Wärmeausnutzung
bei der Dampfmaschine.
Die

Wärmeausnutzung
bei der Dampfmaschine.

Von

W. Lynen,
Professor an der techn. Hochschule in Aachen.

Mit 24 in den Text gedruckten Figuren.

Berlin.
Verlag von Julius Springer.
1901.
Sonderabdruck
aus der
Zeitschrift des Vereines deutscher Ingenieure
1901.
Vorwort.

Mehrfach an mich ergangenen Wünschen, die Abhandlung einem weiteren Kreis zugänglich zu machen, glaubte ich entsprechen zu sollen, und die Verlagsbuchhandlung hat mit großer Bereitwilligkeit die Schrift in würdiger Weise ausgestattet.

Ich hoffe, dass das kleine Buch manchem im Industrieleben Stehenden oder in dasselbe Eintretenden eine willkommene Gabe ist, und dass er aus seinem Inhalt gewünschte Belehrung schöpfen kann, wenngleich die Sprache der Figuren nicht so eindringlich zu wirken vermag, wie die vom gesprochenen Wort unterstützte Vorführung der körperlichen Modelle.

Aachen, im Mai 1901.

W. Lynen.
Der Fortschritt zeigt sich im Dampfmaschinenbetrieb durch immer weiter gehende Einführung von solchen Arbeitsweisen, wie z. B. die mehrstufige Expansion und die Dampfüberhitzung, welche geeignet sind, die im Dampf enthaltene Wärme besser auszunutzen, und durch die sich unsere Maschinen der vollkommenen Maschine immer mehr nähern. Es ist aber mit jedem Fortschreiten in der Ausnutzung der Wärme eine Erschwerung des Betriebes verbunden, und ein guter Erfolg in einer Dampfanlage wird immer mehr nicht allein von guten Willen, sondern auch vom guten Verständnis der mitarbeitenden Menschen abhängig gemacht.

Die bessere Ausnutzung der uns von der Natur gebotenen Wärmeschätze hat aber eine so große wirtschaftliche Bedeutung, und durch größere Sparsamkeit in dem weit ausgedehnten Dampfmaschinenbetrieb kann eine so bedeutende Vermehrung unseres Nationalvermögens erzielt werden, dass es sich wohl verlohnt, die Fortschritte in der Wärmeausnutzung immer mehr zu steigern. Das kann z. T. dadurch erreicht werden, dass die Kenntnis der Grundlagen allgemein verbreitet wird, auf denen sich dieser Fortschritt aufbaut, dass das Verständnis der Wärmevergänge in der Dampfmaschine und der Mittel, die wir in der Hand haben, um sie zu unserem Vorteil zu leiten, allgemeiner geweckt wird.

Die Wärme ist wie die Elektrizität so flüchtig und fein, dass wir uns keine klare Vorstellung von ihr machen können. So kommt es, dass die wichtigen Sätze der mechanischen Wärmetheorie und das eigenartige Verhalten der Wärme bei ihrer Umwandlung in mechanische Arbeit nicht so allgemein bekannt sind, wie es wohl wünschenswert wäre.

Es ist zu bedenken, dass es sehr viele Menschen gibt, die mit Dampfmaschinen zu thun haben und doch keine Ma-
schineningenieure sind. Das Maschinenwesen durchwächst
und durchsetzt immer mehr alle möglichen Betriebe, die
Dampfenergie macht sich immer mehr beliebt und unersetzung
lich als ein Mittel, um eine Ersparnis in den Gestehungs-
kosten herbeizuführen, namentlich seitdem ihre Schwester
Elektrizität sich als eine angenehme und überall brauchbare
Gehilfin erwiesen hat. Es giebt daher viele Leute in den
allgemeinen technischen Kreisen, wie städtische Ingenieure,
Chemiker usw., die vor wichtige Fragen aus dem Dampf-
maschinenwesen gestellt werden. Weiter kommen die meisten
Dampfmaschinen in chemischen Fabriken, auf Hüttenwerken,
in der Textilindustrie vor und sind dort Betriebsleitern unter-
estellt, deren eigentlicher Beruf sie nicht in innige Bekannt-
schaft mit den naturwissenschaftlichen Grundlagen der Dampf-
maschine gebracht hat. Eine Neigung zur Erlangung der
fehlenden Kenntnisse ist bei diesen Betriebsleitern stets und
in hohem Maße vorhanden; leider kann die Neigung oft
nicht befriedigt werden, weil sie ein zu großes Opfer an Zeit
auflegt. Auch das Arbeiterpersonal muss sich oft mit Ein-
richtungen abgeben, für die ihm das Verständnis fehlt. Eine
jede mechanische, der Klarheit über Weg und Ziel entbehrende
Thätigkeit führt aber leicht zur Gleichgültigkeit und Nach-
lässigkeit, wenn nicht gar zu Fehlern.

Für alle diese Menschen ist ein Vorteil erreicht, wenn
es gelingt, die Wärmevorgänge anschaulich zu machen, was
am besten geschieht, wenn die Wärme körperlich dargestellt,
gewissermaßen handgreiflich gemacht wird. Durch das sinn-
liche Erfassen der Wärmevorgänge kann ihr Verständnis
erleichtert und in kurzer Zeit herbeigeführt werden.

Es braucht wohl nicht näher darauf eingegangen zu
werden, welche Vorteile aus einem solchen Erkennen der für
unser wirtschaftliches Dasein hochwichtigen Wärmevorgänge
ewachsen. Wenn den Besitzern von Maschinenanlagen die
Ziele bekannt sind, denen wir zustreben können, so macht
sie dies eifrig, diese Ziele zu erreichen; denn jedem Menschen ist
das Streben nach Vervollkommnung tief und fest eingewurzelt. Wenn die Grenzen erkenntlich gemacht sind, über
die wir in unserem Streben nicht hinauskommen können, so
wird mancher geschickten, mit der weitverbreiteten Unkennt-
nis in Wärmeverhältnissen rechnenden Reklame der Boden
entzogen. Wenn die mit Rücksicht auf die ganze Anlage vorge-
nommene Prüfung der einzelnen zur Anwendung gelangenden
Mittel ergiebt, dass kein Mittel, welches zur Verbesserung
der Dampfausnutzung angewandt wird, ein Universalmittel.
ist, welches überall und ausschließlich mit Erfolg angewandt werden kann, dass vielmehr in Dampfanlagen der Grundsatz gilt: »Viele Wenig machen ein Viel«, so regt dies zur Gewissenhaftigkeit im anscheinend Kleinen und Unwichtigen an.

Wie in der großen Natur, so gibt es auch im wirtschaftlichen Leben der Menschen und in der Ausnutzung der Naturkräfte durch den Menschen kein allgemein gültiges Schema. Die einzelnen Umstände, die berücksichtigt werden müssen, sind so mannigfaltig, die Kräfte, welche sich fördernd und hemmend im einzelnen Fall einstellen, treten so unregelmäßig und verschiedenartig auf, dass jeder Gesamterfolg auf einer Anzahl von Teilerfolgen beruht. Ebenso wenig, wie ein besonders starkes, einzelnes Glied die Tragkraft einer Kette erhöht, wird eine einzelne, besonders gute Einrichtung, wie eine gute Steuerung oder eine Ueberhitzeranlage, eine sonst mangelhaft angelegte oder geführte Maschinenanlage herausreifen können. Die allseitige Prüfung der in Dampfanlagen angewandten Mittel ist also wichtig; sie kann aber durch Veranschaulichung der Wärmevorgänge auch Nichtfachleuten ermöglicht werden.

Die Elektrotechnik hat, obwohl sie jünger ist als die Dampftechnik, viel allgemeiner zu einer guten Veranschaulichung der von ihr benutzten Naturvorgänge beigetragen, was wohl für das Verständnis der Monteure für die Installationseinrichtungen und zur Erwerbung von Freunden der neu angebotenen Energie in Abnehmerkreisen notwendig war. Bei Dampfanlagen war ein Bedürfnis nach unbedingtem Verständnis der Anlage nicht so vorhanden. Sehr dankenswert ist die Art, wie in Herrmann: »Die graphische Behandlung der mechanischen Wärmetheorie«, das zeichnerische Verfahren angewandt ist, um einen Einblick und Ueberblick über das Gebiet der Wärmeenergie zu gestatten. Wenn ich im Nachstehenden von der zeichnerischen Darstellung auf die plastische übergehe und — teilweise in Anlehnung an die Herrmannsche Arbeit — eine Verkörperung der Wärme vornehme, so hoffe ich, mit meinen Auseinandersetzungen denen, die in die Kenntnisse von der mechanischen Wärmetheorie eingeführt sind, eine kurze Unterhaltung darzubieten, und denjenigen, denen der Gegenstand fern gelegen hat, das Verständnis für das eigenartige Verhalten der Wärme bei Arbeitsvorgängen schnell zu erwecken und die Ergebnisse ihrem Gedächtnis fest einzuprägen, wenn ich auch keine vollen Beweise für die Auseinandersetzungen bringe.

Zur Beurteilung der Wärme ist zu beachten, dass sie,
wie jede Energie, als ein Produkt aus zwei Faktoren anzu-
sehen ist. Wie die mechanische Arbeit das Produkt aus
Kraft × Weg, die Elektrizität gleich Spannung × Strom-
stärke, so ist eine gegebene Wärmemenge Q als das Produkt
$\frac{Q}{T} \times T$ anzusehen, worin T die absolute Temperatur be-
deutet, unter welcher diese Wärmemenge vorkommt. Wenn
man die Wärme als eine Bewegung des die Moleküle des
heißten Körpers umgebenden Aethers auffasst, so ist eine ge-
gebene Wärmemenge anzusehen als das Produkt aus der
in Bewegung befindlichen Menge vom Betrage $\frac{Q}{T}$ und der
Heftigkeit der Bewegung, die man proportional der absoluten
Temperatur T annehmen kann.

Arbeit und Wärme sind unzerstörbar; es kann aber wohl das
eine in das andere verwandelt werden. Wegen ihres Wertes
für uns wollen wir uns eine gewisse Wärmemenge durch eine
bestimmte Silbergöße dargestellt denken. Es werden sich
bei einer solchen Darstellungsart alle Wärmeverluste unwill-
kürlich dem Gedächtnis schärfer einprägen, denn der Wert
dieses Silbers ist auch für uns groß und unzerstörbar. Wir
können für Silber Waren kaufen, aber auch Waren in Silber
umsetzen, ähnlich wie wir Wärme in Arbeit und Arbeit in
Wärme umwandeln können. Die Währung der Wärme ist
nach dem ersten Hauptsatz der mechanischen Wärmetheorie
unveränderlich, und zwar ist 1 Wärmeeinheit, d. i. die Wärme-
menge, die wir aufwenden müssen, um 1 kg Wasser von 0° C
um 1° C zu erwärmen, gleich 424 Arbeitseinheiten, d. i. gleich
der Arbeit, die wir leisten, wenn wir 424 kg 1 m hoch heben.
Das Verhältnis der beiden Einheiten kann sehr gut erfasst werden durch die Betrachtung der beiden Würfel in Fig. 1, von denen der eine 1 ccm, der andere 424 ccm Inhalt hat.

Wie nun dieselbe Silbermenge in verschiedenen Münzen ausgeprägt werden kann, so kann auch eine bestimmte Wärmemenge bei verschiedenen Temperaturen vorkommen. Je kleiner die Münze ist, um so höher ist eine Geldrolle, die man durch Aufeinanderlegen der Geldstücke erhält, welche einen gewissen Geldbetrag ausmachen. In je größerer Münze man den Betrag hat, um so niedriger fällt die damit aufzubauende Rolle aus.

Bei der Verkörperung der Wärme durch Silber entspricht die Münzsorte dem Ausdruck \(\frac{Q}{T} \) und die Höhe der Geldrolle der Temperatur \(T \).

Die drei Rollen der Figur 2 haben denselben Rauminhalt, in Silber ausgeführt also den gleichen Wert; sie sind in Münzen von je 50 Pfg., 1 M und 1 Thaler gedacht.

Eine Arbeitsleistung durch Vermittlung einer Wärmeumwandlung kann verglichen werden mit dem Abtragen einer Geldrolle unter Verwendung der einzelnen Geldstücke zum Ankauf entsprechender Werte.
Eine besondere Bedeutung hat unter allen möglichen Umwandlungsprozessen der sogenannte Carnotsche Kreisprozess, bei welchem alle zuzuführende Wärme dem vermittelnden Körper bei der oberen Temperatur T_o zugeführt und alle aus dem Prozess wieder ausscheidende Wärme bei der unteren Temperatur T_u abgeführt wird.

Die Ergebnisse der rechnerischen Behandlung eines Carnotschen Kreisprozesses lassen sich nun so deuten, dass sich die ganze Umwandlung von Arbeit und Wärme in einer einzigen Münzsorte abspielt, wie durch Fig. 3 veranschaulicht. Bei diesem Prozess ist die Arbeitsleistung des vermittelnden Körpers bei der isothermischen Expansion während des Hinganges des Kolbens in ihrer Wirkung gleich dem Abtragen der ganzen Silberrolle von der Höhe T_u. Zur Durchführung des »Kreis«-Prozesses, zur fortlaufenden Umwandlung von Wärme in Arbeit, ist es aber unerlässlich, eine isothermische Kompression des die Arbeitsleistung vermittelnden Körpers vorzunehmen, welche sich in unserer Veranschaulichung nach Fig. 3 als das Aufbauen einer neuen Silberrolle von der Höhe T_u darstellt. Die adiabatischen Volumenänderungen des vermittelnden Körpers, die sich im Carnotschen Kreisprozess zwischen die beiden oben genannten isothermischen Volumenänderungen einschieben und den Arbeitsprozess zu einem geschlossenen, in sich zurückkehrenden Kreisprozess gestalten, heben sich in ihrer Wirkung gegenseitig auf, ähnlich wie das Spannen und Entspannen einer Spiralfeder keinen Zuwachs an Arbeit mit sich bringt, und sie brauchen daher hier nicht betrachtet zu werden, da das Endergebnis des Carnotschen Kreisprozesses ohne weiteres bei der gewählten Veranschaulichung begriffen werden kann. Die Arbeit L, welche bei einem zwischen den Temperaturen T_o und T_u sich abspielenden Carnot-Prozess gewonnen werden kann, wird dargestellt durch die Gesamtheit der Silberstücke, die in den Geldrollen nach Fig. 3 zwischen den Höhen T_o und T_u liegt.

Es ist die erzielbare Arbeit $L = \frac{Q}{T_o} (T_o - T_u)$, also gleich der in Bewegung gewesenen Aethermenge $\frac{Q}{T_o} \times$ Differenz in der Intensität der Bewegung $T_o - T_u$. Dieses Ergebnis.
kann auch ohne rechnerische Behandlung schon durch einfache Überlegung erkannt und durch die Betrachtung der Figur 3 verstanden werden, wenn die Aethermenge \(\frac{Q}{T_0} \) durch die Münze und die Intensität durch die Höhe der Geldrolle dargestellt wird. Die wissenschaftliche Fassung dieser Verhältnisse nennt man den zweiten Hauptsatz der mechanischen Wärmetheorie.

Die praktische Bedeutung dieses Satzes kann sofort erkannt werden, wenn wir uns noch zwei andere Carnotsche Kreisprozesse denken, die mit den Münzen der beiden andern Silberrollen aus Fig. 2 veranschaulicht werden können. Bei der isothermischen Expansion im Carnotschen Kreisprozess

\[\begin{align*}
\text{Fig. 4.}
\end{align*} \]

wird jedesmal eine Arbeit geleistet entsprechend der ganzen bei der oberen Temperatur zugeführten Wärme, welche durch das vollständige Abtragen der beiden ganzen Silberrollen von der Höhe \(T_o' \) bzw. \(T_o'' \) in Fig. 4 veranschaulicht wird. Bei der späteren isothermischen Kompression muss aber eine neue Arbeit geleistet und in Form von Wärme bei der Temperatur \(T_u \) nach außen abgeleitet werden, von einem solchen Betrage, dass sie durch eine in gleicher Münze bis zur Höhe \(T_o \) aufgetragene Geldrolle dargestellt wird. Diese Rolle hat einen um so größeren Wert, je größer die Münzsorte ist, in welcher sie aufgebaut ist. Da wir aber den dieser Rolle ent-
sprechenden Wärmefall an die uns umgebende Natur abliefern müssen, so bedeutet er für uns einen Verlust.

Aus den beiden Gleichungen: Wärmemenge = bewegte Aethermenge \propto Intensität der Bewegung $Q = \frac{\Delta W}{T} \times T$, und: Erzielbare Arbeit = bewegte Aethermenge \propto Differenz in der Intensität der Bewegung $L = \frac{Q}{T_o} (T_o - T_o')$, ergibt sich ohne weiteres, dass wir umso vorteilhafter arbeiten, je mehr wir die obere Intensität der Bewegung steigern, da uns die untere Intensität der Bewegung durch die uns umgebende Natur gegeben ist. Es ist dies eine hochwichtige durch die Fig. 4 veranschaulichte Erkenntnis, welche uns anzeigt, auf welchem Wege wir vorgehen müssen, um eine möglichst vollkommene Ausnutzung der Wärme bei der Umwandlung in Arbeit zu erhalten.

Da wir nach Fig. 4 Geldrollenstümpfe von der Höhe T_o an die Natur abliefern müssen, so müssen wir darnach trachten, den Inhalt derselben möglichst klein zu machen.

Zunächst macht uns diese Erkenntnis klar, dass wir bei gegebenem Temperaturgefälle $T_o' - T_o$ mit einer gegebenen Wärmemenge am günstigsten bei dem Carnotschen Kreisprozess arbeiten, weil sie in der für den gegebenen Fall kleinmöglichen Münze mit der größtmöglichen Differenz $(T_o' - T_o)$ auftritt. Leiteten wir einen Teil der gesamten Wärme bei einer kleineren Temperatur T_o oder T_o'' ein, oder bei einer höheren Temperatur als T_o ab, so würde für diesen Teil im ersten Fall das $\frac{Q}{T}$ größer, im zweiten Fall das $(T - T_o)$ kleiner sein, sodass der nicht ausnutzbare Rest in jedem Fall größer ausfiel, als wenn wir alle Wärme bei der oberen Temperatur T_o' eingeleitet und bei der unteren Temperatur T_o abgeleitet hätten. In Fig. 5 stellt bezüglich der gesamten veranschaulichten Wärme das linke Modell einen Carnot-Prozess, das andere Modell einen andern Arbeitsprozess dar. Der Unterschied im Inhalt der Rollen von der Höhe T_o links und rechts lässt die Überlegenheit des Carnot-Prozesses erkennen.

Sodann brauchen wir uns nur die in einer gewissen Dampfmenge enthaltene Wärmemenge in die Faktoren $\frac{Q}{T}$ und T zerlegt aufzutragen, um sofort nach dem zweiten Hauptsatz der mechanischen Wärmetheorie angeben zu können, wie weit wir die Wärme bestenfalls ausnutzen können.
Die in einer gewissen Dampfmenge enthaltene Wärmemenge müssen wir nach drei Einzelbeträgen unterscheiden, nämlich:

1) als Flüssigkeitswärme, d. i. die Wärme, welche aufgewandt werden musste, um das Wasser auf die Temperatur zu bringen, bei welcher es zu verdampfen anfing. Diese Temperatur ist abhängig vom Druck, unter welchem das verdampfende Wasser steht. Bei 6 at ist sie z. B. 157,9° C. Wir müssen fast genau 1 WE zuführen, um 1 kg Wasser um 1° C zu erwärmen. Zu 157,9° C brauchen wir z. B. 159,6 WE;

2) als innere Verdampfungswärme, d. i. die Wärmemenge, welche aufgewendet werden musste, um die Wassermoleküle so von einander zu lockern, dass aus dem flüssigen Aggregatzustand der dampfförmige entsteht. 450,4 WE für je 1 kg Wasser erforderlich;

3) als äußere Verdampfungswärme, d. i. die Wärme, welche der Arbeit entspricht, die zum Zurückschieben der das Wasser bezw. den Dampf einschließenden Wände notwendig ist, damit Platz für den sich bildenden Dampf frei gemacht wird. Bei 6 at sind dies 44,6 WE auf 1 kg Wasser. So brauchen wir 157,9 + 450,4 + 44,6 = 652,9 WE, um 1 kg Wasser von 0° C in Dampf von 6 at zu verwandeln.
Für den Wasserdampf ist es charakteristisch, dass dieser Betrag sich fast nicht mehr ändert, wenn die Spannung, unter welcher der Dampf sich bildet, erhöht oder erniedrigt wird. Um 1 kg Dampf zu erhalten, sind z. B.
bei 6 at 159,6 WE Flüssigkeitswärme, 652,9 WE Gesamtwärme,
» 10 » 181,2 » 661,1 »
» 15 » 200,3 » 666,7 »
erforderlich. Das macht bei 15 at nur 2 vH mehr Gesamtwärme als bei 6 at. Es ist daher für den Heizer nicht schwerer, Dampf bei 15 at als bei 6 at zu halten. Allerdings erfordert das erste Anheizen des Kessels bei 15 at mehr Mühe als bei 6 at, weil bei dem erstgenannten Druck ein Mehraufwand an Flüssigkeitswärme von 28 vH gegenüber dem Druck von 6 at eintritt.

Trägt man die einzelnen oben angegebenen Wärmebeträge als die Produkte aus \(\frac{Q}{T} \times \) Temperatur \(T \) auf, so erhält man eine Platte von der durch das Modell in Fig. 6 angegebenen Gestalt, welche die Wärme darstellt, die man 1 kg Wasser zuführen muss, um es in Dampf zu verwandeln.

Im ersten, trapezförmigen Teil, welcher die Flüssigkeitswärme darstellt, muss die Platte eine schräg ansteigende Be-
grenzungslinie erhalten, weil in dem Maße, in welchem dem Wasser Wärme zugeführt wird, seine Temperatur ansteigt und demnach die einzelnen Wärmebeträge \(\frac{Q}{T} \times T \) wachsende Ordinaten \(T \) erhalten. Im zweiten, rechteckigen Teile der Platte, welcher die (innere und äussere) latente Wärme darstellt, muss die obere Begrenzungslinie der Platte eine Wage rechte sein, weil die Temperatur des Wassers während des Verdampfens nicht mehr ansteigt und alle Wärmebeträge \(\frac{Q}{T} T \) den unveränderlichen Faktor \(T \), entsprechend der Verdampfungstemperatur, erhalten.

Fig. 7.

Der Inhalt des trapezförmigen und des rechteckigen Teiles der Platte bleibt zusammen ungefähr der gleiche, ob Dampf von hohem oder niedrigem Druck erzeugt wird. In Fig. 7 ist noch eine zusätzliche Platte an die in Fig. 6 dargestellte Platte angefügt, mit welcher man dies für die Drücke unter 6 at veranschaulichen kann. Die obere, schräg abfallende Begrenzungslinie dieser zusätzlichen Platte ist derart geführt, dass ein Winkelmäfs, welches nach Fig. 8 so auf die Platte gelegt ist, dass es mit seiner Innenecke auf diese Begrenzungslinie fällt, jedesmal eine Fläche ausschneidet, welche der Wärmemenge für die Temperatur und den Druck entspricht, der dem wagerechten Schenkel des Winkels zukommt.
Bei höherem Druck ist — entsprechend der höheren Verdampfungstemperatur — die Platte stets nach Fig. 6 höher und schmaler als bei niedrigerem Druck und entsprechend geringerer Temperatur nach Fig. 8.

Um nun mit Hilfe unserer Veranschaulichung zu erkennen, wie weit wir die im Dampf enthaltene Wärme ausnutzen können, denken wir uns Silberrollen aus lauter gleichen Münzen aufgetürmt, die, an der unteren Begrenzungslinie der aufrecht gestellten Platte anfangend, immer bis an die obere Begrenzungslinie heranreichen. Nach dem Gesagten werden wir immer mit ungefähr der gleichen Silbermenge auskommen, ob wir die Platten nach Fig. 6 für höhere oder nach Fig. 8 für niedrigere Spannung zu bedecken haben.

Nach dem zweiten Hauptsatz der mechanischen Wärmetheorie können wir über alle Silberstücke verfügen, die oberhalb der Wagerechten liegen, welche der unteren Temperatur im Arbeitsprozess, d. i. der Temperatur des Auspuffdampfes oder des aus dem Kondensator abfließenden Wassers, entspricht. Schieben wir nun nach Fig. 9 einen Vorhang über die Platte nach Fig. 6, dessen obere Kante in der Wagerechten T_u liegt, so erkennen wir, dass der nicht ausnutzbare, unter dem Vorhang liegende Teil der Silber-
stücke leider ein sehr großer Teil des gesamten Wertes ist. Nach Fig. 9 werden nur etwa 25 vH der in Fig. 6 dargestellten Wärme ausgenutzt.

Für die Natur ist kein Verlust vorhanden. Wenn die Temperatur an der Erdoberfläche gesunken sein wird, dann kann auch der unter dem Vorhang befindliche Teil in der Natur zur Umwandlung in Arbeit gelangen; für uns Menschen ist er aber zu diesem Zweck unausnutzbar.

Das Modell giebt uns über die wichtigsten Fragen aus dem Dampfmaschinenbetrieb sofort klaren Aufschluss. In Fig. 10 ist die Scheidewand zwischen dem ausnutzbaren und dem nicht ausnutzbaren Teil der Wärme höher gezogen, entsprechend einer Auspuffmaschine, bei welcher die untere Temperaturgrenze im Arbeitsprozess höher liegt als bei einer Kondensationsmaschine nach Fig. 9. Es geht hierbei gegenüber Fig. 9 ein voller Streifen von dem ausnutzbaren Teile verloren. In Fig. 11 ist anderseits die Scheidewand über Fig. 8 gezogen, entsprechend einer Maschine, die mit Kondensation, aber mit geringerem Dampfdruck arbeitet. Der ausnutzbare Teil ist kleiner geworden, weil die Silberrollen zu einem größeren Betrage unter dem Vorhang liegen als in Fig. 9, da die ganze Silbermenge in

Lynen, Wärmeausnutzung.
niedrigeren Rollen aufgebaut ist, die sich über eine größere Breite erstrecken.

Da die auf die Platte gelegten Silbermünzen die in 1 kg Dampf enthaltene Wärmemenge darstellen und der ausnutzbare Teil der Münzen sich nach dem ersten Haupt­satz der mechanischen Wärmetheorie in Arbeit umrechnen lässt, so kann das Modell dazu benutzt werden, den Kohlen­verbrauch für die indizirte Pferdekraft-Stunde zu berechnen. In den Kurven der Figur 12 sind die Ergebnisse zeichnerisch aufgetragen, welche man durch die Bestimmung des ausnutz­

![Diagram](image)

baren Teiles der Wärme bei den verschiedenen Annahmen über den Druck des zur Verwendung kommenden Dampfes erhält.

Es ist nun zu beachten, dass der in den Figuren 9, 10 u. 11 abgetrennte ausnutzbare Teil der Platte die Leistung angiebt, welche man mit einer vollkommenen Maschine erhalten würde, die ohne Drosselung des Dampfes, ohne Undichtheit, ohne Strahlung, ohne Spannungssprung im Indikatordiagramm und ohne Reibung im Gangwerk arbeitet. Die Abszissen bedeuten in Fig. 12 den absoluten Dampfdruck im Kessel, die Ordinaten bedeuten den Verbrauch an Wärmeeinheiten bei Aus­puff­ und bei Kondensationsmaschinen. Nimmt man an, dass etwa 5000 WE aus 1 kg Kohlen im Kessel nutzbar gemacht
werden können, so kann man aus den Angaben der Kurven auch den Kohlenverbrauch bestimmen, indem man die Anzahl der Wärmeeinheiten durch 5000 dividirt. In Fig. 13 ist in ähnlicher Weise der Dampfverbrauch aus dem Modell entwickelt.

Die Kurven in Fig. 12 und 13 zeigen, dass der Unterschied im Dampf- und Kohlenverbrauch zwischen Auspuff- und Kondensationsmaschinen für kleine Kesseldrücke sehr groß ist, aber mit zunehmendem Kesseldruck abnimmt. Anderseits wirkt auch bei Kondensationsmaschinen die Erhöhung des Dampfdruckes von 10 bis 12 at ab nur noch wenig auf die Verminderung des Dampf- oder Kohlenverbrauches ein. Bei Auspuffmaschinen kommen wir von einem Dampfverbrauch von 14,27 kg für 1 PSi-st bei 3 at herunter auf 5,79 kg für die gleiche Leistung bei 15 at Dampfdruck. Bei Kondensationsmaschinen sind die entsprechenden Zahlen 5,21 kg bei 3 at und 3,14 kg bei 15 at.

Diese Zahlen erregen das Erstaunen der Dampfmaschinenbesitzer, welche sicherlich froh sein würden, wenn ihre Dampfmaschinen mit einem so kleinen Verbrauch an Dampf arbeiteten. Es ist aber bei Beurteilung der Figuren 12 und 13 zu beachten, dass die Zahlen aus dem der vollkommenen Maschine entsprechenden Wärmebild ohne die oben angegebenen Verluste entwickelt sind.
Diese Verluste sind teilweise unvermeidlich, teilweise würde es unpraktisch sein, sie vollständig vermeiden zu wollen. Schon Carnot sagt: »Die Versuche, welche man zur

Fig. 12.

![Diagramm 12]

Annäherung an dieses Ergebnis anstellen wollte, wären eher schädlich als nützlich, weil sie andere, wichtigere Rücksichten vergessen ließen. Die Ersparnis an Brennstoff ist von den

Fig. 13.

![Diagramm 13]
Bedingungen, die bei den Wärmemaschinen zu erfüllen sind, eine einzige — unter vielen Umständen ist sie nur eine minder wichtige und muss hinter der Sicherheit, der Festigkeit, der Dauer der Maschine, der Einschränkung des Raumes, den sie beansprucht, der Wohlfühlheit ihrer Herstellung usw. zurückstehen. In jedem Falle die Rücksichten auf Bequemlichkeit und auf Ersparnis, welche sich ergeben, nach ihrem wahren Wert zu beurteilen, die wichtigeren derselben von den nur gelegentlichen zu unterscheiden, sie gegen einander angemessen auszugleichen, um mit den einfachsten Hülfsmitteln zu dem besten Ergebnis zu gelangen, dies muss die wesentliche Aufgabe des Mannes sein, welcher berufen ist, die Arbeiten seines Nächsten zu leiten, zusammenzufassen und zu einem nützlichen Zweck irgend welcher Art zusammen wirken zu lassen.«

Es ist angebracht, hier auf die ähnlichen Verhältnisse bei der Reinigung des Schlammes in Erzaufbereitungen hinzuweisen. Bis zu einem gewissen Grade machen sich die Reinigungskosten bezahlt. Strebte man jedoch eine vollständige Reinigung an und wollte man das allerletzte und allerkleinste Erzkörnchen aus dem Schlamm herausholen, so würde man ein schlechtes Geschäft machen.

Es gab Maschinen, welche mehr als das Doppelte derjenigen Dampfmengen verbrauchten, mit der sie nach der Rechnung hätten auskommen sollen, und ein so beträchtlicher Mehrverbrauch konnte nicht auf Gangwerkreibung, Diagrammmängel oder Wärmestrahlung aus der Maschine zurückgeführt werden.

Dieser bedeutende Verlust ist die Folge davon, dass wir die Dampfcylinder aus Gründen der Festigkeit und Dauerhaftigkeit aus Metall herstellen müssen. Metall ist ein guter Wärmeleiter, und es stellt sich ein Austausch von Wärme zwischen Dampf und Cylinderwand ein, welcher eine
wesentlich schlechtere Ausnutzbarkeit der Dampfwärme bedingt, als sie nach den früheren Betrachtungen und den Figuren 9 bis 11 eintreten müsste.

Der frisch eingelassene Dampf trifft im Cylinder Wand- schichten an, die unmittelbar vorher mit dem Auspuffdampf oder mit dem noch kälteren Kondensator in Verbindung standen haben. Der gesättigte Dampf enthält gerade so viel Wärme, dass er sich als Dampf halten kann. Durch die Berührung mit der kalten Wand kühlt sich der Dampf ab, und da er gesättigt ist, muss sich ein Teil von ihm kondensieren; es bildet sich Tau auf der Cylinderwand. Wenn dann der Dampf expandiert, wird er noch weiter feucht, da seine latente Wärme zur Arbeitsleistung herangeholt wird, was natürlich eine erneute Bildung von Wassernebel zur Folge hat.

In Fig. 14 ist ein herausgebrochenes Stück der Cylinderwand dargestellt, das links von der Luft, rechts vom Dampf umspült wird. Denkt man in die Cylinderwand Bohrungen von verschiedener Tiefe von der Außenseite her eingebrach und die Temperatur im Boden der verschiedenen Bohrlocher abgelesen, so würde man als Temperaturkurve etwa die mit a bezeichnete Linie erhalten, wenn man die unmittelbar vor dem Eintritt des frischen Dampfes abgelesenen Temperaturen zeichnerisch auftrüge. Kurze Zeit nach Beginn des Einströmens wird man etwa die mit b bezeichnete Temperaturkurve erhalten. Die Wand hat einen grösseren Wärmeinhalt, welcher aus dem frischen Dampf bezogen worden ist.

In dem Mafse, wie die Expansion des Dampfes fortschreitet und damit die Temperatur des Dampfes sinkt, lässt das Eindringen der Wärme aus dem Dampf in die Cylinderwand nach. Gegen das Ende der Expansion wird es möglich sein, dass die Wandtemperatur höher ist als die Dampftemperatur, sodass nunmehr ein Teil der Wärme wieder aus der Wand in den Dampf zurückströmt.

Wenn dieses Zurücksströmen noch vor dem Ende der Expansion stattfindet, so kann es die Diagrammfläche noch
günstig beeinflussen, indem es die Expansionslinie im Dampf-
diagramm in die Höhe hebt. Während des Auspuffes ist aber
die Wandtemperatur bedeutend höher als die Dampftemperatur,
und es wird innerhalb dieses Zeitraumes der Rest der an-
fänglich eingedrungenen Wärme aus der Wand wieder in den
Dampf zurücktreten. Das Heizen des abziehenden Dampfes
bringt keinen Vorteil für das Diagramm der Maschine. Die
in den abziehenden Dampf übertretende Wärme ist gerade
so gut verloren, als wäre sie unmittelbar ins Freie ausgestrahlt
wurden.

Die Art und die Größe des Arbeitsverlustes, der durch
den Wärmeaustausch zwischen Dampf und Cylinderwand her-

![Fig. 15.](image1)

![Fig. 16.](image2)

...
haben, wird für kurze Zeit kein Austausch stattfinden. Diesen Augenblick und Wärmezustand veranschaulicht Fig. 16. Sinkt die Temperatur des expandirenden Dampfes noch weiter, so beginnt das Rückströmen der Wärme aus der Wand in den Dampf; die Platte, welche die Wärme darstellt, bekommt einen Zuwachs, zuerst einen kleinen, dann einen größeren. Fig. 17 stellt den Wärmezustand am Ende der Expansion dar, unter der — praktisch wohl nicht erfüllten — Annahme, dass alle anfänglich in die Wand eingetretene Wärme auch wieder in den Dampf zurückgeströmt sei. Die Fläche der Platte in Fig. 17 ist dann wieder genau so groß, wie sie im Anfang in Fig. 6, war. Denken wir uns die Platte wieder mit Silberrollen bedeckt, so würden wir mit dem ganzen Silber aus Fig. 6 auch Fig. 17 vollständig bedecken können; die einzelnen Silberstücke sind nur anders gruppiert. Zieht man nun die Scheidewand zwischen dem ausnutzbaren und dem nicht ausnutzbaren Teil der Wärme nach Fig. 18, so erkennt man durch Vergleich mit Fig. 9, dass der erstere abgenommen, der zweite in gleichem Maße zugenommen hat. Die Wärme hat durch den Austausch zwischen Dampf und Wand an Wert für die Umwandlung in Arbeit verloren, weil sie mit höherer Intensität in der Bewegung der Aetherteile aus dem Dampf in die Wand eindrang.
und mit geringerer Intensität in der Bewegung in den Dampf zurückkehrte (vergl. Fig. 4).

Es leuchtet sofort ein, dass der eben besprochene Wärmeaustausch um so größer sein wird, je weiter der Temperaturunterschied zwischen dem frischen Dampf und dem Kondensator oder dem Auspuffdampf ist, und dass die ersten Bestrebungen, welche zur besseren Ausnutzung der Dampfenergie durch Erhöhung des Dampfdruckes und durch verstärkte Expansion gemacht wurden, ohne den beabsichtigten Erfolg sein konnten, weil der Ausfall an Arbeitsfläche nach Fig. 18 größer sein konnte als der Gewinn, den man etwa nach Fig. 9 gegenüber Fig. 11 erhielt. Ein amerikanischer Ingenieur, Isherwood, wies anfangs der 60er Jahre nach, dass in den von ihm untersuchten Maschinen 50 bis 60 vH des eingeführten Dampfes niedergeschlagen wurden. In Fig. 16 sind etwa 25 vH des Dampfes in Wasser verwandelt.

Um also eine möglichst gute Ausnutzung der Wärme des Dampfes durch die Maschine herbeizuführen, ist zweierlei notwendig:

1) Das Temperaturgefälle des Prozesses ist durch Anwendung hoher Dampfspannung und weitgetriebener Expansion zu verbessern;
2) die Beeinträchtigung des Prozesses durch die schädliche Einwirkung der metallischen Cylinderwände auf den Dampf ist möglichst zu vermeiden. Dieser Punkt ist ebenso wichtig wie der erstgenannte.

Es gibt nun drei Mittel, um den letztgenannten Zweck zu erreichen:

1) die Heizung der Cylinderwände von außen;
2) die Verteilung der Gesamtexpansion auf mehrere Cylinder;
3) die Überhitzung des Dampfes vor Eintritt in den Cylinder.

Durch Heizung der Cylinderwände kann die Temperatur der Außenhaut des Cylinders auf die Temperatur des Frischdampfes gebracht werden. Dadurch wird die aus dem Arbeitsdampf in die Innenhaut des Cylinders eindringende Wärme zurückgestaut, sodass die Temperaturschwankungen in der metallischen Cylinderwand auf eine dünner Schicht eingeschränkt werden, wie Fig. 19 zeigt. Die Innenhaut nimmt auch beim geheizten Cylinder unmittelbar vor dem Eintritt des frischen Dampfes die Temperatur des Auspuffdampfes oder des Kondensators an und wird nach erfolgtem Eintritt des frischen Dampfes unter Niederschlag von Tau aus diesem Dampf geheizt. Die Temperaturkurve a, welche vor dem Eintritt des frischen Dampfes in den Cylinder abgelesen wird, geht in die Temperaturkurve b nach Beginn des Eintrittes über. Der heisse Heizmanteldampf staut aber diese von innen kommende Wärme zurück, sodass die Umkehr der Wärme aus der Wand in den Dampf viel eher beginnt als bei ungeheiztem Cylinder, zum großen Teil noch während der Expansion des frischen Dampfes. Wenn die Heizung sehr kräftig ist, kann noch vor Beginn des Auspuffes aller Tau verdampft und die Innenhaut wieder getrocknet sein, wodurch der Wärmeaustausch erschwert und das Heizen des ausblasenden Dampfes behindert wird. Der Wärmeverbrauch der Wand bleibt dann unvermindert, und er braucht nicht aus dem frischen Arbeitsdampf oder aus dem Heizmanteldampf ergänzt zu werden.
In dem Wärmebild stellen sich diese Vorgänge so dar, dass der in Wegfall kommende Plattenteil viel kleiner ist als das beim ungeheizten Cylinder gefundene Fehlstück, wie Fig. 20 zeigt, in welcher ein ununterbrochenes Hin- und Herfließen der Wärme zwischen Dampf und Wand angenommen ist, nicht ein sprungweises, wie in Fig. 18; dementsprechend ist das Fehlstück von stetigen, nicht von treppenförmigen Begrenzungslinien eingeschlossen.

Wenn die Heizung der Cylinderwand genügend kräftig ist, so kann Wärme aus dem Heizdampf in den Arbeitsdampf übergehen, wobei der Tau der Wand ganz oder teilweise und auch die durch die Expansionsarbeit veranlasste, im Dampf schwebende Feuchtigkeit wieder verdampft wird. Es wirkt dann der Cylinder wie ein Ueberhitzer oder Dampftrockner, der mit Kesseldampf geheizt wird. Im Wärmebild erscheint ein Zuwachs an Fläche. Fig. 7 zeigt den — praktisch wohl nicht erfüllbaren — Fall, dass aller Tau und alle Feuchtigkeit wieder verdampft worden sind, sodass unmittelbar vor dem Auspuff gerade so viel gesättigter Dampf im Cylinder enthalten ist wie unmittelbar nach beendigter Füllung. Die zusätzliche Platte in Fig. 7 stellt gegenüber Fig. 6 den Wärmebetrag dar, welcher, dem Heizdampf entstammend, durch die Cylinderwand hindurch dem Arbeitsdampf zugeleitet worden ist, um diesen Zustand am Ende der Expansionsperiode herbeizu-
führen 1). Die aus dem Heizmantel stammende Wärme wird aber bei der Umwandlung in Arbeit wesentlich schlechter ausge- genutzt als die mit dem Frischdampf in den Cylinder gelangende Wärme, wie eine Betrachtung der Figur 21 zeigt, aus der ersichtlich ist, dass der über den Vorhang hinausragende Teil der die Heizungs-Wärme darstellenden zusätzlichen Platte sehr klein ist. Es ist daher ausdrücklich darauf aufmerksam zu machen, dass das Überströmen von Wärme aus dem Heizdampf in den Arbeitsdampf als Nebenwirkung neben der Zurückstauung der aus dem Arbeitsdampf in die Cylinderwand enttretenden Wärme auftritt, dass dieses Überströmen aber niemals mit Absicht herbeigeführt werden soll. Der Heizmantel würde am günstigsten wirken, wenn er nur die aus dem Arbeitsdampf stammende Wärme zurückstaut, und diejenige Heizung ist die beste, welche diesen Zweck mit einem möglichst geringen Übertritt von Wärme aus dem Heizdampf in den Arbeitsdampf erreicht.

Es ist natürlich noch besser, anstatt die eingetretene Wärme 1) vergl. Fig. 8. Der vom horizontalen Schenkel des Winkelmaßes bedeckte Streifen der Platte der Fig. 6 ist in Inhalt annähernd gleich dem vom senkrechten Schenkel des Winkelmaßes frei gelassenen Streifen der zusätzlichen Platte der Fig. 7. Bei einer Arbeitsleistung, die der Abtragung des erstgenannten Streifens entspricht, bildet sich Wasser aus dem Arbeitsdampf in einer Menge, die durch eine dem zweitgenannten Streifen entsprechende Wärme wieder verdampft werden kann.
zurückzustauen, dafür zu sorgen, dass keine Wärme in die Cylindermwand eintritt. Diesem Ziel wird man sich um so leichter annähern, je geringer die Temperaturunterschiede zwischen Dampf und Cylinderwand sind. Mit Zunahme der Expansion nimmt die Temperatur des Dampfes ab. Verteilt man die gesamte Expansion auf mehrere hintereinander geschaltete Arbeitszylinder, so verteilt man auch den Tempe-
raturbastieg auf diese Cylinderm und erreicht dadurch, dass die Grenztemperaturen in jeder einzelnen Cylinderwand näher bei der mittleren Temperatur derselben liegen, als dies bei einem einzigen Cylinder der Fall ist, in welchem die ganze Expansion stattfindet. Durch die Verkleinerung des Tempe-
raturbastieles wird natürlich die Lebhaftigkeit des Wärme-
austausches in jedem einzelnen Cylinder ganz bedeutend ver-
mindert.

Zur richtigen Würdigung der Verbundmaschinen ist im Auge zu behalten, dass ihre Daseinsberechtigung vor allem auf der Verminderung der schädlichen Oberflächenwirkung der Cylinderwände beruht, dass aber eine Ersparnis an Dampf durch sie nicht möglich ist, wenn der Betrieb der Maschine den Eintritt einer schädlichen Oberflächenwirkung trotz der Hinter-
einanderschaltung der Cylinder unvermeidlich macht.

Ein Beispiel kann dies am besten erläutern. Eine Schnellzuglokomotive ist mehrere Stunden hinter einander im Betrieb. Es wird sich ein Beharrungszustand in der Durchwärzung der Maschinenteile, insbesondere der Cy-
linder einstellen, und eine Verteilung des Temperaturge-
fälles auf die beiden Treibzylinder der Lokomotiven wird

Die mehrstufige Expansion wurde zuerst von den Schiffsmaschinenbauern allgemein angewandt, für welche eine Kohlenersparnis beim Wettbewerb in der Länge der Fahrwege und der Kürze der Fahrtduer eine erhöhte Bedeutung hatte. Man ist heute bei einer Erhöhung des Kesseldruckes auf 10 bis 12 at im Landmaschinenbau und auf 14 bis 16 at im Schiffsmaschinenbau angelangt, bei diesen Spannungen das Temperaturgefälle auf 3 und 4 Stufen verteilt. Bei den heutigen Dampfmaschinen wachsen die Schwierigkeiten im Bau und Betrieb durch eine weitere Drucksteigerung außerordentlich schnell an, während sich der erzielbare Gewinn nur langsam ver mehrt, sodass wohl eine weitere Steigerung der Arbeitsdrücke in absehbarer Zeit nicht zu erwarten ist.

Während man bei den Verbundmaschinen durch Beeinflussung der Wandtemperatur die schädliche Oberflächenwirkung mildern will, strebt man bei dem dritten und zuletzt in Anwendung gekommenen Mittel der besseren Wärmeverwertung durch Beeinflussung des Dampfes selbst, nämlich durch Überhitzung desselben, zum gleichen Ziel.

So lange der Dampf in Verbindung mit dem Kessel ist, bleibt er gesättigt, und alle Wärme, die durch das Kesselwasser dringt, dient nur dazu, weiteren Dampf zu bilden, nicht aber dazu, die Temperatur des Dampfes oder die von einer bestimmten Menge eingeschlossene Wärmemenge zu erhöhen. Wenn aber der Dampf nach Austritt aus dem Kessel mit einer trockenen Heizfläche in Berührung kommt, so kann er weiter Wärme in sich aufnehmen, wobei die Temperatur
steigt, ohne dass der Dampfdruck zunimmt. Es ist klar, dass man solchem überhitzten Dampf eine Menge Wärme wieder entziehen kann, ohne dass er Tau absetzt und feucht wird; dann erst, wenn ihm sämtliche Überhitzungswärme entzogen ist, kommt der Dampf wieder in den Zustand der Sättigung mit der Neigung zur Taubildung zurück. Wenn man überhitzten Dampf in den Zylinder einlässt und mit Metallwänden in Berührung bringt, so wird sich ohne weiteres

Zuthun von unserer Seite kein Tau auf den Cylinderwänden absetzen, auch wenn dem Dampf Wärme durch die Wand entzogen wird, abgesehen davon, dass diese Entziehung viel schwächer sein wird, weil der überhitzte Dampf ein schlechterer Wärmeleiter als der gesättigte Dampf ist. Die Verschlechterung der Dampfausnutzung — soweit sie auf der schädlichen Oberflächenwirkung der Cylinderwände beruht — wird daher bei überhitztem Dampf ohne weiteres vermindert und eine so starke Annäherung an die Ausnutzung bei einer vollkommenen Dampfmaschine erreicht, wie sie bei gesättigtem Dampf nur bei geheizten Cylindern und mehrstufiger Expansion, d. i. Einhaltung kleiner Temperaturunterschiede in der Cylinderwand, erzielbar ist.
Das Wärmebild der vollkommenen Dampfmaschine ist daneben auch etwas verändert gegenüber dem bisher betrachteten, für gesättigten Dampf geltenden Modell. Die dem Dampf nach dem Verlassen des Kessels in dem Überhitzer zugeführte Wärme stellt sich nach Fig. 22 als ein Zuwachs der die Wärme veranschaulichenden Platte dar. Die obere Begrenzungslinee der zusätzlichen Platte ist eine ansteigende Linie, ähnlich der oberen Begrenzung bei dem Teil der Platte, welcher die Flüssigkeitswärme des Dampfes darstellt, weil die Temperatur des Dampfes bei der Überhitzung entsprechend der Wärmefuhr zunimmt. Fig. 22 verkörpert die Wärme, welche in 1 kg auf 300° C überhitzten Dampfes von 6 at enthalten ist. Denkt man sich diese zusätzliche Platte wieder mit Silberrollen bedeckt, die von unten anfangend bis zur oberen Begrenzungslinee hinauhereichen, und zieht man nach Fig. 23 die Scheidewand zwischen dem ausnutzbaren und dem unausnutzbaren Teil der Silberrollen, so erkennt man, dass die Ausnutzung der Überhitzerwärme besser ist als die Ausnutzung des übrigen Wärmeinhaltes in dem der Maschine zugeführten Dampf. Die zusätzliche Platte ragt viel höher über den Vorhang hinaus als die übrige Platte. Nach Fig. 23 wird z. B. die Flüssigkeitswärme mit 15 vH, die latente Wärme mit 28 vH, die Überhitzerwärme mit 38 vH ausgenutzt. Infolgedessen gestaltet sich bei der vollkommenen Maschine der Prozess günstiger, wenn sie mit überhitztem Dampf arbeitet, als wenn sie mit gesättigtem Dampf arbeitet. Allerdings fällt der Unterschied nur dann einigermaßen groß aus, wenn der Anteil der Überhitzerwärme an der Gesamtwärme des Dampfes beträchtlich ist und sich dementsprechend der höhere Prozentsatz in der Ausnutzbarkeit der Wärme auf einen großen Teil der Gesamtwärme bezieht. In Fig. 23 ist die Gesamtausnutzung der Wärme auf 27,6 vH gestiegen gegenüber 25 vH in Fig. 9.

Es ist angebracht, hier auf die Ausnutzung der Wärme hinzuweisen, die durch die Cylinderheizung nach Fig. 7 dem Dampf zugeführt wird. Diese Wärmefuhr findet auch nach Art der Zufuhr im Überhitzer statt, nachdem der Dampf den Kessel verlassen hat; sie wirkt aber auf den expandirenden und allmählich in der Temperatur absteigenden Dampf ein, sodass die obere Begrenzungslinee der Wärmeplatte, welche der Cylinderheizung entspricht, einen absteigenden Verlauf hat. Im Gegensatz zu der Wärme, die bei der Überhitzung zugeführt wird, hat die bei der Cylinderheizung zugeführte Wärme eine schlechte Ausnutzung. In der vollkommenen Maschine
wird sie in dem durch Fig. 7 dargestellten Falle nur mit 14,2 vH ausgenutzt, während in Fig. 9 die Ausnutzung der mit dem Frischdampf in die Maschine gelangenden Wärme 25 vH beträgt.

In Fig. 12 sind die Wärmeeinheiten verzeichnet, welche man für 1 PS£-st in der vollkommenen, d. i. ohne Strahlungsverlust, ohne Drosselung, ohne Spannungssprung, ohne Wandwirkung, ohne Gangwerkreibung arbeitenden Maschine erhält, bei Verwendung von Dampf, der auf 300° C überhitzt worden ist. Die Betrachtung der für überhitzten Dampf geltenden Kurven ergibt, dass der Unterschied im Wärmee- und Kohlenverbrauch der vollkommenen Maschine gegenüber

gesättigtem Dampf nur bei kleinen Dampfdrücken wesentlich ist, mit Erhöhung des Dampfdruckes aber immer mehr verschwindet, namentlich bei Anwendung der Kondensation. Doch ist zu beachten, dass die für die vollkommenen Maschinen abgeleiteten Kurven der Figur 12 die Bedeutung der Ueberhitzung gegenüber dem gesättigten Dampf in einem zu ungünstigen Licht erscheinen lassen. Ihre wirkliche Bedeutung würde erst erkannt werden, wenn man die Kurve des Kohlenverbrauches einzeichnete, die in den ohne Ueberhitzung arbeitenden wirklich Eincylinder- oder Verbundmaschinen

Das Wärmebild in Fig. 22 macht uns noch einen weiteren Punkt klar, der beim Betriebe mit überhitztem Dampf von Wichtigkeit ist. Die Wärmemengen, welche durch die Platten in Fig. 6 und 22 körperlich dargestellt werden, beziehen sich auf dieselbe Dampfmenge, etwa auf 1 kg Dampf. Nun ist es klar, und der Vergleich der Figuren 6 und 22 zeigt es, dass wir durch die Ueberhitzung jedes Kilogramm Dampf zum Träger einer größeren Menge von Wärme machen, als wenn wir es gesättigt lassen, und dass wir die Leistung von 1 kg Dampf selbst dann erhöhen, und demnach den Dampfverbrauch auch dann vermindern, wenn wir die Wärme in dem überhitzten Dampf nicht besser ausnutzen als im gesättigten Dampf. Ein Vergleich der Kurven des Dampfverbrauchs bei überhitztem und bei gesättigtem Dampf für 1 PS-st nach Fig. 13 mit den Kurven des Kohlenverbrauchs nach Fig. 12 ist sehr lehrreich. Der Unterschied in den für den Dampfverbrauch abgeleiteten Kurven ist bei dem überhitzten Dampf gegenüber gesättigtem Dampf viel größer als der Unterschied in den für den Kohlenverbrauch geltenden Kurven, und auf den letzteren kommt es natürlich in letzter Linie an.
Während bei gesättigtem Dampf der Dampfverbrauch ohne weiteres ein Maßstab für den Kohlenverbrauch ist, weil nach Fig. 6 und 8 fast die gleiche Wärmemenge gebraucht wird, um 1 kg gesättigten Dampf bei hohem oder niedrigem Druck zu erzeugen, ist dies bei überhitztem Dampf nicht mehr der Fall, weil je nach dem Druck des Dampfes und je nach dem Grad der Ueberhitzung jedem Kilogramm Dampf mehr oder weniger Wärme zugeführt werden muss.

Diese durch die Ueberhitzung herbeigeführte Verminderung des Dampfverbrauches hat aber, abgesehen von einer etwaigen Kohlenersparnis, insoweit eine besondere Bedeutung, als der Bedarf an Kesselfläche dadurch verringert wird. Der gesamte Wärmebedarf wird bei Anwendung der Ueberhitzung dem Dampf zu einem Teil durch die Ueberhitzerfläche übermittelt, die gewissermaßen an die Stelle der Kesselheizfläche tritt. Durch welche Art von Fläche die Wärme in den Dampf geschickt wird, ist für den späteren Arbeitsvorgang nur in zweiter Linie wichtig; Hauptsache für diesen ist es, dass ihm die Wärme durch den Dampf zugetragen wird. Eine ähnliche Bedeutung wie die Ueberhitzer haben die sog. Economiser für die Uebertragung der Wärme aus den Kesselgasen in den Dampf. In den Economisern wird die im späteren Arbeitsdampf enthaltene Flüssigkeitswärme an das Speisewasser übertragen und damit gleichfalls der Bedarf an eigentlicher Kesselfläche verringert. Das Wärmebild in Fig. 22 zeigt anschaulich, wie groß die einzelnen Beträge sind, welche durch den Ueberhitzer und welche durch den Economiser übertragen werden können. Bei einem Dampfdruck von 6 at und einer Ueberhitzung auf 300° C können 23 vH der in Fig. 22 dargestellten Wärme durch den Economiser und 7 vH durch den Ueberhitzer aufgebracht werden, sodass entweder die Kesselfläche um 30 vH verkleinert oder bei vorhandenem Kessel die Maschinenleistung um 30 vH gesteigert werden kann gegenüber einer Anlage, die ohne Economiser und ohne Ueberhitzer arbeitet.

wesentlich geringer, als er bei gesättigtem Dampf und gleichem Temperaturgefälle in der Cylinderwand auftreten würde.

Die Ueberlegenheit des überhitzten Dampfes in seinem Verhalten gegen die Cylinderwand gegenüber dem gesättigten Dampf ist aber umso kleiner, je mehr man durch Anwendung geeigneter Mittel beim gesättigten Dampf dafür gesorgt hat, dass der Wärmeaustausch vermindert ist, z. B. durch Heizung der Cylinderwände, durch Schaffung kleiner Temperaturgefälle in den Cylinderwänden infolge Verteilung der Expansion auf mehrere Cylinder. Die Dampfüberhitzung ist daher am lohnendsten gegenüber einer ungemantelten Ein­
cylinger-Kondensationsmaschine mit starker Expansion. Ge­
genüber Verbund- und Dreicylindermaschinen ist der Vorteil geringer, doch kann die Ueberhitzung die Verbundwirkung ersetzen. Namentlich hat sich eine Ueberhitzung des Auf­
nehmerdampfes als wertvoll erwiesen, wie dies nach den obigen Betrachtungen ja auch als ganz natürlich erscheint. Man hat bei zweistufiger Expansion mit überhitztem Dampf mindestens ebenso günstig gearbeitet wie bei Dreicylinder­
maschinen mit gesättigtem Dampf. In der Vereinigung beider Arbeitsweisen, in der Verwendung überhitzten Dampfes in mehrstufiger Expansion ist das Mittel gegeben, das neutrale Verhalten zwischen Dampf und Cylinderwand soweit zu trei­
ben, wie dies in praktischer Weise möglich ist, und dadurch eine möglichst starke Annäherung an die vollkommene Ma­
schine und eine entsprechende Verminderung des Kohlen­
verbrauches auch bei weitgetriebener Expansion zu er­
reichen.

Während die Verbundwirkung allein in Dreicylindermaschinen bei gesättigtem Dampf von 12 at Kesseldruck, Expansion bis auf 0,5 at und 0,1 at Kondensatordruck etwa 15 vH der Energie des Dampfes in Nutzarbeit umwandelt, kann die Ausnutzung durch Hinzufügung der Ueberhitzung auf 300° bis etwa 17 vH gesteigert werden. Rechnet man noch die Verluste im Kessel hinzu, so kann die Ausnutzung der Energie der Kohle auf etwa 12 bezw. 13,5 vH gebracht werden. Eine Ueberschreitung dieser Zahlen ist bei den jetzt üblichen Dampfmaschinen und Dampfkesseln nicht leicht möglich, wohl aber bei der Gasmaschine in Verbindung mit Gasgeneratoren, die indes heute in der konstruktiven Durch­
bildung noch nicht so weit gediehen sind, dass die großen Leistungen mit derselben Sicherheit erreicht werden können, wie bei den Dampfmaschinen.
Nachdem nun erkannt worden ist, welches die Ziele sind, die wir in der Wärmeausnutzung durch die Dampfmaschine erstreben können, und welches die Mittel sind, mit deren Hilfe wir uns diesen Zielen nähern können, ist es notwendig, zu untersuchen, welche sonstigen Forderungen die praktische Durchführung der als richtig erkannten Grundsätze, und welche sonstigen Umstände die praktische Anwendung der als wirksam erkannten Mittel mit sich bringt.

Die Dampfmaschine wird niemals um ihrer selbst willen betrieben; sie ist stets Dienerin in einem größeren Fabrikwesen, und es ist notwendig, dass wir alle Maßnahmen, die wir der Dampfmaschine wegen treffen wollen, mit Rücksicht auf die Gesamtanlage prüfen. Wie in der großen Natur, so gibt es auch in dem verwickelten wirtschaftlichen Leben kein einziges Prinzip, das sich einseitig streng durchführen lässt. Es sind immer mehrere Bedingungen zugleich zu erfüllen, und es treten häufig Forderungen zusammen auf, die sich widersprechen, sodass vermittelt und je nach Lage des Falles mehr oder weniger von den einzeln als richtig erkannten Grundsätzen abgewichen werden muss. Es ist Sache der geschulten Erfahrung oder des Genies, für jeden gegebenen Fall das Beste und zugleich am leichtesten durchführbare herauszufinden; aber immer bleibt zu beachten, dass der Erfolg niemals an einer einzigen, noch so geistreichen Einrichtung hängt, sondern an verschiedene Bedingungen geknüpft ist, und dass die Art und Weise entscheidend ist, wie die einzelnen Bedingungen durch die Anlage erfüllt oder durch die mit deren Leitung betrauten Menschen erfasst und befolgt werden.

Weiter ist durch Einschaltung guter Dampftrockner oder Wasserabscheider dafür zu sorgen, dass die unvermeidliche Feuchtigkeit aus dem Dampf herauskommt, ehe er in den Cylinder eintritt. Das gilt ganz besonders für schwach belastete Rohrleitungen, in denen sich reichlich Wasser niederschlägt, welches die Oberflächenwirkung zwischen Dampf und Cylinderwand bedeutend erhöht.

Häufig ist der Fehler zu beobachten, dass der Schieberkasten nicht umhüllt ist, was besonders schlimm ist, weil der Schieberkasten meist große Strahlungsf lächen hat und weil der darin, also unmittelbar vor dem Eintritt in den Cylinder feucht gewordene Dampf nicht mehr getrocknet werden kann, was den Kreisprozess der Maschine verschlechtert.

Rohrleitungen für überhitzten Dampf müssen wegen der hohen Temperatur besonders gut isolirt werden. Doch hat man die Erfahrung gemacht, dass diese Rohrleitungen besonders gut dicht halten, weil sie viel gleichmässiger erwärmt werden als Rohre, die mit gesättigtem Dampf gefüllt sind. Es ist das die Folge davon, dass sich kein Wasser in ihnen niederschlägt und im unteren Scheitel ansammelt. Bei langen Dampfleitungen wendet man oft eine schwache Dampfüberhitzung von etwa 50° C an, auch wenn man mit gesättigtem Dampf arbeiten will, um den Dampf trocken an die Maschine heranzubringen.

Aber trotzdem ist die Anwendung der Kondensation nicht unter allen Umständen richtig. Bei kleinen Maschinen tritt durch sie eine starke Verteuerung der Maschine ein, und es lässt sich eine Grenze aufstellen, bei der die Kosten für Verzinsung, Abschreibung und Unterhaltung der Kondensation mehr ausmachen als die Ersparnis an Kohlen. Bei großen Maschinen kann das gleiche eintreten, wenn der

Die im Auspuffdampf enthaltene Wärme, der nach der Arbeitsleistung übrig gebliebene, in Fig. 10 unter dem Vorhang des Modells liegende Rest an Flüssigkeitswärme und latenter Wärme, ist wegen der genügend hohen Temperatur und der bequemen Leitbarkeit des Dampfes gut und leicht zu diesen Heizzwecken verwendbar, während die Wärme, welche in dem warmen, den Kondensator verlassenden Wasser enthalten ist, nicht mehr verwendungsfähig ist wegen der geringen Temperatur und der großen Wassermenge, auf die sie verteilt ist. Theoretisch kann die ganze Wärmemenge, die in der Figur 10 durch die unter dem Vorhang verborgenen Silberstücke dargestellt ist, an Heiz- und Kocheinrichtungen abgeliefert werden. Ein Abtragen der Silberrollen, eine Umwandlung in Arbeit, ist allerdings nicht mehr möglich, wohl aber ein Weiterziehen aus dem Dampf in einen andern Körper. Geschieht dies in eine Heiz- oder Kocheinrichtung, so ist auch das für
uns eine nützliche Verwertung, und wir können dann von einer vollständigen Ausnutzung der Dampfenergie sprechen. Wir können die sämtlichen in Fig. 6 dargestellten Silberrollen verwerten, und nicht etwa nur den vierten Teil, wie in Fig. 9, oder gar nur den fünften Teil, wie in Fig. 10. Um dieses Ziel zu erreichen, müsste allerdings die Uebertragung der Wärme aus dem Dampf in die Heiz- und Kochapparate mit vollkommenen Einrichtungen geschehen, eine Annahme, die auf gleicher Stufe mit unserer bisherigen Annahme steht, dass alle über dem Vorhang verbleibende Wärme in einer vollkommenen Maschine in Arbeit verwandelt wird. In den wirklichen Heiz- und KochEinrichtungen treten natürlich Verluste auf, ähnlich wie in den wirklichen Maschinen.

Wenn Verwendung für den gesamten Auspuffdampf eines Werkes zu Heiz- und Kochzwecken vorhanden ist, wie z. B. in Braunkohlenbrikettfabriken, so wird nach Fig. 10 die Dampfenergie zu etwa \(\frac{1}{5} \) in mechanische Arbeit, zu \(\frac{4}{5} \) in nützliche Heizarbeit verwandelt. Da die dem Auspuffdampf entnommene Wärme den Heizeinrichtungen nicht aus einer anderen Quelle zugeführt zu werden braucht, so erhält man in einem solchen Falle eine Dampfersparnis von rd. 40 vH gegenüber einer Anlage, die mit Kondensationsmaschinen arbeitet, da man in dieser das heisse Kondensationswasser nutzlos weglauen lassen müsste. Setzt man nämlich den monatlichen Kohlenverbrauch einer Kondensationsmaschine gleich 1 und den einer gleich starken Auspuffmaschine gleich \(\frac{5}{4} \), so ist der Jahresverbrauch bei einer Anlage mit Verwertung sämtlichen Auspuffdampfes zu Heizzwecken gleich \(12 \cdot \frac{5}{4} = 15 \). Bei einer Kondensationsmaschine mit besonderen Heizzesseln ist der Dampfverbrauch \(12 \cdot 1 \) für die Arbeit der Maschine + \(12 \cdot \frac{4}{5} \) für die Heizzwecke = 24. Der Unterschied in diesen Zahlen zeigt die Ersparnis an, von welcher alle oben genannten Anlagen Vorteil ziehen können, welche die gesamte Wärme des Auspuffdampfes zu Heizzwecken verwenden können.

In Anlagen, welche noch trotz Verwendung ihres sämtlichen Auspuffdampfes besondere Kessel für Heiz- und Kochzwecke im Betrieb halten müssen, wie z. B. in Zuckerfabriken, wäre es nicht unwirtschaftlich, abgebbare Energie als Nebenzweck, z. B. Strom für eine elektrische Zentrale zu erzeugen, nur um Auspuffdampf für die Zuckerfabrik zu er-
halten. In Amerika verwendet man vielfach in öffentlichen Gebäuden Dampfkraft für die elektrische Beleuchtung und die Aufzüge, um Auspuffdampf für die Heizung zu erhalten.

Aber auch dann, wenn nur während eines Teiles des Jahres der Abdampf zu Heizzwecken benutzt wird, kann dies von Vorteil sein. Falls es gelänge, Fabrikheizungen herzustellen, welche die Uebertragung der im Auspuffdampf enthaltenen Wärme an die zu beheizenden Räume ermöglichen, ohne dem Durchströmen des Dampfes einen großen Widerstand darzubieten und ohne großen Gegendruck in der Dampfmaschine zu erzeugen, würde es nicht verkehrt sein, in Betrieben, welche ausgedehnte Fabrikräume zu heizen haben, mit Auspuffmaschinen anstatt mit Kondensationsmaschinen zu arbeiten, um im Winter die Arbeitssäle mit dem Auspuffdampf zu heizen.

Nimmt man 7 Monate ohne Heizung und 5 Monate mit Heizung an, und sind die Räume der Fabrik so ausgedehnt, dass man für alle Auspuffdampf Verwendung hat, so ist der Dampfverbrauch bei einer Auspuffmaschine unter Bezugnahme auf Fig. 10, nach welcher 1/5 der Energie in die Maschine und 4/5 in die Heizung wanderte, gleich 7 • für die Arbeit im Sommer mit ins Freie gepufftem Dampf + 5 • für die Heizung im Winter = 15, wenn der monatliche Dampfverbrauch einer Auspuffmaschine gleich 5/4 gesetzt wird. Wird der Dampfverbrauch einer Kondensationsmaschine von gleicher Leistung gleich 1 gesetzt, so ist bei Verwendung einer Kondensationsmaschine in Verbindung mit einer gleichstarken, durch Frischdampf betriebenen Heizung der jährliche Gesamt dampfverbrauch gleich 12 • für die Arbeit während des ganzen Jahres + 5 • für die Heizung im Winter = 17. Wenn also auch vielleicht keine nennenswerte Dampfersparnis durch die Heizung mit Auspuffdampf eintritt, so ist doch immerhin der Fortfall der Kondensation und ihrer Unbequemlichkeiten als Gewinn zu verzeichnen. Wenn aber neben dem Bedürfnis für Fabrikheizung noch ein einigermaßen großer ständiger, das ganze Jahr hindurch dauernder sonstiger Verbrauch an Heizdampf vorliegt, wie z.B. in einer Spinnerei mit Färberei und Trocknerei, in einer Eisenbahnwagenfabrik mit Lackirerei und Holztrocknerei, so kann leicht der Vorteil aufseiten der Auspuffanlage liegen.

So wird z. B. in einer Rückkühlanlage mit Streudüsen die warme, dunstige Luft über dem feinverteilten Wassersstaube abziehen und neue Luft aus der Umgebung herbeiströmen, sodass eine solche Rückkühlanlage in der Zugverzung nicht unähnlich ist einer Brandstätte, bei welcher ebenfalls die warme leichte Luft abfließt und von allen Seiten ein auf die Brandstelle gerichteter Zugwind entsteht: Ein Unterschied ist zwischen beiden insoweit vorhanden,
als dieser Zugwind bei der Rückkühlanlage erwünscht ist und deshalb nicht beeinträchtigt werden sollte, bei dem Brande aber unheilvoll wird.

Um die Zugwirkung zu steigern und dadurch die Kühlung des Wassers zu verstärken, hat man die Wasserverteileinrichtung in weite Kamine eingeschlossen, welche die warme leichte Luft zusammenhalten, sodass sie eine geschlossene, ziemlich hohe Säule bildet, ehe sich die feucht-warmen Schwaden in die freie Luft hinein verteilen, wobei die Zugwirkung gerade so erzeugt wird wie durch die Säule der heißen Kesselgase im Schornstein. Natürlich muss man sorgen, dass die Zugwirkung wenig beeinträchtigt wird; die Kamine sind daher in ihrem unteren Teil möglichst frei zu legen, damit die Luft bequem von allen Seiten heran kann. Sie darf nicht durch vorgebaute Gebäude oder aufgestapelte Gegenstände daran gehindert werden.

Selbstverständlich verursacht die Rückkühlung besondere Kosten; aber bei großen und stark belasteten Anlagen ist die Ersparnis durch die Kondensation in der Dampfmaschine so groß, dass ihre Anwendung doch wirtschaftlich wird.

Das gleiche Zeugnis lässt sich denjenigen Mitteln nicht ausstellen, welche man anwenden muss, um die Güte des Arbeitsvorganges durch Erweiterung der Temperaturgrenze nach oben hin, durch Verstärkung der Expansion, zu verbessern. Mit einer solchen wächst der Wärmeaustausch zwischen Dampf und Wand, ganz besonders bei gesättigtem Dampf, und die nähere Prüfung der Mittel, die man angewandt hat, um diesen Austausch zu verhindern, zeigt, dass Licht und Schatten in dem sich ergebenden Bilde verteilt sind, und
dass bei der praktischen Anwendung dieser Mittel nur durch Beachtung aller Umstände ein günstiger Erfolg erzielt werden kann.

Jeder Teil der Heizung an der Dampfmaschine muss einen besonderen Wasserabscheider erhalten und überwacht werden können. Es ist falsche Sparsamkeit, einen gemeinsamen Kondensationstopf für mehrere Heizungen anzuordnen, denn eine nicht überwachte Heizung kann eher Schaden bringen als Nutzen stiften. Um einen regen Umlauf des Dampfes im Heizmantel zu erzielen und den Dampf, der gewirkt hat und feucht geworden ist, durch frischen, trocknen Dampf zu ersetzen, empfiehlt es sich, Dampf durch die Heizung zu
schicken, den man für andere Zwecke braucht, bei welchen die Feuchtigkeit nicht schadet, z. B. den Kochdampf in Färberereien, den Betriebsdampf für die Antriebmaschine der Zentralkondensation usw.

Der Heizdampf ist in den Fällen nicht angebracht, in denen er einen Wärmeaustausch zwischen Arbeitsdampf und Cylinderwand nicht verhindern kann, z. B. wenn ein solcher Austausch durch die Art oder den Betrieb der Maschine nicht oder nur in geringem Maße entsteht. So würde er wenig Wert haben bei Maschinen, die mit überhitztem Dampf arbeiten, abgesehen davon, dass er sich in solchen Maschinen von selbst verbietet, weil er die Cylinderwände im Innern zu heiß und zu trocken machen würde. Auch bei schnell laufenden Maschinen ist er nicht angebracht, weil infolge der hohen Umlaufzahl die Zeit für die einzelnen Arbeitsvorgänge zu kurz ist und die Füllung, die Expansion und das Ausblasen so schnell auf einander folgen, dass ein Austausch, ein Hin- und Herwandern einer und derselben Wärmemenge zwischen Dampf und Wand, aus Zeitmangel nicht eintreten kann. Der Wärmeaustausch ist auch bei Maschinen, die mit großer Füllung arbeiten, gering, weil die mittlere Temperatur der Wand hoch ist und der frisch eintretende Dampf dadurch eine geringere Neigung zum Kondensiren erhält. In allen diesen Fällen schließt die Heizung leicht über das Ziel hinaus: das periodische Zurückstauen der aus dem Arbeitsdampf in die Cylinderwand kommenden Wärme ist klein, das ununterbrochene Eindringen der Wärme aus dem Heizdampf durch die Cylinderwand hindurch in den Arbeitsdampf überwiegt, was aber nach Fig. 21 nicht vorteilhaft ist. In allen diesen Fällen genügt es, das ununterbrochene Ausströmen der Wärme aus dem Dampf durch die Cylinderwand nach außen durch eine Wärmeschutzhülle auf dem Dampfcylinder zu verhindern.

Auch durch mechanische Mittel kann die Oberflächenwirkung verringert werden, z. B. durch einen dicken Überzug der Cylinderlaufflächen mit Schmieröl. So kann bei Abnahmever suchen, bei denen der Kolben in verschwenderischer Weise geschmiert wird, ein so niedriger Dampfverbrauch erreicht werden, wie er im laufenden Betriebe nicht aufrecht erhalten wird. Weiter ist die Heizung der Cylinderdeckel trotz der großen Flächen, die sie dem frisch eintretenden Dampf darbieten, nicht so wichtig, weil die Innenseiten der Deckel im Betrieb mit einer dicken, die Wärmeschlecht leitenden Oelkruste überzogen sind.
Wenn auch der Heizmantel für den dauernden Betrieb vieler Maschinen nicht erforderlich ist, so wird er doch von guten Maschinenfabriken an allen ausgeführt. Er dient zum gründlichen Anwärmen der Maschine vor jeder Ingangsetzung und wird benutzt, um die Maschine bei langen Stillständen, über Feiertage hinaus, angewärmt zu halten. Für alle Laufflächen an einer Maschine ist es gut, wenn sie keinen Formänderungen durch starke Temperaturschwankungen ausgesetzt werden. Nach dem Ingangsetzen der Maschine wird die Cylinderheizung abgestellt, falls die besonderen Verhältnisse bei der Maschine sich als nicht günstig dafür erwiesen haben.

Die Heizung des Aufnehmers an den Verbundmaschinen ist ganz anders zu beurteilen als die Heizung der Cylinderwände. Der Druck und die Temperatur des Aufnehmerdampfes sind nur geringen Schwankungen unterworfen, und die mittlere Temperatur der Innenhaut des Aufnehmers liegt nicht weit von den äußersten in ihm auftretenden Temperaturen entfernt. Der periodische Wärmeaustausch zwischen Aufnehmerdampf und Aufnehmerwand, das Hin- und Herwandern von Wärme, wird dementsprechend klein sein. Ein Zurückstauen des Punktes in der Aufnehmerwand, von dem nach Fig. 14 und 19 die Abzweigungen der Temperaturkurven ausgehen, kann also keinen Vorteil bringen.

Der Aufnehmer ist jedenfalls gegen den ununterbrochenen Wärmeaustausch zwischen Dampf und Wand zu schützen, welcher durch Strahlung nach außen veranlasst wird. Hierzu genügt aber eine sorgfältige Umhüllung mit Wärmeschutzmasse. Wie wichtig solcher Wärmeschutz ist, kann aus folgendem Beispiel ersehen werden. Der Aufnehmer lag in einem Mauerkanal, der auch die Seile des Schwungrades aufnahm. Die Bewegung des Schwungrades veranlasste einen kräftigen Luftstrom, der den Mauerkanal ständig durchstrich. Der Aufnehmer war zuerst nicht umhüllt, und der Dampfverbrauch betrug hierbei 6,8 kg für 1 PS-st. Durch gute Umhüllung des Aufnehmers ging der Dampfverbrauch auf 6,1 kg herunter, also um mehr als 10 vH.

Die Anwendung der Überhitzung auf den Aufnehmerdampf hat erwiesen, dass eine gute Ersparnis damit möglich ist, namentlich wenn der zu heizende Dampf feucht ist. Daraus kann man schließen, dass es vorteilhaft ist, den Aufnehmerdampf zu heizen und zu trocknen. Allerdings muss die Einrichtung so getroffen werden, dass aller Dampf wirklich geheizt wird. Dazu genügt ein einfaches Rohr mit darum gelegtem Heizmantel nicht. Der Aufnehmerdampf muss

Wie bei der Heizung, so ist auch bei der mehrstufigen Expansion zu beachten, dass sie ein Mittel ist, um den Kohlenverbrauch zu vermindern, dass aber ihre Verwendung nicht unbedingt und unfehlbar eine Ersparnis im Maschinenbetrieb herbeiführt. Die Verbundmaschinen sind aufgebaut auf der Grundlage, die Vorteile hoher Dampfspannung mit weitgetriebener Expansion auszunutzen, indem die schädliche Einwirkung der Wände durch Verteilung der Expansion auf mehrere Cylinder vermindert wird. Als Nebenwirkungen treten hierbei manche unbeabsichtigte Erscheinungen auf, teils nützlicher, teils schädlicher Art, sodass erst die Betrachtung aller Verhältnisse das Bild der Verbundmaschine klar und verständlich macht, während die einseitige Aufmerksamkeit auf die Herabminderung des Kohlenverbrauches leicht ein unrichtiges Urteil erzeugt.

An vorteilhaften Nebenwirkungen ist bei der Verbundanordnung die Verminderung des Schadens, den ein undichter Kolben verursacht, zu erwähnen. Diese Verminderung erfolgt einmal, weil der Ueberdruck auf der arbeitenden Kolbenseite über die Ausblaseseite viel kleiner ist als bei der Einzylindermaschine, außerdem aber, weil der durch den undichten Hochdruckkolben entweichende Dampf noch im Niederdruckzylinder ausgenutzt wird. Der Füllungsgrad ist in jedem Cylinder bei der Verbundmaschine größer, als er
bei einer entsprechenden Einzylindermaschine sein würde. Es erleichtert dies die Konstruktion und die Bedienung der Steuerung und trägt neben der Herabminderung des Temperaturgefälles zu einer verstärkten Verminderung des Wärmeaustausches bei.

An unangenehmen Nebenerscheinungen ist bei der Verbundwirkung die Erschwerung der Regulierung gegenüber einer Einzylindermaschine zu erwähnen. Der in die Maschine eingelassene, vom Regulator nicht mehr beeinflusste Dampf bleibt bei der Verbundmaschine länger im Arbeitsvorgang stehen als bei der Einzylindermaschine, nämlich während drei und mehr Hüben bei der Mehrzylindermaschine gegenüber 2 Hüben bei der Einzylindermaschine. Ferner wirkt der im Aufnehmer enthaltene Dampf stets der Regulierung entgegen. Wird z. B die Füllung im Hochdruckzylinder vergrößert, so muss zur Erhaltung des Beharrungszustandes der Druck im Aufnehmer steigen. Der frische Dampf wird also zu einem Teil so lange im Aufnehmer zurückgehalten, bis die Erhöhung des Aufnehmerdruckes vollendet ist, und dieser Teil kommt dann im Niederdruckzylinder nicht zur Wirkung. Wird die Füllung im Hochdruckzylinder verkleinert, so muss entsprechend der Druck im Aufnehmer abnehmen. Es fließt daher eine vom Regulator nicht beeinflusste Dampfmenge aus dem Aufnehmer ab und erhöht die Leistung im Niederdruckzylinder, wirkt also wiederum der vom Regulator angestrebenen Wirkung entgegen.

Aber diese Nebenerscheinungen treten gegen die Haupt- eigenschaft der Verbundmaschine zurück, dass sie eine wirtschaftliche Erweiterung des Temperaturgefälles im Kreisprozess der Dampfmaschine durch Höherlegung der oberen Temperatur ermöglicht. Die erzielten Erfolge waren so-
groß, dass man den einmal als richtig erkannten Weg unbekümmert um die eintretenden Schwierigkeiten weiter verfolgte und den Kesseldruck allmählich von 4 auf 12 bis 18 at erhöhte. Die Schwierigkeiten entstanden durch die mit der Cylinderzahl vermehrten Steuerungs- und Gangwerksteile und durch die am Hochdruckzylinder auftretende stärkere Aus-Lynen, Wärmeausnutzung.
dehnung der arbeitenden Teile infolge der höheren Temperatur des Arbeitsdampfes.

Die wirtschaftliche Bedeutung der Fortschritte kann sehr deutlich aus Fig. 24 erkannt werden, in welcher die Tabellenwerte aus dem schätzbaren Werk von Ch. Eberle: »Die Kosten der Kraftherzengung«, zeichnerisch aufgetragen sind, soweit sie sich auf Auspuff- und Kondensations-Einszylindermaschinen, auf Mehrzylindermaschinen und Lokomobilen beziehen.

Die wagerechten Strecken bedeuten die Leistung der Maschine in Pferdestärken, die senkrechten die Kosten einer Jahrespferdestärke in Mark, wobei 300 Arbeitstage mit zehnstündiger Arbeitszeit gerechnet sind. Die Strecken bis zur untersten Kurve bedeuten die Kosten für Verzinsung, Abschreibung und Unterhaltung der Anlage, einschließlich Maschinen- und Kesselhaus, die darüber stehenden Strecken stellen die Löhne für Heizer und Maschinisten dar. Die darauf folgenden Strecken zeigen den Oelverbrauch an, und die obersten Strecken lassen den Anteil der Kohlenkosten an den Gesamtkosten erkennen. Es sind dies alles Ponderabilien; nicht eingeschlossen sind die Genauigkeit der Werkstättenarbeit, die Betriebssicherheit durch Güte des Baustoffes, durch den Pflichteifer und die Ordnungsliebe des Maschinenwärters, die Ersparnisse durch gute Anordnungen und den gesunden Menschenverstand der Werkleiter: lauter Imponderabilien, die von großem Einfluss auf das wirtschaftliche Ergebnis einer Maschinenanlage, aber nicht ziffernmäßig ausdrückbar sind.

Trotzdem sprechen die Kurven eine beredte und deutliche Sprache. Bei den einfachen Einszylindermaschinen ist der Anteil der Kosten für Verzinsung, Abschreibung und
Unterhaltung der Anlage an den Gesamtkosten kleiner als bei den verwinkelten Verbundmaschinen; dafür nehmen die Kohlenkosten eine breitere Fläche ein. Auch der Mehraufwand für die Kondensation gegenüber den Auspuffmaschinen ist bei der Einzylindermaschine recht deutlich zu erkennen, insbesondere die Zunahme der Mehrkosten bei Verminderung der Maschinenleistung. Die Gesamtkosten der Kondensationsmaschinen bleiben aber kleiner als die der Auspuffmaschinen, weil die Ersparnis an Kohlen den Mehraufwand in der Anlage mehr wie ausgleicht. Bei Maschinen unter 30 PS hört dies aber auf, sodass die Anwendung der Kondensation sich dann im allgemeinen nicht mehr lohnt. Anderseits ist es lehrreich, dass bei Dreicylindermaschinen die Kosten für Verzinsung, Abschreibung und Unterhaltung der Anlage kleiner ausfallen als bei einer gleich starken Verbundmaschine. Trotzdem die Kosten für die eigentliche Maschine größer sind, wird die Anlage im ganzen billiger, weil die Ersparnis an Kesselfläche, Rohrleitungen, Speisepumpen infolge des verringerten Dampfverbrauches den Mehraufwand bei der eigentlichen Dampfmaschine ausgleicht.

Das Hauptinteresse bei der Figur 24 wendet sich den Kohlenkosten zu. Die Zeichnung ist entworfen unter der Annahme, dass 10,000 kg Kohlen 140 M. kosten. Die oben bei der Ausnutzbarkeit der Dampfenergie besprochenen Einflüsse kommen hierbei zur Geltung, und der menschliche Scharf

Die Lokomobilien haben geringe Anlagekosten, weil die Einmauerung des Kessels und der Maschine fortfällt und der Bedarf für Maschinen- und Kesselhaus geringer ist. Die Röhrenkessel der Lokomobilien sind zwar teuer in Anlage und Betrieb; sie nutzen aber die aus den Kohlen entwickelte Wärme sehr gut aus. Die Dampfleitung und die damit zusammenhängenden Verluste fallen bei den Lokomobilien fort, weil die Dampfzylinder im Dom des Kessels untergebracht sind. Die Cylinderheizung ist besonders gut, da sie mit heißem, ständig aus der Quelle erneuerstem Dampf erfolgt. Die Cylinder können keine Wärme nach außen strahlen, weil sie allseitig vom Dampf umgeben sind. Die Umlaufzahl der Lokomotivmaschine ist hoch, der Wärmeaustausch zwischen Dampf- und Cylinderwand entsprechend klein. Alle diese Umstände vermindern die Betriebskosten. So können denn die Lokomobilien sehr gut den Wettbewerb mit den ortfesten Maschinen aufnehmen, was sich auch bei näherem Eingehen auf die Kurven der Fig. 24 ergiebt. So kostet nach Fig. 24 die Jahrespferdestärke der 200-pferdigen Verbundmaschine 100 J£, während man bei der 200-pferdigen Verbundlokohobile nur etwa 90 J£ für die gleiche Leistung auszugeben braucht. Hiernach können die
Betriebskosten durch Anwendung einer Lokomobile jährlich um 200·10 = 2000 M erniedrigt werden.

Zur praktischen Durchführung der Ueberhitzung waren die Errungenschaften der Maschinentecnik der Neuzeit erforderlich. Nicht allein die Menschen, auch die Maschinen sind Kinder ihrer Zeit. Wie die Menschen mit ihren Kenntnissen, Bestrebungen und Erfolgen auf den Schultern ihrer Vorfahren stehen, so sind auch die Maschinen in ihrem Bau und ihrer Betriebsweise auf der Grundlage der Erfahrungen an ihren Vorgängern erbaut. Die Fortschritte in der Werkstättentechnik, sowohl in bezug auf Kenntnis der Eigenschaften der angewandten Baustoffe als auch auf die Ausbildung genauner Messverfahren und bester Werkzeugmaschinen, die allmähliche Druckerhöhung in den Verbunddampfmaschinen, die Erfahrungen im Gasmachinenwesen, das gleichfalls eine allmäßliche Steigerung der Arbeitsdrücke erlebte und beim Durchringen durch die praktischen Schwierigkeiten, ohne es zu wollen, ein Pionier für die Dampfüberhitzung war, sind die Ursachen gewesen, dass der neue Anstoss, den der geistvolle, mit unermüdlicher Kraft des Geistes und Willens an seiner Aufgabe arbeitende Ingenieur W. Schmidt in Aschersleben der Einführung der Dampfüberhitzung gab, so ungeahnte und sich immer weiter ausbreitende Erfolge in dieser seit beinahe einem halben Jahrhundert ruhenden Aufgabe des praktischen Maschinenbaues hatte.

Die neuen Schwierigkeiten bei der Dampfüberhitzung bestanden für die Dampfmaschinen in der Erhöhung der Temperatur der Teile, die mit dem heissen Dampf in Berüh-

Das Ausbleiben von Wasserniederschlägen im Dampfcylinder bei überhitztem Dampf, das für die Ausnutzung der Dampfwrärme so wertvoll ist, bedeutet für den Kolben eine Erschwerung des Ganges, weil dieser bei Anwendung des gesättigten Dampfes auftretende Niederschlag die Reibung vermindert. Wenn man die Dampfmaschine ein williges, selbst Miss- handlungen ertragendes Werkzeug genannt hat, so hängt dies zum größten Teil mit der Eigenschaft des gesättigten Dampfes zusammen, Feuchtigkeit an den von ihm bespülten Flächen abzusetzen.

Die Frage der Schmierung des Kolbens und der Schieber hat daher bei Einführung der Dampfüberhitzung eine erhebliche Wichtigkeit. In hochsiedenden Mineralölen hat man besonders bei Grafitzusatz geeignete Mittel gefunden, den Gang des Kolbens vollkommen sicher zu machen, ohne die Kosten für die Schmierung stark zu erhöhen.

Auch die Ueberhitzer sind in der Konstruktion und im Material so vervollkommnet worden, dass die Schwierigkeiten des Anheizens und des Betriebes, vornehmlich in der Anpassung an die Schwankungen in der Dampfentnahme, bei sorgfältiger Wartung der Anlage mit Sicherheit überwunden werden. Es ist aber nicht zu verkennen, dass die Maschinenanlagen bei überhitztem Dampf verwickeelter im Bau und empfindlicher in der Wartung geworden sind. Es ist eine allgemeine Begleiterscheinung eines jeden Fortschrittes in der Ausnutzung der Naturkräfte, dass die Bedingungen des Erfolges zahlreicher und schwieriger werden, dass Genauigkeit und Gewissenhaftigkeit in der Ausführung der Anlage zunehmen, und dass das Pflichtgefühl und die Fassungsgabe der mit dem Betriebe betrauten Menschen gesteigert sein müssen. Wenn auch die »gute alte Zeit« der Maschinenanlagen mancherlei Annehmlichkeiten aufgewiesen haben mag,
die die heutige Entwicklungsstufe nicht mehr zulässt, so ist es doch verkehrt, sich gegen den Fortschritt zu wehren, und die harte Wirklichkeit des wirtschaftlichen Lebens straft denjenigen rücksichtslos, der sich den Errungenschaften der Kultur nicht anpasst.

Die bei gesättigtem Dampf mit der Größe der Maschine steigende Dampfersparnis ist zumteil dadurch verursacht, dass die Größe der vom Dampf bespülten Flächen nicht so schnell zunimmt wie die Leistung der Maschine, und dass der schädliche Einfluss der Wandungen auf den Dampf mit der Zunahme der Maschinengröße infolgedessen abnimmt. Die Oberflächen in einer Dampfmaschine wachsen rund mit dem Quadrat, die Leistung aber mit der dritten Potenz der linearen Abmessungen der Maschine. Eine Maschine, die in allen ihren Teilen doppelt so groß ausgeführt ist wie eine andere Maschine, hat die vierfache Oberfläche, giebt aber etwa die achtfache Leistung her. Eine 800 pferdige Dampfmaschine hat etwa 4mal so viel vom Dampf bespülte Oberflächen wie eine 100 pferdige, pro Pferdestärke also nur die halbe Oberfläche, und der Dampfverbrauch wird dadurch in der großen Maschine günstig beeinflusst. Da sich nun der überhitzte Dampf neutraler gegen die Cylinderwände verhält als der gesättigte Dampf, so erhalten die kleinen Maschinen durch Anwendung der Überhitzung eine verhältnismässig weitergehende Verbesserung als die großen Maschinen.
Es ist dies ein Ergebnis, das auch für die Gasmaschine kennzeichnend ist.

Aus den Figuren 2 und 22 ist anschaulich zu erkennen, wie sich in einer mit Vorwärmer und Ueberhitzer ausgerüsteten Kesselanlage die einzelnen Teile der gesamten Heizfläche an der Ueberleitung der Wärme von den Kesselgasen in den Arbeitsdampf beteiligen. Der linke Teil der Wärmefläche in Fig. 22 mit der schrägen Begrenzung im oberen Teil wird vom Economiser geleistet werden. Der mittlere rechteckige Teil stellt den Anteil der eigentlichen Kesselfläche dar, und der rechte, hoch ansteigende Zipfel zeigt die Leistung des Ueberhitzers. Bei dem gewählten Beispiel der Dampferzeugung bei 5 at Kesseldruck und Ueberhitzung auf 300° C verhalten sich die einzelnen Wärmeflächen rd. wie 23:70:7.

Die Vorwärmerfläche ist eine vorzügliche und billige Heizfläche wegen der kleinen Wandstärke der Heizrohre gegenüber der Kesselwandstärke und wegen der großen Oberfläche, welche den Heizgasen gegenüber dem Wasserinhalt dargeboten wird. Außerdem kann die Vorwärmerfläche im Betrieb ständig gereinigt werden, was bei der Kesselfläche nicht möglich ist. So kommt es, dass bei einer gewöhnlichen Kesselanlage nicht ganz 20 vH der Kesselfläche an Economiserfläche gebraucht werden, trotzdem die letztere etwa 30 vH der von

Der Ueberhitzer kann aber außer durch diese Haupteigenschaft noch durch angenehme Nebenumstände vorteilhaft wirken. So kann eine bestehende Anlage durch den Einbau von Ueberhitzern eine Vergrößerung der Betriebskraft erzielen. Dies kann von unschätzbarem Vorteil sein, wenn die Kesselanlage baulich eingezwängt ist und keinen Einbau eines wei-
teren Kessels zulässt. Auch wirkt die Dampfersparnis günstig auf die Kondensation ein, weil um so weniger Kühlwasser erforderlich ist, je weniger Dampf die Maschine verlässt. Ein Blick auf Fig. 13 lässt erkennen, wie weit hierbei ein Unterschied zwischen gesättigtem und überhitztem Dampf vorhanden ist. Wenn die Beschaffung des Kühlwassers nur mit großen Opfern möglich ist, kann dies von entscheidender Wichtigkeit für die Einführung der Ueberhitzung in eine Anlage sein.

Man hat der Dampfüberhitzung den Vorwurf gemacht, dass die Kesselgase zu heiß in den Fuchs gelangen. Es mögen wohl solche Anlagen gebaut worden sein; der Fehler liegt aber auf Seiten der Erbauer, nicht des Systems. Namenslisch wenn ein Economiser eingebaut wird, werden die Kessel genau so gut ausgenutzt wie unter gewöhnlichen Umständen. Auch soll der Schmierstoffverbrauch gegenüber dem gesättigten Dampf bedeutende Mehrausgaben verursachen. Hierbei ist zu beachten, dass der Mehrverbrauch sich nur auf die Cylinderdrehung der Hochdruckseite beziehen kann; beim Gangwerk und beim Niederdruckcyliner ist selbstverständlich kein Unterschied im Oelverbrauch zwischen gesättigtem und überhitztem Dampf. Aber selbst wenn eine gewisse Erhöhung des Oelverbrauches im Hochdruckcyliner sich ergibt, so kann dies keinen großen Einfluss auf die Betriebskosten haben, weil der durch den Schmierstoff entstehende Teil der Gesamtkosten überhaupt klein ist, wie ein Blick auf Fig. 24 zeigt.

Um volle Gerechtigkeit walten zu lassen, muss man beachten, dass die Einführung der Ueberhitzung auch nach mancher Richtung die Sicherheit der Gesamtanlage erhöht. Die Dampfleitung setzt kein Kondensationswasser ab, sodass Wasserabscheider und Kondensationstöpfe an ihr überflüssig sind, was eine Reihe von unsicheren Flanschverbindungen erspart. Auch bleiben die Rohrleitungssflansche wegen der gleichmäßigeren Erwärmung der Rohre besser dicht. Das Niederschlagen von Kondensationswasser in den Cylinderdern und damit die Gefahr eines Wasserschlagens in der Maschine wird vermieden.
Die eindringlichste und überzeugendste Sprache für den Wert der Ueberhitzung spricht aber die Verbreitung, welche sich die Ueberhitzer in der Praxis erworben haben, namentlich die rasche Steigerung der Ausführungen in der jüngsten Zeit. Die größte Verbreitung hat der Schwoerer-Ueberhitzer gefunden, der bis Ende März 1900 zu etwa 300 000 qm Kesselfläche geliefert worden ist. Hering hat in Deutschland allein etwas über 50 000 qm Kesselfläche mit Ueberhitzern ausgestattet, davon 20 000 qm seit Jahresfrist. Ungefähr die gleiche Ueberhitzerfläche ist in Oesterreich eingebaut worden. Die Dinglersche Maschinenfabrik in Zweibrücken hat 240 Ueberhitzer zu etwa 40 000 qm Kesselfläche geliefert, davon 19 000 qm seit Jahresfrist. Die Ascherslebener Maschinenfabrik ist mit etwa 15 000 qm beteiligt.

Im ganzen werden jetzt in Deutschland etwa 400 000 qm Kesselfläche mit Ueberhitzern ausgerüstet sein, entsprechend etwa 800 000 bis 1 000 000 mit Heißdampf betriebenen Pferdestärken. Nach der Statistik sind am 1. April 1899 in Preußen 91187 Dampfmaschinen mit einer Gesamtleistung von 3 717 264 PS in Betrieb gewesen, woraus sich eine mittlere Leistung von 40,7 PS ergibt. Eine solche mittlere Leistung darf auch wohl für die mit Ueberhitzung arbeitenden Maschinen in Ansatz gebracht werden. Die Kohlenkosten pro Jahrespferdestärke können bei dieser Maschinengröße im mittel zu 70 Mark nach Fig. 24 angenommen werden. Es ist wohl sicher nicht übertrieben, wenn die durch die Anwendung der Ueberhitzung herbeigeführte Ersparnis in den Kohlenkosten zu 10 bis 15 vH angesetzt wird. Dann werden zur Zeit durch die bestehenden Ueberhitzeranlagen jährlich 7 bis 10 Millionen Mark an deutschem Nationalvermögen erspart, eine Zahl, die noch vielleicht auf das Fünffache gesteigert werden könnte, wenn die Ausnutzung der Wärme in allen sich dafür eignenden, in Deutschland betriebenen Dampfmaschinen so weit getrieben würde, wie es durch die Fortschritte der Technik in der letzten Zeit in praktischer Weise ermöglicht worden ist.

Beim Nachdenken über diese Zahlen müssen wir mit Andacht erfüllt werden im Hinblick auf alle die Männer, welche mit der Tiefe ihres Geistes und der Kraft ihres Willens der Menschheit zu solch wertvollen Mitteln zum Kampf ums Dasein und zum Kulturfortschritt verholfen haben.