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Abstract

Human motion analysis is a very important research topic in the field of 
computer vision, as evidenced by a wide range of applications such as video 
surveillance, medical assistance and virtual reality. Human motion analysis 
concerns the detection, tracking and recognition of human activities and 
behaviours. The development of low-cost range sensors enables the precise 
3D tracking of body position. The aim of this paper is to present and 
evaluate a novel method based on topological data analysis (TDA) for motion 
capture (kinematic) processing and human action recognition. In contrast 
to existing methods of this type, we characterise human actions in terms 
of topological features. The recognition process is based on topological 
persistence which is stable to perturbations. The advantages of TDA are noise 
resistance and the ability to extract global structure from local information. 
The method we proposed in this paper deals very effectively with the task 
of human action recognition, even on the difficult classes of  motion found 
in karate techniques. In order to evaluate our solution, we have performed 
three-fold cross-validation on a data set containing 360 recordings across 
twelve motion classes. The classification process does not require the use 
of machine learning and dynamical systems theory. The proposed classifier 
achieves a total recognition rate of 0.975 and outperforms the state-of-the-
art methods (Hachaj, 2019) that use support vector machines and principal 
component analysis-based feature generation.
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1. Introduction

Human motion analysis is an important field of applied computer science 
with many practical applications. Among these applications we can mention 
sport and health surveillance, medical and disability assistance, gaming and 
human-computer interaction (Mokari, Mohammadzade and Ghojogh, 2020). 
The process of human motion registration is called motion capture (MoCap). 
There are various sensors that are used to perform this registration, depending 
on the specific MoCap technologies used, for example, video cameras, internal 
measurement units (IMU), etc. After gathering motion data, it is processed 
in order to generate motion features that are useful for further analysis.  
In most cases, motion is modelled as a  multidimensional time series in 
which each time series represents coordinates of a certain part of the body. 
However, these measurements of biological (kinematic) activities might differ 
between individuals even if they perform the same action. This is due to 
the fact that each person has slightly different body proportions and flexibility, 
which affects motion trajectories. Additionally, the same action may be 
performed with different speeds. Therefore, human action recognition is among 
the most challenging and still presents problems of digital signal classification.  
In the following subsections, we discuss the principal components of analysis- 
-based methods of action recognition which are considered the most effective 
methods for motion feature selection. We then discuss state-of-the-art action 
classification with topological data analysis.

1.1. Principal components of analysis-based methods in human action 
classification

Methods based on principal component analysis (PCA) are considered the most 
effective methods for the selection of motion features. PCA can be applied either 
directly to the MoCap signal to reduce the dimension of the classification problem 
or using an approach that is similar to so-called eigenfaces (Kim, Kim & Bang, 
2002). There is no official name for this approach; therefore, the authors 
may use various names for it, such as ‘eigensequences’ (Bottino, De Simone 
&  Laurentini, 2007), ‘signatures’ (Billon, Nédélec & Tisseau, 2008) or they 
do not specifically mention its name at all. MoCap data that is used as an 
input for PCA is most often either three dimensional trajectories of body 
joints (Billon, Nédélec & Tisseau, 2008; Zago et al., 2017; Ko, Han & Newell, 
2018; Choi, Ono & Hachimura, 2009) or angle-based features derived from the 
positions of those joints (Bottino, De Simone & Laurentini, 2007; Mantovani, 
Ravaschio, Piaggi &  Landi, 2010; Choi, Sekiguchi & Hachimura, 2009; Choi, 
Sekiguchi & Hachimura, 2013; Das, Wilson, Lazarewicz & Finkel, 2006; Świtoński 
et al., 2011; Lee, Roan & Smith, 2009; Hachaj & Ogiela, 2018; Hachaj, 2019). 
A classifier is applied after features calculation, for example, support vector 
machine (SVM) (Das, Wilson, Lazarewicz & Finkel, 2006; Zago et al., 2017; 
Hachaj, 2019) or the k-nearest neighbour method (Hachaj, 2019).

1.2. Action classification with topological data analysis

Besides most popular approaches that utilise already verified and effective 
PCA-based features and various classifiers, topological-based approaches 
have recently begun to emerge in the field of human action analysis. Homology 
theory can be successfully used in motion recognition; however, there have been 
relatively few studies reported on this topic, particularly in the field of human 
action classification. Periodic motion analysis based on dynamical systems 
theory is presented in Dirafzoon, Lokare and Lobaton (2016), Tralie (2016), 
Tralie and Berger (2018), Vejdemo-Johansson, Pokorny, Skraba and Kragic 
(2015) and Venkataraman, Ramamurthy and Turaga (2016). These types of 
approaches are sometimes combined with machine learning methods such 
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as SVM (Anirudh, Venkataraman, Natesan Ramamurthy and Turaga, 2016; Som 
et al., 2018) or convolutional neural networks (Umeda, 2017). The method 
of analysing collective motion supported by machine learning is described in 
Bhaskar et al. (2019).

There are also other approaches that can be used to solve similar tasks. 
Comprehensive and state-of-the-art surveys on motion capture pattern 
recognition methods can be found in Presti and La Cascia (2016), Cornacchia, 
Ozcan, Zheng and Velipasalar (2016) and Idris et al. (2019).

1.3. Motivation for this paper

Based on the survey presented in the previous section, we can observe that 
the topological-based approaches focus on simple periodic activities such 
as walking, running, bicycling, waving, etc. Moreover, they need additional 
methods and tools from the field of dynamical systems and machine 
learning. In practice, many potential applications of motion analysis 
require the precise classification of complex, non-periodic movements. This 
classification should be independent of the speed of execution, insignificant 
deviations, the individual’s proportions and other characteristics of the body. 
Improperly performed or classified movement may result in serious negative 
consequences, e.g.  medical rehabilitation. In this paper, we propose a novel 
topological method of classifying complex human motion. In contrast to 
existing topological approaches, this method does not need to be supported 
by machine learning and dynamical systems tools. Despite this, the presented 
algorithm achieves high levels of accuracy in recognising very complex and 
varied movements such as martial arts techniques. Both implementation of the 
proposed method and the data set we used for its evaluation are available to 
download in order to enable our research to be reproduced.

2. Material and methods

In this section, we will present the proposed human action classification 
method and the data set we have used for evaluation purposes.

2.1. Topological overview

The number of n-dimensional holes in the topological space is counted by the 
rank of the nth homology group, called nth Betti number (βn). For example, in  
X ⊂ ℝ2, β0, β1 and β2 are the numbers of the connected components, independent 
tunnels and independent voids, respectively. Topological spaces are usually 
constructed from simplexes (points, edges, triangles, tetrahedrons…) or 
hypercubes (points, edges, squares, cubes…) that form structures called 
simplicial complexes (Edelsbrunner, Letscher & Zomorodian, 2000) or cubical 
complexes (Mrozek, Żelawski, Gryglewski, Han & Krajniak, 2012), respectively. 
Unfortunately, Betti numbers are sensitive to noise and do not differentiate 
between small and large holes. This problem has been solved by so-called 
persistent homology (Edelsbrunner, Letscher & Zomorodian, 2000; Zomorodian 
& Carlsson, 2005). Persistent homology tracks the changes of the Betti numbers 
when the topological space is gradually built by adding simplexes or cubes in 
a specific order. The holes are born, persist for some time and then die. The 
holes which die quickly are likely to be caused by noise, whereas the holes with 
a long lifetime represent the actual topology of data.

A set of points in ℝn, called a point cloud, can be transformed into 
a simplicial complex, for example, the Vietoris-Rips complex. In a filtration 
process, a sequence of increasing subcomplexes is created and the number of 
holes and their lifetime is calculated and visualised as a so-called persistence 
diagram or barcode (Edelsbrunner & Harer, 2010; Ghrist, 2008). The barcode 
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is a collection of intervals where the interval lengths correspond to the lifetime 
of the holes. The persistence diagram is a collection of points where the points 
coordinates are the birth and death times of the holes. These 2-dimensional 
diagrams visualise global geometrical properties of the multidimensional shape 
formed by the point cloud.

The strength of TDA lies in its ability to extract global structure from local 
information and its stability under perturbations. TDA is very successful in 
high-dimensional data analysis.

2.2. Data set

The data set we used for validation was an open data set containing the motion 
capture of three experienced Shorin-Ryu karate athletes (world and national 
medalists) (Github, online). This data set has already been used in research on 
human action classification (Hachaj, 2019) and proved to be challenging due to 
the complexity of the motions. Each of the three individuals on the recordings 
performed twelve types of karate techniques which were repeated 10 times (there 
are altogether 360 motion actions). There are four types of blocking techniques 
– age uke and gedan barai with the left and right hand; two types of elbow strikes 
– empi with the left and right elbow; six types of kicks – hiza geri (knee kick), 
mae geri and yoko geri with left and right leg. The detailed descriptions of those 
motions with illustrations can be found, for example, in Funakoshi (1996). This 
particular data set is a very interesting and challenging for action recognition 
purposes due to several factors. It consists of karate techniques which are 
well defined and are easily repeatable by skilled karatepractitioners. These 
techniques are performed with high speed and involve large parts of the human 
body. The proportions and flexibility of the human body are important: the same 
technique may have different ranges of motion depending on each person’s 
individual characteristics. There are not many examples of each technique, 
which makes the machine-learning procedure difficult. All techniques start from 
the same initial stance (zenkutsu dachi) and only the middle parts of each action 
differ. We also have to emphasise that skilled fighters perform the initial parts 
of attacks (kicks and punches) in a similar manner, in order to avoid signalling 
to the opponent their intention of using a particular technique. To an amateur 
observer, limb trajectories of various techniques might seem very similar.This 
particular data set was acquired using the Shadow 2.0 wireless motion capture 
system consisting of 17 IMU (inertial measurement units) sensors with a 100 Hz 
tracking frequency set to 100 Hz, 0.5 degrees of static and 2 degrees of dynamic 
accuracy. Motion recordings contain twenty body joints. More details about the 
system, its calibration and the output data can be found in Hachaj, Piekarczyk 
and Ogiela (2017).

2.3. Action recognition

Suppose we have measurements coming from the location sensors used during 
any physical activity (for example a martial arts technique). The following 
notations are used:
M 	 – 	 the number of sensors;
K 	 –	 the number of the measurements for each sensor;
sijk 	 – 	 the i-th coordinate of the location of the j-th sensor in the time tk, where  

i = 0, …, 2, j = 1, …, M, k = 1, …, K;

v t s s s s s s s s sk k k k k k k k Mk Mk Mk=( , , , , , , , , , , )01 11 21 02 12 22 0 1 2 .

The point cloud representing the martial arts technique is defined as follows:

	
C v k Kk

M� � ��{ : , , }� …3 1 1
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In TDA, the point cloud is transformed into a nested family of simplicial 
complexes (for instance, Čech or Vietoris-Rips complex) in the filtration process. 
Persistent homology of the filtered simplicial complex (the lifetime of holes in 
the complex) is visualised by barcodes or persistence diagrams.

To measure the similarity of martial arts techniques represented by the 
point clouds C1, C2, one can compute the Bottleneck or Wasserstein distance 
(Edelsbrunner & Harer, 2010) Wp(B(C1), B(C2)) between their barcodes B(C1), B(C2).

To improve the classification process, an additional stage is introduced 
before the topological recognition. Let h be an index of the hip sensor. For the 
point cloud C and the j-th sensor, define minimal and maximal coordinates of 
the bounding box relative to the initial hip position as:

x C s s s s s sj k jk k jk k jk h h h
min( ) (min ,min ,min ) ( , , )� �0 1 2 0 0 1 0 2 0

x C s s s s s sj k jk k jk k jk h h h
max ( ) (max ,max ,max ) ( , , )� �0 1 2 0 0 1 0 2 0

For the point clouds C1 and C2, the distance between bounding boxes of the 
j-th sensor location is defined as:

	
d C C d x C x C d x C x Cj
box

j j j j( , ) ( ( ), ( )) ( ( ), ( ))min min max max
1 2 1 2 1 2� �

where d denotes the Euclidean distance.
Let h1, hr, f1, fr be the indexes of the sensors on a left hand, right hand, left foot 

and right foot, respectively. The distance between the hand and foot bounding 
boxes is defined as:

	 d C C d C C d C C d C C dhf
hl
box

hr
box

fl
box

fr
bo( , ) ( , ) ( , ) ( , )1 2 1 2 1 2 1 2� � � � xx C C( , )1 2

dhf measures the similarity of the bounding boxes of the point clouds representing 
hand and foot movements. This is a very effective way to significantly reduce the 
classification time because dhf detects the difference between techniques very 
quickly. As a result, the more precise topological classification analyses only 
those classes that are not rejected during the bounding box stage.

The main algorithm recognises the action represented by point cloud C.  
C is matched with each point cloud from a given training set 𝒮. Let Id(P) denote 
a unique identifier of the action represented by the point cloud P ∈ 𝒮. First, fast 
recognition by using the bounding boxes is performed. If the classification is 
uncertain, i.e. the input point cloud is very similar to more than one training 
point cloud (the parameter ε), the algorithm performs the topological 
recognition process restricted to the most probable techniques. During 
topological recognition, the point cloud C is converted to the Rips complex. 
The obtained barcode is compared to the barcode of each training pattern by 
computing the Wasserstein distance. The measure of similarity is computed as 
the Wasserstein distance for 0-dimensional persistent homology. The algorithm 
returns the unique identifier of the action represented by the training pattern 
which constitutes the best match to the input point cloud. The parameter ε was 
set empirically.

Alg. 1. Action recognition
function RecognizeAction (C, 𝒮)

Let R1 ∈ 𝒮 be such that dhf(C, R1) = min{dhf(C, P): P ∈ 𝒮} 
I = Id(R1)
𝒯 = {P ∈ 𝒮: dhf(C, P) ≤ ε}
if card(𝒯) > 2 then

Let R2 ∈ 𝒯 be such that Wp(B(C), B(R2)) = min{Wp(B(C), B(P)): P ∈ 𝒯
I = Id(R2)

return I
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3. Results

The algorithm was implemented in R using the TDA package. We have published 
t h e  source code in an online repository in order to make the experiment 
reproducible1.

The data set presented in Section 2.2 has been split into two subsets: 
test (training) and validation data sets. Training was performed on the data 
of two people (on 240 action of twelve motion classes), while evaluation 
was performed on the data of the third person (120 recordings of twelve 
motion action classes). We performed a three-fold cross-validation in which 
we primarily used the data from individuals 1 & 2 for training and the data from 
individual 3 for validation, then the data from individual 2 & 3 for training and 
the data from individual 1 for validation. Finally, the data from individuals 1 & 3 
were used for training and the data from individual 2 for validation. Results 
were averaged and we calculated the total recognition rate of all classes. The 
final result of our topological-based method was 0.975.

Figure 1 presents the point cloud and the obtained barcode for a sample 
karate technique.

Table 1 presents the confusion matrix. The matrix is row-normalised. Each 
row represents a judge label. Columns represent the predicted label. Numbers 
in the table are percentage values (the average accuracy and variance from the 
three-fold cross-validation).

As can be seen, the proposed method sometimes misclassifies left and 
right versions of the same techniques (empi, gedan barai) because topology is 
not changed by reflections and the bounding boxes may be too similar in both 
versions. The lowest accuracy and the highest variance is obtained in the case of 
the yoko geri technique (side kick), which is sometimes misclassified as the mae 
geri technique (front kick). These techniques differ mainly in the direction of the 
kick, but from a topological point of view, they are almost identical and only the 
bounding boxes can identify the key differences. 

The results obtained by the proposed algorithm have been compared with 
three other algorithms that utilise PCA-based motion features and angle-based 
motion description, namely Das, Wilson, Lazarewicz and Finkel (2006), Zago et 
al. (2017), Hachaj (2019). The description of setups of these three algorithms 
on the data set presented in Section 2.2 has been published in Hachaj (2019). 
In Das, Wilson, Lazarewicz and Finkel (2006) PCA is performed on planar 

1	 https://github.com/marcinz00/MartialArtsTDA

Fig. 1. The point cloud (B) and the barcode (C) 
for yoko geri kick with the left leg (A – screen 
from BVHacker software). The positions of 
the left foot, right foot, left hand and right hand 
are marked in red, green, blue and orange, 
respectively (B)
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angle-based features of motion and each action is mapped onto 2D space. 
Following this, PCA features were calculated and the data were classified by 
SVM, obtaining a recognition rate of 0.647 with three-fold cross-validation. In 
Zago et al. (2017) the movement was interpreted as a time series of postures, 
where a posture was defined as a 60-dimensional vector composed of the body 
joint positions at a  given time. Finally, 40-dimensional vectors were used for 
classification with SVM obtaining the recognition rate of 0.628 with three-fold 
cross-validation. In the work of Hachaj (2019), there are 100 bagged classifiers 
trained on ten classes each, each of them utilising twenty-five PCA features, 
obtaining a  recognition rate of 0.939 with three-fold cross-validation. The 
source code for this experiment can be downloaded from the online repository 
(Github, online).

Table 1.	 Confusion matrix

Predicted class

Age 
uke 

(left)

Age 
uke 

(right)

Empi 
(left)

Empi 
(right)

Gedan 
barai 
(left)

Gedan 
barai 

(right)

Hiza 
geri 

(left)

Hiza 
geri 

(right)

Mae 
geri 

(left)

Mae 
geri 

(right)

Yoko 
geri 

(left)

Yoko 
geri 

(right)

Ac
tu

al
 c

la
ss

Age uke 
(left) 100±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Age uke 
(right) 0±0 100±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Empi (left) 0±0 0±0 100±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Empi (right) 0±0 0±0 6.67±
13.33

93.33±
13.33 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Gedan barai 
(left) 0±0 0±0 0±0 0±0 96.67±

3.33
3.33±
3.33 0±0 0±0 0±0 0±0 0±0 0±0

Gedan barai 
(right) 0±0 0±0 0±0 0±0 0±0 100±0 0±0 0±0 0±0 0±0 0±0 0±0

Hiza geri 
(left) 0±0 0±0 0±0 0±0 0±0 0±0 93.33±

3.33 0±0 6.67±
3.33 0±0 0±0 0±0

Hiza geri 
(right) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 100±0 0±0 0±0 0±0 0±0

Mae geri 
(left) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 100±0 0±0 0±0 0±0

Mae geri 
(right) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 100±0 0±0 0±0

Yoko geri 
(left) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 3.33±

3.33 0±0 96.67±
3.33 0±0

Yoko geri 
(right) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 10±30 0±0 90±30

4. Discussion

The presented algorithm is independent of body proportions and the speed 
of execution because TDA focuses on the study of mutual relations between 
elements of a data set. Topology is not changed by operations such as 
translation, rotation and scaling. Therefore, comparing similar movements 
located in other areas of space (for instance, left and right versions of the 
same techniques) does not make much sense because it is time consuming 
and may lead to misclassifications. The bounding boxes used in the first step of 
the described algorithm effectively eliminate unnecessary matches. Obviously, 
there are differences in hand and foot length between children and adults, 
but the length of the boxes may be normalised by estimating the performer’s 
height (e.g. with the vertical distance between the initial positions of the head 
and hip sensors).
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Topological persistence is stable to perturbations, so the algorithm can 
classify patterns effectively even in the case of inaccurate movements or noisy 
measurements from sensors. The quality and precision of techniques can be 
estimated by the Wasserstein distance.

5. Conclusion

The method we proposed in this paper deals very effectively with the task of 
human action recognition, even on difficult data sets, such as those relating 
to karate techniques. The presented algorithm does not require the use of 
additional methods such as dynamical systems tools or machine learning. The 
persistent homology approach provides high accuracy even with very complex 
and varied martial arts movements. The TDA classifier outperforms the state-
-of-the-art methods (Hachaj, 2019) based on PCA-based features generation 
and SVM by 0.036. These results are very promising and prove that TDA is an 
effective tool in the field of human action recognition.
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