THE MANCHESTER JUBILEE EXHIBITION.
On Tuesday last this Exhibition was opened by their Royal Highnesses the Prince and Princess of Wales, under favourable auspices. The day opened with drizzling rain, and the public began to make up their minds for a dull, wet day, sloppy streets, and dripping had ceased, and from that hour the day continued fine and dry overhead. By the time the Royal party reached the Exhibition from Tatton Park, the residence of Lord Egerton, the interior of the building presented a brilliant ppearance. So far as the eye could reach every exhibit appeared to be complete and in its place. This state of preparedness is no doubt mainly due to the energy and experience of Mr . Lee Bapty, the manager, who, it may be remembered, acted in a similar capacity at the Liverpool Exhibition last year, when he must have acquired an extensive experience of the numberlesssmall matters that go so far to make or mar the success of an undertaking of this character. There may doubtless be many not very prominent features
which are not vet complete; but to all inents plete; but to all intents and purposes the exkrbition is finished. The managing committee, who set themselves the undertaking by the day fixed for opening have fixed for opening, have from the first up to the resent time, and have kept faith with the uarantors and the public.

In many respects, as we have already pointed superior, not only in extent, but in variety, to anything that has been seen in England for several years. All the conditions are favourable to its success, for it possesses those elements of attraction
which have been found so popular in London, inasmuch as it closely adjoins the Botanic Gardens, and as these will be thrown open to the visitors, it will be easy to provide open-air attractions of no common order of merit. The experience obtained in London is being uti'ised to the best advantage, and the results ought to be all that the promoters of the enterprise can desire. The electric lighting arrangements are admirable, and the illuminated fountains in the gardens will no doubt charm a host of sightseers. As we have already explained, they
will be worked on a simplified and improved system. The will be worked on a simplified and improved system. The are on a scale which relegates even "Old London" to second place. They are full of interest, and if care be taken that the visitor can see these old houses, gate-ways, towers, and market crosses, without being pestered to buy articles wholly incongruous to the surroundings, they cannot fail to prove instructive and attractive.
It is too soon yet to speak in detail of those portions of the Exhibition with which it is our special province to deal, but we may say that the contents of the great machinery gallery fully maintain not only the reputation of Manchester, but of England. Never, since 1862, has anything like the display of textile machinery been seen within our shores. It will be well, however, to say here at once that in steam machinery and machine tools there are no startling represent the our readers. The exhibits the district surrounding it of Manchester and tainly have not done our it, and we most cerin past years if we our duty by our readers in past years if we have not kept them developments of steam machinery and machine tools in Manchester, Leeds, Bolton \&c. \&c. The word "novel" is, however, after all, a term of comparison. Thus, for example, the engines employed by Messrs. Galloway in producing the electric light are identical in all respects with those quite new in design and in fact, last year which were employed for a similar purpose at South Kensington. One point which will at once strike the visitor is the extended and extending use of rope gearing instead of toothed gear or belts in the Manchester district. It is not too much to say that the days of cogged main driving gear are ended. The rope-driving system lends itself admirably to cotton mill purposes. These in the basement is provided with a many grooved fly-wheel and from this endless ropes are led to each floor, the number being proportioned to the power required in each storey. The extent to which the system is pushed may be imagined when we say that Messrs. Hicks and Co., of
Bolton, not very long since sent out to India a compound
engine capable of indicating over 2000 -horse power. The fly-wheel was grooved for thirty-six ropes, and weighed complete 120 tons. The power transmitted by each rope different makers, but it may be assumed that 40 -horse power indicated can be safely transmitted with one rope, and so popular and flexible is the system that small engines can now be seen using only three ropes, and constituting a notable contrast to the monster machines to
which we have referred above.
The main building of the Exhibition claims the special attention of all who are interested in iron structures. It is a remarkable example of the adaptation of means to an end. The building is in the nature of things to be temporary. Hitherto exhibition buildings, such as those ,

is only 60 ft . The dome is 90 ft . in diameter, and is supported, as, indeed, is most of the roof covering, by slender, clustered iron columns. The approach avenue from the royal entrance in Old Trafford-road forms a most imposing corridor. It is 600 ft . long, and is covered in for its entire extent. There is a broad causeway down the with exotic ferns, pard side there is a wide margin planted as a whole, presents a feature that for luxuriance of vegetation is almost unique. This covered road is lighted after dark by electric arc lights with excellent effect. Both north and south of the main building there is a vast covered area of ground, where the aim has been to afford protection for machinery and other exhibits rather than to satisfy the eye by architectural effect. A special area of large extent has been devoted on the north side of the nave to the Irish section, which is well filled with exhibits of various kinds, some of which will be referred to in a future notice, but almost all of such a character as to show greatexcellence of workmanshipand design. The largeannexe on the south side of the main building is almost wholly occupied by machinery at rest and in motion. This area is separated from the main building by Talbot-road, across which is carried a footbridge of 70 ft . span, which is used by all visitors arriving by rail at the Exhibition station. In addition to the Botanic Gardens, there is a considerable area available for open-air recreation. This ground is situated for the most part near Talbot-road, and it contains detached buildings, notably a creamery, conservato-
ries, billiard-room and moking - room. The proximity of the Botanic Gardens, as a matter of course, sug-
gested the provision of
at Liverpool and Edinburgh last year, and that at New castle-on-Tyne this year, have been usually constructed rincipally of wood. The disastrous experience obtained ast year at Liverpool has, however, borne good fruit, and the Manchester building will probably serve as an illustration of what to imitate, to as great an extent as the profane already Piperies." The whole structure is built up of pipes and tubes in a most ingenious way, and as this is the first structure of the kind made on anything like so large a scale, we describe and illustrate it in detail.
We are indebted to the architects of the building Messrs. Maxwell and Tuke, for the working drawings of the roofing, which are shown on pp. 346 and 351 . As they give evidence of considerable skill and economy of con-

LEE AND HUNT'S SAWING MACHINE.
struction, they will doubtless be interesting, and will be eferred to in detail hereafter
The principal building consists of a nave or main avenue, 1000ft. long, crossed at the middle point by
transepts, surmounted by a graceful dome, which is finished above by a well-proportioned lantern, which is the ends of the nave are situated two pavilions which rise to a considerable height above the nave roof, makin with the dome a pleasing sky line, not usually found in exhibition buildings. The interior of the building when viewed from one end presents a very satisfactory vista The nave has a total width of 100 ft ., but as the sides partitioned off to form rows for the display of furniture and other matters, the visible width of the main avenue
made the Fisheries and
the other recent exhibitions at South Ke Fisheries and joyable as a summer resort. The grounds have been rearranged to a great extent. A wide promenade has been formed, with a band stand at each end, and, as we have said, a magnificent fountain has been provided for display with electric light
The roofs of the Exhibition building contain several features of a novel kind. The architects have shown considerable ingenuity in using those forms and sections of so that are commonly found in the market; by doing so the delay consequent upon the adoption of special designs has been avoided, for with the exception of some could be procured inecial form, every portion The adoption of the ordinary forms of iron has, of course, been attended with economy in two respects. The material was doubtless cheaper at first cost, and if the building is to be taken down when its present purpose is served, the greater part of the material will be available for the purposes for which it was originally made.
The whole of the columns are built up of flanged pipes of 4 in . interior diameter, having a thickness of $\frac{1}{2} \mathrm{in}$. arpd flanges of $\frac{3}{4} \mathrm{in}$. faced. They are placed in groups of two, three, and effect. Between the flanges are fixed cast iron zones, which are beaded round the edge, and as they project a little beyond the outer edge of the flange, they almost entirely conceal the fact that so utilitarian a material as a steam pipe has been employed. These zones have a further use in some situations, as they are then cast with a lug, to which
is attached any tie or bracing that is is attached any tie or bracing that is required. Ordinary angle and T-iron is largely used, and it will be seen by the drawings that hardly any smiths' work has been necessary. The labour has consisted almost entirely of shearing, punching, and rivetting. The arrangement of the purlins is both simple and sound in construction. They are for the most part made of wrought iron end; these are passed through a purlin coupling of cast iron, and are fixed in position by nuts, which are tapped o fit the screw of the water pipe.
Most of the tie-rods also are made of small iron waterpipes, and these are attached at the ends in a simple but effective way. A piece of flat bar iron is punched with a hole in the centre and a hole at each end. The bar is then bent twice at right angles, bringing the ends into proximity, so that any number of flat bars can be gripped
and a bolt passed through the whole thickness. The end of the tubular tie-rod is then passed through the centre hole in the strap, and a nut is screwed on the end of the pipe, by which the whole can be drawn tightly together
It will be seen from the drawings that the suspending

THE MANCHESTER EXHIBITION BUILDINGS.-DETAILS OF DOME. messrs. maxwell and tuke, manchester, architects.

rods are also made of drawn tubes, and are attached to the tie-rods by ordinary T pieces or junctions. The clustered columns are secured to the brick foundation by being bolted down to a cast iron bed plate of $1 \frac{1}{4} \mathrm{in}$. thick. The heads of the bolts are countersunk, so as to ensure a miform bearing on the brickwork, and the bed plates are secured by
brickwork.
In the roofs of the low main buildings, not only are all the pipes, but the rafters and purlins are of the same class of material. The struts are rincipals, and what nswers for aide what made of flat bar iron punched and formed to suitable shape to receive the ends of the pipes which are attached with uts, as above described for the tie rods. The ome, which is twelvesided in plan, is of graceful form, and is very light construction. Each rib s made up of two T rons, which are tied together by ordinary lagonal bracing of angle ron $2 \mathrm{in} . \times 2 \mathrm{in} . \times \frac{3}{8}$, each having a single rivet at each end. No pipes this part of employed in but the necessary ties are of steel wire rope, which is so light as to be hardly visible from the loor of the building. There are two complete sets of tie wires which dily the dome horizontally, but diagonally as shown on the plan of the lantern, touching each ther as they pass.
The buildings are, with very few exceptions,
covered with corrugated ron, and no other material is used with it, except in the music-room at the eastern end of the building, where the inside of both roof and walls is lined with thin boarding, which, for obvious reasons, is more suitable than galvanised iron and ordmary brickwork.
The Exhibition buildings are situated at some distance fom the centre of the city, but there are ample facilities provided for reaching it by both road and rail. The principal, or as it is called, the Royal entrance, is in Chester-road, a few yards from the gates of the Botanic Gardens. The Exhibition is divided into two sections by Chester-road, a thoroughfare 70ft. wide ; on the north side is the main building, on the south the great machinery hall 510 ft . long and 210 ft . wide. This will be devoted to machinery in motion; opening off it, still to the south, is an annexe 180ft. square for machinery at rest. The entire building is, as we have already ontract for the whole of the are ighting has been placed with the Anglo-American Brush Electric Light lamps employed is 546, number of those required for the private use of exhibitors. All the lamps are of the Brush standard patteru, working with current of 10 atern, working with maintained by twenty-six dynamos nclusive of spare machines ; the engines employed to drive the engines employed to drive the
lynamos are by Messrs. Robey, Hornsby, Davey Paxman, Ruston, Proctor, and Yates, and are arranged to suit the requirements of the seveal circuits as nearly as possible The types of the machines employed, No. 8, 35 lamps; No. $7 \mathrm{~L}, 25$ lamps No. 7, 15 lamps; so that in the event of failure of any of the dynamos a combination of fifty lamps may be easily formed for temporary purposes, thus-two No. $7 \mathrm{~L}, 50$ lamps; one No. 8 , ne No. $7=50$ lamps.
At the Colonial Exhibition there was no failure of a Brush dynamo during the whole run from May to November. But as accidents may happen even with the most perfect system and apparatus, the above arrangement has been adopted to reduce the risk of failure to a minimum. The conductors are carried entirely on porcelain insulators, and are also as well insulated as though they were to be laid underground or fixed direct to the ironwork of the buildings. The arrangement of lamps
and machinery has been designed by Mr. Bryson, who carried out the electrical work of the Edinburgh Exhibition with great success, and has assisted the contractor with his advic6 and support. It is claimed that owing to his thorough knowledge of the requirements of indus trial exhibitions that the Manchester Jubilee Exhibi tion will have not only the most perfect illumination, but also the most scientifically installed system of electric
lighting that has been produced up to the present time.

OPEN SPINDLE CAPSTAN REST CHASING LATHE
have double fly-wheels of great breadth, which carry four driving bands, actuating as many dynamos. Close by is Davey high speed vertical compound engines by Messis, shown last year at the Colonial Exhibition, where they attracted a great deal of attention because of the solidity of their build, the excellence of their workmanship and design, and the smoothness of their working. Next comes a double-cylinder compound by Messrs. Robey and Co., with Proel's gear, similar in all respects to that which has already been illustrated in our pages. This engine drives four dynamos for the Manchester and District Edison Electric Light Company, which will supply current for incandescent lamps. The next engine is a compound of beautiful finish, by Messrs. Ruston, Proctor, and Co.,
of Lincoln. This engine can be fitted with a condenser; 150 indicated horse-power.

The whole of the lighting plant is established in the west end of the machinery-in-motion hall. It is here that the great battery of Galloway boilers, to which reference These boilers been made in our columns, is installed. These boilers supply steam not only to the electric light engines, but for general purposes througharranged in three sets close to the boilers. One set arranged in three sets close to the boilers. One set consists of seven dynamos driven by a large compound engine by Messrs. Yates, of Blackburn, which we shall illustrate in an early impression. The fly-
wheel is grooved, and drives by ropes an overhead
but the condenser has been removed, as there is no water vailable. We illustrate the engine on page 348 .
The cylinders are respectively 14 in . diameter and 24 in diameter, with 32 in . stroke. The working barrel of the high-pressure cylinder is cast separately of specially selected hard metal and forced into the main casting, the space between forming the steam jacket, which completely surrounds the cylinder. The outer surfaces are finished The polished mahogany lagging secured by brass bands the cylmare trued up, and having face of the bed being accurately trued up, and having a projection entering the bore of each, so as to render it impossible to bolt them out of line. The under side of both bed-plate and cylinders is planed up ensuring a perfectly true bearing upon the stone
foundation. The slide foundation. The slide valves of the high-pres sure cylinder are divided and placed towards each end of the, cylinder, to keep the steam passages the back of each is an the back of each is an matically controlled by the governor, so as to vary the governor, so as admission of the steam
the adm to the cylinder from 1 per cent. up to 60 per cent. of the stroke. These valve are treble-ported, giving a smart cut-off, and actuated by expansion gear type; the link and die are of steel, and driven by are of steel, and driven by
a separate excentric, and a separate excentric, and being simple and durable. The slide valve to the low pressure cylinder is of the ordinary D pattern the steam chest being placed between the cylinders and made very acces sible by means of cover both on the top and at the end. The pistons are made

COOPER'S TURRET LATHE FOR BRASS FINISHING

countershaft. At one side of the central driven pulley on this shaft, are three belt pulleys, driving as many on the opposite side. The other end of the countershaft carries four belt pulleys driving as many dynamos, two before and two behind the shaft. Arranged at right angles to this installation are eight steam engines. Beginning at the boiler-house end are a very powerful pair of inverted engines by Messrs. Mather and Platt, of Salford. These we shall illustrate in an early impression, and therefore reserve our description. These engines with internal spring rings, bored taper and secured by nuts and cotters to steel piston rods. The crossheads are of the box pattern of cast steel. The slide bars are circular cast on the bed-plate and bored out by the same bar by which the flange of the bed-plate is faced for the cylinders, thus ensuring the guides and cylinders being absolutely in line. The slide blocks are of cast iron, with large wearing surfaces, and made adjustable. The con-necting-rods are of wrought iron turned up bright, fitted with brasses at both ends, with strap, gib, and cotter at the large end, the small end brass being let into an eye in the rod and adjusted by a cotter The length between the centres is two and a-half times the stroke of the engine. The slide rods are of steel, guides, with large case-hardened pins The excentric rods are of ron turned bright, and wrought straps with a T-foot and two bitted to each; the other ends are fitted with brasses and cotters to take with wear. The excentric straps are of cast ron, extra wide, with solid The sheaves are keyed on to the crank haft with sunk keys, to the crank arranged so that the sheaves can be easily turned to run the engine can be opposite direction. The feed-pump is bolted to the end of the bed-plate and driven by a separate excentric. The governor is of the "Porter" high-speed type, sensitive in action, connected directly to the expansion gear of the high-pressure cylinder, and driven by gearing. The crank shaft is of steel, orged solid, for the low-pressure cylinder, and for the high-pressure cylinder has a cast iron polished dis forced on the end by hydranlic pressure, and secured with a key. The
accurately fitted steel crank pin is accurately fitted steel crank pin is of the cranks are 3 ft ., and the shaft of the cranks are 3 ft. , and the shaft
is 8in. diameter in the bearings. The is 8 in . diameter in the bearings. The
pedestals are cast on the bedplate, the brasses in three pieces plate, the brasses in three pieces, horizontally and vertically. The caps are planed both to fit over the tops of the horns, and each secured by di bolts. The fy-wheel is 12 ft . 2 in . diameter by 15 ft , and keyed on to shaft. The revolutions per minute are seventy. The bed-plate is of the strongest girder pattern, made extra deep. The pedestals and slide bar: are cast on, and the cylinders bolted to the end as described; the centre of the engine being placed as low down as possible. The engine will indicate 120-horse power with 90 lb . boiler pressure, and will work up to

This engine drives three dynamos for the Edison Company, of which more presently. Beside it is a compound engine of much the same size by Messrs. Hornsby and Sons, Grantham, driving two large and two

THE MANCHESTER EXHIBITION.-COMPOUND ENGINE.
MESSRS. RUSTON, PROCTOR, AND CO. LINCOLN ENGINEERS.
(For description see page 347.)

small dynamos for the Brush Company. Next comes a dotuble-cylinder twin engine, non-compound, by Messrs. Robey, of Lincoln, driving two large and two Hornsby twin engine, also driving two large and two Hornsby twin engine, also driving two large and two girder type single cylinder Robey, driving one large and girder type single cylinder Robey, driving one large and three small dynamos. It is worth adding that nearly nine miles of wire leads are used in connection with the
4000 incandescent lamps. These have been supplied by Messrs. Walter T. Glover and Co., of Salford, the weight
with 750 lamps; and lastly, the various quaint buildings, shops, and houses forming the unique representation of "Old Manchester and Salford," with about 600 lamps , thus making a total of over 3000 incandescent lamps. The fine art galleries, which are built of brick $£ 2,000,000$, covered by insurance. Every precaution has been adopted in carrying out this important section of the installation, and the arrangements have received the sanction of the insurance offices upon the reports received from Mr. Musgrave : Heaphy, C.E., of the Phoenix office
sockets of a special form, and above each lamp is a 5 in . opal shade, which is effective in reflecting the light and preventing its being wasted upwards. Each the ordinary size ; these again are connected to the large subsidiary mains which run on each side the length of subsidiary mains which run on each side the length of
the rooms. These subsidiary main cables are passed the rooms. These subsidiary main cables are passed
through the walls of the galleries, where they are joined through the walls of the galleries, where they are joined
on to the heavy main cables which are brought from the dynamos. Within the rooms, and also outside, are placed numerous safety fuses and cut-outs, so that any excess

IO-INCH UNIVERSAL REST CAPSTAN LATHE.
of copper used being close on ten tons. It will be understood that Messrs. Galloway's installation for lighting the gardens and fountains, as described in our last impression, is quite independent of the installation with which we have just been dealing
The Manchester and District Edison Electric Light Company, which has been established in Manchester for morethan five years, was entrusted with the carrying out of the work for lighting certain portions of the building with about 3000 incandescent lamps. The plan adopted by the executive, under the advice and guidance of Mr. William A. Bryson, electrician to the Exhibition-who occupied a similar position at Edinburgh last year-was to divide the incandescent lighting into three sections-first, the fine art galleries, consisting of a series of splendid rooms, with a total of 1620 lamps; next, the palm house of the Butanieal Gardens, to be used as a series of dining rooms,
who was deputed by the various offices interested to examine the installations. These galleries consist of fourteen rooms in all, each being of the same width, but five being of slightly greater length, containing nine principals for supporting the roof, instead of seven, as in the others. Of these latter rooms, the two next the large rooms are without a partition and form a double which is attached to and under each principal in such a manner as not to be unsightly. There are fifteen incandescent lamps attached to each principal at a height of about 18 ft . from the floor, so that in the larger rooms there are 135 lamps in each, and in the small rooms 105 lamps. These lamps are of the type known as the Edison-Swan, with the wellknown Swan curled filament; they are of 16 -candle power, force of 100 to 104 volts. They are fitted into brass
of current beyond a certain point will be prevented from doing any harm. From the dynamo switch board ther are carried four pairs of main cables of large conducting area to the fine art galleries. Two pairs of these run t_{i} the extreme end of the galleries - a distance of 360 yards -and feed the farther portion of the rooms, whilst the two other pairs of cables, feeding the first portion only, go to the middle of the galleries-a distance of 280 yards. The mains are placed underneath the flooring of the Exhibition, until they arrive at the corner of the galleries in the east nave, where they are carried up and along the external brickwork of the galleries, being carefully secured. Each room throughout the galleries is connected with two of the circuits, so that the lighting of each alternate principal is from a different main. In the event of any dynamo breaking down or anything happen-
ing to any one circuit, the result would be to diminish
ROLLING M_ILLENGINE, NE E WORT MILLS, MIDDLESBROUGH head, m. INST. C.E., engineer. (For desription sec page 36C.)

the number of lights by one-half, the alternate principals Ine rooms being left fully lighted.
In palm house, which his
In the palm house, which has been altered into the
Victoria" dining-room, a very brilliant and pretty "Victoria" dining-room, a very brilliant and pretty effect
has been obtained. Hanging from the roof are numerous lamps, and amongst the foliage and ferns are others to be seen, whilst the general effect is that of a soft clear ligh on the diming-tables without offence to the eyes. are three pairs of main cables from 400 yards, and running alongside them and carried further to a total distance of bout one quarter of a mile from the dynamos are thre more pairs of main cables, which light up "Old Man chester and Salford." From a mast 100ft. high two are
lamps (worked on the incandescent circuit) are fixed, in lamps (worked on the incandescent circuit) are fixed, in order to git
the old city
The various dynamos, which are utilised for producing the current required for illuminating the 3000 incandes cent lamps, are placed, as we have already explained, in mnexe and are eleven in number, three being used in miexe, and ele in ming three being used i the Victoria dining-rooms and "Old Manchester and Salford," and two spare. The four dynamos in the fine arts section, and the engines which drive them, are lent to the Exhibition by Messrs. Mather and Platt, of Salford. The engines are two massive vertical engines gether but working separately; each fly-wheel has twoshort belts, driving with jockey pulleys two dyamos. In connection with the first engine are two Edison-Hopkinson
dynamos-shunt wound-of 500 lights each, which were lynamos - shunt wound-of 500 lights each, which were
n use at the Indian and Colonial Exbipition last year. in use at the Indian and Colonial Exbipition last year, type, compound wound, each of 700 -light capacity400 amperes. These dynamos are connected to the main
cables of the fine arts section through a fine and cables of the fine arts section through a fine and
massive switch-board, which controls the various circuits. Each circuit is protected by an automatic magnetic cut-out. The "Victoria" dining rooms and "Old
Manchester and Salford "sections are divided into three circuits, which are carried on to the terminals of a second arge switch-board, and by means of sliding contacts are connected with three pairs of dynamos, or any one with the spare dynamo. The dynamos are of different type, or 500 lights; two Edison-Hopkinson shunt wound, each of 250 -light capacity; and four Edison dynamo shunt Hopkinson dynamos have been running for the Edison Company at their central station for more than two years. Special interest attaches to the four Edison dynamos, Edison himself in New York some six years ago. The have been in constant daily work in Manchester lighting
the Theatre Royal since December, 1882, and during that the Theatre Royal since December, 1882, and during that time they have not worn out a single pair
neither has any interruption occurred to them.
The two switch-boards, to which reference has been made, are 52 in . by 36in., and are mounted on enamelled
slate fixed in a mahogany board. They are provided with an automatic "cut-out" for each circuit, and the connections are massive, with more than sufficient metal to carry the currents used. They have been designed by Mr. J. R. Williamson, and manufactured to his order by Messrs. Charles L. Baker and Company, Cornbrook, Manchester. The entire incandescent installation has been carried out under the personal supervision and dire tion of Mr. J. R. Williamson, by an able staff of men, under the charge of Mr. H. Taffs, who have had at times especially out regards operations under great difficulties,
of such long lengths of heavy main cables.
It is too soon to attempt more than a limited notice of the exhibits. In due time we shall describe and illustrat all that is most interesting to our readers. For the pre-
sent we must be content to notice the exhibits of a few firms. We need scarcely say that machine tools, for which Manchester is famous, are shown in abundance. A very fine display is made by Messrs. Smith and Coventry, tools on pp. 345 and 349 . First, we have a 10in. universal rest capstan lathe. This lathe hasbeen designed to meet the requirements of marine engineers and others who require co cut square threads quickly. It embodies all the prin ciples and advantages of capstan rest chasing lathes, and lathe, with a hollow spindle so that bars can be passed through, gripped by the cone chuck, turned, pointed, and screw-cut; the thread can be cut with one run up or by
two or three cuts according to the finish required can also be placed between the centres and operated upon being capable of using five tools of varying forms lathe chasing apparatus is controlled by the same serew as the capstan rest, and as the latter is brought away from the atus is brought simultaneously into position for cor appabut when not in use it can be run over to the far side of the saddle and disengaged from the screw by a lever pro-
vided for the purpose. The spindle of the fast-headstock is case-hardened and ground, with parallel necks rumnin in hard cast iron steps. The saddle is fitted with capstan rest and patent chasing apparatus, guide screw, clasp nut, quick hand traverse and self-acting rack traverse, top driving apparatus, and the necessary screw keys, The advantages claimed for this lathe are - (1) Rapidity of production: It will screw-cut large V and square thread bolts most accurately, and more quickly than any
other machine yet introduced. (2) Universality: Bolts can be turned by the self-acting sliding motion, the
chasing apparatus then set to work, and the threads chasing apparatus then set to work, and the threads
rapidly chased; bolts with collars can be slided over and the collars turned and the threads chased; bars can be
parted off; bolt heads can be turned and chamfered advantageously, also large nuts. (3) Rapid change of tools
By means of the capstan rest, which carries five tools By means of the capstan rest, which carries five tools,
there is no loss of time in changing and re-setting tools. The next tool is a self-acting open-spindle capstan rest chasing-lathe, designed especially for making studs, joint pins, countersunk and cheese head screws, small screw with square heads, also for heading and pointing bolts and set screws, and turning and chamfering
nuts, \&c. It is claimed for this lathe that it embodies all the most recent improvements which long experience in the manufacture of patent chasing and open spindle lathe has suggested, and the latest addition, viz., the self-acting feed, has added very much to its rate of production by ensuring a definite rate of cutting, and relieving the with the hand feed. The engaging motion is instantaneous in its action, and combines the action of a solid nut held rigidly in gear and of a nut in gear only as long as held down by manual exertion, and which springs out of gear as soon as the pressure is removed; this gives great facility in its working. The lathe is fitted with a ast headstock, having a hollow spindle open at the sides, capable of admitting a bar of iron through it or of takin turned. The spindle is case-hardened wrought-iron, and is provided with a coned chuck for gripping the work true. The saddle is traversed on the bed by the selfacting feed described above, and also by hand, and is fitted with a revolving capstan rest, capable of holding five tools of forms suited to the requirements of the work; by simply revolving the rest each tool can be position while cutting. The patent chasing a fixed on the saddle at the back, so arranged that it can be at once fixed in position for chasing and immediately dis engaged and swung out of the way when not required A stop is provided for regulating the thickness of nuts,
bolt heads, sc., being turned; a lever for locking th saddle on bed when surfacing

A third tool is Cooper's patent turret lathe for brass finishing. In this lathe the loose headstock is replaced by a turret rest, which is arranged for six tools. Its repetituntion is the production of brass work in great repetition, the tools employed having to be carefuly derpted and set for each change of work. It has 8 in. ing es, and consists of a strong bed on standards, carry ing a double-geared or single-speed fast headstock with steel spindle, having conical necks carefully ground after hardening. The screw chasing apparatus consists of a of slide, swinging on a strong steel shaft at the back dathe, a lever being keyed on to the fast headstock the to the same shaft carrying a half-nut, which, when the tool slide is brought over, falls into gear with a short the chasing tool forward in correct pitch for chasing the required thread. An adjustable stop secures the exact diameter of thread, and an adjustment is provided for setting the tool half an inch above or below the centre of the work. The turret rest, which is a turned block of metal accurately drilled to carry six tools exactly con-
centric with the spindle of the fast headstock, is mounted centric with the spindle of the fast headstock, is mounted on compound slides with longitudinal and transverse
movements, worked by screws and handles as in a slide rest, the longitudinal slide being also arranged to disengage from the screw and move quickly by rack and pinion. The slide can also be set at an angle for taper work, and stops are provided to secure a rapid chang from partle haper town. Adjustanestops aro fited to the lathe to seche an exact repetition of size for the bol by i chag. The thol pest is serwe on bed an instans locking lever, and is traverse can be fitted to the lathe for taper chasing, and for knock ing off the chasing tool when chasing into a blind hole Messrs. Smith and Coventry also exhibit the beautiful machine, invented by Mr. Tighe Hamilton, and already described in our columns, for cu Illustrate and describe it again in its most improved forn straight or skew; tapered teeth in spur, crows, and contrate wheels or ; acks that when any convenient end adjustment of either takes up all shake between them; teeth of ordinary form in spur or worm wheels, with the power of regulating the thickness casting the the machine consists of a hollow body for carrying the heads spread out and formed into a slid and automatic stop motion connected with the overhead gear, whereby the machine is brought to a stand at the end of each cut, remaining in this state until started again by the operator on a fresh tooth. The spindle carrying the cutter has a reciprocating movement, which, by an ingenious arrangement of excentric, decreases as regulated at will. It is by this medium that the tape groove in a bevel wheel is cut A knee bracket carrie the table which has longitudinal and transverse slides the former having an index attached to it by means of which the work to be operated upon can be set exactly under the centre of the cutter. The table is fitted with universal head, having a hollow spindle so arranged that it can be set to any angle, while the dividing is done by means of a worm and worm wheel, the latter being caretaiking up wear
Messrs. Lee and Hunt, of Nottingham, show a good machine for cutting cold iron or steel, which we illustrate. Samples of the work done by this machine have been submitted to us, and we are unable to name any machine which will execute work of a better character. The machine will cut off perfectly square or to any exact angle, and to dead lengths, girder, channel, bulb, tee, will rapidly true the edges of very heary corrugated
plates or square the ends of heavy wrought iron tubes.
applied is slotting out engine cranks. Its construction will be readily understood from the engraving on page 345. long bearings for the shafts and leading screw, and broad planed surfaces for the saddle or travelling carriage. The table or bed for supporting work is a heavy casting attached by lipped planed facings and strong bolts to the main bed. The top is planed and grooved, and fitted with wo strong screwed steel pilars and a cross-bar for
cramping down the work to be cut. It is also fitted with an ajustable purge for The saddle carrying the cutting saw is a strong lengths. The sadare carying the cutting and fite casting, face a pelled either automatically or by hand, by means of steel peading serew. The rate of forwand or cutting thee is subject to several variations to suit the resistance of material to be operated upon, while the return is effected very rapidly by gearing. The danger of "over-running" is removed by an adjustable stop to automatically disengage the gear clutch at any point in forward or return large flange, a conical neck running in a forging with a bearing, fitted with lock-nuts for adjustment and carrying a phosphor bronze worm wheel, through which the power for revolving the saw is transmitted from the steel worm on the driving shaft. The saw is of the very highest quality of cast steel procurable, is hollow ground, and secured to the spindle by an improved arrangement. The gearing has double helical teeth, and all the wheels are either machine moulded or made from machine-cut patterns. The saws are kept sharp by an ingenious appaThe carrying an emery wheel to affix to the machine, , with a 24 in . saw for wrought iron girder 24 in. deep, with 6 in. flanges, can be cut through in about twenty-six minutes. The machine would be useful keep a large stock of bars and girders.
there is a very good display of locomotives. In the bogie engine, built at the Inchico works of the great Southern and Western Railway by Mr. Ivatt, who has succeeded Mr. Aspinall as locomotive superintendent of that line. The engine is very similar to those designed by Mr. Aspinall. It is very well finished, and reflects credit on all concerned in its production. Messrs. Sharp, Stewart, and Co., show near the rill entrance a Consolidation goods engine and tender for lines of one metre gauge, designed for heavy traffic on mountain railways, and to traverse curves of 100 metres radius. The engine and American practice best features of both English pilot or leading truck, and compensating beams, to secure flexibility, with steel plate frames and attachments, as usual in English practice. The boiler is of steel, the firebox of copper, and the tubes of wrought iron. The wheel centres are of cast iron, their tires, axles, and
crank pins of steel. The motion is of the link type, crank pins of steel. The motion is of the link type, actuating the valves through rocking shafts, the valves being placed above the cylinders. The arrangement of the smoke-box and chimmey is in accordance with the
latest American practice, the smoke-box being extended latest American practice, the smoke-box being extended
to allow room for ashes to accumulate without interfering with the draught in the lower tubes; a hopper is prowith the draught in the lower tubes; a hopper is pro-
vided for clearing out the ashes when standing. The boiler is fed by a pump and an injector of the builders American type. The cab is roomy, and provided with doors giving access to the platforms, and seats for the driver and fireman. The headlamp and cowcatcher are noticcabo A whe clothing-plates, whe are phen is carried on two four-wheeled bogies, with steel-plate ship and finish of both the engine and tender should be specially noticed.

The tractive power of the engine is naturally high, the wheels being very small, and the speed low. The calculated duties a

Exclusive of the weight of the engine and tende
Mr. Webb has sent one of his compound engines, and beside it is the reproduction of the Rocket, which attracted a good deal of attention at Liverpool last year,
and was illustrated not long since in our pages. The and was illustrated not long since in our pages. The
Lancashire and Yorkshire Company show an engine Lancashire and Yorkshire Company show an engine
which we shall illustrate in an early impression, and which we shall illustrate in an early impression, and
therefore reserve our description of it. The Manchester, therefore reserve our description of it. The Manchester,
Sheffield, and Lincolnshire Company show a four-coupled bogie express engine. Messrs. Beyer, Peacock, and Co , have a four-coupled engine; and Messrs. Nasmyth,
Wilson, and Co. also exhibit a four-coupled locomotive For the present we must reserve detailed descriptions of these engines.

The Geologists' Association will make an excursion to the Brent Valley and Reigate to-morrow. Members will assemble at Neasden Station at $3 o^{\circ}$ clock, and will
direction of Mr. J. Logan Lobley, F.G.S.

THE MANCHESTER EXHIBITION BUILDINGS.
MESSRS. MAXWELL AND TUKE, MANCHESTER, ARCHITECTS.

THE HENDON SEWERAGEAND SEWAGE WORKS.
messrs. edward cousins and son, westminster engineers.

HENDON SEWAGE WORKS.
The new sewage works at Welsh Harp, near Hendon, constructed from the designs and under the instruction of Messrs.
Edward Cousins, M.I.C.E., and Son, Westminster, were opened on the 23 rd April by Mr. E. R. Bartley Dennis, Chairman of the Hendon Local Board.
The new sewers for the drainage of Hendon, Child's Hill, Crickle-
wood, Golder's Green wood, Golder's Green, and Temple Fortune districts, are completed, and connected with the new sewage works, and in future the whole of the sewage from these districts will be treated at the new works, and the old tanks at present in use
will be abandoned. The total length of the sewers now in use for the drainage of these districts is $14 \frac{1}{2}$ miles. The Hendon Local Board District contains 8382 acres, and the rateable value of Hendon is $£ 101,000$.
The plan used at the Hendon works for the treatment of the sewage is as follows :-Firstly: The removal of the coarse, solid, floating matter by straining. Secondly : The addition of lime for the purpose of defecation and the precipitation of some of the organic matter in solution. Thirdly: The removal, by neans of settlement in tanks, of the suspended matter, and the clear water from the tanks, Fourthly: The decantation of the clear water from the tanks, and its purification by filtration
through specially prepared filtering beds.
Experience has shown that unless selt
cated, filtration through land is not effectual, because the defematter suspended in the sewage, and matters in solution readily removed, clog up the pores of the soil and destroy its efficacy both as a mechanical filter and as a purifying agent. It is therefore necessary to remove the matters which would destroy the filtering bed, and leave only the clarified water from the tanks to pass through the soil. During this passage through organisms which exist in the soil, and live upon the by the organic matter contained in the sewage. The result is that the nitrogenous matter which would otherwise putrefy is broken up and transformed into salts of ammonia, which are innocuous. The treatment at Hendon, although lime is used, differs from the lime treatment pursued elsewhere, and in this respect : It has been found that the addition of what is called "milk of lime" is not so effectual as if the lime is added as lime water, because it is only the dissolved lime, or that in solution, which is effectual. All sewage is highly charged with carbonic
acid, and the particles of lime in the milk of lime combine with acid, and the particles of lime in the milk of lime combine with the outside of the particle which is insoluble, and the lim
cannot enter into solution, and is prevented from doing its work. This loss Messrs. Cousins claim to have avoided at the
Hendon works by preparing lime-water almost saturated with

DIAGRAM SHOWING LIME AND SEWAGE MIXERS.
lime. One-sixth part of the whole sewage is withdrawn from the two carriers, and pumped into a continuous mixing vessel provided with agitating arms. A thin milk of lime is added, containing lime equal to 15 grains per gallon on the whole water mixing apparatus. The lime is thoroughly dissolved,
and the lime-water so obtained is added to the remaining five parts of the raw sewage, mixed by the Salmon ladder arrangement, and run into one of the settling tanks, where it remains in a state of quiescence; another tank is then filled, and so on be described as follows, with reference to the sketch annexed:An air compressing engine forces air into an accumulator at : pressure of about 10 lb . per square inch. A pipe is connected with this accumulator and the lower part of the mixer as shown. After the lime and water has been put into the mixers, the ai tap is opened, and the compressed air at 10 lb . escapes through the lime and water, and agitates and thoroughly mixes them. The milk of lime so made is then allowed to flow into the sewage mixing tank below, where it is thoroughly mixed up with one-
sixth of the volume of sewage under treatment, by means of sixth of the volume of sewage under treatment, by means of the lime water and sewage pass out to the points A and A seen on the plan, where it mixes with the other five-sixths of sewage in the channels running to the subsiding tanks, After five or six hours' rest, the clear water is run off by a floating arm, which accommodates itself to the varying level of the sewage, and the effluent is run on to the filter-beds, as before described, for the more complete purification. The sludge, or thin mud, remaining in the tanks is swept into a pipe, and run into a sludge-well. In the condition in which it arrives there it contains 95 per cent. of water and only 5 per cent. of solid
matter ; it is very putrescent, as it contains the foul matter thrown down by the sewage, and if not dealt with would soon become a nuisance. Up to within the last few years it was the accumulation of sludge on a sewage works which rendered it almost impracticable to work such a process without serious nuisance. The sludge could not be dealt with, and as it was run into pits, to attempt to drain the water from it-an almost impossible task-it entered into a vigorous state of putrefaction, and gave off all the evil odours which rendered sewage works so unbearable. All this it is intended to avoid by the method of disposing of
and Co., of Stratford.
This method, on its most approved principle, has been adopted at the Hendon works, and sludge-pressing machinery has been there erected on the most modern and economical system. The sludge is first mixed with 1 per cent. of lime in forcing vessels, and from these it is forced into the sludge presses by compressed air stored at a pressure of 100 lb . per square inch. The sludge presses are so constructed that everything forced into them must pass through a straining-
cloth before it leaves the machine. Consequently nothing but
clear water can leave the chambers, and the solid matter is retained between the plates, where it accumulates and, under the ${ }_{9}$ pressure produced by the air, forms a firm, coherent cake, 90 per cent. of the water originally present is got rid of, and the
sludge is brought into a condition in which it cannot liquefy or putrefy again, and so cannot give rise to any bad smells, putrefy again, and so cannot give rise to any bad smells. readily handled, and it can be carted away and used as a manure In the condition in which it is delivered from the press it is said to be nearly twice the value of farmyard manure; and as at other sewage works it is sold in this condition to the farmers, it is to be hoped that those in the neighbourhood of Hendon will use it in the same manner. Its value as a manure has been Professor Munro, of the Agricultural College, Downton, who Progards it as a manure of considerable value. It remains to be mentioned that the new method employed of forcing the sludge consists in using a fixed volume of compressed air over and over again without allowing it to escape ; and it has been demonstrated that at Crossness, where this system is also used, the sludge is forced with an expenditure of power of less than onefourth of that needed when the old plan of allowing the air to escape to waste was used.
The treatment at the Hendon Works results in a pure effluent collected from the filter-beds and discharged into the Brent, from the sludge presses. The appliances in use at the works

ACCURACY OF ARTILLERY FIRE.

Major Mackinlay, R.A., the author of the "Official Textbook on Gunnery," read a paper on the accuracy of artillery fire the United Service Institution on April 29th, which was disand and and The subject is on of sufficient importance to bring together an unusual number of artillerists, as is shown by the prolonged discussion. Th lecturer divided the subject into the following sections:-(1) Material ; (2) range finding; (3) sights ; (4) training; and (5)
correction of fire from observation. New type guns have correction of fire from observation. New type guns have accuracy and flatness of trajectory. At the same time highangle firing to strike ships' decks has been shown to be a possible achievement. Range firing has been much developed on land especially for coast work, by Major Watkins' system and instruments. At sea it is performed under great difficulties, and considerable ingenuity is shown in some of the expedient proposed to perfect it. Sights can hardly be dealt with excep in detail. Telescopic and improved sight of various kinds, especially Scott's, have given good results, and are really demanded by accurate guns. The old-fashioned guns would part of a process accurate out of proportion to another Training has been developed very imperfectly-constant target practice is not what is required. In India practice, field

Scott and General Smyth spoke on the system of biennial practice, by which a battery obtains a special supply every with scarcely any every alternate year, would be a better system. Captain Tupper, R.N., suggested firing trial shells with "phosphide of calcium," which would cause a smoke on the water for some time after graze, and afford a real means of judging distance. He also commended Hewitt's electric sights. Colonel Stirling supported the proposition of a summer camp at the Needles, and with Colonel Moncrieff spoke of firing at towed targets. Major Hay pointed out that only seven of our field, batteries, out of 120 , had the new guns such as would be needed for service. Major White, Lieutenant Young, Colonel Richardson, special arrangements to prevent aiming being interfered with by recoil in the new Russian gun mountings.
The chairman, General Goodenough, was able to inform the meeting that, in the course of about twelve months, two army corps would be completely armed with the new 12 -pounder guns.

SIMPLE METHOD OF TRACING THE JOINTS IN

 ELLIPTIC ARCHESM. Maurice d'Ocagne, in Les Annales des Ponts et Chaussées, gives the following simple method of tracing the joints in elliptic gives :-

are as follows :-A duplex pumping engine for raising one-sixth part of the sewage; a continuous mixing apparatus, with milk of air stove for mixing purposes, a sludge lift pump for elevating the sludge, a set of hydro-pneumatic forcing receivers, with the sludge, a set of hydro-pneumatic forcing receivers, with
hydraulic pumps; and two sludge presses, each capable of turning out 9 cwt . of pressed cake at an operation, which occupies about an hour. The steam is supplied to the whole by a 20 -horse power semi-portable boiler. The settling tanks are six in number, capable of holding 651,000 gallons of sewage. The filter beds at present constructed are ten in number; additional fourteen, fed by concrete and pipe carriers from the tanks, and covering an area of 30,300 square yards. They are constructed of a layer of soil 12in. deep, under which is 12 in . of burnt ballast, the whole thoroughly underdrained, the trenches over the pipes being filled with burnt ballast, and communicating with the Brent by a white brick effluent carrier.
The works are capable of dealing with the sewage of a population of 24,000 as a maximum. The quantity of lime used for treatment is a little less than 2 cwt. for every 100,000 gallons of sewage entering the works, and about 100 lb . of lime for every the whole works is about $£ 59,000$, and the annual cost of working is estimated at about $£ 570$ per annum
The method of precipitation by the lime supplemented by land filtration, adopted at Hendon, described, mended by Professor Frankland and Dr. Stevenson, and approved by Dr. Duprez. They considered that any other addition as a precipitant is unnecessary. They consider that lime, when properly applied, affords as good an effluent as any other and more costly precipitant, excepr, perhaps, lime and sulphate of alumina; but they consider the use of sulphate of alumina is unnecessary, when precipitation is to be supplemented by land filtration, and that where possible the cost of this sub-
stance should be avoided. To carry out their recommendation for properly dissolving the lime in one-sixth the volume of sewage, and afterwards mixing it with the remaining five-sixths, required specially designed machinery, which has been manufactured by Messrs. Johnson and Co., and which completely answers the purpose.

The Staveley Iron Co., Chesterfield, has appointed for London and South of England.
operations have for several years given the opportunity o
firing under conditions representing those firing under conditions representing those of actual war. For a few years past Lydd and Oakhampton have fur
nished something in this direction for our field artillery some provision is especially needed for our coast artillery. A summer camp at the Needles is suggested by Colonel Lyons, R.A. The judgment of effects is a branch of study itself, especially in the case of the employment of shrapnel with tim fuzes. This, as well as the use of trial shots, was discussed Finally, the question which has come up lately of the need of werse artillery was touched on. The German artillery often artillery with special powers of mobility is as much needed a ever. On the other hand, although Major MacKinlay did no raise it, the accuracy of artillery fire eventually involves the large question of the relative advantages of light and medium field pieces. If the fire of the 9 -pounder at 1000 yards is equal to that of the 13 -pounder at 2000 yards, it is clear that a great deal of the galloping and active movements of the horse artillery might be dispensed with, and a field battery might be an efficient substitute. It is to be remarked, however, that the 9 -pounder gun is specially censured, and its removal cried out 13 -pounder or 12 -pounder they become field batteries specially well horsed ; and this is what they should be. Whatever may be thought about the rapid movements which are so effective at a review, and so seldom really advisable under the fire of an enemy, there can be no doubt that for working on the flanks of an army, and for capability of moving at any point where guns are suddenly called for, horse artillery of this description is very valuable ; and in the case of forage being abundant, few would grudge the extra supply of horses, which gives increased powers when all goes well, and when pressure and loss comes furnishes battery strength and efficiency, under losses which cripple a field battery greatly.
In the discussion that followed Major Watkin spoke, in answer to a question, on his system of "predicted firing." This consists in following the course of a ship on a species of diagram, so as to be able to take a point in advance of her position any distance along her predicted course, and aiming at this point so as to be able to fire by electricity when the ship is seen to reach it. By this system the measuring accuracy is Hughes, M.P., complained of volunteers not being allowed to go through more than one course and not being able to purchase the "Proceedings of the Royal Artillery Institution." Major

Let $m^{1}, m^{2}, m^{3} \ldots m^{7}$ (Fig. 1) be points in the quarter with the ellipte. The tangents to the points A and B intersect at C; we then draw the lines A B and O C. The perpendiculars to

0 A, dropped from $m^{1} m^{2} \ldots m^{7}$, cut the line 0 C at the from the points $\dot{\mathrm{L}}, \dot{\mathrm{L}}, \dot{\mathrm{L}}$ \&c., cut the line $\mathrm{O} A$ at the points $\mathrm{N}^{1}, N^{2}, N^{3}, \ldots \mathrm{~N}^{7}$. Then the lines $\mathrm{M}^{1} \mathrm{~N}^{1}, \mathrm{M}^{2} \mathrm{~N}^{2}$, \&c., are the normals sought for.

Naval Engineer Appointments. - The following appoint ment has been made at the Admiralty:-Fleet Engineer
Reginald C. Oldknow, to the Pembroke, additional, for Chatham Reginald
Reserve.
Glasgow International Exhibition.-The ceremony of cutting the first sod for the foundation of the Glasgow Internationa King, the Lord Provost. The site is in the Kelvingrove Park, on the plain immediately in front of the University at Gilmore Hill. The buildings, which will be erected from designs prepared by Messrs. Campbell, Douglas, and Sellars, architects, of Glasgow, length and 360 ft . in breadth, with an annexe for the machinery one end, and there will be a transverse avenue across the whole breadth of the main building about half-way down. At the point which will rion the intention is to erect a dome 80ft. in diameter, Which will rise to a height of 110 ft . The guarantee fund is over
$£ 200,000$

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTICE.

** With this veel's number is issued as a Supplement a Two page

* Engraving of the Triple Expansion EnSines of the Royal Mail
Steamer Oroya. Every copy as issued by the Publisher contains Engraving of the Triple Expansion Engines of the Royal Mail
Steamer Oroya. Every copy as issued by the Publisher contains
this Supplement, and subscribers are requested to notify the fact this Supplement, and subsco
should they not receive it.

CONTENTS.

 Colours-blind niness and Engi

TO CORRESPONDENTS.

Registered Telegraphic Address "ENGINEER NEWSPAPER,

** All letters intended for insertion in The Engineer, or containing questions, must be accompanied by the name and address
of the writer, not necessarily for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous good faith. No
communications.
We cannot undertake to return drawings or manuscripts; we must therefore request correspondents to keep copies.
${ }^{*}$ In order to avoid trouble and confusion, we find it
inform correspondents that letters of inquiry addressed to the public, and intended for insertion in this column, must, in all cases, be accompanied by a large envelope legibly directed by the
writer to himself, and bearing a 1 d. postage stamp, in order that No notice vill be taken of communications which do not comply with these instructions.

E. W. H.- A letter axaits your application for it. SpExce. You will find ithat ,you require in Profesor Prestwich's "Water Supply, of the London Basin," or W. Whittaker's "Geology of the London

 5 and muriate of tin is used in dyeing. Sorres of patents have been takenout for recoeving tin from tine scrap, and large quantities of tin-plate
serap are eought, especially by Germany, apparently for the sake of the tin.

STOWING ANCHORS.

MEETINGS NEXT WEEK

THE ENGINEER.

MAY 6, 1887.
ocean penny postage
There are few of us probably who do not sympathise with Mr. Henniker Heaton's endeavour to secure a boon such as a uniform penny ocean postage rate would be ; but although that feeling is natural, it should not blind us to the difficulties which present themselves in opposition to the success of Mr. Heaton's advocacy. It seems to us that throughout the whole of that gentleman's speeches and writings upon the subject there is the omission of a most important factor in the question. He of letters as compared with that charged upon ordinary of letters as compared with that charged upon ordmary
merchandise, and so places pari passu in point of urgency of delivery the national correspondence with a bale of silk or a chest of tea. Can such a comparison be in any
way justified ? It must be recollected that a single letter, way justified ? It must be recollected that a single letter
upon which a charge of but a few pence is made for car riage and delivery, may determine transactions involving thousands of pounds. Such a single letter may be worth in point of insurance almost the value of the
whole cargo of the ship. Now, how is that insurance to be secured? Only by arrangements which shall assure to the conveyance of the mails both speed, regularity,
and safety. Those qualifications can be in part insured and safety. Those qualifications can be in part insured
for in the case of merchandise by the ordinary system of underwriting. In the case of letters, they have to be secured by the payment by the State of heavy subsi-
dies to steamship companies which shall make ic dies to steamship companies which shall make it
worth the while of these to undertake the responsibility worth the while of these to undertake the responsibility
But in some way or other the State must be re couped for the cost paid by it for such insurance. must be manifest that this cannot be attempted to be done by any rate of excessive postage to be charged by way of registration on letters sent by ocean routes. All
letters so sent must sink or survive together, and all cor respondence therefore, whatever its nature or relative importance, must perforce be compelled to contribute towards repaying the State the outlay it has to make to secure the greatest possible amount of security and dispatch. This point of insurance, and the cost it involves, appears to us, as we have said, to have been entirely over
looked in Mr. Heaton's public statements of his case We all can realise what the cost is. We know the tremendous expenditure necessary to add a speed of even a single knot per hour to a steamer after a certain rate of that expenditure has to be incurred to insure the punctuality demanded of the mail service; and we are punctuality demanded of the mail service; and we are
also all aware of the extra rate which has to be paid for the building and equipment of vessels to be employed in our ocean mail services. All these items of extra charge constitute the insurance rate on every letter dispatched beyond the seas - a rate not imposed by the necessities of land conveyance only. What claim has the public to be
entirely relieved at the cost of the State from the insurance it demands for its ocean correspondence? If the penny rate could be found adequate to afford such relief, we could understand that it might perhaps fairly be claimed; but even then it would be relatively unfair to our inland correspondence that this should be subjected to almost the same charge as that which could be made to cover, not alone the mere transit charges, but the insurance With the view of ascertaining
possible for mail steamers to far it would be neration the increased correspondence which assured in order to bring the revenue to be diust be an ocean peuny postal rate up to that now obtained from the rate at present ruling, we have made inquiry as to the space usually taken up by the mail bags of one of the most important of our mail-carrying steamer lines. We Assuming that half of this weight is due to letters, the remaining moiety being that of newspapers, parcels, \&c., we may reckon probably on twenty tons as being the
weight gross- the net being as low, we should say fifteen tons-with which we have to deal. On the Eastern mails we should have to increase this bulk by about an average of five times to bring the postal receipts up to payable payable. Instead of twenty tons, therefore, space would
have to be provided for 100 tons, and even then we should no nearer approach covering what we have termed the State insurance rate than we do at present. It is well known that our ocean mail expenses are very largely to the penny so multiply the correspondence with our Eastern Colonies, for instance, as not only to increase it fivefold-at which rate of increase we should be no better increased proportion which it must attain if the State is
ever to be fully recouped its present rate of outlay Alcho must at best be doubtful. By far the larger proportion,
we believe, of our oceanic correspondence is commercial in character. It can scarcely be expected that a reduction in the rate of postage would affect the number of letters of that description to any appreciable degree, for reasons which all men of business will understand. It is to private correspondence therefore we should have to look for the increase in the number of letters which alone would enable the present deficit paid by the State to be ever recouped. We have referred to the increased space which must be demanded for the extended correspondence expected. It is certain this cannot be given by the mail lines without subsidy. Although it may at the most involve some two hundred tons instead of the twenty at present carried hundred tons instead of the twenty at present carried borne so many thousands of miles for nothing; and should borne so many thousands of miles for nothing; and should
the present scale of freights improve, the imposition might add heavily to the expenditure of the PostmasterGeneral, and, consequently, to the necessity for further and not to be relied on extension of our Colonial corre-
spondence. Mr. Henniker Heaton's figures would be spondence. Mr. Henniker Heaton's figures would be the question did not prove the error he falls into of class ing the cost of mail conveyance with, as we have said, that of a bale of silk or chest of tea.
bridge failures in the united states.
On March 14th a railway bridge, variously known as the "Tin Bridge," Bussey Bridge, \&c., fell down, and a number of people were killed. In our impression for April 1st, we gave full particulars of this and certain which catastrophes of a singularly appalling character On the 16th of March these events, March we drew reasonings we warned our colonial friends, who appear to have rather a penchant for American engineers, to be careful in obtaining bridges from the United States. As was to be expected, some of our American friends are very angry with us for daring to hint that Americans could or would build a bad bridge. If our critics would but agree as to the grounds on which we are to be blamed their remarks would perhaps possess a force which they lack now. The Engineering News tells us that it was in no sense or way the fault of American engineers that the Bussey Bridge was a structure entirely unfit to discharge the duties it was called on to perform, It throws all the blame on the directors. "The Engineer, says our contemporary, "should have studied our report of the Bussey Bridge somewhat closer, and it would have seen neitherdesigned by nothing to do with the ailway company have an enciner after erection. American engineers cannot properly be held responsible for such work; and we must agree with our contemporary in the statement that this was one of the cases where the economy' of a rich corporation prevented the engineer
from having 'a fair chance.' The 'nearness' of the corporation and not the engineering profession must be charged with this and similar abortive bridge designs, and the too frequent consequences thereof. Now, it so directors of the United States, taking very much the same view as the Engineering News. We said that there were numbers of first-rate engineers in the United States, but that they did not get a fair chance; in a word, we
held the companies to be in fault as well as the men who, held the companies to be in fault as well as the men who, callung themselves engineers, have neither the knowledge,
the talent, or the honesty of purpose of a thorough the talent, or the honesty of purpose of a thorough looked. Turning to the American Railroad Gazette, we find not a defence of American engineers but of American railway directors who-we gather from our contemporary
--are really an immaculate set of men. We are told that -are really an immaculate set of men. We are told that when we hinted that they did not give engineers a fair chance; and, to convince us of our error, our contemporary produces an elaborate table to show how much
freights and fares have been reduced in the United States since the early days of railways. We think we may safely leave our contemporaries to fight
out this aspect of the case between them. Even in its praise of directors, however, the Railroad Gazette is inconsistent. Referring to the slaughter at Woodstock Bridge, when, it will be remembered, a whole train fell ff the track on to the ice below, where those passengers who survived the fall were burned to death in about ten minutes, we spoke of the bad quality of American steel that steel rails made in the States do not break. They are really too good; they bend and wear out, and are, it eems, too light for their work. They are, besides, made use rails of proper weight, things would be all right. It use rails of proper weight, things would be all right. It is more than himted that in parsimony is to be found the seem therefore that, after all, we were not so far wrong, and that the "demagogues" have some ground for complaint when their families are smashed up or burned alive
The Engineering News is driven to use a tu quoque, the Tay Bridge disaster of December, 1879." We hasten to assure our contemporary that we have done nothing of the kind. No subsequent event of a similar nature has occurred to obliterate from our memory that British rail f any dimeny erpre of life in Great Britain. has ever given way causing loss it that it weather. But lot urar an the failure of the Tay Bridge was as bad presented by what then? Sue imply that because a Scotch bridge tumbled down in a
hurricane we are to refrain from criticising American practice. The contention is too absurd. We quite agree with our contemporary, who, after citing the Tay Bridge
seems to have seen the folly of resorting to such weapon, and admits that "this sort of 'you're-another argument is poor business." The action taken by ou contemporaries is not without a spice of humour. Th Engineering News, indeed, was loudest in its denunciation of the bridge, and everyone who had had anything to do with it at first. We suppose it, desires to retain a
monoply of invective. It has not yet finished with the monoply of invective. It has not yet finished with the
directors. On the same page from which we have quoted directors. On the same page from which we have quoted
is an attack on the conduct of an inquiry into the cause of is an attack on the conduct of an inquiry into the cause of
the catastrophe. "The delay," we read," in making public the official finding as to the 'Tin Bridge' disaster is so astounding, and so far beyond all reasonable and rational explanation on an ordinary basis, that one can only believe
that there must be some peculiar and exceptional cause for that there must be some peculiar and exceptional cause for such strange delay, or in some elaborate technical presentation of the facts, or carefully-prepared piece of legislation,
which, when it appears, will amply excuse it; yet it is hard which, when it appears, will amply excuse it; yet it is hard to see how anything can do so altogether." This is another instance of how well they do things at the other side of the Atlantic. We venture to hazard a guess-only a guess-a the cause of the delay. The directors who, by putting up the "tin bridge," saved money - as we gather from our
contemporary-now see a way to save more money. There contemporary-now see a way to save more money. There
are no doubt very large claims made by widows, orphans, and other relatives against the company. Now, it is fair and reasonable to assume that these claims can be settled on a far more satisfactory basis-to the company -before a dannning report is made public than after know illegal in this, nor, judged by the railway standard, know illegal in this, nor, judged by the railway standard,
is it inmoral. It seems that the five experts called in are entirely unanimous, so that we agree with our contemporary that the delay in the publishing of the report is astounding, save on the one hypothesis, that the directors do not wish it to be made public till the latest possible moment. The delay will permit men's minds to cool, and it is always on the cards that another bridge may fall down any moment, and so direct attention froln the Bussey affair
While our statements stand a chance of being mis represented, it is worth while to go over ground already We have to repeat therefore that in the United States there are numbers of engineers of the highest abilityhonourable, competent, professional men in the fullest know it to be a fact. Such men do not build "tin briages." But we also know that in the United States men are allowed to practice as engineers, and get work as contractors, who are not indeed withoud mfit to be trusted with thay depend. Albert Smith use to tell a story of a Vauxhall waiter who, being aske "ow thin he could cut ham for sandwiches, replied that "he really did not know, but that he would undertake to cover the whole garden with four hams." On the same principle American engineers exist and practise, wh ship to an incredible extent. Assked how many bridge they can build with 500 tons of iron, they may reply undred tons they will equip a thousand miles of line through a mountainous district. The workmanship will be on a par with the quantity of material. Such men, as we have said, really do possess talent, and directors like States are worked railway struct actor of safety is appallingly little. We are told that his is inseparable from a new country. Perhaps so. W shall not dispute the point; but we venture to repeat our warning to our colonial friends, and beg them to be
very cautious in dealing with men who hold that a new ountry is bound to have bridges with a moderate margin of safety. Mencan bekilled in a new as surely and as painfully It is an old country. The theory is, we submit, unsound It is only fair to add, however, that the Engineering News thinks that there is no danger that American practice will be carried out to the bitter end in, let us say, Australia. Our contemporary holds that it is railway directors, and bridges; " and as rail way directors are not likely to carr heir ideas of bridge construction into foreign colonies where somebody else is to pay for them, the America engineer has a fair chance, and the English colonists need
have no fear of his works." This would be eminently have no fear of his works." This would be eminently
reassuring if only we could be certain that American correassuring if only we could be certain that American cor porations or companies taking contracts for colonial wor
would give the engineer a fair chance. On this point however, our contemporary maintains a discreet silence.

metalliferous mines and life.

WhilsT very great attention has been given to the official statistics for the coal mines, the corresponding figures referring
to the metalliferous mines of Great Britain and Ireland have oot had that attention which their importance deserves. In the persons were the Metalliferous Mines Acts not at the end of last year ; and alike inthe pumber of persons employed, in the total life-toss, and in the tricts, there is ample food for thought. Last year there were
65 lives lost by accidents in metalliferous mines in the previous year. The Durham district was the safest, the loss of life being one to every 1422 persons employed in and about
the mines; whilst the South-Western district follows with ne life lost for every 1333 persons employed. South Staffordshire was the east sate for the year, one life being lost in that district
for every 150 persons employed in and about the mines, and -falls of ground, 21 lives lost; ropes and chains breaking, and other accidents in shafts, 11 lives: miscellaneous underground accidents, 23 lives lost; and accidents on the surface, 10 lives.
As compared with the previous year there is a decrease in the
lives lost by falls of ground, and an increase in each of the other classes. The actual lives lost in the different districts again were most in Cornwall, Devon, \&c., in which district 25 lives were lost in the year, and least in the Midland, South
Western, and West Scotland districts, in each of which one life was reported lost for the year. The total loss, it may be said was reported lost for the year. The total loss, it may be saic 1883, during which 89 lives were annually lost by accidents in these mines, and with one exception it is lower than in any year
since 1880. But the fact has to be held in remembrance that the output of mineral has not been constant in the perio referred to; and taking this, the fairest test, we find that last 1.580 per thousand persons employed, which is higher than in $1 \cdot 580$ per thousand persons employed, which is higher than in the preceding dy years, and not as much below the verage year when compared with that of the average number for the decade. The least loss of life in proportion to the yield of the mines was in the year 1876 , when it was 1217 per thousand persons employed, and the highest has been in 1875 , when was 2.049 per thousand. There is another fact which is ver significant-that the number of persons employed in and about these mines has varied very much, but chiefly in a downwar direction. It was 58,073 in the year 1875 , and it has fallen to 44,122 in the year 1886. But it is significant that the fall ha were 4136 in number for the year 1874 , and that number has shown a decrease almost yearly down to last year, when only 1437 were employed. These facts are of interest. They show employed in these mines over a long period, and that female employment therein is especially diminished but they also show that there is on the whole a reduced loss of life in the working of the mines, though the reduction has not quite kept pace with the reduction in the yield from these mines. There
is no need to draw attention to the relative safety further, for Is no need to draw attention to the relative safety further, for the figures we have given are for one year only, and it is ev,
dently unwise to draw deductions of the kind from one years working alone. Still the facts have an interest, and it is as well to show that in the past year the fatalities were much more district ficial results ssibly the attention thus directed may have beor ing, and in thus tending to lessen the fatality of the meta mines of the kingdom

LITERATURE

Explosions in Coal Mines. By W. N. and J. B. Atrivson. 8vo.
pp. 144. London: Longmans and Co. Newcastle : A. Reid.
In this volume the authors, two of H.M. Inspectors of Coal Mines, havedescribed with great detail the particulars of six disastrous explosions that occurred at different mines in Cumberland and Durham in the years 1880, 1882, 1885, and which, in consequence of the great loss of ects of special inquiries by the Home-office. The cumberland accident which occurred at Whitehaven is given as an example of a gas explosion without any additional complications from coal dust; but the five in
Durham, at Trimdon Grange, Tudhoe, West Stanley, Durham, at Trimdon Grange, Tudhoe, West Stanley, Usworth, and Seaham, were, in the author's opimion, nost mial dust explosions, the violence of the blast beitg of the downcast shaft, so that the real damage was done mainly dy the shafl, so that the real damage was done coal dust, which, when disturbed by the first explosion became mixed with the air from the downcast and spread the flames against the direction of the ventilation. In support of this view the whole of the evidence elicited at the different inquiries is minutely discussed and most lavishly illustrated with plans of the workings. The authors believe that the chief danger in dry mines connected with shot firing is due to coal dust; but that if equal prerautions were taken in such mines to those that probable that the danger arising from the use of exploprobable that the danger arising from the use of exploin their use than would otherwise be possible. The on the upper part of the haulage roads, and if this could be prevented from accumulating no explosion could be be prevented from accumulating no explosion could be
originated on them, nor could dust columns act as carriers of the flame from one district to another.
The methods by which such dust accumulations might be diminished are as follows:-(1) Reduction of the velocity of the ventilating current. (3) Damping the spead of haulage, and covering tubs. (3) Damping the
roadways. (4) Isolating the districts by sections kept ree from dust. The first of these remedies would The second might be done by substituting endless chain or rope haulage for that by main and tail ropes, when the travelling speed may be reduced from ten to fifteen miles an hour to four or five miles. At one colliery in Durham a spray of water playing on the tops of the tubs as they pass under it has been found to be very effective in preventing dust flying off from the coal. The use of tarpaulin covers is also suggested by the author. The third remedy, namely, the removal or efficient damping of the dust, is not unattended with difficulty. An ordinary leaving the more dangerous upper dust about the sides and roof of the gallery. A more efficacious method is to fix a small water pipe with cocks at frequent intervals along the roads for the attachment of a hose and jet. Coarse salt, either with or without water, has also been perties, which cause the dust to adhere and solidify. The fourth remedy suggested, that of isolating sections, is intended to be effected by arching the main roads, which are to be made perfectly smooth so as to afford no whitewashed. The length of such in places might be about one hundred yards.
In addition to the special discussion of the six explosions forming the main subject of the volume, a consider able amount of other matter of a more general kind
relating to the working and ventilation of mines has been added in the introductory and final sections. The book is exceedingly well got up, and is likely to be of some pertents, and headlines, it will be troublex, table of conWe strongly recen at least a table of contentse authors to prepare and issue index, if they wish their book to be as useful as it deserves to be

Die Galvanostegie. By Jos. Schaschl. 8vo., pp. 216. Vienna, Pest, and Leipzic. Hartleben. 1886.

This treatise, forming vol. xxx. of the Electro Technical Library, is devoted to electrotyping, or the production of thick deposits of metals on plates by the galvanic current. About half the volume is, however, devoted to the conoit accessory subjects, such as defintions ond位 electricity; the chemicals used are also described in a rather superficial manner. The various sources of elec tricity used in electrotyping, such as Clamond and Hancks thermopiles, the Daniell, Reyner, Bunsen, and Lalande baters, and several fors comporith the main object of the work, namely, the different the baths required for deposing enerally sufficient notices of the processes in use in different countries, and wherever it is possible to do so, the strength of current and other details required for operating successfully are given in describing each bath. An ingenious method devised by the author of depositing brass from a cyanide bath by the use of platinum cathodes with anodes successively of copper, zinc, and good sheet brass, is worthy of notice. The work is admirably illustrated, and contains a large amount of information in a very
handy form

BOOKS RECEIVED.

Journal of the Society of Telegraph Engineers and Electricians.
Vol. xvi. No 66 . Edited by F. H. Webb, seceretary. London: The Treatment and Ctilisation of Sevage. By W. H. Corfield,
M. A., M.D. Third edition, revised and enlarged. London:
M.
The Wood Turner's Handybook: a Practical Manual for Workers at the Lathe. By Paul N. Hasluck. London: Crosby Lockwood
and Co. 1887. Transactions, of the American Society of Mechanical Engineers.
Vol. vii. 1886. New York: Published by the Society. Isaac Pitman's Jubilee Reporting Note-books. London: I. Pitman
and Sons, Amen-corner.
 tries Directly or Indirectly Comnected vi
London: W. Dawson and Son. 1887.

MODERN CAL.AIS.
Wirhis four hours' distance of Paris and opposite Dover very important and costly works are being carried oout at Calais, with-
out at present attracting much attention to it, or to the advantages shortly to be derived therefrom for passengers and goods. Calais is being metamorphosed, and within two years it of the most important places on its side of the Channel. Adjoin-
ing it, but separated from it by the canal, is the manufacturing town-St. Pieirre, or St. Pierre ess Calais-which fifteen years ago was a mere village. St. Pierre has now 40,000 inhabitants, broad
and well-paved streets. An Englishman, in order to escape the no well-paved streets. An Englishman, in order to escape the
protective and even prohibitive duties on English twills, set upa Proctocry, and has made St. Pierre the chien producer of French
fawills. The Paris correspondent of the Times says:" "St. Pierre and Calais are about to be amalgamated, and the street, start ing from the railway station, will be continued without interruption the middle of this longartery while one side of the station will look on the new canal, branching off from the old St. Omer Canal, which goes to Paris, and serves Holland, Belgium, and the north, and by which merchandise can so as to enable large vessels to enter, and convey by the most economical route goods of English and French origin. At the
junction of the new boat canal and of the St. Omer Canal, an English company-as always happens when a commercial town or seaport undergoes improvement - has bought twenty-four acres of
land, on which it will build immense general and bonded warethe remaining space, should the development of Calais render an extension necessary. It will possess an immense frontage, looking on the new
harbour and the new docks-that is to say, the buildings will be placed in such a way as to be reached by the railway, the boat
canal, the St. Omer Canal, and the new harbour thwi very centre of the improvements and of the two united towns. Link rail ways will pass through the warehouses, and arrangements based
upon the latest improvements and will permit of the unloading and upon the latest improvements and will permit

France. "On

other side of the present harbour is being formed the new seaside station, one of the chief features in the changes that
are to be made. This station erected on a new extended quay, which will enable the largest packet boats to come alongside in all
states of the tide, and which is speciall states of the tide, and which is specially sheltered by Cape Grisnez,
will be of great benefit to travellers. The access will be easy, and the unloading of cargo very speedy. Travellers will have a comfortable refuge while this operation is going on, and thanks to the link line which the Northern Railway Company is constructing, and which will save the journey into Boulogne, they will reach
Paris in five hours and twenty minutes after leaving Dover-that Paris in five hours and twenty minutes after leaving Dover-that
is to say, in seven hours and twenty minutes after leaving London, and even in seven hours, if the Sleeping-Car Company realises its scheme of organising trains which will Leave Paris and London at four in the afternoon, and arrive by eleven at night.
largest and best situated centre of population for comm be the largest and best situated centre of population for commerce and
traffic with England along the whole of the French coast. The harbour works comprise new wet docks, with a surface of twenty-
seven acres, and with a depth which will enable the largest ships to enter and abtin one of the finest refitting to enter and obtain all they require. One
minimum depth of $7 \frac{1}{2}$ metres, The dry dock, which will, has a modate men-of-war or merchantmen of the largest size, can be filled or emptied with great rapidity, an engine of 900 -horse power emptying it in less than two hours. The foundations now being laid for the machine would be taken at first sight for a fort. More
than $70,000,000 \mathrm{f}$. will be laid out on them, the expense being
shared by the State, the department, the town, and the French shared by the State, the departme.
and the English railway companies.
TRIPLE EXPANSION ENGINES OF THE OROYA.-PLAN.

STEAMSHIP OROYA

valves being Thom's patent, 32in. diameter, and all the valves
are balanced by pistons attached to the top ends of the valve spindles. Hughes' metallie packing is used in all the stuffing boxes of the piston and valve rods. The top halves of
the excentric pulleys are made of cast iron, the bottom the excentric pulleys are made of cast iron, the bottom
halves being wrought iron, the excentric straps are lined
with brass with brass rings, secured by countersunk pins. The reversing engine is on the direct-acting "push" principle,
with oil cylinder and pump fittings for working by hand. The with oil cylinder and pump fittings for working by hand. The
crank shaft, built of mild steel, was made by Vickers, Sons, and crank shaft, built of mild steel, was made by Vickers, Sons, and
Co., the bearings being 2lin. diameter and 23in. long, the crank pins 22 in. diameter and 20 in. long. The shaft is made in three solid couplings, 5 inin. thick by 39in. diameter, the coupling bolts
 tunnel shafts, 20in. diameter, and the thrust and propeller shafts,
21in. diameter, were e liso made y Vickers, Sons and Co. of steel 21in. diametere, were also made by Vickers, Sons and Co.of steel;
the propeller shaft is cased with brass for the whole length the propeller shaft is cased with brass for the whole length
of the stern tube ; the rings were slipped on in sections, and are of the stern tube; the rings were slipped on in sections, and are
lap jointed with burnt V joints. The thrust block is fitted with horse-shoe rings of cast steel, faced with Kingston's white metal,
all the rings being separately adjustable; the bottom of the block is used for circulating water for cooling pourposes. The tunnel-bearing blocks, two to each length, are of cast iron, lined
with Kingston's white metal. The shafting is so arranged tha the propeller shaft can be withdrawn readily and easily, the after length of tunnel shaft being short for this purpose. The piston-rods, which are carried up through the top cyliinder
covers, are 91 in. diameter, and made of best mild steel, are fitted covers, are 9 inin. diameter, and made of best mild steel, are fitted
into each piston with a cone, having a collar below and a nut above, and all the piston-rods are interchangeable.
The connecting-rods are forged from mild steel, with
 of the top end of the nod is 8 in and the . The diameter The condenser, which forms part of the structure of the engine is made of cast iron in three pieces, bolted together; the columns for supporting the cylinders are also bolted to the condenser. The tubes, which are in two lengths, are 10 ft . 6in. long between
tube plates, the condenser being divided in the middle into tube plates, the condenser being divided in the middle into
what is practically two condensers. The tubes, \$in. external what is practically two condensers. The tubes, ${ }_{3}$ Sin. external
diameter, No. 18 b.w.g. thick, 5604 in number, have a cooling diameter, No. 18 b.w.g. thick, 5604 in number, have a cooling
surface of 11,546 square feet. The condenser may also be worked by jet injection. The air pumps, two in number, are 30 in . diameter by 33 in. stroke, worked from the low and ligh-pressure made of brass, the valves being india-rubber ; the rod sats are nese bronze is attached to the crosshead, and guided by strong brackets bolted to the cover. The feed and bilge pumps, two of each, are worked from the air-pump crossheads, with plungers
7 in. diameter, and made entirely of brass, The valve-chests and 7 in . diameter, and made entirely of brass. The valve-chests and valves, of large size, are made of brass; and to each air-pump
crosshead is also attached a sanitary pump with 4tin. plunger crossheac is asso attached a sanitary pump, with $4 \frac{1}{2}$ in. plunger.
The circulating pumps are of the centrifugal type, two in The circulating pumps are of the centrifugal type, two in
number, each capable of supplying the requisite quantity of number, each capable of supplying the requisite quantity of
water when the engines are worked full power. These pumps are driven by independent compound engines, with cylinders 8 in. and 16 in. diameter, and 10 in . stroke. Weir's feed heater and engine is fitted on board for feeding the boilers. An auxiliary donkey pump of large size is also supplied for pumping
from sea and bilge to boilers and overboard, and along with tw fire engines, specially provided for fire purposes, may be used as a fire engine and for washing decks. In addition to these engines a No. 7 pulsometer is fitted to draw from the sea, bilge, and
ballast tanks, and discharge on deck and overboard. A special centrifugal pump driven by an independent engine, and capable of discharging 200 tons per hour, is also fitted for ballast pur poses. The connections to the auxiliary engines are of the
most complete description. The boilers, six in number, are of the ordinary marine multitubular type, constructed entirely of steel, for a working-pressure of 160 lb . per square inch. Each
boiler is 13 ft . 6 in. diameter and 18 ft . C . furnaces, having a mean diameter of 3ft. 1in. The total heating surface in all the boilers is 17,640 square feet, and the bars are $6 \mathrm{ft}$. . long, giving a bar surface of 627 square feet.
During the very successful twelve hours'
Sea on January 21 st and 22 nd of this year, the in the Irish Sea on January 21 st and 22nd of this year, the highest indi-
cated horse-power developed was 6751 with 64.5 revolution and a steam pressure in the boilers of 160 lb ., the vacuum beins 26 in . The mean speed of the twelve hours' run was 16.5 knots the mean displacement being 8840 tons, on a mean draught of
22 ft . 7 in . The mean indicated horse-power for the whole run was about 6500 , with 64 revolutions, and this without the

high, LOW, AND INTERMEDIATE PRESSURE DIAGRAMS, slightest sign of heating in any of the bearings. The accom orward, 2 inin., aft, 251 in. revolutions, 64 . horse.power, high pressure cylinder, 1888; intermediate, 1908; low-pressure,
2649 ; total, 6445 . The propeller, with loose blades of manganese bronze, securel bolted to a cast steel boss, made by Vickers, Sons, and Co., is 22 ft . diameter, with a pitch of 28 ft . 6 in . The pitch may be
varied from 2 fft . to 30 ft , the flat area of all the blades being $149 \cdot 6$ square feet.

THE AMERICAN EXHIBITION

This Exhibition, which will be opened on May 9th, will probably be in some respects one of the most interestwild excitement of Buffalo Bill's Wild West is already raising the expectation of thousands. But interesting as the feats of horsemanship of the cowboys and Indians Exisputably are, the technical and business part of the the principal exhibits will be sho. The building in which Brompton station almost as far as Addison-road. The roof is of galvanised iron, and supported on trusses composed of old iron rails. The trusses are on an American system, and no English contractors would consent to put But Americery light and unsubstantial did they seem. readers, and they will thereforobably familiar to lear tbat the proprietors of the Exhibition erected the building themselves. No skilled labour was necessary, and without employing any exceptional number of hands, about fifteen pillars, with accompanying trusses, were run up a day. The promoters, however, had great diftiinsist he Metropolitan Board of Works, who would decade, not just things substantial enough to last a is proverbially short. They certainly had their way in the erection of the grand stand, which the secretary conwill and it inim as many as 20,000 spectators comfortably, day lasso buffaloes and jump the cowboys wif twice a along the will be supplied The ve from which mechanical power shaft was wrecked only the carrying the engine company had to pay $£ 137$ saly Among the features of the main building will be models of various kinds of steamships used in the States, especially the steam ferries and saloon river steamers, so
famous for their luxurious appointments. There will also be an interesting exhibit of incombustible straw lumber for building purposes as well as of terra-cotta material. The latest developments in the followin branches of American machinery are, it is stated, expected in milling machinery, printing machinery, woodwork ing machinery metalworking machinery, agricultural nachinery, brickmaking machinery. In this last branch 135-horse power machine is expected, which we were feature will out bricks as fast as buttons." Anothe Amerion mech ionlte This is alection of American mechanical toys. This is a department in great things are expected of the mechanical toy stand The entire Exhibition will be lighted by the electric light, on the Thomson and Houston system.
The art calleries have a strikion
The art galleries have a striking novelty about them, wherever possible whererer possh spe they have ars the In order to archway which leads, the for an anxious mamma looking for a doughter who has been lost, stolen or las strayedo at ono has been take in the four soms and thus without rushing wild from one rom the ther, the worthy British mitro will be able to find her daughter without losing herself The largest room in these ant malles will be devatel to a splendid hunting trophy which is to beat eyerything that has ever been done in that way before.
The gardens are very prettily laid out, and are exten sive. In one part we saw a switchback railway which will probogganing hill. ${ }^{\text {great attraction; in another ab grand }}$ The grounds present considerable difticulties to the landscape cardener, as they are the property of several railway companies, the lines of which pas through them. The American Exhibition Company herefore take great credit to themselves for the very of building effects they have produced on the lines, serper tine walks, and other devices, the railways are quite disguised. We understand that the Exhibition Company's officers have all got shares in the enterprise, although they are not allowed to sell out, for which purpose the principal director is trustee for them. Very little money has been wasted in building materials. The galvanised iron will always sell when the Exhibition is over, and the value of the old rails which have been converted into trusses and coated with paint, will actually have risen when the Exhibition is closed. They were bought as old iron; they will probably fetch a very different price when people have discovered to what capital uses they can be put.
As w
we walked through the Exhibition building, the secretary was strong in his expressions of disapproval of
the Metropolitan Board of Works. He assured us that in the States a body with such absolute autocratic power would not be permitted to exist. Evidently the fact of having to make the grand stand twice as strong as the
American Company considered sufficient weighs heavily American Company considered sufficient weighs heavily on their minds. We were assured that in America, if a
body like the Metropolitan Board of Works were to object to the plans of a structure on the grounds of insufficient strength, the company could call in experts in support of their original scheme, and the municipal
authority would be compelled to give way. We thought it advisable to make no reference to the occasional failures of American bridges and other structures, nor to the extremely arbitrary proceedings of some of the American
authorities, proceedings which would not be allowed in authorities,
The main building is handsomely decorated with flags, workmen are busy rumning up stands, and everything has an appearance of activity and bustle. Things seem well advanced, and there is every reason to believe the ExhiTh wil be ther opening on the 9th ins
able W. F. Cody, as his real name is, presents many fea-
tures of interest. The stables are of galvanised iron, and will, we fear, be found very hot in the summer. The tents are the pictures of neatness, and some are even much struck by the workmanlike appearance of the small, wiry horses, clever-looking animals, well put together, and apparently not half so fierce in the stables as they are reported to be in the prairies of the Wild steeds might be imported into England with advantage for a variety of purposes It is quite evident that we for a variety of purposes. of is quite evident that we
are very much in want of good working horses. Of show horses we have quite enough.
The American Exhibition is sure to attract large crowds of people, and these crowds will see much there that they should make notes of and profit by. We may learn so. America can and does learn a great deal from us and on those occasions puts her pride in her pocket in a most laudable manner. Nothung in America is so children possess of adaptation, and of discovering profit and use in everything they see.

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our
Correspondents.] SIR, -Your correspondent, "Old Portable," is right. There are
no conditions known to us whereunder we wwould submit to the
indignities of a "competitive engine trial", by the R.A.S.E. or indignities of a "competitive engine trial"" by the R.A.S.E. or
any other society whatever; and if our signature to the circular of the Agricultural Engineers' Association is calculated We draw a very wide distinction between a ecorrect itetitive trial"
nd an "inderendent test by such men as Sir F F Bramwell, Mr. We an "independent test by such men as Sir F. Bramwell, Mr.
W. Anderson, and Mr. Cowper." Richard Garrert and Sons.
Leeiston Works, April 3oth.
SIR, - In your issue of the 22 nd you publish a letter from Mr ,
H. D . Marshall, the president of the Agricultural Engineers Association, explaining some of the reasons why our leading agriCultural engineers, as a body, have not entered their engines in the
conal Royal Agricultural Society's trials, to be held at Newcastle in
July next. Mr. Marshall uses the word "some," in reference to these reasons, I think advisedly. I, myself, strongly believe another reason, not given by Mr. Marshall, has had more to do from the competition than those given by your issue of September 19th, 1884, on the Stockport engine trials, and when speaking of the unwise absence of competitive
trials at the Royal Society's meetings, says:- "The reason wly has been very plainly stated; engineers with great influence at the council table have said plainly that, having got all the prizes
they needed, they did not see why the competitions should be continued, beenuse it was more than probable that the younger firms profiting by their expe,
deprive them of their laurels."

Other than the above I

not compete ; their reason of insufficient time to they should sheer nonsense, as it is now nearly fourteen years since a competitive trial of engines was held by our leading Agricultural Society, Which is quite sufficient for many and great improvements to have
been made in the agriculturat steam engine and also quite long enough to keep the agricultural world in suspense as to who are now making the best agricultural engines. But fourteen years are altogether insufficient for these gentlemen, who cry out-when they see that the trials are inevitable for more time, and make
this an excuse for withholding from the competition which to the best construction I can on it, appears to me to be an admission that they are exactly where they were fourteen years ago. How-
ever, I shall be disappointed if firms with comparatively limited means of experimenting do not eclipse ever made with an agricultural engine; and if so, as I anticipate, this
should come to pass, I believe that such a performance will be as fhould come to pass, I believe that such a performance will be as much weight as if every firm in the trade had competed. The
men
excuse of the excuse of the non-competing element is sure to be that, "If they
had entered their engines for trial the results would hay had entered their engines for trial the results would have been
different," but in the absence of evidence to the contrary I do not different," but in the absence
think it will avail them much
The Royal Agricultural Society deserve the congratulations of have entire agricultural community for the firm and wise course they but I am glad to say fruitless, efforts of these gentlemen, and II hope the severe rebuke they have suffered will teach them that the by any ring.
From the tone of Mr. Marshall's letter, and also the memorial, dated December 9th, this body of engineers seem to take it almost
as an insult that the Royal Agricultural Society should not have as an insult that the Royal Agricultural Society should not have
consulted them upon a subject of such wide importance to themselves and the public generally, and that by not doing so they
have not studied the best interests of their members and the agricultural community at large.
This, I submit, is another absurd and presumptuous excuse set forth to exonerate their conduct. 1 think the Royal Agricultural
Society of England may be credited with having a fair knowledse of the requirements of agriculturists generally, and as a body
oftablished to promote and assist tin the development of the agricultural industry, they and assist in the development of the agriinterests of the agricultural community, by not first studying and I sincerely hope and believe that the efforts of the Society will be rewarded by such results of efficiency and economy as will formances, but will show them that even by their combined power and influence the tide of progress cannot be stopped.
Elworth Found ry, S
May 2nd.
PROFESSORS AND STUDENTS.
urther trespass on I consulted my own self-respect I would not letter in your last impression; but I do not write for " J . T. N.'s" s "
benefit alone, but for the product of the "cram system," who really know little of what has been said, written, and thought by great men with great
minds. Poor "J. T. N." does not see that when he attacks me minds. Poor "J. T. N." does not tee that when he attacks me
he is attacking men of world-wide reputation, and that in doing so he is making himself-shall I say ridiculous?
The first offence which I have committed is to talk of "rate of acceeration.
him it is tautological nonsense. Let me mendeavour to enlighten
him. If a body A has an aceelerated melocity him. If a body A has an accelerated velocity of 2 ft . per second,
per second, while B has an accelerated velocity of fft. ver second, per second, then it is said that the rate of acceleration of B is
double that of A . That is
Noube that of A. That is one meaning of the words. . . ." will
Now as to my athority for using it. If "J. T. N.
turn to Rankine on "The steam Eng and other

CONTRACTS OPEN.-STEEL MASTS FOR FLOATINGLIGHTS.

find on page 19 the following passage :- "If the acceleration be at any different rate per second, the force necessary to produce that
acceleration, being the resistance on the driving body due to the acceleration of the driven body, bears the same proportion to the
and driven body's weight which the actual rate of acceleration bears to the rate of acceleration produced lyy gravity acting freely." Further
down we have, "Let f denote the rate of acceleration." On page 20 down we have, "Let flenote the rate of acceleration." On page 20,
"If the rate of acceleration is not constant but variable," and again, "The work performed in aceelerating a body is the product
of the resistance due to the rate of acceleration into the distace moved through by the driven body while the acceleration is going ${ }^{\text {on." }}$ Perh
that I aps your correspondent will now withdraw his implication most aminent mathematicians and the cleverest thinkers that Great Britain has produced has given me authority for using the words "rate of acceleration." But perhaps "J. T. N." knows all about it, much better than Rankine did, and does not agree with Rankine? at any length, and he has himself said that he will be satisfied if Ideal with one of the three points he has raised. He has had his answer concerning No. 1. Concerning No. 2 I can only regret that he is so obtuse that he cannot discover my meaning. It seems to me clear enough. As to No. 3, it appears that I have hurt his suscep-
tibilities by saying that "as far as physics are concerned, the great thing we have to deal with is energy." "J. T. N." is angry because I have relegated matter to a second place. Will "J. T. N." kindly tell me what he knows about this matter of which he talks so glibly, apart from motion? If he can prove that he knows anyits existence has ever reached his brain, without the direct or indirect operation of motion, then I promise to admit that "J.T. N." knows more than any other man on earth; that he has really seen,
not the picture of a thing on his retina, but the thing itself; that not the picture of a thing on his retina, but the thing itself ; that
he has handled and examined matter at a temperature of - $461 \cdot 8$ Fah., and that he is blessed with powers of perception akin to the him to read a little paper by Professor Crookes, "Matter Dead ;" also let me quote Faraday for him: "What do we know of an atom apart from its force? You imagine a nucleus which may be called substance consists of the powers mand be called m, to my mind the form of the nucleus independent of its powers? What thourht remains on which to hang the imagination of an a independent of But perhaps " In ackes:"
But perhaps "J. T. N." knows more about these things than Finally, to answer one more question many others.
nothing but motion can cause question-or else the law of the and as vation of energy is untrue-therefore energy in variety is not only Perhaps "" due to motion.
Perhaps "J. T. N." will favour your readers with facts and ever, let him read, say, for six months. Let him turn to text books and learn what professors have to say about the kinetic nature of energy. Let him learn something concerning chemical dynamics and kinetics. Let him, in a word, endeavour to teach side the narrow limits of the class-room As I have said before, I do not write
for a class of young men, the results of whose N." alone, but tanding proof of the accuracy of my criticisms on the modern system of teaching.
London, May 2nd.

MIR,- Your correspondent, "J. T. N." is confusing Matter with ake cognisance of Mass. I am surprised that so rigid a stickler for minute accuracy should fall into the vulgar errror of confounding Glasgow, May 4th.

COLOUR BLINDNESS AND ENGINE-DRIVERS' EYESIGHT
SIR, - As Mr. Stretton has answered my letter of 16th inst., and sks for a few explanations, I shall, by your permission be most I do not desire questions.
passing, may say I have seen men tested distance tests, but in
means than the dot system. The main point of my letter was be perfectly able to see spots on a card, and sort various colours of wool, and yet be unsafe upon an engine." If this is the case, as Mr. Stretton states, I am sure the error will be in the distance and not in the colour. I said in my letter of 16th that "there is more in the question than he-Mr. Stretton-seems to think," and this gentleman wishes for an explanation, which I give readily. Your
correspondent says in his letter of 15th that "Mem. Inst . . states that he has known several instances of colour blindness, and goes on to say, "my-Mr. Stretton's-experience is quite contrary," I then point out how the Belgian State Railways, made a Uost thorough test of their men, and how the German Railwa thus showing how some large railway undertakings found colour blindness to exist among their servants to a considerable extent, The naming of then's one man in twenty years.
man such a man such a requirement would be unjust; but by all means le prescribes. To trust only to flags and lanterns is very dangerous, as it is perfectly possible for a man whose vision is abnormal, to indicate the colours rightly in such tests, as is most extensivel wish to out in works on colour blindness; and it is this point most particular attention, as it is in such a matter that theory step in to help practice. May 3rd.

SIR,-It is very satisfactory to find that a number of engine drivers and firemen on the North-Eastern Railway who failed in the recent "dot and wool tests," and to whom you referred in your issue or 18th March, were on Sunday, 24th April, re-examined, namely, the practical test of ability to see signals at the required distances. And the result was that drivers who had been require from engines because they failed to pass the dot and wool test proved that they could see signals at 1000,750 , and 500 yards. It is satisfactory that a practical test has thus been admitted to be to the men by their being replaced in their former positions done
CLEMENT E. STRETTON,

$$
\begin{aligned}
& \text { Consulting Engineer Amalgamated Society } \\
& \text { of Railway Servants. }
\end{aligned}
$$

St. Pancras Hotel, London, N., May 2nd Servants.

CONTRACTS OPEN.

STEEL MASTS FOR FLOATING LIGHTS.
THE work included in this contract consists in the construction and supply of six steel masts for floating lights for the Trinity House. Tenders are to be delivered at the Trinity House, London, E.C., on or before Thursday, May 12th inst., addressed to the secretary of the Corporation of Trinity House, and marked on the
outside "Tender for Steel Masts." The specification describes the of all material and labour in the construction of six steel masts for light vessels, and delivering the same at the Trinity Buoy Wharf, Blackwall, Yarmouth, or Neyland, in accordance with the drawing, No. 6049, from which our engraving is prepared.
The masts, which are to be wholly of steel, are to
on the contractor's premises, and weighed in the presence superintendent. Due notice is to be given to the Corporation when ready for inspection, and after the same have been approved by the engineer-in-chief to the Corporation, the whole of the work is to be thoroughly cleansed from rust and then painted with three
good coats in pure red and white lead paint. Samples of the steel to be submitted for test and approval, to be of the best quality of Siemens-Landore steel, and to bear a mean tensile strain of 30 tons per square inch of original area, with a mean contraction of not out to be of steel, to be pont of fracture. The rivets throughas hereinafter specified. The masts are to measure 555 ft . in lenyth by 18 in . external diameter, to be made in two plates circumferentially and six plates in height as shown, and to be perfectly cylin-
drical, parallel, and true. The plates are to be $\frac{5}{5} \mathrm{in}$. thick, double 3ivetted vertically on double butt straps with gin. rivets spaced joints are to be treble rivetted on single butt straps, horizontal with $\frac{5}{8}$ in. rivets spaced 38 in . apart, as shown. The edges of all plates are to be truly planed and close butted before being rivetted. The rivet-holes are all to be punched and afterwards made perfectly true and fair by riming, and to be countersunk on the outside. At a distance of 7 ft . 6 in . from the heel the masts are
to be doubled for a depth of 5 ft ., with 7 in. plate as shown for taking the wedging at the level of the main deck. Four lantern guide bars of the form and dimensions shown on the drawing, planed on the front and two sides, are to be attached to the masts, with $\frac{10}{4}$. rivets spaced about $4 \frac{1}{2} \mathrm{in}$. apart. The rivets are to be corners to be rounded as shown. The greatest care must bo front that the guides are fixed perfectly true and parallel to the centre line of the masts for their whole length. These are intended for lantern guides; therefore perfect accuracy is indispensable. The hoop as shown, double rivetted to the med with an internal welded 4in. apart, countersunk and rivetted flush on the outside. The upper portion of the masts is to be strengthened with a welded band as shown, double rivetted to the masts with in. rivets spaced A wrought iron, countersunk and flush rivetted inside and out. carrying the topmast as shown, which is to be tive to the masts with 3 in. rivets spaced 4 in, apart, countersunk and rivetted fush inside and out. The topmast, which is of wood, is not ncluded in this specification. A manhole, with cover, is to be provided at the foot of the asts, as shown, and a hand-hole in the form and dimensions shown, The mast steps are to be made to the The necessary bolts, nuts, and other fastenings, as shown, are to be supplied.

THE LATE GENERAL GORDON AND BERTHON BOATS.

A mELANCHOLY interest attaches to two letters written by General Gordon and in the possession of Mr. E. L. Berthon, secre these letter Bhichon Boat Company, Romsey. The copies of
My dear Sir,-Your Kartoum, 6th May, 1877. details of them. I send to Encland Mr. Geigler, but I know no Gordon, 5 , Rockstone-place, Southampton, to buy me four or six eight of your boats, largest size ; the number depends on the price I want them quickly. I believe you supply a large-sized boat to H.M. Navy. Mr. Geigler will go into details as to masts, stores \&e. \&c. Perhaps if you are making boats for H.M. Navy, it may
be arranged to let me have them, and the Navy might wait My brothers - one at Woolwich Arsenal, the other a colonel, R.A -have interest with Admiralty, and might manage it. Economy and quicr dispatch is what I want.

Yours sincerely,
Geigler will be England (D.V.) in July.
Massowah, 17 th May, 1878.
My dear Sir,-(1) The eight boats, with all you sent with them (2) I see by enclosed letters their price was $£ 15$ each, making a which would ; but I expect there were some extras that you sent lot of eight boats and a fresh lot of Please make me out a fresh them to Suakim viä Canal. There are boats from Encland which trade through the Canal to Jeddah. Simla is $v i s-c i$-vis to Suakim 1 think the line is British India.
Please send bill for boats, for extras, and for freight to my
sister, who will pay the amount. ill pay the amount.
Believe me,

C. E. Gordon.

A telegram from Washington reports that the struction of the Nise

FONTAINE'S HYDRAULIC DRILLING MACHINERY.

HYDRAULIC DRILLING APPARATUS.
THE machinery which we illustrate is made under the patent of M. Mare Berrier-Fontaine, whose name has for many years been known in this country in connection with his successful application at the Arsenal at Toulon of hydraulic rivetting by doing all the punching, shearing, forging rivetting work, great deal of the lifting and transport of material is there done by hydraulic power, and amongst other machinery comprised in this plant are several Brotherhood three-cylinder hydraulic capstans ; and it is this engine which Mr. Berrier-Fontaine has adapted in a very ingenious manner to the driving of drilling, tapping, and boring tools. The question of utilising the Brotherhood or other engine for the direct driving of stationary rotary machine tools had already been proposed by Mr . Tweddell in a paper read by him before the Institution of Mechanical
Engineers in 1874 . Of the machines from which our illustra tions are taken, and which have been made by the Hydrauli Enons are taken, and which have been made by the Hydraulic tions. Fig. 1 shows the three-cylinder engine E, attached to a frame B, and by means of suitable gearing, driving the drill D, a suitable feed motion is provided, and in dotted lines is shown the holding-up bracket. Figs. 2 and 3 show a special application of the same engine to boring out the holes to receive armour-plate bolts. As will be seen from the illustrations, the space in which the machine can work is very confined, but notwithstanding this the work was done
nine times as fast as by hand. Figs. 1, 2, and 3 relate to machines employed on H.M.S. Victoria recently launched from the Els wick Company's yard at Neweastle-on-Tyne ; and Figs. 4 and 5 show a design for cutting out the manholes, side-lights, \&c., on ships or other iron structures when erected, a 1 in . or $1 \frac{1}{2} \mathrm{in}$. hole having been drilled in the centre of the proposed opening, a holding-bolt is passed through to connect the frames B B. The three-cylinder engine E , by means of suitable gearing clearly shown in the illustration, drives the arms A, carrying at either end cutting tools C. This not only makes an absolutely true diameter, and by well-known modifications can cut them oval with equal ease. In the case of Figs. 6 and 7 , the drill is driven by a Stow flexible shaft; in this case, the shaft has to be
speeded up to run about five times as fast as the drill itself. The gearing for this purpose is shown in the framework B, the flexible shaft being connected at S . The other end of the Stow shaft is fitted with the usual gearing to reduce the speed again. This arrangement is convenient, since it allows of the hydraulic engill is applied at any point within or she deck, while the shaft. Messrs, Doxford and Sons, of Sunderland, have one of these in their boiler-shop, and have found it very convenient. They have continued extending its applications.
Fig. 8 shows to a larger scale the engine applied to its work in Fig. 1, but with gearing for smaller holes; while Figs. 9 and 10 show side and end elevation of another arrangement of direct-acting drill. With the exception of those illustrated by Figs. 1, 2, and 3, which work at 750 lb . on the square inch, all the machines in this country work at 1500 lb . on the square inch ; but there is very little practical difference in the weights
of the epgines
1-horse or of $\frac{1}{2}$-horse power, and weigh approximately 1 -horse or of $\frac{1}{2}$-horse power, and weigh approximately $2 \frac{1}{2}$ cwt.
and $1 \frac{1}{2}$ cwt. respectively, with all gearing complete. Generally it may be said from the experience gained-hitherto chiefly by M. Berrier Fontaine himself-that when these machines are used, 25 per cent. more holes can be drilled in the same time in situ than can be done when plates have to be marked off there, and taken to and fro to a stationary drilling machine in the shop.
Compared with ratchet brace and hand work, the work been also amply confirmed in this country apart from the ques tion of manual speed of turn out. In one instance the cost per dozen of drilling some holes in boiler work was reduced from 1s. 4 d . per dozen by hand to 4 d . by the machine. Mr. Tweddell has also introduced many other applications, and as there are but few works of any magnitude which are not now fitted up with hydraulic pressure on his system, there seems a promising field for the use of M. Berrier Fontaine's very neat invention.
The War-office authorities are experimentingwith a polycycle machine which carries twelve riders in Indian file, and carries
them easily at ten miles an hour, and hauls in addition wagon or ammunition cart.

ROLLING MILL ENGINE WITH VARIABLE EXPANSION.
The rolling mill engine illustrated on pages 349 and 352 was constructed in 1885 to replace a smaller one of the ordinary Lancashire type at the works of Messrs. Fox, Head, and Co., of Middlesbrough. Being confined to the position of the old one variation in size and in details was admissible, but not in general form. The mills to be driven were one clutch-reversing plate mill, with rolls 26 in in diameter by 7 ft .6 in . long, and one three-high mill, with rolls 24 in . and 18 in . in diameter by 6 ft . 2 in . long. Upon the middle of the engine crank shaft is a fly -wheel 25 ft . in diameter, and weighing 35 tons, and at the far end is a steel pinion 4 ft . 8 in . in diameter by lit. 8 in . broad. Through this pinion the whole power of the engine is transmitted to the mills. The pressure of the steam supplied is 60 lb . per square inch above the atmosphere, and the normal cylinder is 48 in . in diameter, and the stroke 54 in . Both body and covers of the cylinder are steam-jacketted. The slide is of the kind known as the Trick valve, the steam passages being double and the exhaust single-ported. The engine frames are hollow, but exceedingly strong and massive. They are brought direct from the front of the cylinder to the main bearings, which are placed at an angle of 45 deg., thus ensuring the resistance being in the line of the principal stresses. The main crank consists of a cast iron disc containing a double crank, of which the end out of use acts as a balance weight. It is, however, also bored out to receive a crank pin, in case of the
other pin getting loose and wearing its socket oval, which someother pin getting loose and wearing its socket oval, which some-
times happens. The crank dise is hooped externally with wrought iron, and is perforated at intervals to facilitate rotation when required without steam.
The engine is fitted with Schaeffer and Budenburg's variable expansion gear. To the slide rod, outside the slide chest, a stanchion is rigidly fixed, which transmits its motion through an adjustable rod to a hanging lever pivotted upon the spindle of a cylindrical grid valve. This is placed horizontally above the The hanging lever is prolonged beyond the valve spindle, so as to carry a pair of curved horns, which are jointed to it. When in the position shown in the engraving they are united
to the valve spindle by hardened steel catches and suitable springs, and they and the grid valve rock to-and-fro with the
hanging lever without interfering in any way with the passage of the steam. Between the horns, however, protrudes another
of spindle, one end of which is hinged to a fixed double eye and
the other end is movable in a vertical plane by the governor according to the number of revolutions at which it is driven by the engine. Until the normal or desired pitch has been reached, the spindle remains in too high a position for the horns to touch it as they oscillate. The grid valve, which oscillates with them, is so arranged in respect to its casing
that it then opens passages right and left, which permits that it then opens passages right and left, which permits
the steam to pass unimpeded to the main slide. The distribution is therefore left entirely to the latter when the engine is running at or below the normal speed. But when the proper number of revolutions is exceeded by ever so little, the governor rises, and causes the spindle to fall, the horns begin
then to touch it alternately, and are lifted clear of the catches then to touch it alternately, and are lifted clear of the catches uniting them to the spincle of the grid valve. The latter, being
set free, is brought by springs to a vertical position, and set free, is brought by springs to a vertical position, and
instantly and completely cuts off the steam. This event occurs once in each stroke. On the return stroke the released horn is again released, if the governor spindle remains low it until it touch it. ing is perfect, even with the great variation in resistance which is

position at end of exhaust stroke.

end of suction strioke.
COMPRESSION COMPLETED-IGNITION.

DIAGRAMS SHOWING AOTION
inseparable from rolling mills. The diagrams, taken when the speed has exceeded the normal, show a good clean cut-off, which in view of the circumstance that it is done outside the slide chest, is more than might have been anticipated, For manipu-
lating the slide valve during the operation of starting, or whenever it may be necessary to reverse for a few revolutions, an auxiliary cylinder is placed vertically near the middle of the outer frame. The excentric rod, which is formed with a gab end, is lifted clear of the slide-rod crosshead by depressing the
innermost of the two horizontal catch levers. By means of the innermost of the two horizontal catch levers. By means of the
outermost one another rod is made to connect the same crossoutermost one another rod is made to connect the same cross-
head with the auxiliary cylinder, and the engineman can then move the slide backwards or forwards throughout its whole stroke at pleasure. The caps of the main and trailing shaft phosphor bronze. The latter are octagonal in form, with are of feather to keep them in place instead of side flanges, and they are so arranged that they can be worn in four different positions before being cast aside.

ATKINSON'S NEW GAS ENGINE.

Our readers will be interested in the following information,
which we take from a report by Prossor F.R.S., on a trial of a new gas engine, invented by Mr. James Atkinson, at the works of the makers, the British Gas Engine Company, Gospel Oak.
The engine is quite new, and is only less remarkable mecha-
nically than it is for the nically than it is for the great stride it makes in reducing the quantity of gas used per actual horse-power. The cycle explained
below will be readily understood from the above diagrams, showing the chief positions of the parts. with a single cylinder serving both for compression and explosion. By a very ingenious arrangement of linkwork, the plunger
makes two double strokes of unequal length for each revolution
of the crank shaft. The plunger makes a short forward stroke, during which it draws in the charge of gas and air; a somewhat shorter back stroke, during which the charge is compressed expansion stroke, followed by a long back stroke, which expels the products of combustion. The complete cycle is performed in a single revolution of the crank shaft and in a single cylinder In the Otto engine two revolutions of the crank shaft are necessary for a complete cycle, and the charging and expansion strokes are necessarily of equal lengths. In the Clerk engine a complete cycle is performed in one revolution, but then a separate cylinder for compression is required, The posing that it can be carried out in are obvious, supway. (1) The engine in normal working receivies an perfect during each revolution which tends to regularity of speed, o a reduction of the weight of the engine for a given power 2) The control of the engine by the governor can be much more perfectly effected than in an engine having only an ignition in normal working every second revolution. (3) The inequality of the charging and expansion strokes permits of a greater range of expansion to be utilised. (4) As the cycle is completed the loss through required for that purpose in the Otto engine, retained in the gases. This walls is diminished, and more hea able. In fact, but for this action the expansion valu would add but little to the useful work done. During the

cator of my own, but unfortunately the lever warped from the heat of the gases escaping round the small piston-rod. I therefore used a Crosby indicator of Mr. Atkinson's with a 100 lb . to the inch spring, which appeared to be in perfect order. The
diagrams are perfectly easy to read, though the high speed and excessive fluctuation of pressure are trying to the indicator The diagrams have one singular peculiarity, which has puzzled me a good deal. The exhaust line shows a strong wave-like fluctuation. The waves are regularly reproduced in exactly the same places in every diagram, and they cannot be attributed to the action of the indicator spring. I have come to the conclusion that these fluctuations of pressure in the discharging stroke are due to vibration of the exhaust valve. Probably in future
engines this action will be eliminated, with a slight gain of effiengines this action wil
ciency to the engine.
ciency to the engine.
The brake. The
with a weight brake was a leather strap on the fly-wheel, The a weight at one end and a spring balance at the other.
Thement was quite satisfactory. The vertical circumference of the brake was 16.03 ft .
The gas used.-The gas was taken from the Gas Light and Coke Company's mains, and the gas measured did not include the small quantity required for the igniting flame. As no ana-
lysis of the gas was made, it is necessary to form an estimate of ysis of the gas was made, it is necessary to form an estimate of
its probable heat value. The most accurate estimate of the heat value of London gas I have found is one based on thirteen analyses, and given by Dr. Adams- "Proc. Inst. Civil Engineers," vol. lxix. p. 299. According to this, the average London gas, at
ordinary pressure and temperature, occupies $34 \cdot 10$ cubic feet per lb ., and its heat value is 628.7 thermal units per cubic foot, In the trial of the Rollason engine by Professor Kennedy a sample of the gas was analysed. In computing the heat value from the analysis, Professor Kennedy has taken an erroneous value of the heat of combustion of hydrogen. Correcting this,
I find that the heat value of London gas from Professor Ken1 find that the heat value of London gas from Professor Ken-
nedy's analysis is 627 thermal units per cubic foot at ordinary nedy's analysis is 627 thermal units per cubic foot at ordinary,
pressure and temperature. This agrees closely with Dr. Adams' pressure and temperature. This agrees closely with Dr. Adams
estimate. I found the pressure of the gas delivered from the meter to be $29 \cdot 86 \mathrm{in}$. of mercury, and the atmospheric temperature in the workshop was 55 deg., so that the gas used was practically at normal temperature and pressure. The estimate culation of the efficiency of the engine depends on it, and diferent samples of gas vary a good deal in heat value. In this respect London gas does not rank high.

TENDERS.

LEICESTER $\overline{\text { PUBLIC BATHS }}$

For the construction of a ladies' swimming bath at the Public Baths, Leicester. Quantities, specification, and drawings by Mr. Gordon, M. Inst. C.E., borough surveyor:-

Hy. Black, Barrow-on-Soar (accepted)
S. and E. Bentley, London..
S. and E. Bentley, London.
W. Gimson and Sons, Leiceste
T. and H. Herbert, Leeceste
J. O. Jewsbury, Leicester

Geo. Hewitt, Leicester
J. Marston, Leicester

Royal National Lifeboat Institution.-The committee of this Institution have decided to offer a gold and a silver medal fo drawings or models of a mechanically propelled lifeboat best
adapted to meet the conditions under which lifeboats are called upon to perform their work. Also a gold and silver medal for models or drawings of a propelling power suitable for the boats of the Institution. All the models and drawings must be forwarded to the Institution not later than October 1st next, under cypher
accompanied by the fullest detailed explanations, and a sealed cover containing the name and address of the competitor, not to be opened until after a decision has been arrived at. . The models and drawings will be examined by three judges, appointed by the com
mittee, who reserve to themselves the right of withholding ail any of the medals. All communications should be addressed to the secretary, Mr. Charles Dibdin, 14, John-street, Adelphi, London, W.C.
SĆience and the Jubilee.-An instructive and interestin lecture was delivered on this subject by Mr. Eric Bruce on Thursday the 28th ult., at Princes Hall. Mr. Bruce opened his lecture by
speaking of the tremendous strides made by science during the last fifty years. He dwelt first on the subject of steam, the progress which he divided into two periods, its application, from 1837 to 1850 , and its development, from 1850 to the present time. He went on to speak of the invention of Nasmyth's steam hammer, and
the consequent improvement in all branches of industry, connected the consequent improvement in all branches of industry, connected
with steel and iron manufactures, the struggle for supremacy with steel and iron manufactures, the struggle for supremacy
between the paddle and the screw, the victory of the latter, and its advantages as an economiser of power and space; the dwarting of advantages as an economiser of power and space; the dwarting of
the "Woolwich Infant" of twenty years ago, by its gigantic
successor The successor. The lecturer then explained briefly the construction of
the telephone and microphone, speaking hopefully of their future the telephone and microphone, speaking hopefully of their future
development. Mr. Bruce devoted the second half of his lecture to develtricity as applied to telegraphy, as a future motor power, and
ele electricity as applied to telegraphy, as a future motor power, and
as the successor of gas.. Mr. Bruce wound up his lecture by showing his own latest application of electricity, his electric war balloon for night signalling This is an ordinary captive gas balloon, in which is placed an incandescent lamp, connected with a battery. By a cate with each other, independently of the physical features of tbe countries in which they may find themselves.
The late Mr. William Husband.-Mr. William Husband, inventor of Husband's oscillating cylinder stamps-mining-whose death was announced a few days ago, was born at Mylor, near
Falmouth, on October 12th, 1823. Declining when Falmouth, on October 12th, 1823 . Declining when a boy to be either a sailor or a shipbuilder, as his father required, he set out on earnestly, soliciting Mr. Henry Harvey, the head of the firm, to
help him in his determination to be an engineer, he was received help him in his determination to be an engineer, he was received as an apprentice. The first erecting work intrusted to him by the
firm was in Holland, in 1844. Messrs. Harvey had to supply the frm was in Holland, in 1844 . Messrs. Harvey bad to supply the
pumping-engines to drain Haarlem Lake; they chose young pumping-engines to drain Haarlem Lake ; they chose young
Husband for their representative, and as he quickly taught himself Dutch, the Dutch Commissioners at once saw his peculiar fitness to carry the drainage works all through, and they prevailed on
Messrs. Harvey to let his services be transferred to their Government. Seven years sufficed to complete this orent engeering work; and when, in 1851, Mr. Husband returned to England, he resumed his connection with the Hayle Foundry. He eventually became a partner in it, and was intimately associated with all its undertakings till his death at Clifton, after a short but painful
illness. Besides the ore-stamping machine so well illness. Besides the ore-stamping machine so well known in
foreign and home mining districts, Mr. Husband's inventions inforeign and hame mining districts, Mr. Husbands inventions in
cluded the balance-valve for water-works purposes, the four-beat cluded the balance-valve for water-works purposes, the four-beat
pump valve, a safety plug for the prevention of accidents, \&c., and only on the night of his fatal seizure he was explaining to his son a further improvement in the Cornish pumping-engines he was
intending to patent, and a new method of ventilating mines, by intending to patent, and a new method of ventilating mines, by
which he hoped to benefit the miners. He was twice president of the Mining Association and Institute of Cornwall; president of the Hayle Industrial Exhibition, 1884 ; a member of the Polytechnic Society; the originator and captain of the Artillery Corps, \&c.

RAILWAY MATTERS

The Manitoba Railway expects to build 670 miles of its extension to

An extension of the Dakka State Railway to Chittagong, in India, has been sanctioned. This is one of the new lines
which Sir Theodore Hope wishes to see placed in a fair way for commencement before he leaves office.
The Alnwick and Cornhill branch of the NorthEastern Railway, which runs through the centre of Northumber-
land for thirty-five miles, and has been constructed at a cost of
t $£ 304,400$, was upened for goods traffic on Monday
In reply to a question in the House of Lords on the Quetta Railways, Viscount Cross said: "There are two railways to
Quetta, both starting from Sibi, on the North-Western Frontier system. The Bolan route is now quite completed, and traffic is working on it throughout. On the Sind-Pishin route the rails
have already been linked through, but the line is not yet opened for traftic
Ir is stated that the Dutch Government contemplates the construction of a railway on the island of Sumatra from Mocara
Kalaban to the Bay of Brandewyns on the west coast Khrough Fort de Hock, the seat of the Dutch Government, pars the purpose of utilising the coal fields situate along the river Umbili,
which were discovered about twenty years ago. The coal is stated
, to be superior in qualedity to the thenty years ago. English coal, and the yield is
estimated at $200,000,000$ tons. The extend over six years, and the cost will be about $16,000,000 \mathrm{fl}$. It is believed that the working of the coalfields will yield an annual
profit of $600,000 \mathrm{f}$, and render Dutch India independent as regards he supply of coal.
Is the House of Commons this week Mr. Sheil asked the Surveyor-General of the Ordnance, in reference to the cost and
distribution of the plant of the Suakin-Berber Railway, whether
tis the "storing", of a large portion of this plant at Wool wich consisted in leaving rails, engines, carriages, and trucks to rot and decay in
the open air in on onely spot on the Plumpstead Marshesas. Mr.
Northoote: Of this railway plant the rails are properly stacked in the open, as is ussal., The enginese are under coover. and, handing
been thoroughly overhauled and repaired, are in better condition
ber been thoroughly overhauled and repaired, are in better condition
than when they left Suakin. The carriages and trucks are standing on rails in the open; they are kept in good order ready for use.
Mrr. Conybeare asked what was to be done with this rail way plant.
Mr. Mr. Northcote said that he had answered a question on the subject
already. Some of the rails were to be used in the construction of already. Some of the rails were to be used
a military railway and some were to be sold.
The South Australian liegister of March 21st says:A report upon the tenders for bridge iron for the Strangways Springs and Peake Railway has been received by the Commis-
sioner of Public Works from the Commissioners of Audit. It con-
cluded as follows:- Percentage of difference in cost of local tender
 cost of the local work can be compared with the imported, namely,
the pereentage which it bears (1) to the net total cost of the imported work, and (2) to the amount which might have been
retained for expenditure here. The figures already stated show
that the net cost of the imported work would be $\$ 80884 \mathrm{~s}$. 6 d and
 per cent. By sending to England or the rave material instead of
the manufactured article the preceding figures show that more
the only $£ 32177 \mathrm{~s}$. 3d.-at the outside would be available for expendi-
ture here. The extra cost incurred in doing so would be be
$£ 4279$ Os. 6 ., or 133 per cent. more than the amount retained for $£ 42790$ s. 6 d ., or 133 per cent. more than the amount retained for
expenditure in the colony." Among the results of the measure of local self-government in Bengal has been the stimulus given to the development of
tramways. The Bengal Tramway Act -iii. of 1883 - provides that tramways. The Bengil Tramway Act-ili. of the the provides that
no project of this kind shall be authorised by tocal Govern-
ment without the previous consent of the district board concerned. Full advantage has been taken of this provision by promoters to enlist local sympathy in favour of their projects. One of the latest
contemplates a steam tramway connecting Suri, the capital of the
Birbhoom district, with Ahmadpur, a station on the East Indian Birbhoom district, with Ahmadpur, a station on the East Indian
Railway. The proposed line would be laid on the side of an exist-
ing district road, thirteen miles in length but ing district road, thirteen miles in length, but a few diversions
Tould be neessary, owing to the steeppess of the present gradients.
The promoters stipulate or the use of the road free of rent, the
gift of the land required for stations ond gift promot thers stipulate frequired for stations and the road freer of rent, the teed contribution to a minimum dividend of 5 por cent. These
proposals were reently acceded to by the district board, with the
proviso that the arrangement should be subject to revision after pre expiry of five years, and the tariff for goods and passengers
thould be framed with the approval of the boord.
Writing to the Times on the Post-office contracts
for foreign letter service, Mr. Henniker Heato for foreign letter service, Mr. Heuniker Heaton says :- "We at
present pay admittedy extortionate rates, and now that it is is
understood we have alranged to put our mails on board at Brindisi proerstood we have arranged to put our mails on board at Brindisi
or Naples, the companies owning the railways to those ports can charge us, what they like. To illustrate what I mean it is sufficient
to say that for the transport of mails from New York to San Francisco, a distance of 3300 miles, en route to Australia, we pay 1 d. per
letter. On the other hand, for their transport rom London to
Brindisi, 1200 miles, we pay the French and It Brindisi, 1200 miles, we pay the French and Italian railway com-
panies 1 12 d per letter, or three times the price for nearly one-third panies 11d. per letter, or three times the price for nearly one-third
the distance. The character of the latter bargain is further shown by the facts I elicited from the Postmaster-General in the House of Commons on Friday, week. He said that the arrangement com-
menced in 11879 and in that year we paid the railway companies of
France and Italy $£ 67,224$. In 1886 the payments had risen to France and Italy $£ 67,224$. In 1886 the payments had risen to
e97,884, stowing in the seven years atotal increase of $£ 30,600$,
although the expense to France and Italy had practically remained although the expense to France and Italy had practically remained
the same all through. Taking the mails and passengers together Itind that the companies benefit even more thans appears from the the
above official figures. They make in the year 104 journeys of 1200 miles each, for which they receive for passengers and mails not less
than $£ 126,000$, or more than $£ 1800$ per journey and exceeding $£ 1$

The traffic over the great Brooklyn bridge has grown to such great troportions that the proprietors are unable to cope
with it. The ITherican E Enginereriny Neves says: "It is claimed,
with cood reason, that almost the last step possible to increase its capacity under the present system of operation has has been takease this
ceats
week, in substituting four-car for three-cor trains per hour-15ft. per seour-car for thr niree-car trains, At ten miles
only 1350 ft . between trad headway, there is
ond only 1350 ft . between trains. Allowing forty-five seconds for un-
loading
train is witho less is reasonably possible -the next approching litte more than 60oft. when the previous one switched away from the platform. To increase the eppeed to of ifteen
miles per hour would diminish the headway to sixty second, and bring one train almost upon another before it could be unla, aded, and clumsy poople are indud, od, there e is a positive limit. There-
fore the trains can never be run on much less than a minute hed way for this reason alone, and such short headway would not now
be sate." The same paper makest he following curious suggestion:
-"By the use of some special form of hydruvic suge apparatus, howevere, which special form of hydroduace some form interlocking
ing hydraulic buffer behind a dischecting hydraulic buffer behind a discharging train, of sutiticient
strength to receive and resist without undue shock the moderate
impact of a train approaching at ten miles per hour, such headway impact of a train approaching at ten miles per hour, such headway
might be permitted.,

NOTES AND MEMORANDA.

The deaths registered during the week ending April soth, in twenty-eight great towns of England and Wates, corre
sponded to an anual rate of 20.6 per 1000 of their aggregate population, which is estimated at $9,245,099$ persons in the middde
of this year. The six healthiest places were Derby, Brighton
eicester, Portsmouth, Plymouth, and London.
In London last week 2516 births and 1481 deaths were registered. Allowance being made for increase of population, the
births were 329 and the deaths 238 below the average numbers in the corresponding weeks of the last ten years. The annual death-
rate per 1000 from all causes was $18 \cdot 3$. In Greater London, 3290 births and 1826 deaths were registered last week, corresponding
to annual rates of $31 \cdot 7$ and $17 \cdot 6$ per 1000 of the population. to annual rates of $31 \cdot 7$ and $17 \cdot 6$ per 1000 of the population.
The most interesting alloy of aluminium with zinc contains 3 per cent. of aluminium. It is harder than either metal, and
the brightest of all the alloys used. Ninety-seven per cent. of cold and 3 per cent. of aluminium give a more beautiful colour to the goli, and yet the latter metal does not lose in ductility or malleagreatly injuring its other properties; while the properties of ver greatiy injuring its other properties; whine the properties of other
metals are almost invariably improved by the addition of small
amounts of aluminium.
Arrangements are almost completed at Llanberis slate quarries, Carnarvon, for the biggest blast yet known in the
principality, nearly 100,000 tons of bad rock between the upper and lower working of the quarries being about to be removed gelatine has oocupied three years, being 180 ft. in length and 18tt.
wide. If a fevv of those who write so much about insigniticant seismometer improvements would take this as an opportunity of testing the velocity of transmission of an impulse wave, they would
be doing some useful work, and any of them may use what seismograph they like.
The Guide Scientifique describes the following method Inaking artificial whetstones:-Gelatine of good quality is dis,
solved in its own weight of water, the operation being conducted in a dark room. To the solution $1 \frac{1}{2}$ per cent. of bichromate of potash
is added, which has previously been dissolved in a little water Aquantity of very fine emery, equal to nine thmes the weight of nouldised flint may be substituted for emery noulded into any desired shapo, and is then consolidated by heary
prossure. It is dried by exposure to strong sunlight for several

A clock recently patented in France is described by the Scientific American as being in imitation of a tambourine, on the ng to the hour figures of ordinary dials. On examination, two the flowers. The small bee runs rapidly from one flower to another completing the circle in an hour, while the large one takes twelve
hours to finish the circuit hours to finish the circuit. The parchment surface is unbroken,
nnd the bees simply laid upon it, but two magnets connected witl the clockwork inside the tambourine move just under the mem bane, and the insects, which are of
AT the last meeting of the Physical Society a paper War read on a "Thermo-dynamical Relation," by Prof. Ramsay and
Dr. S. Young. The paper is an extension of one presented to the
Society on Februnry 2citb and Society on February 26 th, and of which an abstract was read by the deduce the relation $p=b t=a$ for constant volume is deduced, and additional reasons are given for believing acetic acid - whose vapou
density at ordinary temperatures is abnormal -to be a mixture of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ and $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$, the former preponderating as the tempera
 or which they suggested "isoberrs" in their previous paper.
A vote on magnetisation, on sequences of reversals was read at the last meeting of the Physical Society by R. H. M. M.
Bosanquet, M.A. Some experiments have recently been made or an iron bar whose magnetic properties under reversals with ascend-
ing values of current were first determined some years ago. The all cases the induction was measured by reversing the current The results generally show a greater magnetic resistance for
descending values of current, except for small inductions where the resistance was less, when the experiments were performed in the
above order. The paper concludes with a molecular hypothesis to explain the above results
The daily papers are publishing a statement leading to Thornyeroft and Company, who " in making proliminary trials o Thornyeroft and Company, who, "in making preliminary trials of
a torpedo-boat built by them for the Spanish Navy, have obtained
 on the 27 th ult. the remarkable mean speed of $26 \cdot 11$ knots was obtained, being equal to a speed of 30.06 miles an. hour, which is
the highest speed yet attained by any vessel afloat." If our readers will turn to our last impression, they will see that Messrs. Yarrow
and Co. have attained as a maximum with a similar boat a speed of $27 \cdot 277$ knots, or $31 \cdot 44$ miles per hour.
A "Report of the Wind Force Committee," drawn up yy Mr. G. Chatterton, M.A., C.E., was read at the last meeting or
the Meteorological Society. In this report, which is a preliminary one, the committee have dealt mainly with that portion of the
investigation relating to Beaufort's Scale of Wind Force and the equivalent velocity in miles per hour. The committee have compared the velocities as recorded by the anemographs at Holy yead, 1881, and they give the results in a table. After a careful consideration of the whole of the results of this investigation, the committee are of opinion that the velocities shown by the Yarmouth anemo-
graph, corresponding to Beaufort's Scale as recorded on board the light-ships, are too high, and that the velocities shown by th
Falmouth anemograph are probably too low.
Mr. Brechstein, of Strasburg, recommends the following plan as the best means of steelifying wrought iron, ie.,
producing a hard steel crust whilst the core remains soft, which can then be used for taps, spindles, and other like purposes. An ounc and a half of prussiate of potassium, half an ounce of borax, half an
ounce of saltpetre, and one-third of sugar of lead are all to be well pounded and mixed together. The iron to be hardened is made
well red-hot, taken out of the fire, and covered well over with the powder, then with the powder on it is again brought into the fire
nd when it has assumed the necessary degree of hardness, it is to be coled in cold rain water. Steel hardened in this manner has,
through the more intimate combination of the hard skin with the soft core, far greater toughness than steel of the kind produced in
ny other of the old -fashioned ways. For taps the temper should be light yellow, or what is generally cailed straw colour. In order to prove the strength and toughness of steel thus treated, a square
bar of 6in. to Sin. long may be taken, which has only been hardened
fon or half its length, and fixed with the glass-hard end in a vice.
Then with a spanner on the soft end it may be screwed round as in the operation of cutting a screw-thread. It will then be seen that
the soft upper half can be completely twisted off the lower hard

MISCELLANEA.

The old-established woodworking machinery business of Messrs. Samuel Worssam and Co. has been purchased by Mr. S. H.
Nelson, who will carry it on with the co-operation of Messrs.
Samuel and F. Worssam.
The Scottish Miners' Federation has adopted a resolution or the purpose of improving the condition of the ironstone miners,
whicl calls upon the men to federate their unions, and to limit the output by strict adherence to ten days' work a fortnight and eight
The $68,200 \mathrm{lb}$. anvil block, recently cast by the Otis Iron and Steel Co., of Cleveland, for the Morgan Engineering
Works, is said to be the largest single steel casting ever turned out in the United States. The block is 8 stt. square by 3ft. 10in. high,
$78,525 \mathrm{lb}$. of steel were melted, ond this was poured in 4 min. 20 sec,
DURING April sixteen vessels of an aggregate of 9643 tons were launched from the Clyde shipyards as compared with nineteen
vessels of 22,754 tons in A pril , 1886. In the past four monthe of the year forty-eight vessels, of 55,413 tons have been built,
compared with forty-one of 51,312 in the corresponding period of last year
The partnership hitherto existing between Mr. George Heaton Daglish and Mr. Harry Bolton Daglish, and Mr. Robert
Shaw Daglish, has been dissolved by mutual consent, and the business will for the future be carried on under the nameo of Robert
Daglish wand Co., by Mr. Harry Bolton Daglish and Mr. Robert Shaw Daglish.
The Birmingham Compressed Air Power Co. are probeen obtained for the breaking up of the roads, which will be begun in about a month's time. Of the 6000 -horse power which will be
available on the completion of the works, about 4000 -horse power available on the com
has been applied for.
Great preparations are being made in Amsterdam for pened with considerable ceremony in that city in June next. A great deal of interest in the Exhibition has been excited not only in
Holland, but in Germany, Belgium, and France. A number of Holland, but in Germany, Belgium,
exhibitors are going from England.
A sUgGEsTION has this week been made that the projected Manchester Ship Canal should be continued through North
Stafordshire, Wolverhampton, and Dirmingham. By this means
carroes could be sent from thing like 4s. per ton in vessels of, say, 2000 tons, drawn either by tug boats or by heary locomotives on each side of the canal.
On the motion of the Duke of Buckingham, in the Gilbert and Sinclair's Patent Bill were referred to a Select Committee, consisting of the Earl of Belmore, the Earl of Camperdown,
the Earl of Selborne, and the Earl of Limerick, to consider and the ear of sethorne, and the Earl of Limerick, to consider and
report whether, reard being bad to the Patents, Designs, and
Trade Marks Act, 1883 , said Bills or any of them should be allowed to proceed.
A memoir by Professor Bauschinger, of the Technical High School, Munich, is being issued by the conference held a testing materials used in building and construction generally. rofessor Bauschinger is anxious that the object of the
Dresden conference should be widely known in this country, and will be glad of any advice or co-operation that those interested
may be able to give him as to how this may be best done, and also may be able to give him as to how this may be best done, and also obtain in England.
Messrs. Lazenby and Son have just put down a water distilling plant, in order to use only water of absolute purity, it
being found so much better and more economical than water distilled, for making extracts and clear preserves, and for the where the chemistry of foods is carried on daily on a scale of whicl few people are aware. The adoption of this system will probably
lead later on to the universal use of distilled water in similar Works. Messrs. John Kirkaldy, the well-known specialists in dis
diling machinery, have been entrusted with the carrying out of the work.
An overflowing artesian spring of great strength has a tube well at the site of the new works of the British Xylonite
Company, near Manningtree. The tube well is 162 ft. deep and 10 in . internal diameter. The water from it rises to 2 ft . 6 in . above the surface, and at surface leve it overfiows at the rate pate hour In boring this wellthe first 30 ft . occupied several days, being nearl all lose ballast, but the remaining 132 ft . were bored in the short
space of five days, on one of which no less than 5 ft of chalk and ints were penetrated.
Five persons were injured last week by an explosion of dynamite eight miles from Sheffield. A workman had one dynamite
cartridge, and whati is known as a "primer," or half-cartridge. Finding the dynamite too hard, the workman placed the cartridge shale, which lay near a fire, The heat ve explosive material to such an extent that turning the shale
sver in order to seek the cartridge, was sufficient to cause the friction necessary for its ignition. A blinding flash was seen by
other workmen, who, hurrying to the spot, found five persons njured, two of them dangerously. It is feared that in each
instance the sight will be aftected, the eyes in all the cases having

Iv the House of Commons on Monday, on the motion into the existing laws and regulations regarding boots life-buoy and other life-saving gear required to be carriied by British merchant ships, and to report whit, if any, amend sents are required Ir. Hoare James Corry, Sir Charles Palmer, Viscount Kilcoursie, Mr. Bruce,
Sir William Plowden, Mr. Menzies, Mr. Thomas Sutherland, Mr Taylor, Mr. Richard, Power, and Mr. Thomas Gill-power to send
Messrs. John Yates and Co., Birmingham, are makingan ar in which the blade is made from the best sheet steel, highly tem-
pered. It is put forward as being much stronger than the ordinary ooden one, and cannot be broken without undue violence. Th blade, and forming a beck bone of great strength. The oor being
much thinner in the blade than the wooden one, enters and leave the water cleaner. The handles are made separately of the ordinary spruce or ash, and if broken can be readily replaced. The
leathers for these oars are laced and shrunk on in six different ways, all of which strengthen the loom, and this is an advantage over the preent method, as no nails or rivets are required for
fixing. The ordinary button is fastened by long nails, which very much weaken the handle or loom in a part where strength is re-
quired. The new leathers can also be moved to suit any width of what, and they present several points of recommendation, but
where slight increase in the weight of the blades of oars or sculls
is of importance the new is of importance the new ones may not be so much liked.

THE IRON，COAL，AND GENERAL TRADES OF BIRMINGHAM，WOLVERHAMPTON，AND OTHER DISTRICTS
respondent．）
or common sorts．The quietude which characterises the quarterly meetings seems to be becoming more pronounced．Iromasterys
order books present little business ahead and current demand will not allow of full time in scarcely any direction．Orders are kept
down to the satisfaction of buyers＇anrly niecessities，and export ns well as home inquiries are muych below the tiverage．Buyyers are standing，off the market，in the expectation that prices will further
weaken．
weaken．Prices of marked iron are unaltered at $£ 7$ to $£ 712$ s． 6 d ．，and there is no prospect of a change．Medium qualities range，from
$£ 6$ down to $£ 510 \mathrm{~s}$ ．，and common qualities from $£ 55 \mathrm{~s}$ ．down to £4 17s． 6 d ．
 For hoops and strips trys and $£ 710$ s．to $£ 810$ s．for boiler qualities，
 Hill，Bilston，with Messrs Tupper and Co．，galvanisers，
ham．
The position of the pig iron trade has not improved upon the weie．Pricos continue e o ease，an
persuaded to stand off the market．
Northampton pigs are quated．about， 30 s ．per ton，delivered to
consumers＇works hereabouts ；Derbyshires， 37 s ． 6 d ．to 38 s ．；and

 about 52 s ． 6 d ．to 55 s．nominal．
If the present quietude in pigs continues，it is considered certain that further furnaces will be put out in Northampton and Derby
shire－a step which should strengthen prices again．The Bestwo shire－a step which should strengthen prices again．The Bestwood
Company，Nottingham，is however putting up a new furnace in addition to the two which they have now blowing．
An increased demand is finding expression for steel，which is
being preferred over iron by buyers in many directions．The being preterred over iron by buyers in many directions．The
tonnage of blooms and billetts rolled down in Staffordshire iron
mills sint fonished products is stendily
 of thins presents a strong contrast to the sluggishness which
marks the demand for manufactured iron．Steel bars，too，are in a larger sale，so much so that steelmasters are now becoming con－
siderably indifferent to orders for steel in a partially manufactured form，upon which their profits are less than upon the finished Steel blooms imported into this district are commanding $£ 4$ 10s， per ton，while bars are realising $£ 5$ to $£ 6$ ．Hoops and strips
rolled in local works from imported blooms are selling at $£ 610$ s． per ton．
A som
（ime is that notwinthatandanding that in Stanfordshire we manufacture basic steel，considerable quantities of basic billets are being im－ ported into this district from Scotland to be rolled into strips for
welded tubes，the material itself being the softest and most weld welded tubes，the material
able quality in the market．
ve not yet foind it much is that local basic steelwork to this particular branch of the trade．They are so well engaged in the larger departments that they do not at present recognise the Steel strip of exceotion Steel strip of exceptional quality is being rolled at the present
time at the Earl of Dudley＇s Round Oak Works．It is pronounced by tube makers to be particularly good，a feature which，it is
explained，is due to the fact that the blooms are heated in Mr． Smith Casson＇s patent gas furnaces．The operation of this patent furnace protects the steel from the ordinary oxidising influences results from the circumstances that any pressures．can be put on the as so as to fill the furnace perfectly full of flame，and the flame is peculiarly clean．An increased quantity of steel bars is also being In marked iron
lut marked iron orders are being received for shoe iron from
Australia，and for general merchant iron from South America The manufacture of charcoal iron hars hon from South America other qualities of iron turned out．Formerly the Eard of Dudley
was accustomed to execute United States orders for axe，hatchet， was accustomed to execute United States orders for axe，hatchet， ports，but of late years the trade has got down to nil．His lord purposes．
strain of 25 A 2 in ．round tested by the Admiralty gives a tensil
tor square inch，with an elongation of 30 pe cent．，and the Admiralty have admitted this iron to equal competi
tive privileges with those conceded to the celebrated Lowmoor iron tive privileges with those conceded to the eelebrated Lowmoor iron．
The North Staffordshire finished iron trade is affected by a weak rom preanious values，which cenerally forbuid the transsction remunerative business．This state of things is not observable in
the home trade alone，but is conspicuous likewise in foreign time provides abundrican spring demand，whic Prices nominally rule at $£ 5$ for Crown bars，$£ 5105$ ， for ship plates，and
Liverpool or equal．
The present prices of Messrs．Robert Heath and Sons，of the Ironworks，Tunstall，are as follows：－－Flats from lin．by $\overline{\text { in }}$ in．to 6 bin
 grooved horseshoe iron from lin，best turning to to 3 in．diameter，
Staffordshire angle iron from 1 by 1 by \ddagger united inches，all $£ 515 \mathrm{~s}$ ．； le and chamnel，$£ 715 \mathrm{~s} ;$ ；bridge or tank plates，$£ 65 \mathrm{ss} ;$ ；best boiler，$£ 615 \mathrm{~s}$ ．

 $£ 75 \mathrm{~s}$ ；best boat head iron，$£ 515 \mathrm{~s}$ ；all delivered Liverpool or The pipefounders are anticipating that numerous orders will
follow on the inquiries which are now being made．Among the orders now on the market is one for 1700 lineal yards of imon pipe required for S wansea；and another for about 25 miles of pipes，
together with other cast iron work，in connection with the Heston and Water Company is seekinc tenders for a large supply of gin to 2in．east iron pipes；and at TTipton inquiries arre being made or or
about 130 tons of 30 in，24in．，and 9 in．cast iron socket pipes， ogether with other worls

NOTES FROM LANCASHIRE．

Mrunchester：－The past week has partaken so much of a holiday aracter，and the Royal visit and the opening of the Manchester Exhibition have so much occupied attention，that business has iron market had，of course，to be suspended，and nominally it wa held on Monday；but there was little or nothing doing．So far a there is any opportunity of forming an opinion as to the actua 隹 condition，of trade，makers of pigiron wopld seem to be oholding with，if any，rather more firmness to their prices，but they do not

meet with any support from buyors，who are only disposed to giv
out orders where they can place them at very low figures ；and out orders where they can place them at very low figures；and
there is iron offering in the marketat pricesfar below what makers are asking．In one or two cases excessively low prices have been taken
for larye quantities but these are excentional transactions；and just at present，in the absence of any business of importance，it is
difficult to say what prices really are．For Lancashire pig iron iifficult to say what prices really are．For Lancashire pig iron
38．to 395 ，less 22 ，for forge and foundry，qualities delivered equal o Manchester，are the nominal quoted prices，but at these figure，
local mial colnshire makers are in some instances prepared to take about
36 s ．6d．to 37 s ． 6 d ．，less $2 \frac{1}{2}$ ，delivered equal to Manchester，but ever these figures do not meet the views of buyers；and in outside
brands there is a good deal of underselling going on．For hematites prices are being cut excessively low，and merchants are prepared
o book orders at figures far below what makers are asking manufactured iron the demand is very slow，and in most cases
makers are in want of work to keep their forges going．The basis of quoted prices remains at about t5 per ton for bars delivered into
the Manchester district，and for forward delivery good qualitie could not perhaps be got at much under this sigurere；but for prompt
specification there is a disposition in many cases to take less money．
So far as the engineering branches of industry are concerned the inquiries I am in a position to make through reliable source，
still show trade generally to be in a very unsatisfactory condition and I hear of very little new work of any weight coming forward Locomotive builders are working on the orders which were got a
month or so back，but these are not being followed by further nonth or so back，but these are not being followed by furtuer
orders The same may be said with regar to boilermakers，who
are still kept fairly well employed with work in hand，but are get ting very little new business．In heary engineering work there
but little doing；machine tool makers are moderately wel mployed，and some of the machinists are in the same position，but none of them speak very hopefully as to the future，and in any
branch of the engineering trade it is only very exceptional where
there is really any activity，on the other hand the returs here is really any activity．On the other hand，the returns
 a cont．
nent．
As
．
Machinery Pable interest is taken in this district in the Rating Commons，and as perhaps the most important evidence in support of the position taken up by the leading engineering firms woth
regard to the matter is being contributed from this immediate neighbourhood，it will not be out of place to give a few particular th regard to the question as it now stands．The Bill，it may be
stated，is a simple defining measure fixing the liability of machinery to be rated by adopting the hitherto received theory that onl
that which goes with the freehold，such as engines，boilers，shaft ing，steam hammers，and other similar heavy fixed plant，is thus
liable．In the inquiry now proceeding the Select Committee would seem to be going on these lines．Mr．Lings，of Manchester，was Tyneside Boiler Works case made all machinery liable，and stated he knew that in Lancashire and Yorkshire the assessment committees nd officers would in future rate textile machines，such as looms，
spindles，Le．Other witnesses have followed in the same tenour nd Mr．Marshall notitied to the committee that he should no complete his valuation of the Crewe locomotive works，and that he
should include all light machines．This week Mr．W．A．Edgill，
clerk to the Chorlto clerk to the Ch
Mr．MacPherso vorks of Sir Joseph．Whitworth and Co．，is to be called．It was ngineers of Memans valuation that the dispute arose in which the worth and Co．，and opposed the assessment of the light machinery n question．This case was eventually settled urider the judgment Siven in the Yyneside Boiler Works case，but it is not unlikely that in illustration of the principle upon which such valuations are made for the purposes of assessment．
Amongst minor engineering matter，I may notice an improve lawn mower，constructed upon quite a different principle to the rainary run of horticutural implements of this class，that is being
introduced by Messrs Follows nnd Bate of Manchester styled the＂Silent Gorton＂machine，and it is driven by rolling frictional gear instead of toothed wheels．In fire extinguishing appliances，Messrs．Rose and Co．，of Manchester，are also introduce
ing some improvements．One of these is a four－way jet－Knott＇ ing some improvements．One of these is a four－way jet－Knott patent－by means of which the stream of water from a hose pip
can be contracted or expanded as desired from $\frac{1}{2}$ in．to 1 lin in in varying degrees out of four different jets by simply turning revolving plate carrying the different sizes of jets，and one import nt－perhaps the most important－feature is that in changing from
one sized jet to another the flow of water is never absolutely checked， and there is thus no sudden shock brought upon the hose pipe， a locking clip for fire ladders ；in the usual construction，when an xtra length of ladder is put on，it is simply dropped into a loose
clip，but in this new clip，which is Hunt and King＇s patent，there spring lock which firmly holds the extra length of ladder as soo sit is dropped into the slot，and it can be liberated by simply The demand for shipment has quiet the spring from the high levol，Liveol，or the Garston Docks steam coal does no average more than about 7s．per ton．
With the reduction of the price
trict the wates of de about 10 per cent．The question collieries of the South－West Tancashire district has also been under consideration，but so far nothing definite has been decided upon．
Barror．－There is a better tone in the hematite pig iron trad this week，and a fuller inquiry is expen． to place large contracts for forward delivery at the low rates which have been ruling the market lately so far as speculative sales are who for the most part are very busily employed all round，ar Who for the most part are very busily employed all round，an
asking from 43 s .6 d ．to 46 s s．6d．per ton net，f．o．b．，and are no that the orders they have on hand will furnish them with work for fully four or six months to come，irrespective of new wor second－hand dealers have been considerably reduced，and now that the market shows itself to be a trifle firmer，holders of these stock teel shows an improvement，and rails are in especially bris request，both from home and foreign buyers．The Americans have
anain begun to enquire for terms of delivery，and it is noted that gaain begun to enquire for terms of delivery，and it is noted that
their wants are considerable，notwithstanding the fact that the such a ver
but Englisi makers，when they get favourable terms of freight，can com－
pete successfully with American producers，notwithstanding the pete successfully with American producers，notwithstanding tar
heary import duties charged．Rails are firm，and ordinary
heavy sections are quoted at $£ 4$ per ton．There is a good heavy contracts are offering．There is a steme esper tone in in
the shiphuilding trade，and some contracts which are bein the supsuiding trade，and some contracts which are being
tendered for are likely to come into the hands of local builders
There is a fuller inguiry for shiphoilding material in steel nitself is a gratifying proof that orders are in the market for ship－
ping．It is probable that tat Barrow increased activity will be shown in this branch of the steel trade．Shiipbuilding at Barrow
has been exceedingly dull for some time，and it is now hoped that revival is setting in，and that the large yards in the place which neers，ironfounders，and boilermakers are doing a quiet trade

Iron ore is firmer in tone，and there is a good inquiry for good
ordinary qualities，for which the quotation ranges from 9s．3d．to 11s．per ton，there being poorer qualities at lower and better qualities at highere figures than these．Coal and coke is steedy in
tone at unchanged prices．There is not much doing in the ship－ ping trade，but prospects are very good all round

THE SHEFFIELD DISTRICT．

THE defective cutlasses and sword bayonets involved an expen－
ane to replace them of $£ 26,430$ ．It was recommended by the diture to replace them of $£ 26,430$ ．It was recommended by the commitce that in the trianguar bayonet would hit the Martini－
Henry rifle in use in the navy，the requisite number should at once
be issued ；otherwise，that the Enfield－Martini sword bayonet should be issued to replace the converted cutlass sword bayonet，
which they recommended should be withdrawn．Hence the order for 150,000 sword bayonets，which for the moment excited so much interest in the Sheffield district． I am afraid the work will not be
taken here after all．In the first place，the sword bayonets were did not see the leading Birmingham firm of swordmakers，who 30,000 within a year and the remainder at the discretion of the Secretary of State for War，unless upon conditions which
the authorities were not likely to grant．A large addition would have been required to their powers of production，and when once new machinery being kept fully employed？This was also the difficulty of the Sheffield firms．That they could make the blades
was not disputed－any grinder who had been accustomed to carvers could grind sword blades．But to turn out the sword－
bayonets needed at least $£ 5000$ would have been required machinery，and men would have to be specially set apart for the
work．When the present heavy deficiency caused by the discovery of untrustworthy weapons had been met，what would the machinery and men have to rely upon？The orders would drop again
to 2000 or so per year．Not ony were there the blades
to make，but they had to be fitted to the rifles．This
俍 was an engineering matter，and Shetfield cutlery firms do
not like complicated matters of engineering．They would supply any quantity of blades，of proper material and thorough
workmanship，hut there their responsibility，they felt，should end． Another alter not turn some of the enterprise and capital they have longed to embark in heavy castings and forgings into small arms？No Shef－ field firm will undertake the 150,000 sword bayonets without some guarantee against loss in the future－a guarantee which they do If they seat of the steel manufacture．There they would find abundance of skilled labour ready to their hand．They would have no difti－ culty then in the delicate operations of hardening and tempering
steel，on which the success or non－sucecss of weapons for warfare they only knew one half of what is said by Shetfield steel makers－employers and employed alike－who soe
how steel is tempered and hardened in some Government establish－ Last week I gave you so
Last week I gave you some idea of what Sheffield was doing at
Manchester Exhibition．Newcastle will have an equally interestinc． though a smaller show．Messrs．Vickers，Sons，and Co．，show
steel crank shafting made by them to the designs of Messrs．R．W． Hawthorne，Leslie，and Co．，for the starboard engine of the royal
Italian twin screw armour－clad Sardegna，of 25，000 indicated hriple expansion engines．At lower power，the after set
then engines only are used，the crank shatt of the forward sets being disengaged by the connecting bolts being simultaneously
withdrawn from the forward coupling．Each of the six portions of the shaft is forged solid from an ingot of Messrs．Vickers＇special Jid stee．．The weight of the shafts finished is 66 tons．Messrss．
John Brown and Co．，the Atlas Works，have a noble exhibit．It includes a fine piece of work in a huge marine boiler furnace front
plate，with four large furnace holes．This plate has been flanged in one heat in one of their large hydraulic presses．Close at hand is a superheater and plate，of unusual shape and size，flanged on
the inside and outside，and a a pan 9 ft ． 3 3in．and 28 in．deep，dished out of a flat plate 10ft．8in．diameter，in one piece．This is used for chemical furnaces．In this front Messrs．Brown show one of
their already received the full sanction of Lloyd＇s，and is expected to pass the Board of Trade during the next three months，when the
series of experiments for the Board，now in progress，have been completed．Messrs．Brown and Co，also show four pieces of armour plate which have been tested．These illustrate the pro－ gress of armour since its beginning．Among steel castings is a
large propeller blade，wighling 85 cwt ，which is a duplicate of recently sold to the Italian Gade for the
＂It was recently stated in a London paper that out of fifty patent Monday manceuvres，thirty－two proved failures．I am informed， on the authority of the exxusive makers，Messrs．Lucas and Sere，that the tools which broke down were not Government have had in stock for a considerable time Messrs Lucas are at present engaged upon an order for 7250 of the
＂Wallace＂tools for the British Government．This firm have just
俍 brought out a new spanner，known as Parry＇s registered spanner，
which is adapted for universal use ；it has already taken a firm Messrs．John Brown and Co．are putting down extensive plant
or the manufacture of the new ribbed flues to which reference was for the manufacture of the new ribbed flues to which reference was made sometime ayo．
for these flues of late．
The cutlery and plated trades are again very quiet．Railway

THE NORTH OF ENGLAND．

A FAIR amount of business was done in Cleveland pig iron last
veek，and No． $3 \mathrm{~g} . \mathrm{m} . \mathrm{b}$ ．，which was quoted at 33 s ，6d．on the 26th ult，advanced 6 d ．per ton before the end of the week．But at the
market held at Middlesbrough on Tuesday last the tone was again at，buyers held off，and prices were easier．Makers seem more
than ever determined not to part with their iron at present prices． They believe that there will be a substantial improvement when quantity of iron in secocoss hands canced is appreciated ；and we very great，buyers will，
nile their opinion，be soon compelled to to to them．Merchants are nwilling to commit themselves．Most of them refuse to accept
ess than 34 ．for
 hematite，＂mixed Nos．，45s．per ton；＂Acklam Yorkshire＂＂（Cleve－
and），No． 3 ，36．per ton；＂Acklam basic，＂ 36 s ．per ton；refined
ron， 48 s ，to 63s．per ton． iron， 48 s ．to 63 s ．per ton．
Warrants have
lately makers＇iron．The price advanced from 34s．to 34s．9d．per ton
ast week，but by Tuesday last it had again fallen to 33s．10 d ．，at
 sor the month．At Glasgow on the same date， 866,725 tons were
in tor tork，being an increase of 9759 tons．
in stan

The shipments of pig iron from Middlesbrough were last month
xceedingly good, and, indeed, far above the average. Only twice exceedingy goon, and, indeed, furin the last list two years. The total
have they beon exaeded during
quantity which left the river was 78,209 tons, of which 31,835 tons quantity which left the river was 78,209 tons, of which 31,835 tons 5896 tons to the United States, and 5712 tons to Holland. The weight sent away having been 46,875 tons, or aboutlent, the the total
more than during February and March. India was, as usual, by far the best customer, 21,340 tons having been sent thither.
In the finished iron trade there is no improvement ; orders are exceedingly scarce, and consumers can place them almost on their
own terms. Ship plates and common bars an be bought for
ful E4 10s. per ton, and angles for
works, less 22 per cent. discount.
The accountants to the Durham Coalowners' and Miners' Asso-
ciation have just issued their certificate for the three months ciation have just issued their certificate for the three months
ending March 31st last.
appears to have been 4s. .56 net at average ellling price of coal
per ton, which involves no change
appears to have been 4s. 5.6 .6 d . per ton, which involves no change
in the previling rate of Fwas.
The balance-sheet of the Northumberland Miners' Association, for the e irst quarter of the present year, has been isssued. Only
one copy was forwarded to each colliery, in the hope that the conone copy was forwarded to each colliery, in the hope that the con-
tents thereof would not get into the newspapers. However, the principal items son became known. It appears that since the
strike began $£ 29,4589 \mathrm{~s}$. 10d. has been paid out to members on strike. Deputatoons to kindred associations have cost tet97 13s. , od.
The expenses of the special committee, and of deputations to the The expenses of the special committee, and of deputations to the
coalowners. 228 2s. d . Delegate meetings have cost $£ 79$. 19 s .
$£ 5211 \mathrm{~s}$. dd , has been paid for executive committee meetings and ${ }_{£ 22} 18 \mathrm{~s}$. 5 d . for deputations to collieries. $£ 4676$ 14s. 2d. has been received from the public, in the form of subscriptions in aid of
those on strike. The receipts from other sources are $£ 20538 \mathrm{~s}$. 2 d ., and $£ 144617 \mathrm{~s}$. 7 d. is the balance in hand. The total number of are 1128 half-members
The demand for pig iron in Russia is just now very brisk, as
buyers in that country are apprehensive that the import duty will shortly be raised still hiyher. The Baltic ports being now open, it
is not unlikely that larger shipments will take place as the season drances. It is said by some who are engaged in the Russian
trade, and who profess to understand the policy of the Russian Government, that the duty w will be increased moore and more, until
English pig iron is totally barred from access to the Russian
market.
The Neweastle Chemical Company, whose works are at Gates-
head, has determined to put down a bore hole for water by what is head, has determined to put down a bore hole for water by what is
called the American process. It is somewhat strange that in South Dailed the American process.
Durham arth Iorth Yorksire, where so mat many bere holes have
been made to obtain access to the great salt deposits, that we hould be dependent on our transatlantic cousins for the best method of developing our own resources. It appears, however, that the large
amount of attention given to boring, and the experience gained in the States in seeking for petroleum oil, has enabled the Americans this side of the Attlantic. One quickly imme imeatiaply than we druck, when inspecting a sinking on their system, with the extreme simplicity
of the apparatkus they use. The engine is a good one, though
small, having usually only a 12in. cylinder retained for working the brine pump. The boring rod, which somen 50 fort. or 6oft. long, in jointed sections, is also well made. All
the rest of the machinery is as cheap and crude as it is possible to magine, but it works well enough, and to make it more expenad employed on each shift. Thesse o o the whole of the work,
and
the One shint starts at noon and the other at midnight. Boring by the
diamond drill does not seem to be able to compete at all with the American system, either as regards rapidity or cheapness. One of
the chief characteristics of the latter is that when the hole is complete, and the salt is reached, almost all the appliances are
retained in their original position, as, in case of a breakage of the pumping tube, they may be required again at any time. There
seems little doubt but that since boring can be done so cheaply and so expeditiously, it may be usefully employed for many other pur-
poses connected with mining and other branches of engineering.

NOTES FROM SCOTLAND.
A substuntial advance took place in the prices of pig iron reception of some fresh orders from the United States. Sum-
merlee iron was advanced 1s. per ton, and a number of the other brands were raised 6 d . But when the market, re-opened after the
holiday on Tuesday, the tone was very flat, and the quotations
beran to The past wee
T09 tons, as weompared with 10,285 in thairly good, amounting the corresponding week of
1886. And backward as the pig iron trade continus to gratifying to state that the exports are nearly 11,000 tons greate
 about 2000 tons per week. An additional furnace has been put in
blast at Gartsherrie, the total now blowing in Scotland being 80 , against 95 at the corresponding date last year.
The current values of makers
fig iron are - Gartsherrie,
f.ob. at Glaskow, No. 1, 47 ms . 6 d ., No. No. 3, 44s.; ;Coltness, 54s. and

 The reduction of 5 s. a ton in the prices of shipbuilding steel,
which has been made by the Steel Company of Scotland, , rings ngles to $£ 515$ s., ship plates to $£ 6$ 15s, and boiler plates to $£ 7$.
Merchants state that they have been quoting prices as low as The iron and steel manufactured goods shipped from Glasgow i the past week, ,mbraced $£ 31100$ worth of engine parts for Bombey,
£4281, mechinery; $£ 3696$, sewing machines; $£ 12,630$, steel goods;
the greater part of which went to the UUited States, and $£ 21,700$, the greater part of which wencluding $£ 10,430$ worth of pipes, plates, The coal trade is active, a large business being done, but the
 $9080 ;$ Irvine, $3160 ;$ Troon, $6158 ;$ Burntisland, 13,$000 ;$ Leith,
$7055 ;$ Grangemouth, 12,$672 ;$ Boneness, 6699 G Granton, 4140; and
Port Glasgow, 1100 total, 96,605 tons, as compared with 93,031 in At a conference of masters and colliers delegates held in Glasgow, as representing the districts of Airdrie, Slamannan, and Bath-
gate, to consider the question of the adoption of a sliding scale of
wages, it was reported that the whole of the districts were not agreed as to its aceeptance. The matter was therefore postponed
in the meantime, but it was resolved that before any change should be made either in wages or the terms of employment, a fortnight's
notice should be given by either party.

WALES AND ADJOINING COUNTIES
I vortickn last week a capital rail made at Cyfarthfa some time
ago, now being placed on the Rhym Rey line. Unfortunately steel
rails, however good and cheap, are not in demand. Cyfarthfa has
a few, principally for renewals. These may be expected to increase iron bars. Cyfarthfa turns out 1000 tons a week. An interesting
consignment has just left these works in the form of a box of consignment has just left these works in the form of a box of
exhibits for Newcastle, principally steel plates, \&c. It shows the perfection to which scientific appliances have been brought when I
state the racter of steol make is used for coating buttons. Steei, like tin, is
evidently to figure in more varied uses even than at evidently to figure in more varied uses even than at present. This the leading article. Speaking with one this week he said, "We won't make rails at the price offered, and only wish eevery maker
did the same. Present quotations are no good either to master or

A few consignments, foreign, are reported. Puerto Cabello took别 For the ordinary cokes, Bessemer, and Siemens, the demand is ground for complaint. The real grievance is price. Take SWansea
for instance. Last week was one of the busiest, especially in tin plates. The quantity exported was 51,443 boxes, and as only a
little over 24,000 came from Wales, there was a rush upon the so that a Prices remain unaltered. Buyers cannot force
12s. 6d. as a rule, and from this to 13 s . have been the ruling figures. range to 13s. 102d. Charcoal sheets are in slight request, and may Bers are still in demand, and sel these sales are small. Coke waste
freely for from 12s. 3 d . to 12 s .6 d .
The favourite plate on the market is Bessemer steel, with coke
tinning and for these, special, as much as 13 s .6 d . has been asked, and obtained.
Abercarne Works, Mr. Whitehouse, are in good form again,
and Monmoutbshire make will soon prove a serious consideration But the element of discontent is the one which makers fear more than the question of demand. Organisation is going on apace,
and Unionism is to be supported with a capital of $£ 20,000$. There have been several meetings of late at Swansea, and Llanelly, and a
subserintio I would suggest a good representative meeting of masters and
men, and a sliding scale adopted similar to that which has been Another spurt seems to be taking place in the steam coal trade. An Saturday and Monday ten consignments of over 2000 tons each, best steam, lett Cardiry for foreign destinations. Whe totail ast
weel from that port was nearly 160,000 tons and Swansea showed
a total of nearly 33,000 tons. Newport coassing, total, 23,70 tons. a total of nearly 33,000 tons. Newport coasting, total, 23,790 tons.
Small steam again suffers by the increased output of large, and at 4s. 3d. it is going a-begeging. Large stocks are accumulating.
Prices of steam coal remain stagnant, from 8s. 3d. to 8s. 6 d f. fo.b. being the ruling figures. Monmouthshire coal 1s. cheaper; Rhondda
No. 3 in pour demand, prices quoted Ss. 3d. Coke dull, 14s. 6 d . furnace, 16s. foundry, patent fuel better, and shipments increasing. 70,044 tons coal last week, the largest clearance which has yet been Plymoutt The average is about 1,00 tons Plymouth colliers returned to work on Wednestay after a little
difference about the check weighers. Rhondda and other colliers
meetings are moving in the matter of the Mines Regulation Bill.

NOTES FROM GERMANY.

The iron market in Silesia is in an especially hopeful condition in dealers' hand sold, but the forges and rolling mills, steel works,
and foundries and foundries are at the same time exceptionally well off for
orders, and have contracted for their output for the current quarter, the price for bars being at M. 120 p.t. as base price, so keep up for some time, if they do not indeed rise, that fis till the the
production, which has been increased by relightig fresh best production, which has been increased by relighting fresk blast
furnaces, has overtaken the consumption, and stocks have begun to accumulate again. The reasons for this better state of things are the purchase of so much pig iron to go to Russia before the
duty is raised, and the firm position of the Wrought Iron Convention, now strengthened by the accession of the largest firms, which now, perhaps, higher prices in the future. The neighbouring market of Austria is also able firmly to maintain its quotations,
and this more particularly because after the lst of July it is pro posed to raise the import duty on iron. The Belgian iron market remains firm and nearly all their output, and both pig and wrought iron of all descriptions are in
excellent request. The prices of crude iron are now very firm, as the cause of any former weakness has ceased, since there has been no more over production to produce it. Steel is also irm. wagons between them for the Italian Mediterranean Railway. The
coal trade is not so favourably situated greatly increased since the beginning of the year, which compen
The French market is showing more hopeful signs, for until lately in Paris prices had a continued downward tendency, whilst beginning to look up in Paris itself. Girders are at 130f., and for 1400 t. of steel rails for Corsica, at 130f. p.t. There is no uncommon demand for iron at the several works, but sufficient orders came to book to keep them regularly going, and prices pretty firm.
The Wrought Iron Convention has been prolonged to the 30th of November next. The work for the Eiffel Tower and the Exhibition
building is being pushed forward regularly there is nothing worthy to remark
The Rhenish-Westphalian iron and steel market does not show
sp up quite so well as its neighbours before alluded to. There is little
change to note, demand has certainly slackened, but prices in general have been upheld. Ores, as last reported, are still less sought market, on the other hand, is brisker with a slight upward tendency. Most kinds of pig iron have held their places, and Spiegel, high in Mn,. is in much better demand again, large batches having
been disposed of and contracts for the whole production for the on the base prices are obtainable, which is remarkable, for there is greater than the surnply. This only applies to the Siegerland.
The prices at the West The prices at, the Westphalian works have all been moderately well
maintained. In the month of March in all $315,73 \mathrm{t}$ of pig iron
wire prices have changed much, the base price having again been fixed M. the R.t. A Alenish destate from the theniesian on Convention attended
Mhis meeting, the result of which will probably be a coalition
the of the two. shis woul itring the buyers, who have been
hanging back oo long int the market, as further waiting
would slowness with which specifications come into the works would
cease. These conventions are so far of interest that it better enables the works to compete against England in neutral markets,
for the reason that it is possible for them to charge a lower figure for the reason that it is possible for them to charge a lower figure
for exported iron than for domestic consumption, the home consumer being saddled with the difference. Boilior plates have been
a little better called for, but the price obtained does not pay, so it
the firmly-held prices of pig iron. In March, 7775 t . of plates
were produced by the west group of works. Thin gauges of sheets in the Siegerland are in less request, but a further fall in
prices has not been made known. In railway material there is little to note. It appears the native works had anticipated foreign competition at Bromberg, noted last weok, os they reduced their
tenders accordingly, which were M. 111 and 112 p.t res the theit but this is an advance of M. 5 to 6 p.t. in the prices there tendered
last octoer. At the Italian tenderings last month for the
Mediterranean Railway, the Bochum Company took 77 ,000f. of locomotive and tender axles, while the native works, Terni, took
$158,000 \mathrm{f}$. of Bessemer and Martin steel tires. The position machine and other construction works remains almost unchanged but Henschel and Son, of Cassel, have received an order for twenty of Kiel has just taken It may be usent
Italy, to be be informed that A. Miazzon and to do business in Carmine No. 5 , are now publishing every Thursday, under the title "I fallimenti monitores del commercio," a list of firms for the whole of Italy who have suspended payment, and a supplement
which gives particulars of all protested bills. The price for the The third sea-going cargo steamer of 850 tons and 450 horse power, built and engined by Sir W. G. Armstrong and Co., to ru
between C city to begin her regular passages. She is fitted throughout with electric lamps. It is not improbable that these ressels may be the procursors of a colier fleet to carry coals from Westp.
The new explosive compound, "Roburite," is coming to the front, being built near WYitten, in Westphalia, to manufacture it. From the following advantages, amongst others, above dynamite :-It is perfectly harmless to handle, and water destroys its efficacy; ; it much more powerful, weight for weight, and after explosion the
gases are neither dangerous nor even annoying and used in coal gases are neither dangerous nor even annoying, and used in coal
mines it does not pulverise the coal like dynamite, but acts more like gunpowder, without its dangerous igniting flash. The inventor roth. It is stated that it is a compound of petroleum and chlorine with nitrate of
racy of this statement.
The foundation stone of the Schwartzkopf branch torpedo works, overnment has for some time past had technical attachés (engineers) added to their embassies at London, Paris, Rome, St
Petersbury joined, and the arrangement has been useful, and given satisfac
tion. It is to be hoped the English Government will follow suit, if it has not already done so.

Agricultural Engingers' Assoclation,-The annual meeting
of the Association was held in the Memorial Hall, Farringdonof the Association was held in the Memorial Hall, Farringdon-
street, E.C., on Tuesday last, Mr. Henry D. Marshall - Marshall,
Sons and Sons, and Co.-the president, in the chair. The annual report of
the council, together with the treasurer's statement, was adopted Mr. Marshall was unanimously re-elected president for the ensuing
year, and Mr. J. E. Ransome, of Ipswich, and Mr. A G. E. Morton, of Chelmsford, were likewise unanimously elected vice-presidents.
A vote of thanks was awarded to Mr. Marshall for his able services as president during the past year the London Association of Foremen Enginerr and Draughtsmev. - At the thirty-fourth anniversary dinner, held on
Saturday last, Lord Thurlow presided. The great hall of the Cannon-street Hotel was the scene of the celebration, and the
chairman was supported by Admiral Mayne, C.B., M.P.; Colonel Frederick Abel, Mr. Joseph Newton, C.E., and others, whilst the room was well filled by members of the Association and their
friends. It was remarked, however, the friends. It was remarked, however, that scarcely a single em-
ployer of note in the engineering community was present-a marked contrast to similar gatherings in former years. The and Mr. Powrie, president of the Association-were fairly up to the average, and the contributions to the benevolent funds, in-
cluding one of twenty guineas by Lord Thurlow, amount to about £100. The deputy chairman on this occasion was Mr. William T
The Sportsman's Exhibition.-The Exhibition which closed on readers from an engineering or a mechanical point of view,
as well as with a view to recreation. Besides a small quantity of machinery not legitimately Exhibition, there was a very large quantity of mechanical
work of the best kind in the numerous bicycles and tricyeles, in the guns and rifles of various kinds, and in the display of canoes rowing and sailing boats, model and full-size river launches, and everything necessary to outdoor recreation. The development of
the bicycle has now reached an interesting stage, and has returned duing mice this form the ther seems to be very much to recommend it. The Coventry Machinist Company, amongst others, showed some very nice machines of this
and other classes. Messrs. Forrestt exhibited some fine boats for iver and shore use, well made, and at moderate price
Socirrx of Evgivkres.-At a meeting of this Society held on
the 2nd of May, at the Westminster Town Hall, Professor Henry Robinson, President, in the chair, a paper was read on "Refrigera
ting Machinery on board Ship," by Mr. T. B. Lightfoot, M. Inst. C.E. After mentioning early applications of refriverating machines the author pointed out that at the present time the only machinery
in use on board ship for refrigerating purposes was that in which in use on board ship for refrigerating purposes was that in whic heat is eliminated by the successive conpression, coooling when under
compression, and subsequent expansion of ordinary atmospheric air. Though apparatus on this principle was at work as early as
the year 1845 , it is only since 1870 that it has received much atten the year 1845, it is only since 1870 that it has received much attenexplained, showing, first, how a perfect gas behaves during com pression, voour, and expansion; and, secondly, the effect applied, and the construction of cold air machines deseribed, after which a a short historical résumé was given, commencing with Dr.
Gorrie's machine, which was at work in New Orleans in 1845 and in London in 1856, and referring to Siemens' invention of the inter-
changer, Windhausen's and Nehrlich's separate exhaust valve for the expansion cylinder, and Bell-Coleman's duplicate machine with interchanger. The author's machines for use on board ship, as manufactured by Messrs. Siebe, Gorman,
and Co., were described at length by the aid of diagrams. These machines have no interchanger, and the reason for this was given. steam engines, but sometimes the condenser is made separate, as in the case of the installation for the s.s. Fifeshire, now being specially
built for the New Zealand meat trade by Messrs. Turnbull, Martin, and Co., of Glasgow. The smaller machines. are combined with
ordinary steam engines, and are made both of the horizontal and vertical type, the latter, however, being specially suited for shi work on account of the small space occupied. In addition to the dead meat trade, the author's machines are extensively used in
passencer vessels for making ice, preserving provisions, fruit passenger vessels for making ice, preserving provisions, fruit
vegetables, \&ec., and for cooling water ; also on board steam trawlers The carriers for the preservation of fish, especially in hot climates ting and cooling the thplied in cattle-carrying steamers for vential vertical machine on board Mr. G. Gordon-Bennett's steam yacht
Namouna was illustrated.

AMERICAN NOTES.

(From our oon Correspondent.)

Nhe metals have been unusually April 22nd. THE metals have been unusually quiet for a
week or too. Comparativel little copper has
been exported this year, is compared to last, and been exported this year, as compared to last, and
the trade conditions seem to be opposed to rapid the trade conditions seem to be opposed to rapid
increase for some time to come. The copper pro-
ducers are determined to control the production increase for some time to come,
ducers are determined to control the coppor proction and preserve prices.
The iron
strarket has developed very little
strongth, and the unsold capacity of American strength, and the unsold capacity of American
mills is estimated at about 350,000 tons this week mills is estimated at about 350,000 tons this week. The apprehensions that have been entertained
regarding the continuance of projected railway wogard, have been dissipated of by the receent resolu-
tions of syndicates having railway building in tions of syndicates having railway building in
charge. At present the indications are that all of the projected mileage will be constructed, and
the estimates of this mileage vary from 9000 to the estimates of this mileage vary from 9000 to
13,000 miles of main track for this year. The estimated capacity of the rail mills is put at from
$1,950,000$ to $2,000,000$ tons. The newworks and the extended old, works will heve capacity avail-
able for early winter, and if the present favaurable for early winter, and if the present favour-
able conditions continue, the railmakers will enter next year with a million tons of rail contracts on
their books. A great deal of machinery is now in request for mining operations in the far west
and south-west Very and south-west. Very extensive mining opera-
tions are projected; besides this large tracts of land are being bought up for agricultural and
 Coanuila, Durango, and Chichuhua, in Northern
Mexico. The tract is traversed by the Mexican Centrial Railroad, and also by the International Central Railroad, and also by the International
Road, which C. P. Huntingon is building from
Eagle Pass to Laredo. Of this trait $1,000,000$ acres is the finest cotton land in the famous Laguna district. A company composed chiefly of
Hartford, Conn., capitalists has boought 500,000 agricultural land. A purchase of 235,000 acres has been made in the western part of Chihuahua by Utah men.
Prices of iron and steel remain firm. The
demand is temporarily restricted under the lack demand is temporarily restricted under the lack next week or next month. Soleel rail contracts
could bee placed at mill at 31 dols, for erarly winter could be placed at mill at 31 dols. for early winter
delivery. Old rails are selling at 23 dols. to
2l. 23.50 dols. at Atlantic ports. Consumers of
billets, slabs, and Bessemer pig are waiting for bilets, slabs, and Bessemer pig are waiting for
further developments. There is a very heavy
business in all kinds business in all kinds of lumber.
Foreign iron is selling at 18 dols. at furnaces, equal to about 19 dols. at mill, and foundry iron
is selling at 19 dols. to 20 dols. at furnace, and is selling at 19 dols. to 20 dols. at furnace, and
the heavy production is all absorbed. Nails have the heavy production is all absorbed. Nails have
dropped to $2 \cdot 3$ per keg. Wrougt iron pipes
are in heavy demand for natural gas and other purposes, and the makers of cast pipe are sold to the Allegheny.

NEW COMPANIES.

The following companies have just been regisClimax Foundry Company, Limited. This is the conversion to a company of the
businesses of malleable and soft iron and brassfounders, and manufacturers of patent boot pro-
tectors, carried on at the Globe Works, Stourtectors, carried on at the Globe Works, Stour-
bridge, Worcester, by Messrs. Benjamin Bloomer and Andrew Krowles, ussder the ste style of the Climax Patent Boot Protector Company. It was
registered on the 31 st inst., with a capital of registered on the 31st inst, with a capital of
10,000 , in $£ 1$ shares, with the following as first subscribers:- Shares,
*T. Bantock, Wolverhampton, railway and general

 H. S. Johnson, Wolverhamptont, solicitor acountanit The number of directors is not to be less than three, nor more than seven, the first being the
subscribers denoted by an asterisk, and Messrs. W. Jones and A. Knowles; qualification, $£ 250$ in shares or stock, or $£ 500$ in
ration, $£ 150$ per annuum.

Crown Point Gold Mine, Limited. On the 23 rd inst. this company was registered,
with a capital of $£ 160,000$ in $£ 1$ shares, to acouire and work the Crown Point Gold Mine, Grass
Valley, Neva County, California. The subseribers are:-
E. T. Read, so, Lombard-street.. Shares.
it

 The number of directors is not to be lessk than
three, nor more than seven; the first are Messrs. Chree, nor more than seven; the first are Messrs.
C. Clark, J. Hatasings, D. F. Carmichael, J. E. E.
Vesey Fitzgerald, E. H. Hindley, and G. P. Simpson, qualification, , 5500 in shares or stock;
remuneration, 300 guineas per annum to the
chairman chairman, and 200 guineas per annum to each
other director. The board other director. The board will also be entitled
to one-twentieth of the dividends paid over and
above the first pany.

East Lincolnslire Brick, Tile, Terra-cotta, and Coal Company, Limited. This company was registered on the 20th inst., with a capital of $£ 10,000$, in $£ 10$ shares, to acquire with a capital of $£ 10,000$, in $£ 10$ shares, to acquire certain brickfields in East Lincolnshire. The

Gold Fields Prospecting Company, Limited. This company was registered on the 25 th inst.,
with a capital of $£ 50,000$, in $£ 1$ shares, to search with a a capital of $£ 50,000$, in 11 shares, to search
for, prospect, and discover mining lodes, and for, prospect, and discover mining lodes, and
mining rights of every description. The sub scribers are :-
W. C. Freeman, 3 , Cowley.rond, Brixton, clerlk Sl ..
H. Gatsfort, Ist Kingeland-road, clerk
A. B. Brotheridy H. Gataford, 1184, Kingsland-road, clerk
A. B.errortheridge, , Gairloch-road, Camberweli,
clerk J. clerk Dëwhurst," 4733, Liiverpooi-roäd, "̈ook.

 G. Rrawlings, $\ddot{6}$, Lilac- villas, Upiton" Parik, estate

The number of directors is not to be less than three, nor more than ten; qualification, 100
shares; the subscribers are to appoint the first. The company in general meeting will determine remuneration.

Governor Group, Limited.

This company was registered on the 25 th inst.,
with a capital of $£ 100,000$ in $£ 1$ shares, to pur with a capital of $£ 100,000$, in $£ 1$ shares, to pur-
chase the Governor Group of mines situate in chase the Governor Group of mines situate in
Mount Sneflles, Ouray County, Colorado, upon terms of an agreement of the 20th inst,, made wany Lion Hertz, 19, Caufield-gardens, West Kensing. Shares

Registered without special articles.
Hart Brothers, Limited.
This is the conversion to a company of the
business of manufacturers of india-rubber business of manufacturers of india-rubser and
waterproof goods, carried on by Messrs. Hart Brothers at Failsworth and Manchester. It was registered on the 22 nd inst., with a capital of
$£ 20,000$, in $£ 10$ shares, with the following as first $£ 20,000$, in
subscribers :-
H. Jonas, Whalley Range, Manchester, buyer
J. Besso,
15, Cross-stret, Manchester, shipping
H. G G. Ninsurance broksor, 100, King.strieet, Mänchester, $\ddot{\text {, }}$
 *M. Hart, 33 , Fountainaturer indreet, M̈anc̈hester, india-

 The number of directors is not to be less than three, nor more than seven, the first being the
subscribers denoted by an asterisk, and Mr subscribers denoted by an asterisk, and Mr.
Victor R. LLevi, of Manchester; qualification, 10 shares. The vendors are appointed managin

Ilex Gold Mining Company, Limited.

 This company proposes to acquire and workgold mining claims, situate in gold mining claims, situate in Calaveras County,
California, U.S.A. It was registered on the 21st inst., with a capital of $£ 100,000$, in $£ 1$ shares.
 paid deferred shares. The subscribers are:${ }^{*}$ Count de Torre Diaz, 41, Moorgate-street, mer-

 square, clerk ". .".". ." tha three, nor more than six; qualification, 250 ning, J. F. C. Norman, Esq., and the subseribers denoted by an asterisk; remuneration, \&scroo per
annum multiplied by the number of directors for annum multiplied by the number of directors for
the time being, with the addition of the fixed the time be
sum of $£ 200$.
North of Italy Steam Tramways, Limited. This company was registered on the 26 th inst.,
with a capital of $£ 100,000$, in $£ 5$ shares, to acquire certain lines of steam road railway o tramway in Italy upon terms of an agreement
of the 5th inst., entered into with Francesco
Radice and Vincenzo Remotti. The subscribers Radice and Vincenzo Remotti. The subscribers
are:F. W. Munk, 27 , Clement's-lane, solicitor
H. . . .ollins, 23 , Bolina-road,
S.E., shorthand
 s. Equare, mining engineer. © . . .ët, ت.

Captain E. J. . S. Norton, 45, Cambridge-street,
Hyde Park

The number of directors is not to be less than to appoint the first; qualification, 50 shares remuneration, $£ 200$ per annum to the chairman and $£ 150$ per annum to each ordinary director.

Pahang Mining Company, Limited.
This company proposes to acquire mining Sultan of Pahang, or elsewhere in the Malay Peninsula or Archipelago, and particularly to
purchase a concession or grant of land from the
Sultan, upon terms of an agreement with Wm. purchase a concession or grant of land from the
Sultan, upon terms of an agreement with Wm.
Fraser. It was registered on the 27 th inst., with
capital of $£ 200,000$, in $£ 1$ shares. The subE. A. Pontifex, Farringdon Works, Shoe-lane, envineer $\ddot{\text { Ner }}$,
Wemi story-Maskelyne, M.P., Swindon.".
Wmtreet
Fraser, M.A.,
,

 merchant
The number of directors is not to be less than three, nor more than seven; the subscribers are tion, 500 shares; remuneration, $£ 200$ per annum to chairman, and $£ 150$ per annum to each irector.
Patent Hosiery Machine Company, Limited.
This company was registered on the 25 th inst.,
with a capital of $£ 10,000$, in $£ 5$ shares, to acquire with a oapital of $£ 10,000$, in $£ 5$ shares, to acquire
the business and assets of Messrs. John Dalby the business and assets of Messrs. John Dalby
and G. W. Brand, including the patent No. 4745, n. D. 1887, for improvements in knitting machines, The subscribers are:-
*Wm. Lee, Nottingham, machine tool maker
*W. Hunt, Nottingham, machinin Sharos.
..
1 J. Dalby, Nottingham, machinist..
G. W. Brand, Nottingham, mainist.. *G. W. Brand, Nottingham, machinis
R. Hunt, Burton-on-Trent, baker
H. Oakes, Mansfield, schoolmaster ... H. Oakes, Mansfield, schoolmaster
S. Baggaley, Nottingham, clothier

The number of directors is not to be less than three, nor more than five; qualification, 75 shares; the first are the subscribers denoted by an asterisk. The company in general meeting will determine
remuneration.

Percy lbotson and Sons, Limited.
This company was registered on the 27 th inst., with a capital of $£ 20,000$, divided into 6000 pre-
ference and 14,000 deferred shares of $£ 1$ each, to purchase the business of paper and boards manupurchase the business of paper and boards manu-
facturers, carried on by Hy. Percy Ibotson, at
Poyle, Middlesex. The consideration is 6500 Poyle, Middlesex. The consideration is 6500
fully-paid deferred shares, $£ 760$ 6s. 1d. in cash, and the discharge of the liabilities of the vendor
n connection with such business. The subscribers
are:-
*H. P. Ibotson, Poyle Mills, board manufacturer
*W. H. Makins, Poyle Mills, bard manufacturer *W. H. Makins, Poyle Mills, board manufacturer
Colonel W. T. Makins, M.P., 1 , Lowther-gardens,
 J. W. Smith, 52, Queen Victoriar-street, accountant
H. I. Ward, 1 , Walbrook, solicitor

The number of directors is not to be less than two, nor more than five; the first are the subscribers denoted by an asterisk; qualification,
$£ 500$ in shares. Mr. Ibotson is appointed director for life, and Mr. W. H. Makins for fourteen y Mr. Ibotsonecutor or adint a director so long as he shall hold 2000 shares. The company may and in such manner as they may require, but not xceeding $£ 600$ per annum to Mr. Mbotson, and
$£ 750$ per annum to Mr. W. H. Makins. Such sums may be paid out of capital, and the company hall not be bound to take security for the repayment thereof. Any sums so advanced may be
taken by the two directors on account of the dividend on their shares, provided that if the
dita profits of the first two years do not amount to $£ 2700$, the said directors are to repay within four
years so much respectively of the said annual years so much respectively of the said annual have been paid out of the capital. If after the two years the profits do not amount to $£ 1350$, the aid directors are to repay so much of such sums as shall in one year be paid to them out of the capital.

Rendle and Company, Limited.

This is the conversion to a company of the
usiness of contractors, glaziers, builders, and engineers carried on under the styles of Wm. Edgecumbe Rendle and Co., and John Edge-
cumbe Rendle and Co. It was registered on the cumbe Rendle and Co. It was registered on the
27 th inst., with a capital of $£ 70,000$, in 6000 ordinary and 80007 per cent. preference shares
of $£ 5$ each. The subscribers are -
*Captain J. W. Clarke, 16, Beaufort-gardens, S. Whares.
*G. E. Milner, Gresham House .. T. Hepburn, 99, Vauxhall Bridge-road, clerk $\quad . \ddot{ }$
J. Hobbs 30, Union-street, Hackney-road, clerk
TT. W. Allen, 5 , Wood-street, Westminster J. Hobbs, 30, Union-street, Hackney-road, clerk
T. W. Allen, 5, Wod-street, Westminster .. \quad.
F. W. Boor, s, Copthall-court, clerk $\quad \ddot{ }$
A. Gd Edards, 15, Gilbert-road, Kennington,

The number of directors is not to be less than three, nor more than five; the first are the subcribers denoted by an asterisk, and Mr. J. H. qualification, 20 shares; remuneration, $£ 400$ per annum.

Santander Harbour Company, Limited.

On the 23 rd inst. this company was registered,
with a capital of $£ 300,000$, in $£ 20$ shares, to acquire from the Compagnie de Santander pour l'agrandisement de la Ville, the benefit of a concession for the construction of a harbour and Works, and the reclamation of land in Santander, pumulative preferential dividend of 7 per cent per annum. The subscribers are:Ramon de Artola, 14, Austinfriars, banker.. Share
M. Clarke, 9 , New Broad-street, roilway contractor K. Clarke, 9, New Broad-street, railway contracto . Macalister, 14, Trebovir-rood, Earl's Court
C. O
C. Smith, 54 , The Chase, Clapham
engiepley, 66 , Maury-road, Stoke Newington, F. Modet, $38, \ddot{\text { Bedford }}$-piace, w. w.

The number of directors is not to be less than hhree, nor more than nine; qualification, $£ 500$ of first and act ad interim ; the company in general first and act ad interim; the company
meeting will determine remuneration.

THE PATENT JOURNAL.

ndensed from the Journal of the Commissioners of

Application for Letters Patent.

 * When patents have been "communicated" thenamee and a addreess of the communicating party are
printed in italics.

25th April, 1887.

cosi. Treatuxa Matrizs having an Ofrexsives Smell,

 France.)
6040 SETTING Screws, R. Macer, London.
6041. Optical Instrument, J. Leiter, Londo
6041. Optical Instrument,. Leiter, London.
6042. GALVANISING, H. H. Lake.-(c. Svinscoe, United States.)
6043. Magazine or Repeating Fire-arms, A. Green-
wood, London, wood, London.
6044. Folding DESK, H. H. Lak.-(J. D. Richardson, United S.ates.)
Lo4. Tuburar Parts of Steam Bohers, S. Fox,
London. 6046. Harvester Reels, H. J. Allison.-(S. S. Stout 6046. HARVESTER REELS, H. J. Allison.-(S. S. Stout
and H. G. Undervood, United States.)
6047. CHEsMEN, L. S. Schmitthenner, London.
604S. AFETXING. 6048. Afrixing a Knob of a Door Handle to the
SpIndLe, A. Smith, Burslem.
6049. Invald Couches, R. Harrison, Bradford. 6049. INVALD Couches, R. Harrison, Bradford.
6050. GAS HEARTHS for Borling, dc., W. Towler, Leeds.
6055. KNitted Fabrics, J. Booth, Halifax.
6obby Horses, \&c., G. Taylor, Hyd
Ridgway, Stoke-on-Trent.
S054. CArbonising Fabrics and Fibres, E. Schorah, Halifax.
Hali Ho56. SElf-acting Fastener and Lock, E. Marston,
Enderby,
 O59. BINDING DEvices, A. G. Boookes.-(J. F. Haskins,
United States.)
O60. VIoINs, de., A. Cooper, London.
06. BurNing Substitutes for Coal, \&c., J. Balbirnie S061. Burning Substitutes for Coal, \&c., J. Balbirnie
Sheffield.
6062. Dental Flasks, G. H. Salt, Middlesbrough.
6063. Loose Venetian Blind Late, W. Little, 6063. Loose Venetian Blind Late, W.
Preston
6064. Coke Ovens, W. Hanson, Middlesbrough. 6064. Coke Ovens, W. Hanson, Middlesbrough.
6065. MeTalic Case, L. Meyers, Birmingham.
6066. Balls for Bearings, dc., T. Dredge,
606. Balls for Bearings, \&c., T. Dredge, Bir-
mingham.
6067. Paper bag Machine, W. A. Lorenz and w. H.
Honiss

G068. Purs, Loidication of Sink WATER, R. Nicholls, London.
6069. ENVELOPES, C. White, London.
6070. Horseshoes, G. W. Heaton, London.
6071. Foo SIGNALS, F. D. Banister and W. Stroudley,

London.
6072. Aplying Sand to Prevent Whelels Slipping,
J. Gresham, London.
6073. DryING OvENs, R. E. Phillips.-(C. P. N. Martin,
Ceylon.)

Ceylon.)
6077. Tricycles, W. E. Hurrell, London.
675. WATER METERS, F. W. Tuerk, jun.,
J. Hunter, London , W. W. Tuerk, jun., and J. C. and 6076. Photographic Cameras, W. Clark, London.
6077. Portabe Toos for Fire-arms, A. J. Boult.-
G. (G. W. Morse, United Stutes.)
607. ExTRACTING Ferrulues from Tubes, H. W. Swift,
Liverpool. Liverpool.
6079. Butron-hole Sewing Machines, F. Egge,
London. London.
6000. Water-closets, J. V. Eves, Manchester.
6081. Attachment Holder for SEWING Machines, F. Egge, London.
6082. CAMERA OBSCURA, S. and F. E. Andrews, Liverpool.
6003. Box-NALIING Machines, T. B. De Forest, London.
6084. CABLE and other RAILWAYS, W. P. Thompson.(A. A. Shobe, United States.)
6085. DIIIIFECTING PowDER, Hallsworth and R.
Bailes, London. 6086. ELEETRODEPRosition, S. P. Thompson, London.
6007. REDUOING the Point in CARBON in STEEL, E. D. Wassell, London.
6088. Macrami Lace Appliances, w. E. Bradbury,
London. 6089. Driving Gear for Velocipedes, J. R. Hudson
and J. W. Marshall, Sheffield. 6090. GAS STovEs, J. Galli, London.
6091. SECURING STEREO-PLATES on A. P. Sanson, Edinburgh.
6092. PASTIN SHETS of PAPR together, A. M. Clark.
(E. T. Hazeltine, United States.). 6093. Wrougrit Metal SLEEPERE, J. Edwards, London.
6094. STAVE-MAKING MACHINERY, C. L. Goehring, London.
6095. Ploughs for Cutting Drain Ditohes, J. Harper,
London. London. for Anisals, A. G. Wass, London.
6096. Food Dredgers and Excavators, A. L. Blackman, Loondon.
6098. Rivas for Curtain Poles, H. H. Lake.-(W. P Hill, United States.)
6099. Rods or PoLs for Supporting Curtains, H. H.
Lake.-(J. Cremer, United States.) Lake.-(J. Cremer, United States.)
6100. Treatrain of DisTAse, G. Epstein, London.
6101. TIRAs of BIoycless, J. Thom, London. 6102. Driving Velocipedes, J. Glover, London.
6103. Tires for VELoorpedes, J. K. Starley, London.
6104. EIECTRICAL MEASURING INSTBUMENT, A. Foster and F. V. Andersen, London. Dry, London.
6105. Opening, \&c., BuNG Holes, J. R. Dry, 6106. Riding SHiris, E. Davies, London,
6107. SEPARAToN of CARBONC OXIE from Nitroeen,
de., H. Gardner.-(R. J. Henderson, United States.). 6108.' WINDow SAASES, J. L. Shobridge, London.
6109 . MANUFAOTURE of TIN-PLATEs, \&E., A. J. Mashrey
and P. S. Phillips, London. London.
6111. Supplying Water to Water-closets, A. Dawes,
London. 6112. Frames of Umbrellas, H. Jeffery, London.
6113. STARTING Tramway Vehces, A. Fendt, London.
6114. CLeaning Star-rods, J. Jones, London. 27th April, 1887.
6115. Filter Taps, R. Gough, London.
6116. Softening, \&c., Hides, J. Palmer
6117. Smelting Crude Antimony, G. B. Williamson.-
(H. F. Logan, Nevo Zealand.)
6118. Provecting the OPEN ENDS of ClaArs, H. Wilson,
 Serrell, Peris.

6125. PEELING OsIERS, J. Rowlatt, Wigston.
6126. KNITING MACHIERY, A. Hamer, T., W. R., and

132. Apparatus for Regeriving Coins or Checks, w.
TT. Kemnedy, Dundee.
 6134. RUGGs for Perrambulators, \&c., R. and W. H
Todd, Manchester.

 of Corros, J.
of
United State.
 ham, Shenficild.
6143t stient
FRED
Lubricators, 6144. STIEAM Durers, G. G. Picking and W. Hopkins, London.
6145. PReventing the Fraudulent Opening of SAfes,
London. 6146. DAMpriag Brushrs, \&c., A. C. Thomson, Glasgow.
6147. WAshiva MAchives, A. Samson, London. 148. Galleries and Globe Holders, F. M. Dixon
and S. H. Dixo 149. CUuLivary Frgezive and Steamivg Apparatus,
T: Fishburn, London 1. Fishburn, London.
(150. W. Waving Wire Mattresses, P. J. Dowling and
 6152. Portable Butioning, w. P. Thompson.-(A.
 6155. Lockiva Nuts, O . Jazenburg, Liverpoo. .
61155. Preambulators, J. Simpson and S. T. Faweett,
 Hassey, Northwold.
6158. BRAKK, G. Wichoile, London.
6159. PLovaHs, A. Simpson, W.
 London.
6160. METALLIC HURDLES and Gates, S. Bayliss,
London

 Londion.
GIBO. PRopriuivg and Steeriva Vessels, J. F. Green,
Iondon

 $28 t$ th April, 1887.
6183. Souttarire, E. Trow and R. J. Lewis, Birming
 port.
6155. PExciss, \&e., A. C. Durant, Bradord.
6.186. Couruisg and Uncourusic of RALIWAY

 G188. PRgTEMOROR for Gas-burxers, B. Thompson, 6190. Heativa of Ferd.water of Boilers, J. Weir and
G. Weir, Glasfow. 619.. Foo, Sigasgilus on Rallwavs, F. Rosebottom,
Hyde Hyde.
6122. Cooove Printive Machines, J. Pollard and C
Mather, Manchester. 6193. Lifting Bar Fra

 6203. STADES, H. McC. Alexander, Cheltenham.
6244. INDDCTIN: Couss and Trassformers, W. J. Mul-
ler, London.
 W. Wadmore, London.
6200. Mothorm other CAstivas, K. Thien
Tiverpobil.
 R20anchester. Conging Disingrgetants with Soda Crystals,
R. L. Hicks, London.
 London.
6212. ANTsEPTIC PAILS and Commodes, R. Nicholls, 6213. PRININTing Patterns on Floor-clothe, M. B. Nairn, London.
6214. DRIvivG-whekls of Locomotives, c. E. Swiner
ton, London 6215, Mondon. Patterns upon CLotr, E. O'Donnell,

G217. HEMSTING, CURLING, \&e., HAT BRIMs, J. Moores
London.

6219. INDortion Apparatus, J. Swinburne, Chelms.
ford

6220. Escrirtorines, T. R. Scott and A. F. Graves

 Mloyd, , London.
6221. AUTOMATIC ADvertiser, H. C. Braun and A. F.
Lioyd, London,

 States.
(241. Sor
Sol
6222. Socrew-stoppered Botturs, dec., W. J. Wheeler,
Richmond. 62424. Sounderne Irons, C. Clarke and F. Williams,
London. Landon.
6223. WNTERING CANs, dec., C. Clarke and F. Williams, London.
6224. Fivishivg water-closers, C. Clarke and F. Williams, London.
6225. INDEXING MEMORANDA, H. A. Lee, London.

$$
\text { 29th April, } 1887 .
$$

6246. SNafrie-bit for Bridurss, J. C. King, London.
6247. CIGARETTE PARERs, J. F. Millington, London.
 6249. Mertaurio STaNd for Photos, J. A. Richards,
 22.ance. PANTING in Oil and Water Colours, T. and D.
Lister, Halifax.

6248. Looms for WEAVING, J. Bennett and J. Bullon,
6249. Dayive SUGAR, J. Buchanan, Liverpool,
6262 . SAFETY APPARATus for Horss, J. and T,
6250. Safety Apparatus for Hoists, J. and T. Barker,
Manchester. 62633. SThestertiv-Gear for Tran-Coars, W. M. Brittain,
Kingston-upon-Hull. 264. Rassing the Hoops of Victorias, J. Cook, Bir-

 vivile, U.S.S.

6251. SAFETY EsveLore, w. Southall, London.
6252. Porovs Platzs, J. T. Armstrong, London.
6253. GENERATING GAs, \&C., from OII, W. Wakefield,

S278. Strekriva Sorkw-sTreamers, G. H. Harrison,
London.
6254. FLutid for Writivg with STylographic Pexs, H.
C. Glanville and W. D. Jennings Paris.

6255. Bricks, A. Murray, London.
6256. GAs BurNERs, T. Gordon, Lo
 Leerbeck and J. Holm, London.
6257. Moouns J. Colley, London.
6258. Roulds, R. Colley, London.
Romford.
RING GoLD AmALGAMATor, w. Bevitt,
 Corzon, Uuitel Slates.) A.
6259. SHELE BRACKETs, A. J. Boult.-(J. Baines, United States.)
s290. STrEAM WINDASs for SHIPs, w. H. Harfield, London.
6260. BRozes, J. H. Jackson, London.
6entivery of Goops by the Act,
G. Jeffery, London. Gron 293. OLI. CAKE , A. Greenwood anà H. Lambert,
London. London.
6261. ELETrolytio Treatment of Zing, \&c., A. Watt, London. ${ }^{\text {L295. SEwing Machines, E. Kohler and M. Lachman, }}$ L296. Canding Engines, A. V. Newton.-(W. Decker,

 6301. Fintishing the Solues of Boors and Shozs, w. H. Stevens, London.
6262. BEATING EgGs, w. R. Lake.-(D. H. Rice, United States.)
6263. HANsom CABs, P. Mackenzie, London. 30th April, 1887.
6264. Veriocipedse J. F. Haskins.-(G. D. Davis, United States.).
G350. KTLEES, J. Stevens, Birmingham.
6265. RAck of CAPSTAN LATYE, B. Barker and J. E.

 Manchester.
6266. STRETCHing Velumis on Banjos, \&o., S.
 6313. Coverning Jans, H. Faulder, Manchester.
6267. SIoNALLING in Focay WEATHER, A. Fleming, 6315. Properining Vessens, S. Douglas, Manchester,
6268. Joints for SEctinc RAlus, J. E. B. Armytage,
 319. HAND BRUsHEs, 320. SAFETT FAstrever for Carricine Lamps, C. T.
Piper and W. Wright Devonport 6321. J. ACKSoN's Laws--TENNMS Pote, J. Allen, Chelten-
ham.

 S326. GRASAIN Binders, w. P. Thompson.-(C. H. Mc. Cormick, jun., United States. $)$,
6269. FIRE GRATEs, W. P. V. Wallis, London.

${ }^{63}$

 36. Arms, J. J. Speed, London. 6337. Sxnchronisising Mechanism, W. S. Harrison, 63s8. BRUSHRNG Adravas, H. J Haddan.- (N. Petersen 6339. Previentive Vinhroles from Leaving the Rails, 6340. Stringerd Mustras Instruments, G. o. Hagspiel, 6341. Borrurs, \&e. J. Hiekisson, London.
6342. Core overss, G. Downing. (T. Baur
 6345. Varable Nozzise, R. F. Deririck, London.

 Cowell London
635. VLLorrenks, C. Bach, E. Kraft, M. Neuburger

 Reaping Machine Company, United Sotates.
6352. TWISTING STRAWs to MARE Rore, W. M. Cran

 TThe Hon. W. Grimston, London.

 6360. Boors and Shoess. J. Thorrhill, London.
6361. Bin

 U United States.
6365. Boors, J. Gilling, London.

2nd May, 1887
6366. SPRDEs, H. W. Robisnon, Northampton.
6367. Booris Holes in Cosi MINes, C. Burnett,
 T. Hardy, Middlesborough.
63io. Extractive TiN from Tinved Irow Sgrap, S aint, Paris. Vernon, Manchester.
6374. Picking Baxd Chanss, J. Qualter and E. Hall,

Barnsley.
6375. Courting for PIPEs, J. Dainton, Newcastle-on 6376. Workisg Platrs, S. A. Rosenthal, Berlin.
6377. CYuINDRICAL RuLERS, J. Shettle, Have wint. Cylinditas
6378 Ostrich Featuers, L. Lee, London.
6379 . Box Chunks, A. Coulter, Donegal.

 Grrmany.) GEAR,
6387. VALVE
GEAR, H. H. Leigh.-(J. F. Carpenter,

 London.
6394. Suspender
Attachments, A. E. Gosnell, 6395. Perprival Motion, H. M. Thomas, London.
6396. WATER-PRESSURE
EsGINE
and WATER TraNs
 6399. Lell. H .
 6401. Preparing a Mixyurie of TEA, Coffee, do
H. B. Thornton, London. . Tanner, London.
6402. Curtaly RINas, W. J.
6403. Yibrativg Bearing for Carrying the Ends of
Iron Girders, C. E. D. Waring and W. Boby

Loudon.
640. DECANRRs, de., M. H. Lakin and E. St. I
Walker, London.
6405. Novvel Device for the Protection of Venetin

London.
6400. Divano-mlectric Machine, R. E. Bell and w
 London.
6412. Dcorativg GLass, J. B. Germeuil-Bonnaud, 6413. Moror Exarses, H. w. Bradley and F. W. C414. SEviNg MACH.

London.
6416. Boilers,
B. When 6417. Manveacturb of Alkaluss, J. Marx, London,
6418. Butron-Hole Mebianism for SEwing Machives D. Mills, London. ${ }^{\text {641, TIIPROYEMEATs }}$ in Lubricators, r. T. Baines, 6420. Foome-sieht Marker for Rffles, E. M. Riehford 6421. Artipicial Fuel, J. Hall, London.

SELECTED AMERICAN PATENTS

358,873. Fire Engine Heatrr Conneotion, J.
 ing D , around valve them, guides O O, and water open-
seribed.
nuts B B, the valves G G having stems F F and spiral
springs E E around them, with stems H H extending springs whouground the endo of whe chambers, to openanthe the
down the
valve G when the ens ine is backed up against the

and supply openings $T \mathrm{~T}$, forming valve seats U in
the interior, with the water openings V V around them
 and for the purpose set forth. (4) Combined with the
ahambers L L a and supply openings Th T

 as described, and for the purpose set forth.
358,889. Meralurc Rooprse, L.L. Sayendorph, Cincin-
nati, Ohio.-Filed October 2nd, 18s6. Claim.-A roofing plate provided with longitudinal
and transverse corrugationscrossing each otherat right

angles, one set of corrugations being curved and the
other setV- $\mathrm{-}$ hapaped, substantially as and for the purpose
specified
359,032. Buirund BaLl, G. E. Phelan, Nevo York,
N.Y.- Filed August 3rd, is86. Cluaim.-(1) As a new article of manufacture, an ivory
silliard ball having a permanent protective covering. (2) As an improved article of manufacture, an ivory
billiard ball having a permanent protective covering

of fibrous composition. (3) As a new article of manu-
 ball. (4) The combination, in a billiard ball, of an
inner ball of ivory and an outer shell or covering of osition, as set forth.
359,O96. Centrivuad Punpe, J. Richarle, San Frun.
cisco, Cal. - Fled April 2th, 1886 . Claim,- - (1) In a centrifugal pump, a whel or runner
having a curved or dished perforated body and a series If bates or vanes on each side thereof, substantially
as set forth. (2) In a centrifugual pump, the combina
 a series of blades or ranes on each of its sides and and
canisg having an inlet on one of fits sides, substantially as set forth. (3) In a centrifugal pump, the combina tion of a wheel or rumner having a perforated body
and a series of blades or vanes on each of its sides
 discharge passage communicating with the easing on
the inlet and the rear sides of the runner through
and passages of larger and smailer areas respectively, sub.
stantially as set forth. (4) In a centrifugal pump, the
. combination of a casing, having asuction onpecomp, thed
to one of its sides, a wheel orrunner secured upon ashaft

passing through the opposite side of the casing, an Yemovableosileeve or socket connected to the outergend
of the fixed socket, and a main bearing surrounding the shaft and fitting within the removable socket,
substantially as set forth. (5) In a centrifugal pump the combination of a casing, a suction pipe connected
to one side thereof, an external socket or chamber
fixed und two sections connected by bolts, a main bearing fitting in said socket and connected adjustably to the outer section thereof by clamping orner fixed on a shaft passing through the casing runner fixed on a shaft passing through tho
and main bearing, substantially as set forth

