The zero-sum constant, the Davenport constant and their analogues

Maciej Zakarczemny
mzakarczemny@pk.edu.pl | http://orcid.org/0000-0002-7202-1244
Department of Applied Mathematics, Faculty of Computer Science and Telecommunications, Cracow University of Technology

Abstract

Let $D(G)$ be the Davenport constant of a finite Abelian group G. For a positive integer m (the case $m=1$, is the classical case) let $E_m(G)$ (or $\eta_m(G)$) be the least positive integer t such that every sequence of length t in G contains m disjoint zero-sum sequences, each of length $|G|$ (or of length $\exp(G)$, respectively). In this paper, we prove that if G is an Abelian group, then $E_m(G)=D(G)-1+m|G|$, which generalizes Gao's relation. Moreover, we examine the asymptotic behaviour of the sequences $(E_m(G))_{m \geq 1}$ and $(\eta_m(G))_{m \geq 1}$. We prove a generalization of Kemnitz's conjecture. The paper also contains a result of independent interest, which is a stronger version of a result by Ch. Delorme, O. Ordaz, D. Quiroz. At the end, we apply the Davenport constant to smooth numbers and make a natural conjecture in the non-Abelian case.

Keywords: zero-sum sequence, Davenport constant, finite Abelian group
1. Introduction

We will define and investigate some generalizations of the Davenport constant, see (Alon & Dubiner, 1995; Edel et al., 2007; Freeze & Schmid, 2010; Gao & Geroldinger, 2006; Geroldinger & Halter-Koch, 2006; Olson, 1969a, 1969b; Reiner, 2007; Rogers, 1963). Davenport’s constant is connected with algebraic number theory as follows. For an algebraic number field \mathbb{K}, let $\mathcal{O}_\mathbb{K}$ be its ring of integers and G the ideal class group of $\mathcal{O}_\mathbb{K}$. Let $x \in \mathcal{O}_\mathbb{K}$ be an irreducible element. If $\mathcal{O}_\mathbb{K}$ is a Dedekind domain, then $\mathcal{O}_\mathbb{K} = \prod P_i$, where P_i are prime ideals in $\mathcal{O}_\mathbb{K}$ (not necessarily distinct). The Davenport constant $D(G)$ is the maximal number of prime ideals P_i (counted with multiplicities) in the prime ideal decomposition of the integral ideal $x\mathcal{O}_\mathbb{K}$, see (Halter-Koch, 1992; Olson, 1969a).

The precise value of the Davenport constant is known, among others, for p-groups and for groups of rank at most two. The determination of $D(G)$ for general finite Abelian groups is an open question, see (Girard, 2018).

2. General notation

Let \mathbb{N} denote the set of positive integers (natural numbers).

We set $[a, b] = \{x : a \leq x \leq b, x \in \mathbb{Z}\}$, where $a, b \in \mathbb{Z}$. Our notation and terminology is consistent with (Geroldinger & Ruzsa, 2009). Let G be a non-trivial additive finite Abelian group. G can be uniquely decomposed as a direct sum of cyclic groups $C_{n_1} \oplus C_{n_2} \oplus \ldots \oplus C_{n_r}$ with natural numbers $1 < n_1, n_2, \ldots, n_r$. The number r of summands in the above decomposition of G is expressed as $r = r(G)$ and called the rank of G. The integer n_i is called the exponent of G and denoted by $\exp(G)$.

In addition, we define $D'(G)$ as $D'(G) = 1 + \sum_{n_i} (n_i - 1)$. We write any finite sequence S of l elements of G in the form $\prod_{s \in S} g^{v_s(s)} = g_1 \cdot g_2 \cdot \ldots g_l$ (this is a formal Abelian product), where l is the length of S denoted by $|S|$, and $v_s(S)$ is the multiplicity of g in S. S corresponds to the sequence (in the traditional sense) (g_1, g_2, \ldots, g_l), where we forget the ordering of the terms. By $\sigma(S)$ we denote the sum of $S : \sigma(S) = \sum_{s \in S} v_s(S)g \in G$.

The Davenport constant $D(G)$ is defined as the smallest $t \in \mathbb{N}$ such that each sequence over G of length at least t has a non-empty zero-sum subsequence. Equivalently, $D(G)$ is the maximal length of a zero-sum sequence of elements of G and with no proper zero-sum subsequence. One of the best bounds for $D(G)$ known so far is:

$$D'(G) \leq D(G) \leq n_1 \left(1 + \log \frac{|G|}{n_1}\right). \tag{1}$$

The small Davenport constant $d(G)$ is the maximal length of a zero-sum free sequence over $|G|$. If $|G|$ is a finite Abelian group then $d(G) = D(G) - 1$, see (Geroldinger & Ruzsa, 2009 [Definition 2.1.1.]). Alford, Granville and Pomerance (1994) used the bound (1) to prove the existence of infinitely many Carmichael numbers. Dimitrov (2007) used the Alon Dubiner constant (Alon & Dubiner, 1995) to prove the inequality:

$$\frac{D(G)}{D'(G)} \leq (Kr \log r)^t,$$

for an absolute constant K. It is known that for groups of rank at most two and for p-groups, where p is a prime, the left hand side inequality (1) is in fact an equality, see (Olson, 1969a, 1969b). This result suggests that $D'(G) = D(G)$. However, there are infinitely many groups G with rank $r > 3$ such that $D(G) > D'(G)$. There are more recent results on groups where the Davenport constant does not match the usual
lower bound, see (Geroldinger & Schneider, 1992). The following Remark 2.1 lists some basic facts for the Davenport constant, see (Delorme, Ordaz & Quiroz, 2001; Geroldinger & Schneider, 1992; Schmid, 2011; Sheikh, 2017).

Remark 2.1. Let G be a finite additive Abelian group.
1. Then $D(G) = D'(G)$ in each of the following cases:
 - G is a p-group;
 - G has rank $r \leq 2$;
 - $G = C_p \oplus C_p \oplus C_{p^m}$ with p a prime number, $n \geq 2$ and m a natural number coprime with p^r (more generally, if $G = G_1 \oplus C_{p^m}$ where G_1 is a p-group and $p^r \geq D(G_1)$);
 - $G = C_2 \oplus C_2 \oplus C_2 \oplus C_{2n}$, with odd n;
 - $G = C_{2k_1} \oplus C_{2k_2} \oplus C_{2k_3}$, with p prime, $k_1, k_2, k_3 \geq 0$;
 - $G = C_2 \oplus C_2 \oplus C_{2n}$, with n, m natural numbers;
 - G has one of the forms $C_2 \oplus C_2 \oplus C_{3n}$, $C_2 \oplus C_2 \oplus C_{4n}$, or $C_2 \oplus C_2 \oplus C_{6n}$, with n a natural number;
 - $G = C_4 \oplus C_4 \oplus C_{10}$.

2. Then $D(G) > D'(G)$ in each of the following cases:
 - $G = C_2 \oplus C_2 \oplus C_2 \oplus C_{2n}$, with odd $n \geq 3$;
 - $G = C_{2k} \oplus C_{2n}$, with $k \geq 3$ and odd $n \geq 3$;
 - $G = C_2 \oplus C_2 \oplus C_2 \oplus C_2$;
 - $G = C_2 \oplus C_2 \oplus C_2 \oplus C_{15}$;
 - let $n \geq 2$, $k \geq 2$, $(n, k) = 1$, $0 \leq \rho \leq n - 1$, and $G = C_{(k-1)n+\rho} \oplus C_{4n}$.
 - If $\rho \geq 1$ and $\rho \equiv n \pmod{k}$, then $D(G) \geq D'(G) + \rho$.
 - If $\rho \leq n - 2$ and $x(n-1-\rho) \not\equiv n \pmod{k}$ for any $x \in [1, n-1]$, then $D(G) \geq D'(G) + \rho + 1$.

3. Definitions

In this section, we will provide some definitions of classical invariants. We begin with some notations and remarks that will be used throughout the paper.

Definition 3.1. Let G be a finite Abelian group, and m, k be positive integers such that $k \geq \exp(G)$, and $\mathcal{O} \subseteq \mathbb{N}$.
1. By $s_0(G)$ we denote the smallest $t \in \mathbb{N} \cup \{\infty\}$ such that every sequence S (with repetition allowed) over G of length t contains a non-empty subsequence S' such that $\sigma(S') = 0$, $|S'| \in I$. We use notation $s_m(G)$ or $D'(G)$ to denote $s(G)$ if $I = [1, k]$, see (Balasubramanian & Bhowmik, 2006; Chintamani et al., 2012; Delorme, Ordaz, & Quiroz, 2001).
2. By $s_m(G)$ we denote the smallest $t \in \mathbb{N} \cup \{\infty\}$ such that every sequence S over G of length t contains at least m disjoint non-empty subsequences $S_1, S_2, ..., S_m$ such that $\sigma(S) = 0$, $|S| \in I$.
3. Let $E(G) = s_{[1|\infty]}(G)$, i.e. the smallest $t \in \mathbb{N} \cup \{\infty\}$ such that every sequence S over G of length t contains non-empty subsequence S' such that $\sigma(S') = 0$, $|S'| = |G|$. Note that $E(G)$ is the classical zero-sum constant.
4. Let $E_m(G) = s_{[1|\infty]}(G)$, i.e. the smallest $t \in \mathbb{N} \cup \{\infty\}$ such that every sequence S over G of length t contains at least m non-empty subsequences $S_1, S_2, ..., S_m$ such that $\sigma(S) = 0$, $|S| = |G|$.
5. Also, we define $\eta(G) = s_{[1|\infty]}(G)$, $s(G) = s_{[1|\infty]}(G)$, $D_m(G) = s_{m,m}(G)$ (see (Halter-Koch, 1992)), $s_{\infty}(G) = s_{[1|\infty]}(G)$.

Remark 3.2. For $n, n' \in \mathbb{N}$, $\mathcal{O} \subseteq \mathbb{N}$, by definition $s_n(G) = s_{[1|\infty]}(G) = D(G) = D_n(G)$, $s_{n+1}(G) = s_n(G)$, $s_{[1|\infty]}(G) = D_n(G)$, $s_{[1|\infty]}(G) = E(G)$.
Note that $s(G) := s_{\text{exp}(G)}(G)$ is the classical Erdős-Ginzburg-Ziv constant (Fan, Gao, & Zhong, 2011). We call $s_m(G) = s_{\text{exp}(G),m}(G)$ the m-wise Erdős-Ginzburg-Ziv constant of G. Thus, in this notation $s_1(G) = s(G)$.

One can derive, for example, the following inequalities.

Remark 3.3. If $n' \geq n$, then $s_{m+1}(G) \geq s_m(G)$. If $D(G) \geq k \geq \exp(G)$, then $s_{\exp(G),m}(G) \geq s_{\exp(G),km}(G) \geq D_\exp(G)$. If $D(G) \geq k \geq \exp(G)$, then $\eta(G) \geq s_{\Delta}(G) \geq D(G)$. If $k \geq k'$, then

$$s_{\Delta}(G) \geq s_{\Delta}(G).$$

We note that a sequence S over G of length $|S| \geq mD(G)$ can be partitioned into m disjoint subsequences S_i of length $|S_i| \geq D(G)$. Thus, each S_i contains a non-empty zero-sum subsequence. Hence $D_{\Delta}(G) \leq mD(G)$. See also (Halter-Koch, 1992 [Proposition 1 (ii)])

4. The m-wise zero-sum constant and the m-wise Erdős-Ginzburg-Ziv constant of G

In 1996, Gao and Caro independently proved that

$$E(G) = D(G) + |G| - 1$$

for any finite Abelian group, see (Caro, 1996; Gao, 1995, 1996). For a proof in modern language we refer to (Geroldinger & Halter-Koch, 2006 [Proposition 5.7.9]); see also (Delorme, Ordaz & Quiroz, 2001; Gao, 1994; Hamidoune, 1996). Relation (3) unifies research on constants $D(G)$ and $E(G)$. We start this section with the result that can be used to unify research on constants $E(G)$ and $E_{\Delta}(G)$.

Theorem 4.1. If G is a finite Abelian group of order $|G|$, then

$$E_{\Delta}(G) = E(G) + (m - 1)|G| = D(G) - 1 + m|G| = d(G) + m|G|.$$

Proof. By (3) and (Geroldinger & Ruzsa, 2009 [Lemma 2.1.2.]) we obtain

$$E(G) + (m - 1)|G| = D(G) + m|G| - 1 = d(G) + m|G|.$$

Let $S = a_1 \cdot a_2 \cdot \ldots \cdot a_{D(G)-1}$ be a sequence of $D(G)-1$ non-zero elements in G.

Using the definition of $D(G)$, we may assume that S does not contain any non-empty subsequence S' such that $\sigma(S') = 0$. We put

$$T = a_1 \cdot a_2 \cdot \ldots \cdot a_{D(G)-1} \cdot 0 \cdot \ldots \cdot 0.$$

We observe that the sequence T does not contain m disjoint non-empty subsequences T_1, T_2, \ldots, T_m such that $\sigma(T_i) = 0$ and $|T_i| = |G|$ for $i \in [1, m]$. This implies that $E_{\Delta}(G) > D(G) + m|G| - 2$. Hence

$$E_{\Delta}(G) \geq E(G) + (m - 1)|G|.$$

On the other hand, if S is any sequence such that $|S| \geq E(G) + (m - 1)|G|$, then one can sequentially extract at least m disjoint subsequences S_1, \ldots, S_m, such that $\sigma(S_i) = 0$ in G and $|S_i| = |G|$. Thus

$$E_{\Delta}(G) \leq E(G) + (m - 1)|G|.$$
Corollary 4.2. For every finite Abelian group, the sequence \((E_m(G))_{m \geq 1}\) is an arithmetic progression with difference \(|G|\).

Corollary 4.3. If \(p\) is a prime and \(G=C_{p^{j_1}} \oplus \ldots \oplus C_{p^{j_k}}\) is a \(p\)-group, then for a natural \(m\) we have \(E_m(G) = mp\sum_{i=1}^{k} p^{j_i} - \sum_{i=1}^{k} (p^{j_i} - 1)\).

Proof. It follows from Remark 2.1 and Theorem 4.1.

We recall that by \(s_{(m)}(G)\) we denote the smallest \(t \in \mathbb{N} \cup \{\infty\}\) such that every sequence \(S\) over \(G\) of length \(t\) contains at least \(m\) disjoint non-empty subsequence \(S_1, S_2, \ldots, S_m\) such that \(\sigma(S_i) = 0, |S_i| = \exp(G)\).

Theorem 4.4. If \(G\) is a finite Abelian group, then
\[
\eta(G) + m \exp(G) - 1 \leq s_{(m)}(G) \leq s(G) + (m-1)\exp(G).
\]

Proof. The proof runs along the same lines as the proof of Theorem 4.1.

Let \(S = a_1, a_2, \ldots, a_{\eta(G)+1}\) be a sequence of \(\eta(G) - 1\) non-zero elements in \(G\). Using the definition of \(\eta(G)\), we may assume that \(S\) does not contain any non-empty subsequence \(S'\) such that \(\sigma(S') = 0, |S'| \leq \exp(G)\). We put

\[
T = a_1 \cdot a_2 \cdot \ldots \cdot a_{\eta(G)+1} \cdot 0 \cdot \ldots \cdot 0.
\]

We observe that sequence \(T\) does not contain \(m\) disjoint non-empty subsequence \(T_i, T_2, \ldots, T_m\) such that \(\sigma(T_i) = 0\) and \(|T_i| \leq \exp(G)\) for \(i \in [1, m]\). This implies that \(s_{(m)}(G) > \eta(G) + m \exp(G) - 1\). Hence \(s_{(m)}(G) = \eta(G) + m \exp(G) - 1\).

On the other hand, if \(S\) is any sequence over \(G\) such that \(|S| \geq s(G) + (m-1)\exp(G)\), then one can sequentially extract at least \(m\) disjoint subsequence \(S_1, \ldots, S_m\), such that \(\sigma(S_i) = 0\) in \(G\) and \(|S_i| = \exp(G)\). Thus, \(s_{(m)}(G) \leq s(G) + (m-1)\exp(G)\).

It was conjectured by Gao that for every finite Abelian group \(G\), one has \(\eta(G) + \exp(G) - 1 = s(G)\), see (Gao & Geroldinger, 2006 [Conjecture 6.5]). If this conjecture is true, then by Theorem 4.4 for every finite Abelian group \(G\) the equality \(s_{(m)}(G) = s(G) + (m-1)\exp(G)\) holds, i.e. the sequence \((s_{(m)}(G))_{m \geq 1}\) is an arithmetic progression with difference \(\exp(G)\). We will note that the equation \(\eta(G) + \exp(G) - 1 = s(G)\) is true for all finite Abelian groups of rank at most two, see (Girard & Schmid, 2019 [Theorem 2.3]). At this point it is worth mentioning that \(s(C_{n_1} \oplus C_{n_2}) = 2n_1 + 2n_2 - 3\) for all \(1 < n_1, n_2\), see (Girard & Schmid, 2019 [Theorem 2.3]).

Corollary 4.5. If \(G = C_{n_1} \oplus C_{n_2}\), where \(1 < n_1, n_2\), then for a natural \(m\) we have:
\[
E_m(G) = mn_1n_2 + n_1n_2 + 2n_1, \quad (5)
\]
\[
D_m(G) = mn_1n_2 + n_1n_2 - 1, \quad (6)
\]
\[
s_{(m)}(G) = (m+1)n_2 + 2n_1 - 3, \quad (7)
\]
\[
s_{(m)}(G) - D_m(G) = d(G). \quad (8)
\]

Proof. Equation (5) is a consequence of Remark 2.1 and Theorem 4.1; equation (6) follows from (Halter-Koch, 1992 [Proposition 5]). By applying (Girard & Schmid, 2019 [Theorem 2.3]) and Theorem 4.4, we can obtain (7). Equation (8) is a consequence of equations (6) and (7). Note that if \(G\) is an Abelian group, then \(D(G) - 1 = d(G)\) is the maximal length of a zero-sum free sequence over \(G\).
5. A generalization of the Kemnitz conjecture

Kemnitz’s conjecture states that every set \(S \) of \(4n - 3 \) lattice points in the plane has a subset \(S' \) with \(n \) points whose centroid is also a lattice point. This conjecture was proven by Christian Reiher (2007). In order to prove the generalization of this theorem, we will use equation (7).

Theorem 5.1. Let \(n \) and \(m \) be natural numbers. Let \(S \) be a set of \((m+3)n-3 \) lattice points in 2-dimensional Euclidean space. Then there are at least \(m \) pairwise disjoint sets \(S_1, S_2, \ldots, S_m \subseteq S \) with \(n \) points each, such that the centroid of each set \(S_i \) is also a lattice point.

Proof. As Harborth has already noted see (Edel et al., 2007; Harborth, 1973), \(s(C^2) \) is the smallest integer \(l \) such that every set of \(l \) lattice points in \(r \)-dimensional Euclidean space contains \(n \) elements which have a centroid in a lattice point. It is known that \(s(C^2) = 4n - 3 \) for all \(n \geq 1 \), see (Girard & Schmid, 2019, [Theorem 2.3]). By analogy, \(s_{\mathbb{N}}(C^2) \) is the smallest integer \(l \) such that every set \(S \) of \(l \) lattice points in \(r \)-dimensional Euclidean space has \(m \) pairwise disjoint subsets \(S_1, S_2, \ldots, S_m \) each of cardinality \(n \), the centroids of which are also lattice points. Finally, in the case of 2-dimensional Euclidean space, it is sufficient to use equation (7), from which we get \(s_{\mathbb{N}}(C^2) = (m+3)n-3 \). The last equality completes the proof of Theorem 5.1.

Remark 5.2. As we can see in Definition 3.1, Theorem 5.1 is also true when we replace sets with multisets.

6. Some results on \(s_{I,m}(G) \) constant

In this section, we will investigate zero-sum constants for finite Abelian groups. We start with \(s_{\mathbb{A}}(G), D_n(G), \eta(G) \) constants. Our main result of this section is Theorem 6.11. Olson (1969b) calculated \(s_{\mathbb{A}}(C^r_p) \) for a prime number \(p \). No precise result is known for \(s_{\mathbb{A}}(C^r_p) \), where \(n \geq 3 \). We need two technical lemmas:

Lemma 6.1. Let \(p \) be a prime number and \(n \geq 2 \). Then:

\[
s_{(n-1)p}(C^r_p) \leq (n+1)p-n.
\]

Proof. Let \(g \in C^r_p, i \in [1,(n+1)p-n] \). We embed group \(C^r_p \) into an Abelian group \(F \) which is isomorphic to \(C^{r-1} \). Let \(x \in F, \ x \not\in C^r_p \). Since \(D(C^{r-1}) = (n+1)p-n \) (see (Olson, 1969a) or Remark 2.1,(a)) there exists a zero-sum subsequence \(\prod_{i=1}^{(n-1)p-n}(x+g_i) \) of the sequence \(\prod_{i=1}^{(n-1)p-n}(x+g_i) \). But this is possible only if \(p \) divides \(|I| \). Rearranging subscripts, we may assume that \(g_1 + g_2 + \ldots + g_{\ell} = 0 \), where \(\ell \in [1,n] \). The thesis is achieved if \(\ell \in [1,n-1] \). If \(\ell = n \) we obtain a zero-sum sequence \(S = g_1 g_2 \ldots g_n \). Zero-sum sequence \(S \) contains a proper zero-sum subsequence \(S' \), since \(D(C^r_p) = np-(n-1) \), and thus a zero-sum subsequence of length not exceeding \(\frac{np}{2} \leq (n-1)p \).

Corollary 6.2. Let \(p \) be a prime. Then:

\[
s_{2p}(C^1_p) \leq 4p-3.
\]

Lemma 6.3. Let \(G \) be a finite Abelian group, \(k \in \mathbb{N}, k \geq \exp(G) \). If \(s_{[1,k]}(G) \leq s_{[1,k]}(G)+k \), then \(s_{[1,k],m}(G) \leq s_{[1,k],m}(G)+k \).
Proof. Let S be a sequence over G of length $s_k(G)+k$. The sequence S contains a non-empty subsequence $S_i|S$ such that $\sigma(S_i)=0, [S_i] = [1,k]$, since $[S] \geq s_k(G) = s_k(G)$.

By the definition of $s_k(G)$ the remaining elements in S contain m disjoint non-empty subsequences $S_j|S$ such that $\sigma(S_j)=0, [S_j] = [1,k]$, where $i \in [1,m]$. Thus, we get $m+1$ non-empty disjoint subsequences $S_i|S$ such that $\sigma(S_i)=0, [S_i] = [1,k]$, where $i \in [0,m]$.

Corollary 6.4. Let G be a finite Abelian group, $k \geq \exp(G)$. If $s_k(G) \leq s_k(G)+k$, then $s_k(G)+k \leq s_k(G)+nk$.

Proof. We use Lemma 6.3 and Remark 3.3.

Corollary 6.5. Let G be a finite Abelian group, $k \geq \exp(G)$. Then:

\[
\begin{align*}
D_n(G) & \leq s_k(G) \leq s_k(G)+k(n-1), \\
D_n(G) & \leq s_k((G)\exp(G)) \leq \exp(G)(n-1).
\end{align*}
\]

Proof. We use Remark 3.3, Corollary 6.4 with $m=1$ and get (11). We put $k = \exp(G)$ in (11) and get (12).

Remark 6.6. It is known that:

1. $\eta(C_{\alpha \beta}^5) = 8\pi - 7$, if $n = 3^\alpha 5^\beta$, with $\alpha, \beta \geq 0$,
2. $\eta(C_{\alpha \beta}^7) = 7\pi - 6$, if $n = 3^\alpha 2^\beta$, with $\alpha \geq 1$,
3. $\eta(C_{\alpha \beta}^8) = 8, \eta(C_{\alpha \beta}^9) = 17, \eta(C_{\alpha \beta}^{10}) = 39, \eta(C_{\alpha \beta}^{11}) = 89, \eta(C_{\alpha \beta}^{12}) = 223$ (Girard, 2018).

Corollary 6.7. We have:

1. $D_n(C_{\alpha \beta}^3) \leq nm+7n-7$, if $n = 3^\alpha 5^\beta$, with $\alpha, \beta \geq 0$,
2. $D_n(C_{\alpha \beta}^5) \leq nm+6n-6$, if $n = 3^\alpha 2^\beta$, with $\alpha \geq 1$,
3. $D_n(C_{\alpha \beta}^7) \leq 3m+36, D_n(C_{\alpha \beta}^8) \leq 3m+86, D_n(C_{\alpha \beta}^9) \leq 3m+220$.

Proof. By Corollary 6.5 and Remark 6.6.

In the next Lemma, we collect several useful properties on the Davenport constant.

Lemma 6.8. Let G be a non-trivial finite Abelian group and H be a subgroup of G. Then:

\[
D(H)+D(G/H)-1 \leq D(G) \leq D(H)+D(G/H) \leq D(H)D(G/H). \tag{13}
\]

Proof. The inequality $D(H)+D(G/H)-1 \leq D(G)$ is proven in (Halter-Koch, 1992 [Proposition 3 (i)]). Now we prove the inequality $D(G) \leq D(H)+D(G/H)$ on the same lines as in (Delorme, Ordaz & Quiroz, 2001), we include the proof for the sake of completeness.

If $|S| \geq D(H)+D(G/H)$ is any sequence over G, then one can, by definition, extract at least $D(H)$ disjoint non-empty subsequences $S_1, ..., S_{D(H)}|S$ such that $\sigma(S_i) \in H$. Since $T = \prod_{i=1}^{D(H)} \sigma(S_i)$ is a sequence over H of length $D(H)$, there thus exists a non-empty subset $I \subseteq [1,D(H)]$ such that $T' = \prod_{i \in I} \sigma(S_i)$ is a zero-sum subsequence of T.

We obtain that if $S' = \prod_{i \in I} S_i$ is a non-empty zero-sum subsequence of S. The inequality $D(H)+D(G/H) \leq D(H)D(G/H)$ follows from Remark 3.3.
Theorem 6.9. For an Abelian group $C_p \oplus C_p \oplus C_p$ such that $p | n_j n_i \in \mathbb{N}$, where p is a prime number, we have
\[n_i + n_j + p - 2 \leq D(C_p \oplus C_p \oplus C_p) \leq D_{\frac{n_i}{p}, \frac{n_j}{p}}(C_p^k) \leq 2n_i + 2n_j - 3. \] (14)

Proof. If $G = C_p \oplus C_p \oplus C_p$, such that $p | n_i n_j \in \mathbb{N}$, then $\exp(G) = n_i$. Note that $n_i + n_j + p - 2 = D^*(G) < D(G)$. Denoting by H a subgroup of G such that $H = C_2^p \oplus C_2^p$. The quotient group $G/H \cong C_p \oplus C_p \oplus C_p$. By Lemma 6.8 we get
\[D(G) \leq D_{\frac{n_i}{p}, \frac{n_j}{p}}(C_p^k) \approx (15) \]

By (11) (with $m = \frac{n_i}{p} \geq 1$, $k = 2p$) and Corollary 6.2, we get
\[D(G) \leq S_{\frac{n_i}{p}}(C_p^k) + 2p \left(\frac{n_i}{p} + \frac{n_j}{p} - 2 \right) \leq 2p \left(\frac{n_i}{p} + \frac{n_j}{p} - 2 \right) + 4p - 3 = 2n_i + 2n_j - 3. \] (16)

Our next goal is to generalize (Delorme, Ordaz & Quiroz, 2001 [Theorem 3.2]) to the case $r(\geq 3)$.

Theorem 6.10. Let H, K and L be Abelian groups of orders $|H| = h$, $|K| = k$ and $|L| = l$. If $G = H \oplus K \oplus L$ with $h | k | l$. Let $\Omega(h)$ denote the total number of prime factors of h. Then:
\[S_{\frac{n_i}{p}}(G) \leq 2^{\Omega(h)}(2l + k + h) - 3. \] (17)

Proof. The proof will be inductive. If $h = 1$, then by (Delorme, Ordaz & Quiroz, 2001 [Theorem 3.2]) we have
\[S_{\frac{n_i}{p}}(G) = S_{\frac{n_j}{p}}(K \oplus L) \leq 2l + k - 2 = 2^{\Omega(1)}(2l + k + 1) - 3. \] (18)

Assume that $h > 1$ and let p be a prime divisor of $h.$ Let H_1 be a subgroup of H, K_1 be a subgroup of K, L_1 be a subgroup of L, with indices $|H:H_1| = |K:K_1| = |L:L_1| = p$. Put $h = ph_1$, $k = pk_1$, $l = pl_1$ and $Q = H_1 \oplus K_1 \oplus L_1$. Assume inductively that theorem is true for Q i.e.
\[S_{\frac{n_i}{p}}(Q) \leq 2^{\Omega(h_1)}(2l_1 + k_1 + h_1) - 3. \] (19)

Let $s = 2^{\Omega(h)}(2l + k + h) - 3$ and $S = g_1, g_2, \ldots, g_s$ be a sequence of G. We shall prove that there exists a subsequence of S with a length smaller than or equal to $2^{\Omega(h)}$ and a zero sum. Let $b_i = g_i + Q \in G/Q$. We consider the sequence $\prod_{i=1}^{s} b_i$ of length s. The quotient group G/Q is isomorphic to C_p^s and
\[s = 2p(2^{\Omega(h)})(2l_1 + k_1 + h_1) - 2 + 4p - 3. \] (20)

Therefore, by Corollary 6.2 there exists at least j_0 pairwise disjoint sets $I_j \subseteq [1, s], |I_j| \leq 2p$, where
\[j \leq j_0 = 2^{\Omega(h)}(2l_1 + k_1 + h_1) - 1, \] (21)

such that each sequence $\prod_{i \in I} b_i$ has a zero sum in G/Q. In other words
\[\alpha\left(\prod_{i \in I} g_i\right) = \sum_{i \in I} g_i \in Q. \] By induction assumption for Q there exists $J \subseteq [1, j_0]$ with $|J| \leq 2^{\Omega(h)}$ such that $\sum_{i \in J} \alpha\left(\prod_{i \in J} g_i\right) = 0$. Thus, we obtain a zero-sum
subsequence of \(S \) in \(G \) of length not exceeding \(\sum_{j=1}^{s} |I_j| \leq 2^{\alpha(h_1)} \cdot 2^p = 2^{\alpha(h_1)} \), which ends the inductive proof.

Theorem 6.11. Let \(H_1, H_2, \ldots, H_s \) be Abelian groups of orders \(|H_i| = h_i \). If \(n \geq 2 \) and \(G = H_1 \oplus H_2 \oplus \ldots \oplus H_s \) with \(h_i \), then

\[
s_{(n-1)p_c/h_c}(G) \leq (n-1)^{\alpha(h_1)}(2(h_{n-1}) + (h_{n-1} - 1) + \ldots + (h_{1-1}) + 1).
\]

(22)

Proof. We proceed by induction on \(n \) and \(h_i \).

If \(n = 2 \), then the inequality (22) holds by (Delorme, Ordaz & Quiroz, 2001 [Theorem 3.2]). Namely

\[
s_{(2,1)p_c/h_c}(H_1 \oplus H_2) = s_{h_c}(H_1 \oplus H_2) \leq 2h_2 + 2h_1 - 2 = (2-1)^{\alpha(h_1)}(2(h_2 - 1) + (h_1 - 1) + 1).
\]

(23)

Suppose that the inequality (22) holds for fixed \(n-1 \geq 2 \):

\[
s_{(n-2)p_c/h_c}(H_1 \oplus \ldots \oplus H_{n-1}) \leq (n-2)^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 2) + \ldots + (h_1 - 1) + 1).
\]

(24)

If \(n \geq 3 \) and \(h_1 = 1 \), then \(G \) and \(H_2 \oplus \ldots \oplus H_s \) are isomorphic. By (2):

\[
s_{(n-1)p_c/h_c}(G) = s_{(n-1)p_c/h_c}(H_1 \oplus \ldots \oplus H_s) \leq s_{(n-2)p_c/h_c}(H_1 \oplus \ldots \oplus H_s).
\]

(25)

Thus by the induction hypothesis (24):

\[
s_{(n-1)p_c/h_c}(G) \leq (n-2)^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 2) + \ldots + (h_1 - 1) + 1) \leq (n-1)^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 1) + \ldots + (h_1 - 1) + (1-1) + 1).
\]

Therefore (22) holds.

Suppose that the inequality (22) holds for fixed \(n \geq 3 \) and fixed \(h_i \), such that \(h_i > h_1 \geq 1 \):

\[
s_{(n-1)p_c/h_c}(G) \leq (n-1)^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 1) + \ldots + (h_1 - 1) + 1).
\]

(27)

Let \(p \) be a prime divisor of \(h_1 \). Let \(H_1' \) be a subgroup of index \(p \) of a group \(H_i \). Put \(h_i = ph_i' \) and \(Q = H_1' \oplus H_2' \oplus \ldots \oplus H_s' \). By inductive assumption, the inequality (22) holds for \(Q \):

\[
s_{(n-1)p_c/h_c}(Q) \leq 2^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 1) + \ldots + (h_1 - 1) + 1).
\]

(28)

We put \(s = (n-1)^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 1) + \ldots + (h_1 - 1) + 1) \) and let \(S = g_1, g_2, \ldots, g_s \) be a sequence of \(G \).

We shall prove that there exists a subsequence of \(S \) with a length smaller than or equal to \((n-1)^{\alpha(h_1)}h_1 \) and a zero sum. Let \(b_i = g_i + Q, 1 \leq i \leq s \), be the sequence of \(G/Q \).

The quotient group \(G/Q \) is isomorphic to \(C_{h_1}^* \) and

\[
s = (n-1)^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 1) + \ldots + (h_1 - 1) + 1) \geq \frac{p(n-1)^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 1) + \ldots + (h_1 - 1) + 1) + (n-1)^{\alpha(h_1)}(2(h_{n-1} - 1) + (h_{n-1} - 1) + \ldots + (h_1 - 1) + 1) + 2p - n}{n}
\]

(29)

Therefore, by Lemma 6.1 there exists at least \(j_0 \) pairwise disjoint sets \(I_j \subseteq [1, s] \) with \(|I_j| \leq (n-1)p \) and

\[
(j \leq j_0 = (n-1)^{\alpha(h_1)}(2(h_{n-1} - 1) + \ldots + (h_1 - 1) + 1),
\]

(30)

such that sequence \(\prod_{p \in I_j} b_i \) has a zero sum in \(G/Q \).
In another words $\sigma(\prod_{i=1}^{n} g_i) = \sum_{i=1}^{n} g_i \in Q$. By induction assumption (22) for Q there exists $J \subseteq [1,j_0]$ with $|J| \leq (n-1)\sigma^k(h_n^*)$ such that $\sum_{j \in J} \sigma(\prod_{i=1}^{n} g_i) = 0$.

Thus, we obtain a zero sum subsequence of S in G of length not exceeding

$$\sum_{j \in J} |J| \leq (n-1)\sigma^k(h_n^*)(n-1)p = (n-1)\sigma^k(h_n^*).$$

7. The smooth numbers

First, we recall the notation of a smooth number. Let $F = \{q_1, q_2, \ldots, q_r\}$ be a subset of positive integers. A positive integer k is said to be smooth over a set F if $k = q_1 \cdot q_2 \cdot \ldots \cdot q_r$, where e_i are non-negative integers.

Remark 7.1. Let $n \in \mathbb{N}$. Each smooth number over a set $\{q_1^e, q_2^e, \ldots, q_r^e\}$ is an n-th power of a suitable smooth number over the set $\{q_1, q_2, \ldots, q_r\}$.

Definition 7.2. Let $\{p_1, p_2, \ldots, p_s\}$ be a set of distinct prime numbers. By $c(n_1, n_2, \ldots, n_s)$, we denote the smallest $t \in \mathbb{N}$ such that every sequence M of smooth numbers over a set $\{p_1, p_2, \ldots, p_s\}$, of length t has a non-empty subsequence N such that the product of all the terms of N is a smooth number over a set $\{p_1^e, p_2^e, \ldots, p_s^e\}$.

In the next theorem, we use notation $\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s}$ instead of notation $C_{n_1} \oplus C_{n_2} \oplus \ldots \oplus C_{n_s}$, these two structures are isomorphic to one another.

Theorem 7.3. Let n_1, n_2, \ldots, n_s be integers such that $1 < n_1 | n_2 | \ldots | n_s$. Then:

$$c(n_1, n_2, \ldots, n_s) = D(\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s}).$$

Proof. It follows on the same lines as the proof of (Chintamani et al., 2012 [Theorem 1.6]). First, we prove that

$$c(n_1, n_2, \ldots, n_s) \leq D(\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s}).$$

We put $l = D(\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s})$. Let $M = (m_1, m_2, \ldots, m_l)$ be a sequence of smooth numbers with respect to $F = \{p_1, p_2, \ldots, p_s\}$.

For all $i \in [1, l]$, we have $m_i = p_1^{e_1(i)} \cdot p_2^{e_2(i)} \cdot \ldots \cdot p_s^{e_s(i)}$, where $e_j(i)$ are non-negative integers.

We associate each m_i with $a_i \in \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s}$ under the homomorphism:

$$\Phi : \{p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_s^{e_s} : e_j \geq 0, e_j \in \mathbb{Z}\} \rightarrow \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s},$$

$$\Phi(p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_s^{e_s}) = ([e_1], [e_2], \ldots, [e_s]).$$

Hence

$$\Phi(m_i) = ([e_{1,i}], [e_{2,i}], \ldots, [e_{s,i}]).$$

Thus, we get a sequence $S = a_1, a_2, \ldots, a_l$ of elements of the group $\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s}$ of length $l = D(\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s})$. Therefore, there exists a non-empty zero sum subsequence T of S in $\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_s}$. Let $T = a_1^*, a_2^*, \ldots, a_k^*$, where

$$\sum_{i=1}^{k} e_{i,k} \equiv 0 (\text{mod } n_k),$$

where $k \in [1, r]$.

https://doi.org/10.37705/TechTrans/e2020027
Consider the subsequence N of M corresponding to T. We have $N = (m_{i'}, m_{i''}, \ldots, m_i)$ and by equation (35), we get

$$
\prod_{i'=1}^{l} m_{i'} = \prod_{i'=1}^{l} p_i^{\sum_{j=1}^{l} gj} = \prod_{i'=1}^{l} (p_i^{n_i}),
$$

for some integers $l_i \geq 0$. Thus, the product $\prod_{i'=1}^{l} m_{i'}$ of all the terms of N is a smooth number over a set $\{p_1^{n_1}, p_2^{n_2}, \ldots, p_i^{n_i}\}$. By definition of $c(n_i, n_j, \ldots, n_t)$, we get inequality (32).

On the other hand, we will now prove that

$$
c(n_i, n_j, \ldots, n_t) \geq D(\mathbb{Z}_{n_i} \oplus \mathbb{Z}_{n_j} \oplus \cdots \oplus \mathbb{Z}_{n_t}).
$$

Let $l = c(n_i, n_j, \ldots, n_t)$ and $S = a_1 a_2 \cdots a_t$ be a sequence of elements of $\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_t}$ of length l, where $a_i = ([e_{i1}], [e_{i2}], \ldots, [e_{i \ell}])$.

We put $m_i = p_1^{e_{i1}} p_2^{e_{i2}} \cdots p_t^{e_{i \ell}}$. The sequence $M = (m_1, m_2, \ldots, m_t)$ of integers is a sequence of smooth numbers over a set F.

By definition of $l = c(n_i, n_j, \ldots, n_t)$, there exists a non-empty subsequence $N = (m_{i'}, m_{i''}, \ldots, m_i)$ of M such that

$$
\prod_{i'=1}^{l} m_{i'} = \prod_{i'=1}^{l} (p_i^{n_i}),
$$

for some integers $l_i \geq 0$. The subsequence T of S corresponding to N will sum up to the identity in $\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_t}$. Therefore, (37) holds and we obtain (31).

8. Future work and the non-Abelian case

The constant $E(G)$ has received a lot of attention over the last ten years. For example, one direction towards weighted zero-sum problems, see (Grynkiewich, 2013 [Chapter 16]). The second direction towards non-Abelian groups.

Let G be any additive finite group. Let $S = (a_1, a_2, \ldots, a_n)$ be a sequence over G. We say that the sequence S is a zero-sum sequence if there exists a permutation $\sigma: [1, n] \rightarrow [1, n]$ such that $0 = a_{\sigma(1)} + \cdots + a_{\sigma(n)}$. For a subset $I \subseteq \mathbb{N}$, let $s_i(G)$ denote the smallest $i \in \mathbb{N} \cup \{0, \infty\}$ such that every sequence S over G of length $|S| \geq i$ has a zero-sum subsequence S' of length $|S'| \leq i$. The constants $D(G) := s_0(G)$ and $E(G) := s_{|G|}(G)$ are classical invariants in zero-sum theory (independently of whether G is Abelian or not). We recall that for a given finite group G, we denote by $d(G)$, the maximal length of a zero-sum free sequence over G. We call $d(G)$ the small Davenport constant.

Remark 8.1. In the Abelian case $d(G) = D(G) - 1$. Note that in the case of non-Abelian groups, $d(G)$ can be strictly smaller than $D(G) - 1$, see (Geroldinger & Ruzsa, 2009 [Chapter 2]).

Theorem 8.2. If G is a finite group of order $|G|$, then

$$
d(G) + m|G| \leq E_m(G) \leq E(G) + (m-1)|G|.
$$

Proof. Let $S = (a_1, a_2, \ldots, a_{d(G)})$ be a sequence of $d(G)$ non-zero elements in G. Using the definition of $d(G)$, we may assume that S does not contain any non-empty subsequence S' such that $\sigma(S') = 0$. We put

$$
T = (a_1, a_2, \ldots, a_{d(G)}, 0, \ldots, 0)
$$

where $v_0(T) = m|G| - 1$.

https://doi.org/10.37705/TechTrans/e2020027
We observe that the sequence T does not contain m disjoint non-empty subsequences T_1, T_2, \ldots, T_m of T such that $\sigma(T_i) = 0$ and $|T_i| = |G|$ for $i \in [1, m]$. This implies that $E_m(G) > d(G) + m|G| - 1$. Hence

$$E_m(G) \geq d(G) + m|G|. \tag{41}$$

On the other hand, if S is any sequence over G such that

$$|S| \geq E(G) + (m-1)|G|,$$

then one can sequentially extract at least m disjoint subsequences S_1, \ldots, S_m of S, such that $\sigma(S_i) = 0$ in G and $|S_i| = |G|$. Thus

$$E_m(G) \leq E(G) + (m-1)|G|. \tag{42}$$

\textbf{Corollary 8.3.} If $m \to \infty$, then $E_m(G) = m|G|$.

\textit{Proof.} If $m \to \infty$, then $\frac{E_m(G)}{m} \to |G|$ by the inequality (39).

We now give an application of Theorem 8.2. The formula $E(G) = d(G) + |G|$ was proved for all finite Abelian groups and for some classes of finite non-Abelian groups (see equation (3) and (Bass, 2007; Han, 2015; Han & Zhang, 2019; Oh & Zhong, 2019)). Thus

$$E_m(G) = d(G) + m|G|$$

holds for finite groups in the following classes: Abelian groups, nilpotent groups, groups in the form $C_n \rtimes C_m$, where $m, n \in \mathbb{N}$, dihedral and dicyclic groups and all non-Abelian groups of order pq with p and q prime. Therefore, the following conjecture can be proposed:

\textbf{Corollary 8.4.} (See (Bass, 2007 [Conjecture 2]))

For any finite group G, we have the equation $E_m(G) = d(G) + m|G|$.

9. Conclusion

This paper makes a contribution to the theory of additive combinatorics. It provides an overview of the state of knowledge of the zero-sum problems and can be considered as an introduction to this theory. We have proven that if G is an Abelian group, then $E_m(G) = d(G) + m|G|$. We have studied the asymptotic behaviour of the sequences $(E_m(G))_{m \geq 1}$ and $(\eta_m(G))_{m \geq 1}$. For a prime p and a natural $n \geq 2$, we have derived the inequality $s_{(n+1)}(C_p^\infty) \leq (n+1)p-n$. We have proven a generalization of Kemnitz’s conjecture. We have applied the Davenport constant to smooth numbers. Finally, we have shown some results in the non-Abelian case.

\textbf{2010 Mathematics Subject Classification:} Primary 11P70; Secondary 11B50
References

