's or Newall's continuous-mechani A PROSECT is on foot for tunnelling the "Great Divide" - that is,
the Rocky
Rountain -and the point proposed to be tunnelled is level of the sea, but is the narrowest in the great backbone. A
 would be sixty miles west of Denver, and would shorten the dis-
tance between Denver, in Colorado, and Salt Lake City, in Utah, and consequently the distance between the Missouri river, say at
St. Louis, and San Franciso, enarly 300 miness and there would
be little more required in the way of ascending or descending or be little more required in the way of ascending or descending or
tunnelling mountains. Part of the work has already been accom
plished rises gradually in rolling prairie till an elevation is reached to
500ft. above the passes oonly heiven exceeding 11,000 art. of the to twenty most famoust., while five are upwards of
$2,000 \mathrm{ft}$., and one, the Argentine 2,000ft., and one the Argentine, is $13,000 \mathrm{ft}$. Of the seventy
three important towns in Colorado, only twelve are below 5000 ft .

NOTES AND MEMORANDA.
AtTEvTion has recently been recalled to the use, long practised in India, of sugar or molassed
its strength is much increased.
THE deaths registered in twenty-eight great towns of Englan
and Wales during the week ending 23rd of October corresponded to an annual rate of $19 \cdot 3$ per 1000 of their aggregate population,
which is estimated at $9,093,17$ persons in the middle of this year. In Greater London 3446 births and 1712 deaths were registered, corresponan
population.
A NEW process for making steel pipes or tubes is thus described as in use in Germany. Steel is cast into a round mould, a core is walls of the mould. The short tube or cup thus obtained is the rolled or drawn in an ordinary train. This sems to be a modifica
tion of the system of Mr. James Robertson, of Birminghan ion of the system of Mr.
which we shall describe fully
AT the meeting of the Paris Academy of Sciences, October 11th, aper was read on a priniciple in riational mechanicos, and on a
demonstration used by Daniel Bernoulli in 1757, by M. de Jonquieres. The reference is to the author's recently-explained theor inds wydro-extractor, the fundamental principle of which he no
finown to Bernoulli. His demonstration, analo5ous to that of M. de Jonquières, is contained in his memoir
ntitled " "Principes
hydrastatioues et obtained the prize of the Royal Academy of Sciences.
The number of miles of streets at present containing mains con lanty which hydrants for fire purposes could be fixed in and district of London, is as follows:- Kent , about 85 miles. Near River, about 251; East London, 180; South wark and Vauxhall
160; West Middesex, 107; Grand Junction, 82 ; Lambeth, 2174 Chelsea, 74 ; making a total length of about $1156+$ miles. The
companies are ready to give constant supply and to affix hydrants ompanies are ready to give constant supply and to affix hydrant
vhenever legally required to do so. THE deaths reeistered in twenty-ight great towns of Englan sponded to an annual rate of 18.9 per 1000 of their aggregate popu-
lation, which is estimated at $9,093,817$ persons in the middle of this ear. In Greater London 229 nrtis ered, corresponding to annual rates of 31.8 and $15 \cdot 8$ per 1000 o
he population. In the outer ring 18 fatal ve of "fever", were registered; five of diarrhea and thea
socured in the registration district of Tottenham.
FroM one ton of ordinary gas coal may be produced 1500 lb . of
coke, 20 gallons of ammonia water, and 140 lbs. of coal tar. By destructive distillation the coal tar. will yield 696 lb . of pitch, 17 lb .
of creosote, 141 lb heavy oils, 9.5 lb . of naphtha yellow, 6.3 lb . aphtha 1.5 lb . phenol, aniline, 0.77 lb . toluidine, 0.46 lb . anthracine, and 0.9 lb . toluene. which, Science says, is 230 times as sweet as the hest and A PAPER was recently read before the Paris Academy of Science of the continents at the same depth, by M. Faye. In connection with the reference made to this subject in the opening address of
he President of the British Association at Birmingham, the autho alkes the opportunity of generalising the law already establiste, by him respecting the more rapid and deeper cooling of the earth
crust under the seas than under the continents. Not only is thi law applicable to the Polar seas, whose lowest depths have a temperature very near zero, but also to those which do not freely comdecreases with the depth, the difference between them and the continents at the same depths being, within about 15 deg, as great as
In writing on the intensity of powder pressures in guns, Mr. W between the results obtained in the testing of the pressure exerted by the explosion of gunpowder by the Government Committee on
Explosives and those of Count Rumford made in 1793, and de scribed in his essay on "The Force of Fired Gunpowder " (published
n London, 1802, and recently reprinted, with his other America). Our Government official experiments sive a pressure per square inch varying from $15 \cdot 4$ to $28 \cdot 1$ tons per square inch, the latter
obtained in the 81 -ton gun. Rumford's maximum was 277 tons, a abtained in the 1 --ton yun. Rumford's maximum was 277 tons, as the explosive energy. His reasons for believing Rumford's experiments to be more reliable than those of the Committee are :-" "(1) measured, viz, the gravitation of a known weight, was by far more ion of in the Rodman and Crusher gauges. (2) In Rumforr's arrange-
ment the force of the explosion was more directly applied to the resistance by which it was measured than in the official experi ments, where the shock of the explosion was first communicated to cylinder of the Crusher gauge or the knife of the Rodman gauge By this arrangement much of the force is expended upon interna work in the intervening piston, producing mechanical vibration of
its substance, and a returning wave of elastic compression which its substance, and a returning wave of elastic compression, which
would have no measurable effect on the gauge. Besides this, nother portion of the force compressing the piston must be con contention is thus, that instrumental inertia and its effects are not sufficiently considered in the Wool wich calculations
AT a meeting of the Royal Society of New South Wales in
August, the Society's medal and prize of $£ 25$ was presented to Herbert Cox, F.C.S., F.G.S., for his prize essay on "The Tin Jow England as impregnations, the principal deposits occur sranite, also as gash veins in Silurian slates, and as a network of ater than carboniferous times, and no sedimentary strata appea to have been deposited until the tertiary period, when the leads o
lluvial tin were formed, together with their associated Denudation on an enormous seale has gone on, and the silurian
slates which rest on the granites have only been preserved ying patches included in folds in the granite. Dykes of feldspa nd quartz porphyry traverse both the granite and the slates, bu appears to point out that this acidic only y peceeded the ensuing
basaltic eruption by a short time. The more fluid basalt flowed or considerable distances, frequently burying the gravels of the river beds with the tin they contained, and preserving these " "eep
leads" from subsequent denudation. True lodes appear to be rare,
but some sation" vemarkable mpregnated areas exist in greisen, segreslate "gash" veins up to 4in. in width occur, but these are cer tainly not true lodes. Fortunately, wolfram occurs in separate
veins from the tin; copper and iron pyrites, fluor-spar, tourmaline uartz, through which tinstone is impregnated. In the alluvia deposits, tinstone is found associated with diamonds, sapphires has been from the alluvial, and the "deep leads" which are still being worked, and will probably be greatly developed in the future worked to depths of 140 to 180 ft ., and are frequently found below solid floes of basalt. A yield of 5 per cent. tin in lodes, and from
$\frac{1}{2}$ to 1 owt. per cabic yard in deep aluvial deposits, pays for extrac
tion. The total output of tin between tion. The totaloutput of tin between 1872 and 1883 is 64,794 tons
of ingots, and 13,268 tons of black tin.

MISCELLANEA.

For their steam steering gear in the Liverpool Exhibition Messrs.
Amos and Smith, of Hull, have received the AT the Liverpool Exhibition the gold medal for planing and
ther wood-working machines has been awarded to Messrs. Thomas on and Son.
Messrs. Charles Burrell and Sons, of Thetford, Norfolk, have been awarded a gold m
traction and portable engines.
IT is stated that Mr. J. A. Longriage has signed an agreement that he is to geta "wire" gun made at the expense of the Govern ment; ; but he is t
ment department
Ir is stated that his Excellency Liu-ming Chuen has contracted line from Tai-nan to Tai-pei. Messrs. Jardine, Matheson, and Co. have obtained a contract for laying a cable from Amoy to
Hoo-mee-Formosa-the cost of which is estimated at 210,000 dols. It is expected that both of these lines will be completed before the end of this year
A GooD deal of stir is being heard just now concerning the tion between the officers on the upper deck and the engine room. The speaking tubb is in use as an auxiliary to the mechanical and ory, and a committee has been appointed at Portsmouth, consisting of ©aptains Tracey and Long, and Messrs. Alton, Sennett, Durston,
ont na Pyan, to consider the question.
Mr. Philif Jknkins was entertained to dinner on Tuesday Holborn Restaurant, on the occasion of his Cricket Club, at the Lloyd's Register of British and Foreign Shipping to enter upon his in the John Flder chair at the University and Marine Engineering has recently been appointed. Mr. Benjamin Martell, the society's ohief surveyor, presided, and was supported by a large gathering A circular from Messrs. Easton and Anderson announces that the partnership which has existed for the past eight years between
themselves and Mr. W. E. Rich, M. Inst. C.E., having expired y the effluxion of time, Mr. Rich retires from the firm, and intends the experience he has gained during the nineteen years he has been associated with our firm will, we think, be found very advan-
tageous, and he carries with him our best wishes for his success," Mr. Rich is so well known in connection with the best practice in partners may be sure of his success.
THK Gloucester Corporation has under its consideration a great natcial scheme involving an outlay of over a million sterling,
vith a view to restoring some of the lost prosperity of the city and port. It is proposed that the Corporation should buy up the docks something over a million. It is estimated that the whole might be
purchased for about 9000 ecessary to expend $£ 100,000$ on external improvements, includin 660,000 and 60,000 on internal improvements, including the widening and
deepening of the canal between Gloucester and Sharpness-sixteen miles in length-and the provision of extra dock accommodation. Mne realisation of the sche
outlay of about $£ 1,060,000$.
Thr Duke of Sutherland has, we are informed, after testing Kirkaldy's live steam feed-water heater on his steam yacht Sans
Peur, and finding a saving as between 5 tons 2 cwt as against 6 tons, per 24 hours, given instructions that a similar heater be of Sutherland is confirmed by Bridge Cement Company, and although it seems impossible to explain the origin of the gain, a considerable number of users easily be imagined that a boiler may have its efficiency enhanced by better circulation resulting from the use of very hot feed, but nevertheless the demands of theory are not satisfied. The object, rolong the life of boilers by supplying them with hot-feed at all A 100 -ron crane has just been completed by Messrs. HigginManchester, for Messrs. Sir W. G. Armstrong, Mitchell, and Co.,
Newcastle-on-Tyne. The crane is of the Goliath type, having of castings. The crab has two barrels, both whith the heaviest class by an ingenious arrangement the weight of crab and load is equally over eight wheels. The crane is rope driven, and the reversing is effected by means of friction clutches, which drive
steel worms working into gun-metal worm wheels. All wheels and axles are of steel. The weight of the crab and chain is about
25 tons; the length of the chain is about 220 ft. The snatoh block is of Lowmoor iron, and is so arranged that the heaviest loads can easily be turned by the hand when suspended. Altogether the in detail, mand highly proportions, and of good design in ingeneral and
an Messrs. Higginbottom and
SIR Charies Mark Palmek, M.P., has been telling the people of
Jarrow what he thinks of the signs of the times. The occasion was a banquet given by the mayor of that not very ancient borough, though by the way, it possesses a church dating from the e time of
the Venerable Bede. An address was presented to the honourable baronet congratuataing him on the honour recently conferred upon
him by her Majesty the Queen.
of course he had to reply, with themselves, and with the past, present, and future of Jarrow. He reminded them of the John Bowes, the first
iron sorew collier built in 1851 by his firm, and which is still aqfoat, an abiding witness to the enduring qualities of iron as a ship-
building material. The venture was not only a successful one from the point of view of an engineer and a naval architect, but iso from that of a commercial man seeking only profit. The pioneer steam collier was followed by many others, and gradually
the TYne, and subsequently the Wear, the TTes, and the Fartle-
pool beame famous throughout the world for the fine cargo boats built, equipped, and sent too sea from those oocalities, until all the
oceans of the world are now teeming with them. The monthly report on the London water supply, by Sir Francis "The East London Complany have recently been again troubled by eels. As was reported in the water examiner' report for August,
184, this evil is attributed to the collapse of the Niddlesex filters condemned by the water examiner, and entirely reconstructed on new principles. When the bottom of the filter beds gave way,
the unfiltered water became mixed with the filtered water in the basin underneath, and it is believed that some eels of minute size
entered the mains and found their way into the distributory pipes and have since multiplied considerably, thereby causing some of the consumers great inconvenience, and the company an immense
mount of trouble and expense. The company are doing their est to free their mains and the consumers' pipes from the annoy
ance caused by the eels.
come West Ham Loal
orpard the matter is now being investigated by the Local Governmen Board," The explanation may satisfy some people, but we fear it
will not all. Only yesterday a well-known firm in the City co will not all. Only yesterday a well-known firm in the City com-

RAILWAY BRIDGE OVER THE RIVER RIACHUELO.
Mr. EDWARD WOODS, PRES. INST. C.E., ENGINEER.
(For description see page 345.)

RAILWAY BRIDGE OVER THE RIVER RIACHUELO.
MR. EDWARD WOODS, PRES. INST. C.E., ENGINEER.

RAILWAY BRIDGE OVER THE RIACHUELO. In The Enginerr of the 8 th inst. was published a page of engravings illustrative of a fine bridge for South America, the engravings including a general elevation to a small scale, a part elevation to a larger scale, plans, plan and sections of counter bracing, and the arrangement of the bolts and distance pieces for the booms and counter bracing. Through the courtesy of Mr. Woods we are now enabled to give on page 344 and above further view. This bridge is to carry page 325 was given a perspective Port Railway over the Riachuelo, near Buenos Ayres. It has lieen constructed, and is now being erected under the direction of Mr. Edward Woods, President Inst. C.E., who is engineer-inchief to the railway, the design and the whole of the drawings having been prepared in Mr. Woods' office.
The bridge is particularly interesting as a recent example of English construction, and on account of the care which has been taken with the design and all the details. Amongst the special points of interest in the design is the adoption and arrangement between cross girders and main girders. In each of these the axis of the connecting pin is placed in the vertical axis of gravity of the girder to which the connection is made, thus avoiding all twisting stresses in the structure. This alone is of much importance and interest. In designing the main girders particular care has been taken to secure to each element its due, and only its due, proportion of the total stress. This is only possible where the pin form of connection previously mentioned is adopted, and it is easier in, this case, as the girders may be the various members forming the elements. The connections of tively have been designed to fulfil the requirements of " uniform stress," the importance of which was first pointed out by Professor Callcott Reilly in a paper read before the Institution of Civil Engineers in 1865. These requirements may be shortly defined in the following terms:-(1) That the deflections of the rail girders, cross girders, and main girders, shall not cause deviations in the positions of the lines of action of the several supporting forces. (2) That the mean fibres respectively of the that this point shall also be the centre of gravity of the group of rivets or pins constituting the joint. (3) That the centre of the
leading rivet hole in any joint or bar subject to tension be An in the mean fibre of the bar
An ingenious detail in the design is the form given to the expansion rollers, the peculiarity of which is that it allows of the use of rollers of practically 6 in . in diameter, but placed so that they are only 4 in. apart centre to centre. This is shown by the engravings above.
5 ft . 6 in . gauge, with In consequence of the requirements of the Argentine Government, namely, that the intensity of the stress upon the metal shall in no case exceed 3.81 tons per square inch, or 6 kilog. per square millimetre of section both in tension and compression, when the bridge is loaded throughout its length with a rolling load of 1.064 tons per foot, or 3.5 metric tons per metre run of span on each line of railway, the bridge is necessarily a very heavy one.
In the design a rolling load has been provided for, of 18 tons per bay, or 1.08 tons per foot run of span on each road,
which is slightly heavier than the Government requirements. The stresses upon the cross girders, rail girders, and their connections have also been computed with reference to the distribution of weight in the heaviest engines in use on the railway. The dead weight of the superstructure with rails, chairs, and platform complete, is estimated to be $637 \frac{1}{2}$ tons. The units of load per bay per girder therefore become-

Dead load
Live load
Total load
$21 \frac{1}{2}$ tons.
${ }^{-18}$ "
The following are the principal dimensions of the bridge :Length. centre to centre, of bearings
Depth of main girders, centre to centre of booms, one-tenth Main girders, distance apart centre to centre $\ddot{\bullet}$
Cross girders, are placed at a distance apart centre to coentre
which divides the which divides the main girder into fifteen equal bays, viz.
Depth of cross girders, centre to centre of booms. Depth of rail girders, back to back of angle irons. 6 in . in the centre measured from the horizontal line a camber of解 lantre from the horizontal line, it is calculated that the dead
that when erected and unloaded there will be a camber of $4 \cdot 5$ in in the main girder and 1.0 in . in the permanent way.
f the leading sections.-It will be interesting to refer to some at the centre of completely loaded, is 18,300 foot-tons, and as the mean depth of the girder is 25 ft ., the stress on the booms at centre is 732 tons; this, with a limit of stress intensity of 3.81 tons per square inch, requires a sectional
sections provided are-
Top boom.-Four plates 26 in . by 1 in . $=104$ square inches four plates 16 in . by ${ }_{\frac{3}{4} \text { in. }}=48$ square inches ; ight $\mathrm{I}^{3} 4 \mathrm{in}$. by 4 in . by $\frac{3}{4} \mathrm{in} .=43.5$ square inches; total section provided, $195 \cdot 5$ square inches.
Bottom boom.-Twelve plates 18 in . by 1 in ., deducting two 1 in . rivet holes from each, the effective sectional area becomes 12 in . by 16 in . by $1 \mathrm{in} .=192$ square inches.
Stresses in web.-The following cases serve to illustrate the web
stresses:-The vertical strut between the joints as in the stresses :-The vertical strut between the joints as in the one
that has to resist the heaviest stress, which stress may be stated as follows:-78 \times unit of moving load, plus $75 \times$ unit of dead load, all divided by $15=78 \times 18+75 \times 21 \cdot 25=199.85$ tons, which requires $52 \cdot 45$ square inches of section. The sectional area provided is: Four channel irons 10 in . by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2} \mathrm{in} .=$ 32 square inches; four bars 10 in. by ${ }_{5}^{5} \mathrm{in} .=25$ square inches; total section provided, 57 square inches.
The maximum stress upon the end diagonal ties, namely,
those between joints H and K , is $=91 \times 18+90 \times 21 \cdot 25$ \times cosecant $\theta=236.7 \times 1.2=284$ tons, requiring 74.55 square inches of section. The section provided is, four bars 15 in . by $1 \frac{3}{8}$ in. Deducting one 1 in. rivet hole from each, the effective The maximum stress upon the end inclined strut, namely, that between joints A and H , is equal to seven units of total load multiplied by cosecant of $\theta=39^{\prime} 25 \times 7 \times 1^{\prime} 2=329^{\prime} 7$ tons, requiring $86^{\circ} 5$ square inches of section. The sectional area provided is: Four plates 18 in . by $\frac{5}{8} \mathrm{in} .=45$ square inches ; two bars $7 \frac{3}{3} \mathrm{in}$. by $1 \mathrm{in},=15.5$ square inches ; eight $\mathrm{L}^{5} 8 \mathrm{in}$. by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{\frac{1}{2}} \mathrm{in}$. $=44.0$ square inches; total sectional area, 104.5 square
inches. It may be mentioned that in the perspective view which
we published last week, the diagonal wind bracing was not shown as published last week, the diagonal wind in in the plan given in our impression of the 8th inst. This was simply because this wind bracing, was not in place when the work has been executed by the Horseley Company, Tipton, Staffordshire, to the entire satisfaction of Mr. Woods and hisrepresentative, Mr. W. Bayley Marshall, under whose charge
the work was placed. The manufacturers have thoroughly worked to the requirements of the specification throughout, and
have carried out the work in exact accordance therewith, both as to the quality of materials employed and the character of the workmanship. Not a single alteration was proposed by
the Horseley Company in either the details of the design or th requirements of the specification. The following extracts from requirements specification will show that Mr. Woods required that the
thuality of the materials and the workmanship should be of the quality of the ma
"The whole of the ironwork, including the box girders, bearing apparatus, and the cross bracing, as also one bay of the timber
platform, is to be completely erected in the contractor's yardbeing filled with a sufficient number of temporary bolts to hold the parts well together
to be of the very best description throughout. The wrought fron used in the main girders, cross girders, rail girders, box-
bearing girders, and cross bracing is to be of English make, and nust be supplied by a manufacturer approved in writiog by the ngineer. It must be of such quality as will satisfy the following A. The plates tested by tensile fores are not to break with a less stress than nch of original section. Plates tested by tensile stress in the ensile stress than 18 tons per square inch of or original section Flat bars of 12 in. in width and under are not to break with a less tensile stress than 22 tons per square inch of original section.
The angle, tree, and channel sections are not to break with a less ensile stress than 22 tons per square inch of origiual section to be cut from the flanges and others from the tables; they will o be cut from the flanges and others from the tables; they will the section they may be cut from. Rivet and bolt iron will b required to stand a tensile stress of 25 tons per square inch o
"B. The contraction of area at the place of rupture by tensile stress must show not less than the following percentage of
reduction from the original section:--For plates tested in the direction of the fibres 15 per cent; for plates tested in th direction at right angles to the fibres 10 per cent.; for bars 20
per cent.; for angle, tee, and channel irons 20 per cent.; for per cent.; for angle, tee, and
rivet and bolt iron 25 per cent."
"The rivet and bolt iron, in addition to the above will be equired to withstand the test of being closely doubled up cold
vithout showing any sign of fracture of the fibres at the "After the whole of the iron intended for the bridge has been
bend." rolled, the engineer or his inspector will select the following
ander sanpies, which are to be forwarded to the testing works of Mr. Kennedy, Uuiversity College, Gower-street, London, W.C., at the option of the contractor, and are there to be tested for The pieces from which samples have been cut are not to be ot shown on the drawings:-6 samples of 26 in. plates for to not shown on the drawings:- 6 samples of 26 in. plates for top
boom; 6 samples of 18 in. plates for bottom boom and end
diagonals; 6 samples of angle irons of top boom; 10 samples of

 irons; 2 samples of 9 in. bars 4 for crosps girders; 2 samples of of sin.
ind
bars for ditto; 4 samples of web plates of rail girders; 4 samples f angle irons for rail girders; 2 samples of web and flange plate of box bearing girders; 2 samples of angle irons of box bearing The above samples are to be cut to such form and dimen sions as Mr. Kirkaldy or Professor Kennedy may require.
"If one or more of the samples fail to satisfy the required ests, the engineer is to have power to reject the whole of the materials from which the faulty sample or samples have been
taken, unless it shall appear that there was a flaw or other defect in the sample itself, in which case a second sample shall be pro"The twenty-eight cross girder connection pins, the fifty-six rail girder pins, the four 8 in. pins for the rocking saddles, and The sixteen expansion rollers are to be of the very best cast steel.
The saddles, and the four lower saddles, and the two roller paths are all to be of the best description of cast steel, of quality specially suited for the requirements of these castings.
The bars forming the two expansion roller frames must be f the best quality of Bessemer or Siemens steel. The contracto nust submit the name of the firm from whom he proposes to neer's-approval of the said firm in writing before placing the
"The rivets and bolts throughout must be of the best quality "The workmanship throughout is to be of the very best possible description. All holes, without exception, are to be drilled,
and wherever possible the holes are to be drilled at one and the same operation through the various thicknesses of metal which ave to be connected by the rivets. The positions of all rivet are shown on the drawings, and the said positions must be
rigidly adhered to. If any holes should be drilled in the wrong places the bar or plate in which such mistake has occurred must
be condemned. No plugging to be allowed. The holes for the pin connections of cross girders with main girders and of rail girders with cross girders are to be accurately bored to gauges,
so as to be a close fit without being at all loose upon the "The cast steel pins connecting the cross girders to main to gauges, so that they will be tight driving fit in the bored holes above referred to. The nuts and thread on these pins must be machined, and split pins must be provided to prevent the nuts slackening back.
forms shown on drawing No. 10, particular care being taken in shaping the rollers and pitching the holes in roller frames to
ensure the interlocking of the rollers before the edge of the ensure the interlocking of the rollers before the edge of the
bearing surface has passed the perpendicular in either direction. This is to be tested by placing the complete roller frame upon a rollers lock. The top and bottom saddles must be carefully
planed on their bearing surfaces. The holes for the 8 in .
rocking pins must be accurately bored, the holes to be perfectly cylindrical and their axes in each case to be exactly parallel with the bearing surfaces of the saddle and at right angles to the longitudinal centre line of the bridge.
To ensure good workmanship in the bearings for the sin. pins to ensure good workmanssip in the bearings for the sin. pins
the following method must be adopted in casting and boring the the flllowing method must be adopted in casting and boring tores as shown by the following sketch :-The faces AA and B B

being planed parallel in the planing machine, the two saddles of each pair must be firmly bolted together, after which the sin. bearing pin hole must be bored, and after this operation the two above sketch must be removed by the planing machine
"Each of the bearing pins must be provided with a 1in. hole drilled into and tapped for the length of 2 in. at each end, so that eyebolts may be screwed
of lifting the pins into place.
of lifting the pins into place. "All bolts are to be made to Whitworth's standard proportions, "All boits are to be made to Whit.
No puncher holes will be permitted in any part of the work, unless punched not less than inl less diameter than the finished or bolts or rivets, are to be drilled out of the solid metal, and "o cast holes will be allowed.
All those rivets which are liable to receive a pull upon their in addition to the ordinary size of the heads and snaps. This countersinking is shown on the drawings, and particular atten ion must be paid to this point.'
lief assistant Mr. W. Hugh Wor Mr. Woods' direction, by his chief assistant, Mr. W. Hugh Woodcock. Speaking generally, the practical workshop expediency and possibilities, which can without doubt be more nearly allied in works of this magnitude than in those of smaller scale.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our Correspondents. \rfloor

Lock nuts.

STr, -On reading the query of "Lead Pencil," in your issue The 1st inst, re lock nuts, I was surprised that even a junior should
wish to raise a question which I imagined had long ago been threshed out; and I was more surprised to see, the following week and to-day, several letters which show that some still cling to the Ways of their grandsires. It is especially remarkable that
"J. T. W.," who, I gather from his remarks, has had some ience, should not yet have found the truth. It would axperom his second letter, published to-day, that he has a sovereign contempt for " modern text-books" and theory generally. If that so, it is saarcely consistent for him, in supporting his idea, to
ive not one single example of practical experiment and result, but to wade out of his depth into theory too obscure for others to follow. His argument I will not attempt to refute. The logic is too deep
and the English too peculiar for my comprehension. I can only assume the break of the threads is the point at which the bolt thread leaves one nut and enters the other; then, may I ask, what
is the meaning of :" If it is directly opposite to one another." is the meaning of : in it is direotly opposite er one another.
take it , the thread in one nut must begin where the other finishes, unless one of them can turn further after it is home, to do which I have looked for replies to this remarkable production, but although several express an opinion, and Mr. Themas gives a con-
vincing practical proof, there is not one which goes correctly into vincing practioal proot,
the theory of the matter.
the theory of the matter. If space can be spared, I will venture to submit an argument in favour of the accepted idea, viz, "thick nuts outside." In the first place, let it be granted that nuts generally are prevented from
slacking back by the frictional grip of the faces of the threads in contact, and that the value of that grip varies with the pressure on
those faces. Then, if a single nut be screwed hard home against a solid collar it is secure, because all pressure put on the face of the collar by screwing up must be met by an equal and opposite pres. sure on the inner face of the bolt thread, and, in that case, a second nut is not required. So long, then, as the part secured by a nut nut, it is rivee from vibration ar referred to and second nth unnecessary but, s son as it begins to vibrate, it will in effect alternately strike and leave the nut to a greater or less degree, on the nut, it must of necessity leave it free to turn. This brings is to the conclusion that what is requi oo the collar on the bolt, against which the main nut may alway secured; and, I take it, this is the purpose the lock nut is designed
to serve.
It is then evident: First, that the lock nut must be the inner one; secondly, that to be of service as a lock nut, it must have no
share in supporting the vibrating piece, but must bear on the outer face of the bolt thread, so as, at all times, to resist the main nut, which of neeessity bears on the inner face; thirdly, that if the first
nut is jammed up and left bearing on the inner face with the second jammed on top of it, there can be no security. For, since lieved of pressure it will in turn relieve the outer, and both will be loose. If it is required to fix lock nuts, where the work must be
screwed up tight as, instanced by some correspondents, the first nut may be screwed right home, the second screwed hom on tos nd then the first turned back against it, just enough to transfer its bearing from the inner to the outer face of the bolt thread,
which will be done without withdrawing it from its work in the

least. If.

If these conclusions be accepted, I think it will be seen that the
strain on the outer nut is in an outward direction, and is that due to the work plus that due to the pressure of the inner nut on the thread; while that on the inner nut is in an inward direction, Therefore, thick nuts outside

SIR, - I would not again seek to encroach on your valuable space, SlR, 1 would not again seek to encroach on your valuable space, in their ideas as regards the action of lock nuts. Sine qua non,
both nuts must be a good fit on bolt. It is a gross mistake to think
 one causing compression on the bolt, because the inside nut must oneep the thicknesss of the "shake," after being tightened up,
cefore it becomes a jam nut proper of the system. Stripping will
bet before it becomes a jam nut proper of the system. Stripping will
not ocur, because the strength of a very fow tight-fitting threads
are equal to that of the section of the bolt. Take the case of a are equal to that of the section of the bolt. Make the case of
tightnut on an inch bolt-eight threads to the inch -and supposing
hearing resistance to equal cohesive resistance, two threads wil of four; nut half thickness will have factor of two. But in the for threads are exposed to leverage, resulting in bending action like that of teeth of wheels in too shallow gear Distortion com I haw, nen in stripping by threads turning over.
I have never seen the threads sheared off unless in the case of in neglecting to talk "" wash" in thior iron or bad workmanship, ing, so as to close the grain. To put the matter in a nutshell. Proper jam nuts are exemplified in the cases when used for serewing in "studd" to place, the tool for the same purpose, or for use on
valve spindles, \&ce, for in such cases both nuts act in opposition on valve spindles, \&cc., for in such cases both nuts act in opposition on
the threads of the bolt, \&co., as before described.
R. H. Cork, Oct. 19th.

SIR, - must congratulate you on the large proportions the
elementary query of "Look Nuts" is assuming. Without going ar into the matter, I may say I agree with " J . T . Without going retically it is right to put the thick nut on the outside, but in all may say I never saw it carried out. On one or two occasions have seen the locking nuts made the same thickness, I think
"J. T. W." and the other junior draughtsman were decidedly in "J. T. W." and the other junior draughtsman were decidedly in
the wrong in disputing with their chief. Thanking you in anticiJohn Wilson
40, Chrisp-street, Poplar, E., Oct. 26th.
railway jubilee in france.
SIR,-If anything might raise surprise in these days, it is to see Mansion House to urge the Lord Mayor and Lord Mayor elect to accept an invitation to attend the Exhibition at Paris in celebration
of the fiftieth year from the introduction of railways into France That their lordships should accept such an invitation, with their own Show near at hand, is to be regarded as surprising.
What is the int introduction of railways into France to us, besides the fact that our countrymen had the great hand in their development, by English engineers, contractors, directors, not forgetting
the navvies, nor by any means English capital, and English machinery, and English plans? Why is the introduction of railways there to move us more than their introduction in Spain,
Russia, Japan, Switzerland, or Honduras? and why is the London It seems stramer ch move?
know that the celebration is Chamber of Commerce should not and to get it for France, by exhibiting that ountry in its usual
attitude of the inventor and centre of civilistion. The The Chamber
does not appear to count up how much work the French have ares
driven us out of in Spain, how much work the French have
countries. On this occasion the repeece, Servia, and other countries. On this occasion the representatives of the ignorant
nations in Europe will be invited to see the spectacle of French superiority in rail way work atteested bee the English themselves.
The Lord Mayor and the Chamber of Commerce may regret much that Robert Stephenson and Thomas Brassey no logger live to in France. It might have been thought that when we had made to the King by Livingstone, stanley, and Cameron, and when the King of the Belgians had just cancelled the concession to Stanley and his asso-
ciates of the Congo Railway, and, after fooling and excluding them given the concession to Belgians, that we have got a lesson to loolk after home interests. Here is a Chamber of Commerce in London taking the lead among the Chambers of Manchester, Glasgow,
Newcastle, Sheffield, Birmingham, Barrow, Wales-all of them complaining of the depression of the machinery and steel trades, quence of foreign competition.
The Germans will not be so unwise as to back up French supremacy and superiority, and to give up their chance of competition among the nations of the earth. France has not the justification
and advantage of originality, of extent of system, or of work, that claim the oear us and our kinsmen beyond the Atlantic.
32, St. George's-square, S.W., October 25th.
charging for entry of names in directories.
Sir, - With reference to a letter in your issue of the 1st inst.,
signed " Manufacturer, Colchester," we beg to enclose you herewith an extract from the introduction to the London Directory, showing under what circumstances charges are made for that
Directory, and trust that you may be able to find space for it. Post-office Directory Offices, 51, Great Queen-street,
London, October 9th.
The following is the extract above referred to:-"No charge is made for the entry, not exceeding one line, of the name of any person occupying a house of sufficient importance, or of the sole
ocoupant of any offlece or chambers; but if the entry exxeeds one
ond line, the excess not arising from the length of the name of the one line. A fashion has recently sprung uap for one or more individuals, not being resistered companies, to trade under some
fanciful title, as when William Smith, instad of having his
ham name entered as 'boot and shoe maker,', requires to be entered as 'John Brown,' instead of ocalling hingeelf supply dealer issociation, wines ord
spirits,' wishes to be entered as 'The West End Wholesale and
the spirits, wishes to be entered as 'The West End Wholesale and
Retail Association for the Supply of Genuine Wines and Spirits.' These entries not only unnecessarily occupy space, but cause much all such cases the whole entry is charged for, but the person always has the option of having his real name entered free."

groynes on shifting beaches.

 STR, -Will you allow me to supplement my letter in your issueof August 27th by few remarks the offect of the recent heavy
seas on the groynes at Brighton, as I think, if carefully examined, seas on the groynes at Brighton, as I ?
an instructive lesson may be learned?
The wind was south-westerly, and therefore, after the storm had groynes, but not one single groyne from the east to the west of Broynes, bat not one sut had lost shingle from both bides. Each
Brighton and Hove but hid groyne, without exception, had produced a considerabe sour on
the east side. Where they had to be fixed opposite to a sea wall, where the groynes were placed opposite unprotected land, both the shingle and a portion of the land behind it were washed away. (1) parts of the frontage where most damage has been caused are (1) between the Hove eastern boundary and the West Pier, (2) the
Aquarium and the Chain Pier, and (3) eastward of Paston-place, Aquarium and the Chain Pier, and (3) eastward of Paston-place,
Kemp Town. In each of these cases the damage done was immediately to the eastward of some extra large groynes.
In the first case there is a large concrete groyne at the Hove boundary, and the entire roadway eastward, opposite the orna-
mental enclosures, has been washed away, the enclosure wall heing mental enclosures, has been washed away, the enclosure wall being
left exposed 8 ft . or 9 ft . below where the surface of the road was. The sewer and manhole alluded to in my letter have now been completely exposed, the face of the cliff being many feet shore-
wards of them, and varying in height from 4ft. to 6 ft . The second instance is eastward of the two large concrete groynes recently completed near the Aquarium. Thee.electric railway was here supported
on timber piles and trestles. .hese have been washed a away as
well as large masses of shingle, as far fas ane Chain Pier. The
third instance is to the east of the Paston-place concrete groyne. third instance is to the east of the Paston-place concrete groyne.
Here a similar occurrence to the one I have before described has
别 taken place. The edge of the cliff is now exposed for a height of
from 4 ft , to 7 ft . to the edge of the roadway. Should by chance nother storm arise before sufficient earth has again been carted to satisfy the raging waves, the roadway will again fall a prey to The case has now become sufficiently serious for the authorities
to decide how they will deal with their foe. If they continue to decide how they will deal with their foe. If they continue
their old policy of directly opposing it, they should, in face of the their old policy of directly opposing it, they should, in face of the
foregoing evidence connecting the large groynes with the damage foregoing evidence connecting the large groynes with the damage
done, be prepared to do so by a heavy wall, as well as massive groynes, so as, irrespective of cost, to offer a constant resistance to their persevering enemy.
As a shingle beach is the most natural protection, and as I consider a sea wall and solid groynes drive the shingle into deep water,
I wish to draw attention to other methods of security. The shingle is driven along by the waves, and would be deposited near highwater mark were it not for the water, which, after the wave has struck the wall or solid groyne, is forced to return seawards, when it carries the shingle with it. If therefore the wave could be
allowed to pass with little or no obstruction, whilst at the same allowed to pass with little or no obstruction, whilst at the same
time it is robbed of its load of shingle, I think it will be admitted that the desired object would be attained. It is to attain this end that I advocate the use of open groynes, as they retain the good features of the solid groynes without producing their ill-effects. The late storm has abundantly proved that there is no lack of deposited amidst the turmoil produced by waves dashing against the walls and solid groynes. Substitute open gratings for the planking of the solid groynes, as I have so often advocated, and the desirable change would soon make itself apparent.
3, Great Queen-street, Westminster, October 27th. Dowson.
SUPERFICIAL AREAS.
Sir,-Would any of your readers kindly explain the annexed problems in superficial areas? Suppose I had a sheet of iron 8 ft . any form so that I would have a rectangle 13 ft . by 5 ft . The area
of the sheet, to start with, is 64 ft ., but when cut and placed copies from an engine of this kind, Fig. 2, with cylinders of 14in.
by 20in., indicating about 100 -horse power, running at 242 revolu-
tions, or a piston speed of about 800 ft ., which, with another of the tions, or a piston speed of about 800 ft ., which, with another of the Theatre at Buda Pesth. At Adamsthal, in Bohemia, one of these

per minute, which I think will prove that the system may be classed among the successful ones, attaining a modern high speed governor. $25 \cdot 35$, New Broad-street, London, October
25 th,

THE FRICTION OF HYDRAULIC RAMS.
Sir,-In Tine Evaineer of the 17 th prox, a description is given apparatus, which is being manufactured by Messrs. R. Stephenson and Co. On the l4th July, 1808, whon in the employment of Messrs.
Neilso and Co., Clurow, I was instructed to have put in below Neilso
the whecls of 1, Cluasive, I was instructed to have put in below short iydraulic rams whion had just been got into sbore, together
with the presure guages for them, to woikh this engine, bofore
taken down for taken down for simpinent.
in diameter by $4 \frac{1}{2}$ in. deep,
course, mounted with
leathers presented a ring to the cyin the lower ends. These round. They were new, and quite a good job. This looomotive
was one of ten then being constructed for the Bombay and Raroda Railway, had 16 in . by 22 in . cylinders, and the forr hind wheels coupled. I had all ready and coupled day, as desired, so as not to disappoint the inspecting party, who were to arrive at the works at that hour. I showed them the engine raised and lowered on the rams, and when up for the third time they took to the office to make up the quantities. I did not hear a word drop from either of the gentlemen as to what the probable friction would be of the six hams, or if taken into account by them at all. I was being lowered that the gauges indicated conwas being lowered that the gauges indicated con-
siderably less pressure than when being raised. My acooding to sketch it is 65 square feet. As will be seen, it is easily object was not so much to know the weight of engine as to gain a
lone. Now reverse the rule, and take a rectangle sheet 3 ft . by 8 ft ., the area of which is 24 square feet, but by cutting it in a like
manner we can make it 5 ft . square-nearly-which is an area of 25 square feet. In both cases there is a gain of lft., as it were, out

of the impossible. I have tried to calculate it all ends up, but to no purpose. I trust that you will publish the above, and that some
of your readers will solve the mystery. Hartlepool, October 25th.
the proell engine.
Sir, - -In your issue of the 22nd inst. I noticed a description and you could find space for some corrections and additions which are likely to remove an erroneous impression about the construction Fig. 1 running of the engine, as only the elasticity of one coil is thereby lost, the broken ends settling on one another. (2) The
application of the auxiliary weights q, which, during the first part of the opening of the governor arms assist the opening, while opening tendency, thereby attaining an approach to accuracy not reached before.
The speed of 180 revolutions per minute, to which your contemporary refers, was one used at a trial, when, owing to deficient eate the engine at a higher speed than 180. Enclosed Ibeg to hand you
litile knowledge of the ram friction; and to ascertain, as near as possible, what this friction was, I set about making out. I placed a man at each of the six rams, while the pumps raised the engine up
nearly 2 in .; when each of them took the indications and placed his finger on the ram on top of cylinder, so that he might feel and call out the moment he felt the ram move downward. The indications on the gauges were seen to have fallen from 10 lb . to 11 lb . at the poine mas mement; and although the practically the same. But to prove that no error had crept in, the experiment was gone over again and the pumps set to work. The pressure gauges were observed to gradually regain the lost 10 lb . or
11 lb ., and took their stand there, 11 lb ., and took their stand there, however far the rams were
pumped up. The return water tap was again turned, to let the pumped up. The return water tap was again turned, to let the
water finally off the rams, when the gauges again gradually lost the 10 lb . or 11 lb . before the rams made a move downward; so I concluded, whether right or wrong, that full 5 lb . per square inch was the friction on the united area of the six rams. I very much regret that I cannot now give the figures indicated on the different gauges, as I have lost the little vest pocket note-book in which
then jotted them down.
W. Robertson, Engineer. Dublin, Oct. 26 th.
the late mr. Allibon.
SIR,-Permit me to correct two slight mistakes in your last week's issue. They occur in a short article on the career of my
father, the late Mr. George Allihon. The first is that the name of his partner at Gravesend was Noyes not Noyds ; and the second engineer to the Inman Steamship Company, in whoserintenden was at the time of his death George H. AlLibon. Sea View, Litherland Park, October 25th.

Sir,-Not until STREET LIGHTING.
lighthouse, distributing the rays of light from the into a miniature or refraction, can we say that gas has been fully utilised. We have many lamps burning a great quantity of gas, giving off a the lamps, while between the lamps is in Amongst many plans we have devised for the all-round system of lighting by reflection or refraction, we consider, for narrow streets, throwing the beams of light right and left along the pavement to
be preferred, allowing the gas of itself to light across the stre be preferred, allowing the gas of itself to light across the street,
and which is aided by the spreading of the rays from the double lenses, as per engraving, which we have practically tested in one of the lampsat the municipal buildings here, which we have been kindly

granted the free use of by the authorities. There are two conve faces inclined downwards, and which can be set at any angle that may be determined on with the small set screws as shown; like-
wise, the jets can be adjusted as shown, but this may be entirely wise, the jets can be adjusted as shown, but this may be entirely
dispensed with on ordinary occasions, the lenses and jets being quite rigid and immovable. The gas jets are placed in front of the lenses and are always visible. The rays from the one are refracted through the convex surface, and, being caught up by the other lens,
are refracted downwards on the pavement at any angle that may be
desired. It will thus be seen that the rays from the one light are refracted through the other light, and vice versa. With this plan there are no shadows as with reflectors. A stream of soft light is
thrown right and left along the pavement, and partially distributed thrown right and left along the pavement, and partially distributed
across the street, and is by no means hurfful to the eye, while the gas of itself lights up the foot of the lamp and across the street The gas remaining always visible is the main feature in this arrangement. We may mention that the lenses are 4in, in diame ter, but would recommend 6 in . lenses as preferable.
Portobello, N. B., October 20th.

railway couplings.

SiR,-The abstract of Mr. Heinke's paper, contained in your SIR,-The abstract of Mr. Heinke's paper, contained in your
last issue, suggests the following remarks; the insertion of which, I trust, will be justified by the importance of the subject to rail way companies, their servants, and the general public.
Passing over Mr. Heinke's introductory
Passing over Mr. Heinke's introductory remarks as being
generally admissible, we come to his statement of the require generally admissible, we come to his statement of the require-
ments of an ideal coupling, the various propositions being such as may be generally admitted so far as they refer to cost, applicamay be generally admitted so far as they refer to cost, applica-
bility and facility for eoupling with stock not so fitted; also to
varying lon varying lengths and levels of buffers. But it will not suffice for a coupling to be capable of being worked by hand from the side only.
It should be an efficient automatic coupling, and need not much me an eflien automatic coupling, and need not cos question as to the fact that it would effect a great saving in time question as to the fact that it would effect a great saving in time
and labour, as well as being an increased factor in the means of and labour,
saving life.
In support of my arguments I will select for comparison with Mr. Heinke's non-automatic the automatic coupling of Messrs,
Copeland and Gilmour; which I think is not more expensive than Mr. Heinke's. The existing drawbar, hook, and chain are retained, it can therefore be used in conjunction with rolling stock otherwise fitted; a large immediate outlay need not therefore be incurred by its adopti

FIG: 1

effected at two points, and being formed in one piece, without springs, it appears to me to be unlikely to get out of order. It does not interfere with end flaps of timber wagons, \&c.; is certain in
action on curves or otherwise, and can be readily uncoupled from either side, and fixed securely out of action by a slight continuation of the lifting movement of the hand lever, can be worked
readily, even on the darkest night, without the aid of a lantern, and can also be uncoupled in ordinary tension without backing, \&c. Moreover, when fixed out of action, it is quite clear of dead stops, it being within the line of the dead buffers, and as the length of the coupling is proportioned to the length of the stroke of the
springs of the trucks to which it is fitted there is no risk of the springs of the trucks to which it is fitted, there is
fouling upon which Mr. Heinke lays so much stress.
It will be seen from the above remarks that it is possible for an automatic coupling to fulfil all the requirements, and others which Mr. Heinke does not suggest.
Now for a comparison of the two systems. Against the instan-
taneous, certain, and unaided action of the antomatic

when being coupled, even on the darkest night, we have the tedious process of connecting the Heinke coupling, which requires to be operated upon by a man from the side of the wagon, who has to fish about with a heavy weight and seize an opportunity for
coupling. This performance requires much time and judgment, and is entirely a matter of feeling, particularly on a dark night It is needless to say that in practice the shunters would frequently act with the Heinke coupling, as he states that they do with the pole, give up the use of the coupler, rush in between the trucks, and couple by hand. Another defect in this coupling is that it great loss of time, compared with a good automatic one. Thus the advantages derived from the use of an automatic coupling in rapidly disposing of the trucksin a crowded goods yard are clearly self-evident. Finally, Mr. Heinke, a servant of an important company, asks,
"What return shall we get for our outlay? \&c." Surely, being in such a position and looking at the question in that light, he admits that his employers should obtain some return for their outlay !
What would they obtain by the adoption of a non-automatic coupling? I contend, nothing. Even the gain in saving the lives of their servants would be doubtful. But by adopting a good amount of time-which means interest on outlay-and the risk of their servants lives would be reduced to a minimum.
London, E.C., Uctober 7th.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

CONTENTS.

$T_{\text {tig }}$ Enginker, $\overline{\text { October } 20 t h, ~} 1886$.

 Launghes and T
New Companies
The Patent Jou

TO OORRESPONDENTS.

Reglstered Telegraphic Address-".ENGINEER NEWSPAPER, *** All letters intended for insertion in THR ENaINexR, or containing questions, must be accompanied by the name and address
of he writer, not neceasarily for publication, but as a a proof of
good faith. No notice whatever will be taken of anonmols good faith. No
communications.
$*$
** In order to avoid trouble and confusion, we find it necessary to
inform correspondents that letters of inquiry addressed to the
niblic and intended fo men public, and intended for insertion in this column, must, in all
 answers received by us may be forveardeded to their destination.
No notice will be taken of communications which do not comply with these instructions.

WHITE LINES ON BLUE.

DEATH.
On the 20th Sept, at Bhagalpor, Bongal. Indi, of heart disease,
EDWARD LE LIEvRE, Executive Engineer D.P.W., in his 4 srd year.

THE ENGINEER.

OCTOBER 29, 1886.

the new enfield rifle.
Statements having recently appeared in the daily papers that a grave crisis has occurred at the Royal ess to a com-
Factory, Enfield Lock, and pointing more or lems Factory, Entield Lock, and pointeang more "Enfield-Martini" pifle for the Army, both as regards breech-action and barrel, we have made it our business to enquire into the actual facts of the case, and now lay them before our August last, upon the Enfield Factory and the present August last, upon turope. After very extensive departmental trials of various moditications-more especially with reference to the diameter of the bore and the details of rifing-and when the design of the new weapon had
been approved by the Ordnance Committee, one thousand rifles were ordered to be manufactured and distributed among different regiments, in order to undergo severe
practical trial for a length of time. The detailed reports of the results of this test have lately been received and laid before a "Special Committee," of which Major-
General P. Smith-late Grenadier Guards-is President, the members being Colonel Arbuthnot, Superintendent Royal Small-Arms Factory, Colonel Tongue, Commandant of the School of Musketry at Hythe, Commander Meryon, Halford for the Volunteers ; Lieutenant-Colonel Oldham, Cameron Highlanders, acts as Secretary.
The following is a brief résume of the objections made
to various portions of the rifle in the reports above alluded to, which have been carefully tabulated by the Committee; the objections are here taken roughly in the order of com-
parative unanimity:-First, to the wooden handguard as parative unanimity :-First, to the wooden handguard as the breech end of the barrel and keeping in any moisture which runs down the barrel. Secondly, to the flat fore-end of the stock as affording little or no support to the barrel.
Thirdly, as to the quick-loader. The chief objection is the Thirdly, as to the quick-loader. The chief objection is the
difficulty of carrying it when not in use, for which it is considered that the increased facility of loading does not compensate. In some instances, cartridges are reported as jamming in using the quick-loader, but this would seem
to be chiefly due to the ammunition supplied for the trials. to be chiefly due to the ammunition supplied for the trials,
Fourthly, to the sighting. The standing back-sight, which was fixed on the fore-end of the body, was found to be too near the eye; this condemnation is unanimous. of foresight being rather to o to the top of the barleycorn of foresight being rather too broad, and to the wind gauge attached article, that the details of sighting were expressly arranged to be subject to modification from the results of the experimental trials. Fifthly, to the locking-bolt. There were several objections to this arrangement, the most
serious being that it was sometimes found not to act properly, but to give the effect of a hair trigger, owing to its not quite freeing the trigger-nose, but causing it to Also it is considered that the soldier is very liable to omit locking the bolt, when he would have no guarantee of safety, nor anything to tell whether the rifle was loaded or not; hence the old Martini-Henry "indicator", is
generally prefered. In a moment of peril the bolt, if generaly prefered. In a moment of peril the bolt, if
locked, would prevent him loading without an extra motion, and if-forgetting that it was locked-he might force the lever over the bolt and break it. Sixthly, to the of the cleaning-rod - which passed through a small hole in the cross-bar of the bayonet-gets a little bent, the swordbayonet cannot oe fixed. Seventhly, to the position of the
sword-bayonet on the barrel. Some of the reports were against and some in favour of the new point of attachment underneath the barrel; it was generally found to cause the rifle to shoot high, contrary to the expectation that it would tend to correct this very general fault of rifles. Careful trials seem to prove that the exact effect is to Eighthly, to the action of the extractor. Great difference of opinion exists on this question ; some of the reports condemn the extractor altogether, while others praised it highly
While giving the defects in full, it is most satisfactory to know that all the reports are tolerably unanimous as to the good shooting powers of the arm. While the experiCommittee, the Superintendent of the Enfield Eactory prepared a fresh specimen rifle remedying the chief defects. He substituted for the wooden hand-guard one of leather, such as had been used by the regiments in Egypt and the
Soudan, attached firmly to the riffe by a lace; the quick loader was abolished, and the locking bolt also done quickwith, the indicator of the Martini-Henry being restored. To do this it was necessary to return to the square tumbler
axis. A shorter cleaning rod was used, with axis. A shorter cleaning rod was used, with a longer
"jag" to screw on to it when used. The standing back sight was put forward on the barrel so as to be close to the elevating leaf. This improved weapon has not, however, been tried, as the Special Committee-having gone
into all the objections raised with great care-recommended that offty rifles should be manufactured at once and issued for trial, embodying the above, as well as the following additional alterations:- The old grooved foremode of attaching the sword-bayonet will be removed by making the cleaning rod and jag in one, and having a deeper pipe in the stock to receive the jag end of the rod; of the cross-bar of the bayonet. The sword-bayonet to be fixed to the right side of the barrel, as in the Martini-Henry Tine. We the standing sight to be altered, but it is only posi-
tion up to 150 yards range; up to 300 yards the necessary
leaf, without raising the latter to the perpendicular posi-
tion. Further, a finer "barley corn" is to be used for the foresight, and an inclined plane placed at the back of the sight, so as better to lead the eye up to it. The wind
gauge will be omitted. A very important alteration will be gauge will be omitted. A very important alteration will be
an improved form of extractor; the tail or lower arm will an improved form of extractor; the tail or lower arm will
be lengthened, which will greatly increase the power of the be lengthened, which will greatly increase the power of the
first action of the block upon it, and also bring it sooner first action of the block upon it, and also bring it sooner of the empty cartridge-case will be made easier. The case is slightly coned near the base, so that the chief point is to give it the first start out of the chamber. The length of the power exerted for extraction.
On reviewing the foregoing defects, and the alterations proposed for removing them, it is evident that the Enfield barrel, the really novel feature in the new rifle, has satisfactorily stood the test of practical experience; the evident from an inspection of the comparative tables given in our previous article. As regards the breech mechanism, the last proposed alterations only restore it more to the exact form of the Martini-Henry action, except so far as the improved extractor is concerned; the principle remains unchanged. It is therefore difficult to see where the "breakdown" of the rifle takes place. Meanwhile the crisis is sufficiently grave to the 700 unfortunate
workmen who have been temporarily thrown out of employm who have been temporarily thrown out of portioyment by the suspension of work upon certain upon the new arm, and the reflection forces thself manufacture upon a large scale of a rifle of which many of the details were emphatically in the experimental stage. It may be added that probably a spirit level will be added to the fittings, to enable the soldier to know when he is actually holding his weapon in a horizontal position. The other portions of the Enfield Factory are in full operation, and experiments are being actively prosecuted with magazine rifles, which many good authorities are of opinion must soon be adopted. The patterns being prepared for trial are the "Enfield-Jones," on the "block" system, and
the "Lee" and "Lee-Burton," the two latter being "bolt" the "I
rifles.
It is to be hoped that the stoppage of work referred to is for a short time only, but the War-office authorities do not deem it advisable to proceed with the complete manufacture of the new rifles until the results of the
trial of the new batch of experimental arms has been trial of the
ascertained.

the marchant engine.

Concerning the Marchant engine, we know nothing save what was to be learned from looking at it when shown last year in the Inventions Exhibition, and from reading circulars which have been issued concerning its performance. These data, however, supply sufficient information to enable any engineer to pronounce an opinion on the truth or fallacy of the principle on which it operates. It is a compound engine, intended to work at very high with a of four the square with a set of four stage pumps, by which two-thirds of all the steam passing through it are recurned to the boiler, the the usual way, It is we understand claimed that by the the us the 10 , wo 1 , of 1 which would pumps about two-thirds of all the steam boiler to be 1 wise be the the the sumption of fuel is reduced to three-fourths of a pound sumption of fuel is reauced to three-fourths of a pound by ordinary compund r, on ane-tement of this kind by ordinary compound engils. A salar tor har involves, in our opmin, a fallacy which ought to be hardly worth refutig. We did, hower, hit that Mr Manceers is right; and one or two technical journals have accepted his figures the authority of Professor Zouner has been involed and it has been stated that, with certain important limitations the theory of Mr . Marant's and proposition laid down by Zeuner. Under the circumstances we make no apology to our readers for comment ing on the whole question. port in a steam engine opens, and the bulk of the steam in the cylinder has escaped, a certain weight of steam remains behind, part of which has to be pushed out of the cylinder by the piston. As soon as the exhaust port closes, compression begins, and the steam is finally raised at the end of the return stroke to a pressure which bears shown that the best pressure is equal to that in the boiler, so that the whole clearance space may be regarded as eliminated, because when the steam port opens the clearance space is already full of steam left behind from the preceding stroke, and equal in pressure to that of the fresh incoming steam. Zeuner says that this steam, instead of being left in the cylinder, ought to be pushed out of it into a compressing pump, and by compression converted into water and forced into the boiler. His words are:"At the position b "-that is to say, the best point theoretically for compression to begin-" of the piston the combe clotion wetween condenser and steam cytion between the steam cylinder and the cylinder of the feed pump would be established. During the further motion of the feed pump piston the remainder of the steam in the cylinder would be pushed into the feed pump cylinder,
and there at the next stroke converted by compression into water, and this, with the water previously drawn in, would be pressed back into the boiler. Hence, according to my idea, the whole alteration to our steam engines would consist in this, that the feed pump mould be made doubleacting and its cylinder larger than hitherto, as in this case the pump has to draw in not merely water, but in the
second half of its stroke, steam also. In engines without second hation, the water drawn in by the feed pump
condensation, condensation, the water drawn in by the feed pump should, where possible, be heated to 100 deg . C. by the
waste fire gases. To me the idea appears quite
practicable, and worth closer consideration and fol-
lowing up." We may leave out of consideration the proposal to use waste heat to raise the temperature,
because that is outside the main proposition, which is hat economy can be effected without extraneous aid "The fundamental idea to be grasped in this case is to heat the feed-water by compression of steam to nearly the communication of the corresponding quantity of heat in the boiler itself." There is some discrepancy between this passage and that quoted above, but passing by this, it will Mr. Marchant does what Zeuner says first, only he pumps back a much larger quantity of steam than Zeuner poposes to use, and so far as we are aware he does no It requires some little courage to dispute the
a proposition made by a German professor, and above all by a man of Zeuner's reputation. Nevertheless, we do aright, he is distinctly wrong; and no heretofore unknown economy is to be gained by treating the residual steam in
a cylinder in the way he proposes. His words appear to a cylinder in the way he proposes. His words appear to
us to bear only one construction; but our readers have these words before them, so that they are in as good a
position as we are to know what they mean. We may position as we are to know what they mean. We may
divide the proposition into two. Let us suppose, first, hat compression is carried to such an extent in the cylinder alone, that the boiler pressure is reached some fraction of
the stroke before the stroke is completed, and that the lead is such that the moment this point is reached the slide valve opens. Then as the piston continues to advance,
the whole of the residual steam, less clearance-which owever, we may for the moment neglect-will be returned into the boiler without the aid of any separate pump.
Now it is very easy to see that no saving of fuel can result from this process. The work done in forcing the
residual steam back into the boiler will be greater by the amount lost through the friction of the apparatus than that given out by,the same steam, us suppose that we have a vertical cylinder containing claadeded
piston, and that we introduce a certain quantity of steam
below the piston. I t the cylinder be 8ft. long, and that 11b. of steam of 100 lb . pressure is supplied, and this lifts continues to riso by the expansion of the steam. The conditions are analogous to those of an engine cutting off
at one-fifteenth of the stroke, and with a clearance of per cent. Then the whole work done will be in round this work about one-fifth of the whole heat will be used up. At the end of the operation then we should have fourwater. It must be added here, to avoid misapprehension that these figures are not precise, but sufficiently close piston can be forced down again to its original position The steam will be compressed, its temperature will rise, the water will be re-evaporated, and at the end of the leaving friction, radiation, \&c., out of the account, the work done by the steam during expansion will exactly equal that done on the steam during compression. But
what is true of the whole stroke is true of part of it, and no economy of any kind can be gained by compressing
steam, save in the sense and in the way well understood and already referred to, namely, thatit is better to use the residual steam to fill clearance space than to employ fresh steam for that purpose. Rankine says-page 420 of "The Steam Engine and other Prime Movers"- "the most advantageous adjustment of the compression takes place when
the quantity of steam confined or cushioned is just sufficient to fill the clearance at the initial pressure.,
Next let us consider what happens if the residual steam is conveyed into the feed-water and forced back with
it into the boiler. Let us assume that one-sixth of all the steam is returned in the cylinder. It is clear that in this case the back pressure would be very high, unless some means were taken to get rid of it. This may be effected
by the feed-water, which, if properly mixed with it, and of sufficiently low temperature to begin, would suffice to condense it. The feed-water would thereby be raised to
boiling point-212 deg., and the vapour from it would represent a back pressure equal to that of the atmosphere. In a non-condensing engine it would amount to this in any case, so that there would be no loss in this way, and there
would be a considerable gain, probably 14 or 15 per cent., Would be a considerable gain, probably 14 or 15 per cent.,
derived from heating the feed-water as compared with not heating it. But this is not, as we under-
stand him, what Zeuner means stand him, what Zeuner means. He proposes that compression should be carried to such an extent
that the residual steam would be liquefied and then mixed with the feed-water, and that this constitutes a previously unconsidered means of saving fuel. No economy could result
from it. Zeuner has overlooked the fact that the work from it. Zeuner has overlooked the fact that the work
done in compressing and liquefying the steam cannot be it again becomes steam in the boiler. In fact, to return it it again becomes steam in the boiler. In fact, to return it liquefied steam cannot take heat from the boiler; on the conversion into heat of the energy expended in compressing might be done in the cylinder without ever transmitting the compressed fluid into the boiler at all. At the beginning of the stroke the clearance space would then contain soon as the piston commenced to very high temperature. As the cylinder this water would begin to be converted into port until the pressure had fallen in the cylinder to that in the boiler; but all the work done by the steam nominally saved during one stroke, which we may call a, would have
to be deducted from thetotal work done during the preceding to be deducted from the total work done during the preceding
stroke, which we may call b. The only constructionto put on
Professor Zeuner's proposition which is consistent with its
soundness is that the gain he supposes to be obtainable is But there are much better methods of doing this than employing the feed pump to draw steam out of the cylinsteam may be used for the purpose, and will supply five to six times as much as is necessary. Even in the case of condensing engines, the same result may be secured by permitting a portion of the waste steam just at the moment done in the United States; for it is evident that nothin like the whole of the steam in an engine exhausting at point above atmospheric pressure is needed to maintain a vacuum in the condenser; and by the aid of very simple
mechanism one part of the steam may be blown into the atmosphere, and the remainder condensed, with a great saving of cooling water-a point of considerable import-
ance. If, therefore, Professor Zeuner suggests a new theory, the proposition is not sound. If, on the other hand, his proposition is sound, then it suggests
nothing new. If Zeuner's proposition is unsound, then nothing new. If Zeuner's proposition is unsound, then in so far as the theory of the Marchant engine is based on it, that theory is also unsound. Mr. Marchant gains nothing whatever by pumping part of his steam back ure of torer, save in so fan ture of the feed-water at the same time. It is, we may add, by no means improbable that he is quath and pins his faith of this truth, and pins his faith on the mode of action of his stage pumps. pumps are always employed. A set of stage pumps is simply a compound engine reversed ; that is to say, we spheric pressure; increases this pressure to, say, 30 lb . on the square inch, and delivers to a second and smaller pump, in which the pressure is raised to 60 lb . on the square inch. This pump delivers into a third and still smaller pump wrund be a the This ing one pump to do the whole ; of course there is no power gained. Mr. Marchant some twenty years ago held that stage pumps actually economised power, or, in other watter he is of the same opinion still. On no other assumption that we can imagine is it possible to explain the circumstance that there is a Marchant engine in existdilemma and indeed, we adopt the and or the in thermo-dynamics quite undreamed of hitherto, and flatly opposed to the conclusions of such men as Rankine and Clerk-Maxwell. Our readers may take their choice.
In conclusion, we beg to assure the gentlemen who have signed the circulars to which we have already referred that if they think they possess arguments in favour of the principle of the Marchant engine which we have overcorrespondence columns to set forth their views. Mr. Marchant has as yet given us no opportunity of carrying
out a practical test of his engine, which would set question concerning its merits at rest.

The correspondence concerning lock nuts which has peared in our columns supplies an admirable illustration of the ease with which different deductions can be drawn from the same facts by varying the point of view from
which they are regarded. If our correspondents did but which they are regarded. If our correspondents did but
know it, they are very nearly unanimous. The whole ques tion turns on the proper position for the thin nut, or "lock nut," as it is called with a certain amount of irony. One man holds that the thin nut ought to be over the thick nut; another that it ought to be under it. It seems to us at first sight not a little remarkable that concerning such an apparently trivial detail we should have received a host of letters from all parts of the kingdom. Those wh have selected for publication are fair examples of the should run so high, and it is noteworthy that almost with out exception the disputants have entirely overlooked the query put by "Lead Pencil," which began the discussion He asked, it will be remembered, for some informatio concerning the practice, not the opinions, in different
 may supply the omission, and say that, so far as our own not very limited experience extends, the thin nut when use at all is put outside the thick nut. So much for practice The arguments advanced in favour of putting the thin nut inside are that when the thick nut is screwed down on it the thin nut is driven back, so to speak, on the screw, no longer takes hold of it and acts as a washer, the whole strain then coming on the outside or thicker nut. If the will gen the whe whin practice the thin , way wat practice. this argmen to suy according to ding with a holding down bolt The lare, nut is frst put on and sirewed down, until it ererts a pull of say, seve tons scre the ull or, say, seven down with force eoug to put lock pll ton on the bolt. It is obvious that in this case the thin nut has not pushed the thick one away from the under side of the threads in the nuts, and it is quite clear that or thick not take any strain transmitted through the lower pulled nut. If the top nut were screwed down until it push the lower one down, or more accurately to draw the bolt up through it, but not before ; but the thinness of the nut puts this out of the question. Therefore under such conditions, the thin nut may go outside. Take next the case, say, of a stuffing-box gland. Here the pressure exthe thin nut is screwed down, it will force the threads of the thick nut away from those in the stud bolt in a way easily understood, and the whole strain will be taken
by the thin or lock nut. But, under the circumstances, the
strength of the thin nut is much more than great enough to sustain the strain put upon it, and consequently the thin nut may be put on outside or on the top of the thick, where it not only looks better, but is much more easy to get at. In fact, the thin nut should never be put under the thick when the nuts have often to be turned, because it is extremely inconvenient to get at a thin nut under another venient with the thinner; but it is not at all inconreally no ground for the righteous indignation displayed by some of our correspondents against the man poses to put the thin nut outside the thick nut. Whe there is a heavy stain on the bolt the thin nut must be outside, in order that the proper stress may be put on, and when there is not a heavy stress on the bolt, it is of no practical consequence where the thin nut is put, as far as strength is concerned, and it is a matter of practical practice would be identical with that of the London and Brighton Railway, for example, and we should use two It of precisely the same thickness,
It does not appear to be generally known that the ordinary rule which makes the nut of a thickness equal to The diameter of the bolt gives a great excess of strength. half a diameter employed for locking is usually quite hack nut. This thickness of a lock nut. This thickness of hu, if propeny filte, is bolt The the cill whe strain of the bolt. The thread will probably strip when the thickness of the nut is about three-ifiths of the diameter,
but this is not certain, for the bolt is often broken first. One of our correspondents asked very pertine being outside, either it or the bolt had stripped. The ques-
tion remains unanswered. No doubt nothing of the kind has ever occurred under legitimate strain, provided the has ever occurred under legitimate strain, provided the
threads were a good fit. When a nut is too loose, there is, of course, no saying what may happen.
It is not a little remarkable that all our correspondents haveaccepted withoutquestion the theory or assumption that nut. Nothing can be much further from the truth ; lock nut does give a certain measure of security, and But under any conditions of vibration the ordinary lock of system is quite untrustworthy. It has a certain field of utility, but the field is limited, and some other and safer expedient should be employed. In large marine work set screws are used, a collar being turned on the lower end of the nut, or that next the work, into which collar a small set pin is tapped. The system works perfectly. We need hardly add that hundreds of devices have been patented for locking nuts, especially in the United States, where the number of them runs that of the car couplers close, and this is saying a good deal. We have no intention of pronouncing an opinion concerning their merits. As to the lock nut controversy, most of our readers will, we think, agree with us that enough has now been said on the subject. "Lead Pencil" and his fellow students may They will be certain to please some one whichever locality they select, and it is really, within the conditions we have tried to define, a matter of no importance whether they are put inside or outside the thick nut.

runaway trains.

Two reports on recent accidents have been issued by the being of thade which are of more than usual interest, both on September 1st at Penistone station, on the Manchester, Sheffield and Lincolnshire Railway, near the scene of the notorious calamity on July 16 th, 1884. A portion of the 5.30 down pas-
senger dining car train from London for Manchester, while standing on a gradient of 1 in 106, was put into backward standing on a gradient of 1 in 106, was put into acckward
motion by the engine and front van-which had been detached to put off a carriage-setting back too sharply on it. The eight vehicles ran back, and entering a siding through some catch points, came into coliision with a wagon standing against the
buffer stops at the end of the siding, after running nearly 300 yards, and twenty-four people were injured. The hand brake had been applied, but was of course no use on falling gradients of 1 in 120 and 1 in 91 . As General Hutchinson remarks, in
his report, " The collision would no doubt have been prevented had the train been fitted with a good automatic continuous brake instead of only with the non-automatic vacuum brake, as in the former case, when the engine and two front vehicles
had been detached from the train, the brakes would have been left applied throughout the remaining portion, which it would then have been almost impossible to set in motion on the falling gradient. Instead of this, on the engine and two front vehicles leaving the train, the continuous brake ceased to be available, and the eight rear vehicles were prevented from running back only by the brake-probably not fully applied-of in front of it, and liable, therefore, to be put into backward motion by a slight blow in front. It is very unsatisfactory to find from the return of the half-year ending June 30th, 1886, that this company has done nothing towards supplying its rollingstock with automatic brakes, notwithstanding the warning it Peniston from the very serious accident which occurred believe that consequences of that accident might have been considerably mitigated. Such a state or things is worse than unsatisfactory, lesson by the previous disaster, where eighty-eight people were killed or injured, they are hardly likely to be less cynically indifferent to the injury only of twenty-four people. Who are the victims they are waiting for we cannot say. Sir
Edward Watkin, however, is by no means the only sinner, for, according to the last return, there are now some
10,000 vehicles actually fitted with the non-automatic vacuum brake, and 3000 with connecting pipes; and it is to be noted that a large proportion of the increase of fitted vehicles during the half-year is to be ascribed to this system, mainly, of course,
owing to the action of the London and North-Western Company. When, more than two years ago, we commented on the carnage resulting from the calamity at Penistone-towards mitigating or entirely preventing which this brake was utterly
powerless-we said this accident was "the deathblow to the
new venture is as much as $£ 150,000$; but such an estimate must be
largely excessive. The new works will be almost the pioneer steel orks in North Staffiordshire, and the competition of the steelmaster from the North of England is one of the main reasons which
induced the noble owner to lay down the new establishment. nduced the noble owner to lay down the new estabishment.
Business in the iron trade of North Staffordshire is participating
n in the general revival. Orders are coming to hand wath inoreased
freedom, and some makers can onow see work ahead for sereral
weeks. The specifoations arriving warrant the mills being run
about five hours per week. Common and ordinary bars have
Come bout five hours per week. Comm.
divanced in quotation 2s. 6 d. per ton. On Wednesday there was an adjourned meeting in Wolver-
hampton of the South Staftordshire Mining Accident Fund, when was resolved to proceed with the scheme for establishing a new
Iiners' Permanent Relief Fund for South Staffordshire and Eest Miners' Perman
Worcestershire.
The Indian rail ways are still expressing large requirements, State Railways require steelwork for a bridge of 250 ft . span, and he Nizam's Guaranteed State Railways are inviting tenders fo large quantities of railway material. This includes heavy supplies
of transverse steel sleepers and keys and 2500 tons of steel rails$66 \neq \mathrm{lb}$. Other railways, including the Bombay, Baroda, and
Central, and the Oude and Rohilkund, will shortly prove good customers.
Some sati
customers.
Some satisfactory orders will shortly be given out by the Bridg-
town Tram ways Company They include steel rails, steel sleepers,
bolts and nuts, and fish-plates. There are rumuours of dissatisfaction among the Cradley Heath
hainmakers. They are considering whether the whole trade should turn out again, and a decision will probably be arrived at next week, The Walsall chainmakers show no inclination to
resume work, and are appealing for support from the various
districts.
The Bro
dine Bromggrove nail makers have at length secured the desired interview with the masters at Birmingham the question has been cede the advance from Saturday week
The horse nail makers of Lye, old Hill, and Netherton will sen deputation to the principal employers to ask for a return to the
s. 6 d . list. This concession the men are hopefal of obtaining. The Council of the Birmingham Chamber of Commerce will deputation from the National Fair-Trade League. The purpose o the deputation is to lay before the Chamber their views, especially

The Exhibition at Birmingham closes this week, after a period of great success. At is realy a rees. The whole of the exhibits, various in their purposes as admirable in their workmanship, are
the product of bona fide manufacturers living within fifteen miles the product of bond jide manufacturers living within fifteen miles
of the great Midland centre. The largest attendance was reached The Birmingham master builders have issued notices
eduction in wages of 1d. per hour ; unless a mutual arrangemen is come to the matter will go to arbitration. The severe competition in local contracts of builders from other parts of the country
is the main reason for the demand. A meeting of 2000 brass
workers, held in the mined to resist any further wages reductions.

NOTES FROM LANCASHIRE.

(From our own Correspondent.)

Manchester.-There is still a good deal of buying going on in the
ron trade of this district, but as the actual requirements of the iron trade of this district, but as the actual requirements of the
users of iron have not shown any very appreciable enlargement, of a speculative character. There is, however, no doubt a considerable weight of iron passing into the hands of consumers who
have for a long time been working simply from hand-to-mouth, nd have consequently allowed their stocks to run abnormally low of precaution against any further advance in quantices ; this, although not for actual wants, may be regarded as a legitimate enlargement of buying for trade requirements, but for the present it is no
more than a simple transference of iron from the heavy stocks held by makers into the hands of consumers, and it is just as they arise, whilst the large quantity of iron which has recently been sold to speculators, in many cases altogether outside of the
trade, will of necessity have to find its way into the market again. Taking these facts into consideration, it would be hazardous t pronounce any definite opinion as to the permanence of the upward out the iron trade, and it can scarcely be said that the feeling all through the market is one of very great confidence in the future.
The prime mover in the advance has been, and still is, to a ver Tare prime mover in the advance has been, and still is, to a very the improvement in the market can scarcely be regarded as esta blished on a thoroughly legitimate footing. For the present, howver, the up ward movement is being well maintained, and prices still show a tendency to harden; but apart from what are more or
less speculative transactions, the weight of business doing shows ome falling off
verage attendance, and a fairly animated tone characterised busitess generally, with a strong tone throughout prices. Lancashir nakers of pig iron are suil booking a considerable weight of orders, for forge and foundry qualities delivered equal to Manchester, with disinclination to sell for anything like forward delivery at thes figures. Sellers of district brands in some instances report lessened weight of business offiering, whilst others still report large
sales being made, quoted prices are frim at 36 s . 6 d for forge and
37s. 6 d . to 38s. for foundry Lincolnshire, and for Derbyshire iron, less $2 \frac{1}{2}$, delivered equal to Manchester. I
outside brands, although perhaps there has been some little waverng on the top, figures, prices have shown a general upward ten dency during the week, and for good-named brands of foundry
Middlesbrough sellers are asking 42s. 4d, net cash for prompt, and In. per ton above this for forward delivery equal to Manchester. hhe week, with a steady upward movement in prices, No.
foundry qualities delivered into this district being now guoted bout 53s. 6 d . to 544 s. per ton, less $2 \frac{1}{2}$ per cent.
nakers are in a better position as regards ord actured iron, and been for some time past, with the result that they are now holding out for some advance upon late rates. They now deoline to accept
offers at under $£ 5$ per ton for bars delivered into the Manchester per ton, but for the last-named class of goods the demand is stil only slow, and no very material advance in prices is being got.
Engineers and machinist thrughout this district are still enerally only indififerently employed, and no real improvement
can as yet be reported in the above branches of trade. A few
leading tool-makers leading tool-makers are kept busy, and some of the principal
boiler makers are better off for orders, but the general run of trade
in these branches is only very slow. in these branches is only very slow. Locomotives builders are still
very badly off for work, and general engineers and cotton machinists are but poorly supplied with orders.
The important subject of boiler weplo
t a numperously attended meeting of of the Manchester A discussion
at a numerously attended meeting of the Manchester Assocosiation
of Engineers on Saturday. Mr. S. Boswell read a paper in which
he dealt at considerable length with the causes of boiler explosions,
the different types of boilers, the remedies for explosions results of inquiuries by the Board of Trade and coroners juries,
The three principal causes from which boilers exploded wer The three principal causes from which boilers exploded wer defective construction, malconstruction, and embion embraced corrosion in various forms, due to ling, due to a, combination of mechanical and chemical action
linat and Malconstruction, to which some of the most disastrous explosion
of recent years had been due, embraced faulty design and imperfee workmanship, and consisted in making one part stronger than another, imperfect staying of ends, faulty equipment and construc-
tion of fittings, imperfect setting, indifferent and occasionally dangerous repairs. In designing a boiler, three points must be kep
well in view-safety, eficiency, and economy, of which safety the most important, and probably no boiler answered these conditions so completely a sthe well-constructed standard make of Lanca-
bire or Galloway boiler explosions were preventible, and what was wanted to ensure reedom from explosions was to place the boiler under the care good boiler and then have it well loooked atter. Mr. Moswell
depreasted further Government deprecated further Government interference in the shape of com-
pulsory inspection or certificated engine tenters, but thought there pulsory inspection or certificated engine tenters, but thought there
was room for very great improvement in the system on which was room for very great improvement in the system on which
the Board of Trade inquiries were carried out, which wer ften the means of a complete miscarriage of justice, and he urged that the guily shouta be punished by occasionally
being dropped upon for the oost of the inquiry. In the diss
cussion which followed, the chairman-Alderman W. H. Baile - quite agreed that it was only right the cost of an Fletcher, Hietcher, chief engineer of the Manchester staam Users Associa-
tion remarked that nearly every explosion was attributed to the neglect of the attendant, but nine times out of ten this was quite mistake; it was not the attendant, but the weakness of the
boiler, that was the cause of the explosion. With regard to the Bill proposed by Mr. Broadhurst for compelling engine tenters to
hold a certificate, he looked upon the object of this Bill as simply oo raise wages. It was not the men who were to blame, but th boiler that was wrong, and if the object of the Bill had been to
save life, it would have sought to ensure an inspection of the boiler Mr. Longridge strongly urged that the owner of a boiler should be made responsible if an explosion occurred, and this would give the boiler insurance companies just the influence they required to
ensure a regular and thorough inspection of boilers without any recourse to compulsory inspection, which was not desirable,
During the course of further discussion, other members also expressed their objection to any Government interference, eithe in the shape of a Board of Trade code of rules, compulsory
inspection, or certificated engine tenters. Mr, Joseph Adamson considered that all boiler explosions were preventible, and the cause With regard to corrosion, of which so much had been said, as on cause of boiler explosions, he urged that with the present numerous appliances for filtration there was no difficulty in supplying pure water to a boiler, and this was infinitely better than attempting to
doctor impure water after it had been put into the boiler. With regard to boiler water anpection, whether it was under Government control or made compulsory through the medium of insurance simply that would pass and to remove the responsibility from the naker of the boiler to the authority by whom it was passed. A new method on muminating "arge works. recently introduced, I had an opportunity of seeing in experimental operation at the works of Messrs. Musgrave, or Boiton, The
light is produced by burning creoste, tar oil, or other heavy hydrocarbons in a a special form of burner by means of compressed spray, and yields an intensely bright light, giving off no smoke or
smell, and effectually lighting up a large radius. The results obtained from three lights temporarily fixed, two in the foundry and one in the open yara, were very satisfactory, and I understan hat sir Joseph Whitworth and Co., after a trial of several of the Openshaw, whilst they are also being fixed on a number of the pit banks in the district. The light is not only very effective, but it has a further important recommendation, that it is very economical, the patentees claiming that it will yield a light of 2500 -candle
power at a cost of about 2d. to 3d. per hour. During the past wewer at a cost of about 2 d . to 3 d . per hour. During the past
week there has also been a further successful exhibition of the light in Manchester, and they are at present being employed for lighting ua the gr
In the coal trade there is a fairly good demand for house fire llight advance at the close of the month that all other descrintion of fuel for iron making, steam, and general trade purposes, are
still bad to sell, plentiful in the market, and as low in price as
Barrow.-The business in the hematite pig iron trade of this dis from all sources Home orders from America, the Continent, and the Colonies are as brisk as they ave been during the past few weeks; and the probabilities are hat a very large bulk of iron will change hands before the winter
season fairly sets in, with the view of securing deliveries in the early part of the new, year. The inquiry is more especially marked
from America and from the Colonies but there is asteady demand rom all quarters, and larger are more frequent than smaller orders The output of pig iron has been increased in North Lan like an aggregate of 30,000 tons per week, all of which is going Bessemer descriptions. The output of forge and foundry
ron is fairly maintained, and the demand for these quali ties of metal is good when it is considered that they
are now largely used in aces where inferior classes o
iron were formerly chiefly and only used. The value of pis iron steadily maintained at 44s. 6d. per ton net for Bessemer mixed descriptions, and 43 s . 6 d. for forge and foundry iron. It speaks
well for the high quality of forge and foundry iron, when the variance in price between these qualities and Bessemer is so small. narrow area. Steel rails are in steady and brisk request from an sources, and the orders which have been placed with makers wil maintain activity at works for some months. Furthe contractis are offering which are likely to be accepted at improved prices.
Quotations still show a tendency in the direction of an advance. the heavy sections of steel rails, but slabs are in fuller inquiry. Forge steel is is ifair demand, as also proving business in wire, hoops, \&c. The shiphuilding trade is still ery dull. More inquiries are, however, to hand, and new order boilermakers have not much to do. Finished iron is in better
demand at fuller prices. Iron ore is brisk at from 9s. to 10s. 6 d . at mines. Coal and coke steady. Shipping busy.

THE SHEFFIELD DISTRICT.

(From our oun Correspondent.)
THE improvement noted last week is fully maintained. Hema tites are sold freely at the advanced values, and a further rise
is looked for, causing consumerst to order for forward delivery.
Common irons are also feeling the wave of revival. In some
quarters a tendency is perceptible to regard the prosent move-
ment as a mere "spurt" which will only be of temporary ment as a mere "spurt" which will only be of temporary
duration. I am bound to say that my information leads me
to think there is a genuine and steady swelling of business. A hopeful sign is a the uniue and steady swelling of of brisker trade. Not in
one branch of industry, but all round, in the light as well as the heavy trades, the report is the same. In establish-
ments where the principals are far from sanguine as a rule, it is ments where the principals are far from sanguine as a rule, it is
admitted that the worlds markets show recouperative indications concern said to me this week :- "Business is undoubtedly better in
the different markets you ask about; but if we were to make it should have trouble with our men, who would probably demand pay more; if we pay more, up goes the price of the goods, and the A very gratifying feature of the business now being done is the
trade with Ireland. In the South, trade with Ireland. In the South, as well as in the North, and
also in the Western districts, the merchants and dealers seem to and
be gradually recovering from the paralysis which overtook trade
during outrage and and and, what is equally important, payments are being regular made. In the Cork quarter the esigns of revival are particularly
marked. Our English and Scotch markets are also better. The Scotch spring journeys next year are certain to be productive of the green crops-particularly the turnips, which are the backbone of Scotch farming-have never been excelled. constant wars in that quarter never seem to pretty freely. The The cutlery sent there is of a high quallty, and the trade, corresponding period of last year. Australia is also sending good orders, and trade is well maintained in India, particularly amongst
he E a the European residents. The Chinese and Japanese requirements
are disappointingly small, but they are gradually getting larger are disappointingly small, but they are gradually getting larger ;
and once the Burmah disturbances are quelled, there are hopes of extensive dealings with the great populations in that empire. "False marking," as applied to cutlery and other goods, is always unfortunate when matters of trade are mixed up with politics, and the present is no exception to the general rule. The
Town Council declined to accept the report of the majority of the Committee, as not being borne out by the evidence submitted minority, which was far less strong in its character. The
that and practical result would have been to support Mr. Mundella's Bill,
which was the outcome of the work of the Cutler's Company, Who have done excellent service in preventing fraudulenl
trading. The trade unionists, headed by their leaders,
are now calling for a Royal Commission, and declarin they could produce evidence which would establish the charges mede against Sheffield manufacturers. It is not denied that
several factors, probably a few manufacturers, have bought German goods and resold them, sometimes with a Shevelield label; is indignantly rengs have Vet the llegation is The first paragraph of the rejected report cleared up this point, of any such practices. It is to be feared that a good deal of class hatred is entering into this controversy. At the first meeting of
the trade unionists on the question, it was freely indicated that the masters, in the Royal Commission on the Broadhead outrages, had their turn, and now it was or the unionists to have theirs. medals. One has been awarded for their marine engineering
exhibit, the new patent ribbed furnace flue, flanged boiler-end plates, and propeller blades being specially mentioned. In the
submarine section a gold medal has been awarded for steel hemispheres pressed in dies out of flat plates without weld. portant movement. The council offer ten free scholarship competitions among the male students of Board and other public
elementary schools in the parish of Sheffield between the ages of twelve and fourteen years, who intend to be apprenticed to some hese scholarships are tenable at the School of Art, or the branch art classes at Attercliffe or
Lowfields, from January, 1887, to July, 1888, entitling the holders to receive instruction in the subjects taught at the school without
payment of any fees.

THE NORTH OF ENGLAND.

(Fromar Corma

THE Cleveland pig iron trade has been very steady during the
ast few days. No further advance has taken place, but a fair amount of business has been done at the rates which ruled a week The market held at Middlesbrough on Tuesday last was well
attended, several merchants being present from Glasgow and else. where. For prompt delivery of of No. N pesent from G.m.b. the price was firmly
atre per ton. That igure is freely offered by buye per ton more for the first quarter of next year, and 1s. more for delivery to the end of June. Makers, however, have sufficient
orders on their books to last for a considerable time; and as the tendency of prices is undoubterlly upwards they decline to commit as for No. 3; any quantity being obtainable at 31s. 6 d . per ton.
Warrants are offered at 33 s . 6 d . per ton, but there are few sellers Warrants are offered at 33s. 6 d . per ton, but there are few sellers them at Glasgow at the price named.
On Monday last Messrs. Connal a
brough store 30,828 tons of pig iron, which represer Pig iron shipments from Teesside wharves reached, between the
1st and 25th of the month, a total of 70,628 tons, being about 7000 tons more than during The demand for finished iron is better than it
time, and makers are getting about 5 s. per ton advance on minimum prices. Ship plates are now quoted $£ 410 \mathrm{~s}$. to $£ 412 \mathrm{~s}$. 6 d. . per ton;
common bars $£ 410$ s., and angles $£ 47 \mathrm{~s}$. 6 d , all free on trucks at makers' warks, less 2, per cent. discount.
Messrs. Jones Bros, have this week re mills and nail works,
Soming." There . Paimer has strong faith in the "good time that's several orders have been booked, and more are likely to follow. he has for long noticed that when iron improves coal is sure to plex business like that of his firm is beyond the capacity of any taff of ofticials to manage. He is sure that there is sufficient
intelligence within the several departments controlled by his general manager to overcome any difficulty which may arise. All
that is wanted to spread universal satisfaction throughout is that the long-looked for good times should come quickly, and
endure sufficiently to enable them to get some benefit from them Mr. W. T. Doxford's presidential address, delivered on the 13th
inst. before the N.E. Coast Inst. of Engineers and Shiphuilders has attracted some attention. The portion which deals with the hat atirace of shimbeilding, though interesting, is not novel to to those
statistice familiar with that industry. But when the author gives
who who are familiar with that industry. But when the author gives
his ideas as to the futuure, what he says is worthy of every con-
sideraion Steate fact that a large proportion of their property is at present the the
tically valueless. Many vessels still afloat are really obsolete, and
can never be worked profitably unless refitted with triple-expansion engines and otherwise altered. Mr. Doxford estimates the number
of such inofficient steamers at 2573 , and thinks nearly $£ 10,000,000$
will hen will have to be spent upon them during the next ten years, to place
them in a position to compete. The larger the vessel is the better she will pay her owners, providedo only she is able to find sufficient
cargo and suitable dock and harbour accommodation at her ports of cargo and s
destination
These oonsiderations naturally suggest others of equal import-
ance. If the ensuing ten years have the effect of covering the sea with larger and more efficient vessels, that will mean permanently cheaper oocean tronsit for goont vesssels, of all kind wils mean permanent an for pasty
sengers. The different ports of the world will, in fact, be brought sengers. The different ports of the world will, in fact, be brought
gradually closer together. Agricultural landowners in particular must look out. They have suffered severely for some time, and are by no means happy now. But if by cheaper ocean transit the agricultural produce of other countries is made still cheaper here,
that means that British land must fall still further in value, and
with it it land rents. Recent improvements in the marine engine, with it land rents. Recent improvements in the marine engine, and in refrigerating machinery, are, in fact, completely upsetting
all kinds of hitherto sacred arrangements connected with entail, primogeniture, gleobe lands, tithes, endowments, and other rem-
nants of feudal times. And strange to say, few landowners recornants of feudal times. And, strange to say, few landowners recog.
nise that it is the mechanical engineer, and not the farmer nor the labourer, who is hitting them so hard.

NOTES FROM SCOTLAND.

(From our owon Correspondent.)

THERE has been rather less doing in the Glasgow pig iron market this week. Business was very strong at about the highest point at
the opening, but aftewards the quotations were somewhat irregu-
lar, with considerable hesitation on the part of operators. This lar, with considerable hesitation on the part of operators. This
state of the market is ascribed to the difficulty of forecasting what effect the further restriction of the output of coals is likely to have
upon the state of business generally. Hitherto it must be admitted that, so far as Scotch pig iron is concerned, the upward movement
is largely speculative. Purchases for future shipment cannot be is largely speculative. Purchases for future shipment cannot be
ascertained to have been made on any extended scale, and on this account it seems now to occur to operators that they ought to pro-
ced with cuation. tons, as compared with 6531 in the preceding week, and 7210 in the corresponding week of 1885 . The quantitiees sent to Canada
tand the United States are good, butfrom other countries the demand is comparatively light. Three furnaces put out in Ayrshire by six, as against ninety-one at this date last year, but several of the udraces are to be lighted up by other firms presently. The week's
adition to stocks in Messrs. Connal and Co.'s stores is 1759 tons

 was dull at 42s. 5d. to 42s. 4s.d. and 42s. 6d. cash. To-day-
Thursday forenon-busines. took place at 42s. 6d. to 42s. $3 \frac{1}{2}$ d.
cash. The market was closed in the afternoon.

 Leith, 47s. and 45s.; Carron, at Grangemouth, 46s. 6d. and
43s. 6d.; Glengarnock, at Ardrossan, 44s. 6d. and 41s. 6d.; Eglinton, 43s. 6d. and 39s. 6d.; Dalmellington, 44s. and 40s. 5165 tons, being 2805 tons less than in the same week last year.
The steel trade is fairly active, although one important work doing very little in shippuilding steel-except forgings-in con-
sequence of the low prices. The latter would have to advance 7 s . to 10 s. a ton before they are considered distinctly remunerative
but most of this advance has been made within the past few day After lasting for about eight weeks, the strike at the Motherweli Steel Works is now at an end.
Malleable iroo is reported to
in rather better demand at the In the past week two locomotives valued at $£ 4500$ were shipped
from Glassow to Bombay; machinery to the value of $£ 6500$ was despatched to different places; sewing machines in parts, £1400; steel goods, $£ 6400$ and general iron manufactures, $£ 31,300$,
including pipes and bars to the value of $£ 12,760$ for Bombay There has been a good business in the coal trade. The shipments of the past week from Sootch ports were 86,038 tons, compared
with 79,231 in the same week of last year. At Glasgow 22,610 tons were despatched; Grenock, 2529 ; A Arr, 8174 ; Irvine, 2291; Troon,
4972; Burntiland, 21,951 ; Leith, 4433 ; Grangemouth, 16,828 ; and Town the
Towards the end of last week the principal ironmasters, who had made a concession to all the workmen in their employment, , bring-
ing their wages back to the point from which they had been reduced earlier in the year. No sooner had this been done than the colliers in the West, acting on the advice of a meeting of national delegates
held in Glasgow, resolved to demand another 6d. a day, and to reduce their working time from five to four days a week until the concession was made. A considerable number of the collieries were
therefore deserted by the men on Monday, which they resolved to ell as Thursday.
About the judiciousness of the action of the miners in standing
for the second 6 d at present there are differences of opinion for the second 6 . at present there are differences of opinion.
Some hold that the advance is fuly justified by the upward move-
ment in the price of pio iron, while others are another increase, entailing a further rise in prices, might drive away a large proportion of the trade from Scotland to Wales and
the North of England. In the Mediteranean Scotch eoals are diready being supplanted by Welsh which are of better quality, the difference in price not now being such as to recommend purchases
from Scotland. From the figures given above, it will be seen that as yet the total Sootch shipments are comparing well with those of
this time last year ; but it is possible that further restriction of this time last year, but it is possible that further restriction of
output and higher prices may curtail the exports in the course of output and higher prices may curtail the exports in the course of
the next few weeks. Everything depends upon whether the impetus given to trade by the generally confident tone prevailing all
round will be strong enough to keep up the demand in spite of higher quotations.
In the meantime, the coalmasters of Lanarkshire and the Slathe second 6 d. of advance.
Messrs. Merry and Cuninghame have commenced to sink two new coal pits in the vicinity of Irvine.
Sheriff Gillespie, of Dunfernline, has
important test case affecting the relations of the Fife miners mith Drylie, minioerers. for 13e Cowdenheath Coal Company sued Peted loss and damas
 had never been agreed to by The deltence was that the regulations
that their the Shenstant exposure at pas herin ghave their constant expossure at prominent places at the collieries
gature of a contract of service, and he has acoordingly given decision in favour of the company for
10s. and expenses. The miners have long believed that
they are entitied to disregard the rules, for this amongst other reasons - that in slack times the masters do not guarantee them
eleven full days work a fortnight, and that therefore it is unfair
that they should be compelled to obey rules that are not
always adhered to by their employers. There is a probability
the case being appealed to a superior court.

WALES AND ADJOINING COUNTIES. (From our own Correspondent.)

THe stormy weather still continues to affect, more or less, the coal shipments, at the Wellsh ports. Cardiff showed a falling off
of 50,000 tons, compared with the preceding week, and Newport, as well as Swansea, exhibited a decrease. The Newport coasting
total was only 19,000 tons, in round numbers. This may however, be soon expected to alter, as the house coal business is getting active. This is noticeable in the Rhymney Valley, where, during
the last six weeks, there has not been an idle day. The same the last six weeks, there has not been an idle day. The same
cannot be said for steam collieries in the Rhonda; scarcely a as in there turns out the output it is capable of an in the tin-plate trade, I quite agree with local critics, the trade
suffers from over-production. We have too many collieries for the straitened demand. Hence, though the coal trade is beginning to
look up, the competition is so great that the benefit, so far, is but a slight one.
Prices remain low. A capital house coal, "through," is being into the house. The very best steam coal is quoted f.o.b. Cardiff 8s. 6 d . to 8 s . 9 d ., and secondary sorts have been sold as low as 7 s .
It is not to be wondered at that the audit of coalowners' books shows against the collier, and that a reduction in accordance with
the sliding scale is imperative. The Ferndale scale and that of the Associated Coalowners of South Wales and Monmouthshire justify, theref ore, a reduction of 2 t in the pound in colliers' wages, which will
forth with be carried out. The Ocean scale warrants the conforthwith be carried out. The Ocean scale warrants the con-
tinuance of present wages. estion they could comport themselves as in -elections to wit- and have found their mistake.
In Monmouthshire one colliery is still on strike, Mr. Stone's,
North Blaina. The manager has made the most ample North Blaina. The manager has made the most ample offers, but
the men want arbitration, though no one but the colliers can see anything to arbitrate about after the manager's concession.
I have just gone through the voluminous report of the Commis-
sion on Mines and a "pertinent query") sion on Mines, and a "pertinent query" suggests itself to me,
Why should it remain a sealed book to the mass of the colliers? As a Blue-book it is seen only by the most intelligent of the coalmade by the experienced members of the Commission, its forcible and exhaustive examinations into all points, a copy should be with
every collier.
Ifind that a full résumé is to be given in the "History of the
Wels Welsh Coal Trade," but that work, unl
published, will be out of the colliers' reach.
There is little of interest to record in connection with the iron
and steel trades. Some few home and colonial rail orders and a moderate sleeper trade keep the works going.
Steel sleepers, as I have contended,
Steel sleepers, as I have contended, are to form a good part of
future trade. A steel sleeper, tried on stood all tests perfectly, The price of steel is just rouble that wood, but judges say that they will last three or even four times I note a new feature in our steel exports-an increase in the matter of "blooms." Important consignments went off this week for Costa Rica.
An important colliery case has just been decided in the Rhondda
Valley. A collier sued his company for a substantial amount due, The comen, for working the clod above the coal at 2 d , per ton. Twe company would only gut the plaintiff produced an agreement to pay pad., signed by the underground manager. The contention was that the
underground manager had no power to sign, that this was the manager's duty, and the Court decidea accordingly
Tin-plate affairs continue to afford a good deal of discussion,
Prices became unsteady last weck, and dropped sensibly, then they recovered, and the tone of the trade mat
For a few days prices declined for ordinary cokes to 13 s. after being at 13s. 6 d ., then a stand was made. Sales were effected at
13 s . 1 Id.,., 13s.
Gad., and now T hear of business done at 13 s . 6 d . In the Swansea district the impression is
price was due to the re-opening of some of the old works which had been stopped. Cargoes from that port were large, nearly
38,000 boxes having been shipped, and as 30,000 only came into stock, stocks have been reduced accordingly, and prospects of better prices are tolerably good.
lock of the North Dock.
One engineering outcome of the late storm is a harbour of refuge
at the Mumbles. There should be many along the coast. A bay
near Fishguard, when I saw it last, was dotted with the masts of
wrecks.

NOTES FROM GERMANY.

A commission, which has been sitting in Russia to inquire into, among other matters concerning the iron industry, the expediency
of again increasing the duties on iron, has concluded its labours with a recommendation for raising them 25 p.c., which in all probability will come into force on the 1st of January, 1887. At the undertaken not to blow in more furnaces than are now at work for the next six months. These two circumstances have given a
decided fillip to the pig iron market of the district ; indeed, so much so, that in anticipation of the above increase of duties contracted for up to April next year, a great part of which is for export over the border into Poland and Russia. This, coupled to
the fact of the rolling mills being still at full work, recessarily makes the market more animated than it was, and prices are
expected to rise accordingly. Also there is a little more vitality expected to rise accordingly. Also there is a little more vitality
in the steel trade, caused by demands for permanent way materials for the State Railways. The orders for ship plates, angles, and other kinds of iron for the building yards on the Baltic are also plentiful, and the same may be said for constructive iron of various current quarter on such orders. Common plates are more In Rhineland-Westphati is it still in good request.
improvement in most branches of the iron and steel industry, with the single exception of rails, and that prices have reached the lowest point. As they have not receded, in these times they may be
looked upon almost as having advanced, though no actual rise has taken place. In pigs the tendency is hopeful, in sympathy with the Silesian market, and in Austria the quotations are also firmer; orders are coming more regularly to hand, and prices are shen there of lateo Native ores in
better than they have been
Westphalia are about the same Westphalia are about the same as for some time reported,
and Spanish are firmer with somewhat advanced freights. Up to 16 thi inst. inclusive $2,538,107$ tons have been exported
from Spai againt 2,758,904 tons in 1885 and $2,117,129$ tons
in 1884 . In pigs there is more demat in 184. In pigs there is more demand, but this has made no
impression on prices as yet, unless it be a trifie in favour of forge
cualities. Next month higher prices are looked forward to Siegerland. Foundry pig remains in the same condition that it Was and if it has been more called for all that has been accom--
pathind is, to keep prices from going back. The rolling mills
penerally are fully employed, but as yet this spurt has only kept the generally are fully employed, but as yet this spurt has only kept the
old ow prow pries from falling deeper, but an increase of them seems
shortly to be in prospect. In plates there is a healthy tendency
without any special changes to note. The same may be said
of the thin sheet trade. Only steel wire rods are in
request request, and the prices are somewhat better, whilst iron rods and
drawn wire are neglected and stocks increasing, with only a poor is doing, but the wagon works have recently secured nothing much work, and tenders are out for still more rolling stock and some
rails. The foundries and constructive works are still poorly off
 complaining of late, as the orders are diminishing in volume and
prices are shrinking, whilst, on the other hand, the raw material is rising, so that the finished article is double afflicted. Only with a good deal of trouble can the following prices be obtained -red
brass, $1 \cdot 60 ;$ bronze, $1 \cdot 60$. In Belgium the market is firm, partly on account of the more favourable reports from abroad, partly because a good export busi-
ness is expected-India being looked upon as a favourable fieldand partly because the iron combination has at last become an
accomplished fact. Each of the covenanted works deposits 5000 . security, and the Government mining engineers are deputed to
superve supervise the proper carrying out of the stipulations of the conven-
tion. The John Cookerill Company stood, and perhaps still stands, tion. The John Cockeriloompany stood, and perhaps still stands, Director, Baron Sadoine, who has for twenty years conducted
thess large works and 14,000 men with so much ability and
thest skili, for during the late riots and destruction at Seraing and the neighbouring works all remained quiet at the Cockerill Works. It tiations concerning the projected new works at Nikolajew and Batum, between the board of directors and Baron Sadoine, caused
the latter to tende him the latter to tender his resignation, but one of the most influential shareholders took the matter up, and in consequence now a general
meeting of shareholders is to be convened to, if possible, arrange
the matter and so avoid a calamity which it really would be tor the company, by losing the services of such a manager
There is a slight weakening of prices in France, as far as rolled
girders are affected, which are at present quoted 125 to $127 \cdot 50$, but merchant iron being 130 to 135 , and plates 155 to 127.50 , but merchant iron being 130 to 135 , and plates 155 to $160 f$. p.t.
As a reconstruction in infantry, artillery, and marine material is expected, hopes are entertained of large orders for iron being soon ponsard, which is being introduced on the state Railways, is causing some sensation. An armoured fort is being constructed at
Creusot, from which are to be fired projectiles reaching a distance of 14 km . So it is reported at least.
The ereat girder rolling firms of the Saar-West Germany-and Kraemer, and de Wendel have formed a combination with the intent of stiffening, if not of raising, the present depressed prices of The prices
8438 tons steel rails wered at Bromberg, Prussia, a few days ago for
 delivered at their destination,
the latter price
On the prich inst. the second. large Bremen liner for the East
route was launched from the Vulcan Yard at Stettin, and received
The name bayern. to Frankfurt and the opening of the new docks at the latter town
were celebrated on the 20 th inst. The docks are well appointed with the neeessary appliances for discharging and loading vessels,
and now the large boats which log coal in the Rhur basin can and now the large boatts which load ooan in the Rhur basin can
proceed direct to Frankfurt to discharge their cargoes, thus enabling the Westphalian coals to penetrate more directly and cheaply into the heart of South Germany.

LAUNCHES AND TRIAL TRIPS.

The R.M.S. Spartan, built and engined in 1881 by Messrs. J. and . Thomson, of Glasgow, for the Union Steamship Company's
Cape of Good Hope Mail Service, has had her engines converted from the compound to the triple expansion type by Messrs. T.
Richardson and Sons, of Hartlepool, and has been supplied with new boilers working at a pressure of 1601 lb . per square inch. The iameters of the new cylinders are 3 3in., 5in., and 89 in. respec-
tively, and the legnth of stroke 6 oin. The Spartan went out for es Bay on Monday, the 18th inst., and the the comparison setwaeen the results of of this. trial trip and those the the
obtained by the Spartan with her compound enines obtained by the Spartan with her compound engines as complete as possible, the vessel was loaded down to the same mean draught
of water as on the occasion of her original trial. With the compound engines and boilers working at a steam pressure of 75 lb . to the square incha, vacuum 27in., and 66 mean revolutions per
minute, the Spartan indicated 3684 -horse power, and the mean of four runs on the measured mile showed a speed of 14.78 knots.
With the new triple expansion engines and boilers with ste pressure 160 lb . to the square inch, 26 an. vacuum, and mean her mean speed on the measured mile was 15.2 knots. This shows an increase of over 400 indicated horse-power and of half a knot in the ships speed on a decreased consumption of coal. The adoption
of the triple expansion engines will add greatly to the comfort of
passengers through the dit consumption of coal will be of adyantage to the proprietors. The Union Company's R.M.S.S. Athenian is now having her enginess
converted in a similar manner to those of the Spartan, and the extension of the prinoiple to other steamers of the company will other steamers, belonging to the Union Company's Intercolonial Service, namely, the Anglian and the African, are fitted with triple expansion engines.
Tess. Finch and
powerfuct Win-screw tug and of ohalvagesstow, are about to build a face-condensing engine vessel will be fitted with compound surpower effective, and driving the of dessel some soping about 12 knots per hourse the raising of sunken ships and steamers, and other purboses s for with one of the most powerful steam fire pumps extant, capable of throwing some 70,000 gallons of water per hour to a distance of 250 ft t. by the principal shipbuilders of this country; that of Messrs. Finch and Co. has been accepted.
H.M.S. Forth,
H.M.S. Forth, a twin-screw corvette, was successfully launched
from Pembroke Dockyard last Saturday. The ship is built of
Heer principal steel, and was commenced in December, 1884 . Her principal
dimensions are-Length, 300 ft .; breadth, 46 ft . Her armament consists of twenty $8 \mathrm{in}$. guns, one Gardner and one Nordenfelt gun,
and eighteen Whitehead torpedoes. Her indicated horse-power is and eighteen Whitehead torpedoes.
3800 , and she has a crew of 250 men.

Manchester Sewage Scheme.-At a meeting of the Manchester City Council, held on the 27th inst., Mr. Bailey Denton, of the
firm of Bailey Denton, Son, and North, Palace-chambers, West minster, was selected as consulting engineer to advise upon the
scheme about to be carried out for the sewerage and sewage disposal of that city.
Soutr
K
Oct. 23rd, 1886 :-On Monday, Tuesday, and Saturday, free from 10 m. to 10 p.m., Museum, 10,294 ; mercantile marine, Indian section, and other collections, 3793. On Wednesday,
Thursday, and Friday, admission 6d, from 10 a.m. to 4p.m.,
Museum, 1638 ; mercantile marine, Indian section, and other collections, 212, Totan, 1,937 . Average of corrresponding week
in former
Total from the opening of the Museum,

NEW COMPANIES

The following companies have just been regis-
Nobel Dymamite Trust Company, Limited. This company was registered on the 18 th inst. with a capital of $£ 2,000,000$, in $£ 10$ shares (of
which 153,700 will be issued as fully-paid), to cquire shares, stock, debentures, or other interest in companies, associations, or firms enga, exed in detonators, glyeerine, chemicals, ze., but more particularly in the Nobel and other dynamite and
explosive companies with limited liability, which at present exist, or hereafter may exist, in Europe or elsewhere. The company will adopt two agreements, the first dated 15th inst., between Thomas Reid, of Glasgow, a shareholder in Nobers Exploive Company, Limited, and J. D. Taylor; and Francois Barbe, of 8 , Rue d'Aumale, Paris, and J. D. Taylor. The subscribers are :- Shares. Thomas Reid, 92, West Georgestreet, Glasgow, 500

M. A. Priiliipp, Hamburg, $\ddot{\text {, Mërhät }}$
C. Wiokmann, Hamburg, merchant

 J. Thorne, , 85, Gracechureh-street, merchant
Thos. Jolnston, 199, West George-street, Glas
ow

The number of directors is not to be less than ten nor more than fourteen; the first are the 250 fully-paid shares; remuneration, $£ 4000$ per nnum. Mr. Alfred Nobel is appointed honorary

George Forrest and Son, Limited. This company proposes to trade as brass mechanical, lighthouse, and sanitary engineers contractors, lamp manufacturers, and gas-fitters, and for such purposes will acquire the business now carried on under the name of George Forrest nd Son. It was registered on the 18th inst. with
capital of $£ 50,000$, in $£ 5$ shares. The subscribers

Walter MeNeill, 28, D. vonshire-street, N., clerk ${ }^{\text {Sh }}$
Hentry
George, 1 , Nevills square, E.C., manager
H. L. Linere, Ware, Herts, solicitor
W. Harry, 5 , Great winchester

The number of directors is not to be less than
three nor more than five the subscribers are to
Appoint the first and act ad interim; qualifica-
tion, 20 shares $;$ remuneration, $£ 50$ per annum to acth director, and such further sum as may be oted by the company in general meeting.

Henry Wilson and Co, Limited.
Thiss is the conversion to a company of the
usine ss of iron and brass founders and general hip furnishers, carried on at Cornhill, Liverpool. It wais registered on the 14th inst. with a capital
of $£ 20,000$, in $£ 1$ shares. The subscribers are :-
T. Wilson, 31 , Wapping, Liverpool, oil merchant
D. Fernie
D.,
Rumford-street, Liverpool, A. FW. Ferniie, $\ddot{\boldsymbol{z}}$, Rumford-streete, Liverpool, $\ddot{\text { ship }}$

Mr. E. W. West is appointed manager at a
alary of $\$ 364$ per annum. A boazd of directors vill be dispensed with unless otherwise decided by a resolution passed at a special meeting by
two-thirds of the members present personally or by proxy.

Sugar Filtration Company, Limited. This company proposes to acauire the benefit of an agreement of 1 st May between Mr. George
Sohoetensack, of 70 and 71 , Bishopggate-street,
Mr. A. Domeier, Rudolf Englert and Dr. Franz Beeker, of Pıague or the purchase of certain patents and inventions
elating to the manufacture of sugar and allied relating to the manufacture of sugar and allied She subscribers are:-
Harold Rvans, 5, Holly villas, Leytonstone
clerk

 Thos. G. . Wood,
merchant ."

The number of directors is not to be less than tions contained in Table A of the Companies Act, 1862 , apply to the company.

Australian Mutual Shipping Company, Limited This company was registered on the 19th inst,
with a capital of $£ 100000$, in $£ 100$ shares, arry on the business of a shipping company, in chips for Australia; power is also taken to buy soll, and prepare for market, and deal in coal
iron, metals, timber, live stock, meat, and other
merchandise or produce, and freight of every
kind. The subscriptions are:W. Gardiner, 12 , Rederosss.street, E.C., merchant
©D.
E. Ellis,
Si, Lombard-street, merchant.

 three nor more than nine; qualification, fiv
shares; remuneration, $£ 22 \mathrm{~s}$ e each for every board shares; remuneration, £2 2s. each for every board
or committee meeting attended. The first thre subscribers are appointed directors.

Tesselated Floor Covering Company, Limited. This company was registered on the 15th inst, equir capital of $£ 50,000$, in $£ 5$ shares, to acquire, upon terms of an unregistered agree
ment of the 30 th ult., the business carried on by Messrs. He doth ult., the business carriel on by the Patent Noiseless Plain and Inlaid Tile Com pany. The subscribers are:-
Spence, Bulpton, Essex, land agent
W. Jarvis, 52 , Brixton-road, euginee

The number of directors is not to be less than three nor more than seven; the subseribers are to
appoint the first; qualification,
$£ 100$ in shares or appoint the first; qualification, $£ 100$ in
stock; remuneration, $£ 600$ per annum.

Consolidated Gold Mines of Mulatos, Limited This company was registered on the 19 th inst. with a capital of $£ 660,000$, in $£ 1$ shares, to enter
into an agreement with Messrs. Elborough and Co. for the purchase of a concession and right to the Consolidated Gold Mines of Mulatos, in the State of Sonora, Mexico, consisting of about 24,000 acres, together with the mill, houses,
stores, machinery, working materials, tools, \&c. The subscribers are:-

 The number of directors is not to be less than are to appoint the first and act ad interim qualification, 200 shares; remuneration, $£ 3000$
per annum. Each director will be entitled to per annum. Each director will be entitled to
receive all reasonable expenses incurred by him in connection with the company, with the assent of the board.

London Flock Company, Limited.

 Registered on the 16 th inst, with a capital of$£ 5000$, in $£ 1$ shares, to take over and carry on the flock manufacturing business of Mr. Joseph Fraser Oates, of 53 , Glengall-road, Old Kent-road. Th J. F. Oates, 53, Glengall-road, flock manufacturer Share

 J. Capson, Murning-lane, Hackïney

The number of directors is not to exceed four,
he first two subscribers are appointed directors.
Engineering Society, King's College, Lon-DoN.-At a general meeting held on October "
12th, Mr. Long read a paper "Oon Petroleum." which it and how it might be advantageously used for fuel. The method of distillation was pointed out, carbons and all tarry matter. the stills, the author referred to the carriage of petroleum by sea, pointing out the advantages of also the ne in bulk over that in casks, and and stability. The question of ensure safety fuel was next dealt with, it being stated that practicaly the ratito of the heating value of that
substance to that of coal was as $3: 1$. Where it can be obtained at a low rate it may be used
with great advantage, as, for instance, in with great advantage, as, for instance, in
America and Southern Russia, but in England its heavy price prohibits its use. The chief ad-
vantages in its use atteng to all the furnaces ; (2) that it is smokeless; (3) that its intensity can be regulated to any extent. After a short discussion the meeting
adjourned. At the meeting held on Oatober 19ch, a discussion took place on blasting agents. It was opened by a paper "On Dynamite," from
Mr. Gask, giving an account of its composition Mr. Gask, giving an acoount of its composition
and relative cost as regards gunpowder. The and relative cost as regards gunpowder. The fixing the detonator, was fally explained andes, and the advantage of dynamite over gunpowder in wet ground. Great care has to be taken with ynamite when frozen, numerous accidents having It is a very convenient explosive in that state. sunken rocks, \&c. Mr. Heathcote then explained some forms of safety cartridges, including (1) the lime cartridge, where the expansion of lime on the addition of water is utilised; (2) where
strontia is brought into contact with (3) by breaking a vessel contact winh ammonia and thus letting it combine with pieric acid. Mr. Preece next gave the advantages of firing charges by electricty, and the way it is done, giving as an instance the blowing up of the Hell-gate, and explaining the arrangement of the batteries. The
American substance, rackrock, was mentioned by Mr. Moore as being 56 per cent. more explosive than gunpowaer, but inferior to dynamite. After the cussed, the meeting adjourned.

THE PATENT JOURNAL.

Condensed Jrom the Jourranal of the Commissioners of

Applications for Letters Patent.

"When patents have been "communicated" the printed in italic

19th october, 1886.

Yorkshire. Extixguisher, H. A. Mansfield and H
M. Harrington, London

N, Nol. TAigel, ork orkanas. U.s.

13,295. ARTIFIOLAL METAL Densture or Plate, J. S.

dec., W. Bagshaw, Dudley. J. Pittuck and J. A. E.

13,303. Broou Wrivilia Machiskry, J. Heal, Halifax.

${ }^{\text {caste }}$ 13, of Liohting Pipes and CianRs, J. G. Stormont
Erdington.
13,308 . Boxes and Cases for Winis and Spirits, J.
J.
saddler, Glasgow. Wer of Paper to Print from a
13,309. APLIYTNa a

 London.

London.
li, Sid.
Londoperss
Lord for Bortiles, R. R. B. Macnaughtan,
13,320. Avo. Avomatic Sprina Box Cover, F. Grifinn,

G3, Ch2. Gminery, Lindondon.
London.
13,323. Conger Busks, L. Phillott and J. G. Suith,
London, and J. . M. Morrell,
13,324. Fondend ad Wherlen bier and Grave Baraier,
S. stretton, London.
3,325. Twist Lace Curtain Machines, J. Carver and
.

 London.
13.3idiva Flour, \&e., H. A. Weber and J. G
Zeider, London.

(J. Stelled and the the Hartjord Mactine Screw Company
Uniter

13,34.3.. Musical Instruments, F. E. P. Ehrlich,
London.
13,34. Ci. CNTR fUGAL PUnPs, W. Anderson, London.
13,345. FIRE-LIOHTRR, J. Childs, London. 13,346. Boorkisping M Mchinss, J. Y Johnson.-(J. S

 20 th October, 1886.
13,350. SEwing Machines, J., Poyser, London.
13,55i. HEALDs for Loouls, W. and G. W. Elis, Hud

13,353. A. Wpencerr, Manchester. REquLATOR for Loons, J. Belicard,
13,354. Rasconting Music, C. H. Wall and 0 . Oström,

CHINES, J. Wod, Glasgow,
13,358 . Bouts and BARs for ${ }^{\text {GATES }}$, de., E. Murgatroyd,

Manchenter Trantming Motion, J. R. H. William

3.370. Ties, Bows, Cravats, de., J. Ferguasur,
Bowdone
oow

VELocipenes, W. W. Ford, London,
VELocipens,
M. D. Rucker, London.

${ }^{\text {Bath. }}$. 3 . 3 .tracoctixg Tiv from Iron in Tin Soraps, R.

,382 Conibinep Penholder and Penknite, c. e.
Hodges, London.
383. $^{\text {PULLEYs }} \mathrm{U}_{\text {sigd }}$ with Rorzs, Right Hon. Vis-

3,385. HEMoving FUsk OLI, de., from Crude Spirits,

London. Sivale Chain Grab Dredorrs, J. r. Bell,
Lond on.
Lint
London.

London.
3,402 . Soisp, G. Linget and J. Viaudey, London.

3,408. BoRINo or Prercing the Backs, de., of
BRusies, J. Raper, M. Pe.rson, and F. Gull, London

1 st October, 1886.

3,409. Avale Coupling, H. J. Clark.-(c. J. Clark
United States.)
 Aston.
3.411. Measuring Instruments or Gavaes, J. Buckley,
 Birmingham.
$3,413$.
Railway Carriage, dec., Windows, L. A. Parrock, Birmingham.
3,414. Disenvanaina
door for Boat Loweriva Pur-
 13,416 , Therasmewt of Lead Pioments, J. B. Hannay,
(flagow 13, 414.7. Comipound Bollers for Heatina Watre, de.,
1E. Kemp, Glasgow.
 se., W. H. Carmont, Manchester.
3.420. SEALING AIR-TIEHT CANITTRR, \&ce., Lids, J. ,

 minghum.
13,427. stersing Gead for Velocipedses, T. E. Bolton,
Manchester.
3,428. Breaking, \&ec., Fibrous Matlrials, E. Brasier,
London.
3.429. Window Blind Furiturer, R. K. Jones, $\mathrm{T}^{\text {i }}$ ivel-
pool.

3,431. SLIDES for Dour Chains, C. T. Smith, Birming
ham. SToves and Fire Gratis, G. L. Shorland,
L.432.
London
L,433. Unibrbilas, de., J. B. Seel, Manchester.

London.
3,440. FAst
Kendristeningas for Windows, J. E. Parr and T

12,42. MaAD AINES of Refeating Fire-Abms, T. P.

 $\underset{\text { 13,447. DRess }}{\text { Hittins, Liverpool. }}$ IMPRovERS, A. J. Boult.-(G. Guglielmi,

 ${ }^{22 n d}$ October, 1886.

 Yeadon, Bradord

 349. S. Soppre for Bottles, W. Meeks, Ashton-under-
3nan. Machings for Rendering Laths and Cutina TENERRS, W. Ellis, London.
13,493. Spriscs, E. Rusden
 dill, jun, Manchester. Brooches, de., J. Long,

 13,499. Lievor Frambs, dece, W. H. Ireland, Bir-

 15, S10. CARTRT, J. Smith, London.
and R. W. Briggs, London.

 15, iov of Cons, W. S. Oliver, London.

 120ndon. FANCY PAPRR, A. Schmidt, London.
13,344. CARTRIDEES, dC., H. S. Maxim, London. $23 r d$ October, 1886.

 Birminghaw-WARE VAssel HaxdLes, J. W. Sankey,

 Baster UTHising WAsse
Wake, Middlesbrough.

 . Brooks, Man

 13,559. Protrgind Bick Quartrrs of Boors, \&c., by
 13,561. Finstivis FLy CAsss, P. D. Malloch, London.
13,52, Conting of M

 Bonthrone, Glasgow.
London.
JTh. Frition Gear for Driving Machinery, e.
Jones

 Birmingham, 13,572 . M INER's SAFETY LaMP, W. Banks and s . 13, Brizery, SpinviINe and Twisting Rivas, H. Ashworth London. 33,574. Composition for Preventing Incrustation in
Stram Bones

 Skorrow, de., Lives, A. M. Clark.--(D. W. Briggs
Onited

 A. Lee, London.

 London.
L3,588. STBAM Boirers, S. P. Wilding.-(T. Lammine
A.
 L3,590.0. SARETY Lamps for Miners, \&co., J. Macnab,
 from BATrERIES, M. Bailey and J. Warner, London.
15592. Prminaky BATTERIEs, M. Bailey and J. Warner,
 Witzznmann, London.
 599. Dyzing Papres, J. Fletcher, Mancheste

 of Woven Fabrics, W. Fenton, Halifax.
13,605. Composirios for PREMENTINo and Removina Incouvstation and Corrosion of Boilers, J. Cooke,
 13,607. Reguturiva the Posiritron of Shekt Music, de., R. A. Cruickshank, Glasgow.

 Buckley, Moston. The HaxdLEs of Toors, A. E.
33.6.L. Sockrsit for ther
Stayner, Millhouses, near Sheffield.

 Scott, Neweastle-under-Lyme.
13,615. Foobing UMBRELAS, w. P. Thompson.-(J. D.

 13, Lond. Hiviunva, dc., Machinery, w. Clarke and J.

3 3.629. Combined Brush
London
and Brake, W. Carter

 13,637. Bion. Books of Artificial Fokl, R. Combret,

 Mills. (J. W. Hocecll, United States.).
13,642. RoLiER BEARING, G. and E. Smith, London. $\xrightarrow{\text { 13,643. }}$ Londo Li,644.0. Draugat of Furvaces, do., E. W. Collier,
London.
 13,646. BAND Wh., London.
jun
 Johnston, Loondon.
 13, Lond. RUN RUNAING Gear of Vehioles, c. Dinsmoor, Li,652. Openderatina Railway Signals, G. Edwards, LL, London. Likans and Roless, H. H. Lake.-(E. o. Chase, Un,654.ed Fluterside of Aluminitum, dec., L. Grabau,
 13,656. Auronaticialiy Closing Tap Valve, J. and J.
F. Gilmore, and W. R. Clark. London.

$\overline{\underline{ }}$

SELEOTED AMERIOAN PATENTS.

(From the United States' Patent ofice official Gazette.)
 Clain.-(1) The combination of the cylinder head Λ, Dasing the ring D having the dowels d, all arranged sub stantially as ast forth. (2) The combination of the
cylinder head A, casing C, packing e, spring $~$, solid

ring E, and sectional rings DF, the ring D having the
dowels d, all arranged gubstantialy as set forth. (3) dowels d, all arranged substantially as set forth. 13 In a piston-rod packing, the cyinder head A, casing
C, and paking feombined with the spring G, osid
ring E, and sectional rings D D, substantiall as set forth.
347,3
D
347,303. Confounn Watre Gavai for Stran Bonkrs,
David Pyke, Philadelphia, Pa.-Filed November 27th, clais.-(1) A compound water gauge for stam
coilers, constructed substantialty as harein shown and deseribed, and consisting of the three parallel glass
tubes ABC , the elbow couplings D , attached to the ends of the said tubes $A C$, having offsets in their
inner arms, and provided with valves E and cocks F , nner arms, and proviced win vaves and
and the three-way globe valve G, connected with the

347,303.

ndd of the centre tube B, and with the elibow
couplings of the side tubes, as set forth (2) In an compound water gauge for steam nosiers, the the einaw
tion, with the three glass tubes AB, C , he
con
 three-way giobe valves G, connected with the centre
tube B, and the ellbow coupling of the side tubes, of
 and described, wherebes yreater irrmness and strength
are irive to the gang the glass tubes are pre
vented from being accidentally broken, as set forth. 347,372. Barrer. Maring Machine George W. Packer,
Rock Falls, Ill.-Filed February 1tht, 1886 . Claim-(1) In a barrel making machine, a curved
 such position with respect too the ine of movemento
a travelling saw that the last stave and the blade of a traveliling saw that the last stave and the blade of
the sav shal have the eame onvergee as the odges
of the staves, in combination with such travelling saw, whereby thes, serires of stavaes may be exactly gaumed
fur a required size of barrel, substantially as sed

347,372

forth. (2) In a barrel making machine, a curved Which way receives and supports a series of staves in such position with respect to the cut of a saw that the
last stave and the blade of the saw shall have the same convergence as the edges of the staves, in ocmbination
with such saw, whereby the geries of staves may be exactly gauged tor
tially as set forth.
347,342. Expansion Rubpre Buokers for Chan - 13thr, , 885 s.
inward diameter at a thickened at its lower end to
form the inward incline a, whereby it is adapped to be

expanded by moving an interior nut in either direction
along the sypporting link, substantially as deseribibed. 347,397. Chuok for Rock Drins, James Throckmor-
ton and Joseph G. Throckmorton, Harvey s, Pa.Tiiled April 19thh, 1886 .
Claim.-The combination, with the bit A, provided
with the shoulder B and the extension C formed with tha left-hand thread and neek Donsion less diameter than said extension, and formed withs righth-hand
thread, of the stem F , having externally threaded

 hterior left-hand screw thread throughout its entire ength, and adapted to engage the thread of the ciad
of the stem and that of the extension C of the bit, and its lower end abutting against said sho
tially as and for the purpose specified.
347,480. Pouverisina Macinse, Hermann B. Fids.
munn, Philadelphia, Pa.- Filed Apri 23rd, $18 s 6$. Claim, (1) In a pulverising machine, the following
elements in combination: a casing, a driving ehaft a sphere or roller, and two dises mounted upoo the substantially as set forth. (2) JIm a pultverisisng maxchines
 hereon, and means for compressing said disd anciunst

 reeeve and thereby protect the shaft against the
inward thrust of the ball, substantially as set forth. (4) In a machine of the class recited, in in $\begin{aligned} & \text { ation } \\ & \text { with a casing, a driving shaft, a ball adapted to travel }\end{aligned}$ upon a track within said casisng, and a apaid of diases
the opposing faces of which are flat, so that the ball the opposing faces of which are flit, so that the ball
can travel in toward the shate without ocasioning a movement of the dises, substantially as set forth. (5)
In a machine of the class above recited, the combination of a casing containing a bail track, a ball upon said track, a shaft jourgalled with respect to paid
casing, two discs capable of amovement end wise upon
and

 347,647. Cire Sprovec, Chas
Claim, - (1) A car spring, in combination with top
and bottom plate or plates, the to ploter
347,647

being fulcrumed to the bottom plate, and the ends of being fulcrumed to the bottom plate, and the ends of
thee plate or plates being free so that they can move
freely as thir angles change by compression of the springs. (2) In a car spring, al lever or levers, in com.
bination with a bottom plate, the lever or levers being applied substantially as pat of forth wherorby the spiral

