

THEORIE UND KONSTRUKTION VERSTEIFTER HÄNGEBRÜCKEN

1/2 china

VON

DR. ING. F. BOHNY,

OBERINGENIEUR DER BRÜCKENBAUANSTALT GUSTAVSBURG BEI MAINZ

MIT 70 ABBILDUNGEN IM TEXT

LEIPZIG

VERLAG VON WILHELM ENGELMANN

1905

Alle Rechte, insbesondere das der Übersetzung werden vorbehalten.

BIBLIOTEKA POLITECHNICZNA KRAKÓW III 15359

F. C. C. 623

Druck der kgl. Universitätsdruckerei von H. Stürtz in Würzburg.

Akc. Nr.

149

Vorwort.

In der folgenden Abhandlung ist versucht worden, in zusammenhängender Reihenfolge sämtliche bis jetzt bekannten Systeme versteifter Hängebrücken theoretisch zu behandeln. Der Stoff wurde entsprechend der Zahl der statisch unbestimmten Grössen eingeteilt und ergaben sich damit, ausser der Einleitung (Abschnitt I) und einem kurzen allgemeinen Abschnitt über die Form von Kette und Kabel, die Grundgleichung für das Biegungsmoment usw. (Abschnitt II), folgende drei grössere Hauptabschnitte:

Abschnitt III. Statisch bestimmte Hängebrückensysteme.

- IV. Einfach statisch unbestimmte Systeme.
- V. Mehrfach statisch unbestimmte Systeme.

In Abschnitt V sind u. a. verschiedene Systemformen behandelt worden, welche bis jetzt noch in keinem Lehrbuche Aufnahme fanden, die aber wegen ihrer Eigenart ganz besonderes Interesse verdienen.

Anschliessend an die fünf rein theoretischen Abschnitte sind in Abschnitt VI diejenigen Konstruktionseinzelheiten von Hängebrücken besprochen, welche diesem Brückentypus besonders eigen sind, wie die Eigenschaften des Draht- und Kettenmateriales, der Seile, die Konstruktion von Kabel und Kette, die Verankerungen usw. und wurde besonderes Gewicht darauf gelegt, die neuesten Erfahrungen auf diesem Gebiete darzubringen.

Die bei Abfassung des Textes benützten Quellen sind jeweils als Fussnoten besonders angemerkt.

Gustavsburg, Wiesbaden, im Februar 1905.

...

F. Bohny, Oberingenieur.

Inhaltsverzeichnis.

		Seite
I.	Einleitung	1
II.	Form von Kette und Seil. Formel für den Horizontalzug. Allgemeine	
	Formel für das Biegungsmoment. Einteilung der verschiedenen Systeme	2
III.	Statisch bestimmte Hängebrücken, versteift durch Balken oder Fach-	
	werke	4
	1. Versteifung durch Balken	4
	a) Brücke mit einer Öffnung	5
	b) Brücke mit mehreren Öffnungen	11
	2. Versteifung durch Fachwerke	13
	a) Brücke mit einer Öffnung	13
	b) Brücke mit mehreren Öffnungen	16
IV.	Einfach statisch unbestimmte Hängebrücken	17
	1. Brücke mit einer Öffnung, versteift durch Fachwerk oder Balken	17
	a) Allgemeines	17
	b) Ermittelung der Einflusslinie von H für eine wandelnde Einzellast P	18
	c) Biegungslinie und H-Linie	21
	d) Momenten- und Querkraftsflächen des Versteifungsträgers für eine wandelnde	
	Einzellast	22
	e) Einflusslinien	24
	f) Temperaturkräfte	26
	g) Annäherungsmethode	27
	h) Vorberechnung einer Brücke mit einer Öffnung	38
	i) Hängendes Fachwerk	39
	2. Brücke mit mehreren Öffnungen	40
	a) Allgemeines	40
	b) Ermittelung der H-Linien, der Einflusslinien der Stäbe usw.	41
	c) Annäherungsmethode	42
	d) Hängende kontinuierliche Fachwerke	49
v.	Mehrfach statisch unbestimmte Hängebrücken	52
	1. Allgemeines	52
	2. Hängebrücken mit mehreren Offnungen und kontinuierlichem Versteifungsträger	52
	a) Brücke mit zwei Offnungen	52
	b) Brücke mit drei Offnungen	56
	c) Zusammenstellung der H-Linien für Einzelträger, Gerberträger und kontinuierliche	00
		60
	3. Hangebrucken mit Bogenträgern als Versteifungsträger	61
	a) Brucke mit einer Offnung	62
	D) Brucke mit drei Ullnungen	02

Inhaltsverzeichnis.

	Seite
4. Andere Systeme	. 68
a) Lauter's Entwurf für eine Strassenbrücke über den Rhein bei Worms	. 68
b) Rieppel's Entwarf für eine zweite feste Brücke über den Rhein bei Köln	. 71
c) Köchlin's Entwurf für eine Strassenbrücke über die Donau am Schwurplatz in	12
Budapest	. 74
VI. Über die Wahl der Hauptabmessungen bei neuen Hängebrückenent	
würfen, die Eigenschaften der Materialien für Ketten und Kabel, sowie	
einige besondere Konstruktionseinzelheiten	76
1. Die Wahl der Hauntahmessungen beim Entwurf neuer Hängebrücken	76
a) Wahl des Pfeilverhältnisses	76
h) Wahl der günstigsten Hähe des Versteifungsträgers	78
c) Regishung zwischen Pfeilhähe der Kette und Hähe des Versteifungsträgers	80
d) Die Durchbierung zwischen von Hängebrächen	80
2) Die Dironnegen den Materialien für Kahel und Katten	00
2. Die Eigenschalten der Materialien für Kabel und Keiten	04
a) Das Kabelmaterial	04
a) Der Drant \ldots	04
β) Das Seil	86
b) Das Kettenmaterial	91
3. Die Konstruktion von Kabel und Kette	94
a) Das Kabel aus parallelen Drähten	94
b) Das Kabel aus einzelnen Seilen	98
c) Die Kette	102
4. Kette oder Kabel?	105
5. Von welchen Spannweiten an beginnen Hängebrücken rationell zu werden?	109

VI

I. Einleitung.

Wird ein zwischen zwei Punkten A und B frei hängendes Seil oder eine frei hängende Kette durch Kräfte $P_1 P_2 \ldots P_n$ belastet, so nehmen die Glieder A K_1 , $K_1 K_2, K_2 K_3 \ldots K_n B$ die Form eines den angreifenden Kräften entsprechenden Seilpolygons an. Mit der Lage und Grösse der Kräfte $P_1 P_2 \ldots$ ist auch die Lage des Seilpolygons gegeben, sobald von demselben drei Punkte, z. B. die Stützpunkte A und B und der Scheitelpunkt W gegeben sind (Fig. 1).

Zerlegt man die letzten Kräfte des Seilpolygons nach den Rückankerungen R_l und R_r und nach der Lotrechten, so sind die Ankerkräfte und die Auflagerdrücke auf den Pylonen gegeben. Auf letzteren sind die Lager längsbeweglich anzuordnen, soferne die Pylonen nicht als Pendelstützen ausgebildet sind.

Ändern nun die Kräfte $P_1 P_2 \ldots$ ihre Grösse oder ihre Lage, so ändert sich mit ihnen die Form des Seilpolygons und die am Seil oder an der Kette angehängte Fahrbahn $A_1 B_1$ erleidet unzulässige Deformationen in senkrechter und horizontaler Richtung. Nur in dem besonderen Falle, wenn die Lasten an ihrem Platze bleiben, und ihre Grösse sich im gleichen Verhältnis ändert, dass

 $P_1': P_2': P_3' \dots = P_1: P_2: P_3 \dots$

(siehe Fig. 1 a) ist, bleibt das Seilpolygon an seinem Orte und die Ankerzüge, die Pylonendrücke, sowie der Horizontalzug H ändern sich in demselben Verhältnisse.

Lasten, welche keine wesentlichen Änderungen erfahren, sind aber bei Brücken immer nur die Eigengewichte, während die Verkehrslasten über jegliche beliebige Strecke der Fahrbahn verteilt auftreten können. Solche Partialbelastungen werden stets wellenförmige Bewegungen der Brückenfahrbahn hervorrufen und zwar um so grössere, je grösser die Verkehrslast gegenüber der ständigen Last ist. Um solche Bewegungen der Brückenbahn beim Überschreiten von Verkehrslast zu verhindern, muss also das Seil oder die Kette versteift werden. Dies geschieht am besten durch einen Balken oder Träger, den man je nach Bedürfnis ausgestalten kann und dessen Berechnung im weiteren die Hauptaufgabe ist. Dabei können natürlich auch mehrere Öffnungen aneinander geschaltet werden, wodurch die Lösung der Aufgabe vielfach verwickelter wird.

Die Versteifungsträger sind selbstverständlich immer so zu lagern, dass sie Temperaturausdehnungen genügen können, ebenso ist es mit den Lagern der Seile und Ketten auf den Pylonen der Fall.

Bohny, Hängebrücken.

II. Form von Kette und Seil. Formel für den Horizontalzug. Allgemeine Formel für das Biegungsmoment. Einteilung der verschiedenen Systeme.

Eine frei hängende Kette oder ein frei hängendes Seil, dessen Eigengewicht pro Längeneinheit konstant ist, wird sich durch sein Gewicht nach einer Kettenlinie ein-

stellen. Indessen überwiegen die Fahrbahnlasten, das Gewicht des Versteifungsträgers und die Verkehrslasten, welche alle für die Berechnung pro laufende Einheit der Horizontalprojektion konstant angenommen werden können, stets ganz bedeutend das Eigengewicht von Kette und Seil, so dass diese ohne weiteres die Form des Seilpolygons für gleichförmig verteilte Lasten annehmen, nämlich die Form einer Parabel. Bei der flachen Kurve, mit welcher gewöhnlich Kette und Seil angeordnet werden, sind Kettenlinie und Parabel auch nur ganz unwesentlich voneinander verschieden, so dass man für die Berechnung immer eine Parabel annehmen kann und zwar, da alle Lasten senkrecht wirken, eine Parabel mit senkrechter Achse.

Das Maximalmoment in der Mitte der Parabel beträgt, wenn r die Belastung pro Längeneinheit ist:

$$\mathbf{M} = \frac{\mathbf{r} \cdot \mathbf{l}^2}{8}$$

und damit wird der Horizontalzug

siehe Fig. 1.

Lässt man die Kette oder das Seil über mehrere Öffnungen hinweg laufen und stellt die Bedingung, dass die Lager auf den Pylonen nicht fortrollen sollen, so muss der Horizontalzug in allen Öffnungen derselbe sein. Er muss also sein:

Gewöhnlich ist es möglich, durch geschickte Montage den grössten Teil des Eigengewichtes der Brücke direkt an die Kette zu hängen, so dass der Versteifungsträger nur ganz wenig von ständiger Last aufzunehmen hat. Dasselbe gilt bei totaler Belastung der Brücke mit Verkehrslast. Partielle Verkehrslasten dagegen müssen erst durch den Versteifungsträger in gleichförmig verteilte umgewandelt werden und können erst dann von der Kette aufgenommen werden¹).

Für die Last P im Abstande a vom rechten Auflager des Versteifungsbalkens sei die an die Kette übergehende gleichförmig verteilte Belastung r. Dann wird der Balken in der in Fig. 2 näher dargestellten Weise beansprucht. Das Moment im Schnitte C C wird:

$$M_{x} = \frac{P \cdot a}{l} \cdot x - \frac{rl}{2} \cdot x + \frac{rx^{2}}{2} = \frac{P \cdot a}{l} \cdot x - \frac{r}{2} (lx - x^{2}).$$

1) Im weiteren ist für Kette und Seil immer nur das eine Wort "Kette" gebraucht, sofern nicht, wie in Abschnitt IV, für Kette und Seil verschiedene Formelentwickelungen nötig sind. Den Klammerausdruck kann man leicht anders deuten, wenn man die Scheitelgleichung der Kettenparabel aufstellt:

$$\left(\frac{l}{2}-x\right)^2 = 2\pi (f-y_x)$$
$$x = 0 \quad y = 0 \quad \frac{l^2}{4} = 2\pi f$$
$$2\pi = \frac{l^2}{4f}$$

also:

oder

$$\left(\frac{l}{2}-x\right)^{2} = \frac{l^{2}}{4f}(f-y_{x})$$

$$\frac{l^2}{4} - l_x + x^2 = \frac{l^2}{4} - \frac{l^2 y_x}{4 f} \qquad -(l_x - x^2) = -\frac{l^2 y_x}{4 f}$$

Diesen Wert in die Gleichung für M_x eingesetzt, wird:

$$M_{x} = P \cdot \frac{a \cdot x}{l} - \frac{r}{2} \cdot \frac{l^{2} y_{x}}{4 f} = P \cdot \frac{a x}{l} - \frac{r l^{2}}{8 f} \cdot y_{x}$$

Nun ist $\frac{r \cdot l^2}{8f} = H_p$ und P $\cdot \frac{a x}{l}$ das Moment in C für den einfachen frei aufliegenden Balken A₁ B₁. Bezeichnet man letzteres mit M_{op}, so wird schliesslich

Diese Gleichung gilt ganz allgemein und so lange, als der Versteifungsträger ein zwischen A_1 und B_1 frei aufliegender Balken ist. Während jedoch bei statisch bestimmten Systemen H_p ohne weiteres sich aus den geometrischen Abmessungen der Kette ermitteln lässt, muss bei statisch unbestimmten Systemen das elastische Verhalten von Kette und Träger zur Bestimmung von H_p mit herangezogen werden.

Ausser nach der Zahl der Öffnungen und der Ausbildung der Versteifungsträger lassen sich die verschiedenen Formen versteifter Hängebrücken vor allem nach der Zahl der überzähligen oder statisch unbestimmten Grössen einteilen. Dabei ist, mit Rücksicht auf die Ermittelung der Querkräfte, zu unterscheiden, ob der Versteifungsträger ein vollwandiger Balken, oder ob er ein Fachwerk ist. In letzterem Falle kann ausserdem noch die spezielle Anordnung vorkommen, dass ein Gurt des Trägers ganz oder teilweise mit der Kette zusammenfällt, und dieser Gurtteil dann sowohl Kräfte als Kettenglied wie als Trägerstab erhält. Viele der bei den verschiedenen Systemen entwickelten Formeln ergeben sich in aller einfachster Weise und auch bei den mehrfach statisch unbestimmten Gebilden kann man meist die Endresultate auf ganz einfache Formen bringen. Auf jeden Fall bieten die versteiften Hängebrücken keine grösseren Schwierigkeiten zur Berechnung der inneren Kräfte als elastische Bogen und kontinuierliche Balken.

III. Statisch bestimmte Hängebrücken, versteift durch Balken oder Fachwerke.

1. Versteifung durch Balken.

An der Kette hängt, nur durch die Hängestäbe verbunden, der versteifende Balken. Er besitzt in jeder Öffnung ein festes und ein längsbewegliches Lager; ebenso sind die Lager der Kette auf den Pylonen längsbeweglich, so dass daselbst nur senkrechte Auflagerkräfte entstehen können.

a) Brücke mit einer Offnung.

Würde der Balken $A_1 B_1$ ohne Unterbrechung von Auflager zu Auflager gehen, so wäre er für sich ein zur Aufnahme von Lasten fähiges Gebilde. Die Verbindung mit einer Kette würde also ein überzähliges Glied in das System bringen, es würde einfach statisch unbestimmt. Um daher statische Bestimmtheit zu erhalten, ist es nötig, den Balken an irgend einer Stelle, z. B. G_1 zu unterbrechen und daselbst ein Gelenk einzuschalten, Fig. 3.

Für die weitere Berechnung soll die Voraussetzung gemacht werden, dass der Balken vollkommen starr sei, ebenso die Hängestangen und die Kettenglieder; oder mit anderen Worten, die durch die inneren Kräfte verursachten elastischen Formänderungen

sollen vernachlässigt werden. Ein durchschnittener Versteifungsträger einer Ketten- oder Drahtseilbrücke wird natürlich weniger beansprucht, als ein von Auflager zu Auflager durchgehender, die Versteifung ist aber dafür auch eine geringere und die Einbiegungslinie wird unter dem Gelenk eine Spitze aufweisen.

In Amerika findet man verschiedene Beispiele solcher Hängebrücken, und sei nachfolgend ein aus der neuesten Zeit stammendes grosses Projekt dieser Form dargestellt, Fig. 4. Es ist der Entwurf der E. & C. Bridge Co. (als solche bezeichnet sich die Londoner Vertretung der Pennsylvania Steel Co. in Steelton Pa., U. S. A.) für die Überbrückung des Hafens in Sydney, welcher Vorschlag bis zur letzten Entscheidung in engerer Wahl stand¹).

¹) Siehe Zeitschrift deutscher Ingenieure 1904, Nr. 50, S. 1893 ff. und "The Engineer" vom 12. August 1904.

Die Hauptstützweite beträgt 1300 Fuss (396,24 m), die Höhe der Pylonen 351 Fuss (106,94 m). Die Brücke hat zwei Fusswege, zwei Eisenbahngeleise, zwei Strassenbahngeleise und eine 35 Fuss breite Fahrstrasse zu tragen, und sind hierfür zwei Haupttragwände in 96 Fuss (29,26 m) Querentfernung angeordnet. Jeder Hauptträger besitzt zwei Kabel und zwei Versteifungsträger mit drei Gelenken, d. h. die Versteifungsträger in Halbparabelform sind in der Mitte nur durch ein Gelenk verbunden und stützen sich an den Enden mittelst längsbeweglicher Kipplager auf die Pylonen. Die Befestigung am Kabel zur Übertragung von Längskräften erfolgt am Mittelgelenk. Bevor die Kabel in die Ankerschächte übergehen, sind Regulierungsvierecke eingeschaltet, welche es gestatten, bei der Montage die Kabel in richtiger Weise zu spannen. Die Kosten der Brücke auf eine Länge von rund 3000 Fuss (914¹/₂ m) einschliesslich Fundierungen waren zu über 28 Millionen Mark veranschlagt. Der Entwurf unterlag schliesslich sowohl wegen der hohen Kosten, als auch wegen der nicht besonders gelungenen Linienführung, die in keiner Weise sich dem schönen Bilde des Hafens von Sydney einpassen würde.

In Amerika ist man mit der Durchschneidung der Versteifungsträger vielfach noch weiter gegangen, indem man an mehr als einer Stelle Gelenke einschaltete und so ein ganz labiles Gebilde schuf. Trotzdem ist natürlich eine Gefahr für den Bestand einer solchen Brücke nicht vorhanden, nur die Schwankungen werden bedeutend grösser.

Projekt einer Hängebrücke über den Hafen in Sydney.

Ein europäisches Beispiel dieser Art ist die Hängebrücke über die Aare in Aarau (Schweiz), welche an nicht weniger als 3 Stellen Gelenke besitzt. Die genaue statische Untersuchung eines solchen labilen Systems dürfte ziemlich schwierig sein.

Mit den Bezeichnungen von Fig. 3 ergibt sich nun folgendes:

Berechnung der Kette. Die grösste Beanspruchung wird erhalten durch Totalbelastung, da in diesem Falle der Versteifungsträger nichts aufzunehmen vermag.

g = Eigengewicht pro Längeneinheit

p = Verkehrslast " "

und g + p = q, so wird:

Sei

$$\mathrm{H}_{\mathrm{max}} \, . = \frac{\mathrm{q} \, . \, \mathrm{l}^2}{8 \, \mathrm{f}}.$$

Konstruiert man mit dieser Kraft nach Fig. 1 das Kräftepolygon, so erhält man ohne weiteres die grössten Kettenkräfte, die Auflagerdrücke auf den Pylonen und die massgebenden Ankerkräfte.

Versteifungsträger. Für den Balken gilt allgemein die Gleichung 2: $M_x = M_{op} - H_p \cdot y_x$, somit sind für den Gelenkpunkt G₁:

 $M_{G_1} = M_{oG_1} - H_p \cdot f_1.$

Statisch bestimmte Hängebrücken. 1. Versteifung durch Balken.

Nun ist aber für den nur durch ein Gelenk zusammengehaltenen Balken $M_{G} = 0$, es ist also:

$$H_{p} = \frac{M_{oG_{1}}}{f_{1}}, \text{ oder, } da \ M_{oG_{1}} = \frac{P \cdot a}{l} l_{1}$$
$$H_{p} = \frac{P \cdot a \cdot l_{1}}{l f_{1}} \cdot \dots \cdot \dots$$

und für eine Last am Gelenk selbst:

$$H_{p}' = \frac{P \cdot l_{2} l_{1}}{l f_{1}} \qquad \dots \qquad 3a.$$
$$H_{p} = H_{p}' \cdot \frac{a}{l_{2}}$$

Die Einflusslinie von H ist also ein Dreieck mit der Spitze $\frac{l_2 l_1}{l f_1}$ unter G_1 . Für den Sonderfall $l_1 = l_2 = \frac{l}{2}$ wird

$$\mathbf{H'} = \frac{\mathbf{l}}{4\,\mathbf{f}}$$

Mit H ist nun ohne weiteres die Reaktionslast r zwischen Kette und Balken gegeben:

$$\mathbf{r} = \frac{8 \mathrm{f} \mathrm{H}}{\mathrm{l}^2}.$$

Ebenso ist der Auflagerdruck der Kette auf den Pylonen gegeben. Er beträgt bei A:

bei B:

siehe Fig. 5.

Die Resultierenden von H und A_o, ebenso von H und B_o liegen in den Richtungen der letzten Kettenpolygonseiten, bezw. tangieren die Kettenparabel an den Enden. Denn es ist:

$$\mathbf{H}:\mathbf{A}_{o} = \frac{\mathbf{r} \, \mathbf{l}^{2}}{8 \, \mathbf{f}}: \frac{\mathbf{r} \, \mathbf{l}}{2} + \frac{\mathbf{H} \cdot \mathbf{h}}{\mathbf{l}}$$

oder, nach einiger Umrechnung

$$H:A_{o} = \frac{1}{2}:2f + \frac{h}{2}$$

Durch den um f tieferen Punkt unter M geht aber die Parabeltangente.

Endlich sind noch die Auflagerreaktionen bei A1 und B1 gefunden. Sie betragen

$$A_{u} = \frac{P \cdot a}{l} - \frac{rl}{2} \\ B_{u} = \frac{P \cdot (l-a)}{l} - \frac{rl}{2}$$
 5.

Setzt man in A die Werte A, und Au zusammen, so erhält man den Auflagerdruck des gesamten Systemes:

$$\mathbf{A} = \mathbf{A}_{o} + \mathbf{A}_{u} = \frac{\mathbf{H} \cdot \mathbf{h}}{\mathbf{l}} + \frac{\mathbf{P} \cdot \mathbf{a}}{\mathbf{l}}$$

3.

und die Resultierende von A und H ist die linksseitige Auflagerreaktion R_1 von P. Die Neigung derselben ist ausgedrückt durch das Verhältnis:

$$A: H = \frac{H \cdot h}{l} + \frac{P \cdot a}{l}: H = \frac{h}{l} + \frac{a}{l} \cdot \frac{lf_1}{al_1}: 1 = \frac{h}{l} + \frac{f_1}{l_1} = \frac{1}{l_1} \left(\frac{hl_1}{l} + f_1\right)$$

 $\frac{h \cdot l_1}{l} = K$ gesetzt :

 $A: H = (K + f_1): l_1,$

d. h. die linksseitige Reaktion R_1 geht durch G. Sie schneidet P auf D, wodurch dann auch die Richtung der rechtsseitigen Reaktion R_r gefunden ist.

Man hat also den Satz:

- Für rechts vom Gelenk stehende Lasten hat die linksseitige Reaktion stets die Richtung AG,
- für links vom Gelenk stehende Lasten hat die rechtsseitige Reaktion stets die Richtung BG.

Zur Aufzeichnung der Einflusslinie für den Auflagerdruck in A_1 beachte man, dass für eine Last in A_1 selbst $A_n = 1$ ist. Rückt die Last nach rechts bis zum Punkt E, wo die Gerade GB die Tangente an die Kette in A trifft, so ist $A_n = 0$. Denn in diesem Falle geht die Reaktion R_1 direkt zum Pylonenlager (Fig. 5). Die Entfernung Z wird leicht gefunden aus der Gleichsetzung zweier Ausdrücke für die Grösse h_1 :

$$h_1 = \frac{4 f z}{l} = \frac{f_1 \cdot (l - z)}{l_2}$$

und wird schliesslich:

wird $f_1 = f$ und $l_2 = \frac{1}{2}$, so ist:

$$\mathbf{Z} = \frac{1}{3}.$$

Allgemein lautet der Ausdruck von Au nach Gleichung 5.

 $A_{u} = \frac{P.a}{l} - \frac{rl}{2} = \frac{P.a}{l} - P \frac{4 a f l_{1}}{f_{1} l^{2}}$

oder

und wird, wenn die Last überm Gelenk steht

Die Einflusslinie besteht also aus zwei Geraden $A_3 G_3$ und $G_3 B_2$, wobei die erste durch E_2 gehen muss.

Ebenso einfach ist die Einflusslinie tür das Biegungsmoment M für irgend einen Schnitt C, Fig. 3, aufzuzeichnen. Allgemein ist nach Gleichung 2

$$\mathbf{x} = \mathbf{M}_{op} - \mathbf{H}_{p} \cdot \mathbf{y}_{x}$$

und der Nullpunkt F_2 wird gefunden, wenn man die Gerade AC zieht bis zum Schnitte mit GB. Denn in diesem Falle lässt sich y_x als Funktion von a_1 ausdrücken und wird:

$$y_{x} = \frac{f_{1} a_{1}}{l_{2}} \cdot \frac{x}{(l-a_{1})}$$

7.

Dies in M_x eingesetzt ergibt:

$$M_{x} = P \cdot \frac{a_{1} x}{l} - P \cdot \frac{l_{2} l_{1} (l-a_{1})}{l f_{1}} \cdot y_{x} = \frac{a_{1} x}{l} - \frac{a_{1} x}{l} = 0.$$

Wirkt P im Schnitte selbst, so ist:

$$M_{x} = \frac{P(l-x)x}{l} - P\frac{l_{2}l_{1}x}{lf_{1}l_{1}} = \frac{P(l-x)x}{l} - P\frac{a_{1}x^{2}}{l(l-a_{1})} = \frac{P(l-a_{1}-x)}{(l-a_{1})}$$

 $(l - a_1 - x)$ ist gleich der Entfernung $C_2 F_2$. Man erhält also das Moment, wenn man unter A_2 den Wert x aufträgt und A_3 mit F_2 verbindet. Denn es ist dann:

$$M_x: x = (l - a_1 - x): (l - a_1).$$

Damit ist die Einflusslinie für Mx, A2C3F2G3B2 gefunden.

Etwas umständlicher ist die Ableitung der Einflusslinie für die Querkraft im Schnitte C, Fig. 6.

Die allgemeine Gleichung für die Querkraft ergibt sich als Erweiterung der Gleichung für den Auflagerdruck A_u und lautet:

$$\mathbf{Q} = \frac{\mathbf{P} \cdot \mathbf{a}}{\mathbf{l}} - \frac{\mathbf{r} \, \mathbf{l}}{2} + \mathbf{r} \, \mathbf{x}$$

oder, für r die früheren Werte eingesetzt:

Ein Wechsel der Richtung von Q tritt ein im Schnitte selbst, ausserdem meist noch an einem zweiten Punkte. Um letzteren zu finden ist man versucht, die Gleichung von Q (welche für eine Last zwischen G_1 und B_1 gilt) gleich Null zu setzen. Man findet aber gleich, dass man damit zu keinem Resultat kommt. Man lässt daher P den Gelenkpunkt überschreiten und erhält nunmehr die Bedingungsgleichung:

$$\mathbf{Q} = \frac{\mathbf{P} \cdot \mathbf{a}}{\mathbf{l}} - \mathbf{P} \left(\frac{\mathbf{l}}{2} - \mathbf{x} \right) \frac{8 \mathbf{f}}{\mathbf{l}^3} \cdot \frac{(\mathbf{l} - \mathbf{a}) \mathbf{l}_2}{\mathbf{f}_1} = 0$$

woraus wird:

$$a - \frac{8 f}{l^2} \left(\frac{l}{2} - x \right) \frac{(l-a) l_2}{f_1} = 0$$

$$a = \frac{\frac{8 f l_2}{f_1 l} \left(\frac{l}{2} - x \right)}{1 + \frac{8 f l_2}{f_1 l^2} \left(\frac{l}{2} - x \right)} \qquad \dots \qquad 9.$$

d. h. in dem durch diese Gleichung festgelegten Lastenpunkte verschwindet die Querkraft für den Schnitt C.

a lässt sich nach der Formel 9 leicht berechnen. Man kann jedoch den Punkt J auch graphisch finden nach einer von Müller-Breslau abgeleiteten Methode¹). Nach derselben ziehe man durch A eine Parallele zur Tangente an die Parabel bei C und verlängere sie bis zum Schnitte mit G B. Dann liegt unter diesem Schnittpunkte J der Nullpunkt der Einflusslinie für Q. Müller-Breslau leitet diese Konstruktion aus der Gleichung für die Querkraft ab, indem er dieselbe als Differenz der Momente zwischen zwei benachbarten Schnitten dividiert durch die Entfernung derselben aufstellt. Dass man zu demselben Resultat kommt wie durch Gleichung 9 lässt sich beweisen, wenn man die graphische Konstruktion analytisch deutet, dabei beachtend, dass die Tangente in C unterm Scheitel der Parabel den Wert f - y abschneidet. Es ist dann:

1) Siehe Müller-Breslau, Graphische Statik der Baukonstruktionen, Bd. I, 2. Aufl., S. 410 ff.

10

also

woraus sich schliesslich nach sorgfältiger Weiterentwickelung der gleiche Wert wie von Gleichung 9 findet.

Ist J gefunden, so konstruiert man zwischen A und J die Einflusslinie für Q in bekannter Weise wie bei einem gewöhnlichen Balken. Man trägt in A_2 nach unten und in J_2 nach oben den Wert 1 auf und zieht zwei Parallel-Gerade (Fig. 6a). Die Einflusslinie setzt sich weiter geradlinig fort bis zu G_3 und nimmt dann bis B_2 wieder auf Null ab. Punkt J kann nun aber auch rechts von G zu liegen kommen, es ändert sich aber dann weder die Konstruktion von Müller-Breslau noch Gleichung 9 in irgend einer Weise. Nur ist dann J_2 kein wirklicher Nullpunkt mehr, sondern nur ein Punkt zur Konstruktion der Geraden $A_3 J_2$, und man erhält die in Fig. 6b dargestellte Einflusslinie für Q.

Endlich wären noch die Hängestabkräfte zu ermitteln. Ist λ die Feldweite, so ist die grösste Kraft

$$Z_{\max} = \lambda(g+p) = \lambda q \quad . \quad . \quad . \quad . \quad . \quad . \quad 10.$$

b) Brücke mit mehreren Öffnungen.

Ist eine Hängebrücke nach Fig. 7 gegeben, so ist die Form der Kettenführung festgelegt, sobald in einer Öffnung der Pfeil bekannt ist. Nach früher (S. 3) besteht die einfache Beziehung:

$$f_1 = f \cdot \frac{l_1^2}{l^2}$$

und die Versteifungsträger werden weder durch Eigengewicht, noch durch totale Verkehrslast irgendwie beansprucht.

Für partielle Verkehrsbelastung wirkt der Versteifungsträger der Mittelöffnung, wie leicht einzusehen ist, wie wenn die Öffnung allein bestünde, und es erfolgt die Berechnung des Balkens in gleicher Weise wie oben für eine Öffnung beschrieben. In den Aussenöffnungen erzeugen Lasten der Mittelöffnung gleichmässig nach aufwärts gerichtete Belastungen entsprechend den zwischen Kette und Balken entstehenden Reaktionslasten r.

Die Balken in den Aussenöffnungen, von denen jeder wieder ein festes und ein längsbewegliches Lager hat, wirken für Einzellasten wie einfache frei aufliegende Balken und geben nichts an die Kette ab. Da weiter die Reaktionslasten r aufwärts wirken und für Totalbelastung nur die Kette trägt, müssen sowohl die grössten Momente, als die grössten Querkräfte in den Aussenöffnungen sich entgegengesetzt gleich sein und zu

Null ergänzen. In der Tat erzeugt Totalbelastung der Mittelöffnung an irgend einer Stelle x der Aussenöffnung das Moment:

$$M_{\min} = -\frac{p l_1}{2} x + p \frac{x^2}{2} = -\frac{p x}{2} (l_1 - x)$$

während bei Totalbelastung der Aussenöffnung das Moment entsteht

$$\mathbf{M}_{\max} = + \frac{\mathbf{p} \, \mathbf{x}}{2} (\mathbf{l_1} - \mathbf{x})$$

also ist:

$$M_{\min} = -M_{\max}$$
.

Die Querkraft im Schnitte CC ist für Totalbelastung der Mittelöffnung und Belastung der Strecke E₁ C₁ der Aussenöffnung: Statisch bestimmte Hängebrücken. 2. Versteifung durch Fachwerke.

Q abwärts
$$= \frac{p l_1}{2} - p x + \frac{p x^2}{2 l_1} = \frac{p}{2 l_1} (l_1 - x)^2$$

und für die Belastung der ergänzenden Strecke C1 F1

$$Q \text{ aufwärts} = \frac{p}{2 l_1} (l_1 - x)^2$$

so dass wieder ist:

Q abwärts = - Q aufwärts.

Würde man mehrere Öffnungen wie die Mittelöffnung hintereinander schalten, so würde ein labiles Gebilde entstehen, denn eine Kette, welche über eine oder mehrere Öffnungen hinweg läuft, kann immer nur einen fehlenden Stab im System ersetzen. Die Zahl der fehlenden Stäbe des Systems ohne Kette darf also nicht grösser sein als 1.

2. Versteifung durch Fachwerke.

a) Brücke mit einer Öffnung.

An der Form und Konstruktion der Einflusslinien ändert sich nichts, wenn der Versteifungsbalken durch ein Fachwerk ersetzt wird. Die Einflusslinie der Gurten ist gleich der Einflusslinie des Moments, und ist nur der Massstab zu ändern. Die Stabkraft beträgt allgemein $\frac{M_x}{h}$, woh den Hebelarm des Stabes bezw. die Trägerhöhe bei Parallelträgern bedeutet. In Fig. 8a ist die Einflusslinie für einen Untergurtstab bei unten angreifender Belastung dargestellt. Das Moment und die Kraft wird gleich Null unter Punkt F, dem Schnitt von AC mit GB. Unterm Drehpunkt selbst ist:

$$\mathbf{U} = \frac{\mathbf{x}}{\mathbf{h}} \cdot \frac{(\mathbf{l} - \mathbf{a}_1 - \mathbf{x})}{(\mathbf{l} - \mathbf{a}_1)}.$$

Der einzige Unterschied gegenüber der Einflusslinie des Momentes eines einfachen Balkens besteht also darin, dass an Stelle von x unter A der Wert $\frac{x}{h}$ aufzutragen ist. Das Verfahren gilt ganz allgemein für beliebig geformte Versteifungsträger.

Für die Diagonalen sind die Querkräfte massgebend und beträgt die Stabkraft bei parallelen Gurten

$$D = \pm \frac{Q}{\sin \alpha}.$$

Es ist also dieselbe Konstruktion wie für Q zu machen, nur muss statt 1 der Wert $\frac{1}{\sin \alpha}$ aufgetragen werden (Fig. 8b). Bei nicht parallelen Gurten geht man allgemein vor, indem man die Diagonale ähnlich wie eine Gurtung behandelt und mit ihrem Drehpunkte operiert. Dabei darf natürlich nicht überschen werden, dass auch innerhalb des Faches Spannungswechsel eintritt. In Fig. 8c ist das Schema einer solchen Einflusslinie wiedergegeben. Punkt J₂ ist, wie bei den Gurten, mit dem Stabdrehpunkte zu konstruieren, A₂ A₃ ist gleich $\frac{x}{r}$ (r = Hebelarm der Strebe) bezw. gleich der Kraft, welche eine Auflagerkraft A = 1 im einfachen Fachwerksbalken A₁ G₁ hervorruft.

Ein besonderer Fall der Hängebrückenform entsteht, wenn die Kette mit einem Gurt des Versteifungsträgers zusammenfällt (Fig. 9). Wird die linke Scheibe belastet, so wirken auf dieselbe die Kräfte A_u , K_1 und P, auf die rechte Scheibe wirken B_u und K_r . A_u und K_1 schneiden sich in A, B_u und K_r in B, ferner sind beide Scheiben

nur durch das Gelenk G miteinander verbunden. Die rechtsseitige Reaktion R_r von P muss also durch die Punkte G und B gehen, womit dann auch die linksseitige Reaktion R_1 , durch A gehend, gefunden ist. Zerlegt man R_1 und R_r nach den Rückhaltestäben K_1 und K_r , sowie senkrecht, so hat man die Kräfte in der Rückankerung und die Auflagerkräfte A_u und B_u gefunden. Erstere ergeben durch weitere Zerlegung die Kräfte V in den Endvertikalen und die Kräfte in den ersten Obergurtstäben O_1 und O_n . Fällt

die Richtung von K_1 bezw. K_r mit der Richtung von O_1 bezw. O_n zusammen, so sind die Endvertikalen spannungslos und können weggelassen werden.

Durch die Verlegung von A_n und B_n nach A und B entsteht zwischen A und B ein Gebilde, das genau wie ein Bogen mit drei Gelenken wirkt und daher nach dessen Theorie berechnet werden kann. Die Einflusslinien für A_n , H, einen Obergurt und einen Untergurtstab, sowie für eine Diagonale sind in den Figuren 9a-e dargestellt. Die Figuren erheischen keine weitere Erklärung, sie sind nach dem bisher Entwickelten und nach der als bekannt vorausgesetzten Theorie des Dreigelenkbogens leicht verständlich. Zur Konstruktion dienen die Drehpunkte der Stäbe, die wirklichen oder nur theoretischen Nullpunkte N, ferner die Kräfte S' und S". Letztere sind die Werte 1. $\frac{x}{r}$ und 1. $\frac{(l_1 - x)}{r}$ und können graphisch oder analytisch leicht gefunden werden. Insbesondere sei hierzu auf Müller-Breslau I, zweite Auflage: "Der Fachwerksbogen mit drei Gelenken", Seite 368—373, verwiesen. Zur Probe tut man gut, die Ordinaten der Einflusslinien unterm Gelenk G direkt zu ermitteln, was leicht durch einen Cremonaplan geschehen kann.

Es kann aber auch der Untergurt des Versteifungsträgers mit der Kette zusammenfallen, und es entstehen dann Hängewerke in Girlandenform (Fig. 10) oder Fischbauchhängeträger. Die Berechnung derselben erfolgt wieder genau wie vor, indem man das ganze Gebilde als einen umgekehrten Dreigelenkbogen betrachtet. Der Untergurt erhält die grössten Kräfte bei Totalbelastung:

$$U_{max} = \frac{q \cdot l^2}{8 f} \cdot \frac{s}{\lambda}$$

während bei dieser Belastung der übrige Teil des Fachwerkes spannungslos bleibt.

Fig. 11.

Point-Brücke Pittsburg.

Verläuft der Obergurt vollständig geradlinig (Fischbauchträger), so können bei der Berechnung noch verschiedene Vereinfachungen vorgenommen werden. Lasten auf einer Seite des Trägers zum Beispiel erzeugen in der anderen Hälfte nur Obergurtkräfte, welche direkt zur Pylone gehen. Ist die Brücke in ihrer rechten Hälfte belastet, so erfährt die rechte Hälfte des Obergurtes Druck, die linke Zug und umgekehrt.

Wohl das grossartigste Beispiel einer solchen Hängebrücke mit Fischbauchträgern ist die wohlbekannte Pointbrücke über den Monongahela in Pittsburg, welche in Fig. 11

15

in Auf- und Grundriss dargestellt ist. Die beiden Hauptträger liegen in zwei senk-rechten Ebenen ausserhalb von Fahrbahn und Fusswegen. Die Kettenglieder bestehen aus 11-13 Stück Augenstäben von durchschnittlich 20¹/₂ Fuss (6,25 m) Länge, 8 Zoll (203 mm) Breite und 1–2 Zoll ($25^{1/2}$ –51 mm) Stärke. Die geradlinigen Obergurte haben Kastenquerschnitt und sind mit der Kette durch senkrecht zum Gurt stehende Pfosten verbunden. Bei Totalbelastung der Brücke beträgt die grösste Ankerkraft pro Kette rund 1000 Tonnen. Windverspannungen befinden sich in den geneigten Ebenen der Obergurte und unter der Fahrbahn; letztere Verspannung ist merkwürdigerweise noch durch Drahtseile von $2^{1/2}$ Zoll Durchmesser verstärkt (siehe Grundriss). Das Gewicht des eisernen Überbaues (Schmiedeeisen, Gusseisen und Stahl) beträgt 2170 Tonnen. Die Brücke wurde 1875-1877 von einer Privatgesellschaft erbaut und betrugen die Gesamtkosten rund $2^{1/4}$ Millionen Mark. Erst im Jahre 1895 ging die Brücke in den Besitz der Stadt Pittsburg über und wurde zollfrei gemacht. Bei der Belastungsprobe wies die Brücke sehr gute Resultate auf, und senkte sich der Scheitel bei Totalbelastung von 203 kg/qm nur um 4 Zoll (102 mm). War eine Brückenhälfte belastet, so zeigte die-selbe eine grösste Einsenkung von $2^{3}/4$ Zoll (70 mm), während die andere eine grösste Hebung von $1^{1}/8$ Zoll (28 mm) aufwies. Das System hätte sich danach bewähren müssen. Leider befindet sich das Meisterwerk der Ingenieurkunst zurzeit in einem höchst bedauernswerten Zustande. Für die vergrösserten Lasten zu schwach, schwankt und zittert die Konstruktion in allen Fugen. Schuld daran tragen zweifellos die vielen Gelenke, welche beständig arbeiten und sich immer mehr lockern, ferner der vollständige Mangel an sachverständigem Unterhalt. Der Rost hat fürchterlich gehaust, und konnte der Verfasser im Sommer 1903 konstatieren, dass an vielen Stäben bis 30% des Querschnittes vom Roste weggefressen war. Immer mehr Nieten der Fahrbahn brachen aus, und eine Katastrophe konnte nicht ausbleiben. Sie trat ein am 24. Dezember desselben Jahres, indem plötzlich vier Querträger nebeneinander nachgaben. Der Schaden ist zu-nächst durch umständliche Verstärkungen mühsam repariert, ein Neubau kann aber nicht mehr ausbleiben und sind Verhandlungen darüber bereits im Gange. Es wäre wünschenswert, dass die neue Brücke, welche an einer der landschaftlich schönsten Stellen Pittsburgs (dem Zusammenfluss von Monongahela und Allegheny zum Ohio) sich befindet, sich ebensogut in die Umgebung einfügen möge, wie die bisherige stattliche Hänge-brücke mit ihrer eigenartigen Form der versteifenden Träger.

b) Brücke mit mehreren Öffnungen. Fig. 12.

Für die Mittelöffnung ändert sich gegenüber einer Brücke mit nur einer Öffnung nichts und erfolgt die Berechnung wie vor. Ist der Obergurt nach einer Parabel gekrümmt, so gehen bei Totalbelastung alle Lasten an diesen über.

Die Seitenöffnungen verhalten sich für Lasten innerhalb derselben wie frei aufliegende, einfache Träger und sind entsprechend statisch zu untersuchen. Negative Kräfte treten bei Belastung der Mittelöffnung anf und sind dieselben proportional H.

Die Einflusslinie von H der Mittelöffnung ist also gleichzeitig Einflusslinie für jeden Stab der Aussenöffnung. Die grössten negativen Kräfte entstehen bei Totalbelastung der Mittelöffnung und ermittelt man sie am besten mit einem Cremonaplane. Sind die Träger der Aussenöffnungen Fischbauchträger, so beanspruchen Lasten der Mittelöffnung nur den Obergurt und werden durch diesen direkt zur Verankerung geleitet.

Als bekanntes Beispiel einer Hängebrücke nach Fig. 12 sei der Frankfurter Kettensteg genannt und sei auf die betreffenden Veröffentlichungen im Handbuch der Ingenieurwissenschaften verwiesen.

Das Hintereinanderschalten von mehreren Öffnungen mit drei Gelenken ist unzulässig, ebensowenig wie es zulässig ist, mehrere Dreigelenkbogen hintereinander anzuordnen und durch gemeinsame verschiebliche Lager miteinander zu verbinden.

IV. Einfach statisch unbestimmte Hängebrücken.

1. Brücke mit einer Öffnung, versteift durch Fachwerk oder Balken.

a) Allgemeines.

Die einfach statisch unbestimmte Hängebrücke entsteht, wenn mit der über eine Öffnung hinweglaufenden und nach rückwärts verankerten Kette ein einfacher, an den Enden frei aufliegender Träger verbunden wird (Fig. 13). Die Hängestäbe sollen alle

17

senkrecht angenommen werden, die Lager auf den Pylonen sind horizontal verschieblich, ein Lager des Versteifungsträgers ist fest, das andere beweglich.

Je nach Art der Montage ist es möglich, das Eigengewicht des Trägers und der darauf liegenden Fahrbahnlasten ganz oder teilweise an die Kette zu leiten. Der Träger bleibt alsdann für diese Lasten spannungslos. Die einzelnen Dreiecksfache dürfen dann aber erst geschlossen werden, wenn die Lasten aufgebracht sind und die Kettenstäbe und Hängestangen sich entsprechend denselben ausgereckt haben.

Als statisch unbestimmte Grösse wird am zweckmässigsten der Horizontalzug H der Kette betrachtet. Bei H = 0 verbleibt dann nur der einfache, leicht zu behandelnde Träger übrig.

b) Ermittelung der Einflusslinie von H für eine wandelnde Einzellast P.

Steht eine Einzellast P auf dem Träger, so ist in irgend einem Stabe die Kraft: $S = S_o + H.K.$

Hierin ist:

 $S_o = die Stabkraft im statisch bestimmten System, also im einfachen Träger ohne Kette.$

K = die Stabkraft für H = 1.

Bezeichnet weiter s die Stablänge, F den Stabquerschnitt und E den Elastizitätsmodul des Materiales, so ist die durch S hervorgerufene Längenänderung des Stabes:

$$\varDelta \mathbf{s} = \frac{(\mathbf{S}_{o} + \mathbf{H} \cdot \mathbf{K}) \mathbf{s}}{\mathbf{E} \mathbf{F}}.$$

Die Kräfte K bilden zusammen ein System, das ohne Hinzutreten von äusseren Kräften sich im Gleichgewicht befindet. Nach dem Satze von der virtuellen Arbeit (nach Mohr) muss also sein:

$$\Sigma \mathbf{K} \cdot \mathbf{\mathcal{A}} \mathbf{s} = 0$$

$$\Sigma \frac{\mathbf{S}_{o} \mathbf{K} \mathbf{s}}{\mathbf{E} \mathbf{F}} + \mathbf{H} \cdot \Sigma \frac{\mathbf{K}^{2} \mathbf{s}}{\mathbf{E} \mathbf{F}} = 0,$$

woraus wird:

oder

 $\mathbf{H} = -\frac{\Sigma \, \mathbf{S}_{o} \, \mathbf{K} \frac{\mathbf{s}}{\mathbf{E} \, \mathbf{F}}}{\Sigma \, \mathbf{K}^{2} \frac{\mathbf{s}}{\mathbf{E} \, \mathbf{F}}} \quad . \quad 11.$

Zur Bildung der Summenausdrücke im Zähler und Nenner braucht man die Werte für S_o und K. Die Kräfte S_o sind die Stabkräfte des Trägers für H = 0 und reduzieren sich unter Vernachlässigung der Diagonalen (was stets gestattet ist) auf die Gurte allein. Es ist alsdann für ein Gurtglied, z. B. den im Abstande x vom linken Auflager befindlichen Obergurtstab:

 $S_{o} = \frac{P \cdot b}{l} \cdot \frac{x}{a} \qquad (P = 1)$

a = Hebelarm des Stabes.

Die Kräfte K entstehen für H = 1 und beeinflusst H sämtliche Trägerstäbe, sämtliche Kettenstäbe nebst Verankerungen und alle Hängestangen.

Für H = 1 hat die Belastung zwischen Kette und Träger, die sogenannte Reaktionsbelastung, nach Gleichung 1 den Wert:

$$r = \frac{8 f}{1^2}.$$

Einfach statisch unbestimmte Hängebrücken. 1. Brücke mit einer Öffnung.

Diese beansprucht den Träger als gleichförmig nach aufwärts wirkende Belastung, Fig. 13a, und es entsteht in einem Gurtstabe im Abstande x die Kraft:

$$\mathbf{K} = -\frac{\mathbf{r}\,\mathbf{l}}{2} \cdot \frac{\mathbf{x}}{\mathbf{a}} + \frac{\mathbf{r}\,\mathbf{x}^2}{2\,\mathbf{a}} = -\frac{\mathbf{r}}{2\,\mathbf{a}}(\mathbf{l}\,\mathbf{x} - \mathbf{x}^2).$$

Hierin den Wert von r eingesetzt:

$$\mathbf{K} = -\frac{4 \, \mathbf{f}}{a \, l^2} (l \, \mathbf{x} - \mathbf{x}^2),$$

 $(lx'-x^2)$ ist aber nach früher (Seite 4) gleich $\frac{l^2 y_x}{4 f}$, so dass man für K endgültig den sehr einfachen Ausdruck erhält:

$$\mathbf{K} = -\frac{\mathbf{y}_{\mathbf{x}}}{\mathbf{a}}.$$

Der Zähler von Gleichung 11 wird daher nun

$$\mathbf{Z} = -\Sigma \mathbf{S}_{\mathbf{o}} \mathbf{K} \frac{\mathbf{s}}{\mathbf{E} \mathbf{F}} = +\Sigma \frac{\mathbf{b} \cdot \mathbf{x}}{\mathbf{a} \mathbf{l}} \cdot \frac{\mathbf{y}_{\mathbf{x}}}{\mathbf{a}} \cdot \frac{\mathbf{s}}{\mathbf{E} \mathbf{F}} = \frac{\mathbf{b}}{\mathbf{l}} \Sigma \frac{\mathbf{y}_{\mathbf{x}} \cdot \mathbf{s}}{\mathbf{E} \mathbf{F} \mathbf{a}^2} \cdot \mathbf{x}.$$

Den Wert $\frac{\mathbf{y}_{\mathbf{x}} \cdot \mathbf{s}}{\mathbf{E} \mathbf{F} \mathbf{a}^2}$ nennt man das elastische Gewicht eines Stabes. Bezeichnet man es mit $\omega_{\mathbf{x}}$, so wird

 $\omega_x \cdot x \cdot \frac{b}{l}$ ist aber nichts anderes als das Moment des im Drehpunkt des Stabes

wirkenden Gewichtes ω_x gemessen unter der Last P und $\frac{b}{l} \Sigma \omega_x \cdot x$ ist die Summe aller dieser Momente. Man hat also den Satz:

Der Zähler ist gleich dem Momente M_{ω} (an der Stelle P) eines mit den Gewichten ω belasteten einfachen Balkens A_1 B_1 .

Für die Kettenstäbe gilt in jedem Fache die Gleichung:

$$K \cdot \cos \alpha_x = H; K = 1 \cdot \sec \alpha_x$$

(und nächst den Pylonen 1. sec α_1 ' und 1. sec α_r '), während man für die Ankerkräfte erhält: $K_1 = 1. \sec \alpha_1; K_r = 1. \sec \alpha_r.$

Die Hängestäbe erhalten die Kraft:

$$\mathbf{K} = \mathbf{r} \, \lambda = \lambda \, \frac{8 \, \mathbf{i}}{\mathbf{l}^2}.$$

Die entsprechenden Stablängen sind:

für die Kettenstäbe $\lambda . \sec \alpha_x$ (und nächst den Pylonen $\lambda_1 \sec \alpha_1$ ' und $\lambda_r \sec \alpha_r$ ') für die Ankerstäbe s₁ und s_r

für die Hängestäbe $z_1 z_2 \dots$

Endlich seien die Querschnitte der Kettenstäbe F_k , der Ankerstäbe F_1 und F_r und der Hängestangen F_z .

Mit diesen Werten wird dann der Nenner von Gleichung 11.

$$N = \Sigma \frac{K^2 s}{E F} = \Sigma \frac{y_x^2 s}{a^2 E F} + \left[\lambda \Sigma \frac{\sec \alpha_x^3}{E F_k} + \lambda_l \frac{\sec \alpha_l^{2}}{E F_k} + \lambda_r \cdot \frac{\sec \alpha_r^{2}}{E F_k} + \frac{\sec \alpha_l^2 \cdot s_l}{E F_l} + \frac{\sec \alpha_r^2 s_r}{E F_r} \right] + \frac{\lambda^2 64 f^2}{E F_z l^4} \Sigma z \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad 13.$$

 $\frac{\mathbf{y_x}^2 \mathbf{s}}{\mathbf{E} \mathbf{F} \mathbf{a}^2}$ ist gleich $\omega_x \cdot \mathbf{y_x}$, also ist das erste Glied von $\mathbf{N} = \boldsymbol{\Sigma} \omega_x \cdot \mathbf{y_x}$.

0*

Für die in der Klammer stehenden Werte lassen sich nun noch verschiedene Vereinfachungen finden, je nachdem das Tragglied der Brücke eine Kette oder ein Kabel ist. Ist eine Kette vorhanden, so sind die Querschnitte der Kettenstäbe proportional den Kräften ausgebildet, und da letztere proportional sind den Kettenstablängen, so wird: $F_k = F \sec \alpha$.

ebenso ist in den Rückankerungen:

$$F_1 = F \sec \alpha_1$$
$$F_r = F \sec \alpha_r,$$

wo F den Scheitelquerschnitt der Kette bedeutet, entsprechend H_{max} . Es wird damit:

$$N_{1} = \Sigma \omega_{x} y_{x} + \frac{1}{EF} \left[\Sigma_{A}^{B} \lambda \sec \alpha_{x}^{2} + s_{l} \sec \alpha_{l} + s_{r} \sec \alpha_{r} \right] + \frac{\lambda^{2} 64 f^{2} n z_{mittel}}{EF_{z} \cdot l^{4}} \quad . \quad . \quad 14.$$

Im letzten, von den Hängestangen abhängigen Gliede, kann man z_{mittel} ohne grossen Fehler gleich $h_1 - \frac{h}{2} - \frac{2}{3}f_1$ setzen, wodurch dasselbe wird:

$$\frac{\lambda^2 \, 64 \, f^2 \, n \left(h_1 - \frac{h}{2} - \frac{2}{3} \, f_1\right)}{\mathrm{E} \, \mathrm{F_z} \, \mathrm{I}^4}$$

und mit $n\lambda = l$:

$$\frac{\lambda\,64~f^2}{6\,E~F_z~l^3}(6~h_1-3~h-4~f_1).$$

Man darf dieses Glied aber stets ohne grossen Fehler streichen, ebenso wie die Diagonalen im Fachwerk unberücksichtigt geblieben sind. Im Folgenden soll es nicht weiter berücksichtigt werden.

Der Wert $\Sigma_A^B \lambda \sec \alpha_x^2$, welcher die Kettenstäbe zwischen den Pylonenauflagern enthält, kann direkt durch die Kettenelemente ausgedrückt werden, wenn man die Kette als stetig gekrümmte Parabel betrachtet. Es lässt sich in einfacher Weise mit Hilfe der Parabelgleichung und mit einigen Vereinfachungen (indem man den hinter dem Integralzeichen stehenden Wert nach dem binomischen Satze in eine Reihe auflöst und die höheren Potenzen vernachlässigt) nachweisen, dass ist:

$$\Sigma_{A}^{B} \lambda \sec \alpha_{x} = 1 + \frac{8}{3} \frac{f^{2}}{1} + \frac{h^{2}}{21}$$

$$\Sigma_{A}^{B} \lambda \sec \alpha_{x}^{2} = 1 + \frac{16}{3} \frac{f^{2}}{1} + \frac{h^{2}}{1}$$

$$\Sigma_{A}^{B} \lambda \sec \alpha_{x}^{3} = 1 + 8 \frac{f^{2}}{1} + 1.5 \frac{h^{2}}{1}$$

Der erste Wert ist nichts anderes als die einfache Kettenlänge zwischen den Pylonen, er ist etwas zu gross. Der zweite Wert ist genau der gesuchte Ausdruck. Der dritte Wert, der weiter unten gebraucht wird, ist etwas zu klein.

Mit Einsetzen des Wertes von $\Sigma \lambda \sec \alpha_x^2$ in N₁ wird :

$$N_1 = \Sigma \omega_x y_x + \frac{1}{EF} \left[1 + \frac{16}{3} \frac{f^2}{1} + \frac{h^2}{1} + s_1 \sec \alpha_1 + s_r \sec \alpha_r \right]$$
 . . . 14 a.

Hat man dagegen ein Drahtseil, so läuft der Querschnitt ohne Verschwächung von Ankerung zu Ankerung durch. Sei der Querschnitt des Seiles gleich F_s und der Elastizitätsmodul desselben E', so wird:

$$N_2 = \Sigma \omega_x y_x + \frac{1}{E' F_s} \left[\lambda \Sigma_A^B \sec \alpha_x^3 + s_l \sec \alpha_l^2 + s_r \sec \alpha_r^2 \right] \quad . \quad . \quad 15.$$

Einfach statisch unbestimmte Hängebrücken. 1. Brücke mit einer Öffnung.

und mit Einsetzen obigen Wertes für das erste Glied in der Klammer:

$$N_{2} = \Sigma \omega_{x} y_{x} + \frac{1}{E' F_{s}} \left[1 + \frac{8 f^{2}}{l} + 1.5 \frac{h^{2}}{l} + s_{1} \sec \alpha_{l}^{2} + s_{r} \sec \alpha_{r}^{2} \right] \quad . \quad 15a.$$

Nach Ermittelung der verschiedenen Werte N für den Nenner der Hauptgleichung 11 hat man schliesslich

$$H = \frac{M_{\omega}}{N}$$

das heisst man hat den Lehrsatz:

Um den Horizontalzug für eine Last P zu finden, belaste man den Träger A₁B₁ mit den elastischen Gewichten ω und dividiere das unter P entstehende Moment durch N

oder, für den ganzen Träger:

Man findet die H-Linie, wenn man den Träger mit den elasti-

schen Gewichten $\omega = \frac{y_x s}{E F a^2}$ belastet und die Momente durch N dividiert.

Ermittelt man die Momentenkurve graphisch und macht die Poldistanz im Kräftepolygon gleich $\Sigma \omega = W$, dann ist $H = \frac{M_{\omega}}{N} = \frac{u \cdot W}{N}$, u =Ordinate der Momentenfläche; und wenn man $\frac{W}{N} = \frac{1}{y} =$ konstant bezeichnet, einfach:

$$H = \frac{u}{v}$$

Tritt an Stelle eines Fachwerkträgers ein Blechbalken mit konstantem oder variablem Trägheitsmoment, so ändert sich an der ganzen Ableitung für die H-Linie nichts. An Stelle der Stabkräfte treten für die einzelnen Trägerteile die Momente, an Stelle von $\frac{s}{Fa^2}$ der Wert $\frac{\Delta s}{J}$ bezw. $\frac{\Delta x}{J}$ und die Formel für den Horizontalschub wird:

$$\mathbf{H} = -\frac{\boldsymbol{\Sigma}_{\mathbf{A}_{1}}^{\mathbf{B}_{1}} \mathbf{M}_{\mathbf{o}} \mathbf{M}_{\mathbf{k}} \frac{\boldsymbol{\Delta}_{\mathbf{X}}}{\mathbf{E} \mathbf{J}} + \boldsymbol{\Sigma}_{\mathbf{kette}} \mathbf{S}_{\mathbf{o}} \mathbf{K} \frac{\mathbf{s}}{\mathbf{E} \mathbf{F}}}{\boldsymbol{\Sigma}_{\mathbf{A}_{1}}^{\mathbf{B}_{1}} \mathbf{M}_{\mathbf{k}}^{2} \frac{\boldsymbol{\Delta}_{\mathbf{X}}}{\mathbf{E} \mathbf{J}} + \boldsymbol{\Sigma}_{\mathbf{kette}} \mathbf{K}^{2} \frac{\mathbf{s}}{\mathbf{E} \mathbf{F}}} \quad 16.$$

Hierbei wählt man als dx am besten die Entfernung der Hängestangen.

Man erhält also H, wenn man den Träger mit den Gewichten $\omega = \frac{y_x \cdot \Delta x}{E J}$ be-

lastet und die Momente durch N = $\Sigma \frac{\Delta x y_x^2}{E J} + \dots$ dividiert.

J ist das Trägheitsmoment über die Länge *Ax* des Balkenelementes.

c) Biegungslinie und H-Linie.

Bekanntlich erhält man die elastische Linie eines geraden Balkens, wenn man die Momentenfläche der äusseren Kräfte als Belastungsfläche betrachtet und dazu, die Werte $\frac{\text{EF a}^2}{s}$ bezw. $\frac{\text{EJ}}{dx}$ als Poldistanzen benützend, ein zweites Seilpolygon zieht.

Im vorliegenden Falle wurde nun dies gemacht mit der äusseren Belastung des Balkens H = 1. Für diesen Belastungsfall haben die Balkenkräfte den Wert

22 Vierter Abschnitt. 1 c) Biegungslinie und H-Linie. 1 d) Momenten und Querkraftsflächen.

 $K = \frac{y_x}{a}$ und die Momente den Wert $M_H = K \cdot a = y_x$. Trägt man die $M_H = y_x$ als Lasten auf und die zugehörigen Poldistanzen $\frac{EFa^2}{s}$, so erhält man eine Figur nach Fig. 14a. In Fig. 13 dagegen wurden die ω aufgetragen und eine konstante Poldistanz $\Sigma \omega = W$

0

gewählt (Fig. 14b). Vergleicht man nun zwei beliebige zusammengehörige Strahlendreiecke der beiden Figuren, so findet man das Verhältnis von Grundlinie zu Höhe:

in a:
$$zu y_x: \frac{EF \cdot a^2}{s} = \frac{s \cdot y_x}{EF a^2}$$

in b: $zu \omega: W = \frac{s y_x}{EF \cdot a^2 W}$

also in beiden Fällen denselben Ausdruck, nur durch die Konstante $\frac{1}{W}$ unterschieden. Die mit den Kräftepolygonen konstruierten Seilpolygone werden also ähnliche Kurven, oder mit anderen Worten, dieselben Kurven, nur in verschiedenem Massstabe gezeichnet. Man hat also den Satz:

> Die H-Linie ist die Biegungslinie des Balkens für die Belastung H=1.

In Abschnitt V wird von diesem wichtigen Satze weiter Gebrauch gemacht.

d) Momenten- und Querkraftsflächen des Versteifungsträgers für eine wandelnde Einzellast.

Ist für P im Abstande b das H gefunden, so wird damit die Reaktionsbelastung r zwischen Kette und Träger (Fig. 15):

$$r = \frac{8 f H}{l^2}$$

und es lässt sich sofort die Momentenfläche zeichnen. Die aufwärts gerichteten Reaktionslasten r erzeugen ein Maximalmoment von $\frac{r \cdot l^2}{8} = f \cdot H$, während die abwärts wirkende Kraft P das Moment $\frac{P \cdot b a}{l}$ erzeugt. Für die Kräfte r ist die Momentenfläche eine Parabel, für P ein Dreieck. Die Differenz beider Flächen ist die Momentenfläche des Trägers für die Belastung P = 1 (Fig. 15a). Analog wird für die Querkraft:

in
$$A_1$$
: $Q_1 = -\frac{rl}{2} + \frac{P.b}{l}$
in B_1 : $Q_2 = +\frac{rl}{2} - \frac{P.a}{l}$

Nächst der Last springt die Querkraft um den Wert P. Die begrenzenden Geraden der Querkraftsflächen sind parallel (Fig. 15b).

Nach dieser Regel können für die wandelnde Last P = 1 die Momenten- und Querkraftsflächen für alle Punkte des Trägers gezeichnet werden. Hat man dieselben, so kann man unterm Drehpunkt jedes Stabes oder unter irgend einem beliebigen Punkte des Balkens die Ordinaten addieren und bekommt auf diese Weise die Maxima und Minima der Momente und die grössten aufwärts und abwärts gerichteten Querkräfte.

Diese Arbeit ist einfach und übersichtlich, wenn schon etwas weitläufig. Unangenehmer wird die Arbeit, wenn man bei Fachwerksträgern mit gekrümmten Gurten aus den gefundenen Querkräften die Strebenkräfte ermitteln soll. In diesen Fällen ist es nötig, auch den Ort der grössten und kleinsten Querkräfte zu wissen. Es geschieht dies am einfachsten rechnerisch, indem man zuerst aus den einzelnen Querkraftsflächen festlegt, welche Laststellungen die Querkräfte auf- oder abwärts zu einem Grösstwerte machen, dann für diese Belastungen die Reaktionslasten ermittelt und für diese und die Belastungen selbst den Ort der links vom Schnitt liegenden Querkräfte sucht.

[Ein für ein Konkurrenzprojekt zur Bonner Rheinbrücke nach dieser Methode durchgearbeitetes Beispiel zeigte, dass die Berechnung bei einiger Vorsicht sich ohne Anstand bewältigen lässt und dass auch das Aufsuchen des Ortes der äusseren Querkräfte nicht allzu mühevoll ist¹).]

1) Siehe Zeitschrift d. Ingenieure 1895, Nr. 30, S. 884/887. Entwurf "Bonner Wappen" und Zentralblatt der Bauverwaltung 1895, Nr. 10, S. 102/103.

23

Das Resultat der Addition sind die für versteifte Hängebrücken typischen Maximalund Minimalmomentenkurven (Fig. 16a) und die Kurven der grössten aufwärts und abwärts gerichteten Querkräfte (Fig. 16b). Für Totalbelastung erfährt der Träger nur geringe Beanspruchung und ist dieselbe gleichbedeutend mit einer Reaktionsbelastung

$$\mathbf{r} = (1 - \beta) \mathbf{p},$$

wobei β angibt, wie sich Kette und Versteifungsträger in gleichförmig verteilte Belastung teilen. Das Moment in Balkenmitte infolge dieser Belastung wird:

$$\mathbf{M} = \frac{1}{8} (1 - \beta) \, \mathbf{p} \, \mathbf{l}^2,$$

während der Auflagerdruck den Wert:

$$\mathbf{A} = \frac{1}{2} (1 - \beta) \mathbf{p} \mathbf{l}$$

erhält.

Die Kurven hierfür sind bei den Momenten eine Parabel, bei den Querkräften eine Gerade; siehe die punktierten Linien der Fig. 16. Die algebraische Addition der

Fig. 16.

Grösstwerte muss also die durch die punktierten Linien angegebenen Werte ergeben, was eine Kontrolle der Rechnung ist.

Die Ermittelung des Verteilungsfaktors β ist eine der Hauptaufgaben für die Annäherungsmethode zur Berechnung einfach statisch unbestimmter versteifter Hängebrücken.

e) Einflusslinien.

Für das Moment an irgend einer Stelle C lautet die Gleichung (Gl. 2) $M_x = M_{op} - H_p \cdot y_x$

oder, mit den Bezeichnungen von Fig. 17

$$M_{x} = \frac{P a x}{l} - H y_{x}$$
$$\frac{M_{x}}{y_{x}} = \frac{P a x}{l y_{x}} - H,$$

das heisst man erhält die $\frac{M_x}{y_x}$ Fläche, wenn man von der $\frac{a x}{l y_x}$ Fläche die H-Fläche subtrahiert. Zu diesem Zwecke trägt man $\frac{P \cdot x}{y_x}$ bezw. $\frac{x}{y_x}$ unter A₂ auf, A₂ A₃, und zieht A₃ B₂. A₃ B₂ schneidet dann unter P den Wert $\frac{x}{y_x}$. $\frac{a}{l}$ ab, der sich ohne weiteres von der Ordinate der H-Linie subtrahiert. Die schraffierte Fläche (Fig. 17a) ist also die $\frac{M_x}{y_x}$ Fläche. Aus ihr findet sich M_x und daraus durch Division mit dem Hebelarm des Stabes die Stabkraft selbst (hier die Kraft in U).

Ganz gleich konstruiert man die Einflussfläche für die Diagonalen, nur muss dabei wieder berücksichtigt werden, dass im Felde selbst noch Spannungswechsel auftritt. Der Wert von y_d ist über dem Drehpunkte D_1 der Strebe abzugreifen und denkt man sich zu diesem Zwecke einfach das Fachwerk mit der Kette vereinigt oder die Länge der Hängestäbe unendlich klein. Es ergibt sich dann wieder die M-Fläche und aus derselben durch Multiplikation mit $\frac{y_d}{r_d}$ (r_d = Hebelarm der Strebe) die Strebenkraft selbst (Fig. 17 b).

Sind die Gurten parallel, so wird im Schnitte CC (Fig. 17c):

$$Q = Q_o - H \operatorname{tg} \alpha.$$

 Q_o ist die Querkraft für den frei aufliegenden Träger ohne Kette; α ist der Neigungswinkel der Kettenglieder gegenüber der Horizontalen, nachdem zuvor die ganze Kette auf eine horizontale Schlusslinie verschoben worden ist.

 $\mathbf{Q} = \operatorname{tg} \boldsymbol{\alpha} (\mathbf{Q}_{\circ} \operatorname{cotg} \boldsymbol{\alpha} - \mathbf{H}).$

Man trage also 1. $\cot g \alpha$ senkrecht unter A_3 auf, dann hat man durch $A_4 B_3$ in irgend einem Schnitte den Wert $Q_0 \cot g \alpha$, der sich direkt von H subtrahiert. Die schrafferte Fläche ist also die $\frac{Q}{tg \alpha}$ Fläche.

Aus ihr erhält man Q und damit die Diagonalkraft D1).

f) Temperaturkräfte.

Da alle äusseren Kräfte fehlen, so entstehen nur innere Kräfte H_t.K, wobei H_t den Horizontalzug durch Temperaturänderung bedeutet.

$$S = H_t \cdot K$$
.

Die Längenänderungen sind:

$$\Delta s = H_t \cdot K \frac{s}{EF} + \gamma t s$$

wobei ist:

 γ = Ausdehnungskoeffizient des Materiales bei 1° C (für Eisen ¹/s0000).

t = Anzahl der Grade in Celsius.

$$\gamma t = \tau.$$

Wendet man nun wieder den Mohr'schen Fundamentalsatz $\Sigma K \varDelta s = 0$ an, so wird hier:

$$H_{t} \Sigma K^{2} \frac{s}{EF} + \tau \Sigma K s = 0$$

1) Vergl. hierzu auch Müller-Breslau II, 3. Aufl., S. 267-274.
und

N nimmt hierbei dieselben Werte an, welche bereits bei 1 b näher ermittelt wurden. Im Zähler kann man in ähnlicher Weise, wie daselbst für den Nenner gezeigt, Vereinfachungen erzielen, indem man die Stäbe des Versteifungsbalkens ganz vernachlässigt und nur die Kettenstäbe und die Aufhängestäbe in Berücksichtigung zieht.

g) Annäherungsmethode.

Obwohl es nach dem Vorhergehenden möglich ist, sowohl für eine wandelnde Einzellast P die Momenten- und Querkraftskurven zu zeichnen oder die Einflusslinien

für die Momente (Gurtkräfte) und Streben (bezw. Querkräfte) zu ermitteln, so ist doch die Berechnung des Versteifungsträgers nach der einen oder anderen Weise immer eine grössere Arbeit, namentlich bei vielen Feldern und vielen Stäben. Es ist daher angenehm, Methoden zu wissen, nach welchen das Addieren der Einflussordinaten wandelnder Einzellasten oder das Auswerten von Einflussflächen entfallen kann und welche es ermöglichen sofort die in Fig. 16 dargestellten ungünstigsten Kurven der Momente und Querkräfte zu finden.

Eine Annäherungsmethode, welche sich bei vielen durchgerechneten Beispielen gut bewährt hat, ist diejenige von W. Ritter, Zürich¹). Die betreffende Abhandlung ist äusserst klar und war wohl die erste, welche den Einfluss der Längenausdehnung der Kette in vollem Masse berücksichtigte. Sie sei hier mit

einigen Abkürzungen, die jedoch der Vollständigkeit keinen Abbruch tun, wiedergegeben.

Ritter betrachtet ein hängendes Seil oder eine hängende Kette als einen umgekehrten Bogen, von welchem das Trägheitsmoment des Querschnittes gleich Null ist. Alle Biegungsmomente gehen vollständig an den Versteifungsträger über und die Kette hat nur Zugkräften zu widerstehen. Das Versteifungsfachwerk ist also der Vermittler,

¹⁾ W. Ritter-Zürich. Statische Berechnung der Versteifungsfachwerke der Hängebrücken. Schweizerische Bauzeitung 1883, Bd. I, Nr. 1-6.

um unregelmässig aufgebrachte Lasten aufzunehmen, in gleichmässig verteilte umzuwandeln und dann an die Hängeeisen der Kette abzugeben. Es steht also stets unter der Einwirkung doppelter Lasten, von oben (abwärts gerichtet) wirken die Eigengewichtsund Verkehrslastkräfte, von unten (aufwärts gerichtet) die gleichförmig verteilten Reaktionslasten r.

Wird ein Parabelbogen (Fig. 18) vom Trägheitsmoment Null von einer Einzellast belastet, so sind die Kämpferreaktionen durch den Schnittpunkt der Last mit der Kämpferdrucklinie gegeben. Das Mass m wird:

$$\mathbf{m} = \frac{32 \left(\frac{\mathbf{l}_1}{2}\right)^2 \mathbf{f}}{5 \left(5 \left(\frac{\mathbf{l}_1}{2}\right)^2 - \omega^2\right)} \quad 1$$

oder, wenn man die Werte a und b einführt:

$$m = \frac{8 f l_1^2}{5 (l_1^2 + a b)}$$

Zieht man für P das Kräftepolygon, so ergibt sich daraus H aus der Proportion:

und damit die Reaktionsbelastung r', welche der vollkommen biegsame Bogen zu tragen hat.

$$r^{2} = \frac{8 f H}{l_{1}^{2}}$$
$$r^{2} = \frac{5 P a b (l_{1}^{2} + a b)}{l_{1}^{5}} \dots \dots \dots \dots \dots \dots \dots 18a.$$

Wirkt (Fig. 18a) statt der konzentrierten Einzellast P eine gleichförmig verteilte Belastung p, die sich über die Strecke a ausdehnt, auf den Bogen, so findet man den entsprechenden Wert r', indem man in der vorigen Gleichung b durch $l_1 - x$, a durch x und P durch p.dx ersetzt und dann zwischen o und a integriert. Das Resultat ist:

Diese zwei Werte würden zur Berechnung des Versteifungsträgers ausreichen, wenn die Kette in der Längsrichtung vollständig starr wäre. Durch die Dehnungen der Kettenglieder und der Verankerungen wird sie sich aber einsenken und um gleich viel muss auch das durch die Hängestäbe mit der Kette verbundene Fachwerk sich durchbiegen. Das Fachwerk erhält also eine Vermehrung der Belastung, die Reaktionsbelastung vermindert sich. Um wieviel sich r'vermindert, gibt der Verteilungsfaktor β an. Er ist also zu bestimmen aus der Bedingung, dass Kette und Fachwerk sich gleich viel senken und gibt damit allgemein an, wie sich Kette und Versteifungsträger in gleichförmig verteilte Belastungen teilen. Ist r' die Reaktionsbelastung bei nicht dehnbarer Kette, so ist ihre wirkliche Belastung

$$\mathbf{r} = \beta \mathbf{r}^2$$
 20.

wobei $\beta < 1$ ist.

1) Siehe W. Ritter, Der elastische Bogen. Zürich 1886, S. 61 und 62.

Einfach statisch unbestimmte Hängebrücken. 1. Brücke mit einer Öffnung.

Es sei bemerkt, dass Kette und Träger durch die Einsenkungen nicht genau dieselben Einsenkungskurven besitzen. Die beiden Kurven (im einen Fall eine Parabel, im anderen eine Kurve vierten Grades) weichen jedoch bei gleicher Scheitelhöhe nur unwesentlich voneinander ab, so dass es ohne weiteres gestattet ist, die Reaktionsbelastung nach wie vor gleichförmig verteilt anzunehmen.

Es soll ausserdem für die Einsenkung des Trägers ein konstantes Trägheitsmoment eingeführt werden, für welches bei variabler Trägerhöhe ein mittlerer Wert zu wählen ist.

Die Einsenkung der Kette hängt von ihrer Längenausdehnung ab. Wie schon zu Anfang dieses Abschnittes (Seite 20) nachgewiesen, beträgt die Länge der Kette zwischen A und B bei gleich hohen Pylonen (Fig. 19):

$$s = l_1 + \frac{8 f_1^2}{3 l_1}.$$

Die Längen der Rückankerung seien gleich s₁. Dehnungen derselben erzeugen horizontale Bewegungen der Lager in A und B von

$$\mathscr{A} \mathbf{m} = \frac{\mathbf{s}_1 \, \mathscr{A} \, \mathbf{s}_1}{\mathbf{m}},$$

während man für die Kette zwischen A und B (vergleiche die Ableitung für mehrere Öffnungen Seite 43) die Gleichung erhält:

$$3 l_1 \varDelta s + 3 s \varDelta l_1 = 6 l_1 \varDelta l_1 + 16 f_1 \varDelta f_1.$$

Hierin
$$\varDelta l_1$$
 durch $-2 \varDelta$ m und s durch $l_1 + \frac{8 l_1^2}{21}$ ersetzt, gibt:

$$\mathcal{I} f_1 = \frac{3 l_1^2 m \, \mathcal{I} s + (6 l_1^2 - 16 f_1^2) s_1 \, \mathcal{I} s_1}{16 f_1 l_1 m} \quad . \quad . \quad . \quad . \quad 21.$$

Es ist also eine Beziehung zwischen der Scheitelsenkung der Kette und ihrer Längendehnung gefunden.

Es ist nun für eine Kette, deren Querschnitte sich zwischen D und E proportional den Kräften ändern:

$$\varDelta s = \frac{s \cdot \sigma}{E} \text{ und } \varDelta s_1 = \frac{s_1 \sigma}{E}$$

und damit:

$$\mathcal{A} f_{1} = \frac{\sigma}{E} \cdot \frac{3 l_{1}^{2} m s + (6 l_{1}^{2} - 16 f_{1}^{2}) s_{1}^{2}}{16 f_{1} l_{1} m}$$

oder, wenn man noch für s den obigen Wert einführt:

$$d \mathbf{f_1} = \frac{\sigma}{\mathbf{E}} \left[\frac{(3 \mathbf{l_1}^2 - 8 \mathbf{f_1}^2) (\mathbf{l_1} \mathbf{m} + 2 \mathbf{s_1}^2)}{16 \mathbf{f_1} \mathbf{l_1} \mathbf{m}} + \mathbf{f_1} \right]$$

$$\mathcal{A} \mathbf{f}_1 = \frac{\sigma}{\mathbf{E}} \mathbf{K} \quad \dots \quad \dots \quad \dots \quad \dots \quad 22.$$

wobei

$$\mathbf{K} = \frac{(3 \mathbf{l_1}^2 - 8 \mathbf{f_1}^2)(\mathbf{l_1}\mathbf{m} + 2 \mathbf{s_1}^2)}{16 \mathbf{f_1} \mathbf{l_1}\mathbf{m}} + \mathbf{f_1} \quad . \quad . \quad . \quad . \quad . \quad 22\mathbf{a}.$$

ist und eine nur von den Längenausdehnungen der Kette abhängige konstante Grösse bedeutet.

[Für normal konstruierte Hängebrücken mit nicht zu ungewöhnlichen Rückankerungsverhältnissen und mit dem Pfeilverhältnis $\frac{f_1}{l_1} = \text{etwa} \frac{1}{10}$ ergibt sich K durchschnittlich zu $\frac{10}{3}$ l₁. Für leichte Stege wird K gewöhnlich etwas grösser.]

Nun ist die Spannkraft im Scheitel der Kette

$$\mathbf{H} = \frac{\beta \mathbf{r}^{\mathbf{i}} \mathbf{l}_{1}^{2}}{8 \mathbf{f}_{1}},$$

woraus sich bei einem Scheitelquerschnitt F der Wert σ ergibt zu:

$$\sigma = \frac{\beta \mathbf{r}^{\prime} \mathbf{l}_{1}^{2}}{8 \mathbf{f}_{1} \mathbf{F}}$$

und damit die Einsenkung nach Gleichung 22.

$$\mathcal{A} f_1 = \frac{\beta r' l_1^2 K}{8 f_1 F.E} \quad . \quad 23.$$

Dieser Einsenkung muss die Einsenkung des Fachwerkes gleich sein, wenn die Reaktionsbelastung von r' auf β r' sinkt. Die Verminderung ist gleichbedeutend mit einer direkten Belastung von $(1 - \beta)$.r'. Durch sie senkt sich der Versteifungsträger bei einem mittleren Trägheitsmoment J und einer Stützweite 1 um:

$$\mathcal{\Delta} \mathbf{f}_2 = \frac{5\left(1-\beta\right)\mathbf{r}^2\mathbf{l}^4}{384\,\mathrm{E}\,\mathrm{J}} \quad \dots \quad \dots \quad \dots \quad 24.$$

 \mathcal{A} f₁ gleich \mathcal{A} f₂ gesetzt, gibt schliesslich:

$$\beta_{k} = \frac{1}{1 + \frac{48 \text{ K J } l_{1}^{2}}{5 f_{1} l^{4} \text{ F}}} \quad . \quad . \quad . \quad . \quad . \quad . \quad 25.$$

bezw. mit $l_1 = l$, was meist zulässig ist:

$$\beta_{k}^{2} = rac{1}{1 + rac{48 \,\mathrm{KJ}}{5 \,\mathrm{f_{1}} \,\mathrm{l_{1}}^{2} \mathrm{F}}}.$$

Hat man statt einer Kette ein Seil mit konstantem Querschnitt F_s und beträgt der Elastizitätsmodul des Seilmateriales E', so verändert sich σ von Punkt zu Punkt. Soll daher Gleichung 22 und alles weitere auch für versteifte Kabelbrücken gelten, so ist im Ausdruck für β für F ein Wert einzusetzen, der in der Mitte liegt zwischen dem wirklichen Seilquerschnitt F_s und einem bei konstantem σ sich ergebenden Scheitelquerschnitte. Dieser sei F_{s_i} . Ausserdem ist das Verhältnis der Elastizitätsmoduli von Seil und Trägermaterial zu berücksichtigen. Es wird also für eine Kabelbrücke:

$$\beta_{\mathbf{s}} = \frac{1}{1 + \frac{48 \text{ K J E } \mathbf{i}_{1}^{2}}{5 \text{ f}_{1} \text{ F}_{\mathbf{s}} \text{ E}' \mathbf{i}^{4}}} \quad . \quad . \quad . \quad . \quad . \quad . \quad 25a.$$

Einfach statisch unbestimmte Hängebrücken. 1. Brücke mit einer Öffnung.

bezw.:

$$\beta_{s} = \frac{1}{1 + \frac{48 \text{ KJ E}}{5 f_{1} l_{1}^{2} F_{s_{1}} E'}}.$$

Mit der Ermittelung von β ist der erste Teil der Aufgabe gelöst. Die Reaktionsbelastung für eine Einzellast wird damit nach Gleichung 18a.

und für Lasten über die Strecke a:

für Totalbelastung wird:

$$\mathbf{r} = \boldsymbol{\beta} \cdot \mathbf{p} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad 28.$$

Müller-Breslau hat für den Verteilungsfaktor β einen ähnlichen Wert ermittelt¹):

$$\nu = \frac{1}{1 + \frac{15}{16} \frac{h^2}{f_1^2} \frac{s_o}{f_1^2} \frac{F_e}{F_k}},$$

wobei

$$s_{o} = l_{1} \left(1 + rac{16 f_{1}^{2}}{3 l_{1}^{2}}
ight) + 2 s_{1} \sec lpha$$

(=~1,9 l₁ bei normaler Anordnung der Brücke, nicht zu ungewöhnlichen Verankerungsverhältnissen und $f_1 = -\frac{l_1}{10}$

F_c = mittlerer Querschnitt der Trägergurtung,

 $F_{k} =$ Scheitelquerschnitt der Kette,

h = mittlere Trägerhöhe ist.

Ein Vergleich mit Formel 25 zeigt, dass die Werte nahezu übereinstimmen.

Mit
$$J = \frac{F_{e} \cdot h^{2}}{2}$$
, $l_{1} = 10 f_{1}$ und $K = \frac{10}{3} l_{1}$, $F = F_{k}$, $l_{1} = 1$ wird:

$$\beta = \frac{1}{1 + 1.6 \frac{F_{e} h^{2}}{f_{1}^{2} F_{k}}},$$
d ν wird:

währen

$$\nu = rac{1}{1+1.78 rac{\mathrm{F_{c}\,h^{2}}}{\mathrm{f_{1}}^{2}\mathrm{F_{k}}}}.$$

Da das zweite Glied im Nenner meist nur für die zweite und dritte Dezimale hinter dem Komma Werte ergibt, bewirkt ein Unterschied von 10% in diesem Gliede in den Werten von β und ν selbst einen Ausschlag von allerhöchstens 1%.

Der zweite Teil der Aufgabe besteht nun in der Ermittelung der Kurven für die grössten und kleinsten Momente, sowie für die Querkräfte. Zu diesem Zweck muss auf Fig. 15 zurückgegriffen werden, welche für eine Einzellast P die Momenten und Querkraftsfläche enthält.

¹⁾ Müller-Breslau II, 3. Aufl., S. 270.

Momente. Für eine Last P im Punkte C verschwindet das Moment im Punkte D (Fig. 20 a). Die Lage von D wird gefunden, indem man das Moment für die Abszisse u berechnet und gleich Null setzt.

$$\mathbf{M} = \frac{\mathbf{P} \cdot \mathbf{b}}{\mathbf{l}} \cdot \mathbf{u} - \frac{\mathbf{r} \cdot \mathbf{l}}{2} \mathbf{u} + \frac{\mathbf{r} \cdot \mathbf{u}^2}{2} - \mathbf{P} (\mathbf{u} - \mathbf{a}) = 0,$$

woraus wird:

2Pa u == rl

und nach Einsetzung des Wertes von r aus Gleichung 26

1.

$$a = \frac{2 l_1^5}{5 \beta b l (l_1^2 + a b)}$$

bezw. mit $l_1 = l$

$$u = \frac{2 l^4}{5 \beta b (l^2 + a b)} \dots \dots \dots \dots 29.$$

= $\frac{\zeta_1 l}{\beta} \dots \dots \dots \dots \dots 29 a.$
 $\frac{2 l^3}{1 d^3 (l^3 + b)} = \frac{2 l^3}{1 d^3 (l^3 + b)} \dots \dots 30.$

$$5 \ln (l^2 + ab) = 5 (l^2 - 2a^2 l + a^3)$$

also die Lastscheide für das Moment in D. Mit anderen Worten, man

C ist erhält in D ein M_{min} bei Belastung von A bis C und ein Maximum bei Belastung von C bis B. Zur Berechnung von M_{min} hat man nach Fig. 21

Fig. 21.

Einfach statisch unbestimmte Hängebrücken. 1. Brücke mit einer Öffnung.

$$M_{\min} = -\frac{rl}{2}(l-u) + \frac{pa^2}{2l}(l-u) + \frac{r(l-u)^2}{2} = \frac{-(l-u)(rlu-pa^2)}{2l}$$

und für u und r die Werte aus Gleichung 29 und 27 eingesetzt:

$$=\frac{a^{2}(51-5a)}{10(1-a)l^{2}(l^{2}-al-a^{2})}$$

Damit ist für die Momente alles gegeben. Berechnet man für verschiedene a (also für eine von links nach rechts vorrückende Belastung) die entsprechenden u und dann nach Gleichung 31 M_{min} , so erhält man durch Auftragen der zusammengehörigen Werte die rechte Hälfte der Kurve der negativen Maximalmomente (Fig. 22). Schreitet die Belastung von rechts nach links fort, so erhält man entsprechend den

linken Kurvenzweig, symmetrisch zur Mitte gelegen. Die Kurven übergreifen sich in der Mitte (ein Zeichen, dass für die mittlere Trägerpartie von beiden Seiten belastet werden muss, um M_{min} zu erzeugen) und müssen daselbst die Ordinaten addiert werden.

Maximalmomente und Minimalmomente ergänzen sich zu Totalbelastung. Man erhält also die Kurve der positiven Maximalmomente, wenn man zu den Ordinaten der Minimalmomentenkurve diejenigen für Totalbelastung addiert. Für Totalbelastung ist die Kurve eine Parabel mit der Höhe

$$\frac{p l^2}{8} (1 - \beta)$$

Querkräfte. Aus Fig. 20b ist ersichtlich, dass es im allgemeinen zwei Punkte gibt, in welchen die links vom Schnitte wirkende Querkraft das Zeichen wechselt. Der Wechsel tritt ein in C, wo die Last steht, ferner im Punkte E, wo das negative Moment ein Maximum wird. E liegt in der Mitte zwischen D und B, so dass die Abszisse von E ist:

$$v = \frac{u+1}{2}$$

Bohny, Hängebrücken.

3

33.

Um also im Schnitte E die aufwärts gerichtete Kraft zum Maximum zu machen, muss der Träger von A bis C und von E bis B belastet werden. Man behandelt diese beiden Belastungen am besten getrennt.

Belastet man AC, so wird nach Fig. 21:

$$Q_2 = {p a (21 - a) \over 21} + r v - {r l \over 2} - p a$$

und hierin v eingesetzt

$$Q_2 = \frac{r \ln p a^2}{2l} \dots \dots \dots \dots \dots \dots 34.$$

Ein Vergleich dieses Ausdruckes mit demjenigen für M_{min} zeigt, dass es derselbe Wert ist, nur ohne den Faktor (1 - u). Es ist also:

$$Q_2 = \zeta_2 p l \dots 34 a.$$

Trägt man die Q_2 in den durch Gleichung 33 gefundenen Punkten auf, so entsteht eine Kurve E'B' (siehe Fig. 23). Der Grenzpunkt E', bis zu welchem der Schnitt

Fig. 23.

nach links rücken kann, wird erhalten, wenn man in Gleichung 29 und 33 a = o und b = 1 setzt, denn in diesem Falle wird P das linke Auflager erreicht haben. Man erhält:

$$u = \frac{2}{5} \frac{1}{\beta}$$

und

$$a' = \frac{2+5\beta}{10\beta} \cdot 1$$

Belastet man E B, so entsteht links vom Schnitte folgende aufwärts gerichtete Querkraft (die Belastungslänge wieder mit a bezeichnet)

und man erhält die Kurve A_1 B, welche über E den zu 1 - v gehörigen Wert angibt. Für r den Wert eingesetzt, wird:

wobei:

und

$$\zeta_3 = \frac{a^2}{2 l^2} \dots 36.$$

Addiert man beide Kurven, so erhält man den rechtsseitigen Zweig der aufwärts gerichteten Maximalkräfte. Den entsprechenden linksseitigen Zweig erhält man, wenn man die Kurve E'B' nach links überträgt (E"A") und ebenfalls addiert. Dies leuchtet ohne weiteres ein, denn die Belastung zwischen Cuund E kann als Differenz der Belastungen EB und CB betrachtet werden.

Durch Umdrehung der Kurve A₂ B' um 180° erhält man die Kurve der grössten abwärts gerichteten Querkräfte A'B₂.

Die algebraische Addition der aufwärts und abwärts gerichteten Grösstkräfte gibt wieder den Einfluss von Totalbelastung. Für diese ist die Kurve eine Gerade mit den Werten $(1 - \beta) \frac{p l}{2}$ an den Enden. Dies kann, wie schon an Hand von Fig. 16 bemerkt wurde, als Probe der gefundenen Kurven dienen.

Ausdruck für r. Bezeichnet man endlich noch die Reaktionsbelastung für die Auflast über die Strecke a mit

$$\mathbf{r} = \boldsymbol{\beta} \cdot \boldsymbol{\zeta}_5 \cdot \mathbf{p} \cdot \boldsymbol{\zeta}_5 \cdot \mathbf{p} \cdot \boldsymbol{\zeta}_5 \cdot \mathbf{p} \cdot \boldsymbol{\zeta}_5 \cdot \boldsymbol{\zeta}_5 \cdot \mathbf{p} \cdot \boldsymbol{\zeta}_5 \cdot \boldsymbol{\zeta}$$

so wird:

$$b_5 = \frac{a^2 (5 \, l^3 - 5 \, a^2 \, l + 2 \, a^3)}{2 \, l^5} \quad \dots \quad \dots \quad \dots \quad 39.$$

(siehe Gleichung 27).

Es ist zweckmässig, die Koeffizienten ζ_1 , ζ_2 , ζ_3 , ζ_4 und ζ_5 , welche alle nur die Werte a und l enthalten, für verschiedene Verhältnisse a:l tabellarisch zu berechnen, was die umstehende, für die grössten Spannweiten ausreichende Tabelle I ergibt.

Mit den Momenten und Querkraftskurven ist alles zur Berechnung der Verkehrslastkräfte des Versteifungsfachwerkes oder Versteifungsbalkens gegeben. Die Gurtkräfte ermitteln sich aus den Momenten durch Division mit dem Hebelarm der Stäbe; die Querkräfte geben die Kräfte in den Diagonalen, wobei bei geneigten Gurten wieder die Vorsicht zu gebrauchen ist, den Ort der ausserhalb des Schnittes wirkenden Kraft aufzusuchen.

Temperatur, Eigengewicht, Kettenkräfte. Sinkt die Temperatur, so verkürzt sich die Kette und zieht das Fachwerk in die Höhe. Dieses wird also entlastet, die Kette belastet. Die durch diesen Vorgang entstehende Reaktionsbelastung zwischen Kette und Träger sei r_t und wird damit die Hebung des Fachwerkes:

Die Hebung des Kettenscheitels infolge Temperaturabnahme wird durch r_t zum Teil wieder aufgehoben. Erstere erhält man, wenn man in Gleichung 21 $\Delta s = \tau . s$ und $\Delta s_1 = \tau s_1$ einsetzt. Dann ist nach Gleichung 22:

Die Senkung durch rt ist weiters nach Gleichung 23

3*

Man hat also die Bedingungsgleichung:

$$\tau \mathrm{K} - \frac{\mathrm{r_t} \, \mathrm{l_1}^2 \, \mathrm{K}}{8 \, \mathrm{f_1} \, \mathrm{FE}} = \frac{5 \, \mathrm{r_t} \, \mathrm{l^4}}{384 \, \mathrm{EJ}}$$

woraus nach einiger Umrechnung und unter Benutzung des Wertes β aus Gleichung 25 wird:

43.

. .

		1		1 1		т
10	9	n	P		A	
	a	N	0.		0	1.

Tabelle zur Berechnung des Einflusses der zufälligen Last.

a:l	ζ1	52	ζ3	54	Š5
0,0	0,4000	0,00000	0,0000	+ 0,0000	0,0000
0,025	0,4005	0,00000	0,0003	+0,0005	0,0015
0,05	0,4020	0,00000	0,0013	+0,0028	0,0062
0,075	0,4044	0,00000	0,0028	+0,0059	0,0139
0,1	0,4077	0,00005	0,0050	+0,0099	0,0248
0,125	0,4120	0,00009	0,0078	+0,0145	0,0387
0,15	0,4174	0,00024	0,0113	+0,0193	0,0551
0,175	0,4236	0,00042	0,0153	+0,0240	0,0743
0,2	0,4310	0,00076	0,0200	+0,0289	0,0963
0,225	0,4395	0,00118	- 0,0253	+0,0330	0,1208
0,25	0,4491	0,00186	0,0313	+0,0369	0,1475
0,275	0,4600	0,00275	0,0378	+0,0396	0,1761
0,3	0,4723	0,00392	0,0450	+0,0414	0,2072
0,325	0,4860	0,00548	0,0528	+0,0419	0,2400
0,35	0,5013	0,00743	0,0613	+0,0411	0,2740
0,375	0,5185	0,00996	0,0703	+0,0386	0,3095
0,4	0,5376	0,01307	0,0800	+0,0346	0,3462
0,425	0,5590	0,01700	0,0903	+0,0287	0,3838
0,45	0,5830	0,02181	0,1013	+0,0211	0,4222
0,475	0,6098	0,02767	0,1128	+ 0,0116	0,4609
0,5	0,6400	0,03500	0,1250	0,0000	0,5000
0,525	0,6740	0,04400	0,1378	- 0,0135	0,5390
0,55	0,7125	0,05461	0,1513	- 0,0289	0,5778
0,575	0,7563	0,06782	0,1653	- 0,0461	0,6161
0,6	0,8065	0,08361	0,1800	-0,0654	0,6538
0,625	0,8641	0,10313	0,1953	- 0,0861	0,6904
0,65	0,9310 ·	0,12673	0,2113	- 0,1089	0,7260
0,675	1,0091	0,15500	0,2278	- 0,1344	0,7602
0,7	niv a n est	the state and state	0,2450	- 0,1586	0,7928
0,725	istande Tante	eline guing ents	0,2628	-0,1854	0,8237
0,75	the des Truinsee	radal oib hare	0,2813	-0,2131	0,8525
0,775	ever aver & U.	an an - aby and	0,3003	-0,2422	0,8793
0,8	-	man . The proverse	0,3200	-0,2711	0,9037
0,825	-		0,3403	- 0,3007	0,9256
0,85	to born omdate	Sama ar Bylm all a	0,3613	- 0,3307	0,9449
0,875	to 15 paneticit	The stan amon	0,3828	- 0,3606	0,9615
0,9	Harris The Month	-	0,4050	-0,3901	0,9752
0,925	San Transition		0,4278	-0,4191	0,9861
0,95		en a ser a ser pr	0,4513	- 0,4472	0,9938
0,975	-	- gain - suisin an	0,4753	- 0,4742	0,9985
1,0	-	- 121	0,5000	- 0,5000	1,0000
			1 - 1 - 1		

Einfach statisch unbestimmte Hängebrücken. 1. Brücke mit einer Öffnung.

Der Ausdruck gilt sowohl für eine Kettenbrücke wie für eine Kabelbrücke, nur ist je nach der Ausführung β durch β_{K} nach Gleichung 25 oder β_{s} nach Gleichung 25 a einzusetzen.

Die durch r_t bei $\pm t^0$ Temperaturwechsel im Fachwerk erzeugten Biegungsmomente verteilen sich nach einer Parabel, deren Grösstwert in Brückemitte $\pm \frac{1}{8}r_tl^2$ ist.

Die Querkräfte verteilen sich nach einer Geraden, deren Enden die Ordinaten $\pm \frac{1}{2}r_tl$ besitzen.

Von den Eigenlasten kann man, wie bereits eingangs dieses Abschnittes (S. 18) bemerkt, durch geschickte Montage stets den grössten Teil direkt an die Kette überleiten. Der Wert sei g_1 . Der Rest g_2 (Fahrbahnbelag, Fusswegbelag etc.) geht teils an die Kette, teils an den Versteifungsträger. Die Momente, welche damit der Träger erhält, verteilen sich nach einer Parabel, deren Pfeil in der Mitte den Wert hat:

$$\frac{1}{8}(1-\beta)\operatorname{g}_2\operatorname{l}^2$$

und die Querkräfte verteilen sich nach einer Geraden mit der grössten Ordinate an den Auflagern:

$$(1 - \beta) \frac{\mathbf{g}_2 \mathbf{l}}{2}.$$

Die Kette steht unter folgenden Belastungen:

von	1emperatur	rt
von	Verkehrslast (total)	βp
von	Eigengewicht	$g_1 + \beta g_2$

Eventuell kommen noch hinzu Windkräfte aus Kippmomenten. Es wird also:

Die grösste Spannung nächst den Pylonenlagern ergibt sich zu (aus den Eigenschaften der Parabel berechnet)

$$S_{1 max} = H_{max} \cdot \sqrt{1 + \frac{16 f_1^2}{l_1^2}} \cdot 4 \delta.$$

und in der Rückankerung:

Anmerkung: Alle bisherigen Ausführungen sind in der Annahme gemacht, dass die Pylonen der Brücke aus Stein bestehen und unter dem Lagerdrucke sich nicht verändern. Sind die Pylonen dagegen aus Eisen, so muss dies bei der Ermittelung der Grösse K berücksichtigt werden. Dies kann geschehen, indem man bei der Ermittelung des Wertes Im auch die Veränderung der Höhe n (Fig. 19) einführt. Man erhält damit

h) Vorberechnung einer Brücke mit einer Öffnung.

Ist eine versteifte Kettenbrücke mit einer Öffnung in ihren geometrischen Formen gegeben, so ist es nötig, um nach der angenäherten oder der genauen Methode die Stabkräfte im Versteifungsträger und die Kettenkräfte zu ermitteln, vorerst die Werte J und F zu kennen.

J ist das mittlere Trägheitsmoment des Versteifungsträgers und hängt ab von den Gurtkräften, welche aus den Maximalmomenten berechnet werden. Zieht man in Figur 22 eine dem mittleren Werte aller Maximalmomente entsprechende Parallele zu AB, so ist die Ordinate t rund ¹/⁹ so gross wie das Maximalmoment eines frei aufliegenden Trägers. Oder mit anderen Worten, das Mittel aller Maximalmomente ist rund 11 ⁰/⁶ vom Maximalmoment eines frei aufliegenden Trägers derselben Stützweite. Der Wert ¹/⁹ ist ein mittlerer Vergleichswert aus einer grösseren Anzahl von Berechnungen von Brücken verschiedenster Spannweite (von $l_1 = 70-550$ m und dem Pfeilverhältnis $\frac{l_1}{f_1} = -10$).

Man kann also für den Versteifungsbalken als mittleres Maximalmoment schreiben:

$$_{p}M_{mittel} = \frac{p l^{2}}{8} \cdot \frac{1}{9} = \frac{p l^{2}}{72}.$$

Hierzu kommt noch das Moment aus Eigengewicht. Von diesem geht, auch wenn man zunächst die ungünstigste Annahme macht und von der Zerlegung in g_1 und g_2 absieht, immer nur ein sehr geringer Teil ans Fachwerk, selten mehr als $4^{0}/_{0}$ (denn β wird bei grösseren und schwereren Brücken selten kleiner als 0,96 und nur bei leichten Brücken und Stegen sinkt β bis auf 0,90). Das mittlere Moment wird damit:

$$_{\rm g} {\rm M}_{\rm mittel} = {
m g} \frac{{
m l}^2}{8} \cdot \frac{1}{25} \cdot \frac{2}{3} = \frac{{
m g} \, {
m l}^2}{300}$$

Temperatur und Windwirkung kann vernachlässigt werden, weil man bei Wirkung derselben höhere Spannungen im Eisen zulassen kann.

Addiert man beide Werte von M und dividiert durch die mittlere Fachwerkshöhe, so erhält man die mittlere Gurtkraft und damit den mittleren Gurtquerschnitt F_e . Es ist dann:

$$\mathbf{J}_{\text{mittel}} = \frac{\mathbf{F}_{\text{c}} \cdot \mathbf{h}^2}{2}.$$

Um das angenäherte F des Scheitelquerschnittes der Kette zu finden, setzt man am besten $\beta = 1$ und findet

$$H_{max} = \frac{(g+p) l_1^2}{8 f_1}$$

und

$$F\!=\!\frac{H_{max}}{\sigma}$$

für eine Kabelbrücke wird (vergl. Gleichung 46)

$$F_{s} = F \sqrt{1 + \frac{n^{2}}{m^{2}}} \cdot \frac{\sigma}{\sigma_{s}}.$$

Über die Wahl des Pfeilverhältnisses $\frac{f_1}{l_1}$ bei einer vollständig neu zu entwerfenden Brücke, sowie die Wahl der mittleren Fachwerkshöhe sei auf Abschnitt VI verwiesen.

Einfach statisch unbestimmte Hängebrücken. 1. Brücke mit einer Öffnung.

Schlussbemerkung. Die meisten bestehenden Hängebrücken sind Brücken mit einer Öffnung und mit besonderem, nur durch Hängestangen mit der Kette oder dem Seil verbundenen Versteifungsträger. Beispiele solcher Brücken sind zur Genüge bekannt. Da sie auch in Zukunft alle anderen Hängebrückensysteme in der Mehrzahl übertreffen werden, ist hier absichtlich das Einöffnungssystem näher behandelt worden nach seiner genauen und angenäherten Berechnungsweise.

i) Hängendes Fachwerk.

Fällt der Obergurt des Versteifungsträgers mit der Kette zusammen, so entsteht das hängende Fachwerk (Fig. 24). Die Auflager sind hier wieder beiderseits längsbeweglich anzuordnen, da alle Längskräfte unmittelbar auf die Rückankerungen übergehen. Das Fachwerk wird von unten durch zwei Auflagerkräfte A_u und B_u beansprucht, von oben durch die Kräfte K_1 und K_r . A_u und K_1 schneiden sich in A, B_u und K_r in B. Durch A und B müssen also die Reaktionen einer Last P gehen, die sich dann in diesen Punkten nach den Vertikalen und nach K_1 und K_r zerlegen.

Verlegt man nun in dieser Weise A_u und B_u nach A und B, so entsteht nichts anderes als ein umgekehrter elastischer Bogen mit zwei Gelenken. Es ist

also das ganze Gebilde nach der Theorie desselben zu berechnen, die statisch unbestimmte Grösse ist der horizontale Zug H der Kette. Das Moment an irgend einer Stelle ist: $M_m = M_o - H \cdot y,$

wobei die Werte y von den Drehpunkten der Stäbe bis zur Geraden AB zu messen sind. Man erhält also die H-Linie in genau gleicher Weise wie früher, indem man die elastischen Gewichte

$$\omega = \frac{y s}{E F a^2}$$

als Gewichte betrachtet und damit die Momente M_{ω} bestimmt. Dann ist:

wobei

Das zweite Glied von N ist zu beziehen auf die Rückankerung und die beiden Stäbe K_1 und K_r .

Man sieht, dass H kleiner wird als beim reinen Zweigelenkbogen, weil N grösser wird. Man hat gewissermassen einen Zweigelenkbogen mit elastisch nachgiebigen Widerlagern. Es ist daher zweckmässig, die Trägerhöhe in der Mitte nicht zu gering zu bemessen.

Ist die H-Linie gefunden, so ergeben sich die Momentenflächen für die Gurten und Diagonalen genau wie in Fig. 17 dargetan und bedürfen keiner weiteren Erläuterung.

Vom Eigengewicht kann man natürlich auch bei dieser Trägerart durch praktische Montage einen grossen Teil direkt an die Kette geben.

Für Temperatur wird:

K = Kräfte für H = 1.

Als Sonderform des Fachwerkes ist der Girlandenträger zu betrachten (Fig. 25), welcher wegen seiner eleganten Form bereits verschiedentlich zur Ausführung

gelangte. Verlaufen die Gurten nicht parallel, sondern konvergierend nach den Enden, so entsteht die Sichelgirlande oder der hängende Sichelbogen. Bei der Konkurrenz um die Schwurplatzbrücke in Budapest war von amerikanischer Seite ein Projekt mit einer solchen Sichelgirlande für eine Stützweite von

310 m eingereicht worden. Der Entwurf fiel besonders durch die Details auf, indem vorgeschlagen wurde, die beiden Gurten aus Kabeln herzustellen und an ihnen die Vergitterung mittelst reibungssicherer Schellen anzuschliessen ¹).

2. Brücke mit mehreren Öffnungen.

a) Allgemeines.

Schaltet man beliebig viele Öffnungen hintereinander (Fig. 26), so ändert sich im Prinzip nichts und auch der Berechnungsgang bleibt nahezu derselbe. Das ganze

Gebilde ist wieder einfach statisch unbestimmt, und die unbekannte Grösse ist der Horizontalzug H der durchlaufenden Kette. Entfernt man diese, so hat man frei aufliegende Träger mit je einem festen und einem beweglichen Lager.

1) Siehe Zeitschrift deutscher Ingenieure 1895, Nr. 16.

Einfach statisch unbestimmte Hängebrücken. 2. Brücke mit mehreren Öffnungen.

Sollen für die grösste Belastung, also Eigenlast, totale Verkehrslast und Temperaturwirkung die Kettenglieder gleichmässig beansprucht werden, so muss der Horizontalzug in allen Öffnungen derselbe sein, und man kommt wieder auf die Bedingungsgleichung (siehe S. 3)

$$\frac{l_1^2}{f_1} = \frac{l_2^2}{f_2} = \frac{l_3^2}{f_3} = \frac{l_4^2}{f_4}.$$

Man kann also, wenn eine Pfeilhöhe gewählt ist, alle anderen finden. Dabei ist es meist ohne grösseren Fehler gestattet, die Stützweiten l_1 , l_2 , l_3 ... der Träger durch die horizontale Entfernung der Pylonenlager zu ersetzen, wobei dann natürlich die Pfeilhöhen f von den Parabelscheiteln bis zur Verbindungslinie der Lagerspitzen zu messen sind.

b) Ermittelung der H-Linien, der Einflusslinien der Stäbe usw.

In jeder Öffnung besteht für irgend eine Belastung P wieder die Grundgleichung: $M_x = M_{op} - H y_x.$

Während nun M_{op} oder S_o , das Moment oder die Kraft für den frei aufliegenden Träger, immer nur in derjenigen Öffnung entsteht, in welcher die Last steht, beeinflusst H oder K sämtliche Öffnungen. Es ist also $\Sigma \circ S K \frac{S}{EF}$ immer nur für den Versteifungsträger einer Öffnung zu bilden, während $\Sigma K^2 \frac{S}{EF}$ alle Versteifungsträger, den ganzen Kettenzug nebst beiderseitigen Verankerungen und alle Hängestäbe umfasst. Man erhält daher als Grundgleichung für den Horizontalzug wie früher

wobei M_{ω} das Moment unter P für den mit den Gewichten $\frac{y s}{E F a^2}$ belasteten Träger bedeutet, auf welchen P wirkt, N denselben Ausdruck wie in den Gleichungen 13, 14 und 15 bereits festgelegt, nur über alle Öffnungen ausgedehnt. Damit ist die H-Linie für eine über die ganze Brücke marschierende Einzellast P gegeben, sie hat in jeder Öffnung dasselbe Vorzeichen.

Aus der H-Linie werden die Einflusslinien für die Momente wieder nach Fig. 17 abgeleitet, und ist dieselbe in Figur 26 für eine untere Gurtung der zweiten Öffnung dargestellt.

Infolge Temperaturveränderung erhält man:

Der Nenner bleibt derselbe wie bei Gleichung 50, im Zähler genügt es wieder, nur die Kettenstäbe und die Hängestangen in Betracht zu ziehen. Im Zähler und Nenner kommen sämtliche Öffnungen zum Ausdruck.

Wie aus dem Nachsatze zu Gleichung 50 ersichtlich ist, wird H mit der Zahl der Öffnungen immer kleiner. Sind alle Öffnungen gleich, und vernachlässigt man die Ankerstäbe, so wird bei n Öffnungen der Nenner N nmal so gross wie bei einer Öffnung und man erhält den Satz:

> Bei ngleichen Öffnungen ist der Horizontalzug gleich dem nten Teil des Horizontalzuges bei einer Öffnung.

Vierter Abschnitt. 2b) Ermittelung der H-Linie etc. 2c) Annäherungsmethode.

Für Temperatur dagegen, Gleichung 51, wachsen Zähler und Nenner bei gleichen Öffnungen stets um gleich viel. Also:

> Für Temperatur ist bei n gleichen Öffnungen der Horizontalzug gleich demjenigen für eine Öffnung.

Sinkt aber der Horizontalzug H, so wird auch seine Wirkung auf die Momente der Stäbe kleiner und die einzelnen Versteifungsträger wirken mehr wie frei aufliegende Träger.

Bei sehr grosser Zahl der Öffnungen verschwindet zuletzt H und man hat nur noch einzelne frei aufliegende Balken. Die Temperaturwirkung allein erinnert dann noch daran, dass man es mit einem statisch unbestimmten System zu tun hat.

Totalbelastung geht selbstverständlich auch hier nahezu ganz an die Kette (die einzelnen H-Flächen addieren sich in ihrer Wirkung), ebenso ist dies mit Eigenlast der Fall.

Das System verhält sich ganz analog wie mehrere hintereinander geschaltete Zweigelenkbogen, deren zusammenstossende Kämpfer auf Rolllagern liegen. Hierüber ist schon mehrfach geschrieben¹) und hervorgehoben worden, dass es nötig ist, die Trägerhöhe so gross als möglich zu wählen, um dem Anwachsen der Grösstmomente entgegenzutreten.

Figur 26 lässt erkennen, wie die Lasten verteilt sein müssen, um positive und negative Grösstmomente zu erzeugen. Gewöhnlich erzeugt Totalbelastung der Öffnung, in welcher sich der Stab befindet, das grösste positive Moment, während die Belastung aller anderen Öffnungen das grösste negative Moment erzeugt. Es entsteht also ein viel grösserer Wechsel der Spannungen als bei einer Öffnung, und weisen solche Brücken, wenn die Versteifungsträger nicht sehr grosse Widerstandsmomente besitzen, sehr grosse Beweglichkeit auf, sie schwingen stark.

Besteht die Brücke aus einer grossen Mittelöffnung und zwei halb so grossen Aussenöffnungen, so dass der Pfeil der letzteren ¹/₄ vom Pfeil der Mittelöffnung ist, so wirkt die Mittelöffnung nicht viel anders als wie eine Einzelöffnung mit langen Verankerungen, während die Aussenöffnungen nahezu wie frei aufliegende Träger wirken.

c) Annäherungsmethode.

Es ist, wie unter 1. g) für eine Öffnung gezeigt, auch bei mehreren Öffnungen möglich, eine Annäherungsmethode zu finden, um sofort die Kurven der Maximal- und Minimalmomente und diejenigen der grössten und kleinsten Querkräfte aufzuzeichnen.

Ohne Berücksichtigung der Kettendehnung erhält die Reaktionsbelastung zwischen Kette und Fachwerk den Wert r' nach Gleichung 18a und 19. Es handelt sich also nur noch darum, den Verteilungsfaktor β für jede Öffnung zu bestimmen. β ist für jede Öffnung anders und ist neben dem Trägheitsmoment des Versteifungsträgers namentlich das Pfeilverhältnis der Kette massgebend.

 Siehe z. B. Bohny, Der kontinuierliche Zweigelenkbogen. Zeitschrift deutscher Ingenieure 1896, Nr. 43, S. 1249-1254.

Einfach statisch unbestimmte Hängebrücken. 2. Brücke mit mehreren Öffnungen.

Für eine Parabel, deren Endpunkte nicht auf derselben Horizontalen liegen (Fig. 27), ist allgemein:

$$y = \frac{h \cdot x}{l} + \frac{4 f x (l - x)}{l^2}$$
$$\frac{d y}{d x} = \frac{h + 4 f}{l} - \frac{8 f x}{l^2}.$$

Die Länge eines Kettenelementes ist also:

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

und für flache Parabeln angenähert:

$$ds = 1 + \frac{1}{2} \left(\frac{dy}{dx} \right)^{2}$$

Setzt man hierin den Wert von $\frac{d y}{d x}$, so erhält man nach Ausführung der Integration und nach Einsetzen der Grenzwerte für x, nämlich 0 und 1, die Länge der Parabel zu:

$$s = l + \frac{h^2}{2l} + \frac{8 f^2}{3l} \dots \dots \dots \dots \dots \dots \dots \dots 52.$$

wie schon früher angegeben.

Es befinde sich nun (Fig. 28) in irgend einer Öffnung eine Belastung, z. B. in der nten und die von ihr nach Gleichung 19 ermittelte gleichwertige, gleichförmig verteilte Belastung sei rn', dann lässt sich β_n am einfachsten aus der Bedingung berechnen, dass die Summe der Stützweitenänderungen über die ganze Brücke gleich Null sein muss:

Die Dehnung der Rückankerketten soll dabei der Einfachheit halber und als von nicht sehr bedeutendem Einfluss, vernachlässigt werden.

Aus Gleichung 52 wird zunächst, beide Seiten mit 1 multipliziert und die Grössen, welche sich ändern können, durch geänderte Werte:

$$s = s + ds$$

$$l = l + dl$$

$$f = f + df \text{ ersetzt:}$$

$$(l + dl) (s + ds) = \left(l^2 + 2l dl + dl^2 + \frac{h^2}{2}\right) + \frac{8}{3}(f^2 + 2f df + df^2)$$
Vernachlässigung der kleinsten Glieder:

und mit

 $1 d s + s d l = 2 1 d l + \frac{16}{3} f d f$

Vierter Abschnitt. 2c) Annäherungsmethode.

woraus die Beziehung zwischen dl und df wird:

Nun ist der Horizontalzug allgemein:

$$\mathbf{H} = \frac{\mathbf{r}\,\mathbf{l}^2}{8\,\mathbf{f}}$$

und damit

$$d s = \frac{H \cdot s}{E' F}$$

 $(F = Kettenquerschnitt im Scheitel, bei Seilen ist F_{s_i}$ von Seite 30 einzusetzen). Die Scheitelbewegung in den verschiedenen Öffnungen ist:

$$\mathrm{d}\,\mathrm{f} = -\frac{5}{384} \cdot \frac{\mathrm{r_n}\,\mathrm{l}^4}{\mathrm{E}\,\mathrm{J}}$$

für die Öffnungen ohne Lasten und:

$$df = -\frac{5}{384} \frac{r_n l_n^4}{E J_n} + \frac{5}{384} \frac{r_n' l_n^4}{E J_n}$$

für die n te Öffnung.

 $(J = Trägheitsmoment der Versteifungsträger der einzelnen Öffnungen, <math>J_n = Trägheitsmoment des Trägers der nten Öffnung).$

Diese Werte in Gleichung 54 eingesetzt, ebenso der Wert von d.s., und über alle Öffnungen summiert wird endlich:

$$\Sigma \frac{l\frac{H}{E}s + \frac{16}{3}f\frac{5}{384}\frac{r_{n}l^{4}}{EJ}}{2l - s} + \frac{l_{n}\frac{H}{E}s_{n}}{2} + \frac{l_{n}\frac{H}{E}s_{n}}{2} + \frac{16}{3}f_{n}\frac{5}{384}\frac{l_{n}^{4}}{EJ_{n}}(r_{n} - r_{n})}{2l_{n} - s_{n}} = 0,$$

wobei das Summationszeichen vom ersten Summanden alle Öffnungen mit Ausnahme der nten umfasst. Oder:

$$\Sigma \frac{1 \text{H s}}{\text{E'F}(2 \text{ l} - \text{s})} + \frac{5}{72} \Sigma \frac{f \text{ l}^4}{\text{E}} \frac{1}{2}}{\text{E}} = \frac{5}{72} \frac{f_n \text{ l}_n^4 \text{ r}_n^2}{\text{E}} J_n(2 \text{ l} - \text{s})},$$

wobei die S über alle Öffnungen sich erstrecken. Also:

$$\mathbf{H} = \frac{\frac{5}{72} \cdot \frac{\mathbf{r_n}^2 \mathbf{f_n} \mathbf{l_n}^4}{\mathbf{\Sigma} \left\{ \frac{1 \, \mathbf{s}}{\mathbf{E}^2 \, \mathbf{F} \, (2 \, \mathbf{1} - \mathbf{s})} \right\} + \frac{5}{9} \, \mathbf{\Sigma} \left\{ \frac{\mathbf{f}^2 \, \mathbf{l}^2}{\mathbf{E} \, \mathbf{J} \, (2 \, \mathbf{1} - \mathbf{s})} \right\}} = \frac{\frac{5}{72} \frac{\mathbf{r_n}^2 \mathbf{f_n} \mathbf{l_n}^4}{\mathbf{\Sigma} \left\{ \frac{1 \, \mathbf{s}}{\mathbf{E} \, \mathbf{J} \, (2 \, \mathbf{1} - \mathbf{s})} \right\}}}{\mathbf{N}}.$$

H ist aber für die vorliegende Belastung:

$$H = \frac{r_n l_n^2}{8 f_n} = \frac{\beta_n r_n^2 l_n^2}{8 f_n},$$

woraus endlich wird:

$$\beta_{n} = \frac{\frac{5}{9} \frac{f_{n}^{2} l_{n}^{2}}{E J_{n} (2 l_{n} - s_{n})}}{N}$$

55.

Sind alle Öffnungen gleich gross und ihre Zahl n, so wird:

$$\beta' = \frac{\frac{5}{9} \frac{1}{E J (21 - s)}}{\frac{n l s}{E' F (21 - s)} + \frac{5 n}{9} \frac{f^2 l^2}{E J (21 - s)}} = \frac{1}{n + n \frac{l s 9 E J}{E' F 5 f^2 l^2}}$$

Einfach statisch unbestimmte Hängebrücken. 2. Brücke mit mehreren Öffnungen.

eine Formel, welche derjenigen von β in Gleichung 25 a ähnlich ist, nur dass der Nenner rund nfach grösser wird, so dass β ' nfach kleiner wird als β . Man erhält also auch hier wieder das Resultat, dass bei ngleichen Öffnungen nur der nte Teil der Reaktionslast bei einer Öffnung an die Kette geht.

Ist nun für irgend eine Einzellast P in der n ten Öffnung der Wert r_n ' berechnet und daraus die Reaktionslast $r_n = \beta_n r_n$ ', so ist die Momentenfläche für diese Last gefunden. Es ist (Fig. 29a),

$$M_{n} = \frac{r_{n} l_{n}^{2}}{8}$$
$$M_{P} = \frac{P \cdot b \cdot a}{l_{n}}$$

und für alle übrigen Öffnungen

$$\mathbf{M}_{\max} = \frac{\mathbf{r}_n \, \mathbf{l}^2}{8}.$$

Die Querkraftsfläche ergibt sich analog (Fig. 29b):

$$A_{n} = \frac{P b}{l} - \frac{r_{n} l_{n}}{2}$$
$$B_{n} = \frac{P a}{l} - \frac{r_{n} l_{n}}{2}$$

und für alle übrigen Öffnungen

$$\mathbf{A} = \mathbf{B} = \frac{\mathbf{r_n} \, \mathbf{l}}{2}.$$

Würde man auf diese Weise für die wandelnde Einzellast P alle Momente und Querkraftsflächen konstruieren, so könnten durch algebraische Addition der Ordinaten die Maxima und Minima für Verkehrslast gefunden werden. Man kann aber wieder viel einfacher vorgehen und die Formeln 29, 31, 33, 34 und 35 benutzen. Das heisst, man behandle die in Betracht gezogene Öffnung wie eine abgesonderte Einzelöffnung und

addiere nachher den Einfluss aller übrigen Öffnungen. Letzterer Einfluss wird bei den Momenten dargestellt durch eine Parabel mit der Pfeilhöhe $\frac{1}{8}$ p $l_n^2(\beta_1 + \beta_2 + ...)$, wobei der Klammerausdruck die β aller Öffnungen ausser der nten enthält, welche in Be-

tracht gezogen wurde. Die Werte der Parabel sind negativ. Bei den Querkräften ist der Einfluss gleich einer Geraden mit einer Ordinate an den Enden von $\frac{1}{2}$ p l_n ($\beta_1 + \beta_2 + \ldots$). Die Werte sind links der Mitte abwärts, rechts der Mitte aufwärts gerichtet.

Da die β mit der Zahl der Öffnungen abnehmen, so wird der Wert u von Fig. 20 und 21 immer grösser, und die Minimalmomente für Lasten in der Öffnung selbst verschwinden immer mehr. Die positiven Momente der Lasten überwiegen und erreichen mit $\frac{1}{8}$ p l_n² (1 — β_n) eine dominierende Grösse. Statt der Kurven von Fig. 22 erhält man für Lasten in der Öffnung die in Fig. 30 dargestellten Maximal- und Minimalmomenten-Linien. Letztere sind zu ergänzen durch die bereits erwähnten Einflüsse aller übrigen Öffnungen. Analog ist es mit den Querkraftskurven. Die Werte Q₂, siehe Fig. 23, werden immer kleiner und verschwinden schliesslich ganz,

57.

während die Kurve $A_1 B$ der Q_1 sich immer mehr streckt und hebt und schliesslich bei $\beta = 0$ in die Winkler'sche Querkraftskurve (Parabel mit Scheitel in B) übergeht.

Bei Temperaturwirkung beträgt die Verlängerung der Kette in jeder Öffnung

$$ds = \tau s - \frac{H_{t.s}}{E'F}$$

ferner ist

$$df = \frac{5}{384} \cdot \frac{r_t \cdot l^4}{EJ}$$
, wobei $r_t = \frac{8 f H_t}{l^2}$.

Dies wieder in Gleichung 54 eingesetzt, gibt für jede Öffnung:

$$dl = \frac{l d s - \frac{16}{3} f d f}{2l - s} = \frac{l \tau s - \frac{H_t s l}{E' F} - \frac{16}{3} f \frac{5}{384} \frac{l^4}{E J} \cdot \frac{8 f H_t}{l^2}}{2l - s}$$

woraus nach der Bedingungsgleichung $\Sigma(dl) = 0$ wird:

$$\Sigma \frac{l \tau s}{(2 l - s)} = \Sigma \frac{H_t s l}{E' F (2 l - s)} + \frac{5}{9} \Sigma \frac{f^2 l^2 H_t}{E J (2 l - s)}$$

oder:

$$\mathbf{I}_{t} = \frac{\tau \Sigma \left(\frac{1 \, \mathrm{s}}{2 \, 1 - \mathrm{s}}\right)}{\Sigma \left\{\frac{1 \, \mathrm{s}}{\mathrm{E}^{2} \, \mathrm{F} \left(2 \, 1 - \mathrm{s}\right)}\right\} + \frac{5}{9} \Sigma \left\{\frac{\mathrm{f}^{2} \, \mathrm{I}^{2}}{\mathrm{E} \, \mathrm{J} \left(2 \, 1 - \mathrm{s}\right)}\right\}} = \frac{\tau \Sigma \left(\frac{1 \, \mathrm{s}}{2 \, 1 - \mathrm{s}}\right)}{\mathrm{N}}$$

Einfach statisch unbestimmte Hängebrücken. 2. Brücke mit mehreren Öffnungen.

und daraus:

$$r_t = \frac{8 f H_t}{12},$$

wobei immer zwei beliebige aber zusammengehörige Werte l und f einzuführen sind. r_t lässt sich noch etwas modifizieren, indem man für N den Wert aus Gleichung 55 einführt

$$\mathbf{r}_{t} = \frac{\frac{8 \mathrm{f} \tau}{l^{2}} \Sigma \left(\frac{l \mathrm{s}}{2 \mathrm{l} - \mathrm{s}}\right)}{\mathrm{N}} = \frac{\frac{8 \mathrm{f} \tau}{l^{2}} \Sigma \left(\frac{l \mathrm{s}}{2 \mathrm{l} - \mathrm{s}}\right) \beta_{\mathrm{n}}}{\frac{5}{9} \frac{\mathrm{f}_{\mathrm{n}}^{2} \mathrm{l}_{\mathrm{n}}^{2}}{\mathrm{E} \mathrm{J}_{\mathrm{n}} \left(2 \mathrm{l}_{\mathrm{n}} - \mathrm{s}_{\mathrm{n}}\right)}$$

und bei ngleichen Öffnungen:

welche Formel dem Werte von r_t (Gleichung 43) gleichkommt. Man sieht also auch hier, dass der Temperatureinfluss derselbe bleibt wie bei einer Öffnung.

Vom Eigengewicht geht g_1 ganz an die Kette. g_2 geht teils an die Kette, teils an die Träger, und beträgt die grösste Ordinate der Momentenparabel:

$$\frac{1}{\mathrm{S}}\left(1-\beta\right)\mathrm{g}_{2}\,\mathrm{l}^{2}$$

wie früher.

Die Querkraft verteilt sich nach einer geraden Linie mit den grössten Ordinaten an den Auflagern von:

$$(1-\beta) g_2 \frac{1}{2}$$

für l und β sind stets die zusammengehörigen Werte einer Öffnung einzusetzen.

Sonderfälle.

1. Für den sehr oft vorkommenden Fall mit drei Öffnungen, wo die Aussenöffnungen halb so gross sind als die Mittelöffnung (Fig. 31), lassen sich für die Werte β einfachere Ausdrücke finden.

Es ist:

$$\begin{array}{c} l_1 = l_3 = \frac{l}{2} \\ f_1 = f_3 = \frac{f}{4} \\ s_1 = s_3 = \frac{s}{2} \end{array} \right\}, \mbox{ fermer sei } J_1 = J_2 = J_3 = J. \label{eq:J1}$$

Mit diesen Werten ergibt sich für Lasten in der Mittelöffnung:

$$\beta_{2} = \frac{\frac{5}{9} \frac{f^{2} l^{2}}{E J (21 - s)}}{\frac{1}{E' F (21 - s)} + 2 \cdot \frac{\frac{1}{2} \cdot \frac{s}{2}}{E' F \left(2 \frac{1}{2} - \frac{s}{2}\right)} + \frac{5}{9} \frac{f^{2} l^{2}}{E J (21 - s)} + \frac{10}{9} \frac{\frac{f^{2} l^{2}}{16 \frac{1}{4}}}{E J \left(2 \frac{1}{2} - \frac{s}{2}\right)}$$

woraus nach längerer Ableitung wird:

Befindet sich eine Belastung in einer der Seitenöffnungen, so ist:

Für Temperaturwirkung wird:

$$H_{t} = \frac{\tau \cdot 2\left(\frac{ls}{2l-s}\right)}{N}$$

und für N den vorigen Wert eingesetzt:

2. Sind nur zwei Öffnungen vorhanden, bei welchen jede Öffnung einer Nebenöffnung des vorigen Falles entspricht (Fig. 32), also:

$$\begin{array}{c} l_{1} = l_{2} = \frac{1}{2} \\ f_{1} = f_{2} = \frac{f}{4} \\ s_{1} = s_{2} = \frac{s}{2} \end{array} \right\} J_{1} = J_{2} = J,$$

so wird für Belastung der einen oder anderen Öffnung:

$$\beta_{1} = \beta_{2} = \frac{\frac{5}{9} \frac{\frac{1}{16} \cdot \frac{1^{2}}{4}}{E J \left(2\frac{1}{2} - \frac{s}{2}\right)}}{2 \cdot \frac{\frac{1}{2} \cdot \frac{s}{2}}{E^{2} F \left(2\frac{1}{2} - \frac{s}{2}\right)} + \frac{10}{9} \frac{\frac{1}{16} \frac{1^{2}}{4}}{E J \left(2\frac{1}{2} - \frac{s}{2}\right)}} = \frac{\frac{5}{576 E J}}{\frac{1s}{2E^{2} F} + \frac{10}{576 E J}}$$
$$\beta = \frac{1}{2 + 57, 6 \frac{E J}{E^{2} F} \frac{s}{f^{2}}} + \frac{10}{2} + \frac{10}{576 E J} + \frac{10}{576 E J}$$

und für Temperaturwirkung:

$$H_t = \frac{\tau l s}{2 N}$$

Einfach statisch unbestimmte Hängebrücken. 2. Brücke mit mehreren Öffnungen.

oder, den Wert von N ersetzt:

Da das erste Glied im Nenner gegenüber dem zweiten sehr klein wird, so ist ersichtlich, dass H_t für das System mit zwei Öffnungen, nach Fig. 32, etwa 8 mal so gross wird wie für das System mit drei Öffnungen nach Fig. 31.

d) Hängende kontinuierliche Fachwerke.

Kontinuierliche Hängefachwerke entstehen durch Aneinanderreihen von mehreren Öffnungen nach Fig. 24. In jeder Öffnung ruhen die Fachwerke auf horizontalen Lagern, deren Reaktionen sich mit den darüber liegenden Kettenstäben zur Gesamtreaktion vereinigen (Fig. 33). In jeder Öffnung wirkt also der Träger wie ein umge-

kehrter Zweigelenkbogen und ist nach dessen Theorie zu berechnen. Die statisch unbestimmte Grösse ist der Horizontalzug der Kette, welcher von dem elastischen Verhalten aller Öffnungen abhängig ist.

Es ist:

$$\mathbf{H} = \frac{\mathbf{M}_{\omega}}{\mathbf{N}}.$$

Man lasse also wieder die elastischen Gewichte $\omega = \frac{y s}{E F \cdot a^2}$ in jeder Öffnung als Gewichte wirken und bestimme mit denselben die Momente M_{ω}. Diese dividiere man dann durch N, wobei:

$$\mathbf{N} = \Sigma \frac{\mathbf{y}^2 \mathbf{s}}{\mathbf{E} \mathbf{F} \mathbf{a}^2} + \Sigma \frac{\mathbf{s} \sec \alpha^2}{\mathbf{E} \mathbf{F}}.$$

bedeutet.

Der erste Summand von N umfasst sämtliche Stäbe der Träger, der zweite die beiden Rückankerungsstäbe und die Anschlussstäbe an die Auflager auf den Pylonen. Bohny, Hängebrücken. 4

Vierter Abschnitt. 2d) Hängende kontinuierliche Fachwerke.

Zur Konstruktion der Momenten- und D-Flächen ist nichts Neues hinzuzufügen. Für Temperatur wird:

$$\mathbf{H}_{\mathrm{t}} = -\frac{\tau \Sigma \mathrm{K} \mathrm{s}}{\mathrm{N}}$$

K = Kräfte für H = 1.

Durch einen Schritt weiter gelangt man noch zum kontinuierlichen Girlandenträger.

Als Girlande mit parallelen Gurten existieren verschiedene Beispiele, und sei hier als solches zuerst die Grand Avenue-Brücke in St. Louis angeführt (Fig. 34).

Grand Avenue-Bridge in St. Louis.

Fig. 34.

Diese Brücke führt über die Geleise, welche in St. Louis zur Union Station gehen und wurde 1889 von Stadtingenieur Karl Gayler (einem Württemberger) erbaut. Die Brücke macht einen äusserst gefälligen Eindruck.

Ein weiteres hübsches Beispiel ist die in Pittsburg über den Allegheny führende North Side-Brücke, 1884 von G. Lindenthal erbaut. Diese Brücke besitzt zwei grosse Öffnungen von je 100,5 m Spannweite, zwei halb so grosse Seitenöffnungen von je 50,3 m und eine Endöffnung (einfacher Parallelträger) von 27,5 m Stützweite. Die Gesamtlänge der Brücke beträgt somit 329,1 m. Die Gurten werden vorwiegend auf Zug in Anspruch genommen und bestehen deshalb ausschliesslich aus Augenstäben. Die Höhe der Träger (Entfernung der beiden Kettengurte) ist ¹/³² der Stützweite einer Hauptöffnung. Auch diese Brücke sieht äusserst zierlich aus; leider ist sie aber schon sehr stark überlastet, so dass sie beständig schwankt und es nur eine Frage der Zeit sein wird, dass sie wie die Pointbrücke umgebaut werden muss.

Projekt Harkort für eine zweite feste Rheinbrücke in Köln.

Als modernes Beispiel einer kontinuierlichen Girlandenbrücke mit drei Öffnungen und mit nach den Pylonen etwas zunehmender Trägerhöhe sei der Entwurf der Firma Harkort für eine zweite feste Rheinbrücke in Köln angeführt. Die Gesamt-

anordnung des Entwurfes mit den hauptsächlichsten Massen zeigt Fig. 35, während in Fig. 36 einige charakteristische Einflusslinien zusammengestellt sind¹), nämlich:

Die H-Linie			a.
Die P-Linie (Auflagerdruck auf den Pylonen) .			b.
Die C-Linie (Auflagerdruck am Widerlager)			с.
Die Einflusslinie einer Gurtung der Aussenöffnung	5	•	d.
Desgleichen einer Diagonale der Aussenöffnung			e.
Desgleichen einer Gurtung der Mittelöffnung .			f.
Desgleichen einer Diagonale der Mittelöffnung .			g.

Wie man sieht, stimmen die Kurven in ihrer Form mit den entwickelten Leitsätzen über die Konstruktion der Einflusslinien vollständig überein.

4*

¹) Skizze und Berechnungsresultate sind einer kleinen Reklameschrift entnommen, welche die Firma Harkort anlässlich der Düsseldorfer Industrie- und Gewerbeausstellung 1902 herausgegeben hat. Siehe auch Handbuch der Ing. Wissensch., II. Teil, Brückenbau, 1904, Bd. I, S. 106/107.

V. Mehrfach statisch unbestimmte Hängebrücken.

1. Allgemeines.

Mehrfach statisch unbestimmte Systeme unterscheiden sich von den im vorigen Abschnitt behandelten einfach statisch unbestimmten Systemen hauptsächlich in der Anordnung der Versteifungsträger. An Stelle der einfachen frei aufliegenden Träger oder Balken als versteifender Teil der flexiblen Kette treten statisch unbestimmte Träger, elastische Bogen oder kontinuierliche Balken. Namentlich die Verwendung letzterer bei mehreren hintereinander geschalteten Öffnungen liegt nahe und ist daher schon vielfach vorgeschlagen, in einzelnen Fällen auch ausgeführt worden. Man glaubt mit einem durchgehenden Versteifungsträger den bei mehreren Öffnungen entstehenden grossen Durchund Aufbiegungen besser begegnen zu können als bei Einzelträgern, vielleicht auch etwas Materialersparnis zu erzielen.

Neben diesen schon früher bekannten Systemen haben die verschiedenen grossen Brückenkonkurrenzen in den letzten zehn Jahren mehrere Vorschläge für Hängebrücken gezeugt, welche neue, zum Teil ganz eigenartige Ideen aufweisen und von welchen die hauptsächlichsten hier näher in Betracht gezogen werden mögen.

Die ausführlichste theoretische Arbeit über Hängebrücken mit mehreren Öffnungen und durchlaufenden Versteifungsbalken hat Müller-Breslau in seiner neuesten Auflage vom II. Band der Graphischen Statistik geleistet¹) und damit die früheren Ausgaben dieses Buches in wertvollster Weise ergänzt. Müller-Breslau macht dabei vor allem Gebrauch von dem von ihm zuerst aufgestellten äusserst wichtigen Satze vom Biegungspolygon, welcher lautet: "Bewegt sich über den Träger eine Last 1, so stimmt die Einflusslinie für den Ausdruck $\Sigma S_0 K \frac{s}{EF}$ mit dem für den Belastungszustand X²=1 berechneten Biegungspolygon überein²)." X² = unbekannte Grösse; S₀ = Stabkräfte für X² = 0; K = Stabkräfte für X² = 1 (siehe hierzu auch Abschnitt IV, 1. c, Seite 21/22). In der folgenden Behandlung der mehrfach statisch unbestimmten Hängebrückensysteme wurde vielfach dieser Satz von der Biegungslinie benützt, während im allgemeinen nach Mohr vorgegangen wurde.

2. Hängebrücken mit mehreren Öffnungen und kontinuierlichem Versteifungsträger.

Die Zahl der statisch unbestimmten Grössen ist gleich der Zahl der Auflager vom Träger weniger eins oder gleich der Zahl der Öffnungen. Als Unbekannte werden gewöhnlich der Horizontalzug der Kette eingeführt, ferner die überzähligen Stützendrücke vom Träger.

a) Brücke mit zwei Öffnungen.

Gegeben das zur Pylonenmitte symmetrisch ausgebildete System mit durchlaufendem Versteifungsträger $A_1 B_1 C_1$ (Fig. 37). Die überzähligen oder statisch unbestimmten Grössen seien der Horizontalzug H der Kette und der Auflagerdruck B der Mittelstütze B_1 . Dann ist die Kraft in irgend einem Stabe:

$$\mathbf{S} = \mathbf{S}_{o} + \mathbf{H} \cdot \mathbf{K} + \mathbf{B} \mathbf{K}_{1},$$

¹⁾ Müller-Breslau II, 3. Aufl., Leipzig 1903.

²⁾ Siehe Müller-Breslau. Neuere Methoden der Festigkeitslehre, 2. Aufl., S. 45.

Mehrfach statisch unbestimmte Hängebrücken. 2. Brücke mit kontinuierlichem Versteifungsträger. 53

wobei S_o die Stabkraft im statisch bestimmten Grundsystem, also im frei aufliegenden Träger $A_1 C_1$ ohne Mittelstütze bedeutet, ferner:

K die Stabkraft in diesem Träger für H = 1

 K_1 die Stabkraft in diesem Träger für B = 1.

Die Längenänderung des Stabes infolge von S ist:

 $\Delta s = \frac{S_o s}{E F} + H \frac{K s}{E F} + B \frac{K_1 s}{E F}$

ferner bestehen nach Mohr die Grundgleichungen:

$$\sum K \Delta s = 0$$

$$\sum K_1 \Delta s = 0,$$

also erhält man die Bedingungsgleichungen:

$$\Sigma S_{o} K \frac{s}{EF} + H \Sigma K^{2} \frac{s}{EF} + B \Sigma K K_{1} \frac{s}{EF} = 0$$

$$\Sigma S_{o} K_{1} \frac{s}{EF} + H \Sigma K K_{1} \frac{s}{EF} + B \Sigma K_{1}^{2} \frac{s}{EF} = 0$$

aus welchen sich für eine wandelnde Einzellast oder für irgend eine andere Laststellung die beiden Unbekannten H und B ermitteln lassen. K und K_1 sind feste, nur von der Form des Systems abhängige Grössen, die sich leicht ermitteln lassen, S_o ändert sich mit jeder neuen Belastung. Die Durchführung einer Berechnung nach dieser Methode ist einfach, wenn auch etwas umständlich. Man kommt dabei sicher zum Ziel und erhält bei genauer Ermittelung der Einzelwerte richtige Schlussresultate. Einfacher lassen sich die Einflusslinien von H und B finden, wenn man nach Müller-Breslau mit Biegungslinien vorgeht. Aus der Gleichung 64 ergibt sich für H zunächst folgender Wert:

$$H = \frac{-\Sigma S_{o} K_{1} \frac{s}{EF} - \Sigma S_{o} K \frac{s}{EF} \cdot \frac{\Sigma K_{1}^{2} \frac{s}{EF}}{\Sigma K K_{1} \frac{s}{EF}}}{\Sigma K K_{1} \frac{s}{EF} - \Sigma K^{2} \frac{s}{EF} \cdot \frac{\Sigma K_{1}^{2} \frac{s}{EF}}{\Sigma K K_{1} \frac{s}{EF}}}$$

$$H = \frac{-\Sigma S_{o} K_{1} \frac{s}{EF} - \Sigma S_{o} K \frac{s}{EF} \cdot \alpha}{N} \cdot \dots \cdot \dots \cdot 65.$$

Die Einzelwerte der Summen im Zähler findet man aus den Betrachtungen der Fig. 37 a, b und c, in welchen die Belastungen des Trägers einzeln dargestellt sind.

Aus Fig. 37 a ist zunächst im Schnitt C:

$$S_o = + \frac{P b x}{2 l_1 h} = + \frac{b x}{2 l_1 h}$$

h = konstante Fachwerkshöhe.

Weiter ist aus Fig. 37b der Einfluss von H = 1 ersichtlich. Derselbe ist einer nach oben wirkenden gleichförmig verteilten Belastung gleich von der Grösse $p = \frac{8 f}{l^2}$ oder $(l = l_1 \text{ gesetzt}) p = \frac{8 f}{l_1^2}$. Die Momentenfläche ist eine Parabel mit der grössten Ordinate.

$$M_{\max} = -\frac{8 f}{l_1^2} \cdot \frac{(2 l_1)^2}{8} = -4 f.$$

Im Schnitt C wird $M_{\rm H} = -\eta$ und daraus:

$$\mathbf{K} = -\frac{\eta}{\mathbf{h}}.$$

Endlich ergibt Fig. 37 c den Einfluss von B = 1. Die Momentenfläche ist ein Dreieck von der Höhe $\frac{1}{2}l_1$ und unter Schnitt C hat das Moment den Wert:

$$\mathbf{M}_{\mathrm{B}} = -\eta_{1} = -\frac{\mathbf{x}}{2}$$

woraus wird

$$\mathbf{K}_{1} = -\frac{\eta_{1}}{\mathbf{h}} = -\frac{\mathbf{x}}{2\,\mathbf{h}}.$$

Aus den drei Werten für S_o , K und K_1 ergeben sich nun die Summenausdrücke im Zähler von Gleichung 65 zu:

$$-\Sigma S_0 K_1 \frac{s}{EF} = +\Sigma \frac{b x}{2 l_1 h} \cdot \frac{\eta_1}{h} \cdot \frac{s}{EF} = \Sigma \frac{b x}{2 l_1} \cdot \frac{\eta_1 s}{EF \cdot h^2},$$

was gleichbedeutend ist mit der Summe der Momente der Lasten $\frac{\eta_1 s}{E F h^2}$ (elastische Gewichte) unter der Last P, oder gleich der Biegungslinie des Trägers A₁ C₁ für den Belastungszustand B = 1. Mehrfach statisch unbestimmte Hängebrücken. 2. Brücke mit kontinuierlichem Versteifungsträger. 55

Für den zweiten Ausdruck in Gleichung 65 erhält man:

$$-\Sigma \operatorname{S}_{\mathsf{o}} \operatorname{K} \cdot \frac{\operatorname{s}}{\operatorname{EF}} = + \Sigma \frac{\operatorname{b} \operatorname{x}}{2 \operatorname{l}_{1} \operatorname{h}} \cdot \frac{\eta}{\operatorname{h}} \cdot \frac{\operatorname{s}}{\operatorname{EF}} = \Sigma \frac{\operatorname{b} \operatorname{x}}{2 \operatorname{l}_{1}} \cdot \frac{\eta \operatorname{s}}{\operatorname{EF} \operatorname{h}^{2}},$$

was gleich ist der Summe der Momente der Lasten $\frac{\eta s}{E F h^2}$ unter der Last P oder gleich der Biegungslinie des Trägers A₁ C₁ für den Belastungszustand H = 1.

Seien die Ordinaten der beiden Biegungslinien unter P gemessen gleich δ_1 und δ , so geht Gleichung 65 über in:

Es lässt sich also H in einfachster Weise durch Konstruktion zweier Biegungspolygone finden. In gleicher Weise lässt sich natürlich eine Gleichung für den Stützdruck B aufstellen und die Einflussfläche für diese Unbekannte finden.

Es ist nun leicht einzusehen, dass man die H-Linie auch direkt mit einem Biegungspolygon finden kann, wenn man die beiden Momentenflächen von Fig. 37b und c in richtiger Weise (entsprechend Gleichung 66) addiert. Der Träger verbleibt alsdann ein kontinuierlicher Balken auf drei Stützen unter dem Einfluss von H = 1. Nimmt man noch ein mittleres Trägheitsmoment des Trägers an, so ist die Momentenfläche desselben ohne weiteres gegeben. Jede Hälfte des Trägers ist ein bei B₁ eingespannter, und an den Enden frei aufliegender Balken (Fig. 38), von welchem das Moment an der Einspannstelle wird:

$$\mathbf{M}_{\mathbf{B}_{1}} = \frac{\mathbf{p} \, \mathbf{l}_{1}^{2}}{8} = \frac{8 \, \mathbf{f}}{\mathbf{l}_{1}^{2}} \cdot \frac{\mathbf{l}_{1}^{2}}{8} = \mathbf{f},$$

während in Öffnungsmitte wird:

$$M = \frac{p l_1^2}{16} = \frac{f}{2}$$

d. h. die Momentenfläche hat die in Fig. 38 a dargestellte Gestalt. Sie besteht aus einem Dreieck mit der Höhe f, von welchem sich zwei Parabeln gleich dem Kettendurchhang subtrahieren. Die für diese Momentenlasten ermittelte Biegungslinie ist der Einflusslinie für H proportional.

An irgend einer Stelle C des Versteifungsträgers ist das Moment:

$$M = M'_o + H \cdot \eta_2$$

wobei M'o das Moment des einfach statisch unbestimmten und nicht an der Kette hängenden Trägers auf drei Stützen bedeutet.

Die H-Linie ist in Fig. 38b dargestellt. Sie enthält zwei Wendepunkte, welche unter den Nullpunkten der Momentenfläche liegen.

Die B-Linie ist in Fig. 38c dargestellt.

Bei Temperaturänderungen beträgt die Stabkraft:

$$\mathbf{S} = \mathbf{H}_{\mathbf{t}} \cdot \mathbf{K} + \mathbf{B}_{\mathbf{t}} \cdot \mathbf{K}_{\mathbf{1}},$$

und die Stabverlängerung ist:

$$\varDelta \mathbf{s} = \mathbf{H}_{\mathbf{t}} \mathbf{K} \frac{\mathbf{s}}{\mathbf{E} \mathbf{F}} + \mathbf{B}_{\mathbf{t}} \mathbf{K}_{\mathbf{1}} \frac{\mathbf{s}}{\mathbf{E} \mathbf{F}} + \mathbf{\tau} \mathbf{s}.$$

Hieraus ergeben sich die Bedingungsgleichungen:

$$\begin{array}{c|c} H_{t} \Sigma K^{2} \frac{s}{E F} + B_{t} \Sigma K K_{1} \frac{s}{E F} + \tau \Sigma K s = 0 \\ H_{t} \Sigma K K_{1} \frac{s}{E F} + B_{t} \Sigma K_{1}^{2} \frac{s}{E F} + \tau \Sigma K_{1} s = 0 \end{array} \right| \qquad (67)$$

Aus diesen findet man in einfachster Weise die Werte Ht und Bt.

b) Brücke mit drei Öffnungen.

Das in Fig. 39 dargestellte, zur Mitte der Mittelöffnung symmetrisch angeordnete System ist dreifach statisch unbestimmt und seien die statisch unbestimmten Grössen zunächst wieder der Horizontalzug H der Kette und die Auflagerdrücke B und C der Stützen bei B_1 und C_1 . Das Pfeilverhältnis ist gegeben durch die Gleichung:

$$f = f_1 = f_2 \frac{l^2}{l_2^2}.$$

Es ist nun wieder allgemein:

$$S = S_o + H \cdot K + B K_1 + C K_2,$$

wobei bedeutet:

 S_o die Stabkraft im statisch bestimmten System, oder im frei aufliegenden Träger von der Stützweite $A_1 D_1$,

- K die Stabkraft in diesem Träger für H = 1,
- K_1 desgleichen für B = 1,
- K_2 desgleichen für C = 1.

 K_1 und K_2 sind aus Symmetriegründen nur einmal zu ermitteln, da für die linke Trägerhälfte die K_1 gleich sind den K_2 der rechten Trägerhälfte und umgekehrt. Stellt man für die Stabverlängerung durch S die Mohr'schen Grundgleichungen auf, so erhält man:

$$\begin{split} \Sigma S_{0} K \frac{s}{EF} + H \Sigma K^{2} \frac{s}{EF} + B \Sigma K K_{1} \frac{s}{EF} + C \Sigma K K_{2} \frac{s}{EF} = 0 \\ \Sigma S_{0} K_{1} \frac{s}{EF} + H \Sigma K K_{1} \frac{s}{EF} + B \Sigma K_{1}^{2} \frac{s}{EF} + C \Sigma K_{1} K_{2} \frac{s}{EF} = 0 \\ \Sigma S_{0} K_{2} \frac{s}{EF} + H \Sigma K K_{2} \frac{s}{EF} + B \Sigma K_{1} K_{2} \frac{s}{EF} + C \Sigma K_{2}^{2} \frac{s}{EF} = 0 \end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

$$\end{split}$$

Mehrfach statisch unbestimmte Hängebrücken. 2. Brücke mit kontinuierlichem Versteifungsträger. 57

und ist damit die allgemeine Lösung der Aufgabe, die auch bei unsymmetrischer Trägeranordnung gilt, gegeben. Bei symmetrischer Anordnung hat man dabei die Vereinfachung, dass

$$\Sigma K_1^2 \frac{s}{EF} = \Sigma K_2^2 \frac{s}{EF}$$
$$\Sigma K K_1 \frac{s}{EF} = \Sigma K K_2 \frac{s}{EF}$$

ist, aber auch mit derselben ist die Lösung der Aufgabe nach den Gleichungen 68 eine weitläufige und grosse Arbeit.

Dabei erheischt die Bildung der Summenausdrücke grösste Genauigkeit, da sonst leicht ungenaue, ja ganz unrichtige Resultate sich ergeben können.

Es ist deshalb zweckmässig, die Wahl der Unbekannten so zu ändern, dass die Symmetrieverhältnisse des Systems besser ausgenützt werden, was wie folgt geschehen kann.

Die erste Unbekannte sei wie vor der Horizontalzug H der Kette. Die zweite Unbekannte sei die Querkraft Q in der Mitte des Trägers (Fig. 39a), bezw. die Vertikalkomponente der daselbst zusammenstossenden Streben. Die dritte Unbekannte sei die Längskraft L daselbst, oder, was dasselbe ist, die Gurtkraft oder das Moment.

Die Anordnung in Trägermitte gestaltet sich dann wie in Fig. 39a näher dargestellt, und man kann sich leicht durch Auszählung der Trägerelemente (Stäbe, Knoten und Auflagerbedingungen) überzeugen, dass der Träger ohne Kette nunmehr wieder statisch bestimmt geworden ist. Mit den neuen Unbekannten erhalten die Bedingungsgleichungen 68 wieder dieselbe Form; beachtet man jedoch, dass die Unbekannte Q in der linken Trägerhälfte dieselben, aber entgegengesetzt gerichteten Kräfte K_1 erzeugt, wie in der rechten Trägerhälfte, während H und L links und rechts dieselben, aber gleich gerichteten Kräfte K und K_2 ergeben, so ist ohne weiteres klar, dass nun:

$$\Sigma \mathbf{K} \mathbf{K}_1 = 0$$
$$\Sigma \mathbf{K}_1 \mathbf{K}_2 = 0$$

ist und die Bedingungsgleichungen gehen in die Form über:

$$\Sigma S_{o} K \frac{s}{EF} + H \Sigma K^{2} \frac{s}{EF} + L \Sigma K K_{2} \frac{s}{EF} = 0$$

$$\Sigma S_{o} K_{1} \frac{s}{EF} + Q \Sigma K_{1}^{2} \frac{s}{EF} = 0$$

$$\Sigma S_{o} K_{2} \frac{s}{EF} + H \Sigma K K_{2} \frac{s}{EF} + L \Sigma K_{2}^{2} \frac{s}{EF} = 0$$
(69)

Man hat also nun, statt drei Gleichungen mit drei Unbekannten, eine Gleichung mit nur einer Unbekannten und zwei Gleichungen mit zwei Unbekannten. Aus der

einen Gleichung, der mittleren, kann Q sofort gefunden werden, während die erste und letzte Gleichung H und L liefern. Die Einflusslinien dieser Grössen sind in Fig. 39b, c und d einzeln dargestellt.

Man kann nun auch hier wieder mit Biegungslinien vorgehen und die H-Linie direkt finden. Für H = 1 steht der kontinuierliche Balken über vier Stützen (Fig. 40) unter dem Einfluss von aufwärts gerichteten Kräften

$$\mathbf{p} = \frac{8 \, \mathbf{f_2}}{\mathbf{l_2}^2} = \frac{8 \, \mathbf{f_1}}{\mathbf{l_1}^2}$$

und für eine solche Belastung erhält die Momentenfläche die in Fig. 40a dargestellte Gestalt. Der Wert c, das Moment unter der Mittelstütze, findet sich nach Clapeyron bei Voraussetzung konstanten mittleren Trägheitsmomentes des Balkens zu:

$$\mathbf{c} = -\frac{\mathbf{p}}{4} \frac{\mathbf{l_1}^3 + \mathbf{l_2}^3}{2\,\mathbf{l_1} + 3\,\mathbf{l_2}} = -\frac{2\,(\mathbf{f_1}\,\mathbf{l_1} + \mathbf{f_2}\,\mathbf{l_2})}{2\,\mathbf{l_1} + 3\,\mathbf{l_2}}.$$

Zeichnet man mit dieser Momentenfläche als Belastungsfläche ein Seilpolygon, so ist dasselbe die Einflusslinie von H (Fig. 40b). Sie Mehrfach statisch unbestimmte Hängebrücken. 2. Brücke mit kontinuierlichem Versteifungsträger. 59

kann, wie leicht einzusehen ist, bei grösser werdenden Aussenöffnungen gegen die Endauflager zu wieder positiv werden. Die Zahl der Wendepunkte ist 4.

Für irgend eine Stelle C ist wieder das Moment des Versteifungsträgers

$$M = M_o^{2} + H_{.} \eta$$

wobei Mo' das Moment des zweifach statisch unbestimmten und nicht mit der Kette verbundenen Trägers auf 4 Stützen bedeutet.

Bei Temperaturänderungen erhält man die Bedingungsgleichungen:

$$H_{t} \Sigma K^{2} \frac{s}{EF} + B_{t} \Sigma K K_{1} \frac{s}{EF} + C_{t} \Sigma K K_{2} \frac{s}{EF} + \tau \Sigma K s = 0$$

$$H_{t} \Sigma K K_{1} \frac{s}{EF} + B_{t} \Sigma K_{1}^{2} \frac{s}{EF} + C_{t} \Sigma K_{1} K_{2} \frac{s}{EF} + \tau \Sigma K_{1} s = 0$$

$$H_{t} \Sigma K K_{2} \frac{s}{EF} + B_{t} \Sigma K_{1} K_{2} \frac{s}{EF} + C_{t} \Sigma K_{2}^{2} \frac{s}{EF} + \tau \Sigma K_{2} s = 0$$

$$(70)$$

Als hübsches Beispiel einer Hängebrücke mit drei Öffnungen und durchlaufendem Versteifungsträger sei die Mühlentorbrücke in Lübeck¹) erwähnt, bei welcher jedoch die Eigentümlichkeit besteht, dass die Kette an den Enden mit dem Versteifungsträger verbunden ist. Letzterer hat also noch den Zug der Kette aufzunehmen, was grosse Druckkräfte ergibt und viel Material an Eisen erfordert. Die Stützweiten sind 19,664, 41,786 und 19,664 m. Die Brücke ist eine Strassenbrücke mit 9,6 m Strassenbreite und 18,9 m Gesamtbreite zwischen den Geländern. Ob die Brücke unter den gegebenen kleinen Verhältnissen als glückliche Lösung betrachtet werden darf, möge dahingestellt bleiben; man wäre wohl, wenn man die Nivelette nur um ein geringes noch gehoben hätte, auch ohne Kette ausgekommen.

Ein Vorschlag für eine Brücke mit nahezu drei gleichen Öffnungen war der Wettbewerbsentwurf "Eisenkette" für die Strassenbrücke über den Rhein bei Worms und sei namentlich auf die verschiedenen neuen und interessanten Details dieses Entwurfes hingewiesen²).

Die grossartigste Ausführung einer solchen Brücke ist aber die neue Kettenbrücke über die Donau in Budapest, die Elisabethbrücke, welche 1898 bis 1903 nach dem Vorschlag von Ministerialrat A. Czekelius durch die Maschinenfabrik der kgl. Ungarischen Staatsbahn erbaut wurde 3). Die Verkehrsübergabe erfolgte am 10. Oktober 1903. Die Hauptabmessungen der Brücke sind aus der Übersichtszeichnung (umstehende Fig. 41) ersichtlich. An zwei gewaltigen parallel laufenden Ketten von 290 m Spannweite hängt, abwechselnd an der oberen und unteren Kette angeschlossen, der sehr schlanke Versteifungsträger. Die Höhe desselben beträgt auf die mittleren 100 m 4,75 m, nächst den Pfeilern 6,985 m und an den Enden der Seitenöffnungen 3,577 m. Die Aufhängungen fehlen in den Seitenöffnungen, so dass die Ketten geradlinig von den Pylonen nach den Ankern verlaufen. Ketten und Träger liegen in jeder Tragwand in einer senkrechten Ebene ausserhalb der Brückenbahn. Die Entfernung der Haupttragwände beträgt genau 20 m. Die Versteifungsträger durchdringen die Pylonenfüsse und sind an den Enden niedergeankert. Die Brücke besitzt einen Windverband im Untergurt des Versteifungsträgers, der Wind auf die Kette wird an drei Stellen, an den Pylonen und in Brückenmitte, nach unten geleitet. Die 11 m breite Fahrbahn ruht auf einer Unterlage

³) Siehe Zeitschrift deutscher Ingenieure 1900, Nr. 19, S. 592-597. Schweiz. Bauzeitung 1904, Bd. XLIV, Nr. 4 und 5.

¹⁾ Siehe Zeitschrift deutscher Ingenieure 1900, Nr. 24, S. 771/772.

²⁾ Siehe Zeitschrift deutscher Ingenieure 1896, Nr. 50, S. 1445 ff.

von Zoreseisen, die beiderseitigen Fusswege von je 3,5 m Breite ruhen auf einer Unterlage von Wellblech. Die Brücke ist für eine Verkehrsbelastung von 450 kg/qm berechnet. Der gesamte eiserne Überbau wiegt rund 11200 Tonnen; hiervon entfallen 4400 Tonnen auf die aus bestem Siemens-Martin-Stahl hergestellten Augenglieder der Ketten. Über die interessante Herstellung derselben ist in Abschnitt VI näher berichtet. Die Gesamtkosten der Brücke betragen ohne Zufahrtsrampen rund 11 Millionen Mark. Bei der Belastungsprobe mit 450 kg/qm Auflast über die ganze Mittelöffnung betrug die grösste Einsenkung im Mittel 260 mm, Temperaturschwankungen von \pm 1° Celsius ergeben eine senkrechte Bewegung des Brückenmittels von ± 8,3 mm.

c) Zusammenstellung der H-Linien für Einzelträger, Gerberträger und kontinuierliche Träger.

Nach dem bisher Entwickelten lässt sich eine hübsche Zusammenstellung machen für die verschiedenen Formen der H-Linie, welche in übersichtlicher Weise den Zusammenhang zwischen Momenten-Kurve und dieser Linie zeigt (Fig. 42).

a) Einzelträger als Versteifungsträger. Die Momentenflächen sind einzelne Parabeln, die H-Linie besteht aus lauter einzelnen Kurven (Fig. 42a).

 β) Gerberträger als Versteifungsträger mit Gelenken G₁ in der Mittelöffnung. Die Momentenfläche besteht aus denselben Parabeln, nur dass sie in der Mittelöffnung unter den Gelenken von der Schlusslinie durchschnitten wird. Die H-Linie besteht aus zwei bis zu den Gelenken reichenden Ästen, zwischen welchen eine besondere Kurve eingeschaltet erscheint (Fig. 42 b).

 γ) Gerberträger als Versteifungsträger mit Gelenken G₂ in den Aussenöffnungen. Die Nullpunkte der Momentenflächen liegen unter G₂; die H-Linie besteht aus einem doppelt gekrümmten Mittelteil mit zwei einfach gebogenen Endstücken (Fig. 42 c). Mehrfach statisch unbestimmte Hängebrücken. 2. Brücke mit kontinuierlichem Versteifungsträger. 61

 δ) Kontinuierliche Träger als Versteifungsträger. Man erhält für H die bereits in Fig. 40 dargestellte Figur, welche als Fig. 42 d wiederholt ist.

Die W- oder Wendepunkte der H-Linien sind besonders angedeutet, sie liegen unter den Nullpunkten der Momentenflächen.

Auch bei durchlaufenden Versteifungsträgern bleiben Hängebrücken in senkrechter Richtung weich, und man wird stets auf grosse Schwankungen gefasst sein müssen, wenn es nicht möglich ist, durch grosse Höhe dem Träger genügendes Widerstandsmoment zu

Fig. 42.

geben. Leider verschiebt sich dadurch wieder die Lastverteilung zwischen Träger und Kette, und die wertvollen Eigenschaften von Kette und Kabel werden nicht mehr voll ausgenützt. Man kann also allgemein sagen, dass eine Hängebrücke mit mehreren hintereinander geschalteten Öffnungen immer ein wenig rationelles Brückensystem sein wird.

3. Hängebrücken mit Bogenträgern als Versteifungsträger.

Es sollen nur Systeme betrachtet werden, bei welchen die Versteifungsträger einfach statisch unbestimmte elastische Bogen sind. Die Zahl der statisch unbestimmten Grössen ist dann gleich der Zahl der Öffnungen plus Eins. Die statisch unbestimmten Grössen sind der Horizontalzug der Kette und die Horizontalzüge bezw. -Schübe der Bogen.

a) Brücke mit einer Öffnung.

Kann der Versteifungsträger nicht unter die Fahrbahn gelegt werden und wird die Bedingung ungehinderten Querverkehrs zwischen Fahrbahn und Trottoiren oder freien Ausblickes gestellt, so kann das in Fig. 43 dargestellte System als Lösung betrachtet werden. Der Versteifungsträger der Kette ist ein elastischer Bogen mit Zugband. Ist es dagegen möglich, den Versteifungsträger nach unten zu legen, so wird zweckmässig der Bogen als Zweigelenkbogen ausgebildet (Fig. 43a). Der Berechnungsgang ist in beiden Fällen derselbe.

Das System ist zweifach statisch unbestimmt, die statisch unbestimmten Grössen sind H und Z. Die Bedingungsgleichungen für ihre Berechnung sind dieselben wie die Gleichungen 64, wobei B durch Z zu ersetzen ist. Die Kräfte S_o sind die Kräfte im Bogenträger ohne Zugband, K sind die Kräfte für H = 1, K₁ die Kräfte für Z = 1. Die

damit sich ergebenden H- und Z-Linien sind in Fig. 43 b und c dargestellt. Selbstverständlich kann H auch gefunden werden als Biegungslinie eines elastischen, einfach statisch unbestimmten Bogens (mit Zugband oder Kämpfergelenken) unter einer gleichförmig verteilten Belastung, welche der Wirkung H = 1 entspricht.

Für Temperaturwirkung gelten die Gleichungen 67, wobei jedoch der Wert $\tau \Sigma K_1$ s verschwindet, wenn der Versteifungsträger ein Bogen mit Zugband ist, und das Zugband dieselbe Temperaturänderung annimmt wie die ganze übrige Konstruktion.

b) Brücke mit drei Öffnungen.

Das in Fig. 44 dargestellte Brückensystem ist vierfach statisch unbestimmt. Die statisch unbestimmten Grössen sind der Horizontalzug H der Kette, ferner die Zugbandkräfte Z_1 , Z_2 und Z_3 der drei Versteifungsträger. Es ergeben sich damit die Grundgleichungen:
Mehrfach statisch unbestimmte Hängebrücken. 3. Brücke mit Bogen als Versteifungsträger. 63

$$\Sigma S_{0} K_{\frac{s}{EF}} + H \Sigma K^{2} \frac{s}{EF} + Z_{1} \Sigma K K_{1} \frac{s}{EF} + Z_{2} \Sigma K K_{2} \frac{s}{EF} + Z_{3} \Sigma K K_{3} \frac{s}{EF} = 0$$

$$\Sigma S_{0} K_{1} \frac{s}{EF} + H \Sigma K K_{1} \frac{s}{EF} + Z_{1} \Sigma K_{1}^{2} \frac{s}{EF} + Z_{2} \Sigma K_{1} K_{2} \frac{s}{EF} + Z_{3} \Sigma K_{1} K_{3} \frac{s}{EF} = 0$$

$$\Sigma S_{0} K_{2} \frac{s}{EF} + H \Sigma K K_{2} \frac{s}{EF} + Z_{1} \Sigma K_{1} K_{2} \frac{s}{EF} + Z_{2} \Sigma K_{2}^{2} \frac{s}{EF} + Z_{3} \Sigma K_{2} K_{3} \frac{s}{EF} = 0$$

$$\Sigma S_{0} K_{3} \frac{s}{EF} + H \Sigma K K_{3} \frac{s}{EF} + Z_{1} \Sigma K_{1} K_{2} \frac{s}{EF} + Z_{2} \Sigma K_{2} K_{2}^{2} \frac{s}{EF} + Z_{3} \Sigma K_{2} K_{3} \frac{s}{EF} = 0$$

$$\Sigma S_{0} K_{3} \frac{s}{EF} + H \Sigma K K_{3} \frac{s}{EF} + Z_{1} \Sigma K_{1} K_{3} \frac{s}{EF} + Z_{2} \Sigma K_{2} K_{3} \frac{s}{EF} + Z_{3} \Sigma K_{3}^{2} \frac{s}{EF} = 0$$

$$wobei ist:$$

- S_o die Stabkraft in den Fachwerksscheiben von Öffnung I, II oder III bei Z_1, Z_2, Z_3 und H = 0,
- K der Einfluss von H = 1 auf die drei Fachwerksscheiben,
- K_1 der Einfluss von $Z_1 = 1$ auf die Scheibe von Öffnung I,
- K_2 der Einfluss von $Z_2 = 1$ auf die Scheibe von Öffnung II,
- K_3 der Einfluss von $Z_3 = 1$ auf die Scheibe von Öffnung III.

Man sieht aus letzterer Zusammenstellung ohne weiteres, dass sich in den Hauptgleichungen vieles noch vereinfachen lässt. Nur H beeinflusst die Fachwerksscheiben

in jeder Öffnung, während die Kräfte K_1 , K_2 und K_3 immer nur in einer Öffnung entstehen. Es ist also ohne weiteres:

$$\Sigma K_1 K_2 \frac{s}{EF} = 0; \ \Sigma K_1 K_3 \frac{s}{EF} = 0; \ \Sigma K_2 K_3 \frac{s}{EF} = 0;$$

ferner ist aus Symmetriegründen:

$$\Sigma K_1^2 \frac{s}{EF} = \Sigma K_3^2 \frac{s}{EF}; \ \Sigma K K_1 \frac{s}{EF} = \Sigma K K_3 \frac{s}{EF}.$$

Damit gehen die Hauptgleichungen über in: $\Sigma S_{o} K_{i}^{4} \frac{s}{EF} + H \Sigma K^{2} \frac{s}{EF} + Z_{1} \Sigma K K_{1} \frac{s}{EF} + Z_{2} \Sigma K K_{2} \frac{s}{EF} + Z_{3} \Sigma K K_{1} \frac{s}{EF} = 0$ $\Sigma S_{o} K_{1} \frac{s}{EF} + H \Sigma K K_{1} \frac{s}{EF} + Z_{1} \Sigma K_{1}^{2} \frac{s}{EF} = 0$ $\Sigma S_{o} K_{2} \frac{s}{EF} + H \Sigma K K_{2} \frac{s}{EF} + Z_{2} \Sigma K_{2}^{2} \frac{s}{EF} = 0$ $\Sigma S_{o} K_{3} \frac{s}{EF} + H \Sigma K K_{1} \frac{s}{EF} + Z_{3} \Sigma K_{1}^{2} \frac{s}{EF} = 0$

Es ist also nur noch eine Gleichung mit vier Unbekannten vorhanden, während die drei übrigen Bedingungsgleichungen sich auf Gleichungen mit nur je zwei Unbekannten reduziert haben. Letztere enthalten zudem immer die Unbekannte H und eine der drei Unbekannten Z.

72.

Weitere Vereinfachungen treten ein, wenn man zur Betrachtung von Belastungen einzelner Öffnungen übergeht.

α) Belastung der Mittelöffnung.

Steht eine Last in der Mittelöffnung, so entstehen Kräfte S_o lediglich in der Fachwerksscheibe von Öffnung II. Es wird also sein:

$$\Sigma S_{o} K_{1} \frac{s}{EF} = 0; \Sigma S_{o} K_{3} \frac{s}{EF} = 0$$

und damit gehen die drei letzten Gleichungen von 72 über in:

$$Z_{1} = Z_{3} = -H \cdot \frac{\Sigma K K_{1} \frac{s}{E}}{\Sigma K_{1}^{2} \frac{s}{E} F}$$

73.

und

$$Z_{2} = -\frac{\Sigma S_{o} K_{2} \frac{s}{E F} + H \Sigma K K_{2} \frac{s}{E F}}{\Sigma K_{2}^{2} \frac{s}{E F}}$$

während die erste Gleichung von 72 lautet:

$$\sum S_{o} K \frac{s}{EF} + H \Sigma K^{2} \frac{s}{EF} - 2H \frac{\left\{ \Sigma K K_{1} \frac{s}{EF} \right\}}{\Sigma K_{1}^{2} \frac{s}{EF}}$$
$$- \frac{\Sigma S_{o} K_{2} \frac{s}{EF} + H \Sigma K K_{2} \frac{s}{EF}}{\Sigma K_{2}^{2} \frac{s}{EF}} \Sigma K K_{2} \frac{s}{EF} = 0$$

woraus wird:

$$H_{II} = \frac{\Sigma K_{1}^{2} \frac{s}{EF} \cdot \Sigma K K_{2} \frac{s}{EF} \cdot \Sigma S_{0} K_{2} \frac{s}{EF} - \Sigma K_{1}^{2} \frac{s}{EF} \Sigma K_{2}^{2} \frac{s}{EF} \Sigma S_{0} K \frac{s}{EF}}{\Sigma K_{2}^{2} \frac{s}{EF} \Sigma K_{2}^{2} \frac{s}{EF} - 2 \left\{ \Sigma K K_{1} \frac{s}{EF} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{EF} - \left\{ \Sigma K K_{2} \frac{s}{EF} \right\}^{2} \Sigma K_{1}^{2} \frac{s}{EF} \right\}^{2} \Sigma K_{1}^{2} \frac{s}{EF}$$

Damit sind die Unbekannten gefunden. Man ermittele zuerst H nach Gleichung 74 und setze den gefundenen Wert alsdann in die Gleichungen 73 ein. Wie man sieht, ist für jede Belastung immer nur der Ausdruck $\Sigma S_0 K$ und $\Sigma S_0 K_2$ zu bilden, während alle übrigen Glieder nur einmal zu ermitteln sind und dann immer wieder verwendet werden können. Die endgültigen Stabkräfte im vierfach statisch unbestimmten System sind:

In den Endöffnungen

 $S = H \cdot K + Z_1 K_1$, bezw. $H \cdot K + Z_3 K_3$

und in der Mittelöffnung

$$\mathbf{S} = \mathbf{S}_{\mathbf{o}} + \mathbf{H} \cdot \mathbf{K} + \mathbf{Z}_{\mathbf{2}} \mathbf{K}_{\mathbf{2}}.$$

β) Belastung einer Endöffnung.

Ist nur Öffnung I belastet, so wird:

$$\Sigma S_{o} K_{2} \frac{s}{EF} = 0; \Sigma S_{o} K_{3} \frac{s}{EF} = 0$$

Mehrfach statisch unbestimmte Hängebrücken. 3. Brücke mit Bogen als Versteifungsträger. 65 und man erhält damit wieder aus den drei letzten Gleichungen 72

$$Z_{2} = -H \frac{\Sigma K K_{2} \frac{s}{EF}}{\Sigma K_{2}^{2} \frac{s}{EF}}$$

$$Z_{3} = -H \frac{\Sigma K K_{1} \frac{s}{EF}}{\Sigma K_{1}^{2} \frac{s}{EF}}$$

$$Z_{1} = -\frac{\Sigma S_{0} K \frac{s}{EF} + H \Sigma K K_{1} \frac{s}{EF}}{\Sigma K_{1}^{2} \frac{s}{EF}}$$

75.

und aus der ersten Gleichung von 72

$$\Sigma S_{o} K \frac{s}{EF} + H \Sigma K^{2} \frac{s}{EF} - \frac{\Sigma S_{o} K_{1} \frac{s}{EF} + H \Sigma K K_{1} \frac{s}{EF}}{\Sigma K_{1}^{2} \frac{s}{EF}} \Sigma K K_{1} \frac{s}{EF}} - H \frac{\left\{\Sigma K K_{2} \frac{s}{EF}\right\}^{2}}{\Sigma K_{2}^{2} \frac{s}{EF}} - H \cdot \frac{\left\{\Sigma K K_{1} \frac{s}{EF}\right\}^{2}}{\Sigma K_{1}^{2} \frac{s}{EF}} = 0$$

woraus wird:

$$H_{I} = \frac{\Sigma S_{o} K_{1} \frac{s}{E F} \Sigma K K_{1} \frac{s}{E F} \Sigma K_{2}^{2} \frac{s}{E F} - \Sigma S_{o} K \frac{s}{E F} \Sigma K_{1}^{2} \frac{s}{E F} \Sigma K_{2}^{2} \frac{s}{E F}}{\Sigma K_{2}^{2} \frac{s}{E F} \Sigma K_{2}^{2} \frac{s}{E F} - 2 \left\{ \Sigma K K_{1} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{1}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F} - 2 \left\{ \Sigma K K_{1} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{1}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F}} - 2 \left\{ \Sigma K K_{1} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{1}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F}} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F}} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F}} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F}} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F}} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F}} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F}}{2 K K_{2}^{2} \frac{s}{E F}} - \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2} \frac{s}{E F} + \left\{ \Sigma K K_{2} \frac{s}{E F} \right\}^{2} \Sigma K_{2} \frac{s}{E F} + \left\{ \Sigma$$

Der Nenner ist derselbe Wert wie bei Gleichung 74. Die endgültigen Stabkräfte sind:

in der Endöffnung I: $S = S_o + HK + Z_1K_1$,

in der Mittelöffnung II: $S = H K + Z_2 K_2$,

in der Endöffnung III: $S = H K + Z_3 K_3$.

Der Gang der ganzen Berechnung ist also dadurch, dass die Unbekannten Z_1 , Z_2 und Z_3 immer nur eine Fachwerksscheibe beeinflussen, ganz wesentlich vereinfacht worden. Statt mit vier unbekannten Grössen hat man es eigentlich immer nur mit zwei Unbekannten zu tun, dem Horizontalzug H der Kette, und der Zugbandkraft Z in der belasteten Öffnung. Eine für eine Brücke von über 400 m Gesamtlänge mit sehr vielen Stäben in den einzelnen Bogenträgern durchgeführte Berechnung liess sich (selbst mit Einbeziehung der Diagonalen) in verhältnismässig kurzer Zeit durchführen und ergab sehr hübsche Resultate. Es ist nur nötig, in systematischer Weise vorzugehen und übersichtliche Tabellen für die Ermittelung der einzelnen Summationsgrössen aufzustellen. Dieser Berechnung sind die in umstehender Fig. 45 dargestellten Einflusslinien für H, Z_1 , Z_2 und Z_3 entnommen.

Bei dem gewählten Verhältnis der Stützweiten: $l = -\frac{l_2}{2}$ sind die H-Werte in den Aussenöffnungen sehr klein und das Zugband kommt voll als solches zur Wirkung. In Bohny, Hängebrücken. 5 der Mittelöffnung dagegen erhält das Zugband viel kleinere Kräfte. Man hat also wieder dieselbe Erscheinung, wie sie schon bei allen Systemen mit einer grossen Mittelöffnung

und zwei halben Aussenöffnungen hervorgehoben wurde. Die Versteifungsträger in den Aussenöffnungen wirken nahezu wie frei aufliegende Träger, während die Mittelöffnung wie eine Einzelöffnung mit langen Rückankern wirkt.

Demselben durchgerechneten Beispiel sind endlich die in Fig. 46 dargestellten typischen Einflusslinien einiger Stäbe entnommen und zwar: a und b für einen Gurt Mehrfach statisch unbestimmte Hängebrücken. 3. Brücke mit Bogen als Versteifungsträger. 67

und einen Diagonalstab der Mittelöffnung, c und d für einen Gurt und einen Diagonalstab einer Aussenöffnung.

Temperaturwirkung. Für Temperaturwirkung entfallen in den Gleichungen 72 die Glieder mit S_o und es kommen neue Glieder mit den Temperaturveränderungsgrössen hinzu:

$$H_{t} \Sigma K^{2} \frac{s}{EF} + Z_{1}^{t} \Sigma K K_{1} \frac{s}{EF} + Z_{2}^{t} \Sigma K K_{2} \frac{s}{EF} + Z_{3}^{t} \Sigma K K_{1} \frac{s}{EF} + \tau \Sigma K s = 0$$

$$H_{t} \Sigma K K_{1} \frac{s}{EF} + Z_{1}^{t} \Sigma K_{1}^{2} \frac{s}{EF} + \tau \Sigma K_{1} s = 0$$

$$H_{t} \Sigma K K_{2} \frac{s}{EF} + Z_{2}^{t} \Sigma K_{2}^{2} \frac{s}{EF} + \tau \Sigma K_{2} s = 0$$

$$H_{t} \Sigma K K_{1} \frac{s}{EF} + Z_{3}^{t} \Sigma K_{1}^{2} \frac{s}{EF} + \tau \Sigma K_{1} s = 0.$$

$$T7.$$

Hierbei ist vorausgesetzt, dass die unter der Fahrbahn liegenden Zugbänder der einzelnen Bogenträger von den Stäben der Fachwerksscheiben verschiedene Temperatur besitzen, so dass die Ausdrücke $\tau \Sigma K_1$ s und $\tau \Sigma K_2$ s von Null verschiedene Werte darstellen

Aus der zweiten und vierten Gleichung wird:

$$Z_{1}^{t} = Z_{3}^{t} = -\frac{H_{t} \Sigma K K_{1} \frac{s}{E F} + \tau \Sigma K_{1} s}{\Sigma K_{1}^{2} \frac{s}{E F}}$$

und aus der dritten:

$$Z_{2}^{t} = -\frac{H_{t} \Sigma K K_{2} \frac{s}{E F} + \tau \Sigma K_{2} s}{\Sigma K_{2}^{2} \frac{s}{E F}}$$

Diese Werte in die erste Gleichung von 77 eingesetzt, ergibt:

$$H_{t} \Sigma K^{2} \frac{s}{E F} - 2 \Sigma K K_{1} \frac{s}{E F} \frac{H_{t} \Sigma K K_{1} \frac{s}{E F} + \tau \Sigma K_{1} s}{\Sigma K_{1}^{2} \frac{s}{E F}}$$
$$- \Sigma K K_{2} \frac{s}{E F} \frac{H_{t} \Sigma K K_{2} \frac{s}{E F} + \tau \Sigma K_{2} s}{\Sigma K_{2}^{2} \frac{s}{E F}} + \tau \Sigma K s = 0$$

beziehungsweise:

$$H_{t} = \frac{2\tau \Sigma K K_{1} \frac{s}{EF} \Sigma K_{2}^{2} \frac{s}{EF} \Sigma K_{1} s + \tau \Sigma K K_{2} \frac{s}{EF} \Sigma K_{1}^{2} \frac{s}{EF} \Sigma K_{2} s - \tau \Sigma K_{1}^{2} \frac{s}{EF} \Sigma K_{2}^{2} \frac{s}{EF} \Sigma K_{3}}{\Sigma K^{2} \frac{s}{EF} \Sigma K_{1}^{2} \frac{s}{EF} \Sigma K_{2}^{2} \frac{s}{EF} - 2 \left\{ \Sigma K K_{1} \frac{s}{EF} \right\}^{2} \Sigma K_{2}^{2} \frac{s}{EF} - \left\{ \Sigma K K_{2} \frac{s}{EF} \right\}^{2} \Sigma K_{1}^{2} \frac{s}{EF}} 79$$

Der Nenner dieser Gleichung hat denselben Wert wie in Gleichung 74. Herrscht in Z_1 , Z_2 und Z_3 dieselbe Temperatur wie in den übrigen Stäben des Systems, so verschwinden die Ausdrücke $\tau \Sigma K_1$ s und $\tau \Sigma K_2$ s, weil die Zugbänder sich ebensoviel dehnen wie die Bogenscheiben. Man erhält dann für H_t den viel einfacheren Wert:

5*

78.

Fünfter Abschnitt. 4a) Lauter's Entwurf für eine Rheinstrassenbrücke bei Worms.

und es genügt, rasch den Wert EKs zu bilden.

4. Andere Systeme.

a) Lauter's Entwurf für eine Strassenbrücke über den Rhein bei Worms.

Anlässlich der Konkurrenz für die Erbauung einer festen Strassenbrücke über den Rhein bei Worms (1895) hat Dr. Jug. Lauter, Direktor von Ph. Holzmann & Co., Frankfurt a. M., ein eigenartiges Hängebrückensystem vorgeschlagen, das damals allge-

meines Interesse erregte. Die Gesamtanordnung ist aus Fig. 47 ersichtlich. Der Überbau kann als eine kontinuierliche Fachwerkskette betrachtet werden, welche in den drei Stromöffnungen durch je eine Stabkette von grosser Pfeilhöhe armiert ist. Die Fachwerkskette und die Stabkette sind gemeinschaftlich auf den Pylonen auf Rolllagern gelagert, im übrigen nur durch die Hängestäbe miteinander verbunden.

Der verstorbene Oberingenieur W. O. Luck von Ph. Holzmann & Co. hat in seinem Bericht über den Wormser Wettbewerb¹) eingehend beschrieben, wie Lauter zu dem vorgeschlagenen Trägersystem gelangt ist. Es war zuerst beabsichtigt, eine kontinuierliche Fachwerkshängebrücke mit Sichelträgern auszubilden, wobei der Obergurt der Girlanden mit der Mittellinie der Fachwerkskette, der Untergurt mit den Stabketten von Fig. 47 übereinstimmte. Es ergab sich aber, dass bei Wahl einer nur einigermassen schönen Sichelträgerform das System sehr beweglich geworden wäre und 7 m Trägerhöhe nötig gewesen wären, um die elastischen Durchbiegungen bei Partialbelastungen auf zulässige Grenzen herabzumindern. Bei dieser Höhe hätte aber das System eine äusserst ungefällige Form erhalten. Ausserdem ergaben sich die Kräfte in den Füllungsstäben der Sichel als sehr klein. Es lag daher nahe, diese Füllungsglieder ganz fallen zu lassen, den Untergurt als reinen Stabbogen beizubehalten und den Obergurt als niedrigen Fachwerksträger auszubilden. Letzterer musste ein auf Druck widerstandsfähiges, natürlich auch gegen seitlichen Wind steifes Glied werden, während der Stabbogen lediglich Zugkräfte aufzunehmen hatte.

Das System ist vierfach statisch unbestimmt. In jeder Öffnung, mit Ausnahme der beiden Endöffnungen, hat man eine hohe starre Scheibe, deren Obergurt das Fachwerk bildet, den Untergurt der Stabbogen. Ständige Belastung und totale Verkehrsbelastung geht fast ausschliesslich an letzteren. Entfernt man die drei Stabbogen und

68

¹⁾ Zeitschrift deutscher Ingenieure 1897, Nr. 3, S. 61-67.

Mehrfach statisch unbestimmte Hängebrücken. 4. Andere Systeme.

die beiderseitigen Verankerungen, so hat man (Fig. 48 a) fünf einfache, frei aufliegende Fachwerksträger. Die statisch unbestimmten Grössen sind also der Horizontalzug H der Fachwerkskette und die Horizontalzüge Z_1 , Z_2 und Z_3 der drei Stabbögen. Man hat damit im grossen und ganzen dasselbe System, wie die Kette über drei Öffnungen mit drei Bogen als Versteifungsträger. Es gelten somit als Grundgleichungen ohne weiteres die Gleichungen 71, die infolge der beschränkten Wirkungsweise der Unbekannten Z_1 , Z_2 und Z_3 und aus Symmetriegründen sofort in die Gleichungen 72 übergehen. Stehen

dann Lasten in der Mittelöffnung, so gelten zur Einrechnung der Unbekannten die Gleichungen 73 und 74; stehen Lasten in den Seitenöffnungen, so gelten 75 und 76. Stehen endlich Lasten in den Endöffnungen, wo kein Stabbogen vorhanden ist, so verschwinden in den drei letzten Gleichungen 72 alle Glieder mit So und es ergeben sich für Z_1 , Z_2 und Z_3 sofort ganz einfache Ausdrücke. Diese in die erste Gleichung von 72 eingeführt, ergibt für H den Wert:

$$\mathbf{H} = \frac{-\Sigma S_0 \, \mathbf{K} \frac{\mathbf{s}}{\mathbf{E} \, \mathbf{F}} \cdot \Sigma \, \mathbf{K}_1^2 \frac{\mathbf{s}}{\mathbf{E} \, \mathbf{F}} \cdot \Sigma \, \mathbf{K}_2^2 \frac{\mathbf{s}}{\mathbf{E} \, \mathbf{F}}}{\mathbf{N}} \quad \dots \quad \mathbf{80}.$$

wobei N wieder der Nennerwert von Gleichung 74, 76 und 79 ist.

Die endgültigen Stabkräfte im statisch unbestimmten System sind in den drei Mittelöffnungen:

wenn eine Last im Felde steht:

 $S_0 + H \cdot K + Z_1 K_1$ (bezw. $+ Z_2 K_2$ oder $+ Z_3 K_3$),

wenn keine Last im Felde steht

H. K + Z_1 K₁ (bezw. + Z_2 K₂ oder + Z_3 K₃),

während die Stabkräfte in den Endöffnungen werden:

wenn eine Last im Felde steht So + H.K,

wenn keine Last im Felde steht H.K.

Die Temperaturgleichungen werden dieselben wie Gleichung 78 und 79. Letztere geht aber ohne weiteres in Gleichung 79 a über, denn die Stabketten werden, als hoch in der Luft liegend, stets dieselbe Temperatur besitzen wie die übrigen Systemstäbe. Es ergaben sich für die vorliegende Brücke ziemlich hohe Werte für H_t, Z_1^{t} , Z_2^{t} und Z_3^{t} , nämlich bei $\pm 35^{\circ}$ C Temperaturschwankung

$$\begin{array}{l} H_t \!=\! \pm 245^t \\ Z_1{}^t \!=\! Z_3{}^t \!=\! \pm 178 \\ Z_2{}^t \!=\! \pm 214^t \end{array}$$

Fig. 50.

Mehrfach statisch unbestimmte Hängebrücken. 4. Andere Systeme.

und damit ziemlich beträchtliche Hebungen und Senkungen (rund ± 100 mm in Brückenmitte).

Für Verkehrsbelastung ist das System wieder etwas weich. Die grösste Einsenkung der Brückenmitte unter Verkehrsbelastung der Mittelöffnung beträgt rund 80 mm, während an derselben Stelle für Totalbelastung aller Öffnungen eine Senkung von 21 mm errechnet wurde.

In Fig. 49 sind die Einflusslinien der statisch unbestimmten Grössen dargestellt, den Originalberechnungen entnommen. Fig. 50 dagegen zeigt einige typische Einflusslinien von Fachwerkstäben.

b) Rieppel's Entwurf für eine zweite feste Brücke über den Rhein bei Köln.

Im Pariser Ausstellungsbericht 1900 über den deutschen Brückenbau im XIX. Jahrhundert¹) berichtet Mehrtens über einen Hängebrückenentwurf, welchen Baurat Dr. 3ng. Rieppel, Direktor der Vereinigten Maschinenfabrik Augsburg und Maschinenbaugesellschaft Nürnberg, A.-G., Werk Nürnberg, anlässlich einer Vorkonkurrenz für eine zweite feste Brücke über den Rhein bei Köln aufgestellt hat.

Dieser Entwurf (siehe Fig. 51) gleicht äusserlich einem über drei Öffnungen durchlaufenden kontinuierlichen Girlandenträger, wie ihn Harkort für Köln (Fig. 35) vor-

schlug. In Wirklichkeit ist aber das System wesentlich anders. An Stelle der Verankerungen an den Enden sind Druckstäbe unter der Fahrbahn angeordnet, welche die Trägeruntergurte in der Nähe ihrer tiefsten Punkte fassen. Jede Hälfte der Brücke wirkt damit für Eigengewicht wie ein Ausleger und sollte dementsprechend montiert werden. Gerüste waren nur in den Aussenöffnungen vorgesehen, und die beiden Hälften der Mittelöffnung sollten frei vorkragend unter Zuhilfenahme von Hilfsdiagonalen zwischen Girlande und Druckgurt bis zur Brückenmitte vorgebaut werden. Der Zusammenschluss daselbst kann alsdann spannungslos erfolgen.

Für Eigengewicht hat man also den in umstehender Fig. 52 dargestellten Konsolträger. Die Kraft im Druckstab und im horizontalen Verbindungsstab über der Pylone ergibt sich ohne weiteres zu:

$$\mathbf{H}_{o} = \boldsymbol{\Sigma}_{B}^{c} \frac{\mathbf{P} \cdot \mathbf{a}}{\mathbf{h}},$$

während der Auflagerdruck des Kragarmes wird:

$$J_1^{\circ} = \Sigma_B^{\circ} P.$$

Im Ankerarm treten zu den Auflagerdrücken des frei aufliegenden Trägers die Zusatzdrücke aus dem Moment Ho.h und man hat:

Der deutsche Brückenbau im XIX. Jahrhundert von G. Mehrtens, Berlin 1900. Springers Verlag, S. 20/21.

72 Fünfter Abschnitt. 4 b) Rieppel's Entwurf für eine zweite Rheinstrassenbrücke bei Köln

$$\begin{split} J_{2}^{o} = & J_{B}^{o} + \frac{H_{o} h}{l_{1}} \\ J_{3}^{o} = & J_{A}^{o} - \frac{H^{o} h}{l_{1}} \end{split}$$

wo JB° und JA° die Auflagerdrücke des Trägers AB allein bedeuten.

Da l_1 etwas grösser als $\frac{l^2}{2}$ ist, ergibt sich in A noch positiver Auflagerdruck, während J_2° und J_1° nahezu gleich grosse Werte erhalten. Die Stabkräfte für Eigengewicht erhält man mit einem Cremonaplane. Es ergeben sich dabei im Kragarm in

allen Gurtstäben (mit Ausnahme der ausserhalb des Druckstabes liegenden äussersten Untergurtstäbe) Zugkräfte, ebenso ist dies in der Mehrzahl der Gurtstäbe im Ankerarm der Fall. Die Zuglinien nehmen zwischen den Angriffspunkten der Stäbe H den in der Figur punktiert eingetragenen Verlauf. Zweckmässig wird vor Verlaschung der beiden Brückenhälften in der Mitte das ganze Eigengewicht einschliesslich der Fahrbahndecke aufgebracht, um die Zugkräfte in den Gurten möglichst gross werden zu lassen. Die Zugkräfte aus Eigengewicht überwiegen dann (namentlich bei schweren Strassenbrücken, wo das Eigengewicht doppelt so gross und noch grösser ist als die Verkehrslast) die durch partielle Verkehrsbelastung entstehenden Druckkräfte, und es ist möglich, die Brücke ohne jegliche oberen Windverstrebungen auszuführen.

Für Verkehrslasten ist das System zweifach statisch unbestimmt, und werden zweckmässig die Druckstäbe H_1 und H_2 als statisch unbestimmte Grössen gewählt (Fig. 53).

Entfernt man dieselben, so entstehen drei einfache, frei aufliegende Träger. Setzt man $H_1 = 1$, so entstehen Kräfte in den Fachwerksscheiben I und II, sie seien K_1 . Für $H_2 = 1$ entstehen Kräfte in II und III, sie seien K_2 . Die Kräfte K_1 und K_2 sind aus

Symmetriegründen einander gleich und in der Mittelöffnung nur in entgegengesetzter Richtung auszuzählen. Für $H_1 = 1$ wird

 $\mathbf{J} = \mathbf{J}_1 = \frac{\mathbf{H}_1 \cdot \mathbf{h}}{\mathbf{l}_2},$

während

$$J_2 = J_3 = \frac{H_1 \cdot h}{l_1}$$
 wird.

Damit lässt sich der Kräfteplan durchzeichnen.

Die allgemeinen Bedingungsgleichungen zur Ermittelung von H_1 und H_2 sind nach früher:

$$\Sigma S_0 K_1 \frac{s}{EF} + H_1 \Sigma K_1^2 \frac{s}{EF} + H_2 \Sigma K_2 K_1 \frac{s}{EF} = 0$$

$$\Sigma S_0 K_2 \frac{s}{EF} + H_1 \Sigma K_1 K_2 \frac{s}{EF} + H_2 \Sigma K_2^2 \frac{s}{EF} = 0,$$

woraus mit der Vereinfachung $\Sigma K_1^2 \frac{s}{EF} = \Sigma K_2^2 \frac{s}{EF}$ wird:

Fünfter Abschnitt. 4c) Köchlin's Entwurf für eine Donaustrassenbrücke etc.

Diese Gleichungen sind allgemein aufzulösen, wenn die Mittelöffnung belastet ist. Wird dagegen nur eine der Aussenöffnungen belastet, so wird $\Sigma S_0 K_1$ oder $\Sigma S_0 K_2 = 0$ und man kann wesentlich vereinfachen. Das Endresultat der durchgeführten Berechnung mit wandelnden Einzellasten gibt die Einflusslinie für H₁ und H₂. Für H₁ ist dieselbe in Fig. 53 eingetragen. Für H₂ denke man sich die H₁-Linie um die mittlere Vertikale umgeklappt.

Die Stabkräfte werden endlich:

Bei Belastung der Mittelöffnung II

 $S = S_0 + H_1 K_1 + H_2 K_2$ in Scheibe II und

 $S = H_1 K_1$ bezw. $H_2 K_2$ in den Scheiben I und III.

Bei Belastung der Aussenöffnung I

 $S = S_o + H_1 K_1$ in Scheibe I

 $S = H_1 K_1 + H_2 K_2$ in Scheibe II und

 $S = H_2 K_2$ in Scheibe III.

Einige typische Einflusslinien für Stäbe der Aussenöffnung I und der Mittelöffnung II sind in vorhergehender Fig. 54 dargestellt, ebenso die Einflusslinien der Auflagerdrücke J_1 , J_2 und J_3 .

Für Temperaturwirkung gelten ohne weiteres die Gleichungen 67. Es ergibt sich daraus $H_1^t = H_2^t = H^t$. H^t wird stets ein sehr kleiner Wert sein, da die ganze Brücke längsverschieblich gelagert ist und sich beliebig in der Längsrichtung ausdehnen kann. Nur ein Lager ist fest zu machen und wird zweckmässig dazu ein Pylonenlager gewählt (siehe Fig. 53).

c) Köchlin's Entwurf für eine Strassenbrücke über die Donau am Schwurplatze in Budapest.

Beim internationalen Wettbewerb für die Erbauung einer Strassenbrücke über die Donau am Schwurplatz in Budapest (Januar 1894) hat Oberingenieur H. Köchlin vom Hause G. Eiffel (Société de Construction de Levallois-Perret), Paris, einen Hängebrückenentwurf eingereicht, welcher viele Beachtung fand und infolge Fehlens jeglicher Diagonalen von den anderen eingereichten Entwürfen seltsam abstach¹).

In Fig. 55 ist das Tragsystem schematisch dargestellt. Es besteht aus zwei Scheiben I und II mit eingehängtem einfachen Mittelträger $G-G_1$. Die beiden Scheiben

¹⁾ Zentralblatt der Bauverwaltung 1894, Nr. 42, S. 445/447.

sind ohne Diagonalen und besitzen nur biegungsfeste Ober- und Untergurte mit dazwischen gespreizten, sehr kräftig ausgebildeten Pfosten. Die Obergurte sind nach dem Seilzuge der ständigen Lasten geformt, wobei der Auflagerdruck der eingehängten Mittelöffnung mit berücksichtigt ist, der Untergurt folgt der Gradiente der Brückenbahn. Für Eigenlast und totale Verkehrslast gehen somit alle äusseren Kräfte an den Obergurt und erzeugen daselbst in der Hauptsache axiale Längskräfte, während der Untergurt den ganzen Horizontalzug als Druck aufzunehmen hat.

Wesentlich anders ist dagegen die Wirkungsweise bei Einzellasten (Fig. 56). Infolge Wegfall der Diagonalen müssen die Gurten allein die Lasten nach den Auflagern bezw. Punkt B und G übertragen, was nur durch reine Biegung erfolgen kann. Köchlin hat dabei die vereinfachende Voraussetzung gemacht, dass bei A, B, C und G sich Gelenke befinden, obwohl die Konstruktion starr vernietete Knoten aufwies. Bei jeder

Belastung des Kragarmes wird also zunächst P durch die beiden Gurten nach G und nach der Vertikalen B—C übertragen, worauf die Komponente in G $\left(P, \frac{x}{l_2}\right)$ durch die Gelenkpunkte nach A und B übergeleitet wird. In A entsteht der Auflagerdruck $\frac{P \cdot x}{l_2} \cdot \frac{l_2}{l_1} = \frac{P \cdot x}{l_1}$, in B der Auflagerdruck $P \cdot \frac{x}{l_2} \frac{(l_1 + l_2)}{l_1} + P \frac{(l_2 - x)}{l_2} = P \frac{(x + l_1)}{l_1}$, während die Horizontalkraft H wird $P \cdot \frac{x}{l_2} \cdot \frac{l_2}{h} = \frac{P \cdot x}{h}$. Steht dagegen eine Last im Ankerarm, so wird sie durch die Gurten direkt nach A und der Vertikalen B—C übertragen.

Für die Verteilung der Momente, welche auf diese Weise direkt in den Gurten entstehen, ferner für die Verteilung der Momente H. η , welche durch den Seilzug der äusseren Kräfte hervorgerufen werden, macht nun Köchlin die sehr einfache Annahme, dass sie im Verhältnis der Trägheitsmomente erfolgt, bezw. dass durch die Wirkung der sehr steifen Hängestäbe die senkrechte elastische Einsenkung der beiden Gurten an jedem Punkte gleich gross ist. Sei also \varDelta s die Länge eines Obergurtelementes und J_o das mittlere Trägheitsmoment dieses Gurtes, seien ferner \varDelta x und J_u die entsprechenden Werte vom Untergurt, so hat man die Bedingungsgleichung:

$$M_{o} \frac{\Delta s}{J_{o}} = M_{u} \frac{\Delta x}{J_{u}}.$$

Ferner muss sein $M_o + M_u = M = Gesamtmoment$. Bei Annahme eines gleichbleibenden Mittelwertes für die \varDelta s, welche den gleichen Längen \varDelta x entsprechen, wird somit der Verteilungsschlüssel der Biegungsmomente als unveränderlich gefunden. Im Auslegerteil hatte Köchlin den Obergurt und Untergurt mit konstantem Trägheitsmoment ausgebildet und fand als Verteilungsschlüssel der Momente $42^{0/o}$ für den Obergurt und $58^{0/o}$ für den Untergurt. Im Ankerarm waren die Trägheitsmomente der Gurten veränderlich; durch Einführung von mittleren Werten konnte aber auch da ein unveränderlicher Verteilungsschlüssel der Biegungsmomente aufgestellt werden, nämlich 45% für den Obergurt und 55% für den Untergurt.

Eine genaue Untersuchung des Systems mit Hilfe des Satzes vom Minimum der Arbeit hat Zschetzsche durchgeführt¹). Als unbekannte Grössen sind sämtliche Pfostenkräfte eingeführt. Zschetzsche kommt in seiner Abhandlung zu dem Schluss, dass die von Köchlin angewandte Annäherungsmethode sehr gute Resultate ergibt, so dass es für die Praxis ohne weiteres gestattet ist, sie für Systeme dieser oder ähnlicher Art anzuwenden.

VI. Über die Wahl der Hauptabmessungen bei neuen Hängebrückenentwürfen, die Eigenschaften der Materialien für Ketten und Kabel, sowie einige besondere Konstruktionseinzelheiten.

1. Die Wahl der Hauptabmessungen beim Entwurf neuer Hängebrücken.

Ist eine Hängebrücke neu zu entwerfen, so sind im allgemeinen die Brückenlänge, die Einteilung der Öffnungen, die Abmessungen der Fahrbahn usw. von vorneherein gegeben. Ebenso verhält es sich mit den Verkehrslasten, welche die Brücke zu passieren haben. Damit ist es möglich, ohne weiteres das Eigengewicht der Fahrbahn und deren Unterkonstruktion genau zu ermitteln, ferner das Übertragungsverhältnis der Verkehrslasten auf die Versteifungsträger bezw. auf die Ketten oder die Kabel. Frei gestellt und zunächst unbestimmt ist dagegen die Grösse des Durchhanges der letzteren, des Pfeiles, ferner die Höhe des Versteifungsträgers.

a) Wahl des Pfeilverhältnisses.

Von der Wahl der Pfeilhöhe f der Kette oder des Kabels hängen ab, ausser den Kosten dieses Traggliedes selbst, die Kosten der Pylonen, zum Teil die Kosten des Versteifungsträgers und die Kosten der Ankerkörper. Unabhängig dagegen sind die Kosten der Hängestäbe, die Kosten der Fahrbahntafel und die Kosten der Horizontalverbände im Versteifungsträger.

Es ist möglich, wenn man von dem Einfluss der Rückankerungen und der Ankerkörper absieht, das günstigste Pfeilverhältnis $\frac{f}{l}$, bei welchem die Kosten ein Minimum werden, zu ermitteln, und fand hierfür Melan den Wert $\eta = \frac{1}{12}$ der Spannweite²). Andererseits kommt Schwend zu dem Resultate, dass bei grösseren Brücken mit eisernen Pylonen $\eta = \frac{1}{7}$ das günstigste Pfeilverhältnis ist³). Nun sind aber die Kosten der Rückankerung und der Rückankerkörper stets ein ganz wesentlicher Faktor, der nicht vernachlässigt werden darf; bei Kabelbrücken richten sich nach der Neigung der Seile hinter den Pylonen sogar der ganze Querschnitt und damit die ganzen Kosten der

¹⁾ Zentralblatt der Bauverwaltung 1895, Nr. 47 und 48A.

 ²) Handbuch der Ingenieurwissenschaften, Brückenbau.
 ³) Über Berechnung und Konstruktion von Hängebrücken von C. Schwend, 1897, Leipzig.

Teubner, S. 46 und 47.

Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 1. Wahl der Hauptabmessungen etc. 77

Kabel. Da aber die Anordnung der Rückankerung immer von den örtlichen Verhältnissen abhängig ist, so ist es klar, dass es eine einheitliche Regel für die Wahl des günstigsten Pfeilverhältnisses nicht geben kann.

Endlich kommen noch ästhetische Gesichtspunkte in Betracht. Eine flachgespannte Kette oder ein flachgespanntes Kabel wirken eleganter und kühner als stark durchgesackte Hängegurten, und sind es namentlich die älteren Hängebrücken, welche kleine Pfeilverhältnisse aufweisen. Die Horizontalzüge werden dadurch aber ungewöhnlich gross und der Aufwand an Ketten und Kabelmaterial ist ein ganz ungeheurer. Man ist daher in neuerer Zeit von der sehr flachen Linienführung abgekommen und ist zu etwas tieferem Durchhang übergegangen. Doch ist man nicht über Verhältnisse gegangen, welche das gute Bild einer Brücke stören würden.

Folgende Tabelle II gibt eine Zusammenstellung von l und f älterer und neuerer Hängebrücken:

ingta aQ	Nr.	Name der Brücke	Erbauung	l met.	f met.	$\eta = \frac{f}{1}$	Bemerkungen
Ältere Ausführungen	1 2	Saalebrücke bei Freiburg Alte Donaubrücke in Budapest	1832 - 34 1835 - 45	273,0 203,0	$19,5 \\ 14,6$	1:14 1:14	Kabelbrücke Kettenbrücke
	3 4	Donausteg Passau Alte Eisenbahn- u. Strassen- brücke über die Niagara-	1868/69 1851-55	127,4 250,2	5,8 20,0 16,25	$1:22 \\ 1: \begin{cases} 12,5 \\ 15,3 \end{cases}$	Kabelbrücke Kabelbrücke
	5	Brooklynbrücke New-York über den East Biver	1869—76	486,31	39,0	1:12,5	Kabelbrücke
	6	Pointbrücke über den Monongahela in Pittsburg	187577	243,8	26,8	1:9,1	Fischbauchträger
Neuere Ausführungen	7	Strassenbrücke über die Argen bei Langenargen	1897—98	72,0	9,0	1:8	Kabelbrücke
	8	Elisabethbrücke über die Donau in Budanest	1898-1903	290,0	29,0	1:10	Kettenbrücke
	9	Williamsburgbrücke über den East River New-York	1898-1903	487,7	54,3	1:9	Kabelbrücke
Neuere Projekte	10	Schwurplatzbrücke über die Donau in Budapest	(1894)	316,0	27,5	$1:11^{1/2}$	Küblers preisgekrönter Entwurf. Kabelbrücke
	11	Brücke über den Hafen in Sydney	(1900)	548,6	55,0 .	1:10	Projekt der Vereinigten Maschinenfabr. Augsburg u. MaschGes. Nürnberg. II. Preis. Werk Nürnberg.
	12	desgl.	(1903)	396,3	51,8	1:7,7	Projekt d. E. u. C. Bridge Comp.
	13	Manhattanbrücke über d. East River New-York	(1899)	446,5	49,7	1:9	Projekt Buck. Kabelbrücke
	14	desgl.	(1902)	448,1	56,0	1:8	Projekt Lindenthal Versteifter Hängebogen.
1.5	91 4	in and in series and in		83 T 151	and wanter in	and mailes	

Tabelle II.

Man sieht, dass, während die älteren Ausführungen Pfeilverhältnisse von $1:12^{1/2}$ und kleiner aufweisen, neuere Ausführungen und neuere Projekte nicht unter 1:10 gehen. Als obere Grenze für die Grösse des Pfeiles gilt ¹/s der Spannweite. Man kann also allgemein ein Pfeilverhältnis von 1:8 bis 1:10 als das für praktische Ausführungen günstigste bezeichnen.

Die in der Tabelle angeführten Beispiele sind durchwegs Brücken mit nur einer grossen Mittelöffnung. Sind mehrere volle Öffnungen hintereinander geschaltet, so gilt die gleiche Regel bezüglich des Pfeilverhältnisses. Im übrigen sind in diesem Falle die Pfeilverhältnisse der einzelnen Öffnungen voneinander abhängig, wie bereits früher des näheren nachgewiesen (Seite 3).

b) Wahl der günstigsten Höhe des Versteifungsträgers.

Der Versteifungsträger versteift eine hängende Kette oder ein hängendes Kabel um so wirksamer, je starrer er wird, oder mit anderen Worten, je höher er ist. Andererseits wird aber das Verhältnis, wie sich Träger und Kette in Verkehrslasten teilen, wesentlich von der Trägerhöhe bezw. vom Trägheitsmoment des Trägers beeinflusst. Es lehrt dies ein Blick auf die Formeln für den Verteilungsfaktor β , Gleichungen 25, 25a, 55 und 56. Je grösser das Trägheitsmoment J des Trägers wird, um so mehr Lasten gehen direkt an ihn über und um so weniger geht auf die Kette oder das Kabel. Da aber der Träger nicht dazu da sein soll, selbst wesentlich an den Verkehrslasten mittragen zu helfen, sondern nur dazu, Partialbelastungen in gleichförmig verteilte umzuwandeln, so ist mit einem Werte von β , der sich viel von 1 entfernt, nichts erreicht. Man muss vielmehr danach trachten, den Versteifungsträger noch eben so stark zu machen, dass er seiner Aufgabe gewachsen ist und doch bei Totalbelastung so wenig wie möglich trägt.

Das mittlere Maximalmoment, welches im Versteifungsträger bei Brücken mit einer Öffnung infolge Verkehrsbelastung auftritt, beträgt nach Abschnitt IV 1 h. (S. 38)

$$\mathbf{M}_{\rm p \, mittel} = \frac{p \, l^2}{72} = \frac{p \, l^2}{8} \cdot \frac{1}{9}$$

während für Eigengewicht wird:

$$\mathrm{M}_{\mathrm{g\,mittel}} = \frac{\mathrm{g} \, . \, \mathrm{l}^2}{300}.$$

Der letztere Wert darf ohne weiteres vernachlässigt werden, denn es ist stets durch geschickte Montage möglich, das Eigengewicht nahezu ganz an die Kette oder das Kabel zu bringen. Es genügt, die Verkehrslast allein weiter zu betrachten.

Nimmt man nun, wie allgemein üblich, für einen frei aufliegenden Balken $\frac{1}{6}-\frac{1}{8}$ der Trägerstützweite als günstigste Trägerhöhe an, so müsste also der Versteifungsträger eine Höhe von h $=\frac{1}{54}-\frac{1}{72}$ l haben, im Mittel rund $\frac{1}{60}$ l. Dies ist derselbe Wert, welchen Schwend bereits in seiner Broschüre gefunden hat.

Da die Grösstmomente aber den Mittelwert aller Maximalmomente noch um durchschnittlich rund $30^{\circ}/_{\circ}$ übersteigen, tut man gut, die Trägerhöhe noch etwas grösser zu machen als $\frac{1}{60}$ l, wodurch man auf rund $\frac{1}{45}$ l kommt. In der Tat weisen neuere Ausführungen und neuere Brückenentwürfe Trägerhöhen entsprechend diesem Verhältnis auf. In einzelnen Fällen, wo genügend Höhe vorhanden war, ist man sogar bis zu $\frac{1}{40}$ l gegangen. Folgende Tabelle III zeigt an einigen Beispielen das gewählte Verhältnis der Trägerhöhe zur Spannweite. Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 1. Wahl der Hauptabmessungen etc. 79

Nr.	Name der Brücke	$\begin{array}{c} {\rm Tr} \ddot{a}ger\mbox{-} oder\\ {\rm Kabelst} \ddot{u}tzweite\\ l_1=l\mbox{ met.} \end{array}$	Trägerhöhe h met.	$\frac{h}{1}$	Bemerkungen			
1	Alte Niagarabrücke	250.2	5.283	1:47.5	Last web enceine anne film.			
2	Brooklynbrücke New-York	486.3	5.50	1:88	advantante advanta			
3	Langenargen	72,0	2,0 (mittel)	1:36	Trägerhöhe in der Mitte 1,91m "an den Enden 2,11m			
4	Elisabethbrücke Budapest	290,0	5,6 (mittel)	1:52	Trägerhöhe in der Mitte 4,75m , bei "Pylone 6,99m			
5	Williamsburgbrücke New-York	487,7	12,2	1:40	, am Ende 5,58m			
6	Schwurplatzbrücke Budapest	316,0	6,5 (mittel)	1:48,5	Trägerhöhe in der Mitte 5,7m , am Ende 7,4m			
	Küblers Entwurf				anonto promotion inter-			
7	Brücke Sydney	548,6	12,0	1:45,7	a nagreneam acountriences			
	Entwurf Nürnberg	Next Mains	is anient	d'int doing	ml. Andunionia riloni-sommi			
8	Manhattanbrücke	446,5	10,7	1:42	an fund dimensional import			
	New-York. Entwuf Buck	in wind the marine	in the second		We will be don't water with the			
9	desgl. Entwurf Lindenthal	448,1	14,0 (mittel)	1:32	Trägerhöhe in der Mitte 6,75 m Trägerhöhe in ¹ /4 der Stützweite 17,68 m			
		1		S. Lever	in straining a simulation of the second			

Tabelle III.

Die grösste Trägerhöhe ist etwa im Viertel der Stützweite nötig, während sie in Brückenmitte wesentlich kleiner sein darf (entsprechend der Kurve der Maximalmomente, siehe Fig. 16, Seite 24). Man begnügt sich aber meist mit einem Parallelträger von der erwähnten Höhe.

Nur der bekannte amerikanische Brückenbauer G. Lindenthal war bei seinem Projekt für die zweite East River-Brücke, der sogenannten Manhattanbrücke in New-York, von dieser Regel abgewichen und hatte dem Versteifungsträger veränderliche Höhe gegeben. Die Übersicht dieses Projektes ist aus Fig. 57 ersichtlich. Als Tragglied war

Fig. 57.

eine Nickelstahlkette vorgesehen, welche direkt den Obergurt des Versteifungsträgers bildete. Die Hauptabmessungen der Brücke sind aus der Zeichnung ersichtlich und beträgt die Trägerhöhe im vierten Teil der Mittelöffnung $\frac{1}{25}$, in der Mitte der Mittelöffnung $\frac{1}{66}$. Vier solcher Tragwände, von denen die inneren 40 Fuss (12,2 m), die äusseren 96 Fuss (29,3 m) voneinander entfernt sind, sollten die ganze Brücke bilden, welche vier Hochbahngeleise, vier Strassenbahngeleise, eine 35 Fuss (10,7 m) breite Fahrstrasse und zwei je $11^{1/2}$ Fuss (3,5 m) breite Fusssteige aufnehmen soll. Zur Ausführung gelangt der Entwurf Lindenthals nicht, sondern voraussichtlich eine Kabelbrücke mit gewöhnlichem parallelgurtigem Versteifungsträger nach dem Vorschlage des neuen Brückeningenieurs der Stadt New-York Geo Best (siehe Fig. 70).

Besteht die Brücke aus einer grossen Mittelöffnung und zwei halb so grossen Seitenöffnungen, so wirkt die erstere, wie verschiedentlich hervorgehoben, nahezu wie eine Brücke mit nur einer Öffnung. Die Träger in den Aussenöffnungen dagegen werden fast wie frei aufliegende Träger beansprucht und sind dementsprechend auszubilden, also mit 1/6-1/8 l Trägerhöhe in der Mitte. Man sieht aus Fig. 57, dass auch hierin Lindenthal seinem System eine richtige Form gab, wenn auch die gewählte Träger-

höhe von $\frac{1}{12^{1/2}}$ l als zu gering bezeichnet werden muss.

Sind mehrere Öffnungen hintereinander geschaltet, so muss die Höhe der Versteifungsträger wesentlich vergrössert werden, da die H-Werte mit der Zahl der Felder immer mehr abnehmen. Immer mehr werden die Versteifungsträger wie frei aufliegende Träger beansprucht, und es wird nötig, um grösseren Schwankungen zu begegnen, mit der Höhe dem normalen Verhältnis 1/6-1/8 l immer näher zu kommen.

c) Beziehung zwischen Pfeilhöhe der Kette und Höhe des Versteifungsträgers.

Wie bereits eingangs unter b) bemerkt, wird der Versteifungsträger um so mehr beansprucht, je mehr der Verteilungsfaktor β unter den Wert 1 sinkt. Für Brücken mit einer Öffnung gilt für β nach Gleichung 25 der Ausdruck:

$$\beta = \frac{1}{1 + \frac{48 \text{ K J}}{5 \text{ f} \, l^2 \text{ F}}}$$

worin: K eine nur von den Längenausdehnungen der Kette abhängige Grösse bedeutet, die mit einigen Vernachlässigungen dem Werte

$$\frac{3 \, \mathrm{l} \, (\mathrm{l} \, \mathrm{m} + 2 \, \mathrm{s_1}^2)}{16 \, \mathrm{f} \, \mathrm{l} \, \mathrm{m}}$$

gleichkommt, also umgekehrt proportional f ist, J das mittlere Trägheitsmoment des Trägers darstellt und f.F ein nahezu konstantes Produkt, rd. $\frac{q}{8\sigma}$ ist.

Das zweite Glied im Nenner ist also bei gleichbleibendem J des Trägers umgekehrt proportional f und wird bei kleiner werdendem Durchhange eine Verkleinerung von β und damit eine Mehrbelastung des Trägers bewirken. Dieser muss also, soll er nicht überanstrengt werden, oder abnormale Durchbiegungen aufweisen, höher gemacht werden. Umgekehrt bewirkt eine Vergrösserung des Kettenpfeiles eine Vergrösserung von β und eine Entlastung des Trägers, er kann niedriger ausgeführt werden.

d) Die Durchbiegungen von Hängebrücken.

Es ist eine bekannte Tatsache, dass Hängebrücken, auch wenn sie in richtiger Weise versteift sind, viel grössere Durchbiegungen und Schwankungen unter Verkehrslasten aufweisen, als gewöhnliche Fachwerksträger oder als Bogenträger. Während aber bei letzteren ungewöhnliche Durchbiegungen ohne weiteres ein Zeichen von Überschreitung Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 1. Wahl der Hauptabmessungen etc. 81

des Tragvermögens, von bleibender Dehnung einzelner Glieder usw. sind, ist dies bei Hängebrücken keineswegs der Fall. Eine Hängebrücke hat ihre Tragfähigkeit nicht verloren, wenn auch der Versteifungsträger abnormale Einbiegungen aufweist oder gar gebrochen ist. Der beste Beweis hierfür sind die mit mehrfach durchschnittenen Versteifungsträgern gebauten Brücken und sämtliche ältere Konstruktionen ohne jegliche Versteifung, von welchen viele jetzt schon bald einen hundertjährigen Bestand aufweisen.

Die Grenze der Durchbiegung bei Drahtseilbrücken z. B. wird erreicht, wenn das Drahtmaterial bis zur Elastizitätsgrenze beansprucht wird. Ein Wert hierfür lässt sich bequem an der Hand von Gleichung 54 berechnen, welche als Beziehung zwischen dl und df lautet:

$$dl = \frac{lds - \frac{16}{3}fdf}{2l - s}.$$

Setzt man hierin die Veränderung der Stützweite $dl = \frac{1}{2} ds$, was bei Hängebrücken mit einer Öffnung gewöhnlich zutrifft, ferner $f = \frac{1}{10}$ und s = -l, so wird

$$\frac{1}{2}$$
ds = $\frac{1$ ds $-\frac{16}{3}\frac{1}{10}$ df

bezw.

$$\mathrm{d}\,\mathrm{f} = \frac{45}{16}\,\mathrm{d}\,\mathrm{s}.$$

Nun ist d s = $\frac{s\sigma}{E} = -\frac{l\sigma}{E}$ und ergibt bei Draht von 140 kg/qmm Festigkeit mit einer Elastizitätsgrenze gleich 70 % dieses Wertes und E = 2200 t/cm²

$$ds = l \cdot \frac{0,7 \cdot 14}{2200} = \frac{l}{225},$$

woraus schliesslich wird:

$$d f = \frac{45}{16.225} \cdot l = \frac{l}{80}$$

Mit anderen Worten, die Durchbiegung unter gleichförmig verteilter Belastung kann $\frac{1}{80}$ der Spannweite erreichen, ohne dass bei dem gewählten Material des Seiles bleibende Deformationen eintreten. Dies ist ein ausserordentlich hoher Wert. In Wirklichkeit kommt nun immer nur die Verkehrslast in Betracht, welche bei grossen Strassenbrücken etwa ¹/₈ der Totallast ausmacht; ferner wird mit 3-4 facher Sicherheit gegen Bruch gerechnet. Damit reduziert sich df ohne weiteres auf

d f =
$$\frac{l}{80} \cdot \frac{1}{0,7.4} \cdot \frac{1}{3} = -\frac{l}{670}$$
.

Zu demselben Werte gelangt man, wenn man direkt die Durchbiegung des Versteifungsträgers infolge totaler Belastung durch Verkehrslast ermittelt. Dieselbe beträgt

d f =
$$(1 - \beta) p \frac{5}{384} \frac{l^4}{E J}$$

Hierin kann nach früher (Seite 38)

$$\mathbf{J} = \frac{\mathbf{F}_{e} \, \mathbf{h}^{2}}{2} = \left(\frac{\mathbf{p} \, \mathbf{l}^{2}}{72} + \frac{\mathbf{g} \, . \, \mathbf{l}^{2}}{300}\right) \frac{1}{\mathbf{h}} \cdot \frac{1}{\sigma} \cdot \frac{\mathbf{h}^{2}}{2}$$

Bohny, Hängebrücken.

und bei g = p (also $g_1 = g_2$) und $h = \frac{1}{45}$: $J = \frac{1}{5225} \frac{p \cdot l^3}{\sigma}$ gesetzt werden, so dass bei einem Mittelwerte von $\beta = 0.96$, $E = 2200 \text{ t/cm}^2$ und $\sigma = 1.2 \text{ t/cm}^2$ die Durchbiegung df wird: $df = 0.04 \cdot p \cdot \frac{5}{384} l^4 \frac{5225 \cdot 1.2}{2200 p l^3} = \sim \frac{1}{675}$,

also nahezu wie oben. Dieser Wert stimmt auch mit dem Mittelwerte von ausgerechneten Durchbiegungen einiger praktischer Beispiele.

Als Vergleich ist in ähnlicher Weise die Formel für die Durchbiegung eines gewöhnlichen Fachwerkträgers aufgestellt worden. Sie lautet für einen Träger mit einer mittleren Höhe von $h = \frac{1}{10}$, einer Beanspruchung des Konstruktionseisens mit 1 t/qcm:

$$\varDelta = -\frac{p}{q} \frac{1}{540}$$

und bei $p = -\frac{q}{3}$

$$\varDelta = r d \cdot \frac{1}{1600}.$$

Die grösste Einsenkung von Hängebrücken mit einer Öffnung infolge totaler Belastung durch Verkehrslasten ist also unter normalen Verhältnissen etwa doppelt so gross wie bei gewöhnlichen Fachwerksbrücken. Sie kann noch vergrössert werden durch stossweise oder rhythmische Wirkung der beweglichen Lasten. Ausserdem wären noch die Hebungen und Senkungen infolge Temperaturschwankungen zu beachten, welche jedoch nur ganz langsam vor sich gehen.

Für das Empfinden des die Brücke Überschreitenden mögen die grösseren Bewegungen bei Hängebrücken anfänglich befremdlich sein. Das unsichere Gefühl wird aber unbedingtem Zutrauen weichen, wenn erkannt ist, dass die Ursache der Schwankungen in der Natur, im Wesen des Bauwerkes begründet ist. Die vorstehende Vergleichsrechnung beweist dies schlagend; sie zeigt klar, dass Hängebrücken andern Systemen an Sicherheit nicht nur gleichwertig, sondern eher überlegen sind.

2. Die Eigenschaften der Materialien für Kabel und Ketten.

Als tragende Glieder für eine Hängebrücke kommen in Betracht:

- a) Drahtkabel oder Seile,
- b) Ketten.

Der historischen Entwickelung nach ist die Kette älter als das Kabel aus parallelen Drähten oder das gesponnene Seil. Anfänglich nur aus Rund- oder Quadrateisen mit geschmiedeten Augen hergestellt, ging man bald dazu über, die Kette aus Flacheisen mit Bolzengelenken zu bilden und es war möglich, mit solchen Ketten bereits beträchtliche Weiten zu überspannen. Als grösste der älteren Kettenbrücken dürfte die Clifton-Hängebrücke bei Bristol über den Avon zu bezeichnen sein, welche im Jahre 1864 mit einer einzigen Öffnung von 214 m erbaut wurde.

Die ersten Kettenbrücken entstanden gegen Ende des 18. Jahrhunderts in Amerika, von wo sie bald nach England übertragen wurden. Auf dem europäischen Kontinent waren sie immer nur vereinzelt vorhanden, und sind auch von diesen die meisten in den letzten Jahrzehnten wegen ungenügender Versteifung wieder abgetragen worden. Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 2. Eigenschaften der Materialien. 83

Wenige Jahrzehnte nach dem Bau der ersten Kettenbrücke in Amerika begann man daselbst mit dem Bau von Kabelbrücken mit parallel laufenden Drähten als Tragglieder. Man hatte bald erkannt, wie leicht es war, dünne Drähte einzeln durch die Luft zu ziehen, sie zu bündeln und als Tragseil zu benutzen. Man umging dabei das grosse Eigengewicht der Kette und konnte spielend bedeutend grössere Spannweiten überbrücken. Als unerreicht steht da, was in dieser Hinsicht die bekannten amerikanischen Ingenieure J. und W. A. Röbling (Vater und Sohn), Trenton, N. J., geleistet haben. 1855 vollendeten sie die berühmte Brücke über die Niagarastromschnellen mit 250,2 m Spannweite, 1867 die Brücke über den Ohio bei Cincinnati mit 322,2 m Spannweite der Mittelöffnung und 1876 krönten sie ihren Ruhm mit der bekannten East River-Brücke zwischen New-York und Brooklyn mit einer Hauptspannweite von 486,3 m. Von Amerika gelangten die Kabelbrücken nach Europa und haben hauptsächlich in der Schweiz und in Frankreich ziemliche Verbreitung gefunden. Die grösste europäische Ausführung ist wohl die Saanebrücke bei Freiburg in der Schweiz mit 273 m Spannweite, erbaut 1832/34.

Merkwürdigerweise vergingen seit dem Bau der Brooklynbrücke über zwei Jahrzehnte, bis man wieder begann, für grosse Spannweiten Hängebrücken vorzuschlagen. Die einfachen Balkenbrücken hatten indessen vollständig das Feld gewonnen und da auch mehrere alte Kabelbrücken (unter anderen die Niagarabrücke) wegen ungenügender Versteifung genieteten Konstruktionen, Bogen usw. weichen mussten, war ein grosses Misstrauen aufgekommen. Erst die internationale Konkurrenz für die Überbrückung der Donau am Schwurplatz in Budapest (1894) brachte das System wieder zu Ehren und mit grossem Vorsprung gewann Kübler mit seinem eleganten Drahtseilbrückenentwurf den ersten Preis. Der Entwurf gelangte leider nicht zur Ausführung, statt dessen aber eine versteifte Kettenbrücke, die sich als eines der mächtigsten Bauwerke der Brückenbaukunst würdig den anderen Brückenbauten der ungarischen Kaiserstadt anschliesst. Über dieses Bauwerk ist bereits früher berichtet worden auf Seite 59/60, Fig. 41.

Nahezu gleichzeitig (1898) begann man in New-York mit dem Bau der dritten East River-Brücke, der sogenannten Williamsburg-Brücke, einer Kabelbrücke. Die Tragglieder dieser Brücke sind vier Kabel aus parallelen Drähten, über deren Anfertigung noch näher berichtet wird. Die Hauptstützweite dieser Brücke beträgt 1600 Fuss (487,7 m), die Zahl der Versteifungsträger ist zwei. Zwischen diesen befinden sich zwei Geleise für die Hochbahn, vier Geleise für die elektrische Strassenbahn, zwei Fussgängerwege von je $10^{1/2}$ Fuss (3,2 m) Breite und zwei Radfahrerbahnen von je 7 Fuss (2,13 m) Breite, während beiderseits und ausserhalb der Hauptträger auf kräftigen auskragenden Konsolen je eine Fahrstrasse von 20 Fuss (6,1 m) Nutzbreite angeordnet ist.

Zwischen der Williamsburgbrücke und der alten Brooklynbrücke soll die zweite East River-Brücke, die Manhattanbrücke, zu stehen kommen, welche schon oben Erwähnung fand.

So ist zu hoffen, dass das mehrere Jahrzehnte lang vernachlässigte System allmählich wieder mehr an Platz gewinnt, zumal die Theorie desselben vollständig feststeht und auch viele Konstruktionsdetails, die früher nur mangelhafte Ausbildung zeigten, inzwischen wesentlich verbessert, zum Teil einwandfrei gelöst worden sind.

Über die Grenzen der Stützweiten, von welchen ab Hängebrücken beginnen rationell zu werden, ist zum Schluss des Abschnittes noch näheres niedergelegt.

a) Das Kabelmaterial.

Ein Kabel kann entweder an Ort und Stelle durch Ziehen von parallelen Drähten hergestellt werden, oder man kann es aus einzelnen Seilen zusammensetzen, die fertig gesponnen von der Fabrik zur Baustelle kommen. Über das Ziehen der Drähte, sowie die Vereinigung von fertigen Seilen zu einem grossen Kabel ist später eingehend berichtet. Bei Brücken kleinerer Spannweite, sowie bei Stegen, wird man heutzutage stets mit fertigen Seilen auszukommen suchen, nachdem die Seilfabriken in der Herstellung derselben bereits ausserordentlich weit fortgeschritten sind.

ao/ .a. 2.382 nov elamana addata (a) Der Draht. al bou shol-well addeive oknisil

Das Element der Kabel und Seile ist der Draht. Normal besitzen die Drähte eine kreisrunde Querschnittsfläche und nur bei besonderen Seilkonstruktionen, den sogenannten "verschlossenen Seilen" werden anders geformte Drähte mit ovalem, trapezförmigem oder doppelwulstigem Querschnitt verwendet.

Röbling gebrauchte zu den Kabeln der Niagara- und Ohio-Brücke Draht von 70 kg/qmm Festigkeit, ging jedoch bei der Brooklyn-Brücke bereits zu Draht von 1121/2 kg/qmm Festigkeit über. Ersterer war gezogener Draht aus Schweisseisen, welcher von 60-80 kg/qmm Festigkeit herstellbar ist, letzterer war schon gezogener Stahldraht. Der jetzt allgemein angewandte Stahldraht, sogenannter Patentgussstahldraht, wird aus Gussstahl aus dem Tiegel gewonnen und kann durch Ziehen bis zu Festigkeiten von weit über 200 kg/qmm hergestellt werden. Zur Verwendung bei Brückenseilen kommt jedoch nur Draht bis höchstens 150 kg/qmm Festigkeit in Betracht, da Draht von höherer Festigkeit gegen Biegung und Torsion zu empfindlich ist.

Über die Eigenschaften von Drähten solcher Festigkeit sind in der Literatur nur sehr spärliche Daten vorhanden. Namentlich sind über das elastische Verhalten derselben bei Beanspruchung auf Zug, welches für die richtige Berechnung einer versteiften Hängebrücke unbedingt bekannt sein muss, die widersprechendsten Zahlen veröffentlicht worden. Es sind deshalb in folgendem nur die Daten wiedergegeben, die in allen Veröffentlichungen übereinstimmen und daher als mit der Wirklichkeit zutreffend gelten können; ausserdem sind einige neue, zum Teil noch nicht bekannte Versuchsresultate zum Vergleich mit herangezogen worden.

Als Elastizitätsmodul von Draht mit 90-150 kg/qmm Festigkeit kann der gleiche Wert wie bei bestem Tiegelgussstahl angenommen werden, welcher zwischen 2000-2300 t/qcm schwankt. In der neuesten Ausgabe der "Hütte" findet sich der von Bach entnommene Wert E = 2150 t/qcm. Tetmayer hat in seiner neuesten Ausgabe der "Angewandten Elastizitäts- und Festigkeitslehre¹)" keine Angabe über den Elastizitätsmodul von Stahldraht gemacht, für harten Flussstahl in Stäben mit einer Festigkeit grösser als 75 kg/qmm nennt er E = 2300 t/qcm. Man geht also nicht viel fehl, wenn man im Mittel für E denselben Wert wie bei Flusseisen annimmt, also 2100-2200 t/qcm.

Weniger bekannt ist die Höhe der Proportionalitätsgrenze und die Höhe der Elastizitätsgrenze, wobei letztere Grenze als derjenige Wert aufgefasst werden soll, bis zu welchem die bleibenden Dehnungen noch verschwindend klein sind, das Material sich also noch nahezu vollkommen elastisch verhält. Versuche, diese Grenzen

^{1) 2.} Aufl. Leipzig und Wien 1904, S. 215.

Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 2. Eigenschaften der Materialien. 85

bei Drähten zahlenmässig festzustellen, sind anscheinend bis jetzt nur sehr spärlich gemacht worden. Um so mehr sind die folgenden, von der Firma Felten & Guilleaume, Carlswerk A.-G., in Mülheim a. Rh., freundlichst zur Verfügung gestellten, teils durch Versuche, teils durch Beobachtung gewonnenen Angaben zu beachten. Nach dieser Firma kann die Proportionalitätsgrenze von Drähten mit 90-140 kg/qmm Festigkeit auf rund 50% der Bruchfestigkeit angenommen werden. Diese Annahme wird bestätigt durch

Dehnungslinien von Draht mit 140 Kilo n. gnun Festigkeit.

Versuche, welche in der mechanisch-technischen Versuchsanstalt in Charlottenburg im Auftrage von Felten & Guilleaume durchgeführt wurden, und von denen in Fig. 58 das Resultat an vier Drähten von 140 kg/qmm Festigkeit dargestellt ist. Die vier dargestellten Schaulinien stellen in 10000 facher Vergrösserung die Dehnungszunahmen dar bei Steigerung der Beanspruchung von 10 zu 10 kg/qmm und gemessen auf eine Länge von 50 mm. Die Zunahme der Dehnung ist dieselbe, solange die Dehnung proportional der Spannung erfolgt, und muss also innerhalb der Proportionalitätsgrenze die Kurve der Zunahmen genau senkrecht verlaufen. Wie die Kurven zeigen, ist dies im Durchschnitt bis zu rund 70 kg/qmm Beanspruchung der Fall, das heisst bis zu $50^{\circ}/_{\circ}$ der Bruchfestigkeit. (Die Reichsprüfungsanstalt in Charlottenburg hat die mit \odot versehenen Werte als Proportionalitätsgrenze bezeichnet; diese liegen im Mittel bei rund 60 kg/qmm, was knapp $45^{\circ}/_{\circ}$ der Bruchfestigkeit wäre.) Dasselbe Resultat ergaben Prüfungen mit anderen Drähten von Festigkeiten zwischen 90—150 kg/qmm.

Nach Überschreitung der Proportionalitätsgrenze wachsen die Dehnungen rascher als die Spannungen, und die Kurven der Zunahmen wenden sich, die Vertikale als Tangente nehmend, nach rechts ab. Sie erreichen nicht unweit der Bruchgrenze die Elastizitätsgrenze, welche aber nicht so gleichmässig im Verhältnis zu ersterer liegt, wie die Proportionalitätsgrenze. Die Elastizitätsgrenze hängt vielmehr ab von der Bearbeitung des Materiales. Ist die Bruchdehnung geringer, so zeigt diese Grenze eine Tendenz zum Steigen, während sie bei Drähten grösserer Bruchdehnung etwas abfällt. Durchschnittlich kann man bei Drähten von 120-150 kg Festigkeit mit $2-3^{\circ}/_{0}$ Bruchdehnung nach Felten & Guilleaume die Elastizitätsgrenze etwa bei $70-75^{\circ}/_{0}$ der Bruchbeanspruchung annehmen, während weicherer Draht von 90-100 kg/qmm Festigkeit mit einer Bruchdehnung von $7-8^{\circ}/_{0}$ eine Elastizitätsgrenze von etwa $65^{\circ}/_{0}$ der Bruchbeanspruchung besitzt.

Stellt man also die Frage, ob gezogener Tiegelgussstahldraht eine ausgesprochene Proportionalitäts- und Elastizitätsgrenze besitzt, so muss diese für die erstere Grenze unbedingt bejaht werden. Für die zweite Grenze kann die Frage ebenfalls bejaht werden, es ist aber eine Einschränkung bezüglich der Art der Fabrikation zu machen.

Mehr Versuchsresultate liegen über die Bruchdehnung von Drähten vor und sei hier vor allem auf das vierte Heft der Mitteilungen der Prüfungsanstalt von Baumaterialien am eidgenössischen Polytechnikum in Zürich verwiesen, in welchem Tetmayer ausführlich über seine Untersuchungen der Qualitäts- und Festigkeitsverhältnisse der Drahtseile der schweizerischen Drahtseilbahnen berichtet¹). Es handelt sich dabei durchwegs um sechslitzige Seile von $25-42^{1/2}$ mm Durchmesser mit Drähten von $1^{1/4}$ bis $2^{1/2}$ mm Stärke, also um dünne Seile mit dünnen Drähten, was besonders hervorgehoben sei. Die Zugfestigkeit der Drähte in den Litzenseelen schwankte (wenn man vom Ballastseil der Beatenbergbahn absieht) zwischen 132 und 183 kg/qmm, diejenige der Drähte des Litzenumfanges zwischen 129 und 185 kg/qmm. Die Bruchdehnungen, bezogen auf 500 mm Messlänge, schwankten bei den Seeldrähten zwischen 2,5 und 4,3 °/o, bei den Umfangsdrähten zwischen 2,7 und 4,0 °/o. Der Mittelwert von neun Seiluntersuchungen war rund $3^{1/2}$ °/o. Man geht also nicht viel fehl, wenn man die Bruchdehnung von Draht mit 120-150 kg/qmm Festigkeit im allgemeinen zu $2^{1/2}$ °/o (unterste Grenze 2 °/o) bis $3^{1/2}$ °/o (oberste Grenze 4 °/o) annimmt.

Tetmayer hat auch die Kontraktion beim Bruch gemessen, und kann man dieselbe bei Drähten von der angegebenen Stärke zu etwa 40-50% des ursprünglichen Querschnittes annehmen.

β) Das Seil.

Die Grundform des Seiles bildet die einfache, runddrähtige Spiralkonstruktion mit einem oder sieben Seeldrähten und einer oder mehreren Ringlagen von Deckdrähten. Überschreitet der Durchmesser des Seiles bei der einfachen Spiralkonstruktion eine gewisse Grösse, so muss man zur Litzenkonstruktion übergehen, in welcher um eine

¹⁾ Zürich 1890. Selbstverlag der Eidgen. Festigkeitsanstalt, S. 227-274.

Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 2. Eigenschaften der Materialien. 87

Kernlitze (oder einen Innenschenkel) sechs Decklitzen (oder sechs Deckschenkel) angeordnet sind. Die Art der Vereinigung erfolgt für Brückenseile stets nach dem sogenannten Kreuzschlag, bei welchem die Litzen in entgegengesetzten Windungen verlaufen wie die Drähte in den Litzen. Die Neigung des Seiles gegen Aufdrehen (der sogenannte innere Drall) wird durch diese Anordnung geringer als bei gleichlaufenden Windungen der Drähte und Litzen.

Zu Brückenseilen mit runden Drähten wird im allgemeinen Draht von 90 bis 150 kg/qmm Festigkeit verwendet. Nur in vereinzelten Fällen ist man bis auf 170 kg/qmm gegangen, wodurch das Eigengewicht noch etwas herabgedrückt wird. Die Drahtstärke richtet sich zum Teil nach dem Durchmesser des einfachen Spiralseiles oder der Litze, in der Hauptsache aber nach der Festigkeit des Drahtes und kann zum Beispiel bei Draht mit 150 kg/qmm Festigkeit etwa 5 mm, bei Draht mit 120 kg/qmm Festigkeit etwa 6 mm als obere Grenze angenommen werden. Im allgemeinen variiert die Draht-

stärke bei schweren Seilen zwischen 4 und 6 mm. Um gleichmässige Beanspruchung aller Litzen zu erzielen, werden diejenigen des Seilumfanges stets aus härterem Material hergestellt als die Kernlitze.

Ein typisches Bild eines grösseren Brückenseiles mit runden Drähten in Litzenkonstruktion ist in Fig. 59 dargestellt. Es ist¹) das Seil, welches Kübler bei der Drahtseilbrücke über die Argen bei Langenargen am Bodensee verwandte. Die umstehende Tabelle IV zeigt ferner eine Zusammenstellung für Seile solcher Konstruktion, aufgestellt von der Firma Felten &-Guilleaume für Material von 135 kg/qmm Festigkeit. Wie man sieht, ist es in dieser Konstruktion möglich, schon ganz ge-

Fig. 59.

waltige Seile herzustellen, die auch für grössere Brücken noch vollkommen ausreichen. Das für Langenargen hergestellte Seil mit Material von 120 kg/qmm Festigkeit ist am Schluss der Tabelle besonders angeführt, ebenso das Seil, welches bei der Kaiser Wilhelm-Brücke bei Müngsten zur Zurückhaltung der Eisenkonstruktion beim freien Vorbau des grossen Bogens benützt wurde.

In den runddrähtigen Seilen entstehen zwischen den Drähten und zwischen den Litzen stets Zwischenräume, welche gegen Wasserzudrang geschützt werden müssen. Man erreicht dies, indem man die Lücken schon bei der Fabrikation sorgfältig mit gemennigten Flachsfasern ausfüllt und so einen vollständig kompakten Querschnitt herstellt.

Als ein weiterer Fortschritt in der fabrikmässigen Herstellung von Brückenseilen muss die Erfindung der sogenannten verschlossenen Konstruktion bezeichnet werden. Die Erfindung stammt aus England (nach anderen Daten aus Frankreich), doch sind bis heute nur in Deutschland verschlossene Seile von solchen Stärken hergestellt worden, wie sie für Brückenbauzwecke benötigt werden. Die Firma Felten & Guilleaume

1) In halber natürlicher Grösse.

Tabelle IV.

Brückenseile aus Runddrähten nach Felten & Guilleaume, Carlswerk, A.-G.

Art der Konstruktion	Seil Ø in mm	Gewicht pro Meter in kg	Bruchfestigkeit bei 135 kg pro qmm in kg	Bruchfestigkeit anderer Arten
Spiralkonstruktion	36.2	7.0	101800	150 kalanan Fostiphait
Spiritino noti altered	45.2	11.0	159000	hals describer managing
our our annistance	51.5	14.0	207000	The month of the Bungle
and biasial and an	han wide	CI und traffic	nach doon a	de administrall rah o
Litzenkonstruktion	68	18.0	252400	mp 2d 061 sine there
ident aib trainey on	76	22.0	303000	orado ala mua D' nato
-	80	25,0	349100	Stirka hai senwaran Sa
	86	28,0	398300	inter with men to here t
	91	32,0	450600	
A Carlo And Comment	96	36,0	506000	
Carl and Street	100	39,0	553100	
	105	43,0	602100	M mortanial ana stata
	109	46,0	652900	stellt als die Kernlitze
	113	50,0	705000	
All and a state of the state of	117	53,0	747000	
	121	57,0	803700	Rottesenersphilter Rottes
	125	60,0	847700	
71	129	65,0	908600	in Fig. 59 dargentallt.
77	132	68,0	954000	
77	136	72,0	996400	
7	. 142	78,0	1102200	
7	148	85,0	1190800	
	155	94,0	1306400	
			with way they	Bruchfestigkeit
Müngsten	93	33.0	510000	155 kg pro amm
Langenargen	133	69.0	850000	120 kg pro qmm
Tungoningon	100	00,0	00000	The up has Junit

war es wieder, welche mit Aufwand von viel Mühe und Kosten die Fabrikation solcher Seile in grossen Stärken entwickelte; sie steht auch heute als einzige Fabrik da, welche

Fig. 60.

stärkere verschlossene Brückenseile zu liefern imstande ist. Die Erfindung ist jetzt etwa 20 Jahre alt.

Als verschlossene (früher patentverschlossene Seile) werden Seile mit nahezu kompaktem Metallquerschnitt bezeichnet, welche aus runden, trapezförmigen und doppelwulstigen Drähten zusammengesetzt sind (siehe Fig. 60). Schliessen die Trapezdrähte schon nahezu luftdicht das Seilinnere gegen äussere schädliche Einflüsse ab, so ist dies noch mehr bei den doppelwulstigen Decklagen der Fall. Diese legen sich wie ein festes Ge-

webe Ring für Ring auf den Kern auf und fügen sich durch den Schlag aufs innigste aneinander. Da auch hier beim Flechten immer reichlich gemennigt wird, kann man Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 2. Eigenschaften der Materialien. 89

ein solches Seil als absolut gefeit gegen irgendwelche Angriffe von aussen, Witterungsniederschläge usw. betrachten. Fig. 60 stellt ein Seil deutscher Fabrikation (von Felten &

Guilleaume) dar, während die Figg. 60a u. 60b die Querschnitte von verschlossenen Seilen englischer bezw. französischer Herkunft wiedergeben.

Die Grösse der Ausführbarkeit in einem Seil findet bei etwa 100 mm Durchmesser ihre Grenze. Bei grösserem Durchmesser muss man wieder zur Litzenkonstruktion übergehen, da sonst bei der flachen Windung der fassonierten Deck-

drähte der Zusammenhalt doch etwas zu locker wird. Man kommt dann auf die Konstruktion von Fig. 61. Die dreieckigen Hohlräume zwischen der Kernlitze und den sechs Decklitzen werden dabei

wieder fest ausgetrenst und mit einer Mischung vollgetränkt, die jegliches Eindringen von Wasser von aussen verhindert.

Die Herstellung von verschlossenen Seilen grössten Kalibers wird, wie bereits bemerkt, zurzeit nur von Felten & Guilleaume betrieben und zeigen die Figg. 60 u. 61 in verkleinertem Massstabe¹) die von dieser Firma bei der Rekonstruktion der Kaiser Franz Josephs-Brücke in Prag verwendeten Grössen. Das Litzenseil hat einen Durchmesser von 125 mm und besitzt eine Gesamtbruchfestigkeit von 1100 Tonnen. Als Material zu solchen Seilen nimmt Felten & Guilleaume Draht von 120 bis

Fig. 60b.

Fig. 60a.

130 kg/qmm Festigkeit; höhere Festigkeiten werden mit Rücksicht auf die fassonierten Drähte gerne vermieden.

Für Brücken müssen die verschlossenen Seile geradezu als ideale Konstruktionselemente bezeichnet werden und sollten dieselben überall Verwendung finden, wo wirklich etwas Dauerhaftes gebaut werden soll. Leider steht der ziemlich hohe Preis ihrer allgemeinen Anwendung noch oft entgegen. Auch für verschlossene Seile stellte Felten & Guilleaume eine Tabelle der Gewichte und Bruchlasten zur Verfügung (umstehende Tabelle V), die Werte sind bei den einfachen Seilen von 50 zu 50 Tonnen steigend angeordnet, bei den Litzenseilen von 100 zu 100 Tonnen steigend.

Über die elastischen Eigenschaften von gesponnenen Drahtseilen ist in der Literatur fast gar nichts zu finden, und was an Versuchsresultaten spärlich zerstreut vorliegt muss mit grosser Vorsicht aufgenommen werden. Meist sind es Werte, die durch Versuche an dünnen Förderseilen oder Drahtseilbahnseilen gewonnen wurden, und die kaum einen Schluss auf die Eigenschaften schwerer Brückenseile zu ziehen erlauben.

1) In halber natürlicher Grösse.

Art der Konstruktion	Seil Ø in mm	Gewicht pro Meter in kg	Bruchfestigkeit bei 135 kg pro qmm in kg		
Verschl, Spiralkonstruktion	47.3	12.8	204900		
	52,2	15,6	250000		
	56,9	18.7	301000		
	61,2	22,0	352500		
alla don alla	65,6	25,0	400800		
	69,3	28,0	450300		
in the second second	73,1	31,4	500900		
	76,4	34,0	551000		
	79,6	37,2	602100		
7	82,6	40,2	649000		
,	85,6	43,6	703800		
	88,4	46,7	747300		
	91,3	49,5	798200		
7	94,2	52,8	851800		
	97,1	55,8	901000		
,	100,0	59,0	954000		
Verschl.Litzenkonstruktion	123.0	71.0	1024560		
	128,5	75,5	1100000		
7	134,0	82,0	1200000		
	139,5	89,1	1300000		
	144,5	96,0	1400000		
	144.7	103.3	1500000		

Tabelle V.

Brückenseile verschlossener Konstruktion nach Felten & Guilleaume, Carlswerk, A.-G.

Der Elastizitätsmodul der Seile ist natürlich niedriger als derjenige des Drahtmateriales im Seil. Die spiralförmig gewundenen Drähte wirken wie langgestreckte Spiralfedern, welche auch bei sehr grosser Beanspruchung noch bestrebt sind, sich gegenseitig zu verschieben und ihre Lage zu verändern. Es entstehen durch den Längszug Pressungen quer zum Seil und die Oberflächenhärte der einzelnen Drähte kommt nun in Betracht. Es ist klar, dass dabei ein Seil mit runden Drähten grössere Verschiebungen und Ineinanderpressungen aufweisen wird als ein patentverschlossenes Seil, dessen Drähte mit breiten Flächen aneinander liegen. Der Elastizitätsmodul muss also bei ersterer Konstruktion kleiner sein als bei letzterer. Endlich darf bei Seilen, die aus der Fabrik kommen, die grosse anfängliche Längung nicht übersehen werden. Diese rührt her von der Fabrikation selbst, von Unvollkommenheiten im Gefüge der Konstruktion, von Lockerungen der Spiralpressungen beim Transport etc. und verschwindet, sobald grössere Kräfte das Seil auf Zug beanspruchen. Im allgemeinen dürfte man nicht viel fehlgehen, wenn man nach Beobachtungen von Felten & Guilleaume für Seile unter grosser Spannung den Elastizitätsmodul von geschlossenen Seilen um 10-15%, bei einfachen runddrähtigen Seilen um 15-20% und bei siebenschenkeligen runddrähtigen Seilen um 20-30% kleiner annimmt als den Elastizitätsmodul des Drahtmateriales.

Diese Werte werden in wirksamer Weise unterstützt durch neuere umfangreiche Versuche, welche Ingenieur F. Berg aus Worms kürzlich in den Werkstätten des KarlsWahl der Hauptabmessungen, Eigenschaften der Materialien etc. 2. Eigenschaften der Materialien. 91

werkes in Mülheim ausgeführt hat. Berg fand im Mittel¹) den Elastizitätsmodul von geschlossenen Seilen bei grösserer dauernder Beanspruchung (so dass die Kraft nicht mehr auf Null sinkt, sondern höchstens noch Verkehrslastkräfte hinzutreten) zu 88°/0, bei zweimal geschlagenen runddrähtigen Seilen zu 70°/0 des Drahtmateriales.

Versuche an dünnen Treibseilen hat Bach vor 19 Jahren gemacht und fand an einem sechslitzigen Seil von 16 mm Durchmesser mit Hanfseele einen Elastizitätsmodul E = 700 t/qcm, was nur 36 % vom Modul des Drahtmateriales gleichkommt²). Weitere Versuche machte Bergwerksinspektor Diviš in Österreich vor einigen Jahren an sechslitzigen Seilen mit Seeldrähten und fand den Elastizitätsmodul des Seiles nahezu gleich dem Modul des Drahtmateriales. Ebenso fand derselbe Forscher aus Versuchen an einfachen Litzen mit Seeldrähten, dass die Abnahme des Elastizitätsmodules gegen denjenigen des Drahtes nur etwas mehr als 10 % sei³). Wie man sieht, sind diese Ergebnisse so widersprechend, dass man sie besser auf grössere Seile nicht ausdehnt. Es ist empfehlenswert, nur mit den zuerst genannten runden Ziffern von Felten und Guilleaume zu arbeiten, die durch die Versuche Bergs im grossen und ganzen als richtig bestätigt worden sind.

Noch unsicherer als der Elastizitätsmodul ist die Proportionalitäts- und Elastizitätsgrenze der Seile. Eine ausgesprochene Proportionalitätsgrenze lässt sich bei Brückenseilen nicht feststellen; es entsprechen vielmehr gleichen Belastungszunahmen grössere Längendehnungen. Als Elastizitätsgrenze kann man bei runddrähtigen Seilen etwa 50 % der Bruchfestigkeit ansehen, bei geschlossenen Seilen etwa 60 %. Auch diese Zahlen hat Berg durch Versuche erwiesen gefunden.

Endlich wäre noch die Bruchdehnung zu besprechen. Tetmayer fand bei den bereits erwähnten Versuchen an den Seilen der schweizerischen Drahtseilbahnen eine Bruchdehnung von rund 3% (Mittelwert aus 9 Seilen), bezogen auf eine Versuchslänge von 50 cm. Berg fand bei Brückenseilen folgende Bruchdehnungen:

Bei geschlossenen Seilen 1,7 %,

bei runddrähtigen Seilen 2%.

Die Versuchslänge betrug dabei 1351 mm.

Durch das Vereinigen von Drähten zu Seilen erleidet die Festigkeit der Drähte eine Einbusse, da es auch bei bester Auswahl der Materialien und bei sorgfältigster Fabrikation nicht möglich ist, alle Einzeldrähte vollkommen gleichmässig zum Tragen zu bringen. Hierzu kommt noch die Ablenkung des Drahtes von der Geraden. Tetmayer fand die Abminderung der Drahtfestigkeit im Seil bei runddrähtigen Kreuzschlagseilen im Mittel zu rund 9 % 1 und wäre um so viel die aus den Drähten berechnete Bruchfestigkeit zu verkleinern, wenn man die Bruchfestigkeit des Seiles bestimmen will. Bei Brückenseilen mit sehr lang geschlagener Konstruktion wird die Abminderung natürlich geringer sein, und noch geringer bei geschlossenen Seilen.

b) Das Kettenmaterial.

Bei nicht allzu grossen Abmessungen der Kette wird man mit solchem Material auszukommen suchen, wie die übrige Konstruktion ausgeführt ist, das heisst mit gewöhnlichem Konstruktionseisen. Als Eisen von Normalqualität gilt hierfür in Deutschland Flusseisen (Thomasflusseisen oder Siemens-Martin-Flusseisen) von 37 bis 44 kg/qmm Festigkeit und mindestens 20% Bruchdehnung auf 20 cm Länge. Die Proportionalitätsgrenze liegt bei solchem Eisen bei etwa 20 kg/qmm, während die Elastizitätsgrenze nach Tetmayer durchschnittlich bei 22 kg/qmm liegt⁵). Der Elastizitätsmodul beträgt

- 4) a. a. O. S. 274.
- 5) a. a. O. S. 215.

¹⁾ Die Werte wurden von Herrn Berg in liebenswürdigster Weise zur Verfügung gestellt.

²⁾ Zeitschrift deutscher Ingenieure 1887, Nr. 12, S. 241-245.

³⁾ Zeitschrift des Österr. Ingenieurs- und Architekten-Vereines 1904, Nr. 31, S. 453.

E = 2150 t/qcm. Die Kontraktion beim Bruch wechselt stark und ist vielfach von der Querschnittsform der Versuchsstücke abhängig, gewöhnlich liegt der Kontraktionswert zwischen 40 % und 60 %.

Die Vorschriften der Nachbarländer sind von denjenigen Deutschlands nur wenig verschieden, während man in Amerika und England bereits zu hochwertigerem Flusseisen, dem Medium Steel oder mittelhartem Stahl übergegangen ist. Im allgemeinen unterscheiden die Amerikaner drei Sorten von Konstruktionseisen¹):

1. Nieteisen (Rivet Steel) von 35-41 kg/qmm (50000-58000 lbs./Quadratzoll) Festigkeit mit einer Elastizitätsgrenze, welche nicht geringer ist als die Hälfte der jeweiligen Festigkeit. Geringste Dehnung 25% auf 8 Zoll (203 mm) Länge.

2. Weicher Stahl (Soft Steel) von 38-431/2 kg/qmm (54000-62000 lbs./Quadratzoll) Festigkeit mit einer Elastizitätsgrenze von mindestens der Hälfte der jeweiligen Festigkeit. Geringste Dehnung 25 % auf 8 Zoll Länge.

3. Mittelharter Stahl (Medium Steel) von 421/2-48 kg/qmm (60000-68000 lbs./ Quadratzoll) Festigkeit mit einer Elastizitätsgrenze von demselben Verhältnis zur Festigkeit wie bei 1. und 2. und einer geringsten Dehnung von 22% auf 8 Zoll Länge.

Nr. 2 entspricht etwa dem deutschen Flusseisen. Man verwendet aber Eisen dieser Qualität immer weniger in Konstruktionen, sondern jetzt ganz allgemein den härteren Medium Steel. Alle drei Eisensorten der Amerikaner sollen im Siemens-Martin-Ofen (Open Hearth) hergestellt werden und sollen beim saueren Verfahren nicht mehr als 0,06 % Phosphor enthalten, beim basischen Verfahren nicht mehr als 0,04 % (nach den Angaben der Pencoyd Works 0,08 bezw. 0,05 %). Der Elastizitätsmodul soll durchschnittlich 2040 t/qcm (29000000 lbs./Quadratzoll) betragen.

Da bei grossen Hängebrücken, von 150 Meter und mehr Spannweite, das Eigengewicht der Kette und damit die Rückankerkräfte, die Pylonendrücke usw. ungemein wachsen, auch die Montage (falls sie nicht auf festen Gerüsten erfolgen kann), mit dem Wachsen der Gewichte immer grössere und umständlichere Vorkehrungen erfordert, ist es klar, dass die Verwendung von einem noch hochwertigeren Kettenmaterial von grösstem Vorteile wäre. In der Tat ist man schon dazu übergegangen und ist das beste Beispiel dafür die Elisabeth-Brücke in Budapest. Die Kettenglieder dieser Brücke wurden aus bestem basischem Siemens-Martin-Stahl hergestellt, welcher eine Bruchfestigkeit von 50-55 kg/qmm in der Walzrichtung aufwies und eine minimale Bruchdehnung von 20 % besass. Die grösste Beanspruchung der Kettenstäbe beträgt in der fertigen Brücke 14 kg/qmm, so dass eine 31/2-4 fache Sicherheit vorhanden ist. Das Material muss als vorzüglich bezeichnet werden und wurde beim Herausarbeiten der Kettenglieder aus den Walzeisenstäben noch alles getan, um dem Material seine Eigenschaften zu erhalten. Näheres ist später hierüber bei der Konstruktion der Kettengelenke (Seite 103) niedergelegt. Als Gelenkbolzen für die Kettenaugen wurde geschmiedeter Stahl von derselben Festigkeit verwendet.

Nahezu dasselbe Material hatte die Firma Harkort für die Kette ihres Entwurfes für die Rheinbrücke in Köln (Fig. 35) vorgesehen, nämlich Siemens Martin-Flussstahl von 50-60 kg/qmm Festigkeit und mindestens 18% Dehnung. Die Elastizitätsgrenze sollte bei 26 kg/qmm liegen, die grösste Beanspruchung war halb so gross, also zu 13 kg/qmm festgesetzt.

1) Nach Theodore Cooper, Consult. Engineer, General Specifications for Steel Highway and Electric Railway Bridges and Viaducts, Ausgabe 1901.

Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 2. Eigenschaften der Materialien. 93

Der Erfolg in Budapest mit einer Siemens Martin-Stahlkette ist aber bereits schon wieder in Schatten gestellt durch die Amerikaner, welche nunmehr ernsthaft dazu übergegangen sind, Nickelstahl für Kettenglieder, für schwere Zugstäbe überhaupt, zu verwenden. Als erste Brücke, deren Zugglieder aus Augenstäben (Eye bars) von Nickelstahl bestehen, kann die zurzeit im Bau begriffene vierte East River-Brücke in New-York bezeichnet werden, welche über die Blackwell-Insel führt. Der Vertragspreis, welcher für die fertig eingebauten Nickelstahlglieder bezahlt wird, beträgt: 8,03 Cents per Pfund oder rund 740 Mark per Tonne für die Augenstäbe und 10,03 Cents per Pfund oder rund 930 Mark per Tonne für die grossen Gelenkbolzen aus Nickelstahl. Die Augenstäbe haben alle einen Querschnitt von 16 Zoll auf 2 Zoll (406×51 mm) und 38 Zoll (964 mm) Kopfdurchmesser. Für die Nickelstahlkette des Lindenthal'schen Gelenkbogenprojektes der New-Yorker Manhattanbrücke (Fig. 57) war das gleiche Material vorgesehen. Als Zugfestigkeit sind mindestens 60 kg/qmm (85000 lbs./Quadratzoll) vorgeschrieben, während die Elastizitätsgrenze mindestens bei 34 kg/qmm (48000 lbs./Quadratzoll) liegen muss. Die Dehnung soll auf 18 Fuss Versuchslänge (also bei ganzen Augenstäben) noch 9% betragen, während die Kontraktion mindestens 40% sein soll. Als grösste Beanspruchung bei Zusammenfassung aller Einflüsse, wie Wind, Temperatur usw., wollte Lindenthal 21 kg/qmm (30000 lbs./Quadratzoll) zulassen, so dass die Sicherheit gegen Bruch nicht unter 3 sinkt. Der Nickelstahl wird wieder im Siemens-Martin-Ofen erzeugt und enthält 34/4-31/20/0 Nickel. Der Zusatz an Schwefel soll nicht über 0,05% betragen, während der Zusatz an Phosphor wieder beim sauren Verfahren nicht über 0,06% sein darf, beim basischen Verfahren nicht über 0,04%.

Drei amerikanische Walzwerke hatten für die Blackwell-Inselbrücke Probestäbe aus Nickelstahl hergestellt und auch die Lieferung der Kettenstäbe für die Manhattanbrücke angeboten. Weitere Werke hatten sich ebenfalls bereit erklärt, wenn nötig, alle Vorkehrungen zum Erzeugen und Abwalzen solchen Materiales zu treffen.

Mit der Einführung von gewalztem Nickelstahl in die Konstruktion ist man wieder einen bedeutenden Schritt vorwärts gelangt in der Vervollkommnung des Brückenbaues und es wäre nur zu wünschen, dass auch in Deutschland bald hochwertigeres Material zu Brückenbauzwecken hergestellt würde. Vor allem wäre es nötig, endlich einmal mit dem gewöhnlichen Flusseisen zu brechen und zu Eisen höherer Festigkeit überzugehen, zu Eisen, das mindestens dem Medium Steel der Amerikaner gleichkäme. Dieser Fortschritt würde allen heimischen Bauten zugute kommen, vor allem aber dem Wettbewerb auf dem internationalen Markte¹).

¹) Es lässt sich leicht nachweisen, dass die Verwendung hochwertigerer Materialien ohne weiteres wirtschaftlich gerechtfertigt ist, wenn die Arbeitslöhne etc., die auf der Konstruktion lasten, im Vergleich zum Preise des Rohmaterials grosse sind. Dies ist z. B. bei allen genieteten grösseren Brückenkonstruktionen der Fall und würden sich für deutsche Verhältnisse bei Ausführung solcher in Nickelstahl etwa folgende Vergleichwerte ergeben:

a) Materialpreis.

Durchschnittlicher Grundpreis pro 1905 von Walzeisen in Flusseisenqualität ab Hüttenwerk rd. Mk. 110. – /t. Somit Kosten von 1 t Nickelstahlwalzeisen bei Verwendung von $3^{1/2}$ % Nickel und einem Nickelpreise von rd. Mk. 4. – /kg:

0,965.110+0,035.4000=246 rd. Mk. 250.-/t.

Die Mehrkosten für das Rohmaterial sind daher etwa Mk. 140.--/t.

β) Gewichte.

Während man für eine schwere Strassenbrücke (z. B. eine Rheinbrücke) aus Flusseisen die durchschnittliche Beanspruchung zu etwa 1,2 t/qcm annehmen darf, kann man bei Verwendung von Nickelstahl auf mindestens 2 t/qcm gehen.

3. Die Konstruktion von Kabel und Kette.

Die Konstruktionen von Kabel und Kette sind grundverschieden und haben sich im Laufe der Jahrzehnte für beide ganz besondere Konstruktionseinzelheiten herausgebildet. Diese sollen hier etwas näher betrachtet werden.

Bei der Konstruktion des Kabels ist zu unterscheiden zwischen der Bildung aus vielen einzelnen parallelen Drähten und der Bildung aus wenigen gesponnenen Seilen. Besondere Konstruktionen sind die Stellen, wo die übrige Brückenkonstruktion am Kabel aufgehängt. ist, ferner die Verankerung. Bei der Kette dagegen verdient die Ausbildung des Kettenauges, bezw. des Kettengelenkes, besonderes Interesse.

a) Das Kabel aus parallelen Drähten.

Wird das Kabel an Ort und Stelle hergestellt, so ist dies nur möglich durch Ziehen von einzelnen Drähten von Verankerung zu Verankerung. Dabei ist man nur in wenigen Fällen so weit gegangen, dass man die Drähte ganz in den Ankerkörper eindringen liess oder gar (wie beim Passauer Drahtseilsteg) um denselben herumgeschlungen hat. Meist löst man das Kabel kurz vor Eintritt in den Ankerkörper in eine Kette oder mehrere Ketten auf und zeigen z. B. alle grossen amerikanischen Kabelbrücken diese typische Verankerungsweise (Fig. 62).

Normale Seilverankerung in Amerika.

Die Drähte, welche ohne Ende weiter laufen, müssen natürlich von Zeit zu Zeit durch neue ersetzt werden und geschieht die Verbindung zweier Drahtenden entweder durch Verlöten und Umwickeln mit dünnem Draht oder durch Verschraubung mittelst Doppelmuttern.

Die Zahl der Drähte in einem schweren Brückenkabel ist natürlich ausserordentlich gross und sind in der folgenden Tabelle VI für die vier grössten Kabelbrücken die entsprechenden Zahlen angegeben.

Die Zahl der Litzen beträgt 19 bezw. 37, entsprechend der hexagonalen (bei grösserer Zahl angenähert kreisförmigen) Grundform von gebündelten Drähten oder Seilen. Die Teilung in Litzen ist unbedingt nötig, um beim Ziehen der Tausende von dünnen Drähten den Überblick nicht zu verlieren und eine gewisse Ordnung und Reihen-

Für 1 t Flusseisen sind also nur 0,6 t Nickelstahl nötig.

Einer Erhöhung des Preises für die fertige Konstruktion um Mk. 140.— /t steht also eine Gewichtsminderung auf 0,6 gegenüber, was bei einem Preise von etwa Mk. 340.— /t für die fertig montierte Brücke in Flusseisen eine Minderung der Gesamtkosten auf $\frac{480}{340}$. 0,6 = rd. 0,85 bezw. von 15% of ergibt.

Dieser Unterschied wird nun allerdings für den Überbau der Brücke nicht ganz so gross ausfallen, da die Gerüstkosten und manche Allgemeinkosten sich bei geringerem Gewichte nicht viel ändern werden; dies wird jedoch wieder ausgeglichen durch die geringeren Eigengewichte und die dadurch erzielbaren Ersparnisse am Unterbau.

Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 3. Kabel- und Kettenkonstruktion. 95

Name der Brücke	Fertig- stellung	Zahl der Litzen	Drähte pro Litze	Gesamtzahl der Drähte pro Kabel	Kabel- durch- messer	Draht- durch- messer	Zahl der Kabel
Niagarabrücke	1855	19	192	3648	254 mm	3,7 mm	4
Ohiobrücke	1867	19	274	5206	313 "	3,7 "	2
Brooklynbrücke	1876	19	331 .	6289	394 "	4,3 "	4
Williamsburgbrücke	1903	37	208	7696	476 "	4,8 "	4
	and and and	1. 1. 1. 1.	PHILE IN	1.179.5159			

Tabelle VI.

folge bei der Arbeit einhalten zu können. Für jede Litze, die etwas über dem endgültigen Kabel und zuerst nur in provisorischer Verbindung mit der Ankerkette hergestellt wird, wird immer zuerst ein Führungsdraht gezogen und genau abgelängt. Nach diesem richten sich alle übrigen Drähte. Der Führungsdraht muss so bemessen sein, dass er genau den Längenänderungen der Drähte durch Eigenlast, sowie durch Temperaturschwankungen Rechnung trägt. Die Drähte jeder Litze werden in gleichmässigen Abständen mit Bünden versehen und nach Fertigstellung in die endgültige Lage abgelassen, sowie endgültig mit der Ankerkette verbunden. Trotz aller Sorgfalt bei der Herstellung der Litzen war es aber bei den früheren Ausführungen nicht möglich, alle Drähte mit derselben Spannung zu einem Bündel zusammenzufassen, und viele stiegen beim Bündeln und Umwickeln oder beim Zusammenschluss der Bündel zum Gesamtkabel aus der gleichmässigen Lage auf. Es blieb dann nichts anderes übrig, als solch widerspenstige Drähte zu durchschneiden und die Schnittstellen wieder zu verlöten. Da dies natürlich an verschiedenen Stellen immer wieder andere Drähte sind, so erfährt das Kabel durch diese Manipulation trotz guter Verlötung immer eine gewisse Verschwächung. Man hat sich daher bei der neuesten Ausführung, der Williamsburgbrücke in New-York, bemüht, Verbesserungen in der Kabelherstellung vorzunehmen, und ist dies auch dank der Anwendung neuer sinnreicher Apparate für das Ziehen der Drähte und durch äusserst sorgfältigen Einbau der Litzen gelungen, so dass man die Kabel dieser Brücke wohl als einwandfreie Tragglieder für eine Hängebrücke ansehen darf. Da diese Ausführung ausserordentlich interessant und bewunderungswürdig bis ins Einzelne vorbedacht war, so sei sie hier etwas ausführlicher beschrieben¹).

Die einzelnen Litzen wurden, wie bereits erwähnt, etwas höber als in endgültiger Lage hergestellt, und der hufeisenförmige Stahlschuh, um welchen herum sich die Litze im Bolzenauge der Rückankerkette legt, war zunächst in liegender Lage etwas hinter (etwa 50 cm rückwärts vom Bolzenmittel) dem Bolzenauge befestigt. Der Draht wurde auf Trommeln aufgehaspelt zur Baustelle gebracht und auf den Pylonen in Holzrahmen aufgestellt. Von den Trommeln wurde der Draht abgewickelt und über die Hilfsrüstung hinweg geführt. Dies geschah mechanisch mit Hilfe von Drahtseilbahnen, deren Tragseile ohne Ende genau senkrecht über den Kabeln lagen. Den Tragseilen entlang liefen Rollen, über welche die Drähte als Schleifen gelegt waren. Jede bewegliche Rolle legte also stets zwei Drähte einer Litze. War eine Rolle an einem Ankerhuf angekommen, so wurde die Schleife um denselben herumgelegt und dann von den Trommeln auf den Pylonen ein neuer Drahtvorrat hergeholt. Die Drähte auf den Rollen waren aus Stücken

1) Siehe: Die Williamsburg-Brücke über den East River in New-York von K. Bernhard, Zeitschrift deutscher Ingenieure 1904, Nr. 35, S. 1308 ff. von mindestens 1220 m Länge zusammengesetzt, die an den Zusammenstossstellen sorgfältig durch Schraubenmuttern verbunden waren. Fig. 63 zeigt eine solche Verbindung in natürlicher Grösse. Die Schraubengewinde

in natürlicher Grösse. Die Schraubengewinde an den Drahtenden und in den Muttern sind so ausgeführt, dass sie allmählich in den vollen Querschnitt des Drahtes auslaufen. Zerreiss-Versuche, welche mit solchen Verbindungen gemacht wurden, ergaben, dass die Festigkeit der Verbindung 95 % der Drahtfestigkeit beträgt, die lokale Abminde-

rung im fertigen Drahtseile ist also bei jeder Spleissstelle immer nur eine minimale. Bevor eine Litze begonnen wurde, wurden nach einem Leitdrahte die ersten 6-8 Drähte genau gezogen. Nach dem Ziehen aller Drähte einer Litze wurden sie im Freien alle 1,5 Meter durch Hilfsbänder gebündelt, innerhalb der Ankerpfeiler in noch geringerem Abstande. Dann konnte das Ablassen der fertigen Litze erfolgen. Es wurde zu diesem Zwecke der Ankerhuf gelöst, mittelst Zugwinden gefasst, langsam nachgelassen und nach Drehung um 90° in das Auge der Ankerkette eingebolzt. Ebenso wurde auf den Pylonen die Litze langsam in die Lagersättel abgelassen. Es war dabei möglich, noch kleine Regulierungen im Durchhange der Litze vorzunehmen. Waren alle Litzen fertiggestellt, so wurde aus ihnen das Gesamtseil geformt und in erster Linie die aus Gussstahl bestehenden Kabelschellen, welche die Auflagerung für die Hängeseile bilden, angebracht. Ebenso wurden zwischen den Schellen noch einzelne feste Drahtbünde aufgezogen.

Gegen das Eindringen von Witterungseinflüssen, die bei den Ausdünstungen des nahen Meeres besonders befürchtet wurden, hatte man bei der Brooklynbrücke die einzelnen Drähte galvanisiert, was sich sehr gut bewährt hat. Bei der Williamsburgbrücke ging man aber noch weiter. Die einzelnen blanken Drähte hatten bereits im Walzwerk einen Anstrich von Leinöl erhalten und einen Deckanstrich mit einer aus Petroleumrückständen gefertigten Flüssigkeit, der 25 % pulverisierter Graphit beigemischt war. Mit der gleichen Masse wurden auf der Baustelle die einzelnen Litzen und schliesslich das fertige Kabel gestrichen. Damit war man aber noch nicht zufrieden. Zwischen den Gussstahlschellen wurde das Kabel spiralförmig mit drei Lagen von wasserdichtem, 15 cm breitem Segeltuchband umwickelt, welches vorher mit einer rostsicheren Masse (in der Hauptsache aus Öl und Graphit bestehend) getränkt war. Die einzelnen Lagen dieser Bandagen wurden durch Bügeln mit heissen Eisen fest aufeinander geklebt. Hierauf folgten zwei dauerhafte Anstriche mit Ölfarbe und schliesslich wurde auf das ganze Kabel ein Schutzrohr von 1,6 mm starkem Eisenblech aufgezogen mit gedichteten Längsfugen. Die Rohre greifen mit ihren Enden bis unter die Ränder der Gussstahlschellen.

Während der Ausführung der Kabelverkleidung entstand (11. XI. 02) auf der Pylone auf New-Yorker Seite ein Schadenfeuer, welches in zwei Kabeln die äusseren Drähte teilweise zerstörte. Durch lokales Aufziehen von Hilfsdrähten suchte man die alte Kabelstärke wieder herzustellen. Die Art und Weise der Verstärkung und die Verbindung der neuen Drähte mit dem bereits fertigen Kabel sind jedoch weniger mustergültig als die oben beschriebene Hauptausführung und es sei deshalb hier nur auf die entsprechenden Veröffentlichungen verwiesen. Glücklicherweise besitzt das verwendete Drahtmaterial um 10—12⁰/o höhere Festigkeit, als in der Berechnung angenommen worden ist, so dass eine Schwächung des Kabels um einige Prozente nichts zu sagen hat ¹).

¹) Ausführlicher Bericht: Williamsburg Bridge Cables. N. Y. The Engineering Record 1903, Nr. 10 vom 5. IX. Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 3. Kabel und Kettenkonstruktion. 97

Für die Williamsburgbrücke wurde Draht von nahezu 160 kg/qmm (157--158) Festigkeit verwendet, obwohl nur 140 kg/qmm vorgeschrieben waren. Die Dehnung des Drahtes beim Bruch war $2^{1/2}$ %, während die Querkontraktion nur 5% betrug. Dies ist ein sehr hartes Material, das beim Bruch nahezu stumpf bricht und nicht mehr körnige, sondern faserige Struktur besitzt. Man erhält Draht in solcher Qualität in einfachster Weise durch genügend oftes Ziehen hintereinander. Gegen Torsion und Biegung ist solcher Draht äusserst empfindlich und ist derselbe nur für Kabel mit parallelen Drähten brauchbar. Für die Kabel der noch zu erbauenden Manhattanbrücke (Fig. 70) ist ebenfalls Draht von 140 kg/qmm Festigkeit vorgesehen, und soll die Elastizitätsgrenze dieses Drahtmateriales den sehr hohen Wert von 128 kg/qmm erreichen. Versuche bei Felten & Guilleaume bestätigten, dass Elastizitätsziffern von 80-90% der Bruchfestigkeit bei so hartem Materiale möglich sind.

Als zulässige Beanspruchung wählen die Amerikaner gewöhnlich ¹/₃ der Elastizitätsgrenze, so dass die Sicherheit gegen bleibende Längungen eine dreifache ist. In Wirklichkeit werden natürlich einzelne Drähte mehr, andere weniger beansprucht, da, wie bei den gesponnenen Seilen, die Verteilung der Spannungen innerhalb der einzelnen Litzen des Kabels nie eine vollständig gleichmässige ist. Die Bruchfestigkeit des ganzen Kabels wird stets um einige Prozente kleiner sein als die Gesamtbruchfestigkeit aller Drähte.

Die Befestigung der Hängestäbe, welche die ganzen Fahrbahn- und Verkehrslasten auf das Kabel zu übertragen haben, geschieht jetzt allgemein durch angeschraubte zweiteilige Schellen, und sind in Fig. 64 die Schellen für die drei grossen

East River-Brücken schematisch dargestellt. Das Anpressen durch die kräftigen Schrauben genügt stets, um die nötige Reibung zwischen Schelle und Kabel zu erzielen. Über die Rillen in der Schellenmitte legen sich alsdann die Aufhängeseile. Bei älteren und kleineren Brücken findet man vielfach noch die Aufhängung der Hängestangen an den einzelnen Bündelungen des Kabels mittelst Haken, und ist ein solcher Aufhängepunkt in umstehender Fig. 64a in grösserem Massstabe dargestellt (vom Passauer Drahtseilsteg).

Diese Darstellungen wären nicht vollständig, wollte man nicht noch der Lindenthal'schen Schleifenglieder Erwähnung tun, aus welchen dieser hervorragende amerikanische Brückeningenieur die vier Kabel für die Überbrückung des Hudson in New-York konstruieren wollte¹). Die Kabel sollten aus lauter schleifenförmigen Drahtbündeln bestehen, die, in der Werkstätte mit aller Sorgfalt hergestellt, am Bauplatz bloss

Stahl und Eisen 1897, Nr. 24. Von Prof. Mehrtens "Hängebrücken der Neuzeit".
 Bohny, Hängebrücken.

mittelst Gelenkbolzen aneinandergereiht zu werden brauchen. Den grösseren Aufwand an Draht und die Kosten der Bolzen hoffte Lindenthal durch billigere und zuverlässigere Herstellung, durch die Möglichkeit, jedes Bündel einzeln zu probieren und entsprechend der Kabelspannung zu dimensionieren, endlich durch die einfachere und raschere Montierung reichlich aufzuwiegen. Bei 945 m Spannweite der Mittelöffnung waren für jedes Kabel 20-25 einzelne Bündel vorgesehen, die an fünf übereinander

Fig. 64 a.

liegenden Querbolzen hängen sollten. Die Herstellung der Schleifenglieder war so gedacht, dass auf einem Haspel von Eisen der Draht zu einem Ring aufgewickelt und dann der Ring mittelst Pressen zu einer Schleife auseinander gepresst wird. Die Herstellung wurde damals (1889) ernsthaft in Erwägung gezogen; wegen der allzu grossen Kosten der ganzen Brücke musste aber vorläufig von ihrer Realisierung Abstand genommen werden. Später hat Lindenthal ein Projekt für die St. Lauwrence-Brücke in Quebec aufgestellt, bei welchem er ebenfalls seine Idee der Schleifenglieder verwerten wollte und forderte er hierfür bereits einzelne Drahtseilfabriken zur Abgabe von Preisen für die fertigen Drahtschleifen auf. Zur Ausführung kommt jetzt eine Auslegerbrücke. So eigenartig die Erfindung der Schleifenglieder ist, so sind doch auch Bedenken vorhanden. Vor allem ist es fraglich, ob sich die Schleifenform aus der Ringform durch Pressen einwandfrei herstellen lässt. Die

inneren Drähte werden beim Auseinanderspreizen überanstrengt, die äusseren haben die Neigung, sich wellig abzuheben. Um dies zu vermeiden, müsste das Aufhaspeln von vorneherein nicht auf einem kreisrunden, sondern auf einem bereits stark länglich geformten (ovalen) Haspel erfolgen, so dass das vom Haspel kommende Bündel schon nahezu der fertigen Schleifenform gleichkäme.

b) Das Kabel aus einzelnen Seilen.

Bei Brücken kleinerer Spannweite wird man sich heutzutage kaum mehr der Mühe unterziehen, an Ort und Stelle Kabel aus einzelnen Drähten zu ziehen. Man wird sich vielmehr damit begnügen, die Tragglieder der Brücke als fertige Seile von der Seilfabrik zu beziehen.

Ist es nicht mehr möglich, mit einem Seil pro Tragwand einer Brücke auszukommen, so sind mehrere Seile zu einem Tragkabel zu vereinigen und sind auch da die Vorzüge einer solchen Konstruktion gegenüber an Ort und Stelle hergestellten Kabeln mit parallelen Drähten einleuchtend. Man erhält auf den Bauplatz bereits in der Fabrik in einwandfreier Weise hergestellte fertige Konstruktionselemente, welche, nur in geringer Zahl eingebaut, sofort das fertige Tragglied der Brücke bilden. Wenn auch bei ganz grossen Spannweiten die Gewichte der einzelnen Seile schon ansehnlich werden (mit 50 bis 60 Tonnen wird man immer auskommen), so bleibt das Konstruktionselement doch immer noch handlich. An den biegsamen Seilen lassen sich immer genügend Angriffs-
Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 3. Kabel und Kettenkonstruktion. 99

punkte schaffen, um sie über die Rüstung zu schleppen und mit den Enden in die Ankerkammern hinabzulassen. Die Montage geht also rasch von statten und es genügt, allen

Seilen denselben Durchhang zu geben, um sie in dieselbe Anfangsspannung zu bringen. Dabei sind die Seile einzeln schon schwer genug, um unbeeinflusst von Wind und Wetter in ruhiger Lage hängen zu bleiben.

Zur Befestigung der Hängestäbe verwendet man, wenn nur ein Seil vorhanden ist, wieder am einfachsten zweiteilige Schellen, die mittelst Schrauben am Seil festgepresst werden und stellt Fig. 64 b die Aufhängung bei der Hängebrücke in Langenargen dar. Sind dagegen mehrere oder viele Einzelseile vorhanden, so muss eine andere Befestigung angeordnet werden und sind zurzeit zwei Vorschläge hierfür bekannt geworden. Beide wurden anlässlich der Vorkonkurrenz um eine zweite Kölner Rheinbrücke ersonnen (Herbst 1898) und stammt einer von der "Vereinigte Maschinenfabrik Augsburg und Maschinenbaugesellschaft Nürnberg, A.-G., Werk Nürnberg", der andere von der Gesellschaft Harkort in Duisburg.

Nürnberg ordnet die Seile in senkrecht untereinander liegenden Reihen von je einer geraden Zahl an (Fig. 65). Die Seile jeder Reihe sind durch Zwischenstücke auf

Befestigung der Hängestäbe an den Drahtseilen. (Patent Nürnberg.)

Fig. 65.

7*

genau gleiche Distanz gehalten und mit einem Flacheisenband umschlungen. Mittelst geeigneter Pressen wird der unterste Schuh gegen die Bandagenbiegung oben gedrückt, so dass alle Teile, Seile und Zwischenstücke, gut zusammenpassen und sich fest ineinander pressen, worauf der Schuh mit den Enden des Flacheisenbandes fest verbunden wird. Man hat es auf diese Weise in der Hand, eine beliebig grosse Kraft in Reibung umzusetzen. Der Verschluss des Schuhes kann entweder mittelst Bolzen erfolgen (Fig. 65 a) oder mittelst Keilen (Fig. 65 b). Das mittelste Passstück in jeder Vertikalreihe ist durchbohrt, ebenso sind die Bandagen daselbst mit genau sitzenden Zentrallöchern versehen zur Aufnahme des Aufhängebolzens. Dieser geht durch alle Bandagen hindurch, und sind an ihm mittelst Augenflacheisen die Vertikalstäbe der Brücke angehängt¹). Die

Befestigung der Hängestäbe an den Drahtseilen. (Patent Harkort.)

Nürnberger Anordnung hat den Vorteil, dass alle Seile jederzeit zugänglich sind, immer leicht gestrichen und vor Rost geschützt werden können, und dass eine sehr grosse Seiloberfläche zur Übertragung der Reibungskräfte herangezogen ist. Ferner soll es mit ihr möglich sein, einzelne Seile ohne Betriebsstörung der Brücke auszuwechseln.

Harkort legt die Seile vollständig dicht zusammen, wodurch die bekannte hexagonale Querschnittsform entsteht. Um sie wird eine zweiteilige Klemmschelle gelegt (Fig. 66), welche innen mit Dichtungsfüllung ausgegossen ist. Die beiden Schellenhälften besitzen oben und unten, sowie seitlich Angüsse. Die oberen und unteren dienen dazu, Schrumpfringe aufzuziehen, welche nach dem Erkalten die Schelle fest zusammenpressen. An den seitlichen Zapfen sind die Hängestäbe mittelst Augengliedern befestigt, auch können alle Schellen, wie aus der Zeichnung hervorgeht, durch eine Gurtung verbunden und so eine Veränderung im Tragquerschnitt des Kabels erzielt werden. Letzteres ist ein nicht zu verkennender Vorteil dieser Anordnung²).

Beide Anordnungen, die Nürnberger und die Duisburger, sind in Deutschland und den meisten Nachbarländern patentamtlich geschützt.

Zur Verankerung von in der Fabrik hergestellten Seilen benützt man am besten sogenannte Seilköpfe. Es sind dies aus bestem geschmiedetem Stahl hergestellte, zylindrisch oder konisch geformte Körper mit einer konischen Höhlung im Innern. In den Figuren 67 a-d sind verschiedene Formen solcher Köpfe dargestellt. Fig. 67 b zeigt den Kopf, welcher in Müngsten für die Rückankerseile bei der Bogenmontage verwendet wurde (siehe Tabelle IV), also für ein runddrähtiges Seil von 90 mm Durchmesser und 510 Tonnen Bruchfestigkeit. Diese Köpfe waren vor der Verwendung unter hydraulischem Drucke mit einem Dorn auf die doppelte Kraft, also 1000 Tonnen, auf Zerplatzen geprüft worden und hatten diese Last bequem ausgehalten. Sie waren für den beabsichtigten Zweck also übermässig stark, und ist ihre Form plump. Fig. 67 c ist ein Kopf neuerer Konstruktion für ein patentverschlossenes Seil von 89 mm Durchmesser

¹⁾ Siehe hierzu Mehrtens: "Der deutsche Brückenbau im XIX. Jahrhundert", S. 82.

²⁾ Zeitschrift deutscher Ingenieure 1900, Nr. 20, S. 655.

Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 3. Kabel und Kettenkonstruktion. 101

und 750 Tonnen Bruchfestigkeit (siehe Tabelle V). Dieser Kopf ist bereits bedeutend schlanker als derjenige von Müngsten und besitzt auch geringere Wandstärken. Aber auch in diesem Kopfe ergibt die Berechnung der auftretenden Spannungen noch ganz mässige Werte. Fig. 67 d endlich ist das Bild eines Kopfes, wie ihn eine englische Fabrik für ein normal geschlagenes Seil von 130 mm Durchmesser vorgeschlagen hat. Er zeichnet sich durch grosse Länge und entsprechend schwächeren Anlauf des inneren Konus aus. Die Wandstärke nimmt nach dem engeren Ende zu ab. Das obere Ende des Trichters ist zum Anschluss von Ankerketten ausgebildet.

In Fig. 67a ist dargestellt, wie das Seil im Konus befestigt ist. Zu diesem Zweck wird das Seilende, nachdem es durch die Höhlung des Kopfes durchgefädelt worden, bürstenartig geöffnet und jeder einzelne Draht sauber geputzt und blank gescheuert. Alsdann wird die Bürste, um reine Metalloberflächen zu erhalten, in schwache

Salzsäurelösung getaucht und hierauf im Zinnbade verzinnt. Ist dies geschehen, so wird der Kopf, der ebenfalls verzinnt ist, satt über die Bürste gestülpt und unter gleichmässiger Erhitzung aller Teile die ganze Höhlung mit einer leicht flüssigen Metalllegierung vergossen. Kopf, Füllung und Drahtbürste sollen nach dem Erkalten eine einzige Masse bilden. Die Legierung besteht in der Hauptsache aus Blei (etwa 2/3) und Zinn (etwa 1/5); der Rest ist Antimon, um die Mischung nach dem Erkalten härter zu machen. Ing. E. Roussel, Chef der Versuchsanstalt der belgischen Staatsbahnen, empfiehlt bei dem vorliegenden harten Tiegelgussstahldraht eine Legierung von neun Gewichtsteilen Blei, zwei Gewichtsteilen Antimon und ein Gewichtsteil Bismuth.

Der ganze Seilzug wird also durch die konische Höhlung des Seilkopfes aufgenommen. Auf besonders innige Verbindung zwischen Kopf und Füllmasse, die Adhäsion, darf dabei aber nicht viel Wert gelegt werden. Es entstehen vielmehr und in erster Linie Radialkräfte, welche die Konuswand senkrecht treffen und daselbst durch die

grosse Reibung in wesentlich günstigere Neigung abgelenkt werden. Der Winkel an der Konusspitze beträgt bei den Seilköpfen der Firma Felten & Guilleaume (Fig. 67b u. c) rund 15°, als Reibungskoeffizient zwischen Füllmasse und Kopfwandung kann ungefähr 0,3 angenommen werden, so dass also die Kräfte, welche dem Seilzug entgegen wirken, rund unter 24º gegen die Horizontale gerichtet erscheinen. Der weitere Gang der Rechnung und die Ermittelung der inneren Spannungen im Stahlkörper (Ring- und Axialspannungen) ist äusserst einfach, so dass dies hier nicht weiter verfolgt zu werden braucht. Auch die einzelnen Drähte des Seiles werden durch die auftretenden inneren Spannungen so fest zwischen die Füllmasse gepresst, dass überreichliche Sicherheit gegen Herausreissen besteht und von der Haftbarkeit des Drahtes in der Legierung ganz ab-gesehen werden kann. Die in dieser Weise ausgeführte Befestigung der Seilenden ist eine äusserst solide und haben Versuche bewiesen, dass das Seil eher zwischen den Köpfen reisst, als im Kopf.

Zum Lagern der Seilenden in den Ankerschächten (wenn also keine Kette sich anschliesst) dient gewöhnlich ein eiserner Rost. Die Köpfe setzen sich dabei am besten mit ihren unteren Flächen zuerst auf dicke, vor dem Vergiessen bereits aufgefädelte Gussstahlunterlagsplatten, welche den Seilzug dann auf die eigentliche Rostkonstruktion aus Walz- oder Blechträgern übertragen. Zum Anspannen der Seile dienen entweder seitliche Ansätze an den Köpfen, oder, wie bei Kopf 67c dargestellt ist, Gewinde. In ersterem Falle kann man mit Traversen unter die Kopfansätze greifen und durch Pressen zwischen Traversen und Rost den Kopf anheben, im letzteren Falle werden Zugschrauben eingeschraubt und diese durch Anstemmen gegen den Rost angezogen. Bei dünneren Seilen, wie dieselben vielfach in Frankreich bei Hängebrücken Verwendung finden, werden mit Vorliebe Köpfe mit ovalem Querschnitt verwendet, die neben dem Seilkonus zwei Längsdurchbohrungen besitzen, durch welche dann zwei Ankerschrauben gezogen werden.

c) Die Kette.

An der Kette bietet vor allem die Konstruktion der Gelenke besonderes Interesse.

Die Kettenglieder werden jetzt fast allgemein aus Augenstäben gebildet, welche an den Gelenken durch Bolzen verbunden sind. Die grösste Erfahrung in der Herstellung solcher Augenstäbe besitzen wohl die Amerikaner, welche an allen grossen Gitterbrücken die ausgesprochenen Zugstäbe aus Augenstäben (Eye Bars) bilden. Die Fabrikation solcher Stäbe geschieht durch Stauchen des Flacheisenendes in glühendem Zustande (meist hydraulisch) unter gleichzeitigem Ausüben von Druck von den Seiten. Durch Beilegen entsprechender Pressstücke erreicht man mit einem einzigen Akt der Presse sofort die richtige Augenform. Über das Mass, um welches der Flacheisenstab länger gewählt werden muss, um genügend Material für die Formgebung der Augen zu besitzen, liegen genügend Erfahrungswerte vor, so dass die Augen nach der Fertigstellung stets ohne nennenswerte Unterschiede in richtiger Entfernung auf dem Stabe sitzen. Alle Augen erhalten in Amerika kreisrunde Form. Nach der Herstellung werden die Augenstäbe unter Walzen genau gerade gerichtet und alsdann zur Entfernung aller beim Kopfanstauchen etwa entstandenen inneren Spannungen in vollem Umfange sorgfältig ausgeglüht. Erst dann erfolgt das sorgfältige Ausbohren der Bolzenlöcher, wobei immer mehrere Lagen gleichzeitig durchbohrt werden.

Wesentlich anders war die Herstellung der Kettenglieder für die Elisabethbrücke in Budapest (Fig. 41). Es war, um jegliches gewaltsames Behandeln des Materiales Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 3. Kabel und Kettenkonstruktion. 103

zu vermeiden, streng verboten, ein Schneiden mit der Schere oder ein Stanzen mit der Stanze vorzunehmen. Nur Bohren, Fräsen und Hobeln kam in Betracht, und wurden mit diesen drei Bearbeitungsarten die Augenstäbe in

int diesen drei bearbeitungsarten die Augenstabe in kaltem Zustande aus dem gewalzten Flacheisenstabe herausgearbeitet. Einzelne Bearbeitungsstadien sind in Fig. 68 dargestellt. Benötigt waren rund 4100 Stück Augenstäbe, ihr Querschnitt variiert je nach der Zugkraft zwischen 400/25 mm bis 600/25 mm, bezw. 880/25 mm. Pro Kettenglied sind immer 9 bezw. 10 Augenstäbe parallel nebeneinander angeordnet. Die Augen haben längliche Form und sollen zur genauen Feststellung der grundlegenden Verhältnismasse besondere Zerreissversuche angestellt worden sein.

Im allgemeinen bestehen über die Form der Augen die verschiedensten Formeln. Es sollen einige derselben hier näher angeführt werden, wobei das Auge eines normalen Augenstabes der Budapester Brücke zum Vergleich herangezogen ist. Sei b die Breite

und c die Stärke des Flacheisens, ferner d der Bolzendurchmesser, so muss sich daraus die Augenbreite b' und die Augenlänge b" ermitteln lassen. In Fig. 69 stellt die ausgezogene Linie das Auge für einen Flacheisenstab von 500 mm Breite dar mit

330 mm Bolzendurchmesser. Die Augenbreite b' wählte man dazu in Budapest zu 290 mm, die Augenlänge b" zu 375 mm. Für denselben Querschnitt des Stabes würde man finden:

104 Sechster Abschnitt. 3 c) Die Kette.

tob the mach Winkler: dol tob her mabiented up restories grants reference as

b' =
$$\frac{1}{2}$$
 b + $\frac{1}{3}$ d
b'' = $\frac{1}{2}$ b + $\frac{2}{3}$ d,

nach Häseler:

was 360 bezw. 470 mm ergibt. Die Formeln gelten für Augen in elliptischer Form to consuce the limit of the floor her turnes

b' =
$$\frac{1}{2}$$
 b + $\frac{1}{6}$ d
b'' = $\frac{1}{2}$ b + $\frac{5}{8}$ d.

nach Gerber:

was 305 bezw. 456 mm ergibt. Auch diese Formeln gelten für elliptische Augen

$$b' = 0.55 b; b'' = 0.75 b,$$

woraus sich 275 mm bezw. 375 mm berechnen.

Diesen älteren Formeln deutscher Abkunft seien einige amerikanische Vorschriften zur Seite gestellt. Consulting Engineer. Th. Cooper schreibt zunächst in seinen zurzeit allgemein als gültig anerkannten Vorschriften über die Konstruktion von eisernen Brücken und Hochbauten (siehe Fussnote S. 92) vor, dass die Köpfe der Augenstäbe auf alle Fälle so dimensioniert werden sollen, dass ein etwaiger Bruch immer nur im Flacheisenteil erfolgen wird und nie im Kopf oder Hals. Im übrigen überlässt er es den einzelnen Werkstätten, die genauere Form des Kopfes zu wählen. Die beiden Bohrungen eines Stabes dürfen nicht mehr als 1/64 eines Zolles (rund 0,4 mm) auf jede 25 Fuss (rund 7¹/2 m) Stablänge vom genauen Mass abweichen, und Stäbe, welche in der Konstruktion in ein und demselben Bündel zusammenliegen, sollen bei derselben Temperatur gebohrt werden, so dass die Bolzen ohne irgendwelche Anstrengung durch alle Lagen durchgesteckt werden können.

Für die Form der Augen gebrauchen die Pencoyd Works bei Philadelphia die Formel:

$$b' = b'' = 0.665 b$$
.

d. h. die Querschnittsfläche ist im Schnitte durch die Mitte des Auges um 33 % grösser als die Querschnittsfläche des Flacheisens. Für das Beispiel wird

b' = b'' = 332.5 mm.

Dieselbe Formel gebraucht die Phönixville Comp. in Phönixville Pa. Professor A. J. Du Bois von der Yale Universität dagegen empfiehlt die Formel:

b' = b'' = 0.125 d + 0.645 b,

was beim vorliegenden Beispiel

$$b' = b'' = 364 \text{ mm}$$

ergeben würde.

Weitere Firmen machen die Breiten b' und b" von dem Verhältnis des Bolzendurchmessers zur Flacheisenbreite abhängig, und würde sich nach den Regeln der Baltimore Bridge Co. für das vorliegende Beispiel ergeben:

$$b^{\circ} = b^{\circ} = 0,75 b = 375 mm.$$

Trägt man alle gefundenen Werte auf und konstruiert damit das Auge, so ergeben sich die durch verschiedene Strichlierung kenntlich gemachten Formen. Es fällt ohne weiteres die bedeutend grössere Augenlänge nach Winkler und Häseler auf, während Gerber und die Amerikaner der Budapester Augenform sehr nahe kommen.

Will man das Schmieden von Augen oder das Ausarbeiten aus dem vollen Bleche vermeiden, so muss das Stabende durch Aufnieten von Laschen verstärkt werden. Der

Querschnitt durch die Augenmitte muss dann mindestens dieselbe Vergrösserung gegenüber dem einfachen Flacheisenquerschnitt aufweisen, wie dies beim geschmiedeten Auge der Fall ist; ähnlich verhält es sich mit dem Querschnitt ausserhalb des Bolzens in der Stabachse, längs b". Die Niete, welche zur Befestigung der Verdickungslaschen dienen, sollten mindestens eine Scherfläche aufweisen, die dem Querschnitt der Laschen in Augenmitte gleichkommt.

Endlich besteht selbstverständlich noch eine Beziehung zwischen dem Bolzendurchmesser und der Flacheisenbreite. Lässt man einen doppelt so grossen Leibungsdruck zwischen Bolzen und Bohrung zu, als die normale Zugbeanspruchung des Stabes beträgt, so muss sein:

b.c = 2 d c oder d = 0,50 b,

was nach obigem Beispiel d = 250 mm ergeben würde, gegenüber vorhandenen 330 mm. Ausserdem ist der Bolzen auf Abscheren zu untersuchen, wofür er aber, namentlich bei grösseren Verhältnissen, meist reichlich bemessen ist, wenn er auf Leibung berechnet wurde. Man ist daher in vielen Fällen schon dazu übergegangen, grosse Bolzen hohl auszuführen. Man spart dabei an Gewicht und kann sich auch von der Güte des Bolzenmaterials im Bolzeninnern überzeugen. Endlich sind lange Bolzen noch auf Biegung zu berechnen, wenn die Hängestäbe, was oft der Fall ist, ihre Kräfte nicht gleichmässig verteilt auf den Bolzen übertragen.

Die Bolzen erhalten entweder an einem Ende einen Bund und am anderen ein Gewinde mit Mutter, oder beiderseits Gewinde mit Muttern. Bei dicken Bolzen hat man auch schon durch eine Längsbohrung Rundeisen durchgesteckt, die beiderseitig Gewinde mit Muttern besitzen und runde Deckel gegen das Bolzenende und die äussersten Kettenflacheisenlagen pressen.

4. Kette oder Kabel?

Zur Beantwortung dieser Frage sind folgende Punkte in Rücksicht zu ziehen:

Die Konstruktion von Kette und Kabel,

die Qualität der Materialien,

die Art und Dauer der Montage,

die Kosten.

Wie bereits unter 3a näher ausgeführt, kann man nach den neuesten Fortschritten, welche man bei der Herstellung der Kabel für die Williamsburgbrücke in New-York erzielt hat, ein Kabel mit parallelen Drähten als konstruktiv einwandfreies Tragglied für eine Hängebrücke betrachten. Dasselbe ist der Fall, wenn das Kabel aus einzelnen, in der Fabrik hergestellten Seilen zusammengesetzt wird. Beide Konstruktionen sind einer Kette gleichwertig. Die Vorteile der Kabel und Seile sind ihr leichtes Gewicht, ihr Nachteil, dass der Querschnitt nach der grössten Kraft zu dimensionieren ist und ungeschwächt von Ankerkörper zu Ankerkörper durchgehen muss. Die Vorteile der Kette liegen in der Möglichkeit, den Querschnitt in jedem Gliede den Kräften anpassen zu können, die Nachteile sind das grosse Eigengewicht und der grosse Materialverbrauch für Augen und Bolzen.

Die Qualität der Materialien kommt hauptsächlich bei den Festigkeitsverhältnissen zum Ausdruck. Lässt man z. B. beim Drahtmaterial sowohl, als beim Kettenmaterial als grösste Beanspruchung ¹/₃ der Bruchfestigkeit zu, so kommt man bei ersterem zu einer spezifischen Grösstspannung von:

$$\frac{1}{3}(120-150) = 40-50 \text{ kg/qmm},$$

während man beim Kettenmaterial folgende Werte erhält:

bei einer Flusseisenkette:

$$\frac{1}{3}$$
 (37—44) = 12¹/₃—14²/₃ kg/qmm,

bei einer Siemens-Martin-Stahlkette:

$$\frac{1}{3}$$
 (50-60) = 16²/₃-20 kg/qmm

und bei einer Nickelstahlkette:

 $\frac{1}{3}$ (60—70) = 20—23¹/s kg/qmm.

Vergleicht man diese Werte mit den für die Materialien früher angegebenen Elastizitätsgrenzen, so ergeben sich folgende Sicherheiten gegenüber bleibenden Deformationen:

Bei Kabeln aus parallelen Drähten, bestehend aus hartem Material von 140 kg/qmm Festigkeit (wie bei der Williamsburgbrücke verwendet und für die Manhattanbrücke vorgeschlagen)

$$\eta_1 = ext{ca.} - \frac{120}{46^{2/3}} = ext{rund } 2,6 ext{ fach},$$

bei Kabeln aus Seilen:

$$\eta_2 = \text{ca.} \frac{72 - 90}{40 - 50} = 1.8 \text{ fach},$$

bei Ketten aus Flusseisen:

$$\eta_3 = \frac{22}{12^{1/3} - 14^{2/3}} = 1,6 \,\text{fach im Mittel},$$

bei Ketten aus Siemens-Martin-Stahl:

$$\eta_4 = \frac{26}{16^{2/3}} =$$
rd. 1,55 fach,

bei Ketten aus Nickelstahl:

 $\eta_5 = \frac{34}{20 - 23^{1/3}} = 1,55 \, \text{fach im Mittel.}$

Hieraus geht hervor, dass das Kabel aus parallelen Drähten oder Seilen in bezug auf Sicherheit gegen bleibende Dehnung der Kette überlegen ist.

Die Montage von Kabeln wird man stets von Hilfshängestegen aus durchführen, welche dicht unter den definitiven Kabeln gezogen werden. Auch bei einer zu montierenden Kette wird man so verfahren, sofern es nicht, wie bei der Budapester Elisabethbrücke, möglich ist, auf festen Gerüsten zu montieren. Während man jedoch bei Kabelbrücken mit ganz leichten Hilfsgerüsten auskommt, und dieselben nicht mehr als die Maschinen zum Ziehen einzelner Drähte oder höchstens das Gewicht einzelner dünner Seile zu tragen haben, müssen bei Montage einer Kette die Gerüste bedeutend stärker ausgeführt werden. Ohne ein starkes Gerüst wird es kaum möglich sein, bei einer Kette die 3-4 Tonnen schweren Augenstäbe über die Bolzen zu ziehen und mit den bereits verlegten Stäben zum gleichmässigen Tragen zu bringen.

Bezüglich der Dauer der Montage kann man ohne weiteres sagen, dass sie bei einem Kabel aus einzelnen fertigen Seilen am raschesten vor sich geht. Längere Zeit beansprucht das Anfertigen von Kabeln aus parallelen Drähten. Doch lässt sich hier mit wohldurchdachten Hilfsmitteln viel erreichen, und gebrauchte man z. B. für die Herstellung der vier Kabel der Williamsburgbrücke insgesamt sieben Monate, wobei alle Verzögerungen wegen schlechter Witterung usw. eingeschlossen sind. Vergleicht man dagegen die Montagezeit für die Kette der Budapester Brücke, welche über ein Jahr dauerte, so kommt man ohne weiteres zu der Schlussfolgerung, dass auch in bezug auf die Montagedauer die Kabel der Kette gleichwertig, eher überlegen sind.

Vergleichende Kostenermittelungen zwischen Kette und Kabel sind zum ersten Male in umfangreichem Masse bei der Budapester Brücke angestellt worden und ist man zu dem Resultat gekommen, dass Kabel eher etwas teurer werden, als Ketten. Geht man aber diesen Berechnungen etwas näher nach¹), so erkennt man bald, dass sie auf ganz ungleicher Basis gemacht wurden, und dass es nur durch ganz ungleichwertige Annahmen möglich war, der Kette zum Ausschlag zu verhelfen. Es dürfte bekannt sein, welch grosse Summen schliesslich die Ketten in Budapest kosteten. Die Vergleichsrechnung war also fehlerhaft.

Um so interessanter war es deshalb, den heftigen Kampf zu verfolgen, welcher sich in den letzten Jahren in New-York unter den hervorragendsten amerikanischen Brückeningenieuren um die Ausbildung der Manhattanbrücke abgespielt hat. Während der erste Plan, welcher im Jahre 1899 unter dem städtischen Brückeningenieur R. S. Buck ausgearbeitet wurde, eine Kabelbrücke mit parallelgurtigem Versteifungsträger vorsah, ging dessen Nachfolger Lindenthal auf die in Fig. 57 dargestellte Form der Brücke über mit Nickelstahlketten als Haupttraggurt. Lindenthals Entwurf wurde gleich nach seinem Erscheinen heftig befehdet. Man erkannte zwar an, dass die Form der Versteifungsträger richtig bemessen sei und eine grössere Steifigkeit gewähren würde, als man bisher bei Hängebrücken gewohnt war, doch hielt man auch einen Parallelträger als Versteifungsträger noch für genügend, zumal die Brücke in erster Linie Strassenverkehr dient. Man führte weiter die oben ermittelten grösseren Sicherheitsziffern und die raschere Montage bei Ausführung mit Kabeln ins Feld, die nicht besonders glückliche ästhetische Erscheinung des Hängebogens, endlich die bedeutend höheren Kosten dieses Vorschlages. Zur Beurteilung der letzteren wurde folgendes festgestellt:

a) Gewicht von Kette und Kabel.

Sei das Gewicht des Kabels pro laufenden Meter gleich 1, so wird dasjenige einer gleich tragfähigen Kette sein:

theoretisch 1.
$$\frac{42,5}{21,7} = \text{rund } 2 - (42,5) = \frac{128}{3}$$

hierzu für Bolzen und Augen ca. $20 \ \% = 0.40$
zus. 2.40 .

Zu diesem Werte käme noch ein Zuschlag für den Zug aus dem grösseren Eigengewicht der Kette gegenüber dem Kabel, der sich aber dadurch einigermassen ausgleicht, dass das Kabel mit gleichem Querschnitt von Anker zu Anker durchläuft.

β) Preise.

Die Kabel der Williamsburgbrücke wurden zu M. 1340.— pro Tonne vergeben, welcher Preis, nachdem die Erfahrungen bei dieser Brücke vorliegen, bei der Manhattan-

¹⁾ Zeitschrift deutscher Ingenieure 1900, Nr. 18 u. 19.

brücke etwas niedriger werden wird und etwa mit M. 1240.— pro Tonne angenommen werden kann. Für Nickelstahlkettenglieder, fertig eingebaut, beträgt der heute giltige Preis in Amerika nach früher M. 740.— pro Tonne, während für die Gelenkbolzen M. 930.— pro Tonne bezahlt werden. Man kommt also zu einem Durchschnittspreis von $\frac{740+0,2.930}{1,2} = 772$ Mark pro Tonne für eine fertige Nickelstahlkette. Das Verhältnis zum Kabelpreis beträgt somit 1240:772 = 16:10 d. h. das fertige Kabel wird pro Tonne 1,60 Mal teurer als die fertige Kette.

Gewicht und Einheitspreis zusammengenommen findet man also schliesslich, dass die Kette um $x = \frac{2,4}{1,6} = 1,5$ mal teurer wird als das Kabel.

Dies gilt für den Vergleich von Kette und Kabel allein. Will man aber Vergleichswerte über die Kosten der ganzen Brücke haben, so muss noch das Verhältnis von Kabel oder Kettengewicht zum Gesamtmetallgewicht in Betracht gezogen werden. Bei der Williamsburgbrücke wiegt das Kabel $\frac{1}{5,6}$ vom Gesamteigengewicht, eine Kette würde etwa das Verhältnis $\frac{1}{3}$ ergeben. Man kommt also zu dem Schlussresultat, dass bei den heutigen Preisen für fertige Nickelstahlketten und fertige Kabel mit parallelen

Manhattanbrücke New-York. Projekt G. Best.

Fig. 70.

Drähten (immer gleiche Anordnung der Versteifungsträger vorausgesetzt) eine Kabelbrücke um mindestens 15% billiger wird als eine Kettenbrücke. Dabei ist noch nicht berücksichtigt, um wie viel die Ankerkörper und die Pylonen wegen des geringeren Zuges aus dem kleineren Eigengewichte des Kabels billiger werden können, als bei Kettenbrücken.

Die Vergleichsrechnung ist für ganz grosse amerikanische Verhältnisse und für Strassenbrücken durchgeführt worden, doch dürfte man auch bei kleineren Stützweiten und bei europäischen Verhältnissen kaum zu einem anderen Resultat kommen, zumal wenn man bedenkt, dass man bald auf die Verwendung fertiger Seile übergehen kann.

Lindenthal konnte schliesslich dem Ansturm der Freunde und Anhänger einer Kabelbrücke, an deren Spitze die Vertreter der Röbling Comp. und R. S. Buck standen, nicht widerstehen und es gelangt jetzt, wie schon eingangs dieses Abschnittes bemerkt, das Kabelbrückenprojekt von G. Best zur Ausführung. Dieses ist in Fig. 70 dargestellt, und sind die Hauptmasse in der Zeichnung eingetragen¹). Die Brücke hat

1) Die Hauptverhältnisse zur Spannweite sind:

Pfeil
$$\eta = \frac{f}{l} = \frac{45,72}{446,5} = 1:9,8$$

Trägerhöhe $\eta_1 = \frac{h}{l} = \frac{7,32}{446,5} = 1:61.$

Wahl der Hauptabmessungen, Eigenschaften der Materialien etc. 5. Grenze der Spannweiten. 109

fraglos, wie ein Vergleich mit Fig. 57 ergibt, wesentlich an Schönheit der Erscheinung gewonnen. Der Versteifungsträger dürfte jedoch zweckmässig in der Mittelöffnung noch etwas erhöht werden (etwa auf 10 m), während in den Aussenöffnungen, wo die Träger nahezu wie frei aufliegende Balken wirken, eine Erhöhung in der Mitte auf etwa das doppelte Mass nötig ist ¹).

5. Von welchen Spannweiten an beginnen Hängebrücken rationell zu werden?

Bei dem Streite um die Manhattanbrücke wurde auch die Frage diskutiert, von welchen Spannweiten an die Hängebrücken beginnen rationell zu werden. Man gelangte dabei schliesslich zu einigen Zahlen, welche allgemein als giltig anerkannt wurden, und die hier wiedergegeben werden mögen.

Für schwere Eisenbahnbrücken sind normal einfache Fachwerksträger oder, namentlich bei grösseren Spannweiten, Auslegerträger den Hängebrücken oder versteiften Stabbögen wesentlich überlegen. Mit der Grösse der Spannweiten wachsen aber die Eigengewichte derart, dass schliesslich die Verkehrslasten nur noch Bruchteile derselben ausmachen. Alsdann ist es unbedenklich zulässig, zur einfachen, durch Parallelträger versteiften Hängebrücke überzugehen. Die Grenze liegt etwa bei 2000 Fuss (600 m) Spannweite, so dass also die zur Zeit in Ausführung begriffene grosse Auslegerbrücke über den St. Lauwrencefluss bei Quebec mit 1800 Fuss Spannweite (die grösste Spannweite, die bis heute existiert) als nahezu an derselben stehend betrachtet werden kann. Kleinere Spannweiten als 2000 Fuss sind für Hängebrücken mit Eisenbahnbelastung unwirtschaftlich; den besten Beweis lieferten hierfür die Konkurrenzen für die Überbrückung des Hafens in Sydney, wo Spannweiten von 1300-1800 Fuss in Frage kamen.

Anders ist es dagegen mit Strassenbrücken, wo das Eigengewicht der Fahrbahn von vornherein gross ist, und die Verkehrslasten viel gleichmässiger auftreten. In diesem Falle kann als Grenze zwischen Fachwerkbrücken und Hängebrücken rund 1000 Fuss (300 m) Spannweite angenommen werden. Eine Ausnahme machen natürlich leichte Stege für Fussgängerverkehr oder ganz leichten Fuhrwerksverkehr, die schon bei kleineren Spannweiten eine billige Hängekonstruktion zulassen.

Die angegebenen Daten sind runde Zahlen, die natürlich auf Genauigkeit keinen Anspruch machen können. Sie sind aber wertvolle Anhaltspunkte, wenn es sich darum handelt, eine Brücke neu zu entwerfen und die Vor- und Nachteile verschiedener Tragsysteme gegenseitig abzuwägen. Sie beweisen vor allem und aufs Neue, dass Hängebrücken allein noch wirtschaftlich bleiben, wenn andere Systeme längst aufgehört haben, noch in Frage zu kommen, oder nur noch in ganz monströsen Formen zur Ausführung gebracht werden könnten.

BIBLIOTEKA POLITECHNIGZNA KRAKÓW

¹) Die öffentliche Ausschreibung für den eisernen Überbau und die Kabel ist während der Drucklegung dieser Zeilen erfolgt und sind nähere Einzelheiten über die Konstruktion, die zur Verwendung vorgeschriebenen Materialien usw., in den amerikanischen Fachzeitschriften veröffentlicht worden. Insbesondere sei verwiesen auf Nr. 5 Fig. 111/115 von Engineering News und Nr. 5 S. 112/115 von Engineering Record (Juli und August 1905).

