Thermodynamische Grundlagen der Kolben- und Turbokompressoren

Graphische Darstellungen für die Berechnung und Untersuchung

> von Adolf Hinz

Thermodynamische Grundlagen der Kolben- und Turbokompressoren

Graphische Darstellungen für die Berechnung und Untersuchung

Von

Adolf Hinz

Oberingenieur der Frankfurter Maschinenbau-Aktien-Gesellschaft vormals Pokorny & Wittekind in Frankfurt a. M.

Mit 12 Zahlentafeln, 54 Figuren und 38 graphischen Berechnungstafeln

CENTRALNE BIURO APARATURY CHEMICZNEJ I URZADZEN CHŁODN.JZYCH w Krakowie Nr. 10

Berlin Verlag von Julius Springer 1914

Copyright 1914 by Julius Springer in Berlin. Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

Druck der Universitäts-Buchdruckerei von Gustav Schade (Otto Francke), Berlin und Bernau.

3011-3-519/2015

Vorwort.

Die vorliegenden graphischen Berechnungstafeln sind in der Praxis aus dem Bedürfnis heraus entstanden, rasch und zuverlässig die Resultate der oft komplizierten Rechnungen im Kompressorenbau zu finden. Sie bieten sowohl dem projektierenden als auch dem Versuchsingenieur alle Rechnungsgrundlagen für die in Frage kommenden Größen und Beziehungen in übersichtlicher und handlicher Form.

Die gewählte graphische Darstellung gibt ein anschauliches Bild vom Einfluß der einzelnen Faktoren auf das Endresultat. Aus diesem Grunde sind auch Beziehungen in Form von Tafeln mit aufgenommen worden, deren Werte sich wohl auch mit dem Rechenschieber ermitteln lassen. Bei Benutzung der Tafeln sind jedoch Irrtümer unwahrscheinlicher, und die Genauigkeit beim Ablesen ist durch die vergrößerte Wiedergabe der wichtigsten Anwendungsbereiche auf Sondertafeln der Rechnung mit dem Rechenstab normaler Größe überlegen.

Den Tafeln ist als gleich wichtiger Bestandteil der Text beigegeben, in dem die hauptsächlichen Beziehungen, die dem modernen Kompressorenbau zugrunde liegen, je nach ihrer Bedeutung für die Praxis mehr oder minder ausführlich behandelt sind. Die Wiedergabe der an sich bekannten Formelableitungen soll eine schnelle Orientierung darüber ermöglichen, wie die Schlußformeln und Endwerte aus den Grundgesetzen der Thermodynamik entstanden sind. Die enge Anlehnung an die Grundgesetze soll der Praxis immer wieder die Ziele vor Augen führen und verhindern, daß die Benutzung der Berechnungstafeln zu einem rein mechanischen, handwerksmäßigen Abgreifen der gesuchten Werte ausartet.

Die bei Messungen mittels Düsen anzuwendenden Beziehungen sind entsprechend der zunehmenden Benutzung dieser Methode in der Praxis ausführlich behandelt. Die Angabe von Näherungsformeln mit 1-2 v. T. Abweichung vom theoretischen Wert macht die Rechnungen handlicher.

Dem Nichtspezialisten werden die angeführten Rechnungsbeispiele willkommen sein; dem Studierenden soll außerdem durch die graphische Darstellung neben der Ableitung der Schlußformel der Überblick entwickelt und eine schnelle Kontrolle der ausgeführten Rechnung leicht gemacht werden.

Frankfurt a. M., Januar 1914.

Hinz.

Berichtigungen.

Seite 5 am Schluß des Beispiels oben rechts lies 848 anstatt 846. Seite 5 Unterschrift zu Fig. 3 rechts unten lies $v = \frac{V}{G}$ anstatt $v = \frac{V}{S}$. Seite 6 Unterschrift zu Fig. 4 lies $\gamma = \frac{1}{v} = \frac{G}{V}$ anstatt $\frac{S}{V}$. Seite 24 links Zeile 16 von oben lies 1481 PSe anstatt 0,1481 PSe. Seite 45 rechts Überschrift C lies Endquerschnitt anstatt Durchschnitt. Seite 47 links Zeile 13 von unten lies $t_2 - t_1$ anstatt $t_2 - t$. Seite 49 links Überschrift G lies Gasmenge anstatt Gase. Seite 49 links Zeile 3 von unten lies $p_1 t_2$ anstatt $p_2 t_1$.

nannunitienneen.

Before is the events of this is conditions about register then had constant side. Before is the events of this is reacher normalities $v = \frac{V}{G}$ measure $v = \frac{V}{S}$. Boats a finite sector is a time $v = \frac{1}{2} - \frac{K}{T}$ measure $\frac{V}{T}$. Solido is influenciable for war about the visit $\frac{V}{T}$, and $\frac{K}{T}$ measure $\frac{V}{T}$. Solido di events differences v = 1 and 1 an

Inhaltsverzeichnis.

Seite

	Vorwort.
	Messung von Drucken als Quecksilbersäule und Umrechnung in metrische Atmosphären
	Depression des Quecksilberspiegels (Zahlentafel).
	Begriff der Atmosphäre
	Längenänderung der Quecksilbersäule bei Temperaturänderung
Tatel 1.	Tatel zur Umrechnung von mm QS. in at unter Berücksichtigung der Quecksilbertemperatur.
	Umrechnung des Vakuums und des absoluten Druckes in at
	Einfluß der Höhenlage auf den mittleren Druck der Atmosphäre
Tatel 2.	Abhängigkeit des mittleren atmosphärischen Druckes von der Höhenlage.
,	Zustandsgleichung der Gase und Gasgemische
	Mariotte-Boyle-Gav-Lussacsches Gesetz
	Zustandsgleichung der Gase
	Daltonsches Gesetz
	Umrechnung von Gewichtsteilen in Raumteile und umgekehrt
	Tabelle der Molekulargewichte, Gaskonstanten usw. der wichtigsten Gase
Tatel 3.	Spezitischer Rauminhalt der Lutt 0-1.25 cbm/kg - 20 bis + 180° C.
Tatel 4.	Spezitischer Rauminhalt der Lutt 0.7-0.95 chm/kg - 10 bis + 40° C.
Tatel 5.	Spezitisches Raumaewicht der Lutt 0.9-1.4 ka/cbm, 0.9 bis 1.1 at abs.
	Instandsündermann im Kommersen
	Zustandsanderungen mit Kompressor
	Grundgleichungen der Zustandsänderungen
	A Adishatisaha Rustanda'indowna
	A. Adiabatische Zustandsanderung
	Gesetz der Addabate
	Tabelle der spezinschen Warme der Wichtigsten Gase
	Konstruktion der Adlabate im PV-Diagramm
	Zahlentalei der Hillswinkei und Tangenten der Hillswinkei
	Zahlentateln uber das Endvolumen nach adlabatischer Kompression und Expansion
	Adiabatische Kompressionsarbeit allein $j \in \mathcal{A}$
	Arbeitsbedarf des Kompressors bei adiabatischer Kompression J v dP
	Einnuls des schadlichen Raumes auf den Arbeitsbedarf
m 11 0	Einnus der Anlangstemperatur auf den Arbeitsbedarf.
Tafel 6.	Arbeitsbedarf bei einst. adiab. Kompression in mkg/com anges. Lult. 0-25 000 mkg, 1-6,5 at abs.
Tafel 7.	Arbeitsbedarf bei einst. adiab. Kompression in mkg/com anges. Luft. $0-5000$ mkg, $1-1.6$ at abs.
Tajel 8.	Arbeitsbedarf bei einst. adiab. Kompression in mkg/com anges. Luft. 5-10 000 mkg, 1.6-2.4 at aos.
Tajel 9.	Arbeitsbedarf bei einst. adiab. Kompression in mkg/cbm anges. Luft. 10-15 000 mkg, 2,4-3,4 at abs.
Tajel 10.	Arbeitsbedarf bei einst. adiab. Kompression in mkg/cbm anges. Luft. 15-20 000 mkg, 3,4-4,8 at abs.
Tajel 11.	Arbeitsbedarf bei einst. adiab. Kompression in mkg/com anges. Luft. 20-25 000 mkg, 4,8-6,5 at abs.
Tajet 12.	Arbeitsbedarf bei einst. adiab. Kompression in mkg/com anges. Luft. 25-30 000 mkg, 6,5-8,5 at abs.
	Addabatischer Leistungsbedarf des Kompressors
	Adlabatische Wirkungsgrade
	a) bei einstufigen Kolbenkompressoren
	b) bei ungekühlten Turbogebläsen
	Vergleichsrechnung bei adiabatischer Kompression
m / 1 70	Volumetrischer Wirkungsgrad
Tafel 13.	Volumetrischer Wirkungsgrad bei adiabatischer Ruckexpansion.
	Mittlerer indizierter Druck bei Kolbenkompressoren
	Latergrad eines Kompressors
	Emfluß der Kuhlung
	Adiabatische Temperaturanderung
	Das Entropiediagramm für Luft
	Bestimmung der Entropie der Lutt
Matza	Veranderlichkeit der spezifischen Warme
Tajel 14.	Entropietalel für Luft. -273 bis $+760^{\circ}$ C $0.01-200$ at abs.
Tajel 15.	Entrophetafel für Luft. $-20 \text{ bis} + 240^{\circ} \text{ C} 0.5 - 20 \text{ at abs.}$
	Warmewert der adiabatischen Kompressionsarbeit A J PdV und seine Darstellung im Entropie-
	diagramm
	Wärmewert des Arbeitsbedarfes des Kompressors bei adiabatischer Kompression A) VdP und
	seine Darstellung im Entropiediagramm
	Darstellung des adiabatischen Wirkungsgrades ungekühlter Turbogebläse
	Darstellung des Arbeitsbedarfs ungekühlter Turbogebläse im Entropie- und im PV-Diagramm 19
Tafel 16.	Entropietafel für Luft. $-4^{\circ}C$ bis $+100^{\circ}C$ $0,8-2,5$ at abs.

Inhaltsverzeichnis.

		Seit
	B. Isothermische Zustandsänderung	21
	Arbeitsbedarf des Kompressons bei isothermischer Kompression $\int V dP$	21
Tafel 17 Tafel 18 Tafel 19 Tafel 20	Arbeitsbedarf bei isotherm. Kompression in mkg/cbm angesaugte Luft. $0-25\ 000\ mkg$, $1-12\ at\ abs.$ Arbeitsbedarf bei isotherm. Kompression in mkg/cbm angesaugte Luft. $0-5\ 000\ mkg$, $1-1,6\ at\ abs.$ Arbeitsbedarf bei isotherm. Kompression in mkg/cbm angesaugte Luft. $5-10\ 000\ mkg$, $1,6-2,7\ at\ abs.$ Arbeitsbedarf bei isotherm. Kompression in mkg/cbm angesaugte Luft. $10-15\ 000\ mkg$, $2,7-4,5\ at\ abs.$	
Tafel 21 Tafel 22	Arbeitsbedarf bei isotherm. Kompression in mkg/cbm angesaugte Luft. 15—20 000 mkg, 4,5—7 at abs. Arbeitsbedarf bei isotherm. Kompression in mkg/cbm angesaugte Luft. 20—25 000 mkg, 7—12 at abs.	
	Isothermischer Leistungsbedarf des Kompressors	23 23 23
	Vergleichsrechnung	24
	C. Polytropische Zustandsänderungen	24 1 24
	Bestimmung der Exponenten der Polytropen	24 25 27
Tafel 23 Tafel 23	Darstellung polytropischer Arbeitsweise im Druck-Volumen- und im Entropiediagramm Arbeitsbedarf bei einstuf. polytrop. Kompression in mkg/cbm anges. Luft von 1 at abs. Anfangsdruck. Temperaturzunahme bei einstuf. polytrop. Kompression und 20°C Anfangstemp., 1—6 fache Kompression.	27
	Arbeitsbedari des Kompressors bei Warmezu- und -abfunr wahrend der Kompression	28
	Einfluß der Mantelkühlung	29
	Arbeitsbedarf bei vielstufiger adiabatischer Kompression	$ 30 \\ 30 \\ 30 $
Tafel 24 Tafel 25. Tafel 26. Tafel 27.	Arbeitsbedarf bei zweist. adiab. Kompression in mkg/cbm anges. Luft. 0-25000 mkg, 1-8 at abs. Arbeitsbedarf bei zweist. adiab. Kompression in mkg/cbm anges. Luft. 15-20000 mkg, 3,9-5,8 at abs. Arbeitsbedarf bei zweist. adiab. Kompression in mkg/cbm anges. Luft. 20-25000 mkg, 5,8-8,4 at abs. Arbeitsbedarf bei zweist. adiab. Kompression in mkg/cbm anges. Luft. 25-30000 mkg, 8,4-15 at abs.	
	Leistungsbedarf des Kompressors bei zweistufiger adiabatischer Kompression	$30 \\ 31 \\ 31 \\ 32$
	Reduzierter mittlerer indizierter Druck bei zweistufigen Kolbenkompressoren	32 32 32 33
Tatel 28	b) der Kompressionstemperatur	33
Tafel 28.	Temperaturzunahme b. zwei- u. mehrst. adiab. Kompr. bei 20°C Anfangstemp., 1—200 fache Kompression. Teilung des Druckverhältnisses	33
	Abhängigkeit des Arbeitsbedarfes von der Teilung des Druckverhältnisses	34 34
	Einfluß des Temperaturunterschiedes zwischen angesaugter Luft und Kühlwasser auf den Arbeits- bedarf und den isothermischen Wirkungsgrad	35
	a) bei zweistufigen Kolbenkompressoren	$\frac{35}{36}$
	Vergleichsmaßstab für den isothermischen Wirkungsgrad (Beispiel)	37 38
	Teildruck des Wasserdampfes in der Luft und Feuchtigkeitsgehalt der Luft	20
Tafel 29.	Wasserdampfteildruck in at und Wassergehalt gesättigter Luft in g/cbm.	10
Tafel 30. Tafel 31.	Graphische Berechnung des Feuchtigkeitsgehalts der Luft. Tafel zur Bestimmung des Feuchtigkeitsgehalts der Luft in v. H.	40
	Bestimmung der in der Druckluft sich niederschlagenden Wassermengen	41 41 41
Tafel 32.	Gaskonstante für feuchte Luft.	42
	Arbeitsbedarf bei geringen Anfangsdrucken (bei Vakuumpumpen)	42
Tafel 33.	Arbeitsbedarf für die Kompression bei geringen Anfangsdrucken in mkg/cbm angesaugte Luft. Isothermische Kompression in nassen Luftpumpen und Wasserstrahl-Luftpumpen	42 43
	T	

1	r 1	1. 1	1.2				1	
	n	na	Itsy	rei	'Ze	IC.	hn	15.

.

	Ausströmen von Gas durch Düsen	44
	A. Ausströmgeschwindigkeit	44
	Näherungsformel	44 45
	B. Ausströmende Gasmenge V1 vom Zustand im Endquerschnitt der Düse	45
	Näherungsformel	45 45
	C. Temperaturabnahme in der Düse	45
	Näherungsformel	45
	D. Kritisches Druckverhältnis	46
	den Druck im Endquerschnitt der Düse	46
	die Ausströmgeschwindigkeit	46
	die Temperaturabnahme	47
	E. Ausströmende Druckgasmenge V_2 vom Zustand vor der Düse	47
	Näherungsformel.	47
	Einfluß des kritischen Druckverhältnisses auf die ausströmende Druckgasmenge V_2	48
	F. Ausströmendes Gasgewicht	48
	Naherungsformel.	48
	Einfluß des kritischen Druckverhältnisses auf das ausströmende Gasgewicht	48
	G. Ausströmende Gasmenge V _{p1} t ₂ vom Druck p1 hinter der Düse, auf die Temperatur t2 vor der	
	Düse umgerechnet	49
	Fehler der Näherungsformel	49
m 1101 D	Einfluß des kritischen Druckverhältnisses auf die ausströmende Gasmenge $V_{p_1 t_2}$	49
Tafel 34. D Tafel 35. D Tafel 36. D	urch 1 qcm Dusenqu. theor. ausstrom. Luftmenge $V_{p_1 t_2}$ in cbm/st. 0—200 mm WS. Druckunterschied. urch 1 qcm Düsenqu. theor. ausström. Luftmenge $V_{p_1 t_2}$ in cbm/st. 0,2—1 m WS. Druckunterschied. urch 1 acm Düsenqu. theor. ausström. Luftmenge $V_{p_1 t_2}$ in cbm/st. 80—660 mm QS. Druckunterschied.	
	Graphische Tabelle der ausströmenden Luftmengen V _{D1} t ₂ in cbm/st, abhängig vom Düsendurch-	
	messer und vom Druckunterschied	51
	Graphische Tabelle der angesaugten Luftmengen bei Messungen in der Druckleitung bei 6 at Über-	04
	druck, abhängig vom Düsendurchmesser und vom Druckunterschied	52
	H Theoretische Dijsenguerschnitte für statige Druckehnehme	52
	Graphische Zusammenstellung der Formeln über das Ausströmen von Luft durch Düsen	53
Tafel 37. An	usströmen von Luft durch eine sich erweiternde Düse, 1–9 faches Druckverhältnis.	00
Tafel 38. An	isstromen von Luft durch eine sich nicht erweiternde Duse, 1—9 faches Druckverhaltnis. Zusammenstellung der Formeln über das Ausströmen von Luft durch Düsen	54
	Zusammenstellung der Näherungsformeln über das Ausströmen von Luft durch Düsen	55
	Bestimmung der Saugleistung von Vakuumpumpen	56
	Einfluß des Feuchtigkeitsgehaltes der Luft bei Düsenmessungen	56
	A. Messungen in der Saugleitung	56
	B. Messungen in der Druckleitung	57
	a) ohne Berücksichtigung des Feuchtigkeitsgehaltes	57
	scheidung im Zwischenkühler	57
	c) mit Berücksichtigung der Wasserabscheidung im Zwischenkühler	57
	maximater minute der Wasserassenerung im Zwischenkunter (Zahlenvaler)	00

VII

Messung von Drucken als Quecksilbersäule (Q.-S.) und Umrechnung in metrische Atmosphären (at = kg/qcm).

Die Länge der Quecksilbersäule ist der senkrechte Abstand der höchsten Punkte beider Quecksilberspiegel in dem zur Druckmessung verwendeten Manometer oder Barometer. Im Gegensatz zum Wasserspiegel, der infolge der Kapillarität in engen Röhren emporsteigt, wird der Quecksilberspiegel durch die Kohäsionskräfte des Quecksilbers, welche die Adhäsion zwischen Quecksilber und Rohrwand überwiegen, im Rohr herabgedrückt. Diese Depression, die abhängig vom Rohrdurchmesser in der Höhe des Quecksilberspiegels ist, muß bei der Bestimmung des zu messenden Druckes berücksichtigt werden.

Sind die Rohrdurchmesser beider Quecksilberoberflächen gleich, so erübrigt sich eine Berichtigung. Häufig ist jedoch der untere Quecksilberspiegel so groß, daß eine Depression nicht mehr vorhanden oder nicht mehr meßbar ist; dann ist die Depression des oberen Spiegels zur gemessenen Länge zu addieren.

Lichter Glasrohrdurchm. in mm .	4	5	6	7	8	9	10	12	14	16	18	20 und mehr
Depression in mm QS Depression, umgerechnet in mmWS.	30	1,6 22	$1,2 \\ 16$	0,9 12	10	8	0,5 6	0,3 4	$^{0,2}_{2}$	0,1	1	< 0,05 < 0,5

Beispiel: Gemessene Länge der Q.-S. 751,4 mm. Lichte Weite des Glasrohres 7 mm.

Dem Druck entspricht eine Länge der Q.-S. von 751,4+0,9=752,3 mm.

Bei der Umrechnung des als Quecksilbersäule gemessenen Druckes in Atmosphären ist die Quecksilbertemperatur zu berücksichtigen. Das spezifische Gewicht des Quecksilbers ist bei 0° C $\gamma = 13,5956$. Demnach entspricht einer metrischen Atmosphäre (1 at = 1 kg/qcm = 10 000 mm Wassersäule von 4° C) eine Quecksilbersäule von $\frac{10\,000}{13,5956} = 735,53$ mm bei 0° C Quecksilber-

temperatur.

Mit je 1° C Erwärmung nimmt die Länge einer Quecksilbersäule um 0,182 v. T. zu, während der Längenausdehnungskoeffizient der meist üblichen Holzskalen im Mittel nur 0,007 v. T. beträgt. Dem Unterschied von 0,175 v. T. für jeden °C entsprechend, der bei jeder Ablesung und Umrechnung zu berücksichtigen ist, ergibt sich demnach für eine Temperatur des Meßinstrumentes von t°C die Beziehung

 $1 \text{ at} = 735,5 (1 + 0,000 \, 175 \, \text{t}) \, \text{mm} \, \text{Q.-S.}$

Beispiel: $t = 15^{\circ}$ C. 1 at = 735,5 (1 + 0,000 175 · 15) = 735,5 · 1,002 625 = 737,4 mm Q.-S.

Bei normalem Barometerstand von etwa 740 bis 760 mm Q.-S. nimmt also die Länge der Quecksilbersäule mit je 7,5° C Erwärmung um $\sim 1 \text{ mm zu}$.

Ist die gemessene Länge der Q.-S. bei t^oC L, so ist die auf 0^o umgerechnete Länge

$$L_{0} = \frac{L}{1 + 0,000175 \text{ t}} \text{ mm Q.-S.}$$

Beispiel: L = 758 mm Q.-S., t = 18° C.
$$L_{0} = \frac{758}{1 + 0.000175 \text{ t}} = \frac{758}{1.00315}$$

$$1 + 0,000175 \cdot 18$$
 1,00315
= 755,8 mm Q.-S. von 0°C

die Temperaturen, als Ordinaten die Drucke gleich langer Quecksilbersäulen aufgetragen.

faches Ablesen geschehen. Als Abszissen sind dreimal

Auf der Tafel 1 kann die Umrechnung durch ein-

Beispiel: 752,3 mm Q.-S. von 25° C entsprechen 1,0184 at.

Einer alten Atmosphäre (1 Atm) entsprechen 760 mm Q.-S. von 0° C.

Auf der Tafel 1 kann abgelesen werden:

 $1 \text{ Atm} = 760 \text{ mm} \text{ Q.-S. von } 0^{\circ} \text{ C} = 1,0333 \text{ at.}$

 $1 \text{ Atm} = 762 \text{ mm} \text{ Q.-S. von } 15^{\circ} \text{ C} = 1,0333 \text{ at.}$

Die Umrechnung der Quecksilbersäulenlänge auf eine andere Temperatur, wie im letzten Beispiel auf 15^o, geschieht auf Tafel 1 mittels einer Linie unveränderten Druckes, einer Abszisse, und durch Ablesen der Quecksilbersäulenlänge bei der entsprechenden Temperatur.

Beispiel: 730 mm Q.-S. von $40^{\circ} = 724.9 \text{ mm}$ Q.-S. von 0° C.

Beide Längen entsprechen 0,9856 at.

Die Depression des Quecksilberspiegels läßt sich auch nach der Umrechnung noch berücksichtigen.

Beispiel:

Gemessene Län	ige der QS.	751,4 mm	von
25° C			= 1,0172 at
Lichter Rohrdu	irchm. 7 mm	:	
Depression =	= 12 mm W	S	= $0,0012$ at
Tatsächlicher I	Druck		. = 1,0184 at

Sollen zwei verschiedene Drucke, beide als mm Q.-S. gemessen, in Beziehung gebracht werden, so sind vorher entweder beide Längen auf 0^o C umzurechnen, oder es sind die verschiedenen Quecksilbertemperaturen einzeln zu berücksichtigen.

1

Hinz, Thermodynamische Grundlagen.

Beispiel: Fig. 1 diene zur Erläuterung der Begriffe: Atmosphärendruck, Vakuum und absoluter Druck. Gemessene Länge der Q.-S. am

Depression bei 5 mm Glasrohrdurchm. 1,6 mm

 $\begin{array}{ccc} Barometerstand = At- & & \\ mosphärendruck & . & B = 745,1\,\mathrm{mm}\,\mathrm{Q}.\text{-S.\,von}\,12^{0}\mathrm{C} \end{array}$

Vakuum in einem Kondensator Vak. = $672.4 \text{ mm Q.-S. von } 37^{\circ}\text{C}$

Fig. 1. Erläuterung der Begriffe: Atmosphärendruck, Vakuum und absoluter Druck.

a) Umrechnung beider Q.-S. auf 0°C nach Tafel 1: Barometerstand $B_0 = 743.6 \text{ mm Q.-S. von 0°C}$ Vakuum $Vak_0 = 668.1 \text{ mm Q.-S. von 0°C}$ Absoluter Druck = 75.5 mm Q.-S. von 0°C

In v. H. des Barometerstandes ausgedrückt ist das Vakuum = $\frac{668,1}{743,6} \cdot 100 = 89,9$ v. H.

b) Einzelne Umrechnung beider Drucke in at nach Tafel 1:

Atmosphärendruck p = 1,0109 at abs.

Vakuum Vak. = 0,9083 at

Absoluter Druck $\cdot \cdot = 0,1026$ at abs.

In v. H. des Atmosphärendruckes ausgedrückt ist des Vakuum $= \frac{0.9083}{100} \cdot 100 = 89.0 \text{ y. H}$

das vakuum =
$$\frac{1}{1,0109} \cdot 100 = 89,9$$
 v. H.

Die Bestimmung des Vakuums in v. H. des Barometerstandes ohne Berücksichtigung der fast immer verschiedenen Temperaturen der Quecksilbersäulen im Barometer und im Vakuummeter, beispielsweise mit den vorerwähnten Zahlenwerten

Vakuum =
$$\frac{672,4}{744,1} \cdot 100 = 90,4$$
 v. H.

ist fehlerhaft.

Da der Atmosphärendruck je nach der Höhenlage verschieden und auch an ein und demselben Orte Schwankungen unterworfen ist, so wird durch das Vakuum in v. H. des Barometerstandes nicht genau der absolute Druck festgelegt. Fig. 2 erläutert anschaulich die verschiedene Höhe des Vakuums bei gleichem absolutem Druck. Auf diesen kommt es jedoch an, nicht auf das Vakuum, auf den Unterdruck unter dem schwankenden Atmosphärendruck. Durch die Temperatur des verwendeten Kühlwassers ist der erreichbare absolute Druck festgelegt und nur der absolute Druck ist ein Maß für die Ausnutzungsmöglichkeit des Dampfes, der im Kondensator niedergeschlagen wird. Aus beiden Gründen ist es erstrebenswert, als Maßstab für den im Kondensator noch vorhandenen Druck nicht das Vakuum in v. H. des Barometerstandes, sondern stets den absoluten Druck, am besten in at, d. s. kg/qcm, zu benutzen. Die Festlegung eines bestimmten Atmosphärendruckes, beispielsweise 760 mm Q.-S., ist nur ein nicht

Fig. 2. Abhängigkeit des Vakuums vom veränderlichen Atmosphärendruck bei unverändertem absoluten Druck.

erforderlicher Umweg zum gleichen Ziel. Wird der Vergleichsatmosphärendruck als Q.-S. ausgedrückt, so muß außerdem noch die Quecksilbertemperatur festgelegt werden.

Im Beispiel, bei 75,5 mm Q.-S. von 0° C = 0,1026 at absolutem Druck und bei 89,9 v. H. Vakuum des gerade herrschenden Atmosphärendruckes, ist das Vakuum

a) bezogen auf 760 mm Q.-S. von 0° C = 1,0333 at abs.

Vak. =
$$\frac{760 - 75,5}{760} \cdot 100 = \frac{684,5}{760} \cdot 100 = 90,1 \text{ v. H.}$$

oder

$$\text{Vak.} = \frac{1,0333 - 0,1026}{1,0333} \cdot 100$$

$$=\frac{0.9307}{1.0333}\cdot 100 = 90.1 \text{ v. H.};$$

b) bezogen auf 760 mm Q.-S. von 30°

 $= 756 \text{ mm Q.-S. von } 0^{\circ} = 1,0279 \text{ at abs.}$

Vak. =
$$\left(1 - \frac{75.5}{756}\right) \cdot 100 = (1 - 0.0999) \cdot 100 = 90.01 \text{ v. H.}$$

oder

Vak. =
$$\left(1 - \frac{0,1026}{1,0279}\right) \cdot 100 = (1 - 0,0999) \cdot 100 = 90,01 \text{ v. H.}$$

Der Fehler, der durch Vernachlässigung der Quecksilbertemperatur entsteht, ist aus dem Beispiel zu ersehen.

Die rohe Umrechnung des Vakuums, im Beispiel 672,4 mm Q.-S. bei 744,1 mm Q.-S. Barometerstand auf den Atmosphärendruck von 760 mm Q.-S. ohne Berücksichtigung der Quecksilbertemperaturen

Vak. =
$$\frac{672,4 + (760 - 744,1)}{760} \cdot 100$$

= $\frac{672,4 + 15,9}{760} \cdot 100 = \frac{688,3}{760} \cdot 100 = 90,7 \text{ v. H.}$

ist unbedingt zu verwerfen.

Einfacher und klarer als die Angabe des Vakuums, des Unterdrucks unter dem schwankenden Atmosphärendruck, selbst bei genauer Festlegung des Barometerstandes zu Vergleichszwecken, ist stets die Bestimmung des absoluten Druckes, im Beispiel 0,1026 at abs. Eine Umrechnung auf einen anderen Atmosphärendruck ist dann nicht mehr erforderlich, da auch bei verändertem Barometerstand dieser absolute Druck im Kondensator der gleiche bleiben würde.

Wird dieser Druck direkt als mm Q.-S. gemessen, so ist die Umrechnung in at unter Berücksichtigung der Quecksilbertemperatur auf der Tafel 1 zwar nicht ohne weiteres möglich, aber doch sehr einfach.

Beispiel: Gemessen 68 mm Q.-S. von 22º C.

Da nach Tafel 1 bei 22º C Quecksilbertemperatur 1 at = 738,4 mm Q.-S. ist, so entsprechen 68 mm Q.-S.

von 22° C $\frac{68}{738.4} = 0,0921$ at abs.

Einfluß der Höhenlage auf den mittleren Druck der Atmosphäre.

Nur am Meeresspiegel herrscht ein mittlerer Luftdruck von 760 mm Q.-S. von 0° C = 1,0333 at abs. = 1 alten Atmosphäre (1 Atm). Mit zunehmender Höhe nimmt der Luftdruck entsprechend der geringeren Höhe der atmosphärischen Luftsäule ab, an Orten unter dem Meeresspiegel ist der Druck der Atmosphäre im Jahresmittel größer. Die Kenntnis des mittleren Luftdruckes in beliebigen Höhenlagen ist zur Berechnung des Leistungsbedarfs von Kompressoren erforderlich, der bei

gleichem Kompressionsverhältnis $\frac{absoluter Enddruck}{absoluten Anfangsdruck}$ proportional dem Anfangsdruck ist; bei Turbokompressoren ist außerdem die Höhe des erreichbaren Enddruckes vom Anfangsdruck abhängig.

Für die Tafel 2 sind die mittleren Atmosphärendrucke p für Höhenlagen von 2000 m unter bis 6000 m über dem Meeresspiegel nach der Gleichung

$$p = 760 \cdot 0.987 \ 567^{\frac{H}{100}} \text{ mm Q.-S.}$$

= 1.0333 \cdot 0.987 \ 567^{\frac{H}{100}} \text{ at abs.}

berechnet und als Ordinaten auf den Höhenlagen H im Vergleich zum Meeresspiegel in Metern als Abszissen aufgetragen.

Die Temperatur t_m der Luft berücksichtigt die Formel

$$\begin{split} \lg p &= \lg \ 760 - \frac{H}{18 \ 400 - 70 \ t_{m}} \ mm \ Q.-S. \\ &= \lg \ 1,0333 - \frac{H}{18 \ 400 - 70 \ t_{m}} \ at \ abs. \end{split}$$

Für eine mittlere Temperatur der Luftsäule von $t_m = 0^{\circ} C$ ergeben sich für p die gleichen Werte wie bei der zuerst angeführten Näherungsgleichung.

Beispiele:

H = 2100 m über dem Meeresspiegel;

$$p = 585 \text{ mm} \text{ Q.-S. von } 0^{\circ} \text{ C} = 0.795 \text{ at abs.}$$

- H = 5000 engl. Fuß über dem Meeresspiegel;
- p = 630 mm Q.-S. von $0^{\circ} C = 0.85 \text{ at abs.}$
- H = 800 m unter dem Meeresspiegel;
- p = 840 mm Q.-S. von $0^{\circ} C = 1,136 \text{ at abs.}$

In der Nähe des Meeresspiegels machen demnach 80 m Höhenunterschied \sim 0,01 at Druckunterschied aus, oder 10 m Höhenunterschied bedingen \sim 1 mm Q.-S. Barometerstandänderung.

Wird Druckluft von der Erzeugungsstelle über Tage in einen Schacht geleitet, so würde ihr Überdruck gegenüber dem mit der Tiefe zunehmenden Atmosphärendruck abnehmen, wenn nicht durch das Gewicht der Luft in der fallenden Leitung eine stärkere Druckerhöhung und damit im Zustand der Ruhe sogar eine Zunahme des Überdruckes eintreten würde.

Beispiel: Atmosphärendruck über Tage
$$p = 1.02$$
 at abs.,

Teufe 1000 m.

a) Preßluftdruck über Tage

 $p_1 = 6$ at Überdruck = 7,02 at abs.

Atmosphärendruck unter Tage nach Tafel 2

$$p' = 1.02 \cdot \frac{1.165}{1.033} = 1.15$$
 at abs.

Preßluftdruck unter Tage

$$p_1' = 7,02 \cdot \frac{1,165}{1,033} = 7,92$$
 at abs.

Preßluftüberdruck unter Tage

 $p_1' - p' = 7,92 - 1,15 = 6,77$ at Überdruck gegen 6 at an der Erzeugungsstelle.

b) Preßluftdruck für Lokomotivbetrieb über Tage $p_1 = 150$ at Überdruck = 151,02 at abs.

Preßluftdruck unter Tage

$$p_1' = 151,02 \cdot \frac{1,165}{1,033} = 170,3$$
 at abs.

Preßluftüberdruck unter Tage

$$p_1' - p' = 170,3 - 1,15 = 169,15 \text{ at},$$

d. s. ~ 19 at mehr als am Kompressor über Tage.

Zustandsgleichung der Gase und Gasgemische.

Bezeichnet p den Gasdruck, v den Rauminhalt des Gases und T die absolute Gastemperatur (T = $273 + t^{\circ}$ C), so ist für alle vollkommenen Gase nach dem Mariotte-Boyle- und Gay-Lussacschen Gesetz für jeden Gaszustand, der durch p, v und T festgelegt ist,

$$\frac{\mathbf{p} \cdot \mathbf{v}}{\mathbf{T}} =$$
unveränderlich.

Wird der Gasdruck P in kg/qm und der Rauminhalt v in cbm/kg gemessen, so ist der unveränderliche Wert die Gaskonstante R, und man erhält die allgemeine Zustandsgleichung der vollkommenen Gase

$$Pv = RT.$$

Bezeichnet man mit V den Rauminhalt des Gases in cbm und mit G das Gasgewicht in kg, so ist $v = \frac{V}{G}$,

und die Zustandsgleichung hat dann die Form

$$\mathbf{P}\,\mathbf{V}=\mathbf{G}\,\mathbf{R}\,\mathbf{T}.$$

Nach dem Gesetz von Avogadro, nach dem für alle Gase bei gleichen Drucken und gleicher Temperatur 1*

gleiche Räume die gleiche Anzahl Moleküle enthalten, ist die Gaskonstante

$$=\frac{848}{\mu}$$

R

wenn μ das Molekulargewicht des Gases bezeichnet (Sauerstoff $\mu = 32$).

Eine andere Erläuterung der Gaskonstanten R gibt folgende kurze Überlegung. Wird Gas bei unverändertem Druck P erwärmt, so findet dabei eine Raumzunahme dV statt, infolgedessen eine äußere Arbeit

$$dL = P dV$$

geleistet werden muß. Nach der Zustandsgleichung ist, wenn d $\mathbf{P} = 0$,

$$P dV = G R dT$$

und demnach

$$dL = G R dT.$$

Ist das Gasgewicht G = 1 kg und die Temperaturänderung $\Delta T = 1^{\circ}$ C, so wird

 $\Delta L = R.$

Die Gaskonstante ist also gleich der äußeren Arbeit, die bei der Erwärmung von 1 kg Gas um 1° C bei unverändertem Druck infolge seines Raumzuwachses geleistet werden muß.

Die Gaskonstante von Gasmischungen wird mittels des Daltonschen Gesetzes berechnet, nach dem der gemessene Gesamtdruck eines Gasgemisches gleich der Summe der Teildrucke der einzelnen Bestandteile ist, d. h. gleich der Summe der Drucke, die jedes einzelne Gas haben würde, wenn es den Raum des Gasgemisches bei gleicher Temperatur allein ausfüllen würde.

Gilt PVGR für das Gasgemisch, $P_1V_1G_1R_1$, $P_2V_2G_2R_2$ usw. für die einzelnen Bestandteile, so ist $G_1 + G_2 + \dots = G$,

 $\mathbf{P}_1 + \mathbf{P}_2 + \dots = \mathbf{P}.$

Da für die einzelnen Bestandteile auch in der Mischung die Zustandsgleichung unverändert gilt, so ist

$$\begin{array}{l} \mathbf{P_1} \cdot \mathbf{V} = \mathbf{G_1} \cdot \mathbf{R_1} \cdot \mathbf{T} \\ \mathbf{P_2} \cdot \mathbf{V} = \mathbf{G_2} \cdot \mathbf{R_2} \cdot \mathbf{T} \\ \mathbf{usw.} \end{array}$$

Vor der Mischung war

$$\begin{aligned} \mathbf{P} \cdot \mathbf{V}_1 &= \mathbf{G}_1 \cdot \mathbf{R}_1 \cdot \mathbf{T} \\ \mathbf{P} \cdot \mathbf{V}_2 &= \mathbf{G}_2 \cdot \mathbf{R}_2 \cdot \mathbf{T} \\ \mathbf{usw.} \end{aligned}$$

Demnach ist

$$\begin{array}{l} \mathbf{P}_1 \cdot \mathbf{V} = \mathbf{P} \cdot \mathbf{V}_1 \\ \mathbf{P}_2 \cdot \mathbf{V} = \mathbf{P} \cdot \mathbf{V}_2 \\ \mathbf{usw.} \end{array}$$

Es bestehen also die Beziehungen

$$\begin{split} \mathbf{P}_1 : \mathbf{P}_2 : \dots &: \mathbf{P} = \mathbf{V}_1 : \mathbf{V}_2 : \dots &: \mathbf{V} \\ \mathbf{P}_1 = \mathbf{P} \, \frac{\mathbf{V}_1}{\mathbf{V}} \,, \quad \mathbf{P}_2 = \mathbf{P} \frac{\mathbf{V}_2}{\mathbf{V}} \, \text{usw.}, \end{split}$$

d. h. die Teildrucke der einzelnen Gase im Gemisch verhalten sich zueinander und zum Gesamtdruck wie die einzelnen Raumteile vor der Mischung zueinander und zum Gesamtrauminhalt.

Ferner folgt aus den Zustandsgleichungen der einzelnen Bestandteile und der des Gemisches

$$\begin{split} & V_1 \colon V_2 \colon \dots \colon V \, = \, G_1 \cdot R_1 \colon G_2 \cdot R_2 \colon \dots \colon G \cdot R \\ & G_1 \colon G_2 \colon \dots \colon G \; = \; \frac{V_1}{R_1} \colon \frac{V_2}{R_2} \colon \dots \colon \frac{V}{R} \end{split}$$

Hieraus ergibt sich:

zur Umrechnung von Gewichtsteilen in Raumteile:

$$V_{1} = V \frac{G_{1} \cdot R_{1}}{G_{1} R_{1} + G_{2} R_{2} + \dots} = V \frac{G_{1} R_{1}}{G R}$$
$$V_{2} = V \frac{G_{2} \cdot R_{2}}{G_{1} R_{1} + G_{2} R_{2} + \dots} = V \frac{G_{2} R_{2}}{G R}$$

zur Umrechnung von Raumteilen in Gewichtsteile:

$$G_{1} = G \frac{\frac{V_{1}}{R_{1}}}{\frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \dots} = G \frac{V_{1}}{V} \frac{R}{R_{1}},$$

$$G_{2} = G \frac{\frac{V_{2}}{R_{2}}}{\frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \dots} = G \frac{V_{2}}{V} \frac{R}{R_{2}},$$
usw :

die Gaskonstante der Mischung:

$$\mathbf{R} = \frac{\mathbf{G}_1}{\mathbf{G}} \mathbf{R}_1 + \frac{\mathbf{G}_2}{\mathbf{G}} \mathbf{R}_2 + \dots$$

oder

$$rac{1}{R} = rac{V_1}{V} rac{1}{R_1} + rac{V_2}{V} rac{1}{R_2} + \dots$$

Beispiel: Trockene atmosphärische Luft besteht zur Hauptsache aus folgenden Gasen, deren Gaskonstanten R aus den angegebenen Molekulargewichten μ ermittelt sind.

~ 21) 20,9 Raumtelle, Sauerstoff
$$\mu = 32,00$$

 $R = \frac{848}{32} = 26,50$
~ 79) 78,13 ,, Stickstoff $\mu = 28,02$
 $R = \frac{848}{28,02} = 30,26$
 $0,94$,, Argon $\mu = 39,9$
 $R = \frac{848}{39,9} = 21,25$
 0.03 Kohlensäure $\mu = 44,00$

0,03 ,, Kohlensäure
$$\mu = 44,00$$

 $\mathrm{R} = \frac{848}{44} = 19,27$

100,00 Raumteile

Bei 1 at abs. Luftdruck sind demnach die Teildrucke:

Sauerstoffdruck	0,2090 at abs.	
Stickstoffdruck	0,7813 ,,	
Argondruck	0,0094 ,,	
Kohlensäuredruck	0,0003 ,,	
	1,0000 at abs.	

Die Gaskonstante der Luft ist

$$\frac{1}{R} = \frac{0,209}{26,50} + \frac{0,7813}{30,26} + \frac{0,0094}{21,25} + \frac{0,0003}{19,27} = 0,03416$$
$$R = \frac{1}{0,03416} = 29,27.$$

4

Die	Gewichtstei	ile d	er	ein	zelnen	Gase	betragen	
Sauerstof	fgewicht .			=	20,90	$\frac{29,27}{26,50}$	= 23,09	v.H.
Stickstoff	gewicht .			=	78,13	$\frac{29,27}{30,26}$	= 75,57	"
Argongew	vicht			=	0,94	$\frac{29,27}{21,25}$	= 1,29	,,
Kohlensä	uregewicht			=	0,03	29,27 19,27	= 0,05	,,
							100,00 v	.H.

Es kann auch zunächst das scheinbare Molekulargewicht der Mischung

$$\mu = \frac{V_1}{V}\mu_1 + \frac{V_2}{V}\mu_2 + \dots$$

oder

$$\frac{1}{\mu} = \frac{G_1}{G} \frac{1}{\mu_1} + \frac{G_2}{G} \frac{1}{\mu_2} + \dots$$

ermittelt und dann erst die Gaskonstante der Mischung 848 bestimmt werden. R =

B	e	i	S	p	i	e.	1 :	f	ü	r	T	11	u	f	t	
---	---	---	---	---	---	----	-----	---	---	---	---	----	---	---	---	--

Gasart	Raumteil μ
Sauerstoff	$0,2090 \cdot 32,00 = 6,688$
Stickstoff	$0,7813 \cdot 28,02 = 21,892$
Argon	$0,0094 \cdot 39,90 = 0,375$
Kohlensäure	$0,0003 \cdot 44,00 = 0,013$
Luft	$\dots \dots \dots \mu = 28,968$
	$R = \frac{846}{28,968} = 29,27$

In der folgenden Tabelle sind die Molekulargewichte der für den Kompressorenbau wichtigsten Gase zusammengestellt. Aus den Molekulargewichten sind die Gaskonstanten ermittelt und sodann nach der Zustandsgleichung die spezifischen Rauminhalte und Raumgewichte der einzelnen Gase.

Coopet		Molekular-		Spezifischer I cbm	Rauminhalt v in /kg bei	Spezifisches Ra kg/cl	umgewichtγin om bei	Spezifisches Ge- wicht, bezogen auf Luft	
Name	Zeichen	gewicht μ	R	1 at abs. u. 15° C	$ \begin{array}{ c c c c c } \hline 760 \ mm \ QS. \\ \hline = 1,0333 \ at \ abs. \\ u. \ 0^{\circ} \ C \end{array} $	1 at abs. u. 15º C	760 mm QS. = 1,0333 at abs. u. 0° C		
Sauerstoff	$\begin{array}{c} \mathrm{O}_2 \\ \mathrm{N}_2 \\ \mathrm{H}_2 \end{array}$	$32,000 \\ 28,020 \\ 2,016$	$26,50 \\ 30,26 \\ 420,6$	$0,763 \\ 0,871 \\ 12,11$	0,700 0,799 11,11	1,310 1,147 0,0826	1,428 1,251 0,0900	1,104 0,967 0,0696	
Kohlenoxyd Kohlensäure Schwefl. Säure	$\begin{array}{c} \mathrm{CO} \\ \mathrm{CO}_2 \\ \mathrm{SO}_2 \end{array}$	$28,000 \\ 44,000 \\ 64,070$	$30,29 \\ 19,27 \\ 13,24$	0,872 0,555 0,381	0,800 0,509 0,350	$1,146 \\ 1,802 \\ 2,622$	$1,250 \\ 1,964 \\ 2,857$	$0,966 \\ 1,518 \\ 2,221$	
Ammoniak Azetylen Methan (Sumpfgas)	$\begin{array}{c} \mathrm{NH_3} \\ \mathrm{C_2H_2} \\ \mathrm{CH_4} \end{array}$	$\begin{array}{c} 17,034 \\ 26,016 \\ 16,032 \end{array}$	49,78 32,60 52,89	$1,433 \\ 0,939 \\ 1,523$	$1,315 \\ 0,862 \\ 1,398$	0,698 1,065 0,657	$0,760 \\ 1,161 \\ 0,715$	$0,588 \\ 0,898 \\ 0,553$	
Äthylen	$\begin{array}{c} \mathrm{C_{2}H_{4}}\\ \mathrm{H_{2}O}\\ -\end{array}$	28,032 18,016 28,968	30,25 47,07 29,27	0,871 0,843	0,799 	1,148 1,186	1,251 	0,968 	

Der spezifische Rauminhalt (Rauminhalt von 1 kg) ist DT

$$= \frac{V}{G} = \frac{KI}{P} cbm/kg$$

und das spezifische Raumgewicht (Gewicht von 1 cbm) ist

V

$$r = rac{1}{\mathrm{v}} = rac{\mathrm{G}}{\mathrm{V}} = rac{\mathrm{P}}{\mathrm{RT}} \,\mathrm{kg/cbm}.$$

Bequemer als die Rechnung ist das Ablesen auf den Fig. 3 und 4, welche diese Werte für Luft mit der Gaskonstante R = 29,27 darstellen.

Da der spezifische Rauminhalt v bei gleichem Druck direkt proportional der absoluten Temperatur ist, so sind auf Fig. 3 die Temperaturen als Abszissen und die spezifischen Rauminhalte v als Ordinaten aufgetragen; dann liegen die Werte v für gleiche Drucke auf Geraden.

Tafel 3 und 4 sind vergrößerte Ausschnitte aus der Fig. 3, welche größere Genauigkeit beim Ablesen ermöglichen.

		Beis	piel	e:								
p	=	1,5	at	abs.,	t	=	400°C;					
-							Fig.	3:	v	=	1,32	cbm/kg
p	=	7	at	abs.,	t	=	125°C;					
							Tafel	3:	v	=	0,166	cbm/kg
p	=	1	at	abs.,	t	=	0°C;					
-							Tafel	4:	v	=	0,799	cbm/kg

p	=	1	at abs.,	t =	=	15°C;	
						Tafel 4: $v = 0,843$ c	bm/kg
р	=	1,033	at abs.,	t =	=	0°C;	
						Tafel 4: $v = 0,773$ c	bm/kg
р	=	1,033	at abs.,	t =	=	15°C;	
						Tafel 4: $v = 0,815$ c	om/kg

Bei ca. 1 at abs. bedeuten \pm 0,01 at, d. s. \pm 100 mm W.-S., ca. ∓ 1 v. H. Raumveränderung, bei ca. 300°C abs. haben \pm 3° C den gleich großen, aber entgegengesetzten Einfluß.

Das spezifische Raumgewicht y ist bei gleicher Temperatur direkt proportional dem absoluten Druck. Trägt man die Drucke wie auf der Fig. 4 als Abszissen und die spezifischen Raumgewichte y als Ordinaten auf, so liegen die spezifischen Rauminhalte für gleiche Temperaturen auf Geraden.

Tafel 5 ist ein vergrößerter Ausschnitt aus der Fig. 4.

Beispiel:

p = 7at abs., $t = 100^{\circ} C;$ Fig. 4: 1 cbm Luft wiegt 6,4 kg at abs., $t = 0^{\circ} C$; p = 1Tafel 5: 1 cbm Luft wiegt 1,252 kg p = 1at abs., t =15° C; Tafel 5: 1 cbm Luft wiegt 1,187 kg $p = 1,033 \text{ at abs.}, t = 0^{\circ} C;$ Tafel 5: 1 cbm Luft wiegt 1,293 kg p = 1,033 at abs., $t = 15^{\circ}$ C;

Tafel 5: 1 cbm Luft wiegt 1,226 kg

Druck- und Temperaturänderungen haben auf das Luftgewicht den gleich großen, aber entgegengesetzten Einfluß wie auf den Rauminhalt.

Zustandsänderungen im Kompressor.

und

In einem Kompressor ändert man durch Zuführung von Arbeit den Zustand eines Gases, der durch P, Vund T festgelegt ist, derartig, daß es infolge seines Überdruckes gegenüber seiner Umgebung dann imstande ist, bei der Expansion wieder Arbeit zu leisten. Beide Vorgänge sind Energieumwandlungen, d. h. bei der Kompression wird sich die aufgewandte Arbeit im Gas oder in seiner Umgebung in Form von Wärme wiederfinden, bei der Expansion wird die der Expansionsarbeit gleichwertige Wärme dem Gas oder seiner Umgebung entzogen.

Bei einer Zustandsänderung kann von außen die Wärmemenge dQ sowohl direkt als Wärme dQw als auch in Form von innerer Reibung zugeführt werden. Bezeichnet man den Wärmewert der inneren Reibungsarbeit mit dQr, so ist

$$\mathrm{d} \mathrm{Q} = \mathrm{d} \mathrm{Q}_{\mathrm{w}} + \mathrm{d} \mathrm{Q}_{\mathrm{r}}.$$

Bei jeder Zustandsänderung erhöht die von außen zugeführte Wärme dQ einmal die innere Energie des Gases um dU und leistet ferner die äußere Arbeit PdV. Da Arbeit und Wärme nach dem 1. Hauptsatz der Thermodynamik gleichwertig sind

$$1 \text{ mkg} = \frac{1}{427} \text{ WE} = A \text{ WE},$$

so läßt sich die Beziehung zwischen diesen Größen in Form der Grundgleichung

$$dQ = dU + A P dV$$

ausdrücken. Es ist also

$$\mathbf{Q} = \mathbf{U}_2 - \mathbf{U}_1 + \mathbf{A} \int \mathbf{P} \, \mathrm{d} \mathbf{V}.$$

Bleibt der Rauminhalt des Gases unverändert (dV = 0), so wird

$$dQ = dU$$

Die innere Energie dU des Gases ist also gleich der Wärmemenge dQ, welche dem Gas bei unverändertem Rauminhalt zugeführt werden muß, um seine Temperatur um dT zu erhöhen. Ist c_v die spezifische Wärme bei unverändertem Volumen, so ist

$$dU = G c_v dT$$

$$U_2 - U_1 = G c_v (T_2 - T_1).$$

Da P dV = d(PV) - V dP ist, so kann man die Grundgleichung auch in der Form

$$\mathrm{d}\mathbf{Q} = \mathrm{d}(\mathbf{U} + \mathbf{APV}) - \mathbf{A} \mathbf{V} \,\mathrm{dP}$$

schreiben. Setzt man U + A P V = J, so ist $\mathrm{d} \mathrm{Q} = \mathrm{d} \mathrm{J} - \mathrm{A} \mathrm{V} \mathrm{d} \mathrm{P}.$

Bei unverändertem Druck (dP = 0) ist

$$aQ = aJ.$$

Der Wärmeinhalt dJ des Gases ist also gleich der Wärmemenge dQ, welche dem Gas bei unverändertem Druck zugeführt werden muß, um seine Temperatur um dT zu erhöhen. Ist cp die spezifische Wärme bei unverändertem Druck, so ist

$$dJ = Gc_p dT$$

$$J_p = Gc_p (T_p - T_p)$$

Alle umkehrbaren Zustandsänderungen sind frei von wesentlicher innerer Reibung, so daß für diese $dQ_r = 0$ zu setzen ist. Für umkehrbare Vorgänge gilt also

$$\begin{array}{l} \mathrm{d}\,\mathrm{Q}_{\mathrm{w}}\,=\,\mathrm{d}\,\mathrm{U}\,+\,\mathrm{A}\,\mathrm{P}\,\mathrm{d}\,\mathrm{V}\,=\,\mathrm{Q}\,\mathrm{c}_{\mathrm{v}}\,\mathrm{d}\,\mathrm{T}\,+\,\mathrm{A}\,\mathrm{P}\,\mathrm{d}\,\mathrm{V}\\ \mathrm{Q}_{\mathrm{w}}\,=\,\mathrm{G}\,\mathrm{c}_{\mathrm{v}}\,(\mathrm{T}_{2}\,-\,\mathrm{T}_{1})\,+\,\mathrm{A}\,\int\!\mathrm{P}\,\mathrm{d}\,\mathrm{V}\\ \mathrm{d}\,\mathrm{Q}_{\mathrm{w}}\,=\,\mathrm{d}\,\mathrm{J}\,-\,\mathrm{A}\,\mathrm{V}\,\mathrm{d}\,\mathrm{P}\,=\,\mathrm{G}\,\mathrm{c}_{\mathrm{p}}\,\mathrm{d}\,\mathrm{T}\,-\,\mathrm{A}\,\mathrm{V}\,\mathrm{d}\,\mathrm{F}\\ \mathrm{Q}_{\mathrm{w}}\,=\,\mathrm{G}\,\mathrm{c}_{\mathrm{p}}\,(\mathrm{T}_{2}\,-\,\mathrm{T}_{1})\,-\,\mathrm{A}\,\int\!\mathrm{V}\,\mathrm{d}\,\mathrm{P}. \end{array}$$

$$\mathbf{Q}_{\mathrm{w}} = \mathrm{Gc}_{\mathrm{p}} \left(\mathrm{T}_{2} - \mathrm{T}_{1} \right)$$

A. Adiabatische Zustandsänderung.

Wird bei einer umkehrbaren Zustandsänderung von außen Wärme weder zu- noch abgeführt, so müssen die Wandungen des Kompressors vollkommen wärmedicht sein. Man spricht dann von adiabatischer Zustands-

6

änderung, bei der also dQ = 0 ist. Bei adiabatischer Kompression muß sich die gesamte aufgewandte Arbeit, aber auch nicht mehr als der theoretische Wert, in Form von Wärme im Gas allein wiederfinden; bei adiabatischer Expansion wird genau der Wärmewert der geleisteten Arbeit dem Gas allein entzogen. Das kennzeichnendste Merkmal der adiabatischen Zustandsänderung besteht darin, daß das Wärmegewicht des Gases, der Quotient aus Wärmeinhalt und absoluter Temperatur, die Entropie $S = \frac{\int dQ}{T}$, während des ganzen Verlaufes der Zustandsänderung denselben Wert behält, daß also dS = 0 ist. Bei allen anderen Zustandsänderungen erfährt die Entropie des Gases eine Änderung, eine Vermehrung oder eine Verminderung, wobei im letzteren Falle allerdings noch ein anderer oder mehrere Körper

entsprechend zunimmt. Da bei adiabatischer Zustandsänderung die Wärme-Zu- oder Abfuhr dQ = 0 ist, so wird

am Vorgang beteiligt sein müssen, deren Entropie dann

$$\operatorname{Ge}_{v} \mathrm{dT} = -\operatorname{APdV}.$$

Nach der Zustandsgleichung für vollkommene Gase ist PV = GRT,

 $GT = \frac{PV}{R}.$

Durch Division erhält man

$$\begin{split} \mathbf{c}_{\mathrm{v}} \frac{\mathrm{d}\mathbf{T}}{\mathrm{T}} &= -\mathrm{A} \; \mathrm{R} \; \frac{\mathrm{d}\mathrm{V}}{\mathrm{V}} \; , \\ \mathbf{c}_{\mathrm{v}} \ln \frac{\mathrm{T}_2}{\mathrm{T}_1} &= -\mathrm{A} \; \mathrm{R} \; \mathrm{ln} \; \frac{\mathrm{V}_2}{\mathrm{V}_1} \; . \end{split}$$

Da nach der Zustandsgleichung

 $T = \frac{PV}{GR}$,

so ist

also

$$\ln \frac{\mathbf{P}_2 \, \mathbf{V}_2}{\mathbf{P}_1 \, \mathbf{V}_1} = - \frac{\mathbf{A} \, \mathbf{R}}{\mathbf{c}_{\mathrm{v}}} \ln \frac{\mathbf{V}_2}{\mathbf{V}_1}$$

Der Wert $\frac{AR}{c_v}$ ist aus den beiden Formen der Grundgleichungen zu bestimmen, die für die Adiabate mit dQ = 0 lauten:

$$dJ = AVdP = Gc_p dT$$

 $dU = -APdV = Gc_v dT$

Durch Subtraktion ergibt sich

$$A V dP + A P dV = A d (PV) = G (c_p - c_v) dT$$

und mit Hilfe der Zustandsgleichung

d(PV) = GR dT

so daß die einfache Beziehung entsteht

$$AR = c_p - c_v.$$

Hieraus ergibt sich der gesuchte Wert

 $\frac{\rm A~R}{\rm c_v} = \frac{\rm c_p}{\rm c_v} - 1~. \label{eq:cv}$ Setzt man

so ist

$$\frac{AR}{c_{\rm v}} = \varkappa - 1$$

 $\frac{c_p}{c_v} = \varkappa \,,$

und es wird

$$\ln \frac{P_2 V_2}{P_1 V_1} = -(\varkappa - 1) \ln \frac{V_2}{V_1} = \ln \left(\frac{V_2}{V_1}\right)^{1-\varkappa}$$

$$\ln \frac{P_2}{P_1} = \ln \left(\frac{V_2}{V_1}\right)^{-\varkappa}$$

$$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\varkappa}$$

$$\mathbf{P}_1 \mathbf{V}_1^{\times} = \mathbf{P}_2 \mathbf{V}_2^{\times}.$$

Bei adiabatischer Zustandsänderung ist also das Produkt $P \cdot V^x$ unveränderlich, und \varkappa , der "Exponent der Zustandsänderung", ist der Quotient aus der spezifischen Wärme c_p bei unverändertem Druck und der spezifischen Wärme c_v bei unverändertem Rauminhalt.

Zwischen c_p und c_v besteht die Beziehung

$$c_p - c_v = A R.$$

Nun ist das mechanische Wärmeäquivalent $A = \frac{1}{427}$

und die Gaskonstante $R = \frac{848}{\mu}$, wenn μ das Molekulargewicht des Gases ist. Setzt man diese Werte ein, so ist

$$c_{p} - c_{v} = \frac{1}{427} \frac{848}{\mu} = \frac{1,985}{\mu} = \sim \frac{2}{\mu}.$$

Mit der Bezeichnung $\frac{c_p}{c_v} = \varkappa$ wird

$$\begin{aligned} \mathbf{e}_{\mathbf{v}} &= \frac{\mathbf{A} \, \mathbf{R}}{\mathbf{x} - 1} = \frac{1,985}{\mu \, (\mathbf{x} - 1)} = \sim \frac{2}{\mu \, (\mathbf{x} - 1)} \\ &= \mathbf{x} \, \mathbf{e}_{\mathbf{v}} = \frac{\mathbf{x} \, \mathbf{A} \, \mathbf{R}}{\mathbf{x} - 1} = \frac{1,985 \, \mathbf{x}}{\mu \, (\mathbf{x} - 1)} = \sim \frac{2 \, \mathbf{x}}{\mu \, (\mathbf{x} - 1)} \,. \end{aligned}$$

		Molekular- gewicht Gaskonstante		Spezifisch		
Gasart				bei unverändertem Druck Bei unverändertem		$x = \frac{c_p}{c_v}$
Name	Zeichen	μ	R	cp	e _v	
Sauerstoff	$\begin{array}{c} O_2\\ N_2\\ H_2 \end{array}$	32,000 28,020 2,016	$26,50 \\ 30,26 \\ 420,6$	$0,217 \\ 0,247 \\ 3,41$	$0,155 \\ 0,176 \\ 2,42$	$1,40 \\ 1,40 \\ 1,41$
Kohlenoxyd	$\begin{array}{c} \text{CO} \\ \text{CO}_2 \\ \text{SO}_2 \end{array}$	$28,000 \\ 44,000 \\ 64,070$	$30,29 \\ 19,27 \\ 13,24$	$0,242 \\ 0,21 \\ 0,15$	$0,172 \\ 0,16 \\ 0,12$	$1,40 \\ 1,31 \\ 1,25$
Ammoniak	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{C}_{2}\mathrm{H}_{2}\\ \mathrm{CH}_{4} \end{array}$	$17,034 \\ 26,016 \\ 16,032$	$\begin{array}{r} 49,78\\ 32,60\\ 52,89\end{array}$	0,53 0,35 0,59	$0,41 \\ 0,27 \\ 0,46$	$1,29 \\ 1,29 \\ 1,28$
Äthylen	$\begin{array}{c} \mathrm{C_{2}H_{4}}\\\mathrm{H_{2}O}\\-\end{array}$	28,032 18,016 28,968	30,25 47,07 29,27	$0,40 \\ 0,48 \\ 0,238$	0,33 0,37 0,170	$1,21 \\ 1,30 \\ 1,40$

 \mathbf{c}_{p}

In der vorstehenden Tabelle sind die Werte μ , R, c_p, c_v und \varkappa der für den Kompressorenbau wichtigsten Gase zusammengestellt.

 $\chi = 1,4$

Für alle zweiatomigen Gase ist angenähert

und damit

$$\begin{split} c_v &= \frac{1,985}{0,4\,\mu} = \frac{4,965}{\mu} = \sim \frac{5}{\mu} \\ c_p &= \frac{1,985\cdot 1,4}{0,4\,\mu} = \frac{6,95}{\mu} = \sim \frac{7}{\mu} \,. \end{split}$$

Die spezifische Wärme von Gasmischungen ist

$$c_{v} = \frac{G_{1}}{G} c_{v_{1}} + \frac{G_{2}}{G} c_{v_{2}} + \dots$$

$$= \frac{V_{1}}{V} \frac{R}{R_{1}} c_{v_{1}} + \frac{V_{2}}{V} \frac{R}{R_{2}} c_{v_{2}} + \dots$$

$$c_{p} = \frac{G_{1}}{G} c_{p_{1}} + \frac{G_{2}}{G} c_{p_{2}} + \dots$$

$$G = \frac{V_1}{V} \frac{R}{R_1} c_{p_1} + \frac{V_2}{V} \frac{R}{R_2} c_{p_2} + \dots$$

Die Veränderlichkeit der spezifischen Wärme mit steigenden Drucken und Temperaturen kann in der Praxis des Kompressorenbaues meistens vernachlässigt werden.

Darstellung der adiabatischen Zustandsänderung.

Die Zustandsänderung P V^x = unveränderlich läßt sich in einem Koordinatensystem als Linie darstellen, wenn die Drucke P als Ordinaten und die Volumina V als Abszissen aufgetragen werden. Die Konstruktion der Kompressions- bzw. Expansionslinie in diesem Druck-Volumendiagramm (P V-Diagramm, Arbeitsdiagramm)

erfo	olgt	nach	dem	bekannten	Verfahren	von	Brauer.	Es
ist	in	Fig. 5						

Fig. 5. Die Konstruktion der Adiabate im PV-Diagramm.

$$\operatorname{tg} \alpha = \frac{V_{\mathrm{x}} - V_{\mathrm{y}}}{V_{\mathrm{y}}} = \frac{V_{\mathrm{x}}}{V_{\mathrm{y}}} - 1$$

und

$$\label{eq:basic_states} tg \; \beta \; = \; \frac{P_y - P_x}{P_x} = \frac{P_y}{P_x} - 1 \, ,$$

$$1 + tg \ \alpha = \frac{V_x}{V_y} \ \text{und} \ 1 + tg \ \beta = \frac{P_y}{P_x}$$

 $P_x V_x^{\ x} = P_y V_y^{\ x},$

Da bei adiabatischer Zustandsänderung

 20°

also

$$\frac{\mathbf{P}_{\mathbf{y}}}{\mathbf{P}_{\mathbf{x}}} = \left(\frac{\mathbf{V}_{\mathbf{x}}}{\mathbf{V}_{\mathbf{y}}}\right)^{*}$$

 $(1 + tg \alpha)^{x} = 1 + tg \beta$

sein soll, so muß

22º 30'

In der folgenden Zahlentafel sind zum Aufzeichnen der Adiabate für die zweckmäßig zu benutzenden Winkel α und Tangenten der Winkel α die Winkel β und die Tangenten der Winkel β angegeben ($\chi = 1,4$).

 15^{0}

 10^{0}

Winkel α Winkel β	30° 41° 46′	25° 35° 21′
tg a	0,333	0,3
$\operatorname{tg} \beta \ldots \ldots \ldots$	0,496	0,444

Rechnerisch ist das Endvolumen V_2 bei adiabatischer Kompression nach der Gleichung

$$V_2 = V_1 \left(\frac{p_1}{p_2}\right)^{\overline{x}}$$

 31° 59'
 28° 34'
 21° 31'
 14° 19'

 0,25
 0,2
 0,15
 0,1

 0,367
 0,291
 0,216
 0,143

 zu ermitteln.
 Mit Hilfe der folgenden Zahlentafel, in

zu ermitteln. Mit Hilfe der folgenden Zahlentatel, in der die Werte V_2 für $V_1 = 100$ zusammengestellt sind, kann das Aufzeichnen der Adiabate ohne konstruktive Hilfsmittel geschehen.

Druckluftvolumen V_2 nach adiabatischer Kompression des Anfangsvolnmens $V_1 = 100$.

$$\mathbf{V_2} = 100 \left(\frac{\mathbf{p_1}}{\mathbf{p_2}}\right)^{\frac{1}{1.4}}$$

$\frac{p_2}{p_1}$	+ 0,00	+ 0,01	+ 0,02	+ 0,03	+ 0,04	+ 0,05	+ 0,06	+ 0,07	+ 0,08	+ 0,09	+ 0,1
1,00	100	99,3	98,6	97,9	97,2	96,6	95,9	95,3	94,6	94,0	93,5
1,10	93,5	92,8	92,2	91,6	91,1	90,5	89,9	89,4	88,8	88,3	87,7
1,20	87,7	87,3	86,8	86,2	85,7	85,3	84,8	84,3	83,8	83,4	82,9
1,30	82,9	82,5	82,0	81,6	81,2	80,7	80,3	79,9	79,5	79,0	78,7
1,40	78,7	78,2	77,8	77,5	77,1	76,7	76,3	70,0	75,6	75,2	74,8
1,50	74,8	74,5	74,1	73,8	73,5	73,1	72,8	72,4	72,1	71,8	71,4
1,60	71,4	71,2	70,9	70,6	70,2	69,9	69,6	69,3	69,0	68,7	68,5
1,70 1,80 1,90	$\begin{array}{c} 68,5 \\ 65,7 \\ 63,3 \end{array}$	68,2 65,5 63,0	67,9 65,2 62,8	67,6 65,0 62,6	$67,3 \\ 64,7 \\ 62,3$	$67,1 \\ 64,5 \\ 62,1$	$66,8 \\ 64,2 \\ 61,9$	66,5 64,0 61,6	$ \begin{array}{r} 66,2 \\ 63,7 \\ 61,4 \end{array} $	$ \begin{array}{c} 66,0\\ 63,5\\ 61,2 \end{array} $	65,7 63,3 60,9

$\frac{p_2}{p_1}$	+ 0,0	+ 0,1	+ 0,2	+ 0,3	+ 0,4	
2,0 3,0 4,0	$60,9 \\ 45,6 \\ 37,3$	$58,9 \\ 44,6 \\ 36,5$	$56,9 \\ 43,6 \\ 35,9$	55,1 42,7 35,3	53,5 41,7 34,7	
5,0 6,0	31,7 27,8	$31,2 \\ 27,5$	30,8 27,2	$30,4 \\ 26,9$	$30,0 \\ 26,6$	
7,0 8,0 9,0	24,9 22,6 20,8	24,7 22,5 20,6	24,4 22,3 20,5	24,2 22,1 20,3	23,9 21,9 20,2	

Beispiel: $p_1 = 1,03$, $p_2 = 3$ at Überdruck.

$$\frac{\mathbf{p}_2}{\mathbf{p}_1} = \frac{4,03}{1,03} = 3,91.$$

Druckluftvolumen nach adiabatischer Kompression $\rm V_2=37,75$ v. H. des Anfangsvolumens $\rm V_1.$

+ 0,5	+ 0,6	+ 0,7	+ 0,8	+ 0,9	+ 1,0
52,0	50,5	49,2	47,9	46,7	45,6
40,9	40,0	39,3	38,5	37,8	37,3
34,2	33,6	33,1	32,6	32,1	31,7
29,6	29,2	28,8	28,5	28,2	27,8
26,3	26,0	25,7	25,5	25,2	24,9
23,7	23,5	23,2	23,0	22,8	22,6
21,7	21,5	21,3	21,1	21,0	20,8
20,0	19,9	19,7	19,6	19,4	19,3

Das Endvolumen $\mathrm{V_1}$ nach adiabatischer Expansion des Anfangsvolumens $\mathrm{V_2}$ ist

$$V_1 = V_2 \left(\frac{p_2}{p_1}\right)^{\frac{1}{2}}$$

Für das Anfangsvolumen $\rm V_2=100$ sind die Zahlenwerte des Endvolumens $\rm V_1$ nach adiabatischer Expansion in der nächsten Tabelle zusammengestellt.

Endvolumen V ₁ nach adiabatischer Exp	ansion des	Druckluftvolumens V	$_{2} = 100$
--	------------	---------------------	--------------

$V_1 = 10$	$00\left(\frac{1}{1}\right)$	$\left(\frac{P_1}{P_2}\right)^{\frac{1}{1,4}}.$
$V_1 = 10$		$\overline{p_2}$

			1		and a second	(12/	and the second		A		
$\frac{p_2}{p_1}$	+ 0,00	+ 0,01	+ 0,02	+ 0,03	+ 0,04	+ 0,05	+ 0,06	+ 0,07	+ 0,08	+ 0,09	+ 0,1
$1,00 \\ 1,10 \\ 1,20$	$100 \\ 107,0 \\ 113,9$	100,7 107,7 114,6	101,4 108,4 115,2	102,1 109,1 115,9	102,8 109,8 116,6	103,5 110,5 117,3	104,2, 111,2, 117,9	104,9 111,9 118,6	105,6 112,6 119,6	106,3 113,3 120,0	107,0 113,9 120,6
$1,30 \\ 1,40 \\ 1,50 \\ 1,60$	$120,6 \\ 127,1 \\ 133,6 \\ 139,9$	$121,3 \\ 127,8 \\ 134,2 \\ 140,5$	$122,0 \\ 128,4 \\ 134,8 \\ 141,2$	122,6129,1135,5141,8	123,3129,7136,1142,4	$123,9\\130,4\\136,7\\143,0$	$124,6\\131,0\\137,4\\143,6$	$125,2 \\131,7 \\138,0 \\144,2$	125,9132,3138,6144,9	$126,5 \\ 132,9 \\ 139,3 \\ 145,5$	127,1 133,6 139,9 146,1
$1,70 \\ 1,80 \\ 1,90$	$146,1 \\ 152,2 \\ 158,2$	146,7 152,8 158,8	147,3 153,4 159,3	147,9 154,0 159,9	148,5 154,6 160,5	$149,1 \\ 155,2 \\ 161,1$	149,7 155,8 161,7	150,3 156,4 162,2	151,0 157,0 162,9	151,6 157,6 163,5	$152,2 \\ 158,2 \\ 164,1$
$\frac{p_2}{p_1}$	+ 0,0	+ 0,1	+0,2	+ 0,3	+ 0,4	+ 0,5	+0,6	+ 0,7	+ 0,8	+ 0,9	+ 1,0
2,0 3,0 4,0	$164,1 \\ 219 \\ 269$	$169,9 \\ 224 \\ 274$	175,6 230 279	$181,3 \\ 235 \\ 283$	$186,9 \\ 240 \\ 288$	$192,4 \\ 245 \\ 293$	$197,8 \\ 250 \\ 397$	$203,1 \\ 255 \\ 302$	$209 \\ 260 \\ 307$	$214 \\ 264 \\ 311$	$219 \\ 269 \\ 316$
$5,0 \\ 6,0$	$\begin{array}{c} 316\\ 360 \end{array}$	$\begin{array}{c} 320\\ 364 \end{array}$	325 368	$329 \\ 372$	$\begin{array}{c} 333\\ 376 \end{array}$	338 381	$\begin{array}{c} 342\\ 385\end{array}$	347 389	351 393	356 397	$\begin{array}{c} 360\\ 401 \end{array}$
7,0 8,0 9,0	$401 \\ 442 \\ 480$	$406 \\ 446 \\ 484$	$410 \\ 450 \\ 488$	${}^{414}_{453}_{492}$	$\begin{array}{c} 418 \\ 457 \\ 495 \end{array}$	$422 \\ 461 \\ 499$	$426 \\ 465 \\ 503$	430 469 507	434 473 511	438 477 515	$442 \\ 480 \\ 519$

Beispiel: Expansionsverhältnis
$$\frac{p_2}{p_1} = 3,62.$$

Das Volumen nach der Expansion ist 2,51 mal so groß als das Druckluftvolumen.

Die Benutzung der beiden Zahlentafeln beim Aufzeichnen der adiabatischen Kompressions- bzw. Expansionslinie hat im Vergleich zum rein zeichnerischen Verfahren den Vorteil, daß bei diesem sich Fehler mit der Länge der konstruierten Linie vergrößern, bei jenem sich dagegen immer wieder ausgleichen.

Adiabatische Kompressionsarbeit.

Im PV-Diagramm erscheint die adiabatische Kompressions- bzw. Expansionsarbeit als Fläche, die sich

Hinz, Thermodynamische Grundlagen.

Fig. 6. Adiabatische Kompressionsarbeit allein $\int P d V$.

berechnen läßt, da das Gesetz der Adiabate bekannt ist. Um eine Gasmenge $\rm V_1$ (cbm) vom absoluten Druck

2

9

P1 (kg/qm) auf den absoluten Druck P2 adiabatisch zu verdichten, ist eine Arbeit erforderlich, dargestellt durch die stark umrandete Fläche F der Fig. 6.

Es ist

$$\mathbf{F} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \mathbf{P} \, \mathrm{d}\mathbf{V}.$$

Da

$$P V^{x} = P_{1}V_{1}^{x}$$

also

so ist

$$\mathbf{P} = \mathbf{P}_1 \mathbf{V}_1^{x} \mathbf{V}^{-x},$$

 $\mathbf{F} = \mathbf{P}_1 \, \mathbf{V}_1^{x} \int\limits_{V}^{V_2} \mathbf{V}^{-x} \, \mathrm{d} \mathbf{V}$ $\mathbf{F} = \frac{\mathbf{P}_{1} \mathbf{V}_{1}^{z}}{z - 1} \left[\mathbf{V}_{2}^{1 - z} - \mathbf{V}_{1}^{1 - z} \right]$

Setzt man

. V2 ist

$$V_1^{x} = \frac{V_1}{V_1^{1-x}},$$

so erhält man, da F die Kompressionsarbeit L bedeutet, P. V. $[/V, \rangle^{x-1}$

$$L_{\text{kompression}} = \frac{1}{\varkappa - 1} \left[\left(\frac{V_1}{V_2} \right) - 1 \right] \text{mkg.}$$

zunächst unbekannt; da jedoch

$$\frac{\mathbf{V}_1}{\mathbf{V}_2} = \left(\frac{\mathbf{P}_2}{\mathbf{P}_1}\right)^{\frac{1}{2}}$$

so ist demnach ebenfalls

$$\mathbf{L}_{\text{kompression}} = \frac{\mathbf{P}_{1} \, \mathbf{V}_{1}}{\varkappa - 1} \left[\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right] \text{mkg.}$$

Die Arbeit bei der Expansion berechnet sich nach dem genau gleichen Ausdruck, wobei nur zu beachten ist, daß P1 und V1 Druck und Volumen nach der Expansion bezeichnen. Geht man von P2 und V2 aus, bei der Expansion Anfangsdruck und Anfangsvolumen, so ergibt sich der genau gleichwertige Ausdruck

$$\mathbf{L}_{\text{expansion}} = \frac{\mathbf{P}_2 \, \mathbf{V}_2}{\varkappa - 1} \left[1 - \left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right)^{\varkappa - 1} \right] \text{mkg}$$

und eb

$$\mathbf{L}_{\text{expansion}} = \frac{\mathbf{P}_2 \, \mathbf{V}_2}{\varkappa - 1} \bigg[1 - \bigg(\frac{\mathbf{P}_1}{\mathbf{P}_2} \bigg)^{\frac{\varkappa - 1}{\varkappa}} \bigg] \, \text{mkg}.$$

Arbeitsbedarf des Kompressors bei adiabatischer Kompression.

Ist in einem Kompressor die zuvor bestimmte Arbeit L_{kompression} geleistet, so ist damit die Zustands-

Fig. 7. Adiabatische Kompressionsarbeit allein JPdV und Arbeitsbedarf des Kompressors JV d P bei adiabatischer Kompression.

änderung des Gases beendet. Der Arbeitsbedarf La des vollendeten Kreisprozesses in einem Kompressor ist aber ein anderer, der sich nach Fig. 7 aus der schräg schraffierten, reinen Kompressionsarbeit $L_{kompression}$, der wagerecht schraffierten Fortdrückarbeit

$$P_2 V_2 = P_2 V_1 \left(\frac{P_1}{P_2}\right)^{\frac{1}{x}} = P_1 V_1 \left(\frac{P_2}{P_1}\right)^{\frac{x-1}{x}}$$

und der negativen, senkrecht schraffierten Ansaugearbeit P_1V_1 zusammensetzt.

$$\begin{split} \mathbf{L}_{a} &= \frac{\mathbf{P}_{1} \, \mathbf{V}_{1}}{\varkappa - 1} \Big[\Big(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \Big)^{\frac{\varkappa - 1}{\varkappa}} - 1 \Big] + \mathbf{P}_{1} \, \mathbf{V}_{1} \Big(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \Big)^{\frac{\varkappa - 1}{\varkappa}} - \mathbf{P}_{1} \, \mathbf{V}_{1} \\ \mathbf{L}_{a} &= \mathbf{P}_{1} \, \mathbf{V}_{1} \Big[\Big(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \Big)^{\frac{\varkappa - 1}{\varkappa}} - 1 \Big] \Big[\frac{1}{\varkappa - 1} + 1 \Big] \\ \mathbf{L}_{a} &= \mathbf{P}_{1} \, \mathbf{V}_{1} \frac{\varkappa}{\varkappa - 1} \Big[\Big(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \Big)^{\frac{\varkappa - 1}{\varkappa}} - 1 \Big] \mathbf{mkg.} \end{split}$$

Nach Fig. 8 kann diese vom Kompressor aufzuwendende größere Arbeit La ohne Benutzung des Aus-

Fig. 8. Arbeitsbedarf des Kompressors JV d P bei adiabatischer Kompression.

drucks für die Kompressionsarbeit allein direkt abgeleitet werden. $L_a = \underset{P_1}{\overset{P_2}{\underset{P_1}{\int}}} V dP.$

 $V = V_1 \left(\frac{P_1}{P}\right)^{\frac{1}{\varkappa}},$

Da

so ist

$$\begin{split} \mathbf{L}_{a} &= \mathbf{P}_{1}^{\frac{1}{\varkappa}} \mathbf{V}_{1} \int_{\mathbf{P}_{1}}^{\mathbf{P}_{2}} \mathbf{P}^{-\frac{1}{\varkappa}} d\mathbf{P} \\ \mathbf{L}_{a} &= \mathbf{P}_{1}^{\frac{1}{\varkappa}} \mathbf{V}_{1} \frac{\varkappa}{\varkappa - 1} \left[\mathbf{P}_{2}^{\frac{\varkappa - 1}{\varkappa}} - \mathbf{P}_{1}^{\frac{\varkappa - 1}{\varkappa}} \right] \\ \mathbf{L}_{a} &= \mathbf{P}_{1} \mathbf{V}_{1} \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}} \right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right] \mathbf{m} \mathbf{k} \mathbf{g}. \end{split}$$

Der Arbeitsbedarf eines Kompressors ist also bei adiabatischer Kompression z mal so groß als die Kompressionsarbeit allein.

Die in einer Expansionsmaschine bei adiabatischer Zustandsänderung geleistete gesamte Expansionsarbeit ist durch dieselbe Gleichung bestimmt, wenn P_1 und V_1 Druck und Volumen nach der Expansion bezeichnen. Von P2 und V2 ausgehend, bei der Expansion Anfangsdruck und -volumen, wird

$$\mathrm{L_a} = \mathrm{P_2} \, \mathrm{V_2} rac{\varkappa}{\varkappa - 1} \bigg[\, 1 - \bigg(rac{\mathrm{P_1}}{\mathrm{P_2}} \bigg)^{rac{\varkappa - 1}{\varkappa}} \bigg] \mathrm{mkg}.$$

Beide Ausdrücke sind gleichwertig, d. h. bei adiabatischer Expansion eines Gases vom Drucke P2 auf den Druck P1 ist die geleistete Arbeit genau so groß wie

der Arbeitsbedarf zur adiabatischen Kompression der gleichen Gasmenge, des gleichen Gasgewichts, vom Druck P_1 auf den Druck P_2 ; das Endvolumen bei der Expansion ist gleich dem Anfangsvolumen bei der Kompression.

Bei jedem Kolbenkompressor wird nicht das gesamte Druckluftvolumen nach beendeter Kompression durch den Kolben hinausgedrückt, sondern der schädliche Raum V_2' bleibt mit Druckluft gefüllt. Findet ein Wärmeübergang vom Zylinderdeckel und Kolben an die Druckluft und umgekehrt nicht statt, so muß die arbeitleistende Rückexpansion adiabatisch verlaufen, und die zunächst zu viel geleistete Arbeit, die in Fig. 9 durch Schraffur hervorgehoben ist, wird bei adiabatischer Rückexpansion voll zurückgewonnen.

Fig. 9. Das theoretische Kompressordiagramm unter dem Einfluß des schädlichen Raumes.

Bei guten Kompressorkonstruktionen wird der Deckel stets gekühlt werden, so daß zu Beginn der Rückexpansion Wärme an den Deckel übergeht und die Rückexpansionslinie zunächst noch steiler als die Adiabate verläuft. Gegen Schluß der Rückexpansion würde sogar eine Unterkühlung eintreten, wenn nicht alsdann Wärme von dem ungekühlten, wärmeren Kolben an die bereits teilweise expandierte und abgekühlte Restluft übergehen würde. Die Einflüsse beider Wärmeübergänge heben sich meistens auf, zumal die Zeit der Rückexpansion selbst bei größten Maschinen $1/_{50}$ Sekunde nicht überschreitet und ruhende, an der Berührungsfläche nicht wirbelnde Luft den Wärmeübergang erschwert. Es muß also unbedingt mit adiabatischem Verlauf der Rückexpansion gerechnet werden, wenn nicht die Deckel wie bei fehlerhaften Konstruktionen ungekühlt ausgeführt oder sogar durch die ausströmende heiße Druckluft, die dann in den Ventilen in viele dünne Ströme unterteilt wird, gewissermaßen geheizt werden,

Bei gekühlten Deckeln ist es aber hinsichtlich des Arbeitsbedarfes ganz gleichgültig, ob ein Kompressor ohne schädlichen Raum, mit großem oder mit kleinem schädlichen Raum ausgeführt wird. Das stark ausgezogene Kompressordiagramm bei dem schädlichen Raum V_2' ist inhaltsgleich mit dem idealen Diagramm ohne schädlichen Raum, das dünn eingezeichnet ist. Oft ist es sogar mit Rücksicht auf die Druckwechsel im Triebwerk des Kompressors empfehlenswert, die Rückexpansionsarbeit recht lange Zeit auf den Kolben wirken zu lassen, also mit großem schädlichen Raum zu arbeiten.

Die Verhältnisse lagen anders, als man noch Kompressorsteuerungen mit Druckausgleich ausführte, bei denen die im schädlichen Raum verbliebene Druckluft ohne Arbeitsleistung auf die andere Kolbenseite überströmte. Damit nahm wohl die Ansaugemenge des Kompressors zu, die infolge des schädlichen Raumes zuviel geleistete Kompressionsarbeit ging aber nutzlos verloren und man mußte darauf bedacht sein, diesen unvermeidlichen Mehrarbeitsbedarf infolge der prinzipiell falschen Steuerung durch Verkleinerung des schädlichen Raumes auf ein Minimum zu bringen. Heute ist die Erkenntnis aber allgemein geworden, daß der Druckausgleich nur scheinbar einen Vorteil bringt. Er wird nur noch bei Vakuumpumpen angewandt, wenn es darauf ankommt, ein möglichst hohes Vakuum zu erzeugen, sei es auch auf Kosten des Arbeitsaufwandes. Bei Kompressoren ist man jetzt stets darauf bedacht, die zunächst mal zuviel geleistete Arbeit bei der Rückexpansion voll zurückzugewinnen, so daß die Größe des schädlichen Raumes nur noch von geringer Bedeutung ist und auf den Arbeitsbedarf für die Kompression einer bestimmten Luftmenge keinen Einfluß mehr hat.

Aus dem Ausdruck für L_a geht hervor, daß die Temperatur bei der Kompressions- und Expansionsarbeit gar keine Rolle spielt. Bei festgelegtem Anfangs- und Enddruck ist für die Kompression eines bestimmten Gasvolumens eine bestimmte Arbeit erforderlich, ganz gleichgültig, welche Temperatur das Gas hat. Das Festlegen einer bestimmten Anfangstemperatur ist demnach bedeutungslos und überflüssig, da die Temperatur keinen Einfluß auf den Arbeitsbedarf hat und nur in Ausnahmefällen zur Zeit späterer Versuche zufällig vorhanden sein würde.

Der Arbeitsbedarf zur Kompression eines Gasgewichtes kann dagegen ganz verschieden groß sein, je nachdem, welche Temperatur das Gas besitzt, oder genauer gesagt, welches Volumen das Gasgewicht einnimmt. Der Arbeitsbedarf läßt sich erst bestimmen, wenn außer den Drucken die Anfangstemperatur festgelegt wird. Daraus ließe sich zunächst das Gasvolumen und hierauf erst der Arbeitsbedarf für die Kompression bestimmen. Das Ansaugen eines bestimmten Gasgewichtes kann aber nicht gewährleistet werden, da in den weitaus meisten Fällen die Ansaugetemperatur je nach der Jahreszeit und den Tagesstunden in weiten Grenzen verschieden ist und wohl nie beliebig eingestellt werden kann.

Demzufolge rechnet die Praxis auch nur mit Volumeneinheiten, weil damit auch ohne Temperaturangabe der Arbeitsbedarf für bestimmten Anfangs- und Enddruck theoretisch festgelegt ist.

Auch jede Umrechnung des Arbeitsbedarfs auf eine andere Temperatur zum Zwecke des Vergleiches ist falsch, da 1 cbm Saugmenge bei 0° die gleiche Arbeit erfordert wie bei 15 oder 30°. Zu Vergleichszwecken darf nur die Kompressions ar beit für die Volumeneinheit herangezogen werden. Das gilt sowohl für Kolbenals für Turbokompressoren. Bei letzteren ist jedoch die mit jedem Rad zu übertragende Arbeit abhängig von der Schleuderwirkung des Gases, die dem spezifischen Raumgewicht direkt proportional ist. Hier hat die Temperatur des Gases also einen Einfluß auf die Höhe des zu erreichenden Enddruckes, auf den Arbeitsbedarf für 1 cbm Saugleistung jedoch ebenfalls nicht.

(Fortsetzung und teilweise Einschränkung dieser Betrachtungen bei mehrstufiger Kompression mit Zwischenkühlung.)

Ersetzt man P_1 und P_2 (kg/qm) in der Gleichung für L_a durch die in der Praxis üblichen Werte p_1 und p_2 (kg/qcm) unter Berücksichtigung der Größeneinheiten, so erhält man als Arbeitsbedarf für die Kompression

$$\mathbf{L}_{a} = 10000 \mathbf{p}_{1} \mathbf{V}_{1} \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{\mathbf{p}_{2}}{\mathbf{p}_{1}} \right)^{\frac{\varkappa}{\varkappa}} - 1 \right] \mathbf{mkg}$$

und als Arbeitsleistung bei der Expansion

und

$$\frac{\varkappa - 1}{\varkappa} = \frac{1}{3,5} = 0,286$$

und somit der Arbeitsbedarf zur adiabatischen Kompression von 1 cbm angesaugte Luft

$$L_a = 35\,000 p_1 \left[\left(\frac{p_2}{p_1}
ight)^{\!\!0,286} - 1
ight] mkg/cbm$$

und die Arbeitsleistung bei adiabatischer Expansion von 1 cbm Druckluft

$${
m L}_{
m a} = ~ 35\,000~{
m p}_2 \left[1 - \left({{
m p}_1 \over {
m p}_2}
ight)^{0,286}
ight] {
m mkg/cbm}.$$

Für Tafel 6 ist der Arbeitsbedarf bei adiabatischer Kompression von 1 cbm Luft für verschiedene Anfangsdrucke und verschiedene Enddrucke berechnet. Anfangsdrucke sind als Abszissen, die Kompressionsarbeiten gleicher Enddrucke als Ordinaten aufgetragen.

Beispiel: Kompression von 0,9 at abs. Anfangsdruck auf 5 at abs. Enddruck.

Tafel 6: $L_a = 19.900 \text{mkg/cbm}$.

Es geht klar aus der Tafel hervor, daß ein Drosseln in der Saugleitung zum Zwecke der Arbeitsersparnis bei vermindertem Luftbedarf nur Zweck hat, wenn bei etwa 1 at abs. Anfangsdruck der Enddruck höher als ca. 3,5 at abs. ist; bei ca. 3 at abs. Enddruck bleibt der Arbeitsbedarf bei geringem Drosseln trotz verminderter Druckluftlieferung unverändert, während bei Enddrucken unter 3 at abs. durch das Drosseln der Arbeitsbedarf bei dem abgedrosselten, geringeren Anfangsdruck trotz Abnahme der Druckluftmenge, des gelieferten Luftgewichtes, sogar zunimmt. Es ist bei niedrigen Enddrucken also wirtschaftlicher, die zuviel geförderte Druckluft aus der Druckleitung entweichen zu lassen, als durch Drosseln in der Saugleitung die Liefermenge zu vermindern.

In den folgenden Tafeln 7-12 sind für die meist vorkommenden Anfangsdrucke von 0,8-1,2 at abs. die Tafeln in größerem Maßstab gezeichnet.

Beispiele:

 $p_1 = 0.982$ at abs., $p_2 = 1.345$ at abs.; Tafel 7: $L_a = 3240$ mkg/cbm $p_1 = 1,046$ at abs., $p_2 = 1,982$ at abs.; Tafel 8: $L_a = 7 330 \text{ mkg/cbm}$ $\mathbf{p_1}=$ 1,002 at abs., $\mathbf{p_2}=$ 3,25 at abs.; Tafel 9: $\mathbf{L_a}=$ 13 580 mkg/cbm

 $p_1 = 0.844$ at abs., $p_2 = 4.03$ at abs.; Tafel 10: $L_a = 16550$ mkg/cbm

 $\rm p_1$ = 0,998 at abs., $\rm p_2$ = 5,97 at abs.; Tafel 11: $\rm L_a$ = 23 330 mkg/cbm $p_1 = 1,105$ at abs., $p_2 = 7,95$ at abs.; Tafel 12: $L_a = 29\ 280\ mkg/cbm$

Adiabatischer Leistungsbedarf des Kompressors.

Die Tafeln 6-12 geben den theoretischen Arbeitsbedarf in mkg zur adiabatischen Kompression von 1 cbm angesaugte Luft. Der theoretische Leistungsbedarf eines Kompressors N_a in PS_a ergibt sich nach Division durch 75 und die Sekundenzahl, in der die Arbeit geleistet werden soll.

Beispiele : Kompression von 15 cbm in der Minute von $p_1 = 1,02$ at abs. Anfangsdruck auf $p_2 = 4,5$ at abs. Enddruck.

Tafel 10:
$$L_a = 18\,860 \text{ mkg/cbm}$$
,

$$N_a = \frac{13 \cdot 18800}{60 \cdot 75} = 62.9 \text{ PS}_a.$$

8000 cbm in der Stunde von $p_1 = 0.95$ at abs. auf $p_2 = 2,2$ at abs.

Cafel 8:
$$L_a = 9020 \text{ mkg/cbm},$$

N 8000 \cdot 9020 972 5

$$a = -\frac{1}{3600 \cdot 75} = 272.5 \text{ PS}_{0}$$

DO

Adiabatische Wirkungsgrade.

α) Einstufige Kolbenkompressoren.

Der schraffierte Mehrarbeitsbedarf der Fig. 10 im Vergleich zum theoretischen entsteht durch Widerstände in den Luftkanälen und in den Steuerungsorganen beim

Fig. 10. Das wirkliche Kompressordiagramm (Indikatordiagramm).

Ansaugen und Fortdrücken; infolgedessen weist das Indikatordiagramm eine größere Fläche auf, als der theoretischen im PV-Diagramm entspricht. Das Verhältnis der letzteren Fläche zum Indikatordiagramm ist der Wirkungsgrad des Kompressionsvorganges na kompr., bezogen auf die Adiabate.

Die Kompression selbst bis zur gerade beendeten Zustandsänderung geht adiabatisch, also reibungslos und verlustfrei vor sich. Es ist aber auch kein flacherer Verlauf der Kompressionslinie als bei der Adiabate infolge der Kühlung festzustellen. Bei der heute üblichen Kolbengeschwindigkeit ist die Zeit der eigentlichen Kompression so kurz, daß infolge Wärmeableitung an das Kühlwasser durch die Mantel- und Deckelkühlung der Verlauf der Kompressionslinie auch bei den kleinsten Ausführungen nennenswert nicht beeinflußt wird. Wenn eine Mindererwärmung als bei adiabatischer Kompression festgestellt wird, so hat der Wärmeübergang erst nach Beendigung der Kompression, beim Hinausschieben der schon gepreßten Luft stattgefunden. Beim Strömen an den gekühlten Flächen entlang wird der Wärmeübergang infolge der Wirbelbildung an der Berührungsfläche sofort im Vergleich zu dem bei stagnierender Luft beträchtlich verbessert. Auf den Arbeitsbedarf hat diese Kühlung aber keinen Einfluß mehr. Die Deckelkühlung dient hauptsächlich dazu, die Erwärmung der Luft beim Ansaugen zu verhindern und dadurch den Liefergrad des Kompressors zu heben; durch die Mantelkühlung

werden die Reibungsflächen der Kolben möglichst kühl gehalten, um die Verharzung des Öles zu verhindern, die trotzdem unter dem Einfluß der Druckluft nur bei Verwendung besten Spezial - Kompressoröles zu vermeiden ist.

Außer den erwähnten Widerständen im Diagramm ist mechanische Reibung im Triebwerk des Kompressors und in den Stopfbüchsen sowie die Kolbenreibung zu überwinden. Die Summe dieser Reibungsverluste umschließt der mechanische Wirkungsgrad $\eta_{\text{mech.}}$ des Kompressors, der also das Verhältnis der indizierten Arbeit zur effektiven Arbeit ist.

Beispiel: Werden bei einem Kompressor, der minutlich 20,1 cbm Luft von 1,03 auf 4,1 at abs. preßt, der also nach Tafel 10 einen theoretischen Leistungsbedarf von

$$N_a = \frac{20,1 \cdot 17\,440}{60 \cdot 75} = 77,9 \text{ PS}_a$$

hat, 84,2 PS indiziert, so ist der Wirkungsgrad des Kompressionsvorganges

$$\eta_{
m a\,kompr.} = rac{77,9}{84,2} = 0,925.$$

Sind zum Antrieb des Kompressors an der Kupplung oder an der Welle 97,5 $\rm PS_e$ erforderlich, so ist der mechanische Wirkungsgrad

$$\eta_{\text{mech.}} = \frac{84,2}{97,5} = 0,864$$

und der Gesamtwirkungsgrad des Kompressors, bezogen auf den Leistungsbedart bei adiabatischer Kompression, kurz ausgedrückt, bezogen auf die Adiabate,

$$\eta_{\mathrm{a \ ges.}} = \frac{77.9}{97.5} = 0.799$$

Der Gesamtwirkungsgrad des Kompressors besteht also aus zwei Faktoren:

 $\eta_{a \text{ ges.}} = \eta_{a \text{ kompr.}} \cdot \eta_{\text{mech.}} = 0.925 \cdot 0.864 = 0.799.$

Um 100 Teile adiabatische Kompressionsarbeit zu leisten, sind demnach $\frac{100}{0,799} = 125,2$ Teile effektive Arbeit erforderlich. Von den 25,2 v. H. Mehrarbeit werden $\frac{100}{0,925} - 100 = 8,1$ v. H. infolge Vergrößerung des Indikatordiagrammes gegenüber dem adiabatischen verbraucht (aber nicht während der Kompression selbst). Der Rest von 25,2 - 8,1 = 17,1 v. H. geht durch mechanische Reibung der Kolben und im Triebwerk verloren.

$$\eta_{a \text{ kompr.}} = rac{100}{108,1} = 0,925$$

 $\eta_{mech.} = rac{108,1}{125,2} = 0,864.$

Für sich allein ist keiner der beiden Faktoren des Gesamtwirkungsgrades ein Maßstab für die Güte des Kompressors; erst das Produkt beider legt den wirklichen Arbeitsbedarf fest. Aus diesem Grunde ist die Abgabe einer Garantie für den mechanischen Wirkungsgrad allein vollkommen überflüssig, wenn der Leistungsbedarf für eine bestimmte Saugleistung bei festgelegtem Anfangs- und Enddruck in PS garantiert wird. (Anfangsund Endtemperatur haben keinen Einfluß.) Der Leistungsbedarf schließt sowohl die Widerstände im Diagramm als auch die Verluste durch mechanische Reibung ein, während die häufig gewünschte Garantie des mechanischen Wirkungsgrades die Güte der Arbeitsweise eines Kompressors durchaus nicht kennzeichnet.

Es hätte schon mehr Berechtigung, den Gesamtwirkungsgrad des Kompressors zu gewährleisten, wenn genau gesagt würde, worauf er bezogen werden soll. Er ist aber ohne weiteres gegeben durch die einfachere und eindeutige Angabe des Leistungsbedarfs, so daß seine Festlegung als Garantie nur eine Wiederholung von bereits Gesagtem ist. Seine Bestimmung und Zerlegung in die beiden Faktoren hat wohl einen wissenschaftlichen Wert, dem Käufer des Kompressors und dem Betriebsinhaber können die beiden Faktoren aber gleichgültig sein, wenn der garantierte Leistungsbedarf in PS eingehalten wird.

β) Ungekühlte Turbogebläse.

Bei Turbogebläsen ist die Steigerung der Luftgeschwindigkeit unumgänglich. Damit ist aber auch erhöhte innere Reibung in Kauf zu nehmen, deren Wärmewert Q_r an das Gas übergeht, wenn von außen Wärme weder zu- noch abgeführt wird, wenn also $Q_w = 0$ ist. Der Prozeß ist infolgedessen nicht mehr umkehrbar. Die aufzuwendende Arbeit ist

$$L = \int V \, dP + \frac{1}{A} Q_r.$$

Die Mehrarbeit $\frac{1}{A}$ Q_r entsteht hauptsächlich durch

Reibung der Luft an den Wandungen der Luftwege in den Laufrädern und den Leitapparaten und durch Luftwirbelbildungen; sodann durch die zu wiederholende Verdichtung der schon gepreßten und erwärmten Luftmengen, die ohne Arbeitsleistung durch die Abdichtung zwischen je zwei Stufen aus dem Raum höheren Druckes in den niederen Druckes rückströmen. Infolge dieser inneren Reibungsarbeit geht an das Gas die Mehrwärme Q_r über und verursacht eine mehr als adiabatische Erwärmung, die vom Beginn bis zum Schluß der Kompression eine relative Vergrößerung des jeweiligen Volumens V zur Folge hat. Aus diesem Grunde muß sogar schon die Kompressionsarbeit $\int V dP$, die nicht mit der Gesamtarbeit $L = \int V dP + \frac{1}{A} Q_r$ zu verwechseln ist, um einen entsprechenden Betrag größer sein als die bei adiabati-

scher Zustandsänderung. Die Gesamtarbeit setzt sich demnach zusammen aus der adiabatischen Kompressionsarbeit, einer Mehrkompressionsarbeit und der Reibungsarbeit, deren Ursache größtenteils in der erforderlichen hohen Luftgeschwindigkeit liegt.

Man kann durch Messungen von Druck und Temperatur während der Kompression das jeweilige Volumen rechnerisch bestimmen und damit das PV-Diagramm zeichnerisch festlegen. Die wirkliche Kompressionslinie liegt über der Adiabate (Fig. 11); das zeigt schon,

Fig. 11. Zustandsänderung im ungekühlten Turbogebläse.

daß außer der Arbeit zur adiabatischen Kompression

die schraffierte Mehrkompressionsarbeit jenseits der Adiabate infolge relativer Volumenvergrößerung während der Kompression geleistet werden mußte. Die Mehrkompressionsarbeit macht aber nur einen verhältnismäßig geringen Betrag aus. Die bedeutend größere Reibungsarbeit, deren gleichwertige Wärme Q_r die relative Volumenzunahme bis auf V_2' am Ende der Kompression verursacht hat, erscheint im PV-Diagramm aber nicht, sondern nur ihr Einfluß auf das Volumen. (Die zeichnerische Darstellung dieser Mehrarbeit folgt im Abschnitt: "Wärmewert der Kompressionsarbeit".)

Außerdem geht noch ein allerdings ganz geringer-Betrag an Arbeit als Lagerreibung verloren.

Beispiel: Werden an die Kupplung eines Turbogebläses, das stündlich 15 200 cbm von 1,01 auf 2,15 at abs. preßt, das also theoretisch nach Tafel 8 einen Leistungsbedarf von

$$N_a = \frac{15\,200\cdot 8520}{3600\cdot 75} = 479,5~PS_a$$

hat, 652 PS_e abgegeben, so ist der Gesamtwirkungsgrad des Gebläses

$$\eta_{\mathrm{a \ ges.}} = \frac{479,5}{652} = 0,736$$

bezogen auf den Leistungsbedarf bei adiabatischer Kompression, bezogen auf die Adiabate.

Wenn man durch Messung feststellt, daß aus den Gebläselagern mit stündlich 8201 Kühlwasser, das sich um 7,6° C erwärmt, 820 · 7,6 = ~ 6230 WE in der Stunde abgeführt werden, so ist der Leistungswert der Lagerreibung $\frac{1}{\frac{1}{427} \cdot 3600 \cdot 75}$ $=\frac{6230}{632}=9,9$ PS und der

Wirkungsgrad des Gebläses läßt sich zerlegen in den Wirkungsgrad des Kompressionsvorganges

$$\eta_{\mathrm{a\,kompr.}} = rac{479,5}{652 - 9,9} = rac{479,5}{642,1} = 0,747$$

und in den mechanischen Wirkungsgrad

na ge

$$\eta_{
m mech.} = rac{642,1}{652} = 0,985.$$

Der Gesamtwirkungsgrad des Gebläses läßt sich also wieder unterteilen in

$$\eta_{a \text{ kompr.}} \cdot \eta_{\text{mech.}} = 0,747 \cdot 0,985 = 0,736.$$

Um 100 Teile adiabatische Kompressionsarbeit zu leisten, sind demnach $\frac{100}{0,736} = 135,8$ Teile effektive Arbeit auf-

zuwenden. Von den 35,8 v. H. Mehrarbeit werden im

vorliegenden Beispiel ~ 4 v. H. als Mehrkompressionsarbeit infolge Volumenvergrößerung im Vergleich zur adiabatischen Zustandsänderung während der Kompression verbraucht (der genaue Wert läßt sich nur durch Planimetrieren der Fläche außerhalb der Adiabate in dem durch Druck- und Temperaturmessung festgelegten PV-Diagramm bestimmen);

$$\sim \left(\frac{100}{0,747} - 100\right) - 4 = \sim 33,8 - 4 = \sim 29,8 \text{ v. H.}$$

entsprechen dem Werte $\frac{1}{A}$ Q_r und gehen infolge Reibung

der Luft in sich selbst, an den Schaufeln und in den Kanälen und infolge Rückströmens durch die Dichtung zwischen je 2 Stufen verloren und verursachen die erwähnte Volumenzunahme während der Kompression; der Rest, $\sim 35.8 - 4 - 29.8 = \sim 2 \text{ v. H.}$, ist zur Überwindung der Lagerreibung erforderlich.

$$\eta_{a \text{ kompr.}} = rac{100}{133,8} = 0,747$$

 $\eta_{ ext{mech.}} = rac{133,8}{135,8} = 0,985.$

Auch beim Turbogebläse ist keiner der beiden Faktoren allein ein Maßstab für die Güte der Arbeitsweise; erst das Produkt beider legt den Leistungsbedarf fest. Die Praxis läßt sich bei dieser neueren Maschinenart für eine bestimmte Saugleistung bei gegebenem Anfangsund Enddruck auch nur den Leistungsbedarf in PS garantieren. Die Abgabe der nicht alles umfassenden Garantie des mechanischen Wirkungsgrades, wie sie bei Kolbenkompressoren zuweilen verlangt wird, ist klarer als überflüssig erkannt worden und wird nie gefordert. Es kann wohl ein gewisses wissenschaftliches Interesse haben, das Verhältnis: Arbeitsbedarf nach dem gezeichneten PV-Diagramm der tatsächlichen Zustandsänderung dividiert durch die aufgewandte Kompressions-

arbeit, im vorliegenden Fall $\frac{104}{133,8} = 0,777$, als Wirkungs-

grad des Kompressionsvorganges, bezogen auf das PV-Diagramm der Zustandsänderung, zu ermitteln. Als Vergleichsmaßstab ist dieser Wert aber durchaus ungeeignet, da er keinen theoretischen Wert als Grundlage hat. Für den Kolbenkompressor wäre der sinngemäße Wirkungsgrad 1. (Eine andere Art, den Wirkungsgrad des Kompressionsvorganges zu bestimmen, ist im späteren Abschnitt, "Wärmewert der Kompressionsarbeit" angegeben.)

Vergleichsrechnung.

Eine Umrechnung auf nicht wesentlich andere Verhältnisse zum Zwecke des Vergleichs darf nur unter Zugrundelegung gleicher Wirkungsgrade geschehen.

Beispiele: Der vorstehend angeführte Kolbenkompressor würde zur Kompression von minutlich 20 cbm von 1 auf 4 at abs.

$$N_e = 97.5 \frac{20}{20.1} \cdot \frac{17\,370}{17\,440} = 96.6 \text{ PS}_e$$

erfordern. Dann wäre wieder

$$g_{a \text{ ges.}} = \frac{20 \cdot 17\,370}{60 \cdot 75 \cdot 96.6} = 0,799,$$

bezogen auf die Adiabate, wie durch Messung ermittelt wurde.

Das erwähnte Turbogebläse würde zur Kompression von stündlich 15 500 cbm von 1,033 auf 1,1 at Überdruck = 2,133 at abs.

$$N_e = 652 \frac{15\,500}{15\,200} \cdot \frac{8320}{8540} = 648 \text{ PS}_e$$

verbrauchen.

Dann wäre
$$\eta_{a \text{ ges.}} = \frac{15\ 500 \cdot 8320}{3600 \cdot 75 \cdot 648} = 0,736$$
, be-

zogen auf die Adiabate, wie bei der Messung festgestellt wurde.

Volumetrischer Wirkungsgrad.

Es war im vorigen Abschnitt klargelegt, daß mit dem schädlichen Raum eines Kolbenkompressors infolge der arbeitleistenden Rückexpansion der zuviel komprimierten Luft ein Arbeitsverlust nicht verbunden ist. Wenn der schädliche Raum also auf den Arbeitsbedarf eines Kompressors keinen Einfluß hat, so hat er doch Interesse für den Konstrukteur, der ihn beim Entwurf eines Kompressors voraus berechnen und in Rechnung stellen muß.

Infolge des schädlichen Raumes beginnt das Ansaugen beim Saughub erst, nachdem die im schädlichen Raum verbliebene Druckluftmenge auf den Ansaugedruck expandiert ist. Man nennt das Verhältnis des nutzbaren Saughubes zum ganzen Hub den volumetrischen Wirkungsgrad $\eta_{\rm vol.}$ des Kompressors; in diesem Verhältnis muß der Kompressor reichlicher bemessen werden, als wenn er ohne schädlichen Raum ausgeführt werden könnte.

Wird mit Saugleistung eines Kompressors die tatsächlich angesaugte Luftmenge bezeichnet, so ist die Gewährleistung eines bestimmten volumetrischen Wirkungsgrades jedoch vollkommen überflüssig. Der volumetrische Wirkungsgrad wäre von Bedeutung, wenn als Größenbezeichnung das vom ansaugenden Kolben durchlaufene Volumen, das durch die Abmessungen des Kompressors festgelegt ist, genannt würde, wie es zur Zeit der Anfänge im Kompressorenbau wohl üblich war. Heute wird dagegen, wenigstens von europäischen Fabriken, als Maßstab für einen Kompressor stets seine Saugleistung genannt, bei welcher der volumetrische Wirkungsgrad also schon berücksichtigt ist, so daß seine Angabe oder gar eine diesbezügliche Garantie durchaus zwecklos ist.

Volumetrischer Wirkungsgrad bei adiabatischer Rückexpansion.

$$\eta_{\text{vol.}} = 100 - m \left[\left(\frac{p_2}{p_1} \right)^{\overline{\chi}} - 1 \right] \text{v. H.}$$

Nach Fig. 12 ist

$$\eta_{\text{vol.}} = \frac{s_1}{s},$$

vorausgesetzt, daß am Schluß des Saughubes, also zu Beginn der Kompression, genau der Ansaugedruck p_1 im Zylinder herrscht. Hat sich infolge von Drosselungen in der Saugsteuerung ein geringerer oder infolge von Schwingungen in der Saugleitung ein geringerer oder höherer Druck als p_1 eingestellt, so muß der Unteroder Überdruck noch als Verlust oder Gewinn in Rechnung gestellt werden.

Nach Fig. 12 ist

$$\eta_{\mathrm{vol.}} = rac{\mathrm{s}_1}{\mathrm{s}} = rac{\mathrm{s} + \mathrm{m} - \mathrm{m}_1}{\mathrm{s}}$$

Bei der Rückexpansion, die bei guten Kompressorkonstruktionen mit ausgiebig gekühlten Deckeln adiabatisch verläuft (siehe Text zur Fig. 9, S. 11), ist

 $p_2 m^z = p_1 \cdot m_1^z$, also

$$\mathbf{m_1} = \mathbf{m} \left(\frac{\mathbf{p_2}}{\mathbf{p_1}} \right)^{\frac{1}{z}}$$

$$\mathbf{x} = \frac{\mathbf{s} + \mathbf{m} - \mathbf{m} \left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^2}{\mathbf{s} + \mathbf{m} - \mathbf{m} \left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^2}$$

S

 $\eta_{\rm vol.}$ =

$$\eta_{\text{vol.}} = 1 + \frac{m}{s} \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{1}{x}} \right] = 1 - \frac{m}{s} \left[\left(\frac{p_2}{p_1}\right)^{\frac{1}{x}} - 1 \right]$$

Wird m in v. H. des Kolbenweges s=100 ausgedrückt, so ist

$$\eta_{\mathrm{vol.}} = 100 - \mathrm{m} \left[\left(\frac{\mathrm{p}_2}{\mathrm{p}_1} \right)^{\overline{\mathrm{x}}} - 1 \right] \mathrm{v. \ H.}$$

Auf Tafel 13 ist der volumetrische Wirkungsgrad für die in der Praxis vorkommenden Druckverhältnisse und schädlichen Räume graphisch berechnet; die schädlichen Räume sind als Abszissen, die volumetrischen Wirkungsgrade bei gleichen Druckverhältnissen als Ordinaten aufgetragen.

Beispiel: Druckverhältnis $\frac{p_2}{p_1} = 3,1$, schädlicher Raum m = 4,3 v. H.

Tafel 13: $\eta_{\rm vol.} = 94,7$ v. H.

Mittlerer indizierter Druck bei Kolbenkompressoren.

Der auf den Tafeln 6—12 ablesbare Arbeitsbedarf in mkg/cbm ist das 10 000fache des theoretischen mittleren Kolbendruckes p_i in kg/qcm, eine Maschine ohne schädlichen Raume vorausgesetzt. Infolge des schädlichen Raumes saugt der Kompressor nicht das Hubvolumen, sondern nur die kleinere Menge: Hubvolumen × volumetrischen Wirkungsgrad an. Da ein Arbeitsverlust damit aber nicht verknüpft ist, so ist dementsprechend der auf den ganzen Hub bezogene mittlere Kolbendruck p_{i theor}, kleiner.

$$p_{i \, theor.} = rac{L_a}{10\,000} \cdot \eta_{vol.}$$

Beispiel: Kompression von 1,03 auf 3,8 at abs., $\eta_{\text{vol.}} = 0,91.$

Tafel 10:
$$L_a = 16\,290 \text{ mkg/qcm}$$
.

$$p_{i \text{ theor.}} = \frac{16290}{10000} \cdot 0.91 = 1.48 \text{ kg/cbm.}$$

Ist der Wirkungsgrad des Kompressionsvorganges

$$\eta_{a \text{ kompr.}} = 0,94,$$

so ist der tatsächliche mittlere indizierte Druck

$$p_i = \frac{1,48}{0,94} = 1,575 \text{ kg/qcm}.$$

Liefergrad eines Kompressors.

Vom volumetrischen Wirkungsgrad scharf zu unterscheiden ist der Liefergrad eines Kompressors. Während der volumetrische Wirkungsgrad das Verhältnis der angesaugten Luft zum Hubvolumen ausdrückt und keinen Energieverlust bedeutet, wird durch den Liefergrad das Verhältnis der fortgedrückten, gelieferten Luftmenge, auf Ansaugedruck und -temperatur umgerechnet, zum angesaugten Volumen bezeichnet; er ist alsó das Verhältnis des gelieferten Luftgewichts zum angesaugten Luftgewicht, das aus der Volumenmessung beim Ansaugen berechnet ist.

Der Liefergrad von Kolben- und Turbokompressoren

ist zunächst abhängig von der Dichtheit aller Komdressorteile, die ein Rückströmen der schon komprimierten Luft ins Freie oder in die Saugräume vor der Meßstelle verhindern sollen. Sonstige Undichtheitsverluste erhöhen nur den Arbeitsbedarf, verschlechtern den Liefergrad aber nicht. Ein weiterer Verlust, der den Liefergrad beeinträchtigt, entsteht bei Kolbenkompressoren durch die trotz sorgfältiger Kühlung der Ansaugekanäle und der Zylinder nicht ganz zu vermeidende Erwärmung der Luft beim Ansaugen. In der Nähe von 300° C absolut, also bei den normalen Ansaugetemperaturen, bedeuten je 3º Erwärmung während des Ansaugens bis zum Beginn der Kompression etwa 1 v. H. weniger angesaugtes, also auch weniger gefördertes Luftgewicht und daher bei gleichem Arbeitsbedarf auch etwa 1 v. H. Verlust an Druckluft.

Dieser Verlust wird umso geringer, je kleiner und je weniger heiß die ungekühlten Flächen sind und je besser die Ansaugewege und die Deckel gekühlt werden, an denen die Luft mit der maximal auftretenden Geschwindigkeit vorbei gesaugt wird. Die Luftgeschwindigkeit beeinflußt den Wärmeübergang, da mit ihr die Wirbelbildung an der Berührungsfläche zunimmt, die vor allem den Wärmeaustausch zur Folge hat. Ferner sind schädliche tote Ecken, in denen die heiße Druckluft stagniert und aus denen die Wärme mangels einer Strömung nur in geringem Maße abgeleitet werden kann, nach Möglichkeit zu vermeiden. Die Mantelkühlung, an der die Luft nur mit der Kolbengeschwindigkeit vorbeistreicht, hat infolge dieser relativ sehr geringen Geschwindigkeit einen viel geringern Einfluß auf diese schädliche, die Druckluftmenge verringernde Erwärmung bis zum Schluß des Ansaugens. Schließlich ist die Erwärmung noch abhängig von der Luftführung beim Ansaugen; ein dicker Luftstrom wird sich weniger erwärmen als eine ganze Anzahl in den Steuerorganen in viele dünne Schichten unterteilte und durcheinander gewirbelte Luftströme.

Würde man mit Liefergrad eines Kompressors das Verhältnis der Druckluftlieferung, auf den Ansaugezustand umgerechnet, zum Hubvolumen bezeichnen, so würfe man dadurch zwei ganz verschiedenartige Dinge zusammen, den eigentlichen Liefergrad, der einen Verlust ausdrückt und für den man deshalb ein Maximum erstreben sollte, und den volumetrischen Wirkungsgrad, der keinen Verlust bedeutet und der dem Kompressorenbesitzer daher ganz gleichgültig ist. Würde man fälschlicherweise den vorerwähnten Quotienten Liefergrad nennen, ohne ihn in seine beiden Faktoren zu zerlegen, so gewänne man durchaus kein Bild von der Güte des Kompressors. Ein Kompressor mit 90 v. H. volumetrischem Wirkungsgrad und 98 v. H. Liefergrad ist bei gleichem Leistungsbedarf bei weitem besser als ein anderer mit 98 v. H. volumetrischem Wirkungsgrad und 90 v. H. Liefergrad, obgleich das Produkt beider Werte an beiden Maschinen gleich ist. Bei letzterem wäre der Arbeitsbedarf für die gleiche Luftlieferung ~ 8 v. H. höher als bei ersterem. Kennzeichnend für die Güte eines Kompressors ist nur der Liefergrad, der das Verhältnis der gelieferten, auf Ansaugezustand umgerechneten Luftmenge zur angesaugten Luftmenge (Hubvolumen \times volumetrischen Wirkungsgrad) bedeutet.

Adiabatische Temperaturänderung.

Da bei adiabatischer Kompression eines Gases die geleistete Arbeit in Form von Wärme an das Gas übergeht, so muß die Gastemperatur steigen. Umgekehrt wird sie bei arbeitleistender Expansion, bei der dem Gas der Wärmewert der geleisteten Arbeit entzogen wird, abnehmen. Wenn wieder der Index 1 den Zustand bei dem geringen Druck, 2 den beim höheren Druck bezeichnet, so ist nach der Zustandsgleichung

$$\frac{\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}}{\frac{T_1}{T_2} = \frac{P_1 V_1}{P_2 V_2}}$$

Da bei adiabatischer Zustandsänderung

$$\mathbf{P_1V_1}^{\varkappa}=\mathbf{P_2V_2}^{\varkappa}$$
 so ist

$$\frac{\mathbf{T}_1}{\mathbf{T}_2} = \left(\frac{\mathbf{V}_1}{\mathbf{V}_2}\right)^{1-\varkappa} = \left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right)^{\varkappa-1}$$
$$\mathbf{T}_1 \mathbf{V}_1^{\varkappa-1} = \mathbf{T}_2 \mathbf{V}_2^{\varkappa-1}$$

$$TV^* = unveränderlich.$$

Diese Beziehungen zwischen T und V lassen sich praktisch wenig verwerten, da die genaue Bestimmung des Volumens meist schwierig ist. Wertvoller sind dagegen die Gleichungen, welche die Abhängigkeit der Temperaturen von den Drucken bei adiabatischer Zustandsänderung festlegen, da diese sich leichter genauest ermitteln lassen. Es ist

$$\frac{V_1}{V_2} = \left(\frac{\mathbf{P}_1}{\mathbf{P}_2}\right)^{-\frac{1}{2}}$$

und demnach

$$\frac{\frac{T_1}{T_2} = \left(\frac{P_1}{P_2}\right)^{\frac{x-1}{x}}}{\frac{T_1}{P_1}^{\frac{x-1}{x}}} = \frac{T_2}{\frac{P_2}{P_2}^{\frac{x-1}{x}}}$$
$$\frac{\frac{T}{P_1}^{\frac{x-1}{x}}}{\frac{T}{P_2}^{\frac{x-1}{x}}} = \text{unveränderlich}$$

Die Endtemperatur T_2 bei adiabatischer Kompression ist

$$\mathbf{T_2} = \mathbf{T_1} \left(\frac{\mathbf{P_2}}{\mathbf{P_1}}\right)^{\frac{\varkappa - 1}{\varkappa}} = \mathbf{T_1} \left(\frac{\mathbf{p_2}}{\mathbf{p_1}}\right)^{\frac{\varkappa - 1}{\varkappa}}$$

die Endtemperatur T₁ bei adiabatischer Expansion

$$T_1 = T_2 \left(\frac{p_1}{p_2}\right)^{\frac{\chi - 1}{\chi}}$$

Kompressions- wie Expansionstemperatur sind also außer von der Temperatur zu Beginn der adiabatischen Zustandsänderung nur noch vom Druckverhältnis abhängig, die absolute Höhe der Drucke hat keinen Einfluß.

Für Luft mit $\varkappa = 1,40$ ist

$$egin{aligned} {
m T}_2 \, = {
m T}_1 \left(rac{{
m p}_2}{{
m p}_1}
ight)^{\!\! 0,286} \ {
m T}_1 \, = {
m T}_2 \left(rac{{
m p}_1}{{
m p}_2}
ight)^{\!\! 0,286} . \end{aligned}$$

Das Entropiediagramm für Luft.

Eine bequeme Darstellung der adiabatischen Temperaturänderung ermöglicht das Wärmediagramm, in dem die absoluten Temperaturen T als Ordinaten und die Quotienten aus der Änderung des Wärmeinhaltes $\int dQ$ und der absoluten Temperatur, die Entropien $\int dS = \frac{\int dQ}{T}$, als Abszissen aufgetragen sind (Entropiediagramm, TS - Diagramm). Der absolute Wert der

Entropie ist belanglos, von Bedeutung für eine Zustandsänderung ist nur die Zu- oder Abnahme der Entropie. Für 1 kg Luft ist

$$\mathrm{ds} = \frac{\mathrm{di} - \mathrm{A} \, \mathrm{v} \, \mathrm{d} \mathrm{P}}{\mathrm{T}} = \, \mathrm{c}_\mathrm{p} \, \frac{\mathrm{d} \mathrm{T}}{\mathrm{T}} - \mathrm{A} \, \frac{\mathrm{v}}{\mathrm{T}} \, \mathrm{d} \mathrm{P} \, .$$

Nach der Zustandsgleichung ist

$$\begin{split} \frac{\mathbf{v}}{\mathbf{T}} &= \frac{\mathbf{R}}{\mathbf{P}} \\ \mathrm{ds} &= \mathbf{c}_{\mathrm{p}} \frac{\mathrm{d}\mathbf{T}}{\mathbf{T}} - \mathbf{A} \, \mathbf{R} \frac{\mathrm{d}\mathbf{P}}{\mathbf{P}} \, . \\ \mathrm{S} &= \mathbf{c}_{\mathrm{p}} \ln \mathbf{T} - \mathbf{A} \, \mathbf{R} \ln \mathbf{P} + \mathbf{C} . \end{split}$$

Ferner ist

$$\mathrm{ds} = rac{\mathrm{du} + \mathrm{A} \, \mathrm{P} \, \mathrm{dv}}{\mathrm{T}} = \mathrm{c_v} rac{\mathrm{dT}}{\mathrm{T}} + \mathrm{A} rac{\mathrm{P}}{\mathrm{T}} \, \mathrm{dv}$$
 $rac{\mathrm{P}}{\mathrm{T}} = rac{\mathrm{R}}{\mathrm{v}}$

$$S = c_v \ln T + A R \ln v + C$$

Setzt man $A R = c_p - c_v$, so wird schließlich

$$\begin{split} \mathbf{S} &= \mathbf{c}_{\mathbf{v}} \ln \mathbf{T} + \mathbf{c}_{\mathbf{p}} \ln \mathbf{v} - \mathbf{c}_{\mathbf{v}} \ln \mathbf{v} + \mathbf{C} \\ \mathbf{S} &= \mathbf{c}_{\mathbf{p}} \ln \mathbf{v} + \mathbf{c}_{\mathbf{v}} \ln \mathbf{P} + \mathbf{C}. \end{split}$$

Die spezifischen Wärmen c_v und c_p nehmen mit steigender Temperatur zu, höhere Drucke scheinen weniger Einfluß auf beide Werte zu haben. Nach vorgenommenen Untersuchungen kann man als Mittelwerte setzen

$$\begin{array}{l} c_v = 0.166 + 0.000 \; 04 \; T \\ c_p = 0.226 + 0.000 \; 04 \; T \end{array}$$

(Für 27° C, d.i. 300° C absolut ist damit $c_v = 0,170$ und $c_p = 0,238$).

Unter Berücksichtigung dieser Veränderlichkeit der spezifischen Wärme nimmt der erste Ausdruck für die Entropie, die zum Aufzeichnen des TS-Diagrammes bestgeeignete Gleichung, die Form an

 $S = 0,226 \ln T + 0,000 04 T - AR \ln P + C.$

Hiernach sind die beiden Entropietafeln 14 und 15 gezeichnet; Tafel 14 von 0,01 bis 200 at abs. und von -273 bis 720° C; Tafel 15 ist ein vergrößerter Ausschnitt von 0,5 bis 20 at abs. und von -20 bis +230° C.

Da bei adiabatischer Zustandsänderung dQ = 0, also auch dS = 0 ist, die Entropie demnach unverändert bleibt, so sind Adiabaten im TS-Diagramm Parallele zur Ordinatenachse. Damit ergibt sich ein bequemes direktes Ablesen der Endtemperatur jeder adiabatischen Zustandsänderung. Der Fehler, den man bei Annahme unveränderter spezifischer Wärme begehen würde, ist auf Tafel 14 aus der punktierten Linie unveränderten Druckes für 1 at ersichtlich.

Beispiel: 1. Adiabatische Kompression von 1 auf 20 at abs., Anfangstemperatur $t_1 = 0^0$ C.

Tafel 14. Adiabatische Kompressionstemperatur $t_2 = 360^{\circ}$ C.

Hinz, Thermodynamische Grundlagen.

2. Adiabatische Expansion von 8 auf 1 at abs., Anfangstemperatur t₂ = 100° C.

- Tafel 14. Adiabatische Expansionstemperatur $t_1 = -68^{\circ}$ C.
 - 3. Kompression bei $t_1 = 30^{\circ}$ Anfangstemperatur von a) 1 auf 2 at abs.,

Tafel 15. Adiabatische Kompressionstemperatur

a)
$$t_2 = 96,5^{\circ} C$$
,
b) $t_2 = 96,5^{\circ} C$.

Die Endtemperaturen sind in a) und b) die gleichen, da die Anfangstemperaturen und die Druckverhältnisse gleich sind.

Wärmewert der adiabatischen Kompressionsarbeit.

Nach der Grundgleichung der Zustandsänderungen gilt für jeden Vorgang

$$\mathrm{d} \mathrm{Q} = \mathrm{d} \mathrm{U} + \mathrm{A} \, \mathrm{P} \, \mathrm{d} \mathrm{V} = \mathrm{G} \, \mathrm{c}_{\mathrm{v}} \, \mathrm{d} \mathrm{T} + \mathrm{A} \, \mathrm{P} \, \mathrm{d} \mathrm{V}.$$

Bei adiabatischer Zustandsänderung ist dQ = 0, also $-A P \, dV = G \, c_v \, dT$

$$-A \int_{V_{1}}^{V_{2}} P \, dV = A \frac{P_{1} V_{1}}{\varkappa - 1} \left[\left(\frac{p_{2}}{p_{1}} \right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right] = G c_{v} (T_{2} - T_{1})$$

Der Wärmewert A $L_{kompression}$ der adiabatischen Kompressionsarbeit allein bis zur gerade beendeten Zustandsänderung (im PV-Diagramm von der absoluten Nullinie, der Kompressionslinie und den Ordinaten bei V_1 und V_2 eingeschlossen, Fig. 6, S. 9) ist also gleich der Wärmemenge, die dem Gas bei unverändertem Volumen zugeführt werden muß, um seine Temperatur von t_1 auf t_2 zu erhöher.

 $A L_{kompression} = G c_v (t_2 - t_1) WE.$

Im Wärmediagramm Tafel 14 erscheint der Wärmewert A $L_{kompression}$ der adiabatischen Kompressionsarbeit allein als ein Flächenstreifen F, der begrenzt wird

Fig. 13. Wärmewert A $\int P dV der adiabatischen Kompressions$ arbeit allein.

von der Abszissenachse, d. i. — 273° C, und einer Linie unveränderten Rauminhalts vom Schnittpunkt des Enddruckes P₂ mit der Endtemperatur T₂ bis zum Schnittpunkt mit der Anfangstemperatur T₁ (Fig. 13). Es ist

$$F = \int T \, dS$$
$$dS = \frac{dQ}{T} = \frac{dU + A P \, dV}{T}.$$

Da dV = 0, so ist

$$\mathrm{dS}=rac{\mathrm{dU}}{\mathrm{T}}=rac{\mathrm{G}\,\mathrm{c_v}\,\mathrm{dT}}{\mathrm{T}}$$

3

$$F = \int_{T_1}^{T_2} G c_v dT = G c_v (T_2 - T_1)$$

$$F = G c_v (t_2 - t_1) = A L_{tompression}.$$

Den Wert F, den Wärmewert der Kompressionsarbeit allein für 1 kg Luft, erhält man also außer durch Planimetrieren der Fläche durch Multiplikation der ablesbaren Temperaturzunahme $t_2 - t_1$ in ⁰ C mit der spezifischen Wärme bei unverändertem Rauminhalt $c_v = \sim 0.170$.

Die adiabatische Kompressionsarbeit allein ist daher

$$\begin{split} {\rm L}_{\rm kompr.} = & \frac{1}{{\rm A}} \, {\rm c}_{\rm v} \, ({\rm t}_2 - {\rm t}_1) = 427 \cdot 0,\! 170 \; ({\rm t}_2 - {\rm t}_1) \\ &= 72,\! 59 \; ({\rm t}_2 - {\rm t}_1) \; {\rm mkg/kg} \; \, {\rm Luft.} \end{split}$$

Wärmewert des Arbeitsbedarfs des Kompressors bei adiabatischer Kompression.

Der Wärmewert der größern, vom Kompressor zu leistenden Arbeit des vollendeten Kreisprozesses ergibt sich aus der zweiten Form der Grundgleichung aller Zustandsänderungen

$$dQ = dJ - A V dP = G c_p dT - A V dP.$$

Für dQ = 0 bei adiabatischer Zustandsänderung ist P. x-1

$$\begin{split} A \int_{P_1} V \, dP &= A P_1 V_1 \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{\varkappa}{\varkappa}} - 1 \right] \\ &= G c_p \left(T_2 - T_1 \right) \\ A L_a &= G c_p \left(t_2 - t_1 \right) WE. \end{split}$$

Der Wärmewert der vom Kompressor aufzuwendenden adiabatischen Arbeit ist demnach gleich der Wärmemenge, die einem Gas, das isothermisch, also bei un-

veränderter Temperatur, vom Druck p_1 auf den Druck p_2 verdichtet worden ist, bei diesem dann unveränderten Druck zugeführt werden muß, um seine Temperatur von t_1 auf t_2 zu erhöhen.

In der Entropietafel 14 erscheint der Wärmewert A L_a dieser Arbeit als Flächenstreifen F_a , der begrenzt

Fig. 14. Wärmewert A ∫V d P des Arbeitsbedarfs des Kompressors bei adiabatischer Kompression.

wird von der Abszissenachse (- 273° C) und der Enddrucklinie zwischen Anfangs- und Endtemperatur T_1 und T_2 (Fig. 14). Es ist

$$F_{a} = \int T \, dS$$
$$dS = \frac{dQ}{T} = \frac{dJ - A \, V \, dP}{T}$$

Da dP = 0, so ist

$$\begin{split} \mathrm{dS} &= \frac{\mathrm{dJ}}{\mathrm{T}} = \frac{\mathrm{G}\,\mathrm{c}_{\mathrm{p}}\,\mathrm{dT}}{\mathrm{T}} \,,\\ \mathrm{F}_{\mathrm{a}} &= \int \mathrm{G}\,\mathrm{c}_{\mathrm{p}}\,\mathrm{dT} = \mathrm{G}\,\mathrm{c}_{\mathrm{p}}\,(\mathrm{T}_{2} - \mathrm{T}_{1})\\ \mathrm{F}_{\mathrm{a}} &= \mathrm{G}\,\mathrm{c}_{\mathrm{p}}\,(\mathrm{t}_{2} - \mathrm{t}_{1}) = \mathrm{A}\,\mathrm{L}_{\mathrm{a}}. \end{split}$$

Da $t_2 - t_1$ als Strecke in ^oC ablesbar ist, kann man F_a bequemer als durch Planimetrieren der Fläche durch Rechnung, durch Multiplikation von $t_2 - t_1$ mit $e_p = \sim 0.238$ ermitteln. Der Arbeitsbedarf bei adiabatischer Kompression ist nach diesem Verfahren

$$L_a = \frac{1}{A} c_p (t_2 - t_1) = 427 \cdot 0,238 (t_2 - t_1)$$

 $= 101,63 (t_2-t_1) \text{ mkg/kg Luft.}$ Vergleichshalber ist der Wärmewert der Kompressionsarbeit allein, $F = G c_v (t_2 - t_1)$, in der Fig. 14 durch die gestrichelte Linie hervorgehoben. F_a ist $\frac{c_p}{c_v} = \varkappa \text{mal so groß als } F$; der Wärmewert der Mehrarbeit ist

$$F_a - F_1 = G (c_p - c_v) (t_2 - t_1).$$

Man könnte versucht sein, diese Mehrarbeit

 $\frac{1}{A}$ G (c_p — c_v) (t₂ — t₁) als die Fortdrückarbeit, die Gleichdruckarbeit des PV-Diagramms anzuschen. Das ist jedoch nicht der Fall; die Fortdrückarbeit (P₂ — P₁)V₂ ist um den Wert P₁ (V₁ — V₂) größer als dieser Unterschied zwischen Kompressionsarbeit allein und im Kompressor aufzuwendender Arbeit.

Darstellung des adiabatischen Wirkungsgrades ungekühlter Turbogebläse.

Bei einem Kompressor, dem weder durch Strahlung noch durch Leitung Wärme entzogen wird, kann man stets eine Temperatur t_e feststellen, die über der adiabatischen Kompressionstemperatur t_2 liegt. Demnach muß eine größere als die adiabatische Arbeit aufgewandt worden sein, da an das Gas eine größere Wärmemenge entsprechend dem größeren Temperaturunterschied $t_e - t_1$ übergegangen ist. Man kann sich den Vorgang wieder so denken, daß das Gas zunächst isothermisch auf den Enddruck p_2 verdichtet wird, und daß dann bei unverändertem Druck die größere Wärmemenge zugeführt wird, die dann G c_p ($t_e - t_1$) ist.

Der Quotient aus dem theoretischen adiabatischen Arbeitsbedarf und der tatsächlich innerhalb des Kompressionsvorganges aufgewandten Arbeit ist der Wirkungsgrad $\gamma_{a \text{ kompr.}}$, bezogen auf die Adiabate. Setzt man an Stelle der Arbeitswerte die Wärmewerte ein, so hat man

$$\eta_{a \text{ kompr.}} = rac{{
m G} \, {
m c}_{
m p} \, ({
m t}_2 - {
m t}_1)}{{
m G} \, {
m c}_{
m p} \, ({
m t}_{
m e} - {
m t}_1)} = rac{{
m t}_2 - {
m t}_1}{{
m t}_{
m e} - {
m t}_1} \, .$$

Während man bei Kolbenkompressoren durch Indizieren die Mehrarbeit im Vergleich zur Adiabate ohne weiteres ermitteln kann, ist man bei Turbokompressoren zur Feststellung der aufgewandten Arbeit auf die Messung der gleichwertigen Wärmemenge angewiesen.

Bei Turbogebläsen für niedrige Drucke bis zu einem Druckverhältnis von etwa 2, bei denen mangels eines ausreichenden Temperaturunterschiedes zwischen Luft und Kühlmittel der Einfluß einer Kühlung gering wäre und die deshalb mit ungekühltem Gehäuse ausgeführt werden, ist es zweckmäßig und auch üblich geworden, den Wirkungsgrad auf die Adiabate zu beziehen. Der adiabatische Wirkungsgrad ist vom Druckverhältnis nahezu unabhängig, während der auf die isothermische Kompressionsarbeit bezogene Wirkungsgrad mit wachsendem Druckverhältnis infolge der zunehmenden Abweichung der Adiabate von der Isotherme notgedrungen abnehmen muß und daher die Güte des Kompressionsvorganges nicht so klar erkennen läßt.

18

Man bestimmt den adiabatischen Wirkungsgrad nach den zuvor erwähnten Erwägungen aus der Temperaturzunahme.

In dem nach Messungen von Druck und Temperatur im Verlauf der Zustandsänderung während der Kompression gezeichneten PV-Diagramm der Fig. 15 ist die Strecke $V_{2a} - V_{2is}$ zwischen Adiabate und Isotherme kennzeichnend für den Raumzuwachs nach isothermi-

Fig. 15. Adiabatischer Wirkungsgrad des ungekühlten Turbogebläses in der Fortrücklinie des PV-Diagramms.

scher Kompression, also ein Maßstab für die zugeführte Wärme oder den Arbeitsbedarf bei adiabatischer Kompression. Dasselbe gilt von der Strecke $V_{2e} - V_{2is}$, welche den tatsächlichen Raumzuwachs, also die wirklich aufgewandte Wärme oder Arbeit erkennen läßt.

Da

$$\frac{V_{2 a.} - V_{2 is.}}{V_{2 e} - V_{2 is.}} = \frac{V_{2 is.} \frac{T_2}{T_1} - V_{2 is.}}{V_{2 is.} \frac{T_e}{T_1} - V_{2 is.}}$$
$$= \frac{T_2 - T_1}{T_e - T_1} = \frac{t_2 - t_1}{t_e - t_1}$$

ist, so ist das Verhältnis beider Strecken ein Maßstab für den Wirkungsgrad, bezogen auf die Adiabate.

$$\eta_{a \text{ kompr.}} = \frac{V_{2 a} - V_{2 is.}}{V_{2 e} - V_{2 is.}}$$

In diesem gezeichneten PV-Diagramm erscheint als Fläche aber nur die Mehrkompressionsarbeit infolge Volumenvergrößerung bei der mehr als adiabatischen Erwärmung (in Fig. 15 horizontal schraffiert). Die sonstige Mehrarbeit, die innere Reibungsarbeit $\frac{1}{A}$ Q_r, welche diese Mehrerwärmung und relativ geringere Raumabnahme als bei adiabatischer Kompression zur Folge hatte, ist nicht erkennbar.

Fig. 16. Wärmewert des Arbeitsbedarfs A $\int V\,d\,P\,+\,Q_r$ eines ungekühlten Turbogebläses und der adiabatische Wirkungsgrad.

Im Wärmediagramm dagegen ist auch der Wärmewert dieser Mehrarbeit ohne weiteres darstellbar. Die Zustandsänderung verläuft nach der stark ausgezogenen Linie der Fig. 16 von Punkt 1 nach Punkt e, die Temperatur nimmt um $T_e - T_2$ mehr als diabatisch zu, die Entropie wächst um $S_e - S_2$. Die unschraffierte Fläche F_a stellt den Wärmewert des Arbeitsbedarfes bei adiabatischer Kompression dar.

 $F_a=G\ c_p\ (T_2-T_1)=J_2-J_1=A{\int}V\ dP_{(adiab.)}$ Die gesamte dargestellte Fläche F_e bedeutet den Wärmewert

$$\begin{split} \mathbf{F}_{\mathrm{e}} &= \mathbf{G} \ \mathbf{c}_{\mathrm{p}} \left(\mathbf{T}_{\mathrm{e}} - \mathbf{T}_{\mathrm{1}}\right) = \mathbf{J}_{\mathrm{e}} - \mathbf{J}_{\mathrm{1}} = \mathbf{A} \int \mathbf{V} \ \mathbf{d}\mathbf{P} + \mathbf{Q}_{\mathrm{r}} \\ \mathbf{F}_{\mathrm{e}} &= \frac{\mathbf{G} \ \mathbf{c}_{\mathrm{p}} \ (\mathbf{T}_{\mathrm{2}} - \mathbf{T}_{\mathrm{1}})}{\eta_{\mathrm{a \ kompr.}}} = \frac{\mathbf{J}_{\mathrm{2}} - \mathbf{J}_{\mathrm{1}}}{\eta_{\mathrm{a \ kompr.}}} = \frac{\mathbf{A} \int \mathbf{V} \ \mathbf{d}\mathbf{P}_{\mathrm{(adiab.)}}}{\eta_{\mathrm{a \ kompr.}}}. \end{split}$$

Die gesamte schraffierte Mehrarbeit ist zu zerlegen in die wagerecht schraffierte Mehrkompressionsarbeit und in die senkrecht schraffierte innere Reibungsarbeit. Es ist zweckmäßig, sich diese Unterteilung der Gesamtmehrarbeit klar vorzustellen; das Mehr an Kompressionsarbeit kann nämlich durch Kühlung beseitigt werden, die Reibungsarbeit bleibt aber auch dann noch bestehen.

Da $t_2 - t_1$ und $t_e - t_1$ als Linien in °C auf der Entropietafel abgelesen werden können (auf Tafel 15 genauer als auf Tafel 14), so stellt sich der Wirkungsgrad, bezogen auf die Adiabate, auch als Verhältnis dieser beiden Linien dar. Ein anschaulicheres Bild des Vorganges gibt dagegen die Darstellung der Wärmemengen als Flächen, wie es die Entropietafel 14 ermöglicht, die bis - 273°C hinabreicht.

Die gesamte aufgewandte Arbeit läßt sich im PV-Diagramm dadurch darstellen¹), daß man vom Endpunkt des durch Messung ermittelten Verlaufs der Zustandsänderung rückwärts eine Adiabate konstruiert bis zum Schnittpunkt mit einer gleichseitigen Hyperbel, einer Isotherme, durch den Anfangspunkt der Zustandsänderung und durch diesen Schnittpunkt eine Horizon-

Fig. 17. Arbeitsbedarf $\int \nabla dP + \frac{1}{A}Q_r$ eines ungekühlten Turbögebläses und der adiabatische Wirkungsgrad.

tale legt (Fig. 17). Durch den Schnittpunkt ist ein neues Volumen V_0 bei dem Druck P_0 bestimmt. Das neue, größere Diagramm bedeutet einen Arbeitsbedarf

$$L_{a0} = P_0 V_0 \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{p_2}{p_0} \right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right].$$

Nun ist

$$P_0 V_0 = P_1 V_1$$
 (Isotherme),

$$P_0 V_0^* = P_2 V_{2e}^*$$
 (Adiabate).

Aus beiden Gleichungen folgt:

$$\frac{P_2}{P_0} = \frac{V_0^x}{V_2 e^x}$$

¹) Wohl zuerst von Schüle angegeben anläßlich einer Verwechslung der Kompressionsarbeit allein mit dem Arbeitsbedarf des Kompressors, von $\int P dV$ mit $\int V dP$, von c_v mit c_p .

$$\begin{split} V_{0} &= \frac{P_{1} V_{1}}{P_{0}} \\ \frac{P_{2}^{1-\varkappa}}{P_{0}^{1-\varkappa}} &= \frac{P_{2}^{-\varkappa} P_{1}^{\varkappa} V_{1}^{\varkappa}}{V_{2 e^{\varkappa}}} \\ \left(\frac{p_{2}}{p_{0}}\right)^{\frac{\varkappa-1}{\varkappa}} &= \left(\frac{p_{2}}{p_{1}}\right) \frac{V_{2 e}}{V_{1}} \end{split}$$

Ferner ist nach der Zustandsgleichung

 $\frac{V_{2\,e}}{V_1} = \frac{p_1}{p_2} \frac{T_e}{T_1} \,,$

also

Sodann ist

 $\left(\frac{\mathbf{p_2}}{\mathbf{p_0}}\right)^{\frac{\varkappa-1}{\varkappa}} = \frac{\mathbf{T_e}}{\mathbf{T_1}} \,.$

$$\begin{split} \mathbf{T_2} &= \, \mathbf{T_1} \left(\frac{\mathbf{p_2}}{\mathbf{p_1}} \right)^{\frac{x-1}{x}} \\ \mathbf{T_e} &= \, \mathbf{T_1} + \frac{\mathbf{T_2} - \mathbf{T_1}}{\mathbf{x}} = \, \mathbf{T_1} \left[\begin{array}{c} \mathbf{1} + \frac{\left(\frac{\mathbf{p_2}}{\mathbf{p_1}} \right)^{\frac{x-1}{x}} - \mathbf{1}}{\mathbf{x}} \end{array} \right] \end{split}$$

a kompr.

und demnach

$$\left(\frac{\mathbf{p}_2}{\mathbf{p}_0}\right)^{\frac{\mathbf{x}-1}{\mathbf{x}}} = 1 + \frac{\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\mathbf{x}}{\mathbf{x}}} - 1}{\eta_{\mathbf{a} \text{ kompr.}}}$$

Jakompr.

Setzt man diesen Wert in die Gleichung für L_{a0} ein und berücksichtigt, daß $P_0V_0 = P_1V_1$ ist, so erhält man

$$\mathbf{L}_{a\,0} = \mathbf{P}_{1} \mathbf{V}_{1} \frac{\varkappa}{\varkappa - 1} \frac{\left(\frac{\mathbf{p}_{2}}{\mathbf{p}_{1}}\right)^{\frac{\varkappa}{\varkappa}} - 1}{\eta_{a\,\mathrm{kompr.}}}.$$

Das L_{a0} darstellende äußere Diagramm ist also $\frac{1}{\eta_{a \text{ kompr.}}}$ mal so groß als das theoretische L_{a} bei adiabatischer Kompression, kennzeichnet also die gesamte aufgewandte Arbeit. Außer der wagerecht schraffierten Mehrkompressionsarbeit zwischen der Linie der Zustandsänderung und der Adiabate ist noch die senkrecht schraffierte Arbeit aufgewandt worden, welche der inneren Reibungsarbeit $\frac{1}{A}$ Q_r entspricht. Die Reibungswärme Q_r hat die Mehrerwärmung und die relative Raumvergrößerung während der Kompression zur Folge gehabt.

Der adiabatische Wirkungsgrad des Kompressionsvorganges ist

$$\begin{split} \eta_{\mathrm{a\ kompr.}} &= rac{\mathrm{L}_{\mathrm{a}}}{\mathrm{L}_{\mathrm{a}\ 0}} = rac{\mathrm{unschraftiertes\ Diagramm}}{\mathrm{gr\"o}\mathrm{\beta}\mathrm{tes\ Diagramm}} \\ &= rac{\mathrm{V}_{2\ \mathrm{a}} - \mathrm{V}_{2\ \mathrm{is.}}}{\mathrm{V}_{2\ \mathrm{e}} - \mathrm{V}_{2\ \mathrm{is.}}} = rac{\mathrm{t}_2 - \mathrm{t}_1}{\mathrm{t}_e = \mathrm{t}_1}. \end{split}$$

Ein anderes Verfahren zur Darstellung des gesamten Arbeitsaufwandes im PV-Diagramm gibt Dr. Zerkowitz¹) an. Man zeichnet in das durch Messung ermittelte Diagramm des Verlaufs der Zustandänderung im ungekühlten Turbogebläse die adiabatische Kompressionslinie ein und verlängert sie über den Enddruck hinaus bis zum Schnittpunkt mit einer Isotherme durch den Endpunkt der tatsächlichen Zustandsänderung (Fig. 18). Die von dieser Adiabate und der Ordinatenachse zwischen

Fig. 18. Arbeitsbedarf $\int V dP + \frac{1}{A}Q_r$ eines ungekühlten Turbogebläses und der adiabatische Wirkungsgrad.

den Drucklinien \mathbf{P}_1 und \mathbf{P}_x eingeschlossenen Fläche $\mathbf{F}_{a\,x}$ stellt eine Arbeit dar

$$\mathbf{F}_{ax} = \mathbf{P}_{1} \mathbf{V}_{1} \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{\mathbf{p}_{x}}{\mathbf{p}_{1}} \right)^{\frac{\varkappa}{\varkappa} - 1} - 1 \right]$$

Nun ist $P_x V_x = P_2 V_2'$ (Isotherme) $P_y V_y' = V_2 V_2'$ (Adiabate)

$$P_{x} \frac{\frac{x-1}{x}}{x} = P_{2} \frac{\frac{x-1}{x}}{V_{2}} \frac{V_{2}'}{V_{2}}$$
$$\left(\frac{p_{x}}{x}\right)^{\frac{x-1}{x}} - \left(\frac{p_{2}}{x}\right)^{\frac{x-1}{x}} V_{2}$$

 p_1

Nach der Zustandsgleichung ist

 p_1

$$\frac{\frac{V_2'}{V_2} = \frac{T_e}{T_2}}{\frac{p_x}{p_1}} = \left(\frac{p_2}{p_1}\right)^{\frac{x-1}{x}} = \frac{T_e}{T_2}$$

Ferner ist

$$rac{\mathrm{T_e}}{\mathrm{T_2}} = rac{\mathrm{T_1} + rac{\mathrm{T_2} - \mathrm{T_1}}{\eta_{\mathrm{a\,kompr.}}}}{\mathrm{T_2}} = rac{1 + rac{\left(rac{\mathrm{p_2}}{\mathrm{p_1}}
ight)^{\overline{\chi}} - 1}{\eta_{\mathrm{a\,kompr.}}}}{\left(rac{\mathrm{p_2}}{\mathrm{p_1}}
ight)^{\overline{\chi}}}$$

Setzt man diesen Wert ein, so wird

$$\mathbf{F}_{\mathrm{ax}} = \mathbf{P}_{1} \mathbf{V}_{1} \frac{\varkappa}{\varkappa - 1} \frac{\left(\frac{\mathbf{p}_{2}}{\mathbf{p}_{1}}\right)^{\frac{\varkappa - 1}{\varkappa}} - 1}{\eta_{\mathrm{a\,kompr.}}}$$

Die Fläche F_{ax} ist also $\frac{1}{\eta_{a \text{ kompr.}}}$ mal so groß als die

adiabatische, stellt demnach die gesamte aufzuwendende Arbeit dar. Die schräg schraffierte Fläche zwischen P_x und P_2 ist die Mehrarbeit im Vergleich zur theoretischen, umfaßt aber sowohl das Mehr an Kompressionsarbeit (in Fig. 18 wagerecht schraffiert) als auch die innere Reibungsarbeit $\frac{1}{A}$ Q_r, die allein im Gegensatz zum Schüleschen Verfahren nicht besonders hervortritt. Die Zerkowitzsche Darstellung läßt aber auf das deutlichste erkennen, daß bei ungekühlten Kompressoren nur die

¹) Zeitschr. f. d. ges. Turbinenwesen 1911, Nr. 34.

Adiabate eine Berechtigung hat, als Grundlage für die Bestimmung des Wirkungsgrades zu dienen.

Es läßt sich nicht bestreiten, daß die Darstellung der Arbeitsweise eines Turbogebläses, zu deren Feststellung man auf Temperaturmessungen angewiesen ist, im PV-Diagramm etwas Erzwungenes hat, während das TS-Diagramm die Vorgänge klar erkennen läßt. Umgekehrt ist das PV-Diagramm die gegebene Darstellung des Arbeitsvorganges im Kolbenkompressor, zu deren Ermittlung ja auch das Indikatordiagramm, ein PV-Diagramm dient. Die Wiedergabe der Mehrarbeit des Indikatordiagramms im Vergleich zum theoretischen Wert im TS-Diagramm begegnet Schwierigkeiten, da Temperaturmessungen an den einzelnen Punkten des Arbeitsvorganges kaum möglich sind. In Fig. 19 ist der Versuch gemacht, das Indikatordiagramm Fig. 10 S. 12 im Entropiediagramm darzustellen. Die schraffierte Fläche entspricht den Widerständen.

Fig. 19. Versuch der Darstellung eines Indikatordiagramms im T.S.Diagramm.

Dagegen bietet das TS-Diagramm immer dann Vorteile, wenn man die Temperaturänderungen theoretischer Vorgänge deutlich zur Schau bringen will, wie die späteren Beispiele zeigen werden.

Um für Gebläse möglichst genau die adiabatische Temperaturzunahme

$$\begin{split} \mathbf{t_2} &- \mathbf{t_1} = \mathbf{T_1} \bigg[\bigg(\frac{\mathbf{p_2}}{\mathbf{p_1}} \bigg)^{\frac{x-1}{x}} - 1 \bigg] = \mathbf{T_2} \bigg[1 - \bigg(\frac{\mathbf{p_1}}{\mathbf{p_2}} \bigg)^{\frac{x-1}{x}} \bigg], \\ \text{für Luft} \\ \mathbf{t_2} - \mathbf{t_1} &= \mathbf{T_1} \bigg[\bigg(\frac{\mathbf{p_2}}{\mathbf{p_1}} \bigg)^{0,286} - 1 \bigg] = \mathbf{T_2} \bigg[1 - \bigg(\frac{\mathbf{p_2}}{\mathbf{p_1}} \bigg)^{0,286} \bigg] \end{split}$$

ablesen zu können, ist die Entropietafel 16 für 0,8-2,5 at. abs. und -4 bis 96° C gezeichnet.

Beispiel: Kompression bei 1,028 at abs. Luftdruck von 120 mm W.-S. Unterdruck auf 350 mm Q.-S. von 22° C Überdruck; Anfangstemperatur $t_1 = 18°$ C.

Absoluter Anfangsdruck $p_1 = 1,028 - 0,012 = 1,016$ at abs.

Absoluter Enddruck
$$p_2 = 1,028 + \frac{350}{738,3} = 1,474$$
 at abs.

Tafel 16. Adiabatische Kompressionstemperatur $t_2 = 52,7^0$ C.

Adiabatische Temperatursteigerung

$$t_2 - t_1 = 52,7 - 18 = 34,7^{\circ} C$$

Wird durch Messung $t_e = 67,2^{\circ}$ C Endtemperatur ermittelt, so ist der Wirkungsgrad des Kompressionsvorganges

$$\gamma_{\rm a \ kompr.} = rac{34,7}{67,2-18} = rac{34,7}{49,2} = 0,706,$$

bezogen auf die Adiabate.

Der Arbeitsbedarf bei adlabatischer Kompression ist

$$L_a = 427 \cdot 0.238 (52,7-18) = 101.63 \cdot 34.7$$

 $= 3427 \text{ mkg/kg Luft.}$

Zur Bestimmung des Leistungsbedarfes ist aber das Volumen, die Saugmenge in cbm in der Zeiteinheit maßgebend, und deshalb sind hierfür zweckmäßiger die Tafeln 6—12 zu benutzen, die den Arbeitsbedarf in mkg/cbm zeigen.

B. Isothermische Zustandsänderung.

Bei reibungsfreier adiabatischer Kompression geht genau der gesamte Wärmewert der Kompressionsarbeit an das Gas über. Durch Ableitung dieser Wärme wird proportional der jeweiligen absoluten Gastemperatur eine Volumenverringerung im Vergleich zur Adiabate und damit eine Verringerung des Arbeitsbedarfes erzielt. Umgekehrt wird bei der Expansion durch Zuführung von Wärme eine weitere Volumenvergrößerung und eine Mehrarbeitsleistung die Folge sein. Könnte man die Wärmeab- bzw. -zufuhr so vollkommen ausführen, daß vom Beginn bis zum Schluß der Zustandsänderung die Gastemperatur die gleiche bliebe, so hätte man eine isothermische Zustandsänderung, die für die Kompression ein Minimum an Arbeitsbedarf, für die Expansion ein Maximum an Arbeitsleistung darstellt.

In der Grundgleichung für alle Zustandsänderungen $dQ \doteq dQ_w + dQ_r = dU + A \ P \ dV$

ist also bei isothermischer Kompression dU = 0 zu setzen.

$$\mathrm{d} \mathbf{Q}_{\mathbf{w}} + \mathrm{d} \mathbf{Q}_{\mathbf{r}} = \mathbf{A} \, \mathbf{P} \, \mathrm{d} \mathbf{V}.$$

Bei reibungsloser, umkehrbarer Zustandsänderung $(dQ_r = 0)$ ist

$$dQ_w = A P dV,$$

d. h. die aufgewandte Arbeit muß sich in Form von Wärme in dem benutzten Kühlmittel wiederfinden; bei der Expansion wird der Wärmewert der geleisteten Arbeit der Umgebung des Gases entzogen, da in beiden Fällen der Wärmeinhalt des Gases selbst unverändert bleibt.

Da die Anfangstemperatur T_1 gleich der Endtemperatur T_2 ist, so folgt aus der Zustandsgleichung

$$\begin{split} \frac{\mathbf{P}_{1}\,\mathbf{V}_{1}}{\mathbf{T}_{2}} &= \frac{\mathbf{P}_{2}\,\mathbf{V}_{2}}{\mathbf{T}_{2}},\\ \mathbf{P}_{1}\,\mathbf{V}_{1} &= \mathbf{P}_{2}\,\mathbf{V}_{2} \ \text{ist.} \end{split}$$

Die Kompressions- und Expansionslinie im PV-Diagramm, die flacher verläuft als die Adiabate, ist also eine gleichseitige Hyperbel; das Volumen nimmt im gleichen Maße ab, wie der Druck zunimmt, und umgekehrt.

Im Wärmediagramm ist die Isotherme eine Horizontale, eine Linie unveränderter Temperatur, zwischen Anfangs- und Enddruck; die Entropie des Gases nimmt

am
$$S_2 - S_1 = \frac{Q_2 - Q_1}{T}$$
 zu oder ab.

daß

Isothermische Kompressionsarbeit.

Die Fläche $F_{is.}$ im PV-Diagramm der Fig. 20, welche die Kompressionsarbeit $L_{is.}$ darstellt, ist bei dem Anfangsdruck P_1 und dem Enddruck P_2 für das Anfangsvolumen V_1

$$F_{is.} = \int_{v_1}^{v_2} P \, \mathrm{d} V \, .$$

 $\mathbf{P} = \mathbf{P}_1 \frac{\mathbf{V}_1}{\mathbf{V}},$

so ist

Da

Fig. 20. Isothermische Kompressionsarbeit allein $\int P dV$ und Arbeitsbedarf des Kompressors $\int V dP$ bei isothermischer Kompression.

Die der Fläche $\mathrm{F}_{\mathrm{is.}}$ entsprechende Kompressionsarbeit ist also

$$L_{is. kompr.} = P_1 V_1 \ln \frac{V_2}{V_1} = P_1 V_1 \ln \frac{P_2}{P_1} mkg.$$

Arbeitsbedarf des Kompressors bei isothermischer Kompression.

Der Arbeitsbedarf L_{is.} des vollendeten Kreisprozesses im Kompressor setzt sich zusammen aus dieser reinen Kompressionsarbeit P₁V₁ ln $\frac{P_2}{P_1}$, der Fortdrückarbeit P₂V₂ = P₁ $\overset{*}{V}_1$ und der negativen Ansaugearbeit P₁V₁, ist also ebenfalls

$$L_{is.} = P_1 V_1 \ln \frac{P_2}{P_1} mkg$$
.

Schneller noch ist unmittelbar abzuleiten

$$L_{is.} = \int_{P_1}^{P_2} V \, dP = P_1 \, V_1 \int \frac{dP}{P} = P_1 \, V_1 \ln \frac{P_2}{P_1} \, mkg \, .$$

Bei der Adiabate sind $L_{kompression}$ und L_a nicht einander gleich; der Arbeitsbedarf des Kompressors ist dort $\varkappa = \frac{c_p}{c_v}$, bei Luft 1,4 mal größer als die Kompressionsarbeit allein.

Im TS-Diagramm erscheint der Wärmewert A L_{is} , der isothermischen Kompressionsarbeit und des Kompressor-Arbeitsbedarfes bei isothermischer Kompression als Flächenstreifen F_{is} unter der Linie gleicher Temperatur zwischen Anfangs- und Enddruck bis zur Ordinatenachse (Fig. 21).

Es ist

$$\begin{split} F_{is.} &= \int T \, dS \, = \, T \int \!\!\!\! \frac{dQ}{T} \, = \int dQ \\ dQ &= \, G \, c_v \, dT \, + \, A \, P \, dV. \\ dT \, = \, 0, \end{split}$$

Da so ist

$$\begin{split} F_{is.} &= A \int_{V_1}^{V_2} P \, dV \\ F_{is.} &= A P_1 V_1 \ln \frac{V_2}{V_1} = A P_1 V_1 \ln \frac{P_2}{P_1} = A L_{is.} \end{split}$$

Der Arbeitsbedarf $L_{is.}$ bei isothermischer Kompression ist ein theoretisches Minimum, das praktisch nicht zu erreichen ist, wenn nicht mit künstlichen Kühlmitteln, mit sehr hohen Temperaturunterschieden zwischen dem angesaugten Gas und dem Kühlwasser gearbeitet wird. Aus diesem Grunde ist immer dann, wenn Kühlmittel angewandt werden, die Einfluß auf den Verlauf der Kompressionslinie haben, der Vergleich der wirklich aufgewandten Arbeit L_e mit $L_{is.}$

der isothermische Wirkungsgrad $\eta_{is.} = \frac{L_{is.}}{L_e}$, ein geeig-

Fig. 21. Wärmewert $A \int P dV = A \int V dP$ bei isothermischer Kompression.

neter Maßstab für die Güte des Kompressionsvorganges, vor allem zu Vergleichszwecken bei Maschinen verschiedenen Prinzips. Über die Güte des Kompressors läßt sich aber erst urteilen, wenn außer dem Druckverhältnis

 $\frac{\mathbf{P_2}}{\mathbf{P_1}}$ zugleich die Temperaturen des angesaugten Gases

und des Kühlwassers, also der Temperaturunterschied zwischen beiden genannt wird. (Der Einfluß dieses Temperaturunterschiedes wird genauer bei der mehrstufigen Kompression untersucht werden.)

Ersetzt man P_1 und P_2 (kg/qm) durch die in der Praxis üblichen Werte p_1 und p_2 (kg/qcm), so erhält man unter Berücksichtigung der Größeneinheiten

$$L_{is.} = 10\ 000\ p_1V_1\ ln\ \frac{p_2}{p_1}\ mkg$$

und für 1 cbm angesaugte Luft

$${\rm L_{is.}\,=\,10\,\,000}\ p_{1}\ ln\ \frac{p_{2}}{p_{1}}\ mkg/cbm.$$

Auf Tafel 17 sind die Anfangsdrucke als Abszissen, die Werte des Arbeitsbedarfs bei isothermischer Kompression für gleiche Enddrucke als Ordinaten aufgetragen. Die Tafeln 18—22 sind in größerem Maßstabe für die meist vorkommenden Anfangsdrucke von 0,8—1,2 at abs. gezeichnet.

Beispiele:

 $p_1 = 1,25$ at abs. $p_2 = 8,1$ at abs. Tafel 17: $L_{is.} = 23\,400$ mkg/cbm

$$P_1 = 1,021$$
 at also, $P_2 = 1,12$ at $P_2 =$

 $p_1 = 0.995$ at abs. $p_2 = 2.33$ at abs. Tafel 19: $L_{is.} = 8\,460$ mkg/cbm

$$p_1 = 0.982$$
 at abs. $p_2 = 5.76$ at abs.
Tafel 20: $L_{is.} = 13240$ mkg/cbm

 p_1 = 1,046 at abs. p_2 = 5,63 at abs. Tafel 21: $L_{is.}$ = 17 610 mkg/cbm

 $p_1 = 1,031$ at abs. $p_2 = 8,18$ at abs. Tafel 22: $L_{is.} = 21\,360$ mkg/cbm
Isothermischer Leistungsbedarf des Kompressors.

Werden im letzten Beispiel 12 180 cbm in der Stunde angesaugt, so ist die erforderliche isothermische Leistung

$$N_{is.} = \frac{12180 \cdot 21360}{3600 \cdot 75} = 964 \text{ PS}_{is.}$$

Isothermische Wirkungsgrade.

Sowohl bei Kolben als bei Turbokompressoren entsteht dadurch eine Mehrarbeit im Vergleich zur isothermischen Kompression, daß durch keine Hilfsmittel die auftretende Kompressionswärme im Augenblick des Entstehens abgeleitet werden kann. Außer der hierdurch bedingten größeren eigentlichen Kompressionsarbeit sind Widerstände der Luft im Kompressor sowie mechanische Reibung zu überwinden, die einen weiteren Arbeitsaufwand erfordern, der späterhin eingehender erläutert wird.

Werden bei einem Turbokompressor der zuvor als Beispiel gewählten Leistung 1520 PS von den Schaufeln der Laufräder an die Luft übertragen, die sich in Form von Wärme teils im Kühlwasser, teils in der Luft feststellen lassen, so ist der isothermische Wirkungsgrad des Kompressionsvorganges

$$\eta_{
m is.\,kompr.} = rac{964}{1520} = 0,634$$
 .

Werden an die Kupplung der Kompressorwelle 1545 PS abgegeben, so ist der mechanische Wirkungsgrad

$$\eta_{
m mech.} = rac{1520}{1545} = 0,984$$

und der Gesamtwirkungsgrad des Kompressors, bezogen auf den Leistungsbedarf bei isothermischer Kompression, bezogen auf die Isotherme

$$\eta_{\rm is.ges.} = \frac{964}{1545} = 0,624.$$

Der Gesamtwirkungsgrad ist zu zerlegen in

 $\gamma_{is.\,ges.}=\gamma_{is\,kompr.}\cdot\gamma_{mech.}=0{,}634\cdot0{,}984=0{,}624.$

Ist bei einem zwei- oder mehrstufigen Kolbenkompressor mit Zwischenkühlung der gleichen Leistung der in den Luftzylindern indizierte Leistungsbedarf 1220 PS_i, so ist der isothermische Wirkungsgrad des Kompressionsvorganges

$$\eta_{\rm is.\,kompr.} = rac{964}{1220} = 0.79 \, .$$

Bei einem an die Kompressorwelle abgegebenen Leistungsaufwand von 1360 PS_e ist der mechanische Wirkungsgrad

$$_{\text{nech.}} = \frac{1220}{1360} = 0,897$$

und der Gesamtwirkungsgrad des Kompressors, bezogen auf die Isotherme

n,

$$n_{\rm is.\,ges.} = \frac{964}{1320} = 0,709$$

 $\eta_{\rm is.ges.} = \eta_{\rm is.kompr.} \cdot \eta_{\rm mech.} = 0,79 \cdot 0,897 = 0,709.$

Fehlt am Kompressor eine Kühlung, die den Verlauf der Kompressionslinie beeinflussen kann, so ist der Vergleich mit der Adiabate dem mit der Isotherme vorzuziehen, wie die folgende Rechnung zeigen wird.

Ein ungekühltes Gebläse, das von 1 auf 1,5 at abs. preßt, habe einen adiabatischen Gesamtwirkungsgrad von 74 v. H., erfordert also einen Arbeitsaufwand von $\frac{4300}{0,74} = 7810 \text{ mkg/cbm}$ Saugleistung. Wird mit der gleichen Konstruktion von 1 auf 1,8 at abs. gepreßt, so ist der auf die Adiabate bezogene Wirkungsgrad ungefähr der gleiche; es sind also $\frac{6410}{0,74} = 8660 \text{ mkg/cbm}$ erforderlich. Die isothermischen Arbeiten für die beiden Drücke sind 4050 und 5880 mkg/cbm Saugleistung und $\frac{4050}{0.000}$

demnach die isothermischen Wirkungsgrade $\frac{4050}{5810} = 0,697$

bzw. $\frac{5880}{8660}$ bzw. = 0,679. Infolge der mit dem Druck-

verhältnis zunehmenden Abweichung der Adiabate von der Isotherme ist also der auf letztere bezogene Wirkungsgrad bei dem höheren Druck um 2,6 v. H. geringer, obgleich die Güte der Arbeitsweise unverändert ist. Aus diesem Grunde sollte bei einstufigen Kolbenkompressoren und bei ungekühlten Turbogebläsen der Wirkungsgrad stets auf die Adiabate bezogen werden; auch die 3 zuvor angeführten Verfahren zur Darstellung des Gesamtarbeitsaufwandes (Fig. 16—18) ließen schon erkennen, daß unbedingt die Adiabate als Grundlage für den Wirkungsgrad zu bevorzugen ist.

Die Isotherme ist dagegen der geeignetste Maßstab bei während der Kompression wirksamer Kühlung und zum Vergleich der Arbeitsweise von Kompressoren verschiedenen Prinzips, wie Kolbenkompressor, Turbokompressor, Kapselkompressor, hydraulischer Kom-Der Wirkungsgrad muß dann aber alle pressor usw. Verluste im Kompressor umfassen, es muß der zuvor erläuterte Gesamtwirkungsgrad bestimmt werden. Seine einzelnen Faktoren haben nur untergeordnete Bedeutung, als Garantie sind sie jedenfalls zwecklos. Als Garantie ist die Angabe der PSe für eine bestimmte Saugleistung bei festgelegtem Anfangs- und Enddruck bestgeeignet. Die Angabe des Gesamtwirkungsgrades ist dann nur eine Wiederholung dieser Garantie und hat hauptsächlich wissenschaftliche Bedeutung; sie erfordert zudem noch die genaue Festlegung des theoretischen Wertes, auf den der Wirkungsgrad bezogen werden soll.

In der Fig. 22 ist das Verhältnis des Arbeitsbedarfs bei adiabatischer Kompression zu dem bei isothermischer Kompression, der Wirkungsgrad der

Fig. 22. Wirkungsgrade der 1-, 2-, 3- und 4stufigen Adiabate, bezogen auf die Isotherme.

Adiabate, bezogen auf die Isotherme, dargestellt. Die Druckverhältnisse sind als Abszissen, die Wirkungsgrade als Ordinaten aufgetragen. Außer den Wirkungsgraden der einstufigen Adiabate sind die entsprechenden Werte bei zwei- und mehrstufiger adiabatischer Kompression, die späterhin eingehender erörtert werden, in die Fig. 22 eingetragen.

Beispiele: Druckverhältnis
$$\frac{p_2}{p_1} = 3$$
.

Der Wirkungsgrad der Adiabate, bezogen auf die Isotherme, ist ~ 85 v.H., d. h. man erhält den auf die Isotherme bezogenen Wirkungsgrad eines Kompressionsvorganges, wenn man den auf die Adiabate bezogenen Wirkungsgrad mit 0,85 multipliziert.

Bei einem Druckverhältnis von 1 zu 7 ist der entsprechende Wert nur noch $\sim 74,5$ v.H.

Vergleichsrechnung.

Eine Umrechnung zum Zwecke des Vergleichs mit der Arbeitsweise unter nicht wesentlich abweichenden Verhältnissen muß unter Zugrundelegung gleicher Wirkungsgrade geschehen. Der als 1. Beispiel gewählte Turbokompressor würde zur Kompression von stündlich 12 000 cbm von 1 auf 8 at abs. eine effektive Leistung von

$$N_e = 1545 \frac{12000}{12180} \cdot \frac{20790}{21360} = 0.1481 \text{ PS}_e$$

erfordern. Dann wäre wieder

$$\eta_{\text{is. ges.}} = \frac{12\,000 \cdot 20\,790}{3600 \cdot 75 \cdot 1481}$$

= 0,624, wie zuvor durch Messung ermittelt wurde.

C. Poytropische Zustandsänderungen.

Adiabate und Isotherme sind theoretische Grenzfälle der Zustandsänderung. Umkehrbare Vorgänge ohne innere Reibung vorausgesetzt, geht bei der Adiabate genau der Wärmewert der aufgewandten Kompressionsarbeit an das Gas über, die Wandungen des Kompressors sind wärmedicht; bei der Isotherme wird die gleichwertige Wärme der gesamten, allerdings geringeren Kompressionsarbeit im Augenblick des Entstehens abgeleitet.

Wird nur ein Teil der Kompressionswärme abgeführt, so tritt durch den Rest eine Erwärmung des Gases ein, die geringer ist als bei adiabatischer Kompression. Wird bei der Expansion nur ein Teil des Wärmewerts der geleisteten Arbeit dem Gas entzogen, der Rest der Umgebung des Gases, so tritt eine geringere Abkühlung als bei adiabatischer Expansion ein. Bei diesen "polytropischen" Zustandsänderungen verläuft die Kompressions- und Expansionslinie im PV-Diagramm infolge der relativ größeren Raumabnahme bei der geringeren Erwärmung bzw. infolge der relativ größeren Raumzunahme bei der geringeren Abkühlung im Vergleich zur Adiabate flacher als diese, aber steiler als die Isotherme. Man nennt den Exponenten n, der dem Werte \varkappa bei der Adiabate entspricht, den Exponenten der Polytrope.

Für polytropische Zustandsänderungen gilt also

$$P_1V_1^n = P_2V_2^n = unveränderlich.$$

Die Konstruktion der polytropischen Kurven im PV-Diagramm ergibt sich nach dem gleichen Verfahren wie bei der Adiabate (Fig. 5 S. 8) durch Einführung des Exponenten n anstatt \varkappa . Es muß

 $(1 + tg \alpha)^n = 1 + tg \beta$

sein.

In den Zahlentafeln unten sind für die zweckmäßig zu benutzenden Winkel α und Tangenten der Winkel α die Winkel β und die Tangenten der Winkel β für die Exponenten n = 0,9 bis n = 1,5 zusammengestellt.

Ist die Kurve der Zustandsänderung im PV-Diagramm gegeben, so ergibt sich der Exponent n nach dem zeichnerischen Verfahren der Fig. 23.

Fig. 23. Zeichnerische Bestimmung des Exponenten einer Polytrope im PV-Diagramm.

Man zieht durch einen beliebigen Punkt der Polytrope die Tangente bis zum Schnittpunkt mit der Abszissenachse und bestimmt durch die Ordinate P die Projektion der Tangente auf die Abszissenachse, die Subtangente S. Da

$$PV^{n} = C,$$

$$\mathrm{PV}^{\mathrm{n-1}}\,\mathrm{dV} + \mathrm{V}^{\mathrm{n}}\,\mathrm{dP} = 0$$

Zahlenwerte der Winkel β und der Tangenten der Winkel β $(1 + \operatorname{tg} a)^n = 1 + \operatorname{tg} \beta.$

so ist

n

Winkel a	Exponent n der Zustandsänderung												
Williaci a	0,90	0,95	1,00	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45	1,50
30^{0} $22^{0}30'$ 20^{0} 15^{0} 10^{0}	26° 53' 20° 6' 17° 52' 13° 24' 8° 56'	28° 27' 21° 18' 18° 56' 14° 12' 9° 28'	$\begin{array}{c} 30^{0} \\ 22^{0} 30' \\ 20^{0} \\ 15^{0} \\ 10^{0} \end{array}$	31° 32′ 23° 42′ 21° 5′ 15° 49′ 10° 32′	33° 3′ 24° 54′ 22° 10′ 16° 37′ 11° 4′	34º 34' 26º 6' 23º 15' 17º 26' 11º 36'	36° 3' 27° 18' 24° 19' 18° 15' 12° 9'	37° 32' 28° 29' 25° 23' 19° 4' 12° 41'	38° 58' 29° 39' 26° 27' 19° 53' 13° 14'	40° 23' 30° 49' 27° 31' 20° 42' 13° 47'	41º 46' 31º 59' 28º 34' 21º 31' 14º 19'	$\begin{array}{cccc} 43^{0} & 8' \\ 33^{0} & 8' \\ 29^{0} & 38' \\ 22^{0} & 20' \\ 14^{0} & 52' \end{array}$	44º 28' 34º 17' 30º 42' 23º 10' 15º 25'
tg α	11.24	and has	i de l			aburst 1	STOR U		enciliti?	C. L.	17.520	- NAR	
$\begin{array}{c} 0,333\\ 0,30\\ 0,25\\ 0,20\\ 0,15 \end{array}$	0,295 0,266 0,222 0,178 0,134	$\begin{array}{c} 0,314\\ 0,283\\ 0,236\\ 0,189\\ 0,142 \end{array}$	0,333 0,30 0,25 0,20 0,150	$\begin{array}{c} 0,352\\ 0,317\\ 0,264\\ 0,211\\ 0,158\end{array}$	$\begin{array}{c} 0,372\\ 0,334\\ 0,278\\ 0,222\\ 0,166\end{array}$	$\begin{array}{c} 0,392 \\ 0,352 \\ 0,292 \\ 0,233 \\ 0,174 \end{array}$	0,412 0,370 0,307 0,245 0,183	$0,433 \\ 0,388 \\ 0,322 \\ 0,256 \\ 0,191$	0,453 0,407 0,336 0,267 0,199	0,474 0,425 0,351 0,279 0,208	0,496 0,444 0,367 0,291 0,216	$\begin{array}{c} 0,517\\ 0,463\\ 0,382\\ 0,302\\ 0,225\end{array}$	0,539 0,483 0,397 0,314 0,233

Da ferner

$$\frac{\mathrm{dP}}{\mathrm{dV}} = \frac{\mathrm{P}}{\mathrm{S}}$$

ist, so ergibt sich

 $n = \frac{V}{S}$.

P

V

Das Verfahren wird leicht ungenau durch die Schwierigkeit, genau die Tangente an die Kurve zu legen. Daher ist die rechnerische Bestimmung von n, wenn auch unter Benutzung der Logarithmen, vorzuziehen. Es ist

$$P_1 V_1^n = P_2 V_2^n.$$
$$n = \frac{\lg P_2 - \lg P_1}{\lg V_1 - \lg V_2}.$$

Mit Hilfe der beiden folgenden Zahlentafeln kann der Exponent n einer vorliegenden Zustandsänderung im P V-Diagramm genügend genau bestimmt werden; umgekehrt läßt sich auch bei gegebenem Exponenten die Linie der Zustandsänderung im PV-Diagramm festlegen. Für die Zahlentafeln ist das Endvolumen der Kompression und Expansion bei gesetzmäßigem Verlauf der Zustandsänderung für verschiedene Exponenten rechnerisch ermittelt.

Beispiele: Beim Druck $p_2 = 4,3$ at abs. ist das Volumen 36,5 v. H. des Volumens beim Druck $p_1 = 1,1$ at abs.

$$ext{Druckverhältnis} rac{ extsf{p}_2}{ extsf{p}_1} = rac{ extsf{4,3}}{ extsf{1,1}} = 3,91.$$

Der Exponent der Pylytrope liegt zwischen 1,3 und 1,35. Durch Interpolation ergibt sich: n = 1,32.

Nach Expansion auf $1/_3$ des Anfangsdruckes ist das Expansionsvolumen 2,52mal so groß als das Anfangsvolumen.

Der Exponent der Polytrope liegt zwischen 1,15 und 1,2. n = 1,19.

Bei polytropischer Kompression von 1 auf 7 at abs. ist das Endvolumen

Endvolumen V_2 nach polytropischer Kompression des Anfangsvolumens $V_1 = 100$.

$$\mathbf{V_2} = 100 \left(\frac{\mathbf{p_1}}{\mathbf{p_2}}\right)^{\frac{1}{n}} \cdot$$

Druck- verhältn.		Exponent n der Kompressionslinie V											
$\frac{p_2}{p_1}$	0,90	0,95	1,00	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45	1,50
$1,1 \\ 1,2 \\ 1,3$	90,0 81,6 74,7	90,5 82,5 75,8	90,9 83,3 76,9	91,3 84,0 77,8	91,7 84,7 78,8	92,1 85,3 79,6	92,3 85,9 80,3	92,6 86,4 81,0	93,0 86,9 81,8	93,2 87,3 82,3	93,5 87,7 82,9	93,7 88,2 83,4	93,9 88,5 84,0
$1,4 \\ 1,5 \\ 1,6$	68,8 63,7 59,3	70,1 65,5 60,9	71,4 66,7 62,5	72,5 68,0 63,9	73,6 69,2 65,2	74,6 70,3 66,4	75,5 71,4 67,5	76,3 72,3 68,8	77,2 73,2 69,6	77,9 74,1 70,6	78,7 74,8 71,4	79,3 75,6 72,3	79,9 76,3 73,1
1,7 1,8 1,9	55,4 52,0 49,0	57,1 53,8 50,8	58,8 55,5 52,6	$60,3 \\ 57,1 \\ 54,2$	61,7 58,6 55,8	68,0 59,9 57,2	$64,2 \\ 61,2 \\ 58,6$	$ \begin{array}{c} 65,4\\ 62,5\\ 59,8 \end{array} $	66,5 63,7 61,0	$ \begin{array}{r} 67,5 \\ 64,7 \\ 62,1 \\ \hline 7 7 7 7 7 $	68,5 65,7 63,3	69,4 66,7 64,2	70,2 67,5 65,1
2,0 2,2 2,4	$\frac{46,3}{41,4}$ 37,8	$\frac{48,2}{43,6}$ 38,0	$\frac{50,0}{45,4}\\41,7$	$\frac{51,7}{47,2}\\43,4$	$\frac{53,2}{48,8}\\45,1$	$\frac{54,7}{50,4}\\46,7$	$\frac{56,1}{51,8}\\48,2$	$\frac{57,4}{53,2}\\49,6$	58,6 54,5 51,0	59,8 55,7 52,3	$\frac{60,9}{56,9}\\53,5$		$\frac{63,0}{59,1}\\55,8$
2,6 2,8	34,6 31,8 29.5	36,6 33,8	38,5 35,7	40,2 37,5	41,9 39,2	43,6 40,8	45,1 42,4 40.0	46,5 43,9	47,9 45,3	49,3 46,6	50,5 47,9	51,7 49,2	52,9 50,3 48.1
3,0 3,2 3,4	27,5 26,6	29,4 27,6	31,3 29,4	33,0 31,1	34,7 32,8	36,3 34,5	37,9 36,0	39,4 37,5	40,8 39,0	42,2 40,4	43,6 41,7	44,8 43,0	46,0 44,2
3,6 3,8	24,1 22,7	$26,0 \\ 24,5$	27,8 26,3	29,5 28,0	$31,2 \\ 29,7$	32,8 31,3	34,4 32,9	$35,9 \\ 34,4$	37,3 35,8	38,7 37,2	40,0 38,5	41,3 39,8	42,5 41,0
4,0	21,4	23,2	25,0	26,7	28,5	30,1	31,4	33,0	34,4	35,8	37,3	38,5	39,7
4,5 5,0	18,8 16,7	20,5 18,4	22,2 20,0	23,9 21,6	25,5 23,1	27,0 24,7	28,6 26,2	30,0 27,6	31,5 29,0	32,8 30,4	34,2 31,7	33,0	34,2
$5,5 \\ 6,0$	$16,1 \\ 13,6$	$16,5 \\ 15,2$	$\substack{18,2\\16,7}$	19,6 18,1	21,2 19,6	22,5 21,1	24,1 22,5	$25,4 \\ 23,8$	26,9 25,2	$28,1 \\ 26,5$	29,6 27,8	30,7 29,0	31,9 30,3
6,5 7,0	$12,5 \\ 11,5$	$13,9 \\ 12,9$	$15,4 \\ 14,3$	$16,8 \\ 15,7$	18,2 17,1	19,3 18,4	21,0 19,8	22,4 21,1	23,7 22,4	$25,0 \\ 23,6$	$26,3 \\ 24,9$	27,5 26,1	28,7 27,4
7,5 8,0	10,6 9,9	$12,0 \\ 11,2$	$13,3 \\ 12,5$	14,7 13,8	16,0 15,1	$17,3 \\ 16,4$	18,7 17,7	20,0 18,9	21,2 20,2	$22,5 \\ 21,4$	23,7 22,6	24,9 23,8	$26,1 \\ 25,0$
8,5 9,0	9,3 8,7	10,5 9,9	11,8 11,1	13,0 12,4	$14,3 \\ 13,6$	$15,6 \\ 14,8$	16,8 16,0	18,1 17,3	19,3 18,4	20,5 19,6	21,7 20,8	22,9 22,0	24,0 23,1
9,5 10,0	8,2 . 7,7	9,4 8,9	10,5 10,0	11,7 11,2	12,9 12,3	14,1 13,5	$15,3 \\ 14,7$	16,5 15,9	17,7 17,0	18,9 18,2	20,0 19,3	21,2 20,4	22,3 21,5

Hinz, Thermodynamische Grundlagen.

25

Endvolumen V₁ nach polytropischer Expansion des Anfangsvolumens V₂ = 100.

X				11. 3.1		$V_1 = 10$	$0\left(\frac{11}{p_1}\right)^n$	•			4		R.E.V.
Druck- erhältn		1.1.1			Е	Exponent	n der Ex	pansionsl	inie				
$\frac{p_2}{p_1}$	0,90	0,95	1,00	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45	1,50
1,1	111,2	110,6	110	109,5	109,0	108,6	108,3	107,9	107,6	107,3	107,0	106,8	106,6
$^{1,2}_{1,3}$	122,5 133,9	121,1 131,8	$ 120 \\ 130 $	119,0 128,4	118,0 126,9	$117,2 \\ 125,6$	116,4 124,4	115,7 123,4	115,1 122,4	114,5 121,5	$ \begin{array}{c c} 113,9\\ 120,6 \end{array} $	113,4 119,8	112,9 119,1
1,4	145,3	142,5	140	137,8	135,8	134,0	132,3	130,9	129,5	128,3	127,1	126,1	125,2
1,5 1,6	156,9	152,5 164,0	150	147,1 156,4	144,5 153,3	142,3 150,6	140,1 147,9	138,3 145,3	136,6	135,0 141,6	133,6 139,9	132,3 138,3	131,0 136,8
1,7	180,4	174,9	170	165,8	162,0 170.6	158,6	155,7	152,9 160.0	150,4	148,2 154.6	146,1 152.2	144,2 150.0	142,5 148.0
1,9	204	196,6	190	184,3	179,1	174,8	170,6	167,2	163,8	160,9	158,2	155,7	153,4
2,0	216	207	200	193,5	187,9	182,7	178,2	174,1	170,5	167,1	164,1	161,3	158,7
$^{2,2}_{2,4}$	$\begin{array}{c} 240 \\ 264 \end{array}$	$229 \\ 251$	$\begin{array}{c} 220\\ 240 \end{array}$	212 230	$205 \\ 222$	$198,5 \\ 214$	192,9 207	187,8 201	$ 183,4 \\ 196,1 $	179,3 191,2	$175,6 \\ 186,9$	172,2 182,9	169,1 179,2
$2,6 \\ 2,8$	289 314	273 296	260 280	$\begin{array}{c} 248 \\ 267 \end{array}$	$238 \\ 255$	$230 \\ 245$	$\begin{array}{c} 222\\ 236 \end{array}$	$\begin{array}{c} 215\\ 228 \end{array}$	$209 \\ 221$	$\begin{array}{c} 203\\214 \end{array}$	$197,8 \\ 209$	$193,3 \\ 203$	189,1 198,7
3,0	339	318	300	285	272	260	250	241	233	226	219	213	208
$^{3,2}_{3,4}$	$\begin{array}{r} 364 \\ 390 \end{array}$	340 363	$\begin{array}{c} 320\\ 340 \end{array}$	$\begin{array}{c} 303\\321\end{array}$	288 304	275 290	$\begin{array}{c} 264 \\ 277 \end{array}$	$\begin{array}{c} 254\\ 266\end{array}$	$\begin{array}{c} 245\\ 256 \end{array}$	$\begin{array}{c} 237\\ 248\end{array}$	$\begin{array}{c} 230\\ 240 \end{array}$	223 233	$\begin{array}{c} 217\\ 226 \end{array}$
3,6 3,8	415 441	385 408	360 380	339 357	321 337	$\begin{array}{c} 305\\ 319 \end{array}$	$\begin{array}{c} 291\\ 304 \end{array}$	$279 \\ 291$	$268 \\ 279$	$\begin{array}{c} 258\\ 269 \end{array}$	$\begin{array}{c} 250\\ 260 \end{array}$	$\begin{array}{c} 242\\ 251 \end{array}$	$\begin{array}{c} 235\\ 244 \end{array}$
4,0	467	431	400	374	351	332	318	303	291	279	269	260	252
4,5 5,0	532 598	$\begin{array}{c} 487\\545\end{array}$	450 500	$\begin{array}{c} 419\\ 463 \end{array}$	$\begin{array}{c} 393 \\ 432 \end{array}$	$\begin{array}{c} 370 \\ 405 \end{array}$	$\frac{350}{382}$	$\begin{array}{c} 333\\ 362 \end{array}$	$\begin{array}{c} 318\\ 345\end{array}$	$305 \\ 329$	$\begin{array}{c} 293\\ 316 \end{array}$	282 303	$\begin{array}{c} 273 \\ 292 \end{array}$
5,5 6,0	$671 \\ 733$	607 660	550 600	511 551	471 510	$\begin{array}{c} 444\\ 475 \end{array}$	$\begin{array}{c} 414\\ 445 \end{array}$	$\begin{array}{c} 394\\ 419 \end{array}$	$371 \\ 397$	$\begin{array}{c} 356\\ 377 \end{array}$	$\begin{array}{c} 338\\ 360 \end{array}$	$\begin{array}{c} 326\\ 344 \end{array}$	$\begin{array}{c} 313\\ 330 \end{array}$
6,5 7,0	801 870	718 776	650 700	$\begin{array}{c} 594 \\ 638 \end{array}$	548 586	$509 \\ 543$	$\begin{array}{c} 476\\ 506 \end{array}$	447 474	$\begin{array}{c} 422\\ 447 \end{array}$	$\begin{array}{c} 400\\ 423 \end{array}$	381 401	364 383	$348 \\ 365$
7,5	939 1007	834 893	750 800		625 662	577 610	536 565	501 528	471	445 466	422 442	401	383 400
8,5	1078	952	850	768	670	643	595	554	519	488	461	437	416
9,0	1146	1009	900	809	737	675	624	579	542	509	480	455	432
9,5 10,0	1219 1291	1067 1127	950 1000	854 896	773 812	708 741	653 682	605 631	565 589	530 550	499 519	$\begin{array}{c c}472\\489\end{array}$	448 464

bei dem Exponenten n = 1,1 17,1 v. H. bei dem Exponenten n = 1,34 23,4 v. H. des Anfangsvolumens.

Beim gleichen Druckverhältnis wächst das Endvolumen bei der Expansion mit dem Exponenten n = 1,23 auf das 4,87 fache des Anfangsvolumens.

Fig. 24. Arbeitsbedarf bei polytropischer Kompression.

In den PV-Diagrammen der Fig. 24 und 25 sind für die Kompression und für die Expansion zwischen Adiabate und Isotherme die Polytropen mit den Exponenten n = 1,3, 1,2 und 1,1 eingezeichnet, ferner des stab für die aufgewandte oder geleistete Arbeit ist. Die V_2

Vergleichs halber die Zustandsänderung mit den Exponenten 1,1 und 0,9. Durch die Adiabate und die

Isotherme sind jedoch die reibungslosen Energieumwandlungen begrenzt, bei denen das PV-Diagramm ein Maß-

Fig. 25. Arbeitsleistung bei polytropischer Expansion.

Zustandsänderungen außerhalb Adiabate und Isotherme bedingen eine größere Wärmezu- oder -abfuhr in Form von Wärme oder Reibung, als der Zustandsänderung entpricht.

V

Ist der Exponent n einer Polytrope bekannt, so ergeben sich damit alle entsprechenden, für die Adiabate bereits abgeleiteten Beziehungen für die Zustandsänderungen ohne innere Reibung ($Q_r = 0$), bei denen die Grundgleichungen in der Form

$$dQ_w = dU + AP dV$$

und

$$\mathrm{d}\mathrm{Q}_{\mathrm{w}} = \mathrm{d}\mathrm{J} - \mathrm{A}\,\mathrm{V}\,\mathrm{d}\mathrm{I}$$

gelten.

Polytropische Kompressionsarbeit.

Kompressionsarbeit bis zur Beendigung der Zustandsänderung

$$\begin{split} \mathbf{L}_{\text{pol. kompr.}} &= \frac{\mathbf{P}_{1} \, \mathbf{V}_{1}}{\mathbf{n} - 1} \left[\left(\frac{\mathbf{p}_{2}}{\mathbf{p}_{1}} \right)^{\frac{\mathbf{n}}{\mathbf{n}}} - 1 \right] \\ &= \frac{\mathbf{P}_{2} \, \mathbf{V}_{2}}{\mathbf{n} - 1} \left[1 - \left(\frac{\mathbf{p}_{1}}{\mathbf{p}_{2}} \right)^{\frac{\mathbf{n}}{\mathbf{n}}} \right] \, \text{mkg.} \end{split}$$

Polytropischer Arbeitsbedarf.

Arbeitsbedarf des Kompressors bei polytropischer Kompression

$$\begin{split} \mathbf{L}_{\text{pol.}} &= \mathbf{P}_{1} \, \mathbf{V}_{1} \, \frac{\mathbf{n}}{\mathbf{n} - 1} \left[\left(\frac{\mathbf{p}_{2}}{\mathbf{p}_{1}} \right)^{\frac{\mathbf{n}}{\mathbf{n}}} - 1 \right] \\ &= \mathbf{P}_{2} \, \mathbf{V}_{2}^{\frac{\mathbf{n}}{\mathbf{n} - 1}} \left[1 - \left(\frac{\mathbf{p}_{1}}{\mathbf{p}_{2}} \right)^{\frac{\mathbf{n}}{\mathbf{n} - 1}} \right] \mathbf{m} \mathbf{k} \mathbf{g}. \end{split}$$

Polytropische Temperaturänderung.

Für die Kompression

$$T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} C.$$

Für die Expansion

$$T_1 = T_2 \left(\frac{p_1}{p_2}\right)^{\frac{n-1}{n}} C.$$

Polytropische Temperaturzu- und -abnahme.

$$\mathbf{t_2} - \mathbf{t_1} = \mathbf{T_1} \left[\left(\frac{\mathbf{p_2}}{\mathbf{p_1}} \right)^{\frac{\mathbf{n}-1}{\mathbf{n}}} - \mathbf{1} \right] = \mathbf{T_2} \left[\mathbf{1} - \left(\frac{\mathbf{p_1}}{\mathbf{p_2}} \right)^{\frac{\mathbf{n}-1}{\mathbf{n}}} \mathbf{0} \mathbf{C}.$$

Darstellung polytropischer Arbeitsweise im Entropiediagramm.

Im Entropiediagramm, in dem die Temperaturänderung am anschaulichsten zum Ausdruck kommt, ergeben sich bei polytropischer Kompression für gleiche Druckverhältnisse mit der jeweiligen absoluten Anfangstemperatur T_1 steigende Temperaturzunahmen $t_2 - l_1$.

$$\begin{split} \mathbf{T}_{z} - \mathbf{T}_{1} &= \mathbf{T}_{1} \bigg[\bigg(\frac{\mathbf{p}_{z}}{\mathbf{p}_{1}} \bigg)^{\frac{\mathbf{n}-1}{\mathbf{n}}} - 1 \bigg] \\ &\qquad < \mathbf{T}_{2} - \mathbf{T}_{z} = \mathbf{T}_{z} \bigg[\bigg(\frac{\mathbf{p}_{2}}{\mathbf{p}_{z}} \bigg)^{\frac{\mathbf{n}-1}{\mathbf{n}}} - 1 \bigg]. \end{split}$$

Da die Linien gleichen Druckes im TS-Diagramm bei gleichen Druckverhältnissen im gleichen Abstand voneinander verlaufen, so wird eine polytropische Zustandsänderung mit unverändertem Exponenten durch eine schwach gekrümmte Linie dargestellt, die umsomehr von der Geraden abweicht, je höher das Temperaturgebiet wird (Fig. 26).

Fig. 26. Verlauf einer Polytrope im TS-Diagramm.

Der Exponent der Kompressionslinie ergibt sich durch die Konstruktion einer Linie gleichen Rauminhalts vom Endpunkt der polytropischen Zustandsänderung bis zum Schnittpunkt mit der Anfangstemperatur T_1 . Für diese v-Linie vom Schnittpunkt der Drucklinie p_2 mit der polytropischen Temperatur

$$T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{n}{n}}$$

bis zur Drucklinie p_n und der Temperatur T_1 gilt nach der Zustandsgleichung:

für den oberen Schnittpunkt

$$\mathbf{p}_2 \mathbf{v} = \mathbf{R} \operatorname{T}_1\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\mathbf{n}-1}{\mathbf{n}}},$$

für den unteren Schnittpunkt

$$p_n v = R T$$

Durch Division erhält man
$$\frac{p_2}{p_n} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}}.$$

Nun ist die Strecke

$$S_2 - S_1 = A R \ln \frac{p_2}{p_1}$$

und die Strecke

$$S_2 - S_n = A R \ln \frac{p_2}{p_n} = A R \ln \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}}$$

Setzt man den ersteren Entropiewert ein, so wird

$$S_2 - S_n = \frac{n-1}{n} (S_2 - S_1)$$

und demnach

$$S_n - S_1 = \frac{1}{n} (S_2 - S_1).$$

Für die Figuren 27 und 28 sind für die Kompression und die Expansion außer Isotherme und Adiabate die Polytropen mit den Exponenten 1,3, 1,2 und 1,1 nach diesem Verfahren eingezeichnet, ferner die Zustandsänderungen mit den Exponenten 1,5 und 0,9. Die Wärmewerte der polytropischen Kompressionsarbeit und des Kompressorarbeitsbedarfes bei polytropischer Kompression sind ohne weiteres aus dem Diagramm zu entnehmen. Im Wärmediagramm ist im Gegensatz zum P V-Diagramm aber auch ersichtlich, wieviel Wärme bei reibungsfreier Zustandsänderung zu- bzw. abgeführt werden muß, damit der Verlauf mit den Exponenten 1,5 bzw. 0,9 vor sich gehen kann.

4*

Die bei polytropischer Kompression im Gas verbleibende Kompressionswärme bzw. die bei der Ex-

Fig. 27. Wärmewert des Arbeitsbedarfs bei polytropischer Kompression.

Fig. 28. Wärmewert der Arbeitsleistung bei polytropischer Expansion.

pansion dem Gas entzogene Wärme ist $J_2 - J_1 = G c_p (t_2 - t_1)$, die sich aus der Temperaturzu- bzw. -abnahme bestimmen läßt. Die während der Kompression abgeführte, während der Expansion zugeführte Wärmemenge ist, immer reibungsfreie Kompression vorausgesetzt,

$$\begin{split} \mathbf{Q}_{w} &= \mathbf{A} \int \mathbf{V} \, d\mathbf{P} - (\mathbf{J}_{2} - \mathbf{J}_{1}) \\ &= \mathbf{A} \, \mathbf{P}_{1} \, \mathbf{V}_{1} \, \frac{\mathbf{n}}{\mathbf{n} - 1} \left[\left(\frac{\mathbf{p}_{2}}{\mathbf{p}_{1}} \right)^{\frac{\mathbf{n} - 1}{\mathbf{n}}} - 1 \right] - \mathbf{G} \, \mathbf{c}_{\mathbf{p}} \, (\mathbf{t}_{2} - \mathbf{t}_{1}). \end{split}$$

Diesem Wert Q_w entspricht die schraffierte Fläche der Fig. 26, während die unschraffierte Fläche die Zuoder Abnahme an Wärmeinhalt $J_2 - J_1$ bedeutet. Während diese sich, wie erwähnt, leicht zahlenmäßig aus den Lufttemperaturen bestimmen läßt, ist jene nur durch Planimetrieren der schraffierten Fläche oder nach obiger Gleichung rechnerisch zu ermitteln.

Sobald bei Zustandsänderungen aber innere Reibung wie bei allen Turbomaschinen auftritt, ist auch das Entropiediagramm nicht mehr ein Maßstab für die zufgewandte Arbeit, da aus keinem Merkmal zu entnehmen ist, in welchem Verhältnis der Wärmewert der augeführten Reibungsarbeit Q_r zur abgeleiteten Wärme Q_w steht. Ist $Q_w = 0$, die Wandung des Kompressors wärmedicht wie bei ungekühlten Turbogebläsen, so ist durch einfache Temperaturmessung eine sehr gute Darstellung auch der Reibungsarbeit im Entropiediagramm möglich. Wird dagegen durch Kühlung Wärme Qw abgeführt, so ist zur Ermittelung der gesamten Kompressionsarbeit einschließlich Reibungsarbeit außer der Temperaturmessung die Messung der Wärmemengen unumgänglich, die mit dem Kühlwasser

abgeleitet werden und in der Druckluft verbleiben. Der letzteren Wärmemenge $J_2 - J_1$ entspricht wohl die unschraffierte Fläche der Fig. 26; der schraffierte Teil stellt aber nicht mehr die Kühlwassererwärmung dar, da auch die ganze Fläche nicht mehr der Gesamtarbeit entspricht. Ins Kühlwasser geht nicht nur die durch die schraffierte Fläche dargestellte Wärmemenge, sondern auch noch die Reibungswärme Q_r über; die mit dem Kühlwasser abgeleitete Wärmemenge ist also um den Betrag Q_r größer als die der schraffierten Fläche entsprechende Wärmemenge $A \int V dP - G c_p (t_2 - t_1)$. Ein Maßstab für Q_r ist im Diagramm aber nicht enthalten, so daß dieses lediglich eine Darstellung der Zustandsänderung ist, die keinen Rückschluß auf den Gesamtarbeitsaufwand gestattet.

Es muß noch erwähnt werden, daß der Verlauf der Zustandsänderung bei einem gekühlten Turbokompressor niemals den gesetzmäßigen Verlauf mit unverändertem Exponenten wie in Fig. 26 S. 27 haben kann. Zu Beginn der Kompression wird mangels eines Temperaturunterschiedes zwischen Luft und Kühlwasser die Zustandslinie überadiabatisch, d. h. mit zunehmender Entropie verlaufen. Späterhin mit größerem Temperaturunterschied geht der Wärmeübergang umso schneller vor sich. Der Exponent nimmt also praktisch von über 1,4 zu Beginn der Kompression bis auf annähernd 1 am Ende der Kompression allmählich ab.

Für die Tafel 23 sind die Werte des Arbeitsbedarfs bei reibungsfreier polytropischer Kompression mit den Exponenten n = 1,1, 1,2 und 1,3 für 1 cbm angesaugte Luft beim Anfangsdruck $p_1 = 1$ at abs. und die Druckverhältnisse 1—6 berechnet und als Ordinaten auf den Druckverhältnissen $\frac{p_2}{p_1}$ als Abszissen aufgetragen.

Vergleichshalber ist auch der Arbeitsbedarf bei isothermischer und adiabatischer Kompression eingezeichnet. Die erforderliche polytropische Arbeit bei einem anderen Anfangsdruck als $p_1 = 1$ at abs., jedoch bei gleichem Druckverhältnis (nicht Enddruck) ergibt sich durch Multiplikation des ablesbaren Wertes mit dem jeweiligen Anfangsdruck.

Ferner ist die Temperaturzunahme bei 20° C Anfangstemperatur für die gleichen Exponenten der Polytrope und für die Adiabate bestimmt und in gleicher Weise aufgetragen. Für eine andere Anfangstemperatur t_1 als 20° C ergibt sich die Temperaturzunahme durch

Multiplikation des ablesbaren Wertes mit $\frac{273 + t_1}{273 + 20}$.

Beispiel: Polytropische Kompression von 0,84 auf 3,3 at abs.

Exponent der Kompressionslinie n = 1,32.

Druckverhältnis
$$\frac{p_2}{p_1} = \frac{3,3}{0,84} = 3,93.$$

Tafel 23: $L_{pol.} = 0.84 \cdot 16\ 250 = 13\ 650\ mkg/cbm.$ Bei 20° C Anfangstemperatur ist die Temperaturzunahme nach Tafel 23 115° C, bei $t_1 = 15^{\circ}$ C

 $115\frac{273+15}{373+20} = 113^{\circ}$ C;

373 + 20Endtemperatur für t₁ = 15^o

$$t_0 = 15 + 113 = 128^{\circ} C.$$

Es geht aus der Tafel 23 ebenso wie aus den Figuren 24-28 hervor, daß die Abnahme des Exponenten der

Multiplikati

Kompressionslinie einen verhältnismäßig geringen Einfluß auf den Arbeitsbedarf hat, daß die Mindererwärmung dagegen beträchtlich ist.

Tafel 23 zeigt schließlich noch die entsprechenden Werte bei einem Verlauf der Kompressionslinie mit den Exponenten n = 1,5 und n = 0,9. Der Verlauf der Kompression mit diesen Exponenten bedingt aber eine Zu- oder Abfuhr von Wärme Qr oder Arbeit A Qr während der Kompression, die im PV-Diagramm nicht erscheint. Bei n = 1,5 ist wohl eine größere Kompressionsarbeit erforderlich, die auf der Tafel 23 abgelesen werden kann; außerdem ist aber noch die Zuführung einer weiteren Wärmemenge oder der Aufwand einer weiteren, dieser Wärme gleichwertigen Arbeit während der Kompression erforderlich, damit die mehr als adiabatische Temperaturzunahme, die relativ geringere Raumabnahme als bei adiabatischer Kompression entstehen kann. Der Arbeitsbedarf in mkg/cbm, der nach dem P V-Diagramm ermittelt ist, drückt wie dieses nicht mehr den Arbeitswert der insgesamt zuzuführenden Wärme aus. Dafür wird bei wärmedichten Kompressorwandungen die Temperaturzunahme des Gases ein Maßstab für die aufgewendete Arbeit.

d. s. 4 v. H. mehr als bei der Adiabate.

Adiabatische Temperaturzunahme

bei 20° C Anfangstemperatur 170° C. Temperaturzunahme bei $n = 1, 5 \dots 208^{\circ}$ C.

Tatsächlich erforderliche Arbeit, d. i. Arbeit + Arbeitswert der zugeführten Wärme A Q_r

$${
m L}_{1,5} = \ 20\ 500\ {208\over 170} = \ 25\ 200\ {
m mkg/cbm}, \ {
m d.} \ {
m s.}$$

23 v. H. mehr als bei der Adiabate.

Das Umgekehrte ist der Fall, wenn n kleiner als 1 ist. Der Arbeitsbedarf ist geringer als bei der Isotherme; es muß aber eine größere Wärmemenge als der Wärmewert dieser Arbeit, sogar noch eine größere als der Wärmewert der größeren isothermischen Kompressionsarbeit während der Kompression abgeleitet werden, damit eine stärkere Raumabnahme als bei der Isotherme möglich ist.

Das von der Kompression Gesagte gilt im umgekehrten Sinne von der Expansion. Polytropische Energieumwandlungen, bei denen die Eigenwärme des Gases und die dem Gas zugeführte Wärme der Umgebung reibungslos in Arbeit umgewandelt werden kann, liegen zwischen Isotherme und Adiabate. Alle anderen Vorgänge außerhalb der Isotherme und Adiabate sind mit Wärmeübergang ohne Energieumsetzung im gewünschten Sinne verbunden.

D. Stufenweise adiabatische Kompression mit Zwischenkühlung.

In der Praxis hat man sich dem idealen, isothermischen Kompressionsvorgang durch Einspritzen von Wasser während der Kompression zu nähern gesucht. Der schnelle Verschleiß der sich reibenden Teile führte jedoch dazu, sich mit einem Kühlmantel zu begnügen.

Aber nur bei kleinen Kompressorabmessungen kann ein Einfluß der Kühlung auf die Kompressionstemperatur und den Arbeitsbedarf festgestellt werden. Bei großen Maschinen verläuft die Kompression trotz intensivster Kühlung adiabatisch; die Zeit eines Hubes ist zu kurz, als daß der Einfluß der Kühlung bei einem Zylinder von mehr als etwa 500 mm Durchmesser und Hub so weit in das Innere der eingeschlossenen Luft vordringen könnte, daß während der Kompression eine bemerkbare Kühlwirkung auftritt, zumal die Luft während der Kompression fast stagniert und der Wärmeübergang infolgedessen gering ist. Die Kühlung nach vollendeter Kompression während des Hinausschiebens der Luft durch gekühlte Kanäle, wobei die Kühlwirkung infolge der Strömung und Wirbelbildung an der Kühlfläche wirksamer ist, hat keinen Einfluß mehr auf den Arbeitsbedarf. Die Mantelkühlung dient nur noch dazu, die sich reibenden Flächen kühl zu erhalten und die Verharzung des Schmiermittels zu verhindern, die Deckelkühlung verhindert nach Möglichkeit die Erwärmung der Luft beim Eintritt in den Zylinder, trägt also zur Verbesserung des Liefergrades bei und beeinflußt ferner im günstigen Sinne den Verlauf der Rückexpansionslinie. (Näheres im Text zur Fig. 9, S. 11.)

Zu großen Arbeitsbedarf und vor allem eine zu hohe Erwärmung des Gases vermeidet man durch stufenweise Kompression und jedesmalige Rückkühlung zwischen zwei Stufen in einem Zwischenkühler.

Fig. 29. Arbeitsbedarf bei zweistufiger adiabatischer Kompression.

Die Endtemperatur jeder Stufenkompression ist $T_{z2} = T_{z1} \left(\frac{p_{z2}}{p_{z1}}\right)^{\frac{z-1}{z}}$, ist also außer von jeder Anfangstemperatur T_{z1} nur noch vom Druckverhältnis $\frac{p_{z2}}{p_{z1}}$

abhängig. Vollständige Rückkühlung bis auf die Ansauge temperatur vorausgesetzt, hat man also in allen Stufen gleiche Kompressionstemperaturen, wenn das Druck verhältnis das gleiche ist. Ist das gesamte Druckverhältnis $\frac{p_2}{p_1}$, so sind die Druckverhältnisse bei n Stufen einander gleich, wenn jedes $\sqrt[n]{\frac{p_2}{p_1}}$ ist. Ist T_1 die Ansaugetemperatur, so ist die Kompressionstemperatur T_{z_2} jeder Stufe und zugleich die Endtemperatur

$$T_2=T_{z2}=T_1\sqrt[n]{\left(\frac{p_2}{p_1}\right)^{\frac{\varkappa-1}{\varkappa}}}$$

Da sich infolge der Rückkühlung jedes Mal der Rauminhalt des Gases verringert, so fällt die Fläche im P V-Diagramm, welche den Arbeitsbedarf des Kompressors darstellt, kleiner aus als bei einstufiger Kompression. Der Arbeitsbedarf der ersten Stufe ist Zustandsänderungen im Kompressor.

Da nun einmal in allen Stufen das Druckverhältnis das gleiche und sodann bei vollständiger Rückkühlung auf die Anfangstemperatur, also auf die Isotherme, zu Beginn jeder weiteren Kompression der Wert $P_z V_z = P_1 V_1$ = unveränderlich ist (siehe Fig. 29), so ist der Arbeitsbedarf jeder weiteren Stufe gleich dem der ersten.

Der gesamte Arbeitsbedarf ist demnach bei n-stufiger adiabatischer Kompression

$$\mathbf{L}_{n\,a} = n \mathbf{P}_1 \mathbf{V}_1 \frac{\varkappa}{\varkappa - 1} \left[\frac{1}{2} / \left(\frac{\mathbf{p}_2}{\mathbf{p}_1} \right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right] \mathbf{m} \mathbf{k} \mathbf{g},$$

bei zweistufiger adiabatischer Kompression

$$\mathbf{L}_{2\,\mathbf{a}} = 2 \mathbf{P}_1 \mathbf{V}_1 \frac{\varkappa}{\varkappa - 1} \left[\sqrt{\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\varkappa - 1}{\varkappa}}} - 1 \right] \mathbf{m} \mathbf{k} \mathbf{g}.$$

In Fig. 30 ist der Wärmewert des Arbeitsbedarfs bei zweistufiger adiabatischer Kompression im Entropie-

Fig. 30. Wärmewert des Arbeitsbedarfs bei zweistufiger adiabatischer Kompression.

diagramm dargestellt, in dem außer der Ersparnis an Arbeit besonders deutlich die geringere Erwärmung in die Erscheinung tritt. Bei vollständiger Rückkühlung ist der Wärmewert der vom Kompressor aufzuwendenden Arbeit

$$A L_{2a} = 2 G p (t_z - t_1) WE$$

Die Arbeitsleistung bei zweistufiger adiabatischer Expansion mit vollkommener Zwischenerwärmung ist genau so groß wie der Arbeitsbedarf bei der Kompression mit vollkommener Zwischenkühlung. Vom Anfangsdruck P_2 und dem Anfangsvolumen V_2 bei der Expansion ausgehend, ist

$$\mathbf{L}_{2\,\mathrm{a}} = 2\,\mathbf{P}_{2}\,\mathbf{V}_{2}\frac{\varkappa}{\varkappa-1}\left[1-\sqrt{\left(\frac{\mathbf{p}_{1}}{\mathbf{p}_{2}}\right)^{\frac{\varkappa-1}{\varkappa}}}\right]\,\mathrm{mkg}.$$

In Fig. 31 ist die 2-stufige Expansion im P V-Diagramm, in Fig. 32 im Entropiediagramm dargestellt.

Da für Luft

$$\varkappa = 1,4, \frac{\varkappa}{\varkappa - 1} = 3,5$$

und

$$\frac{\alpha - 1}{2\alpha} = \frac{0.4}{2.8} = \frac{1}{7} = 0.143$$

ist, so ergibt sich der Arbeitsbedarf für 1 cbm angesaugte Luft bei reibungsloser 2 stufiger adiabatischer Kompression zu

$$L_{2\,a} = \ 70\,000 \ p_1 \left[\left(rac{p_2}{p_1}
ight)^{0,143} - 1
ight] \ mkg/c\,bm.$$

Auf Tafel 24 sind die Anfangsdrucke als Abszissen, der Arbeitsbedarf L_{2a} bei zweistufiger adiabatischer Kompression für verschiedene Enddrucke als Ordinaten auf-

Fig. 31. Arbeitsleistung bei zweistufiger adiabatischer Expansion.

Fig. 32. Wärmewert der Arbeitsleistung bei zweistufiger adiabatischer Expansion.

getragen. Die Tafeln 25—27 sind für die meist vorkommenden Anfangsdrucke von 0,8—1,2 at abs. sowie für die Enddrucke von etwa 4—12 at abs. in größerem Maßstabe gezeichnet.

Beispiel:

 $\begin{array}{l} p_1 = 1,1 \text{ at abs., } p_2 = 7,5 \text{ at abs.;} \\ & \text{Tafel } 24 \colon \text{L}_{2a} = 24\ 400\ \text{mkg/cbm} \\ p_1 = 1,025 \text{ at abs., } p_2 = 4,82 \text{ at abs.;} \\ & \text{Tafel } 25 \colon \text{L}_{2a} = 17\ 750\ \text{mkg/cbm} \\ p_1 = 0,984 \text{ at abs., } p_2 = 7,25 \text{ at abs.;} \\ & \text{Tafel } 26 \colon \text{L}_{21} = 22\ 760\ \text{mkg/cbm} \\ p_2 = 1,012 \text{ at abs., } p_2 = 10.88 \text{ at abs.;} \end{array}$

 $p_1 = 1,012$ at abs., $p_2 = 10,88$ at abs.; Tafel 27: $L_{23} = 28\ 620\ mkg/cbm$

Leistungsbedarf des Kompressors bei zweistufiger adiabatischer Kompression.

Der theoretische Leistungsbedarf eines zweistufigen Kolbenkompressors zur Kompression von 8900 cbm/st von 1,012 at abs. auf 10,88 at abs. ist

$$N_{2\,a} = \frac{8900 \cdot 28\,620}{3600 \cdot 75} = 943 \ \mathrm{PS}_{2\,a} \,. \label{eq:N2a}$$

Wirkungsgrade, bezogen auf den Arbeitsbedarf bei zweistufiger adiabatischer Kompression.

Infolge der Widerstände, welche beim Strömen der Luft durch die Kanäle und Steuerorgane (Widerstände in der Saug- und Druckleitung darf man nicht zu Lasten des Kompressors rechnen) sowohl beim Ansaugen als beim Fortdrücken auftreten, weist das Indikatordiagramm auch bei zweistufigen Kolbenkompressoren eine größere Fläche auf, als der theoretischen entspricht. Das

30

Verhältnis beider Flächen ist der Wirkungsgrad des Kompressionsvorganges $\eta_{2a \text{ kompr.}}$, kurz ausgedrückt, bezogen auf die zweistufige Adiabate.

Würde der in den Kompressorzylindern indizierte Leistungsbedarf des als Beispiel gewählten Kompressors 1016 PS betragen, so wäre der Wirkungsgrad des Kompressionsvorganges $\eta_{2a \text{ kompr.}} = \frac{943}{1016} = 0,928$, bezogen auf die zweistufige Adiabate. Die Widerstände würden also etwa 8 v. H. ausmachen.

Bei 1120 PS effektivem Leistungsbedarf wäre der mechanische Wirkungsgrad

$$\eta_{
m mech.} = rac{1016}{1120} = 0,907$$

und der Gesamtwirkungsgrad des Kompressors

$$\eta_{2 \, \mathrm{a} \, \mathrm{ges.}} = \frac{943}{1120} = 0.842$$

bezogen auf die zweistufige Adiabate.

Würde der gleiche Kompressor am freien Ende seiner Kurbelwelle durch eine Dampfmaschine mit 90 v. H. mechanischem Wirkungsgrad angetrieben, so wäre die indizierte Dampfmaschinenleistung $N_i = \frac{1120}{0.9}$

$= 1244 \text{ PS}_{i}.$

Wird der Kompressor aber durch eine mit ihm in Tandembauart angeordnete Dampfmaschine betrieben, so geht der größte Teil der Kolbenkräfte reibungsfrei von den Dampfkolben auf die Kompressorkolben über und der mechanische Wirkungsgrad des ganzen Aggregats ist nicht schlechter als bei Antrieb des Kompressors von der Kurbelwelle her, beispielsweise durch Elektromotor. Die indizierte Dampfmaschinenleistung ist dann also wieder 1120 PS. Der indizierte Leistungsbedarf des Kompressors ist dann die effektive Leistung der Dampfmaschine, die indizierte Dampfmaschinenleistung der effektive Leistungsbedarf des Kompressors.

Der Gesamtwirkungsgrad des Kompressors besteht also wieder aus 2 Faktoren:

 $\eta_{2a \text{ ges.}} = \eta_{2a \text{ kompr.}} \cdot \eta_{\text{mech.}} = 0,928 \cdot 0,907 = 0,842.$

Genau wie beim einstufigen Kompressor kennzeichnet keiner der beiden Faktoren des Gesamtwirkungsgrades allein die Güte der Maschine; der mechanische Wirkungsgrad allein ist also als Garantie belanglos. Eine Garantie muß alle Verluste umschließen, die Widerstände im Diagramm, eventuelle Minderrückkühlung, deren Einfluß in einem besonderen Abschnitt noch behandelt wird, und die Verluste durch mechanische Die alles umfassende Garantie für eine be-Reibung. stimmte Saugleistung bei festgelegtem Anfangs- und Enddruck ist der Leistungsverbrauch in PS, bei Antrieb durch Riemen oder Elektromotor in PSe, bei Antrieb durch Dampfmaschine in PS_i, in den Dampfzylindern indiziert, ganz gleichgültig, ob Kompressor und Dampfmaschine in Tandem- oder Zwillingsbauart angeordnet sind. In diese Garantie sind alle Verluste eingeschlossen, der Gesamtwirkungsgrad ist damit genau festgelegt. Umgekehrt ließe sich der Leistungsbedarf bei garantiertem Gesamtwirkungsgrad nur berechnen, wenn genau gesagt würde, worauf er bezogen werden soll.

Es hätte ja etwas für sich, wenn der Gesamtwirkungsgrad ein für alle Mal auf die Isotherme bezogen würde, da dann auch Kompressoren verschiedenen Prinzips bei gleichen oder annähernd gleichen Druckverhältnissen ohne weiteres verglichen werden können. Beim letzten Beispiel für einen zweistufigen Kolbenkompressor ist die isothermische Leistung

$$N_{is.} = \frac{8900 \cdot 24030}{3600 \cdot 75} = 792 \text{ PS}_{is.}$$

und der isothermische Gesamtwirkungsgrad

$$\eta_{\rm is.\,ges.} = \frac{792}{1120} = 0.70.$$

Der auf die Isotherme bezogene Wirkungsgrad muß aber infolge der Abweichung der Adiabate von der Isotherme mit steigendem Druckverhältnis abnehmen, während der Wirkungsgrad, auf diejenige theoretische Leistung bezogen, welche dem wirklichen Verlauf der Kompression am nächsten liegt, im vorliegenden Falle die zweistufige Adiabate, bei weitem nicht so stark vom Druckverhältnis abhängig ist. Bei zweistufigen Kolbenkompressoren mit Rückkühlung wird man daher immer die zweistufige Adiabate zur Kennzeichnung der Arbeitsweise heranziehen, da dieser Wirkungsgrad am wenigsten von 1 abweicht, es sei denn, daß man einen Vergleich mit einem vielstufigen Turbokompressor mit fast ununterbrochener Rückkühlung beabsichtigt, für den die Isotherme geeigneter ist. Aus der Fig. 22 S. 23 ist der Faktor zu entnehmen, im vorliegenden Fall der Wirkungsgrad der zweistufigen Adiabate, bezogen auf die Isotherme, mit dem der Wirkungsgrad des Kompressors, bezogen auf die zweistufige Adiabate, noch zu multiplizieren ist, um den isothermischen Wirkungsgrad zu erhalten.

Soll der Wirkungsgrad der antreibenden Dampfmaschine oder des Elektromotors in die Garantie eingeschlossen werden, so ist die alles umfassende und die Wirtschaftlichkeit des ganzen Aggregats am besten kennzeichnende Garantie das stündlich verbrauchte Dampfgewicht bzw. der Wattverbrauch oder der Dampfbzw. Wattverbrauch für 1 cbm angesaugte Luft, die von einem bestimmten Anfangsdruck auf einen bestimmten Eindruck zu pressen ist. Dabei sind der Dampfzustand beim Eintritt in die Maschine und der Dampfdruck beim Austritt aus der Maschine festzulegen und beim elektrischen Antrieb die eventuellen Verluste durch Riemen oder Zahnradübertragung zu berücksichtigen.

Der Gesamtwirkungsgrad des Aggregates wird, je nachdem, ob er auf die einstufige Adiabate, auf die Isotherme, auf die zweistufige Adiabate oder auf einen anderen theoretischen Wert bezogen wird, verschieden groß sein, zumal wenn noch der thermische Wirkungsgrad der Antriebsdampfmaschine eingeschlossen wird, der bei Dampfturbinen wohl weniger, bei Kolbenmaschinen aber stark mit dem Dampfanfangszustand und dem Enddruck sich ändert.

Bei der Beurteilung des Gesamtwirkungsgrades ist daher nicht nur zu prüfen, welche theoretischen Werte ihm zugrunde gelegt sind, es müssen auch die ganzen Betriebsverhältnisse in Erwägung gezogen werden. Dagegen ist die einfache Garantie des Verbrauches für 1 cbm angesaugte Luft oder des stündlichen Gesamtverbrauches bei festgelegter Saugmenge und Drucken dem Betriebsinhaber ohne weiteres ein Maßstab für die Wirtschaftlichkeit der Anlage und ermöglicht einen Vergleich, der an Klarheit und Bestimmtheit nicht zu übertreffen ist. Alle Einzelwirkungsgrade, worauf sie immer zu beziehen sind, können dem Käufer und Besitzer ganz gleichgültig sein, wenn die Maschine diese alles umfassende Garantie erfüllt. Infolge dieser Erkenntnis ist im "Entwurf der Regeln für Leistungsversuche an Ventilatoren und Kompressoren" vom Jahre 1912 gesagt: "Die Gewährleistungen für die Wirtschaftlichkeit des Lieferumfanges gelten unter Ausschluß von Zwischenarten als erfüllt, wenn der zugehörige wirtschaftliche Gesamtwirkungsgrad der Anlage erreicht wird."

Vergleichsrechnung bei zweistufiger Kompression.

Eine Umrechnung auf nicht wesentlich abweichende Verhältnisse zum Zwecke des Vergleichs muß unter Annahme gleicher Wirkungsgrade, bezogen auf die zweistufige Adiabate, geschehen.

Der als Beispiel gewählte zweistufige Kompressor würde zur Kompression von 9000 cbm/st von 1 auf 11,1 at abs.

$$N_e = 1120 \frac{9000}{8900} \frac{28750}{28620} = 1138 PS_e$$

erfordern. Dann wäre wieder

$$\eta_{2 \,\mathrm{a \ ges.}} = \frac{9000 \cdot 28\ 750}{3600 \cdot 75 \cdot 1138} = 0.842,$$

bezogen auf die zweistufige Adiabate, wie durch Messung festgestellt wurde.

Reduzierter mittlerer indizierter Druck.

Der theoretische Wert $p_{ired.theor.}$, bezogen auf den Niederdruck-Kompressorzylinder, ist wie bei einstufiger Kompression der ablesbare Wert des Arbeitsbedarfes L_{2a} in mkg/cbm, dividiert durch 10 000 und multipliziert mit dem volumetrischen Wirkungsgrad

$$\mathrm{p}_{\mathrm{i\,red.\,theor.}} = rac{\mathrm{L}_{2\,\mathrm{a}}}{10\,000} \cdot \eta \,\mathrm{vol} \,.$$

Beispiel: Zweistufige Kompression von 1,01 auf 7,2 at abs., $\eta_{vol.} = 92$ v. H.

Tafel 28: $p_{i red. theor.} = \frac{22\,920}{10\,000} 0,92 = 2,082 \text{ kg/qcm.}$

Ist der Wirkungsgrad $\eta_{2a \text{ kompr.}} = 95 \text{ v. H.}$, so ist der tatsächliche, auf den Niederdruck-Kompressorzylinder reduzierte, mittlere indizierte Druck

$${
m p_{i\,red.}}=rac{2,082}{0,95}=2,\!19~{
m kg/qcm}\,.$$

Zwei- oder mehrstufige Kompression?

Durch die einmalige Zwischenkühlung bei Kolbenkompressoren wird der Arbeitsbedarf bei dem gebräuchlichsten Enddruck von 7 at abs. von 26 040 mkg/cbm bei einstufiger Kompression (Tafel 12) auf 22 450mkg/cbm (Tafel 26), d. i. um 13,8 v. H. vermindert. Bei isothermischer Kompression würde er nur noch 19 450 mkg/cbm (Tafel 21) betragen, d. s. 25,3 v. H. weniger als bei einstufiger adiabatischer Kompression.

Es ist naheliegend, durch mehrmalige Zwischenkühlung den Minderaufwand von 13,8 v. H. bei einmaliger Zwischenkühlung noch zu vergrößern, sich dem Idealfall der Isotherme noch mehr zu nähern.

Bei dreistufiger Kompression ist der theoretische Arbeitsbedarf zur Kompression von 1 cbm angesaugte Luft von 1 auf 7 at abs.

 $(\sqrt[9]{7} = 1,913)$, Tafel 8: L₄ = 7140 mkg/cbm). Der Minderarbeitsbedarf gegenüber der einstufigen Adiabate ist 17,7 v. H. Während also durch die erste Zwischenkühlung der Arbeitsbedarf um 13,8 v. H. vermindert wird, sind durch die zweite Zwischenkühlung nur noch 17,7 — 13,8 = 3,9 v. H. zu ersparen. (Fig. 33 und 34

Fig. 33. Arbeitsbedarf bei 3 stufiger adiabatischer Kompression.

Fig. 34. Wärmewert des Arbeitsbedarfs bei 3stufiger adiabatischer Kompression.

zeigen 2- und 3-stufige Kompression im PV- und im TS-Diagramm.) Ein Teil dieser Ersparnis wird praktisch durch die bei dreimaligem Ansaugen und Fortdrücken vermehrten Widerstände aufgezehrt, ein anderer Teil geht durch die vermehrte mechanische Reibung infolge der dritten Kolbenreibfläche verloren, so daß der übrig bleibende geringe Gewinn nicht die Anlagekosten eines zweiten Zwischenkühlers und eines dritten Zylinders rechtfertigen würde. Der erstrebte Gewinn könnte sich sogar in einen Verlust verwandeln, wenn die Betriebsverhältnisse nur eine mangelhafte Rückkühlung ermöglichen würden.

Die Fig. 22 S. 23 zeigte, wie groß der Wirkungsgrad 1-, 2-, 3- und 4stufiger adiabatischer Kompression,

Fig. 35. Vergleich der 2-, 3- und 4stufigen Adiabate und der Isotherme mit der einstufigen Adiabate.

bezogen auf die Isotherme, bei den Druckverhältnissen 1 bis 10 ist. In der Fig. 35 ist dagegen der Arbeitsbedarf bei 2-, 3- und 4stufiger adiabatischer sowie bei isothermischer Kompression auf den bei einstufiger adiabatischer Kompression bezogen. Die Druckverhältnisse sind als Abzissen, die Arbeiten in v. H. derjenigen bei der einstufigen Adiabate als Ordinaten aufgetragen. Die Ersparnis durch die erste Unterteilung des gesamten Druckverhältnisses ist beträchtlich; mit jeder weiteren Stufe nimmt der theoretische Arbeitsbedarf wohl noch ab, die Ersparnis wird von Stufe zu Stufe aber immer geringer. Die Isotherme stellt das theoretische Minimum an Arbeitsaufwand dar.

Beispiel: Druckverhältnis
$$\frac{p_2}{p_1} = 7$$

2-stufige Adiabate $L_{2a} = \sim 86$ v. H. L_a einstufig
3-stufige Adiabate $L_{3a} = \sim 82$ v. H. L_a einstufig
4-stufige Adiabate $L_{4a} = \sim 80$ v. H. L_a einstufig
Isotherme $L_{is.} = \sim 75$ v. H. L_a einstufig

Mitbestimmend für die Anżahl der Stufen ist ferner die auftretende Kompressionstemperatur, die mit Rücksicht auf die Betriebssicherheit je nach Beschaffenheit des verwendeten Kompressoröls einen bestimmten Wert, nach Vorschrift des Oberbergamts zu Dortmund 140° C nicht überschreiten soll. Bei zweistufiger Kompression von 1 auf 7 at abs., also bei $\sqrt{7}$ facher, d. i. ~ 2,65facher Kompression in jeder Stufe, ist die Endtemperatur bei 35° C Rückkühltemperatur hinter dem Zwischenkühler nach der Entropie-Tafel 15 135° C. Auch aus diesem Grunde ist daher dreistufige Kompression bei 7fachem Kompressionsverhältnis nicht gerechtfertigt, da es keine Vorteile bietet, wenn die mit großer Vorsicht festgelegte Maximaltemperatur von 140^o beträchtlich unterschritten wird. Der Endtemperatur darf überhaupt keine zu große Bedeutung beigemessen werden, da die Forderung niedriger Endtemperatur nur dazu führt, das Druckverhältnis in unrichtiger Weise zu teilen, mit welcher Maßnahme ein wirtschaftlicher Vorteil natürlich nicht verbunden ist.

Bei Kompression auf höhere Drucke nimmt der Minderarbeitsbedarf bei 3- und mehrstufiger Kompression im Vergleich zu dem bei zweistufiger Kompression wieder zu. Auf Tafel 28 ist für die Druckverhältnisse 1 bis 200 der theoretische Arbeitsbedarf bei 1 at abs. Anfangsdruck in mkg/cbm angesaugte Luft bei 1- bis 6 stufiger adiabatischer und bei isothermischer Kompression aufgetragen. Ferner ist die Temperaturzunahme in jeder Stufe bei denselben Stufenzahlen für x = 1,4 und n = 1,35 für 20° Ansauge- und Rückkühltemperatur bestimmt und als Ordinate auf den Druckverhältnissen als Abszissen aufgetragen. Bei größeren Maschinen mit hoher Kolbengeschwindigkeit, bei denen die Kühlwirkung in der kurzen Zeit eines Hubes nicht weit genug vordringt, als daß der Verlauf der Kompressionslinie beeinflußt werden könnte, muß mit der adiabatischen Temperaturzunahme gerechnet werden; bei kleineren werden geringere Temperaturen entsprechend n = etwa 1,35 auftreten. Der Einfluß der Kühlung auf den Arbeitsbedarf kann hierbei aber immer vernachlässigt werden.

D				٠		1	
- R	O T	CL	n	1	0	0	
1)	61	5	1.1	ч	С.	10	
-		~	1	~	-		

Anfangsdruck $p_1 = 1$ at abs.		1922/09/17/17/09/1	
Enddruck p_2 in at abs.	30	100	150
Arbeitsbedarf L _a in mkg/cbm $\begin{cases} 2 \text{ stuff} \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{cases}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 65\ 000\\ 57\ 800\\ 54\ 500\\ 52\ 600\\ 51\ 500\end{array}$	$\begin{array}{c} 73\ 200\\ 64\ 400\\ 60\ 200\\ 58\ 200\\ 56\ 600 \end{array}$
Adiabatische Kompressionstemperatur in ${}^{\circ}$ C bei 20° Anfangstemperatur	$\begin{array}{c} & 204 \\ 132 \\ 101 \\ 83 \\ 70 \end{array}$	182 134 108 92	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$; 182 120 92 77 66	163 112 99 85	179 132 107 92
Zweckmäßige Bauart des Kompressors	3stufig mit Rücksicht auf 9 v. H. Arbeitserspar- nis gegenüber 2 stufi- ger Bauart und mit Rücksicht auf dieTem- peratur	4stufig mit Rücksicht auf die Temperatur	4stufig, bei größeren Maschi- nen ev. 5stufig mit Rücksicht auf die Tem- peratur

Teilung des Druckverhältnisses.

Bei zweistufiger Kompression mit adiabatischer Zustandsänderung vom Anfangsdruck p_1 auf den Enddruck p_2 ist der Arbeitsbedarf L beider Stufen bei dem Zwischenkühlerdruck p_z

$$\begin{split} \mathbf{L} &= \mathbf{P}_{1} \, \mathbf{V}_{1} \, \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{\mathbf{p}_{z}}{\mathbf{p}_{1}} \right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right] \\ &+ \mathbf{P}_{z} \, \mathbf{V}_{z} \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{\mathbf{p}_{2}}{\mathbf{p}_{z}} \right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right]. \end{split}$$

H in z. Thermodynamische Grundlagen.

Unter Berücksichtigung, daß bei vollkommener Rückkühlung $P_1 V_1 = P_z V_z$, ist

$$\mathbf{L} = \mathbf{P}_{1} \mathbf{V}_{1} \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{\mathbf{p}_{z}}{\mathbf{p}_{1}} \right)^{\frac{\varkappa - 1}{\varkappa}} + \left(\frac{\mathbf{p}_{2}}{\mathbf{p}_{z}} \right)^{\frac{\varkappa - 1}{\varkappa}} - 2 \right].$$

$$\frac{x-1}{x}p_{1} - \frac{\frac{x-1}{x}}{p_{z}}p_{z} - \frac{\frac{x-1}{x}-1}{x}p_{2} - \frac{x-1}{x}p_{2} - \frac{\frac{x-1}{x}-1}{x}p_{z} = \frac{x-1}{x}$$

=0

Dann ist

$$p_1 p_z^{-1} p_1^{1-1} = p_2 p_z^{-1-1}$$

33

$$p_{z}^{2} = p_{1} p_{2}$$

$$p_{z} = \sqrt{p_{1} p_{2}} = p_{1} \sqrt{\frac{p_{2}}{p_{1}}}$$

$$\frac{p_{z}}{p_{1}} = \frac{p_{2}}{p_{z}} = \sqrt{\frac{p_{2}}{p_{1}}}.$$

Bei zweistufiger adiabatischer Kompression ist der Arbeitsbedarf also dann ein Minimum, wenn die Druckverhältnisse beider Stufen einander gleich, bei Kompression von 1 auf 7 at abs. also gleich $\sqrt{7} = \sim 2,65$ sind. Wird dieses Druckverhältnis nicht eingehalten, so nimmt der Arbeitsbedarf zu, wie die folgenden beiden Beispiele zeigen werden.

1. Das Druckverhältnis der ersten Stufe sei 20 v. H. geringer als theoretisch, also $2,65 \cdot 0,8 = \sim 2,1$; das der zweiten Stufe würde dann $\frac{7}{2,1} = 3,33$ sein.

Tafel 8 und 9: L = 8270 + 14360 = 22630 mkg/cbm, d. s. 0,8 v. H. mehr als 22450 mkg/cbm bei theoretischer Teilung.

2. Das Druckverhältnis der ersten Stufe sei 20 v. H. größer als theoretisch, also $2,65 \cdot 1,2 = \sim 3,2$; das der zweiten Stufe würde dann $\frac{7}{3,2} = 2,257$ sein.

Tafel 9 und 8: $L = 13\,370 + 9170 = 22\,540$ mkg/cbm, d. s. 0,4 v. H. mehr als bei theoretischer Teilung. (Fig. 36 und 37 sind die Darstellungen der kurzen Rechnung im PV- und TS-Diagramm.)

Fig. 36. Arbeitsbedarf 2 stufiger adiabatischer Kompression bei ungleichen Druckverhältnissen.

Fig. 37. Wärmewert des Arbeitsbedarfs 2stufiger adiabatischer Kompression bei ungleichen Druckverhältnissen.

Der Mehrheitsbedarf ist selbst bei der beträchtlichen Abweichung von 20 v. H. von dem theoretischen Zwischenkühlerdruck jedoch so gering, daß er für die Praxis belanglos ist, zumal, wenn durch die Abweichung vom theoretischen Wert andere Vorteile, beispielsweise günstigere Verteilung der gesamten Kolbenkräfte einschließlich der Dampfkolbendrucke, erzielt werden können. In der Fig. 38 ist dargestellt, wie groß der Arbeitsbedarf bei Kompression von 1 auf 7 at abs. bei verschieden großer Abweichung des Zylinderverhältnisses vom theoretischen Wert ist. Die Zylinderverhältnisse sind als Abszissen, der jeweilige theoretische Arbeits-

Fig. 38. Abhängigkeit des Arbeitsbedarfs bei 2stufiger adiabatischer Kompression von 1 auf 7 at abs. vom Druckverhältnis der ersten Stufe.

bedarf in mkg/cbm angesaugte Luft ist als Ordinate aufgetragen. Der Arbeitsbedarf ist am geringsten bei dem Zylinderverhältnis $\sqrt{7}$. Bei geringerem und größerem Druckverhältnis kann sowohl der Arbeitsbedarf in mkg/cbm als auch seine Zunahme in v. H. im Vergleich zu dem Minimalwert abgelesen werden.

Für höhere Drucke mit mehrfacher Unterteilung des gesamten Druckverhältnisses gilt das über die Wahl des Zylinderverhältnisses Gesagte in sinngemäßer Weise.

Unvollkommene Rückkühlung.

Findet vollständige Rückkühlung nicht statt, so ist das Anfangsvolumen der nächsten Stufe und damit ihr Arbeitsbedarf im Verhältnis der absoluten Rückkühltemperatur zur absoluten Anfangstemperatur bei vollkommener Rückkühlung auf die Isotherme

Fig. 39. Mehrarbeitsbedarf bei unvollkommener Rückkühlung.

(Fig. 39). Ermöglicht umgekehrt der Temperaturunterschied zwischen angesaugter Luft und Kühlwasser eine tiefere Rückkühlung als auf die Ansaugetemperatur, so fällt das Anfangsvolumen und damit der Arbeitsbedarf der nächsten Stufe kleiner aus. Da Ansauge- und Rückkühltemperaturen fast immer in der Nähe von 27° C = 300° C abs. liegen, so bedingen je 3° C Minderrückkühlung etwa 1 v. H. Mehrarbeitsbedarf, je 3° C tiefere Rückkühlung etwa 1 v. H. Arbeitsersparnis in der folgenden Stufe. Bei zweistufiger Kompression ist der Arbeitsbedarf in beiden Stufen annähernd gleich, so daß je 6° Mehr- oder Minderrückkühlung den gesamten Arbeitsbedarf um etwa 1 v. H. vergrößern bzw. verringern. Einfluß des Temperaturunterschiedes zwischen angesaugter Luft und Kühlwasser auf den Arbeitsbedarf und den Wirkungsgrad. 35

Von diesem Gesichtspunkte aus muß man bei zweioder mehrstufigen Kompressoren von einem Einfluß der Ansaugetemperatur auf den Arbeitsbedarf sprechen, der bei einstufigen Maschinen trotz Kühlmantel nicht vorhanden ist. Richtiger gesagt ist es der Temperaturunterschied zwischen der angesaugten Luft und dem Kühlwasser, der den Arbeitsbedarf bei der Kompression beeinflußt. Saugt man z. B. Luft von -10° C an, so ist mit Wasser niemals vollständige Rückkühlung zu erzielen und der Arbeitsbedarf muß größer sein als wenn warme Luft angesaugt wird, bei der vollständige Rückkühlung auf die höhere Temperatur leicht möglich ist.

In anschaulicher Weise zeigt dies das Wärmediagramm. In der Fig. 40 ist der Wärmewert des minimal erreichbaren Kompressorarbeitsbedarfs bei + 10° Ansaugetemperatur und + 5° Kühlwassertemperatur dargestellt. Rückkühlung ist dauernd nur auf ca. 20° über der Wassertemperatur, also auf + 25° C möglich. Die schraffierte Fläche stellt das unvermeidliche Mehr an Arbeitsaufwand gegenüber vollständiger Rückkühlung auf 10° Ansaugetemperatur dar. Der Mehrbetrag macht ca. $\frac{15}{6} = \sim 2,5$ v. H. aus.

Fig. 40. Wärmewert des Mehrarbeitsbedarfs bei unvollkommener Rückkühlung.

Ähnlich liegt der Fall bei gekühlten Turbokompressoren, welche vielstufig auf den verlangten Enddruck pressen, und bei denen zwischen je 2 Stufen die Kompressions- und Reibungswärme der Luft möglichst entzogen wird. Die erreichbare Rückkühlung der Luft liegt stets über der Kühlwassertemperatur, da immer ein gewisser Temperaturunterschied erforderlich ist, um die Luftwärme durch die Wandung der Kühlflächen an das Kühlwasser überzuleiten. Saugt man Luft an, kälter als das Kühlwasser, so ist vollständige Rückkühlung ausgeschlossen; sie ist dagegen erreichbar, wenn Luft angesaugt wird, die beträchtlich wärmer als das Kühlwasser ist.

Einfluß des Temperaturunterschiedes zwischen angesaugter Luft und Kühlwasser auf den Arbeitsbedarf und den isothermischen Wirkungsgrad.

Zur Kompression von 10 000 cbm stündlich angesaugte Luft von 1 auf 7 at abs. sind bei isothermischer Kompression nach Tafel 21

$$N_{is.} = \frac{10\,000\cdot19\,450}{3600\cdot75} = 721 \text{ PS}_{is.}$$

erforderlich. Es soll untersucht werden, wie groß der effektive Leistungsbedarf ist, wenn bei 15^{0} Ansaugtemperatur der Luft Kühlwasser von

- 1) 5° C,
- 2) 15º C und
- 3) 25° C

verwendet wird.

α) Zweistufiger Kolbenkompressor.

Der Arbeitsbedarf bei zweistufiger adiabatischer Kompression ist nach Tafel 26 22 450 mkg/cbm. Bei vollkommener Rückkühlung würde der Arbeitsbedarf jeder Stufe die Hälfte, also 11 225 mkg/cbm sein. Praktisch ist die Rückkühlung trotz sehr reichlicher Kühlwassermenge nur auf etwa 15°C über Kühlwassereintrittstemperatur zu erreichen, also auf etwa

- 1) 20° C,
- 2) 30° C,
- 3) 40° C

(siehe Fig. 41 und 42). Damit steigt der Arbeitsbedarf der zweiten Stufe auf

1) 11 225 $\frac{273 + 20}{273 + 15} = 11 420 \text{ mkg/cbm},$ 2) 11 225 $\frac{273 + 30}{273 + 15} = 11 810 ,,$ 3) 11 225 $\frac{273 + 40}{273 + 15} = 12 200 ,,$

Fig. 42. Wärmewert des Arbeitsbedarfs eines 2stufigen Kolbenkompressors bei Kompression von 1 auf 7 at abs. bei verschiedener Kühlwassertemperatur.

Der gesamte Arbeitsbedarf ohne Widerstände wird infolgedessen betragen

1)	11225 +	11420	= 22	645	mkg/cbm,
2)			23	035	,,
3)			23	425	,,
					**

Die Kompression in den Zylindern selbst geht adiabatisch vor sich. Durch die Reibung der Luft und die Geschwindigkeitserzeugung in den Kanälen und Steue rungsorganen entsteht jedoch ein Mehrarbeitsbedarf, der bei guten Maschinen und dem vorliegenden Druckverhältnis etwa 8 v. H. ausmacht. (Der Einfluß des Druckverhältnisses ist bedingt durch die Länge der Fortdrucklinie im P V-Diagramm.) Der praktische Arbeitsbedarf, dargestellt durch das Indikatordiagramm, ist demnach

1) $22645 \cdot 1,08 =$	24460	mkg/cbm
2)	24870	"
3)	25300	"

und der in den Luftzylindern indizierte Leistungsbedarf

1)	10000 21100	- 006 PS.
1)	$3600 \cdot 75$	$- 500 I B_{i}$,
2)		921 ,,
3)		937 ,,

Der mechanische Wirkungsgrad erreicht bei guter Werkstattausführung 90 v. H. und mehr, so daß der effektive Leistungsbedarf bei $\eta_{\text{mech.}} = 90$ v. H.

1)
$$\frac{906}{0,9} = 1007 \text{ PS}_{e},$$

2) $1023 ,,$
3) $1041 ,,$

beträgt. Damit ergibt sich der Wirkungsgrad, bezogen auf die Isotherme, bei dem gleichen Kompressor, je nachdem, welche Temperatur das benutzte Kühlwasser hat, allgemein, je nachdem, wie groß der Temperaturunterschied zwischen Ansaugeluft und Kühlwassereintritt ist, zu

1)
$$\eta_{\text{is. ges.}} = \frac{721}{1007} = 0,716,$$

2) 0,704,
3) 0,693.

Durch 10^o Temperaturunterschied wird also der Wirkungsgrad zweistufiger Kolbenkompressoren mit Rückkühlung bei normalen Verhältnissen um 1,5—1,7 v. H. beeinflußt, durch je 6^o demnach um etwa 1 v. H.

Bei einstufigen Kompressoren ist dieser Einfluß, wie bereits betont, nicht vorhanden, da die Mantel- und Deckelkühlung so gut wie gar nicht bei der üblichen kurzen Hubzeit auf den Arbeitsbedarf einwirken kann.

β) Vielstufiger, gekühlter Turbokompressor.

Ein Mehrbedarf an reiner Kompressionsarbeit im Vergleich zu der bei isothermischer Kompression entsteht dadurch, daß die Luft auf ihrem Wege durch den Kompressor trotz fast ununterbrochener Kühlung doch eine Temperaturzunahme erfährt. Es ist eben ein gewisser Temperaturunterschied erforderlich, um die auftretende Wärme von der Luft an das Kühlwasser überzuleiten. Wäre die Kühlung nicht vorhanden, so würde die Temperatursteigerung infolge des Rückströmens der schon vorgepreßten und schon erwärmten Luft durch die Abdichtung zwischen je 2 Stufen und vor allem infolge der erhöhten Reibung der Luft bei den erforderlichen hohen Geschwindigkeiten an den Schaufeln und an den Wandungen der Luftkanäle sogar schneller als bei adiabatischer Kompression vor sich gehen. Da in den ersten Stufen der Temperaturunterschied zwischen Luft und Wasser gering ist, so erfolgt die Temperatursteigerung zunächst auch mehr als adiabatisch, tritt dann aber mit steigendem Temperaturunterschied, mit zunehmender Wärmeableitung, immer langsamer auf.

Im PV-Diagramm Fig. 43 verläuft die Zustandslinie zunächst jenseits der Adiabate, um dann wieder relativ flacher zu werden; sie schneidet die Adiabate und verläuft schließlich zwischen Adiabate und Isotherme, sich der Isotherme nähernd. Findet bei einem beliebigen

Fig. 43. Zustandsänderung in einem gekühlten Turbokompressor bei Kompression von 1 auf 7 at abs. bei verschiedener Kühlwassertemperatur.

Zwischendruck Rückkühlung statt, so nähert die Zustandslinie sich beträchtlich der Isotherme, die sie eventuell sogar erreicht. Bei der weiteren Kompression zeigt sich dann aber zunächst wieder die mehr als adiabatische Erwärmung, die relativ geringere Raumabnahme als bei adiabatischer Kompression.

Die Diagrammfläche stellt aber wie auch das PV-Diagramm des ungekühlten Turbogebläses durchaus nicht den Arbeitsbedarf dar. Dort, wo die Kühlung mangelhaft zur Wirkung kommt, zeigt die mehr als adiabatische Erwärmung, daß außer der Kompressionsarbeit noch Wärme, wenn auch in gleicher Energieform, in Form von Arbeit, zugeführt worden ist. Das PV-Diagramm stellt lediglich die Zustandsänderung nach Druck und Volumen dar, einen Schluß auf den Arbeitsaufwand gestattet es kaum.

Beim ungekühlten, wärmedichten Turbogebläse ließ sich aber im T.S-Diagramm der Wärmewert der insgesamt aufgewandten Arbeit, $A \int V dP + Q_r$, ohne weiteres darstellen (siehe Fig. 16). Für den gekühlten Turbokompressor sinkt dagegen auch das Entropiediagramm Fig. 44 zu einem Hilfsmittel herab, lediglich

Fig. 44. Zustandsänderung in einem gekühlten Turbokompressor bei Kompression von 1 auf 7 at abs. bei verschiedener Kühlwassertemperatur.

den Verlauf der Zustandsänderung nach Druck und Temperatur darzustellen, von einem weiterhin angegebenen rechnerischen Verfahren abgesehen, durch das auch der Wärmewert des gesamten Arbeitsaufwandes dargestellt werden kann, wenn dieser durch Messung zuvor ermittelt ist. Aber schon die Darstellung der Zustandsänderung allein bietet infolge des so deutlich hervortretenden Einflusses der Temperaturänderung Vorteile, die die Benutzung des Wärmediagramms wie in der Fig. 44 rechtfertigen.

Die adiabatische Kompression, im PV- und im T S-Diagramm Fig. 43 und 44 dünnlinig dargestellt, bedeutet nach Tafel 12 einen Arbeitsbedarf von 26040 mkg/cbm, d. s. 33,8 v. H. mehr als 19 450 mkg/cbm bei isothermischer Kompression. Das tatsächliche Mehr an reiner Kompressionsarbeit infolge der Erwärmung der Luft wird im Vergleich zur Isotherme bei gleicher Luft- und Kühlwasser-Anfangstemperatur etwa die Hälfte dieses Betrages, also ~ 17 v. H., bei 10° kälterem Kühlwasser ~ 15 v. H. und bei 10° wärmerem Kühlwasser ~ 19 v. H. ausmachen. Diese Werte sind genau nur durch Planimetrieren der nach Versuchswerten gezeichneten PV- oder TS-Diagramme zu ermitteln und werden außerdem bei den verschiedenen Systemen von einander abweichende Beträge ergeben; es kommt hier aber nur auf relative Werte an. So ergibt sich der Bedarf an reiner Kompressionsarbeit nach der tatsächlichen Zustandsänderung zu

1)
$$19450 \cdot 1.15 = 22380 \text{ mkg/cbm},$$

$$2) 10450 \cdot 110 - 22100$$

$$(0)$$
 10 100 1,10 - 20 100

Der Mehrbedarf $\frac{1}{A}$ Q_r infolge der Luftreibung usw.

macht beim mittleren Fall ~ 35 v. H. dieser reinen Kompressionsarbeit aus, er wird im Fall 1 auf den kleineren Wert bezogen etwas mehr, absolut etwas geringer und im Fall 3 auf den größeren Wert bezogen etwas geringer, absolut etwas größer sein. Damit bestimmt sich die Luftreibungsarbeit zu

2)
$$22\ 760 \cdot 0.35 = \sim 7970 \text{ mkg/cbm},$$

1) $\sim 7870 \quad ...$
3) $\sim 8070 \quad ...$

Der gesamte Arbeitsbedarf ist demnach

1) $22\,760 + 7870 = 30\,250$ mkg/cbm, 2) $30\,730$,,

3)	31	220	,,
----	----	-----	----

und der Leistungsbedarf bei 10 000 cbm stündlicher Saugleistung

1)	$30250 \cdot 10000$	-	1190 DS	
1)	$3600 \cdot 75$		112015.	
2)			1138 ,,	
3)			1156 .,	

Die Lagerreibung erfordert etwa 2 v. H., d. s. ~ 22 PS, so daß der effektive Leistungsbedarf des Turbokompressors

1)	1120	+	22	=	1142	$PS_{e},$
2)					1160	,,
3)					1178	,,

beträgt.

Daraus berechnet sich der isothermische Wirkungsgrad bei dem gleichen Kompressor, je nachdem, wie groß der Temperaturunterschied zwischen Ansaugeluft und Kühlwassereintritt ist, zu

1)
$$\eta_{\text{is. ges.}} = \frac{721}{1142} = 0.631,$$

2) $0.621,$
3) $0.611.$

Durch 10° Temperaturunterschied zwischen angesaugter Luft und Kühlwasser wird der Wirkungsgrad demnach um ~ 1.6 v. H. verändert, so daß wiederum je 6° etwa 1 v. H. Einfluß auf den isothermischen Wirkungsgrad haben.

Vergleichsmaßstab für den isothermischen Wirkungsgrad.

Man erhält für zweistufige Kolbenkompressoren und gekühlte Turbokompressoren einen brauchbaren Vergleichsmaßstab, wenn man die aufgewandte Leistung mit dem Leistungsbedarf vergleicht, der bei einer Temperatur der Luft erforderlich wäre, die das Mittel von Ansauge- und Kühlwassereintrittstemperatur ist. Diese Mitteltemperatur t_m ist in den 3 Beispielen des vorhergehenden Abschnittes

1)
$$\frac{15+5}{2} = 10^{\circ} \text{ C},$$

2) $15^{\circ} \text{ C},$
3) $20^{\circ} \text{ C}.$

und der auf diese Temperatur bezogene isothermische Leistungsbedarf

1)
$$N_{m is.} = 721 \frac{273 + 10}{273 + 15} = 708 PS_{m i}$$

2) $721 \cdot \frac{273 + 20}{273 + 15} = 734$,

Auf diesen theoretischen Leistungsbedarf $N_{m\,is.}$ bei der mittleren Luft- und Wassereintrittstemperatur bezogen ergibt sich bei den verschiedenen Kühlwassertemperaturen der isothermische Vergleichswirkungsgrad des Kolbenkompressors zu

1)
$$\eta_{\text{m is. ges.}} = \frac{708}{1007} = 0,704$$

2) $\frac{721}{1023} = 0,705$
3) $\frac{734}{1041} = 0,705$

und des Turbokompressors zu

1)
$$\eta_{\text{m is. ges.}} = \frac{708}{1143} = 0,620$$

2) $\frac{721}{1160} = 0,621$
3) $\frac{734}{1177} = 0,623.$

Die gefundenen Werte sind für die gleiche Maschine bei verschiedenen Temperaturunterschieden praktisch gleich, so daß sich dieser isothermische Vergleichswirkungsgrad, auf die Mitteltemperatur zwischen Luftund Wassereintritt bezogen, auch zu einem Vergleich von Kompressoren eignet, die unter verschiedenen Betriebsverhältnissen arbeiten.

Beispiel:

1. Ein durch Dampfturbine betriebener Turbokompressor preßt 12 460 cbm/st von $p_1 = 1,025$ auf $p_2 = 7,1$ at abs. Der isothermische Leistungsbedarf ist demnach $N_{is.} = \frac{12\,460\cdot19\,840}{3600\cdot75} = 915$ PS_{is.} Die Ansaugetemperatur der Luft ist $t_1 = 12,4^{\circ}$ C, die Endtemperatur $t_2 = 87^{\circ}$ C. Für die Kühlung des Kompressors werden stündlich 12,54 cbm Frischwasser, das sich von 14,2 auf 25,6° C erwärmt, und 93,2 cbm rückgekühltes Wasser verbraucht, dessen Temperatur von 26,8 auf 33,2° C steigt, sowie für die Kühlung der Kompressorlager stündlich 4,56 cbm Kühlwasser von 26,8° C, das mit 30,5° C abläuft.

Damit ist der Leistungswert

1) der Lagerkühlwassererwärmung

$$\frac{4,56 \cdot 1000 (30,5 - 26,8)}{622} = 26,7 \text{ PS}$$

$$\frac{12,94^{-1000}(25,5^{-11},2)}{632} = 226,3 \text{ PS}$$

$$\frac{93,2 \cdot 1000 (33,2 - 26,8)}{632} = 944,0 \text{ PS}$$

3) der Lufterwärmung

$$\frac{\mathbf{G} \cdot \mathbf{c}_{\mathbf{p}} \cdot (\mathbf{t}_{2} - \mathbf{t}_{1})}{632} = \frac{\mathbf{P}_{1} \cdot \mathbf{V}}{\mathbf{R} \mathbf{T}_{1}} \cdot \frac{\mathbf{c}_{\mathbf{p}} \cdot (87 - 12, 4)}{632}$$

$$10\,250 \cdot 12\,460 \qquad 0,238 \cdot 74, 6$$

$$-\frac{29,27 \cdot (273 + 12,4)}{29,27 \cdot (273 + 12,4)} \cdot \frac{632}{632} = 271,4$$
 PS

und der Leistungsbedarf des Kompressors die Summe dieser Werte = 1468.4 PS.

Der Wärmewert der zugeführten Leistung findet sich zu

1,82 v. H. im Lagerkühlwasser,

79,7 v. H. im Kompressorkühlwasser,

18,48 v. H. in der Druckluft.

Der isothermische Wirkungsgrad ist

$$\eta_{\text{isges.}} = \frac{915}{1468,4} = 0,623 = 62,2 \text{ v. H.}$$

2. Ein elektrisch betriebener Turbokompressor saugt 12 650 cbm stündlich an und preßt von 1,013 auf 7,08 at abs., hat mithin einen isothermischen Leistungsbedarf von $N_{is.} = \frac{12 \, 650 \cdot 19 \, 700}{3600 \cdot 75} = 923 \, \mathrm{PS}_{is.}$ Die Lufttemperatur im Saugstutzen des Kompressors ist 28° C, das Kühlwasser für den Kompressor hat eine Temperatur von 12° C; es wird nur Frischwasser verwendet. Vom Elektromotor werden an die Kupplung des Kompressors 1460 PS_{e} abgegeben. Dann ist der isothermische Wirkungsgrad $\eta_{is. \, ges.} = \frac{823}{1460} = 0,632$

= 63,2 v. H.

Der Wirkungsgrad dieses elektrisch betriebenen Kompressors wäre also 1,5 v. H. besser als der des dampfbetriebenen.

Bestimmt man aber in beiden Fällen den Vergleichswirkungsgrad, auf die Mitteltemperatur von Luftansaugeund Kühlwassereintrittstemperatur bezogen, so ist

im ersten Beispiel zunächst

die durchschnittliche Kühlwassereintrittstemperatur $12.54 \cdot 14.2 + 93.2 \cdot 26.8$

$$\frac{12,54+93,2}{12,54+93,2} = 25,30$$
 C

die Mitteltemperatur

$$t_{\rm m} = \frac{12,4+25,3}{2} = 18,85^{\circ} \text{ C},$$

sodann der isothermische Leistungsbedarf, auf die Mitteltemperatur bezogen,

$$N_{m is.} = 915 \cdot \frac{273 + 18,85}{273 + 15,4} = 926 \text{ PS}_{m is.}$$

und der Vergleichswirkungsgrad

$$\eta_{\text{m is. ges.}} = \frac{920}{1468,4} = 0,63 = 63 \text{ v. H.}$$

m zweiten Beispiel ist die Mitteltemperatur
$$t_m = \frac{28 + 12}{2} = 20^{\circ} C$$
,

die Mitteltemperatur-Isotherme

$$\mathrm{N_{m\ is.}\ =\ 923\ }rac{273+20}{273+28}=899\ \mathrm{PS_{m.\ is.}}$$

und der Vergleichswirkungsgrad

$$\eta_{\text{m is. ges.}} = \frac{899}{1460} = 0,615 = 61,5 \text{ v. H.}$$

In Wirklichkeit ist also der erste Kompressor der bessere; er würde mit $\sim 2,5$ v. H. geringerem Leistungsbedarf arbeiten, wenn beide Kompressoren unter genau gleichen Bedingungen in Betrieb wären.

Darstellung des Arbeitsbedarfs gekühlter Turbokompressoren im Arbeits- und im Wärmediagramm.

Wenn durch Messung der Energiebedarf eines Turbokompressors ermittelt ist, so läßt sich außer dem Wirkungsgrad $\eta_{is.}$, bezogen auf die Isotherme, auch der auf die Adiabate bezogene Wirkungsgrad η_a rechnerisch ermitteln. Der adiabatischen Kompression entspricht eine Temperaturzunahme $T_2 - T_1$, die rechnerisch oder mit Hilfe der Entropietafeln 14—16 bestimmt werden kann. Würde die gesamte aufgewandte Arbeit in Form von Wärme der isothermisch komprimierten Druckluft wieder zugeführt, so ergäbe sich damit eine Temperatursteigerung $T_e - T_1$, größer als $T_2 - T_1$ bei adiabatischer Kompression, die aus der adiabatischen Temperatursteigerung $T_2 - T_1$ und dem Wirkungsgrad η_a , bezogen auf die Adiabate, errechnet werden kann.

$$\mathrm{T_e}-\mathrm{T_1}=rac{\mathrm{T_2}-\mathrm{T_1}}{\eta_{\mathrm{a}}}\,.$$

Dem gesamten Arbeitsaufwand entspricht nun eine adiabatische Kompressionsarbeit, die geleistet werden muß, um ein gleiches Luftgewicht von der gleichen Anfangstemperatur T_1 und einem zunächst unbekannten Anfangsdruck P_0 auf den Enddruck P_2 zu komprimieren, so daß dabei die rechnerisch ermittelte Temperatur-

steigerung ${\rm T_e}-{\rm T_1}\,=\,\frac{{\rm T_2}-{\rm T_1}}{\eta_{\rm a}}$ eintritt.

Fig. 45. Arbeitsbedarf $\int V d P + \frac{1}{A} Q_r$ eines gekühlten Turbokompressors bei Kompression von 1 auf 7 at abs. und der isothermische Wirkungsgrad.

Im P V-Diagramm Fig. 45 ist zeichnerisch $V_{2\,is}$ bei isothermischer und $V_{2\,a}$ bei adiabatischer Kompression zu bestimmen. Wird nun beispielsweise von 1 auf 7 at abs. komprimiert, so sind

bei isothermischer Kompression 19450 mkg/cbm(Tafel 21,) bei adiabatischer 26 040 mkg/cbm (Tafel 12)

erforderlich. Wird dann durch Versuche der isothermische Wirkungsgrad γ_{is} zu 62 v. H. bestimmt, so ergibt sich damit der auf die Adiabate bezogene Wirkungsgrad zu $\eta_a = \ 62 \ \frac{26\ 040}{19\ 450} = \ 83{,}01$ v. H. Damit ist im P V-Diagramm

$$V_{2e} - V_{2is} = \frac{V_{2a} - V_{2is}}{\gamma_{e}}$$

festgelegt.

Zeichnet man von diesem errechneten Druckvolumen V_{2e} aus eine Adiabate bis zum Schnittpunkt mit der Isotherme durch P_1V_1 , so wird durch den Schnittpunkt ein Druck P_0 und ein Volumen V_0 festgelegt. Die Druck-linie P_0 und die neue Adiabate umschließen ein Diagramm, das $\frac{1}{\eta_a}$ mal größer ist als die Fläche für adiabatische Kompression, bei P_1V_1 beginnend. (Beweis wie bei der Darstellung des Arbeitsbedarfes ungekühlter Gebläse durchgeführt.) Das äußere Diagramm ist $\frac{1}{\eta_a} \cdot \frac{\eta_a}{\eta_{is}} = \frac{1}{\eta_{is}} \text{ mal so groß als das innere, das den}$ Arbeitsbedarf bei isothermischer Kompression darstellt, ist also ein Maßstab für die gesamte aufgewandte Arbeit. Zeichnet man den Verlauf der Zustandsänderung ein, so ist die wagerecht schraffierte Fläche das Mehr an reiner Kompressionsarbeit im Vergleich zur isothermischen Kompression, die senkrecht schraffierte Fläche bedeutet den Arbeitsaufwand $\frac{1}{A}$ Q_r zur Überwindung der Luftreibung.

Durch den eingezeichneten Verlauf der Zustandsänderung wird die Strecke V2e - V2is in 2 Teile geteilt. Die ganze Strecke ist ein Maßstab für den Wärmewert der ganzen aufgewendeten Arbeit; die Teilstrecke zwischen Isotherme und Zustandslinie stellt die Wärme dar, die nach beendeter Kompression in der Druckluft verbleibt, der Rest die Wärmemenge, die mit dem Kühlwasser abgeführt wird.

Im TS-Diagramm Fig. 46 ist der Wärmewert der isothermischen und adiabatischen Arbeit ohne weiteres darstellbar. Te wird in gleicher Weise rechnerisch festgelegt wie zuvor. Die Gesamtarbeit läßt sich jedoch in einfacherer Weise darstellen als im PV-Diagramm, da die Adiabate, eine Linie unveränderter Entropie, eine Gerade parallel zur Ordinatenachse ist. Die Fläche des größten Diagramms bis zur Abszissenachse stellt den Wärmewert Gc_p ($T_e - T_1$) des gesamten Arbeitsaufwandes dar. Durch das Einzeichnen des Verlaufs der Zustandsänderung treten die Wärmewerte der eigentlichen Kompressionsarbeit und der Reibungs-

Fig. 46. Wärmewert des Arbeitsbedarfs A $\int V dP + Q_r$ eines gekühlten Turbokompressors und der isothermische Wirkungsgrad.

arbeit hervor. Der Wärmewert der Mehrkompressionsarbeit im Vergleich zur Isotherme ist senkrecht schraffiert, der der Reibungsarbeit wagerecht.

Die Druckluftaustrittstemperatur, eine Horizontale im TS-Diagramm, teilt die Strecke Te-T1, die auch ein Maßstab für den Wärmewert des gesamten Arbeitsaufwandes ist, in zwei Teile, der untere Teil ist die mit der Druckluft, der obere die mit dem Kühlwasser abgeführte Wärmemenge.

Es geht klar aus der Fig. 46 hervor, daß durch bessere Kühlung wohl der Mehrarbeitsaufwand im Vergleich zur Isotherme zu vermindern ist, daß die Reibungswiderstände aber einen weit größeren Betrag ausmachen. Wenn durch Anordnung größerer Kühlfläche, die aber dem Luftstrom etwas mehr Widerstand bietet, eine bessere Kühlung und eine Verringerung der senkrecht schraffierten Kompressionsarbeit erzielt wird, so kann dabei dieser Vorteil durch Vergrößerung der wagerecht schraffierten Reibungsarbeit nicht nur aufgezehrt werden, sondern sogar leicht eine Vergrößerung des Gesamtarbeitsaufwandes herbeiführen. Die Endtemperatur der Luft ist daher durchaus kein Maßstab für die Güte des Kompressionsvorganges.

Teildruck des Wasserdampfes in der Luft und Feuchtigkeitsgehalt der Luft.

Luft kann vollständig trocken, mit Wasserdampf gesättigt oder teilweise gesättigt sein. Der erste Fall kommt sehr selten, nur bei heißen Wüstenwinden vor. Der zweite Grenzfall tritt ebenfalls nicht häufig ein, beispielsweise aber kurz bevor sich bei Temperaturabnahme Nebelbildung in der Luft zeigt. Dagegen ist teilweise Sättigung der Luft mit Wasserdampf fast immer vorhanden.

Nur bei vollständig trockener Luft entspricht der mit dem Barometer gemessene Gesamtdruck pg genau dem wirklichen Luftdruck, während in allen anderen Fällen der gemessene Druck pg sich nach dem Daltonschen Gesetz aus dem Teildruck der Luft pl und dem Teildruck des Wasserdampfes p_d zusammensetzt.

 $p_{z} = p_{1} + p_{d}$. Der Wassergehalt der Luft, d. h. das Gewicht des

Dampfes in 1 cbm Luft und der Teildruck des Wasserdampfes sind bei vollständiger Sättigung einzig von der Wasserdampftemperatur abhängig, die der Lufttemperatur entspricht. Der Tafel 29 können beide Werte entnommen werden. Die Lufttemperaturen sind als Abszissen, die zugehörigen beiden Werte als Ordinaten aufgetragen, und zwar in 3 verschiedenen Maßstäben, um die Genauigkeit der Ablesung zu erhöhen:

Beispiel:

 $t=--4^{0}\,\mathrm{C}\colon p_{d}=0,0045$ at, Wassergehalt=3,5 g/cbm, $t = 22^{\circ} C: p_{d} = 0,0266 at, Wassergehalt = 19,3 g/cbm,$ 75^{0} C: $p_{d} = 0.39$ at, Wassergehalt = 242 g/cbm.

Beträgt der gemessene Gesamtdruck 757 mm Q.-S. von 22° C, so ist nach Tafel 1 $p_g = 1,0253$ at abs. Ist die Luft von 22^{0} C vollkommen gesättigt, so beträgt der Teildruck der Luft nur

 $p_l = p_g - p_d = 1,0253 - 0,0266 = 0,9987 \, at abs., ist also <math display="inline">\thicksim 2,6$ v. H. geringer.

Ist in der Luft weniger Wasserdampf enthalten, als der Sättigung entspricht, so ist bei der Ermittelung des Teildruckes der Luft zunächst ihre relative Feuchtigkeit x, d. h. das Verhältnis des wirklichen Wassergehaltes zu jenem bei vollkommener Sättigung zu bestimmen. In dem gleichen Verhältnis steht dann auch der wirkliche Dampfteildruck zu jenem, der dem Sättigungszustande entspricht.

Beispiel: In obigem Beispiel mit $t = 22^{0}$ C sei der Wassergehalt nur 15 g/cbm; dann ist die relative Feuch-

tigkeit x =
$$\frac{19}{19.3} \cdot 100 = 78$$
 v. H.

Dampfteildruck $p_d = 0.78 \cdot 0.0266 = 0.0207$ at. Luftteildruck $p_1 = 1.0253 - 0.0207 = 1.0046$ at.

Der Teildruck der Luft nimmt also mit sinkender Luftfeuchtigkeit zu, wenn der Gesamtdruck des Luftund Dampfgemisches derselbe bleibt.

Bei teilweiser Sättigung ist die Temperatur des Wasserdampfes höher, als seinem Drucke p_d entspricht; der Wasserdampf ist also überhitzt.

Beispiel: Dem Wassergehalt im vorstehenden Beispiel von 15 g/cbm entspräche bei vollkommener Sättigung nach Tafel 29 eine Dampftemperatur von 17,5° C. Da die Temperatur jedoch 22° C beträgt, so ist der Dampf um $4,5^{\circ}$ C überhitzt.

Bestimmung des Feuchtigkeitsgehaltes der Luft.

Da fast immer der Wasserdampf in der Atmosphäre überhitzt, die Luft also nicht vollkommen mit Wasserdampf gesättigt ist, so ist es notwendig, die relative Feuchtigkeit zu bestimmen, wenn man den Teildruck der Luft ermitteln will. Dazu dient als einfaches Mittel der Vergleich eines normalen Thermometers mit einem zweiten, dessen Quecksilberkugel mit einem feuchten Läppchen umwickelt ist. Streicht ungesättigte Luft an dem befeuchteten Thermometer vorbei, so wird sie sich mit Wasserdampf anreichern, die Verdampfungswärme r des aufgenommenen, verdampften Wassers wird dem Wasser entzogen und das Thermometer wird eine niedrigere Temperatur anzeigen. Die Wassertemperatur am befeuchteten Thermometer würde mehr und mehr sinken, wenn nicht nach kurzer Zeit die Luft infolge des jetzt vorhandenen Temperaturunterschiedes gleichzeitig Wärme an das Wasser abgeben würde. Nach einiger Zeit wird sich ein Beharrungszustand einstellen.

Beispiel: 1 kg vollständig trockene Luft von 1 at abs. Druck und 20° C kann bis zur Sättigung, bei der nach Tafel 29 der Dampfteildruck $p_d = 0,0235$ at und der Wassergehalt 17,2 g/cbm ist,

$$\frac{\text{R T}}{\text{P}_{1}} \cdot 17,2 = \frac{29,27 \cdot (273 + 20)}{10\ 000 - 235} \cdot 17,2 = 15,1 \text{ g}$$

Wasser aufnehmen.

Hierzu ist nach den Tafeln für Wasserdampf eine Verdampfungswärme $r = 0.0151 \cdot 584.1 = 8.82$ WE

$$1 \cdot 0,238 \cdot (20 - 15,1) = \left[\frac{29,27 \cdot 288,1}{10\,000 - 175} \cdot 0,0129\right]$$

erforderlich, die dem befeuchteten Thermometer entzogen wird. Hat das Wasser und die Luft am befeuchteten Thermometer sich bis auf 10° C abgekühlt, so gibt 1 kg Luft von 20° aber gleichzeitig durch Berührung $G \cdot c_p \Delta t = 1 \cdot 0.238 (20 - 10) = 2.38$ WE an das Wasser ab. 1 kg der auf 10° C abgekühlten Luft kann aber bis zur Sättigung nicht mehr 17,2 g/cbm, sondern nur noch 9,4 g/cbm Wasserdampf von 0.0125 at Druck aufnehmen, kann dem befeuchteten Thermometer also nicht mehr 8,82 WE, sondern nur noch

$$\frac{29,27 \cdot 283}{10\,000 - 125} \cdot 0,0094 \cdot 589,4 = 4,64 \,\mathrm{WE}$$

entziehen. Dieser Betrag ist aber noch größer als die durch Berührung an das Wasser übergehende Wärmemenge von 2,38 WE. Die Temperatur des befeuchteten Thermometers wird also noch weiter sinken.

Besser als die Rechnung führt ein graphisches Verfahren zum Ziel, das schon Weiß angegeben hat. Trägt man die Lufttemperaturen als Abszissen und die Wärmemengen r, die bis zur Sättigung von 1 kg trockener Luft bei 1 at abs. Gemischdruck zur Verdampfung der entsprechenden Wassermengen erforderlich sind, als Ordinaten auf, so erhält man die r-Kurve der Tafel 30. Schneidet man von den Ordinaten für jeden ⁰C Temperaturabnahme 0,238 WE entsprechend der Wärmeabgabe von 1 kg Luft für jeden ⁰C Temperaturabnahme ab, so erhält man die nach links hin ansteigenden Geraden. Die Abszisse des Schnittpunktes dieser Geraden mit der r-Kurve gibt die Temperatur des befeuchteten Thermometers an, die sich nach einiger Zeit als Beharrungszustand einstellen wird.

Beispiel: $t_{tr} = 20^{\circ}$ C, trockene Luft.

1

Die Schräge, von 20^o C und 0 v. H. Feuchtigkeitsgehalt ausgehend, schneidet die r-Kurve bei der Abszisse $5,5^{\circ}$ C. Bei dieser Temperatur gibt 1 kg Luft infolge des Temperaturunterschiedes von 20–5,5 = 14,5^o C

an das Wasser des befeuchteten Thermometers ab. Das ist genau so viel, wie zum Verdampfen der Sättigungsdampfmenge bei $5,5^{0}$ C Lufttemperatur erforderlich sind.

$$\frac{29,27 \cdot 278,5}{10\,000 - 92} \cdot 0,0071 \cdot 591,6 = 3,45 \text{ WE}.$$

Ist die Luft schon zum Teil gesättigt, so wird der Beharrungszustand schon bei entsprechend geringerem Temperaturunterschied erreicht. Die Temperatur des feuchten Thermometers ist dann die Abszisse des Schnittpunktes der Schrägen, von dem Teilfeuchtigkeitsgehalt und der Temperatur des trockenen Thermometers ausgehend, mit der r-Kurve.

Beispiel: $t_{\rm tr}=20^{\rm o}$ C, x=60 v. H. Feuchtigkeitsgehalt.

Die Schräge, von 20^o C und 60 v. H. Feuchtigkeitsgehalt ausgehend, schneidet die r-Kurve bei der Abszisse 15,1^o C.

Bei dieser Temperatur ist der Wärmeübergang zum Wasser infolge Berührung von Luft und Wasser ebenso groß wie die dem Wasser entzogene Verdampfungswärme zur Verdampfung der Wassermenge, welche die Luft bis zur vollkommenen Sättigung noch aufnehmen kann.

$$-\frac{29,27\cdot 293}{10\,000-235}\cdot 0,0172\cdot 0,6 \cdot 586 = 1,17 \text{ WE.}$$

also

Ist der Druck der Atmosphäre ein anderer als 1 kg/qcm, so verschieben sich die Verhältnisse um ein Geringes. Für 1,03 at Luftdruck ist die r-Kurve punktiert eingezeichnet.

Für das Beispiel 1 ergibt sich die Temperatur des befeuchteten Thermometers zu $5,7^{0}$ C, für Beispiel 2 zu $15,2^{0}$ C.

Bei höherem Luftdruck kühlt sich das feuchte Thermometer also weniger tief ab als bei niedrigerem Luftdruck.

Bestimmung des Feuchtigkeitsgehaltes der Luft in v. H.

Da man fast immer vom trockenen und befeuchteten Thermometer ausgehend die relative Feuchtigkeit ermitteln will, so sind auf der Tafel 31 die Ergebnisse der Tafel 30 so aufgetragen, daß ein genaues Ablesen des Feuchtigkeitsgehaltes ohne weiteres möglich ist. Die Temperaturen des trockenen Thermometers sind als Abszissen, die relativen Feuchtigkeiten sind für verschiedene Temperaturen des feuchten Thermometers als Ordinaten aufgetragen:

Beispiel: $t_{tr} = 20^{\circ}$ C, $t_f = 15^{\circ}$ C. Tafel 31: x = 59 v. H.

Für den Fall, daß der Luftdruck anstatt 1 at abs., für den die Tafel gezeichnet ist, 1,03 at abs. beträgt, ist die punktierte Linie für t feucht = 10° C eingezeichnet. Die Abweichung ist für gesättigte Luft 0, für trockene Luft ca. 1 v. H. Feuchtigkeitsgehalt. Bei ca. 60 v. H. Feuchtigkeit ist für je 0,01 at höheren Luftdruck ca. 0,2 v. H. Feuchtigkeitsgehalt von der Ablesung zu subtrahieren, bei geringerem Luftdruck zur Ablesung zu addieren.

Bestimmung der in der Druckluft sich niederschlagenden Wassermengen.

Da die Wassermenge, welche in Dampfform maximal in der Luft enthalten sein kann, einzig von der Lufttemperatur abhängt, so muß sich fast immer in Druckluftbehältern, in denen sich die Luft abkühlt, sowie in Zwischenkühlern zwei- und mehrstufiger Kompressoren Wasser abscheiden. Beispiel: Anfangsdruck 1,03 at abs., Ansauge-temperatur $t_1 = t_{tr} = 28^{\circ}$ C, $t_f = 23^{\circ}$ C.

Zwischenkühlerdruck = 1,81 at Überdruck.

Zwischenkühlertemperatur $t_z = 32^{\circ}$ C.

Tafel 31: Relative Feuchtigkeit beim Ansaugen x = 66 v. H.

Tafel 29: Wassergehalt beim Ansaugen $0,66 \cdot 27 = 17.8 \text{ g/cbm}.$

Luftteildruck beim Ansaugen

 $p_1 = 1.03 - 0.66 \cdot 0.038 = 1.005$ at abs.

Dampfteildruck im Zwischenkühler bei $\rm t_z=32^0~C$ 0,048 at abs.

Luftteildruck im Zwischenkühler

 $p_z = 1,03 + 1,81 - 0,048 = 2,792$ at abs.

Nach der Zustandsgleichung ist $\frac{P_1 V_1}{T_1} = \frac{P_z \cdot V_z}{T_z},$

$$V_z = V_1 \frac{P_1}{P_z} \frac{T_z}{T_1},$$

und demnach der Rauminhalt V_z von 1 cbm angesaugte Luft im Zwischenkühler:

$$N_{
m z} = 1 \cdot rac{1,005}{2.792} \cdot rac{273 + 32}{273 + 28} = 0,365 ext{ cbm}.$$

Bei 32^o C können im Zwischenkühler in 0,365 cbm Luft nach Tafel 29 maximal $0,365 \cdot 33,5 = 12,2$ g Wasser dampf enthalten sein.

Im Zwischenkühler wird sich also eine Wassermenge von 17,8-12,2 = 5,6 g/cbm angesaugte Luft niederschlagen.

Bei 10 000 cbm stündlicher Saugleistung würden sich stündlich 56 kg, in 10 Betriebsstunden also 560 kg Wasser niederschlagen, wenn nicht ein Teil dieser Wassermenge als Nebel vom Hochdruck-Kompressorzylinder angesaugt würde.

Es ist also stets für eine dauernde Entwässerung der unvermeidlichen Wassersäcke der Zwischenkühler Sorge zu tragen.

Da die Druckluft infolge der Wärmeableitung in den Verteilungsrohrleitungen meistens ziemlich abgekühlt verbraucht wird, so würden sich in den Leitungen weitere erhebliche Wassermengen abscheiden, wenn die Abkühlung und damit die Wasserabscheidung nicht schon im Druckluftbehälter erfolgen würde. Wie groß diese Wassermengen sind, zeigt folgende Überschlagsrechnung, anschließend an das vorstehende Beispiel:

	Luftdruck 6 at Überdruck				
	hinter dem Druckluftbehälter	an der Verwendungsstelle			
Drucklufttemperatur	45° C $\frac{1}{7} \cdot \frac{273 + 45}{273 + 28} = 0,151 \text{ cbm}$ $0,151 \cdot 65 = 9,8 \text{ g}$ $12,2 - 9,8 = 3,4 \text{ g}$	35^{0} C $\frac{1}{7} \cdot \frac{273 + 35}{273 + 28} = 0.146 \text{ cbm}$ $0.146 \cdot 39 = 5.7 \text{ g}$ $9.8 - 5.7 = 4.1 \text{ g}$			

Bei 10 000 cbm stündlicher Saugleistung würden sich demnach in zehnstündigem Betriebe im Druckwindkessel 340 kg, in den Verteilungsleitungen 410 kg Wasser niederschlagen.

Will man das Ausscheiden von Wasser in den Verteilungsleitungen vermeiden, so hat man für eine mög-

Hinz, Thermodynamische Grundlagen.

lichst tiefe Abkühlung der Druckluft vor ihrer Verteilung Sorge zu tragen. Die Druckluftbehälter sind daher an möglichst kühler Stelle so anzuordnen, daß die Druckluft sie durchströmt. Druckluftbehälter "im Nebenschluß" haben zwar die gleiche Ausgleichwirkung, erfüllen ihren Hauptzweck, die Wasserabscheidung, aber nicht. Aus dem gleichen Grunde sind auch bei Turbo-

6

kompressoren, welche die Druckluft in gleichmäßigem Strome und schon weiter rückgekühlt liefern, Druckluftbehälter nicht zu entbehren. Die Druckluft ist mit Feuchtigkeit beladen, zu deren Abscheidung ein vorübergehendes Zurruhekommen der Luft erforderlich ist.

Einfluß des Feuchtigkeitsgehaltes der Luft auf die Gaskonstante R.

Für feuchte Luft, deren Gesamtdruck P_g sich aus dem Luftdruck P_1 und dem Dampfdruck $x \cdot P_d$ (P_d = Druck des gesättigten Dampfes, x = relative Feuchtigkeit) zusammensetzt, gilt wie für trockene Luft die Zustandsgleichung

$$P_g V = G_g R_f T$$

 $(G_g=Gewicht \ des \ Dampf-Luftgemisches \ in \ kg). Die Gaskonstante \ R_f$ für feuchte Luft ist demnach

$$\mathbf{R}_{\mathbf{f}} = \frac{\mathbf{P}_{\mathbf{g}} \cdot \mathbf{V}}{\mathbf{G}_{\mathbf{g}} \cdot \mathbf{T}}$$

Nun ist zwar für Wasserdampf als nicht vollkommenes Gas die Zustandsgleichung der Gase nicht mehr gültig, doch ergibt sich aus den Versuchen zur Bestimmung der Abhängigkeit zwischen Druck, Temperatur und Gewicht des Wasserdampfes, daß auch für Wasserdampf die Abhängigkeit zwischen diesen Größen angenähert durch die Gleichung

$$P_d \cdot V_d = G_d \cdot R_d \cdot T$$

ausgedrückt werden kann. Die Fehler betragen zwischen 0 und 50° C nicht mehr als 0,5 v. H., wenn man die Gaskonstante für Wasserdampf

$$R_d = 47$$

setzt (bei 100° C ist $\rm R_{d}$ = 46,2, der Fehler also erst 1,5 v. H.). Da

$$G_g = G_1 + G_d = \frac{P_1 \cdot V}{R T} + \frac{x P_d \cdot V}{R_d T},$$

so ist

$$R_{f} = \frac{P_{g}}{\frac{P_{1}}{R} + \frac{x P_{g}}{R}}$$

Da ferner $P_1 = P_g - x P_d$, so ist

$$\begin{split} \mathbf{R}_{f} &= \frac{\mathbf{P}_{g}}{\frac{1}{\mathbf{R}} \left(\mathbf{P}_{g} - \mathbf{x} \ \mathbf{P}_{d} + \mathbf{x} \ \mathbf{P}_{d} \frac{\mathbf{R}}{\mathbf{R}_{d}} \right)} \\ \mathbf{R}_{f} &= \frac{\mathbf{R}}{1 - \mathbf{x} \frac{\mathbf{P}_{d}}{\mathbf{P}_{g}} \left(1 - \frac{\mathbf{R}}{\mathbf{R}_{d}} \right)} \,. \end{split}$$

Setzt man die bekannten Werte $\mathrm{R}=29{,}27$ und $\mathrm{R}_{\mathrm{d}}=47$ ein, so wird

$$R_{f} = \frac{29,27}{1 - 0,377 \text{ x} \frac{P_{d}}{P_{g}}}$$

Auf Tafel 32 sind im oberen Teil die Lufttemperaturen als Abszissen, die Gaskonstanten für feuchte Luft bei verschiedenem Feuchtigkeitsgehalt x und dem Luftdruck $p_g = 1$ at abs. als Ordinaten aufgetragen.

Beispiel:
$$t = 24^{0}$$
 C, $x = 45$ v. H.
Tafel 32: $R_{f} = 29,42$.

Im unteren Teil ist in gleicher Weise die Zunahme der Gaskonstanten bei feuchter Luft im Vergleich zu R = 29,27 bei trockener Luft in v. H. aufgetragen. Beispiel: $t = 31^{\circ}$ C, x = 75 v. H. Tafel 32: R_{f} ist 1,3 v. H. größer als R = 29,27.

Ist der Luftfeuchtigkeitsgehalt bekannt, so ist es mit Hilfe dieser Tafeln leicht, bei Gewichts- und Rauminhaltsberechnungen für feuchte Luft den Einfluß der Luftfeuchtigkeit genau zu berücksichtigen. Entweder führt man den ablesbaren größeren Wert der Gaskonstante in die Rechnung ein oder macht zu dem ermittelten Rauminhalt den in v. H. ablesbaren Zuschlag, von dem Gewicht den entsprechenden Abzug.

Arbeitsbedarf bei geringen Anfangsdrücken.

(Bei Vakuumpumpen.)

Auf Tafel 33 sind die Anfangsdrucke als Abszissen, die theoretischen Kompressionsarbeiten in mkg/cbm angesaugte Luft für 1,0 und 1,033 at abs. Enddruck als Ordinaten aufgetragen, und zwar für reibungsfreien isothermischen und adiabatischen Kompressionsvorgang. Schließlich ist die Kompressionsarbeit für Kolbenvakuumpumpen, bei denen man, um ein höheres Vakuum zu erzielen, auf Kosten des Kraftbedarfs auf die Rückexpansionsarbeit verzichtet und mit Druckausgleich arbeitet, für 3 v. H. schädlichen Raum, 1 v. H. Raum des Druckausgleichskanals und 4 v. H. Raum des Kanals zwischen Schieberspiegel und Rückschlagventil in gleicher Weise aufgetragen. Da im Interesse der Hochwertigkeit der Pumpe, d. h. zwecks Erreichung eines möglichst hohen Vakuums, alle Luftwege sehr knapp bemessen werden, so entsteht im Zylinder stets ein beträchtlich höherer Druck als die Atmosphäre. Er ist im vorliegenden Beispiele mit 1,2 at abs., mit sinkendem Anfangsdruck auf 1,1 at abs. abnehmend, angenommen worden. Der Einfluß der Mantel- und Deckelkühlung auf die bei geringen Anfangsdrücken, also hohen Kompressionsverhältnissen, theoretisch ganz beträchtliche Temperatursteigerung ist durch Annahme eines mit dem Anfangsdruck von 1,4 auf ca. 1,1 sinkenden Exponenten der Kompressionslinie berücksichtigt¹).

Die Kompressionsarbeit ist gleichzeitig das 10 000fache des mittleren indizierten Druckes p_i.

Beispiel:

A. Isothermische Kompression in nassen Luftpumpen und Wasserstrahl-Luftpumpen.

Die Pumpe sauge 500 cbm/st von 28° C aus einem Kondensator mit 0,08 at abs. Druck, Wassertemperatur 16° C, Druck der Atmosphäre 1,02 at abs.

Im Kondensator ist der Wasserdampfteildruck bei 28° C nach Tafel 29 $p_d = 0.038$ at, der Luftteildruck demnach $p_1 = 0.08 - 0.038 = 0.042$ at abs.

In der Luftpumpe, in der die Wassertemperatur 16° C herrscht, nehmen die 500 cbm bei dem Wasserdampfteildruck $p_d = 0.0184$ at und dem Luftteildruck $p_l = 0.08 - 0.0184 = 0.0616$ at abs. einen Raum von

$$500 \cdot \frac{273 + 16}{273 + 28} \cdot \frac{0.042}{0.0616} = 327 \text{ cbm}$$

ein. Zur isothermischen Kompression von 0,0616 auf 1,02 - 0,0184 = 1,0016 at abs. sind nach Tafel 33

¹) Näheres Dr. K. Schmidt, Die Berechnung der Luftpum pen. Berlin 1909, Julius Springer. 1740 mkg/cbm angesaugte Luft erforderlich; der theo- bei adiabatischer Kompression retische Leistungsbedarf ist also

$$N_{is.} = \frac{327 \cdot 1740}{3600 \cdot 75} = 2.11 \text{ PS}_{is.}$$

Werden tatsächlich 28 PS verbraucht, so ist der Wirkungsgrad, bezogen auf die Isotherme,

$$\eta_{\text{is. ges.}} = \frac{2.11}{28} \cdot 100 = 7,53 \text{ v. H.}$$

B. Adiabatische Kompression in trockenen Kolben-Vakuumpumpen.

15 cbm/min werden von 0,1 auf 1,03 at abs. gepreßt. 4100

Tafel 33:
$$p_i = \frac{1200}{10\,000} = 0.41 \text{ kg/qcm}$$

Der indizierte Leistungsbedarf ist

$$N_i = \frac{15 \cdot 4100}{60 \cdot 75} = 13,67 \text{ PS}_i$$
.

Der theoretische Leistungsbedarf ist bei isothermischer Kompression

$$N_{is.} = \frac{15 \cdot 2350}{60 \cdot 75} = 7{,}83 \ \mathrm{PS}_{is.}{,}$$

$$N_{a} = \frac{15 \cdot 3260}{60 \cdot 75} = 10,86 \, PS_{a}.$$

Die indizierten Wirkungsgrade sind, bezogen auf isothermische Kompression

$$\eta_{\rm is.} = \frac{2350}{4100} = 0,573,$$

bezogen auf adiabatische Kompression

$$\eta_{\rm a} = {3260 \over 4100} = 0,795 \; .$$

Ist der Leistungsbedarf dieser Pumpe 17 PS_e , so ist der mechanische Wirkungsgrad $\eta_{\mathrm{mech.}} = \frac{13,67}{17} = 0,803$ und der Gesamtwirkungsgrad

$$\eta_{\text{is. ges.}} = \frac{7,83}{17} = 0,46 = 0,573 \cdot 0,803,$$

bezogen auf die Isotherme,

$$\eta_{\text{ages.}} = \frac{10,86}{17} = 0,638 = 0,795 \cdot 0,803$$

bezogen auf die Adiabate.

Ausströmen von Gas durch Düsen.

Strömt Gas vom Druck p_2 und der Temperatur t_2 durch eine Düse in einen Raum, in dem der Druck p_1 herrscht, so expandiert es in einer richtig bemessenen Düse innerhalb derselben adiabatisch auf den Druck p_1 , wenn von Reibung an der Düsenwandung und von Wärmeaustausch zwischen Düsenwandung und Gas ab-

Fig. 47. Expansionsarbeit beim Ausströmen von Gas durch eine Düse.

gesehen wird. Es muß also nach vollendeter Expansion die vernichtete potentielle Energie, d. i. die geleistete schraffierte Expansionsarbeit L_a der Figur 47, sich in Form der kinetischen Energie $\frac{M}{2}$ w² wiederfinden¹). Demnach ist:

 $\frac{M}{2} w^2 = L_a.$

A. Ausströmungsgeschwindigkeit w.

Da M = $\frac{G}{g}$, so ergibt sich die Ausströmungsgeschwindigkeit zu

$$w=\sqrt{2grac{L_a}{G}}.$$

Der Quotient $\frac{L_a}{G}$, die Kompressions- bzw. Expan-

sionsarbeit für 1 kg Luft, ist auf den Entropietafeln 14—16 dargestellt. Mit Hilfe eines Maßstabes, der auf den Tafeln 15 und 16 links gezeichnet ist, kann daher auch die Ausströmgeschwindigkeit ohne weiteres abgelesen werden. Der Unterschied der Ordinatenlängen von Anfang- und Endzustand bei der Expansion in der Düse ergibt auf den Maßstab übertragen die theoretische Ausströmgeschwindigkeit im Endquerschnitt der Düse in m/sek.

Die bei adiabatischer Expansion geleistete Arbeit ist rechnerisch

$$\mathbf{L}_{a} = \mathbf{P}_{2} \mathbf{V}_{2} \frac{\varkappa}{\varkappa - 1} \left[1 - \left(\frac{\mathbf{p}_{1}}{\mathbf{p}_{2}} \right)^{\frac{\varkappa}{\varkappa} - 1} \right] \mathbf{m} \mathbf{kg}.$$

Führt man diesen Wert ein und setzt nach der Zustandsgleichung $P_2V_2 = G \ge T_2$, so wird

$$\mathbf{w} = \sqrt{2 \operatorname{g} \operatorname{R} \operatorname{T}_2 \frac{\varkappa}{\varkappa - 1} \left[1 - \left(\frac{\operatorname{p}_1}{\operatorname{p}_2}\right)^{\frac{\varkappa - 1}{\varkappa}} \right] \operatorname{m/sek}}.$$

¹) De Saint-Vénant und Wantzel 1839, Weißbach 1855.

Da g = 9,81 m/sek² und für Luft R = 29,27, $\varkappa = 1,4$, $\frac{\varkappa}{\varkappa - 1} = 3,5$ und $\frac{\varkappa - 1}{\varkappa} = 0,286 = \frac{1}{3,5}$ ist, so ist die Geschwindigkeit der aus der Düse ausströmenden Luft

w = 44,83
$$\sqrt{T_2} \left[1 - \left(\frac{p_1}{p_2}\right)^{0.286} \right]$$
 m/sek.

Beim Ausströmen von Gasen und Gasmischungen, deren spezifisches Gewicht auf Luft gleich 1 bezogen bekannt ist, tritt hier und bei allen folgenden Ableitungen und Näherungsgleichungen an Stelle von R der Wert $\frac{R}{\gamma}$. Die für Luft mit der Konstanten R = 29,27 teilweise ausgewerteten Beziehungen sind demnach für andere Gase und Gasmischungen noch mit $\sqrt{\frac{1}{\gamma}}$ zu multiplizieren, wenn R unter der Wurzel im Zähler steht, mit $\sqrt{\gamma}$, wenn R wie in der Gleichung zur Bestimmung des ausströmenden Gewichtes im Nenner vorkommt.

Für geringe Druckunterschiede kann die Expansionsarbeit ohne beträchtlichen Fehler

$$L_a = v_m (P_2 - P_1)$$
 (Fig. 48)

gesetzt werden, wenn v_m das mittlere Volumen bei der Expansion in der Düse bezeichnet. Angenähert ist also

$$\mathbf{w} = \checkmark \sqrt{2 \mathbf{g} \, \mathbf{v}_{\mathrm{m}} \left(\mathbf{P}_{2} - \mathbf{P}_{1}\right)} \, \, \mathrm{m/sek}.$$

B. T.-

Nun ist $v_m = \frac{R}{P_m}^{T_m}$, wenn T_m die mittlere absolute Temperatur in ⁰C und P_m den mittleren absoluten

Temperatur in ${}^{\circ}C$ und P_m den mittleren absoluten Druck in kg/qm während der Expansion in der Düse

Fig. 48. Angenäherte Expansionsarbeit beim Ausströmen von Gas durch eine Düse.

bezeichnet. Der Fehler der Näherungsrechnung wird sehr gering, geringer als der Einfluß der Beobachtungsfehler bei der Ablesung, wenn man

$$w_{\rm m} = rac{{
m R}\,{
m T_2}}{{
m P_1} + \,0,6\,({
m P_2} - {
m P_1})}$$

setzt (Fig. 48). Mit diesem Wert ist

$$\begin{split} \mathbf{w} &= \, \checkmark \, \sqrt{\frac{2 \, \mathrm{g} \, \mathrm{R} \, \mathrm{T}_2 \, (\mathrm{P}_2 - \mathrm{P}_1)}{\mathrm{P}_1 + \, 0, 6 \, (\mathrm{P}_2 - \mathrm{P}_1)}} \, \mathrm{m/sek}. \end{split}$$

Für Luft ist
$$\mathbf{w} &= \, \checkmark \, 23,96 \, \sqrt{\frac{\mathrm{T}_2 \, (\mathrm{P}_2 - \mathrm{P}_1)}{\mathrm{P}_1 + \, 0,6 \, (\mathrm{P}_2 - \mathrm{P}_1)}} \, \mathrm{m/sek}. \end{split}$$

 $P_2 - P_1$ ist der Druckunterschied vor und hinter der Düse, die Drosselung durch die Düse in kg/qm, d. s. mm W.-S.

Beispiel für Luft:
$$t_2 = 15^{\circ}$$
 C, $p_1 = 1$ at abs., $P_2 - P_1 = 200 \text{ mm W.-S.:}$

$$\mathrm{v_m}=~oldsymbol{\sim}~rac{29,27\cdot(273\,+\,15)}{10\,000\,+\,0.6\cdot200}~=~0,833~\mathrm{cbm/kg}$$

 $w = \sim \sqrt{2 \cdot 9,81 \cdot 0,833 \cdot 200} = \sim 57,2 \text{ m/sek}.$ oder

w =
$$\sim 23,96 \sqrt{\frac{(273 + 15) 200}{10000 + 0.6 \cdot 200}} = \sim 57,2 \text{ m/sek}.$$

$P_2 - P_1$ in mm WS	240	520	850	1300	1900	3000	4500	5400	6100	6600	7600	8500
Fehler in v. H	+0,05	+0,1	+0,15	+0,2	+0,25	+0,3	+0,25	+0,2	+0,15	+ 0.1	± 0	- 0,1

B. Ausströmende Gasmenge V₁.

Die durch die Düse theoretisch ausströmende Gasmenge V₁ von dem geringeren Druck p₁ und der infolge der Strömung kaum genau meßbaren Temperatur t₁ im Endquerschnitt der Düse ist durch die Ausströmgeschwindigkeit w und den Düsenquerschnitt F bestimmt.

$$\begin{split} \mathbf{V}_{1} &= \mathbf{F} \cdot \mathbf{w} \\ \mathbf{V}_{1} &= \mathbf{F} \sqrt{\frac{2 \text{ g R T}_{2} \frac{\varkappa}{\varkappa - 1} \left[1 - \left(\frac{\mathbf{p}_{1}}{\mathbf{p}_{2}}\right)^{\frac{\varkappa}{\varkappa} - 1}\right]} \text{ cbm/sek.} \\ \text{ Für Luft ist} \\ \mathbf{V}_{1} &= 44,83 \text{ F} \sqrt{\mathbf{T}_{2} \left[1 - \left(\frac{\mathbf{p}_{1}}{\mathbf{p}_{2}}\right)^{0,286}\right]} \text{ cbm/sek.} \end{split}$$

Durch 1 qcm Düsenquerschnitt strömt stündlich die $0,0001 \cdot 3600 = 0,36$ fache Luftmenge

 $V_1 = 16,14 \ V_2 \left[1 - \left(\frac{p_1}{p_2} \right)^{0,286} \right] \ cbm/st.$

In gleicher Weise wie die Ausströmgeschwindigkeit ist auch die Ausströmmenge angenähert bestimmt durch

$$\begin{split} \mathbf{V_1} &= ~\mathbf{F} \sqrt{2} \; \mathrm{g} \; \mathbf{v_m} \left(\mathbf{P_2} - \mathbf{P_1} \right) \mathrm{cbm/sek}. \\ \mathbf{V_1} &= ~\mathbf{F} \; \sqrt{\frac{2 \; \mathrm{g} \; \mathrm{R} \; \mathbf{T_2} \; (\mathbf{P_2} - \mathbf{P_1})}{\mathbf{P_1} + \; 0.6 \; (\mathbf{P_2} - \mathbf{P_1})}} \; \mathrm{cbm/sek}. \end{split}$$

ur Luft 1st

$$V_1 = \sim 23,96 \text{ F} \sqrt{\frac{T_2 (P_2 - P_1)}{P_1 + 0,6 (P_2 - P_1)}} \text{ cbm/sek}.$$

Die durch 1 qcm Düsenquerschnitt stündlich ausströmende Luftmenge ist

$$T_1 = \sim 8,627 \sqrt{\frac{T_2 (P_2 - P_1)}{P_1 + 0,6 (P_2 - P_1)}} \text{ cbm/st.}$$

Beispiel für Luft:

$$\begin{split} \mathbf{F} &= 1\,\mathrm{qcm}, \mathbf{t_2} = 15^{0}\,\mathrm{C}, \,\mathbf{p_1} = 1\,\mathrm{at\,abs.}, \,\mathbf{P_2} - \mathbf{P_1} = 200\,\mathrm{mm\,W.-S.}\\ \mathbf{V_1} &= \left. \mathbf{\sim} \,8,627 \right] \sqrt{\frac{(273\,+\,15)\,(\mathbf{P_2} - \mathbf{P_1})}{10\,000\,+\,0,6\cdot200}} = \mathbf{\sim} \,20,48\,\mathrm{cbm/st.} \end{split}$$

Die Ausströmmenge wird durch Temperatur, Druck und Druckunterschied in gleicher Weise beeinflußt wie die Ausströmgeschwindigkeit. Auch der Fehler der Näherungsformel, die bis 7,6 m W.-S. Druckunterschied im Maximum 0,3 v. H. zu große Werte ergibt, ist der gleiche wie für die Ausströmgeschwindigkeit in der Tabelle zuvor zusammengestellt.

Die Ausströmgeschwindigkeit wird beeinflußt durch

 \pm 6° C vor der Düse um ca. \pm 1 v. H. (bei ca. 300° C abs.), \pm 0,01 at Druck an der Düse um ca. \mp 0,5 v. H. (bei ca. 1 at abs. Druck),

 \pm 1 v. H. Druckunterschied um ca. \pm 0,5 v. H.

Die Rechnung nach der Näherungsformel, die in einfacher Weise mit dem Rechenschieber ausgeführt werden kann, ergibt bei geringen Druckunterschieden etwas zu hohe, über 7,6 m W.-S. Druckunterschied etwas zu geringe Werte. Der Fehler ist der Tabelle zu entnehmen.

C. Temperatur t_1 im Durchschnitt der Düse.

Infolge der Strömung ist t, kaum genau zu messen. Theoretisch ist die Endtemperatur nach der adiabatischen Expansion in der Düse bestimmt zu

$$\Gamma_1 = T_2 \left(\frac{p_1}{p_2}\right)^{\frac{\chi-1}{\chi}_0} C abs.$$

Für Luft ist

$$\Gamma_1 = T_2 \left(\frac{p_1}{p_2}\right)^{0,250} C \text{ abs.}$$

Auf den Entropietafeln 14-16 kann die Expansionstemperatur t₁ nach Einzeichnen einer Adiabate vom Zustand p2 t2 beim Schnittpunkt mit dem Druck p1 direkt abgelesen werden.

Angenähert ist der Temperaturabfall rechnerisch zu bestimmen aus dem Wärmewert der Arbeit $v_m (P_2 - P_1)$, die bei geringen Druckverhältnissen ziemlich genau die Expansionsarbeit ausdrückt.

$$\begin{aligned} \operatorname{G} \operatorname{c}_{\operatorname{p}} \left(\operatorname{t}_{2} - \operatorname{t}_{1} \right) &= \checkmark \operatorname{A} \operatorname{v}_{\operatorname{m}} \left(\operatorname{P}_{2} - \operatorname{P}_{1} \right) \\ \operatorname{t}_{2} - \operatorname{t}_{1} &= \checkmark \frac{\operatorname{A} \operatorname{R}}{\operatorname{c}_{\operatorname{p}}} \frac{\operatorname{T}_{\operatorname{m}}}{\operatorname{P}_{\operatorname{m}}} \left(\operatorname{P}_{2} - \operatorname{P}_{1} \right) \end{aligned}$$

Da

$$\frac{A R}{c_p} = \frac{c_p - c_v}{c_p} = \frac{\varkappa - 1}{\varkappa}$$

).

und

$$\frac{T_{\rm m}}{P_{\rm m}} = \thicksim \frac{T_2}{P_1 + 0.6 \ (P_2 - P_1)}$$

so ist

$$\mathbf{r}_2 - \mathbf{t}_1 = \mathbf{z} \frac{\mathbf{z} - \mathbf{l}}{\mathbf{z}} \frac{\mathbf{T}_2}{\mathbf{P}_1 + 0.6 (\mathbf{P}_2 - \mathbf{P}_1)} (\mathbf{P}_2 - \mathbf{P}_1)^{-0} \mathbf{C}$$

Für Luft ist angenähert

$$\mathbf{t}_2 - \mathbf{t}_1 = \mathbf{\sim} \frac{1}{3.5} \frac{\mathbf{T}_2}{\mathbf{P}_1 + 0.6 (\mathbf{P}_2 - \mathbf{P}_1)} (\mathbf{P}_2 - \mathbf{P}_1)^0 \mathbf{C}.$$

Beispiel für Luft: $t_2 = 15^{\circ}$ C, $p_1 = 1$ at abs., $P_2 - P_1 = 200 \text{ mm W.-S.},$

$$t_2 - t_1 = \sim \frac{(273 + 15) \ 200}{3.5 \cdot (10 \ 000 + 0.6 \cdot 200)} = \sim 1.63 \ ^{\circ}C.$$

Die Temperaturabnahme ist angenähert proportional dem Druckunterschied. Je ca. 120 mm W.-S. Druckunterschied haben bei ca. 300° C abs. ca. 1° C Temperaturabfall zur Folge.

Die Näherungsrechnung ergibt etwas zu große Temperaturunterschiede, jedoch macht der Fehler im Maximum bei 3000 mm Druckunterschied erst 0,1° C aus.

D. Kritisches Druckverhältnis.

Soll der Druck innerhalb der Düse stetig von p. auf p1 abnehmen, so muß für jeden beliebigen Querschnitt Fx die Bedingung erfült sein:

$$F_x = \frac{V_x}{w_x}$$

(Fig. 49). Setzt man für wx den abgeleiteten Wert mit dem Index x anstatt 1.

nach der Zustandsgleichung

$$V_{x} = \frac{G}{\frac{P_{x}}{R T_{x}}}$$

und, aus der Gleichung für die Temperaturabnahme abgeleitet,

$$\frac{\mathbf{P}_{\mathbf{x}}}{\mathbf{T}_{\mathbf{x}}} = \frac{\mathbf{P}_{\mathbf{2}}}{\mathbf{T}_{\mathbf{2}}} \left(\frac{\mathbf{p}_{\mathbf{x}}}{\mathbf{p}_{\mathbf{2}}} \right)^{\overline{\mathbf{x}}},$$

so erhält man

 $F_x =$

F wird d

$$\frac{1}{P_2 \sqrt{2 g \frac{1}{R T_2} \frac{\varkappa}{\varkappa - 1} \left[\left(\frac{p_x}{p_2} \right)^{\frac{2}{\varkappa}} - \left(\frac{p_x}{p_2} \right)^{\frac{\varkappa + 1}{\varkappa}} \right]}}$$
lemnach ein Minimum, wenn

C

$$\frac{2}{\varkappa} p_2 \frac{-\frac{2}{\varkappa}}{p_x} p_x^{\frac{2}{\varkappa} - 1} - \frac{\varkappa + 1}{\varkappa} p_2 \frac{-\frac{\varkappa + 1}{\varkappa}}{p_x} p_x \frac{\frac{\varkappa + 1}{\varkappa} - 1}{-1} = 0$$

$$\left(\frac{p_2}{p_x}\right)^{\frac{\varkappa - 1}{\varkappa}} = \frac{\varkappa + 1}{2}$$
scene also

Druck

$$\frac{\mathbf{p}_2}{\mathbf{p}_x} = \left(\frac{\mathbf{x}+1}{2}\right)^{\frac{\mathbf{x}}{\mathbf{x}-1}}$$

Die sich auf den Querschnitt Fmin. verengende Düse muß sich also wieder erweitern, damit eine weitere

Fig. 49. Sich erweiternde Düse.

Druckabnahme eintreten kann (Fig. 49). Erweitert sie sich nicht, so wird bei einem Druckverhältnis $\frac{p_2}{-}$, das größer als das errechnete "kritische Druckverhältnis"

$$\beta = \left(\frac{\varkappa + 1}{2}\right)^{\frac{\varkappa}{\varkappa - 1}}$$

ist, der Enddruck p1 in der Düse nicht mehr erreicht. Im Austrittsquerschnitt der Düse herrscht dann der

$$\mathbf{p}_{e} = \frac{\mathbf{p}_{2}}{\beta} = \frac{\mathbf{p}_{2}}{\left(\frac{\varkappa + 1}{2}\right)^{\frac{\varkappa}{\varkappa - 1}}} = \left(\frac{2}{\varkappa + 1}\right)^{\frac{\varkappa}{\varkappa - 1}} \mathbf{p}_{2},$$

der größer als p1 ist. Infolge dieses Überdruckes breitet sich der Luftstrom sofort beim Austritt aus der Düse aus, eine gesetzmäßige adiabatische Umsetzung der Druckenergie in Strömungsenergie kann nicht mehr stattfinden.

Für Luft ist das kritische Druckverhältnis

$$\beta = 1,2^{3,5} = 1,893 = \frac{1}{0,5283}$$

und bei höheren Druckverhältnissen der Druck im engsten Querschnitt

$$\mathbf{p}_{\rm e} = \frac{\mathbf{p}_2}{1,893} = 0,5283 \; \mathbf{p}_2.$$

Kritische Geschwindigkeit.

Da der Druck innerhalb einer sich nicht erweiternden Düse nur auf den Druck $\frac{p_2}{r}$ abnimmt, so kann auch die Austrittsgeschwindigkeit einen Höchstwert nicht überschreiten. Diese "kritische Geschwindigkeit" ist bestimmt, wenn man in die Geschwindigkeitsgleichung als Druckverhältnis das kritische einsetzt. Dann wird

$$w_{kr.} = \sqrt{2 g R T_2} \frac{\varkappa}{\varkappa + 1} m/sek.$$

Für Luft ist

$$w_{kr.} = 18,3 \ \sqrt{T_2} \ m/sek.$$

Beispiel für Luft:
$$t_2 = 15^{\circ}$$
 C.
 $w_{kr} = 18,3 \sqrt{273 + 15} = 310,6 \text{ m/sek}.$

Die kritische Geschwindigkeit ist nur noch von der Temperatur vor der Düse abhängig; je \pm 6° vor der Düse bedingen bei ca. 300° C abs. ca. \pm 1 v. H. Geschwindigkeitsänderung, d. s. ca. \pm 3 m/sek.

Erweitert sich die Düse dagegen, so nimmt die Ausströmgeschwindigkeit bei steigendem Druckverhältnis auch über die kritische hinaus zu.

Ausströmende Gasmenge V₁ bei sich nicht erweiternder Düse.

Die ausströmende Gasmenge V1 ist abhängig von der Ausströmgeschwindigkeit.

Ist das Druckverhältnis das kritische, so ist die ausströmende kritische Menge

$$V_{1 \, kr.} = F \cdot w_{kr.} = F \sqrt{2 g R T_2} \frac{\varkappa}{\varkappa + 1} \text{ cbm/sek.}$$

Für Luft ist

$$V_{1 kr} = 18.3 \text{ F } \sqrt{T_o} \text{ cbm/sek}.$$

Durch 1 qcm Düsenquerschnitt strömt dann stündlich die Luftmenge

$$V_{1 \, \text{kr.}} = 6,59 \, \text{JT}_2 \, \text{cbm/st.}$$

Beispiel für Luft:
$$F = 1$$
 qcm, $t_2 = 15^{\circ}$ C,
 $V_{1 kr} = 6,59 \sqrt{273 + 15} = 111.8$ cbm/st.

Die ausströmende kritische Menge hängt wie die kritische Geschwindigkeit nur noch von der Temperatur vor der Düse ab.

Ist das Druckverhältnis dagegen größer als das kritische, so expandiert die Luft in einer sich nicht

erweiternden Düse vom Druck $\frac{p_2}{\left(\frac{\varkappa+1}{2}\right)^{\frac{\varkappa}{\varkappa-1}}}$ im engsten

Düsenquerschnitt, dem Endquerschnitt F, ohne Temperaturabnahme auf den Druck p₁. Demnach ist

$$V_{1} = \left(\frac{2}{\varkappa + 1}\right)^{\varkappa - 1} \cdot \frac{p_{2}}{p_{1}} F \sqrt{2 g R T_{2} \frac{\varkappa}{\varkappa + 1}} cbm/sek.$$

Für Luft ist

 $V_1 = 9,67 \ {{12}\over p_1} {\rm F} \, {
m /T_2 \, cbm/sek}$ und stündlich für 1 qcm Düsenöffnung

$$V_1 = 3.48 \frac{p_2}{p_1} \sqrt{T_2} \text{ cbm/st.}$$

Beispiel für Luft:

 $F = 1 \text{ qcm}, t_2 = 15^0 \text{ C}, p_2 = 7 \text{ at abs.}, p_1 = 1 \text{ at abs.},$

$$egin{array}{lll} V_1 &= 3,48 \cdot rac{p_2}{p_1} \, \sqrt{273 + 15} \, = 59,1 \, rac{p_3}{p_1} \ V_1 &= 59,1 \, rac{7}{1} \, = \, 413,7 \, {
m cbm/st.} \end{array}$$

Über das kritische Druckverhältnis hinaus wächst also bei sich nicht erweiternder Düse die ausströmende Menge proportional mit dem Druckverhältnis, außerdem bedingen je \pm 6° C vor der Düse bei ca. 300° C abs. ca. \pm 1 v. H. größere Menge.

Kritische Temperaturabnahme $t_2 - t_1$.

Entsprechend dem kritischen Druckverhältnis ist die "kritische Temperaturabnahme"

$$\begin{split} \mathbf{t}_2 &- \mathbf{t}_1 = \mathbf{T}_2 \left[1 - \left\{ \left(\frac{2}{\varkappa + 1} \right)^{\left(\frac{\varkappa}{\varkappa - 1} \right)} \right\}^{\left(\frac{\varkappa - 1}{\varkappa} \right)} \right] \\ & \mathbf{t}_2 - \mathbf{t}_1 = \frac{\varkappa - 1}{\varkappa + 1} \, \mathbf{T}_2 \, . \end{split}$$

Für Luft ist

B

 $\mathbf{t_2} - \mathbf{t_1} = \frac{\mathbf{T_2}}{6} \, . \label{eq:t2}$

teispiel für Luft:
$$t_2 = 15^{\circ}$$
 C,
 $t_2 - t = \frac{273 + 15}{6} = 48^{\circ}$ C.
 $t_1 = 15 - 48 = -33^{\circ}$ C.

Die kritische Temperaturabnahme ist nur noch von der Temperatur vor der Düse abhängig, derem absolutem Wert sie proportional ist.

E. Ausströmende Gasmenge V₂.

Will man anstatt der ausströmenden Gasmenge V_1 vom Zustand hinter der Düse bei dem geringen Druck p_1 die Gasmenge V_2 vom Zustand vor der Düse bei dem höheren Druck p_2 und der genau meßbaren Temperatur t_2 , die Druckgasmenge, ermitteln, so kann man nach der Zustandsgleichung

$$\frac{\mathbf{P}_2 \, \mathbf{V}_2}{\mathbf{T}_2} = \frac{\mathbf{P}_1 \, \mathbf{V}_1}{\mathbf{T}_1}$$

setzen. Dann ist

Da

$$\frac{\mathbf{T}_2}{\mathbf{T}_1} = \left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\varkappa-1}{\varkappa}} = \left(\frac{\mathbf{p}_1}{\mathbf{p}_2}\right)^{\frac{1-\varkappa}{\varkappa}}$$

 $V_2 = V_1 \frac{p_1}{p_1} \frac{T_2}{T_1}$

so wird

$$V_2 = V_1 \left(\frac{\mathbf{p}_1}{\mathbf{p}_2}\right)^{\frac{1}{\chi}}.$$

Setzt man für \mathbf{V}_1 den bereits entwickelten Wert ein, so erhält man

$$\begin{aligned} \mathbf{V}_2 &= \mathbf{F} \bigvee 2 \ \mathbf{g} \ \mathbf{R} \ \mathbf{T}_2 \ \frac{\varkappa}{\varkappa - 1} \bigg[\bigg(\frac{\mathbf{p}_1}{\mathbf{p}_2} \bigg)^{\frac{\varkappa}{\varkappa}} - \bigg(\frac{\mathbf{p}_1}{\mathbf{p}_2} \bigg)^{\frac{\varkappa + 1}{\varkappa}} \bigg] \mathbf{c} \mathbf{b} \mathbf{m} / \mathbf{s} \mathbf{e} \mathbf{k}, \\ \\ \mathbf{F} \ddot{\mathbf{u}} \mathbf{r} \ \mathbf{L} \mathbf{u} \mathbf{f} \mathbf{t} \ \mathbf{i} \mathbf{s} \mathbf{t} \end{aligned}$$

$$V_2 = 44,83 \text{ F} \sqrt{T_2 \left[\left(\frac{p_1}{p_2} \right)^{1,429} - \left(\frac{p_1}{p_2} \right)^{1,444} \right]} \text{ cbm/sek}$$

und für 1 qcm Düsenquerschnitt die stündlich ausströmende Druckluftmenge

$$V_2 = 16.14 \int T_2 \left[\left(\frac{p_1}{p_2} \right)^{1,429} - \left(\frac{p_1}{p_2} \right)^{1,714} \right] cbm/st.$$

(Anstatt mit 1,429 potenziert man bequemer mit $\frac{10}{7}$, anstatt mit 1,714 mit $\frac{12}{7}$.)

Bei geringen Druckunterschieden kann angenähert ohne beträchtliche Fehler gesetzt werden

$$V_2 = \sim F \frac{1}{P_2} \sqrt{2 g R T_2 P_1 (P_2 - P_1)} cbm/sek.$$

Für Luft ist

$$V_2 = \sim 23,96 \; {\rm F} \, {1 \over {\rm P_2}} \; \sqrt{{\rm T_2} \, {\rm P_1} \; ({\rm P_2} - {\rm P_1})} \; {\rm cbm/st}$$

und für 1 qcm Düsenquerschnitt die stündlich ausströmende Druckluftmenge angenähert

$$V_2 = \sim 8,627 \, rac{1}{P_2} \, \sqrt{T_2 \, P_1 \, (P_2 - P_1)} \, {
m cbm/st.}$$

Beispiel für Luft:

$${\rm F}=1\,{\rm qcm}, {\rm t_2}=15^{\rm 0}{\rm C}, {\rm p_1}=1\,{\rm at\,abs.}, {\rm P_2-P_1}=200\,{\rm mm\,W.\text{-}S.},$$

$$V_2 = \sim \frac{8,027}{10000 + 200} \sqrt{(273 + 15) 10000 (P_2 - P_1)} = \sim 20,29 \text{ cbm/st.}$$

Die ausströmende Druckluftmenge wird beeinflußt durch

 \pm 6° C vor der Düse um \pm 1 v. H. (bei ca. 300° C abs.),

 \pm 0,01 at an der Düse um \mp 0,5 v. H. (bei ca. 1 at abs. Druck),

 \pm 1 v. H. Druckunterschied um ca. \pm 0,5 v. H.

Die Rechnung mit der Näherungsformel ergibt etwas zu hohe Werte. Der Fehler ist der Tabelle zu entnehmen.

P_2 — P_1 in mm WS.	280	560	840	1120	1400	2800	5600	usw.
Fehler in v. H .	0,1	0,2	0,3	0,4	0,5	1,0	2,0	a

Für je 280 mm Druckabfall in der Meßdüse sind die Näherungswerte nur um 1 v. T. zu groß, so daß der Fehler bei den üblichen geringen Druckunterschieden vor und hinter der Düse geringer als unvermeidliche Beobachtungsfehler ist und deshalb unbedenklich vernachlässigt werden kann.

Aus der genauen Formel geht hervor, daß die ausströmende Druckluftmenge V2 einen Höchstwert erreicht, wenn

$$\frac{p_2}{p_1} = \left(\frac{\varkappa + 1}{2}\right)^{\frac{\varkappa}{\varkappa - 1}}$$

ist. Bei diesem kritischen Druckverhältnis ist

$$V_{2 \max} = F \sqrt{2 g R T_2 \frac{\varkappa}{2} \left(\frac{2}{\varkappa+1}\right)^{\frac{\varkappa+1}{\varkappa-1}} cbm/sek}.$$

Für Luft ist

 $V_{2 \max} = 11.6 \text{ F} \sqrt{T_2} \text{ cbm/sek}$ und für 1 qcm Düsenquerschnitt

$$V_{2 \text{ max.}} = 4,177 \sqrt{T_2} \text{ cbm/st.}$$

Beispiel für Luft: t =
$$15^{\circ}$$
 C.
V_{2 max.} = 4,177 $\sqrt{273 + 15}$ = 70,9 cbm/st.

Die maximal ausströmende Druckluftmenge ist nur noch von der Temperatur t₂ vor der Düse abhängig; je $\pm 6^{\circ}$ Temperaturänderung vor der Düse bei ca. 300° C abs. bedingen ca. ± 1 v. H. Druckluftmenge.

Erweitert sich die Düse, so nimmt bei höherem als dem kritischen Druckverhältnis der Wert V2 gesetzmäßig wieder ab. Als F ist dann jedoch der größere, erweiterte Endquerschnitt der Düse in die Rechnung einzuführen.

Erweitert sich die Düse nicht, so bleibt bei höherem als dem kritischen Druckverhältnis der Wert V2 dagegen unverändert gleich dem zuvor bestimmten Höchstwert.

F. Ausströmendes Gasgewicht.

Das durch eine Düse ausströmende Gasgewicht ist

$$\mathbf{G} = \frac{\mathbf{P}_1 \, \mathbf{V}_1}{\mathbf{R} \, \mathbf{T}_1} \, .$$

Setzt man für V_1 den abgeleiteten Wert ein und ferner

$$T_1 = T_2 \left(\frac{p_1}{p_2}\right)^{\frac{\chi-1}{\chi}} = \frac{1}{T_2} \left(\frac{p_2}{p_1}\right)^{\frac{\chi-1}{\chi}},$$

so erhält man

$$\mathbf{G} = \mathbf{F} \mathbf{P}_1 \sqrt{2 \, \mathbf{g} \frac{1}{\mathbf{R} \, \mathbf{T}_2} \frac{\varkappa}{\varkappa - 1} \left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\varkappa - 1}{\varkappa}} \left[\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right] \mathbf{k} \mathbf{g} / \mathbf{sek}.}$$
Für Luft ist

$$G = 15317 \text{ F } p_1 \sqrt[7]{\frac{1}{T_2} \left(\frac{p_2}{p_1}\right)^{0,286}} \left[\left(\frac{p_2}{p_1}\right)^{0,286} - 1 \right] \text{ kg/sek.}$$

Durch 1 qcm Düsenquerschnitt strömen stündlich

$$G = 5514 p_1 \sqrt{\frac{1}{T_2} \left(\frac{p_2}{p_1}\right)^{0,286} \left[\left(\frac{p_2}{p_1}\right)^{0,286} - 1\right]} kg/st.$$

Bei geringen Druckunterschieden kann angenähert gesetzt werden

$$\mathbf{G} = \mathbf{\sim} \mathbf{F} \sqrt{2 \operatorname{g} \frac{\mathbf{P}_1}{\mathbf{R} \operatorname{T}_2} (\mathbf{P}_2 - \mathbf{P}_1)} \operatorname{kg/sek.}$$
t ist

 ${\rm G} = ~ {\color{black} \sim 81,87} ~ {\rm F} ~ \sqrt{\frac{{\rm p}_1}{{\rm T}_2}} ~ ({\rm P}_2 - {\rm P}_1) ~ {\rm kg/sek}. \label{eq:G}$

Durch 1 qcm Düsenquerschnitt strömen stündlich angenähert

G = ~ 29,47
$$\sqrt[]{\frac{p_1}{T_2}}$$
 (P₂-P₁) kg/st.

Beispiel für Luft:

$$p_1 = 1$$
 at abs., $t_2 = 15^0$ C, $P_2 - P_1 = 200$ mm W.-S.,

G = ~ 29,47
$$\sqrt{\frac{1 \cdot (P_2 - P_1)}{273 + 15}}$$

= ~ 1,74 $\sqrt{200}$ = ~ 24,6 kg/st.

Das ausströmende Luftgewicht wird beeinflußt durch

je \pm 6° C vor der Düse um ca. \mp 1 v. H. (bei ca. 300º C abs.),

je \pm 0,01 at hinter der Düse um ca
. \pm 0,5 v. H. (bei ca. 1 at abs. Druck),

je ± 1 v. H. Druckunterschied um ca. ± 0.5 v. H. Zu beachten ist, daß in die Näherungsgleichung die meßbare Temperatur t2 vor der Düse, als Druck dagegen der niedrigere Druck p1 hinter der Düse eingeführt werden muß; dann sind die Näherungswerte um ein geringes zu groß. Der Fehler ist der Tabelle zu entnehmen.

Für je 280 mm Druckunterschied sind die Näherungswerte um 1 v. T. zu groß, so daß der Fehler nicht größer als unvermeidliche Ablesungsfehler ist und unbedenklich vernachlässigt werden kann.

Beim kritischen Druckverhältnis ist das ausströmende Gasgewicht

$$\mathrm{G}_{\mathrm{kr.}} = \mathrm{F} \, \mathrm{P}_1 \sqrt{2 \, \mathrm{g} \frac{1}{\mathrm{R} \, \mathrm{T}_2} \frac{\varkappa}{4} \, (\varkappa + 1)} \, \mathrm{kg/sek}$$

Für Luft ist

$$G_{kr.} = 7504 F p_1 \sqrt{\frac{1}{T_2}} kg/sek$$

und stündlich für 1 qcm Düsenöffnung

$$\theta_{\rm kr.} = 2702 \ {\rm p_1} \sqrt[4]{-\frac{1}{{\rm T_2}}} \ {\rm kg/st.}$$

Beispiel für Luft:

$$F = 1 \text{ qcm}, p_1 = 1 \text{ at abs.}, t = 15^{\circ} \text{ C},$$

G =
$$2702 \cdot 1 \sqrt{\frac{1}{273 + 15}} = 159,2 \text{ kg/st.}$$

 \pm 1 v. H. Druckänderung hinter der Düse bedingen ± 1 v. H. Luftgewichtänderung, je $\pm 6^{\circ}$ C vor der Düse ∓ 1 v. H.

Mit höherem als dem kritischen Druckverhältnisse nimmt bei sich erweiternder Düse das ausströmende Luftgewicht gesetzmäßig zu; als F ist jedoch der größere erweiterte Endquerschnitt der Düse einzuführen.

Erweitert sich die Düse nicht, so herrscht bei höherem als dem kritischen Druckverhältnis ß im Endquerschnitt F der Düse der Druck

$$\mathbf{p}_{\mathrm{e}} = \frac{\mathbf{p}_{2}}{\beta} = \left(\frac{2}{\varkappa + 1}\right)^{\frac{\varkappa}{\varkappa - 1}} \cdot \mathbf{p}_{2}$$

Da das ausströmende Luftgewicht proportional dem Druck im Endquerschnitt ist, so wird

$$G = F P_2 \sqrt{2 g \frac{1}{R T_2} \frac{\varkappa}{2} \left(\frac{2}{\varkappa + 1}\right)^{\frac{\varkappa + 1}{\varkappa - 1}} kg/sek.}$$

uft ist

Für L

$$G = 3964 p_2 F \sqrt[7]{\frac{1}{T_2}} kg/set$$

und für 1 qcm Düsenquerschnitt stündlich

$$G = 1427 p_2 \sqrt[]{rac{1}{T_2}} \, {
m kg/st}.$$

Beispiel:

$$F = 1 \text{ qcm}, t_2 = 15^0 \text{ C}, p_2 = 7 \text{ at abs.},$$

$$G = 1427 \cdot p_2 \sqrt[]{\frac{1}{273 + 15}} = 84.1 p_2$$

G = 84.1 · 7 = 588.7 kg/st.

Das ausströmende Luftgewicht wächst bei sich nicht erweiternder Düse jenseits des kritischen Druckverhältnisses proportional mit dem höheren Druck p2 vor der Düse, während der Druck p1 hinter der Düse keinen Einfluß mehr hat. Außerdem bedingen bei ca. 300° C abs. je \pm 6° C Temperaturänderung ca. \mp 1 v. H. Luftgewichtänderung.

G. Ausströmende Gase V_{p1t2} vom geringern Druck p₁ hinter der Düse, auf die höhere Temperatur t₂ vor der Düse umgerechnet.

In vielen Fällen, bei Messungen in der Druckleitung, expandiert das Gas beim Ausströmen durch die Düse auf Atmosphärenspannung, also auf den Druck, bei dem es vom Kompressor, dessen Saugleistung bestimmt werden soll, angesaugt worden ist. Rechnet man die ausströmende Menge V1 vom geringern Druck p1 und der zunächst unbekannten Temperatur t1 im Endquerschnitt der Düse von vornherein auf die meßbare Temperatur t₂ um, so hat man, um auf den Anfangszustand des Gases beim Ansaugen durch den Kompressor zu kommen, diese Menge V $p_1 t_2$ nur noch im Verhältnis der absoluten Temperaturen beim Ansaugen und vor der Düse zu berichtigen.

Zur Ermittelung dieses bei Düsenmessungen brauchbarsten Wertes ist entweder das tatsächliche Ausström-

volumen V_1 mit $\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{x-1}{x}}$, die Druckluftmenge V_2 vom Zustand vor der Düse mit $\frac{\mathbf{p}_2}{\mathbf{p}_2}$ oder aber auch das

ausströmende Luftgewicht G $\min \frac{\mathop{\mathrm{R}}\nolimits T_2}{\mathop{\mathrm{P}}\nolimits_1}$ zu multiplizieren. Das Ergebnis ist das gleiche.

$$\begin{aligned} & \operatorname{V}_{p_{2}t_{1}} = \operatorname{F} \Big] \middle/ 2 \operatorname{gRT}_{2} \frac{\varkappa}{\varkappa - 1} \left(\frac{p_{2}}{p_{1}} \right)^{\frac{\varkappa - 1}{\varkappa}} \left[\left(\frac{p_{2}}{p_{1}} \right)^{\frac{\varkappa - 1}{\varkappa}} - 1 \right] \operatorname{cbm/sek.} \\ & \operatorname{Für Luft ist} \end{split}$$

$$V_{p_1 t_2} = 44,83 \sqrt[]{T_2} \left(\frac{p_2}{p_1}\right)^{0,286} \left[\left(\frac{p_2}{p_1}\right)^{0,286} - 1 \right] \text{cbm/sek}$$

H in z., Thermodynamische Grundlagen.

und für 1 gcm Düsenquerschnitt und 1 Stunde

$$V_{p_1t_2} = 16.14 \left[\sqrt{T_2 \left(\frac{p_2}{p_1} \right)^{0.286}} \left[\left(\frac{p_2}{p_1} \right)^{0.286} - 1 \right] \text{ cbm/st.}$$

Für geringe Druckverhältnisse ist angenähert

$$V_{p_1t_2} = \sim F \sqrt{2 g \frac{R T_2}{P_1}} (P_2 - P_1) cbm/sek.$$

Für Luft ist

$$V_{p_1t_2} = \sim 23,96 \text{ F } \sqrt[7]{\frac{T_2}{P_1}} (P_2 - P_1) \text{ cbm/sek}$$

und stündlich für 1 qcm Düsenquerschnitt

$$V_{p_1 t_2} = \sim 8,627 \sqrt[]{rac{T_2}{P_1}} (P_2 - P_1) ~{\rm cbm/st.}$$

Beispiel für Luft:

$$F = 1 \text{ qcm}, t_2 = 15^{\circ} \text{C}, p_1 = 1 \text{ at abs.}, P_2 - P_1 = 200 \text{ mm W.-S.}$$

$$V_{p_1 t_2} = \sim 8,627 \sqrt{\frac{(273+15)}{10\,000}} (P_2 - P_1)$$

 $= \sim 1,46 / 200 = \sim 20,7 \text{ cbm/st.}$ Wurde die Luft mit 35° C vom Kompressor angesaugt, so war ihr Ansaugevolumen 20,7 $\frac{(273+35)}{(273+35)}$ = 21,4 cbm/st für 1 qcm Düsenquerschnitt.

 $V_{p_1t_2}$ wird beeinflußt durch

je \pm 6° C vor der Düse um ca. \pm 1 v. H. (bei etwa 300º C abs.),

je \pm 0,01 at Druck hinter der Düse um ca. \mp 0,5 v. H. (bei ca. 1 at abs. Druck),

je ± 1 v. H. Druckunterschied um ca. ± 0.5 v. H. Zu beachten ist, daß als Temperatur die höhere Temperatur t2 vor der Düse, als Druck dagegen der niedrigere Druck p1 hinter der Düse in die Näherungsgleichung eingeführt werden muß; dann ist der Näherungswert um ein geringes zu groß. Der Fehler ist der Tabelle zu entnehmen.

Hier sei erwähnt, daß die Näherungsformel für die Druckluftmenge V2 aus dieser Gleichung für Vp1ta entstanden ist. Da

$$\mathbf{V_2} = \mathbf{V_{p_1 t_2}} \cdot \frac{\mathbf{p_1}}{\mathbf{p_2}},$$

so ist

$$\begin{split} \mathbf{V}_{2} \, = \, \mathbf{F} \, \frac{\mathbf{p}_{1}}{\mathbf{p}_{2}} \, \sqrt{2 \, \mathbf{g} \frac{\mathbf{R} \, \mathbf{T}_{2}}{\mathbf{P}_{1}} \left(\mathbf{P}_{2} - \mathbf{P}_{1}\right)} \, = \\ & = \, \mathbf{F} \, \frac{1}{\mathbf{P}_{2}} \, \sqrt{2 \, \mathbf{g} \, \mathbf{R} \, \mathbf{T}_{2} \, \mathbf{P}_{1} \left(\mathbf{P}_{2} - \mathbf{P}_{1}\right)} \end{split}$$

Mit steigendem Druckverhältnis nimmt $V_{p_1t_2}$ gesetzmäßig zu, bei sich erweiternder Düse auch über das kritische Druckverhältnis hinaus; als F ist dann jedoch der größere, erweiterte Endquerschnitt der Düse einzuführen. Für das kritische Druckverhältnis ist

$$V_{p_1 t_2 kr.} = F \sqrt{2 g R T_2 \frac{\varkappa}{4} (\varkappa + 1) cbm/sek}.$$

Für Luft ist

 $V_{p_1t_2\,kr.}=\,21,96~F\,\sqrt{T_2}\,cbm/sek$ und für 1 qcm Düsenquerschnitt stündlich $V_{p_1t_2\,kr.}=7{,}91\,\sqrt[]{T_2}\,cbm/st.$

Beispiel für Luft:

$$F = 1 \text{ qcm}, t_2 = 15^0 \text{ C}.$$

 $V_{p_1 t_2 \text{ kr.}} = 7,91 \sqrt{273 + 15} = 134,2 \text{ cbm/st}.$

 $V_{p_1t_2}$ ist dann nur noch von der Temperatur t_2 vor der Düse abhängig; je $\pm~6^{0}$ C bedingen bei ca. 300° C abs. ca. $\pm~1$ v. H. Mengenänderung.

Bei größerem Druckverhältnis ist bei sich nicht erweiternder Düse aus den gleichen Gründen wie beim Luftgewicht

$$V_{p_1 t_2} = F \frac{p_2}{p_1} \left| \right|^2 g R T_2 \frac{\varkappa}{2} \left(\frac{2}{\varkappa + 1} \right)^{\frac{\varkappa + 1}{\varkappa - 1}} ebm/sek.$$

Für Luft ist dann

$$V_{p_1t_2} = 11,6~Frac{p_2}{p_1}~\sqrt{T_2}~cbm/sek$$

und für 1 qcm Düsenquerschnitt stündlich

$$V_{p_1t_2} = 4,177 \frac{p_2}{p_1} \sqrt{T_2} \text{ cbm/st.}$$

Beispiel für Luft:

$$F = 1 \text{ qcm}, t_2 = 15^0 \text{ C}, p_2 = 7 \text{ at abs.}, p_1 = 1 \text{ at abs.},$$

$$egin{aligned} & V_{p_1t_2} = 4,177 \cdot rac{p_2}{p_1} \sqrt{273 + 15} = 70,9 \cdot rac{p_2}{p_1} \ & V_{p_1t_2} = 70,9 \cdot rac{7}{1} = 496,3 \ \mathrm{cbm/st.} \end{aligned}$$

Über das kritische Druckverhältnis hinaus ist $V_{p_1 t_2}$ bei sich nicht erweiternder Düse proportional dem Druckverhältnis $\frac{p_2}{p_1}$; außerdem bedingen je $\pm 6^0$ C Temperaturänderung vor der Düse bei ca. 300° C abs. ± 1 v.H. Mengenänderung.

Auf den Tafeln 34—36 sind auf den Druckverhältnissen als Abszissen die genauen Werte $V_{p_1 t_2}$, die stündlich durch 1 qcm Düsenquerschnitt theoretisch ausströmenden Luftmengen vom geringeren Druck p_1 hinter der Düse und der höheren Temperatur t_2 vor der Düse, als Ordinaten aufgetragen.

Strömt anstatt Luft Gas oder eine andere Gasmischung mit bekanntem spezifischen Gewicht durch die Düse, so sind die ablesbaren Werte mit $\sqrt{\frac{1}{\gamma}}$ zu multiplizieren, wenn γ das spezifische Gewicht ist, bezogen auf Luft gleich 1.

Beispiele:

Druck hinter der Düse in der Druckleitung (Atmosphärendruck) $p_1 = 1,024$ at abs.

Temperatur vor der Düse $t_2 = 42^{\circ}$ C.

Ansaugetemperatur $t_0 = 20^{\bar{0}}$ C.

Druckabfall in der Düse P_2 — P_1	128 mm WS.	740 mm WS.	412 mm QS. von 25° C
Druck vor der Düse p_2	1,0368 at abs.	1,078 at abs.	$1,024 + \frac{412}{738,8} = 1,582 \text{ at abs.}$
Druckverhältnis $\frac{\mathbf{p}_2}{\mathbf{p}}$	1,0125	1,0723	1,545
$V_{p_1 t_2}$ nach Tafel ^{P1} . in cbm/st für 1 qcm	34 17,15	35 41,1	36 110,8

Angesaugte Luftmenge von Ansaugedruck $p_1 = 1,024$ at abs. und $t_0 = 20^{\circ}$ C. Ansaugetemperatur in cbm/st und 1 qcm Düsenquerschnitt

Würde anstatt Luft Gas mit dem spezifischen Gewicht $\gamma = 0,4$ bezogen auf Luft ausströmen, so wären die aus den Tafeln ermittelten Werte mit $\sqrt{\frac{1}{0,4}} = 1,58$ zu multiplizieren, und es ergäbe sich die angesaugte Gasmenge vom Ansaugezustand zu

$$25,1$$
 | $60,2$ | $162,6$

cbm/st und 1 qcm Düsenquerschnitt.

Will man durch Messung in der Druckleitung 10 000 cbm bei 20° C und 1 at abs. Druck stündlich angesaugte Luft messen, und schätzt man die Temperatur der Luft vor der Meßdüse auf 55° C, so würden 10 000 $\frac{273+55}{273+20} = 11$ 200 cbm Luft vom Druck hinter

der Düse und der Temperatur vor der Düse ausströmen. Wünscht man zur Messung einen Druckabfall in der Düse von

so müssen durch 1 qcm Düsenquerschnitt nach den Tafeln $34{-}{-}36$

~22 | ~47 | ~98

cbm Luft stündlich ausströmen. Damit ergeben sich Düsenquerschnitte von

$$\begin{array}{c|c} 11\ 200\\ \hline 22\\ \thicksim = 510 \end{array} \qquad \sim 240 \qquad \sim 115 \ qcm$$

und Düsendurchmesser von

$$\sim 250$$
 | ~ 175 | ~ 125 mm

Düsen von diesen Durchmessern haben einen genauen Querschnitt von

4

Ist der Atmosphärendruck (Ansaugedruck und Druck hinter den Düsen) $p_1 = 1,01$ at abs., die Ansaugetemperatur 18° C, die Temperatur vor den Düsen $t_2 = 52^{\circ}$ C, so müssen bei 10 000 cbm stündlicher Saugleistung 10 000 $\cdot \frac{273 + 52}{273 + 18} = 11\,170$ cbm durch die Düse aus-

strömen und bei 99 v. H. Düsenwirkungsgrad demnach durch 1 qcm Düsenquerschnitt

$$\begin{vmatrix} \frac{11\,170}{0,99\cdot491} \\ = 23,0 \end{vmatrix} 46,9 \qquad 92,0 \text{ cbm/st}$$

Dazu ist nach den Tafeln 34—36 bei 52° C ein Druckverhältnis von

1,0218 1,0914 1,358

erforderlich. Die Druckunterschiede vor und hinter den Düsen werden also bei $\mathbf{p}_1=1,01$ at abs. hinter den Düsen

$1,01 \cdot 1,0218 - 1,01 = 1,01 \cdot 0,0218 = 0,0220$	0,0923		0,3615 at abs.
also 220 mm WS.	923 mm	WS.	3615 mm WS.
			3615 267.2
			$=\frac{1}{739,5}=207,2$
			mm QS. von 30°C
sein.			

50

Die Fig. 50 soll die Auswahl des Düsendurchmessers für eine bestimmte Luftmenge und einen gewünschten Druckabfall in der Düse erleichtern, bzw. nach erfolgter Wahl des Düsendurchmessers den Druckunterschied für eine bestimmte Luftmenge angenähert erkennen lassen. so muß die Düse mit etwa 235 mm Durchm. ausgeführt werden.

Sind Düsen von 225 und 250 mm Durchm. vorhanden, so wird bei ihrer Verwendung der Druckabfall $P_2 - P_1$ etwa 300 bzw. 200 mm W.-S. betragen.

Fig. 50. Durch eine Düse strömende Luftmenge $V_{p_1 t_2}$ in cbm/st von dem Druck $p_1 = 1$ at abs. hinter der Düse und der Temperatur $t_2 = 20^{\circ}$ C vor der Düse.

Genau:

$$\begin{split} V_{p_{1}t_{z}} &= 3600 \, \varphi \, \frac{\pi}{4} \, d^{2} \, \Big| \!\!\! \left| 2 \, g \, B \, T_{2} \frac{x}{x-1} \left(\frac{p_{2}}{p_{1}} \right)^{-x} \left[\left(\frac{p_{2}}{p_{1}} \right)^{-x} - 1 \right] \, cbm/st \ (d \ in \ m) \\ V_{p_{1}t_{z}} &= 16,14 \cdot 0,99 \, \frac{\pi}{4} \, d^{2} \, \Big| \!\! \left| \sqrt{T_{2} \left(\frac{p_{3}}{p_{1}} \right)^{0,286} \left[\left(\frac{p_{2}}{p_{1}} \right)^{0,286} - 1 \right]} \, cbm/st \ (d \ in \ cm) \\ V_{p_{1}t_{z}} &= 16,14 \cdot 0,99 \, \frac{\pi}{2} \, d^{2} \, \Big| \sqrt{(273+20) \left(\frac{p_{2}}{1} \right)^{0,286} \left[\left(\frac{p_{2}}{1} \right)^{0,286} - 1 \right]} \, cbm/st \ (d \ in \ cm) \\ V_{p_{1}t_{z}} &= 27,35 \, \frac{\pi}{4} \, d^{2} \, \Big| \sqrt{p_{2}^{-0,286} \left[p_{2}^{-0,286} - 1 \right]} \, cbm/st \ (d \ in \ cm) \end{split}$$

Angenähert: $V_{p_1 t_2} = 3600 \varphi \frac{\pi}{4} d^2 \sqrt{2 g \frac{R T_2}{P_1} (P_2 - P_1)} \text{ cbm/st (d in m)}$ $V_{p_1 t_2} = 8,627 \cdot 0,99 \frac{\pi}{4} d^2 \sqrt{\frac{T_2}{P_1} (P_2 - P_1)} \text{ cbm/st (d in cm)}$

$$\begin{split} & \mathrm{V}_{\mathrm{p}_{1}\mathrm{t}_{2}}=9,627\cdot0,99\,\frac{\pi}{4}\,\mathrm{d}^{2}\,\sqrt{\frac{273+20}{10\,000}\,(\mathrm{P}_{2}-\mathrm{P}_{1})}\,\,\mathrm{cbm/st}\,\,(\mathrm{d}\,\,\mathrm{in}\,\,\mathrm{cm})\\ & \mathrm{V}_{\mathrm{p}_{1}\mathrm{t}_{2}}=1,462\,\frac{\pi}{4}\,\mathrm{d}^{2}\,\sqrt{\mathrm{P}_{2}-\mathrm{P}_{1}}\,\,\mathrm{cbm/st}\,\,(\mathrm{d}\,\,\mathrm{in}\,\,\mathrm{cm}) \end{split}$$

Die ausströmende Luftmenge ist proportional der Wurzel aus dem Druckunterschied und dem Quadrat des Düsendurchmessers,

der Druckunterschied ist proportional dem Quadrat der Menge und umgekehrt proportional der 4. Potenz des Düsendurchmessers, und

der Düsendurchmesser ist proportional der Wurzel aus der Menge und umgekehrt proportional der vierten Wurzel aus dem Druckunterschied.

Beispiel: Es sollen 10 000 cbm Luft in der Stunde mittels Düse gemessen werden.

Bei einer Düse von 125 mm Durchm. wird nach Fig. 50 der Druckabfall in der Düse etwa 220 mm Q.-S. sein.

Wünscht man nur 250 mm W.-S. Druckunterschied,

Soll anstatt Luft Gas mit dem spezifischen Gewicht γ , bezogen auf Luft = 1, gemessen werden, so ist bei unverändertem Düsendurchmesser und Druckunter-

schied die ausströmende Gasmenge $\sqrt{\frac{1}{\gamma}}$ mal so groß,

bei gleicher Menge und gleichem Düsendurchmesser der Druckunterschied y mal so groß als bei Messung von Luft, oder bei gleicher Menge und gleichem Druck-

unterschied muß der Düsendurchmesser $\sqrt[4]{\gamma}$ mal so groß als für Luft gewählt werden.

Beispiel: Es sollen stündlich 25 000 cbm Gas mit dem spezifischen Gewicht $\gamma = 0,55$, bezogen auf Luft = 1, gemessen werden.

Bei 300 mm Düsendurchmesser findet man in der

Fig. 50 den erforderlichen Druckunterschied $\mathbf{P}_2 - \mathbf{P}_1$ bei der Luftmenge

$$V = \frac{25000}{\sqrt[7]{\frac{1}{\gamma}}} = 25000 \ \sqrt[7]{\gamma} = 25000 \ \sqrt[7]{0,55}$$
$$= \sim 186000 \ \text{cbm/st.}$$

Pei 325 mm Düsendurchmesser ist der Druckabfall bei Messung von Luft ~ 430 mm W.-S., bei $\gamma = 0.55$ ist $P_2 - P_1 = 430 \gamma = 430 \cdot 0.55 = \sim 237 \text{ mm W.-S.}$

Wünscht man 200 mm W.-S. Druckabfall, so müßte der Düsendurchmesser für Luft ~ 394 mm betragen; für das vorliegende Gas müßte die Düse $394 \sqrt[4]{\gamma} = 394 \sqrt[4]{0,55} = ~ 340$ mm Durchm. er-

Der Einfluß einer andern Luft- oder Gastemperatur als 20° C und eines andern Druckes als $p_1 = 1$ at abs. kann bei diesen oberflächlichen Rechnungen zunächst vernachlässigt werden, da ± 1 v. H. Beeinflussung erst durch $\sim \pm 6^{\circ}$ C Temperatur- bzw. $\mp 0,02$ at Druckänderung entstehen.

Bei dauernden Messungen in der Druckleitung (Betriebsmessungen) wird man selbst bei Verwendung von Venturidüsen (Fig. 51), die eine

Fig. 51. Meßdüse in der Druckleitung mit Rückgewinnung der Geschwindigkeitsenergie (Venturidüse).

Rückgewinnung des größten Teiles der abgedrosselten Energie, eine Wiederumsetzung der Geschwindigkeit in Druck ermöglichen, mit relativ kleinen Druckunterschieden arbeiten. Dabei wird das Druckverhältnis sehr wenig über 1 liegen, so daß der Fehler der Näherungsrechnung sehr ge-

ring wird und ihr unbedingt der Vorzug zu geben ist.

Beispiel:

Druck beim Ansaugen	$p_0 = 1,025 \text{ at abs}$
Temperatur beim Ansaugen	$t_0 = 24^0 C$
Druck vor der Meßdüse 6,1 at Über-	

druck \dots p_2	= 7,125 at abs.
Temperatur vor der Meßdüse $\ldots t_2$	$= 78^{\circ} C$
Druckabfall in der Meßdüse . $P_2 - P_1$	= 164 mmWS.
Meßdüsendurchmesser d	= 150 mm
Düsenwirkungsgrad $\ldots \ldots \varphi$	= 99 v. H.
Wirksame Düsenfläche $F = 0,99 \cdot 176,7$	= 175 qcm

Durch die Düse strömende Druckluftmenge vom Druck hinter der Düse und der Temperatur vor der Düse

$$\begin{split} V_{p_1 t_2} &= 3600 \cdot 0.0175 \, \sqrt{2 \ g \, \frac{R \ T_2}{P_1} \left(P_2 - P_1\right)} \\ &= 63 \, \sqrt{\frac{19.62 \cdot 29.27 \cdot (273 + 78) \cdot 164}{71 \ 250 - 164}} \\ &= 106 \, \sqrt{164} = 1357 \ \text{cbm/st.} \end{split}$$

Angesaugte Luftmenge

$$V_0 = 1357 \cdot rac{7,1086}{1,025} \cdot rac{273 + 24}{273 + 78} = 7970 ext{ cbm/st.}$$

Die Fig. 52 soll eine schnelle Auswahl der Düsendurchmesser bzw. eine angenäherte Vorausbestimmung des Druckabfalles in der Düse bei Messungen in der Druckleitung ermöglichen.

Durch eine Düse in der Druckleitung strömende Luftmenge in cbm/st bei dem Zustand an der Düse p = 7 at abs., $t = 60^{\circ}$ C ungerechnet auf den Ansaugezustand $p_0 = 1$ at abs., $t_0 = 20^{\circ}$ C.

 $\begin{aligned} \mathbf{V}_{0} &= 3600 \ \varphi \, \frac{\pi}{4} \, \mathrm{d}^{2} \, \sqrt{2 \, \mathrm{g} \, \frac{\mathrm{R} \, \mathrm{T}}{\mathrm{P}} \, (\mathrm{P}_{2} - \mathrm{P}_{1}) \, \frac{\mathrm{P}}{\mathrm{P}_{0}} \, \frac{\mathrm{T}_{0}}{\mathrm{T}} \, \mathrm{cbm/st} \, (\mathrm{d} \, \mathrm{in} \, \mathrm{m})} \\ \mathbf{V}_{0} &= 8,627 \cdot 0,99 \, \frac{\pi}{4} \, \mathrm{d}^{2} \, \frac{\mathrm{T}_{0}}{\mathrm{P}_{0}} \, \sqrt{\frac{\mathrm{P}}{\mathrm{T}} \, (\mathrm{P}_{2} - \mathrm{P}_{1}) \, \mathrm{cbm/st} \, (\mathrm{d} \, \mathrm{in} \, \mathrm{cm})} \\ \mathbf{V}_{0} &= 8,627 \cdot 0.99 \, \frac{\pi}{4} \, \mathrm{d}^{2} \, \frac{\mathrm{T}_{0}}{\mathrm{P}_{0}} \, \sqrt{\frac{\mathrm{P}}{\mathrm{T}} \, (\mathrm{P}_{2} - \mathrm{P}_{1}) \, \mathrm{cbm/st} \, (\mathrm{d} \, \mathrm{in} \, \mathrm{cm})} \\ \mathbf{V}_{0} &= 8,627 \cdot 0.90 \, \frac{\pi}{4} \, \mathrm{d}^{2} \, \frac{\mathrm{273}}{\mathrm{P}_{0} \, \mathrm{273} + 20 \, \mathrm{J} / \frac{\mathrm{70000}}{\mathrm{T} \, \mathrm{cm}} \, \mathrm{cm} \\ \mathbf{V}_{0} &= 8,627 \cdot 0.90 \, \frac{\pi}{4} \, \mathrm{d}^{2} \, \mathrm{cm} \,$

 $V_{0} = 8,627 \cdot 0,99 \frac{\pi}{4} d^{2} \frac{273 + 20}{10\,000} \sqrt{\frac{70\,000}{273 + 60} (P_{2} - P_{1})} \text{ cbm/st (d in cm)}$

$$V_0 = 3,63 \frac{1}{4} d^2 / P_2 - P_1 \text{ cbm/st (d in cm)}$$

Die Werte sind $\sim \sqrt{\text{abs. Druck vor der Düse mal}}$ so groß, als wenn Luft von atmosphärischer Spannung durch die Düse strömt.

Beispiel: Bei 15 000 cbm/st Saugleistung wird bei Verwendung einer Düse von 175 mm Durchm. der Druckabfall $P_2 - P_1 = \sim 300 \text{ mm W.-S. sein.}$

Wie aus der Gleichung für V_0 ersichtlich, bedingt unveränderte Saugleistung einen unveränderten Wert des Produktes $P(P_2 - P_1)$; der Druckabfall $P_2 - P_1$ ist also umgekehrt proportional dem absoluten Druck in der Druckleitung.

Im Beispiel wird der Druckunterschied bei 5 at Überdruck anstatt 6 at

wenn

$$\sim 300 \frac{7}{6} = 350 \text{ mm W.-S.}$$

betragen.

menge

Der Einfluß des spezifischen Gasgewichts bei Gasmessungen ist der gleiche, wie bei der Fig. 50 erläutert.

Ist der Durchmesser der Leitung, in der die Düse angebracht ist, nicht beträchtlich größer als der lichte Durchmesser der Meßdüse, so ist auch für Betriebsmessungen die bereits vor der Düse vorhandene Geschwindigkeit in dieser Leitung zu berücksichtigen. Bei dem Düsendurchmesser d und dem Leitungsdurchmesser D ist die Geschwindigkeit w in der Düse $\left(\frac{D}{d}\right)^2$ mal größer als die Zuströmgeschwindigkeit w₀ in der Leitung.

$$w_0 = \left(\frac{d}{D}\right)^2 w.$$

Die in der Düse vernichtete potentielle Energie L_a ist der Unterschied der kinetischen Energie in der Düse und in der Leitung

$$\frac{\mathrm{w}^2}{2\mathrm{~g}} - \frac{\mathrm{w_0}^2}{2\mathrm{~g}} = \mathrm{L_a}.$$

Setzt man den Wert für wo ein, so ist

$$\begin{split} \mathrm{w}^2 \Big[1 - \left(\frac{\mathrm{d}}{\mathrm{D}} \right)^4 \Big] &= 2 \mathrm{g} \mathrm{L}_a \\ \mathrm{w} &= \frac{1}{\sqrt[4]{1 - \left(\frac{\mathrm{d}}{\mathrm{D}} \right)^4}} \sqrt{2 \mathrm{g} \mathrm{L}_a} \end{split}$$

Der aus dem Druckabfall in der Düse ermittelte Wert der Geschwindigkeit und der durchströmenden Luft-

ist also mit
$$\frac{1}{\sqrt[4]{1-\left(\frac{d}{D}\right)^4}}$$
 zu multiplizieren,

man nicht einen Fehler begehen, einen zu kleinen Wert feststellen will. Der genaue Wert ist um den der Tabelle zu entnehmenden Betrag größer als bei Vernachlässigung der Zuströmgeschwindigkeit.

$\frac{D}{d}$	1,5	2	2,5	3	3,5	4	4,5	5
$100 \left[\frac{1}{\sqrt{1 - \left(\frac{\mathrm{d}}{\mathrm{D}}\right)^4}} - 1 \right]$	11,5	3,2	1,75	0,6	0,36	0,15	0,1	0,05 v. H.

H. Theoretische Düsenquerschnitte für stetige Druckabnahme.

Bei Druckverhältnissen, kleiner als das kritische, wird in jeder abgerundeten Düse im engsten Querschnitt der Enddruck p_1 erreicht.

Ist das Druckverhältnis größer als das kritische, so wird der Druck p_1 im Endquerschnitt F der Düse nur erreicht, wenn auf den engsten Querschnitt F_{min} eine Erweiterung folgt (Fig. 49 S. 46). Nach bereits abgeleiteter Beziehung für stetige Druckabnahme muß das Verhältnis bestehen

$$\begin{split} \mathbf{F} &= \mathbf{F}_{\min} \Bigg] / \frac{\left(\frac{2}{\varkappa + 1}\right)^{\frac{2}{\varkappa - 1}} - \left(\frac{2}{\varkappa + 1}\right)^{\frac{\varkappa + 1}{\varkappa - 1}}}{\left(\frac{p_1}{p_2}\right)^{\frac{2}{\varkappa}} - \left(\frac{p_1}{p_2}\right)^{\frac{\varkappa + 1}{\varkappa}}} \\ \mathbf{F} &= \mathbf{F}_{\min} \Bigg] / \frac{\frac{\varkappa - 1}{2} \left(\frac{2}{\varkappa + 1}\right)^{\frac{\varkappa + 1}{\varkappa}}}{\left(\frac{p_1}{p_2}\right)^{\frac{2}{\varkappa}} - \left(\frac{p_1}{p_2}\right)^{\frac{\varkappa + 1}{\varkappa}}} \\ \text{fft ist} \end{split}$$

Für Luft ist

Graphische Zusammenstellung der abgeleiteten Formeln über das Ausströmen von Luft durch Düsen.

Auf den beiden Tafeln 37 und 38 sind alle abgeleiteten Beziehungen über das Ausströmen von Luft durch eine Düse graphisch zusammengestellt. Tafel 37 zeigt die Werte, die sich bei einer erweiterten Düse ergeben; alle Vorgänge verlaufen gesetzmäßig auch bei beliebig steigendem Druckverhältnis. Tafel 38 gibt die entsprechenden Werte bei einer sich nicht erweiternden Düse, bei der vom kritischen Druckverhältnis ab der gesetzmäßige Vorgang gestört ist.

Beispiel: Druckverhältnis
$$rac{\mathrm{p}_2}{\mathrm{p}_1}=$$
 4, $\mathrm{t}_2=$ 20° C.

In der Reihenfolge von oben nach unten ist aus den verschiedenen Kurvenbündeln beim Druckverhältnis 4 abzulesen

	Düse mit Er- weiterung auf Taf. 37	Düse ohne Er- weiterung auf Taf. 38
Ausströmgeschwindigkeit w m/sek Ausströmendes Luftgewicht G für	440	313
$F = 1 \text{ qcm} \dots \text{ kg/st}$	275	333
Luftvolumen $V_{p_1 t_1}$ vom Zustand $p_1 u. t_2$ für $F = 1$ qcm	235	285
schnitt der Düsefür $F = 1 \text{ gcm cbm/st}$	154	234
Theoretischer Düsenendquerschnitt für stetige Druckabnahme	1,21 Fmin	
Temperaturabnahme in der Düse °C	96	49
Druckluftmenge V ₂ vom Zustand		
p_2 und t_2 vor der Düse für		-1
$\mathbf{F} = \mathbf{I} \operatorname{qcm} \ldots \ldots \ldots \operatorname{cbm/st}$	58	71
Luitdruck im Dusenendquerschnitt at abs.	p ₁	$2,1 p_1$

Auf den beiden folgenden Seiten 54 und 55 sind alle Beziehungen über das Ausströmen von Luft durch Düsen zusammengestellt; zunächst die exakten Gleichungen, sodann die Näherungsformeln bei geringen Druckunterschieden mit Angabe der Fehlergrößen. .

Zusammenstellung der Formeln über das Ausströmen von Luft durch Düsen.

		Kritisches Druckve	erhältnis: $\frac{p_2}{p_1} = \beta =$	$\left(\frac{x+1}{2}\right)^{\frac{x}{x-1}} = 1,2^{3,5} = 1,893 = \frac{1}{6}$	1),5283		
Düsenform		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} V_2 \\ P_2 \\ p_3 \\ T_2 \\ t_2 \end{array} \begin{array}{c} V_1 \\ P_1 $	$\begin{array}{c cccc} V_2 & & V_1 \ cbm \\ P_2 & & P_1 \ kg/qm \\ p_2 & & F_{qm} \\ T_2 & & m/sck & & T_1 \ \circ \ C \ abs. \\ t_3 & & t_1 \ \circ \ C \end{array}$	$\begin{array}{c cccc} V_2 & & V_1 \\ P_2 & & P_1 \\ p_2 & & F^T & p_1 \\ T_2 & & T_1 \\ t_2 & & t_1 \end{array}$		
Druckve	rhältnis	$\mathbf{p}_2 < \beta \mathbf{p}_1$	$\mathbf{p_2} > \beta \; \mathbf{p_1}$	$\mathbf{p}_2 = \beta \mathbf{p}_1$	$\mathbf{p_2} > eta \mathbf{p_1}$		
Ausström Geschwin digkeit	- m/sel	$w = \sqrt{2 g R T_2 \frac{x}{x - x}}$	$\frac{\alpha}{1} \left[1 - \left(\frac{p_1}{p_2}\right)^{\frac{\alpha}{2}-1} \right]$	$w = \sqrt{2 g \mathrm{R} \mathrm{T}_2 \frac{z}{z+1}}$	$w = \sqrt{2 g R T_2 \frac{z}{z+1}}$		
w	m/sel	$w = 44,83 \sqrt{T_2 \left[1 - \frac{1}{2}\right]}$	$-\left(\frac{\mathbf{p_1}}{\mathbf{p_2}}\right)^{0,286}$	$w=18,3\sqrt[]{T_2}$	$w = 18,3 \sqrt[4]{T_2}$		
Beispiel: $t_2 = 15 \ ^{\circ}C$	m/sel	(lg 44,83 =	1,651 5948)	$w = 18,3 \sqrt[7]{273 + 15} = 310,6$	$w = 18,3 \sqrt{273 + 15} = 310,6$		
Aus- strömende	cbm/se	k $V_1 = F \sqrt{2 g R T_2 \frac{1}{z}}$	$\frac{z}{-1} \left[1 - \left(\frac{\mathbf{p}_1}{\mathbf{p}_2}\right)^{\frac{z}{-1}} \right]$	$V_1 = F \sqrt{2 g R T_2 \frac{z}{z+1}}$	$V_1 = F\left(\frac{2}{z+1}\right)^{\frac{z}{z-1}} \frac{p_2}{p_1} \sqrt{2g R T_2 \frac{z}{z+1}}$		
V ₁	cbm/se	k $V_1 = 44,83 \mathrm{F} \sqrt{\mathrm{T_2} \left[1\right]}$	$-\left(\frac{\mathbf{p_1}}{\mathbf{p_2}}\right)^{0,286} \bigg]$	$V_1 = 18,3 \text{ F } \sqrt[3]{T_2}$	$\mathrm{V_1}=9,67~\mathrm{F}rac{\mathrm{p}_2}{\mathrm{p}_1}\sqrt{\mathrm{T}_2}$		
F = 0,0001 qm = 1 qcm	n cbm/st	$V_1 = 16,14 \ \sqrt{T_2 \left[1 - 1\right]}$	$\overline{\left(\frac{\mathbf{p}_1}{\mathbf{p}_2}\right)^{0,286}}$	$\overline{\mathrm{V}_{1}=6,59\sqrt[]{\mathrm{T}_{2}}}$	$\overline{\mathrm{V_1}=3,\!48rac{\mathrm{p}_2}{\mathrm{p}_1}\sqrt{\mathrm{T_2}}}$		
Beispiel: $t_2 = 15 \ ^{\circ}C$	cbm/st	$(\lg 16, 14 \ldots =$	1,207 8973)	$\boxed{\mathbf{V}_1 = 6,59\sqrt{273 + 15} = 111,8}$	$V_1 = 3,48 \frac{p_2}{p_1} \sqrt[3]{273 + 15} = 59,1 \frac{p_2}{p_1}$		
Aus- strömende Druckluft-	cbm/sel	$V_2 = F \sqrt{2 g R T_2 \frac{z}{z - z}}$	$\frac{1}{1}\left[\left(\frac{\mathbf{p}_1}{\mathbf{p}_2}\right)^{\frac{2}{\varkappa}} - \left(\frac{\mathbf{p}_1}{\mathbf{p}_2}\right)^{\frac{\varkappa+1}{\varkappa}}\right]$	$\overline{\mathbf{V}_2 = \mathbf{F} \left[\sqrt{2 \mathbf{g} \mathbf{R} \mathbf{T}_2 \left(\frac{2}{z+1} ight)^{\frac{z+1}{z-1}}} ight]^{\frac{z}{z-1}}}$	$\left \begin{array}{c} V_2 = \mathrm{F} \end{array} ight ^{2} \mathrm{g} \mathrm{R} \mathrm{T}_2 \left(rac{2}{z+1} ight)^{rac{z+1}{z-1}} ight ^{2}$		
$\begin{array}{c} \mathrm{menge} \\ \mathrm{V_2} \end{array}$	cbm/sel	$V_{2} = 44,83 \text{ F} \sqrt{T_{2} \left[\left(\frac{p_{1}}{p_{2}} \right) \right]}$	$\left(\frac{p_1}{p_2}\right)^{1,429} - \left(\frac{p_1}{p_2}\right)^{1,714}$	$V_2 = 11.6 \mathrm{F} \sqrt[7]{\mathrm{T}_2}$	$\mathrm{V}_{2}=11.6~\mathrm{F}\sqrt[3]{\mathrm{T}_{2}}$		
$F = 0,0001 \mathrm{qm}$ $= 1 \mathrm{qcm}$	cbm/st	$\mathrm{V}_{2}=16,14\mathrm{J}/\mathrm{T}_{2}\left[\left(rac{\mathrm{p}_{1}}{\mathrm{p}_{2}} ight)^{1,4} ight.$	$\left(\frac{p_1}{p_2}\right)^{1,714}$	$ abla_2 = 4,177 \sqrt[3]{ ext{T}_2} $	$\mathrm{V}_{2}=4,177\sqrt[]{\mathrm{T}_{2}}$		
Beispiel: $t_2 = 15 \ ^{\circ}C$	cbm/st	$(\lg 16, 14 = 1)$	1,207 8973)	$V_2 = 4,177 \sqrt{273 + 15} = 70,9$	$ abla_2 = 4,177 \sqrt[3]{273+15} = 70,9 $		
Aus- strömendes Luft-	kg/sek	$\mathbf{G} = \mathbf{F} \cdot \mathbf{P}_{2} \sqrt{2 \mathbf{g} \frac{1}{\mathbf{R} \mathbf{T}_{2}} \frac{z}{z-1}}$	$\frac{\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\varkappa-1}{\varkappa}}\left[\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\varkappa-1}{\varkappa}}-1\right]$	$\mathbf{G} = \mathbf{F} \cdot \mathbf{P}_1 \sqrt{2 \operatorname{g} \frac{1}{\operatorname{R} \operatorname{T}_2} \frac{z}{4} \left(z+1\right)}$	$\mathbf{G} = \mathbf{F} \cdot \mathbf{P}_{2} \left[\sqrt{2 \mathbf{g} \frac{1}{\mathbf{R} \mathbf{T}_{2}} \frac{z}{2} \left(\frac{2}{z+1} \right)^{\frac{z+1}{z-1}}} \right]$		
gewicht G	kg/sek	$G = 15317 \text{ F} \cdot p_1 \sqrt{\frac{1}{T_2} \left(\frac{p_2}{p_1}\right)}$	$\left[\left(\frac{p_2}{p_1} ight)^{0,286} - 1 ight]$	$\mathbf{G} = 7504 \mathbf{F} \cdot \mathbf{p}_1 \sqrt{\frac{1}{\mathbf{T}_2}}$	$G = 3964 \mathrm{F} \cdot \mathrm{p}^2 \sqrt{\frac{1}{\mathrm{T}^2}}$		
F = 0,0001 qm = 1 qcm	kg/st	$G = 5514 \ p_1 \ \sqrt{\frac{1}{T_2} \left(\frac{p_2}{p_1}\right)^{0,286}}$	$6\left[\left(\frac{p_2}{p_1} ight)^{0,286}-1 ight]$	$G = 2702 p_1 \sqrt{\frac{1}{T_2}}$	$\mathrm{G}=1427\mathrm{p_2}\sqrt{rac{1}{\mathrm{T_2}}}$		
Beispiel: $p_1 = 1$ at abs $t_2 = 15 \ ^{\circ}C$	kg/st	$ \begin{pmatrix} \lg 15317 = 4, \\ \lg 5514 = 3, \\ \end{cases} $	185 1721) 741 4746)	$G = 2702 \cdot 1 \sqrt{\frac{1}{273 + 15}} = 159,2$	$G = 1427 p_2 \sqrt{\frac{1}{273 + 15}} = 84.1 p_2$		
Aus- strömende	cbm/sek	$V_{p_1 t_2} = F \int 2 g R T_2 \frac{z}{z - 1} \left(\frac{1}{2} \right)^2$	$\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\varkappa-1}{\varkappa}} \left[\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{\frac{\varkappa-1}{\varkappa}} - 1 \right]$	$V_{p_1 t_2} = F \sqrt{2 g R T_2 \frac{z}{4} (z+1)}$	$V_{p_1 t_2} = \frac{p_2}{p_1} \sqrt{2 g R T_2 \frac{z}{2} \left(\frac{2}{z+1}\right)^{\frac{z+1}{x-1}}}$		
$V_{p_1 t_2}$	cbm/sek	$V_{p_1 t_2} = 44,83 \sqrt{T_2 \left(\frac{p_2}{p_1}\right)^{0,286}} \Big $	$\left[\left(\frac{p_2}{p_1}\right)^{0,286}-1\right]$	$V_{p_1 t_2} = 21,96 \text{ F } \sqrt[7]{T_2}$	$V_{{ m p}_1{ m t}_2}=11.6~{ m F}{{ m p}_2\over { m p}_1}\sqrt{{ m T}_2}$		
d = 0,0001 qm = 1 qcm	cbm/st	$V_{p_1 t_2} = 16,14 \ \sqrt{T_2 \left(\frac{p_2}{p_1}\right)^{0,286}} \left[$	$\left[\left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right)^{0,286}-1\right]$	$V_{p_1 t_2} = 7,91 \sqrt[3]{T_2}$	$V_{\mathrm{p}_{1}\mathrm{t}_{2}}=4,177\left(rac{\mathrm{p}_{2}}{\mathrm{p}_{1}} ight)\sqrt{\mathrm{T}_{2}}$		
Beispiel: $t_2 = 15 \ ^{\circ}C$	cbm/st	$(\lg 44,83\ldots = 1, \ \lg 16,14\ldots = 1,$,651 5948 207 8973)	$V_{p_1 t_2} = 7,91 \sqrt{273 + 15} = 134,2$	$V_{p_1 t_2} = 4,177 \frac{p_2}{p_1} \sqrt{273 + 15} = 70,9 \frac{p_2}{p_1}$		

F

Zusammenstellung der Näherungsformeln über das Ausströmen von Luft durch Düsen bei geringen Druckunterschieden.

Sämtliche Näherungsformeln ergeben etwas zu große Werte. Der jeweilige Fehler ist den Tabellen zu entnehmen.

Für alle Beispiele : $p_1 = 1$ at abs. $P_2 - P_1 = 200 \text{ mm W.-S.}$ $t_2 = 15^{\circ} \text{ C.}$ F = 0,0001 qm = 1 qcm. $w = \sqrt{\frac{2 g R T_2 (P_2 - P_1)}{P_1 + 0.6 (P_2 - P_1)}} = 23,96 \sqrt{\frac{T_2 (P_2 - P_1)}{P_1 + 0.6 (P_2 - P_1)}} m/sek$ Ausström-Geschwindigkeit Beispiel: w = 23,96 $\sqrt{\frac{(273 + 15)200}{10000 + 0.6 \cdot 200}}$ = 57,2 m/sek w im engsten Düsenquerschnitt 7600 8500 240 1300 1900 3000 4500 5400 6100 6600 $P_2 - P_1$ in mm W.-S. 520 850 + 0.05 + 0.1 + 0.15 + 0.2 + 0.25 + 0.3 + 0.25 + 0.2+0,1 ± 0 -0,1-0,2Fehler in v. H. $V_1 = F \sqrt[7]{\frac{2 g R T_2 (P_2 - P_1)}{P_1 + 0.6 (P_2 - P_1)}} = 23,96 F \sqrt[7]{\frac{T_2 (P_2 - P_1)}{P_1 + 0.6 (P_2 - P_1)}} \text{ cbm/sek}$ Ausströmende F = 0,0001 qm = 1 qcm: V₁ = 8,627 $\sqrt{\frac{T_2(P_2 - P_1)}{P_1 + 0.6(P_2 - P_1)}}$ cbm/st Luftmenge V₁ vom Druck p, und der Temperatur t1 Beispiel: $V_1 = 8,627 \sqrt{\frac{(273+15)\,200}{10\,000\,+\,0,6\cdot200}} = 20,58 \text{ cbm/st}$ im Austrittsquerschnitt der Düse 7600 $P_2 - P_1$ in mm W.-S. 240 520 850 1300 1900 3000 4500 5400 6100 6600 8500 + 0,05 + 0,1 + 0,15 + 0,2 + 0,25 + 0,3 + 0,25 + 0,2+0,1Fehler in v. H. +0-0.1-0.2 $V_2 = F \frac{1}{P_2} \sqrt{2 g R T_2 P_1 (P_2 - P_1)} = 23,96 \frac{F}{P_2} \sqrt{T_2 P_1 (P_2 - P_1)} cbm/sek$ Ausströmende $F = 0,0001 \text{ qm} = 1 \text{ qcm: } V_2 = \frac{8,627}{P_2} \sqrt[7]{T_2 P_1 (P_2 - P_1)} \text{ cbm/st}$ Druckluftmenge V₂ vom Druck p2 und Beispiel: $V_2 = \frac{8,627}{10\,000 + 200} \sqrt[7]{(273 + 15)\,10\,000 \cdot 200} = 20,29 \text{ cbm/st}$ $\operatorname{der}\operatorname{Temperatur} t_2$ vor der Düse 2520 $P_2 - P_1$ in mm W.-S. 280 560 840 1120 1400 1680 1960 2249 2800 5600 usw. Fehler in v. H. +0,1 + 0,2 + 0,3 + 0,4 + 0,5 + 0,6 + 0,7+1,0 + 2,0+0,8 + 0,9 $\mathbf{G} = \mathbf{F} \sqrt{\frac{2 \, \mathbf{g} \, \mathbf{P}_1 \, (\mathbf{P}_2 - \mathbf{P}_1)}{\mathbf{R} \, \mathbf{T}_*}} = 81,87 \, \mathbf{F} \sqrt{\frac{\mathbf{p}_1 (\mathbf{P}_2 - \mathbf{P}_1)}{\mathbf{T}_2}} \, \mathrm{kg/sek}$ $F = 0,0001 \text{ qm} = 1 \text{ qcm}: G = 29,47 \sqrt{\frac{p_1(P_2 - P_1)}{T_2}} \text{ kg/st}$ Ausströmendes Luftgewicht G Beispiel: G = 29,47 $\sqrt{\frac{1\cdot 200}{273+15}}$ = 24,6 kg/st $P_2 - P_1$ in mm W.-S. 560 840 2801120 1400 1680 1960 2240 2520 2800 5600 usw. Fehler in v. H. + 0,1 + 0,2 + 0,3 + 0,4 + 0,5 + 0,6+0,7+0,8 + 0,9+1.0+2,0 $V_{p_1 t_2} = F \sqrt{\frac{2 g R T_1 (P_2 - P_1)}{P_1}} = 23,96 F \sqrt{\frac{T_2 (P_2 - P_1)}{P_1}} \text{ cbm/sek}$ Ausströmende Luftmenge Vp1 t2 $F = 0,0001 \text{ qm} = 1 \text{ qcm}: V_{p_1t_2} = 8,627 \sqrt{\frac{T_2(P_2 - P_1)}{P_1}} \text{ cbm/st}$ vom Druck p1 hinter der Düse, auf die Tempe-Beispiel: $V_{p_1}t_z = 8,627 \sqrt{\frac{(273 + 15) 200}{10000}} = 20,7 \text{ cbm/st}$ ratur t2 vor der Düseungerechnet. $P_2 - P_1 \text{ in mm W.-S.}$ 280 560 1120 1400 1680 1960 840 2240 2520 2800 5600 usw. +0,1 +0,2 +0,3 +0,4 +0,5 +0,6 +0,7 +0,8 +0,9 +1,0 +2,0Fehler in v. H.

Bestimmung der Saugleistung von Vakuum-Pumpen.

Man benutzt zweckmäßig sich nicht erweiternde Düsen, durch die Luft von atmosphärischer Spannung in den Vakuumraum einströmt. Das Druckverhältnis ist dann wohl immer größer als das kritische $\beta = 1,893$

$$=\frac{1}{0.5283}$$
 (S. 46).

Es ist dann entweder die einströmende Luftmenge V_2 vom Atmosphärendruck p_2 und der Temperatur t_2 vor der Düse, das Luftgewicht G oder die Luftmenge $V_{p_1t_2}$ vom Druck p_1 hinter der Düse im Vakuumraum und der Temperatur t_2 vor der Düse zu bestimmen; das Ergebnis muß das gleiche sein.

Beispiel: Düsendurchm. = 3 mm, F = 0,0707 qcm, Düsenwirkungsgrad $\varphi = 0,97$, Atmosphärendruck $p_2 = 755$ mm Q.-S. von 25° C° = 1,0220 at abs., Temperatur vor der Düse $t_2 = 18$ C, Druck im Vakuumraum $p_1 = 62$ mm Q.-S. von 22° C = $\frac{62}{738,3} = 0,084$ at abs.

1) Luftmenge V₂ V₂ = $\varphi \cdot 4,177 \text{ F } \sqrt{T_2}$

 $V_2 = 0.97 \cdot 4.177 \cdot 0.0707 \sqrt{273 + 18} = 4.883 \text{ cbm/st}$

2) Luftgewicht G

 $\mathrm{G} = \phi \cdot 1427 \; \mathrm{F} \, \mathrm{p}_2 \sqrt[]{\frac{1}{\mathrm{T}_2}}$

$$\mathrm{G} = 0,97\cdot 1427\cdot 0,0707\cdot 1,022 \sqrt[]{rac{1}{273+18}}$$

$$= 5,86$$
 kg/st.

3)
$$V_{p_1 t_2} = \phi \cdot 4,177 \frac{p_2}{p_1} \sqrt{T_2}$$

 $V_{p_1 t_2} = 0,97 \cdot 4,177 \cdot 0,0707 \frac{1,022}{0,084} \sqrt{273 + 18}$
 $= 59.4 \text{ abm/st}$

Wird die Luft von einer trockenen Vakuumpumpe bei 0,075 at abs. Druck und 35^o C abgesaugt, so ist die Saugleistung V der Pumpe

1)
$$V = 4,883 \cdot \frac{1,022}{0,075} \cdot \frac{273 + 35}{273 + 18} = 70,4 \text{ cbm/st.}$$

2) $V = \frac{5,86 \cdot 29,27 (273 + 35)}{750} = 70,4 \text{ cbm/st.}$

3)
$$V = 59.4 \frac{0.084}{0.075} \frac{273 + 35}{273 + 18} = 70.4$$
 cbm/st.

Wird die Luft von einer Wasserstrahlpumpe bei 14° C Wassertemperatur abgesaugt, so herrscht in derselben ein Wasserdampf-Teildruck $p_d = 0,016$ at abs. und bei 0,082 at abs. Gesamtdruck ein Luft-Teildruck $p_1 = 0,082 - 0,016 = 0,066$ at abs. Die durch die Düse eingesaugte Luft nimmt dann einen Rauminhalt V_0 an von

1)
$$V_0 = 4,883 \cdot \frac{1,022}{0,066} \cdot \frac{273 + 14}{273 + 18} = 74,6 \text{ cbm/st.}$$

2) $V_0 = \frac{5,86 \cdot 29,27 (273 + 14)}{660} = 74,6 \text{ cbm/st.}$

3)
$$V_0 = 59.4 \cdot \frac{0.084}{0.066} \cdot \frac{273 + 14}{273 + 18} = 74.6 \text{ cbm/st.}$$

Welcher dieser drei Wege eingeschlagen wird, ist gleichgültig. Der erste bietet den Vorteil, daß ein theoretischer Wert ohne Berücksichtigung des Düsenwirkungsgrades sich leicht dem Gedächtnis einprägen läßt. Bei 7° C vor der Düse ist für 1 qcm Düsenquerschnitt die theoretische stündlich eingesaugte Luftmenge V_2 von atmosphärischer Spannung und 7° Temperatur

$$V_2 = 4,177 \sqrt{273} + 7 = 70 \text{ cbm/st.}$$

Je 6° C höhere Temperatur bedingen ~ 1 v. H. größere Luftmenge.

Einfluß des Feuchtigkeitsgehaltes der Luft bei Düsenmessungen.

A. Messungen in der Saugleitung.

Findet eine Temperaturänderung der angesaugten Luft zwischen der Meßdüse in der Saugleitung und dem Eintritt in den Kompressor nicht statt (Fig. 53), so

Fig. 53. Luftmessung mittels Düse in der Saugleitung eines Turbokompressors.

bestimmt man zweckmäßig sofort die Luftmenge vom Zustand hinter der Düse. Den Einfluß der Luftfeuchtigkeit berücksichtigt man durch Einführung der Gaskonstanten R_f der feuchten Luft, die auf Tafel 35 abgelesen werden kann.

Beispiel: Düsendurchm. 300 mm, Düsenquerschnitt F = 708 qcm.

Düsenwirkungsgrad
$$\varphi = 99$$
 v. H.
Druck vor der Düse $p_2 = 1,041$ at abs.
Druckabfall in der Düse $P_2 - P_1 = 274$ mm W.-S.
Druck hinter der Düse

$$p_1 = 1,041 - 0,0274 = 1,0136$$
 at abs.
Temperatur vor der Düse $t_2 = 32^0$ C.

$$\begin{split} \mathbf{V}_{1} &= \varphi \cdot 3600 \cdot \mathbf{F} \sqrt{\frac{2\,\mathrm{g}\,\mathbf{R}\mathbf{T}_{2}\,(\mathbf{P}_{2}-\mathbf{P}_{1})}{\mathbf{P}_{1}+0.6\,(\mathbf{P}_{2}-\mathbf{P}_{1})}} \\ \mathbf{V}_{1} &= 0,99 \cdot 3600 \cdot 0,0708 \sqrt{2\,\mathrm{g}\,\frac{\mathbf{R} \cdot (273\,+\,\mathbf{t}_{2})}{10\,136\,+\,0,6274} \cdot 274} \\ &= 0,99 \cdot 8,627 \cdot 708 \sqrt{\frac{305 \cdot 274}{10\,300}} = 17\,380 \text{ cbm/st.} \\ &\text{Luftfeuchtigkeit } \mathbf{x} = 90 \text{ v. H.} \\ &\text{Tafel } 35 \colon \mathbf{R}_{\mathrm{f}} = 29,75 = 1,0164 \cdot 29,27 \\ &\sqrt{29,75} = 1.0082\,\sqrt{29.27}. \end{split}$$

Mit Berücksichtigung der Luftfeuchtigkeit ist demnach die Luftmenge $V_{1 \text{ feucht}} 0,82 \text{ v. H. größer als } V_1$. $V_{1 \text{ feucht}} = 1,0082 \cdot 17 \ 380 = 17 \ 530 \text{ cbm/st.}$

Ohne Berücksichtigung des Feuchtigkeitsgehaltes würde man einen Fehler von 0,82 v. H. zu Ungunsten des Kompressors begehen.

Bei mit Wasserdampf gesättigter Luft ist der Einfluß der Luftfeuchtigkeit, also ihr maximaler Einfluß, bei

0	5	10	15	20	25	30	35	40	45	50	°C Luft- tempe-
				1							ratur
0,11	0,16	0,24	0,33	0.45	0.61	0.81	1.09	1.42	1.84	2.38	v.H.

Bei teilweiser Sättigung ist der Einfluß proportional dem Feuchtigkeitsgehalt geringer. Der Betrag kann ohne weiteres dem unteren Teil der Tafel 32 entnommen werden, in dem die Zunahme der Gaskonstanten für feuchte Luft in v. H. im Vergleich zu R = 29,27 für trockene Luft graphisch aufgetragen ist. Die Beeinflussung der Mengenmessung ist ziemlich genau die Hälfte dieses Wertes.

B. Messungen in der Druckleitung.

Beispiel: Düsendurchmesser 200 mm,

- Düsenquerschnitt F = 314,2 qcm. Düsenwirkungsgrad $\varphi = 99$ v. H. Druck der Atmosphäre = Druck hinter
- der Düse $p_1 = 1,0248$ at abs. Druckabfall in der Düse $P_2 - P_1 = 186$ mm W.-S. Druck vor der Düse

 $p_2 = 1,0248 + 0,0186 = 1,0434$ at abs. Temperatur vor der Düse

$$t_2 = 78^{\circ} C, T_2 = 351^{\circ} C abs.$$

Fig. 54. Luftmessung mittels Düse in der Druckleitung eines Kolbenkompressors.

(Beispielshalber seien im folgenden wieder 3 verschiedene Wege benutzt, die zum gleichen Ergebnis führen müssen. Der letzte erfordert die einfachste Umrechnung.)

a) Ohne Berücksichtigung des Feuchtigkeitsgehaltes der Luft.

Bestimmung der angesaugten Luftmenge V vom Ansaugedruck und von der Ansaugetemperatur.

$$V = 6645 \frac{1,0434}{1,0248} \frac{273 + 36}{273 + 78}$$
 $V = \frac{6750 \cdot 29,27 (273 + 36)}{1,0248}$ $V = 6770 \frac{273 + 36}{273 + 78}$ $V = 5960 \text{ cbm/st.}$ $V = 5960 \text{ cbm/st.}$ $V = 5960 \text{ cbm/st.}$

 b) Mit Berücksichtigung des Feuchtigkeitsgehaltes der Luft, jedoch ohne Berücksichtigung der Wasserabscheidung im Zwischenkühler.

Gaskonstante beim Ansaugen

$$R_f = 29.88 = 1.0208 \cdot 29.27.$$

$$W = 0.9 \cdot 41.4 = 37.3 \text{ g/cbn}$$

Wassergehalt W_{dr.} vor der Meßdüse in der Druckleitung

$$\mathrm{W}_{\mathrm{dr.}} = 37.3 \cdot rac{1.0248}{1.0434} \cdot rac{273 + 36}{273 + 78} = 32.2 \mathrm{~g/cbm}.$$

Feuchtigkeitsgehalt vor der Meßdüse $x_{dr.} = \frac{32,2}{271} = 0,119.$

Gaskonstante in der Druckleitung

$$R_{f dr.} = 29,87 = 1,0205 \cdot 29,27$$

Praktisch ist also die Gaskonstante vor der Meßdüse gleich der beim Ansaugen.

Hinz, Thermodynamische Grundlagen.

Die angesaugte Luftmenge war

$$V_{\text{feucht}} = 5960 \sqrt{\frac{29,87}{29,27}} = 5960 \cdot \sqrt{1,021} = 5960 \cdot 1,0105$$

= ~ 6020 cbm/st.

Ohne Berücksichtigung des Feuchtigkeitsgehaltes würde man also einen Fehler von ~ 1 v. H. zu Ungunsten des Kompressors begehen.

c) Mit Berücksichtigung der Wasserabscheidung im Zwischenkühler.

Zwischenkühlerdruck 2,2 at Überdruck. Rückkühltemperatur hinter dem Zwischenkühler 24^oC.

1. Bestimmung der Wasserabscheidung im Zwischenkühler.

α) Genaue Rechnung:

Wassergehalt der angesaugten Luft $0.9 \cdot 4.14 = 37.3$ g/cbm.

8

Dampfteildruck beim Ansaugen $0.9 \cdot 0.06 = 0.054$ at abs. Luftteildruck beim Ansaugen 1,0248 - 0,054 = 0,971 at. abs Druck im Zwischenkühler

1,0248 + 2,2 = 3,225 at abs.

Dampfteildruck hinter dem Zwischenkühler bei 24º C 0,03 at abs.

Luftteildruck hinter dem Zwischenkühler

3,225 - 0,03 = 3,195 at abs.

Wassergehalt im Zwischenkühler 9 105 979 1 96

$$37,3 \quad \frac{5,135}{0,971} \cdot \frac{273 + 36}{273 + 24} = 127,7 \text{ g/cbm}.$$

Wassergehalt hinter dem Zwischenkühler 21,5 g/cbm. Wasserabscheidung im Zwischenkühler 106,5 g/cbm.

β) Angenäherte Rechnung ohne Berücksichtigung der Dampfteildrucke:

Wassergehalt im Zwischenkühler

$$3,225 \ 273 + 36$$

$$37,3 \frac{1,025}{1,025} \cdot \frac{273 + 24}{273 + 24} = 122,2 \text{ g/c bm.}$$

Wassergehalt hinter dem Zwischenkühler 21,5 g/cbm. Wasserabscheidung im Zwischenkühler 100,7 g/cbm.

Auch die angenäherte Rechnung zeigt schon, daß hinter dem Zwischenkühler die Luft mit Wasserdampf gesättigt ist.

2. Bestimmung der Gaskonstanten vor der Meßdüse nach der Wasserabscheidung im Zwischenkühler.

α) Angenähert:

Wassergehalt vor der Meßdüse

21,5
$$\frac{1,043}{3,325} \cdot \frac{273+42}{273+78} = 5,88 \text{ g/cbm}.$$

Sättigungsgehalt bei 78° C ... 271 g/cbm. Feuchtigkeitsgehalt vor der Meßdüse

$$\mathbf{x} = \frac{5,88}{271} = 0,0217.$$

β) Genaue Rechnung:

Dampfteildruck vor der Meßdüse

 $0,0217 \cdot 0,441 = 0,0096$ at abs. Luftteildruck vor der Meßdüse

1,0434 - 0,0096 = 1,0338 at abs.

Wassergehalt vor der Meßdüse 0990

$$21.5 \cdot \frac{1.0338}{3.195} \cdot \frac{273 + 24}{273 + 78} = 5.89 \text{ g/cbn}$$

Feuchtigkeitsgehalt vor der Meßdüse

$$x = \frac{5,89}{271} = 0,0217.$$

Der Fehler der angenäherten Rechnung ist also so gering, daß das Ergebnis von der genauen Rechnung nicht abweicht.

Gaskonstante vor der Meßdüse bei 78º C und x = 0.0217

$$R_f = 29,38 = 1,0038 \cdot 29,27.$$

Da

V

$$/29,38 = 1,0019 \sqrt{29,27},$$

so ergibt die Rechnung mit dieser infolge der Wasserabscheidung im Zwischenkühler geringern Gaskonstante eine Saugleistung von

$$= 1,0019 \cdot 5960 = \sim 5970 \text{ cbm/st.}$$

während die genaue Messung in der Saugleitung bei dem größeren Feuchtigkeitsgehalt und der Gaskonstante $\mathbf{R}_{\mathrm{f}} = 29,88 = 1,021 \cdot 29,27$ den zuvor ermittelten Wert 6030 cbm/st ergeben würde. Der Fehlbetrag zwischen Messung in der Saugleitung und Messung in der Druckleitung mit jedesmaliger Berücksichtigung des Feuchtigkeitsgehalts, die Luftmenge

$$\begin{array}{rcl} 6020 - 5970 = & 50 \text{ cbm/st} \\ \text{d. s. } \sqrt{1,021 - 1,0019} \cdot 100 - 100 \\ & = \sqrt{1,019} \cdot 100 - 100 = & 0,9 \text{ v. H} \end{array}$$

kann nicht dem Kompressor zur Last gelegt werden. Auch ein Kompressor mit 100 v. H. Liefergrad würde diesen Fehlbetrag aufweisen, der in dem Ausscheiden der Luftfeuchtigkeit innerhalb des Kompressors begründet ist.

Da die genaueste Feststellung der tatsächlichen Luftfeuchtigkeit kaum möglich und ihr Einfluß auch nicht bedeutend ist, so genügen praktisch folgende Annahmen vollständig:

Wenn keine Wasserabscheidung im Kompressor stattfindet, setzt man die Gaskonstante in der Druckleitung gleich der beim Ansaugen durch Messung ermittelten.

Findet Wasserabscheidung statt, so bestimmt man die Gaskonstante nach der Wasserabscheidung aus dem Wassergehalt hinter dem Zwischenkühler durch angenäherte Umrechnung auf den Ansaugezustand, wie sie im folgenden für das gleiche Beispiel durchgeführt ist.

Wassergehalt der gesättigten Luft von 2,2 at Überdruck und 24º C hinter dem Zwischenkühler 21,5 g/cbm.

Auf den Ansaugedruck umgerechneter Feuchtig-keitsgehalt $\frac{21,5}{3,2} = 6,7$ g/cbm.

Wassergehalt gesättigter Luft von der Ansaugetemperatur 36° C = 41,4 g/cbm.

Feuchtigkeitsgehalt nach der Wasserabscheidung 6.7

$$x_{\rm dr.} = \frac{37}{41.4} \cdot 100 = 16,2$$
 v. H.

Gaskonstante in der Druckleitung

$$R_{fdr} = 29,38 = 1,0038 \cdot 29,27.$$

Das ist der gleiche Wert, wie ihn die durchgeführte genaue Rechnung ergab.

Die folgende Zahlentafel soll zeigen, wie groß der Unterschied zwischen Messung in der Druckleitung und Messung in der Saugleitung bei Berücksichtigung der Wasserabscheidung im Zwischenkühler maximal werden kann. Dabei ist Ansaugen mit Wasserdampf gesättigter Luft und 2 at Zwischenkühler-Überdruck vorausgesetzt.

Ansaugetemperatur ºC	10			20			30			40			50		
Rückkühltemperatur ºC	10	20	30	20	30	40	30	40	50	30	40	50	30	40	. 50
Einfluß der Wasserabscheidung in v. H.	0,2	0,1	0	0,3	0,2	0	0,6	0,4	0,1	1,2	1,0	0,7	2,1	1,9	1,7

Dieser Fall vollkommener Sättigung der Luft beim Ansaugen wird jedoch, hauptsächlich bei höheren Temperaturen, sehr selten vorkommen. Fast immer ist die Luft nur teilweise gesättigt und der Fehler infolge Vernachlässigung des Einflusses der Wasserabscheidung im Kompressor geringer als vorstehende Werte.

Tafel 7.

Hinz, Thermodynamische Grundlagen.

Tafel 8.

Fm	tr	Tch	m			F	1	-	T	-	T	-	T	1	T	1	T	ŕ			T	F			T		1					K	K		1			m	tor	tom
#	1										+		1	P	1	P	1								2.4															1
F		-	-			-		1				\Rightarrow	-		×						F	+							P	R										X
F	+	-	1					-		-			-	1	R							-		T			-	P					P	2		P	R	V		R
H	-													-									-		0										R				R	X
98	00	2						1	-				-				-		1	1		1		H	43													1	2	100
-	T		-			-		-		-		-		-	1	1	1			-	1	-		1	1			1										1		1
F		-	_			T	-		1		T			1			K			1	T		4	\square		1				/				1	1			1		1
E	F					-	-			1		*	R	1			K		1		1				23		R	R	1	1			2			K		/		1
-			-		1		\Rightarrow			-		-		4							R					R				V		R			R	1		1		V
1	+	-	1				-		-				-			1				1		4			~					1	2			R	1		2	V		A
90	900	2	-			1		-				-							5					5	220				1										8	200
F	1		-		1	F	+	T	1	+	1	1	+	1						1		4			100			1	1	/					1			1		1
E		-				1	1	1	1	4	F	1	4	1	1	1					1			+			-		1	1	/	1	1	1		1		1		1
	F		/								1														6		1		1	1	1	1			0			1	1	X
	\downarrow	-	1			P		P	-		+		R								R	1		R	33				X	1		1	2	R						V
H	1	-	///	-			1	1				-		R	1		R	1		4			1			R		P	1	X	A	1	V		P	P	R	V		
8	500	2	1				1						F	>							R	>							1	1	1	~			R			1	8	200
		-	-				1		-	1		1		T	1									1	2.40		1		1	1		1	1					1	1	
F	1	-	-	1		1	1	+	+	+	+	4	+	1	1	1			1			1	1		100	1	1	-	1	1	1	-			1	1	1	/	1	1
F	-	1	-			4		1	1	1	T	X	1	4	1		1	1	1		1	T	4	K	1		1	1		1	1	/	1		1	1	1	1	1	1
F	1	4	1	1	1	1	T	+	1	R	1	T	R	1	1	R	R	1	R	R	1	0	R		1	R	1	1	1	1		1	1	R	K		0	1	1	1
E	-		~			R		×		1	R				K		R		K		R	K			Ref.		P	R	1	X	N	1	1			R	1	V	10	Ten
80	100	4	V							R		P		1				1		K						P	R			1	1	X			2	R	X	X	-	Val
H	1	1	1	1					1	1	R	1					2	1			R				1				1	1		1	1	X			4	1	1	X
	-		1	/						1	1		1					/						4	200					1	1	1	1				1	1		
F	1	1		1		1	1	1	1	1	F	+	1		1					1		1	1		100	2					1	1	/		1	1	/	/	1	1
		1	/	/			1	T	1	T	F	1	T			1		/				1	1	1	1		1	1	1		1	/	1	1		/	/	1	1	1
5	10	4	11			R				1	T	R	1	K		R		1	2					*	X		N			1	X	X	1	/		X	1	1	T	200
K	40		Y				R	K		R			R	K	K		R				R	K			20	at	K			~	2	V	X	X	R	1	V	X	X	No.
	R	+	V			R	1	R	K		Þ	R			R	K		1	P	R		×	0	0	X	N	bs.	K	V	X	X	1	1	1	K	X	1		-	2
R		7			1		R		1	R	1	1		R				1				R	1	1				ind	dri		1	11	1	>		1	1	1	1	~
		>			/					1	1	P	1					1				1							Y	R		1	1			1	1	1	1	1
	1	1	1		-		1	1	1	1	1	1	1	P	1	/	1		1			1	1	4	995			6	1			1	1	1	1	1	/	1	/	1
70	00	1	1	/	11	1	1	4	1			1			1	/	1	11	/	1	1	1	1	1	1	1	1	1	1	/		1	1	/	1	1	1	1	7	100
					/										1				X	1									V					~	K	X	1			
-	R	+	2	1		R	1	X	R	R	1	A	R	R	V	X			1	1	1	1		R	00	X	X		7	2	9	V		>	2		V	Y	1	X
K		4	>	1	V		P	R			R	R	X		1	1	V	V	X	1	2	1	V	K	- a	1	1	Z	V	V	V			0	1	X	>		~	
Þ	F	4	1			R		1		R		X			1	1			1	X	1					1	1		\leq				V	X	X				-	Y
K		1		1		1		4	1	1		1	1	1			-	1	1	1			2	L	1	1	1		1	1	1		1	>	2		2		1	
65	20	+	1	/		5	1	K	1	4	F	X	1	1	1	1	1	1	/	1	1	1	1	1	0.80	1	1	1	1	1	1	1	1	1	1	1	1	1	65	00
1	1	T	1	/	1		1	4	1	1	1	1	1	1	1	1		/	1	1	1	1	1	4	A	1	1	/	1			1	1	1	1		1	1	1	V
R	1	4	1	1	/		1	1	1	1	1	K	1	R		1	1	1	1	1		5	1	1	2	1	1	V	1	1	V	~	1	~	1		V	1	1	~
	R	+	7	V	1	R	K	X	X	P	R	X	X		N	1	2	V	X	1	2	0	1	K	N	X	1	1	7	2	7		V	>	1		~	7	2	Y
R		X	4		0			P	R	K		P	P	R	V	1	X	1	1	1	K	X	X		08	1	1	X	V	V	V	~		1		2	2	V	X	X
	1	+	\mid	1	1			K	1	\geq	4	4	R			1		1	1	1	4	D		1		1	1		1					1	2	2	~	V	1	
600	90	1	1	1	/	1	1	1		1	1	1	N			-	1	1	1			5		5	1	1	1	1	1	1	1	1	1	1	1	1	1		64	00
	1	T	1	1	1	1	1	6	1	1	N	1	5	1	1	1		1	1	1	1	1	1	1		1	1	1	Y	1	J	1	V	1	1	1	1	1	1	1
	1	X	Y	1		1	1	1	1			5	5	1		1			1	1	1	1		1	275	1	1	1	1	1	1		Y	1	1	7	1	Y	1	1
R		T	7	Y	V	1	1	1	1	5	C	R	2	1	V	>	7	7	7	1	1	N	V	N	Y	7	1	J	4	7	V	1	Y	1	7	7	7	1	1	0
1	P	+	Y	1	1	V	X	1	0	R	R	K	1	X	7	2	7	7	V	X	1	2	1	1	7	2	V	V	X	X	X	1	7	2	1	V	V	V	Y	X
R	K	X	4	V	1	1	1	1	1	X		1	1	1	2	1	V	V	1		2	0	1	K	V	V	V	X	X	4	4	2	1	1	V	1	1	X	1	1
55	202	t	1	1	1	2	1	1			1	1	-	2	1	1	1	1	2	1	1	2	1	N	0.	1	2	2	Y	1	1	1	1	1		1	2	>	35	00
	2	>	1	1	1		1		2	1	1	1	1	1	1	1	1	1	7	1	1	7	1	N	Y	7	1	Y	>	1	1	1	1	1	1	1	1	1	1	1
1	1	X	1	1	/	1	1	1	1	1	1	1	/		1	1	Y	Y	7	1	1		V	N	7	1	1	1	1	1	1	V	V	1	1	1	1	1	1	1
	1	T	V	Y	1	1	1	1	1	R		N	1	1	Y	7	7	1	7		1		V	N	7	1	1	V	7	1	1	V	V	1	1	7	7	1	1	7
0	1	P	X	X	7	2	1	N	N	C	R	1	1	1	7	7	J	V	X	1	2	2	7	P	A	7	7	V	V	X	X	X	X	>	1	7	1	7	<	J
	1	F	X	X	1	V	1		0	R	1	1	1	1	V	J	V	X	1	14	564	UG	4	R	65	V	V	X	X	Y	X	X	Y	2	1	1	0	V	V	Y
V	-	and the second sec	A COLUMN TWO IS NOT	~1	01		1			1 78	0				nh	1 30		11	1	7	$n \vee$		1	1000	1	1 20		V F		VI		1	1	1	X	E al	~Av	an	51	001

Hinz, Thermodynamische Grundlagen.

Tafel 9. mkg/cbm mkg/com 3,4 14500 14500 Ī 3,3 14000 14000 3,2 13500 13 500 3.1 at abs. Enddruck 13000 13000 3,0 12 500 12500 2,9 12000 12000 28 11500 11500 37 11000 11000 2.6 10 500 10500 23 Anfangsdruck 0,9 0,95 Tatabs. 1,0333 05 15 10 000 10000 0,85

Hinz, Thermodynamische Grundlagen.

Tafel 10.

Hinz, Thermodynamische Grundlagen.

•

Tafel 11.

Hinz, Thermodynamische Grundlagen.

			Vol	lumet	risch	er V	Virku	ngsg	rad l	pei a	diaba	tisch	er Ri	ickex	pans	ion.	in the second	Taf	el 13.
V.H.							MIL	11	$\left \right $	XI	1 /	1/	XI	1	1/	1	1/		V.H.
76							111	1/	1//	1/		1//	1/	V	/		/		76
	7	-10	m	Pain	17	2	1/1	1/	XI	1/	1.2	XI	1	1 /	1/	. /	1	/	/
77	1 1	vol 100	1-1102	P	/	Π	1/1	1//	$\left \right $	1	11	19	1/	1/	1	1/	/	/	/77
						VII	ALT	VI	1	X	1/	XI	1	V	/	/	/		
78						1///	11	11	1/	1/	11	1/	1	1/	1/	1	/		78
						VII	117	1/1	1/	17	11	17	1/	1	1/	1	1	1	
7.9						ATT	11/	11	1/	11	11	8	1	V	1	1	/	1	19
					11	1//	11	1/	/	1/	1/	1	1	1/		/	1		/
80					1//	1//	1//	1/	11	11	11	1/	1	1/	1		/	1	10
					111	111	11	11	1	11	11	1/	1	V	1	1		1	/
81					1///	11	1//	1/	11	11	1	XI	1/		/	/	/	//	81
						11	11	1/	1/1	1/	1/	1	1/	1	1	1	1	/	1
82					1111	11	11	1	11	11	1/	1	/	1	1./		//	1/	182
00					111	1//	1/7	1/	XII	11	11	1/	1		/	1	1	/ /	/ 00
83				1 //	1///	1//	11	111	11	11	1/	1/	1	1/		//	1/	1	83
00				1 11	111	1/1	1/	1/1	1/1	1/	/	X	/	V	1	1	//	/	
84				1///	1///	1//	1/1	1//	11	1	1/	6/	1	1	//	1/	1	/	184
07					111	1/	11	XII	11	1/	1/	1	1	1	1/	/ /	1	1	07
85				////	1//	1//	11	V/	1/	/	/ /		/	1	1/	/		/	05
00				1111	11/	//	1/1	1//	17	1/	1	1/	7	1/	17	/	1/	-/	00
96				++++	111	11	11	1/	1/	/	/	1	1	Y/	/			/	100
00					H + H	$\vee /$	\mathbf{X}	1/	17	/	/		//	17	1/	/	/	/	00
07				V/I/	///	1//	1/1	1/1	1/	1	/	5/	//	/ /	//	/	/ /	/	-
81				11/	++	111	11	XI	/	17		1/	//	/	/			/	- 81
00				11/	1/1	11	$\left \right $	17		1/	1	V/	//	//	1/	/		É,	-
88			////	111	11	H/	1/1	1/	/	V	1/	1/	1/		/ /	/	/	/	88
20			//	H		H	11	1	-/		//	11	/	/		/	/		
89				H	HA	11	1//	1/	/	1/	//	1	//						89
00				1/1	HA	11	1/	//		1/	//	4	//	/ /				/	-
90				H	H/A	11	//	/	11	1			/		102	1			-90
~			H/A	///	HA	11	//	/	11	1	//	//	/	1	nis pa	/		/	-
91			HH	H	11	4	1/	11	1		//	//		werhal					9m
			HH		11	1	//	11	1	/	/	/	Druc	KV		/			1
92			H		44	//	11	4	1		/	cach	25	4					92
				H	HA	//	1//	//	//			310	//			/			/
93			////	H	41	1	44	//	//		1	1		/		/			93
			HH	11	4	44	\langle / \rangle	//		//	4	/		-		/			
94		H//A	###	H	1	44	1/	//		4	4	05	-					/	94
		<i> </i>	HH	11	HA	4	//		1		/							/	
95			HA	HA	11		1										_	-	-95
			HA	HA	HA	4	1	1			1	/	-				-		-
96			HA	HA	44	11	4	4	1		1	2			-		-	_	96
			HA	HA	4	44	4	4	1	-			/		-				
97		HA	HA	44	4	4	4	4	1	-	-		-						97
			HA	11	1	4	4	1	-		-								
98			1			-			-	-		1,5							98
							-		-										
99																			99
								chadlit	ther h	aum n	in v.	Н.							
1								1	4			THE PARTY					6		100

Arbeitsbedarf bei isothermischer Kompression in mkg/cbm angesaugte Luft.

Tafel 17.

Hinz, Thermodynamische Grundlagen.

Arbeitsbedarf bei isothermischer Kompression in mkg/cbm angesaugte Luft.

Tafel 18.

Q 95

0333

Hinz, Thermodynamische Grundlagen.

 \mathcal{O}

Verlag von Julius Springer in Berlin.

005

Arbeitsbedarf bei isothermischer Kompression in mkg/cbm angesaugte Luft.

Tafel 19.

Hinz, Thermodynamische Grundlagen.

Arbeitsbedarf bei isothermischer Kompression in mkg/cbm angesaugte Luft.

Tafel 20.

Hinz, Thermodynamische Grundlagen.

Arbeitsbedarf bei isothermischer Kompression in mkg/cbm angesaugte Luft.

Tafel 21.

Hinz, Thermodynamische Grundlagen.

	in mkg/cbm angesaugte Luft von 1 at abs. Druck.		Ta	fel 23.
mkg/cbm	Temperaturzunahme bei polytropischer Kompression			mkg/cbm
24000	und 20 °C Anfangstemperatur.			24000
23000				23000
		++		
22,000		1	X	22000
21000		1		1
21000				21000
20000				20000
		1		20000
19000				19000
	Arbeitsbedarf			
18000	mkg/cbm			18000
17000				17000
		1		
16000				16000
15000				15000
11000				
14000				
13000	THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNE			
				oc
12000				240
				230
11000				220
				270
10,000				200
		\square		190
3000	Vemperaturzunahme n			180
		T		120-
8000				760
7000				130
1000			-	130
6000 XX				120
	73			170
5000				TOO
				90
4000	7=12			80
				70
3000				60
				-50-
2000	n=1/			40
				30
1000				20
	3 Uruckverhallinis 4			10

•

Arbeitsbedarf bei zweistufiger adiabatischer Kompression in mkg/cbm angesaugte Luft.

Tafel 24.

Hinz, Thermodynamische Grundlagen.

Arbeitsbedarf bei zweistufiger adiabatischer Kompression in mkg/cbm angesaugte Luft.

Tafel 25.

Hinz, Thermodynamische Grundlagen.

Wasserdampf – Teildruck in at und Wassergehalt gesättigter Luft in g/cbm.

Tafel 29.

Hinz, Thermodynamische Grundlagen.

Verlag von Julius Springer in Berlin.

Hinz, Thermodynamische Grundlagen.

Verlag von Julius Springer in Berlin.

Theorie und Konstruktion der Kolben- und Turbokompressoren. Von Dipl.-Ing. P. Ostertag, Professor am Kantonalen Technikum Winterthur. Mit 266 Textfiguren.

In Leinwand gebunden Preis M. 11,--.

Kompressoren-Anlagen insbesondere in Grubenbetrieben. Von Dipl.-Ing. Karl Teiwes. Mit 129 Textfiguren. In Leinwand gebunden Preis M. 7,-.

Die Entropietafel für Luft und ihre Verwendung zur Berechnung der Kolben- und Turbo-Kompressoren. Von Dipl.-Ing. Professor P. Ostertag, Winterthur. Mit 11 Textfiguren und 2 Tafeln. Preis M. 2,80.

- Berechnung der Kältemaschinen auf Grund der Entropie-Diagramme. Von Dipl.-Ing. Professor P. Ostertag, Winterthur. Mit 30 Textfiguren und 4 Tafeln. Preis M. 4,--.
- Die Gebläse. Bau und Berechnung der Maschinen zur Bewegung, Verdichtung und Verdünnung der Luft. Von Albrecht von Ihering, Kaiserl. Geheimer Regierungsrat. Dritte, umgearbeitete und vermehrte Auflage. Mit 643 Textfiguren und 8 Tafeln. In Leinwand gebunden Preis M. 20,-...
- Technische Thermodynamik. Von Prof. Dipl.-Ing. W. Schüle. Zweite, erweiterte Auflage der "Technischen Wärmemechanik". Erster Band: Die für den Maschinenbau wichtigsten Lehren nebst technischen Anwendungen. Mit 223 Textfiguren und 7 Tafeln. In Leinwand gebunden Preis M. 12,80.
 Zweiter Band: Höhere Thermodynamik mit Einschluß der chemischen Zustandsänderungen, nebst ausgewählten Abschnitten aus dem Gesamtgebiet der technischen Anwendungen. Mit ca. 14 Figuren und 3 Tafeln. In Leinwand gebunden Preis ca. M. 10,—. Erscheint im Februar 1914.
- Lehrbuch der Thermochemie und Thermodynamik. Von Professor Dr. Otto Sackur, Privatdozent an der Universität Breslau. Mit 46 Figuren im Text.

Preis M. 12,-; in Leinwand gebunden M. 13,-.

- Neue Tabellen und Diagramme für Wasserdampf. Von Dr. R. Mollier, Professor an der Technischen Hochschule Dresden. Mit 2 lithogr. Diagrammtafeln. Preis M. 2,-..
- Die Entropie-Diagramme der Verbrennungsmotoren einschließlich der Gasturbine. Von Dipl.-Ing. P. Ostertag, Professor am Kantonalen Technikum Winterthur. Mit 17 Textfiguren. Preis M. 1,60.
- Die Berechnung rotierender Scheiben und Ringe nach einem neuen Verfahren. Von Ingenieur M. Donath. Mit 5 Textfiguren und 1 lithographierten Tafel. Preis M. 1,60.
- Kondensation. Ein Lehr- und Handbuch über Kondensation und alle damit zusammenhängenden Fragen, auch einschießlich der Wasserrückkühlung. Für Studierende des Maschinenbaues, Ingenieure, Leiter größerer Dampfbetriebe, Chemiker und Zuckertechniker. Von F. J. Weiß, Zivilingenieur in Basel. Zweite, ergänzte Auflage. Bearbeitet von E. Wiki, Ingenieur, Luzern. Mit 141 Textfiguren und 10 Tafeln. In Leinwand gebunden Preis M. 12,--.
- Die Kondensation der Dampfmaschinen und Dampfturbinen. Lehrbuch für höhere technische Lehranstalten und zum Selbstunterricht. Von Dipl.-Ing. Karl Schmidt. Mit 116 Textfiguren. In Leinwand gebunden Preis M. 5,-..

Die Berechnung der Luftpumpen für Oberflächenkondensationen unter besonderer Berücksichtigung der Turbinenkondensationen. Von Dr.-Ing. Karl Schmidt. Mit 68 Textfiguren. Preis M. 4,80.

Zu beziehen durch jede Buchhandlung.

- Verdampfen, Kondensieren und Kühlen. Erklärungen, Formeln und Tabellen für den praktischen Gebrauch. Von E. Hausbrand, Königl. Baurat. Fünfte, vermehrte Auflage. Mit 45 Textfiguren und 94 Tabellen. In Leinwand gebunden Preis M. 12,-..
- Die Thermodynamik der Dampfmaschinen. Von Ingenieur Fritz Krauß, behördlich autorisierter Inspektor der Dampfkessel-Untersuchungs- und Versicherungs-Gesellschaft in Wien. Mit 17 Textfiguren. Preis M. 3,—.
- Technische Hydrodynamik. Von Dr. Franz Prášil, Professor an der Eidgenössischen Technischen Hochschule in Zürich. Mit 81 Textfiguren. In Leinwand gebunden Preis M. 9,-..
- Strömungsenergie und mechanische Arbeit. Beiträge zur abstrakten Dynamik und ihre Anwendung auf Schiffspropeller, schnellaufende Pumpen und Turbinen, Schiffswiderstand, Schiffssegel, Windturbinen, Trag- und Schlagflügel und Luftwiderstand von Geschossen. Von Paul Wagner, Oberingenieur in Berlin. Mit 151 Textfiguren. In Leinwand gebunden Preis M. 10,-.
- Technische Messungen bei Maschinen Untersuchungen und im Betriebe. Zum Gebrauch in Maschinenlaboratorien und in der Praxis. Von Professor Dr.-Ing. Anton Gramberg, Dozent an der Technischen Hochschule in Danzig. Zweite, umgearbeitete Auflage. Mit 223 Textfiguren. In Leinwand gebunden Preis M. 8,—.
- Technische Untersuchungsmethoden zur Betriebskontrolle, insbesondere zur Kontrolle des Dampfbetriebes. Zugleich ein Leitfaden für die Übungen in den Maschinenbaulaboratorien technischer Lehranstalten. Von Professor Julius Brand, Oberlehrer der Kgl. vereinigten Maschinenbauschulen zu Elberfeld. Dritte, verbesserte Auflage. Mit 285 Textfiguren, 1 lithographischen Tafel und zahlreichen Tabellen. In Leinwand gebunden Preis M. 8,-.
- Anleitung zur Durchführung von Versuchen an Dampfmaschinen, Dampfkesseln, Dampfturbinen und Dieselmaschinen. Zugleich Hilfsbuch für den Unterricht in Maschinenlaboratorien technischer Lehranstalten. Von Ingenieur Franz Seufert, Oberlehrer an der Kgl. höheren Maschinenbauschule zu Stettin. Dritte, erweiterte Auflage. Mit 43 Abbildungen.

In Leinwand gebunden Preis M. 2,20.

- Wärmetechnik des Gasgenerator- und Dampfkesselbetriebes. Die Vorgänge, Untersuchungs- und Kontrollmethoden hinsichtlich Wärmeerzeugung und Wärmeverwendung im Gasgeneratorund Dampfkesselbetrieb. Von Ingenieur Paul Fuchs. Dritte, erweiterte Auflage. Mit 43 Textfiguren. In Leinwand gebunden Preis M. 5,-..
- Entwerfen und Berechnen der Dampfmaschinen. Ein Lehr- und Handbuch für Studierende und angehende Konstrukteure. Von Ingenieur Heinrich Dubbel. Dritte, umgearbeitete Auflage. Mit 470 Textfiguren. In Leinwand gebunden Preis M. 10,-..
- Großgasmaschinen. Ihre Theorie, Wirkungsweise und Bauart. Von Ingenieur Heinrich Dubbel. Mit 400 Textfiguren und 6 Tafeln. In Leinwand gebunden Preis M. 10,-.
- Die Dampfturbinen. Mit einem Anhang über die Aussichten der Wärmekraftmaschinen und über die Gasturbine. Von Dr. phil., Dr.-Ing. A. Stodola, Professor am Eidgenöss. Polytechnikum in Zürich. Vierte, umgearbeitete und erweiterte Auflage. Mit 856 Textfiguren und 9 Tafeln.

In Leinwand gebunden Preis M. 30,-.

Die Gasmaschine. Ihre Entwicklung, ihre heutige Bauart und ihr Kreisprozeß. Von R. Schöttler, Geh. Hofrat, ord. Professor an der Herzogl. Technischen Hochschule zu Braunschweig. Fünfte, umgearbeitete Auflage. Mit 622 Figuren im Text und auf 12 Tafeln. In Leinwand gebunden Preis M. 20,-...

Zu beziehen durch jede Buchhandlung.

