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lichster Vollständigkeit eine Gesamtdarstellung der mathematischen Wissenschaften nach ihrem gegenwärtigen 
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Wendungen auf Mechanik und Physik, Astronomie und Geodäsie, die verschiedenen Zweige der Technik und 
andere Gebiete, und zwar in dem Sinne, daß sie einerseits den Mathematiker orientiert, welche Fragen die An­
wendungen an ihn stellen, andererseits den Astronomen,^Physiker, Techniker darüber orientiert, welohe AntwortNv 
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Soeben erschien:

THEORIE
DES INTEGRALLOGARITHMUS

UND VERWANDTER TRANSZENDENTEN •
VON

De. NIELS NIELSEN
HOZENT DER KEINEN MATHEMATIK AN DEK UNIVERSITÄT KOPENHAGEN

[VI u. 106 S.] gr. 8. 1906. geh. n. JC 3.60.

Die mathematische Literatur des seit dem Erscheinen der Bücher 
von L. Mascheroni (1796) und J. Soldner (1809) verflossenen Jahr­
hunderts enthält zahlreiche Abhandlungen, die über den Integral­
logarithmus und verwandte Funktionen handeln. Diese Arbeiten 
geben zwar verschiedene Anwendungen unserer Transzendenten und 
bringen auch hie und da numerische Tafeln sowie verschiedene neue 
Eigenschaften derselben; allein die systematische Untersuchung der 
oben genannten Funktionen scheint ganz und gar in diesem Zeiträume 
vernachlässigt zu sein, denn die gefundenen neuen Formeln und Lehr­
sätze stehen ganz vereinzelt da, ohne daß ein Versuch gemacht wird, 
diese Eigenschaften mit den früher gekannten zu vergleichen oder 
gar zu verknüpfen.

Namentlich scheint die, im Vorübergehen, von Schlömilch ge­
machte Beobachtung, daß der Integrallogarithmus und die Krampsche 
Transzendente als Spezialfälle in der später als Prymsche Q-Funktion 
bezeichneten Transzendenten enthalten sind, ganz und gar unbeachtet 
geblieben zu sein.

Ein charakteristisches Beispiel in dieser Beziehung bieten die 
interessanten Kettenbruchentwicklungen, die in der Theorie unserer 
Funktionen auftreten, dar; diese Entwicklungen, die schöne Unter­
suchungen von Laguerre und Tannery hervorgerufen haben, sind in 
der Tat, wie in Kapitel III meines Büchleins gezeigt wird, schon als 
Spezialfälle im Kettenbruche von Legendre enthalten.

Schon meine Untersuchungen über die Zylinderfunktionen haben 
meine Aufmerksamkeit auf den Integrallogarithmus und die damit 
verwandten Transzendenten gelenkt; diese Funktionen treten in der

!

!
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Tat auch als Spezialfälle der dort vorkommenden Transzendenten 
auf; allein diese Untersuchungsmethode scheint eine viel zu weit­
schweifige zu sein. Später habe ich daher versucht, mit der 
Schlömilchschen Bemerkung als Ausgangspunkt, die schon bekannten, 
sowie verschiedene neue Eigenschaften unserer Transzendenten in 
systematischer Weise herzuleiten.

Möchte nun dieser Versuch weitere Untersuchungen und vor 
allem praktische Tafellegungen der ebenso wichtigen wie interessanten 
Transzendenten anregen!

Kopenhagen.
^fauoTt*^ 
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Von Niels Nielsen erschien ferner im gleichen Verlage:

Handbuch der Theorie der Gammafunktion.
[Xu. 326 S.] gr. 8. 1906. In Leinwand geb. n. M. 12.—

Dies Handbuch versucht, eine Gesamtdarstellung der bis jetzt bekannten Eigen­
schaften und Anwendungen der Gammafunktion und verwandter Punktionen in 
strenger und doch möglichst elementarer Form zu liefern; es ist daher als der erste 
neuere Versuch dieser Art zu bezeichnen, denn merkwürdigerweise ist seit dem Traité 
von Legendre keine für ihre Zeit vollständige Darstellung dieser Theorie publiziert 
worden. Der erste Teil des Buches gibt ohne Zuhilfenahme bestimmter Integrale 
sondern ausschließlich durch Anwendung der Theorie analytischer Funktionen eine 
elementare Entwicklung der Eigenschaften von F(x) und verwandten Funktionen, in­
dem r (x) mittels seiner Differenzengleichung definiert wird. Im zweiten Teile wird 
eine recht vollständige Theorie der beiden Eulerschen Integrale und der durch Gamma­
funktionen ausdrückbaren bestimmten Integrale, sowie ihrer Anwendung zur Her­
leitung der Reihen von Stirling, Kummer und Lerch gegeben; ebenso werden die 
beiden Mellinschen Umkehrprobleme und ihre Anwendung auf gewisse Funktionen- 
gattungen behandelt. Der dritte und letzte Teil untersucht die reziproken Gamma­
funktionen als Entwicklungsfunktionen durch eine Darstellung der von Schlömilch, 
Jensen, Pincherle und namentlich vom Verfasser ausgebildeten Theorie der Fakultäten­
reihen; hier findet sich wohl zum erstenmal eine "Würdigung der Methoden, die 
Stirling über solche Reihen angedeutet hat. Das Buch enthält endlich ein möglichst 
vollständiges Verzeichnis der reichen Literatur über die behandelten Theorien.

Handbuch der Theorie der Zylinderfunktionen.
[XIV u. 408 S.] gr. 8. 1904. In Leinwand geh. n. di. 14.—

Der erste Teil gibt, größtenteils nach früheren Arbeiten des Verfassers, die 
systematische Theorie der Zylinderfunktionen, welche als Lösungen zweier Fundamental­
gleichungen definiert werden, und einiger allgemeineren Funktionen, die späterhin 
großer Bedeutung werden. Außer den gewöhnlichen Zylinderfunktionen der ersten 
und zweiten Art Jv(x) und Yv(x) werden noch zwei Funktionen der dritten Art, 
nämlich H1̂ (x) — Jv (x) -j- i Yv(x) und (x) = J v (x) — i Yv (x), eingeführt ; diese Funk­

tionen verhalten sich

von

asymptotisch wie während sich Jv(x) und Yv(x)

|/i- ■ cos (æ -- (v -f \) y) und ~j/ï • sin (x — (v -f 1) y)bekanntlich wie asym­

ptotisch verhalten. — Der zweite Teil gibt eine neue, bisher noch nicht publizierte 
Theorie der bestimmten Integrale mit Zylinderfunktionen. Die altbekannten Resultate 
werden, nebst vielen anderen, durch allgemeine Methoden, in welchen die AT-Funk­
tionen eine wichtige Rolle spielen, hergeleitet. Zahlreiche asymptotische Reihen 
werden entwickelt; u. a. wird der merkwürdige Satz bewiesen, daß die Quadratsumme 
(Jv{x))i -f- (Yv(x)y in der ganzen unendlichen x-Ebene, außer in x = 0, einen end­
lichen Wert hat; für v = yr gewinnt man dadurch die altbekannte Identität 
cos*# -f- sin*# = 1 als einfachsten Fall. — Der dritte Teil entwickelt, nach früheren 
Arbeiten des Verfassers, eine Theorie der Entwicklungen analytischer Funktionen in 
Reihen, die nach Zylinderfunktionen fortschreiten, d. h. Neumannsche und Kapteynsche 
Reihen und verschiedene andere. — Der vierte Teil behandelt die Darstellung will­
kürlicher Funktionen durch Zylinderfunktionen, d. h. Reihen von Schlömilch und 
Fourier nach Dini und Integrale von Neumann und Hankel. Nach früheren Arbeiten 
des Verfassers wird hier gezeigt, daß die Schlömilchschen Reihen sämtlich Null­
entwicklungen gestatten. — Der Theorie folgen ein Anhang mit Hilfsfonnein und 
Zusätze und ein ausführliches Literaturverzeichnis über Theorie und Anwendungen 
der Zylinderfunktionen.
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Seite 289 des Artikels Gans schließt 
unmittelbar an Seite 280 des Artikels 
Lorentz an; die Reihenfolge der Pagi­
nierung ist durch ein Versehen unter­
brochen worden.
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V16. ELEKTROSTATIK UKD MAGKETOSTATIK.

Von

R. GANS
IN TÜBINGKN

Inhaltsübersicht.
1. Einleitung.
2. Elektromagnetische Theorie.
3. Die Grundgleichungen der Elektrostatik und der Magnetostatik.
4. Eindeutigkeit des Feldes. Vergleich mit der Fernwirkungstheorie.
5. Allgemeine Eigenschaften des Feldes.
0. Superposition der Felder. Die Energie.

I. Elektrostatik.
A. Die Dielektrizitätskonstante ist im ganzen Raume eine und 

dieselbe Konstante.

7. Systeme von Leitern. Kapazität. Potentialverstärker. Influenzmaschine. 
Plattenkondensator.

8. Kräfte eines Leitersystems. Absolutes Elektrometer. Quadrantelektrometer. 
{). Zweidimensionale Probleme. Abbildung. Dichte der Elektrizität an Kanten.

10. Anwendung auf das Schutzgitter.
11. Anwendung auf den Kondensator.
12. Kugel. Ellipsoid. Zylinder. Ring.
13. Elektrische Bilder. Zwei Kugeln.

B. Die Dielektrizitätskonstante hat in verschiedenen Teilen des Raume,; 
verschiedene Werte.

14. Ungeladene Dielektrika im Felde. Leiter als Grenzfall des Dielektrikums. 
Kondensator mit geschichtetem Dielektrikum.

15. Influenz. Wahre und freie Elektrizität.
16. Influenz auf Ellipsoid und Kugel. Clausius-Mossotti'sehe Theorie.
17. Hohlkugel und Hohlzylinder im gleichförmigen Feld.
18. Spannungen und Kräfte.
IS). Kräfte auf starre Körper.
20. Elektromotorische Kräfte.
21. Kristalle.
22. Rückstand.

Encyklop. d. math. Wissensch. V 2.

Afcs. Nn 3IÉf
B.
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II. Magnetostatik.
28. Unterschiede der magnetostatischen und elektrostatischen Probleme.
24. Gibt es wahren Magnetismus?
25. Influenz. Wahrer und freier Magnetismus.
26. Energie und Kräfte.
27. Kräfte auf starre Körper.
28. Magnetisches Moment. Horizontalintensität. Kompaß.
29. Magnetische Doppelechicht.
30. Kristalle.
31. Ferromagnetische Körper.
32. Hystérésis.
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E. Cohn, Das elektromagnetische Feld, Leipzig 1900. Zitiert als „Elm. Feld“.
L. Gfraetz, Elektrostatik usw. in Winkelmann'a Handbuch der Physik 2. Aufl. 

41. Leipzig 1903.
J. Bosscha, Leerboek der natuurkunde 5. Magneetkracht en electriciteit. 1° stuk. 

Herausgegeben von C. II. Wind, Leiden 1903.
M. Abraham u. A. Föppl, Einführung in die Maxwell sehe Theorie der Elektri­

zität, 2. Aufl. Leipzig 1904.
J. Wallentin, Einleitung in die theoretische Elektrizitätslehre, Leipzig 1904.
F. Auerbach, Magnetismus. In Winkelmann'a Handbuch der Physik. 2. Aufl., 

51. Leipzig 1905.
In Ostwalds „Klassikern der exakten Wissenschaften“ erschienen:

Nr. 13. Coulomb, Vier Abhandlungen über die Elektrizität u. den Magnetismus 
(1785—86), herausgegeben von W. König.

Nr. 53. C. F. Gauß, Die Intensität der erdmagnetischen Kraft auf absolutes 
Maß zurückgeführt (1832), herausgegeben von E. Dorn.

Nr. 61. G. Green, Ein Versuch, die mathematische Analysis auf die Theorien 
der Elektrizität und des Magnetismus anzuwenden (1828), herausgegeben von 
A. J. v. Oettingen u. A. Wangerin.

Nr. 69. J. C. Maxwell, Über Faradays Kraftlinien (1855—1856), herausgegeben 
von L. Boltzmann.

Nr. 81, 86, 87, 126, 128, 131, 134, 136, 140. M. Faraday, Experimentalunter­
suchungen über Elektrizität (1832—1850), herausgegeben von A. J. v. Oettingen.

1. Einleitung. Die ursprüngliche Grundlage der Elektrostatik 
und Magnetostatik bildeten die Coulomb'sehen Gesetze1). Wegen ihrer 
Ähnlichkeit mit dem Newton'sehen Gravitationsgesetze erscheinen die 
Gebiete der Elektrostatik und Magnetostatik demjenigen der Gravi­
tation wenigstens in mathematischer Hinsicht eng verwandt. Dem­
entsprechend ist es möglich, die Grundtatsachen aller drei Gebiete bis 
zu einem gewissen Grade der Vollständigkeit gemeinsam darzustellen, 
wie dies in Bd. II, Art. Potentialtheorie2) geschehen ist.

Der Standpunkt der Theorie wurde ganz anders, als Faraday 
die Dielektrizitätskonstante und die Permeabilität entdeckt hatte und 
in konsequenter Weise die Ansicht vertrat, daß bei allen elektro­
magnetischen Erscheinungen das Medium zwischen den aufeinander 
wirkenden Körpern von wesentlicher Bedeutung sei. Maxwell brachte 
die Faraday'sehen Gedanken in mathematische Form und stellte in 
zwei nach ihm benannten Vektorgleichungen die elektromagnetischen 
Erscheinungen dar. In der Maxwellschen Theorie müssen also Elektro­
statik und Magnetostatik als Spezialfälle enthalten sein.

1) Vgl. V 12, Die Elementargesetze, Art. Beiff-Sommerfeld, Nr. 1.
2) Vgl. II A, 7 b Potentialtheorie, Art. Burkhardt-Meyer.
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Wir werden infolgedessen, entsprechend dem heutigen Stande 
der Wissenschaft, von den Maxwell’sehen Gleichungen ausgehen.

Wegen der allgemeinen, mehr mathematisch gehaltenen Unter­
suchungen zur Potentialtheorie muß auf den genannten Artikel2) in 
Band 2 verwiesen werden; hier sollen hauptsächlich solche Arbeiten 
berücksichtigt werden, die unmittelbare Anwendung auf physikalische 
Probleme finden.

V 15. B. Gans. Elektrostatik und Magnetostatik.292

2. Elektromagnetische Theorie. Die MaxivelV sehen Gleichungen
lauten3)

c rot £> = + 3,

. ~ *)-crot® = ir;

Hier ist c eine universelle Konstante (Lichtgeschwindigkeit im 
Vakuum); @ resp. § elektrische resp. magnetische Feldstärke; 2) resp. 
33 elektrische resp. magnetische Erregung (früher Polarisation oder 
Induktion genannt), 3 die elektrische Strömung.

Für isotrope, homogene Körper ist5)
® = £©,

33 = ii§,
3 —<*e.

£ heißt Dielektrizitätskonstante (für den Äther setzen wir s — 1), 
jr heißt Permeabilität oder Magnetisierungskonstante (für den Äther 
setzen wir /r = 1). ö heißt elektrische Leitfähigkeit0).

Bilden wir von (1) und (2) die Flächenintegrale über eine ge- 
geschlossene Fläche tf, so ergibt sich, daß

+J 

rJ*

(i)

(2)

(3)
(4)
(5)

= 0(6)

.<*« = o.(’)

Verläuft in (6) die Fläche 6 vollkommen in einem Isolator, so ist 
Çl&nd6 = e zeitlich constant;(6')

für jede Fläche ist

3) Ygl. V 13 Maxwellsche Theorie, Art. II. A. Lorentz, Nr. 6.
4) Wegen der Vektorbezeichnungen und -beziehungen vgl. IV 2, 14 Geo­

metrische Grundbegriffe Art. Abraham und V 13 Maxwellsche Theorie, Art. 
H. A. Lorentz, Nr. 3 u. 4.

6) Vgl. V 13 Maxwellsche Theorie, Art. II. A. Lorentz, Nr. 8.
6) Wegen der hier gewählten Einheiten vgl. V 13 Maxwellsche Theorie, 

Art. II. A. Lorentz, Nr. 7.
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J 93 ndö = m(V)

zeitlich konstant. Wir nennen diese Konstanten die von der Fläche 
eingeschlossene elektrische resp. magnetische Menge.

div SD = qc(8)
und
(9) div 33 = Qm

sind die elektrische resp. magnetische Dichte. Tritt auch Flächen­
ladung auf, so ist deren Dichte
(8') £)(*) — $ (1) - a»n e
resp.
(9') 93„(2) - 93n(1) = com.7)

Multipliziert man (1) skalar mit (2) skalar mit addirt 
und integriert über ein beliebiges Raumstück S mit der Oberfläche <5, 
so erhält man8) mit Berücksichtigung von (3), (4) und (5)

cfmi -gif + iii&)ds + /e&dS

als Ausdruck des Energieprinzips für homogene, isotrope Körper.
c\— © ist der Poyntingsche Strahlungsvektor, ) —

und j\gffidS — Wm sind die elektrische resp. magnetische Energie8), 
tf (S2 — Q ist die pro Zeiteinheit in der Volumeinheit entwickelte 
Joulesche Wärme.

3. Die Grundgleichungen der Elektrostatik und der Magnetostatik. 
Soll der betrachtete Zustand statisch sein, so muß d/dt = 0 sein, und es 
darf ferner keine Energieumsetzung stattfinden, d. h. es muß Q ver­
schwinden. Das bedeutet aber: in Leitern gilt

(10) nd(i =

w99 e

(io ® —0.

Aus (2) und (1) folgt dann 
rot (5 == 0,I. Ia. rot £) == 0,

oder
I'. (S = — grad cp,

In Leitern ist wegen (11) cp konstant, cp und xp heißen elek­
trisches resp. magnetisches Potential.

Aus (8) und (9) wird durch Benutzung von F und Ia'

la'. ÜQ = — grad xp.

7) Vgl. V 13 Maxwellsche Theorie, Art. H.A. Lorentz, Nr. 11.
8) Ygl. V 13 Maxwellsche Theorie, Art. H. A. Lorentz, Nr. 22. In der Be­

zeichnung weicht dieser Artikel von dem Lorentzschen insofern ab, als hier We 
und Wm die ganze elektrische und magnetische Energie des Feldes, dort die 
Energie der Volumeinheit bedeuten.
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diy e grad cp — — Qe,
Die elektrische resp. magnetische Energie schreibt sich

V 15. B. Gans. Elektrostatik und Magnetostatik.

II. lia. div g grad xp — —

We=fS2 grad2cpdS, III a. Wm =J^| grad2 xpdS.III.

Ist e resp. g an einer Fläche G mit der Normalen n unstetig,
so folgt aus (8') und (9')

d(f, dcp! _
— ~ œ‘>

dxp3 dipiIY. IV a.

Aus (1) und (2) ergibt sich ferner, da diese Gleichungen überall 
Beziehungen zwischen endlichen Größen darstellen sollen, daß an 
Flächen G, in denen s und g unstetig sind, die Tangentialkomponenten 
von @ und stetig sind9). Ist s eine tangentiale Richtung an G, 
so muß

V c Ti  
ds ds ’

dtp! __dpp2
ds ” ds

sein. Da — grad cp und — grad xp auch in der Unstetigkeitsfläche a 
die elektrische resp. magnetische Feldstärke darstellen sollen, welche 
durchweg endliche Größen sind, so müssen cp und xp auch an G, also 
im ganzen Baume stetig sein, da sonst die Normalkomponente der 
Feldstärken in G unendlich groß würde. Von dieser Darstellung 
weicht man nur ab bei Einführung der elektrischen und magnetischen 
Doppelschichten (s. unten Nr. 29).

Durch T und Ia' sind cp urifl xp nur bis auf eine willkürliche 
additive Konstante definiert. Gewöhnlich setzt man im Unendlichen 
cp und xp gleich Null, falls dort keine Ladungen gedacht werden. 
Hiermit ist es verträglich, daß man das Potential cp der Erde, die 
man für die meisten Probleme als sich ins Unendliche erstreckeod 
betrachten kann, gleich Null annimmt. Eine Ausnahme von der Be­
stimmung: cp und xp gleich Null im Unendlichen pflegt man bei der 
Behandlung homogener Felder zu machen, in denen das Unendliche 
selbst geladen erscheint und das Potential im Unendlichen unendlich 
groß wird, ln diesem Falle legt man einer willkürlichen Stelle im 
Endlichen das Potential Null bei.

Tatsächlich verzichtet man bei Einführung von Doppelschichten 
und von homogenen Feldern auf die Beschreibung der wahren Verhält­
nisse in der Doppelschicht resp. in unendlicher Entfernung.

Va.

9) Vgl. V 13 Maxwellsche Theorie, Art. H. A. Lorentz, Nr. 6. Bomich und 
Fajdiga haben Wien Ber. 70 II (1875), p. 367 experimentell gezeigt, daß dünne 
dielektrische Überzüge die ponderomotorischen Kräfte nicht ändern Dies folgt 
aus der Theorie unter der Annahme, daß die Gleichungen auch in den Unstetig­
keitsflächen gültig sind.



Da die Energie endlich sein muß, so müssen grad cp und grad ip 
stärker als B~% im Unendlichen verschwinden, wenn Ii die Ent­
fernung eines Punktes im Unendlichen von einem willkürlichen Punkt 
im Endlichen ist.

cp und ip müssen cdso im Unendlichm stärker als Ii—V* verschwinden.
I. bis Y. resp. Ia. bis Y a. bilden mit den Stetigkeitsbedingungen 

und der Unendlichkeitsbedingung die Grundgleichungen des elektro­
statischen resp. magnetostatischen Feldes. Da die Gleichungen für cp 
und ip nicht simultan sind, ergibt sich die einfache Superposition eines 
elektrostatischen und eines magnetostatischen Feldes; ebenso super- 
ponieren sich ihre Energien, wir dürfen also jedes für sich behandeln.

Dagegen superponieren sich die Strahlungen nicht. Diese sind, 
wenn nur ein elektrostatisches Feld oder nur ein magnetostatisches 
Feld vorhanden ist, wegen Nr. 2 Null; überlagern sich aber ein elek­
trostatisches und ein magnetostatisches Feld, so ist die Strahlung im 
Allgemeinen nicht Null, wir müssen uns also die Energie nach der 
Poyntingschen Darstellung als in Bewegung befindlich vorstellen, 
allerdings in geschlossenen Bahnen, so daß der Energieinhalt jeden 
Volumelements unverändert bleibt. Die Poyntingsche Vorstellungs- 
Aveise erscheint im Falle solcher zusammengesetzter statischer Felder 
also gewaltsam 10).

4. Eindeutigkeit des Feldes. Vergleich mit der Fern Wirkungs­
theorie. Das Potential cp (oder ip) ist eindeutig gegeben durch die 
Dichten p und co; auf Leitern braucht nur die gesamte Elektrizitäts­
menge e oder das Potential gegeben zu sein; denn die Differenz 
(f"—cp — cp' der beiden als möglich angenommenen Funktionen cp und 
cp' genügt solchen Bedingungen, daß in der durch partielle Integration 
leicht abzuleitenden identischen Gleichung (12) die rechte Seite Null wird.

4. Eindeutigkeit des Feldes. Vergleich mit der Fernwirkungstheorie. 295

J*~ grad2 cp"dS — —-J*--- div s grad cp"dS 

dyx"
(12)

)da-j\*%-de-

Das zweite Integral rechts erstreckt sich über alle Unstetigkeitsflächen 
von £, das dritte über alle Leiterflächen und eine imendlich große 
Fläche, n ist im zweiten Integral rechts die Normalenrichtung auf 0, 
welche nach der mit dem Index 2 bezeichneten Seite weist, im dritten 
Integral die ins Dielektrikum hinein weisende Normalenrichtung.

. / (£ £?* 
J 2 U2 dn;------ £i dn

10) Vgl. V 18 Maxwellache Theorie Art. H. A. Lorentz Nr. 22 und An­
merkung 42). Auf die oben genannte Unzuträglichkeit hat zuerst H. Hertz hin­
gewiesen. Ann. Phys. Chem. (3) 40 (1890), p. 577 ; Ges. Werke 2, p. 234, Leipzig 1892.
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Also ist (p — qo. Dasselbe gilt auch, wenn die Begrenzung de» 
Raumes nicht im Unendlichen liegt, sondern wenn auf der Begrenzung 
<p oder depjdn gegeben ist, insbesondere wenn eine leitende Hülle den 
Raum begrenzt.

Hat e im ganzen Dielektrikum einen konstanten Wert, so gilt
wegen II.
(13) A cp =
und wegen IV.

d<f>t  öjp±   coA
dn dn s

Ein Integral von (13) und (14) ist aber11)

(14)

( j*-dS+ f-^-de =
J 4:7csr ' J łnsr

1 ^7 £

4 7t 8 r(15) cp -

Dieser Ausdruck genügt allen an (p gestellten Bedingungen; wegen 
der Eindeutigkeit der Lösung ist er also das einzige Integral. Ist e 

nicht konstant, so hat man die Darstellung (15) abzuändem (vgl. 
Nr. 15 (87)).

Durch Differentiation von (15) nach der beliebigen Richtung s 
folgt wegen I'.:

®' = T* 003*/.«)-(16)

Da bei konstantem e die Feldstärke als „Kraft auf die Menge Eins“ 
definiert ist (vgl. Nr. 18 (94)), so ist (16) der Ausdruck des Coulomb- 
schen Gesetzes.

5. Allgemeine Eigenschaften des Feldes. Auf Grund der
Hauptgleichungen lassen sich über den Verlauf der einzelnen Erregungs­
linie (©-Linie) einige allgemeine Aussagen machen: bei stetigem e ist 
die ©-Linie stetig und stetig gekrümmt bis auf Flächen, auf denen 
Flächenelektrizität sitzt. Springt e an einer ungeladenen Fläche, so 
gilt wegen (8') und V.

*Æ(1) - *A(2),
@0) = œ m,

tg (@i n\ _ «i. 
tg (®, n), c, ’

Dies ist das Brechungsgesetz der Erregungslinien; mit seiner 
Hilfe lassen sich Dielektrizitätskonstanten bestimmen12).

(17)
(18)
also
(19)

11) Vgl. Potentialtheorie Art. Burkhardt-Meyer II A 7b, Nr. 2.
12) W. v. Bezold, Ann. Phys. Chem. (3) 21 (1884), p. 401; die Theorie der 

Versuchsanordnung ist falsch, hierauf hat F. Lohnstein, Ann. Phys. Chem. (3) 44 
(1891), p. 164 aufmerksam gemacht. Einwandsfrei ist die Versuchsanordnung 
von A. Pérot, Paris C. R. 113 (1891), p. 415.



Da die Anssagen der vorigen und dieser Nummer auch für magne­
tische Erscheinungen gelten, wenn man s, (5, <p mit (u, ^), xl> vertauscht, 
so folgt aus (19) z. B., daß die magnetischen Erregungslinien aus 
Eisen (sehr großes g) fast senkrecht in die Luft austreten.

Aus I. folgt f&sds = 0 für jede geschlossene Kurve, also können 

die ©-Linien keine geschlossenen Kurven sein, sie entspringen (münden) 
an Stellen positiver (negativer) Elektrizität, gehen von Stellen höheren 

Stellen niederen Potentials und stehen senkrecht auf den Äqui­
potentialflächen (Niveauflächen), also z. B. auch auf den Leiterober­
flächen (vgl. I\).

Ist das Feld von einer leitenden Hülle umschlossen, so ist, da 
im Leiter © — 0 (11), das Flächenintegral ^„dä = 0, wenn 6 voll­
ständig in der leitenden Hülle verläuft, d. h. es ist gleichviel positive 
und negative Elektrizität im Innern der Hülle. Die innere Oberfläche 
wird ebenfalls geladen sein, sie gehört mit zum Felde.

Trennt die leitende Hülle ein inneres Feld von einem äußeren, 
so gehört die innere (äußere) Oberfläche a. (ßa) der Hülle mit zum 
inneren (äußeren) Felde; ist die Gesamtladung der Hülle e, und ist e{ 
die Elektrizitätsmenge der Körper im Innern, so befindet sich nach 
obigem Satze auf die Elektrizitätsmenge — et-, also auf 6a die 
Menge et -f- e.

Nun ist das Feld im Innenraum, unabhängig von den ea, durch 
die gegeben. Sind diese speziell = 0, so ist, gleichviel welches 
Feld im Außenraum besteht, kein Feld im Innern vorhanden; diese 
Erscheinung nennt man die Schirmwirkung einer leitenden Hülle13).

Da, wie bemerkt, auf &. keine Elektrizität vorhanden ist, wenn im 
Hohlraum des Leiters keine Elektrizität sich befindet, so befindet sich 
alle Elektrizität eines Leiters auf seiner äußeren Oberfläche. Ein elektri­
sierter Leiter im Innern eines zweiten muß also bei der Berührung 
mit diesem seine gesamte Elektrizitätsmenge an ihn abgeben, da bei 
der Berührung das System nur einen Leiter bildet. Dieses Experi­
ment der vollständigen Ladungsabgabe ist ein sehr genauer Beweis 
dafür, daß im Coulomb’sehen Gesetz die Potenz der Entfernung den 
Wert 2 hat14).

5. Allgemeine Eigenschaften des Feldes. 297

zu

13) E. Älmansi, Line. Rend. (5) 13 [2] (1904), p. 12 behandelt den Fall hohler 
Leiter, deren Hohlraum durch Löcher mit dem Außenraume verbunden ist. Er

findet, daß die im Innern sitzende Elektrizitätsmenge e < ist, wo V das

Potential des Leiters und a den Radius des kleinsten Kreises auf der Oberfläche 
bedeutet, durch den das betreffende Loch verdeckt werden kann.

14) Maxwell, Treatise 1, Art. 74a. Das Experiment wurde zuerst von
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Einige wichtige Reziprozitäts- und Minimalsätze findet man in 
dem Artikel über Maxwellsche Theorie von H. A. Lorentz V 13, 
Nr. 27. Bis auf die über Leiter ausgesprochenen Sätze gelten alle 
mutatis mutandis auch für magnetostatische Felder.

6. Superposition der Felder. Die Energie. Durch die Werte 
q, cd und die Werte von e oder cp' auf Leitern ist das Feld (£' und 
damit auch die Dichte a auf den Leitern bestimmt (Nr. 4). Aus 
den Werten q", eo", e" oder cp" folge das Feld GŚ"; dann bestimmt 
sich aus

q = p'-f- q", co = co'-f- e = e-\-e" oder cp = cp'cp",
das Feld

@ = +
denn dieser Wert genügt wegen der Linearität der Gleichungen allen 
Bedingungen, wegen der Eindeutigkeit ist es also der einzig mög­
liche Wert.

Hieraus schließt man, daß das Potential cp der Ladungen e1?e2,... 
die Form hat
(20) cp — e1cp1-{- e2cp2,
wo die cpv von den ev unabhängige Ortsfunktionen sind.

Der Energieausdruck III. läßt sich auf Grund von (12), wenn 
wir dort cp statt cp" setzen, auf die Form bringen

W=i2e,p.
Die Energien zweier Felder überlagern sich nicht, sondern es 

kommt noch eine wechselseitige Energie

(21)

u=+ e'tp")
hinzu. Für diese wechselseitige Energie gewinnt man durch partielle 
Integration von fefë'fë" dS noch die folgenden Darstellungen:

ü —2e"<p' —2e’<p” =fi£@'g"d&

Aus (22) folgt: Bringt man die unendlich kleine Elektrizitätsmenge 
de zu einem Felde hinzu, so ist die Energiezunahme

dW = cp de,

(22)

also
dW 

V — it ’(23)

Cavendish gemacht; es ergab sich bei einer späteren Wiederholung des Versuchs 
als Exponent 2 + 5 • 10“5. Eine Kritik der Theorie des Versuchs findet man bei 
S. J. Barnett, Phys. Rev. 15 (1902), p. 175.



d. h. das Potential eines Punktes (Leiters) ist gleich der Energie- 
Vermehrung, die auftritt, wenn man die unendlich kleine Menge de 
dem Punkte (Leiter) zufügt, geteilt durch eben diese Menge.

7. Systeme von Leitern. Kapazität. Potentialverstärker. 299

I. Elektrostatik.
A. Die Dielektrizitätskonstante ist im ganzen Raume eine nnd 

dieselbe Konstante.
7. Systeme von Leitern. Kapazität. Potentialverstärker. In­

fluenzmaschine. Plattenkondensator. Es seien n Leiter in einer 
leitenden Hülle vom Potential Null eingeschlossen. Der vte Leiter 
habe das Potential Vv und die Elektrizitätsmenge evf dann ist 
wegen (20)

J v —2 ßrkek-(24)
* = i

Auflösung nach den eu ergibt

eti ==^a,ui Vi-
i = 1

(25)
Wegen (24) und (23) ist

s a = _L (*K)
\Be,J 0«, V0«/./

(26) = ß/uvt
also auch
(27)

Die ß heißen Potentialkoeffizienten, ein a mit verschiedenen Indizes 
heißt wechselseitiger (elektrostatischer) Induktionskoeffizient, a heißt 

• die Kapazität des Leiters g, sie ist gleich der Elektrizitätsmenge, 
welche auf dem Leiter sitzt, wenn sein Potential 1 ist, während die 
übrigen Leiter das Potential Null haben.

Mit Hilfe von (21) und (24) resp. (25) wird
(28)

p,v = 1,2,•••».reöp.
Wiv)=i22%,v„r,.

f.1 V

Erteilt man den geladenen Leitern virtuelle Verschiebungen, in­
dem man auf jedem die gesamte Elektrizitätsmenge konstant läßt, so 
wird die Arbeit gleich der Abnahme der elektrischen Energie15), d. h.

(29)

15) Damit man die Arbeit gleich der ganzen Energieabnahme setzen kann, 
muß man zeigen, daß die Joulesche Wärme bei einer Verschiebung unendlich klein 
gegen die übrige Energieänderung ist.. Dieser Beweis läßt sich führen; vgl. 
Kirchhoft, Vorlesungen 3, p. 76 ff. oder Cohn, Elm. Feld, p. 59.



IA-- SW,,= - i22e„e,8ß„.(30)
n v

Die ß^v enthalten die Parameter, welche die Lage der geladenen 
Körper bestimmen.

Setzt man in (30) anstatt der e die V mit Hilfe von (25) ein,
so folgt

öa = + swlv) = + ł22v,r,i«„.
(.1 V

Die fragliche Arbeit ist also auch gleich der Zunahme der Energie 
bei konstant gehaltenen Potentialen. Natürlich betrachten wir dann 
kein vollständiges System, weil zum Konstanthalten der Potentiale 
Energie aus den zur Verfügung stehenden Reservoiren nachströmen 
muß. Die Kräfte, die sich aus (30) oder dem ganz gleichwertigen 
Ausdruck (31) ergeben, sind also quadratische Funktionen der Elek­
trizitätsmengen oder der Potentiale.

Da W wesentlich positiv ist, folgt, daß

(31)

“n
«ii al2 
«äi a32

«21«u ?
«nl ««2 * • • «*n

positiv sein müssen. Die analogen Bedingungen bestehen für die ß.
Folgende Eigenschaften kommen den a und ß zu, wenn kein 

Leiter den anderen umschließt16):

1. Die avv sind > 0; die avfl <0 (v 4= p) und ^aVfl > 0.
2. Die ß sind > 0; ßvv > ßvfl.
3. Durch Einführung neuer Leiter ins Feld, also auch durch 

Vergrößerung eines Leiters werden alle ßvv verkleinert.
4. Wachsen alle linearen Dimensionen eines Leiters v unbegrenzt, 

so werden die ßv/l und ßvv Null wie das Reziproke dieser Dimension. 
Daraus folgt z. B., daß das Erdpotential sich nicht durch Ableitung 
von Ladungen in der Nähe der Erde ändert.

5. Bei gleichmäßiger Vergrößerung aller Dimensionen des Feldes 
ändern sich die a in direktem, die ß in umgekehrtem Verhältnis der 
Lineardimensionen.

6. Haben wir es mit nur zwei geladenen Leitern zu tun, und zwar 
so, daß alle Erregungslinien, die von einem ausgehen, auf dem anderen 
endigen (d. h. daß alle anderen Leiter unendlich weit entfernt sind, 
oder daß der eine Leiter den anderen vollständig umschließt), so ist

_________ «11 = «82 = — «12 = «
16) Vgl. Maxwell, Treatise 1, Art. 89 b und 89 c.
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und daher
e2 = — e\ — a ( Fs — Fj).

Eine solche Anordnung heißt ein Kondensator, « ist seine Kapazität.
Wir betrachten n Kondensatoren im Baume, die so weit von­

einander entfernt sind, daß sie sich gegenseitig nicht beeinflussen. 
Die beiden Leiter eines Kondensators nennen wir seine Belegungen. 
Wir können die einzelnen Belegungen auf verschiedene Weise mit­
einander verbinden. Die Kapazität sehr dünner Drähte ist gegen die 
endlicher Kondensatoren zu vernachlässigen17).

a) Parallel geschaltete Kondensatoren. Wir verbinden je eine 
Belegung aller Kondensatoren miteinander und die anderen Bele­
gungen auch miteinander, so daß wir zwei zusammenhängende leitende 
Flächen haben. Dann ist

(32)

em = a.(F, - V,).

ern = =2“. ■ (v. - V.) = «(V, - V,).
Die Kapazität ist die Summe der Einzelkapazitäten.

b) Hintereinanderschaltung (.Kaskadenbatterie). Wir verbinden die 
zweite Belegung des vten Kondensators mit der ersten des (v -f- l)ten 
und laden die erste Belegung des ersten Kondensators aufs Potential 
Vt, die zweite Belegung des letzten Kondensators aufs Potential F,, 
dann ist das Potential der ersten Belegung des v -f- 1 ten gleich dem 
der zweiten Belegung des vten Kondensators:

Vv+t == V}*\
Ferner sind die absoluten Werte e der Ladungen aller Belegungen 

einander gleich, also ist
e,(2>

Fv(2) - VW = -L-
folglich

r.-rt-e2'
“v

Die reziproken Werte der Einzelkapazitäten addieren sich also 
zum reziproken Wert der Gesamtkapazität.

Sind alle n Kapazitäten a einander gleich, so ist die Gesamt­
kapazität A im Falle a) A —

Will man sich höhere Potentialdifferenzen verschaffen, als die zur 
Verfügung stehende Potentialquelle der Potentialdifferenz V liefert, 
so lade man eine Batterie in Parallelschaltung und schalte sie dann

im Falle b) A = ~- ' nna;

17) Vgl. Kirchhoff, Vorlesungen 3, p. 24.
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in Kaskaden18): Da zuerst ne — nuV, wo a die Kapazität eines
einzelnen Kondensators der Batterie ist, und nachher e = — V ist,’ n
so wird V — nV. Solche Anordnungen heißen Potentialverstärker. 

Die Energie einer Batterie ist wegen (21) und (32)

w = i 2e, v.; = v,' - ■
uv

Hier bedeutet Vv die Potentialdifferenz der Belegungen des vten Kon­
densators. Beim Potentialverstärker ist also in der ersten Schaltung 
die Energie —, in der zweiten -- ~ V'2 == , d. h. die Energie
bleibt konstant, man erhält die Potentialerhöhung auf Kosten der zur 
Verfügung stehenden Elektrizitätsmenge.

Eine Influenzmaschine kann auch als Potentialverstärker oder 
Duplikator aufgefaßt werden. Das Prinzip ist folgendes19):

Zwei hohle Leiter A und B 
(vgl. Fig. 1) seien metallisch mit­
einander verbunden und auf dem 
Potential UQ, B und C seien gleich­
falls miteinander verbunden und auf 
dem Potential V0. Die beweglichen 

fg Leiter E und J können in A und G 
mit der Erde (Potential 0) und in B 
und D mit diesen verbunden werden. 
Ist E in A mit der Erde verbunden, 
so ist die Elektrizitätsmenge — aU0 
auf E (a Kapazität des Kondensators, 
bestehend aus E und Ä), (nach (32)). 
Diese Ladung wird in B vollständig 
an B und C abgegeben (vgl. Nr. 5) 

und erhöht das Potential um---- — U0 (c Kapazität von B und C zu­
sammen). Nach einer halben Umdrehung ist also

Vi==Vo-~U{

Nach der n ten halben Umdrehung ebenso

A

TT/

Oe/ %
\f

B\ »

/

Jj
J3

i.

-- vc °‘u0-

18) Über Duplikatoren siehe W. Thomson, Proc. Royal. Soc. 1867 und 
Reprint Art. 352 und Art. 401—426; Historisches, Art. 427—429. Vgl. auch 
G. Plantés „Rheostatische Maschine“, Paris C. R. 85 (1877), p. 794 oder auch 
W. Kaufmann, Gott. Nachr. (1901), p. 143 und W. Hallwachs, Ann. Phys. Chem. (3) 
29 (1880), p. 300.

19) Vgl. Maxwell, Treatise 1, Art. 209 (hier finden sich auch historische 
Angaben) oder E. Cohn, Elm. Feld, p. 81.
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- T
__ 5. TJC Un-li

K-v.-(K-, - u.-ù(i + •= <7.

V = Vn n
un = Ün-1 -1

oder

Maxwell hat19) auch einen Duplikator angegeben, bei dem die ganze 
geleistete Arbeit in elektrische Energie verwandelt wird, indem das 
Auftreten von Funken dadurch vermieden wird, daß nur Leiter gleichen 
Potentials miteinander in Berührung kommen.

Stehen sich zwei Metallplatten von den Potentialen V1 resp. V2 
in dem kleinen Abstande a gegenüber, und legen wir die z-Achse 
in die Richtung der Plattenormalen, so wird an Stellen zwischen den 
Platten, die vom Rande weit entfernt sind,

i F, — Vl
<p = J7.+

Die Dichte folgt aus IV.
a1 = — co2 £ §■»),

Sehen wir von den Rändern ab, wo die Elektrizitätsverteilung 
verwickelter ist, so ist auf der ganzen Fläche o

£łw.(33) ff.ei e2 ---

d. h. die Kapazität ist (vgl. (32)) u == ~

Zwei Kondensatoren mit verschiedenen Dielektrizis haben also 
gleiche Kapazitäten, wenn s/s — tfa/aa ist. So kann man Dielektri­
zitätskonstanten vergleichen20). Die genauere Formel für die Kapazität 
eines Kreisplattenkondensators mit Berücksichtigung der Streuung der 
Erregungslinien und der Elektrizität auf den einander abgewandten 
Seiten findet sich unten (Nr. 11).

Um bei absoluten Messungen mit einem Plattenkondensator 
möglichst unabhängig von der Randkorrektion zu sein, und um den 
Einfluß äußerer elektrischer Kräfte von den Kondensatorteilen zu 
eliminieren, hat W. Thomson21) einen sogenannten Schutzringkonden­
sator konstruiert. Man nehme große Platten, trenne durch einen 
feinen Schnitt einen Teil der einen Platte, der weit vom Rande ent­
fernt liegt, ab und sorge für leitende Verbindung beider Teile; dann 
ist die Kapazität des inneren Teils sehr nahe durch — ausgedrückt. 
(Die genauere Formel findet sich in Nr. 11.)

20) L. Boltzmann, Wien Ber. 67® (1873), p. 17.
21) W. Thomson, Reprint Art. 360.



8. Kräfte eines Leitersystems.
Quadrantelektrometer. Die Arbeit bei einer virtuellen Verschiebung 
ist durch Nr. 7 (30) und (31) gegeben. Ist das Medium zwischen den 
Leitern homogen, so sind die ß der Dielektrizitätskonstante umgekehrt 
(vgl. (24) u. (15)), die a direkt proportional (vgl. (25) u. (15)); also sind 
die Kräfte bei gegebenen Elektrizitätsmengen (Potentialen) der Di­
elektrizitätskonstanten umgekehrt (direkt) proportional22).

Zur absoluten Bestimmung von Potentialen eignet sich der 
Thomsonschc Schutzringkondensator, das sogenannte absolute Elektro­
meter (vgl. Nr. 7 23)). Aus (31) und (33) folgt

2 fia
d. h. die Kraft, welche den Plattenabstand zu verkleinern sucht, ist
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Absolutes Elektrometer.

dw
=r— 8 a — da — —

si&-(35)

Wegen des genaueren Wertes siehe Nr. 11. Man hängt die eine 
Kondensatorplatte an der Wage auf und kompensiert die Kraft (35) 
durch Gewichte.

Verzichtet man auf absolute Messung der Potentiale, so ist das 
Quadrantelektrometer von W. Thomson24) als das bedeutend empfind­

lichere Instrument vorzuziehen. Eine 
flache Metallbüchse ist durch zwei zu­
einander senkrechte Achsenschnitte in 
4 Quadranten geteilt (Fig. 2). Je zwei 
diagonal gegenüberliegende Quadranten 
sind metallisch miteinander verbunden 
und befinden sich auf den Potentialen 
A und B, während eine biskuitförmige 

/B Scheibe, die „Nadel“, deren Ebene 
' parallel Boden und Deckel der Büchse 

ist, und die frei um die vertikal stehende 
Achse der Büchse drehbar ist, auf dem 
Potential C sich befindet. Sind A, B, 

C einander gleich, so sind die Schlitze zwischen den Quadranten 
Symmetrieebenen der Nadel. Der ganze Apparat befindet sich in

N

:b/ ( ;y
s/

/

A C

Fig. 2.

22) Dieser Satz wurde von H. Helmholtz zuerst ausgesprochen J. f. Math. 72 
(1870), p. 117; zur Bestimmung der Dielektrizitätskonstanten wurde er zuerst 
benutzt von P. Silow, Ann. Phys. Chem. (2) 156 (1875), p. 389.

23) W. Thomson, Reprint Art. 358 u. Phil. Mag. (4) 8 (1854), p. 42.
24) W. Thomson, Reprint Art. 345.



einer Metallhülle vom Potential Null. Die Elektrizitätsmengen, die 
A, JB, C entsprechen, seien ea, eb, ec. Dann ist wegen (25) und (27)
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ea = aaaA + aabB + aaß ) 
eb ~ aba A + «66 B -f- «6c C,(36) V =
ec =Kca^ + «cftß + «coC-

Wegen der unter 1. in Nr. 7 angegebenen Eigenschaften ist nun 
aw > 0, «v u < 0, > 0. Daher kann man schreiben

= YaM ~ S) + r..(^ - C) + yBA, 
*6 - Ybaiß - A) + nc (5 - C) + y6S, 

ec = ^c« — Ä) + ycb (C — B) + ycC,

(36')

wo alle y > 0 und yVjU =
Die Energie ist wegen (21)

W = ł{ya6(^ - ß)2 + ^ - O)2 + nc(ß- ^)2
+ ra^2 + nß2 + rcc'2}

(37)

Das Drehmoment auf die Nadel wird nach (31)

9i = ^
d» ’

wo fr der Winkel ist, um den die Nadel aus der Ruhelage abgelenkt ist.
Die Konstruktion des Instruments läßt Schlüsse auf die Abhängig­

keit der y von fr zu. Die breite Form der Nadel und die Schmalheit 
der Schlitze bewirken, daß von den Rändern der Nadel keine Erregungs­
linien nach den Rändern der Quadranten laufen, so daß sich bei einer 
unendlich kleinen Drehung dfr die Anzahl Erregungslinien, die 
zwischen B und C verlaufen, um einen dfr proportionalen Betrag 
vermehren. Aus Symmetriegründen ist

d7bc dVac

dagegen sind ya, yb, yc, yab von fr unabhängig, weil die Anzahl Er­
regungslinien, die von den Quadranten oder von der Nadel zur Hülle, 
sowie von einem Quadrantenpaar zum anderen gehen, durch die 
Drehung sich nicht verändern.

Also ist
(38) 9! = | +

Die verschiedenen Schaltungsweisen der Quadranten und der Nadel
Encyklop. d. math. Wissensch. Y 2. 20



sind von Hallwachs2h) behandelt. Er berücksichtigt auch die Kontakt­
potentialdifferenzen zwischen den Metallteilen (s. u. Nr. 20).
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9. Zweidimensionale Probleme26). Abbildung. Dichtigkeit 
der Elektrizität an Kanten. Wenn eine Verteilung der Elektrizität 
auf leitenden Zylinderflächen mit parallelen Erzeugenden vorliegt und 
die Querdimensionen klein sind gegen die Längenerstreckung der 
Zylinder, und wenn nur nach dem Zustand in den mittleren Teilen 
gefragt wird, so hängt das Problem allein von den zwei Variablen x 
und y ab, während es von der den Erzeugenden parallelen Variablen 
unabhängig ist.

Setzen wir
q2 = (x — af + (y — b)2, 
r2 == (z — c)2 -f- p2,

wo a, b, c die laufenden Koordinaten sind, so wird

— f-dö
nsj r9> — 1

unendlich. Man kann cp aber durch Addition einer uuendlich großen 
Konstanten auf die Form

—falgeds,(39) cp = —

bringen. Diese Addition ist erlaubt, da cp nach Nr. 3 nur bis auf 
eine additive Konstante definiert ist. ds bedeutet ein Element der 
Spur der Zylinderflächen in der xy-Ebene.

Wegen der Form von (39) heißt qp das logarithmische Potential 
zum Unterschied von dem Potential cp der Nr. 4 (15), welches das 
Newtonache Potential heißt. 

cp genügt der Gleichung

dx* ^ dy* ’(40)

25) W Hallwachs, Ann. Phys. Chem. (3) 29 (1886), p. 1. Die Theorie ist vervoll­
ständigt unter der Annahme, daß bei Drehungen auch die höheren Potenzen des 
Drehwinkels mit in Betracht kommen. Dann ergibt sich außer dem oben an- 
gebenen konstanten Drehmoment noch eins, das dem Ablenkungswinkel propor­
tional ist. Gouy, J. d. phys. (2) 7 (1888), p. 97 ; A. B. Chauveau, J. d. phys. (3) 9 
(1900), p. 524. Die Theorie eines Bifilarquadrantelektrometers mit konstanter 
Empfindlichkeit gibt A. Hartwich, Königsberger Diss. 1888 oder Ann. Phys. 
Chem. (3) 35 (1888), p. 772.

26) Ygl. auch C. Neumann, Untersuchungen über das logarithmische und 
Newtonsche Potential, Leipzig 1877.



welche auch der reelle Teil jeder Funktion % — cp -J- iip komplexen 
Arguments z = x -f- yi27) befriedigt.

Liegen die leitenden Zylinderflächen sämtlich im Endlichen, so 
muß cp im Unendlichen wegen (39) die Form

haben, wo E = j a ds die Gesamtelektrizitätsmenge auf der Höhen­
einheit der Zylinder, R den Abstand von einem beliebigen festen

EPunkt im Endlichen bedeutet, cp -f- —y lg R muß also im Unendlichen 
verschwinden.

Die Grundgleichungen der Cauchy sehen Funktionentheorie sind
dep _ dtp
dn

wenn die zueinander senkrechten Richtungen s und n im Sinne der 
reellen und imaginären Achse aufeinander folgen. Aus der letzten 
dieser beiden Beziehungen ergibt sich, daß die Elektrizitätsmenge E 
auf der Höhe 1 zwischen zwei Punkten Sj und s2 einer Randkurve 
— so wollen wir kurz die Spur eines Zylinders in der rr^-Ebene 
nennen — mit den Werten ip1 und xp2 sich durch die Formel
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(41) =

dep   dtp
ds dn ’ ds ’

S2

■h

ds = f(^2 — ^i)(42) E = —

ausdrückt.
Ist ein Zylinder mit beliebig gestalteter Basisfläche zum Potential 

• 9^0 geladen, so läßt sich das Potential außerhalb des Zylinders durch 
die Lösung einer Abbildungsaufgabe finden. Man braucht nämlich 
nur den Raum außerhalb der Randkurve s des Zylinders in der 0-Ebene 
auf den Innenraum des Einheitskreises in einer Ebene abzubilden, 
indem man eine Funktion w = u vi von z sucht, welche auf der 
Randkurve s den absoluten Wert 1 hat und für z — oo sich in der 
Form

«-?■ + £ + •■■ («i 4* 0)(43)
entwickeln läßt. Durch

2n ê
w = e E Gr-*)(44)

ist dann das Problem gelöst, wenn der reelle Teil der Konstanten h

27) z ist hier nicht mit der früher so bezeichneten dritten Raumkoordinate 
zu verwechseln.

20*



gleich dem vorgeschriebenen Potentialwert <p0 auf s ist. Denn aus 
(44) folgt
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“P. + sfï'gM-

Wegen (41) und (43) muß rp0 -f- lg i a, j = 0 sein, d. h. die
EKapazität der Längeneinheit des Zylinders (vgl. Nr. 7) — =

(44') V

2ns

<P 0

ist durch das erste Glied der Entwicklung von w im Unendlichen 
gegeben.

Es ist wesentlich, daß nur ein Zylinder vorhanden ist, daß also 
der Raum außerhalb der Randkurve einfach zusammenhängend ist, da 
sonst die Abbildung auf den Einheitskreis nicht möglich wäre. Das 
Gleichgewicht der Elektrizität auf mehreren Zylindern mit kreis­
förmigem Querschnitt behandelt B. Riemann28) in einer Arbeit, die den 
ersten Anstoß zur Theorie der automorphen Funktionen gegeben hat.

In der Nähe einer Ecke vom Winkel (1 — a)ii (im Dielektrikum 
gerechnet) erhält man das Potential durch Abbildung der £-Ebene 
auf eine w-Halbebene mittels der Formel

(47) w = (z — zQy-a,
so daß

l = Xo + (* — V)1-“

wird. Aus (42) berechnet sich die Elektrizitätsmenge auf der Höhe 
1 über jeder endlichen Länge s der Randkurve, und aus (48) ergibt 
sich diese Menge als endlich, auch wenn die Kante sich auf dem be­
trachteten Stück befindet. Wegen (42) ist die Dichte der Elektrizität

, wo
y der Winkel ist, den die Kante mit der rr-Achse einschließt; die 
Dichte ist also unendlich klein (groß), wenn cc > 0 (< 0) ist, d. h. 
wenn die Kante des Zylinders ein-(aus-)springt.

Im dreidimensionalen Felde ergibt sich die Elektrizitätsverteilung 
in der Nähe einer scharfen Kante nach A. Sommerfeld29). Green30) 
beschäftigt sich mit der Frage der Elektrizitätsdichte an einer Kegel­
spitze, er findet daß die Dichte bei ein-(aus-)springenden Spitzen un-

(48)

gleich dem Faktor von i in € ~~ — e e'v = e - (z — £0)1-“

28) B. Riemann, Ges. Werke, 2. Aufl., Leipzig 1892, p. 440.
29) A. Sommerfeld, Proc. Lond. Math. Soc. 28 (1897), p. 395; vgl. Potential­

theorie Art. Burkhardt-Meyer II A 7b Nr. 9, p. 476.
30) G. Green, Essay; s. Ostw. Klassiker Nr. 61, p. 66.



endlich klein (groß) wird, und zwar gibt er auch die Stärke des 
Null resp. Unendlichwerdens in der Nähe der Spitze an.

Ganz allgemein läßt sich auch die Elektrizitätsverteilung auf 
einem unendlich langen Prisma von polygonaler Basis berechnen, da 
mit Hilfe der Schwarzachen Derivierten jedes Polygon sich auf den 
Einheitskreis abbilden läßt31). Mit diesem Problem identisch ist 
das des elektrischen Gleichgewichts auf den beiden Belegungen eines 
Kondensators, wenn diese Belegungen Prismen von polygonaler Basis mit 
parallelen Erzeugenden sind und die Basis sich ins Unendliche erstreckt, 
so daß das Dielektrikum ein einfach zusammenhängender Raum ist.

Ist das Potential auf der einen Belegung Null, auf der anderen 
konstant = <p0, so besteht die Aufgabe darin, das Polygon in der 
£-Ebene — und zwar den Teil, welcher dem Dielektrikum entspricht 
— auf einen Streifen in der ^-Ebene abzubilden, der durch die ima­
ginäre Achse cp — 0 und eine ihr Parallele cp — cp0 begrenzt ist, so 
daß die eine Grenze des Streifens der Spur der einen Kondensator­
platte, die andere Grenze der Spur der anderen Platte entspricht.

Man bewerkstelligt dies31) durch Abbildung des Polygons in der 
£-Ebene und des Streifens in der ^-Ebene auf den Teil der ź-Ebene, 
der durch die reelle Achse und einen unendlich großeu Halbkreis auf 
der positiv imaginären Seite der t mit t — 0 als Zentrum begrenzt ist.

Den n Ecken des Polygons mögen die Punkte ax < a2 < • • • < an 
auf der reellen Achse der £-Ebene der Reihe nach entsprechen. Dann 
wird durch
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z — C f(al — t)~ («2 — t)~a*. .. (an — t)~ an dt -j- Cx(45)
- diese Abbildung erreicht. Die a sind durch die Polygonwinkel be­

stimmt, indem (1 — av)n resp. (ccv—l)n der vte innere Polygon­
winkel ist, je nachdem der der vtenEcke in der 2-Ebene entsprechende 
Kreisbogen in der ć-Ebene, der den Punkt av von der Halbebene aus­
schließt, unendlich klein oder unendlich groß ist. C und Cx be­
stimmen sich, indem man willkürlich zwei aufeinanderfolgenden Ecken 
des Polygons zwei aufeinanderfolgende a zuordnet.

Ebenso läßt sich der Streifen in der ^-Ebene auf die f-Halbebene 
abbilden, und zwar durch die Funktion

(l +(46) % = <Po

lg t für positiv reelle Werte von t reell zu nehmen ist.wo

31) H. A. Schwarz, J. f. Math. 70 (1869), p. 105; E. B. Christoffel, Ann. di 
mat. (2) 1 (1867); 4 (1870), siehe auch Potentialtheorie Art. Burkhardt-Meyer 
II A 7b Nr. 20.



Eliminiert man t aus (45) und (46), so ist z durch % und damit 
auch i durch z ausgedrückt. Der reelle Teil cp von % gibt das

Potential, der imaginäre Teil ÿ durch 
Anwendung von (42) die Elektrizitäts­
mengen auf der Höheneinheit der Pris­
menflächen.

Beispiel. Es mögen sich zwei un­
endlich lange, unendlich dicke und 
unendlich breite ebene Platten (zwei 
Viertelräume) im Abstande b gegen­

überstehen, wie Fig. 3 es andeutet, die einen Schnitt senkrecht zur 
Längenerstreckung der Platten darstellt.

Den Punkten

_1

i «
I i

'üt

Fig. 3.

b . . b- + T
mögen die Punkte

t=-1,

entsprechen. Die Polygonwinkel in diesen Punkten der £-Ebene sind

0, +1

3 7t 3 TC
0, 2 72 7

also ergibt (45)

-<’/e-r'ät + Ct

oder bei richtiger Bestimmung von C und Cx

1 + bi {Vi -t1 + % t(45') z = yi -1* +1 j '
(45') und (46) stellen die Lösung des Problems dar.

Helmholiz32) hat durch die Abbildung zweier geradlinigen Schnitte 
(also einer zweifach zusammenhängenden Fläche), deren Endpunkte 
die Ecken eines Rechtecks bilden, auf einen Kreisring das Problem 
des Plattenkondensators behandelt, dessen Länge sehr groß gegen 
Breite und Plattenabstand ist. Die Endformel ist jedoch nicht richtig; 
sie ist von H. Weber33) verbessert.

10. Anwendung auf das Schutzgitter34). Eine geschlossene 
metallische Hülle schützt das Innere vor der Einwirkung eines äußeren

32) H. Helmholtz, Beri. Ber. (18G8), p. 215 oder Wissensch. Abh. 1, p. 157, 
Leipz. 1882.

33) H. Weber, Partielle Differentialgleichungen 1, p. 356. Eine eingehende 
Untersuchung dieses Falles findet sich auch hei F. Bennecke, Yerh. d. Leop. 
Carol. Ak. 51 (1887), p. 253; vgl. auch Maxwell, Treatise 1, Art. 202 und die 
Fig. Tafel 13.

34) Ygl. Maxwell, Treatise 1, Art. 203 (genauere Behandlung Art. 206) u.
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elektrischen Feldes (Nr. 5). Da das Innere dann aber der Beobach­
tung unzugänglich ist, soll untersucht werden, inwieweit eine Hülle 
sich durch ein Gitter ersetzen läßt, welches aus leitend miteinander 
verbundenen Drähten vom Radius c und dem Abstand a gebildet ist.

Befindet sich im Felde ein einziger mit der Elektrizitätsmenge E 
auf der Höheneinheit geladener metallischer Kreiszylinder, so ist das 
Potential symmetrisch um den Mittelpunkt

E ,
2ÏiloSr

E ,
2Ïïl0S2'

Die Niveauflächen sind mit dem Drahte konzentrische Kreis­
zylinder. i bleibt in der Nähe des Drahtes endlich, da (50) nur außer­
halb des Leiters gilt, also | z \ c sein muß. Denken wir uns x aber 
durch (50) auch ins Innere des Drahtes analytisch fortgesetzt, so wird 
% in der Drahtachse logarithmisch unendlich.

Es mögen sich jetzt die Achsen der Gitterdrähte in den Punkten 
zv — -f- via (v — 0, 1, 2,. . .) befinden. Wenn c sehr klein gegen a 
ist, d. h. wenn ein Draht auf seinen Nachbardrähten nicht merklich 
durch Influenz die Verteilung ändert, so wird x, in der Nähe des bei 
zv befindlichen Drahtes sich durch

10. Anwendung auf das Schutzgitter. 311

<P = —
d. h.
(50)

E
~ 2Vs l0g ~ O + fuüct- COni(51) 1 =

darstellen lassen.
27t —

Die Funktion e a — 1 bildet den Punkt z = 0 auf die Punkte 
• zy ab und einen die Stelle z — 0 umgebenden Kreis in eine Reihe die 

Stellen zv umgebende Kurven, die um so eher als Kreise angesehen 
werden können, je kleiner der Radius des abgebildeten Kreises ist.
Da in der v^n Drahtachse (e a — l) 

wie log (z — zv), so gilt für das Gitter
genau ebenso unendlich wird

E i ( l) -}- funct(51') . cont.l = —

(51') ist die Form des Potentials, auch wenn noch beliebige 
andere geladene Körper im Felde sind, von denen nur vorausgesetzt 
wird, daß dieselben in einer gegen den Drahtradius großen Entfernung 
sich befinden. Denn in der Nähe eines Drahtes überwiegt der erste

die Zeichnung Tafel 14; siehe auch H. Weber, Partielle Differentialgl. 1, p. 441, 
wo das Problem als Strömungsaufgabe behandelt ist.
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Term von (51'), und dieser ergiebt ein Potential cp, welches auf den 
Drahtoberflächen annähernd konstant ist. Addieren wir zu (51') die 
konjugierte Funktion cp — iip, so erhalten wir

2 nx ï

2e “ cos I -f- funct. cont.E , ( 4*7 . 1
ins log le + 1“(52) cp - -

Lassen wir in (52) die funct. cont. fort, so wird für
E xx = -j- oo : • • • cp — —

und für
X = — oo : • . • cp = 0;

d. h. wir haben den Fall, daß parallel der Gitterebene in großer Ent­
fernung vom Gitter eine leitende Ebene steht, die mit der Dichte
— ~ geladen ist, auf der also sämtliche vom Gitter ausgehenden
Erregungslinien münden (auf dies Problem bezieht sich die Figur bei 
Maxwell34)).

Sollen auf beiden Seiten des Gitters, und zwar in großer Ent­
fernung von demselben, dem Gitter parallel, geladene Ebenen stehen, 
so brauchen wir nur in (52) für funct. cont. — Ctx -(- C2 zu sub-

JEstituieren. Setzen wir zur Abkürzung — 7^ = C, so erhalten wir
/ 4jt X

C log lea -j- 1 —

Die Konstanten C, Ct, C2 lassen sich durch das Potential V0 des 
Gitters, sowie durch die Potentiale V1 und V2 der beiden dem Gitter 
parallelen Ebenen, die in den Abständen bt und b2 zu verschiedenen 
Seiten des Gitters stehen, ausdrücken.

Da V0 das Potential des Gitters sein soll, so ergibt sich, daß für 
x = 0, y — c -f- va

27tx
2e a cos -£-\ -c.x + a(52') cp = 2-

4 7t (Jj | s~-*F0-2Clog2sm^ + C,-(53)
wenn

Ct -t O * C
s * °8 2 sm v

Sind bx und b2 positiv und groß gegen a, so sind die Ebenen 
x — -f- bx und x = — b2 Äquipotentialflächen; da sie die Potentiale 
V1 resp. V2 und die Dichten co1 und co2 haben sollen, so folgt durch 
Elimination von C, Ct, C2

? (h + + b-~) = r, (l + - rs - f0 \,

~{K + f>.+^) = F,(i + L) - rt-f0|.
(54)



Verbindet man das Gitter leitend mit der Ebene x — bX} so wird 
F0 = V1 und
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T(ft. + Ä*+^)=F.-F'S-

Das Gitter wirkt also so, als wenn es nicht vorhanden wäre und 
dafür die Entfernung -f- &2 auf bx -f- &2 ~~ vergrößert wäre.

11. Anwendung auf den Kondensator. Da Formel (33) in 
Nr. 7 nur für die Kapazität eines Plattenkondensators mit ebenen 
Platten gilt, behandelt Clausius35) den Fall, daß zwei gekrümmte 
parallele Leiterflächen, deren Hauptkrümmungsradien in einem be­
stimmten Punkte H und H sind, im Abstande a sich gegenüber­
stehen.

Wählt man die Tangentialebene in einem Punkte der ersten Platte 
zur xy-Ebene, den Berührungspunkt zum Koordinatenursprung und 
die Richtung der Hauptkrümmungslinien zu Koordinatenrichtungen x 
und y, so ist nach dem Taylorschen Satze

Setzen wir für z den Abstand a der Platten, so folgt

(55) r,—

Schreitet man vom Koordinatenursprung in der Schnittlinie der 
#£-Ebene und der Oberfläche der ersten Platte unendlich wenig vor­
wärts, so ändert sich V nicht, also ist

(56) + ($,*+©,£

+ S)^+a-r + - = 0.
Da aber

(^)t = 0 und d* = +

wo das obere (untere) Zeichen gilt, wenn die Kurve, in der die xz- 
Ehene die Platte schneidet, vom Raume zwischen den Platten be­
trachtet, konvex (konkav) ist, so folgt

J_/£ÜZ zr 
2 \ '

1 dV_ 
Rx dz

) dx* ------ = 0.

Also ergibt sich
(57)

35) R. Clausius, Mechanische Wärmetheorie 2, p. 39 (2. Aufl., Braun­
schweig 1879).



Denselben Wert hätten wir erhalten durch Anwendung von (59) auf 
die größere Fläche <î2 = h(B a)y1 dann hätten wir aber das 
negative Zeichen vor Bt zu nehmen gehabt.

Der Wert, den Clausius87) durch eine sehr umständliche Methode 
für die Kapazität eines Kondensators aus zwei unendlich dünnen 
Kreisplatten ohne Vernachlässigung der modifizierten Verteilung in 
der Nähe der Ränder findet, stimmt mit der Kirchhoffschen Formel 
(s. u.) nicht überein, er ist durch die weitläufigen numerischen Rech­
nungen gefälscht.

Mit Hilfe einer bedeutend einfacheren und zuverlässigeren Methode, 
nämlich durch die konforme Abbildung geradliniger Polygone auf- 36 37

36) Maxwell, Art. 102 a schließt die Kapazität eines beliebigen Systems 
auch in Grenzwerte ein, wenn der genäherte Verlauf der Erregungslinien be­
kannt ist. Er benutzt dabei eine Methode, die von Lord Rayleigh, Theory of 
sound 2 (1878), p. 1G2, 170 herrührt.

37) R. Clausius, Ann. Phys. Chem. (2) 86 (1852), p. 161.
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ebenso ist
(57')

Setzt man diese Werte in die Laplacésehe Gleichung ein, so 
erhält man
(58)

diesen Ausdruck für in (55)Schließlich substituieren wir 
und finden

Vl ~ Vl~ (wVt1 + T(+ k + S/)] ------■

£ gleich der elektrischen Dichte ist, so folgtDa aber — 
für die Kapazität

/Gjsr± £)*%").

Beispiel: Von zwei konzentrischen Zylinderflächen mit den Radien 
B und B -f- a und der Höhe h werde durch zwei Ebenen, welche 
durch die Zylinderachse gehen und den Winkel y miteinander bilden, 
ein Teil abgeschnitten. Die Kapazität dieses Teils läßt sich nach dem 
Vorigen berechnen. Es ist nämlich, wenn wir (59) auf die kleinere 
Fläche anwenden, das obere Zeichen bei Bt zu wählen und Bt — B 
zu setzen; ferner ist B/ = oo, also finden wir

« = -1 + 4a 1 2(59)
&

 8
t;+5 p

*

5̂
tS

 en+«
j 
; ö55

Cto



einander behandelt G. Kirchhoff3*) denselben Fall. Da die Methode 
bei ähnlichen Problemen Anwendung finden kann, soll sie kurz 
skizziert werden.

Der Plattenradius R soll als unendlich groß, Plattenabstand a 
und Plattendicke b als unendlich klein gegen R angenommen werden, 
so daß höhere Potenzen von a/R und b/R vernachlässigt werden 
können. Kirchhoff teilt den ganzen Raum in drei Teile: Raum 1 ist 
ein ringförmiger Raum, dessen Oberfläche aus Punkten besteht, deren 
Abstände von den Rändern der Platten unendlich klein gegen R, aber 
unendlich groß gegen a und b sind. Raum 2 ist der noch übrige 
Raum zwischen den Platten, Raum 3 der noch übrige Raum außer­
halb der Platten.

Es möge jetzt y die Koordinatenrichtung senkrecht zu den Platten­
ebenen sein, dann ist im Raume 2 das Potential

11. Anwendung auf den Kondensator. 315

2 y

wenn es auf der einen Platte (?/ = -{- a/2) gleich -j- 1 und auf der 
anderen Platte (y = — a/2) gleich — 1 ist. In Raum 3 ergibt 
sich die Darstellung von cp nach Nr. 29 Gl. (131) als Potential einer 
Doppelschicht, deren Begrenzung ein Kreis vom Radius R um den 
Nullpunkt der Ebene y = 0 ist.

cp und seine Differentialquotienten müssen an der Grenze des 
Raumes 1 stetig in die in den Räumen 2 resp. 3 gültigen Werte 
übergehen. Durch diese Bestimmungen, sowie durch die Bedingung, 
daß cp in unendlicher Entfernung p vom Kondensator wie 1/p2 ver­
schwinden muß, ist cp eindeutig gegeben. Findet man also ein Poten­
tial, welches allen Bedingungen genügt, so ist es das durch die Auf­
gabe verlangte.

Da die Elektrizitätsmengen auf den Teilen der Platten, die zu 
Raum 1 und Raum 3 gehören, nur unendlich klein sind, so vernach­
lässigt man nur Glieder höherer Ordnung, wenn man in diesen Raum­
teilen die Bedingungen, denen cp zu genügen hat, nur annähernd (mit 
Vernachlässigung von Größen erster Ordnung) erfüllt. Dies gilt nicht 
nur für die Grenzbedingungen, sondern auch für die Differential­
gleichung selbst, der cp zu genügen hat.

Unter dieser Vernachlässigung hat z. B. in Raum 3 das Potential 
der Doppelschicht auf den rückseitigen Grenzflächen der Platten Werte, 
die nicht genau -f- 1 resp. — 1 sind, da der Winkel, unter dem die 38

38) G. Kirchhoff, Beri. Ber. 1877, p. 144 oder Ges. Abhandl., p. 101, Leipz. 
(1882). Für den speziellen Fall b/a = 0 auch Vorlesungen 3, p. 90.
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Doppelschicht von Punkten dieser Grenzflächen aus erscheint, von 
-J- 2n resp. — 2it in Größen erster Ordnung abweicht.

Unter denselben Vernachlässigungen muß cp in Raum 1 der 
Gleichung genügen

d*cp , dicp 
dx*(61) = 0+ dp*

wo x — R — q endlich ist (p Abstand des betrachteten Punktes von 
der Kondensatorachse).

Die Vernachlässigung der höheren Potenzen von a/R und b/R 
kommt also darauf hinaus, daß im Raume 1 die Krümmung der Platten­
ränder unberücksichtigt bleibt, in Raum 2 die Werte gelten, die be­
stehen würden, wenn die Elektrizitätsmengen mit gleichförmiger Dichte 
auf den inneren Begrenzungsebenen der Platten verteilt wären und in 
Raum 3 die beiden Belegungen zu einer Doppelschicht mit entsprechend 
unendlich großer Ladung zusammenrückten.

Wegen (61) ist cp der reelle Teil einer Funktion w — cp -f- iij/ 
von g — x -f- y i. cp muß = -f-1 sein auf der inneren Grenzfläche der 
einen Kondensatorplatte, d. h. für x > 0; y — -f- y, ferner am Rande

dieser Platte, also für x = 0; y y ~ -J- b, und auf der äußeren 

Grenzfläche dieser Platte, also für #>0;t/ = y-f-&. 9? ist = — 1 

auf der anderen Platte, also für x > 0; y — — y ; ferner für x = 0;

— — — b <*' y < — y, un(l für x > 0; y =---- - — b. Es ist also
das durch die soeben angegebenen geradlinigen Strecken begrenzte 
Flächenstück der #-Ebene auf den durch die Geraden cp = ± 1 der 
w-Ebene begrenzten Streifen abzubilden. Dies gelingt durch die 
Schwarz  sehe Methode der konformen Abbildung geradliniger Polygone 
aufeinander (vgl. Nr. 9 und Anm. 31)). gibt ganz ähnlich wie in 
Nr. 9 (42) die Elektrizitätsverteilung auf den Platten

So erhält man als Kapazität
sR*it f, . a /,“~ 11 + Ti* (lg

=^ a + *)“*)•

an.

16 jr(a -f- 6) R -1+4^))(62) a = a*

38a) N. Bulgakow, Mém. de l’acad. de St. Pétersbourg (8) 15 (1904), Nr. 3 
geht von dem Potential zweier kongruenter abgeplatteter Rotationsellipsoide mit 
gemeinsamer Achse aus, auf denen er die Elektrizitätsmenge -\-e resp. — e so 
verteilt annimmt, wie sie ohne Vorhandensein des anderen Ellipsoids im Gleich­
gewicht wäre, und konstruiert hierzu die Äquipotentialflächen, von denen er sich 
dann zwei leitend denkt.



Nach demselben Prinzip wird sich auch der Einfluß der Enden 
beim Zylinderkondensator behandeln lassen. Die pro Längeneinheit 
gerechnete Kapazität eines sehr langen Zylinderkondensators ohne 
Berücksichtigung der Streuung an den Enden ergibt sich sofort aus 
der Laplacësehen Gleichung, indem man die Unabhängigkeit des Poten­
tials von der z- und ^-Koordinate benutzt (z parallel der Zylinder­
achse, rp Azimut gegen eine feste Ebene durch die Zylinderachse)39).

Kirchhoff38) hat nach derselben Methode die genaue Theorie des 
Schutzringkondensators gegeben (vgl. Nr. 7). a und b bedeuten das­
selbe wie oben, der Radius der ausgeschnittenen Kreisscheibe sei 
jR — c, der innere Radius des Schutzringes R -f- c, also die Schlitz­
breite 2c. Wird b/c unendlich groß angenommen (sonst wird der 
Ausdruck komplizierter), so wird

sR27t r J 
a \ J^(ßtgß + ]g cos ß + 4ą sin2 (S)},

+ vr)'

a — -

wo c/o = tg ß und
lgg = 2(l +

*gß
Auch Maxwell40) hat für den Schutzringkondensator eine Formel 

abgeleitet:
S (R --  C)*7T 2 acP +(64) a — {a -f y) ( R — c)

2 cwo y genähert — lg 2 ist. (63) und (64) sind praktisch gleich­
wertig41).

12. Kugel. Ellipsoid. Zylinder. Bing. Die Einführung krumm­
liniger Koordinaten in die Laplacë sehe Differentialgleichung ermög-

39) Maxwell, Treatise 1, Art. 126.
40) Maxwell, Treatise 1, Art. 201.
41) F. Himstedt, Ann. Thys. Chem. (3) 36 (1888), p. 126; 36 (1889), p. 759.

Um wenigstens für unendlich dünne Platten (b/a — 0) den Ein­
fluß der Streuung der Erregungslinien an den Rändern, sowie den 
Einfluß der auf den äußeren Flächen und auf dem Rande selbst 
sitzenden Elektrizität zu veranschaulichen, ist der in (62) mit k 
bezeichnete Ausdruck für verschiedene Werte von a/R in der folgen­
den Tabelle wiedergegeben.

12. Kugel. Ellipsoid. Zylinder. King. 317

aJR k

0.0001
0.0005
0.0010
0.0050
0.0100

0.0004
0.0017
0.0031
0.0131
0.0239

TÄ
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licht ohne weiteres die Lösung vieler Probleme4111). So ergibt sich 
z. B. die Kapazität zweier konzentrischer Kugelschalen von den Radien

und für eine einzige Kugel entsprechend«i ata1 und a2 als « = ai—a1
dem Grenzübergang a2 — oo : • • • a — Arcea^.

Auch für Zylinder42) und Ellipsoid43) lassen sich durch Be­
nutzung von Zylinder- resp. elliptischen Koordinaten Potential und 
Kapazität bestimmen, durch Spezialisierung des Ellipsoids ergibt sich 
weiterhin die Kreisscheibe44). Für die Dynamik eines kugelförmigen 
Elektrons ist der Satz wichtig45), daß die elektrischen Energieen 
zweier Ellipsoide von gleicher Form, von denen das eine gleichförmig 
über sein Volumen geladen ist, während bei dem anderen die Ver­
teilung der nämlichen Gesamtladung der Gleichgewichtsverteilung auf 
der Oberfläche des leitenden Ellipsoids entspricht, sich wie 6 : 5 ver­
halten.

Durch die Gleichung
1_e*+iw 

b i + e*+itux-\- y i =

führe man anstatt x und y die Koordinaten A und a in die Gleichung 
Mep — 0 ein. Die Kurvenschar A = const. ist ein Kreisbüschel mit 
imaginären Schnittpunkten und den Punktkreisen y — 0, x = H~ 
co — const. ist der zu A = const. orthogonale Kreisbüschel. Läßt 
man diese Kurvenschar um die y-Achse rotieren, so erhält man ein 
System von Kreisringen, von denen jeder durch einen speziellen Wert 
A == const. gegeben ist. jRiemann*6) hat durch Benutzung dieser so­
genannten Ringkoordinaten zuerst die Laplacesche Gleichung integriert.

41a) Ygl. Potentialtheorie Art. Burkhardt-Meyer II A 7 b, Nr. 22.
42) W. Thomson, Reprint, p. 38 u. Phil. Mag. (4) 9 (1855), p. 531 mit An­

wendungen auf Kabel und Leidener Flaschen; Maxwell, Treatise 1, Art. 129 be­
handelt ebenfalls konzentrische, unendlich lange Zylinder und das absolute 
Zylinderelektrometer. Wegen des letzteren siehe auch JE. Bichat u. JR. Blondlot, 
J. de phys. (2) 5 (1886), p. 325. Blavier, J. de phys. (1) 3 (1874), p. 115 u. 151 
gibt die für elektrische Leitungen wichtige Theorie der Potentialverteilung bei 
nicht koaxialen Zylindern. Wegen der Theorie der Leidener Flaschen siehe auch 
Anm. 35. F. Breisig, Elektrotechn. Zeitschr. 19 (1898), p. 772 berechnet die 
Kapazität der Kabel bei Berücksichtigung der leitenden Erde. Kabel, die aus 
mehreren Drähten bestehen, behandelt T. Levi-Civita, Rend. R. Acc. dei Line. (5) 
13 (1904), p. 375.

43) Potentialtheorie Art. Burkhardt-Meyer II A 7 b, Nr. 15.
44) Vgl. Anm. 43 und JH. Weber, Partielle Differentialgl. 1, p. 326, siehe 

auch R. Gans, Zeitschr. f. Math. u. Phys. 49 (1903), p. 298; 53 (1906), p. 434.
45) Vgl. M. Abraham, Ann. Phys. (4) 10 (1903), p. 146.
46) B. JRiemann, Ges. Werke 1876, p. 407; C. Neumann, Theorie der Elek- 

trizitäts- und Wärmeverteilung in einem Ringe, Halle 1864. A. Wangerin, Re-



Die Methode der partikulären Lösungen der Gleichung Mcp — 0 
in krummlinigen Koordinaten ergibt Entwicklungen des Potentials 
nach Kugelfunktionen bei der Kugel und dem Rotationsellipsoid, nach 
JBessdschen Funktionen beim Zylinder, nach Riemannschen P-Funk- 
tionen (hypergeometrischen Funktionen) heim Ring47). C. Neumann46) 
und Wangerin haben sich weiter mit diesem Problem beschäftigt.

Durch Entwicklung nach Kugelfunktionen findet Maxwell48) das 
Potential auf einem nahezu kugelförmigen Leiter.

13. Elektrische Bilder. Zwei Kugeln48a). Spiegelungsmethoden 
zur Befriedigung der Grenzbedingungen bei Randwertaufgaben sind 
auf allen Gebieten der mathematischen Physik für ebene Grenzflächen 
anwendbar, speziell auf dem Gebiete der optischen Erscheinungen, 
von denen der Name der Methode entlehnt ist. In der drei- bez. 
zweidimensionalen Potentialtheorie kann man aber auch an Kugel- 
bez. Zylinderflächen spiegeln, da es eine Besonderheit der Potential­
gleichung ist, bei der Transformation durch reziproke Radien un- 
geändert zu bleiben; d. h. ist cp(r, fl, ifS) eine Lösung der Gleichung
Ziep — 0 in Kugelkoordinaten, so ist auch 
die für r — c denselben Wert annimmt (oder ist cp (r, ty) eine zwei­
dimensionale Lösung in Zylinderkoordinaten, so ist auch cp {~^} ipj

eine Lösung, die für r — c denselben Wert hat). Gibt die erste 
Lösung das Potential im Innern einer Kugel vom Radius c, so hat 
man in der zweiten Lösung das Potential für den Außenraum, und 
zwar in geschlossener Form, ohne daß man nach Kugelfunktionen 
entwickeln müßte.

Mit Hilfe dieser Methode hat W. Thomson49) viele auf die Kugel 
bezügliche Probleme gelöst. Befindet sich z. B. im Punkte pt im 
Innern (Äußern) einer leitenden Kugelschicht vom Radius c, die sich

Auktion der Potentialgleichung für gewisse Rotationskörper auf eine gewöhnliche 
Differentialgleichung (gekrönte Preisschrift), Leipzig 1875, behandelt das Problem 
der Elektrizitätsverteilung auf einem Rotationskörper, dessen Meridian eine Lem- 
niskate ist. Ygl. die historische Bemerkung über das Ringproblem bei H. Weber, 
Partielle Differentialgleichungen 2, p. 406.

47) Potentialtheorie Art. Burkhardt-Meyer, Il A 7 b, Nr. 14 u. 21, ebenfalls 
Kugelfunktionen Art. Wangerin, II A. 10, sowie E. Heine, Handbuch der Kugel­
funktionen, Berlin 1878.

48) Maxwell, Treatise 1, Art. 145 a; s. auch G. L. Dirichlet, Werke 2, 
p. 87, Berlin 1897.

48“) Siehe auch Potentialtheorie Art. Burkhardt-Meyer II A 7b Nr. 16.
49) W. Thomson, Cambr. and Dubl. Math. J. 1848, 1849, 1850; siehe auch 

Reprint Art. 55 ff. ; Art. 208 ff.
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^7, fl, ipj eine Lösung,<PI Ci
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auf dem Potential Null befindet, die Elektrizitätsmenge et, so erhält 
man das Potential im Innen-(Außen-)raum der Kugel, indem man im 
harmonischen Pol p2 von px die Elektrizitätsmenge e2 = — ™ an-R,
bringt und die Kugel fortdenkt. Hier bedeutet Rx den Abstand des 
Punktes px vom Zentrum. In Wirklichkeit rührt das Auftreten des 
Zusatzpotentials zu ——— von der Influenzelektrizität e9 — —4«^! 1 if,
auf der Oberfläche der Kugel her. In derselben Weise kann man die
Influenzwirkung eines geladenen Systems auf eine Kugel behandeln50).

Wird der Kugelradius unendlich groß, handelt es sich also um 
die Influenz auf einer unendlich ausgedehnten leitenden Ebene, so 
geht die Abbildung durch harmonische Pole (Abbildung durch rezi­
proke Radien, Inversion) in Spiegelung an der Ebene über. Die 
Elektrizitätsmenge im gespiegelten Punkty ist dann e2 —— ex.

Durch wiederholt angewandte Spiegelung51) ermittelt man z. B. 
das Potential einer punktförmigen Elektrizitätsmenge 1, die sich im 
Punkte p(x, y, z) im Innern eines rechtwinklig parallelepipedischen 
leitenden Kastens befindet, der auf dem Potential Null ist; die Seiten­
ebenen seien

ei
47t f r2

i a i h
x = ±Y‘i y = + yi i c* = ± y

Man lege senkrecht zu den drei Parallelepipedkanten drei Scharen 
von Ebenen, durch die der ganze Raum in kongruente Parallelepipeda 
eingeteilt wird, von denen eins das gegebene ist. In jedem Spiegel­
bild von p bezüglich dieser Ebenen, welches die Koordinaten

lia -f- (— l)kx; mb -f- (— 1 )my'] nc -f- (— 1 )nz'
hat, wo h, m, n die Werte der ganzen Zahlen von — oo bis -f- °o an­
nehmen, denken wir uns die Elektrizitätsmenge -f- 1 resp. — 1 an­
gebracht, je nachdem Ti -f- m -f- n gerade oder ungerade ist. Dann ist

-f-oo -}-00 -t-00 k + m + n

2 2 (-1)(65) R
k——oo m——oo n=—oo

wo zur Abkürzung
(66) R2 = [ha -f- (— l)kx — x)2 -f- {mb -f- (— 1 )my — y} 

-f- {nc -j- (— 1 )nz — z}2

50) W. Thomson, Reprint Art. 113; siehe auch Maxwell, Treatise 1, Art. 159.
51) B. Riemann, Schwere, Elektrizität und Magnetismus p. 84; F. Rockels, 

Gött. Abh. 39 (1893), p. 21 (Preisschrift) wendet dies Prinzip auf zwei Kugeln 
in einem parallelepipedischen Metallkasten an, indem er die Kirchhoffschen 
Formeln für die Attraktion zweier Kugeln benutzt, vgl. Anm. 66).



gesetzt ist. Die Summe (65) ist nur bedingt, d. h. bei geeigneter 
Anordnung der positiven und negativen Glieder, konvergent. Aus 
diesem Grunde empfiehlt sich die folgende Umrechnung. Da

— R?t dt
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* =
o

1
Vt

ist, so erhalten wir mit Vertauschung der Intégrations- und Summa­
tionsfolge die absolut konvergente Darstellung

o
(67) V =

Die dreifache Summe zerfällt in das Produkt dreier einfachen 
Summen, deren jede sich durch Thetafunktionen ausdrücken läßt.

Thomson51 a) bestimmt die Elektrizitätsverteilung auf einem kreis­
förmigen Abschnitt einer ebenen oder sphärischen leitenden Fläche, 
die einer beliebigen Influenz ausgesetzt ist, mit Hilfe der Bildmethode.

Die Methode der Spiegelung läßt sich erweitern für den Fall, 
daß der halbe Raum die Dielektrizitätskonstante slt der andere halbe 
Raum die Dielektrizitätskonstante f2 hat, und daß sich im ersten 
Halbraum im Punkte p1 die Elektrizitätsmenge e1 befindet. Man 
kann sich im Spiegelbild p.2 von pt bezüglich der Grenzebene der 
beiden Halbräume die Elektrizitätsmenge — e2 denken. Das Potential
in einem Punkte des ersten Halbraums ist —— e2 ; das Po-£,471»*, e1énr2

• Die Grenzbedingungen er-«*'tential im zweiten Halbraum ist 
geben

fjéTtr,

e;=HTV!)-

Diese Methode ist nicht ohne weiteres auf eine dielektrische Kugel 
übertragbar. Versucht man dies, so erhält man als Bild eines elek­
trischen Punktes außerhalb einer Kugel erstens seinen harmonischen 
Pol und zweitens die Verbindungslinie dieses Pols mit dem Zentrum, 
die in bestimmt angebbarer Weise mit Elektrizität belegt ist. C. Neu­
mann*3) hat dies Problem ausführlich behandelt und zwar für den

e .

51*) W. Thomson, Reprint Art. 231; vgl. auch G. Kirchhoff, Vorlesungen 3, 
p. 57; Lipschitz, J. f. Math. 58, p. 152; 61, p. 1.

52) Siehe z. B. M. Abraham u. A. Föppl, Theorie der Elektrizität, p. 150, 
Leipzig 1904. Durch mehrfache Spiegelung läßt sich auch die unendlich aus­
gedehnte dielektrische Platte behandeln, vgl. Th. Lohnstein, Ann. Phys. Chem. 
(3) 44 (1891), p. 164.

53) G. Neumann, Hydrodynamische Untersuchungen, Leipzig 1883, p. 279.
Encyklop. d. math. Wiasensch. V 2. 21
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ganz analogen Fall der magnetischen Bilder. Anstatt seines 4nie ist 
durchweg e — 1 zu setzen.

Das Problem der Elektrtzitätsverteilung auf zwei Kugeln von 
den Radien at und a2, dem Abstande c der Zentren, die zu den 
Potentialen Cr und C2 geladen sind, wurde zuerst von Poisson54) 
behandelt, indem er das Potential cp sowie die Dichtigkeit der Elek­
trizität nach Kugelfunktionen entwickelt.

Das Potential wird symmetrisch um die gemeinsame Zentrale sein, 
welche als Polarachse eingeführt wird. Kennt man das Potential auf 
der Zentralen, so ist es auch in jedem anderen Punkte des Raumes 
bekannt; denn denken wir uns das Potential auf der Zentralen nach 
Potenzen des Abstandes vom Zentrum der ersten Kugel entwickelt:

Y 15. B. Gans. Elektrostatik und Magnetostatik.

Ï/-&-

ri > <*1,

rl <«1,

wird die allgemeine Lösungso

v = 0 1 1

Ź A>p’ (c°s *■) (£)'

rt > alf
(68)

ri < (h>

wo Pv (cos tt) die Kugelfunktion vtei Ordnung erster Art bedeutet.
Der Abstand eines willkürlichen Punktes der Zentralen vom 

Zentrum der ersten Kugel sei x, der Abstand eines Punktes vom 
Zentrum der zweiten Kugel ?/; das Potential der auf der ersten Kugel 
befindlichen Elektrizität sei fix), das der auf der zweiten Kugel be­
findlichen g(y).

Ist x < at und ^'= der harmonische Pol von x, so ist

= wie am Anfang dieser Nr. bemerkt wurde; ebenso

o{yr) = y 9 (y ) •
Sind x und y derselbe Punkt innerhalb der ersten Kugel, also 

Y — c — x, so gilt
m + sw - m+îês*fâ = c.;(69)

ebenso

54) Poisson, Mém. de Finst. 12, 1, p. 1 (1811); 2, p. 163 (1811).
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9iy) + tV) - 9(9) + - c,(70)

Gleichung (70) gilt für jeden Punkt y < a2, also z. B. für y —
Substituiert man diesen Wert in (70), so kann g aus (69) elimi­

niert werden; man erhält für — at x <[ -f- a±
«i2(c x) \__p r\

' Ve2-«/ -cx) — Li—L‘
Cly Oj «2f{z) - ? 2 C — X

Die Lösung dieser Funktionalgleichung ergibt f(x). Aus fix) 
erhält man die Dichtigkeit ca für x = ay, nämlich

— a22 — cx

£ (fJÉL _l 2df(x))
\ % ' dx )x = ai(72) o =

und die gesamte Elektrizitätsmenge E1 auf der ersten Kugel
E1 = 4ä£ö1/‘(0).

Berühren die beiden Kugeln einander, so verhalten sich die 
Elektrizitätsmengen E2 und E1 auf denselben wie

(73)

fit ■'+«■-1 )r^T
Ó__________________

0

Ea(74) E,

Ist a2 sehr klein gegen a1} so wird
a2* 3t2
«7* 7F

. oder die Dichte nach Trennung der beiden Kugeln

« 2 = ff .

(74')

6“i
Diese Resultate sind für die genaue Diskussion der Coulombschen 

Versuche zur Ermittlung des Coulombschen Gesetzes von Wichtigkeit, 
da die Influenz der beiden Kugeln aufeinander berücksichtigt werden 
muß. Die Dichtigkeit ca an den Punkten der beiden Kugeln, die 
einander am nächsten liegen, ist von Interesse, weil eine solche An­
ordnung als Funkenmikrometer zur Bestimmung von Funkenpotentialen 
benutzt wird. Schließlich gibt das Problem der Berührung einer 
kleinen und einer großen Kugel einen Anhalt über die Theorie der 
Probekugel54“).

54a) Eine allgemeinere Behandlung der Theorie des Probekörpers: E. Al­
mami, Nuov. Cim. (6) 4 (1902), p. 81, 280; 5 (1903), p. 242.

21*
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Der Poissonschen Methode schließen sich die Entwicklungen von 
Plana™) und Kirchhoff5G) an. Die Kirchhoff\sehen Resultate für die 
Dichtigkeit weichen von denen Poissons und Planas für den Fall 
eines unendlich kleinen Abstandes der beiden Kugeln ab; der Grund 
liegt in unerlaubten Potenzentwicklungen bei letzteren.

Durch die Methode der elektrischen Bilder hat W. Thomson55 56 57) 
1853 unter Benutzung des „Prinzips der sukzessiven Influenzen“ von 
Murphy*8) das Problem gelöst. (In spezieller Form als ein Verfahren 
sukzessiver Spiegelungen bereits oben bei dem Problem des recht­
eckigen Kastens benutzt.)

Das Murphysche Prinzip behandelt ganz allgemein die Influenz 
zweier Leiter, von denen der eine auf dem Potential 1, der zweite 
auf dem Potential Null ist, nach folgendem konvergenten Verfahren58). 
Man denke den zweiten Leiter fort und lade den ersten mit der Elek­
trizitätsmenge e0, so daß auf ihm das Potential 1 entsteht. Diese 
Verteilung denke man sich nun fixiert; sie influenziere auf dem ab­
geleiteten Leiter 2 die Ladungsverteilung elf die man sich wiederum 
fest denkt, und berechne die durch el hervorgerufene Influenzladung 
e2 auf dem ersten Leiter, während dieser abgeleitet gedacht wird, usf.; 
dann ist e0 -j- e2 -f- e4 -f- * * • die Ladung des ersten, ex -f- e3 -f- • • • die 
des zweiten Leiters; denn sie genügen allen an sie gestellten Bedin­
gungen. Bei hinreichender Entfernung der beiden Körper wird das 
Verfahren auch numerisch gut brauchbar sein.

Da nun eine zum Potential Cx geladene Kugel nach außen so 
wirkt, als ob die Menge Cx = im Zentrum konzentriert wäre,
so wird ihre fixiert gedachte Verteilung auf die zweite abgeleitete 
Kugel so wirken, als ob in dem Bild des Zentrums der ersten Kugel

vorhandenbezüglich der zweiten die Menge — <h~r — — 4l%eGx

wäre, während die zweite Kugel fehlt. Von diesem Bild kann man 
wieder das Bild bezüglich der ersten Kugel konstruieren usf. Die

55) Plana, Mem. della r. Acc. di Torino 7 (1845).
56) G. Kirchhoff, J. f. Math. 59 (1861), p. 89 oder Ges. Abhandlungen p. 78; 

sehr konvergente Reihen gibt er Ann. Phys. Chem. (3) 27 (1887), p. 673 oder 
Ges. Abhandlungen Nachtrag, p. 131; vgl. auch JR. A. Herman, Quaterly Journ. 
of Math. 22 (1887), p. 204. JE. W. Barnes, ibid. 35 (1904), p. 155 löst das 
Problem mit Hilfe von F-Funktionen.

57) W. Thomson, Reprint Art. 128 und Phil. Mag. 4, 5, p. 287 (1853).
58) B. Murphy, Elementary principles of the theories of electricity, heat 

and molecular actions, Cambridge 1833, p. 93. Wegen Konvergenzbeweise siehe 
Potentialtheorie Art. Burkhardt-Meyer II A 7b Nr. 28 besonders Anm. 183; ferner 
A. Korn, Lehrbuch der Potentialtheorie, p. 354.



Summierung der Wirkung sämtlicher so konstruierten Elektrizitäts­
mengen gibt die Verteilung, wenn die erste Kugel auf dem Potential 
Clf die zweite auf dem Potential Null sich befindet. Dazu füge man 
in derselben Weise die Wirkung hinzu, die sich durch Ladung der 
zweiten Kugel zum Potential C2 und Ableitung der ersten Kugel er­
gibt. Bei Thomson finden sich auch numerische Tabellen über Kapa­
zität und Anziehungskraft zweier Kugeln59).

Die Methode der elektrischen Bilder zur Lösung des Zweikugel­
problems wurde von F. Neumann60) und JRiemann61) aufgegriffen. 
Liouville62 63) hat, angeregt durch die Thomsonsche Abbildungsmethode 
durch reziproke Radien, die Aufgabe darauf zurückgeführt, zwei sich 
ausschließende Kugeln als konzentrische abzubilden.

Schließlich sei noch die Methode der bipolaren Koordinaten er­
wähnt. Läßt man die in Nr. 12 erwähnte Kurvenschar um die 
x-Achse rotieren, so werden die Flächen X = const. Kugeln. Zwei 
Werten von X entsprechen die betrachteten Kugeloberflächen; diese 
Koordinaten stammen von Thomson6S), die Methode wurde von
C. Neumann64) weiter ausgearbeitet und z. B. auf die Influenz einer 
punktförmigen Elektrizitätsmenge auf zwei abgeleitete Kugeln an­
gewandt64a).

14. Ungeladene Dielektrika im Felde. 325

B. Die Dielektrizitätskonstante hat in verschiedenen Teilen des 
Raumes verschiedene Werte.

14. Ungeladene Dielektrika im Felde. Leiter als Grenzfall 
des Dielektrikums. Kondensator mit geschichtetem Dielektrikum.
Wir betrachteten bisher den Fall, daß das Dielektrikum zwischen den 
Leitern homogen war, also e im ganzen Raume eine und dieselbe 
Konstante war, jetzt wenden wir uns der Frage zu, wie das Feld ver­
ändert wird, wenn in ein gegebenes Feld, dessen Dielektrikum die 
Dielektrizitätskonstante 1 hat, ein ungeladener homogener Körper der

59) W. Thomson, Reprint Art. 142.
60) F. Neumann, Vorlesungen über die Theorie des Potentials und der 

Kugelfunktionen, p. 277, Leipzig 1887 (Vorlesungen vom Winter 1856/57).
61) B. Biemann, Schwere, Elektrizität und Magnetismus, Hannover 1880;

2. Ausgabe, p. 189 (Vorlesungen vom Sommer 1861).
62) J. Liouville, in Thomson, Reprint Art. 229 ff.
63) W. Thomson, Reprint Art. 211, 212.
64) C. Neumann, Stationärer Temperaturzustand, Halle 1862; Hydrodyna­

mische Untersuchungen, Leipzig 1883, p. 283.
64“) Eine Zusammenstellung der Resultate Poissons und eine eingehende 

Behandlung zweier sich berührender Kugeln gibt J. B. Goébel, J. f. Math. 124 
(1902), p. 157; 125 (1903), p. 267.
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Dielektrizitätskonstante s gebracht wird. Dabei soll die Elektrizitäts- 
Verteilung des ursprünglichen Feldes ungeändert bleiben. Im Innern 
des Körpers gilt:

div £© = £ div @ = 0(75)
an seiner Oberfläche

®»a—

wo die Indizes a und i die äußere resp. innere Seite der Oberfläche 
andeuten.

(76)

(76)Aus (75) folgt mit Berücksichtigung von
^div £&dS{ = Jefäjdö = ß&nad<5 = 0.

Wird s unendlich groß, so folgt aus (76)
@ *= 0 71

mit (75) (vgl. Nr. 4)
ą = o.

(77) und (78) stimmen aber überein mit den Bedingungen, 
welchen das Feld eines an die Stelle unseres Nichtleiters gebrachten 
ungeladenen Leiters genügt. Genau das Analoge, wie bei der Be­
stimmung des Feldes, gilt auch bei den ponderomotorischen Kräften 
(vgl. Formel (95)). Der Fall des Leiters ist also in dem allgemeineren 
des Dielektrikums rechnerisch mit enthalten, nämlich für e — oo. 
Dies ist jedoch nur eine Rechenregel und sagt nichts über die Dielek­
trizitätskonstante der Leiter aus; letztere ist durch elektrostatische 
Versuche nicht zu ermitteln, da im Leiter stets das Feld Null ist.

Die allgemeinen Bedingungen im elektrostatischen Felde ergeben 
die Kapazität eines Plattenkondensators mit n planparallelen Schichten 
der Dicke av und der Dielektrizitätskonstante sv.

Da das elektrische Feld aus Sjmmetriegründen gleichförmig und 
parallel der Plattennormale ist, so folgt aus (F) für die Potential­
differenz der Platten

(77)

(77')
und aus (77') zusammen
(78)

Fn- r,
V = 1

und da keine der dielektrischen Schichten geladen ist, folgt für die 
Dichte auf den Platten

— cjj; = = ss(Sa = • • • eßv = • • • (vgl. IV und (17)).
Ist die Plattenfläche 6,

G>n =
berechnet sich die Kapazität a zuso

a —
n
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Man kann also durch Veränderung eines Abstandes av eine 
gleichzeitige Änderung der Dielektrizitätskonstante einer Schicht hin­
sichtlich ihres Einflusses auf die Kapazität kompensieren ; so sind 
Dielektrizitätskonstanten bestimmt worden 65).

Führt man die Elektrizitätsmenge e der Belegung ein, so erhält
man in der Formel Fn— = e ^ ein Analogon zum O/mschen
Gresetz66). 
fähigkeit,

15. Influenz. Wahre und freie Elektrizität. Bevor wir zur 
Lösung bestimmter Probleme übergehen, wollen wir einige allgemeine 
Fragen erledigen, die uns zeigen, wie die Vor-Maxwellsch.e Theorie 
diese Fälle im Sinne einer Fernwirkung behandelt hat.

Es fragt sich, wie das Feld @0 geändert wird, wenn statt Luff 
(s — 1) ein Körper aus anderem Material der Dielektrizitätskonstante € 
ins Feld gebracht wird, während die ElektrizitätsVerteilung p, o, e 
unverändert bleibt: dann ist

s nennt man deshalb auch gelegentlich dielektrische Leit­
dielektrischen Widerstand.

(79) div f @ = div @0 = p
und für jede Leiteroberfläche

feSJe =j\,de.

Für das Zusatzfeld @1 = @ — @0 folgt aus (79)
div @1 = div © — div ($0 = — div (« — 1) (£

(80)

(81)
und ebenso aus (80)
(82) =f<&,ds -j\je = -f(s - 1)

Setzen wir
-/(« - 1)®.««* = <!>— div (e — 1) e = p',

div (51 = p', I ($„ dö — e.

^83)
so folgt
(84)

@5 genügt denselben allgemeinen Bedingungen wie @ und (S0, ist 
also durch die p', e eindeutig gegeben. Diese Werte sind wegen 
(83) zwar erst bekannt, wenn Gs gefunden, also die Aufgabe gelöst 
ist, aber die Form von (84) zeigt, daß 01 als das Feld gewisser ge­

66) Gordon, Phil. Trans. 1879, p. 417; Donie, Ann. Phys. Chem. (3) 40 (1890), 
p. 307; Winkelmann, Ann. Phys. Chem. (3) 38 (1889), p. 161; 40 (1890), p. 732; 
JE. Cohn, Ann. Phys. Chem. (3) 46 (1892), p. 135.

66) P. Drude, Physik des Äthers, Stuttgart 1894, p. 274 und Ann. Phys. 
Chem. (3) 57 (1896), p. 223.



16. Influenz auf Ellipsoid und Kugel. Clausius-MossottiscAe 
Theorie. Wird ein Ellipsoid der Dielektrizitätskonstante e in ein 
gleichförmiges Feld @0 der Dielektrizitätskonstante 1 gebracht, so 
wird das Zusatzpotential68)

0xcoBnx (SqyCQB ny (S0gcosws\ dß
'1 . _ ' 1 I Łnr ’-/((88)

r-h+A
s — 1

Wegen (84) lautet das Zusatzpotential

j_ y
in 7(86) % =

also
(87) <P

das Integral über die Ellipsoidoberfläche erstreckt. Hier bedeutet r 
den Abstand des Oberflächenelements dö vom Aufpunkt; es ist

67) H. Hertz, Untersuchungen über die Ausbreitung der elektrischen Kraft, 
Leipzig 1892, p. 225 u. 236; Ann. Phys. Chem. (3) 40 (1890), p. 577.

68) Ygl. Poisson, Mém. de le ac. de France 5 (1824), p. 492; vgl. auch Max- 
ivell, Treatise 2, Art. 437 ff. A. Neumann löst das Problem für Rotations­
ellipsoide Journ. f. Math. 37 (1848), p. 21. Die Induktion in einem unendlich 
langen Kreiszylinder behandelt G. Kirchhoff Journ. f. Math. 48 (1854), p. 348 und 
Ges. Abhandl., p. 193. Das für den Magnetismus wichtige Problem der Induktion 
in einem endlichen Kreiszylinder durch ein gleichförmiges Feld parallel der 
Achse hat G. Green gelöst Essay, p. 66, doch ist der Gültigkeitsbereich seiner 
Formel auf paramagnetische Körper beschränkt (vgl. Maxwell, Treatise 2, Art. 439).

d. h. man kann bei beliebigen dielektrischen Körpern im ganzen Felde 
auf Grund der vor-Faradayschen Anschauungen das Potential nach 
dem Coulombschen Gesetz berechnen, wenn man statt der wahren 
Elektrizitätsmengen die freien wählt. Während aber die wahre Elek­
trizität an der Materie haftet, tut dies die freie nicht, sie hängt vom 
Felde selbst ab.
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dachter Elektrizitätsmengen aufgefaßt werden kann, die nur dort sich 
befinden, wo der dielektrische Körper in die Luft eingebettet ist
(* + !)•

Nach Hertz67) heißen die q, co, e die wahren, die q', co', e die 
induzierten, die ç -j- q', co -j- co', e -f- e' die freien Dichten resp. Elek­
trizitätsmengen.

@0 hat das Potential (vgl. Nr. 4 (15))
l V e 

4je r(86)

o

I



CO

łahcf(a* + X)L 
0

co

C == ^ ahcj* (c* + X)L

o
Im Innern des Ellipsoïdes ist das Feld homogen, man hat nämlich 
für die Komponenten der Feldstärke die konstanten Werte

(89) g.~ r+fr’-iÿi» «,
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%abcJ— 
0

, B =A = (6* + X)L’

, L = Yiar -f- A) (b2 -f- A) (c2 + X) .

»y CF
l + (e —lJjB» ' l + («-l)C

Ist das Ellipsoid eine Kugel, so wird a = b — c der Radius 
und A — B — C — \} dann ist im Innern

3©o(89') ® = s + 2
Im Außenraum lautet das Zusatzpotential

a3 s — 
fr]*" s + 2S («.-*).(90) l

wo r der Radiusvektor vom Kugelzentrum zum Aufpunkt ist. Ist die 
Kugel leitend, so wird (vgl. Nr. 14)

if* <«. • *)•(90') l =
Die Kugel ist durch den Einfluß des äußeren Feldes polarisiert. 

Clausius69 70) nahm wie Mossotti an, daß ein Dielektrikum aus solchen 
kleinen polarisierbaren leitenden Kugeln bestände, die voneinander 
isoliert seien. Diese Kugeln denkt er sich regellos im Körper verteilt; 
sie rufen je nach Konzentration und Größe verschiedene Dielek­
trizitätskonstanten hervor. a3(s — l)/(e -J- 1) = ~ vd(s — !)/(« -j- 2)
ist ein Maß für die Störung, welche eine dielektrische Kugel ausübt,

3wenn vd das Volumen der Kugel ist; — vt ist die Störung, welche 
die leitenden Kugeln vom Gesamtvolumen vl hervorrufen. Sollen diese 
Störungen einander gleich sein, so muß vt : vd — (« — l)/(f -f- 2) sein. 
Eine strenge Ableitung dieser Beziehung für einen beliebig geformten 
Körper aus (90) gibt Poincare.™) Da vt als Volumen der leitend 
gedachten Moleküle unveränderlich ist, so folgt

£ — 1 1 
s-J-2 d(91) = const.,

69) B. Clausius, Mech. Wärmetheorie 2, p. 62, Braunschweig 1879.
70) Vgl. H. Poincaré, Électricité et optique 1, p. 48, Paris 1890; siehe 

auch G. Adler, Wien Ber. 992tt (1890), p. 1044 und den Art. über Elektronen­
theorie von H. A. Lorentz V 14 Nr. 43 u. 47.



wo d die mit Druck und Temperatur veränderliche Dichte des dielek­
trischen Körpers bedeutet. (91) ist unter dem Namen der Lorentz- 
Lorenz’&chen Gleichung bekannt71). Bei Gasen ist £ nahezu = 1, 
also s -f- 2 nahezu = 3, (91) ergibt also für Gase Proportionalität 
von £ — 1 mit dem Druck72).

17. Hohlkugel und Hohlzylinder im gleichförmigen Feld. Von 
Wichtigkeit, wenigstens für den analogen Fall des Magnetismus (Nr. 23) 
ist das Problem der Hohlkugel im gleichförmigen Felde, weil man 
im Innern des Hohlkörpers von hoher Dielektrizitätskonstante (Per­
meabilität) ein geschwächtes gleichförmiges Feld erhält.

Wir unterscheiden die Potentiale cpl7 <p2, cpz, die für r < a17 
% ? r > gültig sind, wo ax und a2 die Radien der Hohl­

kugel sind.
Da die Laplacesche Differentialgleichung überall gültig ist, hat 

überall die Form
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<P

= ]>J Pw(cos ff) (Anrn -f Bnr-(”+1>) .
n—0

Die Konstanten bestimmen sich aus den Bedingungen, daß cp 
überall endlich und stetig ist, daß für r = oo

cp = -®0xx-®0yy-®0,z
ist, wo die Konstanten @0a;, @02/, @02 die Komponenten des ungestörten 
Feldes sind, und daß für

dpi ___ dcp,
dr dr

d<Ps dgp8 _
dr dr

Die Durchrechnung ergibt für das Innere73):

r = %:•••

r = a2 : •.

l
® = @.-(92) 2 (*-!)■/ _a,S

' 9 s \ a,3/

Im Innern bleibt das Feld also gleichförmig. Wird £ = oo, so 
wird @ = 0, wir haben die Schutzwirkung leitender Hüllen (vgl. Nr. 5). 
Für großes £ wird das Feld sehr geschwächt.

Für den unendlich langen Hohlzylinder, dessen Achse senkrecht 
zum Feld gerichtet ist, erhalten wir auf dieselbe Weise

71) Eine optische Ableitung geben JR. Lorenz, Ann. Phys. Ohem. (3) 11 (1880), 
p. 77; 20 (1883), p. 19 und H. A. Lorentz, Ann. Phys. Chem. (3) 9 (1880), p 642.

72) L. Boltzmann, Wien Ber. 692 (1874), p. 795.
73) Mamvell, Treatise 2, Art. 431.
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l(93)
(g-i)8

4f v o2V1-f
Ein allgemeines Näherungs verfahren, welches bei einem beliebigen 

Körper in einem beliebigen Felde anwendbar ist, wird in Nr. 25 für 
den analogen magnetischen Fall entwickelt.

18. Spannungen und Kräfte. Aus der Abnahme der elektrischen 
Energie bei einer virtuellen Yerscbiebung ergeben sich die Kräfte 
elektrischen Ursprunges; sie lassen sich durch Spannungen aus- 
drücken74).

Aus diesen erhält man die auf die Yolumeinbeit wirkende Kraft
(94) f = p© — -|-©2 grad s.
(94) zeigt, daß die Feldstärke © 
auf die Elektrizitätsmenge 1 darstellt; in inhomogenen Medien kommt 
noch eine Kraft hinzu, die die Richtung des stärksten Gefälles der 
Dielektrizitätskonstanten hat.

An der Grenze eines Dielektrikums gegen Luft findet ein normal 
nach außen wirkender Zug statt

im homogenen Medium die Kraftnur

(95)

wo © die Feldstärke außerhalb des Körpers ist.
Ist s nahezu = 1, so ist der Zug von der Richtung, in der die 

Erregungslinien die Oberfläche treffen, unabhängig. Durch hydro­
statischen Druck kann man die elektrischen Druckkräfte an der 
Grenze einer Flüssigkeit gegen ein Gas kompensieren und so £ be­
stimmen75). Ist die Umgebung nicht Luft, sondern ein Medium der 
Dielektrizitätskonstante £0, so ist £ in (95) durch £/£0 zu ersetzen und 
der ganze Ausdruck mit £0 zu multiplizieren.

19. Kräfte auf starre Körper76). Handelt es sich um die Kräfte 
auf starre Körper, so dürfen wir zu (94) die Kraft

f = p'© + -£©2 grad £ 
addieren, weil diese bei der Integration über den ganzen Körper keinen 
Beitrag liefert (p' ist durch (82) definiert). Es folgt

(96)

74) Vgl. Maxivellsche Theorie Art. H. A. Lorentz V 13, Nr. 23; Maxwell, 
Treatise 1, Art. 105; H. Hertz, Ann. Phys. Chem. (3) 41 (1890), p. 396; Faraday, 
Experimental researches in electricity, p. 409, London 1839. Näheres über diese 
Spannungen und die mit denselben zusammenhängenden Erscheinungen der so­
genannten Elektrostriktion findet man in dem Art. von F. Pockels V 16.

75) G. Quincke, Ann. Phys. Chem. (3) 19 (1883), p. 705.
76) Vgl. E. Cohn, Elm. Feld, p. 99.
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f = (9 + (0®,(97)
WO

q -j- q' — div ©.
© bedeutet also die Kraft auf die freie Elektrizitätsmenge 1. In 

der Elektronen theorie77) ist, wie in der ursprünglichen Yor-Maxwdl- 
schen Theorie, die Dielektrizitätskonstante kein Grundbegriff, sondern 
sie wird durch das Verhalten der induzierten Ladungen (verschobenen 
Elektrizitätsmengen) erklärt; dort ist die Feldstärke in der Tat die 
Kraft auf die freie Elektrizitätsmenge 1, so daß das Coulotnbsche 
Gesetz in der Elektrostatik der Elektronentheorie mit £ = 1 aus­
nahmslos und allgemein gilt.

Ist der starre Körper ungeladen, so folgt aus (94)
f = — grad (f — 1);

wir führen anstatt grad s in (94) das damit identische grad (f — 1) 
ein, weil auf der Oberfläche des Körpers, d. h. außerhalb der Grenz­
schicht, s — 1 = 0 ist, und weil daher in der durch partielle Inte­
gration erhaltenen Gesamtkraft

grad(98)

das hinzutretende Oberflächenintegral verschwindet. Ebenso ist das 
Drehmoment

f “ [t • grad &2]dS.
(98')

Ist s — 1 sehr klein, so kann man (£02 anstatt (S2 setzen und
erhält

’S = J—2- grad %-dS.(99)

Ein dielektrischer Körper wird also nach Punkten größter Feld­
stärke getrieben 78).

Ist die Energie des Feldes W} und nennen wir W0 die Energie, 
die unter gleichen Umständen vorhanden wäre, wenn der dielektrische 
Körper durch Luft ersetzt würde, so würde bei einer virtuellen Ver­
schiebung des Körpers ö W0 = 0 sein, weil in diesem Falle durch die 
Verschiebung nichts an dem Felde geändert würde; da aber <L4 = — dW 
ist, so gilt auch79)

77) Ygl. Elektronentheorie Art. H. A. Lorentz V 14, Nr. 2 u. 3.
78) Vgl. das magnetische Analogon bei W. Thomson, Reprint Art. 670.
79) Ygl. Cohn, Elm. Feld, p. 85. Wichtig ist, daß in (100) @ nur in S be­

kannt zu sein braucht.



19. Kräfte auf starre Körper. 333

_ ó(W-W0) - • @0)dS.(100)

Für das Ellipsoid vom Volumen S im gleichförmigen Felde folgt 
hieraus (vgl. (89))

(101) ÔA = ÔS-^±S{ ®L «3„ )•

1 + (e-1)1t l + (t-l)JÎT l + (8 — 1)0

Ist das Ellipsoid um die vertikale c-Achse drehbar, und bildet 
die «-Achse mit der Horizontalkomponente den Winkel -fr, so ist 
daB Drehmoment zu wachsenden -O'

= 25sin2# ll
(101')

Al+B Aï+A

Mit a > b wird A < JB < 1 (vgl. Nr. 16), d. h. das Ellipsoid stellt 
sich im gleichförmigen Felde auf jeden Fall mit seiner großen Achse in 
die Feldrichtung. Ist die Umgebung nicht Luft, sondern hat sie die 
Dielektrizitätskonstante s0, so ist (101') mit e0 
e durch s/s0 zu ersetzen; der soeben ausgesprochene Satz gilt, gleich­
gültig ob s ^ e0 ist.

Ist £ — 1 klein, so folgt aus (100) die translatorische Kraft 
(vgl. (99))

multiplizieren undzu

5 = £~Y~ S §rad ®o2-

Im Falle der Kugel wird aus (101)

5 = f £ g™«1 ®o2;
ist die Kugel leitend, so hat man:

= iS grad @02.
Durch Vergleich von $ und hat Boltzmann80) an festen Körpern 

£ bestimmt. (101') wurde von Graetz und Fomm81) zur Bestimmung 
von Dielektrizitätskonstanten verwendet.

Ein Feld, welches von zwei gleichen, aber entgegengesetzten 
Elektrizitätsmengen, die auf der X-Achse gleich weit vom Nullpunkt 
entfernt sind, herrührt, hat in der Nähe des Nullpunkts die Form82)

©02 = const. a2x2 — b2(y2 -f z2).

80) L. Boltzmann, Wien. Ber. 682 (1873), p. 81; 70* (1874), p. 307; 
Ann. Phys. Chem. (2) 153 (1874), p. 525.

81) L. Graetz und L. Fomm, Ann. Phys. Chem. (3) 53 (1894), p. 85; 54 (1895), 
p. 626, ferner L. Lombardii, Nuov. Cim. (4) 2 (1895), p. 360 und Mem. d. Acc. di 
Torino (2) 45 (1895), p. 171.

82) W. Thomson, Reprint Art. 670.
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Bringt man in dieses Feld ein dünnes Stäbchen von kleinem 
s — 1, welches um den Coordinatenursprung in der rry-Ebene drehbar 
ist, so folgt aus (98')

(102) 91 = — (a- + ¥) sin 2» ■ E,

wo K das Trägheitsmoment bezüglich der Drehungsachse ist. Das 
Stäbchen sucht sich also in Richtung des Feldes (& — 0) zu stellen. 
Setzt man in (102) s/sQ statt £ und multipliziert mit £0 (f0 Diel. 
Const. der Umgebung), so folgt, daß es sich senkrecht zum Felde stellt, 
wenn e < f0. Diese Tendenz ist eine Eigenschaft der bestimmten Feld­
anordnung, nicht allgemein gültig, wie aus der Bemerkung nach (101') 
folgt83). Das Drehmoment läßt sich zur Bestimmung von e benutzen. 
Voraussetzung ist: e nahezu 1.

20. Elektromotorische Kräfte. Sind Inhomogenitäten in den 
Leitern vorhanden, z. B. in der Grenzschicht zweier aneinander 
stoßender verschiedener Leiter, oder Temperaturgefälle in einem sonst 
homogenen Leiter, so muß man eine eingeprägte elektromotorische 
Kraft ©el annehmen. Es ist dann

I. rot@ = 0

3 = + ®rf),(5')
also in der Elektrostatik
(no g _ -
in Leitern.

Ferner gelten (3) und (8). Damit (11') mit I. verträglich ist, 
d. h. damit ein statischer Zustand existieren kann, muß

rot (£e‘ — 0 '(103)
sein. Aus (103) folgt

/«?*-0(104)
für jede geschlossene Kurve. (104) drückt das Gesetz der Forschen 
Spannungsreihe aus.

Die Energie bleibt We — J*| &2dS, aber jetzt befindet sie sich

zum Teil im Innern der Leiter, wo wegen (11') @ nicht mehr ver­

schwindet. Dieser Teil der 
Energie lautet also

Energie beträgt j*&pdS, die gesamte 

j&dS,/l™+/
S.’ 8a

88) Vgl. E. Cohn, Elm. Feld, p. 118.
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wo 8t den Innenranm, Sa den Außenraum der Leiter bedeutet. Da 
wir aus der Abnahme der Energie die Kräfte erbalten, so wird elek­
trische Arbeit bei Deformation der Leiter geleistet, und diese Kräfte 
zusammen mit den übrigen Kräften (z. B. elastischen Kräften und 
Kapillarkräften) bestimmen das Gleichgewicht.

Auf Grund dieser Darstellung läßt sich der Volta sehe Funda­
mentalversuch behandeln, ferner die Thomsomche Methode84) zur 
Messung der elektrischen Differenz von Metallen. Die Resultate beider 
Methoden stimmen miteinander überein, aber sie stimmen nicht mit den 
Potentialdifferenzen aus Messungen der Peltierschen Wärme, die viel 
geringere elektrische Differenzen gibt; daher ist es wahrscheinlich, 
daß der größte Teil der elektrischen Differenz bei den Versuchen von 
Volta und Thomson in der Gasschicht an der Grenze Metall—Dielektrikum 
zu suchen ist. Von der letzteren Annahme ausgehend kann man 
die Erscheinungen darstellen, wenn man anstatt (3)
(3') $ = *(ffi + d’d)
einführt, also eine im inhomogenen Dielektrikum wirksame elektro­
motorische Kraft, wie Lorentz das getan hat85).

21. Kristalle. In Kristallen bleibt die Form der Maxwelhchen 
Gleichungen erhalten; nur gilt anstatt (3) die kompliziertere Be­
ziehung
(3") $ = (£)®“)

Genau wie sich aus (1) und (2) We — J*y 0l2dS ergab (Nr. 2),

©
We = fdSf (SdS).

o
Ist das System konservativ, d. h. durch den augenblicklichen 

Wert von (£ bestimmt, so folgt eik = £kisr) und

w, = /«g.$)ds.
Durch die e ist ein Ellipsoid bestimmt, dessen Hauptachsen zu 

Koordinatenachsen gewählt werden sollen; dann geht (3") über in

gilt allgemein:

(105)

(105')

84) W. Thomson, Reprint Art. 400 und Phil. Mag. (5) 46 (1898), p. 82.
85) Elektronentheorie Art. H. A. Lorentz Y 14, Nr. 44. Wichtig ist die 

Erklärung der Kontaktpotentialdifferenz auf elektronentheoretischer Grundlage : 
H. A. Lorentz, Amsterdam Akad. v. Wet. (1905), p. 556.

86) Wegen der Bezeichnungsweise siehe Maxwell sehe Theorie Art. M. A. 
Lorentz V 13, Nr. B.

87) Ygl. Maxivell, Treatise 1, Art. 101 f.



Es existiert auch hier ein Potential <p.87a) Anstatt (100) in 
Nr. 19 gilt

(106) sA = iif\( («, — i) @A.+(«,—i)®,®„+(«,—i)®,®* )
Wird eine anisotrope Kugel in ein gleichförmiges Feld @0 ge­

bracht, das parallel der æ-Achse gerichtet ist, so ist

^ ®o, (vgl. Nr. 16 (89')),
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an

@ = 
X(107)

also die Kraft
(108) 3, = **Ę*8ŚiV Og1- Nr. 19)*»).

Eine um die z-Achse drehbare Kugel erfährt in einem Felde @0, 
dessen horizontale Komponente (S0Ä den Winkel # mit der x-Achse 
bildet, wegen (106) und (107) das Drehmoment88a)

22. Rückstand. Ob es dielektrischen Rückstand, der analog der 
magnetischen Hystérésis ist (Nr. 32), in reinen Materialien überhaupt 
gibt, ist nicht absolut sicher. Die Versuche widersprechen sich bei 
homogenen Körpern87 88 89); dagegen hat Maxwell90) gezeigt, daß bei in­
homogenen Körpern, in denen das Verhältnis der Dielektrizitäts­
konstante zur Leitfähigkeit s/6 Ortsfunktion ist, Rückstandserschei­
nungen auftreten müssen. Nimmt man an, daß die Erregung zur 
Zeit t proportional dem Wert der Feldstärke zu einer etwas früheren 
Zeit ist, so muß bei Schwingungen eines Körpers im Felde eine 
Dämpfung infolge der dielektrischen Hystérésis auftreten91).

(109) 9t-fr

87a) J. Curie, Ann. chim. phys. (6) 17 (1889), p. 385 bestimmte Dielek­
trizitätskonstanten von Kristallen, indem er senkrecht zu den Hauptachsen ge­
schnittene Kristallplatten zwischen die Belegungen eines Kondensators brachte.

88) L. Boltzmann, Wien. Ber. 70* (1874), p. 342. Ilomich u. Nowak, 
ibid. p. 380.

88a) B. Fellinger, Ann. Phys. (4) 7 (1902), p. 333 bestimmt aus dem Dreh­
moment von Kristallellipsoiden im homogenen Felde Dielektrizitätskonstanten; 
die Methode ist der in Anm. 81) erwähnten analog. Ebenso Borei, Diss. 
Grénève 1893.

89) Siehe die Literaturzusammenstellung bei L. Graetz, Winkelmanns Hand­
buch d. Physik 41, p. 157.

90) Maxwell, Treatise 1, Art. 328.
91) W. Schaufelberger, Ann. Phys. Chem. (3) 67 (1899), p. 307 ; F. Beaulard, 

Éclairage électrique 37 (1903), p. 404.
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II. Magnetostatik.

23. Unterschiede der magnetostatischen und elektrostatischen 
Probleme. In Nr. p sind die Grundgleichungen der Magnetostatik 
zusammengestellt, in Nr. 4 ist der Eindeutigkeitsbeweis erbracht, in 
Nr. 5 und 6 sind einige allgemeine Eigenschaften des Feldes und der 
Energie angegeben. Es wäre alles wörtlich aus der Elektrostatik zu 
entnehmen, indem man ($, cp, a, Qe, <oe, We durch .£), [i, Qm, om,
Wm ersetzt, wenn nicht folgende wichtige Unterschiede beständen.

a) Es gibt keine Leiter des Magnetismus, also kein in Strenge 
vollständiges Feld außer dem unendlichen Raum; doch wir sahen in 
Nr. 14, daß ungeladene Dielektrika von unendlich großer Dielektrizi­
tätskonstante analoges Verhalten zeigen wie Leiter. So zeigt auch 
ein Körper von sehr hoher Permeabilität u (weiches Eisen) ähnliche 
Eigenschaften (Schirmwirkung) wie Leiter in der Elektrostatik. Die 
Schirmwirkung einer Hohlkugel und eines Hohlzylinders, die zum 
magnetischen Schutz von Meßinstrumenten gebraucht werden, be­
rechnet sich genau wie in Nr. 17 (92) und (93). Näheres hierüber 
in dem Artikel von H. du Bois V 17.

b) Wahre Dichten kommen nur in ferromagnetischen Körpern 
(Magneten) vor, aber es ist in jedem Magneten

Um — j QmdS = 0.

Deshalb kann man
(110) Qm = — div 9R'

setzen, wo der Faktor 93V die (eingeprägte) wahre Magnetisierung heißt, 
die nur in Magneten von Null verschieden ist. Integriert man näm­
lich (110) über einen ganzen Magneten, so ergibt sich Um — 0, weil 
90^ auf einer den Magneten eng umschließenden Fläche bereits 
Null ist.

2JP ist durch nicht gegeben, sondern es können noch ge­
schlossene 9JP-Linien in beliebiger Zahl und Anordnung hinzukommen, 
die aber, da sie quellenlos sind, kein pm ergeben (110), also wegen 
der Eindeutigkeit nichts zu § beitragen. Jedem Anfangspunkt einer 
ja^-Linie entspricht der Endpunkt einer JJP-Linie und umgekehrt.

Die Einführung von 9Jie ist vorteilhaft, da 9Jie im Magneten be­
liebig gegeben sein darf, nur daß 9JÎ* stetig und differenzierbar 
der Oberfläche in Null übergehen muß, während qjh der Bedingung 
Um = 0 genügen muß.

Encyklop. d. raath. Wissonach. V 2.

an

22



(112) div 35' = 0.
Ferner ist wegen Ia

3T\ 
!• /

rot Æ 
VP(113) = 0.

Setzen wir schließlich noch

(114)
so haben wir
(112') div = 0,

(113') rot — $/) = 0.

In dieser DarsteUnng gibt es keine magnetischen Mengen, man 
muß sich das Feld £)' durch Ampere’sehe Molekularströme erzeugt 
denken. ist als magnetomotorische Kraft zu deuten; diese bleibt

i)2) x — ——heißt Suszeptibilität; dieselbe kann also >0 und <[ 0 sein. 4 7t

93) Faraday, Researches 2, p. 217.
94) Maxwellsche Theorie Art. H. A. Lorentz V 13, Nr. 19; E. Cohn, Elm. 

Feld, p. 299; 11. Gans und 11. H. Weher, Ann. d. Phys. (4) 16 (1905), p. 172.
95) Diese Darstellung weicht von der Lorentzsehen ab; siehe Art. Maxwelt- 

sche Theorie V 13, Nr. 15.

c) Während s immer >1 ist, ist in den paramagnetischen Kör­
pern u > 1, in den diamagnetischen < l.92) Diese Tatsache wurde 
Ton Faraday'*3) durch die Drehmomente in einem Magnetfelde .(der 
Form wie am Ende von Nr. 19) nachgewiesen. Es gilt auch hier die 
Bemerkung von der Nichtallgemeinheit der Erscheinung wie in 
Nr. 19.
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24. Gibt es wahren Magnetismus? Diese Frage ist gleichbe­
deutend mit der, ob die Erregungslinien Endpunkte haben; die Ant­
wort fällt verschieden aus, je nachdem die Erregung definiert wird94).

In unserer Darstellung existiert wahrer Magnetismus05); er ist 
gegeben durch die Beziehungen Qm = div 35, 35 =

Im Gegensatz hierzu zeigen wir, daß wir zwei analoge Vektoren 
35' und §' definieren können, derart daß 0 = div 35', 35'= «§' wird. 

-Betzen wir nämlich
35' = + me = $ +(111)

ein (Sie heißt Magnetisierung, sie setzt sich additiv zusammen aus der 
induzierten Magnetisierung (tu — 1)§ und der wahren Magnetisierung 
9J?e), so ist wegen IIa und (110)

•e
g
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konstant bei Veränderungen in der Konfiguration der Magnete1'6). 
Während die Felddarstellung an Einheitlichkeit gewinnt, wenn man 
£)' einführt, da dann, gleichgültig, ob ein permanenter oder Elektro­
magnet vorliegt, div fi& — 0 und rot )p' gegeben ist, hat die Energie,
in ausgedrückt, die einheitliche Form \ f fiffidS, dagegen in £)' 
die Form \-J u&2dS 
magnet oder ein permanenter Magnet vorliegt. Für permanent 
magnetische Kreise gilt das Analogon des Ö/mschen Gesetzes96) 
ebenso wie für elektromagnetische Kreise97). Man kann a die

den magnetischen Widerstand
nennen66). Nähere Ausführungen hierzu im Artikel V 17 von 
//. du Bois.

łJ li&2dSf je nachdem ein Elektro-oder —

lgnetische Leitfähigkeit,m a Uff

25. Influenz. Wahrer und freier Magnetismus. Die Theorie
der magnetischen Influenz wurde von PoissonÿS) auf Grund molekularer 
Hypothesen über die Konstitution polarisierbarer Substanzen auf­
gestellt; von diesen Hypothesen machten sich W. Thomson"), F. Neu- 

), Kirchhoff101) und Duhem101 a) frei, indem sie die Theorie auf100mann
einige Erfahrungstatsachen gründeten, die heute ihren Ausdruck in 
den Maxivelhchen Gleichungen gefunden haben. Es gilt das Analoge 
wie in Nr. 15, die induzierte und freie Dichte drücken sich analog 

Entsprechend gibt es eine induzierte Magnetisierungaus.
W = (fi — 1)§.

Ist im ganzen Raum a — 1, so ist (vgl. Nr. 15)

,u/ 11 ^ m
^0 irr sćLj r(115)

oder durch partielle Integration

6 dö

96) B. Gans und B. H.Weber, Ann. d. Phys. (4) 16 (1905), p. 172; B. H. Weber. 
Ann. d. Phys. (4) (1905), p. 178 und E. Kempken, Tübinger Diss. 1906 und Ann. 
d. Phys. (4) 20 (1906) p. 1017.

97) Vgl. Anm. 96) und H. du Bois, Magnetische Kreise, p. 186, Berlin und 
München (1894).

98) Poisson, Mém. de l’acad. de France 5 (1826), p. 247, 488; 6 (1827), p. 441, 
vgl. auch Maxwell, Treatise 2, Art. 385.

99) W. Thomson, Reprint Art. 604.
100) F. Neumann, J. f. Math. 37 (1848), p. 21; Vorlesungen über die Theorie 

des Magnetismus, Leipzig 1881.
101) G. Kirchhoff', J. f. Math. 48 (1854), p. 348; Ges. Abhandlungen, p. 193

und p. 223.
101R) P. Duhem, De l’aimantation par influence, Diss. Paris 1888, verwendet 

die thermodynamischen Prinzipien.
22*
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</•., = i- J ('*■' grad' l )dS(115')

wo der Strich am grad bedeuten soll, daß die Differentiationen nach 
den laufenden Koordinaten von S auszuführen sind.

(115') zeigt, daß der Magnet aufgefaßt werden kann als bestehend 
aus kleinen Elementarmagneten98).

fWdS = m(116)
und

fWdS = m'(116')
heißen wahres und induziertes Moment (ersteres auch kurz: Moment)101 b) 
des Magneten.

Ist g 4= 1, so kommt zu noch hinzu, und wir haben
. 1 ’STT m -f m

t + Im = 4--- r..

Im = l% 2 r = L J {m: Srad' t) dS> V°l (86) und (116')-

, vgl. (87),(117)
wo

Wird ein polarisierbares Ellipsoid (d. h. u 4= 1) in ein gleich­
förmiges Feld gebracht, so gelten die Analoga von (88) und (89). 
Aus (89) folgt für die induzierte Magnetisierung

•§0.r •5
; = m; =m ' =(89,) ---- \-B

ft — 1
~ + Cfi —ll + Äfi —

Speziell für die Kugel ergibt sich das Analogon von (89'); aus 
dieser Gleichung folgt, daß die Erregungslinien in die Kugel hinein­
gezogen oder aus ihr herausgedrängt werden, je nachdem ist102).

Denkt man sich in ein gegebenes Feld mit festen Magnetismus­
mengen, das sich aus einem Potential ableitet, einen polarisier­
baren Körper gebracht, so muß das Potential ifj — ij>0 -f- % des wirk­
lichen Feldes außer der Laplaceschen Gleichung noch an der Ober­
fläche des Körpers der Gleichung

u dOi = d±a 
1 dn dn

genügen, d. h. das Zusatzpotential £ genügt der Gleichung

(118)

(119)

101b) Die bei magnetischen Messungen als Moment bezeichnete Größe ist 
in Wirklichkeit nicht das wahre, sondern das freie Moment (vgl. Nr. 27 und 28).

102) W. Thomson, Reprint Art. 632.



34126. Energie und Kräfte. 27. Kräfte auf starre Körper,

Bei willkürlich gegebenem ip0 läßt sich diese Gleichung in ge­
schlossener Form bis jetzt nur in Spezialfällen integrieren. Poisson98) 
führt dies für die Kugel und Hohlkugel durch Entwicklung von 
nach Kugelfunktionen aus, Somigliana103) und gleichzeitig Poggio104) 
kommen ohne solche Entwicklungen aus, sie erhalten das induzierte 
Potential direkt durch bestimmte Integrale. F. Neumann löst das 
Problem für das Rotationsellipsoid100), Kirchhoff101) für unendlich 
lange Zylinder und den Kreisring; der Kreisring sowie das dreiachsige 
Ellipsoid sind von Giuliani105) behandelt; C. Neumann105) dehnt 
die Methode auf zwei Körper, speziell zwei Kugeln im Magnetfeld 
aus. Boggio101) nimmt das Zweikugelproblem auf und behandelt auch 
den Grenzfall, daß zwei Halbräume mit parallelen Begrenzungen ein­
ander gegenüberstehen.

Bei einem beliebig gestalteten Körper denke man sich % nach 
Potenzen von g — 1 entwickelt, also

X = — i)vz{v),
V— 1

so folgen durch Substitution von (120) in (119) die Rekursionsformeln
Hai __ SÆ. = ?Źo
dn dn dny

_ tf+1) _
dn dn dn ’

welche die Lösung haben (vgl. Nr. 4 (14) und (15))

(120)

(121)

1 / d% da
47t.J dn r *

<122)
4irJ dn r7}' +1) =

Diese Methode der sukzessiven Induktionen stammt von Beer106) 
die Reihen von C. Neumann100 108 109), L. Weber110), Rieche111), Wassmuth112)

103) Somigliana, Rend, del r. Ist. Lomb. (2) 36 (1903).
104) T.Boggio, ibid. (2) 37 (1904), p. 123; Nuovo Cim. (5) 11 (1906), p. 1
105) (t. Giuliani, Nuovo Ciin. (3) 11 (1882).
106) C. Neumann, Hydrodynamische Untersuchungen p. 282, Leipzig (1883 

vgl. auch JR. A. Herman, Quaterly J. of Math. 22 (1887), p. 204.
107) T. Boggio, Rend, del r. Ist. Lomb. (2) 37 (1904), p. 405.
108) A. Beer, Einleitung in die Elektrostatik, die Lehre vom Magnetismus 

und die Elektrodynamik. Braunschweig 1865, p. 155.
109) C. Neumann, Untersuchungen über das log. und Neivtonsche Potential, 

Leipzig 1877.
110) L. Weber, Zur magnetischen Induktion, Kiel 1877; Arch. Math. Phys

61 (1877), p. 286.
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Korn112*) sind Potenzreihen nach Potenzen von /x—1, -—- oder

ent-^ v4- Anstatt dessen kann man auch ib nach Potenzen von 
1

wickeln, muß aber die Lösung für /x — oo, d. h. für den Fall, daß 
in ein gegebenes elektrostatisches Feld ein ungeladener Leiter gebracht 
wird, vorher gefunden haben118).

26. Energie und Kräfte. Die Energie drückt sich nach Nr. 6 
(21) aus als

(21.)
und dies wegen (110) und Ia' als

W = >,

Die Spannungen sind Analoga der elektrischen, sie ergeben 
Kräfte analog (94). Die magnetischen Drucke an der Grenze zweier 
Körper gehorchen den (95) entsprechenden Formeln. Auf Grund 
dieser Formeln hat Quincke111 112 113 114) Permeabilitäten von Flüssigkeiten und 
Gasen bestimmt, indem er den magnetischen Druck durch hydrosta­
tischen Druck kompensiert hat.

Über die magnetischen Spannungen und die sogenannte Magneto­
striktion findet sich Näheres in dem Art. von I1. Pockels V 16.

27. Kräfte auf starre Körper. Wie in Nr. 19 ergibt sich durch 
Einführung der freien Mengen das Coulombsche Gesetz. Die Arbeit 
bei einer unendlich kleinen Verschiebung eines Magneten zu Stellen 
höherer Feldstärke ist

öA =/((S0l‘ + W) ■ S$0)dS.ni)(123)

Ist )p0 im Magneten gleichförmig, so ist wegen (116) und (116')
àA = ((in 4- m') • d£0).

(101), (101') und (102) gelten analog für den Magnetismus: man 
hat diese Formeln zur Bestimmung der Permeabilität benutzt116 *).

(123')

111) E. Eiecke, Ann. Phys. Chem. (3) 13 (1881), p. 465; man beachte die 
Konvergenzfragen.

112) A. Wassmuth, Ann. Phys. Chem. (3) 51 (1894), p. 367.
112a) A. Korn, München Ber. 31 (1902), p. 435.
113) Vgl. G. Kirchhoff, Vorlesungen 3, p. 160.
114) G. Quincke, Ann. Phys. Chem. (3) 24 (1885), p. 347 ; H. du Bois, Ann. 

Phys. Chem. (3) 35, (1888), p. 137.
115) E. Cohn, Elm. Feld, p. 209.
116) H. A. Kowland, Americ. Joum. of science and arts (3) 9 (1873), p. 357;

H. A. Kowland und W. Jacques, Joum. of science and arts (3) 18 (1879), p. 360;

'S
 H-.



28. Magnetisches Moment. Horizontalintensität. Kompaß.
Gleichung (123) in Nr. 27 ist die Grundlage der Gaußschen Methode m) 
zur Bestimmung magnetischer Momente und der Horizontalkomponente 
der erdmagnetischen Kraft. Da aber die in (123') vorkommenden 
freien Mengen nicht an der Materie haften, ist die Theorie nicht ganz 
streng. Dorn118) hat Korrektionen wegen der induzierten Momente 
angebracht.

Um das Feld eines symmetrisch um eine Achse magnetisierten 
Magneten (z. B. der Erde) außerhalb der Kugel, die ihn gerade um­
schließt, darzustellen, wählen wir seinen Mittelpunkt zum Ursprung 
eines Kugelkoordinatensystems, seine Achse zur Achse desselben. Ist 
R die Entfernung des Aufpunktes vom Ursprung, -fl der Winkel, den 
R mit der Polarachse bildet, so ist, da ip der Laplacesehen Gleichung 
im Außenraum genügt,

28. Magnetisches Moment. Horizontalintensität. Kompaß. 343

* - L 2 c^ms(124)
n = 0

wo Pn die Kugelfunktion ntor Ordnung erster Art bedeutet.
Da die magnetische Verteilung in Punkten, die bezüglich der 

Ebene -fr = st/2 spiegelbildlich liegen, bis aufs Vorzeichen dieselbe 
sein soll, so fallen die geraden Indizes in (124) fort, es bleibt

CC 1
*--L Ve

r = 0 I
(cos #) f),(124') 2r + l *2 i+l

wo die C gegebene Konstanten sind.
Um zu sehen, inwieweit dieser Magnet durch zwei punktförmige 

magnetische Mengen + m auf der Magnetachse im Abstande + i vom 
Mittelpunkt ersetzt werden kann, berechnen wir auch das Potential 
dieser Anordnung. Es ergibt sich

h z3,+1
_ß2h+i)

Die beiden ersten Glieder von (125) sind immer mit denen von 
(124') durch geeignete Wahl von m und l zur Deckung zu bringen, 
wenn man nämlich setzt

1 \   m "Vt
r7/ ~7t jLJ (cos 9-).(125) V

x 2 >■ + 1
r = 0

G. Wiedemann, Ann. Phys. Chem. (2) 120 (1865), p. 8; v. Ettingshausen, Anu. Phys. 
Obern. (3) 17 (1882), p. 304; Wien Ber. (2) 962 (1887), p. 777; Eaton, Amu 
Phys. Chem. (3) 15 (1882), p. 225; Schuhmeister, Wien Ber. (2) 832 (1881), p. 46; 
S. Henrichsen, Ann. Phys. Chem. (3) 34 (1888), p. 180.

117) C. E. Gauß, Werke 5, Göttingen 1877, p. 79; Ostwalcls Klassiker
Kr. 53.

118) Dorn, Ann. Phys. Chem. (3) 35 (1888), p. 270.



2 ml — Ct, 2mlz — Cs.
Nur wenn man sich auf die beiden ersten Glieder als Näherung 

beschränkt, sind Pole von bestimmter Lage und Stärke für den 
Magneten anzugeben. 6\ — m ist das (freie) magnetische Moment des 
Magneten1183).

Gauß nennt einen Punkt auf der Linie fr = 0 oder -fr = % in 
der ersten Hauptlage befindlich, in der Ebene fr = jt/2 in der zweiten 
Hauptlage befindlich.

Bildet der um eine vertikale Achse drehbare Magnet mit hori­
zontaler Magnetachse den Winkel <p mit der Horizontalkomponente 

des gleichförmigen Feldes so ist nach (123') das Drehmoment
ib — — 1 nt ] • I ' • sin <jn.
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(126)

Die Direktionskraft - und damit j m j • ; $Qh j kann man durch Be­
obachtung der Schwingungsdauer des Magneten um seine Gleich­
gewichtslage bestimmen.

Durch die Ablenkungen eines kleinen Hilfsmagneten ergibt sich
m!j-, so daß man nt und einzeln kennt119).Vi

Bei der Behandlung der Theorie des Kompasses ist es notwen­
dig, den von der Erdkraft in den Eisenteilen des Schiffes induzierten 
Magnetismus sowie den permanenten Magnetismus der Eisenmassen 
zu berücksichtigen. Nimmt man die Permeabilität des Eisens bei 
den schwachen in Betracht kommenden Feldstärken des Erdfeldes 
als konstant an, so überlagern sich die von den einzelnen Komponenten 
des Erdfeldes durch Induktion erzeugten Felder einfach. In der Theorie 
des Schiffsmagnetismus wählt man gewöhnlich die #-Achse in Richtung 
der Längsachse des Schiffes (positiv nach vom), die y-Achse nach Steuer­
bord (rechte Seite des Schiffes), die £-Achse kielwärts. Dann ist an 
der Stelle des Kompasses

X' = X + aX -f &r-f cZ+P, 
r= Y+dX + eY+fZ+Q,
Z = Z + gX+ hY+kZ+R.

X', Y', Z' sind die Komponenten der auf den Kompaß tatsächlich 
wirkenden Feldstärke, X, Y, Z die der ungestörten Stärke des Erd­
feldes, wie es bei Abwesenheit des Schiffes vorhanden wäre; P, Q, B

(127)

118a) Vgl. E. Rieclce, Ann. Phys. Cliem. (2) 149 (1873), p. 62; (3) 8 (1879),
p. 299.

119) Ausführliches über die Theorie des Erdmagnetismus findet man bei 
E. Mascart, Traité de magnétisme terrestre, Paris 1900.
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sind die durch den permanenten Magnetismus hervorgerufenen Feld­
stärken. Die Größen a,b,...k sind in jedem Schiffe Konstanten, die 
durch die Verteilung und durch die physikalische Beschaffenheit des 
weichen Eisens bestimmt sind. (127) ist die von Poisson1*0) auf- 
gestellte Grundgleichung der Kompaßtheorie, aus ihr folgen alle für 
die Nautik wichtigen Beziehungen für die Kompaßabweichungen120 121).

Führt man in (127) die Horizontalintensität der tatsächlich 
vorhandenen Feldstärke, ein, nennt man Ç resp. £ den Kompaßkurs 
resp. magnetischen Kurs des Schiffes, d. h. die östliche Abweichung 
der Fahrtrichtung vom Norden der Kompaßrose resp. vom mag­
netischen Meridian und setzt man

t - r -
so daß ó die östliche Deviation der Nadel aus dem Meridian be­
deutet, so gilt, wenn die Koeffizienten a bis k unendlich klein sind,
(128) Ö = 2t + «8 sin £' -f © cos £' + 2) sin 2 £' + @ cos 2 £'.

33 sin £' und (5 cos Ç wechseln, wenn der Kompaßkurs £' zwischen 
0 und 2% variiert, je einmal das Zeichen, deshalb nennt man diese 
Glieder die semizirkulare Abweichung; © sin 2£' und © cos 2 £' wechseln 
dagegen zweimal das Zeichen, sie heißen die quadrantale Abweichung.

31, 2), © sind auf einem Schiffe Konstanten, während $8 und © 
mit dem Ort des Schiffes auf der Erde variieren, da sie Funktionen 
der magnetischen Inklination und Horizontalintensität sind.

P, Q und 11 werden durch permanente Magnete, a bis k durch 
weiche Eisenstäbe in der Nähe des Kompasses kompensiert122).

29. Magnetische Doppelschichten123). Für die Theorie der elek­
trischen Ströme ist eine besondere Art von Magneten wichtig: eine 
sehr dünne Schale, deren Flächenelemente dö heißen, von der Dicke 
h und der Permeabilität /ł, sei normal zur Schale magnetisiert. Die 
Magnetisierung sei 90V

120) Poisson, Mém. de l’inst. 5 (1824), p. 533; 16 (1838), p. 479.
121) Eingehend behandelt von F. J. Evans und A. Smith, Admiralty manuał 

for the déviations of the compass (7. Aufl.), London 1901; s. auch C. H. Wind, 
Magneetkracht en electriciteit, Leiden 1903, p. 381—396 und Anm. 119; E. JRottok, 
Die Deviationstheorie und ihre Anwendung in der Praxis (2. Aufl.), Berlin 1903, 
p. 43; Der Kompaß an Bord, herausgeg. v. d. deutschen Seewarte (2. Aufl.), Ham­
burg 1906; Lehrbuch der Navigation, herausgeg. vom Reichsmarineamt (2- Aufl.) 
1, Berlin 1906, p. 53.

122) Wegen der Lage der Eisenstäbe vgl. die Rechnungen bei Maxwell, 
Treatise 2, Art. 441 und die Abbildungen bei Wind (Anm. 121).

123) Vgl. Potentialtheorie Art. Burkhardt-Meyer, Il A 7 b, Nr. 6.



wenn a der körperliche Winkel ist, unter dem die Doppelschicht vom 
Aufpunkte aus erscheint.

Aus (131) ergibt sich der konstante Sprung 0 des Potentials 
beim Durchschreiten der Doppelschicht.

Hat man zwei Doppelschichten 0L und 02, so ist
U — --- <Wil2 = — <Vi2l,(132)

wo qx2 die Anzahl Erregungslinien sind, die die erste Doppelschicht, 
wenn 0X — 1 ist, durch ff2 schickt. Eine für die Theorie der Ströme 
(wechselseitiger Induktionskoeffizient) wichtige Formel von F. Neu­
mann ist

• dë8)(133) *= Uit = 4 7t t i

wo sx und s2 die Kandkurven der Doppelschichten sind134).
30. Kristalle. Die Anfänge einer theoretischen Behandlung 

rühren von Poisson™) her; als dann Pliickcr124 125 126) die experimentelle 
Grundlage geschaffen hatte, arbeitete W. Thomson127) eine Theorie 
aus, die der in Nr. 21 gegebenen entspricht.

I(129) 0 =

heißt die Stärke der Schale. Im folgenden nehmen wir den für die 
Theorie der elektrischen Ströme einzig interessierenden Fall an, daß 
0 für die ganze Fläche konstant ist.

Für die wechselseitige Energie der Doppelschicht (Stärke 0U 
Fläche ax) und eines beliebigen Feldes (Stärke §2) folgt

(130)
58' ist durch (111) definiert.

Dieser Ausdruck ist nur von der Randkurve abhängig. Führt 
man die freie Magnetisierung der Doppelschicht ein, so folgt
wegen (115' ) und (117)

. • f*
da = 0r(131) 4 7t '

124) Ygl. Femwirkung Art. R. Reiff und A. Sommerfeld, V 12, Nr. 5.
125) Poisson, Mém. de l’acad. 5 (1821), p. 247, 488; 6 (1823), p. 441; Aun. 

Phys. Chem. (2) 1 (1824), p. 301; 3 (1825), p. 429.
126) J. Plücker, Ann. Phys. Chem. (2) 72 (1847), p. 315.
127) W. Thomson, Phil. Mag. (4) 1 (1851), p. 177; Reprint Art. 004. Man 

vgl. auch A.Becr, Einleitung in die Elektrostatik, Braunschweig 1865, p. 221; 
P. Duhem, Anin. 101“) ; W. Voigt, Die fundamentalen physikalischen Eigen­
schaften der Kry stalle, Leipzig 1898.
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30. Kristalle. 31. Ferromagnetische Körper. 347

Nach der (109) entsprechenden Formel hat Stetiger128) die Diffe­
renz der Permeabilitäten von Kristallen in verschiedenen Richtungen 
bestimmt.

Sehr viel komplizierter wird das Problem, wenn die Permeabilität 
g nicht mehr konstant, sondern von der Feldstärke abhängig ist, in 
den sogenannten ferromagnetischen Kristallen. Für die induzierte 
Magnetisierung macht Voigt129) den Ansatz

WJ = [,«! — 1 + /i]

= £>. [u3 — 1 + fs\:
<134)

wo die f Funktionen der Komponenten von § sind und zwar bei 
zentrisch-symmetrischen Kristallen gerade Funktionen; von diesen 
nehmen wir an, daß sie sich als Reihen darstellen lassen, die sich 
z. B. für das reguläre System wesentlich vereinfachen.

Es wird dann nämlich

<134') sy-©>-1 - W-hhr—•), 
w;=& (fi-1 - \ &*-**$■- *8&4 - *4®,' $2-W--)•

Bei Berücksichtigung höherer Glieder findet also keine Isotropie 
mehr statt.

Auf Grund dieser Theorie, die Voigt auch auf nicht zentrisch-sym­
metrische Kristalle mit drei einander gleichwertigen aufeinander senk­
rechten zweizähligen Achsen erweitert, wird die Influenz in Ellip- 
soiden berechnet zur Diskussion der Versuche von Weiß129a).

31. Ferromagnetische Körper. Bei ferromagnetischen Körpern 
ist g Funktion von |§ . Von diesem Ansatz aus hat Cohn130) die 
Theorie entwickelt. Aus den Grundgleichungen der Maxwell'sehen 
Theorie folgt, daß

$

0

4' »
H'„. =fdsf{§ ■ dp$)<135)

128) F. Stenger, Ann. PhyB. Chem. (3) 20 (1883), p. 304; 35 (1888), p. 331.
129) W. Voigt, Gött. Nachr. 1900, p. 331; 1903, p. 17; Phys. Zeitschr. 4 (1903), 

p. 136; siehe auch S. Sano, Phys. Zeitschr. 4 (1903), p. 8; Wallerant, Paris 
C. R. 133 (1901), p. 630.

129°) P.Weiß, Paris C. R. 138 (1904), p. 35; 140 (1905), p. 1532 und p. 1587; 
J. de phys. (3) 5 (1895), p. 435; (4) 3 (1904), p. 194; 4 (1905), p. 469). In diesen 
Arbeiten finden sich auch thermodynamische Betrachtungen über die Magneti­
sierung von Kristallen.

130) E. Cohn, Elm. Feld, p. 510.



Für das magnetostatische Feld bleiben Ia' und IIa besteben. Da 
aber p — f( j § j ) ist, so sind die Gleichungen nicht mehr linear, die 
Superposition zweier Felder findet 
folgt für die Spannungen

V 16. B. Gans. Elektrostatik und Magnetostatik.348

nicht mehr statt. Aus (135)

s.-?•&-/((*$ •<*$).
«

■ d$)> 

f>
/ • d§),

^7/ ^*Par*Py?(136)

r = «ô2 — ^2

= X = fi#.#,,4 * - »,

d. h. auf eine zu § senkrechte Fläche wirkt der normale Zug

— / (u^p • nf^p) — f (ÏQ ' c/u£)). und auf jede zu parallele Fläche- 
o o

y
ein normaler Druck /(g£) • cü^)). Die Hauptspannungen sind also

o
nicht mehr numerisch gleich.

Die Kraft auf die Volumeinheit ist

Qm§ —J (,$d$) grad .a-f—(94i)

Hier sind die Differentiationen von u bei örtlich konstant ge­
dachtem Q vorzunehmen.

32. Hysterese. Ist die Induktion 33 nicht durch den augenblick­
lichen Wert von § gegeben, sondern sind frühere Werte von mit 
maßgebend, so wird, wenn ,*p und 33 einen Zyklus von Werten 
genommen haben, die Energiemenge131)

an-

(/)(«> •<**) = -(/') (»■<*$)(137)

pro Volumeneinheit als Hysterese wärme abgegeben. Hier bedeutet 
( / j, wie in der Thermodynamik üblich, das über den durchlaufenen 
Zyklus erstreckte Integral. Diese Größe ist immer positiv, da wach­
senden £) kleinere 33 entsprechen als abnehmenden. Eingehend können 
wir die Hysterese nicht behandeln, einerseits da sie aus dem Rahmen 
der Statik, dann aber auch, weil sie aus dem der Maxwell'sehen Theorie^ 
herausfällt. (137) ist die einzige allgemein gültige Beziehung.

181) Warburg, Ami. Phys. Cbem, (8) 13 (1881), p. 14=0.



Man unterscheidet statische Hysterese, Wechselstromhysterese 
und Rotationshysterese ; bei ersterer ändert sich die Feldstärke nur 
sehr langsam, bei den beiden letzteren im allgemeinen schnell, und 
zwar bleibt bei der Wechselstromhysterese die Feldrichtung konstant, 
es variiert nur die Amplitude, während bei der rotierenden Hyste­
rese die Stärke des Feldes konstant bleibt und nur die Rich­
tung sich ändert. Literaturangaben und Kritisches findet man bei 
M. Wien132), ein Referat über den Stand der Frage bei Warburg133).

Weitere Ausführungen über Hysterese bringt der Art. Y 17 von 
H. du Bois.

32. Hysterese. 349

132) M. Wien, Ann. Phys. Chem. (3) 66 (1898), p. 859.
133) E. Warburg, Rapports Congrès internat, de phys. 2, (Paris 1900), 

p. 509 und Phys. Zeitschr. 2 (1901), p. 367.

(Abgeschlossen im Oktober 1906.)
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an

1. Maxwellsches Spannungssystem im Dielektrikum. Der zu­
erst von Faradoy ausgesprochenen Vorstellung, daß die scheinbaren 
Fernwirkungen zwischen elektrisch geladenen Körpern auf einen 
Spannungszustand im dielektrischen Zwischenmedium zurückzuführen 
seien, hat Maxicell*) einen exakten mathematischen Ausdruck ge­
geben, indem er zeigte, daß sich in der Tat ein Spannungssystem an­
geben läßt, welches die dem Coulombschen Gesetze entsprechenden 
ponderomotorischen Kräfte liefert und zugleich der Bedingung genügt, 
daß sich die Spannungen an jedem von elektrischer Ladung freien 
Volumelement eines homogenen Dielektrikums das Gleichgewicht 
halten, — einer Bedingung, ohne welche ein solcher Spannungs­
zustand in einem flüssigen oder gasförmigen Medium gar nicht 
denkbar wäre. Jenes Spannungssystem besteht in einem isotropen 
Medium aus einem Zug parallel den elektrischen Kraftlinien und 
einem gleich grossen Druck in allen zu letzteren senkrechten Rich­
tungen; das Maß für diesen Zug bezw. Druck ist Af®1 2, wrenn e die 
Dielektrizitätskonstante, (£ die elektrische Feldstärke in absolutem 
elektrostatischem Maße bezeichnet. (Vgl. H. A. Lorentz, Maxwellsche 
Theorie, V 13, Nr. 22.) Ein ganz analoges Spannungssystem ist den 
ponderomotorischen Kräften in einem magnetischen Felde äquivalent, 
soweit dieses nur isotrope, nicht ferromagnetische Körper ohne per­
manenten Magnetismus enthält.

Das allgemeinere Spannungssystem, welches in einem kristallini­
schen Medium (und mit Berücksichtigung der etwaigen Änderung der 
Dielektrizitätskonstante bezw. magnetischen Permeabilität durch De­
formation des Mediums) anzunehmen ist, hat zuerst H. Hertz*) (für

1) Maxwell, Treatise 1, § 105—111.
2) H. Hertz, Ann. Phys. Cliem. 41 (1890), p. 389.



den Fall des magnetischen Feldes) aufgestellt; seine Ableitung ist in 
etwas modifizierter Weise in dem genannten Artikel Lorentz V 13, 
Nr. 23 wiedergegeben. Ein anderer Weg, den zuerst Hdmholtz8), 
dann Kirchhoff4) und Lorherg5) zur Berechnung der Spannungen in 
isotropen Körpern mit durch Deformationen veränderlicher Dielektri­
zitätskonstante eingeschlagen haben, führt in folgender Weise zu dem 
Spannungssystem in einem kristallinischen Dielektrikum.

Man berechne die durch beliebige, aber stetig verteilte virtuelle 
Verrückungen dt>;e, dby, â'og der materiellen Punkte des Dielektrikums 
erzeugte Variation der elektrischen Energie. Die letztere kann 
man, indem man zunächst alle etwa vorhandenen Unstetigkeitsflächen 
des Mediums durch stetige Ubergangsschichten und alle flächenhaften 
Ladungen durch dünne Schichten mit stetig variierender Baumdichte q 
ersetzt denkt, durch ein Raumintegral über den ganzen unendlichen 
Raum darstellen. Eine solche Form ist (vgl. Art. Gans über Elektro­
statik und Magnetostatik V 15, Nr. 6) QcpdS, eine andere -V/(® • dS, 

wo (gemäß den im Art. Lorentz V 13 eingeführten Bezeichnungen) cp das 
elektrische Potenial, £) = (e)@ die elektrische Erregung ist. Für den 
vorliegenden Zweck ist es nun bequemer, nach dem Vorgänge von 
Hdmholtz (1. c.) den durch Kombination der beiden vorstehenden 
gebildeten Ausdruck
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jw;ds =j {99 - • ®)} ds(i)

zu benutzen, weil derselbe infolge der für cp geltenden Differential­
gleichung

div (s) grad cp — — q

die Eigenschaft besitzt, bei einer beliebigen Variation des Potentials 
allein ungeändert zu bleiben, wenn man von einem elektro­
statischen Gleichgeivichtszustande ausgeht. Man kann daher ohne 
Beeinträchtigung der Allgemeinheit bei der Berechnung von dW' 
das Potential cp von der Variation ausschließen, oder, mit 
anderen Worten, das Feld bei der Vornahme der virtuellen Ver­
rückungen dt) als ungeändert bleibend ansehen. Die Variation von 
W' wird sich demgemäß aus drei Teilen zusammensetzen, die her­
rühren: 1) von der Veränderung der elektrischen Raumdichte, die ge-

3) Hdmholtz, Ann. Phys. Chem. 13 (1881), p. 385; Berlin Sitzungsber. 1881,
p. 191.

4) Kirchhoff\ Berlin Sitzungsber. 1884, p. 137; Ann. Phys. Chem. 24 
(1885), p. 52.

5) H. Lorherg, Ann. Phys. Chem. 21 (1884), p. 300.



geben ist durch öq — — div pdt); 2) davon, daß an eine bestimmte 
Stelle x, y, z des Raumes und somit des als unverändert ange­
nommenen Feldes ein anderes Massenelement gelangt, nämlich das­
jenige, welches sich vorher am Orte x — d'ox, y— dö„, z— be­
fand; 3) von den Veränderungen, welche die dielektrischen Konstanten shk 
(vgl. Art. Lorentz V 13, Nr. 8 und 22b) infolge der Verrückungen ö'ox, 
düÿ, dü, erleiden. Diese Änderungen dshk sind selbst von zweierlei Art. 
Erstens ändern sich nämlich die ehk durch die Drehung dr = rot (dö), 
welche das Massenelement infolge des Verrückungssystems erfährt, 
weil sie abhängig sind von der Orientierung des Koordinatensystems 
gegen die elektrischen Symmetrieachsen des Dielektrikums, d. h. gegen 
diejenigen Richtungen, in bezug auf welche sich die Koeffizienten thk 
der symmetrischen linearen Vektorfunktion ® = (f)@ auf £n, f22, «3y 
reduzieren (vgl. Art. Abraham: Geometrische Grundbegriffe IV 14 
Nr. 22); zweitens werden sie im allgemeinen auch durch die 
Deformation des Massenelements, welche mit dem Verrückungs­
system verbunden ist, geändert werden. Diesen etwaigen Einfluss 
einer Deformation auf die Dielektrizitätskonstanten wollen wir 
jedoch vorerst von der Betrachtung ausschließen, und die Anteile 
der gesamten Spannungen, welche dadurch zunächst vernachlässigt 
werden, nachträglich (in Nr. 3) gesondert untersuchen. Dann sind 
diedfAi. also lediglich die durch unendlich kleine Drehungen Öix, ÖvtJ, dr, 
des Massenelements gegen die festen Koordinatenachsen bedingten 
Änderungen der shk, für welche man aus deren Transformations­
formeln (cf. Art. Abraham IV 14, p. 42, 28) leicht findet:

== 2(«i3dry — £12dr,),

^£23 — (£22 ----  %) ----  £12^ry H” £13^V>
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Dabei bestimmen sich die Drehungskomponenten aus den Ver­
rückungen gemäß den Formeln (vgl. Art. Abraham IV 14, Nr. IG): 

ddüz döt>y 
dy dz

dS üx däüz
dz 8x

*t„-ł( )’ 4t, —*(

dy )

Man erhält nun durch Zusammenfassung der genannten drei 
Variationen zunächst:
» jW;dS =J { - <p div (ęóO) + i (grad (g • î»r ,

+ 2 ---- £33^r.E — £12^rÿ + f13^V) H--------]} ^S,
Encyklop. d inath. Wissenscii. V 2.

• dü)oonst

(2)

23



wo der Index y = const. bedeutet, daß sich die Differentiation nur 
auf die shk erstrecken soll. Indem man nun die Glieder, welche 
Differentialquotienten der Verrückungen als Faktoren enthalten, durch 
partielle Integration umformt, kann man die rechte Seite auf die
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Form —J -f- -f- ^.ö\)z}dS bringen, wobei sich ergibt:

8,-»•.-Trat®-®), = COUBt.

(3) «.»«)}.

Nach dem Energieprinzip und dem Prinzip der virtuellen Ver­
rückungen sind dann $y, die Komponenten der auf die 
Volumeinheit des Dielektrikums wirkenden Kraft. Ersetzt man hierin 
noch q durch div ® (gemäß Gl. VI' in V 13, Nr. 11), so kann man nach 
einfacher Umformung (wobei die Gleichung rot @ = 0 zu benutzen 
ist) schreiben

s.-£(®-®-
+ \lj (®A+®. ®») + 4-1 (*.». + ® J -

2 (®,®))

und die Komponenten der auf die Volumeinheit des Dielektrikums 
wirkenden ponderomotorischen Kraft sind somit in der Form ge­
wonnen:

dAZ
er __ i ÖAy i __ ^

"y — dx + ’Jy + ~dJ’(4)

dc de d°z
+ Jy + Tz>dx

wobei gilt
' 4.-=K®.®.-«,®,-®.®,).- 
Ą = ł(®f®, - ®.®. - ®,®„), 
a = 4(8,æ, - e.æ, - e,®,). 
B.-c,- K®,®. + ®.®,)> 
c*=-A = ł(®,®, 4- ®»®,),

. A,== ł(®«®, + ®,®„)-

(5)

Diese Darstellung gestattet aber die Deutung, daß die resul­
tierende ponderomotorische Kraft von einem Spannungszustand des 
Dielektrikums herrühre, dessen 0 Komponenten — in der nach



Kirchhoff üblichen Weise bezeichnet6) (vgl. IY 14, Nr. 19) 
die vorstehenden Größen Ax, ... Bs, ... sind, welche nur von dein 
Felde und den dielektrischen Konstanten des Mediums an der be­
trachteten Stelle abhängen, wie es der Vorstellung der Feldwirkung 
entspricht. — Für isotrope Medien, wo wird, gehen obige
Ausdrücke über in

1. Maxwellsches Spannungssystem im Dielektrikum. 355

(5')

das sind aber (wie man sofort erkennt, wenn man eine Koordinaten­
achse parallel der Feldrichtung legt) in der Tat die Komponenten 
eines Zuges (S2 parallel den Kraftlinien und eines gleichgroßen 
Druckes senkrecht zu denselben, also des für diesen Fall von Maxwell 
abgeleiteten Spannungssystems7). Die Gleichung (3) reduziert sich 
hier auf

3f = so© - W- grad 
woraus ersichtlich ist, daß auf das Innere eines homogenen isotropen 
Dielektrikums, sofern es keine wahre Ladung trägt, keine pondero- 
motorische Kraft wirkt.

Es möge noch hervorgehoben werden, daß die vorstehende vollstän­
dige Zurückführung der ponderomotorischen Kräfte auf ein System von 
Spannungen keineswegs notwendig ist, um die Erscheinungen der Elektro- 
striktion, d. h. der Deformation dielektrischer Körper im elektrischen 
Felde, zu erklären, und daß also auch nicht aus diesen Erscheinungen 
auf die Existenz der Maxwellschen Spannungen geschlossen werden 
kann. Nach der Fernewirkungstheorie würden die ponderomotorischen 
Kräfte (3) zum einen Teil herrühren von den nach dem Coulomb sehen 
Gesetz auf die wahren und die influenzierten oder scheinbaren elek­
trischen Ladungen ausgeübten Fernewirkungen, zum anderen Teil 
aber ebenfalls von Spannungen, die jedoch nur im ponderabcln Dielek-

(3')

6) Wir weichen hier, um mit der Lorentzschen Darstellung in V 13 Nr. 23 
und V 15 Nr. 89 in Übereinstimmung zu bleiben, von der Kirchhoffschen Be­
zeichnung allerdings hinsichtlich des Vorzeichens ab, indem wir einen Zug, nicht 
einen Druck, positiv rechnen.

7) Für den allgemeinen Fall, daß die Erregung nicht in die Feldrichtung 
lallt, hat Maxwell ein Spannungssystem angegeben (Treatise 2, § 641, 642), 
welches von dem obigen darin abweicht, daß nicht Bz — Cy, Cx —Az, Ay = Br 
ist. Diese Abweichung kommt daher, daß Maxwell diejenigen Anteile der 
Spannungen nicht berücksichtigt hat, welche infolge des Zusammenhanges des 
Mediums aus den auf die Yolumelemente ausgeübten Drehungsmomenten [3) • 
resultieren. (Vgl. auch V 13, Nr. 23, S. 110.)

23*
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trihum vorhanden wären8). Diese letzteren Spannungen werden aus 
den unter (5) angegebenen erhalten, indem man von denselben die­
jenigen Spannungen subtrahiert, welche nach der Feldwirkungstheorie 
in dem gleichen Felde im freien Äther anzunehmen wären und aus 
den Ausdrücken (5) durch Gleichsetzung von 2) mit (5 hervorgehen. 
Speziell in isotropen Medien sind also die auch nach der Ferne­
wirkungstheorie im ponderabelen Dielektrikum wirkenden Spannungen 
gegeben durch

(6) -4/ = ^=i(2?/ = c/ = o-

Beispielsweise folgt aus (4) und (5), daß auf die zu den Kraft­
linien senkrechte Grenzfläche zweier verschiedener Dielektrika (unter­
schieden durch die Indizes x und 2) der Druck

oder -i(l-Ł)ą*

wirkt. Derselbe ist nach der Feldwirkungstheorie die Differenz der
Drucke — ^ Giq2 und---- y-@22, nach der Fernewirkungstheorie da-

2
2 1

und — t> 1 ©22 und aus der durch -f- ®2)(®2 — ®i) gegebenen
Coulombschen Fern Wirkung auf die an der Grenzfläche influenzierte Be­
legung von der Dichte (Gs2 — (Sq). Ist die Grenzfläche der Dielektrika da­
gegen den Kraftlinien parallel, so trägt sie keine influenzierte Ladung, 
und in der Tat wird dann die Differenz der beiderseitigen Drucke die­
selbe, sei es, daß man diese nach (5') oder (6) berechnet, wTeil das 
Feld dann auf beiden Seiten der Grenzfläche übereinstimmt.

2. Die Bedeutung der Maxwellschen Spannungen für die 
Elektrostriktion. Wenn es nun auch für die Wirkungen der pon- 
deromotorischen Kräfte gleichgültig ist, ob man dieselben ganz oder 
nur teilweise auf Spannungen der Dielektrika zurückführt, so hat die 
erstere Auffassung doch den Vorzug der Einheitlichkeit und grösseren 
Einfachheit und soll daher im folgenden zugrunde gelegt werden.

Die Einführung des den ponderomotorischen Kräften äquivalenten 
Spannungssystems erweist sich besonders zweckmäßig zur Berechnung 
der Oberflächendrucke, welche sich ergeben, wenn man die bisher 
vorausgesetzten stetigen Übergangsschichten unendlich düuu werden,

gegen setzt er sich zusammen aus der Differenz der Drucke

8) Es ist wohl zu beachten, daß man durch Einführung der scheinbaren 
elektrischen Ladungen wohl dem Einfluß des Dielektrikums auf das Feld voll - 
ständig Rechnung tragen kann, aber die ponderomotorischen Kräfte nur insoweit 
richtig erhält, als es sich um ihre Gesamtwirkungen auf starre Körper handelt.
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also in Diskontinuitätsflächen (Trennungsflächen verschiedener Dielek­
trika oder eines Dielektrikums und eines Konduktors) übergehen 
läßt. Denn die Komponenten der auf die Flächeneinheit der Grenze 
zwischen einem Medium (1) und einem anderen (2) wirkenden Kraft 

sind einfach gegeben durch

W3L, = -Ä.-^,, 3 — — .B, — B, , g. --------C„ — 0 i’i’Vl12
wo nt,n2 die äußeren Normalen für die beiden Medien bedeuten, und 
An usw. sich in bekannter Weise durch die Ax, ... A ausdrücken, 
z. B. An — Ax cos (n, x) -(- A cos («, y) -f- Az cos (n, z) ist. Bei der Be­
rechnung der Ax, ... ist zu berücksichtigen, daß die tangentialen 
Komponenten der elektrischen Feldstärke, und für Grenzflächen, die 
keine wahre Ladung besitzen, auch die normalen der elektrischen Er­
regung beiderseits übereinstimmen. Ist das angrenzende Medium ein 
Konduktor, so sind dort Ax,... Ay sämtlich Null zu setzen, und da 
die Kraftlinien die Konduktoroberfläche senkrecht treffen, so wirkt auf 
dieselbe die volle Spannung parallel den Kraftlinien, d. i. in einem 
isotropen Dielektrikum ~ ©2, als normaler Zug. Aber auch an Grenz­
flächen zweier isotroper Dielektrika, die keine wahre Flächenladung 
besitzen, ist der resultierende Oberflächendruck stets normal gerichtet, 
auch wenn die Kraftlinien die Grenzfläche schiefwinklig treffen. 
Denn legt man die #-Achse in die Normale nx der Oberfläche des 
Mediums (1), und berücksichtigt, daß dann = e3®Ti und

= ©^, ©^ = ©2j ist, so erhält man aus (5'):

(.4., + - aXi = (ąs + Li äjj)

K + K = o, c%+c„, = o,
■ 0')

d. h. es wirkt auf die Grenzfläche ein normaler Druck von vor­
stehendem Betrage, und zwar ist derselbe von (1) gegen (2) hin ge­
richtet, wenn % > f2 ist.

Aus diesem Oberflächendruck erklären sich die bekannten Bewegungs- 
tendenzeu ungeladener dielektrischer Körper im elektrischen Felde (vgl. 
Art. Gans über Elektrostatik V 15, Nr. 18, 19). Außer diesen resultieren­
den Kräften und Drehungsmomenten wird aber ein solcher Körper im all­
gemeinen Deformationen erleiden, und diese sind es, mit denen wir es im 
vorliegenden Abschnitt allein zu tun haben. Um dieselben zu bestimmen, 
hat man die durch (4) und (7) gegebenen Volum- und Oberflächen­
kräfte 5 bezw. elektrischen Ursprungs als äußere Einwirkungen



in die Bedingungen des elastischen Gleichgewichts einzusetzen; dies 
ergibt, falls andere äußere Kräfte fehlen, für jeden Punkt im Innern 
die Gleichungen:

dXx dXÿ+ +(8) dydx X 1
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und für jede Stelle der Grenzfläche zweier Medien (1), (2):

Xni + ;(9)

worin die Xx)... Xnf ... die elastischen Spannungen bedeuten (über 
das Vorzeichen vgl. Anm. 6, S. 355).

Man könnte versucht sein, diese Gleichungen einfach durch die
Annahme

= -A ; Yz = -Bs,...■Xi • • -1

zu lösen, also die Deformationen, die wir nach Kirclihoff mit 
xx1 ... yn ... bezeichnen, aus den durch (5) gegebenen Ax, ..B... 
gemäß den Formeln

— Xx = 'hl Ar + S12 Ą + S13^z 4- hi A + hÆ + ht; A,

zu berechnen, wo die shk die bei Auflösung der Grundgleichungen der 
Elastizitätstheorie (Gl. (49) in dem Art. Abraham IV 14) nach den Defor­
mationskomponenten auftretenden Koeffizienten sind. Diese Annahme, 
welche bedeuten würde, daß die Maxwellschen Spannungen in jedem 
Volumelement des Dielektrikums durch entgegengesetzt gleiche elastische 
Spannungen kompensiert würden, ist aber, von ganz speziellen Fällen 
abgesehen, deshalb nicht zulässig, weil die so berechneten Deformations­
komponenten xx,... y2,... im allgemeinen nicht denjenigen 6 Bedingungs­
gleichungen (Gl. (33) im Abrahamschen Art. IV 14, Nr. 18) genügen 
würden, welche zwischen ihnen zufolge ihrer Definition (ebenda 
IV 14 (32)) durch die ersten Differentialquotienten der Verrückungen 

t)2 nach x, y, z stets bestehen müssen; auch würden die ihnen 
entsprechenden öT, üy, ü. meist mit gewissen für die Oberfläche des 
Dielektrikums zu stellenden Bedingungen (Befestigungsbedingungen) 
unvereinbar sein. Für Flüssigkeiten ist die Unzulässigkeit der An­
nahme Xx — — Ax usw. ohne weiteres klar, da in solchen im Gleich­
gewichtszustände keine anderen Spannungen elastischen Ursprungs, 
als ein allseitig gleicher Druck, bestehen können, insbesondere also 
nicht solche, die das Maxwellsche Spannungssystem kompensieren 
würden.



Noch verkehrter wäre es, die Deformationen gemäß den linearen 
Grundgleichungen der Elastizitätstheorie aus den Maxwellschen 
Spannungen Ax)... selbst (statt aus — Ax, ...) zu berechnen. Ob­
gleich dies selbstverständlich ist, da ja die Maxwellschen Spannungen 
nicht elastischen, sondern elektrischen Ursprungs sind, so scheint ein 
Hinweis auf dieses mögliche Mißverständnis doch angebracht, da das­
selbe bisweilen zu Einwänden gegen die Zulässigkeit der Maxwell­
schen Anschauung von der Feldwirkung Anlaß gegeben hat9).

3. Spannungen, welche durch die Veränderlichkeit der di­
elektrischen Konstanten bedingt werden. Wie zuerst Helmholtz19) 
für Flüssigkeiten, dann Kirchhof/'11) für isotrope feste Körper gezeigt 
hat, bedürfen die Maxwellschen Spannungen einer Ergänzung, wenn 
die dielektrischen Konstanten des Mediums sich durch Deformationen 
desselben ändern würden. Daß eine solche Veränderlichkeit des 
dielektrischen Verhaltens bei allen ponderabeln Körpern existieren 
wird, ist in hohem Grade wahrscheinlich; für einige Substanzen ist 
sie auch durch direkte Versuche nachgewiesen worden12).

Man kann nun die Änderungen der dielektrischen Konstanten 
jedenfalls in erster Annäherung den Deformationskomponenten pro­
portional setzen und demgemäß die 36 Differentialquotienten

^Xx
d £a

dl±i =
• • dxy —= 12? •

= Ö-- ^21 ? 26 ?(10) dxx

3. Spannungen infolge veränderlicher Dielektrizitätskonstanten. 359

o±it OJis= Ô = Öda:,,ï>X.r 61 ?

als neue individuelle Konstanten des Dielektrikums einführen. Bei 
einem asymmetrischen Kristall sind dieselben sämtlich voneinander 
unabhängig (insbesondere brauchen, im Gegensatz zum System der Elasti 
zitätskonstanten, die Konstanten mit vertauschten Indizes nicht einander 
gleich zu sein). Besitzt das Medium Symmetrieeigenschaften, so ver­
ringert sich die Zahl der unabhängigen d und zwar ordnen sichhkt

9) So z. B. ancheinend bei H. Poincaré, Electricité et optique, 1, chap. IV. 
Maxwell selbst warnte ausdrücklich vor diesem Mißverständnis (Treatise 1, § 110).

10) Berlin Sitzungsber. 1881, p. 191.
11) Berlin Sitzungsber. 1884, p. 187.
12) So für Kautschuk von O. M. Corbino und F. Cannizzo (Rom Line. Rend. (5) 

7* (1898), p. 286) und A. Lampa (Wiener Anz. 1902, p. 223), für Glas voi\ Corbino 
(N. Cim. (4) 4 (1896), p. 240) und A. Wüllner u. M. Wien (Ann. Phys. 11) 
(1903), p. 619), für Ebonit von U. Panichi (N. Cim. (4) 8 (1898), p. 89).
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die 32 kristallographischen Symmetrieklassen nach dem System dieser 
Konstanten in 9 verschiedene Gruppen18). Für isotrope Körper wird

= <*32 - àdji — d 22 d33 0), di2 d21 — 013 — ô81 — Ö 27

--  ^55 --  ^66 -- ^2)7

während alle übrigen dhk verschwinden; von den beiden übrigbleiben­
den Konstanten d1} d.2 bestimmt die erstere die Änderung der Di­
elektrizitätskonstante durch eine Dilatation parallel den Kraftlinien, 
die letztere diejenige durch eine Dilatation senkrecht zu den Kraft­
linien.

Berücksichtigt man nun unter Benutzung von (10) bei der in 
Nr. 1 angegebenen Berechnung von dWe' die Veränderung der ebk 
durch die mit den virtuellen Verrückungen öö verbundenen Defor­
mationen und formt die dadurch neu auftretenden Glieder, wie

a#»„- W«( 00», ) usw., durch partielle Inte-dy
gration um, so kommen zu den ponderomotoriscken Kräften %x, $ } 
Anteile hinzu, welche von vornherein die Form haben

»£, i , ?£. '
dx ' dy ' dz ’ dx dz ’ dx ' dy ' dz ’

also als von Spannungen herrührend erscheinen. Für diese die 
Maxwellschen ergänzenden Spannungen ergeben sich dabei nach­
stehende Werte13 14):

A = -ł {J« ©./ + a*®; + 0«®.* + 2d41@yą + 2ó51ąą
+ 2 0.1 «A ) ,

+ +dy

(H)
- mA2 + 024©; + 084©/ + 2dM©yą

+ 20*®,®.+ 2dM®A)r
^ - ry -

sie sind also, wie die Maxwellschen Spannungen, homogene quadra­
tische Funktionen der Feldkomponenten. Für isotrope feste Körper

13) Die Spezialisierung des Konstantensystems dhJc für die einzelnen Kristall- 
klassen findet sich z. B. in Voigts Kompendium d. theoret. Physik 1, p. 143—144. 
Sie ist genau dieselbe, wie für die Konstanten der inneren Reibung (vgl. ibid. 2,. 
p. 136) oder für dasjenige Konstantensystem, welches die Änderungen des opti­
schen Verhaltens durch Deformationen charakterisiert (vgl. F. Pockels. Ann. Phys. 
Chem. 39 (1889), p. 152, 158).

14) Die allgemeinen Ergänzungsspannungen, jedoch für das magnetische 
Feld und ausgedrückt durch die Komponenten der Erregung statt durch diejenigen 
des Feldes, hat zuerst H. Hertz aufgestellt (Ann. Phys. Chem. 41 (1890), p. 398,)
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nehmen sie nach dem oben über die äik gesagten die einfachere 
Form an:

4.-- *W-ł*i(«,a + «/),
(U')

Bz = ry = i(d2
bestehen also aus einem Druck in der Richtung der Kraft­
linien und einem solchen ^-d2(£2 senkrecht zu diesen, oder anders 
ausgedrückt, in einem allseitig gleichen Drude 4 ó2(£2 und einem Zug 
parallel den Kraftlinien von der Größe -\{ß2 — dx)(S2. Im Gegensatz 
zu dem Maxivellschen ergibt dieses Spannungssystem auch für das 
Innere eines homogenen isotropen Dielektrikums eine resultierende 
Volumkraft, nämlich

3' = — ł(tfi + si) grad (®!)
und liefert zu den Oberflächen drucken Beiträge, welche im allgemeinen 
nicht senkrecht zur Oberfläche stehen, und deren X-Komponente ist:

§;=cos («, X) +

(12)

(13)
4. Elektrostriktion von Flüssigkeiten. Da in Flüssigkeiten 

irgendwelche Verrückungen der Teilchen die physikalischen Eigen­
schaften nur vermöge der mit ihnen verbundenen Dichteänderung
beeinflussen können, so wird d2 = dj = wo — xx -j- yy -|- z9 die
kubische Dilatation bezeichnet; somit erhält man statt der Gl. (11'), 
wenn der Index an d2 = d) fortgelassen wird,

= ß. = r, = 4 = o.
Die Ergänzungsspannungen bestehen hier also einfach in einem 

allseitig gleichen Drucke p — 4-d(S2. Mit dieser, dem Quadrat der 
Feldstärke proportionalen Kraft strebt also die Flüssigkeit sich aus­
zudehnen, bezw. falls d negativ ist15), sich zu kontrahieren. Ist nun 
das Gesamtvolum der Flüssigkeit keiner Beschränkung durch ein­
schließende Wände unterworfen, so wird tatsächlich an jeder Stelle 
der Flüssigkeit die jenem Expansions- bezw. Kontraktionsbestreben 
entsprechende Volumänderung, nämlich

(11")

(14)

15) Dieser Fall ist der wahrscheinlichere, sowohl aus theoretischen Gründen, 
als nach Analogie mit der z. B. von W. Cassie (Phil. Trans. 1890, p. 1), D. Negreano 
(Paris C.K. 114 (1892), p. 345), F.Ratz (Zeitschr.phys.Chem. 19 (1896), p. 94), R. Abegg 
(Ann. Phys. Chem. 60, p. 54; 62, p. 256 (1897)) beobachteten Abnahme der Di­
elektrizitätskonstante durch Temperaturerhöhung.



wo C der Kompressionsmodul ist, eintreteu. Diese Yolumänderung 
ist dann die einzige Wirkung der Ergänzungsspannungen, insbesondere 
liefern dieselben keinen Beitrag zu den Oberflächendrucken, da sie eben 
an jeder Stelle durch die obiger Dilatation entsprechende elastische 
Spannung kompensiert werden.

Die Versuche, welche angestellt worden sind, um die in Rede 
stehende Yolumänderung von Flüssigkeiten im elektrischen Felde 
nachzuweisen, haben infolge störender Nebenwirkungen bisher nicht 
zu sicheren Resultaten geführt16). Für Gase läßt sich die zu er­
wartende Druck- bezw. Volumänderung im voraus nach Sinn und 
Größe angeben17); denn bei ihnen ist erfahrungsmäßig s — 1 proportional 
der Dichte18), woraus für d der W’ert —(s — 1) folgt. Ist das Gas 
in einem Gefäß eingeschlossen, so muß also im elektrischen Felde 
sein Druck eine Verminderung vom Betrage — 1)@2 erfahren. 
Eine solche Druckverminderung, welche mit der so berechneten der 
Größenordnung nach übereinstimmt, ist an Luft und Kohlensäure auch 
experimentell nachgewiesen worden19).

5. Elektrostriktion isotroper fester Körper. Ihre Behand­
lung nach den Methoden der Elastizitätstheorie. Für die Ver­
gleichung der Theorie mit Beobachtungen bezw. die Bestimmung der 
Konstanten di, d2 kommen praktisch nur solche Fälle in Betracht, wo 
das Dielektrikum die (relativ zu ihrer Flächenausdehnung dünne) 
isolierende Zwischenschicht eines Kondensators bildet, da nur bei 
dieser Anordnung die Feldstärke im Dielektrikum groß genug ge­
macht werden kann, um meßbare Deformationen hervorzubringen. 
Der weitaus größte Teil der Oberfläche des Dielektrikums wird dann 
von den Kraftlinien des elektrischen Feldes senkrecht durchsetzt, er­
leidet also — auch bei Berücksichtigung der Ergänzungsspannungen 
— nur einen senkrechten Druck oder Zug. Dabei sind die Fälle zu 
unterscheiden, ob die leitenden „Belegungen“ des Kondensators dem

362 V 16. F. Pockels. Elektro- u. Magnetostriktion, Pyro - u. Piezoelektrizität us w.

16) Dagegen will 1). Hurmuzescu (Arch. sc. phys. nat. Genève 4 (1897), p. 481) 
an Eisensalzlösungen im magnetischen Felde eine Kontraktion beobachtet haben.

17) 1). J. Korteiveg, Ann. Phys. Chem. 9 (1880), p. 59 ; G. Lippmann, Ann. 
vhim. phys. (5) 24 (1881), p. 159.

18) Die analoge Annahme macht G. T. Walker (Aberration and other 
Problems connected with the electromagnetic field, Cambridge 1900) für dio 
magnetische Permeabilität von Flüssigkeiten auf Grund molekulartheoretischer 
Überlegungen. Er meint eine Bestätigung derselben in gewissen Beobachtungen 
Quinckes zu finden, welche aber in Wirklichkeit nur die Wirkung des Ober­
flächendruckes zeigen, also nach dem oben gesagten keinen Schluß auf die 
Konstante ô gestatten.

19) 2?. Gans, Habilitationsschrift Tübingen 1903.



testen Dielektrikum direkt anliegen oder von demselben durch Luft­
oder Flüssigkeitsschichten getrennt sind. Im ersten Falle erleiden 
die in Rede stehenden Oberflächen des Dielektrikums den Druck

©2, im zweiten, wenn s die Dielektrizitätskonstante der flüssigen 
oder gasförmigen Zwischenschicht ist, zufolge Gl. (7') und dem in Nr. 4 
Gesagten den Zug * (~~~ * '

innerhalb des festen Dielektrikums unmittelbar an seiner Oberfläche be­
deutet. Dazu kommt noch die durch (12) gegebene Kraft auf das Innere 
des Dielektrikums, die nur im Falle eines ebenflächigen Kondensators 
(wo das Feld homogen ist) verschwindet. Es entsteht nun die Auf­
gabe, aus den so gegebenen Oberflächen- und Volumkräften die 
Spannungen und Deformationen im Innern des Dielektrikums zu be­
rechnen, eine Aufgabe, welche rein elastizitätstheoretischer Natur ist. 
Streng gelöst ist dieselbe nur für den Hohlkugel- und unendlich langen 
Zylinderkondensator20). Für ersteren möge die Lösung hier für den 
Fall unmittelbar anliegender Belegungen mitgeteilt werden.

Sind r;, ra die Radien der inneren und äußeren Belegung, rpiy rp/f 
deren Potentiale, so ist die Feldstärke

^^11 r* '

-f- d^®2, wo beidemal @ die Feldstärke

ri ra
folglich nach (12) die auf das Innere der dielektrischen Kugelschale 
wirkende Volumkraft :

CT-?Vr == (di + d2) —5 ;(15)

außerdem wirkt, wie aus (5') und (11') folgt, auf die innere bezw. 
äußere Begrenzung der normale, gegen das Dielektrikum hin gerichtete 
Druck :

Sa = łO - ■S,= (*-«,)-£(16)
V ’

Aus den allgemeinen elastischen Gleichgewichtsbedingungen eines 
isotropen Körpers:

dXr dx„ dX, a©.
— Tx + Ty + W = ^

5. Elektrostriktion isotroper fester Körper. 36a

folgt im vorliegenden halle, wo nach Symmetrie nur radiale Ver­
rückungen ör = q vorhanden sind, welche gleich d U(r) gesetzt werdendr

20) G. Kirchhof}Ann. Phys. Chem. 24 (1885), p. 70; P. Sacerdote, Journ. de 
phys. (3) 8 (1899), p. 464; Thèse, p. 14.

i--
*
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können,
J %r^r — iu ^ U +

oder, da hier # — — -4- — und somit AU = 4-7 dr 1 r ar* 1
2 dU 
r dr — &■ ist,.

i-h?lA+J%1 d(rsç) 
r2 dr rdr •b =

rt
Durch nochmalige Integration ergibt sich nun:

\rdr j9 = — X -f 2 u \ 3
r/ri

oder nach Einsetzen von aus (15):

^+3lc!r1
4r2 Lrv(17) c>— %+^{\Är + 7*~

worin A, B Integrationskonstanten bezeichnen, die aus der Ober- 
fläehenbedingung für r — ri

l ■]}.3r/r

a + v) (;£). - 2a 0) = %,=i(« - d.) Gr2

und der analogen für r — ra zu bestimmen sind. Diese Berechnung 
vereinfacht sich erheblich in dem (wie oben gesagt) praktisch allein 
wichtigen Falle, daß ra — r. sehr klein gegen ri ist. Dann kann 
man in genügender Näherung setzen

P =

und erhält:
3T^2^* + ‘2Ô*)’

1 + 2 ft C2 
12 u r(.

.4 =

(- f + ^2 -- <?l) •7i = —

Führt man statt der Konstanten Â und /r den Elastizitätsmodul 
fi (2 ft -f- 3 X) und das Verhältnis der Querkontraktion zur Längs-E = fi -f- X

X ein, und berücksichtigt, daß in der 
9t ~ 9a

dilatation 20+ 4)
jetzt eingehaltenen Annäherung 

der Kugelschale bezeichnet, so findet man für die relative Zunahme

wird, wo d die Dicked

10
 

►
i : 

 ̂w



und für die Dilatation des Dielektrikums in radialer Richtung:

(£),— Çt-rÿéW1 + 2v) “4* + 2M->(18)

in allen tangentialen Richtungen ist die Dilatation durch ^ gegeben. 
Aus der der Beobachtung22) leicht zugänglichen Vergrößerung des 
inneren Volumens: 4titr*Qi könnte man hiernach eine Kombination 
der Konstanten und d2 berechnen; indessen sind die vorliegenden 
Messungen an Kugelkondensatoren zu einer solchen Berechnung nicht 
verwertbar, teils weil sie durch Nebenwirkungen (wie Leitfähigkeit 
des als Dielektrikum verwendeten Glases) zu stark beeinflußt sind, 
teils wegen der Unsicherheit der Kenntnis vom elastischen Verhalten 
der benutzten Glaskugeln.

Es ist hervorzuheben, daß die Näherungsausdrücke (17') und (18) 
die tangentiale und transversale Dilatation des Dielektrikums nicht 
nur im Falle eines /fw^eflcondensators geben, sondern überhaupt für 
jeden geschlossenen Kondensator von sehr geringer, konstanter Dicke 
mit direkt anliegenden Belegungen Gültigkeit besitzen23). In der 
Tat ergeben sich jene Ausdrücke (18) und (17') für die Dilatationen 
direkt aus dem auf ein scheibenförmiges Element des Dielektrikums

21) Diese Näherungsformel ist schon vor Kirchhoff'a Arbeit durch eine 
speziellere Betrachtung von D. J. Korteweg abgeleitet (Ann. Phys. Chem. 9 (1880), 
p. 48).

22) Derartige Beobachtungen sind zuerst von E. Euter angestellt worden (Paris 
C. R. 87 (1878), p. 828, 960, 1036; 88 (1879), p. 1260), sodann in großer Zahl von 
G. Quincke (Ann. Phys. Chem. 10 (1880), p. 165; 19 (1883), p. 573) und neuerdings 
mit noch sorgfältigerer Vermeidung der Fehlerquellen von A. Wüllner und 
M. Wien (Ann. Phys. 9 (1902), p. 1217).

23) Ohne allgemeine Begründung ist dieser Satz ausgesprochen von P. Sacer- 
dote, J. d. phys. (3) 8 (1899), p. 468; Thèse p. 30. Wenn die Belegungen von 
der festen dielektrischen Schale durch eine Flüssigkeitsschicht von gleicher 
Dielektrizitätskonstante getrennt sind, wie es bei gewissen Versuchen von L. T.More 
(Phil. Mag. (5) 50 (1900), p. 198; (6) 6 (1903), p. 1; (6) 10 (1905), p. 676) der Fall 
war, so sind die Deformationen in entsprechender Weise aus den Ergänzungs­
spannungen allein zu berechnen. Es ist also ein Irrtum, wenn More aus den 
negativen Resultaten jener Versuche schließen will, daß die Maxwellachen Span­
nungen überhaupt nicht auf die ponderabele Materie wirkten. Abgesehen davon, 
scheinen seine Beobachtungen übrigens infolge der angewandten Messungs­
methode auch an sich nicht zuverlässig zu sein (vgl. M. Cantone, N. Cim (5) 7 
(1904), p. 126).

3655. Eloktrostriktion isotroper fester Körper.

fles inneren Radius sehießlich21):
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wirkenden Druck |(« — dj)©2 parallel und Zug Ą(s -f- d2)©2 senkrecht 
zu den Kraftlinien, sofern sich jedes solche Element unabhängig von 
den angrenzenden entsprechend deformieren kann; das ist aber bei 
konstanter Dicke der dielektrischen Schale ersichtlich der Fall, da 
dann die angegebene Dilatation in tangentialer Richtung überall die 
gleiche ist. Demnach wird die Formel (17') auch angewendet werden 
dürfen, um die relative Änderung des Durchmessers und der Länge 
eines sehr dünnwandigen, an den Enden irgendwie geschlossenen 
Zylinderkondensators zu berechnen, dessen innere und äußere Ober- 
tiäche in ihrer ganzen Ausdehnung mit Belegungen versehen sind. 
Für einen solchen Kondensator muß demnach zwischen den relativen 
Änderungen der Länge l und des inneren Volumens v die Beziehung 
bestehen
(19)

woraus ersichtlich ist, daß die Messungen der Volum- und Längen­
änderung zur gesonderten Bestimmung der Konstanten d\ und ö2 nicht 
ausreichen, da sie beide nur die Kombination (1 — v)â2 — väx liefern, 
welche die Änderung der Dielektrizitätskonstante durch einseitigen Zug 
senkrecht zu den Kraftlinien bestimmt. Zur Ermittelung von und 
d2 selbst müßte etwa noch die (durch Gl. (18) bestimmte) Dicken­
änderung gemessen werden, wie es von Gantone versucht worden ist2'1).

Fraglich kann es erscheinen, ob vorstehendes Resultat auch noch 
für Zylinderkondensatoren gilt, deren Belegungen nicht die ganze 
Oberfläche bedecken, und die an einem oder beiden Enden offen sind, 
wie sie bei vielen Beobachtungen angewandt wurden. Hier würde 
die strenge Berücksichtigung der Verhältnisse an den Rändern der 
Belegungen auf große analytische Schwierigkeiten führen.

6. Fortsetzung. Energetische Behandlung. In Fällen wie der 
zuletzt erwähnte verdient die zuerst von Lippmann und Korteweg24 25), neuer­
dings systematisch von Sncerdote (in seiner These) auf Probleme der 
Elektrostriktion angewandte energetische Behandlungsmethode den Vor­
zug, welche auf die vollständige Lösung des elastischen Problems 
verzichtet und nur auf die angenäherte Berechnung gewisser direkt 
beobachtbarer Gesamtänderungen (z. B. derjenigen des inneren oder

24) M.Cantone und Fr. Sozsani, Milano Rend.Istit.Lomb. (2) 83 (1900), p. 1059; 
34 (1901), p. 251. An Platten aus einer Harz- und Schellackmischung hat L. T. More 
die Dickenänderung allein, und zwar bei nicht anliegenden Belegungen, zu 
messen versucht, jedoch mit negativem Resultat (Phil. Mag. (6) 10 (1905), p. 670).

25) ]). J. Korteweg, Ann. Phys. Chem. 12 (1881), p. 047; (}. Lippmann? 
Ann. chim. phys. (5) 24 (1881), p. 144.
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6. Fortsetzung. Energetische Behandlung. 367

äußeren Volumens oder der Länge des Kondensators) ausgellt. Als 
Beispiel für diese Methode sei hier die Berechnung der Längen­
änderung eines Zylinderkondensators mit anhaftenden Belegungen mit­
geteilt.

Es sei e die Ladung, cp das Potential der einen Belegung, 
während die andere auf dem Potential Null erhalten wird; ferner q 
der auf den Zylinderkondensator ausgeübte äußere longitudinale Zug, 
dl dessen ganze Längenänderung. Unter Voraussetzung konstant ge­
haltener Temperatur kann der Zustand des Kondensators als eine 
Funktion der beideii unabhängigen Variabein cp und q angesehen 
werden. Die zur Erzielung einer Ladungs- und Längenänderung auf­
zuwendende Arbeit ist

dA = cpde -f- qdl — cp dcp -f ~ dqj -f- q dcp -f-

= (<p§~ -f + (<pĘ- + s$j)de-

Nach dem zweiten Hauptsatz der Thermodynamik muß die rechte 
Seite ein vollständiges Differential sein; die Bedingung hierfür ist:

dl de(20) Ccp dq

oder, wenn man die Kapazität K = — einführt:(f
di cK(20') dcp dq

In erster Annäherung kann rJ^ jedenfalls als unabhängig von cp

angesehen werden; dann ergibt sich die durch die Ladung des Kon­
densators auf die Potentialdifferenz cp hervorgebrachte Längenänderung:

9 d K
ÏVJÏ’Öl= 1(21)

Nun ist, wenn Ï die Länge des belegten Teiles des Kondensators be­
zeichnet, in großer Annäherung (nämlich bei Vernachlässigung der

ijfl's und da ~ bei der Dehnung„Streuung“ der Kraftlinien): K —
log-®

des Hohlzylinders durch einseitigen Zug ungeändert bleibt, so folgt 
hieraus

1 dK__ l ^ i 1
K Tï~ T dq + T dq

oder bei Einführung des Elastizitätsmodulus E und der S. 360 defi­
nierten Konstanten Ö1} d2:
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1 dK _
K dą — En(ra‘-r,')

Bei sehr geringer Wanddicke ra — — d des Zylinderkondensators
somit nach (22):

dg (1 — v) — v1 P +(22)

7tira,+J'j}l'£ist nun K —
n

VdK(22') = JTgO + 0><1 — v> — Siv)’ 

und durch Einsetzen dieses Wertes in (21) erhält man

T = (t) ‘ Yë(e + **(1 — v) ~ div)-

Man sieht, daß in dem Falle, wo die Belegungen des Kondensators 
sich nahezu über die ganze Länge des Zylinders erstrecken, dieses 
Resultat mit demjenigen übereinstimmt, welches nach dem S. 365 be­
sprochenen Sacerdotesehen Satze aus Gl. (17') für einen beliebig ge­
stalteten, geschlossenen, dünnwandigen Kondensator folgt. Die vor­
stehende Ableitung läßt aber erkennen, daß es für die Gültigkeit 
dieses Resultates bei nicht geschlossenen Zylinderkondensatoren wesent­
lich ist, daß die Belegungen an der Dilatation der dielektrischen 
Zwischenschicht teilnehmen, also auch für tangentiale Inanspruch­
nahme an derselben haften. Diese Bedingung war nun bei den 
meisten Beobachtungen an offenen Zylinderkondensatoren in der Tat 
erfüllt, und daher wurde auch, wenn die Volum- und Längenänderung 
gleichzeitig gemessen wurden, die Relation (19) gut bestätigt ge­
funden 26).

Für eine weitergehende Prüfung der Theorie kommen nur die 
Beobachtungen von Wüllner und M. Wien in Betracht, welche an 
einer Reihe zylindrischer Glaskondensatoren sowohl die Volumände­
rung durch Elektrostriktion, als auch die Kapazitätsänderung durch 
longitudinalen Zug bestimmt haben27). Aus beiden Bestimmungen 
läßt sich nach dem S. 366 und 368 gesagten, wenn noch E und e durch 
besondere Beobachtungen ermittelt sind, die Konstantenkombination 
d2(l — v) — ötv ableiten, und es wurden für dieselbe auf beiden 
Wegen negative Werte von der gleichen Größenordnung gefunden, 
wodurch also die Theorie der Elektrostriktion bis zu einem gewissen 
Grade bestätigt wird. Die entgegengesetzten Resultate von Cantom 
und Sozzani28), welche aus Messungen der Längenänderung von Glas-

dq

(23)

26) Z. B. G. Quincke, Ann. Phys. Chem. 10 (1880), p. 515.
27) A. Wüllner und M. Wien, Ann. Phys. 9 (1902), p. 1217; 11 (190S), p. 619.
28) M. Cantone, Iiom Rend. Acc. Line. (4) 41 (1888), p. 344, 471; 31. Ganione 

und Fr. Sozzani, Rend. Istit. Lomb. (2) 33 (1900), p. 1059; 34 (1901), p. 251; 
M. Cantone, ibid. 37 (1904), p. 164; Nuovo Cim. (5) 7 (1904), p. 126.



Zylinderkondensatoren für obige Größe positive Werte (entsprechend 
einer Zunahme der Dielektrizitätskonstante durch Zug senkrecht zu 
den Kraftlinien) fanden, dürften sich durch tatsächlich verschiedenes 
Verhalten verschiedener Glassorten erklären, welches auch schon aus 
den sehr verschiedenen numerischen Werten von (d2(l— v) — 
hervorgeht, die Wüllner und Wien für verschiedene Glassorten er­
hielten.
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7. Magnetostriktion. Die ponderomotorischen Kräfte, welche im 
magnetischen Felde § auftreten, lassen sich für Körper, deren mag­
netische Permeabilität g als unabhängig von der Feldstärke angesehen 
werden kann, in völlig analoger Weise ableiten und auf Spannungen 
zurückführen, wie es für die Kräfte im elektrischen Felde oben in 
Nr. 1 und 3 durchgeführt worden ist. In einem homogenen isotropen 
Körper liefern jene Spannungen die zu (12) analoge Volumkraft
— ł(«i + **) ^ (&2)> 
durch die Dilatation X parallel bezw. senkrecht zu den Kraftlinien 
bestimmen. Ferner erleidet die Oberfläche des Körpers, wenn er von 
Luft oder einer isotropen Flüssigkeit umgeben ist, deren Permea­
bilität gleich 1 gesetzt werden kann, zufolge (7') und (13) pro Flächen­
einheit die Kraftkomponenten:

%xX und 7t2X die Änderungen von uwo

5, = ^ I + O - Oft.’ )cos (»>x)(24)

wo ^ die Feldstärke innerhalb des betrachteten Körpers an seiner 
Oberfläche, n deren äußere Normale bedeutet.

Die Bestimmung der Deformation, welche diese Kräfte hervor­
bringen, hat Kirchhoff29) für den Fall einer Kugel, die in ein homo­
genes Magnetfeld gebracht wird, vollständig durchgeführt. Dieser 
Fall ist deshalb besonders einfach zu behandeln, weil das Magnetfeld 
innerhalb der Kugel homogen ist, nämlich

3 H°
$- s-t-e’

wenn H° die Intensität des ursprünglichen homogenen Feldes ist, in 
welches die Kugel hineingebraclit wurde. Daher fallen die Volum­
kräfte fort, und bei Zugrundelegung eines Koordinatensystems, dessen

29) Kirchhoff, Berlin Sitzungsber. 1884, p. 1155 Ann. Phys. Chem. 25 (1885), 
p. 601; Ges. Abh. Nachtrag, p. 124.

Encyklop. d. math Wissensch. V 2. 24



X-Achse parallel der Feldrichtnng und dessen Nullpunkt der Kugel- 
mittelpunkt ist, werden die Oberflächenkräfte nach (24):

ä = (1H°Ÿ {(fl-1),8 (IV 1 Jflni+fli ü)
\2 —{— fi,/ 1 2 \BJ ' 2 ED

« —1 + _ÿ \
"f" 2 B J '
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(25)
er = /8g°V

\2 + fi/ 1 2 Rs
JR bedeutet den Kugelradius. ^ ist analog zu gebildet. Nach 
den Gleichungen der Elastizitätstheorie ergeben sich hieraus für die 
Verrückungen irgend eines in der XE-Ebene liegenden Punktes der 
Kugel Ausdrücke von der Form

[öj x3 -j- b1 ylx -f- cx R2x\
fl — 1 -f 9t,

' 2

+ W*f +
(26)

/35°y j(g-i)8
U+W \~t~

+ “■ <hy \y\

wo ax, bx, cx, ax, bx, cx, a2, aa, b3 gewisse Verbindungen der Elasti­
zitätskonstanten bezeichnen. Kirchhoff wendet diese Ausdrücke an, 
um die Deformation einer Eisenkugel im homogenen Magnetfelde zu 
berechnen, wobei er annimmt, daß die beiden letzten Glieder in der 
Klammer gegen das erste, mit (g — l)2 proportionale, zu vernach­
lässigen seien. Abgesehen von der Bedenklichkeit dieser Vernach­
lässigung (da direkte Beobachtungen beim Eisen auf sehr große Werte 
von nx und ;r2 schließen lassen) ist aber diese Anwendung der vorstehenden 
Formeln schon deshalb nicht statthaft, weil die bei ihrer Ableitung (ana­
log zu der in Nr. 1 und 3 gegebenen für die Elektrostriktion) voraus­
gesetzte Darstellung der Energie bei „ferromagnetischen“ Körpern 
nicht gilt30). Denn bei solchen ist die magnetische Energie der 
Volumeinheit nach der Maxwellschen Theorie wegen der Abhängig­
keit der Permeabilität g von nicht durch gegeben, sondern
durch31):

30) Aua demselben Grunde können die Formeln, welche Ganione für die 
Magnetostriktion eines Botationsellipsoids in einem zu seiner Rotationsachse 
parallelen Felde durch Übertragung der Kirchhoff sehen Behandlungsweise ent­
wickelt hat [Rom Mem. Accad. Line. (4) 6 (1890), p. 485], auf dessen Beobach­
tungen an Ellipsoiden aus Eisen und Nickel nicht angewendet werden. Übrigens 
sind diese Formeln auch an sich unrichtig wegen eines Fehlers in der Lösung 
des elastischen Problems.

31) Ygl. E. Cohn, Das elektromagnetische Feld, p. 512. Siehe auch Art. 15,
Nr. 31.
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SS
/($<*») = ($»)-/(»<*$)■
Ü 0

H' =" m

Daraus folgen für die Maxwellschen Spannungen in einem ferro­
magnetischen Medium ohne Hystérésis an Stelle der analog zu 
gebildeten die nachstehenden Ausdrücke81):

(&')

s
(A,)m= ./(»<*©,

0
(27)

W- = W* = *(»,$. + ».$,)

und für die durch die Abhängigkeit des magnetischen Verhaltens 
von Deformationen bedingten Spannungen32):

§ 9

o 0
(28) K)m = ? •

wo die Dilferentiationen bei konstant gehaltenem auszuführen sind. 
— Im Falle eines isotropen Mediums nehmen diese Ausdrücke die 
Form*) an:

*
(A)m = PL* —Jp§d§

0
9

= +f$xd (#*&) —J^yd^y +
0 0

(Ą)„ = (c,), =

S>
W» = — /Wl + 5*2 + &<*&)}

0

W- = (r,)„- +VW.
o

(27')

(28')

,u und jTj, jr2 Funktionen von | j sind.wo

32) & Ämo, Phys. Ztschr. 3 (1902), p. 401; F. Koläcek, Ann. Phys. 13 (1904), 
p. 1^ B. Gans, ibid. p. 634.

*) Ebenso wie wir statt {$£>$) kürzer schreiben, werden wir statt
schreiben.

24*



372 V 16. F. PocJcels. Elektro- u. Magaetostriktion, Pyro- u. Piezoelektrizität usw. 

Insgesamt wirkt hiernach, parallel den Kraftlinien der Zug:

o o

f $

o 6

(29)

und senkrecht zu den Kraftlinien der Druck:

(30)

Der mit Rücksicht auf die Beobachtungen wichtigste Spezialfall 
der Magnetostriktion ist die Längen- und Volumänderung eines dünnen 
Stabes oder Drahtes, der in ein homogenes Magnetfeld mit seiner 
Längsrichtung parallel zu dessen Kraftlinien hineingebracht wird. 
(Dieser Fall kann am einfachsten dadurch realisiert werden, daß man 
den Stab in der Achse eines langen Solenoids aufstellt, durch das 
man einen galvanischen Strom leitet.)

Die strenge Lösung dieses Problems, bei welcher auf die Gestalt 
der Stabenden und den davon mit abhängigen Kraftlinien verlauf da­
selbst Rücksicht zu nehmen wäre, ist noch nicht gegeben. Eine an­
nähernde Behandlung hat Kolacek82) in der Weise durchgeführt, daß 
er dem Stabe die Gestalt eines sehr gestreckten Rotationsellipsoids 
zuschreibt. Will man nur die, der Beobachtung allein zugängliche, 
gesamte Längen- und Volumänderung berechnen, — worauf sich 
schließlich auch Kolacek beschränkt —, so braucht man indessen gar 
keine spezielle Annahme über die Gestalt der Stabenden zu machen, 
sofern nur die Querdimensionen des Stabes sehr klein gegen seine 
Länge sind. Dann wird nämlich das Magnetfeld durch die Anwesen­
heit des Stabes nur auf einem relativ kleinen Teil seiner Länge 
merklich modifiziert und zwar in der Weise, als wenn bei unver­
änderter Permeabilität des von dem Stabe eingenommenen Raumes 
an den Stabenden zwei Pole von der Stärke (u — 1 )H°f angebracht 
wären, wo H0 die ursprüngliche Feldstärke und f der Stabquerschnitt ist. 
Daraus folgt, daß die Dilatation des Stabes sich bestimmt aus einem 
longitudinalen äußeren Zug der gleich ist der Differenz der mit der 
ursprünglichen Feldstärke berechneten Werte von q im Luftraum und im 
Stabe, vermehrt um die vom Felde H° auf die fingierten magnetischen 
Pole ausgeübten Kraft pro Querschnittseinheit, sowie aus einem radialen 
Zug$r auf die Mantelfläche gleich der Differenz der Werte von p innerhalb 
und außerhalb des Stabes. Man findet in dieser Weise

H°
8, =f(j> 

0

(31) §,=/(.<* 
0

— 1 +— 1 +

ohne den Einfluß von Deformationen auf g würde also eine allseitig
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âv dl .gleiche Dilatation des Stabes resultieren und — = 3 • -j sein. Die
Beobachtungen haben gezeigt, daß diese Beziehung keineswegs besteht, 
und daß die Glieder mit Jtt, jr2 sogar von überwiegendem Einiluß sind. 
Die Ausdrücke für die relative Längen- und Volumänderung, die sich 
aus obigem ^ und $r nach der Elastizitätstheorie berechnen, kann 
man folgendermaßen schreiben:

7. Magnetostriktion.

n° h°
j (ß 1)$^© 4“

o o
_ & — 2 vj$r _

l ' È
Öl

(32) ii° n°
e: - - qw +An+2 Id «<**>

0 0

wobei ql} qr einen longitudinalen bezw. radialen äußeren Zug bedeutet, 
und vorausgesetzt ist, daß die Elastizitätskonstanten nicht merklich

1_2p
von Q abhängen (andernfalls müßte —^— mit unter das Integral­
zeichen gesetzt werden). Diese Formeln sind identisch mit denen, 
die Kolâcék a. a. 0. für einen Stab von sehr gestreckt ellipsoidischer 
Form gefunden hat. Sie lassen sich übrigens auch durch eine rein 
energetische Behandlungsweise des Problems ableiten33 * *). Dieselbe er­
gibt z. B. zwischen der .gesamten Längenänderung eines beliebig ge­
stalteten Stabes im Magnetfelde einerseits und der Änderung seines 
gesamten longitudinalen magnetischen Momentes M durch einen gleich­
gerichteten Zug vom Gesamtbeträge Q andererseits die Beziehung:

_ dM 
dH°~ dQ’

woraus dann für einen dünnen zylindrischen Stab als Näherung die 
erste Gleichung (32) folgt. Ebenso ergibt diese Methode für die 
Änderung des Gesamtvolums durch die Magnetisierung und des magne­
tischen Moments durch allseitigen Druck P unmittelbar die Relation:

di. (33)

dv dM(34) dH0 dp
welche auf (322) führt. Auch die Torsion eines longitudinal magne­
tisierten Drahtes läßt sich analog behandeln; es gilt, wenn T das 
Torsionsmoment, x der Torsionswinkel ist:

33) F. Koläcek, Ann. Phys. 14 (1904), p. 177. Zuerst ist diese Betrachtungs­
weise wohl von J. J. Thomson angewendet worden in seinen Vorlesungen über
„Anwendungen der Dynamik auf Physik und Chemie“ Cambridge 1888 (Übers.
Leipzig 1890), Kap. 4.
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dr dM
(35) dIP df'
Der experimentellen Prüfung84) sind diese Formeln, welche die beobacht­
baren Gesamtwirkungen zueinander in Beziehung setzen, natürlich 
leichter zugänglich, als diejenigen der vollständigen Theorie.

Auf die überaus zahlreichen Beobachtungen über Magnetostriktion 
ferromagnetischer Metalle und über den Einfluß elastischer Defor­
mationen auf die Magnetisierung kann hier nicht eingegangen werden; 
es sei dafür z. B. auf die Darstellung von F. Auerbach in Winkel­
manns Handbuch der Physik, 2. Aufl., Bd. V, p. 301, verwiesen.

8. Piezoelektrizität und Elektrostriktion azentriseher Kristalle. 
Allgemeiner Ansatz. An Turmalin, Quarz und einer Anzahl anderer 
Substanzen, deren Kristalle durch das Fehlen eines Zentrums der 
Symmetrie ausgezeichnet sind, wurde zuerst von J. und P. Curie35) 
die Erscheinung der sog. Piezoelektrizität, d. h. der Erregung elek­
trischer Momente durch äußeren Druck, beobachtet. Eine allgemeine 
mathematische Theorie dieser Erscheinungen entwickelte W. Voigt in 
der eingangs zitierten Abhandlung, indem er die Annahme zu Grunde 
legte, daß die an irgend einer Stelle des Kristalles erregten elektrischen 
Momente lineare Funktionen der Deformationskomponenten sind86), 
deren Form der krystallographischen Symmetrie entspricht. Lippmann 
zeigte für einen speziellen Fall auf Grund des Energieprinzips, daß 
die Piezoelektrizität das Auftreten von Deformationen im elektrischen 
Felde zur Folge haben muß, welche sich mit der Feldrichtung um­
kehren87). Die allgemeinen Gesetze dieser Deformationen wurden 
dann von F. Pockéls38) unter Zugrundelegung der Forschen Theorie 
abgeleitet. 36 37

84) Eine solche ist neuerdings in weitem Umfange ausgeführt worden von 
K. Honda und T. Terada (Phys. Zeitschr. 7 (1906), p. 465).

35) J. und P. Curie, Paris C. R. 91 (1880), p. 294, 383. Die Bezeichnung 
Piëzoelektrizitât stammt von W. Hankei (Abh. d. k. sächs. Ges. d. Wiss. 12 (1881), 
p. 462).

36) Die Proportionalität der elektrischen Momente mit dem Druck wurde 
am Quarz und Turmalin von F. Nachtikal (Gött. Nachr. 1899, p. 109) in weiten 
Grenzen geprüft und sehr annähernd bestätigt gefunden.

37) Gr. Lippmann, Ann. chim. phys. (5) 24 (1881), p. 164; Journ. phys. (1) 10 
(1881), p. 391. Beobachtet und gemessen wurden solche umkehrbare Defor­
mationen zuerst an Quarz von J. und P. Curie, Paris C. R. 93 (1881), p. 1137, 
95 (1882), p. 914, wobei sich sehr gute Übereinstimmung mit den theoretischen 
Werten ergab. Aus den von Kundt (Ann. Phys. Chem. 18 (1883), p. 228) und 
Röntgen (Ann. Phys. Chem. 18, p. 213, 534) entdeckten Änderungen des optischen 
Verhaltens im elektrischen Felde kann hingegen nicht mit Sicherheit auf die



Beide Arten von Erscheinungen, die piezoelektrischen und die 
eben erwähnten reziproken, lassen sich in ihrem Zusammenhänge am 
besten darstellen, indem man die freie Energie der Yolumeinheit (oo) eines 
gleichzeitig homogenen Drucken und einem homogenen elektrischen 
Felde ausgesetzten, nichtleitenden Kristalles bei konstanter Temperatur 
als Funktion der sechs Deformationskomponenten xx, . . . yz, . . . und der 
elektrischen Feldkomponenten &x, betrachtet38 39). Die Entwicklung
von a nach Potenzen dieser Größen beginnt mit Gliedern, welche in 
den xx,. . . yz, . . . quadratisch sind und zusammen die elastische poten­
tielle Energie % darstellen, und solchen, die in den quadra­
tisch sind und der zur Hervorbringung der elektrischen Momente 
der Volumeinheit (oder Polarisationen, vgl. den Art. H. A. Lorentz 
über Maxwellsche Theorie V 13 Nr. 13) s$x, ^ bei verschwindender 
Deformation aufzuwendenden Arbeit i(t entsprechen. Zufolge der Grund- 
aimahme der Elastizitätstheorie ist

X = + cnxxyy H- - - - - - - - - - b c16xxx9
+ \C^Vy + * ' ‘ + C26VyXy
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+
4-

Ferner gilt
(37) 4. = -*{(«„- l)gxs + (4-l)®f! + (4- 1)®.*

+ 24®„®. +
da die bei Influenzierung der geleistete Arbeit allgemein
durch — j\?ßxd&x -J- tyyd&y -f- $ß.d@2) gegeben ist*) und folglich

md - (4 -1) + 4®, + 4«. -
_ dty

d%’

sein muß; hierin bedeuten die e'hk die Dielektrizitätskonstanten bei 
verschwindender Deformation und sind mit den gewöhnlichen ehk also

Deformationen geschlossen werden, da erstere den letzteren zwar qualitativ, aber 
nicht quantitativ entsprechen; vgl. F. Pockels, Göttingen Abh. Ges. d. Wiss. 39 
(1894).

38) F. Pockels, N. Jahrb. f. Min., Beil.-Bd. 7 (1890), p. ‘224.
39) Diese Art der Behandlung findet sich zuerst, jedoch z. T. fehlerhaft, 

bei P. Duhem (Leçons sur l’électricité et le magnétisme 2 (1892), p. 467), dann bei 
E. Eiecke, Gott. Nachr. 1893, p. 3—13, und W. Voigt, Gött. Nachr. 1894, Nr. 4, 
oder Ann. Phys. Chem. 55 (1894), p. 701, sowie in dessen Kompendium der theore­
tischen Physik 2, p. 104.

*) Daß diese Arbeit negativ ist, hängt mit der Tatsache zusammen, daß 
ein dielektrischer Körper nach dem Gebiete größter Feldstärke hingezogen wird. 
Vgl. Art, Gans V 15 Nr. 19.
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nur dann identisch, wenn die elektrische Erregung nicht von Defor­
mationen begleitet ist.

Bei Kristallen ohne Symmetriezentrum, bei denen eine Um­
kehrung aller drei Koordinatenrichtungen mit einer Änderung des 
Ausdruckes für die Energie verbunden sein kann, wird der letztere 
nun auch Produkte der xx} ... yt, ... und Ç£xf enthalten
können. Indem man die höheren Glieder der Entwicklung, z. B. die­
jenigen von der Form
----ł { ^x(ßl\Xx 4---------- b ^iexy) 4----------b -j------------b ^46**) 4------1 f

welche die in Nr. 3 d. Art. behandelten Erscheinungen geben würden, 
vernachlässigt, um die für azentrische Kristalle charakteristischen Vor­
gänge für sich zu betrachten, erhält man demnach folgenden Ansatz:

W = l 4- t   &x(eUXx 4" enlf,j 4" ei3Zz 4~ 4~ ei'^x 4“ eU>Xy)

— ®v(e2ixx -f- • • • 4- • * • 4- e2iyz 4" • • • 4- • • •)(38)
--- + • • • 4“ * ‘ * 4“ e34 Vz 4~ ••'+••')•

dco3 co 3o)Da allgemein — die gesamten elektrischen Mo-T%’ aas.
d(o 3 comente ^x, ferner • die gesamten inneren

Spannungen Sx>...} Hz,. . . sind, so folgt, wenn man noch die bei 
verschwindenden Deformationen influenzierten Momente mit 
(^y)d, (s^-)rf und die bei verschwindendem elektrischen Feld auftreten­
den (rein elastischen) Spannungen mit Xx, . . ., Yz, . . . bezeichnet,

ty/'

^ = ($*)<* 4“ enXx 4- enVy 4~ ^13gz 4- e\Sz 4“ ei5^ 4- eiaxy,
(39) ą, == ($y)d + enxx 4- • ’ * 4" • * ‘ 4- e2iVz 4- * • • 4- • ' • }

= ($*)<* + e3i Xx 4~ • • • 4- • * • 4- euVz 4- ■•• + ••• ;

8x = Xx-(en<Zx + en®y + e51®s),
(40)

(eU®.r 4" e2i 4" e34®*)>Hz= Yz

Das erste Gleichungssystem bildet die Grundlage der Forschen Theorie 
der Piezoelektrizität. Es ist dazu zu bemerken, daß die ersten Glieder 
der rechten Seite, welche die influenzierten Momente darstellen, im 
allgemeinen auch dann nicht verschwinden, wenn auf den Kristall nur 
mechanisch eingewirkt wird; denn im allgemeinen erfährt jedes Volum­
element dann elektrische Einwirkungen von allen übrigen (Selbst- 
influenzierung des Kristalls), welche sich erst berechnen lassen, wenn 
die Form des Kristallstückes und die ganze Versuchsanordnung ge­
geben ist.
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Bezeichnet man, wie in der Elastizitätstheorie üblich, mit chk bzw. 
shk die elastischen Konstanten, welche als Koeffizienten in den linearen 
Ausdrücken der elastischen Spannungen durch die Deformationen bzw. 
in den Ausdrücken der Deformationen durch die Spannungen auf- 
treten, wobei

6
2k)ckkshk = 1 2k)Wk = 0

ist, so folgt aus den Gleichungen (40)
Xx = + (hl + d21 % + d31 ®

z y

(41)
Vz — Vz + ^14 H“ ®z + ^34 ®i )

WO
6

(42) dkk

gesetzt ist, und . . ., rjz, . . . ebenso aus den gesamten Spannungen 
S!x,. . . abgeleitet sind, wie xx, . . ., y., . . . aus den rein elastischen
X,,. also:• •)

~h ^yS12 + ' • • ~t" ^yS16-

Es bedeuten %xf. . ., mithin die Deformationen, welche durch die
Spannungen Sx, ... bei fehlender elektrischer Einwirkung hervorgerufen 
würden, xx — |T,..., y, — yz,... dagegen diejenigen, welche bei fehlender 
mechanischer Einwirkung lediglich durch ein elektrisches Feld er­
zeugt werden, vorausgesetzt, daß sich die so bestimmten Deforma­
tionen jedes Volumelementes ungehindert durch die benachbarten her- 
stellen können (was freilich nur in besonderen Fällen, z. B. bei homo­
genem elektrischen Felde, zutrifft).

Ferner erhält man aus den Formeln (39) durch Einsetzen von 
(41) und Berücksichtigung von (43):

(43)

% = (&). + (« + daH, + duZ, + dull, + dls Z, + dleS,)

(44) = (^Pj). + (d«nSx +•••+•••+ duH. + •••+■•■)
'P; — (¥.). + +■■■+••■+ +•••+■••))

darin ist

WJ. = («<* + + %£dlhe2h + ®,Zdlhe3h

== — 1 + £dlhelh) -f- («J2 + Zdlhe2h)
H~ (fl3 + ~dlhe3 h)

(45)

--- ®z(£ll “ 1) + + ®J£13



und bedeutet das bei verschwindenden Spannungen influenzierte Mo­
ment parallel der X-Achse. Aus vorstehender Gleichung und den 
analogen für ($ß )Ä, ($ß,)s ist zugleich der Unterschied zwischen den 
Dielektrizitätskonstanten £hk bei verschwindender Deformation und 
denjenigen ehk bei verschwindenden Spannungen (den Dielektrizitäts­
konstanten im gewöhnlichen Sinne) ersichtlich ; praktisch kommt dieser 
Unterschied wegen der Kleinheit der Produkte der Größen d und e 
in den bisher bekannten Fällen allerdings nicht in Betracht.

9. Spezialisierung für die einzelnen Kristallgruppen. Die all­
gemeinen Ausdrücke (39) oder (44) für die Komponenten des elek­
trischen Moments, welche 18 dem Kristall eigentümliche Konstanten40 41) 
(die „piezoelektrischen Konstanten“ ehk bzw. „piezoelektrischen Mo­
duln“ dhk nach Voigts Bezeichnung) enthalten, erfahren eine mehr 
oder weniger beträchtliche Vereinfachung, wenn der Kristall Sym­
metrieeigenschaften besitzt und das Koordinatensystem diesen ent­
sprechend gewählt wird; denn es ergeben sich dann aus der Forde­
rung, daß die skalare Funktion cj beim Übergang zu einem kristallo- 
graphisch gleichwertigen Koordinatensystem gleiche Koeffizienten 
behalten muß, eine Anzahl von Bedingungsgleichungen zwischen den 
Konstanten ehk bzw. dhk.iV) Das Vorhandensein eines Zentrums der 
Symmetrie schließt die hier betrachtete piezoelektrische Erregung 
überhaupt aus, da iß als polarer Vektor (vgl. Artikel Abraham 
über geometrische Grundbegriffe IV 14, Nr. 21) bei Umkehrung 
aller Koordinatenachsen sein Vorzeichen wechselt, die Deformations­
oder Spannungskomponenten aber dabei unverändert bleiben. 
Nachstehende Zusammenstellung gibt für die azentrischen Kristall­
gruppen die spezielle Form der linearen Ausdrücke, welche nach 
dem Ansatz (44) die durch mechanische Einwirkung primär er­
regten elektrischen Momente ißx' = ^ — (iß*)* usw. als Funktionen 
der Spannungen darstellen. (Letztere werden in diesem Falle, näm­
lich bei verschwindendem elektrischen Feld, nach (40) mit den Xx,.
Ye, . . . identisch.) Jeder Kristallgruppe sind die Symbole der für sie 
wesentlichen Symmetrieelemente hinzugefügt, wobei Axn bzw. Sx” eine 
in die X-Richtung fallende w-zählige Symmetrieachse bzw. eine eben­
solche Spiegeldrehungsachse, Ex eine zur X-Achse senkrechte Sym-

378 V 16. F. Pockels. Elektro- u. Magnetoatriktion, Pyro-u. Piezoelektrizität uaw.

40) Eine Untersuchung von Voigt (Göttinger Nachr. 1900, p. 364) über 
den Charakter dieser Konstanten zeigt, daß sich dieselben durch Kombination 
eines Vektors, eines Tensors und einer gerichteten Größe 3. Ordnung darstellen 
lassen. (Siehe auch IV 14, Nr. 23 c.)

41) Über die allgemeinen Prinzipien dieser Symmetriebetracktungeu vgl.
IV 14. m
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metrieebene bezeichnet; aus diesen Symbolen ist zugleich die spezielle 
Wahl des Koordinatensystems in den einzelnen Fällen ersichtlich.

1. Triklines System, Hemiëdrie. Allgemeine Gleichungen (44).
2. Monoklines System, Hemiëdrie. Ez.

%J = dnXx + dn Yy + dl3Zz + duX9,
= ^21 Xx + ^22 -f- dn Zt -f- ^26 Xy ,
« + **Zm.

3. MonoJdines System, Hemimorphie. AJ.
= df14 Y3 + d15Zx, = du Yz + dMZx,
W = d31 Xx 4~ d3i Yy -f d33Zz + d3&Xy.

4. Rhombisches System, Hemiëdrie, A,2AJ.

= d»r” W = d»> */ - <4>•
5. Desgl., Hemimorphie. AJEX.

^ = dlhz„,
W = f4l 4“ ^32 Yy 4“ ^33
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Tetragonales System.
6. Enantiomorphe Hemiëdrie. AJ AJ.

^J = duYz, = - duz
7. Hemimorphe Hemiëdrie. AJEX.
^ = dx,Zx, ^ = dVoYz, ^; = dz,(Xm+Yy) + d3iZBi
8. Hemimorphe Tetartoëdrie. AJ. Superposition der Ausdrücke 

6. und 7.
9. Sphenoidische Hemiëdrie. SJAJ.

y;=.duY„ ; = duzt, sp;-dux,.
10. Sphenoidische Tetartoëdrie. SJ.

= du 4~ ^i5= — ^i5 Yz 4" duZx,
W = - r.) + dxx„.

?/ = o.X ?

Rhomboëdrisches System.
11. Enantiomorphe Hemiëdrie. A JAJ.

W = dn(xx- + duY„ = ~dllz„-2dnxt, ąs/ =■ o
12. Hemimorphe Hemiëdrie. AJEX.

?; = daZ,- 2ĄsXp, sp; = ĄS(Z? - X,),
$; = 4i(X«+ Tj + duZ.-

13. Tetartoëdrie. AJ. Superposition der Ausdrücke 11. und 12.
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Hexagonales System.
14. Enantiomorpke Hemiëdrie. AfA2. — Wie Gruppe (3.
15. Hemimorpke Hemiëdrie. AfEx. — Wie Gruppe 7.
16. Hemimorpke Tetartoëdrie. A,6. — Wie Gruppe 8.
17. Hemiëdrie mit dreizäkliger Ackse. AfE.AJ.

$x' = dn(Xx-Yv), = — 2dnxy, $/ = 0.

18. Tetartoëdrie mit dreizäkliger Ackse. AfEz.
- da(X, - Tt) - 2dtlX„, sp; = d,.2 (X, - Y,) + 2dnX„,

W = 0.

Reguläres System.
19. Hemimorpke Hemiëdrie. Sx2 = Sy2 — S2 und
20. Tetartoëdrie. A2 = A2 = A2.

fJ = duYz, %; = duZx, «ß/ = duXy.

Für die enantiomorpke Hemiëdrie yersckwinden kier trotz Fehlens 
eines Zentrums der Symmetrie sämtlicke piëzoelektriscke Moduln.

Die linearen Ausdrücke, welclie nack (39) die durek gegebene 
Deformationen erregten Momente usw. darstellen, speziali­
sieren sick für die einzelnen Kristallgruppen in derselben Weise, wie 
die Ausdrücke (44), mit dem einzigen Unterschied, daß in den Fällen, 
wo die Z-Achse eine dreizählige Symmetrieachse ist, an Stelle von Xy 
nickt xy, sondern \xy zu setzen ist.

10. Anwendung auf besondere Fälle. Die für die Beobachtung 
wichtigste Art piezoelektrischer Erregung ist diejenige durch die 
homogene d. h. im ganzen Kristall konstante Deformation, welche 
durch einseitigen Druck (ausgeübt auf die Endflächen eines prisma­
tischen Kristallstücks) kervorgebracht wird. Hierauf können die 
Formeln (44) direkt Anwendung finden; denn hier sind ^x) .
47.,. .. unmittelbar gegeben, nämlich, wenn P die Größe des Druckes,. 
v\, vi> seine Richtungskosinus sind:

K. = — v2P, • • • Hz = — P- 
Um das piezoelektrische Verhalten eines Kristalls zu veranschau­

lichen, kann man die aus (44) und (46) für P = 1 und alle mög­
lichen Druckrichtungen erhaltenen Momente als Vektoren von einem 
Punkte aus auftragen und die von deren Endpunkten erfüllte Ober­
fläche konstruieren. Diese „piezoelektrische Flächeu ist für spezielle 
Kristallgruppen (die hemimorphe Hemiëdrie des rhomboëdrischen und 
des regulären Systems) von E. Rieche42) und W. VoigtiS), sodann

• ’T

(46)

42) E. Riecke, Göttinger Nachr. 1891, p. 223.



10. Anwendung auf besondere Fälle.

allgemein von F. Bi dl ingm a i er43 44) untersucht worden. Letzterer zeigte, 
daß dieselbe in den meisten Fällen einem besonderen Typus der 
Steinerschen Fläche angehört. Sie ist vom 4. Grade und besitzt 
3 Doppelgerade, die einen Punkt gemeinsam haben; sie verläuft ganz 
innerhalb des durch die Endpunkte der letzteren bestimmten Tetra­
eders, dessen Seitenflächen sie in Ellipsen berührt, und kann mit 
Hilfe des Doppelgeradenkreuzes in einfacher Weise konstruiert werden 
(vgl. § 12 der Bidlingmaierschen Dissertation). Das Doppelgeraden­
kreuz und das zugehörige Tetraeder muß der Symmetrie der Kristall­
gruppe entsprechen, und hierdurch ist die piezoelektrische Fläche für 
jede Gruppe (abgesehen von den noch willkürlich bleibenden Para­
metern) ihrer Natur nach angebbar. In den Gruppen des tetragonalen 
Systems mit Ausnahme derjenigen mit Spiegelachse, sowie in allen 
Gruppen des hexagonalen Systems, wo ein solches mit der Symmetrie 
verträgliches Tetraeder nicht möglich ist, entartet die piezoelektrische 
Fläche zu einem (in Bezug auf den Ausgangspunkt der Konstruktion 
exzentrischen) Rotationsellipsoid oder (wie z. B. bei der Gruppe 11, 
welcher der Quarz angehört) zu einer Kreisscheibe. In allen übrigen 
Fällen kann sie aus der regulären Steinerschen Fläche durch Dehnung, 
Drehung, Parallelverschiebung und Kollineation abgeleitet werden.

Es ist jedoch zu bemerken, daß die piezoelektrische Fläche für sich 
allein zur Charakteristik des piezoelektrischen Verhaltens bei ein­
seitigem Druck nicht ausreicht, sondern daß noch die Zuordnung 
ihrer Punkte zu den die Druckrichtung repräsentierenden Punkten 
der Halbkugel hinzugefügt werden muß. In der Tat besitzt auch die 
allgemeinste, den symmetrielosen Kristallen zukommende piezoelek­
trische Fläche nur 15 Parameter, während die Anzahl der „piezo­
elektrischen Moduln“ dhk in diesem Falle 18 beträgt. Nur in höher 
symmetrischen Gruppen wird die Anzahl der Flächenkonstanten gleich 
derjenigen der Moduln.

Für die hemimorph-hemiëdrische und tetartoëdrische Gruppe des 
regulären Systems ist die Gleichung der Fläche, bezogen auf die hier 
den Würfelnormalen parallelen Doppelgeraden als Koordinatenachsen:

381

y, « ^ = _
x 1 y 1 z 14 ’(47)

und die Zuordnung ihrer Punkte zu 
durch die Proportion gegeben:

den Richtungskosinus von P ist

43) W. Voigt, Vers. d. Naturf. u. Ä. 1891, II. Teil, p. 36—39.
44) F. Bidlingviaier, Diss. Göttingen 1900 (Geometrischer Beitrag zur Piezo­

elektrizität der Kristalle).
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i i i
vi ' v» ' *s ’

(48) x : y : z —

woraus folgt, daß die beiden Ebenen, welche durch die Richtung von 
P einerseits, durch diejenige von iß andererseits und durch eine der 
Koordinatenachsen hindurch gelegt werden, mit einer der durch die 
letztere hindurchgehenden Koordinatenebenen komplementäre Winkel 
bilden. Liegt die Druckrichtung in einer Koordinatenebene, so fällt 
iß in die zu dieser senkrechte Symmetrieachse.

Eine andere geometrische Darstellung der piezoelektrischen Er­
regung durch einseitigen Druck hat W. Voigt angegeben45). Sie be­
ruht auf dem aus den Grundformeln (44) in Verbindung mit (46) 
leicht ersichtlichen Satze, daß der Druck P, welcher in beliebigen 
Richtungen wirken muß, um ein vorgeschriebenes Moment nach einer 
der 3 Koordinatenachsen zu erzeugen, durch das Quadrat des der 
Druckrichtung parallelen Radiusvektors je einer zentrischen Fläche 
2. Grades gegeben wird, deren Gestalt und Lage durch die piezo­
elektrischen Moduln vollständig bestimmt ist, während ihre absoluten 
Lineardimensionen der Quadratwurzel aus dem vorgeschriebenen Mo­
ment ißx — (iß*), bzw. ißy — ($y), oder ißc — (ißj, proportional sind. 
Diese 3 Flächen zweiten Grades, deren jede durch 6 Parameter be­
stimmt ist sind ausreichend zur vollständigen Charakterisierung 
des piezoelektrischen Verhaltens. Man kann z. B. durch Aufsuchung 
der Schnittpunkte dreier solcher Flächen diejenigen Drucke nach Größe 
und Richtung bestimmen, welche ein vorgeschriebenes Gesamtmoment
erzeugen.

Dieselben Flächen 2. Grades können auch zur Veranschaulichung 
des reziproken Phänomens dienen; die reziproken Quadrate ihrer 
Radienvektoren geben nämlich die in deren Richtung durch ein be­
stimmtes, je einer Koordinatenachse paralleles elektrisches Feld er­
zeugte lineare Dilatation46).

Da der Beobachtung an einseitig gepreßten rechtwinkligen Prismen 
nicht das Gesamtmoment, sondern die Komponenten nach den Prismen­
kanten, welche zugleich die auf den Prismenflächen auftretende, freie 
elektrische Flächendichte messen, unmittelbar zugänglich sind, so hat 
auch die geometrische Darstellung dieser Komponenten Interesse, ins­
besondere der Komponente iß/ nach der Druckrichtuug. Die Ober­
flächen, deren Radiusvektor r dieses longitudinale Moment iß/ für kon­
stante Größe und alle möglichen Richtungen des Druckes repräsen­

45) W. Voigt, Aun. Phys. Chem. 63 (1897), p. 376; Kristallphysik, p. 105ff.
46) W. Voigt, Ann. Phys. Chem. 63 (1897), p. 380.



tiert, sind von Voigt für die besonders interessanten Gruppen 11., 12. 
und 19. (oder 20) der obigen Aufzählung untersucht und durch 
Modelle dargestellt worden47). Ira Falle der regulären Gruppe 19. 
hat diese Fläche die Gleichung:

^]ß/ = — 3duPvtv2v3 oder r4 — — 3 dXĄPxyz\
sie besteht aus vier geschlossenen Flächenstücken, die nur im Null­
punkt Zusammenhängen, in den abwechselnden Oktanten liegen und 
natürlich symmetrisch in bezug auf die in dem betreffenden Oktanten 
liegende dreizählige Symmetrieachse (Oktaedernormale) sind. Von ähn­
lichem Typus, und ebenfalls nur der absoluten Größe nach von der 
Substanz des Kristalls abhängig, ist die ^'-Fläche bei der Gruppe 11., 
deren bekanntester Repräsentant der Quarz ist; hier gilt:
(50) = dnPvt (v* — 3 v22) oder r4 = dnPx (x2 - 3y2),
und die Fläche besteht aus drei geschlossenen, nur im Nullpunkt zu­
sammenhängenden Stücken, welche in bezug auf die XY-Ebene und 
je eine der drei durch die Hauptachse (X-Achse) und die zweizähligen 
Symmetrieachsen gehenden Ebenen symmetrisch sind. Bei der Gruppe 12. 
endlich, welcher der Turmalin angehört, erhält man
(51) = — P {d22 v2 (•v22 — 3 vt2) -f (d91 + dlh) vs (1 — v32) + d33 v2}
und wird die Fläche r — ^5/ also aus derjenigen für 11. dadurch er­
halten, daß man dem durch (50) gegebenen Radiusvektor noch eine 
vom Neigungswinkel gegen die Hauptachse allein abhängige Strecke 
hinzufügt; die Gestalt der Fläche ist hier von der Substanz des Kri­
stalls abhängig. Für einen Vertreter der monoklinen Gruppe 3., 
die Weinsäure, hat T. Tamaru48) die sämtlichen acht piezoelektrischen 
Moduln bestimmt und die Fläche des longitudinalen Moments diskutiert.

Die experimentelle Bestätigung der vorstehenden Formeln der 
Voigts,chen Theorie ist durch elektrometrische Messungen der auf den 
Flächen einseitig gepreßter Prismen auftretenden freien Ladungen von 
J. und P. Curie4’0) und von Piecke und Voigt50) an Quarz und Turmalin, 
sowie von Poel,eis51) an dem regulär tetartoëdrischen Natriumchlorat 
erbracht worden.

10. Anwendung auf besondere Fälle. 383

(49)

47) W. Voigt, Vers. d. Naturf. u. Ä. 1891, II, p. 36. — Katalog math. Modelle 
usw., München 1892, p. 385.

48) T. Tamaru, Physik. Ztschr. 6 (1905), p. 379.
49) J. u. P. Curie, Paris C. R. 92 (1881), p. 186; 93 (1882), p. 204; Joum. 

de phys. (2) 1 (1882), p. 245.
50) W. Voigt, Ann. Phys. Chem. 45 (1892), p. 523.
51) I. Pockels, Göttingen Abh. Ges. d. Wiss. 39 (1894), II. § 4.



Außer für den Fall der homogenen Deformation durch einseitigen 
Druck ist die primäre piezoelektrische Erregung noch für gewisse 
Fälle ungleichförmiger Deformation untersucht werden, so für die 
Biegung und Torsion eines Zylinders52) und für die Deformation eines 
solchen durch gewisse auf die Mantelfläche ausgeübte Drucke53). Da 
in diesen Fällen die elektrischen Momente nicht mit einer Oberflächen­
belegung allein äquivalent sind, so muß, um die beobachtbaren elek­
trischen Wirkungen des deformierten Kristallzylinders zu finden, das 
Potential der erregten elektrischen Verteilung berechnet werden. Voigt 
hat gezeigt54), wie diese Aufgabe für einen unendlich langen Kreiszylinder 
auch mit Berücksichtigung der sekundären Wirkungen (Selbstinfluenz 
und Elektrostriktion) streng gelöst werden kann, und hat u. a. den für die 
Erklärung gewisser Beobachtungen55) wichtigen Satz gefunden, daß ein 
solcher Zylinder von beliebiger kristallographischer Orientierung, wenn 
überhaupt, durch longitudinalen Druck oder Zug stets so erregt wird, 
daß sich seine Peripherie in zwei Hälften, und durch gleichförmige 
Biegung oder Drillung so, daß sie sich in vier gleiche Teile von ent­
gegengesetzt gleichem elektrischen Verhalten teilt.

11. Polare Pyroelektrizität und reziproker Wärme-Effekt.
Schon lange vor Entdeckung der Piezoelektrizität war die Erschei­
nung bekannt, daß gewisse Kristalle (wie der Turmalin) infolge von 
Temperaturänderung elektrisch erregt werden, welche Eigenschaft man 
Pyrodelärmtät nennt56). Als eigentlich pyroelektrisch sind aber nach 
Voigt nur diejenigen Kristalle zu bezeichnen, welche bei gleichför­
miger, d. h. im ganzen Kristall konstanter Temperaturänderung elek­
trisch erregt werden. Sofern diese Erregung eine polare ist, wie in 
diesem Abschnitt vorausgesetzt werden soll, kann sie nur bei gewissen 
azentrischen Kristallgruppen auftreten, nämlich bei den Gruppen 1. 
und 2. der in Nr. 9 gegebenen Aufzählung und bei denjenigen mit 
einer ausgezeichneten polaren Symmetrieachse. Ungleichförmige Tem­
peraturänderung kann hingegen dadurch, daß sie Spannungen verur­
sacht, bei allen piezoelektrischen Kristallen elektrische Erregung hervor- 
rufen, und es ist die unter solchen Umständen beobachtete Elektri­
zitätsentwicklung vielfach auch als Pyroelektrizität bezeichnet worden.
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52) W. Voigt, Allg. Theorie usw. § 6—9.
53) C. Somigliana, Ann. di ruat. (2) 20 (1892).
54) W. Voigt, Göttinger Nachr. 1894, Nr. 4.
55) W. C. Röntgen, Ann. Phys. Chem. 39 (1890), p. 16.
56) W. Fankel, dem man ausgedehnte Beobachtungen auf diesem Gebiete ver­

dankt, gebrauchte die Bezeichnung Thermoelektrizität, welche aber wegen ihrer 
anderweitig schon festgelegten Bedeutung nicht zur Annahme gelangte.
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Theoretisch behandelt ist diese scheinbare pyroelektrische Erregung 
von Voigt™) für den Fall oberflächlicher Erwärmung oder Abkühlung 
einer Kristallkugel, für welchen Beobachtungen an Quarz nach dem 
Kundtschen57 58 59) Bestäubungsverfahren von Röntgen™) Vorlagen.

Die primären wahren pyroelektrischen Momente, d. h. diejenigen, 
welche nicht von den die Temperaturänderung begleitenden Deforma­
tionen herrühren, sondern rein thermischen Ursprungs sind60), lassen 
sich im allgemeinsten Falle für hinreichend kleine Temperaturände­
rungen x durch die Formeln

= r2r ;
darstellen. Die Konstanten r reduzieren sich in der Gruppe 2. auf 
zwei und in allen hemimorphen Gruppen auf eine einzige.

Im allgemeinen werden sich solche wahre pyroelektrische Mo­
mente mit scheinbaren, durch Deformationen hervorgerufenen, über­
lagern. Um dies zu berücksichtigen, stelle man die Momente in 
Erweiterung des Ansatzes (44) als Funktionen der Spannungen und 
der Temperaturänderung dar; dabei tritt letztere mit anderen Koeffi­
zienten p1} p2, ps multipliziert auf, welche mit den rh durch die 
Relationen

(52)

^aAi + rh(53) Ph =

verbunden sind, worin die ak die thermischen Deformationen des 
Kristalls (au a2, az die Ausdehnungskoeffizienten parallel den Koordi­
natenachsen, a4, a5, a6 die Änderungen der Winkel zwischen letzteren 
für 1° Temperaturerhöhung) bedeuten. Die Konstanten ph (die für 
dieselben Kristallgruppen verschwinden, bzw. sich auf eine oder zwei 
reduzieren, wie die rh) werden als die „pyroelektrischen Konstanten“

57) W. Voigt, Allg. Theorie usw. § 11 und 12; Göttinger Nachr. 1894, 
Nr. 4, p. 26.

58) A. Kundt, Ann. Phys. Chem. 20 (1883), p. 592. Diese Methode ist sehr 
geeignet zur qualitativen Untersuchung der Pyroelektrizität.

59) W. C. Röntgen, Ann. Phys. Chem. 19 (1883), p. 513.
60) Das Vorhandensein wahrer Pyroelektrizität ist durch Messungen von 

W. Voigt am Turmalin nachgewiesen (Göttinger Nachr. 1898, Nr. 2; Ann. Phys. 
Chem. 66 (1898), p. 1030), wobei sich ergab, daß 20% der ganzen beobachteten 
Erregung „wahre“, 80% „falsche“ Pyroelektrizität waren. Es ist übrigens be­
merkenswert, daß bei allen bisher daraufhin untersuchten pyroelektrischen 
Kristallen das Vorzeichen der Erregung mit demjenigen übereinstimmt, welches 
sich gemäß dem piezoelektrischen Verhalten aus der thermischen Deformation 
bestimmt (vgl. J. u. P. Curie, Paris C. R. 91 (1880), p. 294; W. C. Röntgen, Ann. 
Phys. Chem. 19 (1888), p. 513); daraus folgt, daß jedenfalls immer die „falsche“ 
Pyroelektrizität überwiegt.

Eucyklop. d. math. Wissensch. V 2. 25
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schlechthin bezeichnet, weil sie die unter gewöhnlichen Umständen 
(nämlich bei verschwindenden Spannungen) auftretende pyroelektrische 
Erregung bestimmen.

Mit Hilfe des zweiten Hauptsatzes der Thermodynamik läßt 
sich zeigen61), daß mit ihrem Vorhandensein ein umkehrbarer 
Wärmeeffekt verknüpft ist, nämlich eine Temperaturänderung des bei 
ausgeschlossenem Wärmeaustausch in ein elektrisches Feld ge­
brachten Kristalles vom Betrage

C^ cs (jP1 ~ł~ Pi + Pt ®,) ?

falls T die absolute Temperatur, das mechanische Wärmeäquiva­
lent, c die spezifische Wärme, s die Dichte des Kristalls ist. Diesen 
„elektrokalorischen Effekt“ haben Sträubet62 *) und Fr. Lange66) 
Turmalin experimentell nachgewiesen und ihn nach Vorzeichen und 
absoluter Größe in Übereinstimmung mit vorstehendem theoretischen 
Resultat gefunden.

Es sei hier noch erwähnt, daß auch für isotrope oder zentrisch­
symmetrische kristallinische Dielektrika nach dem 2. Hauptsatz der 
Thermodynamik eine Wärmewirkung der elektrischen Erregung zu 
folgern ist64), sofern die Dielektrizitätskonstanten sich mit der Tem­
peratur ändern; diese Wirkung ist aber dem Quadrate der Feldstärke 
proportional, kehrt sich also nicht mit der Richtung des Feldes um.

12. Molekulartheorien der Piëzo- und Pyroelektrizität. Zur 
Erklärung der Pyroelektrizität des Turmalins nahm Lord Kelvin6'0) 
an, daß die Moleküle desselben ein mit der Temperatur veränderliches, 
permanentes elektrisches Moment besitzen, daß also ein solcher Kri­
stall das elektrische Analogon zu einem permanenten Magneten sei. 
Diese Vorstellung hat Rieche66) auf alle piëzo- und pyroelektrisch 
erregbaren Kristalle ausgedehnt, indem er jedes Molekül von einem 
System positiver und negativer elektrischer Pole umgeben annimmt, 
welche in den (als isotrope Kugeln behandelten) Molekülen selbst 
elektrische Momente influenzieren. Durch die mit elastischen oder 
thermischen Deformationen verbundenen gegenseitigen Lagenände­
rungen der Moleküle ändern sich auch die influenzierten Momente,

(54)

am

61) Lord Kelvin, Math. phys. papers 1, p. 316, 1877.
62) B. Straubei, Göttinger Nadir. 1902, Heft 2.
68) Fr. Lange, Diss. Jena 1905.
64) G. Lippmann, Ann. china, phys. (5) 24 (1881), p. 171.
65) Lord Kelvin, Nichols Cyclopaedia of Phys. Sc. 1860; Math. phys. 

papers 1, p. 315.
66) E. Rieche, Göttingen Abhandl. d. Ges. d. Wiss. 38, 1892.



und diese den Deformationen proportional zu setzenden Änderungen 
sind es nach der Rieche sehen Theorie, welche die beobachtbaren piëzo- 
oder pyroelektrischen Wirkungen verursachen; denn die etwa schon 
im Normalzustände vorhandenen permanenten Momente selbst wären 
durch eine kompensierende elektrische Oberflächenbelegung des Kristalls 
der Wahrnehmung entzogen. Rieche hat gezeigt, daß man auf Grund 
dieser Hypothese zu den allgemeinen Grundgleichungen der Voigtschen 
Theorie gelangt, wenn man den einzelnen azentrischen Kristallgruppen 
je nach ihrer Symmetrie eins der folgenden fünf Polsysteme oder ge­
wisse Kombinationen derselben zuschreibt:

I. Das einachsige Polsystem, aus zwei entgegengesetzt gleichen 
Polen bestehend (für sich allein ausreichend in den Gruppen 1, 2, 3, 
5, 7 und 15).

H. Das trigonale Polsystem: abwechselnd entgegengesetzte Pole 
in den Ecken eines regulären Sechsecks, dessen Mittelpunkt mit dem 
des Moleküls zusammenfällt (allein ausreichend für Gruppe 17).

III. Das dihexagonale Polsystem: abwechselnd -f- und — Pole in 
den Ecken zweier regulärer Zwölfecke, die in zwei parallelen Ebenen 
liegen und um 30° gegeneinander gedreht sind.

IV. Das ditetragonale Polsystem, analog dem vorigen, nur mit 
Achtecken statt Zwölfecken gebildet.

Y. Das tetraëdrische Polsystem, vier -j- und vier — Pole in den 
Ecken eines Würfels, die gleichnamigen die Ecken je eines regulären 
Tetraeders bildend (in den Gruppen 4, 9, 19, 20 allein auftretend).

Da diese Polsysteme zum Teil höhere Symmetrie besitzen, als 
die Kristalle der betreffenden Gruppe, und da ihre Wahl überhaupt 
einigermaßen willkürlich erscheint, so hat Voigt die Molekulartheorie 
der Piezoelektrizität in der Weise abgeändert, daß er über die Pol­
systeme selbst zunächst keine spezielle Annahme macht, aber ihnen 
Potentiale zuschreibt, welche die Symmetrie der Kristallgruppe besitzen67). 
Spezielle solche Potentiale erhält man nach dem Bildungsgesetz68)
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'ł)
(55) t = * difdlJdU... ’

d. h. durch wiederholte Differentiation des Neivtonschen Elementar­
potentials nach bestimmten Richtungen l0, l1} ... Entsprechende Pol­
systeme lassen sich leicht angeben; außerdem, daß sie der krystallo- 
graphisehen Symmetrie vollständig entsprechen, erscheint es als ein

67) W. Voigt, Göttinger Nachr. 1893, p. 649.
68) Vgl. Art. Meyer-Burkhardt über Potentialtheorie II A 7b Nr. 4, p. 470.
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Vorzug, daß sie selbst kein permanentes elektrisches Moment besitzen 
(sofern v > 2, was immer der Fall ist). Denn durch gewisse Beobach­
tungen69) ist wahrscheinlich gemacht, daß ein solches selbst bei dem 
stark pyroelektrischen Turmalin nicht in merklicher Intensität existiert, 
bzw. nur von solcher Größenordnung ist, daß es bei einer von der ge­
wöhnlichen nicht sehr verschiedenen Temperatur verschwinden würde.

Voigt hat (1. c. p. 669) noch eine von der vorstehenden etwas 
abweichende molekulartheoretische Erklärung der Pyro- und Piezo­
elektrizität gegeben, welche sich der Vorstellung der Elektronentheorie 
von der Konstitution der Atome besser einfügt, indem sie die ganze 
elektrische Wirkung der Moleküle ihren „Polsystemen“ zuschreibt und 
annimmt, daß sich die einzelnen „elektrischen Pole“ (Elektronen) des­
selben Moleküls infolge einer Temperaturänderung oder elastischen 
Deformation des Kristalls gegeneinander verschieben, und zwar ver­
schieden gelagerte Pole in verschiedener Weise. Auch nach dieser 
Vorstellung können also durch Deformationen elektrische Momente 
erregt werden, wenn im Normalzustände des Kristalls keine solchen 
vorhanden sind, und sie führt ebenfalls zu den von der allgemeinen 
Forschen Theorie (vgl. Nr. 8) vorausgesetzten und durch die Er­
fahrung bestätigten linearen Beziehungen zwischen diesen Momenten 
und den sie erzeugenden Deformationen oder Spannungen.

13. Zentrische Pyro- und Piezoelektrizität70). Nach der zu­
letzt erörterten Molekularvorstellung ist zu erwarten, daß auch zen­
trisch symmetrische Kristalle einer pyro- und piezoelektrischen Er­
regung fähig sein können, da ja auch ihre Moleküle mit Polsystemen 
behaftet sein werden, die durch Temperaturänderung und Deformation 
verändert werden können. Nur müssen hier die Polsysteme, der 
Kristallsymmetrie entsprechend, bei jeder Temperatur selbst zentrisch 
symmetrisch sein und dies auch im deformierten Kristall bleiben, da 
ja die Deformation eines Volumelements ein zentrisch symmetrischer 
Vorgang ist.

Die Moleküle werden hier also niemals elektrische Momente ge­
wöhnlicher Art besitzen, und ihre elektrische Wirkung im Außenraum 
wird demnach ganz anderen Gesetzen folgen, als bei polar erregten 
Körpern. Das Potential eines solchen Polsystems ist allgemein durch 
eine Reihe von Gliedern von der Form (55) mit gerader Anzahl v der 
Differentiationen darstellbar und reduziert sich in hinreichend großer
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69) W. Voigt, Göttinger Nachr. 1896, Heft 3; Ann. Phys. Chem. 60 (1896),
p. 368.

70) W. Voigt, Göttinger Nachr. 1905, p. 394.



Entfernung — also jedenfalls außerhalb des Kristalls — auf die Glieder 
mit v = 2. Diese kann man auf die Form bringen:

d*~
1W

a2- a2
r i2 -f- m r .

J + m(56) in 3 W) 7
wo ü2, l3 drei zueinander senkrechte Richtungen, und mif m2, m5 
Konstanten sind, welche die Natur eines Tensortripels mit den Achsen­
richtungen l2, ls besitzen. Man kann obiges Potential deuten als 
dasjenige eines Polsystems aus je vier gleichstarken, paarweise ent­
gegengesetzten Polen, die in der Reihenfolge -j-----------\- oder 1—| 
auf den Geraden l1} l2, l3 angeordnet sind; die mu m2, m3, welche 
Voigt als Momente 2. Ordnung bezeichnet, sind dann die Produkte 
aus der Ladung des einzelnen Pols und den beiden Abständen eines 
der äußeren Pole von den beiden mittleren (welche letzteren man 
übrigens auch in einen Doppelpol vereinigt denken kann). Drückt 
man die Differentialquotienten von — nach den lh durch diejenigen 
nach den Koordinaten aus, so erhält man

a8-
(56') 4jt^2 = mn -)------- 1------- j- 2 m

2 dl?

d2
+dydz23

woraus ersichtlich ist, daß ein zentrisches Polsystem hinsichtlich seiner 
Wirkung in großer Entfernung durch sechs Parameter charakterisiert 
wird. — Das Potential eines Kristallstücks, dessen Moleküle derartige 
Polsysteme enthalten, ist also gegeben durch das Raumintegral

a8-a21
(5-7) dx*
wo die Mhk die „Momente 2. Ordnung“ bezogen auf die Volumeinheit 
sind. Durch zweimalige partielle Integration kann man dasselbe um­
gestalten in

*3 dydz

a—Wa=Lj \\Mn^Mn,x)+M (»,y)+Jflłcos(»,*)]-g£-f-----1—} dt

) cos (»,a04------ 1----- } ^

+ *£■) + - + -}"

cosrj

/'{( dx ' dy ' dz
(5V) 1

4 cnrt

, JL / f±(
l ' 4kJ \dx \

BM dM.L11 + 12
dx dy

Das zweite Oberflächen- und das Raumintegral stellen gewöhnliche 
Newtomche Potentiale einer Oberflächenbelegung und einer räumlich ver­
teilten Ladung dar, die aber im Falle homogener Erregung (wie sie 
durch gleichförmige Temperaturänderung bzw. homogene Deformation
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erzeugt würde) verschwinden; das erste Oberflächenintegral hingegen 
bedeutet das Potential einer die Oberfläche des Kristalls bedeckenden 
elektrischen Doppelschicht, die analog ist den in der Magnetostatik be­
trachteten magnetischen Doppelflächen (vgl. Art. Gans Y 15, Nr. 29), von 
denen sie sich aber dadurch unterscheidet, daß die Richtung ihres elektri­
schen Moments nicht senkrecht zur Oberfläche ist, da dessen Komponenten:
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{Mn cos (n, x) -j- Mn cos (n,y) -f- Mn cos (n, z)} usw.

nicht proportional mit cos (n, x), cos (n, y), cos (n, z) sind.
Temperaturänderungen werden nun eine für die Beobachtung be­

merkbare Erregung der betrachteten Art hervorbringen, sobald die 
Momente 2. Ordnung Mn, . . . Mu Funktionen der Temperatur sind. 
Die Richtungen l2, l3 sind in diesem Falle bei Kristallen von rhom­
bischer oder höherer Symmetrie als kristallographisch ausgezeichnete 
Richtungen von vornherein bekannt. Wählt man dieselben als Ko­
ordinatenachsen, so wird aus (57):

d3- 
dx3

d3-
3 dS.

Man erkennt hieraus, daß bei regulären Kristallen, wo nach Symmetrie bei 
gleichförmiger Erwärmung stets Mt — M2 = M3 sein muß, W2 im 
Außenraum verschwindet, so daß also bei regulären Kristallen (wie bei 
isotropen Körpern) eigentliche zentrische Pyroelektrizität nicht Vor­
kommen kann. Bei allen Kristallen des rhomboëdrischen, hexagonalen 
und tetragonalen Systems erfordert die Symmetrie, wenn man die 
Z-Achse in die ausgezeichnete Symmetrieachse legt, die Gleichheit 
von Mx und M2, und es wird bei homogener Erregung (d. h. im 
ganzen Kristall gleicher Temperaturänderung):

d3
^2 =T- l + M,(58) dy3

a21L « - Mx) [ dS(59) T' =

n
-Aw—m.) cos (n, z) du.

Bei einem von lauter gleichartigen Flächen begrenzten Kristall­
polyeder (z. B. einem Rhomboeder) tragen danach alle Flächen eine 
gleiche Doppelbelegung. Führt man in jeder Kristallfläche ein Achsen­
system y ein, dessen £-Achse in deren Hauptschnitt (der Ebene 
(n, z)) liegt, so ist

a1 ai a
7 cos (n, z) -f cos (§,«),dz dn aa

▼
H
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und man erhält aus (59) 

Ms - M1 - da(60) V, =
4tt

U, d^dn j;
I-j- cos {n, z) cos (I, z)

wo die Summe über alle Flächen zu erstrecken ist. Der erste Teil 
der Summe ist das Potential einer den ganzen Kristall umgehen­
den, überall gleichen gewöhnlichen Doppelbelegung, welches im Außen­
raum Null ist; der zweite Teil läßt sich aber durch partielle Inte­
gration in Randintegrale überführen und stellt also das Potential 
linearer Ladungen der Kanten dar. Man hat hier also einen 

wo linienförmig verteilte elektrische Ladungen in der Natur 
Vorkommen können. Ähnliches ergibt sich auch für Prismen rhom­
bischer Kristalle, deren Prismenkanten einer Symmetrieachse parallel 
sind; außer linearen Ladungen dieser Kanten, die bei den zur X-, Y-, 
Z-Achse parallelen Prismen mit M3 —M2, Ml —Mä, M2 —Mx pro­
portional (und für die vier Kanten desselben Prismas abwechselnd 
entgegengesetzt) sind, treten hier allerdings noch Doppelbelegungen 
der Endflächen auf.

Fall

Beobachtungen über zentrisch symmetrische pyroelektrische Er­
regung sind in großer Zahl beschrieben worden, doch handelt es sich 
dabei in den meisten Fällen um Kristalle, die nachweislich aus azen- 
trisch erregbaren Teilen in zentrischer Gruppierung zusammengesetzt 
sind, wodurch das elektrische Verhalten des ganzen Kristalls schein­
bar zentrisch symmetrisch wird. Eigentliche zentrische Pyroelektrizität 
ist jedoch durch Beobachtungen von Voigt, die an passend geschliffenen 
Präparaten angestellt wurden, für Kalkspat, Dolomit, Topas, Baryt 
und Cölestin wahrscheinlich gemacht70).

Es ist danach zu erwarten, daß auch zentrische Piezoelektrizität 
Die Gesetze derselben erhält man nach Analogieexistiert.

derjenigen der azentrischen Piezoelektrizität, indem man die auf ein 
beliebiges Koordinatensystem bezogenen elektrischen Momente 2. Ord­
nung Mn, . . . Mi2 linearen Funktionen der Deformations- oder Span- 
nungskomponenten gleichsetzt, also entweder

f MU = <*UXx + «12 y y + «13 + «1PJZ + «15** + «16 ^(61)
oder

Mn = ßnXx -f- ß12Pj, -f- ß13Zz -f- ßuYz -{- ßlbZx -j- ßuX(61') { y ’

Die Zahl der konstanten Parameter dieser Ansätze, welche im



allgemeinen 36 beträgt, reduziert sich wegen der Tensornatur der 
Mhk durch Einführung der Symmetrieeigenschaften in analoger Weise, 
wie die der Konstanten der inneren Reibung oder der in Nr. 3 ein­
geführten Konstanten 8hk (vgl. Anm. 13). Es folgt daraus unter 
anderem, daß zentrische Piezoelektrizität auch bei regulären Kristallen 
und isotropen Körpern möglich sein würde. Die Anwendung des 
obigen Ansatzes (61') auf Prismen rhombischer Kristalle, deren Längs­
richtung einer kristallographischen Symmetrieachse parallel ist, ergibt, 
daß durch longitudinalen Druck deren Längskanten abwechselnd ent­
gegengesetzte Ladungen annehmen (analog wie bei der pyroelektrischen 
Erregung). Die Existenz dieser zentrischen piezoelektrischen Erregung 
hat Voigt durch Versuche an Topas, Baryt und Cölestin, sowie an 
Kalkspat, wahrscheinlich gemacht.

14. Pyro- und Piëzomagnetismus. Magnetische Erscheinungen, 
welche der Pyro- und Piezoelektrizität analog wären, sind mit Sicher­
heit bisher nicht nachgewiesen. Wenn sie überhaupt existieren, so 
sind sie zum Teil bei anderen Symmetriegruppen zu erwarten, als 
die analogen elektrischen Erscheinungen, weil das magnetische Feld 
die Natur eines axialen Vektors (vgl. Art. Abraham IV C 14, Nr. 3) besitzt, 
und sich daher bei der magnetischen Erregung den kristallographischen 
Symmetrieelementen ein Zentrum der Symmetrie superponiert. Pyromag- 
netismus, d. h. ein von der Temperatur abhängiges permanentes magneti­
sches Moment, könnten nach Symmetrie außer den triklinen und mono­
klinen Kristallen nur diejenigen rhomboëdrischen, hexagonalen und tetra- 
gonalen besitzen, bei welchen sowohl zur ausgezeichneten Symmetrieachse 
parallele Symmetrieebenen, als zu ihr senkrechte zweizählige Achsen fehlen 
(also z. B. die Kristalle der pœramorph-hemi'ëdrischen Gruppen). Piëzo­
magnetismus hingegen könnte bei allen Gruppen, mit Ausnahme der 
Holoëdrie, enantiomorphen und hemimorphen Hemiëdrie des regulären 
Systems, Vorkommen. Es sind hinsichtlich des piëzomagnetischen 
Verhaltens aber nur acht verschiedene Gruppen zu unterscheiden. 
Die entsprechenden Konstautensysteme sind von W. Voigt aufgestellt 
worden71). Durch die von demselben an verschiedenen Kristallen 
angestellten Versuche konnten bisher mit Sicherheit nur obere Grenz­
werte für die etwa vorhandenen pyro- und piëzomagnetischen Momente 
nachgewiesen werden.
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71) W. Voigt, Göttinger Nachr. 1901, p. 1—19; Ann. Phys. 9 (1902), p. 94.
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Dieser letzten Arbeit meines vieljährigen Mitarbeiters und 
Freundes möchte ich ein Wort auf den Weg mitgeben.

Einmal zeigt sie den eigentümlichen Charakterzug Meyer­
hoffers, aufgenommene Probleme hartnäckig zu verfolgen. Die 
1892 gleichzeitig deutsch und französisch erschienene Stereo­
chemie war seine erste größere zusammenfassende Arbeit; die 
jetzt, 14 Jahre später, erschienene Veröffentlichung auf demselben 
Gebiet sollte die letzte sein. Sie berührt dasjenige in der Stereo 
chemie, was allgemein auch den Nichtchemiker interessiert, näm 
lieh die Frage, ob die optische Aktivität eine Lebensäußerung 
ist, auf welchen Standpunkt sich bekanntlich Pasteur stellte. 
Die Entdeckung, daß die Trennung der entgegengesetzt aktiven



Isomeren und damit die Ausscheidung derselben eine Temperatur­
frage ist und mit einer bei bestimmter Temperatur eintretenden 
Um Wandlungserscheinung zusammenhängt, brachte die Erscheinung 
in anderes Licht, und die vorliegende Arbeit gibt die Gesetze, welche 
diese Umwandlungserscheinung beherrschen. Dieselben bringen 
die Ausscheidung von optisch aktiven Verbindungen in nahen 
Zusammenhang mit der Spaltung von Doppelsalzen.

Dann aber macht sich noch eine gewisse Neigung zum Ab­
strakten, welche ebenfalls charakteristisch bei Meyerhoffer war, 
geltend, und ich möchte dem Leser empfehlen, sich dadurch nicht 
abschrecken zu lassen, besonders wo sich diese Eigentümlichkeit 
im Anfang zeigt. Die im ersten Kapitel gegebene Definition vom 
Gleichgewicht kann man sich vielleicht für später auflieben. Auch 
die mathematischen Entwickelungen kurz nachher auf S. 6 ver­
decken den überaus durchsichtigen Charakter des nachfolgenden. 
Derselbe ist wesentlich dadurch erzielt, daß die Maximaltension 
sowohl der Behandlung wie der graphischen Darstellung zugrunde 
liegt. Pietätshalber habe ich vorgezogen, dies alles einleitend 
zu bemerken und keine Änderungen vorzunehmen, die vielleicht 
der Autor nicht gebilligt hätte.

J. H. van ’tHoff.
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Verlag von B. G. Teubner in Leipzig.

Wissenschaft und Hypothese. Von Henri Poincaré, Membre de 
l’Institut. Autorisierte deutsche Ausgabe mit erläuternden An­
merkungen von F. und L. Lindemann in München. 2., ver­
besserte Auflage. [XVI u. 346 S.] 8. 1906. In Lein wand geb. 4.80.

Wenige Forscher sind sowohl in der reinen als in der angewandten Mathe­
matik mit gleichem Erfolge tätig gewesen wie der Verfasser des vorliegenden 
Werkes. Niemand war daher mehr als er berufen, sich über das Wesen der 
mathematischen Schluß weisen und den erkenntnistheoretischen Wert der mathe­
matischen Physik im Zusammenhänge zu äußern. Und wenn auch in diesen Ge­
bieten die Ansichten des einzelnen zum Teil von subjektiver Beanlagung und Er­
fahrung abhängen, werden doch die Entwicklungen des Verfassers überall ernste 
und volle Beachtung finden, um so mehr, als er sich bemüht, auch einem weiteren, 
nicht ausschließlich mathematischen Leserkreise verständlich zu werden, und als 
ihm dies durch passende und glänzend durchgeführte Beispiele in hohem Maße 
gelingt. Die Erörterungen erstrecken sich auf die Grundlagen der Arithmetik, die 
Grundbegriffe der Geometrie, die Hypothesen und Definitionen der Mechanik und 
der ganzen theoretischen Physik in ihrer neuesten Entwicklung sowohl als in ihrer 
klassischen Form. Um dem allgemeinen Verständnisse noch mehr entgegenzukommen, 
sind der deutschen Ausgabe durch den Herausgeber zahlreiche Anmerkungen 
hinzugefügt, die teils einzelne Stellen des Werkes näher erläutern, teils durch 
literarische Angaben dem Leser die Mittel zu weiterem Studium der besprochenen 
Fragen an die Hand geben.

Der Wert der Wissenschaft. Von Henri Poincaré, Membre de 
l’Institut. Mit Genehmigung des Verfassers ins Deutsche über­
tragen von E. Weber. Mit Anmerkungen und Zusätzen von 
H. Weber, Professor in Straßburg i. E., und einem Bildnis 
des Verfassers. [Vu. 252 S.] 8. 1906. In Leinwand geb. M. 3.60.

Das Werk hat ähnlibhe Ziele wie das oben angezeigte „Wissenschaft und 
Hypothese“, bietet aber ein für sich abgeschlossenes Ganze.

Der geistvolle Verfasser gibt im ersten Teil eine Darlegung seiner An­
schauungen, wie in uns die Vorstellungen von Raum und Zeit entstanden sein 
könnten. Der zweite Teil enthält eine Darstellung des gegenwärtigen Standes der 
Physik und der besonders durch die neuen Untersuchungen über Elektrizität her­
vorgerufenen Krisis, in der die früher für vollständig gesichert gehaltenen Prinzipien 
ins Wanken geraten sind, und die merkwürdigerweise auf die philosophischen An­
schauungen der Zeit zurückgewirkt haben. Auch der Laie wird sich aus dieser 
Darstellung eine richtige Vorstellung von dem Inhalt der Fragen, um die es sich 
dabei handelt, bilden können. Der dritte Teil endlich mündet wieder in den Aus­
gangspunkt ein und kehrt zu der durch den Titel des Werkes gestellten Frage 
nach dem Wert der Wissenschaft zurück, indem er das Verhältnis der Wissen­
schaft zur Wirklichkeit einer Untersuchung unterwirft.

Die der deutschen Ausgabe beigefügten Anmerkungen haben teils den 
Zweck, Einzelheiten, die dem deutschen Leser vielleicht weniger zur Hand sind, 
zu erläutern, teils die behandelten Fragen noch aus einem etwas anderen Gesichts­
punkt zu betrachten.

Die philosophischen Grundlagen der Wissenschaften. Vorlesungen 
gehalten an der Universität Berlin von Prof. Dr. B. Weinstein. 
[XIV u. 543 S.] 8. 1906. In Leinwand geb. JL 9.—

Das Buch enthält eine Auseinandersetzung über die Grundlagen der 
Wissenschaften, vornehmlich die Naturwissenschaften. Zunächst wird der Inhalt 
der Grundlagen untersucht und aus ihm ein System der Grundlagen abgeleitet. 
Darauf folgt eine Darlegung der psychischen Tätigkeiten, die für die Ermittlung 
der Grundlagen maßgebend sind. Nach Beschreibung der Art, wie bei Gewinnung 
von Grundlagen vorgegangen wird, folgt eine Auseinandersetzung der Beziehungen 
unserer Wahrnehmungen zur Außen- und Innenwelt, wobei insbesondere physio­
logische und psychologische Verhältnisse zur Sprache kommen. Hierauf werden 
die Hauptgrundlagen vom Standpunkte der Erfahrung und der Metaphysik einer 
genaueren Zergliederung und Untersuchung unterzogen. Insbesondere werden die 
Begriffe der Zeitlichkeit, Räumlichkeit, Substanzialität und Ursächlichkeit behandelt, 
ünd im Anschluß an diese wird das Wesen von Zeit, Raum, Substanz und Ursache 
dargelegt. Den Schluß bildet die Behandlung derjenigen Grundlagen, die der 
Welterhaltung und Weltentwicklung dienen, sowie der Grundlagen, aus denen Er­
klärungen der Natur- und Lebenserscheinungen fließen. Trotz strenger Wissen­
schaftlichkeit ist das Buch gemeinverständlich geschrieben, alle philosophischen 
Auseinandersetzungen sind durch Beispiele erläutert, und überall, wo eingehenderes 
Wissen erforderlich war, ist dieses zur Mitteilung gelangt. Großer Wert ist auf 
beste Sprache gelegt. Das Buch ist für die weitesten Kreise bestimmt. Es soll 
dem Gebildeten eine tiefere Einsicht in das Wesen der Wissenschaften und in den 
Wert der Wissenschaften vermitteln.



ABHANDLUNGEN ZUR GESCHICHTE DER MATHEMATISCHEN 
WISSENSCHAFTEN MIT EINSCHLUSS IHRER ANWENDUNGEN 

BEGRÜNDET VON MORITZ CANTOR. XXII. HEFT

m Soeben erschien:
1811

BRIEFWECHSEL ZWISCHEN

C. G. J. JACOBI und M. H. JACOBI
HERAUSGEGEBEN VON

W. AHRENS
IN MAGDEBUBG

MIT ZWEI BILDNISSEN

[XX u. 282 S.] gr. 8. 1907. geh. Ji 6.90, in Leinwand geh. JC. 7.50

Ans dem Vorwort des Herausgebers.
Der glückliche Umstand, daß von C. G. J. Jacobi eine ausgedehnte 

Korrespondenz vorlag mit einem ihm durch die engsten Bande 
des Blutes wie des Geistes verknüpften Manne, der selbst eine her­
vorragende Stellung in der wissenschaftlichen Welt einuahm, schien 
mir nicht ungenutzt bleiben zu dürfen. Zwar sind viele der wich­
tigsten Stellen des vorliegenden Briefwechsels, insbesondere solche, 
welche die wissenschaftliche Entwicklung C. G. J. Jacobis betreffen, in 
dem bekannten Werk Koenigsbergers bereits veröffentlicht. Auf 
besonderen wissenschaftlichen Wert wird daher diese Publikation 
keinen Anspruch machen dürfen; man wird sie jedoch, wie ich hoffe, 
soweit es sich um C. G. J. Jacobi handelt, als eine nicht wertlose 
biographische Ergänzung zu dem Koenigsbergerschen Werk und 
andernteils als eine Vorarbeit für eine bisher nicht existierende, von 
anderer Seite jedoch geplante Biographie M. H. Jacobis ansehen. 
Wenn der Umstand, daß dem Briefwechsel der fach wissenschaftliche 
Charakter in der Hauptsache abgeht, vielleicht dazu beitragen möchte, 
den großen Mathematiker auch dem weiteren Publikum etwas näher



Verlag von B. G. Teubner in Leipzig.

Wissenschaft und Hypothese. Von Henri Poincaré, Membre de 
l’Institut. Autorisierte deutsche Ausgabe mit erläuternden An­
merkungen von F. und L. Lindemann in München. 2., ver­
besserte Auflage. [XVI u. 346 S.] 8. 1906. In Leinwand geb. <4^4.80.

Wenige Forscher sind sowohl in der reinen als in der angewandten Mathe­
matik mit gleichem Erfolge tätig gewesen wie der Verfasser des vorliegenden 
Werkes. Niemand war daher mehr als er berufen, sich über das Wesen der 
mathematischen Schlußweisen und den erkenntnistheoretischen Wert der mathe­
matischen Physik im Zusammenhänge zu äußern. Und wenn auch in diesen Ge­
bieten die Ansichten des einzelnen zum Teil von subjektiver Beanlagung und Er­
fahrung abhängen, werden doch die Entwicklungen des Verfassers überall ernste 
und volle Beachtung finden, um so mehr, als er sich bemüht, auch einem weiteren, 
nicht ausschließlich mathematischen Leserkreise verständlich zu werden, und als 
ihm dies durch passende und glänzend durchgeführte Beispiele in hohem Maße 
gelingt. Die Erörterungen erstrecken sich auf die Grundlagen der Arithmetik, die 
Grundbegriffe der Geometrie, die Hypothesen und Definitionen der Mechanik und 
der ganzen theoretischen Physik in ihrer neuesten Entwicklung sowohl als in ihrer 
klassischen Form. Um dem allgemeinen Verständnisse noch mehr entgegenzukommen, 
sind der deutschen Ausgabe durch den Herausgeber zahlreiche Anmerkungen 
hinzugefügt, die teils einzelne Stellen des Werkes näher erläutern, teils durch 
literarische Angaben dem Leser die Mittel zu weiterem Studium der besprochenen 
Fragen an die Hand geben.

Der Wert der Wissenschaft. Von Henri Poincaré, Membre de 
l’Institut. Mit Genehmigung des Verfassers ins Deutsche über­
tragen von E. Weber. Mit Anmerkungen und Zusätzen von 
H. Weber, Professor in Straßburg i. E., und einem Bildnis 
des Verfassers. [Vu. 252 S.] 8. 1906. In Leinwand geb. M. 3.60.

Das Werk hat ähnlibhe Ziele wie das oben angezeigte „Wissenschaft und 
Hypothese“, bietet aber ein für sich abgeschlossenes Ganze.

Der geistvolle Verfasser gibt im ersten Teil eine Darlegung seiner An­
schauungen, wie in uns die Vorstellungen von Raum und Zeit entstanden sein 
könnten. Der zweite Teil enthält eine Darstellung des gegenwärtigen Standes der 
Physik und der besonders durch die neuen Untersuchungen über Elektrizität her­
vorgerufenen Krisis, in der die früher für vollständig gesichert gehaltenen Prinzipien 
ins Wanken geraten sind, und die merkwürdigerweise auf die philosophischen An­
schauungen der Zeit zurückgewirkt haben. Auch der Laie wird sich aus dieser 
Darstellung eine richtige Vorstellung von dem Inhalt der Fragen, um die es sich 
dabei handelt, bilden können. Der dritte Teil endlich mündet wieder in den Aus­
gangspunkt ein und kehrt zu der durch den Titel des Werkes gestellten Frage 
nach dem Wert der Wissenschaft zurück, indem er das Verhältnis der Wissen­
schaft zur Wirklichkeit einer Untersuchung unterwirft.

Die der deutschen Ausgabe beigefügten Anmerkungen haben teils den 
Zweck, Einzelheiten, die dem deutschen Leser vielleicht weniger zur Hand sind, 
zu erläutern, teils die behandelten Fragen noch aus einem etwas anderen Gesichts­
punkt zu betrachten.

Die philosophischen Grundlagen der Wissenschaften. Vorlesungen 
gehalten an der Universität Berlin von Prof. Dr. B. Weinstein. 
[XIV u. 543 S.] 8. 1906. In Leinwand geb. Ji. 9.—

Das Buch enthält eine Auseinandersetzung über die Grundlagen der 
Wissenschaften, vornehmlich die Naturwissenschaften. Zunächst wird der Inhalt 
der Grundlagen untersucht und aus ihm ein System der Grundlagen abgeleitet. 
Darauf folgt eine Darlegung der psychischen Tätigkeiten, die für die Ermittlung 
der Grundlagen maßgebend sind. Nach Beschreibung der Art, wie bei Gewinnung 
von Grundlagen vorgegangen wird, folgt eine Auseinandersetzung der Beziehungen 
unserer Wahrnehmungen zur Außen- und Innenwelt, wobei insbesondere physio­
logische und psychologische Verhältnisse zur Sprache kommen. Hierauf werden 
die Hauptgrundlagen vom Standpunkte der Erfahrung und der Metaphysik einer 
genaueren Zergliederung und Untersuchung unterzogen. Insbesondere werden die 
Begriffe der Zeitlichkeit, Räumlichkeit, Substanzialität und Ursächlichkeit behandelt, 
ünd im Anschluß an diese wird das Wesen von Zeit, Raum, Substanz und Ursache 
dargelegt. Den Schluß bildet die Behandlung derjenigen Grundlagen, die der 
Welterhaltung und Weltentwicklung dienen, sowie der Grundlagen, aus denen Er­
klärungen der Natur- und Lebenserscheinungen fließen. Trotz strenger Wissen­
schaftlichkeit ist das Buch gemeinverständlich geschrieben, alle philosophischen 
Auseinandersetzungen sind durch Beispiele erläutert, und überall, wo eingehenderes 
Wissen erforderlich war, ist dieses zur Mitteilung gelangt. Großer Wert ist auf 
beste Sprache gelegt. Das Buch ist für die weitesten Kreise bestimmt. Es soll 
dem Gebildeten eine tiefere Einsicht in das Wesen der Wissenschaften und in den 
Wert der Wissenschaften vermitteln.



ABHANDLUNGEN ZUE, GESCHICHTE DER MATHEMATISCHEN 
WISSENSCHAFTEN MIT EINSCHLUSS IHRER ANWENDUNGEN 

BEGRÜNDET VON MORITZ CANTOR. XXII. HEFT

s Soeben erschien:
1811

BRIEFWECHSEL ZWISCHEN

C. G. J. JACOBI und M. H. JACOBI
HERAUSGEGEBEN VON

W. AHRENS
IN MAGDEBURG

MIT ZWEI BILDNISSEN

[XX u. 282 S.] gr. 8. 1907. geh. JC 6.90, in Leinwand geh. JL 7.50

Ans dem Vorwort des Herausgebers.
Der glückliche Umstand, daß von C. G. J. Jacobi eine ausgedehnte 

Korrespondenz vorlag mit einem ihm durch die engsten Bande 
des Blutes wie des Geistes verknüpften Manne, der selbst eine her­
vorragende Stellung in der wissenschaftlichen Welt einnahm, schien 
mir nicht ungenutzt bleiben zu dürfen. Zwar sind viele der wich­
tigsten Stellen des vorliegenden Briefwechsels, insbesondere solche, 
welche die wissenschaftliche Entwicklung C. G. J. Jacobis betreffen, in 
dem bekannten Werk Koenigsbergers bereits veröffentlicht. Auf 
besonderen wissenschaftlichen Wert wird daher diese Publikation 
keinen Anspruch machen dürfen; man wild sie jedoch, wie ich hoffe, 
soweit es sich um C. G. J. Jacobi handelt, als eine nicht wertlose 
biographische Ergänzung zu dem Koenigsbergerschen Werk und 
andernteils als eine Vorarbeit für eine bisher nicht existierende, von 
anderer Seite jedoch geplante Biographie M. H. Jacobis ansehen. 
Wenn der Umstand, daß dem Briefwechsel der fachwissenschaftliche 
Charakter in der Hauptsache abgeht, vielleicht dazu beitragen möchte, 
den großen Mathematiker auch dem weiteren Publikum etwas näher



]

zu bringen, so würde ich gerade dies mit Freuden begrüßen, da der 
in seinen Interessen, seinem Wissen und Treiben so vielseitige und 
überall bedeutende Mann auch außerhalb der Fachkreise weit größeres 
Interesse verdiente. Daß die Korrespondenz zweier Männer, die 
beide große Stellungen in der Wissenschaft und angesehene Positionen 
in zweien der größten Akademien innehatten, wohl als ein nicht 
unwichtiger Beitrag zur Gelehrtengeschichte angesehen werden darf, 
kam für den Entschluß, den Briefwechsel zu veröffentlichen, weiter 
in Betracht. Das nahe verwandtschaftliche Verhältnis der beiden 
Briefschreiber, die ungezwungene Art, mit welcher sich beide infolge­
dessen aussprechen, erhöht naturgemäß den psychologischen Wert der 
Briefe; sie spiegeln denn auch in der Tat beider Charaktere, die in 
mancher Beziehung recht verschieden waren, vorzüglich wider und 
erhöhen durch den so entstehenden Kontrast den Reiz der Lektüre. 

An dieser Stelle mag es gestattet sein, ein Wort über das Verhältnis
Hochinteressant

ist es zu sehen, welches Interesse und welches Verständnis C. G. J. Jacobi 
den praktisch-technischen Aufgaben entgegenbringt und mit wie 
unerbittlicher Hartnäckigkeit und Schärfe er den Bruder gerade auf 
die praktisch-utilitarischen Forderungen, diese in richtigem Sinne 
verstanden, hinweist, er, der Mann der reinen Theorie, derselbe Mann, 
der den Mut hatte, in der englischen Industrie-Metropole zu allge­
meinem Entsetzen den Satz aufzustellen, „es sei die Ehre der Wissen­
schaft, keinen Nutzen zu haben“, er, der sich schwerlich jemals mit 
naturwissenschaftlichen oder gar technischen Fragen näher hatte be­
schäftigen, hierfür insbesondere in seiner Studienzeit neben dem offi­
ziellen Studium der Philologie und Philosophie und dem privaten 
der Mathematik nichts hatte übrig haben können.

Bei Veranstaltung dieser Herausgabe erfreute ich mich gütiger 
Unterstützung von verschiedenen Seiten. In erster Linie gebührt 
mein Dank Fräulein Margarethe Jacobi in Cannstatt, die . . . mich 
auch durch weitere Briefe, unter denen ich insbesondere zwei für 
die Anmerkungen verwertete Kollektionen von Briefen C. G. J. Jacobis 
an seine Frau, nämlich von der italienischen Reise (1843/44) und 
von der Marienbader Reise (1839), hervorhebe, freundlichst unter­
stützte. Ein reiches Material an Briefen und sonstigen Dokumenten, 
unter denen ich namentlich ein Tagebuch M. H. Jacobis, sowie seine 
Dienstliste anführe, stellte mir dessen Enkel, Herr P. N. v. Jacobi 
in Petersburg, aus seinem Familienarchiv, gütigst zur Verfügung.

Die Anhänge enthalten außer dem Verzeichnis der Schriften 
M. H. Jacobis (Anhang IV) zunächst als Anhang I die Widmung an 
Friedrich Wilhelm IV. aus den Opuscula mathematica C. G. J. Jacobis. 
Der Wiederabdruck (Anhang II) eines auch wohl in Fachkreisen 
durchweg unbekannten Artikels aus den „Grenzboten“, der eine, wenn 
auch gewiß nicht in allen Punkten treffende, so doch nicht un­
interessante Schilderung von C. G. J. Jacobi als Lehrer und Politiker 
gibt, dürfte wohl als zweckmäßig anerkannt werden.

der beiden Brüder zueinander einzuflechten



Dem Briefwechsel beigegeben sind die Porträts der beiden Brüder 
Jacobi. Das von Moritz J. ist nach einer bereits an anderem Orte 
publizierten Photographie hergestellt. Dagegen ist das hier bei­
gegebene Porträt von C. Gr. J. Jacobi bisher nicht veröffentlicht.

Briefe müssen natürlich so weit erläutert werden, daß dem Leser 
nicht, wie bei vielen derartigen Briefausgaben der Fall ist, fort­
während Rätsel aufgegeben werden. Man wird jedoch mit Recht 
finden, daß zahlreiche Anmerkungen keineswegs unbedingt not­
wendig waren: Tritt in dem Koenigsbergerschen Werk das bio­
graphische Moment mehr zurück, so mußte es in diesem Buche, 
sollte es eine Ergänzung zu jenem bilden, besonders stark hervor­
treten. Dieser Gesichtspunkt mußte vornehmlich für die Anmerkungen 
in Frage kommen, in denen ich daher ein umfangreiches, oft anek­
dotenhaftes, bald hier, bald dort am Wege aufgelesenes Material 
unterzubringen bemüht war.

Im gleichen Verlage erschien:

CARL GUSTAV JACOB JACOBI
VON

LEO KOENIGSBERGER
FESTSCHRIFT

ZUR FEIER DER HUNDERTSTER WIEDERKEHR 
SEINES GEBURTSTAGES

MIT EINEM BILDNIS IN HELIOGRAVÜRE 
UND DEM FAKSIMILE EINES BRIEFES 

[XVin u. 554 S.] gr. 8. 1904. In Leinwand gebunden ^16.—
„Die vorliegende Biographie Jacobis ist eine derartig hervorragende Leistung, daß mau 

wünschen möchte, Herr Koenigsberger möchte sich entschließen, auch das Leben und das geistige 
Schaffen des unvergleichlichen Gauß in ähnlicher Weise darzustellen.“ (Prof. Dr. G. Holzmüller.)

„Durch dieses Werk, das geradezu als ein Muster einer Lebensbeschreibung gelten kann, 
hat sich der Verfasser den größten Dank aller seiner Fachgenossen verdient.“

(Wissenschaftliche Beilage der Leipziger Zeitung. 1905. Nr. 106.)
„Bür den Fachmann ist es ein Genuß, durch den oft humorvollen Briefwechsel unter jene 

mathematische Tafelrunde der dreißiger Jahre versetzt zu werden, die mit Jacobi als ihrem König 
das mathematische Leben jener Zeit beherrschten. Nur einer steht in unnahbarer Reserve seit­
wärts, der deus matheseos Gauß Die dramatisch spannende Entdeckungsgeschichte der elliptischen 
Funktionen hat durch zahlreiche Auszüge aus dom hochinteressanten Briefwechsel der Beteiligten 
eine lebendige Darstellung erhalten. Kurz, wir dürfen das Buch als eine schöne Bereicherung 
der biographischen Literatur begrüßen und den Freunden der Mathematik aufs beste empfehlen.“ 

(Mitteilungen der Deutschen Gesellschaft für Medizin u. Naturwissenschaften. 1905. Nr. 14.)

CARL GrUSTAY JACOB JACOBI.
Rede zu der von dein Internationalen Mathematiker-Kongreß in Heidel­
berg veranstalteten Feier der hundertsten Wiederkehr seines Geburtstages, 

gehalten am 9. August 1904
von

Leo Koenigsberger.
Mit einem Bildnis C. G. J. Jacobis. [40 S.] 4. 1904. geh. JC 1.20.



Von W. Ahrens erschienen im gleichen Verlage:

C. G. J. Jacobi als Politiker.
Ein Beitrag zu seiner Biographie.

[45 S.] gr. 8. 1907. geh. JL. 1.20.
Daß C. G. J. Jacobi sich in der Revolutionsära politisch betätigt hat, ist in Fachkreisen 

wohl allgemein bekannt. Eine eingehendere und anschauliche Schilderung dieser kurzen Lebens­
periode, in welcher der berühmte Mathematiker im Vordergründe des politischen Lebens der 
preußischen Hauptstadt stand, existierte bisher nicht. Der Verfasser dieser Schrift gibt eine solche, 
wobei er sich auf die einschlägige, insbesondere auch die Tagesliteratur stützt und daneben viel­
fachen Gebrauch von dem gleichzeitig erschienenen „Briefwechsel zwischen C. G. J. Jacobi und 
M. H. Jacobi“ macht

Scherz und Ernst in der Mathematik.
Geflügelte und ungeflügelte Worte.

[X u. 522 S.] gr. 8. 1904 In Leinwand geh. JL 8.—
„Eine recht große Zähl von Zitaten knüpft an die Namen Gauß und Jacobi an.“

(Aus dem Vorwort des Verfassers.)
„Ich kann mir nicht anders denken, als daß dieses Buch jedem Mathematiker eine wahre 

Freude bereiten wird. Es ist zwar keineswegs bestimmt und auch nicht geeignet, in einem Zuge 
durchgelesen zu werden, und doch, als ich es zum ersten Male in die Hände bekam, konnte ich 
mich gar nicht wieder davon losreißen, und seit ich es unter meinen Büchern stehen habe, ziehe 
ich es gar oft hervor, um darin zu blättern.“ (Friedr. Engel, Literarisches Zentralblatt. 1905. Nr. 5.)

„ . . . Der Verfasser der „Mathematischen Unterhaltungen“ hat uns mit einem neuen, über­
aus fesselnden und originellen Werke überrascht, welches man als einen mathematischen „Büch­
mann“ bezeichnen könnte, wenn es nicht neben aphoristischen Bemerkungen auch längere Briefe 
und Auseinandersetzungen brächte. Beginnt man zu lesen, so möchte man das Buch nicht aus 
der Hand legen, bis man zum Ende gelangt ist, und dann werden viele wieder von vom beginnen. 
Jedem wird es Neues bringen, möge er noch so belesen sein. . 
gibt einen tiefen Einblick in das Ringen der Geister, und manchem wird durch manche kurze, 
treffende Bemerkung ein Licht über ganze Gebiete der Wissenschaft aufgehen. Man lernt ab­
wägen zwischen verschiedenen Richtungen und Schulen, und manches imgerechte Urteil wird 
durch das Buch korrigiert.“ (Prof. Dr. Holzmüller in der Zeitschrift für lateinlose höhere Schulen,

16. Jahrg., p. 30 f.)

Gerade das vorliegende Buch

„Mit einiger Phantasie kann man dem Buche den Stoff und die Anregung für mehr als ein 
Drama entnehmen, dessen Handlung und Durchführung spezifisch mathematisch ist — der Schaden­
freude gar nicht zu gedenken, welche es bereitet, große Geister in kleinen Dingen auch klein zu 
sehen, und der Genugtuung, daß die allergrößten auch in kleinen Dingen niemals kleinlich waren.“

(Monatshefte für Mathematik und Physik. 1905.)
„C’est un vrai complément, de toutes les histoires des mathématiques, que personne ne 

regrettera d’avoir mis dans sa bibliothèque.“ (P. Mansion, Mathesis 1905, p. 266.)
„Die in der deutschen, ja in der Weltliteratur noch vorhanden gewesene Lücke wird durch 

das vorliegende Buch in der glücklichsten Weise ausgefüllt. . . . Wir können diese Besprechung 
mit dem aufrichtigen Wunsche beschließen, daß das vortreffliche, auch äußerlich entsprechend 
ausgestattete Buch in Laienkreisen nicht minder wie in denen der Fachgelehrten sich bald der 
allgemeinsten Verbreitung erfreuen möge.“ (Münchner Allgemeine Zeitung. 1905. Nr. 268.)

Mathematische 
Unterhaltungen und Spiele.

[X u. 428 S.] gr. 8 1901.
In Originalband mit Zeichnung yon P. Bürck. JL 10.— 

Auch geheftet in 2 Teilen zu je JL 5.—
. . Die äußerst schwierige Aufgabe, diese Dinge so zu behandeln, daß nicht nur der Laie 

Verständnis folgen kann, sondern daß auch das Interesse des Mathematikers von Fach 
gefesselt wird, hat der Verfasser in einer Weise gelöst, die der höchsten Anerkennung wert ist.*

(Friedr. Engel, Literarisches Zentraiblatt, Juli 1901.)

mit



VERLAG VON B. G. TEÜBNER IN LEIPZIG

DIE TECHNISCHE MECHANIK
ELEMENTARES LEHRBUCH

FÜR MITTLERE MASCHINENTECHNISCHE FACHSCHULEN 
UND HILFSBUCH FÜR STUDIERENDE HÖHERER 

TECHNISCHER LEHRANSTALTEN

VON

P. STEPHAN
RE GIERUNG SB AUMEISTÏR

OBERLEHRER AN DER KGL. HÖHEREN MASCHINENBAUSCHULE ZU TOSEN

I. TEIL: MECHANIK STARRER KÖRPER
MIT 255 FIGUREN IM TEXT

[VIII u. 344 S.] gr. 8. 1904. In Leinwand geb. Mk. 7.—

II. TEIL: FESTIGKEITSLEHRE UND MECHANIK DER 
FLÜSSIGEN UND GASFÖRMIGEN KÖRPER

MIT 200 FIGUREN IM TEXT

[VIII u. 332 S.] gr. 8. 1906. In Leinwand geb. Mk. 7.—

Das vorliegende Buch schließt sich größtenteils dem Lehr­
plan für die preußischen höheren Maschinenbauschulen an und 
versucht, die technische Mechanik mit Hilfe elementarer Rech­
nungen in möglichst knapper Form darzusteHen. Um die Trag­
weite und die Anwendung der einzelnen Sätze zu zeigen, wurde 
ihnen eine große Anzahl ausführlich durchgerechneter Beispiele 
beigegeben, die, soweit möglich, der Praxis entnommen und 
häufig so gewählt wurden, daß sich daran eine weitere Diskussion 
anschließen kann, wie es bei einigen Beispielen auch ange­
deutet ist.

Diese Beispiele und einige wenige kurze Teile, die in der 
Fachschule hei der ersten Durcharbeitung des Ganzen über-



schlagen werden dürften, machen das Buch auch als Übungs­
buch und Repetitorium für Studierende technischer Hochschulen 
brauchbar; es enthält etwa das Minimum dessen, was ein Student 
im Vorexamen wissen muß, und annähernd das Maximum dessen, 
was in einer höheren Maschinenbauschule mit Erfolg durch­
gearbeitet werden kann.

In dem zweiten Teil wird die Mechanik elastischer fester 
Körper in der für den Techniker besonders wichtigen Form der 
Festigkeitslehre, darauf die Mechanik flüssiger Körper, soweit 
sie für Maschinentechniker von Bedeutung ist, und schließlich 
die der gasförmigen entwickelt. Während die meisten elemen­
taren Lehrbücher der Festigkeitslehre die einfachen Bean­
spruchungsfälle mit großer Ausführlichkeit erörtern, aber auf 
die überwiegend yorkommenden der zusammengesetzten Be­
anspruchung nur in einem, gewöhnlich recht kurzen, Anhang 
eingehen, werden hier gerade letztere, soweit sie mit den Hilfs­
mitteln der elementaren Mathematik zugänglich gemacht werden 
können, an Hand vieler der maschinentechnischen Praxis ent­
nommenen Beispiele eingehend besprochen. In einigen Fällen 
mußten naturgemäß Näherungsrechnungen angegeben werden, 
die aber im Ergebnis von den genauen, nur mit Hilfe der 
höheren Mathematik durchzuführenden wenig abweichen. Der 
Abschnitt über gasförmige Körper ist ebenfalls rein mit Rück­
sicht auf die maschinentechnischen Anwendungen bearbeitet 
worden und bietet am Schluß neben den theoretischen 
Rechnungen über die Gasmaschine auch die Berechnungs­
grundlagen der Dampfturbine in zeichnerischer Weise mit Hilfe 
des Boulvinschen Diagrammes.“

Aus Urteilen über den I. Teil:
„Das Hilfsbuch wird dem Lehrplan für höhere Maschinenbauschulen 

durchaus gerecht. Besonders schätzenswert ist die Beigabe zahlreicher 
ausführlich durchgerechneter Beispiele zu den einzelnen Lehrsätzen, 
welche das Buch als Übungsbuch für Studierende sehr geeignet machen. 
Bemerkenswert ist ferner, daß Verfasser sich bemüht hat, die Bezeichnungen 
für die in den Formeln gebrauchten Größen aus dem Taschenbuch der 
„Hütte“ zu übernehmen. (Literaturblatt zu Glasers Annalen 

für Gewerbe und Bauwesen. 56. Band. Heft 1.)

.. So bestand die Aufgabe des Verfassers darin, aus dem großen 
sonst behandelten Stolf das auszuwählen, was für Maschinentechniker 
wichtig ist und elementar behandelt werden kann, und hauptsächlich 
die Anwendung der Lehrsätze auf maschinentechnische Beispiele zu 
zeigen. Diese Aufgabe hat der Verfasser in gelungener Weise gelöst. 
Die Lehrsätze sind in einfacher klarer Sprache vorgetragen und stets 
durch Zahlenbeispiele illustriert. In letzterer Hinsicht kann auch ein 
Studierender einer technischen Hochschule, der sich in die Anfangs-

« *



gründe der technischen Mechanik einarbeiten und sich durch Lösen 
von Zahlenbeispielen üben will, manchen Nutzen ziehen. In dèn Zahlen­
beispielen, unter denen zahlreiche dem Gebiet der Maschinenelemente 
und Hebezeuge entnommen sind, liegt für die Schüler der Hauptwert 
des Buches; mit der technischen Anwendung und der konki-eten Zahl 
haben sie ja späterhin stets zu tun. Erfahrungskoeffizienten sind in 
reichlicher Menge zu finden ...

... Das Buch kann den Lehrern und Schülern höherer Maschinen­
bauschulen und mittlerer technischer Lehranstalten warm empfohlen 
werden.“ (Dinglers Polytechnisches Journal. 86. Jahrgang. Heft 22.)

„... Gut eignet es sich für den Studierenden, bezw. Lehrer der 
Mathematik. Diese werden mit interessanten Kapiteln der angewandten 
Mathematik bekannt und, was mehr ist, sie werden an einer großen 
Anzahl gut gewählter Beispiele mit dem Stoffe vertraut. Es wird da­
durch auch manches wertvolle Korn für die Lehrstunde abfallen...“

(Zeitschrift für das Realschulwesen. 31. Jahrgang. Nr. 7.)

„Jede technische Schule hat ihren Lehrer der Mechanik, und dieser 
ist bemüht, ein den Erfordernissen der Schule angemessenes Buch zu 
verfassen. Der Stoff ist daher auch allseitig erschöpft, und es erübrigt 
nur, bezüglich der Form und Wiedergabe denselben zu einem nützlichen 
und leicht verständlichen Werke zusammenzufassen. Dies ist dem Autor 
des vorliegenden Bandes in hohem Grade gelungen. Seine Abhandlung 
ist kurz, bündig, treffend; die Einteilung sowie die Figuren sind über­
sichtlich; die begleitenden 190 Beispiele sind sehr gut gewählt. Nebst- 
dem enthält das Buch eine Menge von der Praxis entnommenen nütz­
lichen Angaben. Da auch die Ausstattung sehr vollkommen ist, muß 
das Lehrbuch als ein sehr gediegenes bezeichnet werden.“

(Zeitschrift des österreichischen Ingenieur- und Architekten-Vereins. 
1904. Nr. 41.)

.. Besonders hervorzuheben sind die 190 größtenteils der Praxis 
entnommenen, ausführlich durch gerechneten Beispiele, sowie das aus­
führliche Sachregister. Alles in allem kann das Buch zur Einführung 
in die technische Mechanik wohl empfohlen werden. Auch der Mathe­
matiker und Physiker wird es mit Interesse studieren, und der Lehrer 
kann manches darin finden, was zur Belebung des Unterrichtes mit 
Aufgaben aus der Praxis verwendet werden kann.“

(Dr. Robert Mayr in der Bayerischen Zeitschrift für Realschulwesen.)

„Einen besonderen Vorzug der Darstellung bildet die Klarheit und 
Schärfe der Disposition sowohl des Werkes im ganzen wie seiner einzelnen 
Abschnitte. Gleich in der Einleitung wird der Gegenstand in leicht ver­
ständlicher und scharf umrissener Form festgelegt und gegen die Phoro- 
nomie einerseits, gegen die Physik andererseits abgegrenzt. Es folgt, 
knapp aber anschaulich begründet, die Gliederung des Stoffes in fünf 
Hauptabschnitte und die Festsetzung des Einteilungsgrundes für ihre 
Unterabteilungen, von denen zunächst die Statik, dann nach einem ein­
leitenden Abschnitte über die geometrische Bewegungslehre des Massen­
punktes die Dynamik des letzteren bezw. starrer Systeme behandelt wird. 
Diese Anordnung darf man vom Standpunkte der Methode aus um so 
mehr billigen, als trotz der durch letztere begründeten Voranstellung 
der Statik vor den rein geometrischen Teil der Mechanik der syste­
matische Aufbau des Ganzen klar erkennbar bleibt.

Von mustergültiger Klarheit und Schärfe, wie Plan, Anlage und 
Gliederung des Buches selbst, sind auch die gegebenen Definitionen so-



wohl der Sachen als der Methoden und der nach denselben durch­
geführten Beispiele. Sie sichern dem Buche eine weit ausgedehntere 
Verwendbarkeit als der eines „elementaren Lehrbuches für mittlere 
maschinentechnische Fachschulen und eines Hilfsbuches für Studierende 
höherer technischer Lehranstalten“, sie eignen es vielmehr auch zu 
einem vorzüglichen Hilfsmittel für den physikalischen Unterricht an 
höheren, namentlich realistischen Schulen. Auch dieser wird sich, wo 
er kann, gern der einfachen Erklärungen und Methoden des Verfassers 
bedienen, weil sie ihm neben dem Vorteile möglichst bequemer praktischer 
Verwendung noch den didaktischen Gewinn leicht faßlicher, alle über­
flüssigen Einzelheiten ausschaltender Darstellung bieten.

Ferner kann auch ihm die reiche, nahe an 200 Nummern um­
fassende Sammlung vollständig entwickelter und durchgeführter Beispiele 
als Muster schulgemäßer Darstellung in Ausdruck und Form und als 
Fundgrube aus dem Leben gegriffener und darum das Interesse der 
Schüler packender Aufgaben empfohlen werden. Viele davon machen 
so wenig technische Voraussetzungen, daß sie glatt in den Primaunter­
richt übernommen werden können: Vor allem gilt dies natürlich von 
den Beispielen aus der reinen Phoronomie ; sie verdienen Berücksichtigung 
seitens der Schule namentlich auch deshalb, weil sie durch die Ein­
führung und Benutzung graphischer Methoden und durch die grundsätz­
liche Durchführung des absoluten Maßsystems hervorragend geeignet er­
scheinen, die Hilfsmittel der neueren Technik dem weiteren Kreise der 
Gebildeten verständlich und zugänglich zu machen. Aber auch viele 
Aufgaben der eigentlichen mechanischen Abschnitte lassen sich, sei es 
sachlich, sei es nur methodisch, für den Unterricht auf der obersten 
Klasse wohl verwerten.“

Die Ausstattung des Buches ist vorzüglich.
(M. Schuster im Pädagogischen Archiv. 1905. Heft 3.)
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das ja hier vorausgesetzt werden muß, wach zu erhalten, sie 
ist vielmehr geeignet, das Verständnis der Theorie zu fördern 
und zu vertiefen. — Bei der Auswahl und Behandlung der 
Beispiele wurde der Grundsatz festgehalten, daß es sich darum 
handelt, die theoretischen Sätze an denselben zu mannigfacher, 
durchsichtiger Anwendung zu bringen, durch sie aber auch zur 
Vermehrung des Wissensstoffes beizutragen. Zahlreiche Text­
figuren unterstützen den Vortrag.



*

Vorwort zur zweiten Auflage.
Bei der Bearbeitung der zweiten Auflage hat die Gesamt­

anlage des Werkes eine Änderung nicht erfahren, da mir weder 
die Urteile der Kritik noch die eigenen seither gemachten 
Erfahrungen eine solche als notwendig erscheinen ließen. 
Hingegen ist alle Sorgfalt darauf verwendet worden, den Inhalt 
abzurunden und den Zwecken, für welche das Buch bestimmt 
ist, vollkommener anzupassen; wo es angezeigt schien, die Dar­
stellung präziser zn gestalten und die Ergebnisse schärfer zu 
formulieren. Von größeren Erweiterungen des Inhalts seien 
erwähnt im I. Bande die hyperbolischen Funktionen, der Be­
griff der Funktion einer komplexen Variablen; im II. Bande 
die Eu 1er sehen Integrale, die Fourier sehen Reihen, Moment- 
und Schwerpunktsbestimmungen, die Sätze von Green. Die 
Einfügung historischer und literarischer Notizen wird manchem 
willkommen sein; auch die ziemlich zahlreichen, an passenden 
Stellen vorgelegten Probleme dürften zur Verwendbarkeit des 
Buches beitragen. So hoffe ich, die Absichten, welche mir 
bei der Anlage des Werkes vorschwebten, der Verwirklichung 
näher gebracht zu haben.

Wien. E. Czuber.

Urteile.
„Auf dieses Werk, welches zu den besten seiner Art zu zählen ist, 

möchte ich die Aufmerksamkeit der Leser ganz besonders hinlenken. Ob­
gleich das Werk in erster Linie für die Studierenden an technischen 
Hochschulen bestimmt ist, kann es doch auch den Mathematik-Studierenden 
der Universitäten warm empfohlen werden, da es den Anfänger in vor­
trefflicher Weise in die Infinitesimalrechnung einzuführen geeignet ist. 
Nicht minder aber sei das Werk Denen empfohlen, welche seit einer 
längeren Reihe von Jahren sich nicht mit der Infinitesimalrechnung be­
schäftigt haben und nun sofort eine modernen Anforderungen in bezug 
auf Strenge genügende Darstellung derselben kennen lernen wollen. Über­
all tritt in dem Werke das Bestreben des Herrn Verfassers zu Tage, den 
strengeren Untersuchungen, durch welche in den letzten Jahrzehnten die 
Analysis bereichert worden ist, Rechnung zu tragen und sich auf den 
Boden der modernen Forschung zu stellen, soweit dies in einem für 
Anfänger bestimmten Buche tunlich und durchführbar ist. Infolgedessen



mUrteile.

findet man überall ein tieferes Eindringen in solche theoretische Be­
trachtungen, mit denen jetzt auch der Anfänger möglichst schueli 
vertraut werden muß. Um in dieser Beziehung nur einige Punkte 
hervorzuheben, nenne ich die Einführung der Irrationalzahlen nach 
Dedekind-Cantor, die Sätze über stetige und unstetige Funktionen, 
über den vor- und rückwärts genommenen Differentialquotienten, dann 
besonders den Abschnitt über Reihen mit variabelen Gliedern, die exakte 
Darstellung der Theorie der Extremwerte für Funktionen von mehreren 
Veränderlichen, und anderes mehr. Dabei sei aber betont, daß andrer­
seits jedes Übermaß fast durchweg glücklich vermieden ist und solche 
subtile Untersuchungen, für welche der Anfänger noch kein Interesse und 
Verständnis haben kann und welche erst dem bereits mit der Infinitesimal­
rechnung Vertrauteren von Nutzen und Wert sein können, nicht in das 
Werk aufgenommen sind. Ferner ist, was für den Anfänger nicht weniger 
wertvoll ist, auf die geometrische Interpretation der Formeln und Sätze 
ein Hauptgewicht gelegt und den Anwendungen, welche fast durchweg 
der Geometrie entnommen sind, ein breiter Raum gewährt. Ebenso ist die 
Auswahl der Beispiele, bei welchen gleichartige möglichst vermieden sind, 
eine recht geschickte, da jedes neue Beispiel den Leser in seinem Wissen 
fördert . . .“ (Zeitschrift für den mathematischen und natur­

wissenschaftlichen Unterricht. 1900. Heft 1.)
„Was ferner beide Bände vorteilhaft vor anderen ähnlichen Büchern 

auszeichnet, das ist die vorzügliche Auswahl und die klare Behandlung 
der zahlreichen, zum Teile völlig neuen Beispiele, welche namentlich die 
geometrischen Anwendungen der Methoden erläutern; und nach dieser 
Richtung kann nach Ansicht des Referenten gerade den Technikern 
niemals zu viel geboten werden. Für sie ist auch namentlich das Kapitel 
über Massenanziehung und Potential im 4. Abschnitte des II. Bandes von 
besonderem Werte, sowie die Anwendungen der Differentialgleichungen, 
deren Theorie man in gedrängtem Rahmen wohl kaum irgendwo besser 
dargestellt finden dürfte.“ (A. v. Braunmühl in den Blättern für 

das bayrische Gymnasialschulwesen.)
„. . . Die Klarheit und Präzision der Darstellung, die strengwissen­

schaftliche Behandlung der einzelnen Partien, die stete Rücksichtnahme auf 
die Anwendungen, namentlich auf die Geometrie, welche wir gelegentlich 
der Besprechung des ersten Bandes mit Anerkennung hervor heben mußten, 
zeichnet auch diesen Band aus. Es ist das vorliegende Buch nicht nur im 
Sinne des Technikers, sondern auch des Fachmannes, der Mathematik um 
ihrer selbst willen betreibt, verfaßt; der ausgezeichnete Autor hat in allen 
Teilen seiner Entwicklungen gestrebt, jeder Theorie mehrere Seiten ab­
zugewinnen, so z. B. hat er in der Lehre von den Differentialgleichungen 
die geometrische Bedeutung derselben stets im Auge gehabt . . .

... So scheiden wir von einem Werke, das uns schöne Stunden 
geistigen Genusses bereitet hat, und dies nicht nur wegen des reichen 
und gut gewählten Inhaltes, sondern wegen der überall lichtvollen 
Darstellung, die dem Buche sein besonderes Gepräge verleibt. Der 
Verfasser zeigt sich gerade darin als ausgezeichneter akademischer Lenrer, 
der auch maucher spröden Materie Leben zu geben vermag. Das Buch 
ist für die Hochschule geschrieben ; es soll den in die Tiefen der 
Mathematik Ein dringenden, dem Techniker auch ein verläßlicher Rat­
geber bei späteren Detailforschungen sein, die es anbahnt. Daß es dem 
Autor gelungen ist, sein Buch in jeder Beziehung nützlich zu gestalten, 
wird ihm wohl jeder zugeben, der sich mit demselben beschäftigt hat. 
Möge der Verbreitungskreis der Vorlesungen über Differential- und 
Integralrechnung von Prof. Czuber ein recht großer sein.“

(Zeitschrift für die österreichischen Gymnasien. 1899. Heft 12.)
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Geometrische Wahrscheinlichkeiten u. Mittelwerte.
Mit 115 Textfiguren. [VII u. 244 S.] gr. 8. 1884. geh. n. Mk. 6.80.

Das vorliegende Buch ist der erste Versuch einer systematischen 
Darstellung der geometrischen Wahrscheinlichkeiten und der damit eng 
zusammenhängenden geometrischen Mittelwerte. Der erste Teil, „Geo­
metrische Wahrscheinlichkeiten“, zerfällt in drei Abschnitte, welche 
der Reihe nach willkürlich angenommene Punkte (in Linien, in Flächen, 
im Raume), willkürlich gezogene Geraden (in der Ebene, im Raume) und 
willkürlich gelegte Ebenen zum Gegenstände haben. Im zweiten Teile, 
„Geometrische Mittelwerte“ betitelt, ist von oiner weiteren Gliederung 
des Stolfes Umgang genommen worden; die Probleme sind hier nach den 
zu ihrer Lösung verwendeten Methoden geordnet.

Von Emanuel Czuber erschien ferner im gleichen Verlage:

\

Theorie der Beobachtungsfehler.
Mit 7 Textfiguren. [XIV u. 418 S.] gr. 8. 1891. geh. n. Mk. 8.—

Eine zusammenfassende Darstellung der wissenschaftlichen Grund­
lagen der Fehlertheorie und der auf sie gegründeten Ausgleichungs­
rechnung, wie sie dieses Buch zu geben versucht, soll einem doppelten 
Zwecke dienen: den Mathematiker in dieses durch Metaphysik und Analyse 
gleich interessante Gebiet der Wahrscheinlichkeitsrechnung einführen und 
demjenigen, den praktische Probleme mit der Ausgleichungsrechnung, 
diesem unerläßlich gewordenen Bindeglied zwischen Beobachtungen einer­
seits und den aus ihnen gefolgerten Resultaten andererseits, zusammen­
führen, ein möglichst umfassendes Bild ihrer Entwicklung nach der theo­
retischen Seite bieten. Die technische Ausführung der Rechnungen bei 
Lösung spezieller Aufgaben aus verschiedenen Gebieten der Anwendung 
fällt, hiernach nicht in den Rahmen des Buches.

Die Entwickelung der Wahrscheinlichkeitstheorie 
und ihrer Anwendungen.

A. u. d. T.: Jahresbericht der Deutschen Mathematik er-Vereinigung. VII, 2.
[VIII u. 279 S.] gr. 8. 1899. geh. n. Mk. 8.—

Die Schrift stellt sich die Aufgabe, den Entwicklungsgang der Wahr­
scheinlichkeitstheorie bis zu ihrem heutigen Stande in knappen Zügen zu 
zeichnen und auf die Anwendungsgebiete so weit einzugehen, als es sich 
dabei um theoretische Fragen handelt. Der philosophischen Seite des 
Gegenstandes wird mehr Aufmerksamkeit zugewendet, als dies sonst in 
mathematischen Schriften zu geschehen pflegt. Es erwies sich als zweck­
mäßig, nicht den historischen Gang, sondern die sachliche Gliederung zur 
Grundlage der Anordnung zu wählen. So werden denn der Reihe nach 
die Grundlagen der Wahrscheinlichkeitstheorie; ihre Anwendung auf die 
Ergebnisse wiederholter Versuche; die Wahrscheinlichkeit (fer Ursachen 
beobachteter Ereignisse und das Schließen auf zukünftige Ereignisse; die 
Beurteilung vom Zufall abhängiger Vor- und Nachteile; die Anwendungen 
der Wahrscheinlichkeitstheorie auf Zeugenaussagen und Entscheidungen 
von Gerichtshöfen, auf die Resultate von Messungen, endlich auf die 
Statistik behandelt.



Von Emanuel Czuber erschien ferner im gleichen Verlage:

Wahrscheinlichkeitsrechnung
und ihre Anwendung auf Fehlerausgleichung, Statistik 

und Lebensversicherung.
I. Hälfte. [304 S.] gr. 8. 1902. geh. n. JC. 12.—

H. Hälfte. [XY u. 290 S.] gr. 8. 1903. geh. n. jfC. 12.— 
Beide Teile zusammengeb. n. M. 24.—

Der Verfasser bietet in dem vorliegenden Buche eine Darstellung 
der Wahrscheinlichkeitstheorie und ihrer hauptsächlichsten Anwendungs­
gebiete: Fehlerausgleichung, mathematische Statistik und Lebensver­
sicherungsrechnung.

In dem grundlegenden ersten Teil wird auf die fundamentalen 
Fragen der Wahrscheinlichkeitsrechnung eingegangen; eine große Aus­
wahl von Problemen, darunter selbstverständlich die klassischen, ist dazu 
bestimmt, in den Geist der Wahrscheinlichkeitssätze und ihren richtigen 
Gebrauch einzuführen.

Der zweite Teil begründet die Fehlertheorie und die aus ihr ent­
springende Methode der kleinsten Quadrate; Beispiele aus verschiedenen 
Wissenszweigen geben eine zureichende Vorstellung von der Verwendung 
dieses wichtigen Instruments zur Bearbeitung von Beobachtungsergebnissen.

Im dritten Teil werden die modernen Hilfsmittel der wissenschaft­
lichen Beurteilung und Ausnützung von Erfahrungstatsachen auf statis­
tischem Gebiete erörtert; die Probleme der Sterblichkeits- und Invaliditäts­
messung stehen im Vordergründe der Betrachtung.

Der vierte Teil erklärt das Wesen und behandelt alle belangreichen 
Probleme der Lebensversicherungsrechnung; um auch einen Einblick in 
die Auswertung der hier maßgebenden Formeln und die auftretenden 
Zahlwerte zu gewähren, sind Tabellen und Rechnungsbeispiele in größerer 
Zahl ein gefügt.

„Gegenüber den bisher veröffentlichten Lehrbüchern der Wahr­
scheinlichkeitsrechnung sehe ich einen wesentlichen Fortschritt in der 
gegenwärtigen Darstellung darin, daß auf einem verhältnismäßig be­
schränkten Raume die klassische Wahrscheinlichkeitsrechnung und die 
modernen Anwendungen gleichzeitig dargestellt werden.

Als einen Fortschritt in der Disposition betrachte ich es ferner, 
daß die auf eine endliche Anzahl von Möglichkeiten sich beziehenden 
Wahrscheinlichkeiten und die sogenannten geometrischen Wahrscheinlich­
keiten in einem und demselben Abschnitte, nämlich in I „Grundlagen 

. der Wahrscheinlichkeitsrechnung“ dargestellt sind.“
(Zeitschrift für Mathematik und Physik. 61. Band. Nr. 3.)

„Eine so eingehende, klare und selbst für einen in der Mathematik 
nicht gerade besonders Beschlagenen durchweg leicht verständliche Be­
arbeitung, .wie sie der bekannte Wiener Mathematiker ihr hier hat 
zu teil werden lassen, hat u. W. die Wahrscheinlichkeitsrechnung bis­
her noch nicht erfahren. Jedenfalls hat der Verfasser ein Standard­
werk geschaffen, das in keiner Bibliothek, vor allem auch in keiner 
Versicherungsbibliothek fehlen darf und wird.“

(Annalen des gesamten Versicherungswesens. 34. Jahrgang. Nr. 7.)



£Ë Soeben erschien:
1811

VORLESUNGEN AUS DER

ANALYTISCHEN GEOMETRIE
DER GERADEN LINIE, DES PUNKTES 
UND DES KREISES IN DER EBENE

VON

OTTO HESSE.

VIERTE AUFLAGE
REVIDIERT UND ERGÄNZT VON

S. GUNDELFINGER.

[VIII u. 251 S.j gr. 8. 1906. In Leinwand geb. 6 Mark.

Das vorliegende klassische Lehrbuch dient dem Studium 
der Geometrie, sowohl auf der Schule als auf der Universität.

Die behandelten Gegenstände, sowie die notwendigen 
Voraussetzungen sind der Sphäre des Schulunterrichts ent­
nommen. Die einzige Ausnahme hiervon bildet die siebente 
Vorlesung. Sie durfte indes nicht wegbleiben, weil sie ein 
sprechendes Zeugnis ablegt für den innigen Zusammenhang 
der Geometrie mit der Algebra.

Die Vorlesungen sind wesentlich akademische. Darum 
beschränken sie sich nicht auf die in der Schule gezogenen 
Grenzen, sondern geben in erweitertem Rahmen ein Bild der 
Wissenschaft in ihrer jetzigen Form.

Ihre Aufgabe ist gefällig anzuregen und zu weiteren Ent­
deckungen zu ermuntern. Dabei können sie aber doch dem 
Zuhörer oder Leser die Mühe der Arbeit und des Nachdenkens 
nicht ersparen, ohne die man weder in der Wissenschaft 
noch in dem Leben Gewinn und Befriedigung hat.

In der vorliegenden vierten Auflage hat der Herausgeber 
zahlreiche Änderungen und Zusätze im Texte gemacht und 
einige Ergänzungen am Schluß des Buches für sich beigefügt.
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VII. Vorlesung: Die Auflösung biquadratischer Gleichungen. S. 83.
Unter Voraussetzung des Satzes, daß die ganzen symmetrischen 

Funktionen der Wurzeln einer algebraischen Gleichung sich rational 
durch die Koeffizienten in der Gleichung darstellen lassen, gibt diese 
Vorlesung eine geometrische Anschauungvon der Auflösung biquadratischer 
Gleichungen.

VIII. Vorlesung: Linienpaare und Punktepaare. S. 95.
Die entwickelte Gleichung eines Linienpaares und eines Punkte­

paares. — Notwendige Bedingungen dazu. — Ausdruck für den Winkel, 
den ein Linienpaar einschließt. — Ausdrücke für harmonische Linien­
paare und Linienpaare der Involution. — Länge der von einem Punkte­
paare begrenzten geraden Linie. — Ausdrücke für harmonische Punkte­
paare und Punktepaare der Involution.

IX. Vorlesung: Transformation der Koordinaten und die 
orthogonalen Substitutionen. S. 106.

Lineare Koordinaten -Transformation, 
winkliger Koordinatensysteme. — Orthogonale Substitutionen. — Ellip­
tische Koordinaten-Transformation.

Transformation recht-



X. Vorlesung: Orthogonale Substitutionen, welche eine gegebene 
homogene Funktion der zweiten Ordnung zweier Variabelen auf 
die Quadrate zweier anderen Variabelen zurückführen. S. 126.

XI. Vorlesung: Homogene Koordinaten. Dreieckkoordinaten. S. 140.
Linienpaare,

-welche von drei Punkten in einer geraden Linie ausgelien. — Punkte­
paare auf drei von einem und demselben Punkte ausgehenden geraden 
Linien.
XII. Vorlesung: Das Pascalsehe und das Brianchonsche Sechseck.

S. 157.
Die 60 Pascalschen Sechsecke mit denselben 6 Ecken und die 60 

Brianchonschen Sechsecke, welche dieselben 6 geraden Linien als Seiten 
haben.

Homogene Koordinaten. — Dreieckkoordinaten.

XIII. Vorlesung: Der Kreis. S. 183.
Normalform und allgemeine Form der Gleichung des Kreises. — 

Die Schnittpunkte einer geraden Linie und eines Kreises. — Harmonische 
Pole eines Kreises. Pol und Polare. Die Gleichung der letzteren. — 
Konstruktion der Polare. — Die Gleichung des Tangentenpaares von 
einem Punkte an den Kreis. — Die Kreisgleichung in Linienkoordinaten. — 
Harmonische Polaren des Kreises. — Die Gleichung des Pôles. — Die 
Gleichung des Punktepaares, in welchem eine gerade Linie einen Kreis 
schneidet.
XIV. Vorlesung: Das System von Kreisen, welche durch die Schnitt­

punkte zweier Kreise gehen. S. 194.
Die Gleichung des Systems von Kreisen, welche sich in denselben 

beiden Punkten schneiden. — Die gemeinschaftliche Sekante des Systems 
von Kreisen. — Grenzpunkte des Systems der Kreise. — Ein zweites 
System von Kreisen schneidet das gegebene System senkrecht. — Elegantere 
Form der Gleichung der Polare. — Die Ähnlichkeitspunkte zweier Kreise. — 
Die Gleichung des Tangentenpaares an zwei Kreisen. — Analytischer 
Ausdruck für das System von Kreisen, welche das gegebene System 
senkrecht schneiden.

XV. Vorlesung: Das System von Kreisen, welche von einem Kreise 
senkrecht geschnitten werden. Das Problem der Berührung eines 

Kreises an drei gegebenen Kreisen, S. 214.
. Das System von Kreisen, deren Gleichungen aus den Gleichungen 
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Band V : Physik, in 2 Teilen. Redigiert von A. Sommerfeld in München.
* erschienen, f unter der Presse.

I. Teil. *14. Weiterbildung der Maxwellschen Theorie. Elek­
tronentheorie: H. A. Lorentz in Leiden.
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Mathematische Spezialausführungen 

zur Optik.
24. Strahlenoptik und optisohe Instrumente : S. Finster- 

walder in München.
25. Wellenoptik (Interferenz und Beugung): N. N.
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und J. Nabl in Wien.
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11. Physikalische und Elektrochemie: J. H. van’t Iloff 
in Berlin.
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Inhaltsverzeichnis von Band V, Teil 2.
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B. Beiff in Stuttgart und A. Sommerfeld in München. 
*13. Maxwells elektromagnetische Theorie: H.A.Lorentz 
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W. Franz Meyer und E. Jahnke) ihr aus dem Leserkreise zugehende Verbesserungsvorschläge und Er­
gänzungen (auch in literarischer Hinsicht) zu den erschienenen Heften der Encyklopädie auf. Diesbezügliche 
Einsendungen sind an den Unterzeichneten zu richten. Beiträge für den Sprechsaal haben bisher beige­
steuert die Herren W. Ahreus, M. Bôoher, A. v. Braunmühl, T. J. I’A. Bromwich, H. Burkhardt, 
G. Eneström, H. Fehr, L. Henneberg, E. Jahnke, F. Klein, M. Koppe, M. Krause, Josef Kür- 
schàk, B. Lampe, A. Loewy, Gino Loria, J. Ltiroth, Otto Meißner, W. Fr. Meyer, E. Müller,

L. Saalsohütz. CarlE. Netto, M. Noether, W. Osgood, K. Petr, S. Pincherle, C. Bunge, —. =
Schmidt, A. Schoenflies, F. Schur, E. Study, Th. Vahlen, A. Wangerin, K. v. Wesendonck, 
W. Wirtinger. W. Fr. Meyer, Königsberg i. Pr.-Maraunenhof, Herzog Albrechtallee 17.W. Fr. Meyer, Königsberg i. Pr. - Maraunenhof, Herzog Albrechtallee 17.

MH1 !! Alle Gebiete des Wissenso m !!
ÎÎ zu pflegen ist dem Einzelnen heute nicht mehr möglich, aber an einem 
U Punkte sich über den engen Kreis, in den ihn heute meist der Beruf 

einschließt, zu erheben, an einem Punkte die Freiheit und Selbständig­
keit des geistigen Lebens zu gewinnen, sollte jeder versuchen. Wege dazu zeigt:

B. G. Teubners Allgemeiner Katalog
eine reich illustrierte, durch ausführliche Inhaltsangaben, Proben, Besprechungen 
eingehend über jedes einzelne Werk unterrichtende Übersicht aller derjenigen 
Veröffentlichungen des Verlages, die von allgemeinem Interesse für die weiteren 
Kreise der Gebildeten sind. Der Katalog liegt in folgenden Abteilungen vor, 
die jedem Interessenten auf Wunsch umsonst und postfrei übersandt werden :
1. Allgemeines (Sammelwerke, 4. Geschichte. Kultur- 8. Volkswirtschaft. Handel

Zeitschriften, Bildungswesen). geschickte. Kunst. und Gewerbe. Fortbil-
2. Klassisches Altertum (Lite- 5. Deutsche Sprache und dungsschulwesen.

ratur, Sprache, Mythologie, Literatur. 9. Pädagogik.
Religion, Kunst, Geschichte, 6. Neuere fremde Litera- 10. Mathematik. Technik. 
Recht und Wirtschaft). turen und Sprachen. Naturwissenschaften.

3. Religion. Philosophie. 7. Länder- u. Völkerkunde. Vollständige Ausgabe.

I
II
III
III
III B. G. Teubner.Leipzig, Poststraße 3.
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am University College zu London, 
Vorlesungen. Autorisierte deutsche

derFleming, J. A„, 
elektrische
Ausgabe von Professor Dr. E. Aschkinaß, Privatdozent an der Universität 
Berlin. Mit 53 Abbildungen. [IV u. 185 S.] gr. 8. 1906. geh. n. ^£4.20, in
Leinw. geh. n. Jt 5.—

-Telegraphie.

Gans, Dr. Richard, Privatdozent an der Universität Tübingen, Einführung in die 
Vektoranalysis. Mit Anwendungen auf die mathematische Physik. Mit 
31 Figuren im Text. [X u. 98 S.] gr. 8. 1905. In Leinw. geb. n. Jt 2.80.

Gauss’, C. F., Werke. Weiterführung der von der Königl. Gesellschaft der Wissen­
schaften zu Göttingen veranstalteten Gesamtausgabe von Gauss’ Werken.
VII. Band: Theoria motus und Theoretisch-Astronomischer Nachlaß.

(Parabolische Bewegung, Störungen der Ceres und der Pallas, Theorie 
des Mondes.) [680 S.] 4. 1906. kart. n. Jt 30.—

Hesse, Dr. O., weil. Professor am Kgl. Polytechnikum zu München, Vorlesungen 
aus der analytischen Geometrie der geraden Linie, des Punktes und 
des Kreises in der Ebene. 4. Auflage, revidiert und ergänzt von Dr. 
S. Gundelfinger, Professor an der Technischen Hochschule zu Darmstadt. 
[VIH u. 251 S.j gr. 8. 1906. In Leinw. geb. n. Jt 6.—

Jacobi, C.G. J., und M.H. Jacobi. Briefwechsel. Herausgegeben von Dr.W. Ahrens 
in Magdeburg. A. u. d. T.: Abhandlungen zur Geschichte der mathematischen 
Wissenschaften mit Einschluß ihrer Anwendungen. Begründet von Moritz 
Cantor. XXII. Heft. Mit 2 Bildnissen. [XX u. 282 S.] gr. 8. 1907. geh.
n. Jt 6.90, in Leinw. geb. n. Jt 7.50.

Verlag von B. ö. Teubner in Leipzig.

Abraham, Dr. M., Privatdozent an der Universität Göttingen, Theorie der Elektri­
zität. I. Band: Einführung in die Maxwellsche Theorie der Elektrizität. Mit 
einem einleitenden Abschnitte über das Rechnen mit Vektorgrößen in der Physik. 
Von Dr. A. Föpfl. Zweite, umgearbeitete Auflage von Dr. M. Abraham. Mit 
11 Figuren im Text. [XVHI u. 443 S.] gr. 8. 1904. In Leinw. geb. n. Jt 12.— 
II. Band: Elektromagnetische Theorie der Strahlung. Von Dr. M. Abraham. 
[X u. 404 S.] gr. 8. 1905. In Leinw. geb. n. Jt 10. —

Ahrens, Dr. W., in Magdeburg, C. G. J. Jacobi als Politiker. Ein Beitrag zu 
seiner Biographie. (Erweiterter Sonderabdruck aus „Bibliotheca Mathematica“. 
3. Folge. VH. Band.) [45 S.] gr. 8. 1907. geh. n. Jt 1.20.

Blaschke, Dr. E., Professor an der Technischen Hochschule zu Wien, Vorlesungen 
über mathematische Statistik. Die Lehre von den statistischen Maßzahlen. 
Mit 17 Textfiguren und 5 Tafeln. [Vni u. 268 S.] gr. 8. 1906. In Leinw. geh. 
n. Jt 7.40.

Bruns, Dr. Heinrich, Professor der Astronomie an der Universität Leipzig, Wahr­
scheinlichkeitsrechnung und Kollektivmaßlehre. [VHI u. 310 S. u. 
Anhang 18 S.] gr. 8. 1906. In Leinw. geb. n. Jt 8.40.

Czuber, Dr. Emanuel, Professor an der Technischen Hochschule zu Wien, Vor­
lesungen über Differential- und Integralrechnung. 2 Bände. 2., sorg­
fältig durchgesehene Auflage, gr. 8.

I. Band. Mit 115 Figuren im Text. [XIV u. 660 S.] 1906. In Leinw. geb. n. Jt 12.—
Mit 87 Figuren im Text. [YIH u. 532 S.] 1906. In Leinw. geb. n. M. 12.—

Durège, Dr, H., weil. Professor an der Universität Prag,.E lern ente der Theorie der 
Funktionen einer komplexen veränderlichen Größe. In 5. Auflage 
neu bearbeitet von Dr. L. Maurer, Professor an der Universität Tübingen. Mit 
41 Figuren im Text. [X u. 397 S.j gr. 8. 1906. geh. n. Jt 9. —, in Leinw.
geb. n. Jt 10.—

Felgentraeger, Dr. W., technischer Hilfsarbeiter bei der Kaiserl. Normal-Eichungs- 
Kommission, Theorie, Konstruktion und Gebrauch der feineren Hebel­
wage. Mit 125 Figuren im Text. [Vlu.310S.] gr. 8. 1907. In Leinw.geb.n.cÄ.8.—

Fischer, Dr. Otto, Professor an der Universität Leipzig, theoretische Grund­
lagen für eine Mechanik der lebenden Körper mit speziellen Anwendungen 

f den Menschen, sowie auf einige Bewegungsvorgänge an Maschinen. In mög­
lichst elementarer und anschaulicher Weise dargestellt. Mit 67 in den Text 
gedruckten Figuren und 4 Tafeln. [X u. 372 S.] gr. 8. 1906. In Leinw.
geb. n. Jt 14.—
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Lorentz, Dr. H. A., Professor an der Universität Leiden, Abhandlungen über 
theoretische Physik. Tn 2 Bänden. I. Band, 1. Lieferung. Mit 8 Figuren 
im Text. [298 S.] gr. 8. 1906. geh. n. JC 10.—

[Die 2. (Schluß-)Lieferung des I. Bandes erscheint im Frühjahr 1907.]

-.... —-— Versuch einer Theorie der. elektrischen und optischen Er­
scheinungen in bewegten Körpern. Unveränderter Abdruck der 1895 bei 
J. Brill in Leiden erschienenen 1. Auflage. [III u. 138 S.] gr. 8. 1906. In
Leinw. geb. n. JC 3.20.

Love, A. E. H., M. A., D. Sc., F. IŁ. S., Professor an der Universität Oxford, Lehrbuch 
der Elastizität. Autorisierte deutsche Ausgabe unter Mitwirkung des Verfassers 
besorgt von Dr. A. Timpe, Assistent an der Technischen Hochschule zu Danzig. 
Mit 75 Abbildungen im Text. [XVI u. 664 S.] gr. 8. 1907. In Leinw.
geb. n. JC. 16.—

Meyerhoffer, Dr. W., weil. Professor an der Universität Berlin, Gleichgewichte 
der Stereomeren. Mit einem Begleitwort von Professor Dr. J. H. van t’Hoff 
in Berlin. Mit 28 Figuren im Text. [IV u. 71 S.] gr. 8. 1906. geh. n. JC 2.40.

Neumann, Franz, gesammelte Werke. _
Herausgabe dieses Bandes sind tätig gewesen die Herren: E. Dorn (Halle), 
O. E. Meyer (Breslau), C. Neumann (Leipzig), C. Pape (früher in Königsberg), 
L. Saalschutz (Königsberg), K. VonderMühll (Basel), A. Wangerin (Halle), 
H. Weber (Straßburg). Mit einem Bildnis Franz Neumauns aus dem 86. Lebens­
jahre in Heliogravüre. [XVI n. 620 S.J gr. 4. 1906. geh. n. JC 36.—

Nielsen, Dr. Niels, Dozent der reinen Mathematik an der Universität Kopenhagen, 
Handbuch der Theorie der Gammafunktion. [X u. 326 S.] gr. 8. 1906. 
In Leinw. geb. n. JC 12.—

Theorie des Integrallogarithmus und verwandter Transzen­
denten. [VI u. 106 S.] gr. 8. 190G. geh. n. JC 3.60.

Osgood, Dr. W. F., Professor an der Harvard-Universität, Cambridge, Mass., V. St. A,, 
Lehrbuch der Funktionentheorie. In 2 Bänden. I. Band. Mit 150 Fi­
guren im Text. [XII u. 642 S.] gr. 8. 1907. In Leinw. geb. n. JC 15.60.

Pockels, Dr. F., Professor an der Universität Heidelberg, Lehrbuch der KrFs-tall- 
optik. Mit 168 Figuren im Text und 6 Doppeltafeln. [X u. 519 S.] gr/8.
1906. In Leinw. geb. n. JC 16.—

H. Band.In 3 Bänden. Bei der

Poincaré, Henri, Membre de l’Institut, Wissenschaft und Hypothese. Autorisierte 
deutsche Ausgabe mit erläuternden Anmerkungen von F. und L. Lindemann. 
2., verbesserte Auflage. [XVI u. 346 S.] 8. 1906. In Leinw. geb. n. JC 4.80.

der Wert der Wissenschaft. Mit Genehmigung, des Verfassers ins 
Deutsche übertragen von E. Weber. Mit Anmerkungen und Zusätzen von 
H. Weber, Professor in Straßburg i. E., und einem Bildnis des Verfassers. 
[V u. 252 S.] 8. 1906. In Leinw. geb. n. JC. 3.60.

Stolz, Dr. Otto, weil. Professor an der Universität Innsbruck, und Dr. J. Anton Gm einer, 
Professor an der Universität Innsbruck, Einleitung in die Funktionen­
theorie. Zweite, umgearbeitete und vermehrte Auflage der von den Verfassern 
in der „Theoretischen Arithmetik“ nicht berücksichtigten Abschnitte der „Vor­
lesungen über allgemeine Arithmetik“ von 0. Stolz. Mit 21 Figuren im Text. 
[X u. 598 S.] gr. 8. 1905. In Leinw. geb. n. JC. 15.—

Thomson, J. J., D. Sc. Lid. Ph. D. Er. S. Fellow etc., Elektrizitäts-Durchgang in 
G a s en. Deutsche autor. Ausgabe unter Mitwirkung des Autors besorgt und ergänzt 
von Dr. E. Marx, Privatdozent an der Universität Leipzig. Mit 187 Figuren im 
Text. [VH u. 587 S.] gr. 8. 1906. geh. n. JC 18. —, in Leinw. geb. n. JC 19,—

Weinstein, Dr. B., Professor an der Universität Berlin, die philosophischen 
Grundlagen der Wissenschaften. Vorlesungen gehalten an der Universität 
Berlin. [XHV u. 543 S.] 8. 1906. In Leinw. geb. n. JC 9.—

Wilczyński, E. J., A. M., Ph. D., Research Associate of the Carnegie Institution of 
Washington, Assistant Professor of Mathematics at the University of California, 
projektive differential geometry of curves and ruled surfaces. [VIII 
u. 298 S.] gr. 8. 1906. In Leinw. geb. n. „fC 10.—

Zeuthen, Dr. H. G., Professor an der Universität Kopenhagen, Geschichte der 
Mathematik im 16. und 17. Jahrhundert. Deutsch von Raphael Meyer. 
A.u. d.T.: Abhandlungen zur Geschichte der mathematischen Wissenschaften 
mit Einschluß ihrer Anwendungen. Begründet von Moritz Cantor. XVH. Heft. 
[Vm u. 434 S.] gr. 8. 1903. geh, n. JC 16.—, in Leinw. geb. n. JC 17.—
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II. Elemente der Geometrie. B

Mit 280 Textfiguren. [XII u. 604 S.] gr. *_________
III. Anwendungen der Elementar-Mathematik. [Erscheint im April 1907.]

Das Werk verfolgt das Ziel, den künftigen Lehrer auf einen wissenschaftlichen 
Standpunkt, zu stellen, von dem aus er imstande ist, das, was er später zu lehren 
hat, tiefer zu erkennen und zu erfassen, und damit den Wert dieser Lehren für die 
allgemeine Geistesbildung zu erhöhen. — Das Ziel dieser Arbeit ist nicht in der Ver­
größerung des Umfanges der Elementar-Mathematik zu ersehen oder in der Ein­
kleidung höherer Probleme in ein elementares Gewand, sondern in einer strengen Be­
gründung und leicht faßlichen Darlegung der Elemente. Das Werk ist nicht so­
wohl für den Schüler selbst, als für den Lehrer und Studierenden bestimmt, die 
neben jenen fundamentalen Betrachtungen auch eine für den praktischen Gebrauch 
nützliche, ,wohlgeordnete Zusammenstellung der wichtigsten Algorithmen und Probleme 
darin finden werden.
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earbeitet von H, Druk. W. J. ^am. jdü. 1U.UOO.

„Zwei Momente müssen hervorgehoben werden, die dem Buche das Gepräge verleihen. Das eine 
liegt darin, daß die grundlegenden Prägen der Geometrie eine eingehende Behandlung erfahren, in einem 
Umfange, wie er in zusammenfassenden Werken sonst nicht anzutreffen ist . . . Das zweite Momeut ist 
in dem Umstande zu erblicken, daß die Verfasser es nicht darauf angelegt haben, eine pragmatische Vor­
führung des üblichen Vorrats an geometrischen Sätzen, Konstruktionen und Rechnungen zu geben, sondern 
daß es ihnen mehr darum zu tun war, an ausgewähltem Material die wissenschaftlichen Methoden der 
Geometrie zur Geltung zu bringen und überall auf die Grundfragen einzugehen. Ist so die theoretische 
Seite, namentlich in einigen Abschnitten, stark zum Ansdruck gekommen, so ist doch auch auf die prak­
tischen Bedürfnisse Rücksicht genommen, die freilich erst mit dem dritten Bande ihre endgültige Be­
friedigung finden sollen; doch ist dafür an verschiedenen Stellen, so in der. Trigonometrie und in der 
analytischen Geometrie, schon vorgearbeitet worden ... So darf der Inhalt des zweiten Bandes der „En­
cyklopädie der Elementar-Mathematik“ als ein sehr reichhaltiger bezeichnet werden, der über die Grenzen 
dessen was an der Schule geboten werden kann, erheblich hinausftihrt, der aber auch — und das ist noch 
wichtiger und offenkundig der Hauptzweck des Werkes — eine Vertiefung des geometrischen Wissens 
vermittelt. Jüngere Lehrer der Mathematik werden das Buch gewiss oft mit Nutzen zu Rate ziehen, 
namentlich wenn sie im Unterrichte zu prinzipiell wichtigen Fragen kommen, um sich über die leitenden 
Gedanken zu orientieren.

Eines verdient noch besonders hervorgehoben zu werden: das ist die reiche Ausstattung mit schönen, 
sehr instruktiv gezeichneten Figuren. Der schwierigen Vorstellung der verschiedenen Formen sphärischer 
Dreiecke kommen die stereographischen Bilder der Euler’schen, Möbius’schen und Study’schen Dreiecke 
sehr zu statten.“ (Zeitschrift für das Realschulwesen. 81. Jahrg. Heft 5.)

EINLADUNG ZUM
IV. INTERNATIONALEN

MATHEMATIKER-KONGRESS
VOM 6.—II. APRIL 1908 IN ROM.

Der Ausschuß für die Vorbereitung 
des IV. internationalen Mathematiker-Kongresses:

P. Blaserna, Präsident. G. Castelnuovo, Generalsekretär. V. Reina, Kassier. 
V. Cerruti. A. Di Legge. G. Pittarelli. A. Sella. A. Tonelli. V. Volterra.

Wegen Progra Biblioteka Politechniki Krakowskie) n Kongreß bezüglichen 
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