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In March, 1903, the Worshipful Company of Drapers announced their intention 

of granting £1,000 to the University of London to be devoted to the furtherance of 

research and higher work at University College. After consultation between the 

University and College authorities, the Drapers Company presented £1,000 to the 

University to assist the statistical work and higher teaching of the Department of 

Applied Mathematics. It seemed desirable to commemorate this—probably, first

occasion on which a great City Company has directly endowed higher research work 

in mathematical science—by the issue of a special series of memoirs in the

preparation of which the Department has been largely assisted by the grant. Such

is the aim of the present series of uDrapers Company Research MemoirsI

K. P.
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On a Theory of the Stresses in Crane and Coupling Hooks with Experimental
Comparison with Existing Theory.

By E. S. Andrews, B. Sc. Png., Bond., University College, London.

With some Assistance from Karl Pearson, F.P.S., Professor of Applied 
Mathematics and Mechanics, University College, London.

[With Thirteen Diagrams.]

(1.) Introductory.

The full treatment of the equations of elasticity, as applied to the strains in an 
elastic body of such a complex shape as a crane or coupling hook, is with our present 
mathematical knowledge quite beyond analytical treatment. An elementary dis
cussion which treats the hook as a rib or even as a beam has found its way into the 
elementary text books,* and is possibly due originally to BRix.f Grashof later 
than Brix (‘ Theorie der Elasticitat und Festigkeit,’ Berlin, 1878, p. 289) has a 
better but still quite fallacious treatment not only of the hook but of the link problem. 
Winkler, in his paper of 1858, on links of chains (“ Formanderung und Festigkeit 
gekrihnmter Korper, inshesondere Binge,” £ Der Civilingenieur,’ Bd. IV., S. 232-46, 
1858), corrected one great error of Brix’s investigation, and showed that the flexural 
rigidity of a link involves not simply the radius of gyration of the cross-section, but 
also its unstrained curvature. Winkler’s paper has been corrected and extended by 
Pearson (‘ History of Elasticity,’ vol. 2, Part I., pp. 422-445), but, whether applied 
to hooks or links, it is still theoretically fallacious and leads to results which experi
mentally are far from verified. In the course of the present investigation we shall 
show where these theories fail.

* W. C. Unwin, ‘Elements of Machine Design,’ Part I., Art. 297; J. Goodman, ‘ Mechanics applied 
to Engineering,’ pp. 383-5. The treatment as a cranked tie-bar is, of course, illegitimate, as it neglects 
the curvature of the belly.

t ‘ Verhandlungen des Vereins zur Beforderung des Gewerbfleisses in Preussen/ Jahrgang 24, Berlin, 
1845, pp. 185-192. See Todhunter and Pearson, ‘History of Elasticity,’ vol. 1, p. 675.
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F, S. ANDREWS: ON THE4

(2.) General Theory.

Our assumptions will be of the following kind

(a.) We confine our attention to the principal or horizontal section of the hook, 
i.e., the section AB perpendicular to the line XX of loading. The line of loading 
meets this section produced in L, the “load-point” of the cross-section. If C be the 
centroid of the principal cross-section, and 0 the centre of curvature of the central

iX

IX
Fig. II.Fig. I.

line, i.e., the line of centroids of successive cross-sections of the hook, we shall take 
CO — p the radius of curvature. In the actual crane and coupling hooks we have 
measured, L and O very closely coincide. This is not necessary, but it to some 
extent simplifies the formulae.

(h.) We shall assume that the centre of curvature of the extrados of the hook at B 
and of the intrados at A are sensibly at 0. This is not absolutely true, especially in 
the case of coupling hooks, but it is quite a close approximation to the truth.

(c.) The curvature changes very slightly in the neighbourhood of ACB. This is 
quite true, for the drawings of hooks we have received show that this portion of both 
extrados and intrados are struck off with circles.

(cl.) There is no shear on the section ACB, and the shear as we pass from the 
section A( 1B only slowly begins to be sensible. Hence in the immediate neighbour
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THEORY OF STRESSES IN CRANE AND COUPLING HOOKS. 5

hood of the section ACB we may neglect any distortion of the cross-section, as far as 
it is due to shear, i.e., we may consider the section after strain to remain plane.

We shall use symbols and letters with the subscript zero attached to them to 
mark the quantities and points on the unstrained hook. Without this subscript 
they will refer to the strained hook. Fig. II. is a picture of the cross-section ACB. 
The line YY, perpendicular to the trace ACB of the plane of loading on the cross- 
section, is the “ central axis.” a is any small element of area at the point P, 
distant y from the central line. Pm and PN are perpendiculars on BCA and YY. 
L is the load-point, 0 the centre of curvature, and OC — p.
A = area of principal cross-section. Let dashed letters refer to corresponding points 
on an adjacent cross-section obtained by taking a plane through ff, a line through O 
parallel to YY, and making a small angle with the plane of AYBY. If we consider a 
“ fibre,” PP', obtained by drawing all the circular arcs with centres on fOf in planes 
perpendicular to fOf which pass through the boundary of a, the tension Ty in such 
a “ fibre ” will be related to the stretch sy in it by the relation

/q = CB and h2 — AC.

Ty = Esv (*■)•

Here we have adopted the fundamental assumption of De Saint-Venant’s theory 
of flexure, or we assume the transverse tractions which must he zero at the surface of 
the hook are zero throughout.*

Now clearly
S, = (PP' - PoP'o) P0P' 

PF = P0P'0(L + s,).

05
or

But
PP' = nnf and by (c) and (d)

nn'/CC = (p + y)/P.
Further

P0P'0 = nQn'Q,
and

W0™ o/C0C 0 — (p0 "P y0)lp<>-

Let .sq = stretch of central line at C, or

CC' = C0C'0 (1 + So)-

Then we have the fundamental relation

(i + *)(i + *) = ( ) (! + *jr) • •1 + 2/0 . . (ii.).
Po

* This is probably correct to a higher degree of approximation for our principal section without shear 
than it is even for De Saint-Yen ant’s cantilevers with constant shear on each cross-section.



Or

sy — <s’o +

But t/0 y is of the order of the transverse squeeze and therefore may be neglected, 
Vo

when multiplied by —. Thus finally we have

sy ~ «o + .Vo (~
\P

1
/V

This is the legitimate formula for flat arches. It can never be applied to links 
of chains and hooks, as has been done by Grashof and other writers. In a hook y is 
of the order p, in fact it is quite possible for y/p to be unity, hence its product with 
the stretches cannot be neglected.

If we do not consider y/p as small, we have from (ii.)

('+ p)l{i + f0) - <i++ s«) - 1 - *0 + *v

Now

6 E. S. ANDREWS: ON THE

This result with our assumptions is true for beams, girders, ribs, hooks, links, &c., 
perfectly generally.

If we make

We then have

y
oo, and p very large, y/p will be small, and s0 X —

P

= s° + j-

is negligible.Po =

Sy

This is the ordinary result for the theory of beams. But p0 is not infinite for a hook ; 
hence when Brix and others apply such a result to the theory of the hooks, they 
reach results absolutely fallacious both experimentally and theoretically.

If l/p0 be not zero, but both p and p0 large as compared with the linear dimensions 
of the cross-section, we may neglect the product of the stretches sy and s0 into

— and — •
P Po

Hence we find

This is the correct formula for links of chains and hooks.
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% = &/o (1 - W (iv.>
By differentiating (iii.) we shall be able to eliminate Sy and tind a relation 

between sy and y{
We have from (iii.)

»•

(s> T +

Bs>(1+f)+(s’~So) />„
Hence

p

Using (iv.) and rearranging, we find

%o .
1 +1

— —b\Po
*0

— A r Po Po
In the term involving sy we may put p — p0, as the difference of ^ and

P
small and its product with sy may be neglected. Thus, by integration,

Po

is very

_ i S1 _ + ^)Sy
Po Po

1loS (j5p»log(1 + 9 + Po = const.1 + 7) Po
or,

(1 -f 7]) sy _ const.1 So+ 1+r,
1+^0PoPo ' Po

Po>

* C. Bach, ‘Elasticity und Festigkeit,’ Berlin, 1890, see pp. 311 et seq.

Winkler, followed by Bach# and others, introduces the denominator 1 -{- y0jp0 
into the flat arch formula, and puts

1 l N
Vo

P PoSy — S0 “b
1 +

Their theory is therefore much better than that of Brix and the elementary text
books. It is still, however, erroneous, because it replaces y by y0 or neglects a
term ^ ^°, which is not multiplied by a small quantity and is of the order of s0 and sy,

Vo
the terms naturally retained.

Our present theory retains the term (y — yo)lyo all(I thus uses the complete and 
necessary expression (iii.) for the stretch sy.

Let 7) = Poisson’s ratio, then we know that without transverse stresses the 
transverse squeeze = — 17 X sr But the transverse stretch in the neighbourhood

of P is (Sy — %})/%)• Thus we find

THEORY OF STRESSES IN CRANE AND COUPLING HOOKS. 7
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E. S. ANDREWS: ON THE8

To determine the constant, we note that — s0 when //0 = 0, hence :

Ii Vfo
P Po Po

Const. = -

Thus finally
1 VsoPo

1 + V V P Po1 Po/+*9 = 1 l+i)1 y<)Po b+ Po'
or,

a _ i ' 
1 + v\p Po)

sy — *0 + j 1VsoPo 1
1 + v i+i)

1 _ ^
Po

This gives us for the tensile stress Ty at distance y from the central line

- QC = + EpA/)0y2,
where

au _
i1+” ^ (vii.),Ayx — S .'/o1 + ~

Po

2/oa(J
Po , . (viii.).Ay2 = — S -< l+v

1 +L \
Thus we have

Qc
p=-

EAp0y3 ’

Q Qc 1 - y1+6*o — EA EAp0

* We may here use a0 and * indifferently, as they are multiplied by the small quantities s0 and 1/p - 1 jp0.

• (v.).

Po A
1 + V \p po

1I ^*s'o . . (vi.).T;J — Es0 + E 1
1+7? I+i)

(l + Vo
Po-

But we have at once# Q = S (Tya0) 'and Qc = — S (T^a0 X y0) by considering the 
equilibrium of the part of the hook below the principal cross-section, Q being here 
the load on the hook, and Qc the bending moment at this section and S a 
summation for all elements a. of A. Writing for brevity

/3 = P° ( 1 - -1-)
1 + V p Po/ 1+7+

we find
Q = EA$0 + E/2 A (1 — yY)

r

C
L

a ++



Substituting for (3, we determine

= _§L J _ flL+_W _L_ 2L1E A 1 y.2p02 Po J • • (ix.),

Q c 1

Po 7:2
(x.yi + -,s‘o —

EA

These give, when y, and y3 have been found, the change in curvature and the 
stretch in the central line at the principal cross-section in terms of the pull on 
the hook.

Substituting for s0 and /3 in (vi.), we have

l 4- —
Po7-2

1T —Xy --- (xL).— 7i
(i + 4

\V Po'

l + rj

It is clear that the stress is a function only of the distance from the central line, 
and that it will reach maximum values—without regard to sign—when y0 takes its 
maximum positive and negative values. Let CAi be the maximum compressive stress, 
i.e., the stress at the extrados, and T/tjS the maximum tensile stress, i.e., the stress at 
the intrados, then we have, since yL is usually greater than unity, and 1 4 h.2/pQ and 
1 — hJpQ respectively greater and less

1GV . . (xii.),7i —p i — 1+7) 1

(1 +P o7c i

1cA = . . (xiii.).- y, - + 1 ! . .
/*o.Y+”

1Po\ \

There will he a true neutral axis, the distance y0 of which from the central line is 
given by

1 (xiv. )•— 1Vo — Po
1+7,7i “

Tlie stresses, however, will not vary simply as the distance from this neutral line. 
Results (xii.)—(xiv.) reduce to the customary formulae for arches or beams, if p0 be 

considerable as compared with y0, namely,

'h, c jy + t) and y0 = /"/c . . . (xv.).c ¥>0 —

This follows when we notice that for yn/p0 small, (vii.) and (viii.) give

7s — (1 4 v) V/Po2,
where Ak~ is the second moment of the area of the principal cross-section about the 
central line.

us

7i = L

B

THEORY OF STRESSES IN CRANE AND COUPLING HOOKS. 9
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E. S. ANDREWS: ON THE10

(xv.) are the formulae improperly given in the text-books for the strength of hooks. 
They are quite independent of p0, and therefore, according to them, the strength of a 
hook is absolutely independent of the curvature of its belly. For example, a curved 
and a straight-bellied hook ought to be equally strong. This is a point which 
certainly admits of experimental investigation. Formulae (xv.) give very irregular 
results for both crane and coupling hooks,# even under moderate working loads. 
We must investigate whether (xii.) and (xiii.) lead to more uniform values.

(3.) On the determination of y1 and y2.

First Method.—Clearly the discussion of the stresses will be perfectly straight
forward—supposing Poisson’s ratio known—if we can find yj and y2 for any cross- 
section.

Now,

Ar. = s(fl+“" ).

J + An-«0.a72= —
0 + Vo/paY'

Let

then
72 = 7i — 7s>

and the solution depends upon the determination of

Ayi = SlU + ya

Both of these expressions fall under the form

) “„} and A^ = s{(v+v),“»} •Po . (xvi.).

Ay = S j f—— ) a0l .
7 Wpo + Vo1 J

Suppose the curve z — e X Yu to be drawn, say, cut out as a template for a selected 
value or values of n. Then we can get a very simple construction to determine y.

Let the Fig. III. represent a section. Place the template with its Y base against 
the axis of symmetry OACB and draw the curve z = e X Y" from its edge, i.e., 
OJ0JH, with its origin at the centre of curvature O.

Let a strip PP' of the area of the cross-section parallel to YY, the central line, meet 
this curve in J, and the central line meet it in J0; then we have

CJ0 = e X pf 72 J = € X (p0 + yoy, 

S | X area of strip PP' j
and

Ay' =

* See, for example, some interesting experimental work on crane hooks by Professor Goodman, who 
applies the old theory: ‘ Engineering, Vol. LXXII., pp. 537 et seq.



s = £X Y5/

Fig. III.

Let the chord JJ0 meet BCAO in v; let vP meet YY, the central line, in V and
PT

VR be the perpendicular on PP', then R?i = VC = Pn X —^ •
TiJ

Thus :
Ay = 2 X S (strips of area like R/i).

Let a series ol points like R give the dotted curve BRUA, then clearly Ay' is 
equal to twice the area of the curve BRUA. We call this a hook-rigidity curve. 
We shall speak of yL and y3 as being given by twice the areas of the hook-rigidity 
curves divided by the area of the section. So soon as the hook-rigidity curves for 
any principal section have been constructed, their areas can be found by a plani- 
meter, and the stresses at this principal section will then be known.

The two curves that we require to draw are

z = e X Yl+ri and z = e X Y\

We ought properly to make an experiment to find 7? for the material of our hook, 
which will generally be wrought iron or steel. Such an experiment will not usually 
be possible, and we shall not be far wrong for these materials if we take 7] = In 
this case our two curves will be

11THEORY OF STRESSES IN CRANE AND COUPLING HOOKS.
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Second Method.—The following special method is suggested for finding the two 
hook-rigidity curves in this case :—

Describe any parabola with O as vertex and OACB as axis : see Fig. IV. 
be OV. Describe any second parabola with O as vertex and OY' parallel to YCY 
as axis. Let it be OW, and be such that TW — a suitable length, say 8 inches. Let 
BV — a, VT — d, TYV —- h. Let any line of the hook section P«P', parallel to YY, 
ineet the first parabola in v and vivt be parallel to BCAO, then, if tw = z,

z2/b2 — Ot/a, or zi/bi = Ol2/a3 = nv2/cd. 

wo*! a2 = On/OB — On/d. 

z*/b* = On/d.
/On\1/4 . . .Thus, z = b (-—— ) or if tw or z be plotted to On we have the first required curve
\ d i

e X (Y)1/4.

Let YY meet this curve in J0 and PAP in J. Let the vertical JI through J meet 
Let IP meet AB in i and J0i meet Pn in R. Then

E. S. ANDREWS: ON THE12

Let it

But

Therefore

z —

YY in I.
OC 1 4

IInfPn = J0C/IC = J„C/Jn = On11*
Thus \ 1/4\P 0Rn = P n X ) ’Po + Ihv

and R gives the hook-rigidity curve BRUR^.
Join RO and let it meet VC in m, draw mS perpendicular to PP'; then

PuSw/Rn = mC/Rn =
Po + Vo

Thus
5/4

p n = P n x
Po d“ Vo

or S gives the second hook-rigidity curve BSU^A.

_ area BSUBjA
71 ~ area BPUP“A ’

_ area BRUR^
73 _ area BPUPtA ’

= 7i ~ 7s-

This method gives better results than that described above, as we find points like v 
of Fig. III. may be at considerable distances. The curve OJ0J can be drawn once for 
all and a template made.

PoSn =
Po + Vo!
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M \V Po VjPo
Po H-Po — T

/ \Po + T/ J
Po Po7i = 7]. 2b

kv* = j {ftfjfdy<»
J -r \pQ + y0/

Po + T

\Po T,

Poy 3 = (1 -»).26 Po

as before7s = 7i “ 7a.

. . (xvii.).

(xviii.),

(xix.).

1]+>) XPo (Po + 2fo)”

Hence

Similarly

and

while

(4.) On the Influence of Poisson’s Ratio on the Values of the Stresses.

It will be seen from the above results that the actual values of the stresses depend 
upon the magnitude of Poisson’s ratio. According to the French school of elas- 
ticians the value of rj for all isotropic materials should be '25. Now the difficulties of 
determining r) by direct experiment 
indirectly by tensile and torsional moduli some doubts may be legitimately felt as to 
the closeness of the degree of accuracy with which rj is found. Values of rj obtained 
in this way for wrought iron or mild steel give in general something about ’28. Tlius 
the probable range of 17 is almost certain to be included between '25 and '30.

Now, in order to try the effect of such variation in r) on the values of the stresses 
calculated by the above theory, very careful calculations of those stresses were made 
on the principal section of an actual railway crane hook, first for rj = *25 and then 
for rj — '30. The values of and y3 were determined by quadrature from the 
integrals (xvi.), thus avoiding any error of draughtsmanship in using the methods of 
Section (3). The difference in the maximum stresses in the two cases came to 3 per 
cent. It would thus appear that if rj be actual '28 and not '25 for our material, 
the stresses are not likely to be more than 1 to 2 per cent, in error owing to

well known, and even when we proceedare

THEORY OF STRESSES IN CRANE AND COUPLING HOOKS. 15

Special Case.—It will he seen in the sequel that for comparative experimental 
purposes it has been found advisable to deal with a type of hook that would be 
of small service for practical purposes, namely, a hook with rectangular principal 
cross-section. In this case y] and y3 can be found by analysis. Suppose the section 
to be of thickness 2r in the planes of loading and of breadth /!

Then
1+1)r+T /

= f ( 1Po fdyo>
Po + yJ

K

a

-l



The importance of testing the present theory lies principally in the following 
divergences between the old theory and the new :

(a.) The old theory in the form given by Brix and Unwin makes the strength of 
the hook depend in no way upon the curvature of its belly. If this were true, the 
strength of the hook would be independent of the shape of its central line in the 
neighbourhood of the principal cross-section. There would be no means therefore of 
strengthening a hook by a good shape of belly.

(/;.) The old theory makes very insignificant differences between the maximum 
compressive and tensile stresses at the principal section. See, for example, Good- 
man’s results for crane hooks.# We could not hope therefore—if we suppose the 
safe stresses for wrought iron or mild steel to be fairly equal—to better sensibly the 
form of the existing cross-sections.

The new theory makes the maximum tensile stress very sensibly larger than the 
maximum compressive stress in any crane or coupling hooks which have so far been 
worked out.

Now there is no doubt that the dimensions of both crane and coupling hooks have 
to be largely determined by the effect of wear in use.f But this shaping for wear 
does not largely affect the shape of the hook in the neighbourhood of the principal 
cross-section. Hence, if we look upon the principal section as the weakest part of 
the hook, it would follow that if the present theory be correct, it is possible to 
design a hook with a better cross-section than those at present in use.

* Lor. cit., p. 538.
t This was exemplified in the railway wagon coupling hooks which have been tested, some being new 

and some worn hooks.
X If we wish to design such a cross-section for given area A and given curvature of belly 1 /pn, we must 

make the C/,, of (xii.) equal to the T*2 of (xiii.). This gives us

7l “ y-2Polc = | {(1 “ h2/p{)) <1+’)) + (1 + h/p0) d+r))j

as the desirable relation between the h’s and the y’s. Of course this is somewhat complex and could only 
be approximated to by trial and error.

If we take the load at the centre of curvature, i.e., p0 — c, the left-hand side becomes y3, or :

_A ^ "h */*)-'} = £ 1(1 ~ h2!Po)~(l+r]) + (1 + Jh/po)~{l + r,)}-

16 E. S. ANDREWS: ON THE

assuming y to be ‘25. Remembering the difficulties of really good determinations 
of 7), and the practically insignificant deviations of 1 to 2 per cent, arising from 
admissible changes in its value, we have thought it far better to suppose r] — '25 
throughout, a value which at any rate has a good deal of theoretical justification for 
steel of fairly homogeneous character.

(5.) Experimental Work.

•—
t"



THEORY OF STRESSES IN CRANE AND COUPLING HOOKS. 17

As to (a.) above, it has practically been recognised as erroneous by those who, like 
Bach, follow the incomplete theory of Winkler. To test it roughly, six vulcanite 
“ hooks” were made with identical rectangular cross-sections. Three of the hooks 
were split rings or of uniform curvature ; the other three were split links, i.e., they had
the same curvature as the rings at the ends, but were straight at the belly. We 
should on our theory expect the curved belly to be weaker than the straight belly, 
and further, the hook in the latter case to give just where the curved part began. 
Both rings and hooks were loaded by gradually running water into a tank suspended 
from them until they broke. The rings gave at the principal section and the links 
at the junction of curved and straight pieces without exception. This experiment is 
for several reasons inconclusive, but at any rate it suggests that we cannot afford, as 
in the old theory, to neglect the curvature of the belly.

The principal defect in such an experiment is the extension of the pure elastic 
theory of stress, right up to rupture. The problem arising in our present case is 
essentially that which occurs when so many problems in elasticity are dealt with 
experimentally. The caution required in observation, and the delicacy of the 
recording apparatus needed in determining the limit of proportionality of stress 
and strain, are too often overlooked by experimenters, who content themselves with 
noticing the stress at which the far more easily observed “yield ” occurs. It appears 
to us that it is the difference in the yield-points of tensile and flexural specimens, 
not the difference in their true elastic limits, which forms the old “ beam paradox ” 
which has much troubled some engineers. If the deflections in a beam are very 
carefully measured, we believe the elastic limit will be found to be in accordance 
with that obtained in a pure tensile experiment on the same material, but the yield- 
point will not occur until the calculated stress is about 30 per cent, higher. Nor 
is the reason for this hard to seek. The yield-point is the point at which there is a 
sudden and rapid increase of strain without corresponding increase of stress.^ When 
stressed up to the yield-point, a tensile specimen is equally stressed at all points, and 
may begin yielding everywhere. On the other hand, a flexural specimen has its 
maximum stress at one point of one section only, and a yielding at this point is not

Expanding, after some reductions, we find, if A/x3 = S Oo3«o), and Av4 = S (y04a0),

V (k/Po)2 - h V (2 + V) (/VPo)3 + T2 V (2 + v) (3 + v) (v/Co)4 + &c-
= (fa ~h)/po + I (2 + v) (Ax2 + V)/A)2 + 1(2 + V) (3 + V) 0'23 - A3)/Po3

+ rr (2 + v) (3 + v) (4 + v) O24 + h4)lp0* + &c.
But p/pQ will be small and approximately we shall have

W = fa “ h)/pa + I (hi2 + A22)/p02, or, k2 = 4p0 (h2 - hi) + T5 (hr + hr).

For example, an isosceles triangle, if the radius of curvature of the belly were 1 '75 its height, would 
roughly approximate to a section form of maximum strength.

* Long known and termed “ limit of fatigue,” of “ stability,” or “ breakdown-point.” It was termed 
“yield-point” in 1886, Pearson, ‘History of Elasticity,’ vol. I., p. 887.
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marked by the same general give or breakdown of the sjoecimen as a whole, which occurs 
in the case of a bar under tension. It is not until a much larger region has reached 
its yield-point that a general drop in the deflection, without corresponding increase 
of load, becomes manifest. While for some practical purposes it may be sufficient, and 
for other rough and ready purposes it may be economically necessary to determine 
the yield-point only, and take this as an approximate measure of the maximum upper 
limit to elasticity, it is quite certain that the yield-point is of little or no value 
when one theory is to be tested against a second. All current theories are based 
upon the proportionality of stress to strain, and the limit of elasticity is, in the 
materials of the present investigation, not very far removed from this limit to the 
generalised Hookies law.* Our experience in the present case seems to show that 
the limit to Hooke’s law is reached at the same stress in both tensile and flexural 
experiments, and we have termed this in the present paper the “ elastic limit.” It 
is a limit which is quite easily shown on the stress-strain, or rather load-deformation 
diagrams, provided these are very carefully plotted. It is, however, quite hopeless 
to try and measure the increasing opening of a hook without any extensometer, as 
some experimenters on crane hooks have done. For in such a way we cannot hope, 
as experience has shown us, to get the true form of the load-deformation curve ; we 
only succeed in getting the yield-point, and thus all our calculated stresses will be too 
high. Indeed, we ought not to apply theories based on the proportionality of stress 
and strain to yield-point stresses at all.

Hence the first series of experiments conducted at University College on a fairly 
large series of crane and railway coupling hooks—for which we have heartily to thank 
various firms of hook makers and railway companies—while providing interesting com
parative material,! were ultimately seen to be of little service from the standpoint of 
criticising antagonistic theories. They failed to give with sufficient accuracy the true 
position of the elastic limit upon which everything turned. Accordingly it was, 
after some further experimenting, seen to be best to prepare special hooks of as 
homogeneous material as was procurable, and of a perfectly definite measurable shape. 
If the old theory fail for hooks so constructed which can be closely tested, and the 
new theory give concordant results, we may be pretty confident as to which is the 
proper theory to apply in the case of crane and coupling hooks, the structure of 
which is more complex, and where it is possibly harder, except in a pure tensile test, 
to obtain in ordinary practice the value of the elastic limit.

Accordingly a series of rings of varying cross-section and diameter were cut by the 
author from a piece of steel ship plate, care being taken that the direction of rolling 
of the plate was marked on each specimen. Two tension specimens were cut from

* On this point see ‘ History of Elasticity/ vol. I., pp. 888 et. seq.
f They were undertaken by Mr. H. Payne, then assistant in the Department, now Professor of 

Engineering in the South African College, Cape Town. While of great value in guiding the final 
experimental direction of this work, they did not provide a criterion of requisite stringency.
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the same plate, also in the direction of rolling, in order to compare the results of the 
tests of the rings which were split and tested as hooks, with these specimens in 
direct tension.

The openings of the split ring were measured by an extensometer with a magnifi
cation of 100 :1, and thus an opening of '00001 inch could be detected. The load 
was applied in a line through the centre of curvature of the ring, its exact position 
being fixed by a knife edge fitting in a triangular groove. In this way a test was made 
and the openings plotted against the load. Such load-deformation diagrams are given 
in Figs. V.—VIII. for the cases of hooks Nos. 2, 3, 4 and 6 with rectangular principal 
section and in Figs. IX. and X. for hook No. 5, the section being T, in both tension 
and compression. In most kinds of wrought iron and mild steel the yield-point, 
in bending, is about 25 per cent, higher than the elastic limit, while in tension 
there is not much difference between the two. Hence, for our present purpose, 
when we need the limit to proportionality of stress and strain, we cannot as in 
tensile tests run out the jockey weight until the lever suddenly drops.* We 
must plot the load-deformation diagram and discover where it ceases to be linear.
On referring to the diagrams, it will be seen that the load-deformation curve

to be linear gradually, and the exact point where it leaves the straight • 
line is a matter for appreciation which may be more or less easy. In all cases, 
however, the diagrams sufficed to determine the limit of proportionality with 
accuracy close enough for the present investigation.

Test No. 1.—Two bars were cut, as indicated above, in the direction of rolling of 
the steel, and these tensile specimens were of approximately f- inch diameter and 
10 inches between the gauge lengths. The mean stress at the elastic limit was 
30,000 lbs. per sq. inch for the two bars, there being very little difference between 
the two results (see Fig. XI.).

The results of the tests on five hooks, Tests 2 to 6, are given in the table below.
On the old theory, if W (— Q of previous notation) be the load on the hook,
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ceases

W(1 + P'h
A \ ^ t* = aW,T =

gives the maximum tension at the intrados.
On the new theory by equation (xiii), if p0 = c :

t=w;j_[7
A >- 72 L' Po ^2

Thus a and fi are the quantities by which the load must be multiplied to get the 
tensile stress at the intrados. They are given in Columns 9 and 10 of the table 
below.

* As the yielding only spreads gradually 
nearly of such a marked character in bending as in tensile tests.

V+ij — 7i + 1 |Po = /3W.

the material, as indicated above, the “ drop ” is notover



•936 1-060 -054
1-320 1-071 ; -063
1-360 1-019 j -017

•882 i 1-059 , -056
•770 1-000 : 0

Rectangular
5)
5)

T-section
Rectangular

Area of j 
Section of section j 

hook.
Test
num
ber.

n- y-2-m
sq.inch.

Stress at elastic 
limit.

k in ^2 in
inches, inches. £aP o-

Old New 
theory, theory.

12-18 25,200 29.200
8-03 26,300 30,500

12-97 26,100 28,500
12-73 18,700 29,300
14-31 30,500 30,500

•523
•730
•734

10- 51 
6-92

11- 85 
8-13

14-31

•302] -541 
1 • 983 
3-680 
1-850

•421
•424

■600•424
•441•80600

In Nos. 2-4 the values of yl and y2 were calculated directly from the formulae given 
above as (xvii.) to (xix.). In No. 5 a graphical construction similar to that shown in 
Fig. IV. was used. The dimensions of the T were, web '94" X ’44", and flange 
’52" X 90", the flange being in tension.

(6.) Test of a Railway Wagon Coupling Hook.

We have already stated that the bulk of the actual coupling and crane hooks 
collected at University College had been tested wdthout the use of a sufficiently fine 
extensometer to successfully distinguish the true limit to the proportionality of stress 
and strain. One railway wagon hook, however, remained untested, and a complete 
test was made on this, subject to the necessary conditions. The load was applied 
through the centre of curvature of the centre line at the principal cross-section, and 

located by knife edges. The section and the hook rigidity curves were dealtwas
with graphically, Fig. IV. being the reduced drawing.
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While the hooks in Tests 2, 3, 4 and 5 were split rings of definite radius, the hook 
in Test 6 had a sensibly straight belly or zero curvature at the principal cross- 
section. In this case the two theories give identical results.

It will be seen, on examining the table, that in all cases the stresses calculated on 
the new theory were nearer than those of the old to the result reached by a pure 
tensile test. Their fluctuation among themselves is also far less than the stresses 
found from the old theory. The old theory gives values ranging from. 18,700 to 
30,500, the new theory values from 28,500 to 30,500. Thus the fluctuation is nearly 
40 per cent, in the first case as against something less than 7 per cent, in the second 
from the tensile elastic limit. There is no doubt about the new theory giving 
experimentally far better results. A like exaggerated fluctuation is found when the 
old theory has been applied to series of hooks of the same material, but of different 
sections and curvatures.

Table of Results of Hook-Tests.

W C
O ^ o to
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Test of Railway Wagon Coupling Hook.

Stress at elastic 
limit.Test

num
ber.

Area of 
section.Section. file. k.k.7i- 72- OC.Po•

Old
theory.

New
theory.

sq. inches. inches. inches. | inches. inches.
7 As in Fig. IV. 6-00 1-244 2-01 12,000•221 2-84 1-01 ! 1-90 1-84 1-04 23,000

The load at the elastic limit was 11,500 lbs.
Fig. XII.

A tensile specimen cut from the unstrained part of the hook had an elastic limit of 
21,000 lbs. per square inch. Thus we see that while the old theory was incorrect by 
75 per cent, of its value, the new was in error by less than 9 per cent.

We have thus ample evidence that the new theory as applied to the hooks of 
commerce is far superior to the old. Apart from this experimental verification, 
however, the theoretical consideration that the radius of curvature of a hook is 
not indefinitely larger than the linear dimensions of its cross-section seems to show 
that the old beam theory, which neglects the curvature of the belly, ought never 
to be applied to stresses in hooks.

(7.) Ihe whole of the present investigation depends on our theory not being 
extended beyond the limit of proportionality of stress and strain. It would be 
convenient to call this Hooke’s limit.* Usually it is close to the elastic limit, and 
in most structures, reduced to a state of ease, is or ought to be the limit to safe 
loading. Ihis limit appears to be really the same whether it be determined for the 
same material by a pure tensile test, by flexure experiments, or from hooks. Thus 
the mean of two tensile tests gave 30,000, and of five hook tests 29,600. Further, 
two flexure tests were made 
The results are plotted in Fig. XIII., and show at once that the Hooke’s limit, 
i.e., 29,000 and 30,000 for the two cases, is practically the same as for the tensile and 
hook tests.

Finally, to complete the series of tests, one of the rings, No. 5, was tested for the 
limit by compressing it between two plates, so as to close the opening; the contractions 
of the opening were read by the extensometer in the same way as the extension had 
been found. Fig. X. shows the result. Clearly the Hooke’s limit is 
well-marked point, and the calculated compressive stress is between 27,000 and 
28,000 lbs. This agrees quite well with the value 29,000 found for the tensile limit

* ‘ History of Elasticity,’ Yol. I., p. 887 et seq.

The stress-strain diagram is given in

short bars, both 16 inches long, of the same material.on

again a

D



Fig. XIII.

bending of a hook, is indifferent, all processes leading to sensibly the same result. 
Therefore, at any rate for the steel of the present experiments, it seems the proper 
practical limit for all types of structure and forms of loading.

(8.) General Conclusions.

(i.) The existing theory of hooks is unsatisfactory both from the theoretical and 
experimental standpoints. It leads to very irregular results and precludes any chance 
of improving the design for hooks.

(ii.) The theory developed in this memoir allows for a number of factors omitted in 
the current theory, notably for the curvature of the belly and the change in size 
of the principal cross-section.

(iii.) It indicates that improvements can well be made in existing types and 
suggests the lines they should follow.
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that the proportionality of stress and 
same stretch and squeeze.

of the same hook. Accordingly it would seem 
strain in this material is reached at practically the 
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(iv.) It gives concordant results for hooks of different dimensions especially pre
pared, and also for a railway wagon coupling hook to which it was applied. In 
these cases the ordinary theory failed to express the facts.

(v.) The limit taken to compare the strength of hooks of various sizes was the 
limit to proportionality of stress and strain. If this be adopted as the limit to safe 
loading, the tensile stress at this limit is found to be the same whether we use a pure 
tensile test, a flexure test, or a hook test to determine it, and accordingly it is much 
to he preferred to the rough practical methods which note only the drop at the 
yield-point, and speak of this as the elastic limit.

(vi.) It is true that hooks are highly “worked” individual products; still we 
believe that series of crane or coupling hooks of the same material, bub of different 
sizes, would give fairly homogeneous results, if tested with an extensometer for their 
Hooke’s limits and if these limits were compared with the same limit reached on 
a tensile specimen of the same material.
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We must heartily thank Professor Cormack for allowing the use of his laboratory 
apparatus for the tests, and for help and suggestion at several stages.
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