ELASTIC EXTENSION : A SPECIES OF MOTION. ${ }^{1}$ By Robert Hudson Graham. (Concluded from page 146.)
(8) Assaying the Curve.-The shape of a given curve, such as $a o$, Fig. 3 , may be distorted by changing the
fundamental scale of one of the ordinates, according to fundamental scale of one of the ordinates, according to
which it has been drawn. Supposing, for example, we which it has been drawn. Supposing, for example, we
double the horizontal scale of loads by simply doubling the length representing a given load; then it is clear that any point a upon the original curve is launched forward to a^{1}, where its abscissa is doubled, whilst its ordinate remains the same. In this way the whole curve is projected from the dotted line to the black, as shown upon the figure.

If, therefore, the original curve were of a particular nature, when plotted to a given scale or ratio of coordinates, it would at once lose cast by plotting the series of loads upon an exaggerated scale. The distorted form
would, however, be derived from the original curve by would, however, be derived from the original curve by
projection in a constant ratio ; and the original curve projection in a constant ratio; and the original curve
would be mathematically discoverable from the given projection.
In assaying any extension curve for cissoidicity it is advisable first to apply the ordinary cissoid test as shown in Fig. 2; that is, take the origin 0 at the limit of elasticity upon the curve, where it begins to break away from the straight line; describe the range-circle upon
the distance $\mathrm{O} l$ contained between the limit O and the the distance O infinite ordinate to the curve at l; divide the range into any number of equal parts, and, using the centre O as a focus, draw the series of rays $\mathrm{O} 1,02,03, \mathrm{O} 4$, $1_{1 \prime \prime}^{1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}}{ }^{\prime \prime}$ all points upon the required ciss $1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime} \ldots$ all points upon the required cissoid. If the curve so constructed coincide with the extension curve, there is no scalar distortion. Should, however, the artificial curve vary much from the extension curve, it is necessary to ascertain whether this divergence is due to scalar distortion or to causes altogether independent of
scale. If the variation arise merely scale. If the variation arise merely from scalar effects, the primitive cissoid can be derived from its given projection according to some constant mathematical law.
Now the general equation to the cissoid of extension is § 4.

$$
y^{4}=\frac{t^{3}}{2 r-t} ;
$$

if this curve be distorted by enlarging the scale of time and loads and keeping the scale of extensions constant, the new ordinate y_{1} will equal y, the old ordinate, and
the new abscissa t^{1} will bear a constant ratio to t, the old abscissa of any given point. Let this ratio $\frac{t^{1}}{t}=n$; then, in order to return to the old equation, we must coefficient $\frac{1}{n}$, leaving the ordinates constant. Hence we can retain the primitive equation to the curve, provided that all abscissæ taken from the projected curve be multiplied by the coefficient $\frac{1}{n}$; thus
$\binom{(1)}{n}^{\prime}$

$$
\begin{equation*}
y^{2}=\frac{(n)}{2 r-\frac{t^{1}}{n}} . \tag{1}
\end{equation*}
$$

This equation contains two unknown quantities, the coefficient n and $2 r$, the range of the original curve. In blish two equations by taking two values of y corresponding to two values of t from the given projection of the extension curve. Thus, for example, in Frig. 5 we have $y=6$, when $t=12$; and $y=16$, when $t=19$; hence, upon substitution and making $x=\frac{1}{n}$, weobtain the two equations
$(6)^{2}=\frac{(12 x)^{3}}{2 r-12 x}$ and $(16)^{2}=\frac{(19 x)^{3}}{2 r-19 x}$,
by the first of which the range
$2 r=48 x^{3}+12 x$,
and substituting in the second this value of $2 r$ in terms
of x,

$$
\begin{equation*}
\frac{6859 x^{3}}{48 x^{3}-7 x}=256 \tag{3}
\end{equation*}
$$

Dividing the numerator and denomivator of this fraction
1 The first part of this paper, excluding Sec. 7 , was finished in January
of this yrat pand reed in ithe ofolowing omonth by an eminent Cambridge,
as well as by an eminent Glasgow, professor.
by x, the common factor, and solving, we find that very approximately the coefficient of distortion

$$
x=0.575 \text {; }
$$

and, thence, by substituting this value of x in Equation (2), the range, $2 r=17$.
Constructing the cissoid curve upon this range, as shown in Fig 5 , it will be found that the abscisse of all points upon the extension curve, which has been distorted by

Fig. 5

adopting an exaggerated scale of loads, bear the constant ratio of $\frac{1}{x}$ to the abscissie of corresponding points upon the primitive cissoid.
I have applied this kind of test to a fairly large number of extension curves, and have proved them in all cases, without exception, to be either primitive cissoids or projections of primitive cissoids. The dark line of Fig. 5 is the exact fac simile of a Wicksteed curve; so also is the dark line in Fig. 6, the data and results of the assay
being given below the figure in the second case. I am inbeing given below the figure in the second case.
debted to Mr . W. Wicksteed, of Messrs. Buckton and Co. Leeds, for a copy of these curves. In everything connected with accurate experiment upon elasticity and its autographic diagrammatic expression, Wicksteed has taken a prominent lead.

Wickstesd curres, new series of.-Copper bar turned to 1 square inch section. $d t=1$ ton $=8$ seconds $=\frac{1}{7.5}$ of an inch. Rupture at $10 \cdot 8$ tons from limit of elasticity at o. Extension, 45 per cent. of original length. Coeficient of distortion $=\frac{m a}{m a}=\frac{n b}{n} b^{1}=0 \%$.
Curve $a b a=$ primitive cissoid. Curve $o b^{1} a^{1}=$ projection of primiCurve $o b=$ primitive cissoid. Curve o o $b^{1} a=$ projection of primi.
tive cissoid through the angle whose cosine is 0%. Range $=10$, tive cissoid through the angle whose
diameter of circle of primitive curve.
It need not be remarked that the valves $y, \frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}$ are the same, whether taken from the primitive or derived forms; because, although a y may be smalle when expressed in terms of an augmented unit of scale $d t$ also smaller in the same degree. In other words, the velocity of extension in any particular test must velocity of extension in any particular test mus
necessarily be the same, no matter what may be the scale necessarily be the same, no matter what may be the scale
of its representation upon paper. The foregoing conclusions appear at present in the garb of a particular ciusions appear at present in the garb of a particula
induction, founded upon a large number of cases of bar as distinguished from wire, tests. Whether it may be safe and justifiable to generalise this induction, so as to safe and astinable of generalise this induction, so as to tion upon which it might be unwise to dogmatise. Never theless, it would seem that most extension-curves are so closely allied to cissoids as to perfectly tolerate the application of the rules and graphic processes developed in the mind that in cases where the curve proves to be a projection of a cissoid, the graphic method of determining the velocity of extension, the elastic acceleration, and the rest is applicable only to the primitive curve, which cai
be easily discovered by the method above explained. I choosing the two values of y and t^{1} in the curve-pro jection of the cissoid as given by the test, in order to establish the two equations necessary to determine the
the curve which stand well out and clear of the focus where the two curves tend to blend and coalesce, and where consequently the corresponding values of the two ordinates are not well-defined.
(9) Recapitulation.- In conclusion, the author begs to state his belief that the novel treatment of elastic exten-
sion, set forth in this paper, will be found to comprehend and satisfactorily explain the usual phenomena attendant upon ordinary metallic tests, excluding cases of exceptional character. The chief motives which prompted the author to write the paper were a desire to submit his researches to the judgment of other minds, to stimulate
discussion upon the subject, and to draw attention to discussion upon the subject, and to draw attention to what appeared to him the simplicity and elegance of the elastic graphic expression for the velocity of extension, the acceleration, the new feature of elastic excess, and the increment of extension due to the vibratory effect of the load. With respect to the work of other minds in this special
field of thousht, no attempt has hitherto been made to field of thought, no attempt has hitherto been made to bring elastic extension under ordinary dynamic laws. There is, indeed, a paper by, Sir W. Thomson on
"Elasticity, a Mode of Motion," read before the Royal "Elasticity, a Mode of Motion," read before the Royal
Institution, which deals with the subject from a physical, Institution, which deals with the subject from a physical,
or rather metaphysical, point of view. It would seem to or rather metaphysical, point of view. It would seem to
be a proof that elasticity, like heat, is in ultimate analysis be a proof that elasticity, like heat, is in ultimate analysis an aspect of motion. But engineers, even those who are
of a pronounced scientific bent, will take leave of the of a pronounced scientific bent, will take leave of the
great master of physics whenever he passes beyond that great master of physics whenever he passes beyond that
clear line dividing the territory of practical mathematics from the vague spaces of metaphysical speculation.
With regard to the variation of rate at which the load is added, and its effect upon the ultimate strength of metallic wire, a series of experiments of a more or less rigorous nature was carried out in the Glas gow Und in the "Proery, and ane accoun of them published in the "Proceedings of the Royal Society"-
vol. xxix., p. 221 . The deduction based upon these vel. xxix., p. 22 1. The deduction based upon these
experiments, as given in Mr. J. T. Bottomley's paper, experiments, as given in Mr. J. T. Bottomley's paper,
was that "wire broken rapidy receives an elongawas of over 25 per cent. on the average; whilst the same tion of over 25 per cent. on the average; whist
wire broken slowly is elongated only by about 7 per wire broken slowly is elongated only by about 7 per
cent." The length of wire employed was 16 ft ., and its cent." of $\frac{1}{2} \mathrm{lb}$. per minute, the specimen broke under a total load of 45 lb ., and a total extension of 25 per cent. At another of ime when loaded exhension of 25 per cent. At anothe it finally broke under a load of 451 lb and an elastic it finally broke under a load of 454.1., and an elastic extension of 29.6 per cent. In a third instance, when loaded at the rate of 11 b . every twenty-four hours, it
broke under a load of 48 lb , with an elongation of 7.58 per cent. Lastly, a bright annealed specimen of the per cent. Lastly, a bright annealed specimen of the twenty-four hours, broke under a load of 47 lb ., and an extension of 6.92 per cent. The same specimen, loaded at the rate of $\frac{1}{1} \mathrm{lb}$. per twenty-four hours-which, by at the rate of
the way, is not the same as 1 il . per forty-eight hours -broke, firstly, under a load of 47 lb , and an extension of $4 \cdot 79$ per cent.; and, secondly, under a load of $46 \frac{1}{2} \mathrm{l} \mathrm{b}$. and an extension of 6 per cent. The rate of $46 \frac{1}{2} \mathrm{lb}$. and an extension of 6 per cent. The rate but, whilst greatly edified at the astonishing patience of the operator, engineers will be more particularly interested in swift than in slow rates of fracture. It will be seen that these experiments tend to confirm the theory that extension varies largely, whilst the ultimate breakingstrength varies but little, for different rates of load addition. Thus, whilst the rate diminished from $\frac{1}{2}$ lb. per minute to $\frac{1}{2} \mathrm{lb}$. per day, the ultimate extension decreased
from 25 per cent, to about 7 per cent.; whereas, for the same variation of rate, the ultimate breaking-strength increased only by about 2 lb . It must, however, be carefully borne in mind that the analogy between intermittent loading of this nature and the continuous loading assumed in our investigation is far from being complete. At a later date some experiments were undertaken by Mr. Herbert Tomlinson, towards the expenses of which the Government Research Fund contributed a sum of $£ 4000$. An account of these experiments will be found the "Phil Trans"" of the Ry Professor W. W. Adere is, however, little to be found in them immediately bearing upon the question of time-tests. It is only stated in a general sort of way that "in the case of a wire which has suffered permanent extension, the extension decreases in proportion as the time between the loadings increases." "his fact was also pointed out by Professor Ewing"Proc." Roy. Soc., 1880 , vol. xxx., page 510. The same phenomenon had, however, as we have seen, previously appeared in Mr. Bottomley's experiments; and, in fact, long before that time it had formed part of the engineering faith, and had been incorporated in the principles of
bridge construction under the form of varying co-efficients bridge construction unde
for live and dead loads.
In case absolute accuracy were required in ascertaining the nature of the extension curve, it would, of course, be necessary to employ the method of least squares. But
we need scarcely remark that, owing to defects in the We need scarcely remark that, owing to defects in the tracing gear, and to other mechanical imperfections, the coloured pencil does not trace a perfectly continuous
curve, and therefore we are free to consider all the tests curve, and therefore we are free to consider all the tests
and results in the light of tolerable approximations to and results in the light of tolerable approximations to
the truth. All theories based upon experimental data the truth. All theories based upon experimental data
are necessarily imperfect in their origin, which fact are necessarily imperfect in their origin, which fact enables us to dispense with excessive refin
practical operations to which they give rise.
The elastic excess z, is the strain measuring the loss of tension, $\frac{\mathrm{E} w z}{l}$, due to acceleration and other accidental causes. Its value is determined independently of sign, and its nature is essentially negative. Thus, as explained in Art. 3, the actual tension, $\frac{\mathrm{E} w y^{1}}{l}$, is always less than the static extension, $\frac{\mathrm{Ew} y_{0}}{l}$. Taking account of the contraction of area from w to w^{1}, this tensional loss may be expressed by $\mathrm{E}\left(y_{0} w-w^{1} y^{1}\right) \div l$.

THE DRAINAGE OF FENS AND LOW LANDS BY STEAM POWER.
By W. H. Wherler, M. Inst. C.E.
No. XI.
The Ten Mile Station.-The scoop wheel at this station is 43 ft .8 in . diameter, having been increased 20 in . from the original dimension by lengthening the scoops. There are fifty scoops, 7 ft .6 in . radial length by 3 ft . wide. The average dip of the scoops is 3 ft .; the greatest, $5 \mathrm{ft} .6 \mathrm{in} . ;$ and the lift 11 ft . average, and 14 ft , maximum. This wheel lifts the water into the Ten Mile river, which is not tidal, the tide being shut out by sluice doors at Denver during tide time. These scoops drip from the radial line during tide time. These scoops drip from the radial line at an angle of 38 deg., being tangent to a circle of 18 ft diameter, and on an average head and dip of 14 ft . 11 ft . head and 3 ft . dip-enter the water at an angle of 34 deg., and leave it at an angle of 72 deg. The wheel makes $4 \frac{1}{4}$ revolutions a minute. When working to its full extent, the wheel is capable of discharging 213 tons per minute. This wheel has been proengine for driving the wheel is similar in character to the at the Hundred Foot Station, and was altered and to that for working with a higher pressure of steam in a manner similar to the other. The cost of alterations at the two stations was over $£ 6000$. The estimated capacity of the two wheels at the maximum dip is 410 tons per minute This is equal to a discharge of water due to a continuous
was of 24 nominal horse power, driving a double inle horizontal spindle Appold centrifugal pump, 4 ft . 6 in . diameter, with an average velocity of 90 revolutions a minute, equal to 1431 ft . per minute ; the lift at that time being from 4 ft . to 5 ft . The pump was driven by a doublecylinder steam engine, with steam at 40 lb . pressure, and vacuum $13 \frac{1}{2} \mathrm{lb}$. It raised 15,000 gallons- 67 tons-per minute to a height varying from 2 ft . to 5 ft . The total cost was $£ 16,000$, of which about $£ 2000$ was for the machinery. The general arrangement of the pumps is shown by the sketch, Fig. 10. The pump discharged into Bevil's river, a branch of the Nene, which forms a part of the great Middle Level system, the outfall of the main drain being into the River Ouse, at St. Germains, 30 miles distant. The soil of this district is almost entirely peat, to a depth of from 15 ft . to 18 ft . After the drainage operations had been at work some time the surface of the of drain peas. drain as surface is 3 . aft our surars is when the listrict was first drained They-two years ago, when the district was first drained. The pump work, until the lift was the twenty-six years it was at demonstrating the paliar facility this over $9 f t$., thus has to meet such an occurrence. Owing however to the increased lift and the altered circumstances of the district it became necessary to increase the pumping power. The average lift now is about 7 ft ., rising frequently to 9 ft . 6in.,
junction with the Ouse; the other on the north, discharging into the Little Ouse, about two miles above Brandon Creek Bridge. The main drains between the two stations are in connection, so that the water can run to either station. These pumping stations are about eight and fifteen miles respectively above Denver Sluice, where are self-acting doors, which shut against the tide at the time of high water. The lift at the north station is rather the highest, the average of the two stations being about 10 ft . 6 in., rising in heavy floods to 16 ft . The north station consists of a scoop wheel 34 ft . 6 in , in diameter, with scoops 4 ft . 9 in . long by 2 ft . wide, motion being given by one engine of 40 nominal horse-power. The wheel is driven by a condensing engine of the old marine side-lever type, having the beam below the cylinder. The piston has 3 ft . 6 in . stroke, and makes 28 revolutions of the engine to $5 \frac{1}{2}$ of the wheel. The working pressure of the steam is 15 lb . on the inch. The station at the Fish and Duck was provided, until recently, whe 4 ft . in since the 4 ft .6 in . since the beginning of the present century, it was the essary to provide more encent machinery, and under works in the South works in the south Level, the scoop wheel and engine were replacent and condensing fitted with expansion gear 60 nominal conder the finders being 18in and 30 in in horse with 3ft. stroke, provided with variable expansion valve

daily fall of 0.17 in . of rain. In the year 1883, which was a very wet season, the engines ran as follows:-

The estimated discharge, calculated with the average dip of the scoops given above, is $122 \cdot 12$ tons per minute lifted $13 \cdot 80 \mathrm{ft}$, equal to $114 \cdot 40$-horse power of water lifted, with a coal consumption of 5.991 b . per horse-power of water lifted for the Hundred Foot engine, and 128.55 tons lifted $11 \cdot 16 \mathrm{ft}$., equal to $97 \cdot 38$-horse power, with a coal consumption of 593 lb . per horse-power, for the Ten Mile being. Taking the two wet years, 1881 and 1883-1882 being omitted, as during this time the machinery was under Coals f717, atten orne and wath Coals, 217 , atingan area drained being taken at 35,000 acres, this gives $12 \cdot 62 \mathrm{~d}$. per acre per annum for working expenses. The average being taken at 111 ft gives $1 \cdot 10 \mathrm{~d}$ per acre per foot of lift, being taken at $11 \frac{1}{2} 1$,, g 0.85 d . per acre per foot of lift, or, for coals only, of 0.85 d . per acre. Coals costing Whittlesea Mere.
Whittlesea Mere.-This pumping station is in the Middle Level, in the county of Huntingdon, and contains about
6000 acres. The Mere originally was a 6000 acres. The Mere originally was a large lake or This, with the surrounding fen, was embanked and drained by steam power by the proprietor, Mr. Wells, in 1851-52 being the first instance in this country where the centrifugal pump was applied to this purpose. The results obtained with the Appold pump at the trials of this machine at the Exhibition of 1851, demonstrating its suitableness for the purpose. The engine then erected
and even higher in heavy floods. In 1877 the old engine and pump were removed, and the fan of the pump may now be seen at the Museum at South Kensington in almost perfect condition. Messrs. Easton and Anderson erected in their place a high-pressure compound condensing beam engine, with expansion gear, of 65 nominal horse-power, making about 36 revolutions a minute with 60 lb . steam. The boilers consist of one single flued and one double flued Cornish boilers. The pump, which is placed in a well outside the engine house, is driven by a double set of motions, the first set consisting of a toothing on the fly-wheel driving a pinion which actuates a horizontal shaft for driving a wheel geared into a bevil wheel on the vertical shaft of the pump. This is hung by an onion bearing to a cast iron frame bolted to the top of the pump well, which is formed with a wrought iron cylinder fred in the centre of the sluice connecting the main drain with the river. This cylinder was used as a convenient mode under existing conditions of forming the pump well, and reduced the first cost by avoiding the necessity for building a brick well. This sluice is 12 ft . wide on the inlet side and 6 ft . on the delivery side. The fan is a single inlet fan of 6 ft . diameter by 16 in . deep, and is speeded to run up to 104 revolutions a minute when on a per minut. per minute, or on a lift of 7 ft . 6 in ., with a speed of 96 revolutions of pump, 105 tons per minute. The engine shaft is 53 ft . high and 3 ft . diameter at the top inside. The cost of the machinery was approximately $£ 3500$, plus The cost of the machinery was
the value of the old machinery.
Burnt Fen, Norfolk.-This district is situated in the south level of the Bedford Level, and is entirely Fen land. The area drained by the pumps is 15,000 acres. There the two pumping stations, charging into the river Lark, about three miles above its
working on the back of the high-pressure valve. Steam is provided by three Lancashire boilers, 25 ft . long by 7 ft . diameter; the working pressure being 65 lb . Only two of the boilers are in use at the same time. The engine makes 70 revolutions with steam at 65 lb . in the boiler, and cut off in the small cylinder at half of the stroke, the pump making at the same time 105 revolutions with a lift of 14 ft . per minute, and delivering 120 tons. The case of the pump is 9 ft . 6 in . diameter, situated in a well immediately outside the wall of the engine house. This well is 9 ft .10 in . in diameter ; the diameter diminishing below the pump to 6 ft . The outlet for the discharge is 9 ft .6 in . above the centre of the pump, and is 5 ft . 6 in . high by 3 ft. 6 in . wide. The pump is driven by a bevil wheel geared into a bevil pinion on the crank-shaft, which is 11 ft . long. The fan is single, made of gun-metal, 6 ft . diameter by $12 \frac{1}{2}$ in. deep at the periphery, with a short suction pipe attached to the case below the disc. The spindle is suspended by an onion bearing supported by a girder across the top of the cylinder of the pump well. When the pump is working it is found that little weight is carried by the onion bearing, as the disc is so arranged That the water entering it supports the moving parts. The pump was calculated to lift the following quantities: 104 tons 10 ft .; 100 tons 114 .;
 92 tons at 1 ., exceeded at the trials of the pump. The engine bed pump pump were supplied by Messis. Hathorn, Davey, and Co., fixing in the old building, the makers taking the old engine, was $£ 2700$. A drawing showing the arrangement of the pump and engine will be found in The Engineer, vol. lvii., February, 1884, and an enlarged view of the pump is now given in Fig. 11. Careful observations have recently been taken by Mr. Carmichael as to the con-
sumption of coals by this engine under ordinary working sumption of coals by this engine under ordinary working
conditions, the quantity of water delivered being ascertained by measuring the quantity passing through of water discharged was 120 tons per minute, with a consumption of three tons of Derbyshire coals in twelve hours. This is at the rate of $6 \frac{1}{4} \mathrm{lb}$. per horse-power of
water lifted per minute. The quantity of oil used for lubricating is at the rate of one gallon in twelve hours. The consumption of coals in this district has varied during the last twenty years from about 250 tons to 1000 tons in a year according to the rainfall, the average cost for the

years 1881-83, coals being then about 15 s . per ton, was, for coals, $£ 674$; attendance, oil, \&c., £252; total, £926. Taking the average lift for both stations at $10 \frac{1}{2} \mathrm{ft}$. this is equal to 14.81d. per acre, or per acre per foot of lift, 142 d .; or for
coals only 1.02 d . During this time both scoop wheels were in operation. The main drain, which brings the water to the pump, is 20 ft . wide at the bottom, with
slopes of $1 \frac{1}{2}$ to 1 . The average depth of water when pumping is going on, varies at starting from 5 ft . 6 in . to 3 ft . at leaving off ; the surface inclination also varying from $2 \frac{1}{2}$ in. per mile to 4 in .
Prickwillow.-This pumping station is for the drainage of a large district in the South Level, being part of the Great Bedford Level, in the county of Cambridge. The taxable area of the district is about 11,000 acres, but the willow is and actually drained by the engines at Prickof higher land bordering on the Fens finding its way into this Fen drainage system. The water is lifted by both engines into the River Lark, about fourteen miles above Denver sluice, where the river discharges into the tidal stream from the same main Fen drain, which is 20 ft , wide, with slopes $1 \frac{1}{2}$ to 1 . The depth of water at starting the engines is generally about 6 ft . 6 in ., decreasing to 4 ft . 6 in . after the pumping has been going on. Since the erection of the new engine and pump this drain has been found to be too small to keep up a full supply, the inclination on the surface being at the rate of six inches in a mile, which is greater than should be the case in a large main engine drain. The height the water has to be raised on an average is 10 ft ., rising as high as 17 ft . in high floods in the river. Steam power was first applied to the drainage of this district in 1832 , a 60 -horse power low-pres-
sure condensing engine being then erected by the Butterly sure condensing engine being then erected by the Butterly
Company to drive a scoop-wheel 33 ft . 6 in . in diameter; Company to drive a scoop-wheel 33 ft . 6 in . in diameter;
and this engine, with the aid of numerous wind engines and this engine, with the aid of numerous wind engines
previously in use, and retained as auxiliaries, preserved previously in use, and retained as auxiliaries, preserved
the district from injury fairly well. The continuous subsidence of the surface of the land and the increased height sidence of the surface of the land and the increased height
the water rose in the river, due to the rapidity with the water rose in the river, due to the rapidity with
which floods now come down from the uplands, rendered which floods now come down from the uplands, rendered experience that, owing to the constant variations in in the river, the scoop-wheel became so water-logged in the river, the scoop-wheel became so water-logged
and unwieldy, and the loss by leakage so increased by the great head of 10ft. to 13ft., against which it frequently had to work, that, notwithstanding the great prejudice which all Fen men have in favour of the scoop wheel, Mr. Carmichael, the superintendent of the
South Level, advised the Commissioners to adopt another form of machine which would adapt itself automatically to the variations of lift, and which, under the varying circumstances of the discharge, would absorb the whole purpose he engine to the best advantage, and for this although they had been in use for some time in other parts of the Fens, were as yet untried in the South Level. old engine of the greater part of its duty, more especially in times of excessive floods, and to drain out the water to a lower level than was practicable with the scoop wheel. The new machinery was erected by Messrs. Easton and is a 60 nominal horse power compound condensing beam engine, supplied with steam at 65 lb . pressure by two Lancashire boilers. The high-pressure cylinder is 15 in ., and the low-pressure 25 in . diameter, with 4 ft .6 in . stroke. The pump is of the vertical spindle pattern,
with single inlet, with balance fan 5 ft . 4 in . diawith single inlet, with balance fan 5 ft . 4 in . diameter and 1 ft . 2 in . deep, placed at such a level that
the lowest water in the drain will cover it. The inlet is 2 ft . 8 in . diameter, formed on the lower side only, special
provision being made for balancing, the weight of the column of water above the fan being balanced by the fixed inlet piece, which also serves to steady the lower end of the fan spindle. The meeting faces between the fan and the fixed case are both turned in the same direction, so that wear as it takes place can be taken up simply by lowering the fan spindle by means of an adjustment provided for the purpose. To take up the momentum of the water issuing at great speed from the fan, patent guide curves were fitted, which turned the water gradually into
the vertical direction and at the same time assisted to bring the vertical direction and at the same time assisted to bring it to rest. In this particular instance these guide curves
were not found to be of much avail, as when the river was were not found to be of much avail, as when the river was very low the delivery was lower than the top of the blades,
and consequently there was a churning action going on and consequently there was a churning action going on
with the water in the well, which caused vibration in the with the water in the well, which caused vibration in the spindle. They were, therefore, removed. The pump is placed at the bottom of a brick well, in one side of which is the
outlet passage 4 ft . wide by 4 ft .6 in . high, fitted with selfoutlet passage 4 ft . wide by 4 ft .6 in . high, fitted with self-
acting doors and communicating with a cast iron outlet acting doors and communicating with a cast iron outlet
pipe 4 ft . 6 in . diameter and about 68 ft . long. The upper end of the fan spindle hangs in an onion bearing, and is driven by a pair of bevil wheels from a horizontal shaft which passes into the engine-house, on which is a pinion driven by annular gearing, bolted to the rim of the fly-wheel of the engine. The pump is calculated to lift 95 tons per minute at 8 ft . lift, 88 tons at 9 ft ., 83 tons at $10 \mathrm{ft} ., 78$ tons at $11 \mathrm{ft} ., 74$ tons at 12 ft ., 71 tons at 13 ft ., 68 tons at 14 ft ., 65 tons at 15 ft . The cost of the machinery,
including engine, pump, and two boilers was $£ 3853$. The incuildings, engine, pump, and two boilers was $£ 3853$. The base, piling, and concrete, cost about $£ 1064$. At the trials which took place when the new engine was started it was

SCOOP WHEEL AT NORDELPH.

found that the old engine indicated $103 \cdot 33$-horse power
when delivering the water to a height of $9 \cdot 78 \mathrm{ft}$.; the new when delivering the water to a height of $9 \cdot 78 \mathrm{ft}$; the new engine when indicating 106-horse power delivered 75.93 tons rate of 23 cwt. per hour, and as consumption was at the rate of 24 cwt. per hour, and as compared with that of the old engine in the proportion of 3 to 5 . At a sub sequent trial a weir 13ft. wide was placed across the the inlet drain the weir at starting was 8 ft , water in the inlet drain and the weir at starting was 8 ft . 9 in .; with the scoop-wheel the depth of water over the weir was $12 \mathrm{in}$. , 10 ft , the depth of 6 in .; with the pump, the lift being lift being increased a the weir was 4 in less with the sco pump. At the trials that scoop-wheel than with the pump. At the trials that were made, the new engine lifted by the pump 10.84 ft ., equal to 56 -horse power of water lifted, or an efficiency of $52 \cdot 79$ per cent. The old engine, indicating 103.33 -horse power, the wheel lifted power of water lifted, or an efficiency of 46 per-hors power of water lifted, or an efficiency of 46 per cent. $2 \frac{3}{4}$ cwt. an hour, or 5.50 lb . per horse-power of water lifted per hour. In ordinary working at the present time the consumption is at the rate of five tons in 30 hours for a lift of from 11 ft . to 12 ft . Taking the horse-power as before at 56 , this gives 6.66 lb . per hour ; or, if the work be taken at 74 tons lifted 11ft. 6 in . high, a horse-power of 58.45 , and coal consumption of 6.39 lb . The old engine and power be taken at 48.12 as coal in 24 hours, if the horse hour. The cost of this pumping station, including both machines, on an average of the three years 1881-2-3, for coal, oil, attendance, \&c., was £625, of which £483 wa
paid for coals, which represents about 644 tons. This i equal to a cost per acre for land drained of about 6 d ., or taking coals only, $4 \cdot 62 \mathrm{~d}$., and taking the average height the water has to be lifted at 9 ft . 6 in ., this is equal to 0.80 d . for all expenses, and 0.62 d . for coals only per acre per foot of lift.
The Upwell, Outzvell, Denver, and Welney south district is situated in the Middle Level in Norfolk, being part of the Great Bedford Level. This district was originally drained by scoop wheels driven by windmills. The quantity of land which is drained by the two wheels is about 9000 acres. The pumping station is at Nordelph, about three miles tion of the new Middle Level drain in 1846 would do away with the necessity of pumping the water off the dis trict, but experience showed that this was not the case.
is equal to $£ 74 \cdot 68$ per horse-power of for wheel. This machinery, and £26.40 for the buildings, together £101.08 This is the only wheel in the Fen-land that has curved blades. The head and dip of this wheel in ordinary floods are about 8 ft .6 in . The relative proportions of each varying as the water lowers in the inlet or rises in the outlet drain. As an average the dip may be taken at 4 ft .6 in , and the head at 4 ft . With the wheel making five revolutions a minute, and allowing 20 per cent. for by the quantity leakage, and this deduction is borne out by the quantity of water flowing down the engine drain the discharge is equal to 4305 cubic feet- 120 tonsmarge wh 4 ft . charge, with 4 ft . head, is about two tons in twelve hours, equal to 11.440 lb . per horse-power per hour of water the by the side of the engine-house stands one of wheel 20 ft , in diameter and still used to drive a scoop theel is sufficht wind the district. When both steam and wind engines from work the quantity as civen ane is at ate discharge of a continuous fall of $\frac{1}{4} \mathrm{in}$. of rain in twenty four hours over the area of 9000 acres, of which the district is comprised.

Railways and Population.-The following table shows the railway population and area of Europ
1885 . The kilometre is 62 of a mile :-

Countries.	$\begin{aligned} & \text { Total } \\ & \text { length in } \\ & \text { kilos. } \end{aligned}$	Area in square kilos.	Population.	$\begin{array}{\|c} \hline \text { Kilos. } \\ \text { way } \\ 100 \\ \text { sq. } \\ \text { kilos. } \\ \hline \end{array}$	s per 100,000 inhabi tants.
Great Britain and) Ireland	30,843	314,628	35,241,482	$9 \cdot 81$	$87 \cdot 4$
Belgium	4,410	29,547	5,853,278	14.97	$70 \cdot 5$
Luxemburg	362	2,587	${ }^{213,283}$	13.99	170.0
Netherlands	2,468	33,000	4,336,012	$7 \cdot 47$	$56 \cdot 9$
Switzerland	2,761	41,346	2,846,102	6.85	97.0
Germany ..	36,779	540,599	46,852,450	6. ${ }^{\text {P }}$ - 15	79.1
France. ${ }^{\text {d }}$	32,491	528,572	37,672,048	6.15	86.2
Denmark	1,942	38,302	1,969,038	5.07	${ }^{98 \cdot 6}$
	10,354	286,588	29,699,785	$3 \cdot 61$	$34 \cdot 9$
Austria-Hungary	22,341	622,310	37,882,712	${ }^{3} \cdot 59$	58.9 58.9
Portugal	1,527	88,872	4,306,554	1.72	. 4
Spain ..	9,185	497,244	16,961,742	${ }^{1 \cdot 65}$	54.
Sweden					$147 \cdot 2$ $31 \cdot 3$
${ }_{\text {Roumania }}^{\text {Greece }}$.	1,682	129,947 64,689	5,376,000 $1,979,561$	${ }_{1}^{1.30} 0$	$31 \cdot 3$ $26 \cdot 5$
Bralkan Principalities	2,122	64,689 374,961	10,899,391	${ }_{0}^{0.56}$	26.6 19.6
Russia...	25,620	5,016,024	85,296,479	0.51	30.0
Norway	1,562	325,422 377604	1,931,000	0.49 0.35	80.9 60.2
Finland	1,311	373,604	2,176,431	$0 \cdot 35$	$60 \cdot 2$
Europe	195,176	e,885,423	337,354,068		

ABSTRACTS OF CONSULAR AND DIPLOMATIC
REPORTS.
Austria-Modification of duties on ships.-Ships will be classed as of iron, or of oher nitted with copper or iron, but of which metal, which are not the ribs only are of iron. The duty is to be reckoned as heretofore, and the existing regulations relating thereto remain
unaltered. On the importation of steamers for use on inland unaltered. On the importation of steamers for use on inland
waters or rivers, or of ships for the same purpose classed as waters or rivers, or of ships for the same purpose classed as
above, their displacements will be determined, and the result communicated to the Custom House by a specially appointed technical officer, who will assist the Custom House when desired. To determine the weight of iron or other metal portions of the
ship the persons concerned in making the declaration must produce an exact specification drawn up by the shipbuilder showing
due
the component parts of the vessel, their dimensions, and the the component parts of the vessel, their dimensions, and the
material of which they are made, together with a separate material of which they are made, together with a separate
statement of the weight of iron, steel, wood, and other nonstatement of the weight of iron, steel, wood, and other non-
precious metals. The persons making the declaration are presponsible for the correct use of the weights in the specification. The technical officer will examine the correctness of the
weights and communicate the result to the Custom House weights and communicate the result to the Custom House. If
the weights be found incorrect, the duty will be calculated on the weights laid down by the technical officer.
mercial Geography of Berlin proposes to open in Rio de Janeiro and other South American cities exhibitions of agricultural implements and machinery manufactured in Germany.
Cuba-Trade in 1886. -The past year has bee
Cuba-Trade in 1886. The past year has been one of gloomy
disappointment to all classes in this island. It was expected in Havana was that the lowest prices for sugar had been in Havana was that the lowest prices for sugar had been years had left trade on a sounder basis; but sugar has continued
its downward tendency, and the banks have cause to regret several cases of misplaced confidence. The Spanish Cortes pro-
poses to abolish the duties on sugar, but as these are only 8d. or poses to abolish the duties on sugar, but as these are only 8 d . or
9 d . per cwt. the benefit to the planters is not great; but they are in hopes that the \quad in the United States to abolish The inporeasing tendency of using the cheap and regular carriage caused the import trade of Havana to be much steadier and more regular. The mineral wealth of Cuba is well known; exported in large quantities. The most important mine in the island is that of Jurugua, near the port of Santiago de Cuba.
It is the property of the well-known Bessemer Steel Company, Epense of $£ 300,000$ before the first ton of iron was raised; the ore contains 70 per cent. of metal. The mine is
worked by Spanish soldiers under the direction of American worked by Spanish soldiers under the direction of American
foremen, about 1200 men being employed. The ore is conveyed foremen, about 1200 men being employed. The ore is conveyed
by rail to the port of Santiago de Cuba, whence it is shipped to
the United States. It is hardly probable that this should be the only spot in the island where iron ore is abundant, and it is to be regretted that more advantage is not taken of the immeuse natural wealth.
France-Tancarville Canal.--The lateral canal sanctioned in 1886 connecting the port of Havre with Tancarville, on one of
the reaches of the Seine between Havre and Rouen, has been completed and opened. The canal is connected with the port of Havre by a new basin called Du Balloy, in area fifty-two and nes lines. The canal is fifteen and a-half miles in length. Between Harfleur and
Havre its depth is $19 f t$. 8 in.; between Tancarville and a branch Havre its depth is 19 ft . 8in.; between Tancarville and a branch
constructed to Havre its depth is 11 ft . 6 in . The width of all constructed to Havre its depth is 11 ft . 6 in . The width of all
locks is 52 ft . 6 in . It is expected that the opening of this basin and canal will reduce the freight of goods between Havre and Paris by 1s. 7 d . per ton.
Japan- Trade of H.
apan-lrade of Hiogo and Osaka in 1886. - An increase
took place last year over 1885 under nearly all the chief headtook place last year over 1885 under nearly all the chief head-
ings. The quantity imported of assorted iron was 2212 tons;
of pig iron, 2360 tons ; of pig iron, 2360 tons; of iron nails, 2113 tons; of stel, 131
tons. Iron nails, which are generally of Belgian origin, showed considerable increase. In exports a new and interesting feature
last year was the shipment of tea from this port by sailing vessels to Port Moody for transport thence to the eastern cities of Canada and the United States by the Canadian Pacific Railway. The native industries continue to progress. The cotton
spinning mill at Sangenya, Osaka, has been largely increased in capacity by the addition of another building, and now employs requires special machinery, all of which, as well as the boilers and engines, have been supplied by Lancashire makers. The
mill is lighted by Edison's incandescent lights; other mills are in course of erection or enlargement. A mill for the manu-
facture of canvas from Japanese hemp was fitted up at Otsu last facture of canvas from Japanese hemp was fitted up at Otsu last
year ; the machinery in the mill is by Walker and Co., of Lille, France, and about 130 hands are at present employed. Copper
works, for the rolling of brass and copper sheathing, and for works, for the rolling of brass and copper sheathing, and for
shipuilding and other purposes, the drawing of brass and years, and are now in active operation ; the quantity of comper exported from here last year being 3611 tons, valued at $\& 130,209$. exported rrom here last year being sin tons, valued at 210,209 .
A tolerably good gauge of what is being done in establishing
new industries here is afforded by the Industrial Museum in new industries here is afforded by the Industrial Museum in
Osaka, a visit to which shows to how great an extent the manufacture, in the European style, of various articles is being engaged in by the Japanese home makers. There is a certain unscrupuloustess on the part of the Japa-
nese makers in the imitation of foreign labels and trade-
marks, which marks, which appears to call for some law or international agree-
ment to check it, there being no special legal provision in existence for the protection of foreign trade-marks. The completion ence for the protection of foreign trade-marks. The completion railway connection between the O wari Gulf, on the east coast,
and Tsuruya on the west. The construction of a line of railway eastwards from Hyogo, through the Inland Sea provinces
towards Shimonoseki is about to towards Shimonoseki, is about to be undertaken by a company
called the Sanyodo Tetsudo Kaisha, lately formed in this precalled the Sanyodo Tetsudo Kaisha, lately formed it this pre-
fecture. The first section of the railway, taking its departure from the terminus of the Government railway at this port and going to Himeji, a distance of about 35 miles, is soon to be
taken in hand. The company is bund by the Government
either either to complete the line to Shimonoseki, by way of Okayama such part as they may have constructed, for its cost, to any company which may be formed to carry the line eotrough the the
whole way, or to the Government, if it undertakes the comple. whole way, or to the Government, if it undertakes the comple-
tion of the works. There is a reasonable prospect that the line may be carried out as far as the port of Onomachi between Hiogo, within the next two or three years ; but the extension to Hiogo, within the next two or three Japan-Trade of Nangasakit in 1886.-Imports showed a
decline of $15 \% 75$ per cent. under 1885. The business in metals and their manufacture has been dull, and the prospects are not good. The exports of coal showed an increase in value of
$\mathfrak{4} 4384$ over 1885. Business in Takashima coal was brisk, the output being 340,059 tons ; the owners have recently started
new mines at Matsushima, which will soon be in working order new mines at Matsushima, which will soon be in working order.
The output of the Karatsu collieries was 101,674 tons. The The output of the Karatsu collieries was 101,674 tons. The
Müke collieries raised 288,039 tons, and those of Taku 45,748 Müke collieries raised 288,039 tons, and those of a a
tons. Although general foreign trade has declined at Nangasaki for many years, and is not at all likely to recover, the shipping
of this consular district, consisting of the ports of Kuchinotsu of this consular district, consisting of the ports of Kuchinotsu
and Nangasaki, continues to be of increasing importance, owing to the large shipment of coal so abundantly found in the neighbourhood. The almost inexhaustible supply of coal in Japan
will always make both Kuchinotsu and Nangasaki important shipping centres; but though British shipping has hitherto had the largest share of this business, it will be well, in view of the recent development of the German and Japanese mercan tile navies, for those owning or saing British vessels to pay
special attention to the opinions and wishes of charterers. Charterers here decidedly prefer German to British yessels by reason of the dispatch given by German shipmasters, in a great
measure due to the indefatigable and ready assistance of the crews and officers, which compares very favourably with the
atlitude frequently assumed in other cases. In the case of one large shipping firm, I have been personally assured that, "owing to these reasons, it can always aftord to give better terms to the
Germans." Though British slips are well represented both in Germans." Though British ships are well represented both in
number and tonnage, there is a perceptible decrease in the percentage in both cases, as compared with the entire shipping of 1880 and 841 1880 and 844 in 1881 , fell to 648 in 1886 . German shipping has
increased from 6 per cent. in 1880 to $22 \frac{2}{\sigma}$ in 1886 . Between 1880 and 1886, while British tonnage has rather more than doubled, German tonnage has increased tenfold. The German Lloyds
have, during the past year, extended their main line to Hong have, during the past year, extended ers call here monthly on the return voyage. The Nangasaki dockyard and engineworks,
which under ordinary circumstances employs 700 men, continues to offer every possible facility for docking and repairing, and are able to build ships of considerable tonnage, and the prices ments in China and Japan. During the past year thirty seven vessels of 70,126 tons were docked, and twelve of 6425 tons put on the patent slip. The preliminary works for a largearsenaland dockyard have been commenced at Sasebo, situate at the entrance of the Omura Gulf in the island of Kiushiu, about thirty miles
north of Nangasaki An extensive system of railways in Kin north of Nangasaki. An extensive system of railways in Kin-
shiu is being seriously talked of. It is proposed that a line shall shiu is being seriously talkedion its is proposed that a Mine shall and Yanagawa to Kumamoto, a distance of about eighty-four miles, with bran ill ines to chini and Nangasaki. The island, the only work of magnitude being the spanning of the Chikugo-gawa above Kurmue. The cost, estimated at $£ 10,000$
per mile compares favourably with that of the lines in J apan per mile, compares favourably with that of the ines in Japan that the traffic will be considerable, especially in coal. The
Moji Fukuoka line will tap the rich coalfields of Chikuzen, and Moji Fukuoka line will tap the rich coalfields of Chikuzen, and
the Yanagawa-Kumamoto line those of Higo. The harbours of Misumi and Moji are both deep and well sheltered, though the currents are strong. Fukuoka has a fair anchorage, which branch line will run via Saga to Haiyaki, the station near Sasebo which it is proposed to connect with Nangasaki, a distance of about fifty miles. Subscriptions for this latter line have been opened, and the reception locally has exceeded the most
sanguine expectations. A sketch of proposed lines accompanies report.
Mexico-Prospects for British commercial enterprise.-The Wholesale and large retail establishments are principally in the houses of business which formerly existed in Mexico having withdrawn, with the exception of the London bank and three others There is a good prospect for the establishment of new English houses, provided they have sufficiently large capital. This applies generally to all branches of trade, but especially to the machinery
and metal trades, which are in the hands of the Germans. The and metal trades, which are in the hands of the Germans. The
development of agriculture, as well as mining, has been very development of agriculture, as well as mining, has been very
marked in the past few years, and the economy effected by the use of labour-saving implements and machinery is beginning to The superior facilities for transport afforded by the railways serve as an extra inducement to intending purchase, notpossible, in case of accident, to have broken pieces sent to be repaired and returned without great delays. In view of the great
field existing for agriculture and mining enterprise in this field existing for agriculture and mining enterprise in this
country, a fact which is at last beginning to be realised abroad, the machinery trade may yet be considered to be in its infancy,
and offers special inducements to business men, in that-most and offers special inducements to business men, in that-most
of the articles being free of duty-not so much capital, comparatively speaking, is required as in other businesses. In a English in this country of late years by similar American and German ones, might be established with a good chance of success,
Another class of business in which English capital might be profitably employed is that of ore-buying for shipment to Eng-
land. There are already two American agencies established in the capital for that purpose, but the cheaper rates of freight to enable English firms to compete with every prospect of success. The business is likely to be one of very great importance, in view of the large number of mines unworked on account of the heavy from which large quantities of ore might be exported. It English manufacturers are contented to leave the distribution of their goods in Mexico to merchants of foreign nationalities, though they may continue to retain a certain share of the trade,
a considerable part of what they might have will unquestionably be wrested from them by their more active competitors. The superiority of English manufacturers is not so unquestioned
now-a-days as to ensure for them a constant demand in foreign markets, and the indifference of the manufacturers to the special relief to the solicitude shown by American and German merchants to anticipate their wants and provide for them. With equal advantages as regards the prime cost of their productions, and the expense of placing them in the market, it only requires the
same tactics of advertising and canvassing, which have been so successfully employed by other nationalities, to secure to British merchants their due share in the trade of Mexico, the future importane of which can scarcely be over estimated.
ment invite tenders for a contract or contracts for the comple-
tion of the harbour works at Harta and Ponta Delgada, in
accordance with the plans of the engineer, Mr. David Cohen The basis for the tender for the harbour works at Harta, which are to be finished within five years, is $£ 244,444$, and for the
harbour works at Ponta Delgada, which are to be completed within six years, it is $£ 288,888$.
Russia-Recent Customs decisions.-River and sea-going
vessels of every description, with or without rigging, pay: Ironbuilt, per ton displacement, first 100 tons, per ton, $£ 6$ Os. 4 d . above 100 and not exceeding 1500 tons, per ton, $£ 3.3 \mathrm{~s} .4 \mathrm{~d}$.
above 1500 tons, per ton, $£ 1$ 1s. 8 d . Iron-built vessels imported in parts, with or without engines, shall pay duty on each part to their corresponding section
Turkey-Trade of Constantinople in 1886.-England appear loss of 6.6 per cent. of her trade, whereas the Austro-Germal loss amounts to 9.5 per cent., and the French loss to 9.1 per merchants to the effect that British goods are being driven out of the Turkish market by those of Austria, France, and Ger many. In 1886 the percentage- 70 -of British shipping at
Constantinople was the same as in 1885 . Among the imports were copper sheets from England for the whole of Turkey, as
well as for local consumption. The importation is increasin year by year, that for 1886 being set down at about 1674 tons. during the past year, the quotation in January being from $£ 683 \mathrm{~s}$. 4 d . to $£ 691 \mathrm{~s}$, 6d. per ton, and in December $£ 63$ 12s. 6 d . pelgium, England, and Sweden. Swedish iron is most esteemed, Enghish ranks second ; Belgian find a considerable
sale, especially for building purposes, on account of its com has diminished for the last two Trebizonde, which formerly purchased in this market, now receive direct from Europe, and Eastern Roumelia has been
importing by way of Dedeagatch, thus economising in charges
and and freight from two to three per cent. Constantinople im-
ports now only for local consumption and for the ports of the ports now only for local consumption and for the ports of the
Marmora. Through the strikes at Charleroi and Liege, Belgium importations diminished and English improved. Prices were
stationary at the commencement of last year, and were feeble stationary at the commencement of last year, and were feeble
towards its close. The greater portion of the steel imported into the market arrives from Austria, and is manufactured by the
house of Thür, in Styria. Two years ago all the steel came from Austrian sources, but since 1885 Belgium and Germany have entered into serious competition with Austria. The amount of (eee imported in 1886 may be estimated at 640 tons, and the
prices were stationary throughout the year at from $£ 1117 \mathrm{~s} .6 \mathrm{~d}$. to $£ 138$ s. 9 d . per ton. Tin in bars comes exclusively from England. The importation slightly diminished during the past
year, compared with 1885, and is estimated at 236 tons. Prices yere, in 18886, subject to great fluctuation, caused by the amount of stock held, and the importance of arrivals. In January the
quotations were $£ 1096 \mathrm{~s}$. per ton. Prices improved, and closed in December at $£ 126$ per tor.. During 1886 six concessions for the estabiishment of factories in Turkey have been granted by
the Ottoman Government, one of which was a monopoly for foundry, granted to an Ottoman official. The factory is to be set up in the province of Constantinople, without prejudice to
other existing establishnients. During fifteen years no other factory of the same nature is to be erected in the province Exemption from custom house dues is accorded to all articles
necessary for the completion of the works, and 8 per cent. internal duty on goods sent by sea from one Ottoman port to another is aboinshed as regan proposals have been made in England for capital to work this concession, the affair has not been taken up.
Tunis-Trade in 1886.-England still
the first place as an importer in the competitiou with foreign nence of the products of Glasgow and Manchester. British
lence commerce suffered a decline of $12 \frac{1}{2}$ per cent. during 1886 , as
compared with 1885 , chiefly under the head of exports. There was also a small falling off in imports, to which too much
attention need not be given. Francer runs Encland close in the importance of its commerce with this country. Italy come next owing to her proximity. The trade with Belgium consists
chiefly of iron for building, nails, window, and other glass chiefly of iron for building, nails, window, and other glass.
These reach this country by steamers sailing from Antwerp at long ore immense progress in commerce and industry accomplished during the last ten years by Germany. The growth of German trade
with Tunis is due, to a great extent, to the care which merchants take to study the tastes and wants of their customers, to the The progress is especially remarkable in cotton prints from Eberfeld and Trèves, and in different kinds of hardware. In
these articles Germany need fear no rival. What is chiefly needed to give a stimulus to British import trade is the establish
ment of direct steam communication would permit of the introduction of British goods at cheaper freights. English commercial firms might then hope to sel
their hardware and iron, which are at present hardly known in the Regency.

Speakivg on the character of quicksilver deposits, Prof S. B. Cristie, of the University of California, in his testimony in a
recent canse in San Francisoo, reported by the American Enginecring are very different from those of the ores of other metals, Many other metals occur in well-defined fissure-veins, so that there is no
difficulty in following the ore, and in many cases of calculating difficulty in following the ore, and in many cases of calculating
beforehand the amount of ore in sight ; but with the exception of the deposit at the Old Almaden in Spain, and to some extent the deposit at the Idria in Austria, the quucksilver deposits, particulariy
those of California, are characterised by a great and persistent irregularity, so that it makes the mining of thease ores much more
difficult than that of other metals. New Almaden is a striking example of this irregularity. It has often occurred in the history of
the mine that there was none or scarcely any ore in sight, and it has often looked as though the mine must of necessity be shut down, and it has only been by the most careful and painstaking prospect-
ing or dead work that it has been possible to keep up the production ing or dead work that it has been possible to keep up the production
of the mine. Very frequently 1 laree bodies of ore will almost only a slight coloration in the vein matter, which indicates that there is any ore left in that particular place, and by following out
this little spring of ore very carefully it may lead into a large deposit. As a result of this, the workings of the mine are necessarily
very irregular, and it requires the greatest skill on the part of the Very irregular, and it requires the greatest skill on the part of the
engineer in charge of the works to keep up regular and steady
output of ore. Many times in the past history of the mine, the prospecting work has not been carried on on a sufficient scale, and
this largely accounts for some of the irregularities of the production of the mine in former times.

See The Excinezr, January 28th, page 67.

RAILWAY MATTERS.

"It is reported with every appearance of authenticity," the Amorican Enginecring News observes, "that several officers of
the Jay Gould roads have been acting on Shylock's motto, 'The the Jay Gound roads havi been act and it shall go hard but I will
villany ou teach me 1 will execute,
better the instruction.' They have been actually buying cross-ties by the million at one price, and turning them over to the company
at another price, omitting some of the formalities for such transactions which the law provides. It is a shameful performance, but tions which the law provides. Ne it a a shameful performance, but
it is not more shametul than very many of the methods by which
the right to object to such little transactions has been aequired by their great chief, and hence it is only natural that the averagee man
should find in easier to chuckle over such a turning of the tables
than to feel indignant.
The following bridge accidents are reported by the

 a freight train. The engine and seven cars were thrown into the
river 49ft. below. Two men were injured. On the New York, Woodhaven and Rockaway Railroad, about 30ft. of the trestle
between Aqueduct and Broad Channel stations were burned Aug. 4.
 which was hauling a threshing
water. One man was killed.
The Pennsylvania Railroad Company has decided to lay a mile of steel sleeper track on each of the four main divisions.
The sleepers will be $9 f$ f. long, and when laid entirely embedded in ballast, the ballast being even with the rail on the outside of the
track. The sleeper is 10 in. .in width, and is shaped thus Cangineering Nerre "presumes the purpose of the experiment-and a very reasonable and a rational one-is merely to acquire informa-
tion for guidance ten or twenty years henco when the steel sleeper question becomes a real one. It is not likely that they bave the We also understand that an experimental mile of track is to be
laid with 901 lb , rail and the regular London and North-Western English chair.
The Republic of Paraguay is not, the Railroad Gazetet three miles long, extending from the capital, Asuncion, south-east to Paraguay. This road, whose gauge is 4 ft . 3 3in. and steepest
grade 1 in 75 , was begun by the State in 1864 The was soon interrupted by war, and not resumed till 1870. The State
managed the road till 1877 , then gave it over to a private comand equipment were brought over from England. The equipment,
 were 28,080 dols, and 118,943 , passengers were carried. The
road is valued at $1,223,910$ dols. An extension to Villa Rica is road is vatued.
contemplated.
A GeNERAL classification of the American accidents in

The causes of collisions on American railways in June last wher
given, were-according to the Railroad Gazette-as follows:-

Total

Hard luck pursues the Belt Line Horsecar Company Since its stables at Fifty-fourth-street and Tenth-avenue were
burned, and all lits ohrses and stok were destroyed, it has been,
says a recent Nev York business and former prosperity under the most discouraging
circumstances. At prosent it has sufficient ". bobtail e ars to to
accommodate the most of its traffic on the First-avenue and
in accommodate the most of its traffic on the First-avenue and
Fifty-ninth-stree t branch road, but the route ot be covered
which extends all around the city from the Battery to Centrat covered,
o Central
Shed with only fourteen olda-time dingy and "sturf frot cars , The keep these the
conveyances on any sort of schedule time, it has become necessary conveyances on any sort of schedule time, it has become necessary
to retain five different relays of horses to work on both halves of the full route or circuit. The fire necessitated the purchase o
700 new or " creen"" horses. The torrid weather that has prevailed lately has had fearful effect upor thoseatinexperiinnced animaled.
After dragging the heavily-loaded cars in the broiling sun all day the horsses have become so jaded and worn out at night that
they have been dropping dead in their stalls at the rate of from they have been dropping dead in their stalls at the rate of from
two to five at a time. 0 out of the 700 head purchased by the car
her company but about 400 remain. The stockhoiders and directors of
the company are now considering the advisability of adopting some
other mode of locomotion than animal power. The charter of the other mode of locomotion than animal power. The charter of the
company permits this alteration. Some electric motor will tro-
bably be adopted. It is thought that by the use bably be adopted. It is thought that by the use of some other
than horse power less blockading would be caused, traffic would be made more experitituous and secure, and the road would be operated
at a far less expense." On Saturday afternion an extraordinary accident No have been comparatively slight. Considering the damage to to have been comparatively slight. Considering the damage to
rolling stock, however, the wonder is that a great disaster, attended with loss of life, did not ensue. A coal train was being shunted
from the down to the up line near the Manvers Main Colliery siding, when one of the drawbars connecting the wagons sompped.
The express leaving King's Cross at 12.20 for Leeds and Bradford, The express leaving kings Cross at 2,2 for Leeds and Bradora,
and timed to pass north sortly after four oclock, was momentariy
expected. The Leeds Mercury/ says every effort to remove the expected. The Leeds Mercury says every effort to remove the
train was made and in the meantime the signals at Manvers box to warn the driver not to advance. The passenger train had left
Sheffield about four minutes late, and by-and-bye came rushing
forward at a speed of about fifty miles an hour. To the horror of the men engaged on the coal train no effort seemed to be made by
the express driver to stop his engine. It was also stated that when within one hundred yards of the goods train he saw his
danger and reversed the engine. Without a warning shout or danger and reversed the engine. Without a warning shout or
whistle the engine crashed into the van of the goods train, smashed whistle the engine crashed into the van of the goods train, smashed
it to splinters reared on end, and then, mounting the ajjoining
wagon, which it brought level with the rround, actually tore over wagon, which it brought level with the ground, actually tore over
five other loaded wagons before dropping on to the line, which
it ment. The driver and stoker stuck to their posts, and when the engine fell the latter was thrown out, lodging under a hedge on
the roadside. Although the driver was almost buried by the fallthe roadside. Although the driver was almost buried by the fall-
ing coal and timber he suffered no physical injury, while the stoker
sustained a bruise to his right arm.

NOTES AND MEMORANDA.

Aт a recent meeting of the Edinburgh Royal Society Professor Tait communicated some results on the compressibility of
water, of mercury, and of glass. The average compressibility of a water, of mercury, and of glass. The average compressiosiinty of a
20 per cent. aqueous solution of common salt. per atmosphere for the percentare of salt in solution. The compressibility of common lead glass is 0.0000027 at a temperature of 19 deg. C.
Adulteration of flour by means of potato flour may be detected by menns of acids. Take a spoonful and pour upon it an orange yellow; 'if wholly of potato flour, the colour would not an orange yellow, if hion of potato tenacious jelly, if therefore
be altered, ,ut the flor formed into a
the flour be adulterated with potato flour, it will not be difficult to deeide. A gain, take a spoonful of the, flour, and pour upon it a
little muriatic acid; if the flour be of pure wheat, it will be changed to a deep violet colour, without odour ; but if potato flour be mixed in it, it will then have an odour like that of rushes.
In a paper in the Comptes Rendus, on the earthquake of account is given of the disastrous effects of this disturbance especially in Vernori, a town of 17,000 inhabitants, where 1700 out
of 2500 buildings of brick and stone were levelled with the ground, of 2500 buildings of brick and stone were levelled with the ground,
while 800 wooden houses remained almost uninjured while 800 wooden houses remained almost uninjured. As many as
200 persons perished in Vernoï, and over 800 in the surrounding
district, chiefly in the of June 9th in in the Ala-tau Mountains. The first great shock of June 9th has been followed by several others, which still con-
tinue, obliging the inhabitants to take shelter under tents on the pen plains.
The Iron Industry Gazette gives the following concerning the average speed of cutters on soft cast iron surfaces, making
allowance for changes in condition and character of work :- "In order to calculate accurately for milling work, the speed of cutter and amount of feed per revolution must be observed; that known,
the computation is as follows : Multiply the number of revolutions of cutter a minute by the length of feed at one revolution, and
the product is inches a minute that can be milled. Allowing about 40 ft a minute for surface speed of cutter, a $\frac{1}{2} \mathrm{in}$. cutter should run at 300 revolutions a minute, with a speed of $\frac{1}{30} \mathrm{in}$. to a revolution giving a result of 2 in . of light milling a minute. A lin. cutter
would make 150 revolutions a minute, with a feed of moderately heavy cut, allowing 1 lin. of milling a minute. A 3 in.
cutter would run fifty revolutions a minute, with a feed of cutter would run fifty revolutions a minute, with a feed of $\frac{1}{\mathrm{in}} \mathrm{in}$.
on heavy work, giving a result of lin. of milling a minute. The an heavy work, giving a result of lin. of milling a minute. The

The largest bronze casting ever attempted in America was, says the New York Times of the 10th inst., made at E. Favy's
works, on Forsyth-street. It is the mammoth buffalo head designed by Kemeys, the sculptor, for the east portal of the Union Pacific bridge across the Missouri at Omaha. The head measures 9 ft . by 5 ft . The box containing the sand and plaster mould was 22 ft . by
22 ft . by 26 ft . Some 4500 lb . of molten bronze was poured into it. 22 ft . by 26 ft . Some 4500 lb . of molten bronze was poured into it Some of the bronze manufacturers had said such a huge casting
could not be made at all, so Mr. Favy received many hearty coungratulations from the representatives of various bronze casters who had gathered to witness his experiment. Three small crucibles of molten metal were first poured into the mould. The gas vents
in the mould were lighted, the fiery stream from the big crucible was started, and in three minutes the casting was a success, so fa firm of electrotypers has undertaken to make a reproduction from the cast, and, if successful, this will be an even
mechanical achievement than the bronze casting.
A recent process-Herr Ladewigg's-of manufacturing rom asbestos fibre a pulp and a paper that resist the action of fire with about from 25 to 35 per cent. of powdered sulphate o alumina. This mixture is moistened with an aqueous solution of
chloride of zinc. The mixture is washed with water and then chloride of zinc.
treated with a solution composed of one part of resin soap and eight or ten parts of water mixed with an equal bulk of sulphate of
alumina, which should be as pure as possible. The mixture thus obtained should have a slightly pulpy consistency. Finally, ther is added to it 35 per cent. of powdered asbestos and 5 to 8 pe
cent. of white barytes. This pulp is treated with water in an cent. of white barytes. This pulp is treated with water in an
ordinary paper machine and worked just like paper pulp. In order
to manufacture from it a solid cardboard, proof against fire and water, and capable of serving as a roofing material for light
structures, sheets of common cardboard tarred or otherwise prestructures, sheets of common cardboard, tarred or otherwise pre-
pared, are covered with the pulp. The Scientific A merican quoting the L'Industrie Moderne says the application is made in a
machine, the pulp being allowed to flow over the cardboard.
A VEry easy method, and one that may be very useful time, has just been described by M. d'Abbadie at a meeting of the Academie des Sciences in France. Two instruments of small cost are required-one, a prism of glass, called a "dipleidoscope", and
having one of its angles fixed in the meridian parallel to the axis of the sun, which blend into one at ine it by reflection two image in order to better determine the moment, one notes with a second watch the contact of the first and second edges. The mean of
these two instants gives the true noon. The equation of time published in the Annuaire du Burear des Longitudes permits the true time to be deduced afterward, and consequently the advance or retardation of the pendulum and its rate. We may add that the
dipleidoscope is about forty years old. The other instrument gives more exact results. It consists of a little lens furnished at
its focus with five wires, fixed and equidistant. When required, it meridian. The moment of passage o a star across each of the wires is noted, the sum of the instants
doubled, and divided by ten, giving the second and tenth of a second when the star was behind the central wire. In this way
the sidereal time of the passage is obtained. A simple calculation gives the time by a table published in Connaissance des Temps.
At the shop of the Sedgwick Mainspring Company Chicago, can be seen a very interesting application of electricity to
the arts. It consists, says the West. Electrician, of tempering watch springs by means of the electric current. In one part of the room from the dyanamo lead to another part of the room to a bench,
tors on which stands an ordinary oil tempering bath. One of the con-
ductors connects with a point within the oil bath, and the other to a point without. The piece of flat, soft steel wire that is to be tempered to the blue colour is fed under the point on the outside
of the bath first, and then under the one on the inside. When it reaches the latter the circuit is complete, and the wire immediately
becomes uniformly heated. No means have been taken to measure the current exactly for the purpose of doing the whole work
mechanically. The variation in the percentage of carbon in different pieces of steel forbids the delicate process of tempering from electric current, as with a fire, the colour of the steel determines the length of time that it shall be heated. Several advantages are
claimed for this process of tempering. The chief one is that the claimed for this process of tempering. The chief one is that the
steel does not have time to oxidise after it has been heated to the proper colour before it is under cover of the oil, and consequently,
that the steel wire is of the same thickness when it is tempered as it was before it entered the process. The heating is uniform
throughout the length of the spring, and there is less liability of theugiout spots. The process is a rapid one, the springs being
deated and passing into the bath at the rate of 4in, a second.
heater

MISCELLANEA

The offices of the Civil and Mechanical Engineers' Society have been removed to No. 6, Queen Anne's-gate, West
minster, where the meetings will be held in future

The tender of Messrs. J. and E. Wright, of London and Birmingham, has been accepted for the manufacture and
delivery of the two steel cables required for the Birmingham Cable Tramways Hockley sectio
On Wednesday, the 17th, the screw tug Victoria, built an a very successful trial. Her dimensions are-length, 90 ft . readth, 17 ft .6 in ., by 8 ft .9 in . depth of hold. She has a compound boiler designed for a working pressure of 100 lb per square inch She steamed down Channel for some hours, averaging eleven and a-half knots per hour, after which she entered Cardiff, from which port she sailed on tro be employed, and for which service she is specially designed
and fitted with teak decks, \&c., and covered with a permanent ning.

The following is given by a contemporary as a curious of ect of motion on the human body (?):-A correspondent write the result was 11 st. 7 lb . He walked to the railway station early 6 miles by train, and weighed lost 4 lb . on the journey, weighin 11 st .8 lb . ; in this case the loss was rather over 4 oz of flesh pe
minute. A few hours afterwards he returned to London, and weighed 11 st .9 lb ., and at the hotel again weighed 11 st .7 lb . He alked to another machine, where fifteen minutes afterwards that the machinery of the company was necessurily accurate an
trustworthy

The American Mechanical Engineer proposes a cut-of on the condenser, and says:- "If some means could be devised the latter had swept the cylinder clear, good results might follow the stroke, after the cond peedily cut off, the vacuum would be maintained, but it would aporation certain later periods of the stroke woul evelope into back pressure of greater or less moment. It remain a cold reservoir like the condenser in which the heat of the cylinde is intermittently swept, is greater than it would be by deterioration of the vacuum, and resulting back pressure caused by a cut-off
on the condenser." It seems to us that the Cornish engine answers the question.

The Union Indurated Fibre Company, Mechanicsville N. Y., is now manufacturing tubes or pipes from wood fibre.
It has arranged with the Board of Electrical Control, of New York City, these tubes, and is now eow telegraph, for a large quantity of natural gas companies for an extensive supply of pipes. The
claims made for the pipe are very broad. Tests made in connection with the Board of Electrical Control, or Subway Commission ve a tensile strength of about 1100 lb . square inch. The tubes are light, strong, and cheaper than iron. They are now made in lengths of about 5ft. and threaded with the
standard iron pipe thread, so they can be connected with iron standard iron pipe thread, so they can be connected with ir
pipe. Two and one-half inches is the smallest size now made.

The manufacture of wire nails was first undertaken in America about seventeen years ago, when, says the Industrial
Jórrnal, "a German mechanic brought over and operated a halfdozen machines for their production in Kentucky. Wire nails, after the big nail strike in 1885, when wrought nails became so scarce that wire nails had to be resorted to. A boom being thus given to them, improved machines for their manufacture immekinds of machines cropped up probably the best of which several kinds of machines cropped up, probably the best of which was one
constructed by a man named Smith, of Brooklyn, N.Y., which excelled The German machine 20 per cent. in its speed of produc-
tion. The German machine is now putting out 132 ten penny wire nails per mute. But at the thrtman Wire Nail Works Ber out 170 per minute. But at the Hartman Wire Nail Works, Beaver Falls,
Pa., there is a newly-invented machine now running that produces 200 ten penny nails per minute. The inventor is a Prussian mechanic named Henry Happe. This machine has been leading
all others in the shop by 25 to 30 per cent., and the nails it produces are uniform, straight, and well shaped.'

THE auditors to whom the accounts of the Inventions Exhibition were entrusted, Messrs. Lovelock and H. W. S. Whiffin, ments of this Exhibition from August 12th, 1884, to July 30th, were the principal items:-Admissions, £149,825; royalties from the refreshment contractors and others, $£ 18,627$. publications, $£ 8580$; realisation of buildings and plant-Colonial and Indian
Exhibition, 1886 - $£ 16,325$; surplus fund from the Health Exhibition of 1884, $£ 15,516$. On the other side the following are the most interesting items of expenditure:-Buildings, $£ 30,778$; rent, working of electric exhibits and electric lighting, £37,521, ; garden
illuminations, $£ 9213$; lighting the water gardens and illuminated fountains, $£ 3107$; motive power for the machinery exhibits, $£ 18,845$; publications, $£ 10,829$; advertisements, $£ 14,970$; recepof exbibits, $£ 5230$; medals and music, $£ 17,039$, including $£ 10,192$ for the military bands, and
$£ 6113$ for the Strauss orchestra; and $£ 229$ compensation for
damage and personal injuries to visitors and others

The Association of Engineers of Ways of Communicamanent Technical Exhibition, in which will be exhibited the projects and manufactures of the members of the Association. According to a circular lately issued by this kind of proprietory section is devoted to the determination of the quality and worth of materials in order to define their industrial signification and the means for their exploitation. The section of ways of communica
tion undertakes surveys and the drawing up of projects for rail roads, regulating rivers, excavation of canals, constructions of dams, dykes, piers, quays, \&c. The architectural section draws up projects for buildings, both public and private, hospitals, theatres, and schools ; projects for heating, lighting, laying water in houses,
\&c. The hydro-technical section draws up projects for canalisation water supply, reservoirs, fountains, draining and irrigation of fields water supply, reservoirs, wountains, filters and other water-purifying appliances. The mechanical section plans machines, locomotives, boats, \&c. The electric section draws up plans and estimates for the construction of telegraphs, railroad signals, telephones, electric
lighting, and also designs for dynamo-electric machines, and the application of electricity as a motor. The section of engineering
art as applicable to rural economies deals with the investigation of art as applicable to rural economies deals with the investigation of of intreasing the value of estates; it constructs connecting roads,
and so on.
FINE ARTS COURT, PARIS EXHIBITION, 1889 . (For description see page 192.)

RAVINE BRIDGE, LOWESTOFT.
mr. R. M. PARKinson, A.M.I.C.E., ENGINEER.

RAVINE BRIDGE, LOWESTOFT.
The illustrations above show a bridge lately erected at Lowestoft over the Ravine, in the Belle Vue Park. This bridge has been presented to the town by Mr, Youngman, the first
mayor of Lowestoft, to commemorate the Jubilee year of her Majesty's reign, and was opened with some ceremony on the 29 th of August last, that being the second anniversary of the
grant of a charter of incorporation to the town. Mr
tenders, and from those submitted selected one of the two designs of Mr. R. M. Parkinson, Assoc. M.I.C.E., of Melton Millwall, but himself constructed the abutments. Millwall, but himself constructed the abutments. turned on the 22nd of June, and the bridge first sod wrs all respects, and, as before stated, and the bridge completed in The general dimensions are : clear span between abutment; 69 ft . $2 \mathrm{in}$. . ; width between girders, centre to centre, 7 ft . 6 in . height of parapet above floor, 3 ft . 9 in . ; height of floor above roadway, 30 ft . ; rise of arch, 7 ft .; depth of arch, 1 ft .9 in . A camber of 6 in . at the centre has been given to the parapet, and
this has the effect of preventing the apparent sag that presents itself to the eye when a parapet is not cambered. The arched ribs are composed of $\frac{1}{4} \mathrm{in}$. web plates $6 \mathrm{in} . \times 3 \mathrm{in} . \times \frac{1}{3} \mathrm{in}$. T I ribttom flange ; two $2 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. $\times \frac{3}{8} \mathrm{in}$. L I's for top flange,
bot and are well braced together at distances of 14 ft . The web goes right through the top flange, and partly forms the spardrels, the plainness being relieved by a wrought iron bead. Rosettes also are put on the rib, and these very much relieve it. The spandrel proper is of cast iron, each being cast in two piecer, as it was found difficult to cast them whole on account of the unequal cooling.

The parapet is of open lattice-work, but not open enough to let children get through. It is composed of two $2 \mathrm{in} . \times 2 \mathrm{in}$. $\times \frac{1}{4} \mathrm{in}$. L bars for top and bottom flanges, with $1 \frac{1}{2}$ in. $\times \frac{1}{4} \mathrm{in}$. bars, an
$2 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in} . \times 1 \mathrm{in}$. channel irons for stiffeners ; these latter are carried well down into the rib, and well tied and braced to give lateral stiffness. The top of the parapet is surmounted by an oak handrail. Wind ties are provided, and the girders well anchored into the brickwork; but provision has been made for expansion everywhere but in the arch, where, of course, this could not be done. All the joints have been made with special
regard to neatness, the engineer being of opinion that small details are of primary importance in a bridge of this kind. Tl e flooring rests on the bottom flange of the handrail, and is 3 ir . thick. The boards are 9 in . in width, and are placed ${ }_{4}^{1} \mathrm{in}$, apas t and coated with Stockholm tar.
The abutments and wing walls are constructed of cement concrete faced with brickwork varying from 9 in . to 18 in . thic ${ }^{1}$. It was first intended to use lime concrete, but as time was an object, and unless care is taken in using it, this is liable to
swell and dieplaee the brickwork, it wes thought better to use
cement, for there would have been but little saving effected.
The quoins and panels in the piers are of white brick, and the piers are finished with caps of cast iron and ornamental lamps.
The wing walls have a low handrail as a protection to children The standards of this are fixed in 9 in. $\times 9$ in. $\times 7$ finin, stones, and between them the wall is coped with chequered blue bricks. The arched ribs spring from Portland stone templates, and are
attached to them by jagged bolts. A wrought iron gate is fixed on the outside of the bridge ; it is hung in two parts.
The whole of the ironwork, excepting the caps, is painted a dark bronze green; and the rivets, and other prominent parts, picked out in a very effective manner. better to employ cast iron for these, as it is not liable to get chipped and is rather cheaper. In making the calculations, for and the dead lond was ssumed to be 14 tons at ach ane this turned out to be very nearly the true weight. The live load was taken as 112 lb . per square foot of the floor, and on this assumption the load at each apex would be $2 \frac{1}{2}$ tons. In Figs. 1 to 4 are given diagrams illustrating four conditions of and passing over the bridge. In Fig. 1 the crowd is assumed to be bearing on the first apex only; in Fig. 2 it has reached the second, and in Fig. 3 the third, while in Fig. 4 the whole bridge is loaded. The cirection of the resultant thrust is nearly tangential to the curve of the arch, and had to be found by trial in each case. To illustrate the way t
will be sufficient to take Case 1:-
$\underset{\text { have }}{\mathrm{Fi}}$
Pressure on right abutment F $\left.=1 \frac{14}{4} \frac{14+28+42+56}{70}\right)+2 \frac{1}{2} \frac{56}{70}$

$$
\begin{aligned}
& =2 \frac{1}{2} \\
& =4 \frac{1}{2} .
\end{aligned}
$$

Pressure on left abutment $\mathrm{A}=1 \frac{14}{4}\left(\frac{14+28+42+56}{70}\right)$

$$
\begin{array}{ll}
=2 \frac{1}{2} & +\frac{1}{2} \\
=3 .
\end{array}
$$

To check this calculation we have

In this calculation the direct load on the abutments of $1 \frac{1}{8}$ tons and by tons is not taken, as it is met by a direct resistance, and right-hand figure is now drawn, and a horizontal line also through it From this to any scale the pressure $4 \frac{1}{2}$ tons is set up above the into sections of $3 \frac{3}{4}$ tons, $1 \ddagger$ tons, $1 \nmid$ tons and $1 \frac{1}{4}$ tons, corre sponding to the load at each apex, $1 \frac{1}{8}$ tons being set off above ments. The figs 1 to 7 denote these divisiss A line is now drawn nearly parallel to the tangent to the arch at the springing, and from the point where it cuts the horizontal line 0 other lines are drawn to the points $1,2,3$, \&ce. The exact
position of this line is found by trial, for it is required to find position of this line is found by trial, for it is required to find
the line of thrust which most nearly corresponds to the centre of the arch. This can generally be got with sufficient accuracy at the second or third attempt. At the point F we have a of $5 \frac{1}{8}$ tons. At E we have a resistance from F to E of 12 tons corresponding to the line 0,2 ; a load of 33 tons, corresponding to the line 2,3 ; and a resistance from D to E of $11 \frac{1}{2}$ tons, corre
sponding to the line 3,0 . As shown in Fig. 1, the line of pressure deviates a foot from the centre of the arch at the poin E. Now, the pressure of 12 tons along this line may be resolved
into a pressure of 12 tons at the centre or of 6 tons at each into a pressure of 12 tons at the centre or of 6 tons at each
flange, and a couple of moment 12 tons $\times 1 \mathrm{ft}$, which is equivalent to a moment of about 7 tons $\times 1 \mathrm{ft}$. 9 in .
," " " bottom ", $6-7$ and, come on either flange is 18 tons, as in Case 3. (5 being allowed for the web. The actual area of the angle irons in the top flange is less than this, but to them must be added the help of the deep web plate. For the wind a pressure of 1 ton has been assumed to act at the level of the top flange at each apex.
In Fig. 5 , a plan showing the wind strains and bracing is given.
This is calculated by the graphic method, and requires no This is calculated by the graphic method, and requires no
explanation. The wind ties are 2 in. $\times \frac{5}{3}$, and have two rivets at each end. The ribs were sent down in three pieces, and rivetted up on the site; they were then lifted into position, by a derrick,
and the handrail then fixed. After this the abutments, which had previously been brought up to the top of the skewback, were proceeded with, and after the ironwork had received its
third coat of paint, the flooring fixed; after which the handrail third coat of paint, the flooring fixed ; after which the handrai and final coat of paint were added.
The foundation was sand, which
The foundation was sand, which was well rammed at the back of the abutments, to enable them safely to receive the thrust of
the arch. It was first meant to make the handrail take part of the arch. It was first meant to make after consideration it seemed quite safe to put the whole thrust on the abutments, as this was but 50 tons on each.

THE INTERNATIONAL PARIS EXHIBITION OF 1889.

THE cour ts devoted to the "beaux arts" and the "arts liberaux," at the Paris Exhibition in 1889, will run parallel with the great on that portion of ground situated between the Eiffel tower and the road which now runs across the Champs de Mars. Each of these two courts is composed of a great central nave, with width between the principals of each nave is $52 \cdot 80 \mathrm{~m}$., the height is 28.20 m ., and the distance between each principal, 18.10 m . Each court is surmounted in the middle by a great dome 60 m . high, rising 30 m . above the ridge of the edifice. These figures will show on what a large scale the Exhibition has been way equal to the Machinery Hall. They are the work
of M. Formigé. The Beaux Arts and Arts Liberaux Courts are identical, except on two points which will be mentioned further on. These courts are connected with the divers galleries of the Exhibition by a long gallery 30 m . wide serving as a vestibule; this is called the Rapp Gallery, its axis will be at right angles with that of the Beaux Arts Court. On the Seine side the court terminates by a gallery of the same
width as the great nave, increased by that of the annexe galleries, width as the great nave, increased by that of the annexe galleries, and this is called the Seine Gallery. The principals composing bouring bays of the Rapp and Seine galleries, which have an im. mense glazed gable, are smaller in dimensions, being only 6.25 m .

Each of the principals, which is 52.80 m ., is formed of two distinc principals-see p. $190-0.45 \mathrm{~m}$. apart. These two principals, which are of especial lattice form, are united to the right of each purline by rigid uprights. The principal is jointed at three
points at its springings and at its summit, with a view of definite points at its springings and at its summit, wish view of definit cal part 15 m . high, to which a curved principals comprise a vertiwhich measures 13.50 m . to a radius of 91.45 m ., the intrados being an elliptic portion, the mall axis of which does not coincide with the axis of the principal. The result is, a certain angle is formed at the ridge purine by the intrados of each of the halves of the principal. On each side of the hinge at the apex, and at 0.85 m , from the axis, there is a purline which supports a ridge piece, useful for the purpose of inspection and when repairs are required. The ther purlnes are placed at the side in grops 100 , as shown by the of 1.70 from each other. Th. page 190, and at a distogether by raftos, which support a series of small second purlines, on which the glazed portion rests. In the court he Arts Liberaux the glazed portion only extends as far as the fourth purline. In the Beaux Arts Court, where more light is required for the exhibition of sculpture and paintings, it extends as far as the sixth. The lateral galleries which horder the great nave are composed of a succession of principals of
15 m . in width, and are placed 9.05 m . apart. These 15 m . in width, and are placed 9.05 m . apart. These
principals are fixed by means of brackets, at one side to the main roof principals, and at the other to a square pillar 10 m . square been erected midway between the two main principals to support the 15 -metre principal. The divers façade pillars are united above by a series of lattice arcades. At 7 m . above the ground the lateral galleries are divided into two storeys by flooring, the girders of which are supported in the middle by
pillar of channel iron. These girders rest upon a wall, whick eparates the great nave from the lateral galleries. In front noy are joined to a lattice girder, which runs from one pillar to porting a lattice girder there is a series of small cast iron columns; their principal purpose is to produce a certain decoraive effect. In the Arts Libéraux Court the flooring of the ateral galleries continues over the great nave, rising 3.50 m . over the pillar of the 50 -metres principal, and 5 m . above the floor of the gallery. This floor will be supported every $9 \cdot 05 \mathrm{~m}$. by a
double bracket fixed to the abutments of the principals and to double bracket fixed to the abutments of the principals and to
the intermediate pillars. The floor of the lateral galleries of the he intermediate pillars. The floor of the lateral galleries of the Beaux Arts Court will stop at the abutment of the main principals. The principals of the lateral galleries have been designed
with a tie-rod, which is the more economical form, and can be used in this case because the height required above the floorin not being great, the tie-rod in no way interferes with the construction. Two-thirds of the width of the lateral galleries are glazed ; the divers principals are united by a system of seven purlines, five of which support the skylight. The details on page 190 illustrate the tie-rod and the joint at the foot of the
105 -metres principal. Certain difficulties arose in carrying out he proposed condition to leave the joints exposed, on account having both tie-rod and joints to deal with. The centres of the joint pins are the best points to which the tie-rods can be ut it ars plans, The tie-rods might have been attached directly to the lower oint chairs, but with this arrangement it would probably have been necessary to carry these chairs by girders to provide
against the possible sinking of the masonry and this would against the possible sinking of the masonry, and this would system could not therefore be adopted. All difficulties have been overcome by employing a sort of cast iron sand box, which the tie-rod crosses, another box is fitted; this is turned upsid down, and carries the lower joint chair. The last-named box grooved laterally on two sides to give room to the means of solid iron plugs. When the work is being erected the lower box is filled with sand. A certain
uantity of this can be allowed to escape as required, and the quantity of this can be allowed to escape as required, and the required height obtained with exactitude. If a sinking takes place afterwards the principals can be raised and a portion of he sand can be replaced until the proper level is arrived at be easily inspected. The tie-rod is furnished at either end with wo round nuts and lock nuts pierced with a certain number of holes for tightening up. The length of the tie-rod can be reguated by moving the nuts at either end, or, if required, at both ends at once. The tie-rod has permitted the exercise of great conomy in making the foundations, which, under these con ditions have only to resist the vertical pressure of the weight of he principal, all horizontal pressure being avoided by the use of the tie-rod. Le Genie civil, from which we take our engraving and particulars, says the decoration of these two courts ha metallic skeleton is to be hidden by the ceramic productions metallic skeleton is to be hidden by the ceramic productions the edifice will be preserved, as it is felt that its beauty of struc ture should be its chief ornament.

INSTITUTION OF CIVIL ENGINEERS.

SUBJECTS FOR PAPERS.-SESSION 1887-88.
The Council of the Institution of Civil Engineers invites origina communications on the subjects included in the following list, a
well as on any other questions of professional interest. For pproved papers the Council has the power to award pre arising out of special funds bequeathed for the purpose:-

1. The Utilisation of Unused Sources of Power in Nature-such 2. Tides, the Radiant Heat of the Sun, \&o,
2. Tacheometry, or Rapid Surveying.
3. The distinguishing qualities of Clay to make good Puddle. 4. Colonial Woods suitable for Engineering purposes.
4. The influence of Sea-water upon Portland Cement Mortar 6. The Wind P
(1) the upon Structures, as influenced by (1) thei superficial area ; (2) the form or position of the exposed surfaces
(3) the shelter of adjacent bodies; and (4) the dynamic action of 7. The Working Strength of Iron and Steel as affected by (1) the
amplitude ; (2) the frequency ; and (3) the time-rate of the stres amplitude ; (2) the frequency ; and (3) the time-rate of the stress
variations. variations,
5. Descrip
for very steep gradients. 10. Machinery and Arrangements for Distilling Water by
Multiple Effect. 11. The effect
6. The effect of different Qualities of Water on the condition and duration of Cast Iron Pipes.
7. On the Sale of Water by Measure.
8. Uniformity in system-international-of Coast Lighting by
lighthouses, light vessels, and their auxiliaries, automatic lighted
beacons and buoys, beacons and buoys.
9. Recent Improvements in Cable Tramways.
10. The Present Position of the Manufacture of Steel-its
defects, and suggestions for its improvements.
11. The action upon Basic Steel of (1) Chromium ; (2) Alu-
12. The Use and Testing of Open-hearth Steel for Boiler-making.
13. The Production of Aluminium and its Alloys, with their
Properties and Uses
14. Manganese in its application to Metallurgy.
15. The Application of Steel Castings and of Steel Forgings to
the Construction of Ordnance and of Projectiles.
16. Rapid-firing Guns,
17. Rapid-firing Guns,
18. On Forging by Hydra
19. The most recent types of (1) Mail Steamers; (2) Cargo

Steamers; and (3) War-ships.
25. On the Use of Liquid Fuel for Steam Boilers and other
Industrial purposes.
26. The Independent Testing of different types of Steam Engines,
ncluding Triple-Expansion and Quadruple-Expansion Engines.
27. The Construction of the Working Parts of Steam Engine in relation to the high-pressures and temperatures now becoming
general.
28. The practical limit to the Working Pressure of Steam in
Marine Boilers.
29. Auxiliary Engines connected with the Modern Marine Engine.
30. On Speed Indicators for Locomotives.
31. The Construction and Efficiency of Steam Turbines.
32. The Transmission of Steam underground in the United
33. Hydraulic Pumps for Working at High Pressure
34. The Relative Economy of various modes of distributing Power over large Areas.
35. Descriptions of Hydraulic Rams and of Turbines, with actual uantitative result
36. The means of governing and economising high-pressure fluid
in Hydraulic Cranes, Engines, \&c.
37. Tools used in the Building of Iron and Steel Ships, and in
the Construction of Boilers
the Construction of Boilers.
38. Type-Composing and Distributing Machines.
39. On Natural Gas, and its applications to the Industrial Arts.
39. On Natural Gas, and its applications to the
40. Compressed Oil-Gas, and its applications.
41. On the Spontaneous Col
41. On the Spontaneous Combustion of Coal in Ships,
42. Appliances for the rapid Shipment of Coals, with
42. Appliances for the rapid Shipment of Coals, with a compari-
on of different methods. on of different methods.
43. Electro-Motors; their theory, construction, efficiency, and
44. The Construction and Maintenance of Secondary Batteries.
45. The Distribution of Electricity for the Lighting of Towns.
46. The application of Electricity to the Working of Stree

Tramways.
47. The application of Electricity to Smelting and Metallurgical
48. Means of insuring the Safety of Blasts in Explosive Atmo-
spheres. 49 . Contributions to the Bibliography of special branches of Engineering.

CITY AND GUILDS OF LONDON INSTITUTE.
The following is a summary of the more important alterations and additions which have been introduced into the programme of
technological examinations for the year $1887-8$, and of other matters to which the attention of teachers and secretaries is especially directed:-
(1) The grant
(1) The grant made to teachers on accounts of students who are awarded the full technological certificate in the honours grade of
any subject, is $£ 3$ for a first-class and $£ 2$ for a second-class (2) The examination in subject 29, carriage building, will con-
sist of two parts. Section I. wil. be devoted to road carriages and (3) The syllabus of subject 16B, boot and shoe manufacture, ha (4) The syllabus in subjects 2, bread making, and 3A, brewing,
are new, and a practical test has been added to the honours are new, and a practical test
examination in bread making.
(5) In addition to the
(5) In addition to the written examination in typography, practical test for compositors will take place on the afternoon o
Saturday, May 26th, 1888 , at the following, and possibly at othe Saturday, May 26th, 1888, at the following, and possibly at other
centres:-Aberdeen, Messrs. G. Cornwall and Sons ; Ashford,
Messrs. Igglesden and Son ; Belfast, Messrs. Marcus Ward and Messrs. Igglesden and Son ; Belfast, Messrs. Marcus Ward and
Co., and Messrs. McCaw, Stevenson, and Orr ; Birmingham, Mr. Alderman White; Derby, Messrs. Bemrose and Sons ; Glasgow Messrs. Blackessrs. Billing and Sons; Haverfordwest; Lincoln,
Guildford, Messen
Messrs. Akrill, Ruddock, and Keyworth; Liverpool, Messrs, Marples and Co.; London, Messrs. Cassell and Coo, Messrs, Waterlow and Sons, and Clowes and Sons; Manchester, Co-opera-
tive Printing Society ; Norwicb, Messrs. Fletcher and Son ; South Shields, Messrs. Simpson and Sons and Mr. W; D. Learmount.
(6) Candidates in either grade of plumbers' work may in tion to the written examination in that subject, present themselve or a practical examination, to be held on the afternoon of Satur-
day, May 26th, 1888, in London, or at some other centre at which day, Intitute's examiner can attend, or at which a local assistant has been appointed. Candidates who pass the practical examinaexamination is optional, will receive a special certificate. See
tion in
entical examination is optional, will receive a special certificate. See
Programme, p. 75 . Programme, p. 7.
(7) The examination in all branches of subject 19, "textile
fabrics" and in "weaving and pattern designing," will be held in the afternoon of Saturday, May 26th, 1888, from 3 to 7 .
(8) The syllabuses of all other subjects have been carefully revised, and several important alterations have been made in some of them, particularly in subject 34, carpentry and joinery-see
programme, pp. 93,94 .
(9) Additions have been made to the "works of reference" in sever
everal subjects.
(10) Rule 22 of the Programme-p. $13-\mathrm{as}$ to production of
mployer's certificate, has been somewhat altered.
Railway Work in New Zealand.-The following extract from a New Zealand letter will, we think, be read with interest:- "There
is a great lot of American wire sold out here, and I expect it is
cheaper than English, but what I've seen of it is very cheaper than Enghish, but what re seen of it is very poor, rotte such poor stuff that it became quite dangerous to work with it
we never knew when it would break, and when it did, it would we never knew when it would break, and when it did, it would
lap round us and tear our clothes and flesh, which wasn't pleasant lap round us and tear our clothes and flesh, which wasn't pleasant,
I have repaired one wire seven times in about ten chains. Th think after doing fifty miles of fencing I ought to know something about it. This wire is certainly very good, but I expect it is dearer
than the Yankee. I expect we shall finish our work in about than the Yankee. I expect we shall finish our work in about a
fortnight. We should have done it before now, but the whole job was stopped and every man on the line paid off because they
hadn't fish-plates and bolts to finish the last three-quarters mile with, and what was worse, there wasn't a fish-plate in the
colony, and the job has to stand till some arrive from England. The Government find all ironwork and sleepers, and not long ago the work was stopped for want of dogs, and there were none nearer than Dunedin, so we had to wait for these being brought
round."

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
Correspondents.]

STRESSES IN A CAMP STOOL

Sir,- The camp stool puzzle seems to get a wondrous complexity in
mall space, and I don't think the disputants will derive full benefit unless each breaks at least one camp stool for himself! "Common Mechanical Engineer" is in honour bound to do so after his
strictures on the mathematicians. The camp stool of my childhood

> was commonly a piece of turnery
and broke at the joint between a
leg and rail. I find that in the leg and rail. 1 find that in the process of taking one's seat upon
a camp stool the tops of the legs
are drawn inwards while the toes are drawn inwards while the toos
spread, whether the floor be polished oak or Turkey carpet.
The form and dimensions of the load, in most cases, stop the
former tendency long before the elasticity of the wood is seriously tried. Again, the bending
moment about the pin of a weight applied to the seat is
diminished as the legs bend in-
wards.
However, I have been making such approach to quantitative
experiment as the rough apparaexperiment as the rough appara-
tus to be extemporised in a country house, with no particular
tools available, allowed of. The material is yellow deal, some
slips of which in section $\frac{1}{10}$ in. hand. A chanced to have at hand. A door weight of 25 lb .
and a stable bucket with a can of water furnished break-
ing weights. First I secured a piece of board some 2 ft . ing weights. First I secured a piece of board some 2 ft .
long to the window frame so as to project conveniently
into the room. To represent a pair of legs of a camp stol two laths are fastened to the board at C by a screw passing
tightly through a hole $\frac{3}{3 / 2}$ in. diameter, and the ends E E are fixed; a string does duty for seat, forming an equilateral triangle
10in. on the side. A lath is tied firmly to the string D D, to a cord hanging from the centre of this. With a weight of was only 15 deg., the distance A B bearcely 30 deg. $;$; with 28 lb . it one leg broke with a weight of 56 lb ., the angle C A D being then
very small indeed. The other leg was uninjured and being after very small indeed. The other leg was uninjured, and being after-
wards tested as a beam fixed at one end, broke through the screwhole with a weight of 12 lb , at a dis-
tance of 10 in . This experiment I repeated thrice, obtaining breaking
weights ranging from $10 \frac{1}{2} \mathrm{lb}$. to 12 lb . A similar piece without any
screw-hole required $15 \frac{1}{2} \mathrm{lb}$. In a screw-hole required $15 \frac{1}{2} \mathrm{lb}$. In a
second trial with the camp stool
arrangement one leg collapsed by
bending over to the front under a bending over to the front under a
weight of 481 lb . Having regard to
this, I think the arrangement

more satisfactory. I fear my mathematics are too rusty to formu-
late these results prettily. Practically I am reassured as to the strength of a camp stool at the pin, and think that most probably if failure occurred at that point, it would be under a pressure
passing out of the line of centres, tending to rock the two braced passing out of the line of
triangles about their apices.
Alresford, August 23rd.

SIR,--I venture to answer "Puzzled" by Molesworth's Rule :--
Camp stool bas 4 legs, held together in the centre by $\frac{1}{4} \mathrm{in}$. bolt. Camp stool bas 4 legs, held together in the centre by $\frac{1}{4} \mathrm{in}$. bolt.
Allow said bolt to be the support of a beam fixed at one end and loaded at the other. Let
$\begin{aligned} \text { K equal co-efficient of rupture of } & \text { English ash }\end{aligned}=19 \mathrm{cwt}$.
Then-" $\frac{K B D^{2}}{L}=$ breaking strain of one leg,
Therefore-

$$
\frac{19 \times 5 \times 1 \cdot \times 1}{12}=0.7916 \mathrm{cwt} .=
$$

roughly 88 lb , breaking strain of one leg.
Then $88 \mathrm{lb}, \times 4$ legs $=352 \mathrm{lb}$. -the breaking
stool with 4 legs $24 \mathrm{in}$. long. 47, Heytesbury-street, Dublin.
August 29th.

Problem in strains.
Sir, -With reference to the letter of your correspondent "X." last week, the second party he mentions are undoubtedly right, for
the bolt between the nuts has an extension λ varying directly as the pressure, according to Hooke's law. The extra weight of one
ton tends to increase this extension, but cannot without destroying

the pressure of the lower nut. In fact, as long as the extra weight length, and so long does the pressure on the upper nut $=5$ tons length, and so long does the pressure on the upper nut $=5$ tons
and the pressure on the lower nut $=5$ tons, less the extra weight.
August 23 rd.
T. E. N. Sir, - Referring to " X .'s" letter in last week's issue, Newton's
third law states that to every action there is always an equal and third law states that to every action there is always an equal and
contrary reaction, therefore the strain due to the 5 tons tends to break the bolt across somewhere between the nips of the nuts.
This strain is an initial quantity in the machine, and any tensive force acting or pulling on the bolt, whether upwards or downwards, will cause an increment of strain due to the amount of such force. In the case under discussion the amount is 1 ton, therefore the bolt will be strained anywhere below the lower nut by 1 ton, and the the amount of $5+1=6$ tons. The action is similar to that exem-
plified in the case of all flanged steam pipes, cylinder covers, \&ce,
connected by bolts ; the bolts are firstly strained by the nuts sufficonnected by bolts ; the bolts are firstly strained by the nuts suffiby the load due to the steam pressure. The machine is just an eyebolt, and whether the member A is a spring or a girder it eyebolt, and whether the member A is a spring or a girder it
matters not, the action is the same - 6 tons hangs from the nut C.
If we compare the figure to an external fitted manhole-door and If we compare the figure to an external fitted manhole-door and
allow the area exposed to the steam pressure, multiplied by the pressure per square inch $=1$ ton, then in such case the bolt will be to the steam pressure, total $=6$ tons.
If we compare the figure to an internal fitted manhole-door the area exposed to steam pressure multiplied by the pressure per square inch $=1$ ton, then in such case the bolt will be strained as
before, i.e., 5 tons due to the tightening up; but the steam pressure before, ie., 5 tons due to the tightening up; but the steam pressure
will nullify 1 ton, reducing the strain on, say, the outer nut to 4 tons. Cork, August 23rd.
R. Hartland.

SLr, -The problem presented by " X." is our old friend the locknut in a new guise, and in view of a possibly protracted and more
than likely barren discussion, it seems a pity that this should not at once be recognised and treated accordingly. Let those who are anxious for controversy substitute for the upper and lower nuts in this case the outer and inner of the lock-nut question, and turn to and read the recent correspondence. There is here, though, an
element peculiar to itself. Only a shortening of the distance element peculiar to itself. Only a shortening of the distance
between the top nut and the support can produce additional stress on that nut, and this only occurs after a weight of five tons is applied. When the nut is screwed up, the pressure on the spring and the tension on the bolt are due to the screwing alone, but when the weight is applied the tension and pressure remaining constant
are due in part to the screwing and the difference to the weight until five tons is reached, when the spring is still further deflected and the lower nut swings clear, and the stresses are due to the weight alone.
If we suppose that equal increments of load, by screwing or
weighting, produce equal increments of deflection of the spring, then the problem is simple. If, however, the load on the spring is a curve, and not a straight line, we must first determine that curve, and this can only be done experimentally.
Glasgow, August 24 th.

SIR, - Your correspondent " X ." is evidently wrong if he assumes
6 tons to be the weight on top nut of his diaram subject to a strain of 5 tons due to the reaction of the spring. A
weight less than 5 tons cannot affect the strain, because any weight applied releases the bottom nut from a portion of its pressure, consequently the condition of the top nut is affected by a pressure of
5 tons, whilst the bottom nut is under a pressure of 4 tons- that is, 5 tons minus the 1 ton added to eye of bolt. JOHN BATEY.
47, Heytesbury-street, Dublin, August 29th.
Sir, -The puzzle offered by your correspondent "X." is readily senting, for the purposes of this experiment, a rigid pirder ; B B are the halves of a wine cork nailed to the lath, say 3 in . apart ; C
is a common red rubber band put round the nail heads; Tis a loop is a common red rubber band put round the nail heads; T is a loop
of tape passing over the band and pinned to a scale pan S , made by of tape passing over the band and pinned to a scale pan S, made by
folding a sheet of note-paper into a stirrup. A few half-ounce weights do duty for tons.
Five tons- $2 \frac{1}{2}$ oz - deflects

Five tons- $2 \frac{1}{2}$ oz-deflects
C -25 in . ; an additional $\frac{1}{2}$ oz six tons in all-lowers it
05in. more. Then, with
five tons in the scale, we
put a pin P through the put a pin P through the
tape loop close under the
lath, and, removing the
weight, leave the weight, leave the band
under a strain of five tons. stirrup, or any weight up to five, and no deflection marking
additional strain will be observed in C. The weight merely relieves the pin P -which corresponds to the lower nut in "X.'s" diagram -of so much of the upward pull of the spring. Six tons in the
pan again produces a total deflection of 3 in. W. A. S. B. pan again prod
August 30th.

accidents on tramways.

SIR,- -In reference to your notice on the above in your last
edition, stating "that the accidents are causing an increasing demand to be made by the public for life-saving appliances to be attached to the engines," I beg to state that I studied this question
during the time I was in charge of several tram lines at home and abroad. The adoption of a life-saving appliance has, however, to deal with two points-(1) Is it better, in the interest of the public and the compony, to risk the danger of accidents and pay heavy
damages? or (2) is it better, in the interest of the public and the damages ? or (2) is it better, in the interest of the public and the
company, to prevent accidents by providing the rolling stock with company, to prevent accidents by providing the rolling stock wand
life-saving apparatus, causing expenses, but saving the company the payment of heavy damages? According to the views expressed to me, the question of adapting an apparatus to prevent accidents
has two sides. The one is moral and philanthropical ; the other purely financial and commercial. I consider, belonging to the engineering profession, that it is every engineer's duty to prevent
accidents by his work, while it is questioned whether those who represent the financial interest of questioned whether those who
the same moral and philanthropical view, or consider onld adopt saving of any expense which is not absolutely and imperatively unavoidable. In short, it is asked, is the public to remain exposed
to the proportionate increase of injuries to limb and life, or, perto the proportionate increase of injuries to limb and life, or, per-
haps, death, by the considerable increase of tram liness in the United Kingdom of Great Britain, the colonies, and India, by
saving the companies the expense of providing the rolling stock saving the companies the expense of providing the rolling stock
with apparatus to prevent or check accidents? or shall the companies adopt life-saving apparatus by saving the expenses of heavy
As to the practical application of lifeguards, may I be permitted to state that practical experience has proved that they are more
dangerous than no guards, and assist rather more to increase than dangerous than no guards, and assist rather more to increase than
to prevent injury. By my studying this question I devised a lifeguardion, pushing aside any person exposed to consisting of an elastic cushion, pushing aside any person exposed to the danger of being
run over without injuring the same. I was enabled to find out what the requirements of the public service were, and what conditions had to be fultilled to make such an apparatus practicable.
They are manifold, and not so easy as it looks at first sight. After They are manifold, and not so easy as it looks at first sight. After
operating privately on a car with the principal parts of such apparatus in full size, a working model was made, which 1 am prespace with which I hope you will favour me for the insertion of the above in your valuable paper on account of the importance of the
subject under consideration. subject under consideration.
13 , Soho-square, London. August 28 th.

IBBOTSON'S LOCK-NUTS AND FISH-BOLTS,

Sir,-Being the sole makers of the Ibbotson's patent steel
expansion lock-nuts and special steel fish bolts used on the Great expansion lock-nuts and special steel fish bolts used on the Great
North of Scotland Railway, our attention has this day been drawn to an article under the head of "Railway Matters" at the foot of
page 169 of THE Engineer, No. 1652, of the 26th inst., containing a quotation from the report of Colonel F. H. Rich on the accident which occurred on the 16th May last between Buckpool and Port
Gordon Stations on the above-named line, wherein he questions Gordon Stations on the above-named line, wherein he questions
whether the fish-bolts and nuts used on that railway can be con-
sidered safe, because he concluded that they were, to some extent at least, the cause of the buckling or bending of some of the rails
discovered there, owing to the excessive tightness with which they were found to grip the said rails at their joints.
We should be greatly obliged if you will permit us to state in your paper that as our lock-nuts do become securely and firmly locked on any part on the bolt up to which they are screwed, there
is no necessity whatever that they should be screwed up so tightly is no necessity whatever that they should
as to prevent the expansion of the rails.
The fact that such an extraordinary gripping force can be applied by their use is undoubted, but if so applied, care should be taken when any marked change of temperature sets in to slacken
the nuts back a little to permit the rails to expand or contract as the nuts back a little to permit the rails to expand or contract as
the case may be. No slackening back and re-tightening up of our nuts renders
them in any way loose upon their bolts, or diminishes to any appreciable extent their tight gripping hold thereon.

$$
\begin{aligned}
& \text { IBbotigen Brothers And Cos } \\
& \text { ILFRED B. IbBotson, }
\end{aligned}
$$

(Alfred B. Ibborson,
Globe Steel Works, Sheffield, August 29 th.

the stresses in the fowa bridge.

Sir,-In reply to Mr. Cunningham's letter, I would remark that tions" whether the main truss, which without the "twist" can be adapted to either form, becomes a Warren or a Whipple girder. I American would generally adapt it to the latter type. form and not of its thrust. A thrust is not the exclusive property of an arch ; it also belongs to such widely different types as brace
iron piers and certain roof trusses.
R. H. GRAHAM. August 31st.

Marine engine bearings.

SIR, - In your article on "Marine Engines from a Shipowner's
Point of View " you speak of the internal friction being 15 per cent or more. It has often occurred internal friction being 15 per cent might take a lesson from the makers of a very different sort of machine, viz., the tricycle. The adoption of roller or ball bearings
in the tricycle considerably reduces the labour of working it, in the tricycle considerably reduces the labour of working it,
especially at high speeds, or adds at least 5 per cent. to its speed. to the fact that there can be no cutting or abrasion from dust, but not wholly.
August 30th,
[Roller beari
hat ther bearings might be used in a screw tunnel, but we doubt that they could be used in an engine-room, as any slackness
bearing would cause them to be hammered to pieces.-ED. E.]

A curious explosion

Sir, - An explosion recently occurred at a paper mill, the par-
ticulars of which are as follows:-During the admission of caustic liquor into the ovens in the process of recovering the caustic sod used for washing esparto, an explosion occurred resulting in the attending same. Two actions have followed, under the Employers Liability Act, the plaintiff's contention being that the oven was badly constructed, the piers being almost entirely burnt through, that the crown collapsed, allowing the cold air to rush in upon the ho air, thus causing the explosion and injury. On the judge askin
one of the plaintiff's witnesses what he thought of the theory, replied that "he had never heard such nonsense in his life,", and with this opinion nearly everybody in court agreed, the judge
deciding there was no case to go to the jury, and the plaintiff was non-suited.
As a matter of fact the oven in question was in a perfectly safe
condition, constructed of the best fire bricks, the piers being 18in thick, although, of course, this was reduced in some places by burning.
The theory of the defendant was, that the man allowed the oven to become overheated, and the liquor to enter the oven too rapidly,
thus causing a steam explosion; and that the accident happened entirely by reason of the man's neglect and carelessness. Could there be any other cause to account for the explosion? Is ther any chemical reason for it? I had some idea of hydrogen caused by the decomposition of steam, but there was not sufficient iron in the oven to account for this. I am not aware that explosions of
this character are common in paper mills, but it behoves all mill owners to pay attention to the matter, or they may find themselves in the position of the defendant referred to.
Being non-suited, the plaintiff appealed, and on the second trial recovered heavy damages. "On this occasion the theory of "the cold air rushing on the hot "was abandoned, and no explanation
whatever was offered to account for the explosion, other than the collapse of the oven. Now the is no doubt a explosion occurred, the debr being carried some distance, and I can find no other cause for it than that mentioned above, viz, a steam explosion caused by th seems to be this, Did the crown of the oven collapse previous to the explosion, or was the collapse subsequent to, and the result of the explosion,
explosion
As the
As the intelligent British jury gave a verdict for the plaintiff, the oven fell at the precise moment that the liquor was allowed to flow. How they accounted for the explosion that followed I can not say. The theory, if they had one, was allowed to simmer in the depths of their own imagination. Chas. Fredk. Fuller, C.E.
Bow-lane, E.C., August 31st.

feathering paddle wheels.

Sir,--Professor Greenhill in his interesting letter in your last
impression seems to have overlooked the circumstance that the proper angle of the float varies with the circumstance that the steaming at a very high speed scarcely needs to feather her float action is much the same as if a man filled from the water. then drew the shovel with a jerk towards him. The sand would fall straight down, remaining behind by its inertia. The higher the speed of the ship the greater will be the slip, and this again
affects the angle of the float. If there were no slip the float would come up out of the water very nearly at the place where it went in Professor Greenhill will find a very beautiful copper-plate diagram showing the positions of one float during an entire revolution of one of the wheels of the Kingstown and Holyhead mail steamer Leinster, in Bourne's treatise on the "Steam Engine, Which recommend to his notice. The two vital points are the position of the centre of
the excentric and the length of the arm on the back of the float A complete investigation of the feathering wheel by Professor Greenhill, similar in character to that on the screw propeller, which has already appeared in your pages, would be of much value.
Dieppe, August 31 st.

Paper Stencils.-M. Garel has invented an electrical method of preparing paper stenclls for letters, circulars, \&c. In this apparatus one pole of a small induction coil, whilst the style, with which the writing is done, is connected with the other pole. On using the apparatus, a series of sparks pass between the style and the carbon
block, perforating the paper, which can then be used as a stencil block, perforating the
in the ordinary way.

COMPOUND VERTICAL ENGINE, INDIAN STATE RAILWAYS.
(For description see page 198.)

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

CONTENTS.

Thi Enainerr, September 2nd, 1887 .

Miscellanea.

Candif-Thengerchmond Railwanys-Opening of orning the Roath Dook,
Bill-Air Brakes in the United States Board $-A$ Year's Mining

 The british Association.
American Enginernivo
 Notrs froan Laveashir

TO CORRESPONDENTS.

Registered Telegraphic Address ""ENGINEER NEWSPAPER,

 xith these instructions.
v.-Write to the Secruct

machines for extracting glucose.

SrR, - We are asked for the mate makers of plant and machinery for extract
ing otherwise manufacturing glucose. Can any of your readers
assist us? assist us?
London, August 29th.

SAFETY MATCH-MAKING MACHINERY
SIR,- We shall deem it a favour if you can furnis
any firms who make machines for the

The Enoinerr can be had, by order iptions.

 The charge for Advertisements of fourr lines and

Advertisements cannot be inserted unless Delivered before Six

THE ENGINEER.

SEPTEMBER 2, 1887.
The Select Committee appointed in the early part of the year to investigate the existing laws and regulations
regarding the boats, life-buoys, and other life-saving
apparatus required to be carried by British merchant Following cecenty handed in their report to Parliament the Royal Commission on Loss of Life at Sea, which was appointed more than two and a-half years ago, has been given to the world. Both inquiries had their raison d'étre in the desire to reduce the heavy loss of life through marine casualty, but the Select Committee have seemingly restricted their attention to the means employed to mini-
mise the fatal effect of such disasters, while the Royal Commissioners have sought to ascertain and provide a remedy for the more radical causes of such occurrences. With regard to the inquiry on life-saving appliances, it may with propriety be asked how many more such in
vestigations will be considered necessary before definite action is taken in the way of giving effect to what previous inquiries, as well as the present, have shown to be
absolutely needful. The questions with which the Comabsolutely needful. The questions with which the Com-
mittee have been concerned formed the subject of thorough investigation some time ago by a Departmental Committee of the Board of Trade itself, which, in addi tion to examining witnesses, visited ships, inspected patent boats, rafts, and life-saving appliances, and finally that existing arrangements required considerable altera tion. The present regulation, by which only two life buoys are required to be carried by any ship, irrespective
of size or of the particular service in which she is engaged of size or of the particular service in which she is engaged,
Not only so, but in regard is an ancient absurdity. Not only so, but in regard
to lifeboats, life-belts, and other like appliances, the regulations in force are relics of a bygone order of things, and a miserable travesty of what under modern conditions is now indispensably necessary. The most
flagrant anomaly is the oft-criticised one respecting the number and capacity of lifeboats. The regulations affect ing them, as also the other matters named, were framed at a time when nearly the whole of the passenger traffic was carried on by wooden sailing ships of from 1000 to 1500 tons. The tonnage at that time gave an accurate
enough basis upon which to tix the boat capacity, but enough basis upon which to thx the boat capacity, but among other things, the substitution of steamers fo sailing vessels, render the tonnage basis wholly inapplic able. Thus, we find that no vessel over 1oas tons can
be compelled to carry more than seven boats, although their cubic capacity may increase somewhat with further their cubic capacity may increase somewhat with further
increase in tonnage. Under this inadequate and inelastic arrangement passenger steamers and emigrant ships are found traversing the ocean and dangerous channels with hundreds on board for whom there is no boat or other life saving accommodation, while perhaps cargo vessels ar
burdened with a plethora of boats, greatly in excess o any use the crew could possibly put them to in an emergency.
The regulating condition with respect to the numbe and capacity of boats ought clearly to be referred to the maximum number of passengers for which there is carrying difficulties in the way of carrying and manning a sufficient number of boats of the ordinary description to accommodate the whole number of passencers and crew of many of our largest vessels. These difficulties have not by any means been got over by the Committee's deliberations, but they are, nevertheless, clearly set down, and, in face of them, the opinion expressed that all seagoing passenger ships should be compelled by law to carry such boats and other life-saving apparatus as would in the aggregace best Of every thing that might be made contributory to life saving, in the opinion of the Committee, advantage ought to be taken. In passenger ships all seats, chairs, stools, lockers, and other movable articles on the decks suitable
for flotation should be sufficiently buoyant to be capable gency In the same way, rafts might be employed, and prove specially valuable in moderate weather, as a temporary
means of flotation. On the whole, the deliverance of the means of flotation. On the whole, the deliverance of the Committee on the subject of boats, buoys, and life-saving
appliances is more explicit than usually results from such inquiries, and it is to be hoped the anomalies and imperfections to which attention is once more directed may speedily be removed, or remedied by Parliament.
The part of the report above all others, however, fron which tangible good may be hoped for, is that where the
recommendation is made that a Committee should be appointed-a permanent one, it is presumed-whose duty would be from time to time to frame rules on the subject of life-saving measures and appliances. Such Board of Trade and would be on the tresident of the Board of Trade, and would be on the table and be open period, before acquiring the force of law. Such a Comwittee might consist of fifteen membere; minated by shipowns, thee by ship builders, three by persons practically acquainted with the
navigation of vessels, three by recognised associations of navigation of vessels, three by recognised associations of
seamen, and three by Lloyd's Register and kindred seamen, and three by Lloyd's Register and kindred
societies. In order to enlist the assistance of thoroughly practical men-with whom time generally means money travelling expenses and other remunerations as the Board of Trade may determine. This proposal is, in effect and prinTrade may determine. This proposal is, in effect and prin-
ciple, the same which has for some years been advocated by many faniliar with the peculiar needs of the shipping industry and with the glaring defects in the constitu-
tion of the marine department of the Board of Trade Mr. Chamberlain, it will be remembered, favoured the institution of such a council, or advisory board, while he Tas connected intimately with the shipping controversy
The Load-line Committee, consisting of Sir E. J. Reed and a body of eminently representative authorities, able memorandum to their report. We heartily wish to see a fulfilment of these repeated recommendations; not so much because of the functions such an advisory board would exercise in regard to the hundred-and-one minor
vessel gives evidence of going to the bottom, but on account of the powerful influence it would exercise in reducing the chances of a vessel ever getting into such nable a ship to keep afloat for some length of time after an accident," says the Select Committee's report, "is most important for saving life at sea, and a matter upo which the full efficiency of life-saving appliances largel depends." The Committee think it only right to stat this after having heard the evidence, although the uestion of construction was not originally referred to them. They might have said while on the subject, that with the proper placing of bulkheads all, or at least large proportion, of the care and expense implied in the possession and maintenance of a mass of life-savin ncreased number of life-saving appliances in dis egard of the unsatisfactory state of sub-division ma be compared to a nervous regard for the water-tigh ess of the house roof when the foundations are known to be rotten and open to the assaults of insidious floods. Life-rafts, buoys, and belts, if disposed in such a way about the vessel as to be easily made use of, are certainl not despicable advantages in an emergency; but of what avail are any number of good-conditioned lifeboats and rafts-firmly lashed and difficult of management as the asually are-in emergencies such as that of the Kapunda isaster, where the vessel sank, through lack of water tight sub-divisions, a minute or two after the colliding Subsel had struck?
Sub-division, as an efficient means of rendering both ships and their living freight safe against fatal disaster as never received the urgent advocacy its vital import nce demands. Ever since the repeal in 1862 of that portion of the Merchant Shipping Act of 1854 relating to
sub-division by bulkheads, the matter has been left sub-division by bulkheads, the matter has been left
entirely to the caprice of owners, or to the coddling influentirely to the caprice of owners, or to the coddling influ overlap those of the Board of Trade. The Admiralty hrough the inducements they were enabled to hold ou the way of probable State emplat instrumental in furthering to a gratifying extent sab ivision of the largest class of m Lloyds' Register, exercising the power they possess, hav tipulated for an increased teamers within recent years. The great buk of merhant steamers, however, and of sais omant carriers-are still grievouly defient in bulkheals this state of matters no Act of Parliament nor Registry regulation affords a remedy. The reason given for the they were found totally inadequate to meet the end in view. Only two bulkheads were required, irrespective of the size of the vessel, and these were to be placed at nearly equidistant points throughout the hull, and were intended to prevent the ship from sinking. In this there was, of course, ample grounds for a revisal of the provision, but none for its total repeal. An enlightened and thorough revision of the enactment to meet the necessities of the time, and framed in such a way as to meet the growing wants and circumstances of the future, would have been nfinitely more effective and praiseworthy than the dis carding of all responsibility. Doubtless it was thought n societies would lead to efficiency more than any statutory provisions.
Fortunately, as things have happened, sub-division has been practised, and to a certain extent nurtured, by the bodies already named. Commercial considerations alone have long been the main obstacles in the way of the system reaching thorough efficiency. These objections, however, have been gradually lessened, as experience has been gathered from the measure of sub-division that has existed, and as shipbuilders have been enabled to improve the structure and equipment of vessels. The time now eems to have arrived when vessels must be sub-dividel by bulkheads, with reference to life protection, and not alone with regard to structural strength, and the protec tion of the propelling machinery, when the expenditure for life-saving equipment must be put into strong and tight divisions, and not into the hundred-and-one portable appliances usually advocated. Several things point to the way being cleared for this desirable consummation or life Loss of Life at Sea report of the Royal commission on Loss of Life at sea, referred to at the outset, strikes a One of these is the admitted facilities for over-insurance and the consequent carelessness as to the fate of ship ping property. If the self-interest of the general body of nipowners can be made more dependent on the efficiency and thoroughness in building and navigating of vessels, matter of such uncertainty. On these grounds, the repor akes several recommendations regarding marine nce which it is to be hoped may become law. Of these he principal one is to the effect that every shipowne oneld retain uninsured interest in her licy, wher por to this deduction Naturally this does not meet with acceptance from the showning section of the Commis ion, and they have protested. Dut the arguments they employ, as regards being permitted to share the righ with all as regards being permetin the insurance, are only forcible when used in disregard of the exceptional and hazardous nature of their enter prise.
The Committee or Advisory Board, suggested in the eport of the Select Committee, might, with all appro Trade discarded at the time of the repeal of the statutory provisions as to bulkheads. The vital subject of sub division should again appear in the statute book, and in a form calculated to cover future development. The extent of sub-division might be referred to the character of the service in which a vessel is to be engaged, and be regua
lated according to the number of passengers for which she is fitted，or according to her load displacement．Thus，in the case of a vessel entirely employed in cargo carrying， only the degree of sub－division presently existing might
be imposed，or it might simply be left to the care of the be imposed，or it might simply be left to the care of the
insurance and registration societies on the grounds that the boat accommodation would be ample for the use of he crew in an emergency．In the case of a vessel carrying passengers chiefly，and especially when the number is of
necessity greater than there is boat accommodation for， ub－division should be regulated by a comparison of the words，the sizes of the several compartments into which the vessel would be divided should be regulated－as is at present the case with vessels on the Admiralty List－ by the amount of surplus buoyancy of which she is possessed．In no case should there be any two compart－
ments of greater capacity than，if filled，the vessel would sink．Such regulations，however，the Advisory Board， constituted as proposed，would find easy of adjustment． Whatever measure of approval the other recommendations of the two reports may meet with from Government，or an Advisory Council will commend itself entirely to all concerned．Its institution would definitely further the cause of live－saving at sea to an extent for which，as ex－
perience has already shown，we may look long and vainly perience has atready shown，we may
from Committees of enquiry merely
german competition with british shipping．
W_{E} recently devoted an article to the results now ascertained to have followed from the system pursued by the German Government of granting bounties to those of
its subjects who became proprietors of shipping．It was shown in that article that those bounties were msumicient in amount to ensure profitable results to German owners in
the fierce competition to which restricted trade and super－ the fierce competition to which restricted trade and super－
abundant tonnage had given rise during the last few years．But although such has undoubtedly been the issue the system，it is impossible to be blind to the fact that the bounty system has worked severely against the British shipowner in this competition．It could hardly be other－ wise－at least in some trading directions．German ship－
owners start well handicapped by the bounties referred o；they are free from restrictions imposed by Govern－ ment regulations on our own shipowners，and their crews are almost inyariably composed of men among whom as yet the evil side of trade unionism has not been developed， while they will accept lower wages than are demanded by the sailo
It will be of interest to note any facts which tend to show how far in this war of competition the interests of British shipowners have become affected．A single similar character－may be quoted in illustration．We have it on official authority that although in 1880 the German tonnage finding employment at the port of Nagasaki，in Japan，was less than one－twelfth of the British tonnage figures denoting the hat risen in 1886 to one－arn from the same official source that during the interval between the two years named，the German tonnage employed had increased tenfold，while that of British nationality had but little more than doubled．Now，looking at this single instance，and regarding it，as we believe we must do，as being illustrative as to what has taken place in the same interval of time at many other places where the British admitted that itcantie marme are for much fear for the future．We see that during the years in which British tonnage has been to a large extent laid up as unable to find profitable employment，German vessels have been active in superseding us in the trade that might，had con－
ditions been more favourable to our own ships，have been secured for them．We have before asserted how difficul it is when the course of trade flows towards the ships
sailing under one flag for those registered under another to divert it．Prominence was given to that contention i the article above referred to when pointing out how hard must be the conditions under which Germans would have to secure trade already carried by ourselves．We cannot therefore disregard the evidence given by the figures above quoted that，in some degree at least，the Germans
have been successful in overcoming that difficulty．The argument we employed against them is，in this instance turned against ourselves．

Some of the reasons，and those the most patent，which havetended towardsobtaining that success we have referred to above，and their potentiality and their certain effect
cannot be denied．Nor do we see the least reason to hope that the restrictions which our own advanced civilisation imposes upon us have the least prospect of being soon lead with respect to them．They must，therefore，remain
 British shipowner in his competition with the foreigner But the question presents itself to our mind as to how far such disabilities would stultify us in such a competition did they stand aloue．We believe in British pluck them，and must seek，therefore，for some other factor weighing against us in the race．We fear we have not are largely conducing to the cuaracteristics，whic are largely conducing to the ousting of our own will do more，and for less pay than our own people and the British shipowner must either ship crews of foreigners $\stackrel{\text { or }}{ }$ be as worsted in his contest as is the London clerk． warrant our doing so．We have lain alongside of ship in Eastern ports，and have seen that at the striking the four bells of the evening the British sailor has laid have been the demand for the dispatch of his vessel．Ou
the German or Norwegian ships alongside，t
have pursued their task until it was completed
How severely this indisposition to meet exigency tells against the British shipowner，may be gauged by a further statement of the official report to which we have made reference．It says：－＂Charterers decidedly prefer given by German shipmasters，in a great measure due to he ready and indefatigable assistance of the officers and frequently assumed in other cases．In the case of one large shipping firm，owing to these reasons，it can always afford to give better terms to the Germans．＂We fear possible between too much，while such distinctions are failure of the German bounty system to stay the evil effects to ourselves of foreign competition．As a nation， we are possessed of many advantages which are not given
to the foreigner．They enable us to make head to some ast the cheaper labour by which his vessels are worked；but there are moral disabilities，it is certain， which must be removed if we are to cease in the future to the extent that it has been of late years at the Port of Nagasaki and elsewhere．

aerostation and aeronautics

Three years ago we had occasion to refer to a balloon voyage accomplished in France by Captain Renard，at that time director of the balloon works at Meudon，and
Captain Krebs，his assistant．The voyage was remarkable Captain Krebs，his assistant．The voyage was remarkable
as being apparently a successful attempt to navigate a balloon，and the rate of travelling was not altogether slow． The account given was that the balloon went seven miles out，travelling against the wind，and then came back again，so as onauts originally started．This was，therefore，an instance of actual aerial navigation．M．Hervé Mangon presented a report on the subject to the French Academy of Sciences，and declared that August 9th，1884，the day on which the feat was accomplished，would be＂for ever memorable in the annals of discovery．＂The world has not been much the better for the discovery so far．For land if we seek to cross the ocean there is nothing superior to a big steamship．A sensational ascent has been recently effected by MM．Jovis and Mallet in the balloon Horla， the object being to reach the greatest practical altitude， which in this instance proved to be 7100 metres，or rather less than $4 \frac{1}{2}$ miles，whereas Mr．James Glaisher，accom－ panied by Mr．Coxwell，ascending at Wolverlampton，in 1863，attained an altitude of about 7 miles，though at the imminent peril of life．But M．Jovis has something yet in store．According to the account of an interview with this gentleman by a representative of a daily contemporary New York to the coasts of Europe．The wisdom attempting to come rather than to go is evident．The chance of a favourable wind from the west is far greater than one from the east．M．Jovis will wait at New York until a convenient storm presents itself，and＂will then made his start on the wings of the tempest．＂You expect to leave New York in October，I believe？＂said his interrogator．－It is impossible to say，＂was the reply， or an atmospheric disturbance which may be expected to cross the Atlantic and pass along our coasts．＂The utility
of all this seems doubtful period，and yet to be always ready to start，will fail to suit the convenience of an ordinary traveller，however
well it may adapt itself to the designs of M．Jovis． simply scientific．On this plan，at some date inside the nex twelve months，M．Jovis may undertake to go anywhere
within a range of three thousand miles．What possible within a range of three thousand miles．What possible
good there is in this project for an Atlantic voyage w cannot see．The affair is＂sensational，＂like the recen ascent，and we are at a loss to make anything else of it， supposing the scheme＂o have any real existence．The complete about the end of the present month，when will be packed up and taken from Paris to New York It is to have a diameter of 27 yards，but 8477 cubic yard is said to be the extent of the capacity．This would be about 13,500 cubic feet beyond the size of the great
balloon in which M．Nadar made two ascents in the autumn of 1863 ，when he expected to steer by means of a crew．The balloon in which M．Jovis proposes to cros he Atlantic will therefore be the largest yet made，
When Professor Wise was intent on an aerial voyage from New York to Liverpool，in 1873，he proposed to employ a balloon yet larger than that which M．Jovis contemplates， the horizontal diameter being 100 ft ．，and the vertical axi 110ft．There was also to be a supplementary balloon， main balloon，it was reported to be inadequate for the task to which it was to be devoted．If this conclusion were correct，M．Jovis appears to be seriously under－esti－ mating the conditions of success．However，he is said to be busily engaged in superintending aeronautic affairs at the headquarters of the French Balloon Society in th Boulevard Clichy．His assistant，M．Mallet，is
accompany him in his Atlantic voyage，and it is reckoned that the transit from New York to Europe will onl occupy from forty－eight to sixty hours．The balloon is believed to be capable of keeping aloft for a period

But Captain Renard，now Chief of the Military Balloon

 Service at the camp of Chalons，is once more on the scene and promises to excel his former achievement．Instead o making headway，as in 1884，against a current having resist a current of double per second，he undertakes a his balloon is to be propelled，in virtue of some self or 22 miles per hour．On the former metres per secondwas said to have travelled 14 miles in about 40 minutes half this distance being accomplished against an aerial current of about 12 miles per hour．Supposing these
data to be correct，we reckoned that the inherent speed of the balloon must have been 26 miles per hour．Facing a current of 12 miles per hour，a balloon so propelled would It would agraphical velocity of $26-12=14$ miles per houm miles；but in returning it would have a geographical velocity of $26+12=38$ miles per hour，and would therefore accomplish the return journey of 7 miles in 11 minutes． The entire trip would accordingly occupy 41 minutes，the along at the rate of 26 mile mour is no small achieve ment．In commenting on this affair in 1884 we recorded our opinion that the narrative was＂extraordinary，＂and we expressed a desire for some explanation．Now at last faster than ever．There is a slight reduction in the velo－ city of the current which is said to ha been sicold tered three years ago，but the discrepancy is simply consist in resisting aurrent equal to 22 miles per hour So far as mere＂resistance＂goes，Captain Renard could have coped with such a current as this in 1884．The geographical speed under such conditions would have been $26-22=4$ miles per be something．But even if
travelling，but still it would be somether Captain Renard has really succeeded in doubling his pro－ pelling power，itdoesnotfollow thathehaspractically solved
the whole problem．To give a balloon an inherent velocity of fifty－two miles an hour is to do battle with the storm， and to encounter an atmospheric pressure equal to more than 12 lb ．on the square foot．If the line of propulsion propelled with a force equal to this would speedily turn a ack ward somersault and the car would find its way to earth If，on the other hand，the line of propulsion coincided with the line of resistance，the balloon would simply be as to the speed of the current in 1884，and also the distance travelled over．Fourteen miles in 40 minutes means twavelled over．Fourteen，mithout taking any current into account．This of itself is equivalent to a brisk wind exercising a pressure of more than 2 lb ．on the square foot．The present project is that of facing a current
travelling at the rate of twenty－two miles an hour，and if the former affair is to be considered as correctly reported the forthcoming speed－if it is to be doubled－must b doubling the inherent velocity of the balloon is contem platel， come．But at least thirty miles an hour must be reckoned upon，and forty would seem more in accordance with the promise given．The latter speed would occasion a pressure perpendisular
But we may carry this matter a little further．Th apparatus employed in 1884 is said to have included the use of certain electric accumulators，capable of supplying the power of ten horses for four hours．According to
the account given，the balloon must have been propelle at a velocity exceeding twenty miles an hour．We wil imply calculate on this basis，involving a pressure of 2 lb the square foot，supposing the surface to be fat and the force perpendicular．From this we will make
reduction，as the balloon presented an oblique surface to the impact of the atmosphere．To give the scheme every chance，we will put the pressure as low as 1 lb．per square speed is to be doubled the resistance will be quadrupled， making the pressure 4 lb ．per square foot．Discarding the force requisite to raise the balloon，we will simply The ren the of $330,000 \mathrm{ft}$ ．in a minute Twenty miles pe hour is equal to 1760 ft ．per minute，which，with 10 hors power，allows a total resistance of 187 lb ．At the rate of 1 lb ．per square foot this gives an area phe suav ${ }^{2}$ ，Captain Renard＇ balloon is described as elliptical in form．If we take it a equivalent to a cylinder having a length equal to 601 on a diameter of 15⿺辶⿱亠䒑口阝 ft．，the length is as great as symmetry and safety would permit．This would give a cubical
content of $11,220 \mathrm{ft}$ ．The enclosed gas is not likely to content of 11，220ft．The enclosed gas is not likely to Hence the gas would lift 700 lb ．，from which the weigh f the envelope must be deducted．Of course，a much larger balloon must be intended，with a corresponding resistance．The speed，also，is to be doubled，raising will，we are at a loss to understand how anything like the expected speed can be obtained．Neither can we understand the results said to have been achieved three years ago．That something may be done in the way steering is distinctly dependent on the propelling power， and this has to contend with the resistan of the tmosphere to the passage of the balloon，presuming that the gas gives sufficient buoyancy in the first
instance．The balloon must be allowed some amount of dead weight，in order for it to be manageable；but this need not be much，and we have favoured the The py not taking this load into account
The prospect of navigating a balloon with a useful Captain Renard is sanguine，and the fact that he went out and came back again on the same line of route is do something．His balloon must have possessed some inherent velocity，and，therefore，some steering power，in atmosphere，and the distance traversed in the forty minutes，are elements which require to be carefully and
correctly estimated. For the present we cannot conceive how a speed of between twenty and thirty miles an hour in a car, or, indeed, attached to the balloon in any way. in a car, or, indeed, attached to the balloon in any way. involving, as that does, a fourfold increase of atmospheric resistance. Instead of being told that Captain Renard is prepared to resist a current of twenty miles an hour,
we should prefer being told what speed he is prepared to attain in a dead calm. This known, we can easily learn all the rest. At present the main points are obscure. Captain Renard is nevertheless so sure of success that he Captaking elaborate pains to conceal the exact nature of his invention. His machine is being made in separate parts, distributed over various establishments in France. The construction is to be complete in about a month, when the invention is to be put to a practical test
without delay. We may hope that some measure without delay. We may hope that some measure
of success will attend the effort, though our expectaof success wil attend the effort, though our expecta-
tions are much more moderate than those attritions are much more moderate than Captain Renard. If M. Jovis is to be considered a competent authority, there is very little hope of "forcing a balloon against the wind." In his opinion any such attempt "would probably end in the bursting of the
balloon." He may be supposed to know something of what Captain Renard has done, and yet he is described as saying that "little or no progress has been made towards solving the problem of steering the balloon." Hence
M. Jovis prudently relies on a special acquaintance with M. Jovis prudently relies on a special acquaintance with
meteorological science, so as to catch the varying currents meteorological science, so as to catch the varying currents the wind. After all, this only amounts to aerostation. The science of aeronautics seems to be, on the whole, still somewhere "in the clouds."
goods and passengers on railways.
WE are now at the period in the year when the passenger
traffic on all the great arterial railways is is its highest, and it
is interesting to se how and traftic on all the great arterial railways is at its highest, and it
is interesting to see how greatly the traffic fluctuates and how is interesting to see how greaty the tranic fluctuates and how
difficult it is to arrange emonomically for so much and so litte
work. As a general rule, the passenger traffic on railways rises and falls in a somewhat opposite manner to that of the other
and
classes of traffic. If we take, for instance, the Great Western classes of trafici. If we take, for instance, the Great Western
Railway, we shall find in one complete recent year the following Railway, we shall find in one complete recent year the following
facts:- In the first week of the year the passenger traffic averaged $£ 8500$ daily. It fell thence until about the end of February, when the takings were on the average $£ 7000$ daily. From that
time it rose with a regularity only interrupted by holidays and time it rose with a regularity only interrupted by holidays and
similar causes until a little past the middle of August. At that
period of the evar the daily takings of the Great Western period of the year the daily takings of the Great Western
Railway from its passenger traffic averaged $£ 15,000$, so that they
about double the amount of that at the beginning of the
The goods traffic does not show such variations. It fluctuates between $£ 10,000$ daily in August up to about $£ 13,000$ in the last month of the year. Whilst the passenger traffic is
rising the goods traffic is falling. It may be that this is partly rising the goods traffic is falling. It may be that this is partly
due to the decline in coal receits, ; or in the summer and
ealy early autumn, when the holiday traffic sets in, the coal require-
ments are usually at their lowest; whilst in the winter, when ments are usually at their lowest; whilst in the winter, when
travel is more dificult, the coal requirements are usually heavy. Our greatest crailways shows the same characteristics. On the
London and North-Western the takings from passengers vary from $£ 8000$ daily in the early weeks of the year up to $£ 19,000$ daily about the middle of August; and the goods and mineral
traffic receipts are usually the least in the early autumn, rising traftic receipts are usually the least in the early autumn, rising
as the winter passes on. Local circumstances-the holding of great gatherings in different parts. of the country-may at
times affect this diverse rule, but it is none the less general in its holding. It furnishes a valuable counterbalance in the revenue of the companies, but it still allows the prevalence of what
are emphatically termed "lean" and "fat" half years. Gradually, however, there are sources of railway traffic springing up which however, there are sources of railway tratfic springing up which
are more constant, though their growth is not quite as rapid as
eould have been desired. eould have been desired. TTe mail traffic is tolereably regularly
dispersed, and so is the parcel traffic. Though there is a determinadispersed, and so is the parcel traffic. Though there is a determina-
tion of parcels to particular periods, yet these periods are in the two different halves of the year; and there are other parts of revenue which are growing a little larger-the season tickets
and excursions, which are now widely spread over the bulk of and excursions, which are now widely spread over the bulk of
the year ; but still the passenger traffic as a whole shows the
great and general fluctuation to which we have referred great and general fluctuation to which we have referred. It
should teach the managers of railways to cultivate other sources should teach the managers of railways to cultivate other sources
of traffic, so that the two halves of the year may be more uni-
form in their results. Taking another railway, the total traffic of trafte, so that the two halves of the year may be more uni-
form in their results. Taking another railway, the total traffic
receipts vary from receipts vary from rather under $£ 5000$ up to as much as
$£ 11,000$ per week, and thus the work is unequal on the staff, and the cost of working in the periods necessarily varies. If uni-
formity could be attained by "levelling up" it would be a
benefit.
opening of the roath dock, cardiff
We briefly noted the opening of this dock last week under
most favourable circumstances, and now give particulars. The most favourable circumstances, and now give particulars. The
Bill was obtained in 1882 , and in the same year the contract was undertaking in a most satisfactory undertaking in a most satisfactory manner. The 20th June,
1883 , saw the foundation stone laid by Sir W. T. Lewis; the
8th March witnessed the completion by the per 8th March witnessed the completion by the placing of the lost
coping stone by Mr. McConnochie. Excluding the lock, which is stated to be the largest in the world, the area of the dock is
33 acres, and the length of quay space, including the jetty, 33 acres, and the length of quay space, including the jetty,
7520 ineal feet, nearly $1 \frac{1}{4}$ mile. The lock is 600 ft . in length
between the gates, three in number, constructed by Sir W. G. between the gates, three in number, constructed by Sir W. G.
Armstrong and Co. They weigh collectively 900 tons, are Armstrong and Co. They weigh collectively 900 tons, are
worked by hydraulic machinery, and are provided with the
latest latest improvements, and being on the buoyant principle, are
moved with the greatest ease. It was evident at the opening that the swinging was perfect. The walls of the opek are
24ft. thick at the bottom, 12 ft . 6 in , at top, and 50 ft . . in. from foundation to coping in heeght. The height from the coping to
the cill is 43 ft . 6 in ; ; height of water over the cill, 36 ft . at high wae ill ordiuary spring tides, and 26ft. at ore orinary neap nea tides,
The sluice machinery is by Tannett and Coo, of Leeds, who, The sluice machinery is by Tannett and Co., of Leeds, who,
with Sir W. G. Armstrong and Co., have also supplied movable
hydraulic hydraulic cranes for iron ore and other imports. A speciality
very noticeable are the coaling cranes-Lewis and Hunter's very noticeable are the coaling cranes-Lewis and Hunter's
patent. These are placed on the south side, and are creditable
to the enatentees and to the Leds frm to the patentees and to the Leeds firm, Messrs. Tannett and Co.,
which turned them out. The Roath Dock is so constructed as to which turned them out. The Roath Dock is so constructed as to
admit of the greatest aid being given to a future trade of

Cardiff. The old lines are, of course, coal and iron ore ; the nev ones embrace a prospective import trade. Hence we far slaughter-houses and refrigerators, and all the many necessities which the new branch may require. On the west side the Walls-
end Pontoon Company has leased a portion of the dock for a end Pontoon Company has leased a portion of the dock for a
graving dock. Tyneside will be represented, and we fully expect to see other industries spring up, and there is no reason
why, with all the dock and railway facilities, a new impetus why, with all che dock and ranway facilities, a new
should not by this dock to Cardif prosperity.
the richmond main drainage board
The Royal Assent was given last week to the Bill confirming the provisional order constituting the Richmond Main Drainage
Board for the purposes of Richmond, Barnes, Mortlake, Kew, Board for the purposes of Richmond, Barnes, Mortlake, Kew,
and Petersham. The Richmond Vestry and the Richmond Rural Sanitary Authority can now appoint their representative
on the Board, and the Board will then be able to proceed with one carrying out of the scheme of Mr. Meliliss, C.E., to which
the
the Local Government Board have already given their assent. The estimated costof the works is nearly $£ 100,000$. The proposal, i may be remembered, is to collect the sewage of the five parishes
upon land on the river-side between Kew and Mortlake, and upon land on the river-side between Kew and Mortlake, and there to treat it by a scheme of chemical precipitation, allowing
only the purified effluent to escape into the river. A lock and only the purified eflluent to escape into the river. A lock and
weir at Isleworth is an improvement which all interested in the weir at Isleworth is an improvement which all interested in the
river from Teddington to below Richmond have for many years desired. The objection to its construction hitherto has been that under the existing drainage system a lock and weir woul convert the river above, as far as Teddington, into a pool o
sewage. One objection will, by the adoption of Mr. Melliss scheme, be removed; and this incidental advantage of the schem is considered of much importance in the districts affected.

A tear's mining bill.

One of the ablest and most energetic of her Majesty's officer who have to deal with the collier and his perilous calling is Mr.
Frank N. Waddell. Chief Inspector of Mines for the Yorkshire Frank N. Waddell, Chief Inspector of Mines for the Yorkshire
and Lincolnshire district. In his report for the past year he states that in the whole of the mines of Great Britain the
aggregate number of persons employed in 1886 amounted to aggregate number of persons employed in 1886 amounted to
561,092 , of whom 5568 were females above ground. There were 869 fatal accidents, and the total number of deaths occasioned 869 fatal accidents, and the totalane number of deat the occasioned fatal accidents, and a diminution of 196 in the number of lives
lost compared with the totals for the preecing year. The minerals wrought in the different districts weighed $170,006,959$ tons, of which $157,518,482$ tons were coal, and $8,862,648$ tons ironstone, the rest being oil shale, fire-clay, \&c., being a total decrease
of $3,217,001$ tons compared with 1885 . Coal has decreased by of $3,2,27,001$ tons compared with 1885 . Coal has decreased by
$1,832,936$ tons, and ironstone by $1,245,964$ tons ; 210,665 tons of mineral were wrought for every fatal accident, and 178,391 tons
for every death, as compared with 214,651 tons and 150,629 tons respectively in the preceding year
rever

air brakes in the united states,

"Ir is an ill wind that blows nobody any good," must be the quence of the recent collisions on the Baltimore and Ohio Railway, has now to supply its automatic brakes for all
trains on this line caused by the failure of the Loughridge non-automatic airbrakes, and though this company has now shown its good sense,
it is an unpleasant reflection that changes of such importance it is an unpleasant reflection that changes of such importance
only take place after the spilling of blood, and the quantity only take place after the spilling of blood, and the quantity
required appears to vary in different countries, and on different required appears to vary in different countries, and on different
lines in the same country. We learn that up to June 30th there lines in the same country. We learn that up to June e 30th
have now been ordered over 141,000 Westinghouse brakes.

LITERATURE

Bedienung. Ein Hand-und Nachschliagetuch fuer Ingenieure Offiziere der Kriegs-und Handelsmarine, Maschinister, Studirende, Technischer Hochschulen, Rheder und allen interessenten
der Dampfschuffahrt. Bearbeitet von CARL BusLex. Kiel: verlag von Lipsius and Tischer. 1886 .
THis is the second part of a really important specimen of German painstaking minuteness and completeness in the production of a book. The first part was very favourably
noticed in The Engineer of 9th May, 1884. The value of an engineering book depends upon the degree to which t fulfils one or other of a set of entirely utilitarian
requirements-on the extent to which it supplies information that can be understood and practically employed, whether its intended destination be the college or the office or works. A book may be only descriptive or it
may be at the same time suggestive, but we must may be at the same time suggestive, but we must be
satisfied if it conveys to others an intelligent account sthe way in which certain things have been done by practhe way in which certain things have been done by prac-
tical men, although its value is enormously enhanced if it at the same time draws the deductions from what has been done that will enable others in the futus to anc more readily at design and proportions, and produce a manner. A book upon a branch of engineering always deals with things that have been initiated and brought to a certain stage of development or success. Things are
almost never originated in books, so we must be satisfied if, for the guidance or information of ourselves and those to forme, a book is a true chronicle, and if the theories which the author supplies in connection with it are
Herr Busley's book is excellent as a careful and complete description of almost everything in marine engineering machinery and apparatus that is worth either illustration presents with anything like completeness the machinery and apparatus of a ship, the coloured lithograph plates is valuable for the lithographs alone, almost all of which may be looked upon as working drawings. The descriptions are clear, though in some cases lengthy. It is
very evident that the author has made full use of his double position as engineer in the Imperial German Navy and professor in the Royal Academy at Kiel, for English and boilers; the results apollers; torpedo boats, engives vessels, torpedo boats, screws, and the British experiments
with models to ascertain the resistance of ships and the efficiency of propellers are all dealt with.
This second volume deals with the size, practice, and strength of the steam cylinders and their various part condensers and condensation; air pumps, circulating and other pumps, steam jet apparatus, including ejectors apparat, and water raisers, and so on; the mis fixin marine of marine engines; the eand strength of the frames and bed-plates; specifications of engines up to 4000-horse power, the indicator and indicator diagram, the working and management of the marine engine, and at great length the screw propeller and screw propulsion
the whole forming an especially well-illustrated book worthy of high commendation.

STEEL-FACED ARMOUR TRIALS IN RUSSIA.
We have received photograph, of which we give copies on p. 198, of a result recently obtained with a S Chamond steel projectile and a steel-faced plate, manu rial took place in July last. The plate measured 12ft. by 8 ft . by 16 in . The gun was the Obuchoff 12 in . breech loader, 35 calibres long. The projectile was forged The charge weing 794 lb . Russian and 1 l . En . ${ }^{2}$.ish. The range was 350 ft . The shell struck normally with a velo city of 1700 ft . This implies a striking energy of 14,320 foot-tons and a perforation figure of $20 \cdot 2$ in. of unbacked iron. The plate, being of considerable area, probably weighed $27 \frac{1}{2}$ tons, so that the shock per ton of plate
nly 522 foot-tons. This, however, does not affect th problem in the usual way, because the blow is very nea the edge. The object was not the testing of the plate but rather the projectile. It may be seen that the later broke up and failed to get through, but fracture the plate as shown in the photograph, chieny towards the near edge of the plate. We understand that the makers of the projectile were anxious not to fire any more shell until they had made some change in the quality. This is only an example of what, we think, we must be prepared to expect in England. The steel projectiles have been through plate an they did in certain individual case f Firminy, Holtzer, and Hadfield's projectiles, an notably in the samples of a lot of Holtzer's shells, which constitute the first regularly passed into the service. W Thot expect that this success can be repeated often,
The plates are being now made with harder faces, if not The plates are being now made with harder faces, if not backs also; consequently they will stop the projectiles
much more effectually, though at the expense of increased racture in the plate. The case before us is an exampl f what we have before stated we expected. This is do not know how such plates would be regarded at Portsmouth, but we think that the Admiralty will probably accept more cracking as a necessity if the new steel shell. accept more crack
The shell was cracked all over and broken as shown in he illustration above mentioned. The point of it jus ou through hour par ought to keep up the name of steel-faced plates in Russia

LIMPSFIELD AND OXTEAD WATERWORKA

On Friday, July 29th, the waterworks of the above com pany, situated at Pain's-hill, Limpsield, Surrey, were formally
opened by the Hon. Mrs. Leveson-Gower, wife of the chairman of the company. The company has been formed for the supply of the
 impsied with: water from the celebrated springs at Pain ${ }^{\text {s-hin }}$ by G. Leveson-Gower, Esq., the owner. The district of Limps field and Oxtead, one of the most beautiful parts of Surrey, twenty-one miles from London, and is becoming a residentia neighbourhood, the joint railways of the London, Brighton and
South Coast Railway and South-Eastern Railway running South Coast Railway and South-Eastern Railway running
through it. The water supply of Limpsfield and Oxtead has through it. The water supply of Limpsiield and Oxtead has
hitherto been obtained from wells, some of which have been condemned as unfit for use, while upon the high ground of the district the inhabitants have to depend upon rainwater tanks or failing these, upon water carted from open ponds. Iu 188
Mr . W. the possibility of the springs at Pain's-hill, situated 370 ft . above Ordnance datum, being made available for the supply of the high-level portion of the district up to 600ft. above Ordnance
datum, and whether water-power could be used for pumping to ham, and wher wherpower could be used for pumping to the required height. Mr. Kinsey having taken gaugings of the Baker and Son, contractors, Southwark, reported favourably, and a company was formed to carry out his suggestions. Pain's-hil foot of the of the company serpont which has been for by the action of the spring water. At this point the Atherfield clay, resting upon the weald clay, has been thrown into a fold or ridge due to a local anticlinal, which has caused a dip of the lower greensand beds in a direction opposite to that of the
general down-throw in this locality. Strong springs are conse quently thrown out which had converted Pain's-hill Dell into in the the water flowing away through a deep channel forme peculiar, the junction beds of the lorver field clay forming alternate bands of sand and marl, each having a. water level peeculina to itself. Taking advantage of these conditions, a puddle wall was formed across the dell in the form of a crescent, the foundations resting on solid clay at a depth of 27 ft .; the ground within the puddle wall was excavated and deposited outside to form the embankment, the excavation from
which the clay had been taken to form the puddle as well as the which the clay had been taken to form the puddle, as well as the
old water channel at the head of the valley, being filled in with the old water channel at the head of the valley, being filled in with the excavated material. The formation of the puddle trench was a
work of considerable difficulty, owing to a vein of water-bearing work of considerable difficulty,oowing to a vein of water-bearing
sand having been met with between the upper and lower clay the various springs above the level of the top of the bank was

EFFECTOFA ST. CHAMOND PROJECTILEONA STEEL-FACED PLATE.
(For description see page 197.)

carried past the excavation in temporary channels, there being a within the dell. This enabled two wells to be sunk on the high ground above the reservoir, in which the water stands 15 ft . higher than in the reservoir itself. The wells are discharged by means of 4 in . cast iron syphons, arranged so as to be self-charging. These are connected to the suction main leading to the pumping-engines, and by means of byepass-valvescan either or both deliver to pumps or reservoir. The water of the various springs below the level or
the wells is conducted into the reservoir below the water-line and is stored to give power for working the pumping-machinery During the time the pumps are working the water of one is sufficient to supply them ; the syphon of the second well therefore discharges into the power reservoir, and when the pumps are shut off both wells are so available. The necessary working pressure is obtained by placing the pumping machinery
at a distance of 900 ft from the power reservoir, there being a at a distance of 900 ft . from the power reservoir, there being a
fall of 65 ft . in that distance. The driving water is conveyed from the power reservoir in a 6 in . cast iron pipe, which passes through the embankment above a 9 in. cast iron wash-out pipe with stand-pipe overflow within the reservoir, and are sur-
rounded with cement concrete. The valves from the power and wash-out pipes are worked from a bridge in the usual manner The suction pipe to the pumps is laid beneath the footpath on either side of the power reservoir, and after leaving the embankment is laid in the same trench as the power pipe, and has an available head of 70 ft . above the pumps. The power reservoir
contains 400,000 gallons, and the wells are capable of yielding about 120,000 gallons per day. The pumping machinery has been specially designed for these works, and was manufactured at New York, U.S.A., by the Worthington Pumping Engine and is the first water motor of that company's manufacture erected in England, although their steam pumps are well known here, and several waterworks in the United States are supplied by their water motors. In these works two motors are used, one for high level and the other for low level duty, space being left in the engine-house for duplicate sets. The
duty required is 45,000 gallons per day to be delivered 220 ft . duty required is 45,000 gallons per day to be delivered 220 ft .
and 320 ft , above the pumping station. The high-level motor and 320 ft , above the pumping station. The high-level motor
has two motor pistons, each 5 in . diameter by 9 in . stroke, with two pumps each ${ }_{2}^{\frac{1}{4}} \mathrm{in}$. diameter and 9 in . stroke, with an average piston speed of 20 ft . per minute. The low-level motor has two pumps each $4 \frac{1}{4} \mathrm{in}$. diameter by 9 in . stroke, and having an average speed of 22 ft . per minute. The motors are arranged side by side, and are in appearance similar to a horizontal steam pump. The power pipe enters at the centre of the engine-room, and delivers right and left to each motor. The suction pipe is brought in above the power pipe, and similarly delivers right and left to the pumps. The pumps deliver into a 4in. cast iron main for the low level and 3 in . main for the high level, a bye-
pass being arranged so that either or both can deliver into either main. Owing to the special arrangements of the valve motion, there is an entire absence of shock, noise, or vibration, The water used for driving is about four times the quantity lifted, thus comparing favourably with the hydraulic ram, while the slight attention required is a valuable feature. Pressure gauges are arranged upon the pumping mains, so that th upplied and once tell what portion of the district is being supplied, and the motors automatically govern themselve according to the duty required of them. They have been run a tinuous and regular duty during the period. The low level main delivers the water into a storage reservoir containing 27,000 gallons. The reservoir is excavated in the ground at the top of the hill above the pumping station. It is 27 ft . 6 in . diameter by 8 ft . deep, constructed of 9 in . brickwork in cement with 9 in . concrete backing, and is covered by three $4 \frac{1}{2} \mathrm{in}$. brick arches springing from wrought iron girders supported by two cast iron columns. The arches are covered with concrete and finished with 18in. of earth. The service pipe is arranged so that the pumps can deliver into the mains independent of the
reservoir. As the high level reservoir is not yet constructed, the district above the 500 ft , contour is supplied by eontinuous
pumping against a valve fixed within the low-level reservoir, into which any surplus water is delivered. The length of water mains, $5 \mathrm{in} ., 4 \mathrm{in}$. and 3 in . diameter, at present laid is about $6 \frac{1}{2}$ Dr. Angus Smith,s composition. $\frac{\frac{3}{3} \mathrm{in} \text {. thickness, and coated with }}{}$ are turned and bored, the unbored portion of the socket being filled in with Portland cement. A large area can yet be supplied by gravitation only. Where lead joints are made no yarn has
been used, the joint being first caulked with drawn lead wire been used, the joint being first caulked with drawn lead wire and afterwards run and caulked. The mains have been tested to 220 lb . per square inch in the open trench as the work pro ceeded. The working pressure upon the mains varies according to locality from 140 lb , to 50 lb . per square inch. The works have had the advantage of Mr. Kinsey being a resident of Oxtead, and his consequent personal supervision, in which he ha been assisted by Messrs. John T. Sample and G. Van Notten Pole, Studts. M. Inst. C.E., as clerks of works. Each line of main is provided with a district meter, a royalty being payable G. F. Baker and Sons, Southwark-bridge-road, Lond Messrs, contractors for the entire works. Messrs. Stone and Co Deptford, supplied the valves and fittings, and Messrs. J. Tylor and Sons, Newgate-street, London, the meters. The cost of the works has been about $£ 5000$. As an illustration of an economical and effective arrangement for the supply of small districts from their own watershed, these works are interesting, and show how readily the springs which in many localities are wasted may be made a source of power and a benefit to the inhabitants.

COMPOUND VERTICAL ENGINES, INDIAN STATE RAILWAYS

The engravings on page 194 illustrate a vertical compound State for which thenders were recently invited for the Indian 16 in . diameter, and 24 in . stroke, the revolutions to 10 in . and steam pressure 90 , and is to be tested and indicated up to 50 indicated horse-power. We shall in future impressions publish detail drawings of this engine fully dimensioned, which will, we think, be found useful and instructive by our student readers.
\qquad
DESCRIPTION OF THE NEW TAY VIADUCT. ${ }^{1}$ By Mr. Fletcher F. S. Kelsey, M. Inst. C.E. Site.-The new viaduct across the Tay near Dundee, which has once more established direct railway communication between the is situated throughout the extent of the straight portion, which forms four-fifths of its total length, at a distance of 60ft. centre to centre from the old structure. At the north end of the straight a curve of 21 chains radius gradually reduces the distance between them until they nade atDundee. Unlike the old viaduct, the new one cross the esplaline of railway, and consequently gains enormously in stability from the greatly increased width of the piers.
Dimensions.-The chief dimensions of the new work are as
South end of
High girders
Vormtt arching to high griders

\section*{tal length $=$ 2att a dadact

tal length $=$ 2att a dadact
 Width between parapets
 Maximum Minimum Maximum
 Maximum head"way above" high water Maximum height
 Maximum Maimum
 ere her from ioundations to top

There are in all eighty-six spans, five of which consist of brick arches and the remainder of girder work. Of the brick arches, and of 50 ft , span are situated at the southern end of the viaduct,
and Piers.-Seventy-three of these end.
1 Paper read before the Institution of Mechanical Engineers, Fedinburght
divided into two groups thus :-Group 1, comprising forty-nine condivided into two groups thus :-Group 1, comprising forty-nine con-
structed with wrought iron cylinder bases ; Group 2, comprising
twenty-four constructed with cast iron cylinder bases. The former twenty-four constructed with cast iron cylinder bases. The former
are in the straight and the latter in the curved portion of the are in the straight and the latter in the curved portion of the viaduct.
Cylinders.-The portion of the pier below low water consists of two of these cylinders, which, in the case of the piers for distance from each other of 32 ft ., and in the rest of the piers 26 ft .,
centre centre to centre. Except in the case of those for piers Nos. 5-14,
the cylinders are all splayed at the base, and have a base diameter the cylinders are all splayed at the base, and have a base diamete
varying from 10 ft . up to 23 ft . The 10 ft . cylinders which form the vases of twenty-four of the piers in the curve are of cast iron, all above this size being of wrought iron, and made of such a lengtn that when sunk to the required depths the tops might project slightly above low-wate.
filled in with concrete.

filled in with concrete. Blue-brick shafts ai

Bigh-water level the piers in Gring-piece.-From low-water up to brick shafts of 12in. less in Group 1 consist of two circular blueare filled in with concrete and joined together at high-water level by means of a strong connecting-piece, which also consists of
blue brickwork filled in with concrete, the portion between the shafts resting on cast iron girders. In the cast iron cylinder piers -Group 2-the cylinders are continued up to the connecting piece, and cast iron segments of cylinders and plates take the place of the blue brickwork in the connecting-piece itself. Base of 'pier superstructure.-On the top of the brickwork,
and forming part of the connection, a wrought iron framework made chiefly of channel irons is placed, and securely attached to the shafts below by means of sixteen holding-down bolts of $2 \frac{1}{2}$ in. diameter and 20 ft . length, which are embedded in the masonry.
This framework forms the base for the upper portion or super This framework forms the base for the upper portion or super-
structure of pier, which is rivetted to it. Superstructure of piers.-In the case of pie
Superstructure of piers.- In the case of piers Nos, 5-64, the superstruc-
ture consists of two wrought iron octagonal shafts, as shown in the engraving joined together near the top in the form of an arch; and is
composed of plates connected at the angles by means of two splayed composed of plates connected at the angles by means of two splayed channel irons on the outside, and an obtuse angle iron on the in-
side. Outside and inside T-irons cover the other vertical joints and serve to stiffen the structure, which is furthered strengthened by means of bracings and horizontal diaphragms placed at intervals inside the shafts, Short cross girders near the top support the cast iron bed-plates for the main girders. The height of these
pier superstructures varies from 20 ft . to 68 ft . In piers Nos. $65-77$ the superstructure and connecting piece are combined, on account of the reduced height of the piers, and assume the form of a tapered box, stiffened with channels and tees in the same way as the rest of the piers.
depths below the bed sinking the cylinders down to their several depths below the bed of the river, pontoons specially designed
for the purpose were used. They were constructed with two apertures in them, of sufficient size to admit of the pair of cylinders passing through them at their proper distance from each other; and were also provided with four cylindrical legs capable of being
lowered down to the bed of the river or lifted off it by hydraulic power. During the greater part of the time that cylinder sinking was going on four of these pontoons were employed, the dimen-
sions of the largest being $80 \mathrm{ft} . \times 67 \mathrm{ft} . \times 7 \mathrm{ft}$. deep. The work of cylinder sinking was carried out as follows:-A pontoon having been floated into position and its four legs lowered down to the
bed of the river, the two cylinders the apertures ; and after having been lined with brickwork were gradually lowered down to the bed of the river by means of hydraulic jacks. The excavation for the cylinders was then pro-
ceeded with by means of a subaqueous digger worked by a crane on the pontoon. Owing to the nature of the strata through which force them down as the excavation proceeded; in some cases as much as 400 tons were placed upon the cylinder for this purpose. Where silty sand was met with, the use of a centrifugal pump was found to be of great assistance; the continual pumping of the
water from inside the cylinder caused the sand beneath the cutting edge to be scoured towards the centre of the cylinder, where it could be more readily got at by the digger. When sunk to their required depths, the cylinders were filled with concrete; and the
pontoon was then floated away to the next pier.
Depths of foundations. -The depths of the foundations vary from
6 ft . to 388 ft . below the river bed as the average for the pair of cylinders. The shallowest foundations are at piers 7 and 8 , where the cylinders rest on red sandstone; and the deepest at pier 20 ,
which is founded on sandy clay. Thirty-three of the piers, in. which is founded on sandy clay. Thirty-three of the pierr, ins
eluding these for the thirteen large spans, rest on sand foundations,
nd the average depth to which these cylinders are sunk below
he river bed is $26 \frac{1}{\mathrm{ft}}$. The work of sinking the seventy-three nd the average depth to which these cylinders are sunk below
he river bed is $26 \frac{1}{2} \mathrm{ft}$. The work of sinking the seventy-three
pairs of cylinders ocupied nearly three years and a-half, having been commenced on February 1st, 1883, and completed on July 20th, 1886. Testing of
have been subjected to a weight 33 per cent. heavier than that have been subjected to a weight 33 per cent. heavier than that
which they will be required to carry. The test load, consisting of iron blocks weighing half a ton each, was applied at the level of
the tops of the cylinders before building the blue-brick shafts upon the tops of the cylinders before building the blue-brick shafts upon
them. The load on the pair of cylinders varied from 608 up to cylinders themselves, the minimum pressure per souare foot on cylinders themselves, the minimum pressure per square foot on
the foundations was 3.80 tons, and the maximum 6.80 tons. The
subsidence of the cylinders in the latter case was only $1 \frac{1}{2}$ in. The subsidence of the cylinders in the latter case was only $1 \frac{1}{2} \mathrm{in}$. The able, invo
weights.
weights.
Cirders.- Including the wrought iron arches near the north end,
there are eighty-one girder spans. The following are the lengths Girders.- Including the wrought iron arches near the north end,
there are eighty-one girder spans. The following are the lengths
of the girders, taking them in the order in which they are placed
in the viaduct from south to north :-
 From piers 4 to 28,41 to 78 , and 80 to 84 , each span consists of roadway being carried on the upper members. The outside girders, excepting for six of the spans, are those which carried the roadway
in the old viaduct. From piers 28 to 41 and 84 to 85 , where additional headway is required, two girders only are used in each span, having curved
lower members.
Transferring girders from old to new riaduct.-In the four-girder
spans the first spans the first operation, after completing the piers, was to
transfer the girders from the old to the new viaduct transfer the girders
effected by means of two large pontoons, 80 ft . by 27 ft by $8 \frac{1}{2} \mathrm{ft}$. deep, securely attached to each other at a distance of 20 ft , apart by means of connecting girders. Each pontoon was pro-
vided with two wrought iron columns, the upper parts of which were telescopic and capable of being raised or lowered about 13 ft . by means of hydraulic rams attached to the fixed portion of the
columns. These two adjustable parts were connected together columns. These two adjustable parts were connected together at
the top by a cross girder, upon which the girders of the old
viaduct rested while in the act of being transferred to the new one. The operation of transferring them was carried out in the following manner:-About the time of low water the pontoons were placed immediately beneath the pair of girders to be transferred
and the telescopic portions of the columns having been adjusted to the required height, the pontoons gradually rose with the to the required height, the pontoons gradually rose with the way above, clear of the piers. The pontoons with their load were
then floated in between the new piers, upon which the girders then floated in between the new piers, upon which the girders
were let down by lowering the columns. In this position, and were let down by lowering the columns. In this position, and
with rails laid along the top booms, the old girders formed a roadway, upon which the new girders, slung between two travellers, were run out, and were then lowered down between them on to the tops
of the piers. All four girders were then opened out to their respec of the piers. All four girders were then opened out to their respective positions in width on the piers, and the cross bracing and
decking above were proceeded with.
Floating out the ligh girders.- The work of floating out the Floating out the high girders.-The work of floating out the
girders for the thirteen large spans near the centre of the river, and
of lifting them to the of lifting them to the tops of the piers, was still more interesting.
All these girders, with their deck-plating and top cross bracing, All these girders, with their deck-plating and top cross bracing,
thus forming completed spans, were erected and rivetted on a jetty constructed for the purpose on the south side of the river, Fig. 1
The jetty was of sufficient size to allow of two of these complete spans being constructed simultaneously and side by side, and was provided with two openings or docks extending across it, at right
angles to the direction in which the girders were built. Upon the completion of a span, the piers for which it was intended having also been finished up to the level of the top of the blue-brick connections,
the same pontons which had been used in transferring the old the same pontoons which had been used in transferring the old girders, as just described, were again made use of, but stripped of
their columns and connecting-piece, and thus made independent of each other. These pontoons having been floated into the docks at low water, and placed in position immediately beneath the girder
about to be floated out, rose with the tide, and lifted the girders clear of the blocks upon which they had been built. They were then
towed out on the east or lower side of the viaduct by four tugs; and when opposite to and parallel with the position they were to occupy, were allowed to drift slowly up with the flowing tide
until the centre line of the decking was exactly in the centre line of the viaduct. In this position the ends of the girders were made
fast to the piers, and were allowed to take their bearings with the fast to the piers,
fall of the tide.
Lifting the high girders.- The girders having been placed on the
piers at this level, the next proceeding was to erect round and over pers end posts the wrought iroen pier superstructures, in which
their
the plates that would interfere with the lifting operations were the plates that would interfere with the lifting operations were crane of sufficient height to command the whole work was fixed a crane decking between the girders. As soon as the erection of the
theperstructures was completed, the next operation was to construct
sup inside each of the four shafts a temporary column, composed of steel angles $\left(8 \times 4 \frac{1}{2} \times \frac{7}{8} \mathrm{in}\right.$.) braced together, the four columns
being of sufficient strength to carry the whole weight of the span, about 520 tons. The raising of the girders up these columns was performed by means of four 131 in . hydraulic rams, attached to girders; and as the whole span gradually rose in 7 itin. lifts, the
bolted plates in the pier superstructure immediately above the girder end were removed, to allow of their passing up the shafts, while those below were at the same time replaced and riveted up. On arriving at their full height, the riveting of the piers having
also been completed the ends of the girders were transferred from also been completed the ends of the girders were transferred from
the lifting columns to the piers themselves, and the lifting columns the lifting columns to the piers themselves, and the lifting columns
were taken down and removed. The raising of the thirteen large
span, Decking. -The dec*ing or flooring is of the ridge and trough type, In the case of the high girders, where there are only two girders to
the span, it is constructed with plates and channels; the troughs are
16 in d duct, where the decking bas the support of four girders, the depth is reduced to 8in., and the troughs are formed of corrugated plates, shaped in a hydraulic press and connected on the ridges by cover
strips. The whole decking is of steel, and forms a continuous flooring from end to end of the viaduct, excepting at the expansion
joints.
Expansion.-The allowance for expansion is divided over thirty-
two different places in the whole length, the sum of the calculated allowances amounting to 3 ft . 8in. As a matter of fact, however, the spaces provided admit of a much greater variation
than this. Where provision is made for est upon rockers. \quad Parapets.-The parapets or wind screens are of lattice work,
made of $3 \times 5^{5}{ }^{5}$ in. bars, with standards about every 16 ft ., and freaking up the force of the wind and thereby protecting the road-
wrea way is very remarkable.
Permanent which are bedded in ballast in the way is laid with cross sleepers, which are bedded in ballast in the troughs of the flooring; and
is provided with special expansion joints placed over those pier is provided with special expansion joints placed over those piers
where the pirders rest upon rocker bearings. The gradients are as
foll follows :-

From south end to commencement of high girders
at pier 28

$\underset{\substack{1 \\ \text { Level. } \\ \text { Lell } \\ \text { falling. }}}{ }$ 1 in 114 falling. subjected to frequent testing throughout the work. In the case of the wrought iron, the test was that it should withstand a tensile The following are the amounts of material used
$\underset{\substack{\text { Strought iron in } \\ \text { Stast inforing } \\ \text { Cast ron }}}{\substack{\text {.. }}}$
Coneretet (cement)
Brickwork.

Wind pressure.-The calculations for wind pressure are based on
pressure of 56 lb . per square foot; and in estimating the area

section of pier.

exposed to the wind, the bevelled ends of the piers are considered
as flat surfaces, the wind screen as a solid surface, and 50 per cent as flat surfaces, the wind screen as a soid surface, and 50 per cent
is added to the area of the outside girders. Until this pressure i base of the pier superstructure do not come into play.
Testing of Viaduct. -The viaduct has recently been very severe tests by the Board of Trade inspectors, the result being highly satisfactory. The tests were made with sixteen heavy locomaximum deflection of the high girders was 15igin., when the span
mas loaded with engines close together on both roads from end to was
end.
Tin end. was commenced on June 22nd, 1882, and it was opened for passenoccupied exactly five years. The engineers for the work wer Messis. W. H. Barlow and Son, Westminster ; and the contractors
Messrs. Arrol and Co., Glasgow ; the author being resident Messrs.
engineer.

Statistics of the Production of Pig Iron, - The statistical
report of the British Iron Trade Association has just been issued. report of the British Iron Trade Association has just been issued.
The result may be thus summarised :- The stock of pig iron-
makers' stocks in Scotland not included being makers stocks in scotland not included, being unknown-on
December 31st, 1886 , was $2,491,506$ tons; the production of pig
iron during the first half of 1887 , was 3,668 , 115 tons; total, $6,159,621$ iron during the first half of 1887, was $3,668,115$ tons; total, $6,159,621$
tons. Deduct stock at June 30th, $1887,2,238,670$ tons ; total consumption of pig iron to June 30th, $1887,3,920,951$ tons; against a
consumption to June 30th, 1886, of $3,338,443$ tons; increase of consumption to June 30th, 1886, of $3,338,443$ tons; increase o
consumption, 582,508 tons.

THE BRITISH ASSOCIATION SIR H. ROSCOE'S ADDRESS.

The fifty-seventh annual meeting of the British Association was opened on Wednesday evening at Manchester by an address from
the president, Sir H. E. Roscoe, M.P. This was delivered in the Free Trade Hall. The chair was occupied by Professor William-
son, who was supported by the Bishop of Manchester, Sir F. Wilkins, Professor Boyd Dawkins, Professor Ward, and many other distinguished men. A telegram was read from the retirin president, Sir Wm. Dawson, of Montreal, congratulating the Association and Manchester on this year's meeting. The new
president, Sir H. Roscoe, having been introduced to the audience, president, Sir H. Roscoe
The President, in his inaugural address, said Manchester, dis-
tinguished as the birthplace of two of the greatest discoveries of tinguished as the birthplace of two of the greatest discoveries of
modern science, welcomed the visit of the British the third time. Those discoveries were the British Association for the third time. Those discoveries were the atomic theory of which
John Dalton was the author, and the most far-reaching scientific principle of modern times-namely that of the conservation of energy, which was given to the world about the year 1842 by Dr. Joule. While the place suggested these reminders, the time, the year of the Queen's Jubilee, excited a feeling of thankfulness that
they had lived in an age which had witnessed an advance in they had lived in an age which had witnessed an advance in
our knowledge of nature and a consequent improvement in the physical, moral, and intellectual well-being of the people hitherto unknown. A sketch of that progress in the science of chemistry alone would be the subject of his address.
The initial point was the views of Dalton and his contemporaries compared with the ideas which now prevail; and he-
the President-examined this comparison by the light which the research of the last fifty years had thrown on the subject of the Daltonian atoms, in the threefold aspect of their size, indivisibility and mutual relationships, and their motions. As to the size of the
atom, Loschmidt, of Vienna, had come to the conclusion that the atom, Loschmidt, of Vienna, had come to the conclusion that the
diameter of an atom of oxygen or nitrogen was the ten-millionth part of a centimetre. With the highest known magnifying powe we could distinguish the forty-thousandth part of a centimetre, If, now, we imagined a cubic box each of whose sides had this
length, such a box, when filled with air, would contain from length, such a box, when filled with air, would contain from
sixty to a hundred millions of atoms of oxygen and nitrogen. As sixty to a hundred millions of atoms of oxygen and nitrogen. As
to the indivisibility of the atom, the space of fifty years had completely changed the face of the inquiry. Not only had the number of distinct, well-established elementary bodies increased from fifty three in 1837 to seventy in 1887, but the properties of these ele
ments had been studied, and were now known with a degree of pre ments had been studied, and were now known with a degree of pre
cision then undreamt of. Had the atoms of our present elements been made to yield? To this a negative answer must undoubtedly be given, for even the highest of terrestrial temperatures, that o the electric spark, had failed to shake any one of these atoms in two. This was shown by the results with which spectrum analysis
had enriched our knowledge. Terrestrial analysis had failed to had enriched our knowledge. Terrestrial anays favourable evidence; and, turning to the chemistry of the stars, the spectra of the white, which were presumably the hottest stars, furnished no direct evidence that a decomposition of any terrestrial atom had taken place; indeed, we learned that
the hydrogen atom, as we know it here, can endure unsumably many inconceivably fierce than our sun, as Sirius and Vega. It was therefore no matter for surprise if the earth-
bound chemist should for the present continue to regard the elements as the unalterable foundation stones upo which his science is based. Passing to the consideration of
atoms in motion, whilst Dalton and Graham indicated that they were in a continual state of motion, we were indebted to Joule for the first accurate determination of the rate of that motion, Clerk-Maxwell had calculated that a hydrogen molecule, moving a the rate of seventy miles per minute, must, in one second of time,
knock against others no fewer than eighteen thousand million knock against others no fewer than eighteen thousand million
times. This led to the reflection that in Nature there is no such thing as great or small, and that the structure of the smallest particle, invisible even to our most searching vision, may be as complicated as that of any one of the heavenly bodies which circle round our sun. How did this wonderful atomic motion affect their
chemistry? Lavoisier left unexplained the dynamics of combustion but in 1843, before the Chemical Section of the Association Meeting at Cork, Dr. Joule announced the discovery which was to revolutionise modern science, namely, the determination of the
mechanical equivalent of heat. Every change in the arrangement mechanical equivalent of heat. Every change in the arrangement
of the particles he found was accompanied by a definite evolution of the particles he found was accompanied by a definite evolution
or an absorption of heat. Heat was evolved by the clashing of the atoms, and this amount was fixed and definite. Thus to Joule we owe the foundation of chemical dynamics, and the basis of
thermal chemistry. It was upon a knowledge of the mode of thermal chemistry. It was upon a knowledge of the mode of
arrangement of atoms, and on a recognition of their distinctive properties, that the supers are of modern organic chemistry element possessed distinct capabilities of combination. The know ledge of the mode in which the atoms in the molecule are arranged many experimental obstacles, and organic chemistry had now become many experimental obstacles, and organic chemistry had now become
synthetic. Liebig and Wöhler in 1837 foresaw the artificial production in the laboratories of all organic substances so far as they did not constitute a living organism; and after fifty years their prophecy had been fulfilled, for at the present time we could pre
pare an artificial sweetening principle, an artificial alkaloid, and salacine. We know now that the same laws regulate the forma tion of chemical compounds in both any definite chemical compounds found in the organic world in order to be able to promise to prepare it artificially. Seventeen
years elapsed between Wöhler's discovery of the artificial producyears elapsed between Wöhler's discovery of the artificial produc
tion of urea and the next real synthesis, which was accomplished by Kolbe, when in 1845 he prepared acetic acid from its elements. Since then a splendid harvest of results had been gathered in by chemists of all nations. In 1834 Dumas made known the law of
substitution, and showed that an exchange could take place between substitution, and showed that an exchange could take place between
the constituent atoms in a molecule, and upon this law depended in the constituent atoms in a molecule, and upon this law depended in
great measure the astounding progress made in the wide field great measure the astounding progress made in the wide fiel
of organic synthesis. Perhaps the most remarkable result had been the production of an artificial sweetening agent, termed saccharin 250 times sweeter than sugar, prepared by a complicated series of eactions from coal tar. These discoveries were not only of scientific interest, for they had given rise to the industry of coal tar colours,
founded by our countryman Perkin, the value of which was measured by millions sterling annually. Another interesting application of synthetic chemistry to the needs of everyday life was the discovery of a series of valuable febrifuges, of which antipyrin might be named as the most useful. An important aspect in con
nection with the study of these bodies was the physiological value which had been found to attach to the introduction of certain organic radicals, so that an indication was given of the possibility of preparing a compound which will possess certain desired physio such bodies may exert on the animal economy. But now the question might well be put, was any limit set to this synthetic power of the chemist? Although the danger of dogmatising as to the progress of science had already been shown in too many in the organised and unorganised worlds was one which the chemist at present saw no chance ose that the day would arrive when the
those who professed to foresee chemist, by a succession of constructive efforts, might pass beyond albumen, and gather the elements of lifeless matter into a living structure. Whatever might be said regarding this from othe
standpoints, the chemist could only say that at standpoints, the chemist could only say that at present no such
problem lay within his province. Protoplasm, with which the problem lay within his province. Protoplasm, with which the
simplest manifestations of life are associated, was not a comy ound
but a structure built up of compounds. The chemist might
successfully synthesise any of its component molecules, but he successfully synthesise any of its component molecules, but he
had no more reason to look forward to the synthetic production of the structure than to imagine that the synthesis of
gallic acid led to the artificial production of gall-nuts. Although gallic acid led to the artiticial production of gall-nuts. Although material, yet the progresss made in ourt knowledge of the ehemistry
of life during the last fifty years had been very great, so much so indeed that the sciences of physiological and of path, sathological chemistry might be said to have entirely arisen within that
period. He would now briefly trace a few of the more important steps which had marked the recent study of the relations between the vital phenomena and those of the inorganic world. No
portion of the science of chemistry was of greater interest or of greater complexity than that which, bearing on the vital functions
both of plants and of animals, endeavoured to unravel the both of plants and of animass, endeavoured to unravel the
tangled skein of the chemistry of life, and to explain the principles according, to which our bodies live, and move,
and have their being
If therefore in the less complicated problems with which other portions of our science have
to deal, we found ourselves often far from possessing satisfactory solutions, we could not be surprised to learn that with regard to
the chemistry of the living body-whether vegetable or animal-in health or disease, we were still farther from a complete knowledge of pheromenas, even those of fundamental importance. Lieebig
osked if we could distinguish, on the one hand, between the kind
ast asked if we could
of food which goes to create warmth, and, on the other, that by
the ovidation of which the motions and mechanical enery of the the oxidation of up. He thought he was abcha e to do this, and he he
body are kept
divided food into two categories-the starchy or carbo-hydrate food was that, said he, which byits combustion provided the warmth necessary for the existence and life of the body. The albuminous or nitrogenous constituents of our food, the flesh meat, the eglaten, the casein
out of which our museles are billt up, were not available for the purpose of creating warmth, but it was by the waste of those muscles that
the mechanical energy, the activity, the motions of the animal are supplied. Soon after the promulgation of these views, J. R. Mayer warmly attacked them, throwing out the hypothesis that all mus-
cular action is due to the combustion of food, and not to the destruction of muscle. What did modern research say to this question? Could it be brought to the crucial test of experiment?
It could ; but how? In the first place, we could ascertain the work done by a man or any other animall, we cound mmensure this
work in terms of our mechanical standard, in kilogramme-metres work in terms of our mechanical standard, in kilogramme-metres
or foot-pounds. We could next determine what was the destruction of nitrogenous tissue at rest and under exercise
by the amount of nitrogenous material thrown of by the body. And here we must remember that these tissues were never completely burned, so that free nitrogen was never
eliminated. If now we knew the heat value of the burned muscle, it was easy to convert this into its mechanical equivalencont, and thus
mensure the energy generated. What was the result? measure the energy generated. What was the result? Was the
weight of muscle destroyed by ascending the Faulhorn or by working on the treadmill sufficient to produce on combustion heat
enough when transformed into mechanical exercise to lift the body up to the summit of the Faulhorn or to o the work on the tread
mill? Careful experiment had shown that this was so far from being the case that the actual energy developed was twice as great
as that which could possibly be produced by the oxidation of the nitrogenous constituents eliminated from the body during twenty-
four hours. That was to say, taking the amount of nitrogenous four hours. That was to say, taking the amount of nitrogenous
substance cast off from the body, not only whilst the work was being done, but during twenty-four hours, the mechanical effect capable of
being beingproduced by the muscular tissuue from which this cast-off mate-
rial was derived would only raise the body half-way up the Faulhorn, rial was derived would only rase hald his time on the treadmill. Hence
or enable the prisoner to work half genous constituents of the food did doubtless go to ropair the Waste of muscle, which, like everry other portion of the body,
weeded renewal, whist the function of the non-nitrogenous food was not only to supply the animel hent , but anso to fornish, by its
wxidation, the muscular energy of the body. We thys
one oxidation, the muscular energy of the body. We thus came
to the conclusion that it was the potential energy of the
food which furnished the food which furniished the actual energy of the body, expressed
in terms either of heat or of mechanical work. But there was one other factor which came into play in this question of mechanical energy, and must be taken into account; and this factor we were
as yet unable to estimate in our usual terms. It concerned the
and aetion of the mind on the body, and although incapable
of exact expression, exerted none the less an important
influence on the physios and chemistry of the body, so that a connection undoubtedly existed between intellectual activity or mental work and bodily nutrition. What was the expenditure of
meechanical energy which accompanied mental effort was a quesmechanican energy which accompanied mental effiort was a ques-
tion which science was probably far from answering; but that the
body experienced exha ustion as the result of mental activity was a well recognised fact. The phenomena of vegetation, no less than those of the animal world, hat, however, uring the last fifty years
been placed by the chemist on an entirely new basis. Liebig, in
1860, nsserted thet was obtained from the atmospheric carbonic acid, which, though
only present in the small relative proportion of four parts in ond
10,00 of on ari, was contanined in such abssolutely lorge parantity
that if all the vegetation on the earth's surface were burned that if all the vegetation on the earth's surface were burned
the proportion of carbonic acid which would thus be thrown
into the nir would not be sufficient to double the present amount. That this conclusion was correct needed experimental
proof, but such proof could only be given by long-continued and Paborious experiment. It was to our English agricultural chemists, Lawes and Gilbert, that we owed the complete experimental proof
required, and this experiment was long and tedious, for it had required, and this expot give a definite reply, At Rothamsted a plot was set apart for the growth of wheat. For forty-four suc-
cessive years that field had grown wheat without the addition of any carbonised manure, so that the only possible source from which
the plant could obtain the carbon for its growth wis the the plant could obtain the carbon for its growth was the atmo-
spheric carbonic acid. The quantity of carbon which on an spheric carbonic acid. the quanticy of carbon which on an
average was removed in the formen strav from a plot
manured only with mineral matter whas 1000 lb, whilst on another plot, for which a nitrogenous manure was employed, 1500 lb.
more carbon was annually removed; or 25001 lb . of carb removed by this crop annually without the addition of any carbonaceous manure. So that Liebigs prevision had received a complete
experimental verification. Touching ns as human beings even still
more closely than the forecoing was the influence which chemistry experimensely than the foregoing, was the influence which chemistry
mad exerted on the science of pathology, and in no direction had
had greater progress been made than in the study of micro-organisms
in relation to heelth and disease. In the complicated chemical
and faction, Pasteur had established the fundamental principle that these processes were inseparately connected with the life of certain
low forms of organisms. Thus was founded the science of logy, which in Lister's hands bas fielded such splendid results in in
the treatment of surgical cases others, had been the means of detecting the cause of many disanes which was the remarkable series of successful researches by Pasteur into the nature and mode of cure of that most dreadful of maladies, hydrophobia. The value of his discovery was greater than
could be estimated by its present utility, for it showed that it might be possible to avert other diseases besides hydrophobia by
the gadontion treatment. Here it might seem as if we had outstepped the boundaries of chemistry, and had to do with phenomena purely
vital. But recent research indicated that this was not the case and pointed to the conclusion that the microscopist must again give
way to the chemist, and that it was by chemical rather than way to the chemist, and that it was by chemical rather than
biological investigation that the causes of diseases would bo dis-
covered, and the power of removing them obtained. For we covered, and the power of removing them obtained. For we
learned that the symptoms of infective diseases were no more due
to the microbes which constituted the infection than alcoholic intoxication was produced by the yeast cell ; but that these symp-
toms ware due to the presence of definite chemical compounds, the result of the life of these microscopic organisms. So it was to the action of these poisonous substances formed during the iite of that orluanism, special characteristics of the the organism to be traced; for it had been shown that the disease could be com-
municated by such poisons in the entire absence of living organisms. municated by such poisons in the entire absence of living organisms.
Had time permitted, he would have wished to have illustrated the dead time permitted, he would have wished to have illustrated the to have pointed out the prodigious strides which clemical industry
in this country had made during the fifty years of her Majesty's in this country bad made during the fifty years of her Majesty's
reign. As it was, he must be content to remark how much our modern life, both in its artistic and useful aspects, owed to chemistry, and therefore how essential a knowledge of the princi-
ples of the country at heart. The country was now beginning to see that if
she was to she was to maintain her commercial and industrial supremacy,
the education of her people from top to bottom must be carried the education of her people from top to bottom must be carried
out on new lines. The question how this could be most safely and surely accomplished was one of transcendent national importance, and the statesman who solved this educational problem
would earn the gratitude of generations yet to come. In welcoming the unprecedentedy large number of foreign men of science who
had on this occasion honoured the British Association by their had on this occasion honoured the British Association by their
presence, he hoped that that meeting might be the commencement presence, he hoped that that meeting might be the commencement existing of establishing that fraternity among nations from which
politics appeared to remove them further and further, by absorbing human powers and human work, and directing them to purposes of hitherto taken the lead in so many things that are great and good, hitherto taken the ead an so many things that are great and good,
should now direct her attention to the furthering of international organisations of a scientific nature. A more appropriate occasion
than the present meeting could perhaps hardly be found for the inauguration of such a movement. But whether this hope were reaised or not, they all united in that one great object, the search
after truth for its own sake, and they all, therefore, might join in
reechoing the words of Lessing:-" "The worth of man lies not in re-ctroing the words of Lessing:- The warth of man hes but in ine honest endeavour which he puts forth to secure that truth; for not
by the possession of truth, but by the search after it by the possession of truth, but by the search after it, are the facul-
ties of man enlarged, and in this alone consists his ever-growing perfection. Possession fosters content, indolence, and pride. If
God should hold in his right hand all truth, and in his left hand the ever-active desire to seek truth, though with the condition of perpetual error, I would humbly ask for the contents of the left
hand, saying, 'Tather, give me this; pure truth is only for The ,", hand, saying, Father, give me thist, pure truth is only for Thee. President, on the motion of the Mayoor of Manchester, seconded by
Professor Asa Gray of Harvard College. The President mentioned that the Asa Gray, of Harvard College. The hesiden annual meeting, namely, 3568, including eighty foreigners

AMERICAN ENGINEERING NEWS

The Nicaragua Ship Canal.- The American company which was granted a concession by the Niiaracua Government in May,
prepared to send ongineerrs out early in December, when the rainy
season ends. There will be ten engineers each in charge of season ends. There will be ter engineers, each, in charge of a
large party, and the preparatory work will occupy one or two years. It is estimated that the canal can be in operation in six
years after the completion of the preliminary work. The canal proper will be about forty miles long, but the distance from ocean Lo ocean will be 170 miles, the rest of the distance being through
Lake Nicaragua, the San Juan River, and an artificial lake in the valley of the San Francisco River. The canal will be 120ft. wide
at the bottom, 28 ft . deep, and averaging about $288 f$, in width at the bottom, 28 fft . deep, and averaging about 288 ft . in width at
the top. The estimated cost, surveps, is between $60,000,000$ dols. and $75,000,000$ dols. Of of the
canal , about twenty canal, about twenty-seven miles will be in excavation, and thirteen
miles will be made by dredgers. The time for transit from ocean miles will be made by dredgers. The time for transit from ocean
to ocean is calculated at thirty hours. There will be seven locks. A. G. Menocal, C.E., is actively interested in the project, and has
made surveys, plans, and estimates of cost of the work. R. Peary, C.E., is also interested.
The new war ships. - The contracts for the new ships have been
awarded as follows by the Secretary of the Navy:-Cruiser No. 1awarded as follows by the Secretary of the Navy:-Cruiser No. - -
Newark-Cramp and Sons, Philadelphia, Pa.,
departments plan for hull, and contractor's plan for machinery, $1,248,000 \mathrm{dolss}$.
cruiser No. 4, Cramp and Sons, contractor's planss, 1,350,000 dols cruiser No. 5, department's plans for hull and maciinery, Union
Ironworks, San Francisco, $1,428,000$; N. F. Palmer, Jun., and Co., New York, 490,000 dols. each. ${ }^{\text {and }}$, on the Baltimore and Ohio Railroad, owing to the failure of the approaching the yard at Washington, D.C., at a rapiom rate of speed, and the engineer started to slow down as usual. The air
brakes, however, refused to act, and he whistled sharply for the hand brakes ; the brakemen were not quick enough to apply the speed that the first car -umped the track and went speed that the irst it completely; the engine was derailed and turned
tower, wrecking
over in the mud wrecking itself badly. A number of cars were derailed. The engineer was crushed and scalded to death, and a number of persons were seriously injured. Two men were in the
tower at the time ; one jumped from the window, the other was caught and buried in the timbers, sustaining serious injuries.
Traction engine. -A firm in New York State has brought ype of traction engine for heany to direct the course of the engine, the pinion axle is provided with a universal joint. The power is commumicated between the fore formance of this type of engine is said to be satisfactory. The same engine, which has the cylinder on top in the usual way, may
also be used for a portable or stationary encine. The wheels the "bicycle" type, of light appearance but ample strength. road Company will put two large and powerful steamers in the Central American trace to test the advantages and profit of such
a line, with a view to the establishment of a permanent line. The a line, with a view to the establishment of a permanent line. The
vessels will run from New Orleans, and if the experiment proves successful, two others will be added. It is generally thought that the enterprise will prove a benefit to the promoters and to the The Chenango Caneal. This canal, connecting the Erie Canal at
Utica, N. Y with the Susquehanna River at Bine hio Utica, N.Y., with the Susquehanna River at Binghamton, N.Y.
was authorised in February, 1833, commenced July, 1834, finished October, 1836, at a cost of $2,782,134$ dols. The canal is ninety-seven miles long, exclusive of 13.75 miles of feeders, none
of which were navigabie. It was carried over the high divide between the waters of the Mohawk and Susquehanna, having
$1015 \cdot 3 \mathrm{ft}$. of lockage up and down. The locks were, rubble stone, and cost on an average 8000 dols, each. There were from 50 to 70 tons ; the ditch was 40 ft . wide at the surface and 24ft. at the bottom. It is now proposed to fill up the canal in
West Utica, and by a recent Act of the Legislature the city of
俍 Utica was authorised to fill it up and sell the property to pay of
the bonds raised for for funds to carry out the work. Lots will be
staked of and sold, the city giving titlo to the purchasers. Many people are in favour of making a public park of the land, but this is not thought practicable under the provisions of the Act.
Irrigation in Colorado.-Mr. Orange Judd, the scientist, practi-
cal agriculturist, and expert in irrigation, spent several months las year in investigating the resources of Texas, New Mexico, Arizona,
Utah, Colorado, and other far-western States. The system and laws colorado, and other far-western states. The system and laws of irrigation in Colorado are generally accepted as being the
best in the country, but there are very considerable differences in opinion and practice. Mr. Judd thinks that much more of the soil is capable of profitable cultivation if irrigated, than is understood by people in the State, or by "Eastern people who have only though of Colorado as consisting of mining mountains or sterile plains, and proftale canals and ditches are already provided, but these constitute a comparatively small part believes in the establishment of a system of reservoirs on a large scale, and thinks the national as well as the State Government
should investigate the matter, and establish such a system of reservoirs to preserve the quantities of water which annually run to waste. At the head waters of the great agricultural rivers-the Colorado, Rio Grande, Arkansas, and the two great branches of the Platte-a system of dams across the gulches could be con
structed at comparatively small expense. There has been trouble struetly at comparall recently smanf expe recently the farmers and others below the company's land. The
ditch and the company has illegally diverted a greater quantity of water to its
own use than it is entitled to, and the matter is now before the Auxiliary steam generator for locomotives.- A new device has been steam boiler, with furnace and appurtenances, placed in the tender
between the water tanks, being covered by a boiler iron hood, between the water tanks, being covered by a boiler iron hood,
which forms the floor of the coal space and a shoot for bringing the coal down handy to the fireman. The furnace door is toward the tender. The furnace door is above the floor of the tender, and the fire-grate and ashpit below. The sides of the tender are raised
so as to give the regular fuel capacity. It is claimed that this

device will not only supply steam for heating the largest passenger arrangement of pipes, but that it may also be made a valuable
and auxiliary to the locomotive as a source of additional power. As a
steam heater it may be used in connection with the locomotive steam heater it may be used in connection with the locomotive o
independent of it, and as the tender is of iron, the danger causing fire in case of accident to the train is claimed to be reduced to a minimum. When in cold weather the engine requires all its cost and operating expenses would be mall. For heating the train by steam such an auxiliary boiler may have its value, although fo
heating feed it is not necessary if arrangements now in use in England are adopted.

THE IRON, COAL, AND GENERAL TRADES
OF BIRMINGHAM, WOLVERHAMPTON, AND OF BIRMINGHAM,

The attendances on the Wolverhampton and Birmingham Ex changes yesterday and to-day suffered from the opening of the
shooting season, but there was no decline in the more cheerful nature of ironmasters' reports of current trading. That other branches besides sheets are getting somewhat busier is the bes
feature of the market, but at present too much must not rom this premise. More contidence eis, however, begining to be expressed in the future
autumn shipping trade. American orderss, it was this afternoon reported, are adding to
the activity of the mills and forges in the sheet, hoop, and sec
tional iron branches. The United States demand sassuming pro
tis portions that entitle it to rank as important. Sheets are in larrest be laid upon this circumstance The baling hoop orders are, it is noteworthy, this season finding
their way to different local works than those which executed them a season ago. This circumstance is due in much part to the retire-
ment from the trade of Messrs. John Dawes and Sons, of the Bromford Works, Tipton. The price quoted this-Thursday - afternoon
for hoops cut to 11ft. lengths for the American market, and
finished in accordance with buyers' requirements, was rather over 6 per ton f.o.b. Liverpool.
Messrs. Hingley and smith, of the Hart's Hill Ironworks, Brierley. Hill, have booked a considerable order for iron tor
America. It is of "sectional" description, being punched, \&c.
Ind Staffordshire and the United still possible, notwithstanding the very high tariffs. Orders are
also under execution at theso works for hoops for the United States.
Platemakers are not yet in a position to report a sharo in the
creater activity which marks some of the other departments. Iro greater activity which marks some of the other departments. fron
boile-plates, in particular, are suffering from the competition of
the steelmasters; ; there are consumers who will still have nothing but iron plates, but these are getting fower every day, and are the decided exceptions. Plates for foreign railway wagon work are in
pretty brisk request, and some makers are doing well at them, The number of producers in this particular line is small, so that better prices arro obtained than in most other branches. Tank
plates are 6610 , easy, at works, and boiler sorts about $£ 7$ to $£ 9$. The marked bar trade does not show much alteration on the week, but compared with a few weeks ago, the tone is certainly
better. The orders coming to hand are for rivet and horsesho iron, the latter largely for Australia. The Admiralty is giving
some work to Earl Dudle's Round Oak Mills. Prices remain at ± 7, with $£ 6$ for second branded qualities. General merchant bar ree $£ 510 \mathrm{~s}$.; ordinary, $£ 5$; and common, $£ 415 \mathrm{~s}$. to $£ 417 \mathrm{~s}$. 6 d .
per ton. Gas tube strip is becoming rather more active with the advance of the tube season, and $£ 415 \mathrm{~s}$. is quoted for ordinary
izes, Hoops for Australia and other markets are most $£ 5$ for common sorts at malkers' works,
Of the sheet makers it may be said that they are busier than at any previous time this year. The only limit to their activity is
their capacity of production. They are full of work, and inquiries
continue to arrive in greater numbers than can be satisfied. One
local consumer who a few days ago attempted to place an order continue to arrive in greater numbers than can be satisfied. One
local consumer who a few days ago attempted to place an order
for 2000 or 3000 tons in a line is reported to have been unsuccessful, makers being so well placed ahead that they would not accept the business. Probably, however, the date of delivery and the price work was tendered. Merchants are buying for export as well as
the galvanisers, and some firms are filled with orders to the end of the yaivan.
Sheet prices are very strong again this week, and firms who are
filled up are asking almost prohibitive rates. Still there isamongst filled up are asking almost prolicive rates. sf if they can be in any most a feeling against aliowing orders to pass if they can be in any
way executed at a profit, and a wise caution is being exercised not
to advance too rapidly. We have had so many re-actions of late way execute too rapidly. We have had so many re-actions of late
to advance
that a fairly profitable and steady market is regarded as better that a fairly profitable and steady market is regarded as better
than an unduly high one with the risk of a sudden rebound. Gal-
vanising sheets of $20 \mathrm{w} . \mathrm{g}$. keep at $£ 6$ to $£ 62 \mathrm{~s} .6 \mathrm{~d} . ; 24 \mathrm{~g}$., $£ 65 \mathrm{~s}$. vanising zheets of $20 \mathrm{w} . \mathrm{g}$. keep at $£ 6$ to $£ 62 \mathrm{~s} .6 \mathrm{~d}$.; 24 g ., $£ 65 \mathrm{~s}$.
to $£ 67 \mathrm{~s} .6 \mathrm{~d}$.; and 27 g . at $£ 75 \mathrm{~s}$. per ton.
The galvanisers this afternoon repeated their former excellent reports. The demand is in advance of the past few months, and
some firms who are their own black sheet makers are unable to some firms who are their own black sheet makers are unable to
turn out sufficient material to keep all the galvanising hands as busy as orders will allow. Cablegram regards some improvement in the extent of current sales, but no revival yet appears in colonial prices. This is the great difficulty American, and Indian orders are being received as supplementary
to the Australian trade. The larger exports which are recorded in this branch month by month are of very gratifying augury.
Competition amongst home makers for the orders on the market
continues severe, and although "Association prices" are supposed continues severe, and although "Association prices" are supposed
to rule, yet there is a good deal of underselling in the matter of
extra sizes. The quotations to London merchant firms for work of this class differ greatly. While some makers offer supplies at
$£ 1012 \mathrm{~s}, 6 \mathrm{~d}$, other firms require for the same size $£ 112 \mathrm{~s} .6 \mathrm{~d}$. £10. $2 \mathrm{ss}$. d., other firms require for the same size $£ 11 \mathrm{2s}$. 6 d .
f.o. b. London. It cannot be said that attempts to regulate prices by associated action have met with much success. The productive this is the case the present underselling is sure to continue. there is at the moment a tendency to stock production. One or two furnaces have been damped down. Nevertheless, from other
of the furnaces deliveries continue to go steadily away. All-mine hot-blast iron is in tame sale, at about 50 s , to 52 s . 6 d .; part-mine, at about 40 s .; and cinder pigs at 28 s . 6 d . to 30 s . Most buyers of
native pigs seem to have satisfied their wants to the end of the quarte
Foreign pigs show more life than natives, though new sales are
not for large lots. Inquiries, however, are coming to hand rather more freely, and sellers anticipate a quickened trade when September has set in. Prices show no quotable change on the basis of
36s. for Northamptons, 37 s . for Derbyshires, and 40s. for Lincolns.
Steel is rapidly ousting iron in the steam boiler business. A Steel is rapidly ousting iron in the steam boiler business. A
local firm of boilermakers are just now building eight or ten boilers rivets, is of steel. The boilers are intended for the mint which is rivets, is of steel. The boilers are intended for the mint which is
being erected by Messrs. Ralph Heaton and Son, Birmingham, for
the Chinese Government. The cost of the steel plates being used s considerably under the price of iron plates of corresponding strength and size.
A good contract
A good contract for cast iron pipes has just been placed in this
district. It is one by the Wolverhampton Corporation for a new
waterworks main, 18in. diameter, to convey water from the pumping station at Cosford to the to convey water from the reservoir at Tetten-
hall-a distance of some nine miles. The new main is to
her supplementary to the existing 24 in . main, which is at the present time subject to undue strain. The present main will convey
1 m million gallons per day under a pressure of 11381 b to the
square inch; but when double that quantity is forced through, as in seasons of prolonged drought, it has to be done against a
pressure of 205 bib. to the inch. Such a pressure the engineer
to the works considers undesirable. The contract has just been divided between Messrs. C. E. Firmitone and Co., Brettle-lane divided between Messrs. C. E. Firmstone and Co., Brettle-lane
Foundry, Brierley Hill, who have taken 700 tons; Messrs. J. and
S. Roberts, Swan Village Foundry, West Bromwich, 400 tons
and Messrs. Cochrane and Co., Brierley Hill, also 400 tons. I and Messrs. Cochrane and Co., Brierley Hill, also 400 tons. 1
understand that the average contract price leaves about $£ 33 \mathrm{~s}$. 9 d .
per ton to makers at the works. Execution is to commence at per ton to makers at the works. Execution is to commence at
once. The total cost of the new main is estimated by the Cor-
poration at £10,000. Powerful new pumping plant is also re-
quired in connection with the same works, but these contracts poration at £10,000. Powerful new pumping plant is also re-
quired in conneetion with the same works, but these contracts
have not yet been let. have not yet been let.
The works of the Birmingham Compressed Air Power Company to the report presented at the half-yearly meetinateh. According
the share-
holders last week, it was found impossible, owing to the severity of the weather, to commence operations until early in Mareh. Since
then the foundations, retaining walls, and roadway, the gas and
boiler flues boiler flues and drainage, the chimney and the fitting, shop, were all nearly completed. The materials for the gas generators were on
the ground, and were in course of erection. One tubular boiler
was completed in its place, and others were in a forward state.
Three steam engines and compressors, each of 1000 -horse power Three steam engines and compressors, each of 1000 -horse power, the engine-house ready to receive it. The mains were in hand.
Notwithstanding the forward state of all the parts, it was not
possible to fix a definite time for commencing to deliver power. possible to fix a definite time for commencing to deliver power.
With a view to expediting work on the Birmingham cable tram-
way, the contractor, who wishes to finish the whole system by way, the contractor, who wishes to finish the whole system by
October, has completed an electric light installation that will allow of the men working at night.
The steel-rope will be supplied by Messrs. J. and E. Wright, of
Birmingham and London, whose contract has been accepted in preference to ten other tenders. This firm made the first Atlantic cable, and the iron wire-rope which is used on the London and
North - Western Railway between Edge Hill and Lime-street
stations, Liverpool. The cable to be supplied is to be 33in. in
circumference

NOTES FROM LANCASHIRE.

MCancheser - What with the British Association and the Man-

 any early imporvo, memt indicates a graneneral want of contidenco in
the iron and engineering industries the iron and engineoring industries There was again only a very slow business doing in the Man.
chester iron market on Tuesday. So far as quoted prices are con-
cerned, a general firmness is maintained, but this is not backed up by any weight of actual trade, and, as I have pointed out in pre-
vious reports, it is due more to the fact that makers are really not in a position to accept lower prices than to any real firmness in the market. There is business offering for pig iron, but this is mostly
at under current rates, which sellers do not care to entertain, and as a result the actual transactions reported are only very small in
weight. For Lancashire pig iron makers still hold to 388. 6 d . for forge and 39s. 6d. for foundry, less 21, as their quoted rates for delivery equal to Manchester, and they are not disposed to sell at
anything materially under these figures. They are able to find a market amongst their regular customers who have a preference for the local brands or are favourombly sitianted with regard to
delivery for pretty near all of the small quantity of iron they have at present to offer, and are consequently under Lincolnshire brands to which most of the trade, so far as the open market is concerned, is just now practically confined. For Lin-
colnshire iron quotations for delivery equal to Manchester remain at 37 s . for forge and 37 s . 6 d . for foundry, less $2 \frac{1}{2}$ per cent., but it
is questionable whether the full prices are being obtained, where
is active business is being done, and to effect sales 3d. and 6d. per instances. Derbyshire foundry iron delivered equal to Manchester
 practicable at this figure, makers, generally are firm. In outside
brands comparatively little or nothing is being done in this market beyond occasional small sales for special requirements, and prices, more disposition to meet buyere miler foundry brands could now in most casees be bought at a a little under 43s. per ton
net cash delivered equal to Manchester, whilst the Scoter iron net cash delivered equal to Manchester, whilst the Sootch iron
merchants are prepared to sell at quite 1s. per ton under what may and although the actual business doing in this market is only small, 52 s .6 d . to 53 s s, less $2 \frac{1}{2}$, represent about the minimum figures for
good No, 3 foundry qualities delivered into the Manchester district.
In the manufactured iron trade shipping orders are for the preis still only indifferent, and d thi full of work, but the home trade actual advance in prices. Makers are, however, firm at their current list rates, and delivered into the Manchester district prices
are steady at $£ 417 \mathrm{~s}$. 6 d . per ton for bars, $£ 55 \mathrm{~s}$, for hoops, and are steady at $£ 417 \mathrm{~s}$. 6 d . per ton
$£ 5 \mathrm{~s}$, to $£ 610 \mathrm{~s}$ s. per ton for sheets.
The condition of the engineering branches of industry remains
practically the same as I reported last week. There is more work practically the same as I reported last week. There is more work
stirring in some departments, but no better prices are obtainable owing to the continued keen competition for any new orders engine builders are fairly off for orders, boiler makers are kept busy, and some of the leading machine shops are well off for work,
whist there are concerns here and there that are very slack whilst there are concerns here and there that are yery slack. The
locomotive building trade remains extremely quiet, and there is locomotive building trade remains extremely quiet, and there
comparatively i ittle or no new work of any weight in prospect. dispute to arbitration on the fair and open terms to which the employers were willing to agree, and, as 1 have all along pointed
out, the struggle will have to be caried on until the men are out, the struggle wil have to be caried on until the men are
thoroughly beaten Gradually the shops are being filled with men obtained from other districts, and at two of the works, I understand, the employers have already obtained as many men as they
require. The strike has been most stubbornly fought out by the men, who have so far been well supplied with funds; but the to their members is causin $\begin{aligned} & \text { an in increasing drain upon the resources }\end{aligned}$ of the strike committee, which cannot fail to tell before long; and
ond with the employers gradually filling up their shops with men, the
practical end of the atruggle may be regarded as not very far distant
Messrs. Kendal and Gent, of Manchester, have just patented a new motion for their boiler shell drilling machine by which a very
considerable improvement has been effected, the main feature being that the machine, whilst operating with six drills all pointing
to the centre of the boiler, is enabled to withdraw all the drills inclaneously, and dio wise sithe on circular or longitudinal seams as required. This new motion,
which has been introduced by Mr. Dixon, one of the members of the firm, and is an improvement upon his patent releasing motion
applied to the drilling machines proviously made by Messrs. Kendal and Gent, consists essentially in each drilling tool having an entirely independent feed motion, this being necessary, owing to
the two drills which are carried on each headstock having an adjustment varying with the pitch of the rivets; the feed is so
arranged that the drill is advanced by a kind of differential motion, and when withdrawing the whole of this differential feed goes to
rest, and the drills are withdrawn in four to six revolutions. The operation of the whole of the drills, which are carried on three head
stock or two laps, is under the control of a s single attendant, who remains in one position, a simple movement of a hand lever being all that is
required to withdraw simultaneously and rapidly quired distance, the whole of the six drills. In the same manne the drills can also be fed any required distance. One great advan-
tege of this arrangement is that the workman can rely with the utmost certainty upon all the drills being withdrawn simulta-
neously, and there is no necessity for going round the boiler to neously, and there is no necessity for going round the boiler to
ascertain whether boiler shell can be moved for the next set of holes. I had an that have been made by Messrs. Kendal and Gent, and this is constructed for drilling boiler shells up to 9 ft diameter, and con-
structed of plates 6 ft . wide. The central table fitted with three jaws carm be turned round by power when setting seams, and by hand
and
when pitching the circulor already described, the mechin is fitted with Scott's dividing arrangeement, whereby the circular seam can be pitched
for any number of holes without the use of change wheels. The thre drilling saddles are carried by three standards which are adjustabl for difterent diameters of shells, and firmly bolted on three radial
beds, thus forming a rigid support even when drilling at the top of andards on plates six feet wide.
In the condition of the coal trade there is no material change to
report. There has been no quotable alteration in prices with the commencement of the month, and although there is perhaps rather more doing in house fire coals, with a fair inquiry for for
ward contracts, business generally is still only extremely dull, and
ther days a week, and a good deal of coal is still going into stock. The lower classes of round coal for iron-makking and steam purposes
and engine classes of fuel, continue in but very indifferent demand
 ordinary qualities of to qualick, 3s. sd . to bs s. 9 d . ; and common sorts
ors. 2s. 6d. to 3 s , per ton.
For shipment th qualities of steam coal delivered at the hiph level, Liverpool, or th Barror.-The
Barron.- The iron trade is busy and orders are freely offering The market shows increased firmness in most departments, and the evidences of expansion. The trade with local makers of steel is
brisk brisk, and a large tonnage is finding its way, not only to the
Continent and the colonies, but some little to Americu, although
the demand from that country is not nearly so good as it used to
be. Prices are remarkably steady, nad 45s.6d. per ton is firmly be. Prices are remarkably steady, and 45s. 6d. per ton is firmly
quoted for parcels of mixed Bessemer iron, net f.o.b. or f.o.t. at makers' works. No. 3 forge and foundry iron are still quoted at inferios. 6a. per to from 42s per ton net. Stocks of iro are not large and are not increasing. Deliveries are consider-
able both by rail and by sea. The output is large and tho
make per week is again very regular, as makers are not commake per week is again very regular, as makers are not com-
pelled now to damp down their furnaces owing to scarcity of water.
some of the largest malkers belief that better rates wirl soon exist. It is certain that the requirements in the steel trade will increase, and that the general
consumption will be fully maintained. It is therefore consumption will be fully maintained. It is therefore probable
that the make of iron will soon be increased by the relighting of some furnaces now standing idle. Here again maters are sow t take so important a step until it is more certain that prices will
improve. There is a brisk demand for all classes of steel, and it is evident that the business doing in rails is not only exceptionally
brisk, but that many more orders could be booked if makers and ble to complete deliveries. The business doing in billets, bars steel is improving ev very steady. Rails remain firm at from $\& 4$ tor met 5 s. per ton net
f.o.b. The value of other classes of steel is very steady. Next year the steel works in the district will be capable of a largely which are being put down. Finished iron remains a very quie trade, and with steel so cheap as it is at present it is obvious that the market for finished iron will remain poor and the trade unpro
fitable. It remains to be seen how far finished iron works can bo altered so as to be adapted for the superior class of metal. The in iron ore is very large, so far as deliveries are concorned, but these aro mainly on account of orders booked some
time ago at mines, and the trade is greatly confined to the better qualitic which are scarce. Coal and coke steady.

THE SHEFFIELD DISTRIOT.

From our oon Correspondent.)

A LIRGE quantity of railway material is still ordered, tho Indian
States Railways being leading customers at present. In addition to work now in hand for that market, tenders have been issued for 1384 pairs and 1600 pairs, respectively, of wheels and axles, also
3200 and 2900 springs. The Bengal Nagpur Railway is asking 3200 and 2900 springs. The Be
for 1430 pairs of wheels and axles.
Though the larger orders for arr
there is yet a goodly amount of work on hates are being worked off, there is yet a gooony amount of work on hand, and further require
ments are anticipated. It would seem as if the War-office ha made up their minds to lay in stooks of cast steel shells, while con of fifty plate blocks. They are inviting tenders for 11,000 cher lot 6 in. cast steel shells. Three local firms have been interesting themselves in this speciality, and two of them are now engaged in making steel projectiles, the third having finished their order, whic
was like the rest, purely experimental. 11,000 is a quantity, was like the rest, purely experimental. 11,000 is a quantity,
however, which looks like business, and Sheffield manufacturers are in hopes the work may be placed here.

A local company, which has a large rail plant on the coast, is, hear, contemplating the increase of its productive power to
6000 tons of steel rails per week. This would be about doubling its present output. A stronger indication of faith in the future of A trade which hes shown
A trade which has shown some signs of once more resuming
ts former importance is the manufacture of saws. Several years ago the redoubtable Harry Disston, of the Keystone Works,
Philadelphia, took a big bite out of the Sheffield saw trade ago the redoubtable Harry Disston, of the Keystone Works,
Philadelphia, took a big bite out of the Sheffield saw trade, and
two or three firms thought Sheffield would find its days numbered as a saw-producing town. Of late years, however, the orders fo saws have greatly increased, and the business has quietly assume
something like its former dimensions. Messrs. Wm. Jessop and Sons, Brightside Steel Works, have for years supplied the huge sheets from which the American firm make their large circular saws,
while the appliances for speedy and effective production of band while the appliances for speedy and effective production of band
and circular saws have been greatly improved. On Abbeydale Valley a large establishment is being erected for the saw business, continuance of Sheffield as the chief seat of the saw industry.
Mr. Frank N. Wardell, Chief Inspector of Mines for the York
shire and Lincolnshire districts, has issued his report for 1886 . During the year 100 separate fatal accidents caused the loss of 13 lives, being an increase, as compared with 1885, of sixteen acci-
dents and forty-six deaths. Accidents at Altofts, Houghton Main, ing ninety-s Wardell, whilst regarding the fatality for the year as disappointin and much to be regretted, points out that the output of minera a saterably, wight thes of proportion In the year he was appointed to the district the output was
$9,850,000$ tons, and the number of persons employed 37,000 , and the number of deaths 131. There were therefore 502 person employed and 150, Now the numbe and the output in the same time has advanced from $9,850,000$ tons
An extraordinary accident on the Midland Railway, near Wath n-Dearne, in the Sheffield district, last Saturday, caused muc arm and great destruction to railway material, mainly in rolling
stock, though, singularly enough, only two persons were seriously
njured. The 12.20 p.m. Midland express, from St. Pancras to Glasgow and Edinburgh, due at Sheffield at 3.50 , left a minute o two late. It proceeded in safety as far as Wath sidings, where a
coal train had broken down through the failure of a draw-bar on ne of the trucks. The signals, it is said, were set at danger th worthy man with a twenty years' experience-did not see the signals, and dashed into the rear of the coal trucks. There was a territic smash. The engine, tender, and leading carriage mounted
five of the trucks, the engine toppled over and fell down the mbankment, the tender remaining partly on the line. The couplin and the passengers had to be assisted down by ladders, whil others crawled along the foot-board. The driver and fireman, when within a short distance of the trucks, saw a collision was
inevitable, and manfully stuck to their posts. The fireman was flung off as the locomotive went over the embankment, but the his face and arm laceratcd, the fireman was badly shaken. All the pas-
sengers were able to proceed on their journey, the most seriously shaken being an elderly lady from London, who was travelling to mated at over $£ 3000$, and two break-down gangs of 150 me required thirteen' hours incessant labour to clear the wreckage.
An inquiry will no doubt be instituted as to how the driver, sup. posing the signals were set against him, did not see that they wer at danger. Equally important would be an inquiry why a coal
train should be on the main line so perilously near the time for an express on the same metals. Three-fourths of all the serious accidents which happen are due to goods trains picking their way
from station to station close on the time for fast trains to follow, from station to station close on the time for fast trains to follow,
Warvel being that a great loss of life did not ensue.

THE NORTH OF ENGLAND. (From our ounn Correspondent.)
A considerrabe amount of business has been done in Cleveland
iron during the last few days. The improvement recently pig iron during the last few days. The improvement recently the increased shipments and the good reports emanating from
Glasgow. At the market held at Middlesbrough on Tuesday last no actual advance took place in prices; but tuyers gave what was
asked by merchants more freely than they have done for some time. There is therefore every probability of higher prices being time. Mere is therefore every probability of higher prices being
demanded next month, when exports on forign acount are usualy
at a maximum. For delivery in September the price of No. at a maximum. For delivery in September the price of No. 3
g.m.b. is firm at 34 s . 4t d per ton, and for delivery over the last qo last to the end of October, and so they continue to quote 35 s . per ton. One or two firms, , owwever, who ane not so well offtare are
accepting a little less. The demand for forge iron is somewhat
and

 sellers seeming at all anxious to do business , just now, TYe price
quoted both at Middlesbrough and at Glasgow is the same as last week- namely, 34s. 4dd. per ton.
The stock of pig iron in M Messrs. Connal and Co.'s Middlesbrouch store on Monday last was 332,334 tons, being a decrease of 1037
tons for the week. At Glasgow they hold 915,229 tons. Shipments are this month proceeding at a very satisfactory rate.
The quantity of pig iron exported up to Monday night was 69,521 tons, as compared with 64,016 tons for the entire month of July. The construction of the new bridge at Stockton-on-Tees, and the
removal of the old one, has enabied the Conservancy Commissioners removal of the old one, has enabled the Conservancy Commissioners
to turn their serious attention towards deepening the upper reaches of the river, and supplying the long-felt wants of the
shippers and shipowners shippers and shipowners, who carry on business there. Mr. John
Fowler, the engineer to the Commission, has been for some time
engaged in considering a scheme, whereby a much greater depth engaged in considering a scheme, whereby a much greater depth
of water would be secured between Middlesbrough and Stockton, together with certain works designed to strengthen the banks on either side. This scheme would also include a turning place
for large vessels, and a good deep water berthat Stockton.
carry out to earry out all these improvements an expenditure of nearly $\mathfrak{E} 50,000$
would have to be incurred. The Commissioners are hardly prepared in the present state of trade to sanction such an expenditure revised scheme to include the turning place and deep-water berth, and an extra depth between Stockton and Midddesbrough
of 2ft. over and above the present minimum. This would be sufticient to permit very large ships to proceed as far as Stockton Bridge at high water spring tides, and to be safely berthed when
there. In connection with the river, further improvement has been resolved upon by the Stockton Corporation. They are the a very satisfactory condition. They have property, which is not in tome to the conclu-
ion to rebuild it at a cost of $f 17$. 500 . This sion to rebuild it at a cost of $£ 17,500$. This, together with the Commetuss to the the shippoving trade, at Stockton-on-Tees. and Co. issued a circular to their shareholders, wherein they say that they are. glad to be able to report a decided improvement in the prospects of the company, as compared with a twelvemonth
since. Nevertheless, they deem it wise not to declare any immediate dividend of the balance of profit for the last six months but to carry the same forward to the end of the financial year. This
decision though naturally disappointing to the shareholders, is undoubtedly a wise one under the circumstances.
The London Lead Company appears to have discovered a valuThe London Lead Company appears to have discovered a valu-
able vein of galena, at a a place called Blea Gill, near Middleton-inTeesdale, where it has been exploititg for an a considerable time. The disovery is regarded, both by the the company's officiaile and by
the workmen, as exceedingly opportune, as the old industry has the workmen, as exceedingly opportune, as the ord ind
for long been suffering from general depression of trade. An upright, plain cylinder, spherical-ended boiler, belonging to
the South Stockton Iron Company, exploded on the night of the 22nd, doing considerable damage to the brickwork surrounding it, the furnaces connected with it, and the roof above it. Fortunately no one was killed or seriously injured, although numbers of work-
men were employed nean it. The steam pipes were broken, and
bricks are said to ricks are said to have been flying in all directions. The noise of crowds of people assembled in the streets adjoining the works, it being insured by one of the Manchester Associations. The cause of the explosion has not yet been definitely ascertained. It
is believed, however, that the boiler was an old one, and had been ocally repaired with new plates. The probability therefore is that localy repaired with new plates, The probability therefore is that
theod and new parts sad not taken the strain equally together.
This might have had the effect of starting a crack in the older part. The water used by the company is from the maine of the
Stockton and Middlesbrough Corporations Water Board, and is Stockton and Middlesbrough Corpo
very pure and good for the purpose.

NOTES FROM SCOTLAND.

Tow ARDS the olose of last week the Glasgow pig iron warrant in prices. In the early part of the prosent week, however, the
market was strong, and steadily recovered the lost ground. Although not so large as those of the proceding week, the shipments of pigs were abovo the average. They amounted to 9997
tons, as compared with 8952 in the corresponding week of 1886 . The shipments had a strengthening effect on the market, and the The shipments had a strengthening effect on the market, and the
feeling was still further enhaned by the statistises issud by the
British Iron Trade Association for the first half of the year. There was a pretty general opinion on 'Change in Glasgow that now more fully employed supplying the current home consumption now more fand demand, and the quantity of iron being made for the the
ando exp ore
store is accordingly much reduced. Since last report an addistore is accordingly much reduued. Since last report an addi-
tional furnace has been put in blast at Carron, and the total now tional furnace has been put in blast at Carron, and the total
in operation is 85 , as compared with 81 at this date last year.
The market values of makers' pigs are firm, and in a few

The past week's arrivals of Middlesbrough pigs at Grang
are 10,349 tons against 3935 in the same week of last year. are
In the malleablot trade there is is considerabale activity, although
the recent improvement is not quite so well sustained as could be the recent improvement is not quite osiderell sustacined as could be
desired. Merchant bars are quiet, the extra business being chiefly in unbranded iron for India.
The iron and steel goods shipped from Glasgow in the past week
mbraced locomotive engines and tenders worth $£ 7200$, for Calcutta; a steamer and engines for Portugal $£ 3000 ; a$ steamer and cutta; a steamer and engines for Portugal, $£ 3000 ;$ a steamer and
engines for Egyt, $£ 7300$ machinery, $£ 1260 ;$ sewing maohines,
$£ 610 ;$ steel goods, $£ 8500$; and general iron manufactures,
$£ 11,500$,

In the coal trade there is a fair business doing, although the
shinping department would have been busier but for a strike of shipping dopartment would have been busier but for a strike of
quan labourers at Glasgow, and the observing of annual holidays
in certain districts of Ayrshire. The total coal shipments were in certain districts of Ayrshire. The total coal shipments wer
87,498 tons, as against 83,591 in the same week of last year. coliers are in many localities restricting the out,pes, are there supply is
fore easy.
During
During the month of August the output of new shipping from
the Clyde has been very satisfactory in amount, being the greatest the Clyde has been very satisfactory in amount, being the greatest
that has been launched in the same month for many years, with
the excentio greater. In the past month nineteen vessels were put into the greater. In the past month nineteen vessels were put into the
water, with an aggregate tonnage of 35,575, as against 10.171 tons
in the same month of last year. The production of the eight in the same month of last year. The production of the eight
months is now the larkest since 1884 , amounting to 131,641 tons,
and comparing with 110,469 in the first eight month of last year. and comparing with 110,469 in the first eight months of last year.

WALES AND ADJOINING COUNTIES.

THE great work of the Cardiff Corporation-the reservoir in the Cwmtaff Valley-is proceeding well. At a recent visit I was much
interested in the progress and the good work being done. Land interested in the progress and the good work being done. Land
has been taken for other reservoirs in case of need, and a farm
for bought lately. The laying of the pipes continues, and a length of nearly twenty-five miles, with a slight exception, completed.
The excavation in the Taff Valley, thirty miles in length, has shown that the vale was an arm of the sea, the rolled stones - "old
red," graniti, and conglomerate - having been subject to the action red, ", granitic, and conglomerate-having been
of tides as violent as any on the roughest coast.
I note that the Stock Exchange Committee appointed September 1st as a special settling day in Cardiff Corporation Stock-further issue- $4300,000,3 \frac{1}{2}$ per cent.
The New Roath Dock
I saw on the day of opening Cardiff is beginning work in earnest. ment; trucks and coal came from "Lewis, Merthyr." On Monday the first cargo of deals came in, brought by the William
Tapscott, 1593 tons register, Boston, Mss. On Monday the first vessel was despatched with a cargo of coals for St. Nazaire. This was the St. Aubyn, which came in with 1600 tons of iron ore from
Bilboo, so the St. Aubyn had the honour of discharging first ore Bibao, so the st. Aubyn had the honour of discharging inst ore
and shipping first coal cargoes. The Mrue Briton, with damages,
was the first vessel to be repaired in the new dock. The Tyneside was the first vessel to be repaired in the new dock. The Tyneside Engineering Company is now engaged upon her.
The coal trade is tolerably brisk, Cardiff
were in excess of late averages, and prices are well maintained as regards steam coal. Present quotations, best coal, Cardiff, 9s. to
9 s .6 d . coals and seconds are offered as low as 8 s. Swansea quotation for best coals f.o.b. is 9 s . 6 d . to 10 s .
Generally, house
Generally, house coal is flat. There are some exceptions amongst
favoured collieries, especially near Maesycwmmer. I am glad to favoured colieries, especially near Maessewmmer. 1 am glad to
see that a fine pieco of the famous vein known by that name has see that a fine piece of the famous vein known by that name has
been won by Mr. Stewart, of the Gwerna, which will yield 1000 tons weekly for a considerable time.
The colliers of Mountain Ash.
The colliers of Mountain Ash, at a meeting last week, approved of the eight hours' movement.
On Saturday, under the
Sliding-scale Committee directed the books to be audited. Ihope that the result may be to declare an advance, but fear not.
An ex-engineer, Cardiff, tells us that changes are creeping in at this seaport, and large sailing vessels coming into favour instead of
steamers, as a less expensive medium, where time is not of first three engineers, or two and coal, entails a figure which is larger than outsiders dream of.
There is an encouraging sign or two in the iron trade: rails are
in better demand. America is putting in more briskly for blooms, ind the necessities of the tin-plate works cause a full demand for steel bar. Rails, too, are in steady requirement.
Now that the drought is ended, business will get more active. Dowlais is expected to make a slight start, soon, though the poor
watershed it has does not promise much yet. When it does start waterssed it has does not tromise much yet. When ite does start
fairly good work may be expected. For some time repairs and adations
proparing.
It is in
It is in machinery, the best engineering appliancess, and the cheap labour rate current in the Welsh districts, consequent upon
low rents, \&-c., that Wales can compete favourably with the North of England. The North get their foreign ore almost at the seabe said latest and best ovens, such as the Evance Coppée.
I note one or two works still without, and in
I note one or two works still without, and in consequence they
are handicapped. The steel works at Treforest will soon be in action again. An early date is named for the restart
A large despatch of blooms took place from Newport this woek
for Philadelphia. Blooms are quoted at $£ 45 \mathrm{~s}$. This too is figure for rails, heavy sections; light are being quoted up to $£ 55 \mathrm{~s}$.
 34s. 6 d .; Bessemer, 44s. $8 \mathrm{~d} .$, f.o. t .; ; local hematite Bessemer,
48s. This is one of the manufactures showing an advance from last week,
Bessemer bars, steel, are quoted at $£ 415 \mathrm{~s}$.; Siemens bars, ${ }^{〔} 5{ }^{2}$ 2s. 6 d . Bar iron, $£ 410 \mathrm{~s}$.; sheet iron, $£ 615 \mathrm{~s}$.; steel sheets, The tin-plate trade remains about the same. Prices are main-
tained, but there is not a very large sale going on, though as tained,
makers are well booked this is not considered as of of great conse-
quence, as makers have the whip hand of buyers. Even wasters are selling at only 6d. per box less than primes. Cokes are quoted
at 13s. 3d. to 13s. 6d. ; Bessemers, 13s. 6d. to 13s. $\mathrm{Pd} ;$; Siemens, at 14s. tas . 14 s,
double box
The news from America, from whence large orders are continually a contident impression prevailing that higher pricess must rule, and that in a short time. Clearances have been large, make is still
somewhat restricted, and booking for future delivery at market price is not approved by makers.
The Gadlys plant,
The position of these works, with trood water power and railway communication, should command attention.
A strike is threatened amongst the ste
A strike is threatened amongst the steel smelters at Swansea, the men are acting in unison with one or the trade The cause of
British Steel Smelters Amalgamated Association. The
the difference is reesistance to an adjustment of the of wages consequent upon the increased make of a large improved furnace at Iandore.

One would think that as the increased make meant increased pay,
ntually, at least, that this would be a fitting subject for arbi-
tration. Th . Thondda and Swansea Bay Railway Co. had a meeting this
week, and good progress was announced with the tunnel. It is week, and good progress was announce withe the tunne. under
now half through. Another year will see the completion under
ordinary circumstance. It it state that tome of the walling at
Nrifory Milford Doc
of the dock.

NOTES FROM GERMANY.
 (From our oron Correspondent.)

THE position of the Rhenish-Westphalian iron market improves
rom weok to week, and this more cheerful condition of it is founded
judgment. The conventions and syndicates have taken a wise and conditions of of the trade, whach has given prices contidence, and as
yet there has been no reaction on the part of buyers. The yet there has been no reaction on the part of buyers, The
Silesian iron market, too, continues to exhibit great firmness It was at first prophesied that the establishment of conven tions, \&c., would cause a reaction on the part of buyers, bu
quite on the contrary, the large merchants and dealers have rather aided than opposed the works in their endeavour to raise
prices, which would indicate that the forme prices, which would indicate that the former exceptionally low
ones were unnatural and unnecessary ; and as a a proof of the will of buyers, they have filled the works with orders at the
whar syndicate prices-indeed, M. 1 p.t. above this for bars is being
iven to get promptly served, and all this quarter's output ha given to get promptly served, and all this quarter's output has
aready been contracted for. For the fourth quarter no contracts are being entered into by sellers, because a further rise is anticipate for that period. Last August the base price of bar iron wa
M. 9 p.t.t. now is is 132.50 ; best sorts, 140 to 145 ; and plates are 160 to 165 . The steel works continue satisfactorily employed.
The ore markets of the Western districts remain favourable t seilers, and prices in the Siegerland have not only been well maintained, but have somewhat advanced again, and the same may be
recorded of those of Luxemburg, which are being sent in such large parcels into Westphalia that stocks are quickly becoming
reduced, and the prices of minette are now M. 1.85 to $2 \cdot 40$ p.t. On the whole the position of the pig iron market is also favourabie,
the demand is brisk, and prices still have an upward tend The railway freights on German pig iron into Holland are phalian works. This has already take wire rods, and will soon come into aperation. Belg giugn had almost
pushed Germany out of the pushed Germany out of the Dutch market through cheap freights, so now the tables are to be turned and Belgium ousted. such
the rivalry now going on on the Continent quality spiegel iron is again in full swing, and as the rolling mills are all full of work, it keeps forge pig in continued brisk demand at firm prices; and the same is the case with foundry sorts, as the toundries are much better employed, and now again in a position
 former. The prices are very nearly the same as quated last week.
In the month of July, 326,075 tons of pig iron, including Luxem. burg, were produced, 149,413 tons of forge pig and spiegel, 42,49 tons Bessemer, 91,075 tons basic, and 43,096 tons foundry pig.
From January 1st to July $31 \mathrm{st}, 2,174,556$ tons, against $1,983,515$ tons last year.
The wrought iron branches keep steadily and, if possible, in-
creasingly well employed, and the syndicate prices, which have only gradually followed the rise in pig iron, are cordially paid by buyers. It is reported that the syndicate has laid an extra
M. 3 p.t. on to small lots under 10 tons in favour of merchants. It appears that the base price of M. 115 is for the limited home area, whilst that up to the Elbe and Saar is 113 , and east of the two
named rivers 108 per ton, which is also the price to the south of Aix-la-Chapelle-Coblence. Hof. The output of the twenty-two comin sympathy with the rising piq 25,229 tons. The Saar rolling mills in sympathy with the rising pig iron market, are contemplating a
speedy rise in eirders, the present price of which is M. .13
p.t. The good demand for thin sheets keeps up, and Mi. 133 is paid readily, but the base pheets keeps up, ans been and
raised M. 5 to 140 p.t. The wire rod trade, both for home
The raised M .5 to 140 p.t. The wire rod trade, both for home
consumption and especially for export, has greatly increased,
Prices sale prices must, and will, ap profit is to be realised on their the advanced notations for pig iron and and steel billets. Apoportion to to
this, the steel works are almost all sold out toll the this, the steel works are almost all sold out till the end of the year, so that it is not possibbe, or at any rate only at very enhanaed
prices, to contract for the requisite supply of billets. As regards Railway was M. 1 p.t. himher than at the last tendering. The tenders ranged between M. 109 and 115 5 .t. Cockerill and Co. offered at M. $116 \cdot 45$ free at Colberg, but this port is out of the
way, so the offer did not avail them. The wagon works are extremely quiet just now. There is nothing new to note regarding the machine and constructive workshops beyond what was said
last week. The wrought iron and steel notations continue the a fall in them. The Belgian iron trade continues very firm, and most works are
 Company, it is announced, has taken an order for 6000 tons of stee
rails for rails for the Danish State Railways, at M. 82 p.t. at Seraing.
Indeed, the Liege works are best engaged in the rail branch, whilst other districts are busy on billets. The Liege small-arms makers have obtained orders for 3000000 rifies on the Schulhof system.
The machine shops complain of want of orders. It will be in recol The machine shops complain of want of orders. It will be in recol-
lection that Baron Sadoine was deputed by a syndicate of Belgian Industrials to proceed to China, in the hope of securing enterprises
or trade for the country. He has just returned, but his mission ${ }^{\text {appears }}$ to have almost entirely failed of success. condition it has remained in for some time back, and demand at the works is increasing
An extensive factory for the manufacture of seythes, large
enough to supply all the wants of Russia, has just been put into operation at Wina. TTll n ow the owountry was supptiod from
abroad, chiefly from Styria, which will now lose a its once flourishing, celebrated trade, which has existed hundreds of years.
It is rep
t is reported that an English company is about to establish a
ato large factory at Nuremberg for the construction of bicycles. Th
has arready acquired severa acres of land on which to erect the
works, to which a riding school, or covered circus or ring, is to be attached. As there are but 25,000 cycle riders in Germany, wher this sort of sport has only of late years attracted the attention it
deserves, against 500,000 in England, the company no doubt has a good prospect of success, which it is to be hoped it will obtain. It jis further stated that, the proprietors in this country of the
" R Roburite" patents have sold therightstomanufacturethis explosive in England and France for $£ 50,000$, but this statement require

A Year's Ranlway Accidensts.-The total number of person
returned to the Board of Trade as having been killed in the work returned to the Board of Trade as having been killed in the work-
ing of the railways in the United Kingdom during the year was
938 , and the number of injured 3539 . Of these 95 persons killed and 1342 persons injured were passengers, but of these only 8 were
killed and 615 injured in consequence of accidents to or collisions between trains; the deaths of the remaining. 87 passengers and
the injuries to the injuriesill to want of caution on the part poty the ind indidualses
and especill to mate anemselves. Of the remainder, 425 killed and 2010 injured wero officers and servants of the railway companies or of contractors
Of suicides there were 80 ; of trespassers, 205 were killed and 91 injured ; of persons passing, over the railway at level crossings, 81
killed and 25 were injured; and of other persons, from miscel. laneous causes, 52 were killed and 71 injured. In addition to the
above, the companies have returned 51 persons killed and 3868 injured from accoidents on their premises not connected with the
movement of railway vehicles. The total number of movement of railway vehicles. The total number of passenger
journeys, exclusive of journeys by season ticket-holders, was
and ore than in the pre vilus yeari,
sengers killed and injured during the year from all causes were, in round numbers, one in $7,637,730$ killed, and one in 540,674 injured.
In 1885 the proportions were one in $6,385,421$ killed, and one in In 1885 the prop
617,549 injured.

THE ENGINEER.

NEW COMPANIES.

Tre following companies have just been regis-ered:Cheadle Railvay, Mineral, and Land Company, This company proposes to construct, equip, nd work a railway intended so extend from the town of Cheadie, in staffordshire, to or near the way; also to carry on mining operations. It was
recistered on the 18th inst., with n capital of registered on the 18 th inst., with a capital of
$£ 250,000$, in $£ 10$ shares. The subscribers are:H. M. H. Rumball, 4, Stone-buildings, Lincoln's. inn, barrister
Jomn Lowis
Dean, $47, \ddot{ }$ Moorgate-street, fencing
 J. Brixton, contractor, 'sahaim, 4 , St. Andrew's
 inn-fields. law stationer
Thomas Baker, 422 , Mansion \because Housse-c.iamberber lhand agent Charles Dickie, Bernard Hoüse, Hig̈ Bärnë The number of directors is not to be less than
five, nor more than nine; the subscribers are o appoint the first, and are to act $a d$ d The company in general meeting will determine

Height Measuring Apparatus Company, Limited. This company was registered on the 18 th inst., certain provisional specifications and patents at home, in the colonies, and abroad, obtained by Mr. William Porritt Ingram, of Middlesbrough, scribers are:-
W. E. Walker, Middlesbrough, ironmast
W. I. Ingrm, Middosbough, engineer
W. Gilchrrst Midd Mdesbroumb

 J. M. Hopkins, Middlesbrough, clerk

The number of directors is not to be less than
three, nor more than seven; the first are the subscrirebsrs denoted by an asterisk, and Mr. Thomas
Walker, of Saltburn-by-Sea Walker, of Saltburn-by-Sea. The purchase is
regulated by an agreement of 13 th inst.t the con. reideration being $£ 500$ cash and 950 fully-paid
sid shares.

Santa Marta Raileay Company, Limited. On the 2 2nd inst. this company was registered,
with a capital of $£ 600.000$, in $£ 10$ shares, of whicl 40,000 are 7 per cent. preference shares, to purchase from Don Manuel J. de Mier and Robert A.
Joy certain contracts or concessions made with the Republic of upon the river Magdalena, and for certain hanbour works, wharves, quaass, and other works at
the Port of Santa Marta. The suberibers the Port of Santa Marta. The subscribers are:Robert Griggs, 17, Crescent-road, Bromley, Kent
Alexander Henderson, 28 , Austinfriars, H. W. Burrside, $2 \ddot{i}$, K̈empsford -gardens, S̈suth

The number of directors shall not be less than
three, nor more than seven; the subscribers are three, nor more than seven; the subscribers are
to appoint the first, and are to act ad interim, qualiification, 250 shares. The compan
meeting will determine remuneration.

Leete, Edwards, and Norman, Limited. This company was registered on the 27 th ult.
with a capital of $£ 20,000$, in $£ 5$ shares, to trade as with a capitai of $£ 20,000$, in $£ 5$ shares, to trade a neers, tool and boilermakers, electricians, india neers,
ruber, and and vulcanite manufacturers. The subscribers are :

*W. Leete, 366, Euston-road, ongineor

The number of directors is not to be less than
three, nor more than seven; qualification, $£ 500$ in three, nor more than seven; qualification, $£^{\& 500 \text { in }}$
fully-paid shares ; the first are the subscribers denoted by an asterisk ; remuneration, $£ 200$ per annum.
London Electric Supply Corporation, Limited. This company was registered on the 26th ult.,
with a capital of $£ 1,000,000$, in $£ 5$ shares, to supply electricity for lighting and other puresoses
within the City of London and the area included in the London Postal District. An agreement
with Sir Coutts Lindsay and Co., Limited, will be adopted. The subscribers are:-
${ }^{*}$ The Hon. R. T. D. Brougham, C.E., 15, Hans'shares.

*Lord Wantage, $\ddot{2}$, Cariton-gardens, s.w. \because.
The number of directors is not to be less than seven, nor more than twelve, the subscribers
being the first; qualification, capital; remuneration, fi2000 per annum of share cappita, remuneration, ± 2000 per annum, and, in
addition thereto, one-tenth of the annual surplus profits after providing for a reserve fund and paying 5 per cent. dividend to the shareholders,
provided that the total remuneration shall not exceed $£ 5000$ per annum in respect of each
$£ 1,000,000$ capital.

Northern Electrical Engineering Company,

This company was registered on the 26th ult
with a capital of $£ 25,000$, in $£ 1$ shares, to take over the ba ins of sion ap turers and electrical engineers, carried on by
F. H. Perry and Co., Limited, in Vietoria-street, Liverpool, and also the business of H. J. Marshal
and Co., of Custom House-arcade, Liverpool. Tb subscribers are:-
Thomas M. Bigley, C.E., 19, Castle-street, Liver- Shares.

 F. ${ }^{\text {broker }} \mathrm{H}$ Perry, $\ddot{70}, \ddot{\prime}$ Chäthaim-street, L̈iverpooi, R. F. J. Johnsonson, 77 , Stoke Newing $\begin{aligned} & \text { elon-road }\end{aligned}$

The number of directors is not to be less than three, nor more than seven; qualification, 300
shares ; the subscribers are the first. The company in general meeting will determine remuneration.

Beersheba Gold Mining Company, Limited.
This company was registered on the 26 th ult.,
with a capital of $£ 30,000$, in $£ 1$ shares, to carry on mining operations in the Transvaal, and will dopt an unregistered agreement, dated 22 nd ult. and F. W. Smith. The subscribers are:- Shares. R. J. Smith, 23, Moorgate-street, engineer
H. W. Macdona, 20 , Finsbury-pavement, ac-
 Park, N.
J. H. Goodwin, $74, \ddot{ }$ Coleman.-street, $\ddot{\text { wooi broker }}$
B. H. . Bloxham, 41, Doughty-street, clerk
H. L. Dixson, Castle Tavern, Greeshan-street
W. J. Beard, 66, Basinghall-street, auctioneer
The number of directors is not to be less than three, nor more than seven ; qualification, $£ 50$ in shares or stock; the first are Messrs. W. Gordon
Bagnall, Castle Engine Works, Stafford ; G. F. Bagnall, Castle Engine Works, Stafford ; G. F.
Griffin, St. Helen's Wood, Hastings ; W. Bevitt, Romford; Major Donald Cameron, of Cape Town;
and Edward Jones, M.E., of Johannisberg, the latter being appointed local director in South Africa; remuneration, $£ 500$ per annum, and 5 per
cent. of the net profits after payment of 20 per cent. of the net

Bridgexater Spinning Company, Limited
This company was registered on the 27 th ult.,
with a capital of $£ 100,000$, in $£ 5$ shares, to acquire with a capital of $£ 100,000$, in $£ 5$ shares, to acquire
from the Patricroft Spinning Company, Limited from the Patricroft Spinning Company, Limited,
the Springfield Mill, Barton, in the parish of
*W. Hargreaves, Bolton, engineer
C. T. Wolfenden, Heaton, Bolton
C. T. Wolfenden, Heaton, Bolton $\ddot{ } \quad$.
*J. K. Glazebrook, Swinton Park, near Man *D. Marriage, Chorriey, $\ddot{\text { cotton }} \ddot{\text { spinner }}$
*M. Settle Daray, Lever, colliery propri
M. Settle Daray, Lever, colliery proprieto
${ }^{*}$ T. H. Rushton, Bolton, machinist
R. Walker, Southport.
three number of directors is not to be less than three, nor more than five; qualification, twenty shares; the first are Messrs. J. Crompton, T.
Grundy, J. J. Grundy, William Entwistle, and the subscribers denoted by an asterisk. The company in general meeting will determine remuneration.

Oaxaca Mining Company, Limited.
On the 25th ult. this company was registered, . ing to Mr. Constantine Rickards, at Oaxaca,
Mexico, and to work gold, silver, and other mines. Mexico, and to work gold, silver, and other mines.
The subscribers are:-
L. Long Maudsley, Stanger-road, South Norwood,
A. Gilbert, St. Michael' $\ddot{\text { s.rooad, }}$, $\ddot{\text { Stockwell }}$

Mrs. Jogler, 6, Great St. Helen's, merchant Sadler, 2, Gloucester-terrace, Regent"s
Park
W. Brougham, $\ddot{6}$, Copthall-court, clerk
R. R. Gibbs, 7 , Fenchurch-buildings
.
The number of directors is not to be less than
three, or more than five; the subscribers three, or more than five; the subscribers are to
appoint the first. The company in general appoint the first. The company in genera
meeting will determine remuneration.

THE UPSETTING OF A RAILWAY

> TRAIN BY WIND.

DURING the night of the $11-23$ of June, 1886 , On the Soustinik station, a portion of a train, consisting of an engine and forty-five wagons, was blown over by a terrific gale of wind accompanied by a severe
thunderstorm. The train was made up in the thunderstorm. The train was made up in the
following manner:-Next the engine, an empty covered wagon; next, four smaller wagons, each cellaneous goods; next, sixteen empty covered wagons; then twenty empty flat trucks; next, two
coal trucks; and lastly two empty flat trucks. The line was on sidelong ground, and was formed fo only for a single one ${ }^{2}$ permanent way was lain accident occurred, the wind, which was blowing from the S.S. W., was nearly at right angles to the line, and came down a valley some miles long. O to receive a second pair of rails, was a spoil bank, against which two loaded and sixteen empty covered wagons fell, remaining in an inclined position and forming a curve, the centre of which
was about 4 ft . from the rails, while the was about 4 ft from the rails, while the end
abutted upon them. The hinder parts of the train abutted upon them. The hinder parts of the train
remained on the rails, though the couplings wer broken away. This short paper is illustrated by cross section showing the position of the wagons after the accident, and a map illustrating the peculiar features of the country. The estimater
force of the wind is given at $25-21 \mathrm{~b}$, per square foot. foot.
1 "Proceedings" Institution of Civil Engineers.
2 The gauge is not stated, but it is presumably the
normal Russian gauge of fft

THE PATENT JOURNAL

Application for Letters Patent.

** When patents have been "communicated" the
name and address of the communicating party aro
printed in italics.
23rd August, 1887.
11,451. Automatic Fire Alarm, L. Nievsky and B. 11,452. AtMospheric Oil Burner, E. Horton, Bir mingham.
11,453 . STopper for Bottles, J. Brocklehurst, Man chester.
London 11,455. Driving a Reaper Knife, G. P. Coope
Beverley. Beverley.
11,456. SEparating Solid Matters from Liquids, W S. Squire, London. W. N. Woodruff, London.
11,45. SHAFT KEYs, W.
11,45. WINDINe SHUTLE Coss, H. H. Lake.-(M. Palmer, United States.)
11,459. Rock-DRILING MACHiNes, R. P. Elmore and G 11,459. Rock-Drilling MAchines, R. P. Elmore and G
(G. Tillotson, London.
11,460. Cartridge Cases, H. H. Lake.-(J. W. Frazier, 11,460. Cartridge Cases, H. H. Lake.-(J. W. Frazie
United States.)
11,461. Kniting Machines, \&c., J. M. Sellers, Keigl ley. Artificial Teeth, J. Macdonald, Manchester.
,462. Abs. PRinters Galleys, R. C. Ross, Manchester. Privters Galleys, R. C. Ross, Manceles
ADverising PuZZLe, C. Lee, London.
Isochronic Coock, H. Conant, London.
Gas Motors, C. T. Wordsworth, London.
Correspondence Card, W. H. D. Caple
Repeating attachments to Watches, J. G Repeating Attachments (e. (P. Nordmann, United States.) gue.-(P. Nordmann, United States.)
Duralicate Telegram Book, G. Harrison an
s, Bradford. Sons, Bradford.
471. LATHES,
London.
472. SPinNing Worsted YARNs, H. H. Tankard and
H. W. Broadbent, London. Wroadbent, London.
 E. M. Tover, United States.). H. Lake.-(N. W. Sals.
11,476. DRWING BaARDs, H. He
bury, United States.) bury, United States.)
11, I77. Ironing and Dryina Fabrics, E. Hesketh, London.
11,478. Crystalalised Metal, L. L. Leferre, jun.-(c.
Payen, United States.) 11,479. Boor STRETCHER, F. Roeder, London.
11,440. TowEL RACK, H. H. Lake.-(W. T. Mersereau, 11,481. L UBREsCATMORs, J. Y. Johnson.-(D. D. MacMul-
len, United States.) 11,482. Indicating apparatus for Railways, J. W.
Hiles, London. Hilles, London.
1483. ADJUsTing the SEats of Music Stools, G. Clu-
low and J. Loader, London. 11,484. Adsustring the Seats of Music Stools, G. Cly
low and F. Stevens, London. 11,485. Treatina and Purifying Sewage, J. H. Barry S6. Securing Doors of Railway Carriages, F. G. G. Lines and J. Kendal, London. Red.-(J. S. Hall,
11, 4 , Reducing Cereals, A. H. Reen. 11,488. Stand for Carrying Teapots, W. Soar and H.
Parkins, London. Parkins, London.
11,489. INDICATING the Weioht of Human Beinos, E.
Parr and E, Edwards, Parr and E. Edwards, London. Winn, London.
11,490. SYPONIC APPARATS, P. Wis
11,491 . EXHAUST ARRANGEMENTS for ENGINES, J. Atkin11,491. Exhaust Arranaements for Enoines,
son, London.
n1,492. Castric Alkali Carbonates, H. H. Lake.- (A.
Kayser, H. Williame, and A. B. Young, United Kayser; H. Witiams, and A. B. Young, Unita
Stetes.)
(A. Producing Silicate of Sodium, H. H. Lake.-
(Aayser, H. Wultiams, aud A. B. Young, United Producina Muriatic Acid, H. H. Lake.-
Kayser, H. William, and A. B. Young, United Starting Tramdars, S. Reeeve, C. E. Ratcliffe, 1,495. Starting Tramcars, S. Reeve, C. E. Ratchife,
and J. B. Davis, London.
1,496. Decorating Ceramic Ware, A. J. Boult.- F. Czech, Austria.)
11,497. DyEving YARN in Cops, A. Graemiger, London.
11 ,498. GLove, \&c., FAstening, G. Brockhaus, Liver-
 1,500. Compounds of Flvoride of ANTIMONY, de., C.
J. E. de Haën, Liverpool.
1,501 . Betring Pulleys, A. J. Boult.-(H. R. Leichsenring, Germany.)
i1,502.' DyNamo-kectric, \&c., MAchines, E. F. H. H. Lauckert, London.
11,503. MoTor Evgives, C. D. Abel.-(The Gasmotoren
Fabrik Deutz, Germany.).

24th August, 1887.

11,504. Steam Pumps, P. E. Hodgkin, London.
$11,505$.
Varivino a Burino GAs Jet, J. D. Cocker, Manchester. Letring-off and Trbadle Motions of
Loo. Warp
Lo. Catlow, Halifax. Looms, C. Catlow, Halifax.
1,507. GRINDING FLats of Carding Engines, J. Bul-
lough, Halifax. lough, Halifax.
11,50., Openine, \&c., FANLIGHTs, \&c., R. R. Harrison,
B1,509. Bricks, \&c., H. Warrington and W. W. How-
lett, Hanley,
 ford, France.) for Loms, C. Hahlo, C. E. Liebreich,
11,511. HEALDS
and T. Hor and T. Hanson, Halifax.
11,512. SToppering Bortues, M. Sutcliffe and w.
Brocklehurst, Manchester. 11,513 . Frossing the Suraices of Flint and Glass
WARE, J. S. Williams, Staffordshire. Ware, J. S. Williams, Staffordshire.
11,514 . Reieasing and Locking Machinery, w. Sunderlanel, Selly Park.
11,515. Shaping the Tekth of Bevel Wheels, J. Lindsay and R. Allan, Glasgow.
11516 . Howlow Stek Shafting, E. Cope and A. Hol lings, Liverpool. London.
11,518. Peramblators, C. A. Rollason, Birmingham.
11,519 . Consuming Smoke in Furnaces, P. Hodkinson, Li, 19. Con
London.
Lonen.
1,520, Opening and Cleaning Fibres, J., R., and J.
Greenhalgh
11,521. UTILISING OLD Horseshoes, A. Leggoe, Shef-
field.
11, 522. Watch Chains, N. C. Reading, Birmingham. 11,524. PENCLLS, R. E. Green, London.
$11,52$. BLEACHING MATERLALS, J. Farran, Manchester.
11,526 . Shoes for Hoofed ANIMALS, C. J. Jutson and 11,526. SHoEs for Hoofed ANIMALS, C. J. Jutson and
F. A. Poupard, London. F. A. Poupard, London.
$11,527$. CaR Covplivgs, J. L. Rankine, London.
11,528. Casting Rollers, J. A. Drayton and M.

McCoy, London.
11,529. Lampr, L. Cornélis, London.
11,530 . STEEL SLEEPERS, J. Cabry
W. H. Kinch

11,534. Treatuent of Sewage, T. M. J. and J. N
Truchelut, London. Truchelut, London.
London. London.
11,536. SIGNal Gun, E. Drinkwater, London.
$11,537$. Charcoal, O. Bowen and A S . Tomkins, London. Velocipedes, F. Wilkins, London.
$11,538$. . 539 . Pocket Filter, S. W. silver and W S. Bennett, London.
in, $5+0$. Hydo-carbon Oil Carriers, A. F. Stone and 11,541. PRopulsion of Ships, E. Griffon, London 11,542. Clocks, A. J. Boult.- (P. Amiel, Spain.) Tudor, Liverpool.
11.544. SHIP for W. We. J. W. White, Manchester.
11,545. Hooks and Eves for WEARING APP AREL, M. W. Alcock, Manchester.
11,546. SHAPrNG,
aus'., Files, R Weerth, London. Eggert and E. A.

$$
\text { aus'm Weerth, Lonaun } 25 \text { th Aupust, } 1887
$$

aus'm Weerth, London.
25th August, 1887,
11,547. Fish Hooks, J. E. Gold, London.
$11,544$. Protectors for Boots, \&c., O. Tilley, Leices
ter. Water tuyere with a False Nose, G. Large,
Wolverhampton.
11,550 . W INDING Y ARNS
rison, Glasgow,
11,55., CoAs, TAAES, A. Lowe, Birmingham.
11,552 . SAND BLAST APPARATUs, J. E. Mathewson, 1,553. Self-measurement System for Buots, C. J
 Aberdare.
11,555. STRTCHing, \&e, Trouser Bottoms, G. Brown
ing ing. Farnworth-in-Widnes.
11,55. BLocks and TuYERES connected with Blast
FURNACES, J. McCann, Millom.
 11,557. Plovghs and Plover Coulters, H. W. Robin
son, Northapton.
11,558 . SElf-Aptina Mules, J., W, and S. France 11, and T. Smith, Manchester.
11,559. Rectifying at Sightall Error in the Mariner's CoMPAss, W. O'Keeffe, Douglas, Isle of Man.
11,56. INJETORs, A. Audenburg. - (Schëder and 11,56in Buck Less and
Fletcher, Cheadle. 11,562. Revoving Car for Gravitation Railways, \&c, R. Mansell and R. Flanagan, Manchester.
11,563. Corrugate
wood and H. Carlisle, Spheffield. WABHEr, W. C. Lock
i1 5 . 11,564. Washing DolLY or Plunger, H. Watson,
Steeton Steeton.
1, 565. Adjustable Tool Holder, J. J. Cart
London. 566. Door Furniture, R. W. Brenmehl, Birming ham.
11,567.
Benn Bennett, Glasgow.
11, 68 . ELectrically-driven Sent
David Machines, J, David, London. London.

Separating Wool, de., from Animal Fibre, Bromhead.-(U. C. Allen, United States.)
Hardey
other Plates, R. EH. E. Shill and A. Mars Martin, ENOINES, STEAM or otherwise, as Morors or
Re, J. J. Miller, G. J. Tupp, and H. G. A. Rouse, London. 11,573 . Boors and Shoss, B. B. Nicholls, London.
\qquad
1,577. MUsical Insirumer Fryer, London.
1,577. DETEMINING the RANGE of, London. GUNs, \&c.,
Shepheard and H. F. Holman, London.
I1,579. BaLING of PEAT, \&c., H. C. Capel, London.
11,580 . FASTENING MATERIALS Together, L. Wilson,
Manchester.
i1,581. Securing, Locking, or Fastening Materials
Together, L. Wilion Toogther, L, Wilson, Manchester.
11,582. Solewoids, R. Harrison, London.
11,5s3. AvToMTIO ExTINGUISHERS for OIL LAMPs,
F. W. Durham, London.

26th August, 1887.
11,586. Roller Bearings for Shafts of Wringing Machines, A. Clark, Halifax.
11,557. Latches and Bolts for Doors, J. Holt, Manchester.
11,588. Automatic Michinery for Cutting-up Card. Automatic Michinery for Cutting-up Card-
U, L. Myers, Birmingham.
Ugham. and other Pulleys, w. H. Rooke, 11,590. PREsEss, W. Gaskill, London.
rison, Birmingham.
riser Doors, R. R. Har11,502. Lire-saving Apparatus for Steam Trams, de,
J. Cheshire, Birmingham. . C93. Beshire, Birrningham. Scales and Weighing Machines, w.
Parnall, Bristol Parnall, Bristol.
11,594. Electric Fire-Alarm Telegraph, W. Blen-
heim, Egham, heim, Lgham.
11,595. Lamp Exivouisher, J. Blos, Berlin.
11,596. STEAM Boleks, J. Barker, Oldham.
11,597 . AUTOMATIC CIGAR, \&c., SUPPLYiNG MAchines, E. E. Atkins, Birmingham.

11,599. Footralis, A. J. Altman, London.
11,600. Water Heatige and Automatic Gas and 1,600. Water Heating and AUtomatic Gas and
Water Revlator, W. J. Righton, London.
i, 60. Box or Sad Iron Heated by Liquid Fuel, L.
Strakosch, London Strakosch, London,
11, $1,02$. FIIE-ARMs, H. Walker and H. C. Heffer,
London. London.
11,603. Safety Dropping and Sprinkling Cork, H.
W. Lancashire, Felpham. 11,60. Fachlitatiso Delivery of Prepaid Goods, A.
Steer and E. O. Eaton, London. Steer and E. O. Eaton, London.
11,605. Indicitor Block for Sprinos of Carriages,
R, Jones, London. R. Jones, London.
11,606 BURER for
Sclaefter and
G. Elsner, Scheefter and J. Elsner, France.)
11,607. BALL BEARINCS, J. L. Herckenrath and H. W.
van Raden, London. 11,60s. Height-measuring Apparatus, W. P. Ingham,
London. London.
11,609. Fitering Water, \&c., J. E. Warren, London.
$11,610$. Recovering Chemioas from Spent Liquors, J. E. Warren and F. A. Cloudman, London.
1,61. STEAM, \&c., Bollers, G. Paxton, Glasgow, 1,61. Stea, dc., Boilers, G. Paxton, Glasgow
1,612. TExTLLE FAbREs, H. Martinz, London. 11,613. Cupola Smelting Furnaces, F. A. Herbertz,
London. 11 . 614 . Making Cop Tubes, J. B , G., J. B. Swailes, 11,615. Twist Lage Fabrics, I. Elliott, London.
11,616. Lantern Pinlons for Clocks, A. E. Hotchkiss, London.
11,617. SEAM Engines, J. F. Thompson, London.
11,618 . HeEls for Boots and Sboes, J. B. Tilley, London.
11,619. Fot-warmers, sce., W. Farquhar, London.
11 ,620. Cleaning Foreign Sheerskins, A. Granville, London. S. Oliver, London.
11,622. FURNACEs, N. Petersen, London.
11,623. ExTRACTOR M ECHANISMS for Dro
 London,
Love, J. A. Hanna and T. F. Shillington, 11,625. MAking Calculations, A. J. Boult.-(A, T.
Thomas.)

11,626. Combing Dang and Umerella, w. P. Thomp-son.-(C.E. Vail, Vnited States.)
11,627 G GENERATINQ STEAM, J. F. Walker, Farnham. 27th August, 1887.
11, G28. Generrativa Sgeondank Stean, C. Howe and
 111,632. Govervor for Exvixss, W. F. Bowen, Bolton,
 11,634. MEDALS of CARDDOARD, \&cc., W. H. Watts, Bir${ }_{11,385}^{\operatorname{mingham} . \text { Wisdise }}$ Machises, W. and L. Tolson and J.
 11,637. Brcycles, dc., W. H. \&. Aubin, Bloxwich,
 11,640. Kinderrgarten Spelineo-box, C. Hossfeld, ${ }_{11,641}^{11, \text { Bil }}$ Boilers, J. Peake, Manchester.
 11,645. SToniva and Auromartc Suppry of Oit for
LAMPs, C. W. Clarkson and F. Burnard, Newport.
 OS4ulivan, London.
11, G47. REsPIRATOR
and Inhaler, S. F. Smith, 11,6A8. Paringo, \&c., Veogtables and Frutr, D. Clan-

 11,656. STEERLiva GEaR, J. Robinson, London.
 ${ }^{111,6590}$ Revoivino Ruberr, L. Gillon, France.

 ${ }^{11}$ 11,66. METETLLLIC Plates or Platina, S. Robertson,

 ${ }^{11,672.2}$, Vonatilusatios of Lead, \&e., M. M. Bair,
 11,674. SUsprexpina, dc., Electric Lasps, M. Bailey
and J. Warner, London. and J. Warner, London.

$$
\text { 29th Aupust, } 1887 .
$$

11,676. Stand Pipes for Fire-extinauishina, J. W. 11,677 . Warp Machines, A. Paget, Loughborough.
11,678 . Minoing Machive and Gas Motor Enoine, G. $11,679$. Anchors, Wurt, Glasgow. Strawson, Birmingham.
11,680 . Courling, \&c., SHor Shuters, Doors, de., E. 11,681. BRessh, W. H. Sellwood, London.
11,68. BRUsH, W. H. Sellwood, London.
11,682. SELE-ACTINO MuLEs, W. Dyson and T. Fisher, Halifax.
11,683. Paining for Cylinders, \&e., J. Taylor, Man11,684. SAfety Ridina Stirrups, J. Harrison, Stam-
ford. 11,685. Land Trlling Machine, W. Gordon, Cullen. ${ }^{11}$,686. Atrackent of Door KNobs to their Spindles, J. Tomkys, Codsall.
11,68. Lace and Fabrics on Twist Lace Machinery
W, Gadd, Manchester 11,688. REEL to HoLD SEwing Cotton, \&c., R. Wright, 11, b89. Treatment of Oil or Tar obtained from Blast
FUriaces, A. H. Allem and R. Angus, Sheffield. Furvaces, A. H. Allen and R. Angus, Sheffield.
n1,690. BaLL and Wheel Castor Frame, J. Cheshire,
Birmingham. 11,691. Artificial Supports for Spinal Weakness,
D. Kennedy, Glasgow. 11, ©92. Conveyyina Pure Air into Cities, \&e., H. D. 11,693. Fixid, London.
11,694. Rocking Chatr and Horses, Jond 11,695. Extrett, London. Joint Ping, \&e., J. J. Hayhurst, 11,696. TakING MEASU
J. Couteau, Len
11,697 . Covers to Vmskers for Pic., for Garments Articles, S. R. Stevenson, London.
11,698. Gas . States.) Las Lamps, E. Stein.-(T. Gordon, Lnited 11,699. allves for Liquid Meters, C. C. Barton,
London.
11,700. Pump or as a Motor Engine, G. de Mont11,701. Burning Gas for Cooking and Heatino Pui Poses, Q. S. Backus, London.
11,70. Wire Ropes, H. R. I. Webster, London.
11, 703. SAFETY FASTENERS for WINDOW SABHES, Rese and R. Hunter, Glasgow,
11,704. Insulators, W. E. Langdon, J. C. and G Fuller, London.
London. Lamps, E. B. Burr and E. Böhm, 11,7ond. Cans or Jars for Liquid Blacking, \&c., H. J.
Allison. (S. M. Bixhy, United States.) Allison.-(S. M. Bixby, United State8.)
11,707. WIND GAUGE SIOHT for FIIE-ARMS, H. J Allison.-(W. Lyman, United States.)
11, 7ios. Horizontil BLLL or Leter File, F. Planner,
London. London.
11,779. Metal Cans or Cases, J. A. Lloyd, London.
11,710 Spring Saddle for HobBy Horses, J. H. How11,7il. Actuatina Brakes on Bassinettes, \&c., R 11,712. Watches, H. Hammarlund, London. 11,714. Connecring Carriage Lamps to Lamp Irons,
H. Rogers, W. Howes, W. Burley, and w. H. Rogers, W. Howes, W. Burley, and W. Howes,
London. Li,715. MAchines for Minging Meat, de., F. J.
Gardner, London. Gardner, London.
11,716. ENRIHuNG Prch, M. L. Honnay, London.
11,717. GAS Motor Evarim, D. Embleton, London.
 Generators, H Gliaser, London.
11,719. Water Crgculating, de., Apparatus, \&c., R.
Fraser, Li- erpool.

11,720. Safety Locking Devices, A. B. Pickard, 11,721. Rolling Tea Leap, W. Jackson, London. 11,722. Telephone Apparatus, J. Stewart.-(
Hutinet, France.) 11,723. Registering automatically the Number of
Articles Weighed by a Weighing Machine, P, Shadbolt, London.
i1,724. Magazine Repeating Fire-arms, F. Passler 11,724. MAGAZ1, London,
and F. Seidl,
11,725. BLANK AMMUNItion, P. Thaine.-(T. Norden 1i.726. SEALELED Lock and Label-case Combined, J
Verney, Wolverton.

SELECTED AMERICAN PATENTS (From the United States' Patent office official Gazette.)

365,225. Wall-protecting Atrachment for Furni-
ture, Frederick Barrors, Haverhill, Muss.-File April, Frederick Barrovs, Haverhill, Mass.-File Claim.-(1) As a new article of manufacture, a devic
of the character described, consisting of a bracket carry

ing a roller and a spring, the latter being arranged to
maintain the roller in the vertical plane, essentially a specified. (2) As a new article of manufacture, an
attachment for sofas and other articles of furniture consisting of a roller mounted in a supporting arm, and a bracket in which the said supporting arm is
pivotted, substantially as described. (3) The combination, with a bracket f, and the pivotted arm c_{f}
carrying a roller a, of a spring h, at the back of said supporting arm, substantially as described. (4) Th
combination, with the bracket f formed with lug an arm c, pivotted between said lugs and carrying a roller a, and a spring h, secured to the bracket f be
tween the lugs ee, substantially as described. 365,395. Gas Furnace, H. W. Loss, Edge Moor, Dat
Filed June 7th, 1886, I. W. Loss, Eage Moor, Del. Ctaim.-A continuous hearth of a circular, elliptical,
or polygonal outline with two removable partition

doors, combined with and surrounding an inner inde pendent structure consisting of an upper partition
regenerator with a reversible valve and a lower gas

producer with a similar valve, the inner structure
being connected with the outor hearth by two diame rically opposite situated openings or throats, substan 365,465 . Yave Geab,
son, Menlo Park, N.J Claim. - (1) The combination, with two or more between such governors causing them to act in unison, substantially as set forth. (2) The combination, with dyoor more steametogines, each operating one or more machines being connected with the same conductors or systems of conductors, of a lime or lines of connected shafting, and connections from said shafting to the
throtte'e valve or cut-off mechanism of each engine,
whereby variations in such mechanism in one engine
are transmitted to the corresponding mechanism of both or all the other engines, substantially as set or cut-off The combination, with the throttle valve line or lines of connected shafting, of removable and adjustable connections between them, substantially as
set forth. (4) The combination of the valve or cut-off nechanisms of two or more engines, the line or line

365,465

of connected shafting, connections between such
mechanisms and such shafting, and means for holding mechanisms and such shafting, and means for holding substantially as set forth. (5) The combination o
wo or more steam engines, one or more dynamo or nagneto-electric machines driven yy each of such machines being connected in multiple onge, and means for regulating the speede of both or all
araid engines simultaneously, substantiall
and said engines simultaneously, substantially as set
forth. 365,475. Automatic Water-gauge Valve, J. Kayser,
New York, N. Y.-Filed Februery 3rd, 1886 . check valve F, combination of the automatic spring C , whereby the closing of the valve \mathbf{F} automatically opens the valve E , while the opening of the

365,475

valve \mathbf{F} does not close the valve E, substantially as described. (2) In an automatic gauge-cock, the com-
bination of the valve E and its seat F with the screwstem B, having the pin D and the spring C surrounding the spring D and bearing against the outer portion
of the valve E, substantially as described.
365,482. Process of Rolling Dasaskeened Rods, ,
Mannesmann, Remscheid, Prussia, Germany.-Filed
January 31 st, 1885 . January 31 st, 1885 .
Claim. (1) The pross of forming damaskeened
rods, which consists in passing a block or billet

formed of metals differing in quality or kind between
rolls, and thereby reducing the size of the block rolls, and thereby reducing the size of the block
simutanoeusly with imparting a spiral twist to the
fibres of the metal, substantially as set forth. (2) The

process of forming damaskeened rods, which consists
in rolling a block or billet composed of metals differing in quality or kind through between rolls, so as to then uniting several of these rods and passing them again through rolls, so as to produce a rope-like inter-
twisting of the fibres, substantially as set forth.

365,508. Enaine Governor, G. E. Dov, San Francisco, Claim.-(1) A governor consisting of a cylinder containing liquid, a main piston moving vertically therein
and connected with the supply valve of the engine, and the smaller alternately reciprocating pistons
and operating in corresponding chambers in the main
piston, in combination with the upwardly outlet, valves in said pistons and the escape-passages
through the main piston, substantially as herein

365,508

described. In a governor, a cylinder or chamber con-
taining liquid, a piston fitting therein and connected with the supply valve of the engine, and smaller alternately reciprocating pistons operating in corresponding
chambers in the main piston, and by which means the reactive force of the governor is sustained and controlled, in combination with the inlet valve K and passage LI^{1}, communicating with the reservoir-space L
and return passage W , substantially as herein de-
scribed. 365,701. Gas-motor Enaine, N. A. Otto, Deutz-on-theRhine, Germany.-Filed February 17th, 1887 .
Claim.-(1) Igniting apparatus for gas-motor engines, consisting of a slide n having a channel b communica
ting by a small hole c with a chamber d that in its turn mmunicates by an ann opening d^{1} with a pase

365,701]

c having opposite lateral openings $e^{1} e^{2}$, the passage e
being made to communicate with the firing port of the engine by a passage h, substantially as degcribed. (2)
In combination with the passage $e e^{2} e^{2}$ of the igniting slide n, the cham
air by a regulatin air by a regulating cock η, and with the said passage
by an opening k, substantially as herein described. 365,707. Stone-dressina Hammer, J. S. Squires, Jon
dan.- Filed December 4th, 1885. Claim.,-The combination, of the head or body A, the
plate B, secured to said body on one side, removable

365,707

points or chisels supported by the body-plate, and the points or chisels supported by the body-plate, and the
stirup clamps C C, clasping said points or chisess and
secured in holes formed in the plate near its ends secured in holes formed in
substantially as described.
365,819. Art of Welding the Ends of Metal Tubes,
H. Jordan, Northampton, Mass.-Filed April $23 r r^{\prime}$ ${ }_{1856}{ }^{\text {H. }}$ Claim. -The improved art herein described of butt-
welding the ends of metal tubes, consisting in first whaping the end to be welded, then closing the end of
shap 365,819

the tube sufficiently to bring the edges each opposite to the other, and then heating and welding between
dies shaped to force the inwardy-bent portions of the end of the tube together and form a a butt-weld, sub
stantially as and for the purpose set forth.

Raliway Extension in Cexlon.-In his first repor on the tha Province, issued by Government, Mr. Kirg
urges that a decision should be come to very soon a regards the extension of the railway by somery route and on some gauge. Ceylon people were glad to learn by
last mail from Mr. T. N. Christie, the chairman of the Ceylon Planters' Association, that on the day after the
mail left England he was to have an intervin mail left England he was to have an interview with Sir
Ienry Holland on this subject, and they hoped tha
at length the extension would be sanctioned.

