

DIE

GRAPHISCHE STATIK

DER

BAUKONSTRUKTIONEN

VON

HEINRICH F. B. MÜLLER-BRESLAU

Dr.-Jng., GEH. REGIERUNGSRAT UND PROFESSOR AN DER TECHNISCHEN HOCH-SCHULE IN BERLIN.

> Band II. Zweite Abteilung.

Mit 410 Abbildungen im Text und 2 Tafeln.

LEIPZIG Alfred Kröner Verlag 1908.

7- 348994

Druck von Grimme & Trömel in Leipzig.

BIBLIOTEKA POLITEGUNICZIN KRAKÓW

Akc. Nr. Í. 1202

Vorwort.

Die ersten sechs Bogen der zweiten Abteilung des zweiten Bandes der Graphischen Statik der Baukonstruktionen sind als besondere Lieferung bereits 1896 erschienen. Die Vollendung dieser Abteilung wurde verzögert durch die notwendig gewordenen neuen Auflagen von Band I und II, 1 und andere dringende Arbeiten des Verfassers, auch durch die Erweiterung des ursprünglich geplanten Umfanges. Vor allem schien es mir geboten, die zeichnerischen Verfahren überall dort durch analytische Untersuchungen zu ergänzen, wo der rechnerische Weg gleichwertig ist oder gar den Vorzug verdient. Dies letztere wird mit zunehmender Benutzung der Rechenmaschine auf immer weiteren Gebieten der Fall werden. Auch die Kürzung der Rechenarbeit durch Herstellung von Tafeln häufig vorkommender Zahlenwerte wird oft zugunsten des rechnerischen Verfahrens sprechen.

Der erste Abschnitt behandelt die Formveränderung des geraden, auf Biegung beanspruchten Stabes, sowie den an beiden Enden eingespannten Balken. Hieran schließt sich im Abschnitt II die Untersuchung des auf mehreren starren oder elastischen Stützen ruhenden Balkens, unter Beifügung zahlreicher, die allgemeinen Gesetze erläuternden Aufgaben.

Von den Anwendungen der Theorie des elastisch gestützten Balkens sind hervorzuheben: die Berechnung der Zwischenträger von Brücken mit Berücksichtigung der in den bekannten Arbeiten über diese Frage vernachlässigten Durchbiegungen der Hauptträger, verschiedene Anordnungen von Balken auf starr mit ihnen verbundenen Säulen, die Streckbalken von Schiffbrücken, die auf einer großen Anzahl gleichartiger, in gleichen Abständen ruhenden Balken.

Die auf den Seiten 226 bis 229 für Balken auf elastischen Stützen

Vorwort.

aufgestellten Tabellen dürften insofern eine Ergänzung der bekannten Tabellen von A. Ritter bilden, als sie auch die zur vollständigen Darstellung der Einflußlinien innerhalb der einzelnen Öffnungen erforderlichen Zahlen β enthalten. Diese Darstellung ist besonders wichtig bei verhältnismäßig kleinen Stützensenkungen. An einem Beispiele wird gezeigt, wie man die Zahlen der Tabelle auch zur Ermittlung des Einflusses von zur Balkenachse parallelen Lasten benutzen kann.

§ 15 behandelt den Balken auf ununterbrochener, gleichförmiger, elastischer Unterlage. Die Ergebnisse dieser Untersuchung lassen sich auf den Fall in kurzen Abständen angeordneter elastischer Einzelstützen übertragen und führen dann zu sehr einfachen und doch zuverlässigen Formeln, was wohl am deutlichsten durch die in Nr. 75 mitgeteilte Berechnung einer Schiffbrücke gezeigt wird.

Den Schluß des Abschnittes II bildet die Untersuchung der Formveränderung und Beanspruchung eines zylindrischen Wasserbehälters, die auf eine ähnliche Differentialgleichung führt, wie die Theorie des stetig unterstützten Balkens und aus diesem Grunde mit aufgenommen worden ist.

Abschnitt III beschäftigt sich mit den im Fachwerk infolge steifer Knoten entstehenden Biegungsspannungen. Abschnitt IV untersucht die Beanspruchung und die Formveränderung der durch steife Halbrahmen gestützten Gurtung einer offenen Balkenbrücke.

Abschnitt V ist der Versteifung des gelenkigen Stabzuges durch einen Balken gewidmet. Der Untersuchung verschiedener Hängewerke und Sprengewerke mittels Einflußlinien folgt die Theorie der durch einen vollwandigen Balken versteiften Kette, wobei auch der Einfluß der Änderungen Δy der Kettenordinaten y auf den Horizontalzug der Kette und die Biegungsmomente des Balkens berücksichtigt wird.

Abschnitt VI enthält die von mir im Zentralblatt der Bauverwaltung 1904 veröffentlichte Theorie der parabelförmigen Einflußlinien und zeigt u. a. auch die Berechnung von Balken auf mehreren starren Stützen mit Hilfe der im vorliegenden Buche erheblich erweiterten Tabelle der Werte P_i . Nun folgt im Abschnitt VII die zeichnerische Ermittlung der Verschiebungen der Knotenpunkte biegungsfester Stabzüge und deren Anwendung bei der Berechnung statisch unbestimmter Stabzüge, z. B. vollwandiger Bogenträger. Hier genügte eine kürzere Darstellung, weil sich ähnliche Untersuchungen in der ersten Abteilung des zweiten Bandes finden und der Unterschied zwischen der Behandlung fachwerkartiger und vollwandiger Tragwerke derselben Art nur in der Ermittlung der Formänderungen

Vorwort.

besteht. Für die beiden wichtigsten Arten der Bogenträger, den Zweigelenkbogen und den an beiden Enden eingespannten Bogen sind im Abschnitt VIII noch ausführlichere analytische Untersuchungen angestellt worden.

Weitere Übungsaufgaben enthält mein Buch: Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen, Leipzig, erste Auflage 1886, dritte Auflage 1904.

Ein Anhang bringt eine für Träger mit gleichlangen Feldern bestimmte Tabelle der an verschiedenen Stellen des Buches benutzten Zahlen ω_R , ω_D , ω_P , ω''_P , durch welche die Berechnung vieler statisch unbestimmter Tragwerke erheblich vereinfacht wird.

Besonderen Dank schulde ich meinem Assistenten, Herrn Dipl.-Jug. Stumpf, Konstruktionsingenieur des Lehrstuhles für eiserne Brücken, für die bei der Ausarbeitung der Zahlenbeispiele, der Herstellung der Figuren, dem Rechnen der Tabellen geleistete wertvolle Unterstützung und für das Lesen der Korrektur.

Binz auf Rügen, Pfingsten 1908.

H. Müller-Breslau.

Berichtigungen.

Seite 27, Zeile 14 v. o. lies Fig. 27 statt Fig. 17. Die Gleichungen auf Seite 46 sollen lauten:

$$\begin{split} \eta'_L &= k \left(\frac{\xi'}{l} - \frac{\xi'^3}{l^3}\right) = \frac{k\xi'\left(l - \xi'\right)\left(l + \xi'\right)}{l^3} = \frac{kx\left(l + \xi'\right)}{l^2} \\ M_L &= \frac{x a_r}{\xi l} \left[l - \frac{\xi\left(l + \xi'\right)}{l}\right] \\ &\left[\frac{\xi\left(l + \xi'\right)}{l}\right]_{max} = l. \end{split}$$
Beichung (18) lies

Seite 70, G l. lo

- 71 in Figur 76 lies $\beta_{i(r-1)}l_r^2$ statt $\beta_{i(r-1)}l_r$; $\beta_{ir}l_r^2$ statt $\beta_{ir}l_r$. 22
- 76, Seitenüberschrift lies § 6 statt § 2.
- 33
- 76, Zeile 20 v. o. lies + statt -. 105, letzte Spalte, Zeile 10 und 12 v. u. lies 0,3088 statt 0,3089. 105, letzte Spalte. Die Formel für ω_{P} lautet: 17
- 97

$$\omega_{P}'' = \frac{x^{*}}{l^{*}} - 2\frac{x^{*}}{l^{*}} + \frac{x}{l} = 2\omega_{D} - \omega_{P} = \omega_{R} (1 + \omega_{R})$$

In der letzten Zeile muß stehen
$$\frac{\pi t}{15}$$
 statt $\frac{\pi t}{30}$

106, Zeile 3 v. u. lies $\frac{1}{15}$ statt 33 30

119, Zeile 4 v. o. sind hinter Parabel die Worte einzuschalten: von der der Pfeilhöhe $\frac{3}{4}v$.

- 129, Gleichung (25) lies u_r' statt d_r' .
- 129, Gleichung (26) lies u_{r+1} statt d_{r+1} . 33
- 129, Zeile 6 v. u. lies l_{r+1} statt l_r .
- 152, Zeile 13 v. o. lies unendlich statt unendlichen.
- 168, Zeile 20 und 2 v. u. lies (88) bis (91) statt (88) und (91).
- 192, Zeile 5 v. u. lies Mi statt Mir. 77
- 199, Zeile 5 v. u. lies tm und tem statt t/m und t/cm.
- 203, Zeile 2 v. o. lies $\frac{209}{56}$ 224 statt 22
- 56
- 209, Zeile 9 v. o. lies E statt EJ. 22
- 213, Zeile 10 v. o. lies 0,5 statt 0,2.
- 244, Zeile 1 v. u. lies Stützweite statt Stützwerte. "
- 248, Zeile 3 und 4 v. o. muß p gestrichen werden. 77
- 251, Zeile 7 v. u. lies cm⁴ statt cm³. 267, Zeile 2 v. u. lies δ^2 statt d^2 .
- 288, Gleichung (42) lies $-gk^2$ statt $+gk^3$. 290, Gleichung (53) lies $-gk^2$ statt $+gk^3$. 321, Zeile 9 v. u. lies 7,19 statt 7,09. 400, Zeile 5 v. o. lies H_a statt H_k . 77
- 77
- 17
- 423 und 424, Spalte 6 lies P_i statt P'_i . 33
- 516, Gleichung (8) lies $Q_a = \sin \varphi$ statt $Q_a \sin \varphi$.

Inhalt.

I. Abschnitt.

]	Formveränderung des g	geraden	Stabes.	Anw	endung	auf	Bl	echba	lken.	Gaita
s	1.	Grundgesetze	are are	QUALITO IN				1			Sente 3
8	2.	Die Biegungslinie .									14
ş	3.	Der an beiden Ender	n einges	pannte g	erade	Stab		,			25

II. Abschnitt.

Der Balken auf mehreren Stützen.

8	4.	Balken mit beliebig vielen Stützpunkten, deren Verschiebungen ge-	
		geben sind	32
S	5.	Fortsetzung. Einfluß einer gleichförmigen Belastung	45
S	6.	Balken auf elastischen Stützen	61
8	7.	Gelenklose Zwischenträger von Brücken	77
8	8.	Anwendung der allgemeinen Elastizitätsgleichungen auf statisch unbe-	
		stimmte Balken	90
0	0	dAi dL	107
8	9.	Anwendung des Satzes $\delta_m = \frac{1}{dP_m} - \frac{1}{dP_m}$	107
8	10.	Sonderfälle des Balkens auf starren Stützen. Nachtrag zur Behandlung	
		des allgemeinen Falles	112
8	11.	Vollwandige Träger auf starr mit ihnen verbundenen Säulen	130
8	12.	Balken auf schwimmenden Unterstützungen (Schiffbrücken)	169
8	13.	Balken auf sehr vielen starren oder elastisch senkbaren Stützen .	202
8	14.	Graphische Untersuchung des gelenklosen Balkens mit veränderlichem	
		Querschnitte auf elastisch senkbaren Stützen	230
8	15.	Balken auf gleichförmiger, ununterbrochener elastischer Unterlage .	237
8	16.	Formänderung und Beanspruchung eines zylindrischen Wasserbehälters	
-		mit lotrechter Achse	252

III. Abschnitt.

Nebenspannungen im Fachwerk mit steifen Knotenverbindungen.

§ 17. Biegungsspannungen in Fachwerken, deren Gurtstäbe miteinander vernietet und deren Füllungsstäbe gelenkartig befestigt sind . . . 269

-		-			1.	
	30		a	0		•
	. 11			21	Ð	
-			-	20	-	

\$	18.	Fachwerke, deren sämtliche Stäbe in den Knoten durch Niete be-	Seite
		festigt sind	291
ş	19.	Einfluß der Momente M auf die Spannkräfte in den Stäben	305

IV. Abschnitt.

Sicherung der oberen Gurtung einer Trogbrücke durch biegungsfeste Halbrahmen.

§	20.	Voraussetzung von Kugelgelenken an den Enden eines jeden Fach-	
		werkstabes	309
ş	21.	Gelenklose, durch Halbrahmen gestützte Gurtung	326

V. Abschnitt.

Versteifung des gelenkigen Stabzuges durch einen Balken.

8	22.	Hängewerke und Sprengewerke				15		 341
8	23.	Kette, versteift durch einen Balken						 393

VI. Abschnitt.

Parabelförmige Einflußlinien.

S	24.	Formeln und Tabellen	415
8	25,	Stabbogen mit darüberliegendem Versteifungsbalken	429
\$	26.	Benutzung der Tabellen für parabelförmige Einflußlinien bei der Be-	
		rechnung mehrfach gestützter Balken	450

VII. Abschnitt.

Der biegungsfeste Stabzug.

8	27.	Darstellung der Verschiebungen der Knotenpunkte		 478
S	28.	Berechnung statisch unbestimmter, biegungsfester Stabzüge		484

VIII. Abschnitt.

Der vollwandige Bogen.

S	29.	Allgemeine Gesetze .											 503
S	30.	Der Zweigelenkbogen											513
S	31.	Der an beiden Enden	ein	ges	pann	te J	Bog	en		1.			556

Anhang.

Tabelle der Zahlen ω_R , ω_D , ω , $\omega_{I''}$.

Literatur.

VIII

ZWEITE ABTHEILUNG.

Formveränderung vollwandiger Träger. — Untersuchung statisch unbestimmter vollwandiger Träger. — Nebenspannungen in Fachwerken in Folge von starren Knotenpunktsverbindungen.

1

Müller-Breslau, Graphische Statik. II. 2.

I. Abschnitt.

Formveränderung des geraden Stabes. Anwendung auf Blechbalken.

§ 1.

Grundgesetze.*)

1. Die Normalspannungen. Auf einen geraden Stab mögen beliebig gerichtete, in ein und derselben Ebene gelegene Kräfte wirken. Die Kräfteebene enthalte die Mittellinie des Stabes und schneide jeden Stabquerschnitt in einer Hauptachse vv; Fig. 1 u. 2. Die Spannungs-Nulllinie nn ist dann für jeden Querschnitt eine zur vv rechtwinklige Gerade und die *Biegungslinie* des Stabes — auch *elastische Linie* genannt — fällt mit der Kräfteebene zusammen.

In allen von der nn gleich weit entfernten Querschnittstheilchen entstehen gleich grosse Normalspannungen σ , deren Grösse durch die Gleichung

(1)

 $\sigma = \frac{N}{F} + \frac{Mv}{J}$

1*

*) Vergl. Band I, Abschnitt III, S. 48.

gegeben ist, wobei bedeutet:

F den Inhalt des Querschnitts,

- J das Trägheitsmoment des Querschnitts in Bezug auf die zur v-Achse rechtwinklige Schwerachse uu des Querschnitts,
- v den Abstand des Querschnittstheilchens von der u-Achse,
- M das Angriffsmoment, bezogen auf den Schwerpunkt des Querschnitts,
- N die Längskraft für den fraglichen Querschnitt.

Ausser den Normalspannungen σ werden noch Schubspannungen τ hervorgerufen, welche aber vorläufig aus der Acht gelassen werden sollen.

Ist R die Mittelkraft der auf der einen Seite des fraglichen Querschnitts angreifenden äusseren Kräfte und r die Länge des vom Querschnitts-Schwerpunkte auf R gefällten Lothes, so ist

$$M = Rr.$$

Die Zerlegung von R nach den Richtungen von Stabachse und v-Achse liefert die Längskraft N und die Querkraft Q.

Hinsichtlich der Vorzeichen werde für den besonders häufigen Fall eines wagerechten Balkens folgendes festgesetzt:

Wird R als Mittelkraft der links vom fraglichen Querschnitte angreifenden äusseren Kräfte aufgefasst, so sei

M positiv, wenn es rechtsdrehend (d. h. im Sinne des Uhrzeigers drehend) ist,

N positiv, wenn es von rechts nach links gerichtet ist

Q positiv, "

,, ,, unten ,, oben ,, ,,.

Bedentet R die Mittelkraft der rechts vom Querschnitte angreifenden äusseren Kräfte, so werden M, N, Q im entgegengesetzten Sinne positiv gezählt; Fig. 3.

Positive Längskräfte N rufen demnach Zugspannungen hervor; positive Momente erzeugen oberhalb der *u*-Achse Druckspannungen, unterhalb derselben Zugspannungen. Positive Quer-

kräfte verursachen im rechten Endquerschnitte des linken Stabtheiles abwärts gerichtete Schubspannungen.

Die Normalspannungen in den äussersten Querschnittstheilchen sind:

(2)
$$\begin{cases} \sigma_u = \frac{N}{F} + \frac{Me_u}{J} = \frac{N}{F} + \frac{M}{W_u} \\ \sigma_o = \frac{N}{F} - \frac{Me_o}{J} = \frac{N}{F} - \frac{M}{W_o} \end{cases}$$

Grundgesetze.

WO

(3)
$$W_u = \frac{J}{e_u}$$
 und $W_o = \frac{J}{e_o}$

die sogenannten Widerstandsmomente des Querschnitts sind.

Durch Einführung der Momente, bezogen auf die in der v-Achse gelegenen Kernpunkte o und u, nämlich

 $M^o = Rr_o$ und $M^u = Rr_u$,

lassen sich die Gleichungen (2) auch auf die Form bringen:

(4)
$$\sigma_u = + \frac{M^o}{W_u}; \quad \sigma_o = - \frac{M^u}{W_o}.$$

Die Kernpunkte haben von der u-Achse die Abstände

(5)
$$k_o = \frac{W_u}{F}; \quad k_u = \frac{W_o}{F}.$$

2. Formänderungen infolge der Normalspannungen und Temperaturänderungen. Im Abstande v von der u-Achse ändert sich die ursprüngliche Entfernung dx des betrachteten Querschnitts CC von dem unendlich nahe gelegenen Querschnitte

C'C' um die Strecke

(6)
$$\Delta dx_v = dx \left(\frac{\sigma}{E} + \varepsilon t\right),$$

- wo E die Elasticitätsziffer (Elasticitätsmodul)
 - Temperaturänderung an der t ,, Stelle v (Fig. 2)
 - ε das Verlängerungsverhältniss für t = 1

E und ε seien in allen Punkten bedeuten. des Querschnitts gleich gross angenommen, und t möge sich, ebenso wie σ , nur mit vändern. Für v = 0, $v = +e_u$, $v = -e_o$ sei beziehw. $t = t_s, t = t_u, t = t_o.$

Dann ist die Längenänderung des

Theilchens dx der Stabachse (wegen $\sigma = \frac{N}{F}$ für v = 0):

(7)
$$\Delta dx = dx \left(\frac{N}{EF} + \varepsilon t_s\right)$$

*) Vergl. Band I, S. 147 u. 71. Die früher gebrauchten Bezeichnungen σ_1 , σ_2 wollen wir jetzt durch σ_u , σ_o ersetzen.

Erster Abschnitt. - § 1.

während sich an den Stellen $v = + e_u$ und $v = -e_o$ der ursprüngliche Abstand der beiden Querschnitte um

(8)
$$\begin{cases} \Delta dx_u = dx \left(\frac{N}{EF} + \frac{Me_u}{EJ} + \varepsilon t_u \right) \text{ beziehw.} \\ \Delta dx_o = dx \left(\frac{N}{EF} - \frac{Me_o}{EJ} + \varepsilon t_o \right) \end{cases}$$

ändert. Ist also die Hölie des Querschnitts = h, so beträgt der Winkel $d\omega$, um welchen sich die beiden Querschnitte CC und C'C' gegen einander drehen

(9)
$$d\omega = \frac{\Delta dx_u - \Delta dx_o}{h} \text{ d. i.}$$
$$d\omega = \left(\frac{M}{EJ} + \varepsilon \frac{t_u - t_o}{h}\right) dx.$$

Offenbar ist $d\omega$ auch der Contingenzwinkel der elastischen Linie des Stabes, d. h. der Winkel, welchen zwei unmittelbar auf einander folgende Tangenten der elastischen Linie mit einander bilden.

Sei beispielsweise AB ein ursprünglich wagerechter, am Ende B eingespannter, im übrigen freier Stab, der infolge irgend einer Belastung die Gestalt A'CB annimmt. Gegeben sei die Momentenfläche (in Fig. 5 schraffirt), gesucht die Durchbiegung δ am freien Ende. Zwei an den Stellen x und x + dx an die elastische Linie gelegte Tangenten schneiden auf AA' die Strecke

$$x d \omega = x \left(\frac{M}{EJ} + \varepsilon \frac{t_u - t_o}{h} \right) dx$$

ab, weshalb sich

(10)
$$\delta = \int_{0}^{T} x \, d\omega = \int_{0}^{T} \frac{Mx \, dx}{EJ} + \int_{0}^{T} \frac{\varepsilon(t_{\mu} - t_{0})}{h} x \, dx$$

ergiebt und im Falle überall gleicher Werthe E, J, ε , h, t_u, t_o:

(11)
$$\begin{cases} \delta = \frac{1}{EJ} \int_{o}^{b} Mx \, dx + \varepsilon (t_u - t_o) \frac{l^2}{2h}, \text{ d. i.} \\ \delta = \frac{\mathfrak{S}_M}{EJ} + \varepsilon (t_u - t_o) \frac{l^2}{2h}, \end{cases}$$

Grundgesetze.

wo S_M das statische Moment der Momentenfläche in Bezug auf die Senkrechte durch A bedeutet.

Ist J veränderlich bei überall gleichem h^*), so schreiben wir

$$\delta = \frac{1}{EJ_c} \int_o^t M \frac{J_c}{J} x \, dx + \varepsilon (t_u - t_o) \frac{l^2}{2h},$$

unter J_c ein beliebig grosses aber konstantes Trägheitsmoment verstanden; sodann multipliciren wir die Ordinaten M der Momentenlinie mit den entsprechenden Werthen $J_c: J$ und bestimmen das auf die Senkrechte durch A bezogene statische Moment \mathfrak{S}'_{M} der so erhaltenen verzerrten Momentenfläche. Es ist dann:

(12)
$$\delta = \frac{\mathfrak{S}'_M}{EJ_c} + \varepsilon (t_u - t_o) \frac{l^2}{2h}.$$

Ist der Stab bei B nicht wagerecht sondern unter einem verschwindend kleinen Winkel eingespannt Fig. 6, so darf man die Gleich. 11. u. 12 auch auf den senkrecht gemessenen Abstand $AA' = \delta$ anwenden, weil sich derselbe von der rechtwinklig zur Stabachse gemessenen Durchbiegung nur um eine verschwindend kleine Grösse höherer Ordnung unterscheidet.

3. Formänderungsarbeit infolge der Normalspannungen. Behufs gelegentlicher Verwerthung der in der Einleitung entwickelten Castigliano'schen Sätze berechnen wir noch die Formänderungsarbeit A und den Ausdruck

$$A_i = A + \int \sigma \varepsilon t \, dV = A + \iint \sigma \varepsilon t \, dx \, dF.$$

Der Einfluss der σ auf A ist:

$$A = \int \frac{\sigma^2 dV}{2E} = \iint \frac{\sigma^2 dx \, dF}{2E}$$

Wir integriren zuerst über den Querschnitt, sodann längs der Stabachse und erhalten mit

$$\sigma = \frac{Mv}{J} + \frac{N}{F}$$

und mit Beachtung der Gleichgewichtsbedingungen

$$\int \sigma dF = N, \ \int \sigma v dF = M,$$

für die Formänderungsarbeit den Werth

$$A = \int \frac{dx}{2E} \int \sigma^2 dF = \int \frac{dx}{2E} \left[\frac{M}{J} \int \sigma v dF + \frac{N}{F} \int \sigma dF \right]$$
$$A = \int \frac{M^2 dx}{2EJ} + \int \frac{N^2 dx}{2EF},$$

ferner, wegen $t = t_s + \frac{t_u - t_o}{h}v$,

$$\begin{aligned} \iint \sigma \, \varepsilon t \, dx \, dF &= \int dx \, \varepsilon \int \sigma \left(t_s + \frac{t_u - t_o}{h} \, v \right) \, dF \\ &= \int \varepsilon t_s \, N dx + \int \varepsilon (t_u - t_o) \, \frac{M}{h} \, dx, \end{aligned}$$

weshalb schliesslich entsteht:

(13)
$$A_i = \int \frac{M^2 dx}{2EJ} + \int \frac{N^2 dx}{2EF} + \int \varepsilon(t_u - t_o) \frac{M}{h} dx + \int \varepsilon t_o N dx.$$

Die Integrale erstrecken sich über die ganze Stablänge.

Ausser den Formänderungen Δdx und $d\omega$ werden durch die σ und t noch Aenderungen der Querschnittsabmessungen hervorgerufen, die aber als unwesentlich in den folgenden Untersuchungen vernachlässigt werden dürfen. Ein Beitrag zur Behandlung dieser Frage findet sich in des Verfassers Buch: Die neueren Methoden der Festigkeitslehre, Leipzig, Baumgärtners Buchhandlung 1886, § 22.

4. Die Schubspannungen. Für die im vorliegenden Buche zu behandelnden Aufgaben genügt hinsichtlich der Schubspannungen τ die Beschränkung auf den Fall eines bezüglich der v-Achse symmetrischen Querschnitts. Ist die Querschnittsbreite 2z eine stetige Funktion von v (Fig. 7), so wird durch die Querkraft Q in irgend einem Punkte Ddes Querschnitts eine Schubspannung τ hervorgerufen, welche die v-Achse in einem Punkte H schneidet, dessen Lage man erhält, indem man durch D die der u-Achse parallele Sehne AB und in B eine Tangente BH an den Querschnittsumfang zieht.*) Zerlegt man τ in die Seitenspannungen τ_v senkrecht zur v-Achse und τ_u senkrecht zur u-Achse, so ist:

(14)
$$\tau_u = \frac{QS}{2zJ}; \quad \tau_v = \tau_u \operatorname{tg} \varphi \frac{u}{z}$$

*) Vergl. auch Band I, Seite 80.

Grundgesetze.

- wobei S das auf die u-Achse bezogene statische Moment des einen der beiden durch die Sehne AB begrenzten Querschnittstheile (z. B. des Theiles ABC)
 - J das Trägheitsmoment <u>+</u><u>u</u> des ganzen Querschnitts bezogen auf die *u*-Achse und
 - φ den Winkel bedeutet, welchen die in *B* an den Querschnitt gelegte Tangente mit der *v*-Achse einschliesst.

5. Formänderung infolge der Schubspannungen. Den Einfluss der Spannungen τ auf die Formänderung des Stabes werden wir mit Hilfe des

Castiglianoschen Satzes von der Abgeleiteten der Formänderungsarbeit A ermitteln und bestimmen daher zunächst den von den Schubspannungen abhängigen Theil von A. Derselbe beträgt für den hier stets vorausgesetzten Fall eines konstanten Gleitmoduls G nach Seite 47, Gleich. 50, der Einleitung^{*}):

$$A = \frac{1}{2G} \int (\tau_u^2 + \tau_v^2) \, dV = \frac{1}{2G} \int dx \iint (\tau_u^2 + \tau_v^2) \, du \, dv$$

$$= \frac{1}{2G} \int dx \iint \tau_u^2 \left(1 + \operatorname{tg}^2 \varphi \, \frac{u^2}{z^2} \right) \, du \, dv$$

$$= \frac{1}{2G} \int dx \int \tau_u^2 dv \int_{-z}^{+z} \left(1 + \operatorname{tg}^2 \varphi \, \frac{u^2}{z^2} \right) \, du \, d. \, i.$$

(15)
$$A = \frac{1}{G} \int dx \int \tau_u^2 \left(1 + \frac{1}{3} \operatorname{tg}^2 \varphi \right) \, z \, dv.$$

Beispielsweise ist für einen **Rechteckquerschnitt** von der Breite b und der Höhe h = 2e:

^{*)} Siehe Abtheilung 1 dieses Bandes.

Erster Abschnitt. - § 1.

$$\tau_u = \frac{3}{2} \frac{Q}{F} \left(1 - \frac{v^2}{e^2} \right), \ z = \frac{1}{2} b, \ \varphi = 0.$$

Man erhält

$$A = \frac{1}{G} \int dx \, \frac{9}{4} \, \frac{Q^2}{F^2} \, \frac{b}{2} \int_{-e}^{+e} \left(1 - \frac{v^2}{e^2}\right)^2 dv,$$

und da $\int_{-e}^{+e} \left(1 - \frac{v^2}{e^2}\right)^2 dv = \frac{16}{15}e = \frac{8F}{15b}$ ist,

(16)
$$A = \frac{3}{5G} \int \frac{Q^2 dx}{F}.$$

Für den Kreisquerschnitt vom Radius e ist

$$\tau_{u} = \frac{4}{3} \frac{Q}{F} \cos^{2} \varphi, \quad z = e \cos \varphi, \quad v = e \sin \varphi$$
$$A = \frac{1}{G} \int dx \, \frac{16}{9} \frac{Q^{2}}{F^{2}} e^{2} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos^{4} \varphi \left(1 + \frac{1}{3} \, \mathrm{tg}^{2} \, \varphi\right) \cos^{2} \varphi \, d\varphi$$

und wegen

$$\int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos^4 \varphi \left(1 + \frac{1}{3} \operatorname{tg}^2 \varphi\right) \cos^2 \varphi \, d\varphi = \frac{2}{3} \int_{0}^{\frac{\pi}{2}} (2 \cos^6 \varphi + \cos^4 \varphi) \, d\varphi = \frac{\pi}{3}$$

(17)
$$A = \frac{16}{27 G} \int \frac{Q^2 dx}{F}.$$

Allgemein darf gesetzt werden

(18)
$$A = \frac{\varkappa}{2G} \int \frac{Q^2 dx}{F},$$

wobei \varkappa eine von der Gestalt des Querschnitts abhängige Zahl bedeutet. Für das Rechteck ist $\varkappa = \frac{6}{5}$ und für den Kreis $\varkappa = \frac{32}{27}$.

Wir haben bereits im ersten Bande (Seite 81) unseres Werkes darauf hingewiesen, dass die Gleichungen (14) unbrauchbar werden, sobald die von v abhängigen Grössen z und φ stellenweise unstetig sind, ein Fall, der gerade bei einem der wichtigsten Querschnitte, nämlich dem Querschnitte des **Blechbalkens** vorliegt. Hier empfehlen wir allen überflüssigen Feinheiten der Rechnung durch die Annahme aus dem

Grundgesetze.

Wege zu gehen, es vertheile sich die Querkraft Q nur über den Querschnitt F_s des Stehhlechs, über diesen aber gleichmässig. Es ergiebt sich dann $\tau_u = \frac{Q}{F_c}$, $\tau_v = 0$ und

(19)
$$A = \frac{1}{2G} \int \frac{Q^2 dx}{F_s} = \frac{1}{2G} \int \frac{\varkappa Q^2 dx}{F}$$

die Ziffer \varkappa ist hiernach für den Blechbalkenquerschnitt $\varkappa = F : F_s$; dieselbe ist im allgemeinen für verschiedene Querschnitte desselben Balkens verschieden gross.

Bedeuten S_g und J_g bezieh. das statische Moment und das Trägheitsmoment der aus Winkeleisen und Kopfplatten bestehenden Gurtung, bezogen auf die *u*-Achse, ferner h_1 die Höhe und δ die Stärke des Stehblechs, so hat man in die Formel

$$\tau_u = \frac{QS}{2zJ}$$

einzusetzen:

$$S = S_g + \frac{1}{8} \,\delta h_1^2 - \frac{1}{2} \,\delta v^2 = S_c - \frac{1}{2} \,\delta v^2$$
 und $2z = \delta$

und erhält dann, bei Vernachlässigung der Schubspannungen in den Gurtungen:

$$A = \frac{1}{2G} \int dx \frac{Q^2}{\delta^2 J^2} \int \left(S_c - \frac{1}{2} \, \delta v^2 \right)^2 \delta \, dv = \frac{1}{2G} \int \frac{\varkappa Q^2 dx}{F}$$

woraus sich ergiebt:

$$\begin{aligned} \mathbf{x} &= \frac{F}{J^2 \delta} \int \left(S_o - \frac{1}{2} \, \delta v^2 \right)^2 dv \\ &= \frac{F h_1}{J^2 \delta} \left[S_o^2 - \frac{\delta S_o h_1^2}{12} + \frac{\delta^2 h_1^4}{320} \right] \\ &= \frac{F h_1}{J^2 \delta} \left[\left(S_g + \frac{\delta h_1^2}{12} \right)^2 + \frac{\delta^2 h_1^4}{720} \right] \\ &= \frac{F h_1}{J^2 \delta} \left[\left(S_g + \frac{\delta h_1^2}{12} \right)^2 + \frac{\delta^2 h_1^4}{720} \right] \end{aligned}$$

Das Glied $\frac{\delta^2 n_1}{720}$ darf stets gegen $\left(S_g + \frac{\delta h_1^2}{12}\right)^2$ vernachlässigt werden; setzt man dann noch $h_1: \delta = h_1^2: F_s$, wo F_s den

Stehblechquerschnitt bedeutet, so findet man schliesslich:

$$\mathbf{x} = \frac{F}{F_s} \left[\frac{h_1 \left(S_g + \frac{1}{12} \delta h_1^2 \right)}{J} \right]^2.$$

Für die in Fig. 8 angegebenen Querschnittsabmessungen ist z. B.: $S_g = \frac{1}{8} \left[24.66^2 - 2.05.60^2 - 2.10.58^2 - 2.10.48^2 - 10.60^2 \right] = 3182$ $J = \frac{1}{12} \left[24.66^3 - 2.05.60^3 - 2.10.58^3 - 2.10.48^3 \right] = 213373$
$$\begin{split} &\delta = 1,0 \quad h_1 = 60 \quad \text{mithin} \\ &\kappa = \frac{F}{F_s} \left[\frac{60 \left(3182 + 300 \right)}{213373} \right]^2 = 0,96 \frac{F}{F_s}. \end{split}$$
Lässt man die Kopfplatten weg, so erhält man

$$S_g = 3182 - \frac{24}{8} (66^2 - 60^2) = 914$$
$$J_g = 213373 - \frac{24}{12} (66^3 - 60^3) = 70002$$
$$\varkappa = \frac{F}{F_s} \left[\frac{60 (914 + 300)}{70002} \right]^2 = 1,07 \frac{F}{F_s}$$

In Anbetracht der immerhin unsicheren Grundlage der heutigen Theorie der Schubspannungen muss der Werth $\varkappa = 1,0 \frac{F}{F}$ als genügend genau angesehen werden.

Fig. 9.

(20)

Es liege nun ein wagerechter Stab AB von konstantem Querschnitt vor, Fig. 9, der bei B eingespannt ist und am Ende A durch eine zur Stabachse rechtwinklige Einzelkraft P beansprucht wird. Gesucht sei die ausschliesslich von den Schubspannungen abhängige Verschiebung δ_m des im Abstande x_m von B gelegenen Punktes m der Stabachse.

> Bringen wir in m und in der Richtung von δ_m die nachträglich = 0 zu setzende Last P_m an, so erhalten wir

$$\delta_m = \frac{\partial A}{\partial P_m} = \frac{\varkappa}{GF} \int Q \frac{d Q}{\partial P_m} dx.$$

Nun ist für $x < x_m$: $Q = P + P_m$, $\frac{\partial Q}{\partial P_m} = 1$,, $x > x_m$: Q = P , $\frac{\partial Q}{\partial P_m} = 0$ also

$$\delta_m = \frac{\varkappa}{GF} \int_{o}^{x_m} P dx \, \mathrm{d. i.}$$
$$\delta_m = \frac{\varkappa P x_m}{GF}.$$

Grundgesetze.

Die Stabachse bleibt hiernach geradlinig und erfährt eine Neigung um

(21)

$$\alpha = \frac{\delta_m}{x_m} = \frac{\varkappa P}{GF}.$$

Dass m nur eine Verschiebung rechtwinklig zur Stabachse erleidet, nicht etwa noch eine solche in der Richtung der Stabachse, geht daraus hervor, dass eine mit der Stabachse zusammenfallende Pm keinen

Einfluss auf Q ausübt, woraus dann $\frac{\partial Q}{\partial P} = 0$ und $\delta_m = 0$ folgt.

Zieht man also bei dem in Figur 10 dargestellten Belastungsfalle (Freiträger AB mit Einzellasten $P_1, P_2, \ldots P_n$) nur den Einfluss der Schubspannungen τ in Betracht, so ergiebt sich als elastische Linie des Stabes ein geradliniges Polygon. Entsprechen den Stababschnitten $\lambda_1, \lambda_2, \ldots$ die Werthe $\varkappa_1, \varkappa_2, \ldots$ und F_1 , F_2 , ... so sind die Neigungswinkel α_1 , α_2 , α_3 ... der Polygonseiten:

$$\alpha_1 = \frac{\varkappa_1 Q_1}{GF_1}, \quad \alpha_2 = \frac{\varkappa_2 Q_2}{GF_2},$$
$$\alpha_3 = \frac{\varkappa_3 Q_3}{GF}, \quad \text{u. s. w.}$$

wo $Q_1 = P_1$, $Q_2 = P_1 + P_2$, $Q_3 = P_1 + P_2 + P_3$ u. s. w.

Der Winkel ω_2' , den die beiden Polygonseiten links und rechts von P_2 mit einander bilden, ist

(22)
$$\omega_2' = \frac{1}{G} \left(\frac{\chi_2 Q_2}{F_2} - \frac{\chi_1 Q_1}{F_1} \right).$$

Bei überall gleichem Querschnitte $(F_1 = F_2 = F_3 = \ldots = F$ und $\varkappa_1 = \varkappa_2 = \varkappa_3 = \ldots = \varkappa$) geht Gleich. (22) über in

(23)
$$\omega_2' = \frac{\varkappa}{GF} P_2$$

und es ergiebt sich hiernach ein der Last P_2 proportionaler Werth ω_2 '.

Die Verschiebung δ des Endpunktes A des Stabes wird

(24)
$$\delta = \alpha_1 \lambda_1 + \alpha_2 \lambda_2 + \ldots = \Sigma \alpha \lambda = \Sigma \frac{Q \times \lambda}{GF},$$

und bei überall gleichem Querschnitte:

Erster Abschnitt. - § 2.

(25)
$$\delta = \frac{\varkappa}{GF} \Sigma Q \lambda = \frac{\varkappa \mathfrak{F}_{\varrho}}{GF}$$

wo \mathcal{F}_{ϱ} den Inhalt der in Fig. 10 durch Schraffirung kenntlich gemachten Querkraftsfläche bedeutet.

Das eigenthümliche Ergebniss einer aus geraden Linien bestehenden elastischen Linie hat natürlich seinen Grund in der ungenauen Ermittlung der Schubspannungen in der Nähe der Lasten P; denn die Annahme, einer sprungweisen Aenderung der Schubspannungen ist nur ein Nothbehelf, geboten durch die Unmöglichkeit, den Spannungszustand an den Angriffsstellen der Lasten P schärfer zu bestimmen.

Ist die Belastung eine stetige, so wird auch die Krümmung der elastischen Linie eine stetige. An die Stelle der P treten Lasttheilchen pdx, wo p die Belastungsordinate bezeichnet. Bei überall gleichem Querschnitt geht dann Gleich. 23 über in

(26)
$$d\,\omega' = \frac{\varkappa p \, dx}{GF},$$

während sich bei veränderlichem Querschnitte aus Gleich. (22)

(27)
$$d\omega' = \frac{1}{G} \frac{d\left(\frac{\varkappa Q}{F}\right)}{dx} dx = \frac{1}{G} \left(\frac{\varkappa}{F} p + Q \frac{d\left(\frac{\varkappa}{F}\right)}{dx}\right) dx$$

ergiebt. Für den letzteren Fall empfiehlt es sich jedoch, die stetige Belastung durch nahe an einander liegende Einzellasten zu ersetzen und die Gleichung 22 anzuwenden. Den einzelnen Stabtheilchen sind konstante mittlere Werthe \times und F zuzuschreiben.

Schliesslich sei noch an die zwischen den Elasticitätsziffern G und E bestehende Beziehung

$$(28) G = \frac{mE}{2(1+m)}$$

erinnert, wo *m* die Werthziffer der Querdehnung bedeutet. Für Schweisseisen und Flusseisen ist m = 3 bis 4 also

(29)
$$G = \frac{3}{8} E \text{ bis } \frac{2}{5} E$$

§ 2.

Die Biegungslinie.

6. — Da die Biegungslinie eines steifen Stabes eine sehr flache Curve ist, so darf die Strecke, welche zwei aufeinanderfolgende Tangenten auf einer im Abstande 1 von der Berührungsstelle gezogenen Senkrechten abschneiden, gleich 1. $d\omega$ gesetzt werden, wo $d\omega$ den Contingenzwinkel bedeutet, Fig. 11. Daraus folgt aber, dass die Biegungslinie als Seillinie senkrechter Lasten $d\omega$ aufgefasst werden darf; die Polweite ist = 1 zu nehmen, oder besser = 1: ν , damit die Durchbiegungen in ν -facher Vergrösserung gewonnen werden.

Wird zunächst von dem Einflusse der Schubspannungen abgesehen, so ist nach Gleich. 9, Seite 6:

$$d\omega = \left(\frac{M}{EJ} + \varepsilon \frac{t_u - t_o}{h}\right) dx,$$

und die Biegungslinie ist dann die Seillinie einer stetigen Belastung, welche an der Stelle x die Höhe

(1)
$$z = \frac{M}{EJ} + \varepsilon \frac{t_u - t_o}{h}$$

hat.

Ist der Balkenquerschnitt konstant, so empfiehlt es sich, die Belastungshöhe

(2)
$$z = M + \varepsilon EJ \frac{t_u - t_o}{h}$$

einzuführen und die Seillinie mit der Polweite EJ(bezw. $EJ: \gamma$) zu zeichnen.

Fig. 11.

Ist dann $t_u - t_o = 0$, so wird sehr einfach z = M, d. h. die Momentenfläche wird zur Belastungsfläche der zu zeichnenden Seillinie.

Bei veränderlichem Querschnitte werden wir in der Regel die elastische Linie als Seillinie der Belastung

(3)
$$z = M \frac{J_c}{J} + \varepsilon E J_c \frac{t_u - t_o}{h}$$

deuten, wo J_c ein beliebig grosses konstantes Trägheitsmoment bedeutet. Die Polweite muss dann $= EJ_c$ (bezieh. $EJ_c: v$) genommen werden.

Ist die Seillinie gezeichnet, so müssen behufs Bestimmung der Durchbiegungen η noch zwei Bedingungen zur Festlegung der Schlusslinie A'B' gegeben sein. In Fig. 11 ist AB als ein Feld eines über mehrere Stützen gestreckten Balkens gedacht; die Stützpunkte sind in senkrechter Richtung unverschieblich angenommen und die Schlusslinie ist mit Hilfe der Bedingungen $\eta_A = 0$, $\eta_B = 0$ bestimmt worden.

7. — Soll auch der Einfluss der Schubspannungen berücksichtigt werden, so treten zu der z-Belastung (welche nach Gleich. 3 bestimmt sein möge) in den Angriffspunkten m der Lasten P_m nach Gleich. 22, Seite 13 noch die Einzelgewichte

(4)
$$w_m = \frac{EJ_c}{G} \left(\frac{\varkappa_{m+1} \ Q_{m+1}}{F_{m+1}} - \frac{\varkappa_m \ Q_m}{F_m} \right)^*$$

und zwar ist hierbei vorausgesetzt, dass eine auf den Balken etwa wirkende stetige Belastung durch eine Gruppe von Einzellasten ersetzt worden ist. Dabei sind \varkappa_m , F_m Mittelwerthe für die Strecke (m-1)-m.

Besitzt \varkappa : F für alle Querschnitte des Balkens denselben Werth — ein Fall der nicht nur bei konstantem Querschnitte, sondern auch bei Blechträgern mit überall gleichem Stehblechquerschnitte F_s vorliegt, weil bei diesen ja \varkappa : F = 1: F_s ist, Seite 11, so ist

(5)
$$w_m = \frac{\varkappa E J_c}{GF} P_m,$$

und es ergiebt sich hiernach das Zusatzgewicht w proportional den Lasten P.

Denken wir uns nun den Einfluss der Schubspannungen auf die Durchbiegungen gesondert mit Hilfe eines Seilpolygons dargestellt, welches mit der Polweite 1 zu den Gewichten $w = \frac{\varkappa P}{GF}$ gezeichnet ist und welches, auf die Schlusslinie A'B' bezogen, die Ordinate η' besitzt, so muss sich, da die Momentenlinie A''CB'' (Fig. 11) ein mit derselben Polweite 1 gezeichnetes Seilpolygon der Lasten P ist, offenbar verhalten:

$$\eta': M_{\circ} = \frac{\varkappa P}{GF}: P$$

und daraus folgt das überaus einfache Gesetz:

Der Einfluss der Schubspannungen auf die Durchbiegung ist

(6)
$$\eta' = \frac{\varkappa M_o}{GF}.$$

In der Regel wird es genügen, sich an der Hand des vorstehenden Ausdrucks, über den Einfluss der Schubspannungen auf irgend eine Ordinate der Biegungslinie (in der Nähe von η_{max}) zu unterrichten.

^{*)} Der Faktor EJ_c musste hinzugefügt werden, weil bei Anwendung der Gleich. 3 die Polweite der Biegungslinie $= EJ_c$ ist.

8. — Sind die Durchbiegungen eines Blechbalkens von veränderlichem Querschnitte für eine Reihe verschiedener Belastungsfälle darzustellen, so ist die folgende Abänderung des bisher eingeschlagenen

Weges von Vortheil. Dieselbe stützt sich auf den Satz, dass man jedes einzelne Gewicht w eines Seilpolygons durch ein kleineres w' oder ein grösseres w'' ersetzen darf, wenn man nur die Polweite H in demselben Verhältnisse verkleinert oder vergrössert. Vgl. Fig. 12, in welcher I und II zwei auf-

einander folgende Seiten eines Seilpolygons sind.

Es liege nun der Träger in Fig. 13 vor; sein Querschnitt sei sprungweise veränderlich und besitze innerhalb der Strecken AC_1 , C_1C_2 , C_2C_3 ,... die Trägheitsmomente J_1, J_2, J_3, \ldots Gesucht sei nur der Einfluss der Momente M auf die Durchbiegungen. Die Momentenfläche sei zur Belastungsfläche gewählt und so in Streifen zerlegt, dass die

Fig. 13.

Senkrechten durch die Punkte C_1, C_2, \ldots auch Grenzen von Streifen sind. Betrachtet man nun die Inhalte der Streifen als Gewichte und zeichnet man zu denselben in einander übergehende Seilpolygone, deren Polweiten bezieh. $= EJ_1, EJ_2, EJ_3 \ldots$ sind und welche bezieh. die den Theilen $AC_1, C_1C_2, C_2C_3, \ldots$ entsprechenden Streifengewichte verbinden, so erhält man ein der elastischen Linie umschriebenes Polygon; dasselbe wird häufig ein Seilpolygon mit veränderlicher Polweite genannt.

Müller-Breslau, Graphische Statik. II. 2.

Erster Abschnitt. - § 2.

Aendert sich die Belastung des Balkens, so braucht man nur die Momentenlinien neu zu zeichnen, während bei dem Verfahren nach No. 7 noch die Neuberechnung der verzerrten Momentenlinie $\left(M\frac{J_o}{J}\right)$ erforderlich ist. Den Einfluss der Schubspannungen beurtheile man für sich mittels Gleich. 6; im vorliegenden Falle ist $M_0 = M$.

Zahlenbeispiele.

a. Durchbiegung einer Blechbalkenbrücke. Fig. 14 stellt den Hauptträger einer eingleisigen Blechbalkenbrücke dar; derselbe besteht aus einem Stehbleche von 130.1,0 cm, aus Winkeleisen von

10.10.1,2 cm und aus Kopfplatten von 24,5.1,0 cm, Fig. 15. Das Trägheitsmoment des Querschnitts beträgt ohne Abzug für Schwächung durch Niete

- bei 0 Platten $J_0 = 531500 \text{ cm}^4$
- ,, 1 Platte $J_1 = 741700$,, ,, 2 Platten $J_2 = 958400$,,
- , 3 Platten $J_3 = 1181700$,

Auf den Träger wirken fünf Raddrücke von 6,5 bez. 4,5 t. Gesucht sei deren Einfluss auf die Durchbiegungen.

Zuerst wurde die Momentenlinie gezeichnet. Die Polweite beträgt H = 20 t, die grösste Ordinate ist = 3,00 m, mithin ergiebt sich

$$_{max}M = 20.3,00 = 60 \text{ tm} = 6000 \text{ tcm}$$

Nun wurde die Hälfte der Momentenfläche in 6 Streifen zerlegt und deren Inhalte zu

ermittelt. Die Polweiten dieser Streifengewichte mussten nach der Formel E.I

$$\mathfrak{H} = \frac{H\nu}{H\nu}$$

berechnet werden, weil die Ordinaten der Momentenlinie gleich den durch H dividirten Momenten sind. Das Verzerrungsverhältniss v:1 ist 150.4:1=600:1, denn der Träger ist im Massstab 1:150 gezeichnet, die Biegungslinie hingegen im Massstabe 4:1. Hiernach ergab sich, mit $E = 2000\,000$ k = 2000 t für das qcm:

$$\mathfrak{H} = \frac{2000 J}{20.600} = \frac{1}{6} J$$
 qcm

also für die Streifengewichte 1 und 2:

$$\mathfrak{H} = \frac{1}{6} \cdot 53\ 1500 = 88583\ qcm = 8,9\ qm$$

für den Streifen 3: $\mathfrak{H} = \frac{1}{6} \cdot 74, 17 = 12,4 ext{ qm}$

für den Streifen 4: $\mathfrak{H} = \frac{1}{6} \cdot 95,84 = 16,0 \text{ qm}$ für die Streifen 5 u. 6: $\mathfrak{H} = \frac{1}{6} \cdot 118,17 = 19,7 \text{ qm}.$

Wegen der symmetrischen Belastung wurde die Biegungslinie nur für die eine Hälfte des Balkens gezeichnet. Die grösste Durchbiegung ergab sich = 5,00 mm.

In Folge der Schubspannungen wächst dieser Werth um

$$\eta = \frac{\times M}{GF} = \frac{5}{2} \frac{M}{EF_s}.$$

Der Stehblechquerschnitt ist $F_s = 130$ qcm, mithin folgt

$$\eta = \frac{5}{2} \frac{6000}{2000.130} = 0.06 \text{ cm} = 0.6 \text{ mm}.$$

Der Einfluss der Schubspannungen beträgt also $12^{0}/_{0}$ des zuerst gefundenen Werthes.

Zu einer einfachen und genügend genauen Näherungsformel für die grösste Durchbiegung führt folgende Betrachtung.

Für einen gleichmässig belasteten Balken ist $M = \frac{pl}{2}x - \frac{px^2}{2}$ und, bei konstantem *J*, ohne Rücksicht auf den Einfluss der Schubspannungen:

1)
$$\delta = \frac{1}{EJ} \int_{0}^{\frac{2}{2}t} \left(\frac{pl}{2} x - \frac{px^2}{2} \right) x \, dx = \frac{5pl^4}{384EJ} = \frac{5M_{max}l^2}{48EJ}.$$

Wird der Querschnitt, bei überall gleicher Höhe, in solcher Weise veränderlich angenommen, dass die Beanspruchung σ konstant ist, so besitzt M: J einen festen Werth, und es ergiebt sich dann

(II)
$$\delta = \frac{M}{EJ} \int_{0}^{\frac{L}{2}l} x \, dx = \frac{6 M_{max} l^2}{48 EJ},$$

Fig. 16.

wo J das Trägheitsmoment des stärkst beanspruchten Querschnitts bedeutet. Beim Blechbalken mit sprungweise veränderlichem Querschnitte liegt δ zwischen den Werthen I und II und zwar etwas näher an I. Setzen wir $\frac{5,4}{48} = \frac{9}{80} = \text{rund } \frac{1}{9} \text{ statt } \frac{5}{48}$ und fügen wir noch den Einfluss der Scheerkräfte hinzu, so erhalten wir

$$\delta = \frac{M_{max} l^2}{9 EJ} + \frac{5}{2} \frac{M_{max}}{EF_s}$$

im vorliegenden Falle also

$$\delta = \frac{6000 \cdot 1340^2}{9,2000,1181700} + \frac{5}{2} \frac{6000}{2000,130} = 0,56 \text{ cm}$$

d. i. ein mit dem oben gewonnenen übereinstimmendes Ergebniss. Für die Anwendung der Näherungsformel spricht noch der Umstand, dass auch die sogenannte genauere Berechnung an Voraussetzungen gebunden ist, die nicht streng erfüllt sind.

b. Durchbiegung einer geöffneten Schwedlerschen Drehbrücke. (Tafel 1). Ist die Brücke geschlossen, so ruht jeder Hauptträger auf den Stützen A, B, C. Bei B und C werden feste Unterlagsplatten angeordnet, bei A hingegen ein bewegliches Auflager, welches gesenkt oder beseitigt werden kann, beispielsweise ein umlegbares

Die Biegungslinie.

Pendel. Soll die Brücke geöffnet werden, so wird sie bei A so weit gesenkt, dass sich die Träger bei B und C von den Lagern abheben und nur noch auf dem Drehzapfen D und einem Stützrade L ruhen. Ein Gegengewicht G am Ende A bewirkt, dass sich der Schwerpunkt der Brücke, welcher senkrecht über D angenommen werden darf, etwas

Fig. 18.

nach A hin verschiebt; dasselbe wird in der Regel so bemessen, dass das Stützrad eine Belastung von 5 t erfährt, woraus sich

$$G = 5 \frac{r}{b}$$
 Tonnen

ergiebt. Die ständige Belastung darf als gleichförmig vertheilt angesehen werden. Die Momentenfläche besteht dann bei geöffneter Brücke aus zwei Parabelflächen ADD' und CDD' (Fig. 18) von der Höhe $\frac{1}{2}gb^2$ und einem Dreieck von der Höhe Ga. Die Scheitel der Parabeln liegen bei A und C.

Die Brücke diene zur Ueberführung einer zweigleisigen Eisenbahn

und besitze zwei Hauptträger. Es sei a=13,8 m, r=3,5 m, b=17,3 m, $l_1=18,1$ m, $l_2=16,5$ m, c=0,8 m. Die Querschnittsabmessungen sind auf Taf. 1 angegeben. Hiernach sind die Stehblechabmessungen 140.1 cm bis 164.1,2 cm, die Abmessungen der Winkel 10.10.1,3 und 11.11.1,4 cm, der Kopfplatten 40.1,3 cm. Die ständige Belastung beträgt 1,3 t für das Meter Gleis. Von dem Gegendrucke 5 t des Stützrades L entfällt auf jeden Hauptträger der Betrag 2,5 t, und es ergiebt sich daher für jeden Hauptträger ein Gegengewicht

$$G = 2.5 \cdot \frac{3.5}{17.3} = 0.5 \text{ t.}$$
$$M_D = \frac{gb^2}{2} = 195 \text{ tm und}$$
$$Ga = 0.5 \cdot 13.8 = 7 \text{ tm},$$

Ferner ist

wodurch die auf Tafel I blau geränderte Momentenfläche bestimmt ist. Dieselbe ist im Massstabe 1 mm = 4,5 tm gezeichnet; ihre Ordinaten sind mit dem veränderlichen Verhältniss $J_c:J$ zu multipliciren, wo J das Trägheitsmoment des Querschnitts an der fraglichen Stelle und J_c ein beliebig grosses konstantes Trägheitsmoment bedeutet. Ueber die Werthe J giebt der schwarz geränderte Linienzug Aufschluss; es schwankt J zwischen 666386 cm⁴ und 3356824 cm⁴. Für J_c wurde der Werth 2500000 cm⁴ = 0,025 m⁴ gewählt.

Nach Gleich. 3, Seite 15, bildet $z = M \frac{J_v}{J}$ die von den Normalspannungen abhängige Belastungsordinate der Seillinie; zu derselben tritt als Einfluss der Sonnenbestrahlung der oberen Gurtung:

$$z_t = \frac{t_o - t_u}{h} \, \varepsilon \, E J_o^{*})$$

wobei *mindestens* $t_o - t_u = 10^\circ$ Cels. zu setzen ist, weshalb, wenn für *h* die Stehblechhöhe (1,40 bis 1,64 m) eingeführt und $\varepsilon = 0,000012$, $E = 20\,000\,000$ t f. d. qm, also $\varepsilon E = 240$ angenommen wird,

$$z_t = \frac{10}{1,40} \cdot 240 \cdot 0,025 = 43 \text{ tm}$$

bis $z_t = \frac{10}{1,64} \cdot 240 \cdot 0,025 = 37 \text{ tm}.$

Behufs Berücksichtigung der Schubspannungen nehmen wir, entsprechend den Einzelkräften

^{*)} Vgl. Formel (4) Seite 16. Die Vorzeichenumkehrung ist geboten, weil, entgegen der früheren Festsetzung, diejenigen Momente positiv angenommen wurden, welche in den obersten Querschnittstheilchen Zugspannungen hervorbringen.

Die Biegungslinie.

$$G = 0,5 \text{ t}, \quad L = 2,5 \text{ t}, \quad D = 2gb + G - L = \text{rund } 43 \text{ t},$$

die nach der Formel $w_m = \frac{\varkappa P}{GF} E J_c = \frac{5}{2} \frac{P J_c}{F_s}$ (wo $F_s = 0,0140$ bis 0,0164.1,2 qm) berechneten und auf Tafel 1 mit den Ziffern 1, 11, 15 bezeichneten Gewichte an:

$$w_{1} = \frac{5}{2} \cdot 0.5 \frac{0.025}{0.014} = 2 \text{ t.m}^{2*}$$

$$w_{11} = \frac{5}{2} \cdot 2.5 \frac{0.025}{0.014} = 11 \text{ t.m}^{2}$$

$$w_{15} = \frac{5}{2} \cdot 43 \frac{0.025}{0.0164 \cdot 1.2} = 138 \text{ t.m}^{2},$$

während wir als Einfluss der ständigen Belastung g = 1,3t die Lasthöhe

$$z_s = rac{5}{2} rac{g J_c}{F_s}$$
 d. i.

$$z_s = \frac{5}{2} \cdot 1,3 \frac{0,025}{0,014} = 6 \text{ tm bis } z_s = \frac{5}{2} \cdot 1,3 \frac{0,025}{0,0164 \cdot 1,2} = 4 \text{ tm}$$

in Abzug bringen. Damit ist die (roth geränderte) Belastungsfläche der als Seilpolygon darzustellenden Biegungslinie bestimmt; die Inhalte der einzelnen Streifen sind, in t.m² ausgedrückt:

No.	Inhalt	No.	Inhalt	No.	Inhalt
2	57	10	258	20	255
3	48	12	510	21	189
4	84	13	82	22	171
5	102	14	86	23	123
6	149	16	153	24	60
7	194	17	98	25	73
8	209	18	347	26	52
9	223	19	359	27	62
8 9	209 223	18 19	347 359	26 27	52 62

Der Längenmassstab der Trägerzeichnung ist 1:240, während die Durchbiegungen im Massstabe 2:3 dargestellt sind. Daher ist

$$v = 240 \cdot \frac{2}{3} = 160$$

und die Polweite

$$H = \frac{EJ_{e}}{\gamma} = \frac{20\,000\,000\,.\,0,025}{160} = 3125\,\mathrm{t.m}^{2}.$$

*) Dieses Gewicht konnte seiner Kleinheit wegen nicht aufgetragen werden.

Erster Abschnitt. - § 2.

Zu beachten ist noch, dass die Gegendrücke von Drehzapfen und Stützrad nicht unmittelbar an den Hauptträgern angreifen, sondern zunächst auf elastische Zwischenträger wirken. Der Zapfenträger EF(vergl. die den Grundriss des mittleren Theils der Brücke darstellende Fig. 23) habe eine Stützweite von 100 cm und sein Querschnitt ein Trägheitsmoment von 200000 cm⁴; seine Durchbiegung beträgt nach

der für den Belastungsfall in Fig. 24 gültigen Formel

$$\delta = \frac{1}{3} \frac{Da^3}{EJ}, \text{ mit } D = 43 \text{ t},$$

$$\delta' = \frac{1}{3} \frac{43 \cdot 50^3}{2000 \cdot 200000} \text{ cm},$$

während sich für die den Zapfenträger aufnehmenden Querträger, deren beide Querschnitte zusammen $J = 1750\,000 \text{ cm}^4$ haben mögen

$$\delta'' = \frac{1}{3} \cdot \frac{43.250^3}{2000.1750000} \text{ cm}$$

ergiebt. Man findet $\delta' + \delta'' = 0,7$ mm; und um diese Strecke liegt der Stützpunkt D in Fig. 21 (Tafel 1) oberhalb der dort gezeichneten elastischen Linie des Hauptträgers.

Der Gegendruck des Stützrades wird hauptsächlich von dem dicht neben diesem Rade gelegenen Querträger aufgenommen. Mit $J = 400\,000 \text{ cm}^4$ erhält man

$$\delta''' = \frac{1}{3} \frac{2.5 \cdot 250^3}{2\,000 \cdot 400\,000} = 0,016 \text{ cm} = 0,2 \text{ mm.*})$$

Bedeutet nun bei geschlossener aber unbelasteter Brücke (Fig. 19) y_d den Abstand von Unterkante Zapfen bis Oberkante Spurlager, y_l ,, ,, Stützrad,, ,, Schiene,

*) Dieser Werth ist meistens vernachlässigbar.
Der an beiden Enden eingespannte gerade Stab.

 y_{d}' die Durchbiegung an der Stelle D in Folge des Eigengewichts, y_{l}' desgl. an der Stelle L^{*})

und nimmt man '

$$y_a + y_a' = 1,3 \text{ mm}$$

 $y_i + y_i' = 18 \text{ mm}$

an, so erhält man die in Fig. 21 eingezeichnete Lage der Stützpunkte A, B, C gegen die Biegungslinie der geöffneten Brücke und erkennt, dass sich beim Senken des Auflagers A der Träger vom Auflager Bum 1,0 mm abhebt, vom Auflager C um 19 mm. Dies genügt für das Ausschwenken der Brücke. Bei A findet eine Senkung um 120 mm statt, und es muss daher die Vorrichtung zum Heben und Senken mindestens einen Hub von 120 mm erhalten. Damit aber auch bei A ein Spielraum bleibe, empfiehlt es sich, den Hub bis auf etwa 125 mm zu vergrössern.

§ 3.

Der an beiden Enden eingespannte gerade Stab.

9. — Die Untersuchung eines an beiden Enden eingespannten geraden Stabes leiten wir durch die Lösung der folgenden, auch für andere Untersuchungen wichtigen Aufgabe ein. Ein frei auf zwei Stützen ruhender wagerechter Stab AB von überall gleichem Querschnitte sei mit lothrechten Kräften P belastet. Ausserdem mögen an den Stabenden Kräftepaare angreifen, deren Momente gleich M_A und M_B sind. Es sollen die Neigungswinkel α' und α'' der Endtangenten der elastischen Linie berechnet werden. Fig. 25.

Ist ACB ein mit der Polweite 1 gezeichnetes Seilpolygon der Lasten P, so ist die schraffirte Fläche ACB die Momentenfläche eines einfachen Balkens AB, der nur von den Lasten P beansprucht wird, an dessen Enden also die Biegungsmomente gleich Null sind. Treten nun die Momente M_A und M_B hinzu, so ist die Schlusslinie AB durch die Schlusslinie A'B' zu ersetzen, und letztere ist bestimmt durch $\overline{AA'} = M_A$, $\overline{BB'} = M_B$. Dem Balkenquerschnitt C entspricht dann das Biegungsmoment $M = \overline{CC'}$.

Die schraffirte Fläche in Fig. 27 pflegt man die einfache Momentenfläche des Balkens AB zu nennen; ist ihre Ordinate an der Stelle x

^{*)} Die Durchbiegungen y'_a , y'_i müssen natürlich mittels einer besonderen Untersuchung festgestellt werden; sie betragen im vorliegenden Falle 0,2 mm bezieh. 1,2 mm.

gleich M_0 , so erhält man

(1)
$$M = M_0 + \frac{\delta}{k}M' = \frac{1}{2}M_0 + M_A \frac{x}{l} + M_B \frac{x}{l}.$$

In ähnlicher Weise mögen auch die Auflagerwiderstände A_a und Bdurch die Endmomente M_A , M_B und durch die dem Falle $M_A = 0$, $M_B = 0$ entsprechenden Widerstände A_0 , B_0 (Fig. 28) ausgedrückt

werden. Dazu beachte man, dass die Endmomente für sich allein zwei entgegengesetzt gleiche Stützenwiderstände A' (Fig. 29) hervorrufen, welche durch die Gleichgewichtsbedingung

gegeben sind. Man gelangt dann zu den Formeln:

Der an beiden Enden eingespannte gerade Stab.

$$\begin{cases} A = A_0 + \frac{M_B - M_A}{l} \\ B = B_0 + \frac{M_A - M_B}{l} \end{cases}$$

und erkennt auch ohne weiteres, dass für die Querkraft an irgend einer Stelle die Gleichung

$$(4) \qquad \qquad Q = Q_0 + \frac{M_B - M_A}{l}$$

(3)

gilt, wobei Q_0 die Querkraft für den Fall $M_A = 0$, $M_B = 0$ bedeutet. Die Q_0 -Fläche (auch *einfache Querkraftsfläche* genannt) ist in der Figur 28 dargestellt worden.

Behufs Ermittlung der gesuchten Winkel α'' , α' bestimmen wir die von den Endtangenten der elastischen Linie auf den Senkrechten durch A und B abgeschnittenen Strecken $\delta'' = \alpha'' l$ und $\delta' = \alpha' l$ (Figur 26) mit Hilfe der im § 1 abgeleiteten Formeln 11 und 25 und finden, wenn wir die statischen Momente der Momentenfläche A'ACBB' (Fig. 7) in Bezug die auf linke und rechte Auflagersenkrechte mit \mathfrak{L} bezw. \mathfrak{R} bezeichnen und eine ungleichmässige Erwärmung des Balkens in Betracht ziehen, die Gleichungen:

(5)
$$\begin{cases} \alpha'' l = \frac{\mathfrak{L}}{EJ} + \mathfrak{c}(t_u - t_o) \frac{l^2}{2h} + \frac{\mathfrak{K}\mathfrak{F}_{Q}}{GF} \\ \alpha' l = \frac{\mathfrak{R}}{EJ} + \mathfrak{c}(t_u - t_o) \frac{l^2}{2h} - \frac{\mathfrak{K}\mathfrak{F}_{Q}}{GF} \end{cases}$$

wo \mathfrak{F}_{ϱ} den Inhalt der Querkraftsfläche bedeutet. Das Minuszeichen des letzten Gliedes von $\alpha'l$ ergiebt sich aus der auf Seite 4 gemachten Festsetzung, dass die Querkraft ϱ als Mittelkraft der rechts vom fraglichen Querschnitt wirkenden äusseren Kräfte in entgegengesetzter Richtung positiv gezählt wird, wie als Mittelkraft der äusseren Kräfte links vom Querschnitte.

Nun besteht die Momentenfläche A'ACBB' aus dem Trapez A'ABB'und aus der einfachen Momentenfläche ACB. Das statische Moment der letzteren, bezogen auf die Senkrechte AA' sei gleich \mathfrak{L}_0 und bezogen auf die Senkrechte BB' gleich \mathfrak{R}_0 . Dann findet man nach Zerlegung des Trapezes in zwei Dreiecke:

(6)
$$\begin{cases} \mathfrak{L} = \mathfrak{L}_0 + \frac{M_A l}{2} \cdot \frac{l}{3} + \frac{M_B l}{2} \cdot \frac{2l}{3} \\ \mathfrak{R} = \mathfrak{R}_0 + \frac{M_A l}{2} \cdot \frac{2l}{3} + \frac{M_B l}{2} \cdot \frac{l}{3}. \end{cases}$$

Die Querkraftsfläche setzt sich zusammen aus der einfachen Querkraftsfläche (Fig. 28), deren Inhalt $\mathfrak{F} = A_0 l_1 - P_1 b_1 - P_2 b_2 \dots - P_n b_n = 0$ ist und aus einem Rechteck (Fig. 29) von den Abmessungen $A' = \frac{1}{l} (M_B - M_A)$ und l, weshalb sich

$$\mathfrak{F}_Q = M_B - M_A$$

ergiebt.

Die Einführung dieser Werthe in die Gleichung 5 führt zu den Formeln

(7)
$$\begin{cases} EJ\alpha'' = \frac{\Omega_0}{l} + \frac{1}{6} (M_A + 2M_B)l + \varkappa \frac{EJ}{GFl} (M_B - M_A) + (t_u - t_o) \frac{l}{2h} \varepsilon EJ \\ EJ\alpha' = \frac{\Re_0}{l} + \frac{1}{6} (M_B + 2M_A)l + \varkappa \frac{EJ}{GFl} (M_A - M_B) + (t_u - t_o) \frac{l}{2h} \varepsilon EJ; \end{cases}$$

dieselben lassen sich aber noch wie folgt vereinfachen. Die durch die Endmomente M_A und M_B bestimmte Gerade A'B'deren Neigungswinkel β sein möge, Fig. 30, schneidet auf den *Drittelsenkrechten* (das sind die Senkrechten, welche die Stützweite l in drei gleiche Theile zerlegen) die Strecken

$$\overline{JJ'} = rac{1}{3} \left(M_{\scriptscriptstyle B} + 2 \, M_{\scriptscriptstyle A}
ight) \, ext{bezw.}$$

$$\overline{KK'} = \frac{1}{3} \left(M_{A} + 2 M_{B} \right)$$

ab, und auf den Senkrechten (y') und (y'') im Abstande

(8)
$$c = \frac{l}{3} - 2 \varkappa \frac{EJ}{GFl}$$

von A bezw. B die Strecken:

(9)
$$\begin{cases} Y' = \overline{JJ'} - 2 \times \frac{EJ}{GFl} \operatorname{tg} \beta = \frac{1}{3} (M_B + 2M_A) - 2 \times \frac{EJ}{GFl^2} (M_B - M_A) \\ Y'' = \overline{KK'} + 2 \times \frac{EJ}{GFl} \operatorname{tg} \beta = \frac{1}{3} (M_A + 2M_B) + 2 \times \frac{EJ}{GFl^2} (M_B - M_A). \end{cases}$$

Daraus folgt aber, dass die Gleichungen 7 auch geschrieben werden dürfen:

Der an beiden Enden eingespannte gerade Stab.

(10)

$$\begin{cases} EJ\alpha'' = \frac{1}{2} Y''l + \frac{\mathfrak{L}_0}{l} + (t_u - t_o) \frac{l}{2h} \varepsilon EJ \\ EJ\alpha' = \frac{1}{2} Y'l + \frac{\mathfrak{R}_0}{l} + (t_u - t_o) \frac{l}{2h} \varepsilon EJ. \end{cases}$$

Diese Fassung erweist sich namentlich dann als sehr nützlich, wenn die im Vorstehenden behandelte Aufgabe umgekehrt wird, wenn also die Winkel α'' und α' gegeben sind und die Momente M_A und M_B gesucht werden, ein Fall

der vorliegt, sobald ein an beiden Enden eingespannter ursprünglich wagerechter Stab zu untersuchen ist, dessen Enden sich infolge der Nachgiebigkeit der Widerlager um die durch Beobachtung gefundenen Winkel α' , α'' gedreht haben (Fig. 31). Man berechne dann mittels der Gleichungen 10 die Momente Y', Y''

und lege mit deren Hilfe die Schlusslinie A'B' fest. Fig. 31 setzt negative Y', Y'' voraus.

Besonders wichtig aber sind die Gleichungen 10 für Balken auf mehreren Stützen, da sich die einzelnen Theile AB (Fig. 32) als beiderseits unter gewissen Winkeln α' und α'' eingespannte Stäbe auf-

fassen lassen. Die Beziehungen, welche zwischen diesen Winkeln und den Stützenmomenten bestehen, führen zur Bestimmung der letzteren. Ehe wir auf die Lösung dieser Aufgabe näher eingehen, zeigen wir noch die Ermittlung der statischen Momente \mathfrak{L}_0 und \mathfrak{R}_0 . a. Den Einfluss einer gleichmässigen Belastung g f. d. Längeneinheit findet man am schnellsten durch Rechnung. Die einfache Momentenlinie ist eine Parabel vom Pfeile

 $\frac{1}{8}gl^2$, Fig. 33. Der Inhalt der Parabelfläche ist $\frac{1}{8}gl^2 \cdot \frac{2}{3}l$, mithin ergiebt sich

(11)
$$\mathfrak{L}_0 = \mathfrak{R}_0 = \frac{1}{8} g l^2 \cdot \frac{2}{3} l \cdot \frac{l}{2} = \frac{g l}{24}.$$

b. Einfluss einer Einzellast. Die einfache Momentenfläche ist ein Dreieck ABC,

Fig. 34, dessen Seiten auf den Senkrechten durch A bez. B die Momente $\overline{AJ} = P\xi$ und $\overline{BJ'} = P\xi'$ abschneiden. Betrachtet man ABC als den Unterschied der Dreiecke ABJ' und BCJ' so findet man

(12)
$$\Re_0 = P\xi' \frac{l}{2} \frac{l}{3} - P\xi' \frac{\xi'}{2} \frac{\xi'}{3} = \frac{Pl^3}{6} \left(\frac{\xi'}{l} - \frac{\xi'^3}{l^3}\right)$$

Fig. 34.

Fig. 35.

und ganz ebenso erhält man

(13)
$$\mathfrak{L}_{0} = \frac{Pl^{3}}{6} \left(\frac{\xi}{l} - \frac{\xi^{3}}{l^{3}} \right).$$

Zeichnet man also eine cubische Parabel, deren Gleichung

(14)
$$\eta_R = \frac{l}{3} \left(\frac{\xi'}{l} - \frac{\xi'^3}{l^3} \right)$$

ist, so findet man den Einfluss einer Gruppe von Einzellasten auf das statische Moment \Re_0 :

(15)
$$\Re_0 = \frac{1}{2} l^2 \Sigma P \eta_R.$$

Diese cubische Parabel, welche wir die η_R -Linie nennen wollen, wird wie folgt erhalten. Man mache,

Figur 35, $A'E = \frac{1}{3}l$, ziehe EB',

errichte an der Stelle ξ auf A'B' ein Loth C'G, ziehe $C'D \parallel B'E$, bestimme den Schnittpunkt F der Geraden DB' und C'G, ziehe $FH \parallel B'E$ und verbinde H mit B'. Die Gerade HB' schneidet dann die C'G in einem Punkte K der gesuchten cubischen Parabel. Das Spiegelbild der

Der an beiden Enden eingespannte gerade Stab.

 η_R -Linie, die η_L -Linie, liefert:

(16) $\mathfrak{L}_0 = \frac{1}{2} l^2 \Sigma P \eta_L.$

Beispiel. Für einen beiderseits wagerecht eingespannten Balken mit starren Widerlagern würde sich, wegen $\alpha' = 0$ und $\alpha'' = 0$ ergeben:

$$0 = \frac{1}{2} Y'' l + \frac{gl^3}{24} + \frac{1}{2} l \Sigma P \eta_L + (t_u - t_o) \frac{l}{2h} \varepsilon E J$$
$$0 = \frac{1}{2} Y' l + \frac{gl^3}{24} + \frac{1}{2} l \Sigma P \eta_R + (t_u - t_o) \frac{l}{2h} \varepsilon E J$$

und hieraus findet man - gesondert -

Die η_L -Linie ist also die Einflusslinie für Y'', die η_R -Linie die Einflusslinie für Y'.

Noch sei hervorgehoben, dass der Einfluss der Schubspannungen auf die statisch nicht bestimmbaren Grössen Y', Y'' stets unbedeutend ist und vernachlässigt werden darf. Es verschwindet dann in Gleich. 8 das von \varkappa abhängige Glied, und man findet

$$c = \frac{1}{3} l.$$

An Stelle der Senkrechten y', y'' in Fig. 30 treten die Drittelsenkrechten. — Eine wesentliche Erschwerung erfährt allerdings, bei der von uns gewählten Entwicklung, die Lösung der Aufgabe durch die Berücksichtigung der Schubspannungen nicht.

II. Abschnitt.

Der Balken auf mehreren Stützen.

§ 4.

Balken mit beliebig vielen Stützpunkten, deren Verschiebungen gegeben sind.

10. Allgemeines Verfahren. Die allgemeine Untersuchung eines auf mehreren Stützpunkten ruhenden, nirgends durch ein Gelenk unterbrochenen Balkens (Fig. 36) ist bereits in der ersten Abtheilung dieses Bandes (§ 14) durchgeführt worden. Die dort entwickelten Gesetze

gelten sowohl für das Fachwerk als auch für den vollwandigen Träger; es bleibt nur noch einiges über die den Belastungszuständen $\dots M_{r-1} = -1$,

 $M_r = -1, M_{r+1} = -1,$... entprechenden Bie-

gungslinien nachzutragen.

Wir betrachteten zwei aufeinanderfolgende Oeffnungen l_r , l_{r+1} , Fig. 37, zeichneten die Momentenfläche für den Zustand $M_r = -1$, d. i. ein Dreieck *ABC*, dessen Höhe absolut genommen gleich 1 ist, und ermittelten die zugehörige Biegungslinie (r-1)', r', (r+1)'. Sodann bestimmten wir die lediglich von Temperaturänderungen (z. B. Sonnenbestrahlung der oberen Gurtung) herrührende Biegungslinie (r-1)'' r'' (r+1'') und fanden zwischen den Stützenmomenten M_{r-1} , M_r , M_{r+1} die Beziehung

(1)
$$M_{r-1} \frac{d_r}{l_r} + M_r \left(\frac{c_r}{l_r} + \frac{c_r}{l_{r+1}} \right) + M_{r+1} \frac{d_{r+1}}{l_{r+1}} = N_r$$
, wo

(2)
$$N_r = -\left\{ \sum P_m \delta_{mr} + \frac{l_r + l_{r+1}}{l_r l_{r+1}} (\delta_r + c_{ri}) \right\}.$$

Die Bedeutung von d_r , d_{r+1} , c_r , c_{rt} , δ_{mr} ist aus der Figur 37 ersichtlich; δ_r ist die in Folge Nachgiebigkeit der Widerlager etwa verursachte, und als gegeben (z. B. durch Beobachtung gefunden) vorausgesetzte, nach oben positiv genommene lothrechte Verschiebung des Stütz-

punktes r gegen die Punkte (r-1) und (r+1) (Fig. 36). Auf das Glied $\Sigma P_m \delta_{mr}$, sind nur die zwischen (r-1) und (r+1) aufgebrachten Lasten von Einfluss. Sind also die beiden Oeffnungen l_r und l_{r+1} unbelastet, so wird $\Sigma P_m \delta_{mr} = 0.$

Bei Aufzeichnung der Biegungslinie (r-1)' r'(r+1)' darf der Einfluss der Schubspannungen stets vernachlässigt werden. Es ist diese Linie dann das Seilpolygon einer stetigen Belastung, welche an irgend einer Stelle x die Höhe $z = \frac{y}{EJ}$ hat, wenn y die Höhe des Momentendreiecks ACB an der fraglichen

Fig. 37.

Stelle bezeichnet. Die Polweite ist gleich 1. Wählt man nun die Polweite $= w_F$, giebt dem Momentendreieck ACB die beliebig grosse, aber für alle Stützpunkte gleiche Höhe y_c und setzt man schliesslich $z = y \frac{J_c}{J}$ statt $z = \frac{y}{EJ}$, wo J_c ein beliebiges konstantes Querschnitts-Trägheitsmoment ist, so muss man die Werthe d, c und δ_{mr} noch mit $w_F: EJ_c y_c$ multipliciren, oder — was auf dasselbe hinauskommt — das Glied $\delta_r + c_{rt}$ durch jenen Ausdruck dividiren. Man erhält dann

(3)
$$N_r = -\left\{ \sum P_m \delta_{mr} + \frac{E J_o(l_r + l_{r+1}) y_o}{w_P l_r l_{r+1}} \left(\delta_r + c_{rl} \right) \right\}.$$

Drückt man die Inhalte w der Streifen, in welche die Belastungsfläche zerlegt werden muss, in qm aus, so muss man auch w_P in qm

Müller-Breslau, Graphische Statik. II. 2.

und EJ_c in tm² ausdrücken.^{*}) Man erhält dann $\frac{EJ_c}{w_P}$ in Tonnen. Die Höhe y_c wird mit dem Längenmaassstabe der Träger-Zeichnung gemessen. Haben sämmtliche Streifen dieselbe Breite λ , so nehme man die mittleren Höhen der Streifen als Gewichte w an und drücke die Polweite w_P in Metern aus. An die Stelle von $EJ_c: w_P$ tritt dann in Gleich. 3 der Ausdruck $EJ_c: w_P \lambda$.

Behufs Ermittlung von c_{rt} betrachte man die Biegungslinie (r-1)''r'' (r+1)'' als die mit der Polweite 1 gezeichnete Seillinie einer stetigen Belastung

(4)
$$z_t = \frac{\varepsilon(t_o - t_u)}{h},$$

wo h die Höhe des Balkens bedeutet. Es ist stets zulässig, für h einen konstanten Mittelwerth einzuführen. Dann ist die fragliche Biegungslinie eine Parabel, und man erhält

(5)
$$c_{rt} = \frac{\varepsilon(t_o - t_u)l_r l_{r+1}}{2h}$$

Bleiben Verschiebungen der Stützpunkte und Temperaturänderungen unberücksichtigt, so ist $N_r = -\sum P_m \delta_{mr}$ und man hat lediglich darauf zu achten, dass sämmtliche Momentendreiecke dieselbe Höhe y_c erhalten und alle Seillinien mit derselben Polweite w_p gezeichnet werden.

Die weitere Behandlung der Aufgabe erfolgt nach No. 131 und 132 von Abtheilung 1.

11. Für den besonderen Fall eines überall gleichen Trägerquerschnitts^{**}) möge noch ein anderes, von den im § 3 für den beiderseits eingespannten Balken gefundenen Gesetzen ausgehendes Verfahren zur Ermittlung der Stützenmomente angegeben werden. Der Einfluss der Schubspannungen werde wie vorhin vernachlässigt.

Fig. 38 stellt die durch Schraffirung kenntlich gemachte Momentenfläche für zwei aufeinander folgende Oeffnungen l_r , l_{r+1} dar; sie ist bestimmt durch die Stützenmomente M_{r-1} , M_r , M_{r+1} , welche hier negativ vorausgesetzt und oberhalb der Achse (r-1) r (r+1) aufgetragen wurden, und durch die einfachen Momentenlinien AHB, BKC. Die M_0 sind bei abwärts gerichteten Lasten positiv und wurden ebenfalls

*) Zur Kräfteeinheit wählen wir die Tonne. Dann besitzt EJ_c die Einheit $\frac{t}{m^2} \cdot m^4 = t m^2$.

**) Die Annahme eines überall gleichen Querschnitts ist fast ausnahmslos zulässig.

Balken mit beliebig vielen Stützpunkten.

nach oben hin abgesetzt, so dass sich die Momentenfläche des durchgehenden Balkens als der Unterschied der einfachen Momentenflächen und der Trapeze AA'B'B und BB'C'C ergiebt. Das statische Moment der einfachen Momentenfläche AHBA in Bezug auf die Senkrechte durch (r-1) sei \mathfrak{L}_{or} , dasjenige der Fläche BKCB in Bezug auf die Senkrechte durch (r+1) sei $\mathfrak{R}_{o(r+1)}$.

Für die Geraden A'B' und B'C' führen wir in der Folge die Bezeichnungen g_r und g_{r+1} ein und den von sämmtlichen Geraden ggebildeten Linienzug, dessen den Stützpunkten entsprechende Ordinaten gleich den Stützenmomenten sind, nennen wir der Kürze wegen das M-Polygon.

Ist nun A'C' in Fig. 39 die in r an die elastische Linie gelegte Tangente, so erhält man mit den in die Figur eingetragenen Bezeichnungen:

$$\delta_{r} = \frac{\delta' l_{r} + \delta'' l_{r+1}}{l_{r} + l_{r+1}}, \text{ woraus}$$

$$\frac{\delta''}{l_{r}} + \frac{\delta'}{l_{r+1}} = \delta_{r} \frac{l_{r} + l_{r+1}}{l_{r} l_{r+1}} \text{ oder}$$

$$\alpha_{r}'' + \alpha'_{r+1} = \delta_{r} \frac{l_{r} + l_{r+1}}{l_{r} l_{r+1}}.$$

3*

Nun ist aber nach Seite 29, Gleich. 10:

$$-EJ\alpha_{r}'' = \frac{1}{2} Y_{r}''l_{r} + \frac{\mathfrak{L}_{or}}{l_{r}} + (t_{u} - t_{o})\frac{l_{r}}{2h}\varepsilon EJ -EJ\alpha_{r+1}' = \frac{1}{2} Y_{r+1}'l_{r+1} + \frac{\mathfrak{R}_{o(r+1)}}{l_{r+1}} + (t_{u} - t_{o})\frac{l_{r+1}}{2h}\varepsilon EJ$$

wobei Y'_{r} und Y'_{r+1} die von den Geraden g_r , g_{r+1} auf den dem Stützpunkte r benachbarten Drittelsenkrechten d'_{r} , d'_{r+1} abgeschnittenen Ordinaten des *M*-Polygons bedeuten, Fig. 40. Es ergiebt sich mithin:

(6)
$$Y_{r}''l_{r} + Y_{r+1}'l_{r+1} = -\frac{2\mathfrak{D}_{or}}{l_{r}} - \frac{2\mathfrak{R}_{o(r+1)}}{l_{r+1}} - \varepsilon EJ(t_{u} - t_{o})\frac{l_{r} + l_{r+1}}{h} - 2 EJ\delta_{r}\frac{l_{r} + l_{r+1}}{l_{r}l_{r+1}}$$

oder wegen

$$Y_{r}'' = \frac{1}{3} M_{r-1} + \frac{2}{3} M_{r}, \quad Y_{r+1}' = \frac{2}{3} M_{r} + \frac{1}{3} M_{r+1}$$

$$M_{r-1}l_{r} + 2 M_{r}(l_{r} + l_{r+1}) + M_{r+1}l_{r+1} = N_{r},$$

(7) wobei

(8)
$$N_{r} = -\left\{ 6\left(\frac{\mathfrak{L}_{or}}{l_{r}} + \frac{\mathfrak{R}_{o(r+1)}}{l_{r+1}}\right) + 6EJ\delta_{r}\frac{l_{r}+l_{r+1}}{l_{r}l_{r+1}} + 3\varepsilon EJ(t_{u}-t_{o})\frac{l_{r}+l_{r+1}}{h} \right\}.$$

Fig. 40.

Die Gleichung (7) nennen wir die verallgemeinerte Clapeyronsche Gleichung, weil Clapeyron der erste war, welcher die Elasticitätsbedingungen durchgehender Balken auf diese Form gebracht hat. Das Glied N_r möge das Belastungsglied der Clapeyronschen Gleichung heissen.

Balken mit beliebig vielen Stützpunkten.

Behufs Herleitung eines zeichnerischen Verfahrens knüpfen wir zunächst an die Gleichung 6 an. Es schneidet nämlich die Verbindungslinie U'W' der Endpunkte der Ordinaten Y''_r , Y'_{r+1} (Fig. 40) auf einer Lothrechten v_r , die von d''_r den Abstand $\frac{1}{3} l_{r+1}$ und von d'_{r+1} den Abstand $\frac{1}{3} l_r$ hat und den Namen verschränkte Stützensenkrechte führt, die Strecke

$$\overline{EE'} = \frac{Y_r'' l_r + Y_{r+1}' l_{r+1}}{l_r + l_{r+1}}$$

ab. Bezeichnet man diese Strecke mit T_r , so findet man mit Rücksicht auf Gleich. 6:

(9)
$$T_r = -\frac{2}{l_r + l_{r+1}} \left(\frac{\mathfrak{L}_{or}}{l_r} + \frac{\mathfrak{R}_{o(r+1)}}{l_{r+1}} \right) - \frac{2 E J \delta_r}{l_r l_{r+1}} - \frac{\varepsilon E J (t_u - t_o)}{h} = \frac{N_r}{3 (l_r + l_{r+1})}.$$

Hiernach ist T_r ein von der Belastung, der Stützenverschiebung δ_r und dem Temperaturunterschiede $t_u - t_o$ abhängiger gegebener Werth, welcher in der Regel negativ ist und dann auf der Senkrechten v_r oberhalb der Achse (r-1) r (r+1) abzutragen ist.

Ein ähnliches Gesetz fanden wir in No. 132 (Seite 357) der Abtheilung 1; dasselbe führte zu einer einfachen Lösung der Aufgabe:

Gegeben ein Punkt L'_r der Geraden g_r , gesucht ein Punkt L'_{r+1} der Geraden g_{r+1} , Fig. 41.

Man bestimmt den senkrecht unter L_r gelegenen Punkt der Achse ABC, zieht durch L_r die beliebige Gerade g'_r , welche die Senkrechten d''_r und B'B bezw. in U'' und B'' schneidet, legt hierauf durch U''und E_r eine Gerade, welche d'_{r+1} in W''trifft und verbindet W''mit B''. Der Punkt L_{r+1} , in welchem die Achse ABC von der

Geraden W''B'' geschnitten wird, liegt dann lothrecht unter L'_{r+1} .

Da nun weiter die drei Punkte L'_r , E'_r und L'_{r+1} in einer Geraden liegen müssen, so ist die Lage des Punktes L'_{r+1} bestimmt und damit die gestellte Aufgabe gelöst.

Mit Hilfe der vorstehenden Entwicklungen ist man im Stande, das M-Polygon zu zeichnen, sobald zwei Punkte desselben gegeben sind.

Sind z. B. die Punkte L_1' und R_4' in Fig. 42 Punkte des *M*-Polygons des Balkens 0—4, so folgert' man aus der Lage des Punktes L_1 in der beschriebenen Weise die Lage von L_2 , hierauf die von L_3 und L_4 und zeichnet den Linienzug $L_1'L_2'L_3'L_4'$, dessen Seiten auf

Fig. 43.

den verschränkten Stützen-Senkrechten v_1 , v_2 , v_3 die gegebenen Strecken T_1 , T_2 , T_3 abschneiden. Nun legt man durch L_4' und R_4' die Gerade g_4 und durch die Punkte L_3' , L_2' , L_1' die übrigen Seiten des gesuchten, in der Figur durch Schraffirung hervorgehobenen *M*-Polygons.

Um eine scharfe Zeichnungsprobe zu erhalten, wiederhole man das beschriebene Verfahren in der Weise, dass man nicht von L_1 , sondern dem in der letzten Oeffnung gegebenen Punkte R_4 ausgeht, in den vorhergehenden Oeffnungen Punkte R_3 , R_2 , R_1 bestimmt — und zwar auf dieselbe Weise wie vorhin die Punkte L_2 , L_3 , L_4 — hierauf durch die Endpunkte der Ordinaten T_3 , T_2 , T_1 den Linienzug $R_4'R_3'R_2'R_1'$

Balken mit beliebig vielen Stützpunkten.

führt, dessen Ecken R_4' , R_3' , R_2' , R_1' lothrecht über den entsprechenden Punkten R liegen und endlich g_1 durch L_1' und R_1' legt.

Schliesslich sei noch hervorgehoben, dass die Punkte L und R mit den in No. 131 (Seite 352) der Abtheilung 1 eingeführten Festpunkten übereinstimmen. Ferner sei darauf hingewiesen, dass die Gleich. 7 die Form $\alpha_r M_{r-1} + \beta_r M_r + \alpha_{r+1} M_{r+1} = N_r$

besitzt und dass sich daher die Ermittlung der Stützenmomente auch nach dem in No. 132 (Seite 357) der Abtheilung 1 gegebenen Verfahren (mit Hilfe von Lothrechten I_r , II_r an Stelle von d_r'' , v_r , d'_{r+1}) durchführen lässt.

Die beiden wichtigsten Sonderfälle sind:

I. Der Balken liegt überall frei auf. Vergl. Fig. 44, in welcher der allgemeinere Fall eines über die Endstützen ragenden Balkens angenommen wurde. $\Sigma' P$

genommen wurde. ΔT und $\Sigma''P$ seien die Mittelkräfte der auf den überragenden Enden ruhenden Lasten, ihre Abstände von den Stützen 0 bezw. *n* seien *e* bezw. *c*. Dann sind die äussersten Stützenmomente:

$$M_{o} = -e\Sigma'P; \quad M_{n} = -c\Sigma''P;$$

es liegen also die von vornherein bekannten Punkte L_1' und R_n' des *M*-Polygons über den Stützpunkten 0 und *n*.

II. Der Balken ist an den Enden unter den gegebenen Winkeln α_{\circ} und α_{n} gegen die Wagerechte eingespannt.

Bezeichnet man mit δ_o die senkrechte Verschiebung des Stützpunktes 0 gegen den Stützpunkt 1, Fig. 45, so ist

Zweiter Abschnitt. - § 4.

$$o_o + l_1 \alpha_o = l_1 \alpha_1 \quad \text{und}$$
$$EJ\alpha_1' = \frac{1}{2} Y' l_1 + \frac{\Re_{o1}}{l_1} + (t_u - t_o) \frac{l_1}{2h} \varepsilon EJ,$$

weshalb sich ergiebt:

(10)
$$\begin{cases} Y_{1}' = T_{1}, \text{ wo} \\ T_{1} = -\frac{2 \Re_{o1}}{l_{1}^{2}} - \varepsilon EJ \frac{t_{u} - t_{o}}{h} + \frac{2 EJ(\delta_{o} + l_{1}\alpha_{o})}{l_{1}^{2}}. \end{cases}$$

Hiernach ist in der ersten Oeffnung der Schnittpunkt L_1' des *M*-Polygons mit der linken Drittelsenkrechten von vornherein bekannt, und in gleicher Weise kann man im n^{ten} Felde einen Punkt R'_n der g_n bestimmen, indem man im Abstande $\frac{1}{3} l_n$ von n die Ordinate

$$\overline{R_n R_n'} = T_n = -\frac{2\mathfrak{Q}_{on}}{l_n^2} - \varepsilon EJ \frac{t_u - t_o}{h} + \frac{2EJ(\delta_n + l_n\alpha_n)}{l_n^2}$$

errichtet. Durch die Punkte L_1' und R_n' und die Momente T ist aber das M-Polygon gegeben.

Die Gleichungen 10 lassen sich auch auf die Form bringen:

(11)
$$\begin{cases} (2M_0 + M_1)l_1 = N_1, \text{ wo} \\ N_1 = -\frac{6\Re_{o_1}}{l_1} - 3EJ\frac{t_u - t_o}{h}l_1 + \frac{6EJ(\delta_1 + l_1\alpha_o)}{l_1} \end{cases}$$

12. Einflusslinien für den Balken mit überall gleichem Querschnitt. Wir setzen jetzt voraus, es seien die Festpunkte L und R auf die beschriebene Weise gefunden und verfolgen den Einfluss einer über irgend einer Oeffnung l_r aufgebrachten Belastung; die übrigen Oeffnungen seien unbelastet. Durch den Punkt L sei l_r in die Strecken a_r und b_r zerlegt, durch R in die Strecken a_r' und b_r' , Fig. 46. Setzt man dann zur Abkürzung

(12)
$$b_r: a_r = \varkappa_r$$
 und $b_r': a_r' = \varkappa_r'$,

so lassen sich die beiden Clapeyronschen Gleichungen

(13)
$$\begin{cases} l_{r-1}M_{r-2} + 2(l_{r-1} + l_r)M_{r-1} + l_rM_r = N_{r-1} \end{cases}$$

 $(l_r M_{r-1} + 2(l_r + l_{r+1})M_r + l_{r+1}M_{r+1} = N_r)$

umformen in

(14)
$$\begin{cases} \varkappa_{r} M_{r-1} + M_{r} = \frac{N_{r-1}}{l_{r}} *) \\ M_{r-1} + \varkappa_{r}' M_{r} = \frac{N_{r}}{l_{r}}. \end{cases}$$

*) Vergl. Abtheilung 1, Seite 354; die dort auftretenden Werthe α_r , β_r , $-\Sigma P_m \delta_{mr}$ sind jetzt bezw. durch l_r , $2(l_r + l_{r+1})$, N_r zu ersetzen.

Bezeichnet man nun die Ordinaten der Geraden A'B' an den Stellen L und R mit Y_L und Y_R , so findet man:

(15)
$$Y_L = \frac{a_r}{l_r} (M_{r-1} \varkappa_r + M_r); \quad Y_R = \frac{a_r}{l_r} (M_{r-1} + M_r \varkappa_r')$$

weshalb sich schliesslich zur Festlegung der A'B' die einfachen Werthe

(16)
$$\begin{cases} Y_L = \frac{N_{r-1}}{l_r} \cdot \frac{a_r}{l_r}; \\ Y_R = \frac{N_r}{l_r} \cdot \frac{a_r'}{l_r} \end{cases}$$

ergeben.

Trägt man also auf den Drittelsenkrechten die Ordinaten

(17)
$$\begin{cases} D_L = \frac{1}{3} \frac{N_{r-1}}{l_r} \text{ und} \\ D_R = \frac{1}{3} \frac{N_r}{l_r} \end{cases}$$

auf und verbindet man deren Endpunkte nach Fig. 46 mit den benachbarten Stützpunkten r - 1 und r durch gerade Linien, so treffen diese die in L bezw. R errichteten

n deren 46 mit zpunkcch ge- $M_{r,r} = Linie$ $M_{r,r} = Linie$ $M_{r,r} = Linie$

Fig. 46.

De

D,

Senkrechten in Punkten L', R' der Geraden A'B'.

Da nur die Oeffnung l_r belastet ist, so ist nach Gleich. 8, Seite 36. und Gleich. 15 und 16, Seite 30:

$$N_{r-1} = -\frac{6 \Re_{or}}{l_r}, N_r = -\frac{6 \Re_{or}}{l_r}$$
 also
 $\begin{cases} D_L = \frac{2 \Re_{or}}{l_r^2} = -\Sigma P \eta_E \\ D_R = \frac{2 \Re_{or}}{l_r^2} = -\Sigma P \eta_L, \end{cases}$

und hieraus folgt:

(18)

Die
$$\eta_R$$
-Linie ist Einflusslinie für das Moment D_L
,, η_L - ,, ,, ,, D_R .*)

*) Wäre l_r ein beiderseits wagerecht eingespannter Balken, so würde nach Seite 29, die Gerade A'B' durch die Endpunkte der Ordinaten D_L , D_R (anstatt der Ordinaten Y_L , Y_R) zu führen sein.

 (α)

(b)

(c)

(d)

 M_r

Mit Hilfe dieser beiden Linien, deren Darstellung auf Seite 30 gezeigt worden ist, lassen sich die Einflusslinien für M_{r-1} und M_r zeichnen.

Schneller aber führt der folgende Weg zum Ziele. Die Neigungswinkel φ_L und φ_R der Geraden (r-1)L' und rR' sind gegeben durch

$$\operatorname{tg} \varphi_L = rac{3 D_L}{l}, \ \operatorname{tg} \varphi_R = rac{3 D_R}{l_r},$$

und man erhält daher als Einfluss einer Last P = 1 die Werthe

$$\begin{split} \operatorname{tg} \varphi_{L} &= \frac{3}{l_{r}} \, \eta_{R} = \frac{\xi'}{l} - \frac{\xi'^{3}}{l^{3}} \quad (\text{vergl. Seite 30}) \\ \operatorname{tg} \varphi_{R} &= \frac{3}{l_{r}} \, \eta_{L} = \frac{\xi}{l} - \frac{\xi^{3}}{l^{3}}, \end{split}$$

dieselben sind nur von den Verhältnissen $\xi':l$ und $\xi:l$ abhängig und werden zweckmässig ein für allemal berechnet, wobei es stets genügt, die Stützweite in 10 gleichlange Theile zu zerlegen. Den Theilpunkten 1, 2, . . . 9 entsprechen dann die folgenden Werthe:

ξ:ι	tg φ_R	tg φ_{L}
0,1	0,0990	0,1710
0,2	0,1920	0,2880
0,3	0,2730	0,3570
0,4	0,3360	0,3840
0,5	0,3750	0,3750
0,6	0,3840	0,3360
0,7	0,3570	0,2730
0,8	0,2880	0,1920
0,9	0,1710	0,0990

Mit Hilfe dieser Zahlen werden die Winkel φ_R und φ_L aufgetragen und zur Ermittelung der Einflusslinien sämmtlicher Stützenmomente benutzt.*) Dabei genügt es, für jedes Stützenmoment diejenigen beiden Zweige der Einflusslinien zu zeichnen, welche den durch den fraglichen Stützpunkt getrennten beiden Oeffnungen angehören. Man braucht also z. B. die M_r -Linie nur von Stützpunkt r-1 bis r+1 zu ermitteln.

Jetzt kann man alle *M*-Linien und *Q*-Linien mittels des folgenden, bereits in Abtheil. 1 benutzten Verfahrens herleiten. Dasselbe

*) Oder man bestimmt L' nach Fig. 48 mittels $\eta'_L = k \operatorname{tg} \varphi_L$, wo k ein runder Werth. Ein drittes Verfahren findet sich in No. 25.

erfordert zunächst die Aufzeichnung der Einflusslinie für den Ausdruck $\frac{1}{l}$ $(M_r - M_{r-1})$ - d. i. die Curve AHKB in Fig. 46^d und Fig. 47. a. Einflussfläche für die Querkraft Q_m des Feldes λ_m , Fig. 47. Es ist

(19)
$$Q_m = Q_{om} + \frac{M_r - M_{r-1}}{l_r},$$

wo Qom die Querkraft für den Fall bedeutet, dass ABein einfacher Balken ist. Die Qam-Linie besteht aus den drei Geraden AL_1 , $L_1 L_2, L_2 B$ und ist bestimmt durch

 $\overline{AJ'} = 1$ und $\overline{BJ''} = 1;$ addirt man zu der Qom-Fläche die $(M_r - M_{r-1}) : l_r$ -Fläche, so erhält man die schraffirte Q_m -Fläche.

b. Einflussfläche für das Moment Mm. Bei ungleichen Feldweiten benutze man die Gleichung

(20)

um aus der Einflussfläche für das Moment Mom des einfachen Balkens AB, aus der M_r -Fläche und der $(M_r - M_{r-1}) : l_r$ -Fläche die M_m -Fläche

 $M_m = M_{om} + M_r + \frac{M_r - M_{r-1}}{l_r} x_m$

abzuleiten, oder aber man zeichne für verschiedene Stellungen der Last P = 1nach Fig. 48 die Momentenfläche rB'C'A'r-1, welche den Einfluss von P auf sämmtliche Querschnitte der Oeffnung l, angiebt. Diese Fläche ist bestimmt durch tg φ_L , tg φ_R und durch die lothrechte Höhe z der ein-

fachen Momentenfläche

A'C'B'. Hierbei wird z als Ordinate einer Parabel erhalten, deren Pfeil = $0,25 l_r$ ist.

Haben alle Felder dieselbe Länge λ , so benutze man die Gleichung

(21)
$$\frac{M_m}{\lambda} = \frac{M_{m-1}}{\lambda} + Q_m$$

und zeichne — von der $M_r: \lambda$ -Fläche ausgehend — schrittweise mit Hilfe der Q-Flächen die $M: \lambda$ -Flächen.

c. Einfluss von Lasten ausserhalb der fraglichen Oeffnung. Wird der Einfluss der Belastung einer Oeffnung l_k auf die Momente und Querkräfte der übrigen Oeffnungen gesucht, so bestimme man die Stützenmomente M_{k-1} und M_k mit Hilfe der Einflusslinien und zeichne nun die Momentenlinien für die unbelasteten Oeffnungen mittels der Festpunkte L bezieh. R. Vergl. Fig. 49, desgl. die Untersuchung auf Seite 353, Abtheilung 1. Für die Querkräfte einer unbelasteten Oeffnung l_r gilt die Formel

(22)
$$Q = \frac{1}{l_r} (M_r - M_{r-1}).$$

Hiernach besitzt Q für alle Querschnitte der Oeffnung l_r denselben Werth.

d. Stützenwiderstände. Der Widerstand C_r der Stütze r ist (nach Abtheil. 1, Seite 346):

(23)
$$C_r = C_{or} + \frac{M_{r-1} - M_r}{l_r} + \frac{M_{r+1} - M_r}{l_{r+1}}$$

wo C_{or} den Werth bedeutet, welchen C_r annehmen würde, wenn die Trägerstücke l_r und l_{r+1} einfache Balken wären. Die C_{or} -Fläche ein

Dreieck von der Höhe 1, und hierdurch sowie durch die bereits früher benutzten Einflusslinien für

$$(M_r - M_{r-1}) : l_r$$
 und
 $(M_{r+1} - M_r) : l_{r+1}$

ist die C_r -Linie gegeben. Man zeichne dieselbe nur zwischen den Stützen (r-1) und (r+1). Den Einfluss von Lasten links von (r-1)

und rechts von (r+1) beurtheile man mittels der Gleichung

Einfluss einer gleichförmigen Belastung.

$$C_r = \frac{M_{r-1} - M_r}{l_r} + \frac{M_{r+1} - M_r}{l_{r+1}},$$

nachdem man M_{r-1} , M_r , M_{r+1} mit Hilfe des unter c angegebenen Verfahrens bestimmt hat.

\$ 5.

Fortsetzung. Einfluss einer gleichförmigen Belastung.

13. Ungünstigste Belastung hinsichtlich der Querkräfte. Bei gleichförmig vertheilter ständiger und beweglicher Belastung lässt sich die Bestimmung der Querkräfte, Momente und Stützenwiderstände noch erheblich vereinfachen. Wir nehmen einen überall gleichen Querschnitt an und setzen zunächst unmittelbare Belastung voraus.

Aus der in Fig. 48 gegebenen Darstellung des Einflusses einer Einzellast P geht hervor, dass eine Last, welche innerhalb der Oeffnung l_r liegt, stets negative Stützenmomente M_{r-1} und M_r erzeugt, und dass die Momente links von dem Angriffspunkte P mit zunehmender Entfernung von der Stütze r - 1 wachsen, rechts von P hingegen abnehmen. Daraus folgt aber für alle Querschnitte links von P eine positive Querkraft Q, für die Querschnitte rechts von P ein negatives Q.

Je nachdem man also für den Querschnitt C in Fig. 51 und 52 die grösste positive Querkraft, d. i. maxQ, oder die grösste negative Querkraft, d. i. minQ erhalten will, muss man die Strecke x' oder die Strecke x belasten. Wie die übrigen Oeffnungen zu belasten sind, darüber geben die Figuren 51 und 52 Aufschluss. Der Beweis folgt aus Fig. 49, welche zeigt, dass die Belastung der Oeffnung l_k in den Oeffnungen l_{k-1} , l_{k-3} , ... ferner in l_{k+2} , l_{k+4} , ... negative Querkräfte hervorruft, in den übrigen positive Q. Beispielsweise ergiebt sich für alle Querschnitte der Oeffnung l_{k-1} :

$$Q = \frac{M_{k-1} - M_{k-2}}{l_{k-1}},$$

und dieser Werth ist negativ, weil M_{k-1} negativ und M_{k-2} positiv ist.

14. Ungünstigste Belastung hinsichtlich der Momente. Die der Einzellast P in Figur 48 entsprechende Momentenlinie A'C'B'schneidet die Achse (r-1)r in zwei Punkten J_1 und J_2 über deren Lage wir durch Untersuchung der Momente an den Stäben L und RAufschluss erhalten werden. An der Stelle L entsteht (mit P=1):

$$M_{L} = \overline{LL''} = \overline{L'L''} - \overline{L'L} = z - \frac{a_{r}}{\xi} - \eta_{L'} \frac{a_{r}}{k}$$

und wegen $\eta_L' = k \operatorname{tg} \varphi_L$, d. i.

$$\eta_{L}' = k \left(\frac{\xi'}{l} - \frac{\xi'^{3}}{l^{3}} \right) = \frac{k \xi'(l - \xi)(l + \xi')}{l^{3}} = \frac{k z (l + \xi')}{l^{2}}$$
$$M_{L} = \frac{z a_{r}}{\xi l} \left[l - \frac{\xi (l + \xi')}{l} \right].$$

Da nun $\left[\frac{\xi(l+\xi)}{l}\right]_{max} = l$

ist, so folgt, dass das von der Last P hervorgerufene Moment M_L stets positiv ist, dass also der Nullpunkt J_1 jedenfalls links vom Festpunkte L liegt und ganz ebenso lässt sich nachweisen, dass der Nullpunkt J_2 der Strecke Rr angehören muss.

Für die Querschnitte zwischen den Festpunkten L und R ergeben sich also infolge der Belastung der fraglichen Oeffnung stets *positive* Momente, und aus diesem wichtigen Gesetze und aus der Figur 49 folgen ohne weiteres die in den Figuren 53 und 54 dargestellten Belastungsweisen.

Einfluss einer gleichförmigen Belastung.

Für einen ausserhalb der Strecke LR gelegenen Querschnitt C(z. B. einen Querschnitt links von L) ist zur Erzielung von max M und min M eine theilweise Belastung der fraglichen Oeffnung erforderlich, Fig. 57 u. 58. Es entspricht hier jedem Querschnitte C eine bestimmte Belastungsscheide E, beispielsweise dem Querschnitte J_1 in Figur 48 die Belastungsscheide C; die Aufsuchung derselben ist aber stets entbehrlich, weil man die max M-Linien und die min M-Linien für die Querschnitte ausserhalb der Strecke LR auch ohne Ermittlung der Belastungsscheiden zeichnen kann, wie in No. 17 gezeigt werden soll. Man darf sogar die genauere Berechnung der Momente für die Querschnitte zwischen den Festpunkten und den benachbarten Stützpunkten ganz unterlassen und die Annahme machen, es verlaufe die Momentenlinie (sowohl die für $_{min}M$ als auch für $_{max}M$) zwischen einem Festpunkte und dem benachbarten Stützpunkte geradlinig; vergl. das in No. 18 durchgeführte Zahlenbeispiel. Dieser sehr einfache Rechnungsgang liefert etwas zu grosse Momente. Die ungünstigste Belastungsweise hinsichtlich der Stützenmomente zeigt Fig. 55 und Fig. 56; bei diesen Laststellungen entstehen auch die Grenzwerthe des Stützenwiderstandes Cr.

Behufs Ermittlung der Grenzwerthe von Q, M, C genügt es, wie in No. 12, den Einfluss der Belastung einer Oeffnung zu verfolgen.

15. Gänzliche, gleichmässige Belastung einer Oeffnung. Die einfache Momentenlinie ist eine Parabel von der Pfeilhöhe $\frac{pl^2}{8}$, wenn p die Belastung für die Längeneinheit bedeutet. Die statischen Momente \mathfrak{L}_o und \mathfrak{R}_o sind nach Seite 30:

(1)
$$\mathfrak{L}_o = \mathfrak{R}_o = \frac{p l^*}{24}$$

und man erhält daher

(2)
$$D_L = D_R = -\frac{2}{l^2} \cdot \frac{pl^4}{24} = -\frac{pl^2}{12}.$$

Hierdurch sind die Stützenmomente $M_{r-1} = \overline{AA'}$ und $M_r = \overline{BB'}$ in Fig. 59^a (vergl. auch Fig. 46) bestimmt, und es ergiebt sich nach Einzeichnung der Parabel A'CB' in der schraffirten Fläche die gesuchte Momentenfläche der Oeffnung AB. Zur Konstruktion dieser Parabel wurde $CD \parallel A'B'$ gezogen und sowohl CD als auch B'D in eine gleiche Anzahl gleichgrosser Theile zerlegt. Die Schnittpunkte der durch die Theilpunkte 1, 2, gelegten Lothrechten mit den Geraden, welche C mit den Theilpunkten 1', 2', verbinden, sind Punkte der Parabel. Ganz ebenso wurde der Parabelzweig A'C erhalten. Die auf diese Weise gefundenen Momente mögen mit M_p bezeichnet werden. Für die Querkräfte gilt die Gleichung

(3)
$$Q_p = Q_o + \frac{M_r - M_{r-1}}{l}$$

Die dem Einzelbalken AB entsprechenden Querkräfte Q_o sind bekanntlich gleich den Ordinaten einer Geraden CF (Fig. 59^b), welche auf den Stützenlothrechten die Strecken $\pm \frac{pl}{2}$ abschneidet, und diese Gerade wird behufs Ermittlung der Querkräfte Q um

$$Q' = \frac{M_r - M_{r-1}}{l}$$

in lothrechter Richtung verschoben. In Fig. 59° ist $M_r > M_{r-1}$ vorausgesetzt, mithin Q' negativ.

16. Theilweise gleichförmige Belastung einer Oeffnung. Die Belastung bedecke nach Fig. 60 die an das rechtsseitige Auflager grenzende Strecke ξ' . Es ist dann, da die η_R -Linie die Einflusslinie für D_L ist, nach Gleich. 18 auf Seite 41:

(4)
$$-D_{L} = p \int_{0}^{\xi} \eta_{R} dx = \frac{pl}{3} \int_{0}^{\xi} \left(\frac{x}{l} - \frac{x^{3}}{l^{3}}\right) dx = \frac{pl^{2}}{12} \cdot \omega_{L}, \text{ wo}$$
(5)
$$\omega_{L} \stackrel{*}{=} \frac{\xi'^{2}}{l^{2}} \left(2 - \frac{\xi'^{2}}{l^{2}}\right),$$

d. i. eine von der Stützweite unabhängige und nur von dem Verhältniss $\xi':l$ abhängige Zahl. Für $\xi'=l$ ist $\omega_L=1$, und hieraus folgt, dass ω_L infolge der Belastung von ξ' und ω_L infolge der Belastung der Strecke $\xi=l-\xi'$ zusammengenommen = 1 ist. Behufs Ermittlung von $D_R = -\frac{pl^2}{12} \omega_R$ beachte man, dass der Werth ω_R für die in Fig. 60^b angenommene Belastung ebenso gross ist, wie ω_L für eine vom linksseitigen Auflager aus die gleiche Strecke ξ' bedeckende Last, weshalb nach Aufzeichnung der ω_L -Linie der Werth ω_R auf die in der Fig. 60^b angegebene Weise erhalten wird. Man findet:

für	$\xi': l = 0, 1,$	$\omega_L = 0,0199,$	$\omega_{R}=0,0361$
	0,2	0,0784	0,1296
	0,3	0,1719	0,2601
	0,4	0,2944	0,4096
	0,5	0,4375	0,5625
	0,6	0,5904	0,7056
	0,7	0,7399	0,8281
	0,8	0,8704	0,9216
	0,9	0,9639	0,9801
	1,0	1,0000	1,0000

Mit Hilfe dieser Zahlenwerthe kann man die Grössen D_L und D_R^i für eine vom rechten Auflager aus vorrückende gleichförmige Belastung schnell berechnen und die zugehörigen Stützenmomente ermitteln. In der Regel kommt es aber nur darauf an, die infolge dieser einseitigen Belastung entstehenden Querkräfte Q zu bestimmen und hierzu ist (ausser der Ermittlung von Q_e) nur die Angabe von

$$Q' = \frac{M_r - M_{r-1}}{l}$$

d. i. die Bestimmung des Unterschiedes der Stützenmomente erforderlich. Zu diesem Zwecke empfiehlt es sich, auf den Drittelsenkrechten nicht die Momente D_L und D_R aufzutragen, sondern die Strecken

(6)
$$h_L = D_L : \frac{pl^2}{12e}$$
 bezw. $h_R = D_R : \frac{pl^2}{12e}$, nämlich $h_L = e\omega_L$ bezw. $h_R = e\omega_R$.

wo e eine beliebig grosse, selbstverständlich durch eine runde Zahl ausdrückbare Strecke bedeutet. Es sind nämlich h_L und h_R unabhängig von der Weite l der fraglichen Oeffnung; sie brauchen nur einmal berechnet zu werden und lassen sich dann zur Untersuchung sämmtlicher Oeffnungen verwerthen.

Müller-Breslau, Graphische Statik. II. 2.

Nun bringt man die Geraden, welche die Endpunkte der Strecken h_L und h_R mit den benachbarten Stützpunkten verbinden, mit den Festpunktsenkrechten in L', R' zum Schnitt, legt durch L', R' die Gerade s und erhält, da s auf den Stützensenkrechten die durch $\frac{pl^2}{12e}$ dividirten Stützenmomente abschneidet, für den Neigungswinkel von s:

$$\operatorname{tg} \varphi = \frac{12 e}{p l^2} \cdot \frac{M_r - M_{r-1}}{l}$$

Fig. 60.

woraus sich (Fig. 60°)

$$Q' = -\frac{pl^2}{12e} \operatorname{tg} \varphi^*)$$

ergiebt.

Jetzt findet man für den die belastete Strecke ξ' begrenzenden

*) Das Minuszeichen ist nöthig, weil die Stützenmomente negativ sind und weil $M_r > M_{r-1}$ ist sobald φ positiv ist.

Einfluss einer gleichförmigen Belastung.

Querschnitt C (da zunächst von der Belastung der übrigen Felder abgesehen werden soll):

$$_{ax}Q_p = Q_o + Q',$$

wo $Q_o = \frac{p\xi'^2}{2l}$ die Querkraft für den Querschnitt *C* des Einzelbalkens AB ist, d. i. die Ordinate einer Parabel BA' (Fig. 60^d), deren Scheitel bei B liegt und die auf der Senkrechten durch A die Strecke $\overline{AA'} = \frac{pl}{2}$ abschneidet.

Da nun weiter min Qp durch ausschliessliche Belastung der Strecke ξ hervorgerufen wird und

$$minQ_p + maxQ_p = Q_p$$

d. i. gleich der Querkraft infolge gänzlicher Belastung der Oeffnung AB ist, so findet man $_{min}Q_p$ gleich dem lothrechten Abstande der $_{max}Q_p$ -Linie von einer Geraden DE, welche man erhält, indem man vom Mittelpunkte F der Oeffnung AB die Gerade FJ mit der Endordinate $\overline{BJ} = -\frac{1}{2} pl$ zieht und $DE \parallel FJ$ macht. Infolge der Belastung anderer Oeffnungen ändert sich nur der Werth $Q' = -\frac{1}{I} (M_r - M_{r-1});$ man braucht also zur vollständigen Darstellung von $_{max}Q_p$ und $_{min}Q_p$ nur noch die Geraden DE und AB, um gewisse Strecken Q' in lothrechter Richtung zu verschieben. Vergleiche das in No. 18 durchgeführte Zahlenbeispiel.

Schliesslich sei noch hervorgehoben, dass in den Mittelfeldern die Abweichung der maxQp-Linie von der Qo-Parabel unwesentlich ist und die Werthe Q' nur soweit berücksichtigt zu werden brauchen, als sie von der Belastung anderer Oeffnungen herrühren. Nach diesem, die Rechnung sehr abkürzenden Verfahren erhält man die Querkräfte etwas zu gross.

17. Fortsetzung. Wird für den Fall theilweiser Belastung einer Oeffnung nicht nur nach den Querkräften, sondern auch nach den Momenten gefragt,*) so ersetze man die auf den Drittelsenkrechten aufzutragenden Momente D_L , D_R durch die im beliebig zu wählenden Abstande k von den Stützpunkten aufzutragenden Momente (Fig. 61):

$$D_L' = rac{3k}{l} D_L = rac{pkl}{4} \omega_L$$
 und $D_R' = rac{3k}{l} D_R = rac{pkl}{4} \omega_R$

) D. h. begnügt man sich nicht mit der auf Seite 47 hinsichtlich der Momente empfohlenen Näherungsberechnung. 4

und wähle k so gross, dass sich für $\frac{pkl}{4}$ ein runder und für alle Oeffnungen gleicher Werth ergiebt, damit die Berechnung der D_L' , D_R' nicht für jede einzelne Oeffnung wiederholt zu werden braucht.

Die Gerade L'R' schneidet auf den Auflagersenkrechten die Stützenmomente M_r , M_{r-1} ab; man findet, wenn φ den Neigungswinkel der L'R' bezeichnet,

$$Q' = -1 \cdot \mathrm{tg} \, \varphi,$$

und ist jetzt im Stande, die Grenzwerthe $_{max}Q_p$, $_{min}Q_p$ in derselben Weise zu ermitteln wie vorhin.

Infolge der Belastung der Strecke ξ' entsteht nun auch das Moment $_{min}M_p$ für einen bestimmten links vom Festpunkte L gelegenen Querschnitt J — wobei zunächst wieder von der Belastung ande-

rer Oeffnungen abgesehen werde. Die Momentenlinie ist für den den Querschnitt Jenthaltenden unbelasteten Balkentheil ξ eine Gerade A'E, welche durch die Stützenmomente und durch die Bedingung gegeben ist, dass die Geraden A'B'und A'E auf einer im beliebigen Abstande k' von A' gezogenen Lothrechten das Moment Q_ok' abschneiden müssen. Q_o ist bereits zur Ermittlung von

 $_{max}Q_p$ gebraucht worden, und für k' wird man ein rundes Maass annehmen, so dass die Festlegung der Geraden A'E schnell von statten geht. Schreitet nun die bewegliche Belastung um $d\xi$ weiter vor, so bleibt das Moment JJ' an der Stelle J ungeändert, da ja die Stelle C Belastungsscheide für den Querschnitt J ist. Die Momentenlinie A'Edreht sich im ersten Augenblicke der Weiterbewegung der Belastung um den Punkt J' und daraus folgt, dass die den verschiedenen ξ' entsprechenden Geraden A'E die Momentenlinie $_{min}M_p$ einhüllen. Hat man diese Linie gezeichnet, so findet man $_{max}M_p$ in Folge der Belastung der Strecke ξ mittels der Gleichung

$$_{max}M_p + _{min}M_p = M_p.$$

 M_p aber wird nach No. 15 bestimmt. Der Einfluss der Belastung der übrigen Oeffnungen wird dann nach Fig. 49 mit Hilfe der Festpunkte L und R ermittelt.

Einfluss einer gleichförmigen Belastung.

Obgleich die Darstellung der genaueren Momentenlinien hiernach keine Schwierigkeit bereitet, dürfte dem in No. 14 angegebenen und im nachstehenden Zahlenbeispiele angewandten Näherungsverfahren doch der Vorzug gebühren. Man beachte, dass die Einführung einer gleichförmigen beweglichen Belastung stets auf ziemlich groben Schätzungen beruht und dass eine allzu peinliche Berechnung schlecht hierzu passen dürfte.

18. Zahlenbeispiel. Auf Tafel 2 wurde nach dem im Vorstehenden entwickelten Verfahren ein Balken mit 4 Oeffnungen untersucht. Die Stützweiten sind $l_1 = 10$ m für die Seitenöffnungen und l = 12 m für die Mittelöffnungen. Die ständige Belastung beträgt g = 0,9 t f. d. Meter, die bewegliche p = 3,6 t.

Zuerst wurden in Fig. 62 die Drittelsenkrechten d und verschränkten Stützensenkrechten v eingetragen und (nach Seite 38) die Festpunkte L_1, L_2, L_3, L_4 bestimmt. Damit sind, der Symmetrie wegen, auch die Punkte R gegeben.

Nun wurden in Fig. 62 die Stützenmomente für den Fall ermittelt, dass die erste Oeffnung gänzlich mit p belastet werde, die übrigen Oeffnungen hingegen unbelastet seien. Der roth schraffirte Linienzug ist das dieser Belastung entsprechende *M*-Polygon; er geht durch die Festpunkte L_1, R_2, R_3, R_4 und ist durch die Bedingung bestimmt, dass die vom Stützpunkte 1 durch den Punkt R_1' gezogene Gerade auf der Drittelsenkrechten d_1 das Moment

$$-\frac{pl_1^2}{12} = -\frac{3.6 \cdot 10^2}{12} = -30,00 \text{ tm}$$

abschneiden muss. Die Ergebnisse sind in die Figur eingetragen worden.

Der blau schraffirte Linienzug liefert die Stützenmomente für den Fall, dass nur die zweite Oeffnung, diese aber gänzlich belastet ist; er geht durch die Festpunkte L_1 , R_3 , R_4 und ist durch die Bedingung gegeben, dass die von den Stützpunkten 1 und 2 aus durch L_2' bezw. R_2' gezogenen Geraden auf den Drittelsenkrechten d_2' und d_2'' die Momente

$$\frac{pl^2}{12} = -\frac{3.6 \cdot 12^2}{12} = -43,20 \text{ tm}$$

abschneiden müssen.

Hiermit ergiebt sich nun die folgende Zusammenstellung:

E. O. J. Delectore	Stützenmomente		
Einnuss der Belastung p	M_1	M_2	M_3
der ersten Oeffnung " zweiten " " dritten " " vierten "	$\begin{array}{r} -22,06 \text{ tm} \\ -27,90 \text{ ,,} \\ +7,44 \text{ ,,} \\ -1,61 \text{ ,,} \end{array}$	$\begin{array}{r} + 5,92 \text{ tm} \\ -27,28 ,, \\ -27,28 ,, \\ + 5,92 ,, \end{array}$	$\begin{array}{r} - & 1,61 \text{ tm} \\ + & 7,44 \ ,, \\ - & 27,90 \ ,, \\ - & 22,06 \ ,, \end{array}$
zusammen:	- 44,13 "	- 42,72 "	- 44,13 tm

Auf Grund dieser Werthe wurden in Fig. 63 die grössten negativen und positiven Momente $(_{min}M_p, _{max}M_p)$ dargestellt. Es geschah dies zunächst für die in Fig. 68 mit I, II, III, IV bezeichneten Belastungsfälle.

Der Belastungsfall I erzeugt für die Balkenstrecke $L_1 R_1$ die Momente $_{min}M_p$ und für die Strecke $L_2 R_2$ die Momente $_{max}M_p$. Die Stützenmomente sind:

20,5

 $M_1 = -27,90 - 1,61 = -29,5 \text{ tm}$ $M_2 = -27,28 + 5,92 = -21,4 \text{ tm};$

- 54,6

27,3

-20,5

-27,9

- 23,7

dieselben bestimmen in Fig. 63 den Linienzug I I. Die rothe Gerade I ist die $_{min}M_{p}$ -Linie für die Strecke $L_{1}R_{1}$; von der blauen Geraden I aus werden (nach Fig. 59, Seite 48) die Ordinaten einer Parabel (I')aufgetragen, deren Pfeilhöhe $=\frac{pl^2}{8}=\frac{3.6.12^2}{8}=64.8$ tm ist. Diese Parabel ist die $_{max}M_p$ -Linie für die Strecke $L_2 R_2$.

Der Belastungsfall II erzeugt die $_{max}M_p$ für die Strecke L_1R_1 und die $_{min}M_p$ für die Strecke L_2R_2 . Die Stützenmomente sind:

 $M_1 = -14,6 \text{ tm}, M_2 = -21,4 \text{ tm};$

III

IV

Einfluss einer gleichförmigen Belastung.

sie bestimmen die Geraden *II*, *II*. Der Pfeil der Parabel *II'* ist $\frac{pl_1^2}{8} = \frac{3.6 \cdot 10^2}{8} = 45,0 \text{ tm.}$

Der Belastungsfall III erzeugt das grösste negative Stützenmoment: $_{min}M_1 = -22,06 - 27,90 - 1,61 = -51,6 \text{ tm},$

and damit ist auch die (angenäherte)
$$_{min}M_p$$
-Linie für die Strecke R_1L_2
gegeben; sie besteht aus den beiden Geraden III.

Dem Belastungsfall IV entspricht das grösste negative Stützenmoment:

 $_{min}M_2 = -2.27,28 = -54,6 \text{ tm};$

dasselbe wird zur Festlegung der Geraden IV, welche die $_{min}M_p$ für die Strecke $R_2 2$ liefert, benutzt.

Die Belastungsfälle V und VI erzeugen schliesslich

$$_{max}M_1 = +$$
 7,4 tm
bezw. $_{max}M_2 = +$ 2.5,92 = + 11,8 tm

und diese Werthe liefern die angenäherten $_{max}M_p$ -Linien V und VI für die Strecken R_1L_2 bezw. R_22 .

Die Momente infolge der ständigen Belastung $g = 0,9 = \frac{1}{4}p$ wurden gesondert dargestellt (Fig. 64); sie sind bestimmt durch die Stützenmomente

 $M_2 = -\frac{g}{p} \cdot 42,72 = -10,7 \text{ tm}, \quad M_3 = -\frac{g}{p} \cdot 44,13 = -11,0 \text{ tm}$

und durch die Parabelpfeile

$$\frac{gl^2}{8} = 16,20 \text{ tm}, \quad \frac{gl_1^2}{8} = 11,25 \text{ tm}.$$

Die Querkräfte $_{max}Q_p$ und $_{min}Q_p$ der Seitenöffnung sind nach dem in No. 16 angegebenen Verfahren ermittelt. Die dort mit e bezeichnete Strecke wurde 10 m gewählt, weshalb sich die den Theilpunkten 0, 1, 2, 4 (in Fig. 66^b) entsprechenden Höhen $h_R = e\omega_R$ zu

10,00 m, 9,22 m, 7,06 m, 4,10 m, 1,30 m*)

ergeben; dieselben sind auf der Drittelsenkrechten d_1 aufgetragen worden und dienen, da L_1 mit der Stütze 0 zusammenfällt, zur Bestimmung der Strahlen 00', 01', 02', 03', 04'. Diese Strahlen schneiden auf einer im Abstande

*) Vergl. die Zahlen ω_R auf Seite 49. Im vorliegenden Falle wurden nur die Werthe für $\xi': l = 1,0; 0,8: 0,6; 0,4; 0,2$ gebraucht.

Zweiter Abschnitt. - § 5.

$$\frac{pl_1^2}{12e} = \frac{3.6 \cdot 10^2}{12 \cdot 10} = 3.0 \text{ t}$$

vom Stützpunkte 0 gelegenen Senkrechten die von der Q_o -Parabel in Abzug zu bringenden Kräfte Q' ab.

Die auf diese Weise in Fig. 66 gewonnene und durch schwarze Schraffirung hervorgehobene $(Q_o - Q')$ -Linie wurde in die Figur 67^a übertragen und giebt auf die blau schraffirte Gerade VII bezogen die Querkräfte $_{max}Q_p$ an. Es muss nämlich, behufs Erzeugung von $_{max}Q_p$ noch die dritte Oeffnung gänzlich belastet werden, Fig. 69 (Fall VII), und infolge dessen wächst in der ersten Oeffnung die Querkraft um den Betrag $\frac{M_1}{l_1} = +\frac{7,44}{10} = 0,75$ t.

Da nun weiter zur Hervorbringung von $\min Q_p$ an der Stelle xnicht nur die Strecke x (Fig. 69) sondern noch die zweite und vierte Oeffnung gänzlich zu belasten sind und diesen gänzlichen Belastungen das Stützenmoment $M_1 = -29,5$ tm entspricht, so tritt zu der Querkraft infolge der Belastung der Strecke x noch der Betrag $\frac{M_1}{l_1} = -2,95$ t. Es geben deshalb die Abstände der schwarz schraffirten Linie von der roth schraffirten Geraden VIII (deren Bestimmung aus Fig. 67^a hervorgeht) die grössten negativen Querkräfte $\min Q_p$ an.

Für die zweite Oeffnung ergeben sich für die nach Fig. 60 auf Seite 50 herzuleitenden Q' so kleine Werthe, dass die Q_o -Parabel beibehalten wurde. Die Festlegung der Geraden IX und X geschah mit Rücksicht auf die in Fig. 70 dargestellten Belastungsfälle IX und Xwie folgt.

Die Belastung der ersten und vierten Oeffnung ruft $M_1 = -23,7$ tm und $M_2 = +11,8$ tm hervor, erzeugt also in der zweiten Oeffnung die Querkraft $-\frac{M_2 - M_1}{l} = +3,0$ t.

Infolge der Belastung der dritten Oeffnung entsteht $M_1 = +7,4$, $M_2 = -27,3$ und $Q = \frac{M_2 - M_1}{l} = -2,9$ t. Das Weitere geht aus Fig. 67^b hervor. Die beiden Geraden *VIII* und X sind parallel.

Die Querkräfte infolge der ständigen Belastung wurden in Fig. 65 für die dritte und vierte Oeffnung dargestellt. Für die dritte Oeffnung erweist sich der Einfluss der Stützenmomente, d. i. $Q' = \frac{M_3 - M_2}{l}$

= $\frac{-11,0+10,7}{12}$, als so unwesentlich, dass die Q_o -Linie benutzt werden darf. Es ist dies eine Gerade mit den Endhöhen $\pm \frac{gl}{2}$ $= \pm 0,9.6 = \pm 5,4$ t.

Die Querkraftslinie der vierten Oeffnung ist eine Gerade mit den Endhöhen

$$+\frac{gl_1}{2} - \frac{M_3}{l_1} = +4,5 + 1,1 = +5,6 \text{ t und}$$
$$-\frac{gl_2}{2} - \frac{M_3}{l_1} = -4,5 + 1,1 = -3,4 \text{ t.}$$

Die Querkräfte Q_g der ersten und zweiten Oeffnung haben die entgegengesetzten Vorzeichen wie diejenigen der vierten und dritten Oeffnung. Beispielsweise besitzt die Q_g -Linie an den Stützen 0 und 1 die Höhen + 3,4 t bezw. - 5,6 t.

Es fehlt jetzt nur noch die Berechnung der Stützenwiderstände C_0, C_1, C_2 . Man erhält nach der Gleichung

$$C_r = C_{0r} + \frac{M_{r-1} - M_r}{l_r} + \frac{M_{r+1} - M_r}{l_{r+1}}$$

und nach Einführung der in die Figur 68 eingetragenen Stützenmomente:

a, den Einfluss der beweglichen Belastung

Belastungsfall $I_{min}C_{0,p} = \frac{M_1}{l_1} = -\frac{29,5}{10} = -2,95 \text{ t}$

,,

II
$$_{max}C_{0p} = \frac{pl_1}{2} + \frac{M_1}{l_1} = 18,0 - \frac{14,6}{10} = +16,5 \text{ t}$$

Belastungsfall III max
$$C_{1p} = \frac{pl_1}{2} + \frac{pl}{2} - \frac{M_1}{l_1} + \frac{M_2 - M_1}{l}$$

 $= 18.0 + 21.6 - \frac{51.6}{10} = \frac{-15.4 + 51.6}{12}$
 $= + 47.8 t$
"
 $IV_{max}C_{2p} = 2\left(\frac{pl}{2} + \frac{M_1 - M_2}{l}\right)$
 $= 2\left(21.6 + \frac{-20.5 + 54.6}{12}\right) = +48.9 t$
"
 $V_{min}C_{1p} = -\frac{M_1}{l_1} + \frac{M_2 - M_1}{l}$
 $= -\frac{7.4}{10} + \frac{-27.3 + 7.4}{12} = -2.4 t$
"
 $VI_{min}C_{2p} = 2\frac{M_1 - M_2}{l} = 2\frac{-23.7 - 11.8}{12}$
 $= -5.9 t.$

b, den Einfluss der ständigen Belastung (nach Fig. 65) $C_{0g} = C_{4g} = +3.4 \text{ t}; \quad C_{1g} = C_{3g} = +5.6 + 5.4 = +11.0 \text{ t}$ $C_{2g} = 2.5.4 = +10.8 \text{ t}.$

Für die $_{min}C$ erhält man im Ganzen:

$$\begin{array}{l} \min C_0 = -2,95 + 3,4 = +0,45 \text{ t} \\ \min C_1 = -2,4 + 11,0 = +9,6 \text{ t} \\ \min C_2 = -5,9 + 10,8 = +4,9 \text{ t}. \end{array}$$

Einfluss einer ungleichförmigen Erwärmung des Balkens. Wir setzen nun voraus, es handle sich im vorliegenden Falle um einen Brückenträger, dessen untere Gurtung im Schatten der Fahrbahn liegt, während die obere Gurtung über die Fahrbahn hinausragt und infolge Sonnenbestrahlung eine um 15° höhere Temperatur annimmt als die untere Gurtung. Die durch diese ungleichmässige Erwärmung erzeugten Stützenmomente ermitteln wir mit Hilfe des in No. 11 angegebenen Verfahrens. Dabei möge in den Ausdruck

$$T_r = -\frac{\varepsilon E J(t_o - t_u)}{h}$$
 (Gleich. 9, Seite 37)

für $\frac{J}{h}$ der dem stärkst beanspruchten Querschnitte entsprechende Werth eingesetzt werden. Durch diese ungünstige Annahme (an Stelle der Einführung eines mittleren Werthes $\frac{J}{h}$) tragen wir etwaigen schädlichen Verschiebungen der Stützpunkte Rechnung.

I

Einfluss einer gleichförmigen Belastung.

Das grösste Moment ergab sich bei Stütze 2; dasselbe ist:

$$M_2 = M_{2.p} + M_{2.g} = -54,6 - 10,7 = -65,3 \text{ tm}$$

und erfordert bei einer zulässigen Beanspruchung von $\sigma = 750$ kg f. d. qcm = 7500 t f. d. qm ein Widerstandsmoment

$$W = \frac{M}{\sigma} = \frac{65,3}{7500} = 0,0082 \text{ m}^3$$

weshalb, wegen $J = \frac{1}{2} Wh$ (d. h. $\frac{J}{h} = 0,0041$) und mit $\varepsilon E = 240$ t f. d. qm Schweisseisen:

$$T_1 = T_2 = 240.0,0041.15 = \text{rund } 15 \text{ tm.}$$

Diese Werthe wurden in Fig. 71 auf den verschränkten Stützensenkrechten v_1 , v_2 als Ordinaten aufgetragen, und hierauf wurden (nach Seite 38) die Punkte L_2' und L_3' des gesuchten *M*-Polygons

ermittelt. Da der Balken symmetrisch ist, so konnte aus der Lage von L_3' auf die Lage von R_2' geschlossen werden $(\overline{R_2R_2'} = \overline{L_3L_3'})$ und damit war das *M*-Polygon bestimmt. Das Ergebniss lautet:

$$M_{1t} = +18,6 \text{ tm}$$
 $M_{2t} = +13,0 \text{ tm}.$

Sonnenbestrahlung der oberen Gurtung erzeugt also überall positive Momente. Addirt man die auf Tafel 2 gesondert dargestellten Momente M_p und M_q so findet man in der ersten Oeffnung

$$_{max}(M_p + M_g) = 44,0 \text{ tm}$$

und in der zweiten Oeffnung

$$_{max}(M_p + M_g) = 44,7 \text{ tm.}$$

Fügt man nun die in Fig. 71 gewonnenen Momente M_t hinzu, so erhält man:

 $_{max}(M_{p} + M_{q} + M_{t}) = 53 \text{ tm}$ bezieh. 60,5 tm.

Hiernach wird $_{max}M$ infolge der Temperaturänderung um $20^{0}/_{0}$ bezieh. $35^{0}/_{0}$ des zuerst ermittelten Werthes vergrössert.

Um schliesslich auch hinsichtlich der Momente $_{min}M$ eine möglichst ungünstige Voraussetzung zu machen, nehmen wir an, es erfahre im Winter die obere Gurtung eine stärkere Abkühlung als die geschützt liegende untere Gurtung. Den Temperaturunterschied ermässigen wir aber auf 10°, setzen also:

$$M_{1t} = -\frac{2}{3} \cdot 18,6 = 12,4 \text{ tm}$$
 $M_{2t} = -\frac{2}{3} \cdot 13,0 \text{ tm} = -8,7 \text{ tm}.$

Die Grösstwerthe der Stützenmomente sind dann:

$$M_1 = -51,6 - 11,0 - 12,4 = -75 \text{ tm};$$

 $M_2 = -65,3 - 8,3 = -74 \text{ tm};*)$

sie haben also um 20% bezieh. 13% zugenommen.

Die durch die ungleichmässige Erwärmung des Balkens hervorgerufenen Querkräfte Q_t und Stützenwiderstände C_t sind, erstens für $t_o - t_* = 15^\circ$,

in der Seitenöffnung: $Q_t = \frac{M_1}{l_1} = \frac{18,6}{10} = 1,86$ t

", ", Mittelöffnung: $Q_t = \frac{M_2 - M_1}{l_2} = \frac{13,0 - 18,6}{12} = -0,47 \text{ t},$ $C_{0t} = 1,86 \text{ t}; \ C_{1t} = -1,86 - 0,47 = -2,33 \text{ t}; \ C_{2t} = +2.0,47 = +0,94 \text{ t},$ zweitens für $t_u - t_o = 10^\circ$,

in der Seitenöffnung: $Q_t = -\frac{12,4}{10} = -1,24 \text{ t}$ " " Mittelöffnung: $Q_t = -\frac{8,7+12,4}{12} = +0,31 \text{ t}$

 $C_{0t} = -1,24t; C_{1t} = +1,24+0,31 = +1,55t; C_{2t} = -2.0,31 = -0,62t.$

Zu beachten ist namentlich der Einfluss der Temperaturänderungen auf die Kleinstwerthe C. Die auf Seite 58 gefundenen mixC gehen über in $C = \pm 0.45 = 1.24 = -0.8 \pm$

 $\begin{array}{l} {}_{min}C_{0}=+\ 0,45=-1,24=-\ 0,8\ \mathrm{t}\\ {}_{min}C_{1}=+\ 9,6\ -2,33=+\ 7,3\ \mathrm{t}\\ {}_{min}C_{2}=+\ 4,9\ -0,62=+\ 4,3\ \mathrm{t} \end{array}$

und es entstehen demnach an den Endstützen negative Stützendrücke, welche eine Verankerung der Balkenenden nothwendig machen.**)

**) Diese Verankerung empfiehlt sich zur Vorsicht auch dann, wenn minC einen kleinen positiven Werth besitzt.

^{*)} Legt man dieses Moment der Berechnung von J:h und T zu Grunde, so erhält man J:h=0,0048 und T=17,8 tm. Eine Neubestimmung von M_{1t} und M_{2t} ist nicht nöthig.
In den vorstehenden Rechnungen wurden die Verschiebungen der Stützpunkte vernachlässigt. Es ist dies bei Trägern auf steinernen oder nicht zu hohen eisernen Pfeilern und bei sicherem Baugrunde auch zulässig, falls, wie hier geschehen, hinsichtlich des Einflusses des Temperaturunterschiedes $t_o - t_u$ genügend ungünstige Annahmen gemacht werden.

§ 6.

Balken auf elastischen Stützen.

19. — Bislang setzten wir voraus, dass die Strecke δ_r (Fig. 72), um welche sich der Stützpunkt r gegen die Verbindungsgerade der Stützpunkte r-1 und r+1 verschiebt, gegeben sei, dass es sich also darum handle, den Einfluss beobachteter oder durch Schätzung bestimmter Verschiebungen der Stützpunkte festzustellen, oder die Vortheile zu prüfen, welche sich durch eine Aenderung der dem spannungslosen Zustande entsprechenden gegenseitigen Höhenlage der Stützpunkte erreichen lassen. Der Einfluss der δ_r wird dann zweckmässig mit Hilfe der Momente $T_r = -\frac{2 EJ\delta_r}{l_r l_{r+1}}$ auf dem im § 11*) angegebenen Wege ermittelt und bietet keinerlei Schwierigkeiten.

Wesentlich umständlicher wird hingegen der Rechnungsgang, wenn bei einer grösseren Anzahl von Stützen der Einfluss der von den Stützendrücken abhängigen Bewegungen nachgiebigerer Widerlager berücksichtigt werden soll, also beispielsweise bei Balken, die auf sehr hohen eisernen Pfeilern oder — wie die Hauptträger der Schiffbrücken —

auf schwimmenden Körpern ruhen. In den beiden angeführten Fällen lässt sich die (nach unten positiv gezählte) lothrechte Verschiebung e_r des Stützpunktes rauf die Form

(1) $e_r = e_r' + \omega_r C_r$

bringen, wo e_r' einen von dem Stützendrucke C_r un-

Fig. 72.

abhängigen Werth bedeutet, während ω_r die Senkung des Stützpunktes infolge $C_r = 1$ ist.

Ruht z. B. der Balken bei r auf einer Säule von der Länge h_{r_2} .

*) Für den Balken mit veränderlichem Querschnitte findet sich das genauere Verfahren in Abtheil. 1, Seite 357. dem Querschnitte F_r und der Elasticitätsziffer E_r und bezeichnet t_r die Temperaturerhöhung der Säule, so ist

(2)
$$e_r = -\varepsilon t_r h_r + \frac{C_r h_r}{E_r F_r}$$
 also $e_r' = -\varepsilon t_r h_r$ und $\omega_r = \frac{h_r}{E_r F_r}$

Dabei ist die Nachgiebigkeit von Baugrund und Grundmauerwerk vernachlässigt worden; dieselbe könnte schätzungsweise durch Vergrösserung von ω_r berücksichtigt werden, ist aber in der Regel unwesentlich.

Wird ferner ein Balken bei r durch ein Schiff gestützt, so besteht zwischen dem durch irgend eine Belastung hervorgerufenen Stützenwiderstande C_r und der Aenderung e_r der vor Aufbringung dieser Belastung herrschenden Tauchtiefe des Schiffes die Beziehung

$$\gamma F_r e_r = C_r,$$

wo F_r den Inhalt des wagerechten Schiffsquerschnitts in der Höhe des Wasserspiegels und γ das Gewicht der Raumeinheit des Wassers ($\gamma = 1$ t f. d. cm) bedeutet. Hierbei ist die stets zulässige Annahme gemacht, dass sich F bei Vergrösserung der Tauchtiefe nicht ändert, dass also der Rauminhalt des durch den Druck C_r verdrängten Wassers gleich $F_r e_r$ ist. Erfährt nun die Tauchtiefe durch eine von C_r unabhängige Ursache — z. B. durch eine nachträgliche Aenderung des Schiffsgewichts — den Zuwachs e_r' , so verschiebt sich der Stützpunkt r im ganzen um

(3)
$$e_r = e_r' + \omega_r C_r$$
 we $\omega_r = \frac{1}{\gamma F_r}$.

Zu beachten ist, dass der Stützpunkt r in der Mitte des Schiffes angenommen ist. Mit dem Falle unmittelbar auf den Schiffsborden ruhender Balken werden wir uns später beschäftigen.

Durch die Gleichung (1) sind die möglichen Beziehungen zwischen den Verschiebungen e und den Kräften C keineswegs erschöpft. Es

kann auch vorkommen, dass e_r von mehreren Stützendrücken C_r abhängt. Ein Beispiel bietet die Fig. 73. Der Balken 0 1 . . . 6 wird zum Theil von dem Fachwerk AB getragen, und es ist deshalb jede

der Verschiebungen e_2 , e_3 , e_4 von den drei Stützendrücken C_2 , C_3 , C_4 abhängig. Von der Behandlung derartiger Fälle wollen wir indess vorläufig absehen.

20. Elasticitätsgleichungen für den Balken von überall gleichem Querschnitte. Wir knüpfen an die auf Seite 36 abgeleiteten Gleichungen 7 und 8 an und drücken zunächst δ_r durch die Verschiebungen e_{r-1} , e_r , e_{r+1} aus, Fig. 72. Es ist

$$\frac{e_r + \delta_r - e_{r-1}}{l_r} = \frac{e_{r+1} - (e_r + \delta_r)}{l_{r+1}}$$

mithin

(4)
$$\frac{\delta_r(l_r+l_{r+1})}{l_rl_r} = \frac{e_{r-1}-e_r}{l_r} + \frac{e_{r+1}-e_r}{l_{r+1}}$$

und das Belastungsglied Nr. geht über in

(5)
$$N_{r} = -6\left(\frac{\mathfrak{L}_{or}}{l_{r}} + \frac{\mathfrak{R}_{o(r+1)}}{l_{r+1}}\right) - 3\varepsilon EJ(t_{u} - t_{o})\frac{l_{r} + l_{r+1}}{h} - 6EJ\left[\frac{e_{r-1}}{l_{r}} - \frac{e_{r}(l_{r} + l_{r+1})}{l_{r} l_{r+1}} + \frac{e_{r+1}}{l_{r+1}}\right].$$

Setzt man nun $e_r = e'_r + \omega_r C_r$ und (nach Gleich. 23, Seite 44)

(6)
$$C_r = C_{0r} + \frac{M_{r-1}}{l_r} - \frac{M_r (l_r + l_{r+1})}{l_r l_{r+1}} + \frac{M_{r+1}}{l_{r+1}},$$

wo C_{0r} den Werth bedeutet, welchen C_r annehmen würde, falls die Trägerstücke l_r und l_{r+1} einfache Balken wären, so erhält man nach einer leichten Zwischenrechnung die Beziehung:

(7)
$$M_{r-2}a_{r-1} + M_{r-1}b_r + M_rc_r + M_{r+1}b_{r+1} + M_{r+2}a_{r+1} = K_r.$$

Die Beiwerthe a, b, c sind durch die Formeln bestimmt:

(8a)
$$\begin{cases} a_r = \frac{6 E J \omega_r}{l_r l_{r+1}} \\ b_r = l_r - \frac{6 E J}{l_r^2} \left(\omega_{r-1} \frac{l_{r-1} + l_r}{l_{r-1}} + \omega_r \frac{l_r + l_{r+1}}{l_{r+1}} \right) \\ c_r = 2 (l_r + l_{r+1}) + 6 E J \left[\frac{\omega_{r-1}}{l_r^2} + \frac{\omega_r (l_r + l_{r+1})^2}{l_r^2 l_{r+1}^2} + \frac{\omega_{r+1}}{l_{r+1}^2} \right] \end{cases}$$

und das Belastungsglied lautet:

$$(9 a) \begin{cases} K_{r} = -6 \left(\frac{\mathfrak{L}_{or}}{l_{r}} + \frac{\mathfrak{R}_{o(r+1)}}{l_{r+1}} \right) - 3 \varepsilon EJ (t_{u} - t_{o}) \frac{l_{r} + l_{r+1}}{h} \\ -6 EJ \left[\frac{e_{r-1}'}{l_{r}} - \frac{e_{r}' (l_{r} + l_{r+1})}{l_{r} l_{r+1}} + \frac{e_{r+1}'}{l_{r+1}} \right] \\ -6 EJ \left[\frac{\omega_{r-1}C_{0(r-1)}}{l_{r}} - \frac{\omega_{r}C_{0r}(l_{r} + l_{r+1})}{l_{r} l_{r+1}} + \frac{\omega_{r+1}C_{0(r+1)}}{l_{r+1}} \right]. \end{cases}$$

Auch kann man die Gleichungen für b_r und c_r umformen in:

(8 b)
$$\begin{cases} b_r = l_r - a_{r-1} \frac{l_{r-1} + l_r}{l_r} - a_r \frac{l_r + l_{r+1}}{l_r} \\ c_r = 3 (l_r + l_{r+1}) - a_{r-1} - b_r - b_{r+1} - a_r. \end{cases}$$

und das letzte Glied des Belastungsgliedes K_r , darf auch wie folgt geschrieben werden:

(9b) $-a_{r-1}l_{r-1}C_{0(r-1)} + a_r(l_r+l_{r+1})C_{0r} - a_{r+1}l_{r+2}C_{0(r+1)}$.

Eine etwas abweichende Form nehmen die beiden ersten Elasticitätsgleichungen an; sie sollen hier nur für den Fall eines überall frei aufliegenden (an den Enden also nicht eingespannten) Balkens, der jedoch über die Endstützen 0 und n hinausragen möge, aufgestellt werden, Fig. 44, Seite 39. Die äussersten Stützenmomente M_0 und M_n sind bekannt. Die Widerstände der Stützen 0 und 1 sind:

(10)
$$\begin{cases} C_0 = C_{00} + \frac{M_1}{l_1} \\ C_1 = C_{01} - \frac{M_1(l_1 + l_2)}{l_1 l_2} + \frac{M_2}{l_2} \end{cases}$$

wenn C_{00} und C_{01} die Stützenwiderstände für den Fall bedeuten, dass der Balken bei 1 und 2 durchgeschnitten wird, Fig. 74. Die fraglichen Elasticitätsgleichungen lauten:

(11)
$$\begin{cases} M_1 c_1 + M_2 b_2 + M_3 a_2 = K_1 \\ M_1 b_2 + M_2 c_2 + M_3 b_3 + M_4 a_3 = K_2 \end{cases}$$

wobei K1 mittels der Ausnahmeformel

(12)
$$\begin{cases} K_{1} = -M_{0} l_{1} - 6 \left(\frac{\mathfrak{L}_{o1}}{l_{1}} + \frac{\mathfrak{R}_{o2}}{l_{2}} \right) - 3 \varepsilon EJ \left(t_{u} - t_{o} \right) \frac{l_{1} + l_{2}}{h} \\ - 6 EJ \left[\frac{e_{0}'}{l_{1}} - \frac{e_{1}' \left(l_{1} + l_{2} \right)}{l_{1} l_{2}} + \frac{e_{2}'}{l_{2}} \right] \\ - a_{0} l_{0} C_{00} + a_{1} \left(l_{1} + l_{2} \right) C_{01} - a_{2} l_{3} C_{02} , \end{cases}$$

welche sich von der Gleich. 9a u. b durch das Glied — $M_o l_1$ unterscheidet, berechnet werden muss. Für K_2 gilt Gleichung 9a u. b. Zu beachten ist, dass in

$$a_0 = \frac{6 E J \omega_0}{l_0 l_1}$$

für lo eine beliebig lange Strecke eingeführt werden darf.*)

In derselben Weise ist bei Aufstellung der beiden letzten Elasticitätsgleichungen zu verfahren.

21. Balken mit veränderlichem Querschnitte. Zur Berechnung der Stützenmomente dienen die allgemeinen Gleichungen (1) und (2) auf Seite 32. Dieselben lassen sich mittels der Beziehungen

$$\frac{l_r + l_{r+1}}{l_r l_{r+1}} \delta_r = \frac{e_{r-1}}{l_r} - \frac{e_r (l_r + l_{r+1})}{l_r l_{r+1}} + \frac{e_{r+1}}{l_{r+1}}$$

$$e_r = e_r' + \omega_r C_r$$

$$C_r = C_{0r} + \frac{M_{r-1}}{l_r} - \frac{M_r (l_r + l_{r+1})}{l_r l_{r+1}} + \frac{M_{r+1}}{l_{r+1}}$$

in derselben Weise umformen, wie die Elasticitätsgleichungen des Trägers mit überall gleichem Querschnitte. Man erhält nämlich:

(12) $M_{r-2}\alpha_{r-1} + M_{r-1}\beta_r + M_r\gamma_r + M_{r+1}\beta_{r+1} + M_{r+2}\alpha_{r+1} = Z_r$ wobei die α , β , γ und Z durch die Formeln bestimmt sind:

$$\begin{cases} \alpha_{r} = \frac{\omega_{r}}{l_{r} l_{r+1}} \\ \beta_{r} = \frac{d_{r}}{l_{r}} - \frac{1}{l_{r}^{2}} \left(\omega_{r-1} \frac{l_{r-1} + l_{r}}{l_{r-1}} + \omega_{r} \frac{l_{r} + l_{r+1}}{l_{r+1}} \right) \\ = \frac{d_{r}}{l_{r}} - \alpha_{r-1} \frac{l_{r-1} + l_{r}}{l_{r}} - \alpha_{r} \frac{l_{r} + l_{r+1}}{l_{r}} \\ \gamma_{r} = \frac{c_{r}}{l_{r}} + \frac{c_{r}}{l_{r+1}} + \frac{\omega_{r-1}}{l_{r}^{2}} + \frac{\omega_{r}(l_{r} + l_{r+1})^{2}}{l_{r}^{2} l_{r+1}^{2}} + \frac{\omega_{r+1}}{l_{r+1}^{2}} \\ = \frac{d_{r}}{l_{r}} + \frac{c_{r}}{l_{r}} + \frac{c_{r}}{l_{r+1}} + \frac{d_{r+1}}{l_{r+1}} - \alpha_{r-1} - \beta_{r} - \beta_{r+1} - \alpha_{r+1} \\ = \frac{d_{r}}{l_{r}} + \frac{c_{r}}{l_{r}} + \frac{c_{r}}{l_{r+1}} + \frac{d_{r+1}}{l_{r+1}} - \alpha_{r-1} - \beta_{r} - \beta_{r+1} - \alpha_{r+1} \\ - \alpha_{r-1} l_{r-1} C_{0(r-1)} + \alpha_{r}(l_{r} + l_{r+1}) C_{0r} - \alpha_{r+1} l_{r+2} C_{0(r+1)}. \end{cases}$$

Die Bedeutung der Buchstaben d_r , c_r , δ_{mr} , c_{rt} ist aus Figur 37 Seite 33 ersichtlich.

5

*) Das gleiche gilt für l_{n+1} in $a_n = \frac{6 E J \omega_0}{l_n l_{n+1}}$. Müller-Breslau, Graphische Statik. II. 2. 22. Die Auflösung der Elasticitätsgleichungen erfolgt am zweckmässigsten durch Rechnung; sie gestaltet sich besonders einfach bei symmetrischer Anordnung des Trägers.

Es handle sich beispielsweise um einen auf 8 Stützen ruhenden, irgendwie belasteten symmetrischen Balken von überall gleichem Querschnitte. Die Elasticitätsgleichungen desselben lauten:

$$\begin{array}{c} M_1 \, c_1 + M_2 \, b_2 + M_3 \, a_2 = K_1 \\ M_1 \, b_2 + M_2 \, c_2 + M_3 \, b_3 + M_4 \, a_3 = K_2 \\ M_1 \, a_2 + M_2 \, b_3 + M_3 \, c_3 + M_4 \, b_4 + M_5 \, a_3 = K_3 \\ M_2 \, a_3 + M_3 \, b_4 + M_4 \, c_3 + M_5 \, b_3 + M_6 \, a_2 = K_4 \\ M_3 \, a_3 + M_4 \, b_3 + M_5 \, c_2 + M_6 \, b_2 = K_5 \\ M_4 \, a_2 + M_5 \, b_2 + M_6 \, c_1 = K_6 \end{array}$$

denn es ist $a_4 = a_3$, $a_5 = a_2$, ferner $b_5 = b_3$, $b_6 = b_2$, schliesslich $c_4 = c_3$, $c_5 = c_2$, $c_6 = c_1$.

Addirt man die erste und die letzte Gleichung, ebenso die zweite und die vorletzte u. s. w. und führt man die neuen Unbekannten ein:

$$X_1 = M_1 + M_6; \quad X_2 = M_2 + M_5; \quad X_3 = M_3 + M_4$$

 $Y_1 = M_1 - M_6; \quad Y_2 = M_2 - M_5; \quad Y_3 = M_3 - M_4$

so erhält man zwei Gruppen von Gleichungen mit je drei Unbekannten, nämlich:

(I)
$$\begin{cases} X_1 c_1 + X_2 b_2 + X_3 a_2 = A_1 \\ X_1 b_2 + X_2 c_2 + X_3 (b_3 + a_3) = A_2 \\ X_1 a_2 + X_2 (b_3 + a_3) + X_3 (c_3 + b_4) = A_3 \\ \end{cases}$$
(II)
$$\begin{cases} Y_1 c_1 + Y_2 b_2 + Y_3 a_2 = B_1 \\ Y_1 b_2 + Y_2 c_2 + Y_3 (b_3 - a_3) = B_2 \\ Y_1 a_2 + Y_2 (b_3 - a_3) + Y_3 (c_3 - b_4) = B_3 \end{cases}$$

wo

$$A_1 = K_1 + K_6, \quad A_2 = K_2 + K_5, \quad A_3 = K_3 + K_4 \\ B_1 = K_1 - K_6, \quad B_2 = K_2 - K_5, \quad B_3 = K_3 - K_4.$$

Bezeichnet man nun die aus den Beiwerthen der Grössen X gebildete Determinante mit D, ferner mit D_1 , D_2 , D_3 diejenigen Determinanten, welche man erhält wenn man in D die erste bezw. zweite bezw. dritte Spalte durch die Spalte $A_1 A_2 A_3$ ersetzt, so erhält man

$$X_1 = \frac{D_1}{D}, \quad X_2 = \frac{D_2}{D}, \quad X_3 = \frac{D_3}{D},$$

worin also

$$D = \begin{vmatrix} c_1 & b_2 & a_2 \\ b_2 & c_2 & (b_3 + a_3) \\ a_2 & (b_3 + a_3) & (c_3 + b_4) \end{vmatrix},$$

Balken auf elastischen Stützen.

$$D_1 = \begin{vmatrix} A_1 & b_2 & a_2 \\ A_2 & c_2 & (b_3 + a_3) \\ A_3 & (b_3 + a_3) & (c_3 + b_4) \end{vmatrix}, \quad D_2 = \begin{vmatrix} c_1 & A_1 & a_2 \\ b_2 & A_2 & (b_3 + a_3) \\ a_2 & A_3 & (c_3 + b_4) \end{vmatrix}$$
 u. s. w.

Die Rechnung wird dadurch wesentlich vereinfacht, dass die Gleichungen (I) einfach symmetrisch sind, was zur Folge hat, dass auch die Lösungen in derselben einfach symmetrischen Form erscheinen. Schreibt man die Gleichungen (I) übersichtlicher wie folgt:

$$\begin{array}{l} X_1 a' + X_2 b' + X_3 c' = A_1 \\ X_1 b' + X_2 d' + X_3 e' = A_2 \\ X_1 c' + X_2 e' + X_3 f' = A_3 \end{array}$$

so lauten die Lösungen

$$\begin{split} X_1 &= a''A_1 + b''A_2 + c''A_3 \\ X_2 &= b''A_1 + d''A_2 + e''A_3 \\ X_3 &= c''A_1 + e''A_2 + f''A_3 \end{split}$$

und hierin ist

$$a'' = \frac{a_1'}{D}, \ b'' = \frac{b_1'}{D}, \ c'' = \frac{c_1'}{D}, \ d'' = \frac{d_1}{D}$$
 u. s. w.

WO

$$D = \begin{vmatrix} a' b' c' \\ b' d' e' \\ c' e' f' \end{vmatrix} = a' a_1' + b' b_1' + c' c_1'$$

und $a_1', b_1', c_1', d_1' \dots$ die Unterdeterminanten zu den Elementen $a', b', c' \dots$ von D^*) nämlich:

$$\begin{aligned} a_{1}' &= + \begin{vmatrix} d' & e' \\ e' & f' \end{vmatrix} \\ b_{1}' &= - \begin{vmatrix} b' & c' \\ e' & f' \end{vmatrix}, \ d_{1}' &= + \begin{vmatrix} a' & c' \\ c' & f' \end{vmatrix} \\ c_{1}' &= + \begin{vmatrix} b' & c' \\ d' & e' \end{vmatrix}, \ e_{1}' &= - \begin{vmatrix} a' & c' \\ b' & e' \end{vmatrix}, \ f_{1}' &= + \begin{vmatrix} a' & b' \\ b' & d' \end{vmatrix}.$$

Hat man auf dieselbe Weise die Unbekannten Y in der Form

$$\begin{array}{l} Y_1 = a''' B_1 + b''' B_2 + c''' B_3 \\ Y_2 = b''' B_1 + d''' B_2 + e''' B_3 \\ Y_3 = c''' B_1 + e''' B_2 + f''' B_3 \end{array}$$

*) Die allgemeine Form einer aus n Elementen $a \ b \ c \ \ldots \ q$ gebildeten Determinante n^{ten} Grades ist:

5*

$$D = \begin{vmatrix} a_1 & b_1 & c_1 & \dots & q_1 \\ a_2 & b_2 & c_2 & \dots & q_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_n & b_n & c_n & \dots & q_n \end{vmatrix}.$$

dargestellt, so findet man:

$$\begin{split} M_1 &= \frac{1}{2} \left(X_1 + Y_1 \right); \quad M_6 &= \frac{1}{2} \left(X_1 - Y_1 \right) \\ M_2 &= \frac{1}{2} \left(X_2 + Y_2 \right); \quad M_5 &= \frac{1}{2} \left(X_2 - Y_2 \right) \\ M_3 &= \frac{1}{2} \left(X_3 + Y_3 \right); \quad M_4 &= \frac{1}{2} \left(X_3 - Y_3 \right). \end{split}$$

Es ist also beispielsweise:

$$\begin{array}{l} 2\,M_1 = a^{\prime\prime}\,(K_1 + K_6) + b^{\prime\prime}\,(K_2 + K_5) + c^{\prime\prime}\,(K_3 + K_4) \\ + a^{\prime\prime\prime}(K_1 - K_6) + b^{\prime\prime\prime}\,(K_2 - K_5) + c^{\prime\prime\prime}\,(K_3 - K_4) \\ = K_1(a^{\prime\prime} + a^{\prime\prime\prime}) + K_2(b^{\prime\prime} + b^{\prime\prime\prime}) + K_3(c^{\prime\prime} + c^{\prime\prime\prime}) \\ + K_4(c^{\prime\prime} - c^{\prime\prime\prime}) + K_5(b^{\prime\prime} - b^{\prime\prime\prime}) + K_6(a^{\prime\prime} - a^{\prime\prime\prime}). \end{array}$$

Die Rechnung wird wieder durch den Umstand vereinfacht, dass die schliesslichen Lösungen in der doppelt symmetrischen Form erscheinen müssen:

$$\begin{split} M_{1} &= \underline{a} \ K_{1} + \underline{b} \ K_{2} + \underline{c} \ K_{3} + \overline{c} \ K_{4} + \overline{b} \ K_{5} + \overline{a} \ K_{6} \\ M_{2} &= \underline{b} \ K_{1} + \underline{d} \ K_{2} + \underline{e} \ K_{3} + \overline{e} \ K_{4} + \overline{d} \ K_{5} + \overline{b} \ K_{6} \\ M_{3} &= \underline{c} \ K_{1} + \underline{e} \ K_{2} + \underline{f} \ K_{3} + \overline{f} \ K_{4} + \overline{e} \ K_{5} + \overline{c} \ K_{6} \\ M_{4} &= \overline{c} \ K_{1} + \overline{e} \ K_{2} + \overline{f} \ K_{3} + \underline{f} \ K_{4} + \underline{e} \ K_{5} + \underline{c} \ K_{6} \\ M_{5} &= \overline{b} \ K_{1} + \overline{d} \ K_{2} + \overline{e} \ K_{3} + \underline{e} \ K_{4} + \underline{d} \ K_{5} + \underline{b} \ K_{6} \\ M_{6} &= \overline{a} \ K_{1} + \overline{b} \ K_{2} + \overline{c} \ K_{3} + \underline{c} \ K_{4} + \underline{b} \ K_{5} + \underline{a} \ K_{6} \end{split}$$

wo:

$$\underline{a} = \frac{a'' + a'''}{2}, \ \underline{b} = \frac{b'' + b'''}{2}, \ \underline{c} = \frac{c'' + c'''}{2}, \\ \overline{c} = \frac{c'' - c'''}{2}, \ \overline{b} = \frac{b'' - b'''}{2}, \ \overline{a} = \frac{a'' - a'''}{2}, \\ \underline{d} = \frac{d'' + d'''}{2}, \ \underline{e} = \frac{e'' + e'''}{2}, \ \overline{e} = \frac{e'' - e'''}{2}, \ \overline{d} = \frac{d'' - d'''}{2}, \\ \underline{f} = \frac{f'' + f'''}{2}, \ \overline{f} = \frac{f'' - f'''}{2}.$$

Ganz ähnlich ist der Rechnungsgang bei einer ungeraden Anzahl von Elasticitätsgleichungen. Ist z. B. die Anzahl der Stützen gleich 7, so hat man:

$$egin{aligned} & M_1\,c_1 + \,M_2\,b_2 + \,M_3\,a_2 = K_1 \ & M_1\,b_2 + \,M_2\,c_2 + \,M_3\,b_3 + \,M_4\,a_3 = K_2 \ & M_1\,a_2 + \,M_2\,b_3 + \,M_3\,c_3 + \,M_4\,b_3 + \,M_5\,a_2 = K_3 \ & M_2\,a_3 + \,M_3\,b_3 + \,M_4\,c_2 + \,M_5\,b_2 & = K_4 \ & M_3\,a_2 + \,M_4\,b_2 + \,M_5\,c_1 & = K_5 \end{aligned}$$

und erhält mit

$$M_1 + M_5 = X_1, \quad M_2 + M_4 = X_2, \quad M_3 + M_3 = X_3$$

 $M_1 - M_5 = Y_1, \quad M_2 - M_4 = Y_2$

die beiden Gruppen von Gleichungen:

(I)
$$\begin{cases} X_1 c_1 + X_2 b_2 + X_3 a_2 = K_1 + K_5 = A_1 \\ X_1 b_2 + X_2 (c_2 + a_3) + X_3 b_3 = K_2 + K_4 = A_2 \\ X_1 a_2 + X_2 b_3 + X_3 \frac{c_3}{2} = K_3 = A_3 \end{cases}$$

(II)
$$\begin{cases} Y_1 c_1 + Y_2 b_2 = K_1 - K_5 = B_1 \\ Y_1 b_1 + Y_2 b_2 = K_1 - K_5 = B_1 \end{cases}$$

$$\begin{cases} Y_1 b_2 + Y_2 (c_2 - a_3) = K_2 - K_4 = B_2. \end{cases}$$

Hieraus findet man nun zunächst die X und Y in der einfach symmetrischen Form:

$$\begin{split} X_1 &= a'' A_1 + b'' A_2 + c'' A_3 \\ X_2 &= b'' A_1 + d'' A_2 + e'' A_3 \\ X_3 &= c'' A_1 + e'' A_2 + f'' A_3 \\ Y_1 &= a''' B_1 + b''' B_2 \\ Y_2 &= b''' B_1 + d''' B_2 \end{split}$$

und schliesslich die Stützenmomente:

$$\begin{split} M_1 &= \underline{a} \ K_1 + \underline{b} \ K_2 + (c) \ K_3 + \overline{b} \ K_4 + \overline{a} \ K_5 \\ M_2 &= \underline{b} \ K_1 + \underline{d} \ K_2 + (e) \ K_3 + \overline{d} \ K_4 + \overline{b} \ K_5 \\ M_3 &= \underline{c} \ K_1 + \underline{e} \ K_2 + (f) \ K_3 + \underline{e} \ K_4 + \underline{c} \ K_5 \\ M_4 &= \overline{b} \ K_1 + \overline{d} \ K_2 + (e) \ K_3 + \underline{d} \ K_4 + \underline{b} \ K_5 \\ M_5 &= \overline{a} \ K_1 + \overline{b} \ K_2 + (c) \ K_3 + \underline{b} \ K_4 + \overline{a} \ K_5 \end{split}$$

wo:

$$a = \frac{a'' + a'''}{2}, \ b = \frac{b'' + b'''}{2}, \ (c) = \frac{c''}{2}, \ \overline{b} = \frac{b'' - b'''}{2}, \ \overline{a} = \frac{a'' - a'''}{2}$$
$$d = \frac{d'' + d'''}{2}, \ (e) = \frac{e''}{2}, \ \overline{d} = \frac{d'' - d'''}{2}$$
$$(f) = \frac{f''}{2}.$$

23. Einflusslinien für die Stützenmomente. Die Aufstellung allgemeiner Regeln für die gefährlichste Belastungsweise begegnet bei nachgiebigen Stützen grossen Schwierigkeiten, und es empfiehlt sich daher, diese Frage von Fall zu Fall mittels Einflusslinien zu entscheiden. Um den einzuschlagenden Weg auf möglichst übersichtliche Weise beschreiben zu können, geben wir dem durch Auflösung der Elasticitätsgleichungen für irgend ein Stützenmoment (z. B. M, bei Stütze i) gewonnenen Ausdruck die Form:

(15) $M_i = \beta_{i_1} K_1 + \beta_{i_2} K_2 + \beta_{i_3} K_3 + \ldots + \beta_{i_{(n-1)}} K_{n-1} = \sum_{i} \beta_{i_r} K_r$ und zerlegen den von der Belastung abhängigen Theil von K_r in

(16)
$$K_r' = -6\left(\frac{\mathfrak{L}_{or}}{l_r} + \frac{\mathfrak{R}_{o(r+1)}}{l_{r+1}}\right) \text{ und}$$

(17)
$$K_r'' = -a_{r-1}l_{r-1}C_{0(r-1)} + a_r(l_r+l_{r+1})C_{0r} - a_{r+1}l_{r+2}C_{0(r+1)}$$
.
Der Einfluss des Bestes, d. i.

(18)
$$K_r''' = -3\varepsilon EJ(t_u - t_o) \frac{l_r + l_{r+1}}{h} - 6EJ\left[\frac{e'_{r \neq 1}}{l_r} - \frac{e'_r(l_r + l_{r+1})}{l_r l_{r+1}} + \frac{e'_{r \neq 1}}{l_{r+1}}\right]$$

wird für sich allein festgestellt, und kommt jetzt nicht weiter in Betracht.

Zunächst nehmen wir an, es seien sämmtliche K'' gleich Null, setzen also

$$M_{i} = \beta_{i_{1}} K_{1}' + \beta_{i_{2}} K_{2}' + \beta_{i_{3}} K_{3}' + \dots + \beta_{i_{(n-1)}} K_{n-1}'$$

Liegt dann die über den Balken wandernde Last P über der r^{ten} Oeffnung, und zwar in den Abständen ξ bezieh. ξ' von (r-1) bezw. r (Fig. 75a), so entsteht nach Seite 30:

während alle übrigen K' verschwinden; und es ergiebt sich daher mit den auf Seite 42 eingeführten Bezeichnungen:

$$\operatorname{tg} \varphi_{L} = \frac{\xi'}{l_{r}} - \frac{\xi'^{3}}{l_{r}^{3}} \text{ und } \operatorname{tg} \varphi_{R} = \frac{\xi}{l_{r}} - \frac{\xi^{3}}{l_{r}^{3}}$$

Balken auf elastischen Stützen.

für den Einfluss der über der r^{ten} Oeffnung liegenden Lasteinheit auf das Moment M_i der Ausdruck:

(19)
$$M_{ir} = -P(\beta_{i(r-1)} \operatorname{tg} \varphi_L + \beta_{ir} \operatorname{tg} \varphi_R) l_r^2 = -P\zeta_{ir}.$$

Für eine Last $P = 1$ über der ersten Oeffnung findet man
(20) $\zeta_{i_1} = -\beta_{i_1} \operatorname{tg} \varphi_R l_1^2$

und für eine Last über der Oeffnung l_n :

(21) $\zeta_{in} = -\beta_{i(n-1)} \operatorname{tg} \varphi_L l_n^2.$

Da tg φ_L und tg φ_R nur von den Verhältnissen $\xi': l_r$ bezw. $\xi: l_r$ abhängig sind, nicht aber von den Stützweiten, so lässt sich die Berechnung der ζ_i -Linie ohne grossen Zeitaufwand ausführen. Selbst bei

TEN	in	-	C
T.1	g.	- 6	υ.

grösseren Oeffnungen genügt es, die Stützweite in 10 gleichlange Strecken zu theilen, so dass die Tabelle auf Seite 42 ausreicht. Zur zeichnerischen Ermittlung der ζ empfiehlt sich die Benutzung zweier Strahlenbüschel in der durch Fig. 76 (Bestimmung von ζ_{ir} für den 4^{ten} Theilpunkt der Oeffnung l_r) veranschaulichten Weise. Die auf die Strahlen gesetzten Zahlen geben die Ordnungsziffern der zugehörigen Theilpunkte und die der Tabelle entnommenen Tangenten der Neigungswinkel der Strahlen an. Die Werthe tg φ_L für die Theilpunkte 1, 2, 3, ... stimmen bew. überein mit den Werthen tg φ_R für die Theilpunkte 9, 8, 7, ...

Noch einfacher gestaltet sich die Darstellung des Einflusses der Glieder K''. Denn die Einflusslinie für C_{0r} besteht nach Fig. 50, Seite 44, aus zwei Geraden, welche sich auf der Senkrechten durch rtreffen und bei (r-1) sowie bei (r+1) die Ordinaten 0 besitzen, und es muss deshalb die Einführung der K'' in die Gleichung 15 ein Einflusspolygon ergeben, dessen Eckpunkte . . . $(r-1)' r' (r+1)' \dots$ senkrecht unter den Stützpunkten liegen, Fig. 75 b; dasselbe ist bestimmt durch die Ordinaten $\eta_{i0}, \eta_{i1}, \dots, \eta_{ir}, \dots, \eta_{in}$. Liegt die Last P über der Stütze r, so entsteht $C_{0r} = P$, während alle übrigen C_0 verschwinden, und es ergiebt sich daher:

$$K_{r-1}'' = 0, \quad K_{2}'' = 0, \quad \dots \quad K_{r-2}'' = 0$$

$$K_{r-1}'' = -a_{r}l_{r+1}P, \quad K_{r}'' = +a_{r}(l_{r}+l_{r+1})P, \quad K_{r+1}'' = -a_{r}l_{r}P$$

$$K_{r+1}'' = 0, \quad \dots \quad K_{n-1}'' = 0.$$

Man erhält also:

 $M_{i} = \begin{bmatrix} -\beta_{i(r-1)}a_{r}l_{r+1} + \beta_{ir}a_{r}(l_{r}+l_{r+1}) - \beta_{i(r+1)}a_{r}l_{r}\end{bmatrix}P \text{ also}$ $(22) \qquad \eta_{ir} = a_{r}\begin{bmatrix} -\beta_{i(r-1)}l_{r+1} + \beta_{ir}(l_{r}+l_{r+1}) - \beta_{i(r+1)}l_{r}\end{bmatrix};$

nur für die Endstützen 0 und n gelten die Ausnahmeformeln:

(23)
$$\begin{cases} \eta_{i_0} = -a_0 l_0 \beta_{i_1} * \\ \eta_{i_n} = -a_n l_{n+1} \beta_{i(n-1)}. \end{cases}$$

Die Zusammenzählung der Einflüsse von K' und K'' erfolgt schliesslich in der Weise, dass nach Fig. 75b die Ordinaten der ζ_i -Linie vom η_i -Polygon aus aufgetragen werden.

Zu einem anderen ebenfalls sehr übersichtlichen zeichnerischen Verfahren führt die Betrachtung eines einfachen Balkens von der Stützweite l_r , auf den nach Fig. 77 eine Dreiecksbelastung von der Höhe

 $\frac{6 \beta_{ir} \text{ wirkt.}}{\$} \text{ Der Gegendruck der Stütze } (r-1) \text{ ist } \beta_{ir}l_r \text{ und das Mo-}}$ $\frac{\beta_{ir}l_r}{\$} \text{ Hinsichtlich } l_0 \text{ uod } l_{n+1} \text{ vergleiche man Seite } 65.$

ment an der Stelle & ist:

$$(M) = \beta_{ir}l_r \cdot \xi - 6\beta_{ir}\frac{\xi}{l_r} \cdot \frac{\xi}{2} \cdot \frac{\xi}{3} = \beta_{ir}l_r^2 \left(\frac{\xi}{l_r} - \frac{\xi^3}{l_r^3}\right)$$

und ganz ebenso findet man das Moment infolge der Dreiecksbelastung in Fig. 78:

$$(M) = \beta_{i(r-1)} l_r^2 \left(\frac{\xi'}{l_r} - \frac{\xi'^3}{l_r^3} \right).$$

Der Trapezbelastung in Fig. 79 entspricht also

$$(M) = (\beta_{i(r-1)} \operatorname{tg} \varphi_L + \beta_{ir} \operatorname{tg} \varphi_R) l_r^2 = -\zeta_{ir}$$

und hieraus folgt, dass die ζ_{ir} -Linie als die mit der Polweite 1 gezeichnete Seillinie des Belastungstrapezes in Fig. 79 angesehen werden darf. Diese Auffassung der ζ_{ir} -Linie führt zu der durch die Fig. 80 veranschaulichten Darstellung der Einflussfläche für M_i . Die Seillinien

I, II, III, ... gehören zu den gleichbezeichneten Belastungsflächen; die gestrichelten den Einzelbalken entsprechenden Schlusslinien 0 — 1, 1-2, 2-3,... sind behufs Berücksichtigung der Werthe K'' durch die Schlusslinien 0'-1', 1'-2', 2'-3', ... ersetzt worden. Dabei ist:

 $\overline{0-0'} = \eta_{i0}, \ \overline{1-1'} = \eta_{i1}, \ \overline{2-2'} = \eta_{i2}, \ldots$

Die Zeichnung setzt voraus, dass die η zum Theil positiv, zum Theil negativ sind. Auch die β_i werden in der Regel zum Theil positiv zum Theil negativ sein; sie wurden in Fig. 80 aber durchweg positiv angenommen.

Bezüglich der Einheiten und Maassstäbe ist folgendes zu beachten. Die Beiwerthe β sind reciproke Linien (z. B. $\frac{1}{Meter}$); die η und ζ sind Linien (Meter). Die Inhalte f der Streifen, in welche die Belastungsflächen I, II, \ldots in Fig. 80 und 81 behufs Aufzeichnung der Seillinien zerlegt werden, sind Zahlen $\left(\frac{1}{m} \cdot m\right)$; ersetzt man sie durch die mittleren Streifenhöhen $y = \frac{f}{c}$, wo c die Streifenbreite bedeutet, so muss man die Polweite 1 (Zahl) durch die Polweite 1 : c ersetzen. Der Maassstab, in dem die reciproken Linien f:c und 1 : c aufgetragen

Fig. 81.

werden, ist gleichgiltig; man erhält die ζ in demselben Längenmaassstabe, in dem die Stützenweiten lgezeichnet sind. Es ist aber zweckmässig, für die ζ einen grösseren, etwa einen ν -mal so grossen Maassstab zu wählen wie für die Stützweiten. Man erreicht dies, indem man die Polweite gleich $1:\nu c$ macht.

Wird der Balken 0 - n über die Stütze 0 hinaus um l' verlängert, Fig. 82, und zur Unterstützung eines

einfachen Balkens AB benutzt, so besteht die Einflusslinie für M_i zwischen 0 und A aus zwei Geraden I', I'', welche durch die Ordinaten η_{i0} und η_{iB} bestimmt sind. Liegt P bei B, so entsteht bei Stütze 0 das Moment $M_0 = -Pl'$; ferner wird

$$C_{00} = P\left(1 + \frac{l'}{l_1}\right), \quad C_{01} = -P\frac{l'}{l_1}, \quad C_{02} = 0, \ldots \ldots$$

und man erhält mit P = 1 (nach Gleich. 12):

$$\begin{split} K_{1} &= -l'l_{1} - a_{0}l_{0}\left(1 + \frac{l'}{l_{1}}\right) - a_{1}\left(l_{1} + l_{2}\right)\frac{l'}{l_{1}} \text{ ferner} \\ K_{2} &= +a_{1}l_{1}\frac{l'}{l_{1}} = a_{1}l' \text{ also} \\ \eta_{iB} &= -\beta_{i1}\left[l'l_{1} + a_{0}l_{0}\left(1 + \frac{l'}{l_{1}}\right) + a_{1}\left(l_{1} + l_{2}\right)\frac{l'}{l_{1}}\right] + \beta_{i2}a_{1}l'. \end{split}$$

24. Fortsetzung. In dem häufig vorkommenden Falle gleichgrosser Oeffnungen $(l_1 = l_2 = \ldots = l)$ und gleich beschaffener Stützen $(\omega_1 = \omega_2 = \ldots = \omega)$ vereinfachen sich die vorstehend abgeleiteten Beziehungen wie folgt.

Die Elasticitätsbedingungen lauten, wenn zur Abkürzung

$$\frac{6 E J \omega}{l^3} = \alpha$$

gesetzt wird:

$$Z_{r} = \frac{K_{r}}{l} = -6\left(\frac{\mathfrak{L}_{or}}{l^{2}} + \frac{\mathfrak{R}_{o(r+1)}}{l^{2}}\right) - \frac{6\varepsilon EJ(t_{u}-t_{o})}{\hbar}$$
$$-\frac{6EJ}{l^{2}}[e_{r-1}' - 2e_{r}' + e_{r+1}'] - \alpha[C_{0(r-1)} - 2C_{0r} + C_{0(r+1)}]l$$

Die Auflösung der Elasticitätsbedingungen liefert für die Stützenmomente Gleichungen von der Form

$$M_i = \beta_{i_1}Z_1 + \beta_{i_2}Z_2 + \ldots + \beta_{i_r}Z_r + \ldots + \beta_{i_{(n-1)}}Z_{n-1},$$

worin die Grössen Z Momente und die Beiwerthe β Zahlen sind. Die Einflusslinie für M_i bestimme man wie vorhin mit Hilfe einer ζ_i -Linie und eines η_i -Polygons. Die Gleichung der ζ_i -Linie ist im r^{ten} Felde

(24)
$$\zeta_{ir} = -(\beta_{i(r-1)} \operatorname{tg} \varphi_L + \beta_{ir} \operatorname{tg} \varphi_R) l$$

und die η_i sind nach der Formel zu berechnen:

(25)
$$\eta_{ir} = \alpha l (-\beta_{i(r-1)} + 2 \beta_{ir} - \beta_{i(r+1)}).$$

Für die äussersten Oeffnungen gelten die Ausnahmeformeln:

(26)
$$\begin{aligned} \zeta_{i0} &= -\beta_{i1} \operatorname{tg} \varphi_{\mathbb{R}} l \qquad \zeta_{i(n-1)} &= -\beta_{i(n-1)} \operatorname{tg} \varphi_{\mathbb{R}} l \\ (27) \qquad \eta_{i1} &= -\alpha l \beta_{i1} \qquad \eta_{in} &= -\alpha l \beta_{i(n-1)}. \end{aligned}$$

Will man die ζ_i -Linien als Seilpolygone der in Figur 80 dargestellten, durch die Ordinaten $6\beta_{ir}$ bestimmten Belastungsflächen auffassen, so muss man die Polweite gleich l:c (anstatt, wie früher, 1:c) wählen. Man erhält dann die ζ_i in demselben Maassstabe, in dem die

Ing. ST. PRZYBYLSKI

Stützweiten gezeichnet sind. Wird für ζ_i der ν -fache Maassstab angewendet, so ist die Polweite gleich $l:\nu c$ zu machen.

Wird der Balken nach Fig. 82 über 0 hinaus verlängert, so ist
(28)
$$\eta_{iB} = -\beta_{i1}(l' + \alpha l + 3\alpha l') + \beta_{i2}\alpha l'.$$

25. Nachtrag zur Untersuchung des auf starren Stützen ruhenden Balkens. Das in No. 23 u. 24 entwickelte Verfahren zur Darstellung der Einflusslinien für die Stützenmomente gilt natürlich auch für den Fall starrer Stützen. Infolge des Nullwerdens der Werthe ω verschwinden die K" und damit auch die η -Polygone, und es ist daher die ζ_i -Linie die Einflusslinie für M_i . Eine weitere Vereinfachung ergiebt sich nach Bestimmung der Festpunkte L und R aus der Möglichkeit, die Momente M., und M. für zwei aufeinander folgende Stützpunkte mit Hilfe der beiden Gleichungen (14), Seite 40, zu berechnen, ferner aus dem Umstande, dass es genügt, für jedes Stützenmoment diejenigen beiden Zweige der Einflusslinien zu zeichnen, welche den durch den fraglichen Stützpunkt getrennten beiden Oeffnungen angehören. Die in den fraglichen Gleichungen enthaltenen Werthe N_{r-1} und N_r sind gleichbedeutend mit K'_{r-1} und K'_r . Die Auflösung ergiebt für Mr. die Formel:

$$M_{r} = \beta_{rr} N_{r} + \beta_{r(r-1)} N_{r-1} \text{ wo}$$

$$\beta_{r,r} = \frac{\chi_{r}}{l_{r}(\chi_{r}'\chi_{r}-1)} \text{ und } \beta_{r(r-1)} = -\frac{1}{l_{r}(\chi_{r}'\chi_{r}-1)} = -\frac{\beta_{rr}}{\chi_{r}}.$$

Dabei sind \varkappa_r und \varkappa_{r-1} gleich den Streckenverhältnissen:

$$\varkappa_r = \frac{\overline{rL}}{\overline{L(r-1)}} \text{ und}$$
$$\varkappa_r' = \frac{\overline{(r-1)R}}{\overline{Rr}}.$$

Macht man also (Fig. 83) $\overline{rr''} = 6 \beta_{rr}$ und legt man durch r'' und den linken Festpunkt die Gerade r''(r-1)'' so ist $\overline{(r-1)(r-1)''} = 6 \beta_{r(r-1)}$. Die ζ_{rr} -Linie ist die Seillinie der

schraffirten Belastungsfläche; sie besitzt bei L einen Wendepunkt und liefert das von der Einzellast P hervorgerufene Stützenmoment:

$$M_r = - P\zeta_{rr}$$

Gelenklose Zwischenträger von Brücken.

Die Polweite ist 1. Zur bequemen Ermittlung von β_{rr} mache man (am besten in kleinerem Maassstabe) $\overline{rr'} = l_r$, ziehe von r' aus durch die Festpunkte gerade Linien und bestimme die von diesen auf der Senkrechten durch (r-1) abgeschnittene Strecke d. Man findet dann leicht, dass $\beta_{rr} = \frac{1}{d}$ ist. Ganz ebenso wird die M_{r-1} -Linie gezeichnet.

§ 7.

Gelenklose Zwischenträger von Brücken.

(Eine Anwendung von § 6.)

26. Das Tragwerk einer Brücke (vgl. den Grundriss in Fig. 84) besteht im allgemeinen aus den Hauptträgern H, den Querträgern Q und den Zwischenträgern Z. Die letzteren werden wohl allgemein als Einzelbalken betrachtet, deren Stützweite gleich der Feldweite ist, obgleich diese Auffassung nur dann zutrifft, wenn die Zwischen-

Fig. 84.

träger gelenkartig mit den Querträgern verbunden sind. Fehlen diese Gelenke, ist also jeder Zwischenträger an den Enden mit den Querträgern in der üblichen Weise durch Niete verbunden oder durch Aussparungen in den Querträgerwänden hindurchgesteckt, so liegt ein durchlaufender Balken auf elastischen Stützen vor, dessen Biegungsmomente von den Formänderungen der Querträger und Hauptträger und von den Temperaturschwankungen, namentlich der Hauptträger, abhängig sind.

Wir betrachten eine eingleisige Eisenbahnbrücke. Der Abstand der beiden Hauptträger sei 2 c (Eig. 84), der beiden Zwischenträger 2(c-d). Die Feldweiten seien $\lambda_1, \lambda_2, \ldots, \lambda_r, \ldots$, die Stützenmomente des Zwischenträgers $M_1, M_2, \ldots, M_r, \ldots$, die Drücke, welche die Zwischenträger auf die Querträger ausüben, $C_0, C_1, C_2, \ldots, C_r, \ldots$ Der Querschnitt des Zwischenträgers sei konstant vorausgesetzt — eine stets zulässige Annahme —, sein Trägheitsmoment sei J. Wird von dem unwesentlichen Einflusse der ungleichmässigen Erwärmung des Zwischenträgers abgesehen, so gilt für drei aufeinander folgende Stützenmomente die Beziehung:

(1)
$$M_{r-1}\lambda_r + 2M_r(\lambda_r + \lambda_{r+1}) + M_{r+1}\lambda_{r+1} = -6\left(\frac{\mathfrak{L}_{or}}{\lambda_r} + \frac{\mathfrak{R}_{o(r+1)}}{\lambda_{r+1}}\right) - 6EJ\left[\frac{e_{r-1}}{\lambda_r} - \frac{e_r(\lambda_r + \lambda_{r+1})}{\lambda_r\lambda_{r+1}} + \frac{e_{r+1}}{\lambda_{r+1}}\right],$$

wo e_{r-1} , e_r , e_{r+1} die lothrechten Verschiebungen der Stützpunkte bedeuten. Dieselben setzen sich zusammen aus den Durchbiegungen e_h der Hauptträger und dem Einfluss e_q der Formänderungen der Querträger und der zwischen Querträger und Hauptträger etwa eingeschalteten Ständer. Hinsichtlich der e_q darf das Bildungsgesetz

(2)
$$e_{ar} = e'_{ar} + \omega_r C_r$$
 (vergl. Seite 61

vorausgesetzt werden, wo e'_{gr} einen von C_r unabhängigen Werth bedeutet, z. B. den Einfluss einer Temperaturänderung, der bei hohen Ständern erheblich werden kann. Jede der Verschiebungen e_h ist dagegen im Allgemeinen von sämmtlichen Kräften C abhängig.

Beschreibt man in die Biegungslinie des Hauptträgers ein Polygon, dessen Ecken šenkrecht unter den Querträgern liegen, und betrachtet man diesen Linienzug als das Seilpolygon gewisser Gewichte w, so besteht die Beziehung:*)

(8)
$$w_r = \left(\frac{e_{h\bar{r}} - e_{h(r-1)}}{\lambda_r} - \frac{e_{h(r+1)} - e_{h\bar{r}}}{\lambda_{r+1}}\right)$$
$$= -\left[\frac{e_{h(r-1)}}{\lambda_r} - \frac{e_{h\bar{r}}(\lambda_r + \lambda_{r+1})}{\lambda_r \lambda_{r+1}} - \frac{e_{h(r+1)}}{\lambda_{r+1}}\right]$$

und die Gleichung (1) geht über in:

*) Wir machen im vorliegenden § von den in der Abtheilung 1, § 3, entwickelten Gesetzen Gebrauch.

Gelenklose Zwischenträger von Brücken.

(4)

$$\begin{split} M_{r-1}\lambda_r &+ 2\,M_r\,(\lambda_r+\lambda_{r+1}) + M_{r+1}\lambda_{r+1} \\ = &- 6\,\left(\frac{\mathfrak{L}_{or}}{\lambda_r} + \frac{\mathfrak{R}_{o\,(r+1)}}{\lambda_{r+1}}\right) + 6\,EJw_r \\ &- 6\,EJ\!\left[\frac{e'_{a\,(r-1)}}{\lambda_r} - \frac{e'_{a\,r}\,(\lambda_r+\lambda_{r+1})}{\lambda_r\lambda_{r+1}} - \frac{e_{a\,(r+1)}}{\lambda_{r+1}}\right] \\ &- 6\,EJ\!\left[\frac{\omega_{r-1}C_{r-1}}{\lambda_r} - \frac{\omega_r\,C_r(\lambda_r+\lambda_{r+1})}{\lambda_r\lambda_{r+1}} + \frac{\omega_{r+1}\,C_{r+1}}{\lambda_{r+1}}\right]. \end{split}$$

Hervorzuheben ist, dass bis jetzt über die Anordnung der Hauptträger nichts Bestimmtes vorausgesetzt wurde; es ist also gleichgiltig, ob die Hauptträger fachwerkartig oder vollwandig sind, ob Balken oder Bögen.

27. Zwischenträger einer Blechbalkenbrücke. Es sei (Fig. 85a) A'B' der durchgehende Zwischenträger, A''B'' der Hauptträger. Auf den ersteren wirken die bekannten Raddrücke P und die Gegendrücke $C_0, C_1, C_2, \ldots, C_r, \ldots$ der Querträger, Fig. 85b, auf den letzteren nur die Kräfte C, Fig. 85c. Das Eigengewicht der Hauptträger und

Fig. 85.

Querträger kommt nicht in Betracht, da die durch dasselbe erzeugten Formänderungen bereits vor Aufbringung der Zwischenträger eingetreten sind. Bedeutet nun an der Stelle r:

M. das Biegungsmoment für den Zwischenträger,

 M_r , ", ", ", ", Hauptträger, M_r' , ", ", ", für einen einfachen Balken AB (Figur 85 d), auf den nur die Lasten P wirken,

so ist (5)

$$M_{\cdot} = M_{\cdot}' - \overline{M_{\cdot}}.$$

Das Gewicht w_r ist, nach Fig. 86, welche ein Stück der Biegungslinie des Hauptträgers darstellt,

$$w_r = \Delta \mathfrak{I}_r = \alpha_r'' + \alpha_{r+1}'')$$

und man erhält, nach Gleich. 7, Seite 28, wenn J_r und J_{r+1} die innerhalb der Felder λ_r und λ_{r+1} konstant angenommenen Trägheitsmomente des Querschnitts des Hauptträgers sind:

$$6 E J w_r = \frac{J}{J_r} (\overline{M}_{r-1} + 2 \overline{M}_r) \lambda_r + \frac{J}{J_{r+1}} (\overline{M}_{r+1} + 2 \overline{M}_r) \lambda_{r+1} + \frac{6 \varepsilon E J (t_u - t_o) \lambda_r}{h}$$

Fig. 86.

wo h die mittlere Höhe des Hauptträgers bedeutet.

Wir setzen eine konstante Feldweite λ voraus und führen — was stets zulässig ist — an Stelle von $J: J_r$ und $J: J_{r+1}$ einen Mittelwerth ein, den wir mit \varkappa_r bezeichnen. Wir erhalten dann:

(6)
$$\begin{cases} \frac{6 E J w_r}{\lambda} = \varkappa_r \left(\overline{M}_{r-1} + 4 \overline{M}_r + \overline{M}_{r+1} \right) + \frac{6 \varepsilon E J \left(t_u - t_o \right)}{h} \\ = \varkappa_r \left(M_r' + 4 M_r' + M_{r+1}' \right) - \varkappa_r \left(M_r + 4 M_r + M_{r+1} \right) \\ + \frac{6 \varepsilon E J \left(t_u - t_o \right)}{h}. \end{cases}$$

Die in No. 26 mit e_q bezeichneten Verschiebungen sind im vorliegenden Falle gleich den Durchbiegungen der Querträger. Das Trägheitsmoment J_q des Querträger-Querschnitts sei konstant; dann erhält

man nach § 3 die Biegungslinie des Querträgers, indem man die Momentenfläche (d. i. die schraffirte Fläche in Fig. 87) als Belastungsfläche ansieht, eine neue Momentenfläche bestimmt und deren Ordinaten durch EJ_q dividirt. Da nun der Inhalt der Belastungsfläche gleich $C_rd (2 c - d)$ ist, so kommt auf jede Stütze:

$$\frac{e_{hr}-e_{h(r-1)}}{\lambda_r}-\frac{e_{h(r+1)}-e_{hr}}{\lambda_{r+1}}=\alpha_r''+\alpha_{r+1}'.$$

Gelenklose Zwischenträger von Brücken.

 $\frac{1}{2}$ $C_r d$ (2 c — d), und es ergiebt sich an der Angriffsstelle von C_r das Moment

$$\frac{1}{2} C_r d (2c - d) \cdot d - C_r d \frac{d}{2} \cdot \frac{d}{3} = \frac{1}{3} C_r d^2 (3c - 2d).$$

Hieraus folgt aber:

(7)
$$e_{qr} = \frac{C_r d^2 (3c - 2d)}{3EJ_q}$$
 also $e'_{qr} = 0$ und $\omega_r = \frac{d^2 (3c - 2d)}{3EJ_q}$.

Setzt man noch

(8)
$$C_r = C_{0r} + \frac{M_{r-1}}{\lambda} - \frac{2M_r}{\lambda} + \frac{M_{r+1}}{\lambda}$$

so geht die Gleichung (4), nach Division mit λ , über in:

(9)
$$\alpha M_{r-2} + (1 - 4\alpha + \varkappa_r) M_{r-1} + (4 + 6\alpha + 4\varkappa_r) M_r + (1 - 4\alpha + \varkappa_r) M_{r+1} + \alpha M_{r+2} = Z_r$$

wo

(10)
$$Z_{r} = -6\left(\frac{\mathfrak{L}_{or}}{\lambda^{2}} + \frac{\mathfrak{R}_{o(r+1)}}{\lambda^{2}}\right) - \alpha\lambda \left[C_{0(r-1)} - 2C_{r} + C_{0(r+1)}\right] \\ + \varkappa_{r}\left(M_{r-1}' + 4M_{r}' + M_{r+1}'\right) + \frac{6\varepsilon EJ(t_{u} - t_{o})}{h}$$

und

(11)
$$\alpha = 2 \frac{J}{J_q} \frac{d^2(3c-2d)}{\lambda^3}.$$

Die Auflösung der Gleichungen (9) liefert für irgend ein Stützenmoment M_i des Zwischenträgers einen Ausdruck von der Form:

(12) $M_i = \beta_{i_1}Z_1 + \beta_{i_2}Z_2 + \beta_{i_r}Z_3 + \ldots + \beta_{i_r}Z_r + \ldots + \beta_{i_{(n-1)}}Z_{n-1}$ und hiernach ergiebt sich zunächst als Folge der ungleichmässigen Erwärmung der Hauptträger das Moment:

(13)
$$M_{i} = \frac{6 \varepsilon EJ (t_{u} - t_{o})}{h} [\beta_{i_{1}} + \beta_{i_{2}} + \ldots + \beta_{i_{r}} + \ldots + \beta_{i_{(n-1)}}].$$

Der Einfluss der Lasten P auf M_i wird zweckmässig zeichnerisch bestimmt. Wäre

(14)
$$Z_r = -6\left(\frac{\mathfrak{L}_{or}}{\lambda^2} + \frac{\Re_{o(r+1)}}{\lambda^2}\right) - \alpha\lambda (C_{0(r-1)} - 2C_{0r} + C_{0(r+1)}),$$

so wäre das in No. 24 angegebene Verfahren ohne weiteres anwendbar; für die ζ_i -Linie und das η_i -Polygon gelten dann die Gleichungen 24 bis 27.

Nun tritt aber der Werth Müller-Breslau, Graphische Statik. II. 2.

Zweiter Abschnitt. - § 7.

15)
$$Z_r = \varkappa_r (M'_{r-1} + 4 M'_r + M'_{r+1})$$

hinzu und es fragt sich jetzt, welchen Einfluss hat dieser Zuwachs auf das Moment M_i . Drückt man Z_1 bis Z_{n-1} nach Formel 15 aus, so geht Gleichung (12) über in

$$M_i = \sum \beta_{i_r} \varkappa_r (M'_{r-1} + 4 M'_r + M'_{r+1})$$

oder, wenn dieser Ausdruck nach den Momenten ... M_{r-1} , M_r , M_{r+1} , ... geordnet wird, in

(16)
$$M_i = \sum M'_r \left(\beta_{i(r-1)} \varkappa_{r-1} + 4 \beta_{ir} \varkappa_r + \beta_{i(r+1)} \varkappa_{r+1}\right)$$

wobei das erste Glied lautet: $M_1'(4\beta_{i_1} \varkappa_1 + \beta_{i_2} \varkappa_2)$ und das letzte: $M_{n-1}'(\beta_{i_1(n-2)} \varkappa_{n-2} + 4\beta_{i_1(n-1)} \varkappa_{n-1}).$

Gesetzt nun, es liege die über den Zwischenträger wandernde Last P im k^{ten} Felde, Fig. 88a. Dann ist

für
$$r < k-1$$

 $M'_r = \frac{Pb}{l} x_r$
 $m'_r = \frac{Pa}{l} x_r'$

mithin, wenn zur Abkürzung die Bezeichnung

(17) $\beta_{i(r-1)} \varkappa_{r-1} + 4 \beta_{ir} \varkappa_r + \beta_{i(r+1)} \varkappa_{r+1} = \psi_{ir}$ eingeführt wird:

(18)
$$M_{i} = \left(\frac{b}{l}\sum_{o}^{k-1}\psi_{ir}x_{r} + \frac{a}{l}\sum_{k}^{n-1}\psi_{ir}x_{r}'\right)P = P\eta_{i}'$$

Gelenklose Zwischenträger von Brücken.

wo η'_i die unter der Last P gemessene Ordinate eines Seilpolygons bedeutet, welches zu den in den Knotenpunkten 1, 2, ... r, ... (n-1)angreifenden Gewichten $\psi_{i1}, \psi_{i2}, \ldots, \psi_{ir}, \ldots, \psi_{i(n-1)}$ mit der Polweite 1 gezeichnet ist, Fig. 88b. Zu demselben Ergebniss gelangt man, wenn man die mittleren Höhen y der in Fig. 88c dargestellten Trapeze, welche durch die auf den Stützensenkrechten aufgetragenen Ordinaten 6 β_{ir} , \varkappa_{ir} bestimmt sind, als lothrechte, in den Trapezschwerpunkten angreifende Gewichte auffasst, durch ein Seilpolygon mit der Polweite 1 verbindet und in dieses ein zweites Polygon einbeschreibt, dessen Eckpunkte senkrecht unter den Knotenpunkten liegen. Um das einzusehen, betrachte man die schraffirte Fläche in Fig. 87c als Belastungsfläche und vertheile sie auf die Knotenpunkte. Auf r entfällt:

$$\frac{1}{3} \, 6 \, \beta_{i(r-1)} \varkappa_{(r-1)} \frac{\lambda}{2} + \frac{4}{3} \, 6 \, \beta_{ir} \varkappa_{ir} \frac{\lambda}{2} + \frac{1}{3} \, 6 \, \beta_{i(r+1)} \varkappa_{i(r+1)} \frac{\lambda}{2} = \psi_{ir} \lambda,$$

und dieser Betrag muss durch λ dividirt werden, sobald die Inhalte der Trapeze durch die mittleren Höhen ersetzt werden. Das Einbeschreiben eines Polygons in das in Fig. 87 c gezeichnete Seileck darf übrigens unterbleiben, weil es genügt, die den Knotenpunkten entsprechenden Ordinaten $\eta_{i1}', \eta_{i2}', \ldots, \eta_{ir}', \ldots, \eta'_{i(n-1)}$ zu ermitteln. Denn die Berücksichtigung des Einflusses der Glieder $Z_r = \varkappa_r (M'_{r+1} + 4M'_r + M'_{r+1})$ besteht schliesslich darin, dass die in No. 25 gefundenen η_i um die entsprechenden η'_i vergrössert werden. An Stelle des η_i -Polygons der früheren Entwicklung tritt also jetzt das $(\eta_i + \eta'_i)$ -Polygon.

Sowohl die Werthe ψ_{ir} als auch die mittleren Höhen y der Belastungstrapeze in Fig. 87c sind Zahlen. Macht man die Polweite des zugehörigen Seilpolygons gleich der Zahl 1, so erhält man die Strecken η'_i in demselben Maassstabe, in dem die Stützweiten λ gezeichnet sind. Sollen die (in der Regel sehr kleinen) η' im ν -fachen Maassstabe der λ dargestellt werden, so muss die Polweite 1: ν gewählt werden.

28. Zwischenträger einer Fachwerkbalkenbrücke, Fig. 89. Die Feldweite λ sei konstant, und die Querträger mögen unmittelbar

auf den Hauptträgern ruhen. Es unterscheidet sich dann die Berechnung des Zwischenträgers von der in No. 27 durchgeführten Unter-

6*

suchung nur dadurch, dass das Gewicht w_r nicht nach Gleichung 6 zu bestimmen ist, sondern mittels des in Abtheil. 1, Seite 105, Gleich. 5, nachgewiesenen Gesetzes

(19) $w_r = \sum \mu_r \Delta s$

wo μ_r die Spannkraft in irgend einem Fachwerkstabe infolge des (in Fig. 90 dargestellten) Belastungszustandes $\overline{M_r} = 1$ und Δs die wirkliche Aenderung der Stablänge bedeutet. Für die in Fig. 90 nicht vorkommenden Stäbe ist $\mu_r = 0$. Die Spannkräfte *S* der Fachwerkstäbe lassen sich nun als geradlinige Funktionen der Knotenpunktsmomente ... $\overline{M_{r-1}}$, $\overline{M_r}$, $\overline{M_{r+1}}$... darstellen; sie erscheinen in der Form

(20)
$$S = \cdots \mu_{r-1} \overline{M}_{r-1} + \mu_r \overline{M}_r + \mu_{r+1} \overline{M}_{r+1} + \cdots$$

und zwar ist für den besonderen Fall eines aus aneinander gereihten Dreiecken bestehenden Fachwerks jede Spannkraft S höchstens von drei aufeinander folgenden Knotenpunktsmomenten abhängig — in dem hier gezeichneten Falle eines Strebenfachwerks sogar höchstens von zwei Momenten.*) Es darf da-

her in die Gleichung 19 gesetzt werden:

$$\Delta s = \frac{Ss}{EF} + \varepsilon ts$$

= $\frac{s}{EF} (\mu_{r-1}\overline{M}_{r-1} + \mu_r\overline{M}_r + \mu_{r+1}\overline{M}_{r+1}) + \varepsilon ts$

und man erhält:

(21) $\frac{6 EJ w_r}{\lambda} = \varkappa_{r(r-1)} \overline{M}_{r-1} + \varkappa_{rr} \overline{M}_r + \varkappa_{r(r+1)} \overline{M}_{r+1} + \frac{6 \varepsilon EJ}{\lambda} \Sigma \mu_r ts$ wo

(22)
$$\begin{aligned} \varkappa_{r(r-1)} &= \frac{6J}{\lambda} \Sigma \mu_{r-1} \mu_r \frac{s}{F}; \ \varkappa_{rr} &= \frac{6J}{\lambda} \Sigma \mu_r^2 \frac{s}{F}; \\ \varkappa_{r(r+1)} &= \frac{6J}{\lambda} \Sigma \mu_r \mu_{r+1} \frac{s}{F}. \end{aligned}$$

Beachtet man noch, dass

$$\overline{M}_r = M_r' - M_r$$

ist, so findet man schliesslich die r^{te} Elasticitätsbedingung:

(23)
$$\alpha M_{r-2} + (1 - 4\alpha + \varkappa_{r(r-1)}) M_{r-1} + (4 + 6\alpha + \varkappa_{rr}) M_r + (1 - 4\alpha + \varkappa_{r(r+1)}) M_{r+1} + \alpha M_{r+2} = Z_r$$

*) Vergl. Abtheil. 1, § 16.

wo

(24)
$$Z_{r} = -6\left(\frac{\mathfrak{D}_{or}}{\lambda^{2}} + \frac{\mathfrak{R}_{o(r+1)}}{\lambda^{2}}\right) - \alpha\lambda\left(C_{0(r-1)} - 2C_{0r} + C_{0(r+1)}\right) \\ + \varkappa_{r(r-1)}M'_{r-1} + \varkappa_{rr}M'_{r} + \varkappa_{r(r+1)}M'_{r+1} + \frac{6\varepsilon EJ}{\lambda}\Sigma\mu_{r}ts$$

und

(25)
$$\alpha = 2 \frac{J}{J_a} \frac{d^2(3c-2d)}{\lambda^3}$$

Hat sich hiernach für irgend ein Stützenmoment M_i der Ausdruck

$$M_i = \beta_{i_1} Z_1 + \beta_{i_2} Z_2 + \beta_{i_3} Z_3 + \dots + \beta_{i_{(n-1)}} Z_{n-1}$$

ergeben, so entspricht einer ungleichförmigen Erwärmung der Hauptträger:

(26)
$$M_i = \frac{6 \varepsilon E J}{\lambda} \left[\beta_{i_1} \Sigma \mu_1 t s + \beta_{i_2} \Sigma \mu_2 t s + \dots + \beta_{i_{(n-1)}} \Sigma \mu_{n-1} t s \right].$$

Die Einflusslinie für M_i wird auf die in No. 2 angegebene Weise ermittelt; nur sind die Gewichte ψ mit Hilfe der Gleichung

(27)
$$\psi_{ir} = \beta_{i(r-1)} \varkappa_{r(r-1)} + \beta_{ir} \varkappa_{rr} + \beta_{i(r+1)} \varkappa_{r(r+1)}$$

zu berechnen.

Zahlenbeispiel.

Eine Blechbalkenbrücke hat 10 m Stützweite, 2 m Feldweite, 3,6 m Breite, Figur 91 und 92. Der Hauptträger ist nach Figur 93 aus einem Stehbleche (82.1 cm), vier Winkeleisen (10.10.1,3 cm) und Gurtplatten (21.1,3 cm) zusammengesetzt; das Trägheitsmoment seines Querschnitts beträgt:

Die Trägheitsmomente von Zwischenträger und Querträger (Normal-Profile No. 32 bezieh. No. 45) sind

$$J = 12\,600$$
 bezw. $J_q = 46\,200$ cm⁴.

Die Längen der Gurtplatten gehen aus Fig. 91 hervor. Behufs Berechnung der Zahlen × seien den Knotenpunkten 1 und 2 die Werthe $J_1 = 250\,000$ und $J_2 = 376\,000$ als Trägheitsmomente des Hauptträger-Querschnitts zugeschrieben; es werde also gesetzt:

$$\begin{aligned} \mathbf{x}_{1} &= \frac{12\,600}{250\,000} = 0,05 = \mathbf{x}_{4} \\ \mathbf{x}_{2} &= \frac{12\,600}{376\,000} = 0,03 = \mathbf{x}_{3}^{*} \end{aligned}$$

Nach Fig. 92 ist d = 1,05 m, c = 1,8 m also

$$\alpha = 2 \frac{J}{J_q} - \frac{d^2 (3c - d)}{\lambda^3} = 2 - \frac{12\,600}{46\,200} - \frac{1,05^2 (3.1,8 - 2.1,05)}{2,0^3} = 0,25.$$

Die Elasticitätsbedingungen zur Berechnung der Stützenmomente des Zwischenträgers lauten:

 $\begin{array}{c} M_1 \left(4+6 \, \alpha+4 \, \varkappa_1\right)+M_2 \left(1-4 \, \alpha+\varkappa_1\right)+\alpha \, M_3=Z_1 \\ M_1 \left(1-4 \, \alpha+\varkappa_2\right)+M_2 \left(4+6 \, \alpha+4 \, \varkappa_2\right)+M_3 \left(1-4 \, \alpha+\varkappa_2\right)+\alpha \, M_4=Z_2 \\ \alpha \, M_1+M_2 \left(1-4 \, \alpha+\varkappa_3\right)+M_3 \left(4+6 \, \alpha+4 \, \varkappa_3\right)+M_4 \left(1-4 \, \alpha+\varkappa_3\right)=Z_3 \\ \alpha \, M_2+M_3 \left(1-4 \, \alpha+\varkappa_4\right)+M_4 \left(4+6 \, \alpha+4 \, \varkappa_4\right)=Z_4, \end{array}$

sie liefern beispielsweise für M_2 , auf dessen Untersuchung wir uns hier beschränken wollen, den Werth

 $M_2 = -0,0009 Z_1 + 0,1742 Z_2 + 0,0032 Z_3 - 0,0078 Z_4,$ so dass also:

 $\beta_{21} = -0.0009; \ \beta_{2\cdot 2} = +0.1742; \ \beta_{2\cdot 3} = +0.0032; \ \beta_{2\cdot 4} = -0.0078.$ Mittels der Formel

$$\eta_{ir} = \alpha \lambda \left(-\beta_{i(r-1)} + 2\beta_{ir} - \beta_{i(r+1)} \right)$$

ergiebt sich nun (wegen $\alpha . \lambda = 0.25 . 2.0 = 0.5 \text{ m}$):

 $\begin{array}{l} \eta_{2\cdot 0} = 0.5 \left[\begin{array}{c} + 0.0009 \right] = & 0.000 \text{ m} \\ \eta_{2\cdot 1} = 0.5 \left[-2 \cdot 0.0009 - 0.1742 \right] = - & 0.088 \text{ m} \\ \eta_{2\cdot 2} = & 0.5 \left[+ & 0.0009 + 2 \cdot 0.1742 - & 0.0032 \right] = + & 0.173 \text{ m} \\ \eta_{2\cdot 3} = & 0.5 \left[- & 0.1742 + 2 \cdot 0.0032 + & 0.0078 \right] = - & 0.080 \text{ m} \\ \eta_{2\cdot 4} = & 0.5 \left[- & 0.0032 - & 2 \cdot 0.0078 \right] = - & 0.009 \text{ m} \\ \eta_{2\cdot 5} = & 0.5 \left[+ & 0.0078 \right] = + & 0.004 \text{ m}; \end{array}$

und für die Gewichte u erhält man nach der Gleichung

$$\psi_{ir} = \beta_{i(r-1)} \varkappa_{r-1} + 4 \beta_{ir} \varkappa_r + \beta_{i(r+1)} \varkappa_{r+1}$$

die Werthe

 $\begin{array}{l} \psi_{2\cdot1} = & -4 \cdot 0,0009 \cdot 0,05 + 0,1742 \cdot 0,03 = + 0,005046 \\ \psi_{2\cdot2} = - 0,0009 \cdot 0,05 + 4 \cdot 0.1742 \cdot 0,03 + 0,0032 \cdot 0,03 = + 0,020955 \\ \psi_{2\cdot3} = + 0,1742 \cdot 0,03 + 4 \cdot 0,0032 \cdot 0,03 - 0,0078 \cdot 0,05 = + 0,005220 \\ \psi_{2\cdot4} = + 0,0032 \cdot 0,03 - 4 \cdot 0,0078 \cdot 0,05 = - 0,001464. \\ \text{Sieht man den Zwischenträger (Fig. 94) nur bei 0 und 5 gestützt an, und} \end{array}$

*) Vergl. die Einführung von x, auf Seite 80. Hier genügen Schätzungen, denn der Einfluss der Zahlen × ist sehr gering.

Gelenklose Zwischenträger von Brücken.

belastet ihn in den Punkten 1, 2, 3, 4 mit den Gewichten $\psi_{2\cdot 1}$, $\psi_{2\cdot 2}$, $\psi_{2\cdot 3}$, $\psi_{2\cdot 4}$ so findet man an den Stellen 1, 2, 3, 4 die Momente:

 $\eta_1' = + 0,037, \ \eta_2' = + 0,064, \ \eta_3' = + 0,048, \ \eta_4' = + 0,014*)$ und es sind deshalb die Ordinaten des $(\eta + \eta')$ -Polygons (d. i. des Polygons 0'1'2'3'4'5' in Fig. 94b):

$$\begin{split} \eta_1 + \eta_1' &= -0,088 \pm 0,037 = -0,051 \text{ m} \\ \eta_2 + \eta_2' &= +0,173 \pm 0,064 = \pm 0,237 \text{ m} \\ \eta_3 + \eta_3' &= -0,080 \pm 0,048 = -0,032 \text{ m} \\ \eta_4 + \eta_4' &= -0,009 \pm 0,023 = \pm 0,014 \text{ m} \\ \eta_5 + \eta_5' &= \pm 0,004 \qquad = \pm 0,004 \text{ (unwesentlich).} \end{split}$$

Trägt man, von diesem Linienzuge aus, die Ordinaten der ζ_2 -Kurven nach der negativen Richtung hin auf (vergl. die allgemeine Figur 75 auf Seite 70), so erhält man die Einflusslinie für das gesuchte Stützenmoment M_2 . Wir wollen diese Kurve mittels der Formel

 $\zeta_{ir} = (\beta_{i(r-1)} \operatorname{tg} \varphi_L + \beta_{ir} \operatorname{tg} \varphi_R) \lambda$

berechnen und erkennen sofort, dass wegen der Kleinheit von $\beta_{2\cdot 1}$, $\beta_{2\cdot 3}$ und $\beta_{2,4}$ (welche gleich Null gesetzt werden dürfen) nur die von $\beta_{2\cdot 2}$ abhängigen Werthe $\zeta_{2\cdot 2}$ und $\zeta_{2\cdot 3}$ von Einfluss sind.**)

*) Bei gleich grossen Feldweiten zieht es der Verfasser stets vor, die Momente η' infolge der Gewichte ψ zu *rechnen*. Die η' sind Meter.

**) Zeichnerisch findet man nach Seite 75 die ζ -Linie eines Feldes als Momentenlinie eines Belastungsdreiecks von der Höhe $6\beta_{2,2} = 1,0452$.

Zweiter Abschnitt. - § 7.

Wir setzen also (wegen $\beta_{ir} \lambda = 0,1742.2 = 0,3484$)

$$\zeta_{2,2} = 0.3484 \text{ tg } \varphi_R \text{ und } \zeta_{2,3} = 0.3484 \text{ tg } \varphi_L$$

und erhalten für die 4 Theilpunkte der in 5 gleich lange Strecken zerlegten Feldweite, mit den Zahlenwerthen auf Seite 42

$$\begin{array}{c|c} \operatorname{für} & \frac{\xi}{\lambda} = 0,2 \\ & = 0,4 \\ & = 0,4 \\ & = 0,6 \\ & = 0,8 \\ & = 0,3484 \cdot 0,3360 = 0,117 \\ & = 0,134 \\ & = 0,03484_{\bullet}^{1} \cdot 0,3840 = 0,134 \\ & = 0,134 \\ & = 0,117 \\ & = 0,117 \\ & = 0,0117 \\ & = 0,007 \\ & = 0$$

Die auf diese Weise gewonnene Einflussfläche für M_2 wurde in Fig. 94 durch Schraffirung hervorgehoben.

Fig. 94c zeigt die Einflussfläche für das in der Mitte des Feldes 2-3 auftretende Biegungsmoment M. Für dieses gilt die Gleichung

$$M = M_0 + \frac{1}{2} (M_2 + M_3).$$

Die M_0 -Fläche ist ein Dreieck AC'B, von der Höhe $0,25\lambda = 0,5$ m. Die M_3 -Fläche ist das Spiegelbild der M_2 -Fläche, weshalb die Aufzeichnung der (hier nicht wiedergegebenen) $\frac{1}{2}(M_2 + M_3)$ -Fläche schnell von statten geht.

Die Figuren 94a und b setzen eine *unmittelbare* Belastung des Zwischenträgers voraus. In Wirklichkeit liegt aber, wegen der zwischen Schiene und Träger eingeschalteten Platten (über deren Vertheilung Fig. 94d Aufschluss giebt), *mittelbare* Belastung vor; es sind also in bekannter Weise in die gezeichneten Linien Polygone einzubeschreiben. In Fig. 94b ist dies geschehen, die dort angegebene Belastung durch eine Lokomotive mit besonders schwerer Mittelachse liefert*)

$$M_2 = 9.0,11 - 0,3 (2.0,04) = +0,75 \text{ tm}.$$

In Figur 94c liegen die Lasten genau bezieh. nahezu über den Mittelpunkten der Zwischenplatten; es konnte also die Einflusslinie für mittelbare Belastung benutzt werden. Man findet:

 $M_c = 9.0,47 + 2.3.0,045 = 4,50 \,\mathrm{tm},$

das ist zufällig derselbe Werth, den die M_0 -Linie ergeben würde (nämlich 9.0,5 = 4,5). Der Fehler, den man bei Auffassung des Zwischenträgers als Einzelbalken begangen haben würde, wäre also gleich Null gewesen; derselbe hat sich übrigens in allen vom Verfasser gerechneten Fällen als unerheblieh herausgestellt. Der Einfluss einer ungleichförmigen Erwärmung der Hauptträger auf M_3 und ebenso auf das Moment M_C ist:

*) Die Annahmen in Figur 94 sind besonders ungünstig gewählt. Die Kräfte 3 t und 9 t sind *Rad*drücke, nicht *Achsen*belastungen. Die ständige Last wurde vernachlässigt.

**) Eine gute Annäherung ist: $M_t = \frac{6 \varepsilon E J (t_u - t_o)}{(4 + 6 \alpha + \varkappa_2) h} = 0,18 \cdot \frac{6 E J (t_u - t_o)}{h}.$

Gelenklose Zwischenträger von Brücken.

$$M_{2t} = M_{3t} = M_{Ct} = (\beta_{2 \cdot 1} + \beta_{2 \cdot 2} + \beta_{2 \cdot 3} + \beta_{2 \cdot 4}) \frac{6 \varepsilon EJ(t_u - t_o)^{**}}{h}$$

= 0,17 \cdot \frac{6 \cdot 24 \cdot 12600}{84} (t_u - t_o)

wobei für h der Mittelwerth 84 cm und $\varepsilon E = 24 \text{ kg}$ f. d. qcm gesetzt wurde. Mit $t_u - t_o = 15^\circ$ erhält man

$$M_{2t} = M_{3t} = M_{Ct} = 55080 \text{ kcm} = 0.55 \text{ tm}$$

weshalb schliesslich

$$M_2 = +0.75 + 0.55 = 1.3$$
 tm und $M_c = +4.50 + 0.55 = 5.1$ tm

entstehen.

Das Widerstandsmoment des Zwischenträgers (Normal-Profil No. 32) ist W = 790, die Beanspruchung beträgt also:

$$\sigma = -\frac{510\,000}{790} = 630 \text{ kg} \text{ f. d. qcm.}$$

Die Berechnung des Momentes M_2 ist wichtig für die Beurtheilung der in Fig. 95 dargestellten Nietverbindung. Die Niete 1 und 2, welche den Zwischenträger mit den Anschlusswinkeln verbin-

den, sind doppelschnittig; ihre Widerstände seien N_1 und N_2 , wobei

$$N_2: N_1 = \frac{22}{3}: 22 = 1:3$$

angenommen werden darf.

Dann ergiebt sich

$$N_1 \cdot 22 + \frac{N_1}{3} \cdot \frac{22}{3} = M_2 = 130\,000 \,\mathrm{kcm}$$

woraus

 $N_1 = 5320$ kg.

Die Stegstärke des Zwischenträgers ist 1,15 cm, der Nietdurchmesser 2 cm, mithin der Stauchdruck für die Wandung des Nietloches:

$$\frac{5320}{2.1,15}$$
 = 2320 kg f. d. qcm

und die mittlere Schubspannung im Nietquerschnitt (3,14 qcm):

$$\frac{5320}{2.3,14}$$
 = 850 kg f. d. qcm.

Die Niete, welche die Winkeleisen mit dem Querträger befestigen, werden unterhalb der n - n in der Längsrichtung auf Zug beansprucht und zwar höchstens mit

$$\frac{1}{2}N_1 = 2660$$
 kg.

Die Zugspannung beträgt

$$\sigma = \frac{2660}{3.14} = 850 \text{ kg f. d. qcm.}$$

Ausserdem werden die Niete noch durch den vom Zwischenträger auf den Querträger ausgeübten lothrechten Druck A auf Abscheerung bean-

Fig. 95.

sprucht.*) Zur Bestimmung dieses Druckes verschieben wir die Lokomotive nach rechts bis die Last 9 t über der Platte E (Fig. 94d) liegt, betrachten den Zwischenträger als Einzelbalken und finden $A = \frac{5}{6} \cdot 9 = 7,5$ t. Der wirkliche Druck A ist etwas kleiner, da M_2 den vorhin ermittelten positiven Werth behält. Der auf jeden der vier doppelschnittigen Niete entfallende Betrag $\frac{1}{4} \cdot 7,5 = 1,9$ t wird mit N_1 zur Mittelkraft $N = \sqrt{1,9^2 + 5,3^2} = 5,6$ t zusammengesetzt. Der Stauchdruck steigt also bis auf $\frac{5600}{2 \cdot 1,15} = 2440$ kg f. d. qcm und die Schubspannung bis auf $\frac{5600}{2 \cdot 3,14} = 900$ kg f. d. qcm. Die Rechnung lehrt, dass die Beanspruchung derartiger Verbindungen eine ziemlich hohe ist.

§ 8.

Anwendung der allgemeinen Elasticitätsgleichungen auf statisch unbestimmte Balken.

29. Die erste Abtheilung des vorliegenden Bandes enthält — und zwar in der Einleitung — eine allgemeine Untersuchung der statisch unbestimmten Träger auf Grund des Gesetzes der virtuellen Verrückungen. Zur Berechnung der mit X_a, X_b, X_c, \ldots bezeichneten statisch nicht bestimmbaren Grössen wurden die Gleichungen abgeleitet:

(1)
$$\begin{cases} L_a - \delta_{at} + \delta_a = \Sigma P_m \delta_{ma} - \delta_{aa} X_a - \delta_{ba} X_b - \delta_{ca} X_c - \delta_{da} X_d - \dots \\ L_b - \delta_{bt} + \delta_b = \Sigma P_m \delta_{mb} - \delta_{ab} X_a - \delta_{bb} X_b - \delta_{cb} X_c - \delta_{db} X_d - \dots \\ L_c - \delta_{ct} + \delta_c = \Sigma P_m \delta_{mc} - \delta_{ac} X_a - \delta_{bc} X_b - \delta_{cc} X_c - \delta_{dc} X_d - \dots \end{cases}$$

Hierin bedeuten δ_a , δ_b , δ_c , ... die Wege der Belastungen X_a , X_b , X_c ... des statisch bestimmten Hauptträgers, δ_m den Weg der gegebenen Belastung P_m ,**)

8ma	der	n Einfluss	der	Ursache	$X_a =$	=	- 1 a	uf	den	Weg	δ,,		
8mb	,,	"	""	"	$X_b =$	=	1	,,	,,	"	,,	u. s.	. w.
δaa	,,	,,	,,	"	$X_{a} =$	=	1	99	,,	"	δα,		
8 ab	"	,,	,,	,,	$X_b =$	=	1	,,	,,	,,	δ,,	u. s.	w.
Sat	,,	"	einer	Aende	rung	der	dem	sp	annu	ngslo	sen	Anfa	ngs-
zustande entsprechenden Temperatur des statisch bestimmten													
		Hauptträg	gers a	uf den	Weg	· 8.,							

^{*)} Diese Zusatzbeanspruchung wird ermässigt durch unter die Zwischenträger genietete (in Fig. 95 punktirt angegebene) Winkeleisenstücke.

^{**)} Die Begriffe "Belastung" und "Weg einer Belastung" wurden in der Einleitung auf Seite 31 eingeführt.

Anwendung der allgemeinen Elasticitätsgleichungen.

 L_a diejenige virtuelle Arbeit, die man erhält, wenn man die von der Ursache $X_a = -1$ herrührenden Auflagerwiderstände des statisch bestimmten Hauptträgers mit den Projektionen der wirklichen Verrückungen ihrer Angriffspunkte multiplicirt, u. s. w.

Die Gleichungen (1) wurden in der Einleitung zuerst für das Fachwerk entwickelt und durch ein Beispiel ausführlich erläutert. Auf Seite 35 und 36 sind sie in kürzester Weise mit Hilfe des Maxwell'schen Satzes ($\delta_{mn} = \delta_{nm}$) bewiesen worden. Sodann wurde auf Seite 47, 48 u. 49 die Gültigkeit des Maxwell'schen Satzes für den isotropen festen Körper erweitert, und hieraus folgt dann die Gültigkeit der Gleichungen (1) für statisch unbestimmte vollwandige Träger von unveränderlicher Stützungsart^{*}) und unveränderlicher Gliederung.

Die folgenden Anwendungen, die wir zunächst nur in grossen Zügen vorführen^{**}), werden zeigen, dass sich die Ermittlung der Grössen X mit Hilfe der Gleichungen (1) durch grosse Allgemeinheit und ausserordentliche Uebersichtlichkeit auszeichnet.

30. Ermittlung der Stützenwiderstände mit Hilfe der Gleichungen (1). Werden die Widerstände X_a , X_b , X_c der Mittelstützen des in Fig. 96 dargestellten, auf 5 Stützen ruhenden, von senkrechten Lasten P_m ergriffenen wagerechten Balkens als statisch nicht bestimmbare Grössen eingeführt, so ist der statisch bestimmte Hauptträger ein einfacher Balken AB, der mit den Kräften P_m und X_a , X_b , X_c belastet wird. Die Senkungen der Stützpunkte A, a, b, c, B seien δ_A , δ_a , δ_b , δ_c , δ_B . In den Figuren 97, 98 und 99 sind die Belastungszustände $X_a = -1$, $X_b = -1$ und $X_c = -1$ dargestellt; im ersten Falle entstehen infolge der in a angreifenden Last 1 bei Aund B die Auflagerwiderstände 1 $\frac{a'}{l}$ und 1 $\frac{a}{l}$, im zweiten Falle ent-

steht $1 \frac{b'}{l}$ und $1 \frac{b}{l}$ u. s. w.

Aa'B	ist	die	Biegungslinie	für	den	Zustand	$X_a = -1$
Ab'B	"	"	27	"	,,	"	$X_{b} = -1$
Ac'B	,,	"	"	"	,,	"	$X_{c} = -1.$

Diese Linien werden nach den im § 2 angegebenen Verfahren gezeichnet; sie liefern die Durchbiegungen.

δ_{aa} ,	Sba,	Sca,	Sma
$\delta_{ab},$	δ,,	δ,,	8mb
Sac,	Sbc,	Sec,	Smc.

*) S. Einleitung, Seite 6 und 7.

**) Ausführlicher behandelte Beispiele finden sich im § 9.

Ist genau gezeichnet worden, so muss, nach dem Maxwell'schen Satze sein:

Fig. 100 zeigt die Biegungslinie Aa'b'c'B, hervorgerufen durch eine Temperaturänderung; sie liefert δ_{at} , δ_{bt} , δ_{ct} und ist unter der Annahme $t_u > t_o$ gezeichnet. Meistens darf für die Trägerhöhe h ein fester Mittelwerth eingeführt werden. Dann ist Aa'b'c'B die Seillinie für eine gleichförmige Belastung von der Höhe $\varepsilon \frac{t_u - t_o}{h}$ (nach Gleichung 1, Seite 15) also eine Parabel, und man erhält:

(2) $\delta_{at} = \varepsilon \frac{t_u - t_o}{2h} a a'; \quad \delta_{bt} = \varepsilon \frac{t_u - t_o}{2h} b b'; \quad \delta_{ot} = \varepsilon \frac{t_u - t_o}{2h} c c'.$

Für die virtuellen Arbeiten L findet man die Werthe:

$$L_{a} = -1 \frac{a}{l} \delta_{A} - 1 \frac{a}{l} \delta_{B}$$

$$L_{b} = -1 \frac{b}{l} \delta_{A} - 1 \frac{b}{l} \delta_{B}$$

$$L_{c} = -1 \frac{c}{l} \delta_{A} - 1 \frac{c}{l} \delta_{B}$$

(3

Anwendung der allgemeinen Elasticitätsgleichungen.

und es erübrigt nur noch, die Verschiebungen δ_A , δ_B , δ_a , δ_b , δ_c anzugeben.

Bei Balken auf gemauerten Pfeilern oder auf kurzen eisernen Säulen werden die Stützenverschiebungen meistens vernachlässigt; man setzt dann $\delta_A = \delta_B = \delta_a = \delta_b = \delta_c = 0.$

Will man durch Schätzung oder Beobachtung gefundene Stützenverschiebungen in Rechnung stellen, so bezieht man diese Verschiebungen zweckmässig auf die Gerade AB als Nulllinie, setzt also $\delta_A = \delta_B = 0$.

Wird der Balken bei *a* durch eine längere Säule gestützt, so setzt man nach Gleich. (2) Seite 62 (wo auch die Buchstaben erklärt sind)

$$\delta_a = - \varepsilon t_a h_a + \frac{X_a h_a}{E_a F_a}.$$

Erfolgt die Unterstützung durch ein Ponton, so ist nach Gleich. (3)

Seite 62

$$\delta_a = \delta'_a + \frac{X_a}{\gamma F_a},$$

wo δ'_a eine von X_a unabhängige Verschiebung des Punktes *a* bedeutet, z. B. der Einfluss einer Senkung des Wasserspiegels, oder die Aenderung der Tauchtiefe des Pontons durch unmittelbare Belastung desselben. Erfahren auch die Punkte *A* und *B* Verschiebungen, die von den Stützendrücken *A* und *B* abhängig sind, ist z. B. $\delta_A = \delta'_A + \frac{A}{\gamma F_A}$ (frei schwimmender Theil einer Pontonbrücke) so müssen natürlich *A* und *B* durch die Kräfte X_a , X_b , X_c ausgedrückt werden. Man erhält:

(4)

$A = \Sigma \frac{P_m \xi}{l}$	$-X_a \frac{a}{l} -$	$-X_b \frac{b}{l}$ -	$-X_c \frac{c}{l}$
$B = \Sigma \frac{P_m \xi}{l} \cdot$	$-X_a \frac{a}{l} -$	$-X_b \frac{b}{l} -$	$-X_c \frac{c}{l}$.

Die Grössen X_a , X_b , X_c lassen sich jetzt aus den Gleichungen (1) berechnen, und damit ist die gestellte Aufgabe gelöst.

31. Einführung eines statisch unbestimmten Hauptträgers. Will man bei der Untersuchung eines r-fach statisch unbestimmten Trägers die Gleichungen (1) nicht über sämmtliche statisch nicht bestimmbare Grössen X ausdehnen, sondern nur über die *i*-Grössen X_a, X_b, \ldots, X_i , so ist der von den Belastungen $P_m, X_a, X_b, \ldots, X_i$ ergriffene Träger (den wir wieder den Hauptträger nennen wollen) (r-i)fach statisch unbestimmt, und für diesen statisch unbestimmten Träger müssen nun die den Belastungszuständen $X_a = -1$, $X_b = -1, \ldots, X_i = -1$ entsprechenden Verschiebungen δ_{ma}, δ_{aa} , δ_{ab}, \ldots ermittelt werden. Ist i = r - 1, so bleibt nur eine Gleichung mit einer Unbekannten X übrig. Es sei beispielsweise die Einflusslinie für den Widerstand X_a des Stützpunktes *a* des in Fig. 101 dargestellten, auf 7 Stützen ruhenden Balkens zu zeichnen. Sämmtliche Widerlager seien starr. Der Querschnitt sei konstant.

Man beseitige die Stütze a, belaste den nunmehr nur noch auf 6 Stützen ruhenden Balken im Punkte a mit der Last 1, und zeichne für diesen Belastungsfall mit Hilfe der Festpunkte R die Momenten-

fläche (in Fig. 102) schraffirt), schliesslich die zu dieser Momentenfläche gehörige Biegungslinie. Dann ist:

$$D = \Sigma P_m \delta_{ma} - X_a \delta_{aa}$$
 mithin
 $X_a = \Sigma \frac{P_m \delta_{ma}}{\delta_{aa}}.$

Die gezeichnete Biegungslinie ist also die X_a -Linie; der Multiplikator ist $1: \delta_{aa}$.

Das Stützenmoment $\overline{FE} = M_{ba}^*$ in Fig. 102 ist nach der zweiten der Gleichungen 14, Seite 40,**)

$$M_{ba} = \frac{1}{\varkappa'} \frac{N_b}{l_a + l_b}$$
 wo $\varkappa' = \frac{a'}{b'}$

*) M_{ba} bedeutet: Moment an der Stelle *b* infolge $X_a = -1$.

**) Die erste Gleichung (14) wird für die erste Oeffnung ungültig.

Anwendung der allgemeinen Elasticitätsgleichungen.

und, nach Gleich. (8) Seite 36 und Gleich. (13) Seite 30:

$$N_b = -1 \cdot \frac{l_a l_b (2 l_a + l_b)}{l_a + l_b}$$

Zur Bestimmung des Punktes a' ist von der Geraden AE aus die Strecke $\overline{CD} = 1 \cdot \frac{l_a l_b}{l_a + l_b}$ aufzutragen.

32. Wagebalkenstützung. In Fig. 104 ist ein Balken dargestellt, dessen Stützenwiderstände X_a und X_b nicht unmittelbar am Balken selbst angreifen, sondern durch Zwischenträger CD und EFübertragen werden. Der Träger AB wird also gewissermassen, ausser an den Enden A und B, durch zwei Wagebalken CD und EFunterstützt. Die Momentenfläche für den Zustand $X_a = -1$ zeigt

Fig. 105; das der unmittelbaren Belastung entsprechende umschriebene Momentendreieck ASB hat die Höhe $1 \frac{aa'}{l}$. Fig. 106 zeigt die zur schraffirten Momentenfläche gehörige Biegungslinie A'C'D'E'F'B'. Wird der Wagebalken CD zunächst starr angenommen, so liegt a' in der Geraden C'D' und es ist $\delta_{aa} = \delta'_{aa}$. Nun biegt sich aber der Wagebalken CD an der Stelle a um $\delta''_{aa} = 1 \frac{e'^2e''^2}{3EJ'e}$ durch, wo J'das Trägheitsmoment des Querschnittes des Wagebalkens bedeutet, mithin ist

$$\delta_{aa} = \delta'_{aa} + \delta''_{aa}.$$

Punkt b' hingegen liegt, wenn nur die Ursache $X_a = -1$ wirkt, in der Geraden E'F', es ist also δ_{ba} gleich der Ordinate des Punktes b'. Ganz ebenso wird der Belastungsfall $X_b = -1$ behandelt. Die weitere Untersuchung ist genau wie in No. 30.

Die Wagebalkenstützung liegt u. a. bei Pontonbrücken vor, deren Streckbalken unmittelbar auf den Borden liegen, Fig. 108, und zwar darf man, wegen der Kleinheit des Neigungswinkels des Pontons, stets

mit einem in der Mitte gestützten, starren Wagebalken CD rechnen, dessen Stützpunkt a die Senkung $\delta_a = \delta'_a + \frac{X_a}{\gamma F_a}$ erfährt.

33. Statisch unbestimmte Balken mit Gelenken. Jeder auf *n* Stützen ruhende Balken kann durch (n-2) Mittelgelenke statisch bestimmt gemacht werden.*) Ist die Anzahl der Gelenke nur (n-2-r),

so ist der Balken r-fach statisch unbestimmt, er lässt sich durch Beseitigung von r Stützen, deren Widerstände X_a , X_b , X_c sein mögen, in einen Gerber'schen Balken verwandeln, und auf diesen statisch bestimmten Hauptträger können dann die Gleichungen (1) angewendet werden.

*) Vergl. Band I, Seite 92 und Abschnitt VI.
Anwendung der allgemeinen Elasticitätsgleichungen.

Als Beispiele seien die in den Figuren 109 bis 111 dargestellten Balken von Schiffbrücken angeführt. Werden zweischiffige Brückenglieder nach Fig. 109 durch Gelenke $a, b \ldots$ aneinander gekuppelt, so tritt an jeder Verbindungsstelle ein statisch unbestimmter Gelenkdruck auf. Die äussersten Brückenglieder sind mit den Ufern durch einfache Balken verbunden. An dem einen Ufer ist ein festes Lager, an dem anderen ein wagerechtes Gleitlager anzubringen.

Sind die einzelnen Brückenglieder dreischiffig, so ist jedes Glied für sich allein einfach statisch unbestimmt. In dem Beispiele Fig. 110 sind ein Gelenkdruck und zwei Schiffswiderstände zu statisch unbestimmten Grössen gewählt worden. Zweckmässiger ist es aber, zunächst ein dreischiffiges Glied für sich allein zu untersuchen und hierauf die Gleichungen (1) auf Seite 90 nur zur Berechnung der Gelenkdrücke $X_1, X_2 \dots$ (Fig. 111) zu benutzen. Das Hauptsystem ist dann ein statisch unbestimmtes; es

besteht aus den lose neben einander stehenden dreischiffigen Gliedern und den beiden, die äussersten Glieder mit den Ufern verbindenden einfachen Balken. Im § 11 werden wir diese wichtigen Aufgaben eingehender behandeln.

34. Analytische Ermittlung der Werte δ_{aa} , δ_{ba} , δ_{ca} ... δ_{bb} , δ_{cb} ... und Umformung der allgemeinen Elasticitätsgleichungen. In der Einleitung des vorliegenden Bandes wurden die Spannkräfte S eines Fachwerks als lineare Funktionen der Lasten P und der Grössen X_a , X_b , X_c ... dargestellt.

Es ergab sich

 $(5) \qquad S = S_o - S_a X_a - S_b X_b - S_c X_c - \dots,$

wo S_o eine lineare Funktion der Lasten P ist, während S_a , S_b ... der Reihe nach die durch die Ursachen $X_a = -1$, $X_b = -1$, ... hervorgerufenen Werte von S bedeuten. Nach den Ausführungen in No. 31 lassen wir es fortan dahingestellt, ob durch Nullsetzen der Grössen X_a , X_b ... ein statisch bestimmtes oder ein statisch unbestimmtes Hauptsystem entsteht.

7

Mit Hilfe der Arbeitsbedingung

(6)
$$\Sigma \overline{Q} \delta = \Sigma \overline{S} \Delta s = \Sigma \overline{S} \left(\frac{Ss}{EF} + \varepsilon ts \right)$$

Müller-Breslau, Graphische Statik. II. 2.

fanden wir

(7)
$$\delta_{aa} = \Sigma S_a^2 \frac{s}{EF}, \quad \delta_{ab} = \Sigma S_a S_b \frac{s}{EF}, \quad .$$

(8)
$$\delta_{at} = \Sigma S_a \varepsilon ts, \quad \delta_{bt} = \Sigma S_b \varepsilon ts, \quad .$$

Bezeichnen wir mit i und k zwei beliebige der Zeiger $a, b, c \dots$, so können wir die Formelgruppe (7) ersetzen durch die Gleichung

(9)
$$\delta_{ik} = \Sigma S_i S_k \frac{s}{EF},$$

und die Formelgruppe (8) durch die Gleichung

(10)
$$\delta_{it} = \sum S_i \varepsilon t s.$$

Weiter ergab sich in der Einleitung:

(11)
$$\begin{cases} \Sigma P_m \delta_{ma} = \Sigma S_o S_a \frac{s}{EF} \\ \Sigma P_m \delta_{mb} = \Sigma S_o S_b \frac{s}{EF} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{cases}$$

weshalb man die Elasticitätsgleichungen auch wie folgt schreiben kann:

(12)
$$\begin{cases} L_a - \delta_{at} + \delta_a \equiv \delta_{oa} - \delta_{aa} X_a - \delta_{ba} X_b - \delta_{oa} X_c - \dots \\ L_b - \delta_{bt} + \delta_b \equiv \delta_{ob} - \delta_{ab} X_a - \delta_{bb} X_b - \delta_{cb} X_c - \dots \end{cases}$$

mit der Festsetzung, dass alle auf den rechten Seiten stehenden δ mittelst der Formel (9) berechnet werden.

Die Einführung der Werte δ_{oi} an Stelle der Summen $\Sigma P_m \delta_{mi}$ kann sich als zweckmässig erweisen, wenn das zu untersuchende Tragwerk nur für einen einzigen oder wenige Belastungsfälle berechnet werden soll. Mit der Ausrechnung der Summen $\Sigma S_o S_i \frac{s}{EF}$ kommt man dann oft schneller zum Ziele als mit der Darstellung der Verschiebungen δ_{mi} .

Es ist nun die Frage, welche Formeln treten an die Stelle der Gleichungen (9) und (10), wenn kein Fachwerk vorliegt, sondern ein aus geraden Stäben bestehendes System, dessen einzelne Stäbe durch Längskräfte N und Biegungsmomente M beansprucht werden, wobei zu beachten ist, dass N für die verschiedenen Querschnitte eines und desselben Stabes im allgemeinen verschieden gross ist.

Wir knüpfen an die auf den Seiten 5 und 6 angestellte Untersuchung der Formänderung eines von zwei unendlich nahen Querschnitten begrenzten Stabstückes an. Für die Längenänderung des Teilchens dxder Stabachse fanden wir den Wert

Anwendung der allgemeinen Elasticitätsgleichungen.

(13)
$$\Delta dx = \left(\frac{N}{EF} + \varepsilon t_s\right) dx,$$

und für den Winkel, um welchen sich die beiden Querschnitte gegen einander drehen, den Wert

(14)
$$d\omega = \left(\frac{M}{EJ} + \varepsilon \frac{t_u - t_o}{h}\right) dx.$$

Die virtuelle Formänderungsarbeit ist für das Stabtheilchen dx gleich

$$N\Delta dx + Md\omega$$
,

und es tritt daher an die Stelle der für das Fachwerk gefundenen Gleichung (6) nunmehr die Arbeitsbedingung

(15)
$$\Sigma \overline{Q} \delta = \int \overline{N} \Delta dx + \int \overline{M} d\omega$$

= $\int \overline{N} N \frac{dx}{EF} + \int \overline{M} M \frac{dx}{EJ} + \int \overline{N} \varepsilon t_s dx + \int \frac{\overline{M}}{h} \varepsilon \Delta t dx$,

$$\Delta t = t_u - t_d$$

ist. Aus dieser Betrachtung folgen nun ohne weiteres die Formeln

(16)
$$\delta_{ik} = \int N_i N_k \frac{dx}{EF} + \int M_i M_k \frac{dx}{EJ}$$

(17)
$$\delta_{it}^{*} = \int N_i \varepsilon t_s dx + \int \frac{M_i}{h} \varepsilon \Delta t dx.$$

Die Integrale sind über sämtliche Stäbe des Bauwerks auszudehnen.

Der Gleichung (5) stehen die Gleichungen gegenüber

 $N = N_o - N_a X_a - N_b X_b - N_c X_c - \dots$ (18) $M = M_o - M_a X_a - M_b X_b - M_c X_c - \dots$ (19)

 N_a und M_a sind die Werte von N und M für den Belastungszustand $X_a = -1$. N_b und M_b entsprechen dem Zustande $X_b = -1$, u. s. w. Verschwinden sämmtliche Grössen X, so entstehen die Werte No und Mo.

In den vorstehenden Entwickelungen ist der Einfluss der Querkräfte Q, welche sich ebenfalls auf die Form

$$Q = Q_o - Q_a X_a - Q_b X_b - Q_c X_c - \dots$$

bringen lassen, vernachlässigt worden. Soll dieser Einfluss berücksichtigt werden, so muss die Formel (16) ersetzt werden durch

(16 a)
$$\delta_{ik} = \int N_i N_k \frac{dx}{EF} + \int M_i M_k \frac{dx}{EJ} + \varkappa \int Q_i Q_k \frac{dx}{GF}$$

*) Der Zeiger t weist immer auf den Einfluss von Temperaturänderungen hin.

Es folgt dies ohne weiteres aus der Vergleichung der für die Formänderungsarbeit auf den Seiten 8 und 10 abgeleiteten Formeln

$$A = \int \frac{M^2 dx}{2 EJ} + \int \frac{N^2 dx}{2 EF}$$
 (Einfluss von M und N)

und

$$A = \varkappa \int \frac{Q^2 dx}{2 \ GF}$$
 (Einfluss von Q).

Angaben über die von der Form des Querschnitts abhängige Zahl × findet man auf den Seiten 10-12. G bedeutet den Gleitmodul.

35. Einige wichtige Formeln zur schnellen Berechnung der Integrale $M_i M_k dx$. In den meisten in der Praxis vorkommenden Fällen ist es erlaubt, für die einzelnen Stäbe oder Stabstücke einen von x unabhängigen Mittelwert EJ einzuführen. Der Einfluss, den

und man erhält

die Momentenflächen eines solchen Stabstückes auf δ_{ik} ausüben, ist dann durch die Gleichung

$$EJ\,\delta_{ik} = \int M_i M_k dx$$

gegeben.

Es sei nun die eine der beiden M-Linien — wir geben ihr den Zeiger i — eine Gerade (Fig. 112), deren Endordinaten Y_1 und Y_2 sind; die andere sei von beliebiger Gestalt. Dann ist

$$M_i = Y_1 \frac{x}{l} + Y_2 \frac{x}{l},$$

$$\int M_k dx = \frac{Y_1}{l} \int M_k x' dx' + \frac{Y_2}{l} \int M_k x dx.$$

Bezeichnet man mit \mathfrak{S}_1 und \mathfrak{S}_2 die statischen Momente der M_k -Fläche in Bezug auf die durch die Endpunkte 1 und 2 des Stabstückes l rechtwinklig zu l angenommenen Achsen 1-1' und 2-2', so findet man

(20)
$$\int M_k M_k dx = \frac{1}{l} (Y_1 \mathfrak{S}_2 + Y_2 \mathfrak{S}_1).$$

Wird schliesslich noch mit S' das auf die Achse 1-2 bezogene statische Moment der M_k -Fläche bezeichnet, so ergibt sich

(21)
$$\int M_k^2 dx = 2 \mathfrak{S}'.$$

Anwendung der allgemeinen Elasticitätsgleichungen.

Wir stellen die Ergebnisse der vorstehenden Formeln für einige häufiger vorkommende Fälle zusammen.

a. Beide M-Flächen sind Trapeze, Fig. 113.

(22)
$$\int M_i M_k dx = \frac{l}{6} \left[Y_1 \left(2 Y_1' + Y_2' \right) + Y_2 \left(2 Y_2' + Y_1' \right) \right]$$

(23)
$$\int M_i^2 dx = \frac{l}{3} \left[Y_1^2 + Y_1 Y_2 + Y_2^2 \right].$$

Fig. 113.

Fig. 114.

b. Die M_i -Fläche ist ein Trapez, die M_k -Fläche ein Parabelabschnitt, Fig. 114. Mit

$$M_k = \frac{4 Y_3 x (l - x)}{l^2}$$

erhält man

(24)
$$\int M_{i}M_{k}dx = \frac{l}{3}(Y_{1} + Y_{2})Y_{3} = \frac{2l}{3}Y_{0}Y_{3},$$

wo Yo die Ordinate des Mittelpunktes der Mi-Linie bedeutet. Weiter ist

(25)
$$\int M_k^2 dx = \frac{8}{15} Y_3^2 l$$

c. Die M_i -Fläche ist ein Trapez, die M_k -Fläche ein Dreieck, Fig. 115. Wir betrachten die M_k -Fläche als den Unterschied zweier Dreiecke, deren gemeinsame Grundlinie gleich $Y_3 \frac{l}{\xi'}$ ist und deren Höhen l und ξ sind. Dann ergibt sich

$$\begin{split} \mathfrak{S}_{1} &= Y_{3} \, \frac{l}{\xi'} \, \frac{l^{2} - \xi'}{6} = \frac{Y_{3}l}{6} \, (l + \xi), \ \text{ebenso} \\ \mathfrak{S}_{2} &= \frac{Y_{3}l}{6} \, (l + \xi'), \ \text{also} \end{split}$$

Zweiter Abschnitt. - § 8.

Für den oft vorkommenden Sonderfall in Fig. 115a erhält man (28) $\int M_k dx = \frac{Y_1 Y_2 (l+\xi)}{6}.$

d. Die M_i -Fläche ist ein symmetrischer Parabelabschnitt, Fig. 116, die M_k -Fläche von beliebiger Gestalt. Da

$$M_i = \frac{4 Y_1}{l^2} (x \, l - x^2)$$

Anwendung der allgemeinen Elasticitätsgleichungen.

ist, so ergibt sich

(32)

(29)
$$\int M_i M_k dx = \frac{4 Y_1}{l^2} (l \mathfrak{S}_1 - \mathfrak{Z}_1),$$

wo \mathfrak{F}_1 das Trägheitsmoment und \mathfrak{S}_1 das statische Moment der M_k -Fläche in Bezug auf die Achse 1-1' bedeuten.

e. Die M_i -Fläche ist ein Parabelabschnitt, die M_k -Fläche ein Dreieck, Fig. 117. Es ergibt sich

$$\begin{split} \mathfrak{S}_{1} &= Y_{2} \frac{l}{\xi'} \frac{l^{2} - \xi^{2}}{6} = \frac{Y_{2}l}{6} (l + \xi) \\ \mathfrak{J}_{1} &= Y_{2} \frac{l}{\xi'} \frac{l^{3} - \xi^{3}}{12} = \frac{Y_{2}l}{12} (l^{2} + l\xi + \xi^{2}), \end{split}$$

und man findet mittelst Gleichung (24):

(30)
$$\int M_i M_k dx = \frac{Y_1 Y_2}{3 l} (l^2 + \xi \xi').$$

36. Die α -Gewichte. Der Einfluss einer Last $P_m = 1$ auf die Grössen $X_a, X_b, X_c \ldots$ ist durch die Gleichungen bestimmt:

(31)
$$\begin{cases} X_a \delta_{aa} + X_b \delta_{ba} + X_c \delta_{ca} + \ldots = \delta_{ma} \\ X_a \delta_{ab} + X_b \delta_{bb} + X_c \delta_{cb} + \ldots = \delta_{mb} \end{cases}$$

Die Auflösung liefert für irgend eine Unbekannte X_i einen linearen Ausdruck:

 $X_i = \alpha_{ia}\delta_{ma} + \alpha_{ib}\delta_{mb} + \alpha_{ic}\delta_{mc} + \dots$

Da nun δ_{mb} die Verschiebung des Knotenpunktes m im Sinne von P_m und infolge der Belastung $X_b = -1$ ist, so ist $\alpha_{ib}\delta_{mb}$ der Wert, den diese Verschiebung infolge der Belastung $X_b = -\alpha_{ib}$ annimmt, und es ergibt sich mithin der Satz:

Der Einfluss von P_m auf X_i ist

$$X_i = P_m \delta_m,$$

wo δ_m die Verschiebung bedeutet, welche der Punkt m im Sinne von P_m erfährt, wenn das Hauptsystem von den Belastungen $X_a = -\alpha_{ia}, X_b = -\alpha_{ib}, \ldots$ angegriffen wird.

Handelt es sich um die Einflusslinie für X_i , so darf man den Satz auch so aussprechen:

> Die Einflusslinie für X_i ist die Biegungslinie des von den Belastungen $X_a = -\alpha_{ik}, X_b = -\alpha_{ib}, \ldots$ angegriffenen Hauptsystems*).

*) Der allgemeine Begriff *Belastung* ist in der Einleitung der Abteilung I, Seite 31, erklärt worden. Im allgemeinen besteht eine Belastung aus einer Gruppe von Kräften.

Bei diesem Belastungszustande entstehen die Momente

$$(33) M = \alpha_{ia} M_a + \alpha_{ib} M_b + \alpha_{ic} M_c + \dots$$

37. Die Hilfswerte ω_R , ω_D , ω_P , ω_P'' . Die zur Ermittlung der Biegungslinien dienenden Seillinien werden meistens schneller durch Rechnung als durch Zeichnung gefunden. Es gilt dies namentlich für den Fall, dass sich die Belastungsflächen aus Rechtecken, Dreiecken und Parabelflächen zusammensetzen. Es leisten dann die in der Tabelle auf Seite 105 zur Berechnung der Momente eines einfachen Balkens angegebenen Zahlen ω gute Dienste. Vor allem erleichtert aber die Einführung der Zeichen ω_R , ω_D , ω_P , ω_P'' öfter das Anschreiben von Formeln, wie dies bereits einige in der ersten Abteilung dieses Bandes (Auflage 1903, Seite 424 u. f. oder 1907, Seite 427 u. f.) durchgeführte Untersuchungen gezeigt haben; dort findet sich die Tabelle auf Seite 425 bezw. 430.

Wichtig ist auch der in Fig. 118 dargestellte Belastungsfall. Die Belastungslinie ist ein Polygon. Die Ordinaten der Eckpunkte sind

 $z_0, z_1, z_2 \ldots$ Die Abschnitte a sind gleichlang. Gesucht sind die Momente für die Balkenquerschnitte 1, 2, 3, ...

Ein durch den Punkt r geführter lotrechter Schnitt zerlegt die Belastungsfläche in zwei Teile. Das statische Moment des linken Teiles, bezogen auf die Lotrechte durch A, sei \mathfrak{L}_r und das statische Moment des rechten Teiles, bezogen auf die Lotrechte durch B, sei \mathfrak{R}_r . Die Anzahl der Abschnitte a sei n. Dann ergibt sich

$$M_r = \mathfrak{L}_r \frac{n-r}{n} + \mathfrak{R}_r \frac{r}{n},$$

und zwar ist

$$\mathfrak{Q}_r = \frac{z_0 a^2}{6} + a^2 \left[z_1 + 2 z_2 + 3 z_3 + \ldots + (r-1) z_{r-2} \right] + \frac{z_r a^2}{2} \left(r - \frac{1}{3} \right)$$

Ganz ebenso wird \Re_r berechnet. Man findet die Formel

(34)
$$M_r = \frac{a^2}{n} \left(\frac{1}{6} z_0 + \gamma_{r_1} z_1 + \gamma_{r_2} z_2 + \gamma_{r_3} z_3 + \dots + \gamma_{r(n-1)} z_{n-1} + \frac{1}{6} z_n \right) \cdot$$

Tabelle der Werthe ω_R , ω_D , ω_P , ω_P'' .

		A B		A B	
			$x_{x} = x \frac{x}{l}$	$x_x = x \frac{x^2}{l^2}$	$x_x = \frac{4 x x (l-x)}{l^2}$
		$A = B = \frac{zl}{2}$	$A = \frac{xl}{6}$ $B = \frac{xl}{3}$	$A = \frac{xl}{12},$ $B = \frac{xl}{4}$	$A = B = \frac{xl}{3}$
	M =	$\omega_R \frac{\pi l^2}{2}$	$\omega_D \frac{z l^2}{6}$	$\omega_P \frac{\pi l^2}{12}$	$\omega_P^{\prime\prime} \frac{\pi l^2}{3}$
	$\frac{x}{l}$	$\omega_R = \frac{x}{l} - \frac{x^2}{l^2}.$	$\omega_D = \frac{x}{l} - \frac{x^3}{l^3}$	$\omega_P = \frac{x}{l} - \frac{x^4}{l^4}$	$\omega_{P}'' = \frac{\cancel{x}}{\cancel{x}} \frac{\cancel{x}^{4}}{\cancel{t}^{4}} - \frac{\cancel{x}^{3}}{\cancel{t}^{3}} + \frac{\cancel{x}}{\cancel{x}} \frac{\cancel{x}}{\cancel{t}}$ $= 2 \omega_{D} - \omega_{P}$ $= \omega_{R} (1 + \omega_{R})$
	$\begin{array}{c} 0,\!05\\ 0,\!10\\ 0,\!15\\ 0,\!20\\ 0,\!25\end{array}$	0,0475 0,0900 0,1275 0,1600 0,1875	0,0499 0,0990 0,1466 0,1920 0,2344	$\begin{array}{c} 0,0500\\ 0,0999\\ 0,1495\\ 0,1984\\ 0,2461\end{array}$	$\begin{array}{c} 0,0498\\ 0,0981\\ 0,1438\\ 0,1856\\ 0,2227\end{array}$
	$0,30 \\ 0,35 \\ 0,40 \\ 0,45 \\ 0,50$	$\begin{array}{c} 0,2100\\ 0,2275\\ 0,2400\\ 0,2475\\ 0,2500 \end{array}$	$\begin{array}{c} 0,2730\\ 0,3071\\ 0,3360\\ 0,3589\\ 0,3750\end{array}$	$\begin{array}{c} 0,2919\\ 0,3350\\ 0,3744\\ 0,4090\\ 0,4375\end{array}$	0,2541 0,2793 0,2976 0,308Ø8 0,3125
	$0,55 \\ 0,60 \\ 0,65 \\ 0,70 \\ 0,75$	$\begin{array}{c} 0.2475 \\ 0.2400 \\ 0.2275 \\ 0.2100 \\ 0.1875 \end{array}$	$\begin{array}{c} 0.3836\\ 0.3840\\ 0.3754\\ 0.3570\\ 0.3281\end{array}$	$\begin{array}{c} 0,4585\\ 0,4704\\ 0,4715\\ 0,4599\\ 0,4336\end{array}$	0.308 0.2976 0.2793 0.2541 0.2227
1	$0,80 \\ 0,85 \\ 0,90 \\ 0,95$	$0,1600 \\ 0,1275 \\ 0,0900 \\ 0,0475$	0,2880 0,2359 0,1710 0,0926	$\begin{array}{c} 0,3904 \\ 0,3280 \\ 0,2439 \\ 0,1355 \end{array}$	$\begin{array}{c} 0,\!1856\\ 0,\!1438\\ 0,\!0981\\ 0,\!0498\end{array}$
00	$\int^{l} Mdx =$	$\frac{\pi l^3}{12}$	$\frac{\pi l^3}{24}$	$\frac{\pi l^3}{40}$	* l ³ 80 15

Zweiter Abschnitt. - § 8.

Die Koefficienten γ_{11} , γ_{22} , ... werden nach der Formel

(35)
$$\gamma_{rr} = r \left(n - r \right) - \frac{n}{c}$$

berechnet. Für die übrigen γ gilt

$$(36) \qquad \qquad \gamma_{ik} = i (n-k)$$

mit der Bedingung i < k.

Hiernach ergibt sich z. B. für M_4 der Wert

$$(37) \quad M_4 = \frac{a^2}{n} \left\{ \frac{1}{6} z_0 + 1 (n-4) z_1 + 2 (n-4) z_2 + 3 (n-4) z_3 + \left[4 (n-4) - \frac{n}{6} \right] z_4 + 4 (n-5) z_5 + 4 (n-6) z_6 + \dots + 4 \cdot 1 z_{n-1} + \frac{1}{6} z_n \right\}.$$

Schliesslich führen wir noch eine Formel an, die in vielen wichtigen Fällen die Berechnung des Inhaltes der Einflussflächen erleichtern wird.

In zwei Punkten (m-1) und m seien z_{m-1} und z_m die Belastungshöhen, η_{m-1} und η_m die Ordinaten der zugehörigen Momentenlinie. Die Belastungslinie sei eine Parabel von der Pfeilhöhe z' (Fig. 119). Dann ist der Inhalt der zur Strecke $a_m = (m-1) - m$ gehörigen Momentenfläche

(38)
$$\mathfrak{F}_{m} = \frac{1}{2} a_{m} (\eta_{m-1} + \eta_{m}) + \frac{1}{24} a_{m}^{3} (z_{m-1} + z_{m}) + \frac{1}{\mathfrak{F}_{0}} a_{m}^{3} z'.$$

Diese Formel folgt aus den Werten der letzten Zeile der auf Seite 105 stehenden Tabelle. Anwendung des Verfahrens von Castigliano.

§ 9.

Anwendung des Satzes $\delta_m = \frac{\partial A_i}{\partial P_m} - \frac{\partial L}{\partial P_m}$

38. An die Stelle des in der Einleitung für das Fachwerk angegebenen Wertes

 $A_i = \Sigma \frac{S^2 s}{2 \, E F} + \Sigma \varepsilon t S s$

tritt in die Formel

(1)
$$\delta_m = \frac{\partial A_i}{\partial P_m} - \frac{\partial L}{\partial P_m}$$

nach den Entwicklungen des § 1, No. 3 bis 5, der Ausdruck

(2)
$$A_{i} = \int \frac{M^{2} dx}{2 E J} + \int \frac{N^{2} dx}{2 E F} + \varkappa \int \frac{Q^{2} dx}{2 G F} + \int \varepsilon t_{s} N dx + \int \varepsilon \Delta t \frac{M}{h} dx.$$

L bedeutet die virtuelle Arbeit der Stützenwiderstände, deren Angriffspunkte sich um gegebene, etwa durch Beobachtung gefundene Strecken verschieben mögen. Man vergleiche den Abschnitt über die Castiglianoschen Sätze in der Einleitung der Abteilung I, Seite 49-51.

39. Beispiel. Ein eiserner Balken besitzt bei A ein wagerechtes Gleitlager, bei B ein festes Auflager; er ist bei D mit einer frei drehbar gelagerten Säule vernietet. Fig. 120. Das Tragwerk ist zweifach statisch unbestimmt. Als Größen X_a und X_b sollen der Widerstand des Gleitlagers und die wagerechte Seitenkraft des festen Auflagers Beingeführt werden. Der Angriffspunkt von X_b liege unterhalb der Balkenachse. Es soll der Einfluß der wagerechten Lasten K_1, K_2 , sowie der Einfluß von Temperaturänderungen und beobachteten Verschiebungen der Stützpunkte auf X_a und X_b festgestellt werden. Es sei, vom spannungslosen Anfangszustande aus gerechnet,

t die Temperaturänderung für alle Punkte der Achse des Balkens,

- tu desgleichen der Unterkante des Balkens,
- $t_o = t_u \Delta t$ desgleichen der Oberkante des Balkens,
- t' die Temperaturänderung der Säule,
- δ_a die beobachtete lotrechte Verschiebung des Angriffspunktes der Kraft X_a gegen den ruhend angenommenen Säulenfuß,
- δ_B desgleichen der Kraft B,
- δ_b die beobachtete wagerechte Verschiebung des Angriffspunktes von X_b .

Die Verschiebungen δ_a , δ_b , δ_B seien positiv, wenn sie im Sinne der Kräfte X_a , X_b , B erfolgen.

Beseitigt man das bewegliche Lager am linken Ende des Balkens und ersetzt man das feste Lager am rechten Balkenende durch ein wagerechtes Gleitlager, so erhält man das statisch bestimmte Hauptsystem. An diesem greifen außer den Kräften X_a , X_b , K_1 , K_2 noch die mit Hilfe der drei Gleichgewichtsbedingungen berechneten Stützenwiderstände an:

und es ergibt sich, da A und C an dem ruhend angenommenen Säulenfuße angreifen, die virtuelle Arbeit

$$L = B\delta_B = \left(B_o + X_a - X_b \frac{c}{l}\right)\delta_B.$$

Es entstehen folgende Momente M und Längskräfte N^*): in der linken Hälfte des Balkens für $x < \xi_1$ $M = X_a x$ N = 0für $x > \xi_1$ $M = X_a x + K_1 k_1$ $N = -K_1$

*) Den Einfluß der Querkräfte wollen wir gleich von vornherein vernachlässigen.

Anwendung des Verfahrens von Castigliano.

in der rechten Hälfte des Balkens für $x < \xi_2$ $M = Bx - X_b e$

$$= (B_o + X_a) x - X_b \left(\frac{c}{l} x + e\right), \qquad N = -X_b$$

für $x > \xi_2$ $M = (B_o + X_a) x - X_b \left(\frac{c}{l} x + e\right) - K_2 k_2, \quad N = K_2 - X_b$

in der Säule

$$M = Cx = (X_b - K_1 - K_2)x, \qquad N = B_o + 2X_a - X_b \frac{c}{l}.$$

Bedeuten J und F das Trägheitsmoment und den Inhalt des Balkenquerschnitts, J' und F' die entsprechenden Werte des Säulenquerschnitts, h die Trägerhöhe, s die Säulenlänge, Fig. 148, so folgt aus

(3)
$$\delta_{a} = \frac{\partial A_{i}}{\partial X_{a}} \doteq \int \frac{M}{EJ} \frac{\partial M}{\partial X_{a}} dx + \int \frac{N}{EF} \frac{\partial N}{\partial X_{a}} dx + \int \varepsilon t \frac{\partial N}{\partial X_{a}} dx + \int \varepsilon t \frac{\partial N}{\partial X_{a}} dx + \int \varepsilon t \frac{\partial N}{\partial X_{a}} dx$$

für den Fall unveränderlicher Werte J, F, J', F' die Gleichung

$$EJ\delta_{a} = \int_{o}^{l} X_{a}x^{2}dx + K_{1}k_{1}\int_{\xi_{1}}^{l} x dx$$

+
$$\int_{o}^{l} \left[(B_{o} + X_{a})x - X_{b}\left(\frac{c}{l}x + e\right) \right] x dx - K_{2}k_{2}\int_{\xi_{2}}^{l} x dx$$

+
$$\frac{J}{F'} \left(B_{o} + 2X_{a} - X_{b}\frac{c}{l} \right) 2s + \varepsilon EJt' 2s$$

+
$$2\varepsilon EJ\frac{\Delta t}{h}\int_{o}^{l} x dx + EJ\delta_{B},$$

und in derselben Weise ergibt sich

$$EJ\delta_{b} = -\int_{0}^{t} \left[(B_{o} + X_{a})x - X_{b}\left(\frac{c}{l}x + e\right) \right] \left(\frac{c}{l}x + e\right) dx$$

+ $K_{2}k_{2}\int_{\xi_{2}}^{l} \left(\frac{cx}{l} + e\right) dx + \frac{J}{J'}\int_{0}^{s} (X_{b} - K_{1} - K_{2})x^{2}dx$
+ $\frac{J}{F}[X_{b}l - K_{2}(l - \xi_{2})] - \frac{J}{F'} \left(B_{o} + 2X_{a} - X_{b}\frac{c}{l}\right)\frac{c}{l}s - \varepsilon EJtl$
- $\varepsilon EJt'\frac{c}{l}s - \varepsilon EJ\frac{\Delta t}{h}\int_{0}^{l} \left(\frac{cx}{l} + e\right) dx - EJ\delta_{B}\frac{c}{l}.$

Nach Ausführung der Integrationen erhält man die Gleichungen

(4)
$$\begin{cases} \gamma_{aa}X_a + \gamma_{ab}X_b = T_a \\ \gamma_{ba}X_a + \gamma_{bb}X_b = T_b, \end{cases}$$

l

(5)
$$\begin{cases} \gamma_{aa} = \frac{2}{3} l^3 + 4s \frac{J}{F'}, \\ \gamma_{ab} = \gamma_{ba} = -\left(\frac{1}{3} cl^2 + \frac{1}{2} el^2 + 2s \frac{c}{l} \frac{J}{F'}\right) \\ = -\frac{l^2}{6} (2f + e) - 2s \frac{c}{l} \frac{J}{F'}, \\ \gamma_{bb} = \frac{f^2l}{3} + efl + e^2l + \frac{J}{J'} \frac{s^3}{3} + l \frac{J}{F} + s \frac{c^2}{l^2} \frac{J}{F'} \\ = \frac{l}{3} (f^2 + fe + e^2) + \frac{J}{J'} \frac{s^3}{3} + l \frac{J}{F} + s \frac{c^2}{l^2} \frac{J}{F'}. \end{cases}$$

$$\begin{cases} T_{a} = -\frac{1}{2} K_{1} k_{1} \left(l^{2} - \xi_{1}^{2}\right) + \frac{1}{2} K_{2} k_{2} \left(l^{2} - \xi_{2}^{2}\right) \\ - \left(K_{1} a_{1} + K_{2} a_{2}\right) \left(\frac{l^{2}}{3} + 2\frac{s}{l} \frac{J}{F'}\right) \\ - \varepsilon EJ \left(2t's + \Delta t \frac{l^{2}}{h}\right) + EJ \left(\delta_{a} - \delta_{B}\right), \\ T_{b} = -K_{2} k_{2} \left[\frac{c}{2l} \left(l^{2} - \xi_{2}^{2}\right) + e \left(l - \xi_{2}\right)\right] \\ + \left(K_{1} a_{1} + K_{2} a_{2}\right) \left(\frac{cl}{3} + \frac{el}{2} + \frac{s}{l} \frac{c}{l} \frac{J}{F'}\right) \\ + \left(K_{1} + K_{2}\right) \frac{J}{J'} \frac{s^{3}}{3} + K_{2} \left(l - \xi_{2}\right) \frac{J}{F} + EJ \left(\delta_{b} + \delta_{B} \frac{c}{l}\right) \\ + \varepsilon EJ \left[tl + t' \frac{c}{l} s + \Delta t \frac{l}{2h} \left(c + 2e\right)\right]. \end{cases}$$

Es sei $l = 12^{m}$, $e = 0.5^{m}$, $c = 4.5^{m}$, $s = 4.5^{m}$, $\frac{J}{J'} = 8$. Die letzte Zahl muß zunächst geschätzt werden, wenn es sich um den Entwurf

eines Tragwerks handelt. Die von den Längskräften N herrührenden Glieder dürfen als unwesentlich vernachlässigt werden, man darf also $F = F' = \infty$ setzen. Dann ergibt sich

$$\gamma_{aa} = 1152, \ \gamma_{ab} = -252, \ \gamma_{bb} = 354, \ X_a = 0,00\,108\,T_a + 0,00\,073\,T_b \ X_b = 0,00\,073\,T_a + 0,00\,335\,T_b.$$

Ist weiter $k_1 = k_2 = 0,5$ ", also $a_1 = a_2 = 5,5$ ", so erhält man für den Einfluß der wagerechten Lasten K_1 und K_2 die Ausdrücke

$$T_{a} = -\left(300 - 36\frac{\xi_{1}^{2}}{l^{2}}\right)K_{1} - \left(228 + 36\frac{\xi_{2}^{2}}{l^{2}}\right)K_{2}$$

$$T_{b} = 358,5 K_{1} + \left(342 + 3\frac{\xi_{2}}{l} + 13,5\frac{\xi_{2}^{2}}{l^{2}}\right)K_{2},$$

$$K_{a} = K_{1}\left(-0,047 + 0,037\frac{\xi_{1}^{2}}{l^{2}}\right) + K_{2}\left(0,015 + 0,002\frac{\xi_{2}}{l} - 0,027\frac{\xi_{2}^{2}}{l^{2}}\right)$$

$$K_{b} = K_{1}\left(+0,982 + 0,026\frac{\xi_{1}^{2}}{l^{2}}\right) + K_{2}\left(0,979 + 0,010\frac{\xi_{2}}{l} + 0,019\frac{\xi_{2}^{2}}{l^{2}}\right).$$

Der Ausdruck für X_b lehrt, daß die wagerechten Lasten K hauptsächlich von der Stütze B aufgenommen werden.

Der Einfluß der Temperaturänderungen soll unter der Annahme berechnet werden, daß Säule und Balkenunterkante dieselbe Temperaturänderung $t' = t_u$ erfahren. Für t ist der Wert

$$t = t_u - \frac{1}{2} \Delta t$$

einzusetzen. Ist die Höhe des Balkens $h = 1^m$ und wird, für Flußeisen,

$$E = 250 \text{ t/m}^2$$

gesetzt, so erhält man

$$T_{a} = (36\,000\,\Delta t - 2250\,t_{u})\,J$$

$$T_{b} = (6750\,\Delta t + 3420\,t_{u})\,J$$

$$X_{a} = (42\,\Delta t + 0.2\,t_{u})\,J$$

$$X_{b} = (49\,\Delta t + 10.8\,t_{u})\,J.$$

Das durch diese Wärmeänderungen hervorgerufene größte Biegungsmoment ist für den Balken

$$M = X_a l = (504 \Delta t + 6 t_u) J,$$

und für die Säule

$$M' = X_{\mu}s = (220 \Delta t + 49 t_{\mu}) J.$$

Im Balken, dessen Schwerachse in der halben Höhe des Balkens liegen möge, entsteht die Biegungsspannung

$$\sigma = \pm \frac{Mh}{2J} = \pm (252 \Delta t + 3 t_u) h,$$

und in der Säule entsteht $\left(\text{mit } \frac{J}{J'} = 8 \right)$

$$\sigma' = \pm \frac{M'h'}{2J'} = \pm (880 \Delta t + 196 t_u) h'.$$

Die Aufstellungstemperatur betrage 10° C. Man habe gemessen in der unteren Gurtung des Balkens 25° und in der von der Sonne bestrahlten oberen Gurtung 40° . Dann ist $t_u = 15^{\circ}$, $\Delta t = t_u - t_o = -15^{\circ}$, und man erhält für $h = 1,0^{m}$ und $h' = 0,5^{m}$ die verhältnismäßig hohen Beanspruchungen

$$\sigma = 3735 \text{ t/m}^2 = 374 \text{ kg/cm}^2$$

 $\sigma' = 3420 \text{ t/m}^2 = 342 \text{ kg/cm}^2.$

§ 10.

Sonderfälle des Balkens auf starren Stützen. Nachtrag zur Behandlung des allgemeinen Falles.

Wir gehen jetzt dazu über, die im § 8 durchgeführten Untersuchungen durch eine Reihe wichtiger Beispiele zu erläutern.

1. Balken auf drei starren Stützen.

40. Der Querschnitt ist veränderlich. Als statisch unbestimmte Größe wird der Widerstand X_a der Mittelstütze eingeführt. Die Momentenfläche für $X_a = -1$ ist ein Dreieck von der Höhe

(1)
$$Y_1 = \frac{l_1 l_2}{l_1 + l_2}.$$

Hierzu wird nach § 2 die Biegungslinie A'C'B' gezeichnet und nunmehr

$$X_a = P_m \frac{\delta_{ma}}{\delta_{aa}}$$

gefunden. Die Biegungslinie A'C'B' ist also Einflußlinie für $X_a = -1$; der Multiplikator ist $\mu = \frac{1}{\delta_{aa}}$. Im übrigen verweisen wir auf Abteilung I, § 12. Dort ist angegeben worden, wie sich aus der X_a -Linie die Einflußlinien für die Momente, Querkräfte und die Widerstände der Endstützen herleiten lassen.

41. Der Querschnitt ist unveränderlich. Die M_a -Fläche wird als Belastungsfläche des einfachen Balkens AB angesehen. Es ergibt sich nach Gleich. (23), Seite 101

(2)
$$EJ\delta_{aa} = \int M_a^2 dx = \frac{Y_1^2 (l_1 + l_2)}{3},$$

und an der Stelle x nach Seite 105

$$EJ\delta_{ma} = \delta_{aa} \frac{x}{l_1} + \omega_D \frac{Y_1 l_1^2}{6},$$

denn die Fläche zwischen der Kurve A'C' und der Geraden A'C' ist die Momentenfläche eines mit dem Dreieck ACD belasteten einfachen Balkens AC. Man findet für eine über der Öffnung l_1 stehende Last $P_m = 1$

(3)
$$X_a = \frac{\delta_{ma}}{\delta_{aa}} = \frac{x}{l_1} + \omega_D \frac{l_1}{2 l_2}$$

Mit dieser einfachen Formel kommt man schneller zum Ziele als mittels des zeichnerischen Verfahrens. Die Annahme eines überall gleichen Querschnitts ist in der Regel zulässig.

Der Einfluß einer ungleichmäßigen Erwärmung des Balkens auf X_a ist

$$X_{at} = \frac{\delta_{at}}{\delta_{aa}}, \text{ wo } \delta_{at} = \frac{\varepsilon \Delta t}{h} \int M_a dx = \frac{\varepsilon \Delta t}{h} Y_1 \frac{l_1 + l_2}{2}.$$

Man erhält

(4)

$$X_{at} = \frac{3}{2} \varepsilon E J \frac{\Delta t}{h} \frac{l_1 + l_2}{l_1 l_2} \cdot \qquad \Delta t = t_u - t_o.$$

Senkt sich die Mittelstütze um δ_a gegen die Verbindungslinie der Endstützen, so ändert sich X_a um

(5)
$$\Delta X_a = -\frac{\delta_a}{\delta_{aa}} = -3 E J \delta_a \frac{l_1 + l_2}{l_1^2 l_2^2}.$$

2. Balken auf vier starren Stützen, Fig. 122.

42. Für den Fall, daß die Veränderlichkeit des Querschnitts berücksichtigt werden soll, verweisen wir auf Abteilung I, § 13. Der einzige Unterschied ist der, daß die Biegungslinien jetzt nach dem für Müller-Breslau, Graphische Statik. II. 2.

den vollwandigen Balken angegebenen Verfahren gezeichnet werden. Auch das in Nr. 44 der vorliegenden Abteilung beschriebene allgemeine Verfahren ist beim Balken auf vier Stützen vorteilhaft. Meistens ist aber die Annahme eines überall gleichen Querschnitts erlaubt. Dann dürfte der folgende Weg, den wir gleich an einem Zahlenbeispiele erläutern wollen, der kürzeste sein.

Wir führen nur eine Größe X ein und wählen hierzu den Widerstand X_a der linken Endstütze. Das Hauptsystem ist ein Balken auf drei Stützen. Zwischen den Stützenmomenten $M_{1 \cdot a}$ und $M_{2 \cdot a}$ besteht die Gleichung

 $M_{1 \cdot a} l_2 + 2 M_{2 \cdot a} (l_2 + l_3) = 0;$

und es ergibt sich daher

$$\begin{split} M_{1 \cdot a} &= -l_1, \quad M_{2 \cdot a} = + \frac{l_1 l_2}{2 (l_2 + l_3)}, \\ \text{also für } l_1 &= 18^m, \quad l_2 = 30^m, \quad l_3 = 24^m \\ M_{1 \cdot a} &= -18, \quad M_{2 \cdot a} = +5, 0. \\ \text{Die Gleichung der } X_a \text{-Linie ist für } P_m = 1 \\ X &= 1 \quad \overset{\delta_{ma}}{\overset{\delta_{ma}}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_{ma}}{\overset{\delta_$$

$$X_a = 1 \frac{\delta_{ma}}{\delta_{aa}},$$

wo nach Gleich. (23), Seite 101

$$EJ\delta_{aa} = \int M_a^2 dx = \frac{18}{3} 18^2 + \frac{30}{3} (18^2 - 5 \cdot 18 + 5^2) + \frac{24}{3} 5^2 = 4734.$$

Dividiert man die Ordinaten der M_a -Linie durch den Wert $EJ \delta_{aa}$, so erhält man die Belastungslinie, deren zugehörige Seillinie die gesuchte X_a -Linie ist. Diese Belastungslinie ist durch die Ordinaten gegeben

$$z_1 = -\frac{18}{4734} = -0,00380$$
 und $z_2 = +\frac{5}{4734} = 0,00106.$

Die zugehörige Seillinie (Polweite 1) schneidet die Stützensenkrechten in drei, in einer Geraden liegenden Punkten. An der Stelle a ist ihr Abstand von dieser Geraden gleich 1. Denn eine in a angreifende Last P = 1 erzeugt $X_a = 1$, und Lasten, die in den anderen Stützpunkten angreifen, haben keinen Einfluß auf X_a . Durch Rechnung findet man für die einzelnen Öffnungen die folgenden, mit η_1 , η_2 , η_3 bezeichneten Ordinaten der X_a -Linie.

$$\begin{aligned} \eta_1 &= 1 \frac{x'}{l} - \omega_D \cdot 0,00\,380\,\frac{l_1^2}{6} &= \frac{x'}{l} - 0,205\,\omega_D \\ &- \eta_2 &= \omega_R(0,00\,380 + 0,00\,106)\frac{l_2^2}{2} - \omega_D 0,00\,106\,\frac{l_2^2}{6} = 2,19\,\omega_R - 0,159\,\omega_D \\ &\eta_3 &= \omega_D\,0,00\,106\,\frac{l_3^2}{6} &= 0,102\,\omega_D. \end{aligned}$$

Auf ähnliche Weise wird die Einflußlinie für den Widerstand der rechten Endstütze gefunden. Hinsichtlich der Darstellung der übrigen Einflußlinien wird auf Abteilung I, § 13, Fig. 352, verwiesen.

Der Einfluß einer ungleichmäßigen Erwärmung des Balkens ist

$$X_{at} = \frac{\delta_{at}}{\delta_{aa}} = \frac{1}{\delta_{aa}} \frac{\varepsilon \Delta t}{h} \int M_a dx, \text{ wo}$$
$$\int M_a dx = -18 \frac{18 + 30}{2} + 5.0 \frac{30 + 24}{2} = 297.$$

Man erhält

$$X_{at} = -0,063 \varepsilon E J \frac{\Delta t}{h}.$$

3. Balken auf mehreren starren Stützen*).

43. Einflußlinien für die Stützenmomente bei unveränderlichem Querschnitt. Wird die Annahme eines unveränderlichen Balkenquerschnitts gemacht, so führt selbst bei einer größeren Anzahl von

^{*)} Den allgemeinen Fall haben wir noch einmal mit aufgeführt, um auf einige Vereinfachungen der früher angegebenen Lösungen nachträglich hinzuweisen.

Stützpunkten die Berechnung der Einflußlinien für die Stützenmomente schneller zum Ziele, als das zeichnerische Verfahren. Wir erinnern zunächst daran, daß links vom belasteten Felde zwischen drei aufeinanderfolgenden Stützenmomenten M_{k-1} , M_k , M_{k+1} die Beziehung besteht

(6) $M_{k-1}l_k + 2 M_k (l_k + l_{k+1}) + M_{k+1}l_{k+1} = 0,$ woraus dann folgt

$$\frac{M_{k-1}}{M_k} l_k + 2 \left(l_k + l_{k+1} \right) + \frac{M_{k+1}}{M_k} l_{k+1} = 0,$$

und mit Beachtung von

Zwischen zwei aufeinanderfolgenden Werten z besteht also die Gleichung

(7)
$$x_{k+1} = \frac{2(l_k + l_{k+1}) - \frac{l_k}{x_k}}{l_{k+1}},$$

mit deren Hilfe man, mit

(8)
$$\varkappa_2 = \frac{2(l_1 + l_2)}{l_2}$$

beginnend, schrittweise die Werte x und hierauf die Strecken

(9)
$$a_k = \frac{l_k}{1 + \varkappa_k}$$

berechnen kann. In derselben Weise werden die Strecken \varkappa' ermittelt. Liegt nun die Last P = 1 über der r^{ten} Öffnung, so ist (nach Abteilung I, § 14)

(10)
$$\begin{cases} M_r = -f_r \omega_D + v_r \omega_D' \\ M_{r-1} = -k_r \omega_D' + v_r \omega_D, \end{cases}$$

wo, Fig. 124,

(11)
$$f_r = a_r' \frac{b_r}{c_r}, \quad k_r = a_r \frac{b_r'}{c_r}, \quad v_r = \frac{a_r a_r'}{c_r}.$$

Die Formeln (10) lassen sich noch etwas vereinfachen.

Zwischen den Zahlen

$$\omega_D = \frac{x}{l} - \frac{x^3}{l^3}$$
 und $\omega_D' = \frac{x'}{l} - \frac{x'^3}{l^3}$, $(x' = l - x)$

besteht die Beziehung (12)

$$\omega_D'=3\,\omega_R-\omega_D,$$

und man darf deshalb auch schreiben

(13)	$\begin{cases} M_r = -u_r'\omega_D + 3v_r\omega_R \\ M_{r-1} = -u_r\omega_D + 3v_r\omega_R, \end{cases}$		
wo (Fig. 124) (14)	$u_r' = a_r' \frac{l_r}{c_r}$ und $u_r = a_r \frac{l_r}{c_r}$.		

Bei der M_{r-1} -Linie muß hierbei die Abszisse x von der Stütze raus gerechnet werden, Fig. 125. Die Formeln (13) sind bequemer als die Formeln (10), weil die ω_R für die linke und rechte Hälfte einer Öffnung gleich groß sind.*)

Für die Endöffnungen ist v = 0. Man erhält

(15)
$$M_1 = -f_1 \omega_D, \quad M_{n-1} = -k_n \omega_D.$$

Zahlenbeispiel. Sei $l_1 = 8\lambda$, $l_2 = 9\lambda$, $l_3 = 10\lambda$, $l_4 = 9\lambda$, wo $\lambda = 3, 2^m$ die Feldweite bedeutet. Man findet (Fig. 126)

$$\begin{aligned} \varkappa_2 &= \frac{2\,(8\,+\,9)}{9} = 3,78 \qquad a_2 = \frac{28,8}{4,78} = 6,02^m \\ \varkappa_3 &= \frac{2\,(9\,+\,10) - \frac{9}{3,78}}{10} = 3,56 \qquad a_3 = \frac{32}{4,56} = 7,02^m \\ \varkappa_4 &= \frac{2\,(10\,+\,9) - \frac{10}{3,56}}{9} = 3,91 \qquad a_4 = \frac{28,8}{4,91} = 5,86^m \end{aligned}$$

$$\varkappa_{3}' = \frac{2(9+10)}{10} = 3,80 \qquad a_{3}' = \frac{32}{4,80} = 6,67$$

$$2(10+9) - \frac{10}{3,80} \qquad 28,8$$

- ?

9

$$a_2' = \frac{28,8}{4,93} = 5,84$$

$$\varkappa_{1}' = \frac{2(9+8) - \frac{5}{3,93}}{8} = 3,96 \qquad a_{1}' = \frac{25,6}{4,96} = 5,16.$$

Für die zweite Öffnung ist nun nach Gleichung (13):

0

$$u_{2}' = 5,84 \frac{28,8}{16,14} = 9,93^{m}, \quad u_{2} = 6,02 \frac{28,8}{16,14} = 10,24^{m},$$

$$3 v_{2} = \frac{3 \cdot 5,84 \cdot 6,02}{16,14} = 2,08^{m}, \quad \overset{(b_{1} \leq 3)}{=} 3$$

$$M_{2} = -9,93 \omega_{D} + 6,53 \omega_{R}$$

$$M_{1} = -10,24 \omega_{D} + 6,53 \omega_{R}.$$

Diese Formeln führen selbst dann schneller zum Ziele als das zeichnerische Verfahren, wenn keine Tabelle für die Zahlen ω_D und ω_R zur Verfügung steht, weil sich die Werte $\omega_D = \frac{x}{l} - \frac{x^3}{l^3}$ und $\omega_R = \frac{x}{l} - \frac{x^2}{l^2}$ für die stets ausreichende Teilung $\frac{x}{l} = 0,1, 0,2, 0,3$... schnell

 $\chi_2 =$

^{*)} In der vierten Auflage (1907) der Abteilung 1 dieses Bandes sind die Strecken u_r , u_r' bereits benutzt worden. In den Formeln (46) (47) auf Seite 402 steht dort versehentlich v_r statt 3 v_r .

hinschreiben lassen. Für diejenigen Leser, welche zeichnerische Verfahren bevorzugen, bemerken wir noch, daß das erste Glied des Ausdruckes

$$M_r = - u_r \omega_P + 3 v_r \omega_R$$

durch eine kubische Parabel, das zweite durch eine gewöhnliche Parabel dargestellt werden kann. Hieraus folgt die in Fig. 127 angegebene Konstruktion der M_r -Fläche. Die drei Linien I sind parallel.

Schließlich möge noch auf ein einfaches Gesetz hingewiesen werden, welches aus der in Nr. 25 durchgeführten Untersuchung folgt. Findet man nämlich durch Auflösung der Clapeyronschen Gleichungen für M_r den Wert

$$M_r = \beta_{r1}N_1 + \beta_{r2}N_2 + \beta_{r3}N_3 + \dots,$$

so besitzt die Belastungslinie der Mr-Linie bei den Stützen 1, 2, 3 ... die Ordinaten

 $z_1 = 6 \beta_{r1}, \quad z_2 = 6 \beta_{r2}, \quad z_3 = 6 \beta_{r3}, \quad \ldots$

Die Nullpunkte der Belastungslinie sind Festpunkte.

Sind also z. B. die Spannweiten eines Trägers auf vier Stützen 40^m, 50^m, 40^m, so lauten die Clapeyronschen Gleichungen

Man findet

$$M_1 = \frac{2 \cdot 90 \, N_1 - 50 \, N_2}{(2 \cdot 90)^2 - 50^2} = 0,0361 \, \frac{N_1}{6} - 0,0100 \, \frac{N_2}{6} \cdot$$

Die Belastungslinie der M_1 -Linie ist bestimmt durch $z_1 = + 0,0361$ und $z_2 = -0,0100$. Für die M_2 -Linie gilt das Spiegelbild. Dieses Verfahren besitzt jedenfalls den großen Vorzug, sich dem Gedächtnis leicht einzuprägen.

44. Balken mit veränderlichem Querschnitt. Auch für diesen Fall möge das in Abteilung I § 14 zur Ermittlung der Einflußlinien der Stützenmomente angegebene Verfahren noch etwas vereinfacht werden. Sind (r-1)-r'-(r+1) und (r-2)-(r-1)'-r die Biegungslinien für die Zustände $M_r = 1$ und $M_{r-1} = 1$, Fig. 129, so ist der Einfluß von Lasten, die zwischen r-1 und r aufgebracht werden, durch die Gleichungen gegeben

$$\begin{aligned} \varkappa_r M_{r-1} + M_r &= -\frac{l_r}{d_r} \Sigma P_m \delta_{mr} \\ M_{r-1} + \varkappa_r' M_r &= -\frac{l_r}{d_r} \Sigma P_m \delta_{m(r-1)} \end{aligned}$$

Man erhält hieraus für P = 1 mittels der in Abteilung I, § 14 angegebenen Entwicklung

(16)
$$M_r = -\frac{f_r}{d_r} \delta_{mr} - \frac{v_r}{d_r} \delta_{m(r-1)}$$
$$M_{r-1} = -\frac{k_r}{d_r} \delta_{m(r-1)} - \frac{v_r}{d_r} \delta_{mr}.$$

Mit Hilfe dieser Gleichungen lassen sich die Einflußlinien für M_r und M_{r-1} schnell berechnen. Die Festpunkte können nach Abteilung I,

§ 14, mittels der Biegungslinien für $\ldots M_{r-1} = 1, M_r = 1, \ldots$ ermittelt werden. Ist L_r gegeben, so bestimmt die durch den Punkt r' gezogene Gerade $L'_rL'_{r+1}$ den Punkt L_{r+1} . Der Punkt L_1 der ersten Öffnung fällt mit dem Stützpunkte 0 zusammen. Verfasser gibt aber auch bei veränderlichem Balkenquerschnitte der rechnerischen Bestimmung der

Festpunkte den Vorzug. An die Stelle der Gleichung (6), Seite 116, tritt die Gleichung

(17) $\alpha_k M_{k-1} + \beta_k M_k + \alpha_{k+1} M_{k+1} = 0,$ und (7) ist zu ersetzen durch

$$\varkappa_{k+1} = rac{eta_k - rac{lpha_k}{arkappa_k}}{lpha_{k+1}}$$

ferner (8) durch

(19)

(18)

Die Biegungslinie für $M_r = 1$ (Fig. 130) liefert

 $\alpha_r = \tau_{(r-1)r}, \quad \beta_r = \tau_{rr} = \tau_{rr}' + \tau_{rr}'', \quad \alpha_{r+1} = \tau_{(r+1)r}.$

Bezeichnen wir, der Kürze wegen, mit δ_{mr} die EJ_c -fachen Durchbiegungen für den Belastungsfall $M_r = 1$, wo J_c ein beliebiges Trägheitsmoment ist, so erhalten wir die Belastungsfläche der δ_{mr} -Linie,

wenn wir die Momente mit J_{σ}/J multiplizieren. α_r , β_r , α_{r+1} sind die Widerstände der Stützen der beiden mit der $M \frac{J_{\sigma}}{J}$ -Fläche belasteten einfachen Balken (r-1) - r und r - (r+1).

Zahlenbeispiel. Balken auf 5 Stützen, Fig. 131. Die Spannweiten sind 16^m, 20^m, 20^m, 16^m. Die $M\frac{J_c}{J}$ -Fläche des Belastungszustandes $M_1 = 1$ ersetzen wir durch Einzellasten w_1, w_2, \ldots , die in gleichen Abständen $\lambda = 2,0^m$ angreifen und rechnen mit $\lambda = 1$. Dem fünften Teilpunkte der ersten Öffnung entspricht z. B. das Moment $\frac{5}{8}$; der Mittelwert J_c/J sei für das zugehörige Trägerstück λ gleich 1,42, wobei J_c das Trägheitsmoment des Querschnitts über der Mittelstütze bedeutet; es ergibt sich dann $w_5 = \frac{5}{8}, 1,42 = 0,89$.

Nach Berechnung der Gewichte w findet man

 $\alpha_1 = \frac{1}{8} (1,09 \cdot 1 + 1,00 \cdot 2 + 0,89 \cdot 3 + \ldots + 0,46 \cdot 7) = 2,420$ $\alpha_2 = \frac{1}{10} (1,04 \cdot 1 + 1,06 \cdot 2 + 1,01 \cdot 3 + \ldots + 0,12 \cdot 9) = 2,321.$

Für die erste Öffnung ist

$$\sum_{1}^{\prime} w = 5,54$$
 und $5,54 - 2,42 = 3,12$,

für die zweite Öffnung

 $\sum_{1}^{9} w = 6,15 \text{ und } 6,15 - 2,321 = 3,829.$ $\beta_1 = 3,120 + 3,829 + 1,000 = 7,95$

Demnach

 $\beta_0 = 2 \cdot 3,829 + 1,000 = 8,66.$

Die Berechnung der zu den w-Gewichten gehörigen Momentenlinien geschieht nun in bekannter Weise mit Hilfe der Querkräfte (Bd. I, § 50). Wir schreiben den vollständigen Ansatz für die erste Öffnung hin.

Fig. 131.

$a_1 = 2,42$	$\delta_{m_1} = 2,42$
-0,46	+1,96
1,96	$\delta_{m_2} = 4,38$
-0,63	+1,33
1,33	$\delta_{m_3} = 5,71$
-0,72	+0,61
0,61	$\delta_{m4} = 6,32$
-0,75	- 0,14
-0,14	$\delta_{m5} = 6,18$
-0,89	-1,03
- 1,03	$\delta_{m6} = 5,15$
-1,00	-2,03
-2,03	$\delta_{m_7} = 3,12$
-1,09	$-3,\!12$
-3,12	0

Das Trägerstück (1)—(2) der zweiten Öffnung ist symmetrisch in Bezug auf seine Mitte. Es ist dann für diese Öffnung die δ_{m_2} -Linie das Spiegelbild der δ_{m_1} -Linie.

Die Festpunkte L und R sind bestimmt durch: (Fig. 132)

$$x_{2} = \frac{\beta_{1}}{\alpha_{2}} = \frac{7.95}{2.32} = 3.43 \qquad a_{2} = \frac{20.0}{4.43} = 4.51^{m}$$

$$x_{3} = \frac{\beta_{2} - \frac{\alpha_{2}}{x_{2}}}{x_{3}} = \frac{8.66 - \frac{2.32}{3.43}}{2.32} = 3.44 \qquad a_{3} = \frac{20.0}{4.44} = 4.50^{m} = a_{2}'$$

$$x_{4} = \frac{7.95 - \frac{2.32}{3.44}}{2.42} = 3.01 \qquad a_{4} = \frac{16.0}{4.01} = 3.99^{m} = a_{1}'.$$

$$x_{4} = \frac{16.0^{m} - \frac{20^{m} - \frac{20$$

Fig. 132.

Nun ergibt sich für die erste Öffnung:

$$f_1 = a_1' \frac{l_1}{c_1} = 3,99 \frac{16,0}{12,01} = 5,32^m, \quad v_1 = 0,$$

für die zweite Öffnung:

$$f_2 = 4,50 \frac{15,49}{10,99} = 6,34^m, \quad k_2 = 4,51 \frac{15,50}{10,99} = 6,36^m,$$
$$v_2 = \frac{4,50 \cdot 4,51}{10,99} = 1,85^m.$$

Die Gleichungen (16) gehen mit $d_r = \alpha_r l_r$ über in*)

(20)
$$\begin{cases} M_{r} = \frac{-f_{r}\delta_{mr} + v_{r}\delta_{m(r-1)}}{\alpha_{r}l_{r}} \\ M_{r-1} = \frac{-k_{r}\delta_{m(r-1)} + v_{r}\delta_{mr}}{\alpha_{r}l_{r}}. \end{cases}$$

*) In der vierten Auflage (1907) der Abteilung 1 dieses Bandes sind die nachstehenden Formeln bereits zur Untersuchung eines Fachwerkbalkens auf mehreren Stützen benutzt worden (Seite 391-395).

We gen $l_1=8\,\lambda=8$ und $l_2=10\,\lambda=10$ (weil wir ja mit $\lambda=1$ gerechnet haben) ergibt sich

für die erste Öffnung:

$$M_1 = \frac{-5,32\,\delta_{m1}}{2,42\cdot 8} = -0,275\,\delta_{m1},$$

für die zweite Öffnung:

$$egin{aligned} M_1 &= rac{-6,36\,\delta_{m1}+1,85\,\delta_{m2}}{2,32\cdot 10} = -0,274\,\delta_{m1}+0,080\,\delta_{m2}\ M_2 &= rac{-6,34\,\delta_{m2}+1,85\,\delta_{m2}}{2,32\cdot 10} = -0,273\,\delta_{m2}+0,080\,\delta_{m1}. \end{aligned}$$

Die Ergebnisse der Rechnung sind in Fig. 133 zusammengestellt worden. Die Darstellung der Einflußlinien für die Momente der übrigen

Balkenquerschnitte geschieht jetzt nach dem in Abteilung I, § 14 angegebenen Verfahren. Für die Querkräfte gilt innerhalb der ersten Öffnung die Formel

$$Q = Q_o - \frac{M_1}{l_1}$$

und innerhalb der zweiten Öffnung die Formel

$$Q = Q_o + \frac{M_2 - M_1}{l_2}$$

Fig. 134 zeigt die Q-Fläche für das vierte Feld der ersten und das dritte Feld der zweiten Öffnung, und zwar ist nur der zur frag-

lichen Öffnung gehörige Teil der Q-Fläche dargestellt worden. Hinsichtlich der Untersuchung des Einflusses von Lasten, die außerhalb der fraglichen Öffnung liegen, verweisen wir auf Seite 44.

Fig. 134.

45. Formeln für den Wert N. In den vorstehenden Untersuchungen hatten wir vorwiegend die bei Brücken- und Deckenträgern vorkommenden Belastungsfälle im Auge, daher unser Bestreben, möglichst einfache Verfahren für die Darstellung der Einflußlinien aufzufinden. Trägt nun ein Balken von unveränderlichem Querschnitte eine unregelmäßige ständige Belastung (z. B. Säulen, Pfeiler, Wände, die durch Öffnungen für Türen und Fenster unterbrochen werden, u. s. w.), so empfiehlt es sich, die Werte N auszurechnen und die Clapeyronschen Gleichungen

$$M_{r-1}l_r + 2 M_r (l_r + l_{r+1}) + M_{r+1}l_{r+1} = N_r$$

aufzulösen oder aus den Werten N die Momente T zu berechnen und hierauf die Stützenmomente mittels des in Nr. 11 angegebenen Verfahrens zeichnerisch zu bestimmen. Wir stellen daher die Formeln für die am häufigsten vorkommenden Fälle übersichtlich zusammen. Die drei aufeinanderfolgenden Stützpunkte haben wir der Kürze wegen mit 1, 2, 3 bezeichnet. Es entspricht den Einzellasten in Fig. 135:

(21)
$$N_2 = \frac{P_1 \xi_1 (l_1^2 - \xi_1^2)}{l_1} + \frac{P_2 \xi_2 (l_2^2 - \xi_2^2)}{l_2}$$

der vollen gleichförmigen Belastung in Fig. 136:

(22)
$$N_2 = \frac{g_1 l_1^3}{4} + \frac{g_2 l_2^3}{4},$$

der teilweisen gleichförmigen Belastung in Fig. 137:

(23)
$$N_2 = \frac{p_1 \left(e_1^2 - d_1^2\right) \left(2l_1^2 - e_1^2 - d_1^2\right)}{4l_1} + \frac{p_2 \left(e_2^2 - d_2^2\right) \left(2l_2^2 - e_2^2 - d_2^2\right)}{4l_2}$$

und der Trapezbelastung in Fig. 138:

$$(24) N_2 = l_1^3 \left[\frac{z_1}{4} + \frac{2}{15} (z_2 - z_1) \right] + l_2^3 \left[\frac{z_3}{4} - \frac{2}{15} (z_3 - z_2) \right].$$

Die Formeln (21) und (22) erhält man aus Gleichung (8), Seite 36, indem man für die statischen Momente \mathfrak{L} und \mathfrak{R} der einfachen Momentenflächen deren Werte einsetzt; und die Formeln (23) und (24) gewinnt man durch Anwendung von (21) auf das Lastelement pdx bzw. zdx.

46. Einflußlinien für die Stützenwiderstände. Der Widerstand C_r der Stütze r ist gleich dem Unterschiede der Querkräfte für die beiden Querschnitte unmittelbar rechts und unmittelbar links von der Stütze r. Hiernach ist die C_r -Linie durch zwei Q-Linien bestimmt. Werden die Querkräfte nicht gebraucht, was bei vollwandigen Balken öfter vorkommt, so empfiehlt sich die folgende Darstellung der C_r -Linie; sie geht von der auf Seite 44 abgeleiteten Formel aus:

$$F_{r-1}$$

$$L_r$$

$$P$$

$$R_{r+1}$$

$$R_{r$$

$$C_r = C_{or} + \frac{M_{r-1} - M_r}{l_r} + \frac{M_{r+1} - M_r}{l_{r+1}}$$

Die Einflußlinie für Q_{or} besteht aus den beiden Geraden AC und CB. Liegt die Last zwischen (r-1) und r, so ist

$$M_{r+1} = -M_r \frac{a'_{r+1}}{b'_{r+1}},$$

und man findet dann, Fig. 139,

$$C_r = \eta_o + \eta' + \eta'',$$

wo

$$\eta' = \frac{M_{r-1} - M_r}{l_r}, \quad \eta'' = -\frac{M_r}{b'_{r+1}}.$$

Für eine zwischen r und r+1 liegende Last ist

$$\eta' = \frac{M_{r+1} - M_r}{l_{r+1}}, \quad \eta'' = -\frac{M_r}{b_r}$$

Für den Fall eines unveränderlichen Querschnitts wollen wir noch C_r als Funktion der Zahlen ω_D und ω_R darstellen und setzen für die Öffnung l_r , indem wir x von (r-1) aus zählen,

$$M_r = -f_r \omega_D + v_r (3 \omega_R - \omega_D)$$
$$M_{r-1} = -k_r (3 \omega_R - \omega_D) + v_r \omega_R$$

Die Gleichung

$$C_r = \eta_o + \frac{M_{r-1}}{l_r} - M_r \left(\frac{1}{l_r} + \frac{1}{b'_{r+1}}\right)$$

liefert dann

(25)
$$C_r = \frac{x}{l_r} + \left(\frac{a_r + a_r'}{c_r} + \frac{\mathscr{A}_r'}{b'_{r+1}}\right) \omega_D - 3\left(\frac{a_r}{c_r} + \frac{v_r}{b'_{r+1}}\right) \omega_B.$$

Ganz ebenso ergibt sich für eine über der Öffnung l_{r+1} ruhende Last, wenn x von (r+1) aus gezählt wird,

(26)
$$C_r = \frac{x}{l_{r+4}} + \left(\frac{a_{r+1} + a'_{r+1}}{c_{r+1}} + \frac{a'_{r+1}}{b_r}\right) \omega_D - 3\left(\frac{a'_{r+1}}{c_{r+1}} + \frac{v_{r+1}}{b_r}\right) \omega_B.$$

Wird die Öffnung l_{r+2} belastet, so ermitteln wir mit Hilfe des zu dieser Öffnung gehörenden Zweiges der M_{r+1} -Linie das Moment M_{r+1} , bestimmen sodann mittels der Festpunkte L_{r+1} und L_r die zugehörigen Momente M_r und M_{r-1} und erhalten mit den Bezeichnungen der Fig. 140

(27)
$$C_r = -(\operatorname{tg} \alpha' + \operatorname{tg} \alpha'').$$

Müller-Breslau, Graphische Statik. II. 2.

§ 11.

Vollwandige Träger auf starr mit ihnen verbundenen Säulen.

Wir beginnen mit Sonderfällen, die wir als Beispiele zu den in Nr. 34-37 vorgetragenen Untersuchungen behandeln.

47. Kragträger auf zwei Säulen mit Fußgelenken. Fig. 141. Es seien

Vollwandige Träger auf starr mit ihnen verbundenen Säulen. 131

Alle übrigen Bezeichnungen sind den Figuren zu entnehmen. Innerhalb der Strecke *l* sei der Balkenquerschnitt unveränderlich. Auch die Säulen seien zunächst prismatisch angenommen.

Die Stützenwiderstände seien nach lotrechter Richtung und nach der Richtung der Geraden AB zerlegt. Die lotrechten Seitenkräfte seien A und B, die schrägen Stützkräfte C und X_a sec β .

Solange nur lotrechte Lasten P wirken, ist

$$C = X_a \sec \beta.$$

Für die Ermittlung des Einflusses einer lotrechten Last P auf die Unbekannte X_a geben wir zwei Lösungen an.

Erste Lösung. Anwendung der Gleichungen (12) auf Seite 98. Es ist

 $X_a = \frac{\delta_{o\,a}}{\delta_{a\,a}} \cdot$

Den Belastungszustand $X_a = -1$ zeigt Fig. 142. In A und B greifen die in die Gerade AB fallenden beiden Kräfte 1 sec β an; sie mögen in die Seitenkräfte 1 und 1 tg β zerlegt werden. Die M_a -Fläche für das Balkenstück l ist ein Trapez, dessen Höhen an den Enden gleich $1 \cdot f_1$ und $1 \cdot f_2$ sind. Die M_a -Flächen für die Säulen sind Dreiecke von den Breiten $1 \cdot s_1$ und $1 \cdot s_2$. Weiter ist

Der Einfluß der Querkräfte soll hier und in allen Beispielen dieses § vernachlässigt werden.

9*

Zweiter Abschnitt. - § 11.

Für

$$\delta_{aa} = \int M_a^2 \frac{dx}{EJ} + \int N_a^2 \frac{dx}{EF}$$

erhält man mit Hilfe der Formel (23), Seite 101 den Wert

(1)
$$\delta_{aa} = \frac{l}{3EJ} (f_1^2 + f_1 f_2 + f_2^2) + \frac{s_1^3}{3EJ_1} + \frac{s_2^3}{3EJ_2} + \frac{l}{EF} + \frac{s_1 \operatorname{tg}^2 \beta}{EF_1} + \frac{s_2 \operatorname{tg}^2 \beta}{EF_2}.$$

Die M_0 -Fläche für den Zustand $X_a = 0$ stimmt mit der Momentenfläche eines einfachen Balkens AB überein; sie ist für eine zwischen A und B liegende Last P ein Dreieck von der Höhe $\frac{P\xi\xi'}{l}$, Fig. 141 b. Für den Balken ist $N_0 = 0$, für die linke Säule $N_0 = -\frac{P\xi'}{l}$, für die rechte Säule $N_0 = -\frac{P\xi}{l}$. Nach Gleichung (27), Seite 102, erhält man also (mit $f_1 - f_2 = a$)

(2)
$$EJ\delta_{0a} = \int M_0 M_a dx + J \int N_0 N_a \frac{dx}{F}$$

= $\frac{P\xi\xi'}{2} \left(f + \frac{a}{3} \frac{\xi''}{l} \right) - \left(\frac{\xi'}{l} s_1 \frac{J}{F_1} - \frac{\xi}{l} s_2 \frac{J}{F_2} \right) P \lg\beta.$

Liegt *P* auf einem der beiden Ausleger, z. B. auf dem linken, Fig. 141 c, so kommt nur der zur Balkenstrecke *l* gehörige Teil der M_0 -Fläche in Betracht, weil für die Ausleger $M_a = 0$ ist. Dieser Teil ist ein Dreieck von der Höhe — $P\xi$; für die Säulen ist $N_0 = -P \frac{l+\xi}{l}$ bzw. $N_0 = +P \frac{\xi}{l}$, und es ergibt sich mittels Gleichung (22), Seite 101, (3) $EJ\delta_{0a} = -P\xi (2f_1 + f_2) \frac{l}{6} - \left(\frac{l+\xi}{l}s_1 \frac{J}{F_1} + \frac{\xi}{l}s_2 \frac{J}{F_2}\right)P \operatorname{tg}\beta.$

Zahlenrechnungen zeigen nun, daß man in der Regel die von den Längskräften N herrührenden Glieder vernachlässigen, also $F = F_1 = F_2$ $= \infty$ setzen darf. Man findet dann für eine zwischen den beiden Säulen liegende Last den Wert

(4)
$$X_{a} = \frac{P\xi\xi'}{2l} \frac{3f + a\frac{\xi''}{l}}{f_{1}^{2} + f_{1}f_{2} + f_{2}^{2} + \frac{J}{J_{1}}\frac{s_{1}^{3}}{l} + \frac{J}{J_{2}}\frac{s_{2}^{3}}{l}}$$
und für eine auf dem linken Ausleger ruhende Last:

(5)
$$X_{a} = -\frac{P\xi}{2} \frac{2f_{1} + f_{2}}{f_{1}^{2} + f_{1}f_{2} + f_{2}^{2} + \frac{J}{J_{1}}\frac{s_{1}^{3}}{l} + \frac{J}{J_{2}}\frac{s_{2}^{3}}{l}}$$

Wird die Längeneinheit der Balkenstrecke l gleichmäßig mit g belastet, so ist die M_0 -Linie eine Parabel von der Pfeilhöhe $\frac{gl^2}{8}$, und es liefert dann die Formel (24), Seite 101, den Wert

$$EJ\delta_{0a} = \frac{2l}{3} \cdot \frac{gl^2f}{8} = \frac{gl^3f}{12} \cdot$$

Den Einfluß einer auf dem linken Ausleger ruhenden gleichförmigen Belastung g_1 findet man, indem man in Gleichung (3) den Wert $P\xi$ ersetzt durch $g_1 b_1 \frac{b_1}{3}$. Es entsteht

$$EJ\delta_{0a} = \frac{g_1 b_1^2 l}{12} (2f_1 + f_2).$$

Die gleichförmige Belastung (g_2) des Auslegers b_2 liefert

$$EJ\delta_{0a} = \frac{g_2 b_2^2 l}{12} (2f_2 + f_1).$$

Im ganzen ergibt sich also infolge der gleichförmigen Lasten

(6)
$$X_{a} = \frac{1}{4} \cdot \frac{gl^{2}f + g_{1}b_{1}^{2}(2f_{1} + f_{2}) + g_{2}b_{2}^{2}(2f_{2} + f_{1})}{f_{1}^{2} + f_{1}f_{2} + f_{2}^{2} + \frac{J}{J_{1}}\frac{s_{1}^{3}}{l} + \frac{J}{J_{2}}\frac{s_{2}^{3}}{l}}$$

Zweite Lösung. Aus den Gleichungen (1), Seite 90, folgt

$$X_a = P_m \frac{\delta_{ma}}{\delta_{aa}} \cdot$$

 δ_{ma} ist die Ordinate der zur M_a -Fläche gehörigen Biegungslinie. Da die Ausleger im Belastungsfalle $X_a = -1$ spannungslos sind, so sind ihre Biegungslinien gerade Linien, welche den gekrümmten Teil ACB der Biegungslinien in A und B berühren, Fig. 143. Bei diesem Verfahren läßt sich eine Veränderlichkeit des Querschnitts

leicht berücksichtigen. Wir verweisen auf § 2.

Es empfiehlt sich, die EJ_c -fachen Durchbiegungen δ_{ma} zu ermitteln, wo J_c ein beliebiges konstantes Trägheitsmoment ist. Den Wert $EJ_c \delta_{aa}$

bestimmt man am zweckmäßigsten durch Rechnung. Es genügt, die Summenformel

$$EJ_{o}\delta_{aa} = \Sigma M_{a}^{2} \frac{J_{c}}{J} \lambda + \Sigma N_{a}^{2} \frac{J_{c}}{F} \lambda$$

anzuwenden. λ bedeutet die Länge eines kleinen Stabstückes, dem die Mittelwerte M_a , N_a , J, F entsprechen. Die Summen erstrecken sich über den Balken und die Säulen. Das zweite Glied darf in der Regel vernachlässigt werden.

Es kommt vor, daß man wohl für den Balken ein konstantes Jeinführen darf, nicht aber für die sich nach unten mehr oder weniger stark verjüngenden Säulen. Der in die vorstehenden, für unveränderlichen Säulenquerschnitt abgeleiteten Formeln einzusetzende Wert J_1 ist dann bestimmt durch

(7)
$$\frac{1 \cdot s_1^3}{3J_1} = \int_0^{s_1} \frac{x^2 dx}{J} = \sum_0^{s_1} x^2 \frac{\lambda}{J},$$

wo J den veränderlichen Säulenquerschnitt bezeichnet. Ebenso verhält es sich mit J_2 .

Ist der Balkenquerschnitt innerhalb der Strecke l unveränderlich, so findet man $EJ\delta_{ma}$ als Biegungsmoment eines einfachen Balkens, dessen Belastungsfläche die M_a -Fläche ist. Es ergibt sich also

(8)
$$EJ\delta_{ma} = \omega_R \frac{f_1 l^2}{2} - \omega_D \frac{a l^2}{6} \cdot$$

Die Tangenten der Neigungswinkel γ_1 und γ_2 der geraden Biegungslinien der Ausleger sind gleich den Stützenwiderständen des mit der M_a -Fläche belasteten einfachen Balkens AB. Man findet

tg
$$\gamma_1 = (2f_1 + f_2) \frac{l}{6}$$

woraus sich für die Biegungslinie des linken Auslegers die Gleichung ergibt

$$EJ\delta_{ma} = -\xi (2f_1 + f_2)\frac{l}{6}$$

Einfluß einer wagerechten Kraft K, die im Abstande k von der Balkenachse angreift (Fig. 144). Wir nehmen wieder konstante Werte J, J_1, J_2 an und bestimmen den Einfluß von K auf den wagerechten Widerstand X_a der linken Stütze. Das statisch bestimmte Hauptsystem besitzt also bei A ein wagerechtes Gleitlager. Die lotrechten Stützenwiderstände sind gleich $\pm \frac{Kc}{l}$. Liegt der Angriffspunkt m von Kzwischen den beiden Säulen, so ist die M_0 -Fläche des Balkens der Unter-

schied eines Dreiecks von der Höhe Kc und eines Parallelogramms, dessen lotrecht gemessene Höhe gleich Kk ist. Diese Fläche liefert zu δ_{0a} den Beitrag

$$\int M_0 M_a dx = \frac{l}{6} Kc \left(2f_2 + f_1 \right) - Kkf' \xi'.$$

Das erste Glied dieses Ausdruckes folgt aus Formel (22), Seite 101; das zweite Glied ist gleich dem Produkte aus dem Momente Kk und dem Flächeninhalte des zugehörigen Teiles der M_a -Fläche. f' bedeutet die Ordinate der M_a -Linie an der Stelle $\frac{1}{2} \xi'$.

Der M_0 -Fläche der rechten Säule entspricht

$$\int M_0 M_a dx = \frac{K s_2^3}{3},$$

und man findet daher mit

 $f' = f_2 + \frac{a\xi'}{2l}$

Zweiter Abschnitt. — § 11.

für X_{α} den Wert

(9)
$$X_{a} = \frac{\delta_{0a}}{\delta_{aa}} = K \frac{c\left(f_{2} + \frac{f_{1}}{2}\right) - 3k\left(f_{2} + \frac{a}{2} \cdot \frac{\xi'}{l}\right) \frac{\xi'}{l} + \frac{s_{2}^{3}}{l} \cdot \frac{J}{J_{2}}}{f_{1}^{2} + f_{1}f_{2} + f_{2}^{2} + \frac{J}{J_{1}} \cdot \frac{s_{1}^{3}}{l} + \frac{J}{J_{2}} \cdot \frac{s_{2}^{3}}{l}}$$

Greift K in einem Punkte m' des rechten Auslegers an, so ist das Dreieck ABR die M_0 -Fläche des Stabes l. Das zweite Glied des Zählers des für X_a gewonnenen Ausdrucks ist dann zu streichen. Greift dagegen K im Punkte m'' des linken Auslegers an, so muß auf der ganzen Strecke l das Moment Kk in Abzug gebracht werden. In dem zweiten Gliede des Zählers der Formel ist dann $\xi' = l$ zu setzen.

Ist der Balkenquerschnitt veränderlich, so bestimme man den Einfluß von K mit Hilfe der allgemeinen Formel

Bedeutet dann, für den Belastungsfall $X_a = -1$, τ den Neigungswinkel der elastischen Linie an der Angriffsstelle der Last K, so ist die wagerechte Verschiebung des Angriffspunktes m infolge der Drehung des Querschnitts gleich $k\tau$ und hierzu tritt der Einfluß der Drehung und Verbiegung der Säule. Im ganzen entsteht mit den in Fig. 145 angegebenen Bezeichnungen

$$\begin{split} \delta_{ma} &= k\tau + f_2\gamma_2 + \delta'' \quad \text{und} \\ X_a &= K \frac{k\tau + f_2\gamma_2 + \delta''}{f_1\gamma_1 + f_2\gamma_2 + \delta' + \delta''} \end{split}$$

Der Nenner dieses Ausdruckes ist gleichbedeutend mit $\int M_a^2 \frac{dx}{E,I}$.

Einfluß von Temperaturänderungen. Infolge von Temperaturänderungen entsteht

$$X_{at} = \frac{\delta_{at}}{\delta_{aa}},$$

wo

$$\delta_{at} = \int N_a \varepsilon t_s dx + \int \frac{M_a}{h} \varepsilon \Delta t \, dx.$$

Es sei die mittlere Temperaturänderung für alle Punkte der Balkenachse

			TT - 1 - 1 - TO 11	
77	*7	"	Unterkante des Balkens	t_u
"	"	17	Oberkante " "	t_o
"	77	**	linken Säule	t_1
77	"	77	rechten Säule	t_2 .

Dann ergibt sich, da für den Balken $\int M_a dx = fl$ ist,

$$\delta_{at} = +1 \cdot \varepsilon t l + \operatorname{tg} \beta \cdot \varepsilon t_1 s_1 - \operatorname{tg} \beta \cdot \varepsilon t_2 s_2 + \varepsilon \left(t_u - t_o \right) \frac{f l}{h},$$

und bei unveränderlichem J_1

(10)
$$X_{at} = 3 \varepsilon E J \frac{t + \operatorname{tg} \beta \left(t_1 \frac{s_1}{l} - t_2 \frac{s_2}{l} \right) + (t_u - t_o) \frac{f}{h}}{f_1^2 + f_1 f_2 + f_2^2 + \frac{J}{J_1} \frac{s_1^3}{l} + \frac{J}{J_2} \frac{s_2^3}{l}}$$

Einflußlinien für die Kernpunktmomente des Balkens. Es liege eine Eisenbahnbrücke von der in Fig. 146 dargestellten Anordnung vor; sie besteht aus Tragwerken der soeben untersuchten Art, die miteinander

und mit den Endwiderlagern durch einfache Balken verbunden sind. Jeder dieser Koppelbalken besitzt an dem einen Ende ein festes, an dem anderen Ende ein in wagerechter Richtung bewegliches Auflager. Das eine der beiden Gelenke G_1 und G_2 muß also einen Spielraum erhalten, der eine wagerechte Verschiebung des Balkenstützpunktes gestattet.

Es genügt, den in Fig. 147 dargestellten Brückenabschnitt zu betrachten.

Die Einflußlinie für X_a sei in der angegebenen Weise ermittelt worden; es treten noch die den beiden Koppelbalken entsprechenden

137

t

Geraden I und II hinzu. Der in lotrechter Richtung gemessene Abstand des oberen Kernpunktes o des zu untersuchenden Balkenquerschnittes von der Geraden AB sei y_o . Dann ist das Angriffsmoment für den Kernpunkt o

$$M^o = M_0 - X_a y_o,$$

wo M_0 das Angriffsmoment für den Fall bedeutet, daß das Tragwerk infolge Nullwerdens von X_a in einen Gerberschen Balken übergeht. Wir führen, wie beim Zweigelenkbogen*), den Multiplikator $\mu = y_o$ ein und erhalten die in Fig. 147 dargestellte Einflußfläche für M^o .

Sind beide Säulen gleich hoch und gleich stark $(s_1 = s_2 = s, f_1 = f_2 = f, J_2 = J_1)$, so lautet die Gleichung der X_a -Linie für das Trägerstück AB

(11)
$$X_a = \frac{P \xi \xi'}{2 f l} \nu, \quad \text{wo}$$

(12)
$$v = \frac{1}{1 + \frac{2}{3} \frac{J}{J_1} \frac{s^3}{f^2 l}}$$

Diese Linie ist daher eine Parabel von der Pfeilhöhe

(13)
$$z = \frac{l}{8f} \gamma.$$

*) Vgl. Abteilung 1 § 7, Nr. 84 und § 10, Fig. 302.

Die geraden X_a -Linien für die Ausleger sind bestimmt durch die Strecken

(14)
$$\overline{G_1G_1'} = 2z \frac{b_1}{\frac{1}{2}l} = \frac{b_1}{2f} \vee, \quad \overline{G_2G_2'} = \frac{b_2}{2f} \vee$$

Für den Einfluß einer zwischen A und B am Balken angreifenden wagerechten Last K liefert Gleichung (9) den Wert

$$X_{a} = \frac{K}{2} \frac{c - 2k\frac{\xi'}{l} + \frac{2}{3}\frac{J}{J_{1}}\frac{s^{3}}{fl}}{f + \frac{2}{3}\frac{J}{J_{1}}\frac{s^{3}}{fl}}$$

und dieser läßt sich umformen in

(15)
$$X_{a} = \frac{K}{2} \left[1 + \frac{k}{f} \vee \left(1 - 2 \frac{\xi'}{l} \right) \right].$$

Greift K in irgend einem Punkte des rechten Auslegers an, so entsteht

(16)
$$X_a = \frac{K}{2} \left(1 + \frac{k}{f} \gamma \right),$$

wirkt K am linken Ausleger, so ergibt sich

(17)
$$X_a = \frac{K}{2} \left(1 - \frac{k}{f} \right) \cdot$$

Der Einfluß einer an einem Koppelträger angreifenden Last Kauf X_a hängt ab von der Höhenlage des Gelenkes. K wirke am rechten Koppelträger im Abstande e vom Gelenke G_2 . Dann übt der Koppelträger auf den Ausleger im Punkte G_2 einen wagerechten Druck Kund einen lotrechten, nach unten gerichteten Druck von der Größe $\frac{Ke}{l_2}$ aus. Es entsteht also — immer gleich hohe Säulen vorausgesetzt —

(18)
$$X_{a} = \frac{K}{2} \left(1 + \frac{k - e}{f} \right) + \frac{Ke}{2l_{2}} \frac{b_{2}}{f} \right)$$

Fallen die Kräfte K und die Gelenke G_1 und G_2 mit der Balkenachse zusammen (k = 0, e = 0), so entsteht

(19)
$$X_a = \frac{1}{2} K,$$

gleichgültig, ob K an einem Koppelträger, oder an einem Ausleger, oder zwischen A und B angreift.

Der Einfluß der Temperaturänderungen beträgt nach Gleichung (10):

(20)
$$X_{at} = \frac{\varepsilon E J}{f^2} \gamma \left(t + (t_u - t_o) \frac{f}{h} \right).$$

Zweiter Abschnitt. - § 11.

48. Wir wenden uns jetzt zu dem in Fig. 148 dargestellten Tragwerk; es unterscheidet sich von dem in Nr. 47, Fig. 147, untersuchten nur durch das am äußeren Ende des rechts gelegenen Koppelträgers angeordnete feste Auflager und ist zweifach statisch unbestimmt. Als neu hinzutretende statisch unbestimmte Größe führen wir den wagerechten Widerstand X_b des festen Endauflagers ein; er habe von dem Gelenke G_2 den Abstand e, und dieses von der Achse des Balkens AB den Abstand e'. Die Säulen seien gleich hoch und gleich stark. Das in Nr. 47 behandelte Tragwerk nehmen wir als statisch unbestimmtes Hauptsystem an. Den Widerstand des linken Säulengelenks bezeichnen wir jetzt mit H; er wird auf die Form gebracht

$$H = H_0 - H_b X_b.$$

Der Wert H_0 ist also gleichbedeutend mit dem in Nr. 47 ermittelten Werte X_a . Nun greift infolge von X_b im Gelenkpunkte G_2 am Ausleger BG_2 eine nach rechts gerichtete Kraft X_b und eine lotrechte, nach unten gerichtete Kraft $X_b \frac{e}{l_2}$ an, und es entsteht daher (bei unveränderlichem J)

$$H = H_0 - \frac{X_b}{2} \left(1 - \frac{e'}{f} v \right) - \frac{X_b e}{2 l_2} \frac{b_2}{f} v$$

$$A = A_0 - X_b \frac{d}{l} - X_b \frac{e}{l_2} \frac{b_2}{l}$$

$$B = B_0 + X_b \frac{d}{l} + X_b \frac{e}{l_2} \left(1 + \frac{b_2}{l} \right)$$

$$H' = X_b + H - \Sigma K,$$

wo d den Abstand des Gelenkes G_2 von der durch die Säulenfüße gelegten Geraden und H' den Widerstand des rechten Säulengelenkes

bedeutet. Der Verschiebungsplan für den Zustand $X_b = -1$ liefert

$$X_{b} = P_{m} \frac{\delta_{mb}}{\delta_{bb}}, \quad X_{bt} = \frac{\delta_{bt}}{\delta_{bb}},$$
$$\delta_{bb} = \int \frac{M_{b}^{2} dx}{EJ}, \quad \delta_{bt} = \int N_{b} \varepsilon t \, dx + \int \varepsilon \Delta t \, \frac{M_{b}}{h} \, dx.$$

Die weitere Untersuchung bietet, selbst für den Fall veränderlichen Querschnitts, keine Schwierigkeit; sie möge hier nur für den Fall e = e' = 0 und für unveränderliche Trägheitsmomente J und J_1^*) weiter durchgeführt werden. Es wird dann

(21)
$$\begin{cases} H = H_0 - \frac{1}{2} X_b, & H' = X_b + H - \Sigma K, \\ A = A_0 - X_b \frac{f}{l}, & B = B_o + X_b \frac{f}{l}, \end{cases}$$

und man erhält für $X_b = -1$ die in Fig. 149 dargestellten Momenten-flächen; sie liefern

$$EJ\,\delta_{bb} = \frac{f^2l}{12} + \frac{J}{J_1} \frac{s^3}{6}.$$

Zwischen A und B besteht also die Belastungslinie der X_b -Linie aus einer Geraden, deren Endordinaten

$$z = \pm \frac{\frac{1}{2}f}{\frac{1}{12}f^2l + \frac{J}{J_1}\frac{s^3}{6}} = \pm \frac{6f}{f^2l + 2\frac{J}{J_1}s^3}$$

sind. Die Gleichung der Xo-Linie ist demnach

$$\eta = + \omega_D \frac{z\left(\frac{l}{2}\right)^2}{6} = \omega_D \frac{zl^2}{24}.$$

Setzt man zur Abkürzung

(22)
$$\frac{1}{1+2\frac{J}{J_1}\frac{s^3}{f^2l}} = \gamma'$$

so ergibt sich

(23)
$$\eta = \omega_D \frac{l}{4f} \nu',$$

*) Bei veränderlichem Säulenquerschnitt ist J_1 mittels Gleichung (7), Seite 134, zu berechnen.

wobei die Abszissen (x'') von der Trägermitte aus zu zählen sind. Da $\overline{CB} = 0.5l$ ist, so ist natürlich

$$\omega_{\scriptscriptstyle D} = \frac{x^{\prime\prime}}{0,5\,l} - \left(\frac{x^{\prime\prime}}{0,5\,l}\right)^3 \cdot$$

Die zu den Auslegern und den Koppelträgern gehörenden geraden X_b -Linien sind bestimmt durch

 $\eta_1 = b_1 \gamma, \quad \eta_2 = b_2 \gamma.$

Der Winkel γ läßt sich deuten als der Widerstand der Stütze *B* eines einfachen Balkens *CB*, dessen Belastungsfläche das Dreieck *I* ist. Man erhält $\gamma = \frac{1}{6} zl$ und

(24)
$$\eta_1 = \frac{b_1}{f} \nu', \quad \eta_2 = \frac{b_2}{f} \nu'.$$

Um den Einfluß wagerechter Lasten K zu bestimmen, brauchen wir nur die wagerechten Verschiebungen δ_{mb} ihrer Angriffspunkte m infolge $X_b = -1$ zu bestimmen und die Formel

$$X_b = K \frac{\delta_{mb}}{\delta_{bb}}$$

anzuwenden. Da nun sämtliche Punkte der Balkenachse (deren Längenänderung wir ja vernachlässigen) sich in wagerechter Richtung um δ_{bb}

verschieben, so erzeugt jede mit der Balkenachse zusammenfallende Last K:

(25) $X_b = K$

gleichgültig, ob sie zwischen A und B, oder an einem Ausleger oder an einem Koppelträger angreift.

Liegt der Angriffspunkt m von K oberhalb der Balkenachse im Abstande k von dieser Achse, und bedeutet τ den Neigungswinkel der elastischen Linie des Zustandes $X_b = -1$, so dreht sich der Querschnitt, dem m angehört, um den Winkel τ , und es entsteht

(26)
$$\delta_{mb} = \delta_{bb} - k\tau, \quad X_b = K \left(1 - \frac{k\tau}{\delta_{bb}} \right),$$

wenn festgesetzt wird, daß die Durchbiegungen nach unten, die Abszissen nach rechts positiv gerechnet werden und die positive Richtung von Kmit der Richtung von $X_b = -1$ übereinstimmt.

Da wir nun die X_b -Linie aus der Biegungslinie für $X_b = -1$ fanden, indem wir deren Ordinaten durch δ_{bb} dividierten, so dürfen wir auch schreiben:

(27)
$$X_b = K \left(1 - k \frac{d\eta}{dx} \right).$$

Liegt also m zwischen A und B im Abstande x'' von der Mitte, so ist zu setzen

$$rac{d\eta}{dx} = rac{l\nu'}{4f} rac{d\omega_D}{dx''},$$

und man erhält

(28)
$$X_{b} = K \left[1 + \frac{kv'}{2f} \left(12 \frac{x''^{2}}{l^{2}} - 1 \right) \right].$$

Gehört der Punkt m dem rechten oder linken Ausleger an, so ist $\frac{v'}{f}$ und dn

(29)
$$X_b = K \left[1 + \frac{k}{f} \nu' \right].$$

Für den linken oder rechten Koppelträger wird $\frac{d\eta}{dx} = \frac{\eta_1}{l_1} = \frac{b_1}{l_1} \frac{\nu'}{f}$,

bzw. = $\frac{b_2}{l_2} \frac{\nu'}{f}$, und man erhält daher

(30)
$$X_b = K \left[1 - \frac{b_1}{l_1} \frac{k}{f} \nu' \right], \text{ bzw. } X_b = K \left[1 + \frac{b_2}{l_2} \frac{k}{f} \nu' \right].$$

Es ist noch der Einfluß der auf Seite 137 bezeichneten Temperaturänderungen zu bestimmen. Der Inhalt der Mo-Fläche des Balkens ist

Null; ein Temperaturunterschied $\Delta t = t_u - t_o$ hat daher keinen Einfluß auf X_b . Die Längskraft N_b ist für die linke Säule $= -\frac{d}{l}$, für die rechte $= +\frac{d}{l}$; gleichmäßige und gleichgroße Erwärmung beider Säulen $(t_1 = t_2)$ ist mithin ebenfalls ohne Einfluß auf X_b . Für das Balkenstück $l + b_2 + l_2$ ist $N_b = -1$; es ergibt sich also

$$b_{bt} = \int N_b \varepsilon t dx = -\varepsilon t (l + b_2 + l_2),$$

und

(31)
$$X_{bt} = \frac{EJ\delta_{bt}}{EJ\delta_{bb}} = -\frac{12\varepsilon EJt\left(l+b_2+l_2\right)\nu'}{f^2l}$$

Die Ermittlung der im Balken entstehenden Spannungen σ wird etwas vereinfacht, wenn man nicht von den Kernpunktmomenten M° und M^{*} ausgeht, sondern die Formel

$$\sigma = \pm \frac{M}{W} + \frac{N}{F}$$

benutzt und, zugunsten der Sicherheit des Bauwerks, jedes der beiden Glieder für sich zu einem Maximum macht. Es ist N = -H für einen Balkenquerschnitt der Strecke AB und $N = +X_b$ für einen Querschnitt rechts von B. Links von A ist N = 0. Den zur Darstellung der M-Linien einzuschlagenden Weg wollen wir durch ein Zahlenbeispiel erläutern.

Es sei

da

$$l = 16^{m}, \ h = 1,4^{m}, \ f = 6,0^{m}, \ b_{1} = b_{2} = b = 3,0^{m}, \ s = f - \frac{n}{2} = 5,3^{m}$$
$$\frac{J}{J_{1}} = 8,0, \quad \frac{J}{J_{1}} \frac{s^{3}}{f^{2}l} = 2,1,$$

also nach Gleichung (12) und Gleichung (22)

$$v = \frac{1}{2,4}, \quad v' = \frac{1}{5,2}.$$

Wir beginnen mit der X_bf-Linie; ihre Gleichung lautet

$$\eta = \omega_D \frac{l}{4} \nu' = \omega_D \frac{4,0}{5,2} = 0,769 \,\omega_D.$$

Die Abszissen (x'') sind von der Mitte aus zu zählen. Man findet in der Tabelle auf Seite 105:

für $\frac{x}{\frac{1}{2}l} =$	0,2	0,4	0,6	0,8
$\omega_D =$	0,192 .	0,336	0,384	0,288;
wher ist $\eta =$	0,148	0,258	0,295	0,221.

Den Gelenkpunkten G_1 und G_2 entspricht

$$\eta = \pm b \nu' = \pm \frac{3.0}{5.2} = \pm 0.577.$$

Aus der in Fig. 150a dargestellten X_bf -Linie erhält man die in Fig. 150b abgebildete Einflußlinie für Hf mittels der Gleichung

$$Hf = H_o f - \frac{1}{2} X_b f,$$

Die Hof-Linie der Strecke AB ist eine Parabel von der Pfeilhöhe

$$\frac{l}{8} v = \frac{16}{8 \cdot 2, 4} = 0,833,$$

sie ist in Fig. 150b durch eine gestrichelte Linie angegeben worden. Für die Gelenkpunkte ist $H_o f = -\frac{1}{2}b\gamma = -\frac{1,5}{2,4} = -0.625$. Daher erhält man für den rechten Gelenkpunkt

$$Hf = -0.625 + \frac{1}{2} \ 0.577 = -0.337$$

und für den linken Gelenkpunkt

$$Hf = -0.625 - \frac{1}{2} \ 0.577 = -0.913.$$

Die H'f-Linie ist das Spiegelbild der $H \cdot f$ -Linie.

Fig. 150c zeigt die Einflußlinie für

$$A = A_o - X_b \frac{f}{l} \cdot$$

Die gestrichelte Linie ist die A.-Linie. Die B-Linie ist das Spiegelbild der A-Linie. Durch diese beiden Linien sind die Einflußlinien für die Querkräfte der Strecke AB gegeben. Solange sich die Lasteinheit rechts vom Querschnitte befindet, ist Q = +A; liegt sie links vom Querschnitte, so entsteht Q = -B.

Das Biegungsmoment für einen Querschnitt im Abstande x von A ist

$$M = M_o - Hf - X_b \frac{f}{l} x,$$

wo Me das Biegungsmoment für den Querschnitt eines Gerberschen Balkens bedeutet, der nicht starr mit den Säulen verbunden ist. Die Einflußfläche für das Glied $M_o - Hf$ zeigt Fig. 150d; ihre Ordinaten 10

Müller-Breslau, Graphische Statik. II. 2.

Zweiter Abschnitt. - § 11.

wurden (in größerem Maßstabe) in Fig. 151 von einer wagerechten Achse aus aufgetragen, und von der so erhaltenen gestrichelten Linie wurde die $X_b \frac{f}{l} x$ -Linie in Abzug gebracht. Für die Gelenkpunkte erhält man die Werte:

bei
$$G_2$$
: $M = -b \frac{x}{l} + 0,337 + 0,577 \frac{x}{l} = -0,390$,
bei G_1 : $M = -b \frac{x'}{l} + 0,913 - 0,577 \frac{x}{l} = -1,360$.

Für den Balkenquerschnitt unmittelbar rechts neben der Säule AA(x = 0) stimmt die *M*-Linie rechts von *A* mit der *Hf*-Linie überein. Im Punkte G_1 hat sie die Ordinate — b + 0.913 = -2.087.

Für die Querschnitte des Auslegers werden die Momente und Querkräfte genau in derselben Weise bestimmt wie beim gewöhnlichen Gerber-Balken. Die Koppelträger verhalten sich wie einfache Balken. Nur ist zu beachten, daß das Balkenstück BC durch X_b auf Zug und Druck beansprucht wird.

49. Werden zwei Tragwerke von der in Nr. 47 untersuchten Art durch ein Gelenk G miteinander verbunden, Fig. 152, so entsteht ein vierfach statisch unbestimmtes System. Als neue statisch unbestimmte Größen treten zu den in Nr. 47 untersuchten Horizontalschüben der beiden einzelnen Tragwerke die Seitenkräfte X_b und X_c des Gelenkdruckes. Es sei X_b positiv angenommen, sobald es die in G zusammenhängenden Kragarme auf Zug beansprucht. X_c sei positiv, wenn es auf den links von G liegenden Kragarm von unten nach oben wirkt. Ist die Lotrechte durch G eine Symmetrieachse, so ist $\delta_{bc} = \delta_{cb} = 0$, und man erhält

$$X_{b} = \frac{\sum P_{m} \delta_{mb}}{\delta_{bb}} + \frac{\delta_{bt}}{\delta_{bb}},$$
$$X_{c} = \frac{\sum P_{m} \delta_{mc}}{\delta_{cc}} + \frac{\delta_{ct}}{\delta_{cc}}.$$

Man vergleiche die ähnlichen Untersuchungen in Abteilung I, Nr. 164 und 166.

Das Gelenk G liege in der Achse des Balkens. Es sei

- J das überall gleiche Trägheitsmoment des Querschnittes der Balken AB und B'A'.
- J_2 desgleichen der Ausleger BG,

 J_1 " " Säulen*).

Der Belastungszustand $X_b = -1$ stimmt mit dem in Nr. 48 behandelten Zustande $X_b = -1$ überein. Nur ist zu beachten, daß das Hauptsystem jetzt aus zwei Tragwerken der vorhin betrachteten Art besteht. Es ist also δ_{bb} doppelt so groß wie vorhin, und man erhält daher für die in Fig. 153 dargestellte X_b -Linie die Gleichungen:

(32)
$$\eta = \omega_D \frac{l}{8f} \nu', \quad \eta_1 = \frac{b_1}{2f} \nu', \quad \eta_2 = \frac{b}{2f} \nu', \text{ wo}$$

 $\nu' = \frac{1}{1 + 2 \frac{J}{J_1} \frac{s^3}{f^2 l}}.$

Um den Einfluß wagerechter Lasten K zu ermitteln, beachte man, daß sich die links von G gelegenen Punkte der Balkenachse um $\frac{1}{2} \delta_{bb}$ nach links, die rechts gelegenen Punkte um $\frac{1}{2} \delta_{bb}$ nach rechts ver-

^{*)} Hinsichtlich der Ermittlung des Wertes J_1 für eine nach unten sich verjüngende Säule verweisen wir auf Seite 134, Gleichung (7).

schieben. Für die linke Hälfte des Tragwerks gehen also die auf Seite 143 abgeleiteten Gleichungen (26) und (27) über in

(33)
$$\delta_{mb} = \frac{1}{2} \delta_{bb} - k\tau, \quad X_b = \frac{K}{2} \left(1 - \frac{2k\tau}{\delta_{bb}} \right)$$

(34)
$$X_b = \frac{K}{2} \left(1 - 2k \frac{d\eta}{dx} \right)$$

Liegt K zwischen A und B, so ist

(35)
$$X_{b} = \frac{K}{2} \left[1 + \frac{k\nu'}{2f} \left(12 \frac{x''^{2}}{l^{2}} - 1 \right) \right].$$

Greift K an einem der Ausleger BG oder G_1A an, so folgt:

(36)
$$X_b = \frac{K}{2} \left(1 + \frac{k\nu'}{f} \right).$$

Einer am Koppelträger CG_1 wirkenden Last entspricht

(37)
$$X_{b} = \frac{K}{2} \left(1 - \frac{b_{1}}{l_{1}} \frac{k}{f} \nu' \right)$$

Ist k = 0, so wird $X_b = \frac{1}{2} K$. Greift K an der rechten Hälfte des Tragwerks an, so ändert sich nur das Vorzeichen von X_b .

Den Belastungszustand $X_c = -1$ zeigt Fig. 154. An den Säulenfüßen werden nach Gleichung (14), Seite 139, die wagerechten Widerstände $\frac{bv}{2f}$ hervorgerufen. Die Momentenfläche des links von G liegenden Balkens AB besteht aus einem Dreieck von der Höhe — b und einem Rechteck von der Höhe $\frac{1}{2}bv$, wo v die durch Gleichung (12) bestimmte Zahl bedeutet. Die Momentenfläche des zugehörigen Aus-

legers BG ist ein Dreieck von der Höhe — b. Die Momentendreiecke der Säulen haben die Höhe $+\frac{bs}{2f}$ ». Für das Tragwerk rechts von Ggelten dieselben Flächen, nur mit entgegengesetzten Vorzeichen. Man findet für die beiden Balken AB:

$$EJ\delta_{cc} = \int M_c^2 dx = 2 \cdot \frac{l}{3} \left[\frac{b^2 \, v^2}{4} + \frac{b \, v}{2} \left(\frac{b \, v}{2} - b \right) + \left(\frac{b \, v}{2} - b \right)^2 \right],$$

für die beiden Ausleger BG:

$$EJ\delta_{cc}=2\cdot\frac{b}{3}b^2\frac{J}{J_2},$$

für die vier Säulen:

$$EJ\delta_{cc} = 4 \frac{s}{3} \frac{b^2 s^2 y^2}{4 f^2} \frac{J}{J_1},$$

im ganzen also:

(38) $EJ\delta_{cc} = \frac{b^2 l}{6} [1 + 3\nu(\nu - 3)] + \frac{2}{3}b^3 \frac{J}{J_2} + \frac{b^2 s^3 \nu^2}{3f^2} \frac{J}{J_2}.$

Die Belastungsfläche der X_c -Linie ist gegeben durch die Werte

$$z_1 = \frac{b}{EJ\delta_{cc}}, \quad z_2 = \frac{0.5 \, b \nu}{EJ\delta_{cc}}.$$

Man erhält

(39)
$$z_1 = \frac{-6}{bl\rho}, \quad z_2 = \frac{+3\nu}{bl\rho}, \text{ wo}$$

(40)
$$\rho = 1 + 3\nu(\nu - 3) + 4 \frac{b}{l} \frac{J}{J_2} + 2 \frac{s^3}{f^2 l} \nu \frac{J}{J_1}$$
 und
 $\nu = \frac{1}{1 + \frac{2}{3} \frac{J}{J_1} \frac{s^3}{f^2 l}}$.

Für eine in G angreifende Last 1 muß sich $X_c = \frac{1}{2}$ ergeben. Daraus folgt für die X_c -Linie des Auslegers BG die Gleichung

(41)
$$\eta = 0.5 \frac{x'}{b} + \omega_D \frac{z_1 b^2}{6} = 0.5 \frac{x'}{b} - \omega_D \frac{b}{l \rho}$$

Für den Balken AB gilt

(42)
$$\eta = \omega_D \frac{z_1 l^2}{6} + \omega_R \frac{z_2 l^2}{2} = -\omega_D \frac{l}{b\rho} + \omega_R \frac{3 l \nu}{2 b \rho}$$

Der Neigungswinkel γ der X_e -Linie im Punkte A ist (nach oben positiv gerechnet)

$$\gamma = \frac{6}{bl\rho} \cdot \frac{l}{2} \cdot \frac{1}{3} - \frac{3\nu}{bl\rho} l \cdot \frac{1}{2} = \frac{2 - 3\nu}{2b\rho}$$

Im Gelenkpunkte G_1 hat also die X_c -Linie die Ordinate

(43)
$$\eta_1 = \frac{2-3\nu}{2\rho} \cdot \frac{b_1}{b}$$

Ist $3\nu > 2$, so ist η_1 negativ. Die X_c -Linie besitzt dann zwischen A und B einen Nullpunkt.

Die wagerechte Verschiebung der Punkte der Balkenachse ist $\delta_{cb} = 0$. Der Einfluß wagerechter Lasten K ist also (vgl. Seite 143)

(44)
$$X_{c} = -\frac{Kk\tau}{\delta_{cc}} = -Kk\frac{d\eta}{dx}.$$

Hiernach ergibt sich für eine zwischen A und B angreifende Last K:

(45)
$$X_c = \frac{Kk}{b\rho} \left[1 - 3 \frac{x^2}{l^2} - 1.5 \nu \left(1 - 2 \frac{x}{l} \right) \right],$$

für eine Last K am Ausleger BG:

(46)
$$X_c = -\frac{Kk}{b} \left[\frac{1}{2} + \frac{b}{l\rho} \left(1 - 3 \frac{x^2}{b^2} \right) \right],$$

für eine Last K am Ausleger G_1A :

(47)
$$X_{c} = \frac{Kk(2-3\gamma)}{2b\varphi},$$

für eine Last K am Koppelträger CG_1 :

(48)
$$X_{c} = -\frac{Kk(2-3\nu)}{2b\rho} \cdot \frac{b_{1}}{l_{1}} \cdot$$

Vorzeichenfehler sind ausgeschlossen, wenn man die Gestalt der Biegungslinie für den Zustand $X_b = -1$ betrachtet. In dem in Fig. 153 angenommenen Falle 2 > 3v erfährt z. B. der Koppelträger CG_1 eine Rechtsdrehung; die oberhalb der Balkenachse liegenden Punkte m verschieben sich nach rechts; folglich müssen links gerichtete Kräfte K ein negatives X_c hervorbringen.

Einfluß von Temperaturänderungen auf X_b . In der Formel (31), Seite 144, ist 2 (l+b) an Stelle von $l+b_2+l_2$ zu setzen. δ_{bb} ist jetzt doppelt so groß als in Nr. 48. Man erhält daher

(49)
$$X_{bt} = -\frac{12 \varepsilon EJt \left(l+b\right) \nu'}{f^2 l}$$

Da wir annehmen, daß links und rechts vom Gelenke G dieselben Temperaturänderungen entstehen, so ergibt sich $X_{et} = 0$.

Die Berechnung von X_b und X_c ist hiermit erledigt. Für die an den Säulenfüßen angreifenden Stützenwiderstände findet man jetzt

(50)
$$\begin{cases} A = A_{o} - \frac{f}{l} X_{b} - \frac{b}{l} X_{c} \\ B = B_{o} + \frac{f}{l} X_{b} - \left(1 + \frac{b}{l}\right) X_{c} \\ H = H_{o}^{*}\right) - \frac{1}{2} X_{b} - \frac{bv}{2f} X_{c}. \end{cases}$$

Das Angriffsmoment für einen Querschnitt des Balkens AB ist beispielsweise

(51)
$$M = M_o - H_o f + \frac{1}{2} X_b f + X_c \frac{bv}{2},$$

wo M_o das Moment für den Fall bedeutet, daß $H_0 = 0$, $X_b = 0$, $X_c = 0$ ist. Die Ermittlung der Einflußlinien bietet keine Schwierigkeit.

50. Dreifach statisch unbestimmter Gelenkbalken, Fig. 155. Der Balken ruht auf drei Säulen und besitzt an den Enden wagerechte Gleitlager. Als statisch unbestimmtes Hauptsystem wird wieder das in Nr. 47 untersuchte Tragwerk eingeführt. Es ist also H_o gleichbedeutend mit dem in Nr. 47 berechneten Werte X_a ; nur ist zu beachten, daß die Stützweite des Hauptsystems nunmehr 2l statt l ist. Als statisch unbestimmte Größen führen wir die am Fuße der mittelsten Säule angreifenden Stützenwiderstände X_b und X_o ein. Der statisch unbestimmte

^{*)} H_o ist gleichbedeutend mit dem in Nr. 47 ermittelten Werte X_a .

Teil des Tragwerks sei symmetrisch in bezug auf die Achse der mittelsten Dann ist Säule.

$$\delta_{bc} = \delta_{cb} = 0,$$

und es ergibt sich

$$X_{b} = \frac{\sum P_{m} \delta_{mb} + \delta_{bt}}{\delta_{bb}}, \quad X_{c} = \frac{\sum P_{m} \delta_{mc} + \delta_{ct}}{\delta_{cc}} \cdot$$

Wir nehmen konstante Querschnitte J und J_1 an.

Fig. 156 zeigt den Belastungszustand $X_b = -1$. Es entsteht nach Gleichung (11), Seite 138:

(52)
$$H_b = \frac{l \nu''^*}{4f}, \text{ wo}$$

(53)
$$\gamma'' = \frac{1}{1 + \frac{1}{3} \frac{J}{J_1} \frac{s^3}{f^2 l}}$$

Die Mo-Fläche des Balkens besteht aus einem Dreieck von der Höhe 0,5*l* und einem Rechteck von der Höhe — $\frac{1}{4} v''l$. Die M_b -Fläche jeder äußeren Säule ist ein Dreieck von der Höhe — $\frac{1}{4} v'' l$. Man erhält nach Gleichung (23), Seite 101

$$EJ\delta_{bb} = 2 \cdot \frac{l}{3} \left[\frac{l^2 v''^2}{16} - \frac{l v''}{4} \left(0,5 \, l - \frac{l v''}{4} \right) + \left(0,5 \, l - \frac{l v''}{4} \right)^2 \right] + 2 \frac{J}{J_1} \frac{s^3}{3} \cdot$$

*) Man hat $\xi = \xi' = l$ zu setzen und im Nenner statt l die Stützweite 2leinzuführen.

Setzt man zur Abkürzung

(54) $\rho' = 1 - \frac{3}{2} \gamma + \frac{3}{4} \gamma^2 + 4 \frac{J}{J_1} \frac{s^3}{l^3},$

so ergibt sich

(55)
$$EJ\delta_{bb} = \frac{l^3\rho'}{6}.$$

Da nun die X_b -Linie im Punkte C die Ordinate 1 hat, so lautet die Gleichung des Zweiges AC' dieser Linie

$$\eta = 1,0 \frac{x}{l} + \omega_D \frac{0,5l \cdot l^2}{6EJ\delta_{bb}} - \omega_R \frac{0,25l \cdot \gamma'' \cdot l^2}{2EJ\delta_{bb}},$$

(6)
$$\eta = 1,0 \frac{x}{l} + \frac{\omega_D}{2\rho'} - \frac{3\omega_R}{4\rho'}.$$

Der Neigungswinkel der Tangente ist bestimmt durch

(57)
$$\frac{d\eta}{dx} = \frac{1.0}{l} + \frac{1}{2l\rho'} \left(1 - 3\frac{x^2}{l^2}\right) - \frac{3}{4l\rho'} \left(1 - 2\frac{x}{l}\right).$$

Für x = 0 erhält man die Neigung*)

(58)
$$\gamma = \frac{1}{l} \left(1 + \frac{1}{2\rho'} - \frac{3}{4\rho'} \right),$$

und es entsprechen daher den Gelenkpunkten G_1 und G_2 die Ordinaten (59) $\eta_1 = -b_1\gamma, \quad \eta_2 = -b_2\gamma.$

*) Wir fassen die X_b -Linie als eine in sehr großem Maßstabe gezeichnete Biegungslinie auf und schreiben daher kurz γ statt tg γ .

(5

Im Belastungsfalle $X_b = -1$ ist die wagerechte Verschiebung sämtlicher Punkte der Achse des Balkens gleich Null. Der Einfluß einer im Abstande x von A in der Höhe k oberhalb der Balkenachse angreifenden wagerechten Last K ist deshalb

(60)
$$X_b = -Kk \frac{d\eta}{dx} \cdot$$

Greift K an einem Ausleger an, so erzeugt es

(61)
$$X_b = \pm K k \gamma,$$

und zwar gilt das obere Vorzeichen für den Ausleger b_2 , das untere für b₁.

Die Koppelträger drehen sich um

$$\gamma_1 = \frac{b_1}{l_1} \gamma$$
, bzw. $\gamma_2 = \frac{b_2}{l_2} \gamma$.

Eine am linken oder rechten Koppelträger angreifende Last K erzeugt demnach

(62)
$$X_b = + Kk\gamma \frac{b_1}{l_1}, \text{ bzw. } X_b = - Kk\gamma \frac{b_2}{l_2}.$$

Hinsichtlich der Temperaturänderungen machen wir wieder die auf Seite 137 erklärten Annahmen. Der Inhalt der Mo-Fläche des Balkens ist

$$\int M_b dx = \frac{1}{2} l^2 (1 - v'').$$

Weiter ist für den Balken AB

$$N_b = -H_b = -\frac{lv''}{4f}$$

Gleichmäßige Erwärmung der Säulen ist ohne Einfluß auf X_b , weil für die drei Säulen zusammen $\Sigma N_b = 0$ ist.

Man erhält mit $t_u - t_o = \Delta t$

$$\delta_{bt} = \int M_b \frac{\varepsilon \Delta t}{h} dx + \int N_b \varepsilon t dx = \frac{\varepsilon \Delta t l^2}{2h} (1 - \gamma'') - \varepsilon t \frac{l^2 \gamma''}{4f},$$

$$X_b = \frac{EJ \delta_{bt}}{EJ \delta_{bb}},$$

$$K_b = \frac{3 \varepsilon EJ \varphi'}{fl} \left[\Delta t \frac{f}{h} (1 - \gamma'') - t \gamma'' \right].$$

Wir wenden uns jetzt zur Ermittlung von Xc. Den Belastungszustand $X_c = -1$ zeigt Fig. 157. Die M_c -Fläche des Balkens besteht aus zwei Rechtecken von der Höhe $\mp 0.5f$; für die Säulen erhält man Dreiecke von den Höhen $\mp 0.5s$ und + 1.0s. Folglich ist

Zweiter Abschnitt. - § 11.

$$EJ\delta_{ee} = 2 \cdot (0,5f)^{2}l + \left(\frac{s^{3}}{3} + \frac{2(0,5s)^{2}s}{3}\right)\frac{J}{J_{1}},$$

$$EJ\delta_{ee} = \frac{f^{2}l}{2}\varphi'', \text{ wo}$$

(65)
$$\rho'' = 1 + 3 \frac{J}{J_1} \frac{s^3}{f^2 l}.$$

Die Gleichung der Xo-Linie des Balkens AB ist

(66)
$$\begin{cases} \eta = \mp \omega_{R} \frac{0.5 f l^{2}}{2 E J \delta_{cc}}, \\ \eta = \mp \omega_{R} \frac{l}{2 f \rho''}. \end{cases}$$

Das obere Vorzeichen gilt für den Teil AC, das untere für den Teil CB. Die X_c -Linie besteht aus zwei Parabeln von den Pfeilhöhen $\mp \frac{l}{8f\varrho''}$. Die Neigungswinkel der Parabeltangenten in A und B sind ohne Vorzeichen genommen

$$\gamma' = \frac{1}{2f\varrho''},$$

und man findet daher

(67)
$$\eta_1 = + b_1 \gamma' = \frac{b_1}{2f \rho''}, \quad \eta_2 = -\frac{b_2}{2f \rho''}.$$

Um den Einfluß wagerechter Lasten K festzustellen, müssen wir zunächst das Verhältnis γ''' der wagerechten Verschiebung der Balken-

156

(6

achse für den Belastungsfall $X_c = -1$ zur Verschiebung δ_{cc} angeben. Indem wir die X_c -Linie als Biegungslinie auffassen, finden wir (Fig. 158)

$$\gamma^{\prime\prime\prime} = f\gamma^{\prime} + \frac{0.5 s^3 J}{3 J_1 E J \delta_{cc}}, \text{ das ist}$$

(68)
$$\gamma''' = \frac{1}{2\rho''} \left(1 + \frac{2}{3} \frac{J}{J_1} \frac{s^3}{f^2 l} \right) = \frac{1}{2\rho'' \gamma}$$

(69)
$$X_{e} = K\left(\gamma^{\prime\prime\prime} - k \frac{d\eta}{dx}\right)$$

also für eine Last zwischen C und B im Abstande x von C:

(70)
$$X_{e} = K \gamma^{\prime\prime\prime} \left[1 - \frac{k \gamma}{f} \left(1 - \frac{2x}{l} \right) \right],$$

für eine Last zwischen A und B im Abstande x von A:

(71)
$$X_{c} = K \gamma^{\prime\prime\prime} \left[1 + \frac{k \gamma}{f} \left(1 - \frac{2x}{l} \right) \right],$$

für eine Last auf dem linken oder rechten Ausleger:

(72)
$$X_{c} = K v^{\prime\prime\prime} \left(1 + \frac{k v}{f}\right),$$

für eine Last auf dem linken oder rechten Koppelbalken:

(73)
$$X_{e} = K \nu''' \left(1 - \frac{k b_{1} \nu}{f l_{1}} \right)$$
, bzw. $X_{e} = K \nu''' \left(1 + \frac{k b_{2} \nu}{f l_{2}} \right)$.

Ist die Achse der mittelsten Säule auch für die Temperaturänderungen eine Symmetrieachse, so ist der Einfluß der Temperaturänderungen auf X_c gleich Null.

Damit ist die Berechnung von X_b und X_c erledigt. Nun findet man

(74)
$$H = H_o - X_b \frac{l v''}{4f} - \frac{1}{2} X_o.$$

Wir wiederholen, daß H_o nach den in Nr. 47 für X_a angegebenen Formeln berechnet wird und daß in diesen Formeln die Stützweite l er-

$$\eta_a = \frac{lv}{4f};$$

Zweiter Abschnitt. - § 11.

in den Gelenkpunkten G_1 und G_2 besitzt sie die Ordinaten

 $\eta_1 = 2 \eta_o \frac{b_1}{l}$ und $\eta_2 = 2 \eta_o \frac{b_2}{l}$.

Kennt man X_b , X_o und H, so findet man die übrigen Stützenwiderstände A, B, H' mittels der drei Gleichgewichtsbedingungen. Die

Herleitung der Einflußlinien für die Querkräfte und die Momente bietet keine Schwierigkeit. Für die Momente des Teiles AC kann auch das in Abteilung I, § 13 Nr. 153, beschriebene Verfahren benutzt werden; M_I und M_{II} bedeuten dann die Momente für die Endquerschnitte des Teiles AC.

51. Fünffach statisch unbestimmter Gelenkbalken, Fig. 160. Als lehrreiches Übungsbeispiel empfehlen wir dem Leser die Unter-

suchung eines auf vier Säulen ruhenden Balkens, der in den Anßenöffnungen Gelenke und an den Enden wagerechte Gleitlager besitzt, und dessen lotrechte Mittellinie eine Symmetrieachse ist. Die Wahl der statisch unbestimmten Größen X_b , X_c , X_d ist in der Fig. 160 angegeben. Das Hauptsystem besteht aus zwei einfach statisch unbestimmten Trag-

werken von der in Nr. 47 untersuchten Art. Die Strecke r wird so gewählt, daß $\delta_{dc} = \delta_{cd} = 0$ wird. Daß die Verschiebungen $\delta_{bc} = \delta_{cb}$ und $\delta_{bd} = \delta_{db}$ gleich Null sind, folgt aus der Symmetrie. Wir verweisen auf die ähnlichen Aufgaben in Abteilung I, § 11, Nr. 128 und § 15, Nr. 167. Man kann auch das Tragwerk in Fig. 152 zum Hauptsystem wählen. Es tritt dann nur eine neue statisch unbestimmte Größe, ein Moment X_d auf. Das Tragwerk ist wegen des ungünstigen Einflusses der Temperaturänderungen nicht zu empfehlen.

52. Gelenkloser Balken auf drei Stützen. Die Mittelstütze ist eine Säule mit Fußgelenk. An dem einen Ende sei ein wagerechtes Gleitlager, an dem anderen ein festes Lager vorhanden.

Als statisch unbestimmte Größen sollen der lotrechte Widerstand X_a des Gleitlagers und der wagerechte Widerstand X_b des festen Lagers eingeführt werden. Außerdem entstehen noch die drei Stützenwiderstände A, B und C. Solange nur lotrechte Lasten wirken, ist $C = X_b$. Gesucht sind die Einflußlinien für X_a und X_b . Balken und Säule haben unveränderliche Querschnitte mit den Trägheitsmomenten J bzw. J_1 . Der unwesentliche Einfluß der Längskräfte N soll vernachlässigt werden.

Die Momentenflächen (M_a, M_b) für die Belastungszustände $X_a = -1$ und $X_b = -1$ sind in Fig. 162 dargestellt worden. Man findet mit Hilfe der in Nr. 35 entwickelten Formeln

$$EJ \,\delta_{aa} = \int M_a^2 \, dx = \frac{2}{3} \, l^3$$

$$EJ \,\delta_{ab} = \int M_a \, M_b \, dx = -\frac{l^2}{6} \, (2f+e)$$

$$EJ \,\delta_{bb} = \int M_b^2 \, dx = \frac{l}{3} \, (f^2 + fe + e^2) + \frac{J}{J_1} \, \frac{s^3}{3}$$

Fig. 162.

Es sei nun

 $l = 12^{m}, e = 0.5^{m}, f = 5.0^{m}, c = 4.5^{m}, s = 4.5^{m}, \frac{J}{J_{1}} = 8.0.$ Dann ergibt sich

 $EJ\delta_{aa} = 1152, EJ\delta_{ab} = -252, EJ\delta_{bb} = 354.$

Die Größe EJ ist ohne Einfluß auf X_a und X_b und wird zweckmäßig gleich 1 gesetzt. Das Verhältnis $J: J_1$ ist bei der Berechnung von 800 berücksichtigt worden. Man findet

 $\alpha_{aa} = 1,028 \cdot 10^{-3}, \quad \alpha_{ab} = 0,732 \cdot 10^{-3}, \quad \alpha_{bb} = 3,346 \cdot 10^{-3}.$

wo

Die Einflußlinie für X_a ist nun die Biegungslinie für den Belastungsfall $X_a = -\alpha_{aa}, X_b = -\alpha_{ab}$. Vgl. Nr. 36, Seite 103. Es entstehen die Momente

$$M = \alpha_{aa} M_a + \alpha_{ab} M_b.$$

Die Momentenfläche setzt sich nach Fig. 163 aus zwei Dreiecken und einem Rechteck zusammen, deren Höhen

$$\begin{array}{c} z_1 = - \alpha_{aa} l = - 12,34 \cdot 10^{-3}, \\ z_2 = - \alpha_{aa} l + \alpha_{ab} c = - 9,04 \cdot 10^{-3}, \\ z_3 = - \alpha_{aa} l + \alpha_{ab} c = - 9,04 \cdot 10^{-3}, \end{array}$$

sind. Die zugehörige, mit der Polweite 1 gezeichnete Seillinie ist die Einflußlinie für X_a . Da nun eine in C angreifende Last P = 1 den

Widerstand $X_a = 1$ erzeugt, so muß sich $\overline{C'C'} = 1$ ergeben. Diese Eigenschaft kann zu einer Prüfung der Zahlenrechnung benutzt werden. Das statische Moment des Teiles *I* der Momentenfläche in bezug auf die Lotrechte durch *C* ist gleich $\frac{z_1 l^2}{3}$, und es folgt deshalb

$$\overline{C''C'} = \frac{z_1 l^2}{3} + l\gamma,$$

wo γ den Druck bedeutet, den die Belastungen II und III auf die StützeAdes BalkensABausüben; man erhält

$$\overline{C''C'} = \frac{z_1 l^2}{3} + l \left(\frac{z_2 l}{3} - \frac{z_3 l}{2} \right) = (z_1 + z_2) \frac{l^2}{3} - z_3 \frac{l^2}{2},$$

Müller-Breslau, Graphische Statik. II. 2.

in welchen Ausdruck für z_1 , z_2 , z_3 die absoluten Werte einzusetzen sind. Dies gibt

$$\overline{C''C'} = \left[(12,34 + 9,04) \frac{12^2}{3} - 0,37 \frac{12^2}{2} \right] 10^{-3} = 0,9996 \sim 1.$$

Da nun der in lotrechter Richtung gemessene Abstand η_1 der Biegungslinie C''A' von der Geraden C''A' gleich dem Momente für den Querschnitt eines einfachen Balkens AC ist, dessen Belastungsfläche das Dreieck I ist, so lautet die Gleichung der X_a -Linie des Teiles CA

$$\eta = 1 \frac{l_{-x}}{l} - \omega_D 12,34 \frac{12^2}{6} \cdot 10^{-3} = 1 \frac{l_{-x}}{l} - 0,296 \omega_D.$$

Für den Teil AB erhält man

$$\eta_2 = \left(-\omega_D \cdot 9.04 \frac{12^2}{6} + \omega_R \cdot 0.37 \frac{12^2}{2}\right) 10^{-3} = -0.217 \omega_D + 0.027 \omega_R.$$

Die X_b -Linie ist Biegungslinie für den Belastungszustand $X_a = -\alpha_{ba}$ und $X_b = -\alpha_{bb}$. Es entstehen die Momente

Die Momentenfläche, Fig. 164, ist bestimmt durch $z_1 = -\alpha_{ba}l = -8,78 \cdot 10^{-3},$

Das gibt

$$\overline{C'C''} = \left[(-8,78 + 6,27) \frac{12^2}{3} + 1,67 \frac{12^2}{2} \right] 10^{-3} = -0,0002 \sim 0.$$

Die Gleichung der Einflußlinie für X_b lautet zwischen C und A

$$\eta_{1} = -\omega_{D} 8,78 \frac{12^{2}}{6} 10^{-3} = -0,211 \omega_{D},$$

und zwischen A und B:
$$\eta_{2} = +\omega_{D} 6,27 \frac{12^{2}}{6} 10^{-3} + \omega_{R} 1,67 \frac{12^{2}}{2} 10^{-3} = +0,150 \omega_{D} + 0,120 \omega_{R}.$$

In der folgenden Tabelle sind die nach den vorstehenden Gleichungen berechneten Ordinaten der Einflußlinien für X_a und X_b zusammengestellt worden.

x	Balkent	eil CA	Balkenteil AB		
l	Xa	$-X_b$	X_a	X_b	
0	1,000				
0,1	0,871	0,021	0,019	+0,026	
0,2	0,743	0,041		+0,048	
0,3	0,619	0,058		+0,066	
0,4	0,501	0,071		+0,079	
0,5	0,389	0,079		+0,086	
0,6	0,286	0,081		+0,086	
0,7	0,194	0,075		+0,079	
0,8	0,115	0,061	-0,058	+0,062	
0,9	0,049	0,036		+0,036	

Den Einfluß der Kräfte K und der Temperaturänderungen haben wir bereits im § 9 nach dem Castiglianoschen Verfahren bestimmt. Wir empfehlen dem Leser aber, diese Einflüsse auch auf dem in Nr. 47-49 eingeschlagenen Wege zu untersuchen.

53. Gelenkloser Balken mit einem festen Endauflager auf beliebig vielen, starr mit ihm verbundenen Säulen. Bedeutet e_r die lotrechte Verschiebung des Schnittpunktes r der Balkenachse und

 r^{ten} Säulenachse, und sind γ_r , τ_r' , τ_r'' die Winkel, welche die in r an die elästische Linie des Balkens gelegte Tangente mit der Wagerechten und den Geraden (r-1)-r und r-(r+1), Fig. 165. bildet, so ist

(76)
$$\tau_r' = -\gamma_r + \frac{\Delta e_r}{l_r}, \ \tau_r'' = +\gamma_r - \frac{\Delta e_{r+1}}{l_{r+1}}, \ \text{we}$$

 $\Delta e_r = e_r - e_{r-1}, \ \Delta e_{r+1} = e_{r+1} - e_r.$

Der Winkel γ_r stimmt überein mit dem Drehungswinkel der oberen Endtangente der elastischen Linie der Säule.

Wir unterscheiden zwei Fälle.

11*

1. Die Säule ist am unteren Ende lotrecht eingespannt, Fig. 166. Die auf den oberen Endquerschnitt der Säule wirkenden Kräfte ersetzen wir durch ein Kräftepaar, dessen Moment \mathfrak{M}_r sei, und zwei sich in rschneidende Einzelkräfte C_r und H_r . Punkt r möge sich gegen den Fußpunkt r' der Säule in wagerechtem Sinne um e_r' verschieben; weiter möge sich infolge des Nachgebens des Widerlagers der Säule die untere Endtangente der elastischen Linie der Säule im Sinne von \mathfrak{M}_r , um γ'_r drehen. Dann ist

$$\gamma_r - \gamma_r' = \int_c' \frac{H_r x + \mathfrak{M}_r}{EJ} dx$$
$$e_r' - f\gamma_r' = \int_c' \frac{H_r x + \mathfrak{M}_r}{EJ} x dx,$$

und hieraus folgt:

(77)
$$\mathfrak{M}_{r} = + \frac{EJ_{r}(\gamma_{r} - \gamma_{r}')}{a_{r}} - \frac{EJ_{r}(e_{r}' - f\gamma_{r}')}{b_{r}^{2}}$$
(78)
$$H_{r} = - \frac{EJ_{r}(\gamma_{r} - \gamma_{r}')}{b_{r}^{2}} + \frac{EJ_{r}(e_{r}' - f\gamma_{r}')}{d_{r}^{3}},$$

wo

(79)

$$\begin{cases} a_r = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx - \left(\int\limits_{c}^{f} x \frac{J_r}{J} dx\right)^2}{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx} \\ b_r^2 = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx - \left(\int\limits_{c}^{f} x \frac{J_r}{J} dx\right)^2}{\int\limits_{c}^{f} x \frac{J_r}{J} dx} \\ d_r^3 = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx - \left(\int\limits_{c}^{f} x \frac{J_r}{J} dx\right)^2}{\int\limits_{c}^{f} \frac{J_r}{J} dx} \\ d_r^3 = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx - \left(\int\limits_{c}^{f} x \frac{J_r}{J} dx\right)^2}{\int\limits_{c}^{f} \frac{J_r}{J} dx} \\ d_r^3 = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx - \left(\int\limits_{c}^{f} x \frac{J_r}{J} dx\right)^2}{\int\limits_{c}^{f} \frac{J_r}{J} dx} \\ d_r^3 = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx - \left(\int\limits_{c}^{f} x \frac{J_r}{J} dx\right)^2}{\int\limits_{c}^{f} \frac{J_r}{J} dx} \\ d_r^3 = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx - \left(\int\limits_{c}^{f} x \frac{J_r}{J} dx\right)^2}{\int\limits_{c}^{f} \frac{J_r}{J} dx} \\ d_r^3 = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx - \int\limits_{c}^{f} \frac{J_r}{J} dx} \\ d_r^3 = \frac{\int\limits_{c}^{f} x^2 \frac{J_r}{J} dx \int\limits_{c}^{f} \frac{J_r}{J} dx} \\ d_r^5 = \frac{\int\limits_{c}^{f} \frac{J_r}{J} dx} \\ d_r^5 = \frac{J_r}{J} \\ d_r^5 = \frac{$$

J. bedeutet ein beliebig gewähltes Trägheitsmoment.

Ist der Säulenquerschnitt unveränderlich und bezeichnet J_r sein Trägheitsmoment, so ergibt sich

(80)
$$a_r = \frac{s^3}{4(f^2 + fc + c^2)}, \quad b_r^2 = \frac{s^3}{6(f+c)}, \quad d_r^3 = \frac{s^3}{12}$$

2. Die Säule ist am unteren Ende drehbar befestigt, Fig. 167. Man erhält für unveränderlichen Querschnitt

$$e_r' \stackrel{\cdot}{=} f\gamma_r - \int_{o}^{\bullet} \frac{Mx \, dx}{EJ_r} = f\gamma_r - \frac{H_r s^3}{3 EJ_r},$$

woraus, mit Rücksicht auf die Bedingung

(81) $\mathfrak{M}_{*} = Hf$ sich ergibt:

(8

$$\mathfrak{M}_r = \frac{3fEJ_r}{s^3} (f\gamma_r - e_r').$$

Hinsichtlich der Bedeutung von J_r bei veränderlichem Säulenquerschnitte verweisen wir auf Seite 134, Gleichung (7).

Wir führen jetzt links und rechts von r zwei unendlich nahe Schnitte und bezeichnen das Biegungsmoment für den Schnitt links von r mit M'_r , rechts von r mit M''_r . Sodann betrachten wir das Balkenstück (r-1)-r. An seinen Enden greifen die Momente M''_{r-1} und M, an. Ist der Querschnitt des Balkens unveränderlich, so bestehen nach Seite 28, Gleichung (7), die Beziehungen:

(83)
$$\begin{cases} M''_{r-1} + 2M'_{r} = \frac{6EJ}{l_{r}} \tau_{r}' - \frac{6\mathfrak{L}_{or}}{l_{r}} - \frac{3\varepsilon EJ\Delta t}{h} \\ 2M''_{r-1} + M'_{r} = \frac{6EJ}{l_{r}} \tau''_{r-1} - \frac{6\mathfrak{R}_{or}}{l_{r}} - \frac{3\varepsilon EJ\Delta t}{h}; \end{cases}$$

sie liefern für Mr. den Wert

(84)
$$M'_{r} = \frac{2EJ}{l_{r}} (2\tau_{r}' - \tau''_{r-1}) - \frac{2}{l_{r}^{2}} (2\Omega_{or} - \Re_{or}) - \frac{\varepsilon EJ\Delta t}{h}$$

und ganz ebenso ergibt sich

(85)
$$M_r'' = \frac{2EJ}{l_{r+1}} (2\tau_r'' - \tau_{r+1}') - \frac{2}{l_{r+1}^2} (2\Re_{o(r+1)} - \Re_{o(r+1)}) - \frac{\varepsilon EJ\Delta t}{h}.$$

Setzt man die vorstehenden Werte in die Gleichgewichtsbedingung

$$(86) M_r' - M_r'' = \mathfrak{M},$$

und drückt die Winkel τ und Momente \mathfrak{M} mit Hilfe der Formeln (76) und (77) oder (82) durch die Winkel γ aus, so gelangt man zu einer Gleichung, welche die drei aufeinanderfolgenden Winkel γ_{m-1} , γ_m und γ_{m+1} enthält. Für am unteren Ende lotrecht eingespannte Säulen ergibt sich z. B. mit der zur Abkürzung eingeführten Bezeichnung

(87) $\varphi_r = E J \gamma_r$

die Gleichung:

(88)
$$\frac{\varphi_{r-1}}{l_r} + \varphi_r \left(\frac{2}{l_r} + \frac{2}{l_{r+1}} + \frac{J_r}{2J} \frac{1}{a_r} \right) + \frac{\varphi_{r+1}}{l_{r+1}} = Z_r$$

wo

(89)
$$Z_{r} = -\frac{2 \mathfrak{L}_{or} - \mathfrak{R}_{or}}{l_{r}^{2}} + \frac{2 \mathfrak{R}_{o(r+1)} - \mathfrak{L}_{o(r+1)}}{l_{r+1}^{2}} + \frac{1}{2} E J_{r} \gamma_{r}' \left(\frac{1}{a_{r}} - \frac{f}{b_{r}^{2}}\right) + 3 E J \left(\frac{\Delta e_{r}}{l_{r}^{2}} + \frac{\Delta e_{r+1}}{l_{r+1}^{2}}\right) + \frac{E J_{r} e_{r}'}{2 b_{r}^{2}}.$$

Der Balken sei an den Enden frei drehbar gelagert, Fig. 168. Es ist dann $M_o''=0$ und $M_n'=0$, wo *n* die Anzahl der Öffnungen bedeutet. M_1' ist durch die Gleichung

$$2 M_1' = \frac{6 EJ}{l_1} \tau_1' - \frac{6 \mathfrak{L}_{o1}}{l_1} - \frac{3 \varepsilon EJ \Delta t}{h}$$

bestimmt und die Bedingung $M_1' - M_1'' = \mathfrak{M}_1$ liefert:

(90)
$$\varphi_1\left(\frac{1,5}{l_1}+\frac{2}{l_2}+\frac{J_1}{2J},\frac{1}{a_1}\right)+\frac{\varphi_2}{l_2}=Z_1,$$

wo

91)
$$Z_{1} = -\frac{1.5 \hat{\mathcal{Q}}_{o1}}{l_{1}} + \frac{2 \Re_{o2} - \hat{\mathcal{Q}}_{o2}}{l_{2}^{2}} + \frac{\varepsilon E J \Delta t}{4h} + \frac{1}{2} E J_{1} \gamma_{1}' \left(\frac{1}{a_{1}} - \frac{f}{b_{1}^{2}}\right) + 3 E J \left(\frac{0.5 \Delta e_{1}}{l_{1}} + \frac{\Delta e_{2}}{l_{2}}\right) + \frac{E J_{1} e_{1}'}{2 b_{1}^{2}'}$$

In derselben Weise ist auch die letzte der aufzustellenden Gleichungen zu ändern.

Die Werte Z hängen nicht nur von den bekannten Lasten und Temperaturänderungen und den vorgeschriebenen, durch Beobachtung

gefundenen Verschiebungen der Widerlager ab; sie sind vielmehr auch Funktionen der vorläufig noch unbekannten, durch die Kräfte C und Hverursachten Längenänderungen des Balkens und der Säulen, sowie der wagerechten Verschiebung eines der beiden Stützpunkte o und n der Balkenachse. Bezeichnet man mit

t die Temperaturänderung für alle Punkte der Achse des Balkens,

tu desgleichen der Unterkante des Balkens,

 $t_o = t_u - \Delta t$ desgleichen der Oberkante des Balkens,

t' die Temperaturänderung für alle Punkte sämtlicher Säulen,

F den Inhalt des konstant angenommenen Balkenquerschnitts,

Fr den Querschnitt der r^{ten} Säule,

 \boldsymbol{u}_r den Abstand der r^{ten} Säule vom Stützpunkte $\boldsymbol{o},$ so ist

$$e_r = \frac{C_r s_r}{E F_r} - \varepsilon t' f_r + e_{rw}$$
$$e_r' = e_{0w}' - \sum_{i=1}^{i=r} \frac{H_i l_i}{EF} + \varepsilon t u_r + e_{rw}',$$

wo e'_{0w} , e'_{rw} , e_{rw} beobachtete Verschiebungen infolge des Nachgebens der Widerlager sind.

Wird nun der Einfluß der Kräfte C und H auf die Längenänderungen der Achsen des Balkens und der Säulen vernachlässigt, so bestehen alle Werte Z aus bekannten Größen und die Gleichungen zur Berechnung der Winkel φ haben dann dieselbe Form wie die Gleichungen

$$\alpha_r M_{r-1} + \beta_r M_r + \alpha_{r+1} M_{r+1} = N_r$$

zur Berechnung der Stützenmomente eines Balkens auf starren Stützen. Nach Berechnung der Werte \varkappa und Bestimmung der Festpunkte läßt sich der Einfluß jedes einzelnen Wertes Z_r schnell angeben. Handelt es sich um den Einfluß einer Einzellast, so drücke man die \mathfrak{L}_o und \mathfrak{R}_o durch die Zahl ω_D aus. Vgl. Seite 30.

Soll die Veründerlichkeit des Balkenquerschnitts berücksichtigt werden, so treten an die Stelle der Gleichungen (83) die Gleichungen

 $\begin{aligned} \tau_{r}' &= \sum P_{m} \delta'_{mr} + \tau'_{rr} \quad M_{r}' + \tau'_{r(r-1)} \quad M''_{r-1} \\ \tau''_{r-1} &= \sum P_{m} \delta''_{r-1} + \tau_{(r-1)r} M_{r}' + \tau''_{(r-1)(r-1)} M''_{r-1}, \end{aligned}$

deren Koeffizienten mit Hilfe der Biegungslinien für die Zustände $M'_{r=1} = 1$ und $M''_{r-1} = 1$ ermittelt werden. Der Einfluß wagerechter, außerhalb der Balkenachse angreifender Lasten K kann durch Hinzufügung von Gliedern $\pm \Sigma K k \tau'$ bzw. $\pm \Sigma K k \tau''$ berücksichtigt werden, wo τ' und τ'' die Neigungswinkel der beiden Biegungslinien bedeuten. Fig. 169.

Anmerkung. Die Aufgabe der Berechnung eines Balkens auf beliebig vielen, starr mit ihm verbundenen Säulen ist in der Literatur schon

mehrfach behandelt worden, in allen dem Verfasser bekannt gewordenen Arbeiten aber unter Beschränkung auf den Einfluß lotrechter Lasten und unter der Voraussetzung, daß die wagerechte Verschiebung eines jeden Säulenkopfes gleich Null ist. Diese Voraussetzung ist nicht allein an die Vernachlässigung des verhältnismäßig geringen Einflusses der Kräfte H auf die Änderung der Länge der Balkenachse gebunden, sondern auch an die ganz unzulässige Streichung der von Temperaturänderungen herrührenden Verschiebungen e'. Die Wirkung dieser Verschiebungen stu läßt sich mit Hilfe der Gleichungen (88) und (91) leicht verfolgen*); es entstehen in den Säulen Biegungsspannungen, die mit dem Abstande der Säulen

vom festgehaltenen Balkenende stark anwachsen. Wir verweisen auch auf das Zahlenbeispiel in Nr. 39. Dort ist nur eine einzige Säule, die noch dazu unten drehbar gelagert ist, vorhanden, und trotzdem ist der Einfluß der Temperaturänderungen schon recht erheblich.

Steht also an dem einen Ende des Balkens ein fester Punkt zur Aufnahme der wagerechten Lasten, z. B. der Bremskräfte eines Eisenbahnzuges zur Verfügung, so ist es im allgemeinen am zweckmäßigsten, jede Säule am Kopfe und am Fuße gelenkartig zu befestigen und unter Vernachlässigung der von den Drücken C herrührenden Längenänderungen der Säulen den Balken nach § 4 und § 10 zu berechnen. Der Einfluß der Temperaturänderungen der Säulen wird durch die auf Seite 35 in Fig. 39 eingeführte Verschiebung δ_r , welche sich leicht durch die Strecken $e = \varepsilon t f$ ausdrücken läßt, berücksichtigt.

Die feste Vernietung von Balken und Säule ist aber wichtig für Hochbahnen, deren Tragbalken auf einer langen Reihe von Säulen ruhen.

^{*)} Die Gleichungen (88) und (91) ermöglichen auch eine nachträgliche Prüfung des Einflusses der von Kräften C und H herrührenden Längenänderungen.
Hier wird es oft zweckmäßig sein, die Säulen zur Aufnahme der Bremskräfte heranzuziehen. Höhere Grade statischer Unbestimmtheit wird man allerdings auch in diesem Falle wegen des ungünstigen Einflusses der Temperaturänderungen vermeiden. Durch Einschaltung von Gelenken, darunter auch solche mit wagerechten Spielräumen, wird man den Grad der statischen Unbestimmtheit entsprechend herabsetzen. Die in Nr. 47 bis 53 vorgeführten Untersuchungen dürften genügen, um die Berechnung derartiger Konstruktionen zu erläutern. Bei der in Nr. 47 behandelten Anordnung ist der Einfluß der Wärmeschwankungen am geringsten. Allerdings muß die auf einen Brückenabschnitt wirkende Bremskraft von nur zwei Säulen aufgenommen werden.

§ 12.

Balken auf schwimmenden Unterstützungen (Schiffbrücken).

54. Wir gehen jetzt dazu über, die im § 8 kurz angedeuteten Aufgaben über die Berechnung der Streckbalken der Schiffbrücken ausführlicher zu behandeln. Es soll der Einfluß lotrechter Lasten mit Hilfe der Gleichungen

untersucht werden.

Für einen rechtwinklig zur Längsachse belasteten Balken, der sich ganz allgemein aus vollwandigen und fachwerkartigen Teilen zusammensetzen möge, gilt die Gleichung

(2)
$$\delta_{ik} = \int M_i M_k \frac{dx}{EJ} + \Sigma S_i S_k \varphi, \quad \varphi = \frac{s}{EF},$$

wo *i* und *k* zwei beliebige der Zeiger *a*, *b*, *c*, ... bedeuten. Das Integral erstreckt sich über die auf Biegung beanspruchten vollwandigen Teile, die Summe über die Fachwerkstäbe. Die Rechnung gewinnt an Übersichtlichkeit, wenn die Schiffe durch gleichwertige Stäbe (Säulen) ersetzt werden. Bedeutet *F* den Inhalt des wagerechten Schiffsquerschnittes in der Höhe des Wasserspiegels und γ das Gewicht der Raumeinheit des Wassers, und wird vorausgesetzt, daß die Schiffswände innerhalb der hier in Betracht kommenden Grenzen senkrecht sind, so ist das Schiff einer Säule gleichwertig, für die

ist. Ruhen die Balken unmittelbar auf den Borden der Schiffe, so schalte

man zwischen den Balken und den das Schiff ersetzenden Stab nach Fig. 170 einen Wagebalken ein und nehme diesen Balken starr an, weil

die elastischen Formänderungen des Schiffes vernachlässigt werden dürfen. Auch rechne man wegen der Kleinheit der Schiffsneigung mit einem in der Mitte gestützten Wagebalken. Vgl. auch Seite 96. Die Lasten mögen in der Längsachse der Brücke

angreifen. Eine Drehung der Schiffe um ihre Querachsen sei also ausgeschlossen.

Wir beginnen mit der Untersuchung von Schiffbrücken, die aus einzelnen, durch Gelenke miteinander verbundenen Gliedern bestehen, Fig. 171.

1. Schiffbrücke, gebildet aus zweischiffigen Gliedern.

55. Allgemeines Verfahren. Als statisch unbestimmte Größen führen wir die senkrechten Gelenkdrücke $X_1, X_2, \ldots, X_{r-1}, X_r, X_{r+1}, \ldots$ ein, Fig. 171. X_r sei positiv, wenn es auf das r^{te} Glied

von unten nach oben und auf das $(r + 1)^{\text{te}}$ Glied von oben nach unten wirkt. Die Biegungslinie für den Zustand $X_r = -1$ zeigt Fig. 172; es werden nur zwei aufeinanderfolgende Glieder beansprucht. Die ursprünglich zusammenfallenden Gelenkpunkte r verschieben sich gegeneinander in senkrechter Richtung um δ_{rr} , die Punkte (r - 1) um $\delta_{(r-1)r}$ und die Punkte r + 1 um $\delta_{(r+1)r}$, und zwar sind diese Verschiebungen positiv zu nehmen, wenn sie im Sinne der Kräfte X = -1 erfolgen, wenn also nach der Verbiegung der Endpunkt des linken Gliedes unter dem Endpunkte des rechten Gliedes liegt. Die Lage der Biegungslinie gegen die Abszissenachse KK ist bestimmt durch die senkrechten Schiffsverschiebungen

$$\frac{e_r}{d_r} \cdot \frac{1}{\gamma F_r}, \quad \frac{e_r^{'}}{d_r} \cdot \frac{1}{\gamma F_r^{'}}, \quad \frac{c_{r+1}}{d_{r+1}} \cdot \frac{1}{\gamma F_{r+1}}, \quad \frac{c_{r+1}^{'}}{d_{r+1}} \cdot \frac{1}{\gamma F_{r+1}^{'}}$$

Bei genau passenden Gelenken besteht zwischen den Lasten P_m und den von diesen hervorgerufenen Gelenkdrücken X die aus den Gleichungen (1) folgende Beziehung

(4)
$$\delta_r = \sum P_m \delta_{mr} - X_{r-1} \delta_{(r-1)r} - X_r \delta_{rr} - X_{r+1} \delta_{(r+1)r} = 0,$$

deren Übereinstimmung mit der zwischen den Stützenmomenten M_{r-1} , M_r , M_{r+1} eines Balkens auf starren Stützen bestehenden Gleichung

(5) $\alpha_r M_{r-1} + \beta_r M_r + \alpha_{r+1} M_{r+1} = N_r$

ohne weiteres zu den folgenden Aussagen führt:

I. Wird nur ein einziges Glied, beispielsweise das Glied (r-1)rbelastet, und sind die Gelenkdrücke X_{r-1} und X_r an den Enden dieses Gliedes bekannt, so kann man die übrigen Gelenkdrücke mit Hilfe von festen Punkten L und R bestimmen. Trägt man nämlich die X an den

Gelenkstellen als Ordinaten auf, Fig. 173, und verbindet deren Endpunkte durch die Geraden $g_{r-1}, g_{r-2}, \ldots, g_{r+1}, g_{r+2}, \ldots$, so gehen die Geraden g_{r-1}, g_{r-2}, \ldots durch die Festpunkte L_{r-1}, L_{r-2}, \ldots und die Geraden g_{r+1}, g_{r+2}, \ldots durch die Festpunkte R_{r+1}, R_{r+2}, \ldots Die Festpunkte L_r und R_r sind durch die Strecken

(6)
$$a_r = \frac{l_r}{1 + \varkappa_r} \quad \text{und} \quad$$

(7)
$$a_r' = \frac{l_r}{1 + \varkappa_r'}$$

bestimmt. Die den einzelnen Gliedern entsprechenden Zahlen z werden schrittweise mittels der Formel

(8)
$$\varkappa_{r+1} = \frac{\delta_{rr}}{\delta_{(r+1)r}} - \frac{1}{\varkappa_r} \frac{\delta_{(r-1)r}}{\delta_{(r+1)r}}$$

berechnet, wobei von

(9)
$$\varkappa_2 = \frac{\delta_{1,1}}{\delta_{2,1}}$$

ausgegangen wird. Und ebenso findet man, am rechten Ende beginnend,

(10)
$$\chi_{r}' = \frac{\delta_{rr}}{\delta_{(r-1)r}} - \frac{1}{\chi_{r+1}'} \frac{\delta_{(r+1)r}}{\delta_{(r-1)r}},$$

wobei man (wenn die Anzahl der Glieder gleich n ist) von

(11)
$$\chi'_{n-1} = \frac{\delta_{(n-1)(n-1)}}{\delta_{(n-2)(n-1)}}$$

ausgeht. Zu der Formel (8) gelangt man bekanntlich, wenn man in Gleichung (4) das Glied $\Sigma P_m \delta_{mr}$ streicht und das Verhältnis $X_{r+1}: X_r = -\varkappa_{r+1}$ durch das Verhältnis $X_r: X_{r-1} = -\varkappa_r$ ausdrückt, und Formel (9) ergiebt sich aus der zwischen X_1 und X_2 herrschenden Beziehung

(12) $\Sigma P_m \delta_{m,1} - X_1 \delta_{1,1} - X_2 \delta_{2,1} = 0$ nach Streichung des ersten Gliedes. Ganz ähnlich findet man die Formeln für die Werte \varkappa' .

II. Zwischen den beiden Gelenkdrücken X_{r-1} und X_r an den Enden des belasteten Gliedes (Fig. 173) bestehen die Gleichungen

(13)
$$\begin{cases} \varkappa_{r} X_{r-1} + X_{r} = \frac{\sum P_{m} \delta_{m} (r-1)}{\delta_{(r-1)r}}, \\ X_{r-1} + \varkappa_{r}' X_{r} = \frac{\sum P_{m} \delta_{mr}}{\delta_{(r-1)r}}, \end{cases}$$

aus denen sich die Werte ergeben

(14)
$$X_{r-1} = \frac{\varkappa_r' P_m \delta_{m(r-1)} - \Sigma P_m \delta_{mr}}{(\varkappa_r \varkappa_r' - 1) \delta_{(r-1)r}}$$

(15)
$$X_r = \frac{\varkappa_r \Sigma P_m \delta_{mr} - \Sigma P_m \delta_{m(r-1)}}{(\varkappa_r \varkappa_r' - 1) \delta_{(r-1)r}}$$

Der Einfluß der Belastung des ersten Gliedes A - 1 und des nach dem Ufer führenden Koppelbalkens AB auf den Gelenkdruck X_1 ist, Fig. 174,

(16)
$$X_1 = \frac{\sum P_m \delta_{m1}}{\varkappa_1' \delta_{\mathcal{A},1}}$$

Die gestellte Aufgabe ist hiermit gelöst*). Die Gelenkdrücke lassen sich nunmehr für jeden Belastungsfall angeben. Auf folgendes ist besonders hinzuweisen. Wird der Einfluß der Belastung des r^{ten} Gliedes auf ein Moment, eine Querkraft, eine Spannkraft u. s. w. des k^{ten} Gliedes gesucht, wo k < r ist, so ist die gesuchte Größe — wir wollen sie ganz allgemein mit Y_k bezeichnen — zunächst nur abhängig von den Gelenkdrücken X_{k-1} und X_k . Nun lassen sich aber diese Drücke mit Hilfe des in Fig. 173 dargestellten Verfahrens durch X_{r-1} ausdrücken, und daraus folgt dann $Y_k = C \cdot X_{r-1}$, wo C einen festen Wert bedeutet. Auf der Strecke (r-1) - r unterscheidet sich also die Einflußlinie für Y_k von der X_r -Linie nur durch einen Multiplikator.

56. Vereinfachung bei der Ermittlung der Biegungslinien und Festpunkte. Für Schiffbrücken kommen als Träger hauptsächlich in Betracht: der vollwandige Balken und der Fachwerkbalken mit parallelen Gurtungen. Im ersten Falle ist es bei der Berechnung der δ in der Regel zulässig, innerhalb eines Gliedes für EJ einen festen Wert anzunehmen. Diese Annahme führt zu einfachen Formeln, die sich meistens auch mit genügender Genauigkeit auf den Fachwerkbalken mit parallelen Gurtungen übertragen lassen, wenn man das Querschnittsträgheitsmoment J ersetzt durch den Wert $\frac{1}{2}F_gh^2$, wo F_g den Inhalt des Querschnitts einer Gurtung und h die Trägerhöhe bezeichnet. Da nun weiter der Einfluß der Lasten P auf die Größen X nicht von den Durchbiegungen δ selbst abhängt, sondern nur von dem gegenseitigen Verhältnis dieser Durchbiegungen, so empficht es sich, mit den EJ-fachen Durchbiegungen zu rechnen und diese der Kürze wegen wieder mit δ zu bezeichnen. An die Stelle der Gleichung (2) tritt dann die Gleichung

(17)
$$\delta_{ik} = \int M_i M_k dx + \Sigma S_i S_k \frac{EJ}{\gamma F}.$$

*) Wir verweisen auch auf die zeichnerische Behandlung der Gleichungen $\alpha_r M_{r-1} + \beta_r M_r + \alpha_{r+1} M_{r+1} = N_r$ in Abteilung 1 § 14.

Zweiter Abschnitt. - § 12.

Der Einfluß des Belastungszustandes $X_r = -1$ erstreckt sich über die beiden Glieder (r-1)-r und r-(r+1). Setzt man also i=k=r und dehnt man die Integration und Summation über diese beiden Glieder aus, so erhält man den Wert δ_{rr} . Berücksichtigt man nur das Glied (r-1)-r, so erhält man nur den Bestandteil δ_{ru} von $\delta_{rr} = \delta_{ur} + \delta_{or}$. Beachtet man, daß den Schiffen des r^{ten} Gliedes die Werte $S_r = + \frac{e_r'}{d_r}$, bzw. $S_r = -\frac{e_r}{d_r}$ entsprechen, so findet man die Formel

(18)
$$\delta_{ur} = \int_{r-1}^{r} M_r^2 dx + \frac{EJ_r}{\gamma d_r^2} \left(\frac{e_r^2}{F_r} + \frac{e_r'^2}{F_r'} \right)$$

und ebenso

$$\delta_{or} = \int_{r}^{r+1} M_{r}^{2} dx + \frac{EJ_{r+1}}{\gamma d_{r+1}^{2}} \left(\frac{c_{r+1}^{2}}{F_{r+1}} + \frac{c_{r+1}^{\prime}}{F_{r+1}^{\prime}} \right).$$

Ganz in derselben Weise findet man auch die Gleichung

(19)
$$\delta_{r(r-1)} = \delta_{(r-1)r} = \int_{r-1}^{r} M_{r-1} M_r dx + \frac{EJ_r}{\gamma d_r^2} \left(\frac{c_r e_r}{F_r} + \frac{c_r' e_r}{F_r'} \right)$$

Die Integrale $\int M_r^2 dx$ und $\int M_{r-1} M_r dx$ berechne man mit Hilfe der in Nr. 35 abgeleiteten Formeln.

Zahlenbeispiel. Es sei für sämtliche Glieder, Fig. 175, l = 20 m, b = 4 m, d = 12 m, e = c' = 4 m, e' = c = 16 m, F = F' = 100 qm. Die Brücke erhalte zwei Hauptträger; ihre Achse gehe im Grundriß durch die Schwerpunkte der Schiffsquerschnitte F. Auf jeden Hauptträger kommt F = 50 qm. Ferner sei die Trägerhöhe h = 2 m und der Inhalt des Querschnitts einer Gurtung $F_g = 31,4$ qcm. Dann ist $J = \frac{1}{2} \cdot 2,0^2 \cdot 0,00314 = 0,00628 \text{ m}^4$ und man erhält mit $E = 2150000 \text{ kg/cm}^2 = 21500000 \text{ t/m}^2$ (Flußeisen), $\gamma = 1,0$, abgerundet

$$\frac{EJ}{\gamma F} = 2700 \text{ m}^3.$$

Nun wird

(20)
$$\delta_{ur} = \delta_{or} = \frac{1}{2} \delta_{rr} = \int_{r-1}^{r} M_r^2 dx + \frac{EJ}{\gamma F} \cdot \frac{e^2 + e'^2}{d^2}$$

(21)
$$\delta_{r(r-1)} = \delta_{(r-1)r} = \int_{r-1}^{r} M_{r-1} M_r dx + 2 \frac{EJ}{\gamma F} \frac{ee'}{d^2},$$

$$\frac{EJ}{\gamma F} \frac{e^2 + e^{\prime 2}}{d^2} = 5100, \quad 2\frac{EJ}{\gamma F} \cdot \frac{ee^{\prime}}{d^2} = 2400.$$

wo

Fig. 175 zeigt die Momentenflächen für die Zustände $X_r = -1$ und $X_{r-1} = -1$. Es ergibt sich nach Formel (23), Seite 101,

$$\int_{r-1}^{r} M_{r}^{2} dx = \frac{4,0}{3} \cdot \frac{4}{9} + \frac{8}{3} \left(\frac{4}{9} + \frac{20}{9} + \frac{100}{9} \right) + \frac{4}{3} \left(\frac{100}{9} + \frac{20}{3} + 4 \right) \\ + \frac{2,0}{3} \cdot 4 = 69,$$

und nach Formel (22), Seite 101,

$$\int_{r-1}^{1} M_{r-1} M_r dx = -2 \cdot \frac{4,0}{6} \cdot \frac{2}{3} \left(\frac{20}{3} + 2\right) - \frac{8,0}{6} \left[\frac{2}{3} \left(\frac{20}{3} + \frac{2}{3}\right) + \frac{10}{3} \left(\frac{4}{3} + \frac{10}{3}\right)\right] = -35,$$

und es wird daher für alle Glieder

$$\begin{split} \delta_{ur} &= \delta_{or} = \frac{1}{2} \delta_{rr} = 5100 + 69 = 5169, \\ \delta_{(r-1)r} &= \delta_{r(r-1)} = 2400 - 35 = 2365. \end{split}$$

Für den festen Wert $\frac{1}{2}\delta_{rr}:\delta_{(r-1)r}$ führen wir die Bezeichnung ein (22) $\frac{\delta_{rr}}{2\,\delta_{(r-1)r}} = \Im,$

und erhalten dann aus Gleichung (8) für den Fall gleicher, symmetrischer Glieder, wegen $\delta_{(r-1),r} = \delta_{(r+1),r}$

(23)
$$\varkappa_r = 2\,\Im - \frac{1}{\varkappa_{r-1}}, \quad \varkappa_2 = 2\,\Im.$$

Zweiter Abschnitt. — § 12.

Mit den vorstehenden Zahlen ergibt sich $2\Im = 4,37$, also

$$\begin{aligned} \varkappa_2 &= 4,37; \qquad \varkappa_3 = 4,37 - \frac{1}{4,37} = 4,14; \\ \varkappa_4 &= 4,37 - \frac{1}{4,14} = 4,13 = \varkappa_5 = \varkappa_6 = \ldots \end{aligned}$$

Die Werte \varkappa nähern sich sehr schnell einer festen Grenze, welche durch die Gleichung

(24)
$$\chi = 2\,\Im - \frac{1}{\chi}$$

bestimmt ist. Man erhält

$$x = 2 + \sqrt{2^2 - 1} = 4,13.$$

Meistens ist es zulässig, bereits für \varkappa_3 den durch die Gleichung (25) bestimmten Wert \varkappa anzunehmen und höchstens für das zweite Glied einen besonderen Wert \varkappa einzuführen.

Die Lage der Festpunkte ist nunmehr bestimmt durch die Strecken

$$a_2 = \frac{l}{1 + \varkappa_2} = 3,72 \text{ m}, \quad a_3 = a_4 = \ldots = \frac{l}{1 + \varkappa} = 3,90 \text{ m}.$$

Durch die Strecken δ_{ru} und $\delta_{(r-1)r}$ ist in Fig. 172 die gestrichelte Gerade AB bestimmt, von der aus die von den Momenten M_r herrührenden Durchbiegungen aufgetragen werden. Da wir mit den EJfachen Verschiebungen rechnen, so erhalten wir diese Durchbiegungen als Momente eines einfachen Balkens von der Spannweite l, dem die Momentenfläche des Zustandes $X_r = -1$ als Belastungsfläche zugewiesen wird. Den Ansatz für diese einfache Rechnung brauchen wir hier nicht wiederzugeben. Wird l in zehn gleiche Teile zerlegt, so ergeben sich für die neun Teilpunkte in der Reihenfolge von r - 1 nach r die Werte

welche, verglichen mit $\frac{1}{2}\delta_{rr} = 5169$ und $\delta_{(r-1)r} = 2365$, so klein sind, daß ihr Einfluß vernachlässigt werden darf. Aber noch weitere Vernachlässigungen sind meistens zulässig. Nimmt man der Einfachheit wegen an, es sei b = 0, es werde also der Balken nur in zwei Punkten gestützt, so sind die Momentenflächen für $X_r = -1$ und $X_{r-1} = -1$ Dreiecke von der Höhe *e* und der Grundlinie *e'* und man findet

(26)
$$\frac{1}{2}\delta_{rr} = \frac{EJ}{\gamma F} \left(\frac{e^2}{d^2} + \frac{e'^2}{d^2}\right) + \frac{1}{3}e^2e' = 5185,$$

(27)
$$\delta_{(r-1)r} = 2 \frac{EJ}{\gamma F} \frac{ee'}{d^2} - \frac{e^2 d}{6} = 2368,$$

 $\varkappa_2 = \frac{2 \cdot 5158}{2368} = 4,38, \quad \varkappa_3 = \varkappa_4 = \ldots = 4,14 \text{ [nach Gleichung (25)]}.$

176

(25)

Der Einfluß der Wagebalkenstützung auf die Größen X ist im vorliegenden Falle von ganz untergeordneter Bedeutung. Geht man noch einen Schritt weiter und vernachlässigt überhaupt den Einfluß von M, und M_{r-1} , so findet man die von J und F unabhängigen einfachen Werte

(28)
$$x_2 = \frac{\delta_{rr}}{\delta_{(r-1)r}} = \frac{e^2 + e^{\prime 2}}{ee^{\prime}} = \frac{17}{4} = 4,25, \quad a_2 = \frac{20}{5,25} = 3,81 \text{ m},$$

 $x_3 = x_4 \dots = 4,00, \quad a = \frac{20}{5,00} = 4,0 \text{ m},$

die im vorliegenden Falle zu durchaus zuverlässigen Ergebnissen führen und beim Entwerfen von Schiffbrücken mit steifen Trägern sehr wichtig sind, weil sie zum mindesten eine von den gesuchten Größen J und Funabhängige Überschlagsrechnung gestatten.

57. Einflußlinie für X_r . Eine am Gliede (r-1)r angreifende Last P = 1 erzeugt nach Gleichung (15)

(29)
$$X_{r} = \frac{\varkappa_{r} \delta_{mr} - \delta_{m(r-1)}}{(\varkappa_{r} \varkappa_{r}' - 1) \delta_{(r-1)r}}$$

Für den Einfluß einer am Gliede r(r+1) wirkenden Last P=1erhält man mittels Gleichung (14), indem man den Zeiger um 1 erhöht, den Wert

(30)
$$X_{r} = \frac{\varkappa_{r+1} \delta_{mr} - \delta_{m(r+1)}}{(\varkappa_{r+1} \varkappa_{r+1} - 1) \delta_{r(r+1)}}$$

Wir wollen zunächst die meist schwach gekrümmten Biegungslinien δ_{mr} und $\delta_{m(r-1)}$ durch gerade Linien ersetzen. Es ergibt sich dann für X, eine aus geraden Linien bestehende Einflußlinie (Fig. 176a), und es genügt, die den Gelenkpunkten entsprechenden Ordinaten zu berechnen. Der Einfluß einer im Punkte r angreifenden Last ist verschieden groß, je nachdem dieser Punkt zum Gliede (r-1)r oder zum Gliede r(r+1) gerechnet wird. Im ersten Falle ist in die Gleichung (29) einzusetzen $\delta_{mr} = \delta_{ur}$ und $\delta_{m(r-1)} = \delta_{r(r-1)}$; im zweiten Falle gilt Gleichung (30) mit $\delta_{mr} = -\delta_{or}$ und $\delta_{m(r+1)} = -\delta_{r(r+1)}$. Man erhält (Fig. 176a) die Einflußzahlen

(31)
$$\eta_{ru} = \frac{+1}{\varkappa_r \varkappa_r' - 1} \left(\varkappa_r \frac{\delta_{ur}}{\delta_{r(r-1)}} - 1 \right),$$

(32)
$$\eta_{ro} = \frac{-1}{\varkappa_{r+1} \varkappa_{r+1}' - 1} \left(\varkappa_{r+1}' \frac{\delta_{or}}{\delta_{r(r+1)}} - 1 \right)$$

Die irgend einem Gelenkpunkte k entsprechende Ordinate der X_r-Linie bezeichnen wir mit η_{rk} ; ihre Ermittlung erfolgt mit Hilfe der Festpunkte L und R. Es genügt zu zeigen, wie der Einfluß einer in rangreifenden Last 1 auf die an den anderen Gelenken wirkenden Drücke X dargestellt wird. Zunächst nehme man an, es gehöre r zum Gliede 12

Müller-Breslau, Graphische Statik. II. 2.

r (r + 1), es sei also das Glied (r - 1) r unbelastet. Dann erhält man $X_r = -\eta_{ro}$ und kann aus dieser Zahl mit Hilfe der Punkte Lnach Fig. 176b die Zahlen $\eta_{(r-1)r}, \eta_{(r-2)r}, \ldots$ folgern, und ganz ebenso findet man mittels der Festpunkte R aus der Zahl η_{ru} die Zahlen $\eta_{(r+1)r}, \eta_{(r+2)r}, \ldots$ Man beachte hierbei, daß die Strecken η_{rk} und η_{kr} im allgemeinen verschieden groß sind, daß also die in Fig. 176a mit L' und R' bezeichneten Punkte nicht mit den Festpunkten L und Rzusammenfallen. Besteht aber die Brücke aus einer so großen Zahl gleicher symmetrischer Glieder, daß für alle \times und \times' ein und derselbe, durch die Gleichung (25) bestimmte Wert gesetzt werden darf, so ist

 $\eta_{rk} = - \eta_{kr}$, und es fallen die Punkte L' und R' mit den Festpunkten zusammen. Man findet dann

(33)
$$\eta_{ru} = -\eta_{ro} = \frac{1}{\varkappa^2 - 1} (\varkappa \Im - 1)$$

und, wenn man S mittels Gleichung (24) durch z ausdrückt,

$$\eta_{ru} = -\eta_{ro} = 0,5,$$

das ist ein Ergebnis, das man auch unmittelbar aus der bestehenden Symmetrie hätte folgern können. An den Stellen (r-1) und (r+1) erhält man

(34)
$$\eta_{r(r-1)} = -\frac{0,5}{\chi}$$
 und $\eta_{r(r+1)} = +\frac{0,5}{\chi}$.

Um nun zu prüfen, ob es notwendig ist, die Krümmung der Biegungslinien zu berücksichtigen, stelle man zunächst folgende einfache Rechnung an, die hier nur für ein symmetrisches Glied durchgeführt werden soll. Man ersetze die genaue M_r -Fläche durch das Dreieck A'CB(Fig. 175) von der Höhe e und der Grundlinie e' = l - e und berechne an den Stellen A' und B' und in der Mitte des Gliedes die Abweichungen δ' , δ'' und δ''' der δ_{mr} -Linie (Fig. 177) von der oben eingeführten Geraden. Betrachtet man zu dem Zwecke das Dreieck A'CB als

Belastungsfläche eines einfachen Balkens AB, so findet man die Stützendrücke

$$A = \frac{ee'}{6}, \quad B = \frac{ee'}{3},$$

und für die Querschnitte A', B' und die Balkenmitte die Momente

Diese Momente stellen die EJ-fachen Durchbiegungen dar. Ihnen entsprechen nach Gleichung (29) — für ein symmetrisch gebautes Glied — die folgenden Abweichungen der X_r -Linie von der durch die Ordinaten η_{rw} und $\eta_{r(r-1)}$ bestimmten Geraden (Fig. 178)

(38)
$$\Delta^{\prime\prime\prime}\eta = \frac{\varkappa_r \delta + \delta}{(\varkappa_r \varkappa_r' - 1) \,\delta_{(r-1)r}}.$$

12*

Für das unter Nr. 56 behandelte Zahlenbeispiel: e = 4 m, l = 20 m ergeben sich die Werte

$$\delta' = 43, \ \delta'' = 75, \ \delta''' = 95$$

an Stelle der früher gefundenen Werte 42, 68, 91; sie liefern in Verbindung mit den Werten $\varkappa = \varkappa' = 4,14$ und $\delta_{(r-1)r} = 2365$ die Zahlen

$$\triangle' \eta = \frac{4,14 \cdot 43 + 75}{38200} = 0,007; \ \Delta'' \eta = 0,009; \ \Delta''' \eta = 0,013.$$

Durch diese drei Zahlen ist die schwach gekrümmte X_r -Linie zwischen den Gelenken (r-1) und r und ebenso zwischen r und (r+1) mit genügender Genauigkeit festgelegt*). Es würde sogar genügen, $\triangle^{\prime\prime\prime}\eta$ abzutragen. Auch die Beibehaltung der geraden X_r -Linie

Fig. 178.

würde im vorliegenden Falle zulässig sein. Man hüte sich vor einer allzu peinlichen Berechnung und denke daran, daß außer den Lasten Pnoch andere Ursachen wirken. Wir erinnern nur an die durch Wellenbewegungen hervorgerufenen Schiffsbewegungen, die sich nur schwer schätzen lassen und deren Einfluß die Glieder L_a, L_b, \ldots der Gleichungen (1) berücksichtigen, ferner an die Einflüsse $\delta_{at}, \delta_{bt}, \ldots$ von Temperaturänderungen.

Es sind noch die Formeln für den Gelenkdruck X_1 anzugeben. Ruht die Last $P_m = 1$ auf dem Koppelbalken oder dem Gliede A - 1, so entsteht

(39)
$$X_1 = \frac{1}{\varkappa_1'} \frac{\delta_{m1}}{\delta_{\Lambda 1}};$$

liegt sie auf dem Gliede 1 - 2, so ergibt sich

(40)
$$X_{1} = \frac{\varkappa_{2} \delta_{m1} - \delta_{m2}}{(\varkappa_{2} \varkappa_{2}' - 1) \delta_{1\cdot 2}} \cdot$$

*) Links von r-1 und rechts von r+1 kann man die Aufzeichnung der X_r-Linie entbehren. Vgl. den Schluß von Nr. 55.

Man erhält also (Fig. 179)

$$\eta_{1A} = -\frac{1}{\varkappa_1}; \quad \eta_{1u} = \frac{1}{\varkappa_1'} \frac{\delta_{u1}}{\delta_{A1}},$$

42)
$$\eta_{1,o} = \frac{-1}{\varkappa_2 \varkappa_2' - 1} \left(\varkappa_2' \frac{\delta_{o_1}}{\delta_{1,2}} - 1 \right); \quad \eta_{1,2} = \eta_{2o} \frac{1}{\varkappa_2'}.$$

Sind alle Glieder gleich und symmetrisch, so darf man setzen

$$\frac{\delta_{\varkappa_1}}{\delta_{\Lambda_1}} = \frac{\delta_{\sigma_1}}{\delta_{1\cdot 2}} = \Im = \frac{1}{2} \left(\varkappa + \frac{1}{\varkappa} \right) \text{ [siehe Gleichung (24)]},$$

 $x_2 = x + \frac{1}{x_2}, \quad x_2' = x, \quad x_2 x_2' - 1 = x^2.$

ferner

(41)

Man erhält

$$\eta_{1,\lambda} = -\frac{1}{\varkappa}, \eta_{1,\mu} = \frac{1}{2} + \frac{1}{2\varkappa^2}, \eta_{1,\rho} = -\frac{1}{2} + \frac{1}{2\varkappa^2}, \eta_{1,2} = -\eta_{1,\rho} \frac{1}{\varkappa}*).$$

Zur Festlegung der gekrümmten X_1 -Linie genügen bei verhältnismäßig steifen Hauptträgern auf der Strecke A1 die Werte

und auf der Strecke 1-2 die Werte

58. Sind die Einflußlinien für die Gelenkdrücke X gegeben, so ist die Herleitung der übrigen Einflußlinien (für Biegungsmomente, Querkräfte, Stützenwiderstände und Stabkräfte) eine so einfache Aufgabe, daß wir es für genügend halten, ein Beispiel vorzuführen.

*) Folgt aus dem mittels Gleichung (40) berechneten Werte

$$\eta_{1\cdot 2} = \frac{1}{\varkappa_{2} \varkappa_{2}' - 1} \left(\varkappa_{2}' - \frac{\delta_{\alpha_{2}}}{\delta_{1\cdot 2}} \right) = \frac{\varkappa^{2} - 1}{2\varkappa^{3}} \cdot$$

Gesucht sei die Einflußlinie für das Biegungsmoment M_c des zwischen den beiden Schiffen eines Gliedes gelegenen Balkenquerschnitts C. Außer der Last P = 1 greifen an dem Balkenstücke (r - 1) - r die Gelenkdrücke X_{r-1} und X_r an.

Figur 180 zeigt die M_c -Linie für den Fall $X_r = 0$, $X_{r-1} = 0$; sie besteht aus den beiden Geraden JC und CK. Die Gerade CK schneidet

auf der Lotrechten durch den Stützpunkt A die Strecke $\overline{AE} = 1 \cdot x$ ab. Die absoluten Werte der Ordinaten an den Stellen (r-1) und r seien η' und η'' . Dann erzeugen die drei Kräfte P = 1, X_{r-1} und X_r zusammen das Moment

$$M = \eta - X_{r-1}\eta' + X_r\eta''.$$

Durch diese Gleichung ist die *M*-Linie bestimmt. Die Darstellung gestaltet sich besonders einfach, sobald die *X*-Linien als gerade Linien angesehen werden dürfen. Die Einflußlinie für den Ausdruck

$$-X_{r-1}\eta' + X_r\eta'$$

ist dann eine gerade Linie, welche man am zweckmäßigsten durch Berechnung der Ordinaten für die Stellen L' und R'(Fig. 176a) bestimmt. An der Stelle L' ist der Einfluß von X_r gleich Null; an der Stelle R' verschwindet der Einfluß von X_{r-1} .

Besteht die Brücke aus einer so großen Zahl gleicher

symmetrischer Glieder, daß nach $\eta_{ru} = -\eta_{ro} = 0.5$ gesetzt werden darf und die Punkte L' und R' mit den Festpunkten zusammenfallen, so erzeugt eine im Punkte r angreifende Last 1:

$$X_r = + 0.5, \quad X_{r-1} = + 0.5 \frac{a_r}{b_r},$$
$$M = -\eta'' - 0.5 \frac{a_r}{b_r} \eta' + 0.5 \eta'' = -0.5 \left(\eta'' + \eta' \frac{a_r}{b_r}\right),$$

und eine im Punkte r - 1 angreifende Last:

$$X_{r-1} = -0.5, \quad X_r = -0.5 \frac{a_r}{b_r},$$
$$M = -\eta' + 0.5 \eta' - 0.5 \frac{a_r}{b_r} \eta'' = -0.5 \left(\eta' + \eta'' \frac{a_r}{b_r}\right).$$

Hieraus ergibt sich die in Fig. 181 dargestellte Konstruktion der Einflußfläche für M_c . Es wurden von J und K aus durch L und R

die Geraden KJ' und JK' gezogen und die Mittelpunkte J'' und K'' der Strecken

$$\overline{JJ'} = \eta' + \eta'' \frac{a_r}{b_r}$$
 und $\overline{KK'} = \eta'' + \eta' \frac{a_r}{b_r}$

bestimmt. Die schraffierte Fläche ist dann die Einflußfläche für M_c .

2. Mehrschiffige Glieder.

Die allgemeinen Gleichungen (4) bis (15) gelten auch dann, wenn einzelne oder alle Glieder mehrschiffig sind. Es ündert sich nur die Berechnung der δ_{rr} , $\delta_{r(r-1)}$, δ_{mr} für die mehrschiffigen Glieder.

59. Das dreischiffige Glied ist für sich allein einfach statisch unbestimmt. Als statisch unbestimmte Größe führen wir den Widerstand des Mittelschiffes ein. Fig. 182a zeigt den Zustand $X_{r-1} = 0$, $X_r = 0$. Fig. 182b stellt den Belastungsfall $X_a = -1$ dar; die Widerstände der Seitenschiffe seien α und β , die Inhalte der drei Schiffsquerschnitte F_{α} , F, F_{β} . In Fig. 182c ist die Linie JK die Biegungslinie für $X_a = -1$; die Lage der Schlußlinie AB ist bestimmt durch die Schiffssenkungen

$$\delta_{lpha}\!=\!rac{lpha}{\gamma F_{lpha}}, \quad \delta_{eta}\!=\!rac{eta}{\gamma F_{eta}}.$$

Kennt man die Schiffswiderstände infolge $X_r = -1$, so kann man die Momente M_r für diesen Belastungszustand berechnen und die zugehörige Biegungslinie ermitteln. Wir erinnern noch daran, daß sich, nach Abteilung I, § 12, aus der Biegungslinie JK in Fig. 182c die Einflußflächen für den Balken auf drei Stützen mittels Ziehen gerader Linien gewinnen lassen. Beispielsweise ist die Fläche zwischen der Kurve JK und der Geraden CD Einflußfläche für A_0 (Multiplikator $\frac{1}{v}$) und die Fläche zwischen der Kurve JK und den beiden Geraden Em'D Einflußfläche für das Biegungsmoment des Querschnitts m(Multiplikator $\frac{x_m}{v}$). Zu den so ermittelten Einflüssen treten noch diejenigen der Gelenkdrücke X_{r-1} und X_r .

Zur rechnerischen Ermittlung von X_{α} dient die Formel

(48)
$$X_{a} = \frac{\int_{r-1}^{r} M_{0} M_{a} \frac{dx}{EJ} + \sum_{r-1}^{r} S_{0} S_{a} \varphi}{\int_{r-1}^{r} M_{a}^{2} \frac{dx}{EJ} + \sum_{r-1}^{r} S_{a}^{2} \varphi}$$

Es liege z. B. das in Fig. 183 dargestellte symmetrische Glied vor. EJ sei konstant, ebenso F. Statt nur den Punkt r mit 1 zu belasten, bringen wir auch in (r-1) eine Last 1 auf; wir erhalten dann, da beide Lasten zu X_a den gleichen Beitrag liefern,

$$2X_a = \frac{\int\limits_{r-1}^{r} M_0 M_a dx + \frac{EJ}{\gamma F} \Sigma S_0 S_a}{\int\limits_{r-1}^{r} M_a^2 dx + \frac{EJ}{\gamma F} \Sigma S_a^2}.$$

Die Summen beziehen sich auf die die Schiffe ersetzenden Stäbe. Die Momentenflächen $(M_{\alpha} \text{ und } M_0)$ zeigt Fig. 183. Die einfachen Zwischenrechnungen übergehen wir. Es ergibt sich, in Buchstaben,

$$\int_{r-1}^{r} M_{a}^{2} dx = \frac{1}{6} d^{3} + \frac{1}{16} b^{3} - \frac{1}{8} b^{2} d,$$

$$\int_{r-1}^{r} M_{0} M_{a} dx = -\frac{1}{2} d^{2} e + \frac{1}{24} b^{3}.$$

Ferner ist

$$\Sigma S_{a}^{2} = \left(\frac{1}{2}\right)^{2} + 1^{2} + \left(\frac{1}{2}\right)^{2} = \frac{3}{2}$$
$$\Sigma S_{0}S_{a} = 1 \cdot \frac{1}{2} \cdot 2,$$

Zweiter Abschnitt. - § 12.

mithin

(44)
$$X_{a} = \frac{\frac{EJ}{\gamma F} - \frac{1}{2} d^{2}e + \frac{1}{24} b^{3}}{3 \frac{EJ}{\gamma F} + \frac{1}{3} d^{3} + \frac{1}{8} b^{3} - \frac{1}{4} b^{2}d}$$

Ist, wie in dem vorigen Zahlenbeispiel (Nr. 56), $\frac{EJ}{\gamma F} = 2700, d = 12 \text{ m}, e = 4 \text{ m}, b = 4 \text{ m}$, so wird

Setzt man b = 0, vernachlässigt man also die Wagebalkenunterstützung, so erhält man

$$X_a = \frac{2700 - 288}{8100 + 576} = 0,278,$$

in beiden Fällen also rund $X_a = 0.28$. Die Gegendrücke der beiden anderen Schiffe und die Momentenflächen für die Zustände $X_r = -1$

und $X_{r-1} = -1$ gibt Fig. 184 an. Mit Hilfe der Formeln (20) und (21) auf Seite 174 findet man die EJ-fachen Durchbiegungen

$$\begin{split} \frac{1}{2}\delta_{rr} &= \int_{r-1}^{r} M_{r}^{2} dx + \frac{EJ}{\gamma F} \sum_{r=1}^{r} S_{r}^{2} \\ &= \frac{4,0}{3} \left(0,62^{2} + 3,10^{2} + 3,10 \cdot 3,70 + 3,70^{2} + 3,94^{2} + 3,94 \cdot 2,0 + 2,0^{3} \right) \\ &+ \frac{8,0}{3} \left(0,62^{2} + 0,62 \cdot 3,10 + 3,10^{2} + 3,70^{2} + 3,70 \cdot 3,94 + 3,94^{2} \right) \\ &+ \frac{2,0}{3} \cdot 2,0^{2} + \frac{EJ}{\gamma F} \left(0,31^{2} + 0,28^{2} + 1,03^{2} \right), \\ \frac{1}{2}\delta_{rr} &= 235 + 1,235 \frac{EJ}{\gamma F} = 235 + 3335 = 3570. \\ \delta_{(r-1)r} &= \int_{r-1}^{r} M_{r-1} M_{r} dx + \frac{EJ}{\gamma F} \sum_{r=1}^{r} S_{r-1} S_{r} \\ &= -2 \cdot \frac{4,0}{6} \left(0,62 \left(2 \cdot 3,94 + 2,0 \right) - 2 \cdot \frac{8,0}{6} \left[0,62 \left(2 \cdot 3,94 + 3,70 \right) \right] \\ &+ 3,10 \left(2 \cdot 3,70 + 3,94 \right) \right] \\ &- \frac{4,0}{6} \left[3,10 \left(2 \cdot 3,70 + 3,10 \right) + 3,70 \left(2 \cdot 3,10 + 3,70 \right) \right] \\ &+ \frac{EJ}{\gamma F} \left(0,31 \cdot 1,03 \cdot 2 - 0,28^{2} \right). \\ \delta_{(r-1)r} &= -167 + \frac{EJ}{\gamma F} \left(0,560 = -167 + 1512 = 1345. \\ \text{Besteht die Brücke aus lauter gleichen Gliedern, so erhält man} \\ &2\Im = \frac{2 \cdot 3570}{1345} = 5,31; \end{split}$$

 $x_2 = 5,31, \quad x_3 = 5,31 - \frac{1}{5,31} = 5,12 = x_4 = x_5 = \dots$

 $a_2 = \frac{32}{1+5,31} = 5,08 \text{ m}, \quad a_3 = a_4 = \ldots = \frac{32}{1+5,12} = 5,23 \text{ m}.$

Die Vernachlässigung der Durchbiegungen bei den vorstehenden Rechnungen würde liefern $X_a = \frac{1}{3}$ und

$$2\Im = \frac{2\Sigma S_r^3}{\Sigma S_{r-1}S_r} = 4,41 \text{ m};$$

sie würde also zu etwas größeren Unterschieden führen wie in dem in Nr. 56 gerechneten Beispiele.

Fig. 184.

60. Wir zeigen noch die rechnerische Bestimmung von δ_{rr} und $\delta_{(r-1)r}$ für ein symmetrisch gebautes vierschiffiges Glied. Zunächst ist die Berechnung der Schiffswiderstände für den Belastungsfall $X_r = -1$ (Fig. 185) zu erledigen. Dieser Belastungsfall ist zweifach statisch unbestimmt. Als statisch unbestimmte Größen führen wir das Biegungsmoment X_a und die Querkraft X_b des mittelsten Balkenquerschnitts ein. Die Figuren 185b, c, d enthalten die Darstellung

Man findet

$$\int M_0 M_a dx = \frac{4,0}{6} \left[\frac{2}{3} \left(2 \cdot \frac{5}{6} + 1 \right) \right] + \frac{8,0}{6} \left[\frac{2}{3} \left(2 \cdot \frac{5}{6} + \frac{1}{6} \right) \right] \\ + \frac{10}{3} \left(2 \cdot \frac{1}{6} + \frac{5}{6} \right) \right] + \frac{4,0}{6} \left[\frac{1}{6} \left(2 \cdot \frac{10}{3} + 2 \right) \right] = 9.$$

$$\begin{split} \int M_0 M_b dx &= \frac{4,0}{6} \left[\frac{2}{3} \left(2 \cdot 5 + 4 \right) \right] + \frac{8,0}{6} \left[\frac{2}{3} \left(2 \cdot 5 + 1 \right) \right. \\ &\quad \left. + \frac{10}{3} \left(2 \cdot 1 + 5 \right) \right] + \frac{4,0}{6} \left[1,0 \left(2 \cdot \frac{10}{3} + 2 \right) \right] = 53. \\ \frac{1}{2} \int M_a^2 dx &= 1^2 \cdot 4 + \frac{4,0}{3} \left[1 + 1 \cdot \frac{5}{6} + \frac{25}{36} \right] + \frac{8,0}{3} \left[\frac{25}{36} + \frac{1}{6} \cdot \frac{5}{6} + \frac{1}{36} \right] \\ &\quad \left. + \frac{4,0}{3} \cdot \frac{1}{36} = 9,7. \right] \\ \frac{1}{2} \int M_b^2 dx &= \frac{4,0}{3} 4^2 + \frac{4,0}{3} (4^2 + 4 \cdot 5 + 5^2) + \frac{8,0}{3} (5^2 + 5 \cdot 1 + 1^2) \\ &\quad \left. + \frac{4,0}{3} \cdot 1 = 186,7. \right] \\ \Sigma S_0 S_a &= -\frac{1}{3} \cdot \frac{1}{12} - \frac{4}{3} \cdot \frac{1}{12} = -\frac{5}{36}, \\ \Sigma S_0 S_b &= -\frac{1}{3} \cdot \frac{3}{2} - \frac{4}{3} \cdot \frac{1}{2} = -\frac{7}{6}, \\ \Sigma S_a^2 &= 4 \left(\frac{1}{12} \right)^2 = \frac{1}{36}, \quad \Sigma S_b^2 = 2 \left(\frac{9}{4} + \frac{1}{4} \right) = 5. \\ \int M_a M_b dx = 0, \qquad \Sigma S_a S_b = 0. \\ X_a &= \frac{\int M_0 M_a dx + \frac{EJ}{\gamma F} \Sigma S_0 S_a}{\int M_a^2 dx + \frac{EJ}{\gamma F} \Sigma S_0^2 S_b}, \\ X_b &= \frac{\int M_0 M_b dx + \frac{EJ}{\gamma F} \Sigma S_b^2}{\int M_b^2 dx + \frac{EJ}{\gamma F} \Sigma S_b^2}, \end{split}$$

und, mit $\frac{EJ}{\gamma F}$ = 2700 (wie in den vorigen Beispielen),

$$X_{a} = \frac{9 - 375}{19,5 + 75} = -3,87,$$
$$X_{b} = \frac{53 - 3150}{373 + 13500} = -0,222.$$

Vernachlässigt man die Wagebalken, nimmt man also an, es greifen die Stützendrücke A, B, C, D unmittelbar am Balken an, so findet man

190 Zweiter Abschnitt. — § 12.

(45)
$$X_{a} = \frac{\frac{de}{6} - \frac{e+e'}{d^{2}} \cdot \frac{EJ}{\gamma F}}{\frac{5d}{3} + \frac{4}{d^{2}} \frac{EJ}{\gamma F}} = \frac{8 - 375}{20 + 75} = -3,86.$$

Fig. 185.

 d^3e e' + 3e EJ $\frac{1}{2d} \frac{1}{\gamma F} + 5 \frac{EJ}{\gamma F}$ (46) $X_b = \frac{12}{12}$ $\frac{48 - 3150}{432 + 13500}$ = -0,223. $\frac{d^3}{4}$

.

Die Wagebalken erweisen sich also wieder als nahezu einflußlos. Für die Schiffswiderstände erhält man jetzt die Werte

(47)
$$A = + \frac{X_a}{d} - \frac{1}{2} X_b = -0,211,$$

(48)
$$B = -\frac{X_a}{d} + \frac{3}{2}X_b = -0,011$$

(49)
$$C = -\frac{X_a}{d} - \frac{3}{2}X_b - \frac{e}{d} = +0,322,$$

(50)
$$D = + \frac{X_a}{d} + \frac{1}{2}X_b + \frac{e}{d} = + 0,900$$

Die Figuren 185e, d zeigen die mit Hilfe dieser Zahlen berechneten Momentenflächen für die Zustände $X_r = -1$ und $X_{r-1} = -1$. Man findet abgerundet

$$\int_{r-1}^{r} M_r^2 dx = 470, \qquad \int_{r-1}^{r} M_{r-1} M_r dx = -280,$$

$$\Sigma S_r^2 = 0.211^2 + 0.011^2 + 0.322^2 + 0.900^2 = 0.958,$$

$$\Sigma S_{r-1} S_r = 2 (0.211 \cdot 0.900 + 0.011 \cdot 0.322) = 0.387,$$

$$\delta_{rr} = 2 \left(470 + 0.958 \frac{EJ}{\gamma F} \right) = 6113,$$

$$\delta_{(r-1)r} = -280 + 0.387 \frac{EJ}{\gamma F} = 765.$$

Besteht die Brücke aus gleichen Gliedern, so hat man

$$\varkappa_2 = \frac{6113}{765} = 7,99, \quad \varkappa_3 = 7,99 - \frac{1}{7,99} = 7,86 = \varkappa_4 = \varkappa_5 = \dots$$

3. Gelenkloser Balken auf einer größeren Zahl von Schiffen.

61. Wird angenommen, daß der Balken von jedem Schiffe nur in einem, in Schiffsmitte liegenden Punkte gestützt wird, oder wird eine etwa vorhandene Wagebalkenstützung vernachlässigt, so kann die Be-

rechnung des Balkens auch mit Hilfe der im § 6 entwickelten Formeln erfolgen. Wir erläutern das Verfahren durch ein Beispiel.

Die Streckbalken einer Fußgängerbrücke ruhen auf 8 Schiffen, Fig. 186, und seien mit den Ufern durch gelenkartig angeschlossene

Koppelbalken verbunden. Die Brücke habe eine Breite von 6,0 m. Das Eigengewicht der Streckbalken und der Fahrbahn betrage 300 kg/m²,

sei also $g = 0.3 \cdot 6.0 = 1.8$ t/m, $p = 0.45 \cdot 6.0 = 2.7$ t/m. Die Anzahl der als Blechträger ausgebildeten Streckbalken sei vier. Das Trägheitsmoment des Querschnitts eines Balkens ist — ohne Abzug für Nietlöcher — 315260 cm⁴ (Fig. 187). Für die vier Balken ergibt sich also J = 0.0126 m⁴. Der wagerechte Schiffsquerschnitt sei F = 100 m² und die Stützweite l = 12 m. Mit $E = 215 \cdot 10^5$ t/m² erhält man

die Verkehrslast (Menschengedränge) 450 kg/m²; es

$$\alpha = \frac{6 EJ}{\gamma F l^3} = \frac{6 \cdot 215 \cdot 1260}{1.0 \cdot 100 \cdot 12^3} = 9.4,$$

4 + 6\alpha = 60.4, 1 - 4\alpha = - 36.6.

1. Einflußlinien für die Stützenmomente. Die auf Seite 75 entwickelten Beziehungen zwischen den Stützenmomenten gehen über in

$$\begin{array}{c} 60,4\ M_1 - 36,6\ M_2 + 9,4\ M_3 = Z_1 \\ - 36,6\ M_1 + 60,4\ M_2 - 36,6\ M_3 + 9,4\ M_4 = Z_2 \\ 9,4\ M_1 - 36,6\ M_2 + 60,4\ M_3 - 36,6\ M_4 + 9,4\ M_5 = Z_3 \\ 9,4\ M_2 - 36,6\ M_3 + 60,4\ M_4 - 36,6\ M_5 + 9,4\ M_6 = Z_4 \\ 9,4\ M_3 - 36,6\ M_4 + 60,4\ M_5 - 36,6\ M_6 \\ = Z_5 \\ 9,4\ M_4 - 36,6\ M_5 + 60,4\ M_6 \\ = Z_6. \end{array}$$

Ihre Auflösung liefert*)

$$\begin{split} M_1 &= 0,03\,004\,Z_1 + 0,02\,575\,Z_2 + 0,01\,360\,Z_3 + 0,00\,449\,Z_4 \\ &\quad + 0,00\,029\,Z_5 - 0,00\,053\,Z_6 \\ M_2 &= 0,02\,575\,Z_1 + 0,05\,210\,Z_2 + 0,03\,742\,Z_3 + 0,01\,753\,Z_4 \\ &\quad + 0,00\,498\,Z_5 + 0,00\,029\,Z_6 \\ M_3 &= 0,01\,360\,Z_1 + 0,03\,742\,Z_2 + 0,05\,826\,Z_3 + 0,03\,941\,Z_4 \\ &\quad + 0,01\,753\,Z_5 + 0,00\,449\,Z_6 . \end{split}$$

Damit sind die Stützenmomente auf die Form gebracht

 $M_i = \beta_{i1}Z_1 + \beta_{i2}Z_2 + \beta_{i3}Z_3 + \beta_{i4}Z_4 + \beta_{i5}Z_5 + \beta_{i6}Z_6,$ und es ergibt sich für die Ordinate η_{ir} der M_{ig} -Linie im Stützpunkte r der Ausdruck

$$\eta_{ir} = \alpha l \left(-\beta_{i(r-1)} + 2\beta_{ir} - \beta_{i(r+1)} \right)$$

wo $\alpha l = 9, 4 \cdot 12 =$ rund 113 ist. Man erhält

*) Vgl. die Anmerkung auf Seite 201.

für das Moment M_1 :

$\eta_{1 \cdot 0} = 113$ (3004) = -3,39 m
$\eta_{1\cdot 1} = 113$ (+2.0,03004-0,02	(2575) = +3,88
$\eta_{1\cdot 2} = 113 (-0.0300)$	$4 + 2 \cdot 0,02575 - 0,01$	(360) = +0,89
$\eta_{1\cdot 3} = 113 (-0.0257)$	$5 + 2 \cdot 0,01360 - 0,00$	(449) = -0.34
$\eta_{1\cdot 4} = 113 (-0.01360)$	$0 + 2 \cdot 0,00449 - 0,00$	(0029) = -0.55
$\eta_{1\cdot 5} = 113 (-0.0044)$	$9 + 2 \cdot 0,00029 + 0,0000000000000000000000000000000000$	(0053) = -0.38
$\eta_{1\cdot 6} = 113 (-0,0002)$	$9 - 2 \cdot 0,00053$) = -0,15
$\eta_{1.7} = 113 (+ 0,0005)$	3) = + 0,06,

für das Moment M_2 :

$\eta_{2 \cdot 0} = 113$ (0,02	575) = -2,91
$\eta_{2 \cdot 1} = 113$ (+2.0,02575-0,05	210) = -0.07
$\eta_{2 \cdot 2} = 113 (-0.02575)$	$+2 \cdot 0,05210 - 0,03$	742) = +4,64
$\eta_{2\cdot 3} = 113 (-0.05210)$	$+2 \cdot 0,03742 - 0,01$	(753) = +0,59
$\eta_{2\cdot 4} = 113 (-0.03742)$	$+2 \cdot 0,01753 - 0,00$	498) = -0,83
$\eta_{2.5} = 113 (-0.01753)$	+2.0,00498-0,00	(029) = -0.89
$\eta_{2\cdot 6} = 113 (-0,00498)$	+2.0,00029) = - 0,50
$\eta_{2.7} = 113 (-0.00029)$	The TAR AND THE) = -0.03

für das Moment M_3 :

$\eta_{3\cdot 0} = 113$ (0) = -1,54
$\eta_{3\cdot 1} = 113$ (+2.0,01360-0,0374	(2) = -1,15
$\eta_{3\cdot 2} = 113 (-0.01360)$	+2.0,03742-0,0582	(6) = +0,34
$\eta_{3\cdot 3} = 113 (-0.03742)$	+2.0,05826-0,0394	1) = +4,48
$\eta_{3\cdot 4} = 113 (-0.05826)$	+2.0,03941 - 0,0175	(3) = +0,34
$\eta_{3\cdot 5} = 113 (-0.03941)$	+2.0,01753-0,0044	9) = -1,00
$\eta_{3\cdot 6} = 113 (-0.01753)$	+2.0,00449) = -0,97
$\eta_{3\cdot 7} = 113 (-0.00449)$) = -0,51.

Zu den Ordinaten der durch diese Strecken η bestimmten Polygone (Fig. 188, 189, 190), die wir kurz die η -Polygone nennen wollen, werden nun die Strecken

$$\zeta_{ir} = - \left(\beta_{i(r-1)} \operatorname{tg} \varphi_L + \beta_{ir} \operatorname{tg} \varphi_R\right) \tilde{t}$$

addiert, wo

tg
$$\varphi_L = \frac{\xi'}{l} - \frac{\xi'^3}{l^3}$$
 und tg $\varphi_R = \frac{\xi}{l} - \frac{\xi^3}{l^3}$

Zahlen sind, die mit den Zahlen ω_D übereinstimmen*). Die auf diese Weise gewonnenen, aus je zwei stetig gekrümmten Zweigen bestehenden

^{*)} Man vergleiche Seite 70, 71 und 75.

Müller-Breslau, Graphische Statik. II. 2.

M-Linien weichen nun bei Schiffbrücken in der Regel so wenig von den η -Polygonen ab, daß es genügt, für jede Öffnung eine Ordinate, und zwar die der Mitte entsprechende zu berechnen. Für $\xi = \xi' = \frac{1}{2}l$ ist

tg
$$\varphi_L =$$
 tg $\varphi_R = \frac{1}{8}$. Das gibt mit $l = 12,0^m$
 $\zeta_{ir} = -4,5 \; (\beta_{i(r-1)} + \beta_{ir}),$

und z. B. für das Moment M_1 :

 $\begin{array}{l} \zeta_{1\cdot1} = - \ 4,5 \ (\ \ + \ 0,03\ 004) = - \ 0,14\ \mathrm{m} \\ \zeta_{1\cdot2} = - \ 4,5 \ (+ \ 0,03\ 004 \ + \ 0,02\ 575) = - \ 0,25 \\ \zeta_{1\cdot3} = - \ 4,5 \ (+ \ 0,02\ 575 \ + \ 0,01\ 360) = - \ 0,18 \\ \zeta_{1\cdot4} = - \ 4,5 \ (+ \ 0,01\ 360 \ + \ 0,00\ 449) = - \ 0,08 \\ \zeta_{1\cdot5} = - \ 4,5 \ (+ \ 0,00\ 449 \ + \ 0,00\ 029) = - \ 0,02 \\ \zeta_{1\cdot6} = - \ 4,5 \ (+ \ 0,00\ 029 \ - \ 0,00\ 053) = + \ 0,00 \\ \zeta_{1\cdot7} = - \ 4,5 \ (- \ 0,00\ 053 \) = + \ 0,00. \end{array}$

Ebenso erhält man für M_2 und M_3 die Zahlen: $\zeta_2 = -0.12; -0.35; -0.40; -0.25; -0.10; -0.03; -0.00,$ $\zeta_3 = -0.06; -0.23; -0.43; -0.43; -0.26; -0.10; -0.02.$

Nach Aufzeichnung der Einflußlinien für die Stützenmomente lassen sich auch die Einflußlinien für die übrigen Momente M leicht angeben. Für einen Querschnitt der Öffnung (r-1)-r, im Abstande x von (r-1) und x' von r erhält man

$$M = M_o + \frac{M_{r-1}}{l_r} x' + \frac{M_r}{l_r} x.$$

Es genügt, die Momente für die in den Mitten der einzelnen Öffnungen liegenden Querschnitte darzustellen. Man erhält dann

$$M = M_o + \frac{1}{2} (M_{r-1} + M_r).$$

Die Mo-Fläche ist ein Dreieck von der Höhe

$$\frac{1}{4}l = 3,0^m.$$

Die Figuren 191—193 zeigen die Einflußlinien für die den Mitten der Öffnungen 1—2, 2—3 und 3—4 entsprechenden Momente M_{II} , M_{III} und M_{IV} . Die Ausrundung der Einflußlinien der Stützenmomente mittels der verhältnismäßig kleinen Strecken ζ ist hierbei unterblieben; es wurden nur die η -Polygone benutzt. Dieses, durch große Einfachheit sich auszeichnende Verfahren ist zulässig, sobald, wie im vorliegenden Falle, der Inhalt des positiven Teiles der *M*-Fläche größer ist als der Inhalt des negativen Teiles, weil dann die Vernachlässigung der ζ die Sicherheit des Bauwerks erhöht. Der mit dieser Rechnungsweise

Fig. 191-193.

verbundene Zuschlag zu den Momenten ist aber auch aus einem anderen Grunde zweckmäßig. Die aufgestellte Theorie setzt ruhendes Wasser voraus, während in Wirklichkeit durch Wellen Schiffsverschiebungen e'entstehen können, die zwar in den allgemeinen Gleichungen berücksichtigt sind, die sich aber schwer schätzen lassen.

2. Einflußlinien für die Querkräfte. Für die Querkraft eines Querschnittes der Öffnung (r-1)-r gilt die Formel

$$Q = Q_o + \frac{M_r - M_{r-1}}{l},$$

sie liefert für die Querkraft des unmittelbar rechts neben der Stütze 2 gelegenen Querschnitts die in Fig. 194 dargestellte Einflußlinie ABCDEF. Zur Aufzeichnung dieser Linie wurden nur die η -Polygone benutzt; diese liefern die den Stützpunkten 0, 1, 2, ... entsprechenden Ordinaten

$$\frac{M_3 - M_2}{12,0} = \frac{-1.54 + 2.91}{12,0} = +0.11$$
$$\frac{-1.15 + 0.07}{12,0} = -0.09 \text{ u. s. w.}$$

Für den Punkt 2 ist $Q_o = 1,0$, für alle übrigen $Q_o = 0$. Die so gefundenen Ordinaten wurden durch stetige Kurven BC und DE verbunden. Zu den Koppelträgern A - 0 und B - 7 gehören gerade Einflußlinien.

Für die Querkraft des unmittelbar links von Stütze 3 gelegenen Querschnitts ergibt sich die Einflußlinie ABC'D'EF. Die Linien CC'und DD' haben überall den lotrechten Abstand Eins; sie bestimmen die Einflußlinien für die Querkräfte sämtlicher Querschnitte der Öffnung 2—3. Für die Querkraft Q_m des Querschnitts m erhält man die Einflußlinien ABC''D''EF.

3. Einflußlinien für die Stützenwiderstände. Der Widerstand der Stütze 0 ist

$$C_o = C_{oo} - \frac{M_1}{l} \cdot$$

Für den Stützpunkt 0 ist $C_{oo} = 1$, für alle übrigen $C_{oo} = 0$. Die mit Hilfe des η_1 -Polygons berechnete C_o -Linie zeigt Fig. 195. In den Figuren 196—198 sind, ebenfalls lediglich mit Hilfe der η -Polygone die Einflußlinien für

$$C_{1} = C_{o1} + \frac{M_{2} - 2M_{1}}{l},$$

$$C_{2} = C_{o2} + \frac{M_{1} + M_{3} - 2M_{2}}{l},$$

$$C_{3} = C_{o3} + \frac{M_{2} + M_{4} - 2M_{3}}{l}$$

dargestellt worden.

m 3 4 5 A EC. C, C_2 C' C 0.36 B 0.64 D 11" T 0.05 0.32 +0,72 C_-Linie 100-V+0,24 0.32 0,35 C,-Linie 0.03 00 40,24 +0,25 +0.07 +0,33 C2-Linie +0,25 0,05 +0,03

4. Einfluß des Eigengewichts. Ist die Brücke unbelastet, so mögen die Stützpunkte in ein und derselben Wagerechten liegen. Durch ein-

Fig. 194-198.

C.-Linie

+0,11

stellbare Lager oder Regelung der Höhenlage der Schiffe mittels Ballast läßt sich diese Forderung stets erfüllen. Der Einfluß der ständigen Belastung g wird dann wie bei einem Balken auf starren Stützen be-

stimmt. Wir benutzen die Clapeyronschen Gleichungen, sie lauten für gleich große Stützweiten und gleichmäßige Belastung

$$\begin{split} 4\,M_1 + M_2 &= -\,\frac{g\,l^2}{2}\,,\\ M_1 + 4\,M_2 + M_3 &= -\,\frac{g\,l^2}{2}\,,\\ M_2 + 4\,M_3 + M_4 &= -\,\frac{g\,l^2}{2}\,, \end{split}$$

wo wegen der Symmetrie $M_4 = M_3$ ist, und liefern:

$$M_{1} = -\frac{15 g l^{2}}{142} = -15,2 g,$$

$$M_{2} = -\frac{11 g l^{2}}{142} = -11,2 g,$$

$$M_{3} = -\frac{12 g l^{2}}{142} = -12,2 g.$$

Die Stützenwiderstände infolge des Eigengewichts sind

$$C_{0} = gl + \frac{M_{1}}{l} = 10,7 g,$$

$$C_{1} = gl + \frac{M_{2} - 2M_{1}}{l} = 13,6 g,$$

$$C_{2} = gl + \frac{M_{1} + M_{3} - 2M_{2}}{l} = 11,6 g,$$

$$C_{3} = gl + \frac{M_{2} - M_{3}}{l} = 12,1 g.$$

5. Beanspruchung des Balkens. Das größte Moment erhält man für den Querschnitt III in der Mitte der Öffnung 2-3. Der Inhalt des positiven Teiles der M_{III} -Fläche ist rund 74 m². Die ständige Last erzeugt

$$M = \frac{gl^2}{8} + \frac{M_2 + M_3}{2} = 6,3 g,$$

im ganzen entsteht also

 $M = 74 p + 6.3 g = 74 \cdot 2.7 + 6.3 \cdot 1.8 = 211 \text{ tm} = 21100 \text{ tcm}.$

Das Widerstandsmoment des Querschnitts eines Blechbalkens ist, nach Abzug der Nietlöcher, W = 5990. Die Balken werden daher beansprucht mit

$$\sigma = \frac{21100}{4 \cdot 5990} = 0.88 \text{ t/cm}^2.$$

6. Einsenkungen der Schiffe infolge der Verkehrslast. Die Inhalte der positiven Teile der Einflußflächen der Stützenwiderstände C_0, C_1, C_2, C_3 sind

$$13,0$$
 $12,5$ $12,5$ $13,2.$

Der wagerechte Schiffsquerschnitt ist $F = 100 \text{ m}^2$. Die größte Einsenkung beträgt daher

$$\frac{13,2\ p}{100} = \frac{13,2\cdot 2,7}{100} = 0,36^{m}.$$

7. Wir wollen schließlich noch die η -Polygone für den Fall angeben, daß der Balken nur auf 6 Schiffen ruht. Die Rechnung läßt sich hier leicht in Buchstaben durchführen. Setzt man zur Abkürzung

$$4\alpha - 1 = \alpha', \quad 4 + 6\alpha = \alpha'',$$

so lauten die aufzulösenden Gleichungen:

$$lpha'' M_1 - lpha' M_2 + lpha M_3 = Z_1 \ - lpha' M_1 + lpha'' M_2 - lpha' M_3 + lpha M_4 = Z_2 \ lpha M_1 - lpha' M_2 + lpha'' M_3 - lpha' M_4 = Z_3 \ lpha M_2 - lpha' M_3 + lpha'' M_4 = Z_4.$$

Addiert man die erste Gleichung zur letzten, die zweite zur dritten, so erhält man

$$\begin{array}{c} \alpha^{\prime\prime} \left(M_{1} + M_{4} \right) - \left(\alpha^{\prime} - \alpha \right) \left(M_{2} + M_{3} \right) = Z_{1} + Z_{4} \\ \left(\alpha^{\prime} - \alpha \right) \left(M_{1} + M_{4} \right) + \left(\alpha^{\prime\prime} - \alpha^{\prime} \right) \left(M_{2} + M_{3} \right) = Z_{2} + Z_{3}. \end{array}$$

Durch Subtraktion der entsprechenden Gleichungen entsteht:

$$\alpha'' (M_1 - M_4) - (\alpha' + \alpha) (M_2 - M_3) = Z_1 - Z_4 - (\alpha' + \alpha) (M_1 - M_4) + (\alpha'' + \alpha') (M_2 - M_3) = Z_2 - Z_3.$$

Die Nennerdeterminanten dieser beiden Gruppen von Gleichungen sind:

$$\Delta = \alpha'' (\alpha'' - \alpha') - (\alpha' - \alpha)^2$$

$$\Delta' = \alpha'' (\alpha'' + \alpha') - (\alpha' + \alpha)^2.$$

Nach Berechnung der Zahlen

findet man

$$\begin{split} & M_1 = \left(\phi_1 + \phi_1' \right) Z_1 + \left(\phi_2 + \phi_2' \right) Z_2 + \left(\phi_2 - \phi_2' \right) Z_3 + \left(\phi_1 - \phi_1' \right) Z_4 \\ & M_2 = \left(\phi_2 + \phi_2' \right) Z_1 + \left(\phi_3 + \phi_3' \right) Z_2 + \left(\phi_3 - \phi_3' \right) Z_3 + \left(\phi_2 - \phi_2' \right) Z_4. \\ & \text{Mit } \alpha = 9,4 \text{ entsteht:} \end{split}$$

$$\begin{split} M_1 &= 0,03\,001\,Z_1 + 0,02\,564\,Z_2 + 0,01\,335\,Z_3 + 0,00\,410\,Z_4 \\ M_2 &= 0,02\,564\,Z_1 + 0,05\,136\,Z_2 + 0,03\,472\,Z_3 + 0,01\,335\,Z_4. \end{split}$$

Aus den Ziffern dieser Gleichungen ergeben sich nun die folgenden γ_1 -Polygone für die Momente M_1 und M_2 .

Stützpunkt	0	1	2	3	4	5
$\eta_{1r} =$	- 3,39	+3,88	+0,89	-0,34	-0,58	-0,46
$\eta_{2r} =$	- 2,90	0,01	+4,79	+0,53	-0,91	- 1,51.

Führt man mit Hilfe dieser Werte die weitere Rechnung auf dem vorhin beschriebenen Wege durch, so findet man, daß sich die Beanspruchung des Balkens und die Einsenkungstiefen der Schiffe durch die Verminderung der Schiffszahl nur unwesentlich ändern.

Einfache Näherungsformeln für Schiffbrücken findet man im § 15, Nr. 74.

Anmerkung. Die praktische Berechnung eines Balkens auf einer großen Zahl von Stützen wird durch die Tatsache sehr erleichtert, daß der Einfluß der Belastung einer Öffnung nach beiden Seiten hin rasch abnimmt und nur für die nächsten Öffnungen noch wesentlich ins Gewicht fällt. In der Regel wird es bei gleichen Stützweiten und gleich beschaffenen Stützen genügen, wie im vorliegenden Beispiele, einen Balken auf 8 Stützen zu untersuchen. Es treten dann 6 unbekannte Stützenmomente auf und es führt das in Nr. 22 beschriebene Verfahren zu der Aufgabe, zwei Gruppen von je drei Gleichungen mit je drei Unbekannten aufzulösen. Es möge daher ein bequemes und übersichtliches Schema für die Lösung dieser Aufgabe mitgeteilt werden*). Es liegen die Gleichungen vor:

(1)
$$\begin{cases} +8x_1 - 7x_2 - x_3 = A \\ +2x_1 + 3x_2 + 4x_3 = B \\ -6x_1 + 5x_2 + 9x_3 = C. \end{cases}$$

Man schreibe die Zahlen der zweiten Gleichung, mit dem zweiten Gliede beginnend, in der zyklischen Reihenfolge +3, +4, +2, +3 hin und setze darunter, immer mit dem zweiten Gliede beginnend, die Zahlen der dritten, ersten und zweiten Gleichung. Am Kreuzungspunkte der die Zahlen +3, +9 und +5, +4 verbindenden Linien trage man den Wert der aus diesen vier Zahlen gebildeten Determinante $+3 \cdot 9 - 5 \cdot 4 = +7$ ein und fülle in dieser Weise das Schema aus.

150 14	+3 $+4$ $+2$ $+3$
(A)	+7 -42 $+28$
	+5 +9 -6 +5
(B)	+58 + 66 + 2
100	-7 -1 $+8$ -7
(0)	-23 - 34 + 38
The day	+3 $+4$ $+2$ $+3$

Bezeichnet man nun die Nennerdeterminante der drei Gleichungen mit D, so erhält man

*) Übernommen aus des Verfassers "Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen". Dritte Auflage, 1904.

Zweiter Abschnitt. - § 13.

$$Dx_1 = + 7 A + 58 B - 25 C$$

$$Dx_2 = -42 A + 66 B - 34 C$$

$$Dx_3 = +28 A + 2 B + 38 C.$$

Zur Berechnung von D stehen drei Ansätze zur Verfügung:

$$D = + 7 \cdot 8 + 58 \cdot 2 + 25 \cdot 6 = 322$$

$$D = + 42 \cdot 7 + 66 \cdot 3 - 34 \cdot 5 = 322$$

$$D = -28 \cdot 1 + 2 \cdot 4 + 38 \cdot 9 = 322$$

Der erste Ansatz entsteht durch Multiplikation der Zahlen +7, +58, +25der ersten senkrechten Determinantenreihe mit den entsprechenden Zahlen +8, +2, -6 der ersten senkrechten Koeffizientenreihe der Gleichungen (I). Und in ähnlicher Weise ergeben sich die beiden anderen Ansätze für D aus den zweiten und dritten senkrechten Reihen.

Zur Prüfung der Zahlenrechnung empfiehlt sich die dreimalige Ermittlung von D.

Sind die n Stützweiten nicht gleich groß, die Stützen nicht gleich beschaffen und fehlt die Symmetrie, so ist die folgende Auflösung der (n-1) Elastizitätsgleichungen im allgemeinen die zweckmäßigste.

Man nimmt zunächst M_1 und M_2 bekannt an, berechnet mit Hilfe der ersten Elastizitätsgleichung das Moment M_3 , hierauf mittels der zweiten Gleichung das Moment M_4 u. s. f., bis man aus der $(n-3)^{\text{ten}}$ Gleichung das Moment M_{n-1} gefunden hat. Auf diese Weise erhält man M_3 bis M_{n-1} als lineare Funktionen von M_1 und M_2 und kann nunmehr diese beiden Momente mit Hilfe der noch zur Verfügung stehenden $(n-2)^{\text{ten}}$ und $(n-1)^{\text{ten}}$ Elastizitätsgleichung berechnen.

§ 13.

Balken auf sehr vielen starren oder elastisch senkbaren Stützen.

62. Im vorigen Paragraphen zeigte sich bei der Berechnung eines Balkens unveränderlichen Querschnitts, der auf vielen gleichartigen, in gleichen Abständen angeordneten Stützen ruht, daß die Beanspruchung der einzelnen Öffnungen nahezu gleich und unabhängig von der Anzahl der Stützen ist. Es genügt dann, eine Mittelöffnung und die erste Öffnung zu untersuchen. Fälle dieser Art kommen ziemlich häufig vor, nicht nur bei Schiffbrücken. Es möge deshalb die Berechnung derartiger Balken noch etwas weiter ausgeführt werden.

1. Balken auf starren Stützen.

63. Untersuchung einer Mittelöffnung. Für die Zahlen \varkappa_1 , \varkappa_2 , \varkappa_3 , ... eines auf starren Stützen ruhenden Balkens gilt bei gleich großen Stützweiten l nach Gleichung (7), Seite 116, die Formel

$$x_{k+1} = 4 - \frac{1}{x_k}$$

Balken auf sehr vielen starren oder elastisch senkbaren Stützen. 203

Man erhält der Reihe nach

 $x_2 = 4, \ x_3 = \frac{15}{4} = 3,75, \ x_4 = \frac{56}{15} = 3,7333, \ x_5 = \frac{\frac{209}{224}}{56} = 3,7321$

und erkennt, daß sich diese Werte schnell der durch die Gleichung

bestimmten festen Grenze nähern:

(3)
$$\varkappa = 2 + \sqrt{3} = 3,7321.$$

Man kann also eine beliebige Offnung (r-1) - r herausgreifen, ihre Festpunkte L und R mit Hilfe der Strecken

(4)
$$a = a' = \frac{l}{1+\varkappa} = \frac{l}{6} \left(3 - \sqrt{3} \right) = 0,2113 l$$

bestimmen, den Einfluß der Belastung dieser Öffnung auf die Stützenmomente M_{r-1} und M_r angeben und schließlich nach Fig. 49 die Momentenlinien für die übrigen Öffnungen ermitteln, wobei man sich auf wenige Öffnungen beschränken darf, weil der Einfluß der belasteten Öffnung nach beiden Seiten hin rasch abnimmt.

Der Einfluß einer zwischen den Stützen (r-1) und r im Abstande x von r-1 ruhenden Einzellast P=1 auf das Moment M_r ist nach § 10, Gleichung (13),

$$(5) M_r = -u'\omega_D + 3v\omega_R$$

wo

(6)
$$u' = u = \frac{al}{c} = \frac{al}{l-2a} = \frac{l}{\chi-1} = 0.3660 l,$$

(7)
$$v = \frac{a^2}{c} = u \frac{a}{l} = \frac{l}{\chi^2 - 1} = 0,0774 \, l.$$

Die Zahlen ω_D , ω_R finden sich in der Tabelle auf Seite 105. Man erhält für

 $\frac{\xi}{l} = 0,2 \qquad 0,4 \qquad 0,5 \qquad 0,6 \qquad 0,8$ $\frac{M_r}{l} = -0,0333 \qquad -0,0675 \qquad -0,0795 \qquad -0,0858 \qquad -0,0684.$

Wie man aus der M_r-Linie die übrigen Einflußlinien herleiten kann, ist in den vorhergehenden Paragraphen mehrfach beschrieben worden.

Ist die Öffnung (r - 1) - r gleichmäßig mit p für die Längeneinheit belastet, so entsteht

$$M_r = \left(-u \int_{o}^{t} \omega_D dx + 3v \int_{o}^{t} \omega_R dx\right) p = \frac{pl}{4} (-u + 2v),$$

und dieser Ausdruck läßt sich umformen in

(8)
$$M_r = -\frac{pl^2}{4(x+1)} = -\frac{pla}{4}$$
.

Ebenso groß ist auch das Moment M_{r-1} am linken Ende des belasteten Feldes.

Der Einfluß der Belastung der Öffnung l_r^*) auf die Stützenmomente rechts von r ist

$$\begin{split} M_{r+1} &= -M_r \frac{1}{\varkappa}, \quad M_{r+2} = -M_r \frac{1}{\varkappa} = +M_r \frac{1}{\varkappa^2}, \\ M_{r+3} &= -M_r \frac{1}{\varkappa^3}, \quad M_{r+4} = +M_r \frac{1}{\varkappa^4}, \text{ u. s. w.} \end{split}$$

und links von der Öffnung l, entstehen

$$M_{r-2} = M_{r+1}, \quad M_{r-3} = M_{r+2}, \text{ u. s. w.}$$

Das Moment M_r nimmt nun den größten negativen Wert an, wenn rechts von r die Öffnungen l_{r+1} , l_{r+3} , l_{r+5} , ... belastet werden und links von r die Öffnungen l_r , l_{r-2} , l_{r-4} , ... Man erhält:

$$M_{r} = -2 \cdot \frac{pla}{4} - 2 \cdot \frac{pla}{4} \left(\frac{1}{\varkappa^{2}} + \frac{1}{\varkappa^{4}} + \frac{1}{\varkappa^{6}} + \dots \right),$$

$$M_{r} = -\frac{pla}{2} - \frac{pla}{2} \cdot \frac{1}{\varkappa^{2} - 1}; \text{ das gibt}$$

9)
$$M_{r} = -\frac{pa(l+v)}{2},$$

und nach Einsetzen der für a und v gefundenen Werte

(10) $M_r = -0.1138 \ pl^2.$

Das größte positive Moment entsteht in der Mitte der Öffnung. Die fragliche Öffnung ist voll zu belasten. Die Nachbaröffnungen bleiben unbelastet. Die folgenden Öffnungen sind abwechselnd belastet und unbelastet anzunehmen. Es ergibt sich

$$max M = \frac{pl^2}{8} + M_1,$$

$$M_r = -\frac{pla}{4} + 2\frac{pla}{4} \left[\frac{1}{\varkappa^2} + \frac{1}{\varkappa^4} + \frac{1}{\varkappa^6} + \dots\right]$$

$$= -\frac{pla}{4} + \frac{pla}{2} \frac{1}{\varkappa^2 - 1},$$

mithin

(11)
$$_{max}M = \frac{pl^2}{8} - \frac{pla}{4} \left(1 - \frac{2v}{l}\right) = 0,0804 \ pl^2.$$

*) Der Zeiger gibt nur die Lage der Öffnung gegen die Stütze r an.
Der Druck C auf Stütze r wird am größten bei der das größte negative Moment M_r erzeugenden Belastung. In die Formel

$$C = C_o + \frac{2\left(M_{r-1} + M_r\right)}{l}$$

hat man einzusetzen:

$$C_o = pl,$$

 $M_r = - \frac{pa (l + v)}{2}$ (nach Gleichung 9),

$$M_{r-1} = -\frac{pal}{4} + 2\frac{pal}{4} \left[\frac{1}{\varkappa} + \frac{1}{\varkappa^3} + \frac{1}{\varkappa^5} + \dots \right]$$

= $-\frac{pal}{4} + \frac{pal}{2\varkappa} \left(1 + \frac{1}{\varkappa^2 - 1} \right) = -\frac{pal}{4} + \frac{pa(l+\nu)}{2\varkappa}$

Das erste Glied von M_{r-1} berücksichtigt den Einfluß der Belastung der Öffnung l_r , das zweite den Einfluß der Belastung der übrigen Öffnungen. Man findet schließlich

(12)
$$_{max}C = pl\left(1 + \frac{1}{2x - 2}\right) = 1,183 pl.$$

M

Sehr einfach gestaltet sich die Ermittlung des Einflusses einer gleichförmigen ständigen Belastung g für die Längeneinheit. Das Balkenstück l_r verhält sich wie ein an beiden Enden wagerecht eingespannter Stab; es entsteht also nach Seite 31

$$(13) M_r = -\frac{gt^2}{12}$$

und in der Mitte von l.:

(14)

$$=+\frac{gl^2}{24}$$
.

Ferner ist

(15)

$$C = gl.$$

Da für den mittleren Teil des Balkens die vom Eigengewicht herrührenden Stützenmomente gleich groß angenommen werden dürfen, so folgt der oben für M_r angegebene Wert auch aus der Gleichung

$$M_r + 4M_r + M_r = \frac{N}{l} = \frac{gl^2}{2}$$

In derselben Weise findet man den Einfluß des Temperaturunterschiedes $t_u - t_o$, mittels Gleichung (8), Seite 36:

(16)
$$M_r = \frac{N}{6l} = -\frac{\varepsilon EJ(t_u - t_o)}{h}.$$

Die Biegungsspannung infolge dieser Wärmeschwankung beträgt

(17)
$$\sigma = \pm \frac{M_r h}{2J} = \mp \frac{1}{2} \varepsilon E (t_u - t_o).$$

64. Die erste Öffnung. Der Festpunkt R der ersten Öffnung liegt im Abstande

$$a = \frac{l}{1+\varkappa} = 0,2113 \ l$$

von Stütze 1. Man erhält für eine in der ersten Öffnung im Abstande x von Stütze 0 angreifende Last 1

(18) $M_1 = -u_1' \omega_D = -a \frac{l}{l-a} \omega_D = -\frac{l}{\varkappa} \omega_D$. Das gibt (19) $\frac{M_1}{l} = -(2-\sqrt{3}) \omega_D = -0.2679 \omega_D$.

$$Zu - \frac{x}{l} = 0,2 \qquad 0,4 \qquad 0,5 \qquad 0,6 \qquad 0,8$$

gehört
$$\frac{M_1}{l} = -0.0514 - 0.0900 - 0.1005 - 0.1034 - 0.0772.$$

Im zweiten Felde liegt R im Abstande a von Stütze 2. Dagegen hat L_2 von 1 den Abstand

$$a_{2} = \frac{l}{1 + \varkappa_{2}} = \frac{l}{1 + 4} = 0,2 l.$$

findet $c_{2} = l - a - a_{2} = 0,5887 l,$
 $u_{2}' = a \frac{l}{c_{2}} = \frac{0,2113}{0,5887} l = 0,3589 l,$
 $v = \frac{aa_{2}}{c_{2}} = \frac{0,2 \cdot 0,2113}{0.5887} l = 0,0758 l.$

und für eine Last 1 im Abstande x von Stütze 2

(20)
$$\frac{M_1}{l} = -u_2'\omega_D + 3v\omega_R,$$
$$\frac{M_1}{l} = -0.3589\omega_D + 0.2274\omega_R.$$
$$Zu \quad \frac{x}{l} = 0.2 \qquad 0.4 \qquad 0.5 \qquad 0.6 \qquad 0.8$$

gehört $\frac{M_1}{l} = -0.0325 - 0.0660 - 0.0777 - 0.0840 - 0.0665.$

Diese M_1 -Linie unterscheidet sich von der M_1 -Linie der Mittelfelder so wenig, daß sie durch letztere ersetzt werden darf, zum mindesten, wenn es sich um den Einfluß einer gleichförmigen Belastung p handelt. Wir rechnen also für gleichförmige Belastung der zweiten Öffnung:

$$M_1 = -\frac{pla}{4}$$

206

Man

und für gleichförmige Belastung der 4^{ten}, 6^{ten}, 8^{ten} u. s. w. Öffnung: $M_1 = -\frac{pla}{4} \left[\frac{1}{\varkappa^2} + \frac{1}{\varkappa^4} + \frac{1}{\varkappa^6} + \ldots \right] = -\frac{pla}{4 (\varkappa^2 - 1)} = -\frac{pav}{4} \cdot$ ch i ber in Palate and the comparison of the formula of the formul

Gleichförmige Belastung der ersten Öffnung liefert

$$M_1 = -\frac{pl}{\varkappa} \int_0^t \omega_D dx = -\frac{pl^2}{4\varkappa}.$$

Durch Zusammensetzung dieser Belastungen erhalten wir

(21)
$$_{min}M_1 = -\frac{pl^2}{4\kappa} - \frac{pa(l+v)}{4} = -0,1240 pl^2.$$

Um nun für das Endfeld das größte positive Moment zu erhalten, belasten wir die erste, dritte, fünfte u. s. w. Öffnung und finden zunächst

$$M_{1} = -\frac{pl^{2}}{4\varkappa} + \frac{pla}{4} \left(\frac{1}{\varkappa} + \frac{1}{\varkappa^{3}} + \frac{1}{\varkappa^{5}} + \dots \right)$$
$$= -\frac{pl^{2}}{4\varkappa} + \frac{plav}{4} \varkappa = -0.05174 \, pl^{2}.$$

Der Druck A auf die Endstütze ist für diese Belastung

(22)
$${}_{max}A = \frac{pl}{2} + \frac{M_1}{l} = 0,4483 \ pl.$$

Im Abstande x von A entsteht

$$M = Ax - \frac{px^2}{2}$$

und dieser Wert wird ein Maximum für $x=rac{A}{p}\cdot$ Man erhält

(23)
$${}_{max}M = \frac{A^2}{2p} = 0,1005 \ pl^2.$$

Das Stützenmoment M_1 infolge einer gleichförmigen ständigen Belastung q ist

$$M_{1} = -\frac{gl^{2}}{4\varkappa} - \frac{gal}{4} \left(1 - \frac{1}{\varkappa} + \frac{1}{\varkappa^{2}} - \frac{1}{\varkappa^{3}} + \frac{1}{\varkappa^{4}} - + \dots \right)$$
$$= -\frac{gl^{2}}{4\varkappa} - \frac{gav}{4} \frac{\varkappa}{\varkappa + 1} = -\frac{gl^{2}}{4\varkappa} - \frac{ga^{2}\varkappa}{4} \cdot$$

Es ergibt sich

(24)
$$M_1 = -0.1097 \ gl^2.$$

Der Druck auf die Endstütze ist

(25)
$$A = \frac{gl}{2} + \frac{M_1}{l} = 0,3903 \, gl.$$

Zweiter Abschnitt. — § 13.

2. Balken auf elastischen Stützen.

65. Untersuchung des Stützenmomentes und Stützendruckes im mittleren Teile des Balkens. Die Bezifferung der Stützpunkte zeigt Fig. 199. Ist die Anzahl der Stützen sehr groß, so darf die Lotrechte durch den der Mitte zunächst gelegenen Stützpunkt 1 als Symmetrieachse aufgefaßt werden. Das Moment M_1 nimmt dann die Form an:

(26) $M_1 = \ldots + \beta_3 Z_{3'} + \beta_2 Z_{2'} + \beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_3 + \ldots$ Hinsichtlich der Bezeichnungen verweisen wir auf Seite 75.

Die Gleichungen, denen die Stützenmomente genügen müssen, lauten:

Wir multiplizieren nun die vorstehenden Gleichungen der Reihe nach mit . . . β_3 , β_2 , β_1 , β_2 , β_3 , . . ., addieren sie, ordnen die linke Seite der erhaltenen Gleichung nach den Momenten, setzen den Faktor von M_1 gleich 1, die Faktoren aller übrigen Momente gleich Null und gewinnen dann außer der Gleichung (26) die zur Berechnung der β dienenden Gleichungen:

Sind mit Hilfe dieser Gleichungen die Werte β gefunden worden, so lassen sich alle Fragen, die bei der Untersuchung der Momente auftreten, schnell beantworten.

Multipliziert man die Glieder der zweiten Differenzenreihe der β mit — αl , so erhält man die den Stützpunkten entsprechenden Ordinaten η der Einflußlinie für M_1 und kann nunmehr mit Hilfe der β und der

Zahlen ω_D und ω_R für eine beliebige Stelle zwischen zwei Stützen die Ordinate der M_1 -Linie berechnen*). Man kann aber auch, ohne erst die Einflußlinien zeichnen zu müssen, jeden beliebigen Belastungsfall untersuchen, indem man die Z mit Hilfe der auf Seite 75 angegebenen Formel bestimmt und in die Gleichung (26) einsetzt. Der Einfluß der Temperaturänderung $t_u - t_o$ ist z. B.

$$M_1 = -\frac{6 \varepsilon E J (t_u - t_o)}{h} \Sigma \beta,$$

und die durch dieses Moment im Balken erzeugte Biegungsspannung ist

$$\sigma = \pm \frac{M_1 h}{2J} = \mp 3 \varepsilon E \mathscr{F}(t_u - t_o) \Sigma \beta.$$

Die Berechnung der Werte β wird nun durch die Tatsache sehr. erleichtert, daß der Einfluß der Lasten auf das Moment M_1 mit ihrer Entfernung von der Stütze 1 sehr rasch abnimmt. Vergleichende Rechnungen zeigen, daß man in der Regel schon β_5 gleich Null setzen darf. Man hat dann nur vier Gleichungen und zwar solche von sehr einfacher Art aufzulösen. Je größer α ist, desto weiter kann sich eine Last von der Stütze 1 entfernen, bevor sie ihren Einfluß auf M_1 verliert. Solche größere Werte α kommen bei Schiffbrücken vor. Aber auch hier spielt die Anzahl der Stützen keine große Rolle, wie aus den im § 12, Nr. 61, durchgeführten Zahlenrechnungen hervorgeht. In jenem Beispiele war $\alpha = 9.4$. Runden wir diese Zahl auf $\alpha = 10$ ab, berechnen wir sodann mit Hilfe der vorstehenden Gleichungen die Werte β und mit diesen die Ordinaten η , so erhalten wir für $l = 12^m$ die folgenden Zahlenreihen:

a) $\beta_5 = 0$, d. h. Balken auf 9 Schiffen, $\eta_1 = +4.48, \ \eta_2 = +0.34, \ \eta_3 = -1.02, \ \eta_4 = -1.00, \ \eta_5 = -0.56;$ b) $\beta_6 = 0$, d. h. Balken auf 11 Schiffen,

 $\eta_1 = +4,49, \ \eta_2 = +0,36, \ \eta_3 = -0,98, \ \eta_4 = -0,98, \ \eta_5 = -0,56.$

Diese beiden Zahlenreihen und die in Nr. 61 für einen Balken auf 8 oder 6 Schiffen erhaltenen Werte dürfen als praktisch vollkommen gleichwertig bezeichnet werden. Hinsichtlich des Grenzfalles unendlich vieler Stützen verweisen wir auf Nr. 67 und 68. Außerdem werden wir für größere Zahlen α und verhältnismäßig kurze Stützweiten im § 15 ein sehr einfaches Näherungsverfahren angeben, welches u. a. gestattet, das größte Biegungsmoment infolge einer gleichmäßigen Verkehrslast sofort anzugeben.

^{*)} Vgl. das Zahlenbeispiel in Nr. 61. Müller-Breslau, Graphische Statik. II. 2.

Wird nun bereits $\beta_5 = 0$ gesetzt, so entstehen die vier Gleichungen (28) $\begin{cases} \beta_4 (4 + 6\alpha) + \beta_3 (1 - 4\alpha) + \beta_2 \alpha = 0\\ \beta_4 (1 - 4\alpha) + \beta_3 (4 + 6\alpha) + \beta_2 (1 - 4\alpha) + \beta_1 \alpha = 0\\ \alpha\beta_4 + \beta_3 (1 - 4\alpha) + \beta_2 (4 + 6\alpha) + \beta_1 (1 - 4\alpha) + \beta_2 \alpha = 0\\ \alpha\beta_3 + \beta_2 (1 - 4\alpha) + \beta_1 (4 + 6\alpha) + \beta_2 (1 - 4\alpha) + \beta_3 \alpha = 1. \end{cases}$

Sie gehen mit den Bezeichnungen

$$\beta' = \alpha \beta, \quad 6 + \frac{4}{\alpha} = \tau, \quad \frac{1}{\alpha} - 4 = \varphi$$

über in:

$$\begin{array}{c} (1) & \tau\beta_{4} + \varphi\beta_{3} + \beta_{2} = 0 \\ (II) & \varphi\beta_{4}' + \tau\beta_{3}' + \varphi\beta_{2}' + \beta_{1}' = 0 \\ (III) & \beta_{4}' + \varphi\beta_{3}' + \tau\beta_{2}' + \varphi\beta_{1}' + \beta_{2}' = 0 \\ (IV) & \beta_{3}' + \varphi\beta_{2}' + \tau\beta_{1}' + \varphi\beta_{2}' + \beta_{3}' = 1 \\ (IV) & \beta_{3}' + \varphi\beta_{2}' + \tau\beta_{1}' + \varphi\beta_{2}' + \beta_{3}' = 1 \\ (30) & \beta_{2}' = -\varphi\beta_{3}' - \tau\beta_{4}', \\ (31) & \beta_{1}' = a\beta_{3}' + b\beta_{4}', \end{array}$$

N

(30)hierauf aus (II)

(31)

wo

(32)
$$a = \varphi^2 - \tau, \quad b = \varphi (\tau - 1),$$

$$\begin{cases} \beta_4' = \frac{d}{ce + df} \\ \beta_3' = \frac{c}{ce + df}, \end{cases}$$

wo

(

(35)

(34)
$$\begin{cases} c = \tau (\tau + 1) - 1 - \varphi b; & d = \varphi (a - \tau) \\ e = \tau a + 2 - 2\varphi^2; & f = \tau (b - 2\varphi). \end{cases}$$

Die Ordinate η_r der M_1 -Linie im Stützpunkte r ist nach Seite 75:

$$\eta_r = -\alpha l \left[(\beta_r - \beta_{r-1}) - (\beta_{r+1} - \beta_r) \right]$$

$$\eta_r = -l \left[(\beta_r' - \beta'_{r-1}) - (\beta'_{r+1} - \beta_r') \right].$$

Die Glieder der zweiten Differenzenreihe der Zahlen ß' sind also, mit entgegengesetzten Vorzeichen genommen, gleich den Werten $\eta_r \mid l^*$).

*) Ein anderer Rechnungsgang, für sehr kleine Werte a, ist der: Man findet aus den beiden ersten Gleichungen [in (28)]

$$\begin{split} \beta_4 &= \beta_2 \, \frac{+1-12\,\alpha+10\,\alpha^2}{15+56\,\alpha+20\,\alpha^2} + \beta_1 \, \frac{\alpha\,(1-4\,\alpha)}{15+56\,\alpha+20\,\alpha^2} \,, \\ \beta_3 &= \beta_2 \, \frac{-4+11\,\alpha+20\,\alpha^2}{15+56\,\alpha+20\,\alpha^2} - \beta_1 \, \frac{\alpha\,(4+6\,\alpha)}{15+56\,\alpha+20\,\alpha^2} \,, \end{split}$$

'und berechnet β_1 und β_2 mit Hilfe der beiden letzten Gleichungen.

Zur Bestimmung der Einflußlinie des Momentes M_1 dient zwischen den Stützpunkten r - 1 und r die Gleichung

$$\zeta = -\left(\beta_{r-1}\omega_{D} + \beta_{r}\omega_{D}\right)l$$

oder, wegen $\omega_D' = 3 \omega_R - \omega_D$,

(36)
$$\frac{\zeta}{l} = -3\beta_{r-1}\omega_R + (\beta_{r-1} - \beta_r)\omega_D.$$

Die Abszissen x zählen von r - 1 aus; die ζ werden von den Seiten des η -Polygons aus aufgetragen; vgl. Fig. 200, welche voraussetzt, daß ζ negativ ist. Die Gleichung der Einflußlinie für M_1 lautet also, auf die Balkenachse als Abszissenachse bezogen,

Häufig genügt es, die Ordinate η für die Mitte der Öffnung zu berechnen. Für $x = \frac{1}{2}l$ ist $\omega_D = \omega_D' = 0.375$, folglich

(38)
$$\eta = \frac{\eta_{r-1} + \eta_r}{2} - 0.375 (\beta_{r-1} + \beta_r) l.$$

Eine in der Höhe k über der Balkenachse in der Richtung r - (r - 1)angreifende wagerechte Last K erzeugt, wenn der feste Stützpunkt mit der Balkenachse zusammenfällt und die unwesentliche Längenänderung der Balkenachse vernachlässigt wird,

$$M_{1} = -Kk \frac{d\eta}{dx}$$
$$= Kk \left(\frac{\eta_{r-1} - \eta_{r}}{l} - \frac{d\zeta}{dx} \right).$$

6

$$\omega_D = \frac{x}{l} - \frac{x^3}{l^3}, \quad \omega_D' = \frac{x'}{l} - \frac{x'^3}{l^3},$$

folglich (39)

$$\frac{M_1}{Kk} = \frac{\eta_{r-1} - \eta_r}{l} - \beta_{r-1} \rho' + \beta_r \rho_r$$

'14*

wobei zur Abkürzung die Bezeichnungen eingeführt wurden:

(40)
$$\begin{cases} \rho' = 1 - 3 \frac{x^2}{l^2} = \frac{d\omega'}{dx} \\ \rho = 1 - 3 \frac{x^2}{l^2} = \frac{d\omega}{dx} \end{cases}$$

Liegt der feste Stützpunkt unterhalb oder oberhalb der Balkenachse, so tritt nach Fig. 201 zu dem Einflusse von Kk noch der Einfluß von $\mp Ke$.

Zahlenbeispiel. Es sei $\alpha = 0,10$, also $\frac{1}{\alpha} = 10$. $\varphi = \frac{1}{\alpha} - 4 = 6$, $\tau = \frac{4}{\alpha} + 6 = 46$, $a = \varphi^2 - \tau = -10$, $b = \varphi(\tau - 1) = +270$, $c = \tau(\tau + 1) - 1 - \varphi b = +541$, $d = \varphi(a - \tau) = -336$, $e = \tau a + 2 - \varphi^2 = -530$, $f = \tau(b - 2\varphi) = 11868$, $\beta_4' = \frac{d}{ec + fd} = \frac{-336}{-4274378} = +0,78608 \cdot 10^{-4}$, $\beta_3' = \frac{c}{ec + fd} = \frac{+541}{-4274378} = -1,26568 \cdot 10^{-4}$, $\beta_2' = -\varphi \beta_3' - \tau \beta_4' = -28,56560 \cdot 10^{-4}$, $\beta_1' = a \beta_3' + b \beta_4' = +224,89840 \cdot 10^{-4}$.

Die Differenzenreihen der Werte $10^4 \cdot \beta'$ lauten:

$$r = 2 \begin{vmatrix} 10^4 \beta' \\ - 28,56560 \\ 1 \\ + 224,89840 \\ 2 \\ - 28,56560 \\ - 253,46400 \\ + 253,46400 \\ + 253,46400 \\ + 280,76392 \\ - 27,29992 \\ 3 \\ - 1,26568 \\ - 2,05176 \\ 4 \\ + 0,78608 \\ 5 \\ 0,00000 \\ 0,00000 \\ - 27,29992 \\ - 25,24816 \\ - 2,83784 \\ + 0,78608 \\ + 0,78608 \\ + 0,78608 \\ + 0,78608 \\ - 2,05000 \\ - 27,29992 \\ - 25,24816 \\ - 2,83784 \\ -$$

Nun ist $\frac{\gamma_r}{l} = -\Delta_2 \beta_r'$ und $\beta_r = \frac{1}{\alpha} \beta_r' = 10 \beta_r'$, also:

 $\begin{aligned} \eta_1 &= + 0,0507 \, l, \ \eta_2 &= -0,0281 \, l, \ \eta_3 &= +0,0025 \, l, \ \eta_4 &= +0,0003 \, l, \\ \eta_5 &= -0,0001 \, l, \\ \beta_1 &= +0,2249, \ \beta_2 &= -0,0286, \ \beta_3 &= -0,0013, \ \beta_4 &= +0,0008. \\ \Sigma \beta &= \beta_1 + 2 \sum_{3}^{4} \beta = 0,1667. \end{aligned}$

Die auf diesem Wege erhaltenen Werte β und η sind auf den Seiten 226 bis 229 für eine große Reihe von Werten $\frac{1}{\alpha}$ angegeben; sie gestatten eine schnelle Erledigung der verschiedenen Belastungsfälle.

Ungleiche Wärmeänderungen t_o und t_u erzeugen im Balken die Biegungsspannung

$$\sigma = \mp 3 \varepsilon E (t_u - t_o) \Sigma \beta = \mp \mathfrak{g}_2^2 \varepsilon E (t_u - t_o).$$

Senken sich die Stützen 1, 2, 3, 4, 5, Fig. 199, infolge von Temperaturänderungen oder Nachgeben des Baugrundes um die gegebenen Werte e_1' , e_2' , e_3' , e_4' , e_5' , so entsteht nach Seite 75

$$Z_{2}' = -\frac{6EJ}{l^{2}} [0 - 0 + e_{1}']$$

$$Z_{1} = -\frac{6EJ}{l^{2}} [0 - 2e_{1}' + e_{2}']$$

$$Z_{2} = -\frac{6EJ}{l^{2}} [e_{1}' - 2e_{2}' + e_{3}']$$

$$Z_{3} = -\frac{6EJ}{l^{2}} [e_{2}' - 2e_{3}' + e_{4}']$$

$$Z_{4} = -\frac{6EJ}{l^{2}} [e_{3}' - 2e_{4}' + e_{5}'],$$

und es wird erzeugt:

$$M_{1} = \beta_{2}Z_{2}' + \beta_{1}Z_{1} + \beta_{2}Z_{2} + \beta_{3}Z_{3} + \beta_{4}Z_{4}$$

$$= \frac{6EJ}{l^{2}} \{ e_{1}'(-\beta_{2} + 2\beta_{1} - \beta_{2}) + e_{2}'(-\beta_{1} + 2\beta_{2} - \beta_{3}) + e_{3}'(-\beta_{2} + 2\beta_{3} - \beta_{4}) + e_{3}'(-\beta_{3} + 2\beta_{4} - 0) + e_{5}'(-\beta_{4} + 0 - 0) \}.$$

Hierfür darf man aber mit Rücksicht auf Gleichung (25), Seite 75, schreiben:

$$M_1 = \frac{6 EJ}{\alpha l^3} [e_1' \eta_1 + e_2' \eta_2 + e_3' \eta_3 + e_4' \eta_4 + e_5' \eta_5].$$

Der Einfluß der Senkungen der Stützen 2', 3', 4', ... ist natürlich ebenso groß wie derjenige der Stützen 2, 3, 4, Zweiter Abschnitt. - § 13.

Senkt sich z. B. Stütze 1 um e_1' , so wird der Balken, dessen Höhe h sei, beansprucht mit

$$\sigma = \frac{M_1 h}{2J} = \frac{3 E e_1' h}{0.1 l^2} \cdot 0.0507 = 1.52 E \frac{e_1'}{l} \cdot \frac{h}{l} \cdot$$

Ermittlung der Einflußlinie des Momentes M_1 . Vom η -Polygon aus werden die Strecken ζ aufgetragen, Fig. 202. Für die Öffnung 1-2 ist

$$\frac{\zeta}{l} = -3\beta_1\omega_R + (\beta_1 - \beta_2)\omega_D$$
$$= -0.6747\omega_R + 0.2535\omega_D$$

Man erhält

Für die Öffnung 2-3 gilt

x

$$\frac{\zeta}{l} = -3\beta_2\omega_R + (\beta_2 - \beta_3)\omega_D$$

= + 0,0858\overline\overline_R - 0,0273\overline\overline_D.
= 0,2 0,4 0,5 0,6 0,8
= + 0.0085 + 0.0114 + 0.0112 + 0.0101 + 0.005

 $\frac{\zeta}{l} = + 0,0085 + 0,0114 + 0,0112 + 0,0101 + 0,0059.$ Für die Mitte der Öffnung 3-4 ergibt sich

$$\frac{\zeta}{l} = -0.375 (\beta_3 + \beta_4) = +0.0002.$$

Der Einfluß der Belastung dieser Öffnung ist bereits unwesentlich.

Eine in der Öffnung 1-2 auftretende wagerechte Last K erzeugt

$$\frac{M_1}{Kk} = \frac{\eta_1 - \eta_2}{l} - \beta_1 \rho' + \beta_2 \rho$$

= + 0,0788 - 0,2249 \rho' - 0,0286 \rho.
Für $\frac{x}{l} = 0$ 0,2 0,4 0,6 0,8 1,0
= 1 - 3 $\frac{x^2}{l^2}$ = + 1,00 + 0,88 + 0,52 - 0,08 - 0,92 - 2,00
 ρ' = -2,00 - 0,92 - 0,08 + 0,52 + 0,88 + 1,00
 $\frac{M_1}{Kk}$ = + 0,500 + 0,261 + 0,082 - 0,036 - 0,093 - 0,089

ist ρ=

Greift K in der Öffnung 2—3 an, so entsteht $\frac{M_1}{Kk} = \frac{\eta_2 - \eta_3}{l} - \beta_2 \rho' + \beta_3 \rho$ $= -0,0306 - 0,0286 \rho' - 0,0013 \rho.$ Für $\frac{x}{l} = 0$ 0,2 0,4 0,6 0,8 1,0 ist $\frac{M_1}{Kk} = -0,089 - 0,058 - 0,034 - 0,016 - 0,004 + 0,001.$ Die $\frac{M}{Kk}$ -Linie ist in Fig. 203 dargestellt worden.

Zweiter Abschnitt. - § 13.

Die Einflußlinie des Stützendruckes C, Fig. 204, besitzt in den Stützpunkten 1, 2, 3, ... und den Mittelpunkten 1", 2", 3" der Öffnungen 1-2, 2-3, 3-4 die folgenden mittels der Formel

$$C = C_0 + \frac{M_2 - 2M_1 + M_2}{l}$$

berechneten Ordinaten:

(1)
$$C = 1,0 - 0,0281 - 2 \cdot 0,0507 - 0,0281 = +0,8424$$

(1") $C = 0,5 - 0,0623 + 2 \cdot 0,0623 - 0,0016 = +0,5607$
(2) $C = -0,0507 + 2 \cdot 0,0281 + 0,0025 = +0,1094$
(2") $C = -0,0623 + 2 \cdot 0,0016 + 0,0016 = -0,0607$
(3) $C = -0,0281 - 2 \cdot 0,0025 + 0,0003 = -0,0328$
(4) $C = -0,0025 - 2 \cdot 0,0003 - 0,0001 = +0,0018.$

Zu dem vorstehenden Ansatze bemerken wir, daß die M_1 -Linie in den Mitten der Öffnungen l_1, l_2, l_3 die Ordinaten — 0,0623, — 0,0016, + 0,0016 hat.

66. Untersuchung der ersten Öffnung. Die Bezifferung der Stützpunkte zeigt Fig. 205. Die Gleichungen zur Berechnung der β' lauten:

(41)
$$\begin{cases} \tau \beta_4 + \varphi \beta_3 + \beta_2 = 0 \\ \varphi \beta_4' + \tau \beta_3' + \varphi \beta_2' + \beta_1' = 0 \\ \beta_4' + \varphi \beta_3' + \tau \beta_2' + \varphi \beta_1' = 0 \\ \beta_3' + \varphi \beta_2' + \tau \beta_1' = 1. \end{cases}$$

Die beiden ersten Gleichungen stimmen mit den für die Mittelstütze aufgestellten überein. Man findet auf demselben Wege wie auf Seite 210:

(42)
$$\beta_4' = \frac{d'}{c'e' + d'f'}$$

$$\beta_3' = \frac{c}{c'e' + d'f'}$$

$$(44) \qquad \qquad \beta_2' = - \varphi \beta_3' - \tau \beta_4$$

$$(45) \qquad \qquad \beta_1' = a\beta_3' + b\beta_4'.$$

a und b haben dieselbe Bedeutung wie auf Seite 210.

Zwischen den Werten c', d', e', f' und den auf Seite 210 angegebenen Werten c, d, e, f bestehen die Beziehungen

(46)
$$\begin{cases} c' = c - \tau & d' = d + \varphi \\ e' = e + \varphi^2 - 1 & f' = f + \tau \varphi. \end{cases}$$

Aus der Einflußlinie für M_1 kann man alle für die erste Öffnung erforderlichen Einflußlinien herleiten.

Hinsichtlich des Grenzfalles unendlich vieler Stützen verweisen wir auf Nr. 68.

Zahlenbeispiel. Es sei $\alpha = 0,1$, also $\frac{1}{\alpha} = 10$. Aus den auf Seite 212 berechneten Werten

$$\varphi = 6, \quad \tau = 46, \quad a = -10, \quad b = +270, \\ c = +541, \quad d = -336, \quad e = -530, \quad f = 11868$$

findet man

$$c' = 541 - 46 = +495, \quad d' = -336 + 6 = -330,$$

 $e' = -530 + 35 = -495, \quad f' = 11868 + 6 \cdot 46 = +12144,$
rauf: $c'e' + d'f' = -4252545.$

hierauf:

$$\beta_{4}' = \frac{-330}{-4252545} = +0,77601 \cdot 10^{-4}$$

$$\beta_{3}' = \frac{+495}{-4252545} = -1,16401 \cdot 10^{-4}$$

 $\beta_2' = -28,71240 \cdot 10^{-4}, \quad \beta_1' = +221,16280 \cdot 10^{-4}.$ Die Differenzenreihen der Werte 104 B' lauten:

10 ⁴ β′	$10^4 \Delta_1 \beta'$	$10^4 \Delta_2 \beta'$
0		+221,16280
1 001 10000	-221,16280	151 08000
+221,16280	± 24987520	-471,03800
- 28,71240	1 240,01020	+277,42359
	- 27,54839	
- 1,16401	101000	-25,60837
- 0.77601	- 1,94002	- 2.71603
0,11001	+ 0,77601	2,12000
	2. M. 4. 10	+ 0,77601

Hieraus ergibt sich $\frac{\eta_r}{l} = -\Delta_2 \beta'$ und $\beta_r = \frac{1}{\alpha} \beta_r' = 10 \beta_r'$, also $\eta_0 = -0.0221 l, \ \eta_1 = +0.0471 l, \ \eta_2 = -0.0277 l, \ \eta_3 = +0.0026 l,$ $\eta_4 = + 0,0003 l, \ \eta_5 = -0,0001 l.$ $\beta_1 = + 0,2212, \quad \beta_2 = -0,0287, \quad \beta_3 = -0,0012, \quad \beta_4 = +0,0008.$

Wir berechnen die M_1 -Linie nur für die Öffnungen 0-1, 1-2 und 2-3, Fig. 205a. Für die Öffnung 0-1 ist $\frac{\zeta}{l} = -\beta_1 \omega_D = -0.2212 \omega_D.$ Für $\frac{x}{l}$ = 0,2 0,4 0,5 0,6 0,8 wird $\frac{\zeta}{l} = -0.0425 - 0.0743 - 0.0830 - 0.0849 - 0.0637.$ M₁-Linie U 70 7 α) -20-+ B) A- Linie 0,978 \mathcal{M}_{x} -Fläche

Fig. 205.

Für die Öffnung 1-2 ergibt sich

$$\frac{\zeta}{l} = -3\beta_1\omega_R + (\beta_1 - \beta_2)\omega_D$$

$$= -0,6636\omega_R + 0,2499\omega_D.$$

$$\frac{x}{l} = 0,2 \qquad 0,4 \qquad 0,5 \qquad 0,6 \qquad 0,8$$

$$\frac{\zeta}{l} = -0,0582 \qquad -0,0753 \qquad -0,0722 \qquad -0,0633 \qquad -0,0342,$$

und für die Öffnung 2-3:

$$\frac{\zeta}{l} = -3\beta_2\omega_R + (\beta_2 - \beta_1)\omega_D$$
$$= +0,0861\omega_R - 0,0275\omega_D.$$

Hier dürfen ohne weiteres die für das Stützenmoment in der Balkenmitte berechneten Werte beibehalten werden; schon für die Öffnung 1-2sind die Unterschiede zwischen den vorstehend und auf Seite 214 ermittelten ζ unwesentlich.

Fig. 205a zeigt die Einflußlinie für $\frac{M_1}{l}$. In Fig. 205b ist die Einflußlinie für den Druck *A* auf die Stütze 0 dargestellt worden; man erhält sie nach der Formel

$$A = A_0 + \frac{M_1}{l},$$

wenn man die $\frac{M_1}{l}$ -Linie von der A_0 -Linie aus aufträgt. Die beiden Figuren sind in verschiedenen Maßstäben gezeichnet worden. Die in der Fig. 205b schraffierte Fläche ist die Einflußfläche des Momentes M_x für den Querschnitt an der Stelle x^*); ihr Multiplikator ist x.

Der Einfluß wagerechter Lasten K wird in derselben Weise untersucht wie in Nr. 65.

67. Der Balken erstrecke sich von der Mittelstütze 1 aus nach beiden Seiten ins Unendliche, Fig. 199. Die Werte β' genügen den Gleichungen:

	$\beta_3' + \varphi \beta_2' + \tau \beta_1' + \varphi \beta_2' + \beta_3' = 1$
	$\beta_4' + \varphi \beta_3' + \tau \beta_2' + \varphi \beta_1' + \beta_2' = 0$
(47)	$\beta_5' + \varphi \beta_4' + \tau \beta_3' + \varphi \beta_2' + \beta_1' = 0$
(11)	$\beta_6' + \varphi \beta_5' + \tau \beta_4' + \varphi \beta_3' + \beta_2' = 0$
	$\beta_7' + \varphi \beta_6' + \tau \beta_5' + \varphi \beta_4' + \beta_3' = 0$

die wir durch einen wagerechten Strich in zwei Gruppen zerlegt haben. Nehmen wir zunächst an, es seien β_1 ' und β_2 ' bekannt, so liefert die Auflösung der unteren Gruppe für β_3 ' einen Wert von der Form

$$\beta_3' = \mu \beta_2' + \nu \beta_1',$$

wo µ und y Ziffern sind, die nur von den Zahlen φ und τ abhängen.

*) Streng genommen müßte die Gerade FD ersetzt werden durch die Gerade FD', wobei $\overline{DD'} = \frac{\eta_0}{l}$. Bei kleinen Werten η_0 empfiehlt sich aber deren Vernachlässigung. Da nun die untere Gruppe aus unendlich vielen gleichartig gebauten Gleichungen besteht, so ist auch

$$\beta_4' = \mu \beta_3' + \nu \beta_2',$$

und man erkennt, daß für alle β' , mit Ausnahme von β_1' und β_2' die Gleichung gilt:

(48)

$$\beta_r = \mu \beta'_{r-1} + \nu \beta'_{r-2}.$$

Mit Hilfe dieser Beziehung lassen sich die Gleichungen der zweiten Gruppe umformen in

$\beta_2 \psi$	$+\beta$	1 7	= 0)
Bs'4	$+\beta$	2 3	= 0)
		10.3		
B. U	+B	1-15	= 0	

wo

(49)
$$\psi = \mu \left[\mu \left(\mu + \varphi \right) + \tau \right] + 2 \mu \nu + \nu \varphi + \varphi$$

(50)
$$\vartheta = \nu \left[\mu \left(\mu + \varphi \right) + \tau \right] + \nu^2 + 1.$$

Die Gleichungen der zweiten Gruppe werden also erfüllt, sobald

$$\psi = 0$$
 and $\Im = 0$

ist. Hieraus folgt zunächst

$$\frac{2\mu\nu + \nu\phi + \phi}{\mu} = \frac{\nu^2 + 1}{\nu}$$

wonach (51)

1)
$$\mu = \varphi \frac{\nu}{1-\nu}.$$

Nun ergibt sich aus $\Im = 0$ die Gleichung

(52)
$$\mu^2 + \nu^2 + \tau \nu + 1 = 0$$

Die Gleichungen (51) und (52) besitzen nur die eine brauchbare Lösung:

(53)
$$\gamma = -\frac{1+\gamma'-\gamma''}{1+\gamma'+\gamma''}$$

$$\mu = \frac{2(\gamma'-1)}{1+\gamma'+2}$$

wo

(55)
$$\gamma' = \sqrt{\frac{1+8\alpha}{3}} \text{ und } \gamma'' = \sqrt{\frac{4}{3}+2\gamma'}$$

Nach Berechnung von ν und μ liefert die zweite Gleichung (47) das Verhältnis

$$(56) \qquad \qquad \frac{\beta_2'}{\beta_1'} = \frac{\mu}{1-\nu}$$

und die erste den Wert

(57)
$$\beta_{1}' = \frac{1}{\tau + 2\nu + 2(\varphi + \mu)\frac{\beta_{2}'}{\beta_{1}'}}$$

Nunmehr können die übrigen β' schrittweise mit Hilfe der Gleichung (48) berechnet werden.

Zahlenbeispiel.

Für $\alpha = 10$ ist $\varphi = \frac{1}{10} - 4 = -3.9$, $\tau = 6 + 4 \cdot \frac{1}{10} = 6.4$ $\gamma' = \sqrt{27} = 5.196152$, $\gamma'' = 3.424272$, $\nu = -0.2881$, $\mu = 0.8723$ $\frac{\beta_2'}{\beta_1'} = \frac{0.8723}{1.2881} = 0.6772$ $\beta_1' = \frac{1}{5.8238 - 6.0554 \cdot 0.6772} = 0.5803$, $\beta_2' = +0.3930$ $\beta_3' = +0.1756$, $\beta_4' = +0.0400$, $\beta_5' = -0.0157$, $\beta_6' = -0.0252$, $\beta_7' = -0.0175$.

Berechnet man nun auf dem in Nr. 65 angegebenen Wege die Ordinaten η , so findet man für $l = 12^m$ (d. i. die Stützweite der früher untersuchten Schiffbrücke) die folgenden Zahlen, denen die für $\beta_5'=0$ nach dem Verfahren in Nr. 65 sich ergebenden in Klammern beigefügt sind:

$$\begin{split} \eta_1 = &+ 4,50 \quad (4,48) \quad \eta_3 = &- 0,98 \quad (1,02) \quad \eta_5 = &- 0,55 \quad (0,56). \\ \eta_2 = &+ 0,36 \quad (0,34) \quad \eta_4 = &- 0,98 \quad (1,00) \end{split}$$

Die Gegenüberstellung der Werte $\beta = \frac{1}{\alpha}\beta'$ liefert folgendes Bild:

$$\begin{array}{ll} \beta_1 = + \ 0,0580 \ (0,0578) & \beta_3 = + \ 0,0176 \ (0,0176) \\ \beta_2 = + \ 0,0393 \ (0,0391) & \beta_4 = + \ 0,0040 \ (0,0046). \end{array}$$

68. Der Balken erstrecke sich von der Stütze O aus nach der einen Seite ins Unendliche, Fig. 205. Für die Ziffern β' , mit Ausnahme von β_1' und β_2' , gilt wieder die Gleichung (48).

$$\beta_r = \mu \beta'_{r-1} + \nu \beta'_{r-2}.$$

Die beiden ersten Gleichungen (47) sind aber jetzt zu ersetzen durch die Bedingungen

(58)
$$\begin{cases} \beta_{3}' + \varphi \beta_{2}' + \tau \beta_{1}' = 1 \\ \beta_{4}' + \varphi \beta_{3}' + \tau \beta_{2}' + \varphi \beta_{1}' = 0, \end{cases}$$

deren Auflösung die einfachen Werte liefert:

(59)
$$\beta_1' = - \nu \text{ und } \beta_2' = - \nu \mu.$$

Zahlenbeispiele. Für $\alpha = 10$ ergab sich $\nu = -0,2881$, $\mu = +0,8723$. Man erhält also $\beta_1' = +0,2881$ und $\beta_2' = +0,2513$ und gelangt zu den folgenden Werten $\beta = \frac{1}{\alpha}\beta'$, denen die nach dem in Nr. 66 angegebenen Verfahren berechneten in Klammern beigefügt sind:

$$\begin{array}{ll} \beta_1 = + \ 0,0288 \ (0,0288) & \beta_2 = + \ 0,0251 \ (0,0250) \\ \beta_3 = + \ 0,0136 \ (0,0133) & \beta_4 = + \ 0,0046 \ (0,0042). \end{array}$$

Den unwesentlichen Abweichungen der Werte β entsprechen auch geringfügige Unterschiede der zugehörigen η .

Je größer α ist, um so größer ist der Einfluß der Stützenzahl. Wir geben daher noch eine Gegenüberstellung der Werte für den größten in unsere für $\beta_5' = \beta_6' = \ldots = 0$ gerechnete Zahlentafel aufgenommenen Wert α , nämlich für $\alpha = 20$. Man findet:

$\beta_1 = + 0,0176 \ (0,0173)$	$\beta_3 = + 0,0123 \ (0,0108)$
$\beta_2 = + 0,0180 \ (0,0173)$	$\beta_4 = + 0,0064 \ (0,0041).$
$\eta_0 = -0,351 \ (0,347)$	$\eta_3 = + 0,006 \ (0,006)$
$\eta_1 = + 0,342 \ (0,347)$	$\eta_4 = -0.037 \ (0.052)$
$\eta_2 = + 0,123 \ (0,128)$	$\eta_5 = -0.082 \ (0.082).$

Von wesentlichem Einfluß ist nur die Belastung der ersten drei Öffnungen; hier besteht selbst bei dem großen Werte $\alpha = 20$ befriedigende Übereinstimmung.

Wird also die Berechnung eines auf vielen gleichartigen Stützen ruhenden Balkens verlangt, und stehen keine Zahlentafeln zur Verfügung, so braucht man nur ein über wenige Öffnungen reichendes Stück des Balkens herauszuschneiden und eine geringe Zahl von einfachen Gleichungen aufzulösen, oder man führt die Rechnung mittels der einfachen Formeln für unendlich viele Stützen durch. Unsere Zahlenrechnungen beweisen, daß die Annahme $\beta_5' = \beta_6' = \ldots = 0$ in der Regel erlaubt ist, denn größere Werte α als die in unsere Tabelle aufgenommenen dürften nur selten vorkommen.

69. Eisenbahnschienen auf Querschwellen. Wird die Annahme gemacht, es sei die Eindrückung der Schwelle in die Bettung proportional dem von der Schiene auf die Schwelle ausgeübten Drucke, so darf die Schiene als ein auf elastisch senkbaren Stützen ruhender Balken angesehen werden. Es genügt, die Untersuchung der in Fig. 206 dargestellten symmetrischen Belastung. Betrachten wir die Schiene zunächst als Balken auf 6 Stützen, so treten vier Stützenmomente auf, die aber paarweise einander gleich sind $(M_3 = M_2, M_4 = M_1)$. Es bestehen die Gleichungen

(60)
$$\begin{cases} (4+6\alpha) M_1 + (1-4\alpha) M_2 + \alpha M_2 = Z_1 \\ (1-4\alpha) M_1 + (4+6\alpha) M_2 + (1-4\alpha) M_2 + \alpha M_1 = Z_2; \end{cases}$$

sie liefern

$$M_2 = \frac{(4+6\alpha) Z_2 - (1-3\alpha) Z_1}{9\alpha^2 + 44\alpha + 19}$$

Den drei Raddrücken P', P, P' entsprechen die Werte:

$$C_{00} = P' \frac{\xi'}{l}, \quad C_{01} = P' \frac{\xi}{l}, \quad C_{02} = C_{03} = \frac{P}{2}$$

ferner nach Seite 75

1

$$Z_{1} = -\frac{6 \mathfrak{L}_{01}}{l^{2}} - \alpha \left(C_{00} - 2 C_{01} + C_{02}\right) l,$$

$$Z_{2} = -\frac{6 \mathfrak{R}_{02}}{l^{2}} - \alpha \left(C_{01} - 2 C_{02} + C_{03}\right) l,$$

wo, nach Seite 30,

$$6 \, \mathfrak{R}_{01} = P' l^3 \left(\frac{\xi}{l} - \frac{\xi^3}{l^3} \right) = P' l^3 \cdot \omega_{D1}$$

$$6 \, \mathfrak{R}_{02} = P l^3 \left(\frac{1}{2} - \frac{1}{8} \right) = P l^3 \cdot \frac{3}{8},$$

weshalb

$$Z_{1} = -\omega_{D} P' l - \alpha P' (l - 3\xi) - \frac{1}{2} \alpha P l,$$

$$Z_{2} = -\frac{3}{8} P l + \frac{1}{2} \alpha P l - \alpha P' \xi.$$

Der Einfluß von
$$P' = 1$$
 auf den Zähler von M_2 ist
(61) $-(6\alpha + 4)\alpha\xi + (3\alpha - 1)(-\omega_D l - \alpha l + 3\alpha\xi)$
 $= +\alpha\xi(3\alpha - 7) - (\omega_D + \alpha)(3\alpha - 1)l;$

er nimmt für den engsten Radstand, also für den größten Abstand ξ , seinen größten Wert an. Ist $\xi = l$ (was einen Radstand von $1,5 \cdot l$

gibt), so wird $\omega_D = 0$, und der Ausdruck (61) geht über in (- $6 \alpha l$). Nun ist aber in der Mitte des Balkens

$$M = \frac{Pl}{4} + M_2;$$

wir rechnen also ungünstig, wenn wir den negativen Einfluß von P' auf M_2 vernachlässigen. Dann ergibt sich mit den oben für Z_1 und Z_2 angegebenen Werten das Moment

$$M_2 = \frac{Pl}{2} \frac{3\alpha^2 + 0.5\alpha - 3}{3\alpha^2 + 44\alpha + 19},$$

und man erhält schließlich die Formel

(62)
$$M = \frac{Pl}{4} \frac{9\alpha^2 + 45\alpha + 13}{3\alpha^2 + 44\alpha + 19}.$$

Sieht man die Schiene als einen auf 8 Stützen ruhenden Balken an, so erhält man (auf demselben Wege, der in der vorstehenden Entwicklung benutzt wurde) für den Einfluß von P die von Schwedler*) aufgestellte Formel

(63)
$$M = \frac{Pl}{8} \frac{32\alpha^3 + 524\alpha^2 + 568\alpha + 97}{4\alpha^3 + 194\alpha^2 + 330\alpha + 71}$$

Beschränkt man dagegen die Anzahl der Stützen auf 4, so findet man die von Zimmermann**) empfohlene Formel

$$(64) M = \frac{Pl}{4} \frac{8\alpha + 7}{4\alpha + 10}.$$

Zur Vergleichung dieser verschiedenen Formeln mögen die folgenden Zahlenreihen dienen; n bedeutet die Anzahl der Stützen.

	$\alpha = 0,2$	0,6	1,0	2,0	3,0	4,0	5,0
n = 4	M = 0,199	0,238	0,268	0,319	0,352	0,375	$0,392 \cdot Pl$
n = 6	M = 0,200	0,233	0,254	0,292	0,322	0,343	$0,369 \cdot Pl$
n = 8	M = 0,200	0,233	0,255	0,291	0,317	0,337	0,354 · Pl.

Der Unterschied zwischen diesen Werten ist unerheblich; insbesondere weichen die Werte für n = 6 nur sehr wenig von denen für n = 8 ab.

Um α zu bestimmen, bezeichnen wir die Breite der Schwelle mit b, die Länge mit 2a und nehmen zunächst an, daß sich der von beiden Schienen auf die Schwelle ausgeübte Druck 2C gleichmäßig über die

*) Schwedler, Beiträge zur Theorie des Eisenbahnoberbaues. Zeitschrift für Bauwesen, 1889, S. 103. Den Wert α bezeichnet Schwedler mit $\frac{1}{1}$.

**) Zimmermann, Die Berechnung des Eisenbahnoberbaues, Berlin 1888, S. 218, Gleich. 200.

Grundfläche 2ba verteilt. Dann darf die Eindrückung der Schwelle in die Bettung gesetzt werden:

$$(65) e = \frac{2C}{K2ab},$$

wo K einen Erfahrungswert bedeutet, der nach Zimmermann beträgt für Kies ohne Packlage $K = 3 \text{ kg/cm}^3$

für Kies auf Packlage $K = 8 \text{ kg/cm}^3$.

Nun ergibt sich

(66)

$$\alpha = \frac{6EJ}{l^3} \cdot \frac{e}{C}, \text{ das ist}$$
$$\alpha = \frac{6EJ}{Kabl^3} \cdot$$

Ist z. B. $J = 1580 \text{ cm}^3$ (Schiene der Preußischen Hauptbahnen, 1905, Nr. 15), $E=2100000 \text{ kg/cm}^2$, l=80 cm, a=135 cm, b=26 cm, so erhält man für K = 3 und 8 die Werte $\alpha = 3,7$ und 1,4. Nun verteilt sich aber der Druck der Schienen nicht gleichmäßig über die Grundfläche der Schwelle. Die Druckverteilung hängt von der Durchbiegung und von der Art der Unterstopfung der Schwelle ab; ihre genaue Bestimmung darf wohl als unmöglich angesehen werden*). Machen wir nun die Annahme, es werde durch diese Ursachen die Ziffer α nahezu verdoppelt, rechnen wir also mit $\alpha = 7.0$ und 2.5, so liefert die einfache Formel (64), der wir in Anbetracht der unsicheren Rechnungsgrundlagen den Vorzug geben, für P = 9000 kg und l = 80 cm die Biegungsmomente

M = 298500 kg/cm, M = 243000 kg/cm.

Das Widerstandsmoment des Schienenquerschnitts ist W = 217. Die Biegungsbeanspruchung beträgt daher

 $\sigma = 1375 \text{ kg/cm}^2$, bezw. $\sigma = 1120 \text{ kg/cm}^2$.

Bei Berechnung des Druckes der Schiene auf die Schwelle genügt es, den Einfluß von drei Radlasten zu berücksichtigen. Wir bezeichnen die Stützpunkte nach Fig. 199, nehmen eine Last P über der Stütze 1 an, zwei gleich große Lasten in den Mitten der Felder 2-3 und 2'-3' und erhalten:

Müller-Breslau, Graphische Statik. II. 2.

^{*)} Der Einfluß der Durchbiegung der Schwelle läßt sich mit Hilfe der in § 15 mitgeteilten Theorie des Balkens auf stetiger elastischer Unterlage für den Fall einer gleichförmigen elastischen Bettung verfolgen. Es ist aber nicht die Aufgabe dieses Buches, auf alle diese Einzelheiten einzugehen; wir verweisen auf die im Literaturverzeichnis angeführten, mit der Theorie des Eisenbahnoberbaues sich befassenden Schriften, insbesondere auf die Arbeiten von Schwedler und Zimmermann.

h senkbaren Stutzen.	5 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1	7. 7.ª	
Balken auf elastisc	a) Stützenmoment M ₁ in Balkenmitte. (Seite 208, Nr. 65.)	$\label{alpha} \begin{split} \alpha &= \frac{6 \; E J \omega}{l^3} \\ \omega &= \mathrm{Stützensenkung} \ \mathrm{für} \ \mathrm{den} \ \mathrm{Auflagerdruck} \ 1 \ \mathrm{(Seite} \ 61). \end{split}$	

-	۲ ۲	25	20	15	12	10	6	80	7	9	5	4	3,5	3	2.6	2,2	67	1,8	1,6
	$\eta_5:l$	+ 0,000	+0,000	- 0,000	- 0,000	- 0,000	- 0,000	- 0,000	- 0,000	- 0,000	- 0,000	0	+0,000	+0.000	+0,001	+ 0,001	+ 0.001	+0,002	+0,002
	$\eta_4:l$	- 0,000	- 0,000	- 0,000	+0,000	+ 0,000	$+0,000_{5}$	+ 0,001	+0,001	+ 0,001	+0,002	+ 0,002	+0,002	+0,002	+0,002	+0,002	+ 0,002	+ 0,001	+ 0,000
	n _a : <i>l</i>	+0,003	+0,003	+0,003	+0,003	$+0,002_{5}$	+0,002	+0,002	+0,001	-0,000	-0,002	-0,004	- 0,006	$-0,008_{5}$	-0,011	$-0,014_5$	$-0.016_{\rm b}$	-0,019	-0,022
	$\eta_2: l$	- 0,015	$-0,017_{5}$	-0,022	-0,025	-0,028	-0,030	-0.032	-0,034	-0,037	-0,040	-0,044	$-0,045_5$	-0,048	-0,049	-0,051	-0,052	-0.052	-0,053
	η: 1 ^μ	+0,025	+0,030	+0,037	+ 0,044	+ 0.051	+ 0,055	+0,059	+0,065	+ 0,072	+ 0,080	+0,091	+ 0,098	+ 0,107	+0,115	+0,125	$+0,130_{5}$	+0,137	+0,144
	β₄	- 0,001	-0,001	+0,000	$+0,000_{5}$	+0,001	+ 0,001	+ 0,001	+0,001	+0,001	$+0,000_{6}$	0	- 0,000	-0,001	-0,002	-0,002	-0,003	- 0,003	- 0,003
	βs	+0,008	+ 0,006	+0,003	+ 0,001	-0,001	-0,002	- 0,003	- 0,005	- 0,006	- 0,007	- 0,008	- 0,009	- 0,009	- 0,009	- 0,009	- 0,008	- 0,008	- 0,007
	β.ª	-0.052	-0,047	-0,040	-0,034	- 0,029	-0,025	-0,022	-0,018	-0,013	- 0,007	0	+0,004	$+0,008_{5}$	$+0,012_{5}$	+0,017	+0,019	+0,021	+0,024
	β1	+0,256	+0.250	+0,241	+0,232	+0,225	+0,220	+0,215	+0,209	+0,202	+0,193	+0,183	+0,176	+0,169	+0,162	+0,154	$+0,149_{5}$	+0,145	$+0,139_{5}$
1	8	55	00	5	2	0	6	8	2	9	5	4	3,5	3	2,6	2,2	63	1,8	1,6

226

Zweiter Abschnitt. — § 13.

				Bal	ken	au	fs	ehr	vie	len	sta	urrei	n o	der	ela	stis	sch	sen	kba	aren	St	ütz	en.			227
1.4	1.2	1	0,9	0,8	0,7	0,6	0,55	0,5	0,45	0,4	0,35	0,3	0,26	0,22	0,2	0,18	0,16	0,14	0,12	0,1	0,09	0,08	0,07	0,06	0,055	0,05
+ 0.003	+ 0.003	+0,004	+ 0,005	+ 0,005	+ 0,006	+ 0,006	$+ 0,006_{5}$	$+0,006_{5}$	+ 0,006	+ 0,006	+0,005	+0,003	$+0,000_{5}$	-0,004	-0,007	$-0,010_{5}$	-0,016	-0,023	-0,032	-0,046	-0,056	- 0,067	-0,082	-0,101	-0,113	-0,127
-0.001	-0.002	-0,005	-0,007	- 0,009	-0,012	-0.015_{6}	-0,018	-0,020	$-0,023_{5}$	-0,027	-0,032	-0,037	-0,042	-0,049	-0,053	-0,057	- 0,062	- 0,068	- 0,075	-0,084	-0,089	- 0,095	-0,103	$-0,111_{5}$	-0,117	-0,123
- 0,025,	- 0,030	-0,035	-0,038	-0,042	- 0,046	-0,051	-0,054	-0,057	- 0,060	- 0,0635	- 0,067	-0,071	- 0,075	- 0,078	- 0,080	-0,082	- 0,083	-0,084	- 0,085	- 0,085	-0,084	-0,083	-0,081	- 0,078	- 0,076	- 0,074
- 0,053	-0,053	-0,052	-0,051	- 0,050	- 0,049	-0.046	-0,045	-0,043	-0.040	-0,037	-0,034	-0,029	$-0,023_{5}$	- 0,017	-0.012_{5}	$-0,007_{5}$	$-0,001_{5}$	+ 0,006	+0,016	+ 0,028	+0,036	+0,046	+0,058	+ 0,073	+0,082	+ 0,092
+0,153	+0,163	+0,176	+0,183	+0,192	+0,202	+0,213	$+0,219_{5}$	+0,227	+0,235	$+0,244_{5}$	+0,255	+0,268	+0,280	+0,295	+0,304	+0,313	+0,325	+0,338	$+0,353_{5}$	+0,373	+0,386	+0,400	+0,417	+0,437	+0,450	+0,464
- 0,004	- 0,004	- 0,004	- 0,004 -	-0,004	- 0,004	- 0,004	- 0,004	-0,003	-0,003	-0,002	-0,002	-0,001	- 0,000	+0,001	+0,001	+0,002	$+0,002_{5}$	+0,003	+0,004	+0,005	+0,005	+0,005	+0,006	+0,006	+0,006	+0,006
- 0,006	-0,005	- 0,004	-0,003	$0,001_{5}$	- 0,000	+0,002	+0,003	+0,004	+ 0,005	+0,006	+0,008	+ 0,009	+ 0,011	+ 0,012	+0,013	+0,014	+0,015	+0,016	+0,017	+0,018	+0,018	+0,018	+0,019	+0,019	+0,019	+0,019
$+0,026_{5}$	+0,029	+0,032	+0,034	+0,035	+0,036	+0,038	+0,038	+0,039	+ 0,040	+0,040	+0,041	+ 0,041	+ 0,041	+0,041	+ + 0,041	+0,041	+0,041	+0,040	+0,040	+0,039	+0,039	+0.038	+0,037	+0,036	+0,036	+0,035
+0,134	+0,127	+0,120	+ 0,116	+0,112	+0,107	+0,102	+0,099	+0,096	$+0,092_{5}$	+0,089	+0,085	+0,081	$+0,077_{5}$	+0,074	+ 0,071	+0,069	+0,067	+0,064	+0,061	+0,058	+0,056	+0,054	+0,052	$+0,049_{5}$	+0,048	+ 0,047
1,4	1,2	1	0,9	0,8	0,7	0,6	0,55	0,5	0,45	0,4	0,35	0,3	0,26	0,22	0,2	0,18	0,16	0,14	0,12	0,1	60'0 1	Gr 0,08	0,07	0,06	0,055	0,05

	5/2						
	1 1	1 α	25 20 15	12 10 9	6 1 8	5.5 .5	3,5 2,5
	1 100	l : 3,	+ 0,000 + 0,000 - 0,000	-0,000 -0,000 -0,000	-0,000 -0,000 -0,000	-0,000 0 +0,000	+ 0,000 + 0,001 + 0,001
	2 2 3	$\eta_4:l$	-0,000 -0,000 -0,000	+ 0,000 + 0,000 + 0,000	+ 0,001 + 0,001 + 0,001	+ 0,002 + 0,002 + 0,002	+ 0,002 + 0,002 + 0,002
Arris and Arris	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	η ₃ : l	+ 0,003 + 0,003 + 0,003	+ 0,003 + 0,003 + 0,002	+ 0,002 + 0,001 + 0,000		$-0,008_5$ -0,011 -0,015
TOTATA	1 00 L	$\eta_2:l$	- 0,014 - 0,017 - 0,021	- 0,025 - 0,028 - 0,030	-0.032 -0.034 -0.037	- 0,040 - 0,043 ₅ - 0,045	-0.047 -0.048 -0.049
TOTROSTOS	former.	η1 : 1 ^η	+ 0,022 + 0,026 + 0,034	+ 0,041 + 0,048 + 0,051	+ 0,056 + 0,062 + 0,069	+ 0,079 + 0,091 + 0,099	+ 0,109 + 0,118 + 0,130
TOSTOSPIO	0 - 1 . Seite 61).	7 ₁₀ : l	-0,010 -0,012 -0,016	- 0,019 - 0,022 - 0,024	-0,027 -0,030 $-0,033_{5}$	- 0,039 - 0,045 ₅ - 0,050	-0,056 -0,062 -0,069
THE TIOT	er Öffnung) gerdruck 1 (β4	-0,001 -0,001 +0,000	$+0,000_{5}$ +0,001 +0,001	+ 0,001 + 0,001 + 0,001	+ 0,000s 0 - 0,000	-0,001 -0,002 -0,002
8	am Ende d . 216, Nr. 66, r den Auflag	β ₃	+ 0,008 + 0,006 + 0,003	+ 0,001 - 0,001 - 0,002	- 0,003 - 0,005 - 0,006		- 0,009 - 0,009 - 0,008
	oment <i>M</i> ₁ (Seite :	β2	-0.050 -0.046 -0.039_{5}	-0,034 -0,029 -0,026	-0,022 -0,018 -0,013		+ 0,009 + 0,013 + 0,018
	8 Stützenm $\alpha = \frac{6 EJ_6}{l^3}$ $\omega = $ Stützel	βı	+ 0,246 + 0,241 + 0,234	+ 0,227 + 0,221 + 0,217	+ 0,213 + 0,208 + 0,201	+ 0,193 + 0,182 + 0,176	+0,168 +0,160 +0,151
	þ	1 a	25 20 15	12 10 9	6 -1 8	5 4 3,5	3 2,6 2,2

Chitzon on lr h anf alatianh Ballrow

228

Zweiter Abschnitt. - § 13.

2 1,8 1,6

+0,002+ 0,002 +0,001

+ 0,001 + 0,001 + 0,000

-0.017-0.019-0.022

-0,049-0,049-0.049

+ 0,136 + 0,144 + 0,152

-0.073-0.078-0.084

- 0,003 - 0,003 - 0,003

-0,008-0,007-0,007

+ 0,020 + 0,022₆ + 0,025

+ 0,146 + 0,141 + 0,134 + 0,134

2 1,8 1,6

]	Bal	ken	au	E se	ehr	vie	len	sta	rrei	1 0	der	ela	stis	sch	ser	ıkba	aren	St	ütz	en.			229
1,4	1,2	1	6,0	0,8	0,7	0,6	0,55	0,5	0,45	0,4	0,35	0,3	0,26	0,22	0,2	0,18	0,16	0,14	0,12	0,1	0,09	0,08	0,07	0,06	0,055	0,05
+0,003	+0,003	+0,004	+0,004	+0,005	+0,005	+ 0,005	+0.005	$+0,004_{5}$	+0,004	+0,003	+ 0,001	-0,001	-0,004	- 0,008	-0,011	-0,015	$-0,019_{5}$	-0,025	-0,032	-0,042	-0,048	-0,054	-0,062	-0,071	-0,077	- 0,082
-0,001	-0,003	-0,006	-0,007	- 0,009	-0,012	$-0,015_{6}$	-0.017_{5}	-0,020	-0.022	-0,025	-0,028	-0,032	-0.035	-0,038	-0,040	-0,042	-0.043_{6}	-0,045	-0.047	-0,049	-0,050	$-0,050_{5}$	-0,051	-0,052	-0,052	-0,052
- 0,025	-0,029	$-0,033_{5}$	-0,036	-0,039	-0,042	- 0,045 .	-0,046	-0,048	-0,049	-0,050	-0,051	-0,051	- 0,050	-0,048	-0,047	-0,044	-0,042	-0,038	-0,033	-0,026	-0,022	-0,017	$-0,010_{5}$	-0,003	+0,001	+ 0,0056
-0.047_{5}	-0,046	-0.042	- 0,040	-0,037	-0,032	-0,027	-0,024	-0,020	-0.015.	- 0,009 -	-0,002	+ 0,006	+0,014	+0,025	+ 0,031	+0,038	+0,046	+ 0,055	+0,066	+ 0,079	$+0,086_{5}$	+0,095	$+0,104_{5}$	+ 0,115	+0,121	+0,128
+ 0,162	+0,174	+0,187	+0,195	+0,204	+0,214	+0.225	+0,231	+0,238	+0.245	+0,253	+0,262	+0,272	+0,280	+0,290	+0,295	+0,300	+0,306	+ 0,312	+0,318	+0,326	$+0,329_{5}$	+0,334	+0,338	$+0,342_{5}$	+0,345	+0,347
-0,091	- 0,099	-0,110	$-0,116_{5}$	-0,124	-0,133	-0,143	-0,149	-0,156	-0,163	-0,172	-0,182	-0,194	-0,206	-0,220	$-0,227_{5}$	-0,236	$-0,246_{5}$	-0,258	$-0,271_{5}$	-0,288	-0,297	-0,307	- 0,319 -	-0,332	-0,339	- 0,346 ₅
- 0,004	-0,004	-0,004	-0,004	-0,004	-0.003_{5}	-0.003	-0,003	-0,002	-0,002	-0,001	- 0,0006	+ 0,000	+0,001	+0,002	+0,002	+0,003	+0,003	$+0,003_{5}$	+0,004	+0,004	+0,004	+0,004	+0,004	+0,004	+0,004	+0.004
- 0,006	-0,004	-0,002	-0,001	+0,000	+0,002	+0,003	+0,004	+0,005	+0,006	+ 0,008	+0,009	+ 0,010	+0,011	+0,012	$+0,012_{5}$	+ 0,013	+0,013	+ 0,013	+ 0,013	+0,013	+0,013	+0,013	+0,012	+ 0,012	+ 0,011	+0,011
+0.028	+0,030	+0,033	+0,034	+0,035	+0,036	+0.036	+0,037	+0,037	+0,037	+0,036	+0,036	+0.035	+0,034	+0,033	+0,032	+0,031	+0,030	+0.029	+0,027	+0,025	+ 0,024	+0,022	+ 0,021	+ 0,019	+0,018	+ 0,017
+ 0,127	+0,119	+0,110	+0,105	+0,099	+0,093	+ 0.086	+0,082	+0,078	$+0.073_{5}$	+0,069	+0,064	+0,058	$+0.053_{5}$	+0,048	$+0.045_{5}$	+0,043	+0,039	+0,036	+ 0,033	+0,029	+0.027	+0,025	+0,022	+0,020	+0,019	+ 0,017
1,4	1,2	1	0,9	0,8	0,7	0,6	0,55	0,5	0,45	0,4	0,35	0,3	0,26	0,22	0,2	0,18	0,16	0,14	0,12	0,1	0,09	0,08	0,07	0,06	0,055	0,05

Zweiter Abschnitt. - § 14.

$$\begin{split} M_{1} &= P \eta_{1} + 2 P \bigg[\frac{\eta_{2} + \eta_{3}}{2} + \frac{3}{8} \left(\beta_{2} + \beta_{3} \right) l \bigg], \\ M_{2} &= \frac{1}{2} P \left(\eta_{1} + \eta_{2} \right) - \frac{3}{8} P \left(\beta_{1} + \beta_{2} \right) l + P \eta_{2} \\ &+ \frac{1}{2} P \left(\eta_{3} + \eta_{4} \right) - \frac{3}{8} P \left(\beta_{3} + \beta_{4} \right) l. \end{split}$$

Nun ist

$$C = P + 2 \frac{M_2 - M_1}{l},$$

folglich

(67)
$$\frac{C}{P} = 1 - \frac{\eta_1}{l} + \frac{\eta_2}{l} - \frac{\eta_3}{l} + \frac{\eta_4}{l} - \frac{3}{4}(\beta_1 - \beta_2 - \beta_3 + \beta_4).$$

Liegen die beiden äußeren Lasten über den Stützen 3 und 3', so entsteht

(68)
$$M_{1} = P(\eta_{1} + 2\eta_{3}), M_{2} = P(2\eta_{2} + \eta_{4}), \frac{C}{P} = 1 - 2\left(\frac{\eta_{1}}{l} - 2\frac{\eta_{2}}{l} + 2\frac{\eta_{3}}{l} - \frac{\eta_{4}}{l}\right).$$

Wir wählen die Zahlen des letzten Beispieles und betrachten den Fall K = 8. Hierzu gehört bei gleichmäßiger Belastung der Grundfläche der Schwelle $\alpha = 1,4$. Um möglichst ungünstig zu rechnen, ermäßigen wir diesen Wert auf $\alpha = 1,0$, denn, je kleiner α ist, desto größer wird C. Mit den für diese Ziffer α in unserer Tabelle angegebenen Werten η und β liefert Gleichung (67) C = 0.74 P und Gleichung (68) C = 0.57 P. Die zugehörigen Radstände sind $1.5 l = 1.5 \cdot 80 = 120$ cm und 2 l= 160 cm. Im ersten Falle erzeugt P = 8 t rund C = 6 t.

Ein anderes Verfahren, den Druck C zu berechnen, findet der Leser im § 15, Nr. 76.

§ 14.

Graphische Untersuchung des gelenklosen Balkens mit veränderlichem Querschnitte auf elastisch senkbaren Stützen.

70. In unseren bisherigen Untersuchungen des Balkens auf elastischen Stützen haben wir den analytischen Weg bevorzugt. Er führt auch stets in übersichtlicher Weise zu der das Hauptziel bildenden Darstellung der Einflußlinien für die Stützenmomente. Denn die Koeffizienten der die Stützenmomente liefernden Elastizitätsgleichungen lassen sich schnell berechnen, ebenso die in den Werten Z (Seite 65) vorkommenden Ordinaten δ_{mr} der Biegungslinien für die Zustände $M_1 = 1, M_2 = 1, \ldots$ Auch Graphische Untersuchung des Balkens auf elastischen Stützen.

die Auflösung der Elastizitätsgleichungen, bietet selbst bei größerer Zahl dieser Gleichungen und unsymmetrisch gebauten Trägern gar keine Schwierigkeiten.

Immerhin erscheint es zweckmäßig, auch eine rein zeichnerische Behandlung der vorliegenden Aufgabe anzugeben, und es möge daher ein von Vianello herrührendes Verfahren hier aufgenommen werden, welches nur von dem Maxwellschen Satze und den Biegungslinien Gebrauch macht und sich deshalb am besten in den Rahmen dieses Buches einfügt. Es bezieht sich auf den im § 6 analytisch behandelten Fall voneinander unabhängiger Stützen, deren Senkungen e, proportional den Stützenwiderständen Cr. sind, so daß

$$e_r = \omega_r C_r = \omega_r \frac{C_r}{1,0}$$

ist, wo ω_r die Senkung der Stütze r infolge von $C_r = 1$ bedeutet (Seite 61). Das Verfahren ist sowohl für den Fachwerkbalken als auch für den vollwandigen Balken mit veränderlichem Querschnitt brauchbar.

Wir setzen voraus, daß nur eine einzige Öffnung belastet sei und betrachten den links von dieser belasteten Öffnung gelegenen Balkenteil 0-1-2-3 . . ., Fig. 207. Die Momentenlinie besteht aus Geraden, welche die Balkenachse in den Punkten L_1, L_2, L_3, \ldots schneiden. L_1 fällt mit der Stütze 0 zusammen.

Beim Balken auf starren Stützen haben diese Punkte L und ebenso die Nullpunkte R der Momentenlinie rechts von der belasteten Öffnung eine feste, von der Belastung unabhängige Lage. Beim Balken auf elastischen Stützen ist diese Lage veränderlich, sie muß für jeden Belastungsfall von neuem bestimmt werden. Wohl aber läßt sich, wie wir sogleich zeigen werden, eine Beziehung zwischen den Lagen zweier auf einander folgenden Punkte L_k und L_{k+1} herleiten, so daß es nur der Bestimmung eines einzigen Punktes L und ebenso eines einzigen Punktes R bedarf, um die übrigen Nullpunkte der Momentenlinien schnell zu finden.

Den Ausgangspunkt für die Herleitung dieser Beziehung bildet die Eigenschaft, daß die Punkte L die Lagen der den Balkenteilen l1, l2, l3, . . . entsprechenden Querkräfte

$$Q_1 = C_0, \quad Q_2 = C_0 + C_1, \quad Q_3 = Q_2 + C_2, \ldots$$

bestimmen. Es geht die Mittelkraft Q_2 von C_0 und C_1 durch den Punkt L_2 , die Mittelkraft Q_3 von C_0 , C_1 , C_2 durch L_3 u. s. w.

Wir führen nun durch den Balken unmittelbar links neben dem Stützpunkte 3 einen Schnitt und setzen die in dem Schnitte wirkenden Spannungen zu einer Mittelkraft zusammen. Diese muß dieselbe Größe und Lage, aber entgegengesetzte Richtung haben, wie die Mittelkraft Q_3

der am Balkenstück 0—3 angreifenden äußeren Kräfte C_0 , C_1 , C_2 ; sie sei an einem starren Stabe angreifend gedacht, der mit dem Endquerschnitte 3 fest verbunden ist. Fällt die Achse dieses in Fig. 207b etwas oberhalb der Balkenachse gezeichneten Stabes mit der Balkenachse zu-

sammen, so ist sie bei jeder eintretenden Verbiegung des Balkenstückes 0-3 Tangente der elastischen Linie im Punkte 3.

Belasten wir jetzt das auf den drei Stützen 0, 1, 2 ruhende Balkenstück 0—3 im Punkte 3 mit der lotrechten Last 1 (Fig. 207c) und nehmen wir an, es sei für diesen Zustand die elastische Linie 0'1'2'3' und ihre rechte Endtangente t_3 gegeben, so können wir mit Hilfe des Maxwellschen Satzes wie folgt schließen:

Eine in 3 angreifende Last 1 senkt den dem starren Stabe angehörigen Angriffspunkt von Q_3 um y, folglich ruft Q_3 eine Senkung des Punktes 3 um Q_3y hervor. Nun soll aber die Senkung des Punktes 3 gleich $C_3\omega_3$ sein; es ist daher

$$Q_3 y = C_3 \omega_3.$$

Trägt man also nach der entgegengesetzten Richtung von 3-3' die Senkung $33''=\omega_3$ auf, welche die Stütze 3 infolge von $C_3=1$ erfahren würde, und verbindet 3'' mit dem Punkte L_3' , so schneidet die Gerade $3''L_3'$ die Balkenachse in dem die Lage von Q_4 bestimmenden Punkte L_4 . Umgekehrt kann man aus der Lage von L_4 auf die Lage von L_3 schließen.

Es ist nun zu zeigen, wie man die Gerade t_3 findet, die man als Einflußlinie der Senkung des Querschnitts 3 für lotrechte Kräfte bezeichnen darf, welche an dem mit dem Querschnitte befestigten starren Stabe angreifen. Der Belastungsfall, um den es sich hierbei handelt, ist statisch unbestimmt. Von der Momentenlinie, Fig. 207d, ist zunächst nur die Ordinate $1 \cdot l_3$ an der Stelle 2 bekannt. Kennt man aber die der zweiten Öffnung angehörige Gerade t_2 , so kann man den Nullpunkt der Momentenlinie der zweiten Öffnung finden. Denn für den Belastungsfall in Fig. 207d ist Q3 gleich der in 3 angreifenden Last 1. Macht man also $2-2''=\omega_2$ und lotet man den Schnittpunkt der beiden Geraden t_2 und 3-2" auf die Balkenachse herunter, so erhält man den gesuchten Nullpunkt und kann nunmehr die Momentenlinie und die zugehörige Biegungslinie zeichnen. Der Belastungsfall aber, dessen elastische Linie die Tangente t_2 liefert, ist statisch bestimmt; es liegt hier ein auf zwei Stützen 0 und 1 ruhender Balken 0-2 vor, der im Punkte 2 eine lotrechte Last 1 trägt; seine Momentenlinie und Biegungslinie kann ohne weiteres gezeichnet werden. In derselben Weise aber, wie man von der Geraden t2 zur Geraden t3 gelangt, kann man aus t_9 und t_3 die t_4 herleiten, hierauf die t_5 u. s. w. Und ganz ebenso kann man, am rechten Trägerende beginnend und nach links fortschreitend, ein System von Geraden t' für die rechts von der belasteten Öffnung liegenden Öffnungen finden. Die Geraden t und t' spielen also eine ähnliche Rolle wie die Festpunkte des auf starren Stützen ruhenden Balkens; ihre Lage ist unabhängig von der Belastung. Mit ihrer Hilfe kann man links von der belasteten Öffnung aus der Lage eines Punktes L_k schrittweise auf die Lage von L_{k-1} , L_{k-2} , . . . schließen, rechts von der belasteten Öffnung aus der Lage eines Punktes R_i auf die von R_{i+1} , R_{i+2} , Für jeden neuen Belastungsfall aber sind die Punkte L und R von neuem zu bestimmen.

Es möge noch darauf aufmerksam gemacht werden, daß zur Bestimmung der Tangente t_3 das Stück 1'2'3' der Biegungslinie ausreicht; seine Lage gegen die Achse 1—2—3 ist bestimmt durch die Stützensenkungen δ_1' und δ_2' . Um δ_2' zu finden, beachte man, daß zwei zu den Seiten I und II der Momentenlinie in Fig. 207d von einem Punkte O aus gezogene Parallelen auf einer Lotrechten im Abstande 1 von O den zugehörigen Widerstand C_2' der Stütze 2 abschneiden. Aus C_2' findet man

$$\delta_2' = \omega_2 \frac{C_2'}{1,0}$$

und erkennt, daß man diese Verschiebung auch mittels der in Fig. 207 dangegebenen Konstruktion bestimmen kann. Ganz ebenso wird $\delta_1{}'$ gefunden.

Besitzt der Balken überall denselben Querschnitt, so betrachte man bei der Darstellung der Biegungslinien die Momentenflächen als Belastungsflächen. Man erhält dann die EJ-fachen Durchbiegungen und muß natürlich auch die EJ-fachen Verschiebungen ω_r , auftragen. Da nun die elastischen Linien selbst nicht weiter gebraucht werden, sondern nur die Tangenten t, so genügt es, die Momentenfläche des Trägerstückes 1-2-3 (Fig. 207d) in zwei Teile zu zerlegen, in das zu 1-2 gehörige Trapez und das zu 2-3 gehörige Dreieck. Man erhält dann von der elastischen Linie nur drei Tangenten; die eine davon ist t_3^*).

71. Nunmehr wenden wir uns zu der Hauptaufgabe, der Darstellung der Einflußlinie für ein Stützenmoment M_r . Wir setzen vorübergehend $M_r = X_a$ und benutzen die Gleichung

$$X_a = P_m \frac{\delta_{ma}}{\delta_{aa}} \cdot$$

Das statisch unbestimmte Hauptsystem erhalten wir, wenn wir den Balken an der Stelle r mit einem Gelenk versehen (Zustand $X_a = 0$). Da es nur auf das Verhältnis $\delta_{ma}: \delta_{aa}$ ankommt, dürfen wir an Stelle von $X_a = -1$, für X_a ein beliebig großes Moment annehmen, das wir mit M_r' bezeichnen wollen, Fig. 208. Es wird also darauf ankommen, aus diesem Momente M_r' die Momente $M'_{r-1}, M'_{r-2}, \ldots$, ferner $M'_{r+1}, M'_{r+2}, \ldots$ mit Hilfe der festen Geraden t abzuleiten. Ist dies geschehen, so lassen sich die zugehörigen Stützenverschiebungen δ' und die elastischen Linien der einzelnen Öffnungen bestimmen. Unter δ_{aa}

^{*)} Das beschriebene Verfahren besitzt den Nachteil, daß die Punkte Lund R zuweilen recht unbequeme Lagen außerhalb des Zeichenblattes annehmen. Man muß dann die bekannten Konstruktionen der neueren Geometrie, gerade Linien durch weit abliegende Punkte zu ziehen, benutzen oder die Rechnung zu Hilfe nehmen.

Graphische Untersuchung des Balkens auf elastischen Stützen. 2

ist der Winkel zu verstehen, um den sich bei r die Endquerschnitte der durch das Gelenk miteinander verbundenen Balkenquerschnitte gegeneinander drehen; er stimmt mit dem Winkel überein, den die in r an die beiden Zweige der elastischen Linie gelegten Tangenten miteinander bilden. Mit den aus der Fig. 208 ersichtlichen Bezeichnungen findet man also

$$\delta_{aa} = \frac{a}{b},$$

wobei eine der beiden Strecken a und b beliebig groß angenommen werden darf.

Die Aufgabe, die Momente M' zu ermitteln, ist als gelöst anzusehen, sobald es gelingt, den Punkt L_r zu bestimmen. Denn aus der Lage dieses Punktes kann man schrittweise auf die Lage von L_{r-1} , L_{r-2}, \ldots schließen. Dieselben Konstruktionen sind dann zur Ermittlung von R_{r+1}, R_{r+2}, \ldots zu benutzen.

Um L_r zu bestimmen, führen wir unmittelbar links von r einen Schnitt, Fig. 209. Die Einflußlinie für die Senkung des Endquerschnittes r des linken Balkenteiles ist die Gerade t_r . Der Endquerschnitt r des rechten Balkenteiles liegt gerade über einer Stütze. Bringt man also, um die Einflußlinie für die Senkung dieses Endquerschnittes zu bestimmen, in r die Last 1 an, so wird ein Stützenwiderstand Yhervorgerufen und es greift jetzt an dem fraglichen Endquerschnitte die lotrechte Last 1 — Y an. Die Ordinaten der Einflußlinie t_r' müssen also mit 1 — Y multipliziert werden. Behufs Berechnung von Y bezeichnen

wir die Ordinate der Geraden t_r im Punkte r mit f und erhalten dann für die Senkung von r infolge 1 - Y den Wert (1 - Y) f. Andrerseits muß diese Senkung aber gleich $\omega_r Y$ sein. Es ergibt sich also

$$1-Y=\frac{\omega_r}{f+\omega_r},$$

und an die Stelle von f tritt

$$f' = \frac{f\omega_r}{f + \omega_r}$$

Durch diese Ordinate ist die Einflußlinie t_r'' für die Senkung des Endquerschnitts des rechten Balkenquerschnitts gegeben. Ihr Nullpunkt

fällt mit dem Nullpunkte der Geraden t', zusammen. Wir wiederholen, daß die Einflußlinien t für Kräfte gelten, die an den mit den fraglichen Querschnitten starr verbundenen Stäben angreifen.

Da nun die beiden Endquerschnitte dieselbe Senkung erfahren müssen, da ferner die Querkraft für den einen Querschnitt nach oben, für den anderen nach unten gerichtet ist, so findet man den Angriffspunkt L_r der Querkraft, indem man die beiden Einflußgeraden t_r und t_r'' zum Schnitt bringt, nachdem man vorher die eine der beiden Geraden in die entgegengesetzte Lage umgeklappt hat. Fig. 209a zeigt, wie man die beiden Arbeiten des Multiplizierens der Geraden t_r' mit $\omega_r: (f + \omega_r)$ und Umklappens übersichtlich vereinigen kann. Die Diagonale AB des Rechtecks rAEB ist parallel zu t_r' . Lotrecht unter dem Schnittpunkte

von t_r und t_r'' liegt der Punkt L_r . Genau ebenso wird der Punkt R_{r+1} gefunden; der Schnitt wird jetzt unmittelbar rechts von r geführt. Hat man nun aus den Punkten L_r und R_{r+1} die Punkte L_{r-1} , $L_{r-2}, \ldots, R_{r+1}, R_{r+2}, \ldots$ abgeleitet und das M'-Polygon gezeichnet, so ermittelt man die zugehörigen Stützenverschiebungen δ' auf die in Fig. 207d angegebene Weise und gewinnt so die den Stützpunkten entsprechenden Ordinaten der gesuchten elastischen Linie. Man verbindet sie durch gerade Linien und faßt dann die von Stützpunkt zu Stützpunkt reichenden Teile der Biegungslinien als Momentenlinien einfacher Balken auf. Bei unveränderlichem Querschnitte werden die EJ-fachen Durchbiegungen bestimmt. Mit Hilfe der Zahlenwerte ω_D und ω_R auf Seite 105 kann man schnell eine größere Zahl von Ordinaten berechnen. Beispiele für dieses Verfahren haben wir zur Genüge vorgeführt.

Wie man aus den Einflußlinien der Stützenmomente alle übrigen Einflußlinien herleiten kann, ist in unseren früheren Untersuchungen ausführlich beschrieben worden.

Zu erwähnen ist noch der Ausnahmefall des Stützenmomentes eines Endfeldes. Die vorhin beschriebene Konstruktion der Einflußlinie ist hier nicht anwendbar. Man geht am zweckmäßigsten von der Einflußlinie für den Widerstand der Endstütze aus, mit deren Hilfe sich dann auf dem in Abteilung I, § 13 angegebenen Wege sehr leicht alle Einflußlinien für das Endfeld herleiten lassen. Bezeichnet man den Widerstand der rechten Endstütze n mit X_a , so ist $X_a = \delta_{ma} : \delta_{aa}$. Die Biegungslinie für den Zustand $X_a = -1$ läßt sich mit Hilfe der Geraden tohne weiteres zeichnen, weil das Moment $M_{n-1} = -1 \cdot l_n$ bekannt und auch der Angriffspunkt n der Querkraft des Endfeldes gegeben ist. Es handelt sich also um dieselben Konstruktionen wie bei der Herleitung der Geraden t_r aus den vorhergehenden Geraden t, nur mit dem Unterschiede, daß man die Biegungslinie so weit darzustellen hat, als sie einen beachtenswerten Einfluß liefert. Ist f_n die Ordinate dieser Biegungslinie im Punkte n, so ist der Multiplikator

$$\frac{1}{\delta_{aa}} = \frac{1}{f_n + \omega_n}$$

Als Übungsbeispiel empfehlen wir dem Leser die Untersuchung der in Nr. 61 behandelten Schiffbrücke.

§ 15.

Balken auf gleichförmiger, ununterbrochener, elastischer Unterlage.

72. Die Grundgleichungen von Winkler und Schwedler. Ein prismatischer, von lotrechten Einzellasten angegriffener Stab ruhe

auf einer wagerechten, gleichmäßig beschaffenen, elastischen Unterlage. An einer beliebigen Stelle sei die Durchbiegung des Stabes y und der Widerstand der Unterlage für die Längeneinheit der Stabachse z. Es sei

$$(1) z = E_0 y,$$

wo E_0 einen durch die Erfahrung bestimmten Wert bedeutet, der mit derselben Einheit gemessen wird, wie die Elastizitätsziffer E.

Die Differentialgleichung der Momentenlinie ist

(2)
$$\frac{d^2 M}{dx^2} = z = E_0 y$$

und die Differentialgleichung der elastischen Linie lautet

$$EJ\frac{d^2y}{dx^2} = -M,$$

$$EJ\frac{d^4y}{dx^4} = -\frac{d^2M}{dx^2} = -E_0y,$$

wofür wir schreiben

(3)

$$\frac{s^*}{4} \frac{d^*y}{dx^4} = -y.$$

Die Länge s ist durch die Gleichung bestimmt

(4)
$$s = \sqrt{4 \frac{E}{E_0} J}.$$

Das allgemeine Integral der Differentialgleichung (3) ist, wenn e die Basis der natürlichen Logarithmen bezeichnet und zur Abkürzung

(5)
$$\frac{x}{s} = \varphi$$

gesetzt wird,

(6) $y = (A_1 e^{\varphi} + A_2 e^{-\varphi}) \cos \varphi + (B_1 e^{\varphi} + B_2 e^{-\varphi}) \sin \varphi$. Durch viermaliges Differenzieren findet man

$$(7) \begin{cases} s \frac{dy}{dx} = + (A_1 e^{\varphi} - A_2 e^{-\varphi}) \cos \varphi + (B_1 e^{\varphi} + B_2 e^{-\varphi}) \cos \varphi \\ - (A_1 e^{\varphi} + A_2 e^{-\varphi}) \sin \varphi + (B_1 e^{\varphi} - B_2 e^{-\varphi}) \sin \varphi \\ \frac{s^2}{2} \frac{d^2 y}{dx^2} = - (A_1 e^{\varphi} - A_2 e^{-\varphi}) \sin \varphi + (B_1 e^{\varphi} - B_2 e^{-\varphi}) \cos \varphi \\ \frac{s^3}{2} \frac{d^3 y}{dx^3} = - (A_1 e^{\varphi} + A_2 e^{-\varphi}) \sin \varphi + (B_1 e^{\varphi} + B_2 e^{-\varphi}) \cos \varphi \\ - (A_1 e^{\varphi} - A_2 e^{-\varphi}) \cos \varphi - (B_1 e^{\varphi} - B_2 e^{-\varphi}) \sin \varphi \\ \frac{s^4}{4} \frac{d^4 y}{dx^4} = - (A_1 e^{\varphi} + A_2 e^{-\varphi}) \cos \varphi - (B_1 e^{\varphi} + B_2 e^{-\varphi}) \sin \varphi = - y. \end{cases}$$

Die letzte Gleichung beweist die Richtigkeit der Integration.

Balken auf gleichförmiger, ununterbrochener, elastischer Unterlage. 239

Aus dem zweiten und dritten Differentialquotienten findet man

(8)
$$M = -EJ \frac{d^2 y}{dx^2} = -\frac{E_0 s^4}{4} \frac{d^2 y}{dx^2},$$

(9)
$$Q = -EJ \frac{d^3y}{dx^3} = -\frac{E_0 s^4}{4} \frac{d^3y}{dx^3}.$$

Wir untersuchen zunächst einen gewichtslosen Stab von der Länge 2l, in dessen Mitte eine Einzellast P angreift, Fig. 210, und nehmen an, daß der Stab mit der Unterlage so befestigt sei, daß z auch negativ werden kann. Die Abszissen x zählen wir von der Angriffsstelle der Last aus nach rechts. Für x = 0 muß $\frac{dy}{dx} = 0$ sein; ferner muß an dieser Stelle die Querkraft den Wert

$$Q = -\frac{E_0 s^4}{4} \frac{d^3 y}{d x^3} = -\frac{P}{2}$$

annehmen. Das gibt die Gleichungen

$$A_1 - A_2 + B_1 + B_2 = 0 - A_1 + A_2 + B_1 + B_2 = \frac{P}{E_0 s};$$

aus ihnen folgt:

An den Stabenden ist sowohl M = 0 als auch Q = 0. Für x = lmuß also $\frac{d^2y}{dx^2} = 0$ und $\frac{d^3y}{dx^3} = 0$ sein. Mit der Bezeichnung (11) $\frac{l}{s} = \lambda$

und mit Beachtung der Gleichungen (10) erhält man zur Berechnung von A_1 und B_1 die Bedingungen

$$A_1 (e^{\lambda} - e^{-\lambda}) \sin \lambda - B_1(e^{\lambda} + e^{-\lambda}) \cos \lambda = -\frac{P}{2E_0s} e^{-\lambda} (\cos \lambda - \sin \lambda)$$

$$A_1 [(e^{\lambda} - e^{-\lambda}) \cos \lambda + (e^{\lambda} + e^{-\lambda}) \sin \lambda]$$

$$- B_1 [(e^{\lambda} - e^{-\lambda}) \cos \lambda - (e^{\lambda} + e^{-\lambda}) \sin \lambda] = + \frac{P}{E_0s} e^{-\lambda} \cos \lambda.$$

Zweiter Abschnitt. - § 15.

Sie liefern

(12)
$$A_1 = \frac{P}{4E_0s} \frac{2 + e^{-2\lambda} + \cos 2\lambda - \sin 2\lambda}{\Im in 2\lambda + \sin 2\lambda}$$

(13)
$$B_1 = \frac{P}{4E_0s} \frac{\cos 2\lambda + \sin 2\lambda - e^{-2\lambda}}{\Im \sin 2\lambda + \sin 2\lambda} *$$

Ist der Stab so lang, daß $\frac{l}{s} = \infty$ gesetzt werden darf, so wird $e^{-2\lambda} = 0$ und $\mathfrak{Sin} 2\lambda = \infty$. Man erhält dann

$$A_1 = 0, \quad B_1 = 0,$$

 $A_2 = B_2 = \frac{P}{2E_0 s},$

mithin

wo

$$z = E_0 y = \frac{P}{2s} e^{-\varphi} (\cos \varphi + \sin \varphi),$$

$$M = -\frac{E_0 s^4}{4} \frac{d^2 y}{dx^2} = +\frac{Ps}{4} e^{-\varphi} (\cos \varphi - \sin \varphi),$$

$$Q = -\frac{E_0 s^4}{4} \frac{d^3 y}{dx^3} = -\frac{P}{2} e^{-\varphi} \sin \varphi.$$

Nun darf man aber beim unendlich langen Stabe jede Stelle als Stabmitte ansehen, und daraus folgt, daß die vorstehenden Gleichungen auch gestatten, den Einfluß einer beliebigen Gruppe von Einzellasten anzugeben. Man erhält für irgend eine Stelle *A* des Stabes die Werte

(14)
$$z = -\frac{1}{2s} \Sigma P \eta$$

(15)
$$M = -\frac{s}{4} \Sigma P \eta',$$

(16)
$$Q = -\frac{1}{2} \Sigma P \eta'',$$

(17)
$$\eta = e^{-\varphi} (\cos \varphi + \sin \varphi),$$

(18)
$$\eta' = e^{-\varphi} (\cos \varphi - \sin \varphi),$$

(19)
$$\eta'' = -e^{-\varphi} \sin \varphi,$$

$$\varphi = \frac{x}{s}, \quad s = \sqrt{4 \frac{E}{E_0} J}$$

x bedeutet den Abstand der Last vom Querschnitte.

*) Tafeln der Hyperbelfunktionen Sin $\varphi = \frac{e^{\varphi} - e^{-\varphi}}{2}$ und Cof $\varphi = \frac{e^{\varphi} + e^{-\varphi}}{2}$ finden sich u. a. in dem bekannten Taschenbuche der Hütte, ferner in dem Taschenbuche der Mathematik von Dr. W. Ligowski.

Die folgende Tabelle enthält eine Zusammenstellung der Werte η , η' , η'' für verschiedene ϕ^*).

*) Die Tabelle ist dem bekannten Werke: Zimmermann, Die Berechnung des Eisenbahnoberbaues, Berlin 1888, mit Erlaubnis des Herrn Verfassers entlehnt worden.

Müller-Breslau, Graphische Statik. II. 2.

φ	n	η΄	η"	φ
0,0	1,000 0	1,000 0	0,000 0	0,0
0,1	0,990 7	0,810 0	- 0,090 3	0,1
0,2	0,965 1	0,639 8	- 0,162 7	0,2
0,3	0,926 7	0,488 8	-0,2189	0,3
0,4	0,878 4	0,356 4	-0,2610	0,4
0,5	0,823 1	0,241 5	- 0,290 8	0,5
0,6	0,762 8	0,1431	- 0,309 9	0,6
0,7	0,699 7	0,059 9	-0,3199	0,7
1/4 72	0,644 8	0,000 0	-0,32 24	0,785
0,8	0,635 4	-0,0093	-0,3223	0.8
0,9	0,571 2	- 0,065 7	- 0,318 5	0,9
1,0	0,508 3	0,110 8	- 0,309 6	1,0
1,1	0,447 6	-0.1457	- 0,296 7	1,1
1,2	0,389 9	-0,1716	-0,2807	1,2
1,3	0,335 5	-0,1897	-0,2626	1,3
1,4	0,284 9	- 0,201 1	-0,2430	1,4
1,5	0,238 4	-0,2068	- 0,222 6	1,5
1/2 72	0,207 9	- 0,207 9	-0,207 9	1,571
1,6	0,195 9	-0,2077	-0,2018	1,6
1,7	0,1576	-0,2047	-0,1812	1,7
1,8	0,123 4	-0,1985	-0,1610	1,8
1,9	0,093 2	-0,1899	-0,1415	1,9
2,0	0,066 7	- 0,179 4	0,123 1	2,0
2,1	0,043 9	-0,1675	-0,1057	2,1
2,2	0,024.4	-0,1548	-0,0896	2,2
2,3	0,008 0	-0,1416	-0,0748	2,3
3/4 72	0,000 0	- 0,134 0	-0,067 0	2,356
2,4	-0,0056	-0,1282	- 0,061 3	2,4
2,5	- 0,016 6	- 0,114 9	- 0,049 1	2,5
2,6	-0,0254	- 0,101 9	- 0,038 3	2,6
2,7	-0,0320	- 0,089 5	- 0,028 7	2,7
2,8	- 0,036 9	-0,0777	-0,0204	2,8
2,9	-0,0403	- 0,066 6	-0,0132	2,9
3,0	- 0,042 26	$-0,056\ 32$	- 0,007 03	3,0
3,1	-0,04314	-0,04688	- 0,001 87	3,1
π	-0,043 21	-0,043 21	0,000 00	3,142
3.2	- 0,043 07	-0.03831	0,002 38	3.2
3.3	-0.04224	-0.03060	0,005 82	3,3
3,4	- 0,040 79	-0,02374	0,008 53	3,4
	A CONTRACT OF			The second se

Tabelle der Werte η , η' , η'' (Seite 240).

T- Devenue		and the set of the set of the	and the second second second	
φ	η	η	η″	φ
3,5	- 0,038 87	- 0,017 69	0,010 59	3,5
3,6	-0,03659	-0,01241	0,012 09	3,6
3.7	-0.03407	-0,00787	0,013 10	3,7
3.8	-0.03138	-0.00401	0.013 69	3.8
3.9	-0.02862	-0.00077	0.013 92	3,9
5/470	-0,027 86	0,000 00	0,013 93	3,927
4,0	- 0,025 83	0,001 89	0,013 86	4,0
4.1	-0.02309	0.004 03	0.013 56	4,1
42	-0.02042	0.005 72	0.013.07	4.2
12	-0.017.87	0,006,99	0.012.43	43
4.0	0.015.46	0,007.01	0.011.68	1.4
4,4	- 0,015 40	0,007 51	0,011 00	Tit
4,5	- 0,013 20	0,008 52	0,010 86	4,5
4,6	-0,01112	0,008 86	0,009 99	4,6
4.7	-0.00921	0,008 98	0,009 09	4,7
6/. 77	-0.008.98	0.008.98	0.008.98	4.712
1410	0,000 10	0,000,00	0,000,00	10
4,8	-0,007 48	0,008 92	0,008 20	4,0
4,9	- 0,005 93	0,008 70	0,007 32	4,9
5,0	- 0,004 55	0,008 37	0,006 46	5,0
5.1	-0.00334	0.007 95	0,005 64	5,1
52	-0.00229	0.007 46	0.004 87	5.2
53	-0.001 39	0.006.92	0.004 15	5.3
5.1	0,000 63	0,006 36	0.003.49	5.4
0,4	-0,000 05	0,000 50	0,000 10	5,100
7/4 72	0,000 00	0,005 79	0,002 90	0,498
5,5	0,000 01	0,005 78	0,002 88	5,5
5.6	0,000 53	0,005 20	0,002 33	5.6
5.7	0.000 95	0.004 64	0,001 84	5,7
58	0.001 27	0.004.09	0.001 41	5.8
59	0.001.52	0.003 56	0.001.02	5.9
6.0	0.001 69	0,003 07	0,000 69	6,0
0,0	0.001.00	0.009.61	0.000.41	61
0,1	0,001 85	0,002 01	0,000 17	69
6,2	0,001 85	0,002 19	0,000 17	0,4
8/4 TT	0,001 87	0,001 87	0,000 00	6,283
6,3	0,001 87	0,001 81	-0,00003	6,3
6,4	0,001 84	0,001 46	- 0,000 19	6,4
6,5	0,001 79	0,001 15	- 0,000 32	6,5
66	0.001 72	0.000 87	-0.00042	6.6
67	0,001 62	0,000,63	-0.00050	6.7
0,1	0,001 52	0,000 49	- 0,000 55	68
0,8	0,001 52	0,000 42	0,000 59	69
6,9	0,001 41	0,000 24	- 0,000 08	0,5
7,0	0,001 29	0,000 09	- 0,000 60	7,0
9/4 72	0,001 20	0,000 00	- 0,000 60	7,069

Tabelle der Werte η , η' , η'' (Seite 240).

16*

Zwei Lasten, die zu beiden Seiten des Querschnittes in gleichen Entfernungen liegen, erzeugen Querkräfte von gleicher Größe, aber von verschiedenen Vorzeichen. Der links vom Querschnitte gelegenen Last entspricht bei positivem η'' eine negative Querkraft. Die von beiden Lasten hervorgerufenen z und M haben gleiche Größe und gleiches Vorzeichen.

Die Figuren 211 und 212a zeigen die Einflußlinien für z und M. Die Abszissen sind Vielfache der Länge s; die Ordinaten sind η und η' . Der Multiplikator der z-Linie ist also $\mu = \frac{1}{2s}$, derjenige der M-Linie ist $\mu = \frac{s}{4}$. Wir haben die Linien nur bis x = 2,6s gezeichnet.

73. Eng nebeneinander gelegte Querschwellen auf Eisenbahnbrücken, Fig. 213, 214, sind als stetige elastische Unterstützung der Schienen anzusehen. Ihre Stützweite sei c, der Abstand der Schienen von den Stützpunkten der Schwellen d, der Druck der Schiene auf die Schwelle P_1 .

Bedeutet weiter E_1 den Elastizitätsmodul der Querschwelle, J_1 das Trägheitsmoment des Schwellenquerschnitts, l den Abstand von Mitte zu Mitte der Schwelle, so ist die Durchbiegung der Schwelle an der Angriffsstelle von P_1 nach Seite 81*)

(20)
$$y = \frac{P_1 d^2 (3c - 4d)}{6E_1 J_1},$$

und es erscheint der Gegendruck z, den die Schwellen auf die Längeneinheit der Schiene ausüben, in der Form

$$z = \frac{P_1}{l} = \frac{6E_1J_1y}{ld^2(3c - 4d)} = E_0y.$$

Es ergiebt sich also

(21)
$$E_0 = E_1 \frac{6J_1}{ld^2(3c - 4d)},$$

*) Man achte darauf, daß wir die Stützwerte, abweichend von Seite 80, jetzt mit c bezeichnet haben.

Balken auf gleichförmiger, ununterbrochener, elastischer Unterlage. 245

und es nimmt daher die Länge $s = \sqrt[4]{4 \ \frac{E}{E_0} J}$ den Wert an

(22)
$$s = \sqrt{\frac{2E}{3E_1} \cdot \frac{J}{J_1}} ld^2 (3c - 4d),$$

woEden Elastizitätsmodul und Jdas Querschnitts-Trägheitsmoment der Schiene bedeuten.

1. Beispiel. Es sei $c = 200 \text{ cm}, d = 25 \text{ cm}, J = 1580 \text{ cm}^4, W = 217 \text{ cm}^3$ (Widerstandsmoment des Schienenquerschnitts). Als Querschwellen seien Zoreseisen Nr. 9 mit $J_1 = 206 \text{ cm}^4$ und $W_1 = 45,8 \text{ cm}^3$ in Zwischenräumen von 2 cm verlegt. Die Breite dieser Schwellen beträgt 20 cm; es ist also l = 22 cm, und man erhält mit $E = E_1$:

$$s = \sqrt{\frac{2}{3} \cdot \frac{1580}{206}} 22 \cdot 25^2 (3 \cdot 200 - 4 \cdot 25) = 77,0 \text{ cm}.$$

Es soll nun die Beanspruchung der Schwelle für eine aus drei Lokomotivachsen bestehende Belastung berechnet werden. Der Raddruck sei P = 8,5 t, der Radstand 1,5 m. Für $\varphi = \frac{1.5}{0,77} = 1,95$, d. h. für x = 1,95 s liefert die Einflußlinie für z (Fig. 211) die Ordinate $\eta = 0,08$. Aus

$$\frac{P_1}{l} =$$

folgt

$$P_1 = \frac{l}{2s} P \Sigma \eta = \frac{22P}{2 \cdot 77} (1, 0 + 2 \cdot 0, 08) = 0,17P = 1,45 \text{ t.}$$

Das Zoreseisen wird also beansprucht mit

$$\sigma = \frac{M}{W_1} = \frac{P_1 d}{W_1} = \frac{1,45 \cdot 25}{45,8} = 0,79 \text{ t/cm}^2.$$

Würde man mit P = 8 t und 1,2 m Radstand rechnen, so würde man erhalten: $\varphi = \frac{1,2}{0,77} = 1,56$, $\eta = 0,21$, $P_1 = 0,20$ P = 1,6 t und $\sigma = 0,87$ t/cm²*).

*) Wenn, wie im vorliegenden Falle, die ungünstigste Laststellung ohne weiteres angegeben werden kann und nur wenige Werte η zu berechnen sind, so braucht man die Einflußlinie nicht zu zeichnen. Die η können der Tabelle entnommen werden, nötigenfalls mit Hilfe goradliniger Einschaltung. Sind verschiedene Zugstellungen zu untersuchen, so verdient die Benutzung der Einflußlinie im allgemeinen den Vorzug. Die Radstände werden als Vielfache der Länge *s* ausgedrückt und eine einmal gezeichnete Einflußlinie kann dann für die verschiedensten Aufgaben benutzt werden. Für die Beanspruchung der Schiene ist der größere Radstand der ungünstigere. An Stelle der Mittelachse der Lokomotive muß eine Seitenachse über dem fraglichen Schienenquerschnitt stehen. Zu $\varphi = 1,95$ gehört nach Fig. 212a $\eta' = -0,18$; der zu $\varphi = 2 \cdot 1,95 = 3,9$ gehörige Wert $\eta' = -0,001$ ist unerheblich. Man erhält

$$M = \frac{Ps}{4} \Sigma \eta = \frac{8.5 \cdot 77}{4} (1.0 - 0.18) = 134 \text{ tem},$$

$$\sigma = \frac{M}{W} = \frac{134}{217} = 0.62 \text{ t/cm}^2.$$

Der einzelne Raddruck würde erzeugen

$$M = \frac{8,5 \cdot 77}{4} = 164 \text{ und } \sigma = 0,76 \text{ t/cm}^2.$$

Für die Praxis empfiehlt es sich, schon wegen der Abnutzung der Schienen, mit dem ungünstigen Falle zu rechnen, daß nur ein einziger Raddruck angreift.

2. Beispiel. An Stelle der im ersten Beispiele vorausgesetzten eisernen Querschwellen sollen hölzerne Querschwellen von 24 cm Breite und 16 cm Höhe treten. Dann ist $J_1 = 8200, W_1 = 1025$,

 $\frac{2}{3} \frac{E}{E_1} = \frac{2100000}{100000} \cdot \frac{2}{3} = 14, \quad \frac{2}{3} \frac{E}{E_1} \frac{J}{J_1} = \frac{14 \cdot 1580}{8200} = 2,7$ und man erhält mit l = 24 + 2 = 26 cm:

$$s = \sqrt{2,7 \cdot 26 \cdot 25^2(3 \cdot 200 - 4 \cdot 25)} = 68,4$$
 cm.

Wir rechnen mit 1,2 m Radstand und P = 8 t. Zu $\varphi = \frac{1.2}{0.684}$ = 1,75 gehört $\eta = 0.14$. Daher

$$P_{1} = \frac{26P}{2 \cdot 68,4} (1,0 + 2 \cdot 0,14) = 0,24P = 1,92 \text{ t},$$

$$\sigma = \frac{P_{1}d}{W_{2}} = \frac{1,9 \cdot 25}{1025} = 0,05 \text{ t/cm}^{2}.$$

Für die Schiene ergibt sich für P = 8.5 t

$$\sigma = \frac{Ps}{4W} = \frac{8,5 \cdot 68,4}{4 \cdot 217} = 0,67 \text{ t/cm}^2.$$

74. Einfluß einer gleichförmigen Verkehrslast. Wir kehren zur Behandlung des allgemeinen Falles zurück. Der Druck z wird 0, sobald tg $\varphi = -1$ ist, und das geschieht für $\varphi = \frac{3}{4}\pi$, $\frac{7}{4}\pi$, $\frac{11}{4}\pi$, ... Die Strecken, deren Belastung an der Stelle A ein positives z erzeugen, reichen von $\varphi = 0$ bis $\varphi = \frac{3}{4}\pi$, von $\varphi = \frac{7}{4}\pi$ bis $\varphi = \frac{11}{4}\pi$, u.s.w. Die Belastung der dazwischen gelegenen Strecken ruft ein negatives zhervor. Jeder $\frac{\text{positiven}}{\text{negativen}}$ Beitragstrecke links von A entspricht eine gleichlange $\frac{\text{positive}}{\text{negative}}$ Beitragstrecke rechts von A. Infolge einer gleichmäßigen Verkehrslast p entsteht also, wegen $dx = sd\varphi$,

$$\max z = \frac{p}{2} \left[2 \int_{o}^{\frac{3}{4}\pi} \eta d\varphi + 2 \int_{\frac{7}{4}\pi}^{\frac{11}{4}\pi} \eta d\varphi + \dots \right] \cdot$$

Nun ist

$$\int \cos \varphi e^{-\varphi} d\varphi = +\frac{1}{2} e^{-\varphi} (\sin \varphi - \cos \varphi)$$
$$\int \sin \varphi e^{-\varphi} d\varphi = -\frac{1}{2} e^{-\varphi} (\sin \varphi + \cos \varphi)$$
$$\int \eta d\varphi = \int e^{-\varphi} (\cos \varphi + \sin \varphi) d\varphi = -e^{-\varphi} \cos \varphi$$
$$\frac{\frac{3}{4}\pi}{\int_{0}^{\pi} \eta d\varphi} = 1 + \frac{\sqrt{2}}{2} e^{-\frac{3\pi}{4}} = 1,067^{*})$$
$$\frac{\frac{11\pi}{4}}{\int_{\pi}^{\pi} \eta d\varphi} = \frac{\sqrt{2}}{2} \left(e^{-\frac{11\pi}{4}} + e^{-\frac{7\pi}{4}} \right) = 0,003.$$

Der Einfluß der übrigen positiven Beitragstrecken ist unwesentlich. Man findet daher, auf eine Dezimalstelle abgerundet,

(23)
$$\max z = 1, 1 p,$$

also einen Wert, der nur wenig größer als p ist.

Das Biegungsmoment *M* wird 0 für tg $\varphi = +1$, das ist für $\varphi = \frac{\pi}{4}$, $\frac{5\pi}{4}$, $\frac{9}{4}\pi$, Infolge einer gleichmäßigen Verkehrslast entsteht mithin

$$\max M = \frac{ps^2}{4} \left[2 \int_{o}^{\frac{\pi}{4}} \eta' d\varphi + 2 \int_{\frac{5\pi}{4}}^{\frac{9\pi}{4}} \eta' d\varphi + \ldots \right],$$

*) Es ist $\log e^{-\frac{\pi}{4}} = 0,658\,906 - 1.$

$$\int \eta' d\phi = \int e^{-\varphi} (\cos \phi - \sin \phi) d\phi = e^{-\varphi} \sin \phi$$

$$\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \eta' d\phi = \frac{\sqrt{2}}{4} e^{-\frac{\pi}{4}} = 0,161 \not$$

$$\frac{1}{2} \int_{0}^{\frac{9\pi}{4}} \eta' d\phi = \frac{\sqrt{2}}{4} \left(e^{-\frac{9\pi}{4}} + e^{-\frac{5\pi}{4}} \right) = 0,007 \not$$

Die übrigen positiven Beitragstrecken dürfen vernachlässigt werden. Es entsteht

(24)

$$\max M = 0.17 \, ps^2$$
.

75. Anwendung auf Schiffbrücken. Ruht ein sehr langer gelenkloser prismatischer Balken auf gleich großen, in gleichen, verhältnismäßig kurzen Abständen aufeinander folgenden Schiffen und ist, wie bei dem in Nr. 61 gerechneten Beispiele der Einfluß der Werte ζ verhältnismäßig klein, so dürfen die Widerstände C der Schiffe bei der Berechnung der Momente und der Einsenkungen der Schiffe mit genügender Annäherung durch einen stetigen Gegendruck

$$z = \frac{C}{l} = \gamma \frac{Fy}{l}$$

ersetzt werden, wol den Abstand der Mitten zweier benachbarten Schiffe, F den Inhalt des wagerechten Schiffsquerschnitts und γ das Gewicht des Wassers für die Raumeinheit bedeutet. Es ist dann

(25)
$$E_0 = \frac{\gamma F}{l} \text{ und } s = \sqrt{\frac{4 E J l}{\gamma F}},$$

und man erhält für das größte Stützenmoment infolge einer gleichmäßigen Verkehrslast den Wert

(26)
$$\max M_p = 0.34 \ p \boxed{\frac{EJl}{\gamma F}}.$$

Für das Moment in der Mitte einer Öffnung rechnen wir den Betrag $M_0 = \frac{1}{8} p l^2$ hinzu.

Hinsichtlich der ständigen Belastung g verhalten sich die einzelnen Stücke l des unendlich langen Balkens wie an beiden Enden wagerecht eingespannte Stäbe. Es entsteht über einer Stütze

248

WO

Balken auf gleichförmiger, ununterbrochener, elastischer Unterlage. 249

$$M_g = -\frac{gl^2}{12}$$

und in der Mitte einer Öffnung

$$M_g = rac{gl^2}{8} - rac{gl^2}{12} = rac{gl^2}{24}$$

Das größte Biegungsmoment beträgt daher im ganzen

(27)
$$M = 0,34 \ p \sqrt{\frac{EJl}{\gamma F} + \frac{1}{8} p l^2 + \frac{1}{24} g l^2}.$$

Die größte Belastung eines Schiffes infolge der Verkehrslast ist (28) $C_{max} = 1,1 \ pl.$

Wenden wir diese Formeln auf die in Nr. 61 untersuchte Schiffbrücke an, so erhalten wir

$$\sqrt{\frac{EJl}{\gamma F}} = \sqrt{\frac{215 \cdot 1260 \cdot 12}{1,0 \cdot 100}} = 180 \text{ m}^2$$

$$M_{max} = \left(0,34 \cdot 180 + \frac{1}{8} \cdot 12^2\right) p + \frac{12^2}{24} g$$

$$= 79 p + 6g = 79 \cdot 2,7 + 6 \cdot 1,8 = 214 \text{ tm.}$$

$$C_{max} = 1,1 p \ 12 = 13,2 p,$$

welche Werte mit den früher erhaltenen:

$$M_{max} = 74 p + 6.3 g = 211 \text{ tm}, \quad C_{max} = 13.2 p$$

trotz der Stützenentfernung von l = 12 m und der nicht einmal sehr großen Zahl von Schiffen sehr gut übereinstimmen.

Wir bemerken noch, daß für das vorstehende Beispiel

$$s = \sqrt[4]{\frac{4 E J l}{\gamma F}} = 19,0 \text{ m}$$

ist, daß also die zweite positive Beitragstrecke hinsichtlich des Momentes erst im Abstande $\frac{5}{4}\pi s = 75$ m von der Balkenmitte beginnt und im Abstande $\frac{9}{4}\pi s = 134$ endigt. Es hätte also genügt, $M_p = 0,16 ps^2$ zu setzen. Ähnlich verhält es sich mit C_{max} . Bei der Anwendung von Näherungsformeln empfiehlt es sich aber, etwas reichlich zu rechnen.

Die Wirkung von Einzellasten läßt sich mit Hilfe der in den Figuren 211 und 212 dargestellten Einflußlinien leicht verfolgen. Der Widerstand C eines Schiffes infolge einer Last P = 1 ist

$$C = zl = \frac{l}{2s} \eta = \frac{12}{38} \eta = 0.32 \eta.$$

Zweiter Abschnitt. — § 15.

Drückt man nun l als Vielfaches von s = 19 m aus, so erhält man l = 0,632 s, und kennt jetzt den Maßstab, in welchem der Balken unter die η -Linie gesetzt werden muß, wenn diese Linie die Einflußlinie für C sein soll. Der Multiplikator ist 0,32. Um eine Vergleichung mit den Ergebnissen der in Nr. 61 durchgeführten Untersuchung zu ermöglichen, geben wir noch die den Stützpunkten 1, 2, 3, 4, 5 entsprechenden Werte 0,32 η an. Wir finden die Zahlen

$$0,32$$
 $0,24$ $0,11$ $0,03$ $-0,01,$

welche von den früher gewonnenen nur wenig abweichen. Die Einflußlinie für den Widerstand C_0 des zunächst dem Ufer gelegenen Schiffes hat natürlich eine von den übrigen C-Linien völlig abweichende Form. Man findet sie mit genügender Genauigkeit mittels der am Schluß von Nr. 61 unter 7 durchgeführten Untersuchung aus der Einflußlinie für M_1 .

Um die Wirkung von Einzellasten auf die Momente des mittleren Teiles der Brücke zu untersuchen, betrachte man die η' -Linie, Fig. 212 a, als die mit dem Multiplikator $\frac{1}{4}s$ behaftete Einflußlinie, sowohl des Stützenmomentes M_r als auch des Stützenmomentes M_{r+1} und leite die Einflußlinie des Momentes M für den in der Mitte der Öffnung l gelegenen Querschnitt mit Hilfe der Formel

$$M = M_0 + \frac{M_r + M_{r+1}}{2}$$

ab. Die M_0 -Fläche ist ein Dreieck von der Höhe $\frac{1}{4}l$, wofür natürlich wegen des Multiplikators $\frac{1}{4}s$ die Zahl l:s aufgetragen werden muß. Im vorliegenden Fall ist (für P = 1)

$$M_r = \frac{1}{4} s \eta' = 4,75 \eta',$$

und die Höhe des M_0 -Dreiecks gleich l:s = 0,632. Das beschriebene Verfahren ist in Fig. 212b durchgeführt worden. Der zur Öffnung lgehörige Teil der $\frac{1}{2} (M_r + M_{r+1})$ -Linie wurde gestrichelt. Multipliziert man die in der Mitte von l und bei den Stützpunkten r und r-1gemessenen Ordinaten mit 4,75, so erhält man

+5,32 +2,66 -0,24.

Ersetzt man innerhalb der Öffnung die $\frac{1}{2}(M_r + M_{r+1})$ -Linie durch eine wagerechte Gerade, was stets zu empfehlen ist, so findet man +5,66 +2,66 -0,24.

Balken auf gleichförmiger, ununterbrochener, elastischer Unterlage. 251

In Nr. 61 erhielten wir

+5,41 +2,41 -0,33.

Die Übereinstimmung ist eine befriedigende*). Jedenfalls ist das Näherungsverfahren sehr wertvoll für eine Voruntersuchung langer gelenkloser Schiffbrücken, da es gestattet, den Einfluß von $\frac{EJ}{\gamma F}$ schnell festzustellen. Eine nachträgliche genauere Berechnung auf dem in Nr. 61 beschriebenen Wege, die sich nach den vom Verfasser an verschiedenen Beispielen gesammelten Erfahrungen auf einen von 6 bis 8 Schiffen getragenen Balken beschränken darf, hat es dann mit einem Werte α zu tun, den man wohl nur in seltenen Fällen wird verbessern müssen. Auch die in Nr. 67 u. 86 vorgetragene Theorie des Balkens auf unendlich vielen elastischen Einzelstützen führt rasch zum Ziele.

76. Eisenbahnschienen auf Querschwellen dürfen bei den üblichen kurzen Abständen der im Schotterbett liegenden Schwellen ebenfalls mit genügender Genauigkeit als stetig unterstützte Balken behandelt werden. Zur Bestimmung des größten Druckes, den ein Eisenbahnzug auf eine Schwelle ausübt, kann daher ohne weiteres die in Fig. 211 gezeichnete η -Linie benutzt werden. Man braucht nur die Größe der Strecke *s* anzugeben. Hierbei ist zu beachten, daß der Druck auf die Schwelle um so größer ausfällt, je geringer die Einsenkung der Schwelle ist. Wir rechnen also ungünstig, wenn wir annehmen, daß sich der von beiden Schienen auf die Schwelle ausgeübte Druck 2 P_1 gleichmäßig über die Grundfläche 2*ab* der Schwelle verteilt. Hierbei bedeutet 2*a* die Länge, *b* die Breite der Schwelle. Die Schwelle senkt sich also um

$$y = \frac{2P_1}{K2ab},$$

wo K den auf Seite 225 erklärten Erfahrungswert bezeichnet. Es wird daher

(29)
$$E_0 = \frac{z}{y} = \frac{P_1}{ly} = \frac{Kab}{l},$$

(30)
$$s = \sqrt[4]{\frac{4EJl}{Kab}},$$

wo *l* den Abstand von Mitte zu Mitte der Schwelle bedeutet. Ist z. B. für die Schiene $J = 1580 \text{ cm}^{\frac{4}{7}} E = 2100\,000 \text{ kg/cm}^2$, ferner l = 80 cm, a = 135 cm, b = 26 cm, so erhält man

für		K =	3	8	kg/cm ³
die	Längen	s =	100 cm	78	cm.

^{*)} Bei der Bewertung der geringen Unterschiede beachte man auch, daß an Stelle der in Nr. 61 angenommenen Stützung in Schiffsmitte in Wirklichkeit wohl immer eine Wagebalkenstützung (siehe Fig. 108) treten wird.

Es soll die Wirkung einer dreiachsigen Lokomotive untersucht werden. Der Radstand sei 1,2 m, der Raddruck 8,0 t. Als Vielfaches von *s* ausgedrückt, nimmt der Radstand für die zwei betrachteten Fälle die Werte an

und man findet nun mit Hilfe der Figur 211

$$\Sigma \eta = 1,78$$
 1,44.

Die Schwelle erfährt den Druck

$$P_1 = \frac{l}{2s} \Sigma P \eta = \frac{40 \cdot 8,0}{s} \Sigma \eta = \frac{320 \Sigma \eta}{s}$$

Das gibt:

 $P_1 = 5,7 \text{ t} 5,9 \text{ t},$

also für beide Fälle abgerundet $P_1 = 6$ t. Die negativen Stützendrücke, die sich aus der Annahme eines unendlichen langen Balkens ergeben und von den lose auf der Bettung liegenden Schwellen nicht aufgenommen werden können, werden das Ergebnis der vorstehenden Rechnung sicher nicht sehr beeinflussen, denn sie treten erst in größerer Entfernung von der fraglichen Schwelle auf. Auch darf nicht außer acht gelassen werden, daß wir nur mit drei Raddrücken gerechnet haben, um ein ungünstiges Ergebnis zu erzielen. Auf dem im § 13 eingeschlagenen Wege fanden wir ebenfalls C = rund 6 t.

Zwischen der Strecke s und der im § 13 vorkommenden Zahl α besteht die Beziehung

(31)

$$s = l \sqrt{\frac{2}{3}} \alpha.$$

§ 16.

Formänderung und Beanspruchung eines zylindrischen Wasserbehälters mit lotrechter Achse.

Die Untersuchung eines zylindrischen Wasserbehälters führt auf eine Differentialgleichung, welche sich von der die Grundlage des vorigen Paragraphen bildenden Gleichung (3) nur dadurch unterscheidet, daß auf der rechten Seite das Glied Cx hinzutritt, wo C eine von x unabhängige Größe bedeutet. Es möge deshalb diese Untersuchung hier eingeschaltet werden.

77. Die Wandstärke ist überall gleich groß. Die Höhe des Behälters sei l, der Radius r, die Wandstärke δ , Fig. 215. Es sei δ sehr klein im Verhältnis zu l und r. Im Abstande x vom oberen

Rande des Behälters ändere sich r infolge der elastischen Verbiegung der Wand um y.

Aus der Zylinderwand sei ein senkrechter Streifen von der Breite $rd\psi$ herausgeschnitten. Im Teil-

chen δdx der senkrechten Schnittfläche werden Zugspannungen erzeugt, für welche bei dünner Wand ein Mittelwert σ_r eingeführt werden darf, der sich zum Elastizitätsmodul E verhält wie $\Delta 2\pi r: 2\pi r$. Da nun $\Delta r = y$ ist, so folgt

(1)
$$\frac{\sigma_r}{E} = \frac{y}{r}$$
.

Auf das Teilchen $dx \cdot rd\psi$ der Innenwand wirkt der Wasserdruck $\gamma x dxr d\psi$, wo γ das Gewicht der Raumeinheit des Wassers bedeutet. Es verhält sich also der aus der Zylinderwand herausgeschnittene senkrechte Streifen wie ein Balken, dessen Längeneinheit an der Stelle x mit

$$p = \gamma x r d\psi - \sigma_r \delta d\psi = \left(\gamma x r - \frac{y \delta E}{r}\right) d\psi$$

belastet ist. Das Trägheitsmoment seines Querschnittes beträgt

$$J = \frac{r d \psi \delta^3}{12}$$

und die Gleichung seiner elastischen Linie lautet

(2)
$$EJ \frac{d^4y}{dx^4} = p.$$

Nach einer einfachen Umformung erhält man mit der Bezeichnung

$$(3) s = \sqrt{\frac{r^2 \delta^2}{3}}$$

die Differentialgleichung

(4)
$$\frac{s^4}{4} \frac{d^4y}{dx^4} = -y + \gamma \frac{r^2x}{E\delta},$$

deren allgemeines Integral lautet:

(5) $y = (A_1 e^{\varphi} + A_2 e^{-\varphi}) \cos \varphi + (B_1 e^{\varphi} + B_2 e^{-\varphi}) \sin \varphi + \gamma \frac{r^2 x}{E\delta},$ wo

$$\varphi = \frac{x}{s} \cdot$$

Durch viermaliges Differenzieren findet man

$$\begin{cases} s \frac{dy}{dx} = + (A_1 e^{\varphi} - A_2 e^{-\varphi}) \cos \varphi + (B_1 e^{\varphi} + B_2 e^{-\varphi}) \cos \varphi \\ - (A_1 e^{\varphi} + A_2 e^{-\varphi}) \sin \varphi + (B_1 e^{\varphi} - B_2 e^{-\varphi}) \sin \varphi + \gamma \frac{r^2 s}{E \delta} \\ \frac{s^2}{2} \frac{d^2 y}{dx^2} = - (A_1 e^{\varphi} - A_2 e^{-\varphi}) \sin \varphi + (B_1 e^{\varphi} - B_2 e^{-\varphi}) \cos \varphi \\ \frac{s^3}{2} \frac{d^3 y}{dx^3} = - (A_1 e^{\varphi} + A_2 e^{-\varphi}) \sin \varphi + (B_1 e^{\varphi} + B_2 e^{-\varphi}) \cos \varphi \\ - (A_1 e^{\varphi} - A_2 e^{-\varphi}) \cos \varphi - (B_1 e^{\varphi} - B_2 e^{-\varphi}) \sin \varphi \\ \frac{s^4}{4} \frac{d^4 y}{dx^4} = - (A_1 e^{\varphi} + A_2 e^{-\varphi}) \cos \varphi - (B_1 e^{\varphi} - B_2 e^{-\varphi}) \sin \varphi \\ = -y + \gamma \frac{r^2 x}{E \delta}. \end{cases}$$

Am oberen Rande des Gefäßes (x = 0) muß sein

$$\frac{d^2y}{dx^2} = 0$$
 und $\frac{d^3y}{dx^3} = 0$,

weil Moment und Querkraft dort gleich Null sind. Hieraus folgt

$$B_2 = B_1 \\ A_2 = A_1 - 2 B_1,$$

weshalb

(7)
$$y = + A_{1} (e^{\varphi} + e^{-\varphi}) \cos \varphi$$
$$+ B_{1} [(e^{\varphi} + e^{-\varphi}) \sin \varphi - e^{-\varphi} 2 \cos \varphi] + \gamma \frac{r^{2}x}{E\delta},$$

(8)
$$s \frac{dy}{dx} = + A_{1} [(e^{\varphi} - e^{-\varphi}) \cos \varphi - (e^{\varphi} + e^{-\varphi}) \sin \varphi]$$
$$+ B_{1} [(e^{\varphi} + e^{-\varphi}) (\cos \varphi + \sin \varphi) + e^{-\varphi} 2 \cos \varphi] + \gamma \frac{r^{2}s}{E\delta}.$$

Am Boden sei das Gefäß senkrecht eingespannt. Die wagerechte Ausdehnung des Bodens möge vernachlässigt werden. Dann muß sein für x = l, das ist für $\varphi = \frac{l}{s}$,

$$y = 0, \quad \frac{dy}{dx} = 0.$$

Durch diese beiden Bedingungen sind die Festwerte A_1 und B_1 bestimmt.

Bei dünnwandigen Gefäßen darf nun $e^{-\frac{t}{s}}$ stets gegen $e^{+\frac{t}{s}}$ vernachlässigt werden. Die beiden Bedingungen gehen dann mit der Bezeichnung

$$\lambda = \frac{l}{s}$$

über in

$$0 = A_1 \cos \lambda + B_1 \sin \lambda + \gamma \frac{r^2 l}{E \delta e^{\lambda}}$$

$$0 = A_1 (\cos \lambda - \sin \lambda) + B_1 (\cos \lambda + \sin \lambda) + \gamma \frac{r^{-1}}{E \delta \lambda e^2};$$

sie liefern

(9)
$$A_1 = -\gamma \frac{r^2 l}{E \delta e^{\lambda}} \left[\cos \lambda + \sin \lambda - \frac{\sin \lambda}{\lambda} \right]$$

(10)
$$B_1 = + \gamma \frac{r^2 l}{E \delta e^{\lambda}} \left[\cos \lambda - \sin \lambda - \frac{\cos \lambda}{\lambda} \right]$$

Führt man Hyperbelfunktionen ein, so darf man

(11)
$$e^{\lambda} = 2 \operatorname{Cof} \lambda$$

setzen. Man findet dann mit den Bezeichnungen

(12)
$$\gamma \frac{r^2 l}{E\delta} = c$$
 und

(13)
$$c \frac{x}{l} = \eta$$

die folgende Gleichung der elastischen Linie:

(14)
$$\frac{\eta - y}{c} = \rho_1 \frac{\cos \varphi \, \mathfrak{Cof} \, \varphi}{\mathfrak{Cof} \, \lambda} \\ - \rho_2 \frac{\sin \varphi \, \mathfrak{Cof} \, \varphi - \cos \varphi \, (\mathfrak{Cof} \, \varphi - \mathfrak{Sin} \, \varphi)}{\mathfrak{Cof} \, \lambda},$$

WO

(15)
$$\rho_1 = \cos \lambda + \sin \lambda - \frac{\sin \lambda}{\lambda},$$

(16)
$$\rho_2 = \cos \lambda - \sin \lambda - \frac{\cos \lambda}{\lambda}.$$

Die Werte c und η und die durch die Gleichung bestimmte Gerade AB (Fig. 216) lassen sich in einfacher Weise deuten.

Man denke sich aus der Zylinderwand im Abstande x vom oberen Ende durch zwei wagerechte Schnitte einen Ring von der Höhe dxherausgeschnitten und nehme die wagerechten Schnittflächen spannungs-

los an. Dann besteht zwischen der Ringspannung $\sigma_{,}$ an der Stelle x und dem Wasserdrucke γx offenbar die Gleichgewichtsbedingung

$$\sigma_r \delta dx d\psi = \gamma x dx r d\psi,$$

und es ergibt sich für diesen Fall:

 $\sigma_r = \frac{\gamma x r}{\delta} \cdot$

Die zugehörige Änderung des Radius ist

$$\Delta r = \frac{\sigma_r}{E} r = \gamma \frac{x r^2}{E\delta},$$

sie stimmt mit dem oben eingeführten Werte η überein. Für x = l wird $\eta = c$.

Wäre nun die Zylinderwand mit dem Boden nicht befestigt, so könnten sich die einzelnen wagerechten Ringe in der oben beschriebenen Weise ausdehnen; es würde dann die Gerade AB die ela-

stische Linie sein. Der durch die Gleichung (14) bestimmte Wert $\eta - y$ gibt also die Abweichung der wirklichen elastischen Linie von der Geraden AB an.

Bevor wir diese Abweichung zahlenmäßig verfolgen, geben wir noch die Gleichung der elastischen Linie für den Fall an, daß die oben eingeführten Vereinfachungen wegen eines zu kleinen Wertes λ ungültig werden sollten. Es wird dann

(17)
$$\frac{\eta - y}{c} = + \rho' \cos \varphi \operatorname{Cof} \varphi - \rho'' [\sin \varphi \operatorname{Cof} \varphi - \cos \varphi (\operatorname{Cof} \varphi - \operatorname{Sin} \varphi)],$$

wo p' und p" durch die Gleichungen bestimmt sind

(18)
$$2(\mathfrak{Cof}^2\lambda + \cos^2\lambda)\rho' = \mathfrak{Cof}\lambda(2\cos\lambda + \sin\lambda) - \mathfrak{Sin}\lambda\cos\lambda - \frac{1}{\lambda}[\mathfrak{Cof}\lambda(\sin\lambda - \cos\lambda) + \mathfrak{Sin}\lambda\cos\lambda],$$

und

(19)
$$2(\mathfrak{Coj}^2\lambda + \cos^2\lambda)\rho'' = \mathfrak{Sin}\lambda\cos\lambda - \mathfrak{Coj}\lambda\sin\lambda - \frac{\mathfrak{Coj}\lambda\cos\lambda}{\lambda}$$
.

Bei genügend großem λ darf man Sin $\lambda = Cof \lambda$ setzen und $\cos^2 \lambda$ gegen $Cof^2 \lambda$ streichen. Dann geht

$$\rho'$$
 über in $\frac{\rho_1}{\operatorname{Cof}\lambda}$ und ρ'' in $\frac{\rho_2}{\operatorname{Cof}\lambda}$.

Zahlenbeispiel. Es sei l = 0.5r und $\delta = \frac{l}{376}$ also

(20)
$$\lambda = \frac{l}{s} = \sqrt{3 \frac{l^2}{r^2} \frac{l^2}{\delta^2}} = \text{rund } 20.$$

Die Voraussetzung $\mathfrak{Sin} \lambda = \mathfrak{Cof} \lambda$ trifft hier zu*); es dürfen also die Näherungsformeln benutzt werden. Wegen des sehr großen Wertes $\mathfrak{Cof} \lambda = \frac{1}{2} e^2 = 242582778$ entsprechen kleinen Werten $\varphi = \frac{x}{s}$ $= \frac{x}{l} \lambda$ nur sehr geringe Unterschiede $\eta - y$, so daß für den oberen Teil der Gefäßwand die elastische Linie fast genau mit der Geraden ABzusammenfällt. In die folgende Zusammenstellung haben wir diese äußerst kleinen Werte mit aufgenommen, schon um zu zeigen, daß die elastische Linie eine Wellenlinie ist, welche die Gerade AB mehrfach schneidet. Es ist

für $\frac{x}{l}$	$= 0 \qquad \eta - y$	$v = + 0,00000003 \cdot c$
	= 0,1	$= -0,00000001 \cdot c$
	= 0,2	= - 0,000000139 · c
	= 0,3	$= + 0,000000896 \cdot c$
	= 0.4	$= + 0,00000205 \cdot c$
	= 0,5	$= -0,000062 \cdot c$
	= 0,6	$=+0,000267 \cdot c$
	= 0,7	$=+0,001669 \cdot c$
	= 0,8	= - 0,02514 · c
•	= 0,85	$= -0,0426 \cdot c$
	= 0.88345	= 0
	= 0,9	$= + 0,0603 \cdot c$
	= 0,95	$= + 0,4929 \cdot c$
	= 1,00	=+c.

Bis zu x = 0.7l darf die in Fig. 216 maßstäblich dargestellte elastische Linie als mit der Geraden AB zusammenfallend angesehen werden. Die Biegungsspannungen braucht man nur für den unteren

*) Bereits zu $\lambda = 4.0$ gehört Cof $\lambda - \Im in \lambda = 27,308 - 27,290 = 0,018$ und zu $\lambda = 5,0$: Cof $\lambda - \Im in \lambda = 74,210 - 74,203 = 0,007$.

Müller-Breslau, Graphische Statik. II. 2.

Teil der Zylinderwand zu untersuchen. Für diesen Teil ist aber $\varphi = \frac{x}{l} \lambda \equiv 0,7 \cdot 20 = 14$. Man darf also Cof $\varphi = \mathfrak{Sin} \varphi$ setzen und erhält dann die einfache Gleichung

$$\frac{\eta - y}{c} = (\rho_1 \cos \varphi - \rho_2 \sin \varphi) \frac{\mathfrak{Cof} \varphi}{\mathfrak{Cof} \lambda}$$
$$= (\rho_1 \cos \varphi - \rho_2 \sin \varphi) \frac{e^{\varphi}}{e^{\lambda}}$$
$$= \frac{\rho_1 \cos \varphi - \rho_2 \sin \varphi}{e^{\lambda - \varphi}}.$$

Drückt man ρ_1 und ρ_2 mittels der Gleichungen (15) und (16) aus und führt die Bezeichnung ein

$$\lambda - \varphi = \frac{l - x}{s} = \frac{x'}{s} = \varphi',$$

so findet man

(21)
$$\frac{y}{c} = \frac{x}{l} - \frac{\cos \varphi' + \frac{\lambda - 1}{\lambda} \sin \varphi'}{\operatorname{Cof} \varphi'}$$

und durch zweimaliges Differenzieren dieser Gleichung, wobei $\mathfrak{Coj} \varphi' = \frac{1}{2} e^{\varphi'}$ gesetzt wird:

(22)
$$\frac{d^2 y}{dx^2} = \frac{2c}{s^2 \operatorname{Cof} \varphi'} \left(\frac{\lambda - 1}{\lambda} \cos \varphi' - \sin \varphi' \right).$$

Nun wird die Biegungsspannung:

$$\sigma_{b} = \pm \frac{M}{W} = \pm \frac{M\delta}{2J} = \pm \frac{E\delta}{2} \frac{d^{2}y}{dx^{2}}, \text{ das ist}$$

$$\sigma_{b} = \pm \frac{Ec\sqrt{3}}{r \operatorname{Cof} \varphi'} \left[\frac{\lambda - 1}{\lambda} \cos \varphi' - \sin \varphi' \right],$$

und die Ringspannung:

(2

(24)
$$\sigma_r = E \frac{y}{r} = \frac{Ec}{r} \left[\frac{x}{l} - \frac{\cos \varphi' + \frac{\lambda - 1}{\lambda} \sin \varphi'}{\operatorname{Cof} \varphi'} \right]$$

Es empfiehlt sich, diese Spannungen mit den der geraden elastischen Linie entsprechenden Ringspannungen

(25)
$$\sigma_x' = \gamma \frac{rx}{\delta}, \quad \sigma_l' = \gamma \frac{rl}{\delta}$$

zu vergleichen. Wir schreiben daher

(26)
$$\sigma_{\delta} = \pm \sigma_{i}' \frac{\sqrt{3}}{\mathfrak{Cof} \varphi'} \left(\frac{\lambda - 1}{\lambda} \cos \varphi' - \sin \varphi' \right),$$

$$\left(\cos \varphi' + \frac{\lambda - 1}{\lambda} \sin \varphi' \right)$$

(27)
$$\sigma_r = \sigma'_x \left(1 - \frac{l}{x} \frac{\cos \varphi + \frac{\lambda}{\lambda} \sin \varphi}{\operatorname{\mathfrak{Cof}} \varphi'} \right).$$

Die Biegungsspannung ist am größten für x' = 0; sie besitzt dort den Wert

(28)
$$\sigma_{b \max} = \pm \sigma_{l}' \sqrt{3} \frac{\lambda - 1}{\lambda}$$

Mit wachsendem x' nimmt σ_b schnell ab; es wird gleich Null, sobald

(29)
$$\operatorname{tg} \varphi' = \frac{\lambda - 1}{\lambda}$$

ist, und besitzt ein zweites Maximum für

$$tg \varphi' = 2\lambda - 1$$

Bei hohen dünnwandigen Gefäßen ist λ meistens so groß, daß die Gleichung (29) nahezu für $\varphi' = \frac{\pi}{4}$ und die Gleichung (30) nahezu für $\varphi' = \frac{\pi}{2}$ erfüllt wird. Dem letzteren Werte entspricht $\mathfrak{Cof} \varphi' = 2,50$ und $\sigma_b = \mp 0,7 \sigma_i'$. Diese Biegungsspannung ist erheblich kleiner als die Biegungsspannung an der Stelle x' = 0. Da ferner zu $\varphi' = \frac{\pi}{4}$ der Wert $x' = \frac{\pi}{4} \frac{l}{\lambda}$ gehört, so erkennt man, daß Biegungsspannungen, welche die Beanspruchung σ_i' übersteigen, nur ganz in der Nähe des Bodens vorkommen.

Die Ringspannungen σ_r , sind zum Teil größer, zum Teil kleiner als die entsprechenden Spannungen σ'_x , weil die wirkliche elastische Linie die Gerade *AB* mehrfach schneidet. Der Fall $\sigma_r > \sigma'_x$ tritt ein, sobald

$$\cos \phi' + \frac{\lambda - 1}{\lambda} \sin \phi' < 1$$

ist. Es genügt das Verhalten des untersten Teiles zu prüfen. Ist z. B. $\lambda = 20$ und wird zur Vereinfachung der Zahlenrechnung $(\lambda - 1) : \lambda = 1$ gesetzt, so ergeben sich für

 $\frac{x'}{l} = 0,13 \quad 0,14 \quad 0,15 \quad 0,16 \quad 0,17 \quad 0,18 \quad 0,19$ die (etwas zu großen) Werte $\frac{\sigma_r}{\sigma_x'} = 1,058 \quad 1,086 \quad 1,099 \quad 1,103 \quad 1,099 \quad 1,089 \quad 1,078.$ 17^* Der größte Unterschied zwischen σ_r , und dem zugehörigen σ_x' beträgt also im vorliegenden Falle nur etwa 10 v. H.

Aus unserer Untersuchung geht hervor, daß die für die Bestimmung der Wandstärke maßgebende Spannung für hohe dünnwandige Gefäße die Biegungsspannung am Boden ist, nämlich

(31)
$$\sigma_{b \max} = \gamma \frac{rl}{\delta} \sqrt{3} \frac{\lambda - 1}{\lambda}, \text{ wo}$$
$$\lambda = \sqrt[4]{3 \frac{l^2}{r^2} \cdot \frac{l^2}{\delta^2}}.$$

Wir heben schließlich noch hervor, daß man die für den unteren Teil der Wand gewonnenen Formeln auch ohne weiteres aus den Gleichungen (6) erhält, wenn man A_2 und B_2 gleich Null setzt und A_1 , B_1 mittels der für x = l bestehenden Bedingungen y = 0 und $\frac{dy}{dx} = 0$ berechnet. Daraus folgt aber, daß die Spannungen im unteren Teile der Wand unabhängig von den Bedingungen sind, die zur Berechnung der Konstanten A_2 und B_2 dienten. Wird also das Gefäß auch am oberen Ende senkrecht eingespannt (y = 0 und $\frac{dy}{dx} = 0$ für x = 0), was zur Folge hat, daß

$$A_2 = -A_1$$
 und $B_2 = -B_1 - rac{c}{\lambda}$

wird, so hat diese Änderung unserer früheren Voraussetzungen bei großen Zahlen λ keinen Einfluß auf die Beanspruchung in der Nähe des Bodens.

78. Veränderliche Wandstärke. Bei größeren Wasserbehältern ändert sich δ mit x. Die Wand wird aus ungleich starken plattenförmigen Ringen, sogenannten Bahnen, zusammengesetzt. Für jede Bahn gilt die allgemeine Gleichung (5); es nehmen aber δ und damit auch s, ferner die vier Integrationskonstanten für die verschiedenen Bahnen verschiedene Werte an.

Die Berechnung der Konstanten kann nun auf dem folgenden Wege geschehen. Mittels der beiden für den oberen Rand zur Verfügung stehenden Bedingungen drückt man zunächst zwei der Konstanten A_1 , A_2 , B_1 , B_2 der obersten Bahn durch die beiden übrigen aus, z. B., wie in Nr. 72, A_2 und B_2 durch A_1 und B_1 . Hierauf schreibt man für die Grenze zwischen der obersten und der nächsten Bahn die vier Gleichungen an, welche aussagen, daß die Werte

$$y, \quad \frac{dy}{dx}, \quad M = EJ \frac{d^2y}{dx^2}, \quad Q = EJ \frac{d^3y}{dx^3}$$

zweier benachbarten Bahnen stetig ineinander übergehen müssen, und stellt mit Hilfe dieser Bedingungen die Konstanten der zweiten Bahn ebenfalls als Funktionen von A_1 und B_1 dar. Dieselbe Arbeit nimmt man dann an der Grenze der zweiten und dritten, der dritten und vierten Bahn usw. vor, und schließlich berechnet man A_1 und B_1 mittels der beiden für den unteren Rand des Gefäßes geltenden Bedingungen

$$y = 0$$
 und $\frac{dy}{dx} = 0$.

Die Durchführung der Zahlenrechnung ist allerdings ziemlich mühsam; für den wichtigen Fall größerer dünnwandiger Bottiche — gekennzeichnet durch Werte λ , welche gestatten, Sin $\lambda = \mathfrak{Cof} \lambda$ zu setzen — ist diese Arbeit aber entbehrlich. Hier genügt es, die oberen Bahnen für die Spannungen σ_x^{Λ} zu berechnen und nur den unteren Teil der Wand auf seine Biegungsfestigkeit zu untersuchen.

Um nun möglichst schnell ein Bild von der Veränderung zu erhalten, welche die einer überall gleichen Stärke δ entsprechende Biegungsspannung σ_b am Boden erfährt, wenn der obere Teil der Wand dünner gemacht wird, stellen wir die folgende Untersuchung an.

Die Wand habe vom oberen Rande bis zur Tiefe x = a die Stärke δ_o , von hier ab die Stärke δ_{μ} . Es seien die Bezeichnungen eingeführt:

$$l - a = b, \quad \sqrt{\frac{r^{2}\delta_{o}^{2}}{3}} = s_{o}, \quad \sqrt{\frac{r^{2}\delta_{u}^{2}}{3}} = s_{u},$$

$$a = \frac{a}{s_{o}} = \sqrt{\sqrt{3\frac{a^{2}}{r^{2}} \cdot \frac{a^{2}}{\delta_{o}^{2}}}}, \quad \beta = \frac{b}{s_{u}} = \sqrt{\sqrt{3\frac{b^{2}}{r^{2}} \cdot \frac{b^{2}}{\delta_{u}^{2}}}},$$

$$c_{o} = \gamma \frac{r^{2}l}{E\delta_{o}}, \qquad c_{u} = \gamma \frac{r^{2}l}{E\delta_{u}}$$

und es werde angenommen, α sei so groß, daß $e^{-\alpha} = 0$ gesetzt werden darf.

Dann gelten für den unteren Teil des Wandabschnittes a die aus den Gleichungen (7) und (8) folgenden Formeln:

$$y_o = (A\cos\varphi + B\sin\varphi) e^{\varphi} + c_o \frac{x}{l},$$

$$s_o \frac{dy_o}{dx} = [A(\cos\varphi - \sin\varphi) + B(\cos\varphi + \sin\varphi)] e^{\varphi} + c_o \frac{s_o}{l}$$

$$\frac{s_o^2}{2} \frac{d^2y_o}{dx^2} = (-A\sin\varphi + B\cos\varphi) e^{\varphi},$$

$$\frac{s_o^3}{2} \frac{d^3y_o}{dx^3} = [-A(\sin\varphi + \cos\varphi) + B(\cos\varphi - \sin\varphi)] e^{\varphi}.$$

 $Ae^{\alpha} = \mathfrak{A}, \quad Be^{\alpha} = \mathfrak{B},$

Wird zur Abkürzung gesetzt

so entstehen für
$$\varphi = \alpha$$
 die Gleichungen

$$+ \mathfrak{A} \cos \alpha + \mathfrak{B} \sin \alpha = y_o - c_o \frac{a}{l},$$
$$- \mathfrak{A} \sin \alpha + \mathfrak{B} \cos \alpha = \frac{s_o^2}{2} \frac{d^2 y_o}{dx^2},$$
$$+ \mathfrak{A} (\cos \alpha - \sin \alpha) + \mathfrak{B} (\cos \alpha + \sin \alpha) = s_o \frac{dy_o}{dx} - c_o \frac{s_o}{l}$$
$$- \mathfrak{A} (\cos \alpha + \sin \alpha) + \mathfrak{B} (\cos \alpha - \sin \alpha) = \frac{s_o^3}{2} \frac{d^3 y_o}{dx^2}.$$
Aus den beiden ersten Gleichungen folgt:

$$\begin{aligned} \mathfrak{A} &= \left(y_o - c_o \frac{a}{l}\right) \cos \alpha - \frac{s_o^2}{2} \frac{d^2 y_o}{dx^2} \sin \alpha, \\ \mathfrak{B} &= \left(y_o - c_o \frac{a}{l}\right) \sin \alpha + \frac{s_o^2}{2} \frac{d^2 y_o}{dx^2} \cos \alpha, \end{aligned}$$

und aus den beiden zweiten:

$$\begin{split} &|2\mathfrak{A} = \left(s_o \frac{dy_o}{dx} - c_o \frac{s_o}{l}\right)(\cos\alpha - \sin\alpha) - \frac{s_o^3}{2} \frac{d^3y_o}{dx^3}(\cos\alpha + \sin\alpha),\\ &2\mathfrak{B} = \left(s_o \frac{dy_o}{dx} - c_o \frac{s_o}{l}\right)(\cos\alpha + \sin\alpha) + \frac{s_o^3}{2} \frac{d^3y_o}{dx^3}(\cos\alpha - \sin\alpha). \end{split}$$

Indem wir die beiden Werte A einander gleichsetzen und ebenso die beiden Werte B, erhalten wir die Bedingungen

$$(33) \quad y_{o} - s_{o} \frac{dy_{o}}{dx} \frac{1 - \operatorname{tg} \alpha}{2} - \frac{s_{o}^{2}}{2} \frac{d^{2}y_{o}}{dx^{2}} \operatorname{tg} \alpha + \frac{s_{o}^{3}}{2} \frac{d^{3}y_{o}}{dx^{3}} \frac{1 + \operatorname{tg} \alpha}{\operatorname{tg} x^{3}} = \frac{c_{o}}{l} \left(a + s_{o} \frac{1 - \operatorname{tg} \alpha}{2} \right),$$

$$(34) \quad y_{o} - s_{o} \frac{dy_{o}}{dx} \frac{\operatorname{cotg} \alpha + 1}{2} + \frac{s_{o}^{2}}{2} \frac{d^{2}y_{o}}{dx^{2}} \operatorname{cotg} \alpha - \frac{s_{o}^{3}}{2} \frac{d^{3}y_{o}}{dx^{3}} \frac{\operatorname{cotg} \alpha + 1}{2} = \frac{c_{o}}{l} \left(a + s_{o} \frac{\operatorname{cotg} \alpha + 1}{2} \right).$$

Für den Teil b der Wand rechnen wir x vom Boden aus. Es gelten dann die Gleichungen

$$y_{u} = + (A_{1}e^{\varphi} + A_{2}e^{-\varphi})\cos\varphi + (B_{1}e^{\varphi} + B_{2}e^{-\varphi})\sin\varphi + c_{u}\frac{t - x}{l}$$

$$s_{u}\frac{dy_{u}}{dx} = + (A_{1}e^{\varphi} - A_{2}e^{-\varphi})\cos\varphi + (B_{1}e^{\varphi} + B_{2}e^{-\varphi})\cos\varphi$$

$$- (A_{1}e^{\varphi} + A_{2}e^{-\varphi})\sin\varphi + (B_{1}e^{\varphi} - B_{2}e^{-\varphi})\sin\varphi - \frac{c_{u}}{\lambda}.$$

Für
$$x = 0$$
 muß $y = 0$ und $\frac{dy}{dx} = 0$ sein. Daraus folgt
 $A_2 = -A_1 - c_u$
 $B_2 = -2A_1 - B_1 - c_u \frac{\lambda - 1}{\lambda}$

und es ergibt sich:

Su

$$y_{u} = + A_{1}[+(e^{\varphi} - e^{-\varphi})\cos\varphi - 2e^{-\varphi}\sin\varphi] + B_{1}(e^{\varphi} - e^{-\varphi})\sin\varphi$$
$$-c_{u}e^{-\varphi}\left(\cos\varphi + \frac{\lambda - 1}{\lambda}\sin\varphi\right) + c_{u}\frac{l - x}{l}$$
$$\frac{dy_{u}}{dx} = + A_{1}[+(e^{\varphi} - e^{-\varphi})(\cos\varphi - \sin\varphi) + 2e^{-\varphi}\sin\varphi]$$
$$+ B_{1}[+(e^{\varphi} + e^{-\varphi})\sin\varphi + (e^{\varphi} - e^{-\varphi})\cos\varphi]$$
$$+ c_{u}e^{-\varphi}\left(+ \frac{2\lambda - 1}{\lambda}\sin\varphi + \frac{1}{\lambda}\cos\varphi \right) - \frac{c_{u}}{\lambda}$$

$$\frac{s_u^2}{2} \frac{d^2 y_u}{dx^2} = + A_1 [-(e^{\varphi} - e^{-\varphi})\sin\varphi + 2e^{-\varphi}\cos\varphi] + B_1 (e^{\varphi} + e^{-\varphi})\cos\varphi + c_u e^{-\varphi} \left(\frac{\lambda - 1}{\lambda}\cos\varphi - \sin\varphi\right)$$

$$\frac{s_u^s}{2} \frac{d^s y_u}{dx^3} = + A_1[-(e^{\varphi} + e^{-\varphi})(\cos\varphi + \sin\varphi) - 2e^{-\varphi}\cos\varphi] + B_1[+(e^{\varphi} - e^{-\varphi})\cos\varphi - (e^{\varphi} + e^{-\varphi})\sin\varphi] + c_u e^{-\varphi} \left(-\frac{2\lambda - 1}{\lambda}\cos\varphi + \frac{1}{\lambda}\sin\varphi\right) \cdot$$

Zur Berechnung der beiden Konstanten A_1 und B_1 stehen die Gleichungen (33) und (34) zur Verfügung, wobei die folgenden vier Übergangsbedingungen für die Stelle x = a zu beachten sind:

$$y_o = y_u, \qquad \qquad \frac{dy_o}{dx} = -\frac{dy_u}{dx},$$
$$EJ_o \frac{d^2y_o}{dx^2} = EJ_u \frac{d^2y_u}{dx^2}, \quad EJ_o \frac{d^3y_o}{dx^3} = -EJ_u \frac{d^3y_u}{dx^3}$$

Nun ist

$$\frac{J_u}{J_o} = \frac{\delta_u^3}{\delta_o^3}, \quad \frac{s_o^2}{s_u^2} = \frac{\delta_o}{\delta_u}, \quad \frac{c_o}{c_u} = \frac{\delta_u}{\delta_o}$$

und man erhält daher:

$$y_{o} = y_{u}, \quad s_{o} \frac{dy_{o}}{dx} = -s_{u} \frac{dy_{u}}{dx} / \frac{\delta_{o}}{\delta_{u}}$$
$$\frac{s_{o}^{2}}{2} \frac{d^{2}y_{o}}{dx^{2}} = \frac{s_{u}^{2}}{2} \frac{d^{2}y_{u}}{dx^{2}} \frac{\delta_{u}^{2}}{\delta_{o}^{2}}$$
$$\frac{s_{o}^{3}}{2} \frac{d^{3}y_{o}}{dx^{3}} = -\frac{s_{u}^{3}}{2} \frac{d^{3}y_{u}}{dx^{3}} / \frac{\delta_{u}^{3}}{\delta_{o}^{3}}.$$

Die Gleichungen (33), (34) gehen jetzt über in

$$(35) \quad y_{u} + s_{u} \frac{dy_{u}}{dx} \frac{1}{2} \left| \sqrt{\frac{\delta_{o}}{\delta_{u}}} \left(1 - \operatorname{tg} \alpha \right) - \frac{s_{u}^{2}}{2} \frac{d^{2}y_{u}}{dx^{2}} \frac{\delta_{u}^{2}}{\delta_{o}^{2}} \operatorname{tg} \alpha \right. \\ \left. - \frac{s_{u}^{3}}{2} \frac{d^{3}y_{u}}{dx^{3}} \frac{1}{2} \right| \sqrt{\frac{\delta_{u}^{3}}{\delta_{o}^{3}}} \left(1 + \operatorname{tg} \alpha \right) = \frac{c_{u}}{l} \left(a + s_{o} \frac{1 - \operatorname{tg} \alpha}{2} \right) \frac{\delta_{u}}{\delta_{o}}, \\ (36) \quad y_{u} + s_{u} \frac{dy_{u}}{dx} \frac{1}{2} \left| \sqrt{\frac{\delta_{o}}{\delta_{u}}} \left(\cot g \alpha + 1 \right) + \frac{s_{u}^{2}}{2} \frac{d^{2}y_{u}}{dx^{2}} \frac{\delta_{u}^{2}}{\delta_{o}^{2}} \cot g \alpha \right. \\ \left. + \frac{s_{u}^{3}}{2} \frac{d^{3}y_{u}}{dx^{3}} \frac{1}{2} \right| \sqrt{\frac{\delta_{u}^{3}}{\delta_{o}^{3}}} \left(\cot g \alpha - 1 \right) = \frac{c_{u}}{l} \left(a + s_{o} \frac{\cot g \alpha + 1}{2} \right) \frac{\delta_{u}}{\delta_{o}}. \\ (36) \quad y_{u} + s_{u} \frac{dy_{u}}{dx} \frac{1}{2} \left| \sqrt{\frac{\delta_{u}^{3}}{\delta_{o}^{3}}} \left(\cot g \alpha - 1 \right) = \frac{c_{u}}{2} \left(a + s_{o} \frac{\cot g \alpha + 1}{2} \right) \frac{\delta_{u}}{\delta_{o}^{2}}. \\ (36) \quad y_{u} + s_{u} \frac{dy_{u}}{dx^{3}} \frac{1}{2} \right| \sqrt{\frac{\delta_{u}^{3}}{\delta_{o}^{3}}} \left(\cot g \alpha - 1 \right) = \frac{c_{u}}{l} \left(a + s_{o} \frac{\cot g \alpha + 1}{2} \right) \frac{\delta_{u}}{\delta_{o}^{2}}. \\ (36) \quad Hierin setze man, für \beta = \varphi, \text{ mit Benutzung der Hyperbelfunktionen:} \\ y_{u} = + 2A_{1} \left(\sin \beta \cos \beta - e^{-\beta} \sin \beta \right) + 2B_{1} \left(\sin \beta \sin \beta \sin \beta - c_{u}e^{-\beta} \left(\cos \beta + \frac{\lambda - 1}{\lambda} \sin \beta \right) + c_{u} \frac{\alpha}{l}} \\ s_{u} \frac{dy_{u}}{dx} = + 2A_{1} \left[\left(\sin \beta \left(\cos \beta - \sin \beta \right) + e^{-\beta} \sin \beta \right] \\ + 2B_{1} \left(\left(\sin \beta \sin \beta + \left(- \frac{2\lambda - 1}{\lambda} \right) \sin \beta \right) - \frac{c_{u}}{\lambda}} \\ \left\{ \frac{s_{u}^{2}}{2} \frac{d^{2}y_{u}}{dx^{2}} = - 2A_{1} \left(\left(\cos \beta \sin \beta - e^{-\beta} \cos \beta \right) + 2B_{1} \left(\sin \beta \cos \beta - \frac{1}{\lambda} \sin \beta \right) \\ \left\{ \frac{s_{u}^{3}}{2} \frac{d^{3}y_{u}}{dx^{3}} = - 2A_{1} \left[\left(\sin \beta \cos \beta - \frac{1}{\lambda} \sin \beta \right) + e^{-\beta} \cos \beta \right] \\ \left. + c_{u}e^{-\beta} \left(\frac{-2\lambda + 1}{\lambda} \cos \beta + \frac{1}{\lambda} \sin \beta \right) . \end{array} \right\}$$

Hat man A_1 und B_1 berechnet, so findet man für $\phi = 0$

$$\frac{s_{u}^{2}}{2} \frac{d^{2}y_{u}}{dx^{2}} = 2A_{1} + 2B_{1} + c_{u}\frac{\lambda - 1}{\lambda},$$

und hieraus folgt dann für die größte Biegungsspannung

$$\sigma_b = \frac{E \,\delta_u}{2} \, \frac{d^2 y_u}{d \, x^2}$$

der Wert

(38)
$$\sigma_{b \max} = \gamma \frac{r l \sqrt{3}}{\delta_u} \left(\frac{\lambda - 1}{\lambda} + 2 \frac{A_1 + B_1}{c_u} \right).$$

Zahlenbeispiel. Es sei l = 1000 cm, r = 2000 cm, a = 900 cm, b = 100 cm, $\delta_o = 1.8$ cm, $\delta_u = 3.0$ cm. Man findet

$$s_{o} = \sqrt{\frac{r^{2}\delta_{o}^{2}}{3}} = 45,6 \text{ cm}, \qquad \alpha = \frac{a}{s_{o}} = 19,74,$$

tg $\alpha = \text{tg } 51^{0} = 1,23, \qquad \text{cotg } \alpha = 0,81,$
 $\lambda = \frac{l}{s_{u}} = \sqrt{\frac{4}{3}\frac{l^{2}}{\gamma^{2}}\cdot\frac{l^{2}}{\delta_{u}^{2}}} = 17,0, \qquad \beta = \frac{b}{s_{u}} = \frac{b}{l}\lambda = 1,7,$
 $\cos\beta = \cos(90^{0} + 7\frac{1}{2}^{0}) = -0,13, \sin\beta = 0,99,$
 $\mathfrak{Sof } \beta = 2,83, \qquad \mathfrak{Sin } \beta = 2,65, \qquad e^{-\beta} = 2,83 - 2,65 = 0,18.$
Mit diesen Zahlenwerten gehen die Gleichungen (37) über in:
 $\begin{cases} y_{u} = -1,05A_{1} + 5,25B_{1} + 0,76c_{u} \\ s_{u} \quad \frac{dy_{u}}{dx} = -5,58A_{1} + 4,91B_{1} + 0,29c_{u} \end{cases}$

(I)

$$\begin{cases} s_u \quad \frac{dy_u}{dx} = -5,58 A_1 + 4,91 B_1 + 0,29 c_u \\ \frac{s_u^2}{2} \quad \frac{d^2 y_u}{dx^2} = -5,65 A_1 - 0.74 B_1 - 0,03 c_u \\ \frac{s_u^3}{2} \quad \frac{d^3 y_u}{dx^3} = -4,82 A_1 - 6,29 B_1 + 0,06 c_u, \end{cases}$$

und die Gleichungen (35) und (36) in:

(II)
$$\begin{cases} y_u - 0,09 \ s_u \frac{dy_u}{dx} - 3,42 \ \frac{s_u^2}{2} \ \frac{d^2 y_u}{dx^2} - 2,40 \ \frac{s_u^3}{2} \ \frac{d^3 y_u}{dx^3} = 1,49 \ c_u \\ y_u + 0,70 \ s_u \frac{dy_u}{dx} + 2,25 \ \frac{s_u^2}{2} \ \frac{d^2 y_u}{dx^2} - 0,20 \ \frac{s_u^3}{2} \ \frac{d^3 y_u}{dx^3} = 1,57 \ c_u. \end{cases}$$

Setzt man die Werte (I) in die Gleichungen (II) ein, so erhält man:

$$\begin{array}{l} + 30,34 \, A_1 + 22,44 \, B_1 = 0,80 \, c_u \\ - 16,70 \, A_1 + 8,28 \, B_1 = 0,69 \, c_u \end{array}$$

und hieraus:

$$A_1 = -0.014 c_u, \quad B_1 = +0.055 c_u, \quad A_1 + B_1 = 0.04 c_u.$$

Es ist also — ohne Rücksicht auf die Schwächung der Platte durch Niete —

$$\begin{split} \sigma_{b \max} &= \gamma \frac{r l \sqrt{3}}{\delta_u} \left(\frac{\lambda - 1}{\lambda} + 2 \cdot 0.04 \right) \\ &= \frac{1}{1000} \cdot \frac{2000 \cdot 1000 \sqrt{3}}{3.0} \left(\frac{16}{17} + 0.16 \right) = \text{rund } 1180 \text{ kg/cm}^2. \\ \text{Im Falle } \delta_o &= \delta_u = 3.0 \text{ würde} \end{split}$$

$$\sigma_{b max} = \gamma \, \frac{r \, l \, \sqrt{3}}{\delta_{\mu}} \, \frac{\lambda - 1}{\lambda} = 1090 \; \mathrm{kg/cm^2}$$

sein. Vereinfacht man die vorstehende Formel, indem man $(\lambda-1):\lambda=1$ setzt, so liefert sie

(39)
$$\sigma_{b max} = \gamma \frac{rl}{\delta_u} \sqrt{3} = 1150 \text{ kg/cm}^2.$$

An der Grenze zwischen den beiden Platten ändert sich r um

$$y_u = (+1,05 \cdot 0,014 + 5,25 \cdot 0,055 + 0,76) c_u = 1,06 c_u.$$

Es herrscht daher an dieser Stelle in beiden Platten eine Ringspannung

$$\sigma_r = \frac{Ey_u}{r} = 1,06 \ \gamma \frac{rl}{\delta_u} = 707 \ \text{kg/cm}^2,$$

welche kleiner ist als die größte Biegungsspannung.

Wir haben in unserem Beispiele den Sprung $\delta_{\mu} - \delta_{\rho}$ größer gewählt, als er in Wirklichkeit sein wird, und dürfen in Anbetracht dieser ungünstigen Annahme die Steigerung der Spannung σ_b als unwesentlich bezeichnen. Der Einfluß einer Verminderung der Wandstärke auf on nimmt mit dem Abstande der Bahn, welche diese Schwächung erfährt, vom Boden sehr schnell ab. Die Abmessungen der oberen Bahnen sind bei den üblichen Abstufungen der Stärken 8 ohne merkbaren Einfluß. Der Verfasser pflegt deshalb die Spannung σ_{h} nach der Formel (39) auch im Falle verschieden starker Bahnen zu berechnen und führt als weiteren Grund für dieses Vorgehen noch an, daß die Annahme, es sei die Wand am unteren Ende lotrecht eingespannt, in Wirklichkeit nicht erfüllt wird. Der Boden des Behälters und der die Wand mit dem Boden verbindende Winkeleisenring erfahren Formveränderungen, deren einwandfreie Feststellung sehr schwierig ist, welche aber die Biegungsspannungen σ_{b} am unteren Rande des Behälters verkleinern. Verfasser ist sogar der Meinung, daß dieser günstigen Wirkung durch Zulassung einer höheren Beanspruchung für die unterste Bahn Rechnung getragen werden darf; er hat deshalb bei von ihm aufgestellten Entwürfen mit der Formel

(40)
$$\sigma_{b max} = 1,7 \gamma \frac{rl}{\delta_{u}}$$

gerechnet und für Flußeisenbleche eine Zugspannung von etwa 1600 kg/cm² gestattet. Wird dann angenommen, daß der auf Biegung beanspruchte Querschnitt durch Nietlöcher um etwa 25 v. H. geschwächt wird, so ergibt sich für die unterste Bahn die Stärke

$$\delta_u = \frac{1.7 \, \gamma r l}{0.75 \cdot 1600}$$

oder, abgerundet

(41)
$$\delta_{u} = \frac{rl}{70} \,\mathrm{cm},$$

wenn r und l in Metern ausgedrückt werden.

Für die übrigen, mittels der Formel

 $\sigma_x' = \gamma \frac{rx}{\delta}$

zu berechnenden Bahnen pflegt Verfasser etwa $\sigma = 1000 \text{ kg/cm}^2$ zu gestatten, Nietlöcher aber hierbei nicht abzuziehen. x bedeutet den Abstand des tiefsten Punktes der fraglichen Bahn vom höchsten Wasserspiegel. Werden x und r in Metern ausgedrückt, so muß sein

$$\delta = \frac{rx}{100} \,\mathrm{cm}.$$

Soll also der vorhin untersuchte Behälter mit r = 20 m und l = 10 m aus 9 Bahnen zusammengesetzt werden, so erhält die unterste Bahn nach der vorstehenden Regel die Stärke $\frac{200}{70} = 2,8$ cm. Für die folgenden Bahnen findet man

$$\delta = 2 \cdot \frac{8}{9} = 1.8 \text{ cm}, \quad 2 \frac{7}{9} = 1.6 \text{ cm}, \quad 2 \frac{6}{9} = 1.3 \text{ cm},$$

 $2 \frac{5}{9} = 1.1 \text{ cm}, \quad 2 \cdot \frac{4}{9} = 0.9 \text{ cm}.$

Für die drei obersten Bahnen wählt man zweckmäßig $\delta = 0.8$ cm. Auch dürfte es sich empfehlen, den Sprung von $\delta = 2.8$ auf $\delta = 1.8$ durch eine Verstärkung der zweituntersten Bahn zu mindern.

Der Stärke $\delta_u = 2.8 \text{ cm}$ entspricht

$$\lambda = \sqrt{3\left(\frac{1}{2}\right)^2 \frac{1000^2}{2,8^2}} = 17,6.$$

Anmerkung. In einer in der Zeitschrift f. Math. u. Physik, 1904, S. 254, erschienenen Abhandlung von C. Runge "Über die Formänderung eines zylindrischen Wasserbehälters durch den Wasserdruck" wird ein beachtenswertes Verfahren für die Berechnung einer aus verschieden starken Bahnen gebildeten Behälterwand entwickelt, aus dem ebenfalls hervorgeht, daß die oberen Bahnen nach der Formel $\sigma = \gamma \frac{rx}{\delta}$ berechnet werden dürfen. Als Beispiel dient ein Behälter von den Abmessungen r = 2030 cm und l = 1003,5 cm, aus neun Bahnen mit von oben nach unten hin 10,5, 9,5, 8,5, 10,2, 12,7, 15,3, 17,8, 20,4 und 23 mm Wandstärke. Die Behälterwand ist oben und unten lotrecht eingespannt angenommen. Am Boden wird für einen 1 cm breiten lotrechten Wandstreifen M = 1281 kgcm erhalten. Das gibt — ohne Rücksicht auf Schwächung durch Niete —

$$\sigma = \frac{6 \cdot 1281}{1 \cdot 2,3^2} = 1430 \text{ kg/cm}^2.$$

Unsere einfache Formel liefert mit

$$\lambda = \sqrt{3 \frac{l^4}{r^2 d\theta_0^2}} = 19:$$

$$\sigma = \gamma \frac{rl \sqrt{3}}{\delta} \frac{\lambda - 1}{\lambda} = \frac{1}{1000} \cdot \frac{2030 \cdot 1003.5 \cdot \sqrt{3}}{2.3} \cdot \frac{18}{19} = 1450 \text{ kg/cm}^2.$$

Für den Unterschied zwischen dem Wasserdruck und dem der Formänderung y entsprechenden elastischen Druck findet Runge:

GUUT = Standard Standard	$\gamma x - \frac{Ey\delta}{R^2}$
Ende der ersten Bahn	- 0,01
Anfang der zweiten Bahn	0,00
Ende der zweiten Bahn	-0.02
Anfang der dritten Bahn	+0,01
Ende der dritten Bahn	+0,02
Anfang der vierten Bahn	-0.04
Ende der vierten Bahn	+0,04
Anfang der fünften Bahn	-0,05
Ende der fünften Bahn	+0,06
Anfang der sechsten Bahn	-0,05
Ende der sechsten Bahn	+0,05
Anfang der siebenten Bahn	-0,05
Ende der siebenten Bahn	+0.04
Anfang der achten Bahn	- 0,07
Ende der achten Bahn	+0,07
Anfang der neunten Bahn	- 0,04
Ende der neunten Bahn	+1,00

In der Mitte der Platten, abgesehen von der untersten ist nahezu

 $y = \frac{\gamma x r^2}{E\delta}$ und $\frac{dy}{dx} = \frac{\gamma r^2}{E\delta}$.

Die oben mitgeteilte Untersuchung des Verfassers ist älter als die Abhandlung von Runge; sie wurde vor zehn Jahren gelegentlich der Bearbeitung eines größeren Entwurfes angestellt. Bei den ersten Zahlenrechnungen wurde der Verfasser durch seinen damaligen Assistenten, Herrn H. Reißner (jetzt Professor an der Technischen Hochschule in Aachen), unterstützt.

III. Abschnitt.

Nebenspannungen im Fachwerk infolge von steifen Knotenverbindungen.

§ 17.

Biegungsspannungen in Fachwerken, deren Gurtstäbe miteinander vernietet und deren Füllungsstäbe gelenkartig befestigt sind.

79. Grundgleichungen. Die in Bd. I u. Bd. II. Abt. 1 vorgetragene Theorie des Fachwerks setzt voraus, daß alle Stäbe in den Knotenpunkten durch reibungslose Gelenke miteinander befestigt sind. Lasten, welche in den Knotenpunkten angreifen, rufen dann in den Stäben Spannkräfte hervor, die mit den Stabachsen zusammenfallen und die Stabquerschnitte nur auf Zug oder Druck beanspruchen. Werden nun die Stäbe in den Knoten miteinander vernietet oder verschraubt. so wird die freie Drehung der Stäbe durch Biegungswiderstände verhindert; es entstehen in den Stäben Biegungsspannungen, die man als Nebenspannungen zu bezeichnen pflegt, weil sie im allgemeinen verglichen mit den von den Spannkräften S herrührenden Zug- und Druckspannungen $S \mid F$ — von untergeordneter Bedeutung sind. Es gibt aber Fälle. in denen diese Nebenspannungen eine unzulässige Höhe erreichen können; ihre Untersuchung gehört zu den wichtigsten Aufgaben der Fachwerkstheorie, schon deshalb, weil sie zeigt, von welchen Umständen jene Biegungsspannungen abhängen und wie man zu konstruieren hat, damit die Abweichung des wirklichen Spannungszustandes von dem auf Grund der Gelenktheorie errechneten möglichst klein werde.

Wir wollen zunächst den Fall untersuchen: es seien nur die Gurtstäbe miteinander vernietet, die Füllungsstäbe seien mittels reibungsloser Gelenke befestigt. Die Lasten mögen ausschließlich in den Knotenpunkten angreifend angenommen werden. Es verbiegen sich nur die Gurtungen, die Füllungsstäbe bleiben gerade. Wir setzen zunächst voraus, daß sich die Schwerlinien der an einem Knoten zusammentreffenden Stäbe in einem Punkte schneiden und bezeichnen mit

- s_m und s_{m+1} die Längen der dem Knoten m benachbarten Gurtstäbe,
- J_m und J_{m+1} die Trägheitsmomente der Querschnitte dieser Stäbe, bezogen auf die Schwerachse senkrecht zur Ebene des Fachwerks,
- \mathfrak{T}_m den Randwinkel bei *m* (Fig. 217),
- $\mathfrak{M}_{m-1}, \mathfrak{M}_m, \mathfrak{M}_{m+1}$ die Biegungsmomente, welche die Gurtquerschnitte an den Stellen m-1, m, m+1 beanspruchen.

Wir nehmen die Momente M positiv an, wenn die verbogene Gurtung nach außen hohl liegt, so daß sich bei durchweg positiven Momenten die Gurtstäbe in der durch die Figur 218 veranschaulichten Weise verbiegen würden.

Bei der Formveränderung des Fachwerks, auf welches nur Kräfte wirken mögen, die in der Ebene des Fachwerks liegen, geht der Winkel \mathfrak{D}_m über in $\mathfrak{D}_m + \Delta \mathfrak{D}_m$; die Enden der Gurtstäbe s_m und s_{m+1} drehen sich um τ und τ' , und es folgt

(1)
$$\tau + \tau' = \Delta \mathfrak{I}_m.$$

Wird nun vorausgesetzt, daß sämtliche Gurtquerschnitte eine in die Ebene des Fachwerks fallende Hauptachse besitzen und alle äußeren

Biegungsspannungen in Fachwerken infolge steifer Knoten.

Kräfte in den Knotenpunkten angreifen, wird also die Verbiegung der Stäbe durch ihr eigenes Gewicht vorderhand vernachlässigt, wird ferner der Einfluß der Scherkräfte außer acht gelassen und $t_u - t_o = 0$ gesetzt, so wird nach Gleichung (7), Seite 28,

(2)
$$\tau = \frac{\mathfrak{M}_{m-1} + 2 \mathfrak{M}_m}{6 E J_m} s_n$$

(3)
$$\tau' = \frac{\mathfrak{M}_{m+1} + 2 \mathfrak{M}_m}{6 E J_{m+1}} s_{m+1}$$

und es ergibt sich daher die Bedingung

$$\mathfrak{M}_{m-1}\frac{s_m}{J_m} + 2\mathfrak{M}_m\left(\frac{s_m}{J_m} + \frac{s_{m+1}}{J_{m+1}}\right) + \mathfrak{M}_{m+1}\frac{s_{m+1}}{J_{m+1}} = 6E\Delta\mathfrak{D}_m$$

Multipliziert man diese Gleichung mit dem konstanten, beliebig großen Trägheitsmomente J_o und setzt zur Abkürzung

(4)
$$s_m \frac{J_o}{J_m} = l_m, \quad s_{m+1} \frac{J_o}{J_{m+1}} = l_{m+1},$$

so erhält man die Grundgleichung

(5)
$$\mathfrak{M}_{m-1}l_m + 2 \mathfrak{M}_m (l_m + l_{m+1}) + \mathfrak{M}_{m+1}l_{m+1} = N_m,$$

wo

(6)

$$N_m = 6 E J_c \Delta \mathfrak{I}_m.$$

Gleichung (5) hat die Form der Clapeyronschen Momentengleichungen. Die vorliegende Aufgabe ist also zurückgeführt auf die Berechnung eines Balkens auf starren Stützen, wobei aber vorausgesetzt werden muß, daß die Winkeländerungen $\Delta \mathfrak{T}_m$ gegebene, von den zu berechnenden Momenten \mathfrak{M} unabhängige Werte besitzen.

Nun sind freilich die Spannkräfte S und damit auch die die Winkeländerungen $\Delta \mathfrak{D}$ bestimmenden Längenänderungen der Stäbe streng genommen Funktionen der Momente \mathfrak{M} . Der Einfluß der \mathfrak{M} auf die $\Delta \mathfrak{D}$ ist aber in der Regel so gering, daß er vernachlässigt werden darf, und es empfiehlt sich daher, die Winkeländerungen genau so zu berechnen, wie für ein Fachwerk mit gelenkartigen Knoten. Nötigenfalls kann man nachträglich durch einen zweiten Rechnungsgang mit verbesserten Spannkräften und Winkeländerungen den Einfluß der Momente auf die Winkeländerungen berücksichtigen.

Besteht das Fachwerk aus aneinander gereihten Dreiecken, so setzt sich jeder Winkel \Im aus Dreieckwinkeln zusammen. Für die Winkeländerungen eines Dreiecks haben wir mit den in Fig. 219 angegebenen Bezeichnungen, in Abt. I, § 2, die Formeln entwickelt:

(7)
$$\begin{cases} E\Delta\alpha_1 = (\sigma_1 - \sigma_2) \cot g \alpha_3 + (\sigma_1 - \sigma_3) \cot g \alpha_2 \\ E\Delta\alpha_2 = (\sigma_2 - \sigma_3) \cot g \alpha_1 + (\sigma_2 - \sigma_1) \cot g \alpha_3 \\ E\Delta\alpha_3 = (\sigma_3 - \sigma_1) \cot g \alpha_2 + (\sigma_3 - \sigma_2) \cot g \alpha_1, \end{cases}$$

WO

$$\sigma_1 = \frac{S_1}{F_1}, \quad \sigma_2 = \frac{S_2}{F_2}, \quad \sigma_3 = \frac{S_3}{F_3}$$

die durch die Spannkräfte S erzeugten Spannungen bedeuten*).

Die gleichförmige Änderung der Temperatur eines Stabes um t kann durch Vergrößerung der Spannung σ um εEt berücksichtigt werden (siehe Einleitung von Abt. I, Seite 2).

Wir beginnen mit der Behandlung einfacher Sonderfälle.

80. Es ist mindestens ein Knotenpunktmoment \mathfrak{M} gleich Null. Nehmen wir zunächst an, es seien die Momente für den ersten und den letzten Knotenpunkt gleich Null, ein Fall, der bei Trägern mit Endvertikalen vorliegt, Fig. 220. Der stellvertretende Balken, Fig. 221, liegt dann an den Enden frei auf. Der Festpunkt L_1 fällt mit Stütze 0.

zusammen. Nach Ermittlung der Punkte L_2, L_3, \ldots^{**}) werden auf den verschränkten Stützensenkrechten v_1, v_2, \ldots die mittels der Formel

(8)
$$T_{m} = \frac{N_{m}}{3 (l_{m} + l_{m+1})} = \frac{2 E J_{o} \Delta \mathfrak{I}_{m}}{l_{m} + l_{m+1}}$$

berechneten Momente T_1, T_2, T_3, \ldots aufgetragen, und nun wird der Linienzug $L_1 L_2' L_3' L_4' L_5'$ gezeichnet, dessen Seiten durch die Endpunkte der in Fig. 221 durch die stärker ausgezogenen Strecken T_1, T_2, T_3, T_4 gehen und dessen Ecken in den Senkrechten durch die Festpunkte L_2 , L_3, L_4, L_5 liegen.

*) Ist das Fachwerk kein Dreiecksystem, so ergibt sich die Berechnung der $\Delta \mathfrak{S}$ aus der Lösung der 6. Aufgabe am Schluß von § 3 in Abt. I. Man kann auch Williotsche Verschiebungspläne benutzen und aus diesen mit Hilfe des Stabzugverfahrens die $\Delta \mathfrak{S}$ bestimmen.

**) Wir haben alle Hilfslinien fortgelassen und verweisen bezüglich der Bestimmung der Punkte L auf die Figuren 41 und 42, und bezüglich der rechnerischen Bestimmung auf Seite 116. Biegungsspannungen in Fachwerken infolge steifer Knoten.

Die Punkte L' sind Punkte des gesuchten Momentenpolygons, und dieses Polygon ist nunmehr durch die Bedingung $\mathfrak{M}_5 = 0$ vollständig bestimmt.

In derselben Weise könnte man, beim letzten Stützpunkte (5) beginnend, das Momentenpolygon mit Hilfe der Festpunkte R zeichnen. Bei symmetrischer Trägerform und symmetrischer Belastung hätte in Fig. 221 bereits die Bestimmung von L_{2}' und L_{3}' genügt.

Fig. 222.

Die beschriebene Konstruktion des M-Polygons führt auch im Falle einer zusammenhängenden oberen und unteren Gurtung und bei dem in Fig. 222 dargestellten Fachwerke mit vernietetem Endständer zum Ziele, vorausgesetzt, daß mindestens ein Moment M gleich Null ist.

81. Es ist kein Knotenpunktmoment M gleich Null. Form und Belastung des Trägers sind symmetrisch. Die beiden Gurtungen mögen einen zusammenhängenden gelenklosen Stabzug bilden. Die Senkrechte durch die Trägermitte sei für Trägerform und Belastung Symmetrieachse. Wir unterscheiden folgende Fälle.

1. Fall. Die Symmetrieachse enthält keinen Knotenpunkt. Die Bezifferung der Knotenpunkte ist aus Fig. 223 zu ersehen. Zwischen den drei aufeinander folgenden Momenten \mathfrak{M}_0 , \mathfrak{M}_1 , \mathfrak{M}_2 , von denen \mathfrak{M}_0 und \mathfrak{M}_1 gleich groß sind, besteht die Beziehung

$$\mathfrak{M}_0 l_1 + 2 \mathfrak{M}_1 (l_1 + l_2) + \mathfrak{M}_2 l_2 = N_1;$$

reslau, Graphische Statik. II. 2.

18

Müller-Br

sie läßt sich umformen in:

$$2\mathfrak{M}_1(l_1'+l_2)+\mathfrak{M}_2l_2=N_1,$$

wo $l_1' = 1,5 l_1$ ist; und ebenso ergibt sich mit $l_n' = 1,5 l_n$:

$$\mathfrak{M}_{n-2}l_{n-1} + 2\,\mathfrak{M}_{n-1}\,(l_{n-1} + l_n') = N_{n-1}.$$

Diese Gleichungen lassen sich als die 1^{te} bzw. $(n-1)^{te}$ Clapeyronsche Gleichung eines an den Enden frei aufliegenden, durchgehenden Balkens 0 1 2 ... (n-1)n deuten. Die Längen der beiden äußersten Felder sind

$$l_1' = 1.5 s_1 \frac{J_c}{J_1}$$
 und $l_n' = 1.5 s_n \frac{J_c}{J_n}$,

für die übrigen l gilt $l_m = s_m \frac{J_c}{J_m}$.

Die Werte T_1 und T_{n-1} sind mittels der Formeln

(9)
$$T_1 = \frac{2 E J_c \Delta \mathfrak{I}_1}{l_1' + l_2}$$
 und $T_{n-1} = \frac{2 E J_c \Delta \mathfrak{I}_{n-1}}{l_{n-1} + l_n'}$

zu berechnen. Im übrigen stimmt der einzuschlagende Weg mit den in Nr. 80 angegebenen überein.

2. Fall. In der Symmetrieachse liegen zwei Knotenpunkte. Die Bezifferung zeigt Fig. 224. Zwischen den drei aufeinander folgenden Momenten $\mathfrak{M}_1, \mathfrak{M}_0, \mathfrak{M}_1$ besteht die Gleichung

$$\mathfrak{M}_{1}l_{1} + 2 \mathfrak{M}_{0}(l_{1} + l_{1}) + \mathfrak{M}_{1}l_{1} = N_{0},$$

aus welcher folgt:

$$\frac{2}{3}\mathfrak{M}_{0} + \frac{1}{3}\mathfrak{M}_{1} = \frac{N_{0}}{3(l_{1} + l_{1})} = T_{0}$$

und ebenso ergibt sich

$$\frac{1}{3}\mathfrak{M}_{n-1} + \frac{2}{3}\mathfrak{M}_n = \frac{N_n}{3(l_n + l_n)} = T_n.$$

Die im ersten Felde des stellvertretenden Balkens im Abstande $\frac{1}{3}l_1$ vom Stützpunkte 0 gelegene Ordinate des M-Polygons ist nun

Biegungsspannungen in Fachwerken infolge steifer Knoten.

$$\overline{L_1L_1'} = \frac{2}{3} \mathfrak{M}_0 + \frac{1}{3} \mathfrak{M}_1 = T_0,$$

und die im letzten Felde im Abstande $\frac{1}{3}l_n$ vom Stützpunkte *n* gelegene:

$$\overline{R_n R_n'} = \frac{2}{3} \mathfrak{M}_n + \frac{1}{3} \mathfrak{M}_{n-1} = T_n^*),$$

Fig. 224.

3. Fall. Die Symmetrieachse enthält nur einen Knotenpunkt. Es handelt sich hier um eine Verbindung der Fälle 1 und 2. Bei der in Fig. 225 gewählten Bezeichnung der Knotenpunkte ist der stellvertretende Balken bei 0 frei aufliegend, bei n eingespannt. Sein erstes Feld hat die Länge

$$l_1' = 1,5 s_1 \frac{J_o}{J_1};$$

*) Fig. 224 setzt ein negatives T_n voraus.

 18^{*}

275

T_n

Dritter Abschnitt. - § 17.

für die übrigen Feldlängen gilt die Formel (4). Die im letzten Felde in der Entfernung $\frac{1}{3}l_n$ vom Stützpunkte *n* gelegene Ordinate des M-Polygons ist

82. Es ist kein Moment M gleich Null und es besteht keine Symmetrie. Wir beschreiben den bei der Ermittlung der Momente M einzuschlagenden Weg an dem in Fig. 226 dargestellten Träger. Außer der Beziehung

(10) $\mathfrak{M}_4 l_5 + 2 \mathfrak{M}_0 (l_5 + l_1) + \mathfrak{M}_1 l_1 = N_0$ bestehen noch die Gleichungen:

Wir betrachten zunächst nur die Gleichungen (11), sehen \mathfrak{M}_0 als gegeben an, schaffen die Glieder $\mathfrak{M}_0 l_1$ und $\mathfrak{M}_0 l_5$ auf die rechte Seite und erhalten:

(12)
$$\begin{cases} 2\mathfrak{M}_{1}(l_{1}+l_{2})+\mathfrak{M}_{2}l_{2}=N_{1}-\mathfrak{M}_{0}l_{1}\\ \mathfrak{M}_{1}l_{2}+2\mathfrak{M}_{2}(l_{2}+l_{3})+\mathfrak{M}_{3}l_{3}=N_{2}\\ \mathfrak{M}_{2}l_{3}+2\mathfrak{M}_{3}(l_{3}+l_{4})+\mathfrak{M}_{4}l_{4}=N_{3}\\ \mathfrak{M}_{3}l_{4}+2\mathfrak{M}_{4}(l_{4}+l_{5})=N_{4}-\mathfrak{M}_{0}l_{5}. \end{cases}$$

Nun bezeichnen wir mit

 $\mathfrak{M}_1', \mathfrak{M}_2', \mathfrak{M}_3', \mathfrak{M}_4'$ diejenigen Werte, welche die Unbekannten \mathfrak{M}_1 bis \mathfrak{M}_4 annehmen würden, wenn $\mathfrak{M}_0 = 0$ wäre,
und mit

 \mathfrak{M}_1 ", \mathfrak{M}_2 ", \mathfrak{M}_3 ", \mathfrak{M}_4 " die Werte jener Unbekannten für den Fall, daß sämtliche Glieder N der obigen Gleichungen verschwinden und $\mathfrak{M}_0 = 1$ ist.

Die Momente \mathfrak{M}' lassen sich mit Hilfe des in Nr. 80 beschriebenen Verfahrens bestimmen; dieses ist ja brauchbar, sobald ein Moment \mathfrak{M} (hier \mathfrak{M}_0) gleich Null ist. Aber auch die Werte \mathfrak{M}'' erhält man mit Hilfe dieses Verfahrens, wenn man setzt:

Die Darstellung des \mathfrak{M}'' -Polygons zeigt Fig. 227. Auf den verschränkten Stützensenkrechten v_1 und v_4 werden die Ordinaten $\overline{E_1E_1'} = T_1$ und $\overline{E_4E_4'} = T_4$ aufgetragen. Hierauf wird der Linienzug $L_1L_2'L_3'L_4'L_5'$ gezeichnet, dessen Seiten durch die Punkte E_1' , E_2 , E_3 , E_4' gehen und dessen Ecken in den Senkrechten durch die Festpunkte L_2 , L_3 , L_4 , L_5 liegen. Diese Eckpunkte L' sind Punkte des gesuchten \mathfrak{M}'' -Polygons, welches durch die äußersten Stützpunkte (0) des stellvertretenden Balkens geht, und dessen Eckpunkte in den Stützensenkrechten liegen.

Nach Ermittlung der \mathfrak{M}' und \mathfrak{M}'' findet man die wirklichen Momente \mathfrak{M} mittels der Formel

(14) $\mathfrak{M}_m = \mathfrak{M}_m' + \mathfrak{M}_m'' \cdot \mathfrak{M}_0 \qquad m = 1, 2, 3, 4,$

und zur Berechnung von \mathfrak{M}_0 steht die Gleichung (10) zur Verfügung; sie geht über in

Dritter Abschnitt. — § 17.

 $(\mathfrak{M}_4' + \mathfrak{M}_4''\mathfrak{M}_0) l_5 + 2 \mathfrak{M}_0 (l_5 + l_1) + (\mathfrak{M}_1' + \mathfrak{M}_1''\mathfrak{M}_0) l_1 = N_0$ und liefert:

(15)
$$\mathfrak{M}_{0} = \frac{N_{0} - \mathfrak{M}_{1}' l_{1} - \mathfrak{M}_{4}' l_{5}}{2 (l_{1} + l_{5}) + \mathfrak{M}_{1}'' l_{1} + \mathfrak{M}_{4}'' l_{5}}$$

83. Exzentrische Knoten. Ein Fachwerksknoten heißt exzentrisch, sobald sich die Achsen der an ihm angreifenden Stäbe nicht in einem Punkte schneiden. Als Knotenpunkt fassen wir in diesem Falle den Schnittpunkt der Füllungsstäbe auf (Fig. 228), und unter s_m verstehen wir den Abstand des Knotenpunktes m vom Knotenpunkte (m-1). Die unter der Annahme gelenkartiger Knoten berechnete Spannkraft S_m fällt in die Verbindungslinie der Punkte m-1 und m und soll positiv angenommen werden, sobald sie im Gurtstabe (m-1)m Zugspannungen

hervorbringt. Die Lote von m auf die in Fig. 228 gestrichelten Achsen der benachbarten Gurtstäbe nennen wir e_m und d_{m+1} , so daß, wenn die durch die Vernietung der Gurtstäbe bei m - 1 und m hervorgerufenen Biegungsmomente mit \mathfrak{M}_{m-1} und \mathfrak{M}_m bezeichnet werden, an den Enden des Gurtstabes s_m die Momente angreifen:

(16)
$$\begin{cases} \mathfrak{M}_{A} = \mathfrak{M}_{m-1} + S_{m}d_{m} \text{ und} \\ \mathfrak{M}_{B} = \mathfrak{M}_{m} + S_{m}e_{m}, \end{cases}$$

wobei e und d von den Knotenpunkten aus *nach außen positiv* gezählt werden. Aus diesen Momenten berechnen sich die Biegungsspannungen an den Stabenden:

$$\sigma_A = \pm \frac{\mathfrak{M}_A}{W}, \quad \sigma_B = \pm \frac{\mathfrak{M}_B}{W}.$$

Der Ausschlagwinkel am rechten Ende des Stabes s_m ist

(17)
$$\tau = \frac{2\mathfrak{M}_B + \mathfrak{M}_A}{6EJ_m} s_m = \frac{2\mathfrak{M}_m + \mathfrak{M}_{m-1} + S_m (2e_m + d_m)}{6EJ_m} s_m,$$

und der Ausschlagwinkel am linken Ende des Stabes s_{m+1}

(18)
$$\tau' = \frac{2\mathfrak{M}_m + \mathfrak{M}_{m+1} + S_{m+1}(2d_{m+1} + e_{m+1})}{6EJ_{m+1}}s_{m+1},$$

weshalb die Gleichung

 $\tau + \tau' = \Delta \mathfrak{I}_m$

nach Multiplikation mit J_c und mit der Bezeichnung $s_m \frac{J_c}{J_m} = l_m$ zu der Bedingung führt:

 $\mathfrak{M}_{m-1}l_m + 2\mathfrak{M}_m(l_m + l_{m+1}) + \mathfrak{M}_{m+1}l_{m+1} = 6EJ_c\Delta\mathfrak{I}_m - S_m l_m(2e_m + d_m) - S_{m+1}l_{m+1}(2d_{m+1} + e_{m+1}).$

Diese Gleichung hat wieder die Form

 $\mathfrak{M}_{m-1}l_m + 2 \mathfrak{M}_m (l_m + l_{m+1}) + \mathfrak{M}_{m+1}l_{m+1} = N_m.$

Das in Nr. 80—82 angegebene Verfahren zur Darstellung der Momente M ist hiernach auch bei exzentrischen Knoten brauchbar. An die Stelle von

 $N_m = 6 E J_c \Delta \mathfrak{I}_m$

tritt:

(19)
$$N_m = 6 E J_c \Delta \mathfrak{T}_m \longrightarrow S_m l_m (2 e_m + d_m) \longrightarrow S_{m+1} l_{m+1} (2 d_{m+1} \longrightarrow e_{m+1}).$$

Hervorzuheben bleibt allerdings, daß die auf die Winkeländerungen $\Delta \mathfrak{T}_m$
Einfluß habenden Verlängerungen Δs der Gurtstäbe streng genommen
nach der Formel

(20)
$$\Delta s = \frac{\sigma}{E} + \tau' d + \tau e$$

berechnet werden müßten. Es ist aber stets zulässig, die von τ' und τ abhängigen Glieder zu streichen.

84. An den Gurtstäben greifen rechtwinklig zu deren Achsen Lasten P an (Fig. 229). Zunächst werden die einzelnen Gurtstäbe als einfache Balken betrachtet und die ihnen entsprechenden einfachen Momentenflächen, die wir kurz mit \mathfrak{F} bezeichnen wollen, ermittelt. Bedeuten also

 \mathfrak{L}_{0m} und \mathfrak{R}_{0m} die statischen Momente der Fläche \mathfrak{F}_m , bezogen auf die in (m-1) bzw. m auf der Achse des Stabes (m-1) m errichteten Lote,

so ist, wenn ganz allgemein exzentrische Knoten vorausgesetzt werden (s. Seite 28)

$$EJ_{m}\tau = \frac{\mathfrak{L}_{0m}}{s_{m}} + \left[2\mathfrak{M}_{m} + \mathfrak{M}_{m-1} + S_{m}\left(2e_{m} + d_{m}\right)\right]\frac{s_{m}}{6}$$
$$EJ_{m+1}\tau' = \frac{\mathfrak{M}_{0(m+1)}}{s_{m+1}} + \left[2\mathfrak{M}_{m} + \mathfrak{M}_{m+1} + S_{m+1}\left(2d_{m+1} + e_{m+1}\right)\right]\frac{s_{m+1}}{6},$$

und man gelangt mittels der Bedingung

$$+\tau := \Delta \mathfrak{I}_m$$

wieder zu der Gleichung

 $\mathfrak{M}_{m-1}l_m + 2\mathfrak{M}_m(l_m + l_{m+1}) + \mathfrak{M}_{m+1}l_{m+1} = N_m,$

wo nunmehr

(21)
$$N_m = 6 E J_c \Delta \mathfrak{I}_m - S_m l_m (2 e_m + d_m) - S_{m+1} l_{m+1} (2 d_{m+1} + e_{m+1}) - \frac{6 \mathfrak{L}_0 m}{s_m^2} l_m - \frac{6 \mathfrak{R}_0 (m+1)}{s_{m+1}^2} l_{m+1}.$$

Der Einfluß einer am Stabe s_m angreifenden Last P auf das Glied N_m ist (s. Seite 30, Gleich. 13)

(22)
$$N_m = -Ps_m \left(\frac{\xi}{s_m} - \frac{\xi^3}{s_m^3}\right) l_m = -Ps_m l_m \omega_D,$$

und der Einfluß einer am Stabe s_{m+1} angreifenden Last P ist

Fig. 229.

Werden die Stäbe s_m und s_{m+1} rechtwinklig zur Stabachse gleichförmig mit g_m bzw. g_{m+1} belastet, so liefert dies zu N_m den Beitrag

(24)
$$N_m = -\frac{1}{4} g_m s_m^2 l_m - \frac{1}{4} g_{m+1} s_{m+1}^2 l_{m+1}$$

Die vorstehenden Untersuchungen sind wichtig für die genauere Berechnung der Spannungen in den Gurtungen von Dachbindern, welche auch zwischen den Knotenpunkten durch Pfetten belastet werden (Fig. 230). Die von den Pfetten auf die Gurtung ausgeübten Drücke zerlege man nach der Richtung der Gurtung und rechtwinklig hierzu. Es genügt, die rechtwinkligen Komponenten zu berücksichtigen.

Ein anderes sehr wichtiges Beispiel bieten die Hauptträger einer Eisenbahnbrücke, deren Querschwellen zur Ersparung der Querträger unmittelbar auf die Gurtungen gelegt werden (Fig. 231). Bei Berechnung der hierdurch in den Gurtstäben hervorgerufenen Biegungsspannungen braucht man sich auf keine allzugenaue Untersuchung der gefährlichsten Stellung des Eisenbahnzuges einzulassen, denn die Berechnung der Momente M infolge der Steifigkeit der Knoten gehört ja in das Gebiet

der bei den üblichen statischen Berechnungen außer acht gelassenen Nebenspannungen. *Es empfiehlt sich, wie folgt vorzugehen.

Man berechne die Stabkräfte und die Winkeländerungen $\Delta \mathfrak{D}_m$ für eine gleichförmige Verkehrslast p, die so groß gewählt wird, daß sie

in der Mitte der Brücke dasselbe Angriffsmoment $M_{p max}$ erzeugt, wie der Eisenbahnzug, die also mit Hilfe der Gleichung

$$\frac{pl^2}{8} = M_{p max}$$

berechnet wird, wo l die Stützweite des Trägers bedeutet. Das Moment $M_{p max}$ kann den Tabellen im Anhange zu Band I entnommen werden.

Die durch diese Belastung p und die ständige Belastung g erzeugten Spannkräfte S erhält man, indem man die Spannkräfte S_g infolge von gmit $\frac{g+p}{g}$ multipliziert. Aus den zugehörigen Winkeländerungen $\Delta \Im$ leite man nun die Momente \mathfrak{M} ab und addiere das größte dieser Momente zu dem Maximalmoment, das man erhält, wenn man den Gurtstab als einfachen Balken betrachtet und möglichst ungünstig belastet. Es empfiehlt sich die Knotenpunkte exzentrisch anzuordnen. Positiven Hebelarmen d und e entsprechen im Druckgurte negative Momente

Sd, Se.

85. Näherungsformeln für die Momente M. Wenn man in die drei aufeinanderfolgenden Gleichungen

(25)
$$\begin{cases} \mathfrak{M}_{m-2}l_{m-1} + 2\mathfrak{M}_{m-1}(l_{m-1} + l_m) + \mathfrak{M}_m \quad l_m = N_{m-1}\\ \mathfrak{M}_{m-1}l_m + 2\mathfrak{M}_m \quad (l_m + l_{m+1}) + \mathfrak{M}_{m+1}l_{m+1} = N_m\\ \mathfrak{M}_m \quad l_{m+1} + 2\mathfrak{M}_{m+1}(l_{m+1} + l_{m+2}) + \mathfrak{M}_{m+2}l_{m+2} = N_{m+1} \end{cases}$$

für \mathfrak{M}_{m-2} und \mathfrak{M}_{m+2} angenäherte Werte einsetzt, so lassen sich die Momente \mathfrak{M}_{m-1} und \mathfrak{M}_{m+1} eliminieren, und es ergibt sich für \mathfrak{M}_m ein Näherungswert, welcher nachträglich mit Hilfe der Gleichung

(26)
$$\mathfrak{M}_{m} = \frac{N_{m} - \mathfrak{M}_{m-1}l_{m} - \mathfrak{M}_{m+1}l_{m+1}}{2(l_{m} + l_{m+1})}$$

verbessert werden kann, indem auf der rechten Seite die in gleicher Weise für \mathfrak{M}_{m-1} und \mathfrak{M}_{m+1} ermittelten genäherten Werte eingeführt werden.

Eine passende Annahme ist

$$\mathfrak{M}_{m-1} = \frac{\mathfrak{M}_{m-2} + \mathfrak{M}_m}{2}$$
$$\mathfrak{M}_{m+1} = \frac{\mathfrak{M}_m + \mathfrak{M}_{m+2}}{2},$$

und

 $\mathfrak{M}_{m-2} = 2 \mathfrak{M}_{m-1} - \mathfrak{M}_m$ und $\mathfrak{M}_{m+2} = 2 \mathfrak{M}_{m+1} - \mathfrak{M}_m$ ergibt. Führt man diese Werte in die Gleichungen (25) ein, so liefern diese für \mathfrak{M}_m den Ausdruck:

(27)
$$\mathfrak{M}_{m} = \frac{N_{m} - N_{m-1} \frac{l_{m}}{2(l_{m} + 2l_{m-1})} - N_{m+1} \frac{l_{m+1}}{2(l_{m+1} + 2l_{m+2})}}{2(l_{m} + l_{m+1}) - \frac{l_{m}(l_{m} - l_{m-1})}{2(l_{m} + 2l_{m-1})} - \frac{l_{m+1}(l_{m+1} - l_{m+2})}{2(l_{m+1} + 2l_{m+2})}}$$

Wenn die aufeinanderfolgenden l nicht sehr voneinander abweichen, was häufig der Fall sein wird, so darf man setzen:

(28)
$$\mathfrak{M}_{m} = \frac{N_{m} - \frac{1}{6}(N_{m-1} + N_{m+1})}{2(l_{m} + l_{m+1})}$$

Handelt es sich um eine Gurtung 0 1 2 ... m ... n, für welche $\mathfrak{M}_0 = 0$ und $\mathfrak{M}_n = 0$ ist, so benutze man die Gleichung (27) bzw. (28) zur Berechnung von \mathfrak{M}_3 bis \mathfrak{M}_{n-3} und hierauf setze man

$$\mathfrak{M}_{2} = \frac{N_{2} - N_{1} \frac{l_{1}}{2 (l_{1} + l_{2})} - \mathfrak{M}_{3} l_{3}}{2 (l_{2} + l_{3}) - \frac{l_{1} l_{2}}{2 (l_{1} + l_{2})}}$$

und

(29)
$$\mathfrak{M}_1 = \frac{N_1 - \mathfrak{M}_2 l_2}{2 (l_1 + l_2)}.$$

Es entsprechen diese beiden Gleichungen den Bedingungen

$$2 \mathfrak{M}_{1} (l_{1} + l_{2}) + \mathfrak{M}_{2} l_{2} = N_{1}$$

$$\mathfrak{W}_{1}l_{1} + 2\mathfrak{W}_{2}(l_{2} + l_{3}) + \mathfrak{W}_{3}l_{3} = N_{2}.$$

In gleicher Weise sind die Momente \mathfrak{M}_{n-2} und \mathfrak{M}_{n-1} zu berechnen. Bei geringen Abweichungen der aufeinanderfolgenden l darf man

auch setzen:

(30)
$$\mathfrak{M}_{2} = \frac{N_{2} - \frac{1}{4}N_{1} - \frac{1}{6}N_{3}}{\frac{15}{8}(l_{2} + l_{3})}*),$$

und ganz entsprechend ist der Bau der Formel \mathfrak{M}_{n-2} .

In der Regel erhält man von den in irgendeinem Knoten m auftretenden Biegungsspannungen ein ganz zutreffendes Bild, wenn man \mathfrak{M}_{m-2} oder \mathfrak{M}_{m-3} gleich Null setzt und ebenso \mathfrak{M}_{m+2} oder \mathfrak{M}_{m+3} , denn der Einfluß einer Winkeländerung $\Delta \mathfrak{T}$ ist nur für die nächstgelegenen Knotenpunkte von Bedeutung; er nimmt nach beiden Seiten hin rasch ab.

86. Zahlenbeispiel. Es sind die Biegungsmomente für die obere Gurtung des in Fig. 232 dargestellten Parallelträgers zu bestimmen. Jeder Knotenpunkt der unteren Gurtung ist mit 12,5 t belastet. In Fig. 232 geben die nicht eingeklammerten Zahlen die Spannkräfte in Tonnen, die eingeklammerten Zahlen die Querschnittsinhalte F in qdm an.

Fig. 233 zeigt den Obergurtquerschnitt für das erste und zweite Feld, Fig. 234 für das dritte Feld und Fig. 235 für das vierte und fünfte Feld. Die Träg-

*) Schreibt man die Gleichungen an

$$\begin{split} & 2\,\mathfrak{M}_1\,(l_1+l_2)+\mathfrak{M}_2\,l_2=N_1\\ & \mathfrak{M}_1\,l_2+2\,\mathfrak{M}_2\,(l_2+l_3)+\mathfrak{M}_3\,l_3=N_2\\ & \mathfrak{M}_2\,l_3+2\,\mathfrak{M}_3\,(l_3+l_4)+\mathfrak{M}_4\,l_4=N_3, \end{split}$$

setzt $\mathfrak{M}_4 = 2 \mathfrak{M}_3 - \mathfrak{M}_2$ und löst nach \mathfrak{M}_2 auf, so folgt

$$\mathfrak{M}_{2} = \frac{N_{2} - N_{1} \frac{l_{2}}{2(l_{1} + l_{2})} - N_{3} \frac{l_{3}}{2(l_{3} + 2l_{4})}}{2(l_{2} + l_{3}) - \frac{l_{2}^{2}}{2(l_{1} + l_{2})} - \frac{l_{3}(l_{3} - l_{4})}{2(l_{3} - 2l_{4})}}.$$

Bei wenig voneinander abweichenden l darf

 $\frac{l_2}{2(l_1+l_2)} = \frac{1}{4} \text{ und } \frac{l_3}{2(l_3+2l_4)} = \frac{1}{6}$

gesetzt werden, ferner $l_3 - l_4 = 0$ und

$$2(l_2 + l_3) - \frac{l_2^3}{2(l_1 + l_2)} = 4l - \frac{l}{4} = \frac{15}{4}l,$$

wobei $l = \frac{1}{2} (l_2 + l_3)$ angenommen werden darf.

heitsmomente J und Widerstandsmomente W dieser Querschnitte sind der Reihe nach

Die Längen der Gurtstäbe sind durchweg s = 40 dm. Es ergibt sich also, wenn $J_c = 2,0$ gewählt wird,

$$l_{1} = l_{2} = 40 \frac{1,605}{1,605} = 49,8 \text{ dm}$$

$$l_{3} = 40 \frac{2,0}{1,733} = 46,2 \text{ dm}$$

$$l_{4} = l_{5} = 40 \frac{2,0}{1,956} = 40,9 \text{ dm}.$$

$$0 \frac{-445}{(1,19)} \frac{1}{(1,19)} \frac{-80}{(1,19)} \frac{2}{(1,44)} \frac{-125}{(1,44)} \frac{3}{(1,60)} \frac{-125}{(1,60)} \frac{3}{(1,60)} \frac{-125}{(1,60)} \frac{3}{(1,60)} \frac$$

Fig. 232.

Für das Produkt $E\Delta\mathfrak{D}$ folgt aus den in Fig. 236 an die Stäbe geschriebenen Spannungen σ :

$$\begin{split} E\Delta\mathfrak{I}_m &= (\sigma_2 - \sigma_1)\operatorname{cotg} \varphi + (\sigma_2 - \sigma_3)\operatorname{cotg} \varphi_1 + (\sigma_4 - \sigma_5)\operatorname{cotg} \varphi + (\sigma_6 - \sigma_5)\operatorname{cotg} \varphi_1 \\ \text{und, wegen } \operatorname{cotg} \varphi &= \frac{\lambda}{h} \text{ und } \operatorname{cotg} \varphi_1 = \frac{h}{\lambda}, \end{split}$$

$$E\Delta \mathfrak{D}_m = \frac{\hbar}{\lambda} \left(\sigma_2 - \sigma_3 - \sigma_5 + \sigma_6 \right) + \frac{\lambda}{\hbar} \left(\sigma_2 - \sigma_1 + \sigma_4 - \sigma_5 \right).$$

Für den mittelsten Knotenpunkt erhält man nach Fig. 237

$$E\Delta\mathfrak{D}_{5} = 2\frac{h}{\lambda}(\sigma_{2}-\sigma_{3})+2\frac{\lambda}{h}(\sigma_{2}-\sigma_{1})$$

In Fig. 238 sind die Spannungen $\sigma=S \,|\, F$ in t/dm² zusammengestellt worden. Ihnen entsprechen die Werte

$$\begin{split} E\Delta\mathfrak{I}_1 &= \frac{5}{4}\left(76 + 49 - 70 - 44\right) + \frac{4}{5}\left(76 + 38 + 75 - 70\right) = 109\\ E\Delta\mathfrak{I}_2 &= \frac{5}{4}\left(70 + 44 - 67 - 38\right) + \frac{4}{5}\left(70 + 67 + 73 - 67\right) = 126\\ E\Delta\mathfrak{I}_3 &= \frac{5}{4}\left(67 + 38 - 55 - 20\right) + \frac{4}{5}\left(67 + 73 + 75 - 55\right) = 166\\ E\Delta\mathfrak{I}_4 &= \frac{5}{4}\left(50 + 20 - 27\right) + \frac{4}{5}\left(55 + 75 + 75 - 27\right) = 202\\ E\Delta\mathfrak{I}_5 &= 2\cdot\frac{5}{4}\left(27 + 2\frac{4}{5}\left(27 + 78\right) = 236. \end{split}$$

Die Momente T sind in Tonnen-Dezimetern:

$$T_{1} = \frac{2 E J_{o} \Delta \mathfrak{D}_{1}}{l_{1} + l_{2}} = \frac{4.0 \cdot 109}{2 \cdot 49.8} = 4.4, \quad T_{2} = \frac{4.0 \cdot 126}{49.8 + 46.2} = 5.3,$$

$$T_{3} = \frac{4.0 \cdot 166}{46.2 + 40.9} = 7.6, \quad T_{4} = \frac{4.0 \cdot 202}{2 \cdot 40.9} = 9.9, \quad T_{5} = \frac{4.0 \cdot 236}{2 \cdot 40.9} = 11.5.$$

Die Ausführung der in Nr. 80, Fig. 221 beschriebenen Konstruktion liefert die Knotenpunktmomente:

Mit diesen Ergebnissen sollen nun die nach den Näherungsformeln (28) bis (30) berechneten Werte verglichen werden.

Es ist $N_m = 6 J_o E \Delta \mathfrak{I}_m = 12 E \Delta \mathfrak{I}_m,$ und es ergibt sich

$$\begin{array}{l} \text{nach Gleich. (28)} & \left\{ \begin{array}{l} \mathfrak{M}_{5} = 12 & \frac{236 - \frac{1}{6} \left(202 + 202\right)}{2 \left(40,9 + 40,9\right)} = 12.4 \text{ tdm} \\ \mathfrak{M}_{4} = 12 & \frac{202 - \frac{1}{6} \left(166 + 236\right)}{2 \left(40,9 + 40,9\right)} = 9.9 \text{ tdm} \\ \mathfrak{M}_{3} = 12 & \frac{166 - \frac{1}{6} \left(126 + 202\right)}{2 \left(46,2 + 40,9\right)} = 7.7 \text{ tdm}, \\ \text{nach Gleich. (30)} & \left\{ \begin{array}{l} \mathfrak{M}_{2} = 12 & \frac{126 - \frac{1}{4} \left(109 - \frac{1}{6} \right)}{\frac{15}{8} \left(49,8 + 46,2\right)} = 4.7 \text{ tdm}, \\ \frac{12 \cdot 109 - 4.7 \cdot 49.8}{2 \left(49.8 + 49.8\right)} = 5.4 \text{ tdm}. \end{array} \right. \end{array}$$

Diese Zahlen stimmen mit den oben angegebenen fast genau überein. Man darf sogar den Wert

$$\mathfrak{M}_m = T_m = \frac{2 E J_o \Delta \mathfrak{D}_m}{l_m + l_{m+1}}$$

als einen durchaus brauchbaren Näherungswert ansehen, der ein für die Erwägungen des Praktikers ausreichendes Bild von der ungefähren Größe der zu erwartenden Nebenspannungen gibt.

Die Biegungsspannung in der Gurtung ist bei Knotenpunkt 5, da hier W = 1,304 ist,

 $\sigma = \pm \frac{12,5}{1,304} = \text{rund } 10 \text{ t/dm}^2.$

Die Spannkraft S = 125 Tonnen erzeugt $\sigma = -78$, so daß die Gesamtspannung

 $\sigma = 78 + 10 = 88 \text{ t/dm}^2 = 880 \text{ kg/cm}^2$

beträgt. Die Biegungsspannungen in den übrigen Querschnitten der oberen Gurtung fallen kleiner aus.

Je größer die Trägheitsmomente J sind, desto größer werden die Biegungsspannungen. Man bilde daher den Gurtquerschnitt im allgemeinen so niedrig wie möglich aus, gerade so hoch als erforderlich ist, um die nötige Sicherheit gegen Ausknicken in der Fachwerkebene zu erreichen.

87. Einfluß der biegenden Wirkung der Spannkräfte S. In den bisherigen Entwicklungen wurden die von den Durchbiegungen y

der Gurtstäbe herrührenden Biegungsmomente Sy (Fig. 239) vernachlässigt. Es bleibt also noch zu zeigen, wie unser Verfahren abzuändern ist, wenn eine genauere Rechnung verlangt wird. Die Lasten mögen in den Knotenpunkten angreifen. Vom Eigengewicht des Stabes möge

nur die zur Stabachse rechtwinklige Komponente berücksichtigt werden; sie betrage g für die Längeneinheit. Wir haben zwei Fälle zu unterscheiden.

1. Die Stabkraft S ist ein Druck. Wir betrachten zunächst einen gedrückten Stab der oberen Gurtung, bezeichnen die an seinen Enden wirksamen Biegungsmomente mit \mathfrak{M}_A und \mathfrak{M}_B , die Ausschlagwinkel der Stabenden mit τ und τ' , die zur Stabachse rechtwinklige Durchbiegung an der Stelle x mit y und erhalten bei x das Biegungsmoment

$$\mathfrak{M} = \mathfrak{M}_{\mathbb{A}} + \frac{\mathfrak{M}_{\mathbb{B}} - \mathfrak{M}_{\mathbb{A}}}{s} x + g \frac{s}{2} x - g \frac{x^2}{2} + Sy.$$

Die Differentialgleichung der elastischen Linie lautet:

$$EJ\frac{d^2y}{dx^2} = -\mathfrak{M}.$$

Wir führen zur Abkürzung die Bezeichnungen ein

$$(31) k = \sqrt{\frac{EJ}{S}},$$

(32) $D_1 = \mathfrak{M}_A + gk^2, \quad D_2 = \mathfrak{M}_B + gk^2,$ und erhalten wir zunächst

(33)
$$k^{2} \frac{d^{2}y}{dx^{2}} + y = -\frac{1}{S} \left(\mathfrak{M}_{A} + \frac{\mathfrak{M}_{B} - \mathfrak{M}_{A}}{s} x + g \frac{sx}{2} - g \frac{x^{2}}{2} \right),$$

und hieraus durch Integration

(34)
$$y = C_1 \cos \frac{x}{k} + C_2 \sin \frac{x}{k} - \frac{gk^2}{S}$$
$$-\frac{1}{S} \left(\mathfrak{M}_A + \frac{\mathfrak{M}_B - \mathfrak{M}_A}{s} x + g \frac{sx}{2} - g \frac{x^2}{2} \right)$$

Die Konstanten C_1 und C_2 sind durch die Bedingungen bestimmt, daß y = 0 sein muß für x = 0 und x = s. Es ergibt sich:

(35)
$$C_1 = \frac{D_1}{S}$$
 und $C_2 = \frac{1}{S} \left(\frac{D_2}{\sin \frac{s}{k}} - D_1 \cot \frac{s}{k} \right)$

Der Ausschlagwinkel τ' am linken Stabende ist

(36)
$$\tau' = \left(\frac{dy}{dx}\right)_{x=0} = \frac{\mathfrak{M}_{A}}{Ss} \nu' + \frac{\mathfrak{M}_{B}}{Ss} \nu'' + \frac{gs}{S} \nu''',$$

wobei zur Abkürzung gesetzt wurde:

(37)
$$\nu' = 1 - \frac{\alpha}{\operatorname{tg} \alpha},$$

(38)
$$\nu'' = \frac{\alpha}{\sin \alpha} - 1,$$

Dritter Abschnitt. - § 17.

(39)
$$\nu''' = \frac{1 - \cos \alpha}{\alpha \sin \alpha} - \frac{1}{2} = \frac{\operatorname{tg} \frac{1}{2} \alpha}{\alpha} - \frac{1}{2}.$$

(40)
$$\alpha = \frac{s}{k}$$

Am anderen Stabende entsteht:

(41)
$$\tau = \frac{\mathfrak{M}_A}{Ss} \mathbf{v}'' + \frac{\mathfrak{M}_B}{Ss} \mathbf{v}' + \frac{gs}{S} \mathbf{v}'''.$$

Das Biegungsmoment ist:

(42)
$$\mathfrak{M} = S\left(C_1 \cos \frac{x}{k} + C_2 \sin \frac{x}{k}\right) + gk^2;$$

es wird ein Maximum oder Minimum, sobald

(43)
$$\operatorname{tg} \frac{x}{k} = \frac{C_2}{C_1} = \frac{D_2}{D_1} \frac{1}{\sin \frac{s}{L}} - \operatorname{cotg} \frac{s}{k}$$

ist. Man findet

(44)
$$\mathfrak{M}_{c} = \mathfrak{M}_{\frac{max}{min}} = \frac{D_{1}}{\cos \frac{x}{k}} + gk^{2}.$$

Gleichung (44) ist natürlich nur brauchbar, sobald sich aus (43) ein zwischen x = 0 und x = s liegender Wert x ergibt. Sonst ist \mathfrak{M}_c gleich dem größeren der beiden Momente \mathfrak{M}_A und \mathfrak{M}_B , mit denen \mathfrak{M}_c auch im Falle einer brauchbaren Lösung der Gleichung (43) verglichen werden muß.

Um nun die in den Ausdrücken

$$\mathfrak{M}_{A} = \mathfrak{M}_{m-1} + S_{m}d_{m}$$

 $\mathfrak{M}_{B} = \mathfrak{M}_{m} + S_{m}e_{m}$ (s. Seite 278)

vorkommenden, von der Vernietung der Gurte herrührenden Knotenmomente \mathfrak{M}_m zu bestimmen, schreiben wir die Ausschlagwinkel τ und τ' der beiden am Knoten *m* zusammentreffenden Stäbe (Fig. 228) an:

$$\tau = \frac{\mathfrak{M}_{m-1} + S_m d_m}{S_m s_m} \nu_m'' + \frac{\mathfrak{M}_m + S_m e_m}{S_m s_m} \nu_m' + \frac{g_m s_m}{S_m} \nu_m'''$$

$$\tau' = \frac{\mathfrak{M}_m + S_{m+1} d_{m+1}}{S_{m+1} s_{m+1}} \nu'_{m+1} + \frac{\mathfrak{M}_{m+1} + S_{m+1} e_{m+1}}{S_{m+1} s_{m+1}} \nu''_{m+1}$$

$$+ \frac{g_{m+1} s_{m+1}}{S_{m+1}} \nu''_{m+1}$$

und setzen

$$\tau + \tau' = \Delta \mathfrak{I}_m$$

Mit den abkürzenden Bezeichnungen

(45)
$$\psi' = \frac{\nu'}{Ss}, \quad \psi'' = \frac{\nu''}{Ss}, \quad \psi''' = \frac{\nu'''}{Ss}$$

erhalten wir die Bedingung

(46)
$$\mathfrak{M}_{m-1}\psi_{m}^{"'} + \mathfrak{M}_{m}(\psi_{m}^{'} + \psi_{m+1}^{'}) + \mathfrak{M}_{m+1}\psi_{m+1}^{"} \\ = \Delta\mathfrak{T}_{m} - g_{m}s_{m}^{2}\psi_{m}^{"'} - g_{m+1}s_{m+1}^{2}\psi_{m+1}^{"'} \\ - \frac{d_{m}\nu_{m}^{"'} + e_{m}\nu_{m}^{'}}{s_{m}} - \frac{d_{m+1}\nu_{m+1}^{'} + e_{m+1}\nu_{m+1}^{"}}{s_{m+1}},$$

Es ergibt sich also eine Gruppe von Gleichungen von der Form

$$\mathfrak{M}_{m-1}\mathfrak{a}_m + \mathfrak{M}_m\mathfrak{b}_m + \mathfrak{M}_{m+1}\mathfrak{a}_{m+1} = N_m$$

deren rechnerische und zeichnerische Auflösung in Abt. 1, § 14, gezeigt worden ist.

Noch bemerken wir, daß man τ' auch auf die Form bringen kann:

(47)
$$\tau' = \frac{s}{6EJ} \left(2 \mathfrak{M}_{A} \mu' + \mathfrak{M}_{B} \mu'' \right) + \frac{gs}{S} \nu''',$$

wo

(48)
$$\mu' = \frac{3}{\alpha^2} \left(1 - \frac{\alpha}{\operatorname{tg} \alpha} \right)$$

(49)
$$\mu'' = \frac{6}{\alpha^2} \left(\frac{\alpha}{\sin \alpha} - 1 \right) \cdot$$

Ist der Stab sehr steif und infolgedessen

$$\alpha = \frac{s}{k} = \sqrt{\frac{Ss^2}{EJ}}$$

so klein, daß man von den Reihen

$$tg \alpha = \alpha + \frac{\alpha^3}{3} + \frac{2\alpha^5}{3\cdot 5} + \dots$$
$$sin \alpha = \frac{\alpha}{1!} - \frac{\alpha^3}{3!} + \frac{\alpha^5}{5!} + \dots$$

nur die beiden ersten Glieder zu berücksichtigen braucht, so wird

$$\frac{\operatorname{tg} \alpha}{\alpha} = 1 + \frac{\alpha^2}{3}, \quad \frac{\sin \alpha}{\alpha} = 1 - \frac{\alpha^2}{6}, \quad \frac{\operatorname{tg} \frac{1}{2} \alpha}{\alpha} = \frac{1}{2} + \frac{\alpha^2}{24},$$

und man erhält:

$$\mu' = \mu'' = 1, \quad \nu''' = \frac{\alpha^2}{24}, \quad \frac{g_S \nu'''}{S} = \frac{g_S^3}{24 EJ}$$

Der Einfluß der Biegungsmomente Sy ist daher vernachlässigbar, und es liegt der in Nr. 80 bis 86 behandelte Fall vor.

Müller-Breslau, Graphische Statik. 2. II.

Dritter Abschnitt. - § 17.

Für den vierten Obergurtstab des in Nr. 86 untersuchten Parallelträgers ist z. B. $S = 120 \text{ t}, s = 40 \text{ dm}, E = 200\,000 \text{ t/dm}^2, J = 1,956 \text{ dm}^4,$ mithin

$$\alpha = \frac{s}{k} = \sqrt{\frac{Ss^2}{EJ}} = 0,70057.$$

Zu dieser Bogenlänge gehört der Winkel 40°8'. Daher: tg $\alpha = 0.843$, sin $\alpha = 0.645$, $\mu' = 1.033$, $\mu'' = 1.053$. Genügt J mit fünffacher Sicherheit der Eulerschen Formel:

$$\frac{Ss^2}{EJ} = \frac{\pi^2}{5},$$

so erhält man $\alpha = 1,4$ und $\mu' = 1,16$, $\mu'' = 1,29$. Man könnte hier dem Einfluß der Momente Sy durch Verkleinerung des Trägheitsmomentes J des Stabes um etwa 20 v. H. Rechnung tragen, im übrigen aber die in Nr. 80 bis 86 beschriebenen Verfahren benutzen. Je größer nun J ist, desto größer fallen im allgemeinen die Nebenspannungen infolge der steifen Knoten aus. Vernachlässigt man also die Sy bei Berechnung der Momente \mathfrak{M} , so macht man eine Annahme zugunsten der Sicherheit des Tragwerks.

2. Die Stabkraft S ist ein Zug. Die Bezeichnungen sind aus der Figur 240 zu ersehen. g wird im entgegengesetzten Sinne der y positiv angenommen. Es folgt dann wenn rechts \mathfrak{M}_A und links \mathfrak{M}_B wirkt,

$$\mathfrak{M} = \mathfrak{M}_{\mathfrak{A}} + \frac{\mathfrak{M}_{\mathfrak{B}} - \mathfrak{M}_{\mathfrak{A}}}{s} x - \left(g\frac{sx}{2} - g\frac{x^2}{2}\right) - Sy,$$

und die Differentialgleichung der elastischen Linie lautet:

(50)
$$k^2 \frac{d^2 y}{dx^2} - y = -\frac{1}{S} \left[\mathfrak{M}_A + \frac{\mathfrak{M}_B - \mathfrak{M}_A}{s} x - g \frac{sx}{2} + g \frac{x^2}{2} \right];$$

ihr Integral ist

(51)
$$-y = C_1 \operatorname{\mathfrak{Cof}} \frac{x}{k} + C_2 \operatorname{\mathfrak{Sin}} \frac{x}{k} - \frac{1}{S} \left[\mathfrak{M}_A + \frac{\mathfrak{M}_B - \mathfrak{M}_A}{s} x - g \frac{sx}{2} + g \frac{x^2}{2} + g k^2 \right]$$

Die Integrationskonstanten sind

(52)
$$C_1 = \frac{1}{S} D_1$$
 und $C_2 = \frac{1}{S} \left(D_1 \operatorname{Cotang} \frac{s}{k} - \frac{D_2}{\operatorname{Sin} \frac{s}{k}} \right),$

wo k, D_1 und D_2 durch die Gleichungen (31) und (32) bestimmt sind. Das Biegungsmoment

(53)
$$\mathfrak{M} = S\left(C_1 \operatorname{Cof} \frac{x}{k} + C_2 \operatorname{Sin} \frac{x}{k}\right) \ddagger gk^2$$

wird ein Maximum oder Minimum, sobald (mit $\alpha = \frac{s}{k}$)

291

(54)
$$\mathbb{T}ang \frac{x}{k} = \operatorname{Cotang} \alpha - \frac{D_2}{D_1} \frac{1}{\operatorname{Sin} \alpha}$$

wird. Liefert diese Gleichung einen zwischen 0 und s liegenden Wert x, so ergibt sich

(55)
$$\mathfrak{M}_{\max}_{\min} = \frac{D_1}{\mathfrak{Cof} \frac{x}{k}} + gk^2.$$

Dieses Moment muß mit dem größeren der beiden Momente \mathfrak{M}_A und \mathfrak{M}_B verglichen werden.

Die Ausschlagwinkel τ und τ' sind

(56)
$$\tau' = \frac{\mathfrak{M}_A}{Ss} \nu' + \frac{\mathfrak{M}_B}{Ss} \nu'' + \frac{gs}{S} \nu'''$$

(57)
$$\tau = \frac{\mathfrak{M}_{A}}{Ss} \, \mathfrak{v}'' + \frac{\mathfrak{M}_{B}}{Ss} \, \mathfrak{v}' + \frac{gs}{S} \, \mathfrak{v}''',$$

wo

(58)
$$\nu' = \frac{\alpha}{\operatorname{Tang} \alpha} - 1$$

(59)
$$\nu'' = 1 - \frac{\alpha}{\Im in \alpha}$$

(60)
$$v''' = \frac{\mathfrak{Cof} \alpha - 1}{\alpha \mathfrak{Sin} \alpha} - \frac{1}{2} = \frac{\mathfrak{Tang} \frac{1}{2} \alpha}{\alpha} - \frac{1}{2}$$

Der weitere Verlauf der Untersuchung ist derselbe wie bei gedrückten Stäben.

§ 18.

Fachwerke, deren sämtliche Stäbe in den Knoten durch Niete befestigt sind.

88. Grundgleichungen für ein Stabdreieck mit steifen Ecken. Sind die Stäbe eines Dreiecks in den Ecken steif miteinander verbunden, so werden sie sich bei der Formveränderung des Dreiecks verbiegen.

 19^{*}

Die Momente, durch welche hierbei die Stabenden beansprucht werden, bezeichnen wir

für	den	Stab	81	mit	\mathfrak{M}_1	und	\mathfrak{M}_2	
77	77	77	s_2		\mathfrak{M}_3	77	\mathfrak{M}_4	
"	77	77	s_3	"	\mathfrak{M}_5	77	\mathfrak{M}_6 .	

Diese Momente sollen positiv sein, wenn sich die Stäbe nach innen biegen. Werden die Stäbe gewichtslos gedacht, alle äußeren Kräfte in den Knotenpunkten angreifend vorausgesetzt, und die von den Durchbiegungen

y abhängigen Momente Sy (vgl. Nr. 87) vernachlässigt, so sind die Ausschlagwinkel der im Knoten. A, Fig. 241, zusammentreffenden Stabenden:

$$\begin{aligned} \tau' &= \frac{\mathfrak{M}_1 + 2\,\mathfrak{M}_2}{6\,EJ_1}s_1 \\ \tau'' &= \frac{\mathfrak{M}_4 + 2\,\mathfrak{M}_3}{6\,EJ_2}s_2. \end{aligned}$$

Bezeichnet man die Dreieckwinkel bei A, B, C mit α, β, γ , setzt die vorstehenden Werte τ' und τ'' in die Gleichung $\tau' + \tau'' = \Delta \alpha$

ein und stellt ähnliche Gleichungen für die Ecken B und C auf, so gelangt man zu den Beziehungen

(1)
$$\begin{cases} (\mathfrak{M}_{1} + 2\,\mathfrak{M}_{2})\,\frac{s_{1}}{J_{1}} + (2\,\mathfrak{M}_{3} + \mathfrak{M}_{4})\,\frac{s_{2}}{J_{2}} = 6\,E\Delta\alpha\\ (\mathfrak{M}_{3} + 2\,\mathfrak{M}_{4})\,\frac{s_{2}}{J_{2}} + (2\,\mathfrak{M}_{5} + \mathfrak{M}_{6})\,\frac{s_{3}}{J_{3}} = 6\,E\Delta\beta\\ (\mathfrak{M}_{5} + 2\,\mathfrak{M}_{6})\,\frac{s_{3}}{J_{3}} + (2\,\mathfrak{M}_{1} + \mathfrak{M}_{2})\,\frac{s_{1}}{J_{1}} = 6\,E\Delta\gamma, \end{cases}$$

mit deren Hilfe man, sobald drei der Momente \mathfrak{M}_1 bis \mathfrak{M}_6 bekannt sind, die übrigen drei Momente berechnen kann.

An Stelle der Momente \mathfrak{M} führen wir nun zweckmäßiger die den einzelnen Stabenden entsprechenden Werte $\mathfrak{M} \frac{s}{J}$, welche wir mit ρ bezeichnen wollen, als Unbekannte ein. Wir setzen

für den Stab
$$s_1$$
: $\frac{\mathfrak{M}_1 s_1}{J_1} = \rho_1$, $\frac{\mathfrak{M}_2 s_1}{J_1} = \rho_2$;
für den Stab s_2 : $\frac{\mathfrak{M}_3 s_2}{J_2} = \rho_3$, $\frac{\mathfrak{M}_4 s_2}{J_2} = \rho_4$;
für den Stab s_3 : $\frac{\mathfrak{M}_5 s_3}{J_3} = \rho_5$, $\frac{\mathfrak{M}_6 s_3}{J_3} = \rho_6$

und formen die Gleichungen (1) um in

(2) $\rho_1 + 2(\rho_2 + \rho_3) + \rho_4 = 6 E \Delta \alpha$,

(3)
$$\rho_3 + 2 \left(\rho_4 + \rho_5 \right) + \rho_6 = 6 E \Delta \beta,$$

)
$$\rho_5 + 2 \left(\rho_6 + \rho_1\right) + \rho_2 = 6 E \Delta \gamma$$

Außerdem besteht noch, wegen $\Delta \alpha + \Delta \beta + \Delta \gamma = 0$, die Beziehung

(5) $\rho_1 + \rho_2 + \rho_3 + \rho_4 + \rho_5 + \rho_6 = 0.$

Gesetzt nun, es seien die Werte ρ_1 , ρ_2 , ρ_3 bekannt, dann können mit Hilfe der vorstehenden Gleichungen die Werte ρ_4 , ρ_5 , ρ_6 berechnet werden. Man erhält aus Gleichung (2):

(6)
$$\rho_4 = 6 E \Delta \alpha - \rho_1 - 2 (\rho_2 + \rho_3),$$

sodann aus Gleichungen (3) und (4):

(7)
$$\rho_5 = 6 E \Delta \beta + \rho_1 + \rho_2 - \rho_4$$

Die letzte Gleichung prägt sich dem Gedächtnisse am leichtesten in der Form ein:

(8)

(4

$$\rho_5 + \rho_4 = 6 E \Delta \beta + \rho_1 + \rho_2.$$

Die Werte ρ auf der linken Seite der Gleichung (8) schließen in Fig. 242 den Winkel β ein, und die Werte ρ auf der rechten Seite liegen dem Winkel β gegenüber.

Ganz ebenso findet man

$$\rho_6 + \rho_1 = 6 E \Delta \gamma + \rho_3 + \rho_4,$$

und hieraus

(9)
$$\rho_6 = 6 E \Delta \gamma + \rho_3 + \rho_4 - \rho_1.$$

Durch die Werte ρ sind die Biegungsspannungen an den Stabenden bestimmt. Für den durch das Moment \mathfrak{M}_1 beanspruchten Stabquerschnitt erhält man z. B. die größten Biegungsspannungen

$$\begin{split} \sigma' &= + \frac{\mathfrak{M}_{1}}{J_{1}} e' = + \rho_{1} \frac{e'}{s_{1}} \\ \sigma'' &= - \frac{\mathfrak{M}_{1}}{J_{1}} e'' = - \rho_{1} \frac{e''}{s_{1}}, \end{split}$$

wo e' und e'' die Abstände des stärkst gezogenen bzw. stärkst gedrückten Querschnittsteiles von der Schwerachse des Querschnitts bedeuten.

Die Anwendung der Gleichungen (2) bis (9) auf die einzelnen Dreiecke eines einfachen Fachwerkes (Fig. 245) gestattet, die in einem solchen Träger infolge steifer Knoten auftretenden Biegungsspannungen ohne übergroßen Zeitaufwand zu berechnen. Dabei erweist es sich als notwendig, für die einzelnen Dreiecke abwechselnd die in den Figuren 241

und 243 dargestellten Verbiegungen als diejenigen anzusehen, denen positive Momente und positive Werte ρ entsprechen. Will man nun ein nach Fig. 243 verbogenes Dreieck mit Hilfe der Gleichungen (2) bis (9) behandeln, so muß man die Vorzeichen der Winkeländerungen umkehren. Während also für das Dreieck Fig. 241 die Formeln gelten:

(10)
$$\begin{cases} E\Delta\alpha = (\sigma_3 - \sigma_1)\cot \gamma + (\sigma_3 - \sigma_2)\cot \beta \\ E\Delta\beta = (\sigma_1 - \sigma_2)\cot \alpha + (\sigma_1 - \sigma_3)\cot \gamma \\ \Delta\alpha + \Delta\beta + \Delta\gamma = 0, \end{cases}$$

hat man für das Dreieck Fig. 243 die Formeln:

(11)
$$\begin{cases} E\Delta\alpha = (\sigma_1 - \sigma_3) \operatorname{cotg} \gamma + (\sigma_2 - \sigma_3) \operatorname{cotg} \beta \\ E\Delta\beta = (\sigma_2 - \sigma_1) \operatorname{cotg} \alpha + (\sigma_3 - \sigma_1) \operatorname{cotg} \gamma \\ \Delta\alpha + \Delta\beta + \Delta\gamma = 0. \end{cases}$$

Die in den Figuren 241 und 243 behufs übersichtlicher Festsetzung der Vorzeichen der Momente angenommenen Formänderungen können in Wirklichkeit nicht eintreten, weil $\Delta \alpha + \Delta \beta + \Delta \gamma = 0$ sein muß. Die Rechnung muß also für die Momente teils positive, teils negative Werte liefern. Sind z. B. für das Dreieck Fig. 241 \mathfrak{M}_1 und \mathfrak{M}_3 negativ, so verbiegt sich das Dreieck nach Fig. 244.

89. Berechnung der Werte ρ eines einfachen Fachwerks. Wir beschränken uns auf den Fall zentrischer Knotenpunkte und nehmen an, daß alle Lasten in den Knotenpunkten angreifen. Liegt das in Fig. 245 dargestellte Fachwerk vor, so werden zunächst die Werte ρ_1 und ρ_2 , welche den die Ziffern 1 und 2 tragenden Stabenden entsprechen, als bekannt angenommen. Hierauf findet man ρ_3 aus der Bedingung, daß die Summe der am Knotenpunkte A angreifenden Momente \mathfrak{M}_2 und \mathfrak{M}_3 , von denen das erste rechts drehend, das zweite links drehend angenommen ist, gleich Null sein muß. Es folgt $\mathfrak{M}_2 - \mathfrak{M}_3 = 0$, und, wenn die \mathfrak{M} durch die ρ ausgedrückt werden:

$$\rho_3 \frac{J_2}{s_2} - \rho_2 \frac{J_1}{s_1} = 0.$$

Nach Berechnung von ρ_3 erhält man mit Hilfe der Grundgleichungen (6), (7), (9) die Werte ρ_4 , ρ_5 , ρ_6 .

Am Knotenpunkte *B* ergibt sich nun zur Bestimmung von ρ_7 die Gleichung $\mathfrak{M}_7 - \mathfrak{M}_6 + \mathfrak{M}_1 = 0$, das ist:

$$\rho_7 \, \frac{J_4}{s_4} - \rho_6 \, \frac{J_3}{s_3} + \rho_1 \, \frac{J_1}{s_1} = 0$$

und hierauf liefern die nach Gleichung (1) für das Dreieck II zu bildenden Grundgleichungen die Größen ρ_8 , ρ_9 , ρ_{10} .

So fortfahrend findet man:

am Knotenpunkte C den Wert ρ_{11} ,

mittels Dreieckbedingungen die Werte P12, P13, P14,

am Knotenpunkte D den Wert P15,

mittels Dreieckbedingungen die Werte P16, P17, P18,

und hat nunmehr alle Werte ρ_3 bis ρ_{18} als Funktionen von ρ_1 und ρ_2 dargestellt. Zur Berechnung dieser beiden Werte aber stehen an den Knotenpunkten E und F noch die beiden Gleichungen zur Verfügung:

$$\rho_{18} \frac{J_9}{s_9} - \rho_{13} \frac{J_7}{s_7} + \rho_{12} \frac{J_6}{s_6} = 0,$$

$$\rho_{16} \frac{J_8}{s_8} - \rho_{17} \frac{J_9}{s_9} = 0.$$

Die gestellte Aufgabe ist somit gelöst. Unser Verfahren erfordert nur sehr einfache Rechnungen, weil die überwiegende Mehrzahl der zu benutzenden Gleichungen Dreieckbedingungen sind, bei deren Anwendung nur Additionen auszuführen sind. Die Werte *J* und *s* runde man gut ab. Dann verursachen auch die sehr einfachen Knotenpunktbedingungen nur wenig Rechenarbeit.

90. Zahlenbeispiel. Gesucht seien die Werte ρ für den in Fig. 246 dargestellten symmetrischen Parallelträger. Jeder Knotenpunkt der unteren Gurtung ist mit 12 t belastet. Die Spannkräfte *S*, Querschnittsinhalte *F*, Spannungen σ ,

Stab	S	F	$\sigma = \frac{S}{F}$	8	J	e
<i>s</i> ₁	- 29	0,60	- 48	36	0,09	0,85
S_2	+16	0,44	+36	40	0,04	0,65
83	+29	0,40	+73	36	0,03	0,50
s_4	-32	0,65	-49	40	0,40	1,20
85	- 14	0,44	-32	36	0,04	0,65
86	+40	0,60	+67	40	0,08	0,80
87	+14	0,44	+32	36	0,04	0,65
88	-48	0,65	- 74	40	0,40	1,20
So	0	0,44	0	36	0,04	0,65
S ₁₀	+48	0,60	+80	40	0,08	0,80
	Tonnen	dm ²	t/dm ²	dm	dm4	dm

Stablängen s, Trägheitsmomente J und Abstände e' = e'' = e sind in der folgenden Tabelle zusammengestellt.

Wir beginnen mit der Berechnung der Winkeländerungen. Für die einzelnen Dreiecke nehmen wir abwechselnd die Verbiegungen nach Fig. 243 und 241 an. Für die Dreiecke I, III, V gelten die Gleichungen (11), für die Dreiecke II, IV die Gleichungen (10). Die an den Stäben stehenden eingeklammerten Zahlen geben die Spannungen σ an. Es ist $\cot \alpha = \cot \beta = \frac{2}{3}$ und $\cot \gamma = \frac{5}{12}$, mithin

für das Dreieck I:

$$6 E\Delta\alpha = 6 \left[(+36-73) \frac{2}{3} + (-48-73) \frac{5}{12} \right] = -450$$

$$6 E\Delta\beta = 6 \left[(+36+48) \frac{2}{3} + (+73+48) \frac{5}{12} \right] = +638$$

$$6 E\Delta\gamma = 6 \left[(+73-36) \frac{2}{3} + (-48-36) \frac{2}{3} \right] = -188$$

Probe: $6 E (\Delta\alpha + \Delta\beta + \Delta\gamma) = 0;$

für das Dreieck II:

 $\begin{aligned} 6E\Delta\alpha &= 6\left[(-32+49)\frac{2}{3}+(-32-73)\frac{5}{12}\right] = -194\\ 6E\Delta\beta &= 6\left[(+73+49)\frac{2}{3}+(+73+32)\frac{5}{12}\right] = +750\\ 6E\Delta\gamma &= 6\left[(-49-73)\frac{2}{3}+(-49+32)\frac{2}{3}\right] = -556\\ \text{Probe:} \ 6E(\Delta\alpha+\Delta\beta+\Delta\gamma) = 0;\\ \text{ebenso für die Dreiecke:} \end{aligned}$ $\begin{aligned} \text{III} \qquad 6E\Delta\alpha = -20, \qquad 6E\Delta\beta = +556, \qquad 6E\Delta\gamma = -536;\\ \text{IV} \qquad 6E\Delta\alpha = +216, \qquad 6E\Delta\beta = +504, \qquad 6E\Delta\gamma = -720;\\ \text{V} \qquad 6E\Delta\alpha = +320, \qquad 6E\Delta\beta = +320, \qquad 6E\Delta\gamma = -640. \end{aligned}$

Nun stellen wir die Bedingungen für die Knotenpunkte zusammen. Es ergibt sich

für	Knoten A:	$\rho_3 \frac{J_2}{s_2} - \rho_2 \frac{J_1}{s_1} = 0, \text{ d. h.}$
		$\rho_3 \frac{0.04}{40} = \rho_2 \frac{0.09}{36}$, oder
		$\rho_3 = 2,5 \rho_2;$
für	Knoten B:	$\rho_7 \frac{J_4}{s_4} - \rho_6 \frac{J_3}{s_3} + \rho_1 \frac{J_1}{s_1} = 0,$
		$\rho_7 \frac{0,40}{40} - \rho_6 \frac{0,03}{36} + \rho_1 \frac{0,09}{36} = 0,$
		$ \rho_7 = \frac{1}{12} \rho_6 - \frac{1}{4} \rho_1; $
für	Knoten C:	$\rho_{11} \frac{J_6}{s_6} - \rho_{10} \frac{J_5}{s_5} + \rho_5 \frac{J_3}{s_3} - \rho_4 \frac{J_2}{s_2} = 0,$
		$\rho_{11} \frac{0,\!08}{40} - \rho_{10} \frac{0,\!04}{36} + \rho_{\delta} \frac{0,\!03}{36} - \rho_{4} \frac{0,\!04}{40} = 0,$
		$\rho_{11} = \frac{10}{18} \rho_{10} + \frac{10}{24} \rho_5 + \frac{1}{2} \rho_4;$
für	Knoten D:	$\rho_{15} \frac{J_8}{s_8} - \rho_{14} \frac{J_7}{s_7} + \rho_9 \frac{J_5}{s_5} - \rho_8 \frac{J_4}{s_4} = 0,$
		$\rho_{15} \frac{0,40}{40} - \rho_{14} \frac{0,04}{36} + \rho_{9} \frac{0,04}{36} - \rho_{8} \frac{0,40}{40} = 0,$
		$\rho_{15} = \frac{1}{9} \left(\rho_{14} - \rho_{\theta} \right) + \rho_8;$
für	Knoten E:	$\rho_{19} \frac{J_{10}}{s_{10}} - \rho_{18} \frac{J_9}{s_9} + \rho_{13} \frac{J_7}{s_7} - \rho_{12} \frac{J_6}{s_6} = 0,$
		$\rho_{19} \frac{0.08}{40} - \rho_{18} \frac{0.04}{36} + \rho_{13} \frac{0.04}{36} - \rho_{12} \frac{0.08}{40} = 0,$
		$\rho_{19} = \frac{10}{18} \left(\rho_{18} - \rho_{13} \right) + \rho_{12}.$

Dritter Abschnitt. - § 18.

Die Darstellung der Werte ρ als Funktionen von ρ_1 und ρ_2 geschieht jetzt wie folgt. Man findet:

am Knoten A:	$\rho_3 = 2,5 \rho_2,$
	$\rho_4 = -450 - 2(\rho_3 + \rho_2) - \rho_1$
mittala dan	$= -\rho_1 - 7\rho_2 - 450$
Bedingungen (6) (7)	$\rho_5 = + 638 + \rho_1 + \rho_2 - \rho_4$
(9) für Dreicek I	$= 2\rho_1 + 8\rho_2 + 1088$
(0) IUI DIFFECK I	$\rho_6 = -188 + \rho_3 + \rho_4 - \rho_1$
	$= -2\rho_1 - 4,5\rho_2 - 638;$
am Knoten B:	$\rho_7 = -0.417 \rho_1 - 0.375 \rho_2 - 53.17,$
	$\rho_8 = -194 - 2(\rho_7 + \rho_6) - \rho_5$
	$=+2,834 \rho_1 + 1,750 \rho_2 + 100,34$
Bedingungen für	$\rho_9 = +750 + \rho_5 + \rho_6 - \rho_8$
Dreieck II	$= -2,834\rho_1 + 1,750\rho_2 + 1099,66$
	$\rho_{10} = -556 + \rho_8 + \rho_7 - \rho_5$
	$= +0.417 \rho_1 - 6.625 \rho_2 - 1596.83;$
am Knoten C:	$\rho_{11} = -1,101 \rho_1 - 10,514 \rho_2 - 1565,46,$
	$\rho_{12} = -20 - 2(\rho_{11} + \rho_{10}) - \rho_9$
	$=4,202 \rho_1 + 32,528 \rho_2 + 5204,92$
Bedingungen für	$\rho_{13} = 556 + \rho_9 + \rho_{10} - \rho_{12}$
Dreieck III	$= -6,619\rho_1 - 37,403\rho_2 - 5146,09$
	$\rho_{14} = -536 + \rho_{12} + \rho_{11} - \rho_9$
	$= 5,935 \rho_1 + 20,264 \rho_2 + 2003,80;$
am Knoten D:	$\rho_{15} = +3,808\rho_1 + 3,807\rho_2 + 200,80,$
	$\rho_{16} = +216 - 2(\rho_{15} + \rho_{14}) - \rho_{13}$
	$= -12,867 \rho_1 - 10,739 \rho_2 + 952,89$
Bedingungen für	$\rho_{17} = +504 + \rho_{13} + \rho_{14} - \rho_{16}$
Dreieck IV	$=+12,183 \rho_1 - 6,400 \rho_1 - 3591,18$
	$\rho_{18} = -720 + \rho_{16} + \rho_{15} - \rho_{13}$
tr i T	$= -2,440\rho_1 + 30,471\rho_2 + 5579,78;$
am Knoten E:	$\rho_{19} = 6,524 \rho_1 + 70,236 \rho_2 + 11163,74.$

Nachdem nunmehr sämtliche ρ durch ρ_1 und ρ_2 ausgedrückt worden sind, werden für das Dreieck V die Gleichungen aufgestellt:

$$2\rho_{17} = 6 E \Delta \gamma + 2\rho_{19}, \\\rho_{17} + \rho_{18} + \rho_{19} = 0.$$

Die erste Gleichung ist ebenso gebildet wie Gleich. (8); die zweite entspricht der Gleich. (5).

Man findet aus diesen Gleichungen:

 $\rho_1 = 198,487 \text{ und } \rho_2 = -173,700,$

und hiermit sind alle Werte o bestimmt.

Für den Stab s₈ erhält man z. B.

 $\rho_{15} = +3,808 \cdot 198,487 - 3,807 \cdot 173,700 + 200,80 = 295,$

 $\rho_{16} = -12,867 \cdot 198,487 + 10,739 \cdot 173,700 + 952,89 = 264.$

Da nun für diesen Stab $e = 1,2 \,\mathrm{dm}$ und $s = 40 \,\mathrm{dm}$ ist, so ist seine größte Biegungsspannung:

$$\sigma' = \pm 295 \frac{1,2}{40} = \pm 8,85 \,\mathrm{t/dm^2}.$$

Hierzu tritt $\sigma = \frac{S}{F} = -\frac{48}{0.65} = -73.8$; es entsteht also im ganzen $\sigma = -73.8 - 8.85 = 82.7 \text{ t/dm}^2 = 827 \text{ kg/cm}^2.$

Wir geben noch an:

 $\begin{array}{l} \rho_{17}=+12,183\cdot 198,487+ \ 6,400\cdot 173,700-3591,18=- \ 61,33\\ \rho_{18}=- \ 2,440\cdot 198,487-30,471\cdot 173,700+5579,78=- \ 197,34\\ \rho_{18}=- \ 6,619\cdot 198,487+37,403\cdot 173,700-5146,09=+ \ 37,02\\ \rho_{14}=+ \ 5,935\cdot 198,487-20,264\cdot 173,700+2003,80=- \ 338,04, \end{array}$

und benutzen diese Werte, um die Zuverlässigkeit unserer Zahlenberechnungen zu prüfen. Es muß (für Dreieck IV) sein:

 $\rho_{17} + 2 \left(\rho_{18} + \rho_{13} \right) + \rho_{14} = 6 E \Delta \gamma = -720.$

Die linke Seite dieser Gleichung wird mit den oben angegebenen $\rho\text{-Werten}$ gleich — 720,01.

Will man sämtliche ρ haben, so berechne man in der vorstehenden Weise nur die aus den Knotenpunktbedingungen folgenden Werte ρ_3 , ρ_7 , ρ_{11} , ρ_{15} , ρ_{19} ; die übrigen findet man schneller mit Hilfe der Dreieckbedingungen. Man rechne also z. B.

$$\rho_{18} = +216 - 2 \left(\rho_{15} + \rho_{14}\right) - \rho_{18}.$$

Es besteht dann die Hauptrechnung in der Ausführung von Additionen.

Werden die auf die Form

$$\rho = A \rho_1 + B \rho_2 + \rho_0$$

gebrachten Werte ρ für mehrere Stellungen der Verkehrslast gesucht, so sind die Koeffizienten A und B von ρ_1 und ρ_2 unabhängig von den

Winkeländerungen $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$; sie brauchen deshalb nur einmal berechnet zu werden, gelten für sämtliche Belastungszustände und lassen sich als diejenigen Werte ρ deuten, welche man erhält, wenn man alle Winkeländerungen gleich Null setzt und ρ_1 bzw. ρ_2 den Wert 1 zuschreibt (Zustände $\rho_1 = 1$ und $\rho_2 = 1$). Die Spannungen ρ_0 stellen die für den Fall $\rho_1 = 0$, $\rho_2 = 0$ sich ergebenden Werte ρ dar; sie müssen für jeden neuen Belastungszustand berechnet werden.

Kennt man die Werte ρ eines in bezug auf die Senkrechte durch die Mitte symmetrischen Trägers ABfür die in Fig. 247 mit 1 und 2

bezeichneten gleichförmigen Belastungen, so kann man aus ihnen ohne weiteres die Werte ρ für die Belastungsfälle 3, 4, 5, 6, 7, 8 zusammensetzen.

91. Einflußlinien für die Werte ρ eines einfachen Balkens. Wird eine genauere Berechnung der Grenzwerte der Spannungen ρ verlangt, so bedient man sich am zweckmäßigsten der Einflußlinien. Als Beispiel wählen wir den in Fig. 248 dargestellten Fachwerkbalken. Die Last 1 soll der Reihe nach in den Knotenpunkten I, II, III, IV der unteren Gurtung angreifen.

Man beginne mit der Berechnung der Werte ρ_8 bis ρ_{27} für den Belastungszustand A = 1 und der Berechnung von ρ_{28} , ρ_{27} , ρ_{26} , . . . ρ_4 für den Zustand B = 1. Der erste Zustand liefert für irgendeinen Wert ρ_m :

(12) der zweite liefert

(13)

 $\rho_m = \rho_{am} + A_m' \rho_1 + A_m'' \rho_2,$ $\rho_m = \rho_{bm} + B_m' \rho_{39} + B_m'' \rho_{39}.$

 $\begin{array}{ll} \rho_{am} \text{ ist der Wert von } \rho_m \text{ für } A = 1, \quad \rho_1 = 0, \quad \rho_2 = 0 \\ \rho_{bm} \text{ ist der Wert von } \rho_m \text{ für } B = 1, \quad \rho_{29} = 0, \quad \rho_{30} = 0. \end{array}$

Greift nun die Last 1 im Knotenpunkte II an, so ist $A = 1 \frac{b}{l}$ und $B = 1 \frac{a}{l}$. Die Spannkräfte der Stäbe der Dreiecke I und II sind für diesen Belastungsfall $\frac{b}{l}$ -mal so groß als für den Belastungsfall A = 1, und das gleiche gilt auch für die Spannungen σ dieser Stäbe und die den σ proportionalen Änderungen der Winkel der Dreiecke I und II. Daraus folgt aber für ρ_3 bis ρ_{10} die Formel

(14)
$$\rho_m = \frac{b}{l} \rho_{am} + A_m' \rho_1 + A_m'' \rho_2,$$

und in derselben Weise folgert man für ρ_{13} bis ρ_{28} die Formel

(15)
$$\rho_m = -\frac{a}{l} \rho_{bm} + B_m' \rho_{29} + B_m'' \rho_{30}$$

Die Koeffizienten Am', Am", Bm', Bm" sind von der Belastung unabhängig.

Da nun p₁₁ aus der Gleichung

$$\rho_{11} \frac{J_6}{s_6} - \rho_{10} \frac{J_5}{s_5} + \rho_5 \frac{J_3}{s_3} - \rho_4 \frac{J_2}{s_2} = 0$$

hervorgeht, so darf es ebenfalls nach der Gleich. (14) berechnet werden und ebenso folgt, daß Gleich. (15) auch für ρ_{12} gilt.

Man erhält somit:

$$\rho_{8} = \frac{b}{l} \rho_{a8} + A_{8}' \rho_{1} + A_{8}'' \rho_{2}$$

$$\rho_{9} = \frac{b}{l} \rho_{a9} + A_{9}' \rho_{1} + A_{9}'' \rho_{2}$$

$$\rho_{10} = \frac{b}{l} \rho_{a10} + A_{10}' \rho_{1} + A_{10}'' \rho_{2}$$

$$\rho_{11} = \frac{b}{l} \rho_{a11} + A_{11}' \rho_{1} + A_{11}'' \rho_{2},$$

und

$$\begin{split} \rho_{12} &= \frac{a}{l} \rho_{b\,12} + B_{12}' \rho_{29} + B_{12}'' \rho_{30} \\ \rho_{13} &= \frac{a}{l} \rho_{b\,13} + B_{13}' \rho_{29} + B_{13}'' \rho_{30} \\ \rho_{14} &= \frac{a}{l} \rho_{b\,14} + B_{14}' \rho_{29} + B_{14}'' \rho_{30} \\ \rho_{15} &= \frac{a}{l} \rho_{b\,15} + B_{15}' \rho_{29} + B_{15}'' \rho_{30}. \end{split}$$

Durch Einsetzen dieser Werte in die dem Dreieck III und dem Knoten II entsprechenden Bedingungen

(16)
$$\begin{cases} \rho_{10} + \rho_{11} = 6 E \Delta \alpha_{III} + \rho_{18} + \rho_{14} \\ \rho_{12} + \rho_{13} = 6 E \Delta \beta_{III} + \rho_{9} + \rho_{10} \\ \rho_{14} + \rho_{9} = 6 E \Delta \gamma_{III} + \rho_{11} + \rho_{12} \\ \rho_{15} \frac{J_8}{s_8} - \rho_{14} \frac{J_7}{s_7} + \rho_{9} \frac{J_5}{s_6} - \rho_{8} \frac{J_4}{s_4} = 0 \end{cases}$$

erhält man vier Gleichungen zur Berechnung der Werte ρ_1 , ρ_2 , ρ_{20} , ρ_{30} , die einer im Knoten II angreifenden Last 1 entsprechen. Die in diese Gleichungen einzusetzenden Winkeländerungen $\Delta \alpha_{III}$, $\Delta \beta_{III}$, $\Delta \gamma_{III}$ müssen für den vorliegenden Belastungsfall besonders berechnet werden.

Indem man nun die Last Eins der Reihe nach in den Knotenpunkten I, II, III, IV annimmt, gelangt man zunächst zu den Einflußlinien für ρ_1 , ρ_2 , ρ_{20} , ρ_{30} und ist dann imstande, mittels dieser Linien die Einflußlinie für ein beliebiges ρ_m zu ermitteln.

Handelt es sich z. B. um ρ_{18} , so benutze man, wenn die Last 1 beim Knoten III oder rechts hiervon liegt, die Gleichung

$$\rho_{18} = \frac{b}{l} \, \rho_{a\,18} + A_{18} \, \rho_1 + A_{18} \, \rho_2.$$

Liegt die Last bei II oder links von II, so gilt die Gleichung

$$\rho_{18} = \frac{a}{l} \rho_{b_{18}} + B_{18}' \rho_{29} + B_{18}'' \rho_{30}.$$

a und b bedeuten die veränderlichen Abszissen der Einzellast.

92. Graphische Ermittlung der Biegungsmomente. Wir gehen wieder von dem Dreieck Fig. 241 aus, multiplizieren die Gleichungen (1) mit dem beliebig gewählten, konstanten Trägheitsmomente J_c und erhalten nach Division durch 3:

Dritter Abschnitt. — § 18.

(17)
$$\begin{cases} \left(\frac{1}{3} \mathfrak{M}_{1} + \frac{2}{3} \mathfrak{M}_{2}\right) l_{1} + \left(\frac{2}{3} \mathfrak{M}_{3} + \frac{1}{3} \mathfrak{M}_{4}\right) l_{2} = 2 E J_{c} \Delta \alpha \\ \left(\frac{1}{3} \mathfrak{M}_{3} + \frac{2}{3} \mathfrak{M}_{4}\right) l_{2} + \left(\frac{2}{3} \mathfrak{M}_{5} + \frac{1}{3} \mathfrak{M}_{6}\right) l_{3} = 2 E J_{c} \Delta \beta \\ \left(\frac{1}{3} \mathfrak{M}_{5} + \frac{2}{3} \mathfrak{M}_{6}\right) l_{3} + \left(\frac{2}{3} \mathfrak{M}_{1} + \frac{1}{3} \mathfrak{M}_{2}\right) l_{1} = 2 E J_{c} \Delta \gamma, \end{cases}$$

wo

$$l_1 = s_1 \frac{J_o}{J_1}, \quad l_2 = s_2 \frac{J_c}{J_2}, \quad l_3 = s_3 \frac{J_o}{J_3}.$$

Nun reihen wir auf der Wagerechten CC, Fig. 249, die Strecken l_1 , l_2 , l_3 aneinander, tragen in den Grenzpunkten C, A, B, C die Momente \mathfrak{M}_1 , \mathfrak{M}_2 , \mathfrak{M}_3 , \mathfrak{M}_4 , \mathfrak{M}_5 , \mathfrak{M}_6 als Ordinaten auf, verbinden deren Endpunkte paarweise durch die mit I, II, III bezeichneten Geraden und nennen die zwischen diesen Geraden und der CC gelegene Fläche die *Momentenflüche* des Dreiecks CABC.

Die Verbindungsgerade E'F' der Punkte E' und F', in denen die Geraden I und II von den dem Punkte A benachbarten Drittelsenkrechten der Felder l_1 und l_2 getroffen werden, schneidet auf der zu A gehörigen verschränkten Stützensenkrechten*) eine Strecke T' ab, für welche man leicht den Ausdruck findet:

$$T' = \frac{\left(\frac{1}{3}\mathfrak{M}_1 + \frac{2}{3}\mathfrak{M}_2\right)l_1 + \left(\frac{2}{3}\mathfrak{M}_3 + \frac{1}{3}\mathfrak{M}_4\right)l_2}{l_1 + l_2},$$

oder, wegen der ersten der Gleichungen (17),

(18)

$$T' = \frac{2 E J_{\sigma} \Delta \alpha}{l_1 + l_2}.$$

*) Wir bedienen uns der bei der zeichnerischen Untersuchung von Trägern auf mehreren Stützen geläufigen Benennungen.

Ebenso findet man, daß die in gleicher Weise eingetragene Gerade E''F''auf der zu B gehörigen verschränkten Stützensenkrechten die gegebene Strecke

$$T'' = \frac{2EJ_c\Delta\beta}{l_2 + l_3}$$

abschneiden muß. Kennt man also die drei Momente $\mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3$, so kann man mit Hilfe die Geraden E'F' einen zweiten Punkt (F') der Geraden II bestimmen und das Moment \mathfrak{M}_4 ermitteln und hierauf mittels der Geraden E''F'' den Punkt F''' der Geraden III finden. Einen zweiten Punkt von III erhält man in ähnlicher Weise, indem man die Wagerechte CC nach rechts um l_1 verlängert, die Gerade I noch einmal zeichnet und von F''' aus die durch das Moment

$$T''' = \frac{2EJ_c\Delta\gamma}{l_3+l_1}$$

bestimmte Gerade F'''E''' zieht. Man kann aber auch, um III festzulegen, die Bedingung $\Delta \alpha + \Delta \beta + \Delta \gamma = 0$ benutzen; sie führt zu der Gleichung

 $(\mathfrak{M}_1+\mathfrak{M}_2)\,l_1+(\mathfrak{M}_3+\mathfrak{M}_4)\,l_2+(\mathfrak{M}_5+\mathfrak{M}_6)\,l_3=0,$

welche aussagt, daß der Inhalt der Momentenfläche des Dreiecks CABC gleich Null ist. Bezeichnet man also mit Y_1 , Y_2 , Y_3 die Biegungsmomente für die Stabmitten, so erhält man zur Ermittlung von Y_3 die Bedingung

$$Y_1l_1 + Y_2l_2 + Y_3l_3 = 0.$$

Es leuchtet nun ein, daß man die Biegungsmomente \mathfrak{M} für die Stabenden in ähnlicher Weise bestimmen kann, wie vorhin die Werte ρ . Liegt z. B. das in Fig. 245 dargestellte Fachwerk vor, so nehme man zuerst \mathfrak{M}_1 und \mathfrak{M}_2 bekannt an, folgere aus der Gleichgewichtsbedingung für den Knoten A das Moment $\mathfrak{M}_3 = \mathfrak{M}_2$, ermittle zeichnerisch \mathfrak{M}_4 , \mathfrak{M}_5 , \mathfrak{M}_6 , hierauf $\mathfrak{M}_7 = \mathfrak{M}_6 - \mathfrak{M}_1$, sodann wieder zeichnerisch \mathfrak{M}_8 , \mathfrak{M}_9 , \mathfrak{M}_{10} usw.

Da nun diese Momente auf die Form

$$\mathfrak{M} = \mathfrak{M}_0 + \mathfrak{M}' \mathfrak{M}_1 + \mathfrak{M}'' \mathfrak{M}_2$$

gebracht werden können, wobei nur die \mathfrak{M}_0 von den Winkeländerungen $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$ abhängen, so ergibt sich das folgende Verfahren.

Man setze zuerst $\mathfrak{M}_1 = 0$ und $\mathfrak{M}_2 = 0$, bestimme also diejenigen Momente, welche entstehen würden, wenn an den Enden des Stabes s_1 Gelenke angeordnet wären.

Zweitens nehme man $\mathfrak{M}_2 = 0$ und $\mathfrak{M}_1 = 1$ an und setze alle Winkeländerungen, mithin auch alle Werte T gleich Null. Man erhält die Momente \mathfrak{M}' .

Drittens wird angenommen: $\mathfrak{M}_1 = 0$ und $\mathfrak{M}_2 = 1$ bei gleichzeitiger Nullsetzung aller Werte *T*. Es ergeben sich die Momente \mathfrak{M}'' .

Schließlich werden die beiden Momente \mathfrak{M}_1 und \mathfrak{M}_2 mittels der Gleichgewichtsbedingungen $\mathfrak{M}_{18} = \mathfrak{M}_{18} - \mathfrak{M}_{12}$ und $\mathfrak{M}_{17} = \mathfrak{M}_{16}$ für die beiden letzten Knotenpunkte, E und F in Fig. 245, berechnet.

Zur Erzielung genügend genauer Zeichnungen kann für einzelne Dreiecke eine geringfügige Änderung des oben beschriebenen Verfahrens empfehlenswert werden. Für das Dreieck II des in Fig. 246 dargestellten Trägers, dessen Stäben s_8, s_4, s_5 die Trägheitsmomente 0,03, 0,40, 0,04 entsprechen, wird mit $J_c = 0,04$

$$l_3 = s_3 \frac{J_s}{J_3} = 36 \frac{0.04}{0.03} = 48 \text{ dm}, \quad l_4 = 40 \frac{0.04}{0.40} = 4 \text{ dm}, \quad l_5 = 36 \text{ dm}.$$

Die im Verhältnis zu l_3 und l_5 nur kleine Länge l_4 führt leicht zu Ungenauigkeiten, und es empfiehlt sich, l_4 mit einer runden Zahl, etwa mit 10, zu multiplizieren und $l_4 = 40$ anzunehmen. Unsere Konstruktion liefert dann nicht

die an den Enden des Stabes s_4 auftretenden Momente \mathfrak{M}_7 und \mathfrak{M}_8 , sondern die Momente $\frac{1}{10} \mathfrak{M}_7$ und $\frac{1}{10} \mathfrak{M}_8$. Um dies einzusehen, beachte man, daß in den Gleichungen (17) die Produkte $\mathfrak{M}l$ ersetzt werden dürfen durch die Produkte $\frac{\mathfrak{M}}{\pi} \cdot \pi l$, wo π eine beliebige Zahl bedeutet. Der Verfasser gibt dem in Nr. 88 entwickelten rechnerischen Verfahren den Vorzug.

93. Näherungsverfahren. Die einfachste Näherungsregel lautet: Man nehme nur den Knotenpunkt, für den man die Nebenspannungen berechnen will, steif an, alle übrigen hingegen gelenkig. Werden dann die Werte ρ für die den steifen Knoten bildenden Stabenden mit ρ_a ,

 ρ_b, ρ_c, ρ_a bezeichnet, Fig. 250, die Winkel mit α , β , γ , so bestehen die Gleichungen:

$$\begin{array}{l} 2 \left(\rho_a + \rho_b \right) = 6 \, E \Delta \alpha \\ 2 \left(\rho_b + \rho_o \right) = 6 \, E \Delta \beta \\ 2 \left(\rho_o + \rho_d \right) = 6 \, E \Delta \gamma \\ d, \text{ wenn zur Abkürzung} \end{array}$$

- Tarter Inth

un

gesetzt wird, außerdem noch die Bedingung

$$\rho_a \nu_a - \rho_b \nu_b + \rho_c \nu_c - \rho_a \nu_a = 0.$$

Setzt man in die letzte Gleichung die Werte ein:

$$\begin{aligned} \rho_{o} &= 3 E \Delta \gamma - \rho_{d} \\ \rho_{b} &= 3 E \Delta \beta - 3 E \Delta \gamma + \rho_{d} \\ \rho_{a} &= 3 E \Delta \alpha - 3 E \Delta \beta + 3 E \Delta \gamma - \rho_{d}, \end{aligned}$$

so liefert sie:

(19)
$$\rho_{a} = \frac{3 E \Delta \alpha \cdot \nu_{a} - 3 E \Delta \beta \left(\nu_{a} + \nu_{b}\right) + 3 E \Delta \gamma \left(\nu_{a} + \nu_{b} + \nu_{c}\right)}{\nu_{a} + \nu_{b} + \nu_{c} + \nu_{d}},$$

und hierauf erhält man

(20) $\rho_o = 3 E \Delta \gamma - \rho_a$, $\rho_b = 3 E \Delta \beta - \rho_e$, $\rho_a = 3 E \Delta \alpha - \rho_b$. Wendet man diese Gleichungen auf den Knotenpunkt *D* des in Fig. 246 dargestellten Trägers an, so hat man für die vier Stäbe s_4 , s_5 , s_7 , s_8 der Reihe nach zu setzen:

$$v = \frac{J}{s} = \frac{0.40}{40} = 0.010, \quad \frac{0.04}{36} = 0.001, \quad 0.001, \quad 0.010.$$

Die mit 6 E multiplizierten Winkeländerungen sind

$$+750 - 536 + 216$$

und man erhält daher (mit $\Sigma v = 0,022$)

$$\begin{aligned} \rho_{d} &= \rho_{15} = \frac{750 \cdot 0,010 + 536 \cdot 0,011 + 216 \cdot 0,012}{2 \cdot 0,022} = 363\\ \rho_{o} &= \rho_{14} = \frac{216}{2} - 363 = -255\\ \rho_{b} &= \rho_{9} = \frac{-536}{2} + 255 = -13\\ \rho_{a} &= \rho_{8} = \frac{750}{2} + 13 = 388. \end{aligned}$$

Unsere frühere Rechnung lieferte

 $\rho_{15} = 295, \ \rho_{14} = -338, \ \rho_{9} = 233, \ \rho_{8} = 358.$

In Anbetracht der außerordentlichen Kürze des Näherungsverfahrens darf das Ergebnis, allerdings nur für die Gurtungen, noch als befriedigend bezeichnet werden. Jedenfalls ist eine derartige Schätzung der Nebenspannungen immer noch besser, als die völlige Nichtbeachtung dieser bisweilen recht erheblichen Zuschläge zu den gewöhnlich errechneten Beanspruchungen.

§ 19.

Einfluß der Momente M auf die Spannkräfte in den Stäben.

94. Spannkraft in einem Gurtstabe. Infolge der starren Knotenverbindungen möge die für gelenkartige Knoten berechnete Spannkraft S_m übergehen in $S_m + \Delta S_m$.

Wir führen durch das Fachwerk einen Schnitt, unmittelbar links neben dem Knotenpunkte *m* und rechtwinklig zu dem fraglichen Gurt-Müller-Breslau, Graphische Statik. II. 2. 20

stabe, Fig. 251, und untersuchen das Gleichgewicht des Fachwerkabschnittes links von m. Den Punkt m wählen wir zum Drehpunkte. In der aufzustellenden Momentengleichung kommen dann außer den äußeren Kräften nur vor: die Spannkraft $S_m + \Delta S_m$ des durchgeschnittenen Gurtstabes und die von den starren Knoten herrührenden Momente \mathfrak{M} , $\mathfrak{M}_1, \mathfrak{M}_2$. Die beiden letzteren entsprechen den mit 1 und 2 bezeichneten Stabenden; das Moment \mathfrak{M} für die Schnittstelle des fraglichen Gurtstabes entnehmen wir der Momentenlinie. Die zu \mathfrak{M} gehörige Querkraft geht durch den Drehpunkt. Werden für die vorliegende Untersuchung — in Übereinstimmung mit der beim einfachen Balken üblichen Annahme — die an den rechten Enden der Stäbe oder Stababschnitte angreifenden Momente positiv genommen, sobald sie links drehen, und wird beachtet, daß das Moment $S_m r_m$ und das Moment der äußeren Kräfte sich gegenseitig aufheben, weil ja die S mit den äußeren Kräften im Gleichgewicht sind, so ergibt sich die Momentengleichung

95. Spannkraft in einem Füllungsstabe. Gesucht sei die Zusatzspannkraft ΔD für die Diagonale (m-1) - m in Fig. 252. Es wird durch das Fachwerk rechtwinklig zur Diagonale (m-1) - m und durch die rechten Enden der Gurtstäbe (m-2) - m und (m-1) - (m+1)

ein Schnitt geführt und der Punkt m + 1 zum Drehpunkte gewählt. Bedeutet dann ΔS die Änderung der Spannkraft des Gurtstabes (m-2)-m, r' ihren Hebelarm und \mathfrak{M}' das Biegungsmoment am rechten Ende des Stabes (m-1)-(m+1), so ist mit der aus der Figur zu ersehenden Bezeichnung \mathfrak{M}'' :

 $\Delta Dr + \Delta Sr' + \mathfrak{M} + \mathfrak{M}' + \mathfrak{M}'' = 0.$

Hieraus folgt

(2)
$$\Delta D = \frac{-\Delta Sr' - \mathfrak{M} - \mathfrak{M}' - \mathfrak{M}''}{r}.$$

Fig. 253.

Die Fig. 252 darf man auch durch die allgemeinere Fig. 253 ersetzen. Der Punkt A darf auf einem der beiden Gurtstäbe (m-1) (m+1) oder (m-2)m beliebig angenommen werden.

96. Hat man mit Hilfe der vorstehenden Formeln die zuerst für gelenkartige Knoten berechneten Spannkräfte verbessert, so kann man die genaueren Längenänderungen Δs und Winkeländerungen $\Delta \alpha$, $\Delta \beta$, $\Delta \gamma$ ermitteln und schließlich auch die Momente \mathfrak{M} von neuem berechnen. Wichtiger als die Gewinnung genauerer Momente dürfte die mittels der

20*

vorstehenden Untersuchung durchführbare Berücksichtigung der steifen Knoten bei der Berechnung der Durchbiegungen der Fachwerkträger sowie die Erforschung des Einflusses der starren Knoten auf die statisch unbestimmten Größen X der Fachwerke mit überzähligen Stäben und Stützen sein. Wir müssen uns aber in diesem Buche mit einem Hinweis auf diese Aufgaben begnügen.

IV. Abschnitt.

Sicherung der oberen Gurtung einer Trogbrücke durch biegungsfeste Halbrahmen.

§ 20.

Voraussetzung von Kugelgelenken an den Enden eines jeden Fachwerkstabes.

96. Einleitung. Stellung der Aufgabe. Ist die Höhe der Hauptträger einer Brücke mit unten liegender Fahrbahn so klein, daß die Anbringung einer die oberen Gurtungen verbindenden Windverstrebung

nicht möglich ist, so müssen die Hauptträger durch biegungsfeste Halbrahmen miteinander verbunden werden. Fig. 254 zeigt ein solches Bauwerk, eine sogenannte *Trogbrücke*, in isometrischer Darstellung; es besteht aus 19 Stäben und zwei vollwandigen steifen Scheiben, die man sich auch nach Fig. 255 durch Fachwerke aus je fünf Stäben ersetzt denken darf, wonach — bei der durch die Pfeile *A*, *B*, *A'*, *B'*, *H*, *H'*, *H''* beschriebenen Stützung — die Anzahl der Fachwerkstäbe und Stützkräfte zusammen 19 + 10 + 7 = 36 beträgt. Die Anzahl der Knotenpunkte ist 12; es stehen also $3 \cdot 12 = 36$ Gleichgewichtsbedingungen zur Verfügung. Die Umwandlung in ein reines Fachwerk erleichtert öfter die Berechnung der Stabkräfte; man findet z. B. für die in Fig. 254 und 255 angenommene Belastung mit Kräften P_1 , P_2 , P_3 sofort die Spannkräfte

$$S_1 = -P_1, S_2 = + \frac{P_1}{\cos \varphi}, S_3 = 0, S_4 = 0$$

und erkennt, daß der vordere Hauptträger nach Fig. 256 belastet wird, der hintere nach Fig. 257. In jeder der unteren Gurtungen dieser Träger greifen drei wagerechte Kräfte an, deren Summe P_3 ist und die

nur die Beanspruchung der Untergurtstäbe beeinflussen, so daß man u. a. die Spannkräfte S_5 , S_6 , S_7 , S_8 , S_9 , S_{10} angeben kann, ohne jene drei wagerechten Kräfte zu kennen. Damit sind sämtliche auf den Windträger, Fig 258, wirkenden Kräfte gegeben, und es lassen sich jetzt die Spannkräfte in den Windstreben und den Gurtungen AB und A'B' ermitteln.

Die Ergebnisse dieser Rechnung bleiben auch nach Wiederherstellung der vollwandigen Scheiben für die Stabkräfte des in Fig. 254 abgebildeten Tragwerks gültig; die an jenen Scheiben angreifenden Kräfte sind nunmehr bekannt.

Hervorzuheben ist, daß an einer ebenen Scheibe äußere Kräfte, die nicht in der Scheibenebene liegen, nur in den Punkten angreifen dürfen,

Gelenkige durch Halbrahmen gestützte Gurtung einer Trogbrücke. 311

von denen Stäbe ausgehen, deren Achsen außerhalb der Scheibenebene liegen. Bei den gebräuchlichen Anordnungen der Balkenbrücken, deren Querträger als lotrechte Scheiben aufgefaßt werden, wird diese Bedingung nicht immer erfüllt. Es gibt aber Fälle, in denen die seitliche Versteifung der Querträger

durch wagerechte Fachwerke ratsam ist, um größere wagerechte Kräfte zu den Knotenpunkten der Hauptträger hinüberzuleiten. Ein Beispiel zeigt der in Fig. 259 dargestellte Grundriß einer eingleisigen Balkenbrücke.

Wir wollen nun voraussetzen, daß alle an den Hauptträgern angreifenden äußeren Kräfte mit den Ebenen zusammenfallen, in denen die Stabachsen der Hauptträger liegen.

Die Querträger seien durch lotrechte Lasten auf Biegung beansprucht. Ihre Endquerschnitte A und B (Fig. 263) drehen sich um gewisse Winkel und um dieselben Winkel drehen sich auch die mit den Querträgern durch steife Ecken verbundenen Vertikalen. Werden alle Querträger in gleicher Weise belastet, so bleiben die Hauptträger *eben*, Fig. 260. Dieser Fall liegt z. B. vor, wenn die Fahrbahn oder der Gehweg einer Brücke mit gleichlangen Feldern und gleich-

starken Querträgern eine ganz gleichmäßig verteilte Last trägt und dafür gesorgt wird, daß auch die Endquerträger ebenso stark belastet werden, wie die übrigen Querträger.

In Wirklichkeit muß man aber, selbst bei der sogenannten Vollbelastung einer Brücke, mit oft recht ungleich beanspruchten Querträgern rechnen. So werden z. B. die Querträger 0, 1, 2, 3, ... einer Eisenbahnbrücke von 45 m Stützweite bei der in Fig.261 angegebenen Zug-

stellung — außer durch das Eigengewicht der Fahrbahn — belastet mit: 17,3 17,3 21,7 30,3 21,3 51 17 34 45,3 18,7 26 Tonnen.

Bei einer Straßenbrücke kommen ähnliche Abweichungen vor, wenn in der Mitte schwere Lastwagen stehen und der übrige Teil der Fahrbahn und die Gehwege mit Menschengedränge belastet sind.

Die Vertikalen eines und desselben Hauptträgers drehen sich daher im allgemeinen um verschieden große Winkel τ . Die Achsen der im oberen Knotenpunkte *m* des m^{ten} Halbrahmens zusammentreffenden Stäbe liegen nicht mehr in einer Ebene, und es üben daher die Stabkräfte im Punkte *m* auf den Halbrahmen einen wagerechten Druck X_m aus, der positiv gezählt werden möge, sobald er (wie in Fig. 263) von außen nach innen gerichtet ist. Sind die Halbrahmen zu schwach, so weicht die obere Gurtung seitlich aus. Handelt es sich, wie bei einer einfachen Balkenbrücke, um eine ausschließlich auf Druck beanspruchte Gurtung, so spricht man im Falle des Versagens der Halbrahmen von einer ungenügenden Knickfestigkeit der Gurtung. Es kann aber ein derartiges seitliches Ausweichen auch bei einem Zuggurt vorkommen, beispielsweise
Gelenkige durch Halbrahmen gestützte Gurtung einer Trogbrücke. 313

über einer Mittelstütze eines auf mehreren Stützen ruhenden Balkens; hier können die Unterschiede zwischen den Winkeln τ sogar besonders groß ausfallen, weil die Gurtkräfte — und von diesen hängen die Seitendrücke X_m hauptsächlich ab — nicht mehr bei voller Belastung der ganzen Brücke ihren größten Wert annehmen.

Die folgende Untersuchung einer Trogbrücke setzt voraus, es sei Form und Belastung der Brücke symmetrisch in bezug auf eine durch die Querträgermitten parallel zu den Ebenen der Hauptträger gelegte Ebene. An jedem Halbrahmen greifen dann zwei gleichgroße Kräfte X_m an und die Knotenpunkte m verschieben sich im Sinne der X_m um gleichgroße Strecken δ_m .

Ist diese Symmetriebedingung nicht erfüllt, so biegen sich die beiden Hauptträger ungleich stark durch. Die hiermit verbundene Drehung der Halbrahmen bildet dann eine neue Ursache, die Achsen der in einem Punkte m angreifenden Stäbe aus der lotrechten Ebene herauszudrängen.

97. Ermittlung der Durchbiegungen δ_m und Seitendrücke X_m . Die untere Gurtung sei wagerecht, Fig. 262. Es treten nur lotrechte Lasten auf. Der genau in der Höhe der unteren Gurtung angenommene

Windverband ist spannungslos. Die Verschiebungen der Untergurt-Knotenpunkte rechtwinklig zur Ebene des Hauptträgers sind Null.

Infolge der Verschiebungen δ der Knotenpunkte der oberen Gurtung neigt sich der m^{te} Stab der oberen Gurtung gegen die lotrechte Ebene der Hauptträger um einen Winkel, dessen Sinus gleich $(\delta_m - \delta_{m-1}) : o_m$ ist, wo o_m die Länge des Stabes bedeutet. Wird also die Spannkraft O_m als *Druck* positiv gerechnet und zur Abkürzung die Bezeichnung eingeführt:

(1)
$$z_m = \frac{O_m}{O_m} = \frac{O_m \cos \beta_m}{\lambda_m},$$

so ist der Beitrag von O_m zu X_m gleich $z_m (\delta_m - \delta_{m-1})$ und der von O_{m+1} gleich $z_{m+1} (\delta_m - \delta_{m+1})$. Die Spannkräfte $D_m V_m D_{m+1}$ liefern, wenn der in *m* angreifende Teil der ständigen Belastung vernachlässigt wird, den Beitrag:

$$V_{m}\frac{\delta_{m}}{h_{m}} + D_{m}\frac{\delta_{m}}{d_{m}} + D_{m+1}\frac{\delta_{m}}{d_{m+1}} = \frac{\delta_{m}}{h_{m}}\left(V_{m} + D_{m}\sin\varphi_{m} + D_{m+1}\sin\varphi_{m+1}\right)$$
$$= \frac{\delta_{m}}{h_{m}}\left(O_{m}\sin\beta_{m} - O_{m+1}\sin\beta_{m+1}\right)$$
$$= \frac{\delta_{m}}{h_{m}}\left[z_{m}(h_{m} - h_{m-1}) - z_{m+1}(h_{m+1} - h_{m})\right].$$

Im ganzen entsteht also:

$$X_{m} = z_{m} \left(\delta_{m} - \delta_{m-1} \right) - z_{m+1} \left(\delta_{m+1} - \delta_{m} \right)$$
$$- \frac{\delta_{m}}{h_{m}} \left[z_{m} \left(h_{m} - h_{m-1} \right) - z_{m+1} \left(h_{m+1} - h_{m} \right) \right],$$

(2)
$$X_m = -z_m \delta_{m-1} + \left(z_m \frac{h_{m-1}}{h_m} + z_{m+1} \frac{h_{m+1}}{h_m} \right) \delta_m + z_{m+1} \delta_{m+1}$$

Nun ist aber

$$\delta_m = \delta_m' + \frac{X_m}{v_m}$$

wo δ'_m die Verschiebung bedeutet, welche der obere Endpunkt *m* des Rahmens im Falle $X_m = 0$ erfährt und $\frac{1}{v_m}$ den Einfluß von $X_m = 1$ auf δ_m angibt. Indem wir den Wert

(4)
$$X_m = v_m \left(\delta_m - \delta_m' \right)$$

gleich dem oben für X_m gewonnenen Ausdrucke setzen, erhalten wir zur Berechnung der Verschiebungen δ_m die Gleichung:

(5)
$$z_m \delta_{m-1} + \left(-z_m \frac{h_{m-1}}{h_m} + v_m - z_{m+1} \frac{h_{m+1}}{h_m} \right) \delta_m + z_{m+1} \delta_{m+1} = v_m \delta_m'.$$

Für den oberen Knotenpunkt 0 eines Endständers (Fig. 262) ergibt sich

(6)
$$X_0 = -O_1 \frac{\delta_1 - \delta_0}{o_1} - V_0 \frac{\delta_0}{h_0} - D_1 \frac{\delta_0}{d_1}$$

und wenn

$$V_0 + D_1 \sin \varphi_1 = -O_1 \sin \beta_1 = -z_1 (h_1 - h_0)$$

gesetzt wird,

$$X_0 = + z_1 \, \delta_0 \, \frac{h_1}{h_0} - z_1 \, \delta_1.$$

Es gilt also für den Knotenpunkt 0 die Gleichung:

(7)
$$\left(v_0 - z_1 \frac{h_1}{h_0}\right) \delta_0 + z_1 \delta_1 = v_0 \delta_0'$$

und für den letzten Knotenpunkt (n):

(8)
$$z_n \delta_{n-1} + \left(-z_n \frac{h_{n-1}}{h_n} + v_n \right) \delta_n = v_n \delta_n'.$$

1

Die Verschiebungen δ_m' und $1/v_m$ können mittels der im § 2 beschriebenen zeichnerischen Verfahren bestimmt werden. Der allgemeine rechnerische Weg ist der folgende:

Das Biegungsmoment für einen Querschnitt des Querträgers ist (Fig. 263)

$$M = M_0 - X_m h_m,$$

wo M_0 den Einfluß der Lasten P bezeichnet. Bedeutet J_q das im allgemeinen veränderlich anzunehmende Trägheitsmoment des Querschnitts des Querträgers, so ist der Neigungswinkel der elastischen Linie des Querträgers am Ende A

$$\tau_m = \int_o^{\frac{1}{2}c} \frac{M_0 dx}{EJ_q} + X_m h_m \int_o^{\frac{1}{2}c} \frac{dx}{EJ_q}.$$

Für die Vertikale, deren Querschnittsträgheitsmoment J_v sei, ist M = Xx. Es ergibt sich daher mit den in Fig. 263 angegebenen Bezeichnungen

$$q_m = \int_o^{h_m} \frac{Mx \, dx}{EJ_v} = X_m \int_o^{h_m^2} \frac{x^2 \, dx}{EJ_v} \cdot$$

Nun ist

$$\delta_m = \eta_m + h_m \tau_m$$

also

$$\delta_{m} = X_{m} \left(\int_{o}^{h_{m}} \frac{x^{2} dx}{E J_{v}} + h^{2}_{m} \int_{o}^{\frac{1}{2}c} \frac{dx}{E J_{q}} \right) + h_{m} \int_{o}^{\frac{1}{2}c} \frac{M_{0} dx}{E J_{q}}$$

Dieser Ausdruck besitzt die Form

$$\delta_m = \delta_m' + \frac{X_m}{v_m}$$

wo

(

$$\delta_{m}' = h_{m} \int_{0}^{\frac{1}{2}} \frac{dx}{EJ_{q}} \quad \text{und}$$

 $v_m =$

(10)

Die Integrale darf man stets durch Summen ersetzen. Man darf z. B. schreiben

$$\delta_m' = h_m \sum_o^{\frac{1}{2}e} \frac{M_0 \Delta x}{E J_q}.$$

Sind J_g und J_v unveränderlich und bezeichnet \mathfrak{F}_m den Inhalt der Hälfte der M_0 -Fläche, so erhält man

(11)
$$\delta_{m}' = \frac{\mathfrak{F}_{m}h_{m}}{EJ_{q}},$$

(12) $v_{m} = \frac{1}{\frac{h_{m}^{2}c}{2EJ_{q}} + \frac{h_{m}^{3}}{3EJ_{v}}}.$

Wird eine schlanke Vertikale auf Druck beansprucht, so muß der Einfluß des Druckes V_m auf den Winkel τ' (Fig. 263) berücksichtigt werden. Das Biegungsmoment ist gleich Null für x = 0 und gleich $X_m h_m$ für $x = h_m$. Mit der Bezeichnung

$$\alpha_m = \sqrt{\frac{V_m h_m^2}{EJ_v}}$$

ist daher nach § 17, Gleich. (36) und (37):

(13)

$$=\frac{X_m \nu_m}{V_m}$$

wo

 $\nu_m = 1 - \alpha_m \cot \alpha_m.$

τ

Gelenkige durch Halbrahmen gestützte Gurtung einer Trogbrücke. 317

Man findet

$$\delta_m = h_m \tau_m + h_m \tau' = \frac{\mathfrak{F}_m h_m}{EJ_q} + X_m \left(\frac{h_m^2 c}{2 EJ_q} + \frac{h_m \nu_m'}{V_m} \right).$$

An die Stelle von Gleichung (12) tritt also zur Berechnung von v_m die Gleichung

$$v_m = rac{1}{rac{h_m^2 c}{2 E J_q} + rac{h_m arphi_m'}{V_m}},$$

Bislang haben wir vorausgesetzt, die Achse des Querträgers falle mit der Ebene des unteren Windverbandes zusammen, auch haben wir die Höhe des Querträgers bei der Bestimmung der freien Länge der

Vertikale vernachlässigt. Liegt der in Fig. 264 dargestellte Fall vor, so nennen wir

- h_m' den Abstand der Schwerachse der oberen Gurtung von der Schwerachse des Querträgers,
- h_m'' die freie Länge der Vertikale, bei Anwendung von Eckblechen unter Hinzurechnung der halben Höhe dieser Bleche,

und rechnen mit

(4)
$$v_m = \frac{1}{\frac{h_m'^2 c}{2 E J} + \frac{h_m''^3}{3 E J}},$$

beziehungsweise mit

(15)
$$v_{m} = \frac{1}{\frac{h_{m}^{\prime 2}c}{2 E J_{q}} + \frac{h_{m}^{\prime \prime} v_{m}^{\prime}}{V_{m}}},$$

wo

(1

(16)
$$\nu_m' = 1 - \alpha \cot \alpha \text{ und } \alpha = \sqrt{\frac{V_m h_m''^2}{E J_v}}$$
.

Den Umstand, daß die wagerechten Verschiebungen der Knotenpunkte der unteren Gurtung bei dieser Anordnung nicht mehr Null sind, vernachlässigen wir.

Die vorstehende Entwicklung hat zu einer Gruppe von Gleichungen ersten Grades geführt, deren Anzahl ebensogroß ist, wie die Anzahl der unbekannten Verschiebungen δ . Besitzt die Nennerdeterminante Δ dieser Gleichungen einen von Null verschiedenen Wert, so lassen sich die δ eindeutig berechnen (vgl. Band I, § 51, Nr. 204).

Da nun der Nachweis geführt werden muß, daß die von den Kräften X in den Vertikalen und Querträgern hervorgerufenen Biegungsspannungen, die für die vorgeschriebene Belastung in der Regel sehr klein sein werden, bei Überschreitung dieser Belastung nicht sofort schnell anwachsen, was unbedingt geschieht, sobald sich Δ der Grenze Null zu sehr nähert, so muß, wenn eine ρ -fache Sicherheit verlangt wird, die Untersuchung für die ρ -fache Belastung durchgeführt werden. Gelten also die Werte z und δ' für die einfache Belastung, so multipliziere man sie mit ρ und teile hierauf die Gleichungen (5), (7), (8) durch ρ ; man findet dann:

$$(17) \begin{cases} \left(\begin{array}{c} 0 + \frac{v_{0}}{\rho} - z_{1} & \frac{h_{1}}{h_{0}} \right) \delta_{0} + z_{1} & \delta_{1} = v_{0} \, \delta_{0}' \\ z_{1} \delta_{0} + \left(-z_{1} & \frac{h_{0}}{h_{1}} + \frac{v_{1}}{\rho} - z_{2} & \frac{h_{2}}{h_{1}} \right) \delta_{1} + z_{2} & \delta_{2} = v_{1} \, \delta_{1}' \\ \vdots & \vdots & \vdots & \vdots \\ z_{m} \delta_{m-1} + \left(-z_{m} & \frac{h_{m-1}}{h_{m}} + \frac{v_{m}}{\rho} - z_{m+1} & \frac{h_{m+1}}{h_{m}} \right) \delta_{m} + z_{m+1} \delta_{m+1} = v_{m} \delta_{m}' \\ \vdots & \vdots & \vdots & \vdots \\ z_{n} \delta_{n-1} + \left(-z_{n} & \frac{h_{n-1}}{h_{n}} + \frac{v_{n}}{\rho} - 0 \right) \delta_{n} = v_{n} \, \delta_{n}'. \end{cases}$$

Gleichung (4) muß ersetzt werden durch

(18)
$$X_m = v_m \left(\delta_m - \rho \delta_m' \right).$$

Für einen Träger mit 4 Vertikalen (0, 1, 2, 3) lautet z. B. die Nennerdeterminante

$$\Delta = \begin{vmatrix} \frac{v_0}{\rho} - z_1 \frac{h_1}{h_0} + z_1 & 0 & 0 \\ + z_1 & -z_1 \frac{h_0}{h_1} + \frac{v_1}{\rho} - z_2 \frac{h_2}{h_1} + z_2 & 0 \\ 0 & + z_2 & -z_2 \frac{h_1}{h_2} + \frac{v_2}{\rho} - z_3 \frac{h_3}{h_2} + z_3 \\ 0 & 0 & z_3 & -z_3 \frac{h_2}{h_3} + \frac{v_3}{\rho} \end{vmatrix}$$

Gelenkige durch Halbrahmen gestützte Gurtung einer Trogbrücke. 319

Bildet man nun das Produkt $h_0 h_1 h_2 h_3 \Delta$, indem man die Zeilen der Determinante Δ der Reihe nach mit $h_0 h_1 h_2 h_3$ multipliziert, so erhält man eine Determinante, deren Spaltensummen gleich

(19)
$$\frac{v_0 h_0}{\rho}, \quad \frac{v_1 h_1}{\rho}, \quad \frac{v_2 h_2}{\rho}, \quad \frac{v_3 h_3}{\rho}$$

sind. Der Wert einer Determinante bleibt aber ungeändert, wenn man irgendeine Zeile durch eine Zeile ersetzt, deren Glieder gleich den entsprechenden Spaltensummen sind. Ersetzen wir also die zweite Zeile der Determinante $h_0 h_1 h_2 h_3 \Delta$ durch die Zeile (19) und teilen wir sie dann durch $h_0 h_2 h_3$, indem wir die Zeilen 1, 3, 4 der Reihe nach durch h_0, h_2, h_3 teilen, so erhalten wir, da die Glieder der Zeile (19) den gemeinsamen Teiler 1: ρ besitzen

$$h_{1}\Delta = \frac{1}{\rho} \begin{vmatrix} \frac{v_{0}}{\rho} - z_{1} \frac{h_{1}}{h_{0}} \\ v_{0} h_{0} \\ v_{1} h_{1} \\ 0 \\ z_{2} \\ 0 \end{vmatrix} - \frac{v_{2} h_{2}}{h_{1} + \frac{v_{2}}{\rho} - z_{3} \frac{h_{3}}{h_{2}}} \begin{vmatrix} 0 \\ v_{3} h_{3} \\ z_{3} \\ - z_{2} \frac{h_{1}}{h_{2}} + \frac{v_{2}}{\rho} - z_{3} \frac{h_{3}}{h_{2}} \end{vmatrix} z_{3}$$

Vertauschen wir schließlich noch die Spalten mit den Zeilen, was bekanntlich geschehen darf, ohne daß sich der Wert der Determinante ändert, so entsteht die Gleichung

$$h_{1} \rho \Delta = \begin{vmatrix} \frac{v_{0}}{\rho} - z_{1} & \frac{h_{1}}{h_{0}} & v_{0} h_{0} & 0 & 0 \\ z_{1} & v_{1} h_{1} & z_{2} & 0 \\ 0 & v_{2} h_{2} & -z_{2} & \frac{h_{1}}{h_{2}} + \frac{v_{2}}{\rho} - z_{3} & \frac{h_{3}}{h_{2}} \\ 0 & v_{3} h_{3} & z_{3} & -z_{3} & \frac{h_{2}}{h_{3}} + \frac{v_{3}}{\rho} \end{vmatrix}$$

Die rechte Seite dieser Gleichung geht über in die Zählerdeterminante des Wertes δ_1 , sobald die (hier wagerecht geschriebene) Spalte

$$v_0 h_0 \qquad v_1 h_1 \qquad v_2 h_2 \qquad v_3 h_3$$

ersetzt wird durch die Spalte:

 $v_0 \delta_0' v_1 \delta_1' v_2 \delta_2' v_3 \delta_3',$

welche wir umformen in

(21) $v_0 h_0 \tau_{00}$ $v_1 h_1 \tau_{01}$ $v_2 h_2 \tau_{02}$ $v_3 h_3 \tau_{03}$, wo

$$\tau_{0m} = \frac{\mathfrak{F}_m}{EJ_q}$$
 (m = 0, 1, 2, 3)

den Neigungswinkel des Endquerschnittes des Querträgers infolge der Lasten P bedeutet.

Nehmen wir jetzt an, daß die Drehungswinkel τ der Endquerschnitte sämtlicher Querträger, auch der in der Regel schwächer belasteten Querträger 0 und *n* gleichgroß sind, so besitzt die Spalte (21) den gemeinsamen Teiler τ_0 , und wir erhalten $\delta_1 = c \tau_0 h_1$ und ganz allgemein $\delta_m = c \tau_0 h_m$. Die Hauptträger bleiben also eben und neigen sich um $\tau_0 = \frac{\Im}{EJ_q}$. Fehlen die Endvertikalen, so ist dieser Zustand auch dann möglich, wenn die Endquerträger eine andere Belastung erfahren, als die übrigen Querträger. Es genügt aber die geringste Änderung der Belastung eines einzigen Querträgers, um für δ_m einen Ausdruck

$$\delta_m = \frac{\Delta_m}{\Delta}$$

zu erzielen, der einen unzulässig hohen Wert annimmt, wenn Δ sich der Grenze Null nähert. Den Sicherheitsgrad ρ der Gurtung gegen seitliches Knicken liefert die Gleichung $\Delta = 0$. Ist die Determinante Δ von der k^{ten} Ordnung, so ist die aufzulösende Gleichung vom $(k-1)^{\text{ten}}$ Grade, weil die eine Wurzel $\frac{1}{\rho} = 0$ bereits bekannt ist. Diese Eigenschaft kann zur Prüfung der Zahlenrechnung verwertet werden. Stellt man nämlich Δ als Funktion von $\frac{1}{\rho}$ dar, so darf sich kein von $\frac{1}{\rho}$ unabhängiges Glied ergeben.

Einen wichtigen Fall, der dem Falle gleichgroßer Winkel τ_0 an die Seite gestellt werden kann, zeigt Fig. 265. Die Sicherung der Zwischengurtung ACB gegen seitliches Ausknicken geschieht durch biegungsfeste Vertikalen, die durch einen oberen und einen unteren Windverband gestützt werden. Der obere Windverband lehnt sich an den Enden gegen biegungsfeste Rahmen. Die Querträger seien gelenkartig mit den Hauptträgern befestigt; sie übertragen also keine Biegungsmomente auf die Vertikalen. Mit der Bezeichnung

$$\varepsilon_m = rac{U_m \cos \gamma_m}{\lambda_m}$$

erhält man

$$X_m = z_m \left(\delta_m - \delta_{m-1}\right) - z_{m+1} \left(\delta_{m+1} - \delta_m\right)$$
$$- D_m \frac{\delta_m}{d_m} - V_m \frac{\delta_m}{h_m} - V_m' \frac{\delta_m}{y_m} = v_m \delta_m.$$

Dabei ist $v_m = \frac{1}{\eta_m}$, wo η_m die Durchbiegung der Vertikale an der

Gelenkige, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 321

Stelle *m* infolge $X_m = 1$. Bei unveränderlichem Querschnitt der Vertikale erhält man mit den in Fig. 265 angegebenen Bezeichnungen

$$v_m = \frac{3 E J_v (h_m + y_m)}{h_m^2 y_m^2}$$

Mit Hilfe der Gleichgewichtsbedingungen drücke man V_m und D_m durch die Werte $U_m \cos \gamma_m = z_m \lambda_m$, $U_{m+1} \cos \gamma_{m+1} = z_{m+1} \lambda_{m+1}$ und die der Belastung des Knotenpunktes m' gleiche Spannkraft V'_m aus. Die am Knoten m angreifende Eigenlast darf vernachlässigt werden.

98. Anwendung auf einfache Balkenbrücken. Bei der Anwendung der Gleichungen (17) auf eine vollbelastete Brücke, deren Hauptträger einfache Balken sind, empfiehlt es sich, der Einfachheit wegen die Werte z für eine gleichmäßige Verkehrslast p für die Längeneinheit zu berechnen, und zu setzen

(22)
$$O_m \cos \beta_m = \frac{q \, x_m x_m'}{2 \, h_m}, \quad z_m = \frac{q \, x_m x_m'}{2 \, h_m \lambda_m} \qquad x_m' = l - x_m,$$

woq=g+pist. Bei Eisenbahnbrücken findet man paus dem größten, durch den Eisenbahnzug verursachten Momente $M_{p\,max}$ mittels der Formel

$$p = \frac{8 M_{pmax}}{l^2}$$

Den Belastungsvorschriften für die preußischen Staatsbahnen entsprechen z. B. die folgenden Werte:

1	p	1	p	1	p	l	p	l	p	1	p
$10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15$	$10.87 \\ 10,39 \\ 9,11 \\ 9,45 \\ 9,04 \\ 8.67$	$ \begin{array}{r} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 22 \end{array} $	8.44 8,24 8.07 7.97 7.88 7.75	24 26 28 30 32 34	7,65 7,48 7,43 7,40 7,34 7,27	$36 \\ 38 \\ 40 \\ 42 \\ 44 \\ 46$	7.09 7,12 7,08 7.04 6,98 6,93	$\begin{array}{r} 48 \\ 50 \\ 52 \\ 54 \\ 56 \\ 58 \end{array}$	6,86 6,79 6,72 6.65 6,57 6,51	$ \begin{array}{c} 60 \\ 62 \\ 64 \\ 66 \\ 68 \\ 70 \end{array} $	
m	t/m	m	t/m	m	t/m	m	t/m	m	t/m	m	t/m

In der Regel sind die Feldweiten gleichgroß. Bedeutet dann *n* die Felderzahl, und führt man zur Abkürzung die Bezeichnung ein: Müller-Breslau, Graphische Statik. II. 2. 21 Vierter Abschnitt. — § 20.

$$(23) m' = n - m,$$

(24)
$$\alpha_m = \frac{mm}{h_m},$$

so gehen die Gleichungen (17), wegen $x_m = m\lambda$, $x_m' = m'\lambda$, über in

(25)
$$\alpha_{m}\delta_{m-1} + \left(-\alpha_{m}\frac{h_{m-1}}{h_{m}} + 2\frac{v_{m}}{q\rho\lambda} - \alpha_{m+1}\frac{h_{m+1}}{h_{m}}\right)\delta_{m} + \alpha_{m+1}\delta_{m+1} = 2\frac{v_{m}}{q}\frac{\delta_{m}'}{\lambda}.$$

Für den Balken mit parallelen Gurtungen erhält man:

(26)
$$mm'\delta_{m-1} + \left(-mm' + 2\frac{v_mh}{q\rho\lambda}(m+1)(m+1)'\right)\delta_m + (m+1)(m+1)'\delta_{m+1} = 2\delta_m'\frac{v_m}{q}\frac{h}{\lambda}$$
.
Beim Parabelträger (Pfoilhöhe f) ist

Beim Parabelträger (Pfeilhöhe f) is

(27)
$$O_m \cos \beta_m = \frac{q l^2}{8f} \cdot$$

Es nimmt daher z im Falle gleichlanger Felder den festen Wert

(28)
$$z = \frac{ql^2}{8f\lambda}$$

an. Da außerdem $\delta_0 = 0$ und $\delta_n = 0$ ist, so fällt die erste und die letzte der Gleichungen (17) fort; man erhält die (n - 1)-Gleichungen:

(29)
$$\begin{cases} a_{1}\delta_{1} + \delta_{2} = \frac{v_{1}\delta_{1}}{z} \\ \delta_{1} + a_{2}\delta_{2} + \delta_{3} = \frac{v_{2}\delta_{2}'}{z} \\ \vdots \\ \delta_{m-1} + a_{m}\delta_{m} + \delta_{m+1} = \frac{v_{m}\delta_{m}'}{z} \\ \vdots \\ \delta_{n-2} + a_{n-1}\delta_{n-1} = \frac{v_{n-1}\delta'_{n-1}}{z}, \end{cases}$$

wo

(30)
$$a_m = -\frac{h_{m-1}}{h_m} + \frac{v_m}{z\rho} - \frac{h_{m+1}}{h_m}$$

Mit Hilfe der Beziehung

 $h_{m-1}:h_m:h_{m+1}=(m-1)\ (m-1)':mm':(m+1)\ (m+1)'$ läßt sich der Wert a_m umformen in

$$(31) a_m = \frac{v_m}{z \rho} - 2 + \frac{2}{mm'}$$

Gelenkige, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 323

Bei symmetrisch gebauten einfachen Balken empfiehlt es sich, mit einer symmetrischen Belastung zu rechnen.

Handelt es sich dann um einen Parabelträger mit 10 Feldern, so hat man nur die folgenden fünf &-Gleichungen aufzustellen:

(32)
$$\begin{cases} a_1\delta_1 + \delta_2 = A_1 \\ \delta_1 + a_2\delta_2 + \delta_3 = A_2 \\ \delta_2 + a_3\delta_3 + \delta_4 = A_3 \\ \delta_3 + a_4\delta_4 + \delta_5 = A_4 \\ \delta_4 + a_5\delta_5 + \delta_4 = A_5 \end{cases} \qquad A_m = \frac{v_m}{z}\delta_m'.$$

Die Nennerdeterminante dieser Gleichungen lautet

$$(33) \quad \Delta = \begin{vmatrix} a_1 & 1 & 0 & 0 & 0 \\ 1 & a_2 & 1 & 0 & 0 \\ 0 & 1 & a_3 & 1 & 0 \\ 0 & 0 & 1 & a_4 & 1 \\ 0 & 0 & 0 & 2 & a_5 \end{vmatrix} = \begin{bmatrix} a_3 (a_1 a_2 - 1) - a_1 \end{bmatrix} (a_4 a_5 - 2) \\ -a_5 (a_1 a_2 - 1).$$

99. Zahlenbeispiel. Fußgängerbrücke von 20 m Stützweite, 4 m Breite, 2,0 m Feldweite mit parabelförmigen Hauptträgern von 2,5 m Pfeilhöhe. Fig. 266. Für jeden Hauptträger sei g = 0.4 t/m, p = 1,0 t/m, also q = 1,4 t/m. Es ist demnach

Die Querträger sind T-Eisen Nr. 30 mit $J_q = 9785 \text{ cm}^4$; jede Vertikale besteht aus 4 Winkeleisen 6 imes 6 imes 0,8 cm (Fig. 267) und besitzt $J_r = rund$ 3900 cm⁴. Es ist also mit 60.60.8

 $E = 2150000 \text{ kg/cm}^2 \text{ abgerundet}$

 $EJ_v = 840 \text{ tm}^2 \qquad EJ_q = 2100 \text{ tm}^2,$ $v_m = \frac{1}{4.0 h_m^{\prime 2} + h_m^{\prime \prime 3}}, \text{ nach Gleich. (14)}$

3 . 840

$$\frac{v_m}{z} = \frac{10000}{133h_m^{\prime 2} + 56h_m^{\prime\prime 3}}$$

Es sei $h_m' = h_m - 0.15$ und $h_m'' = h_m - 0.30$. Dann ergibt sich für

21*

Vierter Abschnitt, - § 20.

m =	1	2	3	4	5
$h_m =$	0,90	1,60	2,10	2,40	2,50 m
$h_m' =$	0,75	1,45	1,95	2,25	2,35 m
$h_m''=$	0,60	1,30	1,80	2,10	2,20 m
$\frac{v_m}{z}$ ==	115	25	12	8	8

Der Einfachheit der Rechnung wegen schreiben wir den Rahmen 3, 4, 5 die gleichen Ziffern $\frac{v_m}{z} = 9$ zu, vernachlässigen in der Formel (31) das unwesentliche Glied $\frac{2}{mm'}$ und setzen in (33):

$$a_1 = \frac{115}{\rho} - 2, \quad a_2 = \frac{25}{\rho} - 2, \quad a_3 = a_4 = a_5 = \frac{9}{\rho} - 2.$$

Es ergibt sich dann die Gleichung:

 $4183 - 3196 \rho + 722 \rho^2 - 51 \rho^3 + \rho^4 = 0,$

deren kleinste Wurzel $\varphi = 2,4$ ist*). Die obere Gurtung besitzt also selbst dann $2\frac{1}{2}$ -fache Sicherheit gegen seitliches Ausknicken, wenn bei der Berechnung des erforderlichen Trägheitsmomentes des Gurtquerschnitts die Stablänge *o* als freie Länge eingeführt wird. Da in Wirklichkeit an die Stelle der hier vorausgesetzten Kugelgelenke steife Knoten treten, so ist der Sicherheitsgrad wesentlich höher.

Setzt man, nach Engesser, in die Gleichung

$$\delta_{m-1} + a_m \delta_m + \delta_{m+1} = 0$$

die Werte

$$\delta_{m-1} = \delta_{m+1} = -\delta_m, \quad \text{ferner } a_m = \frac{v_m}{z\rho} - 2,$$

so erhält man für den Sicherheitsgrad p die Näherungsformel

$$(34) \qquad \qquad \rho = \frac{v_m}{4z};$$

sie liefert im vorliegenden Falle $\rho = 2$.

*) $\wp=1,\ 2,\ 2,2,\ 2,4$ liefert $F(\wp)=+$ 1649, +287, +127, -0,5. Man findet zuerst

$$2095875 \left(\frac{1}{\rho}\right)^{5} - 1601370 \left(\frac{1}{\rho}\right)^{4} + 361827 \left(\frac{1}{\rho}\right)^{3} - 25586 \left(\frac{1}{\rho}\right)^{3} + 501 \frac{1}{\rho} - 2 = 0,$$

also eine Gleichung 5^{ten} Grades. Das Glied — 2 muß aber gestrichen werden; es ist eine Folge der Vernachlässigung der Glieder $\frac{2}{mm'}$. Wird genau gerechnet, so hat die Gleichung nach Seite 318 den Teiler $\frac{1}{2}$. Gelenkige, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 325

Wird die prismatische Vertikale durch eine nach Fig. 268 sich verjüngende ersetzt, so tritt an die Stelle von $\frac{{\hbar}^{''3}}{3 E J_r}$ der Wert

$$\int_{0}^{h''} \frac{x^2 dx}{E J_x} = \frac{1}{E} \int_{0}^{h''} \frac{x^2 dx}{4 J_w + 4 F_w \frac{y^2}{4}},$$

wo F_w den Querschnitt eines Winkeleisens und J_w das Trägheitsmoment dieses Querschnitts in bezug auf seine eigene Schwerachse bezeichnet. Der Einfachheit wegen nehme man $y = b \frac{x}{h''}$ an. Dann ergibt sich zur Berechnung des in die Formel 14 einzusetzenden Wertes J_v die Gleichung

Man findet den von der Höhe h'' unabhängigen Wert (35) $J_v = \frac{F_w b^2}{3\left(1 - \frac{\arctan \alpha}{\alpha}\right)},$

$$3\left(1-\frac{\arctan \alpha}{\alpha}\right)$$

(36)
$$\alpha = \frac{b}{2i} \text{ und } i = \sqrt{\frac{J_w}{F_w}}$$

W

Vierter Abschnitt. - § 21.

Für das Winkeleisen 60 · 60 · 8 mm ist $J_w = 29 \text{ cm}^4$, $F_w = 9 \text{ cm}^2$, $i^2 = 3,22$, i = 1,8 und für b = 33 cm,

$$\alpha = \frac{33}{3,6} = 9,17 = \text{tg } 83^{\,0} \, 46'.$$

Zu diesem Winkel gehört die Bogenlänge 1,462, weshalb

$$V = \frac{9 \cdot 33^2}{3\left(1 - \frac{1,462}{9,17}\right)} = \text{rund } 3900 \text{ cm}^4.$$

§ 21.

Gelenklose, durch Halbrahmen gestützte Gurtung.

100. Sind die Stäbe der oberen Gurtung einer Trogbrücke (Fig. 270) in den Knotenpunkten miteinander vernietet, so werden die von den Stabkräften auf die Halbrahmen ausgeübten Drücke X_m durch den Biegungs-

widerstand der Gurtung verkleinert. Der durch Gleich. (2), Seite 314, bestimmte Wert X_m geht über in

(1)
$$X_m = -z_m \delta_{m-1} + \left(z_m \frac{h_{m-1}}{h_m} + z_{m+1} \frac{h_{m+1}}{h_m} \right) \delta_m - z_{m+1} \delta_{m+1} + \Delta X_m,$$

wo ΔX_m den Einfluß der an den Enden der Stäbe o_m und o_{m+1} wirksamen Biegungsmomente bedeutet. Bezeichnen wir mit

 \mathfrak{M}_m' das Biegungsmoment am linken Ende des Stabes o_m \mathfrak{M}_m''' , , , rechten , , , o_m ,

Gelenklose, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 327

so ist

(2)
$$\Delta X_m = \frac{\mathfrak{M}'_m - \mathfrak{M}''_m}{o_m} + \frac{\mathfrak{M}''_{m+1} - \mathfrak{M}'_{m+1}}{o_{m+1}}$$

Die Momente \mathfrak{M}'_m und \mathfrak{M}''_m wirken in Ebenen, die durch die Stabachse o_m gehen und rechtwinklig zur lotrechten Tragwand sind, Fig. 271a. Wir zerlegen \mathfrak{M}''_m nach wagerechter und lotrechter Richtung in \mathfrak{M}''_m cos β_m und \mathfrak{M}''_m in β_m (Fig. 271b), verfahren ebenso mit \mathfrak{M}'_{m+1} und nehmen an, es sei die Vertikale nicht imstande, ein wagerechtes Moment \mathfrak{M}''_m cos $\beta_m - \mathfrak{M}'_{m+1} \cos \beta_{m+1}$

aufzunehmen. Dann besteht die Gleichgewichtsbedingung

(3) $\mathfrak{M}_m'' \cos \beta_m = \mathfrak{M}'_{m+1} \cos \beta_{m+1} = \mathfrak{M}_m,$

wo \mathfrak{M}_m die fortan für die beiden gleichgroßen wagerechten Momente gewählte Bezeichnung sein möge.

Wird in (2) gesetzt: (4) $\begin{cases}
\mathfrak{M}_{m}' = \frac{\mathfrak{M}_{m-1}}{\cos \beta_{m}}, \quad \mathfrak{M}_{m}'' = \frac{\mathfrak{M}_{m}}{\cos \beta_{m}}, \\
\mathfrak{M}''_{m+1} = \frac{\mathfrak{M}_{m+1}}{\cos \beta_{m+1}}, \quad \mathfrak{M}'_{m+1} = \frac{\mathfrak{M}_{m}}{\cos \beta_{m+1}},
\end{cases}$

und dabei beachtet, daß $o_m \cos \beta_m = \lambda_m$ ist, so geht (1) über in

(5)
$$X_m = -z_m \delta_{m-1} + \left(z_m \frac{h_{m-1}}{h_m} + z_{m+1} \frac{h_{m+1}}{h_m} \right) \delta_m - z_{m+1} \delta_{m+1} + \frac{\mathfrak{M}_{m-1} - \mathfrak{M}_m}{\lambda_m} + \frac{\mathfrak{M}_{m+1} - \mathfrak{M}_m}{\lambda_{m+1}} \cdot$$

Die Summe der am Knotenpunkte *m* angreifenden lotrechten Momente $\mathfrak{M}_m^{"} \sin \beta_m - \mathfrak{M}_{m+1}^{'} \sin \beta_{m+1} = \mathfrak{M}_m (\operatorname{tg} \beta_m - \operatorname{tg} \beta_{m+1})$

möge von dem Halbrahmen aufgenommen werden. Der Torsionswiderstand der biegungsfesten Gurtung werde also vernachlässigt. Die Figuren 270 und 271 beziehen sich auf den hinteren Hauptträger. Fig. 271 c gibt an, wie die Momente $\mathfrak{M}_m'' \cos \beta_m$ und $\mathfrak{M}'_{m+1} \cos \beta_{m+1}$ an der m^{ten} Vertikale angreifen. Man erkennt, daß das Moment $\mathfrak{M}_m'' \sin \beta_m$ die Vertikale nach innen zu biegen sucht, das Moment \mathfrak{M}_m (tg $\beta_m - \text{tg } \beta_{m+1}$) also in demselben Sinne wirkt wie das Moment $X_m h_m$.

Wird zur Abkürzung gesetzt

(6)
$$\operatorname{tg} \beta_m - \operatorname{tg} \beta_{m+1} = \gamma_m,$$

so ist das Biegungsmoment für den Querschnitt x der Vertikale (Fig. 263)

$$M = X_m x + \mathfrak{M}_m \gamma_m$$

und für einen Querschnitt des Querträgers (Fig. 263 und 264)

$$M = M_0 + X_m h_m' + \mathfrak{M}_m \gamma_m.$$

Die wagerechte Verschiebung des oberen Endpunktes m der Vertikale beträgt daher

(7)
$$\delta_m = \delta_m' + \frac{X_m}{v_m} + \frac{\mathfrak{M}_m \gamma_m}{C_m},$$

wo 1: C_m die Verschiebung des Punktes *m* im Sinne von X_m für den Fall bedeutet, daß an dem Halbrahmen nur die beiden Momente $\mathfrak{M}_m \gamma_m = 1$ angreifen.

Bei unveränderlichem J_q und J_v und bei Vernachlässigung der Verbiegung der Vertikale durch die Längskraft V_m ist nun (vgl. Seite 315 und Fig. 263):

$$\begin{aligned} \tau_m &= \int_o^{\frac{1}{2}c} \frac{M_0 dx}{EJ_q} + (X_m h_m' + \mathfrak{M}_m \gamma_m) \int_o^{\frac{1}{2}c} \frac{dx}{EJ_q} \\ &= \frac{\mathfrak{F}_m}{EJ_q} + \frac{(X_m h_m' + \mathfrak{M}_m \gamma_m) c}{2EJ_q}, \text{ ferner} \\ \eta_m &= \int_o^{h_m''} \frac{Mx dx}{EJ_v} = X_m \int_o^{\frac{h_m''}{2}} \frac{x^2 dx}{EJ_v} + \mathfrak{M}_m \gamma_m \int_o^{\frac{h_m''}{2}} \frac{x dx}{EJ_v} \\ &= X_m \frac{h_m''^3}{3EJ_v} + \frac{\mathfrak{M}_m \gamma_m h_m''^2}{2EJ_v}. \end{aligned}$$

Bringt man also

$$\delta_m = \eta_m + h_m' \tau_m$$

Gelenklose, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 329

auf die Form (7), so findet man

(8)

$$C_{m} = \frac{1}{\frac{h_{m}'c}{2EJ_{q}} + \frac{h_{m}''^{2}}{2EJ_{v}}}$$

Für δ_m' und v_m gelten die im § 20 entwickelten Gleichungen (11) und (14).

Soll bei einer auf Druck beanspruchten Vertikale der Einfluß von V_m auf δ_m berücksichtigt werden, so findet man, da die Vertikale am oberen Ende durch das Moment $\mathfrak{M}_m\gamma_m$, am unteren Ende durch $\mathfrak{M}_m\gamma_m + X_mh_m''$ beansprucht wird, nach § 17, Gleich. (41):

$$\mathfrak{r}' = \frac{\mathfrak{M}_m \gamma_m}{V_m h_m''} \mathfrak{v}_v'' + \frac{\mathfrak{M}_m \gamma_m + X_m h_m''}{V_m h_m''} \mathfrak{v}_v'^*)$$

wo

$$u_{v}' = 1 - \alpha_{v} \cot \alpha_{v}$$

 $u_{v}'' = \alpha_{v} \csc \alpha_{v} - 1$
 $\alpha_{v} = \sqrt{\frac{\overline{V_{m}h_{m}''^{2}}}{EJ_{v}}}.$

Setzt man diesen Wert τ' in die Gleichung

$$\delta_m = h_m' \tau_m + h_m' \tau'$$

wo, wie vorhin

$$\tau_m = \frac{\mathfrak{F}_m}{EJ_q} + \frac{(X_m h_m' + \mathfrak{M}_m \gamma_m) c}{2 EJ_q},$$

und bringt man δ_m auf die Form (7), so erhält man, wie auf Seite 317,

$$v_m = \frac{1}{\frac{h_m^{\prime 2}c}{2EJ_q} + \frac{h_m^{\prime \prime}\nu_v^{\prime}}{V_m}};$$

ferner findet man

(9)
$$C_m = \frac{1}{\frac{h_m'c}{2EJ_q} + \frac{\nu_v' + \nu_v''}{V_m}}$$

Aus (7) folgt nun

(10)
$$X_m = v_m \delta_m - v_m \delta_m' - \frac{v_m \gamma_m \mathfrak{M}_m}{C_m}$$

*) Wir haben die Werte ν mit dem Zeiger v versehen, weil wir noch Werte ν brauchen werden, die sich auf die Gurtstäbe beziehen.

Vierter Abschnitt. - § 21.

und man erhält daher die Gleichung

$$(11) \begin{cases} +z_{m}\delta_{m-1} + \left(-z_{m}\frac{h_{m-1}}{h_{m}} + v_{m} - z_{m+1}\frac{h_{m+1}}{h_{m}}\right)\delta_{m} + z_{m+1}\delta_{m+1} \\ -\frac{1}{\lambda_{m}}\mathfrak{M}_{m-1} + \left(+\frac{1}{\lambda_{m}} - \frac{v_{m}\gamma_{m}}{C_{m}} + \frac{1}{\lambda_{m+1}}\right)\mathfrak{M}_{m} - \frac{1}{\lambda_{m+1}}\mathfrak{M}_{m+1} \\ = v_{m}\delta_{m}'. \end{cases}$$

Im Punkte 0 sei die Gurtung gelenkartig mit der Vertikale befestigt ($\mathfrak{M}_0 = 0$). Dann gelten für den Knotenpunkt 0 die Gleichungen:

$$X_{0} = z_{0} \delta_{0} \frac{h_{1}}{h_{0}} - z_{1} \delta_{1} - \frac{\mathfrak{M}_{1}}{\lambda_{1}},$$

$$X_{0} = v_{0} \delta_{0} - v_{0} \delta_{0}',$$

$$\left(v_{0} - z_{1} \frac{h_{1}}{h_{0}}\right) \delta_{0} + z_{1} \delta_{1} + \frac{1}{\lambda_{1}} \mathfrak{M}_{1} = v_{0} \delta_{0}$$

und für den Knotenpunkt 1:

$$\begin{split} X_{1} &= -z_{1} \,\delta_{0} + \left(z_{1} \,\frac{h_{0}}{h_{1}} + z_{2} \,\frac{h_{2}}{h_{1}}\right) \delta_{1} - z_{2} \,\delta_{2} - \frac{\mathfrak{M}_{1}}{\lambda_{1}} + \frac{\mathfrak{M}_{2} - \mathfrak{M}_{1}}{\lambda_{2}}, \\ X_{1} &= v_{1} \,\delta_{1} - v_{1} \,\delta_{1}' - \frac{v_{1} \,\gamma_{1}}{C_{1}} \,\mathfrak{M}_{1}, \\ (13) \begin{cases} z_{1} \,\delta_{0} + \left(-z_{1} \,\frac{h_{0}}{h_{1}} + v_{1} - z_{2} \,\frac{h_{2}}{h_{1}}\right) \delta_{1} + z_{2} \,\delta_{2} \\ + \left(+ \frac{1}{\lambda_{1}} - \frac{v_{1} \gamma_{1}}{C_{1}} + \frac{1}{\lambda_{2}}\right) \mathfrak{M}_{1} - \frac{1}{\lambda_{2}} \,\mathfrak{M}_{2} = v_{1} \,\delta_{1}'. \end{split}$$

Ganz entsprechende Gleichungen lassen sich für die beiden letzten Knotenpunkte n und (n-1) aufstellen.

Zu den n+1 unbekannten Verschiebungen δ sind n-1 unbekannte Momente \mathfrak{M} getreten. Es müssen also außer den Gleichungen (11), (12), (13), deren Anzahl gleich n+1 ist, noch weitere n-1 Gleichungen aufgestellt werden.

Der Grundriß der elastischen Linie der oberen Gurtung darf als eine Linie stetiger Krümmung angesehen werden, Fig. 270b. Der Ausschlagwinkel τ_m des rechten Endes des Stabes o_m ist nach Gleich. (41), Seite 288*):

(14)
$$\tau_{m}' = \frac{\mathfrak{M}_{m}'}{O_{m}o_{m}} \nu_{m}'' + \frac{\mathfrak{M}_{m}''}{O_{m}o_{m}} \nu_{m}''$$

*) Fallen die Kräfte S nicht mit den Stabachsen zusammen, so entstehen Momente Sd und Se, die sich mit Hilfe der auf Seite 288 aufgestellten Gleichungen leicht berücksichtigen lassen, da es sich um gegebene Größen handelt.

330

(12)

Gelenklose, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 331

und der Ausschlagwinkel τ_{m+1} des linken Endes des Stabes o_{m+1} :

(15)
$$\tau_{m+1} = \frac{\mathfrak{M}'_{m+1}}{O_{m+1}O_{m+1}} \nu'_{m+1} + \frac{\mathfrak{M}''_{m+1}}{O_{m+1}O_{m+1}} \nu''_{m+1}$$

Für einen Druckstab ist

(16 a)
$$\begin{cases} \nu_m = 1 - \alpha_m \cot g \, \alpha_m \\ \nu_m'' = \alpha_m \csc \alpha_m - 1 \\ \alpha_m = \sqrt{\frac{O_m o_m^2}{E J_m}} \end{cases}$$

und für einen Zugstab:

(16 b)
$$\begin{cases} \nu_m' = \alpha_m \operatorname{Cotg} \alpha_m - 1 \\ \nu_m'' = 1 - \alpha_m \operatorname{Cofec} \alpha_m \end{cases}$$

Zugstäbe kommen beispielsweise in den oberen Gurtungen von Balken auf mehreren Stützen vor.

Zwischen den Grundrissen $\frac{\tau_m'}{\cos \beta_m}$ und $\frac{\tau_{m+1}}{\cos \beta_{m+1}}$ der Winkel τ_m' und τ_{m+1} und den Verschiebungen δ_{m-1} , δ_m , δ_{m+1} besteht aber die Beziehung

(17)
$$\frac{\tau_{m}'}{\cos\beta_{m}} + \frac{\tau_{m+1}}{\cos\beta_{m+1}} = \frac{\delta_{m} - \delta_{m-1}}{\lambda_{m}} + \frac{\delta_{m} - \delta_{m+1}}{\lambda_{m+1}}.$$

Setzt man (14) und (15) in diese Gleichung ein und beachtet hierbei die Gleichungen (4), so erhält man die Bedingung:

(18)
$$\begin{cases} \frac{\nu_{m}''}{H_{m}\lambda_{m}} \mathfrak{M}_{m-1} + \left(\frac{\nu_{m}'}{H_{m}\lambda_{m}} + \frac{\nu_{m+1}'}{H_{m+1}\lambda_{m+1}}\right) \mathfrak{M}_{m} + \frac{\nu_{m+1}'}{H_{m+1}\lambda_{m+1}} \mathfrak{M}_{m+1} \\ + \frac{1}{\lambda_{m}}\delta_{m-1} - \left(\frac{1}{\lambda_{m}} + \frac{1}{\lambda_{m+1}}\right) \delta_{m} + \frac{1}{\lambda_{m+1}} \delta_{m+1} = 0, \end{cases}$$

in welcher

(19)
$$H_m = O_m \cos \beta_m \text{ und } H_{m+1} = O_{m+1} \cos \beta_{m+1}$$

die wagerechten Seitenkräfte von O_m und O_{m+1} bedeuten.

Dem Knotenpunkte 1 entspricht die Gleichung

(20)
$$\begin{cases} \left(\frac{\nu_1'}{H_1\lambda_1} + \frac{\nu_2'}{H_2\lambda_2}\right)\mathfrak{M}_1 + \frac{\nu_2''}{H_2\lambda_2}\mathfrak{M}_2 \\ + \frac{1}{\lambda_1}\delta_0 - \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}\right)\delta_1 + \frac{1}{\lambda_2}\delta_2 = 0. \end{cases}$$

Meistens haben alle Felder dieselbe Länge λ . Multipliziert man dann die Gleichungen (11) und (18) mit λ und setzt $z\lambda = 0 \cos \beta = H$, so geht (11) über in:

Vierter Abschnitt. - § 21.

(11')
$$\begin{cases} H_m \delta_{m-1} + \left(-H_m \frac{h_{m-1}}{h_m} + v_m \lambda - H_{m+1} \frac{h_{m+1}}{h_m}\right) \delta_m + H_{m+1} \delta_{m+1} \\ -\mathfrak{M}_{m-1} + \left(2 - \frac{v_m \gamma_m \lambda}{C_m}\right) \mathfrak{M}_m & -\mathfrak{M}_{m+1} = v_m \lambda \delta_m' \end{cases}$$

und (18) in:

(18')
$$\begin{cases} \frac{\nu_{m}^{''}}{H_{m}} \mathfrak{M}_{m-1} + \left(\frac{\nu_{m}^{'}}{H_{m}} + \frac{\nu_{m+1}^{'}}{H_{m+1}}\right) \mathfrak{M}_{m} + \frac{\nu_{m+1}^{''}}{H_{m+1}} \mathfrak{M}_{m+1} \\ + \delta_{m-1} - 2\delta_{m} + \delta_{m+1} = 0. \end{cases}$$

In derselben Weise sind auch die Gleichungen (12), (13) und (20) umzuformen in Gleichungen (12') (13') (20'), welche hier niederzuschreiben, entbehrlich ist.

Die Spannkräfte und Abmessungen zweier aufeinanderfolgenden Felder werden sich oft so wenig voneinander unterscheiden, daß es zulässig sein wird, die beiden Werte $\nu_m'' | H_m$ und $\nu''_{m+1} | H_{m+1}$ durch einen Mittelwert zu ersetzen. Man teilt dann die Gleichung (18') durch diesen Mittelwert, addiert sie zu (11') und gewinnt eine Gleichung, in der nur noch das eine Moment \mathfrak{M}_m vorkommt, die also gestattet, \mathfrak{M}_m durch die Verschiebungen $\delta_{m-1}, \delta_m, \delta_{m+1}$ auszudrücken. Setzt man schließlich die auf diese Weise für alle Momente gefundenen Ausdrücke in die Gleichungen (11'), (12'), (13') ein, so erhält man eine Gruppe von n + 1 Gleichungen, in denen nur noch die Verschiebungen δ als Unbekannte auftreten.

Diese Gleichungen haben eine ähnliche Form, wie die Gleichungen zur Berechnung der Biegungsmomente eines Balkens auf elastisch senkbaren Stützen. Die erste Gleichung enthält nur δ_0 , δ_1 , δ_2 , die zweite nur δ_0 , δ_1 , δ_2 , δ_3 , jede der übrigen enthält fünf aufeinanderfolgende δ , mit Ausnahme der beiden letzten Gleichungen, die ähnlich gebaut sind wie die beiden ersten.

Am einfachsten gestaltet sich die Rechnung für einen vollbelasteten *Parabelbalken.* Hier weichen — auch bei Eisenbahnbrücken, trotz verschieden großer Belastungen der Querträger — die Werte H_1, H_2, H_3, \ldots so. wenig voneinander ab, daß es zulässig ist, mit einem festen Mittelwerte H zu rechnen.

Dividiert man dann die Gleichungen (11'), (12'), (13') durch H, so erhält man mit den zur Abkürzung eingeführten Bezeichnungen:

(21)
$$A_m = \frac{\mathfrak{M}_m}{H_m},$$

(22)
$$\varphi_m = \frac{v_m \lambda}{H} - \frac{h_{m+1}}{h_m} - \frac{h_{m-1}}{h_m} = \frac{v_m \lambda}{H} - 2 + \frac{2}{mm'},$$

Gelenklose, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 333

(23)
$$\varepsilon_m = 2 - \frac{v_m \gamma_m \lambda}{C_m}$$
, wo $\gamma_m \lambda = 8f \frac{\lambda^2}{l^2} = \frac{8f}{n^2}$.
(24) $B_m = \frac{v_m \lambda \delta_m'}{H}$

die beiden Gruppen von Gleichungen:

(25)
$$\begin{cases} \varphi_{1} \delta_{1} + \delta_{2} + \varepsilon_{1} A_{1} - A_{2} = B_{1} \\ \delta_{1} + \varphi_{2} \delta_{2} + \delta_{3} - A_{1} + \varepsilon_{2} A_{2} - A_{3} = B_{2} \\ \vdots \\ \delta_{m-1} + \varphi_{m} \delta_{m} + \delta_{m+1} - A_{m-1} + \varepsilon_{m} A_{m} - A_{m+1} = B_{m} \end{cases}$$

und

(26)
$$\begin{cases} -\frac{2\delta_{1}}{\nu''} + \frac{\delta_{2}}{\nu''} + 2\frac{\nu'}{\nu''}A_{1} + A_{2} = 0\\ \frac{\delta_{1}}{\nu''} - \frac{2\delta_{2}}{\nu''} + \frac{\delta_{3}}{\nu''} + A_{1} + 2\frac{\nu'}{\nu''}A_{2} + A_{3} = 0\\ \frac{\delta_{m-1}}{\nu''} - \frac{2\delta_{m}}{\nu''} + \frac{\delta_{m+1}}{\nu''} + A_{m-1} + 2\frac{\nu'}{\nu''}A_{m} + A_{m+1} = 0\\ \frac{\delta_{m-1}}{\nu''} - \frac{2\delta_{m}}{\nu''} + \frac{\delta_{m+1}}{\nu''} + A_{m-1} + 2\frac{\nu'}{\nu''}A_{m} + A_{m+1} = 0 \end{cases}$$

in denen v' und v'' feste Mittelwerte bedeuten. Durch Addition der einander entsprechenden Gleichungen beider Gruppen findet man

(27)
$$\begin{cases} A_1 = \psi_1 B_1 - \hat{z}_1 (0 + \delta_2) - \omega_1 \delta_1 \\ A_2 = \psi_2 B_2 - \hat{z}_2 (\delta_1 + \delta_3) - \omega_2 \delta_2 \\ \vdots \\ A_m = \psi_m B_m - \hat{z}_m (\delta_{m-1} + \delta_{m+1}) - \omega_m \delta_m \end{cases}$$

wo

(28)
$$\psi_m = \frac{1}{\varepsilon_m + 2\frac{\nu'}{\nu''}}$$

(29)
$$\hat{\mathfrak{D}}_m = \psi_m \left(1 + \frac{1}{\nu''} \right),$$

(30)
$$\omega_m = \psi_m \left(\varphi_m - \frac{2}{\nu''} \right),$$

und gelangt, indem man die Werte A in die Gleichungen (25) einsetzt, zu den folgenden, hier für einen Träger mit 5 Vertikalen niedergeschriebenen Beziehungen zwischen den Verschiebungen δ^*):

^{*)} Wir wählten eine bestimmte Felderzahl, weil die Zeiger m-1, m, m+1zu viel Platz beanspruchen. Die mittelste Gleichung gibt den Bau der bei größerer Knotenzahl noch hinzutretenden Gleichungen an. Die in {}-Klammern stehenden Zahlen sind Summen. Man lese also: $+\varphi_1 - \varepsilon_1 \omega_1 + \Im_2$ usw.

Vierter Abschnitt. — § 21.

$$(31) \begin{cases} \left\{ \begin{array}{c} \left\{ +\varphi_{1}-\varepsilon_{1}\omega_{1} \\ +\Im_{2} \end{array}\right\}\delta_{1}+\left\{ 1+\omega_{2} \\ -\varepsilon_{1}\Im_{1} \end{array}\right\}\delta_{2}+\Im_{2}\delta_{3}=D_{1} \\ \left\{ 1+\omega_{1} \\ -\varepsilon_{2}\Im_{2} \end{array}\right\}\delta_{1}+\left\{ +\varphi_{2}-\varepsilon_{2}\omega_{2} \\ +\Im_{1}+\Im_{3} \end{array}\right\}\delta_{2}+\left\{ 1+\omega_{3} \\ -\varepsilon_{2}\Im_{2} \Biggr\}\delta_{3}+\Im_{3}\delta_{4}=D_{2} \\ \Im_{2}\delta_{1}+\left\{ 1+\omega_{2} \\ -\varepsilon_{3}\Im_{3} \Biggr\}\delta_{2}+\left\{ +\varphi_{3}-\varepsilon_{3}\omega_{3} \\ +\Im_{2}+\Im_{4} \Biggr\}\delta_{3}+\left\{ 1+\omega_{4} \\ -\varepsilon_{3}\Im_{3} \Biggr\}\delta_{2}+\left\{ +\varphi_{3}-\varepsilon_{3}\omega_{3} \\ +\Im_{2}+\Im_{4} \Biggr\}\delta_{3}+\left\{ 1+\omega_{4} \\ +\Im_{2}+\Im_{4} \Biggr\}\delta_{3}+\left\{ 1+\omega_{5} \\ -\varepsilon_{4}\Im_{4} \Biggr\}\delta_{3}+\left\{ +\varphi_{4}-\varepsilon_{4}\omega_{4} \\ +\Im_{3}+\Im_{5} \Biggr\}\delta_{4}+\left\{ 1+\omega_{5} \\ -\varepsilon_{4}\Im_{4} \Biggr\}\delta_{5}=D_{4} \\ \Im_{4}\delta_{3}+\left\{ 1+\omega_{4} \\ -\varepsilon_{5}\Im_{5} \Biggr\}\delta_{4}+\left\{ +\varphi_{5}-\varepsilon_{5}\omega_{5} \\ +\Im_{4} \Biggr\}\delta_{5}=D_{5}, \end{cases}$$

wo

$$\begin{array}{l} (32) \qquad \left\{ \begin{array}{l} D_1 = + (1 - \varepsilon_1 \psi_1) B_1 + \psi_2 B_2 \\ D_2 = \psi_1 B_1 + (1 - \varepsilon_2 \psi_2) B_2 + \psi_3 B_3 \\ D_3 = \psi_2 B_2 + (1 - \varepsilon_3 \psi_3) B_3 + \psi_4 B_4 \\ D_4 = \psi_3 B_3 + (1 - \varepsilon_4 \psi_4) B_4 + \psi_5 B_5 \\ D_5 = \psi_4 B_4 + (1 - \varepsilon_5 \psi_5) B_5. \end{array} \right. \end{array}$$

101. Zahlenbeispiel. Eine eingleisige Eisenbahnbrücke von 18 m Stützweite mit zwei parabelförmigen Hauptträgern von 2,52 m Höhe und 3,0 m Feldweite wird nach Fig. 272 mit einer Lokomotive belastet. Der Abstand von Mitte zu Mitte ist c = 4,8 m. Die ständige Belastung eines Brückenfeldes sei $g\lambda = 7,0$ t. Im ganzen kommen auf die Knotenpunkte 1, 2, 3 die Lasten:

P = 7,0 t 32,5 t 41,0 t. Es entstehen die Momente

M = 180 tm 339 tm 400,5 tm, und es ergibt sich für jeden der beiden Hauptträger

$$H = \frac{M}{2h} = 64 \text{ t}$$
 76 t 80 t*).

Das Trägheitsmoment des Gurtquerschnittes (Fig. 273a) ist ohne Abzug für Nietlöcher J = 3754 cm⁴. Mit E = 2150000 kg/qcm erhält man

$$EJ = 0,215 \cdot 3750 = 810 \text{ tm}^2.$$

*) Der Wert 80 t weicht nur wenig von $max \frac{M}{2h}$ ab. Man erhält nämlich nach Band I, Anhang, Seite 550, für l = 18 m, max M = 327,0 tm. Hierzu kommt infolge der ständigen Belastung

$$\frac{g l^2}{8} = g \lambda \frac{36 \lambda}{8} = 7 \cdot \frac{36 \cdot 3}{8} = 94,5,$$

we shalb $max \frac{M}{2h} = \frac{327,0+94,5}{2 \cdot 2,52} = 83,6 \text{ t.}$

Gelenklose, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 335

Für o-fache Belastung ist

$$\alpha = \sqrt{\frac{\rho O_m o_m^2}{EJ}} = \sqrt{\frac{\rho H_m o_m^3}{EJ\lambda}},$$

also für das erste und das mittelste Feld:

Hierzu gehören die folgenden Werte

 $\nu' = 1 - \alpha \cot \alpha \text{ und } \nu'' = \alpha \operatorname{cosec} \alpha - 1$

ρ	v	v″	$2\frac{\mathbf{v}'}{\mathbf{v}''}$	$\frac{2}{v''}$	$1+\frac{1}{v''}$
1 2 3	0,3278 0,7109 1,1452	$0,1719 \\ 0,3904 \\ 0,6663$	$3,81 \\ 3,64 \\ 3,44$	$11,63 \\ 5,12 \\ 3,00$	6,82 3,56 2,50

Den Querschnitt der Vertikalen zeigt Fig. 273b; ihm entspricht, ohne Abzug für Nietlöcher,

$$J_v = 2960 \text{ cm}^4$$
, $EJ_v = 0,215 \cdot 2960 = 636 \text{ tm}^2$.

Für den Querträgerquerschnitt, Fig. 274, ist nach Abzug der Nietlöcher $W_q = 3813$. Trotzdem wir J_q ohne Rücksicht auf Nietverschwächung bilden dürfen, rechnen wir mit $J_q = 3813 \cdot 31, 2 = 119000 \text{ cm}^4$ und $EJ_q = 25600 \text{ tm}^2$. Die Wirkung der Versteifungsecken vernachlässigen wir. Dafür nehmen wir die Gurtplatten auf der ganzen Länge c an. In die Formeln

$$v_{m} = \frac{1}{\frac{ch_{m}^{''2}}{2EJ_{q}} + \frac{h_{m}^{''3}}{3EJ_{v}}} = \frac{10\,000}{0,94\,h_{m}^{''2} + 5,24\,h_{m}^{''3}}$$
$$C_{m} = \frac{1}{\frac{ch_{m}^{'}}{2EJ_{q}} + \frac{h^{''2}}{2EJ_{v}}} = \frac{10\,000}{0,94\,h_{m}^{''} + 7,86\,h_{m}^{''2}}$$

Fig. 274.

 $\varepsilon = 2$

setzen wir $h_m' = h_m - 0,30$ und, etwas zu ungünstig gerechnet, $h_m'' = h_m - 0,80$. Für die Querrahmen 1, 2, 3 ergibt sich dann:

Nun ist für die p-fache Belastung

$$\varphi_m = \frac{v_m \lambda}{\rho H} - 2 + \frac{2}{mm'} \qquad m' = 6 - m,$$

wo durchweg H = 80 t gesetzt werden soll. Die Werte φ_m sowie die nach (28), (29), (30) zu berechnenden Zahlen ψ , \Im , ω sind:

m	φ	ψ	s	ω	$1 - \epsilon \psi$		
für $\rho = 1$							
1	164	0,206	1,40	+31,39	0,78		
2	17,8	0,189 -	1,29	+ 1,17	0,72		
3	10,1	0,187	1,28	— 0,29	0,71		
für $\rho = 2$							
1	81	0,213	0,76	+16,16	0,78		
2	8,02	0,196	0,70	+ 0,57	0,71		
3	4,11	0,193	0,69	- 0,19	0,70		
für $\rho = 3$							
1	53,5	0,223	0,56	+11,26	0,77		
2	4,76	0,204	0,51	+ 0,36	0,70		
3	2,11	0,200 .	0,50	- 0,18	0,69		

Gelenklose, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 337

Am Querträger greifen zwei Einzellasten P_m an. Ihr gegenseitiger Abstand ist 1,8 m; ihr Abstand vom benachbarten Hauptträger 1,5 m. Die halbe Momentenfläche hat den Inhalt

$$\mathfrak{F}_m = P_m 1,5 \ (1,5+1,8) \ \frac{1}{2} = 2,475 \ P_m.$$

Daher (unabhängig von dem sich weghebenden ρ)

$$B_m = \frac{v_m \lambda \delta_m'}{\rho H} = \frac{v_m \lambda \mathfrak{F}_m h_m \rho}{\rho H E J_q} = \frac{v_m P_m h_m 3 \cdot 2,475}{80 \cdot 25\,600} \cdot$$

Die Lokomotive belastet die Querträger 1, 2, 3 der Reihe nach mit P = 0 - 12,75 - 17 t. Für die ständige Last sind 2 t hinzuzurechnen. Man erhält für die Knoten 1, 2, 3

$P_m =$	2	14,75	19 t
$v_m h_m = 6$	169,8	1167,04	808,4
$B_m =$	0,0444	0,0620	0,0552,
und mittels Gleichung (32))		
für $\rho = 1$ $D_m =$	0,04635	0,06411	0,06318
$p = 2 D_m =$	0,04678	0,06413	0,06 294
, $\rho = 3$ $D_m =$	0,04684	0,06 434	0,06338.
Wir setzen für alle V	Werte p		
D =	0,046	0,064	0,063

und erhalten die folgenden Gleichungen zur Berechnung der Verschiebungen δ :

Müller-Breslau, Graphische Statik. II. 2.

Vierter Abschnitt. - § 21.

$$\begin{split} \rho &= 1 \begin{cases} 132, 2\,\delta_1 + 0, 7\,\delta_2 + 1, 3\,\delta_3 = 0, 046 \\ 31, 8\,\delta_1 + 18, 8\,\delta_2 - 1, 2\,\delta_3 = 0, 064 \\ 2, 6\,\delta_1 + 0, 4\,\delta_2 + 14, 1\,\delta_3 = 0, 063 \\ \delta_1 &= 0, 289 \text{ mm}, \quad \delta_2 = 3, 192 \text{ mm}, \quad \delta_3 = 4, 324 \text{ mm}, \end{cases} \\ \rho &= 2 \begin{cases} 64, 7\,\delta_1 + 0, 8\,\delta_2 + 0, 7\,\delta_3 = 0, 046 \\ 16, 1\,\delta_1 + 9, 3\,\delta_2 - 0, 2\,\delta_3 = 0, 064 \\ 1, 4\,\delta_1 + 1, 0\,\delta_2 + 5, 8\,\delta_3 = 0, 063 \\ \delta_1 &= 0, 530 \text{ mm}, \quad \delta_2 = 6, 172 \text{ mm}, \quad \delta_3 = 9, 670 \text{ mm}, \end{cases} \\ \rho &= 3 \begin{cases} 42, 2\,\delta_1 + 0, 8\,\delta_2 + 0, 7\,\delta_3 = 0, 046 \\ 11, 5\,\delta_1 + 5, 8\,\delta_2 + 0, 1\,\delta_3 = 0, 064 \\ 1, 0\,\delta_1 + 1, 2\,\delta_2 + 3, 4\,\delta_3 = 0, 063 \\ \delta_1 &= 0, 735 \text{ mm}, \quad \delta_2 = 9, 317 \text{ mm}, \quad \delta_3 = 15, 025 \text{ mm}. \end{cases} \end{split}$$

Die Nennerdeterminanten dieser Gleichungen sind:

 $\Delta =$ 34743,974 3430,086 799,920,

sie nehmen mit wachsendem ρ ab. Für $\rho = 4$ gab eine Überschlagsrechnung rund $\Delta = 200$. Es besteht also hinreichende Sicherheit gegen das Verschwinden der Nennerdeterminante. Fig. 275 zeigt die Grund-

Fig. 275.

risse der verbogenen oberen Gurtung für $\rho = 1, 2, 3$ in verzerrtem Breitenmaßstabe.

Um die Biegungsspannung o der oberen Gurtung festzustellen, berechnen wir die Momente

$$\begin{split} \mathfrak{M}_1 &= \varrho H \left[\psi_1 B_1 - \mathfrak{I}_1 \left(0 + \delta_2 \right) - \omega_1 \delta_1 \right] \\ \mathfrak{M}_2 &= \varrho H \left[\psi_2 B_2 - \mathfrak{I}_2 \left(\delta_1 + \delta_3 \right) - \omega_2 \delta_2 \right] \\ \mathfrak{M}_3 &= \varrho H \left[\psi_3 B_3 - \mathfrak{I}_3 \left(\delta_2 + \delta_4 \right) - \omega_3 \delta_3 \right]. \end{split}$$

Gelenklose, durch Halbrahmen gestützte Gurtung einer Trogbrücke. 339

Wir erhalten:

	\mathfrak{M}_1	\mathfrak{M}_2	M3
$\rho = 1$	0,036	+0,162	+ 0,269 tm
2	-0,621	+0,239	+0,656
3	-0,884	+0,339	+1,053

Die größte Beanspruchung findet in der Mitte statt. Dort darf $\cos \beta = 1$ und $\max \mathfrak{M} = \mathfrak{M}_3$ gesetzt werden*). Für den Gurtquerschnitt ist nach Abzug der Nietlöcher J = 3754 - 720 = 3034 cm⁴, $W = \frac{3034}{12} = 250$ cm³, F = 113 qcm. Die Biegungsspannung beträgt also

$$\begin{split} & \text{für } \rho = 1 \quad \sigma = \frac{26\,900}{250} = 110 \text{ kg/qcm}, \\ & \text{für } \rho = 2 \quad \sigma = \frac{65\,600}{250} = 260 \text{ kg/qcm}, \\ & \text{für } \rho = 3 \quad \sigma = \frac{105\,300}{250} = 420 \text{ kg/qcm}. \end{split}$$

Bei der angenommenen Belastung ist in der Mitte O = 81 t, also die Druckspannung $\sigma = \frac{81}{113} = 720$ kg/qcm. Bei doppelter Belastung liegt die gesamte Spannung $\sigma = 1440 + 260 = 1700$ noch innerhalb der Proportionalitätsgrenze. Dreifache Belastung erzeugt in der Regel schon eine außerhalb der Proportionalitätsgrenze liegende Spannung 30 | F.

Wir berechnen noch für die Vertikale 3 den Druck

$$X_{m} = v_{m} \left(\delta_{m} - \delta_{m}'\right) - \frac{v_{m} \gamma \mathfrak{M}_{m}}{C_{m}}, \text{ wo}$$
$$\delta_{m}' = \frac{\mathfrak{F}_{m} h_{m} \varrho}{E J_{q}} = \frac{2,475 P_{m} h_{m} \varrho}{25600} \cdot$$

Für $\rho = 3$ und m = 3 ergibt sich

$$\delta_{3}' = \frac{2,475 \cdot 19 \cdot 2,52 \cdot 3}{25\,600} = 13,887 \cdot 10^{-3}, \quad \frac{v\,\gamma}{C} = 0,15,$$

$$X_{3} = 320\,(15,025 - 13,887) - 0,15 \cdot 1,053 = 0,207 \text{ t.}$$

*) Im allgemeinen müssen aus den Momenten \mathfrak{M}_m erst die Momente \mathfrak{M}_m''' = \mathfrak{M}_m sec β_m und $\mathfrak{M}'_{m+1} = \mathfrak{M}_m$ sec β_{m+1} berechnet werden.

22*

Der durch Niete geschwächte Querschnitt der Vertikale besitzt $J_v = 2960 - 675 = 2285 \text{ cm}^4, \ W_v = \frac{2285}{11} = 208 \text{ cm}^3, \ F = 70 \text{ qcm};$ er wird durch das Biegungsmoment

 $\mathfrak{M} = X_3 h_3 "+ \gamma \mathfrak{M}_3 = 0,207 \cdot 1,72 + 0,187 \cdot 1,053 = 0,554 \text{ tm}$ beansprucht. Die Biegungsspannung

$$\sigma = \frac{55400}{208} = 270 \text{ kg/qcm}$$

darf in Anbetracht der Voraussetzung dreifacher Belastung als niedrig bezeichnet werden.

V. Abschnitt.

Versteifung des gelenkigen Stabzuges durch einen Balken.

§ 22.

Hängewerke und Sprengwerke.

1. Einfach statisch unbestimmte Hängewerke.

102. Allgemeine Untersuchung. Ein Balken AB, Fig. 276, sei durch lotrechte Stäbe mit einem Stabzuge verbunden, dessen Knotenpunkte Gelenke besitzen. Die Hängestangen sind mit dem Balken gelenkartig befestigt. Das Tragwerk ist einfach statisch unbestimmt. Am Balken möge eine lotrechte Last P_m angreifen. Kennt man den Horizontalschub X_a , das ist die konstante wagerechte Seitenkraft der in den Gliedern 1, 2, 3, 4 des Stabzuges auftretenden Drucke S, so kann man diese Drucke und die Spannkräfte V_1 , V_2 , V_3 in den Hängestangen nach Fig. 276 a ermitteln. Das den Balken an der Stelle x beanspruchende Biegungsmoment ist

(1)

$$M = M_0 - X_a y,$$

wo M_0 das Biegungsmoment für den unversteiften, nur mit P belasteten Balken bedeutet.

Der Einfluß von P_m auf X_a ist

(2)
$$X_a = P_m \frac{\delta_{ma}}{\delta_{aa}},$$

wo

(3)
$$\delta_{aa} = \int_{a}^{t} \frac{M_a^2 dx}{EJ} + \Sigma S_a^2 \frac{s}{EF}.$$

Die Summe erstreckt sich über den Stabzug, die Hängestangen und den Balken, das Integral über den Balken.

Fünfter Abschnitt. - § 22.

Die Spannkräfte S_a liefert der für $X_a = -1$ zu zeichnende Kräfteplan Fig. 276a. Für den Balken ist $S_a = -1$. Weiter ist

 $M_a = y.$

Die δ_{ma} -Linie ist die zur M_a -Fläche gehörige Biegungslinie.

Wird der Balkenquerschnitt konstant angenommen, was für die Folge geschehen möge, so entsteht

(5)
$$X_a = P_m \frac{EJ \delta_{ma}}{\int\limits_0^l M_a^2 dx} \gamma,$$

wo

(6)
$$\frac{1}{v} = 1 + \frac{EJ\Sigma S_a^2 \rho}{\int M_a^2 dx}, \qquad \rho = \frac{s}{EF}.$$

Fig. 276.

Bei drei Hängestangen, deren Längen $f_1, \ f_2, \ f_3$ seien, erhält man beispielsweise

(7)
$$\int_{0}^{t} M_{a}^{2} dx = \frac{1}{3} [f_{1}^{2}(l_{1}+l_{2})+f_{2}^{2}(l_{2}+l_{3})+f_{3}^{2}(l_{3}+l_{4})+f_{1}f_{2}l_{2}+f_{2}f_{3}l_{3}].$$

Die $EJ\delta_{ma}$ -Linie ist die Momentenlinie eines Balkens AB, dessen Belastungsfläche die M_a -Fläche ist. Zeichnet man also zur M_a -Fläche mit der Polweite \mathfrak{H} eine Seillinie, und ist deren Ordinate an der Stelle mgleich η , so ergibt sich

342

(4)

Hängewerke und Sprengwerke.

und

$$EJ \,\delta_{ma} = \mathfrak{H} \eta$$
$$X_a = P_m \frac{\mathfrak{H} \eta}{\int\limits_0^l M_a^2 dx} \nu.$$

Wird die Zahl 1 durch eine Strecke von der Länge a (gemessen mit dem Längenmaßstabe der Trägerzeichnung) dargestellt, so erhält man

sobald man die Polweite

annimmt. Wählt man das Meter zur Einheit, so sind die Inhalte der Streifen, in die man die M_a -Fläche zerlegt, m², und ebenso erhält man die Polweite in m².

Aus der X_a -Linie lassen sich die Einflußlinien der Kernpunktmomente M^o und M^u in derselben Weise ableiten, wie die Einflußlinien der Angriffsmomente für die Knotenpunkte des Zweigelenkbogens. Wir verweisen auf Abteilung I, § 7 und § 8. In Figur 277 ist die Einflußfläche für das Moment M^o unter der Voraussetzung gezeichnet worden, daß die Lasten unmittelbar am Balken angreifen. Der Multiplikator ist $p. = y_a$.

Der Einfluß einer Temperaturänderung auf X_a ist

(8)
$$X_a = \frac{EJ\delta_{at}\gamma}{\int\limits_0^l M_a^2 dx},$$

1

(9)
$$\delta_{at} = \sum S_a \varepsilon t s + \frac{\Delta t}{h} \int_0^l M_a dx.$$

Die Summe erstreckt sich wieder über den Stabzug, die Hängestangen und den Balken, dessen in der Achse auftretende Temperaturänderung sie berücksichtigt. Das zweite Glied der Gleichung trägt dem Unterschiede $\Delta t = t_{\mu} - t_{o}$ der Wärmegrade der unteren und oberen Balkengurtung Rechnung. Es ist

(10)
$$2\int_{0} M_a dx = f_1(l_1 + l_2) + f_2(l_2 + l_3) + f_3(l_3 + l_4).$$

wo

 $X_a = P_m \eta,$ $\mathfrak{H} = \frac{\int\limits_0^l M_a^2 dx}{a \gamma}$

Fünfter Abschnitt. - § 22.

Greifen in den Knotenpunkten der oberen Gurtung beliebig gerichtete Lasten P_m an, ein für Dachstühle wichtiger Belastungsfall, so sind die Horizontalschübe der einzelnen Gurtstäbe verschieden groß. Man weise dann X_a einem bestimmten Stabe, der aber frei gewählt werden darf, zu und ermittle diese Unbekannte wieder mittels der Gleichung (2). Die Verschiebungen δ_{ma} der Knotenpunkte der oberen Gurtung lassen sich auf dem folgenden Wege leicht bestimmen.

Liegt der feste Stützpunkt im Abstande c unter der Balkenachse, so erfährt der untere Endpunkt A des ersten Obergurtstabes eine wagerechte Verschiebung von der Größe $c\tau_0$, wo τ_0 den Neigungswinkel der im Punkte 0 an die δ_{ma} -Linie des Balkens gelegten Tangente bedeutet. Die Knotenpunkte des Balkens, das sind die Punkte, in denen die Hängestangen angreifen, verschieben sich gegen A in wagerechter Richtung um die Verkürzungen, welche die zugehörigen Balkenstücke infolge des Druckes $S_a = -1$ erfahren. Da nun ihre lotrechten Verschiebungen bereits durch die δ_{ma} -Linie gegeben sind, so lassen sich ihre Gesamtverschiebungen leicht angeben und hierauf lassen sich auch die Verschiebungen der schrittweise zweistäbig an den Balken angegliederten Knotenpunkte der oberen Gurtung nach dem Williotschen Verfahren bestimmen.

An Stelle der δ_{ma} -Linie benutzt man zweckmäßiger die X_a -Linie. Die Längenänderungen der Stäbe müssen dann mit $\frac{EJ\nu}{\int M_a^2 dx}$ multipliziert werden.

103. Das unsymmetrische zweifache Hängewerk mit schrägem Spannriegel (Fig. 278). Das zweifache Hängewerk möge wegen seiner Wichtigkeit für den Hochbau etwas ausführlicher behandelt werden. Die elastischen Längenänderungen der Stäbe dürfen vernachlässigt werden; es ist also gestattet, $\nu = 1$ zu setzen. Sodann empfiehlt es sich, die im Balken entstehenden Spannungen nicht aus den Kernpunktmomenten M° und M^{*} , sondern mittels der Formel

(11)
$$\sigma = \pm \frac{M}{W} + \frac{X_a}{F}$$

aus dem auf die Schwerachse des Balkenquerschnitts bezogenen Momente M zu folgern, weil sich die Darstellung der M besonders einfach gestaltet.

Die Berechnung der gleichzeitig mit dem maßgebenden Momente Mauftretenden Kraft X_a kann dadurch gespart werden, daß für X_a der größte überhaupt entstehende Wert eingesetzt wird. Diese bequeme Rechnungsweise kommt der Sicherheit des Bauwerks zugute; sie ist auch nicht zu ungünstig, weil das Glied X_a/F ohnehin nur von untergeordneter Bedeutung ist.

Wir beginnen mit dem in Fig. 278 dargestellten Falle und führen die Rechnung zum Teil in Buchstaben, zum Teil in Zahlen durch. Es sei $l_1 = 2,4$ m, $l_0 = l_2 = 4,8$ m, $l_1' = 9,6$ m, $l_2' = 7,2$ m, l = 12,0 m, $f_1 = 3,0$ m, $f_2 = 3,6$ m, $u_1 = 4,5$ m, $u_2 = 7,5$ m.

Wir betrachten das Viereck ACDB als Belastungsfläche des Balkens AB und denken diese Last zunächst durch Zwischenträger auf die Knotenpunkte A, 1, 2, B übertragen. Auf 1 und 2 entfallen

(12)
$$\begin{cases} Z_1 = f_1 \frac{l_1 + l_0}{3} + f_2 \frac{l_0}{6} = 10,08 \\ Z_2 = f_2 \frac{l_2 + l_0}{3} + f_1 \frac{l_0}{6} = 13,92. \end{cases}$$

Diese beiden Lasten erzeugen die Stützenwiderstände A = 13,632, B = 10,368 und bei 1 und 2 die Momente

$$A \cdot 2,4 = 32,7168, \quad B \cdot 4,8 = 49,7664.$$

Da nun

(13)
$$\int_{-\infty}^{b} M_{a}^{2} dx = f_{1}^{2} \frac{l_{1} + l_{0}}{3} + f_{2}^{2} \frac{l_{0} + l_{2}}{3} + f_{1} f_{2} \frac{l_{0}}{3} = 80,352$$

ist, so besitzt die Einflußlinie für X_a bei 1 und 2 die Ordinaten

$$\eta_1 = \frac{32,7168}{80,352} = 0,407$$

$$\eta_2 = \frac{49,7664}{80,352} = 0,619.$$

Setzen wir zunächst den oft vorkommenden Fall voraus, daß die gesamte Belastung des Hängewerks durch Unterzüge auf die Punkte 1

und 2 übertragen wird, so besteht die X_a -Linie aus den drei Geraden A'C', C'D', D'B'. Der Inhalt der X_a -Fläche ist

(14)
$$\mathfrak{F} = \frac{1}{2} (\eta_1 l_2' + \eta_2 l_1') = 4,44,$$

Hängewerke und Sprengwerke.

und es erzeugt daher eine gleichmäßige Belastung

q' = q' (ständig) + p' (veränderlich)

den Druck (15)

 $_{max}X_a = q'\mathfrak{F} = 4,44 q'.$

Ehe wir zu den Momenten M übergehen, machen wir noch auf eine wichtige Eigenschaft der X_a -Linie aufmerksam.

Wir denken uns den Spannriegel CD mit einer lotrechten Last 1 belastet, welche durch den Schnittpunkt T der Streben S_1 und S_2 geht, verteilen diese Last auf die Knotenpunkte C und D und erhalten auf diese Weise zwei äußere Kräfte, denen die Gurtung ACDB als Seilpolygon zugewiesen werden darf. Da nun die Längenänderungen der Stäbe vernachlässigt worden sind, so sind die Verschiebungen der Knotenpunkte C und D gleich Null, die Hängesäulen bleiben spannungslos. Es entsteht der durch die Figur 278 b nachgewiesene Horizontalschub

$$X_{\alpha} = \frac{1}{\operatorname{tg} \alpha_1 + \operatorname{tg} \alpha_2} = \eta,$$

der auch auf die Form gebracht werden kann

(16)
$$\eta = \frac{u_2}{l} \operatorname{cotg} \alpha_1 = \frac{u_2 l_1}{l f_1} = \frac{u_1 l_2}{l f_2},$$

woraus dann folgt, daß die durch den Punkt T' der X_a -Linie von B'und A' aus gezogenen Geraden auf den Lotrechten durch A' und B' die Strecken

$$\overline{A'A''} = \frac{l_1}{f_1}$$
 und $\overline{B'B''} = \frac{l_2}{f_2}$

abschneiden. Die Lage des Punktes T' ist also von vornherein gegeben. Durch Lösung der bekannten Aufgabe, ein Seilpolygon durch drei gegebene Punkte A', T', B' zu legen, kann man nach Berechnung von Z_1 und Z_2 die X_a -Linie auch zeichnerisch bestimmen*).

Wir wenden uns jetzt zu den Biegungsmomenten. Bei Übertragung der Belastung auf die Punkte 1 und 2 können die größten Momente nur an den Stellen 1 und 2 auftreten.

Infolge der ständigen Belastung entsteht

(17)
$$\begin{cases} M_1 = M_{1.0} - X_a f_1 = g' \frac{l_1 l_1'}{2} - g' \mathfrak{F}' f_1 = -1,80 g' \\ M_2 = g' \frac{l_2 l_2'}{2} - g' \mathfrak{F}' f_2 = +1,30 g'. \end{cases}$$

Die Einflußflächen für M_1 und M_2 werden mittels der Geraden *B' A''* und und *A' B''* bestimmt. In Fig. 279 gilt die dunkler schraffierte Fläche für M_1 , die heller schraffierte für M_2 . Für M_1 ist im vor-

*) Verfasser gibt der Berechnung der Strecken η_1 und η_2 den Vorzug.

liegenden Falle der negative Teil der Einflußfläche größer als der positive; für M_2 gilt das umgekehrte. Es folgt dies bereits aus dem Einflusse der ständigen Belastung. Wir berechnen daher nur

$$(18) \begin{cases} {}_{min}M_1 = -p' \frac{u_2 \eta_o}{2} f_1 = -\frac{1}{2} p' u_2 \left(\eta_2 f_1 - \frac{l_1 l_2}{l} \right) = -3,36 p' \\ {}_{max}M_2 = +p' \frac{u_2 \eta_u}{2} f_2 = +\frac{1}{2} p' u_2 \left(\frac{l_2 l_2'}{l} - \eta_2 f_2 \right) = +2,44 p'. \end{cases}$$

Das maßgebende Moment ist im vorliegenden Falle $_{min}M_1$.

Nun gehen wir zur Untersuchung des Einflusses einer unmittelbar am Balken angreifenden gleichförmigen Belastung

$$q = g + p$$
über. Die X_a -Linie ist die Momentenlinie für eine Belastungsfläche, welche durch die Ordinaten

(19)
$$\begin{cases} z_1 = \frac{f_1}{\int M_a^2 dx} = \frac{3,0}{80,4} = 0,0373\\ z_2 = \frac{f_2}{\int M_a^2 dx} = \frac{3,6}{80,4} = 0,0448 \end{cases}$$

bestimmt ist, Fig. 280. Zu den Ordinaten der Geraden A'C', B'D'und C'D' treten noch die Ordinaten

In dem hier vorliegenden Falle gleichförmiger Belastung wird sich die Aufzeichnung dieser Kurven als entbehrlich erweisen. Es genügt, die Inhalte der zur Fläche $\mathcal{F}' = 4,44$ hinzutretenden drei Flächen zu berechnen. Man findet nach Gleichung (38), Seite 106:

(21)
$$\begin{cases} \mathfrak{F}_{1} = \frac{z_{1}l_{1}^{3}}{24} = 0,02, \quad \mathfrak{F}_{2} = \frac{z_{2}l_{2}^{3}}{24} = 0,21, \\ \mathfrak{F}_{0} = \frac{(z_{1} + z_{2})l_{0}^{3}}{24} = 0,38 \end{cases}$$

und es ist daher der Inhalt der X_a -Fläche für unmittelbare Belastung $\mathfrak{F} = 4,44 + 0,61 = 5,05.$

Es entsteht also bei voller Belastung

$$X_a = q \mathfrak{F} = 5,05 \ q.$$

1.1.'

Der Einfluß der ständigen Belastung auf die Momente M_1 und M_2 ist

$$\begin{pmatrix} M_1 = g \frac{1}{2} - g \Im f_1 = -3,63 \ g \\ M_2 = g \frac{l_2 l_2'}{2} - g \Im f_2 = -0,90 \ g. \end{cases}$$

Für die Querschnittsberechnung des Balkens kommt nur das Moment $_{min}M_1$ in Frage. Die positiven Momente treten noch mehr zurück als bei mittelbarer Belastung. Fig. 281 zeigt den negativen Teil der Einflußfläche für M_1 . Um recht kurz zu rechnen, führen wir für den Inhalt dieser Fläche einen etwas zu großen Wert ein, indem wir die ganze Fläche \mathfrak{F}_0 in Rechnung stellen. Wir setzen

(23)
$$min M_1 = -\frac{1}{2} p u_2 \left(\eta_2 f_1 - \frac{l_1 l_2}{l} \right) - p \left(\mathfrak{F}_2 + \mathfrak{F}_0 \right)$$
$$= -3,36 \ p - 0,59 \ p = -3,95 \ p.$$

Die mittelbare und die unmittelbare Belastung erzeugen also zusammen:

$${}_{max}X_a = 4,44 \; q' + 5,05 \; q$$

 ${}_{min}M_1 = -1,80 \; g' - 3,63 \; g - 3,36 \; p - 3,95 \; p.$

Ist z. B. für ein hölzernes Hängewerk g' = 0,60 t/m, p' = 0,80 t/m, g = 0,40 t/m, p = 0,60 t/m, also q' = 1,40 t/m und q = 1,0 t/m, so entsteht max $X_a = 11,3$ t, min $M_1 = -7,59$ tm.

Ein Doppelbalken von $24 \cdot 30$ cm besitzt $F = 2 \cdot 24 \cdot 30 = 1440$ cm² und $W = 2 \cdot 3600 = 7200$ cm³ und wird beansprucht mit

$$\sigma = \frac{759\,000}{7200} + \frac{11\,300}{1440} = 105 + 8 = 113 \text{ kg/cm}^2.$$

Der geringe Einfluß des Gliedes X_a / F rechtfertigt die gleichzeitige Einführung der bei verschiedenen Laststellungen entstehenden Werte $_{min} M_1$ und $_{max} X_a$.

Für die obere Gurtung und die Hängesäulen liefert der Kräfteplan in Fig. 276a die Spannkräfte

$$S_1 = -18,1 \text{ t}, \quad S = -11,4 \text{ t}, \quad S_2 = -14,1 \text{ t},$$

 $V_1 = +12,8 \text{ t}, \quad V_2 = +9,9 \text{ t}.$

Es bleibt jetzt noch der Einfluß von Lasten zu untersuchen, die in den Knotenpunkten der oberen Gurtung angreifen, ein bei Dachstühlen vorkommender Belastungsfall.

Gesucht sei beispielsweise der Einfluß einer beliebig gerichteten, in D angreifenden Last P. Fig. 282. Man zerlege P in eine lotrechte Kraft P' und eine in die Gerade DB fallende Kraft P''. Letztere ist, da der Stab DB starr vorausgesetzt wird, ohne Einfluß auf X_a^*). Hingegen erzeugt P' den Horizontalschub

$$X_a = P' \frac{\eta_2}{1},$$

der nach Fig. 282 durch Zerlegung von P' nach den Richtungen X_a und I erhalten wird. Damit ist aber auch der Spannriegeldruck S, dessen wagerechte Komponente gleich X_a ist, gegeben, und es lassen sich nun die Kräftepolygone für die Knotenpunkte D und C zeichnen.

Der Einfluß von P auf M_1 ist

$$M_1 = -P' \eta_o f_1,$$

wobei allerdings vorausgesetzt wird, daß der feste Stützpunkt A in der Balkenachse liegt. In der Regel befindet sich dieser Stützpunkt in einem

^{*)} Der Einfluß der Drehungen der Endquerschnitte des Balkens, darf ebenfalls vernachlässigt werden.

Abstande c unterhalb der Balkenachse, und es erzeugt dann der wagerechte Stützenwiderstand P_w das Zusatzmoment

$$M_1 = -P_w c.$$

Wird an die Knotenpunkte C und D ein Firstknoten E zweistäbig angeschlossen, und in E eine Last P angebracht, so findet man deren Einfluß auf X_a wie folgt. Man zerlegt P nach den Richtungen EC und

Fig. 282.

ED in S' und S'', hierauf S' nach der Richtung CA und nach lotrechter Richtung, S'' nach der Richtung DB und nach lotrechter Richtung. Die lotrechten Seitenkräfte seien P_c und P_D ; sie sind im vorliegenden Falle beide nach oben gerichtet und erzeugen daher

$$X_a = -P_c \eta_1 - P_D \eta_2.$$

Nun kann man S angeben und die Kräftepolygone für die Knotenpunkte C und D zeichnen.

Der Einfluß auf M_1 ist

$$M_1 = f_1 \left(- P_c \eta_u' + P_D \eta_o \right).$$

Um den Einfluß einer in irgendeinem Punkte J des Stabes DBangreifenden, beliebig gerichteten Kraft P zu finden, Fig. 283, zerlege man P in zwei in den Punkten D und B angreifende zu P parallel gerichtete Kräfte P_o und P_u und bestimme den Einfluß von P_o auf X_a , V_2 und S auf die vorhin beschriebene Weise. Projiziert man nun den Kräftezug V_2S auf die Stabachse DB, so erhält man die das Stab-

stück DJ auf Zug oder Druck beanspruchende Längskraft $S_{2.o}$. Die Projektion des Kräftezuges V_2SP liefert $S_{2.u}$ für das Stabstück JB. Im vorliegenden Falle sind $S_{2.o}$ und $S_{2.u}$ Drücke. Fig. 283a gibt noch Aufschluß über die Querkräfte Q_o und Q_u , welche die Querschnitte der Stabstücke DJ und JB auf Abscherung beanspruchen. Wir haben sie nur der Vollständigkeit wegen eingetragen; bei der Querschnittsberechnung bleiben sie unberücksichtigt. Das den Stab DB beanspruchende Biegungsmoment ist mit den aus der Figur ersichtlichen Bezeichnungen:

$$M = \frac{Pd'd''}{d} \cdot$$

Müller-Breslau, Graphische Statik. II. 2.

104. Es möge noch die in Fig. 284 dargestellte Anordnung eines unsymmetrischen doppelten Hängewerks mit schrägem Spannriegel untersucht werden. X_a ist wieder die wagerechte Seitenkraft des im Riegel (3) auftretenden Druckes. Den Kräfteplan für $X_a = -1$ zeigt Fig. 284 a. Die Stäbe 6, 7, 8, 9 werden gedrückt, die Gurtstäbe gezogen. Im Mittelstück des Balkens (Stab 11) herrscht ein Druck von der Größe Eins; die Seitenstücke (10 und 12) werden durch die wagerechten Seitenkräfte ψ_1 und ψ_2 von S_{1a} und S_{5a} auf Druck beansprucht. Durch

diese Angaben ist der Wert $\sum S_a^2 \rho$ bestimmt. Für das praktische Anwendungsgebiet dieses Tragwerkes ist es aber immer erlaubt, $\nu = 1$ zu setzen.

Das Angriffsmoment für einen Querschnitt des Mittelstückes des Balkens ist $M = M_0 - X_a y$. Dagegen erhält man für einen den Stab 1 treffenden Schnitt

$$M = M_0 - X_a \psi_1 y,$$

weil die wagerechte Seitenkraft von S_{1a} gleich ψ_1 ist. Im Abstande b_1 von A ist also $M_a = \psi_1 h$. Nun ist aber $\psi_1 h = f_1 \frac{b_1}{l_1}$, und es ist deshalb, genau wie bei dem in Nr. 103 untersuchten Hängewerke, das Viereck ACDB die M_a -Fläche; man erhält also dieselben Werte η_1 und η_2 wie in Nr. 103.

Eine im Punkte E angreifende Last P wird nach lotrechter Richtung und nach der Richtung EB zerlegt, eine in D angreifende Last Pnach lotrechter Richtung und nach der Richtung DB. Die lotrechten Seitenkräfte P_D' und P_E' erzeugen

$$X_a = P_D' \eta_2 + P_E' \eta$$

die anderen Seitenkräfte sind ohne Einfluß. Ist X_a bekannt, so kann man die Kräftepolygone für die einzelnen Knotenpunkte zeichnen.

105. Das unsymmetrische zweifache Hängewerk mit wagerechtem Spannriegel (Fig. 285). Hier ist $f_1 = f_2 = f$ und die Gleich. (13) läßt sich umformen in

(24)
$$\int_{0}^{l} M_{a}^{2} dx = \frac{f^{2}(l+2l_{0})}{3}.$$

An Stelle der Einflußlinie für X_a zeichnen wir die Einflußlinie für $X_a f$. Die zugehörige Belastungsfläche ist ein Trapez von der Höhe

(25)
$$z = \frac{f^2}{\int\limits_0^l M_a^2 dx} = \frac{3}{l+2l_0};$$

sie erzeugt bei 1 und 2 die Momente

(26)
$$\begin{cases} e_1 = \frac{l_1 (2ll'_1 + l_0^2 + 2l_0l_2)}{2l (l + 2l_0)} \\ e_2 = \frac{l_2 (2ll'_2 + l_0^2 + 2l_0l_1)}{2l (l + 2l_0)}. \end{cases}$$

Durch die beiden Strecken e_1 und e_2 ist die Einflußlinie A'C'D'B'für X_af für den Fall bestimmt, daß alle Lasten auf die Knotenpunkte 1 und 2 übertragen werden. Die mittels des Punktes T' bestimmten Strecken A'A'' und B'B'' sind gleich l_1 und l_2 .

Die lotrecht unter T gemessene Ordinate der X_a -Linie ist

(27)
$$e_0 = l_1 \frac{u_2}{l} = l_1 \frac{a_2}{l_0} = l_2 \frac{a_1}{l_0}.$$

Da nun andererseits

$$e_0 = e_1 \frac{a_2}{l_0} + e_2 \frac{a_1}{l_0}$$

ist, so besteht zwischen e_1 und e_2 die Beziehung

(28)
$$\frac{e_1}{l_1} + \frac{e_2}{l_2} = 1,$$

die sich auch mittels der Gleichungen (26) beweisen läßt.

23*

Die Lage des Schnittpunktes R'' der Geraden A'C' und B'D' ist durch die Gleichung

$$\overline{R'R''} = e_1 \frac{w_1}{l_1} = e_2 \frac{w_2}{l_2} = \frac{e_2(l-w_1)}{l_2}$$

bestimmt. Man findet mit Beachtung von Gleichung (28)

und hieraus folgt dann, daß die Gerade B'R'' auf der Lotrechten durch A die Strecke

$$A'A''' = w_1$$

abschneidet. Nun läßt sich aber die Lage des Punktes R und damit auch die Strecke w_1 auch auf einem anderen Wege bestimmen. Verteilt man nämlich, wie dies auf Seite 345 geschehen ist, die Belastungsfläche auf die Knotenpunkte, so kommen auf die Punkte 1 und 2 die Lasten

ihre Mittelkraft geht durch den Punkt R'' und daraus folgt zwischen den Strecken R - 1 und R - 2 der Balkenachse die Beziehung

$$\frac{\overline{R-1}}{\overline{R-2}} = \frac{\frac{1}{3}l_2 + \frac{1}{2}l_0}{\frac{1}{3}l_1 + \frac{1}{2}l_0}.$$

Man gelangt also schließlich zu der folgenden Darstellung (Fig. 286). Mache $1-1' = \frac{1}{3} l_2 + \frac{1}{2} l_0$, $2-2' = \frac{1}{3} l_1 + \frac{1}{2} l_0$ (in unserer Figur wühlten wir hierfür einen kleineren Maßstab), bestimme R mittels der Geraden 1'2', mache $A'A''' = w_1$, zeichne die $X_a f$ -Linie und bestimme mit Hilfe der Strecke $\overline{A'A''} = l_1$ die Einflußflächen für M_1 und M_2 . Die weitere Untersuchung geschieht genau so wie in dem in Nr. 103 vorgetragenen Zahlenbeispiele; nur achte man darauf, daß für M_1 und M_2 der Multiplikator $\mu = 1$ gilt. Man erhält z. B. statt der Gleichungen (18) jetzt für den Einfluß der Verkehrslast p' die Gleichungen

$$_{min}M_1 = -p' \frac{u_2 e_o}{2}, \quad _{max}M_2 = +p' \frac{u_2 e_u}{2}.$$

Die Abmessungen e_o und e_u gibt Fig. 286 an.

Bei unmittelbarer Belastung tritt an die Stelle des Polygons A'C'D'B'eine durch die Gleichungen

$$\eta' = \omega_D \frac{z l_1^2}{6}, \quad \eta'' = \omega_D \frac{z l_2^2}{6}, \quad \eta''' = \omega_R \frac{z l_0^2}{2}$$

bestimmte Kurve (Fig. 287). Das Kurvenstück C'D' ist eine Parabel, deren Gleichung auch geschrieben werden kann: $\eta''' = \frac{zxx'}{2}$.

Es ist

$$\mathfrak{F}_0 = rac{z \, l_0^3}{12}$$

Auf dem in Nr. 103 angegebenen Wege gelangt man schließlich zu den folgenden Formeln für die beiden maßgebenden Werte X_a und $_{min}M_1$. Berechne:

(29)
$$\mathfrak{F}' = \frac{1}{2} (e_1 l_2' + e_2 l_1'), \ \mathfrak{F}_1 = \frac{l_1^3}{8 (l+2 l_0)}, \ \mathfrak{F}_2 = \frac{l_2^3}{8 (l+2 l_0)},$$

(30)
$$\mathfrak{F}'' = \mathfrak{F}_1 + \mathfrak{F}_0 + \mathfrak{F}_2 = \frac{l_1^3 + 2l_0^3 + l_2^3}{8(l+2l_0)},$$

(31)
$$_{max}X_a = (q+q') \mathfrak{F}' + q \mathfrak{F}'',$$

(32)
$$_{min}M_1 = -(g+g')\left(\mathfrak{F}' - \frac{l_1l_1}{2}\right)$$

$$-g\mathfrak{F}''-(p+p')\frac{e_ou_2}{2}-p[\mathfrak{F}_2+\mathfrak{F}_0].$$

Wir wiederholen, daß g', p' die mittelbar wirkenden und g, p die unmittelbar am Balken angreifenden Lasten sind, und daß q' = g' + p', q = g + p ist.

106. Das symmetrische Hängewerk (Fig. 288). Ist $l_1 = l_2$, so wird $e_1 = e_2 = \frac{1}{2} l_1$ und $e_o = e_u = \frac{l_1 a}{l}$, und es ergeben sich die folgenden einfachen Werte: (33) $\mathfrak{F} = \frac{1}{2} l_1 l_1'$,

Fünfter Abschnitt. - § 22.

(34)
$$\mathfrak{F}_{1} = \frac{l_{1}^{3}}{8(l+2l_{0})}, \quad \mathfrak{F}_{0} = \frac{l_{0}^{3}}{4(l+2l_{0})},$$

$$\mathfrak{F}'' = 2\,\mathfrak{F}_1 + \mathfrak{F}_0$$

(36)
$$_{max}X_a = (q+q') \,\mathfrak{F}' + q \,\mathfrak{F}'',$$

(37)
$${}_{min}M_1 = -g\mathfrak{F}'' - (p+p')\frac{l_1l_0}{8} - p(\mathfrak{F}_0 + \mathfrak{F}_1).$$

Handelt es sich um eine Hängewerkbrücke und wird der Balken durch unmittelbar an ihm angreifende Einzellasten beansprucht, deren Wirkung am zweckmäßigsten mittels Einflußlinien verfolgt wird, so ersetze man die Einflußfläche für $X_a f$ durch einen gleich großen Parabelabschnitt. Der Pfeil der Parabel ist

(38)
$$\eta_0 = \frac{3}{2l} \left(\mathfrak{F}' + \mathfrak{F}'' \right).$$

107. Der unterspannte Balken (Fig. 289) entsteht durch Umkehrung des Hängewerks. X_a ist jetzt eine Zugkraft. Wegen der für diese Stäbe üblichen geringeren Höhe f sind jedoch die Längenänderungen der Stäbe von größerem Einflusse wie bei den in der Regel höher gebauten Hängewerken.

Fig. 289.

Der Träger sei symmetrisch. Es entsprechen den Stäben AC 10 AB CD $\sec^2 \alpha$ die Werte $S_a^2 =$ 1 1 $tg^2 \alpha$ 1 $\frac{l_1 \sec \alpha}{E'F'}$ l_0 $\rho = \frac{s}{EF} =$ E'F'EF E''F''

und es ergibt sich daher nach Gleich. (6), Seite 342,

(39)
$$\frac{1}{\nu} = 1 + \frac{3}{f^2 (l+2l_0)} \left[l \frac{J}{F} + \frac{E}{E'} \frac{J}{F'} (2l_1 \sec^3 \alpha + l_0) + 2 \frac{E}{E''} \frac{J}{F''} l_1 \operatorname{tg}^3 \alpha \right].$$

Die Längenänderungen der Stäbe verkleinern den Zug X_a , sie vermindern die negativen und vergrößern die positiven Momente. Bleibt also $_{min}M_1$ das für die Querschnittsberechnung maßgebende Moment, so bedeutet die Annahme $\nu = 1$ eine zugunsten der Sicherheit des Bauwerks gemachte Voraussetzung. Ist l_0 wesentlich größer als l_1 und greift die Belastung unmittelbar am Balken an, so empfiehlt es sich, $_{max}M$ für die Trägermitte zu berechnen und dabei den Wert ν zu berücksichtigen. Der für $\nu = 1$ berechnete Wert $X_a f$ geht über in $(X_a - \Delta X_a) f$, wo

$$\Delta X_a = X_a \left(1 - \frac{1}{2}\right)$$

und man erhält

$$_{max}M = M_o - X_a f + X_a f (1 - \nu).$$

),

Die Rechnung gestaltet sich sehr einfach, wenn man die Summen der beiden ersten Glieder für sich zu einem Maximum macht und in das letzte Glied für X_a den größten, der vollen Belastung entsprechenden Wert einsetzt. Fig. 289 zeigt die bei der Annahme $\nu = 1$ entstehende Einflußfläche für $_{max}M$. Die Geraden A'R' und B'R' gehen durch die Punkte C' und D'. Man erhält

(41)
$$\mathfrak{F}_{+} = \frac{l_{0}^{2}}{8} - \mathfrak{F}_{0}, \quad \mathfrak{F}_{-} = 2 \mathfrak{F}_{1},$$

also

(42)
$${}_{max}M = q\left(\frac{l_0^2}{8} - \mathfrak{F}_0\right) - 2g\mathfrak{F}_1.$$

Hierzu tritt (43)

$$X_a f (1 - \gamma) = q \left(\mathfrak{F}' + \mathfrak{F}'' \right) (1 - \gamma).$$

Mittelbare Belastung erzeugt M = 0.

Beispiel. Der Balken bestehe aus Holz, Spannstange und Pfosten aus Flußeisen. Es sei $l_1 = 2,4$ m, $l_1' = 7,2$ m, $l_0 = 4,8$ m, l = 9,6 m, $l + 2l_0 = 19,2$ m, f = 1,0 m, g = 0,4 t/m, p = 0,8 t/m, q = 1,2 t/m. Wir nehmen zunächst $\gamma = 1$ an, berechnen mittels Gleich. (33) bis (37):

$$\mathfrak{F}' = \frac{1}{2} \cdot 2.4 \cdot 7.2 = 8.64, \qquad \mathfrak{F}_1 = \frac{2.4^3}{8 \cdot 19.2} = 0.09,$$

 $\mathfrak{F}_0 = \frac{4.8^3}{4 \cdot 19.2} = 1.44,$

$$\begin{split} \mathfrak{F} &= 2 \cdot 0.09 + 1.44 = 1.62, \quad \mathfrak{F} = \mathfrak{F} + \mathfrak{F} = 10.26, \\ max X_a f &= 1.2 \cdot 10.26 = 12.31 \text{ tm}, \quad X_a = 12.3 \text{ t}, \\ S_1 &= X_a \sec \alpha = 12.3 \cdot 1.08 = 13.3 \text{ t}, \\ V &= X_a \text{ tg } \alpha = 5.1 \text{ t}, \\ min M_1 &= -0.4 \cdot 1.62 - 0.8 \frac{2.4 \cdot 4.8}{8} - 0.8 (1.44 + 0.09) = -3.02 \text{ tm}. \end{split}$$

Ein Balken von 26/28 cm besitzt abgerundet W = 3400, J = 41000, F = 730 und wird beansprucht mit

$$\sigma = \frac{302\,000}{3400} + \frac{12\,300}{730} = 89 + 17 = 106 \text{ kg/cm}^2.$$

In der Mitte des Balkens entsteht, mit $\nu = 1$, nach Gleich. (42)

$$_{nax}M = 1,2\left(\frac{4.8^2}{8} - 1.44\right) - 2 \cdot 0.4 \cdot 0.09 = 1.66 \text{ tm.}$$

Nun sei der Querschnitt der Zugstange $F' = 13 \text{ cm}^2$, des Pfostens $F'' = 10 \text{ cm}^2$, also

$$\frac{J}{F} = \frac{41\,000}{730} = 56 \text{ cm}^2 = 0,0056 \text{ m}^2,$$
$$\frac{J}{F'} = 0,32 \text{ m}^2, \quad \frac{J}{F''} = 0,41 \text{ m}^2.$$

Mit $\frac{E}{E'} = \frac{E}{E''} = \frac{1}{20}$ ergibt sich $\nu = 0.96$, und man erhält daher

$$_{nax}M = 1,66 + 12,3 (1 - 0,96) = + 2,15$$
 tm.

Dieser Wert ist zwar um 30 v. H. größer als das für $\gamma = 1$ berechnete Moment $_{max}M$; er ist aber kleiner als das für $\gamma = 1$ erhaltene $_{min}M_1$.

2. Zweifach statisch unbestimmte Hängewerke.

108. Unsymmetrisches dreifaches Hängewerk mit wagerechtem Spannriegel. Fig. 290. Die Spannkraft X_b in der mittelsten Hängesäule soll mit Hilfe der Gleichung

(44)
$$X_b = P_m \frac{\delta_{mb}}{\delta_{bb}}$$

berechnet werden. Es wird also das in Nr. 105 behandelte doppelte Hängewerk als statisch unbestimmtes Hauptsystem eingeführt. Die elastischen Änderungen der Stablängen sollen gleich von vornherein vernachlässigt werden. Der Balken habe konstanten Querschnitt. Wir setzen EJ = 1 und schreiben

$$\delta_{bb} = \int_{0}^{b} M_{b}^{2} dx.$$

Fünfter Abschnitt. - § 22.

Den Druck im Spannriegel bezeichnen wir mit H. Die $H_0 f$ -Linie stimmt also mit der in Nr. 105 ermittelten $X_a f$ -Linie überein; sie besitzt in den Knotenpunkten 1, 3, 2 die Ordinaten e_1 , e_3 , e_2 . Die Strecken e_1 und e_2 sind durch die Formeln (26) gegeben. e_3 zerlegen wir in

$$e_{3}' = \frac{e_{1}a_{2}}{l_{0}} + \frac{e_{2}a_{1}}{l_{0}}$$

und die Parabelordinate

(45)
$$c = \frac{3 a_1 a_2}{2 (l+2 l_0)}^*).$$

Fig. 290 b zeigt den Belastungszustand $X_b = -1$. Die im Firstknoten E angreifende, nach oben gerichtete Kraft $X_b = -1$ wurde nach den Richtungen CE und DE zerlegt, und die so erhaltenen Seitenkräfte wurden in den Punkten C und D durch ihre lotrechten und wagerechten Komponenten ersetzt.

Die wagerechten, gleich großen Komponenten H' erzeugen im Spannriegel einen Druck von der Größe

(46)
$$H' = \frac{a_2}{l_0} \operatorname{cotg} \beta_1 = \frac{a_1}{l_0} \operatorname{cotg} \beta_2 = \frac{a_1 a_2}{l_0 f_0}$$

und die lotrechten Komponenten, sowie die im Punkte 3 angreifende Last $X_b = -1$ bewirken

$$Hf = c + e_3' - \frac{e_1 a_2}{l_0} - \frac{e_2 a_1}{l_0} = c$$

Im ganzen entsteht infolge $X_b = -1$:

$$H_b f = k + c$$

wo

(48)
$$k = \frac{a_1 a_2}{l_0} \frac{f}{f_0}$$

Für die Balkenquerschnitte 1 und 2 erhält man die Momente

$$M_{1b} = M_{2b} = (H' - H_b) f = -c.$$

Die M_b -Fläche zeigt die Fig. 290 d. Im Punkte 3 entsteht $M_b = + c'$. Da nun *CED* die Momentenfläche eines einfachen Balkens *CD* ist, der eine durch *E* gehende Last 1 trägt, so ist

(49)
$$c' = \frac{a_1 a_2}{l_0} - c.$$

*) Diese Formel folgt nach Seite 358 aus $\eta''' = \frac{xxx'}{2}$, wo $x = \frac{3}{(l+2l_0)}$, $x = a_1, x' = a_2$.

Es ergibt sich jetzt

$$\delta_{bb} = \int_{0}^{c} M_{b}^{2} dx = \frac{c^{2} l_{1}}{3} + \frac{l_{0}}{3} (c^{2} - cc' + c'^{2}) + \frac{c^{2} l_{2}}{2}, \text{ das ist}$$

$$\delta_{bb} = \frac{c^{2} l}{3} + \frac{c' (c' - c) l_{0}}{3}.$$

Die Einflußlinie für X_b ist die Momentenlinie eines einfachen Balkens AB, dessen Belastungslinie die Gleichung

$$z = \frac{M_b}{\delta_{b\,b}}$$

hat. An den Stellen 1, 2, 3 sind die Belastungshöhen

(51)
$$z_1 = z_2 = -\frac{c}{\delta_{bb}}, \quad z_3 = +\frac{c}{\delta_{bb}}.$$

Es sei l = 12 m, $l_1 = 2,4$ m, $a_1 = a_2 = 3,0$ m, $l_2 = 3,6$ m, f = 3,6 m, $f_0 = 1,875$ m, $l + 2l_0 = 24$ m.

Dann ist:

(

$$c = \frac{3 \cdot 3,0^{2}}{2 \cdot 24,0} = \frac{9}{16} \text{ m}, \quad c' = \frac{3,0^{2}}{6,0} - \frac{9}{16} = \frac{15}{16} \text{ m},$$

$$\delta_{bb} = \frac{1}{16^{2}} (81 + 15 \cdot 6 \cdot 2) = \frac{63}{32} \text{ m}^{3},$$

$$z_{1} = -\frac{32}{63} \cdot \frac{9}{16} = -\frac{2}{7} \text{ m}^{-2}, \quad z_{3} = \frac{32}{63} \cdot \frac{15}{16} = +\frac{10}{21} \text{ m}^{-2}$$

Eine durch $z_1 = z_2$ und z_3 (alle drei Werte zunächst positiv angenommen) bestimmte Belastungsfläche erzeugt für die Querschnitte 1, 3, 2 die Momente

(52)
$$\begin{cases} \eta_1 = 6,36 \ z_1 + 3,96 \ z_3 \\ \eta_3 = 8,91 \ z_1 + 7,41 \ z_3 \\ \eta_2 = 8,46 \ z_1 + 4,86 \ z_3, \end{cases}$$

und man erhält daher für die X_b -Linie an den Stellen 1, 2, 3 die Ordinaten

$$\eta_1 = -6,36\frac{2}{7} + 3,96\frac{10}{21} = \frac{0,48}{7} = +0,069$$

$$\eta_3 = +\frac{6,88}{7} = +0,983; \quad \eta_2 = \frac{-0,72}{7} = -0,103.$$

Greifen die Lasten nur in den Knotenpunkten 1, 3, 2 an, so besteht die X_b -Linie aus drei Geraden, und die angegebenen drei Werte genügen zur Berechnung von $\max_{max} X_b$ und $\min_{min} X_b$.

In Fig. 291 haben wir noch die Einflußlinie für unmittelbare Belastung des Balkens AB gezeichnet; die Ordinaten wurden für die Teile l_1, l_2, l_0 mittels der Formeln Fünfter Abschnitt. - § 22.

(53)
$$\begin{cases} \eta' = \omega_D z_1 \frac{l_1^2}{6}, \quad \eta'' = \omega_D z_1 \frac{l_2^2}{6} \\ \eta''' = \omega_D (z_3 - z_1) \frac{a^2}{6} + \omega_R \frac{z_1 a^2}{6} \end{cases}$$

berechnet. Es genügt die Berechnung weniger Zwischenpunkte.

Noch sei auf eine Rechenprobe aufmerksam gemacht. Greifen in den Knotenpunkten 1 und 2 zwei Lasten an, die sich zueinander verhalten wie $l_2: l_1$, so muß bei starr angenommenen Stäben $X_b = 0$ sein,

weil diese Lasten von dem Hängewerk ACDB, dessen Gurtung ein diese Lasten verbindendes Seilpolygon bildet, allein aufgenommen werden. Daraus folgt aber, daß sich verhalten muß

$$\eta_2: \eta_1 = -l_2: l_1 = -3, 6: 2, 4 = -3: 2.$$

In der Tat ist $\eta_2 = -\frac{\delta}{2}\eta_1$.

Einflußlinie für den Spannriegeldruck H. Aus der Gleichung

(55)
$$Hf = H_0 f - H_b X_b = H_0 f - (k+c) X_b$$

ergeben sich für die Ordinaten η_1 , η_2 , η_3 der *Hf*-Linie an den Stellen 1, 2, 3 die Werte

(56)
$$\begin{cases} \frac{\eta_1 = e_1 - (k+c) \eta_1}{\eta_3 = e_3 - (k+c) \eta_3} \\ \frac{\eta_2 = e_2 - (k+c) \eta_3}{\eta_2 = e_2 - (k+c) \eta_2}. \end{cases}$$

Mit Hilfe der Formel $\eta = e - (k + c) \eta$ kann man aus den Ordinaten der $H_0 f$ -Linie und der X_b -Linie auch die übrigen Ordinaten der Hf-Linie berechnen. Man kann aber auch in der Weise vorgehen, daß man die Belastungslinie der Hf-Linie bestimmt und dann die Formeln (53) anwendet. Da die Belastungslinie der $H_0 f$ -Linie in den drei Punkten 1, 2, 3 die gleiche Höhe $\frac{3}{l+2l_0} = \frac{1}{8}$ besitzt, so findet man für die Hf-Linie

(57)
$$\begin{cases} \overline{z_1} = \frac{3}{l+2l_0} - (k+c) \ z_1 = \frac{1}{8} + 3,4425 \ \frac{2}{7} = +1,109 \\ \overline{z_3} = \frac{3}{l+2l_0} - (k+c) \ z_3 = \frac{1}{8} - 3,4425 \ \frac{10}{21} = -1,514. \end{cases}$$

In Fig. 292 haben wir die *H*-Linie nebst zugehöriger Belastungslinie dargestellt. Die vorstehend angegebenen Werte sind also durch f = 3,6 dividiert worden. Einflußlinie für M_1 . Aus der Formel (58) $M_1 = M_{1 \cdot 0} - H_0 f + c X_b$ ergeben sich für die Stellen 1, 3, 2 die Ordinaten (59) $\begin{cases} \eta_1' = \frac{l_1}{l} l_1' - e_1 + c \eta_1 = 1,920 - 1,251 = + 0,669 \\ \eta_3' = \frac{l_1}{l} u_2 - e_3 + c \eta_3 = 1,320 - 1,487 = -0,167 \\ \eta_2' = \frac{l_1}{l} l_2 - e_2 + c \eta_2 = 0,720 - 1,723 = -1,003. \end{cases}$ Die ersten Glieder geben die Ordinaten der $M_{1 \cdot 0}$ Linie an. Probe: $\eta_1': \eta_2' = -l_1: l_2 = -2:3.$

Fig. 293.

Die Höhen der Belastungslinie sind

(60)
$$\begin{cases} z_{1}' = -\frac{3}{l+2l_{0}} + cz_{1} = -\frac{1}{8} - \frac{9}{16} \cdot \frac{2}{7} = -\frac{2}{7} \\ z_{3}' = -\frac{3}{l+2l_{0}} + cz_{3} = -\frac{1}{8} + \frac{9}{16} \cdot \frac{10}{21} = +\frac{1}{7} \cdot \frac{1}{7} \end{cases}$$

Will man die M_1 -Linie als Seillinie darstellen, so hat man zu der Belastungslinie noch im Punkte 1 eine Einzellast von der Größe 1 zu fügen. Vgl. Fig. 293.

Einflußlinie für M_2 . Es ist (61) $M_2 = M_{2 \cdot 0} - H_0 f + c X_b$. Man erhält $\eta_1'' = \frac{l_2 l_1}{l} - 1,251 = -0,531$ $\eta_3'' = \frac{l_2 u_1}{l} - 1,487 = +0,133$

$$\eta_2'' = \frac{l_2 l_2}{l_1} - 1,723 \doteq + 0,797$$

Probe $\eta_1'': \eta_2'' = -l_1: l_2 = -2:3.$ Die Belastungshöhen sind dieselben wie für die M_1 -Linie.

 $z_1'' = -\frac{2}{7}, \quad z_3'' = +\frac{1}{7}.$

Im Punkte 2 tritt die Einzellast 1 hinzu. Einflußlinie für M_3 . Es ist

(62)
$$M_3 = M_{3 \cdot 0} - H_0 f - c' X_b$$
, wo $c' = \frac{15}{16}$.

Man findet

$$\begin{array}{l} (63) & \begin{cases} \eta_1^{\ \prime\prime\prime} = \frac{u_2 \, l_1}{l} - e_1 - c' \eta_1 = - \ 0,035 \\ \eta_3^{\ \prime\prime\prime} = \frac{u_1 \, u_2}{l} - e_3 - c' \eta_3 = + \ 0,008 \\ \eta_2^{\ \prime\prime\prime} = \frac{u_1 \, l_2}{l} - e_2 - c' \eta_2 = + \ 0,052, \ \eta_1^{\ \prime\prime\prime} : \eta_2^{\ \prime\prime\prime} = - \ 2:3. \end{cases} \\ \\ (64) & \begin{cases} z_1^{\ \prime\prime\prime} = -\frac{3}{l+2 \, l_0} - c' z_1 = + \frac{1}{7} \\ z_3^{\ \prime\prime\prime} = -\frac{3}{l+2 \, l_0} - c' z_3 = -\frac{4}{7}. \end{cases} \end{cases}$$

 M_3 ist von untergeordneter Bedeutung. Das maßgebende Moment ist min M_1 .

Solange die obere Gurtung des Hängewerkes unbelastet ist, gelten für die Spannkräfte S' und S'' der Stäbe EC und ED die Formeln

(65)
$$S' \sin \beta_1 = -X_b \frac{a_2}{l_0}, \quad S'' \sin \beta_2 = -X_b \frac{a_1}{l_0}$$

Setzt man am Knotenpunkte C die Summe der wagerechten Kräfte gleich Null, so erhält man

(66)
$$S_{1} \cos \alpha_{1} = S' \cos \beta_{1} - H = -X_{b} \frac{a_{2}}{l_{0}} \cot \beta_{1} - H$$
$$S_{1} \cos \alpha_{1} = -X_{b} \frac{a_{1} \alpha_{2}}{l_{0} f_{0}} - H = -0.8 X_{b} - H.$$

Wir bezeichnen die Ordinaten der Einflußlinie für $S_1 \cos \alpha_1$ mit yund erhalten nach der Formel

$$y = -0.8 \eta - \frac{\eta}{f}$$

 $y_1 = -0.347, \quad y_3 = -0.413, \quad y_2 = -0.479.$ Müller-Breslau, Graphische Statik. II. 2. 24

Die zugehörigen Belastungshöhen sind

$$- 0,8 z_1 - \frac{z_1}{f} = + 0,8 \frac{2}{7} - \frac{1,108}{3,6} = -0,080 \text{ bei } 1 \text{ und } 2$$
$$- 0,8 z_3 - \frac{z_3}{f} = -0,8 \frac{10}{21} + \frac{1,514}{3,6} = + 0,040 \text{ bei } 3.$$

Die Spannkraft S_1 (Druck) nimmt bei voller Belastung den größten Wert an.

Setzt man im Punkte C die Summe der lotrechten Kräfte gleich Null, so findet man

$$V_{1} = S' \sin \beta_{1} - S_{1} \sin \alpha_{1} = S' \sin \beta_{1} - S_{1} \cos \alpha_{1} \frac{f}{l_{1}}, \text{ das ist}$$
(67)
$$V_{1} = \frac{a_{2}}{l_{0}} \left(\frac{a_{1}}{l} \frac{f}{f_{0}} - 1 \right) X_{b} + \frac{Hf}{l_{1}} = +0,7 X_{b} + \frac{Hf}{l_{1}}.$$

Für die Ordinaten y' der V_1 -Linie gilt also

$$y' = + 0.7 \eta + \frac{\eta}{l_1}$$
, woraus

$$y_1' = +0,487, \quad y_3' = +0,128, \quad y_2' = +0,770.$$

Die Belastungshöhen sind

$$+ 0,7 z_1 + \frac{z_1}{l_1} = -0,7 \frac{2}{7} + \frac{1,109}{2,4} = +0,262 \text{ bei } 1 \text{ und } 2$$
$$+ 0,7 z_3 + \frac{z_3}{l_1} = +0,7 \frac{10}{21} - \frac{1,514}{2,4} = -0,298 \text{ bei } 3.$$

Die V1-Linie ist in Fig. 294 dargestellt worden.

Über die praktische Verwertung der vorstehenden Untersuchung für den hier wohl allein in Betracht kommenden Fall eines gleichmäßig mit g' und p' bzw. g und p belasteten Streckbalkens AB ist folgendes zu sagen.

Greifen die Lasten nur in den Knotenpunkten an, so braucht man die Werte z nicht. Es genügt, die Ordinaten η , y, y' für die Knotenpunkte 1, 3, 2 zu berechnen, die aus je vier Geraden bestehenden Einflußlinien zu zeichnen und die Flächeninhalte \mathfrak{F} und \mathfrak{F} der positiven und negativen Einflußflächen zu berechnen; diese Inhalte bestimmen die größten Spannkräfte und Momente. Diese ganze Rechnung ist schnell erledigt.

Kommen unmittelbar am Balken angreifende Lasten vor, so braucht man im allgemeinen auch die Belastungshöhen z. Mit ihrer Hilfe kann man zunächst den Einfluß der ständigen Belastung g feststellen, ohne daß man nötig hat, die Einflußlinien zu zeichnen. Ist F der Inhalt der Einflußfläche für irgendeine Größe, so ist der Einfluß von g auf diese

V.-Linie

Fig. 294.

0.77

Um das für die Berechnung des Balkenquerschnitts maßgebende Moment $_{min}M_1$ zu ermitteln, nehme man den Balken links vom Knotenpunkte 3 mit g, rechts davon mit q belastet an. Der Inhalt der Einflußfläche links von 3 ist (Fig. 293)

(69)
$$\mathfrak{F}_{t} = \frac{1}{2} l_{1} \eta_{1}' + \frac{1}{24} z_{1}' l_{1}^{3} + \frac{1}{2} (\eta_{1}' + \eta_{3}') a_{1} + \frac{1}{24} (z_{1}' + z_{3}') a_{1}^{3} \\ = \frac{1}{2} 2,4 \cdot 0,669 - \frac{1}{24} \cdot \frac{2}{7} 2,4^{3} + \frac{1}{2} (0,669 - 0,167) 3,0 \\ + \frac{1}{24} \left(-\frac{2}{7} + \frac{1}{7} \right) 3,0^{3} = +1,23.$$

Fünfter Abschnitt. - § 22.

Der Inhalt der Einflußfläche rechts von 3 ist

(70)
$$\mathfrak{F}_r = -\frac{1}{2} \cdot 3, 6 \cdot 1,003 - \frac{1}{24} \cdot \frac{2}{7} \cdot 3, 6^3 - \frac{1}{2} (1,003 + 0,167) \cdot 3,0$$

 $+ \frac{1}{24} \left(\frac{1}{7} - \frac{2}{7}\right) \cdot 3, 0^3 = -4,28.$

Nun runde man \mathcal{F}_i nach unten ab, \mathcal{F}_r nach oben und setze

$$_{min}M_1 = -4,3 q + 1,2 g.$$

Die Einflußlinien für X_b , V_1 und M_1 braucht man also nicht zu zeichnen. Die größten Werte von M_3 und M_2 sind kleiner als $_{min}M_1$. Die Berechnung des Balkens ist also, soweit die am Balken selbst angreifenden Lasten in Frage kommen, erledigt.

Zur Berechnung des größten Spannriegeldruckes H muß die H-Linie durch Berechnung einiger Ordinaten bestimmt werden. Man findet, absolut genommen, $\mathfrak{F} = 2,81$, $\mathfrak{F} = 0,77$ und erhält:

$$\max_{max} H = 2,81 \ q - 0,77 \ g$$
$$\min_{min} H = 2,81 \ g - 0,77 \ q.$$

Der größte Wert S_1 entsteht bei voller Belastung, ergibt sich also ohne weiteres aus den Ordinaten y_1 , y_3 , y_2 und den Belastungshöhen. Ganz entsprechend verfährt man mit V_2 und S_2 .

Es bleibt jetzt nur noch anzugeben, wie der Einfluß von Lasten bestimmt wird, die in den Knotenpunkten der oberen Gurtung angreifen.

Eine in D wirksame, beliebig gerichtete Last P wird (wie in Fig. 282) nach lotrechter Richtung und nach der Richtung DB zerlegt. Eine in E angreifende Last zerlege man nach der lotrechten Richtung und nach der Richtung eines der beiden obersten Gurtstäbe, z. B. nach ED. Die mit ED zusammenfallende Komponente zerlege man dann im Punkte Dnach den Richtungen $\overline{D2}$ und \overline{DB} . Einfluß auf X_b , H, M_1 , M_2 , M_3 üben nur die lotrechten Seitenkräfte aus. Ihre Wirkung wird mit Hilfe der den Knotenpunkten entsprechenden Ordinaten der Einflußlinien festgestellt.

109. Besteht die obere Gurtung des Hängewerkes aus den beiden Geraden ACT und BDT, Fig. 295, so wird, starre Stäbe vorausgesetzt, eine im Knotenpunkte 3 angreifende Last P vom Hängewerk ATBallein aufgenommen; sie erzeugt $X_b = P$, H = 0, $M_1 = 0$, $M_2 = 0$, $M_3 = 0$, $V_1 = 0$, $V_2 = 0$. Man braucht jetzt auch die X-Linie nicht zu zeichnen und kann den Inhalt der X-Fläche mit Hilfe der für die Knotenpunkte ermittelten Werte η und z berechnen. Der größte Druck Hentsteht bei voller Belastung.

Beachtenswert ist, daß man die Knotenpunktswerte η und z für alle

in Betracht kommenden Größen X_b , H,... aus den Biegungsmomenten berechnen kann, welche an den Stellen 1, 3, 2 durch die zunächst beliebig groß gedachten Belastungen $z_1 z_3$ erzeugt werden.

Ist z. B.

 $l_1=2,4~{\rm m},\quad a_1=3,6~{\rm m},\quad a_2=5,4~{\rm m},\quad l_2=3,6~{\rm m},\quad l=15,0~{\rm m},$ so entstehen infolge beliebig gewählter z_1 und z_3 die Momente

(71)
$$\begin{cases} \eta_1 = 1,32 \, z_1 + 1,008 \, z_3 \\ \eta_3 = 2,10 \, z_1 + 2,16 \, z_3 \\ \eta_2 = 1,92 \, z_1 + 1,188 \, z_3. \end{cases}$$

Für die X_b -Linie muß nun sein $\eta_3 = 1; \quad \eta_2 : \eta_3 = -l_2 : l_1 = -3 : 2, \text{ d. i. } 3\eta_1 + 2\eta_2 = 0.$ Es ergeben sich die Gleichungen

2,10
$$z_1 + 2,16 z_3 = 1$$

7,8 $z_1 + 5,4 z_3 = 0$,

die wir aus einem Grunde, der bald einleuchten wird, durch die allgemeinen Gleichungen

(72)
$$\begin{cases} 2,10 \ z_1 + 2,16 \ z_3 = A \\ 7,8 \ z_1 + 5,4 \ z_3 = B \end{cases}$$

ersetzen wollen. Die Auflösung liefert

(73)
$$\begin{cases} z_1 = -0.9804 \ A + 0.3921 \ B \\ z_3 = +1.4161 \ A - 0.3813 \ B. \end{cases}$$

Für A = 1 und B = 0 ergibt sich

$$z_1 = -0,9804, \quad z_3 = +1,4161$$

und hierzu gehört, für die Xb-Linie,

$$\eta_1 = +0.133, \quad \eta_3 = +1.00, \quad \eta_2 = -0.200.$$

Für die H-Linie hat man die Bedingungen

$$\frac{\eta_1}{l_1} + \frac{\eta_2}{l_2} = 1, \quad \eta_3 = 0.$$

Die erste formen wir um in

 $\eta_1 \, l_2 + \eta_2 \, l_1 = l_1 \, l_2, \text{ d. i. } \eta_1 \cdot 3 + \eta_2 \cdot 2 = 2 \cdot 3, 6$ und erhalten die Gleichungen

2,10
$$z_1 + 2,16 z_3 = 0$$

7,8 $z_1 + 5,4 z_3 = 7,2$

welche dieselben Koeffizienten haben, wie die Gleichungen (72).

Für A = 0 und B = 7,2 liefert nun (73):

$$z_1 = + 2,8231, \quad z_3 = -2,7454,$$

ferner (71):

$$\eta_1 = + 0.959, \quad \eta_3 = 0, \quad \eta_2 = + 2.159.$$

Um die Werte für die M_1 -Linie zu ermitteln, beachte man, daß eine im Punkte 1 wirksame Last 1 die Querschnitte 1, 3, 2 durch die Biegungsmomente

$$M_0 = 2,016, 1,44, 0,576$$

beansprucht. Es wird also

$$\begin{aligned} \eta_1 &= 2,016 + 1,32 z_1 + 1,008 z_3 \\ \eta_3 &= 1,44 + 2,10 z_1 + 2,16 z_3 \\ \eta_9 &= 0,576 + 1,92 z_1 + 1,188 z_3. \end{aligned}$$

Die Bedingungen $3\eta_1 + 2\eta_2 = 0$ und $\eta_3 = 0$ liefern die Gleichungen

$$2,10 z_1 + 2,16 z_3 = -1,44$$

7,8
$$z_1 + 5,4$$
 $z_3 = -7,2$.

Es ist also A = -1,44, B = -7,2. Man erhält

 $z_1 = -1,4113, \quad z_3 = +0,7062,$

$$\eta_1 = +0,865, \quad \eta_3 = 0, \quad \eta_2 = -1,295.$$

Hinsichtlich der weiteren Behandlung der Aufgabe verweisen wir auf den in Nr. 108 eingeschlagenen Weg.

110. Dreifaches, symmetrisches Hängewerk (Fig. 296). Die Gurtungen ACT und BDT seien geradlinig.

1. Mittelbare Belastung. Eine im Punkte 3 angreifende Last P wird vom Hängewerk A TB allein aufgenommen. P = 1 erzeugt V = 1, H = 0, $M_1 = M_2 = M_3 = 0$.

Zwei gleich große, in den Punkten 1 und 2 angreifende Lasten P = 1 beanspruchen nur das doppelte Hängewerk ACDB und erzeugen V = 0, $M_1 = M_2 = 0$, $M_3 = 0$. Aus den in Fig. 296 gezeichneten Einflußlinien für Hf und M_1 folgt, daß jede der beiden Lasten zu H den Beitrag $\frac{l_1}{2f}$ liefert, während die in 1 angreifende Last $M_1 = + \frac{al_1}{l}$ und die in 2 angreifende $M_1 = - \frac{al_1}{l}$ erzeugt. Die Beiträge der beiden Lasten zu V sind gleich groß, jeder für sich genommen ist daher gleich Null. Dasselbe gilt für M_3 . Aus dieser Betrachtung ergeben sich ohne weiteres die in Fig. 296 a, b, c gezeichneten Einflußlinien für V, H, M_1 . Das Moment M_3 aber ist bei mittelbarer Belastung stets gleich Null. Gleichförmige Belastung (g', p', g' + p' = q') erzeugt also

$$(74) \qquad \qquad _{max}V = q'a,$$

(75)
$${}_{max}H = q' \frac{l_1 l}{4f},$$

(76)
$$_{max}M_1 = p' \frac{al_1}{4} = -_{min}M_1.$$

Eine in T angreifende Last wird von den Streben AT und BT allein aufgenommen. Von einer in D angreifenden Last P bilde man die Seitenkraft P'. Man findet dann

(77)
$$V = 0, \quad H = \frac{P'l_1}{2f}, \quad M_1 = -\frac{P'al_1}{l} = -M_2.$$

2. Unmittelbare Belastung des Balkens. An Stelle der aus Geraden bestehenden Einflußlinien treten die in der Figur 296d, e, f dargestellten Kurven. Auf ihre ungefähre Form kann man ohne weiteres aus der in

Nr. 109 durchgeführten Untersuchung schließen. Kommen aber nur gleichförmige Belastungen g und p vor, so braucht man diese Linien nicht weiter zu untersuchen. Es empfiehlt sich dann der folgende einfache Rechnungsgang.

Da die Änderungen der Stablängen vernachlässigt werden, so verhält sich der Stab AB bei jeder symmetrischen Belastung wie ein auf fünf gleich hohen starren Stützen ruhender Balken. Belastet man die Felder l_1 mit g und die Felder a mit q, so erhält man $_{max}V$ und $_{min}M_3$. Zwischen den Stützenmomenten bestehen die Beziehungen

$$2 M_1 (l_1 + a) + M_3 a = - \frac{g l_1^3}{4} - \frac{q a^3}{4}$$

 $M_1 a + 2 M_3 (a + a) + M_2 a = - \frac{q a^3}{4} - \frac{q a^3}{4}$

und man erhält, wegen $M_2 = M_1$,

(78)
$$M_{1} = \frac{-q a^{3} - 2 g l_{1}^{3}}{4 (2 l - a)},$$
$$M_{3} = \frac{-q a^{2} (l - a) + g l_{1}^{3}}{4 (2 l - a)} = {}_{min} M_{3}.$$

Weiter findet man

(79)
$$V = qa + 2 \frac{M_1 - M_3}{a}, \text{ das gibt}$$
$$\frac{qa^2 (5l - 4a) - 3gl_1^3}{2a (2l - a)}.$$

Vertauscht man g mit q, so gelangt man zu

80)
$$max M_{3} = \frac{-ga^{2}(l-a) + ql_{1}^{3}}{4(2l-a)},$$
$$\frac{ga^{2}(5l-4a) - 3ql_{1}^{3}}{2a(2l-a)}$$

Der Einfluß des Eigengewichts auf M_1 und V ist

(81)
$$M_1 = -g \frac{a^3 + 2l_1^3}{4(2l-a)}$$

(82)
$$V = +g \frac{a^2 (5l - 4a) - 3l_1^3}{2a (2l - a)} \cdot$$

Um nun den bei voller Belastung seinen größten Wert annehmenden Spannriegeldruck H zu berechnen, gehe man von der Gleichung aus

(83)
$$M_1 = M_{1 \cdot 0} - Hf - \frac{V}{2} l_1,$$

wo $M_{1 \cdot 0} = \frac{q l_1 l_1'}{2}$ ist, und setze für M_1 und V die Werte, die sich aus

den Formeln (81) und (82) ergeben, wenn g durch q ersetzt wird. Man erhält dann

(84)
$${}_{max}Hf = \frac{ql_1l_1}{2} + qd^2 - \frac{qcl_1}{2},$$

WO

(85)
$$d^2 = \frac{a^3 + 2}{4(2l - l)^2}$$

(85)
$$d^{2} = \frac{a^{3} + 2l_{1}^{3}}{4(2l - a)},$$
(86)
$$c = \frac{a^{2}(5l - 4a) - 3l_{1}^{2}}{2a(2l - a)}$$

Das Moment $minM_1$ entsteht, wenn die Nutzlast p nur auf der rechten Hälfte des Balkens aufgebracht wird. Die zu diesem Belastungsfalle gehörenden Werte V und Hf erhält man, wenn man die durch die Gleich. (82) und (84) gegebenen Werte halbiert und hierauf p an die Stelle von g bzw. q setzt. Es entsteht

$$V = \frac{pc}{2}$$
 und $Hf = \frac{pl_1l_1'}{4} + \frac{pd^2}{2} - \frac{pcl_1}{4}$

Da nun $M_{1\cdot 0}$ für den fraglichen Belastungsfall gleich $\frac{pl}{8}l_1$ ist, so ergibt sich nach Gleich. (83)

$$_{min}M_1 = \frac{pll_1}{8} - \frac{pl_1l_1'}{4} - \frac{pd^2}{2}$$
, das ist
 $_{min}M_1 = -\frac{pl_1a}{4} - \frac{pd^2}{2}$.

Wird der Einfluß des Eigengewichts hinzugerechnet, so entsteht

(87)
$$_{min}M_{1} = -\frac{pl_{1}a}{4} - \left(\frac{p}{2} + g\right)d^{2},$$

und hieraus folgt dann

(88)
$$_{max}M_1 = + \frac{pl_1a}{4} + \left(\frac{p}{2} - q\right)d^2,$$

weil $_{min}M_1 + _{max}M_1$ gleich dem Momente für volle Belastung mit q + gsein muß. Das maßgebende Moment ist $_{min}M_1$.

Für die Spannkräfte in den seitlichen Hängestangen und in den Gurtstäben liefern die Gleichgewichtsbedingungen für die Knotenpunkte C und T die Formeln

(89)
$$V_1 = H \operatorname{tg} \alpha,$$

(90)
$$S' = -\frac{V}{2 \sin \alpha},$$
$$S_1 - S' = -H \sec \alpha.$$

Die größten Werte V_1 und S' ergeben sich ohne weiteres aus den größten Werten H und V. Die Formel für S_1 läßt sich umformen in

$$S_1 f \cos \alpha = -\frac{1}{2} V f \cot \alpha - H f = -\frac{1}{2} V l_1 - H f,$$

und hieraus und aus Gleich. (83) folgt

(91)
$$S_1 f \cos \alpha = -M_{1 \cdot 0} + M_1.$$

Dieser Wert wird am größten bei voller Belastung. Es entsteht

(92)
$$S_1 f \cos \alpha = - \frac{q l_1 l_1'}{2} - q d^2.$$

3. Sprengewerke.

111. Das doppelte Sprengewerk (Fig. 297). X_a bedeutet wieder den Druck im Spannriegel. Die Achsen der Streben werden mit den

durch die Balkenstützen gehenden Lotrechten in A und B zum Schnitt gebracht. In den Punkten A und B werden die Stützenwiderstände S_1 und S_2 in die lotrechten Komponenten A_u und B_u und in die mit der Geraden AB zusammenfallenden Seitenkräfte X_a sec γ zerlegt. Die Widerstände der Balkenstützen seien A_a und B_a , ferner werde

$$A_o + A_u = A, \quad B_o + B_u = B$$

gesetzt. Am Balken oder in den Knotenpunkten C und D greifen lotrechte Lasten an. Die Momentengleichung in bezug auf den Punkt B lautet

 $Al - \Sigma Pb = 0.$

that the second is

$$A = \frac{\Sigma P b}{l}$$

In derselben Weise entsteht

$$B = \frac{\sum P}{l} (l - b).$$

Es sind also $A_o + A_u$ und $B_o + B_u$ ebenso groß wie die Stützenwiderstände eines einfachen Balkens von der Spannweite l. Führt man

and
$$B_o + B_u$$
 evenso grow wie die Stutzen-
Balkens von der Spannweite *l*. Führt man
im Abstande $x < l_1$ einen lotrechten Schnitt
und zerlegt man an der Schnittstelle (Fig. 298)
die Kräfte S_1 und X_a sec γ nach lotrechter
und wagerechter Richtung, so erhält man
für das Biegungsmoment des Balkenquer-
schnitts den Wert

$$(93) \qquad M = M_0 - X_a y,$$

denn das von den Kräften $A_o + A_u = A$ und P herrührende Moment ist gleich dem Biegungsmomente M_0 des nur von den Lasten P angegriffenen einfachen Balkens AB. Denselben Ausdruck (93) erhält man auch für $x > l_1$. Die in lotrechter Richtung gemessenen Abstände y des Linienzuges ACDB von der Schlußlinie AB stellen also die Momente M_a infolge $X_a = -1$ vor. Durch diese Entwicklung ist also die Berechnung des doppelten Sprengewerks auf

die in Nr. 103 erledigte Berechnung des doppelten Hängewerks zurückgeführt. Nur wird jetzt der Balken durch lotrechte Lasten P ausschließlich auf Biegung beansprucht. Es ist also

$$\sigma = \pm \frac{M}{W}$$
.

Auch hat der Balken keinen Einfluß auf die Ziffer v.

380

sie liefert

Sodann tritt die Aufgabe der Ermittlung der Stützenwiderstände A_o und B_o hinzu. Aus

$$u = X_a (\operatorname{tg} \alpha_1 - \operatorname{tg} \gamma) \text{ und } A_o = A - A_u$$

folgt

(94)

$$A_o = A - \psi X_a = \psi \left(\frac{A}{\psi} - X_a\right),$$

wenn zur Abkürzung

A

 $\operatorname{tg} \alpha_1 - \operatorname{tg} \gamma = \psi$

gesetzt wird. Die Einflußfläche für A_o zeigt Fig. 297; sie ist der Unterschied der Einflußfläche für A/ψ und für X_a . Ihr Multiplikator ist ψ . Ist $f_1 = f_2 = f$ und $\gamma = 0$, Fig. 301, so wird

$$A_u = X_a \operatorname{tg} \alpha_1 = X_a \frac{f}{l_1},$$

und man erhält

$$A_o l_1 = A l_1 - X_a f.$$

An Stelle der X_a -Linie wird die $X_a f$ -Linie benutzt. Die $A_o l_1$ -Fläche ist bestimmt durch die Strecke $\overline{A'A''} = l_1$; sie stimmt rechts vom Querschnitte 1 mit der M_1 -Fläche überein.

Liegt der Spannriegel unter dem Balken, so muß man zwischen Spannriegel und Balken eine Lücke lassen, wenn man haben will, daß

der Spannriegel nicht auf Biegung beansprucht wird. Die Übertragung der für das Hängewerk aufgestellten Berechnung auf das Sprengewerk setzt in diesem Falle streng genommen sogar voraus, daß zwischen Spannriegel und Balken lotrechte Gelenkstäbe (Fig. 299) eingeschaltet werden. Der Verfasser hat bei der von sehr schweren Einzellasten befahrenen Rüstung für den Berliner Dom hölzerne Sprengewerke ohne Spannriegel ausgeführt*). In diesem Falle sind C und D die Schnittpunkte der Strebenachsen und der Balkenachse. Fig. 300.

Besonders wichtig ist, daß die Stützenwiderstände auch negativ werden können. Tritt dieser Fall ein, was von dem Verhältnis $l_1: l_0: l_1$ und dem Verhältnis der ständigen Belastung zur veränderlichen Nutz-

*) Angaben über die Belastung der Domrüstung findet man in Band I (1905), Seite 513. last abhängt, so muß das Balkenende verankert werden. Fehlt diese Verankerung, so muß die folgende Untersuchung angestellt werden.

Es sei $l_1 < l_2$. Die Möglichkeit, daß das Auflager druckfrei wird, ist also bei A_o größer als bei B_o . Man berechne das von der ständigen Belastung herrührende Moment

 $M_{1g} = -g \mathfrak{F}''$ [siehe Formel (32), Seite 359] und den zugehörigen Auflagerwiderstand

Die Felderteilung wird man stets so wählen, daß dieser Wert positiv ist. Nun schiebt man die Verkehrslast von *B* aus bis zum Nullpunkte *N* der $A_o l_1$ -Fläche vor, Fig. 301, und prüft, ob A_o positiv oder negativ ist. Durch den Inhalt \mathfrak{F} des negativen Teiles der Einflußfläche ist $A_{op} = -\frac{p \mathfrak{F}}{l_1}$ bestimmt, und man erhält

$$A_o = A_{og} - \frac{p \mathfrak{F}}{l_1} \cdot$$

Ist dieser Wert positiv, so ist $_{min}M_{1p} = -p\mathfrak{F}.$

Wir wollen nun aber annehmen, es habe sich

herausgestellt, und es müsse die Verkehrslast von B aus bis E vorge-

 $A_{og} < \frac{p\mathfrak{F}}{l}$

wir aber betonen, daß bei dieser Untersuchung die Ziffer v in der Regel nicht gleich 1 angenommen werden darf. Je kleiner f ist, desto größer ist ihr Einfluß.

Solange das Lastende rechts von E liegt, hebt sich der Balken vom Auflager A, ab; er wird nur in den drei Punkten 1, 2, B gestützt, so zwar, daß in 1 und 2 gleichgroße Stützenwiderstände V entstehen;

ihre Mittelkraft halbiert die Strecke l_0 . Liegt also die Lasteinheit im Mittelpunkte K von l_0 , so entsteht bei dieser Stützung V = 0.5. Durch diese Angabe ist die *V*-Linie (Fig. 302a) bestimmt.

Das Angriffsmoment für den im Abstande x vom Knoten 1 gelegenen Querschnitt m ist $M_m = Vx$, solange die Last rechts von mliegt. Die Einflußlinie für diesen Ausdruck ist eine Gerade B'K' (Fig. 302b), die auf der Lotrechten durch K die Strecke $K''K' = \frac{1}{2}x$ abschneidet. Die Einflußlinie m'J' für links von m angreifende Lasten ist bestimmt durch $\overline{JJ'} = x$, denn eine im Punkte 1 angreifende Last 1 erzeugt

$$M_m = (-1 + V) x = -x + \overline{J''J} = -\overline{J''J'}.$$

Der Schnittpunkt L der Geraden J'K' und B'J'' hat eine feste, von x unabhängige Lage.

Das Moment $_{max}M_{mp}$ entsteht nun, wenn die Last von B aus bis zum Nullpunkte E' vorrückt, vorausgesetzt, daß E' rechts von der vorhin (Fig. 301) ermittelten Grenze E liegt. Sonst darf die Belastung nur bis E vorgeschoben werden. Die zugehörigen Momente infolge der ständigen Belastung sind der in Fig. 302 c dargestellten Momentenfläche zu entnehmen.

Ist l_0 verhältnismäßig groß, so kann bei kleinem Werte g:p in der Mitte der Strecke l_0 ein positives Moment entstehen, das erheblich größer ist, als das für den Fall verankerter Balkenenden in der Regel maßgebende Moment $_{min}M_1$. Umgekehrt kann es aber vorkommen, daß die Beanspruchung des Balkens durch Weglassung der Verankerung vermindert wird. Das Auf- und Abschwingen der Balkenenden ist allerdings eine störende Zugabe.

Zu den in den vorstehenden Untersuchungen aufgestellten fertigen Formeln bemerken wir noch, daß außer den dort berücksichtigten beiden
Hängewerke und Sprengwerke.

Fällen: mittelbare, auf die Knoten A, 1, 2 und B übertragene Belastung des Balkens und unmittelbar am Balken angreifende Belastung noch der Fall vorkommen kann, daß die mittelbare Belastung auch auf zwischen den Knoten A, 1, 2, B, liegende feste Punkte übertragen wird. Fig. 303 zeigt ein Beispiel. Die $X_{a}f$ -Linie ist hier bestimmt durch die Ordinaten:

$$egin{aligned} &e_1\!=\!rac{1}{2}\,l_1, \quad e_2\!=\!rac{1}{2}\,l_2, \quad e_3\!=\!rac{l_1\!+\!l_2}{4}\!+\!rac{3\,a^2}{2\,(l+2\,l_0)}, \ &e'\!=\!rac{1}{4}\,l_1\!+\!rac{3}{16}\,rac{l_1^2}{l+2\,l_0}, \quad e''\!=\!rac{1}{4}\,l_2\!+\!rac{3}{16}\,rac{l_2^2}{l+2\,l_0}*). \end{aligned}$$

112. Beispiel für ein mehrfach statisch unbestimmtes Sprengewerk. Es soll das in Fig. 304 dargestellte symmetrische Sprengewerk untersucht werden**). Die Achsen der Streben schneiden die

Balkenachse in den Punkten 1, 2, 3, 4. Die Streben und die beiden Pfosten 0A und 5B seien gelenkartig mit dem Balken verbunden angenommen. Das Tragwerk ist dreifach statisch unbestimmt. Als statisch unbestimmte Größen seien eingeführt:

der Horizontalschub X_a der Strebe 1 A,

$$X_c$$
 , , AB ,

und der wagerechte Widerstand X_b der Stütze A. Solange nur lotrechte Lasten P wirken, ist der wagerechte Widerstand der anderen Stütze:

*)
$$x = \frac{1}{2} l_2$$
 liefert $\omega_D \frac{\pi l_2^2}{6} = \frac{3}{16} \frac{l_2^2}{l + 2l_0}$

**) Ein ähnliches Sprengewerk ohne Spannriegel hatte der Verfasser bei der Rüstung des Berliner Domes angewendet. Die Balkenenden waren mit den Gerüststielen verankert.

Müller-Breslau, Graphische Statik. II. 2.

 $H = X_b$. Die lotrechten Stützenwiderstände A und B sind dieselben wie bei einem einfachen Balken. Es ist also

$$A = P \frac{b}{l}, \quad B = P \frac{a}{l}.$$

Die Spannkräfte S in den Pfosten und Streben und die den Balken beanspruchenden Längskräfte N sollen positiv angenommen werden, sobald sie *Druck* erzeugen. Es ist also

$$S_1 = X_a \sec \beta, \quad S_4 = X_c \sec \beta,$$

und weiter ergibt sich aus den Gleichgewichtsbedingungen für die Knotenpunkte A und B zunächst

$$S_2 = (X_b - X_a) \sec \gamma,$$

 $S_3 = (X_b - X_c) \sec \gamma,$

und hierauf

$$S_{\mathcal{A}} = \frac{Pb}{l} - X_{a} (\operatorname{tg} \beta - \operatorname{tg} \gamma) - X_{b} \operatorname{tg} \gamma,$$
$$S_{B} = \frac{Pa}{l} - X_{c} (\operatorname{tg} \beta - \operatorname{tg} \gamma) - X_{b} \operatorname{tg} \gamma.$$

fü

Die den Balken beanspruchenden Längskräfte N sind

r	den	Tell	0-1	N = 0
	77	77)	1-2	$N = X_a$
	77	"	2 - 3	$N = X_b$
	77	77	3-4	$N = X_c$
	77	77	4-5	N = 0.

Mit M_0 bezeichnen wir wie bisher das Biegungsmoment für irgendeinen Querschnitt eines nur in den Punkten 0 und 5 gestützten, mit Pbelasteten einfachen Balkens. Sodann führen wir durch das Feld 0—1 einen lotrechten Schnitt, zerlegen die Strebendrücke S_1 und S_2 an den Schnittstellen nach wagerechter und lotrechter Richtung (Fig. 305) und finden, da

 ${\cal A}$ und ${\cal P}$ das Moment M_0 erzeugen, für das wirkliche Biegungsmoment M den Ausdruck

$$M = M_0 - X_a y_a - X_b y_b$$

und in derselben Weise erhalten wir

für das Feld 1-2 $M = M_0 - X_a y_a - X_b y_b$ (Fig. 306) , , , 2-3 $M = M_0 - X_c y_a - X_b y_b$ (Fig. 307) , , , 3-4 $M = M_0 - X_c y_c - X_b y_b$ (Fig. 304) , , , 4-5 $M = M_0 - X_c y_c - X_b y_b$ (Fig. 304). Es ist also $M_a = y_a$, $M_b = y_b$, $M_c = y_c$.

Hängewerke und Sprengwerke.

In Figur 308 ist die M_b -Fläche durch hellere Schraffierung hervorgehoben worden. Die M_a -Fläche und die M_b -Fläche sind dunkler schraffiert.

Bezeichnet man den Inhalt und das Trägheitsmoment des Balkenquerschnitts mit F und J, ferner die Querschnitte der Stäbe 0A, 1A,

2A mit F_0 , F_1 , F_2 und die Längen dieser Stäbe mit f, s_1 , s_2 , so findet man

Fünfter Abschnitt. - § 22.

$$\begin{split} EJ\delta_{ab} = &\int M_a M_b dx + \int N_a N_b \frac{J}{F} dx + \Sigma S_a S_b \frac{J}{F} s \\ = &\frac{f^2 l_2 \left(2 l_1 + l_2\right)}{6 l_4} + f \frac{J}{F_0} \operatorname{tg} \gamma \left(\operatorname{tg} \beta - \operatorname{tg} \gamma\right) - \frac{s_2 J}{F_2} \sec \beta \sec \gamma, \\ & EJ\delta_{ac} = 0; \end{split}$$

ferner, aus der Symmetrie des Tragwerks folgend,

$$\delta_{cc} = \delta_{aa}, \quad \delta_{cb} = \delta_{ab}.$$

Die Gleichungen zur Berechnung von X_a , X_b , X_c lauten also

$$\begin{aligned} X_a \delta_{aa} + X_b \delta_{ab} &= \delta_{ma}, \\ X_a \delta_{ab} + X_b \delta_{bb} + X_c \delta_{ab} &= \delta_{mb}, \\ X_b \delta_{ab} + X_c \delta_{aa} &= \delta_{mc}; \end{aligned}$$

sie liefern

$$X_{a} = \alpha_{aa}\delta_{ma} + \alpha_{ab}\delta_{mb} + \alpha_{ac}\delta_{mc},$$

$$X_{b} = \alpha_{ab}\delta_{ma} + \alpha_{bb}\delta_{mb} + \alpha_{ab}\delta_{mc}^{*})$$

wo, mit der zur Abkürzung eingeführten Bezeichnung

$$D = \delta_{aa} \delta_{bb} - 2 \, \delta_{ab}^2,$$

zu setzen ist

$$\alpha_{aa} = \frac{\delta_{aa}\delta_{bb} - \delta_{ab}^2}{D},$$
$$\alpha_{ab} = -\frac{\delta_{ab}}{D}, \quad \alpha_{ac} = \frac{\delta_{ab}^2}{\delta_{aa}D}, \quad \alpha_{bb} = \frac{\delta_{aa}}{D}$$

Die Einflußlinien für X_a und X_b sind nun die zu den Momentenlinien

$$M' = \alpha_{aa} M_a + \alpha_{ab} M_b + \alpha_{ac} M_c$$

beziehungsweise

$$M'' = \alpha_{ab} \left(M_a + M_c \right) + \alpha_{bb} M_d$$

gehörigen Biegungslinien des Balkens 0—5, wobei zu beachten ist, daß bei den die Momente M' und M'' erzeugenden Belastungszuständen in den Pfosten die Spannkräfte

$$S_{A}' = \alpha_{aa} (\operatorname{tg} \beta - \operatorname{tg} \gamma) + \alpha_{ab} \operatorname{tg} \gamma$$

$$S_{B}' = \alpha_{ab} \operatorname{tg} \gamma + \alpha_{ac} (\operatorname{tg} \beta - \operatorname{tg} \gamma)$$

$$S_{A}'' = \alpha_{ab} (\operatorname{tg} \beta - \operatorname{tg} \gamma) + \alpha_{bb} \operatorname{tg} \gamma = S_{B}''$$

entstehen. Die Längenänderungen

$$\Delta s_{a}' = \frac{S_{a}'f}{EF_{0}}$$
 und $\Delta s_{b}' = \frac{S_{b}'f}{EF_{0}}$

*) Die X_{σ} -Linie ist das Spiegelbild der X_{α} -Linie; ihre Gleichung braucht also nicht angeschrieben zu werden.

Hängewerke und Sprengwerke.

bestimmen die Lage der Schlußlinie für die zur M'-Linie gehörige Biegungslinie. Zu den M'' gehört in derselben Weise

$$\Delta s_{A}^{"} = \Delta s_{B}^{"} = \frac{S_{A}^{"}f}{EF_{0}}.$$

Wir wollen die Rechnung noch etwas weiter durchführen unter der oft (wenigstens für den ersten Rechnungsgang) zulässigen Vernachlässigung der von den Längskräften S und N herrührenden Glieder. Die Rechnungsergebnisse werden dann unabhängig von dem Werte EJ, und wir dürfen daher EJ = 1 annehmen. Indem wir

$$l_1 = l_2 = l_3 = u$$

setzen, erhalten wir

$$\delta_{aa} = 2 \frac{f^2 u}{12}, \quad \delta_{bb} = 28 \frac{f^2 u}{12}, \quad \delta_{ab} = 3 \frac{f^2 u}{12}$$

und, wenn wir zur Abkürzung die Bezeichnung

$$v = \frac{3}{19f^2u}$$

einführen,

$$\alpha_{aa} = 47 \nu, \quad \alpha_{ab} = -6 \nu, \quad \alpha_{ac} = 9 \nu, \quad \alpha_{bb} = 4 \nu.$$

Die Einflußlinie für X_a ist die Momentenfläche eines einfachen Balkens 0-5, dessen Belastungsfläche die M'-Fläche ist. Die Formel

$$M' = \alpha_{aa} y_a + \alpha_{ab} y_b + \alpha_{ac} y_c$$

liefert für die Knotenpunkte

$$1, 2, 3, 4$$

$$M' = + 20,5 vf, -6 vf, -6 vf, +1,5 vf.$$

Durch diese Werte ist die in Fig. 309 dargestellte Belastungsfläche bestimmt. Nun ergeben sich nach der auf Seite 104 abgeleiteten Formel (34) für den Sonderfall in Fig. 310 die Ausdrücke

$$\begin{split} M_1 &= \frac{u^2}{5} \left(\frac{19}{6} z_1 + 3 \ z_2 + 2 \ z_3 + z_4 \right) \\ M_2 &= \frac{u^2}{5} \left(3 \ z_1 + \frac{31}{6} z_2 + 4 \ z_3 + 2 \ z_4 \right) \\ M_3 &= \frac{u^2}{5} \left(2 \ z_1 + 4 \ z_2 + \frac{31}{6} z_3 + 3 \ z_4 \right) \\ M_4 &= \frac{u^2}{5} \left(z_1 + 2 \ z_2 + 3 \ z_3 + \frac{19}{6} z_4 \right), \end{split}$$

und man erhält daher für die Punkte (1), (2), (3), (4) die folgenden Ordinaten der X_a -Linie.

Fünfter Abschnitt. - § 22.

$$\begin{split} \eta_{(1)} &= \frac{u^2}{5} \left(\frac{19}{6} \cdot 20, 5 - 3 \cdot 6 - 2 \cdot 6 + 1 \cdot 1, 5 \right) \lor f = +1, 150 \frac{u}{f} \\ \eta_{(2)} &= \frac{u^2}{5} \left(3 \cdot 20, 5 - \frac{31}{6} \cdot 6 - 4 \cdot 6 + 2 \cdot 1, 5 \right) \lor f = +0, 300 \frac{u}{f} \\ \eta_{(3)} &= \frac{u^2}{5} \left(2 \cdot 20, 5 - 4 \cdot 6 - \frac{31}{6} \cdot 6 + 3 \cdot 1, 5 \right) \lor f = -0, 300 \frac{u}{f} \\ \eta_{(4)} &= \frac{u^2}{5} \left(1 \cdot 20, 5 - 2 \cdot 6 - 3 \cdot 6 + \frac{19}{6} \cdot 1, 5 \right) \lor f = -0, 150 \frac{u}{f} \end{split}$$

Fig. 309.

Um die vollständige X_a -Linie zu erhalten, braucht man zu den Ordinaten des Linienzuges 0' - 1' - 2' - 3' - 4' - 5' nur noch die Ordinaten der Momentenlinien einfacher Balken $0 - (1), (1) - (2), \ldots$ hinzuzufügen oder in Abzug zu bringen, deren Belastungsflächen sich aus Dreiecken und Rechtecken zusammensetzen. Für das erste Feld erhält man an der Stelle x den Zuschlag

$$\eta_1 = \omega_D 20,5 \ v f \frac{u^2}{6} = 539 \, \omega_D \frac{u}{f},$$

für die übrigen Felder ist der Reihe nach, mit Hinweis auf Fig. 309

Hängewerke und Sprengwerke.

Die Einflußlinie für X_b ist die Momentenfläche eines einfachen Balkens, dessen Belastungsfläche die M''-Fläche ist. Die Formel

$$M'' = \alpha_{ab} (y_a + y_c) + \alpha_{bb} y_b$$

liefert für die Knotenpunkte 1, 2 (Fig. 311)

 $M'' = - \nu f$ bzw. $+ 4 \nu f$.

Die M''-Fläche ist symmetrisch. Die Gleichungen für die Momente $M_1, \ M_2$ gehen über in

$$M_{1} = u^{2} \left(\frac{5}{6} z_{1} + z_{2} \right)$$
$$M_{2} = u^{2} \left(z_{1} + \frac{11}{6} z_{2} \right)$$

und man erhält an den Stellen (1) und (2) die folgenden Ordinaten der X_b -Linie

$$\eta_{(1)} = u^2 \left(-\frac{5}{6} \cdot 1 + 4 \right) \forall f = 0, 5 \frac{u}{f}$$

$$\eta_{(2)} = u^2 \left(-1 + \frac{11}{6} 4 \right) \forall f = 1, 0 \frac{u}{f}.$$

Weiter findet, man

$$\begin{aligned} \eta_{1} &= \omega_{D} v f \frac{u^{2}}{6} &= 0,026 \,\omega_{D} \, \frac{u}{f} \\ \eta_{2} &= \omega_{D} 5 \, v f \frac{u^{2}}{6} - \omega_{R} v f \frac{u^{2}}{2} = (0,131 \,\omega_{D} - 0,079 \,\omega_{R}) \, \frac{u}{f} \\ \eta_{3} &= \omega_{R} 4 \, v f \frac{u^{2}}{2} &= 0,316 \,\omega_{R} \, \frac{u}{f} \cdot \end{aligned}$$

Nach Ermittlung der Einflußlinien für X_a und X_b gestaltet sich die, weitere Untersuchung des vorliegenden Sprengewerks sehr einfach.

Man zeichnet zunächst mittels der Formel

$$S_{\mathcal{A}} = P \frac{b}{l} - X_{a} (\operatorname{tg} \beta - \operatorname{tg} \gamma) - X_{b} \operatorname{tg} \gamma$$
$$= \frac{Pb}{l} - (X_{a} + X_{b}) \frac{f}{2u}$$

die Einflußlinie für S_A und findet dann für das Biegungsmoment M des Balkenstückes 0-1 an der Stelle x den Wert

wo P eine links vom Querschnitte und im Abstande c vom Querschnitte ruhende Last bedeutet. Solange die Last P rechts vom Querschnitte liegt, ist $M = S_A x$ und die S_A -Linie darf als Einflußlinie für M, unter Einführung des Multiplikators $\mu = x$, benutzt werden. Es liegt hier dieselbe Aufgabe vor, wie bei der Darstellung der Momente für die Querschnitte der Endöffnung eines Balkens auf mehreren Stützen und es darf deshalb auf die erste Abteilung dieses Bandes, § 13, Nr. 152 verwiesen werden.

Die Querschnitte der Balkenstücke 1-2 und 2-3 werden durch Momente und Längskräfte beansprucht; es sind also die auf die Kernpunkte der Querschnitte bezogenen Momente darzustellen. Es handele sich um das Moment M° für einen *oberen*, im Abstande k_{\circ} von der Balkenachse liegenden Kernpunkt o. Der Querschnitt gehöre dem Balkenstücke 2-3 an. Man findet

$$M^{o} = M_{0} - X_{b} (y_{b} + k_{o}) = (y_{b} + k_{o}) \left[\frac{M_{0}}{y_{b} + k_{o}} - X_{b} \right].$$

Von der $M_0: (y_b + k_o)$ -Linie wird die X_b -Linie in Abzug gebracht. Der Multiplikator ist $\mu = y_b + k_o$. M_0 ist das Biegungsmoment für den Querschnitt eines einfachen Balkens von der Spannweite 0-5=l. Es genügt ein Hinweis auf die ganz ähnliche Darstellung der Angriffsmomente für die Knotenpunkte des Fachwerkbogens mit zwei Gelenken in Abteilung I, § 7, Nr. 84.

Für einen Querschnitt des Balkenstückes 1-2 findet man

$$M^{\circ} = M_0 - X_a \left(y_a + k_o \right) - X_b y_b.$$

§ 23.

Kette, versteift durch einen vollwandigen Balken.

113. Wir knüpfen an die in Abteilung 1, § 9 durchgeführte Untersuchung einer durch einen Fachwerkbalken versteiften Kette an. Das Biegungsmoment für den Balken ist an der Stelle x (Fig. 312),

 $(1) M = M_0 - Hy,$

wo H den Horizontalzug der Kette bedeutet. Für den Zustand H = -1entsteht das Moment M' = y. Ist also δ' die Ordinate der zu den Momenten M' gehörigen Biegungslinie des Balkens, so ist der Einfluß einer Last P = 1:

(2)
$$H = \frac{\delta'}{\Sigma S'^2 \frac{s}{EF} + \int_0^l M'^2 \frac{dx}{EJ}} = \frac{\delta'}{\Sigma S'^2 \frac{s}{EF} + \int_0^l y^2 \frac{dx}{EJ}}$$

Die Durchbiegungen δ' werden nach § 2 der vorliegenden Abteilung ermittelt. Die im Nenner stehende Summe erstreckt sich über die Tragketten, die Rückhaltketten und die Hängestangen. Das Integral bezieht sich auf den Versteifungsbalken, dessen Querschnitt das Trägheitsmoment *J* haben möge. Es ist stets zulässig, an die Stelle des Integrales die Summe $\Sigma y^2 \frac{\Delta dx}{EJ}$ zu setzen, wobei man etwa Δdx gleich der Feldweite nehmen darf.

Der Einfluß einer Temperaturänderung ist*)

*) Vgl. Seite 99.

Fünfter Abschnitt. - § 23.

h bedeutet die Höhe des Versteifungsbalkens. Bei gleichmäßiger Erwärmung des ganzen Tragwerks wird

Wird der Kettenquerschnitt so abgestuft, daß die Spannung $\sigma = \frac{S}{F}$ in allen Gliedern der Tragkette und der Rückhaltketten gleichgroß ist, und werden die Längenänderungen der Hängestangen vernachlässigt, so ist nach Abt. 1, § 9

(5)
$$\Sigma S^{\prime 2} \frac{s}{EF} = \frac{l_1}{EF_k} \frac{s_0}{l_1},$$

wo Fk den Querschnitt der Kette im Scheitel bedeutet und

(6)
$$\frac{s_0}{l_1} = 1 + \frac{16}{3} \frac{f_1^2}{l_1^2} + \frac{c^2}{l_1^2} + \frac{s'}{l_1} \sec \alpha' + \frac{s''}{l_1} \sec \alpha''.$$

Hinsichtlich der Bezeichnungen wird auf Fig. 312 verwiesen.

In der Regel ist es erlaubt, die Kettenlinie als Parabel anzusehen und J unveränderlich anzunehmen. Dann ist

$$\int_{0}^{l} \frac{y^2 dx}{EJ} = \frac{8f^2 l}{15 EJ}$$
$$EJ\delta' = \omega_{P}'' \frac{fl^2}{3},$$

und

denn die Werte $EJ\delta'$ sind gleich den zu einer parabelförmigen Belastungslinie vom Pfeil f gehörenden Biegungsmomenten. Die Zahlen ω_{P}'' stehen auf Seite 105*). Gleich. (2) geht über in

$$H = \frac{\omega_{P}^{"} \frac{fl^{2}}{3} \cdot \frac{1}{EJ}}{\frac{s_{0}}{l_{1}} \frac{l_{1}}{EF_{k}} + \frac{8}{15}f^{2}l\frac{1}{EJ}}$$

Man erhält

 $H = \frac{5}{8} \omega_P'' \frac{l}{f} \nu,$

wo

(8)

(7)

$$1 + \frac{15}{8} \frac{J}{F_k f^2} \frac{s_0}{l}$$

Die durch die Gleichung (8) bestimmte Einflußlinie für H darf man nach Abteilung 1, § 9 stets durch eine Parabel von der Pfeilhöhe $\frac{3l}{16f}$ v ersetzen. Man erhält dann

(9) $H = \frac{3Pab}{4fl} \gamma.$

v ==

Eine in Nr. 104 durchgeführte Untersuchung wird zeigen, daß diese Formel sogar genauere Werte für H liefert als Formel (7).

Da nun die der Last P entsprechende M_0 -Fläche ein Dreieck von der Grundlinie l und der Höhe $\frac{Pab}{l}$ ist, so läßt sich (9) auch wie folgt schreiben

(10)
$$H = \frac{\frac{Pab}{l} \cdot \frac{l}{2}}{\frac{2}{3}fl} = \frac{\int_{0}^{l} M_{0}dx}{\int_{0}^{l} ydx}$$

*) In der letzten Spalte muß es heißen:

$$\omega_{P}'' = \frac{x^{4}}{l^{4}} - 2 \frac{x^{3}}{l^{3}} + \frac{x}{l} = 2 \omega_{D} - \omega_{P} = \omega_{R} (1 + \omega_{R})$$
$$\frac{x l^{3}}{15} \text{ statt } \frac{x l^{3}}{30}.$$

ferner

Der Zähler dieses Ausdruckes ist gleich dem Inhalte der M_0 -Fläche, der Nenner gleich dem Inhalte der von der Schlußlinie A''B'' und der Kettenlinie begrenzten Fläche. Hiernach erhält man für eine gleichförmig über eine Strecke c verteilte Belastung pc, mit den in Fig. 313 angegebenen Abmessungen der M_0 -Fläche:

$$\int M_0 dx = pc \frac{ab}{l} \frac{l}{2} - \frac{1}{3} \frac{pc^2}{8} c = \frac{pc}{2} \left(ab - \frac{c^2}{12} \right)$$

 $3 pc (, c^2)$

und

$$H = \frac{1}{4} \frac{1}{fl} \left(ab - \frac{1}{12}\right)^{3}.$$

$$I = \frac{1}{4} \frac{1}{fl} \left(ab - \frac{1}{12}\right)^{3}.$$

$$I = \frac{1}{4} \frac{1}{fl} \left(ab - \frac{1}{12}\right)^{3}.$$

$$Pc = \frac{1}{4} \frac{1}{fl} \left(ab - \frac{1}{12}\right)^{3}.$$

$$Pc = \frac{1}{4} \frac{1}{fl} \left(ab - \frac{1}{12}\right)^{3}.$$
Fig. 313.

Der Einfluß einer gleichmäßigen Erwärmung ist für eine Kette gleicher Festigkeit, versteift durch einen Balken mit unveränderlichem Querschnitt

$$H_t = -\varepsilon E F_k t (1 - \nu)^*).$$

Wird der vollwandige Balken durch ein Fachwerk mit parallelen Gurtungen ersetzt und mit F_c der Querschnitt einer Gurtung bezeichnet, so ist zu setzen

(13)
$$J = 2 F_o \left(\frac{h}{2}\right)^2 = F_o \frac{h^2}{2}.$$

Man erhält, übereinstimmend mit Abt. 1, § 9, Gleich. (8),

(14)
$$\gamma = \frac{1}{1 + \frac{15}{16} \frac{F_{\sigma}}{F_{k}} \frac{h^{2}}{f^{2}} \frac{s_{0}}{l}}$$

*) Abt. 1, § 9, Gleich. (12).

Kettenbrücken mit zwei oder drei Öffnungen mit durchgehendem Versteifungsbalken behandeln die §§ 15 u. 16 der Abt. 1. Die Anwendung der dort für fachwerkartige Versteifungsbalken entwickelten Verfahren auf vollwandige Balken bietet keine Schwierigkeit. Die dort verwendeten Biegungslinien werden, statt nach den für das Fachwerk aufgestellten Regeln, nunmehr nach § 2 der vorliegenden Abteilung ermittelt. Sodann ist zu beachten, daß die Formel

$$\delta_{ik} = \Sigma S_i S_k \frac{s}{EF}$$

übergeht in

$$\delta_{ik} = \Sigma S_i S_k rac{s}{EF} + \int N_i N_k rac{s}{EF} + \int M_i M_k rac{s}{EJ},$$

wobei sich die Integrale auf den vollwandigen Balken beziehen. Die für unendlich kleine Feldlängen und Fachwerke mit parallelen Gurtungen abgeleiteten geschlossenen Formeln lassen sich mit Hilfe der Gleich. (13) ohne weiteres für vollwandige Balken verwerten. Wird z. B. bei der in Abt. 1, § 16 untersuchten Kettenbrücke der Versteifungsbalken vollwandig gebaut, so tritt an die Stelle von Gleichung (4) die Gleichung

$$\frac{\frac{8}{15}(2f_1^2l_1+f^2l)-\frac{c^2}{3}(2l_1+3l)+\frac{s_0J}{F_k}=k^3,$$

und an Stelle von (8):

$$X_{ct} = -\frac{\varepsilon E J t s_0}{k^3}$$

Genauere Untersuchung einer durch einen einfachen Balken versteiften Kette.

114. Elastische Linie, Momente und Querkräfte des Balkens. Wir stellen uns jetzt die Aufgabe, den Einfluß der Formänderungen Δy auf die Beanspruchung des Versteifungsbalkens einer Kette festzustellen und gehen von dem Belastungszustande aus, dem ein spannungsloser Versteifungsbalken AB entspricht. (Abt. 1, § 9, Nr. 98.)

Für diesen Anfangszustand sei der Horizontalzug der Kette H_a und die Spannkraft in irgendeiner Hängestange Z_a . Denken wir uns den Balken AB mit abwärts gerichteten Kräften Z_a und dem Gewichte der Kette belastet und die hierdurch hervorgerufenen Biegungsmomente M' bestimmt, so besteht die Beziehung

$$(1) M' = H_a y.$$

Nun mögen auf den an der Kette hängenden Balken lotrechte Lasten P gebracht werden. Es wächst Z_a um Z, H_a um H, y um Δy . Der bislang spannungslose Balken wird durch Biegungsmomente

$$(2) M = M_0 - M'$$

beansprucht, wobei M_0 den Einfluß der Lasten P und (-M'') den Einfluß der Spannkräfte Z bedeutet. An der Kette greifen außer ihrem Eigengewichte nunmehr Lasten $Z + Z_a$ an und es geht daher Gleichung (1) über in

(3)
$$M' + M'' = (H_a + H)(y + \Delta y).$$

Aus (1) und (3) folgt

$$M'' = Hy + (H_a + H) \,\Delta y,$$

und es geht daher (2) über in

Zu dem bisher benutzten Näherungswerte

$$M = M_0 - Hy$$

ist der Wert $(H_a + H) \Delta y$ getreten, der bei weitgespannten, schweren Kettenbrücken infolge des großen Anfangszuges H_a von merkbarem Einflusse auf die Beanspruchung des Versteifungsbalkens sein kann.

Wir nehmen die Stützweiten der Kette und des Balkens gleichgroß an, vernachlässigen die Längenänderungen der Hängestangen, rechnen mit unendlich kleinen Feldlängen und erhalten für die elastische Linie des Balkens die Differentialgleichung

(5)
$$EJ \frac{d^2 \Delta y}{dx^2} = -M = -M_0 + Hy + (H_a + H) \Delta y,$$

oder, kürzer geschrieben:

(6)
$$k^2 \frac{d^2 \Delta y}{dx^2} - \Delta y = \frac{H}{H + H_a} f(x),$$

wo

(7)
$$k = \sqrt{\frac{EJ}{H + H_a}},$$

(8)
$$f(x) = y - \frac{M_0}{H}$$

Wird vorausgesetzt, daß f(x) eine ganze rationale Funktion ist, so entspricht der Gleichung (6) bei unveränderlichem Querschnitte, also konstantem k, das allgemeine Integral

(9)
$$\Delta y = \frac{H}{H + H_a} \Big\{ C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} - f(x) - k^2 f''(x) - k^4 f'''(x) - \dots \Big\}.$$

Durch zweimaliges Differenzieren von (9) entsteht

(10)
$$k \frac{d\Delta y}{dx} = \frac{H}{H + H_a} \Big\{ C_1 e^{\frac{x}{k}} - C_2 e^{-\frac{x}{k}} - k f'(x) - k^3 f'''(x) - \dots \Big\},\$$

(11) $k^2 \frac{d^2 \Delta y}{dx^2} = \frac{H}{H + H_a} \Big\{ C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} - k^2 f''(x) - k^4 f'''(x) - \dots \Big\},\$
 $= \Delta y + \frac{H}{H + H_a} f(x).$

Aus (5) und (11) folgt für das Biegungsmoment die Formel:

(12)
$$M = -H \left[C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} - k^2 f''(x) - k^4 f''''(x) - \dots \right],$$

und für die Querkraft:

(13)
$$Q = -\frac{H}{k} \bigg[C_1 e^{\frac{x}{k}} - C_2 e^{-\frac{x}{k}} - k^3 f^{\prime\prime\prime}(x) - k^5 f^{\prime\prime\prime}(x) - \dots \bigg] \cdot$$

Wir berücksichtigen nur Einzellasten und gleichförmig verteilte Lasten, und nehmen an, es weiche die Kettenlinie so wenig von einer Parabel ab, daß es zulässig ist

$$y = 4f \frac{x \left(l - x\right)}{l^2}$$

zu setzen*). Bezeichnet dann ganz allgemein z die gleichförmige Belastung an der Stelle x, so ist

$$f''(x) = \frac{d^2 y}{dx^2} - \frac{1}{H} \frac{d^2 M_0}{dx^2} = -\frac{8f}{l^2} + \frac{z}{H} \cdot$$

*) Will man die genaue Form der Kettenlinie berücksichtigen, so bringe man deren Gleichung auf die Form

$$y = A + Bx + Cx^2 + Dx^3 + \dots$$
,
was sich stets ohne Schwierigkeit ausführen läßt.

Die höheren Ableitungen von f(x) werden gleich Null. Führen wir also zur Abkürzung die Bezeichnung

(14)
$$u = \left(\frac{z}{H} - \frac{8f}{l^2}\right)k^2$$

ein, so erhalten wir

(15)
$$\Delta y = \frac{H}{H + H_{\mathbf{x}}} \left(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} - y + \frac{M_0}{H} - u \right)$$

(16)
$$M = -H\left(C_1 e^{\frac{1}{k}} + C_2 e^{-\frac{1}{k}} - u\right),$$

(17)
$$Q = -\frac{H}{k} \left(C_1 \frac{x}{e^k} - C_2 e^{-\frac{x}{k}} \right).$$

Die Integrationskonstanten C_1 , C_2 besitzen auf den Strecken, in welche die Balkenachse durch die Einzellasten und die Stellen, an denen die Größe der gleichförmigen Belastung sich ändert, zerlegt wird, verschiedene Werte. Ist der Balkenquerschnitt sprungweise veränderlich, so sind auch die Längen k und u für die einzelnen Abschnitte verschieden groß. In der Folge beschränken wir uns aber auf den Fall eines unveränderlichen Balkenquerschnitts.

115. Berechnung des Horizontalzuges H. Aus der Gleichung

$$ls^2 = dx^2 + dy^2$$

folgt für verschwindend kleine Formänderungen

$$2ds \,\Delta ds = 2dx \,\Delta dx + 2dy \,\Delta dy.$$

Es ist also

$$d(\Delta x) = d(\Delta s) \frac{ds}{dx} - d(\Delta y) \frac{dy}{dx}.$$

Die Widerlager nehmen wir starr an. Dann ist die gegenseitige wagerechte Verschiebung der Endpunkte der Kette gleich Null, und es folgt die Bedingung

(18)
$$\int d(\Delta s) \frac{ds}{dx} = \int_{0}^{1} d(\Delta y) \frac{dy}{dx}.$$

Das auf der linken Seite stehende Integral ist über die Tragkette und beide Ankerketten auszudehnen. Es ergibt sich

(19)
$$\int d(\Delta s) \frac{ds}{dx} = \Sigma \frac{Ss}{EF} \sec \alpha.$$

Wird nun durch entsprechende Abstufung der Querschnitte der Kette dafür gesorgt, daß alle Glieder der Tragkette und der Ankerketten die gleiche Beanspruchung $\sigma = \frac{S}{F}$ erfahren, so ist

(20)
$$\int d(\Delta s) \frac{ds}{dx} = s_0 \frac{H}{EF_k}$$

wo Fk den Querschnitt der Kette im Scheitel bedeutet und

(21)
$$\frac{s_0}{l} = 1 + \frac{16}{3} \frac{f^2}{l^2} + \frac{2s'}{l} \sec \alpha'$$

ist. Weiter erhält man durch teilweise Integration:

$$\int_{0}^{t} d(\Delta y) \frac{dy}{dx} = \int_{0}^{t} \Delta y \frac{dy}{dx} - \int_{0}^{t} \Delta y \frac{d^2 y}{dx^2} dx.$$

Das erste Glied ist Null weil Δy für x = 0 und x = l verschwindet; das zweite Glied enthält unter dem Integralzeichen den konstanten Wert

$$\frac{d^2y}{dx^2} = -\frac{8f}{l^2} \cdot$$

Es geht also (18) über in

(22)
$$\frac{Hs_0}{EF_k} = \frac{8f}{l^2} \int_0^z \Delta y \, dx,$$

und wegen (15) und (14) in:

$$(23) \quad \frac{H+H_a}{EF_k} \quad \frac{s_0 l^2}{8f} = \int_0^t \left(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} \right) dx - \frac{2}{3} fl \\ + \frac{1}{H} \int_0^l M_0 dx - \frac{1}{H} k^2 \int_0^l z dx + \frac{8fk^2}{l} \cdot$$

Damit haben wir zur Berechnung von H eine transzendente Gleichung erhalten, deren Auflösung nur mittels eines Annährungsverfahrens möglich ist. Wir setzen zur Abkürzung:

(24)
$$\mathfrak{I} = -\frac{1}{k^2} \int_0^t \left(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} \right) dx + \frac{1}{H} \int_0^t z dx,$$

teilen (23) durch $\frac{2}{3}fl$ und erhalten

(25)
$$\frac{3}{2flH} \int_{0}^{t} M_{0} dx = 1 + \frac{3}{16} \frac{H + H_{a}}{EF_{k}} \frac{s_{0}l}{f^{2}} + \frac{3k^{2}}{2fl} \left(\mathfrak{I} - 8\frac{f}{l}\right).$$

Für den transzendenten Ausdruck \Im läßt sich ein Näherungswert angeben.

Bezeichnet z'dx die Belastung der Horizontalprojektion des Kettenteilchens ds, so ist die Belastung des Balkenteilchens dx gleich (z - z') dxMüller-Breslau, Graphische Statik. II. 2. 26

und die Differentialgleichung der elastischen Linie des Balkens kann auch geschrieben werden:

(26)
$$EJ\frac{d^4\Delta y}{dx^4} = z - z'.$$

Nun folgt aber aus (11)

$$k^{4} \frac{d^{4} \Delta y}{dx^{4}} = \frac{H}{H + H_{a}} \left(C_{1} e^{\frac{x}{k}} + C_{2} e^{-\frac{x}{k}} \right),$$

wobei zu beachten ist, daß die Differentialquotienten von f(x), die höher als von der zweiten Ordnung sind, in dem hier behandelten Falle verschwinden. Setzt man noch $EJ = k^2 (H + H_a)$, so geht (26) über in

$$\frac{H}{k^2} \left(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} \right) = z - z',$$

folglich ist

$$\hat{z} = -\frac{1}{k^2} \int_0^l \left(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} \right) dx + \frac{1}{H} \int_0^l z \, dx = \frac{1}{H} \int_0^l z' \, dx.$$

Wird nun ein Balken vorausgesetzt, der so steif ist, daß die Kette nur geringe Formänderungen erleidet, so ist z' nahezu unveränderlich und angenähert $H = \frac{z'l^2}{8f}$. Wir erhalten also für \Im den Näherungswert

$$\hat{z} = \frac{z'l}{H} = \frac{8f}{l}$$

Damit geht (25) in bezug auf die Unbekannte H in eine quadratische Gleichung über, die einen ersten Näherungswert für H liefert. Auf Grund dieses Näherungswertes erfolgt nun die Berechnung der transzendenten Funktion \mathfrak{T} und hierauf kann ein verbesserter Wert für Hwiederum mittels der quadratischen Gleichung berechnet werden. Noch kürzer aber verfährt man wie folgt. Man setzt

(27)
$$H = \frac{\int_{0}^{l} M_{0} dx}{\frac{2}{3} fl} v',$$

wo

(28)
$$\nu' = \frac{1}{1 + \frac{3}{16} \frac{H + H_a}{EF_k} \frac{s_o l}{f^2} + \frac{3k^2}{2fl} \left(\Im - 8\frac{f}{l}\right)}$$

ist. Gleichung (27) unterscheidet sich von der Gleich. (10), Seite 395, nur dadurch, daß an die Stelle von

(29)
$$\gamma = \frac{1}{1 + \frac{15}{8} \frac{J}{F_k f^2} \frac{s_0}{l}}$$

der Wert ν' getreten ist. Man wird also zweckmäßig in der Weise vorgehen, daß man H zuerst in der gewöhnlichen Weise nach Nr. 113 berechnet, den so gefundenen Wert zur Ermittlung von ν' benutzt und nötigenfalls die Berechnung von ν' mit einem verbesserten Werte Hwiederholt. Die folgenden Zahlenrechnungen werden aber zeigen, daß diese Wiederholung nicht nötig ist, weil ν' nur sehr wenig von ν abweicht.

In (28) setzen wir noch $H + H_a = \frac{EJ}{k^2}$ und, aus (29) folgend,

$$\frac{Js_0}{F_k f^2} = \frac{8l}{15} \frac{1-\gamma}{\gamma}$$

Wir erhalten dann

(30)
$$\nu' = \frac{1}{1+0,1\frac{l^2}{k^2}\frac{1-\nu}{\nu}+1,5\frac{l}{f}\frac{k^2}{l^2}\left(\mathfrak{I}-8\frac{f}{l}\right)}.$$

116. Einfluß einer Einzellast. Die Einzellast P zerlegt den Balken in die Abschnitte a und b. Im Abschnitte a zählen wir die xvon A, im Abschnitte b von B aus. Wir erhalten dann für den Abschnitt a

$$M = -H \Big(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} - u \Big),$$
$$Q = -\frac{H}{k} \Big(C_1 e^{\frac{x}{k}} - C_2 e^{-\frac{x}{k}} \Big),$$

und für den Abschnitt b

$$M = -H\left(C_1'e^{\frac{x}{k}} + C_2'e^{-\frac{x}{k}} - u\right),$$
$$Q = -\frac{H}{k}\left(C_1'e^{\frac{x}{k}} - C_2'e^{-\frac{x}{k}}\right).$$

 $x = 0 \mod M = 0$ geben. Daher

$$C_1 + C_2 = u = C_1' + C_2'.$$

Nun muß aber sein

$$M_{x\equiv a} = M_{x\equiv b}$$

und

$$Q_{x=a} + Q_{x=b} = -P.$$

Folglich:

(31)
$$C_1 e^{\frac{a}{k}} + C_2 e^{-\frac{a}{k}} - C_1' e^{\frac{b}{k}} - C_2' e^{\frac{b}{k}} = 0,$$

 $a^{a} = -\frac{a}{k} + C_2' e^{\frac{b}{k}} - C_2' e^{\frac{b}{k}} = 0,$ Pk

(32)
$$C_1 e^{\frac{-}{k}} - C_2 e^{-\frac{-}{k}} + C_1' e^{\frac{-}{k}} - C_2' e^{-\frac{-}{k}} = -\frac{1}{H} \cdot \frac{1}{H} \cdot \frac{1}{26^*}$$

Wenn man diese beiden Gleichungen einmal zusammenzählt, ein zweites Mal voneinander abzieht und hierauf $C_2 = u - C_1$ und $C_2' = u - C_1'$ setzt, so erhält man

$$+ C_{1} e^{\frac{a}{k}} + C_{1}' e^{-\frac{b}{k}} = -\frac{Pk}{2H} + ue^{-\frac{b}{k}}$$
$$- C_{1} e^{-\frac{a}{k}} - C_{1}' e^{\frac{b}{k}} = +\frac{Pk}{2H} - ue^{-\frac{a}{k}}.$$

Hieraus ergibt sich, wegen $u = -\frac{8fk^{2}}{l^{2}},$
$$\begin{cases} C_{1} = \frac{-\frac{Pk}{2H} \left(e^{\frac{b}{k}} - e^{-\frac{b}{k}}\right) - \frac{8fk^{2}}{l^{2}} \left(1 - e^{-\frac{l}{k}}\right)}{e^{\frac{l}{k}} - e^{-\frac{l}{k}}} \end{cases}$$

(8

$$\begin{cases} C_{1}' = \frac{-\frac{Pk}{2H} \left(e^{\frac{a}{k}} - e^{-\frac{a}{k}} \right) - \frac{8fk^{2}}{l^{2}} \left(1 - e^{-\frac{l}{k}} \right)}{e^{\frac{l}{k}} - e^{-\frac{l}{k}}}. \end{cases}$$

Der zur Berechnung von v'erforderliche Wert \Im ist, wegen z = 0, nach Gleich. (24)

$$\begin{split} \mathfrak{I} &= -\frac{1}{k^2} \int\limits_{0}^{a} \left(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} \right) dx - \frac{1}{k^2} \int\limits_{0}^{b} \left(C_1' e^{\frac{x}{k}} + C_2' e^{-\frac{x}{k}} \right) dx \\ &= -\frac{1}{k} \left\{ C_1 \left(e^{\frac{a}{k}} - 1 \right) - C_2 \left(e^{-\frac{a}{k}} - 1 \right) \\ &+ C_1' \left(e^{\frac{b}{k}} - 1 \right) - C_2' \left(e^{-\frac{b}{k}} - 1 \right) \right\}, \end{split}$$

wofür man mit Rücksicht auf Gleich. (32) auch schreiben darf

(34)
$$\Im = -\frac{1}{k} \left\{ -\frac{Pk}{H} - C_1 + C_2 - C_1' + C_2' \right\}.$$

Setzt man

(35)
$$C_2 = -\frac{8fk^2}{l^2} - C_1$$
 und $C_2' = -\frac{8fk^2}{l^2} - C_1'$

so erhält man

(36)
$$\mathfrak{I} = \frac{P}{H} + 2\left(C_1 + C_1' + \frac{8fk^2}{l^2}\right)\frac{1}{k}$$

und nach Einführung von C_1 und C_1' :

$$(37) \ \ \Im = \frac{\frac{P}{H} \left[\left(e^{\frac{l}{k}} - e^{-\frac{l}{k}} \right) - \left(e^{\frac{b}{k}} - e^{-\frac{b}{k}} \right) - \left(e^{\frac{a}{k}} - e^{-\frac{a}{k}} \right) \right] + \frac{16fk}{l^2} \left(e^{\frac{l}{k}} + e^{-\frac{l}{k}} - 2 \right)}{e^{\frac{l}{k}} - e^{-\frac{l}{k}}}$$

Stehen Tafeln der Hyperbelfunktionen zur Verfügung*), so forme man die vorstehenden Gleichungen mit den abkürzenden Bezeichnungen:

$$\alpha = \frac{a}{k}, \quad \beta = \frac{b}{k}, \quad \lambda = \frac{l}{k}, \quad \xi = \frac{x}{k},$$

um in:

C

(38)
$$C_{1} = -\frac{P_{k}}{2H} \frac{\operatorname{\mathfrak{Sin}} \beta}{\operatorname{\mathfrak{Sin}} \lambda} - 4f \frac{k^{2}}{l^{2}} \left(1 - \mathfrak{Tg} \frac{\lambda}{2}\right),$$

(39)
$$C_1' = -\frac{1\pi}{2H} \frac{\operatorname{Cur} \alpha}{\operatorname{Sin} \lambda} - 4f \frac{\pi}{l^2} \left(1 - \mathfrak{T}g\frac{\pi}{2}\right),$$

(40)
$$\mathfrak{I} = \frac{P}{H} \left(1 - \frac{\operatorname{\mathfrak{Sin}} \alpha + \operatorname{\mathfrak{Sin}} \beta}{\operatorname{\mathfrak{Sin}} \lambda} \right) + 16 \frac{fk}{l^2} \mathfrak{Ig} \frac{\lambda}{2}$$

(41)
$$\begin{cases} \frac{M}{H} = u (1 + \operatorname{\mathfrak{Sin}} \xi - \operatorname{\mathfrak{Cof}} \xi) - 2 C_1 \operatorname{\mathfrak{Sin}} \xi & \text{für Teil } a, \\ \frac{M}{H} = u (1 + \operatorname{\mathfrak{Sin}} \xi - \operatorname{\mathfrak{Cof}} \xi) - 2 C_1' \operatorname{\mathfrak{Sin}} \xi & \text{für Teil } b. \end{cases}$$

Bei der Ausführung dieser Umformungen beachte man die Beziehungen

$$\begin{split} \widetilde{\operatorname{Sin}} \, \varphi &= \frac{1}{2} \left(e^{\varphi} - e^{-\varphi} \right), \quad \operatorname{Coj} \, \varphi &= \frac{1}{2} \left(e^{\varphi} + e^{-\varphi} \right), \\ e^{\varphi} &= \operatorname{Coj} \, \varphi + \operatorname{Cin} \, \varphi, \quad e^{-\varphi} &= \operatorname{Coj} \, \varphi - \operatorname{Cin} \, \varphi, \\ &\frac{\operatorname{Coj} \, \varphi - 1}{\operatorname{Cin} \, \varphi} = \operatorname{Tg} \frac{\varphi}{2} \cdot \end{split}$$

Bei der Herleitung von (41) ist (35) zu beachten. u besitzt den Wert $u = - 8f \frac{k^2}{l^2} \cdot$

Im Angriffspunkte der Last P, d. i. für x = a, geht (41) über in (42) $M = Pk \frac{\bigotimes \alpha \bigotimes \beta}{\bigotimes \alpha \lambda} - H \frac{8fk^2}{l^2} \left(1 - \bigotimes \alpha + \bigotimes \alpha \cdot \Im g \frac{\lambda}{2}\right) \cdot$ **Zahlenbeispiel.** Es sei l = 100 m, $f = \frac{1}{8} l = 12,5$ m, $\frac{s' \sec \alpha'}{l} = \frac{1}{2} **$). Querschnitt der Kette im Scheitel: $F_k = 0,056$ qm.

l 2 Trägheitsmoment des Querschnitts des Versteifungsbalkens (Parallelträger von 2,5 m Höhe mit $F_c = 0,030$ qm Gurtquerschnitt): $J = \frac{1}{2} \cdot 2,5^2 \cdot 0,030$,

^{*)} Die Anmerkung am Fuße der Seite 240 ergänzen wir durch einen Hinweis auf Ligowski, Tafeln der Hyperbelfunktionen und Kreisfunktionen, Berlin 1890, Verlag von Ernst & Sohn.

^{**)} s' = Länge, $\alpha' = Neigungswinkel der Ankerkette, Fig. 314.$

weshalb

$$EJ = 21500000 \cdot \frac{1}{2} \cdot 25^2 \cdot 00030 = 2015625 \text{ tm}^2.$$

Es ist also

$$\frac{\frac{s_0}{l} = 1 + \frac{16}{3} \frac{f^2}{l^2} + 2 \frac{s' \sec \alpha'}{l} = \frac{25}{12},$$

$$v = \frac{1}{1 + \frac{15}{16} \frac{h^2}{f^2} \frac{s_0}{l} \frac{F_c}{F_k}} = \frac{1}{1 + \frac{15}{16} \cdot \frac{1}{25} \cdot \frac{25}{12} \cdot \frac{30}{56}} = 0,960, \ \frac{1 - v}{v} = \frac{1}{24}.$$

Die gesamte ständige Belastung sei vor der Versteifung der Kette aufgebracht worden und betrage g = 6 t/m. Daher ist

$$H_a = \frac{gl^2}{8f} = gl = 600 \text{ t.}$$

Gesucht ist der Einfluß einer Last P = 15t an der Stelle a = 25 m. Die gewöhnliche Berechnung liefert

$$H = \frac{3 Pab}{4 fl} \, \nu = \frac{3 \cdot 15 \cdot 25 \cdot 75}{50 \cdot 100} \, \nu = 16,875 \, \nu = 16,2 \, \mathrm{t}.$$

Wir setzen also
$$H + H_a = 616,2$$
 t,

$$\frac{l^2}{k^2} = \frac{(H + H_a)l^2}{EJ} = 3,057116, \quad k^2 = \frac{EJ}{H + H_a} = 3271, \quad k = 57,193,$$

$$\lambda = \frac{l}{k} = 1,748, \quad \alpha = \frac{a}{k} = \frac{1}{4} \quad \lambda = 0,437, \quad \beta = \frac{b}{k} = \frac{3}{4} \quad \lambda = 1,311,$$

$$\text{Sin } \lambda = 2,785, \quad \text{Sin } \alpha = 0,451, \quad \text{Sin } \beta = 1,720,$$

$$\text{Ig } \frac{\lambda}{2} = 0,703, \quad \text{Sof } \alpha = 1,097,$$

$$\frac{16fk}{l^2} = 2\frac{k}{l} = 1,144, \quad \frac{8fk^2}{l^2} = \frac{k^2}{100} \cdot 32,71,$$

und erhalten nach (40)

$$\begin{aligned} \Im &= \frac{15,0}{16,2} \left(1 - \frac{0,451 + 1,720}{2,785} \right) + 1,144 \cdot 0,703 = 1,0084; \\ \Im &- \frac{8f}{l} = 0,0084, \end{aligned}$$

and nach (30)

$$\nu' = \frac{1}{1 + 0.1 \cdot 3.057 \frac{1}{24} + 1.5 \cdot 8 \cdot 0.327 \cdot 0.0084} = 0.956,$$
$$H = 16.875 \nu' = 16.1 \text{ t} \text{ (statt } 16.2 \text{ t)}.$$

Im Angriffspunkte von P ergibt sich nun nach (42)

$$M = 15 \cdot 57,193 - \frac{0,451 \cdot 1,720}{2,785} - \frac{0,451 \cdot 1,720}{2,785}$$

 $-16, 2 \cdot 32, 71 (1 - 1, 097 + 0, 451 \cdot 0, 703) = 122, 3 \text{ tm}.$ Die gewöhnliche Rechnung liefert

$$M = M_0 - Hy = \frac{Pab}{l} - Hy = \frac{15 \cdot 25 \cdot 75}{100} - 16,2 \cdot 9,375 = 129,4 \text{ tm.}$$

Während also für H die genäherte und die genauere Rechnung nahezu gleiche Werte geben, ist der für M nach dem gewöhnlichen Verfahren erhaltene Wert um etwa 5 v. H. zu groß.

Liegt P in der Mitte, $a = b = \frac{1}{2}l$, so gibt die gewöhnliche Berechnung

$$H = \frac{3 Pl}{16f} \, \nu = 22,5 \, \nu = 21,6 \, \mathrm{t}, \qquad H + H_a = 621,6 \, \mathrm{t}.$$

Man erhält: l^2

 $\frac{l^2}{k^2} = 3,083\,907, \quad k^2 = 3242,6, \qquad k = 56,944, \quad \lambda = \frac{l}{k} = 1,756,$ Sin $\lambda = 2,808$, Sin $\frac{\lambda}{2} = 0,995$, Cof $\frac{\lambda}{2} = 1,411$, $\mathfrak{Tg} \frac{\lambda}{2} = 0,705$, $\frac{16fk}{7^2} = 1,139, \quad \frac{8fk^2}{7^2} = 32,426,$ $\Im - \frac{8f}{l} = 0,0053, \quad \nu' = 0,968, \quad H = 21,8 \text{ t (statt 21,6 t)}.$

An der Angriffsstelle von P ist

$$M = 15 \cdot 56,944 \frac{0,995^2}{2,808}$$

 $-21,6 \cdot 32,43 (1 - 1,411 + 0,995 \cdot 0,705) = 98 \text{ tm},$ während die gewöhnliche Rechnung das um etwa 7 v. H. größere Moment liefert

$$M = \frac{Pl}{4} - Hf = 105 \text{ tm.}$$

117. Einfluß einer teilweisen gleichmäßigen Belastung. Wird die Strecke a (Fig. 314 b) gleichmäßig mit p für die Längeneinheit belastet, die Strecke b mit p', so ist für die Strecke a:

(43)
$$\begin{cases} M = -H\left(C_{1}e^{\frac{x}{k}} + C_{2}e^{-\frac{x}{k}} - u\right) \\ Q = -\frac{H}{k}\left(C_{1}e^{\frac{x}{k}} - C_{2}e^{-\frac{x}{k}}\right) \\ u = \left(\frac{p}{H} - \frac{8f}{l^{2}}\right)k^{2} \end{cases}$$

und für die Strecke b:

(44)
$$\begin{cases} M = -H\left(C_{1}'e^{\frac{x}{k}} + C_{2}'e^{-\frac{x}{k}} - u'\right) \\ Q = -\frac{H}{k}\left(C_{1}'e^{\frac{x}{k}} - C_{2}'e^{-\frac{x}{k}}\right) \\ u' = \left(\frac{p'}{H} - \frac{8f}{l^{2}}\right)k^{2}. \end{cases}$$

Beide Gleichungen für M müssen für x = 0, M = 0 liefern, weshalb (45) $C_1 + C_2 = u$, $C_1' + C_2' = u'$.

Weiter muß sein
$$M_{x=a} = M_{x=b}$$
 $Q_{x=a} = -Q_{x=b},$

mithin:

(46)
$$C_1 e^{\frac{a}{k}} + C_2 e^{-\frac{a}{k}} - u = C_1' e^{\frac{b}{k}} + C_2' e^{-\frac{b}{k}} - u$$

(47) $C_1 e^{\frac{a}{k}} - C_2 e^{-\frac{a}{k}} = -C_1' e^{\frac{b}{k}} + C_2' e^{-\frac{b}{k}}.$

Werden diese beiden Gleichungen einmal zusammengezählt, dann voneinander abgezogen, und wird hierbei $C_2 = u - C_1$ und $C_2' = u' - C_1'$ gesetzt, so entsteht:

$$C_{1}e^{\frac{a}{k}} + C_{1}'e^{-\frac{b}{k}} = \frac{u-u'}{2} + u'e^{-\frac{b}{k}}$$
$$C_{1}e^{-\frac{a}{k}} + C_{1}'e^{\frac{b}{k}} = \frac{u'-u}{2} + ue^{-\frac{a}{k}}.$$

Aus diesen Gleichungen folgt

(48)
$$\begin{cases} C_{1} = \frac{\frac{u - u'}{2} \left(e^{\frac{b}{k}} + e^{-\frac{b}{k}} \right) + u' - u e^{-\frac{l}{k}}}{e^{\frac{l}{k}} - e^{-\frac{l}{k}}} \\ C_{1}' = \frac{\frac{u' - u}{2} \left(e^{\frac{a}{k}} + e^{-\frac{a}{k}} \right) + u - u' e^{-\frac{l}{k}}}{e^{\frac{l}{k}} - e^{-\frac{l}{k}}}. \end{cases}$$

Der zur Berechnung von v'erforderliche Wert 3 ist

$$\begin{aligned} \Im &= -\frac{1}{k^2} \int_0^a \left(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} \right) dx - \\ &- \frac{1}{k^2} \int_0^b \left(C_1' e^{\frac{x}{k}} + C_2' e^{-\frac{x}{k}} \right) dx + \frac{pa + p'b}{H} \\ &= -\frac{1}{k} \left\{ C_1 \left(e^{\frac{a}{k}} - 1 \right) - C_2 \left(e^{-\frac{a}{k}} - 1 \right) + \\ &+ C_1' \left(e^{\frac{b}{k}} - 1 \right) - C_2' \left(e^{-\frac{b}{k}} - 1 \right) \right\} + \frac{pa + p'b}{H} \end{aligned}$$

und wegen (47) und (45):

(49)
$$\Im = \frac{1}{k} \left(2C_1 + 2C_1' - u - u' \right) + \frac{pa + p'b}{H} \cdot$$

Die Einführung der Hyperbelfunktionen liefert:

(50)
$$\begin{cases} C_1 = \frac{(u-u') \operatorname{\mathfrak{Cof}} \beta + u' - u (\operatorname{\mathfrak{Cof}} \lambda - \operatorname{\mathfrak{Sin}} \lambda)}{2 \operatorname{\mathfrak{Sin}} \lambda} \\ C_1' = \frac{(u'-u) \operatorname{\mathfrak{Cof}} \alpha + u - u' (\operatorname{\mathfrak{Cof}} \lambda - \operatorname{\mathfrak{Sin}} \lambda)}{2 \operatorname{\mathfrak{Sin}} \lambda}, \\ \end{cases}$$
(51)
$$\begin{cases} \frac{M}{H} = u (1 + \operatorname{\mathfrak{Sin}} \xi - \operatorname{\mathfrak{Cof}} \xi) - 2 C_1 \operatorname{\mathfrak{Sin}} \xi & \operatorname{für Teil} u \\ \frac{M}{H} = u' (1 + \operatorname{\mathfrak{Sin}} \xi - \operatorname{\mathfrak{Cof}} \xi) - 2 C_1' \operatorname{\mathfrak{Sin}} \xi & \operatorname{für Teil} u \end{cases}$$

Für den Sonderfall $a = b = \frac{1}{2}l$, p' = 0 (Fig. 314c) ergibt sich aus (49) und (50)

$$\begin{split} \widehat{\boldsymbol{z}} &= \frac{pl}{2H} - (u+u') \frac{\mathfrak{Coj}\,\lambda - 1}{k\,\mathfrak{Sin}\,\lambda} \\ &= \frac{pl}{2H} - \frac{u+u'}{k}\,\mathfrak{Tg}\,\frac{\lambda}{2}, \end{split}$$

wo

$$\iota + \iota' = k^2 \left(\frac{p}{H} - 16 \frac{f}{l^2}\right).$$

Die Annäherungsrechnung liefert

(52)
$$H = \frac{pl^2 \gamma}{16f} \cdot$$

Mit diesem Werte ergibt sich

$$u + u' = 16f \frac{k^2}{l^2} \frac{1 - v}{v}$$

und

$$\Im - 8 \frac{f}{l} = \frac{8f}{l} \left(1 - 2 \frac{k}{l} \Im \left(\frac{\lambda}{2} \right) \frac{1 - \nu}{\nu} \right)$$

Gleichung (30) geht also über in

53)
$$\nu' = \frac{1}{1+0,1\frac{l^2}{k^2}\frac{1-\nu}{\nu}+12\frac{k^2}{l^2}\left(1-2\frac{k}{l}\mathfrak{Tg}\frac{\lambda}{2}\right)\frac{1-\nu}{\nu}}$$

Beachtet man, daß

$$Hu = \left(p - 8 \frac{Hf}{l^2}\right) k^2 = p\left(1 - \frac{\nu}{2}\right) k^2,$$

$$H(u - u') = p k^2 \text{ und } Hu' = -p \frac{\nu}{2} k^2$$

ist, so findet man aus (48) nach Einführung der Hyperbelfunktionen:

(54)
$$2HC_{1} = pk^{2} \frac{+2 \operatorname{Cof} \frac{\lambda}{2} - \nu - (2 - \nu) \operatorname{(Cof} \lambda - \operatorname{Sin} \lambda)}{2 \operatorname{Sin} \lambda},$$

(55)
$$2HC_{1}' = pk^{2} \frac{-2 \operatorname{Cof} \frac{\lambda}{2} + (2 - \nu) + \nu \operatorname{(Cof} \lambda - \operatorname{Sin} \lambda)}{2 \operatorname{Sin} \lambda}.$$

 $2 \operatorname{Sin} \lambda$

und hierauf

(56) $M = p\left(1 - \frac{\gamma}{2}\right)k^2\left(1 + \operatorname{\mathfrak{Sin}} \xi - \operatorname{\mathfrak{Cof}} \xi\right) - 2HC_1 \operatorname{\mathfrak{Sin}} \xi$ für Teil a, (57) $M = -p\frac{\gamma}{2}k^2\left(1 + \operatorname{\mathfrak{Sin}} \xi - \operatorname{\mathfrak{Cof}} \xi\right) - 2HC_1'\operatorname{\mathfrak{Sin}} \xi$ für Teil b.

Zahlenbeispiel. Für die in Nr. 116 untersuchte Brücke sei p = 3 t/m; also nach (52), wegen l = 8f, für Belastung der linken Hälfte der Brücke:

$$\begin{split} H &= \frac{pl}{2} \circ = 150 \cdot 0,960 = 144 \text{ t}, \\ H &+ H_a = 144 + 600 = 744 \text{ t}, \quad EJ = 2015\,625, \\ \frac{l^2}{k^2} &= \frac{(H + H_a)l^2}{EJ} = 3,6912, \quad k^2 = \frac{EJ}{H + H_a} = 2709, \\ k &= 52,05, \quad \lambda = \frac{l}{k} = 1,921, \quad \frac{\lambda}{2} = 0,961, \\ \mathbb{C}of \lambda &= 3,487, \quad \Imin \lambda = 3,341, \quad \Imof \frac{\lambda}{2} = 1,498, \quad \Img \frac{\lambda}{2} = 0,745, \\ Y &= \frac{1}{1 + 0,1 \cdot 3,6912 \frac{1}{24} + 12 \cdot 0,2709 (1 - 2 \cdot 0,5205 \cdot 0,745) \frac{1}{24}} = 0,957. \end{split}$$

Es weicht also wieder ν' nur sehr wenig von $\nu = 0,960$ ab.

Wir berechnen noch das Moment in der Mitte der belasteten Strecke.

$$\xi = \frac{\lambda}{4} = 0,480, \quad \Imin \ \xi = 0,499, \quad \Imof \ \xi = 1,117,$$

 $1 + \Imin \ \xi - \Imof \ \xi = 0,382.$

Gleichung (54) liefert:

 $2HC_1 = 3 \cdot 2709 \frac{2,996 - 0,960 - 1,040 \cdot 0,146}{2 \cdot 3,341} = 2291,$ und Gleichung (56):

 $M = 3 \cdot 0.520 \cdot 2709 \cdot 0.382 - 2291 \cdot 0.499 = 471$ tm.

Die angenäherte Rechnung gibt:

$$M = \frac{pl^2}{16} - H \frac{3}{4} f = \frac{pl^2}{16} \left(1 - \frac{3}{4} v\right)$$
$$= \frac{30\,000 \cdot 0,280}{16} = 525 \text{ tm.}$$

Der genauere Wert ist um etwa 10 v. H. kleiner als der Näherungswert.

118. Es möge noch der in Fig. 315 dargestellte Belastungsfall untersucht werden.

Für die Strecke a gilt:

(58)
$$\begin{cases} M = -H\left(C_{1}e^{\frac{x}{k}} + C_{2}e^{-\frac{x}{k}} - u\right) \\ Q = -\frac{H}{k}\left(C_{1}e^{\frac{x}{k}} - C_{2}e^{-\frac{x}{k}}\right) \\ u = \left(\frac{p}{H} - \frac{8f}{l^{2}}\right)k^{2} \end{cases}$$

und für Strecke b:

(59)
$$\begin{cases} M = -H\left(C_{1}^{'}e^{\frac{x}{k}} + C_{2}^{'}e^{-\frac{x}{k}} - u^{'}\right)\\ Q = -\frac{H}{k}\left(C_{1}^{'}e^{\frac{x}{k}} - C_{2}^{'}e^{-\frac{x}{k}}\right)\\ u^{'} = \left(\frac{p^{'}}{H} - \frac{8f}{l^{2}}\right)k^{2}. \end{cases}$$

Gleichung (58) liefert für x = 0, Q = 0; daher ist: (60) $C_1 = C_2 = C$.

Gleichung (59) gibt für x = 0, M = 0, und daraus folgt: $C_2' = u' - C_1'.$ (61)

Ferner muß sein:

$$M_{x=a} = M_{x=b}$$
 und $Q_{x=a} = -Q_{x=b};$

also:

(62)
$$C_1 e^{\frac{a}{k}} + C_2 e^{-\frac{a}{k}} - u = C_1' e^{\frac{b}{k}} + C_2' e^{-\frac{b}{k}} - u$$

(63)
$$C_1 e^{\overline{k}} - C_2 e^{-\overline{k}} = -C_1' e^{\overline{k}} + C_2' e^{-\overline{k}}.$$

Durch Addition und Subtraktion dieser beiden Gleichungen entsteht mit Rücksicht auf (60) und (61):

$$Ce^{-\frac{a}{k}} - C_{1}'e^{\frac{b}{k}} = \frac{u-u'}{2}$$

$$Ce^{\frac{a}{k}} + C_{1}'e^{-\frac{b}{k}} = \frac{u-u'}{2} + u'e^{-\frac{b}{k}}.$$

Daraus folgen:

(64)
$$\begin{cases} C = \frac{\frac{u - u'}{2} \left(e^{\frac{b}{k}} + e^{-\frac{b}{k}} \right) + u'}{e^{\frac{l}{2k}} + e^{-\frac{l}{2k}}} \\ C_1' = \frac{\frac{u - u'}{2} \left(e^{-\frac{a}{k}} - e^{\frac{a}{k}} \right) + u'e^{-\frac{l}{2k}}}{e^{\frac{l}{2k}} + e^{-\frac{l}{2k}}}. \end{cases}$$

Der Wert 3 ist:

$$\begin{split} \mathfrak{D} &= -\frac{2}{k^2} \int\limits_{0}^{a} \left(C_1 e^{\frac{x}{k}} + C_2 e^{-\frac{x}{k}} \right) dx - \frac{2}{k^2} \int\limits_{0}^{b} \left(C_1' e^{\frac{x}{k}} + C_2' e^{-\frac{x}{k}} \right) dx \\ &+ \frac{2}{H} \left(\int\limits_{0}^{a} p \, dx + \int\limits_{0}^{b} p' \, dx \right) \\ &= -\frac{2}{k} \left\{ C_1 \left(e^{\frac{a}{k}} - 1 \right) - C_2 \left(e^{-\frac{a}{k}} - 1 \right) \right\} - \\ &- \frac{2}{k} \left\{ C_1' \left(e^{\frac{b}{k}} - 1 \right) - C_2' \left(e^{-\frac{b}{k}} - 1 \right) \right\} + \frac{2}{H} \left(pa + p'b \right) \end{split}$$

und wegen (60) und (61):

(65)
$$\mathfrak{I} = \frac{2}{k} (2 C_1' - u') + \frac{2}{H} (pa + p'b).$$

Nach Einführung der Hyperbelfunktionen erhält man:

(66)
$$\begin{cases} C = \frac{(u-u') \operatorname{Cof} \beta + u'}{2 \operatorname{Cof} \frac{\lambda}{2}} \\ C_1' = \frac{(u'-u) \operatorname{Sin} \alpha + u' \left(\operatorname{Cof} \frac{\lambda}{2} - \operatorname{Sin} \frac{\lambda}{2} \right)}{2 \operatorname{Cof} \frac{\lambda}{2}}, \end{cases}$$

(67)
$$\begin{cases} \frac{M}{H} = u - 2C \operatorname{Cof} \xi & \text{für Teil } a \\ \frac{M}{H} = u' \left(1 + \operatorname{Sin} \xi - \operatorname{Cof} \xi\right) - 2C_1' \operatorname{Sin} \xi & \text{für Teil } b. \end{cases}$$

Zahlenbeispiel.

$$l = 100 \text{ m}, \quad a = 20 \text{ m}, \quad b = 30 \text{ m}, \quad p = 3 \text{ t/m}$$

$$p' = 0, \qquad f = \frac{l}{8}, \qquad \nu = 0.960, \quad \frac{1 - \nu}{\nu} = \frac{1}{24},$$

$$EJ = 2015\ 625\ \text{tm}^2.$$

Die Annäherungsrechnung in Nr. 113 gibt für den vorliegenden Fall:

$$H = \frac{pa}{8fl} (3l^2 - 4a^2) \times$$
$$= \frac{3 \cdot 20}{10000} (3 \cdot 10000 - 4 \cdot 400) \cdot 0,960 = 164 \text{ t.}$$

 $H + H_a = 164 + 600 = 764 t$,

C

$$\begin{aligned} \frac{l^2}{k^2} &= \frac{764 \cdot 10000}{2015\,625} = 3,7904, \quad k^2 = \frac{2\,015\,625}{764} = 2638, \\ k &= 51,86, \quad u' - u = -\frac{k^2 p}{H} = -\frac{2638 \cdot 3}{164} = -48,256, \\ u' &= -\frac{k^2}{l} = -26,383, \quad u = +21,873, \\ \alpha &= \frac{20}{51,36} = 0,389, \qquad \beta = \frac{30}{51,36} = 0,584, \\ \lambda &= \frac{100}{51,36} = 1,947, \qquad \frac{\lambda}{2} = 0,974, \\ \tilde{\varpi}in \alpha &= 0,399, \qquad \tilde{\varpi}of \beta = 1,175, \\ \tilde{\varpi}in \frac{\lambda}{2} &= 1,513, \qquad \tilde{\varpi}in \frac{\lambda}{2} = 1,135, \end{aligned}$$

l,

414 Fünfter Abschnitt.- § 23. Kette, versteift durch einen vollwandigen Balken. nach (66):

$$C_1' = \frac{-48,256 \cdot 0,399 - 26,383(1,513 - 1,135)}{2 \cdot 1,513} = -9,659,$$

nach (65):

$$\begin{split} \widehat{z} &= \frac{2}{51,36} \left(-2 \cdot 9,659 + 26,383 \right) + \frac{2}{164} \cdot 3 \cdot 20 = 1,007, \\ \nu' &= \frac{1}{1 + 0,1 \cdot 3,7904 \cdot \frac{1}{24} + 1,5 \cdot 8 \cdot 0,2638 \cdot (1,007 - 1)} = 0,963. \end{split}$$

 ν' weicht auch hier nur sehr wenig von $\nu = 0,960$ ab.

Das Moment in der Mitte der belasteten Strecke, also in Balkenmitte, ist wegen x = 0 und $\xi = 0$: nach (67) M = H(u - 2C). $48,256 \cdot 1,175 - 26,383$

Nun ist nach (66)
$$C = \frac{2 \cdot 1,513}{2 \cdot 1,513} = 10,019,$$

folglich $M = 164 (21,873 - 2 \cdot 10,019) = 301 \text{ tm.}$

Die Näherungsrechnung gibt:

$$M = \frac{pa}{2} (l - a) - H \cdot f$$

= $\frac{3 \cdot 20}{2} (100 - 20) - \frac{164 \cdot 100}{8} = 350 \text{ tm.}$

Der genauere Wert ist um 14 v. H. kleiner als der Näherungswert.

VI. Abschnitt.

Parabelförmige Einflufslinien.

§ 24.

Formeln und Tabellen.

119. Die Einflußlinie ACB, Fig. 316, einer Größe Y sei innerhalb der Strecke AB = u eine Parabel von der Pfeilhöhe z. Auf AB stehe ein Lastzug $P_1 P_2 P_3 \dots P_n$, dessen Mittelkraft

(1)
$$\mathfrak{P}_n = \sum_{i=1}^n P$$

in den Abständen a' und b' von A bzw. B liegen möge. Irgendeine Last P habe

Dann ist der Einfluß des Lastzuges auf Y:

 $Y = \sum_{1}^{n} P \eta = \frac{4z}{u^2} \sum_{1}^{n} P a b = \frac{4z}{u^2} \sum_{1}^{n} P (a' + d) (b' - d).$ (2)

Bezeichnet man das Trägheitsmoment des Lastzuges $P_1 P_2 P_3 \dots P_n$ in bezug auf die Mittelkraft \mathfrak{P}_n mit

(3)
$$\mathfrak{T}_n = \Sigma P d^2$$

und beachtet man, daß $\Sigma Pd = 0$ ist, so geht Gleichung (2) über in

(4)
$$Y = \frac{4z}{u^2} (\mathfrak{P}_n a' b' - \mathfrak{T}_n).$$

Dieser Wert wird für den Lastzug P1 P2 P3 ... Pn am größten, sobald

$$a' = b' = \frac{u}{2}$$

ist. Man erhält

(5)
$$Y_{max} = P_i z,$$

(6)
$$P_i = \mathfrak{P}_n - \frac{\mathfrak{T}_n}{\left(\frac{u}{2}\right)^2}$$

diejenige Einzellast vorstellt, die, in der Mitte der Strecke u angreifend, dieselbe Wirkung Y_{max} hervorbringt, wie die Lastgruppe $P_1 P_2 P_3 \dots P_n$.

Die Werte \mathfrak{P}_n und \mathfrak{T}_n können nun für einen bestimmten Lastzug ein für allemal berechnet werden.

Bezeichnen

$$\mathfrak{S}_n = \sum_{1}^{n} Pc$$
$$\mathfrak{S}_n = \sum_{1}^{n} Pc^2$$

bzw. das statische Moment und das Trägheitsmoment der Lastgruppe $P_1 P_2 P_3 \ldots P_n$, bezogen auf P_n und e_n den n^{ten} Radstand, so findet man aus den bereits bei der Untersuchung der Balkenbrücken benutzten Werten \mathfrak{S}_n die Trägheitsmomente \mathfrak{I}_n schrittweise mittels der Formel

(7)
$$\mathfrak{J}_n = \mathfrak{J}_{n-1} + (\mathfrak{S}_{n-1} + \mathfrak{S}_n) e_{n-1} \qquad \mathfrak{J}_1 = 0.$$

Nach Berechnung von \mathfrak{I}_n erhält man:

(8)
$$\mathfrak{T}_n = \mathfrak{F}_n - \frac{\mathfrak{S}_n^2}{\mathfrak{F}_n}.$$

Die nachstehenden Tabellen I bis IV enthalten die Werte $\mathfrak{P}_n, \mathfrak{S}_n$, \mathfrak{I}_n und \mathfrak{T}_n für die in den preußischen Vorschriften für die Berechnung von Eisenbahnbrücken vorgesehenen Lastzüge, ferner die Zuglänge c_1 und den Abstand

(9)
$$c_n' = \frac{\mathfrak{S}_n}{\mathfrak{P}_n}$$

Parabelförmige Einflußlinien.

der Mittelkraft \mathfrak{P}_n von der Last P_n . Die Achslasten und Radstände zeigt Fig. 317. Die Reihenfolge der Fahrzeuge ist über jeder Tabelle angegeben worden. Bei der Zuganordnung I wurde darauf Rücksicht genommen, daß die Belastung einer Lokomotivachse gesetzt werden soll

Die Zuganordnung IV kann im Falle einer an das Landwiderlager grenzenden Strecke in Betracht kommen, sobald die erste Lokomotive rückwärts fährt und der Tender die Brücke bereits verlassen hat. Die Gründe, welche dafür sprechen, sich mit der ungünstigen Belastung IV auch dann abzufinden, wenn an die Strecke u eine negative Beitragstrecke stößt, auf der nur der erste Tender steht, sind im I. Bande, § 21, Nr. 99 erörtert worden.

Mit Hilfe unserer Tafeln läßt sich nun die zu einer gegebenen Strecke u gehörige Last P_i schnell berechnen. Ist z. B. u = 32 m, so gehört zu $\frac{u}{2} = 16$ m bei der Zuganordnung II als nächstgelegener Wert: $c_n' = 15,91$ m. Diesem entspricht $\mathfrak{P}_n = 235$, $\mathfrak{T}_n = 20817$, n = 15 und

$$P_i = 235 - \frac{20817}{16^2} = 153,7 \text{ t.}$$

Zu $c_n' = 15,34$ m gehört bei derselben Zuganordnung n = 14 und $P_i = 222 - \frac{17332}{16^2} = 154,3$ t.

Die Stellung n = 14 ist also etwas ungünstiger als n = 15. Der Unterschied ist freilich unwesentlich und verschwindet im vorliegenden Falle bei der Abrundung auf ganze Tonnen. Für die Zuganordnung IV erhält man $c_n' = 15,72$ m und

$$P_i = 222 - \frac{17495}{16^2} = 153,7 \text{ t.}$$

Die Zuganordnung I liefert ebenfalls ein kleineres P_i als II, weil die \mathfrak{P}_n der Züge I und II für n = 14 und n = 15 gleichgroß sind, während das zugehörige Trägheitsmoment \mathfrak{T}_n für I größer ist als für II.

27

Müller-Breslau, Graphische Statik. II. 2.

Aus dem gleichen Grunde ist auch die Zugstellung III für n = 14 und n = 15 nicht maßgebend; diese Zugstellung kommt erst von n = 25 an zur Geltung. Zu u = 32 m gehört also rund $P_i = 154$ t.

Die auf diese Weise berechneten Lasten P_i sind in der Tabelle V für eine große Reihe von Längen zwischen u = 5 m und u = 300 mzusammengestellt worden. Für die dazwischen liegenden Längen u darf geradlinig eingeschaltet werden. Hierzu dienen die in der dritten Spalte stehenden Werte $\Delta P_i: u$. Die vierte und fünfte Spalte geben Auskunft über die Zugstellungen; sie erleichtern die Nachprüfung der Größen P_i . Von etwa u = 40 m an darf P_i mit genügender Genauigkeit durch den linearen Ausdruck

$$(10) \qquad \qquad \overline{P_i} = 2,7 \ u + 85$$

ersetzt werden. Die Werte P_i haben wir in der letzten Spalte angegeben.

I.

Lokomotive, Tender, Lokomotive, Tender, Güterwagen.

п	<i>c</i> 1	$c_n' = \frac{\mathfrak{S}_n}{\mathfrak{P}_n}$	\mathfrak{P}_n	Sn	S"	In In
	m	m	t	tm	tm²	tm ²
$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	$0\\1,5\\3,0\\4,5\\6,0$	$0 \\ 0,75 \\ 1,50 \\ 2,25 \\ 3,00$	$20 \\ 40 \\ 57 \\ 72 \\ 85$	$0\\30\\85,5\\162\\255$	$\begin{array}{c} 0 \\ 45 \\ 213,75 \\ 567 \\ 1147,5 \end{array}$	$\begin{array}{c} 0\\ 22,5\\ 85,5\\ 202,5\\ 382,5 \end{array}$
6 7 8 9 10	$10,5 \\ 12,0 \\ 13,5 \\ 18,0 \\ 19,5$	6,51 7,07 7,67 10,70 10,89	$98 \\ 111 \\ 124 \\ 141 \\ 158$	$\begin{array}{c} 637,5\\784,5\\951\\1509\\1720,5\end{array}$	$5\ 163,75\\7\ 296,75\\9\ 900\\20\ 970\\25\ 814,25$	$ \begin{array}{r} 1 \ 017 \\ 1 \ 752 \\ 2 \ 606 \\ 4 \ 820 \\ 7 \ 079 \\ \end{array} $
$ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array} $	21,0 22,5 24,0 28,5 30,0	$11,19 \\ 11,56 \\ 12,00 \\ 15,53 \\ 16,09$	$ \begin{array}{r} 175 \\ 192 \\ 209 \\ 222 \\ 235 \end{array} $	$\begin{array}{c}1 \ 957,5\\2 \ 220\\2 \ 508\\3 \ 448,5\\3 \ 781,5\end{array}$	$\begin{array}{c} 31 \ 331,25 \\ 37 \ 597,5 \\ 44 \ 689,5 \\ 71 \ 493,75 \\ 82 \ 338,75 \end{array}$	$\begin{array}{r} 9\ 435\\ 11\ 929\\ 14\ 594\\ 17\ 925\\ 21\ 489 \end{array}$
16 17 18 19 20	31,5 34,5 37,5 40,5 43,5	$16,67 \\ 18,69 \\ 20,66 \\ 22,59 \\ 24,48$	$248 \\ 261 \\ 274 \\ 287 \\ 300$	$\begin{array}{c} 4 \ 134 \\ 4 \ 878 \\ 5 \ 661 \\ 6 \ 483 \\ 7 \ 344 \end{array}$	$\begin{array}{c} 94\ 212\\ 121\ 248\\ 152\ 865\\ 189\ 297\\ 230\ 778 \end{array}$	$\begin{array}{c} 25 \ 301 \\ 30 \ 080 \\ 35 \ 905 \\ 42 \ 853 \\ 50 \ 997 \end{array}$
21 22 23 24 25	$\begin{array}{c} 46,5\\ 49,5\\ 52,5\\ 55,5\\ 58,5\end{array}$	$26,34 \\ 28,17 \\ 29,97 \\ 31,76 \\ 33,52$	313 326 339 352 365	8 244 9 183 10 161 11 178 12 234	$\begin{array}{c} 277\ 542\\ 329\ 823\\ 387\ 855\\ 451\ 872\\ 522\ 108 \end{array}$	$\begin{array}{c} 60\ 406\\ 71\ 150\\ 83\ 295\\ 96\ 907\\ 112\ 051 \end{array}$

		c	
-1		2	
-1		20	-

Tender, Lokomotive, Lokomotive, Tender, Güterwagen.

п	<i>e</i> ₁	$c_n' = \frac{\mathfrak{S}_n}{\mathfrak{P}_n}$	\mathfrak{P}_n	Sn	Sn	In I
	m	m	t	tm	tm^2	tm ²
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$0\\1,5\\3,0\\7,5\\9,0$	$\begin{array}{c} 0 \\ 0,75 \\ 1,50 \\ 4,18 \\ 4,36 \end{array}$	13 26 39 56 73	$0\\19,5\\58,5\\234\\318$	$0\\29,25\\146,25\\1\ 462,5\\2\ 290,5$	
6 7 8 9 10	$10,5 \\ 12,0 \\ 13,5 \\ 19,5 \\ 21,0$	$\begin{array}{r} 4,75\\ 5,26\\ 5,83\\ 10,40\\ 10,62\end{array}$	$90 \\ 107 \\ 124 \\ 141 \\ 158$	$\begin{array}{r} 427,5\\ 562,5\\ 723\\ 1467\\ 1678,5\end{array}$	$3\ 408,75\ 4\ 893,75\ 6\ 822\ 19\ 962\ 24\ 680,25$	$2\ 606\ 4\ 699\ 6\ 849$
$11 \\ 12 \\ 13 \\ 14 \\ 15$	22,524,025,53031,5	$10,95 \\11,34 \\11,80 \\15,34 \\15,91$	$ \begin{array}{r} 175 \\ 192 \\ 209 \\ 222 \\ 235 \end{array} $	$\begin{array}{c}1 \ 915,5\\2 \ 178\\2 \ 466\\3 \ 406,5\\3 \ 739,5\end{array}$	$\begin{array}{c} 30\ 071,25\\ 36\ 211,5\\ 43\ 177,5\\ 69\ 603,75\\ 80\ 322,75\end{array}$	$9\ 105 \\ 11\ 505 \\ 14\ 081 \\ 17\ 332 \\ 20\ 817$
16 17 18 19 20	$33 \\ 36 \\ 39 \\ 42 \\ 45$	$16,50 \\ 18,53 \\ 20,51 \\ 22,44 \\ 24,34$	248 261 274 287 300	$\begin{array}{c} 4 \ 092 \\ 4 \ 836 \\ 5 \ 619 \\ 6 \ 441 \\ 7 \ 302 \end{array}$	$\begin{array}{c} 92\ 070\\ 118\ 854\\ 150\ 219\\ 186\ 399\\ 227\ 628 \end{array}$	$\begin{array}{c} 24\ 552\\ 29\ 249\\ 34\ 988\\ 41\ 847\\ 49\ 897 \end{array}$
21 22 23 24 25	$48 \\ 51 \\ 54 \\ 57 \\ 60$	26,20 28,04 29,85 31,63 33,40	313 326 339 352 365	$\begin{array}{r} 8\ 202\\ 9\ 141\\ 10\ 119\\ 11\ 136\\ 12\ 192 \end{array}$	$\begin{array}{c} 274\ 140\\ 326\ 169\\ 383\ 949\\ 447\ 714\\ 517\ 698\end{array}$	$59\ 211\\69\ 856\\81\ 901\\95\ 411\\110\ 452$

	III	

Tender, Lokomotive, Tender, Lokomotive, Güterwagen.

n	<i>c</i> ₁	$c_n = \frac{\mathfrak{S}_n}{\mathfrak{P}_n}$	\mathfrak{P}_n	Sn	Jn	I.n
	m	m	t	tm	tm^2	tm ²
21 22 23 24 25	$ \begin{array}{r} 48 \\ 51 \\ 54 \\ 57 \\ 60 \\ \end{array} $	$\begin{array}{r} 26,07\\ 27,91\\ 29,73\\ 31,52\\ 33,29\end{array}$	313 326 339 352 365	$8160\\9099\\10077\\11094\\12150$	$\begin{array}{c} 272\ 250\\ 324\ 027\\ 381\ 555\\ 445\ 068\\ 514\ 800\\ \end{array}$	$59\ 516\\70\ 064\\82\ 009\\95\ 418\\110\ 355$
26 27 28 29 30	63 66 69 72 75	35,04 36,77 38,50 40,20 41,90	$378 \\ 391 \\ 404 \\ 417 \\ 430$	$\begin{array}{c} 13\ 245\\ 14\ 379\\ 15\ 552\\ 16\ 764\\ 18\ 015 \end{array}$	$\begin{array}{c} 590 \ 985 \\ 673 \ 857 \\ 763 \ 650 \\ 860 \ 598 \\ 964 \ 935 \end{array}$	$\begin{array}{c} 126\ 885\\ 145\ 070\\ 164\ 975\\ 186\ 661\\ 210\ 190\\ \end{array}$
31 32 33 34 35	78 81 84 87 90	$\begin{array}{r} 43,78\\ 45,25\\ 46,91\\ 48,57\\ 50,21\end{array}$	$\begin{array}{r} 443 \\ 456 \\ 469 \\ 482 \\ 495 \end{array}$	$19\ 305\\20\ 634\\22\ 002\\23\ 409\\24\ 855$	$\begin{array}{c}1\ 076\ 895\\1\ 196\ 712\\1\ 324\ 620\\1\ 460\ 853\\1\ 605\ 645\end{array}$	$\begin{array}{c} 235 \ 624 \\ 263 \ 024 \\ 292 \ 449 \\ 323 \ 962 \\ 357 \ 623 \end{array}$
36 37 38 39 40	$93 \\ 96 \\ 99 \\ 102 \\ 105$	51,85 53,48 55,11 56,73 58,34	$508 \\ 521 \\ 534 \\ 547 \\ 560$	$\begin{array}{c} 26\ 340\\ 27\ 864\\ 29\ 427\\ 31\ 029\\ 32\ 670\\ \end{array}$	$\begin{array}{c}1\ 759\ 230\\1\ 921\ 842\\2\ 093\ 715\\2\ 275\ 083\\2\ 466\ 180\end{array}$	$\begin{array}{c} 393 \ 491 \\ 431 \ 626 \\ 472 \ 089 \\ 514 \ 939 \\ 560 \ 236 \end{array}$
$ \begin{array}{r} 41 \\ 42 \\ 43 \\ 44 \\ 45 \end{array} $	$ 108 \\ 111 \\ 114 \\ 117 \\ 120 $	59,95 61,55 63,15 64,75 66,34	573 586 599 612 625	$\begin{array}{r} 34\ 350\\ 36\ 069\\ 37\ 827\\ 39\ 624\\ 41\ 460\end{array}$	$\begin{array}{c} 2\ 667\ 240\\ 2\ 878\ 497\\ 3\ 100\ 185\\ 3\ 332\ 538\\ 3\ 575\ 790 \end{array}$	$\begin{array}{c} 608\ 038\\ 658\ 407\\ 711\ 401\\ 767\ 078\\ 825\ 500\\ \end{array}$
$46 \\ 47 \\ 48 \\ 49 \\ 50$	$ \begin{array}{r} 123 \\ 126 \\ 129 \\ 132 \\ 135 \end{array} $	67,95 69,51 71,09 72,66 74,24	$\begin{array}{c} 638 \\ 651 \\ 664 \\ 677 \\ 690 \end{array}$	$\begin{array}{r} 43\ 335\\ 45\ 249\\ 47\ 202\\ 49\ 194\\ 51\ 225\end{array}$	$\begin{array}{c} 3\ 830\ 175\\ 4\ 095\ 927\\ 4\ 373\ 280\\ 4\ 662\ 468\\ 4\ 963\ 725\end{array}$	$\begin{array}{r} 886\ 723\\ 950\ 809\\ 1\ 017\ 815\\ 1\ 087\ 801\\ 1\ 160\ 826\end{array}$
$51 \\ 52 \\ 53 \\ 54 \\ 55$	$138 \\ 141 \\ 144 \\ 147 \\ 150$	$75,81 \\77,37 \\78,95. \\80,51 \\82,06$	703 716 729 742 755	53 295 55 404 57 552 59 739 61 965	$\begin{array}{c} 5\ 277\ 285\\ 5\ 603\ 382\\ 5\ 942\ 250\\ 6\ 294\ 123\\ 6\ 659\ 235\\ \end{array}$	$\begin{array}{c}1\ 236\ 948\\1\ 316\ 227\\1\ 398\ 721\\1\ 484\ 490\\1\ 573\ 591\end{array}$
56 57 58 59 60	$153 \\ 156 \\ 159 \\ 162 \\ 165$	83,63 85,19 86,75 88,30 89,85	768 781 794 807 820	$\begin{array}{c} 64\ 230\\ 66\ 534\\ 68\ 877\\ 71\ 252\\ 73\ 680 \end{array}$	$\begin{array}{c} 7\ 037\ 820\\ 7\ 430\ 112\\ 7\ 836\ 345\\ 8\ 256\ 753\\ 8\ 691\ 570\\ \end{array}$	$\begin{array}{c} 1\ 666\ 084\\ 1\ 762\ 029\\ 1\ 861\ 482\\ 1\ 964\ 504\\ 2\ 071\ 153\end{array}$

,
Parabelförmige Einflußlinien.

п	<i>c</i> ₁	$c_n' = \frac{\mathfrak{S}_n}{\mathfrak{P}_n}$	\mathfrak{P}_n	Sn	In	I.
	m	m	t	tm	tm ²	tm ²
	$ 168 \\ 171 \\ 174 \\ 177 \\ 180 $	91,40 92,95 94,50 96,05 97,59	833 846 859 872 885	$76\ 140\\78\ 639\\81\ 177\\83\ 754\\86\ 370$	$\begin{array}{r}9\ 141\ 030\\9\ 605\ 357\\10\ 084\ 815\\10\ 579\ 608\\11\ 089\ 980\end{array}$	$\begin{array}{c} 2\ 181\ 487\\ 2\ 295\ 565\\ 2\ 413\ 447\\ 2\ 535\ 190\\ 2\ 660\ 854 \end{array}$
66 67 68 69 70	183 186 189 192 195	$\begin{array}{c} 99,14\\ 100,68\\ 102,22\\ 103,76\\ 105,30 \end{array}$	898 911 924 937 950	$\begin{array}{c} 89025\\91719\\94452\\97224\\100035\end{array}$	$\begin{array}{c} 11\ 616\ 165\\ 12\ 158\ 397\\ 12\ 716\ 910\\ 13\ 291\ 938\\ 13\ 883\ 715\\ \end{array}$	$\begin{array}{c} 2\ 790\ 496\\ 2\ 924\ 176\\ 3\ 061\ 953\\ 3\ 203\ 884\\ 3\ 350\ 029 \end{array}$
71 72 73 74 75	198 201 204 207 210	$106,84 \\ 108,38 \\ 109,91 \\ 111,45 \\ 112,98$	$963 \\976 \\989 \\1002 \\1015$	$\begin{array}{c} 102\ 885\\ 105\ 774\\ 108\ 702\\ 111\ 669\\ 114\ 675\end{array}$	$\begin{array}{c} 14\ 492\ 475\\ 15\ 118\ 452\\ 15\ 761\ 880\\ 16\ 422\ 993\\ 17\ 102\ 025 \end{array}$	$\begin{array}{c} 3\ 500\ 447\\ 3\ 655\ 195\\ 3\ 814\ 332\\ 3\ 977\ 918\\ 4\ 146\ 011 \end{array}$
76 77 78 79 80	213 216 219 222 225	$114,51 \\ 116,05 \\ 117,58 \\ 119,11 \\ 120,64$	$1028 \\ 1041 \\ 1054 \\ 1067 \\ 1080$	$\begin{array}{c} 117\ 720\\ 120\ 804\\ 123\ 927\\ 127\ 089\\ 130\ 290 \end{array}$	$\begin{array}{c} 17\ 799\ 210\\ 18\ 514\ 782\\ 19\ 248\ 975\\ 20\ 002\ 023\\ 20\ 774\ 160 \end{array}$	$\begin{array}{c} 4\ 318\ 667\\ 4\ 494\ 998\\ 4\ 677\ 911\\ 4\ 864\ 615\\ 5\ 056\ 119\\ \end{array}$
81 82 83 84 85	$228 \\ 231 \\ 234 \\ 237 \\ 240$	$122,17 \\123,70 \\125,23 \\126,75 \\128,28$	$ \begin{array}{r} 1093 \\ 1106 \\ 1119 \\ 1132 \\ 1145 \end{array} $	$\begin{array}{c} 133\ 530\\ 136\ 809\\ 140\ 127\\ 143\ 484\\ 146\ 880\\ \end{array}$	$\begin{array}{c} 21\ 565\ 620\\ 22\ 376\ 637\\ 23\ 207\ 445\\ 24\ 058\ 278\\ 24\ 929\ 370\end{array}$	$5\ 252\ 481\\5\ 453\ 760\\5\ 660\ 013\\5\ 871\ 301\\6\ 087\ 681$
86 87 88 89 90	$243 \\ 246 \\ 249 \\ 252 \\ 255$	$129,81 \\131,33 \\132,86 \\134,38 \\135,90$	$ 1158 \\ 1171 \\ 1184 \\ 1197 \\ 1210 $	$\begin{array}{c} 150\ 315\\ 153\ 789\\ 157\ 302\\ 160\ 854\\ 164\ 445 \end{array}$	$\begin{array}{c} 25\ 820\ 955\\ 26\ 733\ 267\\ 27\ 666\ 540\\ 28\ 621\ 008\\ 29\ 596\ 905 \end{array}$	$\begin{array}{c} 6 \ 309 \ 211 \\ 6 \ 535 \ 951 \\ 6 \ 767 \ 960 \\ 7 \ 005 \ 294 \\ 7 \ 248 \ 014 \end{array}$
91 92 93 94 95	$258 \\ 261 \\ 264 \\ 267 \\ 270$	$137,43 \\ 138,95 \\ 140 \ 47 \\ 142,00 \\ 143,52$	$1223 \\ 1236 \\ 1249 \\ 1262 \\ 1275$	$\begin{array}{c} 168\ 075\\ 171\ 744\\ 175\ 452\\ 179\ 199\\ 182\ 985 \end{array}$	$\begin{array}{c} 30\ 594\ 465\\ 31\ 613\ 922\\ 32\ 655\ 510\\ 33\ 719\ 463\\ 34\ 806\ 015 \end{array}$	$\begin{array}{c} 7\ 496\ 177\\ 7\ 749\ 843\\ 8\ 009\ 069\\ 8\ 273\ 915\\ 8\ 544\ 438 \end{array}$
96 97 98 99 100	273 276 279 282 285	$145,04 \\ 146,56 \\ 148,08 \\ 149,60 \\ 151,12$	$1288 \\ 1301 \\ 1314 \\ 1327 \\ 1340$	$\begin{array}{c} 186\ 810\\ 190\ 674\\ 194\ 577\\ 198\ 519\\ 202\ 500 \end{array}$	$\begin{array}{c} 35 \ 915 \ 400 \\ 37 \ 047 \ 852 \\ 38 \ 203 \ 605 \\ 39 \ 382 \ 893 \\ 40 \ 585 \ 950 \end{array}$	$\begin{array}{c} 8\ 820\ 698\\ 9\ 102\ 753\\ 9\ 390\ 661\\ 9\ 684\ 481\\ 9\ 984\ 271 \end{array}$

· · · · ·				,,		
п	c_1	$c_n' = \frac{\mathfrak{S}_n}{\mathfrak{P}_n}$	P.n	S _n	Fn .	I.n
	m	m	t	tm	tm²	tm ²
6 7 8 9 10	12,0 13,5 15,0 16,5 18,0	$\begin{array}{c} 7,50\\ 7,71\\ 8,06\\ 8,50\\ 9,00 \end{array}$	$ \begin{array}{r} 102 \\ 119 \\ 136 \\ 153 \\ 170 \end{array} $	$765 \\ 918 \\ 1 096,5 \\ 1 300,5 \\ 1 530$	$\begin{array}{c} 7 \ 267,5 \\ 9 \ 792 \\ 12 \ 813,75 \\ 16 \ 409,25 \\ 20 \ 655 \end{array}$	$\begin{array}{c} 1\ 530\\ 2\ 710\\ 3\ 973\\ 5\ 355\\ 6\ 885\end{array}$
$ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array} $	$22,5 \\ 24,0 \\ 25,5 \\ 28,5 \\ 31,5$	$12,54 \\13,11 \\13,70 \\15,72 \\17,69$	$ 183 \\ 196 \\ 209 \\ 222 \\ 235 $	$\begin{array}{c} 2 \ 295 \\ 2 \ 569,5 \\ 2 \ 863,5 \\ 3 \ 490,5 \\ 4 \ 156,5 \end{array}$	$\begin{array}{c} 37 \ 867,5 \\ 45 \ 164,25 \\ 53 \ 313,75 \\ 72 \ 375,75 \\ 95 \ 316,75 \end{array}$	$\begin{array}{r} 9\ 086\\ 11\ 479\\ 14\ 081\\ 17\ 495\\ 21\ 800 \end{array}$

IV.

Lokomotive, Lokomotive, Tender, Güterwagen.

v.

u	P _i	$\left \begin{array}{c} \Delta P_i \\ \hline \Delta u \end{array} \right $	Last- zug	n	u	P _i	$\frac{\Delta P_i}{\Delta u}$	Last- zug	n	$\overline{P_i}$
m	t		1.8		m	t				1
5 6 7 .8 9	$\begin{array}{c c} 43,3\\ 49,5\\ 55,5\\ 61,1\\ 66,1 \end{array}$	6,2 6,0 5,6 5,0 2,6	I I I I I	3 4 4 5 5	25 26 27 28 29	$\begin{array}{c c} 126 \\ 129 \\ 133 \\ 137 \\ 143 \end{array}$	3 4 4 6 3	IV IV IV IV IV	$ \begin{array}{ c c c } 10 \\ 11 \\ 11 \\ 12 \\ 13 \\ \end{array} $	
$ \begin{array}{r} 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array} $	$\begin{array}{c} 69,7\\72,4\\74,4\\75,9\\77,2\end{array}$	2,7 2,0 1,5 1,3 2,7	I I I I I	5 5 5 5 5 6	30 32 34 36 38	$ \begin{array}{ c c } & 146 \\ & 154 \\ & 163 \\ & 172 \\ & 180 \\ \end{array} $		IV II II II II	$ 13 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 $	
15 16 17 18 19	79,9 83,6 87,9 91,8 95,1	2,7 3,7 4,3 3,9 3,3	I I I I I	6 7 8 8 8	$ \begin{array}{r} 40 \\ 42 \\ 44 \\ 46 \\ 48 \end{array} $	188 195 202 208 214	4,0 3,5 3,5 3		17 17 18 19 19	$ \begin{array}{r} 193 \\ 198 \\ 204 \\ 209 \\ 215 \end{array} $
$20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25$	$ \begin{array}{r} 101 \\ 108 \\ 113 \\ 118 \\ 122 \\ 126 \end{array} $	6 7 5 5 4 4	IV IV IV IV IV IV	$ \begin{array}{r} 10 \\$	50 52 54 56 58 60	220 226 232 238 243 243 248	3 3 3 2,5 2,5 2,5		20 20 21 21 22 22	220 225 231 236 242 247

Parabelförmige Einflußlinien.

n	P_i	$\frac{\Delta P_i}{\Delta u}$	Last- zug	n	$\overline{P_i}^*$	u	Pi	$\frac{\Delta P_i}{\Delta u}$	Last- zug	n	$\overline{P_i}$
m	t					m	t				
$ \begin{array}{r} 60 \\ 62 \\ 64 \\ 66 \\ 68 \end{array} $	$248 \\ 254 \\ 259 \\ 265 \\ 270$	3 2,5 3 3 2.5	II II II III	22 23 23 24 25	$247 \\ 252 \\ 258 \\ 263 \\ 269$	$140 \\ 142 \\ 144 \\ 146 \\ 148$	$\begin{array}{r} 457 \\ 462 \\ 468 \\ 473 \\ 478 \end{array}$	2,5 3,0 2,5 2,5 3,0	III III III III III	$\begin{array}{c} 47 \\ 47 \\ 48 \\ 49 \\ 49 \\ 49 \end{array}$	$\begin{array}{r} 463 \\ 468 \\ 474 \\ 479 \\ 485 \end{array}$
70 72 74 76 78	$275 \\ 280 \\ 285 \\ 291 \\ 296$	2,5 2,5 3 2,5 2,5		26 26 26 27 27	274 279 285 290 296	$150 \\ 152 \\ 154 \\ 156 \\ 158$	$\begin{array}{r} 484 \\ 489 \\ 494 \\ 500 \\ 505 \end{array}$	2,5 2,5 3,0 2,5		$50 \\ 51 \\ 51 \\ 52 \\ 53$	$\begin{array}{r} 490 \\ 495 \\ 501 \\ 506 \\ 512 \end{array}$
80 82 84 86 88	$301 \\ 306 \\ 311 \\ 316 \\ 322$	2,5 2,5 2,5 3 2,5		28 29 29 30 30	301 306 312 317 323	$160 \\ 162 \\ 164 \\ 166 \\ 168$	$510 \\ 516 \\ 521 \\ 527 \\ 532$	2,5 3,0 2,5 3,0 2,5 2,5		$53 \\ 54 \\ 54 \\ 55 \\ 56 \\ 56 \\ $	517 522 528 533 539
90 92 94 96 98	327 332 337 342 347	2,5 2,5 2,5 2,5 2,5		31 32 32 33 33	328 333 339 344 350	$170 \\ 172 \\ 174 \\ 176 \\ 178$	$537 \\ 543 \\ 548 \\ 554 \\ 559 $	$ \begin{array}{c} 2,5 \\ 3,0 \\ 2,5 \\ 3,0 \\ 2,5 $		56 57 58 58 59	$544 \\ 549 \\ 555 \\ 560 \\ 566 \\ 566 \\$
$ \begin{array}{r} 100 \\ 102 \\ 104 \\ 106 \\ 108 \end{array} $	352 358 363 368 373	2,5 3,0 2,5 2,5 2,5 2,5	III III III III III	34 35 36 36 37	355 360 366 371 377	$180 \\ 182 \\ 184 \\ 186 \\ 188$	$564 \\ 570 \\ 575 \\ 581 \\ 586$	2,5 3,0 2,5 3,0 2,5 2,5		$ \begin{array}{r} 60 \\ 60 \\ 61 \\ 62 \\ 62 \end{array} $	571 576 582 587 593
$ \begin{array}{r} 110 \\ 112 \\ 114 \\ 116 \\ 118 \end{array} $	378 384 389 394 399	2,5 3,0 2,5 2,5 2,5 2,5		$37 \\ 38 \\ 39 \\ 39 \\ 39 \\ 40$	384 387 393 398 404	$ 190 \\ 192 \\ 194 \\ 196 \\ 198 $	$592 \\ 597 \\ 603 \\ 608 \\ 614$	2,5 3,0 2,5 3,0 2,5			$598 \\ 603 \\ 609 \\ 614 \\ 620$
$120 \\ 122 \\ 124 \\ 126 \\ 128$	$\begin{array}{c} 404 \\ 410 \\ 415 \\ 420 \\ 425 \end{array}$	3,0 2,5 2,5 2,5 2,5 2,5		$\begin{array}{c c} 41 \\ 41 \\ 42 \\ 42 \\ 42 \\ 43 \end{array}$	$\begin{array}{c} 409 \\ 414 \\ 420 \\ 425 \\ 431 \end{array}$	200 202 204 206 208	619 624 630 635 641	2,5 3,0 2,5 3,0 2,5		66 67 67 68 69	$\begin{array}{c} 625 \\ 630 \\ 636 \\ 641 \\ 647 \end{array}$
$130 \\ 132 \\ 134 \\ 136 \\ 138 \\ 140$	$\begin{array}{r} 430 \\ 436 \\ 441 \\ 446 \\ 452 \\ 457 \end{array}$	3,0 2,5 2,5 3,0 2,5		$\begin{array}{c c} 44 \\ 44 \\ 45 \\ 46 \\ 46 \\ 47 \end{array}$	$\begin{array}{r} 436 \\ 441 \\ 447 \\ 452 \\ 458 \\ 463 \end{array}$	210 212 214 216 218 220	$\begin{array}{c} 646 \\ 652 \\ 657 \\ 663 \\ 668 \\ 674 \end{array}$	3,0 2,5 3,0 2,5 3,0 2,5 3,0		69 70 71 71 72 73	$\begin{array}{c} 652 \\ 657 \\ 663 \\ 668 \\ 674 \\ 679 \end{array}$

Sechster Abschnitt. - § 24.

u	P_i	$\frac{\Delta P_i}{\Delta u}$	Last- zug	n	$\overline{P_i}^*$	21	Pi	$\frac{\Delta P_i}{\Delta u}$	Last- zug	n	$\overline{P_i}$
m	t				t	m	t	1.2.18			t
220 222 224 226 228	674 679 685 690 696	2,5 3,0 2,5 3,0 2,5 3,0		73 73 74 75 75	679 684 690 695 701	260 262 264 266 268	785 790 796 801 807	2,5 3,0 2,5 3,0 2,0		86 86 87. 88 88	787 792 798 803 809
230 232 234 236 238	701 707 713 718 724	2,0 3,0 3,0 2,5 3,0		76 76 77 78 78	706 711 717 722 728	270 272 274 276 278	813 818 824 829 835	2,5 3,0 2,5 3,0 2,5 3,0		89 90 90 91 92	814 819 825 830 836
$240 \\ 242 \\ 244 \\ 246 \\ 248$	729 735 740 746 751	3,0 2,5 3,0 2,5 2,5 3,0		79 80 80 81 82	733 738 744 749 755	280 282 284 286 288	841 846 852 857 863	2,5 3,0 2,5 3,0 3,0		92 93 94 94 95	841 846 852 857 863
$\begin{array}{c} 250 \\ 252 \\ 254 \\ 256 \\ 258 \\ 260 \end{array}$	$757 \\762 \\768 \\774 \\779 \\785$	2,5 3,0 3,0 2,5 3,0		82 83 84 84 85 86	760 765 771 776 782 787	290 292 294 296 298 300	869 874 880 885 891 897	2,5 3,0 2,5 3,0 3,0		95 96 97 97 98 99	868 873 879 884 890 895

120. Zwischen zwei Beitragstrecken u', u'' (Fig. 318), deren Einflußlinien Parabeln von den Pfeilhöhen z' und z'' sind, liege eine Beitrag-

strecke von entgegengesetztem Vorzeichen, die so kurz ist, daß die Strecken u', u'' durch einen zusammenhängenden Eisenbahnzug belastet werden können, ohne daß die dazwischenliegende Strecke eine Belastung erfährt. Die Mittelkräfte \mathfrak{P}' und \mathfrak{P}'' der auf den Strecken u' und u'' ruhenden Lasten haben voneinander den Abstand v und von den zugehörigen Parabelscheiteln die Abstände s', s''. Die Parabelscheitel seien um wvoneinander entfernt. Man erhält nach Gleichung (4) Parabelförmige Einflußlinien.

$$Y = \frac{4z'}{u'^{2}} \left(\mathfrak{P}'a'b' - \mathfrak{T}' \right) + \frac{4z''}{u''^{2}} \left(\mathfrak{P}''a''b'' - \mathfrak{T}'' \right)$$

und, wenn man setzt

$$a' = \frac{u'}{2} - s' \qquad b' = \frac{u'}{2} + s'$$

$$a'' = \frac{u''}{2} - s'' \qquad b'' = \frac{u''}{2} + s'',$$
(11)
$$Y = s' \left[\mathfrak{P}' - \frac{\mathfrak{P}'s'^2 + \mathfrak{T}'}{\left(\frac{u'}{2}\right)^2} \right] + s'' \left[\mathfrak{P}'' - \frac{\mathfrak{P}''s''^2 + \mathfrak{T}''}{\left(\frac{u''}{2}\right)^2} \right].$$

Damit Y ein Maximum wird, muß

$$\frac{\mathfrak{P}'s'}{u'} + \frac{\mathfrak{P}''s''}{u''} = 0$$

Setzt man s'' = s' + w - v, so erhält man sein.

(12)
$$s' = \frac{v - w}{1 + \frac{\mathfrak{P}'}{\mathfrak{P}''} \frac{z'}{z''} \frac{u''^2}{u'^2}}$$

Im Falle u' = u'' = u, z' = z'' = z gehen (11) und (12) über in $Y = z \left[\mathfrak{P} - \frac{\mathfrak{P}'s'^2 + \mathfrak{P}''s''^2 + \mathfrak{T}' + \mathfrak{T}''}{\left(\frac{u}{2}\right)^2} \right],$ (13)

(14)
$$s' = (v - w) \frac{\mathfrak{P}'}{\mathfrak{P}}, \text{ wo } \mathfrak{P} = \mathfrak{P}' + \mathfrak{P}'$$

Es sei z. B. u' = u'' = 5,65 m und die dazwischen liegende Strecke = 3,70 m, also w = 9,35 m, Fig. 319. Bei der Zuganordnung (a) — Lastzug der preußischen Verordnung — ist v = 9,75 m, ferner

$$\begin{aligned} \mathfrak{P} &= 514, \qquad \mathfrak{P}^{*} = 68 \text{ t}, \qquad \mathfrak{P}^{*} + \mathfrak{P}^{*} = 119 \text{ t}, \\ \mathfrak{T}^{*} + \mathfrak{T}^{''} &= 2 \cdot 17 \cdot 1,5^{2} \left[1 + \left(\frac{1}{2}\right)^{2} + \left(\frac{3}{2}\right)^{2} \right] = 268 \text{ tm}^{2} \\ s^{'} &= (9,75 - 9,35) \frac{51}{119} = 0,17 \text{ m}, \quad s^{''} &= -0,23 \text{ m} \\ \text{mit} \left(\frac{1}{2}u\right)^{2} &= 7,98 \end{aligned}$$

und

$$_{nax}Y = z\left(119 - \frac{268}{7,98}\right) = 85z.$$

Die von s' und s" abhängigen Glieder dürfen gestrichen werden. Es ist also gleichgültig, ob der Abstand 2k der Vorderachsen der gegeneinander gekehrten Lokomotiven 6 m oder 5,6 m beträgt.

Ermäßigt man die Achslast auf 16 t, den Radstand auf 1,3 m und den Pufferabstand k auf 2,725 m, so entsteht der Belastungsfall (b). Man erhält s' = s'' = 0, $\mathfrak{P}' = \mathfrak{P}'' = 64 \mathrm{t}$,

$$\mathfrak{T}' = \mathfrak{T}'' = 2 \cdot 16 \cdot 1.3^2 \left[\left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 \right] = 80 \cdot 1.3^2 = 135.2 \text{ tm}^2$$

$$_{nax}Y = 2z\left(64 - \frac{135,2}{7,98}\right) = 94z.$$

Für den Radstand 1,2 m ergibt sich

 $\mathfrak{T}' = \mathfrak{T}'' = 80 \cdot 1, 2^2 = 115, 2, \quad \max Y = 99 z.$

In Fällen der vorliegenden Art hat also der Radstand einen verhältnismäßig großen Einfluß. Kürzere, wenn auch leichtere Lokomotiven können ungünstigere Wirkungen hervorbringen als längere Lokomotiven

von größerem Gewicht. Bleibt man also bei einem Lastenzuge, so rechne man möglichst ungünstig und belaste jede der beiden Strecken für sich so, daß $\Sigma P \eta$ ein Maximum wird, unbekümmert darum, ob die so gefundenen Zugstellungen überhaupt möglich sind. Im vorliegenden Falle wird man, wegen u' = u'',

$$_{max}Y = 2zP_i$$

setzen, wobei allerdings zu beachten ist, daß die in den preußischen Vorschriften für eine nur durch eine, zwei, drei oder vier Achsen belastete Brücke geforderte Erhöhung der Achslast nicht notwendig ist, da ja im ganzen mehr als vier Lasten auf der Brücke stehen. Die für u = 5 m, 6 m, 7 m angegebenen Werte $P_i = 43,3$ t, 49,5 t, 55,5 t müssen also der Reihe nach mit $\frac{17}{19}$, $\frac{17}{18}$, $\frac{17}{18}$ multipliziert werden. Man erhält

$$P_i = 39 \text{ t}, 47 \text{ t}, 52 \text{ t} \text{ und } \frac{\Delta P_i}{\Delta u} = 8 \text{ t}, 5 \text{ t}.$$

Zu u = 5,65 m gehört demnach

$$P_i = 39 + 0,65 \cdot 8 = 44 \text{ t},$$

und es ergibt sich

$$_{max}Y = 88 \cdot z.$$

121. Die in Nr. 119 und 120 gegebenen Formeln und Tabellen sind auch dann noch brauchbar, wenn die Einflußlinie keine genaue Parabel ist. Die Bildung eines Urteils über die zulässige Abweichung von der Parabelform wird oft dadurch erleichtert, daß jede Einflußlinie als die Momentenlinie eines einfachen Balkens aufgefaßt werden darf. Die Parabel ist die Momentenlinie für gleichförmige volle Belastung. Je weniger also die zu einer Einflußlinie gehörige Belastungsfläche von einem Rechtecke abweicht, ein desto genaueres Ergebnis liefert die Formel $Y_{max} = P_i z$, wo z die Pfeilhöhe des Parabelabschnittes bedeutet, der denselben Inhalt besitzt, wie die fragliche Einflußfläche. Wir wählen ein Beispiel, in welchem die Belastungsfläche der Einflußlinie ein Dreieck ist.

Gesucht sei der Widerstand $_{min}X_a$ der Endstütze a eines über zwei Öffnungen gestreckten Balkens von unveränderlichem Querschnitte, Fig. 320. Die M_a -Fläche ist ein Dreieck von der Höhe $1 \cdot l_1$. Man findet

$$EJ\delta_{aa} = \int M_a^2 dx = 2 (l_1 + l_2) \frac{l_1}{2} \cdot \frac{l_1}{3} \cdot \frac{l_1}{3} \cdot \frac{l_2}{3} \cdot \frac{$$

Die Gleichung der Xa-Linie ist für die erste Öffnung

$$\eta_{1} = 1 \frac{x'}{l_{1}} - \omega_{D} \cdot \frac{l_{1}l_{1}^{2}}{6 \cdot EJ\delta_{\alpha\alpha}} = \frac{x'}{l_{1}} - \omega_{D} \frac{l_{1}}{2(l_{1} + l_{2})}$$

und für die zweite Öffnung

$$\eta_2 = -\omega_D \cdot \frac{l_1 l_2^*}{6 E J \delta_{aa}} = -\omega_D \frac{l_2^*}{2 l_1 (l_1 + l_2)}$$

 $_{min}X_a$ entsteht bei ausschließlicher Belastung der Öffnung l_2 . Ist $l_1 = 7,0$ m, $l_2 = 9,0$ m, so ergibt sich

$$\eta_2 = -\omega_D \cdot 0,362$$

und man findet für die in Fig. 320a angegebene Zugstellung

$$_{in}X_a = \Sigma P\eta_2 = -9,00 ext{ t.}$$

Der Inhalt der Einflußfläche ist für die zweite Öffnung, wegen

$$\int_{0}^{l_{2}} \omega_{D} dx = \int_{0}^{l_{2}} \left(\frac{x}{l} - \frac{x^{3}}{l^{3}} \right) dx = \frac{l_{2}}{4}$$
$$\mathfrak{F} = \frac{l_{2}^{3}}{8 l_{1} (l_{1} + l_{2})} \cdot$$

Die Pfeilhöhe der gleichwertigen Parabel beträgt

$$z = \frac{3}{2} \frac{\Im}{l_2} = \frac{3 l_2^2}{16 l_1 (l_1 + l_2)} = 0,136.$$

Zu $l_2 = 9$ m gehört $P_i = 66$ t. Man erhält demnach $_{min}X_a = -P_iz = -66 \cdot 0.136 = 8.98$ t,

also fast genau denselben Wert wie oben, trotzdem die Belastungsfläche erheblich von einem Rechtecke abweicht.

Es ist nun die Frage, ob sich auch für $_{max}X$ ein einfacher Näherungswert angeben läßt. Die Einflußlinie

$$\eta_1 = \frac{x'}{l_1} - \omega_D \cdot 0,219$$

liefert für die in Fig. 320b angegebene Zugstellung

$$_{max}X_a = \Sigma P\eta_1 = +44$$
 t.

Setzen wir

$$\frac{x'}{l_1} - \eta_1 = \eta',$$

so erhalten wir

$$X_a = A_0 - \Sigma P \eta',$$

wo A_0 den Widerstand der Endstütze A eines einfachen Balkens AB bedeutet. Die Summe $\Sigma P\eta'$ ersetzen wir durch den einer gleichmäßigen Belastung p entsprechenden Wert

Parabelförmige Einflußlinien. Versteifter Stabbogen.

$$p \int_{0}^{l_{1}} \eta' dx = p \frac{l_{1}}{2(l_{1}+l_{2})} \int_{0}^{l_{1}} \omega_{D} dx = \frac{p l_{1}^{2}}{8(l_{1}+l_{2})}$$

und wählen p so groß, daß

$$p\frac{l_1}{2} = A_0$$

ist. Dann erhalten wir die Formel

$$X_a = A_0 \left(1 - \frac{l_1}{4 \left(l_1 + l_2 \right)} \right) = A_0 \frac{3 l_1 + 4 l_2}{4 \left(l_1 + l_2 \right)}.$$

Im vorliegenden Falle ist

$$A_0 = 85 \frac{4}{7} = 49 \text{ t} \text{ und } _{max} X_a = 49 \frac{57}{64} = 44 \text{ t}.$$

Weitere Beispiele für Balken auf mehreren Stützen findet man im § 26.

§ 25.

Stabbogen mit darüberliegendem Versteifungsbalken.

122. Berechnung des größten Horizontalschubes. Der Stabbogen mit darüberliegendem Versteifungsbalken kann als die Umkehrung einer durch einen Balken versteiften Kette angesehen werden. Seine Knotenpunkte mögen in einer Parabel liegen; es sei also

$$y = \frac{4fxx'}{l^2}$$
.

Zur Aufnahme der am Balken angreifenden wagerechten Lasten diene das lotrechte Gleitlager B_o , Fig. 321. Vgl. Abteilung 1, § 9, Nr. 104. Die Einflußlinie für den Horizontalschub H ist eine Parabel von der Pfeilhöhe

(1)
$$z_0 = \frac{3l}{16f} \nu, \text{ wo}$$

2)
$$\nu = -\frac{1}{1-1}$$

$$=\frac{1}{1+\frac{15}{8}\frac{s_0}{l}\frac{J}{F_k f^2}}$$

(3)
$$\frac{s_0}{l} = 1 + \frac{16}{3} \frac{f^2}{l^2}$$
.

 F_k bedeutet den Querschnitt des Stabbogens im Scheitel, J das unveränderlich angenommene Trägheitsmoment des Versteifungsbalkens. Ist der Balken ein Fachwerk mit parallelen Gurtungen und h seine

Höhe, was in dem folgenden Zahlenbeispiele vorausgesetzt werden möge, so darf $J = F \frac{h^2}{2}$ gesetzt werden, wo F den Gurtquerschnitt bedeutet. Dann ist

(4)
$$\gamma = \frac{1}{1 + \frac{15}{16} \frac{h^2}{f^2} \frac{s_0}{l} \frac{F}{F_k}}.$$

Es handele sich um eine zweigleisige Eisenbahnbrücke von l = 80 m Spannweite und $f = \frac{l}{8} = 10$ m Pfeilhöhe. Balkenhöhe h = 2,0 m. Wir schätzen $F = 0.5 F_k$ und erhalten

$$v = 0.98$$
 und $z_0 = 1.47$.

Zu l = 80 m gehört $P_i = 301$ t; es ist also $_{max}H_p = 301 \cdot 1,47 = 442,5$ t.

Das Eigengewicht betrage g = 4 t/m, weshalb

(5)
$$H_g = \frac{gl^2}{8f} v = glv = 313.6 \text{ t}$$

Eine Erhöhung der Aufstellungstemperatur um $t = 45^{\circ}$ erzeugt (6) $H_t = \varepsilon E F_k t (1 - \gamma) = 250 \cdot F_k 45 \cdot 0.02 = 225 F_k.$

Im ganzen entsteht:

 $_{max}H = 756 + 225 F_k.$

Die Spannung im Scheitelquerschnitte des Bogens beträgt

$$\sigma = \frac{H}{F_k} = \frac{756}{F_k} + 225.$$

Wird $\sigma = 1000$ kg/qcm = 10000 t/qm gestattet, so ist der erforderliche nutzbare Querschnitt $F_k = 0.0774$ qm und der volle Quer-

Parabelförmige Einflußlinien. Versteifter Stabbogen.

schnitt (ohne Abzug der Nietlöcher) etwa $F_k = 0,0774 \cdot 1,09 = 0,0844$, weshalb

$$H_t = 250 \cdot 0.0844 \cdot t \cdot 0.02.$$

Schwankt t zwischen — 25° und + 45°, so liegt H_t zwischen den Grenzen

$$H_t = -10,6$$
 und $+19$ Tonnen.

123. Biegungsmomente $_{min}M$ für den Versteifungsbalken, Fig. 322 und 323. Die Kämpferdrucklinie ist eine wagerechte Gerade in der Höhe

(7)
$$y_k = \frac{4f}{3\nu} = \frac{40}{3 \cdot 0.98} = \frac{20}{1.47} = 13,605 \text{ m}.$$

In gleicher Höhe haben wir in den Figuren 322 und 323 die Achse des Versteifungsbalkens, deren Abstand vom Bogen für unsere Untersuchung gleichgültig ist, gezeichnet.

Die Einflußfläche für das Biegungsmoment des Balkenquerschnittes C ist der Unterschied der H-Linie und eines Dreieckes ABC von der Höhe

(8)
$$\eta_c = \frac{xx'}{\sqrt[4]{yl}} = \frac{l}{4f} = 2,0.$$

Ihr Multiplikator ist y.

Wir rechnen mit einer stetig gekrümmten Achse des Stabbogens. Dann liegen die Nullpunkte E und E' lotrecht unter den Punkten Eund E', in denen die Kämpferdrucklinie von den die Kämpfergelenke Aund B mit dem Bogenpunkte C verbindenden Geraden geschnitten wird.

In Figur 322 liegen beide Punkte E und E' innerhalb der Spannweite; es sind also zwei negative Beitragstrecken $\overline{BE} = \xi$ und $\overline{AE'} = \xi'$ vorhanden. Der negative Teil der Einflußfläche des Momentes besteht aus zwei Parabelabschnitten von den Pfeilhöhen

(9)
$$z = z_0 \frac{\xi^2}{l^2} = 1,47 \frac{\xi^2}{l^2}$$
 und $z' = 1,47 \frac{\xi'^2}{l^2}$.

Entsprechen den Weiten ξ und ξ' die Lasten P_{i+1} und P_{i+2} , so ist der Einfluß der Verkehrslast auf $_{min}M$:

$$_{nin}M_p = - \left(P_{i1} z + P_{i2} z'\right) y.$$

Die ständige Belastung erzeugt

(10)
$$M_g = g \frac{xx'}{2} (1-v),$$

also für den m^{ten} Knotenpunkt des Balkens, wenn λ die Feldweite bedeutet:

$$M_g = g \frac{\lambda^2}{2} (1 - \nu) \ m \cdot m' = \frac{4 \cdot 25}{2} \cdot 0.02 \cdot m \cdot m' = 1.0 \ m \ (16 - m).$$

In Figur 323 liegt E' außerhalb der Stützweite. Es ist nur eine negative Beitragstrecke ξ vorhanden und man erhält

Wir berechnen zunächst:

 $\overline{AE} = x \frac{y_k}{y} = m\lambda \frac{y_k}{y} = \frac{m}{y} \cdot \frac{100}{1.47}$

Parabelförmige Einflußlinien. Versteifter Stabbogen.

Die folgende Tabelle enthält die Ordinaten y, die Strecken \overline{AE} und $l - \overline{AE} = \xi$, sowie die in Nr. 124 gebrauchten Strecken

(11)
$$s = \frac{ly_k}{y} = \frac{1600}{1,47y} = \frac{1088,44}{y}$$

Die zu den rechtsseitigen Bogenpunkten 7', 6', 5' gehörigen Strecken ξ sind gleich den Strecken ξ' , die zu den entsprechenden linksseitigen Bogenpunkten 7, 6, 5 gehören. Für die Balkenquerschnitte 6, 7 und 8 sind also je zwei Lastscheiden (*E* und *E'*) vorhanden.

T

				_
m	y	\overline{AE}	ALS	8
$\begin{array}{c}1\\2\\3\\4\end{array}$	2,344 4,375 6,094 7,500	$\begin{array}{r} 29,02\\ 31,10\\ 33,49\\ 36,28\end{array}$	50,98 48,90 46,51 43,72	$\begin{array}{r} 464,35\\ 248,79\\ 178,61\\ 145,13\\ \end{array}$
5 6	9,375	39,58 43,54	36,46	116,10
7 8 7' 6'	9,844 10,000 9,844 9,275	48,37 54,42 62,19 72,56	$ \begin{array}{c c} 31,63\\ 25,58\\ 17,81\\ 7.44 \end{array} $	110,57 108,84
6 5'	9,575 8,594	87,07	- 7,07	m

Tabelle II enthält die den Strecken ξ entsprechenden Parabelhöhen z und Lasten P_i , sowie die Momente $_{min}M_p$, M_g , M_t und

$$_{\min}M = _{\min}M_p + M_g + M_t.$$

m	M	z	P_i	ξ'	x'	P_i	minMp	M_t	M_{g}	minM		
$1 \\ 2 \\ 3 \\ 4 \\ 5$	51,0 48,9 46,5 43,7 40,4	$\begin{array}{c} 0,597\\ 0,549\\ 0,497\\ 0,439\\ 0,375\end{array}$	223 217 210 201 189				$ \begin{array}{r} -312 \\ -521 \\ -636 \\ -662 \\ -609 \end{array} $	$ \begin{array}{r} - & 45 \\ - & 83 \\ - & 116 \\ - & 143 \\ - & 163 \end{array} $	+15 + 28 + 39 + 48 + 55	$- 342 \\ - 576 \\ - 713 \\ - 757 \\ - 717$		
6 7 8	$36,5 \\ 31,6 \\ 25,6$	$\begin{array}{c} 0,306 \\ 0,229 \\ 0,151 \end{array}$	$174 \\ 152 \\ 128$	$7,4 \\ 17,8 \\ 25,6$	$0,013 \\ 0,073 \\ 0,151$	58 91 128	$\begin{vmatrix} - 506 \\ - 409 \\ - 387 \end{vmatrix}$	$ \begin{array}{r} -178 \\ -187 \\ -190 \end{array} $	+60 + 63 + 64	-624 - 533 - 513		
	m		t	m		t	tm	tm	tm	tm		
7	füller-	Bresla	u. Grap	hische S	tatik. II	[. 2.			28			

II.

124. Biegungsmomente $\max M$. Auf der positiven Beitragstrecke E'E (Fig. 324) befinde sich eine Lastgruppe $P_1P_2 \ldots P_n$. Die an der Stelle C stehende Last sei P_r . Die Mittelkraft \mathfrak{P}_n der Lastgruppe habe

von	A	den	Abstand	a
77	B	77	"	ď
77	E'	"	"	$a^{\prime\prime}$
"	E	77	" -	b".

Fig. 324.

Sind A und B die lotrechten Seitenkräfte der Kämpferwiderstände, so ist das Biegungsmoment M des Balkenquerschnitts C:

$$M = Ax - Hy - \mathfrak{S}_r,$$

 $A = \mathfrak{P}_n \frac{b'}{l}$

und

wo

(12)
$$H = \frac{3\nu}{4fl} \left(\mathfrak{P}_n a' b' - \mathfrak{T}_n \right) = \frac{1}{ly_k} \left[\mathfrak{P}_n b' (l-b') - \mathfrak{T}_n \right].$$

Man erhält

$$M = \frac{y}{ly_k} \left[\frac{xy_k}{y} \mathfrak{P}_n b' - \mathfrak{P}_n b'(l-b') + \mathfrak{T}_n \right] - \mathfrak{S}_r$$

und mit Beachtung der Beziehungen:

$$\begin{split} \xi &= l - \frac{x y_k}{y} \text{ und} \\ b'' &= b' - \xi \end{split}$$

kürzer:

(13)
$$M = \frac{1}{s} \left(\mathfrak{P}_n b' b'' + \mathfrak{T}_n \right) - \mathfrak{S}_r$$

wo

$$(14) s = \frac{ly_k}{y}.$$

Um nun zu erkennen, ob die angenommene Laststellung die ungünstigste ist, rücken wir den Zug um db nach links. Dann wächst $b'b'' = b'(b' - \xi)$ um $(2b' - \xi) db = (b' + b'') db$. Das Moment der Lasten $P_1 \ldots P_r$ in bezug auf den Querschnitt C ändert sich um $\mathfrak{P}_r db$. Es ergibt sich daher

$$\frac{dM}{db} = \frac{1}{s} \mathfrak{P}_n (b' + b'') - \mathfrak{P}_r.$$

Soll die angenommene Zugstellung das größte Moment erzeugen, so muß $\frac{dM}{db}$ negativ sein. Es folgt hieraus die Bedingung

und ebenso führt die Untersuchung des Einflusses einer Verschiebung des Lastzuges nach rechts zu der Bedingung

(16)
$$\Longrightarrow \frac{\mathfrak{P}_n}{\mathfrak{P}_{r-1}} > \frac{s}{b'+b''}.$$

Gleichung (13) darf auch ersetzt werden durch

(13')
$$M = \frac{1}{s} \left(\mathfrak{P}_n a' a'' + \mathfrak{T}_n \right) - \mathfrak{S}_r.$$

Die Lasten werden dann von rechts nach links fortschreitend mit P_1, P_2, \ldots, P_n bezeichnet. Die Bedingungen (15) und (16) sind zu ersetzen durch

(15')
$$\Longrightarrow \frac{\mathfrak{P}_n}{\mathfrak{P}_r} < \frac{s}{2a'-\xi}$$

(16')
$$\stackrel{\mathfrak{P}_n}{\longleftarrow} \frac{\mathfrak{P}_n}{\mathfrak{P}_{n-1}} > \frac{s}{2a'-\xi}$$

Den Bedingungen (15), (16), (15'), (16') können im allgemeinen verschiedene Laststellungen genügen, deren Wirkungen miteinander zu vergleichen sind.

28*

Für unser Zahlenbeispiel kommen die in den Figuren 325 bis 332 dargestellten Belastungsfälle in Betracht. Die Lage der Mittelkraft \mathfrak{P}_n wurde mittels der in den Tabellen I bis IV des § 24 angegebenen Werte c_n' bestimmt. Man erhält, mit den vorhin berechneten Werten s, die folgenden Ansätze:

 $max M_{p1}, \quad \text{Fig. 325.} \qquad \frac{s}{b' + b''} = \frac{464,35}{81,42} = 5,70$ $\leftarrow \frac{\mathfrak{P}_{13}}{\mathfrak{P}_3} = \frac{209}{51} < 5,70 \implies \frac{\mathfrak{P}_{13}}{\mathfrak{P}_2} = \frac{209}{34} > 5,70$

 $_{max}M_{p1} = \frac{1}{464,35} (209 \cdot 66,20 \cdot 15,22 + 14081) - 51 \cdot 1,5 = 407 \text{ tm.}$

$$\max M_{p2}, \quad \text{Fig. 326.} \qquad \frac{s}{b'+b''} = \frac{248,79}{78,42} = 3,17$$

$$\leftarrow \frac{\mathfrak{P}_{14}}{\mathfrak{P}_5} = \frac{222}{81} < 3,17 \implies \frac{\mathfrak{P}_{14}}{\mathfrak{P}_4} = \frac{222}{64} > 3,17$$

 $_{l_{max}}M_{p2} = \frac{1}{248,79} (222 \cdot 63, 66 \cdot 14, 76 + 17332) - 51 \cdot 3 - 13 \cdot 9 = 638 \text{ tm}.$

$$\max M_{p4}, \quad \text{Fig. 328.} \qquad \frac{s}{b'+b''} = \frac{145,13}{82,28} = 1,764$$

$$\iff \frac{\mathfrak{P}_{16}}{\mathfrak{P}_{9}} = \frac{248}{141} = 1,757 < 1,764 \implies \frac{\mathfrak{P}_{16}}{\mathfrak{P}_{8}} = \frac{248}{124} > 1,764$$

$$\max M_{p4} = \frac{1}{145,13} \left(248 \cdot 63,00 \cdot 19,28 + 24552 \right) - 1467 = 778 \text{ tm}$$

$$m_{ax}M_{p5}, \quad \text{Fig. 329.} \qquad \frac{s}{a'+a''} = \frac{126,65}{46,13} = 2,75^*)$$

$$\leftarrow \frac{\mathfrak{P}_{17}}{\mathfrak{P}_7} = \frac{261}{107} < 2,75 \implies \frac{\mathfrak{P}_{17}}{\mathfrak{P}_6} = \frac{261}{90} > 2,75$$

 $_{max}M_{p5} = \frac{1}{126,65} (261 \cdot 19,53 \cdot 26,60 + 29249) - 562,5 = 739 \text{ tm.}$

Fig. 330.

max M_{p6} , Fig. 330. $\frac{s}{b'+b''} = \frac{116,10}{72,54} = 1,60$ $\leftarrow \frac{\mathfrak{P}_{16}}{\mathfrak{P}_{10}} = \frac{248}{158} < 1,60 \implies \frac{\mathfrak{P}_{16}}{\mathfrak{P}_{0}} = \frac{248}{141} > 1,60$ $_{max}M_{p\,6} = \frac{1}{116,10} \left(248 \cdot 54,50 \cdot 18,04 + 24552 \right) - 1678,5 = 633 \,\mathrm{tm}.$

*) Hier wurden die Gleichung (13') und die Bedingungen (15'), (16') benutzt.

$$\max M_{p7}, \quad \text{Fig. 331.} \qquad \frac{s}{b'+b''} = \frac{110,57}{61,77} = 1,79$$

$$\leftarrow \frac{\mathfrak{P}_{13}}{\mathfrak{P}_{7}} = \frac{209}{119} < 1,79 \implies \frac{\mathfrak{P}_{13}}{\mathfrak{P}_{6}} = \frac{209}{102} > 1,79$$

 $_{\text{(max}}M_{p^7} = \frac{1}{110,57} (209 \cdot 46,70 \cdot 15,07 + 14081) - 918 = 540 \text{ tm.}$

 $\begin{aligned} \max M_{p8}, \quad \text{Fig. 332.} \qquad & \frac{s}{b'+b''} = \frac{108,84}{57,82} = 1,88 \\ & \leftarrow \frac{\mathfrak{P}_{13}}{\mathfrak{P}_{7}} = \frac{209}{119} < 1,88 \implies \frac{\mathfrak{P}_{13}}{\mathfrak{P}_{6}} = \frac{209}{102} > 1,88. \\ & \max M_{p8} = \frac{1}{108,84} \left(209 \cdot 41,70 \cdot 16,12 + 14081 \right) - 918 = 502 \text{ tm.} \end{aligned}$

Zu den Momenten $_{max}M_p$ treten noch die vorhin berechneten M_g sowie die infolge der Temperaturänderung $t = -25^\circ$ entstehenden Momente

$$M_t = +10.6 y.$$

Die Ergebnisse dieser Rechnung sind in der Tabelle III zusammengestellt worden.

m	$_{max}M_p$	M_{g}	M _t	marM	S	F
1	407	15	25	447	224	236
2	638	28	46	712	356	375
3	760	39	65	864	432	455
4	778	48	80	906	453	477
5	739	55	91	885	443	466
6	633	60	99	792	396	417
7	540	63	104	707	354	373
8	502	64	106	672	336	354
22	tm	tm	tm	tm	t	aem

III.

Die Momente $_{max}M$ sind durchweg größer als die Momente $_{min}M$. Die zugehörigen Gurtkräfte $S = \frac{M}{h} = \frac{M}{2,0}$ und die erforderlichen Gurtquerschnitte $F = \frac{S}{0,95}$ qcm sind in den beiden letzten Spalten angegeben worden. Der Mittelwert von F ist 394 qcm, weshalb $F: F_k = 394:774$ = 0,51, was mit der Schätzung $F: F_k = 0,5$ gut übereinstimmt. Der Wert $\nu = 0.98$, braucht also nicht geändert zu werden.

Wir geben noch ein zweites Verfahren zur Berechnung der Momente $_{max}M_p$ an. Den Zeiger p lassen wir zunächst fort. Der positive Teil der Einflußfläche für M (Fig. 322) ist gleich dem Unterschiede des Dreiecks ECE' und des Parabelabschnittes EC'E'. Man kann schreiben:

$$M = y \Sigma P \eta - y \Sigma P \eta',$$

wobei sich das erste Glied auf die Dreieckfläche, das zweite auf den Parabelabschnitt beziehen mögen. Das erste Glied stimmt überein mit dem Biegungsmomente M_{0c} des Querschnittes C eines einfachen Balkens von der Stützweite $l_0 = \overline{E'E}$. Das zweite Glied möge unter der Annahme berechnet werden, daß die Strecke E'E eine gleichförmige Belastung p trägt, welche der Bedingung

$$\frac{p l_0^2}{8} = {}_{max} M_0$$

genügt, wo $_{max}M_0$ das größte Biegungsmoment für einen Balken von der Spannweite l_0 infolge der Verkehrslast bedeutet. Ist dann \mathfrak{F} der Inhalt des Parabelabschnittes EC'E', so ergibt sich

$$max M = max M_{0C} - py \mathfrak{F}$$
$$= max M_{0C} - max M_0 \cdot \frac{8y \mathfrak{F}}{l_0^2} \cdot$$

Parabelförmige Einflußlinien. Versteifter Stabbogen.

Zwischen dem Momente $_{max}M_{0C}$ an der Stelle C und dem Momente $_{max}M_0$ besteht nach Band I, Anhang Seite 551, mit genügender Annäherung die Beziehung

(17)
$$\frac{max M_{0C}}{max M_0} = \frac{x_0 \left(2 \ d - x_0\right)}{d^2},$$

wo $d = 0,44 l_0$ ist. Unter x_0 ist der kleinere der beiden Abstände E'C und CE zu verstehen. Mit der abkürzenden Bezeichnung

(18)
$$\gamma = \frac{x_0 \left(0.88 \, l_0 - x_0\right)}{\left(0.44 \, l_0\right)^2}$$

ergibt sich dann

(19)
$${}_{max}M = {}_{max}M_0\left(\gamma - \frac{8\,y\,\mathfrak{F}}{l_0^2}\right)\cdot$$

Der Inhalt der H-Fläche ist

$$\mathfrak{F}_{H} = \frac{2}{3} \cdot \frac{3l}{16f} \, \mathfrak{v} \cdot l = \frac{l^2}{8f} \, \mathfrak{v},$$

mithin

$$\mathfrak{F} = \mathfrak{F}_{H} \frac{l_0^3}{l^3} = \frac{l_0^3 \nu}{8 f l}$$

und

(20)
$${}_{max}M = {}_{max}M_0 \left(\gamma - \frac{y l_0 \, \nu}{lf}\right) \cdot$$

Nun verhält sich aber

$$\frac{l_0}{l} = \frac{y_k - y}{y} \cdot$$

Es ist also

$$\frac{yl_0}{l} = y_k - y = \frac{4f}{3\gamma} - y,$$

und man findet schließlich

(21)
$$_{max}M = {}_{max}M_0 \left(\gamma - \frac{4}{3} + \frac{y}{f} \nu\right).$$

Gleichung (21) gilt nur für den Fall, daß beide Punkte E und E'innerhalb der Stützweite AB liegen, Fig. 322. Liegt E' links von A(Fig. 323), so ist

$$l_0 = x \frac{y_k}{y} = \frac{x \, 4f}{y \, 3\nu},$$

und es entsteht die noch einfachere Formel

(22)
$${}_{max}M = {}_{max}M_0 \left(\gamma - \frac{4}{3} \ \frac{x}{l}\right) \cdot$$

Die Tabelle A enthält die Momente $_{max}M_0$ für den Lastzug der preußischen Bestimmungen und für verschiedene Stützweiten l_0 . Die Tabelle B gibt die den Zahlen $\frac{x_0}{l_0}$ entsprechenden Werte γ an. Sobald $\frac{x_0}{l_0} > 0.44$ wird, ist $\gamma = 1$ zu setzen.

Tabelle A.

l_0	M _{0 max}	$\frac{\Delta M_{0 max}}{\Delta l_0}$	lo	M _{0 max}	$\frac{\Delta M_{0 max}}{\Delta l_0}$	10	M _{0 max}	$\frac{\Delta M_{0 max}}{\Delta l_0}$
m	tm	t	m	tm	t	m	tm	t
1,0 1,2 1,4 1,6 1,8	5,00 6,00 7,00 8,00 9,00	5,00 5,00 5,00 5,00	15 16 17 18 19	243,9 270,0 297,8 327,0 359,8	26,1 27,8 29,2 32,8	$ \begin{array}{c} 60 \\ 62 \\ 64 \\ 66 \\ 68 \end{array} $	$\begin{array}{c} 2 \ 900 \\ 3 \ 063 \\ 3 \ 232 \\ 3 \ 402 \\ 3 \ 575 \end{array}$	81,5 84,5 85,0 86,5 88,0
2,0 2,2 2,4 2,6 2,8	$10,00 \\ 11,00 \\ 12,00 \\ 13,16 \\ 15,01$	5,00 5,00 5,80 9,25	$20 \\ 22 \\ 24 \\ 26 \\ 28$	394,0 469,0 550,5 632,0 728,2	37,5 40,8 40,8 48,1	$70 \\ 72 \\ 74 \\ 76 \\ 78$	$\begin{array}{r} 3 \ 751 \\ 3 \ 927 \\ 4 \ 109 \\ 4 \ 295 \\ 4 \ 484 \end{array}$	88,0 91,0 93,0 94,5
3,0 3,2 3,5 4,0 4,5	$16,88 \\18,76 \\21,61 \\28,50 \\35,63$	$9,30 \\ 9,40 \\ 9,50 \\ 13,8 \\ 14,2$	$30 \\ 32 \\ 34 \\ 36 \\ 38$	$\begin{array}{r} 832,3\\939,2\\1050\\1165\\1286\end{array}$	52,1 53,5 55,4 57,5 60,5	80 82 84 86 88	$\begin{array}{r} 4\ 674\\ 4\ 868\\ 5\ 063\\ 5\ 263\\ 5\ 464\end{array}$	95,0 97,0 97,5 100 101
5,0 6 7 8 9	42,75 57,00 73,45 93,50 114,7	$14,2 \\ 14,3 \\ 16,4 \\ 20,1 \\ 21,2$	$ \begin{array}{r} 40 \\ 42 \\ 44 \\ 46 \\ 48 \end{array} $	$1416 \\ 1552 \\ 1689 \\ 1832 \\ 1976$	65,0 68,0 68,5 71,5 72,0	90 92 94 96 98	$5669 \\ 5876 \\ 6089 \\ 6303 \\ 6520$	$ 103 \\ 104 \\ 107 \\ 107 \\ 109 \\ 109 $
$10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15$	$135,9 \\ 157,1 \\ 178,4 \\ 199,7 \\ 221,6 \\ 243,9$	$21,2 \\ 21,2 \\ 21,3 \\ 21,3 \\ 21,3 \\ 22,9 \\ 22,9 \\ $	50 52 54 56 58 60	2123 2273 2423 2577 2737 2900	73,575,075,077,080,081,5	$ \begin{array}{r} 100 \\ 110 \\ 120 \\ 130 \\ 140 \\ 150 \end{array} $	$\begin{array}{c} 6 \ 740 \\ 7 \ 918 \\ 9 \ 176 \\ 10 \ 520 \\ 11 \ 965 \\ 13 \ 510 \end{array}$	110 118 126 134 144 155

$\frac{x_0}{l_0}$	Ŷ	$\frac{\Delta\gamma^*)}{\Delta\frac{x_0}{l_0}}$	$\frac{x_0}{l_0}$	Ŷ	$\frac{\Delta\gamma}{\Delta\frac{x_0}{l_0}}$	$\frac{x_0}{l_0}$	Ŷ	$\frac{\Delta \gamma}{\Delta \frac{x_0}{l_0}}$
$\begin{array}{c} 0,00\\ 0,01\\ 0,02\\ 0,03\\ 0,04\\ 0,05\\ \end{array}$ $\begin{array}{c} 0,06\\ 0,07\\ 0,08\\ 0,09\\ 0,10\\ \end{array}$ $\begin{array}{c} 0,11\\ 0,12\\ 0,13\\ 0,14\\ 0,15\\ \end{array}$	$\begin{array}{c} 0,0000\\ 0,0449\\ 0,0888\\ 0,1317\\ 0,1736\\ 0,2144\\ 0,2541\\ 0,2929\\ 0,3306\\ 0,3673\\ 0,4029\\ 0,4375\\ 0,4711\\ 0,5036\\ 0,5351\\ 0,5656\end{array}$	$\begin{array}{c} 4,49\\ 4,39\\ 4,39\\ 4,29\\ 4,18\\ 4,08\\ 3,98\\ 3,87\\ 3,77\\ 3,67\\ 3,56\\ 3,46\\ 3,36\\ 3,25\\ 3,15\\ 3,05\\ \end{array}$	$\begin{array}{c} 0,15\\ 0,16\\ 0,17\\ 0,18\\ 0,19\\ 0,20\\ \end{array}\\ \begin{array}{c} 0,22\\ 0,23\\ 0,24\\ 0,25\\ \end{array}\\ \begin{array}{c} 0,26\\ 0,27\\ 0,28\\ 0,29\\ 0,30\\ \end{array}$	$\begin{array}{c} 0,5656\\ 0,5950\\ 0,6235\\ 0,6508\\ 0,6772\\ 0,7025\\ 0,7268\\ 0,7500\\ 0,7722\\ 0,7934\\ 0,8135\\ 0,8326\\ 0,8507\\ 0,8678\\ 0,8838\\ 0,8988\\ \end{array}$	$\begin{array}{c} 2,94\\ 2,84\\ 2,74\\ 2,63\\ 2,53\\ 2,43\\ 2,32\\ 2,22\\ 2,12\\ 2,01\\ 1,91\\ 1,81\\ 1,70\\ 1,60\\ 1,50\\ \end{array}$	$\begin{array}{c} 0,30\\ 0,31\\ 0,32\\ 0,33\\ 0,34\\ 0,35\\ 0,36\\ 0,37\\ 0,38\\ 0,39\\ 0,40\\ 0,41\\ 0,42\\ 0,43\\ 0,44\\ \end{array}$	$\begin{array}{c} 0,8988\\ 0,9127\\ 0,9256\\ 0,9375\\ 0,9483\\ 0,9582\\ 0,9669\\ 0,9747\\ 0,9814\\ 0,9871\\ 0,9917\\ 0,9954\\ 0,9979\\ 0,9995\\ 1,0000\\ \end{array}$	$\begin{array}{c} 1,39\\ 1,29\\ 1,19\\ 1,08\\ 0,98\\ 0,88\\ 0,77\\ 0,67\\ 0,57\\ 0,46\\ 0,36\\ 0,26\\ 0,16\\ 0,05\\ \end{array}$

Tabelle B.

Die Tabellen A und B sind zur größeren Bequemlichkeit des Lesers aus Band I hierher übernommen worden. Tabelle B wurde erweitert.

In unserem Zahlenbeispiele gilt für m = 1 bis m = 5 wegen $l = 16 \lambda$ und f = 10 m die aus (22) folgende Formel:

$$_{max}M_{p} = _{max}M_{0}\left(\gamma - \frac{1}{12}m\right)$$

und für m = 6, 7, 8 die aus (21) folgende Formel

$$_{max}M_p = {}_{max}M_0\left(\gamma - \frac{4}{3} + 0.098 y\right)$$

Es ergeben sich die in der nachstehenden Tabelle zusammengestellten Werte $_{max}M_p$, deren Abweichungen von den früher gefundenen, praktisch genommen, belanglos sind. Der große Vorzug dieses zweiten Verfahrens besteht wohl darin, daß man von der vergleichenden Untersuchung verschiedener Laststellungen enthoben ist.

*) Die Werte $\frac{\Delta \gamma}{\Delta \frac{x_0}{l_0}}$ wurden aus den auf 6 Dezimalstellen berechneten γ

ermittelt.

m	l 10	M _{0 max}	x ₀	$\frac{x_0}{l_0}$	Ŷ	$\gamma - \frac{m}{12}$	maxMp	vorhin $_{max}M_p$	Unter- schied
$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	$\begin{array}{c} 29,02\\ 31,10\\ 33,49\\ 36,28\\ 39,58 \end{array}$	781 891 1022 1182 1389	5,0 10,0 15,0 16,28 14,58	$0,172 \\ 0,322 \\ > 0,44 \\ > 0,44 \\ 0,368$	$0,629 \\ 0,928 \\ 1,000 \\ 1,000 \\ 0,973$	$\begin{array}{c} 0,546 \\ 0,761 \\ 0,750 \\ 0,667 \\ 0,556 \end{array}$	426 678 767 788 772	407 638 760 778 739	4,5 v. H. 5,9 ,, ,, 0,9 ,, ,, 1,3 ,, ,, 4,3 ,, ,,
						$\gamma - \frac{4}{3} + 0,098 y$			
6 7 8	36,10 30,56 28,84	$1171 \\ 862 \\ 772$	$13,54 \\ 13,37 \\ 14,42$	0,375 0,438 > 0,44	$0,978 \\ 1,000 \\ 1,000$	$0,563 \\ 0,631 \\ 0,650$	$659 \\ 544 \\ 502$	$633 \\ 540 \\ 502$	3,9 ,, ., 0,7 ,, ,, 0 ,, ,,

125. Die Querkräfte max Q des Versteifungsbalkens. Bedeutet Q_0 die Querkraft für ein Feld eines nur auf zwei Stützen A und B ruhenden Balkens, so ist die Querkraft für dasselbe Feld des Versteifungsbalkens AB:

(23)

$$Q = Q_0 - H \operatorname{tg} \alpha_m,$$

wo α_m der Neigungswinkel der zu dem fraglichen Felde gehörigen Seite des Stabbogens ist. Die Einflußfläche für die Querkraft des m^{ten} Feldes zeigt Fig. 333. Der Multiplikator ist $\mu = \text{tg } \alpha_m$. Der Nullpunkt Eist bestimmt durch den Schnittpunkt E der Kämpferdrucklinie mit der zum Stabe (m-1) - m parallelen Geraden AE. Die Abszissen des Punktes E sind

(24)
$$s' = \frac{y_k}{\lg \alpha_m}$$
 und $\xi = l - s'$.

Um $_{max}Q$ zu erzeugen, schieben wir einen Lastzug von *B* aus bis in das fragliche Feld hinein und lassen die Strecke *EB* wenn möglich unbelastet. Wir erhalten, wenn *P'* den auf den Knotenpunkt (m-1)entfallenden Druck bezeichnet

$$Q_0 = A - P' = \mathfrak{P}_n \frac{b'}{l} - P',$$

ferner nach Gleich. (12)

$$H = \frac{1}{ly_k} (\mathfrak{P}_n a' b' - \mathfrak{T}_n),$$

mithin

$$Q = \frac{\mathfrak{P}_n b'}{l} - \frac{1}{s'l} \left(\mathfrak{P}_n a' b' - \mathfrak{T}_n\right) - P'$$

Parabelförmige Einflußlinien. Versteifter Stabbogen.

und, wenn wir s' - a' = b'' setzen,

(25)
$$Q = \frac{1}{s'l} (\mathfrak{P}_n b' b'' + \mathfrak{T}_n) - P'.$$

Da nun $P' = \frac{\mathfrak{S}_r}{\lambda}$ ist, so kann man hierfür auch schreiben $Q\lambda = \frac{\lambda}{s'l} (\mathfrak{P}_n b' b'' + \mathfrak{T}_n) - \mathfrak{S}_r$

und findet durch Vergleichung dieser Formel mit der Formel (13) ohne weiteres, daß die ungünstigste Laststellung den Bedingungen genügen muß

$$\begin{cases} \underbrace{ \underbrace{\mathfrak{P}_n}_{\mathfrak{P}_r} < \frac{s'\frac{l}{\lambda}}{b'+b''}}_{\mathfrak{P}_{r-1}} \\ \underbrace{\mathfrak{P}_n}_{\mathfrak{P}_{r-1}} > \frac{s'\frac{l}{\lambda}}{b'+b''}. \end{cases}$$

(26)

m	tg am	s'l	$s' \frac{l}{\lambda}$	<i>s</i> ′	ų
2	0,4062	2 679	536	33,49	46,51
3	0,3438	3 166	633	39,57	40,43
4	0,2812	3 870	774	48,38	31,62
5	0,2188	4 974	995	62,18	17,82
6	0,1562	6 968	1 394	87,10	- 7,10
7	0,0938	11 603	2 321	145,04	- 65,04
8	0,0312	$34\ 885$	6 977	436,06	-356,06

Für unser Zahlenbeispiel ergibt sich:

Feld 1 haben wir in dieser Zusammenstellung fortgelassen, weil sich Q_1 aus M_1 mittels der Gleichung

$$Q_1 \lambda = M_1$$

berechnen läßt.

Wir beschränken uns auf die Untersuchung der Felder 4, 7 und 8.

Für Feld 4 ist nach Fig. 334

$$\frac{s'\frac{t}{\lambda}}{b'+b''} = \frac{774}{65,44} = 11,83 \qquad P' = 17\frac{1,5}{5,0} = 5,1 \text{ t}$$

$$\leftarrow \frac{\mathfrak{P}_{14}}{\mathfrak{P}_2} = \frac{222}{34} < 11,83 \implies \frac{\mathfrak{P}_{14}}{\mathfrak{P}_1} = \frac{222}{17} = 13,1 > 11,83$$

$$\max Q_{4p} = \frac{1}{3870} (222 \cdot 16,91 \cdot 48,53 + 17925) - 5,1 = 46,6 \text{ t}$$

Für Feld 7 ist nach Fig. 335

m

$$\frac{s'\frac{l}{\lambda}}{b'+b''} = \frac{2321}{117,00} = 19,8$$

$$\leftarrow \frac{\mathfrak{P}_{20}}{\mathfrak{P}_1} = \frac{300}{17} = 17,6 < 19,8$$

$$_x Q_{7p} = \frac{1}{11\,603} \left(300 \cdot 25,98 \cdot 91,02 + 50\,997\right) = 65,5 \text{ t.}$$

Feld 8, Fig. 336. $b'' = b' - \xi = 23,16 + 356,06 = 379,22$

$$\frac{s'\frac{l}{\lambda}}{b'+b''} = \frac{6977}{402,38} = 17,3$$

$$\iff \frac{\mathfrak{P}_{18}}{\mathfrak{P}_{1}} = \frac{274}{17} = 16,1 < 17,3$$

 $_{max}Q_{8p} = \frac{1}{34\,885} \left(274 \cdot 23, 16 \cdot 379, 22 + 35\,905\right) = 70 \text{ t.}$

Die Querkräfte infolge der ständigen Belastung erhält man, indem man die Querkräfte Q_{0g} eines einfachen Balkens mit $(1 - \nu)$ multipliziert.

Bedeutet also x'' den nach links positiv gezählten Abstand der Feldmitte von der Trägermitte, so ist

$$Q_g = g x'' (1 - v) = 4,0 x'' 0,02 = 0,08 x'',$$

und für die Felder

Temperaturänderung erzeugt

$$Q_t = -H_t \operatorname{tg} \alpha_m.$$

Zu den von den Lasten herrührenden Querkräften $_{max}Q$ tritt mithin der einer Abkühlung um 25° entsprechende Wert

$$Q_t = + 10.6 \operatorname{tg} \alpha_m.$$

126. Die Querkräfte $_{min}Q$ des Versteifungsbalkens. Liegt E innerhalb der Stützweite, so ist rechts vom fraglichen Felde eine negative Beitragstrecke EB vorhanden. Die zugehörige Einflußfläche ist ein Parabelabschnitt von der Pfeilhöhe

$$z = z_0 \frac{\xi^2}{l^2}$$

und man erhält, da die Einflußfläche den Multiplikator tg α_m besitzt, für den Einfluß der Belastung der Strecke EB den Wert

$$_{max}Q_p = \operatorname{tg} \alpha_m \cdot P_i z.$$

So ergibt sich z. B. für das Feld 4:

$$\xi = + 31,62 \text{ m}, \quad z = 1,47 \frac{\xi^2}{l^2} = 0,230, \quad P_i = 152$$

$$\min_{i=1}^{i} Q_{4,i} = -0,281 \cdot 152 \cdot 0,230 = -9,8 \text{ t}.$$

Um den Einfluß der Lasten links vom fraglichen Felde zu erhalten, schieben wir den Lastzug von A aus bis in das fragliche Feld vor, Fig. 337, bezeichnen die Belastung des Knotens m mit P' und finden

$$Q_{0} = -B + P', \qquad B = \mathfrak{P}_{n} \frac{a}{l},$$
$$H = \frac{1}{ly_{k}} (\mathfrak{P}_{n}a'b' - \mathfrak{T}_{n}),$$
$$Q = -\frac{\mathfrak{P}_{n}a'}{l} - \frac{1}{s'l} (\mathfrak{P}_{n}a'b' - \mathfrak{T}_{n}) + P'.$$

Wird b' = l - a' gesetzt und die Bezeichnung eingeführt

$$a''=s'+l-a',$$

so entsteht:

$$-Q = \frac{1}{s'l} \left(\mathfrak{P}_n a' a'' - \mathfrak{T}_n \right) - P'.$$

Die Strecke a'' könnte man auch nach Fig. 338 als den Abstand der Mittelkraft \mathfrak{P}_n von einem Punkte E' deuten, in welchem die Kämpferdrucklinie von einer durch B zum Stabe (m-1) - m gezogenen Parallelen geschnitten wird. Die Bedingungen, denen die Laststellung zu genügen hat, lauten

Für Feld 4 ist nach Fig. 339: a'' = 48,38 + 80 - 10,67 = 117,71 m $\frac{s'\frac{l}{\lambda}}{a''-a'} = \frac{774}{107,04} = 7,23$ $\Rightarrow \frac{\mathfrak{P}_8}{\mathfrak{P}_2} = \frac{124}{34} < 7,23 \iff \frac{\mathfrak{P}_8}{\mathfrak{P}_1} = \frac{124}{17} = 7,29 > 7,23$ $- \min_{\min}Q_{4p} = \frac{1}{3870} (124 \cdot 10,67 \cdot 117,71 - 2606) - 5,1 = 34,5 \text{ t.}$ Müller-Breslau, Graphische Statik. II. 2. 29

Im ganzen entsteht also

 $_{min}Q_{4p} = -34,5 - 9,8 = -44$ t.

Zu den $_{min}Q_p$ treten noch die oben angegebenen Q_g und die einer Temperaturerhöhung um 45° entsprechenden $Q_t = -19 \cdot \text{tg } \alpha_m$.

Fig. 339.

§ 26.

Benutzung der Tabellen für parabelförmige Einflußlinien bei der Berechnung mehrfach gestützter Balken.

127. Einfluß der vollen Belastung einer einzelnen Öffnung. Die folgenden Untersuchungen beschäftigen sich mit Balken von unveränderlichem Querschnitte auf starren Stützen. In der Öffnung l_r sind die Gleichungen der Einflußlinien der Stützenmomente M_{r-1} und M_r nach Seite 117:

(1) $M_{r-1} = -u_r \omega_D + 3v_r \omega_R$ (x von r aus gezählt),

2)
$$M_r = -u_r'\omega_D + 3v_r\omega_R$$
 (x von $r - 1$ aus gezählt).

$$u_r = l_r \frac{a_r}{c_r}, \quad u_r' = l_r \frac{a_r}{c_r}, \quad v_r = \frac{a_r a_r}{c_r}$$

Wenn sich auch diese Linien schnell berechnen lassen, so ist doch das Ausprobieren der ungünstigsten Zugstellungen namentlich bei größeren Stützweiten eine etwas umständliche Arbeit, weshalb weitere Vereinfachungen erwünscht sind. Die Belastungsfläche, deren Seillinie die M_0 -Linie ist, weicht zwar erheblich vom Rechteck ab — sie hat die Form der in Fig. 340 schraffierten Fläche —*). Trotzdem wird sich zeigen, daß die Formel $Y_{max} = P_i z$ auch hier brauchbare Ergebnisse liefert.

Zunächst möge gezeigt werden, wie man die Tabellen des § 24 zur Auffindung der gefährlichsten Laststellung benutzen kann, wenn mit

*) Diese Fläche wird Belastungsfläche, sobald man die Höhen mit $\frac{1}{6} l_r^2$ dividiert.

den Formeln (1) und (2) gerechnet werden soll. Es handele sich um M_r . Auf l_r ruhe eine Lastgruppe $P_1P_2 \ldots P_n$, deren Mittelkraft \mathfrak{P}_n von (r-1) den Abstand e hat. Es entsteht

(3)
$$M_r = \sum P \eta = -u_r' \sum_{1}^{n} P\left(\frac{x}{l_r} - \frac{x^3}{l_r^3}\right) + 3v_r \sum_{1}^{n} P\left(\frac{x}{l_r} - \frac{x^2}{l_r^2}\right)$$

Soll (- Mr) den größten Wert annehmen, so muß

(4)
$$-u_r' \sum_{1}^{n} P\left(1-3 \frac{x^2}{l_r^2}\right) + 3v_r \sum_{1}^{n} P\left(1-2 \frac{x}{l_r}\right) = 0$$

sein. Dividiert man diese Gleichung mit $u'\mathfrak{P}_n$ und beachtet man, daß nach Seite 117, Gleich. (11) u. (14): $\frac{u'_r}{v_r} = \frac{a_r}{l_r}$ ist, setzt man ferner

$$\sum_{1}^{n} Px = \mathfrak{P}_{n}e, \quad \sum_{1}^{n} Px^{2} = \mathfrak{T}_{n} + \mathfrak{P}_{n}e^{2},$$

29*

Sechster Abschnitt. - § 26.

so geht Gleichung (4) über in

$$-1+\frac{3}{l_r^2}\left(\frac{\mathfrak{T}_n}{\mathfrak{P}_n}+e^2\right)+3\frac{a}{l_r}\left(1-2\frac{e}{l_r}\right)=0,$$

und es ergibt sich mit $l_r - a_r = b_r$:

(5)
$$e = a_r + \sqrt{\frac{l_r^2}{3} - a_r b_r - \frac{\mathfrak{T}_n}{\mathfrak{P}_n}}.$$

Ganz ebenso findet man für die das Moment (— M_{r-1}) zu einem Maximum machende Zugstellung die Bedingung

(6)
$$e' = a_r' + \sqrt{\frac{l_r'}{3} - a_r' b_r' - \frac{\mathfrak{T}_n}{\mathfrak{P}_n}}$$

Zahlenbeispiel. Ein auf 7 Stützen ruhender Balken habe die Spannweiten 30 m, 42 m, 50 m, 50 m, 42 m, 30 m. Gesucht ist das größte Stützenmoment ($-M_2$) infolge Belastung der *dritten* Öffnung. Man findet für diese Öffnung $a_3' = 10,62$ m, $b_3' = 39,38$ m, also

$$e' = 10,62 + \sqrt{\frac{50^2}{3} - 10,62 \cdot 39,38 - \frac{\mathfrak{T}_n}{\mathfrak{P}_n}}$$
$$= 10,62 + \sqrt{415,12 - \frac{\mathfrak{T}_n}{\mathfrak{P}_n}}.$$

Wählen wir die Zuganordnung II (Tabelle, Seite 419) und n = 20, so ist $\mathfrak{T}_n = 49897$, $\mathfrak{P}_n = 300$; man erhält e' = 26,40 m. Nun hat \mathfrak{P}_n von P_n den Abstand 24,34 m; es ergibt sich also die in Fig. 341 gezeichnete Laststellung. Ihr entspricht

$$M_2 = -\Sigma P \eta = -983.4 \text{ tm}^*$$
).

Es wurden noch andere Laststellungen untersucht, die aber ein kleineres $(-M_2)$ ergaben. Aus dem berechneten M_r kann man den Einfluß der Belastung der dritten Öffnung auf die Momente und Querkräfte der beiden ersten Öffnungen verfolgen.

Wir nehmen die allgemeine Untersuchung wieder auf und ersetzen die M_r -Linie durch eine Parabel, deren Pfeilhöhe z wir einmal gleich η_{max} wählen wollen, ein zweites Mal so, daß die M_r -Fläche und der Parabelabschnitt inhaltsgleich sind.

*) Dieser Wert läßt sich auch schnell rechnen. Man findet mit $\Sigma Px=\mathfrak{P}_n e'$, und $\Sigma Px^2=\mathfrak{T}_n+\mathfrak{P}_n e'^2$

 $M_r = -2488,98 + 0,0001604 \cdot \Sigma P x^3$, wo $\Sigma P x^3 = 1505,56$.

Bei Ermittlung von ΣPx^3 wurde das Maß 2,06 m in Fig. 341 auf 2,1 m abgerundet.

Parabelförmige Einflußlinien. Durchlaufender Balken.

Die Ordinate η_{max} liegt bei

(7)
$$x = a_r + \sqrt{\frac{l_r^2}{3} - a_r b_r},$$

was man sofort erkennt, wenn man die Gleichung (5) auf eine Einzellast anwendet. Für diese ist nämlich $\mathfrak{T}_n = 0$. Es genügt nun, in (7) die runden Werte $a_r = 0,2 l_r, b_r = 0,8 l_r$ einzusetzen. Dann ergibt sich x = 0,62 l und, absolut genommen,

(8)
$$z = 0.38 u_r' - 0.72 v_r.$$

Der Inhalt der $(-M_r)$ -Fläche ist

(9)
$$\mathfrak{F} = \frac{1}{4} \left(u_r' - 2 v_r \right) l_r.$$

Werden also die M_r -Fläche und der Parabelabschnitt inhaltsgleich gemacht, so folgt

(10)
$$z = \frac{3}{8} (u_r' - 2v_r) = 0.375 u_r' - 0.750 v_r.$$

Ersetzt man in den Gleichungen (8), (9), (10) u_r' durch u_r , so gelten sie für die M_{r-1} -Linie der Öffnung l_r .

Die Ergebnisse der Formeln (8) und (10) weichen nur wenig voneinander ab. Immerhin ist zu bedenken, daß die Werte z bei längeren Öffnungen mit großen Zahlen P_i multipliziert werden.

Wird nur eine einzelne Öffnung belastet, so empfiehlt es sich, mit dem größeren z, also mit Gleich. (8) zu rechnen.

In unserem Zahlenbeispiele ist für die dritte Öffnung $u_3 = 20,05$ m, $v_3 = 4,26$ m. Gleich. (8) liefert z = -4,552. Zu l = 50 m gehört $P_i = 220$ t; folglich ist

$$-M_2 = 220 \cdot 4,552 = 1001 \text{ tm.}$$

Die Einflußlinie lieferte 983 tm; die Abweichung beträgt nur 1,8 v. H.

Einen Ausnahmefall bildet die *erste Öffnung*, Fig. 342. Hier ist $a_1 = 0$ und $v_1 = 0$. Die Ordinate η_{max} liegt im Abstande $x = \frac{l_1}{\sqrt{3}}$ von Stütze 0. Man erhält

(11) $z = 0.385 u_1'$ bzw. $z = 0.375 u_1'$, $\mathfrak{F} = \frac{1}{4} a_1' l_1$.

Bei gleichweiten Öffnungen hängen z und \mathcal{F} nur von der Stützweite l und der Anzahl der Öffnungen ab. Für 5 Öffnungen ist z. B. (s. Seite 203):

 $\begin{aligned} \varkappa_{2} &= 4 \qquad \varkappa_{3} = \frac{15}{4} \qquad \varkappa_{4} = \frac{56}{15} \qquad \varkappa_{5} = \frac{209}{56} *) \\ a_{2} &= \frac{1}{5} l = a_{4}', \quad a_{3} = \frac{4}{19} l = a_{3}', \quad a_{4} = \frac{15}{71} l = a_{2}', \quad a_{5} = \frac{56}{265} l = a_{1}' \\ b_{2} &= \frac{4}{5} l = b_{4}', \quad b_{3} = \frac{15}{19} l = b_{3}', \quad b_{4} = \frac{56}{71} b_{2}', \qquad b_{5} = \frac{209}{265} l = b_{1}' \\ c_{1} &= \frac{209}{265} l, \qquad c_{2} = \frac{209}{5 \cdot 71} l, \qquad c_{3} = \frac{11}{19} l, \\ u_{1}' &= \frac{56}{209} l, \quad u_{2} = \frac{71}{209} l, \quad u_{2}' = \frac{75}{209} l, \quad u_{3} = u_{3}' = \frac{4}{11} l = \frac{76}{209} l \\ v_{2} &= \frac{15}{209} l, \qquad v_{3} = \frac{16}{209} l, \end{aligned}$

*) Auf Seite 203 steht versehentlich $x_5 = \frac{224}{56}$.

mithin

$$\begin{split} M_1\text{-Linie} \begin{cases} \text{erste \" \" Offnung} & \frac{z}{l} = 0,10\,316\,(0,10\,048), & \mathfrak{F} = 0,06\,699\,l^2 \\ \text{zweite} & \texttt{\" Offnung} & \frac{z}{l} = 0,07\,742\,(0,07\,356), & \mathfrak{F} = 0,04\,904\,l^2 \end{cases} \\ M_2\text{-Linie} \begin{cases} \text{erste \" \" Offnung} & \frac{z}{l} = 0,08\,469\,(0,08\,074), & \mathfrak{F} = 0,05\,383\,l^2 \\ \text{zweite} & \texttt{\" Offnung} & \frac{z}{l} = 0,08\,306\,(0,07\,895), & \mathfrak{F} = 0,05\,263\,l^2. \end{cases} \end{split}$$

Die eingeklammerten Zahlen gelten für die den M-Flächen inhaltsgleichen Parabelabschnitte.

128. Stützenmoment M_r infolge voller Belastung der beiden Öffnungen l_{r-l} und l_r .

Erstes Beispiel. Für den bereits in Nr. 127 behandelten Balken mit den Stützweiten 30 m, 42 m, 50 m, 50 m, 42 m, 30 m sei M_2 infolge Belastung der Öffnungen l_2 und l_3 gesucht. Nach der preußischen Vor-

schrift sind Güterwagen nur an der einen Seite der beiden Lokomotiven anzunehmen. Die Güterwagen werden über die Öffnung $l_2 = 42$ m gestellt, die Lokomotiven über die Öffnung $l_3 = 50$ m. Man erkennt, ohne erst zu rechnen, daß der Schwerpunkt der beiden Lokomotiven nicht mehr so nahe bei der Ordinate η_{max} liegt, wie bei der in Fig. 341 angenommenen Laststellung, wo die Güterwagen rechts von den Lokomotiven stehen. In diesem und ähnlichen Fällen genügt es, den kleineren Wert z zu nehmen. Wir setzen also nach (10) für die dritte Öffnung

 $z = 0.375 \cdot 20.05 - 0.75 \cdot 4.26 = 4.324$ und $P_i = 220$ t.

An Stelle der Güterwagen mit 13 tAchslast und 3 m Radstand führen wir die gleichförmige Belastung $\frac{13}{3}$ t/m ein. Da nun $u_2'=14,39$ m, $v_2=3,25$ ist, so hat die M_2 -Fläche der Öffnung l_2 den Inhalt Sechster Abschnitt. - § 26.

$$\mathfrak{F} = \frac{1}{4} \cdot (14,39 - 2 \cdot 3,25) \ 42 = 82,85,$$

und es ergibt sich daher

$$M_2 = -\frac{13}{3} \cdot 82,85 - 220 \cdot 4,324 = -359 - 951 = -1310 \text{ tm}.$$

Die Benutzung der mit Hilfe der Gleichungen

aufgetragenen Einflußlinien, Fig. 343, lieferte zufällig genau denselben Wert 359 + 951 = 1310 tm. Die erste Tenderachse steht im Abstande 9,5 m von der Stütze 3.

Zweites Beispiel. Fünf Öffnungen von 60 m, 80 m, 80 m, 80 m, 60 m Weite. Gesucht M_2 infolge Belastung der Öffnungen l_2 und l_3 .

$$u_2' = 29,86 \text{ m}, \quad v_2 = 6,64 \text{ m}, \quad \mathfrak{F} = 331,6,$$

 $u_3 = 29,53 \text{ m}, \quad v_3 = 6,27 \text{ m},$
 $z = 0,875 \cdot 29,53 - 0,75 \cdot 6,27 = 6,371, \quad P_i = 301 \text{ t},$

$$M_2 = -\frac{15}{3} \cdot 331, 6 - 301 \cdot 6,371 = -1436 - 1918 = -3354$$
 tm.

Die Einflußlinie:

 $\begin{array}{ll} \ddot{\mathrm{O}}\mathrm{ffnung} \ l_2 & \eta = - \ 29,86 \ \omega_D + 3 \cdot 6,64 \ \omega_R, \\ \ddot{\mathrm{O}}\mathrm{ffnung} \ l_3 & \eta = - \ 29,53 \ \omega_D + 3 \cdot 6,27 \ \omega_R, \\ \mathrm{liefert} \ \mathrm{bei} \ \mathrm{der} \ \mathrm{Zugstellung} \ \mathrm{in} \ \mathrm{Fig.} \ 344 \end{array}$

 $M_2 = -1439 - 1893 = -3332$ tm.

Der Unterschied beträgt 0,7 v. H.

Drittes Beispiel. Fünf gleiche Öffnungen von l = 18 m Weite. Gesucht M_2 infolge Belastung der Öffnungen l_2 und l_3 . Bei so geringen Stützweiten liegen ähnliche Verhältnisse vor, wie bei der Belastung einer einzelnen Öffnung. Wir nehmen den größeren Wert z und finden nach der am Schluß von Nr. 127 durchgeführten Berechnung
Parabelförmige Einflußlinien. Durchlaufender Balken.

für die zweite Öffnung z = 0,08469 l = 1,524für die dritte Öffnung z = 0,08306 l = 1,495 $P_i = 91,8$ Summe 3,019 $M_2 = -91,8 \cdot 3,019 = -277$ tm. Die Einflußlinie*): Öffnung l_2 $\eta = -6,46 \omega_D + 3 \cdot 1,29 \omega_R$, Öffnung l_3 $\eta = -6,55 \omega_D + 3 \cdot 1,38 \omega_R$ liefert bei der Zugstellung in Fig. 345 $M_2 = -277$ tm. I_{I_3} I_{I

Viertes Beispiel. Fünf gleiche Öffnungen von l = 24 m Weite. Gesucht M_2 infolge Belastung von l_2 und l_3 . Zu l = 24 m gehört $P_i = 122$ t, hervorgerufen durch die ersten 10 Achsen der Zuganordnung IV (Seite 422). Wenn wir über jeder der beiden Öffnungen diese un-

günstige Zugstellung annehmen, dafür aber den kleineren Wert z einführen, so gehen wir immer noch sehr sicher. Wir setzen also

$$z = \frac{3}{8} \left(u - 2 v \right)$$

457

Die Einflußlinie liefert bei der ungünstigsten Zugstellung (Fig. 346) nur $M_2 = -426$ tm. Der Näherungswert ist um 9 v. H. größer als der genauere.

Fünftes Beispiel. Fünf Öffnungen von 21 m, 33 m, 30 m. 24 m, 21 m Weite. Gesucht M_2 infolge Belastung von l_2 und l_3 . Die Länge l_2 genügt nicht zur Unterbringung der beiden Lokomotiven; der eine Tender liegt bei der ungünstigsten Laststellung über der Öffnung l_3 . Trotzdem nehmen wir die Öffnung l_3 gleichmäßig mit $\frac{13}{3}$ t/m belastet

an, berechnen dafür aber z nach Gleichung (8). Wir erhalten:

$$u_2 = 13,27 \text{ m}, v_2 = 3,10 \text{ m}, z = 2,811, P_i = 158,5 \text{ t},$$

 $u_3 = 10,89 \text{ m}, \quad v_3 = 2,48 \text{ m}, \quad \mathfrak{F} = 44,5,$

 $M_2 = -158,5 \cdot 2,811 - \frac{13}{3} \cdot 44,5 = -446 - 193 = -639$ tm.

Die Einflußlinie liefert bei der Zugstellung in Fig. 347 $M_2 = -424 - 210 = -634$ tm.

Die vorgetragenen Beispiele dürften genügen, zu zeigen, wie von Fall zu Fall darüber zu entscheiden ist, ob es zweckmäßiger ist, Gleich. (8) oder Gleich. (9) anzuwenden. Besteht ein Zweifel, so wähle man den größeren Wert (8). Wir bemerken noch, daß zur Aufstellung beider Lokomotiven über einer Öffnung etwa l = 40 m erforderlich sind; die kleinere der beiden Öffnungen ist dann nur mit Güterwagen belastet.

129. Momente $_{max}M$ für die Querschnitte zwischen den beiden Festpunkten L und R einer Öffnung, Fig. 348. Das Biegungsmoment M_m für einen Querschnitt m der Öffnung l_r ist

(12)
$$M_m = M_{0m} + \frac{M_{r-1}}{l_r} x_m' + \frac{M_r}{l_r} x_m,$$

wo M_{0m} das Moment für den Querschnitt *m* eines einfachen Balkens l_r bedeutet. Liegt *m* zwischen den Festpunkten L_r und R_r , so erzeugen alle über der Öffnung l_r aufgebrachten Lasten ein positives Moment M_m . Den von den Stützenmomenten M_{r-1} und M_r abhängigen Teil von M_m berechnen wir unter der Voraussetzung einer gleichförmigen Belastung p,

Parabelförmige Einflußlinien. Durchlaufender Balken.

die wir so groß annehmen, daß sie dasselbe Moment M_{0m} hervorbringt, wie der Eisenbahnzug. Wir wählen also

$$(13) p = \frac{2 M_{0m}}{x_m x_m}$$

und schreiben

(14)
$$M_m = M_{0m} \left(1 + \frac{2}{x_m x_m'} \mathfrak{F}_m \right),$$

wo \mathfrak{F}_m den Inhalt des von den Stützenmomenten abhängigen Teiles der M_m -Fläche bezeichnet. Mit Hilfe der Gleichungen (1) und (2) finden wir

$$\mathfrak{F}_{m} = \frac{x_{m}^{'}}{l_{r}} \int_{0}^{t_{r}} (-u_{r}\omega_{D} + 3v_{r}\omega_{R}) dx + \frac{x_{m}}{l_{r}} \int_{0}^{t_{r}} (-u_{r}^{'}\omega_{D} + 3v_{r}\omega_{R}) dx$$

$$\operatorname{und}, \operatorname{da} \int_{0}^{l} \omega_{D} dx = \frac{1}{4} l, \quad \int_{0}^{l} \omega_{R} dx = \frac{1}{6} l \operatorname{ist},$$

$$\mathfrak{F}_{m} = -\frac{1}{4} (u_{r}x_{m}^{'} + u_{r}^{'}x_{m}) + \frac{1}{2} v_{r}l.$$

$$\mathfrak{F}_{m} = -\frac{l_{r}}{l_{r}} - \frac{l_{r}}{l_{r}} - \frac{u_{r}}{l_{r}} + \frac{u_{r}^{'}}{l_{r}} + \frac{u_{r}^{'}}{l_{r}}$$

 \mathfrak{F}_m ist stets negativ; je größer es ausfällt, desto kleiner ist M_m . Vergleichende Rechnungen haben nun gelehrt, daß es sich empfiehlt, ein um etwa 5 v. H. kleineres \mathfrak{F}_m anzunehmen, d. i.:

(15)
$$\mathfrak{F}_{m} = \left(-\frac{1}{4}\left(u_{r}x_{m}' + u_{r}'x_{m}\right) + \frac{1}{2}v_{r}l\right)0,95.$$

Setzen wir dann ferner, nach Seite 441,

$$_{max}M_{0m} = {}_{max}M_0\gamma_m$$

so erhalten wir die Formel

(16)
$$\max M_m = \max M_0 \gamma_m \gamma_m',$$

(17)
$$\gamma_{m}' = 1 - 0.475 \left(\frac{u_{r}}{x_{m}} + \frac{u_{r}'}{x_{m}'} \right) + \frac{0.95}{x_{m}x}$$

Für die erste Öffnung ist u = 0 und v = 0, also

(17 a)
$$\gamma' = 1 - 0.475 \frac{u_r}{x'}$$

Die Werte $_{max}M_0$ stehen in Tabelle A, Seite 442, die Werte γ in Tabelle B, Seite 443. Es läßt sich also $_{max}M_0$ schnell angeben. In den folgenden Zahlenbeispielen haben wir die Stützweite l_r in

10 Teile geteilt. Die Teilpunkte 1, 2, 8, 9 liegen außerhalb der

Strecke $L_r R_r$. Für die den Teilpunkten 3, 4, 5, 6, 7 entsprechenden Querschnitte wurden die Momente mittels der Formel (17) berechnet und mit denen verglichen, die sich mit Hilfe der Einflußlinien ergaben. Für die Querschnitte 3 4 5 6 7 ist $\gamma = 0.899$ 0.992 1.000 0.992 0.899.

Erstes Beispiel. Fünf gleichlange Öffnungen von 18 m Spannweite. Gesucht werden die Momente M_3 , M_4 , M_5 , M_6 , M_7 der zweiten Öffnung. Es ist nach Seite 454

$$u_{2} = \frac{71}{209} l, \quad u_{2}' = \frac{75}{209} l, \quad v_{2} = \frac{15}{209} l,$$

$$x_{m} = m \cdot 1.8, \quad x_{m}' = m' \cdot 1.8, \quad l = 10 \cdot 1.8, \quad m' = 10 - m,$$

$$\gamma_{m}' = 1 - \frac{4.75}{lmm'} [10 (u_{r} - 2v_{r}) + m (u_{r}' - u_{r})]$$

m	maxMm mittels Einflußlinien	γ΄	יץ אי	$= \stackrel{max}{\gamma} \stackrel{M_m}{\gamma'}_{max} M_0$
3	160 tm	0,543	0,488	160 tm
4	194	0,596	0.591	193
5	201	0,609	0,609	199
6	191	0,589	0,584	191
7	156	0,526	0,473	155

 $_{max}M_0 = 327$ tm.

(18)

Bei Ermittlung der Werte der ersten Spalte wurde die positive Beitragstrecke l_2 möglichst ungünstig belastet und der Einfluß der hierbei auf den benachbarten negativen Beitragstrecken stehenden Teile der Fahrzeuge vernachlässigt. Die angenommenen Laststellungen zeigt Figur 349.

Zweites Beispiel. Fünf Öffnungen von den Weiten 21 m, 33 m, 30 m, 24 m, 21 m; gesucht M_3 , M_4 , M_5 , M_6 , M_7 für die dritte Öffnung.

 $\begin{aligned} &u_3 = 10,89 \text{ m}, \quad u_3' = 12,07 \text{ m}, \quad v_3 = 2,48 \text{ m}, \\ &x_m = m \cdot 3,0, \quad x_m' = m' \cdot 3,0, \quad l = 10 \cdot 3,0, \quad m' = 10 - m, \\ && max M_0 = 832,3 \text{ tm}. \end{aligned}$

m	maxMm mittels Einflußlinien	γ´ nach Gleich.(18)	· YY'	$= \stackrel{max}{\gamma} \stackrel{M_m}{\gamma'}_{max} M_0$	Unterschied
3	369 tm	0.526	0,473	394 tm	6,3 v. H.
4	459	0,578	0,573	477	3,8 ,, ,,
5	475	0,587	0,587	489	2,9 ,, ,,
6	447	0,562	0,558	464	3,7 ,, ,,
7	342	0,491	0,441	367	6,8 ,, ,,

Drittes Beispiel. Sechs Öffnungen von den Weiten 30 m, 42 m, 50 m, 50 m, 42 m, 30 m; gesucht M_3 bis M_7 für die dritte Öffnung. $u_3 = 20,05$ m, $u_3' = 18,89$ m, $v_3 = 4,26$ m, l = 10 $\lambda = 50$, $meg M_0 = 2123$ tm.

Sechster Abschnitt. - § 26.

т	maxMm mittels Einflußlinien	γ′ nach Gleich. (18)	ΥΥ'	$= \stackrel{max}{\gamma} \stackrel{M_m}{\gamma'}_{max} M_0$	Unterschied
$ \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$\begin{array}{c} 873 \text{ tm} \\ 1126 \\ 1215 \\ 1142 \\ 905 \end{array}$	$0,494 \\ 0,562 \\ 0,584 \\ 0,571 \\ 0,515$	0,444 0,558 0,584 0,566 0,463	$943 \text{ tm} \\ 1185 \\ 1240 \\ 1202 \\ 983$	7,4 v. H. 5,0 ,, ,, 2,0 ,, ,, 5,0 ,, ,, 7,9 ,, ,,

Viertes Beispiel. Fünf Öffnungen von den Weiten 60 m, 80 m, 80 m, 80 m, 60 m; gesucht M_3 bis M_7 für die zweite Öffnung. $u_2 = 31,40$ m, $u_2' = 29,86$ m, $v_2 = 6,64$ m, l = 10 $\lambda = 80$ m, $_{max}M_0 = 4674$ tm.

m	maxMm mittels Einflußlinien	$\begin{array}{c c} & {}_{max}M_m \\ {\rm mittels} \\ {\rm Einflußlinien} \end{array} \left \begin{array}{c} \gamma' {\rm nach} \\ {\rm Gleich.} (18) \end{array} \right \hspace{0.1cm} \gamma\gamma' = \\ \end{array} \right =$		$= \stackrel{max}{\gamma} \stackrel{M_m}{\gamma'}_{max} M_0$	Unterschied
$ \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	2008 tm 2573 2744 2609 2075	$\begin{array}{c} 0,501 \\ 0,567 \\ 0,588 \\ 0,575 \\ 0,518 \end{array}$	$\begin{array}{c} 0,450\\ 0,562\\ 0,588\\ 0,570\\ 0,466\end{array}$	$\begin{array}{c} 2103 \ {\rm tm} \\ 2627 \\ 2748 \\ 2664 \\ 2178 \end{array}$	4,5 v. H. 2,1 ,, ,, 2,1 ,, ,, 4,7 ,, ,,

Ist die Anzahl der Öffnungen ungerade und der Balken symmetrisch, so ist für die mittelste Öffnung u = u' und

(19)
$$\gamma' = 1 - 0,475 \frac{ul}{xx'} + 0,95 \frac{vl}{xx'},$$
$$\gamma' = 1 - \frac{0,475 (u - 2v) l}{xx'}.$$

Diese Formel liefert selbst dann noch brauchbare Werte, wenn zwar u und u' verschieden groß sind, aber doch so wenig voneinander abweichen, daß sie durch einen Mittelwert ersetzt werden dürfen. Nimmt man rund a = a' = 0,21 l an, so erhält man c = l - 2a = 0,58 l

$$u = u' = \frac{a}{c} l = 0,362 l, \quad v = \frac{aa}{c} = 0,076 l$$

und

(20)

$$\gamma' = 1 - 0,10 \frac{l^2}{xx'}$$

Hiernach gehört zu

$\frac{x}{l} =$	0,3	0,4	0,5	0,6	0,7
	11	14	15	14	11
$\gamma =$	21	24	25	24	21
γγ'=	0,47	0,58	0,60	0,58	0,47.

Parabelförmige Einflußlinien. Durchlaufender Balken.

 $l = 18^{m}$ $l = 30^{m}$ $l = 50^{m}$ m $l = 80^{m}$ 154 tm 3 u. 7 391 tm 998 tm 2197 tm 4 ., 6 190 483 12312711 196 499 1274 2804

Für unsere vier Beispiele liefern diese Ziffern die folgenden Momente:

130. Ein zweites Verfahren zur Berechnung von $maxM_m$. Wir gehen wieder von der Gleichung

$$M_m = M_{0m} + M_{r-1} \frac{x_m'}{l} + M_r \frac{x_m}{l}$$

aus und ersetzen den von den Stützenmomenten abhängigen Teil der Einflußfläche durch einen Parabelabschnitt gleichen Inhalts. Der Pfeil dieser Parabel ist

(21)
$$z_m = \frac{3}{8} \left(u \frac{x_m'}{l} + u' \frac{x_m}{l} \right) - \frac{3}{4} v.$$

Es ist dann angenähert:

$$(22) \qquad \qquad \max M_m = \max M_0 \gamma_m - P_i z_m,$$

wobei sich P_i auf die Stützweite l bezieht.

Handelt es sich z. B. um die Momente M_3 , $M_4 \ldots M_7$ der dritten Öffnung eines Balkens mit fünf Öffnungen von 21 m, 33 m, 30 m, 24 m, 21 m Weite, so ist

 $u = 10,89 \text{ m}, u' = 12,07 \text{ m}, v = 2,48 \text{ m}, x_m = 3,0 \cdot m, x_m' = 3,0 \cdot m'$ und man erhält, wegen $P_i = 146 \text{ t},$

$$P_{i}z_{m} = \frac{3}{8} 146 \left(10,89 \frac{m'}{10} + 12,07 \frac{m}{10} \right) - \frac{3}{4} 146 \cdot 2,48$$

= 59,623 m' + 66,083 m - 271,56
mr M_{m} = 832,3 \gamma_{m} - P_{i}z_{m}.

Sechster Abschnitt. - § 26.

Das gibt für

m =	3	4	5	6	7
$_{max}M_m =$	404	475	475	462	378 tm*).

Die Linie der größten Momente M_{0m} wird nach Bd. I, Anhang, Seite 550, genau genug durch zwei Parabelstücke und eine gerade Linie, deren Länge gleich 0,12 *l* ist, dargestellt. Zieht man von den Momenten $\max M_{0m}$ die Ordinaten einer Geraden ab, Fig. 351, die auf den Stützensenkrechten die Strecken

$$\overline{(r-1) - (r-1)'} = P_i \frac{3}{8} (u-2v) \text{ und}$$

$$\overline{r-r'} = P_i \frac{3}{8} (u'-2v)$$

abschneidet, so erhält man die der Gleichung (22) entsprechenden Näherungswerte $_{max}M_m$.

Anmerkung. Um den Unterschied zwischen den Ergebnissen einer genaueren und einer angenäherten Formel beurteilen zu können, muß man seinen Einfluß auf die Querschnittsabmessungen prüfen. Zu diesem Zwecke wollen wir annehmen, es sei die in den vorstehenden Beispielen u. a. behandelte Öffnung von l = 80 m Stützweite mit einem 12 m hohen Parallelträger überspannt. Die zulässige Beanspruchung sei $\sigma = 0.95$ t/cm². Die mittels Einflußlinien gefundenen Momente

. 2008 2573 2744 2609 2075 tm verlangen die Gurtquerschnitte

$$F = \frac{M}{12 \cdot 0.95} = 176$$
 226 241 229 182 cm².

Die am Schluß von Nr. 129 mittels der bequemen Gleich. (20) berechneten, von den genaueren Momenten am meisten abweichenden Momente

	2197	2711	2804	2711	2197 tm	
erfordern						

F = 192 238 246 238 192 cm².

Der Unterschied zwischen diesen beiden Zahlenreihen, deren größte Abweichung 16 cm² beträgt, ist nicht sehr groß; er verliert erheblich an Gewicht, wenn beachtet wird, daß die vorstehenden Zahlen nur den Einfluß von $_{max}M_p$ angeben. Es tritt noch hinzu der Einfluß der ständigen Belastung sowie die von vielen Ingenieuren ganz außer acht gelassene, keineswegs aber vernachlässigbare Wirkung einer ungleichmäßigen Erwärmung und einer, wenn auch noch so geringen Änderung der Stützlage. Bei der Untersuchung der letztgenannten Einflüsse ist man auf

*) Man vergleiche hiermit die in Nr. 129 gefundenen Ergebnisse.

Schätzungen angewiesen. Wer sich dann noch vor Augen hält, daß die wirklichen Achslasten und Radstände von den in Rechnung gestellten oft erheblich abweichen, wer außerdem an die verschiedenen, bei der Ermittlung der Einflußlinien üblichen Annahmen denkt, als da sind:

> beim Blechbalken: Annahme eines unveränderlichen Querschnitts. Vernachlässigung der Schubkräfte,

> beim Fachwerk: Vernachlässigung der Längenänderungen der Wandglieder, Annahme eines unveränderlichen Gurtquerschnitts, Voraussetzung reibungsloser Gelenke in allen Knotenpunkten, bei beiden: Vernachlässigung des Zusammenhanges der Hauptträger mit der meistens in hohem Grade statisch unbestimmten Fahrbahn,

dem dürfte die Entscheidung nicht schwer fallen, was den Vorzug verdient - die trotz aller erzielten Vereinfachungen immer noch zeitraubende Berechnung, Auftragung und Verwertung der Einflußlinien oder die sehr viel schneller zum Ziele führende Benutzung einfacher Näherungsformeln und Tabellen.

131. Druck C_r auf die Mittelstütze r infolge Belastung der Öffnungen l_r und l_{r+1} . Wir ersetzen die Einflußfläche für C_r durch einen Parabelabschnitt gleichen Inhalts. Die Gleichung der Cr-Linie lautet innerhalb der Öffnung lr nach Seite 129*):

$$\eta = \frac{x}{l_r} + \left(\frac{a_r + a_r'}{c_r} + \frac{u_r'}{b_{r+1}'}\right)\omega_D - 3\left(\frac{a_r}{c_r} + \frac{v_r}{b_{r+1}'}\right)\omega_R$$

und innerhalb der Öffnung l_{r+1} :

$$\eta = \frac{x}{l_{r+1}} + \left(\frac{a_{r+1} + a'_{r+1}}{c_{r+1}} + \frac{u_{r+1}}{b_r}\right) \omega_D - 3\left(\frac{a'_{r+1}}{c_{r+1}} + \frac{v_{r+1}}{b_r}\right) \omega_B.$$

In der Öffnung l_r zählen hierbei die x von r-1 aus, in der Öffnung l_{r+1} von r+1 aus.

Der Inhalt der Einflußfläche ist

$$\mathfrak{T} = \frac{l_r + l_{r+1}}{2} + \frac{l_r}{4} \left(\frac{a_r + a_r'}{c_r} + \frac{u_r'}{b_{r+1}'} \right) - \frac{l_r}{2} \left(\frac{a_r}{c_r} + \frac{v_r}{b_{r+1}'} \right) \\ + \frac{l_{r+1}}{4} \left(\frac{a_{r+1} + a_{r+1}'}{c_{r+1}} + \frac{u_{r+1}}{b_r} \right) - \frac{l_{r+1}}{2} \left(\frac{a_{r+1}'}{c_{r+1}} + \frac{v_{r+1}}{b_r} \right).$$

Aus der Bedingung

$$\frac{2}{3}z\left(l_r+l_{r+1}\right)=\mathfrak{F}$$

*) Auf Seite 129 steht in Gleich. (25) u. (26) verschentlich d_r und d_{r+1} statt u_r' und u_{r+1} , in Gleich. (26) außerdem noch l_r statt l_{r+1} . 30

Müller-Breslau, Graphische Statik. II. 2.

folgt die Pfeilhöhe der die Cr-Linie ersetzenden Parabel

(23)
$$z = \frac{3}{4} + \frac{3}{8} \frac{h'_r + h''_{r+1}}{l_r + l_{r+1}}$$

wo

(24)
$$\begin{cases} h_r' = u_r' - u_r + (u_r' - 2v_r) \frac{l_r}{b'_{r+1}} \\ h''_{r+1} = u_{r+1} - u'_{r+1} + (u_{r+1} - 2v_{r+1}) \frac{l_{r+1}}{b_r}. \end{cases}$$

Im Falle gleicher Spannweiten l sind die Höhen z nur von der Anzahl der Öffnungen abhängig. Bei 5 gleichen Öffnungen ergibt sich z. B. mit den am Schluß von Nr. 127 ermittelten Werten u, v, b für den Stützendruck C_1^*):

$$h_{1}' = u_{1}' + \frac{u_{1}'l}{b_{2}'} = u_{1}' \frac{l + b_{2}'}{b_{2}'} = \frac{56}{209} \cdot \frac{71 + 56}{56} l = \frac{127}{209} l$$

$$h_{2}'' = 2 (u_{2} - v_{2}) - u_{2}' = \frac{37}{209} l$$

$$z = \frac{3}{4} + \frac{3}{16} \cdot \frac{164}{209} = 0,897$$

und für den Stützendruck C_2 :

$$h_{2}' = u_{2}' - u_{2} + (u_{2}' - 2v_{2}) \frac{l}{h_{3}'} = \frac{4}{209} l + \frac{45}{209} \cdot \frac{19}{15} l = \frac{61}{209} l$$

$$h_{3}'' = (u_{3} - 2v_{3}) \frac{l}{b_{2}} = \frac{44}{209} \cdot \frac{5}{4} l = \frac{55}{209} l$$

$$z = \frac{3}{4} + \frac{3}{16} \cdot \frac{116}{209} = 0,854.$$

Wir geben noch zwei Zahlenbeispiele für ungleiche Öffnungen.

Erstes Beispiel. Fünf Öffnungen von 21 m, 33 m, 30 m, 24 m, 21 m Weite; gesucht C_2 .

 $\begin{array}{ll} u_2 = 14,13 \ \mathrm{m}, & u_2' = 13,27 \ \mathrm{m}, & v_2 = 3,10 \ \mathrm{m}, & b_2 = 25,28 \ \mathrm{m}, \\ u_3 = 10,89 \ \mathrm{m}, & u_3' = 12,07 \ \mathrm{m}, & v_3 = 2,48 \ \mathrm{m}, & b_3' = 23,16 \ \mathrm{m}. \\ h_2' = 13,27 - 14,13 + (13,27 - 2\cdot3,10) \frac{33}{23,16} = 9,2138 \ \mathrm{m}, \\ h_3'' = 10,89 - 12,07 + (10,89 - 2\cdot2,48) \frac{30}{25,28} = 5,8572 \ \mathrm{m}. \\ z = 0,840, & P_i = 256,5 \ \mathrm{t}, & C_2 = 0,84\cdot256,5 = 215 \ \mathrm{t}. \\ \mathrm{Die \ in \ Fig. \ 351 \ dargestellte \ \mathrm{Einflußlinie \ liefert} \ C = 223 \ \mathrm{t}. \end{array}$

*) Man beachte, daß $a_1 = 0$, $b_1 = l$, $u_1 = 0$, $v_1 = 0$ und $u_3' = u_3$ ist.

Zweites Beispiel. Fünf Öffnungen von 60 m, 80 m, 80 m, 80 m, 60 m Weite; gesucht C_2 .

 $\begin{array}{ll} u_2 = 31,40 \ \mathrm{m}, & u_2' = 29,86 \ \mathrm{m}, & v_2 = 6,64 \ \mathrm{m}, & b_2 = 62,22 \ \mathrm{m}, \\ u_3 = 29,53 \ \mathrm{m}, & u_3' = 29,53 \ \mathrm{m}, & v_3 = 6,27 \ \mathrm{m}, & b_3' = 63,01 \ \mathrm{m}, \\ z = 0,847, & P_i = 510 \ \mathrm{t}, & C_2 = 0,847 \cdot 510 = 432 \ \mathrm{t}. \end{array}$

Die Einflußlinie liefert $C_2 = 433$ t.

Die Stützendrücke braucht man hauptsächlich für die Berechnung der Auflager und Pfeiler. Es empfiehlt sich, bei den Mittelstützen mit rund z = 0.90 zu rechnen, mit Ausnahme der Stütze 1, für welche man besser z = 0.95 annimmt.

132. Druck A auf die Endstütze infolge Belastung der Endöffnung. Bedeutet A_0 den Druck auf die Endstütze des einfachen Balkens l_1 , so ist

$$A = A_0 + \frac{M_1}{l_1}$$

Die Einflußlinie

$$\eta' = \frac{M_1}{l_1} = -\frac{u_1'}{l_1} \omega_D = -\frac{a_1'}{c_1} \omega_D$$

ersetzen wir durch eine Parabel von der Pfeilhöhe

$$z = \frac{3}{2l_1} \int_{0}^{l_1} \eta' dx = -\frac{3}{8} \frac{a_1'}{c_1}$$

und schreiben zunächst

$$A = A_0 - P_i \frac{3}{8} \frac{a_1}{c_1}$$

Da aber die Laststellung, welche A zu einem Maximum macht, erheblich von der den Wert $_{max}P_i$ erzeugenden abweicht, so verkleinern wir

30*

das in Abzug zu bringende Glied. Eine große Zahl vergleichender Rechnungen hat gezeigt, daß es genügt, die Ziffer $\frac{3}{8}$ durch $\frac{1}{3}$ zu ersetzen, womit dann entsteht

(25)
$$A = A_0 - \frac{a_1'}{3c_1} P_i.$$

Um die Prüfung dieses Ausdruckes zu erleichtern, führen wir die genauere Berechnung von A etwas weiter aus.

Auf l_1 möge die Lastgruppe $P_1 P_2 \dots P_n$ stehen. Sie erzeugt $A = A_0 - \frac{a_1'}{c_1} \Sigma P \omega_D = A_0 - \frac{a_1'}{c_1} \sum_{1}^{n} P\left(\frac{x}{l} - \frac{x^3}{l^3}\right),$

wo

un

$$\sum_{1}^{n} P \frac{x}{l} = \mathfrak{P}_{n} - A_{0}.$$

Mit den Bezeichnungen

$$\begin{array}{l} (26) \\ \mathbf{\mathfrak{D}}_n = \sum_{1}^{n} P x^3 \\ \mathbf{d} \end{array}$$

$$(27) A' = \mathfrak{P}_n - A_0 - \frac{\mathfrak{D}_n}{7^3}$$

erhalten wir

(28)
$$A = A_0 - \frac{a_1'}{c_1} A'.$$

Die auf die *erste* Last bezogenen Momente dritter Ordnung \mathfrak{D}_n haben wir für den Lastzug der preußischen Verordnung berechnet und in den beiden folgenden Tabellen zusammengestellt. Die erste Tabelle ist für Stützweiten bis zu etwa 35 m maßgebend; sie entspricht der Tabelle IV auf Seite 422.

	LIOKOMOLIVE, LIOKOMOLIVE, IShuer.								
п	₽3n	\mathfrak{D}_n	п	\mathfrak{P}_n	Dn				
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	$ \begin{array}{r} 17 \\ 34 \\ 51 \\ 68 \\ 85 \\ \end{array} $	$\begin{array}{c} 0\\57,375\\516,375\\2\ 065,500\\5\ 737,500\end{array}$	$ \begin{array}{ccc} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ \end{array} $	$ 183 \\ 196 \\ 209 \\ 222 \\ 235 $	$\begin{array}{r} 457\ 903,125\\ 637\ 615,125\\ 853\ 173,000\\ 1\ 154\ 111,625\\ 1\ 560\ 438,000\end{array}$				
6 7 8 9 10	$102 \\ 119 \\ 136 \\ 153 \\ 170$	$\begin{array}{c} 35\ 113,500\\ 76\ 939,875\\ 134\ 314,875\\ 210\ 681,000\\ 309\ 825,000 \end{array}$	$16 \\ 17 \\ 18 \\ 19 \\ 20$	$248 \\ 261 \\ 274 \\ 287 \\ 300$	$\begin{array}{c} 2\ 094\ 265, 125\\ 2\ 779\ 812, 000\\ 3\ 643\ 403, 625\\ 4\ 713\ 471, 000\\ 6\ 020\ 551, 125 \end{array}$				

1.

2.

Lokomotive, Tender, Lokomotive, Tender.

п	\mathfrak{P}_n	\mathfrak{D}_n	n	P.n	\mathfrak{D}_n
1	17	0	26	378	17 711 703,000
2	34	57,375	27	391	21 200 072,625
3	51	516,375	28	404	25 198 182,000
4	68	2 065,500	29	417	29 753 416,125
õ	85	5 737,500	30	430	34 915 266,000
6	98	20 786,625	31	443	40 735 328,625
7	111	43 250,625	32	456	47 267 307,000
8	124	75 235,500	33	469	54 567 010,125
9	141	174 379,500	34	482	62 692 353,000
10	158	300 432,375	35	495	71 703 356,625
11	175	457 869,375	36	508	81 662 148,000
12	192	651 510,000	37	521	92 632 960,125
13	209	886 518,000	38	534	104 682 132,000
14	222	1187456,625	39	547	117 878 108,625
15	235	$1538456,\!625$	40	560	132 291 441,000
16	248	1 944 783,000	41	573	147 994 786,125
17	261	2 478 610,125	42	586	165 062 907,000
18	274	3 164 157,000	43	599	183 572 672,625
19	287	4 027 748,625	44	612	203 603 058,000
20	300	5 097 816,000	45	625	225 235 144,125
21	313	6 404 896,125	46	638	248 552 118,000
22	326	7 981 632,000	47	651	273 639 272,625
23	339	9 862 772,625	48	664	300 584 007,000
24	352	12 085 173,000	49	677	329 475 826,125
25	365	14 687 794,125	50	690	360 406 341,000

Für einen Balken mit 5 gleichlangen Öffnungen ist z. B.

$$a_1' = \frac{56}{265}l, \quad c_1 = \frac{209}{265}l, \quad \text{also } A = A_0 - \frac{56}{209}A'.$$

Ist nun l = 30 m, so findet man mittels der Tabelle IV auf Seite 422

$$A_0 = \frac{3490,5 + 222 (30 - 28,5)}{30} = 127,45 \text{ t}, \quad n = 14,$$

und mittels Tabelle 1, Seite 469:

$$A' = 222 - 127,45 - \frac{1154111,625}{30^3} = 51,81 \text{ t};$$

mithin ist
$$A = 127,45 - \frac{56}{209} \cdot 51,81 = 113,6$$
 t.

Gleichung (25) liefert

$$A = A_0 - \frac{56}{3 \cdot 209} P_i = A_0 - 0,089 P_i.$$

Zu l = 30 m gehört $P_i = 146$ t und A = 114,4 t. Ist l = 60 m, so liefert Tabelle I, Seite 418

$$A_0 = \frac{12234 + 1.5 \cdot 365}{60} = 213,025 \text{ t}, \qquad n = 25,$$

sodann Tabelle 2, Seite 469:

$$A' = 365 - 213,025 - \frac{14687794}{60^3} = 83,98 \text{ t.}$$

Es wird also

$$A = 213,025 - \frac{56}{209} \cdot 83,98 = 190,5 \text{ t.}$$

Gleichung (25) gibt mit $P_i = 248$ t:

$$A = 213,025 - 0,089 \cdot 248 = 191,0 \text{ t.}$$

In gleicher Weise erhält man — immer für fünf gleichweite Öffnungen —

für		$l = 10 {\rm m}$	40 m	80 m	120 m,
		$A_0 = 59,5 \mathrm{t}$	158,65 t	261,825 t	354,01 t,
		A'= 19,76 t	65,91 t	101,86 t	140,65 t,
nach	Gleich. (28)	$A = 54,2 \mathrm{t}$	141,0 t	234,5 t	31 6, 3 t,
		$P_i = 69,7 \text{ t}$	188 t	301 t	404 t,
nach	Gleich. (25)	A = 53,3 t	141,9 t	235,0 t	318,0 t.

Die Übereinstimmung der beiden Reihen für A ist eine sehr gute. Wir lassen noch zwei Beispiele für ungleiche Öffnungen folgen. Parabelförmige Einflußlinien. Durchlaufender Balken.

1. Sechs Öffnungen von 30 m, 42 m, 50 m, 50 m, 42 m, 30 m Weite. $a_1' = 5,50$ m, $c_1' = 24,50$ m, A' = 51,81 t (wie vorhin);

nach (28)
$$A = 127,45 - \frac{5,50}{24,50} \cdot 51,81 = 115,8 \text{ t},$$

nach (25) $A = 127,45 - \frac{5,50}{3 \cdot 24,50} \cdot 146 = 116,5 \text{ t.}$

2. Fünf Öffnungen von 60 m, 80 m, 80 m, 80 m, 60 m Weite. $a_1' = 11,30$ m, $c_1' = 48,70$ m, A' = 83,98 t, $P_i = 248$ t;

nach (28): A = 193,5 t, nach (25): A = 194,0 t.

Es ist übrigens sehr nahe

$$A = 0,91 A_0.$$

Diese Formel liefert für

l = 10 m	30 m	40 m	60 m	80 m	120 m,
A = 54 t	116 t	144 t	194 t	238 t	322 t.

Die größte Abweichung von den genauen Werten beträgt nur 2 v. H.

133. Querkräfte $_{max}Q$ der Endöffnung, infolge Belastung der Endöffnung.

Erstes Verfahren. Bei unmittelbarer Belastung des Balkens ist die in Fig. 353 schraffierte, von der A-Linie A'C'C begrenzte Fläche

der positive Teil der Einflußfläche der Querkraft Q. Wir ersetzen die A-Linie durch eine Parabel, deren Pfeilhöhe

$$z = \frac{3}{8} \frac{a_1'}{c_1}$$

ist und nehmen, mit den aus Fig. 353 zu ersehenden Bezeichnungen, für Q den Näherungswert an:

$$Q = Q_0 \frac{\eta}{\eta_0} - P_i z',$$

$$\begin{split} \eta_{0} &= 1 \frac{x'}{l_{1}}, \quad \eta = \eta_{0} - \eta' = 1 \frac{x'}{l_{1}} - 4 z \frac{x x'}{l_{1}^{2}} = \eta_{0} \left(1 - \frac{3}{2} \frac{a_{1}'}{l_{1}} \frac{x}{l_{1}} \right) \\ z' &= z \frac{x'^{2}}{l_{1}^{2}} = \frac{3}{8} \frac{a_{1}'}{c_{1}} \frac{x'^{2}}{l_{1}^{2}}. \end{split}$$

Indem wir noch — aus dem auf Seite 468 angeführten Grunde in der letzten Gleichung $\frac{3}{8}$ durch den etwas kleineren Wert $\frac{1}{3}$ ersetzen, erhalten wir

(29) $Q = \alpha Q_0 - \beta P_i,$ wo

(30)
$$\alpha = 1 - \frac{3}{2} \frac{a_1'}{c_1} \frac{x}{l_1},$$

(31)
$$\beta = \frac{1}{3} \frac{a_1'}{c_1} \frac{x'^2}{l_1^2}.$$

Gleich. (29) liefert auch bei mittelbarer Belastung brauchbare Werte. Beispiel. Balken mit sechs Öffnungen von 30 m, 42 m, 50 m, 50 m, 42 m, 30 m Weite. Die Endöffnung enthalte 10 gleichlange Felder.

Es ist $a'_1 = 5,5$ m, $c_1 = 24,5$ m, $x = m\lambda$, $x' = m'\lambda$, $l = 10 \lambda$, mithin

$$\alpha = 1 - 0.03367 m,$$

$$\beta = 0.0007483 m'^{2}.$$

Betrachtet man l_1 als einfachen Balken, so erhält man für das zweite Feld die Querkraft $_{max}Q_o$ bei der in Fig. 354 angegebenen Laststellung, denn es ist

$$\leftarrow \frac{\mathfrak{P}_{13}}{\mathfrak{P}_2} = \frac{209}{34} < \frac{l}{\lambda} = 10,0,$$

$$\rightarrow \frac{\mathfrak{P}_{13}}{\mathfrak{P}_1} = \frac{209}{17} > \frac{l}{\lambda} = 10,0.$$

Parabelförmige Einflußlinien. Durchlaufender Balken.

Man findet (nach Tabelle IV, Seite 422) $A = \frac{1}{30} \cdot 2863,5 = 95,45$ t und, da Knotenpunkt 1 mit 8,5 t belastet wird,

$$_{max}Q_0 = 95,45 - 8,50 = 87$$
 t.

Nun ist für m = 2 und m' = 8, $\alpha = 0.933$, $\beta = 0.048$. Zu x' = 24 m gehört $P_i = 122$ t, folglich nach Gleich. (29)

$$Q = 0.933 \cdot 87 - 0.048 \cdot 122 = 75.3 t$$

Fig. 355.

Mit Hilfe der durch die Gleichung

 $\eta = \frac{x'}{l_1} - \frac{a_1'}{c_1} \omega_D = \frac{m'}{10} - 0.22449 \omega_D$

bestimmten, in Fig. 355 dargestellten Einflußlinie findet man $_{max}Q = 75$ t.

Die auf diese Weise berechneten Werte $_{max}Q$ sind in der folgenden Tabelle zusammengestellt worden. Die achte Spalte enthält die mittels der Einflußlinie erhaltenen Querkräfte.

 Q_1 und Q_2 entstehen bei der Zugfolge IV, die übrigen Q bei Zugfolge I (Seite 418). Für Q_4 bis Q_9 ist die Grundstellung maßgebend. Die ersten drei Querkräfte entstehen, wenn die zweite Achse in m angreift.

Sechster Abschnitt. - § 26.

m	m	α	β	max Qo	Pi	Gleich. (29) $_{max}Q$	Mittels Einflußlinie _{max} Q	ψ	Gleich. (34) max Q
1	9	0,966	0,061	107.85	133	96	96	0.892	96
2	8	0,933	0,048	87	122	75	75	0.874	76
3	7	0,899	0,037	65,5	108	55	55	0,856	56
4	6	0,865	0,027	50,3	91,8	41	41	0,838	42
5	5	0,832	0,019	37,9	79,9	30	29	0,820	31
6	4	0,798	0,012	26,15	74,4	20	19	0,802	21
7	3	0,764	0,0067	17	66,1	13	12	0,784	13
8	2	0,731	0,0030	8,5	49,5	6	6	0,766	6,5
9	1	0,697	0,0007	2,85	*)	2,0	1,6	0,748	2,1
	1. P				t	t	t	2	t

Zweites Verfuhren. Der Inhalt des positiven Teiles der Q-Fläche ist

$$\mathfrak{F} = \frac{\eta_0 x'}{2} - \int_0^{x'} \eta' dx' = \frac{x'^2}{2l} - \frac{4z}{l_1^2} \int_0^x x'(l_1 - x') dx'.$$

Mit $z = \frac{3}{8} \frac{a_1'}{c_1}$ ergibt sich

(32)
$$\mathfrak{F} = \frac{x^{'2}}{2l_1} \left[1 - \frac{1}{2} \frac{a_1'}{c_1} \left(3 - 2 \frac{x'}{l_1} \right) \right] \\ = \frac{x^{'2}}{2l_1} \left[1 - \frac{1}{2} \frac{a_1'}{c_1} \left(1 + 2 \frac{x}{l_1} \right) \right].$$

Die Q_0 -Fläche hat den Inhalt

(33)
$$F_0 = \frac{\eta_0 x'}{2} = \frac{x'^2}{2l_1}$$

und wir setzen daher

$$Q = Q_0 \left[1 - \frac{1}{2} \frac{a_1'}{c_1} \left(1 + 2 \frac{x}{l_1} \right) \right],$$

oder noch besser, indem wir den negativen Teil der Klammergröße etwas verkleinern,

(34)
$$\begin{cases} Q = \psi Q_0, \text{ wo} \\ \psi = 1 - 0.4 \frac{a_1'}{c_1} \left(1 + 2 \frac{x}{l_1} \right). \end{cases}$$

Für x = 0 folgt hieraus $A = A_0 \left(1 - 0.4 \frac{a_1'}{c_1}\right)$ und, wenn rund $a_1' = 0.2 l_1, c_1 = 0.8 l_1$ gesetzt wird, $A = 0.9 A_0$, ein Näherungswert, der sich in Nr. 132 als recht brauchbar erwiesen hat.

*) Der Einfluß von P_i ist schon für m = 7 und 8 unwesentlich.

Beispiel. Für die 10-feldrige Endöffnung des vorhin untersuchten Balkens ist

$$\psi = 1 - 0.4 \cdot \frac{5.5}{24.5} \left(1 + 2 \frac{m}{10} \right) = 0.9102 - 0.0180 \ m.$$

Man erhält für ψ und Q die in den beiden letzten Spalten der vorstehenden Tabelle angegebenen Werte.

134. Querkräfte $_{min}Q$ der Endöffnung infolge Belastung der Endöffnung.

Erstes Verfahren. Fig. 356 zeigt den negativen Teil der Q-Fläche für unmittelbare Belastung. Die Gleichungen (29), (30), (31) auf Seite 472 sind zu ersetzen durch

$$(35) Q = \alpha' Q_0 + \beta' P_i$$

Fig. 356.

Für unser Beispiel ist

$$\alpha' = 1 + 0.03367 m', \beta' = 0.0007483 m^2.$$

Die folgende Tabelle enthält die Ergebnisse der Rechnung.

m	m	α΄	β'	min Q_0	nach Gleich. (35) $_{min}Q$	Mittels Einflußlinie _{min} Q	ψ΄	$\begin{array}{c} {\rm nach}\\ {\rm Gleich.} \ (40)\\ {}_{min}Q \end{array}$
1	9	1.303	0.0007	- 2,85	- 3,7	- 3,1	1,314	- 3,7
2	8	1.269	0.0030	- 8,50	- 11	- 10,4	1,292	- 11
3	7	1.236	0.0067	- 17,00	- 21	- 21	1,269	- 22
4	6	1.202	0.012	- 26,15	- 32	- 31	1,247	- 33
5	5	1.168	0.019	- 37,9	- 46	- 45	1,224	- 46
6	4	1.135	0.027	- 50,3	- 60	- 59	1,202	- 60
7	3	1,101	0.037	- 65,5	- 76	- 76	1,180	- 77
8	2	1.067	0.048	- 87	99	- 99	1,157	-101
9	1	1.034	0.061	-107,85	- 120	-120	1,135	- 122
Contraction of the second				t	t	t	1	t

Zweites Verfahren. An die Stelle der Formeln (32) und (33) treten die Formeln

(38)
$$\Im = \frac{x^2}{2l_1} \left[1 + \frac{1}{2} \frac{a_1'}{c_1} \left(3 - 2 \frac{x}{l_1} \right) \right]$$

und

(39)

$$\mathfrak{F}_0 = \frac{x^2}{2l_1}$$

Folglich ist

(40)
$$\begin{cases} \min Q = \min Q_0 \psi', \text{ wo} \\ \psi' = 1 + \frac{1}{2} \frac{a_1'}{c_1} \left(3 - 2 \frac{x}{l_1} \right) \end{cases}$$

Für unser Beispiel ist

$$\psi' = 1 + \frac{1}{2} \cdot \frac{5.5}{24.5} \left(3 - 2 \frac{m}{10} \right) = 1,3367 - 0,02245 m.$$

Die hiermit berechneten Werte Q gibt die letzte Spalte der vorstehenden Tabelle an.

Fig. 357.

135. Querkräfte einer Mittelöffnung infolge Belastung dieser Öffnung. Die Einflußflächen für Q und Q_0 unterscheiden sich so wenig

Parabelförmige Einflußlinien. Durchlaufender Balken.

voneinander, daß es für die Praxis erlaubt ist, $Q = Q_0$ zu setzen. So erhält man z. B. für die dritte, 10-feldrige Öffnung $l_3 = 30$ m eines Balkens auf 6 Stützen mit den Öffnungen: 21 m, 33 m, 30 m, 24 m, 21 m

für $m =$	1	2	3	4	5	6	7	8	9	
$_{max}Q_0 =$	108	87	65,5	50	38	26	17	8,5	2,55	Tonnen
$_{max}Q =$	106	85	63	47	34	22	13	6	1,6	"

VII. Abschnitt.

Der biegungsfeste Stabzug.

\$ 27.

Darstellung der Verschiebungen der Knotenpunkte.

136. Die allgemeine Darstellung der Verschiebungen der Knotenpunkte eines *biegungsfesten Stabzuges* (Fig. 358) unterscheidet sich von der in Abteilung 1, § 2 und § 3 beschriebenen Darstellung der Formveränderung eines *Stabzuges mit gelenkartigen Knoten* nur durch die Bestimmung der Winkeländerungen $\Delta \mathfrak{I}$.

Wir setzen prismatische Stäbe voraus und nehmen an, der Stabzug sei durch Einzellasten beansprucht, die in den Knotenpunkten angreifen.

Beide Voraussetzungen lassen sich stets mit genügender Genauigkeit erfüllen. Ein Stab veränderlichen Querschnitts wird in kurze, als Prismen anzusehende Stücke zerlegt; die Trennungspunkte der einzelnen Stücke zählen als Knotenpunkte. Ebenso zählt der Angriffspunkt einer zwischen zwei Eckpunkten angreifenden Einzellast als Knotenpunkt. Stetige Lasten können durch in kurzen Abständen wirkende Einzellasten ersetzt werden.

Bogenträger dürfen in den im Brückenbau und Hochbau vorkommenden Fällen mit hinreichender Annäherung durch Stabzüge ersetzt werden. Bei einer Blechbogenbrücke genügt es in der Regel, die Schnittpunkte der Mittellinien der die Fahrbahn stützenden Vertikalen mit der Bogenachse zu Knotenpunkten zu wählen. Bei Dachbindern sind die Angriffspunkte der Pfetten die Knotenpunkte.

Die Folge unserer Voraussetzungen ist, daß die Momentenfläche eines Stabes (m-1) - m ein Trapez mit den Endordinaten M_{m-1} und M_m ist, Fig. 359. Die Ausschlagwinkel der in m zusammentreffenden Stabenden sind mit Berücksichtigung der Wirkung der Schubkräfte und einer ungleichmäßigen Temperaturänderung nach Gleich. (7), Seite 28,

(1)
$$\tau_{m} = \frac{M_{m-1} + 2M_{m}}{6EJ_{m}} s_{m} + \frac{\varkappa_{m}(M_{m} - M_{m-1})}{GF_{m}s_{m}} + \varepsilon (t_{um} - t_{om}) \frac{s_{m}}{2h_{m}},$$

(2)
$$\tau'_{m+1} = \frac{M_{m+1} + 2M_{m}}{6EJ_{m+1}} s_{m+1} + \frac{\varkappa_{m+1}(M_{m} - M_{m+1})}{GF_{m+1}s_{m+1}} + \varepsilon (t_{u(m+1)} - t_{o(m+1)}) \frac{s_{m+1}}{2h_{m+1}}$$

und man erhält daher (3)

$$\Delta \mathfrak{I}_m = \tau_m + \tau'_{m+1}.$$

Fig. 359.

Bezeichnet N_m die den Stab s_m beanspruchende Längskraft, als Zug positiv genommen, und t_m die Temperaturänderung für die Stabachse, so ist

(4)
$$\Delta s_m = \frac{N_m s_m}{EF_m} + \varepsilon t_{sm} s_m.$$

Die Werte t_{sm} , t_{um} , t_{om} sind für alle Punkte des Stabes s_m gleich groß gedacht. h_m bedeutet die Höhe des Stabquerschnittes.

Die von den Schubkräften herrührenden zweiten Glieder der Ausdrücke für τ_m und τ'_{m+1} werden meistens als unwesentlich vernachlässigt; ihre Berücksichtigung bietet zwar keine Schwierigkeit, vermehrt aber die Rechenarbeit. Beim Blechbogen darf man nach Seite 12 den Wert- $F_m \mid \varkappa_m$ ersetzen durch den Stehblechquerschnitt F_{sm} . Kennt man die Winkeländerungen $\Delta \mathfrak{D}$, so kann man die Drehungswinkel ψ der einzelnen Stäbe und die Werte $\rho = s \psi$ berechnen und den Verschiebungsplan des Stabzuges durch Aneinanderreihung der Strecken Δs und ρ bilden. Zuerst wird der Stabzug an irgendeiner Stelle fest eingespannt angenommen und schließlich werden die wirklichen Auflagerbedingungen in derselben Weise erfüllt wie bei den im § 1 der Abteilung 1 untersuchten Fachwerken.

Es liege z. B. ein Stabzug 0 1 2 3 ... 6 vor, der bei 0 ein ruhendes, bei 6 ein auf wagerechter Bahn geführtes Auflagergelenk besitzt und durch eine in 6 angreifende wagerechte Last 1 beansprucht wird, Fig. 360. Bezeichnet φ_m den Neigungswinkel des Stabes s_m gegen die Wagerechte und y_m die Ordinate von m, so ist

$$N_m = 1 \cdot \cos \varphi_m, \quad M_m = 1 \cdot y_m.$$

Wird die wirkliche Stützung beseitigt und der Stabzug an der Stelle 3 eingespannt angenommen, so drehen sich die Stäbe s_3 und s_4 um

$$\psi_3 = \tau_3$$
 bzw. $\psi_4 = \tau_4'$

die Stäbe s_2 und s_1 um

$$\psi_2 = \psi_3 + \Delta \mathcal{Z}_2, \quad \psi_1 = \psi_2 + \Delta \mathcal{Z}_1,$$

die Stäbe s_5 und s_6 um

$$\psi_5 = \psi_4 + \Delta \mathfrak{I}_4, \quad \psi_6 = \psi_5 + \Delta \mathfrak{I}_5.$$

Nach Berechnung der Werte $\rho = s\psi$ werden vom Pole O' aus nach der einen Seite die Strecken aneinandergereiht:

 $\Delta s_3, \ \rho_3, \ \Delta s_2, \ \rho_2, \ \Delta s_1, \ \rho_1,$

nach der anderen Seite die Strecken:

 Δs_4 , ρ_4 , Δs_5 , ρ_5 , Δs_6 , ρ_6 .

Die Verschiebungen der Knotenpunkte 0, 1, 2... sind dann für die angenommene Stützung durch die Strecken O'O', O'I', O'2', ... der Größe und Richtung nach bestimmt. Nun wird die wirkliche Stützung

Der biegungsfeste Stabzug. Verschiebungen der Knotenpunkte. 481

wiederhergestellt und die der Stabzugfigur 0 1 2 3 ... 6 ähnliche Figur 0"1"2"3"... 6" (auch kurz Figur F" genannt) gezeichnet*); sie ist durch die Bedingungen bestimmt, daß die Verschiebung 6"6'des Punktes 6 wagerecht sein muß, daß 0" mit 0' zusammenfällt, weil der Punkt 0 festliegt und daß drittens 0"6" $\lfloor 06$ ist. Die Strecken 1"1', 2"2', ... geben nunmehr Größe und Richtung der Verschiebungen der Knotenpunkte 1, 2, ... an.

137. Die Biegungslinie eines Stabzuges ist nach Abteilung 1, § 3, Nr. 46, Gleich. (3), das Seilpolygon der Gewichte

(5)
$$\omega_m = \Delta \, \widehat{\gamma}_m - \frac{\Delta s_m}{s_m} \operatorname{tg} \varphi_m + \frac{\Delta s_{m+1}}{s_{m+1}} \operatorname{tg} \varphi_{m+1}.$$

Fig. 361 gibt die lotrechten Durchbiegungen η_m eines Stabzuges mit zwei Stützpunkten A und B an. Es bedeutet dann φ_m den Neigungswinkel des Stabes s_m gegen die Wagerechte.

Aus der Biegungslinie läßt sich der vollständige Verschiebungsplan in derselben Weise herleiten wie beim Fachwerk. Wir verweisen auf Abteilung 1, § 3, Nr. 51.

138. Zeichnerische Ermittlung der Strecken ρ . Außer dem in Abteilung 1, § 2, Nr. 43, beschriebenen Verfahren, die Strecken ρ zeichnerisch zu bestimmen, kann auch das folgende von der Biegungslinie eines geraden Stabes ausgehende Verfahren benutzt werden.

Es liege der Stabzug 0 1 2 ... 8 (Fig. 362a) vor. Er sei zunächst bei 4 eingespannt gedacht.

Man ersetze den gebrochenen Stabzug nach Fig. 362b durch einen geraden Stabzug und zeichne für den letzteren die Biegungs-

^{*)} Siehe Abteilung 1, § 1, Nr. 33 u. 34.

Müller-Breslau, Graphische Statik. II. 2.

linie 0'1'2'...8' nach dem im § 2 angegebenen Verfahren, wobei man natürlich den Knotenpunkten des geraden Stabzuges dieselben Angriffsmomente M zuweisen muß, die sich für die Knotenpunkte des gebrochenen Stabzuges ergeben haben. Die Winkel, welche die Geraden 0'1', 1'2', 2'3', ... mit der geraden Stabachse 0 1 2 3 ... bilden, stimmen mit den in Nr. 136 durch Rechnung gefundenen Winkeln $\psi_1, \psi_2, \psi_3, \ldots$ überein, und es geben deshalb die Unterschiede der aufeinanderfolgenden, den Knotenpunkten 0, 1, 2, 3, ... entsprechenden Ordinaten die Strecken $\rho_1, \rho_2, \rho_3, \ldots$ an; sie wurden in Fig. 362b kräftig ausgezogen. Für ρ_1 wurde in Fig. 362b ein negativer Wert erhalten; alle anderen Werte ρ sind positiv.

Fig. 362.

Wird zunächst vorausgesetzt, es sei $t_u - t_o = 0$, wird ferner der Einfluß der Schubspannungen vorderhand vernachlässigt, so kann man entweder die Momentenfläche als Belastungsfläche auffassen und die Biegungslinie nach Fig. 13, Seite 17, als Seillinie mit veränderlicher Polweite EJ auffassen, oder man ersetzt die M-Fläche nach Seite 15 durch die $M \frac{J_o}{J}$ -Fläche, wo J_c ein beliebig großes konstantes Trägheitsmoment ist und findet dann die Biegungslinie als Seillinie mit der unveränderlichen Polweite EJ_c . Sollen die Durchbiegungen in ν -facher Vergrößerung gewonnen werden, so ist die Polweite EJ zu ersetzen durch $\frac{EJ}{\nu}$.

Der biegungsfeste Stabzug. Verschiebungen der Knotenpunkte. 483

Es soll nun gezeigt werden, daß es nur einer geringen Abänderung der Belastungsfläche bedarf, wenn der Einfluß der Schubspannungen berücksichtigt werden soll. Wir haben offenbar nur nötig, die an den Endquerschnitten des Stabes s_m angreifenden Momente M_{m-1} und M_m durch zwei Momente M'_{m-1} und M''_m zu ersetzen, welche den Gleichungen genügen:

$$6) \quad \begin{cases} \frac{M'_{m-1} + 2M''_{m}}{6EJ_{m}}s_{m} = \frac{M_{m-1} + 2M_{m}}{6EJ_{m}}s_{m} + \frac{\varkappa_{m}(M_{m} - M_{m-1})}{GF_{m}s_{m}}\\ \frac{M''_{m} + 2M'_{m-1}}{6EJ_{m}}s_{m} = \frac{M_{m} + 2M_{m-1}}{6EJ_{m}}s_{m} + \frac{\varkappa_{m}(M_{m-1} - M_{m})}{GF_{m}s_{m}}, \end{cases}$$

weil dann die Ausschlagwinkel τ_m und τ_m' der beiden Stabenden die durch die Formeln (1) und (2) vorgeschriebenen Werte annehmen. Aus (6) folgt aber

(7)
$$\begin{cases} M'_{m-1} = M_{m-1} + \beta_m (M_{m-1} - M_m) \\ M_m'' = M_m + \beta_m (M_m - M_{m-1}), \end{cases}$$

WO

$$B_m = 6 \varkappa_m \frac{E}{G} \cdot \frac{J_m}{F_m s_m^2}$$

Da nun

$$M'_{m-1} + M''_m = M_{m-1} + M_m$$

ist, so wird die Verbindungslinie (g_m') der Ordinaten M'_{m-1} und M''von der Verbindungslinie (g_m) der Ordinaten M_{m-1} und M_m in ihrem Mittelpunkte geschnitten, Fig. 363.

Die Ordinate Y' der Geraden (g'_m) ist im Abstande x rechts von der Stabmitte

31*

Siebenter Abschnitt. - § 28.

$$Y' = \frac{1}{2} (M_m'' + M'_{m-1}) + (M_m'' - M'_{m-1}) \frac{x}{s_m}$$

= $\frac{1}{2} (M_m + M_{m-1}) + (M_m - M_{m-1}) (1 + 2\beta_m) \frac{x}{s_m}$.

Mit der Bezeichnung

$$e_m = \frac{s_m}{2 \left(1 + 2\beta_m\right)}$$

(9) gibt dies

$$Y' = \frac{1}{2} M_{m-1} \left(1 - \frac{x}{e_m} \right) + \frac{1}{2} M_m \left(1 + \frac{x}{e_m} \right).$$

Hieraus folgt:

Die Gerade (g'_m) besitzt bei $x = + e_m$ die Ordinate M_m und bei $x = -e_m$ die Ordinate M_{m-1} .

Der Abstand e_m ist nur von den Abmessungen des Stabes abhängig; er bleibt also für alle zu untersuchenden Belastungsfälle derselbe.

Der Einfluß von $t_u - t_o$ wird nach Seite 15 bestimmt. Die Belastungshöhe beträgt $6 E J_c \frac{t_u - t_o}{h}$, wenn die Polweite gleich $E J_c$ gemacht wird.

§ 28.

Berechnung statisch unbestimmter biegungsfester Stabzüge.

139. In den folgenden Aufgaben gehen wir von den allgemeinen Gleichungen

aus; sie liefern die statisch unbestimmten Größen X_a , X_b , X_c ... nach Aufzeichnung der Verschiebungspläne für die Zustände $X_a = -1$, $X_b = -1$, $X_c = -1$... und des Verschiebungsplanes, der die von den Temperaturänderungen herrührenden Verrückungen δ_{at} , δ_{bt} , δ_{ct} ... bestimmt.

140. Stabbogen mit zwei Gelenken, Fig. 364. Als statisch unbestimmte Größe führen wir den Horizontalschub X_a des rechten Auflagers ein. Der Einfluß einer Einzellast P_m auf X_a ist

$$X_a = P_m \frac{\delta_{ma}}{\delta_{aa}} \cdot$$

Berechnung statisch unbestimmter biegungsfester Stabzüge.

Der Verschiebungsplan für $X_a = -1$ ist bereits in Nr. 136, Fig. 360, ganz allgemein für einen unsymmetrischen Träger beschrieben worden. In Fig. 364 haben wir Symmetrie angenommen. Wird dann der Stabzug zunächst im Scheitel *C* eingespannt gedacht, so schrumpft die Figur F'' zu einem Punkte zusammen und man braucht zur Erfüllung der wirklichen Auflagebedingungen nur den Pol von O' nach dem Punkte O' zu verlegen. Es empfiehlt sich, mit den EJ_c -fachen Verschiebungen zu arbeiten, wo J_c ein beliebiges Trägheitsmoment ist.

Haben mehrere Stäbe gleiche Querschnitte, so wählt man deren J zum Trägheitsmomente J_c . Bei der Berechnung der $\Delta \mathfrak{I}$ und ψ ist der Scheitel C als Knotenpunkt aufzufassen. Dem Stabstücke C3 entspricht also

$$\psi_4 = \frac{J_c}{J_4} (M_3 + 2 M_c) \frac{s_4}{2}, \quad \varphi_4 = \psi_4 \cdot \frac{s_4}{2}, \quad M_3 = M_c = y_3,$$

ferner ist

$$\tau_3' = \frac{J_c}{J_4} (2 M_3 + M_c) \frac{s_4}{2}$$

Die Einzellast P_3 erzeugt

$$X_a = P_3 \frac{\delta_{3a}}{\delta_{aa}} \cdot$$

Dreht man P_3 um 90° nach rechts und weist man ihm den Punkt 3' des Verschiebungsplanes als Angriffspunkt zu, so ist $P_3\delta_{3a}$ das Moment

der Kraft P_3^* um den Pol O. Beschreibt man um O einen Kreis vom Halbmesser δ_{aa} , bringt P_3 mit dem Kreise zum Schnitt und zerlegt es dann in die zueinander rechtwinkligen Seitenkräfte P_3' und P_3'' , deren erstere den Kreis berührt, so erhält man $X_a = P_3'$. Dieser Wert ist positiv, wenn P_3' rechts um O dreht. Will man den am linken Kämpfergelenke angreifenden Horizontalschub haben, so muß man den Pol O von O' nach 7' verlegen. Die Übertragung der um 90° gedrehten Lasten P in den Verschiebungsplan ist von Vorteil, wenn es sich um die Wirkung einer ganzen Gruppe von Lasten handelt. Man setzt die an den Punkten 1', 2', ... angreifenden Lasten zu einer Mittelkraft R zusammen, berechnet deren Momente $M_{0'}$ und $M_{7'}$ um die Punkte 0' und 7' und findet dann für die in 0' und 7' angreifenden Horizontalschübe die Werte $\frac{M_{7'}}{8}$ bzw. $-\frac{M_{0'}}{8}$.

In Figur 364 b wurde noch die Biegungslinie A 1 2 3 ... B gezeichnet und angegeben, wie man den Verschiebungsplan Fig. 364 a aus der Biegungslinie herleiten kann. Man beginnt mit den Punkten 3' und 4', die im gegenseitigen Abstande

$$\Delta s_4 = \frac{N_4 s_4}{EF_4} EJ_c = 1 \cdot s_4 \frac{J_c}{F_4}$$

in der Wagerechten 3-4 an beliebiger Stelle angenommen werden.

Die Biegungslinie ist die Momentenlinie eines mit den Gewichten w_1, w_2, w_3, \ldots belasteten einfachen Balkens. Mit

$$M_m = y_m, \quad N_m = \cos \varphi_m \text{ und } \frac{\Delta s_m}{s_m} = \frac{\cos \varphi_m}{EF_m}$$

ergibt sich nach den Formeln (1), (2), (3), (4) Seite 479 mit $F \mid \varkappa = F_s$:

$$w_{m} = \frac{y_{m-1} + 2y_{m}}{6 E J_{m}} s_{m} + \frac{y_{m+1} + 2y_{m}}{6 E J_{m+1}} s_{m+1} + \frac{y_{m} - y_{m-1}}{G F_{sm} s_{m}} + \frac{y_{m} - y_{m+1}}{G F_{s(m+1)} s_{m+1}} - \frac{\sin \varphi_{m}}{E F_{m}} + \frac{\sin \varphi_{m+1}}{E F_{m+1}},$$

wofür man auch schreiben kann

.

(2)
$$w_{m} = \frac{y_{m-1} + 2y_{m}}{6EJ_{m}} s_{m} + \frac{y_{m+1} + 2y_{m}}{6EJ_{m+1}} s_{m+1} + \sin\varphi_{m} \left(\frac{1}{GF_{sm}} - \frac{1}{EF_{m}}\right) - \sin\varphi_{m+1} \left(\frac{1}{GF_{s(m+1)}} - \frac{1}{EF_{m+1}}\right).$$

Es empfiehlt sich die EJ_c -fachen Durchbiegungen darzustellen und zu diesem Zwecke die Werte w_m mit EJ_c zu multiplizieren, wo J_c ein

beliebiges unveränderliches Trägheitsmoment bedeutet. In der Regel sind auch die Feldweiten λ gleich groß. Dann multipliziere man w_m mit $\frac{EJ_c}{\lambda}$, um die $\frac{EJ_c}{\lambda}$ -fachen Durchbiegungen zu erhalten. Mit der Bezeichnung $J'_m = J_m \cos \varphi_m$

erhält man im letzteren Falle

(3)
$$w_m = (y_{m-1} + 2y_m) \frac{J_c}{6J'_m} + (y_{m+1} + 2y_m) \frac{J_c}{6J'_{m+1}} + \frac{\sin\varphi_m}{\lambda} \left(\frac{E}{G} \frac{J_c}{F_{sm}} - \frac{J_c}{F_m}\right) - \frac{\sin\varphi_{m+1}}{\lambda} \left(\frac{E}{G} \frac{J_c}{F_{s(m+1)}} - \frac{J_c}{F_{m+1}}\right).$$

Für die den Stäben s_m und s_{m+1} entsprechenden Werte J'_m und J'_{m+1} darf man stets einen Mittelwert einführen, dem wir den Zeiger m beilegen wollen, weil es sich um das Gewicht des Knotenpunktes m handelt. Dasselbe geschehe mit den Werten F_s und E. Dann entsteht

(4)
$$w_{m} = \frac{1}{6} (y_{m-1} + 4y_{m} + y_{m+1}) \frac{J_{o}}{J_{m}'} + \frac{\sin \varphi_{m} - \sin \varphi_{m+1}}{\lambda} \left(\frac{E}{G} \frac{J_{o}}{F_{sm}} - \frac{J_{o}}{F_{m}} \right),$$

wofür man auch schreiben darf

(5)
$$w_m = y_m \frac{J_c}{J_m'} + \frac{\sin \varphi_m - \sin \varphi_{m+1}}{\lambda} \left(\frac{E}{G} \frac{J_c}{F_{sm}} - \frac{J_c}{F_m} \right).$$

Im Verschiebungsplane, Fig. 364a, muß man an Stelle der Δs_m die

(6)
$$\frac{EJ_c}{\lambda} \Delta s_m = \frac{EJ_c}{\lambda} \frac{N_m s_m}{EF_m} = \frac{J_c}{F_m}$$

auftragen. Hinsichtlich der Einheiten sei folgendes bemerkt. Rechnet man mit Tonnen und Metern, so erhält man $\frac{EJ_c}{\lambda}$ in tm. Die Einheit der EJ_c -fachen Durchbiegungen ist daher tm², und ebenso erhält man

$$rac{EJ_{o}}{\lambda}\Delta s_{m}$$
 = $1\cdot rac{J_{o}}{F_{m}}$ = $ext{tm}^{2}$.

Die Momente $M = 1 \cdot y_m$ und die Gewichte w_m besitzen dieselbe Einheit tm.

Liegen die Knotenpunkte eines Stabzuges in einem Kreisbogen vom Halbmesser r, so weicht der gegenseitige wagerechte Abstand der Mittelpunkte der beiden Bogenstücke (m-1) - m und m - (m+1) so wenig von λ ab, daß man setzen darf

(7)
$$\sin \varphi_m - \sin \varphi_{m+1} = \frac{\lambda}{r}.$$

Die Gleichung (5) geht dann über in

(8)
$$w_m = y_m \frac{J_c}{J_m'} + \frac{1}{r} \left(\frac{E}{G} \frac{J_c}{F_{sm}} - \frac{J_c}{F_m} \right).$$

In der Regel ist es zulässig, für J'_m einen konstanten Mittelwert, den man dann zum Trägheitsmomente J_c wählen wird, einzusetzen und für F_m und F_{cm} ebenfalls unveränderliche Durchschnittswerte F_c und Fanzunehmen. Dann ergibt sich sehr einfach

(9)
$$w_m = y_m + \frac{1}{r} \left(\frac{E}{G} \frac{J_c}{F_s} - \frac{J_c}{F} \right),$$

wo abgerundet

$$\frac{E}{G} = 2,6.$$

Die Ordinaten der Biegungslinie werden am schnellsten durch Rechnung gefunden.

Infolge gleichmäßiger Erwärmung verschiebt sich der Punkt a des statisch bestimmten Hauptsystems gegen den festgehaltenen Endpunkt 0 um

$$\delta_{at} = \varepsilon t l.$$

Gleichmäßige Erwärmung des Zweigelenkbogens erzeugt also

$$X_{at} = 1 \frac{\delta_{at}}{\delta_{aa}} = \frac{\varepsilon t l}{\delta_{aa}}.$$

Wird δ_{aa} einem die $\frac{EJ_{s}}{\lambda}$ -fachen Verschiebungen liefernden Plane entnommen, so muß

$$X_{at} = \frac{\varepsilon E J_o t l}{\delta_{aa} \lambda}$$

gesetzt werden.

141. Stabbogen mit einem gelenkartigen und einem eingespannten Kämpfer, Fig. 365. Als statisch unbestimmte Größen führen wir 2 Seitenkräfte X_a und X_b des Kämpfergelenkes ein. X_a sei wagerecht angenommen. Die Richtung von X_b soll so gewählt werden, daß $\delta_{ab} = 0$ wird. Das statisch bestimmte Hauptsystem ist ein am rechten Ende eingespannter Freiträger. Das Kämpfergelenk, dem wir die Bezeichnung a oder b beilegen, je nachdem wir es als Angriffspunkt von X_a oder X_b besonders hervorheben wollen, verschiebe sich gegen das ruhend angenommene rechte Widerlager im Sinne $X_a = -1$ um δ_a und im Sinne $X_b = -1$ um δ_b . Dann ergibt sich

$$X_{a} = \frac{\sum P_{m}\delta_{ma} + \delta_{at} - \delta_{a}}{\delta_{aa}}$$
$$X_{b} = \frac{\sum P_{m}\delta_{mb} + \delta_{bt} - \delta_{b}}{\delta_{bb}}.$$

Berechnung statisch unbestimmter biegungsfester Stabzüge.

Für den Zustand $X_a = -1$ ist $M_m = 1 \cdot y_m$ und $N_m = 1 \cdot \cos \varphi_m$. Nach Berechnung der $\tau, \tau', \Delta \mathfrak{T}, \psi, \varphi$ wird der Verschiebungsplan Fig. 365a gezeichnet und nun wird X_b rechtwinklig zu der Verschiebung Oa' angenommen, die der Punkt a im Belastungsfalle $X_a = -1$ erfährt. Dann wird δ_{ba} gleich Null. Last P_5 erzeugt

$$X_a = P_5 \frac{\delta_{5a}}{\delta_{aa}} \cdot$$

Dieser Wert ist negativ, weil δ_{aa} denselben Sinn hat wie die Last $X_a = -1$, während δ_{5a} den entgegengesetzten Sinn hat wie P_5 .

Nun berechnet man für den Zustand $X_b = -1$ die Momente $M_m = 1 \cdot y_m'$ und Längskräfte $N_m = 1 \cdot \cos \varphi_m'$, zeichnet den Verschiebungsplan Fig. 365b und findet

$$X_b = P_5 \frac{\delta_{5b}}{\delta_{bb}} \cdot$$

Dieser Wert ist positiv, weil δ_{bb} den entgegengesetzten Sinn von $X_b = -1$ und δ_{5b} den entgegengesetzten Sinn von P_5 hat.

Die beiden Verschiebungspläne lassen sich auch, wie in dem vorigen Beispiele, aus Biegungslinien herleiten.

142. Der an beiden Enden eingespannte biegungsfeste Stabzug. Wir betrachten zunächst den symmetrischen Stabzug 0 1 2 3 ... 8 in Fig. 366. Durch geeignete Wahl der drei statisch unbestimmten

Größen X_a , X_b , X_c soll erreicht werden, daß $\delta_{ab} = \delta_{ac} = \delta_{bc} = 0$ wird. Man vergleiche die entsprechenden Untersuchungen in Abteilung 1, § 11.

Wir schneiden den Stabbogen im Scheitel durch, befestigen mit den Endquerschnitten 4 der linken und rechten Bogenhälfte die starren Schei-

ben I und II und bringen an jeder der beiden Scheiben ein Kräftepaar mit dem Momente X_a und zwei Einzelkräfte X_b und X_c an, Fig. 367. Die Belastungszustände $X_a = -1$ und $X_c = -1$ sind symmetrisch, der Belastungszustand $X_b = -1$ ist antisymmetrisch. Es entstehen also

für $X_a = -1$, für entsprechende Querschnitte links und rechts vom Scheitel gleiche Momente M_a und gleiche Kräfte N_a und Q_a ; und dasselbe gilt für den Zustand $X_c = -1$. Dagegen ergeben sich beim Belastungsfalle $X_b = -1$ für beide Bogenhälften entgegengesetzt gleiche Momente M_b und Kräfte N_b , Q_b . Daraus folgt aber, daß

$$\delta_{ab} = \int M_a M_b \frac{ds}{EJ} + \int N_a N_b \frac{ds}{EF} + \int Q_a Q_b \frac{\varkappa ds}{GF} = 0$$

ist, und ebenso verschwindet δ_{bc} .

Damit nun auch $\delta_{ac} = 0$ wird, muß der Angriffspunkt *b*, *c* von X_b und X_c die Verbindungsstrecke der Pole (I) und (II) halbieren, um welche sich die Scheiben I und II im Belastungsfalle $X_a = -1$ drehen. Wir beginnen mit dem Verschiebungsplane für den Belastungszustand $X_a = -1$, Fig. 368. Das statisch bestimmte Hauptsystem besteht aus zwei bei 0 bzw. 8 eingespannten Freiträgern. Den Stabzug 0 1 2 3 4 verlängern wir um einen starren Stab s_i , welcher den Knoten-

Berechnung statisch unbestimmter biegungsfester Stabzüge.

punkt 4 mit dem vorläufig noch unbekannten Pole (I) der Scheibe I verbindet. Sodann strecken wir den Stabzug aus und leiten aus seiner Momentenfläche — einem Rechtecke von der Höhe (— 1) — auf dem in Nr. 138 beschriebenen Wege die Strecken ρ her*). Durch Aneinanderreihung der Strecken ρ_1 , ρ_2 , ρ_3 , ρ_4 bestimmen wir die Verschiebungen O1', O2', O3', O4' der Knotenpunkte 1, 2, 3, 4 und finden aus der Bedingung, daß die Verschiebung des Punktes (I) gleich Null sein soll, die dem Stabe s_i entsprechende Strecke ρ_i . Die Länge des Stabes s_i bestimmen wir mit Hilfe der zwischen 4 und (I) geradlinig verlaufenden Biegungslinie des ausgestreckten Stabzuges und können jetzt die Lage des Punktes (I) mit Hilfe der Bedingung $s_i \perp \rho_i$ angeben, ferner den Winkel δ_{aa} , um den sich die Scheiben I und II im Belastungsfalle $X_a = -1$ gegeneinander drehen. Es ist nämlich

Die andere Hälfte des Verschiebungsplanes ergibt sich aus der Symmetrie**). Eine Last P_m erzeugt

$$X_a = P_m \frac{\delta_{ma}}{\delta_{aa}} \cdot$$

Bildet man das Kräftepaar, dessen Moment X_a ist, aus zwei wagerechten, in den Punkten 4 und (b, c) angreifenden Kräften Z, so ergibt sich, wenn c den Abstand des Bogenscheitels von den Geraden (I)—(II) bezeichnet,

^{*)} Die Eintragung der Geraden (g_m) und (g_m') , vergleiche Figur 363, haben wir in Figur 368 bis 370 unterlassen.

^{**)} In Fig. 368 wurde der Verschiebungsplan in größerem Maßstabe gezeichnet wie die Biegungslinie.

$$Z = P_m \frac{\delta_{ma}}{c \, \delta_{aa}} = P_m \frac{\delta_{ma} s_i}{2 \, c \, \varphi_i}$$

und dieser Ausdruck läßt sich mit der aus der Figur 368 zu ersehenden Bezeichnung δ_i umformen in

Fig. 369.

Nun werden die in den Figuren 369 und 370 dargestellten Verschiebungspläne für die Zustände $X_b = -1$ und $X_c = -1$ gezeichnet und die Kräfte

$$X_b = P_m \frac{\delta_{mb}}{\delta_{bb}} \text{ und}$$
$$X_c = P_m \frac{\delta_{mc}}{\delta_{cc}}$$

gefunden. Im Belastungsfalle $X_b = -1$ entstehen links von der Mitte Momente $M_m = -1 \cdot x_m$ und Längskräfte $N_m = -1 \cdot \sin \varphi_m$, rechts von der Mitte gleichgroße positive Werte M und N. Dem Belastungsfalle $X_c = -1$ entsprechen Momente $1 \cdot y_m$ und Längskräfte $+1 \cdot \cos \varphi_m$. Als Zeichenprobe dient die Bedingung, daß sich $\delta_{ca} = 0$ ergeben muß. Es dürfen sich also im Belastungsfalle $X_c = -1$ die beiden Scheiben I und II nicht gegeneinander drehen. Da nun beim sym-
Berechnung statisch unbestimmter biegungsfester Stabzüge.

metrischen Bogen $\delta_{ac} = 2 \varphi$ ist, so folgt $\varphi = 0$, es müssen also die beiden äußersten Tangenten der elastischen Linie in Fig. 370 parallel sein. Dies ist nur der Fall, wenn der Inhalt der Belastungsfläche gleich Null ist. Hieraus folgt

$$\int y \frac{J_c}{J} \, ds = 0.$$

Schreibt man also den Stabzugteilchen ds die Gewichte $ds \frac{J_o}{J}$ zu, so ist die Wirkungslinie der Kraft X_o die wagerechte Schwerachse des Stabzuges.

Infolge gleichmäßiger Erwärmung entsteht $\delta_{at} = 0, \delta_{bt} = 0, \delta_{ct} = \varepsilon t l$, wo *l* die Stützweite bedeutet. Mithin ist

$$X_{at} = 0, \quad X_{bt} = 0, \quad X_{et} = 1 \frac{\varepsilon t l}{\delta_{aa}}.$$

Das linke Widerlager drehe sich gegen das ruhend angenommene rechte Widerlager um δ_a , es verschiebe sich in lotrechter Richtung um δ_b nach unten und in wagerechter Richtung um δ_c nach links. Dann entsteht

$$X_a = 1 \frac{\delta_a}{\delta_{a\,a}}, \quad X_b = 1 \frac{\delta_b}{\delta_{b\,b}}, \quad X_c = 1 \frac{\delta_c}{\delta_{c\,c}}.$$

Ist der Bogen unsymmetrisch, so braucht der Schnitt, an dem X_a , X_b , X_c angreifen, nicht im Scheitel geführt zu werden. Es müssen die Biegungslinien für beide durch den Schnitt getrennten Bogenteile

gezeichnet werden. Nach Ermittlung der beiden Pole (I) und (II) für den Zustand $X_a = -1$ bestimmt man den Pol von I gegen II auf die in Abteilung 1, § 11, Nr. 117, beschriebene Weise und wählt diesen Pol zum Angriffspunkte b,c von X_b und X_c . Hat man willkürlich über die Richtung der einen dieser beiden Kräfte verfügt, z. B. über die Richtung von X_b , so wählt man die Richtung von X_c rechtwinklig zu der Verschiebung, welche der Punkt b,c im Belastungsfalle $X_b = -1$ erfährt. Hierdurch erreicht man, daß $\delta_{bc} = 0$ wird*).

Das zur Untersuchung des an beiden Enden eingespannten Stabzuges angewandte Verfahren ist auch für den geschlossenen Stabzug, an dem sich gegebene äußere Kräfte das Gleichgewicht halten, brauchbar.

Denkt man sich diesen Stabzug an irgendeiner Stelle C eingespannt und schneidet man ihn an irgendeiner anderen Stelle auf, Fig. 371,

 (Π)

Eine einfache analytische Berechnung des an beiden Enden eingespannten und des geschlossenen Stabzuges, unter der meistens zulässigen Vernachlässigung des Einflusses der Längskräfte N und Querkräfte Q auf die Formänderungen hat Verfasser in seinem Buche "Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen, dritte Auflage 1904, Seite 119-139" mitgeteilt.

143. Der Eingelenkbogen, Fig. 372, kann als Sonderfall des in Nr. 142 untersuchten Bogenträgers aufgefaßt werden. Man hat nur

nötig, $X_a = 0$ zu setzen und den Angriffspunkt von X_b und X_c nach dem Bogenscheitel zu verlegen.

*) Abteilung 1, § 5, Nr. 64.

AA

Fig. 371.

Berechnung statisch unbestimmter biegungsfester Stabzüge.

144. Die Darstellungen in Nr. 141, 142, 143 gelten für beliebig geformte Stabzüge, lassen sich also auch für die Berechnung der in den Figuren 373, 374, 375 abgebildeten Tragwerke verwerten, welche der Reihe nach aufzufassen sind als Zweigelenkbogen, als an beiden Enden eingespannter Bogen, und als Eingelenkbogen. Die Ausleger bleiben in den Belastungsfällen $X_a = -1$, $X_b = -1$, $X_c = -1$ spannungslos.

Als Beispiel haben wir in Fig. 376 den Verschiebungsplan für den Belastungszustand $X_a = -1$ der linken Hälfte des an beiden Enden eingespannten Stabzuges vorgeführt. Die Strecken $\rho_1 \rho_2 \dots$ bis ρ_7 wurden mit Hilfe der elastischen Linie des ausgestreckten Stabzuges bestimmt und aneinandergereiht. Die Δs sind gleich Null. Greift in einem Punkte *m* des Querschnittes 6, im Abstande *k* von Punkt 6, eine Last P_m an, so findet man den Punkt *m'* im Verschiebungsplan mittels der Bedingungen: $\overline{6'm'} \mid \overline{6m}$ und

$$6'm' = \rho_m = k\tau_6,$$

wo τ_6 den als verschwindende Größe aufzufassenden Neigungswinkel der Tangente der elastischen Linie des ausgestreckten Stabzuges im

Punkte 6 bedeutet. Ebenso findet man für die Punkte 8, 9 und r des Auslegers

145. Ein gelenkloser Rahmen (Fig. 377) besitze ein festes und ein wagerecht verschiebbares Auflager und sei durch beliebig gerichtete Lasten P, deren Angriffspunkte zum Teil außerhalb der Stabachse liegen mögen, beansprucht; er sei symmetrisch in bezug auf die Senkrechte durch die Mitte*). Wir schneiden den Rahmen im Scheitel auf, bringen, genau wie bei dem an beiden Enden eingespannten Bogen, an den beiden Querschnitten 13 die starren Scheiben I und II an und belasten sie nach Fig. 367 mit X_a , X_b , X_c .

^{*)} Wir machen diese Annahme, um einfache Figuren zu erzielen. Die geringe Abänderung des Verfahrens beim unsymmetrischen Rahmen, ergibt sich ohne weiteres aus der Untersuchung des unsymmetrischen gelenklosen Bogens.

Figur 378 zeigt den Verschiebungsplan für den Zustand $X_a = -1$. Die Angriffsmomente sämtlicher Querschnitte sind gleich 1. Es ist durch-

weg N = 0, also $\Delta s = 0$. Die Punkte der Achse des unteren wagerechten Balkens verschieben sich nur in lotrechtem Sinne. Es genügt also für diesen Balken, die elastische Linie zu zeichnen. Der Stabzug 0 19 18 17 16 15 14 13 wurde ausgestreckt; seine elastische Linie bildet im Punkte 0 mit der Lotrechten denselben Winkel α , den die elastische Linie des Balkens 0-6 im Punkte 0 mit der Wagerechten

einschließt. Nach Ermittlung der Werte ρ wurden die Punkte 19', 18', 17', 16', 15', 14', 13' des Verschiebungsplanes festgelegt. Die linke Hälfte des Verschiebungsplanes ist das Spiegelbild der rechten Hälfte.

Punkt m' wurde mittels der Strecke $11'm' = k\tau_{11}$ bestimmt, wo $\tau_{11} = \tau_{15}$. Die Ermittlung der Punkte (I) und (II) und die Berechnung von X_a geschieht wie in Nr. 142.

Müller-Breslau, Graphische Statik. II. 2.

Fig. 379 stellt den Verschiebungsplan für $X_b = -1$ dar. Die Momentenfläche des Balkens 0-6 besteht aus zwei Dreiecken. Für die Endquerschnitte ist $M_b = \mp \frac{1}{2} l$. Für die wagerechten Stäbe ist $\Delta s = 0$. Der Stabzug 0-16 wird durch die Kraft 1 gedrückt, der

Fig. 379.

Stabzug 6—10 gezogen. Die hierdurch erzeugten Δs sind in der Figur berücksichtigt worden; sie dürfen aber in der Regel vernachlässigt werden.

Fig. 380 zeigt den Verschiebungsplan für $X_c = -1$. Der untere Balken 0-6 erfährt einen Druck von der Größe 1, der obere einen gleichgroßen Zug. Die entsprechenden Δs sind berücksichtigt worden, dürfen aber in der Regel vernachlässigt werden.

Berechnung statisch unbestimmter biegungsfester Stabzüge.

Die vorstehende Aufgabe ist wichtig für die Berechnung der Querrahmen eiserner Brücken. Liegt der Stützpunkt A unterhalb des Punktes 0 im Abstande e von 0, Fig. 381, so ist die Verschiebung des Punktes 0 nicht mehr gleich Null. Die Verkürzung der auf Druck

beanspruchten Strecke A0 darf man stets außer acht lassen; es bleibt also nur die wagerechte Verschiebung des Punktes 0; sie beträgt $e\alpha$, wo α den Neigungswinkel der elastischen Linie des

Balkens 0.6 im Punkte 0 bedeutet, und kann durch eine Verlegung des Poles des Verschiebungsplanes berücksichtigt werden. Je nachdem sich 0 nach rechts oder links bewegt, muß der Pol um $e\alpha$ nach links oder nach rechts wagerecht verschoben werden. Hiernach ist der Pol zu verschieben

146. Zweifach statisch unbestimmter Stabbogen mit zwei Öffnungen. Es liege das in Fig. 382 dargestellte unsymmetrische Tragwerk vor. Als statisch unbestimmte Größen X_a und X_b führen wir zwei Seitenkräfte der aus den Stützenwiderständen C und H gebildeten 32^*

Mittelkraft ein und übertragen die Kräfte X_a und X_b auf die in Figur 383 beschriebene Weise durch starre Stäbe auf die Stützpunkte 4 und 10. Wir erzeugen dadurch

$$H = X_a - X_b \cos \alpha$$

und

$$C = X \sin \alpha$$

Den Winkel α wollen wir so wählen, daß $\delta_{ab} = 0$ wird, daß also

$$X_{a} = \frac{\sum P_{m}\delta_{ma} + \delta_{at} - \delta_{a} - L_{a}}{\delta_{aa}}$$
$$X_{b} = \frac{\sum P_{m}\delta_{mb} + \delta_{bt} - \delta_{b} - L_{b}}{\delta_{bb}}.$$

Den Belastungszustand $X_a = -1$ zeigt Fig. 384, den Zustand $X_b = -1$ Fig. 385. Beziehen wir die Verschiebungen auf ein rechtwinkliges Achsenkreuz, dessen Ursprung im Punkte 0 liegt und dessen eine Achse durch den Punkt 10 geht, so sind die Arbeiten L_a und L_b der am statisch bestimmten Hauptsysteme angreifenden Stützkräfte gleich Null. Ändern sich nun infolge des Nachgebens der Widerlager die in der Figur mit l und h bezeichneten Abmessungen um Δl und Δh , so

Berechnung statisch unbestimmter biegungsfester Stabzüge.

verschieben sich die Angriffspunkte a und b von X_a und X_b im Sinne von $X_a = -1$ bzw. $X_b = -1$ um

$$\delta_a = \Delta l, \qquad \delta_b = -\Delta h \sin \alpha - \Delta l \cos \alpha^*)$$

und es beträgt daher der Einfluß der Verschiebungen der Stützpunkte:

Der Einfluß einer gleichförmigen Erwärmung ist, wegen $\Delta h = \varepsilon t h$ und $\Delta l = \varepsilon t l$,

Der Einfluß der Lasten

$$X_a = \frac{\sum P_m \delta_{ma}}{\delta_{aa}}, \quad X_b = \frac{\sum P_m \delta_{mb}}{\delta_{bb}}$$

wird wieder mit Hilfe der Verschiebungspläne für $X_a = -1$ und $X_b = -1$ gewonnen.

*) Die virtuelle Arbeit der äußeren Kräfte im Falle $X_a = -1$ bzw. $X_b = -1$ ist $1 \cdot \Delta l$ bzw. $-\Delta h \sin \alpha - \Delta l \cos \alpha$.

Fig. 384 zeigt den Verschiebungsplan für $X_a = -1$. Die Verschiebungen der Punkte 1'2'8'... 10' wurden aus der Biegungslinie hergeleitet. Punkt 11 bewegt sich in lotrechter Richtung, seine Verschiebung ist ebenso groß wie die des Punktes 4. Die Verschiebung von 12 wurde mittels 10'12' 1012 und 12'4' 124 erhalten. Der Strahl 012' gibt die Verschiebung des Punktes a, b an. Nimmt man $X_b \perp 012'$ an, so erzielt man $\delta_{ab} = 0$. Nun wird in derselben Weise der Verschiebungsplan für $X_b = -1$ konstruiert. Als Zeichenprobe dient die Bedingung, daß für diesen Belastungsfall die wagerechte Verschiebung des Punktes 12 und damit auch die des Punktes 10 gleich Null sein muß.

Eine andere Lösung, die auch bei mehreren Öffnungen zu einer einfachen und übersichtlichen Darstellung der Einflußlinien führt, wählt zum Hauptsystem den statisch unbestimmten Balken, in den der durchlaufende Bogen übergeht, sobald das eine der beiden Kämpfergelenke durch ein wagerechtes Gleitlager ersetzt wird. Der Horizontalschub infolge P_m ist dann durch die Gleichung bestimmt:

$$H = X_a = P_m \frac{\delta_{ma}}{\delta_{aa}} \cdot$$

Wir verweisen auf die verwandten Aufgaben in Abteilung 1, § 16.

VIII. Abschnitt.

Der vollwandige Bogen.

§ 29.

Allgemeine Gesetze.

147. Im Hochbau und Brückenbau ist es fast immer zulässig, einen vollwandigen Bogen durch aneinandergereihte kurze gerade Stäbe zu ersetzen und nach den im vorigen Abschnitte für gelenklose Stabzüge entwickelten Verfahren zu berechnen. Besonders bei unsymmetrischen, auch von schrägen Lasten beanspruchten Bogen zeichnet sich dieser Weg vor anderen durch Übersichtlichkeit und große Allgemeinheit aus. Aufgabe der folgenden Untersuchungen ist es nun, einerseits die Eigenschaft der stetigen Krümmung der Bogenachse zur Herleitung von Formeln für Bogenträger, deren Querschnitte sich nach einfachen Gesetzen ändern, zu verwerten, andrerseits aber auch zu prüfen, wie die Krümmung der Bogenachse das Gesetz beeinflußt, nach dem sich die auf Grund der Annahme eben bleibender Querschnitte berechneten Normalspannungen über den Querschnitt verteilen. Mit dieser zweiten Frage werden wir uns in Nr. 149 beschäftigen. Vorderhand nehmen wir an, es sei der Krümmungsradius der Bogenachse so groß, daß die Spannungen σ nach den für den geraden Stab gültigen Formeln berechnet werden dürfen.

148. Angenäherte Bestimmung der Biegungslinie. Die Stabachse sei auf ein rechtwinkliges Koordinatensystem mit nach oben positiver senkrechter y-Achse bezogen. φ bedeute den Neigungswinkel der im Punkte xy an die Stabachse gelegten Tangente gegen die x-Achse, Fig. 386.

Wir gehen von der für den Stabzug gültigen Formel

(1)
$$w_m = \Delta \mathfrak{D}_m - \frac{\Delta s_m}{s_m} \operatorname{tg} \varphi_m + \frac{\Delta s_{m+1}}{s_{m+1}} \operatorname{tg} \varphi_{m+1}$$

aus und führen in dieser die durch die Formeln (1) bis (4) auf Seite 479 bestimmten Werte $\Delta \mathfrak{D}$ und Δs ein. Sodann setzen wir

Achter Abschnitt. - § 29.

$$\frac{M_m - M_{m-1}}{s_m} = Q_m, \quad \frac{M_{m+1} - M_m}{s_{m+1}} = Q_{m+1}$$
$$t_u - t_o = \Delta t, \quad \frac{\varkappa}{F} = \frac{1}{F_s}$$

und erhalten

$$\begin{array}{l} (2) \ w_{m} = \frac{M_{m-1} + 2 \ M_{m}}{6 \ E J_{m}} \ s_{m} + \frac{M_{m+1} + 2 \ M_{m}}{6 \ E J_{m+1}} \ s_{m+1} \\ & + \frac{Q_{m}}{G \ F_{sm}} - \frac{Q_{m+1}}{G \ F_{s(m+1)}} - \frac{N_{m}}{E \ F_{m}} \ \text{tg} \ \varphi_{m} + \frac{N_{m+1}}{E \ F_{m+1}} \ \text{tg} \ \varphi_{m+1} \\ & + \varepsilon \Delta t_{m} \frac{s_{m}}{2 \ h_{m}} + \varepsilon \Delta t_{s(m+1)} \frac{s_{m+1}}{2 \ h_{m+1}} + \varepsilon t_{sm} \ \text{tg} \ \varphi_{m} - \varepsilon t_{s(m+1)} \ \text{tg} \ \varphi_{m+1} \end{array}$$

Jetzt nehmen wir die Stablängen unendlich klein an, setzen also $s_m = s_{m+1} = ds$, $J_m = J_{m+1} = J$, $M_{m-1} = M_m = M_{m+1} = M$ und finden, zunächst für stetig sich ändernde Längskräfte N und Querkräfte Q,

$$dw = \frac{M}{EJ} ds - \frac{1}{G} d\left(\frac{Q}{F_s}\right) + \frac{1}{E} d\left(\frac{N}{F} \operatorname{tg} \varphi\right) \\ + \frac{\varepsilon \Delta t}{h} ds + \varepsilon d (\operatorname{t}_s \operatorname{tg} \varphi).$$

Die gesuchte Biegungslinie A''B'' ist nun die mit der Polweite 1 gezeichnete Seillinie für eine Belastungsfläche, die an der Stelle x die Höhe

$$(3) \quad z = \frac{dw}{dx} = \frac{M}{EJ\cos\varphi} - \frac{d\left(\frac{Q}{F_s}\right)}{G\,dx} + \frac{d\left(\frac{N\,\mathrm{tg}\,\varphi}{F}\right)}{E\,dx} + \varepsilon \frac{\Delta t}{h\cos\varphi} + \varepsilon t_s \frac{d^2y}{dx^2}$$

besitzt, wobei allerdings vorausgesetzt wird, daß $N \mid F$ und $Q \mid F_s$ stetige Funktionen von x sind. In den Punkten, in denen sich diese Werte sprungweise ändern, tritt zu der Belastungsfläche noch eine Einzellast

(4)
$$w = -\frac{1}{G} \Delta\left(\frac{Q}{F_s}\right) + \frac{1}{E} \Delta\left(\frac{N \operatorname{tg} \varphi}{F}\right).$$

Greifen z. B. in m (Fig. 387) eine senkrechte, abwärts gerichtete Last Pund eine im Sinne der negativen xgerichtete wagerechte Last P' an, so ist für diesen Punkt

(5)
$$\begin{cases} \Delta N = + P \sin \varphi + P' \cos \varphi \\ \Delta Q = - P \cos \varphi + P' \sin \varphi \end{cases}$$

Für $\varphi = 0$ ergeben sich aus den vorstehenden Entwicklungen die im § 2 für den geraden Stab gefundenen Gesetze.

Meistens wird der Einfluß der N und Q auf z vernachlässigt. Dann entsteht

(6) $z = \frac{M}{EJ\cos\varphi} + \frac{\varepsilon\Delta t}{h\cos\varphi} + \varepsilon t_s \frac{d^2y}{dx^2}.$

Es muß aber hervorgehoben werden, daß die Streichung der von den N und Q abhängigen Glieder nur dann zulässig ist, wenn die Biegungslinie zur Berechnung statisch unbestimmter Größen benutzt wird. Bei der Untersuchung der Durchbiegungen empfiehlt es sich, die N und Q zu berücksichtigen.

149. Genauere Ermittlung der Spannungen und Formänderungen sowie des Wertes δ_{ik}^*). Es werde zunächst nur der Einfluß der senkrecht zum Querschnitte wirkenden Spannungen σ berücksichtigt und wie beim geraden Stabe die Annahme eben bleibender Querschnitte gemacht.

Der Querschnitt sei auf zwei durch seinen Schwerpunkt gehende rechtwinklige Koordinatenachsen (u und v) bezogen, deren eine (die u-Achse) senkrecht zur Stabebene ist. Die v-Achse sei Symmetrieachse des Querschnitts. In allen von der u-Achse gleichweit abgelegenen Querschnitten mögen außer gleichgroßen Spannungen σ auch gleichgroße Temperaturänderungen t entstehen.

Sind in Fig. 388 A_1B_1 und A_2B_2 zwei unendlich nahe Querschnitte, $C_1C_2 = ds$ das Element der Stabachse, $C_1D_1 = C_2D_2 = +v$, $D_1D_2 = ds_v$

^{*)} Zum Teil übernommen aus des Verfassers: Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen, § 21.

und $A_1 O A_2 = - d \varphi$, so ist vor Eintreten einer Verbiegung des Stabes, wenn r den Krümmungsradius der Stabachse bedeutet,

$$C_1 C_2 = ds = -r d\varphi$$

$$D_1 D_2 = ds_v = -(r-v) d\varphi = ds + v d\varphi$$

und nach einer kleinen Verbiegung

$$D_1 D_2 = ds_v + \Delta ds_v = ds + \Delta ds + (v + \Delta v) (d\varphi + \Delta d\varphi),$$

woraus nach Streichung der kleinen Größe zweiter Ordnung $\Delta v \Delta d\varphi$ und mit Beachtung von $ds = ds_v - v d\varphi$:

während andrerseits entsteht

$$\Delta ds_v = \left(\frac{\sigma}{E} + \varepsilon t\right) ds_v$$

so daß sich ergibt

(

$$\frac{\sigma}{E} + \varepsilon t = \frac{\Delta ds + \Delta v d\varphi + v \Delta d\varphi}{ds + v d\varphi}$$

Dividiert man Zähler und Nenner der rechten Seite dieser Gleichung durch $\frac{ds}{r} = -d\varphi$, so erhält man

(9)
$$\frac{\sigma}{E} + \varepsilon t = \frac{\frac{\Delta ds}{ds}r - \Delta v - \frac{\Delta d\varphi}{d\varphi}v}{r - v},$$

worein zu setzen

$$\Delta v = \int_{0}^{v} \Delta dv = \int_{0}^{v} \left(\varepsilon t - \frac{\sigma}{mE}\right) dv,$$

wo $\frac{1}{m}$ die Wertziffer der Querdehnung $\left(\frac{1}{4}\right)$ bis $\frac{1}{3}$ für Schweißeisen,

Flußeisen und Stahl) bezeichnet.

Den von σ abhängigen Teil von Δv vernachlässigen wir und setzen $\Delta dv = \varepsilon t dv$, sodann wollen wir, wie beim geraden Stabe nur solche Temperaturzustände in Betracht ziehen, die keinen unmittelbaren Einfluß auf die Spannungen σ haben.

Beim geraden Stabe verschwinden die Spannungen σ , sobald t eine Funktion ersten Grades der Querschnittskoordinaten u und v ist. Es können dann durch Temperaturänderungen zwar beachtenswerte Formänderungen, aber nur im Falle statischer Unbestimmtheit Spannungen hervorgerufen werden, sobald nämlich infolge jener Temperaturänderungen äußere Kräfte entstehen. Es fragt sich nun:

> welchem Gesetze t = F(v) muß die Temperaturänderung innerhalb des Querschnittes eines krummen Stabes folgen, damit auch für diesen mit den äußeren Kräften die Spannungen σ verschwinden.

Wir gehen von der Gleichung

$$\Delta ds_v = \Delta ds + \Delta v d\varphi + v \Delta d\varphi$$

aus, setzen, da auf den Stab keine äußeren Kräfte wirken sollen und $\sigma = 0$ sein soll,

$$\Delta ds_v = \varepsilon t ds_v = -\varepsilon t (r - v) d\varphi$$
$$\Delta ds = \varepsilon t_s ds = -\varepsilon t_s r d\varphi$$

und erhalten die Bedingung

$$-\varepsilon t (r-v) = -\varepsilon t_s r + \Delta v + v \frac{\Delta d \varphi}{d \varphi}$$

Wird diese Gleichung differenziert, so entsteht mit $\Delta dv = \varepsilon tv$

(10)
$$-\varepsilon (r-v) dt = \frac{\Delta d\varphi}{d\varphi} dv,$$

und hieraus folgt

$$t = -\frac{1}{\varepsilon} \frac{\Delta d\varphi}{d\varphi} \int \frac{dv}{r-v} = \frac{1}{\varepsilon} \frac{\Delta d\varphi}{d\varphi} \ln(r-v) + C.$$

Da für v = 0 $t = t_s$ ist, so ergibt sich

$$C = t_s - \frac{1}{\varepsilon} \frac{\Delta d \varphi}{d \varphi} \ln r \text{ und}$$
$$t = t_s + \frac{1}{\varepsilon} \frac{\Delta d \varphi}{d \varphi} \ln \left(1 - \frac{v}{r}\right).$$

Weiter ist $t = t_u$ bzw. $t = t_o$ für $v = +e_u$ bzw. $v = -e_o$, also

$$t_{u} = t_{s} + \frac{1}{\varepsilon} \frac{\Delta d \varphi}{d \varphi} \ln \left(1 - \frac{e_{u}}{r} \right)$$

$$t_{o} = t_{s} + \frac{1}{\varepsilon} \frac{\Delta d \varphi}{d \varphi} \ln \left(1 + \frac{e_{o}}{r} \right) \text{ und}$$

$$t_{o} - t_{u} = \frac{1}{\varepsilon} \frac{\Delta d \varphi}{d \varphi} \ln \left(\frac{r + e_{o}}{r - e_{u}} \right),$$

woraus sich mit der Bezeichnung $t_{\mu} - t_o = \Delta t$ ergibt:

$$\frac{\Delta d\varphi}{d\varphi} = -\frac{\varepsilon \Delta t}{\ln\left(\frac{r+e_o}{r-e_u}\right)}$$

und hierfür darf, mit $e_o + e_u = h$, stets genügend genau gesetzt werden

(11)
$$\frac{\Delta d\varphi}{d\varphi} = -\varepsilon \Delta t \frac{r}{h}$$

so daß schließlich folgt

(12)
$$t = t_u - \Delta t \frac{r}{h} \ln \left(1 - \frac{v}{r} \right).$$

Im Falle $r = \infty$ entsteht, wegen $\ln\left(1 - \frac{v}{r}\right) = -\frac{v}{r}$,

$$(13) t = t_u + \Delta t \frac{v}{h}$$

das ist die früher beim geraden Stabe vorausgesetzte Funktion.

In der Regel werden die Ergebnisse von (12) und (13) nur wenig voneinander abweichen.

Indem wir in der Folge annehmen, daß sich t nach dem durch die Gleichung (12) dargestellten Gesetze ändert, erhalten wir

$$\Delta ds = \varepsilon t_o ds$$

und, angenähert,

(14)
$$\Delta d\varphi = -\varepsilon \Delta t \frac{r}{h} d\varphi = +\varepsilon \Delta t \frac{ds}{h}.$$

Um nun die durch äußere Kräfte erzeugten σ , Δds und $\Delta d\varphi$ zu ermitteln, setzen wir, indem wir t = 0 und mithin auch $\Delta v = 0$ annehmen,

$$\frac{\sigma}{E} = \frac{\frac{\Delta ds}{ds}r - \frac{\Delta d\varphi}{d\varphi}}{r - v} = \frac{\Delta ds}{ds} - \left(\frac{\Delta d\varphi}{d\varphi} - \frac{\Delta ds}{ds}\right) \frac{v}{r - v},$$

führen diesen Wert in die Gleichgewichtsbedingungen

$$N = \int \sigma dF$$
$$M = \int \sigma v dF$$

ein und erhalten die Beziehungen

$$\frac{N}{E} = \frac{\Delta ds}{ds} \int dF - \left(\frac{\Delta d\varphi}{d\varphi} - \frac{\Delta ds}{ds}\right) \int \frac{v \, dF}{r - v}$$
$$\frac{M}{E} = \frac{\Delta ds}{ds} \int v \, dF - \left(\frac{\Delta d\varphi}{d\varphi} - \frac{\Delta ds}{ds}\right) \int \frac{v^2 \, dF}{r - v}$$

Aus diesen Gleichungen ergeben sich, wenn

(15)
$$\int v^2 \frac{r}{r-v} \, dF = Z$$

gesetzt und beachtet wird, daß

$$\int v \, dF = 0, \quad \int \frac{v \, dF}{r - v} = \int \left(\frac{v}{r} + \frac{v^2}{r^2} \frac{r}{r - v} \right) dF = \frac{Z}{r^2}$$

ist, die Ausdrücke

$$\frac{\Delta d\varphi}{d\varphi} - \frac{\Delta ds}{ds} = -\frac{Mr}{EZ}$$
$$\frac{\Delta ds}{ds} = \frac{N}{EF} - \frac{M}{EFr}$$

Mit der abkürzenden Bezeichnung

(16)
$$\mathfrak{N} = N - \frac{M}{r}$$

findet man schließlich

(17)
$$\frac{\Delta ds}{ds} = \frac{\Re}{EF},$$

(18)
$$\frac{\Delta d \varphi}{d \varphi} = \frac{\Re}{EF} - \frac{Mr}{EZ},$$

(19)
$$\sigma = \frac{\Re}{F} + \frac{Mv}{Z} \frac{\cdot r}{r - v}.$$

Fügt man zu Δds und $\Delta d\varphi$ die vorhin gefundenen, unmittelbar von t_s und Δt abhängigen Werte, so erhält man für den durch die Gleichung (12) beschriebenen Temperaturzustand

(20)
$$\Delta ds = \frac{\Re ds}{EF} + \varepsilon t_o ds,$$

(21)
$$\Delta d\varphi = -\frac{\Re ds}{EFr} + \frac{Mds}{EZ} + \varepsilon \Delta t \frac{ds}{h}$$

Im Falle $r = \infty$ ist

$$\frac{r}{r-v} = 1, \quad Z = \int v^2 dF = J, \quad \mathfrak{N} = N, \quad \sigma = \frac{N}{F} + \frac{Mv}{J}$$
$$\Delta ds = \frac{Nds}{EF} + \varepsilon t_o ds, \quad \Delta d\varphi = \frac{Mds}{EJ} + \Delta t \frac{ds}{h};$$

es entstehen die früher für den geraden Stab abgeleiteten Gleichungen, welche auch dann noch anwendbar sind, wenn r zwar einen endlichen, aber, verglichen mit dem größten v, sehr großen Wert besitzt.

Es bleibt noch anzugeben, welchen Einfluß der endliche Wertr auf die virtuelle innere Arbeit

$$A_v = \int \overline{N} \Delta ds + \int \overline{M} \Delta d\varphi$$

ausübt. Wir erhalten

$$A_{v} = \int \overline{N} \left(\frac{\Re}{EF} ds + \varepsilon t_{o} ds \right) + \int \overline{M} \left(\frac{Mds}{EZ} - \frac{\Re ds}{EFr} + \varepsilon \Delta t \frac{ds}{h} \right)$$

und nach einfacher Umformung

(23)
$$A_{v} = \int \frac{\overline{\mathfrak{N}} \mathfrak{N} ds}{EF} + \int \frac{\overline{M} M ds}{EZ} + \int \overline{N} \varepsilon t_{o} ds + \int \frac{\overline{M}}{h} \varepsilon \Delta t ds.$$

Dieser Ausdruck unterscheidet sich von dem für den geraden Stab auf Seite 99 abgeleiteten Ausdrucke

$$A_{v} = \int \frac{\overline{NNdx}}{EF} + \int \frac{\overline{M}Mdx}{EJ} + \int \overline{N\varepsilon}t_{o}dx + \int \frac{\overline{M}}{h}\varepsilon\Delta tdx$$

nur dadurch, daß an Stelle von N, J, dx getreten sind: \mathfrak{N} , Z, ds. Es folgt also für δ_{ik} ohne weiteres die Formel

(24)
$$\delta_{ik} = \int \frac{\mathfrak{N}_i \mathfrak{N}_k ds}{EF} + \int \frac{M_i M_k ds}{EZ},$$

und für die von den Temperaturänderungen abhängige Verschiebung δ_{it} der Ausdruck

(25)
$$\delta_{it} = \int N_i \varepsilon t_s ds + \int \frac{M_i}{h} \varepsilon \Delta t ds.$$

Der vollwandige Bogen. Allgemeine Gesetze.

Soll auch der Einfluß der Querkräfte berücksichtigt werden, so empfiehlt es sich, die beim geraden Stabe gemachten Annahmen beizubehalten und die Gleich. (24) zu ersetzen durch

(26)
$$\delta_{ik} = \int \frac{\mathfrak{N}_i \mathfrak{N}_k ds}{EF} + \int \frac{M_i M_k ds}{EJ} + \int \frac{\varkappa Q_i Q_k ds}{GF} \cdot$$

Um uns schnell ein Urteil über den Unterschied der Größen Zund J bilden zu können, setzen wir

$$\frac{r}{r-v} = 1 + \frac{v}{r} + \frac{v^2}{r^2} + \frac{v^3}{r^3} + \dots$$

und erhalten

$$Z = J + \frac{1}{r} \int v^3 dF + \frac{1}{r^2} \int v^4 dF + \frac{1}{r^3} \int v^5 dF + \dots$$

und für den Fall eines bezüglich der u-Achse symmetrischen Querschnitts

$$Z = J + \frac{1}{r^2} \int v^4 dF + \frac{1}{r^4} \int v^6 dF + \dots$$

Für das Rechteck von der Breite *b* und der Höhe *h* ergibt sich mit dF = b dv und $J = \frac{b h^3}{12}$:

$$\int v^4 dF = 2b \int_0^{\frac{1}{2}h} v^4 dv = \frac{bh^5}{5 \cdot 2^4} = \frac{3}{5} \frac{Jh^2}{2^2}$$
$$\int v^6 dF = 2b \int_0^{\frac{1}{2}h} v^6 dv = \frac{bh^7}{7 \cdot 2^6} = \frac{3}{7} \frac{Jh^4}{2^4} \text{ usw.}$$
$$Z = J \Big[1 + \frac{3}{5} \left(\frac{h}{2r}\right)^2 + \frac{3}{7} \left(\frac{h}{2r}\right)^4 + \frac{3}{9} \left(\frac{h}{2r}\right)^6 + \dots \Big].$$

Ist z. B. r = 5h, so wird Z = 1,006 J, und es leuchtet wohl ein, daß bei der Berechnung der im Brückenbau und Hochbau vorkommenden Bogenträger stets Z = J gesetzt werden darf. Für die Spannungen σ_o und σ_u in dem obersten bzw. untersten Punkte des Querschnittes ergeben sich dann mit $v = -e_o$ bzw. $v = +e_u$ die Werte

(22)
$$\begin{cases} \sigma_o = \frac{N}{F} - \frac{M}{rF} - \frac{Me_o}{J} \frac{r}{r + e_o} \\ \sigma_u = \frac{N}{F} - \frac{M}{rF} + \frac{Me_u}{J} \frac{r}{r - e_u}, \end{cases}$$

welche sich auch auf die Form bringen lassen

(23)
$$\begin{cases} \sigma_o = \frac{N}{F} - \frac{M}{W_o'} \\ \sigma_u = \frac{N}{F} + \frac{M}{W_u'}, \end{cases}$$

wo

(24)
$$\begin{cases} W_{o}' = \frac{W_{o}}{\frac{r}{r+e_{o}} + \frac{k_{u}}{r}} \\ W_{u}' = \frac{W_{u}}{\frac{r}{r-e_{u}} - \frac{k_{o}}{r}}, \end{cases}$$

(25)
$$W_o = \frac{J}{e_o}, \quad W_u = \frac{J}{e_u}, \quad k_o = \frac{W_u}{F}, \quad k_u = \frac{W_o}{F}.$$

Durch die Gleichungen (23) sind die Spannungen σ_o und σ_u auf dieselbe Form gebracht worden, wie beim geraden Stabe. An die Stelle

der Widerstandsmomente W_o und W_u treten die Werte W'_o und W'_u . Bestimmt man also in der v-Achse des Querschnitts zwei Punkte o' und u' in den Abständen

$$k_o' = \frac{W_u'}{F}$$
 und $k_u' = \frac{W_o'}{F}$

Fig. 389.

vom Schwerpunkte, Fig. 389, und bezeichnet mit $M^{o'}$ und $M^{u'}$ die auf die Punkte o' und u'bezogenen Angriffsmomente, so findet man

(26)
$$\sigma_o = -\frac{M^u}{W'_o}, \quad \sigma_u = +\frac{M^o}{W'_u}.$$

r

Es liege z. B. ein Blechbogen von 48 m Spannweite, 6 m Pfeilhöhe und folgenden Querschnittsabmessungen vor: Stehblech $1240 \cdot 12$ mm, vier Winkeleisen $140 \cdot 140 \cdot 15$ mm, sechs Gurtplatten (drei in jeder Gurtung) $440 \cdot 15$ mm. Nietstärke 26 mm. Die Mittellinie sei ein Kreisbogen, also

$$r = \frac{24^2 + 6^2}{2 \cdot 6} = 51 \text{ m.}$$

Man findet nach Abzug der Nietlöcher $J = 2111097 \text{ cm}^4, \quad W_o = W_u = 31746 \text{ cm}^3, \quad F = 642 \text{ cm}^2,$ $e_o = e_u = 66,5 \text{ cm}, \quad k_o = k_u = \frac{W}{F} = 49,4 \text{ cm}$ $W'_o = 1,003 W_o, \quad W'_u = 0,997 W_u$ $k'_u = 1,003 k_u, \quad k'_o = 0,997 k_o.$

Der vollwandige Bogen. Allgemeine Gesetze.

An Stelle der Punkte o' und u' darf man in den im Brückenbau und Hochbau vorkommenden Fällen die Kernpunkte o und u benutzen und ebenso W_o und W_u an Stelle von W'_o , W''_u .

150. Genauere Bestimmung der Biegungslinie. Die auf Seite 504 entwickelte Gleichung (3) ist durch die folgende zu ersetzen:

(27)
$$z = \left(\frac{M}{EJ} - \frac{\Re}{EFr}\right) \frac{1}{\cos\varphi} - \frac{1}{G} \frac{d\left(\frac{Q}{F_s}\right)}{dx} + \frac{1}{E} \frac{d\left(\frac{\Re \lg \varphi}{F}\right)}{dx} + \varepsilon \frac{\Delta t}{h\cos\varphi} + \varepsilon t_s \frac{d^2y}{dx^2}.$$

Zu der hierdurch bestimmten Belastungsfläche treten bei Unstetigkeiten der Werte \Re/F und Q/F_s noch die durch Gleichung (4) auf Seite 505 bestimmten Gewichte w, an deren Angriffsstellen sich Spitzen in der Biegungslinie bilden, die zwar sehr stumpf sind, immerhin aber daran erinnern, daß unsere gegenwärtige Spannungsberechnung in der Nähe von Einzellasten und sprungweisen Querschnittsänderungen nur als ein Notbehelf anzusehen ist*).

Die Differentialgleichung der Biegungslinie ist

(28)
$$\frac{d^2\delta}{dx^2} = -z,$$

wobei die Durchbiegungen & nach unten positiv zu nehmen sind.

§ 30.

Der Zweigelenkbogen.

a) Ermittlung der Einflußlinie des Horizontalschubes $H = X_a^{**}$).

151. Gesucht sei die Einflußlinie für X_a infolge lotrechter Belastung, Fig. 390. Das Biegungsmoment an der Stelle x ist

$$M = M_0 - X_a y,$$

wo M_0 das Biegungsmoment für den Querschnitt x eines einfachen Balkens AB bedeutet. Für den Zustand $X_a = -1$ ist

(1)
$$M_a = y$$
, $N_a = \cos \varphi$, $Q_a = \sin \varphi$, $\Re_a = \cos \varphi - \frac{g}{r}$.

*) Vgl. auch Seite 14.

**) Wir benutzen bald die eine bald die andere Bezeichnung. Die Bezeichnung X_a ist zweckmäßig, solange mit δ_{ma} und δ_{aa} gerechnet wird.

33

Müller-Breslau, Graphische Statik. II. 2.

Hat man mit Hilfe dieser Werte die Biegungslinie für den Zustand $X_a = -1$ bestimmt, so findet man für P = 1

$$X_a = \frac{\delta_{ma}}{\delta_{aa}},$$

WO

(2)
$$\delta_{aa} = \int \frac{M_a^2 ds}{EJ} + \int \frac{\mathfrak{N}_a^2 ds}{EF} + \int \frac{Q_a^2 ds}{GF_s}.$$

Soll die δ_{ma} -Linie für eine beliebige Bogenform und mit Berücksichtigung der Veränderlichkeit des Querschnittes ermittelt werden, so empfiehlt sich der folgende Weg. In Gleich. (27), Seite 513, streiche man auf der rechten Seite zunächst das zweite und dritte Glied, multipliziere das erste Glied mit EJ_c , wo J_c ein beliebiges Trägheitsmoment ist und fasse die $EJ_c \delta_{ma}$ -Linie als die mit der Polweite EJ_c gezeichnete Seillinie einer Belastungsfläche auf, die an der Stelle x die Höhe

$$\frac{MJ_{c}}{J\cos\varphi} - \frac{\Re J_{c}}{rF\cos\varphi} = y \frac{J_{c}}{J\cos\varphi} - \left(\cos\varphi - \frac{y}{r}\right) \frac{J_{c}}{rF\cos\varphi}$$

besitzt. Will man die Biegungslinie in einem verzerrten größeren Höhenmaßstabe erhalten, so muß man die Polweite entsprechend verkleinern*).

*) Ist z. B. der Längenmaßstab 1:75 und sollen die δ_{ma} im Maßstab 3:1 dargestellt werden, so ist die Polweite $\frac{EJ_{\sigma}}{3\cdot75}$ zu wählen.

Der vollwandige Zweigelenkbogen.

Nun zerlege man den Bogen in kurze Stücke $s_1, s_2, s_3 \ldots s_m \ldots$, berechne für die einzelnen Stücke die Mittelwerte

(3)
$$\mathfrak{A}_m = \frac{EJ_o Q_m}{GF_{sm}} = \frac{EJ_o \sin \varphi_m}{GF_{sm}}$$
 und

(4)
$$\mathfrak{B}_{m} = \frac{J_{o}\mathfrak{N}_{m}\operatorname{tg}\varphi_{m}}{F_{m}} = \frac{J_{o}\operatorname{tg}\varphi_{m}}{F_{m}}\left(\cos\varphi_{m} - \frac{y_{m}}{r_{m}}\right)$$

und zeichne mit derselben Polweite eine Seillinie zu der in den Trennungspunkten der Stücke s angreifenden Einzelgewichten

(5) $w_m = -(\mathfrak{A}_{m+1} - \mathfrak{A}_m) + (\mathfrak{B}_{m+1} - \mathfrak{B}_m).$

Die Zusammenzählung der Ordinaten der beiden Seillinien gibt die Durchbiegungen δ_{ma} .

Den Wert δ_{aa} bestimmt man am zweckmäßigsten durch Rechnung. Es ist hierbei nicht nötig, die Integrale mittels der Simpsonschen Regel auszuwerten, es genügt vielmehr, den Bogen in kurze Stücke $s_1, s_2, s_3 \dots$ zu zerlegen und die Formel anzuwenden:

(6)
$$\delta_{aa} = \Sigma \frac{y^2 s J_c}{J \cos \varphi} + \Sigma \left(\cos \varphi - \frac{y}{r} \right)^2 \frac{s J_c}{F} + \Sigma \frac{E J_c s \sin^2 \varphi}{G F_s}.$$

152. Wir gehen jetzt dazu über, für die im Brückenbau und Hochbau besonders wichtigen, nach der Parabel oder dem Kreisbogen geformten Bogenträger geschlossene Formeln abzuleiten. Als die einfachste Annahme für das Gesetz, welchem die Querschnittswerte J, F, F_s folgen, empfiehlt sich hierbei entweder die Annahme unveränderlicher Werte J, F, F_s oder die Voraussetzung, es seien $J \cos \varphi$, $F \cos \varphi$, $F_s \cos \varphi$ unveränderlich. Sodann sei vorausgeschickt, daß der Einfluß von \Re und Q gegenüber dem Einflusse der Momente von so untergeordneter Bedeutung ist, daß es sich empfiehlt, die Berechnung der von den \Re und Q abhängigen Glieder so einfach wie möglich zu gestalten. Bei den hier hauptsächlich in Betracht kommenden Stichbogen ist die Abweichung des Parabelbogens vom Kreisbogen so gering, daß ihr Einfluß auf die von \Re und Q abhängigen Glieder unwesentlich ist. Es soll deshalb bei der Berücksichtigung des Einflusses von \Re und Q hinsichtlich der Bogenform jedesmal die bequemste Annahme gemacht werden.

Die Gleichung der elastischen Linie lautet, wenn die EJ_c -fachen Durchbiegungen für den Zustand $X_a = -1$ der Kürze wegen mit δ_{am} bezeichnet werden.

(7)
$$\frac{d^{2}\delta_{ma}}{dx^{2}} = \frac{M_{a}J_{c}}{J\cos\varphi} - \frac{EJ_{c}}{G} \frac{d\left(\frac{Q_{a}}{F_{s}}\right)}{dx} + \frac{J_{c}d\left(\frac{\mathfrak{R}_{a}\operatorname{tg}\varphi}{F}\right)}{dx} - \frac{\mathfrak{R}_{a}J_{c}}{Fr\cos\varphi} \cdot \frac{\mathfrak{R}_{a}J_{c}}{\mathfrak{R}_{s}}$$

Nun ist für den Kreisbogen mit den aus Fig. 391 ersichtlichen Bezeichnungen:

$$y = r \cos \varphi - c, \quad x'' = r \sin \varphi, \quad \frac{d \sin \varphi}{d x''} = -\frac{d \sin \varphi}{d x} = \frac{1}{r}$$
(8)
$$\Re_a = \cos \varphi - \frac{y}{r} = \frac{c}{r}, \quad q_a \sin \varphi.$$

Nimmt man also F_s unveränderlich an und ersetzt man $F\cos\varphi$ durch den Mittelwert F', so erhält man

$$-\frac{EJ_{c}}{G}\frac{d\left(\frac{Q_{a}}{F_{s}}\right)}{dx}+J_{c}\frac{d\left(\frac{\Re_{a}\sin\varphi}{F\cos\varphi}\right)}{dx}-\frac{\Re_{a}J_{c}}{Fr\cos\varphi}\\=\frac{EJ_{c}}{GF_{s}}\frac{1}{r}-2\frac{J_{c}}{F'}\frac{c}{r^{2}}$$

und die Gleichung der elastischen Linie geht, wegen $M_a = y$, über in

(9)
$$\frac{d^2 \delta_{ma}}{dx^2} = y \frac{J_c}{\cos \varphi} + \frac{1}{r} \left(\frac{EJ_c}{GF_s} - 2 \frac{J_c}{F'} \frac{c}{r} \right).$$

Wir zerlegen δ_{ma} in

$$\delta_{ma} = \delta'_{ma} + \delta''_{ma}.$$

Der erste Teil, δ'_{ma} , hängt von den Momenten $M_a = y$ ab, der zweite, δ''_{ma} , von den \mathfrak{N} und Q. Die δ''_{ma} -Linie ist die Momentenlinie eines gleichmäßig mit

$$\frac{1}{r} \left(\frac{EJ_c}{GF_s} - 2 \frac{J_c}{F'} \frac{c}{r} \right)$$

Der vollwandige Zweigelenkbogen.

belasteten einfachen Balkens; sie ist also eine Parabel von der Pfeilhöhe

$$\frac{l^2}{8} \frac{1}{r} \left(\frac{E}{G} \frac{J_c}{F_s} - 2 \frac{J_c}{F'} \frac{c}{r} \right).$$

Ihre Gleichung lautet

(10)
$$\delta''_{ma} = \frac{xx'}{2r} \left(\frac{EJ_c}{GF_s} - 2 \frac{J_c}{F'} \frac{c}{r} \right),$$

wo

(11)
$$r = \frac{\left(\frac{l}{2}\right)^2 + f^2}{2f}$$

Die Formeln (10) und (11) sind auch für flache Parabelbogen brauchbar.

Ersetzen wir nun die δ'_{ma} -Linie durch eine inhaltsgleiche Parabel, ein Vorgehen, das sich namentlich im Hinblick auf die im § 23, Nr. 114-117, durchgeführte Untersuchung empfiehlt, so erhalten wir als Einflußlinie für X_a eine Parabel von der Pfeilhöhe

(12)
$$z_0 = \frac{\frac{3}{2l} \int_0^{\infty} \delta'_{ma} dx + \frac{l^2}{8r} \left(\frac{E}{G} \frac{J_c}{F_s} - 2\frac{J_c}{F'} \frac{c}{r}\right)}{\delta_{aa}}$$

Der Einfluß von \mathfrak{N} auf δ_{aa} ist

7

$$J_c \int_0^l \frac{\mathfrak{N}_a^2 ds}{F} = \frac{J_o}{F'} \int_0^l \mathfrak{N}_a^2 dx = \frac{J_o}{F'} \frac{c^2 l}{r^2}$$

Der Einfluß von Q beträgt

$$\frac{EJ_o}{G}\int_{0}^{s} \frac{Q^2ds}{F_s} = \frac{EJ_o}{GF_s} 2r \int_{0}^{y_0} \sin^2\varphi \, d\varphi = \alpha \, \frac{EJ_o}{GF_s} \, l,$$

wo

(13)
$$\alpha = \frac{r}{l} \varphi_0 - \frac{1}{2} \cos \varphi_0.$$

Bei flachen Bogen darf man auch schreiben

$$\int_{0}^{l} \sin^{2} \varphi \, ds = \int_{0}^{l} \sin \varphi \, \mathrm{tg} \, \varphi \, dx = (\text{angenühert}) \int_{0}^{l} \mathrm{tg}^{2} \, \varphi \, dx$$

und erhält, indem man den Bogen als Parabelbogen betrachtet,

Achter Abschnitt. - § 30.

$$\int_{0}^{l} \operatorname{tg}^{2} \varphi \, dx = \frac{16}{3} \, \frac{f^{2}}{l},$$

also

(14)
$$\alpha = \frac{16}{3} \frac{f^2}{l^2}.$$

Ist z. B. $\frac{f}{l} = \frac{1}{8}$, so liefern die Gleichungen (13) und (14) die nur wenig voneinander abweichenden Werte $\alpha = 0,080$ und 0,083. Der Unterschied ist unwesentlich. In der Regel darf man also setzen

(15)
$$\delta_{aa} = \int_{0}^{0} y^{2} \frac{J_{c}}{J\cos\varphi} \, ds + \frac{EJ_{c}}{GF_{s}} \, l\left(1 + \frac{16}{3} \frac{f^{2}}{l^{2}}\right) + \frac{J_{c}}{F'} \, l\frac{c^{2}}{r^{2}}$$

Bei der weiteren Entwicklung wollen wir zwischen Parabelbogen und Kreisbogen unterscheiden.

153. Parabelbogen. Es empfiehlt sich die Annahme eines unveränderlichen $J \cos \varphi$. Wird dann das bisher beliebige Trägheitsmoment J_c gleich dem Mittelwerte der $J \cos \varphi$ gemacht, so entsteht

$$\frac{d^2\delta'_{ma}}{dx^2} = -y = -\frac{4fx\,(l-x)}{l^2}.$$

Die δ'_{ma} -Linie ist die zur *y*-Fläche gehörige Momentenlinie eines einfachen Balkens; ihre Gleichung ist

(16)
$$\delta'_{ma} = \omega_{P}^{"} \frac{fl^{2}}{3} = \left(\frac{x^{4}}{l^{4}} - 2\frac{x^{3}}{l^{3}} + \frac{x}{l}\right) \frac{fl^{2}}{3}.$$

Man erhält

(17)
$$\frac{3l}{2} \int_{0}^{\delta} \delta'_{ma} dx = \frac{fl^2}{10},$$

ferner

(18)
$$\int_{0}^{l} y^2 dx = \frac{8}{15} f^2 l.$$

Die Pfeilhöhe der X_a -Parabel ist also nach Gleich. (12)

(19)
$$z_{0} = \frac{\frac{1}{10}fl^{2} + \frac{l^{2}}{8r}\left(\frac{E}{G}\frac{J_{o}}{F_{s}} - 2\frac{J_{o}}{F'}\frac{c}{r}\right)}{\frac{8}{15}f^{2}l + \frac{16}{3}\frac{E}{G}\frac{J_{o}}{F_{s}}\frac{f^{2}}{l} + \frac{J_{o}}{F_{o}}l\frac{c^{2}}{r^{2}}$$

Der vollwandige Zweigelenkbogen.

und dieser Wert läßt sich auf die Form bringen

(20)
$$z = \frac{3l}{16f} \nu,$$

wo

(21)
$$\gamma = \frac{1 + \frac{5}{4fr} \left(\frac{E}{G} \frac{J_c}{F_s} - 2\frac{J_c}{F_c} \frac{c}{r}\right)}{1 + \frac{10}{l^2} \frac{E}{G} \frac{J_c}{F_s} + \frac{15}{8f^2} \frac{c^2}{r^2} \frac{J_c}{F_c}}.$$

Hierbei muß r nach Gleich. (11) berechnet und c = r - f gesetzt werden.

Die Kämpferdrucklinie ist eine wagerechte Gerade in der Höhe

$$(22) y_k = \frac{4f}{3\nu}.$$

Vgl. Abteilung 1, § 7, Nr. 86.

Vernachlässigt man, wie dies gewöhnlich geschieht, den Einfluß der \mathfrak{N} und Q auf δ_{ma} und nimmt man (mit $N_a = 1$)

$$\delta_{aa} = \int_{0}^{l} M_{a}^{2} dx + \frac{J_{c}}{F_{c}} \int_{0}^{l} N_{a}^{2} dx = \int_{0}^{l} y^{2} dx + \frac{J_{c}l}{F_{c}} = \frac{8}{15} f^{2}l + \frac{J_{c}l}{F_{c}}$$

an, so erhält man

(23)

$$p = rac{1}{1 + rac{15}{8} rac{J_o}{F_o f^2}}.$$

Die Ergebnisse der Formeln (21) und (23) weichen nur wenig voneinander ab. Es ist auch gleichgültig, ob man bei der Berechnung von ν die Werte $J \cos \varphi$ und $F \cos \varphi$ durch J und F ersetzt. Daß die Ziffer ν in dieser Beziehung wenig empfindlich ist, wird die folgende Zahlenrechnung zeigen.

Es sei
$$l = 48 \text{ m}, f = \frac{1}{8}l = 6 \text{ m}, \text{ also}$$

 $r = \frac{24^2 + 6^2}{2 \cdot 6} = 51 \text{ m}^*, c = r - f = 45 \text{ m}.$

Mit E = 2,6 G liefert Gleichung (21), wenn J_c und F_c durch J und F ersetzt werden,

(I)
$$\gamma = \frac{1 + 0.01062 \frac{J}{F_s} - 0.00721 \frac{J}{F}}{1 + 0.01128 \frac{J}{F_s} + 0.04055 \frac{J}{F}}.$$

*) Für den Parabelbogen ist r ein mittlerer Krümmungsradius.

Achter Abschnitt. - § 30.

Gleichung (23) gibt

(II)

 $\nu = \frac{1}{1 + \frac{10J}{192F}}.$

Der Bogen besitze an der stärkst beanspruchten Stelle den in Fig. 392 dargestellten Querschnitt. Der Inhalt des Stehblechquerschnitts beträgt ohne Abzug für Nietlöcher $F_s = 149$ qcm. Die ebenfalls ohne Nietabzug gerechneten Werte J und F der Querschnitte mit 3 oder 2 Platten oder einer Platte in jeder Gurtung und die zugehörigen Werte ν und

$$z_0 = \frac{3l}{16f} v = 1.5 v$$

Fig. 392.

sind in der folgenden Tabelle zusammengestellt worden.

Anzahl der Gurt- platten	J cm ⁴	F cm ²	$\frac{J}{F}$ m ²	$\frac{J}{F_s} \\ \mathrm{m^2}$	nach Gl v	eich. (I) z	nach Gle	ich. (II) <i>≉</i>
3 2 1	$\begin{array}{r} 2362897\\ 1792228\\ 1247299\end{array}$	$705 \\ 573 \\ 441$	$\begin{array}{c} 0,335 \\ 0,313 \\ 0,283 \end{array}$	1,586 1,203 0,837	0,9835 0,9847 0,9862	1,475 1,477 1,479	$\begin{array}{c} 0,9829 \\ 0,9840 \\ 0,9855 \end{array}$	$\begin{array}{c} 1,474 \\ 1,476 \\ 1,478 \end{array}$

Sämtliche gewonnene Zahlen ν und z sind praktisch gleichwertig. Man wird im vorliegenden Falle $z_0 = 1,477$ wählen. Auch kann es sich empfehlen, zur Sicherheit mit zwei verschiedenen Werten ν zu rechnen. So werden z. B. die weiteren Untersuchungen zeigen, daß die Kernpunktmomente M^o um so größer ausfallen, je größer ν ist, während für die Momente $M^{"}$ ein kleineres ν ungünstiger ist.

Aus den Gleichungen (20) und (23) folgt für X_a auch der Ausdruck

was aus der auf Seite 395 für die durch einen Balken versteifte Kette durchgeführten Entwicklung hervorgeht.

154. Der Kreisbogen. Hier empfiehlt sich die Annahme unveränderlicher Werte J und F. Mit den aus Fig. 391 ersichtlichen Bezeichnungen erhält man für die EJ_c -fachen Durchbiegungen δ_{ma} die Gleichung

$$\frac{d^{2}\delta_{ma}}{dx''^{2}} = -\frac{y}{\cos\varphi} = -r + \frac{c}{\cos\varphi}$$

und, da $dx'' = r \cos \varphi d\varphi$ ist,

$$\frac{d\delta_{ma}}{dx^{''}} = -rx^{''} + cr\varphi.$$

Die Integrationskonstante ist gleich Null, weil für $\varphi = 0$ auch $\frac{d\delta_{ma}}{dx''} = 0$ sein muß.

Nun ist weiter

$$\delta_{ma} = -\frac{rx''^2}{2} + \int cr^2 \varphi \cos \varphi \, d\varphi + C$$

= $-\frac{rx''^2}{2} + cr^2(\varphi \sin \varphi + \cos \varphi) + C$
= $-\frac{rx''^2}{2} + cr(\varphi x'' + y') + C.$

 $x'' = l_1$ muß liefern $\delta_{ma} = 0$, daher

$$C = + \frac{r l_1^2}{2} - c r (\varphi_0 l_1 + c)$$

und

(25)
$$\delta_{ma} = \frac{r \left(l_1^2 - x''^2 \right)}{2} - cr \left(\varphi_0 l_1 - \varphi x'' \right) + cr y.$$

Man erhält also

$$\int_{0}^{l} \delta_{ma} dx = 2 \int_{0}^{l_{1}} \delta_{ma} dx'' = \frac{2}{3} r l_{1}^{3} - 2 cr \varphi_{0} l_{1}^{2} + 2 cr \int_{0}^{l_{1}} \varphi x'' dx'' + 2 cr \int_{0}^{l_{1}} y dx$$

Da nun

$$\begin{split} & 2 \int_{0}^{l_{1}} \varphi x'' dx'' = 2 r^{2} \int_{0}^{\varphi_{0}} \varphi \cos \varphi \sin \varphi d\varphi = \frac{r^{2}}{4} \int_{0}^{\varphi_{0}} 2 \varphi \sin 2 \varphi d2 \varphi \\ &= \frac{r^{2}}{4} \left(-2 \varphi_{0} \cos 2 \varphi_{0} + \sin 2 \varphi_{0} \right) \\ &= -\frac{r^{2} \varphi_{0}}{2} \left(\cos^{2} \varphi_{0} - \sin^{2} \varphi_{0} \right) + \frac{r^{2}}{2} \sin \varphi_{0} \cos \varphi_{0} \\ &= -\frac{\varphi_{0}}{2} \left(c^{2} - l_{1}^{2} \right) + \frac{1}{2} c l_{1}, \end{split}$$

Achter Abschnitt. - § 30.

ferner

bei

$$2\int_{0}^{l_1} y dx = r^2 \varphi_0 - l_1 c$$

ist, so folgt

$$2\int_{0}^{1} \delta_{ma} dx = \frac{1}{2} r l_1 \left(\frac{4}{3} l_1^2 - c^2\right) + \frac{1}{2} \varphi_0 cr \left(c^2 - l_1^2\right).$$

Weiter ergibt sich

$$\int_{0}^{t} y^{2} ds = 2r^{3} \int_{0}^{q_{0}} (\cos^{2} \varphi - 2 \cos \varphi_{0} \cos \varphi + \cos^{2} \varphi_{0}) d\varphi$$

 $= r^3 (\sin \varphi_0 \cos \varphi_0 + \varphi_0 - 4 \cos \varphi_0 \sin \varphi_0 + 2 \cos^2 \varphi_0 \varphi_0)$ und nach Einführung von l_1 und c:

(26)
$$\int_{0}^{1} y^{2} ds := \varphi_{0} r^{3} - 3 r c l_{1} + 2 r c^{2} \varphi_{0}.$$

Man erhält daher mittels Gleich. (12) für den Pfeil der X_a -Parabel den Wert:

(27)
$$z_{0} = \frac{\varphi_{0} \frac{3 c r}{8 l_{1}} (c^{2} - l_{1}^{2}) - \frac{3 r}{8} \left(c^{2} - \frac{4}{3} l_{1}^{2}\right) + \frac{l_{1}^{2}}{2 r} \left(\frac{E}{G} \frac{J}{F_{s}} - 2 \frac{J}{F} \frac{c}{r}\right)}{\varphi_{0} r \left(r^{2} + 2 c^{2}\right) - 3 c r l_{1} + \frac{8}{3} \frac{E}{G} \frac{J}{F_{s}} \frac{f^{2}}{l_{1}} + 2 \frac{J}{F} l_{1} \frac{c^{2}}{r^{2}}}$$

Für $l_1 = 24$ m, f = 6 m, r = 51 m, c = 45 m, $\varphi_0 = 0.489958$ (28°4'21") ergibt sich

$$z_{0} = \frac{1418,21 + 14,682 \frac{J}{F_{s}} - 9,965 \frac{J}{F}}{954,24 + 10,400 \frac{J}{F_{s}} + 37,370 \frac{J}{F}}$$

Wird wieder der in Fig. 392 dargestellte Querschnitt angenommen, so erhält man

3 Gurtplatten2 Gurtplatten1 Gurtplatte
$$z_0 = 1,463$$
 $1,464$ $1,467.$

- Man wird etwa $z_0 = 1,465$ wählen. Die Abweichung zwischen diesem Werte und dem für den Parabelbogen gewonnenen $z_0 = 1,477$ ist unerheblich.

155. Beliebig geformter Bogen. Wir gehen von der Formel

(28)
$$X_a = \frac{\delta_{0a}}{\delta_{aa}}$$

aus, vernachlässigen den Einfluß der Querkräfte Q, ebenso den Einfluß der \Re auf δ_{0a} , rechnen also mit

Der vollwandige Zweigelenkbogen.

29)
$$\delta_{0a} = \int \frac{M_0 M_a ds}{EJ} = \int \frac{M_0 y dx}{J \cos \varphi}$$

und setzen

(30)
$$\delta_{\alpha a} = \int_{0}^{l} \frac{M_{a}^{2} ds}{EJ} + \int_{0}^{l} \frac{N_{a}^{2} ds}{EF} = \int_{0}^{l} \frac{y^{2} dx}{EJ \cos \varphi} + \int_{0}^{l} \frac{\cos \varphi dx}{EF}.$$

Nun machen wir die Annahme, es seien $\frac{y}{J\cos\varphi}$ und $\frac{\cos\varphi}{F}$ konstant, nämlich gleich $\frac{f}{J_c}$ bzw. $\frac{1}{F_c}$, wo J_c und F_c das Trägheitsmoment und den Inhalt des Scheitelquerschnitts bedeuten, und erhalten

(31)
$$X_{a} = \frac{\int_{0}^{l} M_{0} dx}{\int_{0}^{l} y dx + \frac{J_{c}l}{F_{c}f}}$$

Der Inhalt der M_0 -Fläche für eine im Abstande x von A angreifende Last 1 ist

$$\int_{0}^{t} M_0 dx = \frac{x x'}{2}$$

Mit der Bezeichnung

$$\int_{0}^{l} y \, dx = \mathfrak{F}_{y}$$

erhält man (32)

$$X_{a} = \frac{xx'}{2\left(\mathfrak{F}_{y} + \frac{J_{e}l}{F_{e}f}\right)}.$$

Die Xa-Linie ist hiernach eine Parabel von der Pfeilhöhe

(33)
$$z_0 = \frac{l^2}{8\left(\mathfrak{F}_y + \frac{J_o l}{F_o f}\right)}$$

Für den Parabelbogen ist

$$\mathfrak{F}_{y} = \frac{2lf}{3},$$

für den Kreisbogen (35)

$$\mathfrak{F}_{y} = r^{2} \varphi_{0} - l_{1} c.$$

Achter Abschnitt. - § 30.

Für den vorhin untersuchten Bogenträger (l = 48 m, f = 6 m)erhält man:

Parabelbog	en $\mathfrak{F}_y =$	$=\frac{2}{3}\cdot 48\cdot 6=1$	192 m^2 ,	
Kreisbogen	$\mathfrak{F}_y =$	$= 51^2 \cdot 0,48995$	$8 - 24 \cdot 45 = 194$	$4,3808 \text{ m}^2$.
Also bei		3 Gurtplatten	2 Gurtplatten	1 Gurtplatte
	$\frac{J_c}{F_c} =$	0,335	0,313	0,283
Parabelbogen	$z_0 =$	1,479	1,481	1,483
Kreisbogen	$z_0 =$	1,461	1,463	1,465.

Diese Werte z_0 weichen von den vorhin berechneten nur wenig ab. Man erkennt, daß das Gesetz, nach dem sich J und F ändern, innerhalb ziemlich weiter Grenzen geändert werden darf, ohne daß eine wesentliche Änderung von z_0 entsteht.

Ist die Bogenachse ein Halbkreis, so ist $y \frac{ds}{dx}$ gleich dem Halbmesser r und die Formel (31) setzt dann ein konstantes J voraus.

156. Die Kämpferdrucklinie LR, Fig. 393, ist durch die Gleichung

$$y_k = -\frac{A}{X_a} x$$

bestimmt; sie ist für den Fall einer parabelförmigen X_a -Linie eine wagerechte Gerade. Zu $x = \frac{l}{2}$ gehört A = 0,5 und $X_a = z_0$, weshalb

$$(36) y_k = \frac{l}{4z_0}.$$

Berechnet man z_0 mittels Gleichung (31), und streicht man das Glied $\frac{J_c l}{Ff}$, so erhält man

$$(37) y_k = \frac{2\,\mathfrak{F}_y}{l} \cdot$$

Der Inhalt des Rechtecks ALRB ist dann doppelt so groß wie der Inhalt der Fläche \mathfrak{F}_y .

Dem durch die Formeln (20) und (23) bestimmten Werte z_0 entspricht

$$(38) y_k = \frac{4f}{3\nu}.$$

157. Zweigelenkbogen mit aufgehobenem Horizontalschube. Wird das eine feste Auflager durch ein wagerechtes Gleitlager ersetzt und der Horizontalschub X_a durch eine wagerechte Zugstange vom Querschnitte F_z aufgenommen, Fig. 394, so wächst δ_{aa} um den der Zugstange entsprechenden Wert

Es geht dann z. B. Gleich. (33) über in

(39)
$$z_0 = \frac{l^2}{8\left(\mathfrak{F}_y + \frac{J_c}{F_o} \frac{l}{f} + \frac{J_o}{F_z} \frac{l}{f}\right)}$$

Bei Dachbindern erhält die Zugstange zuweilen eine leichte Sprengung f_{*} (Fig. 395). Der Zuwachs von δ_{aa} beträgt dann

$$\Sigma \, \frac{S_a^2 s}{EF} = \Sigma \, \frac{s \sec^2 \alpha}{EF},$$

wofür man auch setzen darf

(40)
$$\Sigma \frac{S_a^2 s}{EF} = \frac{l}{EF_z} \left(1 + \frac{16}{3} \frac{f_u^2}{l^2} \right).$$

Verfasser rechnet bei Dachbindern mit dem einfachen Werte

(41)
$$z_0 = \frac{l^2}{8\mathfrak{F}_y},$$

weil die Bestimmung der Hauptlasten, Schnee und Winddruck, auf gröberen Schätzungen beruht und bei den üblichen Pfeilhöhen der Dachbinder der Einfluß der von den Querschnitten F_c und F_z abhängigen Glieder des Nenners von X_a verhältnismäßig gering ist.

Das Biegungsmoment für den Querschnitt eines Bogens mit gesprengter Zugstange ist

$$M = M_0 - X_a y,$$

wo y den lotrechten Abstand der Bogenachse von der Zugstange bedeutet. Es ist also \mathfrak{F}_y der Inhalt der von der Bogenachse und der Zugstange begrenzten Fläche.

158. Einfluß schräger Lasten. Durch die Biegungslinie für den Zustand $X_a = -1$ und die Änderungen $d\Delta s$ der Bogenteilchen ds sind die beliebig gerichteten Lasten P_m entsprechenden Verschiebungen δ_{ma} bestimmt. Es ist hierbei zulässig, den Bogen durch einen Stabzug zu ersetzen und das im § 28, Nr. 140 beschriebene Verfahren anzuwenden, mit dem Unterschiede, daß strenggenommen die Δs nicht nur von den Längskräften N, sondern auch von den Momenten M abhängig sind. Für den Halbkreis ist z. B. im Belastungsfalle $X_a = -1$

$$N_a = +\cos \alpha, \quad M_a = y = r\cos \alpha, \quad \mathfrak{N} = N - \frac{M}{r} = 0,$$

also $\Delta s = 0$.

Die Untersuchung des Einflusses schräger Lasten ist besonders wichtig für die durch Winddruck beanspruchten Dachbinder. Hier handelt es sich aber um Lasten, deren Feststellung, wie schon oben hervorgehoben wurde, auf ziemlich groben Schätzungen beruht. Eine allzu peinliche Ermittlung der δ_{ma} besitzt daher nur geringen Wert. Es empfiehlt sich die Vernachlässigung der Längenänderungen Δs . Beachtet man dann, daß die X_a -Linie, das ist die Linie $A_0 \ 1_0 \ 2_0 \ 3_0 \ \dots \ B_0$

der Figur 396, als die im Maßstabe $\delta_{aa} = 1$ gezeichnete Biegungslinie für den Zustand $X_a = -1$ aufgefaßt werden kann, so gelangt man zu dem folgenden, durch große Einfachheit und Übersichtlichkeit sich auszeichnenden Verfahren.

Wird der wagerechte Widerstand H_B des rechten Auflagers B gesucht, so besitzt das statisch bestimmte Hauptsystem bei B ein wagerechtes Gleitlager. Punkt A liegt fest; der ihm im Verschiebungsplane für

entsprechende, irgendwo in der Geraden $A_0 B_0$ angenommene Punkt A' ist der Pol des Verschiebungsplanes. Von A' aus wird der Normalenzug $A' 1' 2' 3' 4' 5' \ldots B'$ gezeichnet, dessen Seiten $A' 1', 1' 2', 2' 3', \ldots$ rechtwinklig zu den Sehnen $A 1, 12, 23, \ldots$ sind, und dessen Eckpunkte $1', 2', 3', \ldots$ in den Wagerechten durch die entsprechenden Punkte $1_0, 2_0, 3_0, \ldots$ der X_a -Linie liegen. Greift nun in m eine schräg gerichtete Last P_m an, so gibt die Projektion α_m der Strecke $\overline{A'm'}$ auf die Richtung von P_m den durch eine Last $P_m = 1$ erzeugten Horizontalschub H_B an. Wird der Widerstand H_A des linken Auflagers Agesucht, so ersetze man den Pol A' durch den Pol B'. Man erhält:

$$H_B = P_m \alpha_m, \quad H_A = P_m \beta_m.$$

Eine in *B* angreifende, nach rechts gerichtete wagerechte Last 1 erzeugt H = 1. Es müßte also Strecke $\overline{A'B'} = 1$ sein. Das ist nun

wegen der Vernachlässigung der Δs nicht der Fall; der begangene Fehler ist aber belanglos. Bringt man die um 90° nach rechts gedrehte Last P_m im Punkte m' an, so ist H_B gleich dem Momente von P_m in bezug auf A' und H_A gleich dem Momente von P_m in bezug auf B', wobei die Rechtsdrehung als die positive anzunehmen ist. Greift am Bogen eine Gruppe von Lasten an, so werden die auf die beschriebene Weise in den Verschiebungsplan übertragenen Lasten zu einer Mittelkraft zusammengesetzt.

Figur 397 stellt einen durch linksseitigen Winddruck beanspruchten Bogenträger mit gesprengter Zugstange dar. Es sei

Als X_{α} -Linie darf eine Parabel von der Pfeilhöhe

$$r = \frac{3l}{16f}$$

angenommen werden. Die Mittelkraft der um 90° gedrehten Windlasten ist W. Das wagerechte Gleitlager liege bei B. Es entsteht in der Zugstange der Horizontalzug

$$X_a = W \alpha.$$

Kommt der Wind von der rechten Seite, so erzeugt er

$$X_a = W\beta.$$

In der Folge führen wir für den Horizontalschub die bequemere Bezeichnung H ein.
159. Einfluß der Formänderungen Δy auf die Biegungsmomente und den Horizontalschub. Ein Zweigelenkbogen trage die ständige Belastung und habe unter ihrem Einflusse eine bestimmte Form angenommen, die als gegeben angesehen werden möge; sein Horizontalschub sei H_g . Nun werden weitere Lasten P aufgebracht. Die Ordinaten y gehen über in $y + \Delta y$. Sollen die Δy bei der Berechnung der von den Lasten P hervorgerufenen Biegungsmomente berücksichtigt werden, so muß der Ausdruck

$$M = M_0 - Hy$$

ersetzt werden durch

(42)

$$M = M_0 - Hy - (H + H_g) \Delta y.$$

7

Die Gleichung der Biegungslinie lautet, wenn der Einfluß der \mathfrak{N} und Q außer acht gelassen wird,

$$\frac{d^2 \Delta y}{dx^2} = + \frac{M}{EJ'}, \quad \text{wo } J' = J \cos \varphi.$$

Bei konstantem EJ' entsteht

$$EJ'\frac{d^2\Delta y}{dx^2} + (H+H_g)\Delta y = M_0 - Hy$$

und, mit der Bezeichnung

(43)
$$k = \sqrt{\frac{EJ'}{H+H_g}},$$

(44)
$$k^2 \frac{d^2 \Delta y}{dx^2} + \Delta y = \frac{H}{H + H_g} f(x),$$

wo

(45)
$$f(x) = -\frac{M_0}{H} - y.$$

Ist f(x) eine ganze rationale Funktion, so entspricht der Gleichung (44) das allgemeine Integral

Durch zweimaliges Differenzieren von (46) entsteht

$$k \frac{d\Delta y}{dx} = \frac{H}{H+H_g} \left(+ C_1 \cos \frac{x}{k} - C_2 \sin \frac{x}{k} + kf'(x) - k^3 f'''(x) + k^5 f'''''(x) - \dots \right),$$

$$k^2 \frac{d^2 \Delta y}{dx^2} = \frac{H}{H+H_g} \left(-C_1 \sin \frac{x}{k} - C_2 \cos \frac{x}{k} + k^2 f''(x) - k^4 f''''(x) + \dots \right).$$

Müller-Breslau, Graphische Statik. II. 2.

Achter Abschnitt. - § 30.

Nun ist:

(47)
$$M = EJ' \frac{d^{2}\Delta y}{dx^{2}} = (H + H_{g}) k^{2} \frac{d^{2}\Delta y}{dx^{2}},$$
$$M = -H \left(C_{1} \sin \frac{x}{k} + C_{2} \cos \frac{x}{k} - k^{2} f''(x) + k^{4} f''''(x) - + \ldots \right).$$

Bei sehr flachen Bogenbrücken — und nur für diese ist die Untersuchung des Einflusses der Δy wichtig — darf man die Annahme machen, es sei die Bogenachse eine Parabel, es sei also

$$y = \frac{4fx\,(l-x)}{l^2}.$$

Für Einzellasten ist M_0 vom ersten Grade und

$$f''(x) = -\frac{d^2y}{dx^2} = \frac{8f}{l^2} \cdot$$

Mit der Bezeichnung

(48)
$$u = k^2 f''(x) = \frac{8fk^2}{l^2}$$

ergibt sich

(49)
$$\Delta y = \frac{H}{H + H_g} \left(C_1 \sin \frac{x}{k} + C_2 \cos \frac{x}{k} + \frac{M_0}{H} - y + u \right),$$

(50)
$$M = -H\left(C_1 \sin \frac{x}{k} + C_2 \cos \frac{x}{k} - u\right),$$

(51)
$$Q = -H\left(C_1 \cos \frac{x}{k} - C_2 \sin \frac{x}{k}\right).$$

Die Integrationskonstanten nehmen innerhalb der verschiedenen Strecken, in welche der Bogen durch die Einzellasten zerlegt wird, verschiedene Werte an.

Greift am Bogen nur eine Last P an, so erhält man mit den aus Fig. 398 ersichtlichen Bezeichnungen für den Teil a:

$$M = -H\left(C_{1}\sin\frac{x}{k} + C_{2}\cos\frac{x}{k} - u\right)$$
$$Q = -\frac{H}{k}\left(C_{1}\cos\frac{x}{k} - C_{2}\sin\frac{x}{k}\right),$$

für den Teil b:

$$M = -H\left(C_1'\sin\frac{x}{k} + C_2'\cos\frac{x}{k} - u\right)$$
$$Q = -\frac{H}{k}\left(C_1'\cos\frac{x}{k} - C_2'\sin\frac{x}{k}\right).$$

In beiden Teilen wird M = 0 für x = 0. Diese Bedingung liefert $C_2 = C_2' = u$.

Schreiben wir also kürzer C und C' statt C_1 und C_1' , so erhalten wir für den Teil a:

$$M = -H\left[C\sin\frac{x}{k} - u\left(1 - \cos\frac{x}{k}\right)\right]$$
$$Q = -\frac{H}{k}\left[C\cos\frac{x}{k} - u\sin\frac{x}{k}\right],$$

für den Teil b:

$$M = -H\left[C'\sin\frac{x}{k} - u\left(1 - \cos\frac{x}{k}\right)\right]$$
$$Q = -\frac{H}{k}\left[C'\cos\frac{x}{k} - u\sin\frac{x}{k}\right]$$

Nun muß aber sein:

$$M_{x=a} = M_{x=b}$$
$$= a + Q_{x=b} = P$$

mithin:

(52)
$$C\sin\frac{a}{k} - C'\sin\frac{b}{k} = u\left(1 - \cos\frac{a}{k}\right) - u\left(1 - \cos\frac{b}{k}\right)$$
$$= -u\cos\frac{a}{k} + u\cos\frac{b}{k}$$

(53)
$$C\cos\frac{a}{k} + C'\cos\frac{b}{k} = +u\sin\frac{a}{k} + u\sin\frac{b}{k} - P\frac{k}{H}$$
.

Aus diesen beiden Gleichungen folgt

 Q_x

(54)
$$C = \frac{-\frac{Pk}{H}\sin\frac{b}{k} + u\left(1 - \cos\frac{l}{k}\right)}{\sin\frac{l}{k}}$$

(55)
$$C' = \frac{-\frac{Pk}{H}\sin\frac{a}{k} + u\left(1 - \cos\frac{l}{k}\right)}{\sin\frac{l}{k}}$$

Zur Berechnung von H ergibt sich aus der Gleichung $ds^2 = dx^2 + dy^2$

genau wie in Nr. 115 die Bedingung

(56)
$$\int_{0}^{t} \Delta ds \frac{ds}{dx} = \frac{8f}{l^{z}} \int_{0}^{t} \Delta y dx^{*}).$$

Wir rechnen rund mit N = -H, nehmen F konstant an und erhalten

$$\int_{0}^{t} \Delta ds \frac{ds}{dx} = \int_{0}^{t} \frac{\Delta ds}{ds} \cdot \frac{ds^{2}}{dx^{2}} dx = -\frac{H}{EF} \int_{0}^{t} \left[1 + \left(\frac{dy}{dx}\right)^{2} \right] dx$$
$$= -\frac{Hl}{EF} \left(1 + \frac{16}{3} \frac{f^{2}}{l^{2}} \right),$$

wofür auch, genügend genau,

(57)
$$\int_{0}^{t} \Delta ds \frac{ds}{dx} = -\frac{Hl}{EF}$$

gesetzt werden darf. Da nun nach (49) für die Teile a und b:

$$\Delta y = \frac{H}{H + H_g} \left(C \sin \frac{x}{k} + u \cos \frac{x}{k} + \frac{M_0}{H} - y - u \right) \text{ bzw.}$$

$$\Delta y = \frac{H}{H + H_g} \left(C' \sin \frac{x}{k} + u \cos \frac{x}{k} + \frac{M_0}{H} - y - u \right)$$

ist, so folgt

$$\frac{H+H_g}{H} \int_0^{b} \Delta y \, dx = k \left[-C\left(\cos\frac{a}{k}-1\right) + u \sin\frac{x}{k} - C'\left(\cos\frac{b}{k}-1\right) + u \sin\frac{b}{k} \right] + \frac{1}{H} \int_0^{l} M_0 \, dx - \int_0^{l} y \, dx - u \, l,$$

wofür mit Rücksicht auf (53) auch geschrieben werden darf

$$\frac{H+H_g}{H}\int_0^t \Delta y \, dx = k\left(\frac{Pk}{H}+C+C'\right)-ul+\frac{1}{H}\int_0^t M_0 \, dx - \int_0^t y \, dx.$$

Gleich. (56) geht über in

$$-\frac{(H+H_g)l^3}{8\,EFf} = \frac{H+H_g}{H} \int_0^t \Delta y \, dx$$
$$= k^2 \left(\frac{P}{H} + \frac{C+C'}{k} - \frac{8f}{l}\right) + \frac{1}{H} \int_0^t M_0 \, dx - \int_0^t y \, dx$$

*) Nach Formel (20) und (22) Seite 401.

Setzt man zur Abkürzung

(58)
$$\frac{P}{H} + \frac{C+C'}{k} = \mathfrak{I},$$

so findet man mit $\int_{0}^{l} y \, dx = \frac{2fl}{3}$
(59)
$$H = \frac{\int_{0}^{l} M_0 \, dx}{\int_{0}^{l} y \, dx} = \frac{3Pab}{4fl} \mathfrak{I}$$

wo

(

$$\psi = rac{1}{1 - rac{3}{16} rac{(H + H_g) \, l^2}{EFf^2} + rac{3 \, k^2}{2 f l} \Big(rac{8 f}{l} - \Im \Big)}.$$

Gleichung (59) unterscheidet sich von der auf Seite 520 abgeleiteten Formel (24) nur dadurch, daß an Stelle von

60)
$$\gamma = \frac{1}{1 + \frac{15}{8} \frac{J'}{Ff^2}}$$

der Wert v' getreten ist. Wird

$$\frac{H+H_g}{EFf^2} = \frac{J'}{k^2 Ff^2}$$

gesetzt und mittels Gleich. (60) $J'/\mathit{Ff^2}$ durch ν ausgedrückt, so geht ν' über in

(61)
$$\nu' = \frac{1}{1 - 0, 1 \frac{l^2}{k^2} \frac{1 - \nu}{\nu} + 1, 5 \frac{k^2}{fl} \left(\frac{8f}{l} - \tilde{\nu}\right)}$$

Setzt man noch für C und C' die durch die Gleichungen (54) und (55) gegebenen Werte, so entsteht

(62)
$$\mathfrak{I} = \frac{P}{H} \left(1 - \frac{\sin \alpha + \sin \beta}{\sin \lambda} \right) + 16 \frac{fk}{l^2} \operatorname{tg} \frac{\lambda}{2},$$

wo

$$\alpha = \frac{a}{k}, \quad \beta = \frac{b}{k}, \quad \lambda = \frac{l}{k}.$$

Die Gleichungen (61) und (62) haben eine ähnliche Form, wie die für die versteifte Kette abgeleiteten Gleichungen (30) (Seite 403) und

(40) (Seite 405). Man berechnet H zuerst nach der Näherungsformel $H = \frac{3 Pab}{4 f l} \vee$ und verbessert diesen Wert mit Hilfe der Gleichung (59). Bei flachen Bogen darf man J' durch J ersetzen.

Zahlenbeispiel. Es sei l = 48 m, f = 6 m, P = 19 t, $a = b = \frac{l}{2} = 24$ m. Jeder der beiden Hauptträger habe den in Fig. 392

dargestellten Querschnitt mit $J = 2363000 \text{ cm}^4$. Für beide Hauptträger zusammen ist $EJ = 2 \cdot 2150000 \cdot 2363000 \text{ kgcm}^2 = 1016000 \text{ tm}^2$. Mit $F = 705 \text{ cm}^2$ ergibt sich

$$\nu = \frac{1}{1 + \frac{15}{8} \cdot \frac{J}{Ff^2}} = 0,983 \text{ und}$$

$$H = \frac{3Pl}{16f} \nu = 1,5 P\nu = 1,5 \cdot 19 \cdot 0,983 = 28,0 \text{ t.}$$

Einer ständigen Belastung g = 3 t/m entspricht

$$H_g = \frac{gl^2}{8f} \gamma = gl\gamma = 3 \cdot 48 \cdot 0,983 = 141,6 = 142 \text{ t.}$$

Es ist also

N

$$H + H_g = 170 \text{ t}, \quad k^2 = \frac{EJ}{H + H_g} = 5976,47, \quad k = 77,308.$$

Für $a = b = \frac{1}{2}l$ geht Gleichung (62) über in

(63)
$$\mathfrak{I} = \mathbf{16} \frac{fk}{l^2} \operatorname{tg} \frac{\lambda}{2} - \frac{P}{H} \left(\sec \frac{\lambda}{2} - 1 \right) \cdot$$

Zu $\frac{\lambda}{2} = \frac{l}{2k} = \frac{24}{77,308} = 0.3104465$ gehört der Winkel 17°47'14",

$$tg \frac{\lambda}{2} = 0.32082, \quad sec \frac{\lambda}{2} = 1.05020.$$

un ist 16
$$\frac{f}{l^2} = \frac{2}{l} = \frac{1}{24}$$
, also
77 308 • 0.32082 19 • 905 020

$$\mathfrak{D} = \frac{11,000,0000}{24} - \frac{10000000}{28} = 0,999351$$
$$\frac{8f}{l} - \mathfrak{D} = 1,0 - \mathfrak{D} = 0,000649,$$
$$\mathfrak{V} = \frac{1}{1 - 0.1 \cdot 0.621^2} - \frac{0,017}{0,017} + \frac{5976,47}{0,000649} = 0,981$$

$$1 - 0.1 \cdot 0.621^{2} \frac{0.017}{0.983} + \frac{5976.47}{192} 0.000649$$
$$H = 1.5 Py' = 28.5 y' = 28.0 \text{ t.}$$

Das Biegungsmoment für den Querschnitt, in welchem P angreift, ist

$$M = -H\left[C\sin\frac{\lambda}{2} - u\left(1 - \cos\lambda\right)\right]$$

Der Wert C geht für $\alpha = \beta = \frac{\lambda}{2}$ über in

(64)
$$C = -\frac{Pk}{2H\cos\frac{\lambda}{2}} + u \operatorname{tg} \frac{\lambda}{2}$$

und liefert mit $u = \frac{8fk^2}{l^2}$ das Moment

(65)
$$M = \frac{Pk}{2} \operatorname{tg} \frac{\lambda}{2} - \frac{8fk^2}{l^2} H\left(\operatorname{sec} \frac{\lambda}{2} - 1\right)$$

= 9,5 \cdot 77,308 \cdot 0,32082 - $\frac{28}{48}$ 0,05020 = 60,6 tm.

Die gewöhnliche Rechnung gibt

 $M = M_0 - Hy = 9.5 \cdot 24 - 28.0 \cdot 6.0 = 60.0$ tm.

Der genauere Wert M weicht im vorliegenden Falle nur wenig von dem gewöhnlichen Näherungswerte ab. Je flacher aber der Bogen und je größer die ständige Last ist, desto größer ist der Einfluß des Gliedes $(H + H_g) \Delta y$.

Ist die Strecke a gleichförmig mit p, die Strecke b gleichförmig mit p' belastet, Fig. 399, so erhält man für

Strecke a:
$$u = k^2 f''(x) = k^2 \left(\frac{8f}{l^2} - \frac{p}{H}\right)$$

Strecke b: $u' = k^2 \left(\frac{8f}{l^2} - \frac{p'}{H}\right)$,

ferner für die Strecke a:

(66)
$$\begin{cases} M = -H \left[C \sin \frac{x}{k} - u \left(1 - \cos \frac{x}{k} \right) \right] \\ Q = -\frac{H}{k} \left[C \cos \frac{x}{k} - u \sin \frac{x}{k} \right] \\ \Delta y = \frac{H}{H + H_y} \left[C \sin \frac{x}{k} + u \cos \frac{x}{k} + \frac{M_0}{H} - y - u \right] \end{cases}$$

und für die Strecke b:

(67)
$$\begin{cases} M = -H \left[C'\sin\frac{x}{k} - u'\left(1 - \cos\frac{x}{k}\right)\right] \\ Q = -\frac{H}{k} \left[C'\cos\frac{x}{k} - u'\sin\frac{x}{k}\right] \\ \Delta y = \frac{H}{H + H_g} \left[C'\sin\frac{x}{k} + u'\cos\frac{x}{k} + \frac{M_0}{H} - y - u'\right]. \end{cases}$$

Zur Berechnung von C und C' dienen die Bedingungen

$$M_{x=a} = M_{x=b}$$
$$Q_{x=a} = -Q_{x=b}$$

diese lauten:

- (68) $C \sin \alpha C' \sin \beta = u (1 \cos \alpha) u' (1 \cos \beta)$
- (69) $C \cos \alpha + C' \cos \beta = u \sin \alpha + u' \sin \beta$. Man findet

(70)
$$C = \frac{u(\cos\beta - \cos\lambda) + u'(1 - \cos\beta)}{\sin\lambda},$$

(71)
$$C' = \frac{u(1 - \cos\alpha) + u'(\cos\alpha - \cos\lambda)}{\sin\lambda}.$$

Zur Berechnung von H dient die Gleichung

$$-\frac{Hl}{EF} = \frac{8f}{l^2} \int_{0}^{t} \Delta y \, dx,$$

oder anders geschrieben

$$\frac{(H+H_g)l^3}{8\,EFf} = \frac{H+H_g}{H} \int_0^t \Delta y \, dx.$$

Nun ist

$$\frac{H+H_g}{H} \int_{0}^{t} \Delta y \, dx = k \left[-C \left(\cos \alpha - 1 \right) + u \sin \alpha - C' \left(\cos \beta - 1 \right) + u' \sin \beta \right]$$
$$-u \, a - u' \, b + \frac{1}{H} \int_{0}^{t} M_0 \, dx - \int_{0}^{t} y \, dx,$$

oder wegen Gleichung (69)

$$\frac{H+H_g}{H} \int_{0}^{l} \Delta y \, dx = k \, (C+C') - u \, a - u' \, b + \frac{1}{H_0} \int_{0}^{l} M_0 \, dx - \int_{0}^{l} y \, dx$$
$$= k^2 \left(\Im - \frac{8f}{l} \right) + \frac{1}{H_0} \int_{0}^{l} M_0 \, dx - \int_{0}^{l} y \, dx,$$

wo

(72)
$$\Im = + \frac{pa + p'b}{H} + \frac{C + C'}{k}.$$

Man erhält wieder

(73)
$$H := \frac{\int\limits_{0}^{0} M_0 \, dx}{\int\limits_{0}^{l} y \, dx} \sqrt{2}$$

wo

(74)
$$\nu' = \frac{1}{1 - 0, 1 \frac{l^2}{k^2} \frac{1 - \nu}{\nu} + 1, 5 \frac{k^2}{fl} \left(\frac{8f}{l} - \Im\right)}$$

Für den Sonderfall $a = b = \frac{1}{2}l$, p' = 0 ergibt sich

$$\mathfrak{I} = \frac{pl}{2H} + \frac{u+u'}{k} \operatorname{tg} \frac{\lambda}{2}$$
$$\iota + u' = k^2 \left(-\frac{p}{H} + 16 \frac{f}{l^2} \right).$$

Die Annäherungsrechnung liefert

$$H = \frac{pl^2 \gamma}{16f} \text{ also } \frac{p}{H} = \frac{16f}{l^2} \frac{1}{\gamma}.$$

Daher ist

$$u+u'=16f\frac{k^2}{l^2}\frac{1-\nu}{\nu}$$

und

(75)
$$\mathfrak{I} = \frac{8f}{l} \left(1 - 2\frac{k}{l} \operatorname{tg} \frac{\lambda}{2} \right) \frac{1 - \nu}{\nu}.$$

Man findet schließlich

(76)
$$\nu' = \frac{1}{1 - 0.1 \frac{l^2}{k^2} \frac{1 - \nu}{\nu} + 12 \frac{k^2}{l^2} \left(2 \frac{k}{l} \operatorname{tg} \frac{\lambda}{2} - 1\right) \frac{1 - \nu}{\nu}}$$

Diese Gleichung hat eine ähnliche Form wie die auf Seite 409 für die versteifte Kette gefundene Gleichung (53).

Während bei der Kette der Einfluß des Gliedes $(H + H_g) \Delta y$ ein günstiger ist, insofern die genaueren Momente kleiner sind als die genäherten, liegt beim Bogen der umgekehrte Fall vor. Bringt man nämlich die Belastung auf, die für irgendeinen Querschnitt das Moment _{max} M erzeugt, so senkt sich der fragliche Querschnitt; sein Δy ist negativ und der Hebelarm des dem positiven Balkenmomente M_0 entgegenwirkenden Horizontalschubes nimmt ab. Bei der das Moment _{min} M erzeugenden Laststellung wächst y und der negative Bestandteil von Mnimmt zu.

Bei sehr flachen Bogenbrücken empfiehlt es sich, mindestens für den in Fig. 400 dargestellten Fall bei $x = \frac{1}{4}l$ das genauere Moment zu berechnen und festzustellen, um wieviel v. H. das genauere Moment größer ist als das genäherte.

Die vorstehenden Ansätze liefern für die Δy etwas zu kleine Werte wegen der Vernachlässigung des Einflusses der \mathfrak{N} und Q. In Wirklichkeit sind also die Abweichungen zwischen den genaueren und den genäherten Momenten noch etwas größer.

160. Einfluß einer Temperaturänderung. Wir nehmen eine gleichmäßige Erwärmung des Bogens an und erhalten für einen Bogen zwischen festen Kämpfern

$$H_t = X_{at} = \frac{\delta_{at}}{\delta_{aa}} = \frac{\varepsilon t l}{\delta_{aa}}.$$

Wir rechnen ungünstig und setzen

$$\delta_{aa} = \int_{0}^{l} \frac{M_a^2 ds}{EJ} = \int_{0}^{l} \frac{y^2 dx}{EJ'}, \qquad J' = J \cos \varphi.$$

Dann erhalten wir für einen Parabelbogen mit konstantem EJ'

(77)
$$\delta_{aa} = \frac{8}{15} \frac{f^2 l}{E J'}$$
$$H_t = \frac{15}{8} \frac{\varepsilon E J' t}{f^2}.$$

Diese Formel darf auch bei flachen Kreisbogen angewendet werden. Allgemein ist $\int y^2 dx$ das doppelte statische Moment der zwischen Bogenachse und Schlußlinie AB gelegenen Fläche, bezogen auf die Schlußlinie. Es empfiehlt sich, J' durch J zu ersetzen.

b. Kernpunktmomente M^o und M^{μ} .

161. Die Darstellung der Kernpunktmomente M° und M^{*} deckt sich mit der in Band II, Abteilung I § 7, Nr. 84 beschriebenen Darstellung der Angriffsmomente für die Knotenpunkte eines Fachwerkbogens mit zwei

Gelenken. Auch die im § 25 der vorliegenden Abteilung für den durch einen Balken versteiften Stabbogen entwickelten Formeln können ohne weiteres benutzt werden. An die Stelle des Knotenpunktes m treten die Punkte o und u.

Fig. 400 zeigt die Einflußfläche für M^* . Der Multiplikator ist $\mu = y_{\mu}$. Soll die Übertragung der Lasten durch Zwischenträger be-

rücksichtigt werden, so tritt an die Stelle der *H*-Parabel ein in die Parabel einbeschriebenes Polygon, dessen Ecken in den Lotrechten durch die Querträger liegen (Abt. I, § 7, Fig. 220). Die Festlegung des Dreiecks A'C'B' geschieht dann mit Hilfe der Strecke $\overline{A'A''} = 1 \frac{x}{y_u}$. Rechnet man mit unmittelbar am Bogen angreifenden Lasten, was sich bei analytischen Untersuchungen der größeren Einfachheit wegen empfiehlt, so bestimmt man die Lastscheiden *E* und *E'* mittels der Kämpferdrucklinie.

162. Eisenbahnbrücken. Für die Momente infolge der Verkehrslast empfiehlt sich die Benutzung der Tafeln für parabolische Einflußlinien. Um z. B. $_{min}M^*$ zu bestimmen, berechne man die Pfeilhöhen

$$z_1 = z_0 \frac{\xi^2}{l^2}$$
 und $z_2 = z_0 \frac{\xi'^2}{l^2}$

der negativen Teile der Einflußfläche, entnehme der Tafel V des § 24 die zu den Weiten ξ und ξ' gehörigen Lasten P_i und P'_i und setze

(78)
$$_{min}M_{p}^{u} = -y_{u}\left(z_{0}\frac{\xi^{2}}{l^{2}}P_{i} + z_{0}\frac{\xi^{\prime 2}}{l^{2}}P_{i}^{\prime}\right)^{*}\right).$$

Für das Maximalmoment gilt die auf Seite 435 abgeleitete Formel

(79)
$${}_{max}M_p^{\mu} = \frac{1}{s} \left[\mathfrak{P}_n b' b'' + \mathfrak{T}_n\right] - \mathfrak{S}_r,$$

wo

$$(80) s = l \frac{y_k}{y_u}.$$

Der Lastzug muß so aufgestellt werden, daß die Bedingungen erfüllt werden

(81)
$$\begin{cases} \leftarrow \frac{\mathfrak{P}_n}{\mathfrak{P}_r} < \frac{s}{2b'-\xi} \\ \Rightarrow \frac{\mathfrak{P}_n}{\mathfrak{P}_{r-1}} > \frac{s}{2b'-\xi} \end{cases}$$

Noch schneller führt die Anwendung der im § 25 abgeleiteten Gleichungen (19) bis (21) bei der Berechnung von $max}M^{"}$ zum Ziele. Man entnimmt der Tabelle A, Seite 442, das Maximalmoment M_0 eines einfachen Balkens von der Spannweite l_0 und findet dann

(82)
$${}_{max}M_p^{"} = {}_{max}M_0\left(\gamma - \frac{8\,y_u\mathfrak{F}}{l_0^2}\right),$$

wo

$$\mathfrak{F} = \mathfrak{F}_{H} \frac{l_{0}^{3}}{l^{3}}$$

ist und \mathfrak{F}_H den Inhalt der H-Parabel bedeutet. Die Zahl

$$\gamma = \frac{x_0 (0.88 l_0 - x_0)}{(0.44 l_0)^2}$$

wird der Tabelle auf Seite 443 entnommen. x_0 ist der kleinere der beiden Abstände CE und CE' in Fig. 400.

^{*)} Wir verweisen auch auf § 25, Nr. 123.

Für den Fall daß die H-Parabel die Pfeilhöhe

$$z_0 = \frac{3l}{16f}$$
 v (vgl. Seite 429)

besitzt, ist der Ausdruck für max Mp auf Seite 441 umgeformt worden in

(83)
$$_{max}M_p^u = {}_{max}M_0\left(\gamma - \frac{4}{3} + \frac{y_u}{f}\nu\right).$$

Es möge aber noch eine andere Umformung dieses Wertes gezeigt werden. Setzt man

$$\mathfrak{F}_{H} = \frac{2}{3} z_{0} l$$
 und $z_{0} = \frac{l}{4 y_{k}}$ (nach (36), Seite 524),

so findet man

$$\mathfrak{F} = rac{1}{6} \; rac{l_0^3}{y_k l}$$

und

$$_{max}M_p^u = {}_{max}M_0\left(\gamma - \frac{4}{3} \frac{y_u}{y_k} \frac{l_0}{l}\right)$$

Nun ist aber

$$\frac{y_k - y_u}{y_u} = \frac{l_0}{l}, \text{ mithin } \frac{y_k}{y_u} = \frac{l + l_0}{l}$$

und man erhält daher

(84)
$${}_{max}M_p^u = {}_{max}M_0\left(\gamma - \frac{4}{3} \frac{l_0}{l+l_0}\right).$$

Die Formeln (83) und (84) setzen voraus, daß beide Punkte Eund E' innerhalb der Spannweite AB liegen. Für den in Fig. 401 dargestellten Fall gilt die auf Seite 442 gewonnene Formel

(85)
$$_{max}M_p^{\mu} = {}_{max}M_0\left(\gamma - \frac{4}{3} \frac{x}{l}\right)$$

In derselben Weise werden auch die Momente M° berechnet.

163. Ständige Belastung. Eine gleichförmige ständige Last g für die Einheit der Stützweite l erzeugt

(86)
$$H_g = g \,\mathfrak{F}_H = \frac{2 \, g \, z_0 \, l}{3} \cdot$$

Ist

$$z_0 = \frac{3l}{16f} v,$$

so erhält man

(87)
$$H_g = \frac{gl^2}{8f} \, \nu.$$

 $M = M_0 - Hy$

Nun findet man mittels der allgemeinen Formel

die Werte

(88)
$$\begin{cases} M_g^u = g \frac{xx'}{2} - H_g y_u, \\ M_g^o = g \frac{xx'}{2} - H_g y_o. \end{cases}$$

164. Gleichförmige Verkehrslast. Die beiden negativen Teile der in Fig. 400 dargestellten M^* -Fläche haben zusammen den Inhalt

$$\mathfrak{F} = \mathfrak{F}_{H} \frac{\xi^{3} + \xi^{\prime 3}}{l^{3}},$$

und es entsteht daher

(89)
$$_{min}M_p^u = -py_u \mathfrak{F}_H \frac{\xi^3 + \xi'^3}{l^3}, \text{ wo } \mathfrak{F}_H = \frac{2z_0 l}{3}.$$

Für den in Fig. 401 dargestellten Fall ist

$$_{min}M_p^u = -py_u\mathfrak{F}_H - \frac{\xi^3}{l^3}$$
.

Hat man M_g^u und $_{max}M_p^u$ in der Form dargestellt:

$$M_g^u = Cg, \quad {}_{min}M_p^u = -C'p,$$

so findet man

$$_{min}M^{*}=Cg-C'p,$$

und nunmehr ohne weiteres

$$_{max}M^{u} = Cq + C'p, \quad \text{wo } q = g + p,$$

denn die Zusammenzählung der die Momente $_{min}M''$ und $_{max}M''$ erzeugenden Belastung gibt volle Belastung des Trägers mit

$$2g + p = g + q.$$

Es muß also sein:

$$_{min}M^{u} + _{max}M^{u} = C (g + q).$$

In derselben Weise werden auch die Momente M° berechnet.

c. Zahlenbeispiel. Berechnung der Momente M^o und M^u f ür eine eingleisige Eisenbahnbr ücke von 48 m Spannweite und 6 m Pfeilh öhe.

165. Vorläufige Ermittlung des Querschnitts. Den Pfeil der H-Parabel setzen wir zunächst

$$z_{0} = \frac{3}{16} \frac{l}{f} v = \frac{3}{16} \cdot 8v = 1,5v,$$

$$v = \frac{1}{1 + \frac{15}{8} \frac{J}{Ff^{2}}} = \frac{1}{1 + \frac{15}{16} \frac{Wh}{Ff^{2}}}$$

wo W das Widerstandsmoment und h die Höhe des Querschnitts bedeuten, und schätzen die Kernweite $k = \frac{W}{F}$ gleich $\frac{5}{12}$ der Stehblechhöhe h_0 . Dann erhalten wir

$$=\frac{1}{1+\frac{25}{64}\frac{h_0h}{f^2}}$$

Nun wählen wir h_0 etwa $\frac{1}{40}$ der Stützweite, d. i. 1,2 m, schätzen h = 1,3 m und finden $\nu = 0,983$ und $z_0 = 1,475$. Hierzu gehört

Die Bogenachse sei ein Kreisbogen; ihr Halbmesser ist r = 51 m. Die Radien der oberen und unteren Kernlinie sind mit $k = \frac{5}{12} h_0 = 0.5$ m, $r_o = 51.5$ m, $r_u = 49.5$ m. Die größten Momente M^o und M^u entstehen in der Regel in der Nähe von $x = \frac{1}{4} l$. Maßgebend für die Querschnittsberechnung sind die Momente $_{min}M^o$ und $_{max}M^u$. Wir beginnen mit der Berechnung von $_{min}M^o$ an der Stelle x = 12 m. Es ist

 $y_o = 5,08 \text{ m}, \quad l - \xi = x \frac{y_k}{y_o} = 12 \frac{8,14}{5,08} = 19 \text{ m}, \quad \xi = 29 \text{ m}.$

Zu 29 m gehört nach Tafel V, Seite 422, $P_i = 143$ t; folglich ist

$$_{min}M_p^o = -y_o z_0 \frac{\varsigma^2}{l^2} P_i = -5,08 \cdot 0,54 \cdot 143 = -392 \text{ tm.}$$

Die ständige Last der Brücke sei g = 3 t/m; sie erzeugt

$$H_{g} = \frac{gl^{2}}{8f} v = glv = 3 \cdot 48 \cdot 0,983 = 142 \text{ t},$$

$$M_{g}^{o} = g \frac{xx'}{2} - H_{g}y_{o} = \frac{3 \cdot 12 \cdot 36}{2} - 142 \cdot 5,08 = -73 \text{ tm}.$$
ist mithin _____M^o = -392 - 73 = -465 tm.

544

Es

Dieser Wert muß mit $_{max}M^{u}$ verglichen werden. Für $x = \frac{1}{4}l = 12 \text{ m}$ ist $y_{u} = 4,05 \text{ m}, \quad l - \xi = l_{0} = x \frac{y_{k}}{y_{u}} = 12 \frac{8,14}{4,05} = 24 \text{ m},$ $x_{0} = 12 \text{ m}, \quad \frac{x_{0}}{l_{0}} = 0,5, \quad \gamma = 1, \quad \max M_{0} = 551 \text{ tm} \text{ (Tabelle A, S. 442)},$ $_{max}M_{p}^{u} = \max M_{0}\left(\gamma - \frac{4}{3} \frac{x}{l}\right) = 551\left(1 - \frac{4}{3} \cdot \frac{1}{4}\right) = 367 \text{ tm},$ $M_{g}^{u} = g \frac{xx'}{2} - H_{g}y_{u} = \frac{3 \cdot 12 \cdot 36}{2} - 142 \cdot 4,05 = 73 \text{ tm},$

 $_{max}M^{u} = 367 + 73 = 440$ tm.

Das Moment $_{min}M^{\circ}$ ist also maßgebend; es erfährt auch infolge von Temperaturänderungen eine größere Steigerung wie $_{max}M^{*}$.

Wir nehmen eine gleichmäßige Temperaturänderung an und setzen

$$H_t \!=\! rac{15}{8} \, rac{arepsilon EJt}{f^2}, \ \ M_t^{o} \!=\! -rac{15}{8} \, rac{arepsilon EJy_o t}{f^2} \cdot$$

Das Moment M_t^o erzeugt die Biegungsspannung

$$\sigma_t = \frac{15}{8} \frac{\varepsilon E J y_o t}{W f^2} = \frac{15}{16} \varepsilon E \frac{h y_o}{f^2} t.$$

Für Flußeisen ist $\varepsilon E = 25 \text{ kg/qcm}$, mithin

$$\sigma_t = \frac{15}{16} 25 \frac{1,3 \cdot 5,08}{6^2} t = 4,3 t.$$

Es soll t zwischen -25° und $+45^{\circ}$ schwankend angenommen werden. Für die negativen Momente _{min} M° kommt die obere Grenze in Betracht. Wir erhalten $\sigma_t = 4,3 \cdot 45 = 194 \text{ kg/qcm}$ und finden, wenn etwa $\sigma = 950 \text{ kg/qcm}$ zugelassen werden sollen*), das erforderliche Widerstandsmoment

$$W = \frac{46\,500\,000}{950 - 194} = 61\,500 \,\,\mathrm{cm}^3,$$

also für jeden der beiden Hauptträger W = 30750. Der in Fig. 392 dargestellte Querschnitt besitzt nach Abzug der Nietlöcher W = 31746 cm³, F = 642 cm² und k = W/F = 49.4 cm = rund 0.5 m. Nach Feststellung dieses Querschnitts kann die Verbesserung des Wertes z_0 mit Hilfe der in Nr. 152 bis 155 entwickelten Formeln vorgenommen werden. Die dort mitgeteilten Zahlenrechnungen, die sich auf den Querschnitt Fig. 392 bezogen, ergeben für den Kreisbogenträger einen zwischen den Grenzen 1,46 und 1,47 liegenden Wert z_0 . Wir rechnen die Momente mim M° mit $z_0 = 1.47$, die Momente mex M^{*} mit $z_0 = 1.46$. Die Anzahl der Felder sei 16, die Feldweite 3 m.

*) Die Belas	stungsvo	rschrifte	en für	die	preußi	schen Sta	atsbahnen	gestatten
für $l =$	20	40	80		120	160	200 m,	
σ=	850	900	950		1000	1050	1100 kg	qcm.
Müller-Bresl	au, Graj	phische \$	Statik.	II.	2.		35	

166. Momente min Mº. Zu $z_0 = 1,47$ gehört

$$y_k = \frac{l}{4z} = 8,16 \text{ m}, \quad l - \xi = x \frac{y_k}{y_o} = m \frac{\lambda y_k}{y_o} = \frac{24,48}{y_o} m.$$

Die Werte ξ sind positiv für m = 1 bis m = 11. Daraus folgt, daß die den Querschnitten 8, 7, 6, 5 entsprechenden Punkte E', Fig. 400, innerhalb der Spannweite des Bogens liegen. Zu 5 gehört allerdings AE' = 1 m, d. i. eine vernachlässigbare negative Beitragstrecke. Nach Ermittlung von ξ , ξ' , P_i und P'_i findet man

$${}_{\min}M_{p}^{o} = -y_{o}\left(P_{i}z_{0}\frac{\xi^{2}}{l^{2}} + P_{i}^{'}z_{0}\frac{\xi^{'2}}{l^{2}}\right)$$

Hierzu tritt

$$\begin{split} M_{g}^{o} &= g \frac{xx'}{2} - H_{g} y_{o} = g \frac{\lambda^{2}}{2} mm' - H_{g} y_{o}, \qquad m' = 16 - m, \\ H_{g} &= g \frac{2 z_{0} l}{3} = 2 \cdot 1,47 \cdot 48 = 141 \text{ t}, \end{split}$$

wo

ferner der Einfluß der Temperaturerhöhung

$$M_t = -H_t y_o = -\frac{15}{8} \varepsilon E t \frac{J}{f^2} y_o.$$

Das Trägheitsmoment des in Fig. 392 dargestellten Querschnitts ist ohne Nietabzug J = rund 2360000 cm⁴. Man erhält also mit $t = 45^{\circ}$ und $\varepsilon E = 25$ kg/qcm für beide Hauptträger zusammen:

$$H_t = \frac{15}{8} 25 \cdot \frac{2360\,000 \cdot 2}{600^2} t = 614.6 \cdot t = 27\,657 \text{ kg} = 27.7 \text{ t},$$
$$M_t = -27.7 \, y_e.$$

Die Ergebnisse dieser Rechnung sind in der folgenden Tabelle zusammengestellt worden*).

					$x_0 =$: 1,47	1						
	y,	l-\$	and a	ĿĘ'	×0 22	20 52	P_i	P_i'	$-M_p^o$	$\frac{g \lambda^2 m m'}{2}$	$-M_g^o$	$-M_t^o$	${min}M^{o}$
m	m	m	m				t	t	tm	tm	tm	tm	tm
1	2.02	12	36	0	0.83	La vit	172		288	202,5	82	56	426
2	3.25	15	33	0	0,695	1.1.1.1	159		359	378	80	90	529
-3	4.27	17	31	0	0,615	11811 -	150		394	526,5	76	118	588
4	5.08	19	29	0	0,54		143		392	648	68	141	601
5	5,71	21	27	0	0,465	in the	133		353	742,5	63	158	574
6	6,15	23,5	24,5	8,5	0,385	0,05	124	64	313	810	57	170	540
7	6.41	26,5	21,5	14	0,295	0,125	111	77	272	850,5	53	178	503
8	6,50	30	18	18	0,21	0,21	92	92	251	864	53	180	484
9	6.41	34	14		12 11 1		-	Arre			E LEN		
10	6,15	39,5	8,5	$_{min}M^o = M_p^o + M_g^o + M_t^o.$									
11	5.71	47	1	T.F.									

*) Die Abrundungen erfolgten in ungünstigem Sinne. Z. B. ist für m = 6, l = 23,88, wofür 23,5 gesetzt wurde.

167. Momente $\max M^{u}$. $z_{0} = 1,46 \text{ m}, \quad y_{k} = \frac{l}{4 z_{0}} = 8,22 \text{ m}.$ $l = \xi = x \frac{y_{k}}{y_{u}} = \frac{m \lambda y_{k}}{y_{u}} = \frac{24,66}{y_{u}} m,$

wofür wir um ungünstig zu rechnen $l - \xi = \frac{25m}{y_u}$ setzen. Wir erhalten dann reichliche Längen l_0 . Die Werte ξ sind positiv für m = 1 bis m = 9. Für die Querschnitte 7 und 8 erhält man also innerhalb der Stützweite liegende Punkte E', Fig. 400. Für m = 1 bis m = 6 gilt die Formel

$$_{max}M_p^u = {}_{max}M_0\left(\gamma - \frac{4}{3} \frac{x}{l}\right) = {}_{max}M_0\left(\gamma - \frac{m}{12}\right),$$

für m = 7 und m = 8 die Formel

$$_{max}M_p^u = {}_{max}M_0 \left(\gamma - rac{4}{3} \; rac{l_0}{l+l_0}
ight)$$

Der Einfluß der ständigen Belastung ist

$$M_g^u = g \frac{\lambda^2}{2} mm' - H_g y_u,$$

WO

$$H_g = g \frac{2}{3} z_0 l = 2 \cdot 1,46 \cdot 48 = 140 \text{ t.}$$

Die Temperaturänderung $t = -25^{\circ}$ erzeugt $H_t = -614, 6 \cdot t = -15365 \text{ kg} = -15, 4 \text{ t}, \quad M_t^* = +15, 4 y_u.$

	.Yu	<i>l</i> —ξ	lo	x ₀	<i>x</i> ₀	γ	max Mo	M_p^u	M_g^u	M_t^u	max Mu
m	m	m	m	m	<i>v</i> ⁰		tm	tm	tm	tm	tm
$\begin{array}{c}1\\2\\3\\4\end{array}$	0,93 2,18 3,22 4,05	$27 \\ 23 \\ 23,5 \\ 25$	27*) 23 23,5 25	$ \begin{array}{c} 3 \\ 6 \\ 9 \\ 12 \end{array} $	$\begin{array}{c c} 0,11 \\ 0,26 \\ 0,38 \\ > 0,44 \end{array}$	$0,44 \\ 0,83 \\ 0,98 \\ 1,00$	680 510 530 591	243 338 387 394	72 73 76 81	$ \begin{array}{r} 14 \\ 34 \\ 50 \\ 62 \\ \hline 62 \end{array} $	$329 \\ 445 \\ 513 \\ 537 $
5 6	$4,69 \\ 5,14$	27 29,5	$27 \\ 29,5$	$12 \\ 11,5$	$> 0,44 \\ 0,39$	$1,00 \\ 0,99$	680 806	397 395	86 90	72 79	555 564
7 8	$5,41 \\ 5,50$	32,5 36,5	$\begin{array}{c c} 26^{**} \\ 25 \end{array}$	$ \begin{array}{c c} 11,5 \\ 12,5 \end{array} $	>0,44 >0,44	$1,00 \\ 1,00$	632 591	$336 \\ 321$	$\begin{vmatrix} 93\\94 \end{vmatrix}$	83 85	$512 \\ 500$
9	5,41	41,5			max	$I^{\mu} = I$	$I_p^u + M$	"+ A	l_t^u .		

Das größte aller Momente ist $-M_4^{\circ} = 601$ tm. Für einen Hauptträger ist mit Nietabzug W = 31746. Es entsteht also

$$\sigma_u = \frac{M^o}{W} = \frac{60\,100\,000}{2\cdot 31\,746} = 950 \text{ kg/qcm}.$$

*) Siehe Fig. 403.

**) Siehe Fig. 404.

Je nachdem die Anzahl der Gurtplatten 2 oder 1 oder 0 ist, ergibt sich

 $W = 24\,736$, 17753, 10790. Die zulässigen Angriffsmomente sindM = 470 337 205 tm.

Hiernach kann die Länge der einzelnen Platten bemessen werden. Bei größeren Unterschieden der Momente M^o und M^* empfiehlt es sich, die beiden Gurtungen ungleich stark zu machen. Die Berechnung der Gurtplattenquerschnitte für diesen Fall ist in Bd. I, § 24, unter e beschrieben worden.

d. Die Querkräfte.

168. Einflußlinien. Die Querkraft Q für einen Bogenquerschnitt ist gleich der Summe der Projektionen der auf der einen Seite des

Fig. 405.

Querschnittes angreifenden äußeren Kräfte auf den Querschnitt. Bei lotrechten Lasten ergibt sich

(90)
$$Q = Q_0 \cos \varphi - H \sin \varphi,$$

wo Q_0 die Querkraft für den Querschnitt eines einfachen Balkens $A\,B$ bedeutet. Wir schreiben

(91)
$$Q = \sin \varphi \left(Q_0 \cot g \varphi - H \right)$$

und bilden die Einflußfläche (Fig. 405), indem wir die *H*-Fläche von der Einflußfläche für $Q_0 \cot g \varphi$ in Abzug bringen. Der Multiplikator ist $\mu = \sin \varphi$.

Fig. 405 setzt mittelbare Belastung voraus und zeigt die Einflußfläche für das Feld F_1F_2 . Sie gilt zwar strenggenommen nur für den Querschnitt C, dessen Bogentangente mit der Sehne F_1F_2 parallel läuft, darf aber mit genügender Genauigkeit allen Querschnitten des Feldes F_1F_2 zugewiesen werden.

Wird eine stetig gekrümmte H-Linie eingeführt, was sich bei analytischen Untersuchungen der Einfachheit wegen stets empfiehlt, so liegt der Schnittpunkt der H-Linie und $Q_0 \operatorname{cotg} \varphi$ -Linie lotrecht unter dem Punkte E, in welchem die Kämpferdrucklinie von einer durch Aparallel zu F_1F_2 gezogenen Geraden geschnitten wird, denn eine in Eangreifende Last erzeugt einen zum Querschnitte C rechtwinkligen Kämpferdruck. Bei kleinen Winkeln φ wird $Q_0 \operatorname{cotg} \varphi$ sehr groß; man ziehe dann die $H \sin \varphi$ -Fläche von der $Q_0 \cos \varphi$ -Fläche ab. Es genügt hierbei, den kleinen Pfeil $z_0 \sin \varphi$ aufzutragen und durch dessen Endpunkt mit dem Kurvenlineal nach Gutdünken eine flache $H \sin \varphi$ -Linie zu zeichnen.

169. Bei Eisenbahnbrücken empfiehlt es sich, die Querkräfte mit Hilfe der Tabellen für parabolische Einflußlinien zu berechnen. Es können hierzu die im § 25 für die Querkräfte des Versteifungsbalkens eines Stabbogens mit Gelenken entwickelten Formeln benutzt werden. Man erkennt dies, wenn man Gleichung (90) umformt in

(92)
$$\frac{Q}{\cos\varphi} = Q_0 - H \operatorname{tg} \varphi.$$

Die rechte Seite hat nunmehr dieselbe Form wie die Querkraft des Versteifungsbalkens. Man erhält also (Fig. 405):

(93)
$$\frac{maxQ}{\cos\varphi} = \frac{1}{s'l} (\mathfrak{P}_n b' b'' + \mathfrak{T}_n) - P', \quad \text{wo } P' = \frac{\mathfrak{S}_r}{\lambda},$$

unter der Bedingung, daß die Ungleichungen

(94)
$$\begin{cases} \leftarrow \frac{\mathfrak{P}_{n}}{\mathfrak{P}_{r}} < \frac{s'\frac{l}{\lambda}}{b'+b''} \\ \Rightarrow \frac{\mathfrak{P}_{n}}{\mathfrak{P}_{r-1}} > \frac{s'\frac{l}{\lambda}}{b'+b''} \end{cases}$$

erfüllt werden.

Zur Querkraft $_{min}Q$ liefert die Belastung links vom Querschnitte den Beitrag (Fig. 406):

wobei sich herausstellen muß:

(96) $\begin{cases} \Rightarrow \frac{\mathfrak{P}_{n}}{\mathfrak{P}_{r}} < \frac{s'\frac{l}{\lambda}}{a'+a''} \\ \leftarrow \frac{\mathfrak{P}_{n}}{\mathfrak{P}_{r-1}} > \frac{s'\frac{l}{\lambda}}{a'+a''} \end{cases}$

Liegt der Punkt E innerhalb der Stützweite, so tritt hierzu noch der Einfluß der Belastung der Strecke EB:

$$Q = -\sin \varphi P_i z.$$

Der Einfluß der ständigen Last beträgt

(97) $Q_g = g x'' \cos \varphi - H_g \sin \varphi,$

wo x" den Abstand der Feldmitte von der Trägermitte bezeichnet.

Eine Temperaturänderung erzeugt

 $(98) Q_t = -H_t \sin \varphi.$

Achter Abschnitt. — § 30.

170. Die größten Querkräfte braucht man zur Berechnung der Nietteilung e (Fig. 407). Bedeutet S das statische Moment eines Gurtquerschnittes in bezug auf die Schwerachse des ganzen Querschnittes, so hat ein Niet die Schubkraft

$$(99) T = \frac{QS}{J} e$$

aufzunehmen. Die Niete sind doppelschnittig. Die zulässige Scherspannung ist gleich der zulässigen Normalspannung σ , der zulässige Lochleibungsdruck gleich 2σ , daher, wenn *d* die Nietstärke und δ die Stehblechstärke bedeutet,

Die kleinere Teilung e muß ausgeführt werden. Es gilt also Formel (101), sobald

$$\frac{\pi d}{2} > 2\delta$$
, d. i. $d > \frac{4\delta}{\pi} = 1,27\delta$,

was wohl immer der Fall sein wird. Zur Erzielung einer genügend dichten Nietung darf e nicht größer als 6d gewählt werden.

Zu einer sehr einfachen Näherungsformel für die Schubkraft T gelangt man mittels der Annahme, es werde die Querkraft Q allein vom Stehbleche aufgenommen. Dann erhält man nämlich (Fig. 408)

(102)
$$Th_n = Qe, \quad \text{also} \quad T = Q \frac{e}{h_n},$$

wo h, den Abstand der beiden Nietreihen bedeutet. Es ergibt sich

(103)
$$e = 2 \frac{\sigma \delta h_n}{Q} d.$$

Für den in Fig. 392 dargestellten Querschnitt ist z. B.

$$S = 44 \cdot 4.5 \cdot 64.25 + 2 \cdot 40 \cdot 58 = 17361$$
$$\frac{J}{S} = \frac{2111097}{17361} = 122,$$

während $h_n = 109$ cm ist. Die Anwendung der einfachen Formel (103) erhöht also den Sicherheitsgrad.

171. Zahlenbeispiel. Berechnung der Nietteilung für die in Nr. 173-175 untersuchte Eisenbahnbrücke. Wir nehmen rund $y_k = 8,2$ m an und erhalten für das erste Feld, Fig. 409,

Zu diesem
$$\xi$$
 gehört $P_i = 146 + 1.3 \cdot 4 = 151 \text{ t}$ und
 $z = z_0 \frac{\xi^2}{l^2} = 1.47 \frac{979.69}{2304} = 0.63;$

mithin ist

 $_{min}Q_{1p} = -\sin \varphi_1 P_i z = -0.442 \cdot 151 \cdot 0.63 = -42 \text{ t.}$ Weiter ist

$$Q_{1g} = gx'' \cos \varphi_1 - H_g \sin \varphi_1$$

= 3 \cdot 22,5 \cdot 0,897 - 141 \cdot 0,442 = - 1,8 t,
$$Q_t = -H_t \sin \varphi_1 = -27,7 \cdot 0,442 = -12,2 t_0$$

im ganzen also

$$_{min}Q = -56$$
 t.

Die Querkraft $_{max}Q_p$ entsteht bei der in Fig. 409 angegebenen Laststellung, denn es ist

$$\leftarrow \frac{\mathfrak{P}_{n}}{\mathfrak{P}_{r}} = \frac{124}{34} < \frac{s'\frac{b}{\lambda}}{b'+b''} = \frac{16,7\cdot16}{40,7+9,4} = \frac{267,2}{50,1} \\ \Rightarrow \frac{\mathfrak{P}_{n}}{\mathfrak{P}_{r-1}} = \frac{124}{17} > \frac{267,2}{50,1} \cdot$$

Die Belastung des Knotenpunktes o beträgt P' = 8.5 t; es ergibt sich daher:

$$\frac{\max Q_p}{\cos \varphi} = \frac{1}{s'l} (\mathfrak{P}_n b' b'' + \mathfrak{T}_n) - P'$$

= $\frac{124 \cdot 40.7 \cdot 9.4 + 2606}{16.7 \cdot 48} - 8.5 = +51.9 \text{ t}$

und:

Hierzu tritt, mit $H_g = 140$, $Q_{1g} = -1.8$ und

 $_{max}Q_p = 51,9 \cdot 0,897 = 46,6 \text{ t.}$

$$Q_t = +15, 4 \cdot 0, 442 = 6, 8 \text{ t.}$$

Im ganzen entsteht $_{max}Q_1 = +52$ t. Die maßgebende Querkraft ist also $_{min}Q_1 = -56$ t.

Für das achte Feld darf man $\sin \varphi = 0$, $\cos \varphi = 1$ setzen. Man erhält dann dieselbe Querkraft wie für einen einfachen Balken, im vorliegenden Falle: $_{max}Q_8 = 57$ t. Der genauere Wert Q_8 ist etwas kleiner.

Die gesuchte zulässige Nietteilung ist nun

$$e = \frac{2\sigma\delta h_n}{Q} = \frac{2\cdot 950\cdot 1, 2\cdot 109}{\frac{1}{2}57000} = 8,7 d,$$

während man höchstens 6d nehmen darf. In den übrigen Feldern entstehen kleinere Querkräfte.

e. Ungleichhohe Kämpfergelenke.

172. Liegen die Kämpfergelenke nicht gleichhoch, so werden die Kämpferdrücke in die senkrechten Seitenkräfte A und B und die mit der Verbindungslinie der Kämpfergelenke zusammenfallenden Seitenkräfte H'_{A} , H'_{B} zerlegt. Bei senkrechter Belastung ist $H'_{A} = H'_{B} = H'$ (Fig. 410); es stimmen dann A und B mit den Auflagerdrücken eines einfachen Balkens von der Spannweite l überein, und man erhält für den Querschnitt an der Stelle x das Biegungsmoment

$$M = M_0 - Hy,$$

wo $H = H' \cos \alpha$ und y den senkrechten Abstand des Querschnittsschwerpunktes von der Geraden AB bedeutet.

In gleicher Weise bildet man

 $M^o = M_0 - Hy_o$ und $M^u = M_0 - Hy_u$.

Ist der Winkel α klein, so dürfen hinsichtlich des Gesetzes, dem das Trägheitsmoment J folgt, dieselben Annahmen gemacht werden, wie beim Bogen mit gleichhoch liegenden Kämpfern. Für die H-Linie erhält man eine Parabel von der Pfeilhöhe

Die Kämpferdrucklinie ist parallel zu AB und hat von AB den senkrechten Abstand

$$y_k = \frac{l}{4z_0}$$

Hinsichtlich der Momente verhält sich also der Bogen genau wie ein solcher mit gleichhohen Kämpfergelenken.

Bei der Berechnung der Querkräfte muß man beachten, daß

(104) $Q = Q_0 \cos \varphi - H \sin (\varphi - \alpha)$

ist; vgl. Bd. I, § 24, d. Führt man also den Multiplikator $\mu = \sin (\varphi - \alpha)$ ein, so tritt an die Stelle der $Q_0 \operatorname{cotg} \varphi$ -Fläche die $Q_0 \frac{\cos \varphi}{\sin (\varphi - \alpha)}$ -Fläche.

§ 31.

Der an beiden Enden eingespannte Bogen.

173. Die allgemeine Untersuchung eines beliebig geformten, durch irgendwie gerichtete Lasten beanspruchten, an beiden Enden eingespannten Bogens ist im Abschnitt VII, § 28, vorgeführt worden. Nunmehr sollen geschlossene Formeln für einen symmetrischen Bogen mit lotrechten Lasten entwickelt werden. Der hierbei eingeschlagene Weg deckt sich mit der in Abteil. 1, § 11, unter d und e beschriebenen Berechnung eines an beiden Enden eingespannten Fachwerkbogens. Als statisch unbestimmte Größen werden die die inneren Kräfte des Scheitelquerschnitts ersetzenden Größen X_a , X_b , X_c eingeführt, Fig. 411. Der Bogen wird auf ein rechtwinkliges Achsenkreuz bezogen, dessen y-Achse mit der Symmetrieachse zusammenfällt, und dessen x-Achse so gewählt werden soll, daß $\delta_{ac} = 0$ wird. Das Nullwerden von δ_{ab} und δ_{bc} folgt ohne weiteres aus der Symmetrie.

Die Gleichungen zur Berechnung der Größen X lauten also*):

(1)
$$\begin{cases} L_a - \delta_{at} \equiv \sum P_m \delta_{ma} - X_a \delta_{aa} \\ L_b - \delta_{bt} \equiv \sum P_m \delta_{mb} - X_b \delta_{bb} \\ L_c - \delta_{ct} \equiv \sum P_m \delta_{mc} - X_c \delta_{cc}. \end{cases}$$

Das statisch bestimmte Hauptsystem besteht aus zwei Freiträgern AC und CB. Da die wirkliche gegenseitige Bewegung der beiden Scheitelquerschnitte, an denen die X_a , X_b , X_c angreifen, Null ist, so sind die Werte δ_a , δ_b , δ_c gleich Null; sie wurden daher in den Gleichungen (1) fortgelassen. Behufs Ermittlung von L_a , L_b , L_c geben wir die an den Widerlagern des statisch bestimmten Hauptsystems angreifenden Auflagerkräfte an.

Im Belastungsfalle $X_a = -1$ greift am linken Auflager 'ein linksdrehendes, am rechten ein rechtsdrehendes Kräftepaar an, dessen Moment = 1 ist.

Im Belastungsfalle $X_b = -1$ greift in A ein aufwärtsgerichteter, in B ein abwärtsgerichteter Widerstand von der Größe 1 an, ferner am linken und rechten Widerlager je ein linksdrehendes Kräftepaar, dessen Moment gleich $1 \cdot l_1$ ist.

Im Belastungsfalle $X_c = -1$ greift am linken Auflager ein linksgerichteter, am rechten ein rechtsgerichteter Widerstand 1 an, ferner links ein linksdrehendes, rechts ein rechtsdrehendes Kräftepaar von der Größe $1 \cdot c_u$.

^{*)} Nach § 8, Gleich. (1).

Erfahren also die Widerlager A und B eine Rechtsdrehung um φ_A bzw. φ_B , senken sie sich um η_A und η_B , und werden sie nach rechts um ξ_A bzw. ξ_B verschoben, so ergibt sich

Infolge einer gleichmäßigen Erwärmung entsteht:

$$\delta_{at} = 0, \qquad \delta_{bt} = 0, \qquad \delta_{ct} = \varepsilon t l = 2 \varepsilon t l_1.$$

Bei der Berechnung der Biegungslinien δ_{ma} , δ_{mb} , δ_{mc} und der Verschiebungen δ_{aa} , δ_{bb} , δ_{cc} vernachlässigen wir die Querkräfte Q und die Kräfte \Re . Nur bei der Ermittlung von δ_{cc} soll die Längenänderung Δds berücksichtigt werden. Wir ersetzen hierbei aber \Re_c durch N_c , nehmen also für den Beitrag von Δds den Wert an

$$\delta_{cc} = \int_{-l_1}^{+l_1} \frac{N_c^2 ds}{EF} = 2 \int_{0}^{l_1} \frac{\cos^2 \varphi ds}{EF}$$

und, indem wir die Voraussetzung

$$F = F_c \sec \varphi$$

machen, wo Fe den Scheitelquerschnitt bedeutet,

(3)
$$\delta_{\sigma\sigma} = \frac{2}{EF_{\sigma}} \int_{0}^{t_1} \cos^2 \varphi \, dx = \frac{2}{EF_{\sigma}} \int_{0}^{t_1} \frac{dx}{1 + \mathrm{tg}^2 \varphi}.$$

Für den *Parabelbogen*, auf dessen Untersuchung wir uns hier beschränken, erhalten wir dann:

$$y = c - f \frac{x^2}{l_1^2}, \quad \operatorname{tg}^2 \varphi = \frac{4f^2 x^2}{l_1^4},$$
$$\delta_{cc} = \frac{2l_1}{EE} \tau,$$

wo

(4)

(5)
$$\tau = \frac{l_1}{2f} \arctan \frac{2f}{l_1}$$
.

Für $\frac{f}{l_1}$ = 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 ist z. B. τ = 0,55 0,59 0,63 0,68 0,73 0,79 0,84 0,90.

Das Trägheitsmoment des Scheitelquerschnitts bezeichnen wir mit J_{σ} und rechnen fortan mit den EJ_{c} -fachen Verschiebungen, die wir kurz mit δ bezeichnen. Da

$$(6) M_a = -1, M_b = -x, M_c = y$$

ist, so erhalten wir mit der Bezeichnung

$$(7) J' = J\cos\varphi$$

die Werte

Der an beiden Enden eingespannte Bogen.

$$\begin{aligned} (8) \quad \delta_{aa} &= \int_{-l_{1}}^{+l_{1}} \frac{J_{o}}{J} \, ds = 2 \int_{0}^{l_{1}} \frac{J_{o}}{J'} \, dx, \\ (9) \quad \delta_{bb} &= \int_{-l_{1}}^{+l_{1}} \frac{J_{o}}{J} \, ds = 2 \int_{0}^{l_{1}} x^{2} \frac{J_{o}}{J'} \, dx, \\ (10) \quad \delta_{cc} &= \int_{-l_{1}}^{+l_{1}} \frac{M_{c}^{2}}{J} \frac{J_{o}}{J} \, ds + 2 l_{1} \frac{J_{o}}{F_{o}} \, \tau = 2 \int_{0}^{l_{1}} y^{2} \frac{J_{o}}{J'} \, dx + 2 l_{1} \frac{J_{c}}{F_{o}} \, \tau, \\ (11) \quad \delta_{ac} &= \int_{-l_{1}}^{+l_{1}} \frac{M_{a}}{J} \frac{J_{o}}{J} \, ds = 2 \int_{0}^{l_{1}} y \frac{J_{o}}{J'} \, dx. \end{aligned}$$

Für den Kämpferquerschnitt sei

(12)
$$\left(\frac{J_{\sigma}}{J'}\right)_{x=l_1} = \alpha,$$

ferner werde angenommen, es ändere sich $J_{\scriptscriptstyle \sigma} \, | \, J'$ nach dem Gesetze

(13)
$$\frac{J_c}{J'} = 1 - (1 - \alpha) \frac{x^{\varrho}}{l_1^{\varrho}},$$

wo ρ eine beliebige ganze oder gebrochene, positive oder negative Zahl ist.

Wir erhalten dann zur Bestimmung der Lage der x-Achse die Gleichung

$$0 = \delta_{a\,c} = 2 \int_{0}^{l_{1}} y \frac{J_{c}}{J'} dx = 2 \int_{0}^{l_{1}} \left(c - f \frac{x^{2}}{l_{1}^{2}} \right) \left[1 - (1 - \alpha) \frac{x^{q}}{l_{1}^{q}} \right] dx,$$

aus der sich ergibt

(14)
$$c = \frac{f}{3} \frac{\rho + 1}{\rho + \alpha} \frac{\rho + 3\alpha}{\rho + 3}.$$

Weiter folgt:

(15) $\delta_{aa} = 2l_1 \frac{\rho + \alpha}{\rho + 1},$

(16)
$$\delta_{bb} = \frac{2}{3} l_1^3 \frac{\rho + 3\alpha}{\rho + 3},$$

(17)
$$\delta_{cc} = 2fl_1\left(\frac{1}{5}f\frac{\rho+5\alpha}{\rho+5}-\frac{1}{3}c\frac{\rho+3\alpha}{\rho+3}\right)+2l_1\frac{J_c}{F_c}\tau.$$

Setzt man diese Werte in die Gleichungen (1) ein, so muß man die L und δ_t mit EJ_c multiplizieren. Eine Änderung der Stützlage erzeugt also

(18)
$$X_a = \frac{EJ_c}{\delta_{a\,a}} (\varphi_A - \varphi_B),$$

(19)
$$X_b = \frac{EJ_c}{\delta_{bb}} \left[l_1 \left(\varphi_A + \varphi_B \right) + \eta_A - \eta_B \right],$$

(20)
$$X_{\sigma} = \frac{EJ_{\sigma}}{\delta_{\sigma\sigma}} \left[c_{u}(\varphi_{A} - \varphi_{B}) + \xi_{A} - \xi_{B} \right],$$

und der Einfluß einer gleichmäßigen Erwärmung beträgt

(21)
$$X_a = 0, \quad X_b = 0, \quad X_c = \frac{2 \varepsilon E J_c l_1 t}{\delta_{c \, c}}$$

Am häufigsten wird die freilich wenig empfehlenswerte Annahme eines konstanten Wertes J' gemacht. Dann bedeutet J_c einen Mittelwert der Veränderlichen J', und α wird gleich 1. Man erhält für diesen Fall:

(22)
$$\begin{cases} c = \frac{1}{3}f \\ \delta_{aa} = 2l_1, \quad \delta_{bb} = \frac{2}{3}l_1^3, \quad \delta_{cc} = \frac{8}{45}f^2l_1 - 2l_1\frac{J_c}{F_c}\tau. \end{cases}$$

174. Einfluß einer Einzellast. Eine Einzellast P = 1 erzeugt

$$X_a = \frac{\delta_{ma}}{\delta_{aa}}, \quad X_b = \frac{\delta_{mb}}{\delta_{bb}}, \quad X_c = \frac{\delta_{mc}}{\delta_{cc}}.$$

Die δ_{ma} -Linie der linken Trägerhälfte ist die Momentenlinie eines Freiträgers, der bei C eingespannt ist[•](Fig. 411a) und dessen Belastungslinie die Gleichung

$$M_{\alpha} \frac{J_{c}}{J'} = 1 \cdot \frac{J_{c}}{J'} = 1 - (1 - \alpha) \frac{x^{\varrho}}{l_{1}^{\varrho}}$$

besitzt. Die Differentialgleichung der 8ma-Linie lautet

$$\frac{d^2 \delta_{m\alpha}}{dx^2} = 1 - (1 - \alpha) \frac{x^{\varrho}}{l_1^{\varrho}}.$$

Hieraus folgt

$$\frac{d\delta_{ma}}{dx} = x - \frac{1-\alpha}{\rho+1} \frac{x^{\rho+1}}{l_1^{\rho}} + C_1,$$

$$\delta_{ma} = \frac{x^2}{2} - \frac{1-\alpha}{(\rho+1)(\rho+2)} \frac{x^{\rho+2}}{l_1^{\rho}} + C_1 x + C_2.$$

Die Integrationskonstanten sind durch die Bedingungen gegeben, daß für $x = l_1$ sowohl $\frac{d \delta_{ma}}{dx}$ als auch δ_{ma} Null werden muß.

Man findet

$$C_1 = -l_1 \frac{\rho + \alpha}{\rho + 1}, \quad C_2 = \frac{1}{2} l_1^2 \frac{\rho + 2\alpha}{\rho + 2},$$

und erhält schließlich für $X_a = \delta_{ma} | \delta_{aa}$ die Formel:

(23)
$$\frac{X_{a}}{l_{1}} = \frac{1}{4} \frac{\rho+1}{\rho+\alpha} \frac{\rho+2\alpha}{\rho+2} - \frac{1}{2} \frac{x}{l_{1}} + \frac{1}{4} \frac{\rho+1}{\rho+\alpha} \frac{x^{2}}{l_{1}^{2}} - \frac{1-\alpha}{2(\rho+2)(\rho+\alpha)} \frac{x^{\rho+2}}{l_{1}^{\rho+2}}$$

Ganz in derselben Weise werden die δ_{mb} -Linie und die δ_{mc} -Linie der linken Trägerhälfte als Momentenlinien eines Freiträgers AC aufgefaßt. Die Gleichungen der Belastungslinien lauten

$$\begin{split} M_b \frac{J_c}{J'} &= x - (1 - \alpha) \frac{x^{\varrho+1}}{l_1^{\varrho}} \text{ bzw.} \\ M_c \frac{J_c}{J'} &= y - (1 - \alpha) y \frac{x^{\varrho}}{l_1^{\varrho}} \cdot \end{split}$$

Man erhält:

$$\begin{aligned} \frac{d^2 \delta_{mb}}{dx^2} &= x - (1 - \alpha) \frac{x^{\varrho+1}}{l_1^{\varrho}}, \\ \frac{d \delta_{mb}}{dx} &= \frac{x^2}{2} - \frac{1 - \alpha}{\varrho + 2} \frac{x^{\varrho+2}}{l_1^{\varrho}} + C_1, \\ \delta_{mb} &= \frac{x^3}{6} - \frac{1 - \alpha}{(\varrho + 2)(\varrho + 3)} \frac{x^{\varrho+3}}{l_1^{\varrho}} + C_1 x + C_2; \end{aligned}$$

 $x = l_1$ liefert $\frac{d \,\delta_{mb}}{d \,x} = 0$ und $\delta_{mb} = 0$, folglich ist

$$C_1 = -\frac{1}{2} l_1^2 \frac{\rho + 2\alpha}{\rho + 2}, \quad C_2 = \frac{1}{3} l_1^3 \frac{\rho + 3\alpha}{\rho + 3},$$

und es ergibt sich für $X_b = rac{\delta_{mb}}{\delta_{bb}}$ der Wert

(24)
$$X_b = \frac{1}{2} - \frac{3}{4} \frac{\rho + 3}{\rho + 3\alpha} \frac{\rho + 2\alpha}{\rho + 2} \frac{x}{l_1} + \frac{1}{4} \frac{\rho + 3}{\rho + 3\alpha} \frac{x^3}{l_1^3} - \frac{3(1 - \alpha)}{2(\rho + 2)(\rho + 3\alpha)} \frac{x^{\rho + 3}}{l_1^{\rho + 3}}.$$

Müller-Breslau, Graphische Statik, II, 2. 36

Müller-Breslau, Graphische Statik. II. 2.

Achter Abschnitt. - § 31.

Die Differentialgleichung der δ_{mc} -Linie lautet

$$\frac{d^2 \delta_{me}}{dx^2} = y \left[1 - (1 - \alpha) \frac{x^{\varrho}}{l_1^{\varrho}} \right]$$

= $c \left[1 - (1 - \alpha) \frac{x^{\varrho}}{l_1^{\varrho}} \right] - f \left[\frac{x^2}{l_1^2} - (1 - \alpha) \frac{x^{\varrho+2}}{l_1^{\varrho+2}} \right]$

Da nun für x = 0 auch $\frac{d \circ_{me}}{dx} = 0$ sein muß, so folgt

$$\frac{d\delta_{mc}}{dx} = c \left[x - \frac{1-\alpha}{\rho+1} \frac{x^{\rho+1}}{l_1^{\rho}} \right] - f \left[\frac{x^3}{3l_1^2} - \frac{1-\alpha}{\rho+3} \frac{x^{\rho+3}}{l_1^{\rho+2}} \right],$$

und

Für

$$\begin{split} \delta_{mc} &= c \left[\frac{x^2}{2} - \frac{1 - \alpha}{(\rho + 1)(\rho + 2)} \frac{x^{\rho + 2}}{l_1^{\rho}} \right] \\ &- f \left[\frac{x^4}{12 l_1^2} - \frac{1 - \alpha}{(\rho + 3)(\rho + 4)} \frac{x^{\rho + 4}}{l_1^{\rho + 2}} \right] + C. \end{split}$$

$$x = l_{\tau} \quad \text{muß} \quad \delta_{\tau} = 0 \quad \text{sein}, \quad \text{Man findet daher}$$

$$\begin{split} \delta_{mo} &= c l_1^2 \bigg[\frac{1}{2} \left(1 - \frac{x^2}{l_1^2} \right) - \frac{1 - \alpha}{(\rho + 1) (\rho + 2)} \left(1 - \frac{x^{\rho + 2}}{l_1^{\rho + 2}} \right) \bigg] \\ &- f l_1^2 \bigg[\frac{1}{12} \left(1 - \frac{x^4}{l_1^4} \right) - \frac{1 - \alpha}{(\rho + 3) (\rho + 4)} \left(1 - \frac{x^{\rho + 4}}{l_1^{\rho + 4}} \right) \bigg], \end{split}$$

und

$$\begin{array}{ll} (25) \quad X_{o} = \frac{c l_{1}}{s^{2}} \bigg[\frac{1}{2} \left(1 - \frac{x^{2}}{l_{1}^{2}} \right) - \frac{1 - \alpha}{(\rho + 1) \left(\rho + 2 \right)} \left(1 - \frac{x^{\rho + 2}}{l_{1}^{\rho + 2}} \right) \bigg] \\ & - \frac{f l_{1}}{s^{2}} \bigg[\frac{1}{12} \left(1 - \frac{x^{4}}{l_{1}^{4}} \right) - \frac{1 - \alpha}{(\rho + 3) \left(\rho + 4 \right)} \left(1 - \frac{x^{\rho + 4}}{l_{1}^{\rho + 4}} \right) \bigg], \end{array}$$

wo

(26)
$$s^{2} = 2f\left(\frac{1}{5}f\frac{\rho+5\alpha}{\rho+5}-\frac{1}{3}c\frac{\rho+3\alpha}{\rho+3}\right)+2\frac{J_{e}}{F_{e}}\tau$$
$$c = \frac{f}{3}\frac{\rho+1}{\rho+\alpha}\frac{\rho+3\alpha}{\rho+3}\cdot$$

Eine ähnliche Untersuchung ist bereits in Abteilung 1, § 11, unter e, für den an beiden Enden eingespannten Fachwerkbogen durchgeführt worden, aber nur für $\rho = 1$. Für diesen Sonderfall ergibt sich

(29)
$$X_{c} = \frac{cl_{1}}{k^{2}} \left[1 - \frac{x^{2}}{l_{1}^{2}} 1 - \frac{1 - \alpha}{3} \left(1 - \frac{x^{3}}{l_{1}^{3}} \right) \right] - \frac{fl_{1}}{2k^{2}} \left[\frac{1}{3} \left(1 - \frac{x^{4}}{l_{1}^{4}} \right) - \frac{1 - \alpha}{5} \left(1 - \frac{x^{5}}{l_{1}^{5}} \right) \right],$$

Der an beiden Enden eingespannte Bogen.

wo

$$k^{2} = \frac{f^{2}}{90} - \frac{7 + 42\alpha + 15\alpha^{2}}{1 + \alpha} + 4 \frac{J_{o}}{F_{o}} \tau,$$

(31)
$$c = f \frac{1+3\alpha}{6(1+\alpha)}.$$

Die Formeln (27) und (28) werden etwas einfacher, wenn man den Abstand a der Last P = 1 vom linken Kämpfer einführt; sie gehen dann über in

(32)
$$X_{a} = \frac{l_{1}}{6(1+\alpha)} \left[3\alpha \frac{a^{2}}{l_{1}^{2}} + (1-\alpha) \frac{a^{3}}{l_{1}^{3}} \right],$$

(33)
$$X_{b} = \frac{1}{3\alpha+1} \frac{a^{2}}{l_{1}^{2}} \left[3\alpha + (1-2\alpha) \frac{a}{l_{1}} - 0,5(1-\alpha) \frac{a^{2}}{l_{1}^{2}} \right]^{*}).$$

Die für X_a , X_b , X_c abgeleiteten Formeln gelten im allgemeinen nur für eine links vom Scheitel des Bogens angreifende Last, also nur für positive Werte x. Wird die Last im gleichen Abstande x rechts vom Scheitel aufgebracht, so bleiben X_a und X_c ungeändert, während X_b das Vorzeichen wechselt.

Die lotrechten Seitenkräfte der Kämpferdrücke sind für eine links vom Scheitel angreifende Last

$$(34) B = X_b, \quad A = 1 - X_b.$$

Eine rechts vom Scheitel liegende Last erzeugt

$$(35) B = 1 + X_b, \quad A = -X_b.$$

Verschiebt man also den Zweig C''B der X_b -Linie in senkrechter Richtung um die Strecke 1 in die gestrichelte Lage C'B', so ist die Linie AC'B' die B-Linie; ihre Ordinaten sind durchweg positiv. Ganz ebenso erhält man die A-Linie A'C''B.

Zur Bestimmung der Lagen der Kämpferdrücke eignen sich am besten die Schnittpunkte L und R der Kämpferdrücke mit der x-Achse und der Punkt E der Kämpferdrucklinie. Die Strecken v, v', y_k (Fig. 412) ergeben sich aus den Momentengleichungen

$$X_a + X_b v - P(v - x) = 0, \qquad P = 1$$

$$X_a - X_b v' = 0$$

$$X_a + X_b x - X_c y_k = 0.$$

) Vgl. Abteilung 1, § 11, Nr. 135, Gleich. (2) und Nr. 136, Gleich. (3). 36

 X_a

X

v'=

Man erhält

$$(36) v = \frac{X_a + x}{1 - X_b},$$

(37)

$$(38) y_k = \frac{X_b x + X_a}{X}$$

Fig. 412.

Die Biegungsmomente für die Kämpferquerschnitte, die sogenannten Einspannungsmomente, sind:

(39)	$M_{\mathcal{A}} = X_{c} \left(c_{u} - \tilde{z}_{\mathcal{A}} \right) = X_{c} c_{u} - X_{c} z_{\mathcal{A}},$
(40)	$M_n = X_c - X_{z_n}$

wo

(41)
$$X_c z_A = 1 \cdot a - X_b l_1 - X_a,$$

$$(42) X_c z_B = X_b l_1 - X_a$$

Das Biegungsmoment für den Scheitelquerschnitt ist

$$(43) M_s = X_a - X_c c.$$

Sehr einfach gestaltet sich die Rechnung für den Sonderfall $\alpha = 1$. Man findet dann

(44)
$$X_{a} = \frac{1}{4} \frac{a^{2}}{l_{1}},$$

(45)
$$X_{b} = \frac{1}{4} \frac{a^{2}}{l_{1}^{2}} \left(3 - \frac{a}{l_{1}}\right),$$

$$c = \frac{f}{3}, \quad k^{2} = \frac{16}{45} f^{2} \left(1 + \frac{45}{4} \frac{J_{o}}{F_{o}f^{2}}\tau\right),$$
Der an beiden Enden eingespannte Bogen.

(46)
$$X_{c} = \frac{15}{32} \frac{l_{1}}{f} \vee \left(1 - \frac{x^{2}}{l_{1}^{2}}\right)^{2} = \frac{15}{32} \frac{a^{2}b^{2}}{fl_{1}^{3}} \vee,$$

wo

$$v = \frac{1}{1 + \frac{45}{4} \frac{J_o}{F_o f^2} \tau}$$

(47)

$$y_k = \frac{8f}{15\nu}, \quad v = \frac{l_1^2}{l_1 + a}, \quad v' = \frac{l_1^2}{l_1 + b}$$

(49)
$$X_{o}z_{A} = \frac{b^{*}a}{4l_{1}^{2}}, \quad X_{o}z_{B} = \frac{a^{2}b}{4l_{1}^{2}}.$$

Vgl. Abt. 1, § 11, Nr. 140. Dort ist auch eine einfache zeichnerische Bestimmung der Lagen der Kämpferdrücke angegeben worden. Weiter ist

$$M_{A} = X_{c} \left(\frac{2f}{3} - z_{A} \right) = \frac{ab^{2}}{4l_{1}^{2}} \left(\frac{5}{4} \frac{a}{l_{1}} \vee -1 \right),$$

oder mit $2l_1 = l$:

(50)
$$M_{A} = \frac{ab^{2}}{l^{2}} \left(\frac{5}{2} \frac{a}{l} \nu - 1 \right),$$

(51)
$$M_B = \frac{ba^2}{l^2} \left(\frac{5}{2} \frac{b}{l} v - 1 \right),$$

(52)
$$B = X_b = \frac{1}{4} \frac{a^2}{l_1^2} \left(3 - \frac{a}{l_1}\right),$$

(53)
$$A = 1 - B = \frac{1}{4} \frac{b^2}{l_1^2} \left(3 - \frac{b}{l_1}\right).$$

Die für A, B, M_A , M_B , X_c gefundenen Formeln gelten für jede Lage der Last 1, gleichgültig ob links oder rechts vom Scheitel.

Das Biegungsmoment M_s für den Scheitelquerschnitt ist

(54)
$$M_{s} = X_{a} - X_{c} \frac{f}{3},$$
$$M_{s} = \frac{a^{2}}{2l} \left(1 - \frac{5}{2} \frac{b^{2}}{l^{2}} v \right).$$

Zahlenbeispiel. Es sei $l_1 = 30 \text{ m}$, f = 15 m, $\alpha = 0.25 \text{ m}$. Die Stehblechhöhe des Scheitelquerschnitts sei zu $h_o = 1.0 \text{ m}$ angenommen und die ganze Höhe dieses Querschnitts zu h = 1.10 m geschätzt. Die Kernweite darf dann $k = \frac{5}{12} 1.0$ gesetzt werden, womit

$$\frac{J_c}{F_c} = \frac{J_c}{W_c} \cdot \frac{W_c}{F_c} = \frac{h}{2}k = \frac{5hh_o}{24} = \frac{5,5}{24}$$

Achter Abschnitt, - § 31.

Zu $f \mid l_1 = 0.5$ gehört nach Seite 558 rund $\tau = 0.8$, weshalb

$$\frac{J_c}{F_c}\tau\!=\!\frac{5,\!5}{30}\cdot$$

Die Einflußlinien für X_a , X_b , X_c sollen für $\rho = 1$ und $\rho = 2$ berechnet werden, außerdem noch für den der Voraussetzung eines konstanten $J' = J \cos \varphi$ entsprechenden Fall $\alpha = 0$.

Erster Fall: $\rho = 1$. Nach (32) und (33) ist

$$\begin{aligned} X_{a} &= \frac{5}{1,25} \left(0,75 \, \frac{a^{2}}{l_{1}^{2}} + 0,75 \, \frac{a^{3}}{l_{1}^{3}} \right) = 3 \left(\frac{a^{2}}{l_{1}^{2}} + \frac{a^{3}}{l_{1}^{3}} \right) \\ X_{b} &= \frac{4}{7} \, \frac{a^{2}}{l_{1}^{2}} \left(0,75 + 0,5 \, \frac{a}{l_{1}} - 0,375 \, \frac{a^{2}}{l_{1}^{2}} \right) \\ &= \frac{1}{7} \, \frac{a^{2}}{l_{1}^{2}} \left(3 + 2 \, \frac{a}{l_{1}} - 1,5 \, \frac{a^{2}}{l_{1}^{2}} \right), \end{aligned}$$

nach (31)

$$c = f \frac{1+3\alpha}{6(1+\alpha)} = 3,50 \text{ m}$$

und nach (29)

$$X_{\sigma} = \gamma_1 - \frac{x^2}{l_1^2} \left\{ \gamma_2 - \frac{x}{l_1} \left[\gamma_3 + \frac{x}{l_1} \left(\gamma_4 - \gamma_5 \frac{x}{l_1} \right) \right] \right\},$$

wo

$$\begin{split} \gamma_2 &= \frac{cl_1}{k^2}, \quad \gamma_3 = \frac{cl_1}{k^2} \quad \frac{1-\alpha}{3}, \\ \gamma_4 &= \frac{fl_1}{6k^2}, \quad \gamma_5 = \frac{fl_1}{k^2} \quad \frac{1-\alpha}{10}, \\ \gamma_1 &= \gamma_2 - \gamma_3 - \gamma_4 + \gamma_5 \quad \cdot \\ k^2 &= \frac{f^2}{90} \quad \frac{7+42\alpha+15\alpha^2}{1+\alpha} + 4 \quad \frac{J_c}{F_c} \tau \\ &= 36,8750 + \frac{22}{30} = 37,6, \end{split}$$

mithin

$$\begin{split} X_{c} &= 0,99734 - \frac{x^{2}}{l_{1}^{2}} \Big\{ 2,79255 - \frac{x}{l_{1}} \Big[0,69814 + \frac{x}{l_{1}} \Big(1,99468 - 0,89761 \frac{x}{l_{1}} \Big) \Big] \Big\} \cdot \\ Zweiter \ Fall: \ \rho &= 2. \quad \text{Die Gleichungen (23) und (24) liefern} \\ X_{a} &= 6,25 - 15 \frac{x}{l_{1}} + 10 \frac{x^{2}}{l_{1}^{2}} - 1,25 \frac{x^{4}}{l_{1}^{4}} \\ X_{b} &= 0,5 \quad -\frac{1}{44} \left(37,5 \frac{x}{l_{1}} - 20 \frac{x^{3}}{l_{1}^{3}} + 4,5 \frac{x^{5}}{l_{1}^{5}} \right) \cdot \end{split}$$

Der an beiden Enden eingespannte Bogen.

Nach (14) und (26) wird

$$c = 5 \cdot \frac{3}{5} \cdot \frac{2,75}{2,25} = \frac{11}{3} = 3,67 \text{ m}$$

$$s^{2} = 30 \left(3 \frac{3,25}{7} - \frac{11}{9} \frac{2,75}{5} \right) + 2 \frac{5,5}{30} = 21,986,$$

und nach (25)

$$\begin{split} X_{o}s^{2} &= 55\left(1 - \frac{x^{2}}{l_{1}^{2}}\right) - 6,875\left(1 - \frac{x^{4}}{l_{1}^{4}}\right) - 37,5\left(1 - \frac{x^{4}}{l_{1}^{4}}\right) \\ &+ 11,25\left(1 - \frac{x^{6}}{l_{1}^{6}}\right) \\ X_{o} &= \gamma_{1} - \frac{x^{2}}{l_{1}^{2}} \left[\gamma_{2} - \frac{x^{2}}{l_{1}^{2}}\left(\gamma_{3} - \gamma_{4}\frac{x^{2}}{l_{1}^{2}}\right)\right], \end{split}$$

wo

 $\gamma_1 = 0.99495, \quad \gamma_2 = 2.50159, \quad \gamma_3 = 2.01833, \quad \gamma_4 = 0.51169.$ Dritter Fall: $\alpha = 1.$

$$\begin{aligned} X_{a} &= \frac{l_{1}}{4} \frac{a^{2}}{l_{1}^{2}} = 7,5 \frac{a^{2}}{l_{1}^{2}} \\ X_{b} &= \frac{1}{4} \frac{a^{2}}{l_{1}^{2}} \left(3 - \frac{a}{l_{1}}\right) \\ \nu &= \frac{1}{1 + \frac{45}{4}} \frac{J_{c}}{F_{c}f^{2}} \tau} = \frac{1}{1 + \frac{45}{4} \cdot \frac{5,5}{30 \cdot 15^{2}}} = 0,9908 \\ X_{c} &= \frac{15}{32} \frac{l_{1}}{f} \nu \left(1 - \frac{x^{2}}{l_{1}^{2}}\right)^{2} = 0,9290 \left(1 - \frac{x^{2}}{l_{1}^{2}}\right)^{2}. \end{aligned}$$

Die Ergebnisse der Rechnung sind in den folgenden Tabellen zusammengestellt worden.

T		Tr.			٠	
V			- 1	30		0
<u> </u>	-				4	-
- 11		-		-	-	~

$\frac{x}{l_1}$	$\alpha = \rho = 1$	$\alpha = 1$	
$0 \\ 0,2 \\ 0,4 \\ 0,6$	6,0000 3,4560 1,7280 0,6720	6,2500 3,6480 1,8180 0,6880	7,5000 4,8000 2,7000 1,2000
0,6	0,6720	0,6880 0,1380	0,3000

x	α=	$\alpha = 0,25$				
l_1	$\rho = 1$	$\rho = 2$	α = 1			
0	0,5000	0,5000	0,5000			
0,2	0,3328	0,3331	0,3520			
0,4	0,1882	0,1872	0,2160			
0,6	0,0814	0,0789	0,1040			
0,8	0,0191	0,0174	0,0280			

 X_b - Linie

377		r •		
X	-]	1	nı	e

x	α=	~ — 1	
l_1	$\rho = 1$	$\rho = 2$	a _ 1
0	0,9973	0,9950	0,9290
0,2	0,8941	0,8981	0,8562
0,4	0,6371	0,6443	0,6555
0,6	0,3315	0,3321	0,3805
0,8	0,0904	0,0865	0,1204
c =	3,50 m	3,67 m	5,00 m

Die Unterschiede der für $\rho = 1$ und $\rho = 2$ gewonnenen Zahlen sind für die Praxis belanglos. Daß die bequeme Annahme $\alpha = 1$ nur für Überschlagsrechnungen zu empfehlen ist, haben wir bereits am Schluß des § 11 der Abteilung 1 gezeigt.

Die folgende Tabelle enthält noch die zur Festlegung der Kämpferdrücke dienenden Strecken y_k , v, v' für $\rho = 1$ und $\rho = 2$. Die Kämpferdruckrichtungen des Falles $\alpha = 1$ werden am sehnellsten zeichnerisch bestimmt. Ein Beispiel hierzu findet sich in Abteilung 1 auf Tafel 6.

			α =	0,25		
-x	T TRANSPORT	$\rho = 1$			$\rho = 2$	
lı	y re	l v	v v	y k	- 0	v'
0	6,02	12,00	12,00	6,28	12,50	12,50
0,2	6,10	14,17	10,38	6,29	14.47	10,95
0,4	6,26	16,91	9,18	6,31	17,00	9,71
0.6	6,45	20,33	8,26	6.35	20,29	8,72
0,8	6,66	24,61	7,54	6,42	24,57	7,93
	m	m	m	m	m	m

Für den Fall $\rho = 1$ haben wir noch die Ordinaten der Einflußlinien für M_A , M_B und M_S in der nachstehenden Tabelle zusammengestellt.

Der an beiden Enden eingespannte Bogen.

$\frac{x}{l_1}$	$M_{\mathcal{A}}$	M_B	M_S
$0,2 \\ 0,4 \\ 0,6 \\ 0,8 \\ 1,0$	$\begin{array}{r} -4,243 \\ -5,074 \\ -3,299 \\ -0,278 \\ +2,469 \end{array}$	+ 0,611 + 2,042 + 3,409 + 3,754 + 2,469	$\begin{array}{r} -0,173 \\ -0,488 \\ -0,502 \\ +0,327 \\ +2,509 \end{array}$

Die Zahlen der mit M_B überschriebenen Spalte geben, von unten nach oben gelesen, die Ordinaten der M_A -Linie rechts vom Scheitel an.

Für $\alpha = 1$ erhält man die folgenden Werte M_s :

 $\begin{array}{l} \frac{a}{l_1} = & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\ M_s = & -0.301 & -0.703 & -0.577 & +0.519 & +2.855. \end{array}$

175. Die Einflußlinie für die Kernpunktmomente M° und M^{*} findet man nach Festlegung der den verschiedenen Lagen der Last P = 1 entsprechenden Kämpferdruckrichtungen A'E und B'E (Fig. 413) mit Hilfe der Formeln

 $(55) M^o = X_c \eta_o, \quad M^u = X_c \eta_u,$

wo η_o und η_u die in senkrechter Richtung gemessenen Abstände der Punkte o und u vom Linienzuge A'EB' sind. Unterhalb dieses Linienzuges liegenden Punkten o und u entsprechen positive Momente M^o und M^u .

Die Querkraft Q für einen Querschnitt links oder rechts von P ist gleich der Projektion des Kämpferdruckes K_i bzw. des Kämpferdruckes K_r auf den Querschnitt.

Die von den Kämpferdrücken K_l und K_r umhüllte Linie heißt die Kämpferdruck-Umhüllungslinie; Fig. 414.

176. Wirkung einer gleichförmigen ständigen Belastung. Sind \mathfrak{F}_a und \mathfrak{F}_c die Inhalte der Einflußflächen für X_a und X_c , so ist der Einfluß einer ständigen gleichförmigen Belastung

$$X_{ag} = g \mathfrak{F}_a, \quad X_{bg} = 0, \quad X_{cg} = g \mathfrak{F}_c$$

(56)
$$M_g^o = g \mathfrak{F}_a - g \mathfrak{F}_c y_o - g \frac{x}{2},$$

(57)
$$M_g^u = g \mathfrak{F}_a - g \mathfrak{F}_c y_u - g \frac{x^2}{2},$$

(58)
$$Q_g = Q_{0g} \cos \varphi - X_{eg} \sin \varphi = gx \cos \varphi - g \mathcal{F}_e \sin \varphi.$$

Greift die Belastung unmittelbar am Bogen an, so ist nach (23):

$$\mathfrak{F}_{a} = 2l_{1}^{2} \left[\frac{1}{4} \frac{\rho+1}{\rho+\alpha} \frac{\rho+2\alpha}{\rho+2} - \frac{1}{4} + \frac{1}{12} \frac{\rho+1}{\rho+\alpha} - \frac{1-\alpha}{2(\rho+2)(\rho+3)(\rho+\alpha)} \right],$$
(59)
$$\mathfrak{F}_{a} = \frac{l_{1}^{2}}{12} \frac{\rho+3\alpha}{\rho+3} \frac{2+\rho(\rho+3)}{(\rho+2)(\rho+\alpha)}$$

Der an beiden Enden eingespannte Bogen.

und nach (25)

(60)
$$\mathfrak{F}_{o} = \frac{2l_{1}^{2}}{s^{2}} \left[c \left(\frac{1}{3} - \frac{1-\alpha}{(\rho+1)(\rho+3)} \right) - f \left(\frac{1}{15} - \frac{1-\alpha}{(\rho+3)(\rho+5)} \right) \right];$$

c und s^2 sind bestimmt durch die Gleich. (14) und (26).

Man kann aber auch die zur Darstellung der Einflußlinien für X_a und X_c gerechneten Ausdrücke zur Gewinnung von \mathfrak{F}_a und \mathfrak{F}_b verwerten. So fanden wir für $l_1 = 30$ m, f = 15 m, $\alpha = 0.25$ und $\rho = 2$:

$$X_c = 0,99495 - 2,50189 \frac{x^2}{l_1^2} + 2,01833 \frac{x^4}{l_1^4} - 0,51169 \frac{x^6}{l_1^6}$$

und erhalten

$$\mathfrak{F}_{o} = 2l_{1}\left(0,99495 - \frac{2,50189}{3} + \frac{2,01833}{5} - \frac{0,51169}{7}\right) = 29,5 \text{ m}.$$

177. Einfluß einer gleichförmigen Verkehrslast. Ist \mathcal{F}°_{+} der Inhalt des positiven Teiles der M° -Fläche, so erzeugt eine gleichförmige Verkehrslast p:

$$_{max}M_p^o = p \mathfrak{F}^o.$$

Hat man nun mit Hilfe von (56) das Moment M_q^o auf die Form

$$M_g^o = g C$$

gebracht, so erhält man

$$_{uax}M^{o} = gC + p\mathfrak{F}^{o}$$

und findet nun ohne weiteres

$$_{m}M^{\circ} = q C - p \mathfrak{F}^{\circ}, \qquad \qquad q = g + p.$$

Man könnte auch zuerst

$$_{min}M_p^o = -p\mathfrak{F}^o$$

bestimmen, hierauf

$$_{min}M^o = g C - p \mathfrak{F}^o$$

und würde dann erhalten

$$max M^o = q C + p \mathcal{F}^o$$
.

Auf dieselbe Weise berechnet man die M^{*} und Q.

Die Einführung einer gleichförmigen Verkehrslast geschieht stets auf Grund einer Schätzung. Aus diesem Grund zieht es Verfasser vor, mit einer unmittelbar am Bogen angreifenden Belastung zu rechnen. Die ganze Untersuchung gewinnt dann an Einfachheit und Übersichtlichkeit. Man berechne zunächst X_a , X_b , X_c für eine von B aus eine beliebige Strecke ξ bedeckende Last und trage diese Werte unter dem Lastende E als Ordinaten auf. In derselben Weise verfahre man mit

dem Stützenwiderstande A. Man erhält vier Kurven, welche die zweite X_a -Linie, die zweite X_b -Linie, die zweite X_c -Linie und die zweite A-Linie genannt und zunächst als gegeben angesehen werden mögen. Weiter zeichne man die Kämpferdruck-Umhüllungslinie.

Der an beiden Enden eingespannte Bogen.

Werden nun die Grenzwerte des Momentes M° gesucht, so lege man durch den Punkt o zwei Tangenten an die Kämpferdruck-Umhüllungslinie und bestimme deren Schnittpunkte E und E' mit der Kämpferdrucklinie. Lasten, welche durch E oder E' gehen, erzeugen $M^{\circ} = o$. Wird nur die Strecke EE' mit p belastet, so entsteht $_{max}M_{p}^{\circ}$. Die außerhalb EE' aufgebrachte Belastung erzeugt $_{min}M_{p}^{\circ}$.

In dem in Fig. 415 dargestellten Falle gibt es nur eine Belastungsscheide E. Nach Ermittlung der zur belasteten Strecke ξ gehörigen Werte X_a , X_b , X_c findet man, wenn der Punkt E links vom Scheitel liegt, im Abstande ξ' vom Scheitel,

(61)
$$_{min}M_p^o = X_a + X_b x - X_c y_o - p\xi'\left(x - \frac{\xi}{2}\right).$$

Liegt E rechts vom Scheitel des Bogens, so entsteht

(62)
$${}_{min}M_p^o = X_a + X_b x - X_c y_o.$$

Man könnte auch die zweite M_A -Linie zeichnen und würde dann

erhalten, gleichgültig ob der Punkt E rechts oder links vom Scheitel liegt. Die Berechnung der zweiten M_A -Linie ist aber umständlicher wie die Berechnung der zweiten X_a -Linie.

In derselben Weise bestimmt man den Einfluß der Belastung einer etwa links von *o* auftretenden negativen Beitragstrecke.

Hat man

$$_{min}M_p^o = -C'p$$

und nach Nr. 176

$$M_a^\circ = Cg$$

gefunden, so findet man

$$_{\min}M^{\circ} = Cg - C'p,$$

und hierauf ohne weiteres

$$_{max}M^{\circ} = Cq + C'p, \qquad q = g + p.$$

Ganz ebenso werden die M^* berechnet.

Um die Querkraft $_{max}Q$ für den mittleren Querschnitt C des Feldes F_1F_2 zu ermitteln, legt man parallel mit F_1F_2 an die Kämpferdruckumhüllungslinie eine Tangente. Schneidet diese die Kämpferdrucklinie in einem innerhalb der Stützweite gelegenen Punkte E, Fig. 416, so entsteht $_{max}Q_p$, wenn der Bogen nur zwischen C und E mit p belastet wird. Man bestimmt die zu dieser Belastung gehörigen Widerstände Aund X_c des linken Widerlagers mit Hilfe der gezeichneten Kurven und findet

$$_{\max}Q_p = A\cos\varphi - X_c\sin\varphi.$$

Fig. 416.

Lnegt E außerhalb der Stützweite, so reicht die die Querkraft $_{max}Q$ erzeugende Belastung vom Querschnitte C bis zum rechten Wiederlager.

Es erübrigt noch, die Berechnung von X_a , X_b und X_c infolge der gleichmäßigen Belastung der Strecke ξ , Fig. 417, zu zeigen. Hierbei ist zu beachten, daß die in Nr. 174 abgeleiteten Formeln für eine links vom Scheitel im Abstande x vom Scheitel angreifende Last 1 gelten und nicht etwa in der Weise ganz allgemein auf Lasten rechts vom Scheitel übertragen werden dürfen, daß + x durch - x ersetzt wird.

Wir nehmen deshalb zunächst an, es sei links vom Scheitel S eine Strecke ξ' gleichförmig mit p f. d. Längeneinheit belastet, bezeichnen die hierbei hervorgerufenen Werte von X_a , X_b , X_c mit X_a' , X_b' , X_c' und berechnen diese Werte durch Integration der für den Einfluß einer Einzellast gewonnenen Ausdrücke.

So erhielten wir z. B. für $l_1 = 30$ m, f = 15 m, $\rho = 2$ und $\alpha = 0.25$:

und finden hieraus

$$\begin{split} X_{a}' &= p l_{1} \left(6,25 \frac{\xi'}{l_{1}} - \frac{15}{2} \frac{\xi'^{2}}{l_{1}^{2}} + \frac{10}{3} \frac{\xi'^{3}}{l_{1}^{3}} - \frac{1,25}{5} \frac{\xi'^{5}}{l_{1}^{5}} \right), \\ X_{b}' &= p l_{1} \left[0,5 \frac{\xi'}{l_{1}} - \frac{1}{44} \left(\frac{37,5}{2} \frac{\xi'^{2}}{l_{1}^{2}} - \frac{20}{4} \frac{\xi'^{4}}{l_{1}^{4}} + \frac{4,5}{6} \frac{\xi'^{6}}{l_{1}^{6}} \right) \right], \\ X_{c}' &= p l_{1} \left(\gamma_{1} \frac{\xi'}{l_{1}} - \frac{\gamma_{2}}{3} \frac{\xi'^{3}}{l_{1}^{3}} + \frac{\gamma_{3}}{5} \frac{\xi'^{5}}{l_{1}^{5}} - \frac{\gamma_{4}}{7} \frac{\xi'^{7}}{l_{1}^{7}} \right). \\ 1 &= 0,99495, \quad \gamma_{2} = 2,50159, \quad \gamma_{3} = 2,01833, \quad \gamma_{4} = 0,51169. \end{split}$$

Nach Berechnung der zu $\xi' = l_1$ gehörigen Werte

$$X'_{aA} = 55,00 p, \quad X'_{bA} = 5,11 p, \quad X'_{cA} = 14,75 p,$$

gelangt man zu den in den Figuren 417a, b, c dargestellten zweiten Linien für X_a , X_b , X_c . Die Belastung der Strecke $l_1 + \xi'$ erzeugt nämlich

$$X_a = X'_{a A} + X'_{a}, \quad X_c = X'_{c A} + X'_{c},$$

und die Belastung der Strecke $l_1 - \xi'$:

$$X_a = X'_{a'A} - X'_{a'}, \quad X_c = X'_{c'A} - X'_{c'}.$$

Die gleichzeitige Belastung der beiden links und rechts vom Scheitel liegenden gleichlangen Strecken ξ' erzeugt $X_b = 0$. Die Belastung der Strecke $l_1 - \xi'$ ruft also dasselbe X_b hervor, wie die Belastung der Strecke $l_1 + \xi'$, nämlich

$$X_b = X'_{b\,\scriptscriptstyle A} + X'_b.$$

Die Ordinaten der X_b -Linie sind durchweg negativ.

Im Falle $\rho = 1$ geht man bei der Berechnung von X_a und X_b zweckmäßiger von den Formeln (32) und (33) aus. Sie liefern für $\xi < l_1$ die Gleichungen

(64)
$$X_{\alpha} = \frac{p l_1^2}{6(1+\alpha)} \left[\alpha \frac{\xi^3}{l_1^3} + \frac{1-\alpha}{4} \frac{\xi^4}{l_1^4} \right],$$

(65)
$$X_b = -\frac{pl_1}{3\alpha+1} \left[\alpha \frac{\xi^3}{l_1^3} + \frac{1-2\alpha}{4} \frac{\xi^4}{l_1^4} - 0, 1 (1-\alpha) \frac{\xi^5}{l_1^5} \right]$$

Diese Formeln gelten auch für $\alpha = 1$.

Der lotrechte Widerstand A der linken Stütze ist, solange nur die rechte Trägerhälfte belastet wird,

 $A = -X_b.$

Ist $\xi > l_1$, so wird

$$4 = p\xi' - X_b.$$

Hieraus folgt die in Fig. 417d dargestellte zweite A.Linie.

Sonderfall $\alpha = 1$. Zur Berechnung der Momente M° und M^{*} benutzt man zweckmäßig Gleich. (63), weil sich für die zweite $M_{\mathcal{A}}$ -Linie aus (50) die einfache Formel

$$M_{A} = p \int_{0}^{2} \frac{(l-b) b^{2} [5 \vee (l-b) - 2l]}{2l^{3}} db,$$
$$M_{A} = \frac{p l^{2}}{12} \cdot \frac{\xi^{3}}{l^{3}} \left[\left(10 - 15 \frac{\xi}{l} + 6 \frac{\xi^{2}}{l^{2}} \right) \vee -4 + 3 \frac{\xi}{l} \right]$$

ableiten läßt.

(66)

Zu $\xi = l$ gehört $M_A = \frac{pl^2}{12}(\gamma - 1)$. Der Einfluß einer gleich-

förmigen ständigen Belastung g ist daher

(67)
$$M_{Ag} = -\frac{gl^2}{12} (1-\gamma).$$

Für die zweite A-Linie erhält man durch Integration von (53) die Gleichung

(68)
$$A = p l \frac{\xi^3}{l^3} \left(1 - \frac{1}{2} \frac{\xi}{l} \right),$$

und für die zweite X_c -Linie aus (46)

(69)
$$X_{c} = \frac{pl^{2}}{8f} \vee \left(10 - 15 \frac{\xi}{l} + 6 \frac{\xi^{2}}{l^{2}}\right) \frac{\xi^{3}}{l^{3}}.$$

Eine gleichförmige ständige Belastung g erzeugt

(70)
$$X_c = \frac{gl^2}{8f} \nu.$$

Bei Berechnung des Einflusses einer gleichmäßigen Temperaturänderung setze man $\gamma = 1$. Man erhält

$$X_{ct} = \frac{45}{4} \frac{\varepsilon E J_c t}{f^2} \cdot$$

178. Beliebig geformter symmetrischer Bogen. Die Querschnitte seien bekannt, die Werte $\frac{J_e}{J'}$ also gegebene Größen.

Man nimmt die wagerechte x-Achse zunächst willkürlich an, legt sie z. B. durch die Endpunkte A und B des Bogens, Fig. 418, berechnet — am besten mittels der Simpsonschen Formel — die Integrale

$$\int_{0}^{l_1} y' \frac{J_c}{J'} dx \text{ und } \int_{0}^{l_1} \frac{J_c}{J'} dx,$$

Müller-Breslau, Graphische Statik. II. 2.

Der an beiden Enden eingespannte Bogen.

und findet dann

$$c_u = \frac{\int\limits_0^{l_1} y' \frac{J_o}{J'} dx}{\int\limits_0^{l_1} \frac{J_o}{J'} dx}.$$

Damit ist das der Bedingung $\delta_{ac} = \int y \frac{J_c}{J'} dx = 0$ genügende Achsenkreuz (xy) bestimmt. Nun berechnet man

$$\delta_{cc} = 2 \int_{0}^{l_1} y^2 \frac{J_c}{J'} dx + 2 \int_{0}^{l_1} \frac{J_c dx}{F \sec \varphi} \cdot$$

Für das zweite, nebensächliche Glied wird man meistens den auf Seite 599 für den Parabelbogen gefundenen Wert $2l_1 \frac{J_c}{F_c} \tau$ setzen dürfen. Sonst kann man auch dieses Glied mit der Simpsonschen Formel berechnen.

Nun werden die Biegungslinien δ_{ma} , δ_{mb} , δ_{mc} für die linke Trägerhälfte als Seillinien gezeichnet. Das statisch bestimmte Hauptsystem ist ein bei A eingespannter Freiträger AC. Zur δ_{ma} -Linie gehört die $\frac{J_c}{J'}$ -Linie als Belastungslinie. Die Polweite sei \mathfrak{H}_a , die Ordinate der Seillinie η_a . Dann ist

und

$$X_a = \frac{1 \cdot \delta_{ma}}{\delta_{aa}} = \frac{1 \cdot \mathfrak{F}_a \eta_a}{\delta_{aa}}$$

l1

 $\delta_{ma} = \mathfrak{H}_{a} \mathfrak{n}_{a}$

$$\delta_{aa} = 2 \int_{0} \frac{1}{J'} dx.$$

Wählt man $\mathfrak{H}_a = \mathfrak{e} \delta_{aa}$, so erhält man das Moment

$$X_a = 1 \cdot \eta_a \cdot \varepsilon.$$

Die Zahl ε darf beliebig gewählt werden. Die η_{α} sind Längen und werden mit dem Maßstabe der Trägerzeichnung gemessen. Auch die Polweite \mathfrak{H}_{α} und die Inhalte der Streifen, in welche man die Belastungsfläche zerlegt, sind Längen; sie dürfen in einem beliebigen Maßstabe aufgetragen werden. Führt man die Streifenhöhen als Lasten ein, so muß man die Polweite durch die Streifenbreite teilen.

Nun wird die $\frac{J_c}{J'}x$ -Linie als Belastungslinie aufgefaßt. Die zugehörige Seillinie ist die X_b -Linie; ihr Maßstab ist durch die Bedingung bestimmt, daß für x = 0 sich $X_b = 0.5$ ergeben muß.

Die zur $\frac{J_c}{J'}y$ -Linie gehörige Seillinie, deren Polweite \mathfrak{H}_c und deren Ordinate η_c sei, liefert

$$X_{o} = \frac{1 \cdot \delta_{mc}}{\delta_{cc}} = \frac{\mathfrak{H}_{o} \cdot 1 \cdot \eta_{o}}{\delta_{cc}} \cdot$$

Soll die X.-Linie im Maßstabe

Krafteinheit = Strecke u

dargestellt werden, so muß man, um

$$X_c = \eta_c$$

zu erhalten,

$$\mathfrak{H}_{o} = \frac{\delta_{oo}}{u}$$

wählen. Die Einheit von \mathfrak{H}_{c} ist das Quadrat einer Länge, z. B. m²; dies ist auch die Einheit des Inhaltes der Streifen, in welche man die Belastungsfläche zerlegt. Werden die Streifenhöhen als Gewichte aufgefaßt, so muß \mathfrak{H}_{c} durch die Streifenbreite geteilt werden.

Die weitere Untersuchung des Trägers erfolgt nach den in Nr. 174 bis 177 beschriebenen Verfahren. Selbstverständlich kann man aus den zeichnerisch gewonnenen Einflußlinien nicht Formeln für die einer gleichförmigen Belastung entsprechenden zweiten Linie für X_a , X_b , X_c ableiten. Diese Linien müssen durch Bestimmung der Flächeninhalte der Einflußlinien gewonnen werden. Zerlegt man z. B. die rechte Hälfte der X_c -Linie in Streifen, deren Inhalte gleich \mathfrak{F}_1 , \mathfrak{F}_2 , \mathfrak{F}_3 , \ldots sind, so erhält man als Ordinaten der zweiten X_c -Linie für p = 1 (Fig. 418d) in den Teilpunkten 1, 2, 3, \ldots der Reihe nach

$$X_c = \mathfrak{F}_1, \quad X_c = \mathfrak{F}_1 + \mathfrak{F}_2, \quad X_c = \mathfrak{F}_1 + \mathfrak{F}_2 + \mathfrak{F}_3, \text{ usw.}$$

Hat man die Linie für die rechte Trägerhälfte gezeichnet, so findet man die Linie für die linke Hälfte nach dem in Figur 417 dargestellten Verfahren.

Zahlenbeispiel. Wir teilen noch die Zahlenrechnung für ein gelenkloses, zwischen starre Widerlager gespanntes Tonnengewölbe mit, dessen Breite, senkrecht zur Bildfläche gemessen, gleich 1 ist. Die Abmessungen sind in die Figur 419 eingetragen worden. Die Gewölbestärke sei d_r , im Scheitel d_c . Daher ist

Den Teilpunkten 0, 1, 2, 3, 4 entsprechen die in der folgenden Tabelle zusammengestellten Werte.

	d	sec φ	$rac{J_c}{J'}$	y'	$y' \frac{J_o}{J'}$	y	$y \frac{J_o}{J'}$	$y^2 \frac{J_o}{J'}$	x	$x \frac{J_c}{J'}$	$d \sec \varphi$	$rac{J_c}{F\sec \varphi}$
01234	1,2 1,4 1,6 1,8 2,0	1,000 1,011 1,048 1,120 1,250	$1,00 \\ 0,64 \\ 0,44 \\ 0,33 \\ 0,27$	$8,00 \\ 7,55 \\ 6,16 \\ 3,72 \\ 0$	$8,000 \\ 4,832 \\ 2,710 \\ 1,228 \\ 0$	$^{+1,75}_{-0,09}_{-2,53}_{-6,25}$	+1,75 +0,83 -0,04 -0,83 -1,69	3,06 1,08 0,00 2,10 10,56	$ \begin{array}{c} 0 \\ 6 \\ 12 \\ 18 \\ 24 \end{array} $	$0\\3,84\\5,28\\5,94\\6,48$	$1,20 \\ 1,42 \\ 1,68 \\ 2,02 \\ 2,50$	$\begin{array}{c} 0,120\\ 0,101\\ 0,086\\ 0,071\\ 0,058 \end{array}$

Weiter ergibt sich

$$2\int_{0}^{l_{1}} y^{2} \frac{J_{c}}{J'} dx = 2 \cdot \frac{6,0}{3} [3,06 + 4 (1,08 + 2,10) + 10,56] = 105,36 \text{ m}^{3},$$

$$2\int_{0}^{l_{1}} \frac{J_{c}}{F \sec \varphi} dx = 2 \cdot \frac{6,0}{3} [0,120 + 4 (0,101 + 0,071) + 2 \cdot 0,086 + 0,058] = 4,15 \text{ m}^{3},$$

$$\delta_{cc} = 105,36 + 4,15 = 109,51 \text{ m}^{3}.$$

Die in der Tabelle angegebenen Werte $\frac{J_c}{J'}$, $x \frac{J_c}{J'}$ und $y \frac{J_c}{J'}$ genügen zur Festlegung der drei Belastungslinien, deren Seillinien die Einflußlinien für X_a , X_b , X_c sind.

Der an beiden Enden eingespannte Bogen,

Die zu unserer allgemeinen Untersuchung gehörenden Figuren 418 a, b, c sind maßstäblich für das vorliegende Zahlenbeispiel gezeichnet. Die Polweiten sind:

$$\mathfrak{H}_{a} = \frac{1}{2} \delta_{aa} = \frac{1}{2} \cdot 2 \cdot 12,06 = 12,06 \text{ m}$$

und

$$\mathfrak{H}_{o} = \frac{1}{10} \delta_{oo} = \frac{1}{10} 109,51 = 10,951 \,\mathrm{m}^2,$$

wobei die Krafteinheit 1 t = 10 m gewählt wurde.

Es sei noch erwähnt, daß man das über den Kämpferfugen stehende Mauerwerk einfach zur lotrechten Belastung des Widerlagers rechnen darf. Bezeichnet dann z die Höhe der gesamten durch gleichschweres Mauerwerk ersetzten Belastung, γ das Einheitsgewicht des Mauerwerks, so erhält man z. B. (Fig. 420):

$$X_c = \gamma \int z \eta_c dx.$$

Das Integral ist dabei nur für die Weite der inneren Laibung zu berechnen.

Ausführliche Untersuchungen über Tonnengewölbe wird der III. Band enthalten.

Anhang.

Tabelle der Zahlen*)

	x	x ²	m	m^2
$\omega_R =$	1	12	n	n^2
	x	x ³	112	m ³
$\omega_D =$	1	l ³	n .	n ³
	x	x^4	m	m^4
$\omega_P =$	1	14	n	n^4
$\omega_P''=$	ω_R ($1 + \omega_{R}$).	
l =	nl	x =	mλ.	

Knoten- punkte m	ω _R	ω _D	ω _P	ω <i>p</i> ".	Knoten- punkte <i>m</i>					
n=5										
$\frac{1}{2}$	$0,1600 \\ 0,2400$	$0,1920 \\ 0,3360$	$0,1984 \\ 0,3744$	$0,1856 \\ 0,2976$	$\begin{vmatrix} 1\\2 \end{vmatrix}$					
3 4	$0,2400 \\ 0,1600$	$0,3840 \\ 0,2880$	$0,4704 \\ 0,3904$	$0,2976 \\ 0,1856$	$\frac{3}{4}$					
		<i>n</i> =	= 6							
$\begin{array}{c}1\\2\end{array}$	$0,1389 \\ 0,2222$	0,1620 0,2963	$0,1659 \\ 0,3210$	0,1582 0,2716	$\frac{1}{2}$					
3	0,2500	0,3750	0,4375	0,3125	3					
4 5	$0,2222 \\ 0,1389$	$0,3704 \\ 0,2546$	$0,4691 \\ 0,3511$	$0,2716 \\ 0,1582$	$4 \\ 5$					
		<i>n</i> =	= 7							
$\begin{array}{c c}1\\2\end{array}$	$0,1224 \\ 0,2041$	$0,1399 \\ 0,2624$	0,1424 0,2791	$0,1374 \\ 0,2457 $	$\frac{1}{2}$					
$\frac{3}{4}$	$0,2449 \\ 0,2449$	$0,3499 \\ 0,3848$	$0,3948 \\ 0,4648$	$0,3049 \\ 0,3049$	$\frac{3}{4}$					
5 6	$0,2041 \\ 0,1224$	$0,3499 \\ 0,2274$	0,4540 0,3174	0,2457 0,1374						

*) Ergänzung der Tabelle auf Seite 105 für Träger mit gleichlangen Feldern.

Anhang.

Knoten- punkte <i>m</i>	ω _R	ω _D	ω _P	ω _P "	Knoten- punkte m
a statistica a		<i>n</i> =	= 8		
$\begin{array}{c}1\\2\end{array}$	$0,1094 \\ 0,1875$	$0,1230 \\ 0,2344$	$0,1248 \\ 0,2461$	$0,1213 \\ 0,2227$	$\frac{1}{2}$
3 4 5	$0,2344 \\ 0,2500 \\ 0,2344$	0,3223 0,3750 0,3809	$0,3552 \\ 0,4375 \\ 0,4724$	0,2893 0,3125 0,2893	3 4 5
6 7	$0,1875 \\ 0,1094$	$0,3281 \\ 0,2051$	$0,4336 \\ 0,2888$	0,2227 0,1213	6 7
		<i>n</i> =	= 9		
$\begin{array}{c c}1\\2\end{array}$	0,0988 0,1728	0,1097 0,2112	0,1110 0,2198	0.1085	1 2
$\frac{3}{4}$	$0,2222 \\ 0,2469$	0,2963 0,3567	0,3210 0,4054	0,2716 0,3079	- 3 4
5 6	0,2469 0,2222	$0,3841 \\ 0,3704$	0,4603 0,4691	0,3079 0,2716	5 6
7 8	$0,1728 \\ 0,0988$	$0,3073 \\ 0,1866$	$0,4118 \\ 0,2646$	0,2027 0,1085	7 8
		n =	: 10		
$\frac{1}{2}$	0,0900 0,1600	0,0990 0,1920	$0,0999 \\ 0,1984$	0,0981 0,1856	$\frac{1}{2}$ ·
3 4	$0,2100 \\ 0,2400$	0,2730 0,3360	$0,2919 \\ 0,3744$	0,2541 0,2976	$\frac{3}{4}$
õ	0,2500	0,3750	0,4375	0,3125	5
6 7	$0,2400 \\ 0,2100$	0,3840 0,3570	$0,4704 \\ 0,4599$	$0,2976 \\ 0,2541$	6 7
8 9	0,1600 0,0900	0,2880 0,1710	$0,3904 \\ 0,2439$	0,1856 0,0981	8 9
"		n =	11	"	
1	0,0826	0,0902	0.0908	0,0895	1 2
3	0,1983	0,2524	0,2672	0,2377	3
4 5	0,2314	0,3156	0,5462	0,2850	4 5
67	0,2479 0,2314	0,3832 0,3787	0,4569 0,4724	0,3094 0,2850	6 7
8 9	0,1983	0,3426 0.2705*)	0,4475	0,2377	8
10	0,0826	0,1578	0,2261	0,0895	10

*) Die schräggedruckte 5 ist durch Erhöhung aus 4 entstanden.

Anhang.

Knoten- punkte <i>m</i>	ω _R	ω _D	ωρ	ω _P "	Knoten- punkte m				
		<i>n</i> =	= 12						
$\frac{1}{2}$	$0,0764 \\ 0,1389$	$0,0828 \\ 0,1620$	0,0833 0,1659	$0,0822 \\ 0,1582$	$\begin{vmatrix} 1\\ 2 \end{vmatrix}$				
$3\\4$	$0,1875 \\ 0,2222$	$0,2344 \\ 0,2963$	$0,2461 \\ 0,3210$	0,2227 0,2716	3 4				
5 6 7	$0,2431 \\ 0,2500 \\ 0,2431$	$0,3443 \\ 0,3750 \\ 0,3848$	$0,3865 \\ 0,4375 \\ 0,4675$	$0,3021 \\ 0,3125 \\ 0,3021$	5 6 7				
8 9	$0,2222 \\ 0,1875$	$0,3704 \\ 0,3281$	$0,4691 \\ 0,4336$	$0,2716 \\ 0,2227$	8 9				
10 11	$0,1389 \\ 0,0764$	$0,2546 \\ 0,1464$	$0,3511 \\ 0,2106$	$0,1582 \\ 0,0822$	10 11				
n = 13									
$\frac{1}{2}$	$0,0710 \\ 0,1302$	$0,0765 \\ 0,1502$	$0,0769 \\ 0,1533$	$0,0760 \\ 0,1471$	$\begin{vmatrix} 1\\ 2 \end{vmatrix}$				
$\frac{3}{4}$	$0,1775 \\ 0,2130$	$0,2185 \\ 0,2786$	0,2279 0,2987	$0,2090 \\ 0,2584$	$3\\4$				
	$0,2367 \\ 0,2485$	$0,3277 \\ 0.3632$	-0,3627 0,4162	0,2927 0,3103	5 6				
7 8	$0,2485 \\ 0,2367$	$0,3823 \\ 0,3823$	$0,4544 \\ 0,4720$	$0,3103 \\ 0,2927$	7 8				
9 10	$0,2130 \\ 0,1775$	$0,3605 \\ 0,3141$	$0,4626 \\ 0,4191$	$0,2584 \\ 0,2090$	9 10				
11 12	$0,1302 \\ 0,0710$	$0,2403 \\ 0,1365$	$0,3335 \\ 0,1971$	$0,1471 \\ 0,0760$	$\begin{array}{c} 11\\12\end{array}$				
		n =	= 14						
$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	0,0663 0,1224	0,0711 0,1399	$0,0714 \\ 0,1424$	0,0707 0,1374	$\frac{1}{2}$				
3 4	0,1684 0,2041	$0,2044 \\ 0,2624$	0,2122 0,2791	$0,1967 \\ 0,2457$	3 4				
5 6	$0,2296 \\ 0,2449$	$0,3116 \\ 0,3499$	0,3409 0,3948	$0,2823 \\ 0,3049$	5 6				
7	0,2500	0,3750	0,4375	0,3125	7				
8 9	$0,2449 \\ 0,2296$	$0,3848 \\ 0,3772$	$0,4648 \\ 0,4721$	0,3049 0,2823	8 9				
10 11	$0,2041 \\ 0,1684$	$0,3499 \\ 0,3007$	$0,4540 \\ 0,4046$	0,2457 0,1967	10 11				
12 13	$0,1224 \\ 0,0663$	$0,2274 \\ 0,1279$	$0,3174 \\ 0,1851$	0,1374 0,0707	12 13				

Anhang.

Knoten- punkte <i>m</i>	ω _R	ω	ω _P	ω _P ″	Knoten- punkte <i>m</i>			
n = 15								
1 2	0,0622	0,0664	0,0666	0,0661	1			
3 4	0,1600 0,1956	$0,1920 \\ 0,2477$	0,1984 0,2616	0,1856 0,2338	34			
5 6	$0,2222 \\ 0,2400$	0,2963 0,3360	0,3210 0,3744	0,2716 0,2976	56			
7 8	$0,2489 \\ 0,2489$	$0,3650 \\ 0,3816$	$0,4192 \\ 0,4524$	$0,3108 \\ 0,3108$	7 8			
9 10	$0,2400 \\ 0,2222$	$0,3840 \\ 0,3704$	$0,4704 \\ 0,4691$	$0,2976 \\ 0,2716$	9 10			
11 12	$0,1956 \\ 0,1600$	$0,3390 \\ 0,2880$	$0,4441 \\ 0,3904$	$0,2338 \\ 0,1856$	11 12			
13 14	$0,1156 \\ 0,0622$	$0,2157 \\ 0,1203$	$0,3025 \\ 0,1745$	0,1289 0,0661	$\begin{array}{c} 13\\14\end{array}$			
		n =	= 16					
$\frac{1}{2}$	$0,0586 \\ 0,1094$	$0,0623 \\ 0,1230$	$0,0625 \\ 0,1248$	$0,0620 \\ 0,1213$	$\frac{1}{2}$			
3 4	$0,1523 \\ 0,1875$	$0,1809 \\ 0,2344$	$0,1863 \\ 0,2461$	$0,1756 \\ 0,2227$	$3\\4$			
5 6	$0,2148 \\ 0,2344$	$0,2820 \\ 0,3223$	$0,3030 \\ 0,3552$	$0.2610 \\ 0.2893$	5 . 6			
7 . 8 . 9	$0,2461 \\ 0,2500 \\ 0,2461$	$0,3538 \\ 0,3750 \\ 0,3845$	$0,4009 \\ 0,4375 \\ 0,4624$	$0,3067 \\ 0,3125 \\ 0,3067$	7 8 9			
10 11	$0,2344 \\ 0,2148$	$0,3809 \\ 0,3625$	$0,4724 \\ 0,4641$	$0,2893 \\ 0,2610$	10 11			
12 13	$0,1875 \\ 0,1523$	$0,3281 \\ 0,2761$	$0,4336 \\ 0,3767$	0,2227 0,1756	$\begin{array}{c} 12\\ 13 \end{array}$			
14 15	$0,1094 \\ 0,0586$	$0,2051 \\ 0,1135$	0,2888 0,1650	$0,1213 \\ 0,0620$	$\begin{array}{c} 14\\ 15\end{array}$			
n = 17								
$\frac{1}{2}$	$0,0554 \\ 0,1038$	$0,0586 \\ 0,1160$	$0,0588 \\ 0,1175$	$0,0584 \\ 0,1146$	$\frac{1}{2}$			
$\frac{3}{4}$	$0,1453 \\ 0,1799$	$0,1710 \\ 0,2223$	$0,1755 \\ 0,2322$	$0,1664 \\ 0,2123$	$\frac{3}{4}$			
5 6	$0,2076 \\ 0,2284$	0,2687 0,3090	$0,2866 \\ 0,3374$	0,2507 0,2805	5 6			
7 8	$0,2422 \\ 0,2491$	$0,3419 \\ 0,3664$	$0,3830 \\ 0,4215$	0,3009 0,3112	7 8			
9 10	$0,2491 \\ 0,2422$	0,3810 0,3847	$0,4509 \\ 0,4685$	0,3112 0,3009	9 10			

Anhang.

Knoten- punkte m	ω _R	ω _D	ω _P	ω _P "	Knoten- punkte m			
n=17								
11 12	0,2284	0,3761 0,3542	0,4718	0,2805	11 12			
13 14	0,1799	0,3175	0,4227	0,2123	13			
15	0,1435	0,1954	0,2762	0,1146	14			
16	0,0554	0,1075	0,1565	0,0584	16			
		n :	=18					
$\frac{1}{2}$	0,0525 0,0988	$0,0554 \\ 0,1097$	0,0555 0,1110	$0,0552 \\ 0,1085$	$\frac{1}{2}$			
3 4	$0,1389 \\ 0,1728$	$0,1620 \\ 0,2112$	$0,1659 \\ 0,2198$	$0,1582 \\ 0,2027$	$\frac{3}{4}$			
5 6	0,2006 0,2222	$0,2563 \\ 0,2963$	0,2718 0,3210	$0,2409 \\ 0,2716$	5 6			
78	0,2377 0,2469	$0,3301 \\ 0,3567$	0,3660 0,4054	$0,2941 \\ 0,3079$	7 8			
9	0,2500	0,3750	0,4375	0,3125	9			
10 11	$0,2469 \\ 0,2377$	$0,3841 \\ 0,3829$	0,4603 0,4716	0,3079 0,2941	10 11			
12 13	0,2222 0,2006	$0,3704 \\ 0,3455$	$0,4691 \\ 0,4502$	$0,2716 \\ 0.2409$	12 13			
14 15	$0,1728 \\ 0,1389$	$0,3073 \\ 0,2546$	0,4118 0,3511	0,2027 0,1582	14 15			
16 17	$0,0988 \\ 0,0525$	$0,1866 \\ 0,1020$	0,2646 0,1488	0,1085 0,0552	16 17			
n = 19								
$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	0,0499 0,0942	$0,0525 \\ 0,1041$	0,0526 0,1051	0,0523 0,1031	$\frac{1}{2}$			
3 4	0,1330 0,1662	$0,1540 \\ 0,2012$	$0,1573 \\ 0,2086$	0,1506 0,1938	$\frac{3}{4}$			
5 6	0,1939 0,2161	$0,2449 \\ 0,2843$	$0,2584 \\ 0,3058$	0,2315 0,2628	5 6			
7 8	0,2327 0,2438	$0,3184 \\ 0,3464$	0,3500 0,3896	0,2868 0,3032	7 8			
9 10	$0,2493 \\ 0,2493$	$0,3674 \\ 0,3805$	$0,4233 \\ 0,4496$	$0,3115 \\ 0,3115$	9 10			
11 12	0,2438 0,2327	0,3849 0,3796	$0,4666 \\ 0,4725$	0,3032 0,2868	11 12			
13 14	0,2161 0,1939	0,3639 0,3368	$0,4651 \\ 0,4421$	0,2628 0,2315	13 14			

Anhang.

Knoten- punkte m	ω _R	ωD	ω _P	ω _p ".	Knoten- punkte m		
n = 19 .							
15 16	0,1662 0,1330	$0,2974 \\ 0,2449$	$0,4010 \\ 0,3392$	0,1938 0,1506	15 16		
17 18	$0,0942 \\ 0,0499$	$0,1785 \\ 0,0971$	$0,2539 \\ 0,1418$	$0,1031 \\ 0,0523$	17 18		
n = 20							
$\begin{bmatrix} 1\\2 \end{bmatrix}$	0,0475 0,0900	0,0499 0,0990	0,0500 0.0999	0,0498 0,0981	$\begin{vmatrix} 1\\2 \end{vmatrix}$		
3 4	$0,1275 \\ 0,1600$	$0,1466 \\ 0,1920$	$0,1495 \\ 0,1984$	$0,1438 \\ 0,1856$	$3\\4$		
5 6	$0,1875 \\ 0,2100$	$0,2344 \\ 0,2730$	$0,2461 \\ 0,2919$	0,2227 0,2541	5 6		
7 8	$0,2275 \\ 0,2400$	$0,3071 \\ 0,3360$	$0,3350 \\ 0,3744$	$0,2793 \\ 0,2976$	7 8		
9 10 11	$0,2475 \\ 0,2500 \\ 0,2475$	0,3589 0,3750 0,3836	$0,4090 \\ 0,4375 \\ 0,4585$	$0,3088 \\ 0,3125 \\ 0,3088$	9 10 11		
12 13	$0,2400 \\ 0,2275$	$0,3840 \\ 0,3754$	$0,4704 \\ 0,4715$	$0,2976 \\ 0,2793$	$\begin{array}{c} 12\\13\end{array}$		
14 15	$0,2100 \\ 0,1875$	$0,3570 \\ 0,3281$	$0,4599 \\ 0,4336$	$0.2541 \\ 0.2227$	14 15		
16 17	$0,1600 \\ 0,1275$	$0,2880 \\ 0,2359$	$0,3904 \\ 0,3280$	$0,1856 \\ 0,1438$	16 17		
18 19	$0,0900 \\ 0,0475$	0,1710 0,0926	$0,2439 \\ 0,1355$	$0,0981 \\ 0,0498$	18 19		

Literatur zu den Abschnitten I und II.

Clapeyron, Calcul d'une poutre élastique reposant librement sur des appuis inégalement espacés. Comptes rendus 1857.

Winkler, Beiträge zur Theorie der kontinuierlichen Brückenträger. Zivilingenieur 1862.

Bresse, Cours de Mécanique appliquée. Troisième Partie. Paris 1865.

Culmann, Graphische Statik. Zürich 1866.

E. Winkler, Die Lehre von der Elastizität und Festigkeit. Prag 1867.

- Mohr, Beiträge zur Theorie der Holz- und Eisenkonstruktionen. Behandlung der elastischen Linie als Seillinie; zeichnerische Untersuchung des kontinuierlichen Balkens. Zeitschr. d. Architekt.- u. Ing.-Vereins zu Hannover 1868.
- W. Ritter, Die elastische Linie und ihre Anwendung auf den kontinuierlichen Balken. Zürich 1871.
- Lippich, Theorie des kontinuierlichen Balkens konstanten Querschnitts. Försters Bauzeitung 1871.
- E. Winkler, Theorie der Brücken. Erstes Heft, 1. Auflage 1873, 3. Auflage. Wien 1886.

Solin, Geometrische Theorie der kontinuierlichen Träger. Mitteil. des Arch. u. Ing.-Ver. in Böhmen 1873 u. 1874.

- Weyrauch, Allgemeine Theorie der kontinuierlichen und einfachen Träger. Leipzig 1873.
- -, Temperatur-Einflüsse bei kontinuierlichen Trägern. Zeitschr. f. Baukunde 1879, S. 437.

Krohn, Resultate aus der Theorie des Brückenbaus. Leipzig 1879.

Castigliano, Theorie de l'équilibre des systèmes élastiques. Turin 1879.

- Landsberg, Beitrag zur graphischen Berechnung kontinuierlicher Träger. Zentralbl. d. Bauverw. 1881, S. 164.
- Stelzel, Grundzüge der graphischen Statik und deren Anwendung auf den kontinuierlichen Träger. Graz 1882.

Koenen, Abgekürztes Verfahren für die analytische Behandlung kontinuierlicher Balken. Zentralbl. d. Bauverwaltung 1882, S. 190.

Müller-Breslau, Influenzlinien für kontinuierliche Träger mit 3 Stützpunkten. Wochenblatt für Architekten und Ingenieure 1883, S. 353.

-, Über kontinuierliche Bogen und Balken. Wochenblatt für Architekten und Ingenieure 1884.

-, Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen. Leipzig 1886 (erste Auflage), 1904 (dritte Auflage).

- Claxton Fidler, T., A Practical Treatise of Bridge-Construction. London 1893, erste Auflage 1887.
- H. Zimmermann, Die Berechnung des Eisenbahn-Oberbaues. Berlin 1888.
- J. W. Schwedler, Beiträge zur Theorie des Eisenbahnoberbaues. Zeitschr. f. Bauw. 1889.

- Land, Über die Ermittlung und die gegenseitigen Beziehungen der Einflußlinien für Träger. Zeitschr. f. Bauwesen 1890, S. 165.
- Müller-Breslau, Über einige Aufgaben der Statik, welche auf Gleichungen der Clapeyronschen Art führen. Zeitschr. f. Bauwesen 1891.
- Thullie, Einfluβlinien f
 ür die inneren Kr
 äfte eines kontinuierlichen Tr
 ägers mit 3 St
 ützpunkten. Wochenschr. d. österr. Ing.- u. Arch.-Ver. 1891.
- L. Freitag, Vereinfachung der Berechnung elastischer Balkenträger. Leipzig 1892.Zschetzsche, Einfluβ der Schubkräfte auf die Biegung einfacher Vollwandträger. Zentralbl. d. Bauverw. 1893.
- F. de Fontviolant, Ponts métalliques à travées continues. Paris 1893.
- Zschetzsche, Beitrag zur Berechnung durchgehender Balkenträger. Zeitschr. f. Bauw. 1894, S. 597.
- Kriemler, Tabellen zur schnellen Ermittlung der Deformation und des Gleichgewichtszustandes beliebiger massiver Träger von konstantem Trägheitsmomente. Vevey 1894.
- Land, Einfluß der Schubkräfte auf die Biegung statisch bestimmter und die Berechnung statisch unbestimmter gerader vollwandiger Träger. Zeitschr. f. Bauw. 1894.
- Franke, Die elastische Linie des Balkens. Zeitschr. f. Bauw. 1895, S. 439.
- H. Zimmermann, Berechnung des Oberbaues. Handbuch der Ingenieurwissenschaften V. 2. III. Kapitel. 1896.
- Dietz, Einfache Formeln für den durchlaufenden Träger auf einheitlicher Grundlage. Anhang zu dem Hefte: "Bewegliche Brücken" der Fortschritte der Ingenieurwissenschaften II. 5. Leipzig 1897.
- W. Ritter, Anwendungen der Graphischen Statik. III. Teil, Der kontinuierliche Balken. Zürich 1900.
- Fr. Steiner, Theorie der eisernen Balkenbrücken. Handbuch der Ingenieurwissenschaften, Bd. II. 3. Auflage, 1901, S. 364.
- Niedner, Beitrag zur Berechnung von Schiffbrücken. Leipzig 1904.
- L. Vianello, Der durchgehende Träger auf elastisch senkbaren Stützen. Zeitschr. des Vereins deutscher Ingenieure 1904, S. 128 und 161.
- Vianello, Der Eisenbau. München und Berlin 1905.
- Ostenfeld, Graphische Behandlung der kontinuierlichen Träger mit festen, elastisch senkbaren oder drehbaren, und elastisch senk- und drehbaren Stützen. Zeitschr. für Architektur und Ingenieurwesen 1905.
- Müller-Breslau, Über die Berechnung von Schiffbrücken mit Gelenken. Zeitschr. f. Bauw. 1906, S. 151.
- H. Reifner, Über die Spannungsverteilung in xylindrischen Behälterwänden. Beton und Eisen 1908.
- Vlachos, Zeichnerische Behandlung der durchgehenden Träger auf festen, auf elastisch drehbaren, elastisch senkbaren, sowie auf elastisch dreh- und senkbaren Stützen. Österr. Wochenschr. f. d. öffentl. Baudienst 1908.

Literatur zu Abschnitt III.

Engesser, Über die Durchbiegung von Fachwerkträgern und die hierbei auftretenden zusätzlichen Spannungen. Zeitschr. f. Baukunde 1879.

Manderla, Die Berechnung der Sekundürspannungen im einfachen Fachwerk infolge starrer Knotenverbindungen. Allgemeine Bauzeitung 1880. Asimont, Hauptspannung und Sekundärspannung. Zeitschr. f. Baukunde 1880.

- E. Winkler, Vortrüge über Brückenbau. Theorie der Brücken, Heft II, Theorie der gegliederten Balkenträger. Wien 1881, S. 276, 343.
- Allievi, Equilibrio interno delle pile metalliche. Roma 1882. (Deutsch von Totz, Wien 1888.)
- Fr. Ritter, Über die Druckfestigkeit stabförmiger Körper mit besonderer Rücksicht auf die im steifen Fachwerk auftretenden Nebenspannungen. Schweiz. Bauz. 1884, I. S. 37, 43, 47.
- Th. Landsberg, Beitrag zur Theorie der Fachwerke (graphische Ermittlung der Sekundärspannungen infolge fester Knotenverbindung der Gurtstäbe). Zeitschr. des Arch.- u. Ing.-Ver. zu Hannover 1885 u. 1886.
- Müller-Breslau, Zur Theorie der Biegungsspannungen in Fachwerkträgern. Allg. Bauz. 1885.
- **Th. Landsberg**, Ebene Fachwerksysteme mit festen Knotenpunkten und das Prinzip der Deformationsarbeit. Zentralbl. d. Bauverw. 1885.
- Manderla, Über die Wirkungsweise gelenkförmiger Knotenverbindungen. Allg. Bauz. 1886, S. 9.
- Müller-Breslau, Zur Theorie der Biegungsspannungen in Fachwerkträgern. Zeitschr. d. Arch.- u. Ing.-Ver. zu Hannover 1886, S. 399.
- Engesser, Über die Nebenspannungen der Fachwerkstübe bei steifen Knotenverbindungen. Zeitschr. d. Ver. Deutscher Ingenieure 1888.
- W. Ritter, Anwendungen der Graphischen Statik, I. Teil. Zürich 1890.
- Engesser, Die Zusatzkräfte und Nebenspannungen eiserner Fachwerkbrücken. Berlin 1892.
- Mohr, Die Berechnung der Fachwerke mit starren Knotenverbindungen. Ziviling. 1892, S. 577; 1893, S. 67.

Literatur zu Abschnitt IV.

Engesser, Die Sicherung offener Brücken gegen Ausknicken. Zentralbl. d. Bauverw. 1884, S. 415; 1885, S. 71; 1892, S. 349.

- H. Zimmermann, Der gerade Stab auf elastischen Einzelstützen mit Belastung durch längsgerichtete Kräfte. Sitzungsberichte der Kgl. Preuß. Akademie der Wissenschaften 1907.
- —, Das Stabeck auf elastischen Einzelstützen mit Belastung durch längsgerichtete Kräfte. Sitzungsberichte der Kgl. Preuß. Akademie der Wissenschaften 1907.

Literatur zu Abschnitt V.

Fränkel, Theorie des einfachen Sprengwerkes. Ziviling. 1876, S. 22.

- Melan, Theorie des Sprengwerkes. Zeitschr. d. österr. Ing.- u. Arch.-Ver. 1876, S. 245.
- Müller-Breslau, Theorie der durch einen Balken versteiften Kette. Zeitschr. d. Arch.- u. Ing.-Ver. zu Hannover 1881, S. 57; 1883, S. 347.
- E. Winkler, Theorie der Brücken. I. Teil. Außere Kräfte der Balkenträger. Wien 1886, S. 185, 233, 256.

- Müller-Breslau, Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen. 1886, 1904, § 15.
- -, Zur Frage der Berücksichtigung der Anfangspannungen bei der Berechnung von Trägern. Wochenschr. d. österr. Ing.- u. Arch.-Ver. 1887, S. 107.
- Höch, Berechnung doppelter Hänge- und Sprengewerke bei einseitiger Belastung. Zentralbl. d. Bauverw. 1888, S. 474.
- Melan, Theorie der eisernen Bogenbrücken und der Hängebrücken. Handb. d. Ingenieurwissenschaften, Band II, Abt. V, 1888-1906.
- Müller-Breslau, Graphische Statik der Baukonstruktionen. Bd. II, erste Abteil. Leipzig 1892, 1904; § 8.
- W. Ritter, Anwendungen der graphischen Statik. III. Teil, S. 201. Zürich 1900.
- S. Müller, Beiträge zur Theorie hölzerner Tragwerke des Hochbaues. I. Hängeund Sprengwerke. Zeitschr. f. Bauw. 1906.

Literatur zu Abschnitt VI.

Müller-Breslau, Über parabelförmige Einfluβlinien. Zentralbl. d. Bauverw. 1904.
— Über die Berechnung von Zweigelenkbogen. Zentralbl. d. Bauverw. 1904.

Literatur zu den Abschnitten VII u. VIII.

E. Winkler, Formänderung und Festigkeit gekrümmter Körper, insbesondere der Ringe. Ziviling. 1856.

Sternberg, Theorie der Bogen mit zwei Gelenken. Zeitschr. f. Bauw. 1864. Fränkel, Berechnung eiserner Bogenbrücken. Ziviling, 1867.

- Berechnung eiserner Bogenbrücken. Ziviling. 1867, S. 95.

E. Winkler, Über den Einfluß der Temperatur bei Bogenbrücken. Ziviling, 1867.

- Die Lehre von der Elastizität und Festigkeit. Prag 1867, S. 268-272.

- Vortrag über die Berechnung von Bogenbrücken. Mitteilungen d. Arch.- u. Ing.-Ver. f. Böhmen 1868, 1869.
- Engesser, Bogenträger mit zwei Gelenken. Jahrbuch des polyt. Ver. Karlsruhe 1869.
- Mohr, Beitrag zur Theorie elastischer Bogenträger. Zeitschr. d. Arch.- u. Ing.-Ver. zu Hannover 1870, S. 239.

E. Winkler, Theorie der Bogenträger. Zeitschr. d. Österr. Arch.- u. Ing.-Ver. 1872.

Fränkel, Über die ungünstigste Belastung von Bogenträgern mit zwei Gelenken. Ziviling. 1875, S. 585.

- Steiner, Über graphische Behandlung des Bogenträgers von konstantem Querschnitt ohne Gelenk. Allg. Bauzeitung 1878, S. 21.
- Weyrauch, Theorie der elastischen Bogenträger. Zeitschr. f. Baukunde 1878.
- E. Winkler, Beitrag zur Theorie der elastischen Bogenträger. Zeitschr. d. Arch.u. Ing.-Ver. zu Hannover 1879.
- Müller-Breslau, Theorie und Berechnung der eisernen Bogenbrücken. Berlin 1880. Müller-Breslau, Graphische Statik. II. 2. 38

- Krohn, Beitrag zur Theorie der elastischen Bogenträger. Zeitschr. f. Baukunde. 1880, S. 219.
- Müller-Breslau, Über kontinuierliche Bogen und Balken. Wochenbl. f. Arch. u. Ing. 1884.
- —, Vereinfachung der Theorie der statisch unbestimmten Bogenträger. Zeitschr. d. Arch.- u. Ing.-Ver. zu Hannover 1884, S. 575.
- W. Ritter, Der elastische Bogen, berechnet mit Hilfe der graphischen Statik. Zürich 1886.
- Levy, La statique graphique et ses applications aux constructions. Paris, zweite Aufl. 1886-1888.
- Müller-Breslau, Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen. Leipzig 1886–1904, § 17–21.
- —, Beitrag zur Theorie der ebenen elastischen Träger. Zeitschr. d. Arch.- u. Ing.-Ver. zu Hannover 1888, S. 605.
- Melan, Theorie der eisernen Bogenbrücken. Handbuch der Ingenieurwissenschaften, Bd. II, Abt. IV, 1888-1906.
- Müller-Breslau, Beiträge zur Theorie der ebenen elastischen Träger. Zentralblatt d. Bauverw. 1890.
- ---, Berechnung statisch unbestimmter Auslegerbogenbrücken. Zentralbl. d. Bauverw. 1898.
- W. Ritter, Anwendungen der graphischen Statik. IV. Teil, Zürich 1907.

BIBLIOTEKA POLITEGUNICZNA

. Müller-Breslau: Graphische Statik. II. 2.

Lith. Anst.v. F. Wirtz, Darmstadt.

Baumgärtner's Buchhandlung, Leipzig.

Tafel 2

Untersuchung der Durchbiegungen einer geöffneten Schwedlerschen Drehbrücke. (Seite 20.)

Tafel 1.

Alfred Kröner Verlag in Leipzig.

Die

graphische Statik der Baukonstruktionen

Dr.=Ing. H. Müller-Breslau

Geh. Regierungsrat, Professor an der Technischen Hochschule in Berlin.

Hiervon erschienen bisher:

Band I.

Zusammensetzung und Zerlegung der Kräfte in der Ebene. — Trägheitsmomente und Zentrifugalmomente ebener Querschnitte; Spannungen in geraden Stäben. — Theorie der statisch bestimmten Träger.

4. Auflage. Mit 585 Abbildungen im Text und 7 Tafeln.

Preis geheftet 18 Mark. In Halbfranz gebunden 20 Mark.

Band II. Abteilung I.

Formänderung ebener Fachwerke. — Untersuchung der ebenen, statisch unbestimmten Fachwerke.

4. Auflage. Mit 383 Abbildungen im Text und 7 Tafeln. Preis geheftet 16 Mark. In Halbfranz gebunden 18 Mark.

Band II. Abteilung II.

Formveränderung des geraden Stabes. — Der Balken auf mehreren Stützen.

Mit 420 Abbildungen im Text und 2 Tafeln. Preis geheftet 18 Mark. In Halbfranz gebunden 20 Mark.

Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen

von

Dr.=Ing. H. Müller-Breslau

Geh. Regierungsrat, Professor an der Technischen Hochschule in Berlin.

3. Auflage. Mit 259 Abbildungen.

Preis geheftet 8 Mark. In Halbfranz gebunden 10 Mark.

Zu beziehen durch die meisten Buchhandlungen.

Alfred Kröner Verlag in Leipzig

160,00

Der Eisenbeton

in Theorie und Konstruktion

Ein Leitfaden durch die neueren Bauweisen in Stein und Metall

Für Studium und Prazis verfaßt von

Dr.=Ing. Undalf Saliger

Oberlehrer an der Baugewertschule in Kaffel.

Zweite Auflage. Mit 354 Abbildungen im Text.

preis geheftet 5 M. 40 Pf. In Geinwand gebunden 6 Mark.

Die Aufnahme, welche diefer Leitfaden gleich bei seinem ersten Er= scheinen gesunden hat, ist ein Beweis dafür, daß er einem vorhandenen Be= dürfnis entgegenkommt. In der vollständig neu bearbeiteten zweiten Auflage sind die Fortschritte der neuesten Zeit berücksichtigt. Bei den vorgenom= menen Anderungen war hauptsächlich der Gesichtspunkt maßgebend: den An= forderungen der Prazis noch mehr als in der ersten Auflage zu entsprechen.

Über die

Festigkeit veränderlich elastischer Konstruktionen,

Eisenbeton-Bauten

Ein Beitrag zur Erforschung der inneren Kräffe und Deformationen sowie zum Gebrauch bei der Berechnung und Ausführung armierter Beton-Balken, -Stüken und -Gewölbe.

Von

Dr.=Ing. Undolf Saligev

Oberlehrer an der Baugewertschule in Kassel.

Mit 63 Abbildungen im Text und 5 Tafeln.

preis geheftet 4 Mark.

Diefes Buch, welches sich durch Übersichtlichkeit der Beispiele und Deutlichkeit der Figuren auszeichnet, dürfte für den mit der Berechnung und Ausführung von Gisenbeton-Hochbauten beschäftigten Techniker und Ingenieur eine gute Hilfe sein.

-> Zu beziehen durch die meisten Buchhandlungen. -

S - 98

