THE RIO TINTO MINES.

The Rio Tinto, or Red River, from which the mines take their name, enters the sea on the south coast of Spain, between the mouths of the Guadalquivir and the Guadiana. The mines are near the source of the river, about fifty miles from the town of Huelva, and are connected with it by a 3 ft . 6 in . gauge railway. Huelva nected years ago was scarcely more than a fishing village, but it is now one of the most important sea ports of
Spain. It is situated between the rivers Tinto and Odiel, eight miles frow the sea, and it is the terminus of the Seville and Huelva Railway, and also of the Zafra and Huelva line, which is nearly completed, and when tinished will put Huelva into direct communication with Lisbon. The visitor who arrives by sea will disembark at the magnificent pier of the Rio Tinto Company in the river
Odiel. A full description of this pier was given in a Odiel. A full description of this pier was given in a
paper read by Mr. T. Gibson before the Institution of Civil Engineers-vol. liii., page 130. After having inspected the well-arranged foundry and repairing shops,
through which we were conducted by the company's resident engineer, Mr. W. Langdon, M.I.C.E., we continued our journey to the mines. The rails are Cammell steel,
Vignoles section, 50 lb to the yard, spiked direct on Vignoles section, 50 lb . to the yard, spiked direct on to
the sleepers, as is the custom throughout Spain. The the sleepers, as is the custom throughout Spain. The
first part of the road presents no features of special interest; but as we approach the mines the scenery
becomes wilder-fields of corn give way to hills becomes wilder-fields of corn give way to hills
covered with gum-cystus, and we wind round them by sharp curves and up numerous inclines-some
as steep as 1 in 40 -crossing and re-crossing the as steep as 1 in 40 -crossing and re-crossing the
river till we reach the new cementation works at Naya. Shortly afterwards vegetation ceases, and we enter Rio
Tinto station. Here the scene baffles description. On Tinto station. Here the scene baffles description, On
the right rise clouds of smoke from heaps of mineral which is being slowly calcined; high above us, on the left, the stag from of fire down a tip; thousands of children, both streams of fire down a tip; thousands of children, both
boys and girls, are carrying small wooden trays of mineral direction. Our directions. Our carriage is here detached from the train, and another locomotive takes it up a steep incline to the
town. The most important feature of Rio Tinto is the open. Tast, of which a model was exhibited at the Invenyards Enibition in yards long by 30 yards wide at the top, and more than
100 yards in depth, has all been excavated since the present company commenced its operations in 1874. The
mines were previously worked by the Spanish Government, but not on a very large scale. It is laid out in steps, or benches, as they are termed, each one 10 m .
below the other. The lode narrows as it deepens but the ore improves in quality. Borings with the diamond the present lowest workings without reaching the bottom of the lode. In fact, the company has ore in sight for upwards of 100 years at the present rate of output.
From the open-cast the lode runs westward for several miles, but, of course, with varying width. Adjoining the open-cast is the Contramina, which is connected with it is San Dionisio. To the north of the beyond that mountain of red porphyry and ironstone, and at the back of this are further deposits of copper ore known as the
North Lode. North Lode.
At San Dionisio there are three shafts, viz., the Alicia, the San Dionisio main shaft, and the Alfonso, the latter being called after the late King Alfonso in honour of
his visit to the mines in 1882 . All these shafts have galleries at distances of 10 metres one below the other, the Alicia being already at the seventeenth level, or a
depth of 558 ft . The galleries are large and well ventidepth of 558 ft . The galleries are large and well ventilated. Those of each shaft are gradually being connected.
The boring is done partly by hand, but chiefly by means The boring is done partly by hand, but chiefly by means
of rock drills. Of these two systems are used-McKean's and McCulloch's, otherwise known as the "Cornish rock drill." In both the drill is driven by compressed air, and in both the same rotary and percussive movement is given hand. The blasting is almost entirely done by dynamite, as the object being to get as much ore as possible
in pieces of a convenient size for transport, the shatterin pieces of a convenient size for transport, the shatter-
ing caused by this explosive is not a disadvantage.
There are several tunnels connecting San Dionisio with the open-cast. The lowest one, at the tenth level, is continued to the main line railway station, joining continued to the main line railway station, joining
another tunnel from the main lode, so that it is only
below this below this level that the ore has to be raised by winding engines.
The total quantity of ore extracted in 1886 from all the Rio Tinto mines was $1,378,381$ tons, which gives an copper pyrites varies considerably; even in the same copper is very different. It may fall as low as $\frac{\frac{1}{2}}{2}$ per it is even richer. At Rio Tinto the average is rather over 3 per cent. Besides copper, the ore contains suland other metals.
There is hardly a mine of any importance in the south of Europe which does not show traces of having been worked by the Romans, and Rio Tinto is no exception to this rule. Coins, water-jars, weights, tear-bottles, \&c.,
have been found at various depths at different parts of the mine, and, what is perhaps even more curious and
interesting, the remains of two Roman water-wheels were interesting, the remains of two Roman water-wheels were recently discovered in the North Lode. One of these,
about 13 ft . diameter by 12in. wide, is in a very good state of preservation. It is of wood, with a bronze axle, and it is a remarkable fact that the mixture of metals in this axle was found on analysis to be almost exactly the
same as that now used for underground work at Rio same as that now used for underground work at Rio
Tinto. The acid copper-liquor rapidly destroys all usual descriptions of bronze, brass, or gun-metal which come in
contact with it; but a special mixture, containing an unusually large proportion of copper, is found to stand
very well. The Romans had evidently discovered this very well. The Romans had evidently discovered this
fact, as their ordinary brasses for above-ground work contained about 10 per cent. less copper than that used contained about 10 per
Rio Tinto stated above, the percentage of copper in the they may be divided into three classes-poor, medium, they may be divided into three classes-poor, medium, athe Rio Tinto classification, but these three divisions will suffice for the present article. The poor ore we may term that which contains less than 2 per cent. of copper, 5 medium between two and five, and the rich all above per cent. Of these only the medium quality is exported annually to Huelva, and thence shipped to Great Britain, France, Germany, and the United States. It may seem, strange that with the large production of copper from the Lake Superior and other mines of North America, there should be a large and increasing demand for Rio Tinto ore in the United States. This, however, is because Rio Tinto ore, which usually contains about 50 per cent. of sulph
acid.

A good deal of the poorer ore containing less than 2 per cent. of copper is treated by what is called the wet usually piled in process. stone flues passing through them. The heaps are then proportion of the sulphur, reducing the sulphide of copper to sulphate. After slowly smouldering for from nine to twelve months, the teleras, as these heaps are called in
Andalusia, have burnt out. The calcined ore is then Andalusia, have burnt out. The calcined ore is then removed, shot into long narrow tanks, and washed for some days. The sulphate of copper contained in the liquor
flowing from these tanks is conducted to other tanks flowing from these tanks is conducted to other tanks containing pig iron, and the iron gradually precipitates
the copper. The effluent liquor is strongly impregnated the copper. The effluent liquor is strongly in
with iron, but contains only traces of copper.
The precipitate at first resembles pure copper, which, in fact, it very nearly is; but after a few hours' exposure to the air it oxidises and becomes black. When removed
from the tanks it is passed through buddles, or jiggers, to from the tanks it is passed through buddles, or jiggers, to
free it from graphite, and from any iron that may have free it from graphite, and from any iron that may have
become mixed with it, and it is then dried in kilns, and become mixed with it, and
packed in bags for shipment.
The richer ores, viz, those containing more than 5 per cent. of copper, are destined for the blast furnaces. They are also calcined before they are sent to the furnaces, but much more rapidly than for the cementation process. At
Rio Tinto there are twenty blast furnaces. Eight of these are of the ordinary pot type, modifications of which these are of the ordinary pot type, modifications of which
are found in all parts of the world. They are built from are found on the spot, and held together with iron ties,
stone so as to allow of partial repair without destroying the furnace. There is a separate chimney for each furnace, and the charge is tipped in from the back, through and the charge is tipped The flag, which chiefly consists of oxide of iron and silica, is drawn off into conical cast iron vessels running on wheels, and is tipped over an yet been utilised for any other purpose. The matte, containing from 35 to 45 per cent. of copper, is run into cast iron moulds, and when cold is broken up and examined before being loaded up for shipment. The greater part of it is sent to the Rio Tinto Companys
smelting works at Cwmavon, in South Wales, where it converted into marketable copper.
The other twelve blast furnaces are more of the type of the German Pulz-ofen, but they present several new six furnaces, but the only two chimneys, one for each each furnace. No. 5 size of Roots' blowers is used, and a pressure of 11 b . per square inch, or even less, is found sufficient. These furnaces also differ from the others in having eight tuyeres, and water jackets; and in the matte, instead of remaining at the bottom of the furnace. The quality of the matte is similar to that produced by the other furnaces.
The total number of hands employed at Rio Tinto is about 10,000 . Of these more than a hundred are English, mostly chiefs of departments, but also chemists, clerks,
winders, underground timbermen, \&c. The machinery is winders, underground timbermen, \&c. The machinery is
extensive, and in good condition. It consists of winding extensive, and in good condition. It consists of winding
engines, air compressors for rock drills, pumps for drainengines, air compressors for rock drils, pumps for drain-
ing the mines, and for the supply of fresh water, pumps raising $3,000,000$ gallons daily for the cementation pro-
cess, the blowing engines for the blast furnaces to which we have alluded above, and a large quantity of mills, orecrushing rolls, and other miscellaneous machines. There crushing rols, and other miscellaneous machines. here another twenty for the main line between Rio Tinto and Huev.i 1000 men, are well supplied with English drills, planing and slotting
machines, \&cc. All work is done to English dimensions, the draughtsmen, fitters, carpenters, \&c., use English rules, and understand inches and sixteenths far better than centimetres and millimetres.

In conclusion, we wish to express thanks to the manager - Mr. James in their power.

PRESTON DOCKS AND THE RIBBLE.
There is, we regret to say, reason to believe that Docks are going very unsatisfactorily with Preston Docks and the Ribble improvements. The workswere esti-
mated to cost $£ 600,000$, and now it is said that they will cost double this amount. The difficulty lies not in making the docks, but in getting access to them from the sea, through a sand bank extending some five miles out.
The cost of making a channel through this beach
cannot be estimated with any accuracy, and whether it can or cannot be kept open, no one can say. Thus, then, he docks are being made, while is a matter of pure conjecture whecher Of course with sufficient expenditure of money and power, a channel may be made and kept of money and power, a channel may be made and kept people of Preston want to make a profit, not a loss, out of the docks, and it is clear that no profit can be made if the expenses incurred for construction and maintenance
are to be very heavy. It is more than probable that more are to be very heavy. It is more than probable that more money will have to be raised, and we venture to suggest
that before another sixpence is invested in the undertaking, some highly competent and independent authority be called in to report on the whole.
It is not easy to say who first started it, and it would be worth while to ascertain whether the engineers have had then their opinions must be valuable and the expenditure of additional capital on their advice may be quite justifi able. What is most needed at present is a definite independent statement of facts, and such a statement ought to be forthcoming before another farthing of capital is raised. It may be said that in writing as w do we are damaging the prospects of the undertaking Nothing is further from our intention. The key of the whole position is the construction of a navigable channel from Lytham to the sea. As for the dredging of the Ribble itself, and the construction of the docks, these present few difficulties. The originators of the scheme should by this time be in a position to show what progress las been made with the formation ore the trouble worth mentioning We repeat that it must present great difficulties, and before the public invest further sums, or Preston spends more money on the scheme, proper data should be supplied to show that the further expenditure is justifiable. To demand the production of such data is in no wise to damage the chances of the undertaking. When we hear that the estimate must be largely exceeded, we have a right on the part of the public to ask why ? The construction of the channel being the weak part of the scheme, we are naturally led to suppose that the additional outlay is needed for it. But it is only too well known that the sums which may be expended dredging channels through sandbanks, and subsequently keeping them open, are what have they effected? What will happen to the channel when the winter gales set in? Is there any thro hrough a sandoank left nearly dry at In our impression
 sketch ill showing the situation. A reference to this show buoys on the existing channel, such as it is There is some reason to believe that the whol sen the constance that a dee weme channel did years a exist between Lytham and the sea There is no such channel now, and the fact that it has been obliterated is a very ominous matter, and bodes no good for an artificial channel. Once more we would urge on the good people of Preston the necessity for having a report from some highly competent and independent engineer before any large addition is made to the capital expenditure.

ABSTRACTS OF CONSULAR AND DIPLOMATIC REPORTS.
Belgium-Tradeof Antwerpin 1886.-Businessin some branches has been more favourable than during the previous year. Prices in many instances have considerably revived, and navigation has
been very active throughout the year. The imports embrace a been very active throughout the year. The imports embrace a
variety of British goods, those in much demand being agricultural implements, cutlery, and hardware, which, as a rule, command higher prices than the corresponding native products. British coal decreased by 9050 tons, or $7 \pm$ per cent., the greater part of coal imported now coming from Germany. The Belgian
portion of the enterprise, known as ' Canal de la Campine, by means of which, when completed, communication with the Rhine district, comprising the important commercial centres of
Frankport and Mayence, will be greatly facilitated is terminated Frankport and Mayence, will be gractly ace to complete the undertaking are being carried out in the Dutch and German territory between the Belgian frontier and the Rhine.
Brazil-How to increase British trade--Porto Alegre.-Stress has been laid on the necessity of commercial travellers being
sent abroad as an important means of extending trade one reason why Germans have taken away a portion of the foreign trade from English houses. Travellers may be useful in backward places, such as parts of Eastern Europe, or in semiif therous localities, but in such a market as this I doubt it they are of any use. It is rare or a travelier from Germany
to come here, whilst they are constantly arriving from England, yet the business of the place is principally in the hands of the Germans, though a great part, perhaps more than half, of the cermans, though a great part, pernaps more than half, of the
manufactured goods imported here is of British origin. The merchants and wholesale dealers who import direct from Europe are intelligent and practical enough to know where the most suitable articles can be got, and have their agents in Europe who go there for them irrespectiv of country. 1 isas been stated the Germans, who can transfer their connection to Germany of cannot agree with this, it is the goods that are wanted; if they could be got as well or better from Germany the trade would
have long been transferred, for I know cases in which everything that can be done in the way of sending samples of British goods to Germany to be imitated is done. It is not so much British manufacturers that have been driven out of the field as that
British merchants have had the foreign trade with their own British merchants have had the foreign trade with their own country wrested from them. I will enceavour to give a reason
for this which has hardly been touched upon, but which is for this which has hardly been touched upon, but which is
very important and of considerable influence on the subject. Hardly any English house takes any trouble to provide itself with successors against the time when the founders or heads have teretire. The employes are eoked upon as nothing more,
or less independent of business，there is no one in the concern with sufficient interest to push it properly and compete with younger and more vigorous opponents，especially when these
are foreigners．In this way houses are continually dying out even when there are sons，for these are continually dying out， in England．There is no advantage personally to the members of English firms in securing successors to their business，but there can be no question as to the great advantage from a national point of view in the German system of keeping the
business together．They take care to provide themselves with successors in their clerks，whom they make junior partners as the older ones retire，and so the continuity of the house is car－ ried on with all the advantages of unbroken connection and ex－ perience joined to new blood and ideas．The business is kept，
if not in the same hands，in the same nationality．It is said that there is a difficulty on the part of English houses in finding suitable successors among their employés，for the British clerk is inferior to his German colleague in commercial education and this is probably one of the reasons why the British merchant has to give way to his more linguistically gifted competitor． blished in different places，but even in this case new British firms are generally at a disadvantage compared with new Ger man firms．A young German house can get far more assistance and facilities in the way of credit，\＆c．，in Germany than a young
English firm can get in England．There is more backing up of English firm can get in England．There is more backing up of
one＇s countrymen and clannishness amongst the Germans than amongst the English，and even in England more facilities are given，or are more readily given，to foreign than to English
houses．As long as these matters nothing very surprising in English merchants being replaced by Germans，by which British manufacturers and trade generally must suffer in the long run．Amongst other suggestions made should furtherance of british trade is one that show－rooms sulates．To have a complete range of samples of every manu－ facturer＇s goods in all branches of trade would require enormous premises and be impracticable，but the idea to some extent is tage．＂As a trading Consular officer I should be glad to take charge of and exhibit，by means of my own firm，any sample
suitable to this market which manufacturers send．＂Workmen were brought from England for an earthen－ ware factory here，but in many instances gave a great deal of trouble，which was one cause of the factory proving unsuccess－ ful and having to stop．＂In connection with this matter，I wish to say that the experience I have had of British workmen who come here is very unsatisfactory．They are generally given to foreigners．In the few undertaking here a great contrast to under British auspices and with British workpeople，suched coal－mines，gasworks，\＆c．，which are now in other hands，the British are generally got rid of and their places filled by Ger－ mans，Italians，and others，who are found more reliable and steady．British contractors prefer foreign to such British
labourers as are to be met with here．The British steamers labourers as are to be met with here．The British steamers
engaged in the coasting trade between here and Rio de Janeiro engaged in the coasting trade between here and Rio de Janeiro
prefer a foreign to a British crew，the latter giving far more prefer a foreign to a British crew，the latter giving far more
annoyance and trouble．＂These remarks are suggested by an experience extending over a considerable number of years，and it is a depressing and unpleasant fact to an Englishman to find nationalities．
Brazil－Rio Grande do Sul．－The Germans are continually making great efforts to completely control the trade of this dis－ trict，with results not very gratifying to the well－wishers of
British commerce In the last six months of 1885 ，British im ports exceeded those of Germany by $11 \frac{1}{2}$ per cent．，and at the equal，and it is very probable that such countries were almost equal，and it is very probable that such British goods as hold wondered at，there being only three British importing houses in the town，and nearly all the remainder are controlled by Ger－ alwa，who live and thrive upon smaller profits，and there is the principals retire，a good custom rarely observed by British houses abroad，and the absence of which may account for the decay of many old houses，and the brief efforts of the units into which they split up．In this province a very large proportion
of the purchasing class is either of German descent or nation－ ality，and purchases from their own countrymen rather than from the foreigner．The bulk of the British imports may there－ exported from Germany as cheaply as from England．The feeling widely prevails that what is of British manufacture is good，but the selling power primarily lies in cheapness；and a familiarly－coloured box，a fraudulent trade－mark，or a well－
known label，will generally induce the purchaser to believe that he is buying cheaper the article which previously answered his plaints，experience，and reduced se gained by customers，com given up importing German goods，and again ordered largely compete with German requires careful attention ；but goods to of making a present profit at the risk of a loss of reputation for good workmanship，which may easily affect more persons than the actual manufacturer，should never be lost sight of，especially
as a revival of trade generally would probably first be felt by those who had consistently produced the best work．As regards improving British trade，it is difficult to suggest any mean that have not been frequently pointed out．The British com－ mercial traveller is conspicuous by his absence，and the expansive
power of British trade is therefore still seriously crippled． from home manufacturers．The information asked for is given as far as is possiole，but the mass of illustrated catalogues，price lists，printed matter，trade newspapers，\＆c．，is not and cannot be put to proper use．It is useless to retain them in the Con－
sulate，for they would never be seen by the proper persons． sulate，for they would never be seen by the proper persons．
During the eleven years I have been in the service I have only once had a merchant apply to me for information concerning a branch of British trade．The papers are distributed among they are sent，for merchants abroad are no more inclined to further their competitors＇business than at home．It is also very difficult for a Consular officer to act fairly in such matters，
for in bringing the manufacturer at home and the merchant for in bringing the manufacturer at home and the merchant trade of a third person，who has hitherto acted as the middle－
man through whom the purchases have been made．A distinction is thus created which may impair the Consul＇s influence for good in other ways．Were there a local institution for the futherance private as distinguished from general trade questions might with

Mr．Ambrose Archer，Vice．Consul，Porto Alegre，Brazil．
advantage to all parties be referred to it．A private firm with a small staff of good local travellers，who would undertake to keep a sample room and act as local agents for a number of
different trades，would answer a useful purpose，and might be made remunerative，and such a firm would not be difficult to
find．The facilities now within the reach of find．The facilities now within the reach of everybody for importing direct from any European port，instead of through of the old commission importing houses，and have caused trade to settle down upon a broader and firmer basis of direct demand and supply．In this light the above suggestion may look like an attempt to bolster up a decaying trade and interfere with natural laws；but the method is honest，which is more than can be said of all the influences adversely affecting British trade in
Chili－Study of market requirements．－Merchants here generally complain that English manufacturers do not study the changes in the requirements of the market in the same
manner as their continental competitors；and the consequence manner as their continental competitors；and the consequence change in character，are imported chiefly from England，articles which require manipulation to prepare－as well as good taste－ and which constantly change in design or make，are imported from continental houses．As the market requires constant change in the character of its merchandise，it has given the con－ English goods．${ }^{2}$
France－Trade of La Rochelle in 1886．－The depression of trade in this district has greatly increased in 1886．Imports have decreased by 221,000 tons，or 47.5 per cent．under 1885；
and exports by 18,000 tons，or over 78 per cent．The trade with Great Britain has not only held its own，but shows an increase of exports both in value and volume；a fact worth noting because hitherto that trade has shared in the fluctuations of trade generally．British shipping has increased by 5000 tons， or over 15 per cent．This increase is not exceptional，and indi－ Eates that the carrying trade is falling more and more into English hands．French vessels are unable to go on working at present rates of freight，and merchants here who have hitherto English vessels for them，being unwilling to pay the dearer rates which their own countrymen must charge if they are to go while thg at all．If our merchant navy is in spite of the great advantages they have over us in freedom from restriction as to lading，lower wages to seamen，and shipping bounties－ which handicap us so unfavourably－our position must be a very
trong one，and will become more so in the future when thi strong one，and will become more so in the future when this
depression shall pass by，because these disadvantages are com depression shal pass by，because these disadvantages are com working economically，while foreigners are depending upon protection，which has not done much for then than they were before．The works at the new port of La Pallice have made considerable progress，upwards of $£ 80,000$ having been spent on it during the past year．It is expected to be complete in 1889，and being easier of
access at all tides，will entirely supersede the present port Since I called attention to the necessity of employing France，I have received letters from prices and samples of their goods，and beg me to bring them but can only repeat it is useless here，as no one cares to look at patterns unless there is some one on the spot to sell the goods rom England，and the choice is between sending out agent who can speak to the customers，or not doing any business at all．As to having museums of samples attached to the Con－ sulates，they would not be any use unless the Consular officer
were to take orders for and sell the also the scheme would he very objections，For other reasons mount of suffering from depression of trade at present in France，which has led to a strong feeling against the importation and importers of foreign goods，even when French traders．Con suls，by mixing themselves with the sale of foreign goods，would ncur an amount of ill－will that would impair their power of making themselves useful in other ways．Many tradesmen sel oreign goods quietly，without saying where they come from nd win cont make money by it，so to have the opportunity of buying their goods withey ought attention that they are doing so，or trouble to themselves ；this will be best attained by following the usual mode of doing busi－ ness in this country－sending round private agents who under stand the business，and avoiding the appearance of official inter erence as much as possible．
France－Trade of Nantes in 1886．－Nantes，from its position on the Loire，its industries，manufactures，and port，is one of the
most important commercial towns of France．I cannot report ny marked improvement in the general state of commercia affairs during 1886．British shipping decreased twelve in num to call at this port，the larger vessels going to St．Nazaire，which is increasing in importance．Some think that the lateral ship canal between these ports now constructing will not be profitable The Chamber of Commerce is of opinion that when completed the canal will vastly increase the importance of Nantes as a port， In imports there is a slight decrease，principally in coal， machinery，and metals．Exports are slightly increased in cast
ron，hardware，machinery，and rails．The depression of trade and the reduction of the import duty in agricultural implement or the relief of the farming classes have greatly affected this British and German manufacturers．No noticeable recovery has taken place in the metal trade，which in former years showed great activity，owing to large orders for public works．The most practical way of giving an impetus to British trade abroad is the employment of commercial travellers．A competent man peaking well the language of the country in which he is called of British industry．An earlier report states that there is a field here open to English manufacturers if they make their oods more generally known，and，above all，dispose of them the Paris middle－man．${ }^{3}$ The absence of travellers here may be due to the disinclination of our manufacturers to open numerous small accounts，owing to the difficulty in recovering cheques，
and so they prefer to deal with wholesale houses of responsi－ bility．

At a special meeting of the Manchester Chamber of Commerce on Tuesday，it was unanimously resolved to have a Lan cashire annexe in the Melbourne Exhibition next year．

For kind of goods see Engineer 4th March，1886，p． 170.

PETROLEUM FUEL．

Mr．F．V．Urquhart，whose system for burning petroleum is most universally adopted by the railways in Russia using hat kind of fuel，and who is most probably the most com－ petent authority on the subject，has recently published the cesuits of working with coal and petroleum residuum on the the sole fuel used since 1st October，1884．The comparison is accurate，complete，and comprehensive，and is the result of year＇s Reports，＂on page 168．The details are as follows：
GRIAZI－TSARITSIN RAILWAY．
Expenditure of Coal in 1882 and Petroleum Residuum in 1885，
inclusive of Kindling Wood，on two Types of Engines．
EIGHT．WHEELED ENGINES． EIGHT．WHEELED ENGINES With Coal in 1882.

Month．					Average consumption of fuel and cost per mile，	
					Coals．	Co
January		${ }_{41,296}^{\text {miles．}}$	${ }_{7,003}^{\text {miles．}}$	mile	${ }_{98} \mathrm{lbs}$ ．${ }^{\text {d }}$	${ }_{14}^{\text {d．76 }}$
February	${ }_{34} \cdot 21$	${ }_{37}{ }^{41,444}$	5，770	1，082，924		$12 \cdot 66$
March ．．	33.41	20，881	1，956	632，410	87.44	$12 \cdot 99$
April	$38 \cdot 14$	24，293	3，329	850，147	73.01	$10 \cdot 60$
May ．	$41 \cdot 24$ $40 \cdot 53$	${ }^{31,145}$	4,757 4.907	1，170，956	70.62 73.04	$10 \cdot 36$ $10 \cdot 73$
July	${ }_{43} \cdot 64$	29，749	${ }^{\text {5，}}$ ， 802	1，045，201	71.74	$10 \cdot 55$
August	${ }^{39} \cdot 99$	38，751	6，028	1，308，734	${ }_{71} \cdot 28$	${ }^{10.01}$
September	$39 \cdot 54$ $35 \cdot 13$	${ }^{56,586}$	${ }^{9,298} 11881$	1，866，171	$76 \cdot 26$ 77.06	10．75
November	$35 \cdot 13$ 36.56	71,041 70,466	${ }_{12,648}^{11,891}$	$2,081,44$ $2,114,172$	${ }_{92} 95$	${ }_{13} 11.49$
December	34.00	52，763	7，166	1，416，010	$99 \cdot 82$	$14 \cdot 42$
$\left.\begin{array}{r} \text { Total and } \\ \text { average } \\ \text { for year } \end{array}\right\}$	$37 \cdot 51$	511，935	80，555	16，184，730	$81 \cdot 43$	11.

With Petroleum Residuum in 1885.

Month					Average con－ sumption of fuel and cost permile．	
					Petro－ leum re－ siduum．	Cost．
nuary		mi	mil			
February	${ }_{37}^{37} 15$	${ }_{55,222}$	10，449			${ }_{5} \cdot 36$
March．．	30．95	38，742	3，247	1，405，162	${ }_{52} \cdot 79$	8．82
April	41.03	60，477	9，809	2，079，544	$42^{\cdot 68}$	6．95
May ．．	40.81	87，805	13，489	3，033，003	41.00	6．32
June ．．	${ }^{41} \cdot 68$	75,175	11，029	2，673，988	${ }^{11} \cdot 84$	$5^{5 \cdot 47}$
July	38．80	63，901	8，160	2，120，526	38．19	B． 46
August	${ }^{40 \cdot 32}$	74，272	10，796	2，560，034	$41 \cdot 50$	6．02
September．：	${ }^{39} 776$	82，415	13，241	2，654，637	41.22	5．88
October	37．61	101，253	15，468	3，226，698	$47 \cdot 74$	${ }^{6 \cdot 77}$
November	36．24	82，346	16，434	2，388，761	42．95	${ }^{7} 48$
December	34．85	63，468	9，482	1，881，136	54．19	$8 \cdot 60$
$\left.\begin{array}{c} \text { Total and } \\ \text { average } \\ \text { for year } \end{array}\right\}$	38.08	868，712	137，670	28，565，555	45．83	6．50

SIX－WHEELED ENGINES． With Coal in 1882.

Month．	歇宸置置				Average consumption of fuel and cost per mile．	
					Coals．	Cost．
		$\underset{\substack{\text { miles．} \\ 78,244}}{ }$	${ }_{\text {miles．}}^{\substack{\text { mil，}}}$	897，826		
January ．．	${ }_{27}{ }_{21}^{21.32}$	78,244 43,160	－${ }_{23,008}^{36,032}$	897,826 560,152	$62 \cdot 60$ $55 \cdot 15$	$9 \cdot 35$ $9 \cdot 90$
March．．．	$26 \cdot 52$	27，742	15，337	329，249	52.73	$7 \cdot 66$
April	28．59	57，514	22，497	1，004，129	53．84	${ }^{7} 788$
$\xrightarrow{\text { May }}$ June	$31 \cdot 90$ $30 \cdot 74$	111，181	40,974 48,638	${ }_{3,043,384}^{2,241,273}$	56.58 57.46	8.08 8.46
July	$28 \cdot 39$	145，232	51，826	2，652，482	$48 \cdot 69$	$7 \cdot 13$
August	$27 \cdot 04$	152，659	52，697	2，703，475	49.88	$6 \cdot 92$
September．．	${ }^{28} \cdot 93$	143，000	${ }^{50,112}$	2，693，239	55.49	7.71
October November ． \％	$23 \cdot 30$ 21.60	168,442 159,669	53,837 43,640	$3,101,778$ $2,508,388$ ，	$62 \cdot 29$ 63.88	$8 \cdot 26$ 9.15
December	20.04	12， 118	${ }_{36,081}^{48}$	1，517，773	${ }_{68}^{63} 97$	${ }_{9} \cdot 72$
$\left.\begin{array}{r} \text { Total and } \\ \text { average } \\ \text { for year } \end{array}\right\}$	26.32	1，341，681	474，679	23，253，148	57．25	7．80

With Petroleum Residuum in 1885.

Month．					\square	$\begin{gathered} \text { go oon } \\ \text { too morel mive } \end{gathered}$
	$25 \cdot 45$	1，887，393	54，733	25，159，709	${ }^{32} 23$	

A New Transvaal Industry．－A Transvaal paper calls atten－ which may possibly be the beginning of an outburst of manufac turing enterprise there，consequent on the impulse given to the country by the gold discoveries．Some years ago a concession fo transferred to a company started in Holland－the South African transferred to a company started in Holland－the South Africa
Leather Preparation Company－with a provisional capital of 250,00 guilders，which may be increased to 500,000 guilders．Some eight
months ago the company sent out an expert to look into the state months ago the company sent out an expert to look into the state
of affairs，and the result has been that steps have been taken to of affairs，and the result has been that steps have been taken to
establish a factory．This building is now completed．＂It is unnecessary to point out，＂says the Transvaal authority，＂the
great usefulness of such an establishme great usefulness of such an establishment，as everybody knows how
many hides are annually exported from the Transvaal and how much leather is again imported．Until now South African hides have obtained low prices on the European markets，for the reason
that they have not been properly prepared．＂

RAILWAY MATTERS.

The Peoria and Pekin Union Railroad runs from Peoria to Pekin, a distance of fourteen miles. That is the main line.
Being a bebt road, caring for cars of several roads running into
Peoring many miles of side tracks-over 100 . This accounts for the road many miles of side tracks -over than it has in its main line.
Two successive Conferences have taken place at Domo Dossola and Lausanne between the delegates of the Swiss cantons
and those of Italy to examine the tracings of the project of a and those of Italy to examine the tracings of the project of a
tunnel through the Simplon. Italy would agree to it providing
that the entry to the southern portion of the tunnel be situated on that the entry to the southern portion of the tumnel be situated on
Italian territory, which is generally admitted. It is probable
It that therere
Parlour cars are being built by the Wason Manufacturing Company for the State Raiiroad of Chili. The ex-
terior of the cars is painted cream colour, with design in gilt
cond colours, high colouring and polish being appreciated in terior of the cars is painted cream colour,
and colours, high coloring and popish being apreceiated in
South America. The interior is finished in mahogany, and the designs for the carving and the silken hangings were made
expressly for this order. The windows are tft. wide and an everyexpressly for this order. The
body smokes, a math case is
The cars cost 12, ,ood dols. each.
The Baltimore and Ohio Road is to build a transfer elevator on a new plan, to be located in its South Chicago yards.
It will be 20 ft . wide, 40 ft . high, and 100 ft . long. By means of shovels operated by a a 50 -horsse power engine, the grain is to be
unloaded from a car on one track and elevated into hopper scales, eighed and immediately run by self-loading spouts man, engineer, weighmaster, and five labourers- an transfer and
weigh 100 cars in ten hours. It is estimated that the cost of transfer will be only about 18c. per car,
In the last sixteen years the railroads of the United
States have increased in mileage yearly at the following rates:-

This statement oovers main track only, second or other additional
tracks and sidings not being counted.
Dr. W. H. SAUNDERS, a physician appointed to make examinations of locomotive engineers and other railroad employes
under the new State law, which went into effect August 1 st,
It, abandoned his work. He was arrested on a writ of mandamus,
which requires him to complete his tests as to colour blindness. which requires him to complete his tests as to colour blindness.
His reason for abandoning the work is said to be trouble with rail-
ran road men, who dislike the new law. All railroad men who operate
in Alabama are incensed, and call it an outrageous law, many refusing to submit to examination. More than 20,000 are affected
by the law, and it is estimated that 3000 will be forced to give up
their lace
Is the United States it has been proposed to heat street cars by raising the temperature of wires by an electrical
current. Baron Gostkowski, General Manager of Austrian Railways, has calculated the power necessary to hent a railway car in
this way, and his results for an ordinary German car holding forty two persons show. that $20-\mathrm{H} . \mathrm{P}$. are necessary to heat it, while it
requires only 8 -H.P. thaul it at the rate of twenty-two milesp per car seating twenty persons, we e find that to keep the temperature
of the interior of the car 30 deg. Fah. above that of the exterior
ond requires an expenditure of about 3 -H.P. So heating street railway
cars in this way is rather visionary
The. Montreal Star says editorially about Russia's
rans-Siberian line:-This line will shorten the time occupied in trans-siberian line :- This line will shorten the time occupied in
travelling to Japan from Western Europe to about eighteen days,
and will open up to trade a part of Siberia said to be fertile, but and wil open up to trade a part of siberia said o be fertile,
previously unsettled. It will in many respects be an undertaking
similar to the Candian Pacific. TThe prinipipal difference will be that the work will be a purely Government one. The Russian
Government appears in earnest about this undertaking and some
Tover English journals are urging the British Government to discuss some
scheme for a short route to the Pacific through India and Burmah. The advantages of the Euphrates Valley route are being discussed,
and the Government urged to employ speedily its own means for effecting analogous abridgments of time and space
In driving a tram-car by storage batteries, it has been found that seventy to eighty cells are needed, weighing 41 4 ke . per
cell, when in running order. Assuming the weight of the loaded ar to be 15001b, a battery of seventy cells would be about 20 per cent. or one of eighty cells about 25 per cent. of the entire weight
of the car loaded, and this, it must be borne in mind, does not
include the motor and driving machinery, which would add anyInclude the motor and driving machinery, which would add any-
where from one-third to 50 por cent. to the weight of the $1 \frac{1}{2}$ ton
batteries. A seventy cell battery on ordinary traftic, or eighty cell batteries, A Aeventy cell battery on ordinary traffic, or eighty cell
battery on very hard tratict, is capable of running oontinuously 42 hours, but it hard found ad odic, isababe to to conange the batteries baout
nee in three hours. As one set of cells is being charged when another is being discharged, two sets of cells are required. It need not take more than three minutes to make a change
The loss of power in standing is practically nothing.
A correspondent of the American Railroad Gazette, speaking of old injectors, which will not work because they have
become worn, says: "In looking the matter up, Ifound that the
beom
 steam ram, the thrend on it, and other parts had become so worn
that there was too much steam and water admitted for the overhat there was too much steam and water admitted for the over
flow, and consequently, when it got up to a certain pressure, the
verflow not being suificiently large, a reaection must take place With this idea in view I took one of our injectors that pould not work with over 60 lb , steam pressure ander any circum-
stances, and took the overrlow out and increased it from tin. to Sin., and started the injector to work at 12 lb . pressure. We
have continued to do the same with the other old injectors that would not work, and it orereomese the difficulty in each case
where the injector fails to go to work with a high pressure." Mr. B. C. Fauror, president of the Lima Street Rail way Motor and Power Company, writes to General stiles, of
the Van Depoele Company as follows: "My contract with
the Van Depoele people was that they were to cuarantee the power -sixteen hours being a day's work, and the cars running eighty miles per day, and carrying forty passengers each trip-should no
cost over 2dols. per car per day, and that I was to have a trial cost over 2dols. per car per day, and that I was to have a trial of
six months before final settlement was made or required. I have
operated these aro about fort days, and have so thoroughly
satisfied myself of the worth of the system that I have settled and satisfied myself of the worth of the system that I I have settled and
paid the company in full. I find from actual trial, with new track nd cars and everything close and tight, making the cars requir will three months hence, that the actual figures for oost for power
alone shows less than 1 dol. per day per car for a run of seventecn alone shows less than 1 dol. per day per car for a run of seventecn
hours, and does not exceed d dols. per car for the entire expense.
I have no hesitation in saying to the public that it is a grand sucI have no hesitation in saying to the public that it is a grand sue
cess, nad that too much cannot be said in its favour. Anyone
doubting the truthfuluess of this report will do well to visit Lima and investigate for themselves."

NOTES AND MEMORANDA.

To restore faded ink on parchment, \&c., the Bodleian Library, at Oxford, has long employed hydrosulphide of ammonia,
a solution of which is spread in a thin layer over the writing, by
A remedy for burns, proposed by M. Dubois (Jour. de Med. de Nantes), consists in allowing the contents of a syphon of
seltzer water to flow slowly over the affected parts. It quiets the sell
pain almost instantly, and the writier believes it hastens the final
cure. He ascribes the good effects to the carbonic acid gas and to he local lowering of the temperature
To make ice at home, says La Science en Famille, "take a cylindrical earthen vessel and pour 31 ozo of commercial sulphuric
acid, and 1 星 oz of water into it, and then add 1 oz of powdered sulphate of soda. In the centre of this vesser ponte, revolve the whole with a gentle motion. In a few
if posses, the water in the small vessel will be converted into ice.
minutes The same mixture can be used a second or third time for making a
block of ice. The operation should, if possible, be performed in a cool place, in a cellar, for example.
The Journal des Applications Electriques says that eleven different colours may be communicated to well cleaned copper, and
eight to nickel-plated objects, by means of the following bath:eitetate of leand, 300 grains; hyposulphite of soda, 600 grains ; water,
Acontant. After the salts are disolved, the solution is heated to 1 quart. After the salts are dissolved, the solution is heated to
ebullition, and the metal is afterward immersed therein. At first, ebullition, and the metai is afterward immersed therein. At first,
a gray colour is obtained, and this, on the immersions being enter into the composition of thas solution cost very little, the process
is a cheap one. It is especially applicable in the manufacture of

Pesier's natrometer was first introduced in 1846 for the valuation of potash in the residues obtained from the calcination of
beetroot molasses, and it was soon abandoned for the better method beetroot molasses, and whas by platinum chooride. Herr E. Pfeiffer
of determining potash
(Clem. Zeit.) states that in the hands of a careful anal sst, the natrometer gives with little trouble results well agreeing with those
obtained by the platinum method. The apparatus consists of a hydrometer, the scale of which is based on the fact that the density of a potassium sulphate solution increases proportionately with the
amount of solid matter in solution. If the solution contains sodium sulphate, the density rises considerably, potassium sulphate being more soluble in the presence of sodium sulphate.
The current number of L 'Astronomic contains a description of a new observatory belonging to M. Camille Flammarion,
which has just been completed. An admirer of M. Flammarion had presented nim some five years ago with a little chateau and parl situated on the road from Paris to Fontaineblenu of nistoric name so thick and solid as to serve as a perfectly stable base for the The dome is 5 m . in interior diameter, and covers an equatorial b by Bréguet, furnished with a Ville ongth, Two smork by Breguet, rum tecer Foucault of 1100 mm ., stand on the adjoining terrace. The observatory, the co-ordinates of which are East longitude from Pari
0 h .0 m .8 s ., N. latitude $48^{\circ} 41^{\prime} 36^{\prime \prime}$, commands an uninterrupted hori atieably purer than that of
In the manufacture of glucose with nitric acid, the originators of this process, A. Seyberlich and A. Trampedach, use
nitric acid for the saccharification of starchy or amylaceous matter. To eliminate, then, the nitric acid from the solution of glucose thus obtained, water saturated with sulphurous acid is added in such quantity that the syrup smells of this gas. The mixture, heated
rapidly, brings about the decomposition of the nitric acid. At the expense of the oxygen contained in this acid, the sulphurous acid i apidy converted into sulphuric acid, and nitric oxide is evolved with Schönbein's reagent. On heating to boiling, the excess o sulphurous acid is expelled from the saccharine solution. This last peration must be conducted rapidiy, and with an abundant supply contact with the sulphuric acid formed, as otherwise the sugar would be liable to decomposition. The solution of glucose obtained is neutralised with carbonate of lime, and ma
line carbonates, evaporated and crystallised.
The Division of Mining Statistics and Technology, under the direction of the United States Geological Survey, has
issued a return showing the production of coal throughout the issued a return showing the production of cooa throughout col
States in the ear 1886. The total production of all kinds of coal, exclusive of that consumed at the mines and known as colliery
consumption, wwas $107,682,209$ short tonss, valued at $147,112,755$ dols at the mines. This may be divided into Pennsylvania anthracite,
$36,696,475$ short tons, valued at $71,558,126$ dols. ; all other coals $36,696,475$ short tons, valued at $71,558,126$ dols, all other cals
including bituminous, brown coal, lignite, and small lots of anthra including bituminous, brown coal, lignite, and small lots of anthra-
cite produced in Arkansos and Colorado, $70,955,734$ short tons
valued at $75,554,629$ dols. different mines varied from nothing to 8 per cent. of the total product, being greatest at special Pennsylvania anthracite mines, and
lowest at the bituminous mines, where the bed is nearly horizontal nd where no steam power or ventilating furnaces are employed the United States was 112,743 , 403 short tons, valued as follows:Anthracite, $76,119,120$ dolss; ; bituminous, $78,481,056$ dols, - -total
yalue $154,600,176$ dols. $1,783,881$ short tons compared with 1885 , but a loss in spot value coal product, but Illinois and Ohio are advancing, the former pro-
 about $4,000,000$ tons per annum.
Dr. Choquet, in a work recently published in Paris
 calamitous of these disasters was that at Cape d'Istria, in 1799,
when 1090 persons were killed; that in St. Petersburg in 1836,
which resulted in the loss of 800 lives. which had 1670 victims; that of Brooklyn in 1876, with 28 victims; that of Shanghai in 1871, with 120 victims; that o
Tientsin in 1872, with 600 victims ; and lastly, that of Vienna Hhich had 450 victims. February 5th, 1876 -Robinson's Opera April 25, $1876-$ Theatre des Arts, ,ouen; 8.8 killed ad and 12 injured.
October 30th, 1876 -Chinese Theatre, San Francisco ; 19 killed, thers injure-small fire. November 13 th, 1876-Circus Theatre,
Madrid ; 2 killed. December 5 th, 1876 -Mrs. Conway's Thentre, Brooklyn U.S.S.A.; 283 known to have perished. October 11 th,
1878-CCosseum, Liverpool; 77 killed and several injured; false 23rm. January 1st, 1881-Cronstadt Theatre, 8 burned. March
perished 1 Opera House, Nice ; about 150 supposed to have perished. December 8th, 1881-Ring Theatre, Vienna; about 794
lives lost.
January 7 th, 1883 - Buff Theatre, Moscow; about 300 lives lost. June 24th, 1883 -Temporary Theatre, Dervio, Italy;
about 50 lives lost. August 20th, 1883 Thentrene Govi Sumuki,
Japan ; 75 killed, over 100 seriously hurt. November 1st 1884 , Star Theatre, Glasgow; false alarm of fire; 14 killed, others in killed. January 18th, 1887-Hebrew Dramatic Club, London
false alarm of fire ; 17 persons crushed to death. 25th May , --Paris Opera Comique, in which 200 lives were lost.

MISCELLANEA

Messrs. Hayward Tyler and Co's only office for Electrical machinery will be the chief feature in the next fair of the American. Institute, in New York City. The
principal manufacturers of electrical appliances in the States have promised to take almost half of the space in the Third Avenue building. No prizes will be offered.
Messrs. Ruston, Proctor and Co. have obtained this month the following first prizes for the best portable engine and
thrashing machine at the recent competitive trials of the principal English and foreign makers held at the following towns, viz. :-
Charkow, Russia, gold medal; Viborg, Finland, silver medal; and
The completion of the Russian ironclad Tchesmé is likely to be delayed, owing to the recent rapid silting at the
entrance of the dry dock at Sebastopol. The shoal at the mouth is so large that extensive dredging will be required to fit it for the reception of large vessels. A commission has been sent from St Petersburg to inquire into the matter.
Two sister turret ships are about to be laid down in Cronstadt for the Black Sea. Their displacement will be 8000 tons. For protection of the centre of the ship and machinery steel armour
20in. thick will be used, decreasing to 10 in. towards the extremities The breastwork and turret armour will be 16 in . They will be arme 9 in . guns, eight Gatlings, and a torpedo apparatus.
The water supply of Bradford is causing considerable pare a scheme for an additional supply. Three sites for a new reservoir have been suggested, one of which, in the Masham district, commends itself to the townspeople. The cost will be about scheme.
Unless a minimum sum of $£ 10,000$ is guaranteed by the 15th proximo there is but little probability of further arrangement Staffordshire. Should the finance committee be successful in securing this guarantee, it is probable that the exhibition will be
held on land at Fenton Manor, adjoining the North Staffordshire held on land at Fenton Manor, adjoining the North Staffordshire
Railway. The cost of this land will be £1700. The Earl of Granville has si
bition.

Ir is stated that the company which has secured the concession from the Nicaraguan Government for the constructio of the Nicaragua Canal intends to put in the field ten parties of
engineers by December 1st. Mr. Menocal is reported to have said that the preparatory work done would probably take one or two years, and that after that is done the canal can be completed within six years, at a cost of from 60 to 75 million dollars. It is the
intention to make the canal 120 ft . wide on the bottom, with not ess than 28 ft , of water
A meeting of the North Staffordshire Mining Institute was held at Stoke-on-Trent, on Monday, Mr. James Lucas presiding.
In a discussion on papers which had been read by him, Mr. A. R. Sawyer, Government inspector, said that the water cartridge was
perfectly safe if properly used. Its safety, however, depended upon the manner in which it was manipulated and used, and one
of the staunchest advocates of the water cartridge had written that nothing but practical experience and careful attention could mak y wor cartride afe

Bids for three overhead travelling cranes were opened of the Navy has directed that 75,000 dols. be expended for the purchase of tools and plant for the New York Navy Yard, and a Yard. This action is taken under the Act for the increase of the Navy, passed at the first session of the 49th Congress, which pro-
vided for the expenditure of 150,000 dols., under the direction of the Secretary of the Navy, for improving the plant of such Navy-yard

New Orleans has commenced the erection of a new tower system which is to conduct all telegraph, telephone, and
electric light wires higb above the roofs of the houses. As the soil is such as to forbid the underground system, water being found 3 f thoroughly tested. The plan includes an iron tower, or braced and guyed post, planted at each street corner and about 150 ft .
bigh. From the tops of these towers will extend two steel cables 5in. diameter, and just below these two or three other cables lin. these sets of cables will be fastened upright A stand-pipe with nozzles at and on these the wires will be strung. the use of the fire department.
As anticipated, the proposal of the Bolton employers to open arbitration has met the errion of that town part of the men on strike. It is true that the proposal has been accepted conditionally by a majority of votes at a meeting of the
men called to consider the matter. But a large number of the men left the meeting before the vote was taken, and those who voted for its acceptance represent only a small minority of the men
n strike. It is very questionable whether the to anything after all, as there will almost certainly be conditions on either side to be settled before arbitration can be entered upon, will agree to accept, on their side nor the employers on the othe in its present form will fall through.
The experiment of the New York Board of Health, from upturned and gas-permeated earth, is interesting to other sections. Gas-makers claim that there is a loss of about 20 per
cent. due to leakage at the joints in the distribution system. This escaping gas is confined below the surface in great part by the close解 the then-smelling compound, and while it is claimed that this gas is not absolutely
injurious to health, opinions differ on this head and complaints ar frequent. The Health Department now neutralises this bad smel in the dirt by a solutio. bromine scattered over the piles with sprinkling cans. The effect is almost instantaneous, and
worst cases a double dose wholly removed the offensive smell.
The plough manufacturers of the West, embracing nearly all the principal plough manufacturers of the country, have
held a meeting at the Grand Pacific Hotel, Chicago, at which they succeeded in effecting an organisation to be known as the Western Plough Manufacturers' Association. Mr. H. T. Noble, of Dixon,
Ill., was elected president, and A. R. Bryant, of Moline, Ill., was chosen secretary. It is reported that a seale of prices was agree rate, the bond having a sliding scale penalty which increases with the fall of prices. A commissioner will be appointed to see that prices are maintained at the rates agreed upon by the association.
It is stated that one large Western plough manufacturer refused to join the association and be held by its regulations, but his actio is interpreted to mean a lack of faith in the success of the project
and not hostility to the purpose sought to be accomplished.

COMPOUND ENGINES FOR THE INDIAN STATE RAILWAYS.-DETAILS.

EDISON'S PYROMAGNETIC DYNAMO.

THE PYROMAGNETIC DYNAMO. By Thomas A. Edison.
TH\& production of electricity direatly from coal is a problem
which has occupied the closest attention of the ablest inventors for many years. Could the enormous energy latent in coal be made to appear as electric energy by means of a simple transforming appa-
ratus which accomplishes its results with reasonable economy, it will be conceded probably that the mechanical methods of the entire world would be revolutionised thereby, and that another of those grand steps of progress would be taken of which the nineeenth century so justly boasts.
The simple production of a potential difference by means of heat thus originated has been developed by Becquerel, by Peltier, by Thomson, and by Tait, and the thermo-batteries of Clamond and of Noe have found many important practical uses. The results already attained in these generators have stimulated research
marvellously, and many investigators have believed that in this direction lay the philosopher's stone. Our fellow member, Moses G. Farmer, worked long and assiduously in this field, producing, it is believed, the most satisfactory results as regards economy which have ever been obtained. But even these results were not very encouraging. He never succeeded in converting one per cent. of
the energy of the coal into electric energy. Quite recently, Lord Rayleigh has discussed, with his well-known ability, the law of efficiency of the thermo battery from the standpoint of the second law of thermo-dynamics ; and he concludes that for a copper-iron couple, working between the extreme limits of temperature possible
for these metals, a conversion of not more than one three-hundredth part of the coal energy can be hoped for. While therefore as a heat engine the thermo cell appears to follow precisely the law of Carnot, and hence may have a theoretical maximum efficiency equal to that of the reversible engine of this eminent philosopher, maximum. It therefore follows that if the result hoped for is to be attained
at all, it must obviously be looked for in some other direction than at all, it must obviously be looked for in some other direction than of investigation suggested itself to me, the results of which I have
the honour now to submit to my fellow members of the physical the honour now to submit to my fellow members of the physical
section. It has long been known that the magnetism of the magnetic metals, and especially of iron, cobalt, and nickel, is markedly affected by heat. According to Becquerel, nickel loses its power of being magnetised at 400 deg., iron at a cherry red heat, and cobalt at a white heat. Since, whenever a magnetic field varies in
strength in the vicinity of a conductor a current is generated in strength in the vicinity of a conductor a current is generated in
that conductor, it occurred to me that by placing an iron core in a magnetic circuit and by varying the magnetisability of that core, by varying its temperature, it would be possible to generate a current in a coil of wire surrounding this core. This idea constitutes the essential feature of the new generator, which therefore I have called a pyromagnetic generator of electricity.
The principle of utilising the variation of magnetis
as the basis of electric machines, though clearly applicable to generators, was first applied to the construction of a simple form of heat engine, which I have called a pyromagnetic motor. A description of this motor
sabsequently constructed.
Suppose a permanent magnet, having a bundle of small tubes made of thin iron placed between its poles, and capable of rotation about an axis perpendicular to the plane of the magnet, after the fashion of an armature. Suppose, further, that by suitable
means, such as a blast or a draught, hot air can be made to pass through these tubes so as to raise them to redness. Suppose that by a flat screen symmetrically placed across the face of this bundle of tubes, and covering one-half of them, access of the heated air to the tubes beneath it is prevented. Then it follows that if this screen be so adjusted that its ends are equidistant from the axis, since the cooler and magnetic portions of the tube bundle-i.e.
${ }^{1}$ Abstract of paper read before the American Association for the
Advancement of Science, New York, August, 1887,
those beneath the screen-will be equidistant from the poles, and will be equally attracted on the two sides. But if the screen be turned the poles and the other nearer the other, then rotation of the bundle will ensue, since the portion under the screen, which is cooler and therefore magnetisable, is continually more strongly
attracted than the other and heated portion. This device acts,

DETAIL OF FIG. 3.
therefore, as a pyromagnetic motor, the heat now passing through the tubes in such a way as to produce a dissymetry in the lines of force of the iron field, the rotation being due to the effort to make these symmetrical. The guard plate in this case has an action analogous to that of the commutator in an ordinary armature The first experimental motor constructed on this principle was
heated by means of two small Bunsen burners, arranged with an air blast, and it developed about 700 foot-pounds per minute. A second and larger motor is now about finished, which will weigh about 1500 lb ., and is expected to develope about 3 -horse power. In both these machines electro-magnets are used in place of permanent magnets, the. current to energise them being derived
from an external source, In the latter machine, the air for the
combustion is first forced through the tubes to a:d in cooling them nd then goes into the furnace at a high temperature production of electricity were made with a very simple pyromagnetic consisting of a charged electro-magnet, having a tube of thin iron passing through its cores near their outer ends, a coil of wire bein wound round this tube, and including an ordinary sounder delicately
adjusted, in its circuit. The tube beneath the coil was covered adjusted, in its circuit. The tube beneath the coil was covered
with asbestos paper. After heating the tube to redness by a gas blast directed into it at one end, a jet of cold air was suddenly substituted for the flame: the sounder at once closed, showing that the change in the of getisabinity of the iron had varied th distribution of the lines of force within the coil, an
duced a current of electricity in this clesed circuit.
The construction of a machine of sufficient size to demonstrate the feasibility of producing continuous currents on the large scale in this way was at once begun, and has only just been completed. The new machine, Figs. 3, 4, and 5, consists of eight distinct elements, each the equivalent of the device already mentioned, consisting of the two
legs of an electro-magnet somewhat far apart-12in. actuallylegs of an electro-magnet somewhat far apart- 12 in . actually-
having at one end the ordinary yoke, and at the other a roll of corrugated sheet iron, 0.005 in . thick, called an interstitial armature, this armature having a coil of wire wound upon it, and separated from direct contact by means of asbestos paper. The eight elements are arranged radially about a common centre, and
are equidistant, the eight interstitial armatures passing, in fact, are equidistant, the eight interstitial armatures passing, in fact,
through the iron discs which constitute the common pole pieces of all the electro-magnets. The coils wound upon the interstitial armatures are connected directly in series, the
whole forming a closed circuit. Through the centre of these whole forming a closed circuit. Through the centre of these
discs a vertical hollow shaft passes, carrying at its lower end a semidiscs a vertical hollow shaft passes, carrying at its lower end a sem-
circular plate of fire-clay called a guard plate, which, when the shaft is turned, revolves close to the lower ends of the sheet iron armatures, and screens off half of them from the access of heat from below. The shaft carries a cylinder of insulating material, joining them being parallel to the straight edge of the guard plate. Upon this cylinder eight springs press, Fig. 4, each of these springs being connected to the wire of the closed circuit above mentioned midway between the coils. The length of the metallic segment is so proportioned that the following spring touches it just as the pre-
ceding one leaves it. The springs themselves are so adjusted that each of them comes into contact with its metallic segment just as each of them comes into contact with its metallic segment just as
the preceding coil of the pair to which it is connected is uncovered by the rotation of the guard plate. Upon the same shaft, and above the cylinder just mentioned, a pair of metallic rings are
placed, insulated from the shaft, to each of which one of the placed, insulated from the shaft, to each of which one of the
mstallic segments is connected. Brushes pressing upon these rings take off the current produced by the generator.
The entire machine now described is placed upon the top of any suitable furnace fed by a blast, so that the products of combustion aro forced up through those interstitial armatures which are not covered by the guard plate, and raise them to a high temperature. The field magnets when charged magnetise of course only those
interstitial armatures which are cold, i.e., those beneath the guard plate. On rotating this plate the interstitial armatures are successively uncovered on the one side and covered on the other ; so that continually during the motion four of the eight armatures are losing heat and the other four are gaining heat. But those
which are losing heat are gaining magnetism, and vice versa. Hence, which are losing heatare gaining magnetism, and vice versa. Hence, all the magnetism is varying, the current in the coils beneath the guard plate will be in one direction, while that in the coil exposed to the fire will be in the other. Moreover, whenever an armature passes out from under the guard plate, its ism, it begins to gain heat and lose magnetism. Hence, at this instant the current in the coil is reversed; and consequently the line connecting this coil with the one opposite to it constitutes the neutral line or line of commutation, precisely as in the ordinary dynamo. Indeed, the action of the interstitial armature coils of armature coils of the Gramme ring, not only in the manner of connect.

INSTALLATION OF ENGINE FOR THE INDIAN STATE RAILWAYS.

[^0]which must be decided by experiments made upon the generator itself. The results thus far obtained with the machines illustrated by Figs. 1, 2, 3, 4, and 5, lead to the conclusion that the
economy of production of electric energy from fuel by the pyromagnetic dynamo will be at least equai to and probably greater than that of any of the methods in present use. But the actual output of the dynamo will be less than that of an ordinary dynamo of the same weight. To furnish thirty 16 -candle lights in a dwelling house would probably require a pyromagnetic generator
weighing two or three tons. Since, however, the new dynamo will not interfere with using the excess of energy of the coal for warming the house itself, and since there is no attendance required to keep it running, there would seem to be already a large field of usefulness for it. Moreover, by using the regenerative principle
in connection with it, great improvement may be made in its capacity, and its practical utility may very probably equal the interesting scientific principles which it embodies.

TENDERS.

LYMINGTON SEWERAGE
List of tenders for Lymington sewerage; Mr. James Lemon, T. Neave, Leytonstone

Howell, Poole \quad.̈uth
Whetam, Weymers,
Sanders, Southampton
Edwards, Southborne-on-Se
Neave and Son, Paddington
Osenton, Erith ${ }^{\text {Perkins, }}$ Lymington.
Adams, Kingsland-road
Frere and Co., London
Meader, Cowes
Kingswell, Isle of wight
Hill and Co., Plymouth .
T. P. Hall, Southsen (accepted)
W. H. Dearle, Chichester

*Amended

A MICA MINE.-A mica mining company, with the stock owned argely in Fall River and in New Bedford, Mass., has recently been organised for the purpose of mining mica in Dorchester,
N.H., and the work of blasting was commenced on August 1st with three men. Five blasts were made, which yielded about 1000 lb . of mica free from rock. The waste in fitting mica for the market is estimated at about 90 per cent., but as the wholesale the profits of ac. to soon to be put upon the mine, me enormous. A large force is

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our rrespondents.]

feathering paddle-wheels.

Sir, - "M. E.'s" letter in your last issue is very much to the point, and is quite correct in its deductions. Strange that Professor
Greenhill should have made such a common "slip," There are a good many of the same opinion as Professor Greenhil "that the entering float should "enter in a vertical position, so as to enter the water edgeways. Now, this is a great mistake, If we try to take soundings with a pole in shallow water, say
20 ft . or 25 ft . deep, standing on the deck of a moored dredger, and 20 ft . or 25 ft . deep, standing on the deck of a moored dredger, and
with a current setting at, say, four or five miles an hour, we must point the sounding-rod at a certain angle-learned by experience - in opposition to the direction of the current, and impel the rod in such direction so as to take the ground before it comes to the vertical. We can then allow it to fall to the vertical and note the
figure. The sounder on board a man-of-war, when sailing slowly through shallow waters, slings his sounding weight and line a long way ahead, so as to have them vertical when the man comes over the spot. We cannot push a pole vertically into running water we must push it at an angle, and stch angle will be in the direction o the speed of the impelled pole. Is is the same with the float enter ing the water. Such direction must be the resultant of the horizontal speed of the ship and the circumferential speed of the point of such float.
that the good old rule, the simple plan," of setting out the floats so straight edge laid on the face of the float will cut the vertical of centre of shaft at a point coinciding with the circle described by the centre of pressure of the floats, i.e., the centre of floa guageons, gives a padale-wheel whose action is nearly as efficien as a propeller as a radial wheel of double diam
Now, I should say it is not in the entering that Mr. Stroudley' curved floats have the advantage, but during the recess, as the upper concave edge reacts on the lifting water, and sends it aft in curved floats prevent the great uplifting of the water, which i one loss of power, and the striking of the lifted water against the paddle beam, and after cleading, \&c., which is another.
The lowering of the centre of the excentric gudgeon will have "hooked " blow water floats to be vertical when entering and water level, when a tremendous quantity of water will be lifted, Such an arrangement will be fraught with loss from not being ablo to exert effort on water at and after immediately entering, hooked to the water below, causing extra weight on wh bumgs and Cork, September 7th

COLONIAL DEFENCE.

SIR,-Considerable interest having been evinced in the question as to far the Australasian armaments contribute to the pro
 Country, I have endeavoured in the following sketch to give some dea of the colonial defensive arrangements, derived from my ow connection with them-latterly as President of the Southern Boar Military Examiners and honorary commodore. Victoria, in res she appears to be in the prosperous condition of her inhabitants. Her fleet consists of the Cerberus, monitor, mounting four muzzle loading guns, each of 18 tons weight, two or three torpedo boat a about 125 ft . long, which cost $£ 9000$ apiece, and a few small ves Captain Thomas, R.N., who commands the squadron.
The land forces, under Colonel Disney, are likewise thoroughl and entrances, breech-loading ordnance of 9.2 and 8 in . calibre, the newest pattern, have recently been mounted in gun pits upon disappearing carriages of the Moncrieff type.
The Victorians are
The Victorians are not, however, satistied unless the whole of desirous of exchanging for breech-loaders the present guns of thio Cerberus, which was the first vessel of her class, and was specially constructed and armed for the defence of Victoria's principal port Melbourne.
The desired exchange to more powerful breech-loading ordnance reviously officially informed that my patent carriages and the urret arrangements carried out by me some years since, and upo which the Cerberus 18 -ton guns were mounted, continued to wor very satisfactorily heir value side of New South Wales have already well proved and the fine bodies of Volunteers troops of the United Kingdom he spirit with which they are animated, compare most favourabl New Zealand Volunteers showed their " grit" or America. The ord when left alone in the Mori War, and again more recently t Parihaka they evinced similar determination, when by the promptness of their mustering, ready armed for the threatene The war vict, they put a final end to Maori risings. The war vessels of Australasia-with the exception of those of ships and for keeping up the maritime spirit and enterprise whic is so essential for the development of these colonies.
The recent decision of the London Conference that the colonie hare between them the cost of augmenting the imperial fleet pro ut in addition to this proposed increase of mobile force, Austral which afford a secure base for naval operations and which, with abundance of coal and provisions and a sufficien population of our own blood to protect them, mustarg he effective power
The colonies the means of docking reparing, ine long under well as re-manning ber war-vessels, and of thus enabling them soo after an engagement to sally forth as well prepared for battle a When they left the shores of Britain.
Thel Volunteer force, embracin owards federation, but would have an excellent effect in develo ing the slumbering patriotism as well as the commercial spirit the people; and the ad vantage of such a force would lie, not only the men composing it to be colled oway from their homes an ccupations for drill, \&c. as is the case with land volunteers. It New Zealand not long since the naval volunteers mustered wit lacrity, willingly giving up their holidays, to man the vessel required for the sham attack upon Camar,, which was to b defended by a large body of their military brethren remaining ttack seemed to stir up the Norse instincts of the people, and the directors of the Union Company's fine steam fleet of about thirt or more vessels willingly lent those at hand free of cost, an generously assisted the Harl ou form bardment and sack of the city. Mines were laid down at th entrance to the harbour of Camaru and fired as the boats advanced, and a grand field day with all arms ensued, the result of the attack being a more strongly expressed feeling that New Zealand wa iss defence a denution consisting Fulton and Irvine, of the Imperial Service, and the Hon. Captain

Frazer, of the Legislative Assembly, represented to the Ministry
the importance of encouraging the development of the colonial the importanae of encouraging the development of the colonial
marine, and recommended that some of the laresto to the New
Zealand Union Company's steamers trading throughout Australasia should be armed with light quick-firing guns, and that the crews
should be drilled to their should be drilled to their use, which would render these vessels a
valuable auxiliary to the Royal Navy in the event of war. Subse-
duently the mananging director of the Union Company was waited quantly the manaring director of the Union Company was waited
qupon and readily consented, as a commencement and for full trial up the plan, that two of the company's best steamers should be armed, provided the New Zealand Government bore the expense.
Thus the matter stood when I left the colony, but it cannot be a matter of indifference to the Mother Country that the fine
body of seamen available for the naval defence of New Zealand body of seamen available for the naval defence of New Zealand
and the other colonies, and which wwould furnish seamen for our
squadrons, should not be encouraged and utilised, so as to add to squadrons, should not be encouraged and utilised, so as to add t
the strength of her Majesty's widely extended empire.
Robr. A. E. Scort, Rear-Admiral (retd.).

September 10th.

electro-deposition of alloys.

SIR, - Having lately obtained successful deposits of alloys from
acid solutions of mixed metals-which has hitherto been considered practically impossible by other investigators-and having made
known the results of my experiments in this direction. 1
I was somewhat surprised to find that the Electrolysis Com-
mittee of the Britsis Association, at its meeting on Saturday mittee of the British Association, at its meeting on Saturday
last, made no reference whatever to these resuls, although
there were many present who were specially intorested in
ther the subject, and must have known that I had published a series
of papers in which I explained the nature of the electrolytes
I of papers in which I explained the nature of the electrolytes
I had used dn my experiments and the methods I Idopted to obtain depositsof alloys from acids solutions of mixed metats. Indeed, I
went farther than this, for I endeavoured to prove, and I believe my results have proved beyond question, that the accepted theories
of electrolysis, so far as they relate to the deposition of alloys, are of electrolysis, so far as sty relate to the deposition of alloys, are
unstatole and opposed by the results I haveobtained. Acording
to the law of Berzelius, out of asolution of mixed metals the least elecro-positive metal is deposited first.", That this law does not
apply to cyanide solutions of mixed metals is well known, for electroapply to cyanide solutions of mixed metals is well known, for electro-
brassing and electrobronzing are common arts, while many years
ar go I described a method of depositing German silver-now also copper are frequently obtained from cyanide solutions. Berzelius
 of Alloys and on II is well known that the electro-despositition of such, alloyse as
brass, bronze, and German silver is not practicable from mixed solutions of the sulphates or chlorides of the constituent metalas,
On reading this statement I called to mind some experiment On reading this statement 1 called to mind some experiments without employing cyanide of potassium, and I resolved to determine, if possible, whether or not the deposition of alloys could be be
obtained from neutral or faintly acid solutions of mixed metals, and if you will permit me I will explain the course I adopted
with, I am plensed to affirm, perfect success. In the first instance I propared an elecetrolyte composed of a moderately strong solution of the aceatates of coopper anpos zinco of the madederately strong solution
of bing in excess.
The current was obtained from five small cells of a zinc-copper battery, arranged in series. This battery y had been more or leess
at work for many weeks, and was virtually exhausted. Even with the weak corrent thus obtained I soon dissoovered that my
electrulyte was too concentrated, so I I gradually reduced
its electrolyte was too concentrated, so I gradually reduced its
strength with water until using the judgment of exparience for
mon my guide - 1 found that the echaracter of the deposit approached
what I was seeking, the evidence of an alloy, that tis brass. By deposit of brass of a good yellow colour. Having thus establishe the fact that both metals- zinc and copper-would deposit simaltaneously, in the form of a reguline alloy, upon a surface of steel,
I determined to try if I could obtain a similar result upon steelplate by placing it in contact with a strip of zinc, and in this I
was equally and immediately succesful, for in a few seconds the
s. steel-plate became coated with brass of very good colour. It next
occurred to me to ascertain whether the two metals-zinc and copper-would deposit upon zinc by simple inmersiion. A clean
strip of zine was dipped into the same solution, and this became promptly and freely coated with brass. I may here state that these a steel burnisher without in the least degree blistering or stripping
from the underlying surface, either of steel or zinc. My next trial from the underlying surface, either of steel or zinc. My next trial
was with the citrates of copper and zinc, from the mixed solutions of Which 1 obtained deposits of brass by the direct current on steel ;
also on steel by contact with zinc, and by simple immersion. i
then arranged my little bottery in multiple arc, then arranged my little battery in multiple aro, and obtained
equally good results to those obtained when it was arranged in series, but was obliged to immerse a larger anode surface. The
tartrates of copper and zinc and the phospates of copper and zine methods before refered to Being steel surface by the three determined to try whether miexed solutions of the sulphatest,
chlorides, \&ce, of copper and zinc could be made-I use the term
che advisedly-to yield deposits of alloys, and in attacking these salts I
must confess that I had some misgivings. I, however, resolved to try what a very weak solution of the mixed metals would do for to
felt sure that there was little or no use in trying strong solutions feet sure that there was little or no use in trying strong solutions.
To be brif, hhen I had suceeded in reducing the strength of my
solutions sufficiently to obtain deposits of brass from both the solutions sufficiently to obtain deposits of brass from both the
sulphates and entorides of copper, was thus enabled to refute
Professor S. P. Thompon's stotement, hased upon the beneral belief that alloys cannot be deposited from mixed solutions of these salts. With the nitrates, hopever, , I was lessed sucoessful, but withe
certain modifications that have occurred to me, I bope yet to obtain deposits of alloys from mixed solutions of these salts.
Knowing that cyanide depositing sol
Knowing that cyanide depositing solutions, prepared by what is
termed the battery process, invariably yield most excellent results,
I determined to
 ture composed of about one part of acetic acid to three parts of
water ; ; in this I immersed a water; in this I immersed a brass anode and a carbon caltrode
connected to the small battery before referred to. In about a quarter of an hour a slight coating - apparently of copper only appeared on the surface of the carbon a a steel plate was then sub-
stituted for this, which at once reeeived a film of brass, of a good
yellow yellow colour. The deposit from this solution was far more
adherent than any deposit of brass I have ever met with from
evanide solutions. prepared in various ways, I next resolved to try if otrom solutions prepared in various ways, next resolved to try if other alloys were
to be obtained from acid solutions In unig this term I Id os to
contra-distinguish the electrotytes I employed from ordinary cyanide contra-distinguish the electrolytes I employed from ordinary cyanide
solutions, or those prepared from pyrophosphates, \&c. I Inow pre-
porto pared a series of solutions from the undernamed salts, from each
of which I obtained deposits of the respective metals, in the form
of of an alloy, on steel, by the direct current ; on steel by contact with
zine, and on zinc by simple immersion.
By this latter method, however, it was necessary in some cases to keep the strip of zinc in
brisk motion in the solution, in order to induce both metal brisk motion in the solution, in order to induce both metals to
deposit simultaneously. The mixed solutions referred to were
Sulphotes deposit simultaneously. The mixed solutions referred to were:-
Sulphates of copper and nickel, chlorides of copper and tin;
chlorides of copper and cobalt; chlorides of copper and antimony;
 sc. Finding that the deposition of electro - positive and
electro negative conjointly in the form of negative alloys
was neither dependent upon quantity of current

Blectrical Revier, August 26th, September 2nd, and 9th.
E. M.F., I made the following experiments :--I took two pieces of thin wire, one steel and the other zinc, and tied them together three-quarters of an inch beyond the zinc wire. The couple thus arranged was fixed in a cork, and their ends immersed in a solu-
tion composed of the acetates of copper and zine, the zinc wire being allowed only to touch the liquid. Almost immediately the steel became coated with brass. It thus became evident that the deposition of an alloy-from an acid solution of mixed metals, at
all events-is effected by the E. M.F. of the metals immersed in the liquid and the immeasurable current that passes under such of the electric current which are generally supposed to be absolutely necessary to effiect the simultaneous deposit of metals of
opposite electric relation. As I have stated elsewhere, I am in a opposite electric relation. As 1 have stated elsewhere, 1 am in a
position to repeat before others the experiments to which I have called your attention, and, this being so, I cannot understand how or why it is that the members of the Electrolysis Committee of the
British Associntion communications, more especially as it is generally understood that at these annual gatherings scientific men meet to discuss, not only
their own performances, as members of the Association, but also their own performa
the doings of others.
London, the doings of others.
London, September 13th.
alexander Watt.
the effect of skidding railway wheels.
SIR,-I have read the paper by Mr. Jeremiah Head upon "Speci-
nens of Steel Produced by Skidding Railway Wheels"-p. 218 and agree with the conclusion at which he arrives, that the pieces During the years $1868-9$ one of the encineers
erved my pupilage gave considerable attention to the question, and I still have the details recorded at the time. Observations were
made upon the Bagworth and Lickey inclines, also near West Bridge Station, Leicester, and upon the Cromford and High Peak Railway. The rails were of iron, the tires of steel, and the brak of metal picked up where the wheels were skidded were found by
an analyst to be "steel," consequently it appeared certain that an analyst come from the tires. It was also observed that upon nclines where the speed throughout was practically the same, and Where the wheels had been skidded or spragged, that many more top of the inclines. This would seem to point to a conclusion that
a tire heated by friction was more easily destroyed than when cool as it would be near the top of an incline. I brought these facts
under the notice of the advocates of the Wilkin and Clark chain brake when attending trials on the Metropolitan and at Bromsgrove 1869-1870, and they at once replied that "all the destruction
would be avoided by adopting their continuous brake, which did woul require oto skid the wheeles for any ordinarys stoppages.
not
The fact that an unskidded wheel gives the power and yet does not produce the steel scale seems to prove that it is not the total friction which the brake blocks exert upon a tire which causes the damage, but the concentration of friction and 27, Bellovir.street, Leicester,
September 12th.

Sir,-The information supplied by Mr. Jeremiah Head in his paper read before the British Association, a copy of which you
print in your issue of 9 gh inst, is interesting as well as instructive. along a ral at a high velocity-in tance. The steel scale illustrated in your paper resembles many which 1 have often picked up. It was on the Baden State Railway on coaches fitted with brakes, a very mild steel indeed, wherens the rails were of a harder material. I have noticed wheels just as the train has cone to rest, which have been skidded, these had a flat place where the piece had been rubbed off, the wound itself having a colour ressorhng the scale. am of opinion that in the case of worn rails it is from the rails that the scales are rubbed off more than from the tires, for the more long obained from near the well-worn rails were of a much infer that the fibres of the rail-or, perhaps better, the rows of crystals-had
off by the wheel.
Thich may mention two cases which came under my observation, and Which may be of interest; one was a goods wagon tire which had a hole into the tire to the extent of about $1 \frac{12}{2}$ in. deep ; during the wheel would undoubted ty have become very hot and int wiy softened the tire. It seems likely that the most part of the
damage was sustained during the latter part of the time. The other was a case where a four-wheeled coupled passenger locomotive was, during a speed of about 50 kilos, per how, suddenly from turning, the engine slid along for some 100 metres, the tires were so damaged that they had to be turned up again. This all
tends to confirm what Mr. Head has so well put forward, and to substantiate the conclusions which he has drawn at the end of his
Joher.
JoHN PLack. paper.
34, Higbgate -road, N.W., Sept. 11th.
the relative strength of screw threads.
SLr, - Can any of your numerous readers give me some informa-
tion on the above subject, which I cannot meet with in any pub ished mechanical work?' Certain practical experiments which I have conducted go to show that screw bolts with threads of finer eleven threads instead of nine to lin.- - fitted with nuts containing the same number of tbreads as in ordinary nuts, but of the finer
pitch, are at least as strong as bolts and nuts screwed to Whitporth's standard pitch and gauge. What is the theory on this
point, and does it coincide with the result of the practial ment alluded to? I shall be greatly obliged for any information that can be given.
September 10th.

Inquirer.
Sir,-Your corresponde in A CAMP STOoL.
solution as above, as given in his letter of September 2nd-(1) He calculated the transverse stress of a leg on the assumption of a
"beam fixed at one end and loaded at the other." Wrong. If he places a board on his camp stool and sits on it, he will see at right angles. Wrong. The leg must be treated as an inclined beam. (3) In common with your other correspondents, that the depth of the beam should be reduced as 1 . $-\frac{1}{y}$ hole $=$ lin.
Wrong. The beam must be treated as a little girder with top and bottom members. Would your correspondents calculate the strength of a trussed beam by adding the top and bottom booms
together, and calling the sum of their depths the depth of the girder? together, and caling the sum of their depths the depth of the girder
If watey to calculate the strength as (1), he must make his calculation as thus:- $-\mathrm{K} \mathrm{D} \mathrm{D}^{2}$ cosine angle of rake o leg with horizontal line $=($ taking angle $=45$ deg.) breaking strain on leg. We have $\frac{19 \times 5 \times 1 \times 1}{12 \times 707}=1.12 \mathrm{cwt}$., or 127.64 lb , for one leg.
Cork, Sep eptember 7 th. r. hartland.

Ste a problem in strains.
SrR, -If your sceptical correspondents "T. E. N..", Batey, and Co.
will just drive a strong nail into an upright post,"\&c., and on such
nail hang a correct "Salter's" balance, and from the hook hang a
weight $=51 \mathrm{l}$. , then, of course, 5 lb. - neglecting the weight of the balance- hangs from the nail. Now let them drive another strong nail into the post so as to lean against the concave or top edge of
hook. Now remove the 5 lb, weight, and the lower nail does duty for the 5 lb weight, the index pointing as before. There are 5 lb . acting on top naiil and 51 lb actitg on bottom nail. Now, if we put
aight of 1 li. to hang from lower hook, the top nail has to carry Qt. Qe.E.D.
$\mathrm{SIR},-\mathrm{On}$ referring to my letter in your last issue, it will be
observed that in Fig. 3 the centre tie bolt has been unintentionally omitted; the bolt is in the original diagram, and is a necessary part of the girder. Should the discussion be continued, please insert this correction, and oblige.
Manchester, September 12th.
furnace bollers.
a good arrancement you sketch as what, in my opinion, would be a good arrangement of the flues as wished by your correspon-
dent. (1) It will be better to build the flues, as at D, op prevent
the two fires coming in contact so abruptly as in to-day's sketch.

(2) Dampers in the position would not last, it would be far better
to make the furnace ashpits and fire holes E tight when not in to make the furnace, ashpits and fire holes Etight when not in
use. (3) One flue would be better, as far as the boiler is con6 , Baker-street,

SIR, - In answer to a correspondent in last week's Enginerrboilers, there, is very little practically to hinder it from working. As a furnace builder, I would suggest that at the junction of his. furnace flues he should build a mid-feather about 2 ft . to 2 ft . 6 in .
long. As there is a tendency to drawing air around the dampers long. Asf here is a tendency to drawing air around he dampers,
the mid-feather would give each furnace a better chance, whether working one or both. I would also suggest raising his chimney

$\bar{\Longrightarrow}$

WHITWORTH SCHOLARSHIPS FOR 1887.
ThE results of the examinations for Sir Joseph Whitworth's to the successful candidates, and we have again to intimate the five scholarships have been awarded, one of $£ 200$, eight of $£ 150$, and sixteen of $£ 1 \mathrm{CO}$. On the whole, with the exception of Glasgow, these scholarships are pretty well distributed throughout gow men, and of these, the first five, of a value of $£ 150$ each, fall The following is the complete list of successsful candidates:-

We understand this is the seventeonth Whitworth scholarship gained by students from the Gla-gow College of Science and Arts at the last Anderson's College and the Allan Glen School, the combination forming the Glasgow and West of Scotland Technical College. We honour stages in electrical and in mechanical engineering at the last City Guilds of London technological examinations.

Charterhoose Scievce and Art Schools and Literary Insti-arts.-The weekly session of this, one of the largest science and
art schools in the United Kingdom, will commence on Saturday October 1st, 1887 , under the presideney of the Rev. Henry Swayn,
M.A. During the late session about $y 50$ students, mostly elenen, tary tenchers, availed themselves of the privileges afforded by this institution, and of this number upwards of 650 presented themselves for examination, and were successful in obtaining a large
number of first-class certiticates, and also a goodly number of firs and second-class hoporss certificates a warded by the Science and Art Department of South Kensington. Of eight students prepared highly distinguished themselves. Instruction of a practical character is given in most of the sciences at a very nominal fee; whilst in art, at an equally low rate, students under the direction
of five competent instructors can be advanced in their studies. Those who have leisure can at a very moderate charge attend the ay classes in art. Day classes will also be held to prepare cand dates for matriculation (Lond.), the clerical, medical (including
dental), legal, and other examinations. Students who aim at opportunity of working in a well-itited la inorganic), bave the opportunity of working in a well-fitted laboratory, capable of
accommodating sixty students. Aspirants of University honours can at a small expense be assisted in their studies, Classes for matriculation, Latin, Greek, French, German, music, and short-
hand are taught by well pualified teachers. hand are taught by well qualitied teachers, Opportunities for the
study of photography and watchmaking will be continued this session. Full particularars of the classes may be obtained from Mr
PARIS INTERNATIONAL EXHIBITION.—SIDE GALLERIES OF FINE ARTS COURT. (For description see page 227.)
Fig 2. Detail of Suspension bar.

Fig 9. Purlin $9^{m} 05$.

4

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

CONTENTS.

The Enainere, September 16th, 1887.

R̈вb̈L

 Tenders

Electro-deposition of Alloys-The Effect of Skidding Rail
Wheels R-Relan of stive strength of Screw Threads Stros

 Spanish

LEETres Frant rrie Provivors,
Trudes of Birmingham

TO CORRESPONDENTS.
Registered Telegraphic Address .". ENGINEER NEWSPAPER,

 stamp, in order that tan
nemion
rith theses instructictions.

HAND POWER MILLS.

HINGED DAVITS.
(To the Fditor of The Engineer.)
or any of your readers give me any

 increased rates.
Renittuace by Post-afice order. - Austrulia, Belifium, Braril, British
Columbia, British Guiann, Canadas, Cape of Good Hope, Denmark,

 Chind wich Isies, 2258 ss
ADVERTISEMENTS.

 Advertisements cannot be inserted unless Delivered before Six
Letters relationg to odvertisements Even Eving the Publiach weekg Department of the

THE ENGINEER.

SEPTEMBER 16, 1887

compound locomotives in france.

M. Mallet, the apostle of the compound locomotive on the Continent, has, it is well known, experienced considerable difficulty in getting any of the principal lines of
railway to adopt his system. On the line from Bayonne to Biarritz his engines have been working satisfactorily
for about a dozen years, and his example has at last du Nord to inducing the engineers of the Chemin de Fer certain respects resembles that of Mr. Webb. It is certain respects resembles that of are. Webl. It is diameter. These wheels are not coupled. The leading driving wheel a Webb's engine has two cranks driven by two high-pres Webb's engine, has two cranks driven by two high-pressure inside cylinders, 13 min . in diameter. whe , 1 railing meter, fixed to the frames outside between thedriving axles. The stroke of all the pistons is the same-24in. The slide valves of the inside cylinders work back to back in the usual way between them. The low-pressure slides are placed below the cylinders, and are driven by a modifica
tion of Walschaert's is of the Stehaert's gear. The high-press of valve gear is of the stephenson type, and the point of cut-off can engines. The boiler pressure is 156 lb . per square inch. always at work, and the other No, 10. The steam pipe for the small cylinders is inside the smoke-box, which also contains two large exhaust pipes from these cylinders, which constitute an intermediate receiver. The volume of this receiver is nearly six cubic feet. A reducing valve loaded to 75 lb ., for admitting steam direct to the lowpressure cylinders, is fixed near the top of the interme-
diate receiver pipes in the smoke-box. The entire engine diate receiver pipes in the smoke-box. The entire engine has been designed by M. de Glehn, manager of the Societe as we have said, that the encine resembles in certain respects Mr. Webb's engines; but the differences are important. Mr. Webb uses a single low-pressure cylinder, and the action of this cylinder is, as is well known, to cause trains to start with a jerking motion ; also, inasmuch as it may be standing on a dead centre, it cannot always assist in starting a train. M. de Glehn's engine having four
cylinders, has practically no dead points. It is urged against Mr. Webb's system that the huge low-pressure piston must require much power to drive it at high speeds,
and that is one of the reasons why, as has been alleged, the compound engines cannot attain a very high speed We do not quite see, however, that if there is any thing in this argument-which we doubt-M. de Glehn has gained much by using two cylinders instead of one. All the objections raised against the non-coupling system
obviously apply to one system as much as to the other, and it is a noteworthy fact that in his latest engine, shown at Manchester, Mr. Webb has coupled the high and low-pressure axles.
噱 between Paris and Lille, and a large number of diagrams was taken. The results obtained were in some respects curious. It was found that there was excessive compression in the small cylinders, the pressure amounting sometimes to more than that in the valve chest. To reduce this both the outside and inside laps of ene slll reatves were twice diminished. The compression still remaining too ness of the pistons. These changes were made and their effects noted during the first four runs. All the diagrams were taken from the leading ends of the cylinders; during the fifth trial they were all taken from the back ends. It appears strange that any modifications should have been made in the valve gear on the evidence of cards taken diagrams from the able, save a great fall of pressure when the cut-off took place early in the small cylinders. During expansion con-
densation to the extent of about 5 per cent. took place in densation to the extent of about 5 per cent. took place in about 8 per cent. in the low-pressure cylinders. The condensation appeared to be a little greater at the back
than at the front ends, possibly by reason of the cooling than at the front ends, possibly by reason of the cooling
effect of the piston-rods. It was found that when effect of the piston-rods. It was found that when
the intermediate receiver pressure was high, the back the intermediate receiver pressure was high, the back
pressure in the low-pressure cylinders was considerable; pressure in the ow-pressure cylinders was considerable;
but that with a small pressure in the receiver, the back pressure was considerably lower than in non-compound engines, working with high grades of expansion. At
first, when the clearance amounted to about 8 per cent., the compression rose in the small cylinders to as much as 200 lb . on the square inch. With the thin pistons, the clearance amounted to about 13 per cent., and the compression line did not rise above a point proper to the valvechest pressure. In the large cylinders the terminal pressures varied between about 70 lb . and 1.5 lb ., aceording as that in the intermediate receiver was high or low, and the compression in the same cylinders often exceeded the receiver pressure. As to liquefaction, the results obtained varied continuously and through wide limits in the small cylinders. In the low-pressure cylinders the condensation was pretty uniform at 27 per cent, side and more exposed to cooling influences. Concerning the economy realised, the results obtained were not very satisfactory. It was found that the compound engine engines of the same type, and doing the same duty, but non-compound. The consumption of oil and tallow, on the other hand, was greater for the compound engine. pound engines on the line of nearly similar type, the compound engine had an advantage of 19 per cent. in fuel and 11 per cent. in feed-water. Up to the 30th of June, 1887, this engine had run 45,880 miles, and had been
in regular work since the end of November, 1886 . It is not quite so powerful as non-compound engines of the same type.
those which have been obtained in this country. They are, however, on the whole less satisfactory than those which Mr. Worsdell seems to have secured. There is so much difficulty in arriving at any accurate information con-
cerning theLondon and North-Western engines that wecan make no comparison with them. The de Glehn type does
not seem to us to possess any special advantage which can make it popular. It may be regarded perhaps in the same light as some of the earlier varieties of the compound engine tried at sea. It will be remem engine never was a success until the sole difference between it and the ordinary non-compound engine lay in the fact that the latter hal two cylinders of the same size and the former two cylinders of different sizes. Mr. Worsdell's engine does not differ from an ordinary locomotive sav in this sense, and its chances of ultimate success are consequently all the greater. It is very probable that th circumstance that the wheels of M. de Glehn's engine ar not coupled reduces its tractive power considerably. It is known that engines of the Webb type first slip their trail ing drivers and choke the intermediate receiver, when, of cylinders have to take up the running for a revolution o two. Thus, if any slipping takes place, the tractive power is instantly reduced one-half. The use of fou cylinders instead of three helps matters very little Nothing of this kind can take place, of course, in Mr Webb's coupled engine, nor in Mr. Worsdell's engine, the low-pressure piston of which always keeps out of the way so to speak, of the
slipping takes place.
As to the economy realised by the compound engine on the Chemin de Fer du Nord, we confess we are somewhat sceptical. It would be quite possible to take any one locomotive out of a dozen of the same type, and doing
nominally the same work, and by putting it into the nominally the same work, and by putting it into the
hands of a very careful and competent driver and fireman to make it get ou with 6 per cent, or even more, less fue than its compeers. There is much more than 6 per cent difference between a good anda very good fireman. With al the honesty of purpose in the world, it is difficult fo the most careful experimenter to arrive at the truth about locomotive performance. ane rue test must in one end two, but of at least a couple of dozen engines, and evel these bills must be for considerable periods of time. The proper principle to follow is to make the compound
engine as like the non-compound as possible. If this principle be fully carried out, the locomotive superintendent will have the satisfaction of knowing that he is playing a game of "heads I win, tails you lose," becaus gain. Even, for erantain in the pursuit of a possiblel tin. would be no worse than an ordinary non-compound engine. But this certainly cannot be said of such an thing in it has been staked on the saving of fuel, and if that end be not secured in a large degree the engine will find its way to the scrap heap in a very short time.
official inquiry into the east london water supply
The presence of eels in a portion of the East London very puzzling kind both in theory and practice. How to account for the eels was one difficulty, and how to get rid of them was another. The matter was not merely one o curiosity, but it had its sanitary aspect. The eels could be tolerated while alive, but they were insufferable when dead. They choked the service pipes, became putrid, and half-poisoned the consumer. The waterworks of the East London Company were like a fountain sending forth bitter waters and sweet. Month by month the analytical chemists were reporting the water supply as being remarkably free from organic matter and altogether pure and excellent, while sundry dwellers in West Ham were declaring the water to be absolutely putrid and poisonous.
Others, more philosophical, took advantage of the fish Others, more philosoplical, took advantage oompany for supplying food as well as drink. Thus, on July 12th, 1886 it is recorded that one William Penfold, of Plaistow Park, saw the Water Company's men flushing out a pipe in
Beaumont-road, when a large eel, about 18 inches long, Beaumont-road, when a large eel, about 18 inches long,
was extricated. The official report states concerning this was extricated. The official report states concerning this. No evil consequences are said to have occurred; but i was otherwise in the case of some people occupying a
house in West Ham. A putrid eel in the supply pipe so polluted the water that seven persons who drank it were made ill. In West Ham alone, from April to December last year, there were 32 authenticated instances of the detection of eels in water pipes. In 24 instances the eels were dead or putrid, in six they were alive, and in the other cases their condition was not stated. The Corporation of West Ham, as the urban sanitary authority lodged a complaint on the subject ment Bir Local GovernMetropolitan Water Examiner, caused some delay in dealing with this question; but after the death of Sir Grancis, the newly-appointed Water Examiner, Major Genera A. We Courcy scott, was requested, in conjunction
with Mr. W. Power, to conduct an inquiry into the quality of the water supplied by the East London Company. That is to say, they were to learn all that could be learned concerning the eels, and to report thereon, This they have done, and their report has just appeared, arriving at conclusions which are singularly at variance with the views which formerly prevailed.
Prior to this investigation the presence of the eels was accounted for by the breakdown of an old filter-bed on that portion of the works of the East London Company
which is situated at Lea Bridge. This event took place in 1879, and had the effect of mingling unfiltered water with that which was filtered. It was thought that some small eels and other fish thus found access to the mains of the Water Company, and subsequently bred and
nultiplied therein. How the creatures lived was a multiplied therein. How the creatures lived was a mystery, unless the filtered water was far less pure
than it was officially reported to be. If the eels lived on each other, there would at length be only one eel left, and he must die through lack of amother eel to live upon,

Still the idea that the eels had made their home in the mains was firmly believed by the officials of the intruders, by flushing tey took intinite pains to ead end and in other ways. Little did they think while thus ejecting the eels at one end that the creatures were coming in at another. Yet such is the process described
in the report drawn up by General Scott and Mr. Power. in the report drawn up by General Scott and Mr. Power.
The theory that eels bred and multiplied in the mains is discarded. It would be contrary to the nature of eels to do anything of the kind. Eels, says the report, only pro-
duce their young in salt water, or at least in water that duce their young in salt water, or at least in water that is brackish. This we may say at once is not the fact. We have seen eels taken by the thbusand out of the mud of a
small pond more than sixty miles from the sea, and far resmall pond more than sixty miles from the sea, and far re-
moved from a river. The water certainly was not brackish. moved from a river. The water certainly was not brackish. East London eels is found in the fact that they stand in immediate relationship to the Company's reservoir at old
Ford. Mr. Bryan, the Company's engineer, and an officer of great ability, states that very rarely indeed had eels at any time manifested themselves in the Company's water pipes elsewhere than in the district directly served from the
Old Ford reservoir. But how were the eels, in the first instance, to find their way from the broken-down filter at Lea Bridge to the reservoir of filtered water at Old Ford solleagues observed insuperable difficulties in the way of the popular theory. The filtered water sent from Lea Bridge to the reservoir at Old Ford enters the latter
through screens of wire gauze having interspaces measuring only $\frac{1}{4} \mathrm{in}$. On the other hand, the filtered water has n pumped into the district mains at Lea Bridge readily admit the passage of eels. Yet these fish have not troubled the district which takes its supply direct from Lea Bridge. But mains connected with Old Ford perhaps earlier. That these fish came from Lea Bridge to old Ford, and afterwards multiplied at that spot and in the mains connected with it, was contrary to alt pro-
bability. Wire gauze with interspaces the size of a pinhole could only admit the newly hatched fry of small fish. But eels being hatched in salt or brackish water would have some distance to travel before they reached the
works at Lea Bridge, and would then be too large to pass through so fine a screen as that which would meet them on their journey to Old Ford. From the reservoir at the latter spot there were taken in the month of October last year eels varying in weight from a few ounces to several
pounds. Clearly these could not all have entered the reservoir at the time when the filter bed at Lea Bridge broke down in 1879. Neither would they be the result of successive generations of eels, seeing that they could
not enter from Lea Bridge, and they could not breed in fresh water. But the case is stronger still, for it is stated that the Old Ford reservoir was cleaned out in 1884.
How then could this variety of fish have been developed How then could this variety of
in little more than two years?
One circumstance affecting the Old Ford eels was that they were not blanched, attenuated, or blind, as had been alleged, but were fine lively eels, such as might be obtained from ordinary and suitable sources. After all, whence came they? Not from Lea Bridge, for the way
was blocked; not from breeding in the reservoir, for eels could not thus be produced. General Scott and Mr. could not thus be produced. General Scott and Mr.
Power put their explanation in modest terms. They
advance it in hypothetical form, but evidently consider it advance it in hypothetical form, but evidently consider it
much more probable than the theory which formerly much more probable than the theory which formerly
existed, though they admit that something still more plausible than their own explanation may yet appear. ported by a weight of argument which entitles it to the utmost respect. The Old Ford reservoir is close to the
river Lea, and eels are capable of travelling over landsnake fashion-especially where the ground is covered with wet grass. The East London eels are supposed to have shifted their quarters on certain occasions from the induced to do by the extreme pollution of the Lea, which might well be distasteful sometimes even to eels. Fullgrown eels descend the Lea in autumn, while the small fry
and adult female eels ascend the stream in spring and summer. It is stated that eel fry, during their upward journey in spring could, by their power of climbing and their capabarriers intervening between their starting point and the upland waters. The Old Ford reservoir is admirably
situated as a trap for eels disposed to wauder. The sursituated as a trap for eels disposed to wander. The sur-
face of the ground is not many feet above flood level, and the river bank on the company's side of the stream is much less steep than elsewhere in the neighbourhood. The ground surface, which forms the roof of the reser-
voir, is clothed with grass, calculated to encourage the progress of such "emigrant and exploratory eels" as might elect to leave the unsavoury river at this inviting
spot. In the roof of the reservoir are many man-holes spot. In the roof of the reservoir are many man-holes
nearly flush with the surface of the ground, and not nearly flush with the surface of the ground, and not
always perfectly closed. Through the apertures thus left, the erratic eels, attracted by the clear and wholesome water below, might easily drop into the reservoir.
Lacking nourishment in the filtered water, the imprisoned eels would be likely enough to pass on into the engine wells, there to be pumped up into the mains. The autumn eels would seek to continue their "down stream"
journey to the sea, and while instinctively out-racing the journey to the sea, and while instinctively out-racing the
current, would ultimately run their heads against the taps in the tanks of the West Ham householders. The hypothesis thus formulated accounts for the presence of
the eels by a succession of individual arrivals from without, and dispenses with the idea that eels were permanently domiciled in the mains. In this way we can
account for the fact that the eels have varied greatly in account for the fact that the eels have varied greatly in
their number from year to year. In 1884 the pipes were frequently blocked by the intrusion of these fish. In 1885 there is no certain evidence of the presence of eels, 1885 there is no certain evidence
whereas in 1886 they abounded.

It appears that the plague of eels extended to rather less than one-fourth the entire area supplied by the Eas the West Ham water supply prospect for the future of hopeful than the old. If a colony of eels were in posses sion of the water mains, and were able to reproduce their kind in such an abode, the chance of expelling them would be rather remote. But the case appears to be
otherwise. The company are now advised to insert wire therwise. The company are now advised to insert wire
gauze screens between the Old Ford reservoir and the engine wells connected with it. A further suggestion is made that wire gauze baskets should be suspended under he man-holes in the roof of the reservoil, so as to catch plunge into the water. This novel kind of eel-trap may perhaps grow into a permanent institution, and may urnish a useful hint to persons elsewhere who go in pur-
suit of cels. The "scare" at West Ham has at least added something to our knowledge of the habits of eel and the practical results flowing therefrom. Had the fficers of the East London Company been previously amiliar with this by-path of natural history much money would have been saver and considerable agitation of the oddest kind of knowledge sometimes becomes useful; but t seems that only at a very recent date have the habits of eels been understood to the extent necessary for the successful issue of this Government inquiry into the peculiar phenomena of the East London water supply, from beginning to end. As we have said, eels breed freely in nearly stagnant ponds, and no one seems to have ever seen an eel climbing into the reservoir. The truth, however, can soon be ascertained. It is only necessary to
set traps as proposed in the manholes, and ascertain the result.
lord carnarvon on impertal defence.
We very recently wrote upon the subject of the character of he forts now being constructed for the defence of our Imperial coaling stations abroad, and of the armament which it appears
to be the intention of our authorities to provide for them. Lord Carnarvon's letter to the Times of August 24th strongly emphasises the remarks we then made; so strongly, indeed, that it justifies our again, and after so short an interval, returning to the subject. This journal may claim to have been the first
to direct attention to the defenceless state of our foreign coalin tations. That was done now a good many years back, and it was not long after our first article on the matter appeared that public action was called for. It is not unnatural therefore
that, as having been first in the field to ventilate the dangers particular attention every contribution to the literature of this subject. Lord Carnarvon's letter is a particularly valuable item in such contribution. He was president of the Commission which was appointed shortly after our first article above
eferred to appeared and in that capacity he had full oppor referred to appeared, and in that capacity he had full oppor-
tunity of weighing the evidence adduced before the Commission tunity of weighing the evidence adduced before the Commission
and of estimating its importance. Our latest remarks went to show that there was a seeming desire on the part of the home authorities to shirk their part of the bargain into which they frms the suspicion we epressed and what is more, makes linon to us on high authority the cause of that shortcoming. With that portion of his lordship's letter which refers to home defence we do not propose to deal. It will be sufficient to quote such parts of it as, as we have named, support and accentuate the complaints to
which we have before directed attention with reference to our coaling stations ; leaving aside, as apart also from our present object, al consideratons rel
ports. Fer ports.
tralia and New Zealand may well be left to fight their own defaulting parties to Crown Colonies, we know that they are individually too weak to secure their own case against the bureaucracy of the Colonial-
office which rules them from Downing-street; and the latter by itself is also powerless to overrule the decisions taken by the magnates of the Treasury. We may class among the principal stations coming under the category we have named, Hongkong,
Singapore, Mauritius, Colombo, and Trincomalee, while we fear Singapore, Mauritius, Colombo, and that even our chief ports in the
there is good ground for alarm that dassed as being deficient in the power of influential advocacy With respect to such ports, Lord Carnarvon has written *These communities have as a rule performed their part of the
contract: we have in every case left our share unperformed contract; we have in every case left our share unperformed
either wholly or in part." What the deficiency is that Lord Carnarvon complains of we have in our latest article indicated His letter refers to the main point of that deficiency by the dotuction sent out the armament which we engaged to "provide." The letter characterises as a "melancholy apology" for this
shortcoming the excuse offered to him that "the manufacture of modern armaments is so slow that two years are needed fo the construction of a gun with its proper mountings. A "melan
choly apology", indeed, with the facilities England possesses for engineering work; that, in the case of war breaking out,
we are being left, by the dilatoriness sheltering under such an excuse, almost entirely defenceless as regards the coaling
stations, the safety of which is vital not only to stations, the safety of which is vital, not only to our commerce
in time of peace, but to the successful carrying on of hostilities weak an excuse to remain unexposed. "Even the auxiliary armaments, those machine and quick-firing guns which are absolutely necessary in modern war, which, even without the heavier guns, might, for purposes of defence, have an almost
ncalculable value, and which can be procured and sent out at incaleulable value, and which can be procured and sent out at
once, are subjected to the same fatal delay." The real reason why we are left exposed to the danger of unpreparedness in the event of war is, as the letter shows, due to the desire of ou successive Governments to present as moderate budgets as pos-
sible to Parliament. In order to secure this end, expenditure which is of vital importance to the nation, which is demanded
for the equitable fulfilment of the contracts entered into with our colonies, is being shelved year after year. What hope can subject to an influence which places party above national interest? The Australian colonies, as we have said, to a great
extent walk alone. They have spent a sum approaching five extent walk alone. They have spent a sum approaching five
millions sterling on their defensive works, and may protably be deemed to be safe against ordinary attack. But at those
points which are most vital to maintaining communication with
our distant Possessions we are being left, owing to the causes so
forcibly forcibly demonstrated by Lord Carnarvon, almost wholly
defenceless. As he remarks: "Forts built at great cost stand defenceless. As he remarks: "Forts built at great cost stand
useless for want of the necessary guns, or guns are transferred o some place where they are wanted from another place where they cannot be spared." Such a position of affairs demands the out of a false economy which may possibly have most dangerous results to our maritime and colonial supremacy. As character of such armament as has already been supplied, Lord Carnarvon says nothing which affects our coaling stations, but
he mentions the fact that " the Mersey, with the wealth of Liverpool, has only the so-called defence of some old 38 -ton yuns., The natural deduction is that the interest of distant Possessions will be even more lightly regarded, and we have
before shown how numerous and grave are the complaints which illustrate and justify such a deduction.

english tronstone and spanish ore,

Many of the mines in Great Britain are now idle, whilst those now canvassed as one of the possibilities of an early future Very large quantities of the Spanish iron ore are imported into this country; and though the basic process may, under certain extent, yet there can be no doubt that the substitution of Spanish ore for local bas had much to do with the dulness in only 52 furnaces using Cleveland ironstone out of 95 at worl and 155 e: ected. In other words, little more than a third of the smelting plant in existence is now in operation in that great district smelting its own abundant ores. What is the cause of
this? for it is now clearly shown that the local ironstone will his? for it is now clearly shown that the local ironstone wil
make good steel by the basic process, though the facts as to the make good steel by the basic process, though the facts as to the
relative cost of the two methods of manufacture are not as plainly told. One of the chief causes must be stated plainly-as by Mr. Head at the meeting of the British Association a week
blanlole ago. It is that the cost of the labour in producing one ton of nore than elevenpence. Such a difference must have its effect on the demand for the two kinds of ore. But in addition to
this there is the fact which is not stated in the paper-that the ea freight on the ore from Spain to the north-east of Englan ther words, many things combined to reduce the cost of the Spanish ore to the user here. It is important to ascertain whether hose influences which have made Spanish ore so cheap here ise in Spain ; there is more work there than there was ; ther is more communication with other parts where labour is bette paid, and the work of extracting the ore will grow harder.
Freights have risen and are still rising, and are likely to rise hat rate which was 4s. 6d. per ton is now 5s. 3d., and with the carcity of boats in comparison to what there was, it may be the rate of freight from the Bilbaw ore district, We have mere than passed the cheapest era in the Spanish ore trade, and we may now expect that, coincident with any scarcity there will be more cost at this end, and that apart from any suggestion of duty levied by Spain. It is quite possible that there may be supplies of hematite drawn from other points, but in that have been suggested lie at such greater distances that it is certain the cost, deposited at the smelting works here, would
be much in excess of that of the Bilbao ore of late. Hence it ould seem that in the future we must look to these rich as likely in all probability to be more costly to the smelter, and解 rocess of fitting our less pure ores for manufacture into steel
There can be little doubt that this is the solution of the diffi culty which would be most to the advantage of this country,
and it is the one which seems most likely, though the exact and it is the one which seems most likely, though the exact
period of its attainment cannot be defined. But the increasing price of Spanish ore must be looked on as one of the factor Which will bring that about, and already the higher freights,
ctual and expectant, will have their influence Dearer hematite iron ore seems now certain, though the increased competition of the smelters may make
nto higher-priced hematite iron.

LITERATURE.

The Health
of Nations: a Review of the Works of Edwin Chadwick. With a Biographical Dissertation. By Bex.amin
RIchardson. 2 vols. Longmans, Green, and Co. 1887 . A review of even an ordinary essay or treatise usually can convey but a general idea of the nature of the book portion of the life experience of its author. The task that Dr. Richardson undertook was to review and summarise not merely the life-long works of a man during nearly half a century, but those of an exceptionally industrious, if occasionally mistaken, worker, and one whose attention and time were devoted to the many branches of the subject defined in the title his reviewer has chosen. Though our task is to put before our reader ome information as to the nature of Dr. Richardson book, we must at the outset tell them that so large was
the mass of matter embodied in the records of Mr. Chadwick's life which he had to notice, and so careful has he been to eliminate every redundancy, that with the
imited space at our disposal we can convey but limited space at our disposal we can convey but a fain idea of the extent of ground covered by him. As might be expected, Dr. Richardson begins his review with, to
quote his own title, "a biographical dissertation,", and he commences this with the following passage.- To relat in a plain and simple form the more important details of ncluded in these two volumes, is the object of the pre sent dissertation." Dr. Richardson then goes on to sa hall he. Chadwick has but one desire - hat the recor tates that his friend bie pash which te reall from his lan leavin free mak is cown solion "he shall treat these fact restly, acording to deise and their own excellent onestly, accorrs this desire and the fuw excellen dessers, added to the nineteenth century, may be sure that in hese few pages they are in the possession of the truth from its original sources." "To the facts directly derived

I shall add some few impressions derived from my own personal, and for a long time intimate, knowledge of my
friend during an unbroken and increasing friendship, which, commencing in the early days of the Epidemio this hour, a period of over thirty-three years.
Mr. Chadwick was born in 1800, and his reviewer tells us that in 1862 he wrote an essay on his character for the Chadwick as a Social Reformer." In the first lines of it history of this period shall be written by an impartia bserver, freed from the jealousies and parties by which we are surrounded, such observer will find amongst the o define, to paint, than Mr. Ed win Chad wick" ""Though he made laws, yet he was not in the Legislature. He did something for sanitation, yet was not a doctor. He
advanced education, yet was not a schoolmaster. He was not even a great writer. He was not an orator." His biographer sums up the reasons why Mr. Chadwick
ttained so much influence, and so largely contributed t effect so many sanitary reforms. "He has the faculty of seeing in any reform that he is contemplati, γ what, ffectually removed, and what may be judiciously and afely left as the basis on which to lay a structure entirely new. His poor law labours all admit of this eading, and the reading explains much that would other with other points of character in Mr. Chadwick which we cannot now quote, save one, which we must quote aaking the best of him, he does po Mr. Chadwick that, same thoughts that other men think, and that, in fact, he is not 'an original man.' Admitted. But then he has the faculty of putting things forward in an original way,
which, after all, is the soul of originality." "And in this faculty, we assume, lies at least one great element of all
his skill and all his success. If we were to ask him, as some one once asked the great Duke, 'By what faculty id you win your victories? we suspect that he would Dr. Richardson tells us that Mr Mense.'
Lancashire family, Wesleyan by died while he was quite a child, but he remembers that he was a sanitarian pur et simple. "Morning and evening er children." His family went to was the rule for al ten years of age, and his education, begun at Longsight entinued under priva nder whom he chiefly took lessons in classics and lan guages more than in the ordinary branches of study. He
made progress in Spanish, French, and Italian, and found these of great use to him in after life. For his profession ke many thers, supported himself by his pen. His first essay was
published in the Westminster Revievo of A pril, 1828, and was on the subject of life assurance. The following ciractuary, Mr. Morgan, had made a statement before Parliamentary Committee upon the soundness of the he social condition of the middle classes of England had mproved, their expectation of life had not done so more correctly speaking, had not lengthened. Mr. Chadwick's attention was drawn to this statement by his
riend Dr. James Mitchell, of Aberdeen, an eminent actuary, as a question requiring to be more carefully He accordingly Morcan was mistaken, and that as a fact the expectancy of life in the classes specified had improved in proportion o the improvement in the social and moral condition in Mr. James Mill, and Mr. John Stuart Mill. In 1830, Lord Grey's iqquiry on the extant Poor Law of England. The Com missioners appointed were the Bishop (Blomfield) of Mr. Nassau Senior, Mr. Henry Bishop, Mr. W. Coulson, and Mr. Henry Gawler. Mr. Chadwick wa
appointed one of the assistant Commissioners. We ar told that the Commission found that under the old poor
law, founded by Elizabeth, there were 16,500 local law, founded by Elizabeth, there were 16,500 local
administrations in the form of separate parishes. Some members of the Commission were for perpetuating this system. Mr. Chadwick opposed it, arguing that larger
administrative areas must be formed in order to obtain administrative areas must be formed in order to obtain
the executive service of duly qualified and responsibly the executive service of duly qualified and responsibly paid officers acting under the orders and the supervisio people.
Altogether the preliminary biographical notice is xcellent, and gives the reader a clear idea of the ma whose writings form the subject matter of Dr. Richardson's review. Of these writings he tells us that at the of no mean size, and one which he thinks the most industrious scholar could not read through with any hope of becoming master of its contents in less than from two to three years. The first instalment of the library dates and treats of physical education and physical training for the young. Speaking of Mr. Chadwick's writings as a whole, his reviewer says of them that they embody two ideals, Unity and Prevention," observing that through of unity of design in all the departments treated of, and and of disease ; in fact, for the prevention, of pauperism, this general conception there is suggested also throughout the works the promotion of, as well as the extension of knowledge, as the root of all that is progressive. "I no prevention of the greatest national miseries which
have to be prevented. If knowledge be free and in free peration, then prevention is omnipotent, and what is hered cure a mylh. With knowedge 1 re and elective disease." "In the above sentences," says Dr. Richardson, "I have tried to give the general spirit which pervades this unique library." Further on in his review of the this unique library." Further on in his review of the
library, Dr. Richardson
remarks that all the statements made by Mr. Chadwick are not expressions of opinion, but are statements of facts. He also observes that the f m lion . do so but the united efforts of a whole people, or at all events, of large communities.
We come now to the review itself, which epitomises very clearly the subject matter of much of Mr. Chadwick's literary records and essays. One of the first essay Essay on the Means of Insurance against the Casualties of Sickness, Decrepitude, and Old A ge.": With additional notes nd corrections, it was republished in 1836 by Charles Knight. Of this essay Dr. Richardson speaks as follows it presents of a memorable the second place, it supplies us with our author's first and original views on various matters of practice affecting national progress, of the qualities of mind which lead to an arrest of progress, and of the qualities helping on propecial subject on which the essayist particularly dwells ife insurance as it was in 1828, together with a review o the life and health of the nation at a period immediately before the railway system commenced its reforming and civilising spell." Beginning with social history in 1828 the essayist congratulates society on the improved value -duration- of life, owing to the great improvement in the general mode of living amongst the people during the previous twenty years. The higher classes are repre "the disease of unfurnished minds." The vice of har drinking being on the decline, the physical condition of the aristocracy was greatly improved, the "spindle-shanke ord" of Fielding's time having become portly by bette habits and partly by plebeian alliances, in obedience to the general law of nature which is effectual for the im provement of the lower animals, replaced by persons enerally taller and better made tha 1 parents. The abits of the labourng classes are also described as being much amended. They are depicted as having gained somewhat in knowledge and in habits of more varied and temnoticed. They are said to be less dirty and irregular. Thei houses better constructed, and they had more faith i ventilation. accination, better nursing of infants, and that, on the whole, the value of life was increased. "The homes and habits of the wace classes have rise towards a better and purer state as the homes and habit the rich have descended-from undue he same; and if angels have not been brought dow Another point in this essay is that dealing with "Practical Men." Mr. Chadwick criticises those who call themselves such under the claim that because in some science or art they have learned perhaps to perfection a certain he science technical details, therefore they are mast nised as the authorities on it. About these men Mr Chadwick writes as follows:-"The common reliance on the accredited testimony of practical men is declared to be founded upon an assumption that those who have bee have obtained, or are at least likely to possess, the whol of the existing knowledge relative to that pursuit, and ssum therefore be the most compete o distinguished as by their indifference to the procarried on relative to that pursuit and to the utility o any new facts that may be elicited with respect to it. his opinion of such men was supported by the ev f the House of Commons, sittin upon the laws relating to friendly societies. Some of 1791, and cared not to examine whether the circumstance affecting the duration of life were altered since that date Elsewhere the essayist says:- "The best of the practical not roused to who merely follow as rules of office the old monk's rule of life- Go through your business in a way to excite no
complaint; always admire and praise everything done by our superiors in office or party and only see merit i those by whom you are likely to be ousted; receive you salary quietly; get yourself into no troublesome opposilways go as it will go,'" Mr. Chadwick, however, does not permit the mere theorists, however advancel escape. "So far from this," says his reviewe an wid in 'The Last of the Barons,' who fell short of glories by ticking at trifles. Not trifles to him, mow. The inventor had constructed a most important and complex machine for work on cotton fabrics, and in full confidence in the soundness of the inductions upon which his invention was based, called together all his friends to ee it start. The power was applied, but lo! the machine on. He would make the machine move on condition that had a share in the profits. The inventor consents The practical man, still practical, pushes his bargain stil closer. He must have, before he acts, the security for
the share of his profits signed and sealed. The practical
man and the inventive man retire into the counting-hous and clench the contract. The practical man puts the pur simple. He returns to the obstinate machine, he take rom his pocket a piece of chalk, with which he rubs on of the rollers to prevent the fibres of the cotton from dhering to it. In an instant the vast machine is in motion, and works with entire success. The truth of the Win is very doubtful, but as an apologue it is nea Wons by is is citel as anor oxample tried to orm joints, He was only treated with ridicule. He had in fact quite verlooked the cost of the pipes through which the ga must be conveyed. Dr. Richardson's review is a small library in itself, and worth study. All the points affect ing the duration of life are summarised in it. The nnuence exercised by the dietaries in different prison nd penal establishments is given. Ther $1830-31$ End amounted for the three years to 97,279 . The total num ber in prison at any time was about 25,000 . Out of thes wenty were taken having the highest scale of dietary wenty having it medium, and twenty having the lowest. The effect of feeding on duration of life in these places is prisoner pe of solid food per week. Amongst prisoners so fed the percentage of sick per annum was three, and the mortality at the rate of 1.60 in the 1000 . In the medium scale the cost per prisoner was 2 s .42 d . per week, or 213 solid ounce per r a fraction over, per 1000 . In the highest dietary olist per head per week was 3s. 2d., or 218 ounces and theod. The percentage of sick per annum was 23_{2}, is the mortality 1 in 266 . The deduction to be drawn health. Of course such a deduction would be quit rroneous, and the bare figures set forth are of whatever They afford an excellent example of the unscientific and even unintelligent way in which statistic can be handled
Dr. Richardson has so classified the essays and writings Mr. Chad wick that a student seeking information has but to refer to the index, or even to turn over the pages and their headings, to ascertaint once what is the mater scope of Dr. Richardson's two volumes we may take a few page headings at random. In one place we find, on the left hand pages, "Essays, Political and Economical " on the right these are subdivided thus, "Dietaries, Sickness, and Mortality." Then in the same class of essays com Taxes on Knowledge. Here will be found argu tamp duty book trading, and instances are given of the evils that prevailed when such taxes existed; and even amusin pnecdotes are given of the enormous influence exereise by a mere handful of reporters as regarded the publica tion of Parliamentary debates. Next come "Intemper ance and Measures for its Suppression," "Competitive National Economy," wherein is considered the working Brishas compared with foreign railways, "Economy in tation." thepply," in "Interment of the Dead," in "Sani "Education as a Corrector System of Education," "The Physiological Half-tim Mental Labour," "The Psychological Limits of Menta Labour." and "Education of the Young for Military Serficial Writing on thisMr.Chadwick commentson the bene it exercise in all that is implied in the term discipline, viz., duty, obedience to command, order, self-restraint, punc Mr , and patience. The eleventh chapter deals wion Mr. Chadw
Dr. Richard argumerts advanced by our author in favour tion for the whole nation, one of the most powerful and wich rests on the economical aspects of education,號 platy up so repeateduy the whings, the it dwelt he whole, I think I find it placed in the strongest form and clearest light in an address delivered before the National Association for the Promotion of Social Science on the opening of the session 1869-70. We were at that time looking forward for the work of the School Board throughout the kingdom, and for the establishment of y in England and Wales." One of the heads of this Under it Mr. Chadwick refers to and examines the ducational systems of France, Austria, Germany, and Italy.
Other essays and papers dealt with by Dr. Richardson refer to the training of youth, to sanitation as regards good dwellings, effective water supply, efficieral ifluence of recreation, pure air, and pleasant surroundings nd exercise. We have devoted a good deal of space curiosity. The labours and writings are held by those who know any. thing about them does not in all cases coincide with Dr said, the book about it is t

The Greenwich Hospital pension of $£ 50$ a year, for chief engineers, has been conferred on Mr. George Crichton, in
the room of the late Mr. Thomas Brown, inspector of machinery.

IMPROVED CARDINGENGINE.
messrs. hetherington and sons, manchester, engineers.

THE BRITISH ASSOCIATION.

During the meeting of the British Association many works and placés of interest were thrown open for inspection. We have, in the following notices of a few of them, endeavoured to place before our readers

HETHERINGTON AND SONS' SPINNING MACHINERY WORKS.
The Vulcan Works of Messrs. John Hetherington and Sons, The vulcan Works of Messrs. John Hetherington and Sons, thousand men, are exclusively devoted to the production of machinery for cotton spinning, for many improvements in the details of which they hold several valuable patents. The firm not only makes, but also practically uses the various machines, so as to judge the effect of the modifications and improvementsintroduced. With oue minor exception there-
fore the visitors to these works had the opportunity of studying the whole process of cotton spianing in its latest phase, from the bales of raw cottou, which arrive compressed by hydraulic machinery, to the finest yarn from which imitate silk.
The first machine through which the raw cotton passes is the opener, which loosens the compressed bale and knocks out the worst of the dust. The only opener with a vertical cylinder is that invented by Mr. Crighton, to have brought him in so large a sum of money that his application for a re newal of the patent was refused. From this machine the cotton is passed on by a mill-hand to the scutchers, three or four of which are kept going by one opener. loosens and cleans the cotton while forming it into a "lap" or fleece ready for the carding engine. These two machines with improvements in arrangement made by the firm were shown and described.
Fig. 1 shows the carding engine as improved by Messrs. Hetherington. This is probably the most complex as well as important of all the machines for spinning cotton. Its office is fibres side by side and form them into a "sliver" or very soft and unsubstantial rope without any twist. The improvement chiefly relate to what is known as the "flexible bend," the arched plates, shown by the letters $b b$ in Figs. 2 and 3 annexed. In ordinary carding engines the "flexible" is outside the "bend " in the framework; but in the machine under notice it is placed " inside next to the revolving cylinder, thereby shortening the "flats" by about $5 \frac{1}{2} \mathrm{in}$. and reducing the friction, while giving the same amount of carding surface. The new and the old The flats are T bars of cast iron, to which the " wire clothing", or wire card is attached, and between which and the cylinder, also wire clothed, the " lap" passes while undergoing the opera-
tion of carding. What has been regarded as the principal defect of the "revolving flat" carding engine, viz, the great difficulty required, that is to mechanical construction where most over which the flats travel, is completely overcome by this improvement. The best condition for ensuring the operation of carding being properly performed is that the wire on all the flats resting on the bends and the wire on the cylinder be in the closest possible proximity short of actual contact; and this should hold good for every position of the flats as they travel
over the bends. The bends must therefore be accurately concentric with the cylinder, or in other words, every point of the carding surface should be equidistant from the centre of the shaft. Though this is easy to obtain at first starting, a difficulty arises when the wear of the wire has to be compensated This wear does not take place so much, owing to the cotton

bend trueing machine.

but the ends of the wires that eventually become blunt are sharpened by passing, in the return journey, across an emery top of the mathe bearings-shown in the general viewwires, both of the flat and of the cylinder, the bend must be capable of assuming a smaller periphery, while at the same time bend may, indeed, be readily adjusted by slotted plates and screws ; but it is also necessary to draw in the ends radially, so as to make the whole bend concentric with the cylinder. Messrs. Hetherington accomplish this by springing inwards the bends near their ends with set screws, the adjustment being made at three points including the middle one. Even in new cards, with the bends as they leave the lathe, it is difficult to obtain the concentricity required, and it becomes almost impossible to keep the adjustments right when the bends are sprung in about threeeven if ofter long. A unice the best shape and section upon, have been obtained. It cannot be guaranteed that both ends will be the same in every respect, that they have been cast alike,
or that the iron is equally elastic throughout the bends
rurt the Furthermore, the weight of the fats causes a deflection in thio carding, a large proportion of the wire on the flats being too fa removed from that on the cylinder-over a thirty-second of an inch, perhaps-and on account of the want of perfect similarity in the bends, a flat may be carding properly at one end and doing nothing at the other, or, again, it may be carding properly at one part of its travel and not carding at another. Anothe source of inaccuracy is that, in springing, the bends will buckle ends of the flot rice upon their edges, and not, as they should do, upon the full width
The method pursued to get over these difficulties is as follows : The cylinder, Figs. 2 and 3, being placed in position, the bends b turned alittle larger than necessary, are put in their places, and ar veighted by rods and weight y, at the points shown, in deflection. Bearing in mind the fact that the deflection of a beam weighted in th middle is the same as if the weight were disposed uniformly over the whole sur face, and knowing the weight of the flats, the weights y are easily deter mined so as to exert the is attached the trueing up apparatus, consisting chiefly apparatus, consisting chiefly for each bend, and both on the same shaft g, being driven by a temporary pulley, and the band f, from the shaft e The toothed segment x, with worm and gearing on the
bracket attached, which constitute the feeding motion, is drive by the bands as shown. I turns the cylinder very slowly, so that in a few hour the cutters will pass from one end of the bands or flats to the other, accu rately trueing them up
over their whole length over their whole length
and taking out all the irregularities due to uneven springing, buckling, and the weight of the flats. In the case of existing carding engines the cutters are carried by an arm keyed on a temporary shaft, and the flats being removed, the apparatus clears all the brackets and fixings on the engine and turns up the bends in the same accurate manner as in new carding clothing which is made wher and temped pointed wire, the flats being covered with finer wire card, and the "doffer," or the taking-off roll, with wire of an intermediat degree of fineness. The approved test of wire is to give it sharp pitch or kink, when it should break on being drawn back if it breaks before it is too hard, and if not then it is too soft Notwithstanding that they are made of cast iron, the flats are straightened by hammering. They must be perfectly true and also of equal thickness at the ends to the 500th part of an inch, because they have to travel first on their face and then on their back with devised a machine which, by multiplying levers, the firm ha scale the thickness of the two ends to the required degree of accuracy, The flats are drilled in a multiple drilling maçhine
as many as eighty-two $\frac{1}{1}$ in. holes, $\frac{y}{8}$ in. centre to centre, being
drilled together perfectly true and equidistant. The drills, which are thus quite close toge and equidistant. The drills, simple and ingenious manner, which we are requested not to describe. This drilling is to receive the lead rivets, made in a machine like those for wire nails, which attach the wire clothing. Attached to the carding engine is the coiler, the improved form of which places the sliver in the can, so as to leave no hollow space in the middle. The cans are taken to the draw can stop motion, by which the machine knocks off when the fresh can is full. The object of this machine is to draw the
used whenever possible ; and plate moulding is resorted to for used whenever possible ; and plate mots or objects.
a succession of small parts

MESSRS. DE BERGUE AND CO.'S IRONWORKS.
The Strangeways Ironworks of Messrs. De Bergue and Co. are situated on the banks of the river Irwell - silver now no more, but golden rather in a sense-where they are somewhat cramped for room. A About 200 men are engaged in turning out girder, bridge,
and roof work, with which the company has long been identified. The principal job now in hand is the roof of the Lancashire and Yorkshire Railway Bradford Station, consisting of two bays of

fibres more regularly, and, where as many as six or eight slivers
go in at the back of the machine, only one of equal fineness passes out at the front.
The next machine is the slubbing frame, a new arrangement of which was being tried with cotton experimentally during the British Association visit. This is the first machine which gives any twist to the sliver, and places on a bobbin what now approaches to yarn,
The cotton, now

100 ft , span and 500 ft . long. The ribs were sent away rivetted up in five pieces, lifted into place by a travelling scaffold having
two Scotch cranes on the top, which raise the sections, maintained in position by the scaffolding until the joints are rivetted up. The purlin girders are all lifted into place by the same cranes; and when a bay is complete the scaffold is made to travel forward for the next.
A prominent object now at the works is a double shearing machine combined with an inverted engine-cylinder 17 in dia
meter by 12 in . stroke-giving out about 25 -horse

excentric into contact with the end of the rivet just headed and pushes it out. The rivets are heated in a portable furnacefired by Hannay's Lucigen, which the company has successfully turne to this purpose, after having used it for lighting the works. It action on creosote oil being drawn along in the form of a spray by a current of air, injector fashion. The nozzle of the Lucigen
is inserted in an orifice in the furnace plate, and heats the rivets is inserted in an orifice in the furnace plate, and heats the rivets
rapidly and uniformly. The great advantage, however, lies in the portability of the whole apparatus thus saving the necessity the portability of tine whole apparatus
of bringing hot rivets long distances.
Notwithstanding the large amount of rivetting done at these works, there is only one set of rivetters employed, this being found depended upon. Hydraulic rivetting has been abandoned owing to the difficulty of regulating the power, but chiefly through the nui sance with pipesand joints,on account of the high pressurerequired Now, for more than a year past, all except corner rivets are close by Allen's pneumatic rivetter-described and illustrated in HE EANGINEAC somequent experience with which has abun The principal advantaces, we are told, are that the first cost of plant is little more than half that of hydraulic rivetters, while the expense of maintenance is less ; the work is at least equal in quality to that of the best hydraulic machines with 25 per cent greater production at half the power ; the pneumatic is more cleanly and manageable, and can be used in any temperature with out fear of freezing or bursting pipes; there is no expensive accu mulator ; the air, at 70 lb . pressure, may be carried by ordinary flexible tubing; and the machine, which may be suspended from an ordinary
any angle.
We append a diagram showing the travel of the heading plunger for each inch of piston stroke. It will be seen increases, with correspondingly diminishing travel of the header until attaining its maximum at the completion of the operation. With a cylinder 10 in . diameter a pressure of 50 tons can be exerted, amply sufficient for inch rivets ; and the pressure from the piston is conveyed to the ram through differential lever combining to form a toggle joint. Two of these machines are in active work at Messrs. De Bergue's works, the compressor, also designed by Mr. Allen, being fixed on one side of the large yard, and the power conveyed by
ordinary steam pipes to the various shops, whence it is led to the machines by ordinary three-ply india-rubber tubing.
In the fitting shop a power rivetter is being fitted up on a frame cast in mild steel by Whit worth. The first complete and portable pneu matic plant, consisting of steam boiler, air com pressor, and receiver, was fitted up by Messrs, e and 250 ft . in diameter. The second is being fitted up, with parts supplied by the company, at Messrs. Head, Wrightson, and Co.'s works, Stockton, for working portable pneumatic rivetters on the South Western Railway bridge at Putney, for erecting which the last-named company has the contract.
for it, and then goes through exactly the same process in the intermediate frame as in the slubbing frame, except that it is drawn out to about half its former diameter. It then passes on to the roving frame, similar in its action to the two other frames, but again reducing the diameter three or four times. The cotton, now completely yarn, goes next to the mule, a self-acting specimen of which was shown at work. Roberts improved on Crompton's hand mule-so called from its being supposed a hybrid between two machines, viz., Arkwright's
drawing roller and Hargreaves' jenny-by making it self-acting drawing roller and Hargreaves jenny-by making it self-acting. the firm. This is the final stage in spinning yarn, which is made from "one's" to "three hundred's," that is to say, there are one to three hundred hanks of 840 yards to the pound. If very fine numbers are being spun, the comber is used after the first drawing frame, being invaluable and almost indispensable for fine yarns, made from long staple cottons, the woven goods from which have all the appearance of silk tissue.

MESSRS. CRAVEN BROS, MACHINE TOOL AND CRANE works.
The Vauxhall works of Messrs. Craven Bros. lie off the Roch-dale-road, Manchester, and employ from 400 to 500 men . The present is the first occasion that they have been thrown open to
visitors. Besides machine tools, many of which are specially for particular purposes, the company makes a large number of overhead travelling cranes, specimens of which in their various stages of development toward the present type are applied to the various shops. These are generally for lifting 20 or 25 tons; but 60 and 70 tons are not uncommon sizes, and one of 120 tons has lately been supplied to Woolwich Arsenal. The overhead crane in one of the shops is provided with two chains and hooks, the smaller, for light work, being raised and lowered at four times the speed of the larger. All these the shop, and worked by the line shafting, all three motions of raising and lowering, travelling and cross traversing motions of manded by one man from his seat. In the case of all but very slight spans, the intermediate bearings of the cross shafts are depressed automatically while others rise, thus permitting of the carriage passing.
In the company's standard lathe both the longitudinal and the transverse cuts are given automatically by a traverse shaft at the back of the bed, thus leaving the screw unworn for screwin three parts, for turning boring and rifling cuns up to cast long. There is now in the shop a machine for boring the cylinders of portable engines, planing the guide bars, and boring out the bearings, all at one setting, so as to ensure accuracy. There is also a large slotting machine, with 10 ft . stroke, for ordinary steel ingot work at Sheffield, that will weigh 100 tons when finisher, the main body casting alone weighing 21 tons. A crank sweep machine, for cutting out the webs of locomotive crank axles and rounding the pins at the same operation, has a circular cast steel the web flats to receive a wrought iron. Another machine planes Great attention is a wrought iron hoop shrunk on. been rejected because it bore marks owing to the metal having been run too cold. No special precaution is, however, taken in moulding beyond securing the best labour. Foundry sand is obtained in the neighbourhood; and the moulds are coated with ground plumbago in the usual manner. A moulding machine is
speed. This machine has been made by the company for the new locomotive works of the Lancashire and Yorkshire Railway day, and will shear heay puddle bars 20 in . by 2 in ., steel tires, and even hard steel rails, which snap with a report like that of fire-arms.
The manager has long sought after a Utopian machine which shall turn out rivets like sausages-raw material in at one end

diagram showing plunger travel.

and finished product out at the other; but he has been reluctantly constrained to fall back on a less ideally perfect but
more practical machine, viz, the De Bergue rivet maker. The more practical machine, viz., the De Bergue rivet maker. The bar is heated for about 2 ft . of its length in a Wilson reverberablanks fall down a shoot, whence they are picked up by a lad and fed into dies eight in number, formed in the periphery of a vertically revolving disc. As each in turn comes under the action of a lever worked by an excentric, it is headed and then pushed out by a fixed internal excentric having its greatest excentricity towards the bottom. As the dise revolves it brings the

MESSRS. FRANK PEARN AND CO.'S PUMP AND COM PRESSOR WORKS.

Messrs. Frank Pearn and Co., whose works are at West Gorton, have long been identified with pumping machinery, bu they also make air-compressors and steam engines, and quite recently have turned out for other engineers a very useful shop designed th Mr Frank Papper -dene use, but now -originally request that production cannot keep pace with the demand The piecework system, together with employing machine whenever possible, and also getting the utmost out of machines accounts for the large production-between five and six hundred pumps annually, delivering from 30 gallons to 100,000 gallons per hour each. For instance, we saw two pumps clamped down together on the table of a planing machine, the two valve faces being planed by two tools simultaneously. Then there is
a double-boring machine for boring together the steam cylinders of two pumping engines. A couple of emery grinders
save a great deal of filing and save a great deal of filing and
machinery, and everything is machinery, and everything is
generally done to gauge, as the various pumps are, as a rule, made in sets of at least ten at a
time. Patterns are made at the works, and also small forg. ings, but it is found cheaper to get made out all the castings, both brass and iron, and forg. ings weighing over 2 cwt . It is the usual practice to forge the excentric sheave on the crank shaft of small engines and to turn it up, except on the periphery, at one general setting of a considerable number of large pumping engines for wellknown houses; but there are now, as usual, about four hundred small pumps in hand.
 labour is effected by the "lightning tapper," by means of which all holes, even those known as dead bottom, are tapped under the drilling machine directly after they or table. The tapper consists of a spindle inserted in the dril spindle socket at top, and carrying the tap at bottom. It is divided about the middle by a yielding coupling, a journal on the lower portion entering the socket in the upper; but the normal position is preserved by a spiral spring pressing on a loose flange in contact with a corresponding flange in the lower portion. The upper flange has a projection on its lower surface the projection and recess becing bevelled off at an angle of 45 deg the projection and recess being bevelled off at an angle of 45 deg .
The effect of this arrangement is that when the plug tap has reached the bottom of the dead bottom hole it ceases to revolve, because the resistance of the spring is overcome, and the upper flange slips round over the lower. This useful tool may be used in any drilling or screwing machine, either vertical
or horizontal, ensuring all holes being tapped to one depth straight and uniform, while it prevents the breakage of taps. It
 spring
taps.
MESSRS. GRESHAM AND GRAVEN'S INJECTOR AND
The Craven Ironworks of Messrs. Gresham and Craven,
Ordsall-lane, Salford, give employment to 220 hands-the normal Ordsall-lane, Salford, give employment to 220 hands- the normal
complement. Being cramped for ground space, and the work not being of a heavy nature, it is carried on in the three floors as well as on the ground floor, a lift serving to convey the work
from one floor to another. Besides making the original Giffard injector, which some customers still insist on having, the firm makes a simple one of its own-the "Automatic," in which there
is no difficulty in regulating the steam and water. Nearly all the is no difficulty in regulating the steam and water. Nearly all the
tools are by Smith and Coventry, including Cooper's brasstools are by Smith and Coventry, including Cooper's brass-
finishers ' lathe, a model of convenience. The capstan, carrying six tools-all that are required for finishing small brass work-is moved up quickly by a handle, pitch wheel and chain, while
threads are put on by bringing down, on the outside of the part to be screwed, a tool like a plug tap, carried by a lever. The flats of hexagon heads on injector caps are finished at the same setting as that for turning the caps. Formerly, when a brass and iron surface came in contact, the two were ground and fitted
together when cold; but it was found that, owing to the unequal together when cold; but it was found that, owing to the unequal
degree of expansion in the two metals, the joint did not keep tight when under steam. Now, therefore, the joint is made under steam at the working pressure. working mole brake, a full-sized working model of which, as applied to a train of six carriages,
was shown in action to the visitors. The cast iron cylinders of the brake are turned by being clamped on to the face-plate of a lathe, vibration being reduced to a minimum by using a stout square bar, carrying a very short round-nosed tool at its extre-
mity. The piston is packed by an india-rubber ring, which rolls mity. The piston is packed by an india-rubber ring, which rolls
in the cylinder at each stroke, and the piston-rod gland is packed in the cylinder at each stroke, and the piston-rod gland is packed
by a fixed rubber ring. The piston-rod is of wrought iron sheathed with brass cast on to it. By means of one of the lathes above referred iversal couplings for the hose pipe with less grinding of the tools. All parts are made to pemplate ond grinding of the tools. Al parts are made to template, and
therefore interchangeable; and yet, with so many of the same oft-recurring articles, no perfectly automatic machinery is used besides the lathes, two of which are tended by one man.

THE LONDON ASSOCTATION OF FOREMEN ENGINEERS AND DRAUGHTSMEN.
The first monthly meeting of this Association for the winter
session was held on Saturday, the 3rd inst, in the K. room of the Cannon-street Hotel, when the chair was taken at 8 p.m., by the
President, Mr. W. Powrie, and the vice-chair by Mr. Jas. Ronald of Woolwich Arsenal. After the usual routine and private business was disposed of a paper was read by Mr. Suggate, one of the
members of the Association, entitled ""Ottings on Hydraulic
Lifts." Mr. Sugate stated that in Lifs. Mr. Suggate stated that in engineering practice known under the name of hydraulic work was embraced about one-half of
all our civil engineering and about one-fourth of all our mechanical engineering. Thus, we have canals, sea walls,
docks, ze., under the first head, and pumping engines, water
motors, hydraulic lifts and cranes, hydraulic machine tools, motors, hydraulic lifts and cranes, hydraulic machine tools,
presses, \&c...as the main divisions under the second head. There
is a suantity of good literature available on all of these subjects with the exceeption of hydraulic lifts, and it is curious
what notions inexperienced engineers have of this class of what notions inexperiencod engineers have of this class of
machinery. The cheap form of commercial lift as made at the
present time is a very present time is
wr can consider more than two out of every three lifts put down as
trust trustworthy, and unless careful supervision be exercised by the
owners, we may expect to hearof several lift accidentsduring thenext owners, we may expect to hearof several lift accicientsuaring netenext
few years ; but if no one is injured, they will not attract attention.
There are two reasons for the inferiority of lifts far the larger reason is competition. One manufacturer will say in in article than our competitor, whose lift takes very well with the public? Ours of the same type will do as well, and if the purchaser
suffers through lack of supervision, that is his affair." The other reason is ignorance, or want of experience, on the part of those
responsible for the designing and erection of lifts. Suspended lifts are the most dangerous, especially where chains are used. It is
usual now to suspend the caige by wire rope or ropes, and the usual now to suspend the cage by wire rope or ropes, and the
balance weight by chain, but wire rope ought to be used for the suspension of balance weight as well as cage. There are many hundreds of lifts, at work suspended by Tin. chains, the balance
weight being attached by bin or inin chain, and if iether of these
chains broke at the top of the well hole at the instant the cage chains broke at the top of the well hole at the instant the cage
was being lifted from the bottom, a length of chain equal to the height of lift would come smashing down on the top of the cage,
and as the cage top is usually only matchboarding, it could not give much protection to those inside. The ebest way of preventing
an accident of this sort is to attach the chains to brackets or arms fixed securely to the sides of the cage. Let the well hole be boarded up on each side, having a vertical slit for the arms to pass
through, so that the boarding forms a partition between the cage and lifting chain, and in the event of the chain breaking it merely falls down the side of the cane without damaging it. AEanin, when
lifting a balance weight, chains are attached to the top of the caage their falling weigrough, chains areare ittached nearly cortain top of the the
safety apparatus, which is almost invariably, though wron satety apparatus, which is almost invariably, though wrongly,
placed on the top. Safety apparautus ought in every case to obe fixed
to the under side of the to the under side of the cage, to prevent risk of its efficiency
by falling weights. The best kind of safety apparatus consists of a long wedge, so arranged that if the lifting chain snaps the wedge
is forced by means of a spring between the cage runner and weide is forced by means of a spring between the cage runner and guide,
firmy securring the former to the latter, the wwight of the cage assisting the action of the wedge. Ram lifts are safer the suspended, and wound be as safe as any mechanical apparatus
could be if the balance chain was attached to arms or brackets projecting from the ram crosshead and the cage partitioned off
from the chain, as explained above for suspended lifts ; but the reneral practice is to attach this chain to the centre of the top of the cage, thus ensuring death or injury to the ocupants of the cage in case of breakage. A serious accident occurred a fow years
ago with a large lift in Paris, through the cage getting detached
from the ram head. from the ram head. The balance weight being attached to the top
of the caige, drew it with such force to the top of the well hole
as to kill or disable most of the passengers. This shows the necessity of not only having the balannee weight chain attached to the
bottom of the care, but to a crosshead securely attached to the ram. The best way, however, of avoiding risk of damage from chains is to do away with them altogether ; and there are several hydraulic
balances now in use which enable us to dispense with these and the weichts also. All hidraulic balances with internal pistons or
stuething boxes weinting booxes are objectionabbe, as it is difficult to detect teakage,
sund a great deal of trouble is experienced in getting at the internal and a gre
packing.
Customers seeking tenders for lifts should insist upon the quantity of water consumed per journey being given in the estimate, so that a comparison of the consumption of water can be
made along with the price, for a cheap lift may become a very
dear one to the purchaser, and a low first cost may mean a large
consumption of water. The weight of the load, the height it is ifted, and the available pressure, determine the kind of lift, so fa as economy in the consumption of water is concerned. Thus in some
circumstances a direct-acting ram lift is the most economical while in others a short ram multiple lift uses the least water
but in any case, for passenger work, the direct-acting ram lifts, but in any case, for passenger work, the direct-acting ram lifts,
where properly fixed, are preferable to the suspended lifts, even a
a sacrifice of economy saacricice of economy. The most economical is the direct-acting
ram lift completely balanced by weights, mand one of this class with an 8in. ram and 50 lb . pressure will lift, exclusive of friction, a loa of 2500 lim. But friction and speed, say at 2 ft . per second, reduces
this load to 2140 lb, or putting it another way, the efficiency this load to 2140 lb. , or putting it another way the efficiency of
this lift is 85 per cent., 15 per cent. going for friction and speed, and no hydraulic balances will give such a high efficiency. The
simplest way of balancing a lift is by means of chain, and this 8 in. sam would require the balance-weight attached to the the lift by three
rain. chains, and the chains would compensate for the earying displace. inn. chains, and the chains would compensate for the varying
ment of the water in the cylinder.
Now if we suppose the lift to be only partially balanced, as the Now if we suppose the lirt to be only partialy balanced, as they
usually are the run-out of the lift beeng 3oft., and having a gin.
balance-weight chain, instead of lifting 2140 bib, as when completely balanced, it will only lift 1650 lb, $=$ an efficiency of 66 per cent. Or suppose the lift has 50 ft . ran-out, it would only lift 1330 lb , or an
efficiency of 53 per cent., and the higher the lift the less the efficiency
The comparative efficiency of lifts is nearly as follows, viz: of run out, equal to 85 per cent. Direct-acting ram lifts, oom-
pletely balanced by hydraulic balance any length of run out, 75 per pletely balanced by hydraulic balance any length of run out, 75 per
cent. to 80 per cent. Direct-acting ram lifts, partially balanced Oft. lift, 50 to 60 per cent. Short ram multiple geared lifts, any Armstrong type, multiply 6 to 1 , about 65 per cent A simple and good ryle for ascertaining the size of a direct-acting ram is
to deduct the total weight of the balance chain weight from the to deduct the total weight of the balance chain weight from the
load to be lifted, and call the result the reduced load. Subtract from the working pressure in pounds per square inch 41 lb for
 pressure. Divide the reduced load by the re
the ressil is the approximate area of the ram.
A discussion followed the reading of the paper, which was wound
up by the resident, and a cordial vote of thanks to Mr. Suggate
terminated the proceedings.

IRON AND STEEL INSTITUTE.

The following programme of the Autumn Meeting, 1887, of the above institution, has been issued:
Wednesday, September 14tl,-10
in Manchester, and meeting for the reading and dise Institute papers; 1 p.m., luncheon at Owen's College, on the invitation of the Local Reception Committee; ${ }^{2}$ p.m., conveyances will be pro-
vided to convey the members to the Royal Manchester Jubilee
 papers at Owen's College; 1 p.m., luncheon, on the invitation of
 to Roochala-Messrs. T. Robinson and Son's Engineering Works-
and Ohdham-works of Messrs. Platt Brothers- and to the works of Messrs. D. Adamson and Co, at Dukinfield, and of Messrs.
Beyer, Peacock Institute in the Town Hall,
Friday, September 1 thth, -10 a.m., reading and discussion of
papers at Owen's College ; 1 p.m. luncheon, on the invitation of the Local Reception Committee; 2.30 to 5.30 p.m., garden party at the Towers, Didsbury-Mr. Adamson's; 7 p.m., reception of the
members at the Royal Jubilee Exhibition by the Executive Counci Saturday, September 17th, -An excursion will be arranged for to
Chatsworth, Haddon Hall, and Buxton. Chatsworth, Haddon Hall, and Buxton.
A large number of works, in Manchester and the neighbourhood, the meetings. The following papers will be read and discussed, oso far as time
permits:-(1) "OOT Testing Machines,", by the presidenti, (2) "on
recent Metallurgical and Mechanical Progress, as illustrated at the recent Metalluryical and Mechanical Progress, as illustrated at the
Manchester Exhbibition," by Mr. Thomas Ashbury, Manchester;
 the Mechanical Apparatus for Continuous Moulding at the Works of
M. Godin Guise, by Mr. James Johnston, Manchester: (5) "On M. Godin, Guise", by Mr. James Johnston, Manchester ; (5) "On
Electric Light Installations for Works and Factories, by Dr.
J. A. Fleming, University College, London; (6) "On the Manufacture of Ordnance at the Royal Arsenal of Trubia, Spain," by
Catain Leandro Cubillo, Trubia. (7) "On Water Gas si use
 Mutual Action of Sulphur and Silicon on Iron at High Tempera-
tures," by Mr. Thomas Turner, Mason Science College, Birmingham.
american engineering news.
Dredging v. jetties.-There has been considerable discussion of
late over the relative merits of jetties and dredging for deepening late over the relative merits of jetties and dredging for deepening
the channels in New York Harbour. The Board of Engineers, in 1884, recommended that to give a depth of 30ft. from New York to the ocean a stone dyke should be built S.S.E.E. from Coney Island o such a distance as might be found necessary, probably not less
than four miles; this contraction of the mouth of the harbour would, it is believed, scour the main channel to the required depth.
The Board stated that it had little expectation that anything pore The Board stated that it had little expectation that anything more
than temporary relief would result from dredging on a bar exposed thathe full force of the Atlantic. Another jetty plan was for a
to the
dyke five miles long from Coney Iland to within two miles of dyke five miles long from Coney Island to within two miles of
Sandy Hook, but the engineer who suggested this stated that it
would be well to first try the experiment of deepening the elan across the bar by dredging, "which has been so successful, by report, at the mouth of the Tyne, and at other ports in England,
where the dredged channels have been in the open ean and when where the dredged channels have been in the open sea, and when
improved, have been self-maintaining." At New Haven, Conn., large sums have been spent by the Government in building a breakby local navigators that the effect has been very different from what was expected and intended, channels having been
wind shoalled formed where there was formerly deep water. Conand shoals formed where there was formerly deep water, Con-
tractors aro now deepening Gedney's Channel by dredging, and the main ship channel or the Swa the ocean outside the bar to the deep water in the lower bay.
Last year Gedney's Channel was deepened 2 ft , and careful soundings have shown that the depth then reached has not only been maintained but slightly increased. It is therefore urged that
careful experiments and observations should be made as effects of dredging before the harbour mouth is contracted by a dyke such as is favoured by the Government engineer in charge of the harbour work.
Railroad tracla
Railroad tracks in cities.-Up to within a few years ago there was no hesitation in granting railronds right of way through the
streets of cities, and this practice is even now preserved in the West. In the larger cities, however, the inconvenience and danger
of level crossings and trains running down the streets is being felt of level crossings and trains running down the streets is being felt
and acknowledged. In Chicago the tracks are now crossed by viaducts for the important streets, , and in it. Pazal, Minn., all the
streets streets are to be carried over or under the tracks, The Pennsyl-
vania railroad runs on the level through Jersey City, N.J., to its terminus on the Jersey shore of the Hudson, and as there is a
very large number of level crossings the impediment to travel is
very serious, and many lives are lost annually. Outside the dep 0 t bably twenty lines of rails with trains and engines arriving depart ing, and switching constantly, it is and long and dangerouns trip to
cross, especially for wagons, in spite of the cautions of four or five
flo flagmen. The railroad company has several times proposed to
 and nothing has been done. The paople and the manufacturer pproved the project, but the local authorities invariably hampered
it. Now the company proposes to replace an existing double-track Wooden trestle in a different part of the city, now used for freight,
With a four-track iron structure, and will run its passenger traffic ver the new route. The citizens are vigorously opposed to thi new plan, as the retail trade would be diverted into another dis
trict, and all business would be seriously injured. In answer, rrangements fo arrangements for an amicable settlement of an elevated project
along the present line, President Roberts stated that the improve
ment was determined u upon, and would be put through as fast as The New York and Long Island Railroad Company has been The line will conneet with the Long Island Railroad at Long Island city, and with the N New Y York Contral and Hudson Reiver Railroad
in New York, having aceess to the Grand Central Depot as erminus, It is intended to connect ultimately with the Hudson
River tunnel. The rond will be thout five mile gations have shown that the bed of the river is rock along nearly the entire route of the tunnel, and as the line will pass diagonally
under the south end of Blackwell's Island, work could be prosecuted from several points. The tunnel would be for a double track road,
and its dimensions are to be 27 ft . wide and 21 ft h high. On the o the surface and the elevated railroads. The fare is to be 5 cents, An ingenious scheme for an "inter-metropolitan" railroad for the
ities of New York and Brooklyn is crossing the East River twiec by tunnels 32000 track and 360 thir. long
and being on viaduet through the cities. The tunnels would be far enough an apart to accommodate the up-town and down-town traffic and serve as auxiliaries to the present elevated roads. The south
tunnel would be near the lower end of the Manhattan Island. The scheme provides for masonry viaducts, and tunnels composed o
wrought iron or steel double shell caissons, sunk by pneumatic
procest process. The traffic, however, is by no means sufficient to give
Developing Central America.- C. P. Huntington, the railroad
magnate, has purchased a railroad seventy-ive miles long in Guatemala, extending from the Pacific Ocean to the city of Guate-
mala, and purposes to build an inter-oceanic road across Central road system, and of syndicate of the capitalists who are develo ing the coal, and iron resources of Alabama, the intention being to
open up Central America as an outlet for the various products of open up Central America as an outlet for the various products o
Alabama. The company has been investigating the Honduras route, from the Bay of Honduras on the Atlantic Ocean, to the Bay of Tonseca on the Pacitic, which route was favourably entorsed
in an official report by Admiral Davis, U.S.N. Mr. Huntington has undertaken to provide a railroad route across Central America
The distance from New Orleans and Mobile to Honduras Bay is not much greater than to the Gulf terminus of the proposed
TThuantepec ship rairoad, and there is a difference of a few hundred miles only, while it is claimed that there are prevailing wind and currents favourable to the Honduras route. It is claimed that
the Huntington Interoceanic Railroad will be in operation before the ship railroad is commenced; and the route is said to be through
a good country, affording a good local traffic in addition to the a good country, affording a good local traftic in addition to the
reecipts for transportation of the products of the Mississippi valley, and of the coal and iron mines, furnaces, se.., of Birmingham, Ala.
There are great expectations of the results of this comprehensive scheme.
The law on lrakes.-In consequence of the recent railroad
accidents for which the failure of air brakes is held responsible, the Railroad Commissioners of Massachusetts have issued a to the law relating to brakemen. The law reallang attention shall be stationed on every passenger train "trusty and skilful brakemen equal in number at least to one for every two cars in
the train, and one such brakeman upon the last car of every the train, and one such brakeman upon the last car of every
freight train, which car must always be equipped with a good and
sufficient brake."
\qquad
South Kinsingron Musevar.-Visitors during the week ending September 10 a.m. to 10 p.m... Museum, 8866 , mercantile manine,
from
Indian section, and other collections, 4135 . On Wednesday, Thdian section, and other collections, 4135. On Wednesday, Museum, 1143 ; mercantile marine, Indian section, and other col-
lections, free, 3169. Total, 17,313. Avera in former years, 19,095. Total from the opening of the Museum,
The Fresch in Japan.-We read in Le Courrier d" Haiphong of
June 16th:-" F French triumph for French Industries: It is in Japan that French industry has achiiveded its latest succeess, The
Creusot Works have obtained a contract for the construction there of nineteen small vessels. "They will be sent out from France all ready for putting together." We are also informed that the Creu-
sot Works have, through their representative in China, concluded a contract with the arsenal at Foochow, amounting to a total of
\&37,000 ofserling, for the supply of material required for the con-
struction of Canton River.
SANiTARY INstirute of Great Britanv. - The tenth Autumn
Congress, 1887 will be held at Boolton, from St Congress, 1887 , will be held at Bolton, from September 20 th to
September 24th. The Health Exhibition, including sanitary apparatus and appliances, in annenection with the Congress, will be
held in the Drill Fail and special building, Silyerwell-street, from
September been issued:
 Opening of exhibition in the Drill Hall, Silverwell-street, by his
worship the Mayor of Bolto
Brd announcement of judges. 8 p....: First general meoting, opening addross by Right
Hon. Lord Basing, F.R.S., in the Albert Hall. Wednesday, September 21st:--Section 1.- "Sanitary Science and Preventive
 Papers
Medicine." 2 to 5 p.m.: Ditto. 8 p.m. . Conversazione. Thurs
day day, September 22nd.: Conference of medical ofticers of health, in
the Town Hall. 10.30 a.m. Papers and discussions on matters
which come specially within the province of medical officers of health. Section II. - "Engineering and of medical officers of
hecture" in the
Town Hall. 10.30 a.m.: Address by Professor TT. Hayter Lewis, F.E.A.A., F.R.I.B.A. 11 a.m. to 1 p.m.: Papers and discussions on Lecture to the Congress, by Arthur Ransome, M.D.D., F.R.R., 8 in the
Albert Hall. Friday, September 23rd:-Section III.- .Chemistry Meteorology, and Geology," in the Town Hall. 10.30 a.m.: Address Papers and discussons on ": Fhemistry, Meteorolocy, and Geology.; 2 to 4 p.m.: Ditto. ${ }^{5}$ p.m.: Closing general meeting of Congress,
in the Town Hal. \quad Saturday, September 24th:- Excursions; particulars will be announced in a future programme, 8 p.m.:
Addresses to the working olasses in the Albert Hall, by Major
Lamorock Flower, A. Wynter Blyth, M. R.C.S., Henry Low, M. Inst. C.E. Admission by ticket. A public dinner will probably
be arranged during the Congress.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
(From our ovn Correspondent.)
ORDERS continue to accumulate at the sheet mills, where there is now scant fear of a want of full work for some weeks to come.
Bars, too, are in rather a s stronger position than last week, and from some markets there is a perceptibly improving demand for
marked descriptions. These last-named qualities remain on the marked descriptions. These last-named quaities remain on the
basis of $£ 7$ Medium bars are $£ 6$ Es. down to $£ 6$ and common
sorts can be oceasionally had down to $£ 415 \mathrm{~s}$., but $£ 5$ is the price sorts can be occasionally had down to \&4 15s., but \&t5 is the price
of what may be termed a best common bar. At that price areli-
able brand was being offered yesterday and to-day, both in Birmingham and Wolverhampton
Touching the North Staftordshire trade in this article, the present
prices of Messrs. Robert Heath and Sons, of the Biddulph Valley prices of Messrs. Robert Heath and Sons, of the Biddulph Valley
Ironworks, Stokeon-Trent, and the Ravensdale Ironworks, Tun-
stoll

 0 to $4 \mathrm{w} . \mathrm{g}^{2}, \ldots 75 \mathrm{~s}$.;
Liverpol or
Sheot
Sheet makers are so full of work that they are unable to accept
new business at current rates. And as the number of such firms new business at current rates. And as the number of such firms
is increasin, there is less reluctance to reoognise the advanee of
2s. 6 d . per ton, which was last week quoted by some well-placed
 price, while others accepted $£ 6$. More business is being done in
doubles at $£ 67 \mathrm{~s}$ s. 6 d . up to $£ 1$. 10 s., while for lattens there were makers who, having an accumulation of orders upon their books,
did not hesitate to ask $£ 7$ s. 6 d. and $£ 710$ s. At that figure the iron is much below the price at which it should
stand ata time of so heevy requirement. Without, however, the
practicability of securing combine practicability of securing combined action amongst the makers to
get up prices, there has still been more than a strengthening of
rates in the past month. Doubles are worth quite 5 s. per ton more get up prices, ther
rates in the past m m
than a month ago.

The galvanised sheet makers are particularly busy. The ship-
ments during August were no less than 12,908 tons, being an ments during August were no less than 12,90 tons, being an
increase of 3456 tons on the year. This brisk demand has resulted
in prices having in prices having been advanced 5 s . t 7s. 6 d. on the mo
is every prospect of a a still further ocniderable rise.
More is being done in strips which ire $£ 4$.
More is being done in strips, which are £4 417s. 6 . for gas piping
use 25 2s. 6 do to
t5 5 s. for general hoops, and a further $5 s$, for Supplies of basic steel continue to leave the works of the Staf-
fordshire Steel and Ingot Iron Company to be built into bridge erections in India, South America, and other distant markets.
Foreign pigg are changing hands this week in better quantities, and sellers report that inquiries seaching them are of a a more en-
couraging character. Some time must, however, yet elapse before couraging coanacter fome
there is any need for buyers to enter the market with much spirit. Meantime prices are kept up on last week's basis of 368 s. for North-
amptons, 37 s , for Derbyshires, and 395 . 6 d . to 41 s . for Lincolnshires. Staffordshire qualities of the superior sort are prejudiced by the the
extent to which steel in binlets and blooms is used up in the iron
ind mills; but the demand for the inferior kinds for basic steel making
is so heary that prices of the brands of this orderin largest request are much firmer than would otherwise be the case. Cinder pigs
are from 31s. 6d. down to 30s. 6 d . Native pigs of all-mine quality are 52 s . 6 d . down to 50 s , and
part-mines are 40.s., while hematite forge pigs are about 52 s 6d. part-mines are ess., while hematite forge pigs are about 52 ss , 6 d .
The manufacture of electrical machinery is one of the industres
best furnished with orders in the district. Manufacturers of dynamo machines and others similar appliances have sufucticient tork ork
in hand to keep them fully engaged during the remainder of the in hand to keep them fully engaged during the remainder of the
year. Some Iocal work will bo provided it the intention of the
Coseley Looal Board to substitute electricity for gas is carried into effect. One large ironworks in that locality is negotiating for the
adoption of electricity. This action is due to the alleged exorbitance or the gas company"s charges.
Local hardware manufacturers are in receipt of a fair number of South America also orders are arriving to a satisfactory extent,
and makers who do business with Canada are increasingly active and makers who do business with Canada are increasingly active.
At this moment the engineers and machinists execution of a moderately large number of orders ; they cannot,
however, see very much work ahead. There is more activity in the busy in the production of telegraph posts for export.
The Bromord Ironworks Oldbury, which were in the possession of Messrs. John Dawes and Sons, are to be offered for sole in Bir-
mingham to-day-Thursday. The loose stock will be sold tomingham to-day - Thire in complete going order, and they have
morrow. The works are in
been inspeted by several ironmasters. Fifteon thousand operatives engagered. in the wrought nail trade
in the Bromsgrove and up-country districts went out on strike on in the Bromgsrove and up-country districts went out on strike on
Monday for an increase in wages of about 10 per cent. They ask
for a return to the prices known as the 189 list, less 10 per aent for a return to the prices known as the 1879 ist, less 10 per cent.
It it stated by the Ceaders of the men that they have submitted to
reduction reduction af
intolerable.
From the statements of the leaders of the chainmakers on strike it would appear that many operatives are working longer hours mination is expressed to renew the strike again and again rather
than permit the extension of theso practices.

NOTES FROM LANCASHIRE.

Manchester.-The condition of the iron traie in this district remains much the same ans have reported for several weeks past,
and there is no specillly new feature that calls for particular notice. So far as pig iron is concerned, the condition can only be
described as one of continued stagnation of trade. For their small requirements, consumers go on either replacing contracts as
they run out or buying from hand to mouth, and in this way
the there is no indication of any enlarged requirements coming forward, whilst prices remain ony the extred requirements comming
been ruling for some time past, what little fluctuation thich has has
take place being mostly in the favour of buyers, although makers,
as a rule, show a decided firmness in holding to present rates as
the lowest point to which they are prepared to go. Hematites also the lowest point to which they are prepared to go or Hematites also
remain in very poor demand, with makers generaly firm, but the actual selling prices in the open market rather easier. Except that the shipping demand is for the present fairly good, the condition
of the finished iron trade remains very unsatisfactory. There is no appreciable expansion of home trade requirements, and makers have as much as they can do to maintain their prices.
There was again only a very dull market at
Tuesday. Business to a moderate extent was reported in some of thessaay. Business to a moderate extent was reported in some of
the cheapst rands of pig iron, but for the higher rpriced iron
there was comparatively little or no inquiry except here and there for small parcels for special requirements. Lancashire makers still
quote 38s. 6 d . for forge and 398.6 d . for foundry, less $2 \frac{1}{2}$, delivered quote 38s. 6 d . for forge and 39s. 6d. for foundry, less $2 \frac{1}{2}$, delivered customers, they are doing little or nothing. In Lincolnshire iron
sales of foundry iron have taken place at about 30 s., less 2 , delivered equal to Manchester ; forge numbers are, however, very little
inquired for, execept at prices which makers are not disposed to
ind competing succossfully with Middlesbrough, which although
easier than last week, is still difficult to wet at anythin under easier than last week, is still dititicult to get at anything under
42s. 10. 1 , net casb, for good named foundry brands delivered equal
to Man as ever, and there is no difficulty in buying at quite 1s, and 1s, 6 d . per ton under makers' nominal quotations,
Hematites meet only with the smallest possible inquiry, and although one or two makers still quote 53 s . to 53 s . 6 d ., less 22 , for
No. 3 foundry
thaure In the manufactured iron trade there is still a fairly ness doing for shipment, which keeps most of the forges fully employed, but home trade requirements stow no improvement. hot weather and the prolonged drought, has holped to give strength
to the market, but, notwithstanding this, makers have not been able to get up their prices, and for delivery into the Manchester
district $£ 4$ 17s. 6 d . is the full average figure that is being got for bars, $£ 5 \mathrm{Es}$. for hoops, and $£ 67 \mathrm{~s}$. 6 d . to $£ 610$ s. for sheets. As regards the engineering branches of industry, they remain on
what may be termed a stationary condition. In some departments a fair amount of inquiry is reported, and most of the leading con-
cerns amongst engineers and machinists are kept moderately well employed. There is, however, no actual progress being made
towards improvement, and where new work is got it has, apart from speculation, to be taken at excessively low cut pries, which
in many cases render it questionable whether the orders are worth having or not, except that they help to keep working. The returns
of the trades union societies are also stationary as to the numbers out of employment, and the improvement which a month or so back was being reported in the gradually lessening number of
members receiving out-of-work support has received a check, which shows that trade generally has not entered upon that return to
activity which the secretaries of the various societies have set forth in the
Mess
Messrs. Smith and Coventry, of Manchester, have just added to
 the third that has been made, and is the only one in England, Without the aid of drawings I can only describe very generally the main fatures of the machine. There are three principal sets of
operations: First, the manipulation of the paper that forms the cigarette tube; second, the formation of the mouthpieco; and third, the filling in of the tobacco. The whole of the motions connected with these operations are actuated from one main shaft
which is driven by belt gearing from a small engine or by hand power, and the machinery is carried in a very compact arrange-
ment on the top of an iron table. The paper for forming the cigarette tube is fed automatically into the machine from a roll containing sufficient paper for about 30,000 cigarettes. The paper
is then stamped with the trade mark or brand and passed along a slide to a pair of scissors, which cut off suitable lengths; during the
cutting off, the outside edge of the paper is held bya clip which forms a portion of a roll by which the paper is rolled into tube form, whilst, in the act of cutting off, one edge of the paper is pasted on an automa-
tic roller, which exposes a fresh pasting surface for every tube. The tic roller, which exposes a fresh pasting surface for every tube. The
roller which forms the tube is siven two turns by a segment wheel on the main shaft, and is then at rest during the feeding forward wiped off the roller by an india rubber disc into a carrier, and by an adjustable arrangement it is placed in position to receive the
moutppiece, which forms the second operation. The mouthpiece
is is automatically cut off from an endless roll of cartridge paper, the
paper being cut with a point at one end, and this point is caught
in as this is done it is by another automatic arrangement pushed into the end of the tube, the outside spring of the mouthpiece holding it in position. With the mouthpiece attached, the tube is carried along a trough on an endless band in a regulated quantity. The tobacco is cut off in quantities sufficient for a cigarette, and falls into a compressor, where it is pressed into a plug or circular shape,
and is then forced by a plunger through the compressor into the paper tube, which during this operation is held in tension. The cigarette is then moved into another position, where the rough
tobacco is trimmed off, and being now completed, it is ejected on to an endless band and is delivered into a suitable receptacle, The
various operations for making the cigarette are all completed at various operations for making the cigarette are all completed a
each revolution of the main shaft, and there are five main operations going on simultaneously. The machine, I understand, is
capable of making 3000 to 3500 cigarettes per hour, and a syndicat capable of making
is being formed wor working it in ing England.
The quarterly meeting of the Manchester Association of Engineers
was held on Saturday at the Grand Hotel, but the business was of a purely formal character, the most important being the election of As the season advances there is nece
demand coming forward in the market for the better qualities o round coal for house fire consumption, but the improvement so far is only making itself very slowly felt, and four days a week still
represents the full average time that most of the collieries are
working purposes and encine classes of fuel are perhaps moving off rather more steadily now that, with the close of the holidays and the more plentiful water supply, works are getting in more regular operation,
but the demand alt through is stil only very poor, with supplies
abundant. Prices remain much the same as last quoted, with no present indication of any upward movement, best coal at the pit
 and common sorts, 2 s .6 . 6 . to 3 s . per ton.
For shipment the demand is extremely dull, and good qualities fteam coal do not average more than 6s. 9 d. per ton delivered a
the high level Liverpool, or the Garston Docks. Barrovo.-There is a quieter tone to report in the iron trade this
week. The demand for all descriptions of hematite pig iron is less week, The demand for all descriptions of hematite pig iron is less
active than it has been for some time, the fact being that con sumers' wants are fairly supplied for some time to come, as most of
the inquiries for iron are for forward delivery. There is, however, no scarcity of orders to go on with, and as makers are very fully tone in the market. So long as the consumption of pig iron is maintained at the present rate, there is no reason to fear that
makers will run short of orders, and the probability is that the consumption will increase rather than decrease, because makers of steel are using more iron, and are likely to use still more in the
future This of course, is entirely distint from the ordinary
consumption in the general trade. Stocks of iron are fairly
bulky in the hands of second-hand dealers, but makers do not
hold much stock. They are, in fact, delivering practically all their make on to trucks for immediate consumption. A large proportion of the furnaces are in blast-over four-firths-an
some of those stan makers who are not doing as full a trade as the main body of the producers of the district are. Prices are steady at 45s. 6d. per ton
for parcels of Bessemer iron in mixed numbers net f.o.b., or on quoted at 44s. 6d. per ton. Sal lately, are reported at about 1 s. per ton below these figures. The
steel trade is well employed in almost all departments. There is steel trade is well employed in almost all departments. There is
still a remarkably good demand for rails, but makers are not in a stiin a remarkably good demand for rais, but makers are not in
position oacept much new business as they are so full of orders
Their mills are regularly and briskly employed and they have in hand and in prospect fully a twelvemoth's work. Prices of rails
 sections of 50 li . per yard. Biooms, bars, and billets, represent a
quieter trade than of late, but some good orders are held, and the , of merchant quaities of steel, uch doing in steel for shipbuildin
satisfactory. There is not much purposes, but it is highly probable that orders will be very plentifu shortly. No change can be noted in the shipbuilding trade. A
Barrow not a single ship is on the stocks, but there is inquiry, chiefly from foreign sources, and builders are expecting orders. There is more activity in the marine engineering and boiler departments than in the erecting shops, but even in the forme there is not much activity, and engineers could do ten times the
amount of work if they had it to do. Finished iron workers are doing a very quiet trade, and there is no prospect of any improve ment. The iron ore trade is steady, and there is a good demand for the better qualities of metals, prices being firm at late rates
A proposal has been set on foot at Barrow to erect works and commence the trade of wood pulp manufacture. The names of Mr
Partington, paper maker, Glossop, and Mr. T. Briggs Manchester Partington, paper maker, Glossop, and Mr. T. Briggs, Manchester
are associated with the scheme. At present the dificulty in the way is as to an efficient and adequate supply of water, and it it
hoped and believed that this will be satisfactorily got over. operations have ceased at the works of the Vulcan Steel and Forg Company, Barrow. A mill has been put down at these works b
Mr. Daniel Adamson, of Nanchester, to manuf hoops for boilers in the same way as tires are produced. This is
the patent of Mr. J. Windle envineer, of Barrow, and at the patent of Mr. J. Windle, engineer, of Barrow, and at a time
when higher boiler pressures are required for triple and quadruple when higher boiler pressures are reequired for triple and quadrupl
expansion engines, it is unfortunate that an opportunity is no afforded to the patentee to achieve the practical success of his greater strength with thinner plates, and that the boiler can be
worked at higher pressures with less danger than under the present system.

THE SHEFFIELD DISTRICT

Avortign bed of coal has been reached at the Wharncliffe Wood-
moor Colliery Carlton. This, it is expected, will provide more employment for the mining population.
The South and West Yorkshire collieries continue to do an increasing business with Hull. For the eight months to August
last there were $1,167,672$ tons taken to the great Yorkshire port,噱 with 873,112 for the corresponding period of last year he quantity taken last The exports from Hull to foreig last month were 71,804 tons, as compared with 81,067 tons for
August, 1886 . For the eight completed months of this year the exports are 571,280 , against 393,046 tons for the similar period o Inst year. The principal increasing markets in foreign parts are
South Africa, South America, Austria, Belgium, Denmark, East
Indies, Erypt, France, Germany, Gibraltar Holland Italy, Malta, R,373 to 131, ans and Norway, from 99,253 to 138,555 tons. Hardware and cutlery have increased in value of exports of late although not to any great extent, the amount last month being
$£ 24,333$ against $£ 244,156$ for August of 1886 . The increased business has mainly been done with Germany, Holland, Spain and
Canaries, United States, Brazil, Argentine Republic, and British Canaries, United States, Brazil, Argentine Republic, and British
Possessions in South Africa. The steel trade has greatly advanced during the whole year in the foreign markets, and the month just August having been $\notin 172$, ,44 against $\& 135,286$; of this increase the United States ranks for the largest share, its call having advance ess than from $£ 839,145$ to $£ 1,475,944$, of these values the United States took in August, 1886, , $£ 297,826$ and last month $£ 881,909$.
The death is announced of Mr. Henry Atlin Norwood, Surrey. For upwards of sixty years Mr. Atkin resided n sheffield, being engaged in the cutlery business as a member of
the firm of Joseph Rodgers and Sons, of No. 6 , Norfolk-street, from which establishment he retired thirty years ago. In 1849 he occupied the Master's chair of the Cutlers Company, and at the time ingular coincidence that whilst enjoying his usual good health on whilst stooping in his drawing-room, and died after an illness of five days, in the eighty-ninth year of his age.
Another cage accicent is reported in the Yorkshire conitield,
this time at Denaby Main. As a draw of water was being brough up the cupola or return air shaft, the wire rope connecting the any warning, and the cage fell to the bottom of the shaft, where was dashed to pieces. The rope parted about half-way, where the ad come out of the pit only the draw before. The wire rope appeared to be perfectly safe when examined a few hours pre
viously, and the part where it snapped is the only place found to A vigorous effort is being made to establish a new miners' union The Canadin torrifal basis.
The Canadian tariff regulations, as recently revised, are injuri wrote their aconter the subject. One replies thus:-"The demand for files here i not nearly so great latterly, as the native article is rapidly super-
seding the imported one. Under the new tariff manufacturer mport their steel free of duty, while emported difess pay 35 per
cent. This brings them in to o dear, except for special favourite Ths. Sheffield United Gas Light Company, in its report for the half-year ended June last, announces that it is able to pay the
maximum dividend -10 per cent.- without trenching on reserve maximum dividend - 10 per ent.- without trenching on reserve,
as on the former occasion. This is partly attributable to the ncreased receipts
at very low values.

THE NORTH OF ENGLAND.

The attendance at the Cleveland iron market, held at Middlesbrough on Tuesday last, was good; but not much business waa
done, and a further reduction took place in the price of pig iron The dasgow market was reported weaker, owing to the unfavourble dispatches from America; and as the Cleveland trade io
largely dependent on the tone at Glaggow, dulness again prevailed, largely dependent on the tone at Glasgow, dulness again prevailed,
and buyers are withholding their orders. Merchants are now
no longer hold out for 35 s , and are prepared to accept 34s. 6d.
but buyers are not willing to give so much, and few transactions are recorded. Forge iron, in common with other grades, is weaker,
and can be bought for 32s. per ton, or 3d. below last week's price.
 (Ceveveland
refined iron,
Warrants purchased at 33s. 11d. to 34s. per ton, but no desire to spearatate in them is apparent, and few sanser tore mad
Messrs. Connal and Co.s Middlesbrough stock
steadily decreasing. The quantity held on on Monday last was
330,902 tons, or 1005 tons less than a week previously Shipments from the Tees are fairly good this month., there being a deided improvement in the exports to foreign ports. Up to
Monday night the quantity of pig rion sent away was 28.723 tons,
as against 25,457 tons in August. During the same time 18,380 tons of manufactured iron and steel were exported. Orders for finished iron have recently come in somewhat more
freeny, but prices have scarcely been maintained ; indeed, slight
concessions have been The value of goods of all kinds, except coal and cors.
from the Tees last month was $£ 228,931$; from the Tyne it amounted
to $£ 215,533$. from the
to $£ 215,553$.

NOTES FROM SCOTLAND

The Glasgow pigiron market, which closed very flat last week, has shown more animation wittin the last fee days, and the prices
of warrants were somewhat highere. Speculative warrants were
last week down below 42 s ., but they have this week been above last week down below 42s., but they have this week been above
that tigure. Still the condition of the market has not, on the
whole, been very strong. It has been sustained mainly by the whole shen very stros.
good shipments of the past week, which are officially reported a
10,
 one furnace has been put out of blast at Langloan, there being now eighty-four in operation, agninst eighty-two ot this date last year.
Che additions to stocks in the warrant stores are now comparatively small.
The current values of makers' pigs are as follows: : Gartsherrie,
f.o.b. at Glasgow, per ton, No. 1, 48 ss . $6 \mathrm{~d} . \mathrm{F}$ No. 3 , 44 s ; ; Coltness,

 parnock kat Ardrossan, 49s. and 41 s . ; Eglinton, 43s. 6 d . and 39 s . 6 d .
Dalmellington, 44 s and 40 s . 6 d . The arrivals of Cleveland pig
 1886, and there is a total increase in these imports since 18
J anuary of 17,856 tons, the total during that time amounting to
231,841 ton
In the basio steel trade there is a fair amount of business passing.
The shipment of basio steel from Ardossan in the past week
amounted to 482 tons swo amounted to 482 tons. Two
on the manufacture of basic.
Malleable iron is steady, and there has been some talk of a com-
bination among the makers for keeping up prices, if not also bring. ing about a further is fairly active, and the inland demand has increased in consequence of the colder weather. It may now be
expected that contracts of importance will come into the market. There is some chance of the prices hardening a little, but the
supplies are so ample that only a very small increase is expected supplies ast so ample week's shipments from Glasgow were 26,333 tons;
The past Greenock, $2979 ;$ Ayr, 10,230 ; Irvine, 2474 ; Troon, 5660 ; Burnt-
island, 8886 ; Leith, 4962 ; Grangemouth, 14,058 ; Bo'ness, 5905 and Granton, $1710 ;$ total, 83,197 tons, as compared with 77,705 in the corresponding week of 1886 .
The colliers are working fulle several important districts ceased keeping a holiday every Much dissatisfaction is expressed by the Scotch coalmasters on nccount of the statement made in the House of Commons the other
night by Lord Charles Beresford (in reply to Mr. Stephen Mason), night by Lord Charies Berosford (in reply to Mr. Stephen Mason,
that he would rather give 13 s , a ton for Welsh coals for the ships qualitios of Scotch coals just as theore aroals. different kind of of Weremt,
but the best Slamannan steam coal is hardly, if at all, inferior in but the best Slamannan steam coal is hardly, if at all, inferior in
staying power to the best W insh, and the former can be delivered staying power to the best Welsh, and the former can be delivered
to the war ships in the Forth and Clyde at 8 s . 6 d a ton, or an aom-
pared with 13 s . for Welsh. The most aur
 Admiralty in favour of their coal, which is almost invarialy used
by shipbuilders for testing the speed of their vessels. The Scotch steam coal is likewise used in all the fast deep sea steamers
that come to our ports, and the coalmasters have constantly large contracts on hand for supplying it to the best vessels belonging to foreign nations.
About 12,000
shipyards in the course of the past week, and it is expected that mportant fresh contracts will presently be placed

WALES AND ADJOINING COUNTIES.

Tit

 abe one. It is now coming to a close, and railway directorates re in good heart or extensions and improvements. It is fullyexpected that certain scheme now maturing will figure in the next expected tat certain shememes now maturing wil sure in the next
parliamentary session, and Inhal not be surprised at the "Mon-
monthshire " again seeing the li ght. The virgin valleys of Monmouthshire "" again seeing the light. The virgin valleys of Mon-
mouthshire, so far as the lower measures are concerned, will bring this imperatively to the front, and ample capital is in readiness.
Meanwhile speculative minds are suggesting the doubling of the Ceanwhile speculative minds are suggesting the doubling of the Western finding its way south to Aberystwith, of mid-Wales
taking up again the nearer route to Aberystwith, and of the contaking up again the nearer route to Aberystwitr, and of the con-
nection being formed between the Radnorshire valleys and Glamorgan. In the meanwhile, the Rhondda and Swansea Bay is
being pushed on vigorously, the Barry is far advanced, the Reath extension also, and the conversion of the Treforest, Caerphilly, and extension also, and the
Newport into a passeng
events of the next year
In many respects the steel trade may be considered as satis-
factory. Swansea Exchange on Tuesday was well attended. Home factory. Swansea Exchange on Tuesday was well attended. Home
hematite was quoted at 48 s . to 48 s . 6 d .; Bessemer blooms, $£ 44 \mathrm{~s}$.
 in-plates prices remain unatered, though stooks are visibly on the increase, in consequence of deficient shipping to hand. This
was expected, as the clearances last week only amounted to 02,778
 from 12s. 6d. Charcoals dull.
Steam coal quotations are unsteady, and the drop of 1 ss . in best
qualities seems to be sustained. Prices are now 8 s . 3 d . to 8 s .6 d quaities seems to be sustained. Prices are now 8 se . 3 d . to $8 \mathrm{8s}$, 6 d . tor ${ }^{\text {as. }}$ d. Small steam threatens to be lower than ever. In times
of depression, when large steam was even slightly lower than at of depression, when large steam was even slightly lower than at
present, small steam was from 4s. 3d. to 4s. 6d., and at its best 5 s . per ton. Quotations now are
but that it will be lower still.

There has been a great falling off in inquiry at the ports gene
Cardiff, as usual, has sulfered most, and the export of coa to foreign parts was in marked contrast to that of a few months
ago. Newport showed a diminished export, and the slackness appears to have told throughout the district. In this case the doing, wis not to blame, and the only reason I can assign is that
foreign coaling stations being now amply stocked, demand ha Yoreign coaling stations being now amply stocked, demand has
lessened. House coal continues in little demand, and prices are naltered. Pititood is at 15 s., best price, and in in demand; coal. op prices are slightly on the advance
The local opinion on the Coal Mine Bill, which is now only await ing the Royal assent, is favourable, with two exceptional clauses,
These are, the provision for making the Clanny lamp illegal, and These are, the provision for making the Clanny lamp illegal, an
the other clause limiting the speed of lowering and raising men t most approved of by the colliers ;and with respect to the timit of
mpeed, where 500 men are concerned it will tell adversely a arainst
s. speed, where 500 men are concerned it will tell adversely acainst
the colliers and output. With these exceptions the Bill is regarded in the district as substantial law, conceived on the
broadest lines, for the protection of the workmen, and the due
development of the conffield of South Wales. development of the coalfield of South Wales.

AMERICAN NOTES.
 AMERICAN

New York, September 10th.
ADVICES received from the leading commercial and manufacturin
centres in the Interior show that during the past week or ten day a general improvement in demand has set in for meeterial for agri-
cultural requirements, hardware, lumber, tools, machinery, \&c The crops have been good, and farmers and planters are willing to nerease their outlays for the coming year. Merchant steel of al kinds is in very good demand, and new shops are springing up west
of the Mississippi River. Large manufaeturing establishments are projected, among them-steel works, car works, one or two locomo-
tive works, wheel and axle works, \&c. Prices throughout the East re very firm, because of the fact that manufacturers are generally quarters of a million tons. Bar iron makers are sold one to three months ahead. Sheet mills have two to three weeks' contracts on months. Several mills are taking orders for next winter's delivery
at 36 dols. to 37 dols. A large amount of textile and mining machinery is going South to the Gulf States, where a general
industrial revival is absorbing a large amount of foreign and American capital. No downward tendency in prices of
An immense amount of bridge-building will be done throughout the North-West during the coming winter, when rivers which are
to be bridged have two or three feet of ice on them. This time is the favourite for bridge construction, because of the saving
effected by the presence of that solid foundation to work on. effected by the presence of that solid foundation to work on.
The lumber industry throughout the country is in very good
shape. Strong prices throughout the spring and summer have shape. Strong prices throughout the spring and summer hav
caused an increase in supply of both hard and ordinary woods.
The exportation of all kinds of wood is increasing. Building operations are being prosecuted with unusual zeal, and skilled labour is in great demand in all of the larger cities. Labour
troubles seem to have pretty well disappeared for the present, and troubles seem to have pretty well disappeared for the present, and
the working men are now directing their attention to political the working men are now directing their attention Trade combinations are being formed in several branches o
industry. Three are now being formed in the iron trade, and two
. or three more are talked of. Agents of foreign houses have nego tiations favourably progressing for some 50,000 to 60,000 tons of
foreign material. The iron trade quotations are as follow :-Old rails, 23.50 dols. to 24 dols.; for tees, D.H., 24 dols. to $24 \cdot 50$ dols,
steel rails, 36 dols. to 38 dols.; steel blooms, 31 dols.; billets, 31.50 dols.; ; slabs, 31.50 dols. to 32 dols ; foreign steel rails, 40 dols. at Gulf; boiler steel, $3 \frac{3}{2} \mathrm{c}$. to $4 \frac{1}{2}$ c. ; American tool steel, 72 L
The month of August has been an unusually active one, but very The generally accepted opinion among mauufacturers and consumers is that quotations will remain substantially where they are,
Much money is being invested in new plants and in the extension Much money is being invested in new plants and in the extension
of old ones. The extraordinary demand for iron and steel and of old ones. The extraordinary demand for iron and steel and
everything into which they enter has stimulated a spirit of investwill probably not be arrested until the overepoch arrives. Capitalists are besought by promoters of all manner
of industrial 10,000 dols. to $1,000,000$ dols.
The blast furnace builders
bability next year will witness have a year's work ahead. In all probability next year will witness even greater activity than this year.
Protection will be a national political issue. Public opinion is nearly equally divided upon the question. The industries have been excep-
tionally prosperous during the presentadministration, and it will beno tionally prosperous during the presentadministration, and it will beno
easy matter to supplant it. The phenomenal industrial activity of America is attracting attention of British and German manufac The supply of natural gas is increasing, and new localities are found where gas is obtained in great abundance. Artificial gas is natural gas pipe lines are projected, which aggregate 400 miles in length. Much excitement prevails in the gas fields over the
enormous outflow of some of the wells, which reach from six to enwelve million feet every twenty-four hours.

NOTES FROM GERMANY.

From our own Correspondent.)

THE cheerful tone noticed last week continues to prevail on the Rhenish-Westphalian and other markets of this country ; for several articles the demand, indeed, has increased, and prices in general
show a decided tendency to move upwards, and the least that can be said is that they have assumed greater firmness. In Silesia the and pric and prices are again to be raised for the coming quarter.
boiler plate and sheet mills have just formed a combination, and are about to join the general sales bureau at Berlin, which shows that
there is confidence in the stability of the present improved trade. The pig iron market is not quite so buoyant, because signs of overother districts, and it is to be hoped will be checked in time, theugh it does not look likely, as old furnaces are being repaired prepara-
tory to blowing-in again. The foundries and constructive workshops are busy, but the prices realised are still very unsatisfactory.
The demand for iron ores in the Western districts has rather increased than otherwise, so prices are firmly maintained as last noted, and Luxemberg oolites now range from M. 1.85 to 2.25 p.t. week. For Siegener pig M. 47 is now demanded, and spiegel still full request, but has not risen, the present price being M. 46.50 p.t., though more is asked. The output of the furnaces is nearry
all sold to the end of the year. The condition of the foundry, Bessemer, and basic iron trade has undergone no change from
last week. The wrought iron trade is very brisk, and is likely to remain so for some time to come, and the rolling mill combinatio must not be forgotten that large parcels of bars had been con-
tracted for by the separate works before the syndicate could get into operation, and the situation would beimproved still further if the malgamation of all the syndicates, now under consideration, takes
place. At present all the bar and sectional iron rolling mills and place. At present all the bar and sectional iron rolling mills and
forges are regularly and well employed night and day all the week
through, at prices varying from M. 115 p.t. upwards, which are
easier and easier from week to week to obtain. Hoops are just now easier and easier from week to week to obtain. Hoops are just now
in special request, and all the works full of orders, at slightly
enhanced enhanced prices, Wire rods have improved in demand, and are
firmer in price, which can now keep pace with the raw materials as they rise. Boiler plates keep steady at M. 150 p.t., which is being being in great demand, not paying at the market prices, and yet not being able to make a rise because of extreme competition, though of M. 5 p.t. is shortly to be risked. The steel works are well some doing most in rails, others in sleepers; others, again, in
blooms, billets, wheels, and axles. The tendering at Berlin this week for 5100 t . of rails is anxiously looked forward to by the home the prices. The machine, boiler, constructive workshops, and foundries are nearly all much better off for work than they were but only in exceptional cases at what might be called fairly remu-
nerative prices. The rolled tube works are busy, and the convencount by $2 \frac{1}{2}$ p.c. The Vielle Montagne Company has raised the prices of roiled zinc to 200 fl for Holland, and $£ 1617 \mathrm{~s}$. 6 d . for England.
The brassfounders were very well employed during last month, yet the prices for the tinished goods keep very depressed, and are
in no proportion to those of the raw metals. The foundries have orders in hand for the next three months to come The iron and steel prices are as follows, per ton and base price
always : Good merchant bars, M. 115; hoops, 125 to 126 ; boiler plates, above 5 mm . gauge, 150 ; sheets - singles - 135 to 140 ; iron
wire rods, 110 to 111 ; steel ditto, 148 to 109 ; drawn wire, $130 ;$ and light rails, 110
the price of girders, caused by the heavy demand for Italy and the United States, has already been raised, and other sorts of rolled two ago stood at 130f., are now noted at 1355f., No. 3 at 155 f., and
No. 4 at 215 f. p.t., but as the latter gauge is in great request 2255 . has been obtained for them. The price of foundry pig has also
been raised. The coal market is beginning to show more life, the demand for all sorts and for cokes has increased, and prices are firmer, with a rising tendency in sympathy with pig and bar iron, this year, like the la
 Department are pretty well engaged on girders and plates, but for fortnight business in the Haute Marne district has sadly fallen off Coke iron is noted there at 130 f . to 135 f ., and mixed sorts at
140 to 145 p.t. As for the business at Paris, one of their trade journals complains that, it would appear as if in the future no more
ron would ever be required, and that the merchants were off their socks at any price they could get, for girders are now being offered at 120 and bars at 130f. p.t., which prices, however, are not accepted by consumers without a discussion first
t. taking place. In the first half year $764,643 \mathrm{t}$. of crude iron,
$378,897 \mathrm{t}$. of wrought iron, and $240,313 \mathrm{t}$. of steel have been At Bilbao iron ores have a firm tendency. Rubios superio costs 6s. 10d. ; Campanil, 7s. to 7s. 3d. Shipments have decreased, usual In $2,261,80$.
In geologising tarbekir, several mineral deposits have in Asia light, the chief of which consist of lead, copper and chrome ore and magnesia

LAUNCHES AND TRIAL TRIPS.

The new steamer, Firofly, which Mr. R. A. Macfie will place on Ferry, and has been built to his order by Mr. Waddington, of rip to Runcorne is specially built, is a twin screw, and her trial was very satisfactory, she having attained a rate of over 9 knot per hour. The Firetly's lengtth is 138 ft ., her breadth 18 ft ., and her
depth 9 ft . Her builders guaranteed a draught, with 30 passengers depth 9ft. Her builders guaranteed a draught, with 30 passenger raught was l. less th hour, making her one of the fastest ferry boats on the Mersey, and
she is classed A 1 at Lloyd's for channel purposes. The accommodation provided for passengers is of a most convenient description She bas a large deck saloon, with a promenade deck above. She room, while forward there is an excellent smoking saloon. The of the vessel is of the most improved class, and was constructe and fitted by Messrs. David Rollo and Sons, of Fulton Engine
Works, Liverpool, under the superintendence of Mr. William Glover, ht consists of two pairs of compound surface-condensing engines, having cylinders of $12 \frac{1}{2} \mathrm{in}$. and 25 in . diameter respectively, and a
stroke of 18 in . Each engine has a set of air, feed, and bilge pumps
worked by links and lever from the L.P. crossheads, the circulating worked by links and lever from the L.P. crossheads, the circulating
water being supplied by an independent centrifugal pumping water being supplied by an independent centrifugal pumping
engine. Steam of 1001 b. working pressure is supplied by a large
steel boiler, having three of Fox's patent corrugated furnaces, We recently noticed the launch from the Low Walker ship
building yard of Messrs, Sir W, G. Armstrong, Mitchell, and Co of the steamer Ville de Calais, which has been specially built fo the carriage of crude petroleum in bulk, and which is, we believe,
the first steamer of the kind that has ever been specially con structed for this purpose. The ville de Calais is buit of steel t on less than 18ft. draught. She is sub-divided by a longitudinal and athwartship bulkheads into numerous cells or compartments, eac of which has its own expansion chamber, which latter also forms receptacle for the gases which are evolved from the cargo. Thes
arrangements in this vessel are of a very special descriptionpetroleum in its crude state being much more volatile than refined for this reason, also, the general construction of the hull and work manship had to be treated more like boilerwork than ordinary shipbuilding ; and before launching each compartment was tester very cor very complete installation of pumps on the worthington amount of
both for discharging the cargo and equalising at will the the triple expansion system, by the Wallsend Slipway and worked with perfect smoothness and without the slightest hitch obtained was fully laden with water to the contract draught, and where she has since arrived, all well, after a good run. The whole of the vessel's arrangements are of the most complete description,
including a full electric light installation by Messrs. Clarke, Chapman, Parsons, and Co. sir W. G. Armstrong, Mitchell, and Co have given the construction of petroleum steamers their special attention, and the Ville de Calais is the third tank steamer delivered by them this year, the previous vessels being the Minister
Maybach of 3300 tons d.w., and the Hans and Kurt of 2800 tons d.w.; whilst a fourth, named the Willkommen, of 4000 tons d.w.,
will take her trial trip will take her trial trip this week; and the same builder
another vessel in hand in an early stage of construction.

NEW COMPANIES.

THe following companies have just been regis-

 tored:-Copper Mining Company, Limied This company was registered on the 7 th inst.,
with a capital of $£ 100,000$, in $£ 1$ shares, to acquire and work the Barancannes Mine, situate at Huerta de Revesa, near the town of Almadovar, in Por
tugal. The subscribers are:-
*Edmund A. Pontifex, Shoe-lane, engineer.
Daniel Willink, East Molesey
 W. Dooryhas Lawford, New Malden, Surrey, soii-
 countan
The number of directors is not to be less than
three, nor more than nine ; three, nor more than nine; qualification, 200
shares; the first are the subscribers denoted by an asterisk, and Messrs. John Harvey, W. Frase Rae, Henry Holmess, and Richard Huth, who
Rase
have power to add two to their number; qualifihave power to add two to their number; qualiti-
cation, 200 shares; remuneration, $£ 1000$ per annum.

Bootle Market and Abbatoir Company, Limited. This company proposes to establish a wholesale and retail fair or market for the sale of horses, general produce. It was repistered on the 7 th
inst, with a capital of $£ 18,000$, in $£ 1$ shares.
The subcribers are The subscribers are:-
T. M. Stanbury, Bootle, Lancashire, estate agent Sharen J. Howard, Bootio, L., Lancashire, memechant.:.

The number of directors is not to be less than three, nor more than seven; qualification, $£ 100$ in
shares or stock; the first are the subscriber denoted by an asterisk; remuneration, $£ 105$ per annum.
London Paper Barrel and General Waterproofing
This company was registered on the 6th inst,, waterproofers and paper makers, printers, pubwaterproofers and paper makers, printers, pub-
lishers, advertising ${ }_{\text {agent }}$ agents, manufacturers, and lishers, advertising agents, ma
engineers. The subscribers are:

 F. Hrofer . .

Most of the regulations of Table A apply.
Gateshead Stained Glass Company, Limited. This company was registered on the 7 th inst., with a capital of $£ 2000$, in $£ 5$ shares, to manufac
ture and deal in stained and other ture and deal in stained and other glass, The
subscribers are:-

 The number of directors is not to be less than three, nor more than five; qualification, $£ 100$ in
shares ; the subscribers are to appoint the first. shares; the subscribers are to appoint the first,
Tho company in general meeting will determine

Continental Lead and Iron Company, Limited. This company was registered on the 6 th inst.,
with a capital of $£ 360,000$ in $£ 10$ shares, to equire, construct maintain, and work lea acquire, construct,
smelting works and factories, ind Intly, France,
Spain, and other countries. The subscribers smeeting
Spain, and other countries.' The subscribers
are:-

The number of directors is not to be less than
five, nor more than nine; the first are the subfive nor more than nine; the first are the sub-
seribers, and Lord Brassoy. The remuneration
of the board will be determined in ordinary of the board will be determined in ordinary
meeting.

$$
\begin{gathered}
\text { Anglo-Scandinavian } \\
\text { Limited. }
\end{gathered}
$$

This company proposes to carry on shipping
business and in particular for the carriage of ores and mineral substances, timber and other goods
and merchandise conveyed by the lines of the Swedish and Norwegian Railway Company with a capital of $£ 100,000$, in $£ 10$ shares. The The with a capital o
subscribers are:-
${ }^{* J}$. W. W. H. Williams, 1, Essex-court, Temple,

E. J. Ford, sinclair.-mansions, West Kensingtoo

The number of directors is not to be less than to have power to nominate from time to time four of the directors ; the first are the subscribers denoted by an asterisk, and James Thomas Jarvis;
remuneration, $£ 700$ per annum. Messrs. J. J.

Wilkinson and J. T. Jarvis are appointed
managing directors, and will be entitled to $£ 500$ managing directors, and for their services, in addition to their the said railway company states that this company will forthwith exercise its borrowing powers by the e issue at par of 5 per cent. first mortgage debenture bonda, patab amount of $£ 100,000$, to be redeemed at par by
annual drawings commencing in the year 1891 The whole of the present share capital is to be issued as fully paid to the railway company, the said company also to have a preferentiat claim on
the ships and vessels of this company for the the ships and vessels of this company for the
carriage of goods and passengers conveyed by the carriage of goods and passengers conveyed by the
railway company. In consideration of these conTessions the railway company guarantees the paycessions interest on the egeneral debenture loon of
ment of company, and also the payment of the re-
this this company, and also the payment of the re-
demption moneys of the debentures. The raildemption moneys of the debenturs, any other
way also undertakes not to employ an the same are sufficient for their requirements.

Monkwearmouth Collieries Company of Newo South Wales, Limited.

This company proposes to acquire and work the
colliery property, known as Monkwearmouth, situate in the parishes of Teralba and Stockring, ton, county of Northumberland, New South
Wales. It was registered on the loth inst., with a capital of $£ 200,000$, in $£ 1$ shares. The subscribers are :-

Ernest Wood, 4, Fenchurch-street, merchant C. T. Gedge, 5 , Fenchurch-street, merchant. R. E. Finlay, Billiter-squere
 R. I. Gedge, , F, Fenchurch-street, merchant. F. Finlay, Billiter-square-buildings, merchant F. M. Dutton, St. George's Club, Hanover-square F. M. Dutton, St. George's Club, Hanover-squ H. W. Hooper, Grove Parr, Kent \quad. \quad. E. Shilip, Sydenham Vila, Dulwich \quad. \quad.

The number of directors shall not be less than
seven, nor more than seven, and the names of the seven, nor more than seven, and the names of the
first will be determined by the subscribers, who act ad interim; qualification, 300 shares. The emuneration of the board is to an additional $£ 300$ per annum for the chairman, and in addition thereto the directors will be entitled to $£ 10$ per cent. upon the
surplus profits after payment of $£ 15$ per cent. upon the paid-up capital. The business in New South Wales may be managed by a local board of than five members, who will receive $£ 100$ per annum each for remuneration until otherwise
determined by the company in general meeting. The subscribers will also appoint the members of this board.

O'Kelly Torpedo Company, Limited

 This company was registered on the 12th inst., with a capital of $£ 7000$, in $£ 50$ shares, to acquirethe invention of James O'Kelly and Bernard Ambrose Collins, for improvements in torpedoes, nd in apparatus connected therewith, for overwhich improvement is applicable to the steering of vessels provided with steam steering gear. The subscribers are:-
*John Barry, M.P., Kirkaldy
C. Ostlere, Kirkaldy, manufacturer
S. Quin, Newcastle-on-Tyne, merchant
WW. Sutton, Newcastle-on-Tyne, hosier
J. Galpine, near Lenzie, Glasgg
E. Dwyer Gray, M.P., Dublin

The number of directors is not to be less than five, nor more than seven; the first are the subscribers denoted by an asterisk, and Mr. James scribers denoted by an asterisk,
O'Kelly ; qualification, six shares.

Hubert Gold Mines, Limited

This company was registered on the 10 th inst., with a capital of $£ 155,000$, in $£ 1$ shares, to acquire
and work the Hubert Gold Mining property, situate at Nevadaville, Gilpin County, Colorado, U.S.A. The purchase is regulated by an agree-
ment of 10 th ult. (unregistered) between W. H. Bush, Ellen Garry, and Emily Balsinger, of the first part, John Septimo Rivolta, of the second part, and William Shrimpton (for the company)
of the third part. The subscribers are:G. Maruti, 10, Curzon-street, Mayfair
J. W. Hall, 34, Drayton-gardens W. W. Hall, 34, Drayton-grardens
W. . I . Smith, 12 , PRancras-lane, engineer
Horsley Woods, Ashford, Middlesex Horsley Woods, Ashford, Middlesex
Foster, 150 , Fenchureh-street, secretary to a w. M. Barker, Dëvonshire villa, $\ddot{\text { comp }}$ Gröve $\ddot{\text { Park }}$, Whiswick J. Wenhé, $\ddot{20}$, Heathiold Park, Willesden. The number of directors is not to be less than hree, nor more than five; qualification, 100 remuneration, $£ 600$ per annum, and, in addition thereto, 5 per cent. on the net profits remaining fter payment of 15 per cent. per annum divi-

Lincoln Carpet Manufacturing Company,
Registered on the 12th inst., with a capital of carriage linings, and other similar fabrics. The subscribers are:- Shares.
H. Newsum, South Pa
 . Bainbridge, Lincoln, draper..
J. Boothman, Bacliffe Bridge, York, weave
H. Teaque, Lincoln, clerk W. H. Teaque, Lincoln, clerk
${ }^{\text {WH. Theaque, Lincoln, enginer }}$
W. T. Page, Lincoln, solicitor

The number of directors is not to be less than
three, nor more than five ; the first are the subcribers denoted by an asterisk; shares. The company in general meeting will determine remuneration.

Naval Engineer Appointments.-The following appointments have been made at the Adadditional, to date 13nth ingtant; ; and Richard W. Toman, assistant engineer, to the Hotspur, to
date 13th instant.

THE PATENT JOURNAL.

Condensed from the Journal of the Commissioners

Application for Letters Patent

 $*$ * When patents have been "commumicated " thename and address of the communicating party are
printed in italics printed in italics.

$6 t h$ September, 188

12,030. Steam Exaines, H. J. Allison.-(s. S. Stout
 12, o3ite. Uurtive, de., CoAL, L. B. Atkinson, H. W.
 2,034, Drawing Boards and TEE Squales, A. Ledgei hester.
Tvering and boring Metal cylinders, w
w Ven, London

States.) Aparaves, Ji
Cookiva Ranges, s. Pickersgill and J. w.
Et, Derby. Chicic CABLes, H. Skerrett.-(J. H. Dalzellh

䢒

12,044. MIVYCLEES STAND and M M Usic Sherkr, P. Mansfield,
12, Stephen, Liverpol
. Holding Buxdles of Papers, o. S. Matthews,
7. Window FAstesinsos, w. Fisher and C. Church,
ndon.

Sn.
Shersionalling apparatus, E. K. Irwin,
on.
on SEwiso Machine Cutrino Knives, L. Muther
SUProrrisg Mechanisi for Valve Steas, ece.,
Monroe, London.

Denham, London. TooL, A. B. Hardman and H.
Cond

Row. $\begin{aligned} & \text { Rotary Driers, A. Mills and C. E. Convis, } \\ & \text { dob }\end{aligned}$
${ }^{\text {don. }}$ Busk and Side Strip for STAys, A. E. Jones,
Punirying Yeast, A. G. Brookes.-(c. G. P. de
and A. Beryhl, Siseden.)
al and A. Bergh, Siveden. .

Wilington, London. Metals, T. R. Bayliss, London.

Ki.) Kirtina Machines, W. W. Westmoreland, B.
and I. L. Berridge, London.

 VEndon.
VETLILTON of RALIWAY and other CARRiages,
Godden, London.

 Coquelle, London. Gas Forsice with Perionical

 Anders, and H. Collet, London.
2.077.
Midgley Leveriviso Sondon. STAM HATS into BAskets, E.

Oak.
Sargty Strprop, E. F. Bour, London,
Toukt or DREss Piv, D. Allport, Lond

 12,022. CRALLLELES, F. Aldous, Manchester.
12, OP3. TOBULOUS STEAM GENERATORS, B. H. Thwaite, Li, Liverpool. Siniss, A. Jones, London.
Bain. Skle-actiso Extinauisher for Lamps, G.

Birmingham.
12,osm. Axtre and Naves for Waekes, J. Shepherd,
Manchester.

 12,104. Coskankd Bath and Wardrobe, dce, M. L.
Ross, London.

12,109. EDonomising Steam in Stream Enaines, W. w.
Ridgo. London.
 12, ili. . Watkernins, London. Fuse for Mines, w. P. Thompson.-
(B. Dumas, Paris.

London.
12,116. Lock-ksob and Spindle, E. H. Johnson,
London.

12,117. Heating and Circulating Water, J. Lee, 12,118. ArTachamests for Hanorng Up Garments,
G. W. Hatton, London. G. W. Hatton, London.
12, i19. Wire Frame for Suportina Cut Flowers, 12., ivo., srop A. Cheal, Crawley. Stiso CAsks, F. Street and C. Ellis, London.
12, 121
Bortule for containing Poisoxous Liquids, \&e.,

 Merrer, W. A. G. Schünheyder, London.
12,125. MARINE Exomses, J. MeLaren.-(A. R. McKen.

 12, 1282, Alasgow. 12, 129.0. Double Purifier or Gas Washer, J. Mcewen 12,130. TELepphonk, A. G. Cloake, London.
sth September, 1887.
12,131, SAFETY Lock Nuts, K. G. Garbe and G. Wallace 12, 132 . PAtriens Books, \&c., L. H. Brierley, Birming ham. Chass
12, 133.1
Manichester. 12, 1344 Becharinos in Sewing Machine Stands, F. Tay 1or, Nottingham. Mensurino Liquids, c. Windust,
12,135. Taps for
 12, 138. Detrie, Dundip Cups for Uxbereluss, A. G. Nygard, 12,139. Shirs' Berris, I. Choriton and G. L. Scott, 12,140. Sovsprendiva Bens, I. Choriton and G. L. Scott, 12,141. Four-Handed Reversible Door Lock, dc., G 12,142. DABBITG Brushrs, E. Gaunt, W. H. Cockeroft, and s. Best, Bradford,

 12,147. Watch Stand and Regulator, N. Hall.-(c. G.
 Ravoes, G. Clark, London. 12 , 149. Hyorens Convinience Napriv, c. Rubens London.
150. Locks for Carriage Doors, w. H. Nisbit and 12,151. Wortres Gle Glagow Exanses, T. A. Galt. - (J

12,154. STorpres for CHAMPAONE, de., Boottess, H. P
Capreol, London.
12,15. ham, Lenkering Felir hat Bodiss, J. and o. old
12,156, Bolus for Doors, w. Allen and R. A. Holmes ${ }_{\text {Ponger }}^{\text {Pocker }}$ Clanette Maker, A. Hamburg Mikiso FRif, N. Ingrund, London.
Stopperivo BortiLs,
H. Heart tield, London.
 Sod.
Bivx, , C. Humfrey, Liverpool.

${ }_{12,169}$ Bay, London.
12,169. Preventing Incrustation in Boilens, P
12, 170. PRerventiva Acordents with PerambuLators, M. Willard, London.
12,171. SLLPLLITITA Covers for Dust Pass, T. Simp.
 12, Baz. BRACE TAB Consections, \&c., T. Walker, Lon
 Bayliss, London.
$12,175$. ERcondaRy Batteries, w. w. B. Adams, Lon 12, ito. Brenech-loading Smale Fire-arms, t. Perkef
 London,
TRERTIIGG Asbssos, C. Jackson, Nottingham,
HEATING or Coulwo AIR, dce, G. Seagrave Expractiva Oil from Seens, w. H. Gilruth,
 12, is3. ADVERTISINQ APPARATUS, J. G. Lorrain, Lon-
don.
 12, 15s. Men Echanital. Musical Instruments, A. L. Mora, 12, 136. Tendenis Net Supports, P. M. Justice.- (F. W.

 12,189, Tellephowio Apparatus, H. H. Lake.-(E. E Graves, United States.)
12,190 TERLEPHONIC APPARATUs, H. H. Lake.-(E. E.

 12, 196, Skwiva Machinss, A. F. Wileman, Ealing
12,197. Construction of Thentres, \&o., J. B. Petter, 12,198. Fachitiative Inoress, do, of Pkople to
 cester. ${ }^{\text {certiss }}$ VALVEs for Mortive-power Enaines,
W. Musgrave, Mancestester.

 GUARDs, M. Archer, Newcastle-upon-Tyne.

12,207. Bolts for Doors, \&c., J. H. Cartland, Birming ham. Electro-magnets, S. F. Walker, Cardiff.
$12,208.209$. Belting, G. E. Stead, Manchester.
 United States.)
12, 211. Detchable Prich Compound Driving Chatns
and
 12,213. BoNing, dc.. Folds of Clote, W. Anderson
and R. H. Shaw, Ashton-on-Mersey,
12,214. HEEL-BULLDING MACHINES, T. Sheppard, Leicester. Tricycles, H. J. Lawson, London.
12,215. The VELOCPEED, H. J. Lawson, London. 12,216. VELOCIPEDE, H. J. Lawson, London.
12,217. BIICCLEE, H. J. Lawon, London.
12, R18. ROAD VEHCLES, M. D. Rucker, London. Thompson, Whendon, J. H. Sams and La M. A.
12,220. Collapsible Boxes, J. M. Shuttleworth,
Liverpoo. Liverpool. Buyers' RuLe, W. S. Smee, London.
12,221. Wool
12,222. DISINYECTANTS,
 12,223. BUCKLE with a Tonguk, C. C. Ellis, London,
12,224. Meral Tackle Blecks G. A. Ford, London.
12,225. SHutcle Operating MECHANISM for SEwing MACHINES, J. Bolton, London.
London.
12,227. APPLYing OIL to the WAVEs of 12,227. Applying Oil to the Waves of Roveh Seas,
J. O. Spence, London.
12,228. Cycles, M. Hedderwick, Glasgow. 12,228. OYCLES, M. Hedderwick, Glasgow.
$12,229$. CARbCRETING GAs LaMPs, A. Kitson, United
States 12,230. Electro-magnets, J. Taylor, London.
12,231. Transfrring Coal from Wagons to 12,232. ANCHORs, G. Hartshorne and G. F. Simms ${ }_{\text {12, 233. Tramway, }}^{\text {Bing., Engines, A. Dickinson, Bir- }}$ 12,234. FAciutating Sorting of Rage, C. Holt and W. 12,235. KEys and Tree-Nails for Railways, T. R. Stopford, London.
12, 236. Gas Cooking Rangess or Ovens, T. Greenwood,
Lendon 12,237. Unitive the Uppres to the Inyer Soles of Boots and Shoes, W. Jackson, London.
12.23. Preparing Infusions of TEA, de., R. Lewis, London.
12.239. Hiand SAWs, R. M. Johnson and T. H. Benton,
Sheffield. 12,240. Movable Typres, F. Perrin, Bristol. 12,240. Movable Types, F. Perrin, Bristol.
12,241. ADvertisnv VNNs, H. . Turner, London.
12,242. FURNACE, F. W. Durham, London. 12,243. Maoazine or Repeatina Fire-arms, P. A.
Comte de Sparre, London. 12,244. INDICAToRs for Recording the Revolutions of
Shafs, A. Dilhs, London. Shaprs, A. Dilhs, London.
12.245. TYPE-WRTTERS, H. Dobson and A. E. Wynn, London.
12,26. Removino the Scale from Steam Boiler and
other Tubes, H. L. Currier, London, other Tubes, H. L, Currier, London,
12,247. Shaping and Trimmina Slate, A. Spamer,
Lond. London.
12,24s. Dividing Arcs of Circles and Angles, T. C.
Roussel, London, 12,249. CARBonATiNa Liquids, W. McElroy and H.
Connett, London. 12,250. Folding LIDded Box, C. Davis, London.
12,251. MiLk CAN or Boortle, T, Gilbeart, London 12,251. Milk Can or Bottle, T, Gilbeart, London,
12, 252 . DyNamo-llectric Machines, R. P. Selion, London.
12.253, Electrical Transformers, R. P. Sellon,
London, London.
12,254. Converting Compound Enoines with Double
Expansion into Triple Expansion Enaines, D. Joy,
London. 12,255. Heating and Drying of Animal and other 12256. Devi A. S. V. Abeele, London.
Londoñ.
 L. Charle, London.
12,25s. ADVERTISING APPARATUs, J. G. Lorrain,
London. 12.259. FAstenina Device for Studes, \&c., A. F. and
F. W. Small, London. F. W. Small, London.
12,260. HAnaling Gridiron, A. Steer and E. O. Eaton,
London. London. Needle Threader for Sewino Machines,
E. W. Hunnex and A. Edwards, London. E. W. Hunnex and A. Edwards, London. Comings,
12.262. PAPER Boxes, Bottles, de. W. R Comen.
London. 1 10th September, 1887.
12,263. Utilisation of Exhavst Steam for Trasway
Enginks, I. F. Cuttler, J. G. Cook, and Messrs.
Entwisle and Nutter, Bradfor 12,204. SECORNG Ksors to Doors, \&c., C. Mackey and E. V. Bailey, Birmingham.
12,265. AVtomatio ELectich Governor, T. Christy,
London. 12,266. Chismey Pot, J. Bradshaw, Preston.
${ }_{12,267 \text {. Cotring }}$ Umbrelaa and Parasol 12,268. Curtain and Drapery Hooks, H. 12,268. Curtain and Draprey Hooks, H. A. Done,
Sutton Coldfeld.
12,269. Miners' Safety Lamp, G. Hardy, Abram, 12,269. Miners' Safety Lamp, G. Hardy, Abram,
near. Wigan,
12,270. Pickers for Looms, S. Fielden, Manchester. 12,270. PICk Ers for Looms, S. Fielden, Manchester.
12, 71. BrICK KILNS, J. Davies, Manchester.
12,272. Process in Iron and Stet, G, Siddell, shef 12,273. Pneumometrer, R. Howson and E. Crowe, Middlesbrough-on-Tees.
12,274. Electric INCANDESENT LAMps, L. Thomas, 12, 274. Ralectric INCANDEscent Layps, L. Thomas,
A. Rand Foldino Devningham, Paris.
12, Birmingham 12,276. RIVETTING Boors and Shoes, J. Brown, Leeds.
12,277. Treataent of Zinc Ores, A. J. Shannon,
London. Lendon.
12,78. GUards for Carving Forks, T. Somerfield,
Sheffeld 12,279. Domestic Fire Grates, E. B. Williams and 12,280. Grinding Files, \&c., W. Bright, Sheffield. 12,281. BEARINGS, J. W. Jenkins, Birmingham.
12,282. ConNECTING PIPs, J. Wotherspoon, Glasgow.
12 283. WASHING, むc., Fibres, \&c., M. Ashworth R. Wild, Rochdale. 12,2s4. Ladr's Sarkty Purse, G. H. Weitzmann and
C. F. Hime, London.
12,255. Oil Compounds for Dyeing, de., E. Bentz, Manchester
12,286. Tripod Heads for Photooraphic Cameras, F. 12,287. Avtomatió Locking Apparatus for Wagons,
R. Hudson, London. R. Hudson, London.

12,288. Bicycle, W. W. Ford, London.
12,289. GADEN SYRINGES, W. Fraser, London.
12,290. Football InFlater, W. Fraser, London.
12,29. Football Inflater, W. Fraser, London.
12,29. AvToactic Door Clooser, W. Fraser, Loondon.
12,292. WASHiNG Photoaraphic Prints, A. Marriott, London.
12,293. Centrifual Machine Filters, W. P. Thomp-
son.-(W. Jäger [W. Pataky], Prussia.) son.- (W. Jäger [W. Pataky], Prussia.)
12,294. VErTICAL Steam GEnERATORS,
Liverpool. Hattrick, Liverpool.
12,295. Gravir Switch Bace Railways, W. Hart and J. Ripley, London.
12,296. VENT PEGS, J. Read, Sheffield.
12,297. ENCLOSING ExPLOsIVES in SHELL

12,297. Enclosise Explosives in Shells, W. T. Cham-
berlain, London. 12,299. Explonding Sherle She berlain, London. 12,299. APpLYINQ the Force of an Explosion in a Sheil, W. T. Chamberlain, London.
12,300. Enclosino ONE SHELL in Another, W. T. Cham-
berlain, London.

12,301 Steam Pile Drivers or Hambers, A. van
Raalte, London. Raalte, London.
12,302. Electric Brake Apparatus, G. Binswanger 12,303. W. Preventing Collusions at \$en, L. Somzee, London.
12,304. Fire-proop Curtains for Theatres, W. E.
Heath Heath and W. Geddes, London.
12,305. SEWINo MACHINES, C. Rain
2,306. Automatic Calenders for Clocks, G. Reimann,
12,307. STone Saws, J. Peckover, London.
12, 3os. PEDEstrian Sped Indicators, M. London.
12,309. VENT Pegs, W. Smith, London.
12,310. VELocIPEDEs, G. Singer and
12,310. Velocipedes, G. Singer and R. H. Lea, Lon-
12,31. Ventilating Apparatus, L. Sterne and H. F. Green, London.
M. Petersen, Denmark.) Treads, H. H. Lake.-(
2,is. Electric Belis, \&c., H. p. F. Jensen, 2,314. La 12,314. LAyps and Burners, F. Grant, London.
12,31. Sverion Dredoers, W. R. Kinipple, London.
12,316. 12, s16. Hon
London.
12,917. Velocinth September, 1887
12,317. Velocipedes, T. Redman, Bradford. chester.
12, 3192. OII-CAN, E. Gorton, Birmingham.
12, ARC ELECTRIC LAMPs, C. L. Baker and C. Richardson, Manchester.
12,321. SETTIN Potatoes, de., W. W. L. Lishman, 12,32.1. Setring Potatoes, de., W. W. L. Lishman,
Halifa.
12,322. Lock and Latch Staples, G. F. Newman, Birminghan
 12,325. Telephonic Apparatus, W. Fairweather.-
(The Western Electric Company, United Slates.) 12,326. WAssing Machises, A. Barr, Glasgow. 12,327. Match-boxis, H. Courteen, Grantham.
12, ${ }^{282}$. Fireproor CUbtains for Theatres, A. Mel-
ville, Birmingham ville, Birmingham.
12,329. Furnices for Dryina Barley, w. G. Hicks,
Ramsgate, Ramsgate.
12,330. Regulatina the Supply of Gas, H. Royle,
Liverpol Liverpool.
Lish1. Yapn Windina Machinery, J. D. Whyte,
Manchester 12,332. Extractivg Aluminium from Minerals, SS.
Pearson, A. W. Turner, and W. Andrews, Bir-
ming 12,333 . HANDLES of Walking-sticks, \&c., E. A. 12,334. LAMP BuRNERE, M. Graetz, Berlin. H. O. Badger, Birmingham. 2,336. Burning Heavy Mineral and other Oils, L.
Chandor, London. 12,337. Adjustable Folding Eye-glass, t. Bloor, Bir12,338. Anti-fouling Composition for Ships' Botrons, de., W. Fordyce, Glasgow.
12,339. FLUID METERS, G. A. Nussbaum, London.
12,340. RAILWAY and RoAD Locomotives, J. Armstrong London.
12,341. WINDow FAsteninge , E. Kirby, London.
12,342. IFYANT'' FkEDINO BottLes, J. G. Tongue Maistriaux, Belgium.) Botrles, J. G. Tongue.-(c. 12,343. VELocIrepes, M. Tarnopol, London.
12,34. WIRE Strainkr, J. Flynn and J. F. Kilburn,
London. 12,345. Spinning Mules, G. Cooper and R. Beatty, London.
12,346. STERL CAstings, J. D. Ellis, London.
12,347. HARDENING METAL, T. J. Tresidder,
12,347. Hardening Metal, T. J. Tresidder, London.
12343. Clenina Rice, B. C. Schumacher.- (H. Schu
macher Germany,
 12,3nd. SYringe, J. P. Schenck, London.
12, 352. Distuing TAR, T. L. G. Bell, London
12, 12,35. FIre-resisting Compound for Nozzles, H. I 12,354. Skcuring Solitaires, E. J. Taylor, London.
12,355. Colouring Matters, J. Imray, (La Societ Anonyme des Matieres et Colorantes el produits Chi
miques de St. Denis, A. F. Poirrier, and D. A. Rosentiehl Fr Fince.)
12,356. Locomotive Tenders, F. B. Behr.-(A. Mallet, 12,357. Anti-nincrugtation Preparation for Boilers,
R. M. Bryant, London.

SELECTED AMERICAN PATENTS (From the United States' Patent office Official Gazette.) 366,226. Traction Enoine, F, F. Lan
borough, Pa.-Filed March 21st, is83. Claim - (1) In 2 traction engine, the combination of
a master gear, journalled upon a fixed portion of th a master gear, journalled upoi a fixed portion of the
framework of said engine, an axle having three shouldered bearings, $\mathrm{A}^{1} \mathrm{~A}^{2} \mathrm{~A}^{3}$, a spur gear H secured
upon the bearing A^{2} and provided internally with cog
havi upon the bearing A - and provided internally with cog
having their faces parallel with the axis of said gear
and a hub forming a journal tor the and a hub forming a journal for the compensating.gea
case, with the compensating-gear case having three
pairs of spur pinions between the gear \mathbf{H} and the pairs of spur pinions between the gear H and the
traction wheel, substantially as and for the purpose
descrin described. (2) In a traction engine, the combination
of a master gear, a gimbal-ring, and compensating gear case connected by links with an axle provided
with a fixed gear having chambers h, a loosely-jour-

nalled traction wheel, intermediate compensating
gears, and a locking pin, substantially as and for the gears, and a locking pin, substantially as and for the
purose described. (3) In a traction engine, a master
gear provided with pockets $\mathrm{F1}$, adapted to receive the ends of gimbal-ring connecting-links, in combination with a gimbal-ring, substantially as described. (4) In
a tration engine, the combination of a master gear
provided with pockets, slotted links secured loosely in the pockets, and a gimbal-ring provided with cushion-
ing devices against the ends of the links secured thereto, substantially as and for the purposes described.
(5) In a traction engine, the combination of a master geai provided with pookets, links secured loosely in
said pockets and to a gimbal-ring, and links secured
to said to said gimbal-ring and to a compensating-gear case,
substantially as described. (6) In a traction engine substantially as described. (6) In a traction engine,
compensating-gear case provided with inwardly and outwardly projecting pinion pockets and peripheral lugs, a central bearing, and an oil pipe extending from
the periphery to the bearing, substantially as shown the periphery
and described.

with a toothed ring, of revolving reciprocating pawls
engaging the teeth of said ring, substantially as shown and described. (2) A differential gearing con-
sisting of a toothed wheel, a shaft having an excentric sisting of a toothed wheel, a shaft having an excentric,
and reciprocating gawls and sleceves, all combined substantially as shown and described, (3) In a differen-
tial gear, the combination, with a drum, of a toothed wheel on the inside of said drum and pivotted recip-
rocating pawls mounted on an excentric of the rocating pawls mounted on an excentric of the
driving siaft, substantialy as shown and described.
(4) In driving shaft, substantialy as shown and described.
(4) In a differential gearing, the combination, with
the driving hat, of sleves mounted loosely on the
same same, reciprocating pawls mounted on links or arms
between the inner ends of the sleeves and on an exbetween the innerends of the sleeves and on an ex-
centric part of the shaft between the sleeves, and a drum provided with a toothed ring, with the teeth of
which ring the reciprocating pawls can engage, sub-

stantially as shown and described. (5) The combina-
tion, with the shant, of two sleeves mounted loosely on the same and having their ends connected by bolts and
sleeves on said bolts, links on the sleeves of bolts, pawls pivotted on said links and mounted on an excentric part of the shaft, which is between the inner
ends of sleeves surrounding the shaft, a drum mounted ends of sleeves surrounding the shaft, a drum mounted
loosely on the sleeves of the shaft, and a ring having
teeth fixed loosely on the drum, substantially as 366,282. Blast Furnace, E. Walsh, jun., St. Louis,
Mo.-Filed September 1st, 1885 . Claim.- (1) A blast furnace in which the bosh C is
located well down within the zone of fusion instead located well down within the zone of fusion instead
of at an upper and colder portion thereof, or at a porof at an upper and colder portion thereof, or at a por-
tion too far removed horizontally from the heating in-
fluences of the ascending gases, as heretofore, subfluences of the ascending gases, as heretofore, sub-
stantially as shown, and for the purpose specified.
sta stantially as shown, and for the purpose specified.
(2) Alast furnace in which the bricks composing the
walls of the furnace are laid at an inclination toward

the centre of the furnace, substantially as described,
and for the purpose specified. (3) The double row of columns H Hurpone in combination with the furnace shaft B, formed as described, substantially as described, and
for the purpooe specified. (4) The double row of columns H H H , supporting the furnace shaft B, in
combination with the furnace A, formed as described, ubstantially as and for the purpose described. 366,529. CAR AxLe-Bix, J. Timms, Colombus, Ohio.-
Filed June 13th, 1887. Claim.-(1) The combination, with a car axle-box
nd its lid hinged thereto and provided with a hollow curved projection H on its upper part, of a curved rod

L, provided with a head M, and a coiled spring N, and
the cam knuckle C, substantially as set forth. (2) An mproved lid for car axle-boxes, provided with the hollow curved projection H, a thumb piece K, and the
knuckles E E, all formed in one piece, substantially as
set forth set forth.
366,594. Automatio Stop Block for Locomotives,
F. Merthhieimer, Evanston, Wyo.-Filed November Claim. - (1) In combination with the rail recessed in its upper face, the pivotted, vertically-swinging stop
C, having the laterally projecting arm b, adapted to turn into the recess selow the surface of the rail, or to bear upon and receive support from the rail, as occa-
sion may require. (2) In combination with the non may require. (2) In combination with the
stop blocks or arms the transerre rock- thaft B, the
stocured to said shaft, and pro-
rails, and the hand lever D, applied as shown, and
serving as a weight to hold the stops normally in their elevated position. (3) In combination with a rail
notched or recessed in its upper face, a stop block C notched or recessed in its upper face, a stop block C,
having a lateral arm at its upper extremity, a rock
shaft on which said arm is mounted, and a hand lever

applied to said rock shaft in the manner described and
shown, whereby it is caused to hold the block nor mally in an elevated position to stop wheels advancing
in one direction, while at the same time the block is in one direction, while at the same time the block is
left free to descend under the pressure of wheels
advancing from the opposite left free to descend under the press
advancing from the opposite direction.
366,662. Machinery for Propelling and Steering
Boats, S. E. Harthan, Worcester, Mass,-Filed Boats, S. K. Harthan, Wer
November 26th, 1886. Claim.- A portable propelling apparatus for boats,
consisting of the auxiliary stern -post frame e adapted to be temporarily and detachably secured in stationary
position to the stern of the boat and provided with poseam motor engine, and a screw provided with
stean whee
mounted upon said frame with operating connections mounted upon said frame with operating connections,
substantially as and for the purpose set forth. The substantialy as and for the purpose set forth. The
detachable stationary auxiliary stern-post A , having
the backwardly-extended arm A^{1}, axis stud, crosshead the backwardly-extended arm Al, axis stud, crosshead
guides aw, combined with the propeller wheel C, the
laterally swinging steering rudder pivotted to said guides al, combined with the propeller wheel C, the
laterally swinging steering rudder pivotted to saii
arm, and the motor engine mounted on the upper end

of said post, substantially as shown and described.
The combination, with a boat, of auxiliary stern-post A, having guides al, and a backward-projecting axis
stud near its lower end, the propeller wheel C mounted stud near its sower etud, and provided with a cranke c,
to rotate on said ste
the engine cylinder D, and valve box E , mounted on the upper end of said post, and the operating rods D
and e, connecting the propeller crank with the engine piston and valye mechanism, and means, substantially
as described, for attaching said post to the stern of
the boat and supporting the same with the as described, for attaching said post to the stern of
the boat and supporting the same with the propeller
stud at stationary position axially in line therewith. stud at stationary position axially in line therewith.
A steering rudder constructed with an interior space
or passage adapted to serve as a condenser and proor passage adapted to serve as a condenser and pro-
vided with a tubular standard, in combination with pumping mechanism for remooving the water of con.
densation, substantially as set forth. The combination, densation, substantially as set forth. The combination,
with the engine and its operating connections, of the
condenser-rudder having the tubular stand condenser-rudder having the tubular standard, the
perforated tube E^{2}, carrying the engin values E thed perforated tube E^{2}, carrying the engine valves E fitted
within said standard and serving as the exhaust pipe for conveying exaust steam to said cond exhaust pipe
a hinging support therefor, the feener, and as a hinging support therefor, the feed-water pipe
arranged within and connected at its ends with said exhaust tube and passing up through the valve cham
ber, the pump valves $I i$ and means for i ber, the pump valves $1 \quad$, and means for imparting
reciproating action to said valve tube and feed-pipe reciprocating action to said valve tube and feed-pipe,
substantially as set forth. A frame or auxiliary stern
post post A, for supporting the propeller and and engine, pro-
vided with a hollow or cavity as a for containing liquid
fuel 366,848. Welding and Cutring Machine, J. M. Long,
Hamilton, Ohio.-Filed April 30th, 1887. Claim.-In a welding machine, the combination,
substantially as set forth, of a bottom anvil, a back anvil, a reciproantable top die, a reciprocatable side
die, and mechanism for reciproctin die, and mechanism for reciprocating the two dies in
alternation The combination of frame A, ram C , alternation The combination of frame A, ram C
cam shaft E, and fly wheel loose upon the cam shaf
and having clutch G, sliding clutch H, provided with

[^0]: ng them together, but also in their functions; the change of direcion in the current as the masnetism of the field changes sign, in the ther case corresponding closely to the change of current in the former case, due the the direction of the temperature change. But it
 will be observed that while in the Gramme ring the loops between he armature coils are connected to commutator segments equal in press, in the pyromagnetic dynamo the loops between the armature coils are connected to an equal number of brushes (in this case eight), while the commutator segments are only two in number.
 So that the functions of the commutator and the brushes in this enerator are in a certain sense reversed as compared with the ordinary dynamo.
 The potential difference developed by this dynamo will obviously depend (1) upon the number of turns of wire on the armature coils, (2) upon the temperature difference in working, (3) upon the rate
 of temperature variation, and (4) upon the proximity of the maximum point of effect. No advantage will be gained, of course, by raising the temperature of the interstitial armature above the point at which its magnetisability is practically zero, nor will it be its magnetism is practically a maximum the below the point where rature, therefore, between which, for any given magnetic metal, it is most desirable to work, can be easily determined by an inspection of the curve showing the relations between beat and magnetism for this particular metal. Thus the points of temperature at which the magnetisability is practically zero, as above
 stated, are a white heat for cobalt, a bright red for iron, and 400 deg. for nickel. On the other hand, while at ordinary temperatures iron has a maximum intensity of magnetisation repre sented by 1390, its intensity at 220 deg. is 1360 , and hence no commercial advantage is gained by cooling the iron below this tem perature. Nickel, however, whose maximum of intensity of only 380 at 220 deg . Hence, while this metal requires a lower maximum temperature, it also requires a lower minimum one, but it may be worked with much less heat. The rate of the tempera-
 ture variation is determined by the rapidity with which the guard ture variation is determined by the rapidity with which the guard
 plate revolves, and this in its turn is dependent upon the rapidity plate revolves, and this in its turn is dependent upon the rapidity
 with which the interstitial armature can be cooled and heated. That it may take up and lose heat readily, the sheet iron of which it is made is very thin-only 0.005 in . thick, even when its durability is increased by enamelling or nickeling-it is corrugated for the eight armatures-and hot and cold air are alternately forced through the armature. Experiments already made show that the guard plate can probably be made to revolve 120 times a minute. Since the potential difference is proportional to number of lines of force cut per second, it is evident that by doubling the speed of
 rotation twice as many lines of force would flow across the gene rotation twice as many lines of force would flow across the gene-
 rating coils per second, and the output of energy would be quadrupled. Exactly what thickness of metal is the most suitable for the purpose, what the relative volume occupied by metal and by air space in the intestitial armature should be, what is the best limits of temperature, and what the best speed of rotat the best duce the maximum potential difference-all these are questions

