

VORLESUNGEN

ÜBER

STATIK DER BAUKONSTRUKTIONEN UND FESTIGKEITSLEHRE

IN DREI BÄNDEN

VON

GEORG CHRISTOPH MEHRTENS

GEH. HOFRAT UND PROFESSOR DER INGENIEURWISSENSCHAFTEN AN DER KÖNIGLICHEN TECHNISCHEN HOCHSCHULE IN DRESDEN

ERSTER BAND

EINFÜHRUNG IN DIE GRUNDLAGEN

MIT 377 ZUM TEIL FARBIGEN FIGUREN

LEIPZIG

305

VERLAG VON WILHELM ENGELMANN

1903

Alle Rechte, insbesondere das der Übersetzung, werden vorbehalten.

BIBLIOTEKA POLITEGRNIGZNA KRAKÓW

Akc. Nr.

13 PK- 13-26/2016

VORWORT.

Der Plan zur Herausgabe meiner hiesigen Vorlesungen ist schon einige Jahre alt. Aber erst vor etwa zwei Jahren vermochte ich ihm feste Gestalt zu geben, nachdem mein damaliges Vortragsgebiet durch Abtrennen von »Holz- und Steinbrücken« und Hinzufügen der »Festigkeitslehre« eine mir sehr willkommene Abrundung erfahren hat. Die Herausgabe beginnt mit den zu einem einheitlichen Ganzen verarbeiteten Vorlesungen über Statik der Baukonstruktionen und Festigkeitslehre. Alljährlich soll ein Band erscheinen, sodaß diese Vorlesungen im Jahre 1905 in drei Bänden fertig vorliegen.

Nach Form und Inhalt wird das Werk als ein Lehrbuch für Studierende technischer Hochschulen gelten dürfen. Es kann aber auch zum Selbstunterricht für ausübende Techniker aller Baufächer dienen, sobald diese sich nur die Grundlehren der Physik über die Eigenschaften elastisch-fester Körper und über das Gleichgewicht starrer Körper zu eigen gemacht haben.

Der vorliegende erste Band umfasst unter dem Titel »Einführung in die Grundlagen« vier Abschnitte: Das Wesen der Konstruktion, äußere Kräfte, innere Kräfte der Stabwerke, Spannungen in geraden Stäben.

Der zweite Band wird die Berechnung der Vollwandtragwerke (einschließlich Stützmauern und Gewölbe), sowie auch der Fachwerke bringen.

Im dritten Bande sollen besondere Systeme, Konstruktions-Einzelheiten, Nebenspannungen und dynamische Einflüsse (einschließlich Schwingungen) folgen. Dieser Band, der auch einen Literaturnachweis und ein alphabetisches Sachverzeichniss aller drei Bände bringen soll, wird eine Ergänzung und Einleitung zu meinen Vorlesungen über »Eisenbrückenbau« bilden.

Vorwort.

Wenn ich in meiner Arbeit rein theoretisch nur wenig neues bieten kann, so liegt das in den besonderen Verhältnissen meiner technischen Laufbahn begründet, die sich bis vor etwa zehn Jahren fast ganz auf dem Felde des Eisenbahn- und Brückenbaus abgewickelt hat. Ja, ich darf wohl sagen, wenn ich nicht das Glück gehabt hätte, in jüngern Jahren (1879-83) als Assistent und Privatdozent für Statik der Baukonstruktionen und Brückenbau an der Berliner Technischen Hochschule mit Winkler († 1888) zusammen wirken zu dürfen, so wäre ich wohl niemals dazu gekommen, eine so umfangreiche theoretische Arbeit, wie die vorliegende, herauszugeben. Hat demnach meine langjährige praktische Tätigkeit mir nur wenig Zeit zu theoretischen Studien gelassen, so bot sie doch reichlich Gelegenheit, mich nach der konstruktiven Seite meines Faches zu vertiefen. Und daß es von Nutzen sein kann, selbst in einem Lehrbuche der Statik der Baukonstruktionen, neben der theoretischen Seite der Aufgaben auch deren konstruktive Seite, mehr als dies bisher geschehen ist, zu betonen, davon hoffe ich viele meiner Leser schon durch die nachfolgenden Darlegungen des I. Bandes überzeugen zu können.

Wie bei jeder Einführung in die Grundlagen einer Wissenschaft, so bedurfte es auch im vorliegenden Bande mancher Überlegung, um das zu behandelnde Wissensgebiet nach Inhalt und Form gut abzugrenzen und unmittelbar an die den Lesern bekannten Gebiete anzuschließen. Die Gesichtspunkte, nach denen ich dabei arbeitete, sollen kurz angedeutet werden.

Im ersten Abschnitt wird versucht, den Lesern das Wesen der Konstruktion und ihrer wichtigsten Einzelheiten klar zu machen, ehe sie an deren Berechnung herantreten. Der Abschnitt umfaßt daher das gesamte Wissensgebiet, wobei die Eigenschaften des Baustoffes, die Konstruktions-Systeme, die Beziehungen zwischen Stützen und Tragwerk und die Bildungsweise starrer Stabwerke besprochen werden. Daran schließen sich in gedrängter Darstellung geschichtliche Rückblicke über die Entwicklung der Konstruktionen und die Schaffung ihrer theoretischen Grundlagen von den ältesten Zeiten bis auf die Gegenwart.

Im zweiten Abschnitt werden unter der Überschrift »Äußere Kräfte« die Hauptsätze der analytischen und graphischen Statik insoweit gegeben, als dabei das Zusammensetzen und Zerlegen, sowie das Gleichgewicht von Kräften in Betracht kommt. Besonders gelangen

Vorwort.

darin die wichtigsten graphostatischen Hilfsmittel, als Kraftecke, Seilecke und Mittelkraftlinien zur Darstellung, unter Einfügung vieler Übungsaufgaben aus dem Gebiete der im ersten Abschnitt beschriebenen Konstruktionen.

Der dritte Abschnitt: »Innere Kräfte der Stabwerke« enthält die grundlegenden Methoden der Stabkraftberechnung für statisch bestimmte Fachwerke, die ständige Lasten zu tragen haben. Im besondern werden darin zum ersten Male auch die neuern Methoden zur Berechnung von Raumfachwerken einheitlich dargestellt und durch ausführliche Beispiele erläutert,

Der vierte Abschnitt umfaßt im Anschluß an den ersten Abschnitt und unter der Überschrift: »Spannungen in geraden Stäben« die Grundlagen der Festigkeitslehre, soweit wie deren Aufgaben ohne vorherige Ermittelung der elastischen Formänderungen — deren allgemeine Behandlung dem II. Bande vorbehalten bleibt — möglich ist. Dabei werden zum ersten Male in einem Lehrbuche auch die Grundlagen der Berechnung der Spannungen in Steineisen-Konstruktionen im Zusammenhange mit dargestellt.

In dem Bestreben meine Darlegungen kurz und leicht verständlich zu halten, habe ich bei ihrer Abfassung großes Gewicht auf die gehörige Form gelegt. Die aus den Rechnungsergebnissen gewonnenen wichtigsten allgemeinen Wahrheiten wurden, in kurzen Sätzen gefaßt, hervorgehoben und möglichst in den Vordergrund der Betrachtung gestellt. Bei den Rechnungen selbst wurde aber von Fall zu Fall entschieden, ob es um auf wichtige Sonderfälle zu kommen ratsamer sei, mit den allgemeinsten Betrachtungen oder Beweisführungen zu beginnen, oder umgekehrt. Auch wurde es beim Betrachten einfacher Fälle nicht immer für nötig gehalten, zu den allgemeinen aufzusteigen. Denn die Höhen der Wissenschaften werden nur von wenigen Auserwählten leicht überwunden. Besonders auf den Gebieten der technischen Wissenschaften sind die Wege dahin zur Zeit meist noch etwas verschlungen, dabei schwer zu finden und wenig geebnet. Man darf also nicht jedem Studierenden der Technik zumuten, es bei der Erreichung seines wissenschaftlichen Zieles einem kundigen Bergsteiger gleich zu tun.

Den angedeuteten Gesichtspunkten entsprechend, habe ich in allen Abschnitten viele Figuren und Übungsaufgaben eingefügt, um deren angemessene Ausgestaltung ich besonders bemüht gewesen bin.

Vorwort.

Dabei wurden zum ersten Male für gleichen Zweck auch Figuren verwendet, in denen gewisse charakteristische Linienzüge farbig erscheinen, damit sie augenfällig hervortreten. Im besondern dienen die farbigen Linien dazu, die Zusammengehörigkeit wichtiger Figurenteile (wie Kraftecke, Seilecke, Mittelkraftlinien, Parallelenzüge u. dergl.) und auf solche Weise auch die dadurch bewirkte Lösung rascher und leichter erkennen zu lassen. Die graphischen oder rechnerischen Übungsaufgaben wurden den Gebieten des Hochbaus und Ingenieurbaus entnommen, ohne dabei die gewählten Beispiele, durch Zuschneiden für den unmittelbaren praktischen Gebrauch, ihres wissenschaftlichen Gewandes zu entkleiden.

So übergebe ich denn meine Arbeit hiermit der Öffentlichkeit, sie dem Wohlwollen meiner Fachgenossen empfehlend. Gleichzeitig erfülle ich die angenehme Pflicht, meinem Assistenten, Herrn Dipl. Ing. Stichling, der mir beim Anfertigen der Figuren, beim Nachprüfen von Rechnungen und beim Durchsehen der Korrekturbogen des Werkes unermüdlich zur Seite gestanden hat, auch an dieser Stelle meinen besten Dank für seine wertvolle Mithilfe zu sagen.

Der Verlagsbuchhandlung von Wilhelm Engelmann in Leipzig spreche ich meinen verbindlichsten Dank aus für ihr liebenswürdiges Eingehen auf alle meine Wünsche hinsichtlich der Drucklegung, sowie auch für die vortreffliche Ausstattung des vorliegenden Bandes.

Dresden-A., den 1. Mai 1903.

Mehrtens.

INHALT.

No.																				Seite
	Vorwort	• •	•		•	•	•		•	•		•	•		•	•	•	•	V-V	/111

Erster Abschnitt. Das Wesen der Konstruktion.

	§ 1. Eigenschaften des Baustoffes.	
I.	Grundformen	1
2.	Elastizität	I
	a. Formänderungen	I
	b. Spannkraft und Spannung	2
3.	Festigkeit	3
	a. Normalfestigkeit. b. Schubfestigkeit. c. Biegungsfestigkeit. d. Ver-	
	drehungsfestigkeit. e. Maßgebende Spannung	4
4.	Das Elastizitätsgesetz	5
	a. Elastizitätsgrenze. b. Beziehungen zwischen Formänderung und	
	Spannung	5
	c. Proportionalitätsgrenze	6
	d. Streck- oder Fließgrenze und Quetschgrenze	7
5.	Dehnung und Gleitung	7
	a. Längsdehnung und Querdehnung	7
	b. Das Dehnungsmaß. c. Das Gleitungsmaß	8
6.	Spannungswechsel und Belastungswechsel	9
7.	Die zulässige Spannung	II
	a. Ältere Annahmen. b. Neuere Annahmen	12
	c. Stein und Holz	13
8,	Temperatureinflüsse	14
	S a Dia Kanatruktiana Sustama	
	y 2. Die Konstruktions-Systeme.	
9.	Die Konstruktionsteile	10
	a. Tragwerk und Stützen. b. Vollwandige und gegliederte Tragwerke	10
10.	Die Konstruktionslasten.	17
II.	Ebene und raumliche Systeme	19

-			
1.7	h h	91	۴.
TT	111	au	6.0

No.	S	eite
12.	Die Sicherheit der Konstruktion	20
13.	Der belastete Konstruktionsstab	23
14.	Knotenverbindungen	24
15.	Die Bedeutung reibungsloser Knotengelenke	26
16.	Stabwerksysteme	27
	a. Einfache und zusammengesetzte Stabwerke	27
	b. Berechnung der Stabkräfte	28
	c. Grundspannungen und Nebenspannungen	29
	§ 3. Beziehungen zwischen Stützen und Tragwerk.	
	Chatical a part has standard and an Chitana	
17.	Statische und konstruktive bedeutung der Stutzen	29
10.	Stutzung bei blober Berunrung	31
	a. In einem Punkte	31
	b. In menteren Punkten eines ebenen Systemes	32
	c. In menteren Funkten eines Kaumsystemes	33
19.	Feste Stutzengelenke	34
	a. Fur ein ebenes System	34
-	b. Fur ein Kaumsystem	35
20.	Bewegliche Stutzen	30
*	a. Pendelstutzen.	30
	b. Pendelwalzen. c. Rollen	30
	1 0 1	
-	d. Stelzen.	39
21.	d. Stelzen	39 40
21.	 d. Stelzen	39 40
21.	d. Stelzen	39 40 42
21. 22. 23.	d. Stelzen	39 40 42 43
21. 22. 23. 24.	d. Stelzen	39 40 42 43 44
21. 22. 23. 24. 25.	d. Stelzen	39 40 42 43 44 46
21. 22. 23. 24. 25. 26.	d. Stelzen	39 40 42 43 44 46 47
21. 22. 23. 24. 25. 26. 27.	d. Stelzen	39 40 42 43 44 46 47 50
21. 22. 23. 24. 25. 26. 27.	d. Stelzen	39 40 42 43 44 46 47 50 50
21. 22. 23. 24. 25. 26. 27.	d. Stelzen. Stützung durch Flächenberührung. § 4. Scheibenverbindungen und einfache Stabwerke. Zwei Scheiben. Scheibenketten Scheibenketten Zwangläufige Scheiben- oder Stabketten Mehrfache Scheibenknoten Geschlossene Stabwerke. Wandknoten a. Einfache Knoten b. Mehrfache Knoten	39 40 42 43 44 46 47 50 50 52
21. 22. 23. 24. 25. 26. 27. 28.	d. Stelzen,	39 40 42 43 44 46 47 50 50 52 53
 21. 22. 23. 24. 25. 26. 27. 28. 	d. Stelzen	39 40 42 43 44 46 47 50 50 52 53
21. 22. 23. 24. 25. 26. 27. 28.	d. Stelzen. Stützung durch Flächenberührung. § 4. Scheibenverbindungen und einfache Stabwerke. Zwei Scheiben. Scheibenketten Scheibenketten Zwangläufige Scheiben- oder Stabketten Mehrfache Scheibenknoten Geschlossene Stabwerke. Wandknoten a. Einfache Knoten b. Mehrfache Knoten Einfache statisch bestimmte ebene Stabwerke § 5. Bildungsweise starrer Stabwerke.	39 40 42 43 44 46 47 50 50 52 53
21. 22. 23. 24. 25. 26. 27. 28. 28.	d. Stelzen. Stützung durch Flächenberührung. § 4. Scheibenverbindungen und einfache Stabwerke. Zwei Scheiben. Scheibenketten Scheibenketten Zwangläufige Scheiben- oder Stabketten Mehrfache Scheibenknoten Geschlossene Stabwerke. Wandknoten a. Einfache Knoten b. Mehrfache Knoten Einfache statisch bestimmte ebene Stabwerke § 5. Bildungsweise starrer Stabwerke. Entwicklung ebener Systeme aus einem Grunddreiecke.	39 40 42 43 44 46 47 50 50 52 53 53
 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 	d. Stelzen	39 40 42 43 44 46 47 50 50 52 53 54 54
 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 	d. Stelzen	39 40 42 43 44 46 47 50 50 52 53 54 56 56
21. 22. 23. 24. 25. 26. 27. 28. 29. 30.	d. Stelzen	39 40 42 43 44 46 47 50 50 52 53 54 56 56 57
 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 	d. Stelzen	39 40 42 43 44 46 47 50 52 53 54 56 57 58
 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 	d. Stelzen	39 40 42 43 44 46 47 50 52 53 54 56 57 58 59

VIII

Inhalt.

No.		Seite
33.	Entwicklung von Raumfachwerken aus ebenen Stabgebilden	63
34.	Die unendlich kleine Beweglichkeit	66
35.	Statisch unbestimmte Fachwerke	68
36.	Einflüsse der Luftwärme auf die Stabkräfte	70
	§ 6. Geschichtliche Rückblicke.	-53
37.	Die ältesten Baukonstruktionen	72
38,	Die ersten Fachwerke	73
39.	Eisenkonstruktionen	75
40.	Anfänge der Theorie	77
41.	Naviers Vorgänger im 17. und 18. Jahrhundert	78

	8	
41.	Naviers Vorgänger im 17. und 18. Jahrhundert	78
42.	Theoretische Fortschritte im 19. Jahrhundert	80
43.	Die graphischen Methoden	83
44.	Die heutigen Konstruktionsaufgaben	84

Zweiter Abschnitt. Äußere Kräfte.

	§ 7. Die Gleichwertigkeit verschiedener Kräftegruppen.
45.	Eine Einzelkraft
46.	Zwei Kräfte
	a. Die Kraftrichtungen sind nicht parallel und schneiden sich 89
	b. Parallele gleichgerichtete Kräfte
	c. Parallele in verschiedenem Sinne gerichtete Kräfte 91
	d. Windschiefe Kräfte
47.	Eigenschaften der Kräftepaare
	a. Statisches Moment; b. Drehsinn
	c. Gleichwertige Paare; d. Zerlegung von Paaren 93
	e. Zerlegen und Zusammensetzen mit Hilfe der Achsenstrecken ., 94
48.	Drei Kräfte in der Ebene (mit Beispielen) 95
49.	Vier und mehr Kräfte in der Ebene
	a. Culmanns Kraftviereck
	b. Beliebig belegene Kräftegruppe
50.	Kräftegruppen im Raume
	a. Rückführung auf eine Einzelkraft und ein Moment 101
	b. Rückführung auf zwei windschiefe Kräfte
51.	Zerlegung einer Kraft nach vorgeschriebenen Richtungen 105
	a. Zwei und drei gegebene Richtungen
	b. Graphische Zerlegung nach drei Richtungen (mit Beispielen) 106
52.	Rechnerische Zerlegung von Einzelkräften nach drei Rich-
	tungen (Beispiel)
53.	Ubertragung einer Belastung im Raume durch sechs Stützen-
	stäbe
	a. Bestimmung der Stützenkräfte
	b. Ausnahmefälle

-		•	_		
	-	1.			
	п	п	ят	1.0	
-	**	**			

No.		Seite
	§ 8. Mittelkräfte beliebig gerichteter Einzellasten.	
54.	Größe und Richtung einer Mittelkraft	115
	a. Das Krafteck	115
	b. Das geschlossene Krafteck	117
55.	Lage der Mittelkraft einer ebenen Kräftegruppe	117
	a. Das Seileck	118
	b. Zeichnen des Seilecks	119
56.	Das geschlossene Seileck	120
	a. Graphische Gleichgewichts-Bedingungen	120
	b. Die Schlußlinie des Seilecks (mit Beispielen)	121
57.	Polverschiebungen der Seilecke	125
	a. Die Polarachse	125
	b. Seilecke durch gegebene Punkte zu legen	126
58.	Seilecke als Mittelkraftlinien	127
	a. Mittelkraftlinie einer Gleichgewichtsgruppe	127
	b. Mittelkraftlinie einer belasteten Scheibe	129
59.	Mittelkraftlinie durch drei gegebene Punkte oder Gelenke	129
-	a. Beispiel eines Dreigelenk-Bogens	129
	b. Verwendung der Mittelkraftlinie zu Stabkraft-Berechnungen (a. Beisp.)	132
бо,	Statische Momente	134
	a. Summe der Einzelmomente	134
	b. Das Moment der Mittelkraft im Seileck	135
	8 a Mittelbräfte für parallele und für stetige Lasten	
6-	Statische Memorie	
01.	Mamarta im affanan Sailaak	137
	a. Momente im onenen Selleck	137
60	b. Die Momentennache eines geschlossenen Senecks	139
02.	Momentenilache für eine Schelbenverbindung	141
	a. Beispiel eines durchgenenden Gelenktragers	141
50	Der Mitteleur ist erselleler Verfte	144
03.	Der Mittelpunkt paralleler Krafte	144
	a. In der Ebene	144
6.	D. Im Kaume	140
04.	Allemaine Cestelt des Cellicie	147
	a. Allgemeine Gestalt der Sellinie	147
6-	D. Stutzinnen	150
05.	Die Differential Claichung der Cullinie	152
	a. Die Dinerennan-Gieronung der Seillinie.	152
66	D. Die Sonderiormen der Kreisinie und der Parabel.	154
00.	Träger	
	Die Verseicher	150
	a. Die Vorzeichen	150
	D. Die Differentialquotienten des Momentes	158

x

Inhalt.

No.		Seite
67. Darstellung der äußern Kräfte ebener Träger (Beispiele)		. 159
a. Unmittelbare Belastung		. 159
b. Mittelbare Belastung		. 163
c. Einfluß der mittelbaren Lastübertragung		. 165

Dritter Abschnitt. Innere Kräfte der Stabwerke.

§ 10. Ebene starre Stabwerke.

68.	Berechnung der Stabkräfte nach Ritter	166
	a. Das Verfahren im allgemeinen	166
	b. Besondere Fälle	168
69.	Das graphische Schnittverfahren von Culmann (mit Beispielen)	171
70.	Kräftepläne nach Bow, Maxwell und Cremona	176
	a. Allgemeine Eigenschaffen	176
	b. Beispiele und Regeln für die Anwendung	177
71.	Besondere Fälle bei der Darstellung von Kräfteplänen	181
	a. Vorkommen belasteter Wandknoten	181
	b. Behandlung von Grundecken	183

§ 11. Raumfachwerke und Grundecke.

72.	Berechnung von Raumfachwerken nach dem Schnittverfahren 190
	a. Verfahren von Ritter
	b. Das graphische Schnittverfahren
73.	Das Gleichgewicht an einem Grundeck-Knoten 196
74.	Grundeck-Berechnung nach dem Verfahren von Henneberg . 197
	a. Für die Ebene
	b. Für den Raum
75.	Beispiele zum Verfahren von Henneberg
	a. Ebenes Grundeck
	b. Das ebene Grundeck unter Beseitigung eines unbelasteten Knotens 203
	c. Raumfachwerke
76.	Vereinfachtes Verfahren Henneberg für ebene Grundecke 211
	a. Einmalige Stabvertauschung
	b. Beispiel
77.	Vereinfachungen für Raumfachwerke
	a. Verwendung eines einzigen Tauschstabes (Laststabes) 215
	b. Allgemeine Lösung
	c. Beispiel für die Anwendung von zwei Tauschstäben
	d. Verwendung von mehr als zwei Tauschstäben

-			
1.0	a la	01	4
- 1.1	1.11	21.1	1.
~~		-	

No. Seite
§ 12. Stabkraft-Bestimmungen unter Anwendung von Sätzen
der geometrischen Bewegungslehre.
78. Verschiebungspläne für ebene zwangläufige Stabketten 224
a. Erste graphische Lösung
b. Zweite graphische Lösung
c. Analytische Lösung
79. Beispiele und Anwendungen von ebenen Verschiebungsplänen 229
80. Geometrisches Kennzeichen der Starrheit ebener Grundecke 233
a. Das geschlossene Verschiebungseck
b. Beispiele
81. Die Stützenbedingungen in der Darstellung eines ebenen
Verschiebungsecks
82. Allgemeines Verfahren der Stabkraft-Ermittelung für ebene
Grundecke
a. Verwendung von mehreren Tauschstäben
b. Darstellung der Verschiebungsecke
c. Vergleich des allgemeinen Verfahrens mit dem Verfahren von
Henneberg
83. Darstellung von Verschiebungen zwangläufiger Ketten des
Raumes
a. Analytische Lösung
b. Graphische Lösungen
§ 13. Berechnung der Raumfachwerke nach dem Verfahren
von Mohr.
84. Allgemeine Darlegung

04.	Allgemeine Darlegung			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	255
85.	Allgemeines Beispiel.	•									•	•							•			257
86.	Erstes Zahlenbeispiel.		2		9		12			•												261
87.	Vorzüge des Verfahrens		2			۴.										•				ï		268
88.	Zweites Zahlenbeispiel				•		•					•						•				269

Vierter Abschnitt. Spannungen in geraden Stäben.

	§ 14. Darstellung der Flächenmomente ebener Querschnitte.	
89.	Beziehungen zwischen Trägheits- und Zentrifugalmomenten	278
90.	Die Grenzwerte der Trägheitsmomente	279
91.	Trägheitskreis und Trägheitsschwerpunkt	281
92.	Darstellung der Lage der Hauptachsen und der Hauptträg-	
	heitsmomente	284
93.	Das Zentrifugalmoment	287
	a. Für Achsen die zu rechtwinklig aufeinanderstehenden Schwerachsen	
	parallel sind	287
	b. Für schiefwinklige Koordinaten	288

XII

Inhalt.

No. S	Seite
94. Zugeordnete Achsen, für die das Zentrifugalmoment ver-	
schwindet	289
a. Darstellung der zugeordneten Achsen	289
b. Beziehungen zugeordneter Achsen zu einem rechtwinkligen Achsen-	
kreuz	291
95. Die Trägheitsellipse	292
a. Einführung der Trägheitshalbmesser	292
b. Das Zentrifugalmoment und die zugeordneten Achsen	294
96. Graphische Darstellung des statischen Momentes und des	
Trägheitsmomentes	295
a. Verfahren von Nehls	295
b. Verfahren von Culmann und Mohr	296
97. Graphische Darstellung des Zentrifugalmomentes	298
a. Aus Rechtecken zusammengesetzter Querschnitt	298
b. Das Zentrifugalmoment eines Trapezes	300
98. Beispiele	301
a. Hilfsformeln für Flächenmomente	301
b. Berechnung von statischen und Trägheitsmomenten	305
c. Bestimmung der Lage der Hauptachsen	308
§ 15. Die einfachen Belastungsfälle.	
99. Allgemeine Erklärungen	311
a. Belastungszustände,	311
b. Spannungszustände	312
100. Einfluß einer Achsenkraft	313
a. Voraussetzung ebener Querschnitte	313
b. Die Spannungen in Schrägschnitten	315
c. Beispiel	316
101. Einfluß einer Querkraft bei reiner Abscherung	317
a. In Querschnitten	317
b. In Schrägschnitten	317
c. Das Gleitungs- oder Schiebungsmaß	319
102. Schubspannungen bei einer Verdrehung	321
a. Der Kreisquerschnitt.	321
b. Ovale und rechteckige Querschnitte	324
103. Reine Biegung im allgemeinen	324
a. Einfluß einer Querkraft	324
b. Elastische Linie, Nulllinie und Spannungsebene.	326
104. Die Normalspannungen bei reiner Biegung	328
a. Allgemeine Gleichung	328
b. Lage der Nulllinie	330
c. Randspannungen und Widerstandsmoment	331

XIII

Inhalt.	-			20.
IIIIIIII.	1.5	a h	01	+
	11	111	21	ι.

ALY Innat.
No. Scite
105. Beispiele
a. Abscherung
b. Abscherung, reine Biegung und Stauchdruck
and the second state of the second
§ 16. Normalspannungen in Querschnitten bei der Biegung.
106. Einfluß einer Längskraft
107. Beziehungen zwischen den Koordinaten der Nulllinie und
dem Angriffspunkte der Längskraft
a. Für Hauptachsen
b. Für zugeordnete Achsen
108. Der Kern des Querschnittes
a. Darstellung des Kernes
b. Bestimmung der Kernpunkte
109. Verteilung der Normalspannungen über den Querschnitt 350
110. Gegenseitige Beziehungen zwischen den Spannungen 353
a. Der Satz von der Gegenseitigkeit der Spannungen
b. Die Einflußlinie einer Spannung
III. Die Einflußlinie einer Randspannung
112. Ermittelung der Normalspannungen mit Hilfe der Kern-
weiten und Kernmomente
113. Beispiele
a. Tragfähigkeit von hölzernen und eisernen Trägern
b. Beziehungen zwischen Kernmomenten, Kernweiten und Randspan-
nungen
§ 17. Schubspannungen, Hauptspannungen und maßgebende
Spannung.
114. Die Schubspannungen in Längsschnitten
a. Beliebiger Querschnittsumrils
D. Rechteckiger Umrib des Querschnittes
115. Die Schubspannungen in Querschnitten
110. Normal- und Schubspannungen in Schrägsennitten 373
117. Die Spannungsellipse
Tio. Die Hauptspannungen
119. Die Hauptschubspannungen
120. Die mabgebende Spannung
h. Vergleich des allgemeinen Spannungsaustandes mit dem linearen 280
o. Fearer Spannungszustand
rar Beispiele
A Schubenennungen hei der Riegung
b Biegung mit Torsion gusammengesetzt
a Bierung mit Abscherung zusammengesetzt
c. Dregung mit Absenerung zusammengesetzt

XIV

-			
	o b	01	÷ .
- 12	1 11	24.1	a.,
-			

XV Seite

	§ 18. Spannungen in elastisch ungleich widerstehenden Quer- schnittszonen.	
122.	Allgemeine Erklärungen	389
	a. Spannungen und Dehnungen in Steinquerschnitten	389
	b. Das Potenzgesetz für Druckspannungen	390
123.	Die Zugzone in Steinquerschnitten und ihre Verstärkung	
	durch Eiseneinlagen	391
	a. Annahmen über die Spannungsverteilung	391
	b. Steineisenquerschnitte	392
124.	Normal- und Schubspannungen in einfachen Festigkeitsfällen	392
	a. Druckspannungen infolge einer Achsenkraft	392
	b. Schubspannungen infolge einer Querkraft	396
125.	Normalspannungen bei der Biegung unter Anwendung des	
	Potenzgesetzes	396
126.	Angenäherte Berechnung der Biegungsspannungen in Stein-	
	balken	399
	a. Normalspannungen	399
	b. Schubspannungen	401
127.	Biegungsspannungen in Steineisenquerschnitten	402
	a. Normalspannungen	402
	b. Schubspannungen im Stein	404
	c. Schubspannungen zwischen Stein und Eisen	404
128.	Normalspannungen bei der Biegung infolge einer Längskraft	405
	a. In Steinquerschnitten	405
	b. In Steineisenquerschnitten	405
	c. In Querschnitten mit fehlender oder versagender Zugzone	406
129.	Nulllinie und Spannungsverteilung in Querschnitten mit feh-	
	lender Zugzone	408
	a. Die Kraftlinie fällt mit einer Hauptachse zusammen	408
	b. Die Kraftlinie fällt nicht mit einer Hauptachse zusammen	412
130.	Beispiele	414
	Berichtigungen zum I. Bande	VIII

No.

Seite	Ze von oben	ile von unten	Steht falsch	Heißt richtig
IO	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	± 25 t	∓ 25 t
94	12	-	den	der
96	I		AC	ac
-	13	-	С	in c
97	8	_	Fig. 111	Fig. 111 u. 112
115	2	-	(30 a)	(31)
143		IO	С	c
187	-	II	A und B nach Wand- stäbe	Wandstäbe
187		17 u. 18	Stützenkräfte Grösse	Stützenkräfte A u. B nach Grösse
205	8	_	0,74.t	— 0,74 t
229	-	6	0-4	0-4'
244	19	-	Ъ'	b1'
260	3	-	S3. V	S30.0
270		I	4,0 u	4,0 v
		and the second se		

Berichtigungen zum I. Bande.

「日本」 「日本日日日」 「日本日本日日

Erster Abschnitt.

Das Wesen der Konstruktion.

§ 1. Eigenschaften des Baustoffes.

1. Grundformen. Die Baustoffe gelangen in der Konstruktion in solcher Gestalt zur Verwendung, wie sie den natürlichen Eigenschaften der Stoffe entspricht. Im allgemeinen kann man dreierlei Formen der Grundbestandteile einer Konstruktion unterscheiden, die man nach ihrer äußern Erscheinung als Stäbe, Platten und Blöcke bezeichnet. Bei den Stäben erscheint ihre Länge als Hauptabmessung; Platten zeichnen sich durch geringe Stärke im Vergleich zu ihren übrigen Abmessungen aus und bei den Blöcken schwankt das Verhältnis der drei Abmessungen gewöhnlich zwischen der Form des Würfels oder Parallelopipeds.

Es entspricht der Natur des Steines, daß dieser meist nur in Blöcken und Platten verwendet wird, während der natürliche Wuchs des Holzes fast ausschließlich seine Verwendung in Stabformen vorschreibt. Dagegen erlauben es künstliche Formgebungsarbeiten, wie Walzen, Schmieden,

Pressen und Gießen, Eisen und Stahl in allen drei Grundformen zu verwenden. Vorzugsweise erscheinen aber in Eisenkonstruktionen Stäbe und Platten.

Die drei obigen Grundformen kann man geometrisch und statisch als *Stäbe* bezeichnen und behandeln, *wenn man sich allgemein einen*

Stab dadurch entstanden denkt, daβ eine ebene Fläche — der Querschnitt — die ihren Umriβ stetig ändern kann, in ihrem Schwerpunkte senkrecht auf einer Leitlinie — der Stabachse — fortschreitet (Fig. 1).

2. Elastizität.

a. Formänderungen. Jeder physikalisch-feste Körper, und so auch der Baustoff, ändert unter der Einwirkung von $\ddot{a}u\beta ern$, d. h. an seiner Oberfläche angreifenden Kräften mehr oder minder seine Form. In

Mehrtens, Statik der Baukonstruktionen, I.

gleicher Art wirken auf den Körper dauernd die Schwerkraft; vorübergehend und wechselnd auch der Einfluß der ihn umgebenden Luftwärme. Der Körper nimmt unter der Einwirkung der genannten Kräfte, wie man sagt, eine Formänderung an, die eine Verkleinerung oder Vergrößerung seines Rauminhaltes zur Folge hat.

Sobald die Einwirkung aufhört, ist der Körper bestrebt, seine ursprüngliche Form wieder einzunehmen. Das beweist das Vorhandensein von *innern* Kräften, die in den Molekülen des Körpers ihren Sitz haben. Diese Kräfte nennen wir *elastische Kräfte*. Die Eigenschaft der Körper, vermöge welcher die unter der Belastung durch Oberflächenkräfte eingetretenen Formänderungen wieder verschwinden, heißt *Elastizität*.

Nach den heutigen Annahmen erscheinen die Moleküle eines jeden Körpers durch äthergefüllte Zwischenräume voneinander getrennt. Danach kann man sich die Formänderung eines Körpers dadurch bewirkt denken, daß die gegenseitige unendlich kleine Entfernung der Moleküle sich ändert. Der elastische Widerstand, den die Moleküle dabei leisten, oder die diesem gleiche elastische (innere) Kraft, die sie dabei aufnehmen, nennt man in der Statik die *Spannkraft*.

b. Spannkraft und Spannung. Will man sich von der statischen Wirkung der Spannkräfte eine anschauliche Vorstellung machen, so betrachte man den Körper unter dem Einflusse von äußern Kräften im Augenblicke, wo er nach erfolgter Formänderung außen und innen zur Ruhe gekommen ist. Der Körper befindet sich dann im sog. elastischen Gleichgewichte. Darauf denke man sich den Körper durch einen ebenen Schnitt in zwei völlig voneinander getrennte Teile zerlegt. Dadurch wird das elastische Gleichgewicht jedes der beiden Teile gestört. Man kann es aber wieder herstellen, wenn man die den frühern molekularen

Fig. 2.

Zusammenhang des Körpers sichernden elastischen Kräfte der Moleküle in jeder der beiden Schnittflächen durch äußere Kräfte von entsprechender Größe und Richtung ersetzt (Fig. 2). Wegen der unendlich großen Zahl der Moleküle wird es unendlich vieler solcher äußerer Kräfte be-

dürfen, um ihre statische Wirkung gleichwertig mit derjenigen der elastischen Widerstände der Moleküle zu machen. Man hat deshalb eine Spannkraft im allgemeinen stets auf eine differentiale Fläche zu beziehen, und um dies rechnerisch zum Ausdruck zu bringen, nennt man die auf die Flächeneinheit irgend eines durch den Körper gelegt gedachten Schnittes bezogene Spannkraft die Spannung. Eine Spannkraft S ist also

§ 1. Eigenschaften des Baustoffes.

auszudrücken durch die Gleichung

$$S = \int \sigma \cdot dF, \qquad (1)$$

wenn σ die Spannung und dF das differentiale Flächenteilchen des betreffenden Schnittes bedeutet. Die Integration hat sich entweder über den ganzen Querschnitt F zu erstrecken oder nur über einen bestimmten Teil von F, je nachdem S die gesamte in der Fläche F herrschende Spannkraft S vorstellt oder nicht. In besondern Fällen kommt es vor, daß sich eine Spannkraft S gleichmäßig über den Querschnitt verteilt oder doch eine derartige Verteilung angenommen werden darf. Dann ist die Spannung

$$\sigma = \frac{S}{F} \cdot \tag{2}$$

Im allgemeinen ist aber eine ungleichmäßige Verteilung vorauszusetzen, für welchen Fall nach Gleichung (1) zu rechnen ist.

3. Festigkeit. Wird die Belastung des Körpers gesteigert, so wird schließlich ein Zeitpunkt eintreten, wo die Spannungen nicht mehr ausreichen, um seinen *Bruch* oder seine *Zerstörung* zu verhüten. Die Zerstörung wird bei *isotropen* (nach allen Richtungen hin gleiche physikalische Eigenschaften zeigenden) Körpern im allgemeinen in demjenigen Punkte beginnen, wo die Spannung zuerst am größten wird (§ 17).

Unter Festigkeit eines Körpers oder Baustoffes versteht man danach diejenige Spannungsgrenze, bei welcher seine Zerstörung beginnt.

Die Art der Zerstörung eines Körpers und sonach auch die Art seiner Spannungen und Festigkeit kann eine verschiedene sein. Sie hängt ab von der Art der Gruppierung der äußern Kräfte, die den Körper in seiner Form ändern. Um dies in einfacher Weise zu veranschaulichen, denke man sich im Körper an beliebiger Stelle zwei sog. Nachbarquerschnitte, die eine Scheibe von unendlich kleiner Dicke dz begrenzen. In dieser Scheibe beobachte man einen Würfel von den unendlich kleinen Kantenlängen dx, dy, dz (Fig. 3). Man verfolge nun während der Formänderung die gegen-

1*

seitige Bewegung der in die Nachbarquerschnitte fallenden Würfelflächen, wobei man eine der beiden Flächen festgehalten denken kann. Die

3

festgehaltene Fläche liege in dem betrachteten Querschnitte, durch dessen Schwerpunkt O man sich die Achsen X, Y, Z gelegt denken wolle, von denen X, Y in den Querschnitt fallen, während Z senkrecht dazu steht. Dann beobachtet man im allgemeinen viererlei Bewegungen, die vier verschiedenen Belastungs- oder Spannungszuständen entsprechen, als deren Folge vier zugehörige Fälle der Festigkeit erscheinen.

a. Normalfestigkeit. Der Würfel vergrößert oder verkleinert seine ursprüngliche Kantenlängen dz, wobei die Würfelfläche $dx \cdot dy$ sich parallel zu den Kanten dz bewegt. Es entstehen Zug- oder Druckspannungen, zusammengefaßt Normalspannungen genannt, weil ihre Richtungen senkrecht zum Querschnitte stehen. Ein Zug wird als positive, ein Druck als negative Spannung bezeichnet, entsprechend der Zunahme und Abnahme der Kantenlängen dz, deren Verhältnis $\frac{ddz}{dz}$ die Längsdehnung heißt. Danach unterscheidet man bei Zug eine positive, bei Druck eine negative Längsdehnung.

b. Schubfestigkeit. Die Würfelflächen verschieben sich gegeneinander, ohne ihren Abstand dz zu ändern. Dabei vergrößern oder verkleinern sich die rechten Winkel der Würfelflächen dy. dz und es entstehen Schubspannungen, deren Richtung in die Querschnittsfläche fällt. Die erwähnte Winkeländerung heißt die Gleitung oder Schiebung. Auch hier unterscheidet man eine positive und negative Richtung der Spannung, worüber im 4. Abschnitt nähere Angaben folgen.

c. Biegungsfestigkeit. Die Würfelflächen vergrößern oder verkleinern ihren ursprünglichen Abstand dz, wobei sie sich um eine *in* der Querschnittsebene liegende Achse drehen. Es entstehen dabei *Biegungsspannungen*, deren Richtung allgemein schief zur Querschnittsfläche stehen, sodaß jede Biegungsspannung in eine *Normalspannung* und eine *Schubspannung* zerlegt werden kann.

d. Verdrehungsfestigkeit. Die Würfelflächen verschieben sich aufeinander, ohne ihren Abstand dz zu ändern, wobei sie eine Drehbewegung um eine zum Querschnitt senkrechte Achse ausführen. Es entstehen in diesem Belastungsfalle im Querschnitte Schubspannungen, die man Torsions- oder Verdrehungsspannungen nennt. Auch bei diesen unterscheidet man eine positive und eine negative Richtung.

e. Maßgebende Spannung. Jeder dieser vier Belastungsfälle kann für sich eintreten, dann sprechen wir von *einfachen Fällen der Festigkeit*. Im allgemeinen wird es sich aber bei Baukonstruktionen um zusammengesetzte Fälle der Festigkeit handeln. Diese darf man erfahrungsmäßig auf Grund des Gesetzes von der gegenseitigen Unabhängigkeit der Kraftwirkungen derart lösen, daß man sie in die einfachen Fälle zerlegt und daß man die dafür in einem Querschnittspunkte $dx \cdot dy = dF$ erhaltenen gleichartigen Spannungen addiert. Wie man dann durch entsprechende Zusammensetzung der Normal- und Schubspannungen eine für die Berechnung maßgebende Spannung erhält, wird im 4. Abschnitt erläutert.

4. Das Elastizitätsgesetz.

a. Elastizitätsgrenze. Zu den elastisch-festen Körpern gehören die meisten Baustoffe, besonders Eisen, Stein und Holz. Aller Erfahrung nach gibt es aber vollkommen elastische Körper — d. h. solche Körper, deren Formänderung nach erfolgtem Aufhören der Einwirkung äußerer Kräfte vollkommen wieder verschwindet — ebensowenig wie vollkommen unwandelbare, d. h. starre, keiner Formänderung fähige Körper. Man hat aber durch Versuche für viele Stoffe, namentlich auch für Baustoffe, je eine Spannungsgrenze ermittelt, innerhalb welcher der Körper (für praktische Zwecke genau genug) noch als vollkommen elastisch angesehen werden darf. Diese Spannungsgrenze nennt man die Elastizitätsgrenze. Wird sie bei der Belastung überschritten, so kann die Formänderung nach erfolgter Entlastung nicht mehr ganz verschwinden. Es treten dann im Körper sog. bleibende Formänderungen auf. Im großen und ganzen darf man für die Elastizitätsgrenze setzen:

Schweißeisen	1600 atm.
Flußeisen	2400 -
Holz	250 -
Stein	10—100 atm. (unsicher).

Während die Elastizitätsgrenze für *das schmiedbare* Eisen — Schweißeisen und Flußeisen — ziemlich scharf bestimmbar ist und für Zug und Druck gleich groß angenommen werden darf, ist diese Grenze für Stein heute noch sehr schwierig genauer festzulegen. Auch besteht wohl heute kein Zweifel mehr darüber, daß in Steinkonstruktionen diese Grenze für Zug und Druck nicht immer gleich groß angenommen werden darf. Nicht viel anders liegt die Sache beim Vergleich von Eisen und Holz.

b. Beziehungen zwischen Formänderung und Spannung. Zu bemerken ist noch, daß es bei vielen Stoffen oft sehr lange dauert, bevor die Formänderung des Körpers sich vollzieht, selbst wenn die dabei entstehenden Spannungen innerhalb der Elastizitätsgrenze bleiben. Das gleiche gilt auch für die vollständige Rückkehr in die ursprüngliche Form des Körpers nach erfolgter Entlastung. Man nennt diese Erscheinung die *elastische Nachwirkung*. Die gesetzmäßigen Beziehungen zwischen Formänderungen und Spannungen innerhalb der Elastizitätsgrenze sind zuerst von dem Engländer HOOKE¹ durch Versuche mit stählernen Federn entdeckt worden (1660). Er fand *die Formänderung der elasti*schen Kraft (2) proportional und drückte dies Gesetz durch die Formel »ut tensio sic vis« aus. Dasselbe fand — und wahrscheinlich unabhängig von HOOKE — auch MARIOTTE² (1679) bei Versuchen mit kleinen Stäben aus Holz, Metall und Glas. Ferner wurde das Hookesche Gesetz durch die Entdeckung HUVGHENS³ über die Schwingungszeiten elastischer Stäbe und durch die Versuche von 's GRAVESANDE⁴ mit Metalldrähten bestätigt.

Die ersten genauen Versuche waren die von 's GRAVESANDE. Neuere Versuche von SAVART, MASSON⁵, WEBER und WERTHEIM führten zu gleichen übereinstimmenden Ergebnissen. WEBER⁶ war der erste, der die sog. elastische Nachwirkung beobachtete. WERTHEIM⁷ hat mit Hilfe eines äußerst empfindlichen Verfahrens zuerst den strengen Beweis dafür erbracht, daß das Elastizitätsgesetz für Druck und für Zug in gleicher Weise gültig ist, was man bis dahin ohne Beweis schon angenommen hatte. Es wird aber notwendig sein, dazu zu bemerken, daß ausgedehnte Versuchsreihen der Laboratorien der deutschen technischen Hochschulen, unter denen die Versuche von BAUSCHINGER, TETMAJER und v. BACH in erster Linie stehen, zweifellos ergeben haben, wie gewisse Baustoffe, namentlich Gußeisen und Steine verschiedener Art dem Elastizitätsgesetze nur unvollkommen folgen. Eingehendere Angaben über diesen Punkt werden im 4. Abschnitt folgen. Abgesehen von diesen Ausnahmen kann man das HOOKE'sche oder Elastizitätsgesetz heute wie folgt aussprechen:

1. Die Formänderung ist der elastischen Kraft proportional.

2. Die Formänderung bleibt bis auf ihr Vorzeichen die gleiche, wenn man Zug durch Druck ersetzt oder wenn man Biegung und Verdrehung im entgegengesetzten Sinne wirken läßt (3).

c. Proportionalitätsgrenze. Das Hooke'sche Gesetz bildet heute noch die Grundlage aller Berechnungen in der Statik der Baukonstruktionen. Es ist aber wohl zu beachten, daß es streng genommen nur für isotrope Körper und außerdem auch nur innerhalb einer gewissen

¹ HOOKE, Philosophical tracts and collections. London 1678.

² MARIOTTE, Oeuvres. Leyden 1717.

³ HUYGHENS, Horologium oscillatorium. Paris 1673.

⁴ 's GRAVESANDE, Physices elementa mathematica. 1720.

⁵ Ann. de chim. et de phys. 1837 und 1841.

⁶ WEBER, Pogg. Ann. 1835.

⁷ WFRTHEIM, Ann. de chim. et de phys. 1844.

Spannungsgrenze gültig ist, die man deshalb *Proportionalitätsgrenze* nennt. Elastizitätsgrenze und Proportionalitätsgrenze sind im allgemeinen nicht dasselbe, weil erstere nur die Grenze bezeichnet, bis zu welcher die Körper als vollkommen elastisch angesehen werden können, während letztere die Grenze der Gültigkeit des Hooke'schen Gesetzes festlegt. Die Elastizitätsgrenze ist schwierig, wenn nicht unmöglich, genau festzusetzen, weil es ja uur von der Schärfe der beim Versuche anzuwendenden Meßvorrichtungen abhängt, ob man ganz kleine, fast verschwindende bleibende Formänderungen noch beobachten kann oder nicht. Dagegen ist die Proportionalitätsgrenze für die elastischen Formänderungen viel schärfer zu bestimmen.

d. Streck- oder Fließgrenze und Quetschgrenze. Schmiedbares Eisen zeigt bei Zug- und Druckversuchen, sobald die Elastizitätsgrenze überschritten ist, ein eigentümliches Verhalten. Die Dehnungen nehmen nämlich von einer bestimmten Spannungsgrenze ab plötzlich stark zu (namentlich ist das bei Zugversuchen der Fall), sodaß man die Veränderungen mit bloßem Auge verfolgen kann. Diese Spannungsgrenze nennt man für Zug die *Streck*- oder *Fließ*grenze, bei Druck die *Quetsch*grenze.

5. Dehnung und Gleitung.

a. Längsdehnung und Querdehnung. Bei dem einfachen Falle der Normalfestigkeit (Fig. 3) verlängerten oder verkürzten sich die Kanten dz des Differentialwürfels und das Verhältnis dieser Längenänderungen galt als die positive oder negative Längsdehnung. Es findet aber dabei gleichzeitig eine Verkleinerung oder Vergrößerung der Querschnittsfläche dx. dy statt, derart, daß auch die Kantenlängen dx und dy sich entsprechend ändern. Das Verhältnis dieser Änderungen nach der Quere des Körpers nennt man Querdehnung. Sie ist positiv bei Druck und negativ bei Zug, während umgekehrt die Längsdehnung positiv bei Zug und negativ bei Druck war.

Die Bestimmung des Verhältnisses der Querdehnung zur Längsdehnung bei Zug und Druck hat seit NAVIER¹ viele Forscher beschäftigt. POISSON² berechnete auf Grund von Voraussetzungen über die Art der Anziehung, die von den aus ihrer Gleichgewichtslage gebrachten Molekülen aufeinander ausgeübt werden, das Verhältnis zu 1/4.

Nach späteren theoretischen Untersuchungen von CAUCHV³, LAME⁴

¹ NAVIER, Mémoires de l'Acad. des sciences. 1827.

² POISSON, Ebendaselbst. 1829 und Journal de l'École polytechnique. 1831.

³ CAUCHY, Exercises de mathématiques. 1827 u. 1828.

⁴ LAMÉ und CLAPEVRON, Mémoires des savants étrangers. 1833.

und KIRCHHOFF¹ liegt die Verhältniszahl zwischen Null und 0,5. Aus Versuchen von WERTHEIM mit Kautschuk, Glas, Messing und Stahl ergab sich $^{1}/_{3}$. Für *Stahl* wurden von anderen Gelehrten noch folgende Zahlen gefunden:

KIRCHHOFF ¹	für	Stäbe	aus	gehärtetem S	tahl	0,294	
OKATOW	-	-	-	ungehärtetem	Stahl	0,299	
	-	-	-	Stahl in Öl e	erhitzt	0,319	
	-	vollstä	indig	ausgeglühte	Stahlstäbe	0,328	
SCHNEEBELI	-	gehämmerten Stahl					
	-	ausge	glüht	en Stahl		0,303	

Danach rechnet man heute für die Poisson'sche Verhältniszahl $\frac{1}{3}$ bis $\frac{1}{4}$.

Für Eisen und Stahl empfiehlt sich 0,3; für Holz und Stein sind sichere Werte heute noch nicht anzugeben.

b. Das Dehnungsmaß. Ist σ irgend eine Normalspannung und bezeichnet man α als die Längsdehnung für die Einheit des ursprünglichen Längenmaßes, so lautet das Elastizitätsgesetz:

$$\alpha = \frac{\sigma}{E} \,. \tag{3}$$

E ist das Dehnungsma β , auch das Elastizitätsma β oder die Elastizitätszahl genannt. Es ist durch Versuche für verschiedene Körper bestimmt worden, worüber spätere Tabellen nähern Aufschluß geben. Jedoch soll an dieser Stelle bereits hervorgehoben werden, daß für die vorhin (4 b) schon erwähnten Baustoffe, die dem Elastizitätsgesetz nur unvollkommen folgen, wie z. B. Zement, Beton und verschiedene Steine das Dehnungsma β für Druck und für Zug verschieden ausfällt.

Aus der Gleichung (3) folgt ohne weiteres, daß E eine Spannung vorstellt, weil α eine unbenannte Zahl (von der Dimension Null) ist und weil deshalb der Quotient $\frac{\sigma}{E}$ auch eine solche geben muß.

Bezeichnet ferner $\frac{1}{m}$ die Poisson'sche Zahl und β die Querdehnung, so ist nach obigem:

$$\beta = \frac{\mathbf{I}}{m} \left(\frac{\sigma}{E} \right) . \tag{4}$$

c. Das Gleitungsmaß. Die Gleichungen (3) und (4) gelten für Normalspannungen. Will man nun ähnliche Beziehungen auch für die

¹ KIRCHHOFF, Pogg. Ann. 1859. Desgl. OKATOW und SCHNEEBELI, 1863 und 1870.

§ 1. Eigenschaften des Baustoffes.

Schubspannungen und die dadurch hervorgerufenen Gleitungen auf Grund des Elastizitätsgesetzes analytisch fassen, so darf man von der Gleichung

$$\gamma = \frac{\tau}{G} \tag{5}$$

ausgehen. Darin bedeuten γ die Gleitung, τ die Schubspannung und *G* das *Gleitungsmaß* (oder die Gleitungszahl). Mit Hilfe der Gleichungen (3) und (4) und unter Betrachtung des Formänderungszustandes eines differentialen Würfels (Fig. 3) kann man *G* als eine Funktion von *E* und *m* entwickeln, wie es im 4. Abschnitt dargelegt wird. Man erhält dann allgemein:

$$G = \frac{m}{2(m+1)}E$$

$$G = \frac{3}{8}E$$
(6)

für m = 4:

oder für m = 3:

Auf solche Weise führt man die Berechnung der Formänderungen infolge von Schubspannungen auf das Dehnungsmaß E zurück, das für die Baustoffe von zahlreichen Versuchen her genau genug bekannt ist, während das Gleitungsmaß bisher unmittelbar aus entsprechenden Versuchen noch nicht mit Sicherheit ermittelt worden ist. Immerhin bleibt aber wohl zu beachten, wie danach die Berechnung von Schubspannungen nach der Gleichung

 $G = \frac{2}{5} E.$

$$\tau = \gamma \cdot G$$

nur innerhalb gewisser Grenzen als genau genug angesehen werden darf, weil die Poisson'sche Zahl aus Versuchen (5a) nicht für alle Baustoffe scharf bestimmt ist.

6. Spannungswechsel und Belastungswechsel. Wenn in irgend einem Stabquerschnitte einer Konstruktion (1) unter dem Angriffe einer ihre Lage wechselnden Last eine Spannung ihre Größe ändert, so kann sie dabei aus ihrer positiven in die negative Richtung übergehen, oder umgekehrt. Diesen Vorgang nemmt man einen Spannungswechsel. Zwischen dem größten und dem kleinsten Wert einer Spannung — den Grenzwerten — besteht dann ein sog. Spannungsunterschied, dessen Größe, abgesehen von dem Vorzeichen, gleich der Summe der beiden Grenzwerte ist. Es wechsele z. B. eine Spannung zwischen einem größten Druck von 1200 kg auf 1 qcm Querschnittsfläche des Stabes und einem Zuge von 600 kg/qcm. Dann ist der Spannungsunterschied gleich 1800 kg/qcm. Entsteht in einem Stabquerschnitte kein Spannungswechsel, so sagt man, der Querschnitt erleide *reinen* Zug oder *reinen* Druck (abgesehen von etwaigen Schubspannungen).

Im Gegensatz zu einer dauernden Belastung, wie sie z. B. durch die Schwerkraft ausgeübt wird, steht der Belastungswechsel, dem alle Konstruktionen unterworfen sind, die veränderliche oder vorübergehende Lasten zu tragen haben, wie Menschengedränge, Eisenbahnzüge, Straßenwagen, Schnee- oder Windlasten u. dgl. Es entsteht nun die Frage, ob die Widerstandsfähigkeit eines Stabes unter sonst gleichen Umständen in verschiedenem Maße beansprucht wird, je nachdem der Stab dauernd oder im Wechsel belastet und je nachdem er Spannungswechsel erleidet oder nicht. Nach den hierüber vorliegenden zahlreichen sog. Dauerversuchen mit Eisen, die im wesentlichen darin bestehen, daß ein Eisenstab in eigens dazu eingerichteten Festigkeitsmaschinen viele millionen Male vergleichenden Spannungs- und Belastungswechseln unterworfen wird, darf man diese Frage im allgemeinen bejahen.

Aus den grundlegenden Zug- und Biegungsversuchen von Wöhler¹ lassen sich die Hauptergebnisse in folgenden zwei Sätzen wiedergeben:

1. Ein Spannungswechsel führt einen wiederholt belasteten Eisenstab eher zum Bruche, als wenn der Stab — bei gleich hohen Grenzwerten der Spannung — entweder nur reinen Druck oder reinen Zug erleidet, d. h. also, ein Stab, der zwischen den Grenzwerten \pm 10 t und \pm 25 t gespannt wird, ist nicht so gefährlich belastet wie ein Stab, der einen Spannungswechsel zwischen + 10 t und - 25 t oder - 10 t und + 25 t erleidet.

2. Je größer beim Spannungswechsel und bei gleich hohen Grenzwerten der Spannung der Spannungsunterschied ist, desto gefährlicher ist der Spannungszustand, d. h. also, ein Stab, der zwischen den Grenzwerten \pm 10 t und \pm 25 t gespannt wird, ist nicht so gefährlich belastet wie ein Stab, der einen Spannungswechsel zwischen \pm 25 t und \mp 25 t erleidet, obwohl die höchste Spannung in beiden Fällen gleich ist (25 t).

Bei späteren Dauerversuchen kam BAUSCHINGER¹ zu einem neuen wichtigen Ergebnisse, das als dritter Satz, wie folgt, gefaßt werden kann:

3. Ein Eisenstab, der keinen Spannungswechsel erleidet, bricht selbst

¹ Vergl. Literatur in: MEHRTENS, Der deutsche Brückenbau im 19. Jahrhundert. 1900. bei vielen Millionen von Belastungswechseln nicht, falls dabei der Grenzwert der Spannung unter der sog. Elastizitätsgrenze bleibt.

Viele hervorragende Fachmänner haben versucht, die in obigen drei Sätzen allgemein zusammengefaßten Ergebnisse von Dauerversuchen zu verwenden, um daraus auf wissenschaftlichem Wege ein Maß für die *Sicherheit einer Konstruktion* zu finden. GERBER und LAUNHARDT^{*} gingen dabei voran; dann folgten SCHÄFFER, WINKLER und WEYRAUCH.

An dieser Stelle möge nur noch hervorgehoben werden, daß LAUN-HARDT der erste war, der die hierbei vorkommenden Fragen in ein wissenschaftliches Gewand gekleidet hat.

LAUNHARDT nennt diejenige Festigkeit des Baustoffes, deren Kenntnis dazu befähigen würde, die Frage nach einem Sicherheitsmaß für eine Konstruktion erschöpfend zu beantworten, die Arbeitsfestigkeit. Arbeitsfestigkeit ist nach ihm diejenige Spannungsgrenze, bei welcher ein Stab erst nach einer unendlich großen Zahl von Belastungswechseln brechen würde. LAUNHARDT unterscheidet dann zwei Arten von Arbeitsfestigkeit:

1. Die Tragfestigkeit. Sie bezeichnet solche Fälle, in denen nur eine ruhende Belastung, z. B. nur das Eigengewicht der Konstruktion wirkt, wobei also kein *Belastungs*wechsel eintritt.

2. Die Ursprungsfestigkeit. Sie bezeichnet den besonderen Fall eines Belastungswechsels, bei welchem der untere Grenzwert der Spannung stets gleich Null ist. Hierbei tritt also kein Spannungswechsel ein. Für solche Stäbe würde der obige Satz von BAUSCHINGER angewendet werden können. Die von LAUNHARDT, unter Benutzung der Ergebnisse der Wöhlers'schen Versuche, abgeleitete Formel für die Arbeitsfestigkeit leidet aber an dem Mangel, daß der Spannungswechsel darin nicht berücksichtigt ist.

WEVRAUCH^I hat die Formel von LAUNHARDT durch Hinzufügung des Begriffs der »*Schwingungsfestigkeit*« ergänzt. Unter *Schwingungsfestigkeit versteht er diejenige Arbeitsfestigkeit*, *bei welcher Zug- und Druckspannung beim Spannungswechsel gleich groß werden*. Wenn dieser Fall eintritt, wird der Spannungsunterschied bei festliegendem oberen Grenzwerte am größten, der Belastungszustand also am gefährlichsten. Weiteres über diese Fragen, die aber zur Zeit noch nicht zum Abschluß gelangt sind, vergl. im III. Bande.

7. Die zulässige Spannung. Aus Gründen der Sicherheit gegen Bruch oder Zerstörung darf in keinem Stabquerschnitte einer Konstruktion

¹ Vergl. Anm. I auf voriger Seite.

tion und bei keiner möglichen Lage ihrer Belastung die maßgeben de Spannung (3e) eine erfahrungsmäßig als zulässig anerkannte Grenze überschreiten. Es fragt sich nun, nach welchen Grundsätzen diese sog. *zulässige* Spannung festzusetzen ist.

a. Ältere Annahmen. Wie im Anfange des 19. Jahrhunderts legt man auch heute noch die Festigkeit des Baustoffes zu Grunde, indem man mit einem *Sicherheitsgrade* gegen das Überschreiten derjenigen Festigkeitsgrenze rechnet, die für den Baustoff durch Versuche am zuverlässigsten festgelegt worden ist. Für das schmiedbare Eisen ist das die Normalfestigkeit, für Stein die Druckfestigkeit und für Holz die Zugfestigkeit. Steine und Mörtel haben nur eine verhältnismäßig sehr geringe Zugfestigkeit. Beim Holz beobachtet man desgleichen eine geringe Schubfestigkeit. Das sind eigentümliche Festigkeitsverhältnisse, die bei der Ausbildung der Stein-, Holz- oder Eisenverbindungen besonders zu beachten sind. Im großen Durchschnitt kann man für Konstruktionsstoffe folgende Festigkeitszahlen annehmen:

Art des Baustoffes		In 7	Sicher-				
		Elastizitäts- grenze T	Zugfestig- keit Z	Druckfestig- keit D	Schubfestig- keit S	zulässige Spannung	rund
A.	Schmiedb. Eisen						
	1. Schweißeisen	1,6	3,6	-	-	0,8	4,5
	2. Flußeisen	2,4	4,0-4,4	-	-	1,0	4,5
в.	Holz		and the second				Ren and
	3. Nadelholz	0,45-0,20	0,80	0,25	0,40	0,08	10
C.	4. Eichenholz	0,15-0,50	1,00	0,35	0,80	0,10	IO
	Stein		1/26 D	bis 2,5	1/13 D	bis 0,05	10—20 und mehr

Danach wählt man, wenn nicht aus besondern, weiterhin angegebenen Gründen eine abweichende Art der Bestimmung der zulässigen Spannung eintreten muß, den *Sicherheitsgrad* gegen Zerstörung mit etwa 5 für Eisen und etwa 20 bis 10 für Stein und Holz. Das heißt also: Die Zerstörung oder der Bruch würde erst eintreten, wenn die Berechnungslast 5, 10 oder 20 Mal größer wäre, als sie wirklich ist.

b. Neuere Annahmen. Eine neuere Art der Festsetzung der zulässigen Spannung stützt sich auf die Forderung, daß alle Teile einer Konstruktion unter ihrer Belastung möglichst dauernd und vollkommen elastisch wirken sollen. Das geschieht (nach 4), wenn selbst unter den ungünstigsten Umständen in keinem Konstruktionsteile eine bleibende Formänderung eintritt, oder mit anderen Worten, wenn die Grenzwerte der auftretenden maßgebenden Spannungen nie die Elastizitätsgrenze überschreiten. Geht man von dieser richtigen Grundlage aus, so muß man außerdem noch eine Sicherheit dafür haben, daß die maßgebenden Spannungen nirgends in der Konstruktion das angedeutete Maß überschreiten. Deshalb muß man alle Zufälle, die während der Ausführung oder des Betriebes der Konstruktion eintreten können, in Betracht ziehen, namentlich also unvermeidliche Ungenauigkeiten bei der Berechnung, sowie auch unvermeidliche Mängel und Fehler bei der Herstellung der Konstruktion, ebenso auch Abnützungen oder Schwächungen im Betriebe u. dgl. mehr.

Aller bisherigen Erfahrung nach genügt es, wenn danach im großen und ganzen die unter den ungünstigsten Umständen in der Konstruktion auftretenden Spannungen höchstens auf die *Hälfte des Betrages der Elastizitätsgrenze* wachsen können. Der Sicherheitsgrad gegen deren Überschreitung wäre dann ein zweifacher.

Für die Annahme der Elastizitätsgrenze als Grundlage für die Wahl der zulässigen Spannung spricht auch noch ein anderer Umstand. Aus den (unter **6**) bereits erwähnten *Dauerversuchen* hat sich (nach Satz 3) ergeben, daß ein in einer Festigkeitsmaschine von der Spannungsgrenze Null ab wiederholt belasteter Eisenstab verhältnismäßig erst nach viel längerer Zeit — erst nach einer millionenfachen Zahl von *Belastungswechseln* — zum Bruche gebracht werden kann, wenn bei keinem Einzelversuche je die Elastizitätsgrenze überschritten wird. Da nun die meisten Konstruktionen selbst vielbefahrener eiserner Brücken jährlich nur wenige zehntausende und selbst in hundert Jahren nur einige millionen von Belastungswechseln erfahren, so darf man wohl schließen, daß der Bestand einer Konstruktion *rechnungsmäßig* ausreichend gesichert erscheint, wenn in allen ihren Teilen, *die keinen Spannungswechsel* erleiden, nirgends die Elastizitätsgrenze des Baustoffes überschritten wird.

c. Stein und Holz. Hierfür liegt die Sache etwas anders als für das Eisen. Unter 4b wurde bereits hervorgehoben, wie die Elastizitätsgrenze wohl für das schmiedbare Eisen ziemlich scharf zu bestimmen und auch für Zug und Druck gleich groß angenommen werden darf, daß diese Grenze aber namentlich für Stein heute noch sehr schwierig genau festgelegt werden kann. Auch besteht wohl heute kein Zweifel mehr darüber, daß beim Stein das *Dehnungsmaß* (5b) für Zug und Druck nicht gleich groß angenommen werden darf. Nicht viel anders liegt die Sache beim Vergleich von Eisen und Holz. Deshalb rechnet man bei der Festsetzung der Sicherheit für Stein- und Holzkonstruktionen ziemlich allgemein noch nach dem älteren Verfahren unter Zugrundelegung der Festigkeit als Maßstab. Daß man außerdem bei der Verwendung von Holz und Stein einen mindestens doppelt so hohen Sicherheitsgrad für notwendig hält als beim Eisen, kennzeichnet die mindere Zuverlässigkeit jener Baustoffe gegenüber dem Eisen augenfällig.

Über die bereits erwähnten neuern Bestrebungen, die Wahl der zulässigen Spannung unter Zugrundelegung der Ergebnisse von Dauerversuchen und mit Rücksicht auf Spannungs- und Belastungswechsel mehr als bisher auf wissenschaftlichen Boden zu stellen, vergl. Band III.

8. Temperatureinflüsse. Die den festen Körpern eigene Elastizität wurde (unter 2) aus dem Verhalten der Moleküle erklärt, die in ihre ursprüngliche Gleichgewichtslage zurückkehren, sobald eine Einwirkung äußerer Kräfte aufhört. Die Moleküle befinden sich, allen Beobachtungen nach, in ihrer jeweiligen Gleichgewichtslage nicht in Ruhe, sondern sie vollführen um diese Lage sehr rasche Schwingungen. Die dadurch bewirkte mechanische Arbeit der Moleküle überträgt sich bei der Berührung von festen Körpern als Wärme und der Erwärmungsgrad oder die *Temperatur* des Körpers ist erfahrungsmäßig proportional der Bewegungsenergie seiner Moleküle. Beim Erwärmen des Körpers vergrößern die Moleküle ihre Schwingungsweite, wodurch sie sich immer mehr von ihrer ursprünglichen Gleichgewichtslage entfernen. Infolgedessen vergrößert sich der Rauminhalt des Körpers, *der Körper dehnt sich aus.*

Solange die infolge von Wärmezuführung oder Wärmeabnahme eintretende Änderung des Rauminhaltes sich im Körper *ungehindert* vollziehen kann, solange leisten die Molekularkräfte behufs Herstellung neuer Gleichgewichtslagen nur *innere Arbeit*. Sobald hierbei aber ein äußeres Hindernis irgend welcher Art eintritt, müssen die Molekularkräfte auch *äußere* Arbeit leisten und infolgedessen entstehen *Temperaturspannungen* im Körper, die ihn unter Umständen zu zerstören vermögen. Die Größe der Temperaturspannungen berechnet sich nach dem Elastizitätsgesetz aus den Formänderungen, die der Körper durch den Widerstand erleidet, der sich seiner Raumausdehnung infolge der Temperatur entgegensetzt.

Für schmiedbares Eisen ist aus zahlreichen Versuchen die *Dehnung* α für die Längeneinheit (oder das Längenänderungs-Verhältnis) und für r° Celsius zu

bestimmt worden.

$\alpha = 0,000012$

Wenn also ein Eisenstab an seinen beiden Enden a und b unwandelbar und spannungslos eingespannt oder festgehalten wird (Fig. 4), so würde der Stab bei einer Temperaturabnahme von t Grad eine Spannung σ erleiden, die nach dem Elastizitäts-

gesetz (4) aus der Gleichung

$$\alpha t = \frac{\sigma}{E}$$

zu berechnen wäre.

Bei einer Temperaturabnahme von 40 Grad und einem Dehnungsmaß E von 2000 t/qcm würde sich

 $\sigma = \alpha t E = 0,000012.40.2000 = 0,96t$

ergeben oder gleich 960 kg auf 1 qcm Querschnittsfläche des Stabes.

Abgesehen von einer derartigen Erhöhung der Anfangs-

spannung würde für den Konstrukteur noch in Frage kommen, ob und in wieweit infolge des Temperaturwechsels die Festigkeitseigenschaften der Baustoffe sich verändern können. Die Frage ist dahin zu beantworten, daß, aller Erfahrung nach, innerhalb der bei Baukonstruktionen in der Regel vorkommenden Temperaturschwankungen irgend eine erhebliche, die Sicherheit der Konstruktion berührende nachteilige Veränderung der Festigkeitseigenschaft nicht beobachtet worden ist. Daß Baukonstruktionen, die unter Umständen einer Feuersgefahr ausgesetzt sind, dagegen konstruktiv entsprechend geschützt werden sollten, liegt auf der Hand, in erster Linie, wenn Holz als Baustoff dient. Aber auch Eisen verliert in glühendem Zustande völlig seine Festigkeit, während Stein im allgemeinen und Beton im hohen Grade für feuerbeständig gelten.

Beim Entwerfen von Eisenkonstruktionen rechnet man in Mitteleuropa mit Temperaturschwankungen von $\pm 30^{\circ}$ bis 35° C. Dabei wird, um für die Grundmaße des Entwurfes eine Temperaturnorm zu haben, diejenige mittlere Temperatur, bei welcher die Konstruktion in allen ihren Teilen als *spannungslos* angenommen werden darf, zu $+ 10^{\circ}$ C. angenommen. Danach schwankt die Temperatur zwischen 20° bis 25° Kälte und 40° bis 45° Wärme.

Fig. 4.

§ 2. Die Konstruktions-Systeme.

9. Die Konstruktionsteile.

a. Tragwerk und Stützen. Alle Baukonstruktionen haben Lasten aufzunehmen und auf den Erduntergrund zu übertragen.

Danach unterscheidet man im allgemeinen zwei Hauptteile jeder Konstruktion, den tragenden und den stützenden Teil oder das Tragwerk und die Stützen (oder Lager). Das Tragwerk dient zur Aufnahme der Lasten und ruht auf den Stützen oder Lagern, die in Verbindung mit dem Erduntergrunde stehen. Je nach der Art der Konstruktion kann die Verbindung der Stützen mit dem Erdreich eine verschiedene sein. Steinkonstruktionen, wie Mauern und Gewölbe, können sich unmittelbar auf den Untergrund stützen, weil ihr Tragwerk sozusagen in sich die nötigen Flächen dazu bietet (Fig. 5 und 6).

Dagegen erfordert das Tragwerk der Holz- und Eisenkonstruktionen in der Regel besondere Stützen, durch welche die Tragwerklasten mittelbar auf das Erdreich übertragen werden. Dazu dienen geeignete Untermauerungen, Grundbauten, Pfeiler und dergleichen, deren mit dem Erdreich in Berührung kommenden Stützflächen entsprechend angeordnet und groß genug sein müssen, um eine Überlastung des Untergrundes zu verhüten. Erfahrungsgemäß folgt nämlich auch der Erdkörper den in § 1 erläuterten Gesetzen der Elastizität und Festigkeit. So gibt es auch für den Untergrund in jedem Falle eine Spannungsgrenze, über welche hinaus, um den dauernden Bestand der Konstruktion nicht zu gefährden, die Belastung des Baugrundes nicht gesteigert werden darf.

b. Vollwandige und gegliederte Tragwerke. Die Glieder eines Tragwerks bezeichnet man statisch, in Hinsicht auf die Grundformen
des Baustoffes, als Stäbe (1). Wenn ein Stab ungeteilte volle Querschnittsflächen zeigt, heißt er ein vollwandiger.

Eine Stützmauer und ein Gewölbe (Fig. 5 und 6) berechnet man Eine Säule und ein Träger (Fig. 7 und 8) erwie krumme Stäbe.

scheinen in der Gestalt von geraden Stäben; sie gelten als vollwandige Tragwerke.

Im Gegensatz zu den vollwandigen stehen die gegliederten Tragwerke, die im allgemeinen als eine Verbindung von vollwandigen Stäben angesehen werden dürfen. In statischer Hinsicht

Fig. 7.

100

Fig. 8.

nennt man sie deshalb auch Stabwerke. Sind Stabwerke durch Stützen mit dem Erduntergrund verbunden, so heißen sie Fachwerke, obwohl die Bezeichnungen »Stabwerk« und »Fachwerk« sehr häufig auch miteinander vertauscht werden.

t t Querschnitte.

Die Anfänge der Entwicklung der Fachwerke im Hoch- und Brückenbau werden weiterhin unter 37 und 38 dargelegt.

10. Die Konstruktionslasten. Die vom Tragwerk aufzunehmenden Lasten wirken entweder ständig, d. h. ununterbrochen, oder sie wirken nur zeitweise, im regelmäßigen oder unregelmäßigen Wechsel, also veränderlich. Zu den ständigen Lasten gehören das Eigengewicht des Tragwerks und etwaige sonstige besondere Gewichte, die von verschiedenen Materialien und Gegenständen herrühren können. Bei einem Dache gehören z. B. die Dachdeckung und etwaige am Tragwerk des Daches aufgehängte Schornsteine, Hebekrane, Kronleuchter oder dergl. zu den ständigen Lasten. Bei einer Straßenbrücke rechnet man dazu die Sand- oder Kiesbettung mit dem Pflaster; bei einer Eisenbahnbrücke die Schienen und Schwellen u. s. w.

Die veränderlichen Lasten sind 1. bewegliche oder Verkehrslasten, die aus einem Verkehre von Menschen, Tieren und Fahrzeugen entstehen und 2. zufällige Lasten, die, wie Stürme, Winde, Schneefälle u. dergl., natürlichen Ursachen entspringen. Das Konstruktionsgewicht

Mehrtens, Statik der Baukonstruktionen. I.

wirkt als Massenkraft; alle übrigen Lasten, ob sie ständige oder veränderliche sind, wirken als Oberflächenkräfte, wobei die Lasten über eine gewisse Oberfläche der Konstruktion stetig verteilt sind. Die Verteilung kann gleichmäßig oder ungleichmäßig erfolgen, in ähnlicher Art wie bei der Spannungsverteilung in einem Querschnitte (2b). Findet

die Berührung der Oberfläche - abgesehen von der elastischen Formänderung der sich berührenden Körperteile - in einem mathematischen Punkte statt, so bezeichnet man die betreffende Last P (z. B. den Rad- oder Achsdruck eines Verkehrsfahrzeuges) als Einzellast (Fig. 9).

Fig. 9.

Die Hauptrichtung aller Lasten ist die lotrechte, weshalb in der Regel die Hauptteile aller Konstruktionen, um deren Gleichgewichtslage mit den einfachsten Mitteln aufrecht erhalten zu können, lotrecht gestellt werden.

Die Windkräfte, und auch gewisse Seitenkräfte, die bei der Bewegung von Verkehrsfahrzeugen entstehen, wie Flieh- und Bremskräfte eines Eisenbahnzuges, wirken in wagerechter oder nahezu wagerechter Richtung. Die Temperaturkräfte sind an keine Richtung gebunden, sie wirken unmittelbar und verursachen Formänderungen in der Konstruktion, die Temperaturspannungen im Gefolge haben (8).

Die Lasten werden auf ein Tragwerk unmittelbar oder mittelbar übertragen. Die über den Balken rollende Last P (Fig. 10) kann an

jeder Stelle der Balkenoberfläche - d. h. unmittelbar angreifen. Dagegen können die in der Fig. 11 dargestellten Träger einer Brücke, über welche Querschwellen gestreckt sind, die ein Schienengleis tragen, die rollenden Lasten nur an denjenigen Stellen übertragen, die in Flächenberührung mit den Querschwellen kommen. Dies ist ein Beispiel für die mittelbare Lastübertragung.

Ein anderes Beispiel mittelbarer Übertragung ist in Fig. 12 in einem Querschnitt und im Grundriß dargestellt. Über einer Reihe von Querschwellen liegt ein Schienengleis, auf welchem die Lasten eines Eisenbahnzuges verkehren. Die Querschwellen werden von zwei Längsträgern L unterstützt und diese liegen auf (oder zwischen) vier Querträgern Q, die in gleichen Abständen an den beiden Hauptträgern H befestigt sind. Hier werden also die Lasten unmittelbar von den Schienen aufgenommen und auf dem Wege über Querschwellen, Längsträger und Querträger auf die Hauptträger mittelbar übertragen. Die Hauptträger geben ihre Last bei

trager geben inre Last bei a und b an die stützenden Pfeiler ab und diese übertragen sie schließlich auf den Untergrund.

Die zur Übertragung von Lasten dienenden Konstruktionsteile des Tragwerks werden Querkonstruktionen benannt. Dazu rechnen auch alle diejenigen Konstruktionsteile, die notwendig werden, um Einwirkungen von Wind-, Flieh- und Bremskräften u. dergl. durch das Tragwerk in die Stützen und den Erduntergrund überzuführen.

11. Ebene und räumliche Systeme. Obwohl streng genommen jedes Tragwerk in allen seinen

Fig. 12.

Teilen nach drei Abmessungen hin ausgedehnt ist, also als ein räumliches zu bezeichnen wäre, so erleichtert es doch die Berechnung, zwischen ebenen und räumlichen Tragwerken zu unterscheiden. Dabei empfiehlt es sich auch, wie bereits geschehen (9 b), ein Tragwerk allgemein als eine Verbindung von vollwandigen Stäben anzusehen. Danach versteht man unter einem *ebenen* Tragwerk (Stabwerk, Fachwerk) ein solches, dessen sämtliche Stabachsen in einer einzigen Ebene liegen, in welcher auch alle äußern Kräfte (Lasten und Stützenwiderstände) wirken. *Diese Ebene heißt die Kraftebene*. Sie steht in der Regel lotrecht, damit auch die Kräfterichtungen des Eigengewichtes darin verbleiben. Ebene Tragwerke werden kurzweg *Träger* genannt. Man spricht von einer *Trägerscheibe*, *Tragscheibe* oder kurzweg von einer *Scheibe*, wenn es sich um einen vollwandigen oder gegliederten ebenen Träger handelt. Die in den Fig. 5-8 dargestellten Tragwerke (Stützmauer, Gewölbe, Säule, Träger) können danach als ebene Tragwerke betrachtet und berechnet werden.

Raumtragwerke (Stabwerke, Fachwerke) sind im allgemeinen solche, deren Stabachsen in beliebigen Ebenen verteilt liegen und deren Belastungen (abgesehen vom Eigengewicht) in beliebigen Richtungen angreifen. Auch sie folgen in ihrem Aufbau meist der Schwerkraftrichtung derart, daß sie in der Regel mindestens eine lotrechte Konstruktions-Symmetrieachse erhalten.

Viele Raumtragwerke lassen sich in einzelne ebene Systeme zerlegen. Ein solches Tragwerk ist z. B. der in Fig. 12 dargestellte Überbau einer eisernen Brücke. Sobald man sich ihre Hauptträger, Querträger und Längsträger aus ihren Verbindungen losgelöst denkt, was durch Legung entsprechender Querschnitte (1 und 13) geschieht, kann ihre Berechnung je für sich durchgeführt werden. Gegen die Einwirkung von senkrecht zur Tragwerksebene wirkenden Kräften (10) sind die notwendigen Querkonstruktionen vorzusehen. Auch eine Dachkonstruktion, die aus einer Anzahl von *ebenen* Bindern besteht, über welche quer die zum Tragen der Sparren und der Dachlast dienenden Verbindungshölzer liegen, läßt sich in ähnlicher Weise in ebene Systeme zerlegen.

In der Neuzeit sind aber, hauptsächlich auf dem Gebiete des Eisenbaues, zahlreiche Raumkonstruktionen entstanden, die als vollkommen einheitliche Stabverbindungen erscheinen, deren Auflösung in eine Anzahl von ebenen Systemen deshalb irgend eine Erleichterung bei ihrer Berechnung nicht verschaffen kann. Diese Konstruktionen tragen ihren Namen *Raumfachwerke* also mit größerem Rechte, als jene gegliederten Raumtragwerke des Brückenbaues (Fig. 12), deren Berechnung heute in der Regel noch unter Zerlegung in ebene Systeme erfolgt.

Diejenigen Stellen einer ebenen oder räumlichen Konstruktion, in denen die miteinander zu verbindenden Stäbe zusammentreffen, heißen *die Knoten*, und den mathematischen Punkt, in welchem die Stabachsen sich schneiden, nennt man den *Knotenpunkt*. Die Knotenverbindungen sind konstruktiv und statisch betrachtet von wesentlicher Bedeutung für das Verhalten des Stabwerks unter der Belastung, sodaß sie (unter 14) besonders besprochen werden sollen.

12. Die Sicherheit der Konstruktion. Die Spannungsgrenzen, innerhalb welcher der Erdboden, abgesehen von festem Stein- und Felsgrunde, noch als ausreichend tragfähig angesehen wird, betragen etwa 3-6 atm. Sie liegen also weit unterhalb derjenigen Grenzen, die für die Baustoffe noch als zulässig gelten (7). Die Sicherheit der Konstruktion hängt deshalb in erster Linie von der ausreichenden Tragfähigkeit des Untergrundes ab. In zweiter Linie stehen erst Tragwerke und Stützen. Man darf danach sagen:

Die Sicherheit der Konstruktion ist gewährleistet, wenn die unter der Einwirkung der äußeren Kräfte entstehenden innern Kräfte in keinem Konstruktionsteile, eingeschlossen die Stützflächen im Erduntergrunde, eine gewisse — durch die Erfahrung festzusetzende — Grenze überschreiten.

Wie man diese Grenze, die sog. zulässige Spannung, an der Hand der Erfahrung festsetzt, indem man dabei, um den nötigen Sicherheitsgrad zu erhalten, entweder die Festigkeit oder die Elastizitätsgrenze als Maßstab wählt, wurde (unter 7) bereits erörtert. Dort wurden auch bereits die neuern Bestrebungen behufs einer wissenschaftlichen Festsetzung der zulässigen Spannung unter Berücksichtigung des Spannungs- und Belastungswechsels (6), sowie auch des verschiedenen Einflusses einer dauernden oder vorübergehenden Belastung, gekennzeichnet. Alle diese Betrachtungen waren aber wesentlich nur auf das Verhalten eines Konstruktionsstabes gerichtet, es wurde dabei die Eigenart der Konstruktion, in welcher der betrachtete Stab nur einen Teil bildete, außer acht gelassen. Und doch liegt es wohl auf der Hand, wie es nicht gerechtfertigt erscheint, bei zusammengesetzten Konstruktionen von großer räumlicher Ausdehnung', die veränderliche oder bewegliche Lasten zu tragen haben, für alle Stäbe, ohne Unterschied ihrer Bedeutung oder ihres besondern Zweckes, den gleichen Sicherheitsgrad zu wählen. Es sollten vielmehr die Konstruktionsteile je nach der Art, wie die Lasten auf sie übertragen werden und je nach der Häufigkeit ihrer Beanspruchung in Gruppen gesondert werden. Für jede Gruppe wäre dann ein besonderer Sicherheitsgrad zu wählen.

Am ungünstigsten würden dann diejenigen Querkonstruktionen (10) dastehen, die unmittelbar von den beweglichen Lasten berührt, also auch von deren Stoßwirkungen unmittelbar betroffen werden (Fig. 12). Viel günstiger stellen sich die Verhältnisse für die Hauptträger, auf welche die Lasten mehr oder weniger mittelbar einwirken, und den kleinsten Sicherheitsgrad würden solche Querkonstruktionen erfordern, die von den Betriebslasten überhaupt nicht oder doch nur in minderem Grade beeinflußt werden. Darunter befinden sich in der allergünstigsten Lage die Windverbände, insofern als diese nur selten — häufig in einer längeren Reihe von Jahren nicht — so stark beansprucht werden, wie es bei ihrer Berechnung für (aller Voraussicht nach) regelmäßig wiederkehrende Fälle angenommen werden mußte.

Ein neuer Gesichtspunkt kommt hinzu, wenn man Konstruktionen,

die im wesentlichen nur ihr eigenes Gewicht — das Konstruktionsgewicht — und keinerlei oder wenig Verkehrslast aufzunehmen haben, in Vergleich stellt mit Konstruktionen, die bei geringem Eigengewicht schwere und dazu noch stoßende Lasten tragen müssen. GERBER war der erste, der das bei obigem Vergleich in Frage kommende Verhältnis zwischen dem Eigengewicht und der Verkehrslast bei der Wahl der zulässigen Spannung mit berücksichtigte. GERBER berechnete (1859) die zulässige Spannung σ (in atm) und für Schweißeisen nach der Formel:

$$\sigma = 1600 \cdot \frac{E+V}{E+3V}$$

Darin bedeutet für irgend einen Konstruktionsstab E die allein vom Konstruktionsgewicht herrührende Spannkraft des Stabes, V den Wert der Spannkraft, der in dem nämlichen Stabe bei der ungünstigsten Lage der Verkehrslast entsteht.

Wird die Formel von GERBER für eine Konstruktion gebraucht, die allein ihr Eigengewicht zu tragen hat, so verschwindet V und es ergibt sich dann:

$$\sigma = 1600 \text{ atm},$$

das ist die Elastizitätsgrenze für Schweißeisen (7). Im Gegensatze dazu ergibt sich für eine Konstruktion, bei welcher die Masse ihres Eigengewichtes als verschwindend angesehen werden kann, gegenüber der von ihr zu tragenden Verkehrslast

$$\sigma = \frac{1600}{3} = 533,3$$
 atm.

GERBERS Formel veranschaulicht in einfacher und zutreffender Weise, wie mit zunehmendem Konstruktionsgewichte die zulässige Spannung sich mehr und mehr der Elastizitätsgrenze nähern darf. Da nun das Konstruktionsgewicht im allgemeinen mit der sog. freitragenden Weite, der *Stützweite* einer Konstruktion, in zunehmendem Verhältnis wächst, so wird man — unter sonst gleichen Umständen — den Sicherheitsgrad einer Konstruktion mit wachsender Stützweite abnehmen lassen können. Gleichzeitig ist dabei im Auge zu behalten, daß mit zunehmender Masse der Konstruktion nicht allein die Einwirkung stoßender Belastungen an Gefährlichkeit verliert, sondern auch das Eintreten von Spannungswechseln (6) seltener wird, weil die aus der ständigen Belastung herrührende positive oder negative Spannkraft eines Stabes von einer gewissen Größe des Eigengewichtes ab einen so hohen Wert erhält, daß ihr Sinn durch das Hinzukommen der kleineren durch die Verkehrslast veranlaßten Spannkraft nicht mehr gewechselt werden kann. 13. Der belastete Konstruktionsstab. Abgesehen davon, in welcher Weise ein Stab an seinen beiden Enden — im *Knoten* — mit den Nachbarstäben konstruktiv verbunden ist, läßt sich die Art der Berechnung seiner Spannungen in einem beliebigen Querschnitte wie folgt allgemein darstellen.

Man denke sich die Konstruktion so durchschnitten, daß sie in zwei vollständig voneinander getrennte Teile zerfällt. Dabei werden im allgemeinen mehrere Stäbe getroffen. Durch jeden dieser Stäbe führe man den Schnitt so, daß er senkrecht zur Stabachse ausfällt, also einen Querschnitt gibt.

Wie wir annehmen, war die Konstruktion vorher unter der Wirkung ihrer Stützenwiderstände und Belastung im elastischen Gleichgewicht (2b). Durch ihre Teilung wurde das Gleichgewicht jedes der beiden Teile gestört. Es kann aber wieder hergestellt werden, wenn die unter den gegebenen Konstruktionslasten entstehenden Spannungen aller im Schnitte liegenden Stabquerschnitte in diesen als äußere Kräfte wieder angebracht gedacht werden (2b). Wie dann auch diese Spannungen in den Querschnitten beschaffen und verteilt sein mögen und welchen der beiden durch den Schnitt hergestellten Teile der Konstruktion man dabei auch betrachten will, jedenfalls müssen die Mittelkräfte der Spannungen in ihrer Gesamtheit den am betrachteten Konstruktionsteile wirkenden äußern Kräften (Stützkräften und Belastungen) das Gleichgewicht halten.

Man fasse also die als äußere Kräfte angebracht gedachten Spannungen — wie es weiterhin in § 7—9 noch ausführlich gezeigt werden

wird — in jedem Stabquerschnitte zu Mittelkräften zusammen. Das geschieht am einfachsten in den Schwerpunkten (Achsenpunkten) der Querschnitte. In Fig. 13 ist dargestellt, in welcher Art man die Zusammensetzung ausführt: In räumlichen Systemen lassen sich alle äußeren Kräfte auf eine Einzelkraft Rund ein statisches Moment M zurückführen (50 a). R zerlegt sich in eine Achsenkraft S, deren Richtung mit der Stabachse zusammenfällt und in eine

Querkraft Q, deren Richtung in der Querschnittsfläche liegt. Das Moment kann nach drei rechtwinklig aufeinander stehenden Achsen X, Y, Z in M_x , M_y und M_z zerlegt werden. M_x und M_y sind Biegungsmomente in den Ebenen der YZ und XZ; M_z ist ein Verdrehungsmoment für die Ebenen parallel zur XY. In ebenen Systemen, wo alle Kräfte in einer Kraftebene (11) wirken, liegen die Einzelkraft R und das Moment M in dieser Ebene. R zerlegt sich dann auch in eine Achsenkraft Sund eine Querkraft Q (Fig. 13).

Über die Formänderungen und Spannungen, die infolge der Wirkung einer Achsenkraft, einer Querkraft und eines Momentes entstehen, ist bereits (unter **3**) das vorläufig Erforderliche gesagt. Wir wiederholen: Eine Achsenkraft erzeugt Normalspannungen, die entweder Zug oder Druck bedeuten; eine Querkraft erzeugt Schubspannungen und ein Moment entweder Biegungs- oder Verdrehungsspannungen. Ausfürliches im vierten Abschnitt.

Sobald es möglich ist, *für einen* der in den Schnitt fallenden Stabquerschnitte die Einzelkraft R und das Moment M aus den gegebenen Belastungen mit Hilfe der *drei* Gleichgewichtsbedingungen der Ebene oder der *sechs* des Raumes *eindeutig* zu bestimmen, liegt ein sog. *statisch bestimmter* Belastungsfall vor.

14. Knotenverbindungen. Die konstruktive Ausbildung einer Knotenverbindung hat sich nach der Art des Baustoffes zu richten. Besonders wird dabei auch zu beachten sein, daß Steine eine nur sehr kleine Zugfestigkeit und Hölzer nur eine geringe Schubfestigkeit besitzen, während Eisen sowohl gegen Zug und Druck als auch gegen Schub ziemlich gleich widerstandsfähig ist. Wie aber eine Knotenverbindung auch angeordnet sein möge, statisch braucht man nur zweierlei Arten zu unterscheiden:

1. eine Einspannung,

2. ein Gelenk.

Über Knoten, in denen beides, eine Einspannung und ein Gelenk vorkommen, wird weiterhin gesprochen. Die *Einspannung* ist statisch immer als eine *starre*, d. h. eine unbewegliche oder eine unwandelbar feste Verbindung anzunehmen, abgesehen von den unvermeidlichen *elastischen* Formänderungen der verbundenen Stäbe. Die Herstellung einer Einspannung wird bei Steinkonstruktionen in der Regel mit Hilfe von Mörtel durch einen *Verband* oder eine *Verzahnung* bewirkt. In Holz- und Eisenkonstruktionen stoßen die zu verbindenden Stäbe meist stumpf zusammen, wobei die dauernde satte Berührung ihrer Schnittflächen mit Hilfe von Verschraubungen, Vernietungen oder dergl. erzwungen werden.

Ein Gelenk soll so beschaffen sein, daß es eine Drehung der in ihm angeschlossenen Stabenden zuläßt. Konstruktiv erreicht man dies bei ebenen Knoten mit Hilfe eines zylindrischen Bolzens, bei Raumknoten durch ein sog. *Kugelgelenk* oder andere Mittel. Die an die Oberfläche des Bolzens oder der Kugel stoßenden Stabenden werden derart geführt und festgehalten, daß die Stabachsen immer durch den Mittelpunkt *m* des Bolzen- oder Kugelgelenkes verlaufen (Fig. 14).

Wie oben schon erwähnt, kommen auch Knoten vor, in denen Einspannung und Gelenk miteinander verbunden sind. Fig. 15 veranschaulicht einen solchen Fall: Die Holzstäbe S und S_x sind an ihren Endquerschnitten mit Hilfe einer eisernen Knoteneinlage eingespannt. Die Einlage ist im Knotenpunkte durchbohrt, sodaß die Bohrung einen Zylinderbolzen aufnehmen kann, woran der Eisenstab H mit Hilfe eines sogenannten Auges aufgehängt wird. Einen andern Fall zeigt Fig. 16. Über den Holz- oder Eisenstab O ist irgendwo auf seiner Länge zwischen den Enden eine eiserne Hülse h geschoben und festgeschraubt. Diese Hülse endigt am unteren Ende in zwei Lappen,

zwischen denen ein Stab gelenkig eingelegt ist. In diesem Falle ist der Stab O ein sog. durchgehender Stab, im Gegensatze zu einem einfachen Stab, der zwischen seinen Enden nie einen Knoten aufnimmt. Über die wesentlich verschiedene Bedeutung einfacher und durchgehender Stäbe für die Starrheit eines Stabwerkes folgen ausführliche Erörterungen unter **16**a und **31**.

Im Gegensatze zu einer Einspannung bietet ein Gelenk an und für sich keine starre, sondern eine *bewegliche* Verbindung. Ein in allen seinen Knoten mit Gelenken ausgerüstetes gegliedertes Tragwerk bleibt daher *im allgemeinen beweglich*, obwohl es möglich ist, durch entsprechende Wahl der Zahl und Anordnung der Stäbe auch ein solches Tragwerk *starr* zu machen, abgesehen natürlich von den unvermeidlichen elastischen Formänderungen, die gleichzeitig eine *Drehung* der anstoßenden Stäbe um ihr Gelenk und auch eine *Verschiebung der Knoten* herbeiführen. Dagegen ist selbstverständlich jedes Tragwerk als starr anzusehen, wenn alle seine Stäbe durch Einspannung miteinander verbunden sind.

In statischer Hinsicht (und unter gewissen Voraussetzungen) bietet ein Gelenk gegenüber einer Einspannung erhebliche Vorzüge. Deshalb ist es in der Neuzeit allgemein Gebrauch geworden, vorhandene Einspannungen in Gelenke aufgelöst zu denken, einerseits um sicher zu sein, daß ein als starr befundenes Tragwerk es auch unter allen Umständen ist, anderseits um die Berechnung der Stabspannungen auf möglichst einfachem Wege und dabei übersichtlich und klar durchführen zu können.

15. Die Bedeutung reibungsloser Knotengelenke. Fachwerke sollen unter *jeder beliebigen* Belastung starr, d. h. in allen ihren Teilen unbeweglich sein, weil sonst Gleichgewicht zwischen den auf sie wirkenden äußern Kräften nicht in jedem Falle möglich ist. Um das am einfachsten untersuchen zu können, sehe man vorläufig von den unvermeidlichen elastischen Formänderungen ab, betrachte also *alle Stäbe als starr* und denke sich alle Knoten *mit reibungslos arbeitenden Gelenken* ausgerüstet. Nur wenn man vollkommene Beweglichkeit in den Stabknoten voraussetzt, kann man sicher sein, daß ein als starr befundenes Fachwerk dies auch unter allen Umständen ist.

Aber nicht allein bei der Untersuchung auf Starrheit, sondern auch bei der *Berechnung der Stabspannungen* ist es vorteilhaft, vorläufig wenigstens die Voraussetzung reibungsloser Knotengelenke beizubehalten, wenn sie auch in Wirklichkeit nie ganz erfüllt wird. Es wird natürlich dabei einer spätern Aufgabe vorbehalten bleiben müssen, den Einfluß der vernachlässigten Reibung und (im Falle des Vorhandenseins von Einspannungen) auch den Einfluß der vernachlässigten Einspannung auf die Stabkräfte festzustellen. In sehr vielen Fällen erweist sich dieser

Fig. 17.

Einfluß *für die Konstruktion* derart unerheblich, daß er als nicht vorhanden betrachtet werden darf. Die Zweckmäßigkeit der Voraussetzung reibungsloser Gelenke wird in folgendem noch näher beleuchtet werden.

Wird eine Reibung in den *End*flächen der Stäbe, dort wo sie mit der Gelenkoberfläche in Berührung kommen, als nicht vorhanden angenommen, so wird auch jedes *Reibungsmoment* fortfallen, das bei der

unvermeidlichen elastischen Knotenverschiebung und der dadurch herbeigeführten *Drehung der Stäbe* um das Gelenk sonst auftreten müßte. Infolgedessen zerlegt sich bei *einfachen Stäben* (Fig. 17) eine im Knotenpunkt angreifende Last R nach erfolgtem Eintritt des elastischen Gleichgewichts (**2**b) nach den Richtungen der anstoßenden Stabachsen, d. h. die Stabquerschnitte erleiden nur *Achsenkräfte*, die *Querkräfte* infolge der Belastung durch R sind Null (13). Wäre das Reibungsmoment nicht gleich Null, so würden die Seitenkräfte von R im allgemeinen nicht alle im Knotenpunkte zusammentreffen können, weil sie, um ihr Gleichgewicht mit R nicht zu stören, in ihrer Gesamtheit in Beziehung auf den Knotenpunkt ein statisches Moment erzeugen müßten, das dem Reibungsmomente gleich, aber entgegengesetzt gerichtet wäre.

In einem ebenen Knoten (11) kann kein elastisches Gleichgewicht erzeugt werden, wenn nicht die im Knoten angreifenden Lasten (oder deren Mittelkraft R) in der Knotenebene wirken. Denn die im Knoten anstoßenden Achsenkräfte haben eine Mittelkraft, die in der Knotenebene liegt und die nur aufgehoben werden kann durch eine ihr gleiche, aber entgegengesetzt gerichtete Kraft. Daraus folgt auch noch, daß in einem ebenen Knoten mindestens zwei Stäbe, die überdies nicht in einer und derselben Geraden liegen dürfen (Fig. 18), zusammenstoßen müssen.

Zwei in eine Gerade fallende Spannkräfte S_r und S_2 (Fig. 19) haben stets eine Mittelkraft, die in der nämlichen Geraden wirkt, also von der äußern Knotenkraft R nicht aufgehoben werden kann.

In einem Raumknoten darf die dort angreifende äußere Kraft R beliebige Lage haben, es müssen dort aber mindestens drei Stäbe anstoßen, die überdies nicht in einer Ebene liegen dürfen. Wären nur zwei Stäbe oder drei in eine Ebene fallende Stäbe vorhanden, so könnte die Mittelkraft ihrer Achsenkräfte bei beliebiger Lage von R nicht mit dieser im Gleichgewicht sein.

16. Stabwerksysteme. Nach obigem erscheint statisch ein Stabwerk als das geometrische Bild einer Stabverbindung, in welchem die gewichtlos gedachten Stäbe durch Länge und Lage ihrer Achsen dargestellt sind und die Stabenden als in reibungslosen Gelenken beweglich betrachtet werden.

a. Einfache und zusammengesetzte Stabwerke. Es sind einfache und durchgehende Stäbe zu unterscheiden (14). Ein einfacher Stab ist nur an seinen Enden mit den Nachbarstäben verbunden, während ein durchgehender Stab außerdem auch noch an beliebigen Zwischenstellen Stabknoten aufnimmt (Fig. 16). Zur bessern Unterscheidung werden daher durchgehende Stäbe in ebenen Systemen als *Tragscheiben* oder kurzweg *Scheiben* bezeichnet. In räumlichen Systemen nennt man sie *Tragkörper* oder *Körper*.

Besteht ein Stabwerk aus lauter einfachen Stäben, so soll es ein einfaches Stabwerk genannt werden. Besteht aber ein ebenes Stabwerk

Fig. 20.

aus einer Verbindung von einfachen Stäben und Scheiben oder ein Raumstabwerk aus einer Verbindung von einfachen Stäben, Scheiben und Körpern, so soll es ein zusammengesetztes Stabwerk heißen (Fig. 20).

Sofern einfache Stabwerke untereinander oder auch in beliebiger Zusammensetzung mit Stäben, Scheiben oder Körpern verbunden werden, verallgemeinert es die Be-

trachtungen und Untersuchungen, wenn man die einfachen starren Stabwerke in ähnlicher Weise wie durchgehende Stäbe als starre gegliederte Scheiben oder starre gegliederte Körper auffaßt, je nachdem sie ebenen oder räumlichen Systemen angehören.

Die allgemeinste Gestalt eines Stabwerkes erscheint danach als eine Verbindung von Stäben, Scheiben und Körpern. Gehen alle Scheiben und Körper in einfache Stäbe über, so entsteht der Sonderfall des einfachen Stabwerkes.

Sobald ein Stabwerk durch Stützen starr mit der Erde verbunden ist, bezeichnet man es als Fachwerk (9b). Aber auch ein Fachwerk ist als ein Stabwerk und zwar als ein zusammengesetztes anzusehen, wenn man die Erdscheibe oder den Erdkörper als notwendigen Teil des ganzen Gebildes mit einrechnet.

b. Berechnung der Stabkräfte. Das System ist 'starr, sobald zwischen den gesamten in den Knotenpunkten angreifenden Lasten und den Stabkräften Gleichgewicht stattfindet, denn in diesem Falle muß auch *in jedem Knoten* zwischen den dort angreifenden Lasten und Stabkräften Gleichgewicht eintreten, d. h. sämtliche Knotenpunkte, als Angriffspunkte der Knotenkräfte, bleiben *unbeweglich*. Daran ändert sich

§ 3. Beziehungen zwischen Stützen und Tragwerk.

nichts, wenn auch $au\betaerhalb$ der Knoten eines Stabes äußere Kräfte angreifen, denn diese können immer in Seitenkräfte zerlegt werden, die in den Knoten des betreffenden Stabes angreifen. Bei der Berechnung der Stabkräfte hat man wohl zu unterscheiden, daß das starre und das elastische Gleichgewicht nicht gleichbedeutend sind. Denn infolge der unvermeidlichen elastischen Formänderungen verschiebt sich das als Grundlage dienende geometrische-Bild des Systems ein wenig, weil die Stäbe infolge ihrer Beanspruchung durch die Achsenkräfte ihre Länge elastisch ändern und dadurch die Veranlassung zu Knotenverschiebungen und Winkeländerungen geben. Die so entstandenen Abweichungen vom ursprünglichen Bilde sind aber geringfügige, sodaß sie bei der Berechnung außer acht gelassen werden können. Deshalb fußt die Berechnung der Stabkräfte auf der Annahme des starren Gleichgewichts unter Vernachlässigung der elastischen Formänderungen.

c. Grundspannungen und Nebenspannungen. Die unter obigen Voraussetzungen aus den Stabkräften oder Achsenkräften ermittelten Stabspannungen nennt man wohl Grundspannungen. Die aus den Einflüssen obiger Vernachlässigungen, sowie auch der in Wirklichkeit gar nicht oder nur annähernd zu erfüllenden Voraussetzungen entstehenden Stabspannungen heißen allgemein Nebenspannungen oder Zusatzspannungen. Dazu gehören z. B. der Einfluß des Eigengewichts der Stäbe, der insofern vernachlässigt wurde, als das Gesamtgewicht des Stabwerks oder Fachwerks in entsprechenden Mittelkräften nur als in den Knoten wirkend angenommen wurde, während doch auch jeder Stab selbst sein Eigengewicht zu tragen hat, infolgedessen seine Achse sich krümmt. Eine gleiche Wirkung wie das Eigengewicht üben auch die einen Stab belastenden Windkräfte aus. Einen Hauptbeitrag zu den Nebenspannungen liefern die Einspannungen der Knoten, weil sie Einspannungsmomente (13) erzeugen, die ihrerseits wiederum Nebenspannungen in den anstoßenden Stäben hervorrufen.

Danach ist zu übersehen, daß die Grundspannungen Normalspannungen, die Nebenspannungen dagegen Biegungsspannungen sind (3).

§ 3. Beziehungen zwischen Stützen und Tragwerk.

17. Statische und konstruktive Bedeutung der Stützen. Es sollen nur solche Tragwerke betrachtet werden, die nicht — wie Mauern und Gewölbe — unmittelbar mit dem Erdboden verbunden, sondern solche, bei denen zwischen dem Tragwerk und dem Erdboden besondere lastübertragende Stützen oder Lager vorhanden sind. In diesen Fällen gewinnt die Anschaulichkeit, wenn man den Erdkörper mitsamt denjenigen Konstruktionsteilen, die unmittelbar mit ihm verbunden sind, wie Untermauerungen, Pfeiler, Grundbauten und dergl. als eine starre *Scheibe* oder als einen starren *Körper* betrachtet, je nachdem man es mit einem *ebenen* oder *räumlichen* System (11) zu tun hat.

Im statischen Sinne haben dann die Stützen das Tragwerk mit der Erdscheibe (oder dem Erdkörper) derart zu verbinden, daß die Konstruktion als starr angesehen werden kann. Wir werden weiterhin besonders zu untersuchen haben, welche Mindestzahl von Stützen erforderlich wird und welcher Art ihre Verbindung mit Tragwerk und Erdkörper sein muß, um genannten Zweck zu erreichen. Dabei darf nicht übersehen werden, welche Bedingungen daneben die Stützen auch konstruktiv zu erfüllen haben. Diese Bedingungen sollen vorerst besprochen werden.

a. Unter der Tragwerkbelastung (10) entstehen in den Stützen Widerstände, die allgemein Stützenkräfte genannt werden und die in ihrer Gesamtwirkung der Belastung das Gleichgewicht halten. Ihre Größe und Richtung wird bei der statischen Berechnung der Konstruktion um so genauer ermittelt werden können, je schärfer ihre Angriffspunkte festgelegt sind. Die Angriffspunkte der Stützenkräfte, die Stützpunkte, sollten also möglichst mathematische Punkte sein. Wenn dies der Fall ist, dann sind auch die Entfernungen der einzelnen Stützen untereinander — die Stützweiten — die bei der Berechnung eine große Rolle spielen und von deren Größe die Bedeutung eines Tragwerks in erster Linie mit abhängt — selbst unter dem Spiel einer veränderlichen Belastung möglichst mathematisch genau bestimmt.

b. Die unter der Wirkung der Belastung und der Stützenkräfte, sowie auch infolge von Temperatureinflüssen entstehenden unvermeidlichen Formänderungen des Tragwerks sollten sich vollziehen können, ohne dabei unnötige schädliche sog. *Nebenspannungen* (16c) im Tragwerk und den Stützen zu erzeugen. Da nun die Formänderungen im allgemeinen aus Verdrehungen und Verschiebungen bestehen, so sollte das Tragwerk eine Verdrehung innerhalb gewisser Grenzen um die mit ihm verbundenen Stützpunkte ausführen können, wobei auch einzelne Stützpunkte sich verschieben.

Ist kein verschiebbarer (beweglicher) Stützpunkt vorhanden, so wird eine Änderung der Stützweiten, die unter der Belastung und unter den Temperatureinflüssen eintreten will, sich in vielen Tragwerken nicht vollziehen können, ohne elastische Widerstände in den Stützpunkten und dadurch auch Nebenspannungen hervorzurufen.

Wie bei den gebräuchlichen Arten der Stützen oder Lager *obige* Bedingungen unter a und b mehr oder weniger vollkommen erfüllt werden, soll nachstehend erläutert werden.

Im allgemeinen werden wir dahei *bewegliche und feste Stützen* zu unterscheiden haben, je nachdem der Stützpunkt gegenüber der festliegenden Erdscheibe eine Bewegung ausführen kann oder nicht.

18. Stützung bei bloßer Berührung.

a. In einem Punkte. Die einfachste Art der beweglichen Stützung oder Lagerung erfolgt dadurch, daß zwischen Tragwerk und Erdscheibe (einschließlich der damit starr verbundenen Einbauten) eine bloße Berührung stattfindet. Vollkommen wäre diese Stützung nach obigem nur dann, wenn die Berührung in einem Punkte — dem Stützpunkte stattfände, denn bei einer Flächenberührung, von der weiterhin (unter 21) die Rede sein wird, wäre die Lage des Stützpunktes im allgemeinen eine veränderliche, sobald in den Berührungsflächen (unter dem wechselnden Spiel der Lasten) die unvermeidlichen elastischen Formänderungen eintreten. Zwar würde bei einer Punktberührung der Stützfläche übergehen müssen, diese aber fällt so klein aus, daß man für Konstruktionszwecke genau genug den mathematischen Berührungspunkt als Angriffspunkt der Stützenkraft ansehen darf.

Ein Tragkörper berühre den Erdkörper im Punkte t (Fig. 21). Sehen wir, damit eine etwaige Beweglichkeit des Systems vollkommen

zum Ausdruck gelange, von der Reibung in der um t sich bildenden kleinen Stützfläche ab, so muß im Falle des Gleichgewichts (oder bei der Ruhelage des Tragkörpers) die Stützenkraft Ssenkrecht zur Berührungsebene in t stehen. Gleichgewicht kann also nur eintreten, wenn die Tragkörperlasten sich zu *einer einzigen Mittelkraft* zusammensetzen lassen, deren Richtung dazu noch mit der Richtung von Szusammenfallen muß. Denn nur in solchem Belastungsfalle würden im Stützpunkte t zwei

Kräfte von gleicher Größe, aber entgegengesetzter Richtung, angreifen, die sich in ihrer Wirkung aufheben. Bei einer Stützung durch *bloße Berührung*, die wir voraussetzten, wird aber selbst in diesem Belastungsfalle kein Gleichgewicht stattfinden, wenn die Richtung des

Stützendruckes S auf eine Trennung beider betrachteter Körper hinwirkt. Man nennt eine solche Richtung des Stützendruckes eine negative. Unter einer positiven Richtung versteht man diejenige, welche ein Zusammendrücken beider Körper im Punkte t bewirkt.

Eine bloße Berührung in einem Punkte ist insofern keine vollkommene Stützung, als sie ein Gleichgewicht im Berührungspunkte *bei negativer Stützenkraft* nicht herzustellen vermag. Um also eine Berührungsstützung zu schaffen, die den Zusammenhang zwischen Tragkörper und Erdkörper in allen Fällen wahrt, müßten besondere konstruktive Mittel in Anwendung kommen, die aber dann die Stützung zu einer so wenig einfachen machen, daß man von ihrer Anwendung meist absehen wird. Negative Stützenkräfte kommen bei den einfachen Konstruktionen selten vor. Deshalb findet man bei kleinern Tragwerken wohl Stützungen durch bloße Berührung in einem Punkte im Betriebe. Sie werden dann gewöhnlich *Gleit*stützen oder *Gleit*lager genannt, weil bei ihnen unter dem Stützendrucke und den elastischen Formänderungen des Tragwerks *gleitende Reibung* in der Stützfläche auftritt (Fig. 11 und 12 bei a und b).

b. In mehreren Punkten eines ebenen Systems. Betrachten wir den Fall einer *ebenen Tragscheibe T*, die von der Erdscheibe Ein zwei Punkten a und b berührt wird (Fig. 22), wobei wir voraussetzen wollen, daß negative Stützenkräfte nicht vorkommen können. Jede der beiden Stützenkräfte A und B steht dann senkrecht zur zugehörigen Berührungsgraden. Ihre Richtungen schneiden sich in c und

sie haben eine dort angreifende Mittelkraft R. Gleichgewicht kann also nur in einem gewissen Belastungsfalle vorhanden sein, nämlich nur dann, wenn auch die Mittelkraft aller Tragwerkslasten durch den Punkt cverläuft.

Im allgemeinen, für beliebig gerichtete und belegene Mittelkraft ist der betrachtete Fall also *beweglich*. Um eine *starre* Verbindung zu schaffen, muß R bei beliebiger Richtung, Lage und Größe in der Ebene sich mit den Stützenkräften A und B immer im Gleichgewicht befinden können. Dazu ist es notwendig, einen der Stützpunkte der Tragscheibe fest mit der Erdscheibe zu verbinden, sodaß er auch unter einer beliebig gerichteten Stützenkraft sich nicht verschieben kann. Das geschieht am einfachsten durch ein *Gelenk*, das wir uns aus bekannten Gründen (15) als *reibungslos* wirkend vorstellen (Fig. 23 bei b). Dann ist für jeden Scheibenpunkt sowohl eine Drehung um das Gelenk als auch eine Verschiebung verhindert.

Über eine Stützung in drei Punkten vergl. unter 22.

c. In mehreren Punkten eines Raumsystems. Zur starren Stützung eines Tragkörpers genügt es noch nicht, wenn man *wie im ebenen Systeme* nur einen Punkt des Systems festhält und einen andern durch Berührung stützt. Denn wenn a der feste Gelenkpunkt und b der Berührungspunkt ist (der gegen negative Stützenkräfte in seiner Lage festgehalten gedacht wird), dann kann sich zwar der Tragkörper *um eine Achse X* (Fig. 24), die senkrecht steht zu einer durch die Gerade

ab und die Richtung der Stützenkraft B festgelegten Ebene YZ, nicht mehr drehen. Wohl aber ist im allgemeinen noch eine Drehung um zwei andere durch a verlaufende Achsen Z und Y möglich, von denen die erste mit der ab zusammenfällt und die zweite senkrecht zur Ebene XZsteht. Sobald aber noch zwei Berührungspunkte c und d geschaffen werden, von denen einer in der X-Achse und der andere in

3

der V-Achse liegt, dann ist keinerlei Drehung, also auch keine Bewegung des Tragkörpers gegenüber dem Erdkörper mehr möglich. Man kann aber einen der beiden Berührungspunkte c oder d entbehren, sobald man den Körper durch konstruktive Mittel zwingt, mit seinem Stützpunkte b innerhalb der Ebene YZ zu bleiben. Damit benimmt man dem Körper die Freiheit, sich um die Y-Achse zu drehen. Bleibt also nur noch die Freiheit, sich um die Z-Achse zu drehen.

Mehrtens, Statik der Baukonstruktionen. I.

Im allgemeinen besitzt ein Körper bei seiner Stützung sechs Bewegungsfreiheiten. Davon hebt das Festlegen eines seiner Punkte drei Freiheiten (die Möglichkeit des Fortschreitens nach drei verschiedenen Achsenrichtungen des Raumes) auf; die Beschränkung der Bewegung eines Punktes auf das Fortschreiten in einer Geraden hebt also zwei Freiheiten auf. Eine bloße Stützung eines Punktes benimmt nur eine Freiheit, nämlich die Möglichkeit einer Verschiebung in der Richtung der Stützenkraft, während die Möglichkeit der Verschiebung des Punktes in der zur Stützenkraft senkrechten Berührungsebene verbleibt. Um die Stützung eines Tragkörpers später noch allgemeiner veranschaulichen zu können, ist es notwendig vorerst auf die Konstruktion und statische Bedeutung der Stützengelenke näher einzugehen.

19. Feste Stützengelenke.

a. Für ein ebenes System. Die Tragscheibe *T* muß hier — in gewissen durch die unvermeidlichen Formänderungen vorgeschriebenen Grenzen — eine Drehung um einen Stützpunkt ausführen können, dessen Lage gegenüber der Erdscheibe unveränderlich ist. Das wird konstruktiv

bewirkt mit Hilfe eines sog. Zylindergelenkes, auf dessen Hauptteil, einen drehbaren zylindrischen Bolzen oder eine festliegende Zylinderfläche, sich die Scheibe stützt. Wir wollen uns die Anordnung des Gelenkes ebenso denken, wie sie bei Gelegenheit der Besprechung der Knotengelenke des Stabwerks erläutert wurde (14). Tragscheibe und Erdscheibe werden dann mit einem sog. Bolzen*auge* versehen gedacht, durch

welches der Zylinderbolzen faßt (Fig. 25). Eine derartige Verbindung sichert auch gegen negative Stützenkräfte.

In Wirklichkeit tritt auf dem Zylindermantel des Gelenkes stets eine gewisse (unvermeidliche) Reibung auf. Infolgedessen entsteht bei der elastischen Drehung der Tragscheibe um das Gelenk ein *Reibungsmoment*. Diesem Momente muß die Stützenkraft das Gleichgewicht halten, sie wird deshalb, um den nötigen Hebelarm zu erhalten, außerhalb des Gelenkmittels, dem Stützpunkte, angreifen müssen. Wir setzen vorläufig aber die Reibung gleich Null. Dann verläuft die Stützenkraft durch das Gelenkmittel. Die *Nebenspannungen* (16 c), die allein infolge der Gelenkreibung im Tragwerk entstehen, werden nachträglich zu berechnen sein.

Der Angriffspunkt der Stützenkraft ist also gegeben. Zur eindeutigen Bestimmung der Stützenkraft fehlen nur noch zwei Stücke, ihre $Grö\beta e$ und ihre *Richtung*. Größe und Richtung einer Kraft S sind in der Ebene festgelegt durch die Größe von zwei ihrer Seitenkräfte in beliebig gewählten Richtungen oder durch zwei Projektionen auf ein Achsen-

kreuz von derjenigen Strecke, durch welche die Stützenkraft geometrisch dargestellt wird (Fig. 26 und Fig. 27).

Die fehlenden beiden Stücke können aus dem Gleichgewichtszustande des Systems durch Aufstellung von zwei Bedingungsgleichungen ermittelt werden. Die Anwendung eines ebenen Gelenkes zur Verbindung zweier starren Scheiben bringt also zwei Unbekannte in die Rechnung, die man Stützenbedingungen nennt.

Die starre Verbindung des Gelenkes mit der Erdscheibe kann man sich durch zwei beliebig gestellte Stäbe, deren Enden mit Gelenken an die Erdscheibe schließen, hergestellt denken. Die Verbindung ist eine starre, weil die vorhandenen drei Gelenke (a, b, c in Fig. 28) in den Ecken eines Dreiecks liegen, wenn man sich die Seite bc ergänzt denkt. Sobald die beiden Stäbe als starr gedacht werden, ist das Dreieck durch seine drei Seitenlängen *eindeutig* geometrisch bestimmt, weil auch die Seite bcvon unveränderlicher Länge ist.

Man kann daher bei einem ebenen Gelenke anstatt von zwei notwendigen Stützenbedingungen auch von zwei Stützenstäben sprechen, die mindestens notwendig sind, um das Gelenk starr mit der Erdscheibe zu verbinden. Die Achsenkräfte (Stabkräfte) der Stützenstäbe sind aus der Stützenkraft S durch Zerlegung zu finden.

b. Für ein Raumsystem. Eine Drehung des Tragkörpers um den Stützpunkt muß hier nach allen Richtungen hin insoweit ausführbar sein, als es die erwähnten Formänderungen be-

Fig. 27.

Fig. 28.

3*

dingen. Weil also der Mantel des Gelenkes hier in der Gestalt einer Kugelfläche erscheint, so nennt man das räumliche Gelenk ein Kugelgelenk. Ist es reibungslos, so fällt der Stützpunkt mit dem Mittelpunkt m der Kugel zusammen (Fig. 29). Dort zerlegt sich irgend eine Stützenkraft S in drei Seitenkräfte, deren Größe (bei beliebig vorgeschriebenen Richtungen) Größe und Richtung der Stützenkraft eindeutig bestimmen.

Bewirkt man die starre Verbindung des Gelenkes g mit dem Erdkörper E, wie oben durch Stäbe, so sind dazu *mindestens drei Stäbe* in räumlicher Lage erforderlich (Fig. 30). Die allgemein mit Kugelgelenken ausgerüstet gedachten Stabenden a, b, c sind starr mit dem

Erdkörper verbunden (die drei Stäbe als starr gedacht) folglich ist jedes Dreieck des Tetraeders abcg und damit auch dessen Körpergestalt geometrisch eindeutig bestimmt.

Ein räumliches Gelenk bringt nach obigem *drei Unbekannte* in die Rechnung, oder *drei Stützenbedingungen* und es erfordert behufs seiner starren Verbindung mit dem Erdkörper mindestens *drei Stützenstäbe*, deren *Achsenkräfte* (Stabkräfte) aus der Stützenkraft durch Zerlegung zu finden sind.

20. Bewegliche Stützen. Wir sprachen (18 a) bereits von Gleitstützen oder Gleitlagern, bei welchen eine Stützung durch bloße Oberflächenberührung stattfand. Diese Art von Stützen gehören nicht eigentlich zu den beweglichen, weil die Stützen selbst (bei a und b in Fig. 11 und 12) fest liegen bleiben, also nicht beweglich sind, während Tragscheibe oder Tragkörper auf der Stützoberfläche gleiten.

Die Eigentümlichkeit der beweglichen Stützen besteht darin, daß sie selbst, und mit ihnen der Stützpunkt, unter den Formänderungen des Tragwerks ihre Lage ändern.

Es sollen a. Pendelstützen, b. Pendelwalzen, c. Rollen oder Walzen und d. Stelzen unterschieden werden.

a. Pendelstützen entstehen aus Stützengelenken durch Fortnahme

eines oder zwei der Stäbe, die den Stützpunkt gegenüber dem Erdkörper festlegen. Danach besteht eine Pendelstütze *im ebenen System* aus einem einzigen Stabe (oder einer Scheibe), deren Enden einerseits mit der

Tragscheibe und anderseits mit der Erdscheibe durch Zylindergelenke verbunden sind (Fig. 3I). Der Stützpunkt g der ebenen Pendelstütze kann um den festen Fußpunkt a in der Erdscheibe schwingen oder *pendeln*.

Im räumlichen System kann die Pendelstütze in zwei verschiedenen Anordnungen verwendet werden, je nachdem man einen Stab oder zwei Stäbe aus der Unterstützung des Kugelgelenkes (Fig. 30) entfernt. Im ersten Falle erscheint dann eine Pendelstütze, deren Stützpunkt g in einer Ebene zu schwingen vermag, die senkrecht steht zur Stabebene des Gelenkes, wobei die Drehung um die durch die beiden Fußgelenke a und b festgelegten Achse erfolgt (Fig. 32).

Bei Beseitigung von zwei Stäben erhält man dagegen eine räumliche Pendelstütze, die sich von derjenigen des ebenen Systems dadurch unterscheidet, daß ihre Gelenke nicht Zylinder-, sondern Kugelgelenke

sind (Fig. 33). Der Stützpunkt g dieser räumlichen Pendelstütze kann demnach nach jeder Seite hin einen Kreisbogen beschreiben. Er bewegt sich auf einer Kugelfläche.

Fig. 33.

Aus obigem folgt:

Eine Pendelstütze eines räumlichen Systemes bringt eine oder zwei Unbekannte oder Stützenbedingungen in die Rechnung, je nachdem der zugehörige Stützpunkt nach beliebiger Richtung oder nur in einer vorgeschriebenen Ebene schwingen kann.

Eine Pendelstütze eines ebenen Systems bringt nur eine Unbekannte oder Stützenbedingung in die Rechnung.

Die Unbekannten sind in allen Fällen die betreffenden Stabkräfte der Stützenstäbe.

b. Eine Pendelwalze ist eine besondere Abart der Pendelstütze. Sie bildet gewissermaßen den Übergang zu den Rollenstützen und entsteht, wenn man die Fußpunkte der Pendelstütze *nicht* gegen den Erd-

körper gelenkig festlegt, sondern im ebenen System durch eine Zylinderfläche, im räumlichen System durch eine Kugelfläche ersetzt (Fig. 34).

Die Pendelwalzen haben den Vorzug vor den Pendelstützen, daß *ihr Stützpunkt*, weil er der Mittelpunkt einer Zylinder- oder Kugelfläche ist, die auf einer Ebene *rollt*, sich bei ebenen Systemen in einer Geraden und bei Raumsystemen in einer Ebene bewegt. Infolgedessen findet bei der Be-

wegung des Stützpunktes keine Hebung oder Senkung in der Richtung der Stützenkraft statt. Also wird dabei — abgesehen von der Reibung — auch keine mechanische Arbeit verrichtet, deren Umsetzung in Form-

Fig. 35.

änderungen notwendig Nebenspannungen (16c) im Tragwerk erzeugen müßte.

Die Pendelwalzen sind gleichwohl weniger gebräuchlich, namentlich weil ihre konstruktive Durchbildung bei größeren Stützweiten Schwierigkeiten bereitet.

c. Rollen oder Walzen sind zylindrische Stäbe von genau gleichem Durchmesser und in ausreichender Zahl, um die Stützenkräfte mit Sicherheit übertragen zu können. Sie bewegen sich zwischen Ebenen oder zwischen Zylinderflächen, die einerseits das Tragwerk, anderseits den Endkörper abgrenzen (Fig. 35). Bei Verschiebungen des Tragwerks werden die Rollen durch die Reibung an ihrem Um-

fange gezwungen sich zu drehen. Das werden sie um so leichter tun, je geringer der Widerstand W der rollenden Reibung ausfällt, der erfahrungsmäßig proportional dem Stützendruck S und umgekehrt proportional dem Rollenhalbmesser ist:

$$W = \psi \frac{S}{r},$$

wenn ψ das Maß der *rollenden* Reibung vorstellt (Fig. 36). Der Widerstand der *gleitenden* Reibung ist bekanntlich dem Stützendruck proportional. Daraus folgt, daß unter sonst gleichen

Umständen der Widerstand der rollenden Reibung r-mal kleiner ist als derjenige der gleitenden. Weil die Reibungswiderstände aber schädliche Nebenspannungen in das Tragwerk überleiten können, so sind bei einigermaßen bedeutenden Konstruktionen Rollenstützen den Gleitstützen vorzuziehen. Um für ein Rollenlager den Stützpunkt fest-

werks eine genaue rechnerische Zerlegung der Stützenkraft S in ihre auf die einzelnen Rollen entfallenden Teile wenn nicht unmöglich, so doch sehr schwierig gestalten.

Bei der Bewegung der Rollen tritt die Reibung in Tätigkeit und bewirkt dabei ein Ablenken der Stützenkraft aus ihrer Ruhelage um den Reibungswinkel φ , der aus der Gleichung

tang
$$\varphi = \frac{W}{S}$$

bestimmt ist.

In konstruktiver Hinsicht ist noch zu bemerken, daß die Rollen gleichen Abstand erhalten, symmetrisch zum Stützpunkt angeordnet werden und daß die Rollenachsen untereinander

gekuppelt werden (Fig. 37), damit sie gezwungen sind, ihren Abstand beizubehalten.

den Nachteil, daß ihr Schwerpunkt nicht in allen Lagen unterstützt ist; sie können also zufällig einmal umfallen, was bei ausgeführten Konstruktionen zuweilen schon geschehen ist. Zur Wahrung eines gleichen

Stelzenabstandes genügt es nicht mehr, die Achsen so wie bei den Rollen zu kuppeln; denn um eine *zwangläufige* Bewegung der Stelzen zu erzielen, muß eine sog. *Parallelführung* angebracht werden (Fig. 38), die auf jeder Kopfseite der Stelzen zwei parallele, symmetrisch außerhalb der Stelzenachse liegende Führungsstäbe enthält, von denen jeder mit allen Stelzen durch ein ebenes Gelenk verbunden ist.

21. Stützung durch Flächenberührung. Unter 9 a ist bereits darauf hingewiesen worden, wie die Verbindung der Stützen mit dem Erdkörper *unmittelbar* erfolgen kann, wenn der Tragkörper dazu die nötigen *Stützflächen* in sich bietet, wie z. B. bei Mauern und Gewölben. Eine derartige Stützung von Tragscheiben oder Tragkörpern wirkt im allgemeinen wie eine *Einspannung* (14), auch wenn die Stützung nicht unmittelbar auf oder in dem Erdkörper, sondern auf oder in den mit diesem starr verbundenen Konstruktionsteilen angeordnet ist.

Beispiele einer Einspannung sind: Unmittelbare Stützung einer Mauer auf den Erduntergrund (Fig. 39); mittelbare Stützung einer Mauer oder

eines Pfeilers mit Hilfe von eingerammten Pfählen oder dergl. (Fig. 40); Einmauerung eines Balkens oder eines Trägers (Fig. 41). Auch die in Fig. 5 und 6 gegebenen Beispiele einer Stützmauer und eines Gewölbes gehören hierher.

In allen diesen Konstruktionen müssen die in den Berührungs- oder Stützflächen unter der Wirkung der Tragwerkslasten erzeugten elastischen Widerstände oder Spannungen jenen das Gleichgewicht halten. Die Spannungen verteilen sich in bestimmter Art über die Stützfläche und ändern sich mit der Lage der Lasten. Deshalb ist bei der Flächenberührung (wie S. 31 schon gesagt wurde) die Lage des Stützpunktes veränderlich und für jeden Belastungsfall im besondern zu ermitteln.

§ 3. Beziehungen zwischen Stützen und Tragwerk.

Es fehlen bei der Berechnung danach Angriffspunkt, Richtung und $Grö\betae$ der Stützenkraft für die vorkommenden Stützflächen. Das gibt nach obigem im allgemeinen:

Stützenbedingungen für die Einspannung: sechs im räumlichen und drei im ebenen System. Bei der unmittelbaren Verbindung mit dem Erdkörper sind Einspannungen nicht zu vermeiden, wohl aber wird es sich oft empfehlen, die Einspannung durch eine geeignete Verbindung von festen Gelenken und beweglichen Stützen zu ersetzen, einerseits um die Stützpunkte mathematisch festzulegen und andererseits um die Nebenspannungen zu vermindern, die an der Einspannungsstelle sowohl im Tragkörper als auch in dem damit verbundenen Konstruktionsteile unter den unvermeidlichen elastischen Formänderungen entstehen. In welcher Art der Ersatz geschehen könnte, möge in einigen Beispielen gezeigt werden.

Fig. 42 veranschaulicht für ein ebenes System eine Einspannung eines Balkens oder einer Scheibe mit Hilfe eines festen Gelenkes g und einer Pendelstütze p. Beim Eintritt von Änderungen in der Luftwärme kann die Scheibe deren Einflüssen vollkommen folgen, wobei der Stützpunkt ppendeln und um g eine Drehung stattfinden kann.

Fig. 43 zeigt einen ähnlichen Ersatz einer Flächenberührung für einen ebenen gegliederten Bogenträger.

Fig. 44 stellt den Tragkörper eines Tetraeders dar, der mit Hilfe von drei Pendelstützen starr mit dem Erdkörper verbunden ist. *Es sind* $3 \times 2 = 6$ notwendige Stützenbedingungen vorhanden (vergl. 53).

Jede Einspannung ist als eine starre Verbindung der betreffenden Teile anzusehen und umgekehrt. Das ist nach vorstehendem unter den bekannten Voraussetzungen (18c) ohne weiteres erklärt.

§ 4. Scheibenverbindungen und einfache Stabwerke.

22. Zwei Scheiben. Die Absätze 14, 15 und 16a über Knotenverbindungen, die Bedeutung reibungsloser Gelenke und über einfache und zusammengesetzte Stabwerke stehen mit den folgenden Erörterungen in engster Beziehung. Wie unter 18 dargelegt worden ist, bedarf es zur starren Verbindung einer Tragscheibe mit der Erdscheibe mindestens dreier

Stützenstäbe. Dasselbe gilt natürlich auch, wenn es sich um die starre Verbindung von zwei Tragscheiben untereinander handelt. Zwei Scheiben können danach in der Art starr miteinander verbunden werden, wie es in den Fig. 45 bis 47 veranschaulicht ist. Fig. 45 erläutert den schon unter **18**b behandelten Fall, worin g ein Zylindergelenk und s_1 einen einfachen Stab vorstellt. In Fig. 46 ist das Gelenk in zwei Stützenstäbe s_2 und s_3 aufgelöst, während in Fig. 47 drei gesonderte Stützenstäbe vorhanden sind, von denen die Stäbe s_2 und s_3 insofern auch

wie ein Gelenk wirken, als (bei Fortnahme des Stabes s_r) die Scheibe Ium den Schnittpunkt pder betreffenden Stabrichtungen — den *Pol* — eine Drehung vollführen könnte. Eine solche gelenkige Verbindung mit Hilfe von zwei Stäben, deren

Enden nicht unmittelbar in einen Gelenkknoten münden, nennt man ein gedachtes Gelenk.

Es gibt aber Ausnahmefälle, in denen drei und selbst mehr Stützenstäbe zur starren Verbindung der beiden Scheiben nicht ausreichen, wenn nämlich die drei oder mehr Stabrichtungen sich in einem und demselben Punkte p schneiden (Fig. 48), gleichviel ob p in endlicher oder in unendlicher Ferne zu liegen käme. In jedem Falle verbliebe

dann mindestens die Möglichkeit einer unendlich kleinen Drehung der Scheibe *I* gegenüber der Scheibe *II* um den gemeinsamen Pol *p*. Es kann aber unter besondern Umständen sogar eine *endliche* Beweglichkeit vorhanden sein, wenn z. B. die sämtlichen Stützpunkte jeder Scheibe in zwei ein-

ander parallelen Geraden liegen und dabei auch die Stützenstäbe alle parallel laufen (Fig. 49).

23. Scheibenketten. Wenn mehrere Scheiben aneinander gereiht und dabei *je zwei* durch ein Gelenk verbunden werden, so entsteht eine Scheibenkette. Die zugehörigen Gelenke sollen *einfache Gelenke* genannt werden im Gegensatze zu *mehrfachen Gelenken*, in denen mehr als zwei Scheiben miteinander verbunden sind. Wenn eine Scheibenkette zu einer starren Verbindung gemacht werden soll, so muß man jede Scheibe mit ihrer Nachbarscheibe durch mindestens drei Stäbe verbinden. Sind *s* Scheiben zu verbinden, so bedarf es dazu also einer Mindestzahl *v* von Verbindungsstäben, die sich aus der Bedingung

 $v = (s - \mathbf{i})\mathbf{3}$

ergibt.

Nach Gleichung (7) sind z. B. drei Scheiben durch einfache Gelenke starr miteinander verbunden, wenn sie (3-1)3 = 6 Verbindungsstäbe

aufweisen. Deshalb ist das in Fig. 50 dargestellte Scheiben*dreieck* eine starre Verbindung, weil deren 3 Gelenke gleich $3 \times 2 = 6$ Verbindungsstäben zu rechnen sind. Vertauscht man jede Scheibe mit einem *einfachen* Stabe (14), so bleibt obige Gleichung gültig. Damit ist, wenn es noch nötig wäre, auch der Beweis geliefert, daß ein Stab*dreieck* ein unverschiebliches, starres Gebilde ist.

1 Fig. 50.

(7)

Durch Aneinanderreihen von Stabdreiecken können starre Stabwerke gebildet werden, und um den Beweis ihrer Starrheit zu liefern, denke man sie in eine Kette von Dreieckscheiben aufgelöst. Das Stabwerk in Fig. 51 besteht z. B. aus 5 Dreieckscheiben. Um starr zu sein, muß es also

$$(5-1)3 = 12$$

Verbindungsstäbe aufweisen. Diese sind auch vorhanden, nämlich 4 Gelenke zwischen den Scheiben und 4 Stäbe, zusammen

$$4 \cdot 2 + 4 = 12$$
 Stäbe

Ein anderes Beispiel veranschaulicht Fig. 52. Das gezeichnete Stabwerk läßt sich in 8 Scheiben auflösen, die mit 10 Zwischengelenken untereinander verbunden sind; außerdem ist nur noch ein einfacher Stab vorhanden, zusammen gibt das

Nach Gl. (7) sollen vorhanden sein $(8 - 1)_3 = 21$ Stäbe, woraus zu schließen, daß das Stabwerk starr ist. Weitere derartige Beispiele vergl. man unter **31**.

24. Zwangläufige Scheiben- oder Stabketten. Durch Fortnahme eines Stabes oder einer Scheibe kann man ein starres Stabwerk in ein *bewegliches* verwandeln, derart, daß bei einer Verschiebung *eines* Stabknotens alle übrigen Knoten der Kette gezwungen sind, *geometrisch bestimmte Bahnen* einzuhalten. Eine derartige Beweglichkeit nennt man eine zwangläufige und ihre Ursache ist die Unveränderlichkeit der Stablängen und deren kettenartiger Zusammenhang durch die Gelenkknoten.

Eine zwangläufige Kette besitzt danach nur eine Bewegungsfreiheit, weil durch die Fortnahme eines Stabes die Starrheitsbedingungen sich um nur eine vermindert haben. Das heißt mit andern Worten: sobald man irgend einem Knoten eine nach ihrer Größe und Richtung beliebige

§ 4. Scheibenverbindungen und einfache Stabwerke.

Verschiebung vorgeschrieben hat, so sind dadurch die Verschiebungen aller übrigen Knoten der Kette festgelegt. Auch bleibt das gegenseitige Verhältnis der Verschiebungen immer das gleiche, einerlei in welcher Art man auch über die erste *freie* Verschiebung verfügt hat. Auf welche Weise man die Verschiebungen einer zwangläufigen Kette rechnerisch oder graphisch bestimmt, wird weiterhin (in § 12) dargelegt werden.

Die einfachste zwangläufige Kette ist das Gelenkviereck. Durch Einfügung eines Wandstabes wird das Viereck starr. Man kann aber ein Gelenkviereck (und auch eine beliebige zwangläufige Kette) ebenfalls dadurch starr machen, daß man eine solche Kette mit einer zweiten Kette in geeigneter Art verbindet. Wie das geschehen kann, ist in der Fig. 53 veranschaulicht. Zwei Scheiben (I und II) sind durch ein Gelenk g verbunden und jede Scheibe wird durch zwei Stäbe gestützt, sodaß jede Scheibe mit ihren Stützenstäben ein Gelenkviereck bildet.

Beide Scheiben können *für sich* eine Drehbewegung um ein gedachtes Gelenk (**22**) ausführen, die Scheibe I um p_1 und die Scheibe IIum den unendlich fernen Punkt p_2 , vorausgesetzt, daß die zugehörigen Stützenstäbe parallel liegen. Der Gelenkpunkt g würde bei der Bewegung der Scheibe I eine Verschiebung δ_1 ausführen wollen, die senkrecht zum Polstrahl gp_1 steht. Dagegen würde er um ein Stück δ_2 senkrecht zur Stützenstabrichtung verschoben werden, sobald die Bewegung der Scheibe II in Frage käme. Die Verschiebungen δ_x und δ_z hemmen sich aber gegenseitig, weil sie nicht in der nämlichen Richtung erfolgen. Das Stabwerk ist deshalb starr. Die dazu notwendige Zahl der Stäbe ist auch vorhanden, nämlich (3 - 1)3 = 6, wobei 4 Stützenstäbe und 2 Stäbe des Gelenks g zu zählen sind.

Das Vorhandensein der notwendigen Zahl der Stäbe verhindert aber den Ausnahmefall der Beweglichkeit nicht, der eintritt, sobald die Bewegungsrichtung des Punktes g für jede Scheibe die nämliche ist, d. h. mit andern Worten, sobald die beiden Bahnen von g eine gemeinschaftliche Tangente haben. Das würde der Fall sein, wenn der Pol p_2 der Scheibe *II* in der Graden zu liegen käme, die durch die Punkte gund p_x verläuft. Zwei symmetrisch gestützte Scheiben *I* und *II* würden in g nicht starr verbunden sein, wenn sie einen gemeinsamen Pol besässen, der in einer durch g liegenden Symmetrieachse läge.

Das Ergebnis obiger Betrachtungen kann man in folgenden Satz zusammenfassen:

Verbindet man einen Punkt einer zwangläufigen Kette mit einer andern zwangläufigen Kette derart, daß die Bahn des Punktes für jede der beiden Ketten die gleiche Tangente besitzt, so ist das zugehörige Stabwerk von mindestens unendlich kleiner Beweglichkeit. Schneiden sich jedoch beide Bahnen, so ist das Stabwerk starr.

Weitere Untersuchungen und Beispiele von zwangläufigen Scheibenoder Stabketten folgen in § 12.

25. Mehrfache Scheibenknoten. Sobald in einem einfachen Knoten, durch den zwei Scheiben miteinander verbunden sind, noch eine dritte Scheibe gelenkig angeschlossen wird, entsteht ein zweifacher Knoten; durch Anschluß einer vierten Scheibe entsteht ein dreifacher Knoten und so fort. Allgemein entsteht ein *m*-facher Knoten, wenn in ihm m + i Scheiben gelenkig angeschlossen sind. Jede neue Scheibe gebraucht für ihren Anschluß zwei Stäbe, deshalb bedeutet ein Gelenkknoten, in welchem *s* Scheiben angreifen, soviel als

(s — 1) 2 Verbindungsstäbe.

Will man diese s Scheiben zu einer starren Verbindung vereinigen, so gebraucht man dazu im ganzen v Verbindungsstäbe, deren Zahl durch die Gleichung (7)

$$v = (s - 1)3$$

bestimmt ist. Außer den in dem mehrfachen Gelenk bereits vorhandenen Verbindungsstäben braucht man also notwendig noch § 4. Scheibenverbindungen und einfache Stabwerke.

oder

$$n = (s - 1)3 - (s - 1)2$$

 $n = s - 1$ (8)

Stäbe zur Erzielung der Starrheit.

Danach würde z. B. die Untersuchung auf Starrheit für das in Fig. 54 gezeichnete Stabwerk wie folgt zu führen sein. Vorhanden sind $2 \times 5 = 10$ Scheiben, die $(10 - 1)_3 = 27$ Stäbe zu ihrer starren Verbindung bedürfen. Es sind vorhanden:

> zwei 4-fache Gelenke (1 u. 2) mit 2.8 = 16 ein 1-faches Gelenk (3) = 2 9 einfache Umfangsstäbe = 9 Das sind 27

Stäbe. Das Stabgebilde ist also starr.

Einfacher gestaltet sich die Betrachtung noch, wenn man Knoten 1 und 2 je für sich in Rechnung stellt. Die in 1 anstoßenden 5 Scheiben

brauchen nach Gl. (8) nur 4 Verbindungsstäbe. Diese sind vorhanden; das gleiche gilt vom Knoten 2. Danach besteht das Stabwerk aus zwei Scheiben (1-8-9-10-11-3 und 2-3-4-5-6-7), die durch ein einfaches Gelenk 3 und einen einfachen Stab 7-8 starr miteinander verbunden sind.

Was nach obigem für die Scheiben nachgewiesen ist, gilt auch für einfache Stäbe. Das Stabwerk in Fig. 55 braucht also für den fünffachen Knoten 7

$$n = 6 - 1 = 5$$

Verbindungsstäbe, um starr zu sein. Das Stabwerk hat also einen Stab zu viel, es ist *überstarr*.

26. Geschlossene Stabwerke. Ein geschlossenes Stabwerk ist ein solches, dessen Umfangsstäbe in der Ebene eine Scheiben- oder Stabkette

bilden oder im Raume einen in sich geschlossenen Körpermantel begrenzen. Solche Stabgebilde haben für das Bauwesen besonders große Bedeutung, weshalb die ebenen Systeme dieser Art vorweg besprochen werden sollen. Will man die Kette durch Einziehen von Wandstäben zwischen den Umfangs- oder Gurtknoten starr machen, so braucht man dazu nach der Gl. (7)

$$v = (s - I)3$$

Stäbe. Dafür kann man aber, wenn k die Zahl der Umfangsknoten angibt, setzen:

$$v = (k - \mathbf{I})\mathbf{3}.$$

Daraus berechnet sich die Zahl w der notwendigen Wandstäbe, wenn man erwägt, daß die k Knoten bereits mit 2k Stäben anzurechnen sind (**19**a). Es ist

76

oder

$$w = (k - 1)_3 - 2k$$

 $w = k - 3.$ (9)

Die Gesamtzahl n der notwendigen Stäbe des Stabwerks, also Gurtstäbe und Wandstäbe, ergibt sich danach zu

oder

$$n = k + w$$
$$n = 2 k - 3.$$
(10)

Diese Gleichung bleibt auch noch bestehen, wenn an Stelle der einfachen Stäbe Scheiben treten oder umgekehrt.

Die Zahl *n* ist stets *ungerade*. Ein geschlossenes Stabwerk mit einer geraden Stabzahl hat also entweder *überzählige* Stäbe, dann ist es *überstarr*; oder das Stabwerk ist *beweglich*.

Wenn die Wandstäbe zwischen den Gurtknoten derart eingezogen werden, daß dadurch keine *Stabkreuzungen* entstehen, so entsteht ein *Dreieckstabwerk* (Fig. 56). Ein solches ist also immer starr, wie auch schon (unter **23**) nachgewiesen wurde.

§ 4. Scheibenverbindungen und einfache Stabwerke.

Stabkreuzungen können konstruktiv derart hergestellt werden, daß ein eigentlicher Wandknoten (Gelenk oder Einspannung) nicht entsteht.

In Fig. 57 ist ein rechteckiger Gurtumriß durch Wandstäbe starr gemacht, von denen immer je zwei sich (ohne jegliche Verbindung miteinander) kreuzen. Es ergaben sich

w = k - 3 = 7 - 3 = 4

Wandstäbe.

Ist das Tragwerk eines ebenen Fachwerks ein starres geschlossenes Stabwerk, so kann dieses mit der Erdscheibe durch *mindestens drei* Stützenstäbe starr verbunden werden. Dabei ist es möglich, die Stützen im allgemeinen in beliebigen Knoten anzubringen. Ist aber das Tragwerk an sich beweglich, d. h. fehlen ihm x Stäbe an der notwendigen

Zahl, so kann es zwar auch durch eine entsprechende Stützung in geeigneten Knoten mit der Erdscheibe starr verbunden werden, die Zahl der notwendigen Stützenstäbe muß in diesem Falle aber mindestens gleich x + 3 betragen. Durch die Einfügung von x + 3 Stützenstäben zwischen dem Tragwerk und der Erdscheibe geht das Fachwerkineingeschlossenesüber, weil die Erdscheibe die vorher offene Scheiben- oder Stabkette schließt. Das Fachwerk ist dann starr, weil die Gesamt-

zahl seiner Stäbe der notwendigen entspricht. Beispiel: Im Dreieckstabwerk der Fig. 58 sind zwei Stäbe des Obergurts entfernt worden. Deshalb bedarf es 2 + 3 = 5 Stützenstäbe, um das Tragwerk nunmehrämit der Erdscheibe noch starr verbinden und dadurch das Fachwerk zu einem geschlossenen machen zu können. Das kann in verschiedener Weise geschehen, wie in den Fig. 59 und 60 dargestellt ist. Durch die Beseitigung der beiden Gurtstäbe ging das Tragwerk in eine offene Scheibenverbindung über, welche

(s — 1) 3

$$(4 - 1) 3 = 9$$

Mehrtens, Statik der Baukonstruktionen. I.

oder

Erster Abschnitt. Das Wesen der Konstruktion.

Verbindungsstäbe gebraucht, um starr erhalten zu werden. Das sind zwei einfache Gelenke a und b == 4drei einfache Stützenstäbe = 3ein Stützengelenk = 2

zusammen 9 Stäbe.

Ein anderes Beispiel: In Fig. 61 sind vier Scheiben mit Hilfe von drei Stäben und drei Zwischengelenken starr verbunden. Beseitigt man

Fig. 62.

die drei Stäbe wieder, so kann die dann verbleibende offene Scheibenverbindung durch (3 + 3) = 6 Stützenstäbe zu einem geschlossenen Fachwerk umgewandelt werden (Fig. 62). Die sechs Stützenstäbe werden von den drei Gelenken in den Knoten a, b, c gebildet.

Die fünf Scheiben gebrauchen zu ihrer starren Verbindung

 $(5 - 1)_3 = 12$ Stäbe,

drei Zwischengelenke zu 2 == 6 drei Stützengelenke zu 2 == 6

zusammen 12 Stäbe.

27. Wandknoten.

a. Einfache Knoten. Einfache Stabkreuzungen können konstruktiv so hergestellt werden, daß ein eigentlicher Knoten nicht entsteht.

Es kann z. B. bei einer einfachen Kreuzung (Fig. 63) der eine Stab an der Kreuzungsstelle bei k eine Öffnung erhalten, die zum Durchstecken des andern Stabes dient. Den gleichen Zweck erreicht man, wenn der eine Stab an der Kreuzungsstelle in zwei Teile zerlegt wird, zwischen denen der andere Stab hindurchgeht (Fig. 64). In solchen Fällen sind also eigentliche Wandknoten nicht vorhanden.

§ 4. Scheibenverbindungen und einfache Stabwerke.

Wandknoten entstehen, wenn zwei Stäbe an ihrer Kreuzungsstelle durch Einspannung oder Gelenk miteinander verbunden werden. Es fragt sich dann zuerst, in welcher Weise einfache Wandknoten, deren Stäbe durch ein Gelenk verbunden sind, bei der Berechnung der Zahl n der notwendigen Stäbe berücksichtigt werden müssen. Darauf ist zu antworten, daß das Vorhandensein von einfachen Wandknoten bei der Berechnung vernachlässigt oder, was dasselbe sagt, daß jeder einfache Wandknoten, der nicht unmittelbar durch eine äußere Kraft belastet wird, gleichbedeutend mit einer Stabkreuzung angesehen werden kann.

Zum Beweise denke man sich zuerst die einfachen Wandknoten, wie es in der Fig. 65 angedeutet ist, aus dem Verbande des Stabwerks durch

entsprechende Schnitte losgelöst und das dadurch gestörte Gleichgewicht des durch äußere Kräfte beliebig belastet gedachten Stabwerks in bekannter Weise (13) wiederhergestellt, indem man in allen Schnittstellen die Stabkräfte als äußere Kräfte anbringt. An jedem Wandknoten greifen dann vier Kräfte an, die miteinander im Gleichgewicht sein müs-

4*

sen. Das kann aber nur geschehen, wenn je zwei in ein und dieselbe Stabrichtung fallende Stabkräfte eines Wandknotens gleich groß und entgegengesetzt gerichtet sind. Außerdem aber muß in jedem an die Wandknoten stoßenden Stabe (z. B. im Knoten 8 in den Stäben 1-8, 8-10, 7-8 und 8-9) die betreffende Stabkraft gleich und entgegengesetzt gerichtet derjenigen sein, die vom Wandknotenstabe ausgeht. Daraus folgt, daß in allen Schnittstellen jedes von einem Gurtknoten bis zum gegenüberliegenden Gurtknoten durchgehenden Stabes (1-4, 2-5, 3-7 und 4-6) Stabkräfte von gleicher Größe wirken, von denen je zwei einander entgegengesetzt gerichtete sich zu Null aufheben. Genau die gleiche Wirkung erhält man, wenn man alle Wandknoten beseitigt denkt und an deren Stelle Stabkreuzungen (ohne Knotenverbindung) voraussetzt.

Danach darf man vorkommende einfache Wandknoten bei der Berechnung der Zahl *n* der notwendigen Stäbe als nicht vorhanden an-

sehen. Will man die Wandknoten aber mitrechnen, so kann sich deshalb selbstverständlich die Bedingung der Gleichung (10)

$$i = 2k - 3$$

nicht ändern. In Fig. 66 erhält man z. B. ohne Berücksichtigung der Wandknoten

Fig. 66.

$$n = (2 \cdot 7) - 3 = II$$

Stäbe. Vorhanden sind sieben Gurtstäbe und vier Wandstäbe (mit Kreuzung). *Mit* Einschluß der Wandknoten erhält man:

$$n = (2 \cdot 8) - 3 = 13$$

Stäbe, das sind zusammen sieben Gurtstäbe und sechs Wandstäbe (ohne Kreuzung).

b. Mehrfache Knoten. Sobald mehr als zwei Wandstäbe sich in einem Punkte kreuzen, und dort, wie z. B. im Punkte 7 der Fig. 67, konstruktiv durch ein Gelenk verbunden werden, darf der betreffende Wandknoten bei der Berechnung der notwendigen Zahl n der Stäbe nicht vernachlässigt werden, weil von den in dem Knoten anstoßenden Paaren von Spannkräften (wie z. B. 1-7 und 4-7, ebenso wie 2-7 und 5-7, sowie auch 3-7 und 6-7) ein jedes zwar zwei Kräfte enthält, die entgegengesetzt gerichtet sind, die aber für den Fall des

Gleichgewichts im Knoten 7 nicht, wie im Falle einer einfachen Kreuzung, notwendig einander gleich sein müssen.

Das in Fig. 67 gezeichnete Stabwerk ist bei bloßer *Kreuzung* der Wandstäbe starr, denn deren Zahl ist gleich k - 3 = 6 - 3= 3. Durch Schaffung des Gelenkknotens 7 wird das Stabwerk *überstarr*, denn 7 ist ein sog. fünffacher Gelenkknoten, durch

den bewirkt wird, daß die sechs Wandstäbe (nach Gleichung (8), S. 47) nur 6 – 1 = 5 Gurtstäbe zu ihrer starren Verbindung brauchen. Ein Gurtstab ist also zuviel. Zu gleichem Ergebnis gelangt man, wenn man das Stabwerk als aus drei Dreieckscheiben bestehend ansieht, die
§ 4. Scheibenverbindungen und einfache Stabwerke.

im zweifachen Gelenkknoten 7 und außerdem noch durch drei einfache Stäbe verbunden sind. Das gibt (3 - 1) = 6 Verbindungsstäbe. Vorhanden sind:

ein zweifacher Gelenkknoten mit 4 drei einfache Stäbe 3 zusammen 7 Stäbe,

also einer zuviel.

28. Einfache statisch bestimmte ebene Stabwerke. Unter 26 wurde ausgeführt, wie es zwei verschiedene Arten ebener Fachwerke gibt. Bei der einen Art ist als Tragwerk ein geschlossenes Stabwerk vorhanden, das durch *mindestens drei* Stützenstäbe starr mit der Erdscheibe verbunden werden kann. Bei der andern Art ist das Tragwerk, an und für sich betrachtet, beweglich, kann also nur durch *mehr als drei* Stützenstäbe starr an die Erdscheibe geschlossen werden.

Man denke sich das auf die eine oder andere Art gestützte Fachwerk unter einer beliebigen Belastung im Gleichgewicht. Dann werden, nach erfolgter Formänderung und unter den bekannten Voraussetzungen (15), alle Stäbe des Fachwerks von Spannkräften ergriffen, die als Achsen- oder Stabkräfte bezeichnet werden. Löst man jetzt die Stützenstäbe von der Erdscheibe und bringt in jedem dieser Stäbe seine Spannkraft als Stützenwiderstand oder äußere Kraft an, so werden die gesamten äußern Kräfte (Belastungen und Stützenkräfte) mit den verbleibenden innern Kräften (Stabkräften) eine Gleichgewichtsgruppe bilden müssen. Damit dies der Fall sein kann, muß auch in jedem Knoten zwischen den dort angreifenden Lasten oder Stützenkräften und den im Knoten anstoßenden Stabkräften Gleichgewicht eintreten.

Es können ferner alle äußern Kräfte, die nicht bereits in einem Knoten angreifen, so zerlegt werden, daß ihre Angriffspunkte (wie unter 16b schon gesagt wurde) mit einem der Knoten zusammenfallen. In jedem Knoten des Fachwerks wirkt somit eine Mittelkraft R der äußern Kräfte (oder eine Stützenkraft), und diese Mittelkraft muß mit den im Knoten anstoßenden Stabkräften S im Gleichgewicht sein (Fig. 68).

Deshalb lassen sich für jeden Knoten zwei Gleichgewichts-Bedingungen aufstellen, die zum Ausdruck bringen, daß (auf ein Achsensystem bezogen) die algebraische Summe der betreffenden Seitenkräfte gleich Null sein muß. In den beiden Gleichungen erscheinen als Unbekannte nur die Stabkräfte S. Ist k die Zahl der vorhandenen Fachwerkknoten, so gibt das 2kGleichungen. Sollen daraus die Spannkräfte der x Stäbe des Fachwerks ermittelt werden, so darf x nicht größer als 2k sein.

Besitzt das Fachwerk einschließlich seiner Stützenstäbe im ganzen die Zahl von x = 2k Stäben und können deren Spannkräfte aus den gegebenen x Gleichungen eindeutig und als endliche Größen bestimmt werden, so ist das Fachwerk statisch bestimmt. In diesem Falle war in jedem seiner Knoten tatsächlich Gleichgewicht vorhanden. Alle Knoten waren deshalb unbeweglich: das Fachwerk war starr. Statisch bestimmt oder starr sind somit gleichbedeutende Bezeichnungen.

In Ausnahmefällen, die unter 34 besprochen werden, kann ein Fachwerk vorliegen, für welches obige Bedingung

$$x = 2k \tag{II}$$

erfüllt ist, obwohl bei der Auflösung der 2k Gleichungen die eliminierten Stabkräfte alle einen unendlich großen Wert erhalten, weil ihre Eliminations-Determinante gleich Null wird. In solchen Fällen ist das Fachwerk von unendlich kleiner Beweglichkeit (34).

Besitzt das Fachwerk als Tragwerk ein geschlossenes Stabwerk, so muß dieses, wenn es mit drei Stützenstäben an die Erdscheibe geschlossen ist und n Stäbe enthält, notwendig

$$n = x - 3 = 2k - 3$$

Stäbe enthalten.

Die auf solchem allgemeinen Wege erhaltene Bedingung für die notwendige Zahl der Stäbe eines geschlossenen Stabwerks

$$n = 2k - 3 \tag{12}$$

stimmt mit der früher ermittelten Gleichung (10) überein. Wie ein *bewegliches Stabwerk*, das weniger als *n* Stäbe enthält, durch Hinzufügen von Stützenstäben in ein geschlossenes starres Fachwerk mit x = 2k Stäben übergeführt werden kann, wurde beispielsweise unter **26** erläutert.

§ 5. Bildungsweise starrer Stabwerke.

29. Entwicklung ebener Systeme aus einem Grunddreiecke. Um aus k Knoten in beliebiger Lage ein einfaches Stabwerk zu entwickeln, bilde man zuerst ein Stabdreieck — das Grunddreieck — und verbinde darauf die verbleibenden k - 3 Knoten, einen nach dem andern, durch je 2 Stäbe mit dem so entstehenden Stabgebilde

§ 5. Bildungsweise starrer Stabwerke.

(Fig. 69 u. 70). Dabei dürfen (nach 15) in einem Knoten, von welchem schließlich nur zwei Stäbe ausgehen, diese nicht in eine und dieselbe Gerade fallen. Die k - 3 Knoten weisen dann 2k - 6 Stäbe auf. Dazu kommen die drei Stäbe des Grunddreiecks, sodaß die Gesamtzahl der Stäbe der notwendigen Zahl 2k - 3 entspricht.

Ein derart gebildetes starres Stabwerk kann durch fortgesetzte Beseitigung von je zwei Stäben mit ihrem Knoten schließlich auf sein Grunddreieck zurückgeführt werden. Man wird dabei, wie es in den Fig. 69 und 70

durch die Knotenziffern angedeutet ist, in einem solchen Knoten abzubrechen anfangen, in welchem *nur zwei Stäbe* anstoßen (also im Knoten 1). Dann sucht man nach einem neuen Knoten, der ebenfalls nur zwei Stäbe aufnimmt (Knoten 2). So

fährt man fort, alle Knoten mit je zwei Stäben zu beseitigen, bis man endlich nur das Grunddreieck (abc) übrig behält.

Aus obigem ergibt sich ein *einfaches Kennzeichen* zur Beurteilung der Starrheit oder statischen Bestimmtheit von Stabwerken oder Fachwerken. Man braucht nur zu untersuchen, ob sich in der angegebenen Weise ein Stabwerk durch Beseitigung von Knoten mit je 2 Stäben auf ein Grunddreieck zurückführen läßt. Ist dies möglich, so war das untersuchte Stabwerk statisch bestimmt (28). Untersucht man in gleicher Weise ein *bewegliches* Stabgebilde, das nicht die notwendige Zahl der Stäbe besitzt, so bleibt niemals ein Grunddreieck übrig, denn entweder — bei gerader Stabzahl — lassen sich alle Stäbe beseitigen oder es bleibt — bei ungerader Stabzahl — ein Stab übrig.

In derartig statisch bestimmten Stabwerken, zu denen auch die Dreieckstabwerke (**23** und **26**) gehören, lassen sich die Stabkräfte in besonders einfacher Weise berechnen. Indem man nämlich bei solchen Knoten, die nur zwei Stäbe aufnehmen, anfängt, kann man alle Stabkräfte nach einer gegebenen Reihenfolge bestimmen. Denn weil man dabei in jedem Knoten nicht mehr als zwei unbekannte Stabkräfte vorfindet, so genügen zu deren Berechnung allein die im Knoten gegebenen beiden Gleichgewichtsbedingungen zwischen Stabkräften und Lasten (**15** und **28**).

Es gibt aber viele Stabwerke, die sich nicht auf ein Grunddreieck zurückführen lassen. Das sind solche, bei denen nach erfolgter Beseitigung derjenigen Stäbe, deren Spannkräfte, wie vorher erläutert, der Reihe nach aus den gegebenen Bedingungen der Einzelknoten berechnet werden können, ein Stabgebilde übrig bleibt, in welchem *jeder Knoten mindestens drei Stäbe* zählt. Solche Gebilde sollen *Grundecke* genannt werden. Ist demnach ein Grundeck statisch bestimmt, so ist es auch das zugehörige Stabwerk.

30. Ebene Grundecke. Ebene Grundecke sind geschlossene Stabwerke, in denen jeder Gurtknoten mindestens drei Stäbe zählt.

a. Mindestzahl der Knoten. Um besondere Eigenschaften der statisch bestimmten Grundecke feststellen zu können, soll zuerst allgemein die Zahl der von einem Knoten eines Stabwerks ausgehenden Stäbe im Durchschnitt berechnet werden. Die notwendige Gesamtzahl nder Stäbe beträgt bei k Knoten (nach Gleichung 12):

$$n = 2k - 3.$$

Bestimmt man aber für jeden einzelnen Knoten die Zahl der von ihm ausgehenden Stäbe besonders und addiert dann die Einzelzahlen, so erhält man, weil dabei jeder Stab zweimal (in zwei Knoten) gezählt wird, als Gesamtzahl 2*n*. Daher findet man als Durchschnittszahl aus allen Knoten

$$z = \frac{4k-6}{k} = 4 - \frac{6}{k} \cdot$$

Daraus ergibt sich:

für k = 6 die durchschnittliche Zahl z = 3- k = 3 - - - z = 2- k > 6 - - - z > 3.

Ein statisch bestimmtes ebenes Grundeck kann danach vorliegen, wenn das betreffende Stabwerk mindestens sechs Knoten aufweist. Solche Grundecke

§ 5. Bildungsweise starrer Stabwerke.

sind in den Fig. 71 bis 74 dargestellt, worin die nicht numerierten Knoten Stabkreuzungen (27) vorstellen. Daß alle diese Grundecke statisch bestimmt oder starr sind, läßt sich aus den vorstehend angegebenen Bedingungen für starre Scheibenverbindungen oder für die notwendige Zahl n der Stäbe nachweisen. In Fig. 71 sind z. B. die beiden Dreieckscheiben 2, 3, 6 und 1, 4, 5 durch drei Stäbe, deren Richtungen

sich nicht in einem Punkte schneiden (**22**), starr verbunden. Fig. 72 kann aufgefaßt werden als Verbindung zweier Dreieckscheiben im Gelenk 7 mit dem Stabe (oder der Scheibe) 1-4. Desgl. Fig. 73 als Verbindung der mittleren Fünfeckscheibe mit den fünf Umfangsstäben (oder Scheiben) u. s. w.

b. Rückführung auf ein Grunddreieck. Grundecke haben gegenüber solchen Stabwerken, die sich, wie angegeben, auf ein Grunddreieck zurückführen lassen, den Nachteil, daß ihre Stabkräfte nicht

unmittelbar aus den gegebenen Gleichgewichts-Bedingungen der Einzelknoten berechnet werden können. Nach dem allgemeinen Verfahren (**28**) können zwar die Unbekannten der Stabkräfte aus den gegebenen 2k Bedingungs-Gleichungen (von denen drei zur Bestimmung der *s* Stützenkräfte dienende abgehen), also aus 2k - 3 Gleichungen, eliminiert werden; dies Verfahren ist aber umständlich, sodaß es in praktischen Fällen kaum benutzt wird. Die einfachste Art der Bestimmung von Stabkräften in Grundecken erfolgt mit Hilfe von *Stabvertauschungen*, von denen bereits (unter **26**) beispielsweise die Rede war. Es wurden dabei gewisse Stäbe eines Stabwerkes beseitigt und, um ein statisch bestimmtes Fachwerk zu erhalten, an anderer geeigneter Stelle wieder eingefügt.

Mit Hilfe geeigneter Stabvertauschungen kann man Stabwerke in beliebiger Weise umgestalten, ohne daß sie die Eigenschaft der Starrheit einbüßen, denn die notwendige Zahl der Stäbe bleibt dabei ungeändert. In den Grundecken der Fig. 71 bis 74 braucht man z. B. nur je einen Stab zu beseitigen und an passender Stelle dafür einen *Ersatzstab* einzufügen, um alle diese Grundecke in Stabwerke umzuwandeln, die auf ein Grunddreieck zurückgeführt werden können.

Über das Verfahren der Stabkraftberechnung mit Hilfe der Stabvertauschung vergl. § 11 im dritten Abschnitt.

c. Verfahren von HENNEBERG.^I Ein besonderes Verfahren zur Rückführung eines Grundecks auf ein Grunddreieck ist von HENNEBERG angegeben worden. Dabei beseitigt man zuerst einen Knoten, von welchem drei Stäbe ausgehen, verwandelt also das Stabwerk von k Knoten in ein solches von k - I Knoten. Diesem fehlt aber zur statischen Bestimmtheit noch ein Stab, der an geeigneter Stelle (im allgemeinen beliebig) eingezogen wird. Dieser Stab heißt der *Ersatzstab*. Die meisten der vorkommenden Grundecke nehmen dadurch eine solche Gestalt an, die eine unmittelbare Rückführung auf ein etwa vorhandenes Grunddreieck in bekannter Weise zuläßt. Auf solche Weise kann man z. B. auch alle in den Fig. 71 bis 74 dargestellten starren Grundecke auf ein Grunddreieck zurückführen.

Bei verwickeltern Grundecken setzt man das erläuterte Verfahren von HENNEBERG dadurch fort, daß man das zuerst erhaltene Stabwerk von k - 1 Knoten durch Beseitigen eines Knotens, von welchem nur drei Stäbe ausgehen, und durch Einfügen eines Ersatzstabes auf ein solches von k - 2 Knoten zurückführt u. s. w. Erweist sich das erhaltene

¹ HENNEBERG, Statik der starren Systeme. 1886.

Stabwerk von k - 2 u. s. w. Knoten als starr, so war auch das ursprüngliche Grundeck von k Knoten ein starres.

31. Zusammengesetzte ebene Fachwerke. Ein zusammengesetztes Fachwerk erklärten wir (unter 16 a) als eine Verbindung von Stäben und Scheiben, wobei durchgehende Stäbe (14) als Scheiben aufzufassen sind. Bei derartigen Verbindungen sollen die zwischen den Scheiben bestehenden Gelenke als *Scheibengelenke* bezeichnet werden,

zur Unterscheidung von den übrigen Gelenken, die entweder in den *freien*, d. h. nicht in Verbindung mit einer Scheibe stehenden Stabknoten vorkommen oder die zur Verbindung von Stäben mit Scheiben dienen. In der Fig. 75 sind die Knoten 1, 2 und 3 Scheibengelenke, die Knoten 5, 8, 9 und 10 sind *freie* Knoten. Außerdem sind noch die *Scheiben*knoten vorhanden. Diese zählen nicht mit, weil sie nicht zur un-

mittelbaren Verbindung von Stabenden oder von Scheiben untereinander dienen (16b).

Die notwendige Zahl n der Stäbe, wobei eine der Scheiben auch als Erdscheibe betrachtet werden kann, setzt sich allgemein zusammen aus $(s - 1)_3$ für s Scheiben und 2k für die freien Knoten. Also aus

$$n = 3s - 3 + 2k. (13)$$

In der Verbindung müssen aber von jeder Scheibe mindestens drei Stäbe ausgehen (22). Das gibt für das Beispiel in Fig. 75

$$n = (3 \cdot 5) - 3 + (2 \cdot 4) = 20$$
.

Vorhanden sind 3 Zwischengelenke zu je 2 Stäben = 6 und einfache Stäbe = 14

zusammen 20 Stäbe,

das Fachwerk ist also starr oder statisch bestimmt, falls kein Ausnahmefall vorliegt (28).

In einigen Fällen pflegt man den Scheibengelenken besondere Namen

beizulegen, z. B. Kämpfergelenke, wenn sie zur Verbindung von Bogenscheiben mit der Erdscheibe dienen (Fig. 76); Scheitelgelenke, wenn sie

Fig. 76. a und b Kämpfergelenke.

Fig. 77. c Scheitelgelenk.

Fig. 78. m Mittengelenk.

Fig. 79.

im Scheitel von Bogenscheiben (c in Fig. 77) und *Mitten*gelenke, wenn sie inmitten einer Scheibenverbindung liegen (m in Fig. 78).

Die Untersuchung der in den Fig. 78-80 dargestellten Beispiele von zusammengesetzten Fachwerken ergibt das folgende.

Das Fachwerk in Fig. 78 besteht aus vier an die Erdscheibe geschlossenen Trägerscheiben, von denen die beiden unteren I und II durch ein Mittengelenk *m* verbunden sind. Dabei ist *ein* freier Knoten vorhanden.

Das Fachwerk ist starr und statisch bestimmt, denn man berechnet:

n = (5 - 1)3 + 2 = 14notwendige Stäbe. Vorhanden sind:

- 1 einfaches Mittengelenk 2 Stäbe
- 2 zweifache Kämpfer-
- gelenke 8
- 4 einfache Stäbe 4 -

zusammen 14 Stäbe.

In Fig. 79 ist ein Fachwerk gezeichnet, das eine durch vier Gelenke an die Erdscheibe geschlossene Verbindung einer Kette mit Bogenträgern darstellt. Es ergeben sich dafür:

§ 5. Bildungsweise starrer Stabwerke.

$$n = (5 - 1)3 + 2 \cdot 7 = 26$$

notwendige Stäbe, die auch vorhanden sind, nämlich 5 einfache Scheibengelenke zu je 2 Stäben und 16 einfache Stäbe.

Fig. 80.

Das in Fig. 80 dargestellte Fachwerk zeigt eine allgemeine Anordnung der Träger einer Kettenbrücke. 6 Scheiben und eine Kette sind untereinander und mit der Erdscheibe verbunden. Für die notwendige Zahl der Stäbe erhält man

$$n = (7 - 1)3 + 2 \cdot 6 = 30$$
.

Ebensoviel sind auch vorhanden, nämlich

4	einfache	Scheibe	engelenke	8	Stäbe
1	zweifaches Scheibengelenk			4	-
2	einfache	Stützen	2		
16	-	Stäbe		16	-
			zusammen	120	Stähe

32. Raumfachwerke. Ein ebenes Fachwerk wird unter Voraussetzungen berechnet, für deren Erfüllung durch konstruktive Mittel gesorgt werden muß. Es sollen nämlich einerseits alle Lasten und Stützenkräfte in der Fachwerkebene liegen und anderseits darf unter der Belastung kein Fachwerkknoten aus seiner Ebene heraustreten. Danach gibt es streng genommen überhaupt keine ebenen Systeme, denn jene konstruktiven Mittel, die notwendig sind, um die bei der Berechnung gemachten Voraussetzungen zu erfüllen, machen das System zu einem räumlichen. In vielen Fällen ist es aber bequem, räumliche Systeme unter obigen Voraussetzungen in ebene aufgelöst zu denken, um die Berechnungen zu vereinfachen (11).

Als Raumfachwerke werden in der Regel nur solche Stabgebilde bezeichnet, deren Berechnung als einheitliches Ganze, also ohne Zerlegung in Teilsysteme erfolgt. In einem solchen Fachwerke müssen, wie bereits (unter **15**) begründet wurde, in jedem Knoten mindestens drei Stäbe anstoßen, die dabei außerdem nie in einer und derselben Ebene liegen dürfen. Ausnahmsweise werden wohl auch in Raumfachwerke einzelne ebene Knoten eingelegt, wenn solche nur in ihrer Ebene belastet und gegen Querverschiebungen konstruktiv gesichert sind.

Nachdem im vorigen die Zahl n der notwendigen Stäbe einfacher und zusammengesetzter ebener Fachwerke berechnet worden ist, bedarf es nur eines kurzen Hinweises auf die dabei gegebenen Begründungen, um ein Gleiches für Raumfachwerke auszuführen. Nach den Darlegungen unter **28** ist es ohne weiteres ersichtlich, wie die Zahl n für Raumfachwerke aus der Gleichung

$$n = 3k \tag{14}$$

zu berechnen sein wird, weil in jedem Knoten die dort angreifende Mittelkraft aller äußern Knotenkräfte im Gleichgewicht mit den zugehörigen Stabkräften sein muß, wonach die Aufstellung von drei Gleichgewichts-Bedingungen für jeden Knoten möglich ist. Für ein nicht mit dem Erdkörper durch Stützenstäbe starr verbundenes geschlossenes Raumstabwerk braucht man 6 Stützenstäbe weniger, daher ist für ein solches

$$n = 3k - 6. \tag{15}$$

Sobald die n unbekannten Stabkräfte eindeutig aus den 3k oder 3k - 6 Bedingungs-Gleichungen berechnet werden können, ist das Stabwerk statisch bestimmt und auch starr.

Ein aus Körpern (16a) und einfachen Stäben zusammengesetztes Raumfachwerk bedarf einer Zahl n von notwendigen Stäben, die aus

n = (s - 1)6 + 3k (16)

zu berechnen ist, wenn s die Zahl der Körper (worunter auch der Erdkörper sein kann) und k die Zahl der *freien* Knoten bedeutet. Dabei dürfen von keinem Körper weniger als sechs und von keinem freien Knoten weniger als drei Stäbe ausgehen.

Die durchschnittliche Zahl z der von einem Knoten eines einfachen Raumstabwerks ausgehenden Stäbe beträgt

 $z = \frac{2n}{k} = \frac{2(3k - 6)}{k}$

oder

$$z = 6 - \frac{12}{k} \cdot \tag{(17)}$$

Daraus ergibt sich:

§ 5. Bildungsweise starrer Stabwerke.

für
$$k = 12$$
 die durchschnittliche Zahl $z = 5$
- $k = 6$ - - - $z = 4$
- $k = 4$ - - - $z = 3$

Ein Grundeck kann demnach vorliegen, wenn das betreffende Stabwerk mindestens 6 Knoten aufweist. Denn in diesem Falle können in jedem Knoten 4 Stäbe anstoßen, sodaß die zugehörigen 4 Stabkräfte aus dem Gleichgewichte des Knotens unmittelbar nicht berechnet werden können

Solche Grundecke sind in den Fig. $\$_1$ und $\$_2$ dargestellt. Jedes weist 12 Stäbe auf. Wie man deren Stabkräfte mit Hilfe des Verfahrens der *Stabvertauschung* (**30**) oder auf andere Weise bestimmt, wird weiterhin im § 11 ausführlich dargelegt.

33. Entwicklung von Raumfachwerken aus ebenen Stabgebilden. Aus dem (unter 32) Gesagten geht hervor, wie man aus ebenen starren Stabwerken räumliche dadurch schaffen kann, daß man jeden ebenen Knoten durch Hinzufügen eines Stabes *auch für den Raum unbeweglich* macht. Wie dies geschehen kann, zeigt am einfachsten die Bildung eines *Tetraeders* aus einem Stabdreieck (Fig. 83).

Jeder der drei Knoten 1, 2 und 3 wird durch Einfügen eines Stabes räumlich starr gemacht, sobald die drei hinzugefügten Stäbe sich im

Raumknoten 4 vereinigen. In gleicher Weise ist das in Fig. $\$_1$ dargestellte Grundeck gebildet. Zwei ebene Stabdreiecke wurden darin durch 2 > 3 hinzugefügte Stäbe zu einem Raumstabwerk verbunden. Desgleichen ist in Fig. $\$_4$ das starre ebene Stabwerk mit den Knoten 1-4 und dem Wandstab 2-4 durch Hinzufügen von vier Stäben, die sich im Knoten 5 vereinigen, in ein Raumstabwerk übergeführt.

Allgemein läßt sich ein ebenes starres Stabwerk mit r Gurtknoten zu einem Raumstabwerk erweitern, wenn man die fehlenden r Stäbe außerhalb der Ebene in einem neuen Knoten — dem *Firstknoten* vereinigt (Fig. 85). Will man einen einfachen Stab — einen *Grat* —

Fig. 85.

mit einer Stabwerksebene räumlich vereinigen, wie dies z. B. in dem Grundeck der Fig. 82 geschehen ist, so braucht der *Gratstab* (5-6) zwei Stäbe für seinen starren Anschluß. Dazu kommen noch vier Stäbe für den Anschluß der Knoten 1 bis 4.

Bei der räumlichen Vereinigung von zwei Stabwerksebenen bedarf es so vieler Stäbe als Gurtknoten in beiden Ebenen vorhanden sind (Fig. 86). Beträgt die Zahl der Knoten in der untern Ebene u_3 in der obern o, so braucht man für die Starrmachung der beiden Ebenen an sich

$$(o - 3) + (u - 3) = k - 6$$
 Stäbe,

weil o + u die Gesamtzahl k der Knoten angibt. Daraus folgt die Zahl der notwendigen Stäbe des Raumstabwerks: Denn (o + u) Gurtstäbe sind bereits vorhanden und dazu kommen noch (k - 6) Stäbe zur Starrmachung der beiden Ebenen, sowie k Stäbe zur räumlichen Vereinigung beider. Also:

$$n = (o + u) + (k - 6) + (o + u) = 3k - 6.$$

§ 5. Bildungsweise starrer Stabwerke.

Die einfachste Art der Entwicklung eines Raumstabwerks besteht darin, daß man, wie in der Ebene, von einem Grunddreieck ausgeht und darüber zuerst, wie in Fig. 83, drei Stäbe in einem vierten Knoten vereinigt. Weiter kann man dann in gleicher Weise über einem der vier Dreiecke des erhaltenen Tetraders einen neuen Knoten, den fünften, anlegen und gleichmäßig so fort bis zum k^{ten} Knoten. Dann erhält man als Gesamtzahl der Stäbe (wie in Gleichung 15):

$$n = 3 + (k - 3)3 = 3k - 6.$$

Durch Auswechseln einzelner Wandstäbe und deren Ersatz an geeigneter Stelle lassen sich mannigfache Gestalten von Raumfachwerken bilden. Sollte man z. B. das in Fig. 87 dargestellte Stabwerk mit untern

achteckigem und obern viereckigem Gurtringe als Raumfachwerk starr mit der Erde verbinden, so müßte man mindestens sechs Stützenstäbe hinzufügen. Man möchte aber jeden der untern Gurtknoten 1 bis 8 durch einen senkrechten (oder auch schräg gestellten) Stab stützen und Mehrtens, Statik der Baukonstruktionen. I. 5

außerdem alle Wandstäbe der untern und obern Ebene (zusammen 5 + 1 = 6) beseitigen. Danach wären, wie Fig. 88 darstellt, zwölf neue Stäbe einzuziehen, etwa wie folgt:

8 senkrecht (oder schräg) gestellte Stützenstäbe in den Knoten 1 bis 8 == 8 Stäbe 4 wagerecht (od. schräg) gestellte Stützenstäbe in d. Knoten 1, 2, 5, 6 == 4 -

zusammen 12 Stäbe.

Dazu kommen

zwölf Gurtstäbe der obern und untern Ebene == 12 Stäbe zwölf Verbindungsstäbe dazu == 12 zusammen 36 Stäbe,

was der Gleichung n = 3k entspricht.

Die Rückführung eines Raumstabwerks auf ein *Grunddreieck* oder *Grundeck* kann in gleicher Weise erfolgen, wie es (unter **29**) für die Ebene erläutert wurde. An Stelle von zwei Stäben in der Ebene sind natürlich im Raume immer je 3 Stäbe eines Knotens in gewisser Reihenfolge abzubauen.

34. Die unendlich kleine Beweglichkeit. Ein beliebig gestaltetes Fachwerk der Ebene (oder des Raumes), dessen Stabzahl n der notwendigen Zahl entspricht und dessen Stabgliederung auch sonst alle nach vorigem zu stellende Anforderungen erfüllt, wird unter jeder beliebigen Belastung starr sein, wenn sich aus den gegebenen 2k (oder 3k) Bedingungsgleichungen alle seine Stabkräfte *eindeutig* (als *endliche* Größen) berechnen lassen. In Ausnahmefällen kann es vorkommen, daß bei ihrer Eliminierung die unbekannten Stabkräfte alle unendlich groß ausfallen, weil ihre Eliminationsdeterminate zu Null wird. Welche Umstände die eigentliche Ursache dieser Ausnahmeerscheinung bilden, soll nachfolgend näher ausgeführt werden.

Zunächst ist (nach 29 und 30) ersichtlich, daß unendlich große Spannkräfte nur in einem *Grundeck* des betrachteten Fachwerks vorkommen können, weil ja in allen übrigen Knoten die Spannkräfte der anstoßenden Stäbe eindeutig zu berechnen sind. Danach erscheinen Fachwerke, die sich auf ein *Grunddreieck* zurückführen lassen (29), unter allen Umständen als starr und statisch bestimmt. Es genügt demnach, wenn wir unsere Betrachtungen auf Grundecke beschränken. Auch soll dabei der Fall einer etwaigen *endlichen Beweglichkeit* — der unter 22 bereits besprochen wurde — außer acht gelassen werden.

Sobald man in einem Grundeck irgend einen Stab beseitigt, erhält man eine *zwangläufige Kette*, deren Eigenart (unter 24) bereits besprochen worden ist.

Die von den Knoten einer zwangläufigen Stabkette zurückgelegten

Verschiebungen lassen sich nach ihrer Richtung und Größe in einfacher Weise aufzeichnen, wie dies weiterhin (unter 78) gezeigt wird. Für uns ist diejenige augenblickliche Lage der in Bewegung begriffenen Stabkette von Bedeutung, bei welcher die beiden Knoten m und n, zwischen denen ein Stab mn beseitigt wurde, augenblicklich zur Ruhe kommen, derart, daß für einen unendlich kleinen Zeitabschnitt ihre gegenseitige Entfernung unverändert bleibt. Würde man in diesem Augenblicke der Bewegung den Stab zwischen den betreffenden beiden Knoten wieder einziehen, so würde der Stab sich im Maximum oder Minimum seiner Länge befinden, denn im nächsten Augenblicke würden die beiden Stabknoten, falls der Stab wieder beseitigt wäre, entweder ihre Entfernung vergrößern oder verkleinern. Während des geschilderten unendlich kleinen Zeitabschnittes befindet sich das Fachwerk, in welchem der früher beseitigte Stab nun wieder eingezogen worden ist, im Zustande der unendlich kleinen Beweglichkeit. Inwiefern dies der Fall ist, wird näher darzulegen sein.

Wenn an Stelle des beseitigten Stabes mn irgend eines beliebig belasteten Grundecks (z. B. des ebenen Fachwerks der Fig. 89) die vor-

läufig noch unbekannte Stabkraft Sdes Stabes als äußere Kraft in den Knoten m und n angebracht wird, so steht die bewegliche Stabkette für einen unendlich kleinen Zeitabschnitt dt im Gleichgewicht, wenn nach dem Satze der virtuellen Geschwindigkeiten (40) in diesem Augenblicke die algebraische Summe der virtuellen Arbeiten aller äußeren Kräfte gleich Null ist. Setzt man an Stelle der Geschwindigkeit eines Stabknotens seine Verschie-

bung, dividiert durch das Zeitmaß dt, so kann die Arbeitsgleichung für den Fall des Gleichgewichts mit

$$S \cdot s = \sum P \cdot \delta$$

angeschrieben werden, worin s die Summe der Verschiebungen der Knoten m und n und δ die Verschiebung eines der Lastknoten bedeutet, die Verschiebungen selbstverständlich immer in der Richtung der betreffenden Kraft genommen, oder als Projektion der wirklichen Knotenverschiebung auf die Richtung der zugehörigen Kraft. Der Ausnahmefall der unendlich kleinen Beweglichkeit tritt also ein, sobald s = o wird, weil dann S einen unendlich großen Wert erhält. Im betrachteten unendlich kleinen Zeitabschnitt der Bewegung kann man die Verschiebungen der Knoten m und n als augenblickliche Drehungen um einen beliebigen Pol auffassen. Wenn man dies tut, so erkennt man, daß die Summe s der Projektionen dieser Knotenverschiebungen auf die Richtung von S nur in einem einzigen Falle Null werden kann, nämlich dann, wenn der Pol der augenblicklichen Verschiebungen in die Richtungslinie des Stabes mn fällt.

In diesem Ausnahmefalle bewegen sich entweder beide Knoten mund n senkrecht zur Stabrichtung mn oder der eine von beiden liegt unbeweglich (wenn er z. B. ein festliegender Stützenknoten wäre). Danach befindet sich der Stab mn im Maximum oder Minimum seiner Länge und seine Stabkraft müßte unendlich groß werden, wenn er dadurch eine unendlich kleine, senkrecht zur Stabachse gerichtete Verschiebung seiner Knoten verhindern wollte. Wenn aber, wie nachgewiesen, in diesem Falle eine der Spannkräfte unendlich groß werden müßte, so müßten nach den Gesetzen des Gleichgewichts auch alle andern Stabkräfte unendlich groß werden.

Fachwerke von unendlich kleiner Beweglichkeit sind praktisch unbrauchbar. Selbst wenn die Spannkraft S, um eine Beweglichkeit zu verhindern, rechnungsmäßig nicht unendlich groß, sondern nur außerordentlich und übermäßig groß ausfiele, wäre das zugehörige Fachwerk konstruktiv zu verwerfen. Glücklicherweise kommt der Ausnahmefall einer unendlich kleinen Beweglichkeit bei den gebräuchlichen Anordnungen der Fachwerke sehr selten vor. Immerhin werden aber allgemeine Kennzeichen der unendlich kleinen Beweglichkeit gegeben werden werden müssen. Das geschieht weiterhin unter **80**.

35. Statisch unbestimmte Fachwerke. Wenn man in ein statisch bestimmtes, also starres Fachwerk zwischen beliebigen Knoten noch einen Stab oder mehrere Stäbe einzieht, so wird das Fachwerk dadurch überstarr, geometrisch überbestimmt und statisch unbestimmt. Da das Fachwerk die Zahl k seiner Knoten dabei nicht ändert, so stehen nur 2k Gleichgewichtsbedingungen zur Verfügung, um daraus die unbekannten Stabkräfte zu berechnen. Würden also m überzählige Stäbe eingezogen, so könnten deren Spannkräfte ganz beliebig groß angenommen werden und es bliebe dann immer noch die Möglichkeit, die übrigen 2k Stabkräfte aus den 2k Gleichungen eindeutig zu berechnen. Man nennt daher die obigen Fachwerke statisch unbestimmte, weil sich auf rein statischem Wege, unter Zugrundelegung des starren Gleichgewichts (16b), für ihre 2k + m Stabkräfte, wie angedeutet, unzählige Werte ergeben. Bei m überzähligen Stäben spricht man also von einem m-fach statisch unbestimmten Fachwerke.

Ein statisch unbestimmtes Fachwerk, das m überzählige Stäbe aufweist, kann man durch Beseitigen von im allgemeinen beliebig auszuwählenden m Stäben wieder auf ein statisch bestimmtes Fachwerk zurückführen. Bei der Auswahl ist nur eine Bedingung zu beachten: es darf das verbleibende Stabgebilde durch die Beseitigung der m Stäbe weder in ein bewegliches Fachwerk, noch in ein solches von unendlich kleiner Beweglichkeit übergehen. Ein m-fach statisch unbestimmtes Fachwerk, das auf keine Weise durch Beseitigen von m Stäben in ein statisch bestimmtes zu verwandeln ist, ist selbst nicht starr, was leicht einzusehen ist, wenn man sich an Stelle der beseitigten m Stäbe deren Spannkräfte als gegebene äußere Kräfte in den betreffenden Stabknoten angebracht denkt und erwägt, wie unter solchen Umständen für beliebige Belastungen ein Gleichgewicht zwischen den äußern und innern Kräften nicht bestehen kann.

Das durch die Beseitigung von m Stäben erhaltene statisch bestimmte Fachwerk wird das Hauptnetz genannt und die zugehörigen m Stabkräfte bezeichnet man allgemein als die statisch nicht bestimmbaren Größen. Die Bestimmung dieser Größen — wir nennen sie X — kann nur dadurch bewirkt werden, daß man aus den Bedingungen, unter welchen die elastischen Verschiebungen jener Knoten sich vollziehen, in denen die Größen X als Stabkräfte angreifen, m sog. Elastizitätsgleichungen gewinnt, die zusammen mit den 2k Gleichgewichts-Bedingungen für das elastische Gleichgewicht die notwendigen Unterlagen zur Berechnung der (2k + m) unbekannten Stabkräfte liefern. Solche Berechnungen werden im II. Bande vorgeführt werden.

An dieser Stelle bliebe nur noch zu bemerken, daß es dreierlei Arten von statischer Unbestimmtheit gibt: 1. eine bloße *innere*, 2. eine bloße *äußere*, und 3. eine solche, die *sowohl eine innere*, als auch eine *äußere* ist.

1. Als Beispiel innerer Unbestimmtheit möge ein geschlossenes Stabwerk (**26**) dienen, das also in der Ebene durch drei oder im Raume durch sechs Stützenstäbe mit der Erde verbunden ist.

Seine Stützenkräfte sind aus den zwischen Lasten und Stützenkräften bestehenden Gleichgewichts-Bedingungen zu berechnen. Die übrigen (2 k - 3) oder (3 k - 6) Gleichungen dienen zur Berechnung der unbekannten Stabkräfte. Dabei werden die *außerhalb des statisch unbestimmten Grundecks* liegenden Stabkräfte statisch bestimmt aus den GleichgewichtsBedingungen der betreffenden Knoten unmittelbar zu berechnen sein. In Fig. 90 sind dies z. B. alle Stabkräfte, mit Ausnahme der sechs Stäbe des Vierecks abdc in der Mitte, worin ein überzähliger Stab vorhanden ist. Welchen von den 6 Stäben man als überzählig bezeichnen will, ist nach vorigem im allgemeinen gleichgültig. Das Hauptnetz des Grundecks würde z. B., wie in Fig. 90 angegeben, in zweierlei Art gebildet werden können, worin X die statisch nicht bestimmbare Größe und S_a bis S_d die statisch vorbestimmten, außerhalb des Grundecks liegenden Spannkräfte vorstellen.

2. Ist das als Beispiel gewählte geschlossene Stabwerk ein innerlich statisch bestimmtes, aber mit mehr als drei (oder sechs) Stäben an die Erde geschlossen, so liegt eine äußere Unbestimmtheit vor. In Fig. 91 sind z. B. die beiden innerlich statisch bestimmten Scheiben I und IIdurch 5 Stützenstäbe an die Erdscheibe geschlossen. Das bedeutet eine einfache äußere statische Unbestimmtheit, weil die beiden Scheiben mit der Erdscheibe durch $(3 \cdot 2 + 1) = 7$ Stäbe verbunden sind, während für die starre Verbindung nur $(3 - 1)_3 = 6$ Stäbe notwendig gewesen wären. Sobald einer der Stützenstäbe der Kämpfergelenke bei a oder bbeseitigt und dafür die Größe X als äußere Kraft im Gelenkpunkte angebracht wird, ist das Hauptnetz für die Berechnung vorbereitet.

3. Das Wesen einer *äußern und innern* statischen Unbestimmtheit ist nach obigem ohne weiteres verständlich. Fig. 92 zeigt das Beispiel eines außen dreifach und innen einfach, im ganzen also vierfach statisch unbestimmten Bogenfachwerks. Die Bogenscheibe könnte durch 3 Stäbe an die Erdscheibe geschlossen werden, vorhanden sind $2 \cdot 2 + 2 = 6$ Stäbe. Innerhalb der Bogenscheibe befindet sich *ein* überzähliger Stab im Grundeck 10, 11, 12, 13.

36. Einflüsse der Luftwärme auf die Stabkräfte. Wie unter 8 näher ausgeführt worden ist, müssen wir einen Stab bei einer gewissen mittleren Temperatur, die für Mitteleuropa etwa auf $+10^{\circ}$ C. angenommen werden darf, als *spannungslos* ansehen und zwar solange als er der unmittelbaren Einwirkung von äußern Kräften nicht unterworfen wird. Es fragt sich nun, inwieweit der Einfluß der Luftwärme auf die Stabkräfte bei der Berechnung von Stabwerken und Fachwerken berücksichtigt werden muß, wenn ihr Temperaturgrad von $+10^{\circ}$ C. abweicht. Daß diese Abweichung für mitteleuropäische Verhältnisse 35° über und unter das normale Maß betragen kann, wurde (unter **8**) bereits gesagt.

Betrachten wir zuerst das Verhalten der statisch bestimmten Systeme. Bei ihnen sind alle Stabkräfte allein von der Lage und Größe der Lasten

und Stützenkräfte abhängig. Bei eintretenden Schwankungen in der Wärme der die Konstruktion umgebenden Luft werden also die Stabkräfte sich nur insoweit verändern, als aus der gleichen Ursache auch Lage und Größe der genannten äußern Kräfte beeinflußt werden können. Das kann aber nur geschehen, wenn sich infolge der

Temperatureinflüsse die Grundmaße des (unter den bekannten Voraussetzungen) zur Berechnung vorliegenden Stabwerks erheblich vergrößern, verkleinern oder verschieben, namentlich die Stützweiten, sowie bei Bogenträgern (Fig. 77) besonders auch die Bogenhöhe, zwischen der Kämpferlinie ab und einem Scheitelgelenk c gemessen. Im allgemeinen werden die beregten Veränderungen in den Berechnungsgrundmaßen bei sachgemäß ausgebildeten Konstruktionen nicht so erheblich ausfallen, daß es notwendig erschiene, die dadurch im Stabwerke verursachten Temperaturspannkräfte der Sicherheit wegen (12) in die Berechnung mit aufzunehmen. Ebenso vernachlässigt man im allgemeinen diejenigen Nebenspannungen, welche von den Reibungswiderständen verursacht werden, die entstehen, wenn das von der Temperatur beeinflußte Stabwerk vermöge seiner beweglichen Stützen oder Zwischengelenke seine Lage zu verändern sucht (15 und 16).

Wesentlich anders und erheblich ungünstiger liegt die Sache bei

den statisch unbestimmten Systemen. Denn bei diesen können die statisch nicht bestimmbaren Größen X nur mit Hilfe von Elastizitätsgleichungen (**35**) berechnet werden, wobei die Bedingungen entscheidend sind, unter welchen sich die elastischen Verschiebungen jener Knoten vollziehen, in denen die X angreifen. Jede Änderung der Grundmaße des Stabwerkes beeinflußt daher im allgemeinen die Größen X. Ist das Stabwerk außen statisch unbestimmt, so wird jede Temperaturänderung auch eine Veränderung der statisch nicht bestimmbaren Stützenkräfte herbeiführen, was wiederum eine Beeinflussung der Spannkräfte des gesamten Stabwerks zur Folge hat. Dagegen wird bei einer bloßen innern Unbestimmtheit wesentlich nur das Grundeck von Temperatureinflüssen getroffen, gleichviel, welche seiner überzähligen Stäbe (Fig. 90) im Hauptnetz beseitigt worden sind. Bei statisch unbestimmten Systemen erscheint es daher aus Gründen der Sicherheit notwendig, die aus den Temperatureinflüssen herrührenden Nebenspannungen aller Stabkräfte genau zu berechnen.

Nach obigem besitzen die statisch bestimmten gegenüber den statisch unbestimmten Systemen den großen Vorzug, daß Änderungen in der Luftwärme ihre Stabspannungen im allgemeinen nur unerheblich beeinflussen, sodaß aus Gründen der Sicherheit bei sachgemäß ausgeführten Konstruktionen die Vernachlässigung der Temperaturspannungen zulässig erscheint. Bei statisch unbestimmten Systemen birgt das Anwachsen der Temperaturspannungen unter Umständen eine Gefahr in sich. Deshalb darf man wohl schließen, $da\beta$ statisch bestimmte Konstruktionen, wenn dagegen nicht im Einzelfalle besondere zwingende Gründe sprechen, im allgemeinen unter sonst gleichen Umständen den statisch unbestimmten vorgezogen zu werden verdienen.

Ausführlicheres über diesen Gegenstand folgt im II. und III. Bande. Es erscheint an dieser Stelle aber notwendig, schon hervorzuheben, wie diejenigen Stabwerke, deren statische Bestimmtheit durch Einlegung von Zwischengelenken (Scheitel- oder Mittengelenken) erzielt worden ist (31), eine verhältnismäßig große elastische Beweglichkeit in den Gelenkpunkten zeigen. Das ist namentlich für Konstruktionen des Brückenbaues erfahrungsmäßig ein nicht zu unterschätzender Nachteil, der in vielen Fällen ausreichenden Grund bietet, um derartige Konstruktionen ausschließen.

§ 6. Geschichtliche Rückblicke.

37. Die ältesten Baukonstruktionen. Zu allen Zeiten gab es geborene Erfinder, Männer mit einer lebhaften und ruhig überlegenden Einbildungskraft, die ohne alle theoretischen Kenntnisse, aus der alleinigen Beobachtung der Naturvorgänge allerlei Ideen schöpften und in Konstruktionen umschufen. So entstanden Jahrhunderte, bevor an eine Theorie im heutigen Sinne auch nur gedacht werden konnte, Baukonstruktionen der verschiedensten Art, in denen, ihren Schöpfern unbewußt, bereits die Keime für eine höhere Entwickelung lagen. Es hat dann aber noch einer tausendfältigen Häufung und Ordnung von Erfahrungen bedurft, um Praxis und Theorie der Baukonstruktionen im Lichte der Wissenschaft zu scheiden und zu läutern und um durch die Wiedervereinigung dieser beiden zu den höchsten Aufgaben des Konstruktionswesens aufzusteigen.

Die ältesten Konstruktionen waren wohl Holz- und Steinbalken, roh bearbeitet und gefügt, zur Überdeckung oder Überspannung einer Öffnung oder eines natürlichen Hindernisses. Die Balken wurden auf jedem Ende, wenn nötig unter Herstellung eines Lagers aus Steingerölle, Querhölzern oder dergl. gestützt, sodaß die von den Balken zu tragende Last sicher genug auf den Erduntergrund übertragen werden konnte. Solche Brücken und Stege dienten anfangs nur für den Verkehr von Menschen und Tieren und ihre Herstellung bewerkstelligte sich um so leichter, je kleiner die Entfernung zwischen den Lagern oder Sützpunkten, die Spannweite, war.

Bald lernte man die Spannweite der Öffnung durch Auskragen oder Überkragen von Balken und Steinen und auch durch Anbringen von stützenden Hölzern, Jochen, Steinen und Pfeilern, vergrößern. Außerdem benutzte man *Seilbrücken* und *Steingewölbe*. Uralt ist auch das Dreiecksprengwerk aus zwei schräg gegeneinander gestellten Steinplatten oder Holzbalken¹. Durch Schrägstellen der Stützen unter einem Balken

entstand das Trapezsprengwerk (Fig. 93). Daneben bildeten sich auch die hölzernen Dachwerke aus. Die Grundlagen dazu waren gegeben, nachdem man gelernt hatte, den Schub des Dreieck- oder Trapezsprengwerks durch das Einbinden eines

untern Streckbalkens aufzuheben. Das ist wohl zuerst beim Hausbau geschehen, als man versucht hatte, die Hausmauern gegen den Schub der Dachsparren zu schützen und auf diesem Wege zur Idee des einfachen Dreiecksdaches geführt wurde.

38. Die ersten Fachwerke. Als man zur Errichtung größerer

^I Handbuch der Architektur, Band II.

Dachweiten überging, entstanden jene wichtigen Konstruktionen, deren Haupttragwerke, die Binder, in ihren Grundlinien eine Verbindung von Dreiecken zeigen. Solche Dreieckstabwerke (Fig. 94) zeigten schon die Binder altrömischer Holzdächer. Auch bei altägyptischen Bauten kamen

nach DURM Dachbinder in reiner Dreiecksgliederung vor¹.

Für die Träger hölzerner Brücken sind nach dem Vorbilde der Dachausbildung schon sehr frühe ebenfalls Dreieckstabwerke verwertet worden. Wenn wir darüber aus altrömischen Zeiten auch keine sichern

Nachrichten haben, so steht doch fest, daß zur Zeit PALLADIO's Hängewerke und Sprengwerke schon eine hohe Ausbildung erfahren hatten.

PALLADIO zeichnet 1570 in seinen vier Büchern der Architektur zwei als reine Dreieckstabwerke angeordnete Brückenträger. Fig. 95 ist nach ihm von PICHERONI DE MIRANDOLA in Deutschland gesehen worden, während, wie er weiter sagt, in Italien kein ähnliches Bei-

spiel vorhanden sei. Fig. 96 zeigt die wahrscheinlich von PALLADIO selbst entworfenen Träger der Cismonebrücke mit 35 m Spannweite.

Derartige Dreieckstabwerke nennt man in konstruktiver Hinsicht heute Fachwerke (9). Die Fachwerke haben aber weder im 17. noch im 18. Jahrhundert eine nachhaltige Nachahmung gefunden. Zum Teil lagen die Gründe dafür wohl in dem Unvermögen der Erbauer, die Verbindungen der Hölzer in den Ecken der Dreiecke — den sog. Knoten (14) — dem unter der Belastung der Konstruktion entstehenden Spiel der Kräfte gegenüber auf die Dauer fest und sicher genug zu erhalten. Anderseits aber fehlte auch damals noch jede Theorie, wonach man die in den einzelnen Stäben entstehenden Kräfte rechnerisch hätte ermitteln können, denn die von den hervorragenden Gelehrten jener Zeit (STEVIN und GALILEI) gewonnenen theoretischen Wahrheiten konnten sich damals nur sehr langsam verbreiten. Sie sind erst im 19. Jahrhundert ein Gemeingut vieler geworden. Und dazu hat wesentlich der

^I a. a. O.

Umstand beigetragen, daß um die Wende des 18. und 19. Jahrhunderts die bis dahin allein herrschenden Konstruktionsstoffe, Holz und Stein, in dem Eisen einen unbesiegbaren Mitbewerber erhielten.

39. Eisenkonstruktionen. Das Eisen war bis dahin in der Baukunst nur für untergeordnete Zwecke verwertet worden. Selbst in der Blütezeit der Baukunst des Mittelalters wußte man das Eisen nicht anders auszunutzen, als für Beschläge, zum Verdübeln von Steinverbänden, zum Verstärken von Holzverbindungen oder zum Verankern von Gewölben und Kuppeln. Angesichts der bewunderungswürdigen Überreste der Baukunst des Altertums könnte dies verwunderlich erscheinen. Eisen und Stahl waren aber in jener Zeit im Vergleich zu Holz und Stein viel zu kostbare Metalle, als daß man sie anders als zu den notwendigsten Dingen des Lebens, also für Waffen und Geräte, zu verwenden strebte. Selbst im 18. Jahrhundert fehlte es noch immer an den geeigneten Werkzeugen und Maschinen, um das Eisen in die notwendigen Formen und Verbindungen zu zwingen, sodaß der Wettbewerb von Holz und Stein noch erdrückend wirkte.

Der englische Ingenieur SMEATON war wohl der erste, der das Eisen in der Gestalt von Gußeisen auch für Konstruktionen des Maschinenund Bauingenieurwesens einführte. In einem Schreiben vom Jahre 1782 sagt SMEATON darüber: »Als ich vor 27 Jahren zum ersten Male Gußeisen für gewisse Zwecke verwendete, da rief alles, wie kann sprödes Gußeisen halten, wenn das stärkste Zimmerholz nicht widersteht?« Er sagt dann weiter, daß »der Gebrauch von Gußeisen zuerst in Nordengland gemacht wurde und seit der Zeit ganz allgemein geworden sei«1. Dampfkessel, Walzgerüste, sogar Wasserräder wurden aus Gußeisen gemacht und SMEATON verwendete das Metall u. a. auch im Mühlenbau und für seinen weltberühmten Leuchtturm von Eddystone. 1767 goß man die erste brauchbare Schiene für die Pferdekohlenbahnen der Eisenwerke von Coalbrookdale und drei Jahre später goß man auf demselben Werke die erste feste eiserne Brücke der Welt, die gußeiserne Wegebrücke über den Severn, die heutigen Tages noch steht und die täglich über sie rollenden Lasten mit völliger Sicherheit trägt.

Nachdem dann neue Erfindungen im Eisenhüttenwesen sich bewährt hatten und nachdem die Lokomotiveisenbahnen ins Leben getreten waren, mußte das Gußeisen auf dem Gebiete der Baukonstruktionen dem im *Flammofen* gewonnenen *schmiedbaren* Eisen weichen.

¹ Dr. BECK, Die Geschichte des Eisens in techn. und kulturgesch. Beziehung, IV. Abt. Das 19. Jahrh. 1899.

Unser Zeitalter ist aber schnelllebig. Während das unmittelbar aus den Erzen bereitete schmiedbare Eisen ungezählte Jahrtausende hindurch allein herrschte und während der Gebrauch des auf dem Herde mittelbar aus dem Roheisen erzeugten Eisens immer doch noch 400 Jahre überdauerte, hat das im Flammofen dargestellte Eisen das Bauwesen des 19. Jahrhunderts etwa nur acht Jahrzehnte lang beherrscht, bis zu jener Zeit, als die denkwürdigen Erfindungen von BESSEMER und THOMAS das gesamte Eisenhüttenwesen der Welt von Grund aus umgestalteten. Seit jener Zeit haben die althergebrachten Bezeichnungen von Eisen und Stahl neuen Benennungen weichen müssen, wie sie von einem internationalen Ausschuß hervorragender Metallurgen bei Gelegenheit der Weltausstellung in Philadelphia (1876) vereinbart worden sind. Danach nennt man heute das in teigigem Zustande (auf dem Herde oder im Flammofen) erhaltene schmiedbare Eisen, je nach seiner Härte Schweißeisen oder Schweißstahl. Das im flüssigen Zustande (in der Birne oder im Flammofen) dargestellte schmiedbare Eisen heißt dagegen Flußeisen oder Flußstahl.

Beim Flußmetall unterscheidet man zwei grundverschiedene Arten; das nach dem alten Bessemerverfahren erzeugte *saure* und das durch Entphosphorung dargestellte *basische* Metall. Das basische Metall umfaßt namentlich die *weicheren* Sorten des schmiedbaren Eisens und es hat zweifellos dem sauern Metall gegenüber den Vorzug der größeren Reinheit, Gleichartigkeit und Zähigkeit. Das sind Eigenschaften, die es für das Gebiet der Baukonstruktionen außerordentlich wertvoll gemacht haben.

Wohl erscheint das schmiedbare Eisen, vom Standpunkte des Künstlers angesehen, heute noch als ein etwas spröder Stoff, der sich nicht so bequem wie Holz und Stein ästhetisch ausgestalten läßt, aber für die Ingenieurkunst der Gegenwart ist es unentbehrlich geworden. Wo es hente gilt, die fernsten Pole einander näher zu bringen, sei es, um Länder und Meere durch feste Bahnen zu verbinden, oder sei es, um den Erdball mit geheimnisvollen Netzen zu überziehen, auf denen der elektrische Funken seine Botschaften und seine Arbeiten versendet, da versagen Holz und Stein den Dienst und man greift zum Eisen, dem einfachsten, stärksten und wohlfeilsten Baustoffe für Konstruktionen jedweder Art.

Für die Linienführung der großen Eisenkonstruktionen der Neuzeit, wie Brücken, Hallen, Kuppeln und Türme aller Art, vom Kirchturm und Leuchtturm bis zum Eiffelturm, sind weniger künstlerische Rücksichten maßgebend, als vielmehr die aus rein theoretischen Erwägungen entspringenden Gebote der Notwendigkeit. Es ist daher nicht zu verwundern, wenn dem Laien solche eiserne Riesenbauten eigentlich nur durch ihre Massenwirkung imponieren, während ihm das innere Wesen der Konstruktion, das meist nicht so offen zu Tage tritt, wie dies bei den Werken der schönen Künste der Fall ist, verschlossen bleibt. Und doch verkörpert sich im Aufbau und den Einzelheiten der neueren Eisenkonstruktionen ein gutes Stück des Wissens und Könnens der heutigen Ingenieure; hat doch die Entwickelung dieser Konstruktionen wesentlich zur Ausbildung und Vertiefung der wissenschaftlichen Grundlagen der Ingenieurkunst beigetragen.

40. Anfänge der Theorie¹. Die Statik ist der älteste Teil der Mechanik. Seit der Zeit des ArcHIMEDES (287-212 v. Chr.) verstand

man die Stützenkräfte eines belasteten Balkens nach dem Hebelgesetz zu bestimmen. Das Verfahren der Zerlegung und Zusammensetzung von Kräften, die in einem Punkte angreifen, lernte man von STEVIN (1548—1620). STEVIN² erkannte dabei aus dem Gleichgewicht auf der schiefen Ebene die Kraftverhältnisse an der Seilmaschine. Er wußte z. B. für jeden Knoten des *Seilecks* (Fig. 97) die

dort wirkenden drei Kräfte ihrer Größe nach in einem Dreieck darzustellen. Damit war der Anfang zur graphischen Statik gemacht.

Mit Fragen über die Festigkeit der Baustoffe war schon im Anfang des 17. Jahrhunderts GALILEI (1564—1642) beschäftigt. Jedenfalls war er es, der zuerst eine Theorie der Biegungsfestigkeit aufstellte, wobei er einen einfachen Holzbalken betrachtete, der an seinem einen Ende eingemauert und am andern Ende belastet war. Seine Nachfolger BLONDEL (1661), MARCHETTI (1669), FABRI und GRANDI (1660—1700) erweiterten GALILEIS Theorie auf den an beiden Enden gestützten, eine Einzellast tragenden Balken. Da aber alle diese Gelehrten, ebenso wie GALILEI selbst, bei ihren Untersuchungen die *Elastizität* des Baustoffes (2) nicht berücksichtigten, so konnte die Festigkeitslehre der Baustoffe erst festern Boden gewinnen, nachdem im Jahre 1660 der Engländer HOOKE durch Versuche mit stählernen Federn das sogenannte *Elastizitätsgesetz* fand. Ein ebenso wichtiges Gesetz, das infolge seines außer-

 ¹ Vgl. WINKLER, Abriß der Geschichte der Elastizitätslehre. Techn. Blätter 1879. Auch MEHRTENS, Technische Mechanik (im Handbuch der Baukunde). 1885.
 ² STEVIN, Beghinselen der Waagkonst, 1585. Hypomnemata mathematica, 1608. ordentlich weiten Anwendungsgebietes heute eine hervorragende Bedeutung für die Statik der Baukonstruktionen gewonnen hat, ist das sog. *Gesetz der virtuellen Geschwindigkeiten oder Verschiebungen*, das schon GALILEI und STEVIN erkannten. Aber erst JOH. BERNOULLI sprach es in seiner allgemeinen Form aus nnd LAGRANGE leitete daraus eine Formel ab, die eine Lösung aller Aufgaben über Gleichgewichtsaufgaben enthält.

Heute läßt sich der Satz von den virtuellen Verschiebungen allgemein wie folgt aussprechen:

Bezeichnen P_x , P_2 , P_3 , \dots , P_m Kräfte, unter deren Einwirkung ein Molekül, ein Punkt, ein Körper oder eine Gruppe von Körpern sich im Gleichgewicht befinden; ferner v_x , v_z , v_3 , \dots , v_m unendlich kleine Verschiebungen, die bei irgend einer möglichen Lagenänderung die Angriffspunkte der Kräfte P_x , P_2 , P_3 , \dots , P_m erleiden können, so muß bei jeder Lagenänderung die Summe der Arbeiten der Kräfte gleich Null sein. Denn nach den Gleichgewichts-Bedingungen ist in jedem Angriffspunkte die Summe der Seitenkräfte aller dort wirkenden P, genommen in der Richtung von v — also auch das Produkt aus dieser Summe in v — gleich Null. Eine Anwendung dieses höchst fruchtbaren Satzes findet sich bereits unter **34**.

Die ersten Anfänge in der Statik und der Festigkeitslehre rührten, wie oben gesagt, von STEVIN und GALILEI her. Die weitere Ausbildung dieser beiden Zweige der Theorie kam aber erst im Anfange des 19. Jahrhunderts zu einem gewissen Abschluß insofern, als NAVIER (1785—1836) wichtige Fragen der *Biegungsfestigkeit* in entscheidender Weise zur Lösung brachte und indem er, darauf gestützt, in seiner »Baumechanik« zum ersten Male in umfassender Weise Berechnungen von Bauwerken aller Art vorführte. Mit Recht gilt daher NAVIER als Begründer der Statik der Baukonstruktionen.

41. Navier's Vorgänger im 17. und 18. Jahrhundert. Schon MARIOTTE (1620—1684)^r hatte bei seinen Versuchen (4) gefunden, wie

sich die Fasern eines gebogenen Stabes auf einer Seite seines Querschnittes verlängern, während sie sich auf der andern Seite verkürzen. Er fand auch, daß der Stab, wenn er an jedem seiner Enden fest *eingespannt*

ist (Fig. 98), eine doppelt so große Last tragen kann, als wenn er nur frei auf zwei Stützen liegt.

^I a. a. O. S. 6.

MARIOTTE (1680) und auch LEIBNITZ (1684) nahmen die bei der Biegung erzeugten Normalspannungen (3) in einem Querschnitte nicht gleich groß an, sondern proportional dem Abstande von einer Gleichgewichtsachse, die sie in die Mitte der Querschnittshöhe legten.

PARENT (1710) führte zuerst den Nachweis, daß die Summe der Spannungen auf beiden Seiten jener Achse gleich sein müsse. Dadurch legte er den Grund zur genauen Bestimmung der sog. *Nulllinie des Querschnittes*, in deren Punkten die Normalspannungen vom Positiven ins Negative (oder umgekehrt) übergehen, wo sie also mit andern Worten zu *Null* werden.

Mit der Biegungsfestigkeit beschäftigten sich im 18. Jahrhundert auch die großen Theoretiker JACOB BERNOULLI, EULER, LAGRANGE und COULOMB.

BERNOULLI untersuchte zuerst die Gestalt der Stabachse (1) nach erfolgter Formänderung des Stabes unter der Belastung, d. h. die sog. *Biegelinie* oder *elastische Linie*. Er legte dar, wie der Krümmungshalbmesser der Biegelinie in jedem Punkte dem zugehörigen Biegungsmomente (13) proportional sei.

EULER vervollkommnete die BERNOULLI'sche Theorie der elastischen Linie und machte darauf aufmerksam, wie die Messung der Durchbiegung eines Stabes dazu dienen könne, dessen Elastizitätseigenschaften zu ermitteln. Im besondern untersuchte EULER auch den Fall der Festigkeit eines geraden Stabes, bei welchem die äußere Kraft in der Stabachse wirkt. Er nannte diesen Fall »Säulenfestigkeit«. Heute haben wir dafür den Namen »Knickfestigkeit« eingeführt und die von EULER seinerzeit angegebenen Gleichungen zur Berechnung der Größe der äußern Kraft (der Knickkraft), die eine Zerstörung des Stabes durch Ausknicken herbeiführt, stehen heute noch viel in Gebrauch. EULER behandelte als erster auch die Theorie der krummen Stäbe.

LAGRANGE erweiterte die EULER'sche Knickfestigkeitstheorie, indem er zeigte, wie der Stab je nach der Größe der Knickkraft auf zwei, drei und mehr Teillängen *wellenförmig* ausbiegen kann.

Die erste, auf richtiger Grundlage aufgebaute zusammenhängende Theorie der einfachen Festigkeitsfälle veröffentlichte COULOMB (1736 bis 1806)¹. Er stützt sich auf MARIOTTE und PARENT und findet, daß die Nulllinie bei senkrecht zur Stabachse gerichteten Lasten und symmetrischen Querschnitten in der Mitte der Querschnittshöhe liegt, erkennt

^I COULOMB, Mémoires de l'Académie des Sciences. 1784. Zuerst 1776 unter dem Titel »Application des règles de maximis et minimis à quelques problèmes de statique relatifs à l'Architecture.

aber zugleich, daß sie beim Bruche ihre Lage ändern könne. Er weist als erster darauf hin, daß in einem Querschnitte auch innere Kräfte auftreten müssen, deren Richtung in die Querschnittsebene fällt, weil sonst kein Gleichgewicht zwischen den innern und äußern Kräften bestehen kann. Er nennt diese innern Kräfte *Schubspannungen* (**3**b) und erkennt, daß diese nicht wie die Normalspannungen von der Länge des Stabes abhängen, sondern daß ihre Summe immer gleich derjenigen äußern Kraft sein muß, die im Querschnitt anzubringen ist, um das Gleichgewicht der innern und äußern Kräfte des betrachteten Stabteiles zu erhalten. Diese äußere Kraft nennen wir heute die *Querkraft*.

COULOMB bemerkte ferner, daß seine Theorie der Biegungsfestigkeit nur richtig sein oder auf praktische Fälle angewendet werden könne, wenn die Schubspannungen auf » das Bestreben zur Trennung nur wenig Einfluß haben, oder wenn der Hebelarm der Last viel größer ist, als die Höhe des Stabes«. Das heißt mit andern Worten, der Einfluß der Schubspannungen wächst mit dem Abnehmen des Verhältnisses zwischen der Stützweite des Stabes und seiner Querschnittshöhe. Namentlich bei Holzbalken, die nur eine geringe Schubfestigkeit parallel zu den Fasern aufweisen, können deshalb in der Nulllinie, wo die Normalspannungen verschwinden, die Schubspannungen eine Zerstörung des Balkens herbeiführen, wenn dessen Stützweite im Vergleich zur Höhe sehr klein ist (vergl. § 17 im vierten Abschnitt).

COULOMB war auch der erste, der die bis zum Ende des 17. Jahrhunderts zurückreichenden Anfänge der *Theorien über Erddruck und Gewölbe* wesentlich bereicherte und in eine geschlossene Form brachte, obwohl der Abschluß dieser Theorien erst im 19. Jahrhundert erfolgt ist, nachdem eine große Reihe von Forschern — darunter die Deutschen EvTELWEIN (1808), GERSTNER (1831), SCHEFFLER (1857), HAGEN (1862), CULMANN (1866), SCHWEDLER (1868), REBHANN (1871), WINKLER (1872), MOHR (1881), WEYRAUCH (1881) u. a. zu ihrer Vervollkommnung beigetragen haben.

42. Theoretische Fortschritte im 19. Jahrhundert. In der ersten Hälfte des 19. Jahrhunderts stand die weitere Ausbildung der Biegungsfestigkeit im Vordergrunde.

NAVIER¹ bewies, daß die Nulllinie bei senkrecht zur Stabachse gerichteter Belastung durch den Schwerpunkt des Querschnittes verlaufen müsse. TREDGOLD nannte die Nulllinie (1820) zuerst »neutrale Linie«

¹ NAVIER, Mémoire sur la flexion des verges élastiques courbes. Am 23. Nov. 1819 der Pariser Akademie überreicht. Vergl. Annales de chimie et de physique. 1820. Band XV.

und so wird sie auch heute noch viel genannt. NAVIER leitete für den bezeichneten Belastungsfall die Formel:

$$\sigma = \frac{My}{I}$$

ab. Danach kann für einen beliebigen Querschnittspunkt, dessen Abstand von der (durch den Schwerpunkt gehenden) Nulllinie gleich $\pm y$ ist, die Normalspannung σ aus dem Quotienten $\frac{M}{J}$ berechnet werden, worin unter M das statische Moment der äußeren Kräfte für den Schwerpunkt des betrachteten Querschnittes zu verstehen ist und worin die Größe $J = \sum y^2 dF$ — wie zuerst PERSY (1834) nachgewiesen hat das auf die Nulllinie bezogene Trägheitsmoment des Querschnittes bedeutet.

In der Vorrede der ersten Ausgabe seines berühmten Werkes über »Baumechanik« (1826) weist NAVIER darauf hin, wie aus den Untersuchungen seiner Vorgänger »bis jetzt die Mathematik mehr Nutzen gezogen, als die Architektur und das Ingenieurwesen«. Er sagt dann weiter, »die meisten Konstrukteure bestimmen die Abmessungen der Teile von Bauwerken oder Maschinen nach dem herrschenden Gebrauche und nach dem Muster ausgeführter Werke. Sie legen sich selten Rechenschaft ab über die auf jene Teile wirkenden Kräfte und über den Widerstand, den diese jenen entgegensetzen.«

Diese Aussprüche des großen Ingenieurs beleuchten den Stand der Ingenieurkunst jener Tage. Wir müssen aber bekennen, daß es solche, die ohne viel Nachdenken »nach berühmten Mustern« bauen und konstruieren, auch heute noch genug unter uns gibt, obwohl ja seit NAVIER's Zeit die Statik der Baukonstruktionen erhebliche Fortschritte gemacht hat. Die Fortschritte sind Hand in Hand gegangen mit der Entwickelung der Baukonstruktionen des 19. Jahrhunderts und lassen sich daher am besten wohl auch im Zusammenhange mit dieser besprechen.

Den größten Einfluß auf die weitere Ausbildung der Theorie hat die Ausbreitung der gegliederten Konstruktionen geübt, namentlich also der Eisenkonstruktionen, die infolge der angedeuteten Fortschritte im Eisenhüttenwesen und mit der wachsenden Verdichtung des Eisenbahnnetzes der Erde, mehr und mehr an Bedeutung gewonnen haben. Unter den Eisenkonstruktionen sind es in erster Linie die eisernen Brücken gewesen, die zu einer Vervollkommnung und Vertiefung der theoretischen Grundlagen gedrängt haben.

Wenn auch durch NAVIER'S Nachfolger (deren Leistungen weiterhin Mehrtens, Statik der Baukonstruktionen. I. 6 gelegentlich erwähnt werden) in der ersten Hälfte des 19. Jahrhunderts die Grundlagen der Festigkeitslehre im wesentlichen so ausgebaut worden sind, wie wir sie heute kennen und gebrauchen, so hat man in jener Zeit doch das *Wesen der Standfestigkeit der gegliederten Konstruktionen* nicht voll erkannt. Die damalige Berechnung gegliederter Träger beschränkte sich auf eine Bestimmung der Gurtspannungen aus den Biegungsmomenten mit Hilfe des NAVIER'schen Satzes. Der Einfluß der Wandgliederung (Andreaskreuze u. dergl.) wurde dabei vernachlässigt, weil man diese nur als eine notwendige Zugabe gegen Verschiebung der Gurte ansah. Auch die berühmten Trägersysteme der amerikanischen gegliederten Holzbrücken aus dem 4. Jahrzehnt des vorigen Jahrhunderts, die nachweisbar als Vorbilder der gegliederten Hauptträger der europäischen Eisenbrücken gedient haben, sind ohne genauere Berechnungen erbaut worden.

Erst seit 1851, als Schwedler¹ und Culmann² ihre grundlegenden theoretischen Arbeiten über die Berechnung von Fachwerkträgern veröffentlichten, beginnen die neuern Bestrebungen zur Vervollkommnung und Vertiefung der Statik der Baukonstruktionen. Die unter Vortritt von CULMANN geschaffene und von MAXWELL, MOHR, CREMONA und anderen³ geschaffene graphische Statik schärfte zusehends die theoretischen Waffen. Sie eröffnete neue Gebiete des Wissens; die Sätze vom Gleichgewicht erhielten dadurch ihre einfachste Fassung, und neue Verfahren zur Bestimmung von Spannungen und Formänderungen in ebenen und räumlichen gegliederten Tragwerken bildeten sich aus. Nachdem MOHR die elastische Linie als Seillinie graphisch darstellen lehrte und die Anwendung des Satzes der virtuellen Verschiebungen für die Ermittelung der Formänderungen zeigte; nachdem MENABREA, CASTIGLIANO und FRÄNKEL zum ersten Male die Sätze von der Abgeleiteten der Formänderungsarbeit anwendeten, waren in der Statik der Baukonstruktionen einfache und allgemeine Grundlagen zur graphischen und analytischen Berechnung auch der statisch unbestimmten Trägersysteme gegeben (35).

So verschaffte in der zweiten Hälfte des 19. Jahrhunderts die Theorie der Praxis die Mittel, um die ältere, ohne besondere theoretischen Kenntnisse geschaffenen Systeme im Lichte der Wissenschaft mit neuem Gehalte zu füllen und zu neuen Formen umzugestalten.

¹ SCHWEDLER, Theorie der Brückenbalkensysteme. Zeitschr. f. Bauwesen 1851.

² CULMANN, Der Bau der eisernen Brücken in England und Amerika. Allg. Bauzeitung 1852.

³ Vergl. die einschlägige Literatur in: MEHRTENS, Der deutsche Brückenbau im 19. Jahrhundert. 1900.

43. Die graphischen Methoden. Nicht allein für die Ermittelung von Spannkräften und Formänderungen der statisch bestimmten, sondern auch für die Berechnung der statisch unbestimmten Konstruktionen stehen heute die graphischen Methoden im Vordergrunde. Und mit Recht. Warum diese Methoden aber bevorzugt werden, wird nur derjenige voll verstehen, der ihre Einfachheit, Übersichtlichkeit und Genauigkeit durch viele Übung und durch Vergleiche ihrer Ergebnisse mit analytischen Rechnungen erprobt hat. Durch das Zeichnen von einfachen Kraft- und Seilecken, in Verbindung mit Einflußlinien, Biegelinien und Verschiebungsplänen löst man heute die verwickelsten Aufgaben. Der so erhaltene graphische Plan besitzt große Anschaulichkeit. In ihm erblickt man, wie mit einem Schlage - was bei der analytischen Behandlung ausgeschlossen ist - das Gesamtspiel der Kräfte, besonders die gegebenen Belastungen, gefährlichsten Laststellungen und die entstehenden Spannkräfte oder Formänderungen. So bietet der graphische Plan eine ausgezeichnete Handhabe, um das Kräftespiel in der Konstruktion unter dem Belastungswechsel durch Anschauung verstehen und verfolgen zu lernen. Dabei birgt jedes graphische Einzelverfahren in sich selbst entweder die Möglichkeit einer Prüfung seiner Richtigkeit oder es läßt eine solche auf verschiedene Art in einfacher Weise zu.

Über die Ungenauigkeit der graphisch ermittelten Zahlenwerte sind übertriebene Behauptungen laut geworden. Allerdings ist bei analytischen Rechnungen mathematische Genauigkeit zu erzielen, bei der graphischen Methode dagegen niemals. Aber man sollte nicht vergessen, daß der ausübende Bautechniker keine mathematisch genauen Zahlen braucht. Ein verständiger Konstrukteur rechnet nicht mit unnützen Dezimalen, er rundet seine Kräftezahlen nach oben ab. Deshalb wird ein solcher auch die Frage, ob denn die von ihm gebrauchten, graphisch ermittelten und nachgeprüften Zahlen genau genug sind, um die Sicherheit der danach entworfenen und hergestellten Konstruktion nicht zu gefährden, bejahen. Gegebenenfalls sind analytische Stichproben nicht von der Hand zu weisen, notwendig erscheinen sie aber nicht, wenn die graphische Rechnung auf graphischem Wege gehörig nachgeprüft war.

Es soll jedoch nicht verschwiegen werden, daß die graphischen Methoden viel von ihrer Einfachheit einbüßen, sobald man sie zur *Berechnung von Raumgebilden* verwendet. Deshalb empfiehlt es sich, bei der Berechnung von Raumsystemen die analytische Behandlung, die dabei in vielen Fällen große Vorzüge bietet, nicht zu übersehen (vergl. in § 13).

Der Begründer der graphischen Statik war CULMANN (1821-81), der den neuen Wissenszweig an der Züricher Hochschule bereits lehrte,

6*

ehe er 1869 seine «Graphische Statik« herausgab. Seine Vorgänger STEVIN, VARIGNON, LAMÉ, CLAPEVRON, PONCELET, MÖBIUS und COUSINERV haben ihm nur unwesentliche Beiträge geliefert. STEVIN und VARIGNON zeichneten bereits das Kraft- und Seileck (40), LAMÉ und CLAPEVRON verwendeten diese Gebilde bei der Festlegung der Kettenlinien im Entwurfe einer 311 m weitgespannten Kettenbrücke für Petersburg (1827). PONCELET, MÖBIUS (1827) und COUSINERV (1838) waren die ersten, die eine unmittelbare Anwendung der Geometrie bei Standfestigkeits-Untersuchungen einführten. Der Deutsche MöBIUS^{*} lieferte die ersten allgemeinen Untersuchungen über die *Starrheit* oder *Unbeweglichkeit* der Stabgebilde, wobei er in höchst bemerkenswerter Weise bereits zeigte, unter welchen Umständen *eine unendlich kleine Beweglichkeit* eintreten könne (34).

Auch die Sätze der 1835 von AMPERE begründeten geometrischen Bewegungslehre haben sich in der graphischen Statik als fruchtbar erwiesen. FRÄNKEL wendete 1875 die Sätze vom augenblicklichen Drehpunkte an, um die Verschiebungen von Fachwerksknoten zu ermitteln. Föppl (1880), LAND, MÜLLER-Breslau (1888) und GRÜBLER (1887-89) erweiterten das Gebiet der Anwendungen, im besondern bei Untersuchungen über die Starrheit und die unendlich kleine Beweglichkeit von Fachwerken.

Gute und vollständige Werke über die Statik der Baukonstruktionen sind heute sehr selten. Eigentlich gibt es heute nur ein einziges Lehrbuch, das alle Anforderungen erfüllt. Das ist die »Graphische Statik der Baukonstruktionen« von Müller-Breslau, in der alles Wissenswerte aut diesem Gebiete in ausgezeichneter Weise zusammengefaßt und behandelt worden ist. Man darf wohl sagen, daß die große Verbreitung dieses Lehrbuches wesentlich dazu beigetragen hat, die von RITTER, CULMANN, MAXWELL, MOHR u. a. geschaffenen Grundlagen der graphischen Statik in den weitesten technischen Kreisen allgemeiner bekannt zu machen.

44. Die heutigen Konstruktionsaufgaben. Die heutigen Aufgaben der Statik der Baukonstruktionen zeigen, wie schon der Name dieses Wissenszweiges besagt, eine statische und eine konstruktive Seite. Im Anfang war die Konstruktion; zu ihr gesellte sich später die Statik und beide sind dann im Laufe der Jahrhunderte zusammen groß geworden. Beide sind auch heute noch unzertrennlich. Das Gebiet ihrer Aufgaben ist aber so umfangreich und weitverzweigt, daß es in den Lehrplänen der Technischen Hochschulen in Sondergebieten, die auf der Grundlage

^I Möbius, Lehrbuch der Statik. 1837. II.

der Mechanik und der Festigkeitslehre fußen, getrennt behandelt werden muß. Die Vorträge über »Statik der Baukonstruktionen« bewegen sich deshalb in engen Grenzen insofern, als die Behandlung der konstruktiven Seite ihres Gegenstandes wesentlich den Fachvorträgen über »Hoch-, Wasser-, Eisenbahn- und Brückenbau« überlassen bleiben muß.

In meinen Vorträgen unterscheide ich bei den zu behandelnden Aufgaben eine Lösung 1. im *engern* und 2. im *weitern* Sinne, wobei ich den Inhalt der Aufgaben etwa wie folgt umgrenze:

1. Anwendung der Sätze der allgemeinen Statik und der Festigkeitslehre für die Berechnung der Stabkräfte und Spannungen gegebener Konstruktionssysteme;

2. Erweiterung dieser Aufgaben durch Ermittelung der günstigsten Gestalt der Konstruktionen derart, daß in keinem ihrer Teile an Baustoff verschwendet wird und in keinem Querschnitte die nötige Sicherheit mangelt.

Im ersten Falle liegt also ein Schema oder ein fertiger Entwurf eines Konstruktiossystemes vor, während im zweiten Falle nach gegebenem Programm ein Vorentwurf zu liefern ist. Inwieweit nun die bei der Lösung von Aufgaben im weiteren Sinne notwendig einzuhaltenden Gesichtspunkte im allgemeinen auch schon in den Vorträgen über Statik der Baukonstruktionen gegeben werden sollten, ist schwierig zu sagen, weil dabei die Eigenart der Lehrpläne und der Persönlichkeiten an den betreffenden Hochschulen mit ausschlaggebend sein werden.

Nach meinem Dafürhalten erscheint es zweckmäßig, wenn schon bei der Anleitung zur Berechnung gewisser Konstruktionen nach gegebenen Systemen, wie Gewölben, Stützmauern, statisch unbestimmten Brückenträgern u. dergl., auf alle Umstände aufmerksam gemacht wird, die bei der *Herstellung* jener Konstruktionen, sei es auf der Baustelle oder in der Werkstatt, ihre Spannungen und ihren Sicherheitsgrad beeinflussen. Im besondern kämen dabei auch solche Eisenkonstruktionen in Betracht, deren Spannungen während ihrer Aufstellung wesentlich andere sind, als später während ihres Betriebes, oder bei deren Aufstellung künstliche Belastungen verwendet werden, um an Baustoff zu sparen u. a. m.

Man könnte dagegen einwenden, daß alle genannten, die Spannungen und die Sicherheit einer Konstruktion beeinflussenden besondern Umstände lediglich konstruktiver Natur sind und ihre Besprechung deshalb in den erwähnten praktischen Vorträgen finden müssen. Wie aber bereits gesagt, sind Theorie und Konstruktion unzertrennlich und daß dies so ist, kann den Studierenden aller Fächer an passenden Beispielen nicht früh genug dargetan werden, damit sie nicht durch übertrieben einseitige theoretische Ausbildung die hohe Bedeutung der konstruktiven Seite der technischen Wissenschaft unterschätzen und vergessen lernen, daß alle statischen Berechnungen unter Voraussetzungen erfolgen, die in der wirklichen Konstruktion niemals ganz erfüllt werden. Das berechnete System wird praktisch erst brauchbar, wenn es der Konstrukteur, bildlich gesprochen, mit Fleisch und Blut umhüllt und ihm lebendigen Odem eingehaucht hat, damit das Ganze in Formen erscheint, die dem Zwecke des Bauwerks wohl angepaßt sind. Ein guter Konstrukteur muß zwar ein guter Theoretiker sein, aber daneben muß er auch noch ein gewisses Etwas besitzen, das durchaus nicht im Widerstreit mit den sog. exakten Wissenschaften zu stehen braucht, nämlich das angeborene oder anerzogene feine Gefühl für die Zweckmäßigkeit der von ihm geschaffenen Formen.

Einer unserer hervorragendsten Altmeister auf dem Gebiete der Konstruktion, der 1896 verstorbene Schwedler, sagte in seiner ersten bahnbrechenden theoretischen Arbeit vom Jahre 1851: »Die vorstehenden Bemerkungen sind nur gemacht worden, um anzudeuten, wie eine Theorie, die auf bestimmte Voraussetzungen basiert ist, nicht auf Bauausführungen angewendet werden kann, bevor man geprüft hat, ob auch sämtliche Voraussetzungen bei dem Werke gemacht werden können. Es wird sich im Gegenteil finden, daß die Theorie für jedes Bauwerk, je nach dem Baustoffe, dessen Elastizität, den Querschnitten der Teile, den Verbindungen und noch mancherlei andern Sachen besonders richtig gestellt werden muß, wenn man nicht in Fehler verfallen will. Die Theorie gibt nur im allgemeinen ein Schema, nach welchem die Standfestigkeit des Bauwerks durchdacht werden soll. Dem einzelnen Baumeister bleibt es danach überlassen, in jedem besondern Falle dieses Schema mit seinen Gedanken auszufüllen.«

Ein Techniker, der diese goldenen Worte allezeit beherzigt und immer bedacht ist, das *»theoretische Schema*« mit seinen Gedanken auszufüllen, das ist der geborene Konstrukteur!

Zweiter Abschnitt. Äulsere Kräfte.

§ 7. Die Gleichwertigkeit verschiedener Kräftegruppen.

Es handelt sich hier darum, klarzulegen, wie man die bei Konstruktionen vorkommenden verschiedenen Belastungsgruppen auf möglichst einfache gleichwertige Kräftegruppen zurückführen kann. Dabei werden zwei verschiedene Gruppen von äußern Kräften als gleichwertig angesehen, wenn beim Ersatz der einen Gruppe durch die andere die Stützenkräfte unverändert bleiben. Es erscheint aber notwendig, hervorzuheben, daß dabei die innern Kräfte nicht in Betracht kommen, weil diese sich im allgemeinen bei jeder Änderung in der Lage und Gruppierung der Lasten ändern müssen.

45. Eine Einzelkraft. Eine Scheibe oder ein Körper stehe unter der Einwirkung von Kräften im starren Gleichgewicht und jede Kraft sei durch Angriffspunkt, Richtung und Größe

gegeben. Was dann allgemein von der statischen Wirkung einer einzelnen der Kräfte zu sagen ist, läßt sich sinngemäß auf jede der andern übertragen, woraus die Art der Gesamtwirkung aller Kräfte zu erkennen ist.

Ohne am betrachteten Gleichgewicht der $\ddot{a}u\beta ern$ Kräfte, um die es sich hier allein handelt, etwas zu ändern, kann man eine Einzelkraft *in ihrer Richtung* beliebig verschieben, wenn dabei die Kraft nur mit der Scheibe oder dem Körper starr verbunden gedacht bleibt. Die Kraft P, die im Oberflächenpunkte *m* angreift (Fig. 99), soll z. B. in

ihrer Richtung nach n verschoben werden. Bringt man vorher in n in der Richtung mn zwei Kräfte P gleicher Größe, aber entgegengesetzten

Sinnes an, so heben diese beiden sich in ihren Wirkungen auf, stören also das Gleichgewicht nicht. Es wirken jetzt dann im ganzen drei Kräfte der Größe P. Von diesen hebt sich die Kraft P im Angriffspunkte m und die eine entgegengesetzt dazu gerichtete Kraft P im Punkte n ehenfalls in ihren Wirkungen auf, können also ohne Störung des Gleichgewichts wieder beseitigt werden. Bleibt demnach nur die Wirkung derjenigen Kraft P in n übrig, die von m nach n verschoben gedacht war.

Verschiebt man eine Kraft P in *m parallel zu sich selbst* nach einem beliebigen Punkte *n* (Fig. 100), so muß man, um den ursprünglichen

Belastungszustand aufrecht zu erhalten, in nnoch eine Kraft P anbringen, die der verschobenen Kraft P parallel, aber entgegengesetzt zu ihr gerichtet ist. Diese in n angreifenden beiden Kräfte P sind miteinander im Gleichgewicht, ändern also am ursprünglichen Belastungszustande nichts. Die neu gebildete Kräftegruppe besteht aus einer parallel zu sich selbst nach n verschobenen Kraft Pund einem sog. Kräftepaare P, das aus zwei gleich großen, aber entgegengesetzt gerichteten Kräften P gebildet wird, deren Richtungen nicht in eine und dieselbe Gerade fallen.

Erfahrungsmäßig ist ein Kräftepaar bestrebt, die Scheibe oder den Körper zu verdrehen. Man mißt die Größe des Paares mit Hilfe seines *Hebelarmes* (seiner *Breite*), wenn darunter der senkrechte Abstand azwischen den beiden Kraftrichtungen verstanden wird (Fig. 100). Die Größe der Drehwirkung des Paares ist gleich dem Produkte aus der Kraft P in den Hebelarm a, das als *statisches Moment* bezeichnet wird.

Das statische Moment M einer Einzelkraft P in m, bezogen auf einen beliebigen Punkt n der Scheibe oder des Körpers (Fig. 100) ist also

$$M = P \cdot a \,. \tag{18}$$

Die in n außerdem noch wirkende, dorthin verschoben gedachte Kraft P hat kein Moment in Beziehung auf n, weil ihr Hebelarm gleich Null ist.

Eine Einzelkraft übt nach obigem zweierlei Wirkung aus. Sie sucht einerseits alle Punkte der Scheibe oder des Körpers parallel ihrer Richtung mm' zu verschieben und anderseits ist sie bestrebt, die Scheibe oder den Körper zu verdrehen, wobei die Größe der Verdrehung für
einen beliebigen Punkt n um so größer wird, je weiter dieser von der mm' absteht.

Im betrachteten Falle des starren Gleichgewichts findet in keinem Punkte weder eine Verdrehung noch eine Verschiebung statt. Daraus folgt, daß die von der Einzelkraft angestrebte *Veränderung der Lage* irgend eines Punktes gleich groß, aber entgegengesetzt gerichtet ist derjenigen Lagenveränderung des nämlichen Punktes, die von der Gesamtheit aller übrigen äußern Kräfte angestrebt wird.

Weiteres über Eigenschaften eines Kräftepaares folgt unter 47.

46. Zwei Kräfte.

a. Die Kraftrichtungen sind nicht parallel und schneiden sich (Fig. 101). In diesem Falle wirken die Kräfte in der durch ihre

Richtungen festgelegten Ebene und sie können in ihrer Wirkung durch eine *Mittelkraft* ersetzt werden, deren Richtung durch den Schnittpunkt n der Kraftrichtungen verläuft.

Verschiebt man nämlich die Kräfte P_x und P_z in ihrer Richtung so weit, daß beide in n ihren Angriffspunkt erhalten, so wird dadurch am Gleichgewicht der Scheibe oder des Körpers nichts geändert. Nach dem Satze vom Parallelogramm der Kräfte ist dann die Mittelkraft gleich der Diagonale eines Parallelogramms, das aus den beiden als *Strecken* aufgetragenen Kräften P_x und

 P_2 gebildet wird. Bequemer ist es, nur die Hälfte des Parallelogramms zu zeichnen, das sogenannte Kraftdreieck (Fig. 102), worin der Sinn der Mittelkraft R stets entgegengesetzt dem Sinne des Kräftezuges P_1 , P_2 gerichtet ist. Weiter folgt, daß zwei Kräfte, deren Richtungen sich schneiden, miteinander nie im Gleichgewicht sein können.

Das Zusammensetzen der Kräfte P_x und P_z zu einer Mittelkraft R kann auch dadurch geschehen, daß man jede Kraft auf zwei beliebige feste Richtungen OX und OY projiziert. Die Summe jeder der beiden Projektionen ist dann gleich der Projektion von R auf die zugehörige gleiche feste Richtung. Dies ist in der Fig. 102 ausgeführt und an sich verständlich. Rechnerisch ergibt sich danach:

$$R = \sqrt{P_{1}^{2} + P_{2}^{2} + 2 \cdot P_{1} \cdot P_{2} \cdot \cos \gamma}$$
(19)
$$\frac{P_{1}}{R} = \frac{\sin \beta}{\sin \gamma}; \quad \frac{P_{2}}{R} = \frac{\sin \alpha}{\sin \gamma}.$$

Zweiter Abschnitt. Außere Kräfte.

Für $\gamma = 90^\circ$ wird:

$$R = \sqrt{P_{1}^{2} + P_{2}^{2}} \qquad (20)$$

$$P_1 = R \sin \beta; \quad P_2 = R \cos \beta.$$

Für $\beta = 90^\circ$ wird:

$$R = \sqrt{P_{1}^{2} - P_{2}^{2}} \qquad (21)$$

$$P_{1} = \frac{R}{\cos \alpha}; \quad P_{2} = R \tan \alpha.$$

b. [Parallele gleichgerichtete Kräfte. Zeigen beide Kraftrichtungen gleichen Sinn (Fig. 103), so sind die Kräfte ebenfalls durch eine Mittelkraft zu ersetzen, deren Lage in der Kraftebene wie folgt gefunden werden kann. Zu der Gruppe der beiden Parallelkräfte P_x , P_z füge man eine Gruppe von zwei Kräften H' hinzu, die in der Verbindungslinie der Angriffspunkte 1 und 2 der ersten Gruppe angreifen und gleich groß, aber entgegengesetzt gerichtet sind. Dadurch wird das Gleichgewicht nicht gestört. Man setze H' und P_x , sowie auch H'und P_z (mit Hilfe von Kraftdreiecken) zu je einer Mittelkraft zusammen. Diese Mittelkräfte K_x und K_z schneiden sich in n und können schließlich dort zu einer Mittelkraft R vereinigt werden. Aus der graphischen Ermittelung mit Hilfe des betreffenden Kraftdreiecks ergibt sich ohne weiteres, daß

$$R = P_{I} + P_{2}$$

und dabei parallel zu P_{1} und P_{2} ist.

Die Lage von R findet man rechnerisch am einfachsten aus den statischen Momenten. Soll R die Wirkung von P_1 und P_2 ersetzen, so muß das statische Moment von R gleich der algebraischen Summe der statischen Momente von P_1 und P_2 sein únd zwar für jeden beliebigen Punkt der Kraftebene. Wählt man als Momentenpunkt einen beliebigen Punkt o in der Richtung von R, so ist das statische Moment von R in Beziehung auf o gleich Null. Sind a_1 und a_2 die zugehörigen Hebelarme — und rechnet man (nach 47) Momente, die im Sinne des Uhrzeigers rechts drehen positiv, links drehende Momente dagegen negativ — so ist

oder

$$o \equiv P_2 a_2 - P_1 a_1$$
$$\frac{a_1}{a_2} = \frac{P_2}{P_1} \cdot \tag{22}$$

Wie man allgemein für beliebige parallele oder nicht parallele Kräfte die Lage ihrer Mittelkraft findet, wird weiterhin (in § 8) gezeigt.

c. Parallele in verschiedenem Sinne gerichtete Kräfte. Die Mittelkraft kann hier in der nämlichen Art gefunden werden, wie unter b. erörtert und wie es in der Fig. 104 durchgeführt worden ist. Die Ermittelung von R ist danach ohne besondere Erläuterung ver-

Fig. 103.

ständlich. Die Figur veranschaulicht auch, wie mit dem Größenverhältnis von P_x zu P_z die Lage von R sich verändert. Je größer P_x gegenüber P_z ist, desto näher rückt R (mit dem Schnittpunkt n) an die größere Kraft P_x heran, dabei ist die Größe von R aus

$$R = P_1 - P_2$$

bestimmt. Verschwindet P_2 , so wird $R = P_1$ und *n* fällt in die Richtung von P_1 . Umgekehrt rückt *R* weiter ab von P_1 , wenn diese Kraft kleiner wird. Wird $P_1 = P_2$, liegt also ein Kräftepaar (45) vor, dann rückt *R* in die Unendlichkeit, weil die Richtungen von K_1 und K_2 in diesem Sonderfalle parallel laufen.

d. Windschiefe Kräfte. Die Richtungen windschiefer Kräfte schneiden sich niemals, auch nicht in der Unendlichkeit. Sie kommen

also nur für den Körper, nicht für die Scheibe in Betracht. Eine Gruppe von zwei windschiefen Kräften läßt sich in keinem Falle auf

eine Einzelkraft als Mittelkraft zurückführen. Man kann zwar die eine Kraft $P_{\rm I}$ aus ihrer gegebenen Lage mm parallel zu sich selbst im Raume verschoben denken, bis ihre Richtung in einem Punkte n die Richtung der zweiten Kraft P, schneidet, es bedarf dann aber, um die so erhaltene neue Kräftegruppe der ursprünglichen gleichwertig zu machen, noch der Hinzufügung eines Kräftepaares vom Momente P, a, wenn a den Abstand zwischen n und der Geraden mm bezeichnet. Das Kräftepaar und die Mittelkraft von P_1 und P_2 , die in n angreifen, liegen dann in verschiedenen und nicht

zueinander parallelen Ebenen, weshalb die Kräftegruppen nicht auf eine einzige gleichwertige Einzelkraft zurückgeführt werden können.

47. Eigenschaften der Kräftepaare.

a. Statisches Moment. Nach dem Vorigen (unter c.) kann man ein Kräftepaar P von der Breite a als gleichwertig auffassen mit einer unendlich fernen und unendlich kleinen Mittelkraft, deren statisches Moment den endlichen Wert P.a hat.

Zwei Kräftepaare werden untereinander gleichwertig sein, wenn beide gleichen Drehsinn und gleiches statisches Moment aufweisen. Die Wirkung von zwei Paaren, die gleiches statisches Moment, aber entgegengesetzten Drehsinn haben, ergibt sich also zu Null.

b. Drehsinn. Um den Sinn der Drehung einfach und immer richtig erkennen zu können, hat man den Begriff der *Achse* eines Paares eingeführt. Darunter versteht man eine zur Ebene des Paares errichtete Senkrechte (ab in Fig. 105), um welche man das Paar drehend denkt.

Der Drehsinn wird als positiv angerechnet, wenn das Paar, vom Endpunkte b der Achse gesehen, wie der Zeiger der Uhr nach rechts dreht;

nach links drehende Paare sind mit negativem Momente in die Rechnung einzusetzen. Um also bei Paaren, die in der nämlichen Ebene drehen, *verschiedenen* Drehsinn mit Hilfe der Achsenstrecken zur Anschauung zu bringen, trägt man diese Strecken immer so auf, daß, von ihrem Endpunkte b gesehen, *positiver* Drehsinn erscheint (Fig. 105).

c. Gleichwertige Paare. Aus den vorstehenden Erörterungen folgen ohne weiteres folgende Sätze: Ein Paar kann samt seiner Achse sowohl in seiner Ebene verschoben, als auch in eine beliebige Parallelebene versetzt werden, ohne seine Wirkung zu ändern, wenn nur Moment und Drehsinn unverändert und die neuen Angriffspunkte mit den alten verbunden bleiben.

Eine Einzelkraft und ein Kräftepaar lassen sich in eine einzige gleichwertige Einzelkraft — die Mittelkraft

Fig. 105.

— *überführen.* Deren Lage kann nach dem (unter 46b) angedeuteten oder nach dem weiterhin (in § 8) angegebenen allgemeinen graphischen Verfahren gefunden werden.

Mehrere in einer Ebene wirkende Paare lassen sich auf ein einziges gleichwertiges Paar von beliebiger Breite zurückführen, dessen Moment gleich der algebraischen Summe der Momente der Einzelpaare ist. Das kann sehr einfach mit Hilfe der Achsenstrecken geschehen, wenn man jede dieser Streckenlängen ab (Fig. 105) gleich dem statischen Momente des zugehörigen Paares macht. Verschiedenen Sinnes gerichtete Achsen zeigen dann verschiedene Vorzeichen der zugehörigen Momente an.

d. Zerlegung von Paaren. Zwei Paare, die in verschiedenen sich schneidenden Ebenen liegen, lassen sich auf ein gleichwertiges Paar zurückführen, in dessen Ebene die Durchschnittskante der beiden andern Ebenen fällt. Der Beweis für den letzten Satz erhellt aus der Fig. 106. Die Paare der statischen Momente M_r und M_2 sind auf gleiche Breite *a* gebracht und in ihren Ebenen E_r und E_2 derart verschoben worden, daß die Breite mn = a beider Paare in die Durchschnittskante der Ebenen fällt. In *m* und *n* sind die zugehörigen Kräfte P_r und P_2 je zu einer Mittelkraft *R* zusammengesetzt. Das beiden Paaren M_r und M_2 gleichwertige Paar hat danach das statische Moment M = Ra. Umgekehrt kann man in gleicher Weise ein Paar des Momentes Ra in zwei gleichwertige Paare P_r und P_2 zerlegen, wenn diese nur in Ebenen zu liegen kommen, die mit der Ebene des Paares Ra gleiche oder parallele Durchschnittskanten haben.

e. Zerlegung und Zusammensetzung mit Hilfe der Achsenstrecken. Sobald man zwei Paare, wie oben, auf gleiche Breite gebracht hat, verhalten sich deren Kräfte P_x , P_z und R wie die zugehörigen statischen Momente. Daraus folgt ein einfaches Verfahren, Kräftepaare mit Hilfe ihrer Achsenstrecken zu zerlegen und zusammenzusetzen, ganz in der nämlichen Art, wie das mit Einzelkräften unter Zugrundelegung des Satzes vom Parallelogramm und Parallelopiped der Kräfte geschieht.

Zur Erläuterung dieses Verfahrens ist in der Fig. 107 der vorige Fall den Zusammensetzung der beiden Paare vom statischen Momente $M_{\rm r}$

und M_2 noch einmal ausgeführt. E_r und E_2 stellen die Spuren der zugehörigen Ebenen auf einer diese senkrecht schneidenden Grundrißebene dar. M_r und M_2 sind als Achsenstrecken P_1a und P_2a senkrecht zu ihren Ebenen in der durch den Drehsinn (Fig. 105) vorgeschriebenen Pfeilrichtung aufgetragen,

immer derart, daß, vom Endpunkte der Achsenstrecken gesehen, *posi*tiver Drehsinn erscheint. Setzt man dann M_x und M_z , wie wenn es Einzelkräfte wären, mit Hilfe eines Kraftdreiecks zu einer Mittelkraft M_r zuammen, so bedeutet M_r das statische Moment eines Kräftepaares,

das den beiden Paaren M_1 und M_2 gleichwertig ist und das in einer senkrecht zur Richtung von M_r stehenden Ebene E_r wirkt, wobei sein Drehsinn, vom Endpunkt seiner Achse aus gesehen, positiv ist.

48. Drei Kräfte in der Ebene. Drei Kräfte können nur im Gleichgewicht sein, wenn sie einen gemeinschaftlichen Angriffspunkt haben. Bei Parallelkräften liegt der Angriffspunkt in der Unendlichkeit. Denn zwei von den drei Kräften haben eine Mittelkraft und diese kann durch die dritte Kraft nur dann aufgehoben werden, wenn deren Richtung mit der ihrigen zusammenfällt, und wenn überdies beide gleich groß und entgegengesetzt gerichtet sind. Dies gilt auch für Kräfte im Raume.

Als Beispiel diene die in Fig. 108 dargestellte, durch ein Gelenk und eine Pendelstütze (**20**a) mit der Erde verbundene Scheibe. Die als ihre Belastung angenommene Einzelkraft R sei die Mittelkraft aller etwa vorhandenen Lasten.

Die Scheibe ist starr gestützt. Die Richtung der Stützenkraft B ist durch die Stellung der Pendelstütze gegeben, sie schneidet die Richtung der Kraft R in n. Da im Falle des Gleichgewichtes die algebraische Summe der statischen Momente aller drei Kräfte für jeden Punkt der Scheibenebene gleich Null sein muß, so verläuft auch die Richtung des Gelenkdruckes A durch n. Die Unbekannten A und B folgen aus der Zeichnung des Kraftdreiecks, worin *die Mittelkraft aus A und B ebenso* $gro\beta$, aber entgegengesetzt gerichtet ist wie R. War die Strecke für Rgegeben, so folgen daraus die Strecken für A und B, deren Größe nach dem Kräftemaßstab abzulesen ist.

Ein zweites Beispiel bietet die in Fig. 109 dargestellte Scheibenverbindung, ein Dreigelenk-Bogenträger (31). Der Bogenschenkel ac sei durch

die Einzelkraft R belastet, die als Mittelkraft beliebiger auf AC wirkender Kräfte angesehen werden kann. Gesucht wird Größe und Richtung der beiden Kämpferdrücke A und B.

Denkt man sich durch das Scheitelgelenk c einen Schnitt geführt, der den Bogen in zwei Teile zerlegt, so muß jeder Teil unter der Wirkung der an ihm allein angreifenden äußern Kräfte im Gleichgewicht sein. Jeder

Fig. 110.

Teil übt nun auf den andern im Scheitelgelenk eine Kraftwirkung aus, die als Gelenkdruck bezeichnet wird. Auf den Teil bc wirken Gelenkdruck C und Kämpferdruck B. Diese beiden Kräfte können aber nicht anders im Gleichgewicht sein, als wenn sie gleich groß und entgegengesetzt gerichtet sind. Daraus folgt, daß die Richtung des Kämpferdruckes B durch c verlaufen muß. Sie schneidet P im Punkt n und durch n muß die Richtung des Kämpferdruckes A verlaufen, weil die drei Kräfte A, B und R (nach vorigem) nicht anders im Gleiehgewicht sein können, als wenn sie einen gemeinsamen Angriffspunkt

haben. In der Fig. 110 sind beide Bogenschenkel unter ihrer Belastung getrennt für sich noch einmal gezeichnet. A und B ergeben sich nach ihrer Größe schließlich aus dem Kraftdreieck.

Wenn in vorstehender Aufgabe *beide* Bogenschenkel belastet sind (Fig. 111), so kann man die entstehenden Kämpferdrücke A und B in der Art bestimmen, daß man deren Größe und Richtung für jede der Einzellasten R_1 und R_2 besonders ermittelt und die so für jeden Kämpferdruck erhaltenen beiden Kräfte zu je einer Mittelkraft A und B

vereinigt. Die Ermittelung ist in der eben erläuterten Weise in dem Krafteck der Fig. 112 durchgeführt. Es sind darin vier Kräftedreiecke yereinigt und zwar für

> A., B. und R.; A., B. und R. A_1, A_2 und $A; B_1, B_2$ und B.

Schließlich ergibt sich der Gelenkdruck C zweimal als Mittelkraft aus A_2 und B_1 , für jeden Bogenteil gleich groß, aber entgegengesetzt gerichtet. Richtung und Größe von A, B und C sind in Fig. III eingetragen. Der Kräfteplan erweist sich als richtig, wenn die Richtungen von A, B und C sich auf den Richtungen von R_1 und R_2 schneiden.

Fig. III.

Fig. 112.

Der von den Kraftrichtungen A-C-C-B gebildete Linienzug heißt Mittelkraftlinie (vergl. in § 8). Er muß notwendig durch das Scheitelgelenk verlaufen, weil dort sonst kein Gleichgewicht gegen Drehung bestehen könnte.

Vorstehende Aufgabe löst sich, falls etwa die Schnittpunkte n_r und n_2 ungünstig fallen sollten, einfacher, wenn man R_1 und R_2 je in zwei Seitenkräfte zerlegt, deren Richtungen einerseits durch ein Kämpfergelenk, anderseits durch das Scheitelgelenk führen (Fig. 113). Diese Seitenkräfte sind für

> für R_r : A, und C_r für R_2 : B_2 und C_2 .

C1 und C2 denke man dann zu einer Mittelkraft zusammengesetzt und diese wieder in zwei Seitenkräfte C'_1 und C'_2 zerlegt, die nach 7

Mehrtens, Statik der Baukonstruktionen. I.

den zugehörigen Kämpferpunkten a und b gerichtet sind. Auf solche Art hat man die Lasten R_1 und R_2 je in zwei Seitenkräfte zerlegt, die

in den Kämpfergelenken angreifen (Fig. 114). Vereinigt man schließlich in O einerseits A_1 und C'_1 , sowie and erse its B_{a} und C'_{a} zu je einer Mittelkraft A und B, so hat man damit Richtung und Größe der gesuchten Kämpferdrücke gefunden. Die Strecke 00' gibt GrößeundRichtung der beiden Scheitelgelenkdrücke an, von denen der eine auf den linken, der andere auf den rechten Trägerteil wirkt (vergl. auch die Fig. 112).

49. Vier und mehr Kräfte in der Ebene.

a. Culmann's Kraftviereck. Vier im Gleichgewicht befindliche Kräfte, die nicht alle untereinander parallel sind, und von denen sich nicht mehr als zwei in einem Punkte schneiden, können aus einem Kraftviereck entnommen werden, sobald ihre Richtuugen und von *einer* Kraft auch ihre Größe gegeben sind. Die graphische Lösung dieser Aufgabe rührt von CULMANN her, weshalb das Kraftviereck nach ihm seinen Namen erhalten hat. Der Satz vom CULMANN'schen Kraftviereck, der auch im Raume gültig bleibt, lautet: Bei vier im Gleichgewicht befindlichen Kräften ist die Mittelkraft von zwei beliebig zu wählenden Kräften gleich groß und entgegengesetzt gerichtet wie die Mittelkraft der beiden andern Kräfte. Die Richtigkeit des Satzes leuchtet nach dem Vorigen ohne weiteres ein. Auch ist leicht einzusehen, wie der Satz dazu dienen kann, eine gegebene Einzelkraft in eine gleichwertige Gruppe

von drei Kräften überzuführeu, deren Richtungen vorgeschrieben sind. Ein Beispiel möge die Ausführung des Satzes näher erläutern.

Eine Scheibe ist durch drei Stützenstäbe starr gestützt (22). Es sind die Stützenkräfte zu ermitteln, die durch die Mittelkraft R aller Lasten erzeugt werden (Fig. 115—117).

Es lassen sich drei Kraftvierecke zeichnen, je nach der Art, wie man die Stützenkräfte A, B und Cmit R zusammen verbindet. Für die Lösung wird man darunter zweckmäßig dasjenige Kraftviereck wählen, für das die Schnittpunkte der betreffenden Kraftrichtungen am bequemsten liegen. Man setze z. B. R und B zusammen, die sich in b schneiden. Die andere Gruppe (A und C) hat in b' ihren Schnittpnnkt. Die

7*

Richtung der Mittelkraft jeder Gruppe von zwei Kräften ist dadurch

in der bb' gegeben. Man zeichnet danach zuerst ein Kraftdreieck aus der gegebenen Strecke von R und den Parallelen zu den Kraftrichtungen Bb und bb'. Dadurch erhält man bereits die Größe der Stützenkraft B und überdies die Mittelkraft L aus R und B, deren Richtungssinn dem Sinne des Kräftezuges R - B entgegengesetzt ist (46). In umgekehrter Richtung ist aber L auch die Mittelkraft von A und C. Vervollständigt man deshalb das Kraftviereck durch die Parallelen zu A und C, so hat man damit auch die Größen von A und C gefunden. Die Linie für L ist nur eine Hilfslinie. Ebenso übersieht man leicht, daß der Richtungssinn der Kräfte im Viereck A--C-R-B ein gleicher sein muß, woraus, da die Richtung von R gegeben war, auch das Vorzeichen der Längskraft in den Stützenstäben bestimmt ist. Denkt man sich 'nämlich die Stäbe durch den Schnitt tt (Fig. 116) von der Erdscheibe getrennt und (behufs Wiederherstellung des Gleichgewichtes) die Stützenkraft in jedem Stabe als äußere Zugkraft angebracht, so ist jetzt durch Vergleich der Richtungen von A, B, C im Krafteck der Fig. 115 und 117 zu sehen, welches Vorzeichen zutrifft. Nur die Stützenkraft C hat im Kraftviereck den gleichen Richtungssinn wie an der belasteten Scheibe, sie ist also eine Zugkraft. Die Stützenkräfte A und B

Fig. 118.

dagegen sind Druckkräfte, weil ihre Richtungen im Krafteck und an der Scheibe entgegengesetzt laufen.

In der Art, wie eben erläutert, sind auch noch die beiden andern Kraftvierecke gezeichnet, worin R nacheinander mit C und mit A verbunden worden ist. In beiden Fällen liegen aber, wie zu sehen, die Schnittpunkte c, c' und a, a' etwas ungünstiger. Schließlich sind die Kraftvierecke in der Fig. 117 miteinander vereinigt worden, wodurch gleichzeitig eine Nachprüfung der gefundenen Werte der Stützenkräfte bewerkstelligt worden ist.

b. Beliebig belegene Kräftegruppe. Wie auch die Kräfte liegen mögen, jedenfalls läßt sich jede Einzelkraft parallel zu sich selbst nach einem beliebigen Punkte O der Ebene verschieben, wodurch eine neue Kräftegruppe entsteht, die der ursprünglichen gleichwertig wird, sobald noch ein Kräftepaar hinzutritt, dessen statisches Moment gleich der algebraischen Summe derjenigen Einzelmomente ist, die sich aus der Verschiebung der Einzellasten P_1 , P_2 , P_3 , P_4 u. s. w. ergeben (Fig. 118). Das Moment M ist aus der Gleichung

$$M = P_1 a_1 - P_2 a_2 + P_3 a_3 + P_4 a_4$$
 usw.

zu berechnen.

Die Kräftegruppe in O hat eine Mittelkraft R, die nach ihrer Richtung und Größe aus dem sog. *Krafteck* oder *Kraftpolygon* (54) ermittelt werden kann.

Wie in den Fig. 101 und 102 für zwei Kräfte P gezeigt worden ist, kann man die Mittelkraft R auch dadurch finden, daß man jede Kraft Pauf zwei beliebige feste Richtungen projiziert und die Summe der Projektionen aller P für jede der beiden Richtungen bildet. Sind $\Sigma P'$ und $\Sigma P''$ die beiden Projektionssummen, so ist jede derselben gleich der betreffenden Projektion von R. Rechnerisch gelten für $\Sigma P'$ und $\Sigma P''$ die unter **46**a angegebenen Formeln, wobei für jede Kraft die gegebenen Winkel α , β und γ einzusetzen sind.

Die gefundene Mittelkraft R und das Kräftepaar des Momentes M lassen sich (nach 47c) auf eine einzige gleichwertige Einzelkraft zurückführen. Das wird weiterhin allgemein noch näher gezeigt werden.

50. Kräftegruppen im Raume.

a. Rückführung auf eine Einzelkraft und ein Moment. Dies ist die anschaulichste und bequemste Art, um auf eine gleichwertige Gruppe zu kommen, deren weitere Rückführung nicht mehr möglich ist. Das Verfahren besteht darin, daß man, wie im vorigen Absatz für Kräfte in der Ebene erläutert worden ist, jede Einzelkraft nach einem beliebigen Punkte O des Raumes verschiebt und der dadurch erhaltenen neuen Kräftegruppe in O ein Kräftepaar hinzufügt,

IOI

dessen statisches Moment gleich der algebraischen Summe derjenigen Einzelmomente ist, die sich in bekannter Weise (45) aus der Verschiebung der Einzelkräfte ergeben. Errichtet man dann in O ein

Fig. 119.

Achsenkreuz X, Y, Z, so ist es möglich, jede in den Ursprung O verschobene Einzelkraft in drei auf die Achsenrichtungen fallende Seitenkräfte zu zerlegen. Ebenso ist es möglich, jedes Einzelmoment zurückzuführen auf drei Seitenmomente, von denen jedes um eine der drei Achsen dreht. So erhält man auf jeder der drei Achsen eine Summe von Seitenkräften und von Seitenmomenten, wobei diese wie die Kräfte ihrer Größe nach zweckmäßig durch

eine entsprechende Achsenstrecke auszudrücken sind, die gleichzeitig den Drehsinn des zugehörigen Paares angibt (47b).

Wenn die drei Summen der Seitenkräfte mit X, Y, Z bezeichnet werden, so erhält man aus einem Parallopiped deren Mittelkraft R in der Größe:

$$R = V X^2 + Y^2 + Z^2. \tag{23}$$

Bezeichnet man ebenmäßig die drei Summen der Seitenmomente mit L, M, N, so folgt daraus die Größe K des gleichwertigen Momentes

$$K = V L^2 + M^2 + N^2 \,. \tag{24}$$

Die sechs Kraftgrößen der gefundenen gleichwertigen Gruppe sind unter Beachtung des unter **49** b Gesagten — aus den folgenden Gleichungen zu entnehmen:

$$X = \sum P \cos \alpha; \quad Y = \sum P \cos \beta; \quad Z = \sum P \cos \gamma; \quad (25)$$
$$L = \sum (Yz - Zy) \text{ dreht in der } YZ \text{-Ebene um } OX;$$
$$M = \sum (Zx - Xz) - - - ZX \text{-Ebene } - OY; \quad (26)$$
$$N = \sum (Xy - Yx) - - - XY \text{-Ebene } - OZ.$$

x, y, z bedeuten die Koordinaten des Angriffspunktes einer Einzelkraft P (Fig. 119); α , β , γ sind die Winkel, die P mit den drei Achsen X, X, Z einschließt. Im Falle des *Gleichgewichtes* der gegebenen Kräftegruppe müssen die obigen sechs Kraftgrößen, jede für sich, zu Null werden. Daraus ergeben sich *die sechs Gleichgewichtsbedingungen für die Kräfte im Raume*.

Für Kräfte in der Ebene verschwindet die Z-Achse mit den XZund YZ-Ebenen. Die drei Gleichgewichtsbedingungen für die Ebene lauten demnach:

$$X = \sum P \cos \alpha = \circ,$$

$$Y = \sum P \cos \beta = \circ;$$

$$N = \sum (Xy - Yx) = \circ.$$

(27)

Die Achsenstrecke des gleichwertigen Kräftepaares K wird im allgemeinen einen Winkel δ mit der Richtung von R einschließen. Ergibt sich der Winkel δ zu 90°, so liegen R und K in einer gemeinsamen Ebene, woraus folgt, daß beide noch weiter, und zwar *bis auf eine einzige gleichwertige Einzelkraft*, zurückgeführt werden können.

Bei einer Verschiebung des Ursprungs O der Koordinaten ändert sich K wegen des infolge der Verschiebung nötig hinzuzufügenden Ausgleichmomentes. Es ist also möglich, O so zu verschieben, bis die Richtung von K mit der Richtung von R zusammenfällt. Es kann dann O, ohne an der Wirkung der betrachteten Kräftegruppe etwas zu ändern, weiter in der Richtung von R verschoben werden, wobei das Kräftepaar K stets in einer Ebene senkrecht zu R drehend bleibt. Diese Richtung von R, um welche also der betrachtete Körper eine Schraubenbewegung auszuführen suchen würde (die sich aus einer fortschreitenden und einer Drehbewegung zusammensetzt), bezeichnet man als Zentralachse der Kräftegruppe.

b. Rückführung auf zwei windschiefe Kräfte (46d). Dies ist die einfachste Form, in welche im allgemeinen jede gegebene Kräftegruppe umgewandelt werden kann. Es soll zunächst gezeigt werden, wie man bei diesem Verfahren eine der gegebenen, im beliebigen Punkte meines Körpers angreifenden Einzelkräfte P der Gruppe in zwei Seitenkräfte zerlegt, von denen die eine in einer beliebig zu stellenden Ebene E zu liegen kommt, während die andere durch einen außerhalb der Ebene E beliebig zu wählenden Punkt O verläuft. m' sei die Spur (oder der Schnittpunkt) von P in der Ebene E (Fig. 120). Durch die Gerade mm' und den Punkt O ist eine zweite Ebene K festgelegt, die im

allgemeinen von der Ebene geschnitten wird. Ein durch die Geraden Om' und On begrenzter Teil einer solchen Ebene K, in welcher P liegt, ist in der Fig. 120 dargestellt. m'n ist ihre Spur mit der Ebene E.

Man verschiebe nun den Angriffspunkt m nach m', was (ohne dabei an der Wirkung der Kraft P zu ändern) zulässig ist und zerlege P in zwei Seitenkräfte, von denen die eine durch O verläuft und die andere

in die Spur m'n fällt. Die Zerlegung mit Hilfe eines Kraftdreiecks ist möglich, weil alle drei Kraftrichtungen in der Ebene Kliegen. Die Seitenkräfte sollen mit P_o und P_e bezeichnet werden, um durch die Zeiger o und e die Lage der Kräfte mit anzudeuten.

Hat man sämtliche Kräfte P auf die beschriebene Weise zerlegt, so hat man zwei Kräftegruppen erhalten, eine, welcher Oals gemeinsamer Angriffspunkt dient und eine an-

dere, deren Einzelkräfte alle in der Ebene E liegen. Jede dieser beiden neuen Gruppen ist aber einer entsprechenden Mittelkraft gleichwertig und beide Mittelkräfte (R_o und R_e) sind im allgemeinen windschief zueinander gerichtet.

Es wäre vorerst noch zu untersuchen, wie die beschriebene Zerlegung sich gestaltet, wenn eine oder mehrere der Kräfte P der Ebene E parallel sind. Im allgemeinen werden dann die beiden Ebenen E und K sich in einer zur Richtung von P parallelen Geraden schneiden, obwohl sie im besondern Falle auch zu einander parallel werden können. In jedem Falle ändert sich aber an dem Wesen der obigen Zerlegung nichts. Im allgemeinen Falle braucht man P dann nur in zwei parallele Seitenkräfte zu zerlegen, von denen eine durch O geht, während die andere in die dann zu P parallele Spur m'n fällt. Im weiter erwähnten Sonderfalle fiele die Spur allerdings ins Unendliche, eine gleiche Zerlegung von P in Parallelkräfte wäre aber auch dann möglich (**46** b).

Dabei erhielte man eine durch O verlaufende Kraft gleich und gleichgerichtet mit P und eine in die unendlich weit entfernt liegende parallele Spur fallende unendlich kleine Kraft in der Ebene E. Man kann diese Zerlegung aber auch auffassen als eine Parallelverschiebung der Kraft P in den Punkt O unter Hinzufügung eines entsprechenden Kräftepaares, das von der Ebene K in die Parallelebene versetzt worden ist.

Es ist somit nachgewiesen, wie eine gegebene Kräftegruppe auf eine gleichwertige Gruppe von zwei windschiefen Kräften R_o und R_e zurückgeführt werden kann. In besondern Fällen kann eine der beiden windschiefen Kräfte gleich Null werden. Dann verbleibt eine gleichwertige Einzelkraft als Mittelkraft der Gruppe, wie eine solche danach also sowohl für Kräfte in der Ebene, als auch für Raumkräfte, die einen gemeinsamen Angriffspunkt haben, stets gefunden werden kann. Schließlich wird es auch Ausnahmefälle geben, in denen die beiden windschiefen Kräfte gleich groß, parallel und entgegengesetzt gerichtet ausfallen. Dann ist die gegebene Kräftegruppe auf ein gleichwertiges Kräftepaar zurückgeführt.

Der Punkt O und die Ebene E konnten im allgemeinen beliebig gelegt werden. Daraus folgt, daß es unendlich viele Paare von windschiefen Kräften gibt, die mit einer gegebenen Kräftegruppe gleichwertig sind. Bei bestimmt gewählter Lage der Ebene E giebt es noch unendlich viele Lagen von O, also auch unendlich viele Lagen der windschiefen Kraft R_e in der Ebene E. Schreibt man aber der Kraft R_e in der Ebene E eine bestimmte Lage vor, so ist dadurch auch die Lage der zweiten windschiefen Kraft R_o eindeutig bestimmt.

51. Zerlegung einer Einzelkraft nach vorgeschriebenen Richtungen. Wie man in der Ebene eine Einzelkraft nach zwei oder drei gegebenen Richtungen zerlegen kann, wurde (48 und 49) an einigen Beispielen gezeigt. Es handelte sich dabei um die Bestimmung von Stützenkräften, also von äußern Kräften, obwohl das erläuterte Verfahren, unter Verwendung des Kraftdreiecks und des CULMANN'schen Kraftvierecks, gleich zweckmäßig auch für die Ermittelung von innern Kräften angewendet werden kann. Im Anschluß an jene Darlegungen soll hier zunächst die Zerlegung einer Einzelkraft nach zwei und drei im Raume gegebenen Richtungen besprochen werden.

a. Zwei und drei gegebene Richtungen. Zwei windschief liegende Kräfte können nie einer Einzelkraft gleichwertig sein, also umgekehrt auch nie aus der Zerlegung einer solchen entstehen. Die

Zerlegung einer Kraft nach zwei Richtungen ist stets nur in der Ebene möglich.

Drei windschiefe Kräfte können niemals untereinander im Gleichgewicht sein, weil man in jedem Falle eine Gerade ziehen kann, die zwei der Kräfte schneidet. Für diese Gerade als Momentenachse ist allerdings das statische Moment jeder der beiden von ihr geschnittenen Kräfte gleich Null, niemals aber das statische Moment der verbleibenden dritten Kraft. Im Falle des Gleichgewichts muß aber die Summe der statischen Momente für jede beliebige Raumachse gleich Null sein.

Ausnahmsweise kann eine Gruppe von drei windschiefen Kräften einer Einzelkraft gleichwertig sein, umgekehrt kann diese also in drei windschief zu einander liegenden Richtungen zerlegt werden. Das ist leicht einzuschen: Man führt von den drei Kräften P_1 , P_2 und P_3 zwei beliebige (z. B. P_1 und P_2) auf eine gleichwertige Gruppe von zwei Kräften zurück, aber der Art, daß eine der dadurch erhaltenen neuen Kraftrichtungen mit der Richtung von P_3 zusammenfällt. Das ist immer auszuführen, wie der Schlußsatz unter **50** besagt. Wenn nun ausnahmsweise die neue Kraft P_1 oder P_2 gleich groß, aber entgegengesetzt gerichtet wie P_3 ausfällt, so hebt sie die Wirkung von P_3 auf und als Ersatz für die ursprüngliche Gruppe von drei Kräften bleibt nur eine der Kräfte P_1 oder P_2 übrig. Diese ist der gegebenen Gruppe gleichwertig.

Für das Gebiet der Konstruktionen hat die Aufgabe der Zerlegung einer Einzelkraft nach drei windschiefen Kraftrichtungen wenig Bedeutung. Von grundlegender Bedeutung ist dagegen das Verfahren der Zerlegung einer Einzelkraft in ihrem Angriffspunkte nach drei im Raume vorgeschriebenen Richtungen, weil es für die Ermittelung der in den Knoten eines Raumfachwerks, einschließlich der Stützenknoten, wirkenden Stabkräfte als unentbehrlich bezeichnet werden darf. Nachstehend soll daher an einem Beispiel ausführlich erläutert werden, wie man obige Zerlegungsaufgabe mit Hilfe des CULMANN'schen Kraftvierecks graphisch löst.

b. Graphische Zerlegung nach drei Richtungen.

1. Als erstes Beispiel ist ein *festes Stützengelenk* (19) gewählt, dessen Stützpunkt m von drei beliebig gerichteten Stäben 1, 2, 3 getragen und durch eine beliebig gerichtete Stützenkraft K belastet wird (Fig. 121). Wenn man will, kann man sich an Stelle des Knotens m auch einen beliebigen Knoten eines Raumfachwerks darstellen. Soll die Kraft K der Gruppe der Stabkräfte 1—3 gleichwertig sein, so muß diese eine Mittelkraft besitzen, die gleich groß und gleich gerichtet mit K ist. Man bestimmt daher die Stabkräfte am einfachsten aus dem Gleichgewicht der

vier Kräfte. Man braucht dann schließlich nur noch die erhaltenen Richtungssinne der drei Stabkräfte umzukehren, wodurch deren Gleichwertigkeit mit der Einzelkraft er zielt wird.

Jede Gruppe dieser Kräfte hat eine Mittelkraft, die in der Ebene dieser Kräfte liegt und die (im Falle des Gleichgewichtes) gleich groß,

Fig. 121.

aber entgegengesetzt gerichtet sein muß wie die Mittelkraft der andern Gruppe. Das kann nur möglich sein, wenn die Mittelkraft jeder der beiden Gruppen *in die Durchschnittskante* beider zugehörigen Kraftebenen fällt. Das ist die grundlegende Bedingung, auf welche sich hier der CULMANN'sche Satz stützt. Die vier Kräfte können beliebig untereinander zu Gruppen von zwei Kräften verbunden werden, z. B.

In der Fig. 121 sind die Stabkräfte zweimal bestimmt worden, einmal für das Paar K und 2, ein zweites Mal für K und 3.

Fig. 122.

Die vier Kraftrichtungen sind im Aufriß des Gelenks soweit verlängert, bis sie eine Grundrißebene G in A, B, C und D spuren. Im Grundriß des Gelenkes sind diese Spuren mit A', B', C' und D' bezeichnet.

Die Mittelkraft des Paares K und 3 sei R_3 . Sie liegt in der Ebene, deren Spur im Grundriß durch die Projektionen B'm' und D'm' gegeben ist. Ebenso liegt die Mittelkraft der Stabkräfte 1 und 2 in einer

Ebene, deren Spur aus den Projektionen A'm' und C'm' gefunden wird. Die beiden Spuren sind die Geraden A'n' und B'n', die sich in n' schneiden. n ist die Projektion von n' im Aufriß, also liegen die Geraden mn im Aufriß und m'n' im Grundriß der Mittelkraft R_3 fest.

Damit ist auch das räumliche Kräfteviereck der KräfteK, 3, 1 und 2 bestimmt. In der Fig. 122 ist es in seinen beiden Projektionen gezeichnet, nach dem nämlichen Verfahren, das bereits (unter **49**) ausführlich dargelegt worden ist und das danach als bekannt vorausgesetzt werden darf.

Fig. 125.

Nach gleichem Verfahren wurde in der Fig. 122 das Kraftviereck für die Paare K, 2 und 1, 3 in beiden Projektionen gezeichnet. Da jedes Kraftviereck, sowohl im Grundriß als auch im Aufriß, selbständig und unter Benutzung der betreffenden Parallelen und der gegebenen Strecke der Kraft K gezeichnet wird, so schließt das Verfahren insofern eine Prüfung auf die Richtigkeit der Zeichnung in sich, als die betreffenden Projektionsstrahlen gleichmäßig durch alle Ecken der beiden zusammengehörigen Kraftecke verlaufen müssen.

Zu bemerken bleibt schließlich noch, daß die *Pfeile* der drei Stabkräfte in den Kraftvierecken *umzukehren* sind, falls K nicht gleichwertig, sondern im Gleichgewicht mit der Gruppe sein soll.

2. Das zweite Beispiel zeigt einen Teil eines einfachen Gratfachwerks zur Überdeckung eines rechteckigen Grundrisses. Zweckmäßig ist der Grundriß so zu drehen, daß die Aufrisse der Sparrenstäbe 1-2 und 1-3, sowie auch 6-4 und 6-5 sich völlig decken. Das für eine Belastung des Gratknotens 1 durch eine lotrechte Kraft P und eine wagrechte Kraft W gezeichnete Aufriß- und Grundrißbild des Kräfteplanes ist (Fig. 123 und 124) nach vorigem an sich verständlich.

52. Rechnerische Zerlegung nach drei Richtungen. 1. Irgend ein Knoten m eines Raumfachwerks (Fig. 125) sei durch eine lotrechte Kraft V und eine wagerechte Kraft W belastet. Gesucht werden die Spannkräfte S_x , S_z , S_3 der drei von m ausgehenden Stäbe mn, mo, mp. Die Aufgabe kann durch eine Zerlegung gelöst werden. Sobald die dadurch ermittelten Seitenkräfte S_x , S_z , S_3 der Knotenlasten V und Wgefunden sind, braucht man nur deren Pfeilrichtungen umzukehren, um die mit V und W im Gleichgewicht stehenden Stabkräfte zu erhalten.

Die wirklichen Stablängen s_1 , s_2 , s_3 haben im Grundriß die Längen s'_1 , s'_2 , s'_3 , im Aufriß die Längen s''_1 , s''_2 , s''_3 . Da nun die Projektion einer Kraft gleich der Kraft der Projektion ist, so folgt für jeden der drei Stäbe

$$\frac{S'}{s'} = \frac{S''}{s''} = \frac{S}{s} \,. \tag{28}$$

Man zerlege jetzt *im Aufri* β jede der drei Kräfte V, W'' und S''_{τ} in zwei Seitenkräfte, von denen die eine in die Richtung von S''_{z} und S''_{3} fällt und die andere lotrecht steht. Dann findet im Aufriß zwischen den erstgenannten Seitenkräften und den in die Richtung m''o'' fallenden Kräften S''_{2} und S''_{3} Gleichgewicht statt. Ebenso besteht Gleichgewicht zwischen den genannten lotrechten Seitenkräften und daraus erhält man die Gleichgewichtsbedingung: Zweiter Abschnitt. Äußere Kräfte.

 $V + W''_v + S''_{iv} = \circ,$

wenn der angehängte Zeiger v eine lotrechte Seitenkraft bezeichnet.

Geht man darauf zum *Grundriß* über und zerlegt hier die Kräfte S'_{1} , S'_{2} und W einerseits nach der Richtung von $S'_{3} = m'p'$ und anderseits nach der Richtung m'm'', so erhält man aus dem Gleichgewicht der in die letztgenannte Richtung fallenden Seitenkräfte die Gleichung:

$$S'_{2p} - W_p - S'_{1p} = o$$

Darin kennzeichnet der angehängte Zeiger p die zugehörige Seitenkraft der Richtung m'm''.

Schließlich zerlege man im Grundriß noch die drei Kräfte S'_{1} , S'_{3} und W nach den beiden Richtungen von $S'_{2} = m'o'$ und von m'm'', so erhält man für die Richtung m'o':

$$S'_{3o} - W_o - S'_{1o} = o.$$

Wie durch die graphische Zerlegung in der Fig. 125 erläutert wird, lassen sich die in vorstehenden drei Gleichungen enthaltenen Seitenkräfte geometrisch (und unter Anwendung der Gleichung 28) wie folgt ausdrücken:

$$W''_{v} = W'' \cdot \frac{h}{w''} = \frac{W \cdot h}{w}$$
$$S'_{1v} = S'_{1} \cdot \frac{v}{s'_{1}} = \frac{S_{1} \cdot v}{s_{1}}$$
$$S'_{2p} = S'_{2} \cdot \frac{a}{s'_{2}} = \frac{S_{2} \cdot a}{s_{2}}$$
$$W_{p} = W \cdot \frac{b_{3}}{w}$$
$$S'_{1p} = S'_{1} \cdot \frac{c_{3}}{s'_{1}} = \frac{S_{1} \cdot c_{3}}{s_{1}}$$
$$S'_{3o} = S'_{3} \cdot \frac{a}{s'_{3}} = \frac{S_{3} \cdot a}{s_{3}}$$
$$W_{o} = W \cdot \frac{b_{2}}{w}$$
$$S'_{1o} = S'_{1} \cdot \frac{c_{2}}{s'_{1}} = \frac{S_{1} \cdot c_{2}}{s_{1}} \cdot \frac{s_{1}}{s_{1}} = \frac{S_{1} \cdot c_{2}}{s_{1}}$$

Setzt man diese Werte in die drei Gleichgewichts-Bedingungen ein, so erhält man:

$$\frac{S_{\mathrm{r}}}{s_{\mathrm{r}}} = -\frac{V}{v} - \frac{W \cdot h}{w \cdot v}$$

$$\frac{S_{\mathrm{r}}}{s_{\mathrm{r}}} = \frac{W \cdot b_{\mathrm{3}}}{w \cdot a} + \frac{S_{\mathrm{r}}}{s_{\mathrm{r}}} \cdot \frac{c_{\mathrm{3}}}{a} \qquad (29)$$

$$\frac{S_{\mathrm{3}}}{s_{\mathrm{3}}} = \frac{W \cdot b_{\mathrm{r}}}{w \cdot a} + \frac{S_{\mathrm{r}}}{s_{\mathrm{r}}} \cdot \frac{c_{\mathrm{r}}}{a} \cdot$$

Für W parallel zu m'm'' wird $w = \infty$. In diesem Sonderfalle verschwinden in den Gleichungen (29) die Glieder mit W.

Bei ungünstigen Schnittwinkeln zwischen den Richtungen von Wund m'm'' zerlege man W in zwei passende Seitenkräfte, zu denen bequem meßbare Strecken w gehören.

2. Die drei Stabkräfte S_1 , S_2 , S_3 können in mehrfacher Weise auch aus *Momentengleichungen* berechnet werden. Dazu braucht man nur die Schnittpunkte A', B', C' der Stabrichtungen mit einer passenden Grundrißebene zu bestimmen (Fig. 121) und dann für irgend eine Stabkraft die Summe der statischen Momente in Beziehung auf eine durch die Punkte der andern beiden Stäbe verlaufenden Achse anzuschreiben und gleich Null zu setzen. Dadurch erhält man eine analytische Beziehung zwischen der Stabkraft und den Knotenlasten V und W.

Weitere Ausführungen der Momentenmethode vgl. weiterhin (unter 72).

53. Übertragung einer Belastung im Raume durch sechs Stützenstäbe.

a. Bestimmung der Stützenkräfte. Die nachfolgenden Bemerkungen bilden eine Ergänzung der (unter 18c) bereits erörterten Frage der starren Stützung eines Körpers auf das Erdreich. In den früheren Betrachtungen wurde nur festgestellt, daß die Zahl der Stützenstäbe mindestens sechs betragen müsse. Dabei wurde aber über die zur Vermeidung von Ausnahmefällen (28 und 34) von den Stützenstabrichtungen notwendig zu erfüllenden Bedingungen im allgemeinen nichts näheres gesagt.

Der auf das Erdreich gestützte im Gleichgewicht befindliche Körper unterliegt den Wirkungen von zwei verschiedenen Kräftegruppen, die eine ist die Gruppe der Belastungen, die andere die Gruppe der widerstehenden Stützenkräfte. Beide Gruppen lassen sich im allgemeinen auf je ein Paar von windschief liegenden Einzelkräften zurückführen. Diese

Mehrtens, Statik der Baukonstruktionen. I.

vier windschiefen Kräfte stehen miteinander im Gleichgewicht, d. h. wenn man die Pfeilrichtungen der Kräfte eines Paares umkehrt, sind beide Paare einander gleichwertig. Um also die unbekannten Stützenkräfte aus den gegebenen Lasten berechnen zu können, hat man im allgemeinen eine doppelte Zerlegungsaufgabe durchzuführen. Man hat zweimal eine Einzelkraft — d. h. jedesmal eine der beiden windschiefen Kräfte, die zusammen der Belastung gleichwertig sind — nach sechs vorgeschriebenen Stützenrichtungen zu zerlegen.

Daß beim Vorhandensein von weniger oder mehr als sechs Stützenstäben eine *eindeutige* derartige Zerlegung nicht möglich ist, geht aus der Zahl und Beschaffenheit der Gleichgewichts-Bedingungen, wie sie unter **50** a aufgestellt worden sind, hervor. Dies wird noch etwas näher darzulegen sein.

Die unbekannten Stabkräfte in den bekannten sechs Lagen seien $S_1, S_2 \ldots S_6$. Die Lage jeder Stabkraftrichtung sei gegen ein Achsenkreuz X, Y, Z durch die Winkel φ , χ , ψ festgelegt, desgleichen die Richtung der gegebenen Einzelkraft P durch die Winkel α , β , γ . Den Ursprung O des Achsenkreuzes verlegt man zweckmäßig *in die Richtung von P.* Die Zerlegung von P nach den drei Achsen gibt drei Seitenkräfte X, Y, Z

$$X = P \cos \alpha$$
$$Y = P \cos \beta$$
$$Z = P \cos \gamma.$$

Die statischen Momente von P in Beziehung auf alle drei Achsen sind Null. Die sechs Seitenkräfte der Stabgruppe müssen den Seitenkräften von P gleichwertig sein. Daraus ergibt sich zuerst:

$$\sum S \cos \varphi = P \cos \alpha$$

$$\sum S \cos \chi = P \cos \beta$$
 (30)
$$\sum S \cos \psi = P \cos \gamma.$$

Bei der Parallelverschiebung einer Stabkraft S in den Ursprung O erhält man jedesmal ein Ausgleichmoment, das ebenfalls nach den drei Koordinaten-Ebenen zu zerlegen ist. Sind nun x, y, z die bekannten Koordinaten eines Angriffspunktes von S bezogen auf den Ursprung O, so erhält man schließlich die letzten Gleichgewichts-Bedingungen mit

$$\sum S(z \cos \chi - y \cos \psi) = o$$

$$\sum S(x \cos \psi - z \cos \varphi) = o$$

$$\sum S(y \cos \varphi - x \cos \chi) = o.$$
(30a)

II5

In den obigen 6 Gleichungen ersten Grades kommen nur die 6 Unbebekannten S_1 , S_2 bis S_6 vor. Die Lösung ist daher im allgemeinen eindeutig.

b. Ausnahmefälle. Wie bereits (unter 28) näher erläutert worden ist, treten Ausnahmefälle ein, wenn die im vorliegenden Falle bei der Auflösung der 6 Gleichungen zu bildende sechsreihige Determinante zu Null wird. Diese Ausnahmefälle sind gleichbedeutend mit einer unendlich kleinen Beweglichkeit der Kräftegruppe (34).

Über die Kennzeichen der unendlich kleinen Beweglichkeit wird weiterhin noch ausführlicher gesprochen werden. An dieser Stelle genügt es, nur diejenigen Ausnahmefälle hervorzuheben, die bei der Anordnung von sechs Stützenstäben vermieden werden müssen. Das sind hauptsächlich die Fälle, *in denen mehr als drei der gegebenen Richtungen sich entweder in einem Punkte* (eingeschlossen einen unendlich fernen Punkt) schneiden oder in denen sie in einer gemeinsamen Ebene liegen. Denn in diesen Fällen läßt sich immer eine Gerade finden, die alle sechs Richtungen schneidet. Bezogen auf die Gerade, ergäbe sich dann das Moment aller 6 Stabkräfte S gleich Null. Dagegen wäre aber das Moment der Einzelkraft P, bezogen auf die nämliche Gerade, verschieden von Null. Sonach bestünde kein Gleichgewicht zwischen P und den Stabkräften, also wäre es auch nicht möglich, P in eine gleichwertige Gruppe jener Stabkräfte zu zerlegen.

Auf welche Weise es möglich ist, ein auf 6 Stäben gestütztes geschlossenes Raumfachwerk durch entsprechende Beseitigung von Stäben und deren Ersatz durch die gleiche Zahl von Stützenstäben in ein Raumfachwerk zu verwandeln, das *auf mehr als* 6 *Stäben statisch bestimmt* gestützt ist, wurde bereits unter **33** gezeigt.

§ 8. Mittelkräfte beliebig gerichteter Einzellasten.

54. Größe und Richtung einer Mittelkraft.

a. Das Krafteck. Eine Einzelkraft, die einer Kräftegruppe gleichwertig ist, bezeichnet man als Mittelkraft. Für die Gruppen von zwei und drei Kräften fanden wir sie, ihrer Größe und Richtung nach, aus dem Kraftdreieck und Kraftviereck (48 und 49). Es ist weiter leicht einzusehen, wie man für eine in der Ebene oder im Raume gegebene

Kräftegruppe die Mittelkraft findet, wenn alle Kräfte einen gemeinsamen Angriffspunkt haben. In der Fig. 126 ist das veranschaulicht. Die Kraftlinien a, b, c, d und e stellen in der Ebene oder im Raume die Mittelkraft je eines Kraftdreiecks dar. a ist die Mittelkraft der Kräfte 1 und 2, die ihrer gegebenen Größe und Richtung nach derart aneinandergereiht sind, daß der Richtungssinn des Kräftezuges der

gleiche ist. a ist gleichwertig mit 1 und 2 und wird mit der dem Kräftezuge angeschlossenen Kraft 3 eine Mittelkraft b bilden, die zugleich die Mittelkraft der im Kräftezuge 1, 2, 3 enthaltenen Einzelkräfte vorstellt. Und so fort ist eine der gegebenen Kräfte nach der andern dem Kräftezuge angereiht, bis schließlich im letzten Kraftdreieck die letzte Kraft 7 mit der Mittelkraft e der Kräfte 1 bis 6 zu einer Mittelkraft R zusammengesetzt ist. R ist die gesuchte Mittelkraft der Kräftegruppe 1 bis 7.

Läßt man die der bessern Anschauung wegen in der Fig. 126 angegebenen Kraftlinien *a* bis *e* fort, so verbleibt nur der Kräftezug 1 bis 7 und dessen Mittelkraft R. Diese schließt den Kräftezug zu einem Krafteck (Kraftpolygon) und ihr Richtungssinn ist entgegengesetzt dem Sinne des Kräftezuges. Da nach dem Grundgesetz der Mechanik über die gegenseitige Unabhängigkeit verschiedener Bewegungen es gleichgültig ist, in welcher Reihenfolge man jede Kraft der betrachteten Gruppe wirken läßt, so kann man in obigem Kräftezuge die Einzelkräfte in beliebiger Folge aneinanderreihen (Fig. 127). Daraus folgt:

Das Krafteck ist ein Linienzug, in welchem alle Kräfte in beliebiger Reihenfolge, jedoch in gleichem Sinne, aneinandergereiht sind. Das

§ 8. Mittelkräfte beliebig gerichteter Einzellasten.

Krafteck im Raume fällt windschief aus und ist deshalb in geeigneten Projektionen darzustellen.

Die Mittelkraft beliebig vieler, in einem gemeinsamen Punkte angreifenden Kräfte ist gleich der Schlußlinie des Kraftecks. Die Mittelkraftrichtung ist entgegengesetzt dem Sinne des Kräftezuges (Fig. 127).

b. Das geschlossene Krafteck. Sind Kräfte untereinander im Gleichgewicht, so vollführen sie keinerlei Verschiebung ihres gemeinsamen Angriffspunktes. Also muß ihre Mittelkraft gleich Null sein, das heißt mit andern Worten, das zugehörige Krafteck schließt sich, weil die Strecke von *R* darin verschwindet. Daraus ergeben sich folgende Sätze:

Im Gleichgewicht befindliche Kräfte lassen sich zu einem geschlossenen Krafteck zusammensetzen.

Kommen in einem Kräftezuge Pfeile vor, die entgegengesetzt gerichtet sind, so ist das zugehörige Krafteck nicht geschlossen. In diesem

Fig. 127.

Falle sind die Kräfte nicht im Gleichgewicht, sie haben eine Mittelkraft, die von Null verschieden ist.

Kehrt man in einem geschlossenen Krafteck irgend eine Kraft ihrem Richtungssinne nach um, so stellt sie die Mittelkraft aller andern Kräfte dar. Mit anderen Worten: Bei in Gleichgewicht befindlichen Kräften, die einen gemeinsamen Angriffspunkt haben, ist jede Kraft bei umgekehrter Pfeilrichtung der übrigen Gruppe gleichwertig.

55. Lage der Mittelkraft einer ebenen Kräftegruppe. Für Kräfte, die *nicht* in einem gemeinsamen Punkte angreifen, bestimmt man Größe und Richtung der Mittelkraft wie vorher gezeigt aus dem *Krafteck*. *Die Lage* der Mittelkraft ist dann analytisch aus der Summe der statischen Momente zu berechnen (49b) oder graphisch mit Hilfe eines *Seilecks* zu finden. a. Das Seileck. Das hier anzuwendende Verfahren ist von grundlegender Bedeutung und soll daher zunächst allgemein dargelegt werden. Nachdem man Größe und Richtung der Mittelkraft aus dem Krafteck gefunden hat, denke man sich die gegebene Kräftegruppe durch zwei,

der Mittelkraft Rdas Gleichgewicht haltende Einzelkräfte A und Bergänzt. Es stehen dann die Kräfte Aund B auch mit der gegebenen Kräftegruppe im Gleichgewicht. Da es unendlich viele Seitenkräfte von Aund B gibt, die

aus Kräftedreiecken gefunden werden, so wird es in der Ebene auch unendlich viele Lagen von A und B geben, die obige Bedingungen erfüllen. Es genügt aber, eine einzige dieser Lagen zu kennen, um daraus die Lage von R zu finden. Denn die Richtung von R muß durch den Schnittpunkt von A und B verlaufen.

Die Lage von A und B findet man in einem sog. Seileck oder

sog. Salet k oder Seilpolygon, das man sich am einfachsten wohl als ein aus geraden starren Stäben mit Hilfe von reibungslosen Gelenken(**15**) gebildetes Vieleck vorstellt, in dessen Ecken die Einzelkräfte der gegebenen Gruppe angreifen und dessen

beide Endstäbe so gestützt sind, daß der vieleckige Stabzug unter seiner Kräftebelastung im Gleichgewicht steht. Die Fig. 128 und 129 zeigen zwei solcher Seilecke. In dem einen *hängt* der Stabzug in den festen Punkten A und B und der andere Stabzug veranschaulicht ein aufrecht stehendes Seileck, das von unten in den Punkten A und B gestützt ist.

Als Hilfsmittel für die Lösung der vorliegenden Aufgabe sind (nach obigem) nur die *Gleichgewichtslagen der Seilecke* zu gebrauchen. Gleichgewicht der Kräfte am Seileck wird aber stattfinden, wenn an *jedem* Knoten des Stabzuges Gleichgewicht herrscht zwischen der dort angreifenden Last und den angrenzenden beiden Stabkräften (inneren Kräften). Aus dieser Bedingung findet man die Gleichgewichtslage eines beliebigen Seilecks mit Hilfe des zugehörigen geschlossenen Kraftecks. Wie dies im einzelnen ausgeführt wird, soll an einem Beispiel gezeigt werden.

b. Zeichnen des Seilecks. Gegeben Größe und Lage der Kräfte 1 bis 4 (Fig. 130). Gesucht Größe und Lage der Mittelkraft R. Größe und Richtung von R sind im Krafteck gefunden worden. Die Richtungen der beiden Kräfte A und B, die das Gleichgewicht der

Fig. 130.

Gruppe I bis 4 herbeiführen, sind beliebig gewählt, sie schneiden sich in O, dem Pol des Seilecks. Der Pol kann also eine beliebige Lage haben. Zieht man jetzt die Polstrahlen C, D und E nach den Ecken des Kraftecks, so erhält man dadurch soviel Kraftdreiecke, als Kräfte der gegebenen Gruppe vorhanden sind. Der Polstrahl C stellt die Mittelkraft von B und I vor. Zieht man zu ihm eine Parallele durch den Knoten I, worin sich die Kraft 2 und die in beliebiger Lage angenommene, dem Polstrahl B parallel gerichtete Kraft B schneiden, so ist damit die Richtung der Seileckseite I-2 festgelegt. Sie schneidet die Kraft 2 im Knoten 2. Die Mittelkraft aus D und 2 im Krafteck ist ebenfalls gleich C. Zwischen den Knoten I und 2 wirken also zwei gleich große aber entgegengesetzt gerichtete Kräfte C, die sich aufheben.

In gleicher Weise fährt man fort, indem man zwischen den betreffenden Kraftrichtungen 2 und 3, sowie 3 und 4 vom Knoten 2 aus die Parallelen zu den Polstrahlen D und E zieht. Dadurch erhält man die Knoten 3 und 4 des Seilecks, und die in 4 gezogene Parallele zum Polstrahl A gibt die Richtung der letzten Seileckseite, deren Stabkraft gleich A ist. Mit der Verlängerung der beiden äußern Seileckseiten, die sich im Punkte n schneiden, ist die Aufgabe gelöst, denn durch den Punkt nverläuft nach obigem die Richtung von R. Daß sämtliche Stabkräfte A, B, C, D und E mit den äußern Kräften 1, 2, 3, 4 im Gleichgewicht sind, erkennt man nachträglich auch noch aus den Pfeilrichtungen des Kraftecks. Wenn man nämlich den Kräftezug von O anfängt und die *doppelten* Pfeile in C, D und E beachtet, so kann man das ganze Kraftgebilde durchfahren, bis man über die Kraft 4 und Ain O wieder anlangt. Das Krafteck ist ein geschlossenes.

Aus den obigen Darlegungen geht ohne weiteres hervor, wie mit Hilfe eines Seilecks auch die Lage der Mittelkraft aller zwischen zwei beliebigen Seiten eines Seilecks angreifenden Kräfte gefunden werden kann. Die Ergebnisse der bisherigen Erörterungen sind in nachfolgenden beiden Sätzen zusammengefaßt:

Die Mittelkraft einer beliebig belegenen Kräftegruppe in der Ebene verläuft durch den Schnittpunkt der äußern Seileckseiten oder ihrer Verlängerungen.

Die Mittelkraft aller zwischen zwei beliebigen Seileckseiten liegenden Kräfte geht durch den Schnittpunkt dieser Seiten oder ihrer Verlängerungen.

56. Das geschlossene Seileck.

a. Graphische Gleichgewichts-Bedingungen. Wenn man nach vorigem zwischen beliebigen Kraftrichtungen ein Seileck gezeichnet und die Lage der Mittelkraft R gefunden hat, so kann man ein geschlossenes Seileck erhalten, wenn man die beiden äußern Seileckseiten im Schnittpunkte n verbindet und wenn man, um das Gleichgewicht dabei nicht zu stören, die Richtung der Mittelkraft *umkehrt*. Man erhält dann für eine beliebige Kräftegruppe sowohl ein geschlossenes Krafteck als auch ein geschlossenes Seileck (Fig. 131 und 132).

Danach kann man *die graphischen Gleichgewichts-Bedingungen* für Kräfte der Ebene wie folgt fassen:

1. Die Kräfte müssen sich zu einem geschlossenen Krafteck zusammensetzen lassen. Dann ist jede Kraft gleich der entgegengesetzt gerichteten Mittelkraft aller andern.

§ 8. Mittelkräfte beliebig gerichteter Einzellasten.

2. Zwischen den Kraftrichtungen muß ein geschlossenes Seileck zu zeichnen sein. Dann fällt jede Kraft am Seileck mit der Mittelkraft aller andern in eine gerade Linie.

Wenn beide Bedingungen erfüllt sind, besteht Gleichgewicht. Wird nur die erste erfüllt, die zweite aber nicht, so verbleibt ein Kräftepaar. Bei einem Kräftepaar schließt sich wohl das Krafteck, weil R = 0 ist,

Fig. 131.

Fig. 132.

aber das Seileck kann sich nicht schließen, weil — wie die Fig. 133 veranschaulicht — die äußern Seileckseiten parallel zueinander laufen, sich also erst in der Unendlichkeit schneiden. Auch hieraus erhellt, wie ein Kräftepaar als einer unendlich fernen und unendlich kleinen Einzelkraft gleichwertig angesehen werden darf (47).

b. Die Schlußlinie des Seilecks. Durch das Zeichnen eines geschlossenen Seilecks kann man die *Stützenkräfte einfacher belasteter Scheiben* immer bestimmen, wenn die Stützpunkte und die Richtung einer der beiden Stützenkräfte gegeben sind. Das ist leicht einzusehen, wenn man das in Fig. 134 zwischen den Richtungen der Kräftegruppen 1 bis 4 und A, B gelegte geschlossene Seileck betrachtet. Das Seileck

ist mit Hilfe eines beliebig angenommenen Poles O derart zwischen die Kraftrichtungen gezeichnet, daß seine an die Kraft 1 stoßende äußere

Fig. 134.

Seite durch den gegebenen Angriffspunkt a derjenigen Kraft verläuft, deren Richtung und Größe nicht bekannt sind. Die letzte Seileckseite

§ 8. Mittelkräfte beliebig gerichteter Einzellasten.

schneidet dabei die gegebene Richtung der zweiten unbekannten Kraft B in b, wohin man sich diese Kraft, ohne das Gleichgewicht zu stören, in ihrer Richtung verschoben denken darf (45). Sobald das Seileck jetzt durch Einziehen der Schlußlinie ab geschlossen worden ist, findet man die Größen A und B aus dem Gleichgewicht in den Seileckknoten a und b. Der zur Schlußlinie parallele Polstrahl OO' schneidet nämlich auf der im Krafteck angetragenen gegebenen Richtung von B die Strecke O'D dieser Stützenkraft ab. Zieht man also noch die Gerade O'C, so wird dadurch auch das Krafteck geschlossen. Somit hat man in der Strecke O'C die gesuchte Richtung und Größe auch von A gefunden.

Eine Nachprüfung der gefundenen Werte führt man am einfachsten dadurch aus, daß man die Lage der Mittelkraft R der Kräfte 1 bis 4 bestimmt. Das ist in Fig. 134 geschehen. Auf der Richtung von Rmüssen sich die Richtungen der mit R im Gleichgewicht stehenden Stützenkräfte A und B in einem Punkte c schneiden.

Zwei Beispiele werden das Gesagte noch näher erläutern.

1. Beispiel. Eine Tragscheibe, die in a durch ein festes Gelenk und in b durch eine Pendelwalze gestützt ist (20b), erfährt in beliebigen

Oberflächenpunkten die Wirkung eines Kräftepaares K, dessen Kraftrichtungen lotrechte sind. Größe und Richtung der Stützenkräfte Aund B sind zu bestimmen.

In diesem Falle sind beide Stützenkraftrichtungen lotrecht. Zwischen den Kraftrichtungen ist mit dem beliebigen Pol O des Kraftecks ein

Seileck gelegt, dessen äußere Seiten in den Punkten a' und b', die lotrecht unter den Stützpunkten liegen, die Stützenkräfte schneiden. a'b'ist die Schlußlinie. Parallel zur a'b' wurde im Krafteck ein Polstrahl gezogen. Dadurch erhält man zwei Kraftecke für das Gleichgewicht

ein anderes Kräftepaar aufgehoben werden, das entgegengesetzt dreht und gleiches Moment ausübt wie jenes. Ist a die Breite des Paares Kund l die wagerecht gemessene Stützweite, so ergibt sich danach
$\div A = B = \frac{K \cdot a}{l} \cdot$

2. Beispiel. Eine belastete Scheibe ist in a durch ein festes Gelenk und in b durch einen Stützenstab mit der Erdscheibe verbunden (Fig. 136). Die Stützenkräfte A und B sind zu ermitteln. Das Seileck zur Bestimmung der Lage der Mittelkraft R ist mit beliebigem Pol O gezeichnet und mit seiner ersten, an die Kraft 1 stoßenden Seite durch das Gelenk a gelegt. Die letzte Seite des Seilecks, die an die Kraft 3 stößt, schneidet die gegebene Richtung der Stützenstabkraft B im Punkte c. Macht man nun das Seileck durch Einziehen der Schlußlinie ac geschlossen, so muß auch das Krafteck (Fig. 137) sich schließen, wenn darin die Kräfte A und B noch aufgenommen werden. Die Richtung von B kann durch eine Parallele zur bc eingetragen werden, ebenso die Richtung der Schlußlinie des Seilecks durch die dazu gezogene Parallele OO'. Damit ist B bestimmt. Die den Kräftezug R-B zu einem Kräftedreieck schließende Gerade stellt dann nach Größe und Richtung die Stützenkraft A dar.

Bei der Nachprüfung hat man zuerst die Lage von R aufzusuchen, sie verläuft durch den Schnittpunkt n der äußern, zu den betreffenden Polstrahlen parallelen Seileckseiten und die Richtung von R trifft diejenige von B im Punkte d. Die aus dem Krafteck übertragene Richtung von A muß also auch durch d verlaufen.

57. Polverschiebungen der Seilecke.

a. Die Polarachse. Wie (unter **55**) angegeben, lassen sich zwischen den Richtungen gegebener Kräfte, und für einen bestimmten Pol O, unendlich viele Seilecke zeichnen. Verschiebt man den ursprünglich angenommenen Pol O nach O' und zeichnet mit dem neuen Pol O' ein zweites Seileck zwischen den nämlichen Kraftrichtungen, so schneiden sich die zwischen den gleichen Kräften liegenden Seiten der beiden Seilecke in einer einzigen Geraden, der sog. Polarachse, die parallel der Polverschiebungsgeraden OO' ist.

Der Beweis für diesen Satz läßt sich wie folgt führen: Die Kräfte 1 bis 3, die in den Knoten 1 bis 3 und 1' bis 3' angreifen (Fig. 138) stehen, jede Kraft für sich, mit den in ihrem Knoten anstoßenden Seileckspannkräften im Gleichgewicht. Die Kraft 3 zum Beispiel bildet sowohl mit den Seileckkräften A und C, als auch mit den Kräften A'und C' ein geschlossenes Kraftdreieck. Daraus folgt, daß auch die vier Kräfte A, A' und C, C' miteinander Gleichgewicht halten. Das sind zwei Paare von Kräften, die nach CULMANN's Satz (49a) nur im Gleichgewicht stehen, wenn die Mittelkraft eines jeden Paares gleiche Lage aber entgegengesetzte Richtung hat. Die Mittelkraft aus A und A'verläuft durch den Schnittpunkt der zugehörigen Seileckseiten, ebenso die Mittelkraft aus C und C'. Die Richtung der beiden Mittelkräfte fällt, wie aus den betreffenden Kraftecken in Fig. 138 zu sehen, parallel

Fig. 138.

zur Geraden der Polverschiebung OO'. Damit ist bewiesen, daß die zusammengehörigen mit verschiedenen Polen O und O' gezeichneten Seileckseiten sich alle auf der zur Geraden der Polverschiebung parallelen Polarachse schneiden. Denn was für die Seiten A, C und A', C' nachgewiesen ist, gilt sinngemäß auch für alle übrigen Seileckseiten.

b. Seilecke durch gegebene Punkte zu legen. Für eine gegebene Kräftegruppe kann man durch zwei gegebene Punkte immer noch unendlich viele Seilecke zeichnen. Man legt zuerst mit beliebigem Pol O ein Seileck durch den ersten Punkt a. Dann kann man durch a unendlich viele Polarachsen legen und für jede dieser Achsen gibt es einen neuen Pol O', mit dessen Hilfe das verlangte Seileck zu zeichnen ist. Wäre in Fig. 138 z. B. a der eine der vorgeschriebenen Durchgangspunkte gewesen, und hätte man eine der äußern Seileckseiten durch agelegt, so müßte auch die Polarachse durch a gehen, damit a beim Zeichnen des zweiten Seilecks Durchgangspunkt bleibt. Die Polarachse sei also in beliebiger Lage, aber durch a, gezogen worden. Dann wähle man irgend eine der Seiten des künftigen Seilecks aus, die durch den gegebenen Punkt b verlaufen soll. Es sei die Seite C'. Deren künftige Richtung findet man dadurch, daß man die zugehörige Seite C des ersten Seilecks mit der Polarachse zum Schnitt bringt und durch den

§ 8. Mittelkräfte beliebig gerichteter Einzellasten.

Schnittpunkt — das ist e in Fig. 138 — eine auch durch b verlaufende Gerade legt. In diese Gerade fällt nach dem Satze von der Polarachse die Seite C'. Zieht man zur Richtung von C' in der richtigen Ecke des Kraftecks — also zwischen den Kräften 2 und 3 — einen parallelen Polstrahl C', so trifft dieser die zur Polarachse XX parallel gelegene Gerade im neuen Pole O', mit dessen Hilfe das geforderte Seileck durch die gegebenen Punkte a und b gezeichnet werden kann.

Würde man jetzt mit Hilfe eines dritten Poles O'' ein drittes Seileck zeichnen wollen, das außer durch die beiden vorigen Punkte *a* und *b* auch noch durch einen dritten gegebenen Punkt *c* verliefe, so würde die Lage der dazu zu benutzenden Polarachse fest liegen. Sie müßte nämlich durch die beiden Punkte *a* und *b* gehen. Die Seiten A'' und C''des dritten Seilecks würden dann die neue Polarachse in *a* und *b* schneiden müssen. Dadurch wären ihre Richtungen eindeutig festgelegt. Sobald man jetzt noch die künftige Seileckseite ausgewählt hat, die durch den vorgeschriebenen Punkt *c* verlaufen soll, ist die Aufgabe eindeutig bestimmt. Denn jetzt ist jede Seileckseite durch ihren gegebenen Schnittpunkt mit der Polarachse *ab* und durch die weitere Bedingung festgelegt, daß sie parallel zu dem betreffenden Polstrahl des Kraftecks laufen muß, wobei der neue Pol O'' (wie vorher angegeben) gefunden wird.

Aus obiger Darlegung folgt der Satz: Durch drei vorgeschriebene Punkte läßt sich zwischen den Richtungen gegebener Kräfte nur ein einziges Seileck zeichnen.

Es gibt verschiedene Verfahren, ein Seileck durch drei Punkte zu legen, wobei man den Pol des Kraftecks ohne Hilfe der Polarachsen findet. Eins dieser Verfahren folgt unter **59**.

58. Seilecke als Mittelkraftlinien.

a. Mittelkraftlinie einer Gleichgewichtsgruppe. Die Mittelkräfte R_1 , R_2 , R_3 usw. der im Krafteck aufeinanderfolgenden Kräfte P_1 ; P_1 und P_2 ; P_1 , P_2 und P_3 usw. liegen in den Seiten eines Seilecks, das man erhält, wenn man den Pol in die entsprechende Ecke des Kraftecks zwischen P_1 und der letzten Kraft der Reihe legt.

Die im Gleichgewicht befindlichen Kräfte seien P_r bis P_m . Der Pol O' ist zwischen die Kräfte P_r und P_m gelegt. Das mit Hilfe der Polstrahlen gezeichnete Seileck muß sich also schließen (Fig. 139). Man erkennt dann ohne weiteres, einerseits daß die Richtung der Schlußlinie zwischen den Kräften P_r und P_m beliebig gewählt werden kann, weil ein dazu gehöriger Polstrahl im Krafteck nicht vorhanden ist, und anderseits, daß die Spannkraft in der Schlußlinie eines geschlossenen Seilecks stets gleich Null ist, weil der zugehörige Polstrahl verschwindet. Danach kann man sagen:

Eine Mittelkraftlinie ist ein geschlossenes Seileck, dessen Schlußlinie spannungslos ist.

In der Fig. 139 ist zu der gegebenen Kräftegruppe zuerst mit dem beliebigen Pol O ein erstes Seileck gezeichnet, sodann ist der Pol nach

Fig. 139.

O' verlegt und das zweite Seileck ist mit Hilfe der zu OO' parallelen Polarachse, die durch die Knoten 1 und *m* des Seilecks verlaufen muß, gezeichnet. Dies zweite Seileck ist eine Mittelkraftlinie, deren Schlußlinie, wie gesagt, beliebig zu legen ist. Die Bedeutung der Mittelkr₁ftlinien soll nachstehend an einigen Beispielen dargelegt werden.

§ 8. Mittelkräfte beliebig gerichteter Einzellasten.

b. Mittelkraftlinie einer belasteten Scheibe. Eine belastete Bogenscheibe (Fig. 140) sei durch ein Gelenk a und einen Stützenstab b starr an die Erdscheibe geschlossen. Es soll die Mittelkraftlinie gezeichnet werden, deren äußere Seiten je durch a und den Stab b verlaufen. Die Belastung der Kräftegruppe I bis 5 steht im Gleichgewicht mit dem Gelenkdruck A und der Stabkraft B. Man bestimme also A und B in bekannter Weise (**56**) aus Kraft- und Seileck. Das kann dadurch geschehen, daß man entweder die Lage von Rfestlegt oder daß man ein geschlossenes Seileck zeichnet, dessen Schlußlinie durch A und irgend einen Punkt der Richtung von B verläuft. Wir wählen den letztern Weg. Parallel zur Schlußlinie läuft der Polstrahl OO' im Krafteck (Fig. 141). Die Strecken O'c und dO' stellen dann A und B nach Richtung und Größe dar. Die Mittelkraftlinie kann schließlich mit O' als Pol und der Schlußlinie als Polarachse gezeichnet werden. Das ist in den Fig. 140-141 mit roter Farbe ausgeführt.

Die Bedeutung einer solchen Mittelkraft wird klar werden, wenn man sich durch die belastete Scheibe an irgend einer Stelle einen Querschnitt (1) gelegt denkt. tt sei ein solcher an beliebiger Stelle gelegter Querschnitt. Die durch tt geschnittene Seileckseite 2—3 gibt, wie aus dem Krafteck zu sehen, die Richtung der Mittelkraft R_2 der sämtlichen auf einen abgeschnittenen Teil der Scheibe wirkenden äußern Kräfte. Auf das *linke* Teilstück der Scheibe wirkt R_2 , als Mittelkraft des rechtsseitigen Teiles, in der Richtung gegen den Querschnitt, nach links, ist also ein Druck (3a). Auf das rechtseitige Teilstück wirkt die Mittelkraft aus den Kräften A, I und 2. Sie ist ebenso groß wie R_2 , aber wie aus dem betreffenden geschlossenen Krafteck zu sehen — hat sie hier entgegengesetzte Richtung wie vorhin. Auch auf den Querschnitt tt des rechtseitigen Teilstückes wirkt also R_2 als Druck.

Weil nun die in der Querschnittsfläche tt auftretenden *innern* Kräfte oder *Spannungen* im Gleichgewicht mit der Mittelkraft R sein müssen (13), so hat man in der Mittelkraftlinie ein ausgezeichnetes Hilfsmittel, um für jeden beliebigen Schnitt einer Konstruktion, die man als Scheibe behandeln kann, die Beziehungen zwischen der im Schnitt wirkenden Mittelkraft und den dort auftretenden Spannungen festzustellen. Wir werden von diesem Hilfsmittel im folgenden noch oft Gebrauch machen.

59. Mittelkraftlinie durch drei gegebene Punkte oder Gelenke.

a. Beispiel eines Dreigelenkbogens (Fig. 142). Unter **48** ist bereits für einen Dreigelenkträger die Aufgabe gelöst worden, eine Mittelkraftlinie durch die drei Gelenke zu legen. Dabei waren die auf je eine

Mehrtens, Statik der Baukonstruktionen. I.

der Scheiben der Gelenkkonstruktion wirkenden Mittelkräfte R_1 und R_2 gegeben (Fig. 111). Im folgenden soll aber die Aufgabe allgemein behandelt

Fig. 141.

§ 8. Mittelkräfte beliebig gerichteter Einzellasten.

werden, namentlich um dabei die verschiedenartige Verwendbarkeit von Seilecken zu zeigen. Auf den Dreigelenkbogen ACB wirken die Lasten 1-7. Man setze sie zu einem Krafteck zusammen (Fig. 143) und zerlege dann die auf die Teile AC und BC wirkenden Mittelkräfte je in

Fig. 143.

zwei Seitenkräfte, die einerseits durch ein Kämpfergelenk und anderseits durch das Scheitelgelenk verlaufen, die gleichzeitig aber der zugehörigen Mittelkraft parallel sind. Diese Zerlegung erfolgt mit Hilfe zweier Seilecke, die mit den beliebigen Polen O_a und O_b gezeichnet werden und deren Schlußlinien s_a und s_b in das Krafteck durch entsprechende Parallelen s'_a und s'_b zu übertragen sind. Es sind also R_a und R_c parallel der Richtung der Mittelkraft der linksseitigen Kräftegruppe 1 bis 3; desgleichen

3*

 R_{δ} und R'_{c} parallel der Mittelkraft 4 bis 7. Ferner schneiden die Schlußlinienparallelen s'_{a} und s'_{δ} im Krafteck auf den Richtungen der bezeichneten Mittelkräfte die Strecken der gesuchten Seitenkräfte R_{a} , R_{c} , sowie auch R_{δ} , R'_{c} ab. Zerlegt man schließlich noch, wie es auch (unter **48**) in Fig. 113—114 geschehen ist, die auf das Scheitelgelenk C fallenden Seitenkräfte R_{c} und R'_{c} in die gleichwertige Gruppe A' und B', so braucht man nur noch R_{a} und A', sowie auch R_{δ} und B' je zu einem geschlossenen Krafteck zu vereinigen, um auch die gesuchten Kämpferdrucke A und B zu erhalten. A und B münden im Pol O und bilden auch zusammen mit den Lastgruppen ein geschlossenes Krafteck. O ist zugleich der Pol für die Zeichnung der Mittelkraftlinie, die durch die drei gegebenen Gelenkpunkte verläuft. Der zwischen den Kräften 3 und 4 liegende Polstrahl gibt den Druck H' im Scheitelgelenk.

Es ist leicht einzusehen, wie das erläuterte Verfahren auch benutzt werden kann, um die rein statische Aufgabe zu lösen, zu einer gegebenen Gleichgewichtsgruppe von Kräften durch drei gegebene Punkte die Mittelkraftlinie zu legen.

b. Verwendung der Mittelkraftlinie zu Stabkraftberechnungen (als Beispiel). Unter **58**b wurde schon hervorgehoben, wie man, nach erfolgter Darstellung der Mittelkraftlinie, durch die zugehörige Konstruktion irgend einen Schnitt legen könne, und daß dadurch die in dem Schnitte wirkende Mittelkraft aller auf dem betrachteten linksoder rechtsseitigen Teil der Konstruktion angreifenden äußern Kräfte in jedem Falle nach ihrer Größe und Lage bekannt sei. Es soll nun an einem Beispiele weiter gezeigt werden, wie man diese Eigenschaft der Mittelkraftlinie verwerten kann, um die *Stabkräfte von Dreieckstabwerken* (**26**) graphisch zu ermitteln.

In der Fig. 144 ist ein durch den Schnitt tt von der übrigen Konstruktion abgetrennter Teil eines ebenen Bogenträgers dargestellt. Der Teil ist in den Obergurtknoten durch Einzelkräfte 1 bis 3 belastet und zu der Gesamtbelastung der Konstruktion ist die durch A verlaufende Mittelkraftlinie gezeichnet, von welcher die auf den abgeschnittenen Teil fallende Strecke in Fig. 144 veranschaulicht ist. Aus dem Krafteck ist die Größe und der Richtungssinn der mit der Gruppe A, 1, 2 und 3 gleichwertigen Mittelkraft R zu entnehmen (Fig. 145).

Der Schnitt tt läßt sich im betrachteten Dreieckstabwerk immer durch *drei Stäbe* führen, deren Spannkräfte O, U und D mit Hilfe des Satzes von CULMANN graphisch ermittelt werden können. Zu dem Zwecke bringt man in den Schnittpunkten der drei Stabachsen je eine *äußere* Achsenkraft (15) an, die gleichwertig mit der unbekannten *innern* Stab-

§ 8. Mittekräfte beliebig gerichteter Einzellasten.

kraft angenommen wird. Der Richtungssinn der Achsenkraft ist noch nicht bekannt, deshalb zeichnet man die betreffenden drei Pfeilrichtungen vorläufig beliebig ein. Gewöhnlich richtet man die Pfeile, von den zugehörigen Stabknoten aus gesehen, nach außen hin, wie in der Fig. 144 geschehen.

Die drei unbekannten Stabkräfte stehen mit den äußern Kräften A, 1, 2 und 3 im Gleichgewicht, also bilden sie auch eine Gleichgewichtsgruppe mit der jenen äußern Kräften gleichwertigen Mittelkraft R. Zeichnet man demnach aus O, U, D und R ein CULMANN'sches Kraftviereck, wobei man (nach **49**a) R mit einer beliebigen der drei Unbekannten

Fig. 144.

paaren kann, so hat man damit die gestellte Aufgabe der Stabkraftberechnung gelöst. In der Fig. 144 wurde R mit O gepaart, deren Mittelkraft L in der Richtung xy nach dem Schnittpunkt y von D und Ugerichtet ist. Im zugehörigen Kraftviereck wurden über L schließlich die Stabkräfte U und D zusammengesetzt. Aus der Vergleichung der betreffenden Pfeilrichtungen der Fig. 144 und 146 ergaben sich O, Uund D als Druckkräfte.

Das erläuterte Verfahren der Stabkraftbestimmung mit Hilfe einer Mittelkraft und unter Anwendung des Satzes von CULMANN ist für eine große Zahl der weiterhin noch folgenden Aufgaben von grundlegender Bedeutung.

Fig. 145.

60. Statische Momente.

a. Summe der Einzelmomente. Man summiert die Momente am einfachsten wohl dadurch, daß man sie alle auf eine gleiche Breite (Hebelarm) zurückführt. Das kann z. B. geschehen mit Hilfe einer Geraden ZZ (Fig. 147), die im Abstande h vom Momentenpunkte mgelegt wird und die von den gegebenen Richtungen der Kräfte (1 bis 4) geschnitten wird. In diesen Schnittpunkten (a_1 bis a_4) trage man die Kräfte 1 bis 4 als Strecken in vorgeschriebener Richtung an und zerlege dann jede Kraft nach zwei Richtungen, von denen die eine mit der ZZ zusammenfällt und die andere durch den Momentenpunkt verläuft.

Fig. 148.

Die letztgenannten Seitenkräfte haben kein Moment in Bezug auf m. Die geometrische Summe der in die ZZ fallenden Seitenkräfte multipliziert mit h ergibt danach das gesuchte Moment.

Man kann auch mit der beliebig gewählten Breite h als Halbmesser (vom Momentenpunkte als Mittelpunkt aus) einen Kreis schlagen (Fig. 148), in dessen Umfang die obigen Schnittpunkte $(a_r$ bis a_4) fallen. Dann zerlege man jede Kraft einmal *in* die Richtung und ein andermal *senkrecht* zur Richtung des durch ihren Angriffspunkt verlaufenden Halbmessers hAuf diese Art verschwinden die Momente der durch das Kreismittel

§ 8. Mittelkräfte beliebig gerichteter Einzellasten.

verlaufenden Seitenkräfte und aus der Summierung der übrigen ergibt sich wie vorher das gesuchte Moment.

b. Das Moment der Mittelkraft im Seileck. Die Mittelkraft *R* einer beliebigen ebenen Kräftegruppe verläuft (nach **55**) durch den

Schnittpunkt der äußern Seileckseiten. Eine solche Kräftegruppe ist in den Fig. 149 und 150 dargestellt. Die Richtung von R führt hier durch

den Schnittpunkt p der Seileckseiten A und B, deren Spannkräfte A' und B' das zugehörige Krafteck schließen.

Das statische Moment von R in Beziehung auf einen beliebigen Punkt m in der Ebene ist

$$M = R \cdot a$$
.

Darin bedeutet a die Breite des zugehörigen Kräftepaares, d. h. also die Länge des von p auf eine parallel zu R und durch m verlaufende Gerade gefällten Lotes. Der Ausdruck für M läßt sich auf eine andere Form bringen, wenn man die im Krafteck ausgesprochenen Beziehungen von R zu den Steileckkräften A' und B' verwertet. Zu dem Zwecke bestimmt man durch Fällen eines Lotes vom Pole O aus auf die Richtung der Mittelkraft den sog. *Polabstand H* (Or in Fig. 150). Sind ferner nund o die Punkte, in welchen die äußern Seileckseiten A und B die durch m gelegte zu R parallele Gerade gg schneiden, so folgt aus der Ähnlichkeit der Dreiecke nop und COD:

$$\frac{R}{m_0} = \frac{H}{a}$$

In Verbindung mit der vorigen Gleichung ergibt sich daraus (abgesehen vom Vorzeichen):

$$M = H \cdot no$$
,

oder wenn die Strecke $\overline{no} = \eta$ gesetzt wird,

$$M = H \cdot \eta \,.$$

Diese wichtige Beziehung lautet in Worten:

Das statische Moment der Mittelkraft ist gleich dem Produkte aus ihrem Polabstande in diejenige Strecke, die von den äußern Seileckseiten auf einer durch den Momentenpunkt gezogenen, zur Mittelkraftrichtung parallelen Geraden abgeschnitten wird.

 η ist hier eine Strecke, die nach dem gewählten Maßstabenals Länge abzugreifen ist. Hals Kraftgröße ist auf dem Kräftemaßstabmabzumessen. Weil aber

$$\frac{H}{m}\cdot\frac{\eta}{n}=\frac{H}{n}\cdot\frac{\eta}{m}$$

ist, so kann auch die Strecke η als Kraft und der Polabstand H als Länge gerechnet werden, ohne am Ergebnis dadurch etwas zu ändern.

Was für die Mittelkraft R zutrifft, gilt sinngemäß auch von jeder Einzellast im Knoten eines Seilecks, sowie auch von der *Mittelkraft*

§ 9. Mittelkräfte für parallele und für stetige Lasten.

einer Reihe von aufeinander folgenden Seileckkräften. Danach ist z. B. in den Fig. 149 und 150 das Moment der Kraft 2 für den Punkt m_2 und außerdem das Moment der Mittelkraft R_3 der Kräfte 1 bis 3 für den Punkt m_3 graphisch ermittelt.

§ 9. Mittelkräfte für parallele und für stetige Lasten.

Das Krafteck für Parallellkräfte ergibt sich aus der geometrischen Summierung der Einzelkräfte als eine *Kraftlinie*. In diesem Falle ist es für die weitere Behandlung und Benutzung zweckmäßig, die Kraftlinie derart darzustellen, daß weder über *Anfang und Ende* des Kraftzuges,

H

Fig. 152.

2

6

sowie über die Reihenfolge der Kräfte, noch über deren Richtungssinn ein Zweifel bleiben kann. Wie dies geschieht, ergeben die Fig. 152 und 156 der folgenden Nummern. 61. Statische Momente.

a. Momente im offenen Seileck. Wenn das statische Moment von Parallelkräften gefunden werden soll, kann man ebenfalls, wie unter **60** erläutert, verfahren. In diesem Falle

ist die Polweite H für alle Kräfte gleich groß, d. h. das Moment ist dem zugehörigen Abschnitte η proportional. Von dieser Eigenschaft des Momentes kann man mit Nutzen Gebrauch machen, wenn es sich darum handelt, *die statischen Momente einer aufeinanderfolgenden Reihe* von

Parallelkräften zu bestimmen. Dabei empfiehlt es sich, wie in den Fig. 151 und 152 geschehen, die an die *erste* Kraft der Reihe stoßende Seileckseite senkrecht zur Kraftrichtung zu legen.

Das Moment der Mittelkraft R_6 der ganzen Kräftereihe 1 bis 6, bezogen auf den Momentenpunkt m_6 , oder einen durch diesen gelegten zur Kraftrichtung parallelen Schnitt tt ist dann nach vorigem (abgesehen vom Vorzeichen):

$$M_6 = H\eta_6$$
,

wobei η_6 diejenige Ordinate des Seilecks ist, welche auf die zur Kraftrichtung senkrecht stehende äußere Seileckseite bezogen ist. Sinngemäß ist ferner anzuschreiben:

$$M_5 = H\eta_5,$$

wenn η_5 diejenige Seileckordinate ist, die in der durch den Momentenpunkt m_5 verlaufenden Kraftparallelen liegt.

Das Ergebnis läßt sich in folgendem Satze zusammenfassen: Für Parallelkräfte ist jede Ordinate des zugehörigen Seilecks, die von der zur Kraftrichtung senkrecht stehenden ersten Seileckseite als Abszissenachse gemessen wird, proportional dem Momente, das die vor der Ordinate belegenen Kräfte in Bezug auf einen in der Ordinate liegenden Schnitt ausüben. Der Drehsinn des Momentes richtet sich nach der Lage der Ordinate zur Abszissenachse.

Dieser Satz findet hauptsächlich Verwendung bei der Berechnung von statischen Momenten für verschiedene Querschnitte von Stäben oder

Tragscheiben, deren äußere Kräfte (Belastungen und Stützenkräfte) miteinander im Gleichgewicht stehen. Fig. 153 stellt zum Beispiel einen solchen Fall dar. A und B seien die Stützenkräfte, 1 bis 3 die Lasten. In C sei ein

Schnitt *tt* durch den Träger geführt. Dann ist das statische Moment M_a der links *oder* M_b der rechts vom Schnitte angreifenden äußern Kräfte gleich groß, weil die Summe beider Momente gleich Null sein muß.

$$M_a + M_b = \circ$$
$$M_a = \div M_b \,.$$

oder

Der Drehsinn beider Momente ist ein entgegengesetzter, sobald man sie beide von einer und derselben Seite aus betrachtet. Wie das Vorzeichen der Mittelkraft paralleler auf eine Tragscheibe wirkender Kräfte zu nehmen ist, wenn es sich um die Betrachtung und Berechnung der innern Kräfte eiues Querschnittes handelt, vergl. im vierten Abschnitt.

b. Die Momentenfläche eines geschlossenen Seilecks. Es handelt sich hier um Kräfte, die an einer Tragscheibe angreifen und *im Gleichgewicht* miteinander stehen, mit andern Worten also um die Momentenfläche eines *geschlossenen* Seilecks dieser Kräfte.

Jene Strecke η , die von den äußern Seileckseiten in irgend einem parallel zur Mittelkraftrichtung geführten Schnitte abgetrennt wird, liegt bei einem geschlossenen Seileck

immer zwischen der Schlußlinie ab und einer andern Seileckseite (Fig. 154). Und da η ein Maß für die Größe des betreffenden Momentes abgibt, so nennt man die von dem Umriß eines geschlossenen Seilecks begrenzte Fläche die Momentenfläche. Diese wird auf dem Gebiete der Baukon-

Fig. 154.

struktionen hauptsächlich für *Parallelkräfte* verwendet. Ein Beispiel wird die Art der Verwendung näher erläutern.

Ein durchgehender Stab oder eine Scheibe sei in zwei beliebigen Punkten starr mit der Erdscheibe verbunden. Dann sind, wie im vorigen an verschiedenen Beispielen gezeigt worden ist, die Stützenkräfte A und B aus der gegebenen Lastgruppe zu bestimmen. Auch läßt sich zwischen den Stützenkräften und den Lasten ein geschlossenes Seileck zeichnen.

Die in Fig. 155 dargestellte Scheibe ist durch die Kräfte 1 bis 5 belastet, im Punkte a durch ein festes Gelenk und in b durch einen senkrecht und parallel der Kraftrichtung gestellten Stab gestützt. Um die Stützenkräfte A und B, deren Richtung ebenfalls eine senkrechte ist, ihrer Größe und ihrem Richtungssinne nach graphisch zu bestimmen, ist in Fig. 155 mit Hilfe des Kraftecks in Fig. 156 ein geschlossenes Seileck gezeichnet, dessen Schlußlinie s die Stützpunktsenkrechten in a und bschneidet. Durch Eintragen des zur Schlußlinie parallelen Polstrahls s'erhält man im Krafteck aus den zu den Seileckknoten a und b gehörigen Kraftdreiecken die gesuchten Größen A und B. A ergibt sich als ein negativer, B als ein positiver Stützendruck (**18**). Legt man jetzt an einer beliebigen Stelle der Scheibe einen zur Kraftrichtung parallelen Schnitt, so ist die in diesem Schnitte liegende, zwischen den Seileckseiten gemessene Seileckhöhe η ein Maß für das Moment, das die links oder rechts von η angreifenden äußern Kräfte in Beziehung auf den Schnitt ausüben. Dies folgt ohne weiteres einer-

seits aus dem vorigen Satze über die Parallelkräfte und anderseits aus der Bedingung, daß im Gleichgewichtsfalle die Summe der statischen Momente aller Seileckkräfte in Bezug auf einen beliebigen Punkt der Scheibe gleich Null sein muß. Das Moment der Kräfte auf der einen Seite des Schnittes *tt* ist also gleich groß, aber entgegengesetzt gerichtet, wie dasjenige auf der andern Seite. Allgemein ist das Moment

3

B

 $M = \pm H \cdot \eta$.

Aus obigem Grunde heißt die von den Seiten des geschlossenen Seilecks gebildete Fläche *die Momentenfläche*.

Der Satz von der Momentenfläche kann wie folgt gefaßt werden:

Die Umrisse eines geschlossenen Seilecks paralleler Kräfte begrenzen eine Momentenfläche, aus welcher für jeden der Kraftrichtung parallelen Schnitt das Moment M der links oder rechts vom Schnitte angreifenden Kräfte nach der Formel $M = H\eta$ berechnet werden kann, wenn η die im Schnitt gemessene Höhe der Momentenfläche und H der Polabstand des zugehörigen Kraftecks ist.

Aus der Fig. 155 ist zu sehen, wie auf einer Seite der Schlußlinie die positiven, auf der andern Seite die negativen Werte von η , also auch der zugehörigen Momente fallen. In den Wendepunkten gehen die Momente vom Positiven ins Negative über oder umgekehrt.

62. Momentenfläche für eine Scheibenverbindung.

a. Beispiel eines durchgehenden Gelenkträgers. Drei Tragscheiben seien durch Zwischengelenke miteinander verbunden, derart, daß die Gelenke in einer Wagerechten zu liegen kommen. Ihre starre Verbindung mit der Erdscheibe erfordert (nach 23) mindestens (4-1) 3 = 9 Stäbe. Außer den drei Scheibengelenken $(a, g_1 \text{ und } g_2)$ braucht man also noch $9 - 2 \cdot 3 = 3$ Stützenstäbe. Diese sind als Pendelstützen in den Punkten b, c, d angeordnet. Das System ist statisch bestimmt; die unbekannten Größen oder vier Stützenkräfte, deren Richtungen der senkrechten Belastung parallel sind, müssen demnach aus den Gleichgewichts-Bedingungen ermittelt werden können. Zur Verfügung stehen vorläufig nur zwei Gleichungen, die sich aus den Bedingungen ergeben, wonach einerseits die Summe aller Lasten und Stützenkräfte und anderseits die Summe der Momente für jeden Punkt des Systems je für sich zu Null werden muß. Die fehlenden zwei Gleichungen ergeben sich aber aus dem Umstande, daß auch die Summe der Momente aller links oder rechts von einem Gelenke angreifenden äußern Kräfte gleich Null sein muß, weil sonst in dem Schnitte, den man sich durch ein Gelenk gelegt denkt, ein Gleichgewicht zwischen äußern und innern Kräften nicht möglich ist. Innere Kräfte wirken ja im Gelenkpunkte nicht, können also auch nicht widerstehen: Reibungsmomente im Gelenke sind nach unserer Voraussetzung (15 und 16) ausgeschlossen; zwar übt jede belastete Tragscheibe im Gelenk einen sog. Gelenkdruck aus, diese beiden Drücke sind jedoch nach dem Gesetze der Wechselwirkung gleich groß und entgegengesetzt gerichtet, heben sich in ihrer Wirkung also zu Null auf.

Analytisch könnten nach dem Gesagten aus den gegebenen vier Bedingungs-Gleichungen die vier Unbekannten berechnet werden. Um aber die Eigenschaften von Krafteck und Seileck wiederholt nach verschiedenen Seiten hin zu beleuchten, wird nachstehend die graphische Behandlung vorgezogen, die in den Fig. 157-159 durchgeführt worden ist.

Es handelt sich um die Zeichnung eines die Momentenfläche darstellenden geschlossenen Seilecks zwischen den Lasten 1 bis 8 und den

Zweiter Abschnitt. Äußere Kräfte.

§ 9. Mittelkräfte für parallele und für stetige Lasten.

vorläufig noch unbekannten vier Stützenkräften A, B, C und D. Es empfiehlt sich, die graphische Ermittelung des Seilecks von einer Seite her vorzunehmen, wobei nacheinander die drei Trägeröffnungen I, II und III (oder auch umgekehrt) an die Reihe kommen.

Denkt man sich einen senkrechten Schnitt durch den Stützpunkt c geführt, so ist klar, daß die Momentenfläche für die vor dem Schnitte liegende erste Öffnung in bekannter Weise gefunden werden kann, wobei die in g, wirkenden Gelenkdrücke (als sich gegenseitig aufhebende) nicht mit in dem zu zeichnenden Seileck aufgenommen zu werden brauchen. Das Seileck der Kräfte 1, 2 und 3 der ersten Öffnung ist danach mit Hilfe des Kraftecks I der Fig. 157 mit beliebigem Pole H gezeichnet (Fig. 158 unten). Die Schlußlinie des Seilecks ist in vorliegendem Falle in ihrer Lage gegeben, denn sie muß durch den Punkt g' verlaufen, in welchem das Seileck von der zugehörigen Gelenksenkrechten geschnitten wird, weil das Moment in g_{τ} gleich Null, also η im Punlte g'_{τ} verschwinden muß. Sobald man die Schlußlinie s, entsprechend gelegt, hat man denjenigen Teil des geschlossenen Seilecks, der zu den Kräften der ersten Öffnung gehört, gefunden. Daß auch die Momentenfläche rechts von g' dadurch richtig bestimmt ist, geht auch aus dem vorigen Beispiel (Fig. 155) hervor.

In gleicher Weise, wie analytisch die Stützenkraft A aus der Bedingung bestimmt wird, daß die Summe der statischen Momente von A, I und 2 in Bezug auf den Gelenkpunkt g_{I} verschwinden muß, findet man graphisch den Wert von A aus der Lage der Schlußlinie s_{I} . Die Parallele s'_{I} dazu schneidet auf der Kraftlinie im Krafteck I das Stück A als positiv ab. Daraus folgt weiter, daß die Momentenfläche bis zum Punkte g'_{I} positiv ist.

Die Seilecke in den beiden folgenden Öffnungen II und III zeichnet man zweckmäßig mit gleichem Polabstande H, wie in der ersten Öffnung, die Lage des Poles O_2 und O_3 ist beliebig zu wählen. Weil das statische Moment über der Stütze C — das sog. Stützenmoment — für den linken Teil ac des Systems ebenso groß ist wie für den rechten Teil bc, so folgt daraus, daß das Seileck der II. und III. Öffnung im Punkte c (Fig. 158 unten) und seine Schlußlinie s_2 im Punkte c' anschließen muß, wenn $\overline{cc'} = \eta_c$ die Höhe der Momentenfläche in c bedeutet. Dabei muß die Schlußlinie s_2 durch den Gelenkpunkt g'_2 verlaufen. Aus gleichen Gründen ist auch der Verlauf des Seilsecks in der III. Öffnung gegeben. Die Größe der Stützenkraft B findet sich aus dem Krafteck III in bekannter Weise wie vorher bei A erläutert.

Es bleibt schließlich noch etwas über die Bestimmung der Stützenkräfte

C und D zu sagen. Beide finden sich aus dem Gleichgewicht der zugehörigen Seileckknoten, das sind die Knoten c, c' in der Richtung von C und d, d' in der Richtung von D. C steht im Gleichgewicht mit den Stabkräften S_3 , T_4 , s_1 und s_2 ; ebenso D mit den Kräften T_6 , U_7 , s_2 und s_3 , deren Pfeilrichtungen nach bekannten Regeln (unten in Fig. 158) eingetragen sind. Es ist zu raten, sich durch Betrachtung aller Pfeilrichtungen des geschlossenen Seilecks davon zu überzeugen, daß jetzt in der Tat zwischen den Lasten 1 bis 8 und den ermittelten Stützenkräften A bis D Gleichgewicht besteht. A, B, C, D fallen alle *positiv* aus. Unter Umständen, je nach der Lage des gegebenen Fallshat man unter Beachtung der Pfeilrichtungen der Polstrahlen der zugehörigen Seilecke zu entscheiden, ob etwa *negative* Stützenkräfte vorkommen.

b. Wagerechte Schlußlinienzüge. Für den praktischen Gebrauch ist es zweckmäßig, eine Momentenfläche mit wagerechtem Schlußlinienzug darzustellen, besonders wenn es sich (wie im letzten Beispiel) um mehrere Öffnungen handelt. Eine solche Darstellung kann man in einfacher Weise erhalten, wenn man die erstmalig mit beliebig gelegten Polen ermittelten Werte von η , wie es in Fig. 158 geschehen, in den entsprechenden Abszissenpunkten über einer Wagerechten als Ordinaten noch einmal aufträgt. Ratsamer aber ist es, die zweite Momentenfläche aus der ersten mit Hilfe neuer Kraftecke, unter Benutzung der Polarachse darzustellen, weil man auf solche Weise gleichzeitig der Richtigkeit aller erstmalig erhaltenen Werte von η nachprüft. Wenn man dabei dann durchweg die erstgewählte Polweite H beibehält (was zweckmäßig ist), muß die Polarachse für jede Öffnung eine Senkrechte sein, die durch den linksseitigen Stützpunkt verläuft, falls man (wie in Fig. 158) von links zu zeichnen angefangen hat. Eine derartige zweite Aufzeichnung der Momentenfläche ist in dem oberen Seileck der Fig. 158 mit Hilfe des Kraftecks der Fig. 159 durchgeführt.

63. Der Mittelpunkt paralleler Kräfte.

Wenn parallele Kräfte in bestimmten Punkten eines Körpers angreifen, so mag deren Richtung beliebig gewählt werden, immer verläuft ihre Mittelkraft durch einen und denselben Punkt, den sog. Mittelpunkt der Kräfte. Für Schwerkräfte ist dies der *Schwerpunkt*.

a. In der Ebene. Man findet den Mittelpunkt mit Hilfe von Kraft und Seileck in folgender Weise (Fig. 160).

Man zeichnet für zwei verschiedene, beliebige Lagen einer Gruppe von Parallelkräften zwischen den Kraftrichtungen ein Seileck und bestimmt

in jedem der beiden Seilecke die Lage der Mittelkraft R. Die beiden Mittelkräfte R schneiden sich im gesuchten Mittelpunkte.

Dies Verfahren ist in der Fig. 160 für eine in den Punkten m_1 bis m_4 angreifende Kräftegruppe 1 bis 4 ausgeführt. Der bequemeren Darstellung wegen sind die Parallelkräfte einmal senkrecht, das zweite Mal wagerecht gerichtet angenommen worden. Die zugehörigen Kraftecke sind mit beliebigen Polen (O_s und O_w) gezeichnet. Die gefundenen Richtungen von R_s und R_w schneiden sich in s.

Fig. 160.

Würde man für eine dritte, beliebige andere Richtung der Parallelkräfte die Lage von *R* zum dritten Male ermitteln, so müßte sie ebenfalls durch *s* verlaufen. Der Beweis hierfür kann wie folgt geführt werden: Der Mittelpunkt *s* kann sich nicht ändern, wenn man alle Kräfte einer der beiden betrachteten Gruppen *im gleichen* Verhältnis Mehrtens, Statik der Baukonstruktionen. I. vergrößert oder verkleinert. Betrachtet man nun eine dritte Gruppe, deren Einzelkräfte Mittelkräfte oder Einzelkräfte der beiden ersten Gruppen sind, so muß auch die Mittelkraft R_3 der dritten Gruppe durch *s* verlaufen, weil anders R_3 mit den beiden Kräften R_s und R_w (Fig. 160) nicht gleichwertig sein kann. Je nachdem sich, bei Änderung des Verhältnisses zwischen den Kräften der ersten beiden Gruppen, R_s und R_w ändern, wird auch R_3 alle möglichen andern Größen und Lagen einnehmen, die aber alle durch *s* führen. Damit ist der Beweis gegeben, daß die Mittelkraft R_3 jeder beliebig belegenen Gruppe von Parallelkräften immer durch einen und denselben Punkt *s* verläuft, wenn nur die Angriffspunkte der Einzelkräfte unverändert liegen bleiben und wenn nur alle Kräfte, falls sie ihre Größe ändern, dies in gleichem Verhältnisse tun.

b. Im Raume. Wie nach den Ausführungen unter 50 und 51 leicht einzusehen, ist die Projektion der Mittelkraft paralleler Kräfte im Raume

Fig. 161.

gleich der Mittelkraft der Projektionen. Man kann danach die Lage der Mittelkraft der Projektionen von parallelen Kräften benutzen, um daraus den Mittelpunkt einer beliebigen Raumgruppe von Parallelkräften zu finden. Das geschieht folgendermaßen: Man projiziert die gegebene

§ 9. Mittelkräfte für parallele und für stetige Lasten.

Raumgruppe auf zwei Coordinaten-Ebenen. In der Fig. 161 sind diese z. B. senkrecht zu einander stehend angenommen. Die Kräfte (1 bis 4) greifen in den Punkten $(m_1 \text{ bis } m_4)$ eines Körpers an. Die Projektionen der Kräfte sind in der senkrechten Ebene 1' bis 4', in der wagerechten Ebene 1" bis 4".

Weiter nimmt man in einer der Ebenen noch eine zweite Richtung der Parallelkräfte an, so daß man in dieser Ebene, nach dem unter a. gezeigten Verfahren, die Projektion s' des gesuchten Mittelpunktes s finden kann. In der Fig. 161 ist dies in der senkrechten Ebene mit Hilfe zweier Seilecke und den zugehörigen Kraftecken der Pole O'_s und O'_w ausgeführt. Um s zu finden, bleibt nur noch übrig, die Mittelkraft R'_w auf die wagerechte Ebene zu projizieren. Das ist mit Hilfe des Kraftecks O''_w und eines dazu zwischen den Kraftrichtungen 1" bis 4" gezeichneten dritten Seilecks geschehen.

Nunmehr ist der Mittelpunkt s gegeben. Er liegt in der durch die Richtung von R''_w bestimmten senkrechten Ebene und bildet in dieser den Schnittpunkt des von s' auf die Ebene gefällten Lotes s's. Ebenso liegt s in der durch die Richtung von R'_w bestimmten wagerechten Ebene und ist Fußpunkt des auf diese von s'' gefällten Lotes s''s.

Bei Schwerpunkts-Bestimmungen von Flächen, Scheiben oder Körpern kann man von obigem Verfahren Gebrauch machen.

64. Seillinien und Stützlinien für beliebige stetige Lasten.

a. Allgemeine Gestalt der Seillinie. Stetig verteilte Lasten, von denen schon unter **10** die Rede war, kann man als eine Gruppe von unendlich kleinen Einzellasten auffassen, die in unendlich kleinen Abständen aufeinander folgen. Ändern die Einzellasten dabei weder ihre Größe noch ihre Richtung, so spricht man von einer gleichmäßig stetigen Lastverteilung. Eine ungleichmäßig stetige Verteilung liegt vor, wenn die Einzellasten entweder Größe oder Richtung oder beides stetig ändern.

Krafteck und Seileck erhalten in solchen Belastungsfällen unendlich kleine Seitenlängen, sie gehen in *Kraftlinie* und *Seillinie* über, wobei die Kraftlinie entweder eine *krumme* oder gerade sein kann. Fig. 162 und 163 stellen die allgemeine Gestalt einer Kraftlinie und Seillinie für ungleichmäßig stetige Belastung dar. Die Seillinie ist in folgender Weise gezeichnet worden: Die Kraftstrecke o-4 wurde durch die Schnitte 1, 2, 3 in beliebige Strecken geteilt. Dadurch ergaben sich die Mittelkräfte der einzelnen Kraft-Teilstrecken als Sehnen r_1 , r_2 , r_3 und r_4 der krummen Kraftlinie (Fig. 163). Die Kraft-Teilstrecken sind in der Darstellung der belasteten Seillinie (Fig. 162) durch entsprechend bezifferte punktierte

Schnittlinien bezeichnet. Werden in den Punkten o und 4 die äußeren Kräfte B und A hinzugefügt, so kann mit Hilfe des Kraftecks, zwischen den Richtungen der Kräfte r_1 bis r_4 , eine *Mittelkraftlinie* gezeichnet werden, sobald die Lage dieser vier Kräfte gegeben ist. Wie diese Lage gefunden wird, ist bekannt (**58**). Ist die Mittelkraftlinie mit Hilfe der von O ausgehenden Polstrahlen gezeichnet, so muß die zur Kraftlinie gehörige Seillinie die Seiten der Mittelkraftlinie in den Teilpunkten o, 1, 2, 3

und 4 *berühren*, weil alle Teilstrecken der Seillinie miteinander im Gleichgewicht stehen und daher die Richtungen ihrer Endtangenten in den Teilpunkten o bis 4 mit den Seileckseiten zusammenfassen müssen. Ie

Teilpunkten o bis 4 mit den Seileckseiten zusammenfassen müssen. Je kleiner man also die Teilstrecken wählt, oder je größer ihre Zahl ist, desto genauer wird man mit Hilfe eines umschriebenen Seilecks die gesuchte Seillinie darstellen können.

Fig. 163.

In allen praktischen Fällen wird man sich die notwendige Bestimmung der Lage der Teilstrecken-Mittelkräfte $(r_x \text{ bis } r_4)$ dadurch erleichtern dürfen, daß man *die Richtungen der stetigen Belastung für eine gewisse* endliche Strecke als parallellaufend annimmt. In den meisten Fällen handelt es sich bei Baukonstruktionen überhaupt um stetige Lasten, deren Richtungen parallel sind.

§ 9. Mittelkräfte für parallele und für stetige Lasten.

Will man die Gleichung der Seillinie finden, so kann man sich jede unendlich kleine Einzellast in zwei Seitenkräfte dx und dy zerlegt denken. Bezeichnet man dann die Last für die Einheit der X mit qund für die Einheit der Y mit w, so zerlegt sich jede unendlich kleine Last in die Seitenkräfte qdx und wdy (Fig. 166). Die X-Achse wurde so gelegt, daß sie die Seillinie ab in einem Punkte c berührt, in welchem die Lastrichtung eine senkrechte ist. Dem Punkte c in der Seillinie entspricht der Punkt p in der Kraftlinie, dessen Polstrahl parallel

der X läuft. Die Strecke Op stellt die sog. Scheitelkraft (Horizontalkraft) der Seillinie dar, die im vorliegenden Belastungsfalle eine Zugkraft ist. Diese soll mit H bezeichnet werden und sie ist im Scheitelpunkte c in der entsprechenden (für den linken Teil ac der Seillinie geltenden) Richtung anzutragen. Für einen beliebigen, in der H liegenden Pol ist damit die Gestalt der ganzen Seillinie zunächst graphisch festgelegt. Die Seilspannkräfte A und H stehen mit der Belastung im Gleichgewicht.

Für den beliebigen Schnittpunkt m der Seillinie (Fig. 164 und 165),

welchem der Punkt t der Kraftlinie (Fig. 166) entspricht, ist die Richtung der Tangente an die Seillinie parallel zum Polstrahl Ot und schließt mit der X-Achse den Winkel φ ein. Dann ist im Krafteck:

$$\tan \varphi = \frac{\overline{st}}{\overline{Os}} = \frac{\overline{st}}{H - \overline{sp}} \cdot$$

st und ps stellen graphisch die Seitenkräfte derjenigen Belastung vor, die sich vom Scheitel c aus bis zum Schnitte m erstreckt. Setzt man für diese Seitenkräfte die allgemeine Bezeichnung V und W, so ist:

$$\tan \varphi = \frac{V}{H - W} = \frac{dy}{dx}.$$

Durch Integration innerhalb der Grenzen o und x erhält man daraus:

$$y = \int_{0}^{x} \frac{Vdx}{(H-W)} + C \qquad (32)$$

als Gleichung der Seillinie.

Die Unveränderlichen C und H finden sich in einem gegebenen Falle aus der Lage der drei Punkte a, b, c, durch welche die Seillinie verlaufen soll, indem man nach erfolgter Integration für den betrachteten linken Konstruktionsteil ac die Grenzen einsetzt,

für
$$X = 0$$
 ist $y = 0$,
für $X = l_r$ ist $y = h_r$.

Bei der Betrachtung des rechten Teils bc käme noch hinzu:

für
$$X = l_a$$
 ist $y = h_a$.

Die Integration würde am bequemsten als Flächenintegration durchzuführen sein.

b. Stützlinien. Für eine beliebige Belastung (Fig. 167) sei eine Seillinie durch drei gegebene Punkte festgelegt. In beliebigen Punkten (1 bis 3) dieser Seillinie denke man je einen Schnitt geführt, wodurch die Belastung in vier Teile zerlegt wird. Legt man dann in den Schnittpunkten Tangenten an die Seillinie, so schneiden diese sich in den Knoten (a bis b) des umschriebenen Seilecks.

Die in beliebiger Zahl und Lage in der Seillinie angenommenen Punkte heißen Stützpunkte der Seillinie. Verbindet man alle Stützpunkte ihrer Reihe nach durch gerade Linien, so erhält man eine Stützlinie. Die Seillinie selbst ist eine Stützlinie, deren Stützpunkte unendlich nahe nebeneinander liegen.

§ 9. Mittelkräfte für parallele und für stetige Lasten.

Die Bedeutung einer Stützlinie läßt sich an einigen Beispielen klar legen. Ausführlichere Untersuchungen darüber bleiben dem III. Bande vorbehalten. Die in Fig. 168 in je einem Punkte (1-2-3) unter-

und b gegen die Erdscheibe gestützten Scheiben I bis IV befinden sich unter ihrer Belastung im Gleichgewicht, wenn ihre Stützpunkte a, 1, 2, 3 und b in einer für diese Belastung gezeichneten Seillinie ab liegen.

Fig. 168.

Große Bedeutung haben Stützlinien für die Berechnung von Steingewölben, die aus einzelnen Wölbsteinen zusammengefügt sind (Fig. 169). Ist die Belastung eines Gewölbes derart beschaffen, daß man es als *ebenes System* (11) berechnen kann, so kann man sagen, daß das derart gefügte Gewölbe unter seiner Last solange im Gleichgewicht ist, als sich innerhalb der den Gewölbeschnitt begrenzenden Wölblinien noch eine Stützlinie zeichnen läßt. Die Stützpunkte liegen dann in den Gewölbefugen. Streng genommen gilt das natürlich nur dann, wenn der Baustoff der

Wölbsteine als unwandelbar fest oder starr angesehen wird. Andernfalls könnte das Gewölbe durch Druckkräfte, die in den Richtungen der zugehörigen Seillinie wirken, zerstört werden. Bei sehr starker Neigung dieser Kraftrichtungen gegenüber den Fugen-

richtungen wäre außerdem noch die Möglichkeit gegenseitiger Verschiebung einzelner Wölbsteine vorhanden.

Es wird schließlicht nicht unnötig sein zu bemerken, daß im allgemeinen Stützlinien nicht mit Mittelkraftlinien verwechselt werden dürfen. Mittelkraftlinien sind nach vorigem entweder Seilecke oder Seillinien, während Stützlinien aus diesen erst hergeleitet werden.

65. Seillinien für parallele stetige Lasten.

Fig. 170.

durch entsprechende senkrechte Strecken cc' und mm' aufgetragen, so nennt man die Fläche mm'c'c die *Belastungsfläche*, die Ordinaten q die *Belastungshöhe* und deren Grenzlinie m'c' die *Belastungslinie*.

 φ sei der Winkel der X-Achse mit der Tangente im Punkte m. Ferner sei \overline{om} der Krümmungshalbmesser der Seillinie für m. Die Richtung von ϱ schließt also mit der Senkrechten den Winkel φ ein. Die Gleichung (32) (unter **64**) geht für den vorliegenden Sonderfall der Parallelkräfte über in:

$$y = \frac{\mathbf{I}}{H} \int_{0}^{x} V dx + C.$$

Die Differential-Gleichung der Seillinie folgt aus der Bedingung

$$\tan \varphi = \frac{dy}{dx} = \frac{V}{H} \cdot$$

Das gibt, weil V = qx ist:

oder

$$\frac{d^2 y}{dx} = \frac{qx}{H}$$

$$\frac{d^2 y}{dx^2} = \frac{q}{H}.$$
(33)

Aus dem anlalytischen Ausdrucke für den Krümmungshalbmesser

 $\varrho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^2}{\frac{d^2y}{1-2}}$

äßt sich in Verbindung mit der Gleichung (33) ein Ausdruck für die Größe der *Scheitelkraft H* ableiten. Setzt man nämlich für den ersten Differential-Quotienten wieder den Wert tang
$$\varphi$$
 ein, so erhält man:

$$\varrho\left(\frac{d^2y}{dx^2}\right) = \left[1 + \tan^2 \varphi\right]^{\frac{3}{2}} = \frac{1}{\cos^3 \varphi}$$

oder

$$\frac{d^2 y}{dx^2} = \frac{\mathbf{I}}{\varrho \, \cos^3 \varphi} \, \cdot \,$$

Dieser Ausdruck mit der Gleichung (33) verglichen gibt:

$$H = q \varrho \cos^3 \varphi \,. \tag{34}$$

H ist aber konstant — als Polweite des zur Seillinie gehörigen Kraftecks

- deshalb erhält man die Größe der Scheitelkraft H auch aus der Gleichung

$$H = q_{\circ} \varrho_{\circ} , \qquad (35)$$

worin ρ_o den Krümmungshalbmesser für den Scheitelpunkt c bedeutet, wo φ verschwindet.

Die in Gleichung (34) dargestellte wichtige Beziehung zwischen der Größe der Scheitelkraft und der Gestalt von Seillinie und Belastungslinie wird weiterhin noch verwertet werden.

b. Die Sonderformen der Kreislinie und der Parabel. 1. Die Kreislinie. Es soll zuerst untersucht werden, welche Form die Belastungslinie erhalten muß, damit die zugehörige Seillinie als Kreislinie erscheint. Die Beantwortung dieser Frage folgt unmittelbar aus den vorstehend abgeleiteten beiden Werten von H, wenn man dazu noch die Bedingung stellt, daß die Krümmung der Seillinie in allen ihren Punkten eine gleiche, d. h. $\varrho = \varrho_o$ sein soll. Für $\varrho = \varrho_o$ ergibt sich:

$$H = q_{\circ} \varrho$$
.

In Verbindung mit der Gleichung (34)

$$H = q \varrho \cos^3 \varphi$$

gibt dies die Bedingung

$$q = \frac{q_{\circ}}{\cos^3 \omega}$$

Damit ist die gesuchte Gestalt der Belastungslinie gegeben. Sie ist in der Fig. 171 aufgetragen für eine Halbkreis-Seillinie. Die Belastungs-

höhe q ergibt sich danach für die Punkte a und b des Halbkreises unendlich groß, weil cos $90^{\circ} =$ Null wird. Das bedeutet soviel wie: Praktisch ist eine Seillinie in der Gestalt eines Halbkreises unmöglich. Selbst füreinen Kreisbogen, dessen halber Zentriwinkel $\varphi = 45^{\circ}$ ist, ergibt sich das größte q immer noch etwa dreimal größer als die Belastungshöhe q_{\circ} im Scheitel.

(36)

Aus diesem Ergebnis darf man folgern, daß für belastete Gewölbe die Halbkreisform im allgemeinen keine günstige ist, weil es ohne

besondere Mittel, d. h. ohne starke Vergrößerung der Belastungshöhen nach den Punkten a und b hin, nicht möglich sein wird, in einem Gewölbeschnitt eine Stützlinie einzuzeichnen. Weiter darf man folgern, daß auch bei flacheren Gewölbebogen, wenn deren Mittellinie eine Kreislinie ist, eine Seillinie mit der Mittellinie nur dann zusammenfallen kann, wenn die Gewölbebelastung nach der obigen Gleichung (36) abgestimmt wird. Über diese und andere wichtige Seillinien und Stützlinien betreffende Fragen werden im III. Bande, bei der Berechnung der Steingewölbe noch eingehendere Untersuchungen geführt werden.

2. Die Parabel. Wenn die Belastungshöhen überall gleich sind, wenn also $q = q_o$, oder wenn die Belastung (wie man sagt) gleichmäßig über die Schlußlinie (oder Kämpferlinie) ab verteilt ist, dann geht die Seillinie in eine Parabel über.

Nach Gleichung (33) ist in diesem Falle (Fig. 172):

$$\frac{dy}{dx} = \frac{V}{H} = \frac{qx}{H} \,.$$

Die Integration ergibt:

$$y = \frac{q x^2}{2H} + C.$$

Die Unveränderliche C verschwindet, weil für x = 0 auch y = 0 wird. Somit verbleibt die Gleichung einer Parabel

Für Baukonstruktionen kommen namentlich solche Seillinien in Betracht, die zu beiden Seiten des Scheitelpunktes symmetrisch liegen, für welche also

$$l_1 = l_2 = l_{/2}$$

ist. Für solche Seillinien ergibt sich aus

$$\frac{q\,l_{\rm I}^2}{2\,h_{\rm I}} = \frac{q\,l_{\rm 2}^2}{2\,h_{\rm 2}}\,,$$

daß auch $h_1 = h_2$ sein muß (Fig. 173).

66. Beziehungen zwischen den Momenten und Querkräften ebener Träger.

a. Die Vorzeichen. Die Belastung sei eine unmittelbar wirkende (10) und bestehe aus beliebig gerichteten Einzelkräften K, sowie aus einer lotrecht zur Trägerachse gerichteten stetigen Last q, die gleichmäßig oder ungleichmäßig über die Achse verteilt ist. Fig. 174 veranschaulicht eine derartige Belastung, für welche also - weil ein ebenes System vorausgesetzt wurde - sämtliche Mittelkäfte, einschließlich der Stützenkräfte, in die Kraftebene der YZ zu liegen kommen müssen. Die lotrecht und wagerecht gerichteten Seitenkräfte irgend einer Kraft K im Punkte m seien Q_m und P_m . Durch einen an beliebiger Stelle O führten Querschnitt denken wir den Träger in zwei Teile zerlegt, die nachfolgend kurzweg der linke und der rechte Teil genannt werden sollen. Befindet sich nun der Träger unter seiner Belastung im Gleichgewicht, so ist es gleich, welchen seiner beiden Teile man betrachtet, weil sowohl für den linken als auch für den rechten Teil der Einfluß der äußeren Kräfte auf die inneren Kräfte des zugehörigen Querschnittes gleich groß ist. Es ist also auch gleich, ob man die äußeren Kräfte des linken oder des rechten Teiles zusammensetzt: die erhaltenen Mittelkräfte erzeugen im betrachteteten Querschnitt einerlei Spannungen.

§ 9. Mittelkräfte für parallele und für stetige Lasten.

Bei der Zusammensetzung im Schwerpunkte O des Querschnittes erhält man eine Querkraft und ein Moment. Die Querkraft ist die Mittelkraft aller auf den betrachteten Trägerteil wirkenden äußeren Kräfte Q_m , einschließlich der Stützenkräfte. Sie gilt als positiv, wenn sie auf den linken Teil nach oben wirkt, woraus folgt, daß sie bei gleicher Richtung für den rechten Teil negativ zu nehmen ist.

Fig. 174.

Dadurch ist auch das Vorzeichen des Momentes festgelegt. Ist nämlich Q die Querkraft des linken Teiles und ihr Abstand vom Querschnitt gleich z_o , so ist das Moment

$$M = Qz_{\circ} . \tag{40}$$

Sucht Q den linken Teil rechts zu drehen, so ist die Querkraft positiv, also ist auch das Moment M rechtsdrehend als positiv zu nehmen. Ein Moment, das den rechten Teil rechts zu drehen sucht, ist danach negativ.

Bei gleichem Sinne haben sowohl Moment als auch Querkraft verschiedene Vorzeichen, je nachdem sie Mittelkräfte des linken oder des rechten Trägerteiles sind.

An obigen Beziehungen zwischen M und Q ändert sich nichts, wenn zu den lotrecht wirkenden äußeren Kräften noch eine Achsenkraft Phinzukommt, deren Richtung mit der wagerechten Trägerachse zusammenfällt. Das Vorzeichen der Achsenkraft wird dann gewöhnlich positiv gerechnet, wenn diese auf den linken Teil nach links oder auf den rechten Teil nach rechts gerichtet ist.

b. Die Differentialquotienten des Momentes. Das Moment für einen Querschnitt im Abstande a vom linken Ende A des Trägers ist für den linken Teil

$$M = Q z_{\circ} = \sum_{2}^{a} Q_{m}(a - z_{m}) + \int_{\circ}^{a} dz (a - z),$$

worin z_m die Abszisse irgend eines Angriffspunktes m einer Seitenkraft Q_m (oder eines Stützendruckes) und z die Abszisse der stetigen Last q dz bedeuten. Ferner ist

$$Q = \sum_{o}^{a} Q_{m} - \int_{o}^{a} q \, dz \, .$$

Für einen Querschnitt in der Entfernung a + dz ist danach

$$Q + dQ = \left(\sum_{o}^{a} Q_{m} - \int_{o}^{a} q \, dz\right) - q \, dz \,,$$

unter der Voraussetzung, $da\beta$ auf dem hinzukommenden Trägerteil dz keine Einzelkraft angreift. Daraus folgt

dQ = -qdz

oder

$$-\frac{dQ}{dz} = q. \tag{41}$$

Ferner ist

$$M + dM = Qz_o + Qdz,$$

woraus folgt

$$\frac{dM}{dz} = Q \tag{42}$$

und

$$-\frac{d^2M}{dz^2} = dQ = q.$$
⁽⁴³⁾

In Worten: Die Querkraft ist gleich dem positiven ersten und die stetige Last für die Längeneinheit ist sowohl gleich dem negativen zweiten Differentialquotienten des Momentes als auch gleich dem negativen ersten Differentialquotienten der Querkraft.

Aus Gleichung (42) folgt für Q = 0 weiter: Das Moment erreicht seine Grenzwerte in Querschnitten, für welche die Querkraft verschwindet. Aus der Gleichung (41) folgt schließlich für q = 0 durch Integration:

Für eine bloße Belastung durch Einzelkräfte, wenn also q verschwindet, ist die Querkraft zwischen zwei benachbarten Einzelkräften unveränderlich und daher ist das Moment auf dieser Strecke in Bezug auf

z vom ersten Grade. Graphisch läßt sich also in diesem Falle Q durch eine Staffellinie und M durch ein Vieleck darstellen, wobei die Ecken in die Richtungen der Einzelkräfte fallen.

67. Darstellung der äußeren Kräfte ebener Träger.

a. Unmittelbare Belastung.

statische Moment M_x für den beliebig geführten Schnitt $t_x t_x$ ist (nach **61**) dann mit $M_x = H\eta_x$

A und B teilt (48 und 49). Das

anzuschreiben, worin η_{τ} die Höhe der Momentenfläche im Schnitt und H den (im allgemeinen beliebig zu wählenden) Polabstand des Kraftecks bedeuten. Praktisch ist H in runden Zahlen anzunehmen und dabei nicht zu groß, weil sonst die Seileckseiten sich unter zu spitzen Winkeln schneiden.

Die Lage der Mittelkraft aller am Seileck wirkenden Einzelkräfte für den *links* von $t_x t_x$ liegenden Trägerteil, d. h. also *die Lage der Querkraft Q*₁, ist bestimmt durch den Schnittpunkt s_x der an den Schnitt $t_x t_x$ stoßenden (äußeren) Seileckseiten. Es ist daher

$$Q_{I}z_{I} = M_{I} = H\eta_{I}$$
.

 Q_r ist positiv. Das ergibt sich graphisch aus dem Krafteck (**62**), weil dort der zur Seileckseite zwischen I und II gehörende Strahl *oberhalb* der Parallelen s' zur Schlußlinie liegt. Es folgt analytisch aus

$$Q_{I} = A - I$$
.

Für den beliebig geführten Schritt $t_2 t_2$ verläuft die Querkraft Q_2 (wie eben angegeben) durch den Schnittpunkt s_2 der betreffenden äußeren Seileckseiten. Q_2 ist negativ für den *linken* Trägerteil

$$Q_2 = A - (\mathbf{I} + \mathbf{II}),$$

weshalb im Krafteck der Strahl II und III unterhalb von s' zu liegen kommt. Es ist ferner

 $-Q_2(-z_2) = +Q_2 z_2 = M_2 = H\eta_2$

für den linken Teil.

Die Darstellung der Querkräfte erfolgt bequem mit Hilfe des Kraftecks derart, daß man durch alle Teilpunkte der Kraftlinie Wagerechte zieht. Diese schneiden auf den betreffenden Richtungen der Einzelkräfte die Querkraftstrecken (im Maßstabe der Kraftlinie) ab, wie es in der Fig. 175 veranschaulicht ist.

2. Gleichmäßig stetige Lasten. Die Momentenfläche bildet hier (nach **65**b) eine Parabelfläche, deren Sehne a'b' (Fig. 176) die Schlußlinie des zugehörigen umschriebenen Seilecks vorstellt. Das größte Moment findet im Scheitelpunkte statt. Es ist

$$M = H\eta_c$$
,

wenn η_c die Höhe der Momentenfläche in der Trägermitte ist. Es ist aber nach Gleichung (38) auch;
§ 9. Mittelkräfte für parallele und für stetige Lasten.

oder

$$H = \frac{q \, l^2}{8 \, \eta_c}$$
$$M = \frac{q \, l^2}{8} \, . \tag{44}$$

Für einen praktischen Fall zeichnet man die Parabel a'cb' am einfachsten (in bekannter Weise) mit Hilfe der Geraden na' und nb', zwischen

denen man eine andere Gerade gg' derart verschiebt, daß ihre Endpunkte g und g' immer um gleiche Strecken auf der na' und nb' fortschreiten. Man erhält dann ein die Parabel umhüllendes Vieleck, das mit demjenigen Seileck zusammenfällt, das mit Hilfe eines Kraftecks gezeichnet wird, dessen äußere Polstrahlen parallel den Geraden na' und nb' verlaufen.

II

Mehrtens, Statik der Baukonstruktionen. I.

Will man die statischen Momente aus der gezeichneten Parabelfläche unmittelbar als Höhen η abgreifen können, so muß H = I gesetzt werden. Dann ist (nach Gl. 44)

oder

$$\eta_c=\frac{q\,l^2}{8}\,,$$

 $\mathbf{I} = \frac{q \, l^2}{8 \, \eta_c}$

d. h.

Die Querkräfte sind hier für einen Querschnitt im Abstande z von der linken Stütze und für den linken Teil aus der Gleichung

 $M = \eta_c$

Fig. 177.

zu berechnen. Ihre Darstellung gibt, wie Fig. 177 veranschaulicht, eine gerade Linie, deren Endordinaten gleich $\pm q \frac{l}{2}$ sind und welche die Trägerachse in ihrer Mitte schneidet. Somit ist (dem Satze unter **66**b

§ 9. Mittelkräfte für parallele und für stetige Lasten.

entsprechend) die Querkraft gleich Null in demjenigen Querschnitte, für welchen das Moment seinen Grenzwert erreicht.

b. Mittelbare Belastung.

1. Einzellasten. Wie (unter 10) dargelegt, erfolgt die mittelbare Be-

Fig. 179.

11*

matische Punkte angesehen werden dürfen, die lastübertragenden Querträger (in ihrem Querschnitte) eingezeichnet.

(vergl. dazu auch Fig. 12, S. 19). In der Fig. 178 sind an diesen

Stellen, die genau genug als mathe-

Aus der geschilderten Art der Lastübertragung geht zunächst ohne weiteres hervor, daß der Träger so belastet anzusehen ist, als ob in den Querträgerpunkten Einzelkräfte wirkten, deren Größe man durch einfache Zerlegung der Lasten I bis III bestimmen könnte. Man kann aber Momente und Querkräfte graphisch darstellen, ohne eine solche Zerlegung vorher vorzunehmen. Das geschieht wie folgt.

Man zeichnet zuerst die Momentenfläche so, als ob in den Punkten 1 bis 4 keine Querträger vorhanden wären. Dann erhält man eine Momentenfläche, deren Ecken in die Richtungen der gegebenen Einzelkräfte I bis III fallen. Jetzt beachte man, daß damit die Momente an den Querträgern bereits richtig gefunden sind. Um dies zu erkennen, denke man jede in irgend ein Querträgerfeld fallende Last in zwei Seitenkräfte zerlegt, die in den beiden zugehörigen Querträgerpunkten angreifen. Dadurch können sich die Stützendrücke A und B nicht ändern, folglich ändern sich auch die statischen Momente in Bezug auf die beobachteten beiden Querträgerpunkte nicht, weil ja auch Lage und Zahl der außerhalb des zugehörigen Feldes gegebenen Lasten unverändert bleiben.

Nach den Sätzen unter **66**b ist aber weiter das Moment in den Strecken zwischen zwei Querträgerpunkten durch einen analytischen Ausdruck vom ersten Grade darzustellen. Man braucht deshalb nur die Querträger-Senkrechten mit dem Seileck der Momentenfläche zum Schnitt zu bringen und die Schnittpunkte durch Gerade zu verbinden, wie es in der Fig. 178 geschehen ist, so erhält man die gesuchte Momentenfläche.

Um jetzt die Querkräfte zu finden, überträgt man zuerst die Parallelen zu den neuen Seileckseiten in das Krafteck. Dadurch hat man, wie in Fig. 179 veranschaulicht ist, die Zerlegung der Lasten I bis III in je zwei auf die benachbarten Querträgerpunkte fallende Seitenkräfte wirklich durchgeführt. Denn jede der Seileckseiten der Felder 1-2, 2-3 und 4-B ist aufzufassen als *Schlußlinie* eines Dreieck-Seilecks, mit deren Hilfe (in bekannter Weise) die im Felde liegende Last in jene Seitenkräfte zerlegt worden ist. Zieht man schließlich (wie in Fig. 175) durch die Teilpunkte der Kraftlinie des Kraftecks Wagerechte, so schneiden diese auf den Querträger-Senkrechten die gesuchten Werte der Querkräfte ab.

2. Gleichmäßig stetige Lasten.

Die Darstellung ist hier im wesentlichen die gleiche, wie sie soeben für Einzellasten beschrieben worden ist. An Stelle der Einzellasten tritt hier in jedem Querträgerfelde eine Mittelkraft der betreffenden stetigen Feldlast auf. Alles übrige ist aus der Fig. 180 zu entnehmen.

§ 9. Mittelkräfte für parallele und für stetige Lasten.

Fig. 180.

(Fig. 178). Die Momentenfläche für stetige Lasten ist stets ein einer Parabel eingeschriebenes Vieleck, wobei die in den Querträger-Senkrechten liegenden Seileckpunkte in der Parabel liegen. Bei größeren Konstruktionen bildet die mittelbare Lastübertragung die Regel.

Dritter Abschnitt.

Innere Kräfte der Stabwerke.

§ 10. Ebene starre Stabwerke.

Nachstehend sollen die verschiedenen Methoden zur Berechnung der unter einer ständigen Belastung entstehenden Stabkräfte vorgeführt werden. Nach den Erklärungen unter (**28**) gilt dabei die Bezeichnung »starr« als gleichbedeutend mit »statisch bestimmt«. Ein starres Stabwerk besitzt keine überzähligen Stäbe, andernfalls ist es »überstarr« oder statisch unbestimmt (**35**).

Hauptsächlich werden zunächst diejenigen Stabwerke in Betracht kommen, die kein *Grundeck* enthalten, die also, wie bereits unter (**30**) ausführlich dargelegt wurde, durch fortgesetzte Beseitigung von zwei in einem Knoten anstoßenden Stäben auf ein *Grunddreieck* zurückgeführt werden können. Die Berechnung der Grundecke wird im folgenden Paragraphen besonders vorgeführt.

68. Berechnung der Stabkräfte nach Ritter.

a. Das Verfahren im allgemeinen. RITTER¹) hat sein Verfahren zuerst in seinen Vorträgen an dem früheren Polytechnikum in Hannover eingeführt (1860). Das Verfahren stützt sich auf den Momentensatz (49-50), nach welchem im Gleichgewichtsfalle die Summe der statischen Momente von äußeren Kräften in Bezug auf einen beliebigen Punkt der Ebene gleich Null ist. Dabei denkt man sich das Stabwerk durch einen Schnitt in zwei völlig voneinander getrennte Teile zerlegt (13) und außerdem in jedem der durchschnittenen Stäbe die innere Kraft durch eine im Schnittpunkte in der Stabachse angebrachte äußere Kraft derart ersetzt, daß die Ersatzkräfte mit den sonstigen auf den betrachteten

¹) AUG. RITTER, Elementare Theorie und Berechnung eiserner Dach- und Brückenkonstruktionen, 1863; 5. Auflage 1894.

Stabwerkteil wirkenden äußeren Kräften Gleichgewicht halten. Liegen dann nicht mehr als drei unbekannte Stabkräfte im Schnitte, so stehen im allgemeinen drei Momentengleichungen zur Verfügung, aus denen die Unbekannten zu berechnen sind, wenn dazu drei verschiedene Momentenpunkte benutzt werden, von denen jeder durch zwei Richtungen der Unbekannten getroffen wird. Schneiden sich die durchschnittenen Stäbe in einem und demselben Punkte, so ist (nach 49) die Zerlegung einer Einzelkraft nach diesen drei Richtungen eindeutig nicht möglich.

Ein Beispiel möge das Verfahren näher erläutern. Ein Stabwerk ist durch den Schnitt *tt* in zwei Teile zerlegt worden (Fig. 181). Die

Spannkräfte der durchschnittenen Stäbe seien X, Y, Z. Ihr Richtungssinn ist noch unbekannt; die Ersatzkräfte sind daher vorläufig (vom zugehörigen Knoten ab nach außen gerichtet) als positive oder Zugkräfte eingezeichnet. Lage und Größe der Mittelkraft R aller sonstigen den betrachteten Stabwerkteil belastenden äußeren Kräfte sei gegeben oder ermittelt worden. Die Verlängerungen der Richtungen Y und Z, X und Z, sowie der X und Y geben der Reihe nach die Momentenpunkte x, y und z.

Die Momentengleichungen lauten also:

Dritter Abschnitt. Innere Kräfte der Stabwerke. für x: $+ X \cdot a + R \cdot r_r = 0$

Daraus folgt:

$$\begin{array}{ll} \text{iir } y: + Y \cdot b - R \cdot r_y &= 0 \\ \text{iir } z: - Z \cdot c + R \cdot r_z &= 0 \\ X &= -\frac{R \cdot r_x}{a} \quad \text{als } Druck \,, \end{array}$$

$$Y = \frac{\pi \cdot \cdot \cdot y}{b} \quad \text{als } Zug \,,$$

$$Z = \frac{R \cdot r_s}{c} \quad \text{als } Zug \,.$$

Im allgemeinen ergibt sich daraus die Regel: Gleicher Drehsinn der Momente zeigt negative, ungleicher Drehsinn zeigt positive Stabkraft an.

b. Besondere Fälle.

1. Wenn in dem Schnitte mehr als drei unbekannte Stabkräfte getroffen werden, so ist die unmittelbare Bestimmung einer der Kräfte

Fig. 182.

nur dann möglich, wenn außer der gesuchten die Richtungen aller anderen Unbekannten sich in einem und demselben Punkte schneiden. So findet sich in der Fig. 182 die Stabkraft X aus

$$-X \cdot a + R \cdot r = 0$$

als Zugkraft
$$X = \frac{R \cdot r}{a}$$

Andernfalls kann die Aufgabe häufig durch das Legen mehrerer Schnitte gelöst werden, wobei zuerst an anderer Stelle ein Schnitt zu führen ist, der nur drei Unbekannte trifft. Das veranschaulicht folgende *Aufgabe* (Fig. 183):

Ein ebener Dachbinder ist in den Stützpunkten 6 und 7 mit Hilfe zweier Gelenke an einer Wand befestigt und trägt in den Knoten 1 und 4 je eine Last. Wie groß sind die Stabkräfte 3-7, 3-5, 4-5und 4-6?

Legt man durch die Richtungen der gesuchten Kräfte einen Schnitt tt, so kommen darin vier Unbekannte vor. Zwei davon, nämlich

3-7 = Z und 4-6 = W liegen aber auch im Schnitte t't', der nur drei Unbekannte trifft. Bestimmt man also aus dem Schnitte t't'entweder Z oder W, so löst sich damit auch die gestellte Aufgabe für

den Schnitt tt. Wählt man W, so erhält man:

oder

$$W = -\frac{P_{\mathrm{r}} \cdot l}{2h},$$

 $+ W \cdot h + P_1 \cdot \frac{l}{2} = 0$

wenn die in der Fig. 183 eingeschriebenen Hebelarme eingesetzt werden.

h

Nunmehr bleiben im Schnitt *tt* nur noch die drei Unbekannten *X*, *Y*, *Z*, die in bekannter Weise gefunden werden. Für *Z* und für Momentenpunkt 5 findet man z. B.:

Fig. 183.

P4

Ζ

W

3

$$-Z \cdot a + W \cdot \frac{h}{2} + P_4 \cdot \frac{l}{4} + P_1 \cdot \frac{3l}{4} = 0$$

Setzt man den gefundenen Wert von W ein, so folgt:

$$Z = (2P_{\mathrm{I}} + P_{\mathrm{I}})\frac{l}{4a},$$

wie man unmittelbar auch aus dem Schnitte t't' findet.

2. Wenn in einem Schnitte *nur zwei Stabkräfte* getroffen werden, so muß die Richtung der Mittelkraft R aller äußeren Kräfte durch den Stabknoten verlaufen, in welchem die beiden betrachteten Stäbe zusammenstoßen. Ist dieser Stabknoten belastet (Fig. 184), so ist die Knotenlast P *ihrer Größe nach* die Mittelkraft aller übrigen äußeren Kräfte (54), die also auf den nicht betrachteten Stabwerkteil wirken. Ist der Knoten nicht belastet, so verschwindet die Mittelkraft, woraus folgt, daß auch die beiden betrachteten Stabkräfte gleich Null sind. War aber in diesem Falle der Knoten das *Scheibengelenk g* (16 und 31) eines zusammengesetzten Stabwerkes (Fig. 185^{1} , so erhält er seine Belastung durch die Belastung der anstoßenden Scheiben, deren Mittelkraftlinie durch g verlaufen muß (**58–59**).

3. Wenn zwei geschnittene Stabrichtungen parallel laufen, fällt der zugehörige Momentenpunkt ins Unendliche. In diesem Falle kann die Spannkraft des dritten vom Schnitte getroffenen Stabes ohne Benutzung unendlich großer Werte nicht aus einem Momente berechnet werden, das auf den unendlich fernen Punkt bezogen wird. Will man also das Verfahren von RITTER durchführen, so berechne man zuerst die beiden unbekannten Stabkräfte, deren Richtungen parallel sind und danach die dritte Stabkraft.

Die Spannkräfte O und U, deren parallele Richtungen um die Höhe h voneinander abstehen (Fig. 186), berechnen sich wie folgt:

$$O = -\frac{M_4}{h}$$
$$U = +\frac{M_3}{h},$$

wenn mit M_4 und M_3 die betreffenden statischen Momente der Mittelkraft R in Beziehung auf die Knotenpunkte 4 und 3 bezeichnet werden:

$$M_4 = + R \cdot r_4; \quad M_3 = + R \cdot r_3.$$

D bestimmt man am einfachsten aus der Momentengleichung für den Schnittpunkt n von R und U. Man erhält:

$$Oh + Dg = o$$

oder

$$D = \frac{-Oh}{\varrho} = \frac{M_4}{\varrho} = R \cdot \left(\frac{r_4}{\varrho}\right)$$
$$D = \frac{R}{\cos \varrho},$$

oder

und

wenn α der Winkel ist, den die Richtung von D mit der Richtung von R einschließt. Dies Ergebnis wäre einfacher zu haben gewesen, wenn man D in zwei Seitenkräfte zerlegt hätte, von denen die eine in die Richtung von O und die andere in die Richtung von R fiele. Aus den Gleichgewichts-Bedingungen folgt dann ohne weiteres:

$$0 + U + D\sin\alpha = \alpha$$
$$R - D\cos\alpha = 0.$$

69. Das graphische Schnittverfahren nach Culmann¹.

Der CULMANN'sche Satz von der Zerlegung einer Kraft in eine gleichwertige Gruppe von drei Kräften oder seine Umkehrung durch die Zeichnung eines geschlossenen Kraftvierecks ist bereits unter **49** und **51** vorgeführt und durch viele Anwendungen (darunter auch ein einfacher räumlicher Fall) erläutert worden. Das Wesen des CULMANN'schen Verfahrens darf danach als bekannt vorausgesetzt werden. Nachstehend handelt es sich nur noch darum, einige besondere Anwendungsfälle durchzusprechen.

1. Zuerst soll die in Fig. 181 gestellte, nach RITTER's Verfahren behandelte Aufgabe noch einmal mit Hilfe der Kraftvierecke nach

¹ C. CULMANN, Die graphische Statik. 1864.

CULMANN graphisch gelöst werden (Fig. 187–88). Das Kraftviereck aus den Kräften R, X, Y und Z ist in der Fig. 188 in drei verschiedenen

.40

R

2

Z

Zusammensetzungen gezeichnet, wobei nacheinander R mit X, mit Y und mit Z verbunden wurde. Die zugehörigen Schnittpunkte dieser drei aus je zwei Kräften bestehenden Gruppen sind x', y' und z'; die

X

13

a

12

Richtungen ihrer Mittelkräfte sind xx', yy' und zz', wofür im Krafteck die Bezeichnungen a', b' und c' gesetzt worden sind.

B

Wenn man dem Richtungssinn des Kräftezuges in jedem der gegezeichneten drei Kraftvierecke verfolgt, so ergeben sich:

$$X \text{ als ein } Druck,$$

$$Y - - Zug,$$

$$Z - - Zug.$$

Dabei ist jede der drei Stabkräfte *dreimal* bestimmt, was eine Nachprüfung der gefundenen Ergebnisse sehr erleichtert. In diesem Umstande darf man einen nicht wohl zu unterschätzenden Vorteil des CULMANN'schen Verfahrens gegenüber demjenigen von RITTER erblicken.

2. Wenn die Schnittpunkte eines der zu verbindenden Paare ungünstig liegen, so kann man das Krafteck mit Hilfe einer vorherigen Zerlegung

von R zeichnen. Z. B. sei die Verbindung von R mit X sowohl als auch mit Z (in der Fig. 189) nicht auszuführen, weil die zugehörigen Schnittpunkte gar nicht oder doch schwer zu haben sind. Man zerlege deshalb R in einem beliebigen Punkte l in zwei Seitenkräfte R' und R'', von denen die eine nach dem Angriffspunkt m von X und Y, die andere nach dem Schnittpunkt n von Z

> und Y gerichtet ist. Dann muß einerseits die Mittelkraft von R'und X in m und andererseits von R'' und Z in n mit der Richtung der Stabkraft Y zusammenfallen. Durch diese Bedingung ist das Kraftviereck (Fig. 190) gegeben. X und Z findet man daraus unmittelbar, und Y als Differenz der Werte Y' und Y'', die einerseits aus der Wirkung von R' und X in m und anderseits von R'' und Z in n hervorgehen. $Y' = + \overline{l_1 n_1}$ und $Y'' = - \overline{m_1 n_1}$, also

$$Y = Y' - Y'' = + l_{\mathrm{I}} m_{\mathrm{I}} \,.$$

Wenn zufällig die Richtung der Mittelkraft R parallel zu den Richtungen von X und Z ausfiele, so würde das Krafteck $ol_{1}m_{1}$ in eine Kraftlinie om_{1} übergehen. Es ergäbe sich dann:

und

n

$Y = \circ$ $R + X + Z = \circ.$

3. Das obige Verfahren von CULMANN findet weiterhin noch vielfache Verwendung, namentlich wenn es nur darauf ankommt, aus der gegebenen Mittelkraft der äußeren Kräfte für einen bestimmten Schnitt drei unbekannte Stabkräfte zu finden. Solche Fälle liegen vor, wenn die Mittelkraftlinie vorhanden ist oder doch leicht gezeichnet werden kann, wie dies (unter 58-59) schon gezeigt wurde. Handelt es sich aber darum, in einem Stabwerk sämtliche Stabkräfte zu bestimmen, so eignet sich dazu das CULMANN'sche Verfahren wenig, wenn in allen Knoten beliebige Lasten angreifen, weil dann für jeden Schnitt erst die Mittelkraft Größe ihrer und Lage

Fig. 191.

nach gefunden werden muß, ehe das zugehörige Kraftviereck gezeichnet werden kann. Wenn dagegen für eine große Zahl von Schnitten Größe und Lage der Mittelkraft unverändert bleibt, dann lassen sich nach CULMANN alle zugehörigen Kraftvierecke leicht zeichnen und von einem beliebigen Pole aus übersichtlich zusammenlegen, wie es nachfolgend an einem Beispiele veranschaulicht wird.

Ein Träger (Fig. 191) ist im Knoten o durch einen senkrechten Stützenstab, im Knoten 10 durch ein festes Gelenk an die Erdscheibe geschlossen. Er trägt nur *eine* Einzellast P im Knoten 2. Die Stützenkräfte A und B ergeben sich (in bekannter Weise) im Krafteck der

Fig. 192.

Fig. 192, rechts vom Pole O, mit Hilfe des Schnittpunktes n von Aund P in Fig. 191. Sodann sind vom Pole O aus alle für die Darstellung der Kraftvierecke notwendigen Parallelen zu den Stabrichtungen vorweg gezogen. Das sind die Parallelen zu o-1, 1-3, 3-5, 5-7, 7-9 der Untergurtstäbe des Trägers und die Parallelen 3', 5', 7' und 9' die vom Knoten 10 nach dem Untergurtknoten 3, 5, 7 und 9 führen, in deren Richtungen also nacheinander die Mittelkräfte von Paaren der durchschnittenen Stäbe (1-3 und 2-3, 3-4 und 3-5, 3-5 und 4-5, 5-6 und 5-7, 5-7 und 6-7 usw. liegen. In die Richtungen 3', 5' und 7' fallen auch die Mittelkräfte der mit der Stützenkraft *B* verbundenen Stabkräfte 2-4, 4-6, 6-8 und 8-10.

In der Fig. 192 wurde zuerst das Kraftviereck aus B und den drei vom Schnitte $t_{i}t_{i}$ getroffenen Stabkräften gezeichnet. Darauf wurde der Schnitt $t_{2}t_{2}$ gelegt und ein zweites Kraftviereck gebildet, worin die im ersten Kraftviereck bereits gefundene Größe der Stabkraft 2—4 noch einmal vorkommt. Die Durchschnittspunkte der Parallelen 3', 5', 7' und 9' sind Festpunkte für die Nachprüfung der erstmalig gefundenen Wandstabkräfte. Diese sind der Übersichtlichkeit und des besseren Vergleichs mit dem Trägerbilde halber in der Fig. 191 mit roter Farbe eingetragen, während A, B und P durch starke schwarze Linien hervorgehoben worden sind.

Nachdem in solcher Weise unterhalb des Poles O die Stabkräfte des Trägers rechts vom Schnitte $t_{1}t_{1}$ dargestellt sind, ist oberhalb von O noch ein letztes Kraftviereck für A und die im Schnitte $t_{0}t_{0}$ liegenden drei Stabkräfte gezeichnet worden. Dabei fand wieder eine Nachprüfung des unterhalb von O liegenden Kraftplanes insofern statt, als die Stabkraft 1-3 sowohl im ersten als auch in dem zuletzt gezeichneten Kraftecke vorkommt.

Der so gezeichnete CULMANN'sche Kräfteplan (Fig. 192) enthält in seinem geschlossenen Gebilde rechts von O das schwarz dargestellte Krafteck der drei äußeren Kräfte und links davon sämtliche Stabkräfte des Trägers, jede Kraft nur einmal vorkommend, wobei die Untergurtkräfte von O und die Obergurtkräfte von O_r je in einem *Büschel* ausgehen, zwischen dessen Strahlen die rot dargestellten Wandstabkräfte in *einem* zusammenhängenden Parallelenzuge erscheinen.

70. Kräftepläne nach Bow, Maxwell und Cremona.

a. Allgemeine Eigenschaften. Unter **29** ist bereits ausführlich dargelegt worden, wie ein einfaches Stabwerk, das kein Grundeck enthält, durch fortgesetzte Beseitigung von zwei in einem Knoten anstoßenden Stäben auf ein Grunddreieck zurückgeführt werden kann. Die einfachsten Stabwerke solcher Art sind die Dreieck-Stabwerke (**26**). Für ein derartiges einfaches Stabwerk, das kein Grundeck enthält, kann man ohne Anwendung des Schnittverfahrens, und für jede beliebige ständige Belastung einen einzigen Kräfteplan zeichnen, in welchem alle Kraftecke der einzelnen Knoten des Stabwerkes zu einem einzigen geschlossenen Krafteck vereinigt sind und zwar derart, daß jede Stabkraft und jede äußere Kraft nur einmal darin vorkommt. Außerdem gelangen die Gleichgewichts-Bedingungen in diesem Kraftplane insofern graphisch zum Ausdruck, als seine eigentliche Grundlage von dem geschlossenen Kraftecke der äußeren Kräfte gebildet wird, von dessen Ecken die zu den *Umfangstäben* des Stabwerkes parallelen Strahlen ausgehen, zwischen denen ein den Wandstabrichtungen entsprechender Parallelenzug alle Kraftecke der Einzelknoten zum Schluß bringt.

Die erste Anweisung, derartige Kräftepläne zu zeichnen, gab der Engländer Bow. Wissenschaftlich wurden sie zuerst von MAXWELL¹ behandelt. In umfassender Weise untersuchte dann CREMONA² ihre geometrischen Eigenschaften, und dadurch erst sind weitere technische Kreise auf ihre große Bedeutung für die graphische Statik aufmerksam geworden. Man nennt die Kraftpläne deshalb nicht ganz mit Unrecht *Cremona-Pläne*, obwohl namentlich der große Theoretiker MAXWELL, gegenüber CREMONA, ältere Urheberrechte beanspruchen dürfte.

Es kann nicht der Zweck des vorliegenden, praktischen Zwecken dienenden Buches sein, die Eigenschaften der Kräftepläne nach den Schriften von MAXWELL und CREMONA ausführlich klarzulegen. In dieser Beziehung muß auf die Literaturquellen verwiesen werden. Es wird genügen, die Kräftepläne an einigen allgemeinen Beispielen zu erläutern und dabei auf die Grundsätze hinzuweisen, nach denen das Auftragen der Pläne erfolgen muß, wenn diese vollkommene Cremona-Pläne vorstellen sollen.

Eine Eigentümlichkeit der Pläne liegt in der wechselseitigen Beziehung, die zwischen dem Stabwerk und dem Kräfteplan besteht: Jede Seite des einen Gebildes ist parallet zu einer Seite des anderen; ebenso entspricht jeder Ecke in dem einen Gebilde ein Vieleck in dem anderen. Man könnte deshalb ebensogut zu dem gegebenen Stabwerk einen Kräfteplan zeichnen, wie aus einem gegebenen Kräfteplan die Gestalt des zugehörigen Stabwerkes ableiten. Wegen dieser wechselseitigen Beziehung bezeichnet man Stabwerk und Kraftplan als reziproke geometrische Gebilde.

b. Beispiele und Regeln für die Anwendung.

1. Das zu untersuchende Stabwerk sei in den Umfangsknoten beliebig belastet. Eine Belastung von Wandknoten möge vorläufig aus-

^I CLERK MAXWELL, On the calculation of the equilibrium and stiffness of frames. On reciprocal figures and diagrams of forces. Philosophical Magazine. Vol. XXVII, 1864. — On Bow's method of drawing diagrams in graphical statics with illustrations from PEAUCELLIER's linkage. — NIVEN, The Scientific Papers of JAMES CLERK MAXWELL. Vol. II. S. 492. 1890.

² CREMONA, Le figure reciproche nella Statica Grafica. 1872.

geschlossen werden. Um sich davon zu überzeugen, daß das System auch wirklich im Gleichgewicht steht, ist einerseits das geschlossene

Krafteck der äußeren Kräfte gezeichnet und anderseits ist zwischen den Kraftrichtungen I bis 7 mit beliebigem Pole *O* ein geschlossenes Seileck gelegt.

Die Umfangsstäbe des Stabwerkes in Fig. 193 sind in roten und die Wandstäbe in grünen Linien gezeichnet, damit aus dem Vergleich mit dem Kräfteplan der Fig. 195 leichter zu übersehen ist, wie die Parallelen zu den Umfangsstäben von den Ecken des geschlossenen Kraftecks der sieben äußeren Kräfte ausgehen

und wie dazwischen die Parallelen zu den Wandstäben einen zusammenhängenden Linienzug bilden, der den Kräfteplan geschlossen macht. Das Zeichnen des Kräfteplanes beginnt danach mit der Darstellung des geschlossenen Kraftecks (1-7) in Fig. 195. Darauf werden die Umfangsparallelen gezogen und zwar derart, daß zu einem im Stabwerk zwischen zwei aufeinanderfolgenden Lasten liegenden Umfangsstabe im Kräfteplane zwischen den nämlichen Lasten die Parallele gezogen wird. Z. B. zwischen den Lasten 3 und 4 liegt im Stabwerk der Umfangsstab 3-4, also wird im Kräfteplan die Parallele 3-4 von der zwischen den Lasten 3 und 4 liegenden Ecke aus gezogen.

Hat man in dieser Weise sämtliche Umfangsparallelen des Kräfteplans eingetragen, so bringt man zuerst diejenigen Kraftecke darin zum Schluß, die zu solchen Knoten des Stabwerks gehören, in denen nur

zwei Stäbe anstoßen. Das sind im vorliegenden Falle die Knoten 1 und 4. An diese Knoten grenzen im Stabwerk die mit a und e bezeichneten Dreiecke, deshalb sind die von den zugehörigen Umfangsparallelen im Kräfteplan gebildeten Ecken ebenfalls mit a und ebezeichnet. Für Anfänger ist es ratsam, sich durch den Vergleich der Fig. 193 und 195 davon zu überzeugen, daß die Parallelen zu den drei Seiten der Stabwerkdreiecke a und e sich in den zugehörigen Ecken a und e des Kräfteplanes schneiden

12*

müssen und daß dementsprechend der zu den Wandstäben gezogene Parallelenzug abcde in a und e den Kräfteplan schließen muß. Außerdem ist durch obigen Vergleich zu beobachten, wie gleichermaßen mit a und e auch die Parallelen zu den Seiten der Stabwerkdreiecke b, c und d sich in den Eckpunkten b, c und d schneiden müssen.

Hat man den Kräfteplan derart aufgezeichnet und zum Schluß gebracht, so enthält er alle sieben Kraftecke der Knoten 1 bis 7, wobei jede Kraftseite gleichzeitig zwei Kraftecken angehört, deren Knoten durch den zur Kraftseite parallelen Stab verbunden sind. Z. B. die Kraft 5-6 des Kraftecks im Knoten 5 (Fig. 193 und 195) kommt auch im Krafteck des Knotens 6 vor; desgleichen die Kraft $_{3-5}$ im Krafteck des Knotens 3 usw.

Um schließlich Zugkräfte und Druckkräfte voneinander zu sondern, ist es (namentlich Anfängern) zu raten, den Richtungssinn in jedem Krafteck genau zu verfolgen. Eine der Richtungen ist dabei stets durch die Aufgabe vorgeschrieben. Im vorliegenden Falle ist das die Richtung der betreffenden Knotenkraft. In Fig. 194 sind zwei solche Kraftecke (für die Lasten 2 und 5) besonders herausgetragen. Die Kraftecke müssen sich schließen; deshalb findet man durch den Vergleich der Pfeilrichtungen in den zugehörigen Knoten 2 und 5 das Folgende:

Zugkräfte sind die Stabkräfte: 2-3, 2-7, 1-2, 4-5, 5-6;

Druckkräfte sind die Stabkräfte: 2-6, 3-5.

2. Die im vorstehenden Beispiele gegebenen allgemeinen Regeln lassen sich wie folgt kurz zusammenfassen:

I. Im geschlossenen Krafteck der äußern Kräfte sind die Kräfte der Reihe nach, wie sie am Umfange des Stabwerks aufeinander folgen, aufzutragen.

II. Im geschlossenen Krafteck verläuft jede Parallele zu einem Umfangsstabe durch diejenige Ecke, die von den beiden in den Knoten des Umfangsstabes angreifenden äußern Kräften gebildet wird.

III. Der im Kräfteplane zu den Wandstabrichtungen gezeichnete ununterbrochene Parallelenzug beginnt in dem außerhalb oder innerhalb des geschlossenen Kraftecks liegenden Eckpunkte des zuerst gezeichneten Kraftdreiecks und endigt in einem Eckpunkte des zuletzt gezeichneten Kraftecks.

IV. Die Kräfte in den einzelnen Kraftecken des Kräfteplans sind stets der Reihe nach, wie sie im zugehörigen Stabknoten aufeinander folgen, zusammenzusetzen, wobei alle äußern Kräfte als außerhalb des Stabwerkumfanges liegend anzusehen sind.

Bei Beachtung obiger Regeln wird die Darstellung eines vollkommenen Kräfteplanes, in welchem keine Kraftlinie zweimal vorkommt, ohne weitere Schwierigkeiten gelingen. Ein zweites Beispiel wird die Anwendung der Regeln nochmals erläutern.

3. Ein Brückenträger (Fig. 196) sei in jedem Untergurtknoten durch eine gleich große und lotrecht gerichtete Einzelkraft belastet. Der Kräfteplan ist zu zeichnen.

Die Stützenkräfte A und B sind in diesem Falle (bei Annahme gleicher Knotenentfernungen im Untergurt) gleich groß, jede Kraft gleich der halben Summe der Lasten I bis V. Das Krafteck der äußern

Kräfte geht in eine Gerade (Fig. 197) über. Es wurden zwischen den betreffenden Teilpunkten die Parallelen zu den Untergurtstäben gezogen. Sämtliche Parallelen zu den Obergurtstäben gehen strahlenförmig vom Teilpunkte zwischen B und A aus.

Das erste Krafteck wurde für Knoten o gezeichnet und dadurch der Punkt a erhalten. Das letzte Krafteck mit dem Punkte k gehört zum Knoten 6. Zwischen a und k liegt der alle Kraftecke schließende Parallelenzug der Wandstabrichtungen. Die Stabkräfte des Obergurts ergeben sich alle als *Druck*kräfte. Umgekehrt zeigt es sich, daß alle Untergurtstäbe, sowie auch die Wandstäbe Zug erleiden.

71. Besondere Fälle bei der Darstellung von Kräfteplänen.

a. Vorkommmen belasteter Wandknoten. Sind belastete Wandknoten vorhanden, so werden die

5-6 k V 4-5 i B IV h 7-8 3-4 8-9 f Ш 9-10 e 2-3 10-11 d 1 A 1-2 0-11 b 1 0-1

vorstehend angegebenen Regeln für die Anordnung der einzelnen Kraftecke im allgemeinen nicht immer vollkommen befolgt werden können: die Parallelen zu den Umfangsstäben können nicht immer wie vorgeschrieben zwischen den äußern Kraftstrecken eingelegt werden; die vor-

A

n

bestimmte Reihenfolge der Kräfte in den Einzelkraftecken läßt sich nicht immer einhalten und zuweilen wird es auch nötig, eine Stabkraft zweimal aufzutragen usw. Selbstverständlich aber läßt sich der

lösen sein werden, zeichnen.

Ein einfaches Beispiel möge das Gesagte noch etwas mehr erläutern.

Ein Krangestell ist in a und b (Fig. 198) starr mit der Erdscheibe verbunden. In den Knoten 1 und 2 wirken die senkrechten Lasten Iund II. Zunächst sind die Stützenkräfte A und B mit Hilfe eines Seilecks, das durch die in den Stützensenkrechten liegenden Punkte a' und b'verläuft, gefunden worden (Fig. 198 u. 200). B ergab sich dabei *negativ*.

Als Umfangsstäbe wurden die Stäbe 1-a, a-b, 3-b,2-3 und 1-2 angesehen, die zwischen den vier Lasten liegen. Die Parallelen zu den Umfangsstäben konnten nach der Regel eingelegt werden. Der Parallelenzug mno (Fig. 199) verläuft ebenfalls regelmäßig, wenn zu n das Dreieck 1-3-a und zu o das Dreieck 1-2-3 der Fig. 198 gerechnet wird. Die Stabkraft 2-4 ergibt sich zu Null. Das folgt auch unmittelbar aus dem Umstande, daß Knoten 4 unbelastet ist, weshalb auch die Stabkräfte 1-4 und 3-4 gleich groß und entgegengesetzt gerichtet sein müssen.

Die einzige Unregel-

mäßigkeit des Kräfteplanes, wenn man es so nennen will, liegt darin, daß im Krafteck für den Knoten 1 die Reihenfolge der Kräfte 1-a, I, 1-2 und 1-4 ist, während sie, wenn die Last II im Knoten 4 läge, 1-a, I, 1-4 und 1-2 wäre.

Die Vorzeichen der Stabkräfte sind nach den Ergebnissen des Kräfteplanes (Fig. 199) in Fig. 198 eingeschrieben.

b. Behandlung von Grundecken. 1. Unter einem ebenen Grundeck (30) verstehen wir ein Stabgebilde, in welchem von jedem Knoten *mehr als drei Stäbe* ausgehen, sodaß im allgemeinen ein Cremona-Plan nicht *unmittelbar* zu zeichnen ist, weil dazu jedenfalls wenigstens ein Knoten vorhanden sein muß, von dem nur zwei Stäbe ausgehen. Wie die Berechnung von Grundecken in verwickelten Fällen mit Hilfe besonderer Verfahren erfolgen kann, wird im folgenden Paragraphen ausführlich dargelegt werden. An dieser Stelle kommen nur solche *einfache* Fälle von Grundecken in Betracht, deren Auflösung durch die Hilfsmittel der Kräftezerlegung oder unter Anwendung des Verfahrens RITTER-CREMONA möglich ist. Die Behandlung solcher Grundecke soll an einigen Beispielen gezeigt werden.

In vielen Fällen stößt man in Stabwerken auf Grundecke, die man als eine Verbindung von zwei Scheiben auffassen kann. Der in der Fig. 201 dargestellte Träger zeigt in seinem Stabwerk ein Grundeck, dessen Dreieckfelder die Buchstaben von n bis s umfassen und das man in zwei Scheiben zerlegt denken kann, die im Knoten 4 durch ein Zwischengelenk und in den Knoten 1 und 8 durch den Stab 1—8 starr miteinander verbunden sind. Legt man also durch das Gelenk im Knoten 4 und den Stab 1—8 einen Schnitt tt, so muß sowohl für den linken als auch für den rechten betrachteten Trägerteil die Summe der statischen Momente aller auf ihn wirkenden äußern Kräfte in Bezug auf das Gelenk 4 Null sein.

$$A \cdot \frac{l}{2} - P_{\mathbf{x}} \cdot c - H \cdot h = 0,$$

wenn $\frac{l}{2}$, c und h die betreffenden Hebelarme der Kräfte sind.

Daraus folgt die Spannkraft H des Stabes 1-8 mit:

$$H = \frac{A\frac{l}{2} - P_{\mathbf{x}} \cdot c}{h} \, .$$

Dasselbe hätte man natürlich erhalten, wenn man (nach RITTER) einen Schnitt t't' durch die drei Stäbe 3-4, 4-5 und 1-8 gelegt hätte. Sobald *H* berechnet ist, kann für das Grundeck ein Kräfteplan gezeichnet werden, weil nach erfolgter Bestimmung von *A* und *B* die Stabkräfte nacheinander zu vermitteln sind, wenn man im Knoten *a* anfängt, Knoten 1 folgen läßt und mit Knoten 2, 3, 5 usw. fortfährt. Der Plan ist in Fig. 203 dargestellt.

Will man H dabei graphisch bestimmen, obwohl die analytische Berechnung nach RITTER im vorliegenden Falle einfacher ist, so kann man den CULMANN'schen Satz anwenden. Das ist in der Fig. 202 und 204 geschehen.

Um dabei das Aufsuchen der Lage der Mittelkraft von A und P_x zu umgehen, ist H in zwei Teilen bestimmt, zuerst als H_8 für die Last P_8

allein und sodann als H_r für die Last P_r allein, sodaß

 $H = H_1 + H_s$.

Bei voller Symmetrie des Stabwerks und gleichen Lasten P würde H nur einmal für *eine* Last $_2P$ zu berechnen sein.

Der von P_8 allein herrührende Stützendruck A_8 wurde mit Hilfe eines Seilecks $a'_8 O_8 b'_8$ und dem zur Schlußlinie s_8 parallelen Kraftstrahl s'_8 gefunden (Fig. 202 unten). Ebenso der aus der Last P_r herrührende Stützendruck B_r im Seileck $a'_r O'_r b'_r$ in Fig. 202 oben. A_8 und H_8 haben eine Mittelkraft, die in der Richtung a-4 liegt, ebenso haben B_r und H_r eine Mittelkraft, deren Richtung durch b-4 verläuft. Im ersten Falle liegen die zugehörigen 3 Stabkräfte im Schnitte t't' des linken Trägerteils, auf den außerdem nur noch eine vierte äußere Kraft, nämlich A_8 wirkt. Im zweiten Falle kommt ebenmäßig der Schnitt $t_r t_r$ mit dem rechten Trägerteile in Betracht. Die Zusammensetzung von A_8 , a-4 zu H_8 und B_r , b-4 zu H_r erfolgte in Fig. 204.

H wurde darauf zwischen den Kraftstrecken P_8 und P_1 , als Stabkraft 1—8, im Kräfteplan (Fig. 203) aufgetragen und dieser nach bekannten Regeln gezeichnet.

2. Viele Grundecke können auch ohne Anwendung des Schnittverfahrens, durch einfache Kräftezerlegung in ihre Stabkräfte aufgelöst werden. Besonders ist dies der Fall, wenn zwei von den drei Stäben eines Knotens in eine Gerade fallen. Ist dann der Knoten m belastet (Fig. 205), so steht die Last P mit den drei Stabkräften S_1 bis S_3 im

Gleichgewicht, woraus folgt, daß die Mittelkraft des Paares P und S_3 in die Richtung der beiden anderen Kräfte S_r und S_2 fallen muß. S_3 ist somit unmittelbar aus einem Kräftedreieck zu entnehmen. Darin ist L die Mittelkraft von S_r und S_2 parallel zur Richtung $S_r - S_2$.

Weiter folgt, daß bei unbelastetem Knoten m (Fig. 206) einerseits die

Stabkraft $S_3 =$ Null ist, weil dann die drei Kräfte S_1 , S_2 und S_3 kein Kräftedreieck bilden können und daß anderseits $S_1 = S_2$ sein muß.

Knoten der letztgenannten Art kommen nicht selten vor. Deshalb ist es immer zu raten, vor dem Au/tragen des Kräfteplanes alle diejenigen Stäbe ausfindig zu machen, deren Spannkraft aus den angegebenen Gründen Null werden muß. Unter Umständen kann nämlich das bloße Vorhandensein von Stäben der Spannkraft Null zur unmittelbaren Auflösung eines Grundecks führen. Das soll im folgenden Beispiel noch ausführlicher dargelegt werden.

Ein ebener eisener Pfeiler besitzt das in Fig. 207 veranschaulichte Stabwerk, das in den Knoten I und 9 an die Erdscheibe geschlossen ist. Die Belastung erfolgt, wie angegeben, teils durch senkrechte, teils durch wagerechte Knotenlasten. In Knoten 9 ist ein Stützengelenk und in Knoten I ein senkrechter Stützenstab vorgesehen.

Zuerst wurden die Stützenkräfte A und B nach ihrer Richtung und Größe ermittelt. Das geschah mit Hilfe eines Seilecks, das mit beliebigem Pole O (Fig. 208) zwischen den Richtungen der Lasten X, IV, V, VI, VI_w, VII und VIII derart gelegt wurde, daß der erste Strahl 9-8' durch das Stützengelenk 9 verlief (Fig. 207). Der letzte Strahl 1'-10' schneidet die gegebene Richtung der Stützenkraft A im Punkte 1'. Damit ist in Fig. 207 die Lage der Schlußlinie *s* festgelegt und die im Krafteck der Fig. 208 dazu gezogene Parallele *s'* bildet die Kraftdreiecke Omr und Onr, deren Strecken \overline{nr} und \overline{mr} die gesuchten Stützenkräfte Größe und Richtung vorstellen.

Danach ist in der Fig. 209 das geschlossene Krafteck der Lasten und Stützenkräfte aufgetragen worden, derart daß die Kräfte der Reihe nach, wie sie an den (*rot* gezeichneten) Umfangstäben angreifen, aufeinander folgen. Weil die Kraft V in einem Wandknoten angreift, so ist der Stab 4-6 als Wandstab gerechnet und deshalb (wie alle anderen A und B nach Wandstäbe) grün gezeichnet.

Wie darauf der Kräfteplan der Fig. 209 zum Schluß gebracht worden ist, verfolgt man am besten, wenn man den Verlauf des grünen Parallelenzuges der Wandstäbe im Auge behält und dabei die Eckpunkte a bis i mit den gleichbezeichneten Dreiecksfeldern der Fig. 207 vergleicht.

Zuerst wurden in den Feldern a, b, c diejenigen Stäbe ausfindig gemacht, deren Stabkraft gleich Null ist: die Stabkraft 2—11 ist Null, weil der Knoten 2 unbelastet ist und die Gurtstäbe 1—2 und 2—3 in eine Gerade fallen. Ist aber die Stabkraft 2—11 gleich Null, so muß auch die Stabkraft 1—11 gleich Null sein, weil im Knoten 11 gleiche Verhältnisse wie im Knoten 2 vorliegen. Somit ist es jetzt möglich, aus den Kräften A, 1-2 und 1-10 des Knotens 1 das erste Kraftdreieck zu zeichnen. Der zugehörige Eckpunkt im Kräfteplane ist mit a-b-c bezeichnet, weil er zu dem Dreieck 1-3-10 gehört, das

Fig. 207.

§ 10. Ebene starre Stabwerke.

(nach Fortfall der Stabkräfte 2-11und 1-11) allein in Betracht kommt und die Dreiecke a, b und c umfaßt.

Ehe man weiter vorgehen kann, wird es notwendie Stabdig, kräfte der gegenüberliegenden symmetrischen Felder- 9 gruppe d - e - fzubestimmen. Man beginnt mit dem Knoten 8, dessen Stabkraft 8-12 unmittelbar gegeben ist, weil die

Knotenkraft *VIII* in die Richtung der Stabkraft 8—12 fällt, also zusammen mit ihr Null geben muß. Danach ist die Stabkraft 8—12 ein Druck von der Größe der Last *VIII*. Vom Knoten 8 geht man zum Knoten 12 über, in welchem die Stabkraft 9—12 nunmehr bestimmt ist, sobald man aus 8—12

Fig. 208.

und den beiden Parallelen zu den Richtungen 7-10 und 9-12 ein Kraftdreieck zeichnet. In der Fig. 209 ist das unterhalb der wagerechten Kraftlinie punktiert ausgeführt.

Nunmehr löst sich der Knoten 9, womit, wie Fig. 209 näher veranschaulicht, auch die Eckpunkte d, e und f des Kräfteplanes gewonnen werden. Darauf folgen nacheinander zuerst die Knoten 10, 11, 12, wobei der Eckpunkt g erhalten wird, sodann die Knoten 3 und 7 mit den Eckpunkten h nnd i, sowie schließlich die Knoten 4 und 6. Man kann sich jetzt davon überzeugen, daß auch das Krafteck für den Knoten 5 sich schließt. In diesem Krafteck ist in der Fig. 209 die Stabkraft 4-6 zweimal (jedesmal in entgegengesetzter Richtung) mit aufgenommen worden, um das besondere Auftragen des Kraftfünfecks (aus V und den Stabkräften 3-5, 4-5, 5-6, 5-7) zu umgehen.

Man sieht, wie der Kräfteplan, trotz der vorhandenen Belastung eines Wandknotens und obwohl seine unmittelbare Darstellung nicht ausführbar war, doch im wesenstlichen nach den unter **70**b gegebenen Regeln aufgetragen werden konnte. Überall aber, wo die angegebenen einfachen Hilfsmittel nicht ausreichen, um ein Grundeck zu lösen, müssen besondere Berechnungsmethoden in Anwendung kommen, von denen im folgenden Paragraphen die Rede sein wird.

§ 11. Raumfachwerke und Grundecke (30 und 32).

72. Berechnung von Raumfachwerken nach dem Schnittverfahren. Unter der Voraussetzung, daß es sich nicht um ein bloßes Abtrennen eines einzelnen Knotens handelt, wird eine Schnittebene, die ein starres Stabwerk in zwei Teile zerlegt, im allgemeinen nicht mehr als sechs Stäbe treffen, von denen jeder Stab einen Knoten des einen mit einem solchen des anderen Teiles verbindet. Die sechs Spannkräfte dieser Stäbe können dann eindeutig aus den gegebenen Größen berechnet werden, wie dies (unter 53) schon angedeutet worden ist. Dazu müßte man aber zuerst die äußeren Kräfte eines der beiden Stabwerkteile in eine gleichwertige Kräftegruppe verwandeln, am einfachsten wohl in zwei windschiefe Kräfte (50b). Jede dieser beiden Kräfte wäre dann nach sechs vorgeschriebenen Richtungen des Raumes zu zerlegen und damit erhielte man die gesuchten sechs Schnittkräfte. Ein solches Verfahren ist aber umständlich und zeitraubend, sodaß man sich praktisch auf andere Weise zu helfen sucht, wenn man nicht überhaupt vorzieht, eine der weiterhin zu besprechenden besonderen Methoden anzuwenden, die sich auf das Verfahren der Stabvertauschung (**30** c) oder auf den Satz von den virtuellen Verschiebungen (**40**) stützen. In vielen Fällen kann man auch das Momentenverfahren von RITTER auf den Raum übertragen.

a. Verfahren von RITTER. 1. Man wird versuchen eine Momentenachse zu finden, die möglichst viele von den sechs Stäben schneidet. Gelingt es eine Achse durch fünf Stäbe zu legen, so ergibt sich die Spannkraft des sechsten Stabes aus ihrer Momenten-Gleichung bezogen auf diese Achse.

Häufig lassen sich auch zwei Momentenachsen durch vier Stäbe legen. Man erhält dann für jede Achse eine Momenten-Gleichung, in welcher die Spannkräfte der beiden nicht von den Achsen getroffenen Stäbe als einzige Unbekannte vorkommen. Die Benutzung von zwei Momentenachsen ist jedoch nur dann einfach genug, wenn die Achsen leicht aufzufinden sind. Das ist immer der Fall, wenn von den sechs Schnittstäben sich drei in einem Punkte schneiden, oder drei in einer Ebene liegen. Schon wenn die Stäbe paarweise in eine Ebene fallen, sind die beiden Achsen ohne weiteres gegeben, man braucht ja nur den Schnittpunkt eines Stabpaares in einer Ebene mit dem Schnittpunkt des Paares einer anderen Ebene durch eine Gerade zu verbinden. Das wäre die erste Achse, die zweite fände sich als Schnittkante der nämlichen beiden Ebenen.

2. Ein Beispiel möge die Berechnung von sechs Schnittkräften noch näher erläutern. Das in der Fig. 210 dargestellte Gratfachwerk (**33**) von 6 Knoten und 18 Stäben, von denen 6 Stützenstäbe vorstellen, ist starr. Knoten 1 und 3 besitzen je zwei Pendelstützenstäbe und die Knoten 2 und 4 je eine einfache Pendelstütze. Die Ebenen der Stützenstäbe in 1 und 3 stehen senkrecht und ihre Schnittkante steht daher senkrecht im Knoten 4. Sämtliche Stabkräfte, die bei einer Belastung des Knotens 5 durch eine senkrechte Last V und zwei wagerechte (zu den Stabrichtungen 1-4 und 1-2 parallele) Kräfte W und Uentstehen, sind zu berechnen. Dabei soll das untere Viereck der Stäbe zwischen den Knoten 1 bis 4 als ein Quadrat mit den Seitenlängen a angenommen werden.

Die im Knoten 4 senkrecht stehende Achse L schneidet die fünf Stützenstäbe der Knoten 1, 3 und 4. Dadurch ist Stützenkraft S_2 in 2 aus der Momenten-Gleichung für diese Achse gegeben.

Man erhält, mit Bezug auf die eingeschriebenen Hebelarme:

 $+ U \cdot u + W \cdot w - S_2 \cdot a = 0.$

Das statische Moment von V ist Null, weil die Richtung von P die Achse L in unendlicher Ferne schneidet.

Daraus folgt:

Fig. 210.

Die Gerade 1-3 schneidet die vier Stützenstäbe der Knoten 1 und 3 und auch den Stützenstab S_2 . Das gibt:

$$+ S_4 \cdot d - Vc = 0$$

oder

$$2) \quad S_4 = + \frac{Vc}{d} \cdot$$

Das statische Moment von U und W ist Null, weil die Richtungen von U und W und von der Geraden 1-3 in zwei einander parallelen Ebenen liegen, die sich in der Unendlichkeit schneiden.

Zerlegt man nun die Stützenkräfte in 1 und 3 in ihrer Ebene je in eine lotrechte Seitenkraft, so erhält man zunächst noch drei Bedingungen:

§ 11. Raumfachwerke und Grundecke.

3) $V + S_{1v} + S_{3v} + S_4 = 0$ 4) $W - S_2 - S_{1w} = 0$ 5) $U + S_{3u} = 0$.

Żur Berechnung der drei noch unbekannten Stabkräfte S_{xw} , S_{xv} und S_{3v} fehlt also nur noch eine Gleichung. Sie ist auf verschiedene Weise zu erhalten. Wir wählen die Momentengleichung für eine durch die Richtung von V verlaufende Achse:

6)
$$+ S_{1w} \cdot b - S_2(a - b) - S_{3u} \cdot a = 0$$
.

Die Momente von U, V, W, S_{1v} , S_4 , S_{3v} verschwinden dabei. Aus den obigen sechs Gleichungen sind die sechs Stützenkräfte zu berechnen.

Wollte man nunmehr die Stabkräfte weiter nach dem Verfahren von RITTER berechnen, so kann das in verschiedener Weise geschehen. Man kann mehrere Schnitte legen, die immer sechs Stäbe treffen und leicht findet man dazu auch eine Momentenachse, die von einem der Stäbe nicht geschnitten wird. Z. B.: Es werde eine senkrechte Schnittebene geführt, von der die sechs Stäbe:

$$1-4$$
, $1-3$, $4-5$, $4-6$, $2-3$ und $3-6$

getroffen werden, von denen drei im Knoten 4 und drei im Knoten 3 entspringen. Davon kann *die Stabkraft* $_3-6$ *aus einer einzigen Gleichung* berechnet werden, wenn man als Momentenachse die Grade I-4 wählt, weil in dieser alle übrigen Schnittstäbe münden. Man kann u. a. auch eine wagerechte Schnittebene legen, von der die sechs Stäbe:

1-5, 4-5, 4-6, 3-6, 2-6 und 2-5

getroffen werden. Betrachtet man dann den abgeschnittenen oberen Stabwerkteil und als Momentenachse eine durch die Knoten 4-5 verlaufende Gerade, so ergibt sich daraus, weil auch V, U und W in der Achse münden, eine Beziehung zwischen der Stabkraft 2-6 und 3-6, die zur unmmittelbaren Bestimmung von 2-6 führt, usw.

b. Das graphische Schnittverfahren. In allen Raumfachwerken, die kein Grundeck besitzen (**32**), trifft man nach erfolgter Beseitigung des ersten (dreistäbigen) Knotens auf irgend einen zweiten Knoten, in welchem nur noch drei unbekannte Stabkräfte vorkommen, und so fort bis zur Auflösung des letzten Knotens. Bei gegebenen äußeren Kräften findet man also die Stabkräfte jedes Knotens in einfachster Weise *analytisch* mit Hilfe der drei Gleichgewichts-Bedingungen

Mehrtens, Statik der Baukonstruktionen. I.

des Knotens und graphisch unter Anwendung des CULMANN'schen Kraftvierecks (49 a). Überhaupt findet zwischen den Stabwerken der Ebene und des Raumes, wenn es sich nur um die Ermittelung der inneren Kräfte handelt, ein wesentlicher Unterschied nicht statt. Im Raum gestaltet sich die Berechnung nur etwas weniger einfach als in der Ebene, weil wegen der hinzutretenden dritten Dimension für jeden Knoten mindestens zwei Projektionen seiner Lage und seines Kraftecks gezeichnet und schließlich die ermittelten Stabkräfte der Projektionen auch noch auf den Raum zurückgeführt werden müssen.

Wie in der Ebene, so ist es in manchen Fällen auch im Raume möglich, Stabwerke in einfacher Weise in ihre Spannkräfte aufzulösen, obwohl es Grundecke sind. Man wird also, wie in der Ebene, ein zur Berechnung vorliegendes Raumfachwerk von vorneherein daraufhin zu untersuchen haben: 1) ob und welche Stabkräfte etwa *spannungslos* bleiben und 2) ob nicht in einzelnen Knoten, von denen *mehr als drei Stäbe* ausgehen, trotzdem die eine oder die andere Stabkraft unmittelbar gefunden werden kann.

Ist ein *dreis*täbiger Knoten *unbelastet*, so sind seine drei Stäbe spannungslos. Fällt in einem dreistäbigen Knoten die Richtung der Last mit einer der Stabachsen zusammen (Fig. 211), so ist die zugehörige Stabkraft gleich der Last, aber ihrer Richtung entgegengesetzt, während die übrigen beiden Stäbe spannungslos bleiben.

Ist ein vierstäbiger Knoten m (Fig. 212) unbelastet und liegen dabei drei seiner Stäbe in einer und der nämlichen Ebene, so muß auch die Mittelkraft R dieser drei Stäbe in jener Ebene liegen. Daraus folgt, daß die Stabkraft S_4 spannungslos bleibt, weil sie und die Mitelkraft R der drei in einer gemeinsamen Ebene liegenden Stabkräfte S_1 , S_2 , S_3 anders nicht im Gleichgewicht miteinander stehen können.

Liegen in einem vierstäbigen belasteten Knoten drei Stäbe in einer gemeinsamen Ebene, so ist die vierte Stabkraft unmittelbar

§ 11. Raumfachwerke und Grundecke.

analytisch oder aus einem Kraftdreieck zu ermitteln. In der Fig. 213 ist ein solcher Knoten m mit den anstoßenden Stäben 1—4, von denen die Stäbe 1, 2, 3 in gemeinsamer Ebene liegen, in Aufriß und Grundriß dargestellt. Weil die Mittelkraft R der Stäbe 1, 2, 3 in der zugehörigen Stabebene liegen muß, so läßt sich aus P, der Stabkraft 4 und R ein Kraftdreieck zeichnen. Das ist in zwei Projektionen in der Fig. 214 ausgeführt. Damit ist die Stabkraft 4 als ein Zug ermittelt.

Wenn drei in einem Knoten zusammenstoßende Stäbe im allgemeinen beliebige Lage haben, sind ihre Spannkräfte aus der Knotenlast wohl am einfachsten mit Hilfe eines CULMANN'schen Kraftvierecks zu finden. Wie dies geschieht ist (unter **49—51**) bereits so ausführlich gezeichnet und beschrieben, daß darauf Bezug genommen werden darf.

In seltenen Fällen wird man bei Raumfachwerken Stabverbindungen vorfinden, deren Spannkräfte man mit den einfachen Mitteln, wie sie für ebene Fachwerke in Gebrauch sind, berechnen kann. Das kommt daher, weil Raumfachwerke meistens Grundecke in sich bergen, oder überhaupt an und für sich Grundecke sind. Solche berechnet man zweckmäßig nach besonderen Methoden, denen (wie schon gesagt) das Verfahren der *Stabvertauschung*, oder der Satz von den *virtuellen*

195

13*

Verschiebungen, sowie auch Sätze der geometrischen Bewegungslehre als Grundlage dienen. Diese Methoden sollen nachfolgend für ebene und räumliche Grundecke gemeinsam besprochen werden.

73. Das Gleichgewicht an einem Grundeckknoten.

Sobald von einem ebenen Knoten mehr als zwei und von einem Raumknoten mehr als drei Stäbe ausgehen, kann (von den erwähnten Ausnahmefällen abgesehen) die Knotenlast auf unendlich viele Arten nach den gegebenen Stabrichtungen zerlegt werden. Es lassen sich aber die Stabkräfte S_x , S_z , S_3 , \ldots S_n eines solchen Knotens durch einen einheitlichen analytischen Ausdruck darstellen.

Im Knoten m (Fig. 215) eines ebenen Stabwerks seien die Stabkräfte S_1 , S_2 bis S_n mit einer äußern Kraft P_m im Gleichgewicht. Für ein^p

beliebige Zerlegung von P_m nach den gegebenen *n* Stabrichtungen erhalte man die Stabkräfte S'_1, S'_2, S'_n . Denkt man sich nun noch eine

Fig. 216.

andere solche beliebige Zerlegung von P_m , wie sie in der Fig. 216 mit grünen Linien angegeben ist, so ändert sich dabei im allgemeinen die Größe jeder der *n* Seitenkräfte. Die Zunahme oder Abnahme der Größe muß aber immer der Bedingung genügen, daß die Seitenkräfte mit der Last P_m im Gleichgewicht bleiben. In jedem Falle einer Zerlegung wird sich deshalb das zugehörige Krafteck (im Raum oder in der Ebene) nur dann schließen können, wenn die algebraische Summe jener Größenänderungen immer gleich Null ist, oder mit andern Worten, wenn die Größenunterschiede der gleichbenannten Seitenkräfte, als Strecken aufgetragen, ein geschlossenes Krafteck bilden.

Bezeichnet man also n in die gegebenen Stabrichtungen fallende Kräfte, die im Gleichgewicht miteinander stehen, mit S_x^n, S_x^n, S_x^n und ist x eine beliebige Zahl, so kann man die Größen der Stabkräfte $S_1, S_2, \ldots S_n$ analytisch wie folgt anschreiben:
§ 11. Raumfachwerke und Grundecke.

$$S_{1} = S'_{1} + x \cdot S''_{1}$$

$$S_{2} = S'_{2} + x \cdot S''_{2}$$

$$\vdots$$

$$S_{n} = S'_{n} + x \cdot S''_{n}$$

$$(45)$$

Für ein starres Stabwerk wird es einen einzigen Wert von x geben, für welchen die Stabkräfte S_1, S_2, S_n diejenigen Werte erhalten, die aus der Wirkung der Stabwerkbelastung entspringen. Die Gleichungen (45) drücken gleichzeitig den Einfluß aus, den der Knoten m mit seiner Last auf die übrigen Stäbe des Stabwerks in besondern Fällen ausübt. Wenn es also gelänge die Zahl x zu bestimmen, so hätte man damit nicht allein die wirklichen Stabkräfte S_1, S_2, S_n gefunden, sondern man könnte weiter auch alle übrigen Spannkräfte des Stabwerks aus einem Kräfteplane entnehmen, in welchem an Stelle der Last P_m deren drei Seitenkräfte S_1, S_2, S_n treten. Wie dies geschehen kann, soll nachstehend gezeigt werden.

74. Grundeckberechnung nach dem Verfahren von Henneberg¹.

a. Für die Ebene. Das ursprünglich von HENNEBERG (1886) angegebene Verfahren stützt sich auf obige Betrachtung des Gleichgewichts an einem Grundeckknoten, von welchem *drei* Stäbe ausgehen. Das Verfahren bildet geschichtlich auch die Grundlage für neuere Berechnungen ähnlicher Art, deshalb ist es hier vorangestellt worden.

HENNEBERG denkt sich einen dreistäbigen Knoten beseitigt. Der Knoten wird nachfolgend der *Lastknoten* genannt und dementsprechend heißen seine drei Stäbe die *Laststäbe*. Durch das Fehlen der drei Stäbe geht das Stabwerk von k Knoten in ein solches von k - I Knoten über. Diesem fehlt aber, um starr zu sein, nur *ein* Stab, vorausgesetzt daß das betrachtete Stabwerk von k Knoten auch starr war. Deshalb wird im Stabwerk von k - I Knoten, um es starr zu machen, an passender Stelle noch ein Stab eingezogen werden müssen. Dieser Stab heiße der *Ersatzstab*.

In Fig. 217 ist zum Beispiel ein starres Grundeck dargestellt, das 8 Knoten zählt. Der Knoten 2 ist beseitigt worden und dafür der Ersatzstab 3-5 eingezogen. Die drei Laststäbe sind durch schwächere Striche dargestellt. Es ist (nach Gl. 45) zu schreiben:

¹ HENNEBERG, Statik der starren Systeme. 1886. § 40. S. 222.

Dritter Abschnitt. Innere Kräfte der Stabwerke.

$$S_{a} = S_{a1} + X \cdot S_{a11}$$

$$S_{b} = S_{b1} + X \cdot S_{b11} \qquad (46)$$

$$S_{c} = S_{c1} + X \cdot S_{c11}.$$

Man denke sich auf jeden der drei Knoten 1, 5 und 3 des Stabwerks mit 8 — I = 7 Knoten die zugehörige Seitenkraft S der Knotenlast P_2 wirken, also S_a in 1, S_b in 5 und S_c in 3. Sollen unter dieser und der sonstigen Belastung des Stabwerks von 7 Knoten in allen

Stäben die gleichen Spannkräfte entstehen, wie sie in dem ursprünglichen Grundeck von 8 Knoten wirklich entstehen, so muß im Kraftplane für das Stabwerk von 7 Knoten *die Spannkraft des Ersatzstabes verschwinden*. Denn wenn man sich den Ersatzstab wieder beseitigt und seine Wirkung durch seine beiden auf die Knoten 3 und 5 gerichteten Spannkräfte Y (Fig. 217) ersetzt denkt, so können zwar unzählig viele Kräftepläne für das Grundeck gezeichnet werden, von denen jeder einem anderen von Null verschiedenen Werte von Y entspricht. Aber in keinem Plane werden die Stabkräfte S_a , S_b und S_c in ihrer wirklichen Größe erscheinen können, die sie nach unserer Voraussetzung

besitzen sollen. Y muß also verschwinden. Aus dieser Bedingung ergibt sich ein Mittel um das X der Gleichungen (46) zu finden: Zuerst belaste man das Stabwerk von k - i Knoten in den drei Knoten (1, 5, 3 des Beispiels), in denen die Enden der Laststäbe münden, mit den entsprechenden, beliebig gewählten Seitenkräften (S_{aI} , S_{bI} , S_{cI}) des Lastknotens 2. Für diese und die sonst noch gegebenen Lasten zeichne man einen Kräfteplan. Sodann belaste man die nämlichen Knoten mit den entsprechenden, beliebig gewählten, *im Gleichgewicht* miteinander stehenden Kräften (S_{aII} , S_{bII} , S_{cII}) und zeichne einen zweiten Kräfteplan, wobei aber alle sonstigen Lasten nicht einzubeziehen sind. In beiden Kräfteplänen erhält man je einen Wert für die Spannkraft des Ersatzstabes; sie sei Y_{I} für den ersen und Y_{II} für den zweiten Plan. Danach ist die unter dem Einflusse der drei Seitenkräfte von P_{a} — also von S_{a} , S_{b} , S_{c} — im Grundeck entstehende Spannkraft des Ersatzstabes aus der Gleichung

$$Y = Y_{\rm I} + X \cdot Y_{\rm II}$$

zu entnehmen.

Wie bereits bewiesen, muß Y = Null sein. Daraus folgt

$$X = -\frac{Y_{\rm I}}{Y_{\rm II}}.\tag{47}$$

Bezeichnet man irgend eine beliebige Stabkraft des Grundecks mit S_m , so ist danach

$$S_m = S_{mI} + X \cdot S_{mII}, \qquad (48)$$

worin S_{mI} und S_{mII} aus den beiden erwähnten Kräfteplänen zu entnehmen sind.

Nach obigem ist leicht einzusehen, daß man um X zu finden auch einen Knoten beseitigen kann, der unbelastet ist. HENNEBERG hat zwar dieses Verfahren nicht besonders erwähnt, aber es liegt auf der Hand, wie man gerade durch die Beseitigung eines nicht belasteten Knotens häufig rascher und einfacher zur Bestimmung von X gelangt, als auf anderm Wege. Die Gleichungen für S_a , S_b und S_c gelten nämlich auch für den Sonderfall $P_m = 0$, daraus folgt, das S_{al} , S_{bl} und S_{cl} miteinander im Gleichgewicht stehen, ebenso wie S_{all} , S_{bl} , S_{cll} . Man kann demnach, wenn man will, auch $S_{al} = S_{all}$, $S_{bl} = S_{bll}$ und $S_{cl} = S_{cll}$ wählen. Die (unter **75**) folgenden Beispiele werden die Anwendbarkeit des eben erwähnten Sonderverfahrens noch näher beleuchten.

Schließlich bleibt noch zu erwähnen, daß die Gleichung

$$Y_{\rm I} + X \cdot Y_{\rm II} = 0 \tag{49}$$

für X keinen eindeutigen endlichen Wert ergibt, wenn im zweiten Kräfteplane $Y_{\rm II}$ verschwindet. Denn in diesem besondern Falle müßte nach der Gleichung (47) auch $Y_{\rm I}$ Null sein. Es wäre allerdings möglich, die Belastungen P derart einzurichten, daß man $Y_{\rm I} = 0$ erhielte, dann gäbe es aber unendlich viele Werte von X, die der Gleichung (49) (für $Y_{\rm I} = Y_{\rm II} = 0$) genügen würden. In einem solchen Falle wäre das vorliegende Grundeck beweglich oder von unendlich kleiner Beweglichkeit, eine Möglichkeit, die nach unserer Voraussetzung ausgeschlossen war.

b. Für den Raum. Ein Raumgrundeck besitzt keinen Knoten, von welchem weniger als *vier* Stäbe ausgehen. Beseitigt man also einen vierstäbigen Raumknoten eines starren Grundecks von k Knoten, so kann man dieses in ein starres Raumstabwerk von k - 1 Knoten verwandeln, wenn man an passender Stelle den notwendigen Ersatzstab einzieht. Die weitere Behandlung des Raumstabwerks von k - 1 Knoten erfolgt genau in der Weise, wie dies für ein ebenes Grundeck dargelegt worden ist. Es sind auch hier nur *zwei* Kräftepläne zu zeichnen. Dabei sind jedesmal, außer den vorhandenen Knotenlasten, in jenen vier Knoten, von denen die Enden der Laststäbe aufgenommen werden, beliebig gewählte äußere Kräfte anzubringen.

Das sind für den ersten Plan:

Die vier, durch beliebige Zerlegung nach den gegebenen Richtungen der Laststäbe gefundenen Seitenkräfte der Last P_m des Lastknotens. Sie seien S_{aI} , S_{bI} , S_{cI} , S_{dI} .

Für den zweiten Plan:

Die vier entsprechenden, beliebig gewählten im Gleichgewicht miteinander stehenden Kräfte S_{aII} , $S_{\delta II}$, S_{cII} , S_{dII} .

Die Seitenkräfte S_a , S_b , S_c , S_d der Last P_m sind dann analytisch durch die Gleichungen

 $S_a = S_{a1} + X \cdot S_{a11}$ $S_b = S_{b1} + X \cdot S_{b11}$ $S_c = S_{c1} + X \cdot S_{c11}$ $S_d = S_{d1} + X \cdot S_{d11}$

bestimmt.

Die Zahl X findet sich aus der Gleichung:

$$Y_{\rm I} + X \cdot Y_{\rm II} = \circ \,,$$

worin Y_{I} und Y_{II} die im ersten und zweiten Kräfteplane gemessene Größe der Spannkraft Y des Ersatzstabes bezeichnen. Daß man auch hier in vielen Fällen mit Vorteil einen unbelasteten Knoten beseitigen kann, liegt auf der Hand.

Nachfolgende Beispiele werden das Gesagte noch weiter erläutern. 75. Beispiele zum Verfahren von Henneberg.

a. Ebenes Grundeck. Das in der Fig 218 dargestellte Grundeck zählt 8 Knoten und 13 Stäbe. Der Knoten 2 mit der Last II und seinen drei Stäben soll beseitigt werden. Er ist also *Lastknoten*, von welchem drei Laststäbe ausgehen. Dafür ist zwischen den Knoten 3 und 7 ein Ersatzstab Y eingefügt.

In der Fig. 219 sind die vier Lasten I bis IV zu einem geschlossenen Krafteck zusammengesetzt. Dabei fällt die Mittelkraft der Paare I, II und III, IV in die Parallele x'y' der Verbindungsgeraden xy zwischen den betreffenden Angriffspunkten x und y der Mittelkräfte (in der Fig. 218). Ferner sind in der Fig. 219 dargestellt: 1) eine der unendlich vielen Reihen der Seitenkräfte S_{rI} , S_{7I} , S_{3I} der Knotenlast II; 2) drei in den Richtungen jener Seitenkräfte wirkende Kräfte S_{rII} , S_{7II} , S_{3II} , die miteinander ein geschlossenes Krafteck bilden. Dabei wurde $S_{3II} = S_{3I}$ genommen.

dessen Grundlage die drei im Gleichgewicht stehenden äußern Kräfte S_{1II} , S_{3II} und S_{7II} bilden.

Damit ist

$$X = -\frac{Y_{\rm I}}{Y_{\rm II}}$$

gefunden. Zeichnet man den zweiten Kräfteplan so groß, daß $Y_{\rm I} = Y_{\rm II}$ wird, wie es in Fig. 222 geschehen ist, so ergibt sich irgend eine Spannkraft S_n des vorliegenden Stabwerkes mit

b. Das ebene Grundeck unter Beseitigung eines unbelasteten Knotens. Wenn man in der Fig. 218 einen unbelasteten dreistäbigen Knoten beseitigen will, so eignet sich dazu der Knoten 6 oder 8. Die Stabkräfte 5-6 und 7-8 müssen gleich Null sein. Das ergibt sich ohne weiteres aus dem Umstande, daß die Stäbe 1—6 und 6—7, sowie auch 5-—8 und 3—8 in eine Gerade fallen. Es bleiben also, einerlei ob man Knoten 6 oder 8 beseitigt, von den drei Stabkräften S_a , S_b und S_c nur zwei $(S_a$ und $S_b)$ übrig, während $S_c = o$ ist. Gleichgewicht kann also nur sein, wenn $S_a = S_b$ ist. Ebenso wird für den ersten Kräfteplan $S_{aI} = S_{bI}$ sein, sowie für den zweiten Kräfteplan $S_{aII} = S_{bII}$ ist.

Beseitigt man den Knoten 8 und fügt dafür den Ersatzstab 3-7 ein, so zeigt das erhaltene starre Stabwerk das in Fig. 223 dargestellte Bild.

Die als äußere Kräfte anzubringenden Stabkräfte S_{aI} und S_{aII} wurden in beliebiger Größe angenommen, dabei wurde nach erfolgter Feststellung des ersten Kräfteplanes (Fig. 224) S_{aII} für den zweiten Kräfteplan (Fig. 225) in ihrer Größe derart abgestimmt, daß in beiden Plänen die Spannkraft des Ersatzstabes Y gleich groß ausfiel. Es bestimmte sich danach im vorliegenden Fall:

$$X = -\frac{Y_{\rm I}}{Y_{\rm II}} = - \mathrm{I} \,.$$

Irgend eine beliebige Stabkraft S_r des untersuchten Grundecks berechnet sich also aus:

$$S_r = S_{rI} - S_{rII}.$$

Wie ein Vergleich der beiden unter a) gezeichneten Kraftpläne mit den vorstehenden Plänen ergibt, stimmen die unter a) und b) erhaltenen Werte der Stabkräfte überein. Auch hier ergibt sich für den Kräftemaßstab 57 mm = 1 t die Stabkraft 1-2 zu

$$S_{1-2} = \frac{-27 - 15}{57} = 0,74 \text{ t.}$$

c. Raumfachwerke. Die meisten Raumfachwerke sind Grundecke, weshalb das Verfahren von HENNEBERG hier von noch größerer Bedeutung ist als für ebene Stabwerke.

Als Beispiel ist das (unter **33**) in Fig. 81 bereits gegebene Grundeck gewählt, in welchem zwei Dreieckscheiben durch sechs Stäbe in ein Raumfachwerk übergeführt worden sind. Wie Fig. 226 im Grundriß und Aufriß dargestellt, ist das Stabwerk in den drei untern Knoten 1 bis 3 mit zusammen 6 Stützenstäben an die Erde geschlossen: im Knoten 1 durch ein Kugelgelenk, im Knoten 2 durch einen wagerechten und senkrechten und im Knoten 3 durch einen senkrechten Stab. Der Knoten 4 sei durch eine senkrecht und eine wagerecht gerichtete Kraft belastet. Diese Lasten sind mit P und W bezeichnet.

Welchen der drei vierstäbigen Knoten 4, 5, 6 man beseitigen will, steht in freier Wahl. Am einfachsten gestalten sich die Kraftpläne wohl, wenn man einen der *unbelasteten* Knoten 5 oder 6 fehlen läßt. In der Fig. 227 ist Knoten 5 beseitigt und dafür der rot gezeichnete

Ersatzstab3—4= Y eingezogen. Die weitere Lösung der Aufgabe ist in den Fig. 228 und 229 durchgeführt.

Die vier Stabkräfte im Lastknoten 5 müssen im Gleichgewicht sein. Die Mittelkraft der beiden Stabkräfte 4-5 und 5-6 liegt in der wagerechten Ebene 4-5-6. Deshalb muß auch die Mittelkraft der beiden andern Stabkräfte (2-5 und 3-5) in der nämlichen Ebene liegen. Im übrigen können vorläufig die Größen der vier Kräfte beliebig angenommen werden. Danach ist in der Fig. 228 im Aufriß und Grundriß das Krafteck desLastknotensgezeichnet. ImAufriß wurde dabei eine der beiden Größen (2-5)'' oder(3-5)''beliebig angenommen; durch die Bestimmung, daß beider Mittelkraft

in wagerechter Ebene zu liegen kommen muß, findet man eine der beiden Größen aus der andern. Im Grundriß sind dann die gefundenen Größen (2-5)' und (3-5)' in zugehöriger Lage und Richtung aneinander getragen, sodaß das Krafteck des Grundrisses durch die Parallelen (5-6)' und (4-5)' geschlossen werden konnte. Endlich ergab die Übertragung von (4-5)' aus dem Grundriß in dem Aufriß die Größe von (4-5)'' und (5-6)''.

Der Einfachheit wegen, und um die früheren Benennungen für den zu zeichnenden *ersten und zweiten Kräfteplan* beibehalten zu können, sind für die vier obigen vorläufig beliebig, aber als im Gleichgewicht stehenden Kräfte folgende Zeichen gewählt worden:

 S'_{3I} und S''_{3I} für die Projektionen der im *ersten* Plane im Knoten 3 als äußere Kraft anzubringenden Stabkräfte (3-5)' und (3-5)'';

 S'_{2I} und S''_{2I} desgl. für die im Knoten 2 anzubringenden Kräfte (2-5)''und (2-5)'';

die Bedeutung von S'_{4I} und S''_{4I} , sowie S'_{6I} und S''_{6I} sind danach klar.

Im zweiten Kräfteplane (Fig. 229), für den P und W verschwinden, erhalten die vier Kraftgrößen an Stelle des Zeigers I den Zeiger II, heißen also: S'_{3II} und S''_{3II} , S'_{2II} und S''_{2II} usw.

Man erkennt nun leicht, wie die Kräftepläne I und II (und zwar für jeden im Grundriß und Aufriß) sich darstellen lassen, nämlich: *durch die wiederholte Lösung der Anfgabe, für einen dreistäbigen Knoten die durch seine Knotenlast erzeugten Stabkräfte zu berechnen.* Auf graphischem Wege bildet die Lösung eine Wiederholung der Anwendung des bekannten CULMANN'schen Satzes (49–51). Rechnerisch zerlegt man die Knotenkräfte nach drei Achsenrichtungen und bestimmt darauf in bekannter Weise die unbekannten Stabkräfte aus den erhaltenen drei Gleichgewichts-Bedingungen (52).

An dieser Stelle wird es daher genügen, anzugeben, in welcher Reihenfolge die Stabkräfte ermittelt werden können.

1. Im Kräfteplane I (Fig. 227 und 228).

Knoten 6. Die gegebene Knotenlast ist S_{61} ; sie liegt wagerecht zugleich mit der unbekannten Stabkraft 6—4. Die Stabkräfte 6—1 und 6—3 haben also eine Mittelkraft, die in wagerechter Ebene liegt. Aus dieser Bedingung folgen Aufriß und Grundriß des Kraftecks für Knoten 6, wie dies in der Fig. 228 dargestellt ist.

Knoten 4. Unbekannt sind hier die Stabkräfte 4-1, 4-2 und Y_I . Gegebene Knotenlasten sind P, W, sowie auch die Stabkräfte 4-5und 4-6. Daraus folgen die Unbekannten im Aufriß und Grundriß.

Knoten 3. Unbekannte: Stabkräfte 3-1, 3-2 und der senkreehte Stützenstab. Knotenlasten: Stabkraft 3-6, YI, S3I. Knoten 2. Unbekannte: Stabkraft 2-I und die beiden Stützenstäbe. Knotenlasten: 2-4, 2-3 und Sal.

Knoten I. Hier ist nur die Stützenkraft des Kugelgelenksunbekannt; sie ist gleich der umgekehrten Mittelkraft der bereits gefundenen Stabkräfte 1-2, 1-3, 1-4 und 1-6. Ihre Zerlegung nach den Richtungen von etwa vorhandenen drei Stützenstäben

kann ebenfalls ausgeführt werden.

2. Im Kräfteplan II (Fig. 227 und 229).

Hier arbeitet man in gleicher Reihenfolge, der Unterschied des Planes gegenüber dem ersten Plane

Fig. 227.

Fig. 228.

Mehrtens, Statik der Baukonstruktionen. I.

Fig. 229.

besteht bekanntlich nur darin, daß im II. Plane P und W verschwinden, also als Knotenlasten im Aufriß und Grundriß nur die vier Kräfte S_{2II} , S_{3II} , S_{4II} und S_{6II} erscheinen.

Aus den schließlich für Y_{I} und Y_{II} , mit Hilfe der Strecken Y'_{I} , Y''_{II} des Grundrisses und Y''_{I} , Y''_{II} des Aufrisses gefundenen Werten, hat man:

$$X = -\frac{Y_{\rm I}}{Y_{\rm II}}$$

und für eine beliebige Stabkraft S_s $S_s = S_{sI} + X \cdot S_{sII}$. Auch hier kann es vonVorteil sein, die Kraftecke im Aufriß und Grundriß derart abzumessen, daß Y'_I $= Y'_{II}$ und $Y''_{II} = Y''_{II}$ wird. Dann ist auch $Y_I = Y_{II}$ und es ergibt sich $X = \pm I$.

Auch das in der Fig. 210 dargestellte Gratfachwerk läßt sich nach dem Verfahren von HENNEBERG auflösen, entweder dadurch, daß man einen der vierstäbigen Knoten 5 oder 6 beseitigt oder daß man den Stab 5—6 nach dem Verfahren unter **76** ausschaltet. Wenn man dafür an passender Stelle einen Stützenstab einlegt, gelangt man in jedem Falle zum Ziele.

Anfängern ist zu raten, auch das in Fig. 230 dargestellte Raumfachwerk einmal in seine Stabkräfte aufzulösen. Man braucht dazu ebenfalls nur einen Schaltstab und dafür einen Stützenstab als Ersatz. Die 7 Stützenkräfte — für ein Kugelgelenk in 4, eine zweistäbige Pendelstütze in 2 und zwei einfache Stützenstäbe in 1 und 4 sind sofort mitzubestimmen. Eine rechnerische Nachprüfung durch Stichproben ist zu empfehlen.

76. Vereinfachtes Verfahren Henneberg für ebene Grundecke.

a. Einmalige Stabvertauschung. Wie man das ursprüngliche von HENNEBERG angegebene Verfahren vereinfacht, dadurch daß man an Stelle eines belasteten einen unbelasteten Knoten beseitigt, wurde bereits erörtert. In vielen Fällen, besonders für ebene Grundecke, erscheint es aber einfacher und bequemer, überhaupt keinen ganzen dreistäbigen Knoten auszuschalten, weil es meistens schon genügt, wenn man nur einen einzigen Stab auswechselt und dafür an passender Stelle einen Ersatzstab einlegt. Man könnte auch mehrere einzelne Stäbe an geeigneten Stellen beseitigen und ebensoviele Ersatzstäbe dafür einziehen; dadurch würde aber das Berechnungsverfahren insofern erschwert, als bei n vorhandenen Ersatzstäben — wie weiterhin nachgewiesen wird — n + Ieinzelne Kraftpläne zu zeichnen, und die n unbekannten Spannkräfte der Laststäbe oder Tauschstäbe aus n Gleichungen ersten Grades zu berechnen wären. Deshalb bleibt es in jedem Falle, in welchem man n Ersatzstäbe braucht, zu überlegen, ob man nicht nach dem ursprünglichen Verfahren von HENNEBERG mit weniger als n Lastknoten einfacher zum Ziele kommt, weil hierbei dann weniger Kräftepläne zu zeichnen und weniger Gleichungen aufzulösen sind. Nachfolgend wird die Lösung der vorliegenden Aufgabe mit Hilfe eines einzigen Laststabes der allgemeinen Lösung vorangestellt.

In einem beliebigen belasteten Grundecke — wie z. B. in den unter **30**, in den Fig. 71 bis 74 dargestellten Stabwerken — sei *ein* Stab gegen einen Ersatzstab Y vertauscht worden. Die unbekannte Spannkraft des Tauschstabes sei X. Das erhaltene Stabwerk werde sodann nacheinander zwei verschiedenen Belastungszuständen unterworfen, die wie folgt zu verstehen sind: Dritter Abschnitt. Innere Kräfte der Stabwerke.

I. Belastungszustand »X = 0«. Dabei wird der Einfluß der Spannkraft X des Tauschstabes gleich Null gesetzt und für die gegebene Belastung ein erster Kräfteplan des Stabwerks gezeichnet, in welchem die Spannkraft des Ersatzstabes (wie früher) mit Y_I bezeichnet werden möge.

2. Belastungszustand *X = 1«. Dabei wird die gegebene Belastung gleich Null gesetzt und nur der Einfluß der Spannkraft des Tauschstabes berücksichtigt. Wenn dann der für X = 1 gezeichnete zweite Kräfteplan für die Spannkraft des Ersatzstabes den Wert Y_{II} liefert, so würde die wirkliche, vorläufig noch unbekannte Stabkraft X eine Spannkraft $X Y_{II}$ des Ersatzstabes hervorufen.

Wie früher bei Erläuterung des ursprünglichen Verfahrens, so ist auch hier zu schließen, daß im gegebenen belasteten Grundeck die Spannkraft Y verschwinden muß (74). Deshalb erhält man auch hier die Gleichung:

$$Y = Y_{\rm I} + X Y_{\rm II} = {\rm o} \, .$$

Daraus folgt die Spannkraft des Tauschstabes mit

$$X = -\frac{Y_{\rm I}}{Y_{\rm II}}$$

und schließich irgend eine Spannkraft Sm des Grundecks mit

$$S_{mI} = S_{mI} + X S_{mII},$$

worin S_{mI} die im ersten (bei dem Belastungszustande X = 0) und S_{mII} die im zweiten Plane (beim Belastungszustande X = 1) gefundene Spannkraft des betrachteten Stabes vorstellt.

b. Beispiel. Das bereits zweimal behandelte Grundeck der Fig. 218 möge hier zum dritten Male in seine Spannkräfte aufgelöst werden, um einen Vergleich der verschiedenen Methoden zu ermöglichen.

Der Tauschstab sei 1-2, der Ersatzstab 3-7 (Fig. 231). Die beiden Pläne für die Belastungszustände $X = 0 \ll \text{ und } X = 1 \ll \text{ sind}$ in den Fig. 232 und 233 dargestellt. Stellte also die Strecke X = 1 tin Fig. 233 eine beliebige Länge in mm dar, so berechnet sich

$$X = -\left(\frac{-98}{-132}\right) = -0.74 \text{ t}.$$

Das Gleiche ist auf den S. 203 und 205 in den früheren Beispielen Fig. 218–225 erhalten worden.

77. Vereinfachungen für Raumfachwerke.

a. Verwendung eines einzigen Tauschstabes (Laststabes). Die Berechnung der Raumfachwerke gestaltet sich hauptsächlich aus zwei Gründen verwickelter als bei ebenen Grundecken. Einerseits weil die

Bestimmung der Stützenkräfte (53) umständlicher ist, anderseits aber auch deshalb, weil selbst nach erfolgter Ermittelung der Stützenkäfte die wenigsten Fachwerke durch bloße Vertauschung eines einzigen

übrigen Spannkräfte. Daß dies mit Hilfe des ursprünglichen Verfahrens von HENNEBERG möglich ist, wurde an einem Sonderfalle (unter **75**c) beispielsweise nachgewiesen. Derselbe Fall läßt sich aber auch mit Hilfe eines einzigen Tauschstabes nach dem vereinfachten Verfahren lösen.

Wie dies geschehen kann, soll zunächst gezeigt werden, namentlich um einen Vergleich beider Methoden zu ermöglichen.

Man wolle sich zuerst davon überzeugen, wie es ganz gleich ist, welchen der von den oberen Knoten 4, 5, 6 (Fig. 234) ausgehenden Stäbe man ausschaltet. Zwischen welchen Knoten man dabei den Ersatzstab einlegt, bleibt am besten so lange unentschieden, bis man bei der Stabkraftermittelung an einen Knoten gelangt, der *nur noch zwei* Unbekannte enthält. In diesem Knoten wird man den Ersatzstab einfügen. Danach wird der Ersatzstab entweder im Knoten 4, 5 oder 6 anschließen können, je nachdem man z. B. den gegenüberliegenden Stab 5—6, 4—6 oder 4—5 ausschaltet. In Fig. 234 ist 4—3 als Ersatzstab gewählt, wie es auch bei Behandlung des früheren Beispiels (Fig. 230) geschehen war.

Die Fig. 234 ist nach obigem ohne ausführliche Erläuterung an sich verständlich. Es soll nur noch hervorgehoben werden, in welcher Reihenfolge für beide Kraftpläne die Wiederholung der Aufgabe, einen dreistäbigen Knoten zu lösen, vorgenommen werden muß.

Knoten 5 und 6. Hier werden bestimmt die Stabkräfte 5-2, 5-3, 5-4 und 6-1, 6-3, 6-4.

Knoten 4. 4—6 und 4—5 sind vorbestimmt. Unbekannt nur noch 4—1 und 4—2. Hier also ist der Ersatzstab 4—3 anzuschließen, dessen Spannkräfte $Y_{\rm I}$ und $Y_{\rm II}$ zu bestimmen sind.

Knoten 3. Unbekannt nur noch 3-2, 3-1 und die senkrechte Stützenkraft.

Knoten 2. Unbekannte: 2-1 und die beiden Stützenkräfte.

Knoten 1. Hier ist nur noch die Stützenkraft des Kugelgelenks unbekannt.

Wollte man nach erfolgter Lösung der Aufgabe die Ergebnisse noch einmal nachprüfen, so möchte es sich empfehlen, eine analytische *Stichprobe* für irgend einen Knoten zu machen. Z. B. könnte man die Stützenkraft des Knotens 3 unmittelbar durch eine einzige Momenten-Gleichung berechnen, bezogen auf die Achse 1-2, die 5 Stützenkraftrichtungen schneidet (**72** a) usw.

b. Allgemeine Lösung. Es liegt auf der Hand, daß das vereinfachte Verfahren von HENNEBERG große Vorteile gegenüber dem ursprünglichen Verfahren bietet, so lange man dabei *nur einen Ersatzstab* braucht. Sobald man aber mehrere Ersatzstäbe nötig hat, die dann oft auch Stützenstäbe sein können, wird zweckmäßig erst zu untersuchen sein, ob man nicht bei der Beseitigung eines oder mehrerer dreistäbiger Knoten bequemer zum Ziele gelangt. Man sollte daher wohl beachten, wie beim Ausschalten *eines* Stabes unmittelbar nur die beiden anstoßenden vierstäbigen Knoten in dreistäbige übergehen, während durch das Beseitigen eines vierstäbigen Knotens doppelt soviel, also vier Nachbarknoten in dreistäbige verwandelt werden. Jedenfalls ist es ratsam, das Einlegen vieler Ersatzstäbe möglichst zu umgehen, weil die dadurch notwendig werdende Rechnung mit ebensovielen Unbekannten die Stabkraftbestimmungen erschwert. Ein guter Konstrukteur wird überhaupt dafür sorgen, daß seine Fachwerke nicht unnötig zu verwickelten Rechnungen Anlaß bieten.

Sollte dennoch einmal das Einlegen von vielen Ersatzstäben nötig werden, so würden die betreffenden Gleichungen, bei Gebrauch von meinzelnen Tauschstäben wie folgt anzuschreiben sein: Irgend eine Stabkraft S_r findet sich aus der Gleichung:

$$S_r = S_{ro} + X_a S_{ra} + X_b S_{rb} + X_c S_{rc} + \cdots + X_m S_{rm}, \quad (50)$$

worin X_a bis X_m die Spannkräfte der *m* Tauschstäbe vorstellen und worin die Zeiger o, *a*, *b*, ... *m* die *m* + 1 Belastungszustände bezeichnen, denen das Stabwerk zu unterwerfen ist. »o« bezeichnet also den Belastungszustand $X_a = X_b = X_c = \cdots X_m = o$; *a* bis *m* bezeichnen nacheinander die verschiedenen Belastungszustände » $X_a = 1$ « bis » $X_m = 1$ «. Die *m* + 1 Kräftepläne liefern die Werte von X mit Hilfe von *m* Gleichungen ersten Grades:

Darin geben die den Werten von Y angehängten zweiten Zeiger immer diejenigen Kräftepläne an, aus denen die Y zu entnehmen sind.

Sobald die X eindeutig berechnet worden sind, was bei starren Stabwerken immer möglich ist, hat man sie, um irgend eine Stabkraft S_r zu erhalten, in die Gl. (50) einzusetzen.

c. Beispiel für die Anwendung von zwei Tauschstäben. Das in der Fig. 235 gezeichnete Fachwerk zählt 8 Knoten und 24 Stäbe, einschließlich 7 Stützenstäbe, es ist starr. Ein Ausnahmefall liegt nicht vor. Zwischen welchen der Knoten des Fachwerks man auch *einen* Stab ausschalten wollte, sei es auch ein Stützenstab, es würden in keinem Falle Knoten verbleiben, wo höchstens noch drei unbekannte Stabkräfte einmündeten. Daraus folgt, daß man mindestens zwei Stäbe vertauschen muß, deren Auswahl verschieden getroffen werden kann.

Fig. 236.

§ 11. Raumfachwerke und Grundecke.

22I

Wählt man, wie in der Fig. 235 geschehen, die Tauschstäbe 6-5 und 6-8, so sind deren unbekannte Spannkräfte X_a und X_b zu finden. Sodann kann die Ermittelung der Stabkräfte und das Einlegen der Ersatzstäbe der Reihe nach, wie folgt, vorgenommen werden:

In den Knoten 5, 6 und 8 stoßen je drei Unbekannte an, die zu bestimmen sind. Danach verbleiben im Knoten 7 nur noch zwei Unbekannte (7-3 und 7-4); hier kann also der *erste Ersatzstab* Y_a als Stab 7-1 eingezogen und seine Spannkräfte

können mitbestimmt werden. Diese Bestimmung ist in den Fig. 236-238 graphisch ausgeführt worden.

Es folgt Knoten 2 oder 4, in denen je drei unbekannte Stabkräfte verbleiben (darunter je ein Stützenstab, der im allgemeinen in beliebiger Richtung anzunehmen sein wird). Bestimmt man also zuerst die drei Stabkräfte im Knoten 4, so folgen nacheinander Knoten 3 und 2. In 3 sind wieder drei Unbekannte zu berechnen, darunter zwei Stützenstäbe, deren Richtungen im allgemeinen beliebig gewählt werden können. Im Knoten 2 verbleiben dann nur noch zwei unbekannte Stabkräfte, einschließlich des Stützenstabes. Der *zweite Ersatzstab* Y_b kann hier eingeschaltet werden und zwar nur als Stützenstab. Seine Lage ist im allgemeinen beliebig anzunehmen. In der Fig. 235 wurde er wagerecht angeordnet. Man erhält jetzt im Knoten 2:

Schließlich gelangt man zum Knoten 1, worin nunmehr alle anstoßenden Stabkräfte, mit Ausnahme der drei Stützenstabkräfte festgestellt worden sind. Richtung und Größe der Stützenkraft in 1 ist damit auch gegeben.

Bei einer derartigen Behandlung der gestellten Aufgabe entscheidet es sich auch, ob etwa ein Ausnahmefall (34) vorliegt. Um dann einen solchen Fall zu vermeiden, braucht man nur kleine Änderungen in den Richtungen einzelner Stäbe vorzunehmen, solange bis man alle Stabkräfte des Fachwerks eindeutig festgelegt hat.

Aus den Gleichungen (50) und (51), die hier die Formen:

$$Y_a = Y_{ao} + X_a Y_{aa} + X_b Y_{ab} = 0,$$

$$Y_b = Y_{ba} + X_a Y_{ba} + X_b Y_{bb} = 0$$

annehmen, findet man X_a und X_b und daraus irgend eine Stabkraft

$$S_r = S_{ro} + X_a S_{ra} + X_b S_{rb}.$$

d. Verwendung von mehr als zwei Tauschstäben. Unter Umständen, namentlich wenn es sich um symmetrische Anlagen handelt, kann es von Vorteil sein sein, mit mehr als zwei Tauschstäben zu arbeiten. Im allgemeinen wird aber sowohl der Konstrukteur als auch der Statiker suchen mit möglichst wenigen Mitteln auszukommen. Deshalb dürfen Konstruktionen, die für ihre Berechnung vieler Tausch- und Ersatzstäbe bedürfen, zu den Ausnahmen gerechnet werden. Auf solche hier näher einzugehen, entspricht nicht dem Zwecke des vorliegenden Buches, um so weniger als die auch in solchen Fällen maßgebende allgemeine Lösung (**77** b) gegeben wurde.

§ 12. Stabkraft-Bestimmungen unter Anwendung von Sätzen der geometrischen Bewegungslehre.

Die Grundlage der Sätze, die hier in Anwendung kommen, bildet der Satz von den virtuellen Geschwindigkeiten oder Verschiebungen, der (unter 34) bei Besprechung der unendlich kleinen Beweglichkeit von Stabwerken bereits benutzt und unter 40 bewiesen worden ist. Auf die allgemeinen Darlegungen der angezogenen Absätze, worin auch das Wesen einer zwangläufigen Stabkette (24) erläutert wurde, wird hier Bezug genommen. Daran schließen sich nachstehend zuerst eine Wiederholung der notwendigsten Sätze der geometrischen Bewegungslehre und darauf deren Anwendung für die Berechnung der Stabkräfte von ebenen und räumlichen Fachwerken.

78. Verschiebungspläne für ebene zwangläufige Stabketten¹).

Eine zwangläufige Stabkette wurde (unter **24**) als eine Stabverbindung erklärt, in welcher sämtliche Punkte jedes starren Stabes gegen jeden anderen starren Stab geometrisch bestimmte Bahnen beschreiben müssen. Um nun für eine beliebige, aber mögliche augenblickliche Bewegung der Kette die Verschiebungen der Knotenpunkte nach ihrer Größe und Richtungen bestimmen zu können, betrachten wir zunächst die augenblickliche Bewegung von zwei durch ein Gelenk miteinander verbundenen Stäben (oder Scheiben). Die durch die Bewegung herbeigeführten *Knotenverschiebungen v* sollen — als augenblickliche — derart klein aufgefaßt werden, daß man den *Bogen*weg, den ein Stabknoten zurücklegt, als eine Gerade ansehen darf.

Es ist leicht einzusehen, daß die Verschiebung v_m irgend eines Knotens m der Kette bestimmt ist, sobald die Verschiebungen v_l und v_n von zwei Nachbarknoten l und n gegeben sind. Wir lösen danach die Grundaufgabe: Die Verschiebung eines Knotens 1 zu finden, wenn die Verschiebungen der in die Nachbarknoten mündenden Stabenden 2 und 3 gegeben sind.

a. Erste graphische Lösung. Knoten 2 verschiebe sich um die Strecke $v_2 = 2-2'$, desgleichen der Knoten 3 um $v_3 = 3-3'$ (Fig. 239). Der *im gleichen Zeitabschnitt dt* vom Knoten 1 zurückgelegte Weg v_1 läßt sich mit Hilfe einer den Strecken v_2 und v_3 entsprechenden Parallelverschiebung der beiden Stäbe 1-2 und 1-3, in Verbindung mit einer

¹ WILLIOT, Notations pratiques sur la statique graphique. 1877. — MOHR, Über Geschwindigkeitspläne und Beschleunigungspläne. Civilingenieur. 1877. Eine Schrift von grundlegender Bedeutung.

§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 225

Drehung der Stäbe um die Punkte 2' und 3' finden. Zu dem Zwecke trage man in 1 die beiden Verschiebungen v_2 und v_3 ihrer Größe und Richtung nach auf. Dann brauchte man nur noch zwei Kreisbogen zu schlagen, einerseits mit der Stablänge 1-2 um 2' als Mittelpunkt, anderseits mit 1-3 um 3' als Mittelpunkt. Im Schnittpunkt der beiden Kreisbogen läge dann der Punkt 1 und durch die Strecke 1-1' wäre die gesuchte Verschiebung v_1 (von 1) gefunden. Bei der Ausführung der Lösung genügt es aber, an Stelle der Kreisbogen in den Punkten 2' und 3' zur betreffenden Stabrichtung je eine *Senkrechte* zu ziehen, deren Schnittpunkt genau genug den Ort von 1' angibt, weil es sich hier, wie schon gesagt, nur um eine augenblickliche Bewegung, also um differentiale Wegestrecken handeln soll.

Aus der in der Fig. 239 durchgeführten Lösung erkennt man, wie im vorliegenden Falle ein Verschiebungsplan am einfachsten gezeichnet werden kann: Man braucht dazu nur von einem beliebigen Pole O aus

1) die gegebenen Strecken v_2 und v_3 nach Richtung und Größe aufzutragen (Fig. 240) und 2) von den Endpunkten jener Strecken je *ein Lot auf die Richtung des zugehörigen Stabes* zu fällen. Im Schnittpunkte 1' der Lote hat man dann den gesuchten Ort des Knotens 1 und seine Verschiebung O-1' gefunden.

Die Bedeutung der Lösung obiger Grundaufgabe liegt darin, daß man durch ihre Wiederholung im stande ist, für eine beliebige Stabkette einen Verschiebungsplan zu zeichnen, in welchem die Richtung und

Mehrtens, Statik der Baukonstruktionen. I.

Größe der Verschiebung eines beliebigen Stabknotens m von einem beliebigen Pole O aus als Strecke O-m' aufgetragen ist. Ehe aber solche Pläne für gegegebene Fälle gezeichnet werden, empfiehlt es sich, die 2. Lösung obiger Grundaufgabe zu geben.

b. Zweite graphische Lösung. An Stelle der beiden Stäbe 1–2 und 1–3 mögen hier allgemeiner die beiden starren *Scheiben I* und *II* treten, die im Knoten 1 durch ein Gelenk verbunden sind (Fig. 241). Die Verschiebungen v_2 und v_3 je eines beliebigen Punktes einer Scheibe seien gegeben. Gesucht die Verschiebung v_1 des Gelenkes.

Der wesentliche Unterschied der vorliegenden gegenüber der ersten Lösung besteht darin, daß zunächst die beiden beliebig angenommenen Verschiebungen v senkrecht zur Richtung der augenblicklichen Bewegung der betreffenden Punkte (2 und 3) aufgetragen, also um 90° im Sinne des Uhrzeigers gedreht werden. Wenn dies geschehen ist, fallen die

Überlegung. Die Verschiebungen der Punkte 1 und 2 der Scheibe I verhalten sich wie die zugehörigen Polhalbmesser. Zieht man also die Gerade 2' - n parallel zur Verbindungsgeraden der Punkte 1 und 2, so muß notwendig der Endpunkt 1' der um 90° im Sinne des Uhrzeigers gedrehten Geschwindigkeit v_x in die Parallel 2' - n fallen. Desgleichen

§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 227

muß für die Scheibe *II* der Punkt 1' in eine Parallele 3'—*m* zur Verbindungsgeraden der Punkte 3 und 1 fallen. Demnach liegt 1' im Durchschnitt der Parallelen 2'—*n* und 3'—*m* und die Strecke $v_1 = 1-1'$ gibt die gesuchte Verschiebung des Knotens 1, deren Richtung senkrecht zu derjenigen von 1—1' zu nehmen, also durch Zurückdrehen von 1—1' um 90° *entgegengesetzt dem Sinne des Uhrzeigers* zu erhalten ist. Verlängert man die Richtungen der in den Polhalbmessern liegenden Verschiebungen, so treffen sie sich in den Polen \mathfrak{P}_2 und \mathfrak{P}_3 , um welche die augenblickliche Bewegung der beiden Scheiben erfolgt, derart daß Punkt 2 um Pol \mathfrak{P}_2 , Punkt 3 um Pol \mathfrak{P}_3 und Knoten 1 sowohl um \mathfrak{P}_2 als auch um \mathfrak{P}_3 dreht.

Konstruktiv könnte man die Bewegung dadurch festlegen, daß man in den Punkten 2, 3, sowie auch in \mathfrak{P}_2 und \mathfrak{P}_3 Gelenkknoten vorsähe und in die zwischenliegenden Strecken \mathfrak{P}_2-2 , \mathfrak{P}_3-3 , \mathfrak{P}_3-1 und $\mathfrak{P}_2-\mathfrak{P}_3$ starre Stäbe einlegte. Man erhielte dann *eine zwangläufige Kette* mit zwei Scheiben, 5 Knoten und 4 einfachen Stäben. Um die Kette starr zu machen fehlte nur 1 Stab.

Bei der beschriebenen zweiten Lösung der Grundaufgabe braucht man, um die in einer bestimmten Richtung, z. B. in der Richtung einer Kraft, zurückgelegte Verschiebung δ zu finden, nur vom Endpunkte der im Polhalbmesser aufgetragenen Verschiebungen ein *Lot* auf die erwähnte Richtung zu fällen. Die Länge dieses Lotes ist gleich δ . In der Fig. 241 stellen also δ_2 und δ_3 die in die Richtung der Kräfte P_2 und P_3 fallenden Seitenverschiebungen von v_2 und v_3 dar. Der Beweis dafür liegt auf der Hand. *Die Summe der Seitenverschiebungen* δ *der beiden Endknoten eines starren Stabes oder einer Scheibe ergibt sich immer zu* Null, weil eine Seite m'-n' eines Verschiebungsplanes der zugehörigen Richtung des *starren* Stabes m-n stets *parallel* sein muß.

Schließlich bliebe noch zu erwähnen, wie man das Vorzeichen der in den Polhalbmessern liegenden Verschiebungen bestimmt. Man ersieht dies aus der Fig. 241, worin die Projektionen von v_2 und v_3 auf die Richtung der in 2 und 3 angreifenden Kräfte P_2 und P_3 angegeben sind und zwar zweimal, sowohl für die wirklichen als auch für die um 90° gedrehten Geschwindigkeiten. Danach ist es gleich, ob man anstatt des Ausdruckes der virtuellen Arbeit = $\pm P\delta$ das statische Moment in Beziehung auf den Endpunkt der um 90° gedrehten Geschwindigkeiten nimmt, denn dieses ist ebenfalls gleich $\pm P\delta$. Das folgt ohne weiteres aus der Kongruenz der für einen Knoten in Frage kommenden beiden Projektionsdreiecke. In dem einen Dreieck liegt δ in der Richtung der Knotenkraft, in dem zweiten senkrecht dazu.

c. Analytische Lösung. Man gelangt wohl zur einfachsten Lösung der Grundaufgabe, wenn man den Satz der virtuellen Verschiebungen

wendet. Es seien v, und v_n die gegebenen (oder beliebig ange-

unmittelbar auf den Gleichgewichts-

zustand jedes einzelnen Knotens

an-

nommenen) Verschiebungen der Endknoten l und n von zweien der im Knoten m vereinigten Stäbe l - m und n - m; δ_l und δ_n seien die zu-

Fig. 242.

gehörigen Seitenverschiebungen, d. h. also die Projektionen von v_l und v_n auf die betreffenden Stabrichtungen. Es werde gesucht die Verschiebung δ_m in der Richtung einer in *m* angreifenden äußeren Kraft P_m (Fig. 242).

Die unter der Kraft P_m in den beiden Stäben l-m und n-m entstehenden Spannkräfte Sz und Sn werden allgemein durch die Gleichungen

> $S_i = k_i P_m$ $S_n = k_n P_m$

auszudrücken sein (Fig. 243). Im Gleichgewichtszustande der zwangläufigen Kette findet an jedem Knoten m zwischen den dort wirkenden Kräften auch für sich Gleichgewicht statt. Für eine mögliche Lagenänderung der Angriffspunkte l, m, n dieser Kräfte muß also die Arbeitssumme gleich Null sein (40); das ist

$$P_m\delta_m + k_l P_m\delta_l + k_n P_m\delta_n = 0$$

oder

$$-\delta_m = k_l \delta_l + k_n \delta_n$$

worin

$$k_l = \frac{S_l}{P_m}$$
$$k_n = \frac{S_n}{P_m}.$$

§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 220

 δ_m ist also unabhängig von P_m und allein abhängig von dem Verhältnisse der Stabkraft zur äußeren Kraft. Dies Verhältnis bleibt aber für jede beliebige äußere Kraft das gleiche. Am einfachsten bestimmt man deshalb δ_m für $P_m = 1$. Werden dann die Stabkräfte für $P_m = 1$ mit $\overline{S_l}$ und $\overline{S_n}$ bezeichnet, so erhält man

$$-\delta_m = \overline{S_l \delta_l} + \overline{S_n \delta_n} \,. \tag{52}$$

79. Beispiele und Anwendung von ebenen Verschiebungsplänen.

Wie die Lösungen der Grundaufgabe (78) dargetan haben, ist die Verschiebung v_m eines Knotens m durch die Verschiebungen v_l und

 v_n von zweien seiner Nachbarknoten bestimmt. Umgekehrt kann man danach auch v_m für irgend einen Knoten m einer zwangläufigen Kette beliebig annehmen, wenn man nur die Seitenverschiebungen $v_l = l - l'$ und $v_n = n - n'$ zweier

Nachbarknoten entsprechend wählt, nämlich in solcher Größe und Richtung, daß die Seiten m'-l' und m'-n' eines Verschiebungsecks den Stabrichtungen m-l und m-n parallel laufen (Fig. 244).

1. Beispiel. In dem ebenen belasteten Grundeck der Fig. 245 ist der Stab 1-2 als Tauschstab ausgeschaltet. Für die verbleibende zwangläufige Stabkette ist ein Verschiebungsplan zu zeichnen.

Das Zeichnen des Planes erfordert eine Wiederholung der angegebenen ersten Lösung der Grundaufgabe. Von einem Pole O aus sind die beliebig angenommenen Verschiebungen v_5 und v_3 der Knoten 5 und 3 nach Richtung und Größe aufgetragen (Fig. 246) als O-5', O-3'. Von den Endpunkten 5' und 3' wurden dann die betreffenden Lote auf die Stabrichtungen 1-5 und 1-3 gefällt. In deren Schnittpunkt liegt 1'. Damit ist $v_1 = O-1'$ gefunden. Ebenso findet man aus v_5 und v_3 die Strecke $v_4 = O-4$; darauf $v_6 = O-6'$ aus v_4 und v_5 und $O-2' = v_2$ aus v_6 und v_3 . Hätte sich in dem dergestalt gezeichneten Verschiebungsplane die Richtung von $v_2 = O-2'$ oder von $v_1 = O-1'$ senkrecht zur Richtung des Stabes 1-2 ergeben, so läge beim Grundeck der Fig. 245 ein Ausnahmefall der unendlich kleinen Beweglichkeit vor. Denn wie bereits (unter **34**) ausführlich dargelegt worden ist, würden in diesem Falle die Wege der beiden Stabkräfte X in der Richtung von X gleich Null, somit also $X = \infty$ werden.

Fig. 246.

Die Zeichnung eines Verschiebungsplanes erscheint danach als ein einfaches Mittel, um die Frage nach einer etwaigen unendlich kleinen Beweglichkeit beantworten zu können. Welchen Tauschstab man dabei auch wählt, in jedem Fall wird die Richtung der Geschwindigkeiten der Endknoten des Tauschstabes allein maßgebend sein.

Will man mit Hilfe eines Verschiebungsplanes die Spannkraft X irgend eines Tauschstabes finden, so braucht man den Plan nur durch die Projektionen δ der Verschiebungen v auf die Richtung der zugehörigen äußeren Kräfte zu ergänzen. Für das vorliegende Grundeck ist das in der Fig. 246 geschehen. Die Projektionen δ sind durch grüne Striche hervorgehoben. Man erhält danach:

$$+ X \left(\delta_{x_2} - \delta_{x_1} \right) - P_1 \delta_1 - P_2 \delta_2 - P_5 \delta_5 + P_6 \delta_6 = 0,$$

wobei die Vorzeichen aus dem Vergleich der Verschiebungs- mit den Kraftpfeilen zu bestimmen sind. Entgegengesetzte Pfeilrichtungen geben negative virtuelle Arbeiten. Daraus folgt:

$$X = \frac{P_{1}\delta_{1} + P_{2}\delta_{2} + P_{5}\delta_{5} - P_{6}\delta_{6}}{\overline{x_{1}x_{2}}}$$

Für $x_1 x_2 = 0$ wird $X = \infty$, d. h. für den Ausnahmefall, wenn die Verschiebungen v_1 und v_2 beide senkrecht zur Richtung von X fallen. Daß eine der Verschiebungen v_1 oder v_2 allein in diese Richtung fallen könnte, während die andere dies nicht täte, ist ausgeschlossen, weil im Ausnahmefall die Pole der augenblicklichen Bewegung für die Knoten des Tauschstabes beide in der Richtung dieses Stabes liegen müssen (**34**).

Aus obigem geht hervor, wie man für ein starres Grundeck mit Hilfe eines Verschiebungsplanes die Spannkraft eines beliebigen Tauschstabes finden kann, ohne dazu einen Ersatzstab zu brauchen. Das Zeichnen eines Verschiebungsplanes ist also ein Mittel zur Berechnung von Grundecken. Sollte es, um dabei einen Kräfteplan zeichnen zu können, notwendig sein, mehrere Tauschstäbe zu benutzen, so geschähe das Ausschalten der Stäbe am einfachsten nacheinander. Bei Verwendung von r Tauschstäben brauchte man dann ebensoviel Verschiebungspläne. Daraus berechnet man die Spannkräfte der Tauschstäbe und könnte danach schließlich den Kräfteplan des Grundecks anfertigen.

2. Beispiel. Für das ebene Grundeck in Fig. 247 ist ein Verschiebungseck zu zeichnen, in welchem auch alle Polrichtungen der augenblicklichen Bewegung enthalten sind.

Das verlangte Verschiebungseck findet man durch Wiederholung der (unter **78**b) angegebenen zweiten Lösung der Grundaufgabe, 1-2 sei der beliebig gewählte Tauschstab. Die Verschiebungen werden in ihren Polhalbmessern aufgetragen, also um 90° im Sinne des Uhrzeigers gegen ihre wirkliche Richtung gedreht.

Die Geschwindigkeiten v_3 und v_5 wurden in beliebiger Richtung und Größe angenommen und aufgetragen. Von ihren Endpunkten 3'

Fig. 247.

und 5' wurden 3'-4' und 5'-4' parallel gezogen zu den betreffenden Stabrichtungen 3-4 und 5-4. Damit ist die Verschiebung $v_4 = 4 - 4'$ gefunden; ihre Richtung steht senkrecht zur 4 - 4'. In gleicher Weise
§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 233

ergibt sich durch das Ziehen der Parallelen 3'-8' und 5'-8' die Verschiebung $v_8 = 8-8'$. Wiederholt man derart die Lösung der Grundaufgabe, wobei nacheinander die Knoten 7, 6, 2 und 1 an die Reihe kommen, so ist das Verschiebungseck fertig. Es ist in der Fig. 247 mit grünen Strichen gezeichnet und die Verschiebungen v_1 bis v_8 sind darin durch rote Striche hervorgehoben worden.

Es ist ersichtlich, daß das gegenseitige Verhältnis der Verschiebungen ungeändert bleibt, wie man auch die Größe derjenigen Geschwindigkeit wählt, über welche in einem einzigen Knoten frei verfügt werden darf. Denn die Endpunkte der Verschiebungen beschreiben bei der zwangläufigen Bewegung der Kette gerade ähnliche Punktreihen. Wählt man also die freie Geschwindigkeit gleich Null, so erhält man auch die Geschwindigkeiten aller übrigen Punkte der Kette gleich Null.

Man wolle ferner beachten, daß die von den Punkten 1' und 2' auf die Richtung von X gefällten Lote — das sind (nach **78**b) die Seitengeschwindigkeiten von v_1 und v_2 in der Richtung von X — verschieden groß ausfallen. Es folgt daraus, daß der Unterschied $\delta_1 - \delta_2$ von Null verschieden ist, d. h. daß X nicht unendlich groß werden kann. Wäre aber die punktiert angedeutete Gerade 1'—2' der Fig. 247 parallel zur Richtung von X ausgefallen, dann wäre auch der Unterschied $\delta_1 - \delta_2 = 0$ und $X = \infty$ geworden. Die Zeichnung eines *Verschiebungsecks* — so soll ein mit Hilfe des Polhalbmessers gezeichneter Geschwindigkeitsplan fortan genannt werden — ist also ein Mittel zur Beurteilung der unendlich kleinen Beweglichkeit eines Grundecks, oder auch eines Stabwerks, das sich in bekannter Weise auf das Grundeck zurückführen läßt (**30**).

80. Geometrisches Kennzeichen der Starrheit ebener Grundecke.

a. Das geschlossene Verschiebungseck. Wie man auf unendlich kleine Beweglichkeit schließen kann, wenn die Stabkraft eines Ersatzstabes im Kräfteplane zu Null wird (74a), so erkennt man, wie in den vorgeführten beiden Beispielen gezeigt wurde, eine unendlich kleine Beweglichkeit auch aus der Gestalt eines Verschiebungsplanes. Das letztgenannte Kennzeichen ist ein rein geometrisches. Es ergibt sich besonders anschaulich aus der Betrachtung der Lage der verschiedenen Pole, die das *Geschwindigkeitseck* einer Kette stets enthalten wird, im besondern aus der nicht ausgeschlossenen Möglichkeit einer gegenseitigen Lagenänderung der Stäbe eines Grundecks durch Drehungen um jene Pole. Die Folge davon kann eine endliche oder unendlich kleine Beweglichkeit sein. Das Vorhandensein einer *endlichen* Beweglichkeit kann hier außer Betracht bleiben. Um eine solche zu erkennen, braucht man kaum ein Verschiebungseck, weil die Mittel der Stabvertauschung oder die Aufteilung des Grundecks in starre oder *überstarre* Scheiben unter Bestimmung der notwendigen Zahl und Lage der Verbindungsstäbe (**22–23**) in der Regel rascher zum Ziele führen.

Das in den beiden vorigen Beispielen bereits angegebene geometrische Kennzeichen für unendlich kleine Beweglichkeit, oder was dasselbe ist

für das Eintreten unendlich großer Stabkräfte, läßt sich noch verallgemeinern. Um dies darzutun empfiehlt es sich, zunächst eine augenblickliche Bewegung eines starren Grundecks zu betrachten, Mankann sie als eine Drehung um einen Pol P auffassen(Fig.248). Sind die Verschiebungen v_m und v_n vonzweibeliebigen Knoten m und n gegeben, so ist damit auch die Geschwindigkeit jedes andern beliebigen Knotens (oder Punktes) der Scheibe desGrundecks gegeben. Die

Geschwindigkeiten

Fig. 248.

verhalten sich, wie die zugehörigen Polhalbmesser ϱ und wie aus einfachen geometrischen Gründen folgt, bildet danach das Verschiebungseck eine zum Grundeck ähnliche und ähnlich liegende Figur. Der Pol \mathfrak{P} ist der Ähnlichkeitspunkt beider Figuren. Läßt sich also zu dem Stabgebilde eines Grundecks ein ähnliches Verschiebungseck zeichnen — und das ist auch für ein bewegliches

Grundeck möglich so beweist das vorläufig weiter nichts, als daß dabei eine augenblickliche Drehung des Stabgebildes um einen einzigen Pol zu Grunde lag. Betrachten wir dem gegenüber die Bewegung einer zwangläufigen Kette (**24**).

Vervollständigt man das Verschiebungseck einer zwangläufigen Stabkette durch Einziehen der Seite i'k' zwischen den Verschiebungen ii' und kk' der Knoten eines beliebigen Tauschstabes, so wird (nach vorigem) unendlich kleine Beweglichkeit eintreten, sobald die Seite i'k' zur Stabrichtung ik parallel ist. In diesem Falle ist das Verschiebungseck eine Figur, in welcher jede beliebige Seite m'n' der zugehörigen Stab-

richtung mn parallel ist. Bezeichnet man eine solche Figur als ein geschlossenes Verschiebungseck, so folgt der Satz:

Ein Grundeck ist mindestens von unendlich kleiner Beweglichkeit, wenn sich zu seinem Stabgebilde ein diesem nicht ähnliches geschlossenes Verschiebungseck zeichnen läßt.

b. Beispiele. Einige Beispiele mögen die Anwendung des Satzes näher erläutern. Die zugehörigen Grundecke sind in den Fig. 249 bis 254 dargestellt. Dabei wurden alle unzweifelhaft starren Stabwerkteile der bessern Übersicht wegen als Scheiben schraffiert dargestellt.

1. Das Grundeck in der Fig. 249 ist von unendlich kleiner Beweglichkeit, weil das geschlossene Verschiebungseck dem Grundeck unähnlich ist. Das Verschiebungseck wurde der Reihe nach für die Knoten 1, 2, 3, 4, 5 gezeichnet; $v_1 =$ Null angenommen, $v_2 = 2-2'$

als in die Richtung von 2-3 fallend. Sobald die drei Verbindungsstäbe der beiden Scheiben I und II nicht in einem Punkte P zusammenträfen, würde das Dreieck starr (**22**) sein.

2. In dem Grundeck der Fig. 250 ist die mittlere Scheibe *T* von fünf zwangläufigen Vierecken umgeben, die sich gegenseitig in ihrer Bewegunghemmen müssen (**24**), wenn

nicht Beweglichkeit eintreten soll.

3-4 sei der beliebig gewählte Tauschstab. $v_{\rm r} = {\bf i} - {\bf i}'$ wurde als in die Richtung ${\bf i} - 7$ fallend angenommen, $v_8 =$ Null gesetzt. Daraus ergab sich $v_7 =$ Null und infolgedessen fiel das Verschiebungseck für die mittlere Scheibe *T* mit dem Scheibenumriß zusammen. Nachdem dann noch z', 3', 5', 4' be-

stimmt waren, zeigte es sich, daß die Seite 3'-4' des geschlossenen Verschiebungsecks dem Tauschstabe nicht parallel ist. Das Grundeck ist also starr. Es ist aber ersichtlich, daß die Seite 3'-4' dem Stabe

§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 237

3-4 parallel ausfallen würde, wenn die Richtungen der fünf Wandstäbe zwischen der Scheibe und den Umfangsstäben in einem Punkte zusammenträfen. In diesem Falle bestände unendlich kleine Beweglichkeit.

3. Das Grundeck der Fig. 251 ist im Umfange ein Sechseck und die drei Wandstäbe kreuzen sich ohne Knoten (27).

5-6 sei der Tauschstab, $v_5 =$ Null, $v_3 = 3 - 3'$ in die Richtung 3-6 fallend, usw. Das Grundeck ist starr, weil 5'-6' zu 5-6 nicht parallel ist.

Ein symmetrisches oder unsymmetrisches Sechseck gleicher Anordnung wird von unendlich kleiner Beweglichkeit sein, wenn die Pole der Bewegung in einer einzigen Geraden liegen (Fig. 252). Dabei dürfen die Stäbe 1-6, 2-5 und 3-4 als Scheiben (*I*, *II*, *III*) angesehen werden,

deren Verbindung untereinander durch die Stäbe 1–2, 6–5, 2–3, 5–4, 1–4 und 6–3 erfolgt. \mathfrak{P}_{I-II} ist das gedachte Gelenk (oder der Pol) für *I* und *II*, \mathfrak{P}_{II-III} desgl. für *II* und *III* usw. Das geschlossene Verschiebungseck 1'–2'–3'–4'–5'–6' ist dem Grundeck also nicht ähnlich, obwohl seine sämtlichen Seiten den Grundeckseiten parallel laufen.

4. Die in Fig. 253 gezeichnete Verbindung von 5 Scheiben erfordert (5-1) 3 = 12 Verbindungsstäbe, die auch vorhanden sind: nämlich 4 Scheibengelenke und 4 einfache Stäbe. Das dadurch gebildete Grundeck ist trotzdem von unendlich kleiner Beweglichkeit, weil das gezeichnete geschlossene Verschiebungseck ihm unähnlich ist. Wie man den Tauschstab auch wählen möge, dessen Spannkraft ergäbe sich immer unendlich groß.

5. Wie eine Abzählung der notwendigen Zahl der Stäbe ergibt, ist das in der Fig. 254 dargestellte zusammengesetzte Fachwerk starr. Es

fehlt aber noch die Untersuchung auf unendlich kleine Beweglichkeit. Dabei kann man das Stabgebilde als aus zwei zwangläufigen Ketten bestehend ansehen, die im Scheitelgelek c verbunden sind. Jede dieser beiden Ketten ist durch ein festes Gelenk (a oder b) und einen Pendelstab (in d oder e) gestützt. Das Fachwerk wird (nach 24) starr sein, wenn die beiden Bahnen des Scheitelgelenkes c, die für jede Kette besonders bestimmt werden, keine gemeinschaftliche Tangente besitzen.

Das Beispiel bietet auch Gelegenheit zu zeigen, wie man bei der Zeichnung der Verschiebungsecke die durch die Stützung vorgeschriebenen

Bewegungen der Stützpunkte zu berücksichtigen hat. Den Gelenkpunkten a und b ist eine Verschiebung Null vorgeschrieben, während die

§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 239

Verschiebungen 3-3' und 7-7' der Knoten 3 und 7 *nach den Polen d* und e gerichtet sein müssen, um welche die Pendelstäbe schwingen. Die derart, unter Berücksichtigung der Stützenbedingungen, gezeichneten Verschiebungsecke ergaben (in der Fig. 254) für die beiden Verschiebungen $c-c'_a$ der linksseitigen und $c-c'_b$ der rechtsseitigen Kette verschiedene Richtungen, woraus zu schließen, daß das Fachwerk tatsächlich starr ist.

Bei der Ausführung solcher und ähnlicher Konstruktionen wird es immer ratsam sein, den Schnittwinkel der beiden Geschwindigkeiten des Scheitelgelenkes nicht zu spitz werden zu lassen, weil sonst — wegen der unvermeidlichen elastischen Formänderungen aller Bauteile — bedeutende Verschiebungen des Scheitelgelenkes zu erwarten stehen, um so größer, je mehr die Spannkräfte der anstoßenden Stäbe sich der Grenze ∞ nähern.

81. Die Stützenbedingungen in der Darstellung eines ebenen Verschiebungsecks.

Im vorigen Beispiele wurde bereits gezeigt, wie man die den Stützpunkten vorgeschriebenen Bewegungen von vornherein berücksichtigt. In sehr vielen andern Fällen wird man es ebenso machen können, weil ja bei der Stützung eines ebenen starren Fachwerks meistens nur drei Bedingungen gestellt werden. In vielen Fällen kann man überhaupt die Stützenbedingungen ganz außer acht lassen, wenn es sich nämlich allein um die Untersuchung eines Grundecks handelt, das einen Teil eines größeren Stabwerks bildet. Denn dann ist vorauszusetzen, daß alle Stützenkräfte und Stabkräfte (mit Ausnahme der Stabkräfte des Grundecks) nach bekannten einfachen Methoden vorher berechnet worden sind. Anders läge der Fall, wenn ein gestütztes Grundeck zu untersuchen wäre, wobei auch die Aufgabe gestellt werden könnte, die Spannkraft irgend eines Stützenstabes mit Hilfe eines Verschiebungsecks zu bestimmen.

Es wird daher für alle Fälle noch ein Verfahren anzugeben sein, mit dessen Hilfe man nachträglich ein *zweites* Verschiebungseck zeichnet, worin die gegebenen Stützenbedingungen berücksichtigt werden, nachdem dies im *ersten* (in bekannter Weise erhaltenen) Verschiebungseck nicht geschehen ist. Das hierbei zu benutzende Verfahren ist von MOHR angegeben worden^T. Es läßt sich an dieser Stelle durch ein einfaches Beispiel erläutern. Ausführliches darüber im II. Bande.

¹ a. a. O. Anmerkung unter 78.

Für die in der Fig. 255 dargestellte in zwei Knoten (a und b) gestützte zwangläufige Kette ist ein *erstes* beliebiges Verschiebungseck a'b'c'd'e'f' gezeichnet. Dabei ist weder berücksichtigt, daß Knoten abei jeder Bewegung der Kette ruhen bleiben, noch auch, daß der Stütz-

knoten b um den Gelenkpunkt g als Pol schwingen muß. Weil es sich hier aber im allgemeinen immer nur um Bewegungen handelt, die als unendlich kleine betrachtet werden dürfen, so wird es auch immer möglich sein, die Stabkette nachträglich durch eine Drehung um einen einzigen Pol derart zu verschieben, daß *deren ähnliches und zu ihr ähnlich*

§ 12 Anwendung von Sätzen der geometrischen Bewegungslehre.

liegendes Bild (80a), als zweites Verschiebungseck in Verbindung mit dem ersten, die gesuchten wirklichen Verschiebungen angibt. Ist dabei

allgemein die erste Verschiebung eines beliebigen Knotens m der Kette nach Richtung und Größe gleich m - m' und die (zweite) Polverschiebung desgleichen gleich m'' - m, so erhält man die der Wirkung dieser beiden Verschiebungen gleichwertige Verschiebung

241

 $v_m = m'' - m'$ aus dem Verschiebungdreieck mm'm'' (Fig. 256).

Nach solchem Verfahren ist das zweite Verschiebungseck in der Fig. 255 gezeichnet. Es ist in roten Linien dargestellt, während die Verschiebungen v_m durch grüne Striche hervorgehoben worden sind. Dabei ist der Pol \mathfrak{P} , den man übrigens nicht notwendig zu haben oder zu suchen braucht, durch folgende Stützenbedingungen gegeben: 1) Knoten *a* soll ruhen bleiben, also muß sich $v_a =$ Null ergeben, oder mit andern Worten, die zweite Verschiebung a''-a muß gleich groß, aber entgegengesetzt der ersten gerichtet sein. 2) Die gesuchte Verschiebung $v_b = b''-b'$ muß parallel zur Richtung des Stützenstabes \overline{bg} sein, weil die wirkliche Verschiebung des Stützenstabes b senkrecht dazu steht.

Durch diese Bedingungen finden sich die beiden Punkte a'' und b'' des zweiten Verschiebungsecks und damit ist dessen der Stabkette ähnliches und zu ihr ähnlich liegendes Bild gegeben. Aus der Ähnlichkeit folgt, daß die Seite $\overline{a''b''}$ parallel zur Verbindungsgeraden \overline{ab} laufen muß. Zieht man außerdem noch $\overline{b'b''}$ parallel zur \overline{bg} , so findet sich auch Punkt b''. Wenn, wie im vorliegenden Falle, ein *starres* Grundeck untersucht wird, unterscheiden sich die beiden Verschiebungsecke dadurch, daß das zweite der Stabkette ähnlich ist, während das erste *eine* Seite besitzt, die dem zugehörigen Stabe der Kette — dem Tauschstabe — nicht parallel ist.

82. Allgemeines Verfahren der Stabkraft-Ermittelung für ebene Grundecke.

a. Verwendung von mehreren Tauschstäben. Wie man unter Beseitigung eines einzigen Tauschstabes und mit Hilfe eines entsprechenden Verschiebungsecks die Spannkraft X des Tauschstabes berechnen kann, wurde bereits an einigen Beispielen gezeigt. Waren P_a bis P_r die in den Knoten a bis r angreifenden äußern Kräfte und δ_a bis δ_r die aus dem Verschiebungseck zu entnehmenden Wege dieser Knoten in der

Mehrtens, Statik der Baukonstruktionen. I.

Richtung der äußern Kräfte P, so ergab sich nach dem Satze der virtuellen Verschiebungen die Gleichung:

$$X(\delta_{mx}+\delta_{nx})+\sum P_r\delta_r=\circ.$$

Darin bedeuten δ_{mx} und δ_{nx} diejenigen Seitenverschiebungen der Knoten *m* und *n* des Tauschstabes, die *in dessen Richtung* fallen. Die *Vorzeichen* aller Verschiebungen bestimmen sich dabei, wie unter **78** b angegeben.

Sobald nun ein Grundeck vorliegt, dessen Auflösung in seine Spannkräfte allgemein nur mit Hilfe von n Tauschstäben gelingt, ist die obige Stabkraft-Berechnung auch noch möglich, wenn man dabei — wie unter **79**, 1. Beispiel, erwähnt — die n Tauschstäbe nacheinander ausschaltet und jedesmal ein Verschiebungseck, im ganzen also n an der Zahl, zeichnet. Man könnte zwar alle n Tauschstäbe auf einmal beseitigen, dann erhielte man aber in dem verbleibenden Stabgebilde keine zwangläufige Kette mehr. Man müßte also, um dennoch die n Verschiebungsecke zeichnen zu können, über die Bewegungen der beiden Knoten aller Tauschstäbe, mit Ausnahme eines einzigen, einschränkende Verfügungen treffen. Das zu tun erscheint aber unnötig, weil kein zwingender Grund vorliegt, zur Zeit mehr als einen Tauschstab auszuschalten. Im folgenden wird das Gesagte an der Hand von Beispielen noch näher beleuchtet werden.

b. Darstellung der Verschiebungsecke. 1. Aufgabe: Ein Verschiebungseck zu zeichnen, dessen Eckpunkte alle in gegebenen Geraden liegen und dessen Seiten alle gegebenen Richtungen parallel sind.

Die Lösung dieser Aufgabe stützt sich auf einen bekannten geometrischen Satz über die Gestaltänderung eines n-Ecks. Er lautet: »Wenn bei der Gestaltänderung eines n-Ecks dessen Seiten alle eine und dieselbe Gerade in festen Punkten treffen, so schreitet einer seiner Eckpunkte in einer Geraden fort, vorausgesetzt, daß auch die übrigen Eckpunkte gezwungen werden, gerade Linien zu beschreiben.

Die Ausführung der Lösung soll an einem Beispiel gezeigt werden.

Die Eckpunkte a, c, d und e eines Verschiebungsecks sollen in den zugehörigen Geraden AA, CC, DD und EE liegen, seine Seiten sollen den Seiten des Stabgebildes abcde parallel laufen.

Es genügt zwei beliebige Fünfecke zu zeichnen derart, daß dabei drei Eckpunkte je in eine der vorgeschriebenen zugehörigen Geraden fallen. In der Fig. 257 sind dazu die Ecken a, c und e ausgewählt. Weil nun die Eckpunkte d_x und d_z der beiden Fünfecke bei der Gestaltänderung des Fünfecks in einer Geraden fortschreiten, so liegt im

§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 243

Schnittpunkte dieser Geraden GG mit der DD der Eckpunkt d' des gesuchten Geschwindigkeitsecks a'b'c'd'e'. Wie die gegebene allgemeine Lösung in einem besondern Falle anzuwenden ist, erläutert die nachfolgende Aufgabe.

2. Aufgabe. Es sind die Stabkräfte des in der Fig. 258 dargestellten Fachwerks, einschließlich der Stützenkräfte, derart zu berechnen, daß zunächst nur die Spannkräfte der notwendigen Tauschstäbe mit Hilfe

von Verschiebungsecken und darauf die übrigen Stabkräfte aus einem Kräfteplane gefunden werden.

Wie man sich überzeugen wolle, ist die gestellte Aufgabe nur durch Beseitigung von *mindestens zwei* Stäben zu lösen. Die Wahl der beiden Tauschstäbe ist innerhalb gewisser Schranken beliebig. Es wurden gewählt die Stäbe e-d mit der Stabkraft X_x und b-c mit der Stab-

16*

kraft X_2 . Das behufs Ermittelung von X_1 gezeichnete Verschiebungseck erhielt die Eckpunkte a'_1, b'_1, \ldots, m'_1 ; dementsprechend wurden die Eckpunkte im zweiten Verschiebungseck (für X_2) mit a'_2, b'_2, \ldots, m'_2 bezeichnet. Die gegebenen Stützenbedingungen wurden von vornherein berücksichtigt. Die Darstellung ging danach wie folgt vor sich: Der feste Gelenkpunkt *a* fällt mit a'_1 und a'_2 zusammen. b'_1 und b'_2 liegen in der Richtung des Stützenstabes b-s, weil die Verschiebung des Stützpunktes *b* senkrecht dazu gerichtet ist.

Verschiebungseck für X_{I} : Es ist durch rote Linien ausgezeichnet und gezeichnet unter der Annahme, daß vorläufig nur der Stab e-dbeseitigt ist. Sämtliche Seiten des Verschiebungsecks, mit Ausnahme der dem Tauschstabe e-d entsprechenden, sind den zugehörigen Stabrichtungen parallel. Es gibt verschiedene Wege, das Verschiebungseck darzustellen. Jedenfalls darf man irgend einem Knoten eine beliebige Verschiebung zuschreiben. Im vorliegenden Falle war es das einfachste, hierfür den Stützenknoten b zu wählen. Die Verschiebung $b-b'_{1}$ (in der Richtung des Polhalbmessers der augenblicklichen Bewegung des Stützenstabes) wurde also beliebig groß angenommen und von dem Endpunkte b' wurden zu den Stabrichtungen des Knotens b drei Parallelen gezogen, in denen die Eckpunkte c'_1, i'_1 und k'_1 zu liegen kommen müssen. Von diesen drei Punkten muß aber k'₁ in die Stabrichtung a-k fallen, weil die augenblickliche Bewegung des Knotens k nur um den Gelenkpunkt a erfolgen kann. Die Größe $k - k'_{1}$ wird dadurch festgelegt. Es ergab sich dann aus $k'_1 - i'_1 \parallel k - i$ die Verschiebung $i - i'_{I}$ des Knotens *i*. Es folgte jetzt $k'_{I} - l'_{I} \parallel k - l$. Damit war auch $v_l = l - l'_{\tau}$ festgelegt.

Die übrigen Eckpunkte c'_1 , d'_1 bis m'_1 des Verschiebungsecks sind mit Hilfe des zur Lösung der I. Aufgabe benutzten Verfahrens gefunden worden. Gegeben waren die Geraden \overline{FF} , $\overline{M_1M_1}$, $\overline{H_1H_1}$ und \overline{CC} , in die in entsprechender Reihenfolge die Eckpunkte f'_1 , m'_1 , h'_1 und c'_1 fallen mußten. Sobald deren Lage bestimmt war, fanden sich ohne weiteres durch Ziehen der beteffenden Parallelseiten auch die letzten Eckpunkte d'_1 , e'_1 und g'_1 .

Die zum Auffinden des Eckpunktes c'_{1} erforderlichen rot beränderten Hilfsfünfecke I' und II' wurden absichtlich unterhalb des Grundecks angelegt, um das Verschiebungseck nicht durch zu viele Hilfslinien durchkreuzen zu müssen. Die Verbindungsgerade $\overline{G_{1}G_{1}}$ der Punkte c' und c'' trifft (nach vorigem) die Gerade CC im gesuchten Punkte c'_{1} . Durch die gefundene Lage von c'_{1} sind alle noch fehlenden Eckpunkte des Verschiebungsecks bestimmt. Es zeigt sich, daß das vorliegende

Grundeck tatsächlich *starr* ist, weil die (nicht gezeichnete) Schlußseite $e'_{\rm x} - d'_{\rm x}$ der Richtung des Tauschstabes e - d nicht parallel ist (80). Schließlich folgt die Stabkraft

$$X_{\rm r} = \frac{+P_d \delta_{\rm rd} + P_e \delta_{\rm re} + P_f \delta_{\rm rf}}{\delta_{\rm sr}},$$

worin die den δ zugefügten Zeiger die Seitenverschiebungen in der Richtung der betreffenden äußern Kräfte bezeichnen.

 $\delta_{st} = -(\delta_{xte} + \delta_{xtd})$ bedeutet im besondern also diejenige Längenänderung des Tauschstabes, die notwendig wäre, um ihn nach vollendeter Bewegung der zwangläufigen Kette wieder einziehen zu können. Die virtuelle Arbeit der Stützenkräfte ist gleich Null, weil $\delta_{ta} = 0$ ist und δ_{tb} senkrecht zur Stützenkraft liegt.

Verschiebungseck für X_2 . Der Tauschstab e-d ist wieder eingezogen, deshalb muß in dem zu zeichnenden Verschiebungseck die Seite $e'_2-d'_2$ parallel zur e-d liegen. Der Stab b-c ist beseitigt, deshalb darf die (nicht gezeichnete) Schlußseite $b'_2-c'_2$ nicht parallel zur b-causfallen.

Man könnte $b-b'_1 = b-b'_2$ wählen, also den untern Teil des ersten Verschiebungsecks (mit den Punkten b'_1 , i'_1 , k'_1 , l'_1) beibehalten. Um aber anschaulichere Bilder zu erhalten, wurde $b-b'_2$ beliebig gewählt. Die Darstellung des *zweiten* Verschiebungsecks verläuft im allgemeinen ebenso, wie vorher beim *ersten* beschrieben wurde. Dabei wurde der Eckpunkt h'_2 als Schnittpunkt der Geraden $\overline{G_2G_2}$ in bekannter Weise unter Verwendung der *Hilfsvierecke I''* und II'' gefunden. Somit ergibt sich

$$X_2 = \frac{+P_d\delta_{2d} - P_e\delta_{2e} - P_f\delta_{2f}}{\delta_{s2}}$$

worin $\delta_{s_2} = + (\delta_{x_{2c}} + \delta_{x_{2b}})$ ist.

c. Vergleich des allgemeinen Verfahrens mit dem Verfahren von HENNEBERG. Die Lösung der soeben gestellten Aufgabe erfordert die Darstellung zweier Verschiebungsecke und eines Kräfteplanes, um alle Stabkräfte, einschließlich der Stützenkräfte zu erhalten. Würde man vorgezogen haben, die Stützenkräfte mit Hilfe eines geschlossenen Seilecks im voraus zu ermitteln (56), so hätte man die Lösung mit Hilfe eines einzigen Tauschstabes und eines zugehörigen Verschiebungsecks bewerkstelligen können. Immerhin hätte man also einschließlich des notwendigen Kräfteplanes auch drei graphische Pläne gebraucht. Dagegen wäre die Rücksichtnahme auf die Stützenbedingungen gefallen. Im allgemeinen dürfte es danach ziemlich gleich sein,

§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 2

wie man in ähnlichen Fällen die Lösung auffassen und durchführen will. Fraglich erscheint es aber, ob man dabei nicht mit dem Verfahren von HENNEBERG bequemer zum Ziele käme. Diese Frage dürfte einer kurzen Erörterung wert sein.

Wenn die Stützenkräfte im voraus berechnet werden, braucht man in obigem Falle (wie auch in den meisten praktischen Fällen) beim Verfahren nach HENNEBERG nur einen Tauschstab, also auch nur zwei Kräftepläne. Will man aber dabei die Stützenkräfte gleich mitbestimmen, so hat man zwei Tauschstäbe, also drei Kräftepläne nötig und muß außerdem die Stabkräfte X_1 und X_2 aus zwei Gleichungen ersten Grades mit zwei Unbekannten berechnen. Darach erscheint wohl die bei der Lösung aufzuwendende reine Zeichner- und Rechnerarbeit nicht kleiner als bei der obigen Lösung mit Hilfe des Satzes der virtuellen Verschiebungen. Es läge sonach kein stichhaltiger Grund vor, die Anwendung des Verfahrens von HENNEBERG als eine bequemere zu bezeichnen, wenn nicht beim Vergleiche noch andere Gesichtspunkte zu berücksichtigen wären, als die bloße Abwägung der bei beiden Lösungsarten aufzuwendenden Arbeit. Das ist aber notwendigerweise der Fall. Ein graphisches Verfahren ist hinsichtlich seines Wertes für die praktische Anwendung in erster Linie danach zu beurteilen, ob es bei entsprecher Einfachheit gleichzeitig auch ausreichend genaue Ergebnisse liefert. Wer diese Ansicht mit dem Verfasser teilt, wird dann von selbst dahin geführt, dem Verfahren von HENNEBERG den Preis zuzuerkennen, weil man dabei einzig und allein mit geschlossenen Kräfteplänen arbeitet, bei deren Darstellung im allgemeinen eine größere Genauigkeit zu erzielen ist, als bei der Verwendung von Verschiebungsplänen. Damit will Verfasser durchaus nicht etwa sagen, daß man mit Hilfe von Verschiebungsplänen nicht auch für praktische Aufgaben ausreichend genaue Ergebnisse erzielen kann. Man sollte aber solche Pläne, so sehr lehrreich und anschaulich sie auch für den Unterricht sind, eigentlich nur dort allgemein verwenden, wo sie unentbehrlich sind, wie bei der graphischen Behandlung der statisch unbestimmten Systeme.

Das ist die Ansicht des Verfassers, die diesen auch veranlaßt hat, seine Darlegungen über die Verwendung des Satzes der virtuellen Verschiebungen bei Stabkraft-Ermittelungen — namentlich für *Raumfackwerke* — nach Möglichkeit zu beschränken.

83. Darstellung von Verschiebungen zwangläufiger Ketten des Raumes.

Knotenverschiebungen im Raume sind weit umständlicher darzustellen und zu berechnen als in der Ebene. Wenn daher im vorstehenden

schon bei der Berechnung von ebenen Grundecken dem Verfahren von HENNEBERG gegenüber dem Verfahren der Anwendung des Satzes der virtuellen Verschiebungen der Vorzug gegeben worden ist, so wird dies bei der Berechnung von Raumfachwerken noch mehr der Fall sein.

Im übrigen ist das Verfahren der Stabkraft-Ermittelung in Raumfachwerken im Grunde genommen das gleiche, wie für ebene Grundecke. *Die Grundaufgabe* gestaltet sich hier nur insofern anders, als die Verschiebung eines Raumknotens *m* erst bestimmt ist, wenn für beliebige drei Endknoten der von *m* ausgehenden

einfachen Stäbe die Verschiebungen gegeben oder angenommen worden sind. Umgekehrt kann eine gegebene Knotenverschiebung v_m in drei beliebige Seitenverschiebungen anstoßender Nachbarknoten zerlegt werden (Fig. 259).

a. Analytische Lösung. Eine allgemeine Lösung erhält man am einfachsten wohl mit Hilfe des Satzes der virtuellen Verschiebungen und zwar in gleicher Art, wie dies für die Ebene (unter **78**c) bereits läutert worden ist: Ist δ_m die Verschiebung eines Knotens m in beliebiger Richtung, so ist

$$\mathbf{I} \cdot \delta_m = \sum \overline{S} \delta \,. \tag{53}$$

Darin bedeutet \overline{S} die durch eine in der Richtung der gesuchten Verschiebung δ_m angreifende *Krafteinheit* erzeugte Spannkraft einer der drei in Betracht kommenden Stäbe des Knotens m. δ ist die Projektion einer der drei gegebenen Verschiebungen auf die Richtung des zugehörigen Stabes. Die Stabkräfte \overline{S} findet man graphisch oder rechnerisch durch Zerlegung der Krafteinheit nach den gegebenen drei Stabrichtungen (51).

b. Graphische Lösungen. Eine allgemeine rein graphische genaue Lösung nach den Grundsätzen der darstellenden Geometrie¹ macht

¹ Vergl. MOHR, Die Theorie der Streckensysteme. Civilingenieur, 1888; 34. Bd. 8. Heft, worin am Schlusse auch die gesamte einschlägige Literatur angegeben ist.

§ 12. Anwendung von Sätzen der geometrischen Bewegungslehre. 249

ziemlich viel Umstände. Auf deren Wiedergabe darf daher hier um so mehr verzichtet werden, als die Berechnung von Stabkräften in der Regel nur in solchen Fällen, die einfache Lösungen der Grundaufgabe zulassen, lohnend sein dürfte.

1. Eine einfache Lösung, die sich an die erste für ebene Verschiebungen (**78**a) mitgeteilte Lösung anschließt, ist folgende: Gegeben sind die Verschiebungen v_1 , v_2 und v_3 der Knoten 1 bis 3; gesucht v_4 für den Knoten 4, von welchem die Stäbe 4-1, 4-2 und 4-3 ausgehen

(Fig. 260 und 261). Die drei Stäbe sind der möglichst einfachen Darstellung wegen so gezeichnet, daß durch zwei Stäbe (4-1 und 4-2)eine *Grundrißebene* und durch den dritten Stab eine dazu senkrechte *Aufrißebene* gelegt werden kann.

Es ist dann die Projektion v'_4 von v_4 im Grundriß dadurch zu erhalten, daß man in bekannter Weise (**78**a) von einem Pole O' des Grundrisses aus die Projektionen v'_1 und v'_2 der gegebenen Verschiebungen v_1 und v_2 nach ihrer Größe und Richtung aufträgt. v'_4 ist durch v'_1 und v'_2 bestimmt, v'_3 übt dabei keinen Einfluß. Größe und Richtung von v'_4 gibt demnach die Diagonale des Vierecks, das aus v'_1 , v'_2 und den beiden zu den Stabrichtungen 4'-1' und 4'-2' gefällten Senkrechten gebildet wird.

Wohl zu beachten bleibt dabei, daß der Einfluß der von den Knoten 1 und 2 rechtwinklig zur Grundrißebene ausgeführten Verschiebungen auf die Größe von v'_4 verschwindend ist. Denn weil es sich hier ausschließlich nur um augenblickliche Bewegungen handelt, so sind auch die von den Stäben 4-1 und 4-2 bei ihrer Erhebung über die Grundrißebene hinaus gemachten Drehwinkel unendlich klein. Die dadurch herbeigeführeu Verschiebungen des Punktes 4', die als Projektionen jener unendlich kleinen Bogenwege unendlich kleine Größen zweiter Ordnung sind, verschwinden demnach.

Sobald v'_4 gefunden ist, findet sich v''_4 aus der Bedingung, daß die Richtung der Verschiebung von 4" senkrecht stehen muß zur Stabrichtung 4"-3". Man braucht also vom Pole O" des Aufrisses nur die v''_3 nach Größe und Richtung aufzutragen und von ihrem Endpunkte die Senkrechte l_3 zur 4"-3" zu fällen. Diese schneidet zwischen den Projektionsstrahlen O'O" und p'p'' das Stück $O''-p''=v''_4$ ab.

Will man die angegebene Lösung wiederholt für aufeinander folgende Knoten anwenden, so hat sie die Unbequemlichkeit, daß man öfter mit den Lagen der Projektionsebenen wechseln muß.

2. Eine andere einfache Lösung soll zunächst für den Sonderfall gegeben werden, daß die Knoten 1, 2, 3 gezwungen sind sich in einer Ebene zu verschieben. Man wird dann die Knotenebene als Grundrißebene wählen und kann dazu durch einen der drei Stäbe eine Aufrißebene legen (Fig. 262). Bei der Lösung sucht man aus den gegebenen Verschiebungen v'_1 , v'_2 und v'_3 die Projektion v'_4 und darauf v''_4 . Die Darstellung von v'_4 soll zuerst gezeigt und darauf ihre Richtigkeit nachgewiesen werden.

Vom Pole O' des Grundrisses aus (Fig. 263) werden die gegebenen Projektionen v'_1 , v'_2 , v'_3 in bekannter Weise als Strahlen aufgetragen und darauf werden von den Endpunkten der Strahlen die zugehörigen Senkrechten l_1 , l_2 und l_3 auf die Stabrichtungen 4'-1', 4'-2', 4'-3' gefällt. Durch den Schnittpunkt k' der beiden Senkrechten l_2 und l_3 lege man eine zur Verbindungslinie 2'-3' senkrecht stehende Gerade, desgleichen durch den Schnittpunkt n' der Senkrechten l_1 und l_3 eine Senkrechte zur Verbindungslinie 1'-3'. Diese letzten beiden Senkrechten treffen sich im Punkte p', dem Endpunkte des Strahles O'-p', der Größe und Richtung der gesuchten Verschiebung v'_4 angibt.

Der Beweis für die Richtigkeit der obigen Lösung läßt sich am einfachsten führen, wenn man erwägt, welche Bewegungen Knoten 4 infolge seiner Verbindung mit den Knoten 1, 2 und 3 notwendig machen muß.

Fig. 263.

Einerseits muß sich Knoten 4 in einer zur Verbindungsgeraden 1'-3' senkrecht stehenden Ebene, anderseits aber auch in einer zur Geraden 2'-3'senkrecht stehenden Ebene bewegen. Nun würde sich aber unter dem *alleini*gen Einfluß von v'_{π} und v'_{3} die Verschiebung v'_{4} als Polstrahl O'-n' ergeben, desgleichen unter dem *alleinigen* Einfluß von v'_{2} und v'_{3} als Polstrahl

O'-k', wobei k' und n' die Endpunkte der Strahlen wären. Daraus folgt, daß der Endpunkt p' der *wirklichen* Verschiebung v'_4 im Schnittpunkt der Geraden n'-p' und k'-p' liegt, wobei diese Geraden die

Fig. 262.

Spuren derjenigen Senkrechtebenen vorstellen, in denen nach vorigem der Knoten 4 sich notwendig bewegen muß.

Eine einfache Nachprüfung der Ergebnisse der Darstellung ist möglich, weil der Knoten 4 sich unter dem alleinigen Einfluß von v'_2 und v'_1 auch in einer Senkrechtebene zur Geraden 1'-2' bewegen muß. Verlängert man also l_2 und l_1 bis sie sich in m' schneiden, so muß die Verbindungsgerade m'-p' senkrecht zur Geraden 1'-2' stehen.

Die Projektion v''_4 ist im Aufriß, wie schon in der ersten Lösung ausgeführt wurde, leicht zu finden. Da der Stab 4—1 in die senkrecht zum Grundriß stehende Aufrißebene gelegt worden ist, so liegt der Endpunkt p'' von v''_4 in einer Senkrechten zur 4''-1'', die vom Endpunkte der v''_4 aus gezogen wird.

3. Vorstehende Lösung läßt sich zu einer allgemeinen dadurch ergänzen, daß man für beliebige senkrecht zur Grundrißebene gerichetete Verschiebungen der Knoten 1, 2, 3 die Verschiebungen des Knotens 4 sucht und diese mit den für die wagerechten Verschiebungen der Knoten 1, 2, 3 bereits ermittelten Werten v'_4 und v''_4 zusammensetzt.

Die gegebenen räumlichen Verschiebungen der in wagerechter Grundrißebene liegenden Knoten seien v_1 , v_2 , v_3 ; die gesuchte Verschiebung des Knotens 4 sei v_4 . Die gegebenen Seitenverschiebungen nach wagerechter und senkrechter Richtung sollen entsprechend mit w_1 , w_2 , w_3 und s_1 , s_2 , s_3 bezeichnet werden. Mit Hilfe der (unter 2) gegebenen Lösung habe man den von w_1 bis w_3 herrührenden Teil v_{w_4} von v_4 durch die Projektionen v'_{w_4} und v''_{w_4} gefunden. Es bleiben also nur noch darzustellen die Projektionen v'_{s_4} und v''_{s_4} der von s_1 bis s_3 herrührenden Verschiebung v_{s_4} .

Zuerst wolle man beachten, daß für den Sonderfall $s_1 = s_2 = s_3 = s$ die Verschiebung $v_{s_4} = o$ wird. Der Beweis dafür wird wohl am einfachsten erbracht, wenn man dem Stabgebilde eine lotrechte Verschiebung s erteilt denkt, die entgegengesetzt gerichtet der gegebenen ist. Dabei ändert sich die gegenseitige Lage der Knoten I bis 4 nicht. Die Verschiebungen der Knoten I bis 4 werden dadurch auf s - s = o zurückgeführt, also muß auch $v_{s_4} = o$ sein.

Sind die Werte s_1 , s_2 , s_3 verschieden groß, so kann man in jedem Falle dem Stabgebilde auch eine lotrechte Verschiebung erteilt denken derart, daß einer der drei Werte s_1 bis s_3 gleich Null wird. Die so verminderten Werte erzeugen dann eine Verschiebung v_{s_4} , die der von den ursprünglichen Werten s_1 bis s_3 erzeugten gleich ist. Auf solche Weise führt man die gestellte Aufgabe auf den Fall zurück, in welchem nur zwei Knoten des Grundrisses eine lotrechte Verschiebung ausführen,

Fig. 264.

während der dritte Knoten im Grundrisse liegen bleibt. Die Lösung dieses Falles ist in der Fig. 264 dargestellt.

Die um das Stück s, verminderten gegebenen Verschiebungen seien $s_1 = 0$, s_2 und s_3 . Wie in der vorigen Lösung, so ist auch hier die Aufrißebene durch den Stab 4-1 und senkrecht zum Grundriß gelegt. Daraus folgt, daß die Projektion v''_{s4} in einer von 4" auf die Richtung 4"-1" gefällten Senkrechten zu liegen kommen muß. Um Um die Projektion v'_{s_4} zu erhalten, bestimme man den Einfluß von s_2 und s_3 je besonders. Es wirke zuerst s_3 allein für sich. In diesem Falle dreht sich Knoten 4 um die Achse 1'-2', d. h. 4' verschiebt sich in einer Geraden c-4' (oder deren Verlängerung), die im Grundriß senkrecht zur Achse 1'-2' steht. Der Endpunkt c' dieser Verschiebung und damit auch die zugehörige Verschiebung 4''-c'' im Aufrisse finden sich wie folgt: Der Stab 4-3 wird um die Achse 4"-4' in die Aufrißebene gedreht und dort vom Endpunkte der Verschiebung s_3 auf ihn eine Senkrechte gefällt. Der Fußpunkt der Senkrechten σ_3 im Stabe wird sodann in den Grundriß übertragen; er ist dort mit d bezeichnet. Das in d auf der 4'-3' errichtete Lot trifft den Punkt c'. Der Beweis hierfür ergibt sich ohne weiteres aus den früheren Lösungen.

In gleicher Weise ist der Einfluß von s_2 bestimmt worden. Der Fußpunkt der Senkrechten σ_2 wurde im Grundriß mit e bezeichnet. 4' bewegt sich in der Verlängerung der Geraden 4'-b, die zur Achse $\mathbf{1'}-\mathbf{3'}$ senkrecht steht. Die in e auf der $4'-\mathbf{2'}$ errichtete Senkrechte schneidet in b'. Damit sind die Einflüsse von s_2 und s_3 je besonders bestimmt. Die gefundenen Strecken 4''-c'' und 4''-b'' ergeben bei ihrer Zusammensetzung die Verschiebung v'_{s_4} . Die Zusammensetzung von 4'-c' und 4'-b' ergiebt die $Grö\beta e$ von v'_{s_4} , deren Lage danach ebenfalls gefunden ist.

Wie man sieht, würde die allgemeine Lösung der Grundaufgabe mit Hilfe obiger Darstellung immerhin noch ziemlich verwickelt sein. Für praktische Aufgaben wäre sie deshalb kaum zu empfehlen. Wie denn überhaupt aus den bisher gegebenen Lösungen genugsam erhellen möchte, welche Schwierigkeiten sich ergeben, wenn man bei der Berechnung von Raumfachwerken, ebenso wie es für die Ebene gezeigt worden ist, mit *Verschiebungsplänen* arbeiten wollte. Im nachfolgenden wird gezeigt werden, wie sich die Verwendung solcher Pläne rechnerisch umgehen läßt.

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr¹.

84. Allgemeine Darlegung.

Wie im vorigen an verschiedenen Beispielen gezeigt worden ist, erweist es sich bei der Stabkraftermittelung von Raumfachwerken, um das im Raumfachwerk enthaltene Grundeck aufzulösen, meistens als notwendig, *Tauschstäbe* einzuführen. Beim Verfahren von HENNEBERG wurden dafür an passenden Stellen *Ersatzstäbe* eingelegt. MOHR hat zuerst darauf hingewiesen, wie man bei der Anwendung des Satzes von den virtuellen Verschiebungen dies Einlegen von Ersatzstäben umgehen könne, wenn man an Stelle jedes Tauschstabes dessen Stabkraft X als äußere Kraft in dem Tauschstabknoten anbringt. Denn nach erfolgter Beseitigung der Tauschstäbe befindet sich das verbleibende *bewegliche* Raumstabgebilde unter den äußeren Kräften X und den gegebenen Lasten P im Gleichgewicht, so daß für *jeden* seiner Stabknoten der Satz von den virtuellen Verschiebungen Gültigkeit hat.

Монк gibt den Tauschstäben die Bezeichnung Laststäbe, weil deren Stabkräfte X vorläufig als Lasten des Fachwerkes auftreten. Die Wahl der Laststäbe ist wie beim Verfahren von HENNEBERG zu treffen: je geringer deren Zahl, desto einfacher die Berechnung. Bei völlig symmetrischem Bau und symmetrischer Belastung des Fachwerkes kann es ratsam sein, mehr als die nötige Zahl der Laststäbe anzunehmen, unter Umständen sogar doppelt soviel, weil sich in solchen Fällen die Zahl der Gleichungen, aus denen die X zu berechnen sind, auf die Hälfte der Zahl der Laststäbe beschränken läßt. Jedenfalls aber sind die Laststäbe derart auszuwählen, daß vom Beginn der Berechnung an, nach einer bestimmten Reihenfolge in keinem Knoten mehr als drei unbekannte Stabkräfte vorkommen.

Die Stabzahl des Fachwerkes, einschließlich der Stützenstäbe, sei n = 3 k, wenn k die Knotenzahl bedeutet. Die Möglichkeit unendlich kleiner Beweglichkeit (**34**) sei ausgeschlossen; läge eine solche vor, so müßten sich die X als unendlich groß ergeben. Der *allgemeine* Gang des Verfahrens von MOHR ist nun der folgende:

Die Laststäbe, t an der Zahl, werden gewählt. Deren Stabkräfte

¹ MOHR, Zur Berechnung der Raumfachwerke. Zentralblatt der Bauverw. 1902 und 1903. Die in den letztgenannten Aufsätzen enthaltenen Kritiken verschiedener Berechnungsmethoden verdienen Beachtung.

werden mit X_a , X_b ... X_t bezeichnet. Nimmt man vorläufig diese Xals bekannt an, so handelt es zunächst darum, die verbleibenden (n-t)unbekannten Stabkräfte S als Funktionen der X und der gegebenen Lasten P darzustellen. Die geschieht in der Weise, daß man für jeden der k Knoten, mit Hilfe des Satzes der virtuellen Verschiebungen und unter Annahme von möglichen, aber sonst willkürlichen Knotenverrückungen, drei Gleichungen aufstellt, aus denen zuerst die X und

Fig. 265-266.

darauf die S als Funktionen der P berechnet werden. Wie dies im einzelnen (in verschiedener Weise) durchgeführt werden kann, zeigen die folgenden Beispiele. Durch geeignete Wahl der *willkürlichen* Größen ist es nebenbei auch noch möglich, verschiedene Stabkräfte auf verschiedenen Wegen doppelt zu berechnen, wodurch man den Lauf der Rechnung auf seine Richtigkeit nachprüfen kann. Die Vorzüge des Verfahrens von MOHR werden weiterhin ausführlich dargelegt werden.

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 257

Bei symmetrischer Form und Belastung des Fachwerks nehmen die t Gleichungen für die Stabkräfte X auch eine symmetrische Form an, d. h. je zwei symmetrisch belegene X enthalten gleiche Faktoren. Solche Gleichungen kann man in bekannter Weise auf zwei Gruppen von $\frac{t}{2}$ Gleichungen mit ebensoviel Unbekannten zurückführen.

85. Allgemeines Beispiel.

Ein Beispiel möge das Verfahren auch im einzelnen erläutern. Das in den Fig. 265-266 dargestellte Grundeck hat 8 Knoten und 24 Stäbe (eingeschlossen 9 Stützenstäbe). Die Stützung ist in den Knoten 1, 4 und 7 durch einen lotrecht gestellten Stab, und in den Knoten 3, 6 und 8 durch je eine Pendelstütze, bestehend aus einem lotrechten und einem wagerechten Stabe, dargestellt. Im Knoten 3 liegt der wagerechte Stab in der *W*-Richtung, im Knoten 6 in der Richtung 1-6 und im Knoten 8 in der Richtung 7-8.

Die beiden Knoten 2 und 5 seien belastet. Jede der Lasten P_2 und P_5 ist in den Fig. 255—266 nach drei senkrecht aufeinander stehenden Richtungen zerlegt gedacht. Diese Seitenlasten sind die lotrechten Kräfte V_2 und V_5 , sowie die wagerechten Kräfte U_2 , W_2 und U_5 , W_5 .

Die beiden Stäbe 1-3 und 2-5 werden als beseitigt angesehen und dafür die Kräfte X_{α} und X_{δ} in bekannter Weise angebracht. Nunmehr steht das bewegliche Stabgebilde im Gleichgewicht. Vom Knoten 1 anfangend, in welchem nur drei unbekannte Stabkräfte anstoßen, trifft man dann in der eingeschriebenen Reihenfolge in allen andern Knoten (wenn die Stabkräfte der vorhergehenden Knoten als bekannt angesehen werden) nur noch drei Unbekannte. Die Aufstellung der Gleichungen endet im Knoten 8.

Um die aufzustellenden Gleichungen möglichst durchsichtig zu halten, sollen folgende Bezeichnungen eingeführt werden:

u, v, w seien die möglichen, willkürlich groß zu wählenden Knotenverschiebungen in der Richtung der Lasten U, V und W;

 S_{i-k} bedeute die *Stabkraft* eines Stabes zwischen den Knoten *i* und *k*; sie wird vorläufig als *Zugkraft* eingeführt;

Siv desgl. die senkrechte Stützenkraft im Knoten i;

Siw - - wagerechte Stützenkraft - - -;

 $\cos u_{i-k}$, $\cos v_{i-k}$, $\cos w_{i-k}$ seien die Kosinus der Winkel, die ein Stab i-k mit den Richtungen u, v, w einschliesst.

Mehrtens, Statik der Baukonstruktionen. I.

Danach stellt z. B. der Ausdruck

 $S_{i-k} \cdot \cos v_{i-k}$ die Projektion der Stabkraft S_{i-k} auf die Richtung der Knotenverschiebung v dar.

Die Aufstellung der Gleichungen¹ beginnt mit

Knoten 1. Die allgemeine Form des Satzes der virtuellen Verschiebungen lautet

$$u[X_{a} - S_{r-6} \cdot \cos u_{r-6} + S_{r-2} \cdot \cos u_{r-2}] + v[S_{rv} - S_{r-2} \cos v_{r-2}] + w[S_{r-6} \cdot \cos w_{r-6} + S_{r-2} \cos w_{r-2}] = 0.$$

Das gibt etwas ungeformt

$$S_{1-2} \left(u \cdot \cos u_{1-2} - v \cdot \cos v_{1-2} + w \cdot \cos w_{1-2} \right)$$

$$+ S_{\mathbf{r}-6} \left(w \cdot \cos w_{\mathbf{r}-6} - u \cdot \cos u_{\mathbf{r}-6} \right) + S_{\mathbf{r}v} \cdot v + X_a \cdot u = 0.$$

Die Werte von u, v, w sind willkürliche. Man setze daher

I. Fall:

$$u \cdot \cos u_{1-2} - v \cdot \cos v_{1-2} + w \cdot \cos w_{1-2} = \mathbf{I} \quad u = \alpha_{1-2}$$

$$w \cdot \cos w_{1-6} - u \cdot \cos u_{1-6} = \mathbf{0} \quad v = \mathbf{0}$$

$$v = \mathbf{0} \quad w = \gamma_{1-2}$$

Man erhält dann aus I.

 $I. \qquad S_{1-2} = -\alpha_{1-2} \cdot X_a ,$

worin α_{x-2} derjenige Wert von u ist, der mit Hilfe der drei Sonderbestimmungen des 1. Falles und der gegebenen Festwerte der Kosinus berechnet worden ist.

2. Fall:

$$w \cdot \cos w_{1-6} - u \cdot \cos u_{1-6} = \mathbf{I} \quad u = \alpha_{1-6}$$

$$u \cdot \cos u_{1-2} - v \cdot \cos v_{1-2} + w \cdot \cos w_{1-2} = \mathbf{0} \quad v = \mathbf{0}$$

$$v = \mathbf{0} \quad w = \gamma_{1-6}$$

Weiter erhält man danach aus I.

 $2. \qquad S_{1-6} = -\alpha_{1-6}X_a \, .$

¹ Wenn man bei der Ausrechnung für die Kosinuswerte ihre *algebraischen* Vorzeichen einführt, können in den Gleichungen alle die Stabkräfte enthaltenden Glieder positiv eingesetzt werden.

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 250

U

3. Fall:

$$v = \mathbf{I} \quad u = \alpha_{\mathbf{I}v}$$

$$\cdot \cos u_{\mathbf{I}-2} - v \cdot \cos v_{\mathbf{I}-2} + w \cdot \cos w_{\mathbf{I}-2} = \mathbf{0} \quad v = \mathbf{I}$$

$$w \cdot \cos w_{\mathbf{I}-6} - u \cdot \cos u_{\mathbf{I}-6} = \mathbf{0} \quad w = \gamma_{\mathbf{I}v}$$

Schließlich erhält man danach aus I.

3.
$$S_{\mathbf{I}v} = -\alpha_{\mathbf{I}v} \cdot X_a$$
.

Knoten 2. Die allgemeine Gleichung lautet

II.
$$S_{2-x} (-u \cos u_{2-x} + v \cos v_{2-x} - w \cdot \cos w_{2-x}) + S_{2-3} (u \cdot \cos u_{2-3})$$

+ $v \cdot \cos v_{2-3} - w \cdot \cos w_{2-3}) + S_{2-4} (u \cdot \cos u_{2-4} + v \cos v_{2-4})$
+ $w \cdot \cos w_{2-4}) + S_{2-6} (-u \cdot \cos u_{2-6} + v \cdot \cos v_{2-6} + w \cdot \cos w_{2-6})$
+ $X_{\delta} w + U_2 u + V_2 v + W_2 w = 0.$

Darin sind als vorläufige drei Unbekannte die Stabkräfte S2-3, S2-49 S_{2-6} anzusehen und dementsprechend die Verschiebungen u, v, w in drei Fällen besonders vorzuschreiben.

1. Fall:	daraus:
$u \cdot \cos u_{2-3} + v \cdot \cos v_{2-3} - w \cdot \cos w_{2-3} = 1$	$u = \alpha_{2-3}$
$u \cdot \cos u_{2-4} + v \cdot \cos v_{2-4} + w \cdot \cos w_{2-4} = 0$	$v = \beta_{2-3}$
$u \cdot \cos u_{2-6} + v \cdot \cos v_{2-6} + w \cdot \cos w_{2-6} = 0$	$\tau v = \gamma_{2-3}$

Im 2. und 3. Falle ändern sich in den drei Gleichungen nur die Zeiger. Aus den drei besonderen Fällen erhält man mit Hilfe der Gleichung II, wenn man den Klammerwert der Stabkraft S2-1 kurzweg mit - k bekeichnet:

4.
$$S_{2-3} = S_{2-1} \cdot k_{2-3} - \gamma_{2-3} \cdot X_{\delta} - \alpha_{2-3} \cdot U_2 - \beta_{2-3} \cdot V_2 - \gamma_{2-3} \cdot W_2$$

5. $S_{2-4} = S_{2-1} \cdot k_{2-4} - \gamma_{2-4} \cdot X_{\delta} - \alpha_{2-4} \cdot U_2 - \beta_{2-4} \cdot V_2 - \gamma_{2-4} \cdot W_2$
6. $S_{2-6} = S_{2-1} \cdot k_{2-6} - \gamma_{2-6} \cdot X_{\delta} - \alpha_{2-6} \cdot U_2 - \beta_{2-6} \cdot V_2 - \gamma_{2-6} \cdot W_2$

Wenn man die bisher entwickelte Reihe von Gleichungen ansieht, so wird man leicht erkennen, wie man sie ohne irgend welche Schwierigkeiten Knoten für Knoten anschreiben konnte. Führt man in einem praktischen Falle von vornherein anstatt der gegebenen Kosinuswerte Zahlen ein, so vereinfacht sich dadurch das ganze Verfahren sehr. Zwei solche Zahlenbeispiele werden weiterhin durchgeführt werden.

17*

Knoten 3. Allgemeine Gleichung.

$$\begin{aligned} \text{III.} \quad S_{3-2} \left(-u \cdot \cos u_{3-2} - v \cdot \cos v_{3-2} + w \cdot \cos w_{3-2} \right) + S_{3-4} \left(u \cdot \cos u_{3-4} + w \cdot \cos w_{3-4} \right) + S_{3w} \left(-w \right) + S_3 \cdot v - X_a \cdot u = \circ. \end{aligned}$$

Fiele der wagerechte Stützenstab in die Richtung 3-4, so müßte man, um S_{3w} und S_{3-4} zu bestimmen, einen der beiden Stäbe als dritten Laststab einführen.

Aus den drei Sonderfällen erhält man:

7.
$$S_{3v} = S_{3-2} \cdot k_{3v} + \alpha_{3v} \cdot X_a$$

8. $S_{3-4} = S_{3-2} \cdot k_{3-4} + \alpha_{3-4} \cdot X_a$
9. $S_{3w} = S_{3-2} \cdot k_{3w} + \alpha_{3w} \cdot X_a$

Knoten 4.

 $\begin{aligned} \text{IV. } S_{4-2} \left(-u \cdot \cos u_{4-2} - v \cdot \cos v_{4-2} - w \cdot \cos w_{4-2} \right) + S_{4-3} \left(-u \cdot \cos u_{4-3} \right) \\ &- w \cdot \cos w_{4-3} \right) + S_{4-5} \left(-u \cdot \cos u_{4-5} - v \cdot \cos v_{4-5} + w \cdot \cos w_{4-5} \right) \\ &+ S_{4-7} \left(-u \cdot \cos u_{4-7} + w \cos w_{4-7} \right) + S_{4v} \cdot v = \circ \,. \end{aligned}$

10.
$$S_{4v} = S_{4-3} \cdot k_{4v} + S_{4-2} \cdot k'_{4v}$$

11. $S_{4-7} = S_{4-3} \cdot k_{4-7} + S_{4-2} \cdot k'_{4-7}$
12. $S^{4-}_{5} = S_{4-3} \cdot k_{4-5} + S_{4-2} \cdot k'_{4-5}$
Da hier *zwei verschiedene* Klammer-
werte vorkommen, so ist derjenige
für S_{4-2} mit k' bezeichnet worden.

Wenn man in gleicher Weise auch für die noch übrigen 4 Knoten je 3 Gleichungen aufstellt, so erhält man 24 Gleichungen, aus denen man die $3 \times 8 = 24$ Unbekannten auf einfache Weise eliminieren kann.

Bezeichnet man die Zahl der Stützenstäbe mit a und, wie bereits geschehen, die Zahl der Laststäbe mit t, so gibt es

$$3k - a - t$$
 Stäbe,

deren Spannkräfte in den 24 Gleichungen *doppelt* bestimmt sind oder bestimmt werden können. Das sind die Stabkräfte S_{1-2} und S_{2-1} , S_{1-6} und S_{6-1} , S_{2-3} und S_{3-2} , S_{3-4} und S_{4-3} usw. Im obigen Falle sind das 24 — 9 — 2 = 13 Stäbe, deren Spannkräfte durch Gleichsetzen der erhaltenen Doppelgleichungen eliminiert werden können. Es bleiben dann noch 11 Gleichungen mit den Unbekannten der X und der Stützenstäbe. Wollte man die Stützenkräfte nicht sofort, sondern auf

andere Weise aus dem Gleichgewicht der äußeren Kräfte berechnen, so blieben nur 2 Gleichungen mit den Unbekannten X_a und X_b . Es wird sich aber meist empfehlen, die Stützenkräfte gleich mitzuberechnen.

Sind X_a , X_b und die Stützenkräfte aus den 11 Gleichungen ermittelt, so folgen auch die Werte der übrigen 13 Stabkräfte.

86. Erstes Zahlenbeispiel.

Eineiserner Turmpfeiler von 8 Knoten und 24 Stäben, worunter 12 Stützenstäbe, von denen 4 lotrecht und 8 wagerecht gestellt und mit dem Erdkörper verbunden sind, trägt die Lasten U, V, W (Fig. 267-268). Sämtliche Stabkräfte sollen als Funktionen von V und W dargestellt werden.

Alle notwendigen wirklichen und Projektionslängen sind im Aufriß und Grundriß der Fig. 267—268 eingeschrieben. Bezeichnungen wie im vorigen allgemeinen Beispiel.

Fig. 267-268.

Im vorliegenden Falle ist es, wie der Verlauf der Rechnung erweisen wird, *nicht nötig Laststäbe einzuführen*, weil von den vier Stäben, die in den oberen Ringknoten angreifen, je drei in einer und derselben Ebene liegen und weil deshalb die unmittelbare Berechnung der Stabkräfte S_{1-2} , S_{2-3} , S_{3-4} und S_{4-1} möglich ist (**72**).

Knoten 1. Allgemeine Gleichung

I.
$$S_{1-2} \cdot w + S_{1-5} \left(-\frac{2,0}{20,1} \cdot u + \frac{19,9}{20,1} \cdot v - \frac{2,0}{20,1} \cdot w \right)$$

+ $S_{r-8}\left(\frac{10,1}{22,4}u + \frac{19,9}{22,4}v - \frac{2,0}{22,4}w\right) + S_{r-4} \cdot u + V_r \cdot v + W_r \cdot w = 0.$

Das miht

			Dus Sibe.
1. Fall:		w = 1	u = 0
	$-\frac{2,0}{20,1}u+\frac{19,9}{20,1}v-\frac{2,0}{20,1}$	w = o	v = + 0,101
	$\frac{10,1}{22,4}u + \frac{19,9}{22,4}v - \frac{2,0}{22,4}$	w = 0	<i>w</i> = 1
2. Fall:	-2,0u+19,9v-2,0	w = 20,1	<i>u</i> = - 1,661
	10,1 1 + 19,9 2 - 2,0	w = o	v = + 0,843
		w = o	w = 0
3. Fall:	10,1 1 + 19,9 0 - 2,0	w = 22,4	u = + 1,851
	-2,0u+19,9v-2,0	w = o	v = + 0,186
		w = 0	w = 0

Daraus erhält man:

1.
$$S_{1-2} = -0, 101 V_1 - W_1$$

2. $S_{1-5} = +1,661 S_{1-4} - 0,843 V_1$
3. $S_{1-8} = -1,851 S_{1-4} - 0,186 V_1$.

Knoten 2. Allgemeine Gleichung

II.
$$-S_{2-1} \cdot w + S_{2-5} \left(-\frac{2,\circ}{22,4} u + \frac{19,9}{22,4} v - \frac{1\circ,1}{22,4} w \right) + S_{2-6} \left(-\frac{2,\circ}{2\circ,1} u + \frac{19,9}{2\circ,1} v + \frac{2,\circ}{2\circ,1} w \right) + S_{2-3} \cdot u + V_2 \cdot v = \circ.$$

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 263

		Das gibt:
1. Fall:	-2,0u + 19,9v - 10,1w = 22,4	u = o
	-2,0u+19,9v+2,0w=0	v = + 0,186
	<i>u</i> = 0	w = - 1,851
2. Fall:	-2,0u + 19,9v + 2,0w = 20,1	<i>u</i> = 0
	-2,0u + 19,9v - 10,1w = 0	v = + 0,843
	<i>u</i> = 0	w = + 1,661
3. Fall:	<i>u</i> = 1	<i>u</i> = 1
	-2,0u + 19,9v - 10,1w = 0	v = + 0,101
	-2,0u + 19,9v + 2,0w = 0	w = o

Daraus:

$$S_{2-5} = -1,851 S_{2-1} - 0,186 V_2$$
$$S_{2-6} = +1,661 S_{2-1} - 0,843 V_2$$
$$S_{2-3} = -0,101 V_2.$$

In Verbindung mit 1. gibt das:

4 5

6

$$S_{2-5} = + 0,187 V_1 - 0,186 V_2 + 1,851 W_1$$

$$S_{2-6} = - 0,168 V_1 - 0,843 V_2 - 1,661 W_1$$

$$S_{2-3} = - 0,101 V_2.$$

Knoten 3. Die allgemeine Gleichung gestaltet sich in gewisser Beziehung symmetrisch zum Knoten 1.

п	I.	— S ₃ ,	-4 ·	$w + S_{3-}$	$\sqrt{\frac{2,0}{20,1}} u$	$+\frac{19}{20}$	9 v	$+\frac{2,0}{20,1}$	70)	$+ S_{3}$	3—6	
		$\left(-\frac{10}{22}\right)$, 1 ,4	$+\frac{19,9}{22,4}$	$v + \frac{2,0}{22,4}$	w) —	S ₃ -	$\underline{}_{2} \cdot u +$	V_3 .	v =	ο.	
										Das	gibt:	
	1.	Fall:				20	=	I	u	==	0	
				2,011+	19,90+	2,070	=	0	v	=-	0,101	
	-		-	10,1 11 +	19,90+	2,070	=	0	w	=	I	
	2.	Fall:		2,011+	19,90+	2,020	-	20,1	u	=+	1,661	
			-	10,111+	19,90+	2,070	-	0	v	=+	0,843	
						20	=	0	w	-	0	
	3.	Fall:	-	10,111+	19,90+	2,020	=	22,4	u	=-	- 1,851	
			+	2,011+	19,90+	2,070	=	0	v	=+	0,186	
						20	=	0	w	=	0	

Dritter Abschnitt. Innere Kräfte der Stabwerke.

7.
$$S_{3-4} = -0, 101 V_3$$

8. $S_{3-7} = +1,661 S_{3-2} - 0,843 V_3$
9. $S_{3-6} = -1,851 S_{3-2} - 0,186 V_3$.

Aus diesen drei Gleichungen folgen durch Verbindung mit 6

$$S_{3-4} = -0,101 V_3$$

$$S_{3-7} = -0,168 V_2 - 0,843 V_3$$

$$S_{3-6} = +0,187 V_2 - 0,186 V_3$$

Knoten 4. Allgemeine Gleichung:

IV.

$$S_{4-3} \cdot w + S_{4-7} \left(\frac{2,0}{22,4} u + \frac{19,9}{22,4} v + \frac{10,1}{22,4} w \right)$$

$$+ S_{4-8} \left(\frac{2,0}{20,1} u + \frac{19,9}{20,1} v - \frac{2,0}{20,1} w \right) - S_{4-1} \cdot u - U_4 \cdot u$$

$$+ V_4 \cdot v + W_4 \cdot w = 0.$$

Das gibt:

Ι.	Fall:	2,011 +	19,90+	10,170	= :	22,4	<i>u</i> =	=	0
		2,011 +	19,90 -	2,070	= (0	v =	=+	0,186
				U	= (o	<i>ze</i> =	=+	1,851
2.	Fall:	2,011+	19,90 —	2,070	= :	20,1	<i>u</i> =	=	0
		2,011 +	19,90+	10,170	= (0	v =	=+	-0,843
				20	= (o	<i>ze</i> =	=-	-1,661
3.	Fall:	- Laker	7,95	u	=	I	<i>u</i> =	=	I
		2,011 +	19,90 +	10,170	= (0	v =	=-	-0,101
		2,011+	19,90 —	2,070	=	0	<i>w</i> =	=	0

10.
$$S_{4-7} = -1,851 S_{4-3} - 0,186 V_4 - 1,851 W_4$$

$$II. \quad S_{4-8} = + I,00I S_{4-3} - 0,843 V_4 + I,00I W_4$$

12.
$$S_{4-1} = -U_4 - 0, 101 V_4$$
.

Das gibt zunächst in Verbindung mit 7

$$S_{4-7} = + 0,187 V_3 - 0,186 V_4 - 1,851 W_4$$

$$S_{4-8} = -0,168 V_3 - 0,843 V_4 + 1,661 W_4$$

$$S_{4-1} = -U_4 - 0,101 V_4.$$

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 265

Dann aus 2. und 3.:

$$S_{1-5} = -1,661 \ U_4 - 0,843 \ V_1 - 0,168 \ V_4;$$

$$S_{1-8} = +1,851 \ U_4 - 0,186 \ V_1 + 0,187 \ V_4.$$

Knoten 5.

$$V. \quad S_{5-1} \left(\frac{2,0}{20,1} u - \frac{19,9}{20,1} v + \frac{2,0}{20,1} w \right) + S_{5-2} \left(\frac{2,0}{22,4} u - \frac{19,9}{22,4} v + \frac{10,1}{22,4} v \right) + S_{5-a} \cdot u + S_{5-b} \cdot w + S_{5v} \cdot v = 0$$

$$I. \text{ Fall: } u = 1; v = 0; w = 0.$$

$$2. \text{ Fall: } w = 1; u = 0; v = 0.$$

$$3. \text{ Fall: } v = 1; u = 0; w = 0.$$

Daraus erhält man:

$$\begin{split} \mathbf{I3.} \qquad S_{5-a} &= -\frac{2,0}{20,1} \cdot S_{5-1} - \frac{2,0}{22,4} \cdot S_{5-2};\\ \mathbf{I4.} \qquad S_{5-b} &= -\frac{2,0}{20,1} \cdot S_{5-1} - \frac{10,1}{22,4} \cdot S_{5-2};\\ \mathbf{I5.} \qquad S_{5v} &= +\frac{19,9}{20,1} \cdot S_{5-1} + \frac{19,9}{22,4} \cdot S_{5-2}. \end{split}$$

Setzt man die S. 262 und 263 bereits gefundenen Werte von S_{1-5} und S_{2-5} in Gleichung 13-15 ein, so ergibt sich:

 $S_{5-a} = + 0,165U_4 + 0,067V_1 + 0,017V_2 + 0,017V_4 - 0,165W_1$ $S_{5-b} = + 0,165U_4 + 0,084V_2 + 0,017V_4 - 0,835W_1$ $S_{5v} = -1,644U_4 - 0,669V_1 - 0,165V_2 - 0,166V_4 + 1,644W_1$

Knoten 6.

VI.
$$S_{6-2}\left(\frac{2,0}{20,1}u - \frac{19,9}{20,1}v - \frac{2,0}{20,1}w\right) + S_{6-3}\left(\frac{10,1}{22,4}u - \frac{19,9}{22,4}v - \frac{2,0}{22,4}w\right) - S_{6-\delta} \cdot w + S_{6-c} \cdot u + S_{6v} \cdot v = 0.$$

Knoten 7.

VII.
$$S_{7-3}\left(-\frac{2,0}{20,1}u - \frac{19,9}{20,1}v - \frac{2,0}{20,1}w\right) + S_{7-4}\left(-\frac{2,0}{22,4}u - \frac{19,9}{22,4}v\right)$$
$$-\frac{10,1}{22,4}w\right) - S_{7-c} \cdot u - S_{7-d} \cdot w + S_{7v} \cdot v = 0$$

Dritter Abschnitt. Innere Kräfte der Stabwerke.

Knoten 8.
VIII.
$$S_{8-4}\left(-\frac{2,0}{20,1}u - \frac{19,9}{20,1}v + \frac{2,0}{20,1}w\right) + S_{8-1}\left(-\frac{10,1}{22,4}u - \frac{19,9}{22,4}v + \frac{2,0}{22,4}w\right) + S_{8-d} \cdot w - S_{8-a} \cdot u + S_{8v} \cdot v = 0.$$

Wenn man auf die letzten drei allgemeinen Gleichungen in gleicher Weise, wie bei Knoten 5 geschehen, die Sonderfälle anwendet, so erhält man schließlich:

Aus Gleichung VI:

16.
$$S_{6-\delta} = -\frac{2,0}{20,1} S_{6-2} - \frac{2,0}{22,4} \cdot S_{6-3}$$

17. $S_{6-c} = -\frac{2,0}{20,1} S_{6-2} - \frac{10,1}{22,4} \cdot S_{6-3}$
18. $S_{6v} = +\frac{19,9}{20,1} S_{6-2} + \frac{19,9}{22,4} \cdot S_{6-3}$

In Verbindung mit den Werten für S_{2-6} und S_{3-6} gibt das:

$$S_{6-b} = + 0,017V_1 + 0,067V_2 + 0,017V_3 + 0,165W_1$$

$$S_{6-c} = + 0,017 V_1 + 0,084 V_3 + 0,165 W_1$$

 $S_{6v} = -0,166 V_1 - 0,669 V_2 - 0,165 V_3 - 1,644 W_1$. Aus Gleichung VII:

19.
$$S_{7-c} = -\frac{2,0}{20,1} \cdot S_{7-3} - \frac{2,0}{22,4} \cdot S_{7-4}$$

20. $S_{7-d} = -\frac{2,0}{20,1} \cdot S_{7-3} - \frac{10,1}{22,4} \cdot S_{7-4}$
21. $S_{7\nu} = +\frac{19,9}{20,1} \cdot S_{7-3} + \frac{19,9}{22,4} \cdot S_{7-4}$.

Oder nach erfolgter Einsetzung der Werte von S_{3-7} und S_{4-7} :

$$S_{7-c} = + 0.017 V_2 + 0.067 V_3 + 0.017 V_4 + 0.165 W_4$$

$$S_{7-d} = + 0.017 V_2 + 0.084 V_4 + 0.835 W_4$$

 $S_{7v} = -0,166 V_2 - 0,669 V_3 - 0,165 V_4 - 1,644 W_4$. Aus Gleichung VIII:

22.
$$S_{8-d} = -\frac{2,0}{20,1} \cdot S_{8-4} - \frac{2,0}{22,4} \cdot S_{8-1}$$

23. $S_{8-a} = -\frac{2,0}{20,1} \cdot S_{8-4} - \frac{10,1}{22,4} \cdot S_{8-1}$
24. $S_{8v} = +\frac{19,9}{20,1} \cdot S_{8-4} + \frac{19,9}{22,4} \cdot S_{8-1}$.

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 267

Endlich nach erfolgter Verbindung mit den Werten von S_{4-8} und S_{1-8} : $S_{8-d} = -0,165 U_4 + 0,017 V_1 + 0,017 V_3 + 0,067 V_4 - 0,165 W_4$ $S_{8-a} = -0,835 U_4 + 0,084 V_1 + 0,017 V_3 - 0,165 W_4$ $S_{8v} = +1,644 U_4 - 0,165 V_1 - 0,166 V_3 - 0,669 V_4 + 1,644 W_4$.

Die einfachste Art der Nachprüfung obiger Ergebnisse besteht wohl darin, daß man untersucht, ob die algebraische Summe der berechneten Stützenkräfte in den Richtungen der Lasten U, V, W mit den gegebenen Lastgrößen übereinstimmt. Nachfolgende Tabelle erweist, daß danach die gefundenen Stabkräfte richtig berechnet sind.

	U_4	Vı	V_2	V ₃	V ₄	WI	W4
$+ S_{5-a}$	+ 0,165	+ 0,067	+ 0,017	-	+ 0,017	- 0,165	
— S _{8—a}	+ 0,835	- 0,084	-	-0,017		-	+ 0,165
+ S6-c	-	+ 0,017	-	+ 0,084	-	+ 0,165	-
— S7—c	-	-	- 0,017	- 0,067	- 0,017	-	-0,165
	+ 1,000	0	0	0	0	0	0

1. Stützenstabkräfte in der Richtung von U_4 .

	U_4	V_{I}	V_2	V ₃	V ₄	Wı	W_4
- S50	+ 1,644	+ 0,669	+ 0,165	-	+ 0,166	— 1,644	-
— S6v	-	+ 0,166	+ 0,669	+0,165	-	+ 1,644	-
- S70	-	-	+ 0,166	+ 0,669	+ 0,165	-	+ 1,644
— S8v	— 1,644	+ 0,165	-	+ 0,166	+ 0,669	-	- 1,644
	0	+ 1,000	+ 1,000	+ 1,000	+ 1,000	0	0

2. Stützenstabkräfte in der Richtung von V_x bis V_4 .

3. Stützenstabkräfte in der Richtung von W, und W.

	U_4	VI	V_2	V ₃	V ₄	Wı	W ₄
— S ₅ —ð	- 0,165	-	- 0,084	-	- 0,017	+ 0,835	-
+ S6-0	-	+ 0,017	+ 0,067	+ 0,017	-	+ 0,165	-
— S8—d	+ 0,165	-0,017	-	-0,017	- 0,067	-	+ 0,165
$+S_{7-d}$	-	-	+ 0,017	-	+ 0,084	-	+ 0,835
	0	0	0	0	0	+ 1,000	+ 1,000

87. Vorzüge des Verfahrens von Mohr¹.

Ein Hauptvorzug des Verfahrens liegt in der Möglichkeit, ohne Anwendung besonderer Mittel auch den Einfluß veränderlicher Knotenlasten auf jede einzelne Stabkraft angeben zu können. Zu dem Zwecke ist es nur notwendig, in jedem Knoten drei Lasten U, V, W anzunehmen, deren Richtungen mit den Verschiebungsrichtungen u, v, w zusammenfallen. Die Art der Aufstellung der Gleichungen wird dadurch weder verändert noch erschwert. Ein solcher allegemeiner Belastungsfall läßt sich ohne weiteres auf jeden beliebigen anderen Fall zurückführen. Man braucht nur den in dem Sonderfalle nicht vorhandenen Teil der Lasten U, V, W gleich Null zu setzen, wodurch die betreffenden Glieder in den allgemeinen Gleichungen verschwinden.

Beim Verfahren von HENNEBERG ist die Berücksichtigung des Einflusses veränderlicher Lasten weit umständlicher durchzuführen. Man müßte dann für *jeden Knoten drei Kraftecke* zeichnen: für U, V und W je besonders; ebenso müßte dies bei dem gewöhnlichen graphischen Verfahren (§ 11) geschehen.

Auch im Vergleich mit dem Verfahren, eine Stabkraft X mit Hilfe der Verschiebungen einer zwangläufigen Kette zu bestimmen (§ 12), bietet das Verfahren von MOHR große Vorteile, weil es die Berechnung einer wirklichen Verschiebung nicht nötig macht. Denn die Grundlagen seiner Rechnungen werden, wie in den vorhergehenden Beispielen gezeigt, allein aus den für jeden Knoten dreimal willkürlich anzunehmenden Verschiebungen gewonnen. In der Ebene gestaltet sich zwar die rechnerische oder zeichnerische Darstellung von Verschiebungen ziemlich einfach (82), anders aber im Raume, wo ihre Ermittelung bekanntlich eine umständliche ist (83). Überhaupt müssen die graphischen Methoden im Raume auf ein vergleichsweise viel enger begrenztes Anwendungsgebiet beschränkt bleiben, als in der Ebene. Das wurde bereits unter 43 gesagt.

Nach obigem verzichte ich darauf, im vorliegenden Bande Berechnungsarten von Raumfachwerken vorzuführen, deren Grundlage die Ermittelung von wirklichen Verschiebungen bildet. Nach meiner Meinung ist das rechnerische Verfahren von MOHR unter den bisher bekannt gewordenen anderen Berechnungsarten² das einfachste und das für die Anwendung am meisten zu empfehlende.

^I Vergl. die Anmerkung auf S. 255.

² Föppl, Über das räumliche Fachwerk. Schweizer. Bauzeitung 1888. Bd. 11. — HECKER, Über Fachwerk im Raume. Zeitschrift für Bauwesen 1888. — Föppl, Das Fachwerk im Raume. 1892. — MÜLLER-Breslau, Beitrag zur Theorie des räum-
§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 260

88. Zweites Zahlenbeispiel.

Das in den Fig. 269—70 dargestellte Gratfachwerk besitzt 8 Knoten mit zusammen 24 Stäben, einschließlich der Stützenstäbe. In den Knoten 2, 4 und 6 soll das Fachwerk nur lotrechte Stützendrücke auf-

Fig. 269-270.

nehmen, weshalb die Stützen, wie diese sonst auch *konstruktiv* ausgebildet sein mögen, *statisch* am einfachsten durch lotrechte Stützenstäbe veranschaulicht werden. Die Stützpunkte der Knoten 3, 7 und 8 sollen konstruktiv derart geführt werden, daß ihnen nur eine zwangläufige

lichen Fachwerks. 1892. — ZIMMERMANN, Über Raumfachwerke. 1902. Vergl. hierzu auch Zentralblatt der Bauverw. 1901, S. 209 und 1902, S. 37. — Müller-Breslau, Über räumliche Fachwerke. Zentralblatt der Bauverw. 1902 und 1903. Verschiebung in wagerechter Ebene gestattet ist. Statisch wird diese Art der Stützung zweckmäßig durch eine aus zwei Stäben (einen lotrechten und einen wagerechten) bestehende Pendelstütze (**20**a) dargestellt. Die Zahl der Stützenstäbe beträgt danach 9. Die drei wagerechten Stäbe müssen derart gestellt werden, daß eine Bewegung des starren Stabwerks (und besonders also der starren Ebene des unteren Ringes) nach keiner Richtung hin möglich ist. Deshalb dürfen die drei Stäbe sich nicht in einem Punkte schneiden (**22**). Projektionslängen des Grundrisses und Aufrisses und Belastungen U, V, W, sind in den Fig. 269–270 eingeschrieben.

Wollte man die 9 Stützenkräfte aus dem Gleichgewichtszustande der äußeren Kräfte des Fachwerks berechnen, so reichten dazu die sechs Gleichgewichts-Bedingungen nicht aus. Einfacher erscheint es daher, die Stützenkräfte in gleicher Art zu berechnen, wie es im ersten Zahlenbeispiel geschehen ist, obwohl es ja auch möglich wäre, erst nur die eigentlichen Stabkräfte — 15 an der Zahl — nach dem Verfahren von MOHR zu berechnen, und schließlich die 9 Stützenkräfte nach irgend einem anderen Verfahren zu ermitteln.

Es werden *mindestens zwei Laststäbe* einzuführen sein, um vorläufig in allen Knoten nur drei Unbekannte zu treffen. Deren *Stab*kräfte seien X_a und X_b . Die Reihenfolge, in welcher die einzelnen Knoten zu behandeln sind, steht danach fest.

Knoten 1.

I.
$$S_{r-4}\left(\frac{3,\circ}{\sqrt{4r}}\cdot u + \frac{4,\circ}{\sqrt{4r}}\cdot v - \frac{4,\circ}{\sqrt{4r}}\cdot w\right) + S_{r-3}\left(\frac{3,\circ}{5,\circ}u + \frac{4,\circ}{5,\circ}v\right)$$

+ $S_{r-7}\left(-\frac{3,\circ}{5,\circ}u + \frac{4,\circ}{5,\circ}v\right) - X_a\cdot w + X_b\left(\frac{4,\circ}{\sqrt{32}}\cdot v + \frac{4,\circ}{\sqrt{32}}\cdot w\right)$
+ $U_r\cdot u + V_r\cdot v = \circ.$

. . . .

	Das gibt:
I. Fall: $3,0u + 4,0v - 4,0w = \sqrt{41}$	u = o
3,0u + 4,0v = 0	v = o
$-3,\circ u+4,\circ v = \circ$	w = - 1,601
2. Fall: $3,0u + 4,0v - 4,0w = 0$	u = + 0,833
3,0u + 4,0v = 5,0	v = + 0,625
$-3,\circ u+4,\circ v = \circ$	w = + 1,250
3. Fall: $3,0u + 4,0v - 4,0w = 0$	u = -0,833
3,0u + 4,0v = 0	v = + 0,625
$-3,0^{u}+4,0^{u} = 5$	w = 0

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 271

	Daraus f	olgt:				
	1. S1	4 = - I,	$for X_a + i$	1,132 Xb		
	2. S.	$t_{-3} = + 1,$	$250 X_a - 2$	$1,326 X_{\delta}$ —	0,833 <i>U</i> 1 — 0,62	5 V1
	3. S1	-7 = -0,	$442 X_{b} + c$	$0,833 U_{r} - 0$	0,625V1.	
	Knoten 2					
п.	S ₂₋₃	$\left(\frac{3,\circ}{5,\circ}u-\frac{4}{5}\right)$	$\left(\frac{\circ}{\circ}w\right) + S_2$	$-7\left(-\frac{3,0}{5,0}u\right)$	$-\frac{4,\circ}{5,\circ}w$ + S_2	2 . 2
		- 2	$C_{\delta}\left(\frac{4,\circ}{\sqrt{32}}v\right)$	$+\frac{4,\circ}{\sqrt{3^2}}w$ =	= 0.	
				10112 - 1	Das gibt:	
	Ι.	Fall: 3,01	u - 4,0 ze =	= 5,0	u = + 0,833	
		- 3,01	u - 4,020 =	= 0	v = o	
		T. T.	U :	= 0	w = -0,625	
	2.	Fall: 3,0	u — 4,0 w	= 0	u = -0,833	
		- 3,0	u — 4,0 w	= 5,0	v = 0	
		1.02	U	= 0	w = -0,625	
	3.	. Fall: 3,0	u — 4,0 <i>z</i> e	= 0	<i>u</i> = 0	
		- 3,0	u — 4,0 w	= 0	<i>v</i> == 1	
			U	= I	w = o	

4.
$$S_{2\rightarrow3} = -0.442 X_{\delta}$$

5. $S_{2\rightarrow7} = -0.442 X_{\delta}$
6. $S_{2\nu} = +0.707 X_{\delta}$

Dieses Ergebnis hätte man von vornherein aus der besondern Anordnung des Stützknotens 2 ablesen können, unter Beachtung der Zerlegung von X_{δ} nach den drei Stabrichtungen.

Knoten 3.

III.
$$S_{3-2}\left(-\frac{3,\circ}{5,\circ}u + \frac{4,\circ}{5,\circ}w\right) + S_{3-x}\left(-\frac{3,\circ}{5,\circ}u - \frac{4,\circ}{5,\circ}v\right) - S_{3-4} \cdot w$$

+ $S_{3v} \cdot v + S_{3w}\left(+\frac{3,\circ}{5,\circ}u - \frac{4,\circ}{5,\circ}w\right) = \circ.$

			Das gibt:
I.	Fall:	w = 1	u = + 1,333
		v = o	v = 0
	+	$3, \circ u - 4, \circ w = \circ$	w = I
2.	Fall:	w = 0	u = 0
		v = 1	v == i
-	+	$3, \circ u - 4, \circ w = \circ$	w = o
3.	Fall:	w = 0	u = + 1,667
		<i>v</i> = 0	v == 0
	+	3,0u - 4,0w = 5,0	<i>w</i> = 0

Daraus:

7.
$$S_{2\rightarrow3} = -0,800 S_{3\rightarrow1}$$

8. $S_{3\nu} = +0,800 S_{3\rightarrow1}$
9. $S_{3\nu} = S_{3\rightarrow2} + S_{3\rightarrow1}$.

In Verbindung mit 2 und 4 gibt das:

7a. $S_{3-4} = -1,000 X_a + 1,061 X_b + 0,667 U_r + 0,500 V_r$ 8a. $S_{3v} = +1,000 X_a - 1,061 X_b - 0,667 U_r - 0,500 V_r$ 9a. $S_{3u} = +1,250 X_a - 1,768 X_b - 0,833 U_r - 0,625 V_r$ Knoten 4.

IV.
$$S_{4-3} \cdot w + S_{4-1} \left(-\frac{3 \circ}{\sqrt{41}} u - \frac{4 \circ}{\sqrt{41}} v + \frac{4 \circ}{\sqrt{41}} w \right)$$

$$+ S_{4-5} \left(-\frac{3,\circ}{5,\circ} u - \frac{4,\circ}{5,\circ} v \right) + S_{4-8} \left(-\frac{3,\circ}{5,\circ} u - \frac{4,\circ}{5,\circ} v \right) + S_{4v} \cdot v = \circ.$$

0		cr	-1	5	+	
ai	5	g	11		6	

1. Fall: $-3,0u - 4,0v = 5,0$	u = -	- 1,667
$-3, \circ u - 4, \circ w = \circ$	v =	0
<i>v</i> = 0	20 = +	- 1,250
2. Fall: $-3, 0u - 4, 0v = 0$	u =	0
-3,0u-4,0w=5,0	v ==	0
v == o ·	<i>zv</i> = −	- 1,250
3. Fall: $-3, \circ u - 4, \circ v = 0$	u = -	- 1,333
$-3,\circ u - 4,\circ w = \circ$	v =	I
$v = \mathbf{I}$	w = +	- I

Daraus:

10.
$$S_{4\rightarrow5} = -$$
 1,250 $S_{4\rightarrow3} -$ 1,562 $S_{4\rightarrow1}$
11. $S_{4\rightarrow8} = +$ 1,250 $S_{4\rightarrow3} +$ 0,781 $S_{4\rightarrow1}$
12. $S_{4\nu} = -$ 1,000 $S_{4\rightarrow3} -$ 0,625 $S_{4\rightarrow1}$.

Aus der Verbindung mit 7a und 1 folgt:

10a. $S_{4-5} = +$ 3,750 $X_a - 3,094 X_b - 0,833 U_x - 0,625 V_x$ 11a. $S_{4-8} = -2,500 X_a + 2,210 X_b + 0,833 U_x + 0,625 V_x$ 12a. $S_{4v} = +2,000 X_a - 1,768 X_b - 0,667 U_x - 0,500 V_x$.

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 273

Knoten 5.

$$V. \quad S_{5-4} \left(\frac{3,\circ}{5,\circ} u + \frac{4,\circ}{5,\circ} v \right) + S_{5-7} \left(-\frac{3,\circ}{\sqrt{41}} u + \frac{4,\circ}{\sqrt{41}} v + \frac{4,\circ}{\sqrt{41}} w \right) \\ + S_{5-6} \left(-\frac{3,\circ}{5,\circ} u + \frac{4,\circ}{5,\circ} v \right) + S_{5-8} \left(\frac{4,\circ}{\sqrt{32}} v - \frac{4,\circ}{\sqrt{32}} w \right) + X_a \cdot w \\ + U_5 \cdot u + V_5 \cdot v + W_5 \cdot w = \circ.$$

					Das gibt:
Ι.	Fall:	- 3,0 u +	4,00 + 4,000	$= \sqrt{41}$	u = + 2,134
		- 3,0u +	4,00	= 0	v = + 1,601
		+ 4,00 -	4,070	= 0	w = + 1,601
2.	Fall:	- 3,0 <i>u</i> +	4,00 + 4,000	= 0	u = -3,333
		- 3,0 u +	4,00	= 5,0	v = -1,250
		+ 4,00 -	4,0 70	= 0	w = - 1,250
3.	Fall:	- 3,0 <i>u</i> +	4,0 2 + 4,0 20	= 0	u = + 1,886
		- 3,0 1 +	4,00	= 0	v = + 1,414
		+ 4,00 -	4,070	$= V_{32}$	w = o

Daraus:

13.
$$S_{5-7} = -2,561 S_{5-4} - 1,601 X_a - 2,134 U_5 - 1,601 V_5 - 1,601 W_5$$

14.
$$S_{5-6} = +$$
 3,000 $S_{5-4} + 1,250 X_a + 3,333 U_5 + 1,250 V_5 + 1,250 W_5$

15.
$$S_{5-8} = -2,263 S_{5-4} - 1,886 U_5 - 1,414 V_5$$

In Verbindung mit 10a:

13a.
$$S_{5-7} = -11,205 X_a + 7,923 X_b + 2,134 U_1 - 2,134 U_5 + 1,601 V_1 - 1,601 V_5 - 1,601 W_5$$

14a.
$$S_{5-6} = +$$
 12,500 $X_a - 9,281 X_b - 2,500 U_r + 3,333 U_5 - 1,875 V_r + 1,250 V_5 + 1,250 W_5$

15a.
$$S_{5-8} = -$$
 8,485 $X_a + 7,000 X_b + 1,886 U_1 - 1,886 U_5 + 1,414 V_1 - 1,414 V_5$.

Knoten 6.

VI.
$$S_{6-5}\left(+\frac{3,\circ}{5,\circ}u - \frac{4,\circ}{5,\circ}v\right) + S_{6-7} \cdot w + S_{6-8}\left(+\frac{3,\circ}{5,\circ}u - \frac{4,\circ}{5,\circ}w\right) + S_{6w} \cdot v = \circ.$$

Mehrtens, Statik der Baukonstruktionen, I.

D

.1. . .

						Das	gibt	•
1. Fall:		20	=	I	24	=	+ 1	,333
	+ 3,02 -	4,020	=	0	v	=	0	
		υ	=	0	w	=	I	
2. Fall:		w	-	0	U	=	+ 1	,667
	+ 3,0 11 -	4,000	=	5,0	U	=	0	
	a set a st	V	=	0	<i>ze</i>	=	0	
3. Fall:		20	=	0	U	=	0	
	+ 3,0 11	4,070	=	0	V	=	I	
		V	=	I	ze	=	0	

Daraus:

16. $S_{6-7} = -0,800 S_{6-5},$ 17. $S_{6-8} = -S_{6-5}$, 18. $S_{6v} = + 0,800 S_{6-5}$

und durch Verbindung mit 14a:

16a.
$$S_{6-7} = -$$
 10,000 $X_a + 7,425 X_b + 2,000 U_1 - 2,667 U_5 + 1,500 V_1 - 1,000 V_5 - 1,000 W_5$

17a.
$$S_{6-8} = -12,500 X_a + 9,281 X_b + 2,500 U_1 - 3,333 U_5 + 1,875 V_1 - 1,250 V_5 - 1,250 W_5$$

18a.
$$S_{6v} = +$$
 10,000 $X_a - 7,425 X_b - 2,000 U_1 + 2,667 U_5 - 1,500 V_1 + 1,000 V_5 + 1,000 W_5$.

Knoten 7.

VII.
$$-S_{7-6} \cdot w + S_{7-5} \left(+ \frac{3,0}{\sqrt{41}} u - \frac{4,0}{\sqrt{41}} v - \frac{4,0}{\sqrt{41}} w \right)$$

$$+S_{7-r}\left(+\frac{3,\circ}{5,\circ}u-\frac{4,\circ}{5,\circ}v\right)+S_{7-2}\left(+\frac{3,\circ}{5,\circ}u+\frac{4,\circ}{5,\circ}v\right)+S_{7v}\cdot v=o.$$

Th					
1 10	100	001	21	н.	
Di	15	21	\mathbf{D}	ι.	
		0-	-	-	-

1. Fall: $+3,0u + 4,0w = 5,0$	u = + 1,667
w = 0	v = o
<i>v</i> = 0	w = 0
2. Fall: $+3,0u + 4,0w = 0$	u = -1,333
w = 1	v = o
<i>v</i> == 0	<i>w</i> = 1
3. Fall: $+3,0u + 4,0w = 0$	u = 0
<i>w</i> = 0	v = 1
<i>v</i> = 1	w = 0

§ 13. Berechnung der Raumfachwerke nach dem Verfahren von Mohr. 275

Daraus: 19. $S_{7-2} = -0.781 S_{7-5} - S_{7-1}$ $S_{7w} = + S_{7-6} + 1,250 S_{7-5} + 0,800 S_{7-1}$ 20. 21. $S_{77} = + 0.625 S_{7-5} + 0.800 S_{7-1}$. Verbunden mit 3, 13a und 16a: 19a. $S_{7-2} = + 8,750 X_a - 5,745 X_b - 2,500 U_c + 1,667 U_s$ - 0,625 V_1 + 1,250 V_5 + 1,250 W_5 $S_{7w} = -24,000 X_a + 16,970 X_b + 5,333 U_r - 5,333 U_s$ 20a. + 3,000 V_1 - 3,000 V_5 - 3,000 W_5 21a. $S_{7v} = -7,000 X_a + 4,596 X_b + 2,000 U_r - 1,333 U_s$ + 0,500 V_{1} - 1,000 V_{5} - 1,000 W_{5} . Knoten 8. $S_{8-4}\left(+\frac{3,0}{5,0}u+\frac{4,0}{5,0}w\right)+S_{8-5}\left(-\frac{4,0}{\sqrt{32}}v+\frac{4,0}{\sqrt{32}}w\right)+$ VIII. $S_{8-6}\left(-\frac{3,\circ}{5,\circ}u+\frac{4,\circ}{5,\circ}w\right)+S_{8w}\left(-\frac{3,\circ}{5,\circ}u-\frac{4,\circ}{5,\circ}w\right)+S_{8v}\cdot v=\circ.$ Das gibt: I. Fall: -3,0u + 4,0w = 5,0u = -0,833v = 0 -3,0u - 4,0w = 0w = + 0,625v = 02. Fall: -3,0u + 4,0w = 0u = -0,833-3,0u - 4,0w = 5,0v =0 w = -0,625v = 03. Fall: -3,0u + 4,0w = 0u = 0-3,0u - 4,0w = 0v = 1v == I 201 == 0

Daraus:

22.
$$S_{8-6} = -0,442 S_{8-6}$$

23.
$$S_{8\pi\nu} = + S_{8-4} + 0,442 S_{8-4}$$

24.
$$S_{8v} = + 0,707 S_{8-s}$$

und in Verbindung mit 11a und 15a:

22a.
$$S_{8-6} = +$$
 3,750 $X_a - 3,093 X_b - 0,833 U_1 + 0,833 U_5 - 0,625 V_1 + 0,625 V_5$

23a.
$$S_{8w} = -6,250 X_a + 5,303 X_b + 1,667 U_r - 0,833 U_5 + 1,250 V_r - 0,625 V_5$$

24a.
$$S_{8v} = -6,000 X_a + 4,950 X_b + 1,333 U_1 - 1,333 U_5 + 1,000 V_1 - 1,000 V_5.$$

Die Stabkräfte X_a und X_b ergeben sich aus den vier Gleichungen 5, 19a, 17a und 22a, worin außer X_a und X_b nur die Unbekannten $S_{2-7} = S_{7-2}$ und $S_{6-8} = S_{8-6}$ vorkommen:

$$X_{a} = + 0,600 U_{r} + 0,067 U_{5} - 0,250 V_{r} - 0,250 V_{5} - 0,400 W_{5},$$

$$X_{b} = + 0,519 U_{r} + 0,424 U_{5} - 0,530 V_{r} - 0,177 V_{5} - 0,424 W_{5}.$$

Setzt man diese beiden Werte in die übrigen Gleichungen ein, so erhält man daraus die noch zu berechnenden 22 Stabkräfte.

Stab	U_{r}	U_5	VI	V ₅	W_5
1-5 (Xa)	+ 0,600	+ 0,067	- 0,250	— 0,250	- 0,400
$1-2(X_{\delta})$	+ 0,519	+ 0,424	- 0,530	- 0,177	- 0,424
1-3	0,771	- 0,479	-0,234	- 0,078	+ 0,063
1-7	+ 0,604	- 0,188	- 0,391	+ 0,078	+ 0,188
2-3	- 0,229	- 0,188	+ 0,234	+ 0,078	+ 0,188
2-7	- 0,229	- 0,188	+ 0,234	+ 0,078	+ 0,188
3-4	+ 0,617	+ 0,383	+ 0,187	+ 0,063	— 0,050
4— I	- 0,374	+ 0,374	- 0,200	+ 0,200	+ 0,160
4-5	-0,187	— 1,062	+ 0,078	-0,391	-0,187
48	+ 0,479	+ 0,771	+ 0,078	+ 0,234	+ 0,063
5-6	+ 0,188	+ 0,230	— 0,078	— 0,234	+ 0,188
5-7	- 0,480	+ 0,480	+ 0,200	- 0,200	- 0,480
5—8	+ 0,424	+ 0,518	- 0,177	- 0,531	- 0,424
6-7	- 0,150	- 0,184	+ 0,063	+ 0,187	- 0,150
6—8	- 0,188	- 0,230	+ 0,078	+ 0,234	- 0,188
20	+ 0,367	+ 0,300	0,375	- 0,125	- 0,300
30	-0,617	- 0,383	- 0,187	— 0,063	+ 0,050
40	- 0,383	-0,617	— 0,063	- 0,187	- 0,050
8 v	+ 0,300	+ 0,367	- 0,125	- 0,375	+ 0,300
60	+ 0,150	+ 0,183	— 0,063	— 0,187	+ 0,150
70	+ 0,183	+ 0,150	-0,187	— 0,063	-0,150
3 20	— I,000	- 0,667	-	-	+ 0,250
8 70	+ 0,667	+ 1,000		100 m	+ 0,250
7 20	- 0,267	+ 0,267	<u> </u>		- 0,600

Tabelle der Stabkräfte.

Die Nachprüfung auf die Richtigkeit der Berechnung kann in gleicher Weise erfolgen, wie beim ersten Zahlenbeispiel ausgeführt worden ist.

Vierter Abschnitt. Spannungen in geraden Stäben.

Die in der Konstruktion vorkommenden Grundformen der Baustoffe, sowie deren wichtigste physikalisch-technischen Eigenschaften, als Elastizität und Festigkeit, sind bereits im Eingange des I. Abschnittes besprochen worden. Dabei wurden im allgemeinen auch die verschiedenen Arten der Festigkeit und die Beziehungen zwischen Formänderungen und Spannungen, wie sie sich nach dem Elastizitätsgesetz darstellen, erläutert.

Nachfolgend werden die in § 1 gegebenen Ausführungen ergänzt und auf die wichtigsten der bei Konstruktionen vorkommenden besonderen Belastungsfälle ausgedehnt, wobei vorläufig nur gerade Stäbe berücksichtigt werden, einerseits weil diese in den Konstruktionen vorherrschen und anderseits weil das Wesentliche in der Berechnung der Spannungen krummer Stäbe — wie in II. Bande dargelegt werden soil sich auf die Berechnung gerader Stäbe zurückführen läßt.

Im II. Bande wird, im Zusammenhange mit der Besprechung der Formänderungen der vollwandigen und gegliederten Träger, auch eine ausführliche Behandlung der Formänderungen und der Formänderungsarbeit gerader und krummer Stäbe folgen.

§ 14. Darstellung der Flächenmomente ebener Querschnitte.

Bei der Berechnung der Spannungen spielen die Flächenmomente ebener Querschnitte eine wichtige Rolle. Das sind die *statischen Momente:* $S = \int dF \cdot x \text{ oder } \int dF \cdot y$, die *Trägheitsmomente* $J_x = \int dF \cdot y^2$ oder $J_y = \int dF \cdot x^2$ und das *Zentrifugalmoment* $J_{xy} = \int dF \cdot x \cdot y$, alle im allgemeinen bezogen auf zwei beliebige Achsen XY des Querschnittes. Vierter Abschnitt. Spannungen in geraden Stäben.

Besonders häufig verwendet man zwei rechtwinklig aufeinander stehende, durch den Schwerpunkt verlaufende, sog. Schwerachsen.

Es handelt sich hier besonders um die analytischen Beziehungen der Flächenmomente zueinander und sodann um die rechnerische oder graphische Darstellung der einzelnen Flächengrößen. Bei Anwendung von Instrumenten empfiehlt sich der Gebrauch eines *Polarplanimeters*.

89. Beziehungen zwischen Trägheits- und Zentrifugalmomenten¹.

Für ein rechtwinkliges Achsenkreuz XY (Fig. 271) seien die Träg-

Fig. 271.

heitsmomente I_x und I_y das Zentrifugalund moment J_{xy} einer Fläche bekannt. Dann wird es sich darum handeln festzustellen, in welcher Beziehung zu den gegebenen Flächengrößen die Trägheitsmomente Ju, In und das Zentrifugalmoment $I_{\mu\nu}$ stehen, wenn diese Größen auf ein Achsenkreuz UV bezogen werden, das um den Winkel α gegen das Achsenkreuz XY verdreht worden ist.

Man erhält für einen Punkt x, y

$$u = x \cos \alpha + y \sin \alpha$$
$$y = -x \sin \alpha + y \cos \alpha$$

Daraus:

$$J_{u} = \int v^{2} dF = \int (y \cos \alpha - x \sin \alpha)^{2} dF$$

oder

$$J_{u} = \cos^{2} \alpha \int y^{2} dF + \sin^{2} \alpha \int x^{2} dF - 2 \sin \alpha \cos \alpha \int xy dF.$$

¹ MOHR, Über die Bestimmung und die graphische Darstellung von Trägheitsmomenten ebener Flächen. Civilingenieur, 1887.

Das gibt:

$$J_u = \cos^2 \alpha J_x + \sin^2 \alpha J_y - \sin 2 \alpha J_{xy} \,. \tag{54}$$

Auf gleichem Wege erhält man:

$$J_v = \sin^2 \alpha J_x + \cos^2 \alpha J_y + \sin 2 \alpha J_{xy}$$
(55)

und durch Addition der Gleichungen (54) und (55)

$$J_u + J_v = J_x + J_y. \tag{56}$$

Für polare Koordinaten wandelt sich die Summe $J_x + J_y$ um in:

$$J_x + J_y = \int \varrho^2 \sin^2 \varphi \, dF + \int \varrho^2 \cos^2 \varphi \, dF = \int \varrho^2 \, dF.$$

 $I_{p} = \int \varrho^{2} dF$ wird als das polare Irägheitsmoment bezeichnet. In

Worten:

Für alle rechtwinkligen Achsenkreuze desselben Ursprunges ist die Summe der Trägheitsmomente eine unveränderliche. Sie ist gleich dem polaren Trägheitsmomente J_p . Für das Zentrifugalmoment J_{uv} findet man in gleicher Weise:

$$J_{uv} = \int uv \, dF = \int (x \cos \alpha + y \sin \alpha) \, (-x \sin \alpha + y \cos \alpha) \, dF$$

oder

$$J_{uv} = \left(\frac{J_x - J_y}{2}\right) \sin 2\alpha + J_{xy} \cdot \cos 2\alpha.$$
 (57)

Für den besondern Fall $\alpha = 45^{\circ}$ erhält man:

$$J_{u} = \frac{1}{2} \left(J_{x} + J_{y} \right) - J_{xy}$$

$$J_{v} = \frac{1}{2} \left(J_{x} + J_{y} \right) + J_{xy}$$

$$J_{uv} = \frac{1}{2} \left(J_{x} - J_{y} \right) \cdot$$
(58)

Die Gleichungen können benutzt werden, um ein Zentrifugalmoment J_{xy} aus drei Trägheitsmomenten J_x , J_y und J_u zu berechnen.

90. Die Grenzwerte der Trägheitsmomente.

Es fragt sich, für welchen Winkel α des Achsenkreuzes UV (Fig. 271) J_u und J_v ihren Grenzwert erreichen. Wir bestimmen deshalb zuerst die Abgeleitete von J_{μ} , genommen nach der Veränderlichen α und erhalten aus Gl. (54)

Vierter Abschnitt. Spannungen in geraden Stäben.

$$\frac{\partial J_u}{\partial \alpha} = -2 \cos \alpha \sin \alpha J_x + 2 \sin \alpha \cos \alpha J_y - 2 \cos 2 \alpha J_{xy}$$

und daraus

$$\frac{\partial J_u}{\partial \alpha} = (J_y - J_x) \sin 2\alpha - 2 \cos 2\alpha J_{xy}.$$

Das gibt aber nach Gl. (57):

$$\frac{\partial J_u}{\partial \alpha} = - 2 J_{uv}.$$

Die Grenzwerte von Ju treten also ein für

$$\frac{\partial J_u}{\partial \alpha} = -2 J_{uv} = 0$$
, d. h.:

Das Trägheitmoment erreicht seine Grenzwerte für diejenige Lage seiner Achse, für welche das zugehörige Zentrifugalmoment verschwindet. Die Achsen heißen die Hauptachsen, die darauf bezogenen Grenzwerte die Hauptträgheitsmomente.

Weiterhin (unter 94) wird dargelegt werden, daß es außer den Hauptachsen noch eine Reihe von anderen, sog. *zugeordneten* Achsen gibt, für welche das Zentrifugalmoment verschwindet.

Die Lage der Hauptachsen findet man aus Gl. (57), wenn man J_{uv} darin gleich Null setzt und nach α auflöst. Man erhält dann für den Winkel α_o , den eine Hauptachse mit der XX einschließt:

$$\tan g \, 2 \, \alpha_o = \frac{2 \int_{xy}}{\int_y - \int_x} \, . \tag{59}$$

Es wird immer zwei zwischen Null und 180° liegende Winkel α_{o} geben, die der Gl. (59) entsprechen und von denen einer um 90° größer ist als der andere. Für welche der beiden, danach senkrecht aufeinanderstehenden Hauptachsen der größte oder der kleinste Grenzwert eintritt, entscheidet in bekannter Weise der zweite Differentialquotient. Ist einer der Grenzwerte danach als der größte erkannt, so ist der andere der kleinste aller überhaupt möglichen Werte, weil bei steter Drehung der U-Achse um 360° auch J_u sich stetig ändert.

In der Festigkeitslehre haben hauptsächlich diejenigen Hauptachsen Bedeutung, die zugleich Schwerachsen sind. Daraus folgen die Sätze:

Für jeden Querschnitt gibt es zwei senkrecht aufeinanderstehende Schwerachsen, für welche das Zentrifugalmoment verschwindet. Hat der Querschnitt eine Symmetrieachse, so wird für diese das Zentrifugalmoment gleich Null, also ist jede Symmetrieachse eine Hauptachse.

Setzt man den Wert von tang $2\alpha_o$ aus Gl. (59) in die Gl. (54) u. (55) ein, so erhält man für die Hauptträgheitsmomente J_a und J_b , bezogen auf das Hauptachsenkreuz BA:

$$J_{a} = \frac{\mathbf{I}}{2} (J_{x} + J_{y}) + \frac{\mathbf{I}}{2} \sqrt{(J_{x} - J_{y})^{2} + 4J_{xy}^{2}}$$

$$J_{b} = \frac{\mathbf{I}}{2} (J_{x} + J_{y}) - \frac{\mathbf{I}}{2} \sqrt{(J_{x} - J_{y})^{2} + 4J_{xy}^{2}}.$$
(60)

Daraus erhält man schließlich

und

$$J_a + J_b = J_x + J_y$$

$$J_a - J_b = \frac{J_x - J_y}{\cos 2\alpha} \cdot$$
(61)

Ferner erhält man aus den Gleichungen (54), (55) und (57) für ein *Haupt-achsen*-Kreuz AB:

$$J_{u} = \cos^{2} \alpha J_{a} + \sin^{2} \alpha J_{b}$$

$$J_{v} = \sin^{2} \alpha J_{a} + \cos^{2} \alpha J_{b}$$

$$J_{uv} = \frac{\mathbf{I}}{2} (J_{a} - J_{b}) \sin 2 \alpha.$$
(62)

gr. Trägheitskreis und Trägheitsschwerpunkt.

In sehr einfacher und durchsichtiger Weise hat MOHR die Beziehungen zwischen Trägheits- und Zentrifugalmomenten mit Hilfe eines sog. Trägheitskreises graphisch dargestellt.

Wir betrachten in Fig. 272 zwei unter beliebigem Winkel gegeneinander geneigte Achsen OX und OY, die in einem Punkte O einer Querschnittsfläche entspringen. Irgend ein Punkt dF der Fläche, im Abstande ϱ von O, habe in Bezug auf diese Achsen die Koordinaten x und y; die Winkel, die der Strahl ϱ mit den Achsen einschließt, seien β und α . Dann lautet der Ausdruck für das Zentrifugalmoment J_{xy}

$$J_{xy} = \int x \cdot y \cdot dF = \int \varrho^2 \sin \alpha \cdot \sin \beta \cdot dF.$$

Man lege durch O einen Kreis von beliebigem Durchmesser 2r dem sog. *Trägheitskreis* — der die Achsen XY in den Punkten A und B schneidet, ferner lege man durch dF einen Strahl, der den Kreis in C trifft. Es berechnet sich dann der senkrechte Ahstand h des Punktes C von der Sehne AB:

$$h = AC \cdot \sin\beta = 2r \cdot \sin\alpha \cdot \sin\beta$$

$$J_{xy} = \int h\left(\frac{\varrho^2 \, d\,F}{2\,r}\right) \cdot$$

Fig. 272.

Der Ausdruck unter dem Integralzeichen läßt sich auffassen als ein statisches Moment der im Punkte C vereinigten Flächenkraft $\frac{\varrho^2 dF}{2r}$ in Bezug auf die Sehne AB. Die Summe aller statischen Momente kann danach gefunden werden, wenn man den *Mittelpunkt* aller Flächenkräfte der verschiedenen Punkte C und dessen Abstand von der ABermittelt. Wird dieser Abstand mit h_{xy} bezeichnet, so ist J_{xy} durch

$$J_{xy} = h_{xy} \int \frac{\varrho^2 dF}{2r} = h_{xy} \frac{J_p}{2r}$$

bestimmt, worin J_P das polare Tragheitsmoment (89) der betrachteten Querschnittsfläche $\int dF = F$ bedeutet. T sei der erwähnte Mittelpunkt der Flächenkräfte. Er ist von MOHR als Trägheitsschwerpunkt bezeichnet worden. Dann ist $\overline{Tm} \perp \overline{AB} = h_{xy}$.

Obiges gilt für jede beliebige Lage der Achsen OX und OY, also auch für die beiden wichtigen Fälle, für welche eine Achse mit der anderen zusammenfällt, sodaß einmal der Kreispunkt B in A und das andere Mal der Kreispunkt A in B zu liegen kommt. Das Zentrifugalmoment geht dann in ein Trägheitsmoment J_x oder J_y über und an Stelle der Kreissehne AB treten die entsprechenden Tangenten in A und B. Der Schwerpunkt T ändert seine Lage nicht, weil diese allein von der Gestalt des Querschnittes und dem Kreisdurchmesser abhängig ist. Daraus folgt

$$J_x = h_x \cdot \frac{J_p}{2r};$$

$$J_y = h_y \cdot \frac{J_p}{2r},$$

wenn h_x und h_y die senkrechten Abstände der betreffenden Tangenten in A und B vom Punkte T bedeuten (Fig. 272). Macht man zweckmäßig

$$J_x + J_y = J_p = 2r,$$

so ergeben sich die geometrischen Beziehungen:

$$J_{xy} = h_{xy}$$

$$J_x = h_x$$

$$J_y = h_y.$$
(63)

Der Trägheitsschwerpunkt T findet sich also aus der Bedingung

$$h_x: h_y: h_{xy} = J_x: J_y: J_{xy}.$$

Um T festzulegen muß man für passende Achsen des Querschnittes vorher zwei Trägheitsmomente und ein Zentrifugalmoment ermitteln.

92. Darstellung der Lage der Hauptachsen und der Hauptträgheitsmomente.

Fig. 273.

Wir benutzen dazu den von Mohr eingeführten Trägheitskreis: Für dazu geeignete Achsen XY werden J_x , J_y und J_{xy} berechnet oder

graphisch ermittelt (**96** und **97**). Bei der Berechnung kann man J_{xy} auch aus J_x , J_y und J_u erhalten (Gl. 57 u. 58). Um J_a und J_b zu erhalten,

legt man zuerst den Trägheitsschwerpunkt T fest. Das geschieht mit Hilfe des Trägheitskreises vom Durchmesser $zr = J_p = J_x + J_y$, wie die Fig. 273 und 274 veranschaulichen. J_x und J_y sind als *positiv* nach den zugehörigen Achsenrichtungen aufzutragen; J_{xy} ist, je nach seinem Vorzeichen, in positiver oder negativer Richtung einzutragen.

Nach den bisherigen Darlegungen sind die Fig. 273 und 274 an sich verständlich.

Fig. 275.

Es wurden aufgetragen:

in der Fig. 273:
in der Fig. 273:
in der Fig. 274:

$$\overline{am} = J_x$$

 $\overline{bm} = J_y$
 $\overline{bm} = J_y$
 $\overline{Tm} = + J_{xy}$
 $\overline{Tm} = + J_{xy}$.

Daraus wurden erhalten

$$BT = J_b$$
$$\overline{AT} = J_a.$$

 J_{ab} ist natürlich Null. Deshalb geht für die Hauptachsen OA und OB die Kreissehne, von welcher aus $h_{ab} = O$ zu messen wäre, in den Durchmesser AB über. J_x , J_y und J_{xy} lassen sich bei Vorhandensein einer Symmetrieachse *mit Hilfe der Hauptachsen* wie folgt darstellen:

Die AA (Fig. 275) sei eine Symmetrieachse des Querschnittes, dadurch wird sie zugleich zu einer Hauptachse. Die zweite Hauptachse BB steht senkrecht zur AA. Man bestimme J_a und J_b und trage deren Summe, die gleich $J_p = J_x + J_y$ ist, als Durchmesser 2r des Trägheitskreises auf. Die Achse XX oder YY kann dann beliebig angenommen werden. Das vom Momentenpol T aus gefüllte Lot \overline{Tm} gibt J_{xy} und dadurch sind auch J_x und J_y durch die Strecken \overline{am} und \overline{bm} bestimmt.

93. Das Zentrifugalmoment.

a. Für Achsen UV, die zu rechtwinklig aufeinanderstehenden Schwerachsen parallel sind (Fig. 276). 1. Die Koordinaten des Schwerpunktes der Fläche F seien x_0 und y_0 . Dann ist

$$J_{uv} = \int uv \, dF = \int (x + x_o) \, (y + y_o) \, dF$$
$$= y_o \int x \, dF + x_o y_o \int dF + \int xy \, dF + x_o \int y \, dF.$$

Weil die statischen Momente $\int y dF$ und $\int x dF$ gleich Null sind, so folgt

$$J_{uv} = J_{xy} + x_{o}y_{o}F.$$
⁽⁶⁴⁾

Wenn eine der Schwerachsen eine Symmetrieachse ist, verschwindet J_{xy} . In diesem Falle ist

$$J_{uv} = x_{\circ} y_{\circ} F. \tag{65}$$

Mit Hilfe der letzten Gleichung läßt sich das Zentrifugalmoment einer Fläche berechnen, die aus Rechtecken zusammengesetzt ist, wie

der in der Fig. 277 dargestellte Querschnitt. Das auf die UV-Achsen bezogene Zentrifugalmoment des Querschnittes ist nach Gl. (65):

 $J_{uv} = -x_1 y_1 f_1 - x_2 y_2 f_2 + x_3 y_3 f_3,$

worin f_1, f_2, f_3 die Flächeninhalte der drei Rechtecke mit den zugehörigen

Fig. 276.

Schwerpunkten s_1, s_2, s_3 und die verschiedenen x, y die Schwerpunktskoordinaten vorstellen.

2. Wenn ein Querschnitt, wie in der Fig. 278 parallel zur U-Achse in Streifen von differentialer Höhe Δv , deren Schwerpunkte alle in einer Geraden liegen, zerlegt werden kann, findet sich eine einfache Beziehung zwischen J_{uv} und J_u . Bezeichnet α den Winkel, den obige Gerade (gg) mit der U-Achse einschließt und α die von ihr auf dieser abgeschnittene Strecke, so ist:

$$J_{uv} = \int uv \, dF = \int (a + v \cot g \, a) \, v \, dF = a \int v \, dF + \cot g \, a \int v^2 \, dF.$$

Das gibt

 $J_{uv} = av_{o}F + \cot \alpha J_{u}.$ (66)

b. Für schiefwinklige Koordinaten. (Fig. 279.) Ursprünglich seien die Flächenmomente auf ein rechtwinkliges Achsenkreuz bezogen worden. An Stelle der X-Achse trete dann eine X'-Achse, die mit der unverändert beibehaltenen Y-Achse den Winkel β einschließt. Die Y-Achse soll für die neuen Koordinaten dann als Y'-Achse bezeichnet werden.

Die schiefwinkligen Koordinaten sind dann:

Daraus findet man leicht:

$$J'_{y} = \frac{J_{y}}{\sin^{2}\beta}$$
$$J'_{xy} = \frac{J_{xy} - J_{y} \cot \beta}{\sin \beta}, \qquad (67)$$

wenn darin J_y und J_{xy} auf rechtwinklige Koordinaten bezogene Flächenmomente sind. Weiter ergibt sich daraus der Satz:

Das auf die schiefwinkligen Achsen X' Y' bezogene Zentrifugalmo-

ment J'_{xy} verschwindet für $\cot \beta = \frac{J_{xy}}{J_y}$.

94. Zugeordnete Achsen, für die das Zentrifugalmoment verschwindet.

a. Darstellung der zugeordneten Achsen. Durch den Schwerpunkt O einer beliebigen Querschnittsfläche F sei der Trägheitskreis gelegt und der Trägheitsschwerpunkt T bestimmt worden (Fig. 280). Legt man dann durch T und das Kreismittel M einen Durchmesser AB, so ist die Lage der Hauptachsen OA und OB gegeben, weil für diese Achsen

Mehrtens, Statik der Baukonstruktionen. I.

 $h_{xy} J = x_y$ verschwindet und weil der Achsenwinkel AOB ein rechter ist. Man kann weiter aber noch eine beliebige Reihe von anderen zugeordneten Achsen, für welche J_{xy} verschwindet, finden, wenn man durch

Fig. 280.

T beliebige Kreissehnen $\overline{a_1b_1}$, $\overline{a_2b_2}$, $\overline{a_3b_3}$ usw. legt und die dadurch erhaltenen Kreispunkte a_1 und b_1 , a_2 und b_2 usw. mit O durch Gerade verbindet. Die so erhaltenen Geradenpaare UV, WX, YZ usw. bedeuten ebensoviele Paare von zugeordneten Achsen.

b. Beziehungen zugeordneter Achsen zu einem rechtwinkligen Achsenkreuz. Für manche Aufgaben der Festigkeitslehre werden

außer den Hauptachsen auch noch andere zugeordnete Achsen mit Nutzen verwendet. Darum sind die Beziehungen eines zugeordneten Achsenpaares UV zu einem Achsenkreuz XYfestzustellen, für das J_x , J_y und J_{xy} gegeben sind.

Ein Punkt dF der Querschnittsfläche, dessen Koordinaten x, y

Dann ist:

$$v = y \cos \alpha_u - x \sin \alpha_u$$
$$u = x \sin \alpha_v - y \cos \alpha_v.$$

Außerdem ist das Zentrifugalmoment

$$\int uv \, dF = 0.$$

Das gibt, wenn die Werte für u und v eingesetzt werden:

$$\cos \alpha_u \sin \alpha_v \int x y dF - \sin \alpha_u \sin \alpha_v \int x^2 dF - \cos \alpha_u \cdot \cos \alpha_v \int y^2 dF + \\ + \sin \alpha_u \cos \alpha_v \int x y dF = 0.$$

Daraus findet man:

$$J_{xy}(\tan \alpha_u + \tan \alpha_v) = J_x + J_y \tan \alpha_u \tan \alpha_v.$$
(68)

Ist α_n gegeben, so folgt:

$$\tan \alpha_v = \frac{J_x - J_{xy} \tan \alpha_u}{J_{xy} - J_y \tan \alpha_u},$$
(69)

woraus für $\alpha_n = 0$ und $\alpha_n = 90^{\circ}$ die Beziehungen

Fig. 281.

$$\tan \alpha_v = \frac{J_x}{J_{xy}} \text{ (für } \alpha_u = 0)$$

und

$$\tan \alpha_{v} = \frac{J_{xy}}{J_{y}} \text{ (für } \alpha_{u} = 90^{\circ}\text{)}$$

folgen. Die letzte Gleichung sagt dasselbe aus, wie der Satz vom Zentrifugalmoment (unter **93**b) wonach dieses auch für ein Achsenpaar X' Y' verschwindet, falls $\cot g \beta = \frac{\int_{XY}}{\int_{Y}}$ wird (Fig. 279). OX' und OY' sind dann also zugeordnete Achsen.

Für den Sonderfall, daß die Achsen XY Hauptachsen sind, erhält man schließlich, weil dann $J_{xy} = 0$ ist:

$$J_x + J_y \tan \alpha_u \tan \alpha_v = 0.$$

95. Die Trägheitsellipse.

Nachdem Монк seinen Trägheitskreis eingeführt hat, ist die praktische Bedeutung der Trägheitsellipse eine geringere geworden. Denn einerseits dienen beide Linien zu gleichen Zwecken, nämlich zur Erleichterung der Darstellung der Flächengrößen /, und anderseits ist dieses Ziel mit Hilfe der Trägheitskreises bequemer zu ereichen, als bei Anwendung der Trägheitsellipse. Wenn danach also für die Lösung praktischer Aufgaben in erster Linie der Gebrauch des Trägheitskreises zu empfehlen ist, so bietet doch die Trägheitsellipse, abgesehen von ihrer geschichtlichen Bedeutung, heute immer noch ein erhebliches wissenschaftliches Interesse. Deshalb soll sie hier nicht übergangen werden.

a. Einführung der Trägheitshalbmesser. Es ist für den vorliegenden Fall bequem, ein Trägheitsmoment J_u allgemein durch die Gleichung

$$J_u = F \cdot r_u^2 \tag{70}$$

auszudrücken. Darin bedeutet F die Querschnittsfläche und r_u stellt den sog. *Trägheitshalbmesser* vor, wobei der angehängte Zeiger angibt, für welche Achse er zu nehmen ist. Danach lautet die Erklärung einer Trägheitsellipse wie folgt:

Eine Ellipse, deren Halbachsen a und b gleich oder proportional den Trägheitshalbmessern der Hauptträgheitsmomente J_b und J_a des zugehörigen Querschnittes gemacht werden, heißt eine Trägheitsellipse. Sie besitzt die Eigenschaft, daß der senkrechte Abstand zwischen einem beliebigen ihrer Durchmesser UU und der dazu parallel gezogenen Tangente tt den Trägheitshalbmesser für das auf den Durchmesser bezogene Trägheits-

moment J_u angibt. Danach ergeben sich für die Hauptträgheitsmomente die Werte

$$J_a = F \cdot b^2$$
$$J_b = F \cdot a^2.$$

Liegt der Mittelpunkt der Trägheitsellipse im Schwerpunkt des Querschnittes, so heißt sie eine Zentralellipse.

Fig. 282.

Der Beweis für die Richtigkeit des Satzes folgt aus der Verbindung der Ellipsengleichung mit der Gl. (62) für J_u :

$$J_u = \cos^2 \alpha J_a + \sin^2 \alpha J_b,$$

die nach erfolgter Einführung der Trägheitshalbmesser übergeht in

$$r_u^2 = b^2 \cos^2 \alpha + a^2 \sin^2 \alpha.$$

Durch Differentiieren der Ellipsengleichung

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{I}$$

erhält man:

1)

$$\frac{x\,d\,x}{a^2} + \frac{y\,d\,y}{b^2} = 0$$

oder

$$x = -y \frac{a^2}{b^2} \frac{dy}{dx} = -y \frac{a^2}{b^2} \tan \alpha,$$

worin α der Winkel ist, den die Tangente tt im beliebigen Punkte m der Ellipse mit der Hauptachse OA einschließt. Die Tangente ist der Achse OU parallel.

Setzt man den für x gefundenen Wert in die Ellipsengleichung ein, so folgt:

$$y^2 = \frac{b^4 \cos^2 \alpha}{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}.$$

In der Verbindung mit 1) gibt das

2

$$y = \frac{b^2 \cos \alpha}{r_u} \text{ und } x = \frac{a^2 \sin \alpha}{r_u}.$$

Aus der Fig. 282 folgt weiter, daß das von O auf die Tangente tt gefällte (also in der OV liegende) Lot \overline{Ot} durch

$$Ot = y \cos \alpha + x \sin \alpha$$

ausgedrückt werden kann. Nach Einsetzung der für x und y in 3) gefundenen Werte erhält man

$$\overline{Ot} = \frac{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}{r_u} = r_u.$$

Damit ist die Richtigkeit des Satzes von der Trägheitsellipse bewiesen, weil festgestellt worden ist, daß der senkrechte Abstand zwischen einem beliebigen Durchmesser OU der Trägheitsellipse und der dazu parallelen Tangente tt der Trägheitshalbmesser für das auf den Durchmesser bezogene Trägheitsmoment J_u ist.

b. Das Zentrifugalmoment und die zugeordneten Achsen (Fig. 282). Es ist nachzuweisen, daß die Strecken mt und m't' Maße für die Größe des Zentrifugalmomentes J_{uv} abgeben. Diese Strecken liegen in den Tangenten tt und t't', von denen jede einer der beiden Achsen U und V parallel läuft. $\overline{Ot'}$ ist nach vorigem der Trägheitshalbmesser für die Achse OV.

Es ist:

$$\overline{mt} = -(x\cos\alpha - y\sin\alpha) = \frac{(b^2 - a^2)\sin\alpha\cos\alpha}{r_{\mu}}$$

oder

$$\overline{mt} = \frac{(J_a - J_b)\sin\alpha\cos\alpha}{Fr_u} = \frac{\frac{1}{2}(J_a - J_b)\sin 2\alpha}{Fr_u}.$$

Der Zähler des letzten Ausdruckes ist aber (nach der Gl. 62) gleich J_{uv} , woraus folgt:

$$\overline{mt} = \frac{J_{uv}}{F \cdot r_u} \cdot \tag{71}$$

In gleicher Weise findet man:

$$\overline{m't'} = \frac{J_{nv}}{F \cdot r_v} \cdot \tag{72}$$

Endlich findet man, mit Bezug auf die Fig. 282,

$$\cot \beta = \frac{mt}{Ot} = \frac{J_{uv}}{F \cdot r_u^2} = \frac{J_{uv}}{J_u}$$

und

$$\cot \beta' = \frac{\overline{m't'}}{\overline{Ot'}} = \frac{J_{uv}}{F \cdot r_v^2} = \frac{J_{uv}}{J_v} ,$$

d. h. also, weil (nach Gl. 67) das auf schiefwinklige Achsen bezogene Zentrifugalmoment J'_{xy} für $\cot \beta = \frac{J_{xy}}{J_y}$ verschwindet:

Zugeordnete Durchmesser der Trägheitsellipse sind zugleich zugeordnete Achsen für das darauf bezogene Zentrifugalmoment, dieses verschwindet also.

Die Achsenpaare OU und Om einerseits, sowie OV und Om' and derseits sind solche zugeordnete Achsen.

96. Graphische Darstellung des statischen Momentes S und des Trägheitsmomentes J.

a. Verfahren von NEHLS (Fig. 283). Das für eine Achse XX zu bestimmende S oder J wird durch eine Fläche dargestellt. Man ziehe zwei Parallelen zur XX: 1) im beliebigen Abstande h die Grade GGund 2) durch den beliebigen Umrißpunkt n der gegebenen Fläche die Gerade gg. Mache $nn' \perp GG$; ziehe durch den beliebigen Punkt Oder Achse XX und den Punkt n' einen Strahl, der die gg in s schneidet. Mache $\overline{ss'} \perp GG$ und ziehe einen Strahl durch O und s', der die ggin i schneidet.

Sind die Punkte *s* und *i* für eine ausreichende Zahl von Umrißpunkten *n* festgelegt und bezeichnet man die dann erhaltenen Flächen asb und aib mit F_s und F_i , so ist:

$$S = F_s \cdot h \text{ und } J = F_i \cdot h$$

Fig. 284.

eines Seilecks und eines Kraftecks, wobei die Kräfte als *Flächen*kräfte parallel der XX wirkend dargestellt werden. Man teilt danach die gegebene Fläche durch parallel zur XX gezogene Gerade in eine Anzahl von Streifen, deren Höhe Δy so klein zu wählen ist, daß der Schwerpunkt jeder der Streifen (für praktische Fälle genau genug) entweder in der Höhe $\frac{\Delta y}{2}$ angenommen oder als Schwerpunkt eines Trapezes oder dergl. leicht bestimmt werden kann. Die genannten Flächenkräfte (cm²) greifen dann in den Schwerpunkten der einzelnen Streifen an. Man setzt sie zu einer (der XX parallen) Kraftlinie zusammen und zeichnet für einen beliebig gewählten Pol O zwischen den Kraftrichtungen das Seileck (**55** b). Das ist in der Fig. 284 geschehen.

Das statische Moment S der Flächenkräfte (1 bis 13) bezogen auf die XX ist dann (nach **60** und **61**) gleich der Strecke h, die von den äußeren Seileckseiten auf der XX abgeschnitten wird, multipliziert mit dem Polabstande H. Für H = 1 ist

$$S = h$$
.

Durch den Schnittpunkt n der äußeren Seileckseiten verläuft (nach **55**) die Mittelkraft alle Flächenkräfte. Die durch n zur XX gezogene Parallele ss ist also eine Schwerachse. Für diese ergibt sich h, folglich auch S = 0. Wollte man den Schwerpunkt in der ss finden, so brauchte man die beschriebene Darstellung nur noch eimal für eine passend anzunehmende Y-Achse durchzuführen. Man erhielte dann eine zweite der YY parallele Schwerachse, deren Schnitt mit der ss den Schwerpunkt der Fläche bezeichnen würde.

Setzt man den Abstand der Achsen ss und XX gleich a und y = a + v, so ergibt sich aus

$$S = \int dF(v+a) = \int dFv + F \cdot a$$

der bekannte Ausdruck

oder für 2H = 1

 $S = F \cdot a. \tag{73}$

2) Das Trägheitsmoment J der Fläche F bezogen auf die XX findet sich in einfacher Weise (nach MOHR) aus der Fläche f, die von der XX, dem Seileck und der *ersten* äußeren Seileckseite oder deren Verlängerung begrenzt wird. Das ist in der Fig. 284 die Fläche I-I'-I3'. Es ist nämlich

$$J = {}_{2}H \cdot f$$

$$J = f.$$
(74)

Der Beweis dafür ergibt sich aus der Betrachtung eines Differentials vom statischen Momente. Es ist das statische Moment $\varDelta S_1$ für die Flächenkraft 1 gleich $I \cdot \mathcal{Y}_1$, oder gleich derjenigen Strecke, die von den an die Flächenkräfte 1 und 2 stoßenden Seileckseiten auf der XX abgeschnitten wird, multipliziert mit H. Es ist also

$$\Delta S_{\rm r} = \Delta h_{\rm r} \cdot H.$$

Was für die Flächenkraft 1 gilt, gilt sinngemäß auch für alle übrigen Flächenkräfte. Es ist danach allgemein

$$\Delta S \cdot y = \Delta h \cdot H \cdot y,$$

worin $\Delta h \cdot y$ den doppelten Inhalt des betreffenden von zwei Seileckseiten und der XX begrenzten Dreiecks angibt. Daraus folgt

$$J = \sum \Delta S \cdot y = 2(Fl \cdot \mathbf{1} - \mathbf{1}' - \mathbf{1}3') H = 2H \cdot f.$$

Sollte in Fig. 284 z. B. das Trägheitsmoment J_s für die Schwerachse ss berechnet werden, so ergäbe sich dafür

$$J_s = 2 \cdot H(Fl \cdot \mathbf{I} - n - \mathbf{I3'}).$$

Wir machen schließlich noch darauf aufmerksam, wie man aus obigem auch das Trägheitsmoment J_x für eine beliebige Achse XX finden kann, sobald J_s für eine dazu parallele Schwerachse gegeben ist. Es ist nämlich nach der Fig. 284

$$J_s - J_x = 2H(Fl \cdot n - \mathbf{1}' - \mathbf{1}3') = 2H\left(\frac{ah}{2}\right)$$
$$I = I + Hh \cdot a = I + Sa$$

oder

$$J_x = J_s + Hh \cdot a = J_s + Sa.$$

Da aber nach Gl. (73) S = Fa ist, so folgt:

$$J_x = J_s + Fa^2 \,. \tag{75}$$

Die letzte Gleichung ist bequem für die Berechnung der Trägheitsmomente solcher Flächen, die aus mehreren einfachen Umrissen zusammengesetzt sind.

97. Graphische Darstellung des Zentrifugalmomentes.

a. Aus Rechtecken zusammengesetzter Querschnitt (Fig. 285). Das Verfahren besteht im wesentlichen in einer zweimaligen Wiederholung der Ermittelung eines statischen Momentes, wobei die Richtungen der Flächenkräfte im ersten und zweiten Krafteck (bei senkrechtem Achsenkreuz) um 90° gegeneinander gedreht erscheinen.

Das erste Krafteck mit der beliebigen Polweite h_r enthält die parallel zur U in den Schwerpunkten s_r bis s_3 angreifenden Kräfte U_r bis U_3 . Die zugehörigen Flächen sind:

Danach wurden aufgetragen

 $U_{\rm I} = \frac{f_{\rm I}}{a} = \frac{{}^{\rm I}5}{6} = 2,5$ $U_{\rm 2} = \frac{f_{\rm 2}}{a} = \frac{2{}^{\rm I}}{6} = 3,5$ $U_{\rm 3} = \frac{f_{\rm 3}}{a} = \frac{2{}^{\rm I}}{6} = 3,5,$

wobei a = 6 beliebig angenommen wurde.

Vierter Abschnitt. Spannungen in geraden Stäben.

Verlängert man in dem zugehörigen Seileck alle Seiten bis zur U-Achse, so hat man:

Strecke
$$\mathbf{i}' - \mathbf{z}' = + \frac{U_1 v_1}{h_1}$$

- $\mathbf{z}' - \mathbf{3}' = + \frac{U_2 v_2}{h_1}$ worin v_1, v_2, v_3 die Schwerpunkts-
abstände vorstellen.
- $\mathbf{3}' - \mathbf{4}' = - \frac{U_3 v_3}{h_1}$

Diese drei Strecken betrachtet man jetzt als Kräfte V_1 , V_2 und V_3 , parallel zur V gerichtet, und bildet aus ihnen das zweite Krafteck mit einem beliebigen Polabstande h_2 . Das ist in der Fig. 285 geschehen, ohne dabei die Kraftrichtungen V gegen diejenigen der U um 90° zu drehen. Deshalb sind bei der Zeichnung des zweiten Seilecks dessen Seiten senkrecht zu den Polstrahlen zu nehmen. Die äußeren Seileckseiten schneiden auf der V-Achse eine Strecke $\overline{mn} = -h_3$ ab. Daraus folgt:

$$-h_2 \cdot h_3 = -V_1 \cdot u_1 + V_2 \cdot u_2 + V_3 \cdot u_3$$
$$= -\frac{U_1 \cdot v_1}{h_1} \cdot u_1 + \frac{U_2 \cdot v_2}{h_1} \cdot u_2 - \frac{U_3 \cdot v_3}{h_1} \cdot u_3$$

oder

$$h_{\mathbf{x}} \cdot h_{\mathbf{y}} \cdot h_{\mathbf{y}} = -\sum U \cdot uv.$$

Nach Gleichung (65) ist aber

$$J_{uv} = x_o y F,$$

woraus für den vorliegenden Fall

$$J_{uv} = -u_1 v_1 f_1 + u_2 v_2 f_2 - u_3 v_3 f_3 = a \sum U u v_2 f_2 + u_3 v_3 f_3 = a \sum U u v_2 f_2 + u_3 v_3 f_3 = a \sum U u v_2 f_2 + u_3 v_3 f_3 = a \sum U u v_2 f_2 + u_3 v_3 f_3 = a \sum U u v_2 f_2 + u_3 v_3 f_3 = a \sum U u v_2 f_2 + u_3 v_3 f_3 = a \sum U u v_2 f_3 + u_3 v_3 f_3 = a \sum U u v_2 + u_3 v_3 f_3 = a \sum U u v_2 + u_3 v_3 f_3 + u_3 v_3 f_3 = a \sum U u v_3 + u_3 v_3 f_3 = a \sum U u v_3 + u_3 v_3 + u_3 v_3 + u_3 + u_3 v_3 + u_3 +$$

folgt. Das gibt endlich:

$$J_{uv} = -a \cdot h_{\mathbf{1}} \cdot h_{\mathbf{2}} \cdot h_{\mathbf{3}}.$$

In der Fig. 285 war a = 6 gemacht. Für $h_1 = 6$; $h_2 = 2,5$ und $h_3 = 3,13$ erhält man danach

 $J_v = - 282 \, \mathrm{dcm}^4,$

wenn die Einheit dcm waren.

b. Zentrifugalmoment eines Trapezes (Fig. 286).

Der Abstand des Schwerpunktes *s* beträgt 3,5 bis zur Achse U und 2,14 bis zur Grundlinie. $\cot \alpha$ berechnet sich zu

$$-\left(\frac{2,5-1}{5}\right) = -\frac{3}{10}$$

Also ist nach Gl. (66):

$$J_{uv} = av_{o}F + \cot g \alpha J_{u} = 5, \circ \cdot 3, 5 \cdot 3, 5 \cdot 5, \circ - \circ, 3 J_{u}.$$

 J_{u} findet sich aus dem $\neq V$ Trägheitsmoment J_{s} für die der U parallele Schwerachse:

$$J_u = J_s + F \cdot v_o^2 \cdot$$

Zerlegt man das Trapez in ein Rechteck der Breite 2,0 und ein Dreieck mit 3,0 Grundlinie, so erhält man (vergl. **98** unter 1 und 2) für J_u , wenn die in der Fig. 286 eingeschriebenen Maße eingesetzt werden:

$$J_{u} = \left[\frac{\mathbf{I}}{3} \cdot 2 \cdot 5^{3} + \frac{\mathbf{I}}{\mathbf{I}2} \cdot 3 \cdot 5^{3} - 3.5 \cdot 5.0 \cdot 2.\mathbf{I4}^{2}\right] + 3.5 \cdot 5.0 \cdot 3.5^{2} = 248.82 \,\mathrm{m}^{4} \cdot 10^{10} \,\mathrm{m}^{2}$$

Daraus

$$J_{uv} = 306,25 - 0,3 \cdot 248,82 = 231,60 \text{ m}^4$$
.

98. Beispiele¹.

- a. Hilfsformeln für Flächenmomente.
- 1. Rechteckfläche (Fig. 287).

$$F = bh = b(h_0 - h_u),$$

$$S_{x} = F \cdot x_{o} = b(h_{o} - h_{u}) \left(\frac{h_{o} - h_{u}}{2} + h_{u} \right) = \frac{b}{2} (h_{o} - h_{u}) (h_{o} + h_{u}),$$

$$S_{x} = \frac{b}{2} (h_{o}^{2} - h_{u}^{2}) = \frac{F}{2} (h_{o} + h_{u}) \cdot$$
(76)

Ferner ist:

$$J_x = b \cdot \int_{h_y}^{h_o} dy$$

¹ Nach MEHRTENS, Techn. Mechanik. (Im Handbuch der Baukunde, Band I, S. 575.) Auch als Sonderabdruck erschienen. 1885.

Vierter Abschnitt. Spannungen in geraden Stäben.

302 oder

$$J_x = \frac{b}{3} \left(h_o^3 - h_u^3 \right) \cdot \tag{77}$$

Bezogen auf die mit der Unterkante des Rechtecks zusammenfallende Z-Achse erhält man demnach für $h_u = 0$ und $h_o = h$:

Desgleichen für die Schwerachse SS (nach Gl. 75):

$$J = J_{z} - F(x_{o} - h_{u})^{2} = \frac{bh^{3}}{3} - bh \cdot \frac{h^{2}}{4} = \frac{bh^{3}}{12} \cdot$$
(79)

2. Dreiecksfläche. Für ein Dreieck (Höhe h, Grundlinie b) erhält man für die der Grundlinie parallele Schwerachse $J = \frac{1}{36}bh^3$ und für die Grundlinie selbst

$$J = \frac{\mathbf{I}}{\mathbf{I}\,\mathbf{2}}\,b\,h^3\,\cdot\,$$

3. Trapezfläche (Fig. 288). Wenn man die Figur durch eine zur XX parallele Grade ww in ein Parallelogramm und ein Dreieck teilt, so erhält man für eine der nicht parallelen Seiten als Achse:

$$S_{x} = \frac{b h_{x}^{2}}{2} + \frac{b(h_{z} - h_{x})}{2} \left(\frac{h_{z} - h_{x}}{3} + h_{x} \right).$$

Das gibt nach wenigen Umformungen

$$S_x = \frac{b}{6} \left(h_{\rm r}^2 + h_{\rm z}^2 + h_{\rm r} h_{\rm z} \right). \tag{80}$$

Ferner erhält man (unter Benutzung der Gl. 75)

$$J_x = \frac{b h_x^3}{3} + \frac{b(h_z - h_x)^3}{36} + \frac{b(h_z - h_x)}{2} \left(\frac{h_z - h_x}{3} + h_x\right)^2$$
daraus

 $J_x = \frac{b}{12} (h_1 + h_2) (h_1^2 + h_2^2).$ (81)

Sind statt der Höhen h_1 und h_2 die Seitenlängen a_1 und a_2 gegeben, sowie auch deren Winkel α mit der XX, so sind in den obigen Formeln die Höhen h durch $a \cdot \sin \alpha$ auszudrücken.

4. Kreisfläche (Fig. 289). Das Trägheitsmoment in Beziehung auf eine Schwerachse berechnet sich am einfachsten aus dem *polaren* Trägheitsmomente I_p . Es ist

$$J_{p} = \int_{0}^{r} \varrho^{2} dF = \int_{0}^{r} \varrho_{2} (2 \varrho \pi d\varrho) = 2 \pi \int_{0}^{r} \varrho^{3} d\varrho$$

oder

und (

 $J_p = \frac{r^4 \pi}{2}.$

Nach Gl. (56) und (61) ist für vorliegenden Fall

$$J_p = J_a + J_b = 2J$$

oder

$$J = \frac{r^4 \pi}{4} \cdot \quad (82)$$

5. Ergänzung einer Viertelkreisfläche zur Quadratfläche (Fig. 290). Es handelt sich um die schraffierte Fläche *ab d*.

Es ergibt sich zunächst:

$$F = r^2 - \frac{r^2 \pi}{4} = 0,215 r^2 \cdot$$

Um S_x zu berechnen, braucht man den Abstand t des Schwerpunktes s im Viertelkreise von der zur XX parallelen untern Quadratseite cd.

Für einen beliebigen Kreisausschnitt des Zentriwinkels 2 α ist die Strecke \overline{cs} mit

$$\overline{cs} = \frac{2}{3} \frac{r \sin \alpha}{\alpha}$$

anzuschreiben. Im vorliegenden Falle, wo $\alpha = 45^{\circ}$ ist, erhält man demnach:

$$S_x = r^2 (0,215y + 0,167r). \tag{83}$$

Das Trägheitsmoment des Viertelkreises, bezogen auf die untere Quadratseite cd, beträgt ein Viertel vom J der Gl. (82). Deshalb ergibt sich aus der Gl. (75)

jetzt

$$J_x = J + S_x y_o$$

$$J_x = \left[\frac{r^4}{12} - \frac{r^4\pi}{16}\right] + \left[r^2\left(\frac{r}{2} + y\right)^2 + \frac{r^2\pi}{4}\left(t^2 - (t+y)^2\right)\right]$$

oder nach erfolgtem Einsetzen der gegebenen Zahlen:

$$T_x = r^2 \left(0, 215 y^2 + 0, 333 yr + 0, 137 r^2\right). \tag{84}$$

Für den Fall, daß y oberhalb der cd läge, würde sein Vorzeichen negativ zu nehmen sein. Wollte man z. B. S_x und J für die in der Fig. 290 durch Kreispunktierung angedeutete untere Viertelkreisfläche acd berechnen, so müßte man y negativ und außerdem bis zur Geraden ab rechnen.

Bei der in der Fig. 291 dargestellten Lage der Viertelkreisfläche erhält man nach einigen Umformungen:

¹ MEHRTENS a. a. O. S. 510.
§ 14. Darstellung der Flächenmomente ebener Querschnitte.

Für den Kreisausschnitt (mit Zentriwinkel von 90°)

$$J_x = r^2 \left(0,0714r^2 + 0,785y_0^2\right). \tag{85}$$

Fig. 291.

Für die Ergänzung der Viertelkreisfläche zur Quadratfläche:

$$J_x = r^2 (0,0119 r^2 + 0,215 y_0^2), \tag{86}$$

wobei die Schwerachse SS parallel zur XX gedacht ist.

b. Berechnung von statischen und Trägheitsmomenten.

6. Unsymmetrischer I-förmiger Vollquerschnitt (Fig. 292).

Man betrachte die Figur als zusammengesetzt aus zwei Rechtecken von zusammen $2 \cdot 6,5 = 13$ Breite und 4 Höhe, vermehrt um ein Rechteck von 3 8 Breite und 20 Höhe, und vermindert um zwei Rechtecke von zusammen S-2.2,5=5 Breite und 20-3=17 Höhe. Man erhält dann $F = 13.4 + 8.20 - 5.17 = 127,0 \text{ cm}^2$. Y. Ferner für das statische Moment, iY bezogen auf die X-Achse:

$$S_x = \frac{1}{2}(13 \cdot 4^2 + 8 \cdot 20^2 - 5 \cdot 17^2) = 981.5 \text{ cm}^3$$

Mehrtens, Statik der Baukonstruktionen. I.

20

Desgleichen für J_x :

$$J_x = \frac{1}{3}(13 \cdot 4^3 + 8 \cdot 20^3 - 5 \cdot 17^3) = 13422,3 \text{ cm}^4,$$

wobei das J_x für jedes der Teilrechtecke aus dem J_s für die Schwerachse Gl. (79) nach der Gleichung

 $J_x = J_s + Fa^2$

für den vorliegenden Fall zu

$$J_r = 4J_s$$

berechnet worden ist.

Der Abstand yo des Schwerpunktes O von der XX berechnet sich zu

$$y_{\rm o} = \frac{S_x}{F} = \frac{981,5 \text{ cm}^3}{127,0 \text{ cm}^2} = 7,73 \text{ cm}.$$

Danach erhält man für das auf die Schwerachse SS bezogene Trägheitsmoment:

$$J_s = J_x - F \cdot y_0^2 = J_x - S_x y_0 = 13422,3 - 981,5 \cdot 7,73 = 5835,3 \text{ cm}^4.$$

7. Zusammengesetzte genietete I-Querschnitte (Fig. 293 und 294).

In Fig. 293 sind mit einem sog. Stehblech von 1 cm Stärke oben und unten je zwei Saum- oder Gurtwinkel (D. N. P. Nr. 7,5) vernietet. Nietlochdurchmesser 2 cm. Das Trägheitsmoment J für die nutzbare

Querschnittsfläche, d. h. nach Abzug des Nietloches, soll für eine beliebige Höhe h gefunden werden. Schwerpunkt, Fläche und Trägheitsmoment der Winkel können aus dem deutschen Normalprofilbuch entnommen werden. Es findet sich für 2 Winkeleisen

Fläche
$$f_w = 28,2 \text{ cm}^2$$

Frägheitsmoment $i_w = 142 \text{ cm}^4$.

§ 14. Darstellung der Flächenmomente ebener Querschnitte.

Daraus

$$J = 1, \circ \frac{\hbar^3}{12} + 2 \left[142 + 28, 2 \left(\frac{\hbar}{2} - 2, 21 \right)^2 \right]$$
$$- 2 \left[3, \circ \cdot \frac{2, \circ^3}{12} + 3, \circ \cdot 2, \circ \left(\frac{\hbar}{2} - 4, \circ \right)^2 \right] \cdot$$

Kommt zu dem Querschnitt, wie es in Fig. 294 gezeichnet ist, nach oben und unten je eine *Gurtplatte* von 20 cm Breite und 1 cm Stärke hinzu, so wird in der Regel deren Verbindung mit den Winkeln derart ausgeführt, daß die Niete gegenüber den durch das Stehblech gehenden Nieten *versetzt* sind, d. h. in einem andern als in dem in der Fig. 293 gezeichneten Querschnitt liegen. Es kommen demnach bei der Berechnung von J für den nutzbaren Querschnitt in jedem Gurte nur zwei Nietlöcher in Abzug.

Danach berechnet sich J mit

$$J = \mathbf{I}, \mathbf{0} \frac{(h - 2, \mathbf{0})^3}{\mathbf{I}^2} + 2 \left[\mathbf{I} + 28, 2 \left(\frac{h}{2} - 3, 2\mathbf{I} \right)^2 \right] \\ + 2 \left[20 \cdot \frac{\mathbf{I}, \mathbf{0}^3}{\mathbf{I}^2} + 20 \cdot 10 \left(\frac{h}{2} - \frac{\mathbf{I}, \mathbf{0}}{2} \right)^2 \right] - 4 \left[2, 0 \cdot \frac{2, \mathbf{0}^3}{\mathbf{I}^2} + 2, 0 \cdot 2, 0 \cdot \left(\frac{h}{2} - \mathbf{I}, \mathbf{0} \right)^2 \right].$$

c. Bestimmung der Lage der Hauptachsen.

8. Für ein Rechteck der Höhe h und der Breite b soll das Trägheitsmoment J_u , bezogen auf eine unter 45° gegen die Hauptachsen geneigte Schwerachse berechnet werden.

Gl. (62) unter 90 lautet:

$$J_u = J_a \cos^2 \alpha + J_b \sin^2 \alpha$$

worin J_a und J_b die Hauptträgheitsmomente sind. Weil nun für das Rechteck die Hauptachsen mit den Symmetrie-Achsen zusammenfallen (92), so erhält man

$$J_u = J_x \cos^2 45^\circ + J_y \sin^2 45^\circ$$

oder

$$J_{u} = \frac{I}{I_{2}} \left(\frac{b h^{3}}{2} + \frac{b^{3} h}{2} \right) = \frac{I}{24} F(b^{2} + h^{2}).$$

9. Für das ungleichschenklige Winkeleisen der Fig. 295 sollen die Hauptachsen gefunden werden. Das Winkeleisen ist deutsches Normalprofil^I Nr. 5/10 mit Schenkellängen von 10 cm und 5 cm, bei 1 cm

^I Vergl. INTZE und HEINZERLING, Deutsches Normalprofilbuch. 4. Aufl.

Schenkelstärke und mit Viertelkreis-Abrundungen: außen von 0,45 cm, innen von 0,90 cm Halbmesser.

Man findet zuerst:

 $F = 10 \cdot 1 + 1 \cdot 4 + 0.215 \cdot 0.9^2 - 2 \cdot 0.215 \cdot 0.45^2 = 14.087 \text{ cm}^2.$

Ferner (mit Bezug auf die in den Außenkanten des Winkeleisens liegenden Achsen) U und V:

$$S_{u} = \frac{1}{2} \ 10^{2} + \frac{4}{2} \cdot 1^{2} + 0.9^{2} \ (0.215 \cdot 1.9 - 0.167 \cdot 0.9)$$
$$- 0.45^{2} \ [0.215 \ (10 - 0.45) + 0.167 \cdot 0.45]$$
$$- 0.45^{2} \ (0.215 \cdot 0.55 + 0.167 \cdot 0.45) = 51.74 \ \text{cm}^{3}$$

und dazu

$$\begin{split} J_{u} &= \frac{\mathbf{I}}{3} \left(\mathbf{I} \cdot \mathbf{10^{3}} + \mathbf{4} \cdot \mathbf{1^{3}} \right) + \mathbf{0.9^{2}} \left(\mathbf{0.215} \cdot \mathbf{I.9^{2}} - \mathbf{0.333} \cdot \mathbf{I.9} \cdot \mathbf{0.9} + \mathbf{0.137} \cdot \mathbf{0.9^{2}} \right) \\ &- \mathbf{0.45^{2}} \left[\mathbf{0.215} \left(\mathbf{10} - \mathbf{0.45} \right)^{2} + \mathbf{0.333} \left(\mathbf{10} - \mathbf{0.45} \right) \mathbf{0.45} + \mathbf{0.137} \cdot \mathbf{0.45^{2}} \right] \\ &- \mathbf{0.45^{2}} \left(\mathbf{0.215} \cdot \mathbf{0.55^{2}} + \mathbf{0.333} \cdot \mathbf{0.55} \cdot \mathbf{0.45} + \mathbf{0.137} \cdot \mathbf{0.45^{2}} \right) = \mathbf{330.62} \text{ cm}^{4}. \end{split}$$

Für die Achse YY findet man in gleicher Weise:

$$S_v = \frac{\mathbf{I}}{2} \cdot 5^2 + \frac{9}{2} \cdot \mathbf{I}^2 + \mathbf{0}, 9^2 (\mathbf{0}, 2\mathbf{I}5 \cdot \mathbf{I}, 9 - \mathbf{0}, \mathbf{I}67 \cdot \mathbf{0}, 9)$$

- $\mathbf{0}, 45^2 [\mathbf{0}, 2\mathbf{I}5 (5 - \mathbf{0}, 45) + \mathbf{0}, \mathbf{I}67 \cdot \mathbf{0}, 45]$
- $\mathbf{0}, 45^2 (\mathbf{0}, 2\mathbf{I}5 \cdot \mathbf{0}, 55 + \mathbf{0}, \mathbf{I}67 \cdot \mathbf{0}, 45) = \mathbf{I}6, 96 \text{ cm}^3,$

$$J_{\nu} = \frac{1}{3} \left(\mathbf{I} \cdot \mathbf{5}^{3} + 9 \cdot \mathbf{I}^{3} \right) + \mathbf{0}, 9^{2} \left(\mathbf{0}, \mathbf{215} \cdot \mathbf{I}, 9^{2} - \mathbf{0}, \mathbf{333} \cdot \mathbf{I}, 9 \cdot \mathbf{0}, 9 + \mathbf{0}, \mathbf{137} \cdot \mathbf{0}, 9^{2} \right)$$

- $\mathbf{0}, 45^{2} \left[\mathbf{0}, \mathbf{215} \left(5 - \mathbf{0}, 45 \right)^{2} + \mathbf{0}, \mathbf{333} \left(5 - \mathbf{0}, 45 \right) \mathbf{0}, 45 + \mathbf{0}, \mathbf{137} \cdot \mathbf{0}, 45^{2} \right]$
- $\mathbf{0}, 45^{2} \left[\mathbf{0}, \mathbf{215} \cdot \mathbf{0}, \mathbf{55}^{2} + \mathbf{0}, \mathbf{333} \cdot \mathbf{0}, \mathbf{55} \cdot \mathbf{0}, \mathbf{45} + \mathbf{0}, \mathbf{137} \cdot \mathbf{0}, \mathbf{45}^{2} \right] = 43.84 \text{ cm}^{4}.$

Nunmehr sind die Schwerpunktsabstände von den Achsen U, V bestimmt durch:

$$x_{o} = \frac{S_{x}}{F} = 3,673 \text{ cm}$$
$$y_{o} = \frac{S_{y}}{F} = 1,204 \text{ cm}.$$

Die zu den Achsen UV parallelen Schwerpunktsachsen sind mit XX und YY bezeichnet. Es ergeben sich also:

$$\begin{split} J_x &= J_u - F x_0^2 = 140,58 \ \mathrm{cm}^4 \\ J_y &= J_v - F y_0^2 = 23,42 \ \mathrm{cm}^4. \end{split}$$

Um jetzt die Lage der Hauptachsen berechnen zu können, fehlt noch ein drittes Trägheitsmoment J_z (Gl. 57–58). Wir beziehen J_z auf eine Achse ZZ, die um den Winkel $a = 45^{\circ}$ zur Schwerachse XX geneigt ist.

Vorerst bestimmen wir dann S_{av} und J_{av} für eine durch die Ecke W gehende zur ZZ parallele W-Achse, wobei die unter **98**a für ein Trapez und eine Viertelkreisfläche ermittelten Werte der Gl. (80) und (83) benutzt werden können. Danach erhält man:

$$S_{z\alpha} = + \frac{\mathbf{I} \cdot \mathbf{I}}{6 \cdot \sin \alpha} \left[(\mathbf{I} \circ \cdot \sin \alpha)^2 + (9 \cdot \sin \alpha)^2 + 9 \cdot \mathbf{I} \circ \cdot \sin^2 \alpha \right] - 0.2\mathbf{I} \cdot \mathbf{5} \cdot 0.45^2 \cdot 9 \cdot \sin \alpha$$
$$- \frac{\mathbf{I} \cdot \mathbf{I}}{6 \cdot \sin \alpha} \left[(5 \cdot \sin \alpha)^2 + (4 \cdot \sin \alpha)^2 + 5 \cdot 4 \sin^2 \alpha \right] + 0.2\mathbf{I} \cdot 5 \cdot 0.45^2 \cdot 4 \cdot \sin \alpha.$$

Die in der Achse WW liegende Ausrundung liefert hierzu keinen Beitrag, weil deren Fläche symmetrisch zu beiden Seiten der Achse liegt.

Ebenso erhält man [unter Berücksichtigung der Gl. (81), (82) und (84)]

$$J_{av} = \frac{\mathbf{I} \cdot \mathbf{I}}{\mathbf{I} 2 \cdot \sin \alpha} \left[(\mathbf{I} \mathbf{0} \cdot \sin \alpha + 9 \cdot \sin \alpha) (\mathbf{I} \mathbf{0}^2 \cdot \sin^2 \alpha + 9^2 \cdot \sin^2 \alpha) \right. \\ \left. + (5 \cdot \sin \alpha + 4 \cdot \sin \alpha) (5^2 \cdot \sin^2 \alpha + 4^2 \cdot \sin \alpha) \right] = \mathbf{0.45}^2 (\mathbf{0.0119} \cdot \mathbf{0.45}^2 + \mathbf{0.215} \cdot 9^2 \cdot \mathbf{0.5}) \\ \left. = \mathbf{0.45}^2 (\mathbf{0.0119} \cdot \mathbf{0.45}^2 + \mathbf{0.215} \cdot 4^2 \cdot \mathbf{0.5}) + \mathbf{0.0}^2 (\mathbf{0.0119} \cdot \mathbf{0.92}) \right].$$

Setzt man $\sin \alpha = 0.7071$ und $\sin^2 \alpha = 0.5$ ein, so berechnen sich daraus:

$$S_{w} = 24,59 \text{ cm}^{3}$$

 $J_{w} = 156,56 \text{ cm}^{4}.$

Der berechnete Wert von S_w kann dazu dienen, die Richtigkeit der Abstände x_o und y_o nachzuprüfen. Ist z_o der Schwerpunktsabstand von der WW, so ist anzuschreiben

$$z_{\rm o} = \frac{S_{\rm w}}{F} = 1,746 \, \rm cm.$$

Den gleichen Wert erhält man aus

$$z_{\circ} = (x_{\circ} - y_{\circ}) \sin 45^{\circ}$$

 $z_{\circ} = (3,6746 - 1,204) \circ,7071 = 1,746 \text{ cm}.$

Das noch fehlende Trägheitsmoment J_{z} ergibt sich jetzt mit

$$J_z = J_{zv} - F z_0^2 = 113,62 \text{ cm}^4.$$

Aus den drei Trägheitsmomenten J_x, J_y und J_z berechnet sich das Zentrifugalmoment J_{xy} nach der Gl. (58) (unter **90**) mit

$$J_{xy} = \frac{1}{2} (J_x + J_y) - J_z.$$

Das gibt:

$$J_{xy} = 31,62 \text{ cm}^4.$$

Damit ist die gestellte Aufgabe gelöst, denn jetzt ist die Lage der Hauptachsen durch die Gl. (59) gegeben.

Es ist

$$\tan g \, 2 \, \alpha_{\circ} = \frac{2 J_{xy}}{J_y - J_x} = + \text{ 0,53978.}$$
$$2 \, \alpha_{\circ} = 28^{\circ} \, 22'$$
$$\alpha_{\circ} = 14^{\circ} \, 11' \, .$$

Das gibt und

Ohne Berücksichtigung der Schenkelabrundungen würde man

$$x_o = 13^{\circ} 1'$$

erhalten haben.

Die graphische Lösung nach MOHR vergl. unter 90.

§ 15. Die einfachen Belastungsfälle.

99. Allgemeine Erklärungen.

a. Belastungszustände. Unter **13** und **66** wurde bereits gezeigt, wie man bei beliebiger Belastung eines Konstruktionsstabes die sämtlichen auf einen Stabteil wirkenden äußeren Kräfte im Schwerpunkte des betreffenden Stabquerschnittes zu einer einfachen gleichwertigen Kräftegruppe zusammensetzt. Im allgemeinen wurden dabei die äußeren Kräfte auf eine Achsenkraft P, eine Querkraft Q und ein Moment K zurückgeführt. Die Achsenkraft P ist gleich der algebraischen Summe aller in die Z-Achse (oder Stabachse) fallenden Seitenkräfte Z des betrachteten Stabteiles; die Querkraft Q ist die Mittelkraft aller auf den betrachteten Stabteil in einer Kraftebene senkrecht zur Stabachse wirkenden äußeren Kräfte. Ferner ist

$$Q = V Q_x^2 + Q_y^2,$$

wenn Q_x und Q_y die nach den Querschnittsachsen X und Y zerlegten Seitenkräfte von Q sind.

K ist gleich der Summe der statischen Momente der äußeren Kräfte in Beziehung auf den Schwerpunkt des Querschnittes, d. h. den Urspung des Achsenkreuzes XYZ. Zerlegt man die *Achse* von M nach den Richtungen X, Y, Z, so erhält man drei Seitenachsen, von denen jede zu einer der Koordinatenebenen senkrecht steht. Die drei zugehörigen Seitenmomente sind also:

May	ein	Verdrehungsmoment		das	in	der	XY-H	wirkt,	
Mxz	-	Biegungs-	-	-	-	-	XZ	-	-
Mys	-	-	-	-	-	-	YZ	-	-

Die beiden Biegungsmomente können zu einem gleichwertigen Momente M zusammengesetzt werden, das in die Ebene der Querkraft Qfällt. Es ist

$$M = \sqrt{M_{xz}^2 + M_{yz}^2}.$$

Aus diesem allgemeinen Belastungszustande ergeben sich vier Sonderfälle, die wir nachstehend der Reihe nach untersuchen wollen:

- 1. K = o und Q = o. Es wirkt allein die Achsenkraft P.
- 2. K = 0 und P = 0. Es wirkt allein die Querkraft Q.
- Q = o, P = o und M_{xy} = o. Es wirkt allein das Biegungsmoment M.
 Q = o, P = o u. M = o. Es wirkt allein das Verdrehungsmoment M_{xy}.

Diese Sonderfälle bezeichnet man in der Festigkeitslehre als *einfache Fälle der Festigkeitslehre* und die dabei erzeugten Querschnittspannungen als *reine* Spannungen. Man unterscheidet danach auch die Fälle der reinen Zug- oder Druckspannung, der reinen Abscherung, der reinen Biegung und der reinen Torsion.

Belastungen, die aus einer Verbindung von mehren einfachen Fällen bestehen, bezeichnet man als *Fälle der zusammengesetzten Festigkeit*. Nach dem Erfahrungsgesetz von der gegenseitigen Unabhängigkeit verschiedener Kraftwirkungen darf man einen zusammengesetzten Belastungsfall in einfache Fälle zerlegen und für jeden von diesen die berechneten gleichartigen Spannungen eines Punktes addiren (3e). Bei der Lösung der hierbei vorkommenden Aufgaben werden wir, von den einfachen Belastungsfällen anfangend, bis zu den verwickelten Fällen vorschreiten. Zunächst aber wird es lehrreich sein, ein wenig den allgemeinsten Fall ins Auge zu fassen, um zu sehen, inwieweit er uns bei der Behandlung der Sonderfälle eine Richtschnur geben kann.

b. Spannungszustände. Eine grundlegende Aufgabe der Festigkeitslehre hat zum Ziele, den sog. Spannungzustand, in welchem ein belasteter Körper sich in irgend einem seiner Punkte befindet, eindeutig zu beschreiben. Das geschieht im allgemeinen derart, daß man durch den betrachteten Punkt eine beliebige ebene Schnittfläche gelegt denkt (2b) für deren Lage die Spannung des Punktes durch Berechnung ihrer nach drei festen Richtungen verlaufenden Seitenspannungen zu bestimmen ist. Dabei denkt man sich den Punkt als Eckpunkt eines unendlich kleinen Tetraeders oder Würfels, dessen Eigengewicht als von verschwindend kleinem Einflusse vernachlässigt werden kann. Wählt man z. B. ein Tetraeder (Fig. 296) und legt dabei zweckmäßig drei seiner Schnittflächen in die rechtwinkligen Koordinatenebenen XY, XZ, YZ, so braucht man nur die Spannungen für diese drei Ebenen zu berechnen, um dadurch die gesuchte Spannung der vierten beliebig gelegten Fläche abc eindeutig darzustellen. Graphisch könnte das durch Zeichnen eines windschiefen Kraftecks geschehen (54a).

Die Berechnung würde mit Hilfe der sechs allgemeinen Gleichgewichtsbedingungen (50, Gl. 25 und 26) durchgeführt und dabei würden auch gewisse Bedingungen abgeleitet werden können, die von den in den Koordinaten ebenen wirkenden Spannungen im Falle des Gleichgewichts am Tetraeder erfüllt werden müßten.

Der Spannungszustand irgend eines Punktes ist danach eindeutig beschrieben, wenn für drei durch den Punkt gelegte beliebige unendlich kleine Schnittflächen die Spannungen vorbestimmt worden sind. Wegen der unendlichen Kleinheit des Tetraeders ist es zulässig, die Lage der Fläche abc so aufzufassen, als ob sie durch den betrachteten Punkt m verliefe (Fig. 296).

Wenn eine der Koordinatenflächen des unendlich kleinen Tetraeders mit der Körperoberfläche zusammenfällt, so können darin keine Spannungen auftreten, es sei denn, daß eine äußere Kraft gerade auf den betrachteten Teil der Oberfläche wirkte. Im letzteren Falle muß diese äußere Kraft mit den Spannungen der übrigen drei Tetraederflächen im Gleichgewicht sein.

Jede der Spannungen in einer der drei Koordinatenebenen ist durch ihre drei Seitenspannungen, genommen nach den Richtungen der X, Y,

Z, eindeutig beschrieben. Bei gewissen Belastungen ergeben sich diese drei Seitenspannungen je für sich zu Null. In solchen Fällen spricht man von einem ebenen Spannungszustand und diesem entspricht auch ein ebener Belastungszustand eines ebenen Systemes (11). Verschwinden auch noch in einer anderen Koordinatenebene diese Spannungen, so gelangt man zum sog. linearen Spannungszustand, dem also ein Belastungszustand entspricht, wobei entweder nur eine Achsenkraft oder nur eine Ouerkraft

Fig. 296.

oder nur ein Moment als äußere Kraft zur Wirkung kommt.

Den Einfluß einer Achsenkraft, einer Querkraft oder eines Momentes beim linearen Spannungszustand zu untersuchen, soll unsere nächste Aufgabe sein.

100. Einfluß einer Achsenkraft.

Der Fall, daß durch den Einfluß einer Achsenkraft unter besonderen Umständen auch eine *Biegung* des Stabes entstehen kann, soll vorläufig ausgeschlossen werden.

a. Voraussetzung ebener Querschnitte. Die Belastung eines Stabes durch eine Achsenkraft ist diejenige, die bisher, bei der Berechnung von Stabwerken, allein betrachtet worden ist (15). Die Richtung der Achsenkraft verläuft durch die Schwerpunkte aller Stabquerschnitte (1).

Die Achsenkraft P, unter deren Wirkung der Stab ab im Gleich-

gewicht steht, erzeugt in allen Stabquerschnitten tt eine Normalspannung σ , deren Größe unter der Voraussetzung ihrer gleichmäßigen Verteilung über einen Querschnitt (nach der Gleichung (1), S. 3) mit

angeschrieben ist, wenn F den Flächeninhalt des Querschnittes bedeutet (Fig. 297).

Fig. 297.

In praktischen Fällen wird eine gleichmäßige Verteilung von σ nie vollkommen erreicht werden können, selbst nicht bei wissenschaftlichen

Fig. 298.

Versuchen in Festigkeitsmaschinen, obwohl diese besondere Einspannvorrichtungen besitzen, deren wesentlicher Zweck es ist, die bei der Stabbelastung entstehenden Änderungen der Stablänge für alle Punkte eines Querschnittes gleich groß zu erhalten. Am vollkommensten läßt sich dieser Zweck bei prismatischen Stäben erreichen, weil die Übertragung der Last P auf die Stabenden a und b in der Art ausführbar gedacht werden kann, daß alle zur Stabachse parallelen Fasern gezwungen werden, gleiche Längenänderungen anzunehmen. Wenn z. B. die genau wagerecht abgeglichenen Endflächen eines lotrecht stehenden zylindrischen Säulenschaftes sich gegen ebenso abgeglichene, möglicht starre Übertragungsstücke c stützen (Fig. 298), dann darf das Eintreten einer gleichen Zusammendrückung aller Fasern unter der Wirkung einer Achsenkraft P erwartet werden. Wie in diesem Falle, so wird es auch in andern Fällen

wesentlich darauf ankommen, die Belastung P durch geeignete konstruktive Mittel schon auf die Endflächen a und b gleichmäßig zu übertragen. Ist dann der Stab zwischen den Endflächen prismatisch, so bleibt ein vor der eintretenden Formänderung ebener Querschnitt auch nach erfolgter Formänderung noch eben. Die Gleichung

$$\sigma = \frac{P}{F}$$

hat also das *Ebenbleiben aller Querschnitte* zur Voraussetzung. Bei nicht prismatischen Stäben ist ein Ebenbleiben ausgeschlossen, denn die Fasern solcher Stäbe sind von ungleicher Länge. Daraus folgen nach dem Elastizitätsgesetze (**4**)

$$\sigma = \alpha \cdot E$$

auch ungleiche Längenänderungen der Fasern, d. h. unebene Querschnitte. Diese verursachen wiederum ungleiche Spannungsverteilung, wenn das Dehnungsmaß E als unveränderlich anzusehen ist.

Der letzterwähnte Umstand ist auch bei prismatischen Stäben wohl zu beachten, insofern als bei diesen die gleichmäßige Spannungsverteilung nur solange voll vorausgesetzt

werden darf, als nicht die *Querdehnungen* (**5**a) eine merkliche Größe erreicht haben.

b. Die Spannungen in Schrägschnitten. Zwei benachbarte zur Stabachse parallele Längsschnitte trennen aus dem Stabe eine Scheibe ab. Durch die Scheibe ist ein Querschnitt und ein Schrägschnitt gelegt, der letztere senkrecht zu den Längsschnitten (Fig. 299). Jeder Faserquerschnitt dF der Scheibe empfängt unter dem Einflusse einer Achsenkraft eine Normalspannung o. Querschnitt und Schrägschnitt schließen einen Winkel α miteinander ein. Die Fläche des Schrägschnittes beträgt also $\frac{1}{\cos \alpha}$, wenn die Querschnittsfläche gleich der Einheit gesetzt wird. In ihrem Schwerpunkte wirkt eine Spannung,

die in eine Normalspannung σ' und eine Schubspannung τ' zerlegt werden

kann. Für den Gleichgewichtszustand der abgetrennten Faser hat man demnach anzuschreiben:

$$\sigma' \frac{dF}{\cos \alpha} \cdot \sin \alpha - \tau' \frac{dF}{\cos \alpha} \cdot \cos \alpha = 0$$

$$\sigma' \frac{ar}{\cos \alpha} \cdot \cos \alpha + \tau' \frac{ar}{\cos \alpha} \cdot \sin \alpha - \sigma \cdot dF = 0.$$

Oder:

$$\sigma' \sin \alpha = \tau' \cos \alpha$$

$$\sigma' \cos \alpha + \tau' \sin \alpha = \sigma \cos \alpha.$$

Berechnet man daraus die Unbekannten σ' und τ' , so erhält man

$$\sigma' = \sigma \cdot \cos^2 \alpha$$
$$\tau' = \frac{1}{2}\sigma \cdot \sin 2\alpha.$$

Die Grenzwerte von σ' und τ' finden danach statt:

für
$$\sigma'$$
, wenn $\cos^2 \alpha = 1$, d. h. für $\alpha = 0$ und 180° ;

"ir
$$\tau'$$
, wenn $\sin 2\alpha = 1$, d. h. für $\alpha = 45^{\circ}$ und 135° .

(87)

Man erhält dann für die Grenzwerte:

$$\max \sigma' = \sigma$$
$$\max \tau' = \frac{\sigma}{2}.$$

In Worten ausgedrückt:

f

Die Normalspannung σ des Querschnittes erzeugt in Schrägschnitten, die um 45° zum Querschnitt geneigt sind, eine Schubspannung gleich der Hälfte von σ .

c. Beispiel. Ein Steinwürfel von 10 cm Kantenlänge erfährt einen Achsendruck P. Wie groß darf P höchstens steigen, wenn der Stein, bei einer Druckfestigkeit Z von 500 atm und einer Schubfestigkeit Svon 50 atm mit 10-facher Sicherheit widerstehen soll?

Weil die Schubfestigkeit des Steines sehr gering gegenüber seiner Druckfestigkeit ist, so sind zuerst die Schubspannungen zu berechnen. Sie werden am größten in einer der Diagonalebenen des Würfels, dessen Flächeninhalt F sich aus

$$F = \sqrt{10^2 + 10^2} \cdot 10 = \text{rund } 140 \text{ qcm}$$

berechnet. Bei Einhaltung der geforderten 10-fachen Sicherheit darf τ nicht über $\frac{S}{10} = 5$ atm. steigen. Die Gesamtschubkraft in einer Diagonalebene darf also nicht mehr betragen als $5 \cdot 140 = 700$ kg Da max $\tau = \frac{\sigma}{2}$ ist, so darf gleichfalls die

Druckspannung σ nicht über $2\tau = 10$ atm. steigen. Die zulässige Grenze für den Längsdruck P berechnet sich somit zu

 $P = 10 \cdot 10 \cdot 10 = 1000 \text{ kg.}$

101. Einfluß einer Querkraft bei reiner Abscherung.

a. In Querschnitten. Wenn man, wie (unter **3**) bereits veranschaulicht wurde, in einer von zwei Nachbarquerschnitten begrenzten

Scheibe einem Würfel von den unendlich kleinen Kantenlängen dx, dy, dzbeobachtet (Fig. 300), so verschieben sich unter der bloßen Wirkung einer Querkraft Q die in der Querschnittsfläche liegenden Würfelflächen $dx \cdot dy$ gegeneinander, ohne ihren Abstand dz zu ändern. Dabei ändert sich aber die Größe der rechten Winkel der Würfelflächen $dy \cdot dz$

und es entstehen *Schubspannungen*, deren Richtung in die Querschnittsfläche fällt. Unter der Voraussetzung, daß die entstehenden Formänderungen — die *Schiebungen* oder *Gleitungen* — in jedem Teilchen dxdy der Querschnittsfläche F gleich groß ausfallen, ist die Schubspannung τ , auf Grund des Elastizitätsgesetzes, mit

$$r = \frac{Q}{F}$$

anzuschreiben. Meistens bezeichnet man τ dann als *reine* Schubspannung. Die Erzeugung einer reinen Schubspannung ist aber selbst bei wissenschaftlichen Versuchen mit Schwierigkeiten verknüpft, weil dabei Biegungsbeanspruchungen nicht ganz zu vermeiden sind. In Baukonstruktionen kommt daher der Fall der reinen Schubspannung nur in der Voraussetzung zur Berechnung, daß die gleichzeitig auftretenden Biegungsspannungen ihrer Kleinheit wegen vernachlässigt werden können.

b. In Schrägschnitten. Man denke sich von dem differentialen Würfel ein Prisma abgetrennt, sodaß die Querkraft Q in der Querschnittsfläche, senkrecht zu deren Kanten dy wirkt. Das Prisma ist in der Fig. 301 durch eine seiner beiden dxdz-Flächen dargestellt. bcstellt einen Schrägschnitt vor, der senkrecht zu dxdz-Ebene des Würfels steht und mit dem Querschnitte den Winkel α einschließt Die Fläche $\overline{ac} \cdot dy$ werde mit dF bezeichnet. Der Schrägschnitt, dessen Fläche

gleich $\frac{dF}{\cos \alpha}$ ist, werde unter dem Einflusse von Qvon einer Spannung ergriffen, deren Seitenkräfte eine Normalspannung σ' und eine Schubspannung τ' seien. Die Fläche $\overline{ab} \cdot dy$ ist gleich $dF \cdot \tan \alpha$.

In der Fläche dF wirkt die Schubspannung τ . Es ist danach leicht einzusehen, wie auch in der Fläche $dF \cdot \tan \alpha$ eine Schubspannung wirken muß, die gleich τ ist, weil anders ein Gleichgewicht des

Prismas nicht möglich ist. Denn die Summe der statischen Momente der in den drei Flächen dF, dF. tang α und $\frac{dF}{\cos \alpha}$ wirkenden Spannungen kann in Bezug auf die Momentenachse, durch welche die Mittelkraft aller Spannungen ϱ verläuft, nicht anders zu Null werden. Es ist aber, mit Bezug auf die Fig. 301,

(1) $-\tau \cdot dF \cdot h + \tau \cdot dF \cdot \tan \alpha \cdot w = 0$, weil

$$\tan \alpha = \frac{h}{w}$$

ist. Daraus folgt der Satz:

Die Schubspannung τ im Punkte dF eines Stabquerschnittes erzeugt in dem anstoßenden Flächenteilchen eines Längsschnittes eine ihr an Größe gleiche Spannung.

Außer der Momenten-Gleichung sind noch die beiden folgenden Gleichgewichts-Bedingungen anzuschreiben, wobei die Schubspannungen τ nach den Richtungen senkrecht und parallel zum Schrägschnitte zerlegt worden sind:

$$\sigma' \cdot \left(\frac{dF}{\cos\alpha}\right) - \tau \cdot dF \cdot \sin\alpha - \tau \cdot (dF \cdot \tan\alpha) \cdot \cos\alpha = o$$

$$\tau' \cdot \left(\frac{dF}{\cos\alpha}\right) - \tau \cdot dF \cdot \cos\alpha + \tau \cdot (dF \cdot \tan\alpha) \cdot \sin\alpha = o.$$

§ 15. Die einfachen Belastungsfälle.

Das gibt

(2)
$$\sigma' = 2\tau (\sin \alpha \cdot \cos \alpha) = \tau \cdot \sin 2\alpha$$

(3)
$$\tau' = \tau (\cos^2 \alpha - \sin^2 \alpha) = \tau \cdot \cos 2 \alpha$$

4)
$$\varrho = \sqrt{\sigma'^2 + \tau'^2} = \pm \tau.$$

Die Grenzwerte von σ' und τ' treten also ein:

iür
$$\sigma'$$
, wenn $\sin 2\alpha = 1$, d. h. für $\alpha = 45^{\circ}$ und 135° ;

ir
$$\tau'$$
, wenn $\cos 2\alpha = 1$, d. h. für $\alpha = 0$ und 180° .

Die Grenzwerte sind danach:

fi

$$\max \sigma' = +\tau \max \tau' = \pm\tau.$$
(88)

In Worten: Die Schubspannung τ im Punkte dF eines Stabquerschnittes erzeugt in dem anstoßenden Flächenteilchen eines unter 45° zum Querschnitte geneigten Schrägschnittes eine ihr an Größe gleiche Normalspannung.

Dieser Satz kann benutzt werden, um die Gleitung oder Schiebung des Querschnittes zu berechnen.

c. Das Gleitungs- oder Schiebungsmaß. Nach dem Elastizitätsgesetz ist die Schiebung γ mit $\frac{d}{c} = \frac{7}{7}$

ung
$$\gamma$$
 mit
 $\gamma = \frac{\tau}{G}$ (89)
mzuschreiben, worin G
as Schiebungsmaß be-
eutet, das — wie jetzt
achgewiesen werden soll
– aus dem *Dehnungs*-
taß berechnet werden
ann (5 c).
Man betrachte einen

Fig. 302.

Man betrachte einen unendlich kleinen Würfel, der an irgend einer

a d d

mk

Stelle zwischen zwei Nachbarquerschnitten liegt, deren Entfernung voneinander gleich der Längeneinheit gesetzt werde (Fig. 302). Die Schubspannung in den Würfelflächen *abcd*, die im Querschnitt liegen, sei τ . Dann werden sich, wie oben bereits erläutert, die rechten Winkel dieser Würfelflächen ändern, und infolgedessen ändern sich auch die Längen der Diagonalen *ac* und *bd*. Bezeichnet man die ursprüngliche Länge der Diagonale mit s, deren Vergrößerung mit $\varDelta s_z$ und deren Verkleinerung mit $\varDelta s_d$, so erhält man aus einfachen geometrischen Betrachtungen

$$\Delta s_z = \overline{ac'} - \overline{ac} = + \left(\sqrt{1^2 + (1+\gamma)^2} - \sqrt{2} \right)$$
$$\Delta s_d = \overline{bd} - \overline{bd'} = - \left(\sqrt{1^2 + (1-\gamma)^2} - \sqrt{2} \right).$$

Wenn man γ^2 als unendlich kleine Größe zweiter Ordnung vernachlässigt, so gibt das zunächst

$$\Delta s_z = + (V_2 \ V_1 + \gamma - V_2)$$
$$\Delta s_d = - (V_2 \ V_1 - \gamma - V_2)$$

woraus die Dehnungen mit

$$\frac{d s_z}{s} = + (V \overline{1 + \gamma} - 1)$$
$$\frac{d s_d}{s} = + (V \overline{1 - \gamma} - 1)$$

folgen. Weil $\left(1 + \frac{\gamma}{2}\right)^2$ und $\left(1 - \frac{\gamma}{2}\right)^2$, unter Vernachlässigung von $\frac{\gamma^2}{4}$, der unendlich kleinen Größe zweiter Ordnung, $(1 + \gamma)$ und $(1 - \gamma)$ geben, so folgt endlich:

$$\frac{\Delta s_s}{s} = +\frac{1}{2}\gamma$$
$$\frac{\Delta s_d}{s} = -\frac{1}{2}\gamma.$$

Diese beiden Dehnungen entstehen infolge der Normalspannungen, die (nach dem Satze unter b) in den unter 45° zu den Querschnitten geneigten Diagonalebenen auftreten müssen. Die Größe dieser Normalspannungen ist in der verlängerten Diagonale $+\tau$ und in der verkürzten $-\tau$. Deshalb setzt sich jede der beiden Dehnungen aus zwei Stücken zusammen: davon ist ein Stück eine Längsdehnung, die durch eine in die Diagonale fallende Achsenspannung $+\tau$ oder $-\tau$ verursacht wird und das andere Stück eine Querdehnung die infolge von senkrecht zur Diagonalrichtung wirkenden Normalspannungen $-\tau$ oder $+\tau$ entsteht.

Danach sind die Dehnungen mit

§ 15. Die einfachen Belastungsfälle.

$$\frac{d s_z}{s} = + \frac{\tau}{E} + \frac{1}{m} \frac{\tau}{E} = + \frac{1}{2} \gamma$$

und

$$\frac{\Delta s_d}{s} = -\frac{\tau}{E} - \frac{1}{m}\frac{\tau}{E} = -\frac{1}{2}\gamma$$

anzuschreiben.

Daraus folgt:

$$\gamma = \frac{2(m+1)}{m} \frac{x}{E} \tag{90}$$

und in Verbindung mit (89)

$$G = \frac{m}{2(m+1)}E, \qquad (91)$$

worin m die Poisson'sche Zahl und E das Dehnungsmaß bedeuten (5 b).

102. Schubspannungen bei einer Verdrehung (Fig. 303).

Eine reine Verdrehung tritt (nach 3d und 99a) ein, wenn sowohl Biegemoment, als auch Achsenkraft und Querkraft verschwinden, wenn also nur ein Verdrehungsmoment verbleibt, das in der XY-Ebene oder parallel dazu thätig ist.

Erfahrungsmäßig darf man in diesem Belastungsfalle ebenbleibende Querschnitte voraussetzen, wenn der Umriß der Querschnitte ein Kreis ist. Die Berechnung andersgestalteter Querschnitte ruht heute noch auf etwas unsicheren Grundlagen, weil Versuchsergebnisse, auf die man sich dabei fest stützen könnte, für Konstruktionsstoffe in ausreichendem Maße noch nicht vorliegen.

In Baukonstruktionen spielen die durch Verdrehungen eintretenden Schubspannungen überdies nur eine Nebenrolle. In der Regel liegen die Stablasten in einer Kraftebene und wenn in Ausnahmefällen Verdrehungsmomente in Rechnung gezogen werden müssen, so haben die dabei zu ermittelnden Schubspannungen meist nur die Bedeutung von *Nebenspannungen* (16 c). Aus obigen Gründen beschränkt Verfasser sich im vorliegenden Bande hauptsächlich auf die Behandlung des einfachsten Belastungsfalles unter der Annahme ebener Kreisquerschnitte.

a. Der Kreisquerschnitt. Bei einer Verdrehung geht jede Längsfaser des Stabes in ein Stück einer Schraubenlinie über. Betrachtet man dabei zwei (um dz von einander entfernte) Nachbarquerschnitte, so berechnet sich deren gegenseitige Verdrehung wie folgt (Fig. 303).

Zwei Halbmesser \overline{sm} , die in zwei um die Länge l voneinander entfernten Querschnitten ursprünglich parallel lagen, schließen nach erfolgter Verdrehung den Winkel $d\varphi$ mit einander ein. Danach beträgt

Mehrtens, Statik der Baukonstruktionen. I.

für die Einheit der Länge l der Verdrehungswinkel $\frac{d\varphi}{l}$, also für die Länge dz

Fig. 303.

Irgend ein Punkt dF des Querschnittes im Abstande y von der Stabachse verdreht sich gegen den gleichen Punkt seines Nachbarquerschnittes um

$$y d \varphi \frac{dz}{l}$$
.

Die Verschiebungsrichtung steht dabei senkrecht zum Halbmesser und die Änderung des ursprünglich rechten Winkels der Würfelflächen $dy \cdot dz$ (**3**d) beträgt dabei γdz , wenn γ die Gleitung oder Schiebung ist (**5**c).

Daraus folgt:

oder

$$\gamma dz = y d\varphi \frac{dz}{l}$$

 $\gamma = \frac{y \, d \, \varphi}{l} \, \cdot \,$

Nach dem Elastizitätsgesetz ist

§ 15. Die einfachen Belastungsfälle.

$$\gamma = \frac{\tau}{G},$$

worin G das Gleitungs- oder Schiebungsmaß bedeutet. Das gibt den Ausdruck für die Schubspannung:

$$\tau = \frac{Gyd\varphi}{l}.$$

Die Schubspannungen werden danach am größten im Umfange des Querschnittes und von dort bis zum Schwerpunkt werden sie proportional ihrem Abstande y kleiner. Wenn *der Grenzwert* der Schubspannungen mit τ_r und der Kreishalbmesser mit r bezeichnet wird, folgt

$$\tau = \tau_r \left(\frac{y}{r}\right). \tag{92}$$

Im Gleichgewichtsfalle muß das Verdrehungsmoment

$$M = \int_{0}^{t} \tau \, dF \cdot y$$

sein. Mit Berücksichtigung der Gl. (92) gibt das:

$$M = \frac{\tau_r}{r} \int_0^r y^2 \, dF = \frac{\tau_r}{r} J_p \,,$$

wenn J_{ϕ} das polare Tragheitsmoment vorstellt. Es berechnet sich:

$$J_p = \frac{\pi r^4}{2}$$

und daraus

$$\tau_r = \frac{2M}{\pi r^3},\tag{93}$$

Der Verdrehungswinkel $d\varphi$ findet sich danach aus

$$d\varphi = \frac{\tau l}{Gy} = \frac{\tau_r l}{Gr} \quad \text{d. h.}$$
$$d\varphi = \frac{2Ml}{\pi r^4 G}. \tag{94}$$

21*

G ist (nach Gl. 91) aus dem Dehnungsmaß E zu berechnen.

Für hohle Wellen, mit äußerem Halbmesser r_a und innerem Halbmesser r_i , erhält man in gleicher Weise

$$\tau_r = \frac{2Mr_a}{\pi (r_a^4 - r_i^4)}$$
$$d\varphi = \frac{2Ml}{\pi (r_a^4 - r_i^4)G}.$$

b. Ovale und rechteckige Querschnitte¹. Wollte man hier die Voraussetzung ebenbleibender Querschnitte aufrecht erhalten, so käme man zu Widersprüchen, denn es müßte dann τ in allen Querschnittspunkten senkrecht zum zugehörigen, von der Stabachse ausgehenden Fahrstrahle stehen. In den Randpunkten ist dies aber unmöglich, weil hier (nach 115) die Richtung der Schubspannung $\tau = \sqrt{\tau_x^2 + \tau_y^2}$ den Querschnittsumriß berühren muß.

Bei den von BACH angestellten Versuchen mit Wellen von elliptischem und rechteckigem Querschnitt zeigten sich die ursprünglich ebenen Querschnitte nach erfolgter Verdrehung etwas gewölbt. Außerdem ergaben sich die Gleitungen am größten in den der Stabachse zunächst liegenden Randpunkten. Danach darf man diese Punkte als die gefährlichsten ansehen.

Unter gewissen Annahmen ergeben sich danach die Schubspannungen für einen vollen Ellipsenquerschnitt (nach BACH)

in den Randpunkten der kleinen Halbachse der Länge a:

$$\max \tau = \frac{2M}{\pi a^2 b},$$

in den Randpunkten der großen Halbachse der Länge b:

$$=\frac{2M}{\pi ab^2}$$
.

103. Reine Biegung im allgemeinen.

Dieser Fall tritt (nach **99** a) ein, wenn sowohl Achsenkraft und Querkraft, als auch das Verdrehungsmoment für irgend einen Querschnitt verschwinden. Das Verschwinden der Querkraft soll zunächst besonders betrachtet werden.

a. Einfluß der Querkraft. Die Querkraft wurde erklärt als Mittelkraft aller auf einen betrachteten Stabteil in einer Kraftebene senkrecht zur Stabachse wirkenden äußern Kräfte. Ist nun der Abstand der Querkraft Q von dem betrachteten Querschnitte gleich z, so

¹ Vergl. BACH, Elastizität und Festigkeit. 4. Aufl. 1902, worin sehr lehrreiche Versuchsergebnisse zusammengefaßt sind.

ist allgemein im Falle einer Biegung das Moment

M = Qz.

Die Größe von z findet sich graphisch aus der Momentenfläche, denn der Angriffspunkt von Q liegt im Durchschnitt der an den Querschnitt stoßenden Seileckseiten (55), von denen eine die Schlußlinie ab ist. z wird also unendlich groß für einen Querschnitt, an welchen Seileckseiten stoßen, die parallel sind. Das ist z. B. der Fall in der Fig. 304

für alle Querschnitte zwischen den Seileckknoten m und n, oder für den einzigen Querschnitt im Punkte m der Fig. 305, in welcher die Momentenfläche von einer Seillinie begrenzt wird. In beiden Fällen tritt in den betreffenden Querschnitten der *Grenzwert* des Momentes ein.

Der analytische Nachweis dafür, daß die Querkraft in solchen Querschnitten verschwindet, in denen das Moment seinen Grenzwert erreicht, ist wie folgt zu führen. Für zwei Nachbarquerschnitte, die um dz voneinander entfernt sind (Fig. 306), wächst im allgemeinen das Biegungsmoment um Q dz,

Fig. 306.

vorausgesetzt daß innerhalb der unendlich kleinen Strecke dz keine äußere Kraft angreift. Daraus folgt

oder

$$dM = Qdz$$
$$Q = \frac{dM}{dz}.$$
(95)

Für Q = 0 erreicht also M seine Grenzwerte. Das Moment M der reinen Biegung ist im vorliegenden Falle demnach als das Produkt aus einer verschwindend kleinen Querkraft Q und einem unendlich großen Hebelarme z anzuschen (47 a).

Das Kräftepaar des Momentes *M* kann aber in seiner Ebene, ohne Änderung seines Einflusses, beliebig verschoben und verdreht werden. Daraus folgt, daß auch *eine verschwindend kleine Längskraft*, wenn diese in unendlicher Ferne wirkt, eine reine Biegung erzeugt.

b. Elastische Linie, Nulllinie und Spannungsebene. Es liegt kein Grund vor, in dem zu betrachtenden Querschnitte, für welchen die Querkraft verschwindet, das Auftreten von Schubspannungen zu erwarten. Um so mehr erscheint es gerechtfertigt, ein *Ebenbleiben* des Querschnittes während seiner Biegung vorauszusetzen.

Eine solche Voraussetzung stimmt für praktische Fälle genau genug mit der Erfahrung überein. Auch dürfen die in § 14 behandelten Flächenmomente anders als für ebene Querschnitte garnicht in Rechnung gestellt werden. Das sind die Gründe, warum Verfasser von vornherein die Querschnitte als eben bleibend betrachten will.

Wenn man die Angriffspunkte jeder äußern Kraft in deren Richtung bis in die Stabachse verschoben denkt, wodurch im ursprünglichen Gleichgewicht nichts geändert wird, so liegen nach erfolgter Formänderung alle Angriffspunkte in einer krummen Linie, die *elastische Linie* genannt wird. Sie liegt in der Kraftebene und die zu betrachtenden eben bleibenden Querschnitte stehen zu ihr und der Kraftebene senkrecht, weil Winkeländerungen wegen Fortfalls der Schubspannungen nicht eintreten.

Man betrachte nun während der Formänderung die gegenseitige Bewegung von zwei, ursprünglich um die Strecke dz voneinander entfernten Nachbarquerschnitten. Fig. 307 stellt irgend einen Längsschnitt parallel zur Kraftebene dar, aus welchem zu erkennen ist, wie alle

Stabfasern des Schnittes infolge ihrer Krümmung eine Längenänderung erfahren, mit Ausnahme der einzigen Faser $\overline{nn'}$, die ihre ursprüngliche Länge dz beibehält. Auf derjenigen Seite der $\overline{nn'}$, die dem Krümmungsmittelpunkt m zugekehrt ist, sind alle Fasern kürzer geworden, erleiden also Druckspannungen, während die Fasern auf der gegenüberliegenden Seite sich alle verlängert und deshalb Zugspannungen aufgenommen haben.

Verbindet man die in allen Längsschnitten vorkommende spannungslose Faser im Querschnitte durch eine Linie, so erhält man die sog. Nulllinie, die wie weiterhin zu beweisen sein wird eine Gerade ist und bei reiner Biegung durch den Schwerpunkt des Querschnittes verläuft. Durch die Nulllinie wird ein Querschnitt in zwei Zonen geteilt, von denen eine die Druckzone, die andere die Zugzone ist.

Wenn $\varrho = \overline{mn} = \overline{mn'}$ der Krümmungshalbmesser der spannungslosen Faser und $d\varphi$ der Winkel ist, um welchen die Querschnitte gegeneinander verdreht worden sind, so erhält man für die Längen-

Fig. 307.

änderung Δdz einer beliebigen Faser in der Entfernung v von der Nulllinie die Gleichung: Vierter Abschnitt. Spannungen in geraden Stäben.

$$\frac{d\,dz}{dz} = \frac{v}{\varrho} \cdot$$

Solange also das HOOKE'sche Gesetz

$$\frac{\Delta dz}{dz} = \frac{\sigma}{E}$$

gilt, ist danach die Normalspannung σ dem Abstande v von der Nulllinie proportional:

$$\sigma = v\left(\frac{E}{\varrho}\right),$$

denn sowohl das Dehnungsmaß E als auch ρ gelten hier als unveränderliche Größen.

Aus obigem folgt der Satz:

Denkt man sich die Normalspannungen des Querschnittes in ihren Angriffspunkten in beliebiger, aber gleicher Richtung aufgetragen, so liegen die Endpunkte der aufgetragenen Strecken in einer Ebene, der Spannungsebene, die den Querschnitt in einer Geraden schneidet. Diese Gerade ist die Nulllinie.

104. Die Normalspannungen bei reiner Biegung.

a. Allgemeine Gleichung. Durch den Schwerpunkt eines Querschnittes von beliebigem Umrisse werde ein Achsenkreuz so gelegt, daß

Fig. 308.

die V-Achse in die beliebig belegene Kraftebene und die Z-Achse mit der Stabachse zusammenfällt (Fig. 308). Die Gleichung einer Spannungsebene lautet dann allgemein:

(I)
$$\sigma = A + B_x + C_y,$$

worin A, B, C Unveränderliche sind, die aus den Gleichgewichts-Bedingungen

(2)

$$\circ = \int \sigma \, dF$$

$$M = \int \sigma \cdot dF \cdot y$$

$$\circ = \int \sigma \cdot dF \cdot x$$

zu ermitteln sein werden. Die erste dieser Gleichungen bringt zum Ausdruck, daß die Achsenkraft verschwindet, während die letzte Gleichung ein Biegemoment in der XZ-Ebene ausschließt.

(1) und (2) mit einander verbunden, geben

$$\circ = A \int dF + B \int x \cdot dF + C \int y \cdot dF,$$

(3)
$$M = A \int y \cdot dF + B \int x \cdot y dF + C \int y^2 \cdot dF,$$

$$\circ = A \int x \cdot dF + B \int x^2 \cdot dF + C \int xy \cdot dF.$$

Die statischen Momente $\int x \cdot dF$ und $\int y \cdot dF$ der Querschnittsfläche *F* werden für die *Schwer*achsen *XY* zu Null. Danach ergibt sich auch

 $A = \circ$.

Die Ausdrücke $\int x^2 dF$ und $\int y^2 dF$ bedeuten *Trägheitsmomente* der Fläche *F*. Wir setzen dafür die bekannten Bezeichnungen

$$\int x^2 dF = J_y \,,$$

d. h. das auf die X-Achse bezogene Trägheitsmoment und

$$\int y^2 dF = J_x \,,$$

d. h. das auf die Y-Achse bezogene Trägheitsmoment. Beide Momente erscheinen, des Quadrates der Ordinaten x, y wegen, stets *positiv*.

Der Ausdruck $\int xy \cdot dF$ ist bekannt unter den Namen Zentrifugalmoment. Wir setzen

$$\int xy \cdot dF = J_{xy} \, .$$

 J_{xy} kann, je nach der Lage der Achsen XY, entweder *positiv oder* negativ sein (92).

Unter Beachtung der eingeführten Bezeichnungen und der Bedingung A = 0, bleiben schließlich zur Bestimmung der Unveränderlichen B und C die beiden Gleichungen:

$$B \cdot J_{xy} + C \cdot J_{x} = M,$$

$$B \cdot J_{y} + C \cdot J_{xy} = 0.$$

Daraus folgen:

$$B = \frac{M \cdot J_{xy}}{J_{xy}^2 - J_x J_y}; \quad C = \frac{M \cdot J_y}{J_x J_y - J_{xy}^2}$$

Durch Einsetzen in (1) erhält man dann:

$$\sigma = \frac{M(J_y \cdot y - J_{xy} \cdot x)}{(J_x J_y - J_{xy}^2)} \cdot$$
(96)

Der Ausdruck vereinfacht sich, wenn man ihn anstatt auf beliebig gelegte Achsen XY auf *Hauptachsen* (92) bezieht. Dann verschwindet das Zentrifugalmoment und es folgt:

$$\sigma = \frac{M \cdot y}{J_x} \cdot \tag{97}$$

Diese Gleichung gilt auch, wenn eine der Achsen XY eine Symmetrieachse des Querschnittes ist (Fig. 309), weil für diese J_{xy} ebenfalls ver-

(Fig. 309), weil für diese J_{xy} ebenfalls verschwindet (90). Sie gilt — wie leicht einzusehen ist — auch noch für schiefwinklige Achsen und Koordinaten x'y', die einander zugeordnet sind, *±X* für welche also (nach Gl. 67) J'_{xy} — das auf schiefwinklige Koordinaten bezogene Zentrifugalmoment — verschwindet, wenn der Winkel β, den die Achsen miteinander einschließen, der Bedingung

$$\cot \beta = \frac{J_{xy}}{J_y}$$

entspricht.

Für zugeordnete Achsen X' Y' (Fig. 310) ist also anzuschreiben:

$$\sigma = \frac{My'}{J'_x} \,. \tag{98}$$

b. Die Lage der Nulllinie. Sie folgt allgemein aus der Gl. (96) für $\sigma = 0$. Die darin enthaltenen Momente und Flächenmomente

bedeuten für einen bestimmten Querschnitt Unveränderliche. Danach ergiebt sich

oder

$$J_{y} \cdot y - J_{xy} \cdot x = 0$$
$$\frac{y}{x} = k,$$

gleich einer Unveränderlichen. Das heißt mit andern Worten: Die Nulllinie muß durch den Schwerpunkt des Querschnittes verlaufen.

Der Winkel α , den die Nulllinie mit der X-Achse einschließt, ist

$$\tan \alpha = \frac{y}{x} = \frac{J_{xy}}{J_y}, \quad (99)$$

wobei das Vorzeichen von J_{xy} zu beachten ist.

Wenn eine der Hauptachsen mit der Spur der Kraftebene — der Kraftlinie — zusammenfällt; desgleichen wenn eine der Achsen eine Symmetrieachse des Querschnittes ist, oder auch wenn σ auf zugeordnete (schiefwinklige) Achsen bezogen wird, d. h. wenn J_{xy} verschwindet, ergibt sich

 $tang \alpha = o$,

d. h. die Nulllinie fällt mit der quer zur Kraftlinie gerichteten Schwerachse zusammen.

c. Randspannungen und Widerstandsmoment. Falls die Kraftlinie des Querschnittes mit einer Hauptachse, einer Symmetrieachse oder einer der zugeordneten Achsen zusammenfällt, gilt die Gl. (97)

$$\sigma = \frac{My}{J_x},$$

woraus hervorgeht, daß die Grenzwerte der Normalspannungen stets in Randpunkten des Querschnittes auftreten. Sie sollen deshalb künftig die Randspannungen genannt werden. Um die Randpunkte zu finden braucht man nur in der Zugzone und der Druckzone je eine Tangente an den Querschnittsumriß zu legen, die der quer zur Kraftlinie gerichteten Achse X (Fig. 309) oder X' (Fig. 310), d. h. *der Nulllinie* parallel ist. Die Berührungspunkte a und i sind die gesuchten Randpunkte. Sind deren Ordinaten y_i und y_a , so erhält man die größten Randspannungen:

$$\sigma_a = \frac{My_a}{J_x}$$
(100)
$$\sigma_i = \frac{My_i}{J_x} \cdot$$

Der Quotient » Trägheitsmoment dividiert durch die Ordinate eines der Randpunkte« wird Widerstandsmoment genannt und gewöhnlich mit W bezeichnet. Unter Einführung von W gehen obige Gleichungen über in

$$\sigma_a = \frac{M}{W_a} \tag{IOI}$$

$$\sigma_i = \frac{M}{W_i} \ .$$

Bei völliger Symmetrie des Querschnittes nach zwei Achsenrichtungen hin wird $W_a = W_i = W$ und die Gleichung

$$\sigma = \frac{M}{W} \tag{102}$$

deutet dann an, daß die Randspannungen in der Zugzone und der Druckzone gleich groß sind. Die Widerstandsmomente der gebräuch-

Fig. 311.

lichsten symmetrischen Querschnitte von Konstruktionsstäben findet man in den meisten Ingenieur-Handbüchern angegeben.

105. Beispiele.

a. Abscherung. 1. In einer Holzkonstruktion (Fig. 311) setzt sich eine Strebe, deren Achsenkraft P = 2t ist, unter einem Winkel

 $\alpha = 34^{\circ}$ mit einem Zapfen der Breite $\beta = 5$ cm und der Höhe $\delta = 8$ cm auf einen wagerechten Balken Höhe h = 24 cm. Die Breite b der Strebe beträgt 15 cm.

Wie groß muß die Länge λ der vor dem Zapfen stehenden Balken-

schicht sein, damit gegen Abscheren eine 10-fache Sicherheit vorhanden ist und wenn die Reibung in der Trennungsfläche vernachlässigt wird?

Die in der Achsenrichtung des Balkens tätige Strebenkraft ist $P \cos \alpha$. Die Scherflächen sind $\lambda(\beta + 2\delta)$. Ist S die Schubfestigkeit des Holzes für 1 qcm Fläche parallel zu den Fasern des Balkens, so folgt daraus:

$$\lambda(\beta + 2\delta) S \equiv 10 \cdot P \cdot \cos \alpha$$
$$\lambda = 10 \cdot P \cdot \cos \alpha$$

oder

 $(\beta + 2\delta)S$

$$\lambda \equiv \frac{10 \cdot 2000 \cdot 0,829}{(5+16)50} \equiv 16 \text{ cm}.$$

2. Eine Strebe sei mit einem Balken durch einen Bolzen und eine Versatzung verbunden, wie es Fig. 312 darstellt. Wie stark muß in diesem Falle, bei Vernachlässigung der Reibung, der Bolzendurchmesser ausfallen?

Die Strebe wird (nach erfolgter Überwindung der in ihrer Grundfläche

auftretenden Reibung) sich erst verschieben können, nachdem der Bolzen und das vor der 2β breiten Versatzung stehende Bal-

kenstück abgeschert worden sind.

Die Scherfläche des Bolzens ist eine Ellipse des Flächeninhaltes

$$F_{\mathrm{I}} = \frac{d^2 \, \pi}{4 \, \sin \alpha} \, \cdot \,$$

Die Holzscherflächen F_{a} betragen

$$F_2 = \lambda(3\delta + 2\beta).$$

Setzt man die entsprechenden zulässigen Schubspannungen für beide Flächen mit τ_x und τ_z an, so erhält man die Bedingung:

$$\tau_{\mathbf{r}} \cdot \frac{d^{2}\pi}{4\sin\alpha_{\mathbf{r}}} + \tau_{2}\lambda(3\delta + 2\beta) \equiv P \cdot \cos\alpha,$$

woraus

$$T^{2} = \frac{4 \sin \alpha_{1}}{\tau_{1} \pi} \left\{ P \cos \alpha - \tau_{2} \lambda \left(3 \, \delta + 2 \, \beta \right) \right\}$$

folgt.

Es muß aber außerdem noch Sicherheit vorhanden sein, daß der Bolzen, *ohne abzuscheren*, nicht die vor ihm stehende Holzmasse herausdränge. Daraus ergibt sich die zweite Bedingung:

$$\tau_{2}\{2\lambda_{1}h+\lambda(3\delta+2\beta)\} \equiv P\cos\alpha.$$

Es sei nun:

 $P = 5 t \quad \text{und} \quad \alpha = 24^\circ, \ \alpha = 78^\circ$ $b = 25 \text{ cm} \quad - \quad h = 30 \text{ cm}$ $b_x = 21 \text{ cm} \quad - \quad h_x = 25 \text{ cm}$ $\lambda = 12 \text{ cm} \quad - \quad \lambda_x = 40 \text{ cm}$ $\delta = \frac{r}{6} h \quad - \quad \beta = \frac{r}{3} b_x$ $\tau_x = 800 \text{ atm.} \quad - \quad \tau_2 = 5 \text{ atm.}$

Dann ist

oder

$$P\cos\alpha = 5000 \cdot 0.914 = 4570 \text{ kg},$$

$$\tau_2\{2\lambda_1h + \lambda(3\vartheta + 2\beta)\} = 5\{2 \cdot 40 \cdot 30 + 12(15 + 14)\} = 13740 \text{ kg},$$

also gegen Ausreißen des Holzes, ohne Abscherung des Bolzens, eine 3-fache Sicherheit vorhanden.

Schließlich erhält man:

$$d^{2} = \frac{4 \cdot 0.978}{800 \cdot 3.14} \{4570 - 5 \cdot 12(15 + 14)\} = 4.4072 \text{ qcm}$$

$$d = 2.10 \text{ cm}$$

b. Abscherung, reine Biegung und Stauchdruck.

3. In den Fig. 313 und 314 sind zwei sogenannte Kettengurte von eisernen Brückenträgern im Grundriß dargestellt. Die einzelnen Ketten-

Fig. 313.

stäbe greifen mit einem sog. Auge (vgl. Fig. 15—16, S. 25) über einen Knotenbolzen (14), der auf einer Seite des Knotens mit einer Mutter und auf der andern Seite mit einem Kopfe versehen ist.

In der Fig. 313 sind im ganzen 8 gleich starke Stäbe vorhanden, von denen symmetrisch zur Mittelachse X je 4 Stück derart angeordnet sind, daß zwischen deren Achsenkräften U Gleichgewicht im Knoten vorhanden ist. Die Stäbe liegen mit etwa 1 mm Zwischenraum nebeneinander und in der Bolzenmitte trennt sie eine Hülse, die auf den Bolzen gesteckt ist.

Wenn nun sowohl zwischen den einzelnen Stäben als auch zwischen Stabaugen und Bolzen, sowie auch zwischen Stäben und Hülse keinerlei Spielraum wäre, so würde die Verbindung nur durch Querkräfte beansprucht und wie leicht zu sehen, wäre dann max Q = U. In diesem Falle würde man die Bolzenstärke d allein auf Abscherung berechnen können und erhielte aus

$$\max Q = U = \frac{d^2 \pi}{4} \cdot \tau$$
$$d = 1, 13 \sqrt{\frac{U}{\tau}} \cdot$$

Für Stahlbolzen, und eine zulässige Schubspannung von 1000 atm, ergäbe das (für d in cm und U in t)

d = 1,13
$$\sqrt{U}$$
.

Mit Rücksicht auf die (praktisch unvermeidlichen) erwähnten Spielräume ist eine Biegung der Bolzenachse nicht ausgeschlossen, es wird daher die Bolzenstärke auch auf Biegung zu berechnen sein. Im Querschnitt tt des Bolzens (Fig. 313) ist die t gleich Null und das Moment M erreicht dort seinen Grenzy). Daraus folgt nach der Gl. (97) die Biegungsspannung σ an des Bolzens:

oder

Rechnet man
$$U$$
 als Einzelkraft, so ist für M anzuschreiben

$$M = 2 U \delta,$$

wobei δ die Stärke eines Kett net. Das gibt eingesetzt für den Bolzendurchmesser d = 2r

> $d = 2,17 \sqrt[3]{\frac{M}{\sigma}}$ $d = 2,73 \sqrt[3]{\frac{U\delta}{T}}$.

$$\sigma = \frac{Mr}{J}$$
$$\sigma = \frac{4M}{r^3\pi}.$$

, so ist für
$$M$$

 $M = 2 U \delta$,
enstabes bezeich

Die zulässige Biegungsspannung für Stahlbolzen wird in der Regel zu 1,2 bis 1,5 t/qcm angenommen. Für $\sigma = 1,2$ t gäbe das

2)
$$d = 2,56 \sqrt[3]{U\delta}$$
.

Außer den beiden Möglichkeiten der Zerstörung des Bolzens, einerseits durch reine Abscherung und anderseits durch reine Biegung, besteht noch eine dritte Möglichkeit, nämlich die Zerstörung durch den sog. *Stauchdruck* an der Oberfläche des Bolzens. Je kleiner nämlich die Stärke δ eines Kettenstabes ist, desto näher rückt die Gefahr, daß der von seiner Achsenkraft herbeigeführte Oberflächendruck die zulässigen Grenzen überschreitet. Aus zahlreichen Versuchen geht hervor, daß

Fig. 314.

man den zulässigen Stauchdruck *s* für Bolzen und Nieten $I^{I}/_{2}$ bis 2 mal so groß annehmen darf, wie die für den betrachteten Belastungsfall festgesetzte zulässige Biegungsspannung, wenn man dabei die gedrückte Fläche gleich Bolzendurchmesser mal Stabstärke ansetzt.

Im vorliegenden Falle gäbe das also:

$$(d\delta)s =: U.$$

Setzt man darin als zulässig

$$s = \frac{5}{3} \cdot 1, 2 = 2, 0 \text{ t/qcm},$$

so erhält man schließlich:

$$d = \frac{U}{2, \circ \delta} \cdot$$

In einem gegebenen Falle ist allgemein der größte der aus den drei Gleichungen 1, 2, 3 berechneten Werte von d zu wählen. In

praktischen Fällen wird meistens auf Biegung oder Stauchdruck gerechnet werden müssen.

Beispielsweise erhielte man für U = 100 t und $\vartheta = 5$ cm:

bei Abscherung: d = 11,3 cm - Biegung: d = 20,3 -- Stauchdruck: d = 10,0 -

Bei dem in Fig. 314 dargestellten Kettengurt sei z. B. W = 200 t und $\vartheta = 10$ cm. Man erhielte dann (wenn σ für Biegung = 1,2 t/qcm gesetzt wird)

bei Abscherung
$$d = 1,13 \sqrt{\left(\frac{W}{2}\right)} = 1,13 \sqrt{100} = 11,3 \text{ cm},$$

bei Biegung $d = 2,17 \sqrt[3]{\frac{M}{\sigma}} = 2,17 \sqrt{\frac{3}{2} \left(\frac{3}{4} \frac{d}{\sigma}\right)}{\sigma} = 18,6 \text{ cm},$
bei Stauchdruck $d = \frac{W}{\sigma} = 10,0 \text{ cm}.$

2 . 2.0 -

moment noch größere als die oben berechneten Werte annehmen.

§ 16. Normalspannungen in Querschnitten bei der Biegung.

106. Einfluß einer Längskraft. Jede beliebige Grnppe von in einer Kraftebene wirkenden äußern Kräften läßt sich für jeden Querschnitt auf eine einzige gleichwertige Längskraft zurückführen, die entweder innerhalb oder außerhalb des Querschnittsumrisses angreift. In Fig. 315 sei R die Mittelkraft aller äußern Kräfte; sie darf in ihrer Richtung beliebig verschoben gedacht werden (45). Man verschiebe ihren Angriffspunkt daher bis zum Punkte m, in welchem die Richtung von R mit der Kraftlinie KK des betrachteten Querschnittes zusammentrifft. In m zerlege man R (in der Kraftebene) in eine Längskraft P und eine Querkraft Q. Weil die Querkraft durch das Querschnittsmittel o verläuft, so ist deren statisches Moment in Bezug auf o gleich Null. Es bleibt also nur noch der Einfluß der Längskraft zu betrachten.

Wird die Strecke mo mit r bezeichnet, so ist das statische Moment der Längskraft

Mehrtens, Statik der Baukonstruktionen. 1.

337

ihren

$$M = P \cdot r$$
.

Außer M kommt aber noch eine Achsenkraft P zur Wirkung, die in ebenen Querschnitten eine Normalspannung

$$\sigma = \frac{P}{F}$$

erzeugt, um welche sich die bei der Biegung erzeugten Normalspannungen vergrößern oder verkleinern.

Die Längskraft P erzeugt also Normalspannungen, die (nach Gl. 96) ohne weiteres gegeben sind. Sie sind auszudrücken durch

$$\sigma = \frac{P}{F} \pm \frac{M(J_y y - J_{xy} \cdot x)}{J_x J_y - J_{xy}^2}$$
 (103)

Wie hier einzuschalten ist, kann unter besondern Umständen eine Achsenkraft außer Normalspannungen auch Biegungsspannungen erzeugen. Diese Erscheinung tritt ein, wenn der Stab *knickt* oder *ausknickt*. Unter der Voraussetzung eines isotropen Baustoffes, mathematisch gerader Stabachse und mathematisch genauer Achsenbelastung wäre die Möglichkeit eines Knickens ausgeschlossen. In praktischen Fällen sind aber jene Voraussetzungen nie voll erfüllt und schon das Fehlen einer derselben kann ein Knicken herbeiführen, namentlich wenn die Länge des Stabes im Verhältnis zu seinen Querschnittsabmessungen groß ist.

Die Knickspannungen setzen sich danach zusammen aus Normal-

spannungen, erzeugt durch die Achsenkraft, und aus Biegungsspannungen. Jene sind gegeben, diese können aber — wie im II. Bande ausführlich dargelegt werden soll — nicht ohne vorherige Berechnung der *Gestalt der elastischen Linie* (103 b) gefunden werden.

Je nach der Lage ihres Angriffspunktes m ist der Einfluß der Längskraft P auf die Normalspannungen ein verschiedenartiger. Das soll zunächst in einfacher Weise veranschaulicht werden, bevor aus der Gl. (103) die genauern analytischen Bedingungen für die Lage der Nulllinie abgeleitet werden. Betrachten wir deshalb verschiedene Lagen von P in einem mit der Kraftebene zusammenfallenden Längsschnitte (Fig. 316).

1. Fall. Die Längskraft P liegt im Abstande r vom Mittel o. Ihre Wirkung kann man ersetzen durch eine Achsenkraft P in o und ein Moment Pr. Die aus der Achsenkraft allein enstehenden Normalspannungen bilden eine Spannugsebene ee (103b), die parallel zur Querschnittsebene läuft. Dagegen verläuft die aus der reinen Biegung durch das Moment gebildete Spannungsebene durch den Punkt n. Legt man beide Spannungsebenen, wie in der Fig. 316 geschehen, zusammen, so erhält man dadurch im Längsschnitt eine Spannungslinie ss, durch welche die Verteilung der Gesamtnormalspanungen σ der Gl. (103) graphisch veranschaulicht wird.

Die Nulllinie un ist die Schnittkante der Spannungsebene mit der Querschnittsebene (103b). Im allgemeinen schließt sie also einen Winkel mit der Kraftebene ein, der durch die Gl. (99) bestimmt ist. In den besonderen Fällen, in denen die Kraftlinie mit einer Hauptachse zusammenfällt, oder mit der X-Achse ein Paar zugeordnete Achsen bildet (94), läuft die Nulllinie der quer zur Kraftlinie gerichteten Achse X parallel. Der Unterschied in der Lage der Nulllinie bei reiner und zusammengesetzter Biegung besteht demnach allein darin, daß die Nulllinie bei dieser außerhalb des Querschnittsmittels o liegt, während sie bei jener durch o verläuft. Die Ursache dieser Verschiedenheit liegt im Hinzutreten der Achsenkraft. Die Neigung zwischen Nulllinie und Kraftlinie ist aber in beiden Fällen die gleiche. Es ist außerdem aus den Darstellungen der Fig. 316 zu ersehen, wie die Kraftlinie von der Nulllinie stets auf derjenigen Seite des Schwerpunktes o geschnitten wird, die dem Angriffspunkte *m gegenüber* liegt.

Rückt P zum Rande des Querschnittes vor, bis die Nulllinie den gegenüberliegenden Rand berührt (Fig. 316a), was im allgemeinen nicht in einem Punkte der Kraftlinie geschieht, so verschwindet im Berührungspunkte

Rande vorgerückt, daß die Nulllinie in den Querschnitt

x
fällt. Dann teilt sie den Querschnitt in eine Zugzone und eine Druckzone.

3. Fall. Der Angriffspunkt von P ist soweit außerhalb des Querschnittes fortgerückt, bis die Nulllinie durch den Schwerpunkt verläuft. Eine derartige Lage der Nulllinie tritt bei einer reinen Biegung ein, wie unter **103**b nachgewiesen worden ist. Im vorliegenden Falle ist die reine Biegung nur möglich, wenn P eine unendlich kleine Längskraft ist, deren Angriffspunkt in unendlicher Ferne liegt, sodaß der Einfluß der Achsenkraft verschwindet.

107. Beziehungen zwischen den Koordinaten der Nulllinie und dem Angriffspunkte der Längskraft.

a. Für Hauptachsen. In dem durch die Fig. 317 dargestellten Biegungsfalle sei KK die Kraftlinie mit dem Angriffspunkte m der Längskraft P. OA und OB sind die Hauptachsen, von denen die letztere mit der Kraftlinie den Winkel α einschließt. Man zerlege das Moment

 $M = P \cdot r$

nach den Richtungen der Hauptachsen, dann erhält man für die Normalspannung σ im Punkte x, y, bezogenauf Hauptachsen:

worin J_{α} und J_{b} , wie bekannt, die *Hauptträgheitsmomente* vorstellen. Wenn die Koordinaten von m, bezogen auf die Hauptachsen, mit uund v bezeichnet werden und wenn außerdem

$$M \sin \alpha = Pr \sin \alpha = P \cdot v$$
$$M \cos \alpha = Pr \cos \alpha = P \cdot u$$

gesetzt wird, erhält man:

$$\sigma = \frac{P}{F} + \frac{P \cdot u \cdot x}{J_a} + \frac{P \cdot v \cdot y}{J_b} \cdot \tag{105}$$

welche Gleichung nach erfolgter Einsetzung der Trägheitshalbmesser aund b (95 a) in

$$\sigma = \frac{P}{F} \left(\mathbf{I} + \frac{ux}{a^2} + \frac{vy}{b^2} \right) \tag{106}$$

übergeht. Daraus folgt die Gleichung der Nulllinie mit

$$\frac{ux}{a^2} + \frac{vy}{b^2} = -\mathbf{I}. \tag{107}$$

Darin sind x, y Koordinaten von Punkten, in denen $\sigma = o$ wird. Die Nulllinie schneidet auf den Hauptachsen die Strecken x_n und y_n ab, die bestimmt sind durch

$$x_n = -\frac{a^2}{u}$$

$$y_n = -\frac{b^2}{v} \cdot$$
(108)

Die Koordinaten sind danach unabhängig von der $Grö\beta e$ der Längskraft. Das *Minusz*eichen deutet an, daß die Kraftlinie von der Nulllinie stets auf derjenigen Seite von o geschnitten wird, die dem Angriffspunkte *m gegenüber* liegt.

Aus

$$\frac{x_n u}{y_n v} = \frac{a^2}{b^2}$$

folgt ferner, daß zu jeder Kraftlinienrichtung eine bestimmte Nulllinienrichtung gehört.

Wie man sieht, sind in der Gleichung der Nulllinie die Koordinaten der Nulllinie (x, y) und des Punktes m(u, v) nur in ihren *Produkten* (ux und vy) vertreten. Man kann also die Koordinaten miteinander vertauschen, ohne daß die Gleichung (107) dadurch ungültig wird. Wir

wollen deshalb einmal u und v als Koordinaten eines Angriffspunktes m' ansehen, der irgendwo *in der Geraden nn* liegt, die durch die Gleichung (107) bestimmt ist. Dann müssen x, y die Koordinaten eines

festen Punktes n' sein, durch welchen die zugehörige Nulllinie verlaufen wird. Wo auch der Punkt m' in der Geraden nn liegen möge, die Werte für x, y bleiben stets die gleichen. (Fig. 318). Daraus folgt der Satz:

Wenn der Angriffspunkt m' einer Längskraft in einer Geraden nn des Querschnittes fortschreitet, so dreht sich die zugehörige Nulllinie n'n' um einen der Graden nn zugeordneten Pol n' und umgekehrt: Wenn die Nulllinie n'n' sich um einen festen Punkt n' des Querschnittes dreht, so bewegt sich der zugehörige Angriffspunkt m' der Längskraft in einer Geraden nn.

b. Für zugeordnete Achsen (Fig. 319). Wenn die Kraftlinie mit einer X-Achse ein Paar zugeordnete Achsen bildet, die zusammen den Winkel β einschließen, so ist für reine Biegung und für schiefwinklige Koordinaten nach Gl. (98)

$$\sigma = \frac{My'}{J'_x} \,,$$

worin für den vorliegenden Fall

 $M = P \cdot r$

Fig. 319.

wäre. Ergänzt man den Einfluß der Achsenkraft, so darf man anschreiben

$$\sigma = \frac{P}{F} + \frac{P \cdot r \cdot y}{J'_x}$$

oder

$$\sigma = P\left(\frac{\mathbf{I}}{F} + \frac{ry'}{J_x'}\right) \cdot$$

Bezieht man diesen Ausdruck nun auf rechtwinklige Koordinaten, so ist einzusetzen:

$$r = \frac{v}{\sin\beta};$$
 $y' = \frac{y}{\sin\beta}$ und $J'_x = \int y'^2 dF = \frac{J_x}{\sin^2\beta},$

wenn $J_x = \int y^2 dF$ genommen wird.

Für rechtwinklige Koordinaten XY erhält man dann:

$$\sigma = \frac{P}{F} \left(\mathbf{I} + \frac{v y}{r_x^2} \right), \tag{109}$$

worin $r_x = \sqrt{\frac{J_x}{F}}$ den Trägheitshalbmesser für die X-Achse vorstellt. Man hätte diese Gleichung auch unmittelbar aus der Gleichung (106) erhalten können, wenn man darin u = 0 und $b^2 = r_x^2$ gesetzt hätte.

Die Gleichung der Nulllinie geht über in:

$$\frac{vy}{r_x^2} = - 1 \tag{110}$$

und die Koordinaten der Schnittpunkte der Nulllinie mit den zugeordneten Achsen berechnen sich aus Gl. (108)

$$y_n = -\frac{r_x^2}{v} \tag{III}$$
$$x_n = \infty.$$

Die Gleichungen (III) lassen sich wie folgt in Worte kleiden:

Der Trägheitshalbmesser ist die mittlere Proportionale zwischen den Abständen der Nulllinie und des Angriffspunktes der Längskraft von der der Kraftlinie zugeordneten Achse.

Die Nulllinie ist also der der Kraftebene zugeordneten Achse parallel. Aus dem letzten Satze folgt ohne weiteres der folgende Satz:

Die der Nulllinie parallele Schwerachse und die Kraftlinie sind zugeordnete Durchmesser der Zentralellipse. Denn, wie unter 95b nach-

gewiesen wurde, sind die zugeordneten Durchmesser der Zentralellipse zugleich auch zugeordnete Achsen, für welche das Zentrifugalmoment

verschwindet. Legt man also in einem Schnittpunkte der Kraftlinie mit der Ellipse *eine Tangente* an diese, so ist die zu irgend einem Angriffspunkte *m* der Längskraft gehörige Nulllinie *nn* der Tangente parallel (Fig. 320).

108. Der Kern des Querschnittes.

Wir stellen folgende Erklärung des Kerns voran:

Zeichnet man für alle möglichen einen Querschnittsumriß berührenden, aber nicht schnei-

Fig. 320.

denden Nulllinien die zugehörigen Angriffspunkte m der Längskraft, so beschreibt m dabei eine Linie, die man Kernlinie nennt und deren Punkte Kernpunkte heißen. Die von der Kernlinie eingeschlossene Fläche nennt man den Kern des Querschnittes.

Eine der Haupteigenschaften des Kernes läßt sich, nach den Erörterungen unter 107, ohne weiteres in folgenden Satz kleiden:

So lange der Angriffspunkt der Längskraft innerhalb des Kernes bleibt, herrscht in allen Querschnittspunkten einerlei Normalspannung, entweder Zug oder Druck, je nach der Richtung der Längskraft.

Die Kenntnis der Kernlinien hat für solche Querschnitte praktische Bedeutung, in denen aus besonderen Gründen (gewöhnlich aus Sicherheitsgründen) ein *Spannungswechsel* nicht zugelassen werden soll. Namentlich gilt dies für Querschnitte von Steinkonstruktionen, die (nach 4b, S. 6) wesentlich nur auf Druck beansprucht werden dürfen, weil die Zugfestigkeit des Steines eine verhältnismäßig nur sehr geringe und dabei sehr veränderliche ist.

Der Kern hat aber eine gewisse Bedeutung auch nach einer andern Seite hin. Mit seiner Hilfe lassen sich, wie weiterhin ausgeführt wird, die Gleichungen für die Normalspannungen auf die einfachste, in vielen Fällen auch für die Anwendung bequemste Form bringen.

a. Darstellung des Kerns. Soll der Kern für einen vieleckigen $Umri\beta$ des Querschnittes gesucht werden (Fig. 321), so kann man jede Vieleckseite nacheinander als Nulllinie ansehen und zu jeder dieser Linien (unter Benutzung der Gl. 111) den zugehörigen Angriffspunkt m der Längskraft aufsuchen. Verbindet man dann alle erhaltenen Punkte m durch Grade, so schließen diese den Kern ein. Zu beachten ist dabei aber, daß bei *einspringenden Ecken* (wie bei 5 in Fig. 321) keine Nulllinie mit der 1—5 oder mit der 4—5 zusammenfallend angenommen werden darf, weil sonst ein *Schneiden* der Nulllinien mit der Querschnittsfläche eintreten würde, was nach der gegebenen Erklärung des Kerns unzulässig wäre. Die erhaltenen Angriffspunkte sind in der Fig. 321 mit den Ziffern bezeichnet worden, die der zugehörigen Null-linienlage entsprechen.

Fig. 321.

Wollte man (nach 107a, Fig. 318) irgend eine Ecke, z. B. die Ecke 3 als festen Punkt ansehen, in welchem eine Nulllinie sich dreht, so würde man aus den Koordinaten des Punktes die Lage der Kernlinie zwischen den Angriffspunkten (2-3 und 3-4) berechnen können.

Bildet der Umriß des Querschnittes eine *krumme Linie* (Fig. 322), so darf man diese als ein Vieleck mit einer unendlich großen Zahl von Ecken oder Seiten betrachten und den Kern nach dem vorbeschriebenen Verfahren zeichnen. In diesem Falle erhält man als Kernumriß eine krumme Linie.

b. Bestimmung der Kernpunkte.

1. Für ein Rechteck (Fig. 323). Die Hauptachsen fallen hier mit den Symmetrieachsen zusammen.

Die Hauptträgheitsmomente

$$J_a = \int x^2 \cdot dF = \hbar \int_{-\frac{d}{2}}^{+\frac{d}{2}} dx$$

und

$$J_{\delta} = \int y^2 dF = d \int_{-\frac{h}{2}}^{+\frac{h}{2}} dy$$

berechnen sich zu

$$J_a = \frac{1}{12}h d^3$$

und

$$J_b = \frac{1}{12} dh^3$$
.

Danach ergeben sich die Trägheitshalbmesser, a und b aus

$$a^{2} = \frac{J_{a}}{F} = \frac{h d^{3}}{12 h d} = \frac{d^{2}}{12}$$
$$b^{2} = \frac{J_{b}}{F} = \frac{dh^{3}}{12 h d} = \frac{h^{2}}{12}$$

Die Koordinaten der vier Hauptkernpunkte, die den Nulllinien lagen 1-2, 2-3, 3-4 und 1-4entsprechen, berechnen sich aus den Gleichungen (108)

wenn darin gesetzt wird

$$x_n = \frac{d}{2}$$
 und $y_n = \frac{h}{2}$.

u b²

v

 $x_n =$

yn

Man erhält dann

$$- u = \frac{a^2}{x_n} = \frac{2 d^2}{12 \cdot d} = \frac{1}{6} d$$
$$- v = \frac{b^2}{y_n} = \frac{2h^2}{12 \cdot h} = \frac{1}{6}h.$$

2. Für einen Kreis (Fig. 324). Wie bereits im Beispiel 4 unter 98 a ausgeführt wurde, bestimmt sich hier das polare Trägheitsmoment

$$J_p = 2J = \int^r \varrho^2 \left(2 \varrho \, \pi \, d \varrho \right) = \frac{r^4 \, \pi}{2} \, \cdot$$

Daraus folgt a^2 oder b^2 mit

$$a^2 = b^2 = \frac{J}{F} = \frac{r^2}{4}$$

Beachtet man ferner, daß der Abstand der den Kreis berührenden Nulllinie $x_n = y_n = r$ ist, so erhält man endlich

$$u = v = \frac{r^2}{4r} = \frac{r}{4}$$

Der Kern ist also eine Kreisfläche vom Durchmesser $\frac{r}{2}$.

3. Graphische Bestimmung.

Irgend eine Nulllinie nn be-

rühre einen Querschnittsumriß im Punkte t und schneide dabei auf den Hauptachsen die Strecken y_n und x_n ab (Fig. 325). Also

$$\frac{OA}{OB} = y_n$$

Es ist nun nach Gl. (108)

 $a^2 = - u x_n$ $b^2 = - v y_n^*,$

d. h. es gilt hier der (unter 107 b) bereits allgemein gegebene Satz in der Form: Der Trägheitshalbmesser ist die mittlere Proportionale zwischen den senkrechten Abständen des Schnittpunktes der Nulllinie und des Angriffspunktes der Längskraft von der zugehörigen Hauptachse. Daraus folgt:

Man trage die Trägheitshalbmesser a und b als Strecken Oa' und $\overline{Ob'}$ in den Richtungen der zu ihnen gehörigen Achsen auf. Verbinde A mit b' und B mit a'. Sodann trage man an die $\overline{Ab'}$ in b' und an die $\overline{Ba'}$ in a' je einen rechten Winkel ab, sodaß deren Schenkel die Achsen V und U schneiden. Dann sind $\overline{OU} = u$ und $\overline{OV} = v$ die

Koordinaten des Angriffspunktes m der Längskraft, welchem die Nulllinie nn entspricht. m ist also der gesuchte Kernpunkt.

4. Mit Hilfe der Zentralellipse, Fig. 326. Nach 107b sind die der Nulllinie parallele Schwerachse und die Kraftlinie zugeordnete Durchmesser der Zentralellipse. Für die beliebige Lage einer Nulllinie nn, die in Fig. 326 einen Umriß im Punkte t berührt, findet man also die zugeordneten Achsen dadurch, daß man einerseits die Schwerachse XX parallel zur nn macht und anderseits die Kraftlinie K durch die Punkte t' legt, in denen eine zur nn parallele Tangente die Ellipse

berührt. Der gesuchte Kernpunkt m fällt in die der Nulllinie gegenüber liegende Gerade OK. Der Abstand des Punktes m berechnet sich aus der Gl. (110) mit

$$-v = \frac{r_x^2}{y_n}$$

wobei zu beachten ist, daß anstatt der senkrechten Abstände v, y_n und r_x auch die entsprechenden *in der Kraftebene gemessenen* Abstände genommen werden dürfen, die zu jenen im gleichen Verhältnisse stehen. Man findet danach v (nach vorigem) durch Anwendung des geometrischen Satzes der mittleren Proportionalen, wie in der Fig. 325 dargestellt.

109. Verteilung der Normalspannungen über den Querschnitt.

Wie bereits im allgemeinen in der Fig. 316 veranschaulicht wurde, läßt sich die *Spannungslinie*, also der Schnitt der Spannungsebene mit der Kraftebene, darstellen, sobald man deren *Nullpunkt*, d. h. den Durchschnitt von Nullinie und Kraftlinie gefunden hat. Dadurch erhält man unmittelbar auch die Spannungsverteilung. Man kann diese aber auch

Fig. 326.

nach einem andern Verfahren, ohne den Nullpunkt vorher zu kennen, mit Hilfe der *Kernpunkte* finden. Bei beiden nachstehend beschriebenen Verfahren geht man von der Spannung im Schwerpunkte des Querschnittes aus. Das ist die *mittlere* (spezifische) *Spannung* σ_{o} , die nach der Gleichung

$$\sigma_{\rm o} = \frac{P}{F}$$

von vorneherein gegeben ist. σ_o ist die von der Achsenkraft P herrührende Normalspannung, während die durch das Moment Pv verursachte reine Biegungsspannung im Schwerpunkte verschwindet (**106**). Die Darstellung der Verteilung erfolgt am einfachsten mit Hilfe des Trägheitskreises. Gegeben der in Fig. 327 gezeichnete Querschnitt mit dem Schwerpunkte O, dazu die Kraftlinie OK mit dem Angriffspunkte m der Längskraft P. Gesucht die Spannungsverteilung, im besondern auch die gefährlichsten Randpunkte und die dort auftretenden Grenzwerte der Spannungen. Vergl. hierzu Fig. 339 unter **113**.

Die einfachste Lösung ergibt sich, wenn man zur Berechnung von σ zugeordnete Achsen zu Grunde legt. Um die der Kraftebene zugeordnete Achse X zu erhalten, benutze man den Trägheitskreis.

Für die passend gewählten Achsen U und V berechne man J_u , J_v und J_{uv} . Mache (nach MOHR) auf dem Durchmesser des Trägheitskreises $\overline{OC} = J_u$, $\overline{CE} = J_v$ und $\overline{CT} = J_{uv}$. Der Trägheitsschwerpunkt T ist damit gefunden. Schneidet nun die Kraftlinie den Kreis in A, so gibt der Endpunkt B der durch T gelegten Sehne AB einen Punkt der zugeordneten Achse X, die damit festgelegt ist.

Die von T auf die Tangente im Punkte B gefällte Senkrechte \overline{Tf} ist (nach MOHR) gleich dem Trägheitsmomente $J_x = 623$ dcm⁴. Es ist nun aber nach Gl. (109) für zugeordnete Achsen und für rechtwinklig darauf bezogene Koordinaten

$$\sigma = \frac{P}{F} \left(\mathbf{I} + \frac{v \, y}{r_x^2} \right) \cdot$$

Darin ist v der gegebene senkrechte Abstand des Punktes m von der XX, $r_x = \sqrt{\frac{J_x}{F}}$ der mit Hilfe der Strecke $\overline{TI} = J_x$ jetzt zu berechnende Trägheitshalbmesser der XX. Somit ist für jede zur X-Achse parallele Faser in dem Abstande y die Normalspannung aus obiger Gleichung zu ermitteln. Für y = o geht σ in die *mittlere* Spannung σ_o über. Man braucht also σ nur noch für irgend ein anderes y zu berechnen, dann ist die Spannungslinie ss, und dadurch auch die Nulllinie, parallel zur XX festgelegt. Will man die Darstellung der Spannung verteilung nachprüfen, so kann man die Lage der Nulllinie noch einmal bestimmen und zwar mit Hilfe der Gl. (111)

$$y_n = -\frac{r_x^2}{v} = -4,15 \text{ dcm.}$$

In der Fig. 327 sind *a* und *i* die beiden Randpunkte, in denen die Grenzwerte von σ auftreten. σ_i ist ein Druck, σ_a ein Zug und die

Linie *nn* teilt den Querschnitt in seine beiden Zonen, die Druck- und Zugzone. Vergl. auch das hierhergehörige Beispiel 9 unter **113**.

110. Gegenseitige Beziehungen zwischen den Spannungen.

a. Der Satz von der Gegenseitigkeit der Spannungen. Nach der Gl. (106)

$$\sigma = \frac{P}{F} \left(\mathbf{I} + \frac{ux}{a^2} + \frac{vy}{b^2} \right)$$

berechnet sich die Normalspannung σ für einen Punkt *m* der Koordinaten *u*, *v*, erzeugt durch eine Längskraft *P* im Punkte *n* der Koordinaten *x*, *y*, ebenso groß, wie die Normalspannung für den Punkt *n* hervorgerufen durch eine Längskraft *P* im Punkte *m*, weil in der Gleichung (wie unter **107** a schon gesagt wurde) die Koordinaten *x*, *y* und *u*, *v* der Produkte *ux* und *vy* miteinander vertauscht werden dürfen. Diese Gegenseitigkeit der Wirkungen wird gewöhnlich in der Form

$$\sigma_{mn} = \sigma_{nm} \tag{II2}$$

dargestellt, in Worten:

Die Spannung im Punkte m, hervorgerufen durch eine im Punkte n angreifende Längskraft P ist ebenso gro β , wie die Spannung im Punkte n, erzeugt durch eine in m angreifende Längskraft P.

Der Satz von der Gegenseitigkeit der Spannungen soll jetzt dazu benutzt werden, um den Einflu β einer Verschiebung des Angriffspunktes der Längskraft auf die Spannungsverteilung darzustellen.

b. Die Einflußlinie einer Spannung.

Es stelle KK eine Kraftlinie und SS die zur Nulllinie parallele Schwerachse dar, ferner *a* einen äußern und *i* einen innern Randpunkt, die durch das Einzeichnen einer berührenden Nulllinie gefunden wurden (Fig. 328).

Legt man jetzt einen Längsschnitt parallel zur Kraftebene und vermerkt darin die parallel zur Kraftlinie gemessenen Abstände der Randpunkte von der *SS*, so erhält man Fig. 329.

Im beliebigen Punkte m der Kraftlinie wirke die Längskraft P = 1, die *Lasteinheit* genannt werden soll. Für diese allgemeine Lage der Lasteinheit zeichne man darauf die Spannungslinie *ss*, indem man (wie unter **106** und in der Fig. 327 geschehen) in O die mittlere Spannúng

$$\sigma_{\rm o} = \frac{\mathrm{I}}{F}$$

als Strecke $\overline{O_p}$ aufträgt und außerdem den Schnittpunkt *n* der Nulllinie Mehrtens, Statik der Baukonstruktionen. I. 23

festlegt. Die Lage n ist bekanntlich unabhängig von der Größe der Längskraft (Gl. 108). Wir dürfen daher anschreiben:

m

k

 $\sigma_{nm} = 0$

und nach dem Satze von der Gegenseitigkeit also auch

$$\sigma_{mn} = 0$$
,

d. h. die von der im Punkte *n* angreifenden Lasteinheit im Punkte *m* erzeugte Spannung ist Null. Aber auch für jeden beliebigen andern Punkt k darf man danach anschreiben :

$\sigma_{km}=\sigma_{mk}\,,$

dabei ist die Spannung σ_{km} gleich der Ordinate kk' der Spannungslinie ss. Daraus folgt, daß die Spannungslinie nicht allein die Verteilung der Spannung bei Lage der Last in m darstellt, sondern daß ihre Ordinaten auch

für jeden beliebigen Fußpunkt k einer in der Kraftlinie wandernden Lasteinheit die in diesem Punkte k entstehende Spannung angeben. Die

Linie ss veranschaulicht danach auch den Einfluß jeder Verschiebung des Angriffspunktes der Lasteinheit auf die Spannungsverteilung. Die Ordinate mm' würde nach vorigem mit

$$\sigma_m = \sigma_{mm}$$

anzuschreiben sein.

Die erörterte besondere Eigenschaft der Spannungslinie ist in Worten wie folgt auszudrücken:

Die für die Lasteinheit im Punkte m gezeichnete Spannungslinie ist die Einflußlinie der Spannung im Punkte m.

rrr. Die Einflußlinie einer Randspannung. Sobald der Punkt m in eine den Rand berührende Nulllinie fällt, geht der Nullpunkt nin einen Kernpunkt über, weil die Randspannung gleich Null wird, sobald der Angriffspunkt der Längskraft in den gegenüberliegenden Kernpunkt rückt (108). Bezeichnet man nämlich die betreffenden Kernpunkte mit a' und i' (Fig. 330), so darf angeschrieben werden

und

 $\sigma_{aa'} = \circ$ $\sigma_{ii'} = \circ,$ $\sigma_{a'a} = \circ$ $\sigma_{ii} = \circ.$

woraus folgt:

Man kann danach die Randspannungen σ_a und σ_i mit Hilfe der Kernpunkte bestimmen, ohne dabei die Lage der Nulllinie und der Randpunkte a und i zu kennen. Man braucht nur im Schwerpunkte O die Spannung $\pm \sigma_o = \frac{P}{F}$ als eine Strecke $\overline{O_p}$ in beliebiger Richtung aufzutragen. Zieht man dann durch den beliebig gewählten Angriffspunkt k der Längskraft eine Parallele zur $\overline{O_p}$, so werden auf dieser durch die Verlängerungen der Geraden $\overline{pi'}$ und $\overline{pa'}$ zwei Strecken $\overline{ka''}$ und $\overline{ki''}$ abgeschnitten, die den Spannungen σ_a und σ_i entsprechen.

Der Beweis für die Richtigkeit dieser Darstellung folgt einfach daraus, daß die durch die Punkte i' und p gelegte Gerade die Einflußlinie der Randspannung σ_i vorstellt, ebenso wie die durch a' und pgelegte Gerade als Einflußlinie der Randspannung σ_a anzusehen ist. Denn beide genannten Geraden sind die Spannungslinien, gezeichnet für eine Lage der Längskraft im Punkte m, dem Schnittpunkte der den Querschnittsumriß berührenden Nulllinien nn oder n'n' mit der Kraftlinie KK. Es ist also für die Lage einer gegen den Querschnitt gerichteten Längskraft in m die Randspannung

 $\sigma_i = \overline{mm'}$ (Druck) $\sigma_a = \overline{mm''}$ (Zug),

desgleichen für die Lage im beliebigen Punkte k

 $\sigma_i = \overline{ki''}$ (Druck) $\sigma_a = \overline{ka''}$ (Zug).

Fig. 330.

Die Randpunkte fallen nur in besonderen Fällen — bei symmetrischen Querschnitten — in die Kraftebene. Im allgemeinen liegen sie außerhalb, müssen also vorher aufgesucht werden, ehe man die *Verteilung* der Normalspannungen darstellen kann. Dazu braucht man eine den Querschnittsumriß berührende, der Nulllinie parallele Gerade, die man am einfachsten wohl mit Hilfe des Trägheitskreises und einer der Kraftebene zugeordneten Achse (Fig. 327) festlegt. Man kann aber auch, wie in

Fig. 326 ausgeführt ist, die Tangente an die Zentralellipse in ihrem Schnittpunkte mit der Kraftlinie benutzen.

112. Ermittelung der Normalspannungen mit Hilfe der Kernweiten und Kernmomente.

Wir stellen folgende Erklärungen voran:

Eine Kernweite ist der Abstand des Schwerpunktes von einem in der Kraftlinie liegenden Kernpunkte.

Ein Kernmoment ist das statische Moment der Längskraft bezogen auf einen in der Kraftlinie liegenden Kernpunkt.

Setzt man in der Gl. 109:

$$\sigma = \frac{P}{F} \left(\mathbf{I} + \frac{v y}{r_x^2} \right)$$

an Stelle der Ordinate y deren größte Werte y_a und y_i ein, so erhält man (mit Bezug auf Fig. 331), je nachdem Zug oder Druck vorliegt,

$$\pm \sigma_a = \frac{P}{F} \left(\mathbf{I} + \frac{v y_a}{r_x^2} \right)$$

$$\pm \sigma_i = \frac{P}{F} \left(\mathbf{I} - \frac{v y_i}{r_x^2} \right),$$

worin die y auf die XX, die der KK zugeordnete Achse, bezogen sind. Es ist aber (nach **95**a)

$$r_x^2 = \frac{J_x}{F}$$

Dies eingesetzt gibt:

$$\pm \sigma_a = \frac{P}{F} \left(\mathbf{I} + \frac{Fv y_a}{J_x} \right)$$
$$\pm \sigma_i = \frac{P}{F} \left(\mathbf{I} - \frac{Fv y_i}{J_x} \right).$$

Die Lage der Kernpunkte a' und i' ist aus einer Nulllinie berechnet worden, die den Umriß des Querschnittes berührt. Nach Gleichung (108) bestimmen sich daher deren Abstände r_a und r_i von der XX mit

$$-r_i = rac{r_x^2}{y_i}$$
 und $-r_a = rac{r_x^2}{y_a}$

oder

$$-r_i = \frac{J_x}{Fy_i}$$
 und $-r_a = \frac{J_x}{Fy_a}$

Setzt man auch diese Beziehungen noch ein, so ergibt sich

Fig. 331.

Multipliziert man im Zähler und Nenner der rechten Seiten der Gleichungen mit sin β , so erhält man

$$\pm \sigma_a = \frac{P(r - k_a)}{F \cdot k_a}$$

und

$$\pm \sigma_i = \frac{P(r+k_i)}{F \cdot k_i},$$

wenn darin k_a und k_i die betreffenden Kernweiten und r (wie bekannt) den Abstand des Angriffspunktes vom Schwerpunkte O bezeichnet.

Die Zähler der Gleichungen sind die Kernmomente. Bezeichnet man diese mit M_k , so erhält man schließlich allgemein:

$$\pm \sigma = \frac{M_k}{F \cdot k},\tag{113}$$

in Worten: Der Grenzwert einer Randspannung ist gleich dem Kernmomente geteilt durch das Produkt aus Kernweite und Querschnittsfläche, wobei Moment und Kernweite auf den dem Randpunkte gegenüberliegenden Kernpunkt zu beziehen sind.

Gleichung (113) zeigt die einfachste Form, in welche der analytische Ausdruck für die Grenzwerte der Normalspannungen bei zusammengesetzter Biegung gebracht werden kann.

Für reine Biegung verschwindet der Einfluß der Achsenkraft P, es bleibt nur ein Moment $M = P \cdot r$ bezogen auf den Schwerpunkt O, man erhält deshalb aus den Gleichungen, weil k_a und k_i im Zähler verschwinden:

$$\pm \sigma = \frac{M}{F \cdot k} \cdot \tag{114}$$

Vergleicht man diese Ausdrücke mit der früheren Gl. (102)

$$\pm \sigma = \frac{M}{W},$$

so erkennt man, wie ein Widerstandsmoment W aus den zugehörigen Kernweiten berechnet werden kann: Das Widerstandsmoment ist gleich dem Produkt aus der Querschnittsfläche in die dem zugehörigen Randpunkte gegenüberliegende Kernweite.

113. Beispiele.

a. Tragfähigkeit von hölzernen und eisernen Trägern.

1. Welche Last für 1 qm ihrer Grundfläche kann eine Balkenlage mit 8 facher Sicherheit tragen, wenn die einzelnen Balken 24 cm breit und 32 cm hoch sind, auf 5 m Stützweite frei und dabei 0,8 m von Mitte zu Mitte voneinander liegen? Die Biegungsfestigkeit des Holzes kann zu 600 atm gerechnet werden.

Von der Gesamtlast q für 1 qm trägt jeder Balken acht Zehntel, sein Moment M in der Mitte beträgt also

$$M = 0.8 \frac{q l^2}{8}$$

Es ist ferner (nach Gl. 114) bei Benutzung der Kernweite

$$\sigma = \frac{M}{F \cdot k}$$

oder

$$M = \sigma \cdot k \cdot F = \left(\frac{600}{8}\right) \left(\frac{3^2}{6}\right) 24 \cdot 32 = 307200 \text{ cmkg}.$$

Daraus ergibt sich

oder

$$q = \frac{0.1 \cdot 307200}{l^2} = \frac{30720}{250000} = 0.1229 \text{ atm}$$

2. Ein eiserner I-Träger soll auf 5 m Stützweite eine 0,25 m starke in Fig. 32 gezeichnete Wand unmittelbar tragen, von welcher jedes cbm 1600 kg wiegt. Welches deutsche Normalprofil ist zu wählen, wenn das Eisen höchstens mit 1000 atm beansprucht werden darf?

Zunächst berechnet sich der Stützendruck in *A* aus der Gleichung der statischen Momente in Beziehung auf den Stützpunkt *B*:

$$=\frac{0,25\cdot1600\left[(1,0\cdot4,0)\,4,5\,+\,0,5\,(1,5\cdot2)\,(4\,+\,2,5)\,+\,(2,5\cdot4)\frac{2,5}{2}\right]}{c}=3220\,\mathrm{kg}.$$

Dabei ist das Gewicht des über der Türöffnung stehenden Wandstückes a b c d in zwei Einzellasten zerlegt, von denen eine in a, die andere in b angreift.

Die Abeisse z, für welche das Moment M seinen Grenzwert erreicht, findet sich (nach Gl. 42, S. 158) aus

$$\frac{\partial M}{\partial z} = Q = 0,$$

also (mit Bezug auf die Figur) aus

$$0 = 3220 - 1600 - 600 - 600 - [(z - 2,5) 4 \cdot 0,25 \cdot 1600]$$

Das gibt

A

Das größte Moment M berechnet sich danach zu

$$M = 3220 (276,25) - \left[1600 \cdot 226,25 + 600 \cdot 176,25 + 600 \cdot 26,25 + 1600 \cdot 0,2625 \cdot \frac{26,25}{2} \right]$$

= 400512,5 cmkg.

Endlich erhält man aus

$$\sigma = \frac{M}{W}$$

$$W = \frac{M}{\sigma} = \frac{400512,5}{1000} = 401 \text{ cm}^3.$$

Diesem W entspricht (nach dem deutschen Normalprofil-Buch) ein I-Eisen Nr. 26 von 26 cm Höhe und W = 441 cm³.

3. Ein flußeiserner Vollwandträger von 6,0 m Stützweite und 75 cm Höhe hat folgende Lasten aufzunehmen:

1) sein Eigengewicht mit 0,150 t für 1 m Trägerlänge,

2) zwei ständige Lasten von je 13,0 t, die (wie die Fig. 333 darstellt) *mittelbar* übertragen werden.

Fig. 333.

Die Trägerquerschnitte bestehen in allen Feldern aus einer 1 cm starken senkrechten Blechwand (dem sog. *Stehblech*), die oben und unten durch je zwei Winkeleisen (D. N. P. Nr. 7,5 mit 1 cm Stärke) gesäumt werden (*Gurt-* oder *Saum*winkel genannt). Die Verbindung von Stehblech und Saumwinkeln wird durch Vernietung bewirkt, mit Nieten von 2 cm Schaftdurchmesser (Fig. 334).

Wie groß ist die größte Randspannung?

Das Trägheitsmoment J des Querschnittes berechnet sich (für $h = 75 \,\mathrm{cm}$) bei Berücksichtigung des Nietlochabzuges (nach Beispiel 6 unter 98 b) mit $J = 92209 \text{ cm}^4$, 75 daraus $W = 2459 \text{ cm}^3$. Das Biegungsmoment M beträgt bei 1 und 2 (Fig. 333) M = 2660000 cmkg.Desgleichen in der Trägermitte Fig. 335. Fig. 334. $\max M = 2667500 \text{ cmkg}.$

Aus dem größten M folgt die Randspannung σ (nach Gl. 100) zu

$$\sigma = \frac{M\left(\frac{h}{2}\right)}{J} = \frac{2667500}{2459} = 1085$$
 atm.

Das bedeutet bei einer Normalfestigkeit des Flußeisens von 4,4 t/cm² etwa 4 fache Sicherheit (7).

4. Wie groß ist die Randspannung, wenn der Querschnitt des Trägers im Ober- und Untergurt noch je durch eine *Gurtplatte* von 20 cm Breite und 1 cm Dicke verstärkt wird (Fig. 335), dabei aber nur *eine Gesamthöhe von* 57 cm erhalten soll?

Das Trägheitsmoment J berechnet sich dann (nach Beispiel 7 unter **98**b) mit $J = 69479 \text{ cm}^4$,

 $W = 2438 \text{ cm}^3$,

also

$$\sigma = \frac{2667500}{2438} = 1094$$
 atm.

b. Beziehungen zwischen Kernmomenten, Kernweiten und Randspannungen.

5. Eine lotrecht freistehende Wand, die mit ihrer Grundmauer in der Fuge ab (Fig. 336) fest verbunden ist, hat über der ab eine Höhe

von 3 m, bei 0,5 m Stärke. Außer ihrem Eigengewicht — 1600 kg/cbm — erleidet sie senkrecht zu ihrer Vorderfläche einen Winddruck von 100 kg/qm. Wie groß sind die Normalspannungen in ihrer Fugenfläche a b?

Nach der Gl. (114) ist

$$\sigma = \pm \frac{M_k}{Fk},$$

worin M_k das Kernmoment und k die Kernweite bedeutet. Daraus berechnet man für die *Rand*punkte 1 und 2 eines Mauerstücks von 100 cm Tiefe (mit Bezug auf Fig. 336)

Die Zahlenwerte cingesetzt, gibt

$$\sigma_{1} = + \frac{\left(100 \cdot 3 \cdot 150 - 0.5 \cdot 3 \cdot 1600 \cdot \frac{50}{6}\right)6}{50 \cdot 100 \cdot 50} = + 0.60 \text{ atm } (Zug),$$

$$\sigma_{2} = -\frac{\left(100 \cdot 3 \cdot 150 + 0.5 \cdot 3 \cdot 1600 \cdot \frac{50}{6}\right)6}{50 \cdot 100 \cdot 50} = -1.56 \text{ atm } (Druck).$$

6. Die Krone eines steinernen Brückenpfeilers liegt 10 m hoch über der Grundmauer, mit welcher der Pfeiler fest verbunden ist. Er wiegt 350 t und erfährt in seiner Krone einerseits einen Achsendruck V von 150 t, anderseits einen wagerechten Schub H von 2 t. Außerdem wirkt auf den Pfeiler in einer Höhe von 15 m über der Grundmauer, wie in der Fig. 337 angegeben, noch eine wagerechte Windkraft W von 30 t. Wie groß sind die *Randspannungen* in den Punkten 1-2-3-4 seiner Grundfläche?

Allgemein ist

$$\sigma = \frac{M_k}{F \cdot k \cdot}$$

Man erhält also

$$\sigma = \frac{-(G+V)\frac{a}{6} \mp (H \cdot h)}{F \cdot \frac{a}{6}} \pm \frac{W \cdot h_w}{F \cdot \frac{b}{6}}$$

und daraus

für Randpunkt I:
$$\sigma_1 = -\frac{(350+150)}{3,0\cdot6,0} - \frac{2\cdot10,0}{3,0\cdot6,0\cdot0,5} + \frac{30,0\cdot15,0}{3,0\cdot6,0\cdot1,0}$$

= -27,8 - 2,2 + 25,0 = - 5,0 $\frac{\delta}{m^2}$ = -0,50 atm,
- 2: σ_2 = -27,8 - 2,2 - 25,0 = -55,0 - = -5,50 -
- 3: σ_3 = -27,8 + 2,2 - 25,0 = -50,6 - = -5,06 -
- 4: σ_4 = -27,8 + 2,2 + 25,0 = -0,6 - = -0,06 -

7. Für das im Beispiel 9 unter 98c behandelte ungleichschenklige Winkeleisen ist *der Kern* zu zeichnen. Der Schwerpunkt des Querschnitts und die Lage der Hauptachsen A und B sind bereits berechnet und in der Fig. 338 eingetragen worden.

Für die Schwerpunktsachsen XY hatten sich ferner ergeben:

Daraus folgen nach den Gl. (61) unter 90 die Hauptträgheitsmomente:

$$J_a + J_b = J_x + J_y = 164,00,$$

$$J_a - J_b = \frac{J_x - J_y}{\cos 2\alpha_o} = \frac{117,16}{0,87994} = 133,15.$$

Also

$$J_a = 148,575 \text{ cm}^4,$$

 $J_b = 15,425 \text{ cm}^4.$

Zeichnet man jetzt zu den in der Fig. 338 angegebenen Lagen 1-1, 2-2, 3-3, 4-4 und 5-5 der *Nulllinie* die zugehörigen *Kernpunkte*, wobei das unter **108** b beschriebene Verfahren benutzt werden kann, so erhält man, wie in der Fig. 338 graphisch ausgeführt, die *Kernlinie* 1-2-3-4-5. Die Hilfslinien zur Bestimmung des Kernpunktes 4 sind in der Fig. 338 durch Punktierung angegeben.

8. Mit Hilfe der *Kernweiten* sollen für das vorige Beispiel die Randspannungen σ_a und σ_i unter folgenden Bedingungen bestimmt werden:

1. Die Kraftlinie fällt mit der Hauptachse AA zusammen.

2. Eine Mittelkraft R von + 8,0 t Größe schneidet den betrachteten Querschnitt im Punkte m unter einer Neigung von 45 Grad, wobei m3,0 cm vom Schwerpunkte entfernt liegt.

Die der Kraftlinie zugeordnete Achse ist in diesem Falle die Hauptachse BB. Die dieser Achse parallelen Nulllinien berühren den Querschnitt in den Randpunkten a und i.

Das Moment M_k berechnet sich (nach Gleichung 113):

$$M_k = (R \cos 45^\circ) (r \pm k),$$

worin r = 3 cm der Abstand zwischen den Punkten O und m, und worin k die den betreffenden Randpunkten gegenüberliegenden Kernpunkte sind.

Daraus folgen, wenn die zugehörigen, in der Fig. 338 abgegriffenen Kernweiten k_a und k_i mit 1,75 cm für a und 2,3 cm für i eingesetzt werden,

$$\sigma_a = \frac{M_k}{F \cdot k_a} = -290 \text{ atm},$$

$$\sigma_i = \frac{M_k}{F \cdot k_i} = +920 \text{ atm}.$$

9. Für den unter **109**, in der Fig. 327, gegebenen Pfeilerquerschnitt, dessen Maße in der Fig. 339 in dcm eingeschrieben sind, soll zuerst der *Kern* gezeichnet und dann sollen für eine im Punkte m angreifende, gegen den Querschnitt gerichtete Längskraft von 53,0 t die Randspannungen berechnet werden.

Der Punkt m liegt in einer Entfernung von 2,05 dcm vom Schwerpunkte O — wie dies auch in der Fig. 327 der Fall war. Ebenso ist der Winkel, den die Richtung der Kraftlinie mit der Y-Achse einschließt, gleich dem Winkel, den in der Fig. 327 die Kraftlinie mit der V-Achse einschloß.

3-4 10,0 4-5 X +P 5,0 V-4,5 X-3,9 Fig. 339.

mit 1,25 dcm in der Fig. 339 abgegriffen worden. Daraus ergibt sich (nach Gl. 113) für die Randpunkte 4 und 2

$$\sigma_4 = \frac{M_k}{F \cdot k_4} = -18,7 \text{ atm.}$$

$$\sigma_2 = \frac{M_k}{F \cdot k_2} = +3,7 \text{ atm.}$$

Das sind die gleichen Werte, wie sie in der graphischen Darstellung der Spannungsverteilung der Fig. 327 erhalten worden sind, worin der Maßstab für 1 atm = 1 mm gewählt worden war.

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung.

114. Die Schubspannungen in Längsschnitten.

a. Beliebiger Querschnittsumriß. Ein Stab sei in der Kraftebene KK beliebig belastet und alle äußern Kräfte seien auf eine Längskraft P und eine Querkraft Q zurückgeführt worden, in der Art wie es Fig. 315 auf S. 338 veranschaulicht. Bezeichnet dann M das statische Moment der Längskraft, bezogen auf eine der Kraftebene KK zugeordnete Achse X (107 b), so gilt (bei rechtwinkeligen Koordinaten) für die Normalspannung die Gleichung:

$$\sigma = \frac{P}{F} + \frac{My}{J_x} \cdot$$

Um daraus die Schubspannung zu finden, denke man sich durch eine von zwei Nachbarquerschnitten begrenzte Scheibe einen beliebigen Längsschnitt mm' gelegt und betrachte darauf das Gleichgewicht des abgeschnittenen Scheibenstückes gegen Verschieben in der Richtung der Stabachse Z.

Auf die drei Schnittflächen des Scheibenstückes wirken folgende Spannungen (Fig. 340-341):

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 367

1. im Querschnitte die Normalspannung σ ,

2. in den um dz weiter belegenen Nachbarquerschnitte eine Normalspannung $\sigma + d\sigma$,

3. im Längsschnitte eine Schubspannung τ_s .

Die in den Querschnitten wirkenden Schubspannungen bleiben außer Betracht, weil sie quer zur Stabachse wirken.

Fig. 340.

Fig. 341.

Wird die Länge der Schnittlinie mm' mit b bezeichnet, so ist im Gleichgewichtsfalle:

$$\tau_z \cdot b \cdot dz = \int (\sigma + d\sigma) dF - \int \sigma dF = \int d\sigma \cdot dF.$$

Unter der Voraussetzung, daß Querschnittsfläche und Längskraft auf der differentialen Länge dz unveränderlich bleiben, ergibt sich für irgend einen Punkt dF der Koordinaten x, y nach obiger Gleichung für σ :

$$d\sigma = d\left(\frac{My}{J_x}\right),$$

worin allein M als Veränderliche anzusehen ist.

Nach Gl. (42) unter 66 b, sowie auch nach Gl. (95) unter 103 ist

$$dM = Qdz$$

zu setzen, wobei die Richtung von Q senkrecht zur zugeordneten Achse XX zu nehmen ist. Daraus folgt: Vierter Abschnitt. Spannungen in geraden Stäben.

$$\tau_z \cdot b \cdot dz = \frac{Q}{J_x} dz \int y dF.$$

Die Integration hat sich über die Fläche des abgetrennten Stückes zu erstrecken. Setzt man $\int y dF = S$ und $\tau_z \cdot b = T$, so erhält man

$$T = \frac{QS}{J_x},\tag{115}$$

worin T die Schubkraft für die Längeneinheit der Scheibenstärke darstellt. In Worten:

Die Schubkraft für die Längeneinheit eines Stabes und für eine im Querschnitt beliebig gelegte Schnittlinie ist gleich der Querkraft des Querschnittes multipliziert mit dem statischen Momente S, dividiert durch das Trägheitsmoment der Querschnittsfläche, wobei die Richtung der Querkraft und die Ordinaten der beiden Flächenmomente auf die der Kraftlinie zugeordnete (nnd der Nulllinie parallele) Schwerachse zu beziehen sind.

Für Querschnitte mit einer Symmetrieachse treten an Stelle der zugeordneten Achsen die Hauptachsen (107).

Die Art der Verteilung von τ_z über die Schnittbreite *b* ist im allgemeinen unbestimmt. Nur für *Rechteck*-Querschnitte und für darin parallel zur X-Achse geführte Schnittlinien läßt sich eine gleichmäßige Verteilung von τ_x über die Breite *b* nachweisen (Fig. 342).

b. Rechteckiger Umriss des Querschnittes.

Weil nach Gl. (115) die Schubspannungen allein durch die senkrecht zur X-Achse wirkende Querkraft beeinflußt werden, so darf angenommen werden, daß in allen Längsschnitten, die parallel zur XZ-Ebene liegen, unter der alleinigen Wirkung von Q gleiche Formänderungen auftreten oder mit andern Worten, daß alle Formänderungen und Spannungen von der Ordinate x unabhängig sind. r_z kann deshalb für alle Punkte dF der Schnittlinie mm' gleich groß angesetzt werden.

Für ein Rechteck der Höhe 2a und der Breite 2b, bei einem Schnitte mm', der die Ordinate c hat, erhält man danach:

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 360

$$\tau_z = \frac{QS}{2bJ_x}$$

worin

$$S = (a - c) 2 b \left(c + \frac{a - c}{2} \right)$$

und

 $J = \frac{\mathbf{I}}{\mathbf{I} \, \mathbf{2}} \cdot \mathbf{2} \, b \, \cdot \, (\mathbf{2} \, a)^3$

ist. Setzt man noch

4ab = F,

so erhält man

$$x_z = \frac{3Q}{2F} \left(\mathbf{I} - \frac{c^2}{a^2} \right) \cdot \tag{116}$$

115. Die Schubspannungen in Querschnitten.

Wie (unter **103**) nachgewiesen wurde, kann eine reine Biegung nur in solchen Querschnitten vorkommen, für welche die Querkraft verschwindet oder die durch eine in unendlicher Ferne angreifende unendlich kleine Längskraft belastet sind. Im allgemeinen setzt sich also jede Biegungsspannung aus einer Normalspannung σ und einer Schubspannung τ zusammen. Von τ wissen wir vorderhand nur, daß

und

$$\int \tau_y dF = Q$$
(117)
$$\int \tau_x dF = 0,$$

wenn τ_x und τ_y die Seitenkräfte einer Schubspannung τ vorstellen (Fig. 343) und wenn außerdem irgendwelche quer zur Kraftebene gerichtete äußere Kräfte nicht vorausgesetzt werden.

Über die Art der Verteilung von τ über den zu betrachtenden Querschnitt, sowie auch über die Richtung von τ ist vorläufig nichts bestimmtes auszusagen. Es läßt sich nur nachweisen, daß die Richtung von τ , der Mittelkraft von τ_x und τ_y , in allen Umrißpunkten des Querschnittes tangential verlaufen muß. Der Beweis hierfür folgt aus der Betrachtung des Gleichgewichtes eines unendlich kleinen Prismas, dessen eine Kante in die Umrißtangente tt fällt (Fig. 344).

Wäre die Richtung von τ nicht tangential in m, so ließe sich τ in zwei Seitenspannungen zerlegen, von denen die eine (τ_r) nach dem Krümmungsmittel des Punktes m, also senkrecht zur Prismenkante in m gerichtet sein müßte. In diesem Falle wäre aber — wie unter **101**b nachgewiesen — ein Gleichgewicht des Prismas gegen Drehen nur dann

Mehrtens, Statik der Baukonstruktionen. I.

möglich, wenn auch in der Mantelfläche des Stabes, und zwar in der Richtung der Stabachse, eine Schubspannung wirken würde, die τ_{τ} an Größe gleich käme. Eine solche Schubspannung kann aber *nicht* vorhanden sein, weil nach unseren Voraussetzungen außerhalb der Kraftebene irgendwelche äußere Kräfte in der Staboberfläche nicht auftreten sollen. Damit ist bewiesen, daß τ im Umfange des Querschnittes eine tangentiale Richtung haben muß.

n n n

In Querschnitten, die zur *YY symmetrisch* sind (Fig. 345), treffen sich die in zwei gegenüberliegenden Punkten *m* und *m'* des zur *X* parallelen Schnittes *mm'* gezogenen Tangenten in einem und demselben Punkte *t* der *Y*-Achse. Außerdem darf aus Gründen der Symmetrie angenommen werden, daß die Richtungen aller Schubspan-

nungen τ in Punkten der Y-Achse mit dieser zusammenfallen. Danach sind in den drei Punkten m, l und m' des Schnittes mm' die Richtungen von τ bekannt und es liegt nahe, für einen beliebigen andern Punkt i der Schnittlinie die Richtung der dort wirkenden Schubspannung τ aus der Annahme zu bestimmen, daß auch sie durch den zur Schnittlinie gehörigen Festpunkt t verläuft. Ein Beweis für die

Fig. 344.

Richtigkeit dieser Annahme kann nicht angegeben werden; in praktischen Fällen wird man aber, ohne einen erheblichen Fehler zu begehen, damit rechnen dürfen.

Unter obiger Annahme — und unter Bezugnahme auf die in der Fig. 345 eingeschriebenen Bezeichnungen — erhält man für die Seitenschubspannungen τ_x und τ_y folgende Werte.

Es ist

$$\tau = \sqrt{\tau_x^2 + \tau_y^2}$$

$$\tan \beta = \frac{\tau_x}{\tau_y} = \frac{x}{h}$$

und daraus

$$\tau_x = \tau_y \left(\frac{x}{h}\right) \cdot$$

Setzt man die Länge der Schnittlinie

$$mm' = 2b$$

so hat man ferner:

$$\tan q \varphi = \frac{b}{h}$$

und

 $\tau_x = \tau_y \left(\frac{x}{b}\right) \operatorname{tang} \varphi \,. \tag{118}$

Für φ = Null, d. h. allgemein für einen Umrißpunkt, dessen Tangente der Y-Achse parallel läuft, ergibt sich:

 $\tau_x = \circ$.

 τ_x verschwindet danach am Umfange aller derjenigen Querschnitte, deren Umriß entweder ein Rechteck mit zwei der Kraftlinie parallel laufenden Seiten zeigt oder aus solchen Rechtecken zusammengesetzt ist (Fig. 346).

Dabei ist zu bemerken, daß für solche Schnitte, deren Richtung mit der Tangentenrichtung zusammenfällt (wie z. B. mm' in der Fig. 346),

h gleich Null und tang $\varphi = \infty$ wäre. Das gäbe für τ_x unendlich große Werte. Solche Schnitte dürfen nicht gelegt werden, weil sie außerdem widersprechende Ergebnisse liefern, insofern als sich für die

Randpunkte *m* und *m'*, in denen die Tangente an den Umriß parallel zur YY gelegt werden kann, $\tau_x =$ Null ergibt.

Um die Schubspannungen in den Randpunkten der mm' berechnen zu können gibt es einen andern Weg: Man legt Schnitte tt parallel zur YY und berechnet dafür nach Gl. (115) zuerst τ_s im Längsschnitte aus

$$\tau_z = \frac{QS}{bJ_x},$$

wobei man eine gleichmäßige Verteilung über die Schnittbreite b annehmen darf, wenn diese nicht sehr groß ist, wie dies z. B. bei allen Querschnitten von Bauformeisen — den sog. Normalprofilen — der Fall ist. τ_z darf man aber gleich τ_y setzen, weil (nach **101** b) die Schubspannung τ_y im Punkte dF eines Querschnittes mit der in dem anstoßenden Flächenteilchen eines Längschnittes auftretenden Schubspannung τ_z gleiche Größe hai.

Somit darf für die in Fig. 346 dargestellten und für gleichartige Querschnitte die Schubspannung τ_y aus

$$r_y = \frac{QS}{bJ_x} \tag{119}$$

berechnet werden, vorausgesetzt, daß einerseits die Schnittbreite b nicht sehr groß und anderseits der Querschnitt auf der Strecke dz der betrachteten Scheibe nicht veränderlich ist $(114a)^{r}$.

¹ MOHR, Beitrag zur Theorie der Holz- und Eisenkonstruktion. Enthält u. a. ein Verfahren zur graphischen Darstellung der Verteilung der Schubspannungen im Querschnitt. Zeitschr. des Arch.- u. Ing.-Ver. zu Hannover. 1877.

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 373

Bei gegebener Belastung und für einen bestimmten Stabquerschnitt hängt also die Schubspannung allein von S ab. Deshalb erhält man *die größten Schubspannungen* für einen Schnitt, der mit der zur Nulllinie parallelen Schwerachse zusammenfällt. Je näher der Schnitt am Rande liegt, desto kleiner wird τ , um in denjenigen Randpunkten, die in einer Parallelen zur Nulllinie liegen, zu verschwinden.

In prismatischen Stäben erleidet derjenige Querschnitt die größten Schubspannungen, für welchen die Querkraft am größten ist. Ist der Stab an seinen Enden gestützt, so ist das Verhältnis zwischen der Stützweite und der Querschnittshöhe in der Kraftlinie von Einfluß auf die Größe von τ . Vergl. das Beispiel 1 unter **121** a.

In praktischen Fällen genügt es meist, nur die Schubkraft T eines Schnittes für die Längeneinheit des Stabes in Ansatz zu bringen, nach der Gl. (115) also

$$\tau = \frac{QS}{J}$$

anzuschreiben. Vergl. die Beispiele unter 121a.

116. Normal- und Schubspannungen in Schrägschnitten.

Wie (unter 3e) schon angedeutet worden ist, handelt es sich bei der Berechnung von Baukonstruktionen meist um zusammengesetzte Fälle der Festigkeit. Diese darf man erfahrungsmäßig auf Grund des Gesetzes von der gegenseitigen Unabhängigkeit der Kraftwirkungen derart lösen, daß man sie in die einfachen Fälle zerlegt und die in einem Querschnittspunkte dF erhaltenen gleichartigen Spannungen addiert. Nach erfolgter Addition erhält man somit im betrachteten Punkte zwei Gruppen von gleichartigen Spannungen, Normalspannungen und Schubspannungen. Ehe man aber, durch entsprechende Zusammensetzung der Normalund Schubspannungen, eine *für die Berechnung maßgebende Spannung* erhält, die als Maß für die Wahl *der zulässigen Spannung oder des Sicherheitsgrades* (7 und 12) zu dienen hat, bedarf es noch der Beantwortung einiger Fragen, die im vorigen noch nicht berührt worden sind.

Bislang haben wir Biegungsspannungen nur in Querschnittspunkten und Schubspannungen nur in Querschnitten und Längsschnitten betrachtet. Es fehlt also noch die Berechnung oder Darstellung beider Arten von Spannungen in einem beliebigen Punkte m eines Schrägschnittes. Im besondern wird zuerst die Frage zu beantworten sein, für welche Lage des Schrägschnittes die Spannungen im Punkte m ihre Grenzwerte erreichen. Erst wenn die Grenzwerte gefunden worden sind, kann man der letzten Frage näher treten, die das Festlegen einer für die Beurteilung der Sicherheit des betrachteten Konstruktionsstabes maßgebenden Spannung zum Gegenstande hat.

Wir wollen die angeregten Fragen zunächst für den Fall der zusammengesetzten Biegung beantworten und dabei von den für irgend einen Querschnittspunkt m berechneten Spannungen σ und τ ausgehen (Fig. 347).

Man betrachte ein unendlich kleines Prisma, dessen Kante ab in die Querschnittsfläche tt fällt, während die Kante ac der Stabachse ZZparallel ist. Die Kante bc, die in einem beliebig gelegten Schrägschnitt

liegt, schließe mit der ac den Winkel α ein. Denkt man sich außerdem die Prismafläche abc so gestellt, $da\beta$ die Schubspannung τ des Querschnittes mit ihr zusammenfällt, so wird im Falle des Gleichgewichts — wie unter **101** b schon bewiesen wurde — auch in der zur Z-Achse parallelen Prismafläche

eine Schubspannung τ wirken müssen, weil anders die Summe der statischen Momente aller in den Schnittflächen auftretenden Spannungen in Bezug auf den Angriffspunkt m' der Biegungsspannungen σ' und τ' des Schrägschnittes nicht Null sein kann.

Nimmt man, wie es für die Rechnung bequem ist, den Inhalt der unendlich kleinen Fläche des Schrägschnittes bc gleich der Einheit an, so darf die Fläche $\overline{ab} \cdot \mathbf{i} = \mathbf{i} \cdot \sin \alpha$ und die Fläche $\overline{ac} \cdot \mathbf{i} = \mathbf{i} \cdot \cos \alpha$ gesetzt werden.

Die Gleichgewichtsbedingung für die Richtung der Z-Achse lautet demnach:

$$\sigma' \sin \alpha + \tau' \cos \alpha - \sigma (\sin \alpha) - \tau (\cos \alpha) = 0.$$

Desgleichen für die der Kante ab parallele Richtung:

 $\sigma' \cos \alpha - \tau' \sin \alpha - \tau (\sin \alpha) = \circ.$

Daraus berechnen sich σ' und τ' mit:

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 375

$$\sigma' = \frac{\sigma}{2} - \frac{\sigma}{2} \cos 2\alpha + \tau \sin 2\alpha$$

$$\tau' = \frac{\sigma}{2} \sin 2\alpha + \tau \cos 2\alpha ,$$
(120)

und

wobei die Werte $2\sin\alpha \cos\alpha$ und $\cos^2\alpha - \sin^2\alpha$ durch die entsprechenden Ausdrücke $\sin 2\alpha$ und $\cos 2\alpha$ ersetzt worden sind.

Wir fragen jetzt zuerst, für welche Lage des Schrägschnittes erreicht σ' seinen Grenzwert? σ' ändert sich mit α . Die Abgeleitete nach α — gleich Null gesetzt — ergibt:

$$o = 2\frac{\sigma}{2}\sin 2\alpha + 2\tau\cos 2\alpha$$

oder (im Hinblick auf Gl. 120)

 $\circ = \frac{\sigma}{2} \sin 2\alpha + \tau \cos 2\alpha = \tau',$

 $\tau' m \mu \beta$ also verschwinden, um σ' zu einem Grenzwerte zu machen. Das geschieht, wenn

$$\tan g \, 2 \, \alpha = -\frac{2 \, \tau}{\sigma} \tag{121}$$

wird. Wenn aber τ' verschwindet, bleibt von der im Punkte m' des Schrägschnittes wirkenden Biegungsspannung nur die Normalspannung max σ' übrig.

Weil es ferner immer zwei um 90° von einander verschiedene Winkel α gibt, die der Gl. (121) genügen, so wird es auch immer zwei um 90° gegen einander verdrehte Schrägschnitte geben, für welche die Biegungsspannungen in reine Normalspannungen übergehen. Diese beiden Normalspannungen nennt man Hauptspannungen und ihre Richtungen die Hauptrichtungen.

Wir wollen nunmehr die Mittelkraft von σ' und τ' in den Kreis unserer Betrachtungen ziehen und im besondern ihre Beziehungen zu σ und τ , sowie auch zur Lage des Schrägschnittes darstellen.

117. Die Spannungsellipse.

Das vorige Prisma werde beibehalten (Fig. 348). Im Querschnittspunkte m wirke die Spannung r, als Mittelkraft aus σ und τ , desgleichen im Punkte m' des Schrägschnittes die Spannung r', als Mittelkraft von σ' und τ' . In der zur Z-Achse parallelen Prismafläche bleibt dann noch die Schubspannung τ .

Man zerlege r' in zwei Seitenkräfte Y und Z, von denen die erste parallel zu r und die zweite parallel zur Stabachse gerichtet ist. Behält man dann die für die *Inhalte* der drei Schnittflächen vorhin gemachten Annahmen bei, so erhält man folgende Gleichgewichtsbedingungen:

Dieser Ausdruck ist die Gleichung einer Ellipse bezogen auf ihre zugeordneten Durchmesser als schiefwinklige Achsen Y und Z. Danach läßt sich folgender Satz aussprechen:

Wenn die im Punkte m' beliebiger Schrägschnitte auftretende Spannung r' nach ihrer jedesmaligen Größe und Richtung durch eine von m' ausgehende Strecke dargestellt wird, so liegt der Endpunkt aller dieser Strecken in einer Ellipse, der sog. Spannungsellipse, von welcher zwei zugeordnete Durchmesser die Richtung von v und r haben.

Wenn man nun erwägt, daß im Grenzfalle die Punkte m und m' des betrachteten unendlich kleinen Prismas zusammenfallen, so hat man in der Spannungsellipse ein einfaches Mittel, um im Punkte m für jeden durch ihn gelegten *Schräg*schnitt Größe und Richtung der Spannung r' und damit auch von σ' und r' darzustellen.

Wie unter **116** bewiesen wurde, sind die Grenzwerte von σ' Normalspannungen. Daraus ergibt sich ohne weiteres der Satz:

Die Achsen der Spannungsellipse sind die Hauptrichtungen, in denen die Hauptspannungen liegen.

Für den allgemeinen Spannungszustand (99b) kann man bei gleichem Vorgehen nachweisen, daß die Spannung in einem beliebigen Punkte als Strecke aufgetragen durch die Fahrstrahlen eines sog. Spannungsellipsoides dargestellt werden kann, in dessen Achsen die Hauptspannungen liegen.

118. Die Hauptspannungen.

Wir nehmen jetzt eine solche Lage eines Schrägschnittes an, für
§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 377

welche r' in eine reine Normalspannung übergeht (Fig. 349). Die Inhalte der Schnittflächen des Prismas werden wie vorhin mit 1, sin α und $\cos \alpha$ angenommen. Dann ergeben sich die Gleichgewichtsbedingungen:

 $r'\cos\alpha - \tau\sin\alpha = o$

$$r'\sin\alpha - (\sigma\sin\alpha + \tau\cos\alpha) = o$$
.

Durch Division mit $\cos \alpha$ erhält man daraus

Fig. 349.

2

oder nach r' aufgelöst:

 $r' = \frac{\sigma}{2} \pm \sqrt{\frac{\sigma^2}{4} + \tau^2}.$

Es sind zwei Hauptspannungen r' vorhanden, deren Richtungen sich um 90° unterscheiden. Sie sollen σ_{I} und σ_{II} genannt werden. Danach ist anzuschreiben:

$$\sigma_{\rm I} = \frac{\sigma}{2} + \sqrt[]{\frac{\sigma^2}{4} + \tau^2}$$

$$\sigma_{\rm II} = \frac{\sigma}{2} - \sqrt[]{\frac{\sigma^2}{4} + \tau^2}$$

$$\sigma_{\rm I} + \sigma_{\rm II} = \sigma.$$
(123)

Man erkennt ohne weiteres, daß

 $\sigma_{\rm I}$ ein Zug, $\sigma_{\rm II}$ ein Druck

ist. Denn, gleichviel ob τ positiv oder negativ ausfällt, σ_{I} fällt stets positiv und σ_{II} stets negativ aus, derart daß ihre algebraische Summe gleich σ wird. Dabei ist σ_{I} der größte und σ_{II} der kleinste Wert einer Hauptspannung. Schließlich bleibt noch zu beachten, daß das τ^2 unter dem Wurzelzeichen der Gleichungen (123) im allgemeinen $\tau_x^2 + \tau_y^2$ zu setzen ist, weil nach unseren Annahmen die Prismafläche *abc* in die Richtung der Schubspannung τ des Querschnittes fallen sollte. In den meisten praktischen Fällen darf τ_x vernachlässigt werden, für diese geht also τ in $\tau_y = \tau_z$ über (115).

119. Die Hauptschubspannungen.

Darunter versteht man die größten Schubspannungen, die überhaupt in einem Schrägschnitte vorkommen können. Die Lage solcher Schrägschnitte wird festzulegen sein.

Fig. 350 stellt die Ansicht eines unendlich kleinen Prismas dar. Die Kante *ab* liege in irgend einem Schrägschnitt, der von den Spannungen

 σ' und τ' beansprucht wird, die Kanten bc und ac sollen dagegen in Flächen fallen, die von Hauptspannungen ergriffen sind. Der Winkel acb ist also ein rechter; der Winkel bac sei β .

Wenn die differentiale Schnittfläche ab = 1 gesetzt wird, lauten die Gleichgewichtsbedingungen nach den Richtungen von σ' und τ' :

$$\sigma' = (\sigma_{\rm I} \sin\beta) \sin\beta + (\sigma_{\rm II} \cos\beta) \cos\beta ,$$

$$\tau' = (\sigma_{\rm I} \cos\beta) \sin\beta - (\sigma_{\rm II} \sin\beta) \cos\beta$$
.

Das gibt:

$$\sigma' = \sigma_{\rm I} \sin^2 \beta + \sigma_{\rm II} \cos^2 \beta ,$$

$$\tau' = \left(\frac{\sigma_{\rm I} - \sigma_{\rm II}}{2}\right) \sin 2\beta .$$
 (124)

 τ' erreicht seine Grenzwerte für sin 2 $\beta = -1$, d. h. für

 $2\beta = 90^\circ$ und 270° $\beta = 45^\circ$ und 135° .

oder

Dies Ergebnis lautet in Worten ausgedrückt:

Die Flächen ab, in denen die Schubspannungen ihre Grenzwerte erreichen, halbieren die Winkel zwischen den Hauptspannungen.

Bezeichnet man diese Hauptschubspannungen mit τ_{I} und τ_{II} , so erhält

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 379

man, wenn die Werte der Hauptspannungen aus Gl. (123) in Gl. (124) eingesetzt werden,

für
$$2\beta = 90^{\circ}$$
: $\tau_{\rm I} = + \sqrt{\frac{\sigma^2}{4} + \tau^2}$
- $2\beta = 270^{\circ}$: $\tau_{\rm II} = -\sqrt{\frac{\sigma^2}{4} + \tau^2}$. (125)

Auch hier wolle man, wie unter **118** besonders hervorgehoben worden ist, noch beachten, daß τ^2 unter dem Wurzelzeichen allgemein gleich $\tau_x^2 + \tau_y^2$ zu setzen ist (**115**).

120. Die maßgebende Spannung.

a. Einfache und zusammengesetzte Belastungsfälle (99a). Die einfachen Fälle der Festigkeit, die in § 15 behandelt wurden, gestatten die unmittelbare Festsetzung einer für die Beurteilung der Sicherheit eines Konstruktionsstabes maßgebenden Spannung (3e und 7). Denn in allen diesen Fällen liegt ein linearer Spannungszustand vor, in welchem, solange die Proportionalitätsgrenze (4c) eingehalten wird, Spannungen, Dehnungen und Gleitungen proportional zueinander wachsen. Die berechneten größten Normal- oder Schubspannungen sind also bis zur genannten Grenze von gleichem Einflusse wie die zugehörigen Dehnungen, und Gleitungen. Deshalb sind sie zugleich auch maßgebende Spannungen, und wenn sie die zulässigen Grenzen (7) nicht überschreiten, ist dabei die Sicherheit der Konstruktion (12) ausreichend gewahrt.

Anders liegt die Sache bei zusammengesetzten Belastungsfällen. Hier wachsen Spannungen und Formänderungen, auch innerhalb der Proportionalitätsgrenze, nicht proportional miteinander und es ist dabei auch nicht bestimmt zu sagen, welche Ursachen in erster Linie den Bruch in irgend einem Punkte bedingen. Es wurde zwar (unter 3) gesagt: »Unter Festigkeit eines Körpers oder Baustoffes versteht man diejenige Spannungsgrenze, bei welcher seine Zerstörung beginnt«, aber von dieser Erklärung werden die eigentlichen Ursachen der Zerstörung nicht berührt.

COULOMB, der zuerst auf die Bedeutung der Schubspannungen bei der Biegung aufmerksam gemacht hat (S. 80) war der Meinung, die Zerstörung sei eine unmittelbare Folge der eintretenden Gleitungen oder Schiebungen (5). Seine Meinung wird aber heute allgemein nicht mehr geteilt, denn wenn COULOMB recht hätte, so würde ein allseitig unter gleichmäßigem äußern Gas- oder Wasserdruck gesetzter Steinwürfel durch keinen noch so hohen Druck zerstört werden, weil bei solcher Art der Beanspruchung des Steines dessen Gestalt sich immer ähnlich bliebe und deshalb in ihm nirgendwo Winkeländerungen oder Gleitungen auftreten könnten.

Auch die früher weit verbreitete Ansicht, wonach die *Hauptspannungen* bei Überschreitung der Festigkeitsgrenze unmittelbar den Bruch herbeiführen, findet nur noch wenig Zustimmung.

Die meisten Anhänger zählt wohl heute eine, besonders von PONCELET, DE SAINT-VENANT und GRASHOF verfochtene neuere Anschauung, nach welcher die Bruchgefahr von den *Hauptdehnungen* abhängig ist. Mit dieser Anschauung wird man vorerst rechnen müssen, solange bis sie etwa durch die Ergebnisse einwandfreier Versuche mit belasteten Baukörpern berichtigt werden sollte. Neuerdings hat auch MOHR¹ einen ausgezeichneten Beitrag zur obigen Frage geliefert, auf dessen beachtenswerte Einzelheiten wir hiermit verweisen.

b. Vergleich des allgemeinen Spannungzustandes mit dem linearen.

Wie (unter 117) dargelegt worden ist, liegen beim allgemeinen Belastungsfalle die Hauptspannungen und Hauptdehnungen in den Achsen des Spannungsellipsoides. Jede der drei Hauptspannungen erzeugt eine Längsdehnung in der Richtung der eigenen Achse, gleichzeitig aber auch Querdehnungen in der Richtung jeder der beiden andern Hauptachsen. Deshalb wird es nötig werden, die Gesamtdehnungen — das sind die Hauptdehnungen — nach jeder der drei Hauptachsenrichtungen miteinander zu vergleichen, um zunächst die größte darunter zu finden.

Sind wie früher σ_{I} , σ_{II} , σ_{III} die Hauptspannungen und α_{I} , α_{II} , α_{III} , α_{III} die zugehörigen Hauptdehnungen (abgesehen von ihrem Vorzeichen), so erhält man nach dem Elastizitätsgesetz (4) unter Berücksichtigung der erwähnten Querdehnungen (5 a):

$$\alpha_{\rm I} = \frac{\mathbf{I}}{E} \left\{ \sigma_{\rm I} - \frac{\mathbf{I}}{m} \left(\sigma_{\rm II} + \sigma_{\rm III} \right) \right\}$$

$$\alpha_{\rm II} = \frac{\mathbf{I}}{E} \left\{ \sigma_{\rm II} - \frac{\mathbf{I}}{m} \left(\sigma_{\rm I} + \sigma_{\rm III} \right) \right\} \qquad (126)$$

$$\alpha_{\rm III} = \frac{\mathbf{I}}{E} \left\{ \sigma_{\rm III} - \frac{\mathbf{I}}{m} \left(\sigma_{\rm I} + \sigma_{\rm II} \right) \right\}.$$

^I MOHR, Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials? Zeitschr. d. Ver. deutsch. Ing. 1900. — Auf MOHR's Arbeit stützt sich folgende von der Königl. Techn. Hochschule zu Berlin genehmigte Dissertation zur Erlangung der Würde eines Doktor-Ingenieurs: PAUL ROTH, Die Festigkeitstheorien und die von ihnen abhängigen Formeln des Maschinenbaues.

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 381

Einer der drei Werte der Gl. (126) wird der größte und deshalb für isotrope Körper als der für die Beurteilung der Sicherheit maßgebende Wert anzuschen sein. Im allgemeinen wird aber nicht der größte, sondern der gefährlichste Wert von α maßgebend sein, d. h. derjenige Wert, der in anbetracht der vorliegenden besondern Festigkeitseigenschaften des betreffenden Stoffes die Bruchgefahr zuerst herbeiführen wird.

Um schließlich die maßgebende Spannung zu erhalten, führt man den betrachteten allgemeinen Formänderungszustand auf einen gleichwertigen linearen Zustand zurück, indem man die maßgebende Hauptdehnung des einen gleich der Längsdehnung des andern setzt. Bezeichnet man die maßgebende Spannung mit σ_{ma} und die maßgebende Hauptdehnung mit α_{ma} , so folgt nach dem Elastizitätsgesetz:

$$\sigma_{ma} = E \cdot \alpha_{ma}, \tag{127}$$

wobei für α_{ma} einer der drei Werte der Gl. (126) einzusetzen ist.

c. Ebener Spannungszustand.

1. Setzt man die Hauptspannungen σ_{I} und σ_{II} aus den Gl. (123) in obige Gl. (126) ein, so erhält man:

$$\sigma_{m\alpha} = \frac{\sigma}{2} \pm \sqrt{\frac{\sigma^2}{4} + \tau^2} - \frac{1}{m} \left\{ \frac{\sigma}{2} \mp \sqrt{\frac{\sigma^2}{4} + \tau^2} \right\}$$

oder

$$\sigma_{ma} = \frac{m-1}{2m} \sigma \pm \frac{m+1}{2m} \sqrt{\sigma^2 + 4\tau^2}$$
 (128)

Der größern Sicherheit wegen ist für die Poissonsche Zahl (S. 8) der größere Wert 4 zu nehmen. Dann ergibt sich:

$$\sigma_{ma} = \frac{3}{8}\sigma \pm \frac{5}{8}\sqrt{\sigma^2 + \tau^2} \cdot \tag{129}$$

Damit ist für zusammengesetzte Fälle der Biegung (Biegung mit Abscherung oder Torsion, oder mit Abscherung und Torsion) die Berechnung einer Spannung im Punkte *m* eines beliebigen *Schrägschnittes* auf die Berechnung der Spannungen im Punkte *m* eines *Querschnittes* zurückführt.

2. Bei reiner Schubspannung, wenn also σ verschwindet, ergeben sich die Hauptschubspannungen nach Gl. (125) zu

$$\begin{aligned} \tau_1 &= + \tau \\ \tau_{II} &= - \tau \,. \end{aligned} \tag{130}$$

Soll also die *zulässige* Schubspannung nicht größer, sondern höchstens gleich der zulässigen maßgebenden Spannung σ_{ma} werden, so muß

 $\sigma_{I} = + \tau$

und

 $\sigma_{\rm II} = -\tau$

(131)

(133)

gemacht werden.

Es ist aber

 $\sigma_{ma} = \sigma_{\rm I} - \frac{{}_{\rm I}}{m} \sigma_{\rm II}$

oder

$$\sigma_{ma} = \sigma_{\rm II} - \frac{\mathrm{I}}{m} \sigma_{\rm I} \,.$$

Setzt man darin die Werte von σ_{I} und σ_{II} aus Gl. (131) ein, so gibt das

$\sigma_{ma} = \tau + \frac{\mathbf{I}}{m} \tau$

 $\tau = \frac{4}{5} \sigma_{ma}$.

oder

$$\tau = \frac{m}{m+1} \sigma_{ma}.$$
 (132)

Für m = 4 also:

Hat man also für die zulässige Normalspannung σ_{ma} irgend eine Zahl festgesetzt, so würde man im gleichen Belastungsfalle bei reiner Abscherung nur $\frac{4}{5}$ davon als zulässige Schubspannung in Rechnung stellen dürfen. Diese Regel wird aber in praktischen Fällen nicht immer eingehalten. Es wird vielmehr bei Berechnung von Eisenkonstruktionen sehr häufig *die zulässige Spannung für Schub und Zug gleich groß* an-

gesetzt. Auch in den folgenden Beispielen ist dies stets geschehen.

121. Beispiele.

a. Schubspannungen bei der Biegung.

1. Bei welchem Verhältnis der Stützweite l zur Höhe h wird ein Kiefernholzbalken von rechteckigem Querschnitte bh unter einer gleich-

mäßig verteilten Belastungq für die Längeneinheit des Balkens, durch die Schubspannungen in Längsschnitten zerstört werden können, wenn die Normalfestigkeit des Holzes

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 383

(nach der »Hütte« I. S. 352) durchschnittlich zu 500 atm, und die Schubfestigkeit parallel zur Faserrichtung zu 50 atm angenommen wird?

Die größte Querkraft Q wird über den Stützen und das größte Moment M in der Balkenmitte auftreten. Nach **67**a ist

$$Q = \frac{ql}{2}$$
$$M = \frac{ql^2}{8} \cdot$$

Die Randspannung σ berechnet sich zu

$$\sigma = \frac{M}{W} = \frac{6 \cdot q \, l^2}{8 \cdot b \, h^2} \, \cdot \,$$

Die größte Schubspannung findet (nach 115) in der Nulllinienschicht statt und sie beträgt (nach Gl. 116) für den rechteckigen Querschnitt

$$\tau_z = \frac{3Q}{2F} = \frac{3ql}{4bh} \cdot$$

Bezeichnet nun *n* das Verhältnis zwischen der Normalfestigkeit und Schubfestigkeit des Holzes (bei Annahme des gleichen Sicherheitsgrades), so tritt für Biegung und Abscherung gleiche Gefahr der Zerstörung ein, sobald die Schubspannung den Wert

$$\tau_z = \frac{\sigma}{n}$$

erreicht. Im vorliegenden Falle ist $n = \frac{500}{50} = 10$.

Aus der Gleichung

$$\frac{3 \cdot q \, l^2}{40 \cdot b \, h^2} < \frac{3 \cdot q \, l}{4 \cdot b \, h}$$

berechnet sich also das gesuchte Verhältnis von $\frac{l}{h}$, bei welchem die Schubspannung in der Nulllinienschicht alleinige Ursache der Zerstörung werden kann. Das gibt.

$$\frac{l}{h} < 10.$$

Bei den gebräuchlichen Abmessungen der Holzbalken fällt die Balkenhöhe fast immer *viel geringer* aus, als ein Zehntel der Stützweite. In der Regel darf man deshalb die Schubspannungen bei der Berechnung vernachlässigen.

2. Für die in den Beispielen 3 und 4, unter 113 behandelten Blechträger ist die Entfernung der wagerechten Niete zu berechnen, die notwendig sind, um die beiden Gurtwinkel (D. N. P. Nr. 7,5 von 1 cm Stärke) sicher mit dem 1 cm starken Stahlblech zu verbinden. Dabei

1)

soll 1) auf Abscherung 2) auf Stauchdruck gerechnet werden.

Nach der Gl. (115) unter 114 beträgt die Schubspannung für die Längeneinheit des Trägers

$$T = \frac{QS}{J},$$

wobei die Schnittlinie tt' (in der Fig. 352 rot gezeichnet) den gesamten Gurtquerschnitt vom Stehblech trennt. Ist nun e die gesuchte Nietentfernung, so entfällt auf eine Nietteilung die Schubkraft T . e. Dieser muß ein Niet widerstehen und dabei dürfen seine beiden in der Schnitt-

linie liegenden Nietquerschnitte nicht über die zulässige Grenze τ hinaus beansprucht werden. Das gibt für die vorliegenden, sog. zweischnittigen Niete den Ansatz:

$$Te = \frac{QSe}{J} = 2\tau \frac{d^2\pi}{4}$$
$$\tau \cdot d^2\pi \cdot J$$

oder

Das Niet kann aber auch durch Stauchdruck zerstört werden (105 b). Um das zu untersuchen, ist der Widerstand eines Nietes gegen Stauchen gleich der gesamten Schubkraft zu setzen. Also

205

$$Te = \frac{QSe}{J} = s \cdot \delta \cdot d$$
$$e = \frac{s \cdot \delta \cdot d \cdot J}{QSe},$$

oder

$$e = \frac{s \cdot \delta \cdot d \cdot J}{QS},$$

worin s der zulässige Stauchdruck und δ die Stehblechstärke ist. Wird $s = 2\tau$ angesetzt (nach S. 336), so erhält man aus den beiden Gl. (1) und (2)

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 385

) für Abscheren:
$$e = \frac{1,57 \tau d^2 f}{QS}$$

(4) für Stauchen:
$$e = \frac{2 \tau \delta dJ}{QS}$$
.

Beide Werte von e werden gleich groß für

$$1,57d^2 = 2\delta \cdot d$$

oder für

3

 $d = 1,27\delta.$

Weil nun bei genieteten Trägern der Nietdurchmesser d in der Regel nicht kleiner als die doppelte Blechstärke δ gemacht wird, so folgt allgemein:

Zweischnittige Nietverbindungen sind auf Stauchdruck zu berechnen, wenn der Nietdurchmesser größer als etwa 1,3 mal Blechstärke ist.

Im vorliegenden Falle ergibt sich (nach dem Beispiele 4 unter 113):

max
$$Q = 13450$$
 kg
 $J = 69479$ cm⁴
 $S = 28,2 \cdot 25,29 + 20 \cdot 1 \cdot 28,0 = 1273$ cm³.

Daraus für $\tau = 1100$ atm.

 $e = \frac{305707600}{17121850} = 18$ cm.

3. Wie groß ist im vorigen Falle *die Entfernung der senkrechten* Niete, mit denen die Gurtplatte an die Gurtwinkel geschlossen ist?

Die Schnittlinie ist hier wagerecht zwischen Platte und Winkeln zu legen. Es kommen dann in der Linie zwei Nietquerschnitte zu liegen, jedoch gehört zu jedem Niet nur ein Querschnitt. Die Niete sind hier also einschnittig. Für sie erhält man für Abscherung wieder den Ansatz aus der Gl. 3)

$$e = \frac{\tau_{,57} \tau \, d^2 J}{QS},$$

worin das statische Moment S sich auf den vollen Querschnitt der Gurtplatte bezieht.

Weil der Stauchdruck hier auf zwei Niete übertragen wird, so geht Gl. 4) für Stauchen über in:

$$e = \frac{4\tau \delta df}{QS},$$

sodaß beide Werte von e hier für Mehrtens, Statik der Baukonstruktionen. I. Vierter Abschnitt. Spannungen in geraden Stäben.

 $d = 2,55\delta$

gleich groß werden. Weil aber nach vorigem in der Regel

 $d \ge 2,55\delta$,

so folgt allgemein:

Einschnittige Nietverbindungen sind auf Abscherung zu berechnen.

Für die im vorigen Beispiel benutzten Zahlenwerthe von Q und J und für

$$S = 20 \cdot 1 \cdot 28,0 = 560 \text{ cm}^3$$

erhält man schließlich:

$$e = \frac{479960932}{7532000} = 64$$
 cm.

Aus praktischen Gründen aber, namentlich um ein Federn oder Trennen in den Verbindungsfugen zu vermeiden, werden die Nietentfernungen ein der Regel etwa

genommen.

b. Biegung mit Torsion zusammengesetzt.

4. Eine in ihrer Mitte durch ein Schwungrad vom Gewichte G belastete zylindrische Welle vom Durchmesser 2r (Fig. 353) erleidet (abgesehen von dynamischen Wirkungen) bei ihrem Antriebe eine Verdrehung

infolge der Zapfenreibung in ihren Lagern A und B. Wie groß ist die für ihre Berechnung maßgebende Spannung im gefährdeten Ouerschnitte

für ihre Berechnung maßgebende Spannung im gefährdeten Querschnitte der Welle, wenn der Zapfendurchmesser gleich ³/₄ des Wellendurchmessers ist und wenn die Zapfenreibungszahl gleich o,2 gesetzt werden darf? Jeder Punkt der Randfaser des Querschnittes in der Mitte der Welle

Jeder Punkt der Kandfaser des Querschnittes in der Mitte der Welle erleidet dreierlei Spannungen:

§ 17. Schubspannungen, Hauptspannungen und maßgebende Spannung. 387

Abscherung:
$$\tau_s = \frac{Q}{\pi r^2} = \frac{G}{2 \pi r^2}$$
,

nach Gl. (93) Torsion:
$$\tau_t = \frac{2M_t}{\pi r^3} = \frac{2 \cdot \frac{G}{2} \cdot 0, 2 \cdot \frac{3}{4}r}{\pi r^3} = \frac{0, 15 G}{\pi r^2},$$

Biegung:
$$\sigma = \frac{M_b r}{J} = \frac{G l r}{4\left(\frac{\pi r^4}{4}\right)} = \frac{G l}{\pi r^3}$$
.

Setzt man:

r = 10 cm; G = 20 t; l = 160 cm,

so erhält man

 $\tau_s = 32$ atm $\tau_t = 10$ atm $\sigma = 1018$ atm.

Daraus $\tau = 32 + 10 = 42$ atm. Aus der Gl. (129)

$$\sigma_{ma} = \frac{3}{8} \sigma \pm \frac{5}{8} \sqrt[7]{\sigma^2 + 4\tau^2}$$

findet man schließlich:

$$\sigma_{ma} = 1020$$
 atm.

c. Biegung mit Abscherung zusammengesetzt.

5. In der Fig. 354 ist in der Ansicht und im Grundriß (schematisch) eine Knotenverbindung eines Kettengurtes dargestellt, wie er z. B. in Untergurten von amerikanischen Fachwerkträgern vorkommt. Es sind auf jeder Seite der Gurtes fünf wagerechte Kettenstäbe U vorhanden, die alle über einen Bolzen geschoben worden sind. Außerdem greifen an dem Bolzen noch an: zwei lotrecht gestellte Stäbe V und zwei unter 45° geneigte Stäbe D. Sämtliche Stabkräfte, die am Bolzen Gleichgewicht untereinander halten, sind in der Fig. 354 ihrer Größe nach eingeschrieben, ebenso (in cm) die Abstände der Stäbe untereinander. Zu berechnen ist die Bolzenstärke d = 2r.

Zerlegt man D = 8,5t nach den Achsen XY in seine Seitenkräfte, so erhält man $D_x = D_y = 6$ t.

Am Bolzenende bei a, unmittelbar neben dem ersten Kettenstabe, findet man

$$Q_x = 6 t$$
$$Q_y = 0$$
$$M = 0,$$

also reine Abscherung, und dafür, wenn die zulässige Schubspannung für Stahl gleich I t/qcm gesetzt wird,

$$r=\sqrt{\frac{6}{\pi}}=1,38 \text{ cm}.$$

1)

Vierter Abschnitt. Spannungen in geraden Stäben.

In der Bolzenmitte bei m tritt reine Biegung auf, denn es ist:

 $Q_x = 18 - 12 - 6 = 0$ $Q_y = 6 - 6 = 0$ $M_x = (18 - 12) 14 - 6 \cdot 8 = 36 \text{ cmt}$ $M_y = 6 (8 - 5) = 18 \text{ cmt}$

$$M = \sqrt{M_x^2 + M_y^2} = \sqrt{36^2 + 18^2} = 40,25$$
 cmt.

Man erhält danach:

$$\sigma = \frac{Mr}{J} = \frac{40,25 \cdot r}{\frac{\pi}{4}r^4} = \frac{161}{\pi r^3}.$$

Daraus für $\sigma = 1,0$ t/qcm:

2) r = 3,71 cm.

Im Bolzenquerschnitt bei b unmittelbar vor V erhält man

$$Q_x = 0; \quad Q_y = 6t$$

und wie vorhin

M = 40,25 cmt.

In diesem Querschnitt ist also aus σ und τ die maßgebende Spannung σ_{ma} zu be-

rechnen. Nimmt man an, daß r hier gleiche Stärke behält wie in Gl. 2), so ist anzuschreiben:

$$\sigma = 1000 \text{ atm}$$

$$\tau = \frac{6000}{\pi \cdot 3.71^2} = 139$$
 atm.

Schließlich folgt

$$\sigma_{ma} = \frac{3 \cdot 1000}{8} + \frac{5}{8} \sqrt{1000^2 + 4 \cdot 139^2}$$

 $\sigma_{ma} = 1024$ atm.

Sollte diese Spannung (in einem andern Falle) höher ausfallen, so müßte der Bolzen stärker gemacht und die Rechnung so lange wiederholt werden, bis man die für den Fall passende zulässige maßgebende Spannung erhalten hat.

§ 18. Normal- und Schubspannungen in elastisch ungleich widerstehenden Querschnittzonen.

122. Allgemeine Erklärungen.

a. Spannungen und Dehnungen in Steinquerschnitten. Die bisherigen Berechnungen gingen einerseits von der Voraussetzung ebener Querschnitte aus (**100** a), andererseits fußten sie auf dem *Elasti*zitätsgesetz, wonach Spannungen und Dehnungen in allen Querschnittspunkten in gleichem Verhältnis zueinander stehen. Deshalb bildeten Querschnittslinie und Spannungslinie in Längsschnitten je eine Gerade (Fig. 307). Wenn man nun auch bei allen Spannungsberechnungen und auch für alle Baustoffe die Voraussetzung ebener Querschnitte beibehalten darf, weil an ihrer Stelle heute etwas Einfacheres und wesentlich Besseres nicht gesetzt werden kann, so lehren doch die Erfahrungen der Neuzeit, daß es aus Gründen der Sicherheit notwendig ist, für gewisse Baustoffe, namentlich für Steine verschiedener Sorten, sowie auch für Beton, Gußeisen u. dgl., soweit das Elastizitätsgesetz dabei in Frage kommt, die Berechnungs-Grundlagen zu ändern.

Schon in § 1 (unter 4b und 5b) wurde darauf hingewiesen, wie gewisse Steinsorten, auch innerhalb der Proportionalitäts-Grenze (4c) dem Élastizitätsgesetz nur unvollkommen folgen. Durch neuere Versuche ist im besondern das Folgende festgestellt worden:

1. Steine zeigen für Zug und Druck verschieden große Dehnungsmaße.

2. Ihre Spannungen wachsen nicht in gleichem Verhältnisse mit den Dehnungen, sondern etwas rascher als diese.

Dabei ist aber wohl zu beachten, daß bestimmte Zahlenwerte für Dehnungsmaße bis heute *nur für Druck* sicher genug ermittelt worden sind. Deshalb leiden auch die verschiedenen Angaben über das Verhältnis der beiden Dehnungsmaße für Druck und Zug noch an einer gewissen Unsicherheit. Es darf auch nicht verschwiegen werden, daß heute noch manche Fachgenossen überhaupt die Zulässigkeit der Annahme verschiedener Dehnungsmaße für Zug und Druck bezweifeln.

Als unzweifelhaft feststehend darf man aber die Tatsache ansehen,

daß in Steinen sowohl bei Zug als auch bei Druck die Spannungen den Dehnungen, auch innerhalb der Proportionalitätsgrenze, nicht proportional sind.

b. Das Potenzgesetz für Druckspannungeu. Wenn die Spannungen in Steinen dem Elastizitätsgesetz folgen würden, so müßte sich — auch bei verschieden großen Dehnungsmaßen für Zug und Druck die *Spannungslinie* z. B. bei der Biegung durch zwei Gerade darstellen lassen, die jede in ihrer Zone und unter verschiedenen Neigungen in der Nulllinie zusammenträfen. Zahlreiche einwandfreie Versuche, nament-

mit *Beton*proben, haben aber erwiesen, daß die Spannungslinie in beiden Zonen nicht gerade ist, sondern etwa einen Verlauf nimmt, wie es in der Fig. 355 dargestellt ist. Dabei sind in jeder Zone — links für Druck, rechts für Zug — die gemessenen Dehnungen α und die zugehörigen Spannungen σ als Abszissen und Ordinaten aufgetragen.

Aus dem regelmäßigen Verlaufe vieler solcher Spannungsbilder für Druck hat v. BACH Beziehungen zwischen Dehnungen und Druckspannungen hergeleitet und durch die Gleichung

$$\alpha = \frac{\sigma^m}{E} \tag{134}$$

ausgedrückt, worin α (nach Gl. 3 unter **5**b) die Dehnung für die Längeneinheit, σ die zugehörige Spannung und *E* das *Dehnungsmaß für Druck* bezeichnet.

Dies sog. Potenzgesetz kann für Spannungsberechnungen benutzt werden, sobald für verschiedene Steinsorten die Erfahrungswerte m und Egegeben sind. Nach v. BACHⁱ kann man für Zementmörtel und Beton verschiedener Mischungsverhältnisse folgende Zahlen benutzen:

¹ v. BACH, Elastizität und Festigkeit. 1. Aufl. 1889; 4. Aufl. 1902.

	and the second	m	E in t/qcm	Bemerkungen
Ι.	Reiner Zement	1,09	250	indening 2
2.	Zementmörtel		that being	2. Je weniger Sand,
	I Zement, I ^I / ₂ Sand	1,11	360	desto größer E
1	I - 3 -	1,15	315	bei gleichem σ.
	I - 4 ^I / ₂ -	1,17	230	- Antonio Maria
3.	Beton			the second base with
-	I Zement, 3 Sand, 6 Schotter	1,161	380	ist sig hand
3 30	I - 5 - 10 -	1,207	370	and the second in

Tabelle der Werte m und E für Druck¹.

123. Die Zugzone in Steinquerschnitten und ihre Verstärkung durch Eisenlagen.

a. Annahmen über die Spannungsverteilung. Der Mangel an sichern Angaben über das Dehnungsmaß für Zug, in Verbindung mit der Erscheinung der leichten Rissebilduug in Zugzonen der in Rede stehenden Stoffe, erschwert heute noch die Berechnung ihrer Biegungsspannungen sowohl in der Zugzone als auch in der Druckzone. Diese Spannungen werden daher heute noch unter gewissen Annahmen berechnet, die im wesentlichen darin bestehen, daß man entweder auf einen elastischen Widerstand in der Zugzone gar nicht rechnet oder doch die Spannungsverteilung der Zugzone ziemlich willkürlich festsetzt, wie weiterhin näher angegeben wird.

Am gebräuchlichsten ist die Annahme, wonach die Spannungen in der Zugzone überhaupt außer Betracht bleiben, indem man sie von vorneherein gleich Null setzt. Denn erfahrungsmäßig versagt die Zugfestigkeit jener Baustoffe, namentlich auch des Betons, aus verschiedenen in der Natur der Stoffe liegenden Ursachen oft schon bei niedrigen Spannungsgrenzen, wodurch Anlaß zu Rissebildungen gegeben wird.

Hierbei soll gleich bemerkt werden, daß auch Steinquerschnitte (oder Querschnitte von andern Baustoffen) vorkommen, in denen *die Zugzone überhaupt fehlt*, wie z. B. in der Basis einer Säule, die ohne irgend eine Verbindung mit ihrer Grundplatte oder Grundmauer auf gestellt ist und die dabei außerhalb des Kernes durch eine Längskraft

^I Weitere Angaben in: Mörsch, Der Betoneisenbau, seine Anwendung und Theorie. 1902.

beansprucht wird. Auch bei in gleicher Weise beanspruchten Stützmauern, Pfeilern u. dgl. fehlt in ihrer Grundfläche die Zugzone, wenn sie *lose* (ohne Verbindung mit dem Erdreich) auf dem Untergrunde stehen.

b. Steineisenquerschnitte. Die geschilderte Unsicherheit in der Zugzone von Steinquerschnitten hat man in der Neuzeit durch besondere Mittel mit Erfolg zu beseitigen gesucht. Das ist im wesentlichen dadurch geschehen, daß man in die Zugzone Eisenteile gelegt und durch deren konstruktive Verbindung eine gemeinsame statische Wirkung von Stein und Eisen zu erzielen gesucht hat.

Heute gilt bei der Herstellung dieser sog. *Steineisen*konstruktionen der Grundsatz, daß der Stein hauptsächlich nur Druckspannungen aufnehmen soll, während dem Eisen die Aufgabe zufällt, den elastischen Widerstand in der Zugzone insoweit zu ersetzen, als dieser vom Stein nicht geleistet werden soll.

Die nach solchem Grundsatz ausgeführten neuern Steineisen-Konstruktionen, unter denen die Betoneisenbauten heute den ersten Rang einnehmen, verdanken ihre große Verbreitung folgenden Umständen und statischen Vorzügen:

1. Die Haftkraft (Adhäsion) des Mörtels oder des Betons ist so bedeutend, daß beide Stoffe innerhalb der gebräuchlichen Spannungsgrenzen ihre Form gemeinsam ändern müssen. Die Haftkraft zwischen Beton und Eisen im besondern ist durch Versuche von BAUSCHINGER¹ auf 40-47 atm ermittelt worden.

2. Die *Temperaturdehnungen* ($\mathbf{8}$) von Eisen und Stein, namentlich Beton sind nahezu gleich, sodaß eine Trennung beider Teile beim Wärmewechsel nicht befürchtet zu werden braucht.

124. Normal- und Schubspannungen in einfachen Festigkeitsfällen.

a. Druckspannungen infolge einer Achsenkraft.

1. Bei gleichartigen Steinkörpern wird die Dehnung infolge einer Achsenkraft in allen Punkten der ebenbleibenden Querschnitte als gleich groß anzusehen sein. Nach dem Potenzgesetz (Gl. 134) ergeben sich die Druckspannungen zu

$$\sigma = \sqrt[m]{\alpha E}. \tag{135}$$

Für Beton der Mischung 1:3 würde darin z. B. (nach der Tabelle S. 391) m = 1,15 und das Dehnungsmaß E = 315 t/qcm zu setzen sein.

¹ Die Mischungsverhältnisse des Betons und der Wasserzusatz beeinflussen die Haftkraft. Vergl. Mörsch a. a. O. S. 64.

Es ist ferner

$$\sigma = \frac{P}{F}, \qquad (136)$$

wenn P die Achsenkraft und F den Steinquerschnitt vorstellt.

2. Bei symmetrisch verstärkten Betoneisen-Querschnitten ist durch geeignete konstruktive Mittel (100 a) dafür zu sorgen, daß die Achsenkraft P sich über den *Beton*querschnitt gleichmäßig verteilen kann. In diesem Falle darf angenommen werden, daß die Eiseneinlagen der Verstärkung die Formänderungen des Betons mitmachen. Bezeichnen dann

 f_{δ} , f_{ϵ} : die Querschnittsflächen von Beton und Eisen, je für sich, σ_{δ} , σ_{ϵ} : die zugehörigen Spannungen im - - - - - - E_{δ} , E_{ϵ} : die Dehnungsmaße für - - - - - -

so erhält man nach dem Potenzgesetz

im Beton: $\alpha = \frac{\sigma_b^m}{E_b}$

im Eisen: $\alpha = \frac{\sigma_e}{E_e}$

oder

$$\frac{\sigma_b^m}{\sigma_e} = \frac{E_b}{E_e} = \beta , \qquad (137)$$

wenn β das Verhältnis zwischen den Dehnungsmaßen für Beton und Eisen vorstellt.

Nach der Tabelle S. 391 und für $E_e = 2000 \text{ t/cm}^2$ liegt β etwa zwischen $\frac{1}{5}$ und $\frac{1}{6}$.

Weiter folgt:

$$\frac{\sigma_b^m f_b}{\sigma_e \cdot f_e} = \beta \cdot \frac{f_b}{f_e}$$

$$P = \sigma_b f_b + \sigma_e f_e, \qquad (138)$$

und

wonach schließlich die Spannungen für m = 1 mit:

$$\sigma_b = \frac{P}{f_b + \frac{f_e}{\beta}} \quad \text{und} \quad \sigma_e = \frac{P}{f_e + \beta f_b} \quad (139)$$

angeschrieben werden können.

Betrachtet man die beiden Nenner der Gl. (139), so erkennt man, wie jeder gleichsam als der Inhalt eines einheitlichen Querschnittes aufzufassen ist. Der erste Nenner stellt einen einheitlichen Betonquerschnitt

Fig. 356.

dar, der erhalten wird, wenn man den Eisenquerschnitt durch Division mit β in einen gleichwertigen (gleich tragfähigen) Betonquerschnitt verwandelt. Desgleichen stellt der zweite Nenner einen einheitlichen, dem gegebenen Steineisenquerschnitt gleichwertigen Eisenquerschnitt dar. 3. Beispiel. Ein Betonblock von 30×30 cm Querschnitt (Mischung 1:3) ist durch acht Rundeisen von je 20 mm Durch-

Druckspannungen im Eisen und im Beton, wenn

m genau genug gleich I gesetzt wird und wenn die Achsenkraft 30 t beträgt?

Nimmt man der größeren Sicherheit wegen β nicht zu klein, also 1/5, so erhält man nach den Gl. (139)

$$\sigma_{\delta} = \frac{30000}{900 - 8\left(\frac{2^2 \cdot \pi}{4}\right) + 5 \cdot 8\left(\frac{2^2 \cdot \pi}{4}\right)} = 30 \text{ atm}.$$

$$\sigma_{e} = \frac{30000}{8\left(\frac{2^2 \cdot \pi}{4}\right) + \frac{1}{5}\left[900 - 8\left(\frac{2^2 \cdot \pi}{4}\right)\right]} = 150 \text{ atm}$$

4. Bei unsymmetrischen Eiseneinlagen verschiebt sich der Schwerpunkt der Steineisenfläche nach derjenigen Seite hin, wo die Eisenverstärkungen liegen. Infolgedessen wirkt eine in der Symmetrieachse des Querschnittes angreifende Achsenkraft so, als ob sie außer dem Mittel, im Schwerpunkt des gleichwertigen einheitlichen Eisen- oder Steinquerschnittes läge. Die Berechnung gestaltet sich dann wie folgt.

Die in der Gesamteiseneinlage wirkende Spannkraft hat in Bezug auf den Schwerpunkt s der Steineisenfläche ein Moment

$$M_e = \sigma_e f_e \cdot c$$
,

wenn c der gegebene Abstand des Schwerpunktes der Eiseneinlagen ist (Fig. 357).

Um dies Moment der innern Kräfte aufzuheben, müßte die Achsenkraft sich um eine Strecke x verschieben, die aus der Gleichung

$$P \cdot x = (\sigma_e - \sigma_b) f_e \cdot c$$

zu bestimmen ist, wenn man dabei berücksichtigt, daß auch der Steinquerschnitt, wegen der in ihm angebrachten Eisenteile, unsymmetrisch zur Achsenkraft liegt. Gewöhnlich wird aber der Einfluß von — σ_b für die Fläche f_e vernachlässigt. Dann erhält man

$$P \cdot x = \sigma_{efec}$$
.

In Verbindung mit der Gl. (139) für σ_e (und für m = 1) gibt das

$$x = \left(\frac{c}{1 + \beta \frac{f_{\delta}}{f_{e}}}\right). \tag{140}$$

Jede Faser des Querschnittes erleidet danach zweierlei Spannungen: 1) aus der Achsenkraft P eine gleichmäßige *Druckspannung*, die nach der Gl. (139) zu berechnen ist und 2) aus dem Momente $P \cdot x$ eine *Biegungsspannung*, deren Berechnung nachfolgend gegeben wird (**125** und **126**).

Wollte man die Größe von x graphisch ermitteln, so könnte man den Steineisenquerschnitt in einen gleichwertigen Steinquerschnitt verwandeln. Für β gleich $\frac{1}{5}$ würde man dann, unter Berücksichtigung der an der Stelle der Eiseneinlagen fehlenden Betonspannungen, die Fläche der Eiseneinlagen um das vierfache vergrößern, natürlich ohne dabei deren Schwerlinie zu verändern. So erhielte man, wie Fig. 358 darstellt, einen Betonquerschnitt, dessen Schwerpunkt s' im Abstande x vom ursprünglichen Schwerpunkt s des einheitlichen Steineisenquerschnittes liegt. b. Schubspannungen infolge einer Querkraft. Bei unmittelbarer (reiner) Abscherung im *Steineisen*querschnitt darf man nach den unter a. abgeleiteten Formeln rechnen, wenn man die Achsenkraft Pmit der Querkraft Q und σ_{δ} , σ_{e} mit τ_{δ} , τ_{e} vertauscht.

Dann erhält man:

$$\tau_{b} = \frac{Q}{f_{b} + \frac{f_{e}}{\beta}}$$
$$\tau_{e} = \frac{Q}{f_{e} + \beta f_{e}},$$

(141)

wenn der gesamte Steineisenquerschnitt F mit

$$F = f_b + f_e$$

anzuschreiben ist.

125. Normalspannungen bei der Biegung unter Anwendung des Potenzgesetzes.

Es sollen hier nur einfache Verhältnisse betrachtet werden, wie sie bei *Stein*bauten vorwiegen: Querschnitte rechteckig und Belastung durch senkrecht zur Stabachse gerichtete, in einer Symmetrieebene wirkende Kräfte.

Für einen beliebigen Querschnitt tt (Fig. 359) sei Q die Querkraft, z ihr Abstand vom Schnitte. Dann ist das Biegungsmoment

$$M = Qz$$

gleich dem Momente der Normalspannungen des Querschnittes. Es wird unsere Aufgabe sein, aus dieser Bedingung die Lage der Nulllinie und die Größe der Randspannungen zu berechnen.

Im allgemeinen nimmt die Spannungslinie einen Verlauf, wie es in der Fig. 359 dargestellt ist. σ_o und σ_u sind die Randspannungen und n ist der Nullpunkt, in welchem Spannungslinie und Kraftlinie sich schneiden.

Bezeichnet h die Höhe des Querschnittes und sind h_o und h_u die Abstände des gesuchten Nullpunktes vom Rande, so ist

$$h_o + h_u = h \,. \tag{142}$$

Unsere obige Aufgabe ist also für beliebiges h gelöst, sobald die vier Unbekannten h_o , h_u , σ_o und σ_u gefunden sind.

Bei ebenen Querschnitten sind die Dehnungen α , d. h. die Längenänderungen der Fasern *für die Längeneinheit*, in allen Querschnittspunkten gleich groß. Die größten Längenänderungen am Rande sind daher oben αh_o und unten αh_u , wie das in der Fig. 359 gezeichnet ist, wo die Gerade t't' die Lage der Geraden tt nach erfolgter Biegung veranschaulicht, derart daß die zwischen beiden Geraden gezeichneten Abstände die Längenänderungen der Fasern vorstellen.

Nach dem Potenzgesetz (Gl. 135) ist für die Druckzone anzuschreiben:

$$\sigma^m = \alpha y E_o,$$

worin y den Abstand einer beliebigen Faser von der Nulllinie, σ die zugehörige Spannung und E_o das Dehnungsmaß für Druck bedeuten.

Läßt man das Potenzgesetz auch für die Zugzone gelten (123a), so erhält man weiter

$$\sigma^{mu} = \alpha y E_u,$$

worin E_u das Dehnungsmaß für Zug und der Exponent mu eine aus Versuchen zu gewinnende Erfahrungszahl vorstellen.

Für die Randspannungen ist ebenmäßig anzuschreiben

$$\sigma_o^m = \alpha h_o E_o$$
$$\sigma_o^{mu} = \alpha h_u E_u$$

und durch die Verbindung der letzten vier Gleichungen erhält man

$$\frac{\sigma_o^m}{\sigma_o^m} = \frac{y}{h_o}; \qquad \frac{\sigma_u^m}{\sigma_u^m} = \frac{y}{h_u};$$

in Worten: In der Druckzone verhalten sich die Spannungen in der m-ten Potenz wie die zugehörigen Abstände von der Nulllinie.

Zieht man die m-te und mu-te Wurzel, so ergibt sich:

Vierter Abschnitt. Spannungen in geraden Stäben.

$$\sigma = \sigma_o \sqrt[m]{\frac{y}{h_o}}$$
 und $\sigma = \sigma_u \sqrt[mu]{\frac{y}{h_u}}$. (143)

Die Integration sämtlicher Spannungen möge in der Druckzone die Druckkraft D, in der Zugzone die Zugkraft Z ergeben. Weil äußere Kräfte in der Richtung von Z oder D nicht vorhanden sind, so folgt

$$D = Z. \tag{144}$$

Für die Einheit der Querschnittsbreite b erhält man

$$D = \int_{\circ}^{h_o} dy$$
 und $Z = \int_{\circ}^{h_u} dy$.

Die beiden Werte der Zonenkräfte werden sich demnach nur durch ihre Zeiger unterscheiden. Bestimmen wir also D, indem wir σ aus Gl. (143) entnehmen und einsetzen:

$$D = \frac{\sigma_o}{\sqrt[m]{h_o}} \int_{0}^{m_o} \sqrt[m]{y} \, dy = \frac{\sigma_o}{\sqrt[m]{h_o}} \frac{m}{m+1} \sqrt[m]{h_o^{(m+1)}}$$

Daraus folgt nach einfacher Umformung für den Querschnitt der Breite b:

 $D = \frac{m}{m+1} \left(b h_o \sigma_o \right) \tag{145}$

und ebenmäßig

$$Z = \frac{mu}{mu + \mathbf{I}} \left(b h_u \sigma_u \right).$$

Das Moment der Spannungen, ebenfalls zunächst für die Einheit der Breite b, ist mit

$$M = \int_{\circ}^{h_{\circ}} (\sigma \, dy) y + \int_{\circ}^{h_{u}} (\sigma \, dy) y$$

anzuschreiben.

Unter Beachtung der vorigen Entwicklung für die Zonenkräfte D und Z erhält man also

$$M = \frac{\sigma_o}{\sqrt[m]{h_o}} \int_0^{h_o(\frac{x}{m}+x)} dy + \frac{\sigma_u}{\sqrt[m]{h_u}} \int_0^{h_u(\frac{x}{mu}+x)} dy.$$

Nach einfachen Umformungen gibt das zuerst

$$M = \frac{\sigma_o}{\sqrt[m]{h_o}} \left(\frac{m}{2m+1}\right) \sqrt[m]{h_o^{(2m+1)}} + \frac{\sigma_u}{\sqrt[mu]{h_u}} \left(\frac{mu}{2mu+1} \sqrt[mu]{h_u^{(2mu+1)}}\right)$$

und schließlich für die Breite b:

$$M = \left(\frac{m}{2m+1}\right) b h_o^2 \sigma_o + \left(\frac{mu}{2mu+1}\right) b h_u^2 \sigma_u \,. \tag{146}$$

Bei gegebener Belastung, also auch gegebenem M, sind mit Hilfe der 5 Gleichungen (142–146) alle praktischen Fragen zu beantworten. Die Lage der Nulllinie ist durch die Werte h_o und h_u gegeben, wobei beide (nach Gl. 142) für ein beliebiges h abgestimmt werden können. Nach erfolgter Festsetzung von h_o und h_u berechnet man die Randspannungen σ_o und σ_u aus den Gl. (144–146), wie dies (unter **130**) an einem Beispiel gezeigt wird.

Würde im vorliegenden Falle nicht das Potenzgesetz, sondern das Elastizitätsgesetz gelten, so wäre zu setzen: m = mu = 1. Daraus ergäbe sich $\sigma_o = \sigma_u$ und $h_o = h_u = \frac{h}{2}$. Für diese Sonderwerte ginge Gl. (146) über in

$$M = \frac{b\,h^2}{6} \cdot \sigma,$$

ein Ergebnis, das (nach Gl. 102 unter 104c) zu erwarten war.

126. Angenäherte Berechnung der Biegungsspannungen in Steinbalken¹.

a. Normalspannungen. Das Rechnungsverfahren beruht im wesentlichen darauf, daß man die unter Anwendung des Potenzgesetzes zu erwartende Größe der Zonenkräfte D und Z beibehält, aber an Stelle der gekrümmten Spannungslinie ss der Fig. 355 zwei Gerade setzt, die im Nullpunkt n zusammentreffen. Man verwandelt also, wie in der Fig. 360 veranschaulicht ist, die krummlinig begrenzten Spannungsflächen jeder Zone in ein Dreieck. Dadurch erhält man in jedem Falle etwas größere Randspannungen, als bei der Berechnung nach dem Potenzgesetz. Unter sonst gleichen Umständen ist also der Sicherheitsgrad der in geschilderter Weise angenähert berechneten Konstruktion etwas größer als bei der genauern Rechnung.

Man kann danach auch sagen, beim angenäherten Verfahren läßt man für jede Zone das Elastizitätsgesetz gelten, nimmt aber für Druck und Zug verschiedene Dehnungsmaße an. Im einzelnen gestaltet sich die Berechnung wie folgt:

Die frühere Spannungslinie der Fig. 359 ist in der Fig. 360

^I KOENEN, Grundzüge für die statische Berechnung der Beton- und Betoneisenbauten. Zentralbl. d. Bauverw. 1902.

punktiert eingezeichnet. Die von ihr begrenzten beiden Spannungsflächen sind in die Dreiecke $n \circ p$ und n ur verwandelt. Die Strecken \overline{op} und \overline{ur} stellen also die Randspannungen σ_o und σ_u dar. Die Darstellung der Dehnungen ändert sich im allgemeinen nicht.

Fig. 360.

Die Richtungen der Zonenkräfte D und Z rücken jetzt in die Schwerlinien der beiden zugehörigen Spannungsdreiecke. Ihr gegenseitiger Abstand a bestimmt sich also aus

$$a = \frac{2}{3}(h_o + h_u) = \frac{2}{3}h.$$
 (147)

Für ebene Querschnitte erhält man nach früherem:

 $\sigma_o = \alpha h_o E_o$ $\sigma_u = \alpha h_u E_u.$

Setzt man das Verhältnis der Dehnungsmaße für Druck und Zug gleich β_b

$$\beta_b = \frac{E_o}{E_u}, \qquad (148)$$

so folgt

$$\frac{\sigma_o}{\sigma_u} = \beta_b \frac{h_o}{h_u} \cdot \tag{149}$$

Für Beton schwankt der Wert von β_b etwa zwischen 9 und 25, im Mittel beträgt er 16.

D und Z berechnen sich aus ihren Spannungsdreiecken mit

$$D = \frac{b h_o \sigma_o}{2}$$
$$Z = \frac{b h_u \sigma_u}{2},$$

§ 18. Spannungen in elastisch ungleich widerstehenden Querschnittzonen. 401 woraus, weil D = Z sein muß, die Bedingung

$$\sigma_o h_o = \sigma_u h_u \tag{150}$$

folgt.

Das Moment der Spannungen ergibt sich danach mit

$$M = Za = Da = \frac{h_o \sigma_o bh}{3} \tag{151}$$

Aus der Verbindung von Gl. (149) und (150) ist

$$\frac{h_{u}}{h_{o}} = \sqrt{\beta_{b}} \quad . \tag{152}$$

abzuleiten und das gibt in Verbindung mit Gl. (151) schließlich

$$\sigma_{o} = \frac{3M}{bh^{2}} (\mathbf{I} + \sqrt{\beta_{b}})$$

$$\sigma_{u} = \frac{3M}{bh^{2}} \left(\mathbf{I} + \frac{\mathbf{I}}{\sqrt{\beta_{b}}}\right) \cdot$$
(153)

Die Lage der Nulllinie ist unmittelbar aus der Gl. (152) zu finden. Ihr haftet aber (zur Zeit wenigstens noch) eine gewisse Unsicherheit insofern an, als die Verhältniszahl β_{δ} , wie bereits angegeben, zwischen nicht sehr engen Grenzen schwankt.

Man erhält

ir $\beta_{\delta} =$	9	16	25
$\sigma_o =$	$\frac{12 M}{b h^2}$	$\frac{15M}{bh^2}$	$\frac{18M}{bh^2}$
$\sigma_u =$	$\frac{4M}{bh^2}$	$\frac{15M}{4bh^2}$	$\frac{18M}{5bh^2}$

Danach sind unter sonst gleichen Umständen die Randspannungen in Betonbalken

> in der Druckzone 2 bis 3 mal größer - Zugzone $\frac{2}{3}$ - $\frac{3}{5}$ - so groß

als im Vergleich mit Fällen, in denen das Elastizitätsgesetz für *beide*Zonen gleich vollkommen gilt, also auch β_δ = 1 gesetzt werden darf.
b. Schubspannungen. Betrachtet man zwei Nachbarquerschnitte
(Fig. 361), zwischen denen Lasten nicht wirken, und setzt deren Abstand

Mehrtens, Statik der Baukonstruktionen. I.

dz gleich der Längeneinheit, so ergibt sich aus dem Gleichgewicht der Ouerkraft und der Normalspannungen

Fig. 361.

$$Q \cdot \mathbf{I} = D \cdot a,$$

ferner für die Nulllinienschicht

$$b\cdot \mathbf{I}\cdot \boldsymbol{\tau}_z = D,$$

woraus die Schubspannung in der Nulllinienschicht mit

$$\tau_z = \frac{Q}{a\,b} \tag{154}$$

folgt. Wie leicht einzusehen ist, fällt τ_z für jede andere Faserschicht kleiner aus.

Für die vorliegende angenäherte Rechnung war $a = \frac{2}{3}h$, sodaß schließlich

$$x_z = \frac{3Q}{2bh} = \frac{3Q}{2F}$$
 (155)

anzuschreiben ist. Bei einem Balken auf zwei Stützen wird τ_z am größten in den Querschnitten über den Stützen für Q = A oder Q = B (Gl. 119, S. 372).

127. Biegungsspannungen in Steineisenquerschnitten.

a. Normalspannungen. Zunächst soll hier der einfache, praktisch die Regel bildende Fall untersucht werden, in welchem nur in der Zug-

Fig. 362.

Fig. 363.

zone eine Eisenverstärkung vorhanden ist, und wobei auf eine Widerstandsfähigkeit des Steines in der Zugzone nicht gerechnet wird.

Mit Bezug auf die Fig. 362 und 363 sei

- c, Abstand der Schwerlinie der Eiseneinlage von dem unteren Querschnittsrande,
- $Z_e = f_e \sigma_e$, Spannkraft der ganzen Eiseneinlage, wobei σ_e , wegen der geringen Eisenstärken, als über die Fläche f_e gleichmäßig verteilt angenommen werden darf (Gl. 2, S. 3).

Aus dem Gleichgewicht der zur Stabachse parallelen Kräfte folgt

$$D = Z_e$$

$$\frac{bh_o \sigma_o}{2} = f_e \sigma_e. \tag{156}$$

oder

Für das Moment der äußern Kräfte M = Qz erhält man

$$M = \frac{b h_o \sigma_o}{2} \left(\frac{2}{3} h_o\right) + Z_e (h_u - c)$$
$$M = \frac{b h_o^2 \sigma_o}{2} + Z_e (h_u - c). \tag{157}$$

oder

Setzt man das Verhältnis der Dehnungsmaße für Stein und Eisen (nach Gl. 137) wieder gleich β , so darf man, weil eine Eisenschicht um β tragfähiger ist als eine Steinschicht, auch anschreiben

$$\frac{\sigma_e}{\sigma_o} = \left(\frac{h_u - c}{\beta h_o}\right). \tag{158}$$

Wenn man (wie unter **126**) den Abstand zwischen den Zonenkräften D und Z_e gleich a setzt (Fig. 362), so ermittelt man aus den Gleichungen (156) bis (158) nach einigen Umformungen

$$h_{o} = \frac{f_{e}}{\beta b} \left[\sqrt{1 + \frac{2\beta b(h - c)}{f_{e}}} - 1 \right]$$

$$\sigma_{o} = \frac{2M}{abh_{o}}$$

$$\sigma_{e} = \frac{M}{af_{e}}.$$
(159)

Damit ist sowohl die Lage der Nulllinie als auch die Größe der Randspannungen gefunden, sobald man für

$$\beta = \frac{E_b}{E_e}$$

(nach 124 a. 2) eine bestimmte Zahl gewählt und eingesetzt hat.

Aus den Gl. (159) geht hervor, wie mit der Abnahme von c, oder der Vergrößerung von a, die Nulllinie sich hebt und sowohl σ_o als auch σ_e größer werden. Im allgemeinen wird es daher zweckmäßig sein, das Eisen in der Zugzone möglichst tief nach dem Rande hin einzulegen, um dessen Zugkraft gehörig auszunutzen.

Es ist leicht einzusehen, wie sich die Gleichungen ändern, wenn auch noch *in der Druckzone* Eisen eingelegt wird und wenn etwa auch noch der Stein in der Zugzone (nach **125**) als widerstandsfähig angesehen werden soll. Über den Einfluß einer noch hinzukommenden Längskraft vergl. unter **128**.

b. Schubspannungen im Stein. Der größte Wert τ_{in} findet findet sich *in der Nulllinienschicht* mit

c. Schubspannungen zwischen Stein und Eisen. Die Haftkraft zwischen Eisen und Stein hat (nach 123b) eine aus Versuchen bestimmbare Grenze. Es ist also von der größten Wichtigkeit durch geeignete Konstruktion dafür zu sorgen, daß die Schubspannungen im Beton am Umfange der Eiseneinlagen (aus Sicherheitsgründen) ein gewisses Maß unter der anzunehmenden Größe der Haftkraft bleiben.

Bezeichnet man diese Schubspannungen mit τ_{be} und die Oberfläche aller Eiseneinlagen für die Einheit der Stablänge mit u, so läßt sich (wie unter b) anschreiben:

$$u \cdot \tau_{be} = D = \frac{Q}{a}$$

oder

$$r_{bc} = \frac{3 Q}{u(3 h - 3 c - h_o)}.$$
 (161)

Bei fünffacher Sicherheit (7) dürfte z. B. τ_{be} höchstens etwa auf $\frac{45}{5} = 9$ atm anwachsen (123b).

Das Verhältnis zwischen der Größe der Schubspannungen in der Nulllinienschicht und im Umfange des Eisens stellt sich danach auf

$$\frac{x_{bn}}{x_{bs}} = \frac{u}{b} \cdot \tag{162}$$

128. Normalspannungen bei der Biegung infolge einer Längskraft.

a. In Steinquerschnitten. Die unter **125** und **126** gegebene Entwicklung ändert sich hier nicht, wenn man das in den Gl. (146) und (153) eingesetzte, gegebene statische Moment M der äußern Kräfte durch das gleichwertige Moment Pv einer Längskraft ersetzt, wobei v den Abstand zwischen deren Angriffspunkt m und dem Schwerpunkte des Querschnittes vorstellt (vergl. die Fig. 317 unter **107**).

Zu den aus

$$M = P \cdot v$$

zu berechnenden Normalspannungen kommen dann (in Gemäßheit der Gl. (139) unter **124**a) noch diejenigen Normalspannungen hinzu, die allein von einer *Achsenkraft* P im Querschnitt hervorgerufen werden.

Schubspannungen können durch das Hinzutreten der Achsenkraft P nicht entstehen, wenn P für die dabei zu betrachtende Scheibe der Stärke dz als unveränderlich angesehen werden darf, wie dies unter 114a, S. 366 dargelegt worden ist.

b. In Steineisenquerschnitten. Wenn hier die Eiseneinlagen *in beiden* Zonen des Querschnittes *symmetrisch* zu dessen Schwerachse angebracht sind, so bleibt die ganze rechnerische Behandlung des Falles so, wie eben unter a. angedeutet worden ist.

Liegt das Eisen nur in der Zugzone, so bleibt dessen Behandlung im allgemeinen immer noch die gleiche, aber die Normalspannungen infolge der hinzutretenden *Achsenkraft* müssen dann, mit Rücksicht auf die unsymmetrische Lage des Eisens, derart berechnet werden, wie es (unter 124a.4) bereits erläutert worden ist.

Man berechnet also zuerst (nach den Gl. 159) die Normalspannungen σ_o und σ_c ; darauf (nach den Gl. 139) die aus der Achsenkraft P herrührenden Normalspannungen und schließlich kommen dazu noch die Biegungsspannungen für das Moment Px, wobei x (nach Gl. 140) besonders zu ermitteln ist.

An Stelle der Gl. (159) treten danach im vorliegenden Falle die folgenden:

Vierter Abschnitt. Spannungen in geraden Stäben.

$$\sigma_e = \frac{\frac{1}{af_e} + \frac{1}{af_e}}{af_e} - \frac{1}{f_e + \beta f_b}$$

Darin bedeutet M soviel als $P \cdot v$, wenn v der gegebene Abstand der Längskraft Schwerpunkte vom des Querschnittes ist (Fig. 365). Endlich berechnet sich (nach Gl. 140)

(163)

c. In Querschnitten mit fehlender oder versagender Zug-

Fig. 366.

zone. Unter 123 awurde bereitsgesagt, um welche Fälle es sich hierbei handelt. Denken wir uns zunächst den allgemeinen Fall, wie er in Fig. 366 veranschaulicht ist.

Eine beliebige Kraftlinie KK (107) schneidet den gegebenen Querschnittsumriß in den Randpunkten a und i. Der Angriffspunkt m einer gegen den Querschnitt gerichteten Längskraft P liege auf der Strecke zwischen dem Schwerpunkt o und dem Randpunkt a. Dann könnte eine Zugspannung im Querschnitte nur eintreten, wenn m außerhalb

des Kernes verbliebe. Denn läge m innerhalb des Kernes, so würden im Querschnitte nur einerlei Spannungen, im vorliegenden Falle also nur Druckspannungen, auftreten. Außerhalb des Querschnittes dürfte m aber auch nicht liegen, weil sonst, bei fehlender Zugzone, Gleich-

gewicht zwischen dem Momente von P und dem Momente der allein wirksamen Druckspannungen nicht bestehen könnte.

Eine Biegung bei fehlender Zugzone kann danach nur eintreten, wenn der Angriffspunkt der Längskraft zwischen einen Randpunkt und einen benachbarten Kernpunkt zu liegen kommt. In diesem Falle schneidet die Nulllinie die Querschnittfläche und es wird also darauf ankommen, die Lage der Nulllinie allgemein unter der Bedingung festzulegen, daß nur die Druckzone wirksam ist, während die Zugzone vollkommen versagt.

Nimmt man zu dem Zwecke vorläufig an, in einem gegebenen Falle sei die Lage der Nulllinie (nn in Fig. 366) gefunden. Dann gelten für die oberhalb der nn liegende (allein wirksame) Druckzone, wenn man diese für sich betrachtet, natürlich alle Gesetze der Biegungsfestigkeit, wie sie in § 16 bereits entwickelt worden sind, nur mit dem Unterschiede, daß jetzt Schwerpunkt und Flächengrößen nicht mehr für den gegebenen Querschnittsumriß, sondern für den von der nn begrenzten schraffierten Umriß der Druckzone zu berechnen sein werden.

Danach findet man *eine* der für die Lage der Nulllinie maßgebenden Bedingungen wohl am einfachsten unter Benutzung der Gl. (111) unter **107.** Sie lautet

$$r_x^2 = v y_n,$$

worin r_x der Trägheitshalbmesser für die der Nulllinie parallele Schwerachse XX, v der Abstand des Angriffspunktes m, und y_n der Abstand der Nulllinie nn von dem Schwerpunkte s der Druckzone bedeutet. Alle diese Maße senkrecht zur XX gemessen.

Setzt man für r_x^2 seinen Wert $\frac{f_x}{F}$ ein, so erhält man

$$v = \frac{J_x}{Fy_n}.$$

Das auf die Nulllinie bezogene Trägheitsmoment J_n berechnet sich (nach **96**) mit

$$J_n = J_x + F y_n^2,$$

daraus

$$y = \frac{J_n - F y_n^2}{F y_n}$$

und

$$v + y_n = \frac{J_n}{S_n},\tag{164}$$

worin J_n das Trägheitsmoment und S_n das statische Moment der Druckzone F bezogen auf die Nulllinie bedeuten. Damit ist die erste — und wie weiterhin gezeigt wird — auch die wichtigste Bedingung für die Lage der Nulllinie gegeben. Um aber die Richtung der Nulllinie eindeutig festzulegen, muß noch eine zweite Bedingung hinzukommen. Sie ergibt sich aus dem Gleichgewicht zwischen den Spannungen σ der Druckzone und der einzigen äußern Kraft, der Längskraft P: die Mittelkraft aller σ muß gleich und parallel P sein und ihre Richtung durch deren Angriffspunkt m verlaufen.

Sind obige beiden Bedingungen erfüllt, so ist bei gegebener Lage von *m* auch die Spannungsverteilung im Querschnitt gegeben. Für den Sonderfall, daß die Kraftlinie mit einer Hauptachse zusammenfällt, genügt aber allein die Erfüllung der ersten Bedingung. Die zweite Bedingung ist dann mit erfüllt, wovon man sich durch eine Nachprüfung überzeugen kann. Wie dies im einzelnen durchzuführen ist, soll an einigen Beispielen näher erläutert werden.

129. Nulllinie und Spannungsverteilung in Querschnitten mit fehlender Zugzone. Wie in voriger Nummer näher dargelegt wurde, kommen hier nur Belastungsfälle in Betracht, in denen *eine Längskraft*

Fig. 367.

in der Kraftlinie zwischen einem Randpunkt und dem benachbarten Kernpunkt angreift.

a. Die Kraftlinie fällt mit einer Hauptachse zusammen.

1. Der rechteckige Querschnitt. Der Querschnitt der Breite b sei im Punkte mder Kraftlinie KK durch die Längskraft P belastet. Danach ist nach Gl. (164) und mit Bezug auf die Fig. 367:

$$v + y_n = \frac{f_n}{S_n} = \frac{\frac{1}{3}bd^3}{bd \cdot \frac{d}{2}} = \frac{2}{3}d$$

Ferner ist

$$c = d - (v + y_n) = \frac{d}{3}$$

oder

d = 3c.

Damit ist die Lage der Nulllinie nn und die Breite d der Druckzone aus dem gegebenen Maße c eindeutig bestimmt.

Dies Ergebnis hätte sich auch, ohne Rechnung, allein aus der zweiten Bedingung ableiten lassen, wonach die Mittelkraft aller σ durch *m* verlaufen muß. Denn daraus folgt ohne weiteres, daß *m im untern Drittel* der Höhe *d* des Dreieckes *an a'* liegt. Auch aus der *Eigenschaft des Kernes der Druckzone* läßt sich dasselbe ableiten. Denn wenn in der *nn* die Druckspannung Null herrschen soll, so muß der Angriffspunkt der Längskraft in der Kernlinie liegen, das heißt nichts anderes, als die Strecke *c* muß gleich ein Drittel von *d* sein (S. 347).

Die Spannungsverteilung ist mit der Bestimmung der Strecke d gegeben. Zur Darstellung der Spannungslinie (106) braucht man nur noch die Spannung σ_s im Schwerpunkt s der Druckzone zu berechnen. Es ist

$$\sigma_s = \frac{P}{b \cdot d} \cdot$$

Trägt man also σ_s als Strecke $\overline{ss'}$ in der Schwerpunktsenkrechten auf, verlängert die $\overline{ns'}$ bis die Randpunktsenkrechte durch *a* in *a'* geschnitten wird, so ergibt sich *die Randspannung* σ_a *doppelt so groß als die mittlere Spannung* σ_s . Es ist also

$$\sigma_a = \frac{2P}{bd} = \frac{2P}{3bc} \cdot \tag{165}$$

Eine Nachprüfung der Richtigkeit der Spannungs-Ermittelung ergibt sich in einfacher Weise *aus den Eigenschaften der Einflußlinie einer Randspannung* σ_a . Zieht man nämlich durch *a'* eine Wagerechte, von welcher die Richtung der Längskraft in *m'* geschnitten wird und zieht man weiter eine Grade *m's'*, so muß deren Verlängerung den Querschnitt in einem Punkte *k* treffen, derart daß die Strecke $\overline{kn} = \overline{am} = c = \frac{d}{3}$ wird. Das folgt ohne weiteres aus den (unter **111** gegebenen) Erläuterungen der Einflußlinie.

2. Beliebig gestaltete Querschnitte. Das rechnerische Verfahren ¹ unter

¹ KECK, Exzentrische Druckbelastung eines zylindrischen Mauerwerkkörpers außerhalb des Kerns. Zeitschr. d. Arch. u. Ing.-Ver. Hannover. 1882-83.

Verwendung der Gl. (164) wird hier sehr umständlich, deshalb ist zu raten, das zuerst von MOHR¹ angegebene graphische Verfahren anzuwenden, wie es nachfolgend an einem Beispiele erläutert werden soll.

Die Flächengrößen \mathcal{J}_n und \mathcal{S}_n werden bei dem Verfahren graphisch dargestellt, in der Art, wie es im allgemeinen unter **96** beschrieben worden ist. Dabei werden im vorliegenden Falle die Flächenstreifen durch zur Nulllinie nn parallele Gerade begrenzt. Für den in der Fig. 368 dargestellten Querschnitt sind \mathcal{J}_n und \mathcal{S}_n danach ermittelt worden.

Aus den Flächenkräften 1 bis 17 ist mit Hilfe des Kraftecks der Fig. 369 zwischen den Richtungen der Kräfte in Fig. 368 zunächst ein Seileck für den *gesamten* Querschnitt gezeichnet. Darauf ist die an die letzte Flächenkraft (17) stoßende äußere Seileckseite 17—*B* verlängert worden, bis sie die Nulllinie *nn* in *n'* schneidet. Dann ist (nach S. 297)

 $S_n = H \cdot h$,

wenn H der Polabstand des Kraftecks der Fig. 369 und h = n'n'' die von der letzten und von der an die Nulllinie stoßenden Seileckseite (S. 136) auf der nn abgeschnittene Strecke ist.

Ferner ist (nach Gl. 74)

 $J_n = 2 \cdot H \cdot f,$

wenn f den Inhalt der Fläche darstellt, die von der Nulllinie, dem Seileck und der letzten Seileckseite 17-B begrenzt wird.

Die Gleichung (164) läßt sich danach mit

$$v + y_n = \frac{2Hf}{Hh} = \frac{2f}{h}$$

anschreiben. Daraus folgt

$$f = \frac{h}{2} \left(v + y_n \right). \tag{166}$$

Die letzte Gleichung gibt ein einfaches Mittel zur Darstellung der Nulllinie: Es kommt nur darauf an, mit h als Grundlinie und $v + y_n$ als Höhe ein Dreieck zu zeichnen, dessen Inhalt gleich der Fläche f ist. Schneidet also die durch den gegebenen Angriffspunkt m gelegte Senk-

¹ MOHR, Über die Verteilung der exzentrischen Druckbelastung eines Mauerwerkkörpers. Zeitschr. d. Arch. u. Ing.-Ver. Hannover. 1883. — HEINEMANN, Exzentrische Druckbelastung außerhalb des Kerns bei Mauerwerkkörpern ringförmigen Querschnittes. Ebendaselbst, 1891.

rechte zur KK die letzte Seileckseite in m', so ist durch m' eine Gerade m'n'' zu führen derart, daß die dadurch gebildeten beiden (durch

Fig. 368-370.

senkrechte Schraffierung ausgezeichneten) Flächen gleich groß werden, denn nur bei solcher Lage der m'n'' ist das Dreieck m'n'n'' inhaltsgleich mit der Fläche f. Die Bedingung der Gleichung (166) wäre sonach erfüllt und damit wäre auch die richtige Lage der durch n'n'' verlaufenden Nulllinie gefunden. Eine Nachprüfung mit Hilfe eines Kraft- und Seilecks für die gefundene Druckzone ergab das Gleichgewicht zwischen Pund den Druckkräften 5. σ_5 bis 17. σ_{17} (Fig. 370). Die Mittelkraft verlief durch den Punkt m.

Die Spannungslinie ist, wie in der Fig. 370 angegeben, zu zeichnen.

b. Die Kraftlinie fällt nicht mit einer Hauptachse zusammen¹. Dieser Fall wurde allgemein bereits unter **128** c hehandelt (Fig. 366). Weil aber hier *die Nulllinie nicht mehr senkrecht zur Kraftlinie* liegt und bei ihrer probeweisen Verlegung auch nicht mehr zur erstangenommenen Lage parallel bleibt, so macht ihre Festlegung mehr Mühe, als im Falle a, wo ein eigentliches Probieren nur nötig war, um die Linie m'n'' (Fig. 368) als Teilungslinie richtig zu führen.

Im vorliegenden Falle wird man, unter Beachtung der bereits (unter **107**) gegebenen Grundlagen, zuerst die ungefähre Lage der Nulllinie probeweise annehmen. Darauf führt man das graphische Verfahren mit Hilfe von Krafteck, Seileck und Teilungslinie m'n'' vollständig durch, wie im vorigen Falle.

Schließlich bleibt noch übrig zu prüfen, ob die Nulllinie richtig angenommen war. War dies der Fall, so müssen die Spannungen der von ihr begrenzten Druckzone mit der Längskraft P im Punkte m in Gleichgewicht sein, ihre Mittelkraft muß also ebenfalls durch den Punkt m verlanfen.

In Fig. 371 ist dargestellt, wie man für den Querschnitt abicde, und bei beliebiger Lage der Kraftlinie KK, die Nulllinie nn findet. Die nn wird anfangs probeweise eingezeichnet und darauf derart festgelegt, . daß die Bedingung

$$v + y_n = \frac{J_n}{S_n}$$

erfüllt ist.

Schließlich wird nachgeprüft, ob der *Mittelpunkt* der Druckspannungen σ mit dem Angriffspunkt m der Längskraft P zusammenfällt. Dabei kann (wie bereits unter **63**a allgemein erläutert worden ist) der Mittelpunkt der Parallelkräfte in der Querschnittsebene mit Hilfe zweier *Seilecke* gefunden werden, wenn man in jedem Seileck die Lage der

¹ HUPPNER, Zur Ermittelung der Druckverteilung in Mauerwerksquerschnitten. Civilingenieur 1885.
Mittelkraft $F = \sum \sigma$ bestimmt, denn der Mittelpunkt ist der Schnittpunkt der beiden Mittelkräfte (vergl. auch die Fig. 160, S. 145).

Um die zugehörigen beiden *Kraftecke* (I und II der Fig. 371) darzustellen, ist zu beachten, daß in irgend einer Faser parallel zur Nulllinie die Druckspannung σ unveränderlich ist. Bezeichnet man also den Inhalt des zugehörigen Parallelstreifens mit $h \cdot \delta$, so ist z. B. für die Spannung r_5 im fünften Streifen genau genug

 $r_5 = \sigma_5 h_5 \delta_5$

anzuschreiben, wenn h_5 die Höhe und δ_5 die klein genug angenommene Breite des Streifens vorstellt und wenn σ_5 als betreffende Ordinate der Spannungslinie eingestellt wird.

Fig. 371.

Im vorliegenden Beispiel der Fig. 371 ist die Richtung der σ einmal parallel zur Querschnittskante *ib*, das zweite Mal parallel zur Nulllinie

angenommen. Es zeigte sich, daß dann der Mittelpunkt der Druckspannungen mit m zusammenfiel. Fallen beide Punkte nicht zusammen, so ist die Nulllinie etwas zu drehen und dabei so lange zu probieren, bis schließlich nicht allein die Gl. (166) erfüllt wird, sondern auch das volle Gleichgewicht zwischen $\sum \sigma$ und P eintritt.

130. Beispiele.

1. Eine vom Baumeister KLEINE erfundene sog. *Kleinesche Decke* (Fig. 372) aus Hartbrandziegeln hergestellt, ist 12 cm hoch und zeigt auf 100 cm Querschnittsbreite 13 Stück Eiseneinlagen in der Zugzone. Die Einlagen bestehen aus 1,5 mm starkem, 30 mm hohem Bandeisen und liegen mit ihrer Unterkante 0,5 cm über dem unteren Deckenrande. Die Decke soll, einschließlich ihres Eigengewichtes, 1000 kg auf 1 qm Grundfläche tragen und dabei sollen die in Zementmörtel gesetzten Ziegel der Druckzone nicht über 15 atm Spannung erleiden, wenn die Zugzone als unwirksam angesehen wird. Wie groß darf die freitragende Stützweite der Decke gemacht werden?

Fig. 372.

Das Ergebnis wird wesentlich davon abhängen, wie groß man den Wert $\beta = \frac{E_{\delta}}{E_{e}^{n}}$ wählt. Setzt man $E_{e} = 2000 \text{ t/qcm}$ und E_{δ} für Zementmörtel = 250 t/qcm (nach S. 391), so folgt

$$\beta = \frac{1}{8};$$

fe, der Eisenquerschnitt, ergibt sich für 100 cm Breite mit

$$f_e = 13 \cdot 3 \cdot 0, 15 = 5,85 \text{ qcm};$$

der Abstand vom untern Rande ist

$$c = 2, 0.$$

Es folgt also nach Gl. (159) S. 403 der Abstand der Nulllinie vom obern Rande:

$$h_o = \frac{8 \cdot 5,85}{100} \left\{ \sqrt{1 + \frac{200(12 - 2,0)}{8 \cdot 5,85}} - 1 \right\}$$

mit

 $h_o = 2,63$ cm.

Das größte Moment bei gleichmäßig stetiger Belastung q, für die Einheit der Stützweite l in Metern, berechnet sich (für 100 cm Breite) in cm/kg zu:

$$M = \frac{q l^2}{8} = \frac{(1000 l) 100 l}{8} = 12500 l^2.$$

Soll nun $\sigma_o = 15$ atm werden, so hat man (nach Gl. 159) den Ansatz

$$15 = \frac{2 \cdot 12500 l^2}{100 \cdot 2,63 \left(12 - 2,0 - \frac{2,63}{3}\right)}$$

woraus die Stützweite l zu berechnen ist. Man erhält

$$l = 1,20 \text{ m}$$

Die Zugspannungen im Eisen betragen bei dieser Stützweite

$$\sigma_e = \frac{12500 \cdot 1, 2 \cdot 1, 2}{5,85 \left(12 - 2, 0 - \frac{2,63}{3}\right)} = 337 \text{ atm.}$$

2. Wie weit könnte sich unter gleichen Verhältnissen, wie im vorigen Beispiel, bei 12 cm Höhe und 1000 kg/qm Belastung eine aus einer Mischung 1:3 hergestellte *Betonplatte* frei tragen, wenn die unter Einführung verschiedener Dehnungsmaße für Zug und Druck berechnete Randspannung der Zugzone 3 atm betragen darf?

Das Entscheidende ist hier die Wahl des Verhältnisses β_{δ} der Dehnungsmaße. Nach der Gl. (153) wächst σ_{u} in der Zugzone um so mehr, je kleiner

$$\beta_b = \frac{E_o}{E_u}$$

wird. Nehmen wir (nach S. 401) das mittlere Verhältnis mit 16 an. Dann berechnet sich

$$\sigma_n = \frac{15\,M}{4\,b\,h^2} \,\cdot$$

Für eine Querschnittsbreite b = 100 cm und für

Vierter Abschnitt. Spannungen in geraden Stäben.

$$M = \frac{q l^2}{8} = \frac{(1000 \ l) 100 \ \cdot \ l}{8} = 12500 \ l^2$$

erhält man danach

$$3,0 = \frac{15 \cdot 12500 l^2}{4 \cdot 100 \cdot 12 \cdot 12}$$
$$l = 0,96 \text{ m.}$$

oder

Aus dem Vergleich der Ergebnisse des 1. und des vorliegenden Beispiels ergibt sich augenfällig der große Nutzen bei der Verwendung von Steineisenbalken anstatt der einfachen Steinbalken.

3. Welche Last für 1 qm kann unter sonst gleichen Verhältnissen wie im 2. Beispiel eine *Betonplatte* tragen, wenn sie auf 1,2 m frei aufliegt, in der sonst nicht wirksamen Zugzone (2 cm vom untern Rande) auf 100 cm Breite 20 Rundeisen von je 20 mm Durchmesser als Einlage erhält, und mit einem zulässigen Betondruck von 25 atm gerechnet werden darf?

Das Verhältnis β berechnet sich aus

$$\beta = \frac{400}{2000} = \frac{1}{5}$$

der Eisenquerschnitt

$$f_e = \frac{20 \cdot 2^2 \cdot \pi}{4} = 62,8 \text{ qcm.}$$

Daraus nach Gl. (159):

$$h_o = \frac{5 \cdot 62,8}{100} \left\{ \sqrt{1 + \frac{2 \cdot 100(12 - 2)}{5 \cdot 62,8} - 1} \right\}$$

oder

$$h = 5,39$$
 cm.

Ferner

$$\sigma_o = 25 = \frac{2 \cdot q \cdot 120 \cdot 120}{8 \cdot 100 \cdot 5,39 \left(12 - 2 - \frac{5,39}{3}\right)}$$

woraus

q = 3070 kg/qm.

Weiter ergibt sich für die Zugspannung der Eiseneinlage

$$\sigma_e = \frac{(3070 \cdot 1, 2) \text{ 120}}{8 \cdot 62, 8 \left(12 - 2 - \frac{5, 39}{3}\right)} = 107 \text{ atm}$$

4. Wie groß ist im vorigen Falle die Sicherheit dagegen, daß die Haftkraft zwischen Eisen und Beton nicht überschritten wird? Nach Gl. (161) ist die Schubspannung

$$\tau_{bc} = \frac{3Q}{u(3h-3c-h_o)},$$

worin u der Gesamtumfang der Eiseneinlage ist. Es ist im vorliegenden Falle

 $u = 20 \cdot 2 \cdot \pi = 125,7$ cm.

Die Querkraft ist am größten über den Stützen (66). Sie ist dort gleich dem Stützendruck, also

$$Q = \frac{ql}{2} = \frac{3070 \cdot 1,2}{2}$$

oder

Q = 1842 kg

für 100 cm Breite.

Daraus

$$t_{be} = \frac{3 \cdot 1842}{125,7 (36 - 6 - 5,39)} = 1,5 \text{ atm.}$$

Beim Mischungsverhältnis 1:3 und Wasserzusatz von 20°/, ist die Haftkraft¹ = 25 atm zu setzen. Die Sicherheit ist demnach 17 fach, also außerordentlich hoch.

5. Der in den Fig. 373 gezeichnete Querschnitt eines sog. Plattenbalkens aus Beton soll unter der Voraussetzung berechnet werden, daß unter der gegebenen Belastung des Balkens allein die obere Platte gegen Druck wirksam ist, während die beiden stützenden Balken nur in der Eiseneinlage, nicht aber im Beton Zugspannungen aufnehmen. Das heißt mit andern Worten, die Nulllinie nn des Betoneisenbalkens soll mit den unteren Plattenrande zusammenfallen.

Im besondern ist die Aufgabe zu lösen, wie groß der Querschnitt der Eiseneinlage sein muß, um bei gegebenen Abmessungen des Plattenbalkens die vorgeschriebene Lage der Nulllinie zu erhalten (Fig. 374).

Mit Bezug auf die Fig. 373 und 374 und auf die früheren Erörterungen unter 127 ist anzuschreiben

$$M = Da = Za$$

oder

¹ Nach Mörsch, a. a. O. S. 64.

Mehrtens, Statik der Baukonstruktionen, I.

$$Z = \frac{M}{\left(h - c - \frac{h_o}{3}\right)} \cdot$$

Ferner

$$Z = \sigma_e f_e$$
 und $D = \frac{b h_o \sigma_o}{2}$,

wenn f_e den Eisenquerschnitt für beide Stützbalken bezeichnet und wenn angenommen wird, daß der *ganze* Plattenquerschnitt der Breite b gleichmäßig zur Wirkung gelangt.

Fig. 373.

Fig. 374.

Daraus folgt:

 $f_e = \frac{Z}{\sigma_e} = \frac{M}{\left(h - c - \frac{h_o}{3}\right)\sigma_e} \cdot$

Soll beispielsweise σ_o , die Randspannung der Druckzone, nicht über 25 atm betragen, bei einer Höhe h_o der Platte von 10 cm und einer Breite b von 200 cm, so ist damit die Größe von Z festgelegt. Man erhält

$$Z = \frac{b h_o \sigma_o}{2} = \frac{200 \cdot 10 \cdot 25}{2} = 25000 \text{ kg.}$$

Darf dabei das Eisen mit 1000 atm beansprucht werden, so folgt weiter

$$Z = \sigma_e f_e = 25000 \text{ kg}$$

und

$$f_e = \frac{25\,000}{1000} = 25$$
 qcm.

Wählt man dazu 8 Stück Rundeisen, so muß jedes $\frac{25}{8}$ qcm Querschnitt, oder 2 cm Durchmesser haben.

Dann kann der Querschnitt mit Sicherheit ein Biegungsmoment aufnehmen, das sich aus

$$M = \left(h - c - \frac{h_o}{3}\right)Z$$

berechnet, worin die Höhe h im allgemeinen noch beliebig gewählt werden kann. Es sei h = 50 cm und c = 2 cm. Dann folgt

$$M = \left(50 - 2 - \frac{10}{3}\right) 25\,000 = 1\,116\,667 \text{ cmkg}.$$

Soll der Plattenbalken z. B. als *Brückensteg* dienen und, einschl. seines Eigengewichtes, eine höchste gleichmäßig verteilte stetige Last qvon 600 kg/qm aufnehmen, so würde, bei freier Lagerung der Balken in zwei Stützpunkten, seine größte Stützweite l jetzt bestimmt sein.

Sie berechnet sich aus:

$$M = \frac{bql^2}{8} = (bql) \frac{100l}{8} = 1116667 \text{ cmkg}$$

und beträgt

$$l = \sqrt{\frac{8 \cdot 1116667}{2 \cdot 600 \cdot 100}} = 8,63 \text{ m}.$$

6. Für die im vorigen gegebenen Abmessungen und Belastungen des in Fig. 373 und 374 dargestellten Plattenbalkens sollen die *Schubspannungen* an den gefährlichsten Stellen der Längsschnitte tt und in der Nulllinie nn sowie auch zwischen der Eiseneinlage und dem Beton berechnet werden.

Wenn man erwägt, daß die Zonenkraft D für die Schubspannungen in den 4 Schnitten tt nur auf der Plattenbreite (b-2d) zur Wirkung kommt, so darf man die Schubspannung für die Längeneinheit des Balkens mit

$$4 \cdot \boldsymbol{\tau}_b \cdot \boldsymbol{h}_o = \frac{3 \ Q \cdot (b - 2 \ d)}{(3 \ h - 3 \ c - h_o) b}$$

anschreiben.

Die Querkraft Q wird am größten über den Stützen bei voller Belastung. Q berechnet sich mit

$$Q = \frac{b q l}{2} = \frac{2 \cdot 600 \cdot 8,63}{2} = 5178 \text{ kg}$$

und daraus

$$\tau_{\delta} = \frac{3 \cdot 5178 (200 - 50)}{4 \cdot 10 \cdot (3 \cdot 50 - 3 \cdot 2 - 10) 200} = 2,17 \text{ atm.}$$

In der Nulllinienschicht erhält man

$$2 \cdot \tau_{bn} \cdot d = \frac{3Q}{(3h - 3c - h_o)} \cdot$$

27*

Vierter Abschnitt. Spannungen in geraden Stäben.

Für d seinen Wert 25 cm eingesetzt gibt

$$\tau_{bn} = \frac{3 \cdot 5178}{2 \cdot 25 (3 \cdot 50 - 3 \cdot 2 - 10)} = 2,32 \text{ atm};$$

 τ_{bn} verändert sich in der Zugzone auf der Strecke $h_n - c$ nicht. Zwischen Eisen und Beton erhält man

 $\tau_{be} = \frac{3Q}{(3h-3c-h_o)u} = \frac{3\cdot 5178}{134\cdot 8\cdot 2\cdot 3,14}$ $\tau_{be} = 2,31 \text{ atm.}$

oder

7. Ein Brückenpfeiler (Fig. 375-376) steht mit seiner Grundfläche ohne Mörtelverbindung auf einer wagerecht abgeglichenen Grundmauer.

 $v + y_n = \frac{J_n}{S_n}.$

Sein Gewicht beträgt 2000 kg für 1 cbm. Es wird gefragt: 1) Wie groß muß die in der Symmetrieebene YZ und in der Pfeilerkrone wirkende wagerechte Kraft H sein, um zu bewirken, daß die Nulllinie der Pfeilergrundfläche durch den Mittelpunkt k des Kreises verläuft, der den Pfeilerquerschnitt an einem Ende abschließt?

2) Wie groß ist bei solcher Lage der Nulllinie die Randspannung in a, wenn der Pfeiler außer seinem Eigengewicht noch zwei in der YZ-Ebene und symmetrisch zur ZZ belegene lotrechte Lasten A von je 24,6 t zu tragen hat?

Soll die Nulllinie nndurch k verlaufen, so ist (nach Gl. 164):

$$\frac{J_n}{S_n} = \frac{\left(\frac{1}{2}r^4\pi - \frac{1}{2}r^2\pi y_o^2\right) + \frac{1}{2}r^2\pi (y_o + l)^2 + \frac{2rl^3}{3}}{\frac{1}{2}r^2\pi (y_o + l) + \frac{2rl^2}{2}}.$$

Darin ist y_o der Schwerpunktsabstand $\overline{k's'}$ der Halbkreisfläche des Mittelpunktes k'. Also

$$y_{\circ} = \frac{4r}{3\pi}$$

Setzt man die gegebenen Zahlenwerte ein, so erhält man

$$v + y_n = \frac{402,224}{86,750} = 4,64 \text{ m.}$$

Die Mittelkraft R aller Lasten muß durch den im Abstande $(v + y_n)$ von der Nulllinie liegenden Angriffspunkt m verlaufen. Dadurch ist der Winkel α , den R mit der Pfeilerachse ZZ einschließt, gegeben:

$$\operatorname{tg} \alpha = \frac{H}{G + 2A}.$$

Außerdem ist

$$tg \ \alpha = \frac{v + y_n - \frac{l}{2}}{h}$$

d. h. es ist

(a)
$$H = \frac{\left(v + y_n - \frac{l}{2}\right)}{h} (G + 2A).$$

Die Randspannung σ_a ist bestimmt durch ihr *Verhältnis* zur mittleren Spannung σ_s der Druckzone:

$$\frac{\sigma_a}{\sigma_s} = \frac{r+l}{y_n}.$$

Der Schwerpunkt y_n berechnet sich mit

$$y_n = \frac{\frac{1}{2}r^2\pi(y_0+l) + \frac{2rl^2}{2}}{\frac{1}{2}r^2\pi + 2rl} = 3,30 \text{ m}.$$

Ferner ist

$$\sigma_s = \frac{G+2A}{\frac{1}{2}r^2\pi + 2rl} \cdot$$

Vierter Abschnitt. Spannungen in geraden Stäben.

Daraus

$$\sigma_a = \frac{r+l}{y_n} \left(\frac{G+2A}{\frac{1}{2}r^2\pi + 2rl} \right).$$

G berechnet sich mit

2

$$G = (r^2 \pi + 2rl)h \cdot 2 = 390,8 \text{ t.}$$

Schließlich folgt aus 1)

und aus 2)

$$H = 340,27 t$$

$$\sigma_a = 3,55$$
 atm.

8. Der vorstehend behandelte Brückenpfeiler soll, zwei Meter tief unter seiner Sockelfläche, auf rechteckiger Sohle gegründet werden, so-

 $G' = (5 \cdot 10 + 6 \cdot 11) = 232,0 t,$

daß die Grundmauer in zwei Absätzen, oben von 5×10 und unten von $6 \times 11 m$ angelegt werden kann (Fig. 377). Wie groß wird dann der größte *Bodendruck*, wenn das Gewicht der Grundmauer, wie des Pfeilers, gleich 2000 kg/cbm angenommen werden darf?

Der Winkel α , den die Mittelkraft R aller wirksamen Kräfte mit der Pfeilerachse ZZ bildet, berechnet sich aus

$$g \alpha = \frac{H}{G + 2A + G'},$$

worin

das Grundmauergewicht vorstellt.

Aus

$$tg\alpha = \frac{y}{2+6}$$

erhält man mit

y = 405 cm

den Abstand des Angriffspunktes m der *lotrecht* wirkenden Kräfte von der Schwerachse XX. Bezeichnet man die Summe dieser Kräfte mit P, so ist

$$P = G + 2A + G' = 672,0$$
 t.

Der Abstand c zwischen dem Rande der Druckzone und dem Punkte m ist

$$c = \frac{1100}{2} - y = 145$$
 cm.

Die gesuchte Randspannung σ_a erhält man also aus Gl. (165) mit

$$\sigma_a = \frac{2P}{3 \cdot c \cdot 600} = 5,15 \text{ atm.}$$

BUBLIOTEKA ACLITECHNICZNA

Druck von Breitkopf & Härtel in Leipzig.

