Einheitliches Verfahren zur Bemessung einfach und doppelt bewehrter Platten und Rippen in Eisenbeton.

Von

Ingenieur Leopold Herzka,

Bauoberkommissär der k. k. Nordwestbahndirektion in Wien.

Wien 1912.

Druckerei- und Verlags-Aktiengesellschaft vorm. R. v. WALDHEIM, JOS. EBERLE & Co.

Biblioteka Politechniki Krakowskiej

100000298498

Einheitliches Verfahren zur Bemessung einfach und doppelt bewehrter Platten und Rippen in Eisenbeton.

Von

Ingenieur Leopold Herzka,

Bauoberkommissär der k, k. Nordwestbahndirektion in Wien.

Wien 1912.

Druckerei- und Verlags-Aktiengesellschaft vorm. R. v. WALDHEIM, JOS. EBERLE & Co. Sonderabdruck aus der "Österreichischen Wochenschrift für den öffentlichen Baudienst", Heft 29 und 30, Jahrgang 1912.

Akc. Nr. 1243

Die vielfachen wirtschaftlichen Vorteile, welche die Verwendung des Eisenbetons in fast allen Zweigen des Bauwesens zeitigte, die zahlreichen dem Ingenieur gebotenen Möglichkeiten, durch dessen Benützung die schwierigsten Aufgaben konstruktiver Natur in eleganter und bislang kaum gewagter Weise zu lösen, endlich die aus der Herstellungsart dieses Baustoffes unmittelbar entspringende Eignung desselben, den — in jüngster Zeit selbst bei Nutzbauten gestellten Forderungen nach künstlerischer Durchbildung der Bauwerke ohne sonderlichen Kostenaufwand gerecht werden zu können, lassen es begreiflich erscheinen, wenn die vor ungefähr einem Jahrzehnt eingesetzte wissenschaftliche und versuchstechnische Arbeit, zum Zwecke der Erforschung und Klarstellung der bautechnischen und baumechanischen Eigenschaften des Eisenbetons, bis zum heutigen Tage nicht nur anhält, sondern mit unverminderter Kraft auch weiter geführt wird.

Die derart gewonnenen Ergebnisse, im Vereine mit den aus der Praxis geschöpften Erfahrungen, bilden in ihrer Gesamtheit die Grundlagen für die Abfassung der seitens der einzelnen Regierungen jeweils hinausgegebenen Vorschriften für die Berechnung, Durchbildung und für die Herstellung von in Eisenbeton auszuführenden Bauwerken. Man kann mit gutem Rechte behaupten, daß die ersten, nur unter dem Zwange der Verhältnisse erlassenen Vorschriften, deren Härte seitens der beteiligten Kreise oft unliebsam empfunden wurde, bereits durchwegs durch neuzeitliche ersetzt sind und daß in denselben der Fülle der auf dem Sondergebiete des Eisenbetons gesammelten Erfahrungen theoretischer, versuchstechnischer und praktischer Richtung in mehr oder weniger glücklicher Form Ausdruck geliehen wird.

Die im Jahre 1911 erschienenen österreichischen Vorschriften

über die Herstellung von Tragwerken aus Betoneisen oder Stampfbeton schaffen gegenüber den aus dem Jahre 1907 stammenden wesentliche Erleichterungen; die zulässigen Inanspruchnahmen des Betons auf Druck und des Eisens auf Zug (bei Biegung) sind jedoch für die Berechnung von Straßenbrücken beibehalten worden, während für Hochbauten gewisse, für die Praxis allerdings wenig belangreiche Erhöhungen der früheren Spannungswerte zugelassen werden. Inwieweit in diesem Belange den mehrfach geäußerten Wünschen der Fachwelt entsprochen wurde, mag hier - weil außerhalb des Rahmens dieser Untersuchung gelegen - nicht weiter erörtert werden; jedenfalls läßt aber das Festhalten an den bezüglichen Bestimmungen der älteren Vorschrift vermuten, daß die Schöpfer der nunmehrigen Vorschrift das gegenwärtig zur Verfügung stehende Erfahrungsmaterial nicht als ausreichend befunden haben, um daraus die Berechtigung für weitergehende Erleichterungen in den zulässigen Spannungswerten ableiten zu dürfen.

Wie dem auch sei, die Praxis sieht sich innerhalb weniger Jahre wieder bemüßigt, ihre auf bestimmte Spannungswerte abgestimmten Formeln entsprechend abzuändern, eine Tatsache, welche von den Konstrukteuren sicherlich nicht angenehm empfunden werden dürfte.

In der folgenden Untersuchung wird nun der Versuch gemacht. Dimensionierungsformeln mit unbeschränkter Gültigkeitsgrenze hinsichtlich der gestatteten oder gewünschten Inanspruchnahmen von Beton und Eisen aufzustellen und die gewonnenen Ergebnisse zum Zwecke der leichteren Anwendung zu tabellarisieren; hiedurch glaubt Verfasser ein den Bedürfnissen der Praxis in weitestem Maße entsprechendes Hilfsmittel geschaffen zu haben, dessen Brauchbarkeit auf absehbare Zeit hinaus verbürgt erscheint.

Die Grundlagen für die angestrebte Lösung wurden vom Verfasser bereits an anderer Stelle 1) entwickelt; die Auswertung der Ergebnisse erfolgte jedoch nur in Anlehnung an die österreichischen Vorschriften vom Jahre 1907 für Zwecke des Hochbaues. Nachstehend soll daher ein weiterer Ausbau versucht und insbesondere gezeigt werden, daß die gewonnenen Formeln tatsächlich geeignet sind, den weiter oben gestellten Bedingungen zu entsprechen.

Für die Berechnung einfach bewehrter Platten- und Rippenbalken bestehen folgende zwei Gleichungen [Gleichung d') und e')

der letzterwähnten Veröffentlichung]:
$$(p'_{ez}) = \frac{100 \text{ m}}{h'^2 s_{ez}} + \frac{10}{9} \cdot \frac{\beta^3}{(1-\beta)} - \frac{10}{9} (1-\pi) \frac{(\beta-\delta)^2(\beta+2\delta)}{(1-\beta)} \dots 1),$$

$$(p''_{ez}) = \frac{10}{3} \cdot \frac{\beta^2 - (1-\pi)(\beta-\delta)^2}{(1-\beta)} \dots 2),$$
 welche mit $\pi = 1$ beziehungsweise $\delta = \beta$ in die nur für Platten

gültigen Werte:

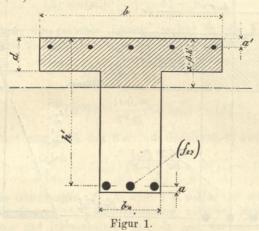
$$p'_{es} = \frac{100 \ m}{h'^2 \ s_{es}} + \frac{10}{9} \cdot \frac{\beta^3}{(1-\beta)} \cdot \cdot \cdot \cdot \cdot \cdot 1'$$

$$p'_{ez} = \frac{100 \ m}{h'^2 \ s_{ez}} + \frac{10}{9} \cdot \frac{\beta^3}{(1-\beta)} \cdot \dots \cdot 1',$$

$$p''_{ez} = \frac{10}{3} \cdot \frac{\beta^2}{(1-\beta)} \cdot \dots \cdot 2'$$

übergehen; hierin bedeuten, soweit die Bezeichnungen nicht der Textfigur 1 zu entnehmen sind:

$$(p'_{ez}) \stackrel{:}{=} (p''_{ez}) = \frac{100 (f_{ez})}{b h'}$$


den auf die Fläche bh' bezogenen Bewehrungsgehalt, wobei die gesuchte Lösung immer an die gleichzeitige Befriedigung der obigen Gleichungspaare gebunden ist; $m = \frac{M}{b}$ das auf die Breiteneinheit des

^{1) &}quot;Beton und Eisen", VIII. Jahrgang, Heft VII, "Dimensionierungsformeln für doppelt bewehrte Betonbalken" und "Österr. Wochenschrift für den öffentlichen Baudienst", 1910, Heft 9 und 10, "Dimensionierungsformeln für einfach und doppelt bewehrte Betonplattenbalken".

Trägers reduzierte äußere Moment;

worin $n=15=\frac{E_e}{E_b}$ das Verhältnis der Elastizitätsziffern, s_{ez} und s_{bd} die gestatteten oder gewünschten Inanspruchnahmen von Eisen und Beton bedeuten; endlich ist $\pi=\frac{b_0}{b}$ und $\delta=\frac{d}{h'}$.

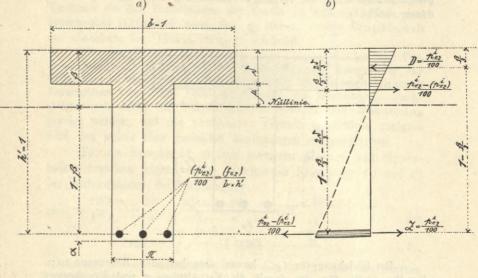
Ein besonderer Vorteil der obigen Grundgleichungen besteht darin, daß deren Anwendung, wie am Schlusse an Beispielen dargelegt werden wird, die vorherige Feststellung der Nullachse überflüssig macht 1).

Der Gleichung für (p_{ez}^{μ}) kommt eine besondere Bedeutung zu; dieselbe stellt für ein durch die Verhältnisse π und δ gekennzeichnetes Profil den einem gegebenen oder angenommenen " β " zugeordneten "idealen Bewehrungsgehalt" dar²); tatsächlich läßt sich die in dem mehrerwähnten Aufsatze [in der Fußnote ¹) an zweiter Stelle genannt] für den idealen Bewehrungsgehalt (p_{ez}^i) abgeleitete Beziehung C:

$$(p_{ez}^i) = \frac{C_1 (C_4) + (C_2) C_3}{C_3}$$

¹⁾ Die Erbringung des Spannungsnachweises erfordert jedoch stets die vorherige Festlegung der Nullachse; wie dies in einfachster Weise erfolgen kann, wird weiter unten gezeigt. [Siehe Gleichung 26) und 26 a).]

²) Diese Bedeutung kommt auch der für Platten gültigen Gleichung für $p_{ez}^{\prime\prime}$ zu.


Zum Unterschiede von den für Platten gewählten Bezeichnungen sollen dieselben, im Falle es sich um Rippenbalken handelt, in Klammer (.) gesetzt werden.

mit Einführung der den einzelnen Festwerten zukommenden Ausdrücke in Gleichung 2) überführen, so daß also ist:

 $(p_{ez}^{\prime\prime}) = (p_{ez}^{\prime}).$

Man ist demnach in der Lage, für ein bekanntes π und δ und für ein beliebiges β sofort (p_{ez}^i) anzugeben, ohne Rücksicht auf die erst zu ermittelnden wahren Abmessungen eines Profils. Gleichung 2) läßt auch eine einfache Deutung zu; denkt man sich das in Textfigur 2 dargestellte Grundprofil von der Breite b=1

und der Höhe h'=1 mit $\frac{(p_{ez}^i)}{100}=\frac{(f_{ez})}{b\;h'}$ bewehrt, so ist es das

Figur 2.

statische Moment dieser auf die Flächeneinheit bezogenen n-fachen Eisenbewehrung, welches dem statischen Momente der Betondruckzone gleich ist. Mit n=15 gilt nämlich:

1.
$$\beta \cdot \frac{\beta}{2} - (1 - \pi)(\beta - \delta) \frac{(\beta - \delta)}{2} = 15 \frac{(p_{es}^i)}{100} (1 - \beta),$$

woraus unmittelbar Gleichung 2) resultiert.

Da nun wegen Gleichung 3) auch:

so folgt daraus, daß der Bewehrungsgehalt auch dann noch konstant bleibt, wenn bei gegebenem β die Inauspruchnahmen von Eisen und Beton dem durch Gleichung 4) ausgedrückten linearen Gesetze folgen.

Um für ein gegebenes äußeres Moment die erforderlichen Querschnittsabmessungen bestimmen zu können, muß Gleichung 1) als weitere Bedingung herangezogen werden; wir schreiben dieselbe in der Form:

Darin bedeutet:

$$(\Delta) = \frac{10}{9} \cdot \frac{\beta^3}{1-\beta} - \frac{10}{9} (1-\pi) \frac{(\beta-\delta)^2 (\beta+2\delta)}{1-\beta} \quad . \quad . \quad 5')$$

und läßt sich dieser Ausdruck mit bezug auf Gleichung 2) beziehungsweise Gleichung 2') und wegen $(p_{ez}^{\prime\prime}) = (p_{ez}^i)$, welche Gleichung für Platten die Form $p_{ez}^{\prime\prime} = p_{ez}^i$ annimmt, zu:

$$(\Delta) = (p_{ez}^i) \left[\frac{\beta}{3} + \frac{2}{3} \delta \right] - p_{ez}^i \cdot \frac{2 \delta}{3} \quad \dots \quad \dots \quad 6)$$

vereinfachen; die gesuchte Lösung, welche in der Koexistenz der Gleichungen 2) und 5) gelegen ist, lautet endlich

$$(p_{ez}^{i}) = \frac{100 m}{h'^2 s_{ez}} + (\Delta)$$

und daraus

$$(K^2) = \frac{100 \ m}{h'^2 \ s_{ex}} = (p_{ez}^{\tilde{\tau}}) - (\Delta) \quad . \quad . \quad . \quad . \quad 7).$$

Führt man noch den Wert aus Gleichung 6) ein, so resultiert

$$(K^2) = \frac{100 \ m}{h'^2 \ s_{ez}} = (p_{ez}^i) \left[1 - \frac{\beta}{3} \right] + \frac{2}{3} \delta \left[p_{ez}^i - (p_{ez}^i) \right] . . . 7').$$

Die Gleichungen 2), 6) und 7') stellen in durchsichtigster Form den theoretischen Zusammenhang zwischen den Ausdrücken für Platten und Rippenbalken dar, da aus denselben für $\beta=\delta$, beziehungsweise $\pi=1$ unmittelbar die nur für Platten gültigen Ausdrücke abgeleitet werden können; wir erhalten demnach (für Platten)

$$\Delta = p_{ez}^i \cdot \frac{\beta}{3} \cdot \ldots \cdot \ldots \cdot 6'$$

$$K^2 = \frac{100 \ m}{h'^2 \ s_{ez}} = p_{ez}^i \left[1 - \frac{\beta}{3} \right]. \quad . \quad . \quad . \quad . \quad 7'').$$

Aus den einzelnen Gleichungen lassen sich einige für die Beurteilung der Querschnittsformen wichtige Sätze ableiten. Ein Vergleich der Gleichungen 2) und 2') ergibt, daß $p_{ez}^i > (p_{ez}^i)$, das heißt: Bei demselben Verhältnisse β erfordert die Platte stets einen größeren Bewehrungsgehalt als der Rippenbalken. Bringt man Gleichung 7') auf die Form: $\frac{(K^2)}{100} = \frac{p_{ez}^i}{100} \left(1 - \frac{\beta}{3}\right) - \frac{1}{100} \left[p_{ez}^i - (p_{ez}^i)\right] \left(1 - \frac{\beta}{3} - \frac{2\delta}{3}\right) \dots 7'''$,

so erkennt man durch Gegenüberstellung dieser Gleichung mit Gleichung 7"): $\frac{K^2}{100} = \frac{p_{ez}^i}{100} \left(1 - \frac{\beta}{3} \right) \dots \dots 7''),$

daß $K^2 > (K^2)$.

Nun stellen die rechten Seiten der letzten zwei Ausdrücke die inneren Momente dar, welche von den bezüglichen Rippenbeziehungsweise Plattengrundquerschnitten aufgenommen werden können, und kommt insbesondere dem zweiten Gliede der Gleichung 7") die Bedeutung eines Reduktionsmomentes zu (Textfigur 2b), welches das innere Moment der Platte [Gleichung 7")] in das der Rippe überführt; unter den gleichen Annahmen wie oben folgt demnach, daß das innere Moment eines Rippenbalkens stets kleiner ist als das einer Platte; die daraus resultierende Verminderung des Tragvermögens eines Rippenbalkens ist im Vergleiche zu demjenigen der Platte nur eine scheinbare und wird durch die Verringerung des Eigenlastmomentes nicht nur nicht ausgeglichen, sondern in den meisten Fällen sogar reichlich überholt. Dies läßt sich allgemein wie folgt beweisen:

Für das Moment aus Eigengewicht und Verkehrslast gelten mit Bezug auf Textfigur 2 folgende Gleichungen:

für die Platte:
$$m_p = \frac{1}{8} q_p l^2 + \frac{1}{8} \gamma l^2 h' (1 + \alpha)$$
 8), für die Rippe:

$$m_r = \frac{1}{8} q_r l^2 + \frac{1}{8} \gamma l^2 h' \{ \delta + \pi (1 - \delta) + \alpha \pi \} \dots 9$$
. . . 9).

Darin bedeuten l die Spannweite, q_p beziehungsweise q_r die Verkehrslasten pro Längeneinheit, welche von den bezüglichen Trägern aufgenommen werden können, $\alpha = \frac{a}{h}$ und γ das spezifische Gewicht des Trägermaterials; somit folgt, wenn $\Delta q = q_r - q_p$ gesetzt wird:

gesetzt wird:
$$m_r - m_p = \frac{1}{s} \Delta q \ l^2 - \frac{1}{s} \gamma \ l^2 \ h' \left\{ (1 - \pi) \ (1 + \alpha - \delta) \right\} . \quad . \quad 10).$$
 Die Gleichungen 7'' ergeben:
$$m_r - m_p = - \frac{h'^2 \ s_{ez}}{100} \left\{ p_{ez}^i - (p_{ez}^i) \right\} \left(1 - \frac{\beta}{3} - \frac{2 \ \delta}{3} \right) . \quad . \quad 10').$$

Die Gleichstellung der letzten zwei Ausdrücke liefert nach kurzer Zwischenrechnung und nach Einführung der den p_{ez}^i und (p_{ez}^i) entsprechenden Festwerte, ferner unter Beachtung, daß

$$\frac{h'^2 s_{ez}}{100} = \frac{m_p}{K^2}$$

die Endgleichung: $\Delta q = \gamma h' (1 - \pi) (1 + \alpha - \delta) \left\{ 1 - R \left[1 + \alpha + \frac{q_p}{\gamma h'} \right] \right\} \dots 11),$ in welcher any Abbarrance in welcher zur Abkürzung

$$\frac{\left(1-\frac{\delta}{\beta}\right)^2\left(1-\frac{2\delta}{3-\beta}\right)}{(1+\alpha-\delta)} = R. \qquad (12)$$

gesetzt wurde; daraus folgt, daß die Tragfähigkeit einer Rippe die der Platte überragt, beziehungsweise unterschreitet, je nachdem

$$1 \geq R \left[1 + \alpha + \frac{q_p}{\gamma h'} \right].$$

In einem gegebenen Falle kann also die gewünschte Entscheidung sofort getroffen werden. Über R wäre noch zu bemerken, daß dessen Wert für $\beta = \delta$ zu Null wird und Δq somit seinen Größtwert erreicht; mit wachsendem β und abnehmendem δ wächst R sehr rasch und ergibt sich z. B. für $\delta = 0.05$ und $\beta = 0.45$, wenn $\alpha = 0.1$ gesetzt wird, R = 0.723. Gleichung 11) könnte mit Vorteil auch dann Verwendung finden, wenn die Berechnung einer Platte für eine bestimmte Belastung q_p , Stützweite l und statische Höhe h' bereits vorliegt und es sich um die Ermittlung der Tragfähigkeit mehrerer Rippenbalken von der gleichen Stützweite und statischen Höhe handelt.

Aus Gleichung 7') beziehungsweise 7") folgt ganz allgemein:

$$h' = \frac{10}{K} \sqrt{\frac{m}{s_{\ell z}}} \quad . \quad . \quad . \quad . \quad . \quad . \quad 13).$$

Bei Rippen muß jedoch nachgesehen werden, ob die als bekannt vorausgesetzte Plattendicke d wesentlich von der durch die Rechnung ermittelten Stärke $d'=\delta h'$ abweicht; ist dies der Fall und die Abweichung nicht angezeigt, so muß die brauchbare Lösung, wie weiter unten an einem Beispiele gezeigt werden wird, auf dem Wege der Interpolation gesucht werden. Zum Zwecke der leichteren Anwendung der einzelnen Formeln wurden die Ausdrücke für p_{es}^i , K^2 und K für $\beta=0.10,\ 0.15,\ 0.20,\ 0.25,\ 0.30,\ 0.35,\ 0.40$ und außerdem für jene häufig vorkommenden " β " Sonderwerte berechnet, welche den aus der nachstehenden Tabelle 1) ersichtlichen, zusammengehörenden Spannungszahlen von s_{bd} und s_{ez} entsprechen.

s_{bd} in kg/cm^2	$s_{\rm ez}$ in kg/cm^2	$\beta = \frac{15 s_{bd}}{s_{ez} + 15 s_{bd}}$
32.0	1000	0.3243
33.3	1000	0.3333
37.0	1000	0.3569
40.0	1000	0.3750
42.0	1000	0.3865
50.0	1200	0.3846

¹) Die Berechnung sämtlicher Tabellen (mit Rechenmaschine) führte Herr Maximilian Ružiczka, Adjunkt der k. k. Nordwestbahndirektion durch, wofür ich ihm an dieser Stelle nochmals meinen besten Dank ausspreche.

Um den Gebrauch der Tabellen zu erleichtern, wurden dieselben gesondert für Platten und Rippen aufgestellt; insbesondere sind dieselben für Rippen derart ausführlich angelegt, daß damit wohl für alle vorkommenden Fälle das Auslangen gefunden werden dürfte; die Anordnung wurde ferner derart getroffen, daß für jedes der angenommenen Verhältnisse π (0·10, 0·15, 0·20, 0·25, 0·30, 0·35 und 0·40) sämtliche der Gleichung 7) entsprechenden Festwerte für $\delta = 0\cdot10$, 0·15, 0·20, 0·25, 0·30 und 0·35 in eine eigene Tabelle zusammengefaßt wurden; für zwischenliegende δ genügt die (mit Rechenschieber durchzuführende) geradlinige Interpolation vollkommen; hingegen erübrigt sich jede Zwischenrechnung für andere als die berechneten π . Vielmehr wird man für ein vorliegendes π' immer den nächstgelegenen Tabellenwert benützen 1). Gleichung 13) läßt sich auch schreiben:

$$h' = \frac{10}{K\sqrt{s_{ez}}} \cdot \sqrt{m} = D\sqrt{m} \quad . \quad . \quad . \quad . \quad 14).$$

Für gegebene Verhältnisse π , δ und β und für ein vorgeschriebenes s_{ez} ist D ein Festwert; derselbe wurde für die wichtigsten β und die entsprechenden s_{ez} gleichfalls berechnet und in eine besondere Tabelle der statischen Höhen aufgenommen; die für Platten ermittelten D-Werte konnten unmittelbar in die bezügliche Tabelle für Platten eingetragen werden.

Ein brauchbares Hilfsmittel dürfte die getroffene Anordnung der Tabellen bei der Berechnung von Tragwerksteilen für Straßenbrücken bilden. Bekanntlich sind nach den bezüglichen österreichischen Vorschriften die zulässigen Beton- und Eiseninanspruchnahmen als Funktion der Stützweite l gegeben, wobei hinsichtlich der ersteren auch je nach dem gewählten Mischungsverhältnisse Unterschiede zu machen sind; allgemein gilt daher für die Stützweite l:

$$s_{bd} = a + b l,$$

 $s_{ez} = c + d l.$

 $a,\ b,\ c$ und d sind die durch die genannte Vorschrift genau präzisierten Festwerte. Mit $n=rac{E_e}{E_b}$ folgt somit:

¹⁾ Wie aus der Gleichung für $(p_{ez}^{\ i})$ entnommen werden kann (Gleichung 2), beeinflußt das Glied mit π , welches das Stegrechteck zwischen Nullachse und Plattenunterkante berücksichtigt, das Endergebnis nur in sehr geringem Maße, weshalb auch bei den allgemein im Gebrauche stehenden Dimensionierungsformeln, der Einfachheit wegen, auf dessen Einführung in die Rechnung verzichtet wird; aus diesem Grunde genügt es, bei einem gegebenen π' mit dem nächstgelegenen π der Tabellen ohne weitere Interpolation zu rechnen, umsomehr, als die einzelnen π -Werte nur um $\Delta \pi = 0.05$ auseinanderliegen.

Die Einführung der Verordnungswerte liefert daher, wenn für die Bewehrung Flußeisen in Betracht kommt:

$$\beta_{1::3} = \frac{495 + 3 \, l}{1295 + 6 \, l}$$

$$\beta_{1::4} = \frac{435 + 3 \, l}{1235 + 6 \, l}$$

$$\beta_{1::5} = \frac{375 + 3 \, l}{1175 + 6 \, l}$$

wobei diese Formeln wegen der Einschränkung, daß

$$s_{ez\, max} = 800 + 3 \ l = 900 \ kg/cm^2$$

nur bis $l = \frac{100}{3} = 33.3 m$ Geltung haben. Hinsichtlich der Betondruckspannungen sind jedoch keine Höchstgrenzen fixiert; Gleichung 15) nimmt daher für $l > \frac{100}{3}$ die Form an:

$$\beta = \frac{n (a + b l)}{900 + n (a + b l)} \cdot \cdot \cdot \cdot \cdot 15 a),$$
 die mit den Sonderwerten der Betonvorschrift übergeht in:

Für einzelne Stützweiten wurden die entsprechenden β-Werte in eine eigene Tabelle aufgenommen.

Für die Dimensionierung doppelt bewehrter Platten und Rippen gilt ganz allgemein (Gleichung H' des in der "Österr. Wochenschrift" 1910 veröffentlichten Aufsatzes):

Darin bedeuten

$$C_1 = \frac{100}{(1 - \alpha') s_{ez}}$$

$$C_3 = C_1 \frac{1 - \beta}{\beta - \alpha'}$$

¹⁾ Die gewählte Bezeichnung der üblichen Mischungsverhältnisse ist der außer Kraft getretenen österreichischen Vorschrift aus dem Jahre 1907 entnommen und wurde hier der Einfachheit halber beibehalten; demnach entspricht dem Mischungsverhältnisse

^{1:3} ein Gemenge von 1 m3 Sand und Steinmaterial und 470 kg Portlandzement, 1:4 " " " $1 m^3$ " " " " 350 kg1:5 " " " $1 m^3$ " " " " 350 kg(Siehe § 6 der neuen Betonvorschrift.)

worin $\alpha' = \frac{\alpha'}{h'}$ ist (Textfigur 1); Δm ist jener Momentenüberschuß, der vom einfach und hinsichtlich eines gegebenen β ideal bewehrten Profile nicht mehr aufgenommen werden kann; nach Gleichung 7) vermag dieses nur aufzunehmen:

so daß, wenn ein Gesamtmoment M_1 vorliegt, dem auf die Breiteneinheit reduziert ein $m_1=\frac{M_1}{b}$ entspricht,

$$\Delta m == m_1 - m \dots 19).$$

Die Werte der letzten drei Gleichungen in Gleichung 16) eingeführt, liefern:

Mit Hilfe der Tabellen ist daher auch die Berechnung der doppelt bewehrten Querschnitte überaus einfach.

Beispiele 1). I. Platten.

1. Ein Balken habe auf eine Breite $b=100\,cm$ ein Moment $M=62500\,kgcm$ aufzunehmen; wie groß muß dessen statische Höhe h' und Bewehrung f_{ez} sein, wenn $s_{hd}=42\,kg/cm^2$ und $s_{ez}=1000\,kg/cm^2$ (Mischungsverhältnis 1:3) eingehalten werden sollen?

Aus der Tabelle I entnimmt man der Reihe nach:

 $\beta = 0.3865$, $p_{ez}^i = 0.81164$ und D = 0.3761; mit $m = \frac{M}{100} = 625$ wird daher:

$$h' = D\sqrt{m} = 0.3761 \cdot 25 = 9.4 \text{ cm}$$

und

$$f_{ez} = \frac{p_{ez}^i \cdot b \cdot h'}{100} = 7.63 \text{ cm}^2.$$

¹) Die Beispielsammlung umfaßt nur die wichtigsten, typischen Fälle, welche für die Praxis von Bedeutung sind; die Vorführung von Beispielen, welche nur theoretisches Interesse beanspruchen, wurde hier völlig unterlassen.

Es ist wohl selbstverständlich, daß die mit Hilfe der Tabellen ermittelten Abmessungen und Bewehrungen dann einer besonderen Überprüfung beziehungsweise Richtigstellung bedürfen, wenn es sich um die Berechnung von Tragwerken handelt, für welche die einschlägigen Bestimmungen der Betonvorschriften die Erbringung der Nachweises über die Größe der auftretenden Betonzugspannungen ausdrücklich vorschrieben.

2. Aus konstruktiven Gründen werde angenommen, daß ein Balken bei einem Größtmoment von $M=450000\ kgcm$ eine Breite von $b=90\ cm$ und eine statische Höhe $h'=50\ cm$ erhalte. Welche Betondruckspannung s_{bd} tritt im Balken auf, wenn die Ausnützung des Eisens mit $s_{ez}=1000\ kg/cm^2$ gefordert wird? Wie groß ist die notwendige Eisenbewehrung?

Mit
$$m = \frac{450000}{90} = 5000$$
 bestimmt man vorerst
$$K^2 = \frac{100 \text{ m}}{h'^2 s_{ex}} = 0.2.$$

Das berechnete K^2 liegt demnach zwischen den bezüglichen K^2 -Werten von 0·15556 und 0·25463. Durch geradlinige Interpolation findet man $\beta = 0\cdot2224$ und dementsprechend wieder durch Einschaltung $p_{ez}^i = 0\cdot21644$; somit endlich:

 $f_{ez} = rac{p_{ez}^i \, b \; h'}{100} = 9.74 \; cm^2 \ s_{bd} = rac{eta}{15 \; (1 - eta)} \, . \; s_{ez} = 19.1 \; kg/cm^2.$

und

3. Es liege ein Balken mit b = 20 cm, h' = 50 cm und bewehrt mit $f_{ez} = 4.52 \text{ cm}^2$ (4 Rundeisen vom Durchmesser 12 mm) zur Überprüfung vor; das äußere Moment betrage M = 196000 kgcm. Welche Inanspruchnahmen treten im Beton und Eisen auf? (Spannungsnachweis)

nungsnachweis.)
Es ist $m = \frac{196000}{20} = 9800$ $p_{ez}^{i} = \frac{100 f_{ez}}{b h'} = 0.452.$

Das dem p_{ez}^i entsprechende β liegt zwischen 0.3 und 0.35 und findet sich durch Interpolation mit $\beta = 0.3006$; somit ist mit Gleichung 7"):

 $K^2 = p_{ez}^i \left(1 - \frac{\beta}{3}\right) = 0.407$ $s_{ez} = \frac{100 \ m}{h'^2 \ s_{ez}} = 963 \ kg/cm^2,$ $s_{bd} = \frac{\beta}{15 \left(1 - \beta\right)} \cdot s_{ez} = 27.7 \ kg/cm^2.$

4. Ein Balken habe auf eine Breite b=20~cm ein Moment $M_1=200000~kgcm$ zu tragen; wie ist derselbe zu bewehren, wenn die statische Höhe h'=35~cm nicht überschritten werden darf und wenn das Mischungsverhältnis $1:5~(s_{bd}=32~kg/cm^2,s_{ez}=1000~kg/cm^2)$ zur Anwendung kommen soll?

Da $\beta=0.3243$ ist, wird D=0.4648; somit wegen $m_1=\frac{M_1}{b}=10.000$ die für eine ideale Bewehrung notwendige

statische Höhe $h'_1 = D\sqrt{m_1} = 46.5 cm$; es ist daher eine doppelte Bewehrung erforderlich. Für die Berechnung entnimmt man der Tabelle I: $K^2 = 0.46274$ und $p_{ez}^i = 0.51882$. Wird noch $\alpha' = 0.08$ gewählt, so haben wir:

$$C_{\rm l}=\frac{100}{(1-\alpha')\,s_{\rm ez}}=0.1087$$
 [Gleichung 17)]. damit den Zwischenwert:

$$\frac{m_1}{h'^2} C_1 - \frac{K^2}{1 - \alpha'} = 0.3843$$

und schließlich:

$$p_{es} = 0.3843 + p_{es}^{i_s} = 0.9031$$
 [Gleichung 20)], $p_{ed} = \frac{0.3843 (1 - \beta)}{(\beta - \alpha')} = 1.063$ [Gleichung 21)],

sohin

$$f_{ez} = rac{0.9031 \cdot 20 \cdot 35}{100} = 6.32 \ cm^2,$$
 $f_{ed} = rac{1.063 \cdot 20 \cdot 35}{100} = 7.44 \ cm^2.$

5. Ein Balken von $b = 60 \, cm$ unterliege einem Moment $M_{i} = 6000000 \, kgcm$; welche statische Höhe h' ist unter der Annahme gleich großer Zug- und Druckbewehrung erforderlich, wenn $s_{bd} = 40 \ kg/cm^2 \text{ und } s_{ez} = 1000 \ kg/cm^2 \cdot (\alpha' = 0.1)$?

Die Gleichsetzung der Gleichungen 20) und 21) liefert, wenn

$$p_{zd} = \frac{m_1}{h'^2} \cdot C_1 - \frac{K^2}{1 - \alpha'} + p_{ez}^i = \left\{ \frac{m_1}{h'^2} \cdot C_1 - \frac{K^2}{1 - \alpha'} \right\} \frac{1 - \beta}{\beta - \alpha'}.$$

Daraus folgt

$$p_{zd} - p_{ez}^{i} = \frac{m_{1}}{h'^{2}} C_{1} - \frac{K^{2}}{1 - \alpha'},$$

weiters

$$p_{zd} = (p_{zd} - p_{ez}^i) \frac{1 - \beta}{\beta - \alpha'}$$

und schließlich

$$p_{zd} = p_{ez}^{i} \frac{1-\beta}{1-2\beta+\alpha'} \dots 22)^{1}$$

Mit $p_{ez}^i = 0.750$ und $\beta = 0.375$ findet man daher: $p_{zd} = 1.339$.

$$p_{ed} = \xi \cdot p_{ez}$$

so liefert der angegebene Rechnungsgang:

$$p_{ez} = p_{ez}^{i} \frac{1 - \beta}{1 - \beta - \xi (\beta - \alpha')},$$

 $p_{ez}=p_{ez}^irac{1-eta}{1-eta-\xi\;(eta-lpha')},$ welche Gleichung mit $\xi=1$ in obige Beziehung 22) übergeht.

¹⁾ Nimmt man an, daß die Druckbewehrung p_{ed} einen aliquoten Teil der Zugbewehrung $p_{\rm ez}$ betrage, daß also:

Ferner ist:

$$K^2 = 0.65625$$
, $C_1 = \frac{100}{(1 - \alpha') s_{ez}} = 0.111$, $m_1 = 100.000$. Gleichung 20) liefert demnach:

$$h' = \sqrt{m_1} \sqrt{\frac{C_1}{p_{zd} - p_{ez}^i + \frac{K^2}{1 - \alpha'}}} = 91.8 \text{ cm.}$$

Die Größe der Eisenbewehrung ist also:

$$f_{ez} = f_{ed} = \frac{1.339.60.91.8}{100} = 73.8 \, \text{cm}^2.$$

6. Der Hauptträger einer Straßenbrücke habe eine Breite b=30 cm; das äußere Moment betrage $M = 2187000 \, kgcm$. Wie groß ist bei einer Stützweite von l = 10.0 m die statische Höhe h' und die Eisenbewehrung f_{ez} , wenn das Mischungsverhältnis 1:4 vorgeschrieben wird?

Nach der Verordnung ist:

$$s_{bd} = 29 + 0.2.10 = 31 \text{ kg/cm}^2,$$

 $s_{ez} = 800 + 3.10 = 830 \text{ kg/cm}^2.$

Ferner aus der Tabelle X: β = 0.3591; durch Interpolation (Tabelle I) findet man: K = 0.7684 und $p_{ez}^i = 0.67078$. Mit

$$\sqrt{\frac{M}{b}} = \sqrt{m} = 270$$
 ergibt sich daher:
$$h' = \frac{10\sqrt{m}}{K\sqrt{s_{ez}}} = 122 \text{ cm}$$

$$h' = \frac{10\sqrt{m}}{K\sqrt{s_{ez}}} = 122 \text{ cm}$$

$$f_{ez} = rac{p_{ez}^i \cdot b \cdot h'}{100} = 24.55 \ cm^2.$$

II. Rippenbalken.

7. Ein Unterzug ist einem Momente M=5070000~kgcm ausgesetzt; ferner sei $b=300~cm,~b_0=30~cm,~d=10~cm,$ $s_{bd} = 42 \ kg/cm^2$ und $s_{ez} = 1000 \ kgcm^2$ (1:3). Ideale Bewehrung vorausgesetzt, sind die statische Höhe h' und die Bewehrung f_{ez} zu bestimmen.

Vor allem ist: $\pi = \frac{b_0}{h} = 0.1$, $\delta = \frac{d}{h} = 0.2$ (wird etwa mit

Rücksicht auf konstruktive Forderungen angenommen), m = 16900, 1/m = 130.

Mit $\beta = 0.3865$ findet man direkt aus der Tabelle II $p_{ez}^i = 0.64155$ und aus der Tabelle IX der statischen Höhen

$$h' = 0.415 \sqrt{m} = 53.95 \text{ cm}.$$

Dieser Höhe entspricht $d = \delta h' = 10.8 cm$ und

$$f_{ez} = \frac{p_{ez}^i \ b \ h'}{100} = 103.84 \ cm^2.$$

8. Die Rechnungsgrundlagen wie sub 7., nur muß an der Plattenstärke d = 10 cm unbedingt festgehalten werden.

Die Lösung ergibt sich wie folgt:

Für $\beta=0.3865$ und $\pi=0.1$ liefert die Tabelle IX der statischen Höhen für:

$$\begin{split} \delta_1 = 0.15 & \text{ eine H\"ohe } h_1' = 0.449 \sqrt{m} = 58.35 \text{ cm} \\ & \text{und daher } d_1 = \delta_1 h_1' = 8.76 \text{ cm}; \\ \delta_2 = 0.20 & \text{ eine H\"ohe } h_2' = 0.415 \sqrt{m} = 53.95 \text{ cm} \\ & \text{und daher } d_2 = \delta_2 h_2' = 10.79 \text{ cm}. \end{split}$$

Das einem d=10~cm entsprechende h' findet man durch Interpolation mit h'=55.66~cm, dem ein $\delta=\frac{10}{55.66}=0.18$ zukommt; endlich ermittelt sich der Bewehrungsgehalt mit $\left(p_{ez}^i\right)=0.6002$, dem daher eine Eisenbewehrung von:

$$f_{\rm ex} = \frac{0.6002 \cdot 55.66 \cdot 300}{100} = 100.22 \, \rm cm^2$$

entspricht.

9. Handelt es sich um die Führung des Spannungsnachweises, so erscheint die Anwendung der Tabellen II bis VIII nur dann geboten, wenn die Verhältnisse π und δ den Tabellen direkt entnommen werden können; andernfalls empfiehlt sich die Benützung des allgemein üblichen Rechnungsganges. Derselbe läßt sich jedoch, wie nachstehend gezeigt wird, etwas vereinfachen.

Gegeben sind die Abmessungen und der Eisenquerschnitt des Rippenbalkens, ferner das äußere Moment; der Nullinienabstand ist durch $\beta = \delta + \nu$, festgelegt (Textfigur 2 a). Die Berechnung als Rippenbalken hat wie bekannt nur dann zu erfolgen, wenn $\nu > 0$.

Zur Bestimmung von μ benützen wir Gleichung 2', in welcher β durch $(\delta + \mu)$ ersetzt wird; geordnet lautet diese Gleichung:

$$\mu^2 + 2 A \nu = B \dots 23$$
,

wenn:

$$A = \frac{0.15 (p_{ez}^{i}) + \delta}{\pi}$$

$$B = \frac{0.30 (p_{ez}^{i})[1 - \delta] - \delta^{2}}{\pi}$$

daher:

Aus der Bedingung $\mu>0$ folgt unmittelbar auch B>0; mit den besonderen Werten der Gleichung 24) resultiert daher die Bestimmungsgleichung:

$$(p_{ez}^{i}) > \frac{10}{3} \cdot \frac{\delta^{2}}{1-\delta} \cdot \dots \cdot 26),$$

welche nach Zurückführung auf die einzelnen Querschnittsgrößen die Form annimmt:

 $f_{ez} > \frac{1}{30} \cdot \frac{b d^2}{(h'-d)} \cdot \dots \cdot 26a)^1$).

So lange die obigen Ungleichungen erfüllt sind, hat die Berechnung als Rippenbalken zu erfolgen; ist jedoch die linke Seite < als die rechte, dann gilt der Rechnungsgang für die gewöhnliche Platte.

Ferner ist nach früherem:

$$(K^2) = \frac{100 \text{ m}}{h'^2 \text{ s}_{ez}} = (p_{ez}^i) - (\Delta),$$

wobei (Δ) der Gleichung 5') zu entnehmen ist. Führt man die Substitution durch, so ergibt sich:

 $(K^2) = (p_{ez}^i) \left[1 - \delta - \frac{\mu}{3} \right] + \frac{20}{9} \cdot \frac{\delta \beta^2}{1 - \beta} \quad . \quad . \quad . \quad 27).$

Wir wählen: $M = 2025000 \text{ kgcm}, b = 150 \text{ cm}, b_0 = 30 \text{ cm},$ d=10 cm, h'=53 cm und $f_{ez}=49.28$ cm². Wie groß sind die Inanspruchnahmen im Beton und Eisen²)?

Gleichung 26a) ergibt:

$$49.28 > \frac{10^2.150}{30.(53-10)},$$

das heißt, die Nullachse schneidet den Steg; mit $(p_{ez}^{i}) = \frac{100 f_{ez}}{hh'} = 0.62$, $\pi = \frac{b_0}{b} = 0.2$ and $\delta = \frac{10}{53} = 0.1887$ wird A = 1.409, B = 0.5765 3) und $\mu = 0.192$; daher $\beta = (\delta + \mu) = 0.381$; endlich ist

$$\frac{M}{b d^2} = \frac{m}{d^2} \overline{\overline{S}} \frac{s_{ez}}{30} + \frac{s_{bd}}{3}.$$

 $\frac{M}{b\,d^2} = \frac{m}{d^2} \, \overline{>} \, \frac{s_{ez}}{30} \, + \, \frac{s_{bd}}{3}.$ Solange diese Ungleichung besteht, geht die Nullachse durch den Steg. Ableiten läßt sich obige Beziehung aus der Gleichung 7"):

$$\frac{100 \ m}{h'^2 \ s_{ex}} = p_{ez}^i \left(1 - \frac{\beta}{3} \right) = \frac{10}{3} \cdot \frac{\beta^2}{1 - \beta} \cdot \left(1 - \frac{\beta}{3} \right),$$

wenn man für ß den Ausdruck aus Gleichung 3) einführt und bedenkt, daß für $\beta = \delta$ die Plattendicke $d = \delta h'$ wird.

2) Siehe Beispiel Seite 83 in "Die Berechnung der Tragwerke aus Eisenbeton oder Stampfbeton bei Hochbauten und Straßenbrücken" von k. k. Ministerialrat C. Haberkalt und k. k. Baurat Dr. F. Postuvanschitz.

3) Der Ausdruck für B (Gleichung 24) läßt noch eine Vereinfachung zu. Da $(p_{ez}^{i}) - \frac{10}{3} \cdot \frac{\delta^{2}}{1 - \delta} = \Delta \left(p_{ez}^{i}\right)$

stets berechnet werden muß, sohin bekannt ist, nimmt der Ausdruck für B die sehr einfache Form an

 $B = \frac{0.3(1-\delta)}{\pi} \Delta \left(p_{ez}^i \right) \dots 24 a)$

¹⁾ Professor A. Cappilleri gibt in "Der Bautechniker" 1912, Nr. 2 gleichfalls eine sehr einfache Beziehung an, aus welcher unmittelbar auf die Lage der Nullachse geschlossen werden kann; dieselbe lautet:

$$(K^2) = 0.5616$$
. Da nun $m = \frac{M}{b} = 13500$, so folgt: $s_{ez} = \frac{100 \ m}{(K^2) \ h'^2} = 855 \ kg/cm^2 \ und$ $s_{bd} = \frac{\beta}{15 \ (1-\beta)} \ s_{ez} = 35.1 \ kg/cm^2$.

10. Gegeben: $M = 5070000 \, kg/cm$, $b = 300 \, cm$, $b_0 = 30 \, cm$, d=10 cm, h'=80 cm; wenn die Ausnützung des Eisens mit $s_{ez} = 1000 \, kg/cm^2$ gewünscht wird, wie groß ist s_{bd} und welche

Eisenbewehrung ist erforderlich? Vor allem ist mit $m = \frac{M}{h} = 16900$

$$(K^2) = \frac{100 \ m}{h'^2 \ s_{ez}} = 0.264.$$

Das entsprechende \beta findet man durch Interpolation aus der Tabelle für $\pi = 0.2$ und für das Verhältnis $\delta = \frac{10}{80} = 0.125$ mit $\beta = 0.287$; die Zwischenrechnung gestaltet sich wie folgt: Für $\delta_1 = 0.1$ entspricht dem $(K^2) = 0.264$ ein $\beta_1 = 0.303$, $\delta_2 = 0.15$, $(K^2) = 0.264$, $\beta_2 = 0.271$; daher , $\delta = 0.125$, $(K^2) = 0.264$, $\beta = 0.287$.

Den Bewehrungsgehalt bestimmt man einfacher durch Rech-

nung aus:
$$(p_{ez}^i) = \frac{10}{3} \cdot \frac{\beta^2 - (1-\pi)(\beta-\delta)^2}{1-\beta} = 0.287,$$

somit endlich

$$f_{ez} = \frac{(p_{ez}^i) b \, h'}{100} = 68.88 \, cm^2 \, \mathrm{und} \, s_{bd} = \frac{\beta}{15 \, (1-\beta)} \, s_{ez} = 26.8 \, kg/cm^2$$

11. Ein Unterzug von 4:5 m Spannweite habe ein Moment von $M_1 = 1500000 \, kgcm$ aufzunehmen, darf aber aus besonderen Gründen nur 35 cm hoch werden. Die Plattenstärke der anschließenden Decke sei d = 7.5 cm; ferner werde angenommen $\alpha = \alpha' = \frac{1}{2}$, so daß also $a = a' = \frac{35}{7} = 5$ cm und h' = 30 cm. Endlich ist gegeben: $b = 150 \text{ cm}, \ b_0 = 30 \text{ cm}, \ s_{bd} = 40 \text{ kg/cm}^2 \text{ und } s_{ez} = 1000 \text{ kg/cm}^2.$ Wie groß sind die Eisenbewehrungen? (Doppelte Bewehrung.)

Wir haben der Reihe nach:
$$\delta = 0.25$$
, $\pi = 0.2$, $\beta = 0.375$ $p_{ez}^i = 0.68333$, $(K^2) = 0.60903$, $C_1 = \frac{100}{(1 - \alpha')} s_{ez} = 0.117$,

 $m_1 = 10000$; ferner berechnet man den Zwischenwert:

$$\frac{m_1}{h'^2} C_1 - \frac{(K^2)}{1 - \alpha'} = 0.5895,$$

so daß endlich:

$$(p_{ez}) = 0.5895 + 0.6833 = 1.2728$$

$$(p_d) = 0.5895 \frac{1 - \beta}{\beta - \alpha'} = 1.5870$$
und
$$f_{ez} = \frac{(p_{ez}) \ b \ h'}{100} = 57.28 \ cm^2, \quad f_{ed} = \frac{(p_{ed}) \ b \ h'}{100} = 71.42 \ cm^2.$$

Tabelle I.

Festwerte für die Dimensionierung von Platten.

Anmerkung				· · · · · · · · · · · · · · · · · · ·				M Moment in kgcm	" = b = Balkenbreite in cm			40 TO 10 TO		一 なるとこの はなって		
Höhe V_m	D		San San San	OK STONES	o Bergen	60.50	8494.0	0.4200	THE STATE OF	0.4146	0.3904	0.3454	0.3761	1000000		
Erforderliche statische Höhe $h' = \frac{10}{K V^{s_{cs}}} \cdot \sqrt{m} = D \sqrt{m}$	s_{bd} in kg/cm^2				PARIETY I		32	33.3	0.2210	37	40	20	42	7.00.0		
Erforden $h' = -$	$ s_{ez}$ in kg/cm^2 $ s_{bd}$ in kg/cm^3		HIAT STATE	The state of the s	2000		1000	1000		1000	0001	1200	1000			
$\frac{100\ m}{h^{'2}\ s_{ex}}$	K	0.1893	0.5895	7768.0	9709.0	0.6211	6089.0	0.7027	6774.0	0.7627	- 0.8101	0.8358	6048.0	0.8777	1.1785	
$K^2 =$	K^2	0.03581	0.08382	0.15556	0.25463	0.38571	0.46274	0.49373	0.55491	0.58168	0.65625	67869.0	80.202.0	0.77037	1.38889	
Bewehrungsgehalt $p_{cs}^{i} = \frac{10}{2} \cdot \frac{\beta^{2}}{100} = \frac{100}{2} \frac{f_{cs}^{i}}{100}$	d — 1 e	0.03704	0.08853	0.16667	0.27778	0.42857	0.51882	0.55544	0.62820	0.66023	0.75000	0.80120	0.81164	0.88889	1.66667	,
$\beta = \frac{15 s_{bd}}{s_{cz} + 15 s_{hd}} \left \begin{array}{c} \text{Be} \\ p_{cz} \\ \end{array} \right _{z} = \frac{15 s_{bd}}{s_{cz} + 15 s_{hd}} \left \begin{array}{c} p_{cz} \\ p_{cz} \\ \end{array} \right _{z} = \frac{15 s_{bd}}{s_{cz}} = \frac{15 s_{bd}}{s_{cz}} \left \begin{array}{c} p_{cz} \\ p_{cz} \\ \end{array} \right _{z} = \frac{15 s_{bd}}{s_{cz}} = \frac{15 s_{bd}}{s_{cz}} \left \begin{array}{c} p_{cz} \\ p_{cz} \\ \end{array} \right _{z} = \frac{15 s_{bd}}{s_{cz}} = \frac{15 s_{bd}}{$	* 3888	0.10	0.15	0.50	0.25	0.30	0.3243	0.3333	0.35	0.3569	0.3750	0.3846	0.3865	0.40	0.20	

 $\label{eq:tabelle} Tabelle \ \ II^{\,1}).$ Festwerte für die Dimensionierung von Plattenbalken für $\pi=0{\cdot}10.$

		-	-	-	-	-	_	-	-	-	-	-	-	_	11 .	-	-			-	-	-	-	-	-	-		-	-
(K)		1	0.3944	0.4968	0.5940	9079.0	0.6583	2069.0	0.7042	0.7397	0.7588	0.7626	0.7898	0.8938	95	1	1	I will	1	1	1	1	6447.0	0.7626	6808.0	0.8335	0.8384	0.8732	1.0048
(K^2)	1	1	0 15556	0.54680	0.35285	0.41038	0.43333	0.47703	0.49582	0.54723	0.57581	0.58157	0.62370	0.79887	8 = 0.35		1	1	1	1	1	1	0 55491	0.58154	0.65433	0 69475	0.70291	0.76246	1.00956
(p_{ez}^i)	1	17.00	0.16667	0.26778	0.38571	0.44991	64224.0	0.52436	0.54539	0.60300	0.63508	0.64155	0.68889	0.88636		-	1	1	-	1.0000	1	1	0.62820	10099.0	0.74700	0.79536	0.80512	0.87639	1.17273
(K)	Date of the last o	0.5895	0.3844	0.4711	0.5555	0.5963	0.6119	9049.0	0.6525	0.6841	0.7010	0.7044	0.7286	0.8516		1	1	1	1	0.6211	0.6787	0.7002	0.7396	0.7559	0.7988	0.8216	0.8261	0.8585	0 9815
(K^2)		0.08382	0.14774	0.22197	0.30857	0.35560	0.37446	0.41030	0.42572	0.46793	0.49141	0.49615	0.53080	0.67500	\$ = 0.30	三五1 四 为	,	1	1	0.38571	0.46061	0.48030	0.54703	0.57140	0.63803	0.67505	0.68251	0.73704	0.96341
(p_{ez}^i)	1 15 17 30 11	0.08823	0.15729	0.23778	0.33214	0.38362	0.40425	0.44359	72094.0	0.202.0	0.53290	0.53813	0.57639	0.73636	10 JESTS	1	-	1	1	0.42857	0.51589	0.55046	0.61667	0.64513	0.72300	0.76631	0.77505	0.83889	1.10454
(K)	0.1893	0.2757	0.3508	0.4221	0.4928	0.5273	0.5407	0.5651	0.5753	0.6024	0.6169	0.6198	9049.0	0.7210	187810	1	-	1	0.5046	0.6147	8999.0	₹989.0	0.7224	0 7373	9922.0	9262-0	0.8018	0.8316	0.9455
(K^2)	0.03581	0.07603	0.12306	0.17813	0.24285	0.57809	0.29235	0.31933	0.33097	0.36283	0.38058	0.38416	0.41037	0.51978	\$ = 0.25	1	1	1	0.25463	0.37787	99777.0	0.42120	0.52184	0.54360	0.60313	0.63621	0.64289	0.69163	0.89402
(p_{ex}^i)	0.03704	0 07941	0.12917	0.18778	0.25714	0.29514	0.31052	0.33974	0.35236	0.38700	0.40635	0.41026	0.43889	0.55909	1015	1	1	1	0.27778	0.41786	0.49400	0.52424	0.58205	0.60692	0.67500	0.71288	0.72053	0.77639	1.00901
2	0.10	0.15	0.50	0.55	0.30	0.3543	0.3333	0.35	0.3569	0.3750	0.3846	0.3865	07.0	0.45	13	0.10	0.15	0.50	0.55	0.30	0.3243	0.3333	0.35	0.3569	0.3750	0.3846	0.3865	0.40	0.45
		(p_{eg}^i) (K^2) (K) (p_{eg}^i) (K^2) (K) (p_{eg}^i) (K) (p_{eg}^i) (K^2) (K^2) (K^2)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{pmatrix} p_{eb}^{1} \end{pmatrix} & (K^{2}) & (K) & (p_{e}^{1}) & (K) $	$ \begin{pmatrix} p_{e_{1}}^{5} \end{pmatrix} & (K^{2}) & (K) & (p_{e_{1}}^{5}) & (K^{2}) &$	$ \begin{pmatrix} p_{e_0}^{j} \end{pmatrix} & (K^{g}) & (K) & (p_{e_0}^{j}) & (K^{g}) & (K) & (p_{e_0}^{j}) & (k) &$	$ \begin{pmatrix} p_{0}^{i} \\ 0.03704 & 0.093581 & 0.1893 & 0.08382 & 0.08382 & 0.2895 & 0.1556 \\ 0.07304 & 0.07363 & 0.2923 & 0.22197 & 0.14714 & 0.24285 & 0.24285 \\ 0.12917 & 0.12306 & 0.94221 & 0.23314 & 0.23814 & 0.16667 & 0.1556 \\ 0.12917 & 0.12306 & 0.94221 & 0.23314 & 0.23814 & 0.2657 & 0.2657 \\ 0.12917 & 0.12306 & 0.94221 & 0.23314 & 0.23814 & 0.2657 & 0.26585 \\ 0.295714 & 0.27809 & 0.5273 & 0.23314 & 0.23814 & 0.241991 & 0.241991 \\ 0.29514 & 0.29235 & 0.5407 & 0.44925 & 0.24193 & 0.44991 & 0.44991 \\ 0.29524 & 0.29235 & 0.5407 & 0.44925 & 0.441030 & 0.44991 & 0.441991 \\ 0.29524 & 0.29235 & 0.5673 & 0.44022 & 0.24190 & 0.44991 & 0.441991 \\ 0.29524 & 0.29235 & 0.5673 & 0.44193 & 0.441991 & 0.441991 & 0.441991 \\ 0.29524 & 0.38205 & 0.6094 & 0.44925 & 0.44193 & 0.64155 & 0.63208 \\ 0.4005 & 0.36283 & 0.6094 & 0.64594 & 0.44199 & 0.64155 & 0.64155 \\ 0.41026 & 0.38205 & 0.6169 & 0.55390 & 0.45793 & 0.62309 & 0.54739 \\ 0.55290 & 0.51978 & 0.5109 & 0.72636 & 0.65308 & 0.7286 & 0.63209 & 0.7286 \\ 0.55292 & 0.41037 & 0.6405 & 0.55391 & 0.67500 & 0.7286 & 0.63209 \\ 0.55292 & 0.44165 & 0.6688 & 0.55086 & 0.45087 & 0.66001 & 0.65194 \\ 0.44166 & 0.44166 & 0.6688 & 0.55086 & 0.66300 & 0.65290 & 0.55194 \\ 0.65292 & 0.44165 & 0.6688 & 0.55086 & 0.66300 & 0.65194 \\ 0.65292 & 0.441129 & 0.64113 & 0.64113 & 0.7519 & 0.7519 \\ 0.66091 & 0.47120 & 0.42373 & 0.64113 & 0.5759 & 0.66001 & 0.65194 \\ 0.66092 & 0.44166 & 0.72737 & 0.64113 & 0.64113 & 0.55194 \\ 0.66091 & 0.441120 & 0.64113 & 0.64113 & 0.64113 & 0.5114 \\ 0.66092 & 0.44166 & 0.44113 & 0.64113 & 0.64113 & 0.64113 & 0.64113 \\ 0.66092 & 0.44166 & 0.44113 & 0.64113 & 0.64113 & 0.64111 & 0.64114 \\ 0.66092 & 0.44166 & 0.44113 & 0.64113 & 0.64113 & 0.64113 & 0.64113 \\ 0.66091 & 0.44113 & 0.64113 & 0.64113 & 0.64113 & 0.64113 & 0.64113 \\ 0.66092 & 0.44166 & 0.44113 & 0.64113 & 0.64113 & 0.64113 & 0.64113 \\ 0.66092 & 0.441113 & 0.44113 & 0.64113 & 0.64113 & 0.64113 & 0.64113 \\ 0.66092 & 0.441113 & 0.441113 & 0.441113 & 0.441113 & 0.441113 & 0.441113 & 0.441113 & 0.441113 & 0.441113 & 0.4411$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{pmatrix} (p_{a}^{i}) & (K^{2}) & (K^{2}) & (K) & (p_{a}^{i}) & (k) &$	$ \begin{pmatrix} (p_{e_0}^{i}) & (K^2) & (K) & (p_{e_0}^{i}) & (p_{e_0}^$										

Tabelle III1).

Festwerte für die Dimensionierung von Plattenbalken für $\pi=0.15$.

 $\label{eq:table_table} Tabelle\ IV^1).$ Festwerte für die Dimensionierung von Plattenbalken für $\pi=0{\circ}20.$

		1															T			_						1				1	
348	(K)	+1000		1000	0.3944	0.4977	0.2971	0.6451	0.6634	0.6955	0.7109	6.747.0	0.7677	0.7717	0.8000	6806.0		1	1	1	1	1	1	1	0.7449	0.7696	0.808.0	0.8338	0-8387	0.8737	1.0066
\$ = 0.50	(K^2)	100000	1	0.44	0.00010	0.24767	0.35651	0.41616	0.44003	0 48369	0.50536	0.55933	0.58944	0.59559	0.64000	0.82601	\$ = 0.35	1	1	1	1	1	1	-	0.55491	0.58156	0.65454	0.69517	0.70338	0.76334	1.01329
0865080	(p_{ez}^{i})	TENESTE .		0.100,00	0.96000	0.2023	0.39048	0.45753	0.48437	0.53590	0.55815	0.61933	0.65353	0.66045	0.71111	0.92424		G 1 G 1 G	1	1	. 1	1	1	1	0.62820	0.66003	0.74733	0.79601	0.80585	0.87778	1.17879
0.66.01	(K)	10,480,00	2086-0	0.0000	0.0000	04/50	2690.0	2909.0	0.6227	0.6530	9999-0	0.6992	0.7172	0.7208	0.7466	0.8461		1	1	1	1	0.6211	0.6788	0.2005	0.7402	0.7567	0.8000	0.8232	0-8278	0.8607	0.9865
\$ = 0.15	(K^2)	100000	0.08869	0.11061	0.99555	0.52500	0.31/15	0.36747	0.38771	0.42636	0.44305	0.48885	0.51442	0.51959	0.55741	0.71591	\$ == 0.30		1	1	1	0.38571	0.46081	89067.0	0 54791	0.57255	0.64005	0.67765	0.68525	42042-0	0.97327
N. CALSTIN	$(p_{ez}^{\ i})$	107/04	0.08893	0.15899	666/6-0	0.94555	0.54286	0.39861	0.45105	0.46410	0.48273	0.53400	0.56271	0 56852	0.61111	0.79091	0.0000000000000000000000000000000000000		1	1	1	0.42857	0.51618	0.55101	0.61795	0.64681	0.72600	0.77018	0.77912	0.84444	1.11818
	(K)	0.1808	0.9773	0.3559	0.4390	0.5067	0.000	P0404	0.5610	0.5878	0.2930	0.6288	0.6449	0.6481	0.6711	0.7602		ı	1	1	0.5046	0.6154	0.6683	0.6883	0.7249	0.7402	0.7543	0.8050	0.8062	0.8369	0.9543
$\delta = 0.10$	(K^2)	0.03581	0.07689	0-19666	0.18663	0.95079	0.00000	10062.0	0.31472	0.34551	0.35883	0.39542	0.41590	0.45004	0.45037	0.57793	8 = 0.25	1	1	1	0.25463	0.37873	0.44662	0.47370	0.52551	0.54783	0.60903	0.64312	0.65002	0.70037	0.91065
D. Salasa	$(p_{ez}^{\ i})$	0.03704	0.08039	0.13333	0.19778	0 97610	0.91000	0.00000	0.33773	0.37179	0.38657	0.42733	0.45022	0.45486	0.48889	0.63333	Sugare	1	1	1	0.27778	0.41905	0.49672	0.52770	0.58718	0.61284	0.68333	0.72269	0.73065	0.78889	1.03333
82		0.10	0.15	06.0	0.52	0.30	0.9969	0.0240	0.3333	0.35	0.3269	0.3750	0.3846	0.3865	0.40	0.45	84	0.10	0.15	0.50	0.52	0.30	0.3243	0.3333	0.35	0.3569	0.3750	0.3846	0.3865	07.0	0.45

Tabelle V 1).

Festwerte für die Dimensionierung von Plattenbalken für $\pi=0.25$.

$\delta = 0.20$	(K^2) (K)			0.15556 0.8944													= 0.35	1	1	1	1	1	1	1	0.55491 0.7449							
10	(p_{ez}^i) (B)		1	0.16667 0.15				-									0	-	1				The state of the s		0.62820				0.80621 0.70361	0.87847	1.17576 1.00	- 001
S S S S S S S S S S S S S S S S S S S	(K)		0.5895	0.3861	6924.0	0.5670	0.6111	0.6280	0.6591	0.6721	9902-0	0.7252	0.7289	0.7555	0.8581			1	-	1	-	0.6211	6829.0	9002.0	0.7405	0.7570	0.8007	0.8540	0.8286	0.8617	0.9883	
8 = 0.15	(K^2)	N T WOOD	0.08382	0.14904	0.22740	0.32142	0.37340	0.39434	0.43440	0.45171	0.49931	0.52592	0.53131	0.57072	0.73636	00:0	0=0.30	1	1	1	1	0.38571	0.46091	0.49087	0.54834	0.57311	0.64106	0.67895	19989.0	0.74259	0.97671	1007
to Standar	(p_{ez}^{i})		0.08823	0.15885	0.54444	0.34821	0.40610	0.45945	0.47436	0.49382	0.54750	0.57761	0.58372	0.62847	0.81818			1	1	1	1	0.45857	0.51632	0.55129	0.61859	9.64765	0.72750	0.77212	0.78115	0.84722	1.12500	10 62 (1 =) (8 2)2
	(K)	0.1893	0.2781	0.3584	0.4369	0.5164	0.5557	0.5709	0.5989	0.6105	0.6417	0.6585	0.6618	0.6858	0.7791			1	1	1	9709.0	0.6158	0.6691	0.6892	0.7262	0.7416	0.7823	0.8041	0.808	0.8395	0.9586	10 62
8=0.10	(K^2)	0.03581	0.07733	0.12848	0.19088	0.56666	0.30882	0.32590	0.35860	0.37275	0.41173	0.43355	0.43799	0.47037	00409-0	30.0	000-0	1	1	1	0.55463	0.37916	09277.0	96727-0	0.52735	£6649.0	0.61198	0.64659	0.65358	7.407.0	0.91893	158,3
100000	$\left\ (p_{ez}^{i}) \right.$	0.03704	0.08088	0.13542	0.50578	0.28571	0.33237	0.35133	0.38782	0.40367	0.44750	0.47215	0.47716	0.51389	24079.0			1	1	1	0.27778	0.41964	80867-0	0.52944	0.58974	0.61580	0.68750	0.72760	0.73571	0.79514	1.04545	
œ	2	0.10	0.15	0.50	0.52	0.30	0.3543	0.3333	0.35	0.3569	0.3750	0.3846	0.3865	0.40	0.45	83		0.10	0.15	0.50	0.52	0.30	0.3243	0.3333	0.35	0.3269	0.3750	0.3846	0.3865	0.40	0.45	

Tabelle VI). Festwerte für die Dimensionierung von Plattenbalken für $\pi=0.30$.

	- Louis		-					1		-	10	1					7-	110								7 1 10	200		100	19-
0.8588	(K)	S COUNTY		0.3944	0.4985	0.6001	9679.0	₹899-0	0.7031	0.7176	0.7559	9924.0	0.7807	0.8103	0.9237	Garana	WIENESS .			1000	1			6447.0	0.7626	0.8092	0.8340	0.8390	0.8742	1.0085
03.0 = 2	(K^3)	STATE OF THE PARTY		0.15556	0.24854	0.36016	0.42194	0.44675	0.49433	0.51490	0.57146	0.60307	97609.0	0.65630	0.85316	\$ = 0.35	- PERCENS	- National -		NO. LONG				0.55491	0.58157	92429.0	0.69559	0.70385	0.76421	1.01702
0.81830	(p_{ex}^i)		1	0 16667	0.52000	0.39524	0.46515	0.49326	0.54743	0 57091	0.63567	0.67199	0.67935	0.73343	0.96212	DESTINATION OF THE PERSON OF T				100000			O Trough	0.62820	0.66005	0.74767	0.796615	0.80658	0.87917	1.18485
0.8813	(K)	0.530	0.2895	0.3866	0.4788	0.5707	0.6159	0.6332	0.6652	0.6785	0.7140	0.7331	0.7369	0.7642	0.8642	10 CASE OF THE PARTY OF THE PAR	18731	1000			0.6211	0629.0	0.7007	0.7408	0.7574	0.8013	0.8248	0.8594	0.8629	0.6600
8=0.15	(K^2)	168740	0.08382	0.14948	0.25924	0.32571	0.37935	96004.0	0.44243	0.46038	0.50977	0.53743	0.54302	0.58402	0.74681	\$ = 0.30	Trions of	Del Britis			0.38571	0.46101	0.49107	0.54878	0 57368	0.64207	0.68025	76289.0	164477	41186.0
0.894.53	(p^i_{ez})	0.804080	0.08823	0.15938	0.24668	0.35357	0 41360	0.43785	0.48461	0.50491	0 56100	0.59252	0.59891	0 64583	0.84545	0.001300	0.1157,685	04/288	1		0.42857	0.51647	0.55157	0.61923	0.64848	0.72900	90722-0	0.78318	0.85010	1-18182
- 6835.40°	(K)	0.1893	0.2789	0.3609	0.4418	0.5241	0.5648	9086-0	0.6095	0.6218	0.6542	0.6717	0.6752	0.7003	9262.0	100000	ORTRO		1	0.5046	0.6161	8699.0	0.6901	0.7275	0.7430	0.7842	1.908.0	0.8107	0.8421	0.9659
8 = 0.10	(K^2)	0.03581	0.07776	0.13028	0.19513	0.27461	0.31905	0.33710	0.37153	0.38668	0.45803	0-45122	0.45593	749047	60989.0	8 = 0.25	48578.0	1007	000000	0.25463	0.37961	62877.0	0.47620	0.52919	0.55206	0.61493	₹0099.0	0.65715	0.70912	0.92722
9.19214	(p_{ez}^i)	0.03704	0.08137	0:13750	0.20778	0.59524	0.34477	0.36495	0.40369	0.45077	19194.0	60464.0	94664.0	0.53899	0.70758	031218	Courses !		287	0.27778	0.45054	74664.0	0.53117	0.59231	0.61876	0.69167	0.73250	82047-0	0.80139	1.05757
080		0.10	0.15	0.50	0.52	0.30	0.3243	0.3333	0.35	0.3569	0.3750	0.3846	0.3865	0.40	0.45	02.	0.10	0.15	0.50	0.52	0.30	0.3243	0.3333	0.35	0.3569	0.3750	0.3846	0.3865	0.40	25.0

 $\label{eq:tabelle} Tabelle\ VIII^4).$ Festwerte für die Dimensionierung von Plattenbalken für $\pi=0.35.$

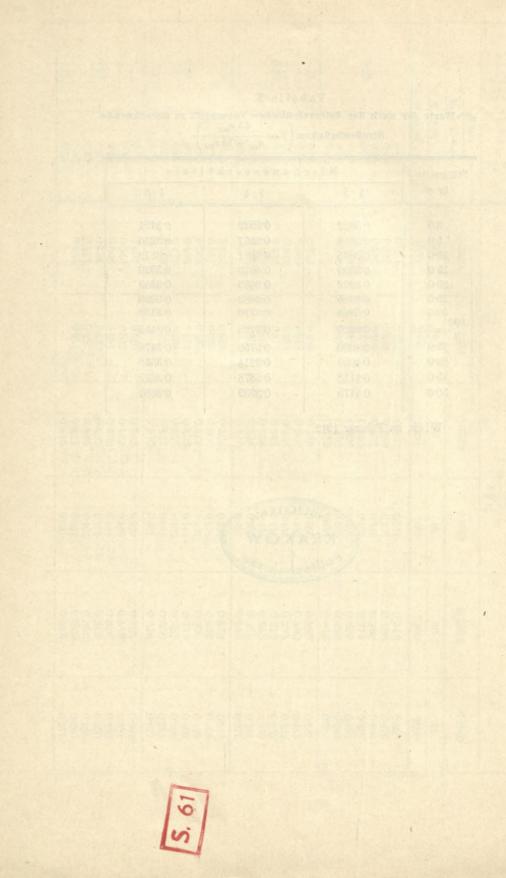
Tabelle VIII. Festwerte für die Dimensionierung von Plattenbalken für $\pi=0.40$.

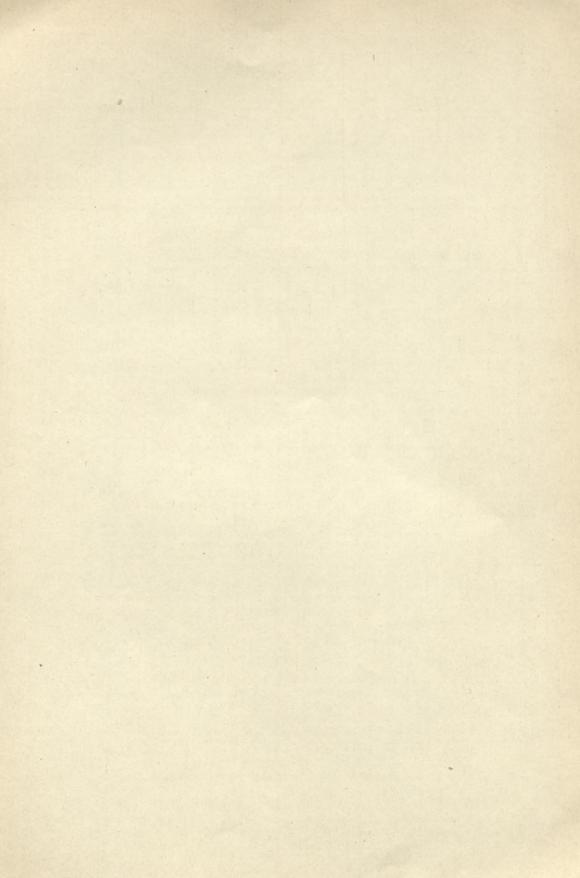
In den Tabell	0·10 0·15 0·20 0·20 0·3243 0·353 0·3569 0·3569 0·3569 0·3569 0·3569 0·3665 0·46	В	0·10 0·15 0·20 0·25 0·30 0·3243 0·3533 0·3569 0·3569 0·3569 0·3750 0·3846 0·3865 0·40	700
In den Tabellen bedøuten:β=	0.27778 0.42143 0.50217 0.53464 0.59744 0.62469 0.70000 0.74232 0.75090 0.715090 0.81389 1.08182	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.03704 0.08235 0.14167 0.21778 0.31429 0.36959 0.39216 0.45498 0.50800 0.53796 0.53796 0.534405 0.58889 0.78182	(p_{cc}^i)
$\frac{15s_{bd}}{s_{ez}+15s_{bd}},$	0.25463 0.38048 0.45057 0.47871 0.53287 0.62083 0.62083 0.66428 0.71787 0.94379	ò = 0.25	0.03581 0.07862 0.13389 0.29363 0.29048 0.33953 0.35948 0.35948 0.35787 0.41453 0.46063 0.49180 0.49180 0.53037 0.63424	$\delta = 0.10$ (K^2)
$(p_{sz}^i) = \frac{10}{3} \cdot \frac{\beta^2 - \beta^2}{\beta^2}$	0.5046 0.6168 0.6712 0.6919 0.7300 0.7459 0.7879 0.8105 0.8150 0.8473 0.9715		0·1893 0·2804 0·2804 0·3659 0·4513 0·5890 0·5896 0·5996 0·6438 0·6438 0·6787 0·6975 0·6975 0·7013 0·7283 0·8332	(X)
$\frac{-(1-\pi)(\beta-\delta)^2}{1-\beta}$	0-42857 0-552676 0-55212 0-65016 0-73200 0-77794 0-78725 0-85555 1-14545	THE REAL PROPERTY.	0-08823 0-16042 0-25111 0-36429 0-42858 0-45465 0-50513 0-52710 0-58800 0-682930 0-62930 0-62930 0-68055 0-90000	(p_{ex}^i)
$=\frac{100\left(f_{ez}\right)}{bh'},\pi$	0.38571 0.38571 0.46121 0.49144 0.54968 0.68286 0.68286 0.69071 0.74814 0.99000	ô = 0·30	0.08382 0.15035 0.23285 0.33429 0.39121 0.41422 0.45851 0.53070 0.56043 0.56043 0.61064 0.79773	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$=\frac{b_0}{b},\ \delta=\frac{d}{h'},\ (h$	0.6211 0.6211 0.6791 0.7010 0.7111 0.7582 0.8026 0.8263 0.8263 0.8263 0.8263		0.2895 0.3878 0.4826 0.5782 0.6255 0.6436 0.6771 0.6912 0.7285 0.7526 0.7526 0.7526 0.7526	(K)
$(K^2) = \frac{100 \ m}{h'^2 \ s_{ex}}, \ n$	0.62820 0.66008 0.74800 0.79731 0.8055 1.19091	March Selection	0.16677 0.27111 0.40000 0.47277 0.50214 0.55897 0.65200 0.65200 0.69825 0.75555 1.00000	(p_{ed}^i)
$n = \frac{M}{b} = \frac{\text{Mome}}{\text{Platte}}$	0.55491 0.58159 0.65497 0.65497 0.69600 0.70431 0.76509 1.02076	$\delta = 0.35$	0-1556 0-24941 0-36381 0-42772 0-45346 0-50294 0-50294 0-58357 0-61670 0-62341 0-62341 0-62391 0-88030	$\delta = 0.20$ (K^2)
Moment in kgcm Plattenbreite in cm	0.7449 0.7626 0.8343 0.8392 0.8747 1.0103		0.3944 0.4994 0.6032 0.6540 0.6734 0.7032 0.7242 0.7853 0.7853 0.7853 0.7853 0.7853 0.7853	(X)

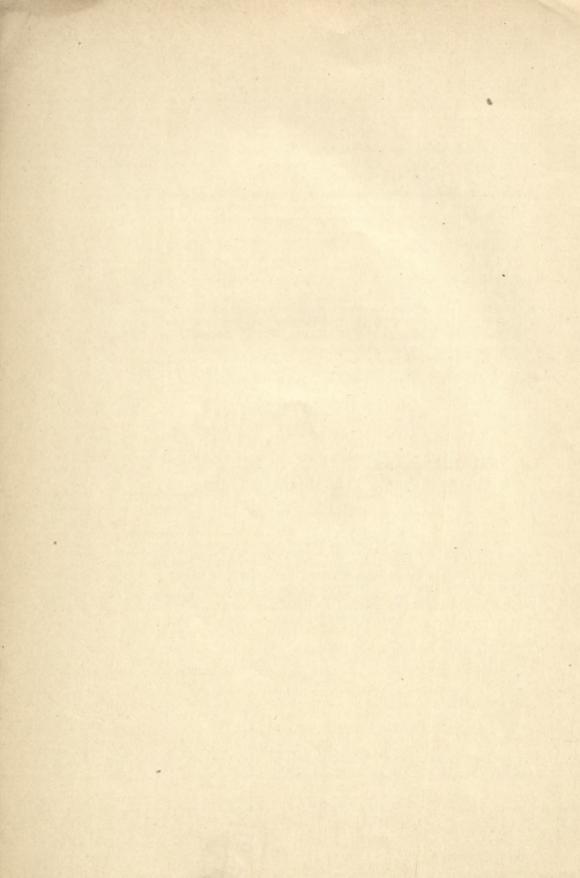
Tabelle IX.

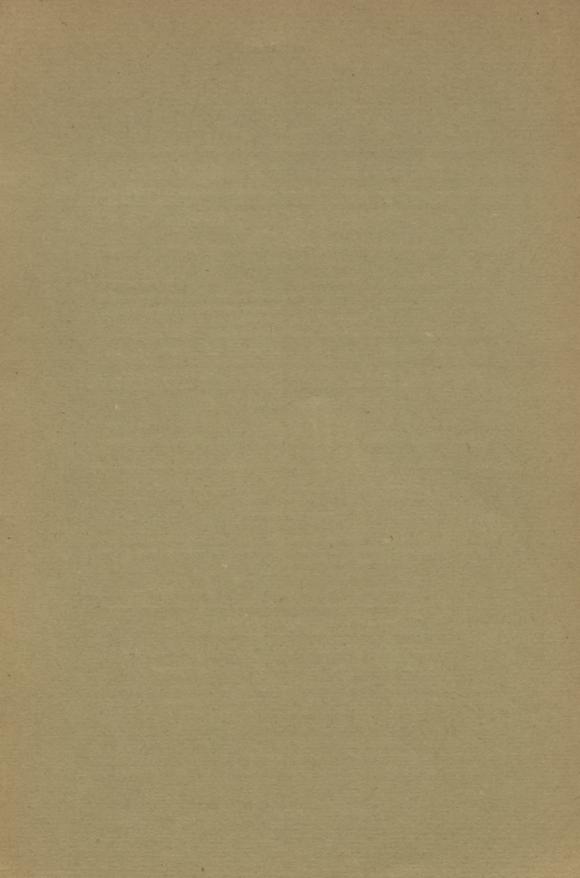
Zusammenstellung der wichtigsten D.Werte für die Berechnung der statischen Höhen von Plattenbalken nach der Formel:

	And the second	0.3865	42	1000	0.641	0.510	677.0	0.415	0.383	0.377	0.610	664.0	0.444	0.412	0.389	0.377	0.582	0.488	0.439	0.410	0.382	0.377
		0.3846	50	1200	0.588	894.0	0.412	0.380	0.321	0.346	0.559	0.457	0.407	0.378	0.351	0.346	0.534	0.448	0.403	0.376	0.360	0.346
$\frac{(kgcm)}{b(cm)}$.	$= \frac{10}{K\sqrt{s_{ez}}} =$	0.3750	40	1000	099.0	0.525	0.462	0.427	204.0	0.391	0.628	0.513	0.457	0.425	0.395	0.391	0.601	0.503	0.425	0.453	0.419	0.391
$= \sqrt{m} = D \sqrt{m} = D \sqrt{\frac{M (kgcm)}{b (cm)}}$	D = 0	0.3569	37	1000	0.691	0.220	0.485	677.0	0.429	0.415	0.659	0.538	0.480	0.447	0.428	0.415	0.632	0.528	0.475	277.0	0.427	0.415
10 KVs	188	0.3333	33.3	1000	0.736	0.585	0.517	0.480	0.461		₩02.0	6.574	0.512	0.478	0.460	1040	929.0	792.0	809.0	0.477	0.459	102.0
h' = -	NORD IN	0.3243	32	1000	0.754	009.0	0.230	161.0	724.0		0.722	0.589	0.256	0.492	124.0 0.00	0440	₹69.0	6.20	0.522	0.490	0.473	0070
1 88	$\delta = \frac{d}{h}$	$\frac{15 s_{bd}}{s_{ex} + 15 s_{bd}}$	8bd in kg/cm²	Sez in kg/cm ²	0.05	0.10	0.15	0.50	0.52	0.35	0.02	0.10	0.15	0.50	0.52	0.35	0.05	0.10	0.15	0.50	0.52	0.35
44-9612	$\pi = \frac{b_0}{b}$	13 = 8 ex	sbd in	Sez in				0.10	10000	0.000	480	O PERO	0.550	0.15	0.000	0.023	1240	0.4%	TARGET .	0.50	2000	


11	0.35							-	- Colon			0:35 0:20		0.10		0.35		0.29				0.05	0.35	0.30	0.25	0.25 0.20		0.10	0.05	Sez in kg/cm ²	8bd in kg/cm2	$\beta = \frac{15^{s_{bd}}}{s_{ez} + 15^{s_{bd}}}$	$\pi = \frac{b_0}{b} \qquad \qquad \delta = \frac{d}{h'}$
The state of the s	0.382	0.466	0.471	0.484	0.506	0.543	0 607	1 1000	OTO	0.466	0.472	0.485	0.509	0 551 30	0.626 200	1	0.466	0.172	0 407	0.167	0.560	0.646	1	0 466	0.473	0.488	0.517	0.569	0.671	1000	32	0.3243	Bellevi i te a l'épiteu
Lagra	0.778	0.4511340	0.457	0.470000	0.491	0.527	0.590	- uten	TOTO	0.451	0.458	0.47174	0.495	0 536	0.6088230	1	0.1910	0.456	0.4/32	0.499	GFC.0	0:628		0.451	0.459	0.475	0.504	0.554	0.651	1000	33.3	0.3333	S. SELE, ATRIBUTED A
	0.4121950	0.417884.0	0.4245750	0 4378080	0.458	0.491	846.0	0419	0.115		0.425	0.439	0.462	0.500	0.566.5	0.410	0.418	0.426	1440	0.466	0.509-150	0.585	0.419	0.418	0.426	0.443	0.471	0.518	0.607	1000	37	0.3569	$D = \frac{1}{2}$
	0.391.560	0 394	0-10101-0	0.414240	0.434.10	0.466	0 519	160.0	0.500,000		0.402		0.438 30	0.52.474.0	0.536	168.0	_	0.403	0.418	0.443	0 483	0.555	0.391	0 395	10404	0.421	0.448	0.493	0.577	1000	40	0.3750	$\frac{10}{KV_{ez}} =$
n'an	0.346	0.349	0.356	0.368	0.386	0.410	-0-464	0.040	0.996	0.350	0.357	0.370	0.390	0.422	0.476	0.346	0.350	0.350	2760	0.979	0.430	0.493	0.346	0.350	0.359	0.374	0.398	0.438	0.513	1200	50	0.3846	AND ANY MADELS
Complete at Soughts	0.377	0.380	0.388	0.400	0.420	0.451	0.501	0.977	0.007	0 381	0.389	0.403	0.425	0.459	0.518	0.377	0.381	0.390	0.000	624.0	0.468	0.537	0.377	0.382	0.391	0.407	0.434	0.478	0.559	1000	42	0.3865	Net states out again


Tabelle X. "\$"-Werte für nach der österreichischen Vorschrift zu berechnende Straßenbrücken $\left(\beta=\frac{15~s_{bd}}{s_{ez}+15~s_{bd}}\right)$.


Stützweite 1	Mis	chungsverhä	ltnis
in m	1:3	1:4	1:5
0.0	0.3822	0.3522	0.3191
5.0	0.3849	0.3557	0.3236
10.0	0.3875	0.3591	0.3279
15.0	0.3899	0.3623	0.3320
20.0	0.3922	0.3653	0.3359
25.0	0.3945	0.3682	0.3396
30.0	0.3966	0.3710	0.3432
$\frac{100}{3} = 33.3$	0.3980	0.3728	0.3455
35.0	0.4000	0.3750	0.3478
40.0	0.4059	0.3814	0.3548
45.0	0.4118	0.3878	0.3617
50.0	0.4175	0.3939	0.3684


Wien, im Februar 1912.

WYDZIAŁY POLITECHNICZNE KRAKÓW

BIBLIOTEKA GŁÓWNA

U. 31788

Kdn., Czapskich 4 - 678. 1. XII. 52. 10.000

Theorie und Dimensi

Im gleichen Verlage erschie

einen oder zwei Unterzuge verstarkten Balken=(Träger=)Decke.

Von Ingenieur Leopold Herzka, Bau-Oberkommissär der k. k. Nordwestbahndirektion in Wien.

Mit 15 Textfiguren, 4 Tabellen und 1 Tafel.

Preis K 4'50 = Mk. 3'80

Das Buch ist allen jenen Ingenieuren angelegentlichst zu empfehlen, die häufig in die Lage kommen, Deckenkonstruktionen in Eisen, Eisenbeton oder Holz zu entwerfen. ("Der Eisenbau", Leipzig, Februar 1910.)

Dimensionierungsformeln für einfach und doppelt bewehrte Betonplattenbalken.

Von Ingenieur Leopold Herzka.

Mit 1 Textfigur und 3 Tabellen.

Preis K -'80 = Mk. -'80.

(Sonderabdruck aus der "Österreichischen Wochenschrift für den öffentlichen Baudienst", Heft 9/10, Jahrgang 1910.)

Vierendeelträger mit parallelen Gurtungen.

Graphische Ermittlung der Einflußlinien mit Hilfe eines einzigen Seilpolygones, das ohne Rücksicht auf Spannweite und Felderanzahl für sämtliche Träger mit gleichem Verhältnis von Trägerhöhe zur Felderweite gilt.

Von Ingenieur Emil Reich (Laibach).

Mit 11 Textfiguren und 1 lithographischen Tafel.

Preis K 1.50 = Mk. 1.30.

Eisenbeton-Schaulinien

für eine unmittelbare Dimensionierung einfach und ideal bewehrter Tragkonstruktionen (nebst einer Erläuterung).

Zusammengestellt auf Grund der neuen österreichischen Eisenbetonvorschrift vom 15. Juni 1911 für jede Kombination einer beliebigen Stützlänge mit einer beliebigen, gleichmäßig verteilten Nutzbelastung

V_C Biblioteka Politechniki Krakowskiej

Mit 6 Textfiguren une

Zu beziehen

BIOLOGEN POLICE CHINK NAVAKOWSKIE

fessor.

Preis K 2'40 = Mk. 2'-.

und Auslandes.