THE MANCHESTER EXHIBITION.

On Monday last, the Manchester Exhibition was thrown open for private view, and the representatives of the press were specially invited to make an inspection of the building and its contents. We have already given a general description of the Exhibition and the specialobjects its promoters have in view, from which our readers will have formed a fair idea of its leading features, and it must be admitted, considering the magnitude into which it has rown since the project was first set on foot, and that only ix months have elapsed since the erection of the building vas actually commenced, it was certainly a bold step to invite critical inspection more than a week before the ormal opening. It would have been altogether exceeding the bounds of any reasonable expectation which could be based upon previous experience of Exhibitions of anything ike similar importance if the visitors had anticipated nding every exhibit in position and all the arrangement in working order. As a matter of fact there was the noise and bustle of workmen engaged on every side, and in some sections many of the exhibits were so far from complete that but little conception of their ultimate real character could be formed, whilst some of the importan portions of the decorative work were in an unfinished state hat robbed the building of much of the imposing effect t will ultimately assume. Sufficient advance had, how ever been made to give a very satisfactory general idea o the appearance the Exhibition will present in its completed state, and the marvel was that so much could have
een effected in so short a space of time.
In what we have to notice with regard to the Exhibition, we shall of course confine ourselves chielly to those portions in which our readers are most directly interested, nd deal specially with the section devoted to machiner in motion, general engineering work, machine tools, and exhibits connected with the iron and steel trades and allied branches of industry. This is the most interesting nd, at the same time, the most advanced section of the Exhibition. With few exceptions, every important exhibit was in position, and most of them practically in working order, a result highly creditable alike to Mr. H. R. Jackson, the superintendent of this department, and to the
various exhibitors who have so well responded to the ppeals of the committee to have everything in rearline before the formal opening ceremony. We shall not in our present notice attempt a detailed description of any of the varied exhibits, but give a few further general particulars beyond those we were enabled to supply in our previous article, and a short sketch of the most charac teristic features of the machinery and engimeering section will be of interest. The machinery in motion department of the Manchester Exhibition, which is the larges covered area ever de ne 10 ft . wide, and is made sever. bays raning heft wide and 10 ft a f , the also a gallery ott. wide and 1af. above the roor, rung roud the f which 76 , moft is toupied elhibits, which, is ind fint of an and pendent of an adjois ow the in the To Exhibition, it will be interesting to come it with the rearsia, to moring the the during 1886 in London, Liverpool, and Edinburgh. In London the area thus set apart was 25,000 square feet in Liverpool, 45,000 square feet; and Edinburgh, 17,000 quare feet; so that the area allotted to machinery in the Manchester Exhibition is more than half as much again as in the other three Exhibitions put together. In this building the columns supporting which is driven by four engines, developing about 200 indicated horse-power each, and these engines each drive three lines of shafting of varying length, the total amount being 2880 ft . This length of shafting afford nother means of comparison with previous Exhibitions At the Paris Exhibition of 1878, in the English section there was 964 ft . of shafting; in the Woollen Exhibition at the Crystal Palace, 618 ft .; at the Inventions Exhibiion, 800ft.; and at the Liverpool Exhibition, 600ft There is therefore in the Manchester Exhibition three times the quantity of driving accommodation that has been provided at any previous Exhibition. The steam is provided by ten Galloway steel boilers, 30ft, long by 8 ft . diameter, of 40 -horse power each, and working to 00 lb . pressure, and capable of evaporating $80,000 \mathrm{lb}$ of water per hour. These boilers are set in one row, and make a very fine exhibit, running across one end of the building. From the boilers there is a main range of steam pipes 830ft. long, varying from 12 in . to 7in. diameter, supplying steam to the electrical section, the he es, and the exhibits in the machinery section, and fountains and illuminic light arrangement for the fairy return exhaust pipe the whole lent ground. fioin. to 20 in . diameter, which is taken up to the boiler chimney to carry away the exhaust steam, and these pipes are placed in a culvert outside the building to prevent as much as possible the radiation of heat, always a great drawback n an Exhibition. Adjoining the boiler-house is the chie ynamo department, where the electricity is generated or 546 are hass, of ingh 40 are inside buildings, and 5000 incandescent lamps for the illumina tion he grows dre the dyamos ten engmes ave Phe down, developing alogether 1200-hors pecially designed pertical engines, by Mather a pair of pecialy designed pertical engines, by Mather and Platt, achir of vertical encines horse-power; then there is a smal pair or verte. engan by and Paxman of their and a pair of high-pressure engines by Hornsby engine pound and a single low-pressure encine by Robey; ane Ruston and Proctor's engines; and a pair of compound engines by Yates, of Blackburn. The whole of the conengiat for the illuminated fountains has been carried out
by Messrs. Galloway, who, in a separate building at the further end of the machinery section, have erected a conpound engine of 200 indicated horse-power, drivi dynamos for illuminating the fountains, and also a supe posed horizonk co sixnd enges which furish water power for working six ram pumps, which furnish water at a sumcient pressure to throw the jets the necessary height to make an effective display. These fountains, it may which have hitherto been constructed, either for London or ch havere; and by the present arranemet the who of the various water jets and electric lighting with wol of the various water jets and electric lighting, with appliwhich is a great improvement upon the London Exhibition, where about twenty men were employed under the fountains for the purpose of manipulating them and the coloured lights in connection therewith.
As to the general features of the machinery section, it is scarcely necessary to say that in the centre of the cotton industry, the most prominent is the large and varied display of all descriptions of machinery connected with the manufacture of textile fabrics, and these are not confined to cotton, but embrace the manufacture of woollen and silk. These exhibits embrace every process of manufacture in actual operation from the raw material to the finished goods, and a most complete and interesting panorama of the silk industry is presented from the egge arva, and moths of the various kinds of silkworm, through the various processes of reeling, throwing, spinning, and dyeing, up to the manufactured fabric in all its varied forms. Printing machinery of all the most moder and improved types is also very largely represented, and there is a varied collection of miscellaneous machinery altogether too numerous to specify. In the engineering department, the pump makers make a very good show, and locomotive engimes form a very prominent exhibit other heavy exhibits include steam hammers, fuel econo misers, and the large driving engines put down by Messrs. Hick, Hargreaves, and Co., Messrs. John Musgrav and Sons, Messss. John and Henry Wood, of Bol Mand Messrs. Daniel Adamson and Co., of Hyde knowne tools are fairly well represented by well the lo makers in the district, but there are several of the leading firms who are absent. The iron and steel eading fire strongly represented by most of the and, and the North exhibits, foremost amongst them being Sir Joseph Whi worth and Co., who have a most imposing collection of well-known productions. Chief amongst these are a hollow propeller shaft, 55 ft . long, $18 \frac{1}{4} \mathrm{in}$. diameter, with a 10in. hole, and a collar at one end 34in. diameter; a complete set of forgings for a 68 -ton gun, consisting of
tube, $26 \frac{1}{2}$ tons; breech piece, 18 tons; B tube, 17 tons tube, $26 \frac{1}{2}$ tons; breech piece, 18 tons; B tube, 17 tons five hoops, 40 tons; and breech screw, $23 \frac{1}{2}$ cwt., making total weight of 102 tons; and a weldess steel boiler ring, 12 ft . diameter by 6 ft . 6 in . long. One or two of the she field firms also show some very massive exhibits, and $W \mathrm{~m}$. Jessop and Sons have a cast steel spur wheel 16 ft diameter, a cast steel crank shaft, weighing 8 tons; cast steel fly-wheel shaft, 7 tons; and a cast steel cylinde cover, 3 tons. The brief summary we have given wil serve to indicate in some degree the general character of this section of the Exhibition, and in strosequent notices we shall deal in detail with such of the exhibits as are of special prominence or novelty.

NOTE ON TORPEDO BOAT TRIALS

By Robert Mansel.

From The Engineer of the 1st inst. I learn that M. De Bussy has favoured the Institution of Naval Architects with a paper giving the results of speed trials, carried out at Cherbourg, upon a torpedo vessel; also, the further information: "The formula made use of in France to determine the speed corresponding to a given power is

$v=m \sqrt[3]{\frac{\text { I.H.P. }}{\mathbf{B}^{2}}}$

Obviously, by cubing the members of this formula, and modifying, we have

$$
m^{3}=\frac{\mathrm{B}^{2} v^{3}}{\mathrm{I} . \mathrm{H} . \mathrm{P}},
$$

in which, if we write $m^{3}=\mathrm{C}, \mathrm{B}^{2}=\mathrm{A}$, and I.H.P. $=\mathrm{E}$, we should have

$$
\mathrm{C}=\frac{\mathrm{A} v^{3}}{\mathrm{E}} .
$$

That is to say, the old-fashioned Admiralty mid area formula, with all its long-recognised imperfections, I fear, not in the least mitigated by the remarkably naïve coefficint C thostitating, for the we
As shown in my letters published in The Exginem during last spring, the old formula is based upon a true mechanical principle, but has been rendered valueless by being associated with a false hypothesis, viz, in a steam of the products of the square of a lineal dimension b the square of the speed. Every carefully conducted se of experiments upon a steam yessel can be put into hape to elicit what is the true law of this importan undamental quantity; and M. De Bussy's data furnish one other to the many proofs I have adduced as to it eal form and value
That the resistance varies as the square of a lineal dimension is so approximately true, that the slight error hross ypothesis ivolves may be neglected, in view of the gross errors arising from the second or speed factor; and, dimension is equally well represented, by the a linea power of the dipent by the im, by the two-third wetted surface, either of these three elements may be
employed without influencing the comparative results of
(I.)
$\mathrm{C}=\frac{\mathrm{A} v^{3}}{\mathrm{E}}$
being the Admiralty mid-area formula. I have shown that a factor of the form

$\underline{\text { Log. }{ }^{-1} a v,}$

multiplying the second member, is capable of reducing it to a quantity, represented by c, which is constant, so long as the conditions of trial, other than the power and speed, remain the same. That is to say, we have
(II.)
or, resolving for E ,
(III.) $\quad \mathrm{E}=\frac{\mathrm{A} v}{c} \log .^{-1} a v$

The curious fact to note is, that the quantities a and remaining constant, under conditions, these conditions are not constant. Thus, in fine full-powered vessels, we ave distinct evidence of each of these assuming thre values, for low speeds, medium, and high speeds, respectively. The doctrine that the resistance varies as an increasing power of the velocity, under the square at low speeds and above the square at high speeds, is simply nlademite, empirical way of assuming some kind of experimental facts power expended to produce that speed.
M. De Bussy has stated the mid section of the vesse experimented upon to be 22 square feet, and other data, as reproduced in the following table

$\begin{aligned} & \text { No. of } \\ & \text { trial. } \end{aligned}$	Speed. knots.	Revolutions. Per minute.	Power. Horses
(1) 2 3 3 4 4 5 5 6 7 8 8 9 9	$\begin{array}{r} 4.70 \\ 8.91 \\ 10.20 \\ 10.94 \\ 12.89 \\ 14.58 \\ 16.80 \\ 18.80 \\ 19.30 \end{array}$	$64 \cdot 15$ 126.16 115.73 $155 \cdot 99$ 186.97 215.57 253.97 275.98 293.62	$\begin{array}{r} 9 \cdot 33 \\ 42 \cdot 44 \\ 62.79 \\ 67.33 \\ 10.93 \\ 1048.23 \\ 30.58 \\ 377.50 \\ 443.65 \end{array}$

Following out the method of investigation given in my etters in The Engineer last spring, it will be found for experiments (1), (2), and (3), we have the relation between power and speed, stated in general terms by Equation III.-the mid area formula-

$$
\mathrm{E}=\frac{22 v \log \cdot-1 \cdot 0888 v}{29 \cdot 04}
$$

Again for (3), (5), (6), and (7), this relation is changed into

$$
\begin{equation*}
\mathrm{E}=\frac{22 v \log \cdot{ }^{-1} \cdot 071 v}{19 \cdot 11} \tag{b}
\end{equation*}
$$

No. (4) contains a latent error of observation, which places it in contradiction to all the others; but not to diverge into side issues, pass it over for the present, and
for (7), (8), and (9) the foregoing relations are changed into

$$
\begin{equation*}
\mathrm{E}=\frac{22 v \log ^{-1} \cdot 0425 v}{6 \cdot 61} \tag{c}
\end{equation*}
$$

The crucial test for the truth of these, is to calculate by them the power required for the respective speeds, and compare them with M. De Bussy's data, as follows:-

Formula (a).

Trial speeds		4.70	8.91	10:20
Product by 0888 Log. Log. $22 .$. Log. 29.04	... $=$	417		
	\cdots	$\stackrel{\cdot}{\cdot 6721}$		$\begin{aligned} & 1 \cdot 0086 \\ & 1 \cdot 3424 \end{aligned}$
		1-4630	$1 \cdot 46$	$1 \cdot 4630$
Sum log. E		9689	$1 \cdot 6205$	1.7938
$\dot{B y} \underset{\text { Brial data }}{E}$	$\ldots=$	$\begin{aligned} & 9 \cdot 31 \\ & 9 \cdot 33 \end{aligned}$	$\begin{aligned} & 41 \cdot 74 \\ & 42.44 \end{aligned}$	
Formula (b).				
Trial speeds	$10 \cdot 20$	12.	4.5	16-80
Product by 071 Log. Log. 22 Log. $19 \cdot 11$	$\begin{array}{r} 7242 \\ 1.0086 \end{array}$	$\begin{array}{r} \cdot 9152 \\ 1 \cdot 1103 \end{array}$	l 1.0352	
	$1 \cdot 3424$	$1 \cdot 3424$	$1 \cdot 3424$	$1 \cdot 3$
	$1 \cdot 2814$	$1 \cdot 2814$	$1 \cdot 2814$	$1 \cdot 2814$
$\begin{aligned} & \text { Sum } \log \text {. E } \ldots= \\ & \therefore \text { E } \quad \ldots \ldots= \\ & \text { By trial data } \ldots= \end{aligned}$	7938	$2 \cdot 086$	$2 \cdot 260$	$2 \cdot 479$
	$\begin{aligned} & 62 \cdot 2 \\ & 62 \cdot 19 \end{aligned}$	$\begin{aligned} & 122 \cdot 0 \\ & 120 \cdot 93 \end{aligned}$	$\begin{aligned} & 182 \cdot 0 \\ & 184 \cdot 23 \end{aligned}$	$\begin{aligned} & 301 \cdot 4 \\ & 300 \cdot 58 \end{aligned}$
Formula (c).				
Trial speeds.. ..		16:80	18:20	19:30
			$\begin{aligned} & 1 \cdot 2601 \\ & 1 \cdot 3424 \end{aligned}$	$\begin{aligned} & 1 \cdot 2856 \\ & 1 \cdot 3424 \end{aligned}$
Sum log. E ...		$2 \cdot 4703$	$2 \cdot 5740$	$2 \cdot 64$
$\therefore \dot{\text { By trial data }}$			${ }_{377}^{375}$	

Contrasting these figures, no one can well deny their remarkably close agreement. Each equation satisfies the conditions for speeds in its own group, but would exhibit great discrepancies if applied to speeds in any of the others; and, in this way, it is made evident that the relation between power and speed, when extended over a
large range of speeds, is not, as usually assumed, capable large range of speeds, is not, as usually assumed, capable
of being represented by one single curve, but is built up of the parts of three related curves, of the same species, with entirely different constants. That these are neither
appending the process for finding these constants for the nean values in formula (b) as follows:-We first calculate the values of the expression $\log \cdot \frac{A v}{E}$, for the speeds for which this formula holds good, thus:-

Trial speeds	10.20	12:89	14:58	16's0
Log. 22 =	1.3424	1.3424		
Log. v Subtre $=$	1.0086	$1 \cdot 1103$	8	
g.	$1 \cdot 793$	$2 \cdot 08$	2.2653	47
gebraic sum	557	- 702		

Now divide the difference of the first and last of these by the difference of their speeds; we obtain
$\frac{5573-\cdot 0897}{16 \cdot 80-10 \cdot 20}=\frac{\cdot 4676}{6 \cdot 6}=\cdot 071=a$, as in formula (b).

| Next trial speeds | $10 \cdot 20$ | $12 \cdot 89$ | 1458 | $16 \cdot 80$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Product by 071	\ldots	\ldots	$=$	$\cdot 7242$	$\cdot 9152$	$1 \cdot 0352$
Add sums, as above	\ldots	$=$	$\cdot 5573$	$\cdot 3702$	$\cdot 2409$	
$\cdot 0897$						

Sum, or log.
Average value $=1 \cdot 2814=\log . c \quad c=19 \cdot 11$, as in formula (b).
The reasons for this process will be obvious by a reference to Formula II.; since, by it, $\log . c=\log \cdot \frac{\mathrm{A} v}{\mathrm{E}}+a v$. In an exactly similar manner, with the low and high speed groups, we obtain the values for formulas (a) and c). Formulæ of this transcendental character are very unavoidably occur in all such experiments, are at once made apparent by their disturbing effect upon the calculated formula values of the quantities log. E. and log. c. There is a curious relation, however. The variations arising from errors of observation equally affect each of these quantities, one result of which is: if, for all the trial speeds, we sum the values of \log. E and log. c, as given by
their formulæ, and from this sum deduct the sum of the observation values of log. E , the residue will be the value f the same multiple of the average value of $\log . c$ as the number of speeds for which the calculation is made. Thus, referring to the foregoing figures, for the mean Forials, we have:

$\begin{aligned} & \text { Formula, } \\ & \text { values. } \\ & \text { Lo. } \mathrm{E} . \mathrm{E} .8 \\ & 2.0865 \\ & 2.0660 \\ & 2.2600 \\ & 2.4791 \end{aligned}$		Trial values. Loug. 1.7937 12.7982 2.0825 2.2653 $2 \cdot 4780$
6194	+5.1255	

Also the number of speeds, as divisor of algebraic sum.
This furnishes a useful collective check upon the numerical operations, and it is also obvious that the sum of the formula values of \log. E is practically the same as the sum of the logarithms of the observed diagram values. In one of his many thoughtful essays, Mr. Herbert Spencer has advanzed this proposition - "Inquiring into
the pedigree of an idea is not a bad means of roughly estimating its value," which I venture to enlarge by the simile-the author and his idea somewhat resemble complementary colours, which, by their contrast, mutually intensify as well as complete each other. Let me illustrate by an idea which for a long time has been current amongst mechanicians, but with its origin, value, and applications often very much misunderstood. I refer to the idea, in the case of a machine-say, for example, the steam engine of a vessel-developing power and doing work at different velocities; the indicator pressures are diminished by a quantity, special to the particular case, but which is constant, or uninfluenced by the rate at which the work is done. Now, exactly forty years ago, in the first course of lectures upon the general theory of mechanics, which the present incumbent of the Chair of Natural Philosophy in Glasgow University delivered to his classes, pointed reference was made to this principle, as an accepted fact of mechanical science, and the name by which it was
designated, that of "Morin's constant." On the high designated, that of "Morin's constant." On the high
authority of Sir W. Thomson, this distinguished savant's authority of sir . Thomson, this distinguished savants researches in this cepartment of science had entitled his
name to be permanently associated with the principle name to be permanently associated with the principor
referred to. I am therefore not surprised to find in your issue of February 18th, a correspondent-"W. S.," Liver-pool-has, very properly, called attention to this principle as having been long known; and as to the reference he has made to a paper of mine in "1876," or, it might have been, to long anterior ones, where this principle has been referred to or employed. I should be sorry if the impression were conveyed that I had advanced any claim by its proper application to the theory of marine propulby its proper application to the theory of marine propul-
sion we were furnished with a fertile and efficient means of investigating one of its most obscure phenomena.
A reference to the papers of the Institution of EngiAeers and Shipbuilders in Scotland will show, in the spring of 1875 , when speaking to the question, "The Difficulties of Speed Calculation," I made the following statements :The first error to be met was this, "In every steam vessel the power expended by the engine in working itself, is in constant ratio to the gross indicated power," and to effect this, I stated, "we must obviously reduce
the mean effective pressure on the piston by a pressure which, in each case, ought to represent the pressure necessary to work the engine, unloaded, at the speed of trial. Friction of the load and subsequent losses in the engine may then be considered as a constant fraction of the gross indicated power." This, obviously, is Morin's constant ; only obtained by a somewhat involved process. In the spring of 1876 I published a direct time involved the true law of the resistance ; the value indicated by my earlier attempts, being founded upon the
hypothesis of the resistance varying as the square of the velocity, gave, necessarily, an erroneous value; although in effect it was the same as a method published at the
Institution of Naval Architects by the late Dr. Froude, Institution of Naval Architects by the late Dr. Froude,
about a fortnight subsequent to my publication of the about a fortnight subsequent to my publication of the
correct solution. By this, the direct explicit value of correct solution. By
Morin's constant is,
$m=\frac{21,010}{d^{2} s} \frac{\mathrm{E}}{\mathrm{N}} \cdot \frac{1}{\log \cdot(a-n) \mathrm{V}}$
In which E and N are the observed indicated horse-power and revolutions of engines corresponding to the speed V of vessel; α and n, two small quantities depending upon those elements, and capable of being determined by two distinct experiments under the same conditions; also, in the case of compound engines, d and s the diameter and stroke of the high-pressure cylinder respectively.
The formula involves the values of d and s, which have not been published in the report of M. De Bussy's trial data, and we are therefore unable to apply it to the present case. In old times we read of Hebrew bondsmen constrained to manufacture bricks "without straw," and we may safely conclude the resulting bricks were somewhat inadequate as to quality. I shall simply offer a sample with the "straw" not wanting; and approximate, as nigh thereto, with M. De Bussy's data, as the circumstances will warrant.
From the Admiralty trial data tables we obtain-
H.M.S. Heroine, 7th September, 1882.

	Trial speeds. V knots.	Revolutions. N per minute.	Indicated power E horses.
(1)	$13 \cdot 12$	$113 \cdot 2$	1466
(2)	$12 \cdot 43$ 11.47	${ }_{97}^{108.1}$	1243 922
(4)	${ }_{9} \cdot 16$	$76 \cdot 2$	471

The remaining necessary data are $d=36, s=2 \cdot 5$, whence, $\log . \frac{d^{2} s}{21,010}=-1 \cdot 1881$; and I calculate the quantity $(a-n)$ $=081$ very nearly ; hence,

	(1)	(2)	(3)	(4)	$\underset{\substack{\text { True } \\ \text { specd for } \\(2)}}{\text { The }}$
Trial speeds	$13 \cdot 12$	12:43	$11 \cdot 47$	$9 \cdot 16$	12:50
Value of $081 \mathrm{~V}=$ Add. $\log . \mathrm{N} \ldots$	$\begin{aligned} & 1 \cdot 0627 \\ & 2 \cdot 0538 \end{aligned}$	$\begin{aligned} & 1 \cdot 0068 \\ & 2 \cdot 0338 \end{aligned}$	$\begin{array}{r} \hline .9291 \\ 1.9870 \end{array}$		$\begin{aligned} & 1.0125 \\ & 2.0338 \end{aligned}$
Add. $\log \cdot \frac{d^{2} s}{21,010}=$	$-1 \cdot 1881$	$-1 \cdot 1881$	-1.1881	$-1 \cdot 18$	$-1 \cdot 1881$
Su	$2 \cdot 3046$	$2 \cdot 228$	$2 \cdot 1042$	1.8121	344
Log. E =	3•1661	3.0945	2.9647	$2 \cdot 6730$	$3 \cdot 09$
	8615	8658 $7 \cdot 34$	8605 $7 \cdot 25$	8609 $7 \cdot 26$	

In the foregoing, each trial gives its own value in testimony to the truth of the mechanical principles involved in the formula ; and the very exception shown by the slight excess of value in (2) is only an indication that the reported speed $12 \cdot 43$, for that trial, is slightly erroneous, the last col data belong to the speed 12.50 . $m=7 \cdot 25$, and the average for the whole four experiments $7 \cdot 26$, which certainly is as near constancy as we have any right to expect.
Again, the relation of power and speed in this vessel will be seen to be:

$$
\mathrm{E}=\frac{\mathrm{D}^{2}}{14 \cdot 83} \mathrm{~V} \log .^{-1} \cdot 0851 \mathrm{~V} ;
$$

and since the displacement is given at 3724 tons, taking the speed of (2) at 12.5 knots, we have the following calculations practically in perfect agreement with the trial data.
Trial speeds
Product 0851
Add. log. V_{2}
Add. \log. D^{3}
Add. log. D^{3}
Log. 14.
Log. E

| . | $13 \cdot 12$ | $12 \cdot 50$ |
| :---: | :---: | :---: | :---: |
| $=$ | $1 \cdot 1165$ | $1 \cdot 0638$ |
| $=$ | $1 \cdot 1179$ | $1 \cdot 069$ |
| $=$ | 1043 | $2 \cdot 1043$ |
| $=$ | $1 \cdot 1712$ | $1 \cdot 1712$ |
| $=$ | $3 \cdot 1675$ | $3 \cdot 0938$ |

$\begin{gathered} \cdot 9781 \\ \begin{array}{l} 1 \cdot 0518 \\ 2 \cdot 1043 \end{array} \end{gathered}$
1-1712
2.9630
$\begin{aligned} & \text { Trial. } \\ & 3 \cdot 1661 \\ & 3.0945 \\ & 2.9647 \\ & 2 \cdot 6730 \end{aligned}$

To return to M. De Bussy's data; on forming the values of the ratios $\frac{\mathrm{E}}{\mathrm{N}}$ for trials (1), (2), and (3), we obtain

The difference of the values of the first and last of these, divided by the difference of their speeds, viz: $: \frac{4675}{5 \cdot 5}=\cdot 085$. Now, calculate the values of $(a-n) \mathrm{V}$ for these trials, and subtract this from the foregoing ratios, we obtain :

$\begin{array}{llll}\text { Product } \\ \text { Ros } V \\ \text { R }\end{array}=\begin{array}{llll} & 3995 & 7574 & \text {. } 8670\end{array}$
Ratios as
above $\ldots=-1 \cdot 1627-1.5269-1 \cdot 6302$
Differences $=-2 \cdot 7632-2 \cdot 7695-2 \cdot 7632$. Average value $-2 \cdot 7653$.
In an exactly similar way for the following we obtain $(a-n)=067$; and the differences,

And, again, for (7), (8), and (9), we have $(\alpha-n)=0425$.
 Hence, it follows "Morin's constant" is only constant, under conditions and changes pari passu with the values of the quantities a and c of our formulas. Thus, at low, medium, and high speeds, the above average values show that its values are in the proportions $1: 1 \cdot 525: 3 \cdot 94$, or about four times greater at the high speeds than at the low. As previously noted, the want of the special values of d and s for these cases prevents the actual value from being determined.

A REMARKABLE TRIAL TRIP.

Some years have passed since we gave an account of the trial trip of a torpedo boat built by Messrs. Yarrow and Co. That trip was remarkable, for it lasted three hours, during the whole of which period the boat was driven at full speed without hitch or check, and the speed attained was the greatest during the time that has been achieved through water. In a recent impression we gave some particulars of the trial trip of a boat built for the Italian Government by Messrs. Yarrow and Co., which attained the highest speed known, namely, as nearly as possible 28 miles an hour. On the 14th inst. the sister boat made her trial trip in the Lower Hope, beating all previous performances, and attaining a mean speed of $25 \cdot 101$ knots, or over 28 miles an hour. The quickest run made with the tide was at the rate of $27 \cdot 272$ knots, or $31 \cdot 44$ miles per hour, past the shore. This is a wonderful performance
In the following table we give the precise results :-

	Boiler.	$\begin{gathered} \mathrm{Re}- \\ \text { ceiver. } \end{gathered}$	Vacuum	$\begin{array}{\|l\|l\|} \hline \text { Revs. } \\ \text { per } \\ \text { min. } \end{array}$	Speed.	Means.	$\underset{\text { means. }}{\stackrel{2 n d}{ }}$
	${ }^{\text {lbs. }}$	${ }^{\text {lbs. }}$	in.		$\begin{aligned} & \text { Knots } \\ & \text { per hour. } \end{aligned}$	$\begin{gathered} \text { Knots } \\ \text { per hour. } \end{gathered}$	$\begin{gathered} \text { Knots } \\ \text { per hour. } \end{gathered}$
1	130	32	28	${ }^{373}$		24-956	
2	130	32	28	${ }^{3} 72 \cdot 7$	27-272	${ }^{24} 5.028$	$24 \cdot 992$
3	130	32	25	${ }^{372}$	22.784	25.028	$25 \cdot 028$
4	130	${ }^{32}$	28	377	27-272	${ }_{25} \cdot 028$	$25 \cdot 138$
5	130	32	28	375	$23 \cdot 225$		25.248
6	130	32	28	377	27.272		
Means	130	32	2 S	374/4			25•101

The boat is 140 ft . long, and fitted with twin screws driven by compound engines, one pair to each propeller. These engines are of the usual type constructed by 90 deg . The framing and, indeed, every portion not of phosphor-bronze or gun-metal is of steel, extraordinary precautions being taken to secure lightuess; thus the connecting rods have holes drilled through them from
end to end.
The low-pressure cylinders are fitted with end to end. The low-pressure cylinders are fitted with slide valves. The high-pressure valves are of the piston type, all being worked by the ordinary link motion and excentrics. The engine-room is not far from the mid length of the boat, and one boiler is placed ahead and the other astern of it. Each boiler is so arranged that it will supply either engine or both at pleasure. The boat has therefore two fumnels, one forward and the other aft, and air is supplied to the furnaces by two fans, one fixed on the forward and the other on the aft bulkhead of the engine-room. The fan engines have cylinders $5 \frac{1}{2} \mathrm{in}$. diameter and 3 3in. stroke, and make about 1100 revolutions per minute when at full speed, causing a plenum in the stokeholes of about 6 in. water pressure. Double steam steering gear is fitted, for the forward and aft rudder respectively, and safety from foundering is provided to an unusual degree by the subdivision of the
hull into numerous compartments, each of which is hull into numerous compartments, each of which is
fitted with a huge ejector, capable of throwing overboard a great body of water, a body of water equal to the whole displacement of the boat can be discharged in less than seven minutes. There is also a centrifugal pump provided, which can draw from any compartment. The circulating pump is not available onecause
has virtually no existence, a very small pump on the same shaft as the centrifugal being used merely to drain the condensers. These last are of copper, cylindrical, and fitted with pipes through which af the sea Thus the the pass weicht due to circulating pump is saved and complication avoided. The air and feed pumps are combined in one casting let into the engine-room floor quite out of the way, and worked by a crank-pin in a small disc on the forward end of the propeller shaft. This
The armament of the boat consists of two torpedo tubes in her bows, aud a second pair set at a small angle to each - Yarrow's patent-carried aft on a turntable for broadside firing. There are also two quick firing 3 lb . guns on her deck. The conning tower forward is rifle proof, and beneath it and further forward is fixed the steering engine, and a compressing engine, by which air is com-
pressed for starting the torpedoes overboard and for charging their reservoirs. A small dynamo and engine are also provided for working a search light if necessary. The accommodation provided for the ofticers and crew is far in advance of anything hitherto found on board a torpedo-boat.
The weather on the morning of Thursday, the 14th, was anything rather than that which would be selected for a trial, or indeed any, trip on the Thames. At 11 a.m., the yard, Isle of Dogs, the wind was blowing in heavy squalls from the north-east, accompanied by showers of snow and hail. The Italian Government was represented by Count Gandiani and several officers and engineers. In all there were about thirty-three persons on board. The displace-

TWENTY-TON FLOATING CRANE.
MESSRS. APPLEBY BROTHERS, LONDON, ENGINEERS.

ment of the vessel was as nearly as might be 97 tons. A start was made down the river at 11.15 a.m., the engines making about 180 revolutions per minute, and the boat running at some $11 \frac{1}{2}$ or 12 knots. During this time the stokehole hatches were open, but the fans were kept running at slow speed to maintain a moderate draught. The fuel used throughout the trip was briquettes, made of the best Wriquettes anthracite, worked up with a little tar. The put in the bunkers. This fuel is not of so high evaporaput in the bunkers. This fuel is not of so high evaporasuitable for torpedo boat work, because it gives out very little dust, while the coal in closed stokeholes half smothers the firemen. Watering only partially mitigates the evil. Besides this the patent fuel does not clinker the tube ends -a matter of vital importance.
During the run down to Gravesend the small quantity of smoke given out was borne down and away from the tops of the funnels by the fierce head wind, and now and then a heavy spray broke on the bows, wetting everything forward. In the engine-room preparations were made for taking indicator diagrams. No attempt was made to drive
the boat fast, because high speeds are prohibited by the river authorities on account of the heavy swell set up. The measured mile in the Lower Hope is on the southern oank of the river, about three niles below Gravesend. Just as the boat passed the town, in the midst of a heavy rain squall, the stoke-hole hatches in the deck were shut, and the dull humming roar of the fans showed that the fires were being got up. The smoke no longer rose leisurely from the funnels. It came up now with a rush and violence which showed the powerful agency at work below. A rapid vibrating motion beneath the feet was the first evidence that the engines were away full speed. As the boat gathered way she seemed to settle down to her work, and the vibration almost ceased. The measured mile was soon reached, and then in the teeth of the north-easter
she tore through the water. The tide and wind were she tore through the water. The tide and wind were there would have been a heavy sea on. As it was there was quite enough. the water breaking As it was, there was quite enough; the water, breaking on her port bow, rain squall having passed sparking in the sun, which, the the wind was blowing , an thirty moment. As and the boat was roing at some twenty-six miles an hour, against it, the result was a moderate hurricane on bord It was next to impossible to stand up against the fury of the blast without holding on. The mile was traversed in less than $2 \frac{1}{2}$ minutes, however; but the boat had to continue her course down the river for nearly another mile to avoid some barges which lay in the way, and prevented her from turning. Then the helm was put over, and she came round. There was no slacking of the engines, and
astern of her the water leaped from her rudder in a grea upheaved, foaming mass, some 7 ft . or 8 ft . high. Brought round, she once more lay her course. This time the wind was on her starboard quarter, or still more nearly aft The boat went literally as fast as the wind, and on deck it was nearly calm. The light smoke from the funnels, no longer beaten down by wind, leaped up high into the air. Looking over the side, it was difficult to imagine that the boat was passing through water at all. The enormous velocity gave the surface of the river the appearance of a sheet of steel for 1 ft . or more outside the boat. Standing right aft, the sight was yet more remarkable. Although two 6 ft . screws were revolving at nearly 400 revolutions per minute almost under foot, not a bubble of air came up to break the surface. There was no wave in her wake; about 70 ft . behind her rose a gentle swelling hill. Her wake was a broad smooth brown path, cut right through the rough surface of the river. On each side of this path rose and broke the angry little seas lashed up by thescourging wind. Along the very centre of the brown track ran a thin ridge of sarkling foam, some 2 ft . high and some 20 ft . long, caused by the rudder being dragged through the water. There was scarcely any vibration. The noise was not excessive. A rapid whirr due to the engines, and a rhythmical clatter due to the relief valve on one of the port engine cylinders not being screwed down hard enough, and herefore lifting a little in its seat at each stroke, made the most of it. The most prominent noise, perhaps was the hum of the fans. Standing forward, the deck seems to slope way downward aft-as indeed it does, for it is to be noted that at these high speeds the fore foot of the boat is lways thrown up clean out of the water-and the whole aspect of the boat; the funnels vomiting thin brown moke, and occasionally, when a fire-door is opened, a lurid pillar of flame for a moment; the whirr in the engine room; the dull thunder of the fans, produce an impression on the mind not easily expressed, and due in some measure no doubt to the exhilaration caused by he rapid motion through the air. The best way to convey what we mean is to say that the whole craft seems to be alive, and a perfect demon of energy and likely to be more persons hold that a torpedo boat is doing to bere captain of ar hat bearing down on him, and did not wish himself well out of a scrape, has more nerve than most men
The second mile wasrun in farless timethan that in which what we bave written concerning it can be read, and then all its discomfer again, and once selves, and so at last the sixth trip was completed, and
he boat proceeded at a leisurely pace back again to Poplar. Mr. Crohn, representing Messrs. Yarrow on board, and all concerned, might well feel satisfied. We had travelled at a greater speed than had ever before been or impediment or trouble of any kind.
The Italian Government may be congratulated on possessing the two fastest and most powerful torpedo boats are quite We believe, however, that Messrs. Yarrow engines, they can attain a speed of 26 knots an hour, and we have no reason to doubt this.

FLOATING STEAM CRANES.

The increase in the dimensions of sea-going steamers has so far exceeded any estimates which could have been made, even less than a generation ago, that many wharves and docks of comparatively recent construction have a depth of water altoquay for discharging or loading, and but few of these have been designed with a view to the ultimate use of the powerful cranes which are required for dealing with the heavy and bulky loads which are now of constant recurrence. Where these conditions exist floating cranes seem to offer greater facilities than any can be used with lifting machinery, because in most cases and arrangements, and the crane illustrated is one of the types which have been most successfully used.
The crane illustrated by the accompanying engraving is capable of lifting toa load of 20 tons; the crane revolves entirely round, and the point of the jib describes a circle 70 ft . in diameter; the height is about 0 t., and it will clear a vessel when moored close alongside toon is 80ft long and 30it beam, the depth is 8 ft the draught being 4 ft . 3 in . and will be seen, the foregoing dimensions admit of the crane being laid between the vessel and the quay, and reaching to the centre of the largest vessel frequenting the port on the one side where there is deep water, and delivering on the quay on the other side. But as the crane may be moved to any part of the harbour where its services are required, it may be moored on the opposite side, and aid in loading or discharging or in manipulating heavy packages independently of slipping new masts, and so forth. Cranes of this type provided with their own propellers will be referred to later on, but as tugs are always available, and there is ample space for manoeuvring when the crane under consideration is used, it was deemed undesirable to incur the additional outlay for the propelling engines and accessories. The machinery for working the crane is arranged horizontally in the manner designed by Mr. C. J. Appleby, M. Inst. C.E., many years ago, and adopted by the builders, Messrs. Appleby Brothers, Limited, this being compact and very accessiole, and giving a better distribution of
strains than any other construction. The necessary stability is
obtained by altering the position of the balance-box, and by referred to later on; and by using one or both of these means, the pontoon is always on an position of the crane and load. The balance-box is run in and out by gear driving a long screw, and working in gun-metal nuts ; the power is transmitted from the crane engines, and the lever for working this gear is alongside those for working the ther motions. The counterweight having been adjusted for loads within given limits, noalteration is needed until this limit has been exceeded, when of course a further adjustment is necessary. The space between the floor and the bottom plates forms a losed tank extendmo the whole area of the pontoon, and ncreasing the immersion, and affording a larger margin of stability in rough water. The structure is divided into eleven water-tight compartments, all firmly braced together, and in one of these is a centrifugal pump, driven from the crane engines, for emptying the water ballast tanks when desired The roller path is formed of a strongly-ribbed casting, which is secured to wrought iron girders extending down to the floors, and it is machine-faced on its upper surface, on which the fric ion rollers revolve. These rollers are fitted with steel pins, driven, it is immaterial, so far as the turning motion is con erned, whether the preponderance of weight is on the lifting chain or at the back end. Steam is supplied from the boiler, which revolves with the crane. The engines and gear are of the usual type, and there are three speeds of lifting, or, by altering the reeving of the chains, four speeds. There are two speeds of furning, giving a traverse respectively of about 80ft. and 160 ft . per minute at the point of the jib. Capstans, fair leads, \&c. re fixed on the deck, and sides are provided with the usu The crane was peces.
Appleby Brothers Appleby Brothers, at East Greenwich, with its maximum load, machinery and pontoon were taken apart for shipment and e-erection at destination. Seeing that cranes of the kind eferred to may be used with advantage where other quickworking lifting machinery could not be conveniently employed it is proposed to recur to the subject, and give examples of other types of floating cranes, with a brief record of working esults.

WAGES IN GREAT BRITAIN.

 No X

 No X}Nottingham.-The staple industry in the district of Nottingham is that of hosiery and lace. There are in addition, coal mines, iron foundries, and machine shops, chiefly for the supply of articles required in the various actories and miss, brass works, and wire works. A airly good feeling has prevailed between employer and employed, occasional strikes have taken place, but they ave been of minor importance, and have resulted in little good to the operatives. As in nearly all other district ere has been a perceptible falling off in the staple trade of the town, not only with foreign countries, but also in the trak. Coper and those that have been started have not been very uccessful. The condition of the working classes is fairly good, their wages being sufficient ordinarily for the pur解 more, and the various members of a family can generally thousands are employed in this district, principally in the housands are employed in this district, principally in the hosiery and lace

Wages Paid per Week of Fifty-four Hours in Nottingham.-

Wages Paid per Week: of Fifty-four and Sixty Hours to Raileay
Employés in Nottingham.

Lowest. Standard. Highest.

Fitters
 Fitters

Wages Paid in connection with Coal Mines in the District of

Bankmen Bymen (contract) Colliers (day

Foremen (overlookers an
owest.
s. d.
urnacemenderlookers) ..
Hewers
Striker
Stokers
Rent averaces 4s, 6d a wek, coal is from 8 s . 0 d 16 s .8 d . per ton; gas is 2 s .6 d . per 1000 cubic feet.
Sheffield.- The prosperity of Sheffield is principally dependent on the manufacture of steel and the application retains its supremacy in ster monufacture especilly in heavy descriptions notwithstanding foreign competition The heary branch of the steel manufacture includes armour-plate, axles, large castings for encines, rails, steel shot, steel for rifles, and tires. The cutlery trade embraces almost every variety of instrument and tool, edgetools, encineering tools, hammers, knives, mathematical instruments, saws, sey thes shovels, spades, surgical instrur ments, brass, \&c. The manufacture of engines and machinery is also largely carried on Among other industries may be enumerated bicycle making brass founding, iron founding and manufacture of grates and stoves. The cutlery of Sheffield manufacturers is not all made upon their own premises. A very considerable proportion is given out to workmen, who hire small premises and who work for different makers, or work is contracted for by "little masters," who employ few men, have inexpensive places, and work for small profits. They have usually but little capital, and are liable to fall into difficulties, and thus to become dependent upon those who employ them. From these causes it is difficult to say what goods of a particular pattern cost, different makers varying in their estimates. The feeling between employer and employed may be said to be an armed neutrality tending to more or less friction or jealousy, but not seriously hindering the prosperity of the various branches of trade. Organisations for their own protection exist among the workmen in nearly all trades, though much of their power has been diminished, and lock-outs and strikes are fewer. Wages Paid per Week in Sheffield.

In this district co-operative societies have been moderately prosperous. They offer great advantages in the purchase of the necessaries of life, and they would prove a great to avail themselyes of classes if according to locality. The dwellings of a large number of the working people in the older parts of Sheffield consist of two rooms, one below and one above, with an attic. These are often situate in back alleys and crofts where the sanitary conditions are unfavourable, and let for 3s. 2d. a week. The modern improved industrial dwellings consist of two room below and bedrooms above, with an attic, at a rent of from 3s. 8d. to 4 s . 2d. a week, according to locality. The average rent of four-roomed houses is from 3s. 7 d . to 5 s .1 d . a week. Houses of six rooms are from 4 s .8 d . to 7 s . a week. Large numbers of the working men are unmarried and lodge in the abovementioned houses, paying from 2 s . 1d. to 2 s . 6d. a week Coal is from 10 s .2 d . to 15 s .3 d . per ton. Gas is 2 s .2 d . per 1000 cubic feet

Examples of Cost of Living per Week in Sheffield.

	3 in family.	4 in family.
Bread and flour	$\begin{array}{cc}\text { s. } & \text { d. } \\ 2 & 1\end{array}$	$\begin{array}{ll} \text { s. } & \text { d. } \\ 4 & 1 \end{array}$
Butter, cheese, coffee, milk, sugar, tea, \&c.	511	26
Meals	21	
Vegetables.	010	
Fuel and light		1
Clothing ...	21	3
Rent	4	
Total	187	21
Income	2010	25

Institution of Civil Engineers.-The association of the Birmingham students of this Institution held their seventh meeting of this session at the Colonulude Hotel, Birmingham, on Thursday student of th terworks, as designed by Mr. E. Pritchard, member of the Institute of Civil Engineers. The water supply is obtained by gravitation from springs at Westis pumped into a circular iron tank on the top of a brick tower, and then distributed in the town. The pumping machinery and gas engines are in duplicate, and each engine can work separately each or both set of pumps. Dowson's patent economic gas appa-
ratus is adopted to drive the gas engines. The paper was illusratus is adopted to drive the gas engines. The paper was illus-
trated by large diagrams, and an interesting discussion followed its reading.
Junior Engineering Society.-A paper on "Steam Jacketting" was recently read before this Society by Mr. R. G. Bleasby, who in
introducing the subject said that although the steam engine had introducing the subject said that ap of tor wears, had even yet bat an imperfect acquaintance with its theory. Of late years a few authorities had investigated the matter from a practical standpoint, and had produced results of much interest and value. The chief cause of steam engine inefficiency, incomplete expansion, continued to exist,
because increased expansion entailed loss by condensation. Greater economy than at present was to be sought in using a cylinder material of far less conductivity for heat than that now in use. From a correct indicator diagram and knowing the quantity of feed-water used, the author showed how the existence of cylinder the improbability of the change of temperature of the cylinder walls taking place through the whole thickness of the metal, owing to the very short time allowed for the change and the slow rate at which the passage of heat occurs. A passing reference was made to waste gas and hot air jackets, the superiority of steam jackets
over them being shown, after which the beneficial results of steam jacketting were graphically indicateu. Some practical considerations in the design, construction, arrangement and management of steam jackets were touched upon and examples given, the author from the use of efficient steam jackets.

RAILWAY MATTERS

A special meeting of the Midland Railway Company is called for Friday, May 6 th, to autho
f10, 000 to the Dore and Chinley line.
The London, Chatham, and Dover Railway Company has buit a nice new station ath country are dropped out into the
passengers arriving from the cout
atreet where however bad the weather, they must remain until street, where, however
they can get into a cab.
The body of Mr. William Golightly, district engineer of the Midland Railway Company, was found on Wednesday on
the line in the Matlock Tunnel, Derby, the head of the deceased being badly injured. It is supposed that he fell from a first-class
"

Somegood ironand steel and bridge work is being required by the Bombay, Baroda, and Central India, and the Indian Midland
Railway Companies. The Bombay and Central are invitiuy tenders Rar whe sumply of of Bessemer steel rails, springs, axles, cast iron
for the
hairs, and other iron and steel work; and the Indian Midland are chairs, and other iron and steel work; and the
requiring materials for a bridge of 250 ft span.
The Birmingham Chamber of Commerce, in common with similar Chambersthroughout the country, has received from Mr. E. C. Nepean, Director of Navy Contracts, a letter requesting the Cham-
ber to ascertain whether it is the opinion of the leading manufacturers of that district that the prices quoted in the accepte
tenders for Army and Navy contracts should be made public.
Under the head of trespassers, in the Board of Trad report of accidents and casualties in the United Kingdom last year,
there is again an improvement, 285 killed - 80 of these were suicides against 305 last year, and 91 injured, a against 126 . Of other
persons not coming in the above classification there were 52 killed persons not coming in the above classification there were 52 killed
and 71 injured, against 41 and 74 respectively in the year before.
The Canadian Minister of Railways reports that the connection between the Dominion Government and the Canadian
Pacific Railway has been formally severed. The company is now the sole owner of 3037 miles of line between Port Moody and Quebec. Alt the loans granted by the Dominion Government have
been repai, including one third of the last thirty million dollars,
which were cancelled by the recouveyance to the Dominion of even million acres of land
The Italian Mediterranean Railway Company is now inviting tenders for the supply-in different lots-of 2000 railway
covered wagons, open trueks, and luggage vans, 4000 pairs of wheels, and 2000 springs of various kinds. A certain preference
will be given to the tenders of Italian firms. . British firms desirous their head office in Milan ; they may also apply to Mr. John Whitmore, British Vice-Consul in that city.
Efforts are being made in Scinde to induce the Government to construct a railway U40 miles long from Pali on the line will present no engineering difficulty, and that, by shortening the journey from Delhi to Kurrachee by fifteen hours, it will prove
of great mercantile and strategic importance, as well as a valuable protection against famine. A meeting in favouro of making t.
Major-General Hutchinson has reported on a "slight accient which occurred on the 3rd inst. at Youghal terminal
station on the Cork and Youghal branch of the Greut Southern and
Western Railway of Ireland. No passencers or servints of the Western Railway of Ireland. "No passengers or servants of the
company were injured," and "no damage was sustained by the company were injured," and "Mo damage was sustained by the
train." The report says : " This aceident would not have oceurred had the points and signals at Youghal station been properly inter-
locked. The continuous brake with which the train was fitted did good service in enabling it to be stopped before any carriages left
the rails." Surely Major-General Hutchinson did not go all the
IT is stated that during last year forty-five America rail ways, with 7687 miles of line, $170,140,500$ dols. of bonded debt, and
$203,969,200$ dols, of capital stock, were sold under foreclosure and transferred to new owners at greatly reduced valuations. This closure salese for any previous year. The etatal of the saldes fure-
eleven years included 373 railways sold, with 36,696 miles of line eleven, years sincluced
and $2,152,200,000$ dols. of calwitas, this, being about 28 per er cent. of
the entire American railway plant. The above amount did not the entire American railway, plant. The above amount did not
include foreclosure sales impending at the beginning of the present year, nor that of the Readng Ralirg,

Is a report on a collision which occurred on February 14th near Werrington Junction, on the Great Northern Railway,
when the slip carriage of a down express became detached, and When the slip carriage of a down express became detached, and
upon the train being stopped suddenly at a point 1324 yards north
of Werrington Junction signal-box, this carriage ran into the rear brake-van, at about 11 a.m, at a speed probabby of about 20 miles
an hour, injuring passengers and guards, Major Marindin says an hour, injuring passengers and guards, Major Marindin says:-
"This accident furnishes another proof of the value of an automatic continuous brake, for with a train os of fitted value of accidental matic continuous brake, for with a train so fitted the accidental
sliping of a coupling ought to apply the continous brake ell
through the train, so as to bring the whole to a stand before the through the train, so as to bring the whole to a stand before the
front portion of the train could leave the slip carriage for a sufficient distance for any s.
between the two parts.
The Postmaster-General has addressed to all railway provisions of the opst-office Act prohichitiong calling attention to thrriage of letters
by railway companies provions of the Post-ofice Act prohibiting the carriage of letters
by railivay companies, and calling upon them to observe the law in
this respect. A contemporary says " the effect of this will be to prevent companies from corarying, sas the the havect been accustomed
to do, small parcels of which the majority have been parcels con taing small parcels of which the majority have been parcels conwill be that a very large proportion of the news now sent by train
will have to be telegraphed, thus involving an enormous additional expense to newspaper proprietors, and the public must lose con-
siderably in the way of news." This cannot be meant, for the public will surely send its parcels by what means it chooses, and
will not stand an imposition of this kind by its own servant and
establishment. It is much more likely that the intention is to stop
and establishment. It is much more likely that the intention is to stop
the practice of traders of sending private instructions and orders in this way.
Tue designs for the proposed railway bridge across the
t. Lawrence, at Quebec, have been prepared by Sir James BrunSt. Lawrence, at Quebec, have been prepared by Sir James Brun-
lees and Mr. A. Lu Light, M. Inst. C.E., Government engineer, of
the Province of Quebec. The St. Lawrence at the poinsel only 240 oft. from shoer. to shore. But as the great depth of water
prevents the construction of piers in the centre the cantilever prevents the construction of piers in the centre, the cantilever
principle has to be adopted for the superstructure. Two massive
piers of granite masonry will be built at a distance of 500ft. and piers of granite masonry will be built at a distance of 500 ft . and
24oft. from the shores of the river in a depth of about thof. of
water, and on these the enormous cantilever ironwork will he erected. The on these the enormous cantilever ironwork will bexilt sufficiently high to allow the masts
of the largest ocean steamers to pass under the centre span. The
of

NOTES AND MEMORANDA
According to Herr A. Sauer (Zeit. Kryst. Min.), amorphous carbon is widely distributed throughout the mica schists and
phillites of the Erragebirge. It is not identical with graphite or with anthreacite. He find that it is identical with the amorphous car-
bon described by Inostranzeff, and suggests for the substance the Lame of graphitoid. The analysis gave the following results :-
Ash, $73.85 ;$ C., $24: 85 ; \mathrm{H}_{2} 0 ., 1 \cdot 01 ; \mathrm{H}$., $006 ;$ Total, 99.77. Alloyed with a small per cent. of silver, aluminium loses much of its malleability, but with 5 per cent. of silver it can
be worked well, and takes a more beautiful polish than the pure metal. With 3 3per cent. of silver it it is very suitable for philosoand is not tarnished even by sulphuretted hydrogen. With sma amounts of silver, it appears very suitable for scale-beams, and is now frequently used for this purpose. The alloy containing 5 per cent. of silver has often been suggested for coin of smald deno
tions, as it is hard, bright, and retains its lustre in handling.
When crossing the Atlantic, Professor Dennis, of New York, recently made some observations to test the purity of the
ocean air. He had previously prepared capsules of sterilised gela tine. One which wase exposed in a state-room on the main deck of one exposed in the cabin on the main deck developed only five six points in ten days; a third, hung over the bow of the ship for
ten days, remained uncontaminated. We are not told what happened with other capsules, whether any in the state room
showed but slight contamination, and whether any outside showed showed but sigh
contamination.
The production of Bessemer steel ingots in the United is com during 1886 was $2,209,190$ gross tons. Of rails, the output is computed at $1,562,410$ gross tons. The production of Bessemer
steel ingots in 1886 was 698,670 tons more than that of 1885 , while the production of rails had increased by 602,939 tons. Of Clapp-
Grifiths steel the output in 1886 is returned at 46,371 net tons compared with 21,647 net tons in the previous year. The number
of converters completed at Midsummer, 1886, was fifty-eight. Assuming that this number was at work during the year, the Sixty-nine per cent. of the total make of ingots in 1886 was converted into rails.
On January 22nd last Professor Tyndall delivered a most interesting discourse on Thomas Young, and this is now pubscience and scientifici investigation and formulation, Young was one
of the greatest of Englishmen. His lectures on Natural Philoof the greatest of Englishmen. His lectures on Natural Philo-
sophy are far too little read, and this may be said as much of sophy are far too little read, and this may be said as much or
many who are oceupying the position of teacher as of those whe many who are occupying the position of teacher as of those who
are learners. Young first used the term energy in his lectures on "Collision," and some of those who are so much interested in dynamic terminology might read his eighth lecture as quoted by
Professor Tyndall with advantage. Young said, "the term energy may be appliod with great propriety to the product of the mass or
weight of a body into the sounere of the Weight of a body into the square of the number expressing its
velocity.

Professor Di Legger, of the Campidoglio Observatory Rome, has publishod in Atti della R. Accademia dei Lincei, ser. 4,
vol. i, a discussion of the meridian transit observations of the diameter taken at the Observatory during the years $18744-83$, From
May, 1876, the observations were made by projecting the on a screen, so that two or more persons could observe simultaneously, and thus determine their "personal equations" from
observations made under precisely similar circumstances gether, 5796 transits were observed on 2213 days, giving an average of 221 days per annum. The mean resulting horizontal semidiameters of the sun, collected in biennial groups, show a pro--
gressive diminution, which, taking into consideration Auwers' gressive diminution, which, taking into consideration Auwers
reserches on the subject--Nature, vol. xxxv. p. 496 -are most prover man annual personal equations given by Professor Di
of mean
Lege woul Legee would also pead us to infer. The mean values of the
horizontal semi-diameter at mean distance found from each
 and Pross
$961^{\prime \prime} 188$.
Ат a recent meeting of the Paris Academy of Sciences and Coper was read on The Relations that Exist be ancen Cyelones an attentive study of the synoptical storm charts of the United
States Signal Service, the author is able to confirm the conclusions States Signal Service, the author is able to confirm the conclusions
already drawn by M. Marie-Davy from the meteorological observaalready drawn by M. Marie-Davy from the meteorological observa-
tions made at the Paris Observatory so far back as the year 1864. simply shown (1) that tornadoes, , octly aseciated with the cyclonic movement; (2) that tin the United States their trajectories have no general relation either to the isobars or to the normal
atmospheric currents: (3) that these relatively short trajecter atmospheric currents: (3) that these relatively short trajectories
are parallel to the vast eyclonic trajectories at the moment when
the the of the cyclone itself, which may thus be regarded as a complex meteorological ssstem accompanied on its right side by by whox
colonies of destructive tornadoes and hurricanes with their colonies of destructive tornadoes and hurricanes with their atten-
dant waterspouts, hailstorms, and torrential downpours, all moving dont waterspouts, hailstorms, and torrential downpours, al moving
together across seas and continents. The whole movement is regulated by the simple law of the mechanics of fluids, which
determines the formation of spirals or vortices in the spheric regions. The surprising variety of the physicill effects pro-
duced by the movement is simply due to the descending vortex duced by the movement is simply due to the descending vortex,
which, as in our electric machines, suffices to bring into contact and set in violent motion, aerial masses lying far apart, with their frozen or in a state of vapour or of positive or negative tension.
A HIGHLY interesting series of experiments on the erst permanent gases has recently been successfully carried out by M.
Olszezwki. The more permanent gases have not only been lique-
fied at pressures averacaing only 70 mmm. by aid of excessively low fied at pressures averaging only 740 mm . by aid of excesinely loow
temperatures, but the boiling points, melting points, and densities of these so-called gases have been determined at atmospheric pres-
sure. The glass tube in which the condensation was efftected was
surrounded by to boil by reduction of its pressure, and by structed air pump, was reduced in temperature to -150 deg. C.
When this point was reached the gas to be liquefied was admitte When this point was reached the gas to be liquefied was admitted
into the tube from a N Natterer cylinder containing the gas at about $40-60$ atmospheres pressure, and was readily liquefied. A hydrogen thermometer was used to determine the tesperic pressure was found
and the boiling point of methane at atmosh
to be -14d to be -164 deg. C., that of oxygen -181.4 dep., nitrogen $-194 \cdot 4$
deg., carbon monoxide - 190 deg., and nitric oxide $-153 \cdot 6$ deg.
The melting point of The melting point of carbon monoxide was also determined to be
-207 deg., and that of nitrogen as low as -214 deg. M. Oslzewskis
nearest aproach to nearest approach to absolute ero was -225 deg. for solid nitrogen.
The density of methane et 736 mm , and -164 deg. was found to be
0.415 , that of 0.415 , that of oxygen at 743 mm . and -1814 deeg. Was 1.1244 , while
that of nitrogen at 741 mm . and -194.4 deg. was found to be 0.885 .
The dention position of the liquid menisisus in the tube, ovalatilisisy rading ofrtion by by
menans of an aspirator, and a acain reading off the height of thy
dulum
 the amotint of water running out of the alspirator.

MISCELLANEA.

Mr_{r}. R. Sennett has been appointed engineer-in-chief Mr. Samuel Swarbrick and Mr. Henry Dever have been appointed by Mr. Justice Chitty joint receivers on behalf of
the debenture holders of the Hull, Barnsley, and West Riding
Junction A NEW dredger, recently built for the Whitby Harbour trastees, commenceced operations a few days aro in the presence of a
large concourse of interested spectators. This is the inauguration
of a long-contemplated improvement. The new dredser has been of al long-contemplated improvement. The new dredger has been
built by Messrs. Simons and Co., Renfrew, at a cost of $£ 6700$. IT is understood that the report of the Royal Commission of the Colonial and Indian Exhibition will be presented in
the course of the next three weeks. After providin for a small deficit, not exceeding £3000, on the Inventions Exhibition, and a
reserve amount to meet claims during the statutory period of six reserve amount to meet claims during t.
years, there will be a surplus of $£ 25,000$.
According to the Bulletin du Musée Commercial a native of Japan has recently invented a new process by which paper may
be manufactured with seaweed. Paper made in this way is very
stronu
 many respects resembles old wind
much of the character of celluloid.
A NEW form of draught and dust excluder is being
made by Mr. T. J. Porter, of Fleetwood, which is fastened on the made by Mr. T. J. Porter, of Fleetwood, which is fastened on the
inside of the jam of a door in such a manner that while it effec tually excludes dust and draught, it does not affect the closing of cloth strip. It is neat in appearance, and, after dipping in hot
water, is easily applied and moulded to fit the opening to be

The proprietors of Olympia have published a guide and show book of their great thall at Kensington and of the shows,
exhibitions and so forth, that are to be held there. This show book of Olympia, as far as concerns the selection and composition of the published in the most awkward and absurd form, namely, a circle of 9 in. in diame
about 3 in. wide.
It has been arranged that the Geological Field Class, gical features of the country near Lond Lond onstematical the direction of Professor H. G. Seeley, F.R.S., King's College, will meet on alternate Saturday afternoons in May and June, commencing on May
14th. Particulars may be had from the principal mapsellers in the City, or from the honorary secretary, Mr. W. W. R. May, 16,

The Duke of Bedford has presented the Bedford VolunGreenwien type with a Merryweather steam fire engine of the and gear, over one costing, thogend guine with a large quantity of hose
At a recent trial at Woburn Abbey the engine raised steam from cold water in four minutes,
and to 1001 lb . pressure in six to seven minutes; ; it delivers 750 gallons per minute, discharges a powerful jet to a height of 17 Oft. simultaneously, and can easily be drawn by two horses.
Is a lecture delivered at Liverpool last Saturday, Mr W. Sugg, after reninding his hearers that one-fourth of all the
gas rent might be saved by using good burners, said that the small Aladdin burners, with a consumption of $2 \frac{1}{2} \mathrm{ft}$. of Liverpool gas, placed on a pedestal or a chandelier, give down an effective ligh
equal to that given by twenty-eight candlew. equal to that given by twenty-eight candles. As compared with
this, the ordinary burner using 5 cubic feet per hour for sixtee candles was referred to. But a still greater improvement is said to
have been made by the Cromartie burner, which gives fifty candles for 4 cubic feet per hour.
At a meeting on the 26th inst: of the Bath and West of England society, the report, in the shape of a series of
recommendations, of the special committee appointed to consider the working of the two departments known as "plant" and
"works," was presented. The committee, among other alterations, tecommended the amalgamation of the two departments, and the increase of the secretary's responsibility and remuneration. adopted, and an addition of $£ 200$ a year was unanimously voted to the secretary.
Ar a meeting of the Lowestoft Town Council a letter from the Deputy-Mayor, Mr. W. Youngman, was read, submitting
the design for the Jubilee Bridge which he propos to the Ravine, Belle Vue Park, and asking leave of the Lowestof Council to make such erections as are necessary for the foundations,
\& z ., on the south side of the Ravine. The letter further says who, I hope will be plonsed to dosine the pent the Corporation, Mr. Youngman said he had advertised in THE EveINEER for design and tenders for the bridge, and received half a seore designs an
applications. The one which he submitted was drawn by Mr . R. M. Parkinson, of the Eastern and Midlands Rail wav,

Messrs. Collier and Co., of Salford, have just coll structed a lathe specially adapted for turning locomotive wheelsafte
they are fixed on the axle, and it is arranged to turn the sides and of a of the whee at one setting of the rest. The machine consist of a strong bed which is sunk evel with tho floor rine, so that the
wheel can be passed into the lathe without lifting. The head stocks are made proportionately strong to do
6 ft. diameter whilst fixed on their crank axles, and the spindies are provided with steel anti-friction washers, to prevent end endesrust
The loose headstock is movable on the bed by means of rack and pinion to suit different lengths of axles, and the face plate can b to be turned at one face plate whidst, to wheel in is in ing boussed, at the
other. The feed motions are self-contained with the bed, and give two cuts to ne revolution of the face plate. The compound rest are provided with double swivels, to enable the sides and treads of
wheels to be turned without moving the saddle or rest on the bed.
On Monday evening, in the House of Commons, Mr. Henniker Heaton asked the Postmaster-General whether he was
aware that in Paris curtes telegrammes similar to postcards are issued of various values inclusive of reply cards, which are collected every five minutes from special boxes and transmitted by pneumatic
tubes to the General Post-office, and whether he would conside
 means of which letters, telegrams, and cartes telegrorammes are, diss
tributed. The question of adopting such a system in London has been considered by my predecessors in office, and they came to the
conclusion that it was not desirable, either in the interests of the public or of the Post-ofice, to establish it.". The predecessors in
oftice never have of themselves concluded that any new thing was
ofesin desirable. They objected to everything, including the 6d. telegrams
which have proved have bien able for years to send letter messages by about an
hourly delivery by peumatic post for did. In London we have to
ony pay $6 d$ at least for a fow word telegram not much quiciser
Fortunately for Mr. Raikes, on Monday night he added : TI hav
Hot lootiod into not looked into the matter myself, but will take an opportunity of
doing so." Let us hope he will do so before he makes up his mind

THE NEW HAMMERSMITH BRIDGE.DETAILS OF TOWERS. Sir Joseph bazalgette and mr. edward bazalgette, mm. inst. c.e., engineers.
(For description see page 309.)

THE NEW HAMMERSMITH BRIDGE.-CHAIN SADDLES AND ANCHORAGE. SIR JOSEPH BAZALGETTE AND MR. EDWARD BAZALGETTE, MM. INST. C.E., ENGINEERS]
(For description see page 309.)

LETTERS TO THE EDITOR

[We do not hold ourselves responsible for the opinions of our
NEWTON's THIRD LAW.
Sir, -In the very excellent letter of Mr. Eddy, in your issue of the 25 th March, he says of an engine "to start on, or accelerate,
the motion from zero to uniformity, demands that the power exceeds the resistance by a small residual force." Why did he say
that? He also says, "with an engine running with a uniform velocity the power and resistance are manifestly equal." Very
true. The resistance is the friction, the disturbance of the sur-
rounding air, \&c., and, say, sawing a plank, which is fed regularly. rounding air, \&c., and, say, sawing a plank, which is fed regularly.
Inertia of the working parts at uniformity is not resistance. Supposing the power to be constant, let the plank be pushed on to the
saw harder and harder until the engine is stopped. Is there an instant from uniformity to zero at which the resistance is an
imaginable fraction greater or less than the power? The momentum as the or suppose the plank to be with drawn, motion would increase to a point of uniformity again Sawing would be no part of the resistance, but inertia of the parts
would be. Disturbance of air, friction, \&c., would increase until niformity was reached, when inertia would once more cease to be
resistance. If inertia were the only resistance the engine would be ccelerated to infinity. It would be accelerated because action and reaction are equal, for in no other condition than change of
motion does inertia become resistance. In other words, if the power be constant and inertia is the resist
required to enable them to equal each other.
equired to enable them to equal each other.
Mr. Eddy, doubtless, is fully aware of this, and hence I am at a loss to know why he should say that in acceleration "the power me that the application of the word "nystic" to either of the three Newtonian laws is to put upon language an unbearable
strain.
I. LaNCASTER.

Chicago, April 8th.

ARMOUR PLATES, SCHNEIDER v, SHEFFIELD of unbounded me, and it is with feelings of unbounded astonishment that I read
therein the startling announcement that the Government is going
to the firm of Schneider and Co., Creusot, for armour plates. This is a pretty pass to have come to. It was bad enough with German
swords and cartridges and "Ferminy" shells : but this last nnouncement is a "poser." It is on our naval supremacy that
our position in the world is at the present time said to chiefly our position in the world is at the present time said to chiefly application to a forelgn firm, and their manufactory, too, in a plight is all the more pitiable and incomprehensible as we have of iron and steei we were able to beat all comers, in quality at any It appears to me that, notwithstanding the pressing need there is for us to be in advance, as far as possible, of all rivals in the
manufacture of naval war material, that the inherent conservatism of our manufacturers and authorities cannot be roused until these rivals are not merely equal to, but actually in advance of us. Then
there is a hysterical, spasmodic abandonment of the old and adopthere is a hysterical, spasmodic abandonment of the old and adop-
tion of a new reqgime, which, in its application to the navy, costs the distrust and anxiety, having a reflex influence extending to every part of our national life, which cannot be estimated. The critical gression, and the same thing is in different matters done over
nd over again. No steadily progressing spirit seems to animate us in the least.
To take the case in point. The Creusot plates are, so far as I can
gather, made wholly of steel, as against our system of part steel and part wrought iron, and it is contended they give better been expected. We have discarded wrought iron for steel in the manufacture of ship plates for the mercantile navy, and, as shown
in the case of the collision of the Arizona with an iceberg, with minently satisfactory results. We have also our boiler plates made of steel, for a purpose where alternations of temperature are
of daily occurrence and the metal subject to heavy and almost constant strains; and in this case also the result is calculated to inspire confidence in the material used. Yet, for a purpose where
the most extreme test of the endurance and strength of the two metals can be met with, we adhere to a conglomerate of the two,
and the result is that our plates are beaten in the test, and well hey may be.
ompound plates, for in the year 1880, when I was employed in one of our armour-plate works in Sheffield, I advocated the construction of plates upon the "whole-steel" system. The reasons for
this advocacy were the same then as I hold now, and briefly sumrom $\cdot 7$ to $\cdot 9$ is to : If steel, containing a percentage of carbon of an armour-plate, where the shock of impact of the projectile fired against it is most severe, I believe that, \grave{a} fortiori, a mild
steel backing would be better than a wrought iron. A mild steel, one containing not more than about. 15 per cent.
carbon, is far less likely to be injured by overheating or any other casualty it may be subjected to in manufacture, subsequent to its
being cast into the ingot, than the harder steel composing the ront plate; whilst the advantage the mild steel has over wrought iron in strength, and consequently in power of resisting main parts of the plate. The hard front and soft back would be he present system. I to not believe that the temperature of the steel used as the bond of union in our plates, as at present manu-
factured, is sufficient to ensure a sound weld. I have seen enougases of unsoundness in this respect in the works; whilst the way in which the whole of the steel front has parted from the me in this.
Again, an
Again, and perhaps this is to the Constructors to the Navy as favour of the whole steel plates. It stands to common sense that plates made-as is quite practicable-from steel, Siemens or the ingot, and of which three blows or casts would be suffi-
cient for a 30 -ton plate, can be made more cheaply than plates
largely composed of wrought iron, which will cost quite the same sum as the steel in ingot form, when in the form of rolled bars,
which have to be faggotted and welded in three or four stages, rowing in size each time, until the size required has been obtained ndeed, it is the amount of time and labour expended in the making sive, as the material and manipulation expended on the steel part of the plate would cost nothing near the prices paid per ton for
plates at the present time. The rapidity of production of the two kiates at the present time. The rapidity of production of the two I have said that I advocated the manufacture of these plates seven years ago. My views were not adopted, and pernaps the
reason is not far to seek. It is scarcely likely that the patentee of
the compound plate would care, almost as soon as he had developed his compound plate of production, care, almost as soon as he his reward in developed royalties on his patent, and being the managing director of the process was calculated to to give the best results. Who was right I
prove outsiders to judge.

The fact appears to be that the two large armour-plate producing
firms in Shefield have, so far as the manufacture of this speciality is concerned, derenerated into branch establishments of the Wool. wich Arsenal. .They have a monopoly of production, with the usual
evil result of all monoplies they thave othing in the shape of com evil result of all monoplies; they have nothing in the shape of com-
petitors to spur them to increased efforts, and as they are reaping a substantial profit as things are they as much apathy in connection with the other departments of their works as they do in this I would not have rushed into print
on this subject except for this, what I call the crowning insult to our steel-making industry. I recollect a correspondence on this
subject in the columns of the paper where I love seen the annouce subject in the columns of the paper where Chave seen the announce
ment of the Governmental intention in the autumn of last vear only saw part of this correspondence, not receiving the daily papers,
but quite enough to show how little the heads of these Sheffield firms of the predicament in which we are placed, and although I do not kind of satisfaction at seeing my views so completely verified
The remaining question is, what is to be done? I am a Sheffielder
myself, and should deenly lament the loss of prestige to the old myself, and should deeply lament the loss of prestige to the old
town should she lose this manufacture, and I would not be dependent upon a foreigner for straws for a purpose of such vital importance as our Navy if I could help it. The only thing to be done stand that if they do not know their own interests sufficiently wel to keep pace with foreigners in the production of a class of article
for the manufacture of which they, as I have said, hold the monopoly, that the Government will not nurse their interests for I think, be enough this monopoly. Such an announcer thoul the same material to work upor the French can beat the Shef-
fielders in the quality of the finished article; but I do wish that my townsmen would show more facility in investigations and improvements.
April 11th.
the royal agricultural society's engine trials. SIR,-I have read with much surprise the letter which appeared
on this subject in your last issue, signed by Mr. H. D. Marshall, as
president of the Acricultural Engineers' Association. I think I president of the Agricultural Ensineers Association. I think
never read a letter that more obviously said everything except that
which the sion nction take from the Agrieultural Engineer's Association is fear. All can see
the back seat which they each think might be theirs as a result of the back seat which they each think might be theirs as a result of
the trials. The mettle, Sir, has left the firms who did battle years age and won the laurels on which they built a great trade.
and and given as reasons for supporting a policy which has already done a
good deal of harm. The first reason given for asking a further postponement of the trials is trade depression. This surely shoul be a reason for welcoming the trials as a chance of showing to
thousands of old engine owners that they possess engines so waste ful that it would pay them to put them on the serap heap, and to The second reason given is that there is not time enough in whic to prepare an engine for the trials. This, Sir, is not a reason, but ready with it as long ago as when it was irst kecomn that the
R.A. E. proposed to ofter prizes. But even if the A Aricultural
rat Engineers Association had had no notion whatever Agrorobable trials until December or January last, is that any reason for refus-
ing to enter? The time would be equally long for all, for the ing to enter? The time would be equally long for all, for the
"leading makers" as well as those who by inference are not leading makers. The world will not be misled by this excuse. Does any
one of ne on teading makers, suppose that trials are wanted make from three to eight or ten portable engines per week want more than six months to make a show engine? Are the engines
which the leading makers now turn out admittedly so bad that they want more than six months for experimental work to find out
how much better an engine can be made? If this is the case, it is high time that trials were made so that the makers of engines so
bad were induced to mend their ways. The third reason given, bad were induced to mend their ways. The third reason given,
namely, expense, is perhaps also an indication of the expectation namely, expense, is perraps also an indication of the expectation
by these makers that so great a change for the better is possible. tion As to postponing the trials for twanthy years ago. the Agricultural engineers Association, and win those so experienced in building the classes of engines referred to, it is very much
open to question whether any benefit would be derived from any such consultation. The requirements are very definite, and the Royal Agricultural Society may not wish to be fettered by any reference to what may be considered by the leading makers to be
the requirements. The Society may get what the world wants解
It think, sir, that no good can be done by postponing these trials, greater facilities in every way now than they had twenty years ciently creditable for publication. I hope, Sir, that there are firms who will make a good show on the Newcastle trial ground with a Lincoln, April 25th.
Sir, -I have perused the astonishing circular issued by the portable and traction engine builders of England with wonder.
am not surprised that they do not intend to compete; I Im prised that they should issue a circular. The whole document is indeed a most remarkable production. In It is quite well known that the Leiston firm never has competed as a matter of principle. Are we to assume that the firm has changed
its mind and would have entered an engine if more time had been allowed for building and testing it, or that times are too bad to let the firm incur the expense? I have no reason to doubt the perfect
consistency of the firm ; and I am well assured that in no case and consistency of the firm ; and am well assured that in no case and
under no circumstance would it have competed in the yard of the under no circumstance would itave competed in the yard of the
Royal Agricultural Society. Messrs. Garrett have, in poin of fact,
placed themselves in a false position by having anything to do with the circular:
Next let us take the excuse put forward. Why was it thought necessary to make any excuse at all $;$ was it considered to be due
to the engineers themselves, or was it held to be due to the Society? Surely nothing was simpler or easier than for the various firms to refrain from entering engines for trial. There the matter would
have ended. The true reason has yet to be stated ; but the fact that heaven and earth has been worked by certain persons to pre-
vent others from competing. I write witl full knowledge on this vent oth.
subject.
Next let us consider the nature of the excuse, that time enough portable engine or a "racer" or a traction engine is, and I say that it is simply nonsense to assert that even a racer could not be
built and tested in six months, and much more than that has been available. But again, what is this wonderful engine to be which might be produced if only great firms had eighteen months to do
it in? Why, Sir, circulars have been distributed at the Smithfiel
aid Club Show, and other shows, claiming for compound portable engines an unparalleled economy. There figures are given,
which go to show that the compound portable or semi-portable engine is one of the most economical forms of steam engine ever made. readers would at once identify the firms in question, and this might seem invidious, I I am not attecking particular firms, but the whole
Agricultural Engineers' Association as a public body making a
public statement. The figures of merit put forward in these cir
culars have never yet been tested for accuracy by any independent witness. Why should the firms publishing these circulars decline to permit an independent test being made by such men,
sayy as Sir F. Eramell, Mr. W. Anderson, and Mr. Cowper
Is it not beeuse they, IS it not beeause they are afraid that the results obtained on
their own brakes and in their oww yards will not be obtained
on the Royal Agricultural Society's brake? bad trade, \&ce. I cannot imagine a more certain way of killing
trade than the public refusal of a great body of manufacturers to permit any public test to be made of the merits of the goods they
are selling to the world. The effect of the publication of this are selling to the world. The effect of the publication of this
circular will, I fear, be most regrettable, and this will be discovered One thing is apparent, new and energetic young firms will go in and compete and carry away the prizes. I I wonder how the Agri-
cultural Engineers' Association will look then, when its members are told to stand aside and make room for younger men in the markets Ipswich, A pril 25̌th.

Old Portable.

professors and students

SIR, -In my letter of April 15th I charged "J." with three gross
haccuracies in the use of scientific terms. How has he justified (1) Concerning "rate of acceleration," he says he has no doubt I have by this time seen the mistake into which I have fallen with
regard to that. But I ask, How am I to see this mistake if "J." wessor Tait. Well, I look up Thomson and Tait's "Elements of
fen to Natural Philosophy, par. 34, and I find-"Acceleration is the rate tion of motion or not." The only conclusion I can come to in poor misguided way, is that "rate of acceleration" is rate of rate of change of velocity, \&c.-a most obvious absurdity
(2) I
(2) I implicitly invited him to explain the meaning of the sentence and we have vagueness and confusion." This, however, he has apparently not seen his way to do, since he makes no allusion what
(3) I ventured to question the truth of his statement that "as far as physics are concerned, the great thing we have to deal
with is enery,", hinting that there was such a thing as macter inviting the consideration of the physicist; that, in
fact, without matter energy could not exist; and I even went so far as to say that his statement that "energy is
motion" is absurd a man who feels bound to make some answer while he cannot make a satisfactory one, viz, that of changing the subject. We find
him no longer discussing whether energy is motion, but whether it is due to motion; whether it exists apart from motion; whethe motion can produce or be produced by motion; and so on. He talks of narrowing the discunssion down to a single point in the
teaching of science. Well, if he will be good enough to keep the teaching of science. Well, if he will be good enough to keep the
discussion to any or all of these three points, which are the main carried on by with him would lead to any cood result might be more easily settled. Meantime, and until he proves these throe statements to be scientifically accurate, he has failed to make good
a claim to be numbered among scientific men whose opinions are worth hearing.
As regards my youth and ignorance, "J." has shown a perspi-
cuity almost amounting to second sight in discovering the former when it is remembered how slight was the hint I I gave of my being a
pupil of Professor Taits. While if in my state of ignorance I am pupil of Professor Taits. While if in my state of ignorance 1 am
still able to discover errors in "J.'s" wisdom, I fail to seo how I am in such a dreadfully bad way. I fancy "J." has no reason to
be dissatisfied with me on the latter account! The tone of my letter was what I considered most appropriate to " J.'s" letter.
Edinburgh, April 26 th.

ugar in mortar

Str,-About the end of 1886, a discussion arose in The Engineer on this subject. Among many suggestions then and subsequently
made therein, I have failed to notice the results recorded of experiments with saccharine, $\stackrel{\mathrm{C}}{6}$ H $_{\mathrm{H}_{4}}^{\mathrm{SO}_{2}}$
sugar at all. I write therefore to in no better obtainable by the use of orthobenzol sulphonic iodide or if the
turning of a colour in coal tar extract into sweetness, would not tend to throw more light on what at present seems to be rather in a hazy and recondite condition, especially as regards ancient
modes of mixing mortars.
S. M April 25th.
engine-drivers' eyesight.
SIR, -I can assure your correspondent, Mr. John Place, that the
action which the Amalgamated Society of Railway Servants has been obliged to take, in order to protect its members from serious injustice, is not "rash," nor has such an important matter been
discussed "without forethought or in ignorance." On the other hiscussed without forethought or in the ociety possessernce. On the othe hand, the Society possesses and has acted upon valuable and com-
plete information given by both physicians o, ofticials, and practical men. Mr. Place states that in Germany "actual semaphores and and by night." This is just exactly the practical test to which the
men in this country wish to be subjected. Your correspondent goes on to say that I wish for a " "more lax test as regards the that he either has not read or places a very wrong conclusion
upon my previous lefters. As I have said before, the Society desires the test to be "practical," and it is a fact that such practical test with actual lights and signals will in some cases be even
more difficult and more hard to pass than the present theoretical

A man may be perfectly able to see the spots on the card, and
sort the various colours of wool, and yet be unsafe to be upon an engine, as he may be und to see sign at op prove this 1 may quote the case of a driver who passed the
theoretical tests, and was said to be perfect for express work. he knew himself that he could not see the signals, and he, fearing
an accident, applied to be removed from a main line engine to shunting engine. Now in this instance the theoretical test proved to be absurd, and if this man had been subjected to a proper out. Suppose he had not had the good sense to give up main line
work, he would, having passed the "theoretical test," have tinued as an express driver, and perhaps long ago have caused a
then serious accident
think. Pould he be is more in the question than I seem to think. Would he be good enough to tell me to what he refers,
because nothing in his letter tends to prove the assertion. Because some men fail to know the names of various shades of wool, it must not be thought that they are colour-blind, they are only colour
ignorant. As a matter of fact it may be mentioned that ignorant. As a matter of fact it may be mentioned that some men
who have failed to name the colours, have now received instructions from some of the girls in a Berlin wool shop, and from painters, and are now able to pass the theoretical test without diffishould be made. Ought a driver to be tested before he goes on duty, or after he has been at work ten or twelve hours? Cases twelve hours of duty, but when again tested at the end hours' work he failed. Of course the effect of wind, dust, and
especially overwork, must at the end of a very long term of duty
seriously impair the sight of a driver. On several lines in this seriously impair the sight of a driver. On several lines in this
country the "practical test" with signals and lights is considered, and in practice is found to be highly efficient, and I trust it may
become general, in place of the unsatisfactory and purely theoretical tests to which the men so much object.

Consulting Engineer, Amalgamated Society of Head Ofice, A. S. R. S., 306, City-road, London, E.C. $\begin{gathered}\text { Raiway Servants. } \\ \text { April 23rd. }\end{gathered}$

TENDERS.

NEW MAIN SEWERS.
Contract No. 1.-Skeftion IV.-For the construction of about 23 miles of new main brick and pipe sewers for the Corporation of
Leticester. Quantities speceitication, and drawings by J. Gordon,
M. Inst. C.E, borough surveyor:-

HARBOUR WORKS IN ALGOA BAY, CAPE By Whitiam Shirld, M. Inst. G.E.
Algoa Bay, on the south coast of A frice, is the principal harbour of the eastern province of the Cape Colony, possessing a partially
sheltered anchorage and good holding ground. The harbour works which have been carried out there, from time to time for improving
the aceess to Port Elizabeth, which is situated in a bight formed by Cape Recife, at the westers side of the bay,
failiure and remedial works on a sandy coast. Colony, its exports and imports being nearly equal to those of al of its exports and imports for the thirteen years ending with 1882 were $£ 35,201,718$ and $£ 33,349,661$ respectively, as compared with
$£ 42,539,259$ and $£ 14,585,64$ for anl the other ports; and the 86,784 tons and 83,617 tons respectively, in 1864, to 825,157 tons nd 838,241 tons in 1882 .
Cape Recife extends about 6 miles to the southward of Port
Elizabeth; and Point Padrone, forming the eastern extremity of by land from S.S.E. round by W. to N.E. It it exposed between
N.E. and E . by S. to a fetch varying from 10 to 43 miles; and rom E. by S. to S.S.E. it is open to the Indian Ocean. The port is also exposed to very heavy rollers raised by south-west winds,
which wheel round Cape Recife, and prove more trying to sea-works
then hroughout the year; gales from the north-west are most common during the winter, nand east to south-east winds are prevalent
during the summer, from September to March. Westerly gales are during the summer, from September to March. Westerly gales are
venerally the most violent; but very heavy gales occasionally Eeneraly the most violent; but very heary gaies ocasion cause an almost constant surf upon the beach, making landing somewhat difficiult. The highest wavee observed by the author
were about 2 oft. from trough to crest, in a depth of about 23 ft. Curvents.- Numerous current observations were made by the djusted menerally as to indicate the current at a depth of 7 ft . and the direction and force of the wind were noted during the experiments. These observations, extending over about eight years, proved: - (1) That there are no appreciable tidal or other
defined currents in the vicinity of Port Elizabeth. (2) That such currents, are surface currents produced by the wind which chang their direction and velocity with the wind. (3) That the shore proportion to the height of the waves. (4) That in consequaence of irection of the rollers, the set along the const from south to north, especially in the season of south-east winds but during the prevalence of north-westerly, northerly, or north-
easterly winds in the winter, the set is in the opposite direction and with westerly winds, and in calm weather, there is often no current at all.
Sand-Tracel. - The travel of sand along the shore is frequently
from south to north. With westerly winds, however, sand accufrom south to north. With westerly winds, however, sand accu-
mulates upon the beach, and still more with northerly and northeasterly winds, as they check the tendency of the waves to pass the
sand on. This movement of sand does not extend beyond the action of the waves, and it is most readily checked by any impediment to its progress.
Tides.-The datum of spring tides; but good spring tides frequently fall 15 in. lower it, and rise sft. The ordinary range of neap tides is from 2ft. to 2ftt. ; but sometimes the variation in water-level is less than 12 in. The Agylhas current, outside the bay, appears to exercise a con-
siderable influence on the tides, for when accelerated by easterly or south-easterly winds, it draws the water out of the bay, increasing
the fall, and diminishing the rise of the tide ; and when etarded by westerly or souubasterly winds it has the
reverse effect. The wave disturbance produced by the volcanic eruption in the Straits of Sunda - distant about 5000 miles on the
27 thi of August, 1883 , reached Algoa Bay between 4 p.m. and $5.5 . \mathrm{m}$. that day; three distinct waves, which apeoared between .oroandide on to thieir cables; and the anchourations the barded by by the
belf-registering tide gange at Port Elizabeth showed a series of apid rises and falls, withe a maximum variation of water level of st. 42 in. between 8.19 and 9.2 p.m., which did not entirely disappear from the tidal diagrams till about five days after.
Breakizater:- The want of shelter at Port Elizabeth
south-east led to the construction of a brearwater, which was com-
menced in 1856 -page 338 , Fig. 1. This breakwater had a total length of about 1700 ft , and consisted of a straight arm, 46 ft . wide, projecting out from the shore, with a return outer arm,
or shield, 633 t . wide. The deck level was ft. above high
water. water. walle irss ivort. from hilh-water mark, composed of
stone wals with rubbe filing between, was completed in August,
1857 . The remainder of the breakwater was formed of pilework, with a rubble wall on the exposed side and rubble eliling
on the harbour side-page 338, Figs. 2, 3 , and 4 . The pilework was
on tember, 1860 , into a depth of 17 ft . at low water. In February,
to 1 Proc. Inst. Civ. Eng., vol. lxxxviii, Part II., from which our engrav-
ing is also taken.
$1861, \mathrm{Mr}$. Warren, the resident engineer, reported the formation
of a sandbank 3 3ft. hivh, on the north side of a sandbank 3stt. high, on the north, side, at the outer end of
the work. The filling in with rubble was commenced in Novenber 1861, at the seaward end; 21,021 tons out of 26,000 tons required to fill the reakwater up solid to thew-water level had been hecordingly becoming a nearly solid structure, amost before th commencement of the shield. In September, 1862, Mr. A. T. T.
Andrews, M. Inst. C.E. -then resident engineer at the Table Bay Harbour Works-advised that no more stone should be deposited,
as he considerod that sand would collect in the still water under shelter of the breakwater, and form a dangerous slioal,
unt that the sidield might be filled up with rubble as designed.
but
In thril In April, 1863 , Mr. Bourne-then colonial railway engineerrecommended that the breakwater, as well as the shield, should
be filled up with rubble as soon as possible to quay-level, leaving only a length of 30oft. or onooft. of pilework neet the stone
approach, at the shore end, to be filled up eventally if eerperi. approach, at the shore end, to be filled up eventually if experi-
ence proved that no injury from silting was liable to result Silting in harloun:-The Harbour Board followed Mr. Bourne's
advice, so far as regrds the outer portion of the work; but
instead of stopping the stone filling as soon instead of stopping the stone filling as soon as sand began to
accumulate in the harbour, carried it on as rapidly as possible to the shore, in the hope of preventing the drifting sand, which fol-
lowed up the filling, from coming in through the opening. The lowed up the filling, from coming in through the opening. The
closing of the breakwater was completed in July, 1865 ; but serious silting up still continued on the north side, and by Novembee beach. Though the portion of the harbour used by vessels of 400
to 500 tons had been little affected by the accumulation of silt up to February, 1866, the beaci continued to advance both north and south of the breakwater. In October, 1867 , the low-water mark
had advanced 750 ft ; in December, 1868 , it was within 200ft. of the shield; and by June, 1869, it had extended beyond the sea fhece of the shield, completing, the destruction of the harbour-
page 33s, Fii. 1. A bank also had formed to the north-west of page 338, Fig. 1 . A bank also had formed to the north-west of
the shield, which, in 1869, rose to within 3ft. of low-water spring
tides and presented a serious obstruction to landing on the beach.
Schemes of improvecenent. Sir John Coode, Vice-president Inst.
C. F . was consulted for the first time in 1868; and he arranced C.E, was consulted for the first time in 1868 ; and he arranged
for Mr. Charles Neate, M. Inst. C.E., to inspect the site. Mr.
 made at the east end of the straight breakwater, to arrest the
rapid advance of the sand, and the construction of a jetty with he timber taki John Coode, was carried out for thork, having been direction of Mr. A. T. Andrews. In 1870 Sir John Coode recommended the following works: - (1) The opening out of the straight
breakwater by removing all the rubble for a length of 500 ft , nd 160oft. long, to the south of the breakwater. (3) The formation of an outer harbour by an extension of the shield, and an
inner jetty 400ft. long. (4) Inner works, comprising an entrance basin, and an imner basin of 14 acres in the valley of the Baakens River. In consequence, however, of the complex condi-
tions of the case, he recommended that these works should carried out in sections, so that experience might indicate how far the desired results were or were not likely to accrue from their constrution. The opening out of the breakwater was commenced in 1869 , na proved avery tedious and dificulut operation. In 187 instruction vere given by the Harbour Board for carrying out the retaining
bank and the outer jetty forming the first section of the above scheme, and the author was appointed resident engineer for these works in 1876. After a personal inspection of the port in December, 1876, and owing to the enormous sand-travel and absence of any constant currents revealed by the investigations of the author, , irir
John Coode recommended that a breakwater pier, nearly parallel to the shore, should be constructed at a distance out of about a
a fully-equipped quay, and with whe jetties projecting from from it in a westerly direction, alongside which vessels of the largest class could discharge and load. . The breakwater was to be connected
with the shore by an open iron viaduct carrying two lines of railing wall, 2100 ft . long, and the raising of the land thus reclaimed the removal of the old breakwater to a depth of 3 ft . below
low-water spring tides-afterwards carried to 5 ft . over the shield and 7 ft . over the remainder; the extension of the jetty 200 ft . Baakens River. The inner works were designed to afford speed relief to the port, by removing the sandbanks which had been
formed, and setting back the line of the beach as near as requisite to its original position. Before embarking upon these large worls
 Coode ; and they reported their approval of the scheme in July,
1880 . As the general local opinion was stronoly in favour having a doek for the port, Sir John Coode modifiled his design as shown on page bear Fig. 7, providing a dock with jetties under
shelter of the breakwater. The estimated cost of the work is $\notin 1,170,950$; but up to the present time, the in-shore works alone
Retaining banlo or sea-wall.-The line of the retaining bank-
page 338, Fig. 7 -was designed with the view of causing the page 338, Fig. 7-was designed with the view of causing the
waves, which impinge upon it at an angle of between 60 deg. and $80 \mathrm{deg} .$, to scour away the sandspit formed by the old breakwater so as to admit of its removal by divers. A A ank a-page 338, Fig.
5 composed chiefly of large stone and concrete blocks varyig weight up to seven tons, was first carried forward at a level of 10 ftt. above low water spring tides, and was followed up by a second
bank, b, on the land side, which was always kept a little back from the banks, but some of the larger stones and blocks were placed by a crane. The lines of way were frequently displaced by the sea,
but the expenditure on their maintenance was much less than staging would have cost. Seas washing over the bank made the
rubble settle down, and formed a long slope the inside of well washed quarry chippings and grit, so admirably suited for concrete that the slope was kept fed with fine quarry materials for
the purpose. The material for concrete, thus collected contained sufficient grit to enable sand to be dispensed with lenths, within which blocks were formed in situ, in timber boxes lined with jute sacking. These blocks form a lower wall, or apron, 4ft. wide, and from 7 fitt. to
8ft. deep-Fig. 6 page 138. Blocks of 40 and 20 tons were
laid alternately filled up the grooves left in the ends of the 40 -ton blocks. thus making the wall a continuous mass. Large stones, clean and well-bedded, were incorporated in all large masses of concrete, for
the sake of economy the top of the apron failed to indicate any appreciable settlement. wo gangs, of eight Kafirs each, mixed and deposited 41 cubic yarrs of concrete per day when the moulds and stages were fixed
for them. After the completion of the apron, the rubble behind it was left to consolidate as long as possible before the crest wall was
commenced. This wall was founded in the rubble, 2 ft . below the surface of the apron, and was constructed in sections fft . long weighing nearly 18 tons, is keyed to the adjoining ones by vertical
dowels, so placed that any block is free to settle without disturbing the work; but though the work was completed more than five years ago and has been assailed by heary seas, , se settlement is visible.
The concreting was effected by two gangs of thirteen Kafirs each
and each gang mixed and deposited
and each gang mixed and deposited about $31 \frac{1}{2}$ cubic yards of con
crete per day. After the completion of the crest wall, it was
backed up with rubble, and a line of rails was laid on which a 7 -ton steam cranc travelied, which The and thimmed eventually assumed a slope of about 4 to
 lower wall was due to its being tide work, and requiring extra
precautions against the sea during construction. The total cost of the retaining bank, including the raising of the 16 a acres of re-
claimed land, amounted to $\pm 64,514$; and its construction oceupied about three and a-half years, having been commenced in May,
187, and carried on, under the author's supervision, simultaneously Remoral of the ofd brecakzater: - The removal of the breakwater opening, extending 138ft. inland from the shield, had been made. opening, extending 10str. inland from the ssield, had been made.
In 1876, the rubble and piles had been partially removed along a length of 500 ft . altogether- 582 piles and a large quantity of sheeting having been drawn out by hydraulic presses and levers, and
169 piles sawn off under water by divers. The drawing of the piles was very laborious, as they were only roughly squared, and they
were held so tight by the angular rubble that the 1 13in chain cable attached to them was often broken. The removal also of the
rubble below low water prior to the construction of the retaining rubble below low water, prior to the construction of the retaining
bank, was rendered very difficult by the deposit of sand, which could be only part ailly anrested by screens of sheet piling with shield weighed from six to seven tons, a steam crane was procured however, werere so mum. eatten by then tereredos that they were quite
incapable of carrying this crane, which was a heavy machine. Accordingly fresh piles were driven into the rubble alongside the
old ones, but could only penetrate about 5 ft. or 6 6ft. into the mound. The staging thus formed was therefore not so rigid as
could have been wished, so a short length of it was specially braced and strengthened, and the crane was lashed on it when not at
work, in preference to bringing it back along the whole length of the breakwater, till its work on the shield was completed The rubble along the remaining portion of the breakwater, being
smaller, was removed by hand cranes. The rubble was only removed down to 5 5ft. below low cwater spring-tides in the shield
and 7 ft. in the straight breakwater, as at this depth it forms a reef, on which heavy seas break, and in a measure protects the landing cartridge, placed in a 2 in. hole bored in the the the the lowered rubble, and fired by electricity. Double-headed 80 lb . rails, which tied many of the piles together, being attached to them by lin. bolts, were detached by two dynamite cartridges, weigh-
ing together $4: 8$ oz. The removal of the rubble was liable to be stopped by the accumulation of sand during fine weather and offshore winds; whereas rough weather, which stopped the diving
work, drove the sand away. The best time for work was after rough weather from the south-east, or after a strong westerly
swell. As much of the rubble as possible was removed from the shield under shelter of the parapet, which was then taken away in turn kept together the stones. The stone was removed first; and the timberwork was then cut away as quickly as possible, as it was
liable to break adrift and injure the staging. When the shield had been sufticiently lowered for the sea to washiover it, the waves heaped up the rubble against the landward row of piles, and
formed a bank, about 70 ft . wipe, on the landward side of the structure. This inner row of piles was left to the last, to hinder
the rubble being driven in-shore; and the removal of the rubble, thus arrested, was facilitated by a considerable portion of it being raised by the waves above low water. The bank of rubble, land
wards of the shield, was mostly removed by small bags and spoons guided by divers. The total cost of removing the breakwater was $£ 38,500$, or about $£ 2618 \mathrm{~s}$. 6 d . per lineal foot removed, including 350ft. landwards of the retaining wall. Its construction cost
E122, 438. The suceess which has attended the indicated by a comparison of the state of the port in 1876 and in ndicated by a comparison of the state of the port in 1876 and in
188-page 338, Figs. 1 and 7 -from which it will be seen that there are now two fathoms of water, where previously to the operations above deseribed there was a bank of sand dry at low
tide. tide. Brid
lines of railway connects the works south of the Baakens river with the Midland system of railways. It crosses the river obliquely, with three spans of 30 ft , and rests upon cylind rical columns, 2 Lft ft.
in diameter, founded upon concrete bases, and concrete abutments Corrugated sheet-iron, No. 24 b.w.g. in thickness, formed the dams framing, and weighted with rails so that the dam sink into the ber and gravel as the excavation proceeded inside. The dams for the piers were about 42 ft . long, 6 ft . wide, and 8 ft . high ; and they were perfectly watertight. The author thinks that this, as he
believes, novel use of corrugated iron will be found satisfactory and economical where, as in the present instance, clay is expensive approaches, cost \& \& 4i97. . The principal other works recently
apt
execute executed at Port Eilizatath, under the author's supervision, com-
prised the removal of timber jetty, 465 ft. long and 6 oft. wide, and prised the removal of a timber jetty, 465 ft . long and 60 ft . wide, and
the construction of two wrought tiron jetties, 900 ft . and 840 ft . long respectively, at a cost of about $£ 118,000$, including equipment with sort, whiche, previously (had been. almost entirely conducted on the
por beach by means of surf-boats.

South Kexsincton Museun.-Visitors during the week ending Aroril 10 a.m. to 10 p.m.: Museum, 10,747 ; mercantile marine,
from Indian section and other collections, 3646. On Wednesday,
Thursday, and Friday, admission 6d., from $10 \mathrm{a} . \mathrm{m}$. to 6 p.m. Museum, 1115 ; mercantile marine, Indian section, and other collections, 243. Total, 15,751. Average of corresponding week
in former years, 16,625. Total from the opening of the Museum,
$25,559,901$.

A meeting of the North of England Institute of Mining and Mechanical Engineers was held at Neweastle on Saturday last read a paper upon "An Improved Electric Safety Lamp, with
Schanschieft's Primary Liquid Single Battery." This battery makes use of a salt of mercury. The advantages claimed for the battery, which is of simple construction, are, that the
electric motor force is ligh and perfectly constant, that the internal resistance is very small, that it gives a perfectly
steady current, and that it is cheap and durable. Three steady current, and that
lamps of different sizes were exisited. The smallest gives a
light equal to two candles for eight hours, and the larvest light equal to four or five candles, for a similar length of time.
The cost of the smallest is 17 s . 6 d . and of the largest $£ 1 \mathrm{ss}$; and the cost of maintenance from 1d. to $1 \frac{1}{2}$ d. per shift. Mr. T. O , Robson gan short description of a new sprayer for laying dust
in mines now in use in the Redheugh Colliery. It consists of an ordinary water tub on wheels, capable of travelling along the
wagon ways. From the tub a tube projects through a stuffing.
box, having at its outer end a bo box, having at its outer end a hollow perforated spherical end.
Over the sphere is fitted another one also perforated and fitted Over the sphere is fitted another one also perforated, and fitted
with a circular brush. The tube, external sphere, and brush are made to rotate by means of an endless chain and gearing connected with one of the axles of tub, and a stop valve regulates the supply
of water. With this apparatus traveling at a speed of about four miles an hour, 100 gallons of water have been found sufficient to
lay the dust in 1700 yards of wagon way, or, say, over a super-
ficinl
TRAVELLING CRANE—PARIS, LYONS, ANDMEDITERRANEANRAILWAY WORKS, OULIINS

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

PARIS.-Madame Boyveav, Rue de la Banque.

BERLIN.-Asher and Co., 5, Unter den Linden.
LeIPSIC.-A. Twietmeyer, Bookseller:
LEIPSIG.-A. Twietmeybr, Bookseller:
NEW York.- The Wilimer and Rogers News Company,
31 Beekman-street.

CONTENTS.

The Exainerr, April 29th, 1887.

Miscellanea,
New Hammei
(IIlustrated.)
 Schneider v. Sheffield-The Royal Agricultural Society's Engine
Trials-Professors and Students-Engine-drivers' Eyesight Harbour
Fredect Travelliñg C̈rane. (̈llustrated.)
 Our Austramia
Iterature ..

 HAMPPTON, AND OTHER
NOTES FROM LANCASHIRE Notes from lancishire
Notes from Shefrield
Notes from the North

 New Companies The Patent Journal. Trips
Aragraphs-Institution of Civil Engineers, 328 -Junior Engineering
Society, 328 -South Kensington Nuseum

TO CORRESPONDENTS.

Registered Telegraphic Address ", ENGINEER NEWSPAPER,

 * All letters intended for insertion in The Enginere, or con-taining questions, must be accompanied by the name and address taining questions, must be accompanied by the name and address
of the writer, not necessarily for publication, but as a proof of communications.

* We cannot undertake to return drawings or manuscripts; we must therefore request correspondents to keep copies.
** In order to avoid trouble and confusion, we find it necessary to public, and intended for insertion in this column, must, in all cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1 d. postage stamp, in order that answers received by us may be forvarded to their destination. No notice will be taken of communications which do not comply with these instructions.

H. C. H.- We regret that we are unable to supply

of the advertisement to vohich you refer: D.--The ratio of the povere to the weight, in systems of pulley work where
one end of eech cord is made fast above, is found by dividing the weiopht by
2 as many times as there are pulleyy. Thus, let the number of pulleys be
nive and the weight 1000 lb. then the 2 as many times as there are pulleys, Thus,
tive and the weight 1000 llo. then the porer ? $\frac{1000}{2} \quad \frac{500}{2} \quad \frac{250}{2} \quad \frac{125}{2} \quad \frac{62 \cdot 5}{2}=31 \cdot 25 \mathrm{lb}$

 nat vill have to be provided for. Add this to the volume of serape perr
second in catic feet, anu you then have the total volume of liguid to be dealt
cith. Next assume any size of searer tentatively

$=0.92 \sqrt{2 f h y}$

 3.141 square feet in this case, and if this, the product, is found to be
more or less than the total volume of rainfall and sexage to te dealt exith, a
maller or larger size of secerer must be assumed and the calculation repeated smaller or larger size of sexcer must be assumed and the calculation repeated.
The formular applies to an egg-shoped or any other form of sever. May re
add that if you weere qualifeed by education for discharging the professional add that if you vere qualifited by education for discharging the professional
duties of the post you hold, you would not be conpelled to apply to to for
information of this kind. We fear that corporations only too often make
appointwients for seasen. information of this kind. We fear that corporations only too often make
appointtients for reasons with vehich profesional fitness has litte to do,
and that really competent candidates are chus placed at a disadvantage.

MODERN FLOUR MILL MACHINERY,
SIR,-In your issue of the 22nd inst., under. the heading "Modern
Flour Mill Machinery," you make reference to the roller mill started by Mr. J. A. A. Buchholz for us as being in ine the year 18199. As a matter of
fact, his mill was statred in the midde of 1888.
Bilston Flour Mill, near Bilstom Aprow AND Sons. Bilston Flour Mill, near Bilston, April 27 th.
manganese and manganese ores.
Srr,-Being interested in the ferro-manganese trade of Great Britain,
I should like to ask the following questions:- (1) What approximate quantity of ferro-manganese containing 60 and 80 per cent. metal mangate
respectively is consumed annually in Great Britain? (2) Can you give
the proportionate parts of all the minerals respectively is consumed annually in Great Britain? (2) Can you give
the proporionate parts of all the minerals used to produce ferro-manga,
nese of 60 and so per cent.? (3) Is it possible to produce ferro-manganese nese of 60 and 80 per cent.? (3) Is it possible to produce ferro-manganese
from Caucasian manganese ore independently of other manganese ores?
The former, as you are aware, contains 85 per cent. peroxide or 55 per Ment. metallic mangan, 12 pere, contains 85 per cent. peroxide, or 55 per
ailica, and -20 per cent. phosphorus,
MANGAREANESE.
April listh.

ADVERTISEMENTS.

** The charge for Advertisements of four lines and under is three shillings, charged one shilling. The line averages seven words. When an advertise-
ment measures an inch or more the charge is ten shillings per inch. All
single advertisements from the country must be accompanied by a Post-afice ment measures an inch or more the charge is ten shillings per inch. All
single advertisements from the country must te accompanied by a Post-ofice
order in payment. Alternate advertisements vill be inserted voith all practzcal regularity, but regularity cannot be guaranteed in any such case. Advertisements cannot be inserted unless Delivered before Six
o'clock on Thursday Evenlng in each week. Letters relating to Advertisements and the Publishnng Department of the
paper are to be addressed to the Publisher, Mr. George Leopold Riche. all
other lettess to be addressed to the Editor of THE ENGINEER, 163 , Strand.

MEETINGS NEXT WEER

 meeting. Papers to be further discussed, :- "Water Supply from Wells,
in the London Basin, at Bushey (Herts, in Leicestershire, and at South.
ampton, by Messrs, Grover, Fox, Stooke, and Matthews respectively SocIETY or Evornerrs. - Monday, May 2nd, at the Westminster Town
Hall: Ordinary meeting. Paper to be read:- "Refrigerating Machinery Hall: Ordinary, meeting. Paper to be read: ". Refrigerating Machinery
on Board Ship," by. B. Lightfoot, M. Inst. .E. of which the following
is a synopsis: ETrliest reftigerating machines for dead is a synopsis:-Earliest refrigerating machines for dead meat cargoes
Machines based on compression and then expansion of air-Laws of
intrinsic energy of gases -Isothermic and adiabatic compression and intrinsic energy of gases-Isothermic and adiabatic compression and
expansion- Practical applications by Siemens, Kirk, Windhasen and
Nehrlich, Giffard, Bell-Coleman, Haslam, Ellis-The author's machines illustrated and described-Steamship Fifeshire, carrying about 30,000 Sociery of Arts, John-street, Adelphi, London, W.C. - Monday,
May 2nd, at 8 p.m, Cantor Lectures: "The Chemistry of Substances
taking part in Putrefaction and Antisepsis," by J. M. Thomson, F.C.S. taking part in Putrefaction and Antisepsis," by J. M. Thomson, F.C.S.
Lecture I.-General division of the subject- Descrintion of terms-Con-
ditions affecting fermentation and putrefaction-General descrintionthe more common forms of fermentation, e.g., alcoholic, lactic, acetic,
butyric, and ammoniacal. Wednesday, May 4th, at 8 p.m. Ordinary
meeting. "Agricultural Education," by J. C. Morton; the Right Hon butyric, and ammoniacal. Wednesday, May 4th, at 8 p.m.: Ordinary
meeting. Agricultural Education, by J. C. Morton; the Right Hon.
Sir Thomas Dyke Acland, Bart., will preside.
ChEmICAL Societr.-Thursday, May 5th, at 8 p.m. Papers to be read CHEMICAL SociETY.-Thursday, May 5 th, at 8 p.m., Papers to be read :
"A Contribution to the Study of Well Waters," by R. Warington
"The "A Contribution to the study of Well Waters," by R. Warington;
"The Distribution of Lead in the Brains of Two Lead Factory Operatives
Dying suddenly " by A. Wynler Blyth; "Crystals in Basic Converter Slag, by J. E. Stead and C. H. Ridsdale.
Geologists' Association.- Friday, May 6th, at University College,
Gower-street, W.C., at \& p.m. Paper to be read. . "On the Unmaking
of Flints," by Professor J. W. Judd, F.R.S., Pres. G.S., \&c. North-East Coast Instritution of Enalineers And Shipbuilders.-
Wednesday, May 4th, at 8 p.m., at Newcastle-on-Tyne: Business meeting.
Adjourned discussion on "Triple Expansion v. Compound Engines from Wednesday, May 4th, at 8 p.m., at Neweastle-on-Tyne: Business meeting
Adjourned discussion on "Triple Expansion v. Compound Engines from
Shipowner's Point of View."

DEATH.

On April 1st, at Ceara, Brazil, Henry Edmund Punchard, student of Staff on the Ceara Harbour Works, third son of Mr. William H. Punchard,
C.E., London, aged twenty-five years.

THE ENGINEER.

APRIL 29, 1887

Mr. F. W. WEBB ON RAILWAY BRAKES
At the annual meeting of the delegates representing Mutual Insurance London and North-Western Railway Mutual Insurance Society, which recently took place at
Crewe, Mr. Webb, the locomotive superintendent addressed the meeting, and took the opportunity of alluding to the question of brakes. Mr. Webb is repe have spoken as follows.- Then as to brakes mechanical brakes, good as they were alther upon the thing, like human good tha had had fewer failures lately then suggested that to satisfy the requirement of the Board of Trade they should ard posed they would do so. He therefore asked them, while confusion by the two systems. At the so led into automatic brake would not have prevented such an an dent as they had at Carlisle last week, when an acciordinarily low temperature had caused a complete block of ice in the vacuum pipe. It did not matter what the were quite officials stated. They, as railway men, pany, and who could not possibly know all the little difficulties which they had to contend with, to devise and the Board of for safety. Some of the papers North-Western Railway Company were most backward in the matter of the brakes, but on their line the first continuous brake was adopted many years ago and placed on the Irish mail." Mr. Alderman Whale, one of Mr. brake, and hoped the men would take Mr. Webb's words to heart, and "always endeavour during the transition state of the brake to use their utmost efforts to prevent Rugby, and Stafford-why omit Carlisle? which should be treated as terminal stations, and they should always have a little margin left to pull up in case anything might fail in the brake." There can be no doubt from the fore-
going that Mr. Webb and his officers view the change to an automatic brake with no great enthusiasm, and that this the most recent experiment has as little of the elements of permanency about it as those previously
made. The Carlisle incident alluded to by Mr. Webb, and which was near proving so disastrous, was no doubt the failures of every system of brat such have been pany, that it is not unnatural that confidence should be entirely shaken in their own judgment. We have no doubt whatever that, had the brake at Carlisle as stated by Mr. Webb. In our analysis of the last as stated by Mr. Webb. In our analysis of the last
issued returns-see Engineer of October 29th, 1886-we drew particular attention to the liability of
the vacuum brake to be affected by frost and water, there being no less than forty-five such cases reported, and we showed that those against the automatic vacuum brake alone gave rise to no less than 243 minutes' delay. Considering the history of the brake question on the London and North-Western Railway, Mr. Webb's cut at the Board of Trade was ratker out of place. The Board of Trade has, at all events, been perfectly con-
sistent throughout; whereas the North-Western, having sistent throughout; whereas the North-W estern, having
made many changes, would not appear to have been so made many changes, would not appear to have been so
well up in the necessary requirements as Mr. Webb well up in the necessary requirements as Mr. Webb the Carlisle incident does take place, this company will the Carlisle incident does take place, this company will
dub it a "Board of Trade accident," thereby following the example of those railway wiseacres who knew their f to object to the introduction of the interlocking of points and signals and the block system, and who at first tried to saddle the Board of Trade with the consequences of their own blunders in
operating. We need hardly point out that it requires operating. We need hardly point out that it requires
no special traising on railways to decide upon the principles with which it is desirable a brake should comply, and as to whether it is worth saving life-if possiblewhenever it is in danger; or only now and then. Mr. Webb boasts, in the same address, of having been connected with the London and North-Western Railway for thirty-six years; but it is hard to believe that he is even uthority on the brake question, various syorth following. After assures us will, under conditions which there is no werd ing a gainst prove as useless as the brake the company is now discarding; at the same time asserting, somewh is inconsistently, that they " as railway men, are much better judges of what is desirable than the Board of Trade or anyone outside the company" As outsiders we at all events, object to such inadequate measures for our protection, when greater safety can be procured.
It is not the action of the Board of Trade, however, but rather its inaction in this matter of which the public have to complain. Had the necessary powers been granted it some years ago, many lives and a vast deal of able to expect from the foregoing extracts that the sacrifice is still unfinished. We may mention, in connection with this subject, that the Railway Regulation Bill of Mr. Channing is again to be brought forward, and that it proposes to invest the Board of Trade with the power to railway men in Manchdations; and at a mass meeting of approving the Bill, and authorising the chairman to sign a petition to be sent to Parliament in its favour, was unanimously passed. Mr. Edward Harford, general secretary of the Amalgamated Society, prominently referred to the question of continuous brakes, and his remarks are worth repeating :- "The next point of the Bill had reference to continuous brakes. It was thought that there should be efficient continuous brakes. The ut anything being done, but if the Bill became law, he was in hopes that a speedy end would be put to the present unsatisfactorystate of thequestion, and that the various ailway companies would be forced to adopt a continuous brake which fulfilled all the Board of Tradeconditions. These conditions were clearly set forth in a circular issued to the ompanies nearly ten years ago, and there should be now fulfilled the conditions which the Board of Trade had aid down; for if that department of the Government was competent to decide the principles involved in their construction, surcly they ought to be able to state definitely whether they do do not fulfil such condiis clear from the expression used at the this point is clear from the expression used at the head of the which 'appear to comply with the conditions specified in Aus circular of the Board of Trade, and dated 30th August, 1877.' Under these circumstances, and finally to settle the point, the society had asked the Government to appoint a committee of experts to examine the merits of and report thereon, but that matter, like many others, was still under consideration. The experts whom he would recommend were men who worked the different to decide brakes daily, and were therefore most competent men a question of this kimd. There were scores of were disputing with each other on the relative merits of their inventions, could settle the matter without bias or prejudice.'
The suggestion that practical enginemensystems in their hands-should be allowed of the variou. parative experiments and reb the to make com cood one, but quite in harmory with Mr. Webb' is a very It is abundantly clear that the railway men engaged in the manipulation of the brakes are disgusted at being ignored so long, and many very naturally feel that the fellows should be shared by themselves some of thei experiments hithert the main objec has ben tain how soon a train could be stopped. We are well aware of the importance of powerful and instantaneous action, and that had this qualification been acknowledged as the test, the question would have been settled long since by the adoption of the Westinghouse brake ; but al engine-driver views the matter from several standpoints hich concern him all day long, and not only in emer teaming qualities of his engine-in the economy of the and water-in shunting operations being facilitated and not obstructed; and that his complete control on train-that is, his power of checking and releasing promptly, being independent of its length. It is wellare brakes which, while they work well enough on short trains, and when all is in the best
maintained, are a source of the greatest worry and delay when the trains are long, or the joints not tight, and steam pressure has fallen, as it does very frequently. If
such trials could be arranged, all these points would no such trials could be arranged, all these points would no
doubt receive careful attention from the practical men most concerned, and some valuable and interesting infor
mation would be the result. Perhaps Mr. Webb would mation would be the result. Perhaps Mr. Webb would
use his influence to promote the wishes of the railway servants in this respect, for there can ex little doubt, to ance "knowt as anybody outside the company," and that
they little difficulties with which they bave to contend" better than many of their officers

the working of the explosives act

The Eleventh Annual Report of her Majesty's Inspectors of Explosives, recently issued, refers to a very different the Explosives Act of 1875 . The trade in these potent compounds has enormously increased, and, bor for the menace the public. But the Legislature has interposed to such good purpose that what wo dind hav been a growing peril is now a well-regulated industry,
concerning which much less apprehension need exist than that which would have been justifiable a dozen years ago The law then in operation was absurdly insufficient Among other defects the Act of Parliament limited the quantity of gunpowder to the carried in a van or barge go in a line or which might be in a train. Colone
Majendie stated in evidence before the Select Committe on Explosive Substances, in 1874 , that he knew on one
occasion, on a leading railway, as much as 25 tons of powder sent in one train, being nearly half as much as once reported that fifteen vehicles, conveying in the agcre gate about 20 tons of powder, were detained for some time in one of the streets near Blackwall Stairs, waiting fo
the arrival of the barge to take the cargo. The proceed ing was entirely legal, and there was nothing uncommon about it. It was "the usual practice." It happened once was smashed open on the stones. The havoc which would have ensued had twenty tons of powder exploded in a crowded part of London may be inferred from the
widespread mischief caused by the explosion of five tons of powder on Board the "Tilbury" barge in the Regent's Canal. This disaster occurred in time to emphasise the three months before. It was the custom to stow guupowder on board ship in the midst of a niscellaneous gunpowder as freely as barrels of beer or casks of butter, and it was officially reported that this explosive agen
was carried with no more care than any other article o commerce. The time had arrived when this mode conducting a perilous traffic could no longer be endured;
and when we look at the variety and power of the more and when we look at the variety and power of the more modern class of explosives, there is evident ground for
thankfulness that the law received amendment and extension when it did. Yet so vast is the field that has
to be covered, that it is only by degrees the action of the law can be made effective in all directions. Much depend on the local authorities, who require in most instances to
be looked after by the Government inspectors in order that, in the first place, they may understand their duties and, in the next place, be quickened in the discharge of
their responsibilities. But year by year things are growing better, thoughthe inspectors are stillobliged to declare that the weak point in the administration of the Act continues
to be its careless administration by the local autho rities in some districts. Excepting the factories and magazines, which are under the supervision of the Government
inspectors, together with places where explosive material inspectors, together with places where explosive material
is kept to a limited amount for private use, all the places of storage are under the control of the local authorities Hence it comes to pass that unless a vigilant and effectiv system of inspection is maintained by the local officers
the Act is "practically inoperative" in respect to the greater number of places of storage for explosives through out the country. Still there are many districts in which
the local authorities are fulfilling their duty, enablin the local authorities are fulfilling their duty, enabling
Colonel Majendie and his colleagues to report that the Colonel Majendie and his colleagues to report that the
general working of the Act is, on the whole, very satisfac gener
tory.
Inc

Increasing vigilance on the part of the local authoritie is materially diminishing the risks formerly connected
with the conveyance of explosives by road. It is admitted to be possible that many offences against the salutary provisions of lye Act are committed and not detected, the of the local authority discovered two cases of the illegal conveyance of dynamite. In one instance a carrier "conmuch as 200 lb . of dynamite, and finally left the consignment unguarded in the yard of his own hose. In the carrier on horseback, and ultimately deposited on the this particular by the Metropolitan Board of Works, and the knowledge of the fact appears to preclude any attempt care of themselves in regard to this matter. The Railway Clauses Consolidation Act gives them power to refuse the carriage of goods which they consider dangerous. The dynamite and similar explosives has been the occasion without effect. The prohibitory policy adopted by the ance of explosives, thereby producing direct public
peril. The companies, on the other hand, are secure against pecuniary damage, since if an explosion takes place, they can plead that it arose from an infringe-
ment of their rules. That the practice of carrying
dynamite by train, in hand-bags and portmanteaus, actually exists, may almost be called an "open secret."
We know that it has been done in the past, and we are We know that it has been done in the past, and we are
not aware that there is any change, however reprehensible the practice may be. Should any disastrous results the practice may be. Should any disastrous results accrue, the guilty parties would probably be sacrificed to
their own folly; but others might suffer whose consent to hare the risk was never asked, and most likely would not have been obtained. For the present there is no how safely to lament, which is perhaps sufficient to show ives, legally the companies might carry all kinds of explosind conveyed in suitable vehicles. As it is, there is reason for congratulation that no accident from the conreyance of explosives occurred during the past year. has been otherwise with respect to manwach by, alrough tion which has taken place in the number of fatalities connected with the manufacture of explosives as conucted under the statute. During the eight year annually, while the actual loss in 1885 was five only Last year the sacrifice of life in manufacture fell still lower, only one death being thus recorded. In the four years immediately preceding the passing of the Act, the verage number of deaths in the manufacture of exploves was 37 per annum. Th per annum in the English and Welsh factories alon whatever of inspection existed, was 43. In considering these figures, we are called upon to note the fact that ne number of licensed factories has risen from 5 of 1875, there is the Explosive Substances Act of 883, relative to the manufacture, possession, or use of
explosives for malicious or unlawful purposes. In thes explosives for maticious or unlawfur purposes. In these
days of dynamite alarm, it is reassuring to learn that the Government Inspectors during the past year have endearoured, in conjunction with the leading manufacturer nd dealers in high explosives, to effect an arrangemen hereby the difficulties in the way of the acquisition of urnexplosives by evil-disposed persons for imprope bvious reasons, are not disclosed, but it is hoped that the arrangement will prove effectual for the accomplishnent of the purpose in view. Four new explosives have been submitted for examination during the year. One of these, named Securit, has been approved, but the others, named Kinetite, Forcite and Vril, have been rejected. the defect in each case. This report gives us no account of the new French explosive reserved for war purposesnno et invented. Its present location is in Belgium. Perhaps no more will be heard of it, or it may prove too into the United Kingdom during the year is officially reported to have been again very large, but differing nly in a slight degree from that of 1885 .
The general improvement in factories under the Explosives Act, reported a year ago, is said to be fully ago. Similar commendation is fforded in the case of magazines. In respect to store continued improvement is reported, and some progress is observed in respect to registered premises. The local their next annual report the Government inspectors will bil Cradley Heath. By licence of the local authorities, 200 lb of powder were stored in a building only six yards distan rom a dwelling-house, in a populous neighbourhood, and adjoining a public way. The place was blown up, tw children were killed, and four others shockingly injured During 1886 there was an increase in the number and fatality of the accidents connected with the use of explosives, with the manufacture, keeping, and conveyance of thes substances. Thus the excess occurred where the law had no application. Altogether the deaths were forty in number, nd of these twenty-one were due to gunpowder. The os impordiately the result of an explosion but was dua to the inhalation of the poisonous gases given off by fired The remarkable and disastrous occurrence the Crarae Quarry, Loch Fyne, last September, whe han persons lost will be fresh in the rollection f reve Calonel Majendie in a lous experiene is only aware of two similar accidents. One of these occurred in the Forest of Dean in 1872, when four lives were lost. The deaths from dynamite last year wer fifteen. The improper thawing of nitro-gly cerine prethe general list of accidents we meet with some which seen almost whimsical in their origin, though sad enough in their results. In one instance two men hunting rat The pl unknown store of gunpowder killed, and one o heir dogs. In another case, a man, while quarrelling with his wife upset some detonators into the fire, causin a explosion, by which the woman was seriously injured Fires and explosions connected with petroleum are menmised legislationport, and it is to be hoped that the proexperience gained by Colonel Majendie in his recen visit to America, will effect further protection to the public, while yielding due liberty to trade. Concerning observing that it is evidently as good a piece of legislation as could be reasonably expected for such a purpose, and the duties of the Government inspectors are carried out with zeal and ability. Colonel Majendie is the chief Dr. Dupré, F.R.S., is the chemical adviser of the depart-
ment. In a report by Dr. Dupré, mention is made of the
fact that 1886 was happily free from outrages perpetrated by means of explosive

the education of begineprs

A paper on "The Education of Engineers" was
ecently read by Mr. Henry Dyer, C.E., M.A., before the recently read by Mr. Henry Dyer, C.E., M.A., before the
Institution of Engineers and Shipbuilders in Scotland. Institution of Engineers and Shipbuilders in Scotland.
The subject is of very great importance. This is admitted on all sides, but we use the words just now in a limited sense. We set on one side the influence on the future prosperity of this country which the training of the rising
generation of engineers may have. We do not consider the value of success in training to those who make teaching a profession. We restrict ourselves to the parent and the son. The importance to both of the training which The latter receives dwarfs all national considerations. The son is not likely to think of them. To the man the to educated, the ystenciderable interest To the may be a subject no interest whatever. The result is that those who write about education being, generally speaking, free from family cares; or too prudent to bring their sons up as engineers, treat the whole matter in what is virtually an unpractical way. They may do much harm by limiting facilities for teaching, and we doubt if they do any real good. They are not in touch with those whom they fan would infuence; and what they have to say does not therefore produce much beneficial effect. Much that it contains was sensible, a good deal was repeMuch that it contains was sensible, a good deal was repe-
tition of an old story. The discussion which followed it was of more value, because hard-headed men spoke, and spoke in some cases very much to the point. We wish now to try and put the question in a point of view too and a good deal of clap-trap, to consider what is really the object which parents wish to attain when they make engineers of their sons.
The sole purpose which any parent or guardian has in view when he makes his son an engineer is to enable
him to earn his living. In other words, he wants to give the young man such a training that he can, when trained, go and earn or make money. This is in nine hundred and ninety-nine cases out of a thousand the sole purpose actuating the parent or guardian. We need not concern ourselves with the exception. Now that profes-
sional training which will give the best pecuniary return is the best training. It is not impossible that some of our readers will hold up their hands and exclaim that this is dreadful doctrime, that the true object of education is to open the mind, develope the faculties, \&c. We need not go over the old story. Whether the doctrine be that if or not, it is true. The hard stubborn fact is a young man, when he has fimished his training imself, his tr, cammot earn money enough to stpport is no matter how much his mind has been developed. In the present day everyone unpossessed of independent property
lives by selling wares of some kind. The wares which the young engineer has to sell are his powers of being useful to his employer. No matter how admirable his education may have been, unless it has provided him with wares to sell, he must starve or live on his parents on
friends. Now the tendency of the present methods and means of education is to turn out trained young men whe have nothing to sell that the world wants to buy. Mr Hyslop, in the course of the discussion on Mr. Dyer's paper put the truth very forcibly. "That the present condition, he said, "of university education for engineers was anoma lous must be patent mongst practical engineers, civil or meehanith that miversity which it was written. Many sad cases of disappointment had occurred through young men being led to place too great faith in purcy quently happened that a young man twenty or twenty obtain the co, ate found on presenting himself at an ond proud, was practically worthless; that he himself was to and that he was told if he wisher to be an engineer, must go and serve his apprenticeship. Such a case came ander his own notice very recently, and similar case present." "But," we hear it expeid yery often, "this high type of university education must be given, in order that we may not fall short of the foreigner. Without ithe will beat us on our own ground." Let us test this argument counts, and see what it really comes to. There is in this country at present a very considerable number of
Germans, all of whom have received a high-class training of its kind in their own country, where they hold here? With few exceptions, they are employed in drawing-offices, and they contentedly earn salaries on which an English draughtsman finds it hard to keep body and soul together. They are popular here because they are quiet, orderly, accurate, temperate, and very, very cheap. The superior education which these poor Germans Why should it bear more for the English student? There is no answer to this question save one. There is no reason. The truth is that at a university a young man spends the best years of his life learning what is of no possible use to him afterwards, while he leaves unleauble. Here is a cessen which would mared not long since within our own knowledge. A young man received à university training, and he acquitted himself well. He obtained by interest, which he was not without, one or mechanical engineer. At last the head of a firm, doing a
education, and the apparent ability of the man himself, determined to give him a chance. He appointed him manager of a department in his works, and he gave him a good salary. For six months he left him to himself; at
the end of that time he went into accounts, and found the end of that time he went into accounts, and found
that the cost of the department, in which much work was that the cost of the department, in which much work was
done by the piece, had augmented by nearly 20 per cent., done by the piece, had augmented by nearly 20 per cent.,
with a proportionate falling off in output. He had an nterview with the young manager; asked for explana tions, and gave some. The result was that after expressng his disappointment, he gave him another chance for three months. At the end of that time things instead of being better were rather worse, and the young man had to admit, with tears in his eyes, that he had undertaken duties of which he knew nothing. "It is,", he said, "all so
lifferent from what orie learns at college," The end was lifferent from what one learns at college." The end was that he gave up engineering altogether and emigrated.
We cite this case to illustrate the proposition we have We cite this case to illustrate the proposition we have
often put before our readers, namely, that the university often put before our readers, namely, that the university
or technical school teaches much which is not wanted, and or technical school teaches much which
leaves untaught much that is wanted.
The reason for this is not far toseek. The men who teach with few exceptions, never having carried on business themmuch that an engineer ought to know, but of what it is an ngineer ought to know. The business of the mechani al engineer is, as we have said, to make money; and hose no carry we for fttle of the if onatio which they sped en mor ittle of the information which erey spend so many years
in imparting is ever used or ever can be used in the shops of a mechanical engineer. Their notions on the subject are altogether too magnificent. Mechanical engineers ought to be flattered by the assumption that they must have an adequate knowledge of the ligher mathematics, more than a smattering of chemistry, a thorough training in physies, and so on. All these things are admirable in their way, but they will not help a young fellow to make money as a mechanical engineer unless they are backed up and supplemented by information of a very different character. Three to five years may now be spent in obtaining university training, during which a great deal is, as we engineer to learn, and a great deal is left entirely untaught which he ought to have at his finger ends. This, we shall be told, implies that university education is too wide and too high. Another dreadful doctrine; dreadful, Let it not be supposed, however, that we deprecate all technical instruction, and advocate a return to the old system of apprenticeship and no training. Very far from it ole desire to see university and teckical which it i intended. It must be used to supplement shop training, not to supersede it. The weak point in university trainpprenticeship time which a pupil has at his disposal is limited, let us. say, to five years. Three of these may be spent in
college, certainly not more; two in the shops, with, in addition, a portion at least of the very long vacation which nost universities grant. Each year's training at the school or the college should be complete in itself, and adapted to the age and requirements of the pupil. No hard-andfast rule can be laid down as to the division of work. We are ourselves disposed to put it thus: When a young man
has money, so that he will, when "out of his time," be able to take a junior partnership, he should spend two years in college, two years in the shops, and wind up with one year of college training, because, owing to his position,
it is not probable that he will ever use his hands at the vice or the lathe. If, on the contrary, he is likely to find himself in such circtances that he will have to suppor himself somehow, then two years at college and three in the shops will be best, because a good workman always stands a live where the collegey as a fitter, erector, cc.., and may ive where the colloge trained In would starve. This is especially true of the colonies. In saying this we intend nothing more than to throw out a suggestion. Circumthat no hard-and-fast rule can be laid down for the latter Not only is the time to be spent in college or in the shops an open question, but the very nature of the training which the student is to have. For example, it is possible engineer's point of view, have little or nothing to do with engineering, and by passing an examination in these to get a scholarship, and so education for practically nothing, the subjects used to pass in never perhaps being touched again. The whole question has been invested with difficulties and perplexities which are entirely unnecessary If the heads of colleges would take counsel with some of the leading firms of mechanical engineers, it would be easy so to modify existing courses of instruction that dozen things in his head, would possess a sound and comprehensive training in a few of those subjects likely to be of real use to him in after life. "It is of more importance," once said an authority, "that an engineer Euclid, and to speak German will be better for him than familiarity with logarithms." It is quite possible for man to be an eminently successful engineer who has not had a college training. We never heard of a man who had nothing but a college training to rely on being a successful engineer.

our steamships.

The valuable official record issued by the Registrar-General of Shipping shows some indications that the decline in the
number and tonnage of steam ships belonging to the United number and connage of steam ships belonging to the United
Kingom is abo to be arrested. For seeral months the
statistics show that there has been a heavier loss than hat been replaced, but for the latest month for which the figure are available there was an increase. In March we added to
the register for the United King the register for the United Kingdom, either by building or by
purchase, 35 steamers, 3 of which were wood and the remainder
of iron or stèe. The wood vessels were of small tonnage- 73
net register in the total, and the other 32 were of 25,567 tons net register in the total, and the other 32 were of 25,567 tons;
so that the total additions of steam shipping to our register for so that the total additions of steam shipping to our register for
the month were to the extent of 25,640 net tons, On the other hand there were removed from the register 27 iron and steel steamers and 4 wooden built. The 27 vessels had an aggregate tonnage of 14,031 net, and the 4 had a tonnage of 67 net. Thus,
in a sentence, 5,640 tons were added and 14,031 tons were removed; that is as far as steamships are concerned, and it is evident that there has been a gain of over 11,000 tons. But there has been in the same time a loss in the sailing vessels.
There were 6337 tons of sailing ships added to the register in the month, but the remorals were to the amount of 21,760 tons, so that, balancing, 15,423 tons were removed from the merchant tleet of ships. Although the loss of ships was a little
more than that of the gain of steamers on the month nominally, but not in effect, as far as the United Kingdom is con sidered, there is also the colonial register to be remembered, and the figures as to this for the same period
show briefly a loss of nearly 2000 tons in sailing vessels, and a gain of over 2500 tons of steam tonnage. Taking all the items together, we find that there is a gain in steam tonnage of
about 14,000 tons, and a loss of over 17,000 tons in sailing about 14,000 tons, and a loss of over 17,000 tons in sailing
vessels. In exact figures, we added 36,128 tons to our fleets, including those in the colonies, and we removed therefrom 40,202 tons. Thus, when the efficiency of the steam tonnage is borue addition of effective tonnage. But a very large proportion of the tonnage added to the registers was in the shape of very small vessels--steamers for river and special uses. Out of the 32 iron and steel steamers, for instance, there were not fewer
than 11 which were of less than 70 tons; and it is also noticeable that several of these were built a few years ago, so that the facts would point to the registration of fishing or other craft
which had not been previously registered; and there are some what similar facts in relation to the wooden sailing vessel egistered. Out of 23 added to the list, there are 19 under 10 tons in the colonies, and out of 24 in the United Kingdom, 23
were under 85 tons, and many of these are old vessels now registered. It may, then, be looked on as a fact that although there is a comparatively large addition to the fleet, part of it is of vessels for special vessels lost, and part -orrrying vessels, it may be said that there is less building than needed to replace
lost vessels, and that the work now turned out at our shipbuild ing yards is generally large "liners" or vessels for river and allied uses.

water supply in the city.

The intention of the Commissioners of Sewers for the City to obtain water for some establishments in the City, and perhaps
for a water supply for sale, has some reason on its side, although the ultimate gain or the permanent value of the scheme is not perhaps likely to be great. The fact that many thousands of ny ses in the City are increasing very much in value may not be of business there is more than ene side to this question : but the fact that these houses are using less and less water, it it be fact, need not afford any reason for expectation that the water
companies should reduce the water rate. The company has to companies should reduce the water rate. The company has
bear the original cost, and cost of maintenance of apparatus and bear the original cost, and cost of maintenance of apparatus and
materials of supply, and it was on the expectation that the demand would grow that investors were originally found who would speculate in the works wherewith to supply thr
public with a commodity that they could only get with dificulty. If now the public find that their rents increase in value, they need not be very much surprised if they find that
he water companies try to share in the great improvement the water companies try to share in the great improvement. rate, when water supply costs the suppliers no more than hitherto, and hence the water company must admit that the Commis sioners, a very wealthy body, have good grounds for their inten-
tion to do as much as possible without the company's supply, by boring wells into the chalk to get water for their own use. of the water companies.

ocomotives for australia.

Ax order for forty-four locomotives for Australia is going
begging on the Continent. The English agents applied to Austrian works to build them, because the freight from Trieste to Australia would be cheaper than from England, which sounds
oddly, considering the frequent and rapid communication oday, considering the frequent and rapid commumiation
between England and Australia. The Austrian works, having nothing to do, would gladly have taken the order under different conditions, which were of the following exacting cha-
racter :- The builders were to find two sureties domiciled in Melbourne for the proper fulfilment of the contract, were to establish workshops there wherein to erect the engines on the arrival of the parts, and were to guarantee that the locomotives made a faultless trial trip of 1000 miles before the last payment took place. Setting aside the conditions, here is another of those regretable cases where, if the negotiation had succeeded,
English works would have been deprived of orders which English works would have been deprived of orders which un-
doubtedly should be given to them by all that is fair, considoubtedy should be the money to pay for these things originally comes, and now that has for the Londly interested in such like get them put upon a more equitable and mutual basis.

LITERATURE.

Elements of Geodosy, by T. Howard Gore, B.S., Professor of Mathematics at the Columbian University; sometime
Astronomer and Topographer V.S. Geological Survey; Acting Astronomer and Topographer V.S. Geological Survey; Acting
Assistant U.S. Coast and Geodetic Survey ; Associate des Preussischen Geodätischen Institutes. New York: John Wiley and Sons, Astor-place, 1886. London: Trübner and Co. This book, as stated in the preface, is designed to be insight into the subject dealt with from its pain a clea to be grateful that the discoveries and writings of many have been so condensed or elaborated as to make the study of geodesy pleasant. In this object we think the he instruments and tools they describe thoroughly, he presupposes a knowledge in his readers which does not exist; and his descriptions, while being perfectly clear to himself, are to those less used to handling these instruments of precision, as would be the case with begimners, difficulty is increased by the paucity of the diagrams and illustrations, and the fact that most of these, where they
do occur, are entirely without letters of reference. The remarks on the adjustment of instruments are not very
clear, nor is the description of the correction for runs put clear, nor is the description of the correction for runs put in its simplest form, and the formure cannot be so clearly followed in all cases as might easily have been the case.
We do not pretend to have examined all the formule, We do not pretend to have examined all the formule,
that would be a work of months-but this is the impression derived from the inspection of examples taken here and there through the book
The historic sketch is
The historic sketch is most interesting, showing as it does the advance from measurement by time-that is, by a day's march, or by the steps of a camel-to the use of
instruments, which in skilful and careful hands can be instruments, which in skilful and careful hands can be made to measure to 22 of an inch in a mile, these instruments also advancilo imitial accuracy in length, to steel bands, metal rods, glass There are, again, the progressive improvements in the There are, again, the progressive improvements in the
instruments of observation, from the sector of 5 ft . or greater radius to the use of the telescope with the sector; the theodolite with 3 ft . horizontal circle to the theodolite as at present used with 12 in . to 18 in . circle; and contempostrument wid the figuration of the earth and the corrections to be made to ensure accuracy
 circle in 1783, and the fact that this same theodolite is new, speaks volumes both for the care with which it has been handled and for the value of the workmanship.
In page 19 it is stated that Schwerd concluded from his measurement of the Speyer base that a short line most carefully measured would give equally good results a short line will be increased proportionally in the computed lengths of the long sides of the appended triangles from this it may be seen that all our errors are of an accumulative description." These remarks seem to contradict themselves, but such is not the intention of the not be as accur no reason why a shor base lers in the long base line may reasonably be expected to be proportional to those in the short one, and the development from the short base to a large system of triangulation should also be simply proportional, and contain no greater ever, from unit of length. Such developments may, how country, offer serious difficulties. Otherwise the short base offers the advantage that it can be repeatedly measured and brought to the highest degree of accuracy in the same time which would be taken up in measuring the longer base once.
All that is said about the necessity for care and accuracy in every detail of such work as is here described is descripte, and cannot be too strongly emphasised. The employed of the laying of the rods, the apparatu. the work, are most useful, as are also the tables for finding the required elevations for stations, the dimensions of towers, and the formule and factors at the end of the book.
there would have been interesting to the insular mind if measure been found in the table of probable errors of and Trishers -page 61-some mention of the Engish the results tobus, so as to be able to compare then 248 that the advantace of "the results from the combination of the American arcs is the preference it gives to Clarke's spheroid over that of Bessell.
The tables showing the manner in which the record of observations is kept are useful, and the whole book is of great interest; and it is a pity that, in our opinion, much of its usefulness is marred by the want of a suffi-
cient number of diagrams and illustrations already referred number of diagramis and illustrations already written in a mapner which is above the comprehension of those for whose use it is designed--namely, beginners and we trust that in a future edition these blemishes may be removed.
Laxton's Builder's Price Book for 1887. Originally compiled by
WiLLIAr Laxtov. Seventieth edition. London: Kelly and Whlians I
Co. 1887.
A book which has reached its threescore and ten yearly editions needs no commendation, but as there are perhaps
a few who do not know how much assistance may be gained from it in estimating, it may be mentioned that more than 72,000 prices are piven, and that these now include electrical and electric lighting apparatus.

TRAVELLING CRANE.
The Paris, Lyons, and Mediterranean Railway Company has cranes, as illustrated on page 334 , eapable of lifting $6,600 \mathrm{lb}$., and with a span of 8.8 m . The frame of the crane is formed with two girders of double T-iron, of $350 \mathrm{~mm} . \times 150 \mathrm{~mm} . \times 14 \mathrm{~mm}$., resting at their ends on transverse girder-frames of the same form, but of $160 \mathrm{~mm} . \times 120 \mathrm{~mm} . \times 10 \mathrm{~mm}$., and carrying between them
the wheels on which the crane runs. The windlass or crab is fixed, and a small carriage runs on rails on the cross girders, and carries the load, by means of a chain with links 15 mm ., or page 334, and passing over the pulleys P, and under the hoistingmoves the carriage on the wheels II through the medium of
hom
men me chain-wheel E, the ends of the chain being attached at SS , and passing round the pulleys H and T. The lifting gear is
worked by means of an endless chain on wheel J, the movement worked by means of an endless chain on wheel J, the movement
of the carriage by a similar chain on wheel E, and the move ment of the crane by a similar chain on wheel A. The brake as shown at Figs. 1,4, and 6 is spoken of by the Genie Civile, from which we take our engravings and facts, as of the Bourgougnon
type. It consists of a cone and toothed clutch combined, which form an automatic clutch, in that it is automatically thrown out of gear by the large inclined teeth when lifting, see
throws the cone into gear when a load is descending.
HARBOUR WORKS IN ALGOA BAY, CAPE COLONY.

STONEY'S SLUICES.-BALLYTEIGUE AND KILMORE RECLAMATION WORKS.

VERTIGAL SECTION ON LINE A,

DRAINAGE WORKS, CO. WEXFORD, IRELAND.
These works, recently completed under the advice of Mr W. N. Lewis as engineer, reclaim from the sea some 1700 acres of valuable slob lands, which receive the waters and alluvial de the leading features of these works is the cutting of a channel mostly through rock, direct to the sea, avoiding a long and tortuous course to the natural outlet from the slob, which is here protected by a bank from the sea. By means of the shorter direct rock cutting, a better fall for drainage is secured and the channel is of a permanent character, not likely to silt up. Mr. Lewis wisely protected his outlet to deep water by a orver breakwater pier, and a tunnel has been left in a portion up the waves from about half-tide and upwards. This, in conjunction with the in conjunction with the
breakwater, produces fairly caln water in the vicinity of the outlet sluices-a very necessary precaution, as this part of the coast is exposed to the full force of the storms from the south and east, and Anough seas roll in,
arks is the peculi in thes ment of the outlet sluices dopted by the Drainage Board on the advice of heir engineer. Thesesluices, desigued and patented by Mr. F. G. M. Stoney, M.I.C.E., Westminster, as arematic outfall sluices, actim, peculiar in then acted upon by very slight orces, and their range of action is different from that of ordinary flap valves, which take a considerable head of water to actuate them and which at best open only few degrees, more or less marked gauges are erected areful observations it the automatic masonry chambers to sluices commence to open when ascertained that these patent than the land water, and when the tide is $\frac{1}{4} \mathrm{in}$. to $\frac{8}{8} \mathrm{in}$. lower he land water the valves are full tide is a few inches below lower edge of the valves differing in open. A few inches of the sufficient to maintain them open, and when the rising tide pre vents this outward current, the valves just as promptly shut down. When it is understood that these valves are adjustably fixed pivots subject to friction, the excellent results obtained will be easily understood. To describe their action simply, we will suppose a plain shutter carried on a pair of lever bars having a counterbalance at one end and the shutter at the other. These bars, instead of being mounted on a fixed point or hinge, are carried on a segment of a circle, whose centre is situated in the centre of gravity of the moving mass. This segment rolls or rocks on a horizontal roller path, but is preallow of rocking motion only. By this means very large flap

SLUICE CHAMBER AND OUTLET TUNNEL, BALLYTEIGUE DRAINAGE WORKS.
be seen at I'ilbury Docks, in the two valves 14 ft . by 11 ft , designed for Messrs. Simpson and Co., Pimlico, by Mr. F. G. M. Stoney.
In the case of tidal outfalls, such as at Ballyteigue, the levers with rolling segments and adjustable weights may be placed for security from debris any desired height above high tide mark, and similar, only there is nothing in the water to get choked up in any way. The doors in opening go through a cycloidal motion, and are lifted from the current in direct proportion to the radius of the rocking segment, and hence a marked feature in the efficiency of their action.
From continued observation it was found that these sluices
wred as much as fourteen hours out
sluice chamber is roofed over and the sluices are locked up from interference.
The works were carried out by Mr. J. Dixon contractor, Dublin, and the ironwork was supplied and erected by Mr. E. Manisty, Dundalk fronworks. There are many situations Lewis, would prove a boon to the country and fair investment for capital.

LAZY-TONGS IN STRUCTURAL WORK.
A FEW weeks back, when making some comments upon the defective character of the fire-escapes in use, we suggested the possibility of utilising the system of jointed lattices after the
method popularly known method popularly known
as "lazy-tongs" for the improvement of our present means of rescue. Since then we have received from munications which show that our suggestions could hardly be termed novel. Indeed we may say that the idea-though not scarcely as "old as the hills"-has at all events engaged the
attention of inventors for a considerable number of years ; while one gentleman years; while one genteman
writes us that he isat present perfectingsuch a combination perfectingsuchacombination with the express object of its utilisation for the chief purpose to which we directed attention. Another correspondent has been obliging to send us a tracing made from an engraving which appeared in the Illustrated appeared News of October 11th, 1856 , which represents an observer elevated "by a series of tiers of expanding laths, each 6 ft . in length,
worked by a wheel acting on a spindle worked by a wheel acting on a spindle . . to a to have been patented by Messrs. Stocqueler and Saunders as a "patent elevator and observator," Their Sttention appears to have been given to this device to meet the demand for some means of observing more closely than was possible by any other method the interior of Sebastopol and its fortifications during the siege of that place. The idea received the approval of the War Department, but it was not worked out in a practical manner until after Sebastopol fell, and the invention, it would seem, was not in any way availed of by our authorities, nor can we learn that it was ever applied to any of the the list of these claimed by the patent subsequently taken out by Messrs. Stocqueler and Saunders we do not find any mention made of fire-escapes. It is mainly for this latter purpose that our second correspondent informs us he is designing an elevator of somewhat similar character to that above referred to ; and it seems that, should his machine when constructed realise all that he anticipates it will do, an exceedingly useful adjunct to our present means of life rescue at fires will be obtained. But
the consideration we have given to the several communications we have received upon this subject has led us to conclude that this system of lazy-tongs is capable of far greater development by any of those who have given attention to the subject. Improvements in the manufacture of material, and the cheapness with which steel can now be produced, have altogether endeavoured to utilise the principle. Sections of varied forms
in that material are now readily obtainable which will impart in that material are now readily obtainable which will impart
enormously increased strength to any such combination, while at enormously increased strength to any such combination, while at
the same time their lightness renders them particularly adaptable to a system to which both qualities are imperatively necessary. us those desiderata, we believe that the primary difficulties have been overcome, and we look for the exercise of much ingenuity in the endeavour to secure it. Occasionally we have come across its practical application for securing simultaneous reversed
movement, one such instance in our memory being in the case of Folkard's boat-engaging and disengaging gearing, but of its utilisation on any large scale hitherto we possess no knowledge.
And yet it seems to us that where portability is aimed at this And yet it seems to us that where portability is aimed at, this principle might in numerous cases receive much more attention
than it has hitherto done, and, as we have said, improvement in material and manufacture may well stimulate its employment in such cases. We have seen of late years the lattice form o construction receiving a development little dreamt of in the past. There is scarcely a mechanical purpose to which it has
not been applied. In girder construction, both for bridges and
scrapes on the forward movement and one on the return ; the The machine described is give the feed or regulate the tools. The machine described is set to feed at the rate of 5 in . per minute, on Portland stone. This machine is also provided struction, and can be replaced. The saw is placed on one of the spindles, and if a very deep moulding be required, a useful piece of stone can be saved by making two cuts at right angles. The saw, like the cutters, feeds at 5in. per minute. A large stone sawing machine with two circular. steel blades 8 ft . $3 \frac{1}{2} \mathrm{im}$. diameter over teeth has also been supplied to Messrs. Armitage and
Hodgson by the York Engineering Company. This is believed Hodgson by the York Engineering Company. This is believed
to be the largest stone sawing machine ever made in England.

ABSTRACTS OF CONSULAR AND DIPLOMATIC REPORTS
Italy-Iron and stecl industries of Biella.- In the district of Biella there are twenty-three firms engaged in the manufacture of works in iron and steel-foundries, mechanical workshops, agricultural implement makers, cutlers, \&c., giving employment
to about 480 hands. The three largest establishments are in Biella and its immediate neighbourhood. At Signor Squindo's
Bita Biella and its immediate neighbourhood. At Signor Squindo's
foundry and works 120 hands are employed. Heavy pieces for foundry and works 120 hands are employed. Heavy pieces for Messrs. Canepa's foundry and workshops date from 1842 and Messrs. Canepa's foundry and workshops date from 1842, and
empploy 38 hands in the foundry and 68 in the workshops.
Carding machinery, looms, turbines, \&c., are made at the works.

HUNT'S DUPLEX STONE MOULDING AND DRESSING MACHINE.

buildings, it is everywhere employed, and standards built up of
it have superseded the old wooden telegraph and signal posts in every direction. We could easily extend such a list almost ad infinitum. The lazy-tongs is but a ready-built lattice capable
of extension or contraction; there are only to be added to it plete structure, as strong and as serviceable as any lattice girder rigidly rivetted up. It is impossible not to conclude but that we possess a facile means who would be as applicable to economy in stowage as is the Berthon folding boat, and for other want could be as usefully employed. For military purposes, or for
others akin to them, it strikes us as presenting many capabilities. others akin to them, it strikes us as presenting many capabilities.
Thus, for instance, lattice girders for a bridge, of which the webs Thus, for instance, lattice girders for a bridge, of which the webs
at least would be complete, could be extended over a stream in at least would be complete, could be extended over a stream in
two or three minutes. A rove wire cable would supply the two or three minutes. A rove wire cable would supply the
tension member, and some device for readily fitting that for compression would transform the lazy-tongs into strong and reliable girders fitted for the passage of heavy weights. We offered, because, as we have above written, we think that the quality of the material now at command warrants the belief that the inventive faculty might well be applied to the utilisation of this well-known but little employed principle. Were we to go further into the matter, we are confident that it would be
possible to add to the suggestions we have made to a very large possible to add to the suggestions we have made to a very large
extent; but we may well leave further applications to the with thoroughness. We should be glad to have the opportunity of seeing and describing the fire-escape on this principle ing. It will constitute an effort in a direction which we should ing. It will constitute a

DUPLEX STONE DRESSING MACHINE.

The accompanying illustration shows a duplex stone moulding and dressing machine lately constructed by the York Engineering
Company for Messrs. Armitage and Hodgson, contractors for the Company for Messrs. Armitage and Hodgson, contractors for the
New Town Hall, Portsmouth. Machines of this class-Hunter's patent-have been used on many large works, and are well trated embodies the latest improvements. The stones to be
dressed or moulded are clamped down to a table, travelling at dressed or moulded are clamped down to a table, travelling at side of this table revolves a vertical steel spindle carrying tool
holders. Flat steel tools are used for dressing, and trumpetholders. Flat steel tools are used for dressing, and trumpet-
headed ones for moulding. The tool holders vary in length to headed ones for moulding. The tool holders vary in length to
enable the exact profile to be obtained. In the machine under
notice the ends of the tools are made telescopic, which allows a very fine adjustment. The stones passing before the revolving roughing barrels are reduced approximately to the required moulding. Steel scraping plates, with the exact profile required,
are then inserted into the vertical rocking shafts. These plates are moved horizontally or vertically, while the table moves to and fro at an accelerated speed in front of them; the plates thus
meet the stone, and the desired profile is obtained. If the stones are not very large, otee set can be worked by eachi side of the
machine at the same time ; the tools being arranged so that one

The repairing of machinery isalso carried on. English and German steel are used, the latter entering Italy at very cheap rates, via The machine tools generally are supplied by Messrs. Guller of Intra, but some are made at the works. The rates of wages
for the best hands range for founders from 2 s .6 d , to $3 \mathrm{~s} .2 \frac{1}{d} \mathrm{~d}$. for the best hands range for founders from 2 s . 6 d . to 3 s . $2 \frac{1}{2} \mathrm{~d}$. day ; for smiths, on an average, 3s. $2 \frac{1}{2} \mathrm{~d}$. a day. The ordinary from 1857 , and have not any foundry attached. He employs up milling ap milling machinery. In the village of Andarno, in the Val of iron work are produced. The value of the annual production
may be calculated at from $£ 2000$ to $£ 2400$. Smiths are paid may be calculated at from $£ 2000$ to $£ 2400$. Smiths are paid
from 1 s .8 d . to 2 s . 5 d . per day. The manufacture of agricultural and other implements is chiefly carried on in the mall factories, employing from 35 to. 40 At Netro there are three consists of scythes and other implements for agriculture, as well as for different uses. The value of the annual production amounts to between $£ 3000$ and $£ 3200$. Steel and fine steeled iron are used in the manufacture of the goods, which are sold in
Italy and exported to South America. There is another factory at Netro originally founded in 1816 as a bayonet and sabre factory. The average number of hands employed is about 50 ,
and the value of the annual production about $£ 6000$. The articles now manufactured are implements used in agriculture, workshops, and railways. Cast steel and steeled iron are used There is some export to Greece, South America, and Switzerland, but the principal market is in Italy. The average wares for good workmen in these factories is from 1s. $7 \frac{1}{2} \mathrm{~d}$: to 1 s .8 d . per day. For articles of cutlery the small but well-known
factory of Messrs. Sella at Masserano, founded in 1837, may be first mentioned. The articles produced are sold entirely in Italy, where they find a favourable market. The difficulties which Italian manufacturers have to meet, and which tend to minimise their profits, are-internal competition, the continuous and rapid transformation of the old methods of manufacture, agriculture, commerce, and industry, the absolute limit of division of labour, the disparity and variety of the articles proable water power is insufficient, or cessation of credit and onerous taxation. To meet some of these difficulties heavy industries a but the permanent advantages of which may be open to doubt. portant of the propositions laid before Congress relating to Plans of and provincial matters have not been disposed of Callao is promised a relief from the tax of 4 s . a ton charged by the foreign company having the monopoly of discharging and privilege When the original concession of the company expired in 1884 the Government granted an extension of the same for fifty years longer, in return for a heavy money advance, and on this European capital is offered to build a railway from Lima to the
port of Pisco, 100 miles south of Callao, and from thence to con struct a narrow gauge line to the city of Ayacucho and the quicksilver mine of Santa Barba, near Huancavelieu. No pecuniary aid is asked from the Government, the company
seeking the privilege of working the mine for a long term of years, and giving to the State a fair percentage of the profits The district between Lima and Pisco is agriculturally one of the richest in Peru, and the benefits to be derived from rapid means of transportation would be very great. It is proposed to Mollendo on the coast to Peru on the lake Titich reaches from to the city of Cuzco and southwardly along the border of the lake to the Bolivian frontier, so opening easy communication with La Paz, the capital of Bolivia. When this project is Pacific must of necessity gass over thi line and apart from the commercial advantages, the Peruvian Government considers the bond between Bolivia and Peru of the highest importance. In this instance no demand is made on the Government for aid. The contractors, who are citizens of the United States, require the privilege of working the railways for a term of years, paying the Government a fixed progressive sum per annum. A purpose of extending the Oroya railway from its present inland terminus, ninety miles from Lima, to the silver mining districts drained and scientifically worked. The heavy fall in the price of sugar in European markets, and the gradual decline of all have brought deru owing to years of the insignificant figure, which, when silver can be cheaply mined and carried to the coast at reasonable rates, will, it is hoped, decidedly increase. If the report of a Commission engaged in examining the Cerro de Pasco mines be favourable, the work for the prolongation of the railway is to be vigorously proceeded with, and the heavy machinery for the development of the mines be sent on. Other pletion of the railway from Payata to Pirera, the construction of that from the port of No to Moquegua, and a railway from Tarma inland to the Chanchamayo Valley, from whence access is easy to the Peruvian affluents of the Amazon. A society has Cuhuapanas, in the department of Loreto and the river Marañon, as the Amazon is called of Lhich flows through Peru. Such communication would open to commerce one of the richest
districts of Peru, and by the aid of steamers carry these riches districts of Peru, and by the aid of steamers carry these riches to markets now unattainable from the absence of proper means of approach and exit. All these enterprises will bring money
into the country, and give occasion for profitable employment. Rolling stock for the railways and plant of every description for the mining operations will be in immediate demand. But the period is one of expectation rather than of tangible reality, and present unsatisfactory state of commercial and financial affairs must continue.
Turkey-Trade of Beyrout in 1886.-The trade of Beyrout for 1886 showed a falling off for the first time for some years. This state of things is due chiefly to temporary causes, such as bad in the news of war, \&c. "I would here call the attention of British merchants to the excessively precarious condition of much of the trade of Bert in aring exceed the consumption ; and a check of any kind will bring disaster on those who give long credit. There are some strong houses which would weather any storm, but they can be counted on the fingers. As for the rest, especially those dealing in stuffs traders are infinitely - the less credit granted the Betcitish, owing to which they hold in their hands so much of the trade. It would be impossible to do much trade with Beyrout if cash payments limit of credit." Under present conditions it seems impossible but that the value of imports must diminish; but were the country opened up bya railway, and a port made at Beyrout inconwas iou therewith, there is a great future before it. Cardiff coal was imported in 1886 to the same amount as in 1885. The conons per of coal and patent fuel-briquettes-a arerages of this quantity was English, but last year the quantity rose to 3000 tons, owing to the efforts of various firms to obtain a footing at Beyrout; and this year it is expected that more than half of the briquettes will be driven out of the market. The English article is better than the French, and can be delivered cheaper in spite of the heavy difference in cost of transport. Merchants will not buy briquettes on speculation, but act only as commission agents. The demand for briquettes is not likely to increase, but in view of the formation of a gas company the import of coal will probably be quadrupled. British iron reaches the same figureasin 1885. In the hardware class nearly all articles come from Austria, France, and Germany. The trade in carpenters' tools is not very large, there exception of frame-saws, which are fitted with French blades and English-farriers' and smiths'-files, all tools are of Austrian and German manufacture, and very inferior, Other carpenters hardware is German, and of the worst description. Cutlery is almost all German, and is mostly marked Paris or bears forged English marks. Horseshoes and nails are hand-made out of the best Swedish iron on the universal Eastern model, four costing 2s. 1d. They could be stamped out by machinery at a much lower price, and there is no reason why an attempt should not is a conde supply the market with machine-made shoes. Ther on account of the construction of the gas works-which are being commenced by a Paris company-but at present it entirely imported from France. There are several agents of French pipe makers in Beyrout and not nne English. The Waterworks Company obtained some English pipe of first-clas quality, the price of which, inclusive of all expenses, was slightly less than that of the French. Locks come from Austria, they are expensive and of the worst quality, the commonest door agents, Enclish locks are sot bought beause Fnglish facturers will not cater for their customers. A lock which will double lock is indispensable in this country owing to the shink age of timber, and English made locks do not comply with this requirement. Picks are native-made, as English picks are too heavy and large. Best London made picks cost in
Beyrout.3s. 0d., while a natite pick of the same weight, though infinitely inferior, costs 2 s . 6 d . Shovels are common 1s. shovels, of French make, costing without handles 1s. 6 d . each. The municipality has lately requested the Waterworks Company to supply it with English shovels, as they again. The only agricultural implement is the universal heart-
shaped hoe set at less than a right angle to its short handle. It is native made, takes the place of fork, shovel, spade, \&c., weighs
about 3 lb ., and costs 1 s . 6 d . Though the Beyrout market is about 3 lb , and costs 1 s .6 d . Though the Beyrout market is
not large, it would repay some attention on the part of Birnot large, it would repay some attention on the part of bir-
mingham firms. Many French and German commercial travellers visit Beyrout, while an English one is hardly ever seen. For this there is a very good reason. The most important item of
British imports is Manchester goods. In Manchester are many natives of Syria, who keep very colose touch with the Beyrout market. In the hardware line, where we have been ousted by
foreigners, something might be done by catering for the requireforeigners, something
ments of the natives.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

The iron exchanges in Wolverhampton and Birmingham this
week met with the knowledge that there was to be no advance in ironworkers' wages. Thus any indecision in the matter of selling
prices which might previously have interfered with prices which might previously have interfered with the conduct of
business was removed. Sir Thomas Martineau has awarded that the rate of wages fixed on January 1st, 1886, shall be continued
without alteration. Puddlers' wayes therefore remain at 6 s . 9 d . per ton. The award is to be subject to a month's notice on either
sido. The surroundings of the position succinctly appear in the award, should be increased 5 per cent., alleging that it appeared from the siourd of Trade returns and otherwise that a marked improvement
Board in the iron trade had taken place during the past few months, On the other hand, it was strongly urged by the representatives
of the employers, amongst other things, that the improvement ap. pearing on such returns applied mainly, if not entirele, to steel,
and that no such improvement as had been alleged existed in the pearing on such returns applie
and that no such improvement
South Staffordshire iron trade.
To these considerations may be added the fact that the actual
selling price of iron, as shown by the emplogers' selling price of iron, as shown by the employers' books, is on the
average 8s, 3d. per ton lower at date than at the time of the previous award.
Local orders rather than export ones are at present mainly
keoping the finished ironworks running. Yet it cannot be reported keeping the finished ironworks running. Yet it cannot be reported
that there is any. vigour about buying, and specifications are this week somewhat difficult to get in, as always occurs towards the
end of the month. Consumers desire to limit deliveries, but tee the month's accounts within easy limits.
Sheets, bars and
Sheets, bars, and hoops and strips are the classes of iron chieffy
selling, and the qualities run mainly upon the medium and common priced irons. Some buyers are placing tair orders for delivery over this quarter, but merchant orders on export account keep
slow. An improvement is anticipated with the advance of the
 Strips and hoops are eo to Prices of sheets mostly $£ 12$ to $£ 13$ are ; and $£ 7$ to $£ 75$ s. for trebles ${ }^{2}$ for singles Inquiries for galvanised sheets are fairly numerous on japanners. Australia, New Zealand, South America, and India, but prices are
unsatisfactory, and many bids have to be declined; $£ 910 \mathrm{~s}$. to $£ 10$ per ton is now a common price for 24 gauge fo.b., Liverpool ;
£10 7.
The "d. easy is quoted by some makers, delivere, London. for singles, $£ 810 \mathrm{~s}$. for doubles, $£ 10$ for 6 b b.g. , and $£ 10$ 10s. for
28 b.g. "Woor singles, $£ 1$ for doubles, $£ 12$ 10s. for 26 gauge, and $£ 13$ for 28
gauge. For best qualites $£ 110$. per ton additional is asked, and
for gauge. For best qualities \&t 10s. per ton additional is asked, and
for double best $\& 3$ per ton additional. Siemens-Martin steel
sheets
 tively for the thinner gauyes.
Thin sheets keep up fairly well. Messrs. Hatton, Sons, and Co., Pradley Iron and Tin-plate Works., Miessrs. Hatton, are Sons, and co., now meot
with a demand for such iron and for tin-plates. In sheets, steel is steadily encroaching upon iron for stamping and working-up
purposes. American, colonial, and Continental orders are assisting The plant possessed at the
the boiler plate mill, there are some six mills in alt. Including annealing furnaces will anneal over 100 tons per week. They are
heated by Wilson gas producers, and the sheets turned out are as heated by Wilson gas producers, and the sheets turned out are as
soft almost as lead, and have asplendid appearance. The firm do
not go in for the large sizes of boiler-plates, but rather culltivate high, quanity.
Thin iron sheets for work

 the firm quote about $£ 515 \mathrm{~s}$, to $£ 6$.
Pig iron buyers have been somewhat awkwardly caught in the matter of recent purchases entered into for delivery over the
greater part of this year at the advanced rates recently ruling.
These contracts are now being delivered, and consumers are found in the position of having to sell manufactured iron at almost the old unsatisfactory prices. The new business doing in pigs is very small
just now, and r rices are still falling. Northamptons are now
quoted 37s, per ton delived, quoted 37 s . per ton delivered, but may be had in some cases at
36s. 6 d . Derbyshires are an average of 38 s . easy, and best sorts are
39s. 39s. Lincolnshires have got down to 40s. per ton. Native pigs
remain at 52 s. 6 . ad as the quotation for hot blast all mines, 40 s . for
part mines, and 30s, for common. part mines, and 30 s . for common
The coal trade is tame, and pr forge purposes, is obtainable at 4s. 6d. at the pits. Ordinary forge
is 5 s . to 6 s . Even the best thick coll of South Stafford shin getting very small prices. Earl Duldey's forge and furnace coal,
for example, is now realising only 7s. to 7 s . dd . per ton, and his
lordship's best sack io The consignment of mining mathehinery which, as already noticed
in THE ENGINERE, Messrs. F. Silvester and Co
The under-Lyme, , have, recestly, shipped to to Australia, consisting, it may may
be mentioned, mainly of a pair of himb-class 50 -horse pow zontal winding engines, with link reversing motion, and drum on
first motion shaft, fitted complete. The engines were built to order, and much satisfaction.
The orders from and machinery from Ine stilin for bothoth iron and manufactured affected by cthe valus
silver. Canada is steadily recourering from the recent failures, and
sind silver. Canada is steadily recovering from the recent failures, and
is sending over some eood spring orders, which are welcomed in
numerous branches. Afew Australian orders are a little more
valuable . but numerous branches. A few Australian orders are a little more
yaluable, but as a whore, the the Australian trade keeps but
tame, and the reports of tierce competition are supported by the
character of the indents. South America continues to bulk
charel
 native byers are over from New Guinea, but the paper of of the
country is not easily negotiable, and business is thereby impeded.
Natal is growing in favour, and in machinery and
 past. For this gold discoveries are largely responsible. The
stirrings of early life are traceable in the trade with Burmah; and
men whose experion or men whose experience is the widest express complete confidence in
an eanly indicition of vigour in the railway and machinery recuire-
ments of the East generally.

An important step has been taken in the wrought iron tube trade
For some time past prices in this industry have been going from
har tow bad to worse in consequence of the severe internal competition.
Rates have got down to an almost profitless level, but an improved conditions of things is now apparent. Success has crowned the
ffort efforts which have recently been made to re-organise the a
tion for regulating discounts on gas, water, and other tubes. Most of the leading firms not only in the Birmingham and
South Staftordshire district, but in other parts of the kingdom, South Staffordshire district, but in other parts of the kingdom,
including Scotland, have been induced to consent to sell on one ncluding Scotland, have been induced to consent to sell on on
common standard. The best results are for the present following
In one case a fow days ago, in which a large merchant house
In
In solicited quotations for a contract of some hundreds of thousands
of feet of iron tubes, the tenders sent in from some thirty different of feet of iron tubes, the tenders sent in from some thirty different
firms all, I amm assured, showed the same anvanced figure. The a tender from this town being the favourite.
The prices of galvanised tubes, which had also sunk through reckless competition to an unremunerative level, are now beginning rincipa devised prices represent a rise on tubes over 1 inin. of about 7 s. per
fon, which brings the price to $£ 3$, but on tubes of smaller diameter or gaswork the new list is lower by about 2 s. 6 d . per ton. These
dvances are much objected to by some of the iron tube manufac advances are much objected to by some of the iron tube manufac-
urers, eertain of whom threaten to put down galvanising plants of
The hardware trades are not very brisk at date, and makers complain of the leanness of prices. Orders are fairly divided over ome and export markets, and in some branches, notably in gal-
vanised hollow wares and other stamped goods, the European arkets are buying well. The goods are, however, of the cheapes
class. The colonial demand keeps much within makers' expectations, and whether from Melbourne or Sydney, no improvement
can yet be reported in prices. The demand from East India runs aainly upon a cheap class of work, and many orders offered have still to be declined on account of the unremunerative prices
attached. Orders from the Transvaal are coming forward rather

The small chain makers at Cradley Heath, who had returned to Work, were called out on Saturday, the masters having persisted in
their objection to recognise the 4s. list. With those who have been their objection to recognise the 4s. list. With those who have been
on strike for thirty-seven weeks, the number now at play is 2000 . hich the men marched round the district with the intention or inducing those who continued at work to put down their tools,

NOTES FROM LANCASHIRE.

Manchester:-There is still no improvement to report, either in he present condition or in the outlook of trade in this district,
Business all through continues dull and depressed and there is little or no movement either one way or the other, except that the con-
tinued stagnation of the market naturally tends towards a furthe inued stagnation of the market naturaty tends towards a further
weakening of prices. Buyers either hold back altogether in the oxpectation that by waiting they will be enabled to do better, or
hey offer prices which makers as a rule do not care to entertain and where there is any business to be done, merchants and speculators come in at excessively low cut prices. There is evidently a
determined effort to "bear" the market down to the low prices determined effort to "bear" the market down to the low price
that were ruling last year; so far the course of the market has been in favour of the landerselling speculators, and there does not seem to be anything at present in prospect likely to bring about
strong healthy tone to trade which would give confidence in the future.
The attendance on the Manchester iron market on Tuesday wa course, the ordinary but business was extremely slow. There are, on which necessitata a certani amount of buying, but this is mostly from hand to mouth, and where anything of weight is doing it is
only at excessively low prices. Pig iron still meets with very little nquiry, some of the makers who do not care to compete at the low prices a which iron is being ofrered turough second hands stil and underseling goes on amongst merchants and speculators at prices considerably below those which makers are asking. For
Lancashire pig iron quoted list rates are simply nominal, as local makers are open to entertain offers, and for large quantities the average quoted prices are about 37 s . to 38 s , less 212 , for forge
and foundry are not disposed to pay those prices, and they are able to cover any small pressing requirements at lower figures. In outside brands,
such as Sootch and Middlesbrough, the tone is, if anything, easier Sron is offers do not give way to any material extent, but their rates, and good named brands of Middlesbrough foundry iron can be
bought at about 6 d . per ton under the figures which were being quoted a week or so bac
For hee
me excessively low cutting in prices; for No inquiry, and there in into the Manchester district, makers ask about 55s. 6 d . to 56 s . 6 d ,
less 2, but they are 2 s , to 3 sm , above the prices that buyers offer, and above what merchants in some cases are willing to take.
There is still no improvement to report in manufactured iron, but if anything the tendency is rather in the opposite direction. One or two makers are busy, and very firm in their pricess but
this is no indication of the general state of trade, which, taking it all through is very dull, with han absence of new orders of any weight about e5 per ton for good qualities of bars delivered into the Manincreasing disposition to come below this figure rather than allow them to pass, and in some instances 1s. 3 d. to 2 s . 6d. per ton less
money is taken. Hoops average $£ 55 \mathrm{~s}$. to $£ 5 \mathrm{~s}$. 6 d ., and sheets, $£ 65 \mathrm{~s}$. to $£ 610$ s. per ton delivered into the Manchester district.
The condition of the engineering trades remains unsatisfactory, whilst it is true that works here and there are getting busier. Others report trade falling off, and depression as still the pre
dominant characteristion dominant characteristic of nearly all branches of industry.
At the meeting of the Manchester Association of Engineers, held on saturday, a paper on "Indicator Diagrams," read at a previous
meeting by Mr..,James Hartley, and a summary of which was given in my "Notes," came up for discussion, in the course of which Mr
W. H. Booth" pointed diagrams, errors sometimes arose by their being calculated as if they were steam engine diagrams, instead of counting the number
of explosions per minute, and finding the power in that way. Mr. Mannock urged that if compound engines were not properly con
structed and worked they had the fault of losing three times much as a simple engine, and it was not unfrequent to find a com-
pound engine making good diagrams but burning an unconscionable amount of ceal. Too small a cylinder for the high pressure
was frequently the cause of considerable losss and the ratio of four
to one, which was adopted by many makers was not to one, which was adopted by many makers, was not always the
best. The indicator, he added, might be applied for a variety of
purposes, and in fact, if properly used, might be made to tell purposes; and in fact, if properly used, might be made to tell
them everything that was possible boout an engine. Mr. Matthews
remarked that it was an open question with many encine the correct size they should question we we engines for the power mer
required, There had recently been a good deal of discussion with
Tefer reference to triple and quadruple expansion engines. These, he he
had no doubt, were the engines of the future, but the question
which did not at present appear to be satisfactorily sett which did not at present appear. to be satisfactorily settled was
the exact point of pressire ot which tripe and inadruple expan-
sion could be the most effectively introduced. In replying upon
the discussion, Mr. Hartley urged that one of the greatest sources of loss in engines was initial condensation, and he knew firms who
had 80 lb pressure in the boiler and only got 27 tb. to 30 lb . pressure in the cylinder. If such people were to compound their very great saving. Now that high pressure was so largely used, it
vas very essential that mound was very essential that more attention should be paid to steam
jacketting, as this was the point where economy must come in the jacketting, as this was the point where eoonomy must come in the
future; and it was not only the sides, but it was equally, if not more important, that the ends of the cylinders should be jacketted also, and he would jacket both high and low-pressure cylinders.
A numerously attended meeting of delegates representing most of the trades' union societies in this district was held on Tuesday
in Manchester, and it was resolved to form in Manchester, and it was resolved to form a Labour Electoral
Association on the lines laid down at the Trades' Union Conference at Hull, with the object of raising a fund to enable industrial candidates to contest elections when vacancies occur, and to support
them when returned to Parliament. An executive committee was formed of nine trades' union representatives, including two represenatives of the Amalgamated Society of Engineers, on, of the Metal In the coal trade there is a fairly steady business still being done in all descriptions of fuel, and most of the pits are kept on about
full time, but with the advance of the season there is the usual weakening in prices, and with the close of the month it is probable on present list rates, which in some instances may be accompanied a reduction in wages. In the West Lancashire district the
question of a reduction in wages has already been under considera tion, but nothing definite has yet been decided upon. At the pit
mouth prices average 8 s . 6 d . to 9 s . for best coals 7 s . to 7 s . 6 d . for

 Shipping is rather quieter, with steam coal delivered at Liver-
pool or Garston averacing 7s. to 7s. 3d. per ton. Barrour. The weak tone noticeable in the iron trade of this
hematite district is still noticeable, and there is not so mich position on the part of large consumers to place orders for large
forward deliveries as was the case a short time aro on the one hand, large producers are independent of immediate sales; and on the other hand, large buyers save already secured deliveries of as
much iron as they require for some months to come. In the mean time, the trade is more or less conducted by holders of second hand stocks, who are disposed to clear them before there is any
further reduction in prices, which some people seem to think pro further reduction in prices, which some people seem to think pro-
bable. The trade doing is chiefly in Bessemer samples, and hematite qualitities are in more general use than was formerly the
case, as, owing to the low prices at wich they they are more generally used than formerly for a variety of purposes
where cheaper and inferior iron was employed. $42 \mathrm{c}, 6 \mathrm{~d}$ is the figure where cheaper and inferior iron was employed; $; 42 \mathrm{~s}$. 6 d . is the figure at whic specuators are ase been disposing of iron, and makers, on
the other hand, are asking 45s. to 47s. 6d. per ton net, f.o.b. Makers are not operatinl in the market at present, and are waiting
until they are more nearly cleared of orders, or until they are in
 stocks of iron on hand are comparhrughout the season some heavy nent, and the colonies, as well as to home consumerics. There is a , although prices remain at the ower prices quoted last week, heavy sections of rails being quoted
at $£ 4$ 1s. .3d. per ton net at works, or f.o.b. local ports, and soft billets at $£ 4$ per ton. Blooms, billets, and bars are in
good demand, but merchant steel is quiet in all brands. There is joor emand, but merchant steen ls quiet in all brands. There is
more inquiry for ship plates, angles, and other shipbuilding steel material, and shipbuilders are in a more hopeful position, having booked a few orders, while others are offering on the part of both
home and foreign owners. Ensineers, ironfounders, and boiler makers are fairly but not briskly employed, but they are more feature to note in the finished iron trade as orders are still few in number and are slowly offering, while prices remain at unre munerative rates. The trade in iron ore is steadily maintained, and te consumption at fire furnaces is quite up to recent statistics.
Prices are steady and firm at from 9 s . to 10 s . 6 d . per ton net nd the anes, however, are undisturbed. The shipping trade is busy, and as
large cargoes have to be despatched to foreign ports during the large cargoes have to be despatched to foreign ports during the
season, it is expected this trade will continue brisk.

THE SHEFFIELD DISTRICT.

Messrs. WM. JEssop and Sons, Brightside, have recently been
pretty busy in a class of work which forms prety busy in a class of work which forms a speciality of their chneider, of Creusot, France to be used in the new mills the tirm have erected for the production of steel plates. Several thousands f Jessop's steel wheels and pinions are now at work in the Lancal
shire cotton mills. On Monday I saw a large steel casting of their a spur rim casting -at the Manchester Exhibition ; it weighed firm had to send it by road on a strong trolley pulled by a traction engine. Tour miles past stockbriage-a village near Sheffieldthe engine broke down and delayed the journey a day.
It then went straight away, and reached Manchester in safety. The journey was over the great Penistone range of moorland-one ims in that bleak region gave the men in charge of the casting somewhat rough experience. They intended to stay overnight at
his place, but he would have nothing to do with people who dealt monstrous things, and turned them out of the house at hay, and all caught cold. After the casting has been shown in the Exhibition, it will be used in a large rolling mill in Lancashire.
The Thornclife Iron Company-Messrs. Newton, Chambers, and ave just manufactured an exceptional article in all kinds. They order of a London firm. It is intended for a railway dining car,
which the metropolitan house are building for a royal family in
 of a first-class cooking stove. In the centre is the fire, covered purpose of a hot plate for heating water and boiling purposes. To can be made any size, and over this oven iron a pan for maving sauces
jellies, gravies, s. On the right of the cook are two smaller ovens, one of which can be used as a hot closet, and adjoining
these ovens is a large boiler for water, the latter being drawn oft by a tap. A coating of a mixture of sand, \&c., placed on the sides
and back, serves as a non-conductor of heat, thus preventing
damace to the external the top is fixed a platate rack raearance of by the stove and the tittings, racks, finished. It is altogether an elaborate a and the people for whose comfort it is constructed.
At Sheffield firm have just had an experience of how the prohibiturers For nearly a century this firm has maintained an
betabishment in New York almost da slarge as that in Sheffield.
Out Out of 57,0000 dozens of files produced, Amberica has tatken over
30,000 dozens. Since the last revision of the American tarift, the

New York establishment has had to be closed, and the movable property has arrived in Sheffield.
Sheffield is fairly well represented at the Manchester Exhibition. At the private press view on Monday, I spent several hours in the machinery department, which is a noble display, such as perhaps
Lancashire alone could show. Messrs. Thomas Frith and Sons, Norfolk Works, exhibit crucible and Siemens-Martin cast steel forgings for gun tubes, gun carriages, \&̌e. Noticeable in their
exhibit is a piston-rod forged in one piece from a crucible cast steel ingot, which weighs 3 tons 10 cwt t, an inner tube for a a 16 centifrom a.solid steel crucible ingot, then"turned, bored, tempered in oil, and finished, a tube for a a-contimetre egun, alsoo, as supplied to the
French marine, which has been subjected to an exceptionally severe powder test by Sir W. G. Armstrong, Mitchell, and Co.., the
result being attached to the gun tube. There are also shown the
Tult been rough turned with a 3 in. traverse in a lathe specially designed
 forged state, not having been machined. At the other side is the
"Ferminy ${ }^{\text {shell }}$ made on the process they have reeently
acquired. They also exhibit Vescern's patent centre pivot 6in cquired. They also exhibit Vavasseur's patent centre pivot 6in. show the nature of the steel, and many other forgings,
Hadfield's Steel Foundry Company, Hecla Steel Casting Works, Sheffield, include in their exhibits of war material a s steel shell for for
9 inin breech-loading gun, exhibited after it had done its work. It had peneecrated 24 ISing of of wrought iron, passing completely through
 second wrought iron plate placed behind. The projectile was
practically uninured. This firm also showed a oin. projectile
which had passed through a 8in. wrought iron plate, and was so which had passed through a 8 in. wrought iron plate, and was so
little injured that it could be put into the gun and fired again.
Still more interesting were two $9 . .2$.
 this well-known firm, has made steel. projectiles a study for many
years, with the result that he has invented a shell which, known as
"Hadield's patut, hat "Hadfield's patent," has exceeded expectations in severe trials.
Among other cast steel castings for a great variety of purposes, are Among other cast steel castings for a great variety of purposes, are
shown dredger buckets, now weing used on dredging the Preston
Canal, and similar to what will be used in dredging for the proponal, and Manchestiar Ship Canal, with a a pair of steed wheels and andros,
pliich, after falling down a shaft 177 oftt deep, are only slightly
wher In the lighter industries very fine exhibits are made in cutlery by Messrs. Joseph Rodress and Sons, and in sterling siliver, cutectro-
plate, and table cutlery by Mesrs. Walker and Hall, Electro
Works, Sheffield, who have excelled themselves in Hati, Works, Shefield, who have excelled themselves in articles which
take rank as art productions as well as for purposes of utility, This firm have a specially admirable display in tea and coffee ser biscuit-boxes. They exhibit the portrait of Mr. George Walker,
the founder of the firm and of electro-plating in Sheffield, together with the miniature vat and battery with which
with Mr. Wright, the inventor of electro-plating.

THE NORTH OF ENGLAND.
 BUT little business was done in Cleveland pigg iron last week, the ales effected having been for the most part by certain speculators sales effected having been for the most part ty certain speculators who were unable to hold until prices improve. No. 3 g.m.b., which was quoted at 34 s . per ton ally fell in value to 33 s . 6 . . At the tharket held at Middlesbrough on Tuesday last, however, a more cheerful tone prevailed than has been the case for some weeks, and the belief that prices were again about to advance was unduly entertained. There are no longer any eager sales. The excellent shipments and the decreasing stocks are circumstances which seem to be having a marked influ ence on the market, and the improvement reported from Glassow has also added strength. When the market opened, some sales were made by merchants, for prompt delivery, at 33 s . 6d. per ton but towards the close sellers were asking 33s. 7 Thd., and even 33 s . 9 d . Forge iron is not easily obtained, as the bulk of it is in makers hands. Last week the price asked
 Stevenson, Jaques, and Co.'s current quotations are :- "Acklam ematite," mixed Nos., 45s.; "Acklam Yorkshire"-Cleveland-
 Holders of warrants are less ready to sell than they were a few days since. Last week the price efell as low as 333 s. 2d. per ton, but on Tuesday an improvement set in, and some sales were made at
 ${ }^{\text {31s. }}$ The stock of pig iron in Messrs. Connal and Co.'s Middlesbrough store is now steadily decreasing, the quantity held on Monday last being 329,396 tons, or 273 less than a week previously. Shipments of pig iron are increasing. Germany, Russia, and the United States are taking much larger supplies than for some time past. The quantitit shipped between the 1st and 25 th o o this nonth was 64,008 tons, or nearly 12,000 tons more than during the There is still no sign of improvement in the finished iron trade Prices are the same as quotedr last week, but the reduced rates have not as yet induced fresh business. not as yet induced fresh business. onclusion on Saturday evening last. Three questions were sub conclusion on Saturday evening last. Three questions were sub- mitted to the men, viz.:- (1) That a proposal be made to the owners to accept a reduction of ten per cent. on condition that nen living in rented houses be allowed a rebate of 1s. per week 2) that the newly elected ages Committee should be empowere to settle with the owners on the best terms obtainable ; and (3) that the strike be continued. For the first of these propositions, third 3665 votes. At six collieries the men refused to vote at all. The strike will therefore be continued. Notwithstanding all this The strike will therefore be continued. Notwithstand it is generally believed that it cannot last much longer.
 which have just been publshed, seem to encourage improved trade, thus, - Thoir revenue for the month was f4956 9 s . 6 d ., or upwards of $£ 1000$ more than was received in March, 1866 . During the five months monding March 31 st, the total revenue was $£ 23$, 758 10s. 11d, or $£ 4331$ bs 10 d . eceived during the corresponding five months of 1885 and 1886 . Among the exxibits whinch have been admitted to the Exhi- bition at Neweastle-on-Tyne, free of charge, is that of Mr. E C. Greenway Thomas, of London. The exhibitit is a model of his floating breakwater, which consists of a series of triangular-shaped uoys with concave sides, and moored at a certain distance from nchors ahead and astern. The principal prow is placed so as to face the approaching waves, and to gradually divide and divert them right and left. A line of such buoys mored outside the area which it is desired to protect have the effect of causing each wavesection to expen its It seems highly desirable that this promising invention should have fair trial somewhere where is merits would be practically tested. Iff the coast of Northumberland and Durham are to be found man

NOTES FROM SCOTLAND

THE pig iron trade was flat in the early part of the week, but the marketimproved afterwards in consequuence of orders being, receeived
for Scotch pigs for the United States. These orders, which are for

No. 1, are but of moderate size, but the market was so depressed,
and prices had for so long been steadily declining that their recepand prices had for so long been steadily declining, that their recep-
tion was sufficient to impart some strength to the market. The past week's shimments of pig iron anounted to 6969 tons, an com-
pared with 7483 in the same week of last year pared with 7483 in the same week of last year. Fair shipments are
paking place to Russia
tut the Continental demand is easily met. taking paace to Russia, but the Continental demand is easily met.
Since last report one furnace has been put in blast at the Portland any, and there is now a total Considerable additions continue to be made to the stock of pig iron in Messrs. Connal and Co.'s Glasgow stores.
Business has been quiet in the warrant
Business has been quiet in the warrant market. Prices were
 41s. 3d., sellers not being particularly desirous of parting with their The market valrent rates.
.o.b. at Glasgow, No. 1 , 48s., No. 3 . 43 s ; ; Coltness, 54s. and
4s. 6d.: Langloan 50. 4 s . $6 \mathrm{~d} . ;$ Langloan, 50 s . 6 d . and 46 s . ; Summerlee, 52 s . and 43 s .;
Calder, 50 s .6 a and $42 \mathrm{~s} . ; \quad$ Carnbroe, 44 s . and 40 s . $6 \mathrm{~d} . ;$ Clyde, 47 s . 42s. 9d. and 39s.; Shotts, at Leith, 48s. 6d. and 45s. 6d.; CCarron, a Grangemouth, 52s. and 44s. 6 d .; Glengarnock, at Ardrossan, 47s. 6 d.
and 41s.; Eglinton, 42s. 6 d and 38s. 6 d .; Dalmellington, 44 s . 6 d .
The steel trade is in a fairly active state generally, and several of the leading firms are quite busy. In the past week 405 tons of
Glengarnock basic steel billets. were shipped coastwise from Ardrossan.
At present the pipe founders are comparatively slack, and the are keenly competed are keeny competed for. The contract for pipes for the extension
of the waterworks of Wishaw, consisting of 5000 lineal yards of
9 in. 7 in, 9in., 7 in ., and 6in. pipes, was closely contested by seven Scotch
firms-four of them in Glasgow-and between the highest and lowest offer-that of Messrs. D. Y. Stewart, of Glasgow, which has There are few shipbuilding orders being placed at present.
The latest is one for six paddile steamers and twelve flats, whit The latest is one for six paddle steamers and twelve flats, which
Messrs. William Denny and Brothers, of Dumbarton, are to build The past weel,
from Glascow include locomotives and duplicel manufactured goods for Kurrachee, and for the same port eight steel cargo barges
worth $£ 3850 ;$ machinery $£ 14,000$, the greater part of which went to India , sowne $£ 3000$; and general iron manufactures, $£ 27,000$, including pipes
and railway iron to the value of $\& 14,500$ for Kurrachee and Bombay.
The vo
The volume of the coal trade is extending with the influx of orders for the northern ports of Europe, the navigation of which
has now been opened. Coalmakers are cautious as to entering upon contracts of long duration, oecause they fear a recurrence of
labour disputes. The week's coal shinments were, 22,913 tons ; Greenock, 1103 ; Ayr, 7907 ; Irvine, 1767; Troon,
$5431 ;$ Burntisland, 20,$211 ;$ Leith, 2968 ; Grangemouth, 13,211 ;
Sin Bo ness, 9547 ; Granton, $1953 ;$ Port of Glasgow, 900 ; and Dundee,
260 ; total, 8,001 tons, as compared with 82,191 in the coresponding veek of 1886. For steam coals there is a brisk inquiry, and the prices are
tendency.

WALES AND ADJOINING COUNTIES.

From our our Corn

Quigtress is the order of the day in most of the Welsh industries, and low prices do not appear to have the attraction that I would
think they should have. Here, for instance, is a collection of quotations at which some amount of business has been done.
Blooms, by far the best trade, $£ 45 \mathrm{~s}$. steel rails, $£ 42 \mathrm{~s}$. 6 d ., in a few cases, $£ 45$ s.; bars, $£ 415 \mathrm{~s} . ;$ pig, 46 s .
The iron trade is certainly not brisk, but there is a little doing, and ironmasters are unrelaxed in getting in stocks of iron ore,
foreign specially as the price is low, about 10 s , 6 d , to 11 s . San tander and Bilbao are sending in large quantitie
There has not been much exported of late. A cargo to Colombo was sent away this week. A contingent of Belgians are now
engaged at Cyfarthfa in putting up the new range of Evance and engaged at Cyfarthfa in putilng up the new range of Evance and
Coppee coke ovens; these will be placed immediately in the rear of Coppee coke ovens,
the Bessemer plant.
Ironmasters say that the expected revival of the iron and steel trade is still afar off, and in no department is there much to boast
about. A party of Chinese officials visited Dowlais last week, and about. A party of Chinese officials visited Dowlais last week, and
were taken over the works and hospitably entertained. It is said were taken over the works and hospitably enter
that business will probably result from the visit.
Colonial business wears a slightly better look, and it is reasonably Therred that the London meeting will have a favourable influence.
The ve the leading colonists to iron and steel works have not The visits of the leading colonists st
plained in particular, not so much for not so good. Swansea comto take away stock. For instance, there was a remarkable occurrence in the fact of no consignment leaving for the United States, Liverpool had a few, and some plates left for France, Germany,
and other places. In all, the exports only amounted to 32,915 boxes. Stocks now held by Swansea amount to 122,598
ooxes. Make is now exceeding the demand so it is not that buyers are hanging back, hoping for lower figures. These remain at present very similar to those of last week.
Cokes are not in so much demand as Bessemers, and these can be
had from 12s. 6 d. Best brands are still close unon had from 12s. 6d. Best brands are still close upon 13s. This is
the figure asked, but in a few cases 11d. or 3d, reduction is take Siemens command most attention of any plates, prices ruling acoording to quality from 13s. 3d. Very few touch 14s.; but on The make of the Newport district is beginning to tell upon the in the usess to which plates are applied. A movement is on foot for the federation of the workers at the Glamorgan and Monmouth-
shire works. On Saturday a meeting was held at Swansea, presided ver by a Monmouthshire in-plate worker, when the subject was discussed and carried.
Patent fuel has
little last week ; and I note that the Cardiff works have been far from busy.
Pitwood
lackness in thery stagnant and prices falling; this is due to the far from brisk. Some coal-ownerv ared doing fairly well in respect of quantity. This week 1 noticed some fine cargoes for India, and
various coal stations, such as Port Said. One cargo of 3500 tons, another of 2150 tons, and a third of 2500 tons, went to Singapore,
one of 3200 to Bombay, another of 2000 to Colombo. But as remarked last week, when one colliery can produce close upon
2000 tons in one day, these large cargoes have but little signifioance Much more greater significance is to be attached to the rapid depletion of the coal field. The largest producer is now clearing away $1 \frac{1}{2}$
ncres per week, and many are turning out an acre. Last week
showed a lessened export at all the ports and lessed showed a lessened export at all the ports, and lessened prices are
now prevailing. The ruling figures for best steam at port are 8s,
to 8s. Sd. f.o.b. Cardiff. Monmouthshire coal, from 9d. to 1. le. less small steam, 4s. to 4s. 3d., and quiet at that; Rhondda No. 3, from
8s. Sd. to s. .d. Ihave all alogg looked for an improvement in
he Welsh coal trade whenthe Severn tunnel is in ty the Welsh ooal trade when the Severn tunnel is in thorough developed
order, and I see that a Western contemporary supports this, and adds that Welsh coal is now finding its way via the tumnel to
Plymouth. Last week a train of 100 tons was faken ria the tunnel基
to Exeter, and thence by South-Western to Plymouth. The
question is, whether rail-borne rates can compete with those of

NOTES FROM GERMANY

(From our oren Carrespondent.)

The present condition of the Rhenish-Westphalian iron market is not such as to enable a prophecy to be hazzarded as to what turn
it will take in the immediate future. Both buyers and sellers are passive for the moment; , prices, however, with few exceptions,
have been maintained. The reports from Silesia sound stit have been maintained. The reports from Silesia sound still very
satisfactory. All the pig iron stocks have been cleared off the works, and buyers must now fall back on those in speculators
hands; and the smelters will only contract hanch they will get, provided the forges and mills keep on as busily
whily as is now the ease. Forge pig is noted at M. $47 \cdot 50$ fop oundry, 50 to
$54 ;$ merchant bars, 115 to 120 ; and coke plates, 150 to 160 pt 54 ; merchant bars, 115 to 120 ; and coke plates, 150 to 100 p .t.
The Belgian iron market is satisfactory. It is true that it is jus now experiencing a slight reactionary crisis, which usually follows fairly begun; but still the works, as a rule, have regular work in
hand for two to the not quite so much so months to come. Pig iron is firm. Steel moderately well employed. Girders are in full demand, and it is are in great request and for Rome and Naples the quantity
 outlet for Messrs. Dorman and Co.'s steel girders. The machine
shops and foundries are pretty well engaged, and large orders arc shops and foundries are pretty well engaged, and large orders arc
in prospect. The coal trade is very satisfactory, and the export is
lively lively at firm prices. Coke is more than 11.50f, is not attainable. The frent raal mine stuated, and is now burning, and a great catastrophe imminent.
The French iron trade is in some districts satisfactory, but at
Paris quite the reverse. In the Haute-Marne the orders being worked off are being replaced by fresh ones, and on the whole the ment, since the building season has commenced the Nord Departare busy. The ironfoundries are a little better off for work, but in most cases the prices are unremunerative. In Paris prices have
fallen to those of a year ago, and merchants ask for girders $125 f$. and for merchant iron $127^{\circ} 50$, but the rolling mills maintain their quotations steadfastly
siderably, and the foreign ore market also shows a weak front. At Bilbao, 6s. 10d. to 7s. 3d. is the price of best sorts. Those of the Siegerland are not materially changed. The total produce of
Germany last year was $8,489,231$ t., against $9,136,340 \mathrm{t}$. the year before. There is little change to note in pig iron. The demand
for forge has remained stationary in Westphalia, whilst in the for forge has remained stationary in Westphalia, whilst in the
Siegerland it has gone back, with a prospect of lower prices Spiegel is not in such good request for export as it was, and
principally that high in Mn. is brisk of sale. Foundry pig is principally that high in Mn. is brisk of sale. Foundry pig is also
weakk but Bessemer and basic are unchanged and satisfactory.
The best sorts The best sorts of Spiegel cost up to M. 56 p.t.; ; best forge 46 to
47 ; and Rhenish, 48 ; foundry, 49 to 56 for the 3 Nos. Bessemer 51 to 52 and Luxemburg forge 37 . The rolling mills in general have still enough work on hand, but the demand is not near so
brisk as it was ; and although the convention pricess are not as high still keeping aloof. More strong firms have joined the wrought iron convention, so that it is now in a firmer position, and endeaVours are being made to unite with that of Silesia, when it will be
possible, perhaps, to secure better prices. Thia sectional rolling
mills sare beginning to be very busy ns the building season and the prices are being stiffened.
It is to be hoped that the strike of the building artisans, now
going on, will not depress them again. The plate millowners are complaining of want of orders, but some are able to keep on full time. The prices are, however, being firmly adhered to a what raw materials. Thin sheets are falling, both in price and sale, but special works keep full on with them. The condition of the wire rod branch shows little alteration. There is quite sufficient demand, so prices keep firm, and they are easily obtainabie. In
the small gauges the demand is much reduced, and the prices are unremunerative. In steel there is nothing new to report. On the 16 th inst. 2822 t . of rails were awarded at Bromberg, haif to Krupp, at M. 111, and half to Hoesch and Co., of Dortmund, at 112, as the
lowest tenders, the other Rhenish-Westphalian works asking 120 to 122 p t, all at works.
awarded 550 set. at Magdeburg 1100 sets of whee sets to each of the works Horde Bochum Steel Works, and 2927 set. All the manufacturers, far and near, of steel spades and shovels have combined, and are about to raise the prices of these
articles in accordance with those of the raw materials. The wagon works are a little better off for orders just now, as a good many tenders have been sent out by the State railway administrations, amongst them one for 300 iron coal trucks, 36 post and passenger
coaches, and 50 covered railway vans, for which the Societé Metallurgique of Brussels put in the lewest tender, much to the will receive the order. There is still much to be desired as for as machine shops and foundries are concerned, only isolated works having pretty much work in hand. At Halle the railway station let for M. 5.
and 67,611 . The iron prices are-merchant bars, base price, M. M10 and
higher, angles, 1112 to mons; hoops, 108 to 115 ; iron and steel
billets, 112 to 125 ; and special, 130 ; boiler plates, $5 \frac{1}{2}$ mm. and
and thicker, 145 ; thin black speets, 130 to 135 ; thick, $5 \frac{1}{2} \mathrm{~mm}$. and drawn iron wire, 125 to 130 ; steel ditto, 125 to 130 ; steel rails, 125 to 130 ; iron sleepers, 120 to 125 ; wheels and axles complete, 300 In Russia it is proposed to at once raise the duty 50 kopeks per pud on bar and hoop iron, and 75 kopeks on small sizes of rod
iron, boiler-plates, and thin sheets. For the current year $10,000,000$ puds of cast iron may be imported, but after that it is to be
excluded altogether, as Russia will then be in a position to furnish rolling mill requirements. It is reported from Warsaw that the rolling mill plant of Silopp, Ran, and Loewenstein, has now been
dismounted, and is about to be transported by sea from Danzic to place for modern to be again set to work. This is quite a new to answer, the speculation might succeed; at any rate it shows with
the new works in Russia Proper, that Russian industry is all gravithe new works in Russia Proper, that Rus.
tating towards the south and south-east.
Trade returns just published show that S weden imported last
year from England, principally in iron and steel goods, for year from England, principaly in iron and steel goods, for
89, ,14,, 000 ; and from Cermany, under the same circumstances,
for 89,041, Con crowns. But Sweden exports to England $112,055,000$, while to Germany it only amounts to $18,146,000$ crowns. Under would, willingly take much more from Encland it this field wer would, willingy take much more from England if this fieid wero
cultivated by English manufacturers as carefully and as energetically as by their German rivals, and it would assuredly repay the
efforts made. In order to command success, however, it would be continental habits continental habits and lingual acquirements, not forgetting that
the usual price lists in the English language are, on the whole of the Continent, merely so much waste paper, in spite of the well
executed illustrations.
Buyers demand now-a-days every detail The traveller must also be able to give every information concerning freights, exchanges, and so forth from the shipping port to the
door of the customer. If English manufacturers would only bestir themselves, modify their insslar trade habits and education,
and be true to themselves, they need not in reality ever or any-
where fear the legitimate rivalry of Germany steamers as at present arranged

NEW COMPANIES．

THR following companies have just been regis－
Dhu Heartach Steamship Company，Limited．
Registered on the 16 th instant，with a capital of $£ 2000$ ，in $£ 1$ shares，to acquire the s．s．Dhu
Heartach，now lying at Liverpool，and to employ Heartach，now lying at Liverpool，and to employ
the same in carrying ish at Dingle Bay and other
places．The subscribers are：－－
G．H．Parker，12，Tithebarn－street，Liverpool， S．Lord， 1, Belgrave－road，Birkdale．
Thos．
Warker，Southport

Liverpoop，cotton broker．：Manchester－street，

Registered without special articles．
Durham and Lord Byron Amalgamated Gold
Mining Company，Limited．
This company proposes carrying on mining
operations in Australia，and will enter into an greement for the purchase of the Durham and Lord Byron mines．It was registered on the
19th inst．，with a capital of $£ 100,000$ ，in $£ 1$ shares． The subscribers are：－
A．Channing Bicknell，H．I．M．E，42，Polham－

R．D．B．Balfour，$\ddot{\text { che }}$ ，Austiöntriars，$\ddot{\text { broker }}$
The number of directors is not to be less than
three，nor more than seven；qualification， 500 hares，or equivalent stock；the first are Messrs． A．Balfour，E．P．Barlow，A．C．Bicknell，and G．
Augustus Thomson；remuneration，$£ 1200$ per

Fly＂Cycle Company，Limited．
This company was registered on the 15th inst．，
vith a capital of $£ 5000$ in $£ 1$ shares，to acquire with a capital of $£ 5000$ ，in $£ 1$ shares，to acquire
the businiss of Alexander Spaul，of the Norfolk tock－in－trade and other effeets，including the stock－in－trade and ather eufects，including the
trade mark＂Fly．＂The subscribers are：－

The number of directors is not to be less than three，nor more than seven；qualification， 50
shares；the first are the subscribers denoted by shares；the eirst are the subscribers denoted by
an asterisk，and Mr．Ernest Grimmer．The
company in teneral meeting will determine company in general meeting will determine

Inventors＇Agency，Limited．

This company was registered on the 15 th inst．， with a capital of $£ 10,000$ ，in $£ 10$ shares，to pro－
mote the invention and discovery of apparatus， mote the invention and discovery of apparatus，
instruments，and processes for commercial，scien－ tific，and other purposes，and to carry on the the
business of patent agents．The subscribers are：－
A．G．Stewart，C．E．，3，George－yard，Lombard－Share

The number of directors is not to be less than hree，nor more than seven；qualification，$£ 100$ in The company in general meeting will determine remuneration

Machine Decorating Biscuit and Confectionery
Company，Limited． Registered on the 15th inst．，with a capital of
$£ 75,000$ ，in $£ 1$ shares，to manufacture all kinds of biscuits，bread，and confectionery，and to carry on business as refreshment contractors．The
${ }_{\text {Ther }}$ ．Herisse， 84 ，St．Mark＇s－road，Dalston，engi－

A．Odell，13，＇Kempsfoot－rond，Kennington，clerk
A．Herisee．
fectioner ，St．Mark s s－square，Dalston，con－
The number of directors is not to be less than three，nor more than seven；qualification， 50
shares；the first are the subscribers denoted by an asterisk；remuneration，$\notin 50$ per annum each， than．The board will also be for the chair－ tenth of all surplus profits after allowing for pay－
ment of 15 per cent．dividend．

Mineola Steamslip Company，Limited． Registered on the 13th inst，，with a capital of
$£ 25,000$ ，in $£ 500$ shares，to carry on the business of shipowners in all branches．The subscribers
T．Hogan，123，Front－street，Now York，steve－Shares．

The first three subscribers are appointed diree－
tors and managers．

Pant－y－Buarth Lead Mining Company，Limited． This company proposes to acquire the assety
and liabilities of the Coed－y－Fedw and Pant－y Buarth Lead Mining Company，Limited，upo terms of an agreement dated 12th February
made with the liquidator of that company． was registered on the 14 th inst．，with a capital
$£ 25,000$ ，in $£ 1$ shares．The subscribers are：－
W．Marlborough， 29 ，Bishopsgate－street，stock
 s．Jackke dealer， 5 ，ivydëne－：road；Häckiè， ，secretary
 H．Chapman，$\ddot{24}$ ，亡̈ugurrd－road，Peckham，share

The number of directors is not to be less than two，nor more than five；qualification，$£^{£ 50}$ in
shares or stock；maximum remuneration，$£ 300$ shar annum．

Singapore，Strails Settlement，and Siam Electrical Company，Limited．
This company was registered on the 15th inst． on at Singapore，the Straits Settlements，Siam and elsewhere in the far east，the business of an electric light company in all branches，and for such purpose to enter into an agreement with
Mr，Edward John Wells．The subscribers are：－ ${ }^{*}$ F．L．Rawson， 11 ，Queen Victoria－street，elec．Share

The number of directors is not to be less than two，nor more than seven；the first are Messrs．
Harry Seymour，Foster，and F．I．Rawson； qualification， 20 shares，or $£ 100$ stock．The remuneration of the board will be at the rate of
$£ 100$ per annum for each director，and 5 per cent． \neq upon the annual net profits after $£ 10$ per cent dividend has been paid．The remuneration
the committee is to be $£ 150$ per annum，and the committee is to be
share of the said percentage．

LAUNCHES AND TRIAL TRIPS

 The s．s．Paris，which has been built by MessrS．Swan and Hunter，of Wallsend－on－Tyne was taken on trial on Friday，the 2and，with very
satisfactory results，the speed being nine knots satisfactory results，the speed being nine knots
loaded．The dimensions of the vessel are 162 ft ． by 25.2 ft ．by 9 ft ． 9 in．The engines，which have Englisht，and Co．，of Middlesbrought－on－Tees，have cylinders 1313 in ， 22 in ，and 36 in ．diameter，by 24in．stroke ； 150 lb ．working pressure ；indicated
horse－power， 364 ．The Paris has been built to horse－power， 304 ．The taris has been built to
trade to Paris，and is fitted with lowering masts and funnel to pass under the bridges．
The vessel Fee Cheu was successfully launched on Saturday last from the yard of Messrs．Wm．
Doxford and Sons，Sunderland．She is 220 ft ．by 32 ft ．by 20ft．，with flush spar deck，and is fitte engines with cylinders 197in， 31 inin．，and 5 an engines with cylinders 19 inn．， 31 İin．，and 52 in．
with 36 in ，stroke，capable of driving her 13 knots The armament consists of two 6 in．Armstron breech－loaders，and four small Armstrongs in the tween decks．She is entirely built of steel，and the whole shell plating is of 是 steel plates．She
is expected to sail shortly for the China station
The s．s．Electrician，the fifth vessel built by Messrs．Raylton Dixon and Co．for Mesrrs．Thomas
and James Harrison，of Liverpool，was on Monday afternoon from the yard of her builders．She is a spar deck steamer built o steel and intended for the Calcutta trade，of the following dimensions：－Length over all，337ft．
breadth， 40 ft ．；depth moulded，29ft． 2 in． breadth， 40 ft ．；depth moulded， $29 \mathrm{ft}$. 2in．；；and
has a deadweight carrying capacity of about 4100 tons with Lloyd＇s freeboard．She has hood ove steering gear aft，with long deckhouse，in which is very handsomely fitted saloon and accommoda
tion for passencers，and is fitted throun tion for passengers，and is fitted throughout in
every way as a first－class steamer for this special every way as a first－class steamer for this special
trade．She will be fitted with engines by Messrs． Blair and Co．，of Stockton，on their triple expan－ sion principle，having cylinders 24in，40in．，and 66 in．，with 45 in．length of stroke．
Messrs．Joseph L．Thompson and Sons，Sunder－ somely modelled steel screw steamer of the fol lowing dimensions，viz：
breadth，extreme， 38 ft ．dength，B．P．Pe， 284 ft ． dead weight capacity about 2950 tons at 19 ift 2 in draught，with Lloyd＇s freeboard．Classed 100 Ai
at Lloyd＇s．This vessel has been built to the order of Messrs．John H．Barry and Co．，of
Whit Whitby，and is the eighth vessel built by this firm
for the same owners she is built on the web frame and longitudinal plate intercostal system， thereby dispensing with hold or orlop deck beams －has raised quarter deck，full poop，long bridge， 118ft．，topgallant forecastle，iron decks，six iron
bulkheads，five large hatchways，and is itted bulkheads，five large hatchways，and is fitted
with all the latest improvements，viz：－－Harfield＇s patent windlass，four large steam winchese，by
Lynn of Pallion，Copper＇s steam and hand steering gear combined，and also Hasties＇patent scre steering apparatus on the poop．The engines
which are of the triple expansion type are being which are or the triple exppn Par type，are bein Works，Sunderland，of 180 －horse power，cylinders
21 inin， 35 in ．， 5 Sin．，with a stroke of 39 inh ．Tw steel boilers，150il，working pressure w will aws also
be fitted with Dickinson＇s patent steel buil crank shaft，and Blase＇s donkey boiler．TThis
cole and has been fitted up in every respect to meet the requirements of the Grain Cargoes Act
of 1880 ．

THE PATENT JOURNAI

Application for Letters Patent．

 ＊When patents have been＂communicated＂thename and address of the communicating party are primtoa in
 5651．Roadways，\＆c．，E．Tuthill，London．
5652．BICYCLEs，T．A．Aston，Birmingham．
5653．Propeling Velocipedes，J．A．Step 653．Propelling Velocipedes，J．A．Stephan and R．
Southerton，Birmingham．
5654．Hat Blocking Machines，G．Atherton．－（R．
Fickmeyer，United States．） sickmeyer，United States．）
Sorivine，G．Atherton．－（ R ．
SFINING and Puring Softening and Purifying Water，G．E．Davis，
．Winding UP．Bandages G．F．Williamson，J．Daw－
n，and H．W．Bean，Wellingborough． Multiple Expansion Steam－engines，J．Spear， SETTING the Brims of Felt Hats，W．and J．Hors－
ld．Manchester． ，Manchester．
BUTTON－Hooks，J．T．B．Bennett，Birmingham，
SUGAR－CANE MILLS，J．Thomson and J．Black， sow．
Puripying Sewage，\＆c．，G．E．Davis and G．B Aitken，Manchester．W．E．Gedge．－（The Hunt Auto Ric Loom Company，United States．）
RIvis，M．Arrod，London．
Link－patate for Locks on Leather Bags，H．and
H．Sanders，Walsall． GAs Cocr，A．Thomson，Lowfields．
CArding MAchines，W．Cumninghan Chimney Cowls，J．＇Drummond，Glasgow 66s．Winntiva and Doubling Mechanism，C．Sipman，
Nottingham． Nottingham．
Mifiti Feed Lubricators，J．L．Grandison，
Manchester． 5670．Fastenings for Gloves，\＆c．，W．A．Critchlow
London．
5671．Jornts of Drain Pipes，W．C．Roberts，London． London．
7．Jonss of Drain PIpes，W．W．C．Roberts，London．
Wace Machive，J．Wolley，London． ondonshes，J．Raper，M．Pearson，and F．Gill，
4．Steam Motor Engines，G．W．Newall and J．F 5674．Steam Motor Engines，G．W．Newall and J．F
Biyth，London．
665．Indicating the Level of Liquids in Vessels T．Anderson，London．
5676．A more Perfect Combustion of Fuel，J．Platt， 5677．Tables，\＆c．，F．Wakefield，Liverpool．
567s．Raising the Tables of Circular Sa
5679．Preventing Accidents in Hoists，W．H．Noble，

 Unhite States．） 5694．Sound Producing Lock，\＆c．，F．G．Grifith London．
5695．Spring Wheel for Traction Engines，T．F．and J．H．Braime，London．
5966．GoLoshes，A．H．Scaife，London． 5696．Goloshes，A．H．Scaife，London．
5697．Pott for TinNing Plates，J．Abbott，London．
5698．Preparing Pottery to Receive Metal Pipes S．H．Rowley，London．
5699．Handle and Socket Connection，J．Marston， London．
5700．Portable Lathe，A．F．Bergström，London．
7701．Rolled GLass，J．Armstrong，London． 5702．GLALEING，J．Armstrong，London．
703．FIRE－KINDER 5703．FIIRE－KNDLLERS，M．A．Haudecour and L．E．P．
Courtois，London． 5704．Binding Elec
London 5705．Genveration of Steam，E．Edwards．－（E．C．Son－
nett and A．A．Leredde，France．）． 5706．Decootirating Machines，O．Imray．－（B．Thoens， United States．）
5707．CuT－otrs for Electric Arc Lamps，E．F．H．H
Lauckert and H． Lauckert and H．W．Kingston，London．
5708．HEATING MILK，J．F．O．Qvistgaard，London．
5709．DYNAMO－ELETRTI Liondon． 5710．Saving Life at Sea，J．Johnson，London．
5711．Printing Machines，J．Kerr and J．N．Wilson，
London． 5712．Steam Engines，D．Joy，London．
5773．Sounding Post for Violonceli 5714．Sulphuric Anhydride，W．S．Squire I 5715．Countrraoils，P．J．Donnelly，London．
5716． 5716．Keeping Cash Accounts，P．J．Donnelly
London．
5717．Eletrical Signaling，H．H．Lake．－（M．G 571s．Lasting Boors and Shoes，H．H．Lake．－（C．B Lancaster，United States．）．Lake．－（S．Wheeler．United
5719．Toller PAPER，H．H．Laker States．）Dynamo－Electric Machines，C．Coerper London． 5722 ．Hospital Bedsteads，C． 1 rake，London． 5722．Velocipedes，A．J．Boult．－（F．Renz，Germany．）
5723．BuIDIG MAterials，S．Pitt．－（G．Falconnier 5724．DVoss Guards for Car Axle－boxes，W．S．G
Baker，London． 5725．Combined Couch and Chair，A．Carter，London．
5726．Closing the Mouths of Bottles，R．H．Barrett， London．
5727．Compound Plates of Iron and Steel，A．Wilson，
London． 572 E ．Earth Closets，J．C．Morrell，Ealing．
20th April， 1887.
5729．Preparation of $\boldsymbol{\gamma}$－oxy－chineldine，W．R．Hodg
kinson，－（M．Conrad and L．Lïmpach，Bavaria．）
5730．Fexding Steam Botlers，J．Metcalfe and E
Davies Davies，London．
5731．Febing Steam Boilers，E．Davies and J Metcalfe，London．
5732 ．Pavs and Seats of Water－closets，J．Martin，
London．
5733．Retianixg Carriage Windows at a Required Height，A．E．Bingemann London．
5734．Lifting Apparatus，f．W．Buekley and A．T． Allen，Sheffield．
5735．Electric Apparatus for Baths，M．Humm， 5736．Sharpening the Teeth of Band Saws，T Duncan and D．Mills，Manchester．
5737 ．Mrchanism used for Looms，J．Ashworth，Lon
don． don．Giroulating Water for Heating Railway
5788．
Carriages，\＆e．，J．King，Liverpool，

而 ，

 Rent

 5792．Requiativg Supply of Gas to Gas Stoves，C．
Sparrow and J．Osgerby，London． 21st April， 1887.
5793．Roasting and Drying Farina，\＆c．，J．King， 5794．DIsc PUMPPS，J．Bowns，Manchester．
5795．Box or CouNTER CASE，F．G．Heath，Redditch，
Worcestershire． Worcestershire．
5796．Automatic Discharge Valve，W．L．Holland， Preston．
5797．Portable Photographic Camera，W．J．Smith，
Birmingham Birmingham．
5798．MovLDING the Impression of Blocks，\＆c．，J．
Caprini，Dublin． Caprini，Dublin．
5890．Blind Rollers，\＆c．，J．Duggan，Liverpool．
stead． 5801．Bours，\＆c．，D．Barnett and H．P．Barry，West
Bromwich． B802．Cord－Holders for Window Blinds，J．Walker， 5803．Attaching Explosives to the Sides of Ships， 5804．HAT ADJUSTER，C．Hudson and J．W．Rockliffe，
Newastle－on－Tyne． Neweastle－on－Tyne．
5805. Corrugated Paper，\＆c．，P．M．Crane and F．
Wilkinson，Manchester． Wilkinson，Manchester．
5so6．FAsten inas for BAGS，\＆c．，D．Graham and J．Y．
Fulton，Glasgow Fulton，Glasgow．
5son．Regirservag Games，J．Brindle，Whitehaven．
sos．Tires，J．Wroe，Manchester．
 States．）
5511．TERE and TIN－PLATES，G．Elias，London．
5812．PICTURE－HOLDER，W．D．Wilkinson and F．Fowler， Birmingham．
5813．Roor Carousal，M．Nobiling，Bradford．
5s14．Drying＂SLip＂or＂Slurry，＂T．H．Lodge， 5815．Poortland Cement，T．H．Lodge，London．
5816．Utilisation of Hot Waste Gases，T．H．Lodge， London．
5817．Wrapers for Oil Seed Crushing，T．McDonald， 5S18．Drying Pile Fabrics，H．Lister，Halifax． 519．Setting Angle Bars，N．Arthur，Glasgow．
5520．Differential Screws，H．H．Lake．－（W．Junge， G21．ADUSTABLE Boards of Wringing and othor
Machines，J．Whittaker，H．Whittaker，and W．
Whittaker，Halifax． S822．Gas VALVEIS，J．Breeden，London．
\＄23．CANDLESTICK，B．Carr，London
5823．Candlestick，B．Carr，London．
5824．Carbonto ACID，dc．，J．W．Knights and W．D， Gall，London． S826．Delivering Articles，D．S．Dawson，Liverpool．
5827．SpIrtit Lamps，J．Hatfield，London．Lones，Man－
S2．Window SAshes，J．Ward and W．Jones chester．
5529．Conse Confectionkry，W．F．Mulller，London．
5830 RIbs for Umbrenlas，dc．，D．M．Redmond， Londor．
583．Stoping Weaving Mauhines，W．B．Ball，
London．
 Toda，Comicis States．GASMOTor Engine and Dynamo－
ELETRO MACHINE，F．W．Crossley，London．

S336. Administrringe Vapours for Medicinal Pur.
posks, K. Schulze, London.

 1887, and numbered. at that time 6399 , A.D. DPss7,
which number is now cancelled. This application having been originaly included in No. 15,504, A.D

 included in No. 2755,
Rule 23, that date.1

22nd April, 1887.

5546. Drying LiskN, C.S. Crabtree, London.
5547. CHinkyr-por, H. Hayon London

S47. Crisery-ror, H. Hagon, London.
S48. Water TAPs, J. Ditchfield, Denton

 and .. Rosthwell, oldram.
S53. Utilisation of Sulphien Parnell and JJ. Simpson, Liverpool Lime, de., E. W.
S54. Propuction of SULPHIDE of AMMoniva, E. W. Parnell and J. Simpson, Liverpool.
5555. Morios of Loont, J. Allan, Dundee.
5S56. GAsLugr Goven under-Lyne.
585s Mred for Carding Exarses, J. H.
Johnson. - (La Societe Alsacierne de Constructions Sicenniques, France.)

 Coventry.
582. Dryving Clooks by Magnero-mlectrictry,
B. 5863. UTLLsisivg Vapour of Volatris Liquids, de., R.
Harrison and W. Oliver, East Sunderland.

ingsland, Gunners-

 hain. Fastexing Wisches to Fishisg Rods, J. e. 5872. Lamps, W. Cooper, London.
874. Cutina Cherse, \&c., R. Whiteway, London. S75. MANUFACTURE of Hoops, J. B. Bradshaw, Shef field. Window Fasteners, A. Barton and C. Arnold, STOT. Panist, A. Minter, London.
SS7:. HAIR PIN, G. W. Young, L.

 S89. PENHoLDER and BLotTER, G. W. Norton,
London. Sson. Hinh-rressure TAP, T. Firth, London.
S891. Cushions for Tresses, A. J. Boult.- (H. B. Niel. Ssen, Denmarke.) the Sides of Benstreans to the

 States.)
S896. SULP 6. SU

,
OOO. MEAsosurives R. RuLEs, M. A. W. W. Price and R. Corshan,
L90ndon.
5901. EARThenware Blocks and Tlues, J. D. Doulton, 5902. Photographic Lenses, T. R. Dallmeyer, Lon-
 5904. BALL VALVEs, W. F. King, London.
5905. DRIVING APPARATUS, A. Gray, Londo

23rd April, 1887.
5906. Artifitial Tebth, G. H. Jones, London:
5907. Trikers for Checking the Receipt of Fares, J.
 Glasgow.
5911. TRachivg Musio, M. Muddlestone, London.
PEN-WIPER And

5913. Takince the Prtch of Screw Proprleers, W. S.

5914. CoAL VASES, E. L. Millar, Bishopston.
5915. Looos, W. H. Hacking Manchester.
5916. HAMMER HANDLLS and Spoke SHAFrs, w. Cowley,
 Birmingham.
5919. Decorticating, de., Pepper Corns, F. Cross, Charlton.
5920. Perperual Cutrina Machines, F. Shaw and J. W9. Senior, Hairax
 5923. Controlunge the Action of Photographic ShutTERRS, G. S. Martin, London.
25. SEIf-Activa Brake, G. Kite, and A. F. Williams,
5926. . . Rivess for DRessirg Stuk, F. Fleming and J.
Garside, Halifax.

 Turner Hons for Weaving.) Gavzes of Doothies, J. 5930. Portable Supports for Tarpaulins, Ho wil
 932. Working Flyzr Frames, J. Heginbottom, Oldham.
233. Oven Flues, H. Whiteside, London. L934.
Lon.
935.
Cond other Forks, w. Bell, Shefield.
 5937. Araand Burxers, W. B. Wieken, London. 5998. REMEDY for a Cough, C. Schuttyser, London.
9339. LAce Curtain and WINDow BLINDS, J. F. Forth,
 941. Bastre for use with
Howard, London.
 di3. Souses for Boors, A. J. Boult.-(J. Wist and A. 44. OHanse, J. B. Elis,

948. TEAPors, M. Law, London.
94.
94.
Putars,
F. R. Firbairns, London
 52. Fishiva Reb.s, W. J. Kerr, London.

5961.
5966.
5963.
5.

964. Water Heatrrs, A. H. Crocksord, London.
5996. ALbucss, H. A. M. Dititmar, London.
5967. AERATING LIquID, J. S. Fairfax, London.

969. Bracks, F. G. Hodges, Shrewserbury.
5970. MAPARTING LATERAL Movenevt, to BARs in
WARP MAchiNE, J. Carver and J. Newton, Notting.
5971. Hor-watrr Apparatus, T. Heaps, Huddersfield.
5972. ATTAchiva TELEGRAPHIC, dec, Insulators to Bours, «ce., A. Johhston, Dundee.
5973. Fisheri.ates, W. Frarquhar, Norfolk

 Sitton Coldfifld.
5979. PITER CLEARER and MATCH-boג, G. W. Mohrstadt, Harborne, near Birmingham.
5980. REFEMTRR Action for ALA
and J. G. Rollason, Birmingham Lock
5981. Gis Moross, E. Korting, London.

 285. Sitites Liverpool.
 Henry, Abe
 FURNACEs, H. Cotton and R. Moon, Liverpool.
INDICATor, A. C. E. Howe, P. Foord, and w, Barber, London Barnsley.
5993. Fsstivisas, J. Ruscoe, Cheshire.
5994. BuckIEs, C. C. Ellis, London.

 for the Food of Mus, R. Jones, London. D. Bridge,
6004. Frrerom Clurtur, R Heywood and Manchester:
6005. LLace and STrip Curtive Machise,
H. E. Newstead and W. Hartley, Otley. GH. E. Newstead and W. Hartley, Otley. wich, rear Manchester.
6007, CospENsING Stes, de., J. and G. Weir, Glasgow.
Goos. CaNDLe and Lastr Holders, w. b. Challice, Coog. Framale Attire, J. Onions and J. Cooper, 6010. Rociary Hair Brush, F. A. Richardson, London,
6011. WATch SwivEI, W. W. Philp, London,
 Perry, London.
6013. Goven ions for Reguativg the Sperd of Steas
ors.

 6018. Purirytina Hyphocarbow Oil, A. J. Boult.- (D
 6020. Sininvirge, de., MAchises, C. W. Lancaster and
E. Thormanm, London

 London.
6027. WINDow Fastever, A. E. Rhodes, London.
602S. MINERS' G029. Metaluic Siliphates, W. N. Hartley and W. E.
 London.
6032. RREREVING, \&c. SExsITIVE PLATEs, E. Edwards. 603. Pristisp in Cotovers, Hichany. . .ffrost, London.
6085. Tense-plates, C. Morris and G. Birkbeek,
London. 6036. Leiather Roller Covers, w. Kaulhausen,
London.

SELECTED AMERICAN PATENTS.

 (From he Onited slates Palent o.fice opticial Gazette.) 358,445. Machine for Tapping Mains, o. B. Hall, machine arranged to operate substantially as described of a stud anranged to be forced downward upon the
centre of the erotary tool carrying plate, substantially as specified. (2) In a pipe tapping machine, the com-

bination with body A, bar m, supported above
and by said body, rotary plate e, carrying the drilland by said body, rotary plate e carrying the drinl.
tap and carrier i, and means for depressing said tools,
of stud s, arrmaned to be forced against the centre of of stud δ arranged to be forced against the entre o
said plate and to resist the upward pressure thereon
sulsstantitily substantially as specified.
358,454. CAR SEAT, C. W. Johson, Philudelphia, Pa.
-Filed Norember 25th, 1885 . Claim.-In a car seat, the combination, with ${ }^{\text {an }}$
vertical end piece which forms a support and consists of a frame designed and grapte on its upper edge, and
and having a circular groove

a notched quadrant which enters the groove in the
vertical support and having also a curved slot, of a connecting boit which passes sthrough an opening in
the vertical support and th Che vertical support and through said curved slot in
thi
the movale frame and apring bolt having its bear-
the on ings on the said dixed support and engaging with said
notehed quadrant substantially as shown and de-
 Claim. - The combination, with the finger having the
raised portion in front of its shank projected laterally forming the horns a a, which have their forward
odges curved, as shown, said rased portion having edges curved as shown, said raised portion having
the recess a^{2} in its upper front eegee, which forms the

358,489

ridge ${ }^{\prime}$, of the ledger plate having the shank B^{\prime} seatead
in the reces, fitted snugly against the ridge, and
 forwardes, overlap. and fit closely against the curved
forth. ${ }^{\text {dges of the horns, as and for the purpose se }}$
358,500. Hot-BLass Srove, V.
Claiin.-(1) A hot-blast stove containing regenerative
work, comnections thereto for an inflow and outflow of
ber a connection leading from the combustion chamber
to the stove, and a valve in said ast-mentioned connece. tion, combined substantially as and for the purpose
set forth. (2) A hot-blast stove containing regenera tive work, commections thereto for the inflow and out flow of blast, and provided with valves, a chimney
connection thereto oprovided
with a valve, a combus tion chamber exterior to the stove, a connection lead ing from the base of the combustion chamber to the stile, a valve in the hast-mentioned connection, a gas
inlet the bose of the combustion chamber, and
pantion chamber toward the roof thereof, between the inlet and the gas connection to the stove, combine
substantinlly
as and for the hot-blast stove containing remertive work (o) tions shereto ocontaiming regenereativo work, inflow and outlow of blast, and
provided with value provided with valves, a chimney connection thereto
provided with a valve, a combustion chamber oterit to the stove, a connection leading from the combus.
tion chamber to tion chamber to the stove, a valve in said last-mentioned
comnection,
 of gas and air supply, combined substantially as and stoves containing regenerative work, connections
thereto for the inflow and outflow of bast, and proprovided with valves, chis provided with vavees a combustion chamber, a aga
inlet to the combustion chamber, oomections leading
from the ombstion from the combustion chamber to the stoves, and
valves in samid last-mentioned connections, combined substantially as and for the purpose set forth.
 Cugust 30th, 1886 .
Claim.-(1) In an electrically actuated fluid pressure
motor, the combinatien of a helix or coil, an armature a valve moving rod actuated therebor, an aymaturer,
main piston and stem working therein, and valves

and valve stems for governing the induction and
eduction of fluid, all located in or near the same axial
俍 line, these members being combined for joint opera-
tion to adapt the motor for lateral connection to and

Or ncurly in the axial line of such helix, valve stems
$\varepsilon_{z} z$, valves c c, , spring $z z^{2}$, and suitable antankement of

 Claim.-In an incandescent electric lamp, the com-
bination, with the open mouthed glass globe and the London
Lo3. PREF

Blast, and provided with valves, a chimney connection
thereto provided with a valve, a combustion chamber
thereto provided with a valee, a combustion chamber
oxterior to the stove, a gas inlet to the combustion cham-
358,599

Elass wire support entering centrally the mouth of
said globe, of a hardened plastic material applied to
to the outside both of the wipre suppport tand of applied tobo,
forming an a ir-tight joint beween them, substantainily
os set for

 358,600

as set forth. (2) The combination in:an electric amp
of two or more carbon filaments joined tor of two or more carbon filaments joined together by
electro-plating, and leading in wires comnected with eilectro-plataing and leading in wires comected with
sumben outhon
stantially as set forth.
stantially as set forth.

