

Biblioteka Politechniki Krakowskiej 100000303952

DIRCKSEN-SCHAPER

HILFSWERTE FÜR DAS ENTWERFEN UND DIE BERECHNUNG VON BRÜCKEN MIT EISERNEM ÜBERBAU

VIERTE NEUBEARBEITETE AUFLAGE

5/4

F. Dr. 30241

53

DIRCKSEN-SCHAPER

HILFSWERTE FUR DAS ENTWEREEN UND DIE BERECHNUNG VON BRÜCKEN MIT EISBRNEM ÜBERBAU

VIERTE MEUREARREPUER AUTEAGE

HILFSWERTE

FUR DAS

ENTWERFEN UND DIE BERECHNUNG VON BRÜCKEN MIT EISERNEM ÜBERBAU

ALS ERGANZUNG ZU DEN

VORSCHRIFTEN FÜR DAS ENTWERFEN DER BRÜCKEN MIT EISERNEM ÜBERBAU AUF DEN PREUSSISCHEN STAATSEISENBAHNEN

VOM 1. MAI 1903 (LASTENZUG A) UND VOM 31. DEZEMBER 1910 (LASTENZUG B)

VON

F. DIRCKSEN †

IN VIERTER AUFLAGE NEUBEARBEITET UND ERWEITERT

VON

G. SCHAPER
REGIERUNGSBAUMEISTER

MIT 39 ABBILDUNGEN UND 1 TAFEL

VIERTE NEUBEARBEITETE UND FÜR DEN LASTENZUG B ERWEITERTE AUFLAGE

BERLIN 1913
VERLAG VON WILHELM ERNST & SOHN

HILLSWEHTE

ENTWERFEN UND DIE BERECHNUNG VON BRÜCKEN MIT EISERNEM ÜBERBAU

RIBLIOTEA 4

KRAKÓW

Palitechniczna

FEN DER BRÜCKEN MIT

1133742

Alle Rechte vorbehalten.

eret alteat

Vorwort zur vierten Auflage.

Die "Hilfswerte" von Dircksen erfreuen sich bei allen denen, die eiserne Brücken nach dem Lastenzug der preußischen Staatseisenbahnen zu berechnen haben, wegen der bedeutenden Arbeitserleichterung und Zeitersparnis, die ihre Benutzung mit sich bringt, großer Beliebtheit. Die dritte Auflage hätte kaum einer Umarbeitung bedurft, wenn nicht inzwischen durch den Erlaß des Herrn Ministers der öffentlichen Arbeiten I D 21954 vom 31. Dezember 1910 neben dem bisherigen Lastenzug (A) ein neuer Lastenzug (B) für solche Brücken, die in besonders wichtigen Schnellzugsstrecken liegen und von den neuen, schweren Betriebsmitteln befahren werden, eingeführt wäre. Der neue Lastenzug hat dieselben Achsabstände wie der alte, die Lasten der Lokomotivachsen sind aber von 17 t auf 20 t und die Lasten der Tender- und Wagenachsen von 13 t auf 15 t erhöht worden.

Für diesen neuen Lastenzug B ist die vierte Auflage gegen die dritte erweitert worden. Außerdem wurden einige Umarbeitungen vorgenommen, die sich als notwendig oder zweckmäßig erwiesen.

Stettin, im Februar 1913.

Schaper.

Vorwort zur vierten Auflage,

The discrete theology with dead Lagrange des production deposition described and the description of the Lagrange des production dead described and described

Fig. Speed moore Lastening B let de vierte Auflage gegon des deltes erweibet worden. Anderdem wurden einige Sumrfedrungen elegizahnnen die sieh als potwendig eder zwerkmidde medicion

Santhin, ha Pohruan 1913.

Scinapa

Inhaltsverzeichnis.

	S	eite
I.	Tragfähigkeit der Niete	1
II.	Berechnung der Nietanzahl bei der Deckung eines Stegblechstoßes	5
III.	Verlust ΔW an Widerstandsmoment durch eine senkrechte Niet-	
	reihe im Stegblech	6
IV.	Hilfstafeln zur Berechnung der Fahrbahn	7
	A. Fahrbahn ohne Durchführung der Bettung	7
	1. Zur Berechnung der Schwellen	7
	2. Zur Berechnung der Schwellenträger	7
	3. Zur Berechnung der Querträger	10
	B. Fahrbahn mit Durchführung der Bettung auf Buckelplatten	17
	1. Bei Blechträgerbrücken mit 3,2 bis 3,75 m Haupt-	
	trägerentfernung	17
	2. Bei Fachwerkbrücken mit 4,7 bis 5,0 m Hauptträger-	
	entfernung	31
V.	Bauhöhen an Brücken	46
VI.	Eigengewichte eingleisiger eiserner Eisenbahnbrücken der preußi-	
	schen Staatsbahnen	51
VII.	Berechnung der Gurtplattenlängen bei Blechträgern mit unmittel-	
	barer Auflagerung der Schwellen	53
VIII.	Berechnung der Knotenpunktsmomente für Hauptträger	53
The second	Querschnittsbestimmung auf Druck beanspruchter Füllungsglieder	
	eiserner Fachwerkbrücken	54

inhaltsverzeichnis

Translander in New me in Indiana charter chart one entereday her her had not charter charter the head of the head

Hilfswerte für die Berechnung eiserner Eisenbahnbrücken.

I. Tragfähigkeit der Niete.

In den folgenden Tafeln ist unter Zugrundelegung der in den preußischen Berechnungsvorschriften für eiserne Brücken vom 1. Mai 1903 zugelassenen Werte für Scherspannung und Lochleibungsdruck die Tragfähigkeit der Niete von solchen Durch-

messern berechnet, die durch Erlaß $\frac{\text{I. D. }2828}{\text{III. }531.\text{ A}}$ vom 14. 3. 1910 vor-

geschrieben sind. Entsprechend den verschiedenen zulässigen Beanspruchungen sind die Werte für die Niete in der Fahrbahn mit und ohne Durchführung des Kiesbettes und für die Niete in den Hauptträgern getrennt angegeben. Für jeden Nietdurchmesser gibt die Tafel I die Schertragfähigkeit und die Scherfläche von 1 bis 9 Nieten bei einschnittiger Vernietung, die Tafel II die Tragfähigkeit in der Lochleibung und die Lochleibungsfläche zweischnittiger Niete für verschiedene Blechstärken. Die Angabe der 0,9 fachen Scherfläche der Niete in der Tafel I dient bei einschnittig vernieteten Stoßdeckungen zur Bestimmung der Zahl der erforderlichen Niete unmittelbar aus der Querschnittsgröße der gestoßenen Teile.

stoßenen	Teile.	Mark Control			
Nietdurch- messer	Vernie	einschnittiger etung die Blech- tärke größer	Nietdurch- messer	Verni	einschnittiger etung die Blech- tärke kleiner
16 20 23 26 30	6,3 7,8 9,0 10,2 11,8	so ist die Ab- schertragfähig- keit für die Be- rechnung der er- forderlichen Nietanzahl maß- gebend	16 20 23 26 30	6,3 7,8 9,0 10,2 11,8	so ist die Loch- leibungstrag- fähigkeit für die Berechnung der erforderlichen Nietanzahl mas- gebend
Nietdurch- messer mm	Vernie	weischnittiger etung die Blech- ärke kleiner	Nietdurch- messer mm	Vernie	weischnittiger etung die Blech- ärke größer
16 20 23 26 30	12,6 15,7 18,0 20,4 23,5	so ist die Loch- leibungstrag- fähigkeit für die Berechnung der erforderlichen Nietanzahl maß- gebend	16 20 23 26 30	12,6 15,7 18,0 20,4 23,5	so ist die Ab- schertragfähig- keit für die Be- rechnung der erforderlichen Nietanzahl maß- gebend

Im letzten Falle sind die in der Tafel I fettgedruckten Werte zu benutzen, die zugleich die Abschertragfähigkeit eines zweischnittigen Nietes angeben.

Benutzung der Tafeln.

Vernietung in einem Hauptträger von 35 m Stützweite. Zu übertragende Kraft 20 t.

Zweischnittige Niete von 23 mm Durchmesser.

Knotenblech 15 mm stark.

Die Blechstärke ist geringer als 18 mm, mithin ist für die Tragfähigkeit der Niete der Lochleibungsdruck maßgebend. Es ist also bei der Bestimmung der erforderlichen Nietzahl die Tafel II zu benutzen.

In Spalte 6 Zeile 8 findet man die Tragfähigkeit eines zweischnittigen Nietes zu 5,59 t, mithin sind erforderlich:

$$\frac{20}{5,59}$$
 = 4 Niete.

Aus Tafel II Spalte 8 Zeile 8 ergibt sich die Lochleibungsfläche eines Nietes zu 3,45 qcm, mithin die Beanspruchung auf Lochleibungsdruck:

$$\frac{20}{4 \cdot 3,45} = 1449 \text{ kg/qcm}.$$

Aus Tafel I Spalte 8 Zeile 2 findet man die Scherfläche eines zweischnittigen Nietes zu 8,31 qcm, mithin die Beanspruchung auf Abscheren:

$$\frac{20}{4 \cdot 8,31} = 602 \text{ kg/qcm}.$$

1,5 d = 24 mm, 2,5 d = 40 mm, 3 d = 48 mm, 6 d = 96 mm.

I. Schertragfähigkeit und Scherfläche bei einschnittiger Vernietung.

9	-	Sche	rtragfähig	keit der l	Niete		0	9
Anzahl der Niete	in der F mit Durchführung der Bettung σ=0.750	mit	Scherfläche	0,9fache Scherfläch				
A	t	t	σ=0,750 t	qem	qem			
1 2 3 4	1,51 3,02 4.52 6,03	1.41 2.81 4,22 5,63	1,51 3,02 4,52 6,03	1,54 3,08 4,61 6,15	1,63 3 26 4,88 6,51	1,72 3,44 5,16 6,87	2,01 4.02 6,03 8,04	1,81 3,62 5,43 7,24
5	7,54	7,04	7,54	7,69	8,14	8,59	10,05	9,05
6 7 8 9	9,05 10.55 12,06 13,57	8.44 9,85 11,26 12,87	9,05 10,55 12,06 13,57	9,23 10,76 11,30 12,84	9,77 11,40 13,02 14,66	10,31 12,03 13,75 15,48	12,06 14,07 16,08 18,10	10,85 12,66 14,47 16,28

II. Lochleibungstragfähigkeit und Lochleibungsfläche eines Nietes.

	-103/2 00	Lochleibur	ngstragfäh	igkeit ein	es Nietes	and Applied to			
irke	in der F	ahrbahn	in de	and the second	igern mit	einer	ungs e ietes		
Blechstärke	mit Durch- führung	mit Schwellen	D I lotal a	Stützw	eite bis	STREET, ST	Lochleib fläch eines N		
Ble	der Bettung	und Schwellen- trägern	10 m 20 m 40 m 80 m						
	$\sigma = 1,500$	$\sigma = 1,400$	$\sigma = 1,500$	$\sigma = 1,530$	$\sigma = 1,620$	$\sigma = 1,710$	- Block		
mm	t	t	t	t	t	t	qem		
8	1.92	1,79	1.92	1,96	2,07	2,19	1,28		
9	2,16	2,02	2,16	2,20	2,33	2,46	1,44		
10	2,40	2.24	2,40	2.45	2,59	2,74	1,60		
11 12	2,64 2,88	2,46 2,69	2,64 2,88	2.69 2.94	2,85 3.11	3,01 3,28	1,76 1.92		
13	3,12	2,91	3,12	3,18	3,37	3,56	2,08		

20 mm 1,5 d = 30 mm, 2,5 d = 50 mm, 3 d = 60 mm, 6 d = 120 mm.

I. Schertragfähigkeit und Scherfläche bei einschnittiger Vernietung.

6		Sche	rtragfähig	keit der	Niete		Ф	0
Niete	in der F	ahrbahn	in der	Haupttra	ägern mit	einer	ch	ch
der N	mit Durch- führung	mit Schwellen und		Stützw	eite bis		Scherfläche	9 fache ierfläch
ahl	der Bettung	Schwellen- trägern	10 m	20 m	40 m	80 m	Sch	0,97 Sche
Anzahl	$\sigma = 0.750$	$\sigma = 0,700$	$\sigma = 0,750$	$\sigma = 0,765$	$\sigma = 0,810$	$\sigma = 0.855$	1/851	101100-
7	t	t	t	t	t	t	qcm	qem
1	2,36	2,20	2,36	2,40	2,55	2,69	3,14	2,83
2 3	4,71	4,40	4,71	4,80	5,09	5,37	6,28	5,65
	7,07	6,60	7,07	7,20	7,64	8,06	9,43	8,49
4	9,43	8,80	9,43	9,61	10,18	10,74	12,57	11,31
5	11,79	11,00	11,79	12,02	12,73	13,43	15,71	14,14
6	14,14	13,19	14,14	14,42	15,27	16,12	18.85	16,97
7	16,50	15,39	16,50	16,82	17,82	18,80	21,99	19,79
8	18,86	17,59	18,86	19,23	20.36	21,49	25,14	22,63
9	21,21	19,79	21,21	21,63	22,91	24,17	28,28	25,45
	- LINE S	umo albudi				SHEET OF STREET	Charles 6	

II. Lochleibungstragfähigkeit und Lochleibungsfläche eines Nietes.

		Lochleibur	ngstragfäh	igkeit ein	es Nietes		
irke	in der F	ahrbahn	in de	n Haupttra	ägern mit	einer	ungs ne ietes
hstë	mit Durch-	mit Schwellen		Stützw	eite bis	No secol?	ach ach s Ni
Blechstärke	führung der Bettung	und Schwellen- trägern	10 m	20 m	40 m	80 m	Lochleibungs fläche eines Nietes
	$\sigma = 1,500$	$\sigma = 1,400$	$\sigma = 1,500$	$\sigma = 1,530$	$\sigma = 1,620$	$\sigma = 1,710$	
mm	t t t t						
8	2,40	2,24	2,40	2,45	2,59	2,74	1,60
9	2,70	2,52	2,70	2,75	2,92	3,08	1,80
10	3,00	2,80	3,00	3,06	3,24	3,42	2,00
11	3,30	3,08	3,30	3,37	3,56	3,76	2,20
12	3,60	3,36	3,60	3,67	3,89	4,10	2,40
13	3,90	3,64	3,90	3,98	4,21	4,45	2,60
14	4,20	3,92	4,20	4,28	4,54	4,79	2,80
15	4,50	4,20	4,50	4,59	4,86	5,13	3,00
16	4,80	4,48	4,80	4,90	5,18	5,47	3,20

23 mm $1.5~d=34.5~\rm{mm},~2.5~d=58~\rm{mm},~3~d=69~\rm{mm},~6~d=138~\rm{mm}.$ I. Schertragfähigkeit und Scherfläche bei einschnittiger Vernietung.

0		Sche	rtragfähig	keit der	Niete								
Niete	in der F	ahrbahn	in der	n Haupttr	ägern mit	einer	he	he					
er 1	mit Durch-	mit Schwellen		Stützweite bis									
Anzahl der	führung	und	10		A STREET		Scherfläche	0,9 fache Scherfläche					
zah	Bettung	oraș em											
An	$\sigma = 0,750$	$\sigma = 0,700$	$\sigma = 0,750$	$\sigma = 0,765$	$\sigma = 0.810$	$\sigma = 0.855$	02	02					
	t	t	t	t	t	t	qem	qem					
1	3,12	2,91	3,12	3,18	3,37	3,55	4.15	3,74					
2 3	6,23	5,82	6,23	6,36	6,73	7,10	8,31	7,48					
	9,35	8,72	9.35	9,54	10,10	10,66	12,46	11.21					
4	12,46	11,63	12,46	12,71	13,46	14,21	16,62	14,96					
5	15,58	14,54	15,58	15,89	16,83	17,76	20,77	18,69					
6	18,70	17,45	18,70	19,07	20,19	21,31	24.93	22,44					
7	21,81	20,36	21,81	22,25	23,56	24,86	29,08	26,17					
8 9	24,93	23,27	24,93	25,43	26,92	28,42	33.24	29,92					
3	28,04	26,17	28,04	28,61	30,29	31,97	37,39	33,65					

II. Lochleibungstragfähigkeit und Lochleibungsfläche eines Nietes.

-		Lochleibu	ngstragfäl	igkeit ein	es Nietes					
irke	in der l	Fahrbahn	in de	en Haupttr	ägern mit	einer	Lochleibungs- fläche eines Nietes			
hstë	mit Durch- führung	mit Schwellen		Stützweite bis						
Blechstärke	der Bettung	und Schwellen-	10 m	10 m 20 m 40 m 80 m						
	$\sigma = 1,500$	$\sigma = 1,400$	$\sigma = 1,500$	$\sigma = 1,530$	$\sigma = 1,620$	$\sigma = 1,710$	L e			
mm	t	t	t	t	t	t	qem			
8	2,76	2,58	2,76	2,82	2,98	3,15	1,84			
9	3,11	2,90	3,11	3,17	3,35	3,54	2,07			
10	3,45	3.22	3,45	3,52	3,73	3,93	2,30			
11	3,80	3,54	3,80	3,87	4,10	4,33	2,53			
12	4,14	3,86	4,14	4,22	4,47	4,72	2,76			
13	4,49	4,19	4,49	4,57	4,84	5,11	2,99			
14	4,83	4,51	4,83	4,93	5,21	5,51	3,22			
15	5,18	4,83	5,18	5,28	5,59	5,90	3,45			
16	5,52	5,15	5,52	5,63	5,96	6,29	3,68			
17	5,87	5,47	5,87	5,98	6,33	6,69	3,91			
18	6,21	5,80	6,21	6,33	6,71	7,08	4,14			

26 mm

1.5 d = 39 mm, 2.5 d = 65 mm, 3 d = 78 mm, 6 d = 156 mm.

I. Schertragfähigkeit und Scherfläche bei einschnittiger Vernietung.

_										
0			Schen	rtragfähig	keit der l	Niete				
der Niete	mit Durch-	Fahrbahn mit Schwellen		in den Hauptträgern mit einer Stützweite bis						fache
Anzahl o	führung der Bettung	und Schwellen- trägern	10 m	20 m	40 m	80 m	120 m	160 m	Scherfläche	0,9 Sche
An	$\sigma = 0.750$		$\sigma = 0.750$	$\sigma = 0.765$	$\sigma = 0.810$	$\sigma = 0.855$	$\sigma = 0,900$	$\sigma = 0.945$		
-	t	t	t	t	t	t	t	t	qem	qem
1	3,98	3,72	3,98	4,06	4,30	4,54	4,78	5,02	5,31	4,78
2 3	7,96	7,43	7.96	8,12	8,60	9,08	9,56	10,04	10,62	9,56
3	11,95	-11,15	11.95	12,18	12,90	13,62	14,34	15,05	15,93	14.34
4	15,93	14,87	15,93	16,25	17,20	18,16	19,12	20,07	21,24	19,12
5	19,91	18,58	19,91	20,31	21,50	22,70	23,90	25,09	26,55	23,90
6	23,89	22,30	23,89	24,37	25,80	27,24	28,67	30,11	31,85	28,67
7	27,87	26,02	27,87	28,43	30,10	31,78	33,45	35,13	37,16	33,44
8	31,86	29,73	31,86	32,49	34,40	36,32	38,23	40,14	42,47	38,22
9	35,84	33,45	35,84	36,55	38,70	40,85	43,01	45,16	47,78	43,00

II. Lochleibungstragfähigkeit und Lochleibungsfläche eines Nietes.

			Lochleibu	ngstragfäh	nigkeit ein	es Nietes			1
irke	in der F	ahrbahn		in de		ägern mit	einer		sibungs iche Nietes
hstë	mit Durch- führung	mit Schwellen	Stützweite bis						
Blechstärke	der Bettung	und Schwellen-	10 m	20 m	40 m	80 m	120 m	160 m	Lochleibungs fläche eines Nietes
	$\sigma = 1,500$	$\sigma = 1,400$	$\sigma = 1,500$	$\sigma = 1,530$	$\sigma = 1,620$	$\sigma = 1,710$	$\sigma = 1,800$	$\sigma = 1,890$	J .
mm	t	t	t	ť	t	t	t	t	qem
10	3,90	3,64	3,90	3,98	4,21	4,45	4,68	4,91	2,60
11 12	4,29 4,68	4,00	4,29 4.68	4,38 4,77	4,63 5,05	4,89 5,34	5,15 5.62	5,41 5,90	2,86 3,12
13	5,07	4,73	5,07	5,17	5,48	5.78	6,08	6.39	3,38
14	5,46	5,10	5,46	5,57	5,90	6,22	6,55	6,88	3,64
15	5,85	5,46	5,85	5,97	6,32	6,67	7,02	7,37	3,90
16	6,24	5,82	6,24	6,36	6,74	7,11	7,49	7,86	4,16
17 18	6,63 7,02	6,19 6,55	6,63 7,02	6,76 7,16	7,16 7,58	7,56 8,00	7,96 8,42	8,35 8,85	4,42 4,68
19	7,41	6,92	7,41	7,56	8,00	8,45	8,89	9,34	4,94
20	7,80	7,28	7,80	8,06	8,42	8,89	9,36	9,83	5,20
21	8,19	7,64	8,19	8,45	8,85	9,34	9,83	10,32	5,46

 $30~\rm{mm}$ 1,5 $d=45~\rm{mm},~2,5~d=75~\rm{mm},~3~d=90~\rm{mm},~6~d=180~\rm{mm}.$ I. Schertragfähigkeit und Scherfläche bei einschnittiger Vernietung.

te	Schertragfähigkeit der Niete												
Niete	in der F	ahrbahn				uptträger		er	4	che	he		
der	mit Durch- führung	Schwellen			St	ützweite l	ois			rflä	fac		
	der Bettung	der Schwellen- 10 m 20 m 40 m 80 m 120 m 160 m 200 m								Scherfläche	0,9fache Scherfläche		
Anzahl	$\sigma = 0.750$	trägern									00		
	t	t	t	t t t t t									
1	5,30	4,95	5,30	5,30 5,41 5,73 6,05 6,36 6,68 7,0							6,36		
2 3	10,61	9,90	10,61	10.82	11,45	12,09	12,73	13,36	14,0	14,14	12,72		
4	15,91 21,21	14,85 19,80	15,91 21,21	16,23 21,64	17,18 22,91	18.14 24,18	19,09 25,45	20,04 $26,72$	21,0 28,0	21,21 28,28	19,09 25,45		
5	26,52	24,75	26,52	27,05	28,64	30,23	31,82	33,41	35,0	35,35	31,82		
6	31,82	29,69	31,82	32,45	34,36	36,27	38,18	40.09	42,0	42,42	38.18		
7	37,12	34,64	37,12	37,86	40,09	42,32	44,54	46,77	49,0	49,49	44,54		
8 9	42,42 47,73	39,59 44,54	42,42 47,73	43,27 48,68	45,82 $51,54$	48,36 54,41	50,90 57,27	53,45 60,13	56,0 63,0	56,56 63,63	50,90 57,27		

II. Lochleibungstragfähigkeit und Lochleibungsfläche eines Nietes.

			Loch	leibungstr	agfähigke	it eines Ni	ietes			
rke	in der I	ahrbahn			in den Ha	uptträgerr	n mit eine	r	1	ngs
hstä	mit Durch- führung	mit Schwellen			St	tützweite l	bis			eibu iche Nic
Blechstärke	der Bettung	und Schwellen-	10 m	20 m	40 m	80 m	120 m	160 m	200 m	Lochleibungs fläche eines Nietes
	$\sigma = 1,500$	$\sigma = 1,400$	$\sigma = 1,500$	$\sigma = 1,530$	$\sigma = 1,620$	$\sigma = 1,710$	$\sigma = 1,800$	$\sigma = 1,890$	$\sigma = 1,980$	7 9
mm	t	t	t	t	t	t	t	t	t	qem
10	4,50	4,20	4,50	4,59	4,86	5,13	5,40	5,67	5,94	3,0
11	4,95	4,62	4,95	5,05	5,35	5,64	5,94	6,24	6,53	3,3
12 13	5,40 5,85	5,04 5,46	5,40 5,85	5,51 5,97	5,83 6,32	6,16 6,67	6,48 7,02	6,80 7,37	7,13 7,72	3,6 3,9
14	6,30	5,88	6,30	6,43	6,80	7,18	7,56	7,94	8,32	4,2
15	6,75	6,30	6,75	6,89	7,29	7,70	8,10	8,51	8,91	4,5
16	7,20	6,72	7,20	7,34	7,78	8,21	8,64	9,07	9,50	4,8
17 18	7,65 8,10	7,14 7,56	7,65 8,10	7,80 8,26	8,26 8,75	8,72 9,23	9,18 9,72	9,64 10,21	10,10 10,69	5,1 5,4
19	8,55	7,98	8,55	8,72	9,23	9,75	10,26	10,77	11,29	5,7
20	9,00	8,40	9,00	9,18	9,72	10,26	10,80	11,34	11,88	6,0
21	9,45	8,82	9,45	9,64	10,21	10,77	11,34	11,91	12,47	6,3
22 23	9,90	9,24	9,90	10,10	10,69	11,29	11,88	12,47	13,07	6,6
25 24	10,35 10,80	9,66 10,08	10,35 10,80	10,56 11,02	11,18 11,66	11,80 12,31	12,42 12,96	13,04 13,61	13,66 14,26	6,9 7,2
	10,00	10,00	20,00	11,02	11,00	12,01	12,00	10,01	,	,-

II. Berechnung der Nietanzahl bei der Deckung eines Stegblechstoßes.

Bedeutet n die Anzahl der Niete in der ersten Reihe neben der Stoßfuge, h den Abstand der beiden äußersten Niete der ersten Reihe in cm, d den Nietdurchmesser in cm, d die Stegblechdicke in cm und M das durch die Stegblechstoßdeckung zu übertragende Angriffsmoment in kgcm, so ist der durch das Moment in der Lochleibung der äußersten Niete hervorgerufene Druck, der bei den gebräuchlichsten Stegblechstärken für die erforderliche Anzahl der Niete maßgebend ist:

$$\sigma_1 = f \frac{1}{d \cdot d} \cdot \frac{M}{h} \cdot$$

f ist aus der nachstehenden Zusammenstellung zu entnehmen.

a Anzahl der	Einreihige Vernietung	Zweireihige Vernietung $f = 6(n-1)$ $6(n-1)$ $n(2n-1)$	Dreireihige Vernietung $ \begin{array}{ccc} \circ & \circ & f = \\ \circ & \circ & 2(n-1) \\ \circ & \circ & n^2 \end{array} $	Vierreihige Vernietung $0 \circ 0 \circ f = 0 \circ 0 \circ 3 (n-1) \circ 0 \circ 0 \circ n (2n-1)$
4	0,900	0,643	0,375	0,322
5	0,800	0,533	0,320	0,267
6	0,714	0,455	0,278	0,227
7	0,643	0,396	0,245	0,198
7 8 9	0,583	0,350	0,219	0,175
9	0,533	0,314	0,198	0,157
10	0,491	0,284	0,180	0,142
11	0,455	0,260	0,165	0,130
12	0,423	0.239	0,153	0,120
13	0,396	0,222	0,142	0,111
14	0,371	0,206	0,133	0,103
15	0,350	0,193	0,124	0,097
16	0,331	0,181	0,117	0,091
17	0,314	0,171	0,111	0,086
18	0,298	0,162	0,105	0,081
19	0,284	0,153	0,100	0,077
20	0,271	0,146	0,095	0,073
21	0,260	0,139	0,0907	0,070
22	0,249	0,132	0,0868	0,066
23	0,239	0,128	0,0832	0,064
24	0,230	0,122	0,0799	0,061
25	0,222	0,118	0,0768	0,059
26	0,214	0,113	0,0740	0,0566
27	0,206	0,109	0,0713	0,0545
28	0,200	0,105	0,0689	0,0526
29	0,193	0,102	0,0666	0,0508
30	0,187	0,098	0,0644	0,0492

Es ist zu empfehlen, die Stoßdeckung des Stegblechteils, der unter den Gurtwinkeln liegt, als Zugabe zu betrachten, d. h als Stoßdeckungsniete nur die in den Decklaschen zwischen der unteren Kante des Obergurtwinkels und der oberen Kante des Untergurtwinkels anzusehen, weil die Niete in den Winkeln auch noch die wagerechte Querkraft aufzunehmen haben. Andernfalls ist die Zusatzbeanspruchung durch die wagerechte Querkraft = σ_{q_2} zu berücksichtigen. Die Stoßdeckungsniete haben außer dem Biegungsmoment auch die senkrechte Querkraft aufzunehmen. Bezeichnet man die Beanspruchung durch das Moment $\sigma_{\rm I}$ und die durch die senkrechte Querkraft = σ_{q_1} , so entsteht in den in den Winkeln sitzenden Nieten eine Beanspruchung

$$\sigma = V(\sigma_1 + \sigma_{q_2})^2 + \sigma_{q_1}^2,$$

in den anderen Stoßdeckungsnieten eine Beanspruchung

$$\sigma = V \sigma_1^2 + \sigma_{q_1}^2.$$

III. Verlust ΔW an Widerstandsmoment durch eine senkrechte Nietreihe im Stegblech.

Zur Vereinfachung ist statt der Stegblechhöhe die Entfernung der äußersten Niete eingesetzt und es sind auch die im gedrückten Teil des Querschnitts befindlichen Nietlöcher abgezogen. Bezeichnungen wie vorstehend.

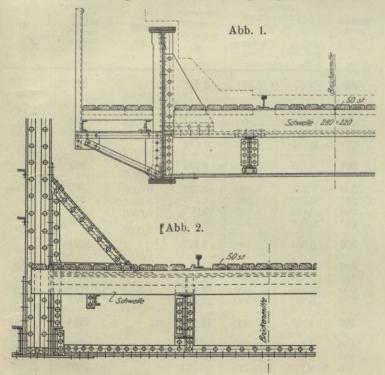
 $\Delta W = \frac{n (n+1)}{6 (n-1)} d \delta h.$

Anzahl der Niete	$\frac{n(n+1)}{6(n-1)}$	Anzahl der Niete	$\frac{n(n+1)}{6(n-1)}$	Anzahl der Niete	$\frac{n(n+1)}{6(n-1)}$
		10	2,037	20	3,684
in last	1524 124 11	11	2,200	21	3,850
		12	2,364	22	4,016
-3		13	2,526	23	4,182
4	1,111	14	2,692	. 24	4,348
5	1,250	15	2,857	25	4,514
6	1,400	16	3,022	26	4,680
7	1,555	17	3,188	27	4,846
6 7 8 9	1,714	18	3,353	28	5,012
9	1,875	19	3,519	29	5.177
10	2.037	20	3.684	30	5.345

IV. Hilfstafeln zur Berechnung der Fahrbahn.

A. Fahrbahn ohne Durchführung der Bettung.

1. Zur Berechnung der Schwellen.


In der folgenden Zusammenstellung ist für eine Anzahl Schwellenabmessungen unter Zugrundelegung einer zülässigen Beanspruchung des Holzes von 75 kg/qcm die größte Längsträgerentfernung angegeben, bis zu der die Schwellen für die Lastenzüge A und B anwendbar sind. Hierbei ist die freie Länge der Schwellen gleich der Entfernung der Mittellinien der beiden Schwellenträger angenommen, und der Einfluß des Eigengewichts ist wegen seiner Geringfügigkeit vernachlässigt worden. Die Verschwächung des Schwellenquerschnitts infolge einer 1 bis 2 cm starken Einkämmung über den Schwellenträgern wird in der Regel wegen des Umstandes, daß die Schienen die Raddrücke auch auf die benachbarten Schwellen übertragen, nicht berücksichtigt. Die Schwellenabmessungen entsprechen den vom Innungsverband deutscher Baugewerksmeister vereinbarten und vom preußischen Minister der öffentlichen Arbeiten durch den Erlaß vom 5. Juli bezw. 5. September 1898 ID 9045 u. 12 678 III 9287 (Zentralbl. d. Bauverw. 1898, S. 373; E.-Verordnungsblatt S. 259) zur Anwendung empfohlenen Holznormalquerschnitten. Als geringste Breite für die Schwellen ist das Maß von 22 cm anzusehen, bei dem sich die Unterlagsplatten der Schienen noch gut befestigen lassen.

Querschnitt in cm	22 18 🗆	22 20 🗆	24 24 🗆	24 26 🗆	22 28 🗆	30 <u>-</u>	30 []
reicht bei einem Schwellenträger- abstand von m	1,68	1,72	1,84	1,90	1,93	2,04	2,13

2. Zur Berechnung der Schwellenträger.

In den nachstehenden Tafeln sind die auftretenden Angriffsmomente und Auflagerdrucke der Schwellenträger, ferner die erforderlichen Widerstandsmomente unter Zugrundelegung der zugelassenen Beanspruchung von 750 kg/qcm bei Brückenbreiten von 3,6 und 4,9 m für Feldweiten von 1 bis 8 m zusammengestellt.

Für die Ausbildung und Abdeckung der Fahrbahn wurden die in den beigedruckten Abbildungen dargestellten Anordnungen angenommen. Die Stärke des Bohlenbelages ist mit 5 cm, das Gewicht des Holzes mit 1000 kg/cbm in die Rechnung eingeführt.

Unter Benutzung der Werte $\frac{\Delta M}{\Delta \lambda}$, $\frac{\Delta W}{\Delta \lambda}$ und $\frac{\Delta A}{\Delta \lambda}$ läßt sich das Angriffsmoment, das erforderliche Widerstandsmoment und der Auflagerdruck für jede zwischen 1 und 8 m liegende Feldweite berechnen. Da der Einfluß des Eigengewichts gegenüber der Verkehrslast sehr gering ist. so lassen sich die angegebenen Werte ohne weiteres auch für Brückenbreiten benutzen, die nicht weit von 3,6 und 4,9 m abweichen, ohne daß die zulässige Fehlergrenze überschritten wird.

a) Angriffsmomente und Widerstandsmomente der Schwellenträger. Lastenzug A.

Brückenbreite 3,6 m.

Brückenbreite 4,9 m.

Spann- weite	Angriff inf Eigen- gewicht	oßtes smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	AM Al	Erforder- liches Wider- stands- moment W	AW AL	Spann- weite \(\lambda\)	Angriff inf Eigen- gewicht	oßtes smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	AM Al	Erforder- liches Wider- stands- moment W	AW Al
em	tm	tm	tm		cm ³		em	tm	tm	tm		cm ³	
100	0,0425	2,500	2,5425	0,0257	339	3,45	100	0,0510	2,50	2,5510	0,0258	340	9.45
120 140 160 180	0,0567 0,0884 0,1098 0,1328	3,000 3,500 4,000 4,500	3,0567 3,5884 4,1098 4,6328	0,0266 0,0261 0,0262	408 478 548 618	3,50 3,50 3,50 3,50	120 140 160 180	0,0677 0,1057 0,1306 0,1571	3,00 3,50 4,00 4,50	3,0677 3,6057 4,1306 -4,6571	0,0269 0,0263 0,0263	409 481 551 621	3,45 3,6 3,5 3,5
200	0,1820	5,000	5,182	0,0275	691	3,65	200	0,2158	5,00	5,216	0,0279	695	3,7
220 240 260 280	0,210 0,246 0,279 0,353	5,500 6,000 6,582 7,505	5,710 6,246 6,861 7,858	0,0268 0,0308 0,0499	761 833 915 1048	3,50 3,60 4,10 6,65	220 240 260 280	0,249 0,289 0,328 0,415	5,50 6,00 6,582 7,505	5,749 6,289 6,910 7,920	0,0270 0,0311 0,0505	766 839 921 1056	3,55 3,65 4,1 6,75
300	0,402	8,438	8,840	0,0491	1179	6,55	300	0,470	8,438	8,908	0,0494	1188	6,6
320 340 360 380	0,456 0,541 0,611 0,688	9,379 10,327 11,400 12,825	9,835 10,868 12,011 13,513	0,0498 0,0517 0,0572 0,0751	1311 1449 1601 1802	6,60 6,90 7,60 10,05	320 340 360 380	0,531 0,631 0,708 0,793	9,379 10,327 11,400 12,825	9,910 10,958 12,108 13,618	0,0510 0,0524 0,0625 0,0755	1321 1461 1614 1816	6,65 7,0 7,65 10,1
400	0,793	14,250	15,043	0,0765	2006	10,2	400	0,917	14,250	15,167	0,0775	2022	10,3
450 500 550	1,022 1,355 1,652	17,813 21,375 24,938	18.835 22,730 26,590	0,0758 0,0779 0,0752	2511 3031 3545	10,1 10,4 10,3	450 500 550	1,170 1,540 1,880	17,813 21,375 24,938	18,983 22,915 26,818	0,0763 0,0786 0,0781	2531 3055 3576	10,2 10,5 10,4
- 600	1,997	28,500	30,497	0,0782	4066	10,4	600	2,270	28,500	30,770	0,0790	4103	10,5
650 700	2,335 2,788	32,280 36,730	34,615 39,518	0,0824	4615 5269	11,0 13,1	650 700	2,641 3,147	32,280 36,730	34,921 39,877	0,0830	4656 5317	11,1
800	3,760	46,750	50,510	0,1099	6735	14,66	800	4,237	46,750	50,987	0,1111	6798	14,8

Lastenzug B.

		Brü	ickenbreit	e 3,6 m.			izag Di	The state of	Brü	ckenbreite	e 4,9 m.		on more
Spann-weite 1	Grö Angriffs info Eigen- gewicht tm	Stes moment olge Verkehrs- last tm	Gesamtes Angriffs- moment M tm	AM Al	Erforder- liches Wider- stands- moment W	$\frac{AW}{A\lambda}$	Spann-weite \(\lambda \) cm	Angriffs	oßtes smoment olge Verkehrs- last tm	Gesamtes Angriffs- moment M tm	AM Al	Erforder- liches Wider- stands- moment W cm ³	AW A A
100	0,045	2,500	2,545	0,0260	340	3,45	100	0,057	2,500	2,557	0,0263	341	3,50
120 140 160 180	0,065 0,089 0,120 0,152	3,000 3,500 4,000 4,500	3,065 3,589 4,120 4,652	0,0262 0,0265 0,0266 0,0270	409 479 549 620	3,50 3,50 3,55 3,60	120 140 160 180	0,082 0,113 0,150 0,191	3.000 3,500 4,000 4,500	3,082 3,613 4,150 4,691	0,0266 0,0269 0,0271 0,0274	411 482 553 626	3,55 3,55 3,65 3,65
200	0,192	5,000	5,192	0,0270	692	3,60	200	0,239	5,000	5,239	0,0275	699	3,65
220 240 260 280	0,232 0,282 0,345 0,408	5,500 6,000 6,580 7,505	5,732 6,282 6,925 7,913	0.0275 0.0321 0.0494 0.0500	764 838 923 1055	3,70 4,25 6,60 6,65	220 240 260 280	0,289 0,349 0,429 0,506	5,500 6,000 6,580 7,505	5,789 6.349 7,009 8,011	0,0280 0,0330 0,0501 0,0505	772 847 935 1068	3,75 4,40 6,65 6,75
300	0,473	8,440	8,913	0.0508	1188	6,80	300	0,581	8,440	9,021	0,0516	1203	6,85
320 340 360 380	0,549 0,637 0,715 0,817	9,380 10.630 12,000 13,500	9,929 11,267 12,715 14,317	0,0669 0,0724 0,0801 0,0808	1324 1502 1695 1909	8,90 9,65 10,70 10,75	320 340 360 380	0,672 0,776 0,888 0,991	9,380 10,630 12,000 13,500	10,052 11,406 12,888 14,491	0,0677 0,0741 0,0802 0,0817	1340 1521 1718 1932	9,05 9,85 10,70 10,90
400	0,933	15,000	15,933	0,0806	2124	10,76	400	1,125	15,000	16,125	0,0829	2150	11,06
450 500 550	1,215 1,583 1,876	18,750 22,500 26,725	19,965 24,083 28,601	0,0824 0,0904 0,0922	2662 3211 3813	10,76 10,98 12,04 12,30	450 500 550	1,521 1,883 2,239	18,750 22,500 26,725	20,271 24,383 28,964	0,0822 0,0916 0,0939	2703 3251 3862	10,96 12,22 12,52
600	2,272	30,940	33,212	0,1240	4428	16,54	600	2,718	30,940	33,658	0,1262	4488	16,82
650 700	2,696 3,357	36,715 42,500	39,411 45,857	0,1289	5255 6114	17,18	650 700	3,254 3,994	36,715 42,500	39,969 46,494	0,1305	5329 6199	17,40
800	4,544	55,000	59,544	0,1369	7939	18,25	800	5,440	55,000	60,440	0,1395	8059	18,60

Bemerkung: Die Werte für Feldweiten von 1,0 bis 3,2 m müßten eigentlich für die Lastenzüge A und B übereinstimmen. Die Tafeln für den Lastenzug A sind aber unverändert aus der dritten Auflage übernommen worden, während für die Berechnung der Werte in den Tafeln für den Lastenzug B etwas abweichende Annahmen für die Eigengewichte gemacht sind.

b) Auflagerdrucke der Schwellenträger.

Lastenzug A.

Brückenbreite 3,6 m.

Brückenbreite 4,9 m.

Feld-weite λ	des Schwe	erdruck ellenträgers olge Verkehrs- last t	Gesamter Auflager- druck des Schwellen- trägers A	AA A A	Feld-weite λ	des Schwe	verdruck dlenträgers olge Verk hrs- last t	Gesamter Auflager- druck des Schwellen- trägers A	AA Ah
100 120 140 160	0,170 0,189 0,253 0,275	10,000 10,000 10,000 10,625	10,170 10,189 10,253 10,900	0,0009 0,0032 0,0324	100 120 140 160	0,204 0,226 0,302 0,327	10,000 10,000 10,000 10,625	10,204 10,226 10,302 10,952	0,0011 0,0038 0,0325
200 220	0,295 0,364 0,383	11,666 12,500 13,182	11,961 12,864 13,565	0,053 0,045 0,035 0,030	200 220	0,349 0,432 0,453	11,666 12,500 13,182	12,015 12,932 13,635	0,053 0,046 0,035 0,030
240 260 280 300	$0,410 \\ 0,429 \\ 0,504 \\ \hline 0,536$	13,750 14,231 14,643 15,000	14,160 14,660 15,147 15,536	0,025 0,024 0,0195 0,017	240 260 280 300	0,482 0,504 0,592 0,627	13,750 14,231 14,643 15,000	14,232 14,735 15,235 15,627	0,025 0,025 0,0196 0,017
320 340 360 380	0,570 0,637 0,679 0,724	15,312 15,926 16,625 17,250	15,882 16,563 17,304 17,974	0,034 0,037 0,034 0,032	320 340 360 380	0,663 0,743 0,787 0,835	15,312 15,926 16,625 17,250	15,975 16,669 17,412 18,085	0,035 0,037 0,034 0,032
450 500 550	0,793 0,909 1,084 1.202	17,813 19,000 19,950 21,273	18.606 19,909 21,034 22,475	0,026 0,023 0,029 0,027	450 500 550	0,917 1,040 1,232 1,367	17,813 19,000 19,950 21,273	18,730 20,040 21,182 22,640	0,026 0,023 0,029 0.027
600 650 700 800	1,331 1,690 1,946 2,336	22,500 23,538 24,429 26,563	23,831 25,228 26,375 28,899	0,0279 0,0279 0,0229 0,0252	650 700 800	1,513 1,671 1,838 2,180	22,500 23,538 24,429 26,563	24,013 25,209 26,267 28,743	0,024 0,0212 0,0212 0,0248

Lastenzug B.

Brückenbreite 3,6 m.

Brückenbreite 4,9 m.

	2710	CKCHDICIO	0,0 III.				SKOMBTOTOC	1,0 111.	
Feld- weite λ	des Schwe	erdruck fllenträgers folge Verkehrs- last	Gesamter Auflager- druck des Schwellen- trägers A	$\frac{\Delta A}{\Delta \lambda}$	Feld-weite	des Schwe	verdruck ollenträgers olge Verkehrs- last	Gesamter Auflager- druck des Schwellen- trägers A	AA Al
100	0,178	10,000	10,178		100	0,227	10,000	10,227	
120 140 160 180	0,217 0,217 0,256 0,297 0,338	10,000 10,000 10,000 10,625 11,667	10,217 10,256 10,922 12,005	0,0020 0,0020 0,0333 0,0542	120 140 160 180	0,275 0,323 0,374 0,424	10,000 10,000 10,625 11,667	10,275 10,323 10,999 12,091	0,0024 0,0024 0,0338 0,0546
200	0,381	12,500	12,881	0,0438	200	0,478	12,500	12,978	0,0444
220 240 260 280	0,419 0,466 0,534 0,588	13,182 13,750 14,231 14,643	13,601 14,216 14,765 15,231	0,0360 0,0308 0,0275 0,0233 0,0200	220 240 260 280	0,526 0,582 0,660 0,724	13,182 13,750 14,231 14,643	13,708 14,332 14,891 15,363	0,0365 0,0312 0,0280 0,0236 0,0207
300	0,630	15,000	15,630	0,0200	300	0,776	15,000	15,776	0,0502
320 340 360 380	0,686 0,750 0,814 0,861	15,938 16,765 17,500 18,158	16,624 17,515 18,314 19,019	0,0446 0,0400 0,0353	320 340 360 380	0,842 0,912 0,988 1,045	15,938 16,765 17,500 18,158	16,780 17,680 18,488 19,203	0,0450 0,0404 0,0358
400	0,932	18,750	19,682	0,0332	400	1,126	18,750	19,876	0,0337
450 500 550	1,136 1,265 1,367	20,000 22,000 23,636	21,136 23,265 25,003	0,0291 0,0426 0,0348	450 500 550	1,355 1,508 1,634	20,000 22,000 23,636	21,355 23,508 25,270	0,0431 0,0351 0,0309
600	1,524	25,000	26,524	0,0304	600	1,815	25,000	26,815	0,0303
650 700 800	1,690 1,946 2,336	26,923 28,571 31,250	28,613 30,517 33,586	0,0418 0,0381 0,0307	650 700 800	2,005 2,286 2,724	26,923 28,571 31,250	28,928 30,857 33,974	0,0386 0,0312

Bemerkung: Bei der Berechnung des Auflagerdrucks infolge der Verkehrslast ist angenommen worden, daß die Lasten nicht durch die Schwellen auf die Schwellenträger übertragen werden, sondern unmittelbar auf sie wirken.

sondern unmittelbar auf sie wirken.

Bei der Berechnung des Druckes in der Lochleibung der Niete, die die Schwellenträger an die Querträger anschließen, sind die doppelten Werte in der zweiten Spalte der vorstehenden Tafeln und die Werte der dritten Spalte der nächst folgenden Zusammenstellung zu verwenden.

3. Zur Berechnung der Querträger.

Zur Berechnung der Querträger ist die Bestimmung des durch die Verkehrslast hervorgerufenen Auflagerdruckes der Schwellenträger an dem Querträger erforderlich. Unter der Annahme unmittelbarer Übertragung der Radlasten auf die Schwellenträger kann die Größe dieses Auflagerdruckes aus den beiden folgenden Zusammenstellungen berechnet werden.

Lastenzug A.

Grenze der Querträger- entfernung, für welche nebenstehende Größen Gültigkeit haben cm	Größe des Auflagerdruckes der Schwellenträger am Querträger t	Maßgebende Belastungsart
0—150	10	
150-159	$20 - \frac{1500}{\lambda}$	75 TO 70
159—340	$28,5 - \frac{2850}{\lambda}$	95 95 95 175 175 A - A -
340 - 346	$36 - \frac{5400}{\lambda}$	15/5/25
346-750	$42,5 - \frac{7650}{\lambda}$	85 85 85 85 85 85 85 85 85 85 85 85 85 8
750-900	$55,5 - \frac{17400}{\lambda}$	\$5 \$5 \$5 \$5 \$5 \$5 \$5 \$65 \$ \$5 \$75 \$75 \$75 \$75 \$45 \$
900 – 1050	$68,5 - \frac{29\ 100}{\lambda}$	65 65 85 85 85 85 85 85 65 65 15 45 15 15 15 15 45 15

Lastenzug B.

Grenze der Querträger- entfernung, für welche nebenstehende Größen Gültigkeit haben em	Größe des Auf- lagerdruckes der Schwellenträger am Querträger	Maßgebende Belastungsart
0-150	10	10 10
150—300	$30 - \frac{3000}{\lambda}$	
300—750	50 — 9000 \(\lambda\)	15 75 75 75 75 75 75 75 75 75 75 75 75 75
750—900	$65 - \frac{20250}{\lambda}$	75 10 10 10 10 10 15 15 15 15 15 15 15 45 15
900—1050	$80 - \frac{33750}{\lambda}$	25 25 10 10 10 10 10 10 25 25 25 25 25 25 25 25 25 25 25 25 25

Zur weiteren Erleichterung der Berechnung der Querträger sind in den nachstehenden Zusammenstellungen die Auflagerdrucke der Querträger aus dem Eigengewicht der gesamten Fahrbahn und aus der Verkehrslast für Brückenbreiten von 3,6 und 4,9 m angegeben worden. Für die Anordnung der Fahrbahn sind wieder die auf S. 7 wiedergegebenen Abbildungen maßgebend. Die Entfernung der Schwellenträger ist zu 1,8 m angenommen worden. Durch Benutzung der Werte $\frac{\Delta A}{\Delta \lambda}$ kann der Auflagerdruck auch bei allen zwischen den angegebenen Querträgerentfernungen liegenden Werten berechnet werden.

Auflagerdruck des Querträgers. Lastenzug A.

Brückenbreite 3,6 m.

Brückenbreite 4,9 m.

	Druc	ekenbreite 5,6	m.			Druci	kenbreite 4,9	ш.	
Querträger- entfernung \(\lambda\)	inf Eigen- gewicht	of lagerdruck olge Verkehrs- last	Gesamter Auflager- druck A	AA AA	Querträger- entfernung \(\lambda\)	info Eigen- gewicht	flagerdruck olge Verkehrs- last	Gesamter Auflager- druck A	AA Ah
em	t	t	t		em	t	t	t	
100	0,490	10,000	10,49	0.009	200	1,171	14,250	15,42	0.070
110	0,524	10,000	10,52	0,003	210	1,194	14,929	16,12	0,070
120 130	0,545 0,564	10,000	10,55	0,001	220 230	1,219 1,253	15,545 16,109	16,76 17,36	0,060
140	0,670	10,000	10,56 10,67	0,011	240	1,283	16,625	17,91	0,055
150	0,692	10,000	10,69	0,002	250	1,306	17,100	18,41	0,050
160	0.714	10,688	11,40	0,071	260	1,328	17,538	18,86	0,045
170	0,755	11,735	12,49	0,109 0,095	270	1,488	17,945	19,43	0,05
180 190	0,775 0,806	12,667 13,500	13,44 14,31	0,087	280 290	1,512 1,549	18,321 18,672	19,83 20,22	0,039
200	0,935	14,250	15,19	0,088	300	1,585	19,000	20,59	0,037
				0,069				20,93	0,034
210 220	0,954 0,972	14,929 15,545	15,88 16,52	0,064	310 320	1,622 1,661	19,306 19,594	21,26	0,038
230	1,021	16,109	17,13	0,061 0,054	330 340	1,797	19,864	21,66 21,94	0,028
240 250	1,048 1,068	16,625	17,67	0,050	350	1,820 1,867	20,118	22,51	0,057
		17,100	18,17	0,046					0,060
260 270	1,087 1,217	17,538 17,945	18,63 19,16	0,053	360 370	1,915 1,967	21,250 21,824	23,17 23,79	0,062
280	1,237	18,321	19,56	0,040	380	2,021	22,368	24,39	0,060
290	1,292	18,672	19,96	0,036	390	2,055	22,885	24,94	0,068
300	1,323	19,000	20,32	0,034	400	2,193	23,375	25,57	0,052
310	1,358	19,306	20,66	0,033	410	2,244	23,841	26,09	0,050
320 330	1,392 1,503	19,594 19,864	20,99 21,37	0,038	420 430	2,299 2,355	24,286 24,709	26,59 27,06	0,04
340	1,525	20,118	21,64	0,027	440	2,408	25,114	27,52	0,046
350	1,567	20,643	22,21	0,057	450	2,461	25,500	27,96	0,044
360	1,627	21,250	22,88	0,067	460	2,601	25,869	28,47	0,042
370	1,690	21,824	23,51	0,060	470 480	2,664 2,737	26,223 26,563	28,89 29,30	0,04
380 390	1,746 1,772	22,368 22,885	24,11 24,66	0,055	490	2,798	26,888	29,69	0,039
400	1,884	23,375	25,26	0,060	500	2,850	27,200	30,05	0,030
410	1,930	23,841	25,77	0,051	510	2,883	27,500	30,38	0,038
420	1,977	24,286	26,26	0,049 0,047	520	2,915	27,789	30,70	0,032
430 440	2,023 2,070	24,709 25,114	26,73 27,18	0,045	530 540	2,987 3,056	28,066 28,333	31,05 31,39	0,034
450	2,116	25,500	27,62	0,044	550	3,129	28,591	31,72	0,038
460	2,230	25,869	28,10	0,048	560	3,174	28,839	32,01	0,029
470	2,289	26,223	28,51	0,041 0,040	570	3,218	29,079	32,30	0,029
480 490	2,349 2,408	26,563 26,888	28,91 29,30	0,039	580 590	3,255 3,353	29,311 29,534	32,57 32,89	0,033
500	2,467	27,200	29,67	0,037	600	3,43	29,750	33,19	0,030
					620	3,520	30,161	33,68	0,025
					640	3,630	30,547	34,18	0,025
					660 680	3,847 3,982	30,909 31,250	34,76 35,23	0,024
					700	4,092	31,571	35,66	0,022
					720	4,303	31,875	36,18	0,027
					740	4,420	32,162	36,58	0,020
					760 780	4,540 4,766	32,605 33,192	37,15 37,96	0,042
									0,038
					800	4,866	33,75	38,62	

Auflagerdruck des Querträgers. Lastenzug B.

Brückenbreite 3,6 m.

Brückenbreite 4,9 m.

	Brüc	kenbreite 3,6	m.			Brüc	kenbreite 4,9	m.	and the same
Querträger- entfernung	info	flagerdruck	Gesamter Auflager- druck	<u>a</u> A	Querträger- entfernung	info	flagerdruck olge	Gesamter Auflager- druck	1A
λ em	Eigen- gewicht	Verkehrs- last t	A t	d l	λ em	Eigen- gewicht	Verkehrs- last t	A t	Δλ
100	0,524	10,000	10,52	0.004	200	1,296	15,000	16,30	0.070
110 120 130	0,563 0,602 0,641	10,000 10,000 10,000	10,56 10,60 10,64	0,004 0,004 0,004	210 220 230	1,344 1,392 1,458	15,714 16,364 16,957	17,06 17,76 18,42	0,076 0,070 0,066
140 150	0,680	10,000	10,68 10,72	0,004 0,004	240 250	1,524 1,602	17,500	19,03	0,061
160	0,721 0,781	11,250	12,03	0,131 0,115	260	1,690	18,462	19,61 20,16	0,05
170 180 190	0,822 0,883 0,926	12,353 13,333 14,211	13,18 14,22 15,14	0,104 0,092	270 280 290	1,756 1,848 1,905	18,889 19,286 19,655	20,65 21,14 21,56	0,045
200	0,969	15,000	15,97	0,083	300	1,967	20,000	21,97	0,04
210 220	1,030 1,068	15,714 16,364	16,74 17,43	0,077 0,069 0,064	310 320	2,038 2,112	20,968 21,875	23,01 23,99	0,104 0,098 0,094
230 240	1,115 1,162	16,957 17,500	18,07 18,66	0,059	330 340	2,196 2,271	22,727 23,529	24,93 25,80	0,080
250	1,254	18,000	19,25	0,053	350	2,370	24,286	26,66	0,080
260 270 280 290	1,322 1,376 1,430 1,472	18,462 18,889 19,286 19,655	19,78 20,27 20,72 21,13	0,049 0,045 0,041	360 370 380 390	2,456 2,523 2,590 2,681	25,000 25,676 26,316 26,923	27,46 28,20 28,91 29,61	0,074 0,077 0,070
300	1,514	20,000	21,51	0,038	400	2,782	27,500	30,29	0,06
310 320 330 340	1,615 1,671 1,735 1,799	20,968 21,875 22,727 23,529	22,58 23,55 24,46 25,33	0,107 0,097 0,091 0,087	410 420 430 440	2,884 2,976 3,078 3,182	28,049 28,571 29,070 29,545	30,94 31,55 32,15 32,73	0,06 0,06 0,06 0,05
350	1,863	24,286	26,15	0,082	450	3,285	30,000	33,29	0,05
360 370 380 390	1,927 1,974 2,021 2,092	25,000 25,676 26,316 26,923	26,93 27,65 28,34 29,02	0,072 0,069 0,068	460 470 480 490	3,347 3,416 3,482 3,558	30,435 30,851 31,250 31,633	33,79 34,27 34,74 35,20	0,048 0,047 0,046
400	2,164	27,500	29,66	0,064	500	3,631	32,000	35,64	0,04
410 420 430 440	2,246 2,328 2,410 2,492	28,049 28,571 29,070 29,545	30,30 30,90 31,48 32,04	0,060 0,058 0,056	510 520 530 540	3,681 3,736 3,786 3,846	32,353 32,692 33,019 33,334	36,04 36,43 36,81 37,18	0,039 0,038 0,037
450	2,572	30,000	32,57	0,053	550	3,900	33,636	37,54	0,03
460 470 480 490	2,634 2,686 2,743 2,795	30,435 30,851 31,250 31,633	33,07 33,54 33,99 34,43	0,047 0,045 0,044	560 570 580 590	3,970 4,042 4,114 4,186	33,929 34 211 34,483 34,746	37,90 38,26 38,60 38,94	0,036 0,034 0,034
500	2,850	32,000	34,85	0,042	600	4,260	35,000	39,26	0,035
					620 640 660 680	4,412 4,564 4,752 4,976	35,484 35,938 36,364 36,765	39,90 40,51 41,12 41,75	0,035 0,035 0,035 0,035
					700	5,217	37,143	42,36	0,031
1951.0 25.0 25.0					720 740 760 780	5,393 5,574 5,750 5,926	37,500 37,838 38,356 39,039	42,90 43,42 44,11 44,97	0,027 0,026 0,035 0,048
					100	0,020	00,000	11,01	0,041

Die in den vorstehenden Zusammenstellungen für Brücken-Die in den vorstehenden Zusammenstellungen für Brückenbreiten von 3,6 m und 4,9 m angegebenen Auflagerdrucke der Querträger können ungeändert für kleinere und unwesentlich größere Brückenbreiten verwendet werden. Dies ist bei der Errechnung der in den nachstehenden Tafeln angegebenen Werte geschehen. Die Tafeln geben die bei verschiedenen Brückenbreiten erforderlichen Widerstandsmomente der Querträger wieder. Beispiel: Welches Widerstandsmoment ist bei einer Brückenbreite von 4,85 m und bei einer Feldweite von 4,00 m für den Lastenzug A erforderlich?

Lastenzug A erforderlich?

Bei einem Abstand der Schwellenträger von 1,8 m beträgt die Entfernung eines Schwellenträgers von der Mittellinie des benachbarten Hauptträgers 1,525 m. Man findet das erforderliche $W = \frac{5114 + 5284}{2} = 5199$ cm³. Hiernach wird der Querschnitt ge-

wählt. Die auftretende Beanspruchung ist $\sigma = \frac{A \cdot 1,525}{\text{vorhandenes } W} = \frac{25\,570 \cdot 1525}{\text{vorhandenes } W}.$

Erforderliches Widerstandsmoment des Querträgers.

Brückenbreite 2,50 m bis 3,70 m.

Lastenzug A.

_								Stella									
			fernun	11													
B ~ Entfernung der Querträger	Widerstands- 0.30	$\frac{\Delta W}{\Delta \lambda}$	0,60 Widerstands-	$\frac{\Delta W}{\Delta \lambda}$	O,70 Widerstands-	$\frac{\Delta W}{\Delta \lambda}$	O,75 Widerstands- moment was a moment with the cm ³	m <u>AW</u> <u>All</u>	Widerstands- 0.8 moment 88	$\frac{\Delta W}{\Delta \lambda}$	Widerstands- S moment S 2	m <u>AW</u> Aλ	Widerstands-0,0	$\frac{\Delta W}{\Delta \lambda}$	Widerstands-	$\frac{\Delta W}{\Delta \lambda}$	Entfernung der Querträger
100	490		839		979		1049		1119		1189		1259		1329		100
110 120 130 140 150	491 492 493 498 499	0,1 0,1 0,1 0,5 0,1	842 844 845 854 855	0,3 0,2 0,1 0,9 0,1	982 985 986 996	0,3 0,3 0,1 1,0 0,2	1052 1055 1056 1067 1069	0,3 0,3 0,1 1,1 0,2	1122 1125 1126 1138 1140	0,3 0,3 0,1 1,2 0,2	1192 1196 1197 1209 1212	0,3 0,4 0,1 1,2 0,3	1262 1266 1267 1280 1282	0,3 0,4 0,1 1,3 0,2	1333 1336 1338 1352 1354	0,4 0,3 0,2 1,4 0,2	110 120 130 140
160 170 180 190	532 583 627 668	3,3 5,1 4,4 4,1 4,1	912 999 1075 1145	5,7 8,7 7,6 7,0 7,0	1064 1166 1254 1336	6,6 10,2 8,8 8,2 8,2	1140 1249 1344 1431	7,1 10,9 9,5 8,7 8,8	1216 1332 1434 1526	7,6 11,6 10,2 9,2 9,4	1292 1416 1523 1622	8,0 12,4 10,7 9,9 9,9	1368 1499 1613 1717	8,6 13,1 11,4 10,4 10,6	1444 1582 1702 1813	9,0 13,8 12,0 11,1 11,1	160 170 180 190
210	709 741	3,2	1215	5,5	1418	6,4	1519 1588	6,9	1620 1694	7,4	1721	7,9	1906	8,3	1924 2012	8,8	210
220 230 240 250	771 799 825 848	3,0 2,8 2,6 2,3	1322 1370 1414 1454	5,2 4,8 4,4 4,0	1542 1542 1599 1649	6,0 5,7 5,0 4,7	1652 1713 1767	6,4 6,1 5,4 5,0	1762 1827 1885 1938	6,8 6,5 5,8 5,3	1872 1941 2003	7,2 6,9 6,2 5,6	1982 2056 2120 2180	7,6 7,4 6,4 6,0	2012 2093 2170 2238 2302	8,1 7,7 6,8 6,4	220 230 240 250
260 270 280 290	869 894 913 932	2,1 2,5 1,9 1,9	1490 1533 1565 1597	3,6 4,3 3,2 3,2	1739 1788 1826 1863	4,3 4,9 3,8 3,7	1863 1916 1956 1996	4,6 5,3 4,0 4,0	1987 2044 2086 2129	4,9 5,7 4,2 4,3	2111 2171 2217 2262	5,2 6,0 4,6 4,5	2236 2299 2347 2395	5,6 6,3 4,8 4,8	2360 2427 2478 2528	5,8 6,7 5,1 5,0	260 270 280 290
300	948	1,6	1626	2,9	1897	3,4	2032	3,6	2167	3,8	2303	4,1	2438	4,3	2574	4,6	300
310 320 330 340	964 980 997 1010	1,6 1,6 1,7 1,3 2,7	1653 1679 1710 1731	2,7 2,6 3,1 2,1 4,6	1928 1959 1995 2020	3,1 3,1 3,6 2.5 5,3	2066 2099 2137 2164	3,4 3,3 3,8 2,7 5,7	2204 2239 2280 2308	3,7 3,5 4,1 2,8 6,1	2341 2379 2422 2452	3,8 3,8 4,3 3,0 6,5	2479 2518 2564 2597	4,1 3,9 4,6 3,3 6,8	2617 2659 2707 2741	4,3 4,2 4,8 3,4 7,2	310 320 330 340
350 360 370 380 390	1125	3,1 2,9 2,8 2,6	1777 1830 1881 1929 1973	5,3 5,1 4,8 4,4	2073 2135 2194 2250 2302	6 2 5,9 5,6 5,2	2221 2288 2351 2414 2466	6,7 6,3 6,0 5,5	2369 2441 2508 2572 2630	7,2 6,7 6,4 5,8	2517 2593 2664 2732 2795	7,6 7,1 6,8 6,3	2665 2746 2821 2893 2959	8,1 7,5 7,2 6,6	2813 2898 2978 3054 3124	8,5 8,0 7,6 7,0	350 360 370 380 390
400	1179	2,8	2021	4,8	2358	5,6	2526	6,0	2694	6,4	2863	6,8	3031	7,2	3200	7,6	400
410 420 430 440	1247	2,4 2,3 2,1 2,1	2062 2101 2138 2174	3,9 3,7 3,6	2405 2451 2495 2537	4,7 4,6 4,4 4,2	2577 2626 2673 2718	5,1 4,9 4,7 4,5	2749 2801 2851 2899	5,5 5,2 5,0 4,8		5,8 5,5 5,3 5,1	3092 3151 3208 3261	5,9 5,7 5,3	3264 3326 3386 3443	6,4 6,2 6,0 5,7	410 420 430 440
450	1289	2,1	2210	3,6	2578	4,1	2762	4,4	2946	4,7 5,1	3130	5,0	3314	5,3	3499	5,6	450
460 470 480 490	1331 1349	2,0 1,8 1,8	2248 2281 2313 2344	3,3 3,2 3,1	2623 2661 2698 2735	3,8 3,7 3,7	2891 2930	4,1 4,0 3,9	2997 3041 3084 3125	4,4 4,3 4,1	3184 3231 3276 3321	4,7 4,5 4,5	3372 3421 3469 3516	4,9 4,8 4,7	3559 3611 3662 3711	5,2 5,1 4,9	460 470 480 490
500	1385	1,8	2374	3,0	2769	3,4	2967	3,7	3165	4,0	3363	4,2	3560	4,4	3758	4,7	500

Erforderliches Widerstandsmoment des Querträgers.

Brückenbreite 2,50 m bis 3,70 m.

Lastenzug B.

		-															
1000							1				von de						
er	0,35	m	0,60	m	0,70	m	0,75	m	0,80	m	0,85	m	0,90	m	0,95	m	ie
Entfernung der Querträger	Widerstands- moment		Widerstands- moment		Widerstands- moment		Widerstands- moment		Widerstands- moment		Widerstands- moment		Widerstands- moment		Widerstands- moment		Entfernung der Querträger
trä	derstand		derstand		derstand		derstand		derstand		derstand		derstand		derstand		un
ferr	lers	AW	lers	AW	lers	AW	lers	AW	lers	1W	lers	AW	lers	AW	lers	4W	ern
Ent	Wid	Al	Wid	JA	Wid	JA	Wid	11	Wid	1 h	Wid	12	Wid	di	Wid	12	Sutt
λ	W		W		W		W	- 1	W		W		W		W		λ
^	"		"		"		"		"		"		"		"		^
em	cm ³		cm ³		cm ³		em ³		cm ³		cm ³		em ³		cm ³		cm
100	491	0.0	842	0.0	982	0.1	1052		1122		1193		1263		1333		100
110	493	0,2	845	0,3	986	0,4	1056	0,4	1126	0,4	1197	0,4	1267	0,4	1338	0,5	110
120	495	0,2	848	0,3	990	0,4	1061	0,5 0,3	1131	0,5 0,4	1202	0,5	1273	0,6	1343	0,5 0,5	120
130 140	497 498	0,1	851 854	0,3	993 997	0,4	1064 1068	0,4	1135	0,4	1206 1210	0,4	1277 1282	0,5	1348 1353	0,5	130 140
140	400	0,3	004	0,4	991	0,4	1000	0,5	1139	0,5	1210	0,6	1202	0,5	1999	0,6	140
150	501	6,0	858	10,4	1001	12,2	1073	13,0	1144	13,9	1216	14,7	1287	15,7	1359	16,5	150
160	561		962		1123		1203		1283		1363		1444	13,8	1524		160
170	615	5,4	1055	9,3 8,3	1231	10,8 9,6	1319	11.6 10,3	1406	12,3 11,1	1494	13,1 11,8	1582	12,4	1670	14,6 13,1	170
180 190	664 707	4,3	1138 1211	7,3	1327 1413	8,6	1422 1514	9,2	1517 1615	9,8	1612 1716	10,4	1706 1817	11,1	1801 1918	11,7	180
200	746	3,9	1278	6,7	1491	7,8	1598	8,4	1704	8,9	1811	9,5	1917	10,0	2024	10,5	200
-	-	3,5		6,1		7,1		7,6		8,2		8,6		9,2		9,6	-
210 220	781 813	3,2	1339 1394	5,5	1562 1627	6,5	1674 1743	6,9	1786 1859	7,3	1897 1975	7,8	2009 2092	8,3 7,7	2120 2208	8,8	210 220
230	844	3,1	1446	5,2 4,7	1687	6,0 5,5	1808	6,5	1928	6,9	2049	7,4	2169	7,7	2290	8,2	230
240	871	2,7	1493		1742		1866	5,8	1990	6,2	2115	6,6	2239	7,0	2364	7,4	240
250	898	2,7	1540	4,7	1797	5,5	1925	5,9	2054	6,4	2182	6,7	2310	7,1	2439	7,5	250
		2,5		4,3		5,0		5,4	-	5,6		6,0		6,4		6,7	
260 270	923 947	2,4	1583 1622	3,9	1847 1892	4,5	1979 2027	4,8	2110 2162	5,2	2242 2298	5,6	2374 2433	5,9	2506 2568	6,2	260 270
280	967	2,0	1658	3,6	1934	4,2	2072	4,5	2210	4,8	2349	5,1	2487	5,4	2625	5,7	280
290	986	1,9	1691	3,3	1973	3,9	2114	4,2	2254	4,4	2395	4,6	2536	4,9	2677	5,2	290
300	1004	1,8	1721	3,0	2008	3,5	2151	3,7	2294	4,0	2438	4,3	2581	.4,5	2725	4,8	300
-	1051	5,0	1005	8,6	0400	10,0		10,7	2400	11,5	0550	12,1	9710	12,9	9900	13,5	210
310 320	1054 1099	4,5	1807 1884	7,7	2108 2198	9,0	2258 2355	9,7	2409 2512	10,3	2559 2669	11,0	2710 2826	11,6	2860 2983	12,3	310
330	1142	4,3	1957	7,3	2283	8,5	2447	9,2	2610	9,8	2773	10,4	2936	11,0	3099	11,6	330
340	1182	4,0	2027	7,0	2365	8,2	2534	8,7	2702	9,2	2871	9,8	3040	10,4	3209	11,0	340
350	1220	3,8	2092	6,5	2441	7,6	2615	8,1	2790	8,8	2964	9,3	3138	9,8	3313	10,4	350
200	1057	3,7	0155	6,3	0514	7,3	9009	7,8	0070	8,2	3052	8,8	3232	9,4	3411	9,8	360
360 370	1257 1290	3,3	$\frac{2155}{2212}$	5,7	2514 2581	6,7	2693 2765	7,2	2872 2950	7,8	3134	8,2 7,8	3318	8,6	3503	9,2	370
380	1323	3,3 3,2	2267	5,5 5,5	2645	6,4	2834	6,9	3023	7,3 7,3	3212	7,8	3401	8,3 8,2	3590	8,7 8,7	380
390	1355	2,9	2322	5,1	2709	6,0	2903	6,3	3096	6,8	3290	7,2	3483	7,7	3677	8,0	390
400	1384	3,0	2373	5,1	2769	5,9	2966	6,4	3164	6,8	3362	7,2	3560	7,6	3757	8,1	400
410	1414	2,8	2424	4,8	2828	5,6	3030	6,0	3232	6,4	3434	6.8	3636	7,2	3838	7,6	410
420	1442	2,7	2472	4,7	2884 2939	5,5	3090 3149	5,9	3296	6,2	3502	6,6	3708	7,0	3914	7,4	420
430	1469 1495	2,6	2519 2563	4,4	2999	5,1	3204	5,5	3358 3418	6,0	3568 3631	6,3	3778 3845	6,7	3988 4058	7,0	440
		2,5		4,3		5,0		5,3		5,6		6,1		6,4		6,8	
450	1520	2,4	2606	4,0	3040	4.7	3257	5,1	3474	5,4	3692	5,7	3909	6,0	4126	6,4	450
460	1544	2,1	2646	3,7	3087	4,3	3308	4,6	3528	5,0	3749	5,2	3969	5,6	4190	5,8	460
470 480	1565 1586	2,1	2683 2719	3,6	3130 3172	4,2	3354 3399	4,5	3578 3626	4,8	3801 3852	5,1	4025 4079	5,4	4248 4305	5,7	470 480
490	1607	2,1	2755	36	3214	4.2	3443	4,4	3673	4,7	3902	5,0	4132	5,3	4361	5,6	490
500	1626	1,9	2788	3,3	3253	3,9	3485	4,2	3718	4,5	3950	4,8	4182	5,0	4415	5,4	500
	1			1													

Erforderliches Widerstandsmoment des Querträgers. Brückenbreite 4,7 m bis 5,0 m. Lastenzug A.

Erforderliches Widerstandsmoment des Querträgers. Brückenbreite 4,7 m bis 5,0 m. Lastenzug B.

					er Mittel				77-4	10	a Cabu			ler Mitte			
Ent- fernung	1,45		enträgers 1,50		er des H		agers	m	Ent- fernung	1,45		1,50		n der de		1,60	
der Quer-	Wider-		Wider-		Wider-		Wider-		der Quer-	Wider-		Wider-	1111	Wider-		Wider-	III
träger l	stands- moment	AW	stands- moment	aW	stands- moment	1W	stands- moment	AW	träger λ	stands-	AW	stands- moment	AW	stands- moment	AW	stands-	4W
^	W	Al	W	Al	W	Al	W	1h		moment W	1)	W	d l	W	1).	moment W	1).
em	cm ³		cm ³		cm ³		cm ³		em	em ³		cm ³		em³		cm ³	
200	2981	13,6	3084	14,0	3187	14,5	3290	14,9	200	3152	147	3261	150	3370	15.0	3478	100
210 220	3117 3241	12,4	3224 3352	12,8	3332 3464	13,2	3439 3576	13,7	210	3299	14,7 13,5	3413	15,2 13,9	3526	15,6 14,4	3640	16,2 14,9
230	3356	11,5 10,7	3472	12,0 11,0	3588	12,4 11,3	3704	12,8 11,7	220 230	3434 3561	12,7	3552 3684	13,2	3670 3807	13,7	3789 3930	14,1
240	3463	9,6	3582	10,0	3701	10,4	3821	10,7	240	3680	11,9	3807	12,3 11,6	3934	12,7 11,9	4061	13,1 12,3
250	3559	8,7	3682	9,0	3805	9,3	3928	9,6	250	3792	10,6	3923	10,9	4053	11,3	4184	11,7
260 270	3646 3757		3772 3886	11,4	3898 4016	11,8	4024 4145	12,1	260	3898	9,5	4032	9,9	4166	10,3	4301	10,5
280 290	3834 3909	11,1 7,7 7,5	3966 4044	8,0 7,8	4098 4179	8,2 8,1	4230 4314	8,5 8,4	270 280	3993 4088	9,5 8,1	4131 4229	9,8 8,4	4269 4369	10,0 8,7	4406 4510	10,4 9,0
300	3981	7,2	4118	7,4	4255	7,6	4393	7,9	290	4169	8,0	4313	8,2	4456	8,6	4600	8,8
310	4047	6,6	4186	6,8	4325	7,0	4465	7,2	300	4249	20,0	4395	20,7	4542	21,3	4688	22,1
320	4110	6,3 7,8	4252	6,6 8,0	4394	6,9 8,2	4536	7,1 8,5	310 320	4449 4639	19,0	4602 4799	19,7	4755 4958	20,3	4909 5118	20,9
330 340	4188 4242	5,4	4332 4388	5,6	4476 4534	5,8	4621 4681	6,0	330 340	4820	18,1 16,8	4986 5160	18,7 17,4	5152 5332	19,4 18,0	5318	20,0 18,6
350	4352	11,0	4502	11,4	4652	11,8	4802	12,1	350	4988 5155	16,7	5333	17,3	5510	17,8	5504	18,4
360	4480	12,8 11,9	4634	13,2 12,4	4788	13,6 12,8	4943	14,1 13,2			15,5		16,0		16,6		17,1
370 380	4599 4715	11,6	4758 4878	12,0	4916 5040	12,4	5075 5203	12,8	360 370	5310 5452	14,2 13,8	5493 5640	14,7 14,3	5676 5828	15,2 14,7	5859 6016	15,7 15,2
390	4822	10,7 12,2	4988	11,0 12,6	5154	11,4 13,0	5321	11,8 13,4	380 390	5590 5725	13,5	5783 5922	13,9	5975 6119	14,4	6168	14,9
400	4944	10,1	5114	10,4	5284	10,8	5455	11,1	400	5857	13,2	6059	13,7	6260	14,1	6462	14,5
410 420	5045 5141	9,6	5218 5318	10,0	5392 5495	10,3	5566 5673	10,7	410	5983	12,6 11,7	6189	13,0	6395	13,5	6602	14,0 12,9
430 440	5232 5321	9,1 8,9	5412 5504	9,4 9,2	5592 5687	9,7 9,5	5773 5871	10,0	420 430	6100 6216	11,6	6311 6431	12,2 12,0	6521 6645	12,6 12,4	6731 6859	12,8
450	5406	8,5	5592	8,8	5778	9,1	5965	9,4	440	6328	11,2	6546	11,5	6764	11,9 11,6	6982	12,3 12,0
460	5504	9,8		10,2		10,6		10,9	450	6437	9,7	6659	10,0	6880	10,4	7102	10,8
470	5585	8,1 8,0	5694 5778	8,4 8,2	5884 5971	8,7 8,4	6074 6163	8,9 8,8	460	6534	9,3	6759	9,6	6984	10,4	7210	10,3
480 490	5665 5740	7,5	5860 5938	7,8	6055 6136	8,1	6251 6334	8,3	470 480	6627 6716	8,9 9,0	6855 6948	9,3 9 3	7084 7180	9,6 9,6	7312 7411	9,9
500	5810	7,0	6010	7,2	6210	7,4	6411	7,7	490	6806	8,4	7041	8,7	7276	9,0	7510	9,3
510	5873	6,3 6,2	6076	6,6 6,4	6278	6,8 6,7	6481	7,0 6,8	500	6890	7,9	7128	8,1	7366	8,3	7603	8,7
520 530	5935 6003	6,8 6,6	6140 6210	7,0 6,8	6345 6417	7,2 7,0	6549 6624	7,5	510 520	6969 7044	7,5 7,3	7209 7287	7,8	7449 7530	8,1	7690 7773	* 83
540	6069	6,4	6278	6,6	6487	6,8	6697	7,3 7,0	530 540	7117 7189	7,2	7362 7437.	7,5 7,5	7607 7685	7,7 7,8	7853 7933	8,0 8,0
550	6133	5,6	6344	5,8	6555	6,0	6767	6,2	550	7259	7,0	7509	7,2	7759	7,4	8010	7,7
560 570	6189 6245	5,6 5,2	6402 6460	5,8	6615 6675	6,0	6829 6891	6,2 5,7	560	7328	6,9	7581	7,2	7834	7,5	8086	7,6
580 590	6297 6359	6,2	6514 6578	5,4 6,4	6731 6797	5,6 6,6	6948 7017	6,9	570 580	7398 7463	7,0 6,5	7653 7721	7,2 6,8	7908 7978	7,4 7.0	8163 8235	7,7 7,2 7,2
600	6417	5,8	6638	6,0	6859	6,2	7081	6,4	590	7528	6,5	7788	6,7 6,5	8048	7,0 6,6	8307	7,2 6,9
- 620	6511	4,7	6736	4,9	6961	5,1	7185	5,2	600	7591	6,2	7853	6,4	8114	6,6	8376	
640 660	6608 6720	4,9 5,6	6836 6952	5,0 5,8	7064 7184	5,2 6,0	7292 7416	5,4 6,2	620 640	7714 7833	6,0	7980 8103	6,2	8246 8373	6,4	8512	6,8 6,6
680	6811	4,6 4,2	7046	4,7	7281	4,9 4,5	7516	5,0 4,6	660 680	7950 8072	5,9 6,1	8225 8351	6,1 6,3	8499	6,3 6,5	8643 8773 8907	6,5 6,7
700	6894	5,1	7132	5,2	7370	5,4	7607	5,6	700	8190	5,9	8472	6,1	8629	6,3	9037	6,5
720 740	6995 7072	3,9 4,7	7236 7316	4,0 4,8	7477 7560	4,2	7718 7804	4,3	720	8294	5,2	8580	5,4	8866	5,6		5,8
760 780	7165 7291	6,3	7412 7542	6,5	7659 7793	5,0 6,7	7906 80 45	5,1 7,0	740 760	8396 8529	5,1 6,7	8685	5,3 6,9	8975	5,5 7,1	9152 9264	5,6 7,4
800	7393	5,1	7648	5,3	7903	5,5	8158	5,7	780	8694	8,3 8,0	8823 8994	8,6 8,3	9117 9294	8,9 8,5	9411 9594	9,2 8,8
	*								800	8854	3,0	9159	0,0	9464	0,0	9770	5,0

B. Fahrbahn mit Durchführung der Bettung auf Buckelplatten.

1. Bei Blechträgerbrücken mit 3,2 bis 3,75 m Hauptträgerentfernung.

Bei Brücken mit Stützweiten bis etwa zu 20 m, bei denen die Hauptträger meist in der ersten oder zweiten Stufe der Umgrenzung des lichten Raumes angeordnet werden können, beträgt die Brückenbreite in der Regel 3,2 bis 3,75 m. Bei Breiten unter 3,2 m könnten die Schwellen nicht vor Kopf gestopft werden, und eine Breite von 3,75 m genügt bei 5 cm Spielraum zwischen Hauptträger und Umgrenzung des lichten Raumes für eine Gurtbreite von 35 cm Abb. 3 u. 4 zeigen die der Berechnung zugrunde gelegte Fahrbahnanordnung,

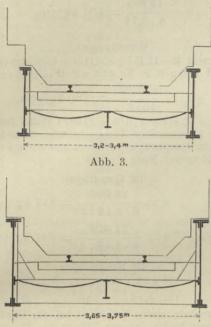


Abb. 4.

bei der nur ein mittlerer Längsträger vorgesehen ist und bei der die als Blechträger ausgebildeten Hauptträger gleichzeitig den seitlichen Bettungsabschluß bilden. Da nach den vorliegenden Erfahrungen die unmittelbare Berührung des Hauptträgerstegbleches mit der Bettung bei sorgfältiger Unterhaltung des Anstriches keinerlei nachteilige Folgen gehabt hat, so ist die ebenfalls gebräuchliche Fahrbahnausbildung mit drei Längsträgern und besonderen seitlichen Kiesabschlußblechen wegen ihrer erheblich höheren Kosten nicht berücksichtigt worden. Die Feldweite ist in Stufen von 0,1 m zu 1,3 bis 2 m angenommen worden, da einerseits Buckelplatten über 2 m Seitenlänge nicht gebräuchlich sind und man anderseits Feldweiten unter 1,5 m nur dann ausführen wird, wenn es die gleichmäßige Einteilung der Stützweite erfordert. Da die Bettung unter Schwellenunterkante tunlichst 20 cm stark sein soll und, falls erforderlich, bis auf 15 cm eingeschränkt werden kann, so ergibt sich als zweckmäßige Bettungshöhe über Fahrbahnträgeroberkante bei Holzschwellen 36 cm, als kleinste Höhe bei Eisenschwellen 23 cm. Für diese beiden Bettungsstärken sind die nachstehenden Tafeln berechnet worden. Durch Hilfstafeln ist die Möglichkeit geboten, auch zwischenliegende Bettungsstärken zu berücksichtigen.

Die Tafeln geben für die Längs- und Querträger die Angriffsund Widerstandsmomente und die erforderlichen Querschnitte bei Verwendung von I-Walzstäben, ferner den Auflagerdruck und die erforderliche Zahl der Anschlußniete, mithin alle zur Konstruktion der Fahrbahn erforderlichen Werte. Durch Benutzung der Werte $\frac{JM}{J\lambda}$, $\frac{JW}{J\lambda}$ und $\frac{JA}{J\lambda}$ können auch die Werte der Angriffsmomente, Widerstandsmomente und der Auflagerdrucke für zwischen den angegebenen Werten gelegene Feldweiten ermittelt werden.

Beispiel: Brückenbreite 3,4 m, Feldweite 1,65 m, Bettungsstärke 0,36 m.

Lastenzug A.

Längsträger.

Angriffsmoment M=4,816+5.0,0324=4,978 tm (Tafel Seite 21); es genügt ein **I**-Eisen N. P. Nr. 30 mit W=652 cm³,

mithin
$$\sigma = \frac{497\,800}{652} = 763 \text{ kg/qcm};$$

Dircksen-Schaper, Hilfswerte. 4. Aufl.

Auflagerdruck A 12,536 + 5.0,0658 = 12,865 t (Tafel Seite 27); es genügen bei 2 cm Durchmesser 5 zweischnittige Niete im Längsträger, 6 einschnittige im Querträger. Angeordnet seien 6 und 8, mithin die Beanspruchung der Niete

auf Abscheren

$$\sigma = \frac{12.865}{6.3,14.2} = 342 \text{ kg/qcm},$$

$$\sigma = \frac{12.865}{6.1,08.2} = 992 \text{ kg/qcm};$$

b) im Querträger:

$$\sigma = \frac{12\,865}{8.3,14} = 501 \text{ kg/qcm}.$$

Querträger.

Angriffsmoment M=12,457+5.0,1131=13,022 tm (Tafel Seite 21); es genügt ein \mathbb{I} -Eisen N. P. Nr. 42,5 mit W=1674 cm³,*)

mithin

$$\sigma = \frac{1302200}{1674} = 780 \text{ kg/qcm},$$

Auflagerdruck A 12,442 + 5.0,05 = 12,692 t (Tafel Seite 27); es genügen bei 2 cm Durchmesser 3 zweischnittige Niete im Querträger, 6 einschnittige im Hauptträger. Angeordnet seien 6 und 12, mithin die Beanspruchung der Niete

a) im Querträger:

auf Abscheren

$$\sigma = \frac{12 692}{6.3,14.2} = 337 \text{ kg/qcm},$$

in der Lochleibung

$$\sigma = \frac{12 692}{6 \cdot 1{,}53 \cdot 2} = 691 \text{ kg/qcm};$$

b) im Hauptträger:

auf Abscheren

$$\frac{12692}{12.3,14} = 337 \text{ kg/qcm}.$$

*) In den nachstehenden Tafeln ist bei der Ermittlung des erforderlichen Querschnitts der aus I-Eisen bestehenden Querträger angenommen worden, daß das Widerstandsmoment durch eine senkrechte Nietreihe $^{1}/_{27}$ des Wertes ohne Nietabzug verliert.

a) Angriffs- und Widerstandsmomente der Fahrbahnträger. Brückenbreite 3,2 m. Lastenzug A.

			Längsti	räger				kenbreite 3,2 n astenzug A.	n.		Que	erträger				
Feld-weite		smoment folge Verkehrs- last	Gesamtes Angriffs- moment M	AM Al	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-E.sen	we	eld- eite	-	smoment folge Verkehrs- last	Gesamtes Angriffs- moment M	AM A).	_ stands-	$\frac{dW}{d\lambda}$	Es genügt ein I-Eisen
em	tm	tm	tm	0.0	em ³		Nr.		m	tm	tm	tm		em ³	1	Nr.
130	0,213		ungsstärk 3,666				27	18	20 11	1,666	8,500	10,166		11 1071		10
140 150 160	0,213 0,247 0,284 0,324	3,453 3,719 3,986 4,250	3,966 4,270 4,574	0,0300 0,0304 0,0304 0,0311	458 496 534 572	3,8 3,8 3,8 3,9	28 28 29	14 15 16	10	1,785 1,908 2,028	8,500 8,500 8,500 9,084	10,100 10,285 10,408 11,112	0,011 0,012 0,070 0,102	$\begin{bmatrix} 23 \\ 04 \end{bmatrix} \begin{bmatrix} 1286 \\ 1301 \\ 1389 \end{bmatrix}$	1,5 1,5 8,8 12,9	40 40 40 40
170 180 190 200	0,367 0,411 0,461 0,511	4,518 4,784 5,049 5,315	4,885 5,195 5,510 5,826	0,0310 0,0315 0,0316	611 649 689 728	3,8 4,0 3,9	30 30 32 32	17 18 19 20	80	2.165 2,284 2,404 2,550	9,976 10,767 11,475 12,113	12,141 13,051 13,879 14,663	0,091 0,082 0,078	10 1518 1631 1735	11,3 10,4 9,8	42,5 42,5 45 45
		Bett	ungsstärk	e 23 cm							Betti	ungsstärke	23 0	em		
130 140 150 160	0,154 0,181 0,208 0,238	3,453 3,719 3.986 4,250	3,607 3,900 4,194 4,488	0,0293 0,0294 0,0294 0,0299	451 488 524 561	3,7 3,6 3,7 3,7	27 27 28 29	13 14 15 16	10	1,240 1,330 1,428 1,516	8,500 8,500 8,500 9,084	9,740 9,830 9,928 10,600	0,009 0,009 0,067 0,099	$ \begin{array}{c c} $	1,1 1,2 8,4 12,5	40 40 40 40
170 180 190 200	0,269 0,303 0,340 0,376	4,518 4,784 5,049 5,315	4,787 5,087 5,389 5,691	0,0300 0,0302 0,0302	598 636 674 711	3,8 3,8 3,7	30 30 32 32	17 18 19 20	80 00 00	1,621 1,708 1,796 1,910	9,976 10,767 11,475 12,113	11,597 12,475 13,271 14,023	0,087 0,079 0,075	78 1450 1559 1659	10,9 10,0 9,4	42,5 42,5 42,5 45
	bei eine	r Bettung	gsstärke vo	on 36 cm				der zu verwend bei e				on 23 cm,	Brüc	kenbreite	3,2 m	
	I	N. P.	Zu verwer einer Felo			I N. I	·.		I	N. P.	Zu verwei	nden bis z		I N.P.		
		Nr.	cm	em		Nr.				Nr.	em	cm		Nr.		
		27 28 29	138 152 165	16:		40 42,5				27 28 29	140 154 168	166 191		40 42,5		
		30	181 als Längs- träger	als Qu						30	184 als Längs- träger	als Quer träger				
			Längsträg					kenbreite 3,2 m				Querträge	1			
- 11			Hangstrag	561	l= I	1			11		-	Quertrage	1	1120 1 1		
Feld-		moment	Gesamtes Angriffs-		Erforder- liches		Es	Fel		Angriffs	moment	Gesamtes Angriffs-		Erforder- liches Wider-		Es
weite \lambda	Eigen-	Verkehrs-	moment	$\frac{dM}{d\lambda}$	Wider- stands-	<u>⊿W</u>	genügt ein	wei λ	1	Eigen-	Verkehrs-	moment	$\frac{\Delta M}{\Delta \lambda}$	stands- moment	AW	genügt ein
^	gewicht	last	M	41	W moment	1).	I-E sen			gewicht	last	M	4 %	W	1h	I-Eisen
em	tm	tm	tm	/	cm ³		Nr.	em	1	tm	tm	tm	20	cm ³		Nr.
130	0,213	3,453	ingsstärke		159 1	11	97	130	0 11	1,666	8,500	ngsstärke		11 1051		40
140 150 160	0.247 0,284 0,324	3,719 3,986 4,250	3,966 4,270 4,574	0,0300 0,0304 0,0304	458 496 534 572	3,8 3,8 3,8	27 28 28 29	140 150 160	0	1,785 1,908 2,038	8,500 8,500 9,563	10,285 10,408 11,601	0,0119 0,012 0,119 0,106	3 1286 1301 1450	1,5 1,5 14,9	40 40 42,5
170 180 190 200	0,367 0,411 0,461 0,511	4,518 4,784 5,049 5,315	5,826	0,0311 0,0310 0,0315 0,0316	611 649 689 728	3,9 3,8 4.0 3,9	30 30 32 32	170 180 190 200	0	2,165 2,290 2,409 2,550	10,500 11,334 12,080 12,750	12,665 13,624 14,489 15,300	0,0959 0,0869 0,081	9 1583 5 1703 1 1812 1 1913	13,3 12,0 10,9 10,1	42,5 45 45 45
100	0.75		ingsstärke									ngsstärke	23 cr			
130 140 150 160	0,154 0,181 0,208 0,238	3,453 3,719 3.986 4,250	4,488	0,0293 0,0294 0,0294 0,0299	451 488 524 561	3,7 3,6 3,7 3,7	27 27 28 29	130 140 150 160	0	1,240 1,330 1,428 1,516	8,500 8,500 8,500 9,563	9,928 11,079	0,0090 0,0098 0,1151 0,1049	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1 1,2 14,4	40 40 40 40
170 180 190 200	0,269 0,303 0,340 0,376	4,518 4,784 5,049 5,315	4,787 5,087 5,380	0,0300 0.0302 0,0302	598 636 674 711	3,8 3,8 3,7	30 30 32 32	170 180 190 200		1,621 1,708 1,796 1,910	10,500 11,334 12,080 12,750	12,121 13,042	0,092 0,083 0,083	1 1515 1 1630 4 1725	13,0 11,5 10,5 9,8	42,5 42,5 45 45
			sstärke vo	n 36 cm				er zu verwend	end	en I-Eise	en esstärke vo		Brücl	kenbreite 3	3,2 m	

I N. P.		den bis zu lweite von	I N. P.	I N. P.	Zu verwen einer Feld		I N. P.
Nr.	cm	em	Nr.	Nr.	cm	em	Nr.
27 28 29 30	138 - 152 165 181	157 177	40 42,5	27 28 29 30	140 154 168 184	161 184	40 42,5
	als Längs- träger	als Quer- träger			als Längs-10 träger	als Quer- träger	

Feldweite	130	140	150	160	170	180	190	200 cm
Längsträger Querträger	0,0045 0,033	0,0051 0,035	0,0058	0,0066	0,0075	0,0083 0,044	0,0093 0,047	0,0104 tm 0,049 tm

Brückenbreite 3,3 m.

			Längstr	äger			La	stenzug	A.		(Querträge:	r			
Feld-weite λ		woment olge Verkehrs-last	Gesamtes Angriffs- moment M tm	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	$\frac{dW}{d\lambda}$	Es genügt ein I-Eisen Nr.		Feld-weite λ		smoment olge Verkehrs- last tm	Gesamtes Angriffs- moment M tm	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen Nr.
			ungsstärk	e 36 cm		000					Bett	ungsstärk	e 36 cm			
130 140 150 160	0,219 0,255 0,293 0,333	3,546 3,819 4,091 4,364	3,765 4,074 4,384 4,697	0,0309 0,0310 0,0313	471 509 548 587	3,8 3,9 3,9	27 28 29 29		130 140 150 160	1,767 1,896 2,027 2,171	9,000 9,000 9,000 9,619	10,767 10,896 11,027 11,790	0,0129 0,0131 0,0763	1346 1362 1378 1474	1,6 1,6 9,6 13,4	40 40 40 42,5
170 180 190 200	0,377 0,426 0,475 0,526	4,637 4,910 5,183 5,455	5,014 5,336 5,658 5,981	0,0317 0,0322 0,0322 0,0323	627 667 707 748	4,0 4,0 4,0 4,1	30 32 32 32 32		170 180 190 200	2,300 2,427 2,582 2,710	10,563 11,400 12,150 12,825	12,863 13,827 14,732 15,535	0,1073 0,0964 0,0905 0,0803	1608 1728 1842 1942	12,0 11,4 10,0	42,5 45 45 45
		Bett	ungsstärk	e 23 cm							Bett	ungsstärk	e 23 cm			
130 140 150 160	0,161 0,186 0,214 0,244	3,546 3,819 4,091 4,364	3,707 4,005 4,305 4,608	0,0298 0,0300 0,0303	463 501 538 576	3,8 3,7 3,8	27 28 28 29		130 140 150 160	1,324 1,419 1,516 1,626	9,000 9,000 9,000 9,619	10,324 10.419 10,516 11,245	0,0095 0,0097 0,0729	1291 1302 1315 1406	1,1 1,3 9,1	40 40 40 42,5
170 180 190 200	0,276 0,312 0,348 0,386	4,637 4,910 5,183 5,455	4,913 5,222 5,531 5,841	0,0305 0,0309 0,0309 0,0310	614 653 691 730	3,8 3,9 3,8 3,9	30 32 32 32 32		170 180 190 200	1,721 1,814 1,934 2,028	10,563 11,400 12,150 12,825	12,284 13.214 14.084 14,853	0,1039 0,0930 0,0870 0,0762	1536 1652 1760 1857	13,0 11,6 10,8 9,7	42,5 42,5 45 45

Grenzstützweiten der zu verwendenden I-Eisen

bei einer Bettungsstärke von 36 cm, Brückenbreite 3,3 m

bei einer Bettungsstärke von 23 cm, Brückenbreite 3,3 m

IN.P. Nr.

 $\frac{40}{42,5}$

IN.P.	Zu verwend einer Feld		I N. P.	IN.P.	Zu verwen einer Feld		
Nr.	em	em	Nr.	Nr.	em	em	
27 28 29 30	135 148 161 176	152 175	40 42,5	27 28 29 30	137 150 164 179	159 182	
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Brückenbreite 3,3 m.

			Längstr	äger			La	stenzug	B.		-	Querträge	r			
Feld-weite	Eigen- gewicht	smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen	posudie.	Feld-weite	Eigen- gewicht	smoment olge Verkehrs-last	Gesamtes Angriffs- moment M tm	AM Al	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen
em	tm	tm	tm		cm ³		Nr.		cm	tm	tm D-44		- 00	cm ³		Nr.
			ungsstärk	e 36 cm								ungsstärk	e 36 cm			
130	0,219	3,546	3,765	0.0309	471	3,8	27 28		130	1,767	9,000	10,767	0,0129	1346	1.6	40
140 150	0,255 0,293	3,819 4,091	4,074	0.0310	509	3.9	28		140 150	1,896 2,027	9,000	10.896 11.027	0,0131	1362 1378	1,6 1,6	40 40
160	0,295	4,364	4,384 4,697	0,0313	548 587	3,9	29 29		160	2,027	10,125	12,345	0,1318	1543	16,5	42,5
100	0,000	4,004	4,031	0,0317	901	4,0	20		100	2,220	10,120	12,040	0,1133	1010	14,2	12,0
170	0,377	4,637	5,014	0,0322	627		30		170	2,360	11,118	13,478	0,1002	1685	12	45
180	0,426	4,910	5,336	0,0322	667	4,0	32		180	2,480	12,000	14,480	0,1002	1810	12,5 11,6	45
190	0,475	5,183	5,658	0,0323	707	4,1	32 32		190	2,620	12,790	15,410	0,0850	1926	10,7	45
200	0,526	5,455	5,981		748		32		200	2,760	13,500	16,260	0,000	2033	,	47,5
		Bett	ungsstärk	e 23 cm							Bett	ungsstärk	e 23 cm			
130	0,161	3,546	3,707	0,0298	463	138	27		130	1,324	9,000	10,324	0,0095	1291	11	40
140	0,186	3,819	4.005	0,0300	501	3,8 3,7	28		140	1,419	9,000	10,419	0,0097	1302	1,1	40
150 160	0,214 0,244	4,091 4,364	4,305 4,608	0,0303	538 576	3,8	28 29		150	1,516	9,000	10,516	0,1259	1315 1472	15,7	40
100	0,244	4,504	4,000	0,0305	376	3.8	29		160	1,650	10,125	11,775	0,1103	1472	13,8	42,5
170	0,276	4,637	4,913	1	614	100	30		170	1.760	11,118	12,878		1610	1	42.5
180	0,312	4,910	5,222	0,0309	653	3,9	32		180	1,850	12,000	13,850	0,0972	1731	12,1	45
190	0.348	5,183	5,531	0,0309	691	3,8	32 32		190	1,940	12,790	14,730	0,0880	1841	11,0 10,2	45
200	0,386	5,455	5,841	0,0010	730	0,0	32		200	2,040	13,500	15,540	0,0010	1943	10,2	45

Grenzstützweiten der zu verwendenden I-Eisen

bei einer Bettungsstärke von 36 cm, Brückenbreite 3,3 m

bei einer Bettungsstärke von 23 cm, Brückenbreite 3,3 m

IN.P.	Zu verwen einer Feld		IN.P.	I N. P.	Zu verwen einer Feld		I N. P.
Nr.	em	em	Nr.	Nr.	em	em	Nr.
27 28 29 30	135 148 161 176	151 169 193	40 42,5 45	27 28 29 30	137 150 164 179	155 175	40 42,5
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Feldweite	130	140	150	160	170	180	190	200 cm
Längsträger	0,0045 0,034	0,0053	0,0061 0,039	0,0068	0,0078 0.045	0,0088	0,0098	0,0108 tm 0.052 tm

Brückenbreite 3,4 m.

			Längsträ	ger				stenzug				Querträg	ger			
Feld- weite	Eigen- gewicht	smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen		Feld- weite \(\lambda\)	0	smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	AM A).	Erforder- liches Wider- stands- moment	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen
em	tm	tm	tm		cm ³		Nr.		cm	tm	tm	tm		cm ³		Nr.
		Bett	ungsstärk	e 36 cm							Bett	ungsstärk	e 36 cm			
130 140 150 160	0,225 0,262 0.301 0,344	3,634 3,913 4,193 4,472	3,859 4,175 4,494 4,816	0,0316 0,0319 0,0322 0,0324	482 522 562 602	4,0 4,0 4,0	27 28 29 30		130 140 150 160	1,877 2,013 2.150 2,304	9,500 9,500 9,500 10,153	11,377 11,513 11,650 12,457	0,0136 0,0137 0,0807	1422 1439 1456 1557	1,7 1,7 10,1	42,5 42,5 42,5 42,5 42,5
170 180 190 200	0,388 0,438 0,488 0,541	4,752 5,031 5,311 5,520	5,140 5,469 5.799 6,131	0,0329 0,0330 0,0332	643 684 725 766	4,1 4,1 4,1 4,1	30 32 32 32 32		170 180 190 200	2,439 2,602 2,737 2,890	11,149 12,033 12,825 13,538	13,588 14,635 15,562 16,428	0,1131 0,1047 0,0927 0,0866	1699 1829 1945 2053	14,2 13,0 11,6 10,8	45 45 45 47,5
		Bett	ungsstärk	e 23 cm							Bett	ungsstärk	e 23 cm			
130 140 150 160	0,166 0,193 0,221 0,253	3,634 3,913 4,193 4,472	3,800 4,106 4,414 4,725	0,0306 0,0308 0,0311	475 513 552 591	3,8 3,9 3,9	27 28 29 29		130 140 150 160	1,407 1,505 1,608 1,726	9,500 9,500 9,500 10,153	10,907 11,005 11,108 11,879	0,0098 0,0103 0,0771	1363 1376 1388 1485	1,3 1,2 9,7	40 40 40 42 5
170 180 190 200	0,285 0,322 0,359 0,398	4,752 5,031 5,311 5,590	5,037 5,353 5,670 5,988	0,0312 0,0316 0,0317 0,0318	630 669 709 749	3,9 3,9 4,0 4,0	30 32 32 32 32		170 180 190 200	1,825 1,952 2,051 2,168	11,149 12,033 12,825 13,538	12,974 13,985 14,876 15,706	0,1095 0,1011 0,0891 0,0830	1622 1748 1860 1962	13,7 12,6 11,2 10,2	42,5 45 45 45

Grenzstützweiten der zu verwendenden I-Eisen

bei einer Bettungsstärke von 36 cm, Brückenbreite 3,4 m

bei einer Bettungsstärke von 23 cm, Brückenbreite 3,4 m

I N. P.	Zu verwen einer Feld	den bis zu weite von	I N. P.	I N. P.		den bis zu	IN
27 28 29 30	132 145 158 172	168 191	42,5 45	27 28 29 30	134 147 160 175	151 174	40 42
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Brückenbreite 3,4 m. Längsträger

Querträger

	A STATE OF THE STA		Langstra	ger		4	Laste	enzug	В.			Quertrag	er			
Feld- weite	inf Eigen- gewicht	smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	$\frac{dW}{d\lambda}$	Es genügt ein I-Eisen		Feld- weite	Eigen- gewicht	smoment blge Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen
em	tm	tm	tm		em ³	VIET VI	Nr.		em	ta	tm	tm		cm ³		Nr.
		Bett	ungsstärk	e 36 cm								ungsstärk	e 36 cm			
130 140 150 160	0,225 0,262 0.301 0,344	3,634 3,913 4,193 4,472	3,859 4,175 4,494 4,816	0,0316 0,0319 0,0322 0,0324	482 522 562 602	4,0 4,0 4,0 4,1	27 28 29 30		130 140 150 160	1,877 2,013 2,150 2,350	9,500 9,500 9,500 10,688	11,377 11,513 11,650 13,038	0,0136 0,0137 0,1388 0,1198	1422 1439 1456 1630	1,7 1,7 17,4 15,0	42,5 42,5 42,5 42,5
170 180 190 200	0,388 0,438 0,488 0,541	4,752 5,031 5,311 5,520	5,140 5,469 5,799 6,131	0,0329 0,0330 0,0332	643 684 725 766	4,1 4,1 4,1 4,1	30 32 32 32 32		170 180 190 200	2,500 2,640 2,800 2,940	11,736 12,667 13,500 14,250	14,236 15,307 16.300 17,190	0,1071 0,0993 0,0890	1780 1913 2038 2149	13,3 12,5 11,1	45 45 47,5 47,5
		Bett	ungsstärk	e 23 cm							Bette	ingsstärk	e 23 cm			
130 140 150 160	0,166 0,193 0,221 0,253	3,634 3,913 4,193 4,472	3,800 4.106 4.414 4,725	0,0306 0,0308 0,0311	475 513 552 591	3,8 3,9 3,9 3,9	27 28 29 29		130 140 150 160	1,407 1,505 1,608 1,750	9,500 9,500 9,500 10,688	10,907 11,005 11,108 12,438	0,0098 0,0103 0,1330	1363 1376 1388 1555	1,3 1,2 16,7	40 40 40 42,5
170 180 190 200	0,285 0,322 0,359 0,398	4,752 5,031 5,311 5,590	5,037 5,353 5,670 5,988	0,0312 0,0316 0,0317 0,0318	630 669 709 749	3,9 4,0 4,0	30 32 32 32		170 180 190 200	1,860 1,960 2,060 2,180	11,736 12,667 13,500 14,250	13,596 14,627 15,560 16,430	0,1158 0,1031 0,0933 0,0870	1700 1828 1945 2054	14,5 12.8 11,7 10,9	45 45 45 47,5

Grenzstützweiten der zu verwendenden I-Eisen

bei einer Bettungsstärke von 36 cm, Brückenbreite 3,4 m

bei einer Bettungsstärke von 23 cm, Brückenbreite 3,4 m

I N. P.		den bis zu weite von cm	I N. P.	I N. P.		den bis zu weite von cm	I N. P.
27 28 29 30	132 145 158 172	162 184	42,5 45	27 28 29 30	134 147 160 175	151 168 191	40 42,5 45
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Feldweite	130	140	150	160	170	180	190	200 cm
Längsträger	0,0045	0,0053	0,0062	0,0070	0,0079	0,0089	0,0099	0,0110 tm

							Brück	cenbreite 3	,65 m.							
			Längsträ	ger			La	stenzug	A.			Querträg	ger			
Feld-weite	Angriffs info Eigen- gewicht	Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen Nr.		Feld-weite	0	moment olge Verkehrs- last tm	Gesamtes Angriffs- moment M tm	AM Al	Erforder- liches Wider- stands- moment W	$\frac{dW}{d\lambda}$	Es genügt ein I-Eisen Nr.
em	tm	tm	tm	0.0	em ³		Nr.		em	CIII			a 90 am	Citie		NI.
130 140 150 160 170 180 190 200	0,250 0,289 0,333 0,379 0,431 0,483 0,538 0,600	3,829 4,123 4,418 4,712 5,007 5,301 5,596 5,890	ungsstärk 4,079 4,412 4,751 5,091 5,438 5,784 6,134 6,490	0,0333 0,0339 0,0340 0,0347 0,0346 0,0350 0,0356	510 552 594 636 680 723 767 811	4,2 4,2 4,2 4,4 4,3 4,4 4,4	28 29 29 30 32 32 32 32 34		130 140 150 160 170 180 190 200	2,243 2,408 2,567 2,750 2,922 3,103 3,263 3,435	10,750 10,750 10,750 11,492 12,617 13,619 14,519 15,316	ungsstärk 12,993 13,158 13,317 14,242 15,539 16,722 17,782 18,751	0,0165 0,0159 0,0925 0,1297 0,1183 0,1060 0,0969	1624 1645 1665 1780 1942 2090 2223 2344	2,1 2,0 11,5 16,2 14,8 13,3 12,1	42,5 42,5 42,5 45 45 47,5 47,5 50
130 140 150 160	0,183 0,212 0,243 0,277	Bett 3,829 4,123 4,418 4,712	ungsstärk 4,012 4,335 4,661 4,989	0,0323 0,0326 0,0328	502 542 583 624	4,0 4,1 4,1	28 29 29 30		130 140 150 160	1,681 1,802 1,917 2,037	Bett 10,750 10,750 10,750 11,492	ungsstärk 12,431 12,552 12,667 13,529	0,0121 0,0115 0,0862	1554 1569 1583 1691	1,5 1,4 10,8	42,5 42,5 42,5 42,5 45
170 180 190 200	0,316 0,354 0,394 0,441	5,007 5,301 5,596 5,890	5,323 5,655 5,990 6,331	0,0334 0,0332 0,0335 0,0341	665 707 749 791	4,1 4,2 4,2 4,2 4,2	32 32 32 34		170 180 190 200	2,186 2,303 2,441 2,569	12,617 13,619 14,519 15,316	14,803 15,922 16,960 17,885	0,1274 0,1119 0,1038 0,0925	1850 1990 2120 2236	15,9 14,0 13,0 11,6	
					Grenz	zstütz	weiten d	ler zu ver	wenden	den I-Eis	en					

bei einer Bettungsstärke von 36 cm, Brückenbreite 3,65 m

bei einer Bettungsstärke von 23 cm, Brückenbreite 3,65 m

I N. P.		nden bis zu dweite von	I N.P.	I N. P.	Zu verwen einer Feld	den bis zu weite von	I N.P.
Nr.	cm	em	Nr.	Nr.	em	em	Nr.
28 29 30 32	137 150 164 193	150 171 195	42,5 45 47,5	28 29 30 32	139 152 166 197	158 178	42,5 45
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Brückenbreite 3,65 m

-			Längsträg	ger			La	stenzug	В.			Querträg	er			
Feld- weite	-	smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen		Feld-weite		smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen
em	tm	tm	tm		cm ³		Nr.		em	tm	tm	tm		cm ³		Nr.
		Bett	ungsstärk	e 36 cm							Bett	ungsstärk	e 36 cm			
130 140 150 160	0,250 0,289 0,333 0,379	3,829 4,123 4,418 4,712	4,079 4,412 4,751 5,091	0,0333 0,0339 0,0340 0,0347	510 552 594 636	4,2 4,2 4,2 4,4	28 29 29 30		130 140 150 160	2,243 2,408 2,567 2,750	10,750 10,750 10,750 12,094	12,993 13,158 13,317 14,844	0,0165 0,0159 0,1527 0,1358	1624 1645 1665 1856	2,1 2,0 19,1 16,9	42,5 42,5 42,5 45
170 180 190 200	0,431 0,483 0,538 0,600	5,007 5,301 5,596 5,890	5,438 5,784 6,134 6,490	0,0346 0,0350 0,0356	680 723 767 811	4,3 4,4 4,4 4,4	32 32 32 34		170 180 190 200	2,922 3,103 3,263 3,435	13,280 14,334 15,277 16,125	16,202 17,437 18,540 19,560	0,1235 0,1103 0,1020	2025 2180 2318 2445	15,5 13,8 12,7	47,5 47,5 50 50
		Bett	ungsstärk	e 23 cm							Bett	ungsstärk	e 23 cm			
130 140 150 160	0,183 0,212 0,243 0,277	3,829 4,123 4,418 4,712	4,012 4,335 4,661 4,989	0,0323 0,0326 0,0328 0,0334	502 542 583 624	4,0 4,1 4,1 4,1	28 29 29 30		130 140 150 160	1,681 1,802 1,917 2,037	10,750 10,750 10,750 12,094	12,431 12,552 12,667 14,131	0,0121 0,0115 0,1464	1554 1569 1583 1766	1,5 1,4 18,3	42,5 42,5 42,5 45
170 180 190 200	0,316 0,354 0,394 0,441	5,007 5,301 5,596 5,890	5,323 5,655 5,990 6,331	0,0332 0,0335 0,0341	665 707 749 791	4,2 4,2 4,2 4,2	32 32 32 34		170 180 190 200	2,186 2,303 2,441 2,569	13,280 14,334 15,277 16,125	15,466 16,637 17,718 18,694	0,1335 0,1171 0,1081 0,0976	1933 2080 2215 2337	16,7 14,7 13,5 12,2	45 47,5 47,5 50

Grenzstützweiten der zu verwendenden I-Eisen

bei einer Bettungsstärke von 23 cm, Brückenbreite 3,65 m bei einer Bettungsstärke von 36 cm, Brückenbreite 3,65 m

I N.P.		den bis zu lweite von	I N.P.	I N. P.		den bis zu weite von	I N. P.
Nr.	em	em	Nr.	Nr.	em	em	Nr.
28 29 30 32	137 150 164 193	150 166 187	42,5 45 47,5	28 29 30 32	139 152 166 197	154 172 195	42,5 45 47,5
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Feldweite	130	140	150	160	170	180	190	200 cm
Längsträger	0,0051 0,043	0,0059 0,047	0,0069	0,0078	0,0088	0,0099	0,0111	0,0122 tm 0,067 tm

0,320 0,358 0,399 0,447

5,053 5,351 5,648 5,945

5,373 5,709 6,047 6,392

0,0336 0.0338 0,0345

			Längstr	äger			Brückenbr Lasten	reite 3,7 1	m.		(Querträge				
Feld-weite	Eigen- gewicht	smoment folge Verkehrs-last	Gesamtes Angriffs- moment M	1M	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen	W	eld- eite	inf Eigen- gewicht	smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	AW AX	Es genügt ein I-Eisen
em	tm	l tm	tm	- 90	cm ³		Nr.		m	tm	Dotte:	tm	- 90	cm ³		Nr.
130 140 150 160 170 180 190	0,253 0,293 0,338 0,384 0,436 0,489 0,545	3,865 4,162 4,459 4,756 5,053 5,351 5,648	tungsstärk 4,118 4,455 4,797 5,140 5,489 5,840 6,193	0.0337 0,0342 0,0343 0,0349 0,0351 0,0353 0,0360	515 557 600 643 686 730 774	4,2 4,3 4,3 4,3 4,4 4,4 4,5	28 29 30 30 30 32 32 32 32	10 10 11 11 11 11	30 40 50 30 70 80 90	2,305 2,474 2,640 2,823 3,000 3,185 3,350	11,000 11,000 11,000 11,756 12,912 13,934 14,849	13,305 13,474 13,640 14,580 15,912 17,119 18,199	0,0169 0,0166 0,0940 0,1332 0,1207 0,1080 0,1026	1663 1684 1705 1823 1989 2140 2275	2,1 2,1 11,8 16,6 15,1 13,5 12,8	42,5 45 45 45 47,5 47,5 47,5
200	0,608	5,945	6,553		819	,-	34	20	00	3,550	15,675	19,225		2403	1-,0	50
130 140 150 160	0,185 0,215 0,247 0,281	3,865 4.162 4,459 4,756	4,050 4,377 4,706 5,037	0,0327 0,0329 0,0331	506 547 588 630	4,1 4,1 4,2	28 29 29 30	1	30 40 50 30	1,726 1,851 1,970 2,093	11,000 11,000 11,000 11,756	12,726 12,851 12,970 13,849	0,0125 0,0119 0,0879	1591 1606 1621 1731	1,5 1,5 11,0	42,5 42,5 42,5 42,5 45
170 180 190 200	0,320 0,358 0,399 0,447	5,053 5,351 5,648 5,945	5,373 5,709 6,047 6,392	0,0336 0,0336 0,0338 0,0345	672 714 756 799	4,2 4,2 4,2 4,3	32 32 32 32 34	18 19 20	00	2,244 2,364 2,505 2,636	12,912 13,934 14,849 15,675	15,156 16,298 17,354 18,311	0,1307 0,1142 0,1056 0,0957	1895 2037 2169 2289	16,4 14,2 13,2 12,0	45 47,5 47,5 50
	hai ain	ar Rottune	esstärke vo	n 36 cm			weiten der zu				en gsstärke vo	on 93 cm	Brücker	nhreite :	3.7 m	
	ber em	or Dettung			11	SHOLE	== 5,7 m	ner	====	Dettung			- 11	9319101	, . III	
	1	N. P.	Zu verwei einer Fele em			I N. P				N. P.	Zu verwei einer Fel			N. P.		
		28 29 30 32	136 148 162 191	135 168 190		42,5 45 47,5				28 29 30 32	138 151 165 195	154 174 199		42,5 45 47,5		

							-
136 148 162 191	135 168 190	42,5 45 47,5	28 29 30 32	138 151 165 195	154 174 199	42,5 45 47,5	
als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger		

Brückenbreite 3,7 m.

4,2 4,2 4,3

			Längstr	äger			Laste	enzug I	3.		(Luerträge	r			
Feld-weite λ cm		verkehrs- last tm	Gesamtes Angriffs- moment M tm	$\frac{\Delta M}{\Delta \lambda}$	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen Nr.		Feld- weite λ cm		smoment olge Verkehrs- last tm	Gesamtes Angriffs- moment M tm	$\frac{AM}{A\lambda}$	Erforder- liches Wider- stands- moment W	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen Nr.
		Bett	ungsstärk	e 36 cm							Bett	ungsstärk	e 36 cm			
130 140 150 160 170 180 190 200	0,253 0,293 0,338 0,384 0,436 0,489 0,545 0,608	3,865 4,162 4,459 4,756 5,053 5,351 5,648 5,945	4,118 4,455 4,797 5,140 5,489 5,840 6,193 6,553	0.0337 0,0342 0,0343 0,0349 0,0351 0,0353 0,0360	515 557 600 643 686 730 774 819	4,2 4,3 4,3 4,3 4,4 4,4 4,5	28 29 30 30 30 32 32 32 32 34	-	130 140 150 160 170 180 190 200	2,305 2,474 2,640 2,823 3,000 3,185 3,350 3,550	11,000 11,000 11,000 12,375 13,588 14,667 15,632 16,500	13,305 13,474 13,640 15,198 16,588 17,852 18,982 20,050	0,0169 0,0166 0,1558 0,1390 0,1264 0,1130 0,1068	1663 1684 1705 1900 2074 2232 2373 2506	2,1 2,1 19,5 17,4 15,8 14,1 13,3	42,5 45 45 45 47,5 47,5 50 50
		Bett	ungsstärk	e 23 cm							Bett	ungsstärk	e 23 cm		7	
130 140 150 160	0,185 0.215 0,247 0,281	3,865 4,162 4,459 4,756	4,050 4,377 4,706 5,037	0,0327 0,0329 0,0331 0,0336	506 547 588 630	4,1 4,1 4,2 4,2	28 29 29 30		130 140 150 160	1,726 1,851 1,970 2,093	11,000 11,000 11,000 12,375	12,726 12,851 12,970 14,468	0,0125 0,0119 0,1498 0,1364	1591 1606 1621 1809	1,5 1,5 18,8 17,0	42,5 42,5 42,5 45
1=0	0.000	- 0-0	F 070	1	070	- 1	9.0			2011	10 400	7 . 000	2,2001	4000	20,00	100000

672 714 756 799 13,588 14,667 15,632 16,500 2,244 2,364 2,505 2,636 Grenzstützweiten der zu verwendenden I-Eisen

170 180 190

15,832 17,031 18,137 19,136

15,0 13,8 12,5

0,1199 0,1106 0,0999

bei einer Bettungsstärke von 23 cm, Brückenbreite 3,7 m bei einer Bettungsstärke von 36 cm, Brückenbreite 3,7 m

I N. P.		den bis zu lweite von	IN.P.	IN.P.	Zu verwen einer Feld	den bis zu lweite von	IN.P.
Nr.	em	em -	Nr.	Nr.	em	em	Nr.
28 29 30 32	136 148 162 191	135 163 183	42,5 45 47,5	28 29 30 32	138 151 165 195	152 169 191	42,5 45 47,5
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Feldweite	130	140	150	160	170	180	190	200 cm
Längsträger	0,0052	0,0060 0,048	0,0070 0,052	0,0079	0,0089	0,0101	0,0112	0,0124 tm 0,070 tm

Brückenbreite 3,75 m.

	Längsträger Lastenzug /								A. Querträger							
Feld- weite \(\lambda\)	Eigen- gewicht	Verkehrs- last	Gesamtes Angriffs- moment M	AM Al	Erforder- liches Wider- stands- moment	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen		Feld- weite \(\lambda\)	Eigen- gewicht	moment olge Verkehrs- last	Gesamtes Angriffs- moment M	$\frac{AM}{A\lambda}$	Erforder- liches Wider- stands- moment	$\frac{\Delta W}{\Delta \lambda}$	Es genügt ein I-Eisen
em	tm	tm	tm	0.0	cm ³		Nr.		em	tm	tm D-44	tm	0.0	em ³		Nr.
130 140 150 160	0,256 0,297 0,342 0,389	3,900 4,200 4,500 4,800	ungsstärk 4,156 4,497 4,842 5,189	0,0342 0,0345 0,0347 0,0353	520 562 605 649	4,2 4,3 4,4 4,4	28 29 30 30		130 140 150 160	2,386 2,557 2,730 2,899	Bett 11,250 11,250 11,250 12,023	ungsstärk 13,636 13,807 13,980 14,922	e 36 cm 0,0171 0,0173 0,0942 0,1367	1705 1726 1748 1865	2,1 2,2 11,7	45 45 45 45 45
170 180 190 200	0,442 0,496 0,552 0,615	5,100 5,400 5,700 6,000	5,542 5,896 6,252 6,615	0,0354 0,0356 0,0363	693 737 782 827	4,4 4,5 4,5	32 32 34 34		170 180 190 200	3,083 3,275 3,452 3,644	13,206 14,251 15,187 16,031	16,289 17,526 18,639 19,675	0,1237 0,1113 0,1036	2036 2191 2330 2459	17,1 15,3 13,9 12,9	47,5 47,5 50 50
			ungsstärk	e 23 cm					Bettungsstärke 23 cm							
130 140 150 160	0,187 0,218 0,251 0,285	3,900 4,200 4,500 4,800	4,087 4,418 4,751 5,085	0,0331 0,0333 0,0334	510 552 594 636	4,2 4,2 4,2 4,2	28 29 29 30		130 140 150 160	1,772 1,900 2,023 2,167	11,250 11,250 11,250 12,023	13,022 13,150 13,273 14,190	0,0128 0,0123 0,0917	1628 1644 1659 1774	1,6 1,5 11,5	42,5 42,5 42,5 42,5 45
170 180 190 200	0,325 0,364 0,405 0,453	5,100 5,400 5,700 6,000	5,425 5,764 6,105 6,453	0,0340 0,0339 0,0341 0,0348	678 721 763 807	4.2 4,3 4,2 4,4	32 32 32 34		170 180 190 200	2,306 2,453 2,577 2,708	13,206 14,251 15,187 16,031	15,512 16,704 17,764 18,739	0,1322 0,1192 0,1060 0,0975	1939 2088 2221 2342	16,5 14,9 13,3 12,1	45 47,5 47,5 50
	bei eine	r Bettung	sstärke v	on 36 cm				der zu verw n be			en gsstärke v	on 23 cm,	Brücke	nbreite a	3,75 m	

I N. P.	Zu verwen einer Feld	I N. P.	I N. P.		den bis zu weite von	I N. P.	
Nr.	cm	cm	Nr.	Nr.	em	cm	Nr.
28 29 30 32	135 147 161 190	165 186	45 47,5	28 29 30 32	137 150 163 194	151 171 195	42,5 45 47,5
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Brückenbreite 3,7	5 n
-------------------	-----

Längsträger Lastenzug						B.	Querträger								
Feld-weite	info Eigen- gewicht	moment blge Verkehrs- last	Gesamtes Angriffs- moment M	AM Al	Erforder- liches Wider- stands- moment W	$\frac{dW}{d\lambda}$	Es genügt ein I-Eisen	Feld- weite	Eigen- gewicht	moment olge Verkehrs- last	Gesamtes Angriffs- moment M	AM A \lambda	Erforder- liches Wider- stands- moment.	$\frac{dW}{d\lambda}$	Es genügt ein I-Eisen
em	tm	tm	tm		cm ³		Nr.	em	tm	tm	tm		cm ³		Nr.
		Bett	ungsstärk	e 36 cm						Bett	ungsstärk	e 36 cm			
130 140 150 160	0,256 0,297 0,342 0,389	3,900 4,200 4,500 4,800	4,156 4,497 4,842 5,189	0,0342 0,0345 0,0347 0,0353	520 562 605 649	4,2 4,3 4,4 4,4	28 29 30 30	130 140 150 160	2,386 2,557 2,730 2,899	11 250 11,250 11,250 12,656	13,636 13,807 13,980 15,555	0,0171 0,0173 0,1575 0,1425	1705 1726 1748 1945	2,1 2,2 19,7 17,8	45 45 45 45 45
170 180 190 200	0,442 0,496 0,552 0,615	5,100 5,400 5,700 6,000	5,542 5,896 6,252 6,615	0,0354 0,0356 0,0363	693 737 782 827	4,4 4,5 4,5	32 32 34 34 34	170 180 190 200	3,083 3,275 3,452 3,644	13,897 15,000 15,987 16,875	16.980 18,275 19,439 20,519	0,1295 0,1164 0,1080	2123 2285 2430 2565	16,2 14,5 13,5	47,5 47,5 50 50
		Bett	ungsstärk	e 23 cm				Bettungsstärke 23 cm							
130 140 150 160	0,187 0,218 0,251 0,285	3,900 4,200 4,500 4,800	4,087 4,418 4,751 5,085	0,0331 0,0333 0,0334 0,0340	510 552 594 636	4,2 4,2 4,2 4,2	28 29 29 29 30	130 140 150 160	1,772 1,900 2,023 2,167	11,250 11,250 11,250 12,656	13,022 13,150 13,273 14,823	0,0128 0,0123 0,1550	1628 1644 1659 1853	1,6 1,5 19,4	42,5 42,5 42,5 45
170 180 190 200	0.325 0,364 0,405 0,453	5,100 5,400 5,700 6 000	5.425 5,764 6,105 6,453	0,0340 0,0339 0,0341 0,0348	678 721 763 807	4.2 4,3 4,2 4,4	32 32 32 32 34	170 180 190 200	2,306 2,453 2,577 2,708	13,897 15,000 15,987 16,875	16,203 17,453 18,564 19,583	0,1380 0,1250 0,1111 0,1019	2026 2182 2321 2448	17,3 15,6 13,9 12,7	47,5 47,5 50 50

Grenzstützweiten der zu verwendenden I-Eisen

bei einer Bettungsstärke von 36 cm, Brückenbreite 3,75 m bei einer Bettungsstärke von 23 cm, Brückenbreite 3,75 m

I N. P.	Zu verwenden bis zu einer Feldweite von		I N. P.	I N.P.	Zu verwen einer Feld	I N.P.	
Nr.	em	em	Nr.	Nr.	cm	em	Nr.
28 29 30 32	135 147 161 190	161 180	45 · 47,5	28 29 30 32	137 150 163 194	150 166 187	42,5 45 47,5
	als Längs- träger	als Quer- träger			als Längs- träger	als Quer- träger	

Feldweite	130	140	150	160	170	180	190	200 cm
Längsträger	0,0053	0,0061	0,0070	0,0080	0,0090	0,0102 0.063	0,0113	0,0125 tm 0.072 tm

b) Auflagerdruck der Fahrbahnträger.

Brückenbreite 3,2 m.

Lastenzug A.

Auflagerdruck des Querträgers

		tragorar aon	8	8							Soraraon		0	Maria		
Feld-weite λ	Auflagerdruck infolge Eigen-Verkel gewicht last	Auflager- druck	AA AA	bei Verfü	rwendur ir die L	im Quer-	I-Eisen ger	Feld-weite λ		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	AA A A	bei Ve	rwendur ür die Q Nietdure em im	he Nietz ng von I Juerträg chmesse 2,3 im Haupt- träger	er er cm
		Bettungsst	ärke 36 o	em	ing all	ALC: U	ON F			I	Bettungsstä	irke 36	cm			
130 140 150 160	0,498 10,65 0,539 10,65 0,578 10,65 0,618 11,25	25 11,123 25 11,164 25 11,203	0,0041 0,0039 0,0704	5 5 5 6	4 4 4 4	4 4 4 4	4 4 4 4	130 140 150 160	1,594 1,708 1,820 1,933	10 000 10,000 10,000 10,332	11,594 11,708 11,820 12,265	0,0114 0,0112 0,0445 0,0490	5 5 6 6	3 3 3 3	4 4 4 4	3 3 3 3
170 180 190 200	0,660 11,8° 0,698 12,3° 0,744 12,8° 0,782 13,2°	96 13,094 62 13,606	0,0629 0,0558 0,0512 0,0457	6 6 6 6	4 5 4 5	5 5 5 5	4 4 4 4	170 180 190 200	2,067 2,178 2,296 2,426	10,688 11,183 11,625 12,023	12,755 13,361 13,921 14,449	0,0606 0,0560 0,0528	6 6 6 7	8 8 8 8 8	5 5 5 5	3 3 3 3
		Bettungsst	ärke 23 d	cm						E	Bettungsstä	irke 23	cm			
130 140 150 160	0,368 10,65 0,396 10,65 0,428 10,65 0,458 11,28	25 11,021 25 11,053	0,0028 0,0032 0,0694	5 5 5 5	4 4 4 4	4 4 4 4	4 4 4 4	130 140 150 160	1,191 1,272 1,357 1,453	10,000 10,000 10,000 10,332	11,191 11,272 11,357 11,787	0,0081 0,0085 0,0430	5 5 5 5	3 3 3	4 4 4 4	3 3 3
170 180 190 200	0,490 11,87 0,518 12,39 0,553 12,86 0,582 13,28	96 12 914 32 13,415	0,0619 0,0548 0,0501 0,0448	6 6 6 6	4 4 4 5	4 5 5 5	4 4 4 4	170 180 190 200	1,538 1,638 1,726 1,826	10,688 11,183 11,625 12,023	12,226 12,821 13,351 13,849	0,0439 0,0595 0,0530 0,0498	6 6 6 6	3 3 3	4 5 5 5	3 3 3

Brückenbreite 3,2 m.

Lastenzug B.

Auflagerdruck des Längsträgers

		T.C. T.C.	Sordi don o	CO LIMIT	Sourage	10	1110		- Unalara	ACHON BOLL	Trutting	5 Or ter troit	top da			1 1 1	
Feld-weite	info	erdruck olge Verkehrs- last t	Gesamter Auflager- druck A	JA JA	bei Ve	rwendu ir die L	im Quer-	l-Eisen ger	Feld-weite	S processor.	gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{\Delta A}{\Delta \lambda}$	bei Ve	rwendu är die Q Nietdurc	he Nietz ng von puerträg ehmesse 2,3 im Haupt- träger	I-Eisen er
		1	Bettungsstä	irke 36	cm		T. W.	The L		10-5	В	ettungsst	ärke 36	cm	02	Marin .	
130 140 150 160	0,498 0,539 0,578 0,618	10,625 10,625 10,625 11,289	11,123 11,164 11,203 11,907	0,0041 0,0039 0,0704 0,0629	5 5 5 6	4 4 4 4	4 4 4 4	4 4 4 4	130 140 150 160	1,594 1,708 1,820 1,995	10,000 10,000 10,000 10,664	11,594 11,708 11,820 12,659	0,0114 0,0112 0,0839	5 5 6 6	3 3 3 3	4 4 4 5	3 3 3 3
170 180 190 200	0,660 0,698 0,744 0,782	11,876 12,396 12,862 13,281	12,536 13,094 13,606 14,063	0,0558 0,0512 0,0457	6 6 6	4 5 4 5	5 5 5 5	4 4 4 4	170 180 190 200	2,110 2,240 2,355 2,470	11,250 11,771 12,238 12,656	13,360 14,011 14,593 15,126	0,0701 0,0651 0,0582 0,0533	6 6 7 7	3 3 4 4	5 5 5 5	3 3 3 3
		I	Bettungsstä	irke 23	cm							ettungsst	ärke 23	cm			
130 140 150 160	0,368 0,396 0,428 0,458	10,625 10,625 10,625 11,289	10,993 11,021 11,053 11,747	0,0028 0,0032 0,0694 0,0619	5 5 5	4 4 4 4	4 4 4 4	4 4 4 4	130 140 150 160	1,191 1.272 1,357 1,477	10,000 10,000 10,000 10,664	11,191 11,272 11,357 12,141	0,0081 0,0085 0,0784	5 5 5 6	3 3 3 3	4 4 4 4	3 3 3
170 180 190 200	0,490 0,518 0,553 0,582	11,876 12,396 12,862 13,281	12,366 12,914 13,415 13,863	0,0548 0,0501 0,0448	6 6 6	4 4 4 5	5 5	4 4 4 4	170 180 190 200	1,575 1,660 1,760 1,840	11,250 11,771 12,238 12,656	12,825 13,431 13,998 14,496	0,0684 0,0606 0,0567 0,0498	6 6 6 7	3 3 3 3	5 5 5 5	3 3 3 3

Brückenbreite 3,3 m.

Lastenzug A.

Auflager	lruck de	es Län	gsträgers
----------	----------	--------	-----------

Auflagerdruck des Querträgers

Feld-weite λ	-	gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ve	forderlich rwendun ir die Lä Nietdurd cm im Längs- träger	g von I ngsträg hmesser	-Eisen er	Feld-weite λ cm		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ve	rwendur ür die Q Nietdure cm im	he Nietz ng von I uerträge chmesse 2,3 im Haupt- träger	-Eisen er cm im Ouer-
De Will	011111	E	Bettungsstä	irke 36	cm						I	Bettungsstä	irke 36	cm			
130 140 150 160	0,513 0,555 0,596 0,636	10,910 10,910 10,910 11,592	11,423 11,465 11,506 12,228	0,0042 0.0041 0,0722 0,0645	5 5 5 6	4 4 4 4	4 4 4 4	4 4 4 4	130 140 150 160	1,643 1,760 1,877 2,010	10,000 10,000 10,000 10,341	11,643 11,760 11,877 12,351	0,0117 0,0117 0,0474 0,0491	5 5 6 6	3 3 3 3	4 4 4 4	3 3 3 3
170 180 190 200	0,679 0,724 0,764 0,805	12,194 12,729 13,207 13,638	12,873 13,453 13,971 14,443	0,0580 0,0518 0,0472	6 6 6 7	4 4 5 5	5 5 5 5	4 4 4 4	170 180 190 200	2,128 2,249 2,384 2,500	10,720 11,228 11,682 12,091	12,848 13,477 14,066 14,591	0,0629 0,0589 0,0525	6 6 6 7	3 3 4	5 5 5 5	3 3 3 3
		I	Bettungsstä	irke 23	cm							Bettungsstä	irke 23	cm			
130 140 150 160	0,378 0,410 0,440 0,470	10,910 10,910 10,910 11,592	11,288 11,320 11,350 12,062	0,0032 0,0030 0,0712	5 5 5 6	4 4 4 4	4 4 4 4	4 4 4 4	130 140 150 160	1,246 1,327 1,411 1,496	10,000 10,000 10,000 10,341	11,246 11,327 11,411 11,837	0,0081 0,0084 0,0426 0,0485	5 5 5 6	3 3 3 3	4 4 4 4	3 3 3
170 180 190 200	0,503 0,538 0,568 0,598	12,194 12,729 13,207 13,638	12,697 13,267 13,775 14,236	0,0635 0,0570 0,0508 0,0461	6 6 6 7	4 4 4 5	5 5 5 5	4 4 4 4	170 180 190 200	1,602 1,692 1,796 1,880	10,720 11,228 11,682 12,091	12,322 12,920 13,478 13,971	0,0598 0,0558 0,0193	6 6 6	3 3 3 3	4 5 5 5	3 3 3 3

Brückenbreite 3,3 m.

Lastenzug B.

Auflagerdruck	des L	ängst	rägers
---------------	-------	-------	--------

		Hullug	cididen d	Co Little	Source	1.0		-			Tittilag	orarack c	top den	n urage.	1.13		
Feld-weite λ		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ve	forderlich rwendur ir die Li Nietdurc cm im Längs- träger	ng von I ingsträg chmesser 2,3 im	-Eisen er	Feldweite λ		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ve	forderlic erwendu ür die (Nietdur em im Quer- träger	ng von Juerträg chmesse	I-Eisen er cm im
The same	Velen -	I	Bettungsstä	irke 36	cm		41-1		4500		В	Bettungsst	ärke 30	cm	1- 17	1110	THE STATE OF
130 140 150 160	0,513 0,555 0,596 0,636 0,679	10,910 10,910 10,910 11,592 12,194	11,423 11,465 11,506 12,228	0,0042 0,0041 0,0722 0,0645	5 5 5 6	4 4 4 4	4 4 4 4	4 4 4 4	130 140 150 160	1,643 1,760 1,877 2,060	10,000 10,000 10,000 10,682 11,284	11,643 11,760 11,877 12,742	0,0117 0,0117 0,0865 0,0732	5 5 6 6	3 3 3 3	4 4 4 5	3 3 3 3
180 190 200	0,724 0,764 0,805	12,729 13,207 13,638	13,453 13,971 14,443	0,0580 0,0518 0,0472	6 6 7	4 5 5	5 5 5	4 4 4 4	180 190 200	2,310 2,310 2,430 2,570	11,818 12,297 12,727	14,128 14,727 15,297	0,0654 0,0599 0,0570	6 6 7 7	3 4 3	5 5 5 5	3 3 3 3
		I	Bettungsstä	irke 23	cm						E	Bettungsst	ärke 28	3 cm			
130 140 150 160	0,378 0,410 0,440 0,470	10,910 10,910 10,910 11,592	11,288 11,320 11,350 12,062	0,0032 0,0030 0,0712 0,0635	5 5 5 6	4 4 4 4	4 4 4 4	4 4 4 4	130 140 150 160	1,246 1,327 1,411 1,540	10,000 10,000 10,000 10,682	11,246 11,327 11,411 12,222	0,0081 0,0084 0,0811	5 5 5 6	55 55 55	4 4 4 4	3 3 3
170 180 190 200	0,503 0,538 0,568 0,598	12,194 12,729 13,207 13,638	12,697 13,267 13,775 14.236	0,0570 0,0508 0,0461	6 6 6 7	4 4 4 5	5 5 5 5	4 4 4 4	170 180 190 200	1,625 1,730 1,815 1,900	11,284 11,818 12,297 12,727	12,909 13,548 14,112 14,627	0,0687 0,0639 0,0564 0,0515	6 6 6 7	3 3 4	5 5 5 5	3 3 3

Brückenbreite 3,4 m.

Lastenzug A.

Auflagerdruck des Längsträgers

Auflagerdruck des Querträgers

Feld-weite		erdruck olge Verkehrs- last t	Gesamter Auflager- druck A	JA JÀ	bei Ver	rwendur r die Li Nietdurc	im	-Eisen ger	W	eld- eite		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A		bei Ver	rwendur ir die Q Nietdur	he Nietz ng von I puerträge chmesser 2,3 im Haupt- träger	-Eisen er cm im Quer-
		I	Bettungsst	irke 36	cm]	Bettungsstä	irke 36	cm			
130 140 150 160	0,527 0,571 0,613 0,657	11,180 11,180 11,180 11,879	11,707 11,751 11,793 12,536	0,0044 0,0042 0,0743 0,0658	5 5 6 6	5 4 4 4	4 4 4 5	4 4 4	1	30 40 50 60	1,692 1,813 1,933 2,073	10,000 10,000 10,000 10,369	11,692 11,813 11,933 12,442	0,0121 0,0120 0,0509 0,0500	5 6 6 6	3 3 8 3	4 4 4	3 3 3 3
170 180 190 200	0,698 0,744 0,786 0,827	12,496 13,044 13,533 13,975	13,194 13,788 14,319 14,802	0,0594 0,0531 0,0483	6 6 7 7	5 4 5 5	5 5 5 5	4 4 4 4	1:	70 80 90 00	2,192 2,337 2,456 2,595	10,750 11,270 11,735 12,155	12,942 13,607 14,191 14,750	0,0665 0,0584 0,0559	6 6 7 7	3 3 3	5 5 5 5	3 3 3
		В	ettungsstä	rke 23	cm							I	Bettungsstä	rke 23	cm			
130 140 150 160	0,389 0,421 0,453 0,483	11,180 11,180 11,180 11,879	11,569 11,601 11,633 12,362	0,0032 0,0032 0,0729	5 5 5 6	4 4 4 4	4 4 4 4	4 4 4 4	14	30 40 50 60	1,277 1,366 1,454 1,559	10,000 10,000 10,000 10,369	11,277 11,366 11,454 11,928	0,0089 0,0088 0,0474 0,0471	5 5 5 6	3 3 3 3	4 4 4 4	3 3 3
170 180 190 200	0,517 0,553 0,583 0,614	12,496 13,044 13,533 13,975	13,013 13,597 14,116 14,589	0,0651 0,0584 0,0519 0,0473	6 6 6 7	5 4 5 5	5 5 5 5	4 4 4 4	18	70 80 90 90	1,649 1,762 1,849 1,936	10,750 11,270 11,735 12,155	12,399 13,032 13,584 14,091	0,0633 0,0552 0,0507	6 6 6 6	3 3 3	4 5 5 5	3 3 3

Brückenbreite 3,4 m.

Lastenzug B.

Auflagerdruck des Längsträgers

	A	urrageruruck	rics Dan	Sourage	10					Tiuriue	eruruck (aos duc	Torus C.			
Feld-weite λ	Auflagerdrue infolge Eigen- Verk- gewicht last	Auflager druck ehrs- A		bei Ve	rwendu ir die L	im Quer-	-Eisen ger	Feld-weite λ	The same	gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	AA Ah	bei Ve	erwendu ür die Ç Nietdurc em im	he Nietz ng von l Juerträge chmesser 2,3 im Haupt- träger	I-Eisen er r em im
		Bettungss	tärke 36	cm						В	ettungsst	ärke 36	cm			
130 140 150 160	0,571 11,	180 11,707 180 11,751 180 11,793	0,0044 0,0042 0,0743	5 5	5 4 4 4	4 4 4 5	4 4 4 4	130 140 150 160	1,692 1,813 1,933 2,120	10,000 10,000 10,000 10,699	11,692 11,813 11,933 12,819	0,0121 0,0120 0,0886	5 6 6 6	3 3 3	4 4 4 5	3 3 3
170 180 190 200	0,698 12,4 0,744 13,6 0,786 13,6 0,827 13,6	13,788 14,319	0,0658 0,0594 0,0531 0,0483	6 6 7 7	5 4 5 5	5 5 5 5	4 4 4 4	170 180 190 200	2,260 2,380 2,525 2,645	11,315 11,863 12,353 12,794	13,575 14,243 14,878 15,439	0,0756 0,0668 0,0635 0,0561	6 7 7 7	3 3 4	5 5 5	3 3 3 3
		Bettungss	tärke 23	cm							ettungsst	ärke 28	cm			
130 140 150 160	0,389 11,3 0,421 11,3 0,453 11,3 0,483 11,8	180 11,601 180 11.633	0,0032 0,0032 0,0729	5 5 5 6	4 4 4 4	4 4 4 4	4 4 4	130 140 150 160	1,277 1,366 1,454 1,585	10,000 10,000 10,000 10,699	11,277 11,366 11,454 12,284	0,0089 0,0088 0,0830	5 5 6	3 3 3	4 4 4 4	3 3 3 3
170 180 190 200	0,517 12,4 0,553 13,6 0,583 13,5 0,614 13,8	13,597 14,116	0,0651 0,0584 0,0519 0,0473	6 6 6 7	5 4 5 5	5 5 5 5	4 4 4 4	170 180 190 200	1,692 1,780 1,870 1,980	11,315 11,863 12,353 12,794	13,007 13,643 14,223 14,774	0,0723 0,0636 0,0580 0,0551	6 6 7 7	3 3 3 3	5 5 5 5	3 3 3

Brückenbreite 3,65 m.

Lastenzug A.

	Aufl	agerdru	ck des	Längs	trägers
--	------	---------	--------	-------	---------

Auflagerdruck des Querträgers

Feld-weite \(\lambda \)	info	erdruck olge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ver fü	orderlich rwendun r die Lä Nietdurc em im Längs- träger	g von I ingsträg hmesser 2,3 im	r cm im Längs-	Fe we			gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ver	rwendur ir die Q	ne Nietz ig von I uerträge chmesser 2,3 im Haupt- träger	-Eisen er em im
1		В	Bettungsstä	irke 36	cm							1	Bettungssti	irke 36	cm			
130 140 150 160	0,584 0,630 0,675 0,724	11,781 11,781 11,781 12,517	12,365 12,411 12,456 13,241	0,0046 0,0045 0,0785 0,0702	6 6 6	5 4 4 5	4 4 4 5	4 4 4 4	14 15	30 40 50 50	1,888 2,022 2,153 2,307	10,000 10,000 10,000 10,368	11,888 12,022 12,153 12,675	0,0134 0,0131 0,0522 0,0588	6 6 6 6	3 3 3 3	4 4 4 5	3 3 3
170 180 190 200	0,776 0,821 0,867 0,919	13,167 13,745 14,261 14,726	13,943 14,566 15,128 15,645	0,0623 0,0562 0,0517	6 7 7 7	5 5 5 5	5 5 6	4 4 4 4	18 19	70 80 90 90	2,445 2,599 2,730 2,868	10,818 11,366 11,856 12,298	13,263 13,965 14,586 15,166	0,0702 0,0621 0,0580	6 6 7 7	3 3 3 3	5 5 5 5	3 3 3
		E	Bettungsstä	irke 23	cm							I	Bettungsstä	irke 23	cm			
130 140 150 160	0,417 0,452 0,485 0,518	11,781 11,781 11,781 12,517	12,198 12,233 12,266 13,035	0,0035 0,0033 0,0769	6 6 6	5 4 4 5	4 4 4 5	4 4 4 4	14 15	30 40 50 30	1,389 1,484 1,577 1,671	10,000 10,000 10,000 10,368	11,389 11,484 11,577 12,039	0,0095 0,0093 0,0462 0,0572	5 5 6	3 3 3	4 4 4	3 3 3
170 180 190 200	0,558 0,590 0,623 0,662	13,167 13,745 14,261 14,726	13,725 14,335 14,884 15,388	0,0690 0,0610 0,0549 0,0504	6 7 7 7	4 5 5 5	5 5 5 5	4 4 4 4	18	70 80 90 00	1,793 1,886 1,979 2,078	10,818 11,366 11,856 12,298	12,611 13,252 13,835 14,376	0,0541 0,0583 0,0541	6 6 6 7	8 8 8	5 5 5 5	3 3 3 3

Brückenbreite 3,65 m.

Lastenzug B.

A - C1 1-	J	T San make Sanana
Auflagerdruck	ues	Langshagers

Feld-weite λ	Maria and a	gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ver	orderlic rwendur r die Li Nietdurc em im Längs- träger	ng von I ängsträg chmesse 2,3 im	r cm im Längs-	Feld-weite λ		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ve	rwendur ir die Q Nietdurc em im	he Nietz ng von I uerträge hmesser 2,3 im Haupt- träger	-Eisen r
		I	Bettungsstä	irke 36	cm						В	ettungsst	ärke 36	cm			
130 140 150 160	0,584 0,630 0,675 0,724	11,781 11,781 11,781 12,517	12,365 12,411 12,456 13,241	0,0046 0,0045 0,0785 0,0702	6 6 6	5 4 4 5	4 4 4 5	4 4 4 4	130 140 150 160	1,888 2,022 2,153 2,307	10,000 10,000 10,000 10,736	11,888 12,022 12,153 13,043	0,0134 0,0131 0,0890 0,0788	6 6 6	3 3 3	4 4 4 5	3 3 3 3
170 180 190 200	0,776 0,821 0,867 0,919	13,167 13,745 14,261 14,726	13,943 14,566 15,128 15,645	0,0623 0,0562 0,0517	6 7 7 7	5 5 5 5	5 5 6	4 4 4 4	170 180 190 200	2,445 2,599 2,730 2,868	11,386 11,964 12,480 12,946	13,831 14,563 15,210 15,814	0,0732 0,0647 0,0604	6 7 7 7	3 3 3	5 5 5 6	3 3 3
		I	Bettungsstä	irke 23	cm						В	ettungsst	ärke 23	cm			
130 140 150 160	0,417 0,452 0,485 0,518	11,781 11,781 11,781 12,517	12,198 12,233 12,266 13,035	0,0035 0,0033 0,0769 0,0690	6 6 6 6	5 4 4 5	4 4 4 5	4 4 4 4	130 140 150 160	1,389 1,484 1,577 1,725	10,000 10,000 10,000 10,736	11,389 11,484 11,577 12,461	0,0095 0,0093 0,0884	5 5 5 6	3 3 3	4 4 4 4	3 3 3
170 180 190 200	0,558 0,590 0,623 0,662	13,167 13,745 14,261 14,726	13,725 14,335 14,884 15,388	0,0610 0,0549 0,0504	6 7 7 7	5 5 5	5 5 5 5	4 4 4 4	170 180 190 200	1,820 1,935 2,030 2,145	11,386 11,964 12,480 12,946	13,206 13,899 14,510 15,091	0,0745 0,0693 0,0611 0,0581	6 6 7 7	3 3 3	5 5 5 5	3 3 3 3

Brückenbreite 3,70 m.

Lastenzug A.

A	uf]	agero	lruck	des	Längst	rägers

Auflagerdruck des Querträgers

Feld-weite	gewicht la	Gesam Auflag drucl sehrs- ast t t t	er- AA	bei Ve	forderlie erwendun ir die Li Nietdurc cm im Längs- träger	ng von lingsträg	I-Eisen ger Fredem im Längs-	Fe we	ite		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ve	orderlie rwendur ür die Q Nietdure em im Quer- träger	ng von l uerträg chmesse	r er er im
		Bettung	stärke 36	cm							I	Bettungsstä	irke 36	cm			
130 140 150 160	0,639 11 0,687 11	,892 12,48 ,892 12,53 ,892 12,57 ,635 13,36	0,0047	6 6 6 6	5 5 4 5	5 5 5 5	4 4 4 4	18 14 18 16	10	1,915 2,051 2,185 2,340	10,000 10,000 10,000 10,372	11,915 12,051 12,185 12,712	0,0136 0,0134 0,0527 0,0598	6 6 6 6	3 3	4 4 4 5	3 3 3
170 180 190 200	0,832 13 0,878 14	,292 14,07 ,874 14,70 ,394 15,27 ,865 15,79	0,0628 0,0566	6 7	5 5 5 5	5 5 6	4 4 4 4	17 18 19 20	80	2,480 2,635 2,768 2,937	10,830 11,383 11,878 12,324	13,310 14,018 14,646 15,256	0,0708 0,0628 0,0610	6 6 7 7	3 3 3 3	5 5 5 5	3 3 3 3
130	0,423 11.	Bettung:	stärke 23	cm	5	4	4	18	80 11	1.409	10,000	Bettungsstä 11,409		cm 5	3	4	3
140 150 160	0,458 11, 0,491 11,	,892 12,35 ,892 12,38 ,635 13,16	0,0035	6 6 6	4 4 5	4 4 5	4 4 4	14 15 16	10	1,506 1,600 1,695	10,000 10,000 10,372	11,506 11,600 12,067	0,0097 0,0094 0,0467	5 5 6	5 3 3	4 4 4	3 3 3
170 180 190 200	0,598 13, 0,631 14,	292 13,85 874 14,47 394 15,02 865 15,53	0,0510	6 7 7 7	5 5 5 5	5 5 5 5	4 4 4 4	17 18 19 20	80	1,818 1,912 2,029 2,129	10,830 11,383 11,878 12,324	12,648 13,295 13,907 14,453	0,0581 0,0647 0,0612 0,0546	6 6 6 7	3 3 3	5 5 5	3 3 3

Brückenbreite 3,70 m.

Lastenzug B.

Auflagerd	ruck des	Längs	trägers
-----------	----------	-------	---------

-	Auria	gerunden a	00 110112	Source Box						220121012	or ar tron					
Feld-weite λ	Auflagerdruck infolge Eigen- gewicht last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ver	orderlich rwendur r die Lä Nietdurch cm im Längs- träger	g von I ingsträg hmesse	r cm im Längs-	Feld-weite		gerdruck folge Verkehrs- last †	Gesamter Auflager- druek A	AA Ah	bei Ve	rwendur ir die Q Nietdure m im	ne Nietz ng von l uerträge chmesser 2,3 im Haupt- träger	I-Eisen er
		Bettungsstä	rke 36	cm		1				В	ettungsst	ärke 36	cm			
130 140 150 160	0,592 11,892 0,639 11,892 0,687 11,892 0,733 12,635	12,484 12,531 12,579 13,368	0,0047 0,0048 0,0789 0,0710	6 6 6	5 5 4 5	5 5 5 5	4 4 4 4	130 140 150 160	1,915 2,051 2,185 2,340	10,000 10,000 10,000 10,743	11,915 12,051 12,185 13,083	0,0136 0,0134 0,0898 0,0796	6 6 6	3 3 3	4 4 4 5	3 3 3 3
170 180 190 200	0,786 13,292 0,832 13,874 0,878 14,394 0,930 14,865	14,078 14,706 15,272 15,795	0,0628 0,0566 0,0523	6 7 7 7	5 5 5	5 5 5 6	4 4 4 4	170 180 190 200	2,480 2,635 2,768 2,937	11,399 11,982 12,504 12,973	13,879 14,617 15,272 15,910	0,0738 0,0655 0,0638	6 7 7 7	3 3 3 3	5 5 5 6	3 3 3
		Bettungsstä	rke 23	cm						В	Settungsst	ärke 23	cm			
130 140 150 160	0,423 11,892 0,458 11,892 0,491 11,892 0,525 12,635	12,383 13,160	0,0035 0,0033 0,0777	6 6 6	5 4 4 5	4 4 4 5	4 4 4 4	130 140 150 160	1,409 1,506 1,600 1,750	10,000 10,000 10,000 10,743	11,409 11,506 11,600 12,493	0,0097 0,0094 0,0893 0,0776	5 5 5 6	3 3 3	4 4 4 5	3 3 3
170 180 190 200	0,564 13,292 0,598 13,874 0,631 14,394 0,670 14,865	13,856 14,472	0,0696 0,0616 0,0553 0,0510	6 7 7 7	5 5 5 5	5 5 5 5	4 4 4 4	170 180 190 200	1,870 1,960 2,060 2,180	11,399 11,982 12,504 12,973	13.269 13,942 14,564 15,153	0,0673 0,0622 0,0589	6 6 7 7	3 3 3	5 5 5 5	3 3 3 3

Brückenbreite 3,75 m.

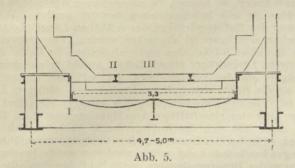
Lastenzug A.

Auflagerdruck des Längsträgers

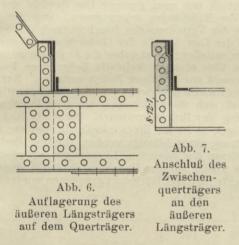
Auflagerdruck des Querträgers

									_						-			
Feld-weite		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	AA AA	bei Ve fü	Nietduro cm im	ehmesser 2,3 im Quer-	er er cm im Längs-	V	λ		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ver	rwendur ir die Q Nietdur	hmesser 2,3 im	-Eisen er em im
137		I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
130 • 140 150 160	0,599 0,647 0,696 0,742	12,000 12,000 12,000	12,599 12,647 12,696	0,0048 0,0049 0,0796	6 6	5 4	5 5	4 4		140 150	2,080 2,238	10,000 10,000 10,000	11,942 12,080 12,238	0,0138 0,0158 0,0510	6 6	3 3		3
170 180 190 200	0,795 0,842 0,895 0,942	14,000 14,526	14,842 15,421	0,0635 0,0579	7 7 7 7	5 5	5 5	4		180 190	2,672 2,813	11,400 11,900	14,072 14,713	0,0717 0,0641		3 3	5 5	3
		I	Bettungsstä	irke 23	cm							I	Bettungsstä	irke 23	cm			
130 140 150 160	0,428 0,463 0,497 0,531	12,000 12,000 12,000 12,750	12,428 12,463 12,497 13,281	0,0035 0,0034 0,0784	6 6 6	5 4 5 5	4 4 5 5	4 4 4 4		130 140 150 160	1,428 1,526 1,621 1,741	10,000 10,000 10,000 10,375	11,428 11,526 11,621 12,116	0,0098 0,0095 0,0495 0,0568	5 5 6	3 3 3	4 4 4 4	3 3 3
170 180 190 200	0,571 0,605 0,638 0,678	13,412 14,000 14,526 15,000	13,983 14,605 15,164 15,678	0,0702 0,0622 0,0559 0,0514	6 7 7 7	5 5 5 5	5 5 5 6	4 4 4 4		170 180 190 200	1,843 1,961 2,056 2,158	10,841 11,400 11,900 12,350	12,684 13,361 13,956 14,508	0,0568 0,0677 0,0595 0,0552	6 6 6 7	3 3 3 3	5 5 5 5	3 3 3

Brückenbreite 3,75 m.


Lastenzug B.

	Aufla	gerdruck de	es Längsträg	gers					Auflag	gerdruck d	les Que	erträge	rs		
Feld-weite	Auflagerdruck infolge Eigen- gewicht last t	Gesamter Auflager- druck A	dA bei	2 cm im Längs-	ng von I ängsträg chmesse 2,3 im Quer-	-Eisen er	Feld-weite λ		gerdruck nfolge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{JA}{A\lambda}$	bei Ve	rwendur dr die Q Nietdure em im	he Nietz ng von l uerträge chmesse 2,3 im Haupt- träger	I-Eisen er
		Bettungsstär	rke 36 cm			4			В	ettungsst	ärke 36	cm			
130 140 150 160	0,599 12,000 0,647 12,000 0,696 12,000 0,742 12,750	12,696 13,492	0,0048 0,0049 0,0796 0,0715	5 5 4 5	5 5 5 5	4 4 4 4	130 140 150 160	1,942 2,080 2,238 2,373	10,000 10,000 10,000 10,750	11,942 12,080 12,238 13,123	0,0138 0,0158 0,0885	6 6 6	3 3 3	4 4 4 5	3 3 3 3
170 180 190 200	0,795 13,412 0,842 14,000 0,895 14,526 0,942 15,000	14,207 14,842	0,0635 0,0579 0,0521 7	5 5 5 5	5 5 5 6	4 4 4 4	170 180 190 200	2,514 2,672 2,813 2,973	11,412 12,000 12,526 13,000	13,926 14,672 15,339 15,973	0,0803 0,0746 0,0667 0,0634	6 7 7 7	3 3 3	5 5 5 6	3 3 3 3
		Bettungsstär	rke 23 cm						В	ettungsst	ärke 23	cm			
130 140 150 160		12,497 13,281	0,0035 0,0034 0,0784 0,0702	5 4 5 5	4 4 5 5	4 4 4 4	130 140 150 160	1,428 1,526 1,621 1,770	10,000 10,000 10,000 10,750	11,428 11,526 11,621 12,520	0,0098 0,0095 0,0899	5 5 5 6	3 3 3	4 4 4 5	3 3 3
170 180 190 200	0,571 13,412 0,605 14,000 0,638 14,526 0,678 15,000	13,983 14,605	0,0622 0,0622 0,0559 0,0514	5 5 5 5	5 5 5 6	4 4 4 4	170 180 190 200	1,890 1,990 2,110 2,210	11,412 12,000 12,526 13,000	13,302 13,990 14,636 15,210	0,0782 0,0688 0,0646 0,0574	6 6 7 7	3 3 3 3	5 5 5	3 3 3 3


2. Bei Fachwerkbrücken mit 4,7 bis 5,0 m Hauptträgerentfernung.

Bei Brücken mit größerer Stützweite als 20 m erfordern die Bestimmungen über die Umgrenzung des lichten Raumes und die gebräuchlichen Gurtbreiten der Hauptträger eine Brückenbreite von 4,7 bis 5,0 m. Für diese Brückenbreiten ist die in Abb. 5 dargestellte Fahrbahnanordnung gewählt worden.

Sie zeigt drei Längsträger, von denen die beiden äußeren zugleich zum Bettungsabschluß dienen, wodurch besondere Bettungs-

abschlußbleche gespart werden und eine gute Auflagerung für den Bohlenbelag oder das Riffelblech des seitlichen Fußweges geboten wird. Die äußeren Längsträger werden in Z-Form aus einem Stegblech und zwei Winkeleisen gebildet, von denen das untere mit Rücksicht auf die Zusatzbeanspruchung durch den Zug der Buckelplatten zweckmäßig einen etwas stärkeren Querschnitt erhält als das obere. Abb. 6 zeigt, wie sich die Auflagerung der äußeren Längsträger auf dem Querträger gestaltet. Zur Erzielung einer überall gleich hohen Unterstützung der Ränder der Buckelplatte empfiehlt es sich, die Stärke der die Buckelplatte tragenden Gurtplatte des Querträgers gleich der des unteren Gurtwinkels des Längsträgers zu wählen. Abb. 7 stellt die Aufhängung des Zwischen-

querträgers an dem äußeren Längsträger dar; zum Anschluß sind ungleichschenklige Winkel gewählt worden, um den Obergurt des Längsträgers kräftig gegen die Fahrbahntafel festzulegen und damit gegen Ausknicken zu sichern. Mit Rücksicht auf die Möglichkeit, die Schwellen auch vor Kopf zu stopfen, ist die Breite der Bettung auf der Brücke zu 3,3 m angenommen worden; sie ist unabhängig von der Breite der Brücke, so daß die angegebenen Werte für die Längsträger und den Zwischenquerträger für alle Brückenbreiten ihre Gültigkeit behalten. Die Feldweite steigt in Stufen von 0,1 m von 2 bis 4 m. Rechnet man die Feldweite zu etwa $^{1}/_{10}$ der Stützweite, so entspricht dies Stützweiten von 20 bis 40 m. Bei Brücken unter 20 m Stützweite ist meist die Fahrbahnanordnung nach Abb. 3 anwendbar, und bei Stützweiten über 40 m wird nur selten die Bettung durchgeführt. Da Buckelplatten über 2 m Seitenlänge nicht gebräuchlich sind, so muß in Feldmitte ein Zwischenquerträger vorgesehen werden. Die Berechnungen sind, wie die für die kleineren Brückenbreiten, für Bettungsstärken von 0,36 und 0,23 m durchgeführt worden; für zwischenliegende Bettungsstärken kann man, falls man nicht die Werte für die Bettungsstärke von 0,36 m an-nehmen will, die gesuchten Werte geradlinig einschalten. Während für die Längsträger und Zwischenquerträger, die meist aus Walzeisen gebildet werden oder einen durchlaufenden, gleichen Querschnitt erhalten, in den nachstehenden Tafeln nur das größte Moment angegeben worden ist, ist für die Hauptquerträger, die stets als genietete Träger ausgebildet werden müssen, zwecks Be-

stimmung der Gurtplattenlängen das Angriffs- und Widerstandsmoment für drei Punkte, I. am Angriffspunkt der äußeren Längsträger, II. unter den Schienen, III. in der Mitte, angegeben worden (Abb. 5); zwischen diesen Punkten kann ohne nennenswerten Fehler eine geradlinige Begrenzung der Momentenfläche angenommen werden. Ferner ist der Auflagerdruck und die Zahl der erforderlichen Anschlußniete für den mittleren Längsträger und den Hauptquerträger, bei letzterem freilich nur für die größte Brückenbreite von 5 m angegeben worden; da sich bei einer Verringerung der Brückenbreite nur das Eigengewicht des Querträgers ändert, so können die angegebenen Werte ohne erhebliche Fehler für alle Brückenbreiten benutzt werden. Berechnung des Auflagerdruckes des seitlichen Längsträgers und des Zwischenquerträgers ist abgesehen worden. Für ersteren wird man aus baulichen Rücksichten stets mindestens die Hälfte der für den mittleren Längsträger erforderlichen Anschlußniete anordnen, die genügen, da der Auflagerdruck des seitlichen Längsträgers kleiner als die Hälfte des Auflagerdruckes des mittleren Längsträgers ist. Für den Zwischenquerträger genügen stets drei zweischnittige und vier einschnittige Anschlußniete von 2 cm Durchmesser. Auch läßt sich der Auflagerdruck für jeden Fall leicht berechnen. Die bei der Benutzung der Hilfstafeln auszuführenden Rechnungen beschränken sich mithin wiederum auf die Bestimmung der auftretenden Beanspruchungen, wozu bei Feldweiten, die nicht ein Vielfaches von 0,1 m betragen, noch die kleinen Zwischenrechnungen zur Einschaltung der gesuchten Werte treten.

Berechnungsannahmen.

Da die Verteilung der äußeren Kräfte bei einer Fahrbahnabdeckung aus Buckelplatten noch nicht vollständig klargestellt ist, so ist man zu Annahmen gezwungen. Das Gewicht der Buckelplatte nebst Bettung ist zu je $^1/_4$ auf die vier Seiten der Platte verteilt unter der Annahme, daß es auf die Fahrbahnträger als Dreieckslast wirkt. Der hierbei zugunsten einer Vereinfachung der Rechnung gemachte Fehler gegenüber der meist üblichen Verteilung der Last im Verhältnis der Seitenlängen der Buckelplatte ist für das Endergebnis nur ganz gering. Das Gewicht der Bettung ist zu 2 t für das Kubikmeter angenommen. Von den Raddrücken wird infolge der Verteilung des Druckes durch die Schwellen der Hauptanteil der Last auf die der Gleisachse parallelen Seiten der Buckelplatte entfallen; es ist daher die Annahme gemacht worden, daß sich die über einer Buckelplatte befindlichen Radlasten nach dem Hebelgesetz nur auf diese Seiten verteilen. Nur bei der Berechnung der Zwischenquerträger wurde die ungünstige Annahme gemacht, daß sich die Radlasten nach dem Hebelgesetz in der Längsrichtung der Brücke verteilen. Steht ein Rad über einem Fahrbahnträger, so ist die druckverteilende Wirkung der Schwelle und der Bettung vernachlässigt worden. Bei der Bestimmung des für die mittleren und seitlichen Längsträger erforderlichen Querschnittes ist wieder auf den Verlust an Widerstandsmoment durch eine senkrechte Nietreihe Rücksicht genommen worden (vergl. S. 18).

a) Angriffs- und Widerstandsmomente der Zwischenquerträger und der mittleren und seitlichen Längsträger.

a) Zwischenquerträger.

Lastenzug A.

Bettungsstärke 36 cm

Bettungsstärke 23 cm

Es genügt ein I-Eisen

Nr. 28

28

28

32

32

_						1000							
Feld-weite λ		smoment olge Verkehrs- last tm	Gesamtes Angriffs- moment M tm	AM Al	Erforder- liches Wider- stands- moment	Es genügt ein I-Eisen Nr.		Feld- weite λ	Angriffs info Eigen- gewicht tm	smoment olge Verkehrs- last tm	Gesamtes Angriffs- moment M tm	AM Al	Erforde liches Wider stands momen
200	0,221	4,092	4,313	0.001	539	28		200	0,164	4,092	4,256	0.001	532
210 220 230 240	0,231 0,241 0,251 0,261	4,092 4,092 4,092 4,092	4,323 4,333 4,343 4,353	0,001 0,001 0,001 0,001	540 542 543 544	28 29 29 29		210 220 230 240	0,171 0,179 0,186 0,193	4,092 4,092 4,092 4,092	4,263 4,271 4,278 4,285	0,001 0,001 0,001 0,001	533 534 535 536
250	0,272	4,092	4,364	0,001	546	29		250	0,201	4,092	4,293	0,001	537
260 270 280 290	0,282 0,293 0,303 0,312	4,092 4,092 4,092 4,092	4,374 4,385 4,395 4,404	0,001 0,001 0,001 0,001	547 548 549 550	29 29 29 29 29	100	260 270 280 290	0,208 0,215 0,223 0,230	4,092 4,092 4,092 4,092	4,300 4,307 4,315 4,322	0,001 0,001 0,001 0,001	538 538 539 540
300	0,324	4,092	4,416	0,001	552	29	186	300	0,238	4,092	4,330	0,001	541
310 320 330 340	0,344 0,355 0,367 0,377	4,139 4,372 4,594 4,804	4,483 4,727 4,961 5,181	0,007 0,024 0,023 0,022 0,021	560 591 620 648	29 29 30 30		310 320 330 340	0,247 0,256 0,267 0,276	4,139 4,372 4,594 4,804	4,386 4,628 4,861 5,080	0,006 0,024 0,023 0,022 0,021	548 579 608 635
350	0,390	5,002	5,392		674	32		350	0,288	5,002	5,290		661
360 370 380 390	0,401 0,411 0,422 0,432	5,177 5,351 5,526 5,678	5,578 5,762 5,948 6,110	0,019 0,018 0,019 0,016	697 720 744 764	32 32 32 32 32	104	360 370 380 390	0,297 0,306 0,315 0,322	5,177 5,351 5,526 5,678	5,474 5,657 5,841 6,000	0,018 0,018 0,018 0,016	684 707 730 750
400	0,443	5,830	6,273	0,016	784	32		400	0,330	5,830	6,160	0,016	770

Lastenzug B.

Bettungsstärke 36 cm

Bettun	gsstärke	23	cm
Decoun	Sponger	20	CIII

Feld-weite λ cm	Eigen- gewicht last m tm tm O,221 4,092 4,313	AM Al	Erforder- liches Wider- stands- moment	Es genügt ein I-Eisen Nr.		
200	0,221	4,092	4,313		539	28
210 220 230 240	0,231 0,241 0,251 0,261	4,092 4,092 4,092 4,092	4,323 4,333 4,343 4,353	0,001 0,001 0,001 0,001	540 542 543 544	28 29 29 29
250	0,272	4,092	4,364	0,001	546	29
260 270 280 290	0,282 0,293 0,303 0,312	4,092 4,092 4,092 4,092	4,374 4,385 4,395 4,404	0,001 0,001 0,001 0,001	547 548 549 550	29 29 29 29 29
300	0,324	4,092	4,416	-0,001	552	29
310 320 330 340	0,352 0,364 0,375 0,388	4,354 4,601 4,834 5,052	4,706 4 965 5,209 5,440	0,029 0,026 0,024 0,023 0,022	589 621 652 680	29 30 30 32
350	0,399	5,259	5,658		708	32
360 370 380 390	0,410 0,420 0,431 0,444	5,453 5,638 5,812 5,978	5,863 6,058 6,243 6,422	0,021 0,020 0,019 0,018 0,017	733 758 781 803	32 32 32 34
400	0,455	6,135	6,590	0,011	824	34

D	ir	cl	S	e	n.	S	c	h	a	D	e	r		Hilfswerte. 4.	Aı	ıfl.
2	**	0.1	* 10	0	**	~	0	**	ce	м	0		2	TITITO W CLOC. 4.	TIC	LIL.

Feld-weite λ cm	Angriffs info Eigen- gewicht tm	woment blge Verkehrs-last tm	Gesamtes Angriffs- moment M tm	AM A \lambda	Erforder- liches Wider- stands- moment	Es genügt ein I-Eisen Nr.
200	0,164	4,092	4,256		532	28
200	0,104	4,002	1,200	0,001	002	20
210	0,171	4,092	4,263		533	28
220	0,179	4,092	4,271	0,001	534	28
230	0,186	4,092	4.278	0,001	535	28
240	0,193	4,092	4,285	0,001	536	28
	0,200	1,002	1,200	0,001		
250	0,201	4,092	4,293	0,002	537	28
	0,201	-,002	2,200	0,001		
260	0,208	4,092	4,300		538	28
270	0,215	4,092	4,307	0,001	538	28
280	0,223	4,092	4,315	0,001	539	28
290	0,230	4,092	4,322	0,001	540	28
		-		0,001		
300	0,238	4,092	4.330		541	28
-	-	-		0,028		
310	0,260	4,354	4,614	0.000	577	29
320	0,269	4,601	4,870	0,026	609	30
330	0.277	4,834	5,111	0,024	639	30
340	0.287	5,052	5,339	0,023	668	32
				0,022	-	
350	0,295	5,259	5,554		695	32
				0,020	-	
360	0,303	5,453	5,756	0,019	720	32
370	0,310	5,638	5,948	0,018	744	32
380	0,318	5,812	6,130		767	32
390	0,329	5,978	6,307	0,018	789	34
400	0,336	6,135	6.471	0,016	809	34

Lastenzug A.

Bettungsstärke 36 cm. β) Mittlerer Längsträger.

γ) Seitlicher Längsträger.

Lastenzug A.

Bettungsstärke 23 cm.

-		β) Mit	tlerer Lan	gstrager.	11					γ) Seit	licher L	ängsträg	ger.				β) Mittle	erer Längs	sträger.						γ) Sei	itlicher	Längsträ	ger.			
Feld-weite λ	Angriffs info Eigen- gewicht tm	moment olge Verkehrs- last tm	Ge- samtes Angriffs- moment M tm	AM Al	Erforder- liches Wider- stands- moment cm ³	Es genügt ein I-Eisen	Feld-weite λ	Angriffs info Eigen- gewicht tm	olge	Ge- samtes Angriffs- moment M tm		Erforder- liches Wider- stands- moment cm ³	Ausreichen Querschr a) oberer Gur	der -46.1	-school Vorhandenes Widerstands- weite k	in		Gesamtes Angriffs- moment M	AM Al	Erforder- liches Wider- stands- moment	Es genügt ein I-Eisen	Feld-weite	inf	smoment olge Verkehrs- last	Gesamtes Angriffs- moment M	AM Al	Erforder- liches Wider- stands- moment		eichender rschnitt ¹)		Vorhandenes Widerstands- moment ¹)
200	0,816	5,455	6,271	0,0355	784	34	200	0,428	2,273	2,701	0,0156	338	8 · 8 · 1	10 · 10 · 1,2	790 em	0,620	5,455	6,075		759	Nr.	200	0,330	tm 2,273	2,603		325	em 39	8. 8.1	10·10·1,2	460
210 220 230 240	0,898 0,983 1,072 1,171	5,728 6,001 6,273 6,546	6,626 6,984 7,345 7,717	0,0358 0,0361 0,0372 0,0416	828 873 913 965	34 34 36 36	210 220 230 240	0,471 0,516 0,563 0,612	2,386 2,500 2,613 2,727	- 2,857 3,016 3,176 3,339	0,0159 0,0160 0,0163 0,0183	357 377 397 417	8 · 8 · 1 8 · 8 · 1 8 · 8 · 1 8 · 8 · 1	$10 \cdot 10 \cdot 1,2$	79 210 79 220	0,682 0,747 0,814 0,890	5,728 6,001 6,273 6,546	6,410 6,748 7,087	0,0335 0,0338 0,0339 0,0349	801 844 886 930	34 34 34 36	210 220 230 240	0,362 0,398 0,433 0,471	2,386 2,500 2,613 2,727	2,748 2,898 2,046	0,0145 0,0150 0,0148 0,0152	344 362 381 400	32 32 32 32 32	8· 8·1 8· 8·1 8· 8·1	10·10·1,2 10·10·1,2 10·10·1,2 10·10·1,2	460 460 460
250	1,269	6,864	8,133	0,0419	1017	36	250	0,663	2,859	3,522	0.0186	440	8 · 8 · 1	10 · 10 · 1,2		0,962	6,864		0,0390	978	36	250	0,509	2,859	3,368	0,0170	421	32		10.10.1,2	1
260 270 280 290	1,371 1,487 1,597 1,719	7,181 7,685 8,188 8,697	8,552 9,172 9,785 10,416	0,0620 0,0613 0,0631 0,0627	1069 1147 1223 1302	38 38 40 40	260 270 280 290	0,716 0,773 0,830 0,889	2,992 3,201 3,411 3,623	3,708 3,974 4,241 4,512	0,0266 0,0267 0,0271 0.0273	463 497 530 564	8 · 8 · 1 8 · 8 · 1 8 · 8 · 1 8 · 8 · 1	$ \begin{array}{c} 10 \cdot 10 \cdot 1,2 \\ 10 \cdot 10 \cdot 1,2 \end{array} $	79 79 260 79 270 79 280	1,038 1,124 1,206	7,181 7,685 8,188	8,219 8,809 9,394	0,0393 0,0590 0,0585 0,0592	1027 1101 1174	36 38 38	260 270 280	0,549 0,591 0,634	2,992 3,201 3,411	3,541 3,792 4,045	0,0173 0,0251 0,0253 0,0257	443 474 506 538	32 32 32	8 · 8 · 1,2 8 · 8 · 1,2	10·10·1,2 10·10·1,2 10·10·1,2 11·11·1,2	517
300	1,837	9,206	11,043	0,0695	1380	40	300	0,950	3,835	4,785	0.0307	598	8. 8.1	11 · 11 · 1,2	79 290	1,289	8,697 9,206	9,986	0,0608	1248 1324	40	300	0,679	3,623	4,561	0,0259	570	32		11.11.1,2	
310 320 330 340	2,019 2,165 2,304 2,443	9,719 10,233 10,750 11,267	11,738 12,398 13,054 13,710	0,0660 0,0656 0,0656 0,0757	1467 1550 1632 1714	42,5 42,5 42,5 45	310 320 330 340	1,043 1,116 1,187 1,259	4,049 4,263 4,478 4,694	5,092 5,374 5,665 5,953	0,0282 0,0291 0,0288 0,0322	637 672 708 744	8 · 8 · 1 8 · 8 · 1 8 · 8 · 1 8 · 8 · 1	$\begin{array}{c} 11 \cdot 11 \cdot 1,2 \\ 11 \cdot 11 \cdot 1,2 \end{array}$	79 310 79 320	1,493 1,609 1,724 1,838	9,719 10,233 10,750 11,267	11,212 11,842 12,474	0,0618 0,0630 0,0632 0,0631	1402 1480 1559 1638	40 42,5 42,5 42,5 42,5	310 320 330 340	0,780 0,833 0,897 0,957	4,049 4,263 4,478 4,694	4,829 5,096 5,375 5,651	0,0268 0,0267 0,0279 0,0276	604 637 672 706	32 34 36 36	10·10·1,2 10·10·1,2 10·10·1,2	11·11·1,2 11·11·1,2 11·11·1,2 11·11·1,2	2 606 2 660 717
350	2,615	11,852	14,467	0,0734	1808	45	350	1,338	4,937	6,275	0.0321	784	8.8.1	11 · 11 · 1,2	790 350	1,964	11,852		0,0711	1727	45	350	1,022	4,937	5,959	0,0308	745	38		12.12.1,3	
360 370 380 390 400	2,764 2,916 3,097 3,259 3,426	12,437 13,215 13,992 14,769	15,201 16,131 17,089 18,028 18,973	0,0930 0,0958 0,0939 0,0945	1900 2016 2136 2254 2372	45 47,5 47,5 47,5 50	360 370 380 390	1,415 1,503 1,584 1,668	5,181 5,505 5,829 6,153	6,596 7,008 7,413 7,821	0,0412 0,0405 0,0408 0,0417	824 876 927 978	8 · 8 · 1,2 9 · 9 · 1,3 9 · 9 · 1,3	2 12 · 12 · 1,3 2 12 · 12 · 1,3 3 12 · 12 · 1,3 3 12 · 12 · 1,3	87 360 99 370 99 380 390	2,107 2,233 2,353 2,498	12,437 13,215 13,992 14,769	14,544 15,448 16,345 17,267	0,0728 0,0904 0,0897 0,0922	1818 1931 2043 2158	45 45 47,5 47,5	360 370 380 390	1,086 1,161 1,224 1,287	5,181 5,505 5,829 6,153	6,267 6,666 7,053 7,440	0,0308 0,0399 0,0387 0,0387	783 833 882 930	40 40 42 44	10·10·1,2 10·10·1,2 10·10·1,2	12·12·1,3 12·12·1,3 12·12·1,3 12·12·1,3	8 834 8 834 8 895
200	0,420	10,041	10,910		2012	1 50	400	1,761	6,477	8,238		1030	11.11.1,2	2 12 • 12 • 1,3	400	2,625	15,547	18,172	0,0905	2272	47,5	400	1,360	6,477	7,837	0,0397	980	46	10-10-1,2	12-12-1,3	1020

Lastenzug B.

Bettungsstärke 36 cm.

Lastenzug B.

		β) Mit	tlerer Lär	gsträger						y) Seitl	licher L	ängsträg	ger.									Bettur	gsstärk	e 23 cm.							
					1		-								-		β) Mittle	erer Längs	sträger						y) Se	itlicher	Längsträ	ger.			
Feldweite λ	-	Verkehrs- last tm	Ge- samtes Angriffs- moment M tm	AM A \lambda	Erforder- liches Wider- stands- moment cm ³	Es genügt ein I-Eisen Nr.	Feld-weite λ		Verkehrs- last	Ge- samtes Angriffs- moment M tm	<u>AM</u> <u>A).</u>	Erforder- liches Wider- stands- moment cm ³	reicher Quersch a) oberer	anitt 1) -46 · 1	Feld-weite keite	in	fsmoment folge Verkehrs- last	Gesamtes Angriffs- moment M	AM Al	Erforder- liches Wider- stands- moment	Es genügt ein I-Eisen	Feld-weite	in	fsmoment folge Verkehrs- last	Gesamtes Angriffs- moment M	AM Ah	Erforder- liches Wider- stands- moment	Quer Steg-	reichender rschnitt¹)		
200	0,816	5,455	6,271		784	34	200	0,428	2,273	2,701		338	8. 8.1	10 - 10 - 1,2	7.0 em	tm	tm	tm		cm ³	Nr.	em	tm	tm	tm	1 1	cm ³	em	Gurtw	inkel	cm ³
210	0,898	5,728	6,626	0,0355	828	34	210	0,471	2,386	2,857	0,0156	357	8 · 8 · 1	10 · 10 · 1,2	790 200	0,620	5,455	6,075	0.0335	759	34	200	0,330	2,273	2,603	0.0145	325	32	8 · 8 · 1	10.10.1,2	2 460
220 230 240	0,983 1,072 1,171	6,001 6,273 6,546	6,984 7,345 7,717	0,0358 0,0361 0,0372 0,0416	873 913 965	34 36 36	220 230 240	0,516 0,563 0,612	2,500 2,613 2,727	3,016 3,176 3,339	0,0159 0,0160 0,0163 0,0183	377 397 417	8 · 8 · 1 8 · 8 · 1 8 · 8 · 1	$10 \cdot 10 \cdot 1,2$ $10 \cdot 10 \cdot 1,2$	790 210 790 220 790 230 240	0,682 0,747 0,814 0,890	5,728 6,001 6,273 6,546	6,410 6,748 7,087	0,0338 0,0339 0,0349	801 844 886 930	34 34 34 36	210 220 230 240	0,362 0,398 0,433 0,471	2,386 2,500 2,613 2,727	2,748 2,898 3,046 3,198	0,0145 0,0150 0,0148 0,0152	344 362 381 400	32 32 32 32	8 · 8 · 1 8 · 8 · 1	10·10·1,2 10·10·1,2 10·10·1,2 10·10·1,2	2 460 2 460
250	1,269	6,864	8,133	0,0419	1017	36	250	0,663	2,859	3,522		440	8 . 8 . 1	10 - 10 - 1,2	790				0,0390			-				0,0170		20			
260 270	1,371 1,487	7,181 7,685	8,552 9,172	0,0620	1069	38	260	0,716	2,992	3,708	0,0186	463	8 . 8 . 1	10 - 10 - 1,2	790 250	0,962	6,864		0,0393	978	36	250	0,509	2,859	3,368	0,0173	421	32		10-10-1,2	
280 290	1,597	8,188 8,697	9,785 10,416	0,0613 0,0631 0,0627	1147 1223 1302	38 40 40	270 280 290	0,773 0,830 0,889	3,201 3,411 3,623	3,974 4,241 4,512	0,0267 0,0271 0,0273	497 530 564	8 · 8 · 1 8 · 8 · 1 8 · 8 · 1	$ \begin{array}{c} 10 \cdot 10 \cdot 1,2 \\ 10 \cdot 10 \cdot 1,2 \\ 10 \cdot 10 \cdot 1,2 \end{array} $	790 260 790 270 790 280 290	1,038 1,124 1,206 1,289	7,181 7,685 8,188 8,697	8,219 8,809 9,394 9,986	0,0590 0,0585 0,0592	1027 1101 1174 1248	36 38 38 40	260 270 280 290	0,549 0,591 0,634 0,679	2,992 3,201 3,411 3,623	3,541 3,792 4,045 4,302	0,0251 0.0253 0,0257	443 474 506 538	32 32 32 32	8. 8.1,2 8. 8.1,2 9. 9.1,3	10-10-1,2	2 517 2 517
300	1,837	9,206	11,043	0,0760	1380	40	300	0,950	3,835	4,785		598	8 . 8 . 1	11 - 11 - 1,2	79	1			0,0608				,			0,0259					
310 320 330 340	2,074 2,213 2,350 2,520	9,729 10,243 10,925 11,608	11,803 12,456 13,275 14,128	0,0653 0,0819 0,0853	1476 1557 1660 1766	42,5 42,5 42,5 45	310 320 330 340	1,043 1,116 1,197 1,275	4,049 4,263 4,546 4,832	5,092 5,374 5,743 6,107	0,0307 0,0282 0,0369 0,0364	637 672 718 764	8 · 8 · 1 8 · 8 · 1 8 · 8 · 1 8 · 8 · 1	$11 \cdot 11 \cdot 1,2$ $11 \cdot 11 \cdot 1,2$	79 79 310 79 320 79 330	1,388 1,558 1,663 1,766	9,206 9,729 10,243 10,925	10,594 11,287 11,906 12,691	0,0693 0,0619 0,0785	1324 1411 1489 1587	42 5 42,5 42,5	310 320 330	0,726 0,780 0,833 0,902	3,835 4,049 4,263 4,546	4,829 5,096 5,448	0,0268 0,0267 0,0352	604 637 681	34	9· 9·1,3 10·10·1,2 10·10·1,2 10·10·1,2	11·11·1,2 11·11·1,2	2 606 2 660
350	2,667	12,285	14,952	0,0824	1869	45	350	1,358	5,114	6,472	0,0365	809	8. 8.1	2 12 · 12 · 1,3	87 340	1,898	11,608	13,506	0,0815	1689	45	340	0,969	4,832	5,801	0,0353	726		10.10.1,2		
360	2,841	13,104	15,945	0,0993	1994	47,5	360	1,435	5,455	6,890	0,0418	862		2 12 · 12 · 1,3	87 350	2,009	12,285	14,294	0,0933	1787	45	350	1,026	5,114	6,140	,	768	38	10-10-1,2	12.12.1,	3 775
370 380 390	2,998 3,160 3,361	13,923 14,742 15,561	16,921 17,902 18,922	0,0976 0,0981 0,1020 0,0992	2116 2238 2366	47,5 47,5 50	370 380 390	1,521 1,603 1,697	5,796 6,137 6,478	7,317 7,740 8,175	0,0427 0,0423 0,0435	915 968 1022	$9 \cdot 9 \cdot 1, \\ 9 \cdot 9 \cdot 1,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99 360 99 370 109 380	2,123 2,262 2,384	13,104 13,923 14,742	15,227 16,185 17,126	0,0958 0,0958 0,0941 0,0954	1904 2024 2141	45 47,5 47,5	360 370 380	1,086 1,149 1,213	5,455 5,796 6,137	6,541 6,945 7,350	0,0401 0,0404 0,0405 0,0412	818 869 919	42 44	10·10·1,2 10·10·1,2 10·10·1,2	12 · 12 · 1,3 12 · 12 · 1,3	3 895 3 957
400	3,534	16,380	19,914	0,0332	2490	50	400	1,784	6,819	8,603	0,0428	1076	11 - 11 - 1,	,2 12 · 12 · 1,3		2,519	15,561		0,0974	2260	47,5	390	1,284	6,478	7,762	0,0407	971		10.10.1,2	107-11-10	
der E	1) Da Sestimmur	der unte g des Wi	ere Gurtw derstandsr	inkel in nomentes	erster Lin	nie den Z h angeno	Zug der mmen,	Buckel	platten au untere Gu	ifnehmen rtwinkel	muß, den glei	ist sein ichen Qu	Querschnierschnitt	nitt verstärkt. hat, wie der o	here	1) Da	der unter	19,054 ere Gurtw standsmon	inkel i	in erster	50 Linie de h angene	400 en Zug ommen,	l 1,350 der Buc daß der	6,819 ekelplatten r untere G	8,169 aufnehm	nen muß	, ist sein eichen Q	Quers	chnitt vers	stärkt. B	Bei der
4																														5*	

b) Auflagerdrucke des mittleren Längsträgers.

Lastenzug A.

Bettungsstärke 36 cm

Bettungsstärke 23 cm

Feld-weite λ		gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ve fü 2 d im Quer-	orderlich rwendun ir die Lä Nietdurch em im Längs- träger	ing von I ingsträg hmesser 2,3 im Quer-	-Eisen er	Feld-weite λ	in	gerdruck folge Verkehrs- last t	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	bei Ve	orderlich rwendur ir die Li Nietdurch em im Längs- träger	g von I Ingsträg hmesser 2,3 im Quer-	-Eisen ger
200	1,237	13,638	14,875	0.0450	7	5	5	4	200	0,915	13,638	14,553	0.0110	7	4	5	4
210 220 230 240	1,297 1,359 1,419 1,491	14,030 14,379 14,707 15,001	15,327 15,738 16,126 16,492	0,0452 0,0411 0,0388 0,0366 0,0333	7 7 7 7	5 5 5 5	5 6 6 6	4 4 4 4	210 220 230 240	0,965 1,009 1,052 1,105	14.030 14,379 14,707 15,001	14.995 15,388 15,759 16,106	0,0442 0,0393 0,0371 0,0347	7 7 7 7	5 5 5 5	5 5 6 6	4 4 4 4
250	1,551	15,274	16,825	0.0311	8	5	6	4	250	1,149	15,274	16,423	0,0317	7	5	6	4
260 270 280 290	1,611 1,682 1,743 1,819	15,525 15,754 15,972 16,180	17,136 17,436 17,715 17,999	0,0300 0,0279 0,0284	8 8 8 8	5 5 5 5	6 6 6	4 4 4 4	260 270 280 290	1,194 1,248 1,293 1,337	15,525 15,754 15,972 16,180	16,719 17,002 17,265 17,517	0,0296 0,0283 0,0263 0,0252	8 8 8 8	5 5 5 5	6 6 6	4 4 4 4
300	1,880	16,365	18,245	0,0246	8	. 5	6	4	300	1,394	16,365	17,759	0,0242	8	5	6	4
310 320 330 340	1,966 2,035 2,107 2,176	16,540 16,703 16,956 17,374	18,506 18,738 19,063 19,550	0,0261 0,0232 0.0325 0,0487	8 8 9 9	5 5 5 5	6 7 7 7	4 4 4 4	310 320 330 340	1,448 1,518 1,575 1,628	16,540 16,703 16,956 17,374	17,988 18,221 18,531 19,002	0,0229 0,0233 0,0310 0,0471	8 8 8 9	5 4 5 5	6 6 6 7	4 4 4 4
350	2,266	17,765	20,031	0,0481	9	5	7	4	350	1,687	17,765	19,452	0,0450	9	5	7	4
360 370 380 390	2,336 2,407 2,501 2,574	18,135 18,487 18,819 19,130	20,471 20,894 21,320 21,704	0,0440 0,0423 0,0426 0,0384 0,0374	9 9 10 10	5 5 5 5	7 7 7 7	4 4 4 4	360 370 380 390	1,762 1,817 1,872 1,951	18,135 18,487 18,919 19,130	19,897 20,304 20,691 21,081	0,0445 0,0407 0 0387 0,0390 0,0354	9 9 9 9	5 5 5 5	7 7 7 7	4 4 4 4
400	2,646	19,432	22,078	0,0014	10	5	8	4	400	2,003	19,432	22,435	0,0554	10	5	8	4

Lastenzug B.

991		В	ettungssti	ärke 36	6 cm						I	Bettungsst	ärke 23	cm	i panilis		
Feld-weite		erdruck olge Verkehrs-	Gesamter Auflager- druck	$\frac{dA}{d\lambda}$	bei Ve	forderlich rwendur ir die Li Nietdurc em	ng von I ängsträg chmesser	-Eisen ger	Feld weit \lambda	- in	gerdruck folge	Gesamter Auflager- druck	$\frac{\Delta A}{\Delta \lambda}$	bei Ve	orderlich rwendur die La Nietdurch	ng von I ingsträg chmesse	-Eiser ger
em	gewicht	last	t		im Quer- träger	im Längs- träger	im Quer- träger	im Längs- träger	em	gewicht	last	t	1703	im Quer- träger	im Längs- träger	im Quer- träger	im Längs- träger
200	1,237	13,638	14,875	0.0452	7	5	5	4	200	0,915	13,638	14,553	0,0442	7	4	5	4
210 220 230 240	1,297 1,359 1,419 1,491	14,030 14,379 14,707 15,001	15,327 15,738 16,126 16,492	0,0411 0,0388 0,0366	7 7 7 7	5 5 5 5	5 6 6 6	4 4 4 4	210 220 230 240	0,965 1.009 1,052 1,105	14,030 14,379 14,707 15,001	14,995 15,388 15,759 16,106	0,0393 0,0371 0,0347	7 7 7 7	5 5 5 5	5 5 6 6	4 4 4 4 4
250	1,551	15,274	16,825	0,0333	8	5	6	4	250	1,149	15,274	16,423	0,0317	7	5	6	4
260 270 280 290	1,611 1,682 1,743 1,819	15,525 15,754 15,972 16,180	17,136 17,436 17,715 17,999	0,0300 0,0279 0,0284	8 8 8 8	5 5 5 5	6 6 6	4 4 4 4	260 270 280 290	1,194 1,248 1,293 1,337	15,525 15,754 15,972 16,180	16,719 17,002 17,265 17,517	0,0283 0,0263 0,0252	8 8 8	5 5 5 5	6 6 6 6	4 4 4 4
300	1,880	16,365	18,245	0,0246	8	5	6	4	300	1,394	16,365	17,759	0,0242	8	5	6	4
310 320 330 340	2,026 2,093 2,157 2,245	16,910 17,404 17,869 18,307	18,936 19,497 20,026 20,552	0,0561 0,0529 0,0526	9 9 9 9	5 5 5 5	7 7 7 7	4 4 4 4	310 320 330 340	1,527 1,578 1,626 1,697	16,910 17,404 17,869 18,307	18,437 18,982 19,495 20,004	0,0678 0,0545 0,0513 0,0509	8 9 9	5 5 5 5	6 7 7 7	4 4 4 4
350	2,309	18,720	21,029	0,0477	9	5	7	4	350	1,746	18,720	20,466	0,0462	9	5	7	4
360 370 . 380 390	2,397 2,462 2,528 2,624	19,110 19,479 19,828 20,160	21,507 21,941 22,356 22,784	0,0434 0,0415 0,0428	10 10 10 10	5 5 5 5	7 8 8 8	4 4 4 4	360 370 380 390	1,794 1,867 1,916 1,971	19,110 19,479 19,828 20,160	20,904 21,346 21,744 22,131	0,0438 0,0442 0,0398 0,0387	9 10 10 10	5 5 5 5	7 7 7 8	4 4 4 4
400	2,690	20,475	23,165	0,0381	10	5	8	4	400	2,046	20,475	22,521	0,0390	10	5	8	4

Vorbemerkung: Während bei allen vorstehenden Angaben das Eigengewicht der Träger selbst berücksichtigt ist, sind in den nachstehenden Zusammenstellungen die Momente und Auflagerdrucke der Haupt-querträger aus dem Eigengewicht nicht angegeben, weil das Eigengewicht zu sehr von der zur Verfügung stehenden Bauhöhe beeinflußt wird. Zu den angegebenen Gesamtmomenten und Gesamtauflagerdrucken sind also noch die Momente und die Auflagerdrucke aus dem Eigengewicht hinzuzuzählen.¹)

c) Angriffsmomente der Hauptquerträger.

Lastenzug A. Brückenbreite 4,7 m. Bettungsstärke 36 cm.

Feld-weite λ	im Pu	nent inkte I olge Verkehrs- last tm	Gesamt- moment im Punkte I MI .tm	$\frac{\Delta M_{\rm I}}{\Delta \lambda}$	im Pu inf	ment nkte II olge Verkehrs- last tm	Gesamt- moment im Punkte II $M_{\rm II}$ tm	$\frac{\Delta M_{\rm II}}{\Delta \lambda}$	im Pui	ment nkte III olge Verkehrs- last tm	Gesamt- moment im Punkte III $M_{ m III}$ tm	$\frac{\Delta M_{\rm HI}}{\Delta \lambda}$
200	2,325	9,975	12,300	-	4,004	20,857	24,861		5,013	22,800	27,813	
210 220 230 240	2,440 2,555 2,670 2,793	10,450 10,883 11.276 11,637	12,890 13,438 13,946 14,450	0,0590 0,0548 0,0508 0,0484 0,0446	4,201 4,400 4,598 4.814	21,675 22,400 23,070 23,685	25,876 26,800 27,668 28,499	0,1015 0,0924 0,0868 0,0831 0,0762	5,259 5,509 5,755 6,030	23,885 24,875 25,773 26,599	29,144 30,384 31,528 32,629	0,1331 0,1240 0,1144 0,1101 0,1005
250	2,906	11,970	14,876		5,010	24,251	29,261		6,274	27,360	33,634	
260 270 280 290	3,020 3,141 3,256 3,382	12,277 12,560 12,826 13,073	15,297 15,701 16,082 16,455	0,0421 0,0404 0,0381 0,0373	5,205 5,418 5,618 5,840	24,774 25,256 25,706 26,124	29,979 30,674 31,324 31,964	0,0718 0,0695 0,0650 0,0640	6,519 6,789 7,038 7,321	28,062 28,710 29,316 29,882	34,581 35,499 36,354 37,203	0,0947 0,0918 0,0855 0,0849
300	3,500	13,301	16,801	0,0346	6,041	26,514	32,555	0,0591	7,572	30,402	37,974	0,0771
310 320 330 340	3,722 3,844 3,962 4,101	13,514 13.716 13,905 14,083	17.236 17,560 17,867 18.184	0,0435 0,0324 0,0307 0,0317 0,0495	6,422 6,633 6,838 7,084	26,878 27,222 27,543 27,844	33,300 33,855 34,381 34,928	0,0745 0,0555 0,0526 0,0547 0,0560	8,067 8,332 8,589 8,906	30,889 31,350 31,783 32,189	38,956 39,682 40,372 41,095	0,0982 0,0726 0,0690 0,0723 0,1099
350	4,232	14.447	18,679	0,0563	7,300	28,188	35,488	1	9,173	33,021	42,194	
360 370 380 390	4,367 4.495 4,617 4,767	14,875 15,280 15,660 16,017	19,242 19,775 20,277 20,784	0,0533 0,0502 0,0507	7.543 7,758 7,969 8,233	28,785 29,453 30,122 30,729	36,328 37,211 38,091 38,962	0,0840 0,0883 0,0880 0,0871	9,483 9,754 10,018 10,359	34,000 34,925 35,795 36,611	43,483 44,679 45,813 46,970	0,1289 0,1196 0,1134 0,1157
400	4,887	16,363	21,250	0,0466	8,440	31,316	39,756	0,0794	10,620	37,400	48,020	0,1050

Lastenzug A. Brückenbreite 4,8 m. Bettungsstärke 36 cm.

Feld-weite λ	im Pu	ment inkte I olge Verkehrs- last tm	Gesamt- moment im Punkte I $M_{ m I}$ tm	$\frac{\Delta M_{\rm I}}{\Delta \lambda}$	im Pu	ment mkte II folge Verkehrs- last tm	Gesamt- moment im Punkte II MII tm	$\frac{\Delta M_{\rm II}}{\Delta \lambda}$	im Purinf	ment nkte III olge Verkehrs- last tm	Gesamt- moment im Punkte III $M_{ m III}$ tm	Δ M _{III} Δ λ
200	2,492	10,688	13,180	0.0000	4.170	21,569	25,739	0.404	5,179	23,513	28,692	
210 220 230 240	2,614 2,738 2,861 2,993	11,196 11,660 12,081 12,468	13.810 14,398 14,942 15,461	0,0630 0,0588 0,0544 0,0519	4,375 4,583 4,789 5,014	22,411 23,177 23,875 24,516	26,786 27,760 28,664 29,530	0,1047 0,0974 0,0904 0,0866	5,433 5,691 5,946 6,229	24,632 25,652 26,579 27,430	30,065 31,343 32,525 33,659	0,1373 0,1278 0,1182 0,1134
250	3,114	12,825	15,939	0,0478	5,218	25,106	30,324	0,0794	6,482	28,215	34,697	0,1038
260 270 280 290	3,236 3,365 3,488 3,623	13,154 13,458 13,742 14,007	16,390 16,823 17,230 17,630	0,0433 0,0407 0,0400	5,421 5,643 5,850 6.081	25,650 26,153 26,622 27,058	31,071 31,796 32,472 33,139	0,0725 0,0676 0,0667	6,735 7,014 7,270 7,562	28,939 29,607 30,232 30,816	35,674 36,621 37,502 38,378	0,0977 0,0947 0,0881 0,0876
300	3,750	14,251	18,001	0,0371	6,291	27,464	33,755	0,0616	7,822	31,352	39,174	0,0796
310 320 330 340	3,988 4,119 4,245 4,394	14,479 14,695 14,898 15,089	18,467 18,814 19,143 19,483	0,0466 0,0347 0,0329 0,0340 0,0530	6,688 6,908 7,121 7,377	27,843 28,202 28,537 28,850	34,531 35,110 35,658 36,227	0,0776 0,0579 0,0548 0,0569 0 0583	8,333 8,607 8,872 9,199	31,855 32,330 32,776 33,195	40,188 40,937 41,648 42,394	0,1014 0,0749 0,0711 0,0746 0,1134
350	4,534	15,479	20,013	0.0604	7,602	29,208	36,810		9,475	34,053	43,528	
360 370 380 390	4,679 4,817 4,947 5,108	15,938 16,371 16,779 17,162	20,617 21,188 21,726 22,270	0,0571 0,0538 0,0544	7,855 8,079 8,298 8,574	29,848 30,544 31,240 31,873	37,703 38,623 39,538 40,447	0,0893 0,0920 0,0915 0,0909	9,795 10,075 10,347 10,699	35,063 36,016 36.914 37,755	44,858 46,091 47,261 48,454	0,1330 0,1233 0,1170 0,1193
400	5,237	17,531	22,768	0,0498	8,789	32,485	41,274	0,0827	10,969	38,569	49,538	0,1084

¹) Diese Bemerkung stimmt mit den Angaben auf Seite 32 nicht ganz überein. Seite 32 war bereits gedruckt, als der Verfasser sich entschloß, die Momente aus dem Eigengewicht nicht anzugeben.

Lastenzug A.

Brückenbre	ite 4	.9 m.	Bettungss	tärke	36 cm	n.
DIGOTOTOLO	TOO T	,0,	TO COURTED DY	COLLEG	OO OH	

Feld-weite	im Pu	nent nkte I olge	Gesamt- moment im Punkte I	$\frac{\Delta M_{\rm I}}{\Delta \lambda}$	im Pu	nent nkte II olge	Gesamt- moment im Punkte II	$\frac{\Delta M_{\rm II}}{\Delta \lambda}$	Mon im Pur info	kte III	Gesamt- moment im Punkte III	ΔM _{III}
^	ständiger Last	Verkehrs- last	M_{I}	AL	ständiger Last	Verkehrs- last	$M_{\rm II}$	an.	ständiger Last	Verkehrs- last	$M_{\rm III}$	4 %
em	tra	tm	tm		tm	tm	tm		tm	tm	tm	
200	2,658	11,400	14,058		4,336	22,282	26,618		5,345	24,225	29,570	0.1445
210 220 230 240	2,788 2,920 3,051 3,192	11,943 12,437 12,887 13,299	14,731 15,357 15,938 16,491	0,0673 0,0626 0,0581 0,0553	4,550 4,765 4,980 5,213	23,157 23,955 24,681 25,348	27,707 28,720 29,661 30,561	0,1089 0,1013 0,0941 0,0900	5,607 5,874 6,136 6,429	25,378 26,430 27,384 28,261	30,985 32,304 33,520 34,690	0,1415 0,1319 0,1216 0,1170
250	3,322	13,680	17,002	0,0511	5,425	25,961	31,386	0,0825	6,689	29,070	35,759	0,1069
260 270 280 290	3,451 3 590 3,721 3,865	14,031 14,355 14,658 14,941	17,482 17,945 18,379 18,806	0,0480 0,0463 0,0434 0,0427	5,637 5,867 6,083 6,323	26,527 27,050 27,538 27,992	32,164 32,917 33,621 34,315	0,0778 0,0753 0,0704 0,0694	6,950 7,238 7,503 7,804	29,816 30,504 31,149 31,749	36,766 37,742 38,652 39,553	0,1007 0,0976 0,0910 0,0901
300	4,000	15,201	19,201	0,0395	6,541	28,414	34,955	0,0640	8,072	32,302	40,374	0,0821
310 320 330 340	4,254 4,394 4,528 4,687	15,445 15,675 15,892 16,095	19,699 20,069 20,420 20,782	0,0498 0,0370 0,0351 0,0362 0,0564	6,954 7,182 7,404 7,670	28,808 29,181 29,530 29,856	35,762 36,363 36,934 37,526	0,0807 0,0601 0,0571 0,0592 0.0616	8,599 8,881 9,155 9,492	32,820 33,309 33,770 34,201	41,419 42,190 42,925 43,693	0,1045 0,0771 0,0735 0,0768 0,1169
350	4,836	16,510	21,346	-	7,905	30,237	38,142		9,777	35,085	44,862	
360 370 380 390	4,990 5,138 5,277 5,448	17,000 17,462 17,898 18,306	21,990 22,600 23,175 23,754	0,0644 0,0610 0,0575 0,0579	8,167 8,400 8,628 8,914	30,910 31,635 32,359 33,017	39,077 40,035 40,987 41,931	0,0935 0,0958 0,0952 0,0944	10,107 10,396 10,677 11,040	36,125 37,108 38,032 38,899	46,232 47,504 48,709 49,939	0,1370 0,1272 0,1205 0,1230
400	5,586	18,700	24,286	0,0532	9,138	33,654	42,792	0,0861	11,318	39,738	51,056	0,1117

Lastenzug A.

Brückenbreite 5,0 m, Bettungsstärke 36 cm.

Feld- weite	Mon im Pu info	nkte I	Gesamt- moment im	$_{\it d}M_{ m I}$	Mon im Pur info	nkte II	Gesamt- moment im	$\Delta M_{ m II}$		nent akte III olge	Gesamt- moment im	$_{M_{ m III}}$
λ	ständiger Last	Verkehrs- last	Punkte I $M_{ m I}$	d l.	ständiger Last	Verkehrs- last	Punkte II $M_{\rm II}$	Δλ	ständiger Last	Verkehrs- last	$M_{ m III}$	Δλ
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	2,824	1 2,113	14,937	0,0714	4,503	22,994	27,497	0,1131	5,511	24,938	30,449	0.1456
210 220	2,962 3,103	12,689 13,215	15,651 16,318	0,0667	4,724 4,948	23,904 24,733	28,628 29,681	0,1053	5,782 6,056	26,125 27,207	31,907 33,263	0,1458
230 240	3,242 3,392	13,692 14,131	16,934 17,523	0,0616 0,0589	5,171 5,413	25,486 26,179	30,657 31,592	0,0976 0,0935	6,327 6,628	28,179 29,092	34,506 35,720	0,1243 0,1214
250	3,529	14,535	18,064	0,0541	5,633	26,816	32,449	0,0857	6,897	29,925	36,822	0,1102
260 270 280 290	3,667 3,814 3,953 4,106	14,908 15,252 15,574	18,575 19,066 19,527	0,0491 0,0461 0,0454	5,853 6,091 6,315	27,399 27,947 28,454	33,252 34,038 34,769	0,0786 0,0731 0,0720	7,166 7,463 7,736	30,683 31,401 32,065	37,849 38,864 39,801	0,1027 0,1015 0,0937 0,0928
300	4,250	15,875	19,981	0,0420	6,564	28,925	35,489	0,0666	8,046	32,683	40,729	0,0845
310 320 330 340	4,519 4,668 4,811 4,980	16,410 16,655 16,885 17,100	20,929 21,323 21,696 22,080	0,0528 0,0394 0,0373 0,0384	7,220 7,457 7,687 7,963	29,774 30,161 30,523 30,862	36,994 37,618 38,210 38,825	0,0839 0,0624 0,0592 0,0615	8,865 9,156 9,438 9,785	33,785 34,289 34,763 35,207	42,650 43,445 44,201 44,992	0,1070 0,0795 0,0756 0,0791
350	5,138	17,542	22,680	0,0600	8,207	31,266	39,473	0,0648	10,080	36,117	46,197	0,1203
360 370 380 390	5,302 5,459 5,607 5,789	18,063 18,554 19,016 19,450	23,365 24,013 24,623 25,239	0,0685 0,0648 0,0610 0,0616	8,479 8,722 8,958 9,255	31,973 32,725 33,477 34,161	40,452 41,447 42,435 43,416	0,0979 0,0995 0,0988 0,0981	10,419 10,717 11,007 11,380	37,188 38,199 39,151 40,044	47,607 48,916 50,158 51,424	0,1410 0,1309 0,1242 0,1260
400	5,935	19,869	25,804	0,0565	9,488	34,822	44,310	0,0894	11,667	40,906	52,573	0,1149

Lastenzug B. Brückenbreite 4,7 m, Bettungsstärke 36 cm.

Feld-weite	Mor im Pu info		Gesamt- moment im Punkte I	$\frac{AM_{\rm I}}{A\lambda}$	im Pu	nent nkte II olge	Gesamt- moment im Punkte II	ΔM _{II}	im Pur	nent nkte III olge	Gesamt- moment im Punkte III	ΔM _{III}
λ	ständiger Last	Verkehrs- last	$M_{ m I}$	A K	ständiger Last	Verkehrs- last	$M_{\rm II}$	21.	ständiger Last	Verkehrs- last	$M_{ m III}$	Z A
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	2,325	10,500	12,825	0,0619	4,004	21,954	25,958	0,1055	5,013	24,000	29,013	0,1398
210 220 230 240	2,440 2,555 2,670 2,793	11,004 11,452 11,872 12,250	13,444 14,007 14,542 15,043	0,0563 0,0535 0,0501	4,201 4,400 4,598 4,814	22,812 23,574 24,288 24,931	27,013 27,974 28,886 29,745	0,0961 0,0912 0,0859 0.0792	5,259 5,509 5,755 6,030	25,152 26,176 27,135 27,998	30,411 31,685 32,890 34,028	0,1274 0,1205 0,1138 0,1045
250	2,906	12,600	15,506	0,0463	5,010	25,527	30,537	0,0743	6,274	28,799	35,073	0,1043
260 270 280 290	3,020 3,141 3,256 3,382	12,922 13,223 13,503 13,762	15,942 16,364 16,759 17,144	0,0422 0,0395 0,0385	5,205 5,418 5,618 5,840	26,075 26,587 27,063 27,504	31,280 32,005 32,681 33,344	0,0725 0,0676 0,0663	6,519 6,789 7,038 7,321	29,535 30,224 30,864 31,456	36,054 37,013 37,902 38,777	0,0959 0,0889 0,0875
300	3,500	14,000	17,500	0,0356	6,041	27,909	33,950	0,0606	7,572	32,000	39,572	0,0795
310 320 330 340	3,722 3,844 3,962 4,101	14,679 15,316 15,911 16,471	18,401 19,160 19,873 20,572	0,0901 0,0759 0,0713 0,0699	6,422 6,633 6,838 7,084	29,064 30,147 31,160 32,112	35,486 36,780 37,998 39,196	0,1294 0,1218 0,1198 0,1122	8,067 8,332 8,589 8,906	33,551 35,006 36,367 37,647	41,618 43,338 44,956 46,553	0,1720 0,1618 0,1597 0,1484
350	4,232	17,003	21,235	0,0663	7,300	33,018	40,318	1	9,173	38,864	48,037	
360 370 380 390	4,367 4,495 4,617 4,767	17,500 17,976 18,424 18,844	21,867 22,471 23,041 23,611	0,0632 0,0604 0,0570 0,0570	7,543 7,758 7,969 8,233	33,863 34,673 35,435 36,149	41,406 42,431 43,404 44,382	0,1088 0,1025 0,0973 0,0978	9,483 9,754 10,018 10,359	40,000 41,087 42,111 43,070	49,483 50,841 52,129 53,429	0,1446 0,1358 0,1288 0,1300
400	4,887	19,250	24,137	0,0526	8,440	36,840	45,280	0,0898	10,620	43,998	54,618	0,1189

Lastenzug B. Brückenbreite 4,8 m, Bettungsstärke 36 cm.

Feld-weite λ	Mon im Pu info ständiger Last tm	nkte I	Gesamt- moment im Punkte I $M_{ m I}$ tm	$\frac{dM_{\rm I}}{d\lambda}$	im Pu	nent nkte II blge Verkehrs- last tm	Gesamt- moment im Punkte II $M_{\rm II}$ tm	$\frac{\Delta M_{\rm H}}{\Delta \lambda}$	im Pur	nent hkte III blge Verkehrs- last tm	Gesamt- moment im Punkte III $M_{ m III}$ tm	$\frac{M_{\rm III}}{M_{\rm A}}$
200	2,492	11,250	13,742		4,170	22,704	26,874		5,179	24,750	29,929	
210 220 230 240	2,614 2,738 2,861 2,993	11,790 12,270 12,720 13,125	14,404 15,008 15,581 16,118	0,0662 0,0604 0,0573 0,0537 0,0496	4,375 4,583 4,789 5,014	23,598 24,392 25,136 25,806	27,973 28,975 29,925 30,820	0,1099 0,1002 0,0950 0,0895	5,433 5,691 5,946 6,229	25,938 26,994 27,983 28,873	31,371 32,685 33,929 35,102	0,1442 0,1314 0,1244 0,1173
250	3,114	13,500	16,614		5,218	26,427	31,645	0,0825	6,482	29,699	36,181	0,1079
260 270 280 290	3,236 3,365 3,488 3,623	13,845 14,168 14,468 14,745	17,081 17,533 17,956 18,368	0,0467 0,0452 0,0423 0,0412	5,421 5,643 5,850 6,081	26,998 27,532 28,027 28,487	32,419 33.175 33,877 34,568	0,0774 0,0756 0,0702 0,0691	6,735 7,014 7,270 7,562	30,458 31,168 31,828 32,439	37.193 38,182 39,098 40,001	0,1012 0,0989 0,0916 0,0903
300	3,750	15,000	18,750	0,0382	6,291	28,909	35,200	0,0632	7,822	33,000	40,822	0,0821
310 320 330 340	3,988 4,119 4,245 4,394	15,728 16,410 17,048 17,648	19,716 20,529 21,293 22,042	0,0966 0,0813 0,0764 0,0749 0,0710	6,688 6,908 7,121 7,377	30,113 31,241 32,297 33,289	36,801 38,149 39,418 40,666	0,1601 0,1348 0,1269 0,1248 0,1169	8,333 8,607 8,872 9,199	34,599 36.100 37,503 38,823	42,932 44,707 46,375 48,022	0,2110 0,1775 0,1668 0,1647 0,1531
350	4,534	18,218	22,752	0.0677	7,602	34,233	41,835	0,1133	9,475	40,078	49,553	SOLD.
360 370 380 390	4,679 4,817 4,947 5,108	18,750 19,260 19,740 20,190	23,429 24,077 24,687 25,298	0,0617 0,0648 0,0610 0,0611 0,0564	7,855 8,079 8,298 8,574	35,113 35,957 36,751 37,495	42,968 44,036 45,049 46,069	0,1068 0,1013 0,1020 0,0935	9,795 10,075 10,347 10,699	41,250 42,371 43,427 44,416	51,045 52,446 53,774 55,115	0,1492 0,1401 0,1328 0,1341 0,1227
400	5,237	20,625	25,862	0,0004	8,789	38,215	47,004	0,0955	10,969	45,373	56,342	0,1221

Lastenzug B. Brückenbreite 4,9 m, Bettungsstärke 36 cm.

Feld- weite	im Pu	nent inkte I olge	Gesamt- moment im	⊿ M _I	im Pu	nent nkte II olge	Gesamt- moment im	△ M _{II}	Mon im Pur info		Gesamt- moment im	$\Delta M_{ m HI}$
λ	ständiger Last	Verkehrs- last	Punkte I MI	1).	ständiger Last	Verkehrs- last	Punkte II $M_{ m II}$	Δλ	ständiger Last	Verkehrs- last	Punkte III MIII	d l.
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	2,658	12,000	14,658	0.0700	4,336	23,454	27,790	0 1144	5,345	25,500	30,845	0,1486
210 220 230 240	2,788 2,920 3,051 3,192	12,576 13,088 13,568 14,000	15,364 16,008 16,619 17,192	0,0706 0,0644 0,0611 0,0573	4,550 4,765 4,980 5,213	24,384 25,210 25,984 26,681	28,934 29,975 30,964 31,894	0,1041 0,0989 0,0930	5,607 5,874 6,136 6,429	26,724 27,812 28,831 29,748	32,331 33,686 34,967 36,177	0,1355 0,1281 0,1210
250	3,322	14,400	17,722	0,0530	5,425	27,327	32,752	0,0858	6,689	30,599	37,288	0,1111
260 270 280 290	3,451 3,590 3,721 3,865	14,768 15,112 15,432 15,728	18,219 18,702 19,153 19,593	0,0483 0,0451 0,0440	5,637 5,867 6,083 6,323	27,921 28,476 28,992 29,470	33,558 34,343 35,075 35,793	0,0785 0,0732 0,0718	6,950 7,238 7,503 7,804	31,381 32,113 32,793 33,422	38,331 39,351 40,296 41,226	0,1020 0,0945 0,0930
300	4,000	16,000	20,000	0,0407	6,541	29,909	36,450	0,0657	8,072	34,000	42,072	0,0846
310 320 330 340	4,254 4,394 4,528 4,687	16,776 17,504 18,184 18,824	21,030 21,898 22,712 23,511	0,1030 0,0868 0,0814 0,0799	6,954 7,182 7,404 7,670	31,161 32,335 33,433 34,465	38,115 39,517 40,837 42,135	0,1402 0,1320 0,1298	8,599 8,881 9,155 9,492	35,648 37,194 38,640 40,000	44,247 46,075 47,795 49,492	0,2175 0,1828 0,1720 0,1697
350	4,836	19,432	24,268	0,0757	7,905	35,447	43,352	0,1217	9,777	41,293	51,070	0,1578
360 370 380 390	4,990 5,138 5,277 5,448	20,000 20,544 21,056 21,536	24,990 25,682 26,333 26,984	0,0722 0,0692 0,0651 0,0651	8,167 8,400 8,628 8,914	36,363 37,241 38,067 38,841	44,530 45,641 46,695 47,755	0,1178 0,1111 0,1054 0,1060	10,107 10,396 10,677 11,040	42,500 43,655 44,743 45,762	52,607 54,051 55,420 56,802	0,1537 0,1444 0,1369 0,1382
400	5,586	22,000	27,586	0,0602	9,138	39,590	48,728	0,0973	11,318	46,748	58,066	0,1264

Lastenzug B.
Brückenbreite 5,0 m, Bettungsstärke 36 cm.

_				Didoke	morette o,	o m, Dec	ungsstari	ac 00 c.				,
Feld-weite	Mon im Pu info	nkte I	Gesamt- moment im	iM_1	im Pu	Moment im Punkte II infolge		ΔM_{Π}		nent ikte III	Gesamt- moment im	$\Delta M_{\rm HI}$
λ	ständiger Last	Verkehrs- last	Punkte I M _I	Δλ	ständiger Last	Verkehrs- last	Punkte II $M_{ m II}$	Δλ	ständiger Last	Verkehrs- last	$M_{ m III}$	Δλ
em	tm	tm	tm		tm	tm	tin		tm	tm	tm	
200	2,824	12,750	15,574	0.0750	4,503	24,204	28,707	0.1107	5,511	26,250	31,761	0.1501
210 220 230 240	2,962 3,103 3,242 3,392	13,362 13,906 14,416 14,875	16,324 17,009 17,658 18,267	0,0750 0,0685 0,0649 0,0609	4,724 4,948 5,171 5,413	25,170 26,028 26,832 27,556	29.894 30,976 32,003 32,969	0,1187 0,1082 0,1027 0,0966	5,782 6,056 6,327 6,628	27,510 28,630 29,679 30,623	33,292 34,686 36,006 37,251	0,1531 0,1394 0,1320 0,1245
250	3,529	15,300	18,829	0,0562	5,633	28,227	33,860	0,0891	6,897	31,499	38,396	0,1145
260 270 280 290	3,667 3,814 3,953 4,106	15,691 16,057 16,397 16,711	19,358 19,871 20,350 20,817	0,0529 0,0513 0,0479 0,0467	5,853 6,091 6,315 6,564	28,844 29,421 29,956 30,453	34,697 35,512 36,271 37,017	0,0837 0,0815 0,0759 0,0746	7,166 7,463 7,736 8,046	32,304 33,057 33,757 34,405	39,470 40,520 41,493 42,451	0,1074 0,1050 0,0973 0,0958
300	4,250	17,000	21,250	0,0433	6,791	30,909	37,700	0,0683	8,322	35,000	43,322	0,0871
310 320 330 340	4,519 4,668 4,811 4,980	17.825 18,598 19,321 20,001	22,344 23,266 24,132 24,981	0,1094 0,0922 0,0866 0,0849 0,0804	7,220 7,457 7,687 7,963	32,210 33,429 34,570 35,642	39,430 40,886 42,257 43,605	0,1730 0,1456 0,1371 0,1348 0,1264	8,865 9,156 9,438 9,785	36,696 38,288 39,776 41,176	45,561 47,444 49,214 50,961	0,2239 0,1883 0,1770 0,1747
350	5,138	20,647	25,785	1	8,207	36,662	44,869		10,080	42,507	52,587	0,1626
360 370 380 390	5,302 5,459 5,607 5,789	21,250 21,828 22,372 22,882	26,552 27,287 27,979 28,671	0,0767 0,0735 0,0692 0,0692	8,479 8,722 8,958 9,255	37,613 38,525 39,383 40,187	46,092 47,247 48,341 49,442	0,1223 0,1155 0,1094 0,1101	10,419 10,717 11,007 11,380	43,750 44,939 46,059 47,108	54,169 55,656 57,066 58,488	0,1582 0,1487 0,1410 0,1422
400	5,935	23,375	29,310	0,0639	9,488	40,965	50,453	0,1011	11,667	48,123	59,790	0,1302

Lastenzug A.
Brückenbreite 4,7 m, Bettungsstärke 23 cm.

Feld-weite	im Pu	nent inkte I olge	Gesamt- moment im Punkte I	$\frac{\Delta M_{\rm I}}{\Delta \lambda}$	im Pu	nent nkte II olge Verkehrs-	Gesamt- moment im Punkte II	ΔM _{II} Δλ	im Pur	nent nkte III olge Verkehrs-	Gesamt- moment im Punkte III	AM _{III}
	Last	last	M_{I}		Last	last	$M_{\rm II}$		Last	last	$M_{\rm III}$	
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	1,709	9,975	11,684	0.0500	2,944	20,857	23,801	0.0976	3,690	22,800	26,490	0.1283
210 220 230 240	1,802 1,884 1,966 2,055	10,450 10,883 11,276 11,637	12,252 12,767 13,242 13,692	0,0568 0,0515 0,0475 0,0450	3,102 3,245 3,386 3,543	21,675 22,400 23,070 23,685	24,777 25,645 26,456 27,228	0,0868 0,0811 0,0772	3,888 4,066 4,243 4,442	23,885 24,875 25,773 26,599	27,773 28,941 30,016 31,041	0,1168 0,1075 0,1025
250	2,138	11,970	14,108	0,0416	3,686	24,251	27,937	0,0709	4,622	27,360	31,982	0,0941
260 270 280 290	2,221 2,315 2,398 2,482	12,277 12,560 12,826 13,073	14,498 14,875 15,224 15,555	0,0390 0,0377 0,0349 0,0331	3,831 3,994 4,138 4,283	24,774 25,256 25,706 26,124	28,605 29,250 29,844 30,407	0,0668 0,0645 0,0594 0,0563	4,803 5,009 5,190 5,370	28,062 28,710 29,316 29,882	32,865 33,719 34,506 35,252	0,0883 0,0854 0,0787 0,0746
300	2,582	13,301	15,883	0,0328	4,454	26,514	30,968	0,0561	5,588	30,402	35,990	0,0738
310 320 330 340	2,780 2,875 2,967 3,086	13,514 13,716 13,905 14,083	16,294 16,591 16,872 17,169	0,0411 0,0297 0,0281 0,0297 0.0455	4,793 4,953 5,110 5,313	26,878 27,222 27,543 27,844	31,671 32,175 32,653 33,157	0,0504 0,0478 0,0504 0.0500	6,029 6,231 6,427 6,686	30,889 31,350 31,783 32,189	36,918 37,581 38,210 38,875	0,0663 0,0629 0,0665 0,1027
350	3,177	14,447	17,624		5,469	28,188	33,657		6,881	33,021	39,902	
- 360 370 380 390	3,269 3,378 3,473 3,574	14,875 15,280 15,660 16,017	18,144 18,658 19,133 19,591	0,0520 0,0514 0,0475 0,0458 0,0453	5,624 5,821 5,979 6,150	28,785 29,453 30,122 30,729	34,409 35,274 36,101 36,879	0,0752 0,0865 0,0827 0,0778 0,0782	7,076 7,329 7,527 7,743	34,000 34,925 35,795 36,611	41,076 42,254 43,322 44,354	0,1174 0,1178 0,1068 0,1032 0,1043
400	3,681	16,363	20,044	0,0493	6,345	31,316	37,661	0,0182	7,997	37,400	45,397	0,1045

Lastenzug A. Brückenbreite 4,8 m, Bettungsstärke 23 cm.

Feld-weite	im Pu	olge	Gesamt- moment im Punkte I	$\frac{\Delta M_{\rm I}}{\Delta \lambda}$	im Pu	nent nkte II blge	Gesamt- moment im Punkte II	Δ M _{II}	im Pur info		Gesamt- moment im Punkte III	AM _{III}
	ständiger Last	Verkehrs- last	M_{I}		ständiger Last	Verkehrs- last	$M_{\rm II}$		ständiger Last	Verkehrs- last	$M_{ m III}$	
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	1,832	10,688	12,520	0,0607	3,066	21,569	24,635	0,1007	3,812	23,513	27,325	0,1324
210 220 230 240	1,931 2,018 2,107 2,201	11,196 11,660 12,081 12,468	13,127 13,678 14,188 14,669	0,0551 0,0510 0,0481	3,231 3,379 3,527 3,690	22,411 23,177 23,875 24,516	25,642 26,556 27,402 28,206	0,0914 0,0846 0,0804	4,017 4,200 4,384 4,589	24,632 25,652 26,579 27,430	28,649 29,852 30,963 32,019	0,1203 0,1111 0,1056
250	2,291	12,825	15,116	0,0447	3,839	25,106	28,945	0,0739	4,775	28,215	32,990	0,0971
260 270 280 290	2,380 2,480 2,570 2,660	13,154 13,458 13,742 14,007	15,534 15,938 16,312 16,667	0,0418 0,0404 0,0374 0,0355	3,989 4,160 4,309 4,460	25,650 26,153 26,622 27,058	29,639 30,313 30,931 31,518	0,0694 0,0674 0,0618 0,0587	4,961 5,175 5,361 5,547	28,939 29,607 30,232 30,816	33,900 34,782 35,593 36,363	0,0910 0,0882 0,0811 0,0770
300	2,767	14,251	17,018	0,0351	4,639	27,464	32,103	0,0585	5,773	31,352	37,125	0,0762
310 320 330 340	2,979 3,080 3,179 3,307	14,479 14,695 14,898 15,089	17,458 17,775 18,077 18,396	0,0440 0,0317 0,0302 0,0319 0,0487	4,992 5,159 5,322 5,534	27,843 28,202 28,537 28,850	32,835 33,361 33,859 34,384	0,0732 0,0526 0,0498 0,0525 0,0520	6,228 6,437 6,639 6,907	31,855 32,330 32,776 33,195	38,083 38,767 39,415 40,102	0,0958 0,0684 0,0648 0,0687
350	3,404	15,479	18,883		5,696	29,208	34,904		7,108	34,053	41,161	0,1059
360 370 380 390	3,503 3,620 3,721 3,829	15,938 16,371 16,779 17,162	19,441 19,991 20,500 20,991	0,0558 0,0550 0,0509 0,0491	5,858 6,062 6,227 6,405	29,848 30,544 31,240 31,873	35,706 36,606 37,467 38,278	0,0802 0,0900 0,0861 0,0811	7,309 7,570 7,775 7,998	35,063 36,016 36,914 37,755	42,372 43,586 44,689 45,753	0,1211 0,1214 0,1103 0,1064
400	3,944	17,531	21,475	0,0484	6,608	32,485	39,093	0,0815	8,260	38,569	46,829	0,1076

Lastenzug A. Brückenbreite 4,9 m, Bettungsstärke 23 cm.

Feld-weite		nent nkte I olge	Gesamt- moment im	$\Delta M_{ m I}$	im Pu	nent nkte II olge	Gesamt- moment im	$_{\it MM_{ m II}}$		nent nkte III olge	Gesamt- moment im	$\Delta M_{ m III}$
λ	ständiger Last	Verkehrs- last	Punkte I $M_{ m I}$	Δλ	ständiger Last	Verkehrs- last	Punkte II $M_{\rm II}$	Δλ	ständiger Last	Verkehrs- last	Punkte III $M_{ m III}$	Δλ
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	1,954	11,400	13,354	0.0010	3,188	22,282	25,470	0.1047	3,934	24,225	28,159	0,1364
210 220 230 240	2,059 2,153 2,247 2,348	11,943 12,437 12,887 13,299	14,002 14,590 15,134 15,647	0,0648 0,0588 0,0544 0,0513	3,360 3,514 3,667 3,837	23,157 23,955 24,681 25,348	26,517 27,469 28,348 29,185	0,1047 0,0952 0,0879 0,0837	4,145 4,335 4,524 4,736	25,378 26,430 27,384 28,261	29,523 30,765 31,908 32,997	0,1242 0,1143 0,1089 0,1000
250	2,443	13,680	16,123	0,0476	3,992	25,961	29,953	0,0768	4,927	29,070	33,997	
260 270 280 290	2,538 2,646 2,741 2,837	14,031 14,355 14,658 14,941	16,569 17,001 17,399 17,778	0,0446 0,0432 0,0398 0,0379	4,148 4,325 4,480 4,637	26,527 27,050 27,538 27,992	30,675 31,375 32,018 32,629	0,0722 0,0700 0,0643 0,0611	5,120 5,340 5,533 5,725	29,816 30,504 31,149 31,749	34,936 35,844 36,682 37,474	0,0939 0,0908 0,0838 0,0792
300	2,951	15,201	18,152	0,0374	4,823	28,414	33,237	0,0608	5,957	32,302	38,259	0,0785
310 320 330 340	3,178 3,286 3,391 3,527	15,445 15,675 15,892 16,095	18,623 18,961 19,283 19,622	0,0471 0,0338 0,0322 0,0339	5,190 5,364 5,534 5,754	28,808 29,181 29,530 29,856	33,998 34,545 35,064 35,610	0,0761 0,0547 0,0519 0,0546	6,426 6,642 6,851 7,127	32,820 33,309 33,770 34,201	39,246 39,951 40,621 41,328	0,0987 0,0705 0,0670 0,0707
350	3,630	16,510	20,140	0,0518	5,923	30,237	36,160	0,0550	7,335	35,085	42,420	0,1092
360 370 380 390	3,736 3,861 3,969 4,084	17,000 17,462 17,898 18,306	20,736 21,323 21,867 22,390	0,0596 0,0587 0,0544 0,0523	6,091 6,303 6,475 6,661	30,910 31,635 32,359 33,017	37,001 37,938 38,834 39,678	0,0841 0,0937 0,0896 0,0844	7,543 7,812 8,023 8,253	36,125 37,108 38,032 38,899	43,668 44,920 46,055 47,152	0,1248 0,1252 0,1135 0,1097
400	4,206	18,700	22,906	0,0516	6,871	33,654	40,525	0,0847	8,523	39,738	48,261	0,1109

Lastenzug A. Brückenbreite 5,0 m, Bettungsstärke 23 cm.

Feld-weite	Mon im Pu info		Gesamt- moment im	$\Delta M_{ m I}$		nent nkte II	Gesamt- moment im	△ M _{II}	Mon im Pur info	akte III	Gesamt- moment im	$\Delta M_{ m HI}$
λ	ständiger Last	Verkehrs- last	Punkte I MI	Δλ	ständiger Last	Verkehrs- last	Punkte II $M_{\rm II}$	Δλ	ständiger Last	Verkehrs- last	$M_{ m III}$	1)
cm	tm	tm	tm		tm	tm	tm		tm	tm	tm	-
200	2,076	12,113	14,189	0.0000	3,311	22,994	26,305	0.1000	4,056	24,938	28,994	0.140=
210 220 230 240	2,188 2,287 2,388 2,495	12,689 13,215 13,692 14,131	14,877 15,502 16,080 16,626	0,0688 0,0625 0,0578 0,0546	3,489 3,648 3,808 3,983	23,904 24,733 25,486 26,179	27,393 28,381 29,294 30,162	0,1088 0,0988 0,0913 0,0868	4,274 4,470 4,665 4,883	26,125 27,207 28,179 29,092	30,399 31,677 32,844 33,975	0,1405 0,1278 0,1167 0,1131
250	2,596	14,535	17,131	0,0505	4,145	26,816	30,961	0,0799	5,080	29,925	35,005	0,1030
260 270 280 290	2,697 2,811 2,912 3,014	14,908 15,252 15,574 15,875	17,605 18,063 18,486 18,889	0,0474 0,0458 0,0423 0,0403	4,307 4,490 4,652 4,815	27,399 27,947 28,454 28,925	31,706 32,437 33,106 33,740	0,0745 0,0731 0,0669 0,0634	5,279 5,506 5,704 5,902	30,683 31,401 32,065 32,683	35,962 36,907 37,769 38,585	0,0957 0,0945 0,0862 0,0816
300	3,136	16,151	19,287	0,0398	5,008	29,364	34,372	0,0632	6,142	33,252	39,394	0,0809
310 320 330 340	3,376 3,491 3,603 3,748	16,410 16,655 16,885 17,100	19,786 20,146 20,488 20,848	0,0499 0,0360 0,0342 0,0360 0,0551	5,389 5,569 5,746 5,975	29,774 30,161 30,523 30,862	35,163 35,730 36,269 36,837	0,0791 0,0567 0,0539 0,0568 0,0579	6,625 6,848 7,063 7,348	33,785 34,289 34,763 35,207	40,410 41,137 41,826 42,555	0,1016 0,0727 0,0689 0,0729
350	3,857	17,542	21,399		6,150	31,266	37,416		7,562	36,117	43,619	0,1064
360 370 380 390	3,970 4,102 4,217 4,339	18,063 18,554 19,016 19,450	22,033 22,656 23,233 23,789	0,0634 0,0623 0,0577 0,0556	6,325 6,545 6,723 6,916	31,973 32,725 33,477 34,161	38,298 39,270 40,200 41,077	0,0882 0,0972 0,0930 0,0877	7,776 8,053 8,272 8,509	37,188 38,199 39,151 40,044	44,964 46,252 47,423 48,553	0,1345 0,1288 0,1171 0,1130
400	4,469	19,869	24,338	0,0549	7,134	34,822	41,956	0,0879	8,786	40,906	49,692	0,1139

Lastenzug B. Brückenbreite 4,7 m, Bettungsstärke 23 cm.

Feld-weite	im Pu	Moment im Punkte I infolge		Gesamt- moment im $\Delta M_{\rm I}$		Moment im Punkte II infolge		$\Delta M_{ m II}$	im Pur	nent ikte III olge	Gesamt- moment im	$_{AM_{ m III}}$
λ	ständiger Last	Verkehrs- last	Punkte I $M_{ m I}$	dλ	ständiger Last	Verkehrs- last	Punkte II M_{11}	12	ständiger Last	Verkehrs- last	Punkte III $M_{\rm III}$	1).
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	1,709	10,500	12,209	0.0505	2,944	21,954	24,898	0.1010	3,690	24,000	27,690	0.1050
210 220 230 240	1,802 1,884 1,966 2,055	11,004 11,452 11,872 12,250	12,806 13,336 13,838 14,305	0,0597 0,0530 0,0502 0,0467	3,102 3,245 3,386 3,543	22,812 23,574 24,288 24,931	25,914 26,819 27,674 28,474	0,1016 0,0905 0,0855 0,0800	3,888 4,066 4,243 4,442	25,152 26,176 27,135 27,998	29,040 30,242 31,378 32,440	0,1350 0,1202 0,1136 0,1062
250	2,138	12,600	14,738	0,0433	3,686	25,527	29,213	0,0739	4,622	28,799	33,421	0,0981
260 270 280 290	2,221 2,315 2,398 2,482	12,922 13,223 13,503 13,762	15,143 15,538 15,901 16,244	0,0405 0 0395 0.0363 0,0343 0.0338	3,831 3,994 4,138 4,283	26,075 26,587 27,063 27,504	29,906 30,581 31,201 31,787	0,0693 0,0675 0,0620 0,0586	4,803 5,009 5,190 5,370	29,535 30,224 30,864 31,456	34,338 35,233 36,054 36,826	0,0917 0,0895 0,0821 0,0772 0.0762
300	2,582	14,000	16,582		4,454	27,909	32,363	0,0576	5,588	32,000	37,588	
310 320 330 340	2,780 2,875 2,967 3,086	14,679 15,316 15,911 16,471	17,459 18,191 18,878 19,557	0,0877 0,0732 0,0687 0,0679	4,793 4,953 5,110 5,313	29,064 30,147 31,160 32,112	33,857 35,100 36,270 37,425	0,1494 0,1243 0,1170 0,1155	6,029 6,231 6,427 6,686	33,551 35,006 36,367 37,647	39,580 41,237 42,794 44,333	0,1992 0,1657 0,1557 0,1539
350	3,177	17,003	20,180	0,0623	5,469	33,018	38,487	0,1062	6,881	38,864	45,745	0,1412
360 370 380 390	3,269 3,378 3,473 3,574	17,500 17,976 18,424 18,844	20,769 21,354 21,897 22,418	0,0589 0,0585 0,0543 0,0521	5,624 5,821 5,979 6,150	33,863 34,673 35,435 36,149	39,487 40,494 41,414 42,299	0,1000 0,1007 0,0920 0,0885	7,076 7,329 7,527 7,743	40,000 41,087 42,111 43,070	47,076 48,416 49,638 50,813	0,1331 0,1340 0,1222 0,1175
400	3,681	19,250	22,931	0,0513	6,345	36,840	43,185	0,0886	7,997	43,998	51,995	0,1182

Lastenzug B.
Brückenbreite 4,8 m, Bettungsstärke 23 cm.

Feld- weite	im Pu	nent inkte I	Gesamt- moment im A M _I		Moment im Punkte II infolge		Gesamt- moment im	△ M _{II}		nent ikte III olge	Gesamt- moment im	A MIII
λ	ständiger Last	Verkehrs- last	Punkte I M _I	Δλ	ständiger Last	Verkehrs- last	Punkte II $M_{ m II}$	1).	ständiger Last	Verkehrs- last	Punkte III $M_{ m III}$	4).
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	1,832	11,250	13,082	0.0000	3,066	22,704	25,770	0.4050	3,812	24,750	28,562	
210	1.931	11.790	13.721	0,0639	3,231	23,598	26,829	0,1059	4,017	25,938	29,955	0,1393
220	2.018	12,270	14,288	0,0567	3,379	24,392	27,771	0,0942	4,200	26,994	31,194	0,1239
230	2.107	12,720	14.827	0.0539	3,527	25,136	28,663	0,0892	4,384	27,983	32,367	0,1173
240	2,201	13,125	15,326	0,0499	3,690	25,806	29,496	0,0833	4,589	28,873	33,462	0,1095
250	2,291	13,500	15,791	0,0465	3,839	26,427	30,266	0,0770	4,775	29,699	34,474	0,1012
260	2,380	13,845	16,225	0,0434	3,989	26,998	30,987	0,0721	4.961	30,458	35,419	0,0945
270	2,480	14,168	16.648	0,0423	4.160	27,532	31,692	0,0705	5,175	31,168	36,343	0,0924
280	2,570	14,468	17,038	0,0390	4,309	28,027	32,336	0,0644	5,361	31,828	37,189	0,0846
290	2,660	14,745	17,405	0,0367	4,460	28,487	32,947	0,0611	5,547	32,439	37,986	0,0797
300	2,767	15,000	17,767	0,0362	4,639	28,909	33,548	0,0601	5,773	33,000	38,773	0,0787
310	2,979	15,728	18,707	0,0940	4,992	30,113	35,105	0,0557	6,228	34.599	40,827	0,2054
320	3,080	16,410	19,490	0,0783	5.159	31,241	36,400	0,1295	6,437	36,100	42,537	0,1710
330	3,179	17.048	20,227	0,0737	5,322	32,297	37,619	0,1219	6,639	37,503	44.142	0,1605
340	3,307	17,648	20,955	0,0728	5,534	33,289	38,823	0,1204	6,907	38,823	45,730	0,1588
350	3,404	18,218	21,622	0,0667	5,696	34,233	39,929	0,1106	7,108	40,078	47,186	0,1456
360	3,503	18,750	22,253	0,0631	5,858	35,113	40,971	0,1042	7,309	41,250	48,559	0,1373
370	3,620	19,260	22,880	0,0627	6,062	35,957	42,019	0,1048	7,570	42,371	49,941	0,1382
380	3,721	19,740	23,461	0,0581	6,227	36,751	42,978	0,0959	7,775	43,427	51,202	0,1261
390	3,829	20,190	24,019	0,0558	6,405	37,495	43,900	0,0922	7,998 -	44,416	52,414	0,1212
400	3.944	20,625	24.569	0,0550	6,608	38,215	44,823	0,0923	8,260	45,373	53.633	0,1219

6*

Lastenzug B. Brückenbreite 4,9 m, Bettungsstärke 23 cm.

Feld-weite	im Pu	ment mkte I blge Verkehrs-	Gesamt- moment im Punkte I	$\frac{\Delta M_{\rm I}}{\Delta \lambda}$	im Pu	nent nkte II olge Verkehrs-	Gesamt- moment im Punkte II	$\frac{\Delta M_{\rm II}}{\Delta \lambda}$	Mon im Pur info	okte III	Gesamt- moment im Punkte III	$\frac{\Delta M_{\rm III}}{\Delta \lambda}$
	Last	last	M_{I}		Last	last	$M_{\rm II}$		Last	last	$M_{\rm III}$	
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	1,954	12,000	13,954	0.0001	3,188	23,454	26,642	0.1100	3,934	25,500	29,434	0.1495
210 220 230 240	2,059 2,153 2,247 2,348	12,576 13,088 13,568 14,000	14,635 15,241 15,815 16,348	0,0681 0,0606 0,0574 0,0533	3,360 3,514 3,667 3,837	24,384 25,210 25,984 26,681	27,744 28,724 29,651 30,518	0,1102 0,0980 0,0927 0,0867	4,145 4,335 4,524 4,736	26,724 27,812 28,831 29,748	30,869 32,147 33,355 34,484	0,1435 0,1278 0,1208 0,1129
250	2,443	14,400	16,843	0,0495	3,992	27,327	31,319	0,0801	4,927	30,599	35,526	0,1042
260 270 280 290	2,538 2,646 2,741 2,837	14,768 15,112 15,432 15,728	17,306 17,758 18,173 18,565	0,0463 0,0452 0,0415 0,0392	4,148 4,325 4,480 4,637	27,921 28,476 28,992 29,470	32,069 32,801 33,472 34,107	0,0750 0,0732 0,0671 0,0635	5,120 5,340 5,533 5,725	31,381 32,113 32,793 33,422	36,501 37,453 38,326 39,147	0,0952 0,0873 0,0821
300	2,951	16,000	18,951	0,0386	4,823	29,909	34,732	0,0625	5,957	34,000	39,957	0,0810
310 320 330 340	3,178 3,286 3,391 3,527	16,776 17,504 18,184 18,824	19,954 20,790 21,575 22,351	0,1003 0,0836 0,0785 0,0776	5,190 5,364 5,534 5,754	31,161 32,335 33,433 34,465	36,351 37,699 38,967 40,219	0,1619 0,1348 0,1268 0,1252	6,426 6,642 6,851 7,127	35,648 37,194 38,640 40,000	42,074 43,836 45,491 47,127	0,2117 0,1762 0,1655 0,1636 0,1501
350	3,630	19,432	23,062	0,0711	5,923	35,447	41,370	0,1151	7,335	41,293	48,628	
360 370 380 390	3,736 3,861 3,969 4,084	20,000 20,544 21,056 21,536	23,736 24,405 25,025 25,620	0,0674 0,0669 0,0620 0,0595	6,091 6,303 6,475 6,661	36,363 37,241 38,067 38,841	42,454 43,544 44,542 45,502	0,1084 0,1090 0,0998 0,0960	7,543 7,812 8,023 8,253	42,500 43,655 44,743 45,762	50,043 51,467 52,766 54,015	0,1415 0,1424 0,1299 0,1249
400	4,206	22,000	26,206	0,0586	6,871	39,590	46,461	0,0959	8,523	46,748	55,271	0,1256

Lastenzug B. Brückenbreite 5,0 m, Bettungsstärke 23 cm.

Feld-		nent nkte I olge	Gesamt- moment im $\Delta M_{\rm I}$		Moment im Punkte II infolge		Gesamt- moment im	$\Delta M_{ m II}$	im Pur	nent nkte III	Gesamt- moment im	$\Delta M_{\rm II}$
λ	ständiger Last	Verkehrs- last	Punkte I $M_{ m I}$	4).	ständiger Last	Verkehrs- last	Punkte II $M_{ m II}$	Δλ	ständiger Last	Verkehrs- last	Punkte III $M_{ m III}$	Δλ
em	tm	tm	tm		tm	tm	tm		tm	tm	tm	
200	2,076	12,750	14,826	0.00=1	3,311	24,204	27,515	0.1111	4,056	26,250	30,306	0.115
210 220 230 240	2,188 2,287 2,388 2,495	13,362 13,906 14,416 14,875	15,550 16,193 16,804 17,370	0,0674 0,0693 0,0611 0,0566	3,489 3,648 3,808 3,983	25,170 26,028 26,832 27,556	28,659 29,676 30,640 31,539	0,1144 0,1017 0,0964 0,0899	4,274 4,470 4,665 4,883	27,510 28,630 29,679 30,623	31,784 33,100 34,344 35,506	0,147 0,131 0,124 0,116
250	2,596	15,300	17,896	0,0526	4,145	28,227	32,372	0,0833	5,080	31,499	36,579	0,107
260 270 280 290	2,697 2,811 2,912 3,014	15,691 16,057 16,397 16,711	18,388 18,868 19,309 19,725	0,0492 0,0480 0,0441 0,0416	4,307 4,490 4,652 4,815	28,844 29,421 29,956 30,453	33,151 33,911 34,608 35,268	0,0779 0,0760 0,0697 0,0660	5,279 5,506 5,704 5,902	32,304 33,057 33,757 34,405	37,583 38,563 39,461 40,307	0,100 0,098 0,089 0,084
300	3,136	17,000	20,136	0,0411	5,008	30,909	35,917	0,0649	6,142	35,000	41,142	0,083
310 320 330 340	3,376 3,491 3,603 3,748	17,825 18,598 19,321 20,001	21,201 22,089 22,924 23,749	0,1065 0,0888 0,0835 0,0825	5,389 5,569 5,746 5,975	32,210 33,429 34,570 35,642	37,599 38,998 40,316 41,617	0,1682 0,1399 0,1318 0,1301	6,625 6,848 7,063 7,348	36,696 38,288 39,776 41,176	43,321 45,136 46,839 48,524	0,217 0,181 0,170 0,168
350	3,857	20,647	24,504	0,0755	6,150	36,662	42,812	0,1195	7,562	42,507	50,069	0,154
360 370 380 390	3,970 4,102 4,217 4,339	21,250 21,828 22,372 22,882	25,220 25,930 26,589 27,221	0,0716 0,0710 0,0659 0,0632	6,325 6,545 6,723 6,916	37,613 38,525 39,383 40,187	43,938 45,070 46,106 47,103	0,1126 0,1132 0,1036 0,0997	7,776 8,053 8,272 8,509	43,750 44,939 46,059 47,108	51,526 52,992 54,331 55,617	0,145 0,146 0,133 0,128
100	4,469	23,375	27,844	0,0623	7,134	40,965	48,099	0,0996	8,786	48,123	56,909	0,129

d) Auflagerdrucke der Hauptquerträger.

Lastenzug A.

Bettungsstärke 36 cm.

Bettungsstärke 23 cm.

Feld- weite λ	Auflage info ständiger Last t		Gesamter Auflager- druck A	$\frac{AA}{A\lambda}$		Feld- weite λ	Auflage info ständiger Last t	erdruck olge Verkehrs- last t	Gesamter Auflager- druck A	AAAA
200	3,322	14,250	17,572			200	2,442	14,250	16,692	0.0010
210	3,485	14,928	18,413	0,0841		210	2,574	14,928	17,502	0,0810
220	3,650	15,547	19,197	0,0784		220	2,691	15,547	18,238	0,0736
230	3,814	16,108	19,922	0,0725		230	2,809	16,108	18,917	0,0679
240	3,990	16,624	20,614	0,0692		240	2,935	16,624	19,559	0,0642
250	4,152	17,100	21,252	0,0638	at with.	250	3,054	17,100	20,154	0,0595
260	4,314	17,539	21,853	0,0601		260	3,173	17,539	20,712	0,0558
270	4,487	17,944	22,431	0,0578		270	3,307	17,944	21,251	0,0539
280	4,651	18,323	22,974	0,0543		280	3,426	18,323	21.749	0,0498
290	4,831	18,676	23,507	0,0533		290	3,546	18,676	22,222	0,0478
300	5,000	19,001	24,001	0,0494		300	3,689	19,001	22,690	0,0468
310	5,317	19,306	24,623	0,0622		310	3,972	19,306	23,278	0,0588
320	5,492	19,594	25,086	0,0463		320	4,107	19,594	23,701	0,0423
330	5,660	19,865	25,525	0,0439		330	4,239	19,865	24,104	0,0403
340	5,859	20,118	25,977	0,0452		340	4,409	20,118	24,527	0,042
350	6,045	20,638	26,683	0,0706		350	4,538	20,638	25,176	0,0649
360	6,238	21,250	27,488	0,0805		360	4,670	21,250	25,920	0,0744
370	6,422	21,828	28,250	0,0762		370	4,826	21,828	26,654	0,0734
380	6,596	22,372	28,968	0,0718	int.	380	4,961	22,372	27,333	0,0679
390	6,810	22,882	29,692	0,0724		390	5,105	22,882	27,987	0,0654
400	6,982	23,375	30,357	0,0665		400	5,258	23,375	28,633	0,0646

Lastenzug B.

Bettungsstärke 36 cm

Bettungsstärke 23 cm

in the date	Bet	tungsstärke	36 cm	energia of		Bet	tungsstärke	23 cm.	
Feld-weite	~	erdruck olge Verkehrs- last	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$	Feld- weite λ	Auflage info ständiger Last	erdruck olge Verkehrs- last	Gesamter Auflager- druck A	$\frac{dA}{d\lambda}$
CIII			and the late of the		CIII				
200	3,322	15,000	18,322	Soll land wall those	200	2,442	15,000	17,442	
210 220 230 240	3,485 3,650 3,814 3,990	15,720 16,360 16,960 17,500	19,205 20,010 20,774 21,490	0,0883 0,0805 0,0764 0,0716 0.0662	210 220 230 240	2,574 2,691 2,809 2,935	15,720 16,360 16,960 17,500	18,294 19,051 19,769 20,435	0,0852 0,0757 0,0718 0,0666 0,0619
250	4,152	18,000	22,152		250	3,054	18,000	21,054	
260 270 280 290	4,314 4,487 4,651 4,831	18,460 18,890 19,290 19,660	22,774 23,377 23,941 24,491	0,0622 0,0603 0,0564 0,0550	260 270 280 290	3,173 3,307 3,426 3,546	18,460 18,890 19,290 19,660	21,633 22,197 22,716 23,206	0,0579 0,0564 0,0519 0,0490
300	5,000	20,000	25,000	0,0509	300	3,689	20,000	23,689	0,0483
310 320 330 340	5,317 5,492 5,660 5,859	20,970 21,880 22,730 23,530	26,287 27,372 28,390 29,389	0,1287 0,1085 0,1018 0,0999 0,0946	310 320 330 340	3,972 4,107 4,239 4,409	20,970 21,880 22,730 23,530	24,942 25,987 26,969 27,939	0,1253 0,1045 0,0982 0,0970 0,0889
350	6,045	24,290	30,335	Shanki di ak	350	4,538	24,290	28,828	
360 370 380 390	6,238 6,422 6,596 6,810	25,000 25,680 26,320 26,920	31,238 32,102 32,916 33,730	0,0903 0,0864 0,0814 0,0814	360 370 380 390	4,670 4,826 4,961 5,105	25,000 25,680 26,320 26,920	29,670 30,506 31,281 32,025	0,0842 0,0836 0,0775 0,0744
400	6,982	27,500	34,482	0,0752	400	5,258	27,500	32,758	0,0733

V. Bauhöhen von Brücken.

A. Eisenbahnbrücken.

Die Bauhöhe einer Eisenbahnbrücke ist das Maß zwischen der Schienenoberkante und der Unterkante des Überbaues. letzterer und der oberen Begrenzung des freizuhaltenden Durchfahrtprofils muß noch ein ausreichender Spielraum für die Durchbiegung des Überbaues vorgesehen werden. Die nachstehenden Angaben beziehen sich mit Ausnahme bei Nummer 2, c und d, nur auf eingleisige, in der Geraden liegende Brücken; bei Lage in einer Krümmung tritt infolge der ungleichen Lastverteilung meist eine Erhöhung der berechneten Maße ein. Da die Bauhöhe von der Stützweite und Entfernung der Hauptträger abhängig ist, so sind für jede Bauart mehrere Werte angegeben. Spalte 4 gibt die kleinste Bauhöhe, die zur Wahrung einer zweckmäßigen Konstruktion als Mindestmaß innegehalten werden sollte. Bei größerer Bauhöhe lassen sich jedoch die eisernen Überbauten im allgemeinen leichter und steifer und somit auch in der Herstellung und Unterhaltung billiger ausbilden, es ist daher stets eine möglichst große Bauhöhe anzustreben, wobei zu berücksichtigen ist, daß bei Überschreitung der in Spalte 6 angegebenen Werte eine nennenswerte Gewichtsersparnis kaum mehr eintreten dürfte.

Annahmen für die bauliche Ausbildung.

1. Bei Fahrbahnen ohne Bettung.

Zur Erzielung der kleinsten Bauhöhe ist die Schwellenstärke auf 16 cm mit 1 cm Einkämmung über den Schwellenträgern eingeschränkt, für die Schwellenträger sind im allgemeinen breitflanschige Differdinger I-Eisen vorgesehen, und der Windverband ist, um an Höhe zu sparen, aus Flacheisen gebildet. Bei den Ausführungen mit tiefliegender Fahrbahn ist die Annahme gemacht, daß nur die Fahrbahnausbildung für die Bauhöhe maßgebend ist. Die Höhe der Hauptträger ist in den Fällen, in denen sie für die Bauhöhe maßgebend ist, so bestimmt, daß die Durch-

biegung infolge Verkehrslast etwa $\frac{1}{1000}$ der Stützweite nicht überschreitet. Sollte ausnahmsweise eine noch weitergehende Einschränkung der Höhe infolge zwingender örtlicher Umstände nicht zu umgehen sein, so empfiehlt es sich, um mit der Durchbiegung und den Schwingungen in angemessenen Grenzen zu bleiben, die

zugelassene Beanspruchung zu ermäßigen.

Bei mittlerer und unbeschränkter Bauhöhe beträgt die Schwellenstärke 26 cm mit 2 cm Einkämmung über den Schwellenträgern, für die normale I-Eisen verwendet sind, soweit deren Widerstandsmoment ausreicht. Die Querträger sind als genietete Blechträger ausgebildet, und zwar bei mittlerer Bauhöhe mit zwei Gurtplatten, bei unbeschränkter Höhe mit einer Platte, die schon aus konstruktiven Gründen erwünscht ist. Für den Windverband sind Winkeleisen mit nach oben gerichteten Schenkeln vorgesehen. Soll der dabei in der einen Windstrebe an der Kreuzungsstelle mit der Gegenstrebe erforderliche Stoß vermieden werden, so erhöhen sich die angegebenen Werte um 5 bis 10 cm. Das als günstigste Trägerhöhe für Fachwerkträger angegebene Maß setzt Parallelträger voraus, bei Parabelträgern ist es auf $\frac{1}{6}$ bis $\frac{1}{7}$ der

Stützweite zu erhöhen.

Zwischen Überbau und Umgrenzung des lichten Raumes und zwischen Querträger und Schienenfuß ist, mit Ausnahme der Bauarten unter a) und b), ein Spielraum von etwa 5 cm gewahrt.

Zu den verschiedenen Bauarten ist im einzelnen noch folgendes zu bemerken:

Zu a) Hauptträger aus normalen I-Eisen. Höhe des Querträgers zur zweckmäßigen Ausbildung des Anschlusses nicht unter 15 cm. Des harten Fahrens und der hohen Unterhaltungskosten wegen nur im Notfalle bei aufs äußerste beschränkter Bauhöhe zu verwenden. Bei Stützweiten über 8 m gibt Bauart c keine größere Höhe, ist daher vorzuziehen.

Zu b) Querträger aus Differdinger I-Eisen oder zwei Steg an Steg genieteten J-Eisen mit Kopfplatte. Des harten Fahrens und der hohen Unterhaltungskosten wegen nur im Notfalle bei aufs äußerste beschränkter Bauhöhe zu verwenden.

Zu e) Bei mittlerer und unbeschränkter Bauhöhe ist die Feldweite zu etwa $\frac{1}{8}$ der Stützweite, entsprechend der günstigsten Streben-

neigung von 1:1 angenommen worden; bei beschränkter Bauhöhe ist sie, um geringer belastete und somit niedrigere Quer- und Schwellenträger zu erhalten, auf etwa $\frac{1}{14}$ der Stützweite, einer Strebenneigung von 2:3 entsprechend, verringert. Bei Stützweiten über 60 m tritt im allgemeinen eine weitere Zunahme der Bauhöhe nicht mehr ein, da dann eine Zwischenteilung der Feldweite in

Frage kommt. Zu f) Maßgebend ist nur die gesamte Hauptträgerhöhe, von der bei Lage des Obergurtes in der ersten oder zweiten Stufe der Umgrenzung des lichten Raumes das Maß abzuziehen ist, um das der Gurt die Schienenoberkante überragen kann. Ungünstig bei dieser Anordnung ist, daß ein oberer Windverband meist nicht durchgeführt werden kann, die Hauptträger daher durch den Wind eine lotrechte Zusatzbelastung erfahren.

Zu g) Feldweite wie unter e) bei beschränktester Bauhöhe $\frac{1}{14}$, bei mittlerer und unbeschränkter $\frac{1}{8}$ der Stützweite.

2. Bei Fahrbahnen mit Bettung.

Zur Erzielung der kleinsten Bauhöhe sind eiserne Schwellen mit der geringsten zulässigen Bettungsstärke von 15 cm unter Schwellenunterkante vorgesehen, die Fahrbahnträger sind im allgemeinen aus Differdinger breitflanschigen I-Eisen gebildet.

Bei mittlerer und unbeschränkter Bauhöhe sind normale Holzschwellen mit 20 cm Bettungsstärke unter Schwellenunterkante vorgesehen. Bei untenliegender Fahrbahn werden die für die Höhe maßgebenden Querträger aus Blechträgern gebildet, die bei mittlerer Bauhöhe zwei, bei unbeschränkter eine Gurtplatte erhalten.

Es ist angenommen, daß die Entwässerungsrinnen durch Aussparungen in den Stegblechen der Querträger geführt werden; sollen sie an die Untergurte der Querträger angehängt werden, so erhöhen sich die angegebenen Werte um 10 bis 20 cm.

Zu den verschiedenen Bauarten ist im einzelnen noch folgendes zu bemerken:

Zu a) Feldweite etwa 1,5 m. Zu b) Ausbildung der Fahrbahn nach Abb. 5, die Werte entsprechen aber auch den sonst üblichen Fahrbahnkonstruktionen. Bei mittlerer und unbeschränkter Bauhöhe ist die Feldweite zu etwa 10 der Stützweite angenommen, bei beschränkter Bauhöhe ist sie, um geringer belastete und damit niedrigere Quer- und Schwellenträger zu erhalten, auf $\frac{1}{14}$ der Stützweite beschränkt.

Zu c) Während bei unbeschränkter Bauhöhe für die Stegblechhöhe der Hauptträger die Erzielung eines möglichst geringen Eisengewichtes maßgebend ist, ist die Stegblechhöhe bei beschränkter Bauhöhe so weit verringert, daß die Durchbiegung infolge Verkehrslast etwa $\frac{1}{1000}$ der Stützweite nicht überschreitet. Sollte ausnahmsweise eine noch weitergehende Einschränkung der Höhe infolge zwingender örtlicher Umstände nicht zu umgehen sein, so empfiehlt es sich, um mit der Durchbiegung und den Schwingungen in angemessenen Grenzen zu bleiben, die zugelassene Beanspruchung zu ermäßigen.

Zu d) Die Stegblechhöhe des Bogens ist zu $\frac{1}{40}$ der Stützweite angenommen. Zur Erzielung der kleinsten Bauhöhe ist auf die Durchführung des Streckgurtes im Scheitel verzichtet, und die Pfeilhöhe des Bogens ist zu $\frac{1}{12}$ gewählt worden. Bei mittlerer Bauhöhe ist der Streckgurt durchgeführt, und die Pfeilhöhe beträgt vielen Ausführungen entsprechend $\frac{1}{10}$ der Stützweite. Durch weitere Vergrößerung der Pfeilhöhe läßt sich noch besonders am Widerlagsmauerwerk sparen. Da die geforderte Durchfahrthöhe meist auf eine bestimmte Breite gewahrt werden muß und dieses Maß bei Straßenunterführungen häufig etwa einem Drittel der ganzen Lichtweite entspricht, so ist die Bauhöhe außer im Scheitel noch in ein Drittel der Lichtweite entspricht, so ist die Bauhöhe außer im Scheitel noch in ein Drittel der Lichtweite angegeben. Es ist dabei noch zu beachten, daß bei Straßen die obere Begrenzung des freizuhaltenden Durchfahrtprofils die gleiche Querneigung zeigt wie der Fahrdamm.

A. Bauhöhen von Eisenbahnbrücken. $L = {\rm St} \\ {\rm titzweite}.$

		Stutzweite.			
1	2	3	4	5	6
		Entfernung	Kleinste	Mittlere	Erwünschte
Bauart der Brücke	Stützweite ¹)	der		Bauhöhe	
		Hauptträger	em	em	em
	m	m	em	Citi	em
1. Fahrbahnen ohne Bettung:		100 350	T- ALL SHIP		
		HOUSE DEA	de incommitation		
a) Zwillingsträger.	1-8	0,36-0,45	$\frac{L}{7+L} > 30$		
			$\iota + L$		
Abb. 8.			- Limitalia (6)	and the control of the	town of Standard
b) Blechträger mit un-					
mittelbarer Auflage-	≤10 ≤11,5	1,90—3,20 3,3	37—48 50	V painted to be 1 and	
rung der Schienen auf den Querträgern. Abb. 9.	= 17,5 ≤ 17,5	3,7	52		
		128012-711-78			Selection of the
c) Blechträger mit versenkter Abb. 10.	≤15,5	3,75	56	86	98
Fahrbahn und Holzschwellen auf Schwellenträgern.	≦10,0 ≤20	4,80	58	88	100
len auf Schwellenträgern.		shapping 2	AND TO SERVICE OF		the researches!
d) Blechträger mit unmittelbarer	≤12	1,6—1,8	$\frac{L}{12} + 37$		$\frac{L}{10} + 46$
Schwellenauflagerung auf den		5/10/9/1			L
Hauptträgern.	12—26	1,61,8	$\frac{L}{12} + 39$		$\frac{L}{9} + 49$
जर जा			And 10 and 10 and 10		
e) Fachwerkträger mit versenk-	20—30 30—40	4,8 4,9	61 65	88 100	100 112
ter Fahrbahn.	40-50	5,0	71	115	132
F-1/8-7	> 50	5,0	76	125	148
2 2			<i>T</i> .		Т.
f) Fachwerkträger mit	30	2,3	$\frac{L}{12} + 24$		$\frac{L}{8} + 25$
halbversenkterFahr-	40	3,0	$\frac{L}{12} - 10$		$\frac{L}{8} - 10$
bahn.	-				
Abb. 13.	50	4,0	$\frac{L}{13}$ - 42		$\frac{L}{8}-42$
Abb. 14.			T		7
IA AIR	30	2,3	$\frac{L}{12} + 76$		$\frac{L}{8} + 102$
g) Fachwerkträger mit	40	3,0	$\frac{L}{12} + 81$		$-\frac{L}{8} + 116$
hochliegender Fahr- bahn (Querträger		and the sale			
auf den Obergurten).	50	4,0	$\frac{L}{13} + 89$	of March Control	$\frac{L}{8} + 147$
	60	4,2	$\frac{L}{13} + 100$		$\frac{L}{8} + 165$
11					
2. Fahrbahnen mit Bettung:					
a) Blechträger mit versenkter Fahrbahn.	< 13	3,4	72,5	1	100
Abb. 15. Abb. 16.	≦13 ≤16	3,75	75	Paralle de la	105
	20	4,8	80	(III)	120
h) Eachwarkteiner Eddalan III	30	4,8	80	116	126
b) Fachwerkträger, Fahrbahn versenkt.	40	5,0	88	132	142
c) Blechträger, Fahrbahn			T.		T.
oben.	≦26		$\frac{L}{14} + 46$		$\frac{L}{9} + 58$
Abb 17.		Line to the		in the state of the state of	
		*DUMB 10	Im Scheitel	Im Scheitel	
d) Blechbogen mit durchgehender, über den Haupt-			$\frac{L}{40} + 48$	$\frac{L}{40} + 77$	
trägern liegender Fahrbahn.			L 1 10	In $\frac{1}{3}$ der Stützweite $\frac{L}{17} + 77$	
	1		19 7 40	17 + 11	

¹⁾ Die angegebenen Stützweiten sollen nur als Anhalt dienen.

B. Bauhöhen von Straßenbrücken.

L = Stützweite. B = Breite des Fahrdammes.

	der	e e		Klei	nste		Erwünschte						
	ng	veit		Land A Francisco	- Waller - May	Bauhöh							
Bauart	apt	Stützweite		Fahrbahna	bdeckung	4	Fahrbahnabdeckung						
	Entfernung der Hauptträger	m St	Doppelter Bohlenbelag	Chaussierung	Holz- oder Steinpflaster	Asphalt	Doppelter Bohlenbelag	Chaussierung	Holz- oder Steinpflaster	Asphalt			
Blechträger hochliegen- der Fahrbahn.	etwa	5 7 3	100	20 00	10	$\frac{L}{16} + 17 + \frac{B}{120}$	100			120			
Abdeckung aus Tonnen- blechen oder	1,5		200			$\frac{L}{18} + 19 + \frac{B}{120}$				10			
Buckel- platten		20	$\frac{L}{20} + 28 + \frac{B}{100}$	$\frac{L}{20} + 23 + \frac{B}{60}$	$\frac{L}{20} + 30 + \frac{B}{80}$	$\frac{L}{20} + 20 + \frac{B}{120}$	$\frac{L}{9} + 25 + \frac{B}{100}$	$\frac{L}{9} + 20 + \frac{B}{60}$	$\frac{L}{9} + 27 + \frac{B}{80}$	$\frac{L}{9} + 17 + \frac{B}{120}$			
2. Fahrbahn versenkt	6,4	Feld-weite in m 2,5 3,5 4,5	66 69 75	64 67 73	69 72 78	57 60 66	100 110 125	98 108 122	103 113 128	91 101 116			
	9,5	2,5 3,5 4,5	87 94 105	85 92 103	90 97 108	78 85 96	130 155 168	128 153 166	133 158 171	121 146 159			
		10		$\frac{L}{60} + 27 + \frac{B}{60}$									
		10	In $\frac{1}{3}$ d. Stützweite	$\frac{L}{17} + 27 + \frac{B}{60}$	$\frac{L}{17} + 22 + \frac{B}{80}$	$\frac{L}{17} + 29 + \frac{B}{120}$							
		20		$\frac{L}{60} + 28 + \frac{B}{60}$									
3. Blechbog brücken n	nit		Contract to	$\frac{L}{17} + 28 + \frac{B}{60}$	THE PROPERTY								
einer Stützv von	veite	30	Charles and the con-	$\frac{L}{60} + 28 + \frac{B}{60}$									
		D Lo		$\frac{L}{17} + 28 + \frac{B}{60}$	Remarks of the stage of								
		40	Im Scheitel	$\frac{L}{60} + 29 + \frac{B}{60}$	$\frac{L}{60} + 24 + \frac{B}{80}$	$\frac{L}{60} + 31 + \frac{B}{120}$							
			In $\frac{1}{3}$ d. Stützweite	$\left \frac{L}{17} + 29 + \frac{B}{60} \right $	$\frac{L}{17} + 24 + \frac{B}{80}$	$\left \frac{L}{17} + 31 + \frac{B}{120} \right $							

B. Straßenbrücken.

Die Bauhöhe einer Straßenbrücke ist das Maß zwischen dem höchsten Punkt der Fahrbahnabdeckung und der Unterkante des Überbaues. Hinsichtlich der Vorteile einer reichlich bemessenen Bauhöhe sind die Vorbemerkungen zu den Eisenbahnbrücken zu beachten.

Bauliche Ausbildung.

Die Bauhöhen sind für vier verschiedene Fahrbahnabdeckungen angegeben:

- a) Doppelter Bohlenbelag von 5 und 10 cm Stärke, auf mindestens 5 cm starken Futterhölzern mit einem Quergefälle von $\frac{1}{50}$.
- b) Chaussierung mit einer Mindeststärke von 15 cm über Oberkante Fahrbahnträger und einem Quergefälle von $\frac{1}{30}$.
- c) Stein- oder Holzpflaster 13 cm stark auf mindestens 5 cm starkem Beton mit einer Zwischenlage aus Sand von 4 cm Höhe. Quergefälle $\frac{1}{40}$.
- d) Asphalt 5 cm stark auf einer Betonunterlage von mindestens 8 cm Höhe. Quergefälle $\frac{1}{60}$ ·

Als Belastung ist die für städtische Straßen vielfach übliche angenommen, nämlich ein schwerer Wagen von 9 Tonnen Achsdruck und 4,5 m Radstand und beliebig viele Wagen mit 2,5 Tonnen Achsdruck und 3,5 m Radstand.

Als zulässige Beanspruchungen sind die für Eisenbahnbrücken vorgeschriebenen zugrunde gelegt.

Zu den verschiedenen Bauarten ist im einzelnen noch folgendes zu bemerken:

Zu 1. Die geringste zulässige Stegblechhöhe ist so bestimmt, daß die durch die Verkehrslast hervorgerufene Durchbiegung etwa $\frac{1}{1000}$ der Stützweite nicht überschreitet. Die als erwünscht bezeichnete Höhe ist so bemessen, daß der Materialaufwand unter Berücksichtigung der baulichen Ausbildung (genügende Seitensteifigkeit der Gurte, Durchführung einer Gurtplatte usw.) möglichst gering wird.

Zu 2. Die angenommene Entfernung der Hauptträger genügt bei außenliegenden Fußwegen für die Begegnung von zwei bezw. drei Fuhrwerken. Bei abweichenden Breiten können die Werte unter entsprechender Änderung immer noch als Anhalt dienen. Maßgebend für die Bauhöhe sind nur die als Blechträger ausgebildeten Querträger, die bei beschränktester Bauhöhe drei Gurtplatten erhalten müssen und deren Höhe so bestimmt ist, daß die Durchbiegung infolge der Verkehrslast $\frac{1}{1400}$ der Stützweite nicht überschreitet. Bei der sehr geringen Trägerhähe der wen bei den

überschreitet. Bei der sehr geringen Trägerhöhe darf man bei der Berechnung der Quersteifigkeit oben offener Brücken den Einfluß des Querträgers nicht vernachlässigen

$$\[n = \frac{E}{G} \sqrt{\frac{12 \, Jg \, Jv \, Jq}{h^3 \, \lambda \, Jq + 1,5 \, \lambda \, h^2 \, b \, Jv}} \,.1) \]$$

Mit Rücksicht auf die Quersteifigkeit empfiehlt es sich, bei oben offenen Brücken (von 25—35 m Stützweite) nicht bis auf die angegebenen kleinsten Bauhöhen hinabzugehen. Bei unbeschränkter Bauhöhe ist die Querträgerhöhe so bemessen, daß bei geringem Materialaufwand der aus einer Gurtplatte und zwei Winkeln bestehende Gurtquerschnitt des Querträgers nicht zu schwach wird.

Zu 3. Die Ausbildung ist die gleiche wie bei den Eisenbahnbrücken (siehe A. 2. d), die Stegblechhöhe der Hauptträger beträgt jedoch nur $\frac{1}{60}$ der Stützweite.

¹⁾ Siehe Zentralblatt der Bauverwaltung 1884, S. 415. E= Elastizitätsmodul, G= größte Gurtspannkraft, $\lambda=$ Feldweite, h= freie Höhe des Ständers, b= Entfernung der Hauptträger, Jg= Trägheitsmoment des Obergurtes, Jv= des Ständers und Jq= des Querträgers.

VI. Eigengewichte eingleisiger eiserner Eisenbahnbrücken der preußischen Staatsbahnen.¹) Aufgestellt unter Zugrundelegung der Berechnungvorschriften vom 1. Mai 1903.

	Auiges		Eisengewichte in	kg für	das Meter der Brücke	Fahrbahntafel	Gesamtes Eigengewicht
Bauart der Brücke	Stütz- weite in m	Haupt- träger- abstand in m	Hauptträger mit Querverband, Windverband und Lager L=Stützweite in m	EXTREM LA	gungen) Hauptträger mit Querverband, Wind- verband, Lager und Fahrbahn	(Schienen, Schwellen und Boblenbelag) bezw. (Schienen, Schwellen und Bettung) ohne Leitschienen, die 150 kg/m wiegen kg/m	der Brücke einschließlich der Fahrbahntafel für das Meter in kg (für Festigkeits- berechnungen)
1. Fahrbahnen ohne Bettung. Blechträger mit unmittelbarer Schwellenanflagerung.	10	1,8	240 + 54 L		240 + 54 L	640	880 + 54 L
Abb. 18.	bis 25	2,0	240 + 54 L		240 + 54 L	775	1015 + 54 L
Blechträger mit versenkter Fahrbahn und mit einem seitlichen Fußsteig.	10	3,0	270+44~L	380	650 + 44 L	595	1245 + 44 L
0.6 Abb. 19.	bis	3,3	270 + 44 L	430	700 + 44 L	630	1330 + 44 L
1,8-1	25	3,7	270 + 44 L	520	790 + 44 L	660	1450 + 44 L
Fachwerkträger, Fahrbahn versenkt, ohne besonderen Fußweg.	20	4,8	540 + 27 L	600	1140 + 27 L	680	1820 + 27 L
Abb. 20.	bis	4,9	540 + 27 L	625	1165 + 27 L	680	1845 + 27 L
F-18-X	40	5,0	540 + 27 L	670	1210 + 27 L	680	1890 + 27 L
	40	4,8	680 + 27 L	600	1280 + 27 L	680	1960 + 27 L
[]0,65	bis	4,9	680 + 27 L	625	1305 + 27 L	680	1985 + 27 L
	80	5,0	680 + 27 L	670	1350 + 27 L	680	2030 + 27 L
Fachwerkträger, Fahrbahn oben.							
Abb. 21.		2,5	540 + 27 L	490	1030 + 27 L	550	1580 + 27 L
Abb 22.		3,5	540 + 27L	580	1120 + 27 L	550	1670+27~L
2. Fahrbahnen mit Bettung. Blechträger mit durchgehendem Kiesbett nach	10	3,3	270 + 49 L	670	940 + 49 L	2840	3780 + 49 L
Abb. 23.	bis 25	3,7	270 + 49 L	840	1110 + 49 L	3260	4370 + 49 L
Blechträger mit durchgehendem Kiesbett nach	10	3,3	270 + 49 L	770	1040 + 49 L	2680	3720 + 49 L
	bis 25	3,7	270 + 49 L	940	1210 + 49 L	2820	4030 + 49 L
Blechträger mit durchgehendem Kiesbett über den Hauptträgern.	10 bis 20		Eisengewicht für 160 +		Brücke	Gewicht für 1 qm Brücke 920	Eigengewicht für 1 qm $$ Brücke $1080+24L$

¹⁾ Ausführliche Herleitung der Formeln siehe Zentralblatt der Bauverwaltung 1904, S. 33.

Die vorstehenden Angaben gelten nur für Brücken mit rechtwinklig gegenüberliegenden Endauflagern und mit nicht beschränkter Bauhöhe, bei denen das Gleis in der Geraden liegt. Sobald eine dieser drei Voraussetzungen nicht erfüllt ist, muß das Gewicht der Brücke erhöht werden. Die erforderliche Vermehrung des Brückengewichtes ist abhängig von der Größe der Abweichung von den drei Voraussetzungen, die der Ermittlung der Formeln zugrunde gelegt wurden; sie erstreckt sich nur auf den durch die Abweichung betroffenen Brückenteil. Zum ungefähren Anhalt mögen die folgenden Angaben dienen.

1. Höhe des vollwandigen Hauptträgers 1/14 statt 1/10: Erhöhung

des Hauptträgergewichtes um 20 vH.

2. Höhe des Parallelträgers ¹/₁₂ statt ¹/₈: Erhöhung des Hauptträgergewichtes um 15 vH.

 Sehr beschränkte Bauhöhe: Erhöhung des Fahrbahngewichtes bis zu 25 vH.

4. Schiefe Grundrißgestaltung der Brücke: Erhöhung des Fahrbahngewichtes bis zu $15~{\rm vH}.$

5. Krümmung des Gleises über 300 m bei Stützweiten unter 40 m: Erhöhung des Gesamtgewichtes bis etwa 12 vH.

Bei Brücken mit tiefliegender Fahrbahn tritt bei einer Stützweite von 40 m deshalb ein Sprung im Gewicht ein, weil von dieser Stützweite an in der Regel ein oberer Windverband hinzutritt.

Für die unter Zugrundelegung des Lastenzuges B zu entwerfenden Brücken sind die vorstehenden Gewichtsangaben um 10 vH. zu erhöhen.

VII. Berechnung der Gurtplattenlängen bei Blechträgern mit unmittelbarer Auflagerung der Schwellen.

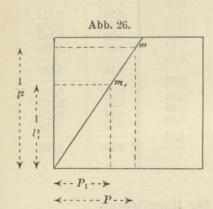
Macht man die ungünstige, bei dem geringen Einfluß des Eigengewichtes aber zulässige Annahme, daß die Momentenkurve für Eigengewicht keine Parabel sei, sondern, wie die für die Verkehrslast, sich aus einer Wagerechten und zwei Parabelzweigen zusammensetze, so lassen sich mit den nachstehenden Zahlenwerten die Gurtplattenlängen unmittelbar aus dem Verhältnis des vorhandenen Widerstandsmomentes des Querschnittes zu dem größten in der Mitte des Trägers erforderlichen Widerstandsmoment berechnen.

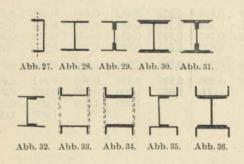
$\frac{W_x}{W_{\max}}$	$ \begin{array}{c} \text{Verhältnis der} \\ \text{Gurtplatten-} \\ \text{länge zur} \\ \text{Stützweite} \\ \hline \frac{l}{L} \end{array} $	$\frac{\frac{l}{L}}{\frac{d}{W_x}}$	$\frac{W_x}{W_{\max}}$	Verhältnis der Gurtplattenlänge zur Stützweite $\frac{l}{L}$	$\frac{\frac{1}{L}}{\frac{1}{W_{\max}}}$	$\frac{W_x}{W_{\text{max}}}$	Verhältnis der Gurtplatten- länge zur Stützweite \frac{l}{L}	$\frac{\frac{1}{L}}{\frac{W_x}{W_{\text{max}}}}$	$\frac{W_x}{W_{\text{max}}}$	Verhältnis der Gurtplatten- länge zur Stützweite $\frac{l}{L}$	$\frac{A\frac{l}{L}}{A\frac{W_x}{W_{\text{max}}}}$
1,00	0,000		0,80	0,513	0.05	0,60	0,676	0.70	0,40	0,802	0.55
0,98 0,96 0,94 0,92	0,243 0,295 0,336 0,369	2,60 2,05 1,65	0,78 0,76 0,74 0,72	0,532 0,551 0,569 0,586	0,95 0,95 0,90 0,85	0,58 0,56 0,54 0,52	0,690 0,703 0,717 0,729	0,70 0,70 0,70 0,65	0,38 0,36 0,34 0,32	0,813 0,824 0,835 0,846	0,55 0,55 0,55 0,55
0,90	0,400	1,55	0,70	0,602	0,80	0,50	0,742	0,65	0,30	0,857	0,55
0,88 0,86 0,84 0,82	0,425 0,449 0,472 0,493	1,25 1,20 1,15 1,05	0,68 0,66 0,64 0,62	0,618 0,633 0,648 0,662	0,80 0,75 0,75 0,70	0,48 0,46 0,44 0,42	0,754 0,766 0,778 0,790	0,60 0,60 0,60 0,60	0,28 0,26 0,24 0,22	0,867 0,877 0,887 0,897	0,50 0,50 0,50
0,80	0,513	1,00	0,60	0,676	0,70	0,40	0,802	0,60	0,20	0,907	0,50

VIII. Berechnung der Knotenpunktsmomente M_m für Hauptträger.

A. Für Verkehrslast.

 $M_m = a \cdot M_{\text{max}}$


Knoten- punkt									Fel	dera	ahl							
m	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		3000		15: -4			1		Werte	für a.								
1 2 3 4	0,941	0,813 1,000	0,703 0,992	0,614 0,941 1,000	0,544 0,877 0,999	0,487 0,813 0,978 1,000	0,441 0,755 0,941 1,000	0,403 0,703 0,899 0,992	0,370 0,656 0,855 0,970	0,343 0,614 0,813 0,941	0,319 0,577 0,773 0,909	0,298 0,544 0,737 0,877	0,280 0,514 0,703 0,845	0,264 0,487 0,671 0,813	0,249 0,463 0,641 0,783	0,236 0,441 0,614 0,755	0,225 0,421 0,589 0,728	0,214 0,403 0,563 0,703
5 6 7 8 9 10								1,000	1,000	0,997 1,000	0,984 1,000	0,964 0,990 1,000	0,941 0,992 1,000	0,916 0,978 1,000 1,000	0,890 0,960 0,996 1,000	0,864 0,941 0,986 1,000 1,000	0,839 0,920 0,973 0,998 1,000	0,81 0,89 0,95 0,99 1,00 1,00


B. Für Eigengewicht.

$$M_m = g \lambda^2 \left(\frac{m (n-m)}{2} \right) = a \cdot g \lambda^2 *)$$

Knoten- punkt		PERLIA		Nel Equ	in and	E. Ale	1		F e l	der	zahl							
m	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Asir Lice	1	ohuge e	J. Carlo	-	102	1	15/15/	1/11/21/21	Werte	für a.								
1 2 3 4 5	1	1,5 2,0	2,0 3,0	2,5 4,0 4,5	3,0 5,0 6,0	3,5 6,0 7,5 8,0	4,0 7,0 9,0 10,0	4,5 8,0 10,5 12,0 12,5	5,0 9,0 12,0 14,0 15,0	5,5 10,0 13,5 16,0 17,5	6,0 11,0 15,0 18,0 20,0	6,5 12,0 16,5 20,0 22,5	7,0 13,0 18,0 22,0 25,0	7,5 14,0 19,5 24,0 27,5	8,0 15,0 21,0 26,0 30,0	8,5 16,0 22,5 28,0 32,5	9,0 17,0 24,0 30,0 35,0	9,5 18,0 25,5 32,0 37,5
6 7 8 9 10										18,0	21,0	24,0 24,5	27,0 28,0	30,0 31,5 32,0	33,0 35,0 36,0	36,0 38,5 40,0 40,5	39,0 42,0 44,0 45,0	42,0 45,5 48,0 49,5 50,0

^{*)} $g = Gewicht für 1 m; \lambda = Feldweite.$

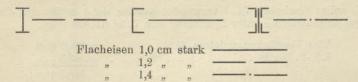
IX. Querschnittsbestimmung auf Druck beanspruchter Füllungsglieder eiserner Fachwerkbrücken.

A. Herleitung der Hilfstafel.

Auf Druck beanspruchte Stäbe müssen außer der aus der zulässigen Beanspruchung sich ergebenden Querschnittsgröße $F = \frac{P}{\sigma}$ bei fünffacher Knicksicherheit nach der Eulerschen Knickformel noch ein kleinstes Trägheitsmoment $J \ge \frac{5 \, P l^2}{\pi^2 \, E}$ aufweisen. (E für Flußeisen = 2 150 000.)

Zeichnet man ein rechtwinkliges Koordinatensystem, in dem die Abszissen Tonnen (P), die Ordinaten die reziproken Werte

die Abszissen Tonnen (1), die Granden der Quadrate von Längen $\left(\frac{1}{l^2}\right)$ darstellen, so entsprichtobenstehende Beziehung in der Form $P = \left(\frac{J\pi^2 E}{5}\right) \cdot \frac{1}{l^2}$ der Gleichung einer Geraden. Berechnet man demnach für einen gegebenen Querschnitt mit dem Trägheitsmomeut J die zulässige Belastung P für eine beliebige Knicklänge l, bestimmt den Punkt m mit den Koordinaten P und $\frac{1}{l^2}$ und verbindet m mit dem Anfangspunkt des Koordinaten-


systems (Abb. 26), so ergibt die Abszisse eines jeden Punktes der Geraden die Tragkraft des Querschnitts für die durch die Ordinate bestimmte Knicklänge.

Hiernach sind für die bei doppelwandigen Gurtungen gebräuchlichsten Querschnitte der Füllungsglieder eiserner Brücken die entsprechenden Geraden unter Berücksichtigung ihres kleinsten Trägheitsmomentes gezeichnet worden, und zwar rechts von der Nullinie für breitflanschige I-Eisen des Aachener Hütten-Aktien-Vereins und der Differdinger Hütte, für genietete Querschnitte aus Stegblech mit vier Winkeln, für ein und für zwei E-Eisen; links von der Nullinie für zwei Flacheisen verschiedener Stärke. Bei den zweiteiligen Querschnitten aus zwei L- oder zwei Flacheisen ist angenommen worden, daß sie durch ausreichende Verbindungen zu einem einheitlich wirkenden Querschnitt zusammengefaßt sind und daß das kleinste Trägheitsmoment des Querschnittes gleich der Summe der größten Trägheitsmomente der Teile wird. Bei den einfachen E-Eisen, die nur als Verbindungen der zweiteiligen Querschnitte verwendet werden, ist das Trägheitsmoment, bezogen auf die die Nietreihen in den Flanschen verbindende Linie, bestimmt worden (Abb. 27). Bei der Berechnung der Träg-heitsmomente sind die Nietlöcher, da die Querschnitte auf Druck beansprucht werden, nicht berücksichtigt. Die Dicke der Stegbleche der genieteten Träger ist zu 1 cm angenommen worden; wo die Linien zweier Querschnitte sehr nahe zusammenfielen, ist zwecks größerer Klarheit der Darstellung nur eine Linie gezeichnet Da für die in Betracht gezogenen Querschnittsformen die Tragfähigkeit der zusammengesetzten Querschnitte gleich der Summe der Tragfähigkeit der Teile ist, so läßt sich mit Hilfe der nachstehenden Tafel die zulässige Knickbelastung sämtlicher in den Abb. 27 bis 36 dargestellten Querschnittsformen für Knicklängen von 3 bis 11 m bestimmen. Da bis 20 m Stützweite meist Blechträger verwendet werden, so brauchten Längen unter 3 m nicht berücksichtigt zu werden, und Knicklängen über 11 m wird man zweckmäßig durch Hilfskonstruktionen verringern.

In der unteren Tafel III sind die Trägheitsmomente, Querschnitte und die Tragfähigkeiten angegeben worden, die sich für die verschiedenen Stützweiten aus der zulässigen Beanspruchung, ohne Berücksichtigung der Knicksicherheit, ergeben. Dabei ist zu beachten, daß bei der Angabe der Querschnitte und Tragfähig-keit für die genieteten Träger das Stegblech, dessen Breite verschieden angenommen werden kann, nicht berücksichtigt worden ist.

B. Benutzung der Hilfstafel.

Die den verschiedenen Querschnittsformen entsprechenden Geraden sind zur leichteren Unterscheidung verschieden dargestellt:

Der Grad der Knicksicherheit berechnet sich bei Flußeisen

$$n = 2{,}122\,\frac{J}{Pl^2}$$
 J in cm4, P in t, l in m.

1. Stützweite des Überbaues 30 m, Knicklänge 3,7 m, Belastung 90 t.

Man verfolge in der Tafel I die wagerechte Linie, an der die Länge von 3,7 m angegeben ist, bis zu ihrem Schnittpunkt m mit der senkrechten Linie, die 90 t entspricht (Abb. 37). Dann muß die dem zu wählenden Querschnitt entsprechende Gerade durch den Punkt m gehen oder unterhalb m liegen Die nächst unterhalb folgende Linie gibt das I-Eisen B 24. Die Tragfähigkeit dieses Querschnittes, nur unter Berücksichtigung der zulässigen Beanspruchung berechnet, ergibt sich aus Tafel III für einen Überbau von 30 m Stützweite zu 87,1 t. Man muß daher das I-Eisen B 25 verwenden mit einem Trägheitsmoment $J=3575~{\rm cm}^4$ und einer Querschnittsfläche $F=105,1~{\rm qcm}$. Dann wird

die Knicksicherheit
$$n = \frac{2,122 \cdot 3575}{90 \cdot 3,7^2} = 6,2,$$

die Beanspruchung $\sigma = \frac{90\,000}{105,1} = 856 \text{ kg/qcm}.$

2. Stützweite des Überbaues 90 m, Knicklänge 10 m, Belastung 69 t.

Es soll ein genieteter Träger mit vier Winkeln 8.16.1,2 und

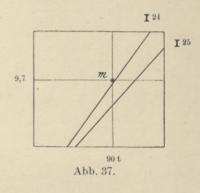
Verstärkungsplatten verwendet werden.

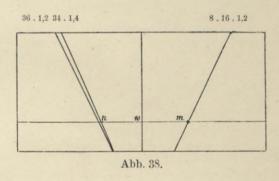
Man verfolge in Tafel II die wagerechte Linie, an der die Länge von 10 m angegeben ist, bis zu ihrem Schnittpunkt m mit der dem Querschnitt mit vier Winkeln 8.16.1.2 entsprechenden Linie (Abb. 38). Dann trage man mit einem Anlegemaßstab (1 t = 1,5 mm), oder mit dem Zirkel unter Benutzung des unter der Tafel gezeichneten Kräftemaßstabes 69 t vom Punkte m auf der der Länge von 10 m entsprechenden Linie wagerecht nach links bis n ab. Die der zu wählenden Verstärkungsplatte entsprechende Linie muß dann durch n gehen oder unterhalb n liegen. Es genügt eine Platte 34.1.4 oder 36.1.2. Verwendet man die letztere, so ergibt sich unter Benutzung der Tafel III die gesamte Querschnittsfläche wie folgt:

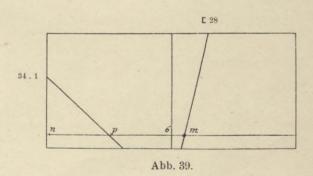
Stegblech mit vier Winkeln 8.16.1,2 . =
$$7 \cdot 132 \text{ cm}^4$$

zwei Verstärkungsplatten $36.1,2$. . = $9 \cdot 331$ " $16 \cdot 463 \text{ cm}^4$.

Mithin wird


die Beanspruchung
$$\sigma = \frac{69\,000}{226,4} = 305 \text{ kg/qcm},$$
 die Knicksicherheit $n = \frac{2,122\cdot16\,463}{69\cdot10^2} = 2,06.$

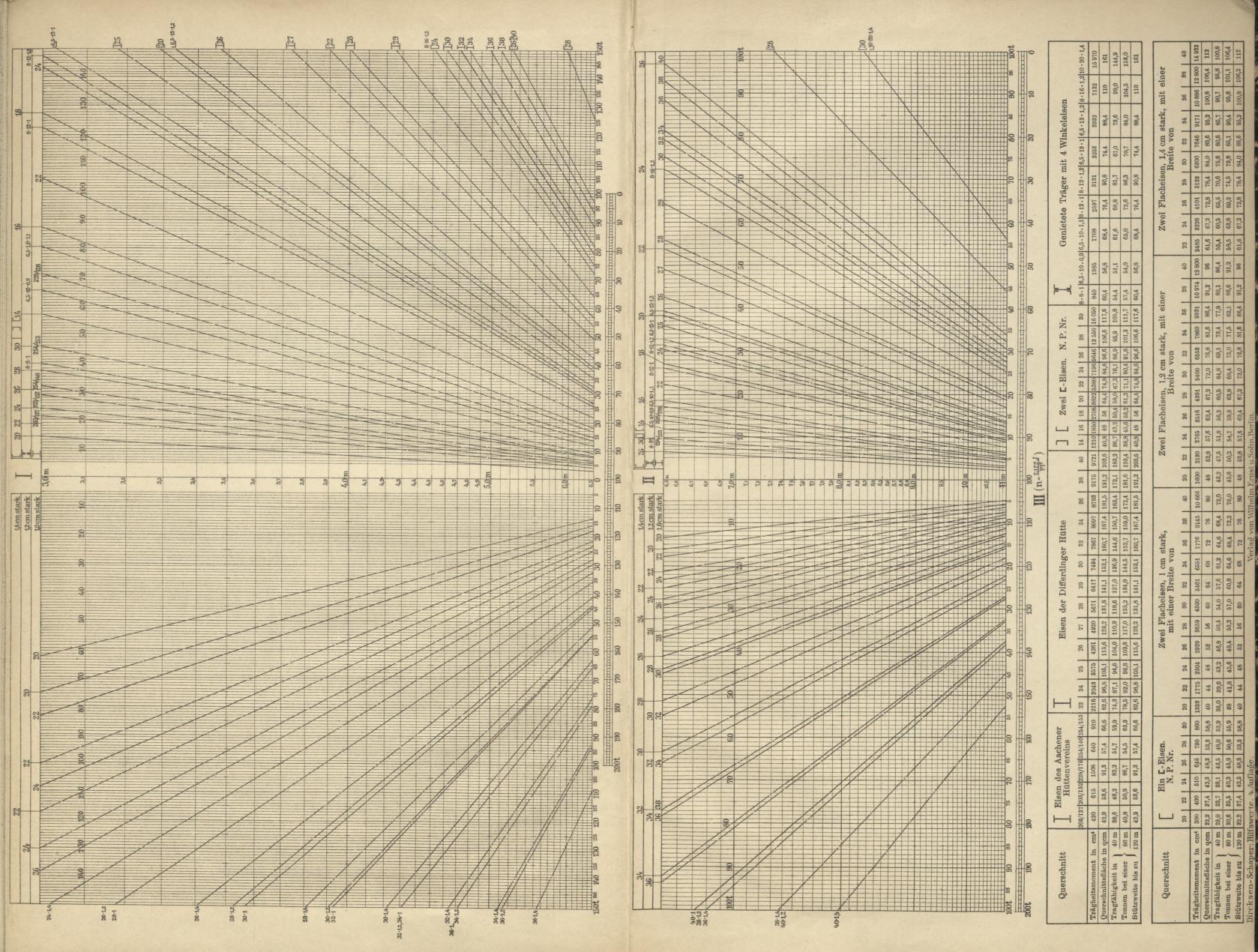

3. Stützweite des Überbaues 60 m, Knicklänge 6 m, Belastung 150 t.


Es sollen Flacheisen verwendet werden, die durch ein C 28 zu

einem einheitlichen Querschnitt verbunden werden

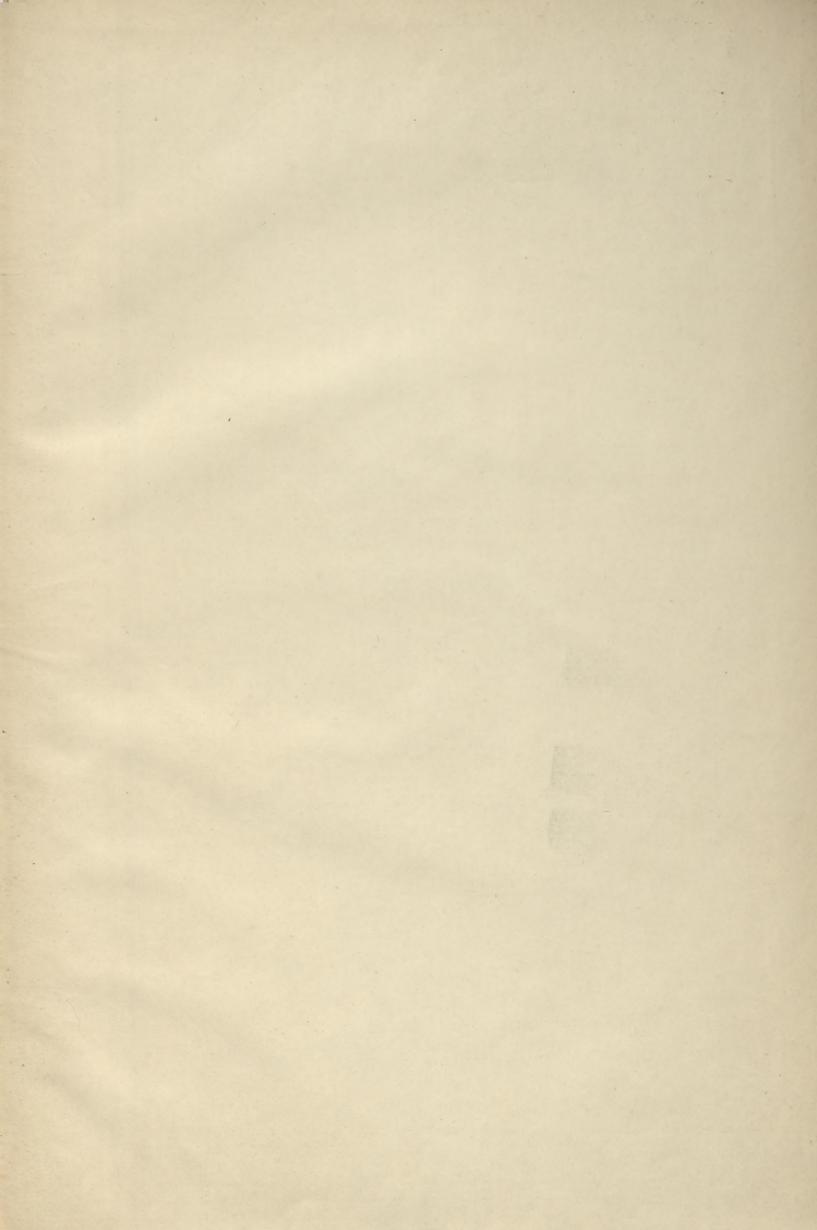
Man verfolge in Tafel I die wagerechte Linie, an der die Länge von 6 m angegeben ist, bis zum Schnittpunkt m mit der einem E-Eisen Nr. 28 entsprechenden Geraden. Dann trage man mit einem Anlegemaßstab (1 t=1 mm), oder mit dem Zirkel unter Benutzung des unter der Tafel gezeichneten Kräftemaßstabes 150 t auf der der Länge von 6 m entsprechenden Linie wagerecht bis n auf (Abb. 39). Da keine Linie unterhalb n liegt, so genügen bei den in Betracht gezogenen Abmessungen zwei Platten nicht, es müssen vielmehr vier Platten angeordnet werden. Um den für sie erforderlichen Querschnitt zu finden, halbiere man die Entfernung $n\,6$ des Punktes n von der Nullinie im Punkte p, dann muß die dem zu wählenden Flacheisen entsprechende Linie unterhalb p liegen.

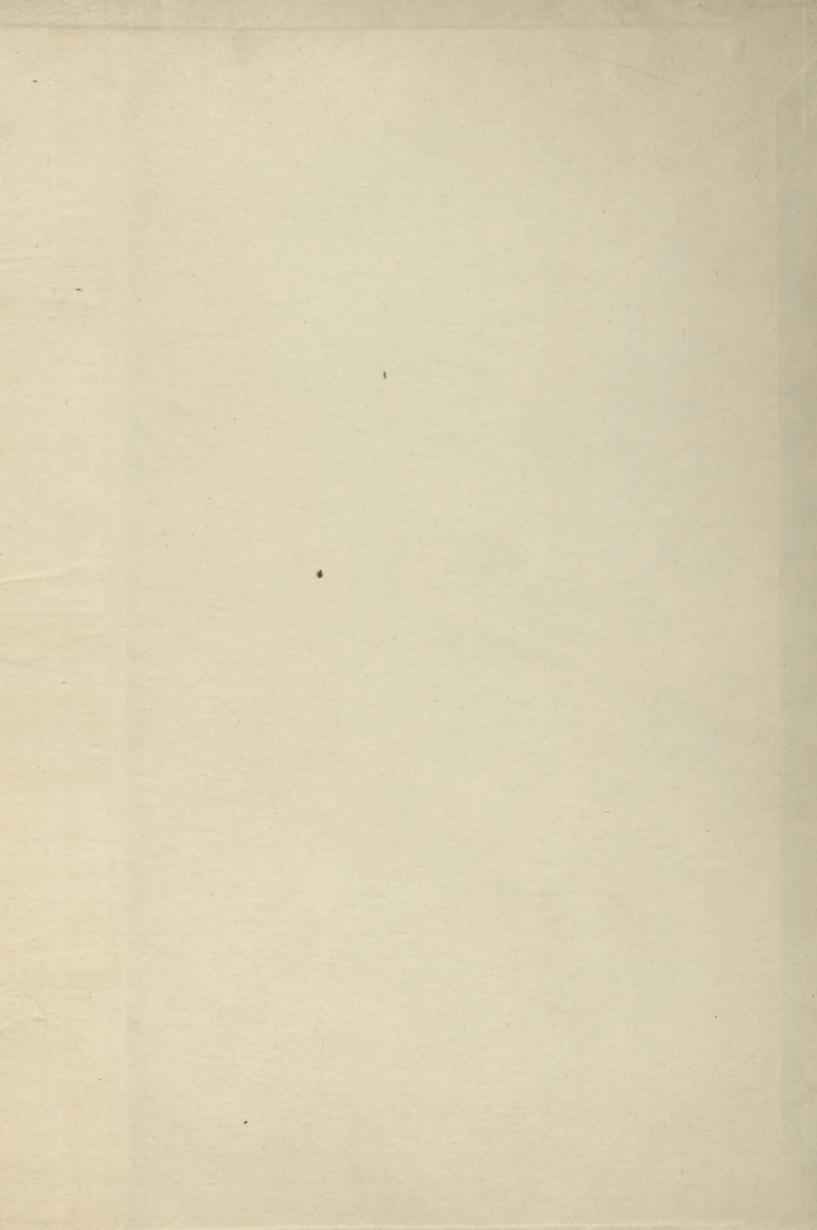
Es sollen Flacheisen 34.1 verwendet werden, dann ergibt sich die Querschnittsfläche unter Benutzung der Tafel III wie folgt:


Vier Verstärkungsplatten 34.1	= 136,0 qcm $= 53,3 ,$ $= 189,3 qcm;$
das Trägheitsmoment:	
vier Verstärkungsplatten 34.1	$= 13 102 \mathrm{cm}^4$
E NP. Nr. 28	
NO. 1	13 892 cm ⁴ .
Mithin wird	

die Beanspruchung $\sigma = \frac{150\,000}{189,3} = 793 \text{ kg/qcm},$ die Knicksicherheit $n = \frac{2,122 \cdot 13\,892}{150 \cdot 6^2} = 5,46.$

*) Bei der Berechnung des Trägheitsmomentes ist vorausgesetzt, daß die das Γ -Eisen und die Platten verbindende Nietreihe mit der Mittellinie der Platten zusammenfallt.





Biblioteka Politechniki Krakowskiej

