WYoziaiy politecaniczine kraków

BIBLIOTEKA GŁÓWNA

L. inw.

Vaulted Structures.

BY
WILLIAM OAIN, MBMEEF AM, SOC, C. π.

PROR, OF MATHEMATICS, UNIVERSTKY OF NOKTH CAROLTNA.

Fourth Edition, Revised and Enlarged.

NEW YORK :

D. VAN NOSTRAND COMP $1 N Y$.

23 Murnay and of Warbig Stramta. 1906

THE VAN NOSTRAND SCIENCE SERIES.

16 mo . Boards. Prico 50 Conts Each, Amply Ittustrated when the Subjeet Demands.

No. \&.-CHIMNEYS FOR FURNACES AND STEAM-BOIL. ERS. By R. Armstrong, O.E. 3d American ed. Revised and partly rewritten, with an Appendix on 'J'heory of Chimuey Draught, by F. E. Idell, M.E.
No. 2.-STEAM-BOILER EXPLOSIONS. By Zerah Colburn. New edition, revised by Prof. R. H. Thurston.
No. 3.-PRACTICAL DESIGNING OF RETAINING-WALLS, Fourth edition. By Prof. W. Gain.

No, 4.-PROPORTIONS OF PINS USED IN BRIDGES. By Chas. E. Bender, C.E. $2 d$ edition, with appendix.
TVa. 6-VENTILATION OF BUILDINGS. By w. T. Butler. Second ecition, re-edited and enlarged by James L. Greenleaf, C. E.

No. 6:-ON THE DESIGNING AND CONSTRUCTION OF STORAGE RESERVOIRS. By Arthur Jacob, A. B. Second edition, revised, with additions by E. Sherman Gould.
No. 7.-SURCHARGED AND DIFFERENT FORMS OF RE-TAINING-WALLS. By James S. Tate, C.E.
No. 8.-A TREATISE ON THE COMPOUND ENGINE. By John Turnbull, jun. Second edition, revised by Prof. S. W. Robinson.
No. 9.-A TREATISE ON FUEL. By Arthur V. Abbott, C.E. Founded on the original treatise of C. Willfam Siemens, D.C.L.
No. 10.-COMPOUND ENGINES. Translated from the French of A. Mallet. Second edition, revised, with results of American Practice by Richard H. Buel, C.E.
No. 11.-THEORY OF ARCEES. By Prof. W. Allan.
No, 12.-THEORY OF VOUSSOIR ARCHES. By Prof. W. 2 Cain. Second edition, revised and enlarged.
No. 18, -GASES MET WITH IN COAL-MINES. By J. J. Atkinson. Third edition, revised and eniarged by Edward H. Williams, jun.
No. th-FRICTION OF AIR IN MINES. By J. J. Atkinson. Cannma A maminan ansition

No. 19.-STRENGTH OF BEAMS UNDER TRANSVERSE LOADS. By Prof. W. Allan, author of "Theory of Arches." Second edition, revised.
No. 20.-BRIDGE AND TUNNEL CENTRES. By John B. MeMaster, C.E. Second edition.
No. 21.-SAFETY VALVES. Second Edition. By Richard H. Buel, C.E.

No. 22.-HIGH MASONRY DAMS. By E. Sherman Gould, M, Am, Soc, C. E.
No. 23.-THE FATIGUE OF METALS UNDER REPEATMAD STRAINS. With various Tables of Results and Experiments, From the German of Prof. Ludwig Spangenburgh, with a Preface by S. H. Shreve. A.M.

No, 24.-A PRACTICAL TREATISE ON THE TEETH OF WHEELS, By Prof. S. W. Robinson. Second edition, revised.
No. 25 .-ON THE THEORY AND CALCULATION OF CONTINUOUS BRIDGES. By R, M. Wileox, Ph. D.
1.0. 20.-PRACTICAL TREATISE ON THE PROPERTIES OF CONTINUOUS BRIDGES. By Charles Bender, C.E.
No. 27.-ON BOILER INCRUSTATION AND CORROSION. By F. J. Rowan, New Ed. Rev. by F. K. Idell.
No. 28.-TRANSMISSION OF POWER BY WIRE ROPES. Second edition. By Albert W. Stahl, U.S.N.
No. 29.-STEAM INJECTORS. Translated from the French of M. Leon Pochet.
No. 30.-TERRESTRIAL MAGNTETISM AND THE MAGNETISM OF IRON VESSELS. By Prof, Fairman Rogers.
No. 81.-THE SANITARY CONDITION OF DWELLINGHOUSES IN TOWN AND COUNTRY. By George E, Waring, jun.
No. 32.-CABLE-MAKING FOR SUSPENSION BRIDGES, By W. Hildebrand, C.E.
No. 33.-MECHANICS OF VENTILATION. By George w. Rafter, C.E. New and Revised Edition.
No. 34.-FOUNDATIONS. By Prof. Jules Gaudard, C.E. Second edition. Translated from the French.
No. 35.-THE ANEROID BAROMETER: ITS CONSTRUO TION AND USE, Compiled by George W Plympton. Eighth edition.
No. 36.-MATTER AND MOTION. By J. Clerk Maxwelh M,A. Second American edition.
No. 37.-GEOGRAPHICAL SURVEYING ; ITS USES, METHODS, AND RESULTS. By Frank Dé Yeaux Carpenter, C.E.
No. 88.-MAXIMUM STRESSES IN FRAMED BRIDGES. By Prof. William Cain, A.M., C.E. New and revised edition.

TEP FAN MOSTRAND SCHENCN SRRIRG.

No, 80,-A HANDBOOK OF THE ELEOTRO-MAGNDYTO TELEGRAPH. By A. E. Loring.
No. 40.-TRANSMISSION OF POWER BY COMPRESSED AIR. By Robert Zahner, M.E. Second edition.
No. 41.-STRENGTH OF MATERIALS, By Wiliam Kent, C. E., Assoc. Editor, Engineering News. Second Ed,

No. 47.-THEORY OF STEEL-CONCRETE ARCHES, AND OF vaulted structures. By Prof. William Cain.

No. $43 .-$ WAVE AND VORTEX MOTION. By Dr. Thomas Craig, of Johns Hopkins University.
No. 44,-TURBINE WHEELS. By Prof, W. P. Trowbridge, Columbia College. Second edition. Revised.
No. 45.-THERMODYNAMICS. By Prof. H. T. Eddy, University of Cincinnati.
No. 46,-ICE-MAKING MACHINES. From the French of M. Le Doux. Revised by Prof. Denton.

No. 47.-LINKAGES ; THE DIFFERENT FORMS AND USES OF ARTICULATED LINKS. By J. D. C. de Roos.
No. 48.-THEORY OF SOLID AND BRACED ARCHES By William Cain, C.E.
No. 49.-ON THE MOTION OF A SOLID IN A FLUID. By Thomas Craig, Ph.D.
No. 50 .-DWELLING-HOUSES: THEIR SANITARY CONSTRUCTION AND ARRANGEMENTS. By Prof. W. H. Corfield.

Na. 51. THE TELESCOPE: ITS CONSTRUCTION, ETC. By Thomas Nolan.
No. 52.-IMAGINARY QUANTITIES. Translated from the French of M. Argand. By Prof. Hardy.
No. 53.-INDUCTION COILS: HOW MADE AND HOW USED. Fifth edition.
No. 54.-KINEMATICS OF MACHINERY. By Prof. Kennedy. With an introduction by Prof. R. H. Thurston.
No. 55. -SEWER GASES : THEIR NATURZ AND ORIGIN. By A. de Varona. 2d ed., revised and enlarged.
No. 56.-THE AOTUAL LATERAL PRESSURE OF EARTHWORK. By Benjamin Baker, M. Inst. C.E.
He. 5\%.-INCANDESCENT ELECTRIC LIGHTING. A Practical Description of the Edison System. By L. H. Latimer, to which is added the Design and Operation of Incandescent Stations. By C. J. Field, and the Maximum Efficiency of Incandescent Lamps, by John W. Howell.
No, B8.-THE VENTILATION OF COAL-MINES. By W. Fairley, M.E., F.S.S., and Geo. J. André.
Mo. Bo.-RAILROAD ECONOMICS; OR, NOTES, WITH COMMENTS By S. W. Robinson, C.E.

THEORY OF

Steel-Concrete Arches,

AND OF

Vaulted Structures.

BY
WILLIAM CAIN,
MEMBER AM. SOC. C. E.

PROF, OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA.

Fourth Edition, Revised and Enlarged.

NEW YORK :

D. VAN NOSTRAND COMPANY. 23 Murray and 27 Warren Streets. 1906

```
21274892
    2,87147
```


STATE OF RHODE ISLANDS VICTORY BOOK CAMPAIGN FOR THE ARMED FORCES

Copyright, igor, by D. Van Nostrand Co.

RHODE ISLAND STATE LIBRARY EXTENSION SERVICE

Preface to Fourth Edition.

In this edition, the author has added a chapter on the reinforced concrete or metal dome, thus completing the treatment (both graphical and analytical) of the spherical and conical domes. In the Appendix will be found a resumé of operations, with further hints, connected with the treatment of the reinforced arch.

Chapel Hill, N. C., May, 1905.

$$
5
$$

PREFACE.

The author has availed himself of the opportunity, in this revision, to give a complete solution of the elastic arch of variable section. The arch of steel and concrete combined is taken up in detail to illustrate the general graphical treatment. The method to follow for other arches, as those of steel, stone or concrete, is at once apparent from the general solution.

The aim throughout has been to give a clear analysis of principles involved, a knowledge of the fundamental principles of the equilibrium polygon being alone assumed.

This book, although independent of the author's other works on Arches, really supplements them, since in "Theory of Voussoir Arches," the elastic arch of constant section is alone treated, and in "Theory of Solid and Braced Elastic Arches," the arch of variable section is very briefly considered without a completely worked out example.

This work then deals especially with the most complicated case, and it is believed that a thoroughly practical solution is offered.

About one half of this second edition is entirely new; the remainder is substantially as it appeared in the first edition,* though often more condensed.

Credit is given in the body of the work to those from whom the author has derived assistance. Special mention though is due Dr. Hermann Scheffler, as his "Théorie des Voutes" has been drawn upon for much of the theory in treating culverts and vaulted structures.

The theory of the elastic arch for arch bridges of stone, concrete, brick, etc., is advocated here, as in the author's previous treatises. This theory, as a practical working theory, receives direct confirmation in the many experiments performed by the Austrian Society of Civil Engineers and Architects, in 1890-95, on arches of brick and concrete.

Chapel Hill, N. C., August 11, 1901.

[^0]
CONTENTS.

CHAPTER I.
Arches of Variable Section under Verti- cal Loads.
Article Page
1.-Introductory 7
2-11.-Formulas for unit stress for a steel- concrete arch 10
12.-Conditions for equilibrium for arch with no hinges 27
13.-Deflection at the crown 31
14-17.-Division of the neutral axis 33
18-28.-Complete graphical treatment for a steel-concrete arch with partial load 42
29.-Arch loaded with its own weight 57
30.-Demonstration 58
31-35.-Unit stresses, etc. 59
36-38.-Temperature stresses 65
39.-Properties of concrete 75
40.-Change of span 80
41,-Arch hinged at ends only 81
42,-Abutments 83
43-45.-Spandrel resistance for voussoir arches 84
46. - Methods of failure of arches 91
47-49.-Height of surcharge for equilibrium 93

CHAPTER II.

Culverts and Tunnel Arches.ArticlePage
50-52. -Formulas for passing a line of resis- tance through three given points. 98
53-57.-Application to culverts 103
58-59.-Tunnel arches 115
60.-The ellipse the proper form for a tunnel arch 120
CHAPTER III.
Groined and Cloistered Arches.
61-62.-Groined arch. - Evaluation of thrusts 126
63.-Formulas for volume 131
64-67.-Arch of groin and abutment. 132
68-69.-Cloistered arch 140
CHAPTER IV.
Domes of Masonry.
70-73.-Forces acting. 146
74.-Example of a dome with backing 154
75-76.-Formulas for volume 157
77.-Dome of two shells with lantern 161
78-81.-Tension in iron bands. Thrusts 164
82-83.-Dome without lantern. Suggestion 170
84-87.-Reinforced concrete on metal dome 176
88.-Open spherical dome with a lantern 185
90.-Spherical dome. Analytical theory 191
91.-Conical dome. Graphical treatment 198
93.-Conical dome. Analytical theory . 202

Appendix. Resumé of operations , for arch . .

THEORY OF THE ARCH.

CHAPTER I.

ARCHES OF VARIABLE SECTION UNDER VERTICAL LOAD.

INTRODUCTORY.

1. The theory of the arch with variable section is considered in what follows, and a practical solution is offered that is applicable to arch bridges of any material, such as steel, concrete, or steel and concrete combined.

To secure the greatest generality, the solid concrete arch of variable section, with embedded steel ribs, is first fully treated. The modification necessary when the ribs are omitted is at once apparent, in which case the theory applies to solid arches of any material, stone, steel, concrete, etc., of variable section, and, in
fact, to the "braced arch" of any shape or design. The theory of the arch with constant section follows as a special case.

Therefore, although the steel-concrete arch is alone illustrated in the worked out examples given, the treatment is intended to show the working of the method to arches of any kind, and the method to follow in any case is fully indicated in the text.

Of the various types of arch bridges, those in steel and concrete combined, when scientifically constructed, possess many advantages, in that they can be easily moulded to the most desirable and beautiful forms, and the embedded steel ribs can supply, when needed, tensile resistances, which arches in stone, brick or concrete alone are not so well calculated to furnish. The steel, too, is protected from the air by the concrete, so that the structure should last indefinitely. It thus presents a marked contrast to the unsightly steel truss with parallel chords, which counts its life in decades. The concrete has not the com-
pressive strength of stone, but for ordinary spans, this is not a matter of importance, as the increase of section in going from the crown to the abutment, required to avoid too much tension, is generally more than sufficient to provide for compression.

It is perfectly practicable to construct an arch of steel ribs braced vertically, with stone voussoirs between the flanges. The combination would furnish all needed tensile and compressive strength for even large spans; but it would be difficult to protect the steel from rusting, perhaps, even with a concrete coating. The main objection to it, however, is that stone has not the same co-efficient of expansion from heat as steel. Certain authorities state that concrete has, and further, experiment shows that concrete and steel (free from rust, paint, scale and oil) exhibits a large adhesive strength. The combination then possesses so many good qualities that it will be thoroughly treated in what follows.

FORMULAS FOR UNIT STRESS FOR A STEEL CONCRETE ARCH.
2. Let us consider a concrete arch with steel bars embedded in the concrete as shown by the dotted lines in the longitudinal section, Fig. 1, and in cross section by the little rectangles in Fig. 2, repre-

Fig. 1.

Fig. 2.
senting a cross section of the arch anywhere. The pair of bars in the same vertical plane will be called a rib, and they may be of any pattern (angles, plates,etc.), and connected by latticing if preferred, though the latter is not necessary, since the concrete is fully capable of taking the
shearing forces (exerted at right angles to the ribs) which are small. It is understood that the steel bars are free of paint, oil, scale or rust, so that when embedded, the adhesion between the steel and concrete will be complete, and sufficiently great to cause the concrete and steel to act as one mass. As Prof. Bauschinger found the adhesion hetween iron and concrete to be from 570 to 640 pounds per square inch, which is about double the tensile strength of concrete, there should be no difficulty in having the assumption realized.
3. The steel ribs are generally spaced uniformly a few feet apart, and in consequence a very rough approximation has to be resorted to in practice to apply theory to the really very complicated case.

It is assumed, that it is approximately correct to consider the material of the upper bars to be distributed uniformly along an arch sheet that passes through the centre lines of the upper bars, and that the material of the lower bars is similarly dis-
tributed uniformly along an arch sheet that passes through the centre lines of the lower bars; so that if $\mathrm{A}=$ area of cross section of the two bars constituting a rib, in square feet, and if the ribs, are spaced b feet apart, then $\mathrm{A} \div b=\mathrm{A}_{2}$ will be the area in square feet of the cross section of steel supposed in a slice of the arch contained between two vertical longitudinal planes one foot apart. It would be safer, perhaps, to allow only a fraction of A_{2} in the computation, and certainly it would seem advisable to limit b to a certain maximum, but as this must remain for the present, a matter of judg. ment, the simple assumption above will be made in what follows, and A_{2} in the formulas can be altered to suit the judg. ment of the engineer. Therefore a longitudinal slice of the arch contained between two vertical planes one foot apart, will be assumed to have the cross-section, Fig. 3.

In this cross-section, which is properly taken perpendicular to the neutral surface
and approximately at right angles to the soffit,

Fig. 3.
$\mathrm{A}_{1}=$ area of concrete in square feet. $\mathrm{A}_{2}=$ area (shaded) of two steel bars in square feet $=\mathrm{A} \div b$.
$d_{1}=$ depth of arch in feet.
$d_{2}=$ depth of steel rib in feet.
$k=$ distance in feet from soffit to centre of gravity of steel rib.
The modulus of elasticity in pounds per square foot,
for concrete $=E_{1}$,
for steel $=n \mathrm{E}_{1}=\mathrm{E}_{2}$.
The neutral surface of the arch, where
the stress due to bending moments only is zero, intersects the plane of the crosssection, Fig. 3, in $n n$.
4. In Fig. 4 is shown a side view of a part of the supposed arch, 1 foot wide (of

Fig. 4.
which Fig. 3 is the cross section), contained between two planes perpendicular to the neutral surface $n n^{1}$, and making an angle α in circular measure, before strain between them. A vertical plane midway between the faces of the supposed arch, intersects the neutral surface in the line $n n^{1}=\Delta s$ feet in length, which may be called the neutral line, and the forces act-
ing upon the artificial voussoir considered, will have their resultants acting in this medial plane; hence the problem is referred to one of forces acting in one plane.

Let R be the resultant of all external forces acting upon the section passing through n, the forces considered being the right reaction, and all loads acting on the arch from the right abutment up to the section (or joint) passing through n. As is well known, when the true equilibrium polygon has been located, the line of action of R is given by the side of the equilibrium polygon pertaining to n, and its amount and direction, from the ray of the force diagram, parallel to this side.

As α and Δs will be considered very small, the voussoir can be considered without weight or loads acting on it, and be treated as a free body acted on by R and the stresses resulting from the action of the part of the arch to the left of n upon the section through n. To ascertain these stresses, conceive applied at n two opposed forces $+R$, $-R$, each equal and
parallel to R. The single force R is thus replaced by a couple $\overline{\mathrm{R}}$ and a force +R acting at n. The latter may be decomposed into components T and N tangential and normal to $n n^{1}$ at n. The force T causes a uniform shortening of the fibres on the voussoir (as will be proved in Art. 10) so that the section is moved parallel to itself under its action. This is not shown in Fig. 4, to avoid confusion. The force N acting along the section is the shearing force and having but a small effect in the deformation of the arch, is neglected.
5. The couple $\mathrm{R} \overline{\mathrm{R}}$ is principally effective in changing the curvature of the arch, and its moment is most conveniently found by multiplying the horizontal component of $\mathrm{R}=\mathrm{H}$, the pole distance, by the vertical distance from n to R. Thus call this distance in feet $=t$; then if R is resolved where the vertical through n cuts it, into a horizontal component H and a vertical component, the latter acts through
n; hence the moment M of R about $n=$ moment of couple $\mathrm{R} \overline{\mathrm{R}}=\mathrm{H} t$.

$$
\begin{equation*}
\therefore \quad \mathrm{M}=\mathrm{H} t \text { (in foot pounds), } \tag{1}
\end{equation*}
$$

when H is in pounds and t in feet.
Under the action of this couple, the angle α is changed to α^{\prime}, and the curvature is increased if R cuts the section below n (as then the greatest compression is at the intrados), and decreased when R cuts the section above n. If we call $\Delta \alpha=\alpha^{\prime}-\alpha$, and regard M as + when right-handed, this amounts to saying that,
$\Delta \alpha$ is plus when M is plus and therefore R acts below n,
$\Delta \alpha$ is minus when M is minus and consequently R acts above n.
6. Call the distance of any fibre from $n n^{\prime}=v$, this being plus for a fibre above $n n^{\prime}$, minus below. As $n n^{\prime}$ is very small, it can be treated as an arc of a circle, and the axis of a fibre in the same plane as concentric with it. The length of the fibre before flexure is $(\Delta s+v \alpha)$,
after flexure $\left(\Delta s+v \alpha^{\prime}\right)$; its change of length is, $v\left(\alpha^{\prime}-\alpha\right)=v . \Delta \alpha$. Calling its cross-section $=a$ in square feet, and the unit stress on it due to $\mathbf{M}=f$ in pounds per square foot, the stress on the fibre, if of concrete, is

$$
\begin{equation*}
f a=\frac{v . \Delta \alpha}{\Delta s+v \alpha} a \mathrm{E}_{1}, \tag{2}
\end{equation*}
$$

and if of steel,

$$
\begin{equation*}
f a=\frac{v . \Delta \alpha}{\Delta s+v \alpha} a n \mathrm{E} \tag{3}
\end{equation*}
$$

by the ordinary formula connecting stress and deformation,

$$
f=\frac{\text { elongation of fibre }}{\text { length of fibre }} \times \mathrm{E} .
$$

It is plain that $(\Delta s+v \alpha)$ in the denominators, can be replaced by Δs without appreciable error. The sum of all the stresses (due to flexure only) acting on the entire section at n is, therefore,

$$
\begin{equation*}
\Sigma(f a)=\frac{\mathrm{E}_{1} \Delta \alpha}{\Delta s} \Sigma(v a) \tag{4}
\end{equation*}
$$

where a is to be replaced by $n a$ in the summation for the steel bars; which is the same as if at the distance of each steel bar from the neutral axis, n times the same area of concrete was taken.

Recurring to the free body, Fig. 4, in equilibrium under the action of R and the resisting stresses along section n; since the algebraic sum of the components of all these forces perpendicular to section at n equals zero (by a law of mechanics), and since T, the component of R, is directly balanced by the stresses that cause a uniform shortening of the fibres on the section (Art. 10), it follows that the remaining normal stresses (due to M) must balance independently,

$$
\therefore \quad \Sigma f a=o, \text { or, } \Sigma v a=0 ;
$$

which shows that the neutral axis $n n^{\prime}$ passes through the centre of gravity of the revised area of the section.

Therefore, recurring to Fig. 3, with the notation of Art. 3, and calling q the distance in feet from the lower edge of
cross-section to the neutral line $n n$, we have, for the revised area,

$$
\begin{equation*}
q\left(\mathrm{~A}_{1}+n \mathrm{~A}_{2}\right)=\left(\mathrm{A}_{1} \frac{d_{1}}{2}+n \mathrm{~A}_{2} k\right) \tag{5}
\end{equation*}
$$

which determines q.
7. The moment of the stress (af) about n on any fibre is (afv),

$$
\therefore \quad \mathrm{M}=\Sigma(a f v)=\mathrm{E}_{1} \frac{\Delta \alpha}{\Delta s} \Sigma\left(v^{2} a\right)
$$

for the revised area.
Designating by I_{1} the moment of inertia of the concrete (of area A_{1}), and by I_{2} the moment of inertia of the actual area of steel, A_{2} (Fig. 3), both in feet,
$\Sigma v^{2} a=\Sigma\left(v^{2} a\right)$ for concrete $+\Sigma\left(v^{2} a n\right)$ for steel $=\mathrm{I}_{1}+n \mathrm{I}_{2}$.
$\therefore \quad \mathrm{M}=\mathrm{E}_{1} \frac{\Delta \alpha}{\Delta g}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)$.
$\therefore \quad \Delta \alpha=\frac{\mathrm{M} \Delta s}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)}$.
By reference to Fig. 4 and noting that the sections were drawn perpendicular to
the neutral axis, it is seen that (6) gives $\Delta \alpha$, or the change in the angle between the tangents to the neutral line at n and n^{\prime} due to the couple $\overline{\mathrm{RR}}$ whose moment is M. This approaches the exact truth as near as we please, as $\Delta \alpha$ and Δs approach zero indefinitely. Therefore, if we could proceed by analysis alone, $\Delta \alpha$ and Δs are replaced by $d \alpha$ and $d s$ in (6), and the result integrated to find the change in the inclination of the end tangents of the neutral line corresponding to a length s measured along that are.
8. To apply the graphical method, however, an approximation must be introduced here whose significance must be carefully noted. The assumption is, that for an appreciable length of Δs (several feet, for instance) $\Delta \alpha$ is given by (6), provided M is taken as constant and equal to the value corresponding to the mid-point of $n n^{\prime}$, Fig. 4 , or $\frac{1}{2} \Delta s$ distant from either n or $n^{1}, \mathrm{E}_{1}, \mathrm{I}_{1}$ and I_{2}, being likewise taken there.

As the total change in the inclination
of the end tangents for a length s is the sum of all the infinitesimal changes for the part of the arch considered, or,

$$
\Sigma\left(\frac{\Delta s}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)} \mathrm{M}\right)
$$

Δs being very small, the assumption above is that this expression is equal approximately to

$$
\theta=\frac{s}{\mathbf{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)} \mathbf{M}_{0},
$$

where $s=\Sigma(\Delta s), \mathrm{M}_{\text {o }}$ is the moment at the middle of s, and $\mathrm{E}_{1}, \mathrm{I}_{1}$ and I_{2} the corresponding quantities at the same point.

This assumption, though not exact, is the most reasonable that can be made, but it can only be tested for I_{1} and I_{2} variable, in a numerical example. If $\mathrm{E}_{1}, \mathrm{I}_{1}, \mathrm{I}_{2}$ are constant, as for an arch ring of the same cross-section and E_{1} constant throughout, and Δs is also constant, then the previous supposed equality reduces to,

$$
\Sigma(\mathrm{M} . \Delta s)=\mathrm{M}_{0} s ;
$$

so that, if 8 is laid off along a line and divided into the equal lengths Δs and ordinates M are laid off (say) at the middle of each Δs, then $\Sigma(\mathrm{M} \Delta s)$ represents an area and M_{0} is its mean ordinate. Now, as M is proportional to t (§5) and calling t_{0} the value of t corresponding to M_{0}, if the true equilibrium curve for the arch pertaining to the space s considered satisfies the condition $\Sigma(t \Delta s)=t_{0} s$, then the assumption is exactly realized. This will be nearly true if the successive values of t are equal or are increasing in going from one end of s to the other, or decreasing over the same length, but not for the case where t increases over a part of s and decreases over the remainder, as a rule. The extreme limit of error is reached when t_{0}, the vertical distance from the middle of s on the neutral axis to the equilibrium curve, is greater than any of the other t 's over the same length s. This cannot be guarded against in advance, but a study of equilibrium curves shows that it can generally happen on only two divisions of the neutral line and even here, the error is often slight in consequence of the curve running nearly parallel to the neutral line for a good part of a usual division.
9. Let $f_{1}=$ stress per square foot on an extreme fibre of the concrete, whose dis-
tance from the neutral axis is v_{1} feet; then from (2), $f_{1}=v_{1} \mathrm{E}_{1} \frac{\Delta \alpha}{\Delta s}$, and eliminating $\frac{\Delta \alpha}{\Delta s}$ between this equation and (6), we find,

$$
f_{1}=\frac{\mathrm{M} v_{1}}{\mathrm{I}_{1}+n \mathrm{I}_{2}}
$$

Similarly the stress per square foot in an extreme fibre of the steel $=f_{2}$, distant v_{2} inches from the neutral axis, from (3) and (6), is,

$$
f_{2}=\frac{\mathrm{M} v_{2} n}{\mathrm{I}_{1}+n \mathrm{I}_{2}}
$$

These two stresses are due entirely to the couple whose moment is M .
10. The stresses corresponding to a supposed uniform shortening of the fibres along the cross-section at n, Fig. 4 (see $\S 4$), and therefore not included in the bending stresses, have now to be evaluated. This uniform shortening entails a uniform compressive unit stress $=p$ on the
concrete acting on the area A_{1} and a unit stress $n p$ on the steel (both in pounds per square foot) acting on an area A_{2}, as follows from the fundamental formula connecting stress and deformation, since we have assumed $\mathrm{E}_{2}=n \mathrm{E}_{2}$. The resultant, $p\left(\mathrm{~A}_{1}+n \mathrm{~A}_{2}\right)$, acts at a distance q^{1} above the lower edge of the joint, Fig. 3, and taking moments about that edge,

$$
q^{\prime} p\left(\mathrm{~A}_{1}+n \mathrm{~A}_{2}\right)=p\left(\mathrm{~A}_{1} \frac{d_{1}}{2}+n \mathrm{~A}_{2} k\right)
$$

\therefore By comparison with (5), $q^{\prime}=q$, or the resultant of the stresses corresponding to the uniform shortening, acts at n and is exactly opposed by T acting at that point as assumed.

$$
\therefore \quad \mathrm{T}=p\left(\mathrm{~A}_{1}+n \mathrm{~A}_{2}\right)
$$

from which $p=\mathrm{T} \div\left(\mathrm{A}_{1}+n \mathrm{~A}_{2}\right)$
and

$$
n p=n \mathrm{~T} \div\left(\mathrm{A}_{1}+n \mathrm{~A}_{2}\right)
$$

11. From the last two articles are derived the total unit stress s_{1} in pounds per square foot, exerted on the concrete
at the upper or lower edges of the crosssection,

$$
\begin{equation*}
s_{1}=\frac{\mathrm{T}}{\mathrm{~A}_{1}+n \mathrm{~A}_{2}} \pm \frac{\mathrm{M} v_{1}}{\mathrm{I}_{1}+n \mathrm{I}_{2}} \tag{7}
\end{equation*}
$$

and the total unit stress, s_{2}, in pounds per square foot, experienced by the upper and lower bars of the steel,

$$
s_{2}=\left(\frac{\mathrm{T}}{\mathrm{~A}_{1}+n \mathrm{~A}_{2}} \pm \frac{\mathrm{M} v_{2}}{\mathrm{I}_{1}+n \mathrm{I}_{2}}\right) n
$$

All dimensions in these formulas are in feet.

For sections symmetrical with respect to the neutral line, Fig. 3,

$$
\begin{aligned}
& q=\frac{d_{1}}{2}, \quad v_{1}=\frac{d_{1}}{2}, \quad v_{2}=\frac{d_{2}}{2} \\
& \mathrm{I}_{1}=\frac{d_{1}^{3}}{12}, \quad \mathrm{I}_{2}=\frac{1}{4} \mathrm{~A}_{2} d_{2}{ }^{2}=\mathrm{A}_{2} v_{2}{ }^{2} .
\end{aligned}
$$

[^1]Therefore,
$\left.\begin{array}{l}s_{1}=\frac{\mathbf{T}}{\mathbf{A}_{1}+n \mathbf{A}_{2}} \pm \frac{\mathbf{M} v_{1}}{\frac{1}{12} d_{1}^{3}+n \mathbf{A}_{2} v_{2}{ }^{2}} \\ s_{2}=\left(\frac{\mathbf{T}}{\mathbf{A}_{1}+n \mathbf{A}_{2}} \pm \frac{\mathbf{M} v_{2}}{\frac{1}{12} d_{1}^{3}+n \mathbf{A}_{2} v_{2}{ }^{2}}\right) n\end{array}\right\}$
CONDITIONS FOR EQUILIBRIUM FOR ARCH WITH NO HINGES.
12. The neutral line, for the case where the steel bars are symmetrically placed with respect to the centre line of the arch ring, is the centre line itself and can at once be laid off.

For an unsymmetrical cross-section, points in the neutral line must be found and laid off by aid of (5), and a curve traced through them.

In either case, let $a b c$, Fig. 5 , represent the noutral line of an unstrained arch with fixed end tangents, and let s represent a length of the neutral line whose centre is at b. When the arch is loaded either with its own weight only or in addition with a live load, the neu-
tral line changes shape, and it was agreed in Art. 8, to regard the change in the inclination of the end tangents to the neutral are s, as given by the formula,

$$
\theta=\frac{\mathrm{M}_{8}}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)},
$$

Fig. 5.
where n and E_{1} are constant and $\mathrm{M}, \mathrm{I}_{1}$ and I_{2} are taken at b, the middle of $\operatorname{arc} s$.

Regard the end c temporarily free, then the bending in s alone will cause a rotation of the arc $b c$ about b equal to θ, so that a line $b c$ will rotate through an infinitesimal distance $c e$, taken as perpendicular to $b c$. Take c as origin, $c a$ the axis of x and axis of y vertical and call
the co-ordinates of b, x and y. Draw ed perpendicular to $c a$; then from similarity of triangles,

$$
c d=\frac{c \theta}{b c} y=y \theta, \quad d e=\frac{c e}{b c} x=x \theta .
$$

The exact result would of course be found by dividing, s into infinitesimal lengths Δs, and regarding the rotation to tako place about the end of each little portion in turn, x and y thus having values above and below the means taken for b (the middle of s). We assume, therefore, in the graphical treatment to follow that if $\mathrm{M}, \mathrm{I}_{1}, \mathrm{I}_{2}, x, y$ are all taken at the mid-point of are s, as a sort of average, that the horizontal and vertical deflections of c, due to s, are given nearly, by the above equations.

The total horizontal and vertical displacements of c due to the bending of all portions of the arch are then given by $\Sigma(y \theta), \Sigma(x \theta)$, or

$$
\Sigma \frac{\mathrm{M} s y}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)}, \quad \Sigma \frac{\mathrm{M} s x}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)}
$$

respectively, the summation including all the segments of the arch. The total change of inclination of tangents at a and c is similarly,

$$
\Sigma \theta=\Sigma \frac{\mathrm{M}_{s}}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)^{\prime}} .
$$

For an arch "fixed at the ends" and with no hinges, these three sums are zero; hence, we have the three conditions to be fulfilled, corresponding to end tangents fixed in direction, span invariable, and vertical deflection of c with respect to a, zero :

$$
\begin{align*}
& \Sigma \frac{\mathrm{M} s}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)}=0 \tag{10}\\
& \Sigma \frac{\mathrm{M} y s}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)}=0 \tag{11}\\
& \Sigma \frac{\mathrm{M} x s}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)}=0 \tag{12}
\end{align*}
$$

All dimensions being taken in feet and M expressed in foot pounds.

DEFLEOTION AT THE OROWN.

13. It may be well to note here that if the actual moments M have been found for the midpoint of each small division of the neutral line, the horizontal and vertical displacements of any point as c^{\prime} of the neutral line can be predicted. Thus, if b^{\prime} is the centre of any division, calling h and k the horizontal and vertical projections of the chord $b^{\prime} c^{\prime}$ and θ^{\prime} the angle (in circular measure) through which $b^{\prime} c^{\prime}$ rotates in consequence of the bending of that division, then the horizontal and vertical displacements of c^{\prime} due to it are, respectively,

$$
c^{\prime} d^{\prime}=\frac{c^{\prime} e^{\prime}}{b^{\prime} c^{\prime}} k=\theta^{\prime} k, \quad d^{\prime} e^{\prime}=\frac{c^{\prime} e^{\prime}}{b^{\prime} c^{\prime}} h=\theta^{\prime} h,
$$

and taking the algebraic sum of such quantities for all the divisions of the are from a to c^{\prime}, the total displacements are found. Thus, inserting the value of θ, the total horizontal and vertical displacements of c^{\prime} with respect to a, are

$$
\Sigma \frac{\mathrm{M}_{s /}}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)^{\prime}}, \quad \Sigma \frac{\mathrm{M} s h}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)^{\prime}},
$$

Note, from Art. 5, that M is plus when the bending is increased, or when R falls below the centre of the division b^{\prime} considered, and M is
minus when the proper side of the equilrbrium polygon (along which R acts) passes abore b^{\prime}.

In the first case, M plus, c^{\prime} moves to the left aud downward when c^{\prime} is above b^{\prime}; but when c^{\prime} is below b^{\prime} (as in the construction pertaining to b and c), then c^{\prime} moves to the right and downwards. The reverse obtains when M is minus. Hence, if k is given the plus sign when c^{\prime} is below b^{\prime}, the minus sign when c^{\prime} is above b^{\prime}, the formulas above will give the horizontal movement of c^{\prime}, plus when to the right, minus when to the left, and the vertical displacement of c^{\prime} plus downwards, minus when upwards.

When c^{\prime} is at the crown k is always minus, and we have simply to attend to the signs of M , and it is evident that the displacements as found by the summation from a to the crown should equal those numerically found by summing from c to the crown.

This method, however attractive in theory will probably not work well in practice unless the true equilibrium polygon has been determined with great accuracy; for in a well designed arch, the moments $\mathrm{H} t=\mathrm{M}$, except at the springing joints, are small, or rather t is quite small, and a small absolute change in t often corresponds to a large percentage of its value, so that large errors can be made in the algebraic summations of the formulas.

The method has been tried for one bridge, however, and found to check satisfactorily with analytical solutions.

division of the neutral axis.

14. Recurring to the conditions (10), (11), (12) to be fulfilled by the equilibrium polygon for an arch "fixed at the ends," replacing M by $\mathrm{H} t$ and regarding E_{1} (the modulus for concrete) as constant throughout the arch ring, we observe, if the neutral line can be so divided that $s \div\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)$ is constant for each division, then $\frac{\mathrm{H}}{\mathrm{E}_{1}} \frac{s}{\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)}$ can be placed before the sign of summation and the three conditions (10), (11), (12), reduce to,

$$
\Sigma t=0, \quad \Sigma(t x)=0, \quad \Sigma(t y)=0
$$

To show how to divide the neutral line so that $s \div\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)$ shall be the same for each division, it is best to take a numerical example.

In the following table is given, for the

$$
\text { §14] } 34
$$

Thacher type of arch ring shown in Fig. 6 (plate), the radial depth d in feet, at l feet, measured along the neutral line, from the springing. The steel ribs, Figs. 1 and 2, are composed of two bars each, whose distances from the intrados and extrados are each 0.17 feet, and each bar has a gross section of $2 \frac{5}{8} \times \frac{3}{4}$ inches. The splices in any one bar are to be made with $\frac{3}{4}$ inch rivets, so that the net section of any bar to resist tension is $\frac{15}{8} \times \frac{3}{4}=\frac{4}{3} \frac{5}{2}$ square inches, or nearly $\frac{1}{100}$ square foot.

Assume the ribs 2 feet apart, centre to centre, and take $n=\mathrm{E}_{2} \div \mathrm{E}_{1}=20$.
$\therefore \quad \mathrm{A}=\frac{2}{100}, \mathrm{~A}_{2}=\frac{1}{100}, \quad 20 \mathrm{~A}_{2}=0.2$.

$$
I_{1}+20 I_{2}=\frac{1}{12} d^{3}+0.2\left(\frac{d}{2}-0.17\right)^{2}
$$

The neutral line, for this symmetrical section, coincides with the centre line of the arch ring and can be at once laid off. Call the successive lengths of the divisions measured along the neutral axis in
feet, beginning with the one next the springing, $s_{1}, s_{2}, s_{3}, \ldots$, respectively, and let d_{1} be the radial depth of the arch ring at the middle of s, and d the depth at the middle of any division s. Then in order that $s \div\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)$ be constant,

The calculations that follow can be effected very expeditiously and accurately by aid of Barlow's "Table of Squares" and Orelle's "Rechentafeln," which last
gives the product of three figure numbers by similar numbers. A calculating machine can of course replace the last named book.
15. It would often save time in the end if the values of

$$
\frac{1}{12} d^{3}+0.2\left(\frac{d}{2}-0.17\right)^{2}
$$

for various values of d as $1.0,1.2,1.4$, $1.6,1.8,2.0,2.2,2.4$. be computed at once and laid off as ordinates on crosssection paper, the values of d being laid off as abscissas. It is advisable, too, to find by (14), at the first, by trial, such a value of s_{1} that s at the crown will not become so small as to lead to a great number of divisions. Thus if s_{1} is assumed $=7$ feet, s at the crown will be found to be only 0.184 ; therefore $s_{1}=14$ was next tried, and the work then proceeds as follows :

For $s_{1}=14, d_{1}$ is estimated at $l=7$,
$\therefore d_{1}=2.28$ (from table), \therefore the right member of (14) reduces to 11.9 , and the
relation to be satisfied throughout the arch ring is,
$s=11.9\left[\frac{1}{12} d^{3}+0.2\left(\frac{d}{2}-0.17\right)^{2}\right]$
At the crown $d=1, \therefore s=1.25$, which may lead to a satisfactory division ; hence we proceed, taking up the division s_{2} next s_{1}.

Try $s_{2}=3, \therefore d$ at the middle of s_{2}, where $l=14+1.5=15.5$ from the springing, is found from the table (by interpolation) to equal $1.32, \ldots$ by (15), $s=2.86$. For $s=2.86$, there is no change in $d, \therefore s_{2}=2.86$, so that it is $(14+2.86)$ feet to the beginning of division s_{3}. Assume $s_{3}=2.3, \therefore d$ at $l=$ $16.86+\frac{1}{2}(2.3)=18.01$, is $1.23, . \therefore$ by (15), $s=2.32, . \therefore$ call $s_{3}=2.32$. Proceed thus and find successively :

$$
\begin{array}{lll}
s_{1}=14, & s_{2}=2.86, & s_{3}=2.32 \\
s_{4}=1.95, & s_{5}=1.67, & s_{6}=1.49 \\
s_{7}=1.40, & s_{8}=1.19, & s_{9}=1.26 \\
s_{10}=1.25 & &
\end{array}
$$

The sum of these lengths is 29.52 , or 0.52 in excess, as it is exactly 29 feet from crown to spring measured along the centre line.

A closer approximation can now be made by assuming s_{1} a little less than 14. Take $s_{1}=13.85, \therefore d_{1}=2.30$ at the middle of s_{1} or at $l=\frac{1}{2}(13.85)=6.92$, and the right member of (14) reduces to 11.5. Therefore (15) is now replaced by

$$
s=11.5\left[\frac{1}{12} d^{2}+0.2\left(\frac{d}{2}-0.17\right)^{2}\right]
$$

\boldsymbol{s}	\boldsymbol{l} at end of \boldsymbol{s}	\boldsymbol{l} at middle of \boldsymbol{s}	Correspon- ding \boldsymbol{d}
	13.85	6.92	2.30
$s_{1}=13.85$	13.85	15.25	1.33
$s_{2}=2.81$	16.66		
$s_{3}=2.29$	18.95	17.80	1.24
$s_{4}=1.89$	20.84	19.90	1.16
$s_{5}=1.64$	22.48	21.66	1.11
$s_{6}=1.47$	23.95	23.21	1.07
$s_{7}=1.35$	25.30	24.62	1.04
$s_{8}=131$	26.61	25.96	1.03
$s_{9}=1.24$	27.85	27.23	1.01
$s_{10}=1.21$	29.06	28.45	1.00

We proceed as before in finding s_{2}, s_{3}, $\ldots s_{10}$. The results are conveniently written out as in the adjoining Table.

Here, " l at end of s " is found by summing s. To find l at middle of s_{4} (say), add one half of s_{4} or $\frac{1}{2}(1.89)=0.95$ to l at end of s_{3}, or 18.95 , giving $18.95+.95$ $=19.90$, at which point d is found from Table to equal 1.16. With this value of d, s_{4} is computed from the last formula (by aid of the diagram mentioned, if drawn), and if the result is not as assumed, try again until the assumed and computed values of s_{4} agree. Similarly for the other divisions. The work is very brief on a second trial as the previous values of s_{2}, s_{3}, \ldots, afford some guide in choosing the new ones.

A third trial is not at all necessary here, as the excess 0.06 foot of $s_{1}+s_{2}+$ $\ldots+s_{10}=29.06$, over the actual length 29.00 , can be distributed amongst the various divisions sufficiently accurately by comparing the corresponding values of s
in the first and second trials. The values of s finally selected are,
$\begin{array}{lll}s_{1}=13.83, & s_{2}=2.80, & s_{3}=2.28, \\ s_{4}=1.88, & s_{6}=1.64, & s_{6}=1.46, \\ s_{7}=1.3 \tilde{5}, & s_{8}=1.31, & s_{9}=1.24, \\ s_{10}=1.21 . & \end{array}$
These lengths are laid off in succession from the centre of each springing joint toward the crown along the centre line of the arch ring.

The number of divisions found for the half arch (ten) is a minimum for accurately locating the pressure line for vertical loads. Fourteen to twenty should be used for temperature stresses. In fact, for temperature stresses, it will not add greatly to the labor to take from twenty to thirty divisions as we shall see further on.
16. It need not cause surprise that s_{1} is so large compared with s_{10}, when it is observed that the moment of inertia at the spring is 81 times that at the crown. The resistance to bending is thus
so much greater near the abutment that we should expect the elastic curve and the pressure line to be determined mainly by the upper half of the arc.

If the abutment should be included as part of the arch, its influence on the pressure line would be found to be almost nil, which is in fact the reason why it is treated as inelastic and immovable.

As the radial depths of arch ring approach equality everywhere, s_{1}, s_{2}, \ldots, approach equality, and for a constant depth they are exactly equal.
17. For any kind of a solid, homogeneous arch of any material, stone, concrete, etc., the trial and error method used for dividing up the arch ring is similar to that above, only as $I_{2}=0,(14)$ is replaced by,

$$
\begin{equation*}
\frac{s}{d^{3}}=\frac{s_{1}}{d_{1}^{3}} \tag{16}
\end{equation*}
$$

the work is much simpler, as d^{3} can at once be taken out of a table of cubes, and a diagram is unnecessary.

Example.-Divide the arch ring above, omitting the steel ribs, to satisfy (16). Let the number of divisions of the half-arch be at least ten and not to exceed sixteen. The Table of Art. 14 gives the values of d.

COMPLETE GRAPHICAL TREATMENT FOR
A STEEL CONCRETE ARCH WITH PARTIAL LOAD.
18. The arch ring examined in Articles 14 and 15, is shown in Fig. 6 (Plate). The intrados has three centres. The central portion subtends an angle of 30° 20.4 ${ }^{\prime}$ with a radius of 47.77 feet; the other two radii are 23.6 feet each. The span is 50 feet, rise 10 feet, and the radial depths of arch ring are as given in Art. 14 , the depth at the crown being 1 foot, at the ends of the central portion 1.33 feet, and at the springs 4.5 feet, circular curves corresponding, forming the extrados. The steel ribs are placed as shown in Art. 14.

Let us test the strength and stability of this arch when the backing extends 1
foot above the crown everywhere, for a live load of 140 pounds per square foot of roadway extending from the left abutment to the crown. The ordinates from the extrados to the upper limit of the backing should be reduced in the ratio of the specific gravity of the backing to that of the arch ring, so that the new upper limit corresponds to a backing whose density is the same as that of the arch ring. The partial loads are then computed as below. In this example, this reduction was not made, so that the backing was assumed of the same density as the concrete, 140 pounds per cubic foot.
19. The lengths s_{1}, s_{2}, \ldots (Art. 15), having been laid off in succession along the centre line of the arch ring from either springing to the crown, find the centres of each of the divisions s_{1}, s_{2}, \ldots, and mark them in order from the right springing to the left, $a_{1}, a_{2}, \ldots a_{20}$ as shown on the Figure.

Draw vertical lines through $a_{1}, a_{2} \ldots a_{20}$, and compute the areas in square feet in-
cluded between consecutive verticals, the intrados, and the upper limit of the (reduced) backing. Multiply these weights by 140 to find the loads $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{10}$ to right of crown, and lay off midway between the points $a_{1}, a_{2}, \ldots a_{10}$; the last one coming midway between a_{10} and the crown. These loads correspond to a slice of the arch 1 foot thick perpendicular to the plane of the paper.

When a_{1} and a_{2} are as far apart as in the figure, the vertical through the centre of gravity of this large trapezoid, should be found by the usual graphical construction and P_{1} laid off along it. The same remark applies to the remaining areas nearer the abutments ; or the position of the load corresponding can be found by taking moments of the partial areas about any convenient vertical. The loads P_{11} $\ldots P_{20}$ to left of the crown are equal respectively to $\mathrm{P}_{10} \ldots \mathrm{P}_{1}$ augmented by 140 times the width of the corresponding division.

From Art. 12, the moments $\mathrm{M}=\mathrm{H} . t$
must be found accurately at the middle of s_{1}, s_{2}, \ldots, or at $a_{1}, a_{2}, \ldots a_{19}, a_{20}$, which can be done by the division of the arch just explained as is apparent from the equilibrium polygon to be presently drawn.

A usual division of the arch requires t to be measured at the load, which is a most unfortunate selection. If the true equilibrinm curve for infinitesimal divisions be supposed drawn, it will always fall below the equilibrium polygon corresponding to $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$, except at $a_{1}, a_{2} \ldots$, (which are points on it), and the greatest departure is at a load.

Such a division of the arch leads to values of t as far removed from the true ones as possible, whereas the method adopted here gives no inaccuracy from this cause.*

[^2]20. The successive loads $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \mathrm{P}_{30}$ are now laid off on a vertical to the left of the arch to scale of loads. For convenience, assume the pole distance some whole number, $10,000 \mathrm{lbs}$. in this case, and lay off this horizontal thrust from the lower end of P_{10} on the load line, to the right to fix the " trial pole." This assumes a horizontal thrust at the crown. The equilibrium polygon $b_{1}, b_{2}, \ldots b_{10}$, $\ldots b_{20}$, can be drawn in the usual manner, but it is most accurately laid off by computing the sum of the moments of the loads P in foot pounds, acting from the crown up to a certain load P_{s} about P_{s}, dividing by trial $\mathrm{H}=10,000$, and laying off the ordinate (to scale of distance) from a horizontal through b_{10}, b_{11}, along the line of action of P_{s} to fix one point. Similarly for the others. Let P_{r} be the load next P_{s} at a distance a from it, P_{r} lying nearer the crown than P_{s}. Call the sum of the loads from the crown up to and including $\mathrm{P}_{\mathrm{r}}=\mathrm{R}$, and suppose their resultant acts c feet from P_{r}. Then the moment of all
the loads from the crown up to P_{s} about $\mathrm{P}_{\mathrm{s}}=\mathrm{M}_{\mathrm{s}}=\mathrm{R}(c+a)=\mathrm{R} c+\mathrm{R} a=\mathrm{M}_{\mathrm{r}}+$ $\mathrm{R} a$, where M_{r} is the moment of all loads from the crown up to P_{r} about P_{r}. This formula, $\mathrm{M}_{\mathrm{s}}=\mathrm{M}_{\mathrm{r}}+\mathrm{R} a$, enables the moments to be quickly computed by working from the crown in either direction. Thus,
\[

$$
\begin{aligned}
& \mathrm{M}_{12}=\mathrm{P}_{11} \times 0.95=252.7 \\
& \mathrm{M}_{13}=\mathrm{M}_{12}+\left(\mathrm{P}_{11}+\mathrm{P}_{12}\right) 1.27=1247.1 \\
& \text { \&c. }
\end{aligned}
$$
\]

The equilibrium polygon laid off by computation, can now be tested by the usual construction and verticals through $a_{1}, a_{2} \ldots$, drawn to intersections b_{1}, b_{2}, \ldots, with it.
21. The reason for the following procedures will be given further on (Art. 30). Draw a straight line from $b_{1}=v_{1}$ to $b_{20}=v_{20}$, and find $\mathrm{R}=\left(v_{2} b_{2}+v_{3} b_{3}+\right.$ $\left.\cdots+v_{19} b_{19}\right)$ or the sum of the ordinates from $v_{1} v_{20}$ to $b_{2}, b_{3}, \ldots b_{19}$ to be 169 to the scale of distance. Next regard $v_{2} b_{2}$, $v_{3} b_{3}, \ldots v_{19} b_{19}$ as forces, and find the
position of their resultant R by taking moments about the vertical AB through the crown. This is conveniently done by measuring the horizontal distances z_{2}, z_{3}, \ldots, from AB to b_{2}, b_{3}, \ldots (always measure distances to hundredths of a foot) and dividing $\left[\left(v_{19} b_{19}-v_{2} b_{2}\right) z_{2}+\left(v_{18} b_{18}\right.\right.$ $\left.\left.-v_{3} b_{3}\right) z_{3}+\ldots+\left(v_{11} b_{11}-v_{10} b_{10}\right) z_{10}\right]=$ 38.0797 by $\mathrm{R}=169$ to get the distance ($=0.225$ feet) the resultant acts to left of AB .

Differences, as $\left(v_{19} b_{19}-v_{2} b_{2}\right)$, can be conveniently found with dividers, or by marking off $v_{2} b_{2}$ on a strip of paper and laying off along $v_{10} b_{10}$.
22. The object now is to find a closing line $m m_{1}$, such that if the ordinates from $v_{1} v_{20}$ to $m_{1} m$, through the points b_{1}, b_{2}, \ldots b_{20}, are treated as forces, their resultant will exactly equal R in magnitude and coincide with it in position. To this end a trial " closing line" $n n_{1}$ is first drawn, and likewise a straight line from n to v_{1}, dividing the ordinates into two sets, viz.; those found in the triangle $v_{20} n v_{1}$, whose
resultant is called "trial T," and those included in the triangle $n v_{1} n_{1}$, whose resultant is designated "trial T_{1} ". Find the resultant of the ordinates (treated as forces) from the line $v_{1} v_{20}$ to the line $v_{1} n$ at the points $v_{2}, v_{3}, \ldots v_{20}$ in amount, by marking off in succession, along the edge of a sheet of paper, and measuring the sum to the scale of distance used in laying off the arch. This scale is to be used throughout in measuring ordinates and abscissas, whether treated as forces or otherwise. In this way find "trial T" to be 93.00 . By taking moments about AB as above, it is found that trial T acts 4.5% feet to left of AB or 4.35 feet to left of R, as marked on the drawing. Differences between the ordinates at same distance from AB , as, e.g., those at v_{12} and v_{9} are conveniently marked off by drawing a straight line from D (where $n v_{1}$ meets AB) to v_{20}.

Similarly find trial T_{1} by adding the ordinates through $b_{1}, b_{2}, \ldots b_{19}$ included between the lines $n v_{1}$ and $n n_{1}$ to be 58.9 .

It evidently acts as far to the right of AB as trial T does to the left, or 4.57 feet. This is so because corresponding ordinates are at the same distance from AB , and the position of trial T_{1} is not affected by shifting n_{1} so as to make $v_{1} n_{1}=v_{20} n$, since all ordinates are increased in the same ratio, and the quotient of sum of moments divided by sum of forces remains the same. By similar reasoning, if n is shifted to its true position m, the sum of the ordinates from $v_{1} v_{20}$ to $v_{1} n=$ "true T ;" and (the ordinates being treated as forces) in position, the resultant acts 4.35 feet to left of AB , the same as for trial T.

The position and amount of trial T_{1} is not changed by shifting n to m. Its position is not changed on afterwards shifting n_{1} to m_{1}; its true position and true $\mathrm{T}_{1}=$ sum of ordinates from $m v_{1}$ to $m m_{1}$.

By the assumption at the beginning of this article, it follows that R must be the resultant in position and magnitude of T
and $\mathrm{T}_{1} ; \therefore$ taking moments about T_{1} and T in turn,

$$
\begin{aligned}
& \text { true } T=\frac{169 \times 4.79}{9.14}=88.57 \\
& \text { true } T_{1}=\frac{169 \times 4.35}{9.14}=80.43
\end{aligned}
$$

Hence lay off,

$$
v_{20} m=\frac{\text { true } \mathrm{T}}{\text { trial } \mathrm{T}} v_{20} n=\frac{88.57}{93} v_{20} n,
$$

and,

$$
v_{1} m_{1}=\frac{\text { true } \mathrm{T}_{1}}{\text { trial } \mathrm{T}_{1}} v_{1} n_{1}=\frac{80.43}{58.9} v_{1} n_{1},
$$

and it will follow that the ordinates of the triangles will all be changed in the ratio of true T to trial T for triangle $v_{1} v_{20} n$, and of true T_{1} to trial T_{1} for triangle $v_{1} n n_{1}$ or $v_{1} m n_{1}$. Therefore, $\mathrm{R}=$ $\Sigma(v b)$ is now the resultant in position and magnitude of all the ordinates from $v_{1} v_{20}$ to $m m_{1}$ or ordinates of the type vm . The closing line $m m_{1}$ is thus finally located.
23. Take 0 , the centre of the left
springing joint, as the origin of co-ordinates, x horizontal, y vertical, and let x_{1}, $x_{2}, \ldots x_{20}$ be the horizontal distances from 0 to the verticals through a_{1}, a_{2}, \ldots a_{20}, or generally, let x be the abscissa of a; then since the construction of Art.22 gives:

$$
\Sigma(v b)=\Sigma(v m), \quad \Sigma(v b \cdot x)=\Sigma(v m \cdot x),
$$

therefore

$$
\Sigma(v b-v m)=0, \quad \Sigma(v b-v m) x=0 ;
$$

or the conditions,

$$
\begin{equation*}
\Sigma(m b)=0, \quad \Sigma(m b . x)=0 \tag{17}
\end{equation*}
$$

are fulfilled.
Here, $m b=v b-v m, \therefore$ ordinates $m b$ measured above $m m_{1}$ must be treated as positive, those below negative.

As a check on the position of $m m_{1}$, see if the condition $\Sigma(\mathrm{mb})=0$ is fulfilled, or if the sum of the $m b$'s above $m m_{\mathrm{t}}$ is equal to the corresponding sum below. The sum is very quickly made by marking off successive $m b$'s along the straight edge of a sheet of paper.
24. If a symmetrical arch is loaded with its own weight only or, in addition, with a uniform live load, the equilibrium polygon b is symmetrical with respect to AB ; hence R acts along AB , and $m m_{1}$ is parallel to $v_{1} v_{20}$.

Here, $\Sigma v b=\Sigma v m=20 v m ; ~ . ~$ divide the sum of the ordinates of type $v b$ to one side of the crown by 10 (in this example) to find $v_{1} m_{1}=v_{20} m$.

As above, $\Sigma m b=0, \quad \Sigma(m b . x)=0$.
25. Let now a line $k k_{1}$ be located in a similar manner with respect to the points $a_{1}, a_{2}, \ldots a_{20}$ on the neutral line of the arch ring.

This is best done by measuring the ordinates $y_{1}, y_{2}, \ldots y_{10}$ from OO_{1} (the line connecting the centres of the springing sections) to $a_{1}, a_{2}, \ldots a_{10}$ and dividing their sum by the number of ordinates, (10), giving the distance e above OO_{3} to $k k_{2}$.

In this example,

$$
e=\frac{\Sigma_{0}^{\frac{l}{2}} y}{10}=8.14
$$

since $\quad \Sigma_{0}^{2} e=10 e, \quad \Sigma_{0}^{\frac{l}{2}}(y-e)=0_{2}$

$$
\therefore \quad \sum_{0}^{-\frac{l}{2}}(k a)=0
$$

and from symmetry, $\quad \Sigma_{0}^{l}(k a . x)=0$.
Hence the conditions,

$$
\begin{equation*}
\Sigma_{0}^{l}(k a)=0, \quad \Sigma_{0}^{l}(k a \cdot x)=0 \tag{18}
\end{equation*}
$$

for the line $k k_{1}$, as thus located, are fulfilled, ordinates $k a$, referring to ordinates from $k k_{1}$ to a_{1}, a_{2}, \ldots; ordinates above $k k_{1}$ being regarded as plus, those below minus.
26. The next step is to find $\Sigma(k a \cdot y)$ for the entire arch. This may be written, $\Sigma(y-e) y=\Sigma y^{2}-e \Sigma y=2(684.79-$ $8.143 \times 81.43)=41.90$; the sum being taken for one half the arch and doubled.
27. A similar sum, $\Sigma(m b . y)$ must now be made out for the entire arch ; $m b$ representing an ordinate from $m m_{1}$ to poly-
gon b, to be considered plus when measured above $m m_{1}$, minus below.
$\therefore \quad \Sigma(m b . y)=\left(m b_{10}+m b_{11}\right) y_{10}+\left(m b_{9}+\right.$ $\left.m b_{12}\right) y_{9}+\left(m b_{8}+m b_{13}\right) y_{8}+\left(m b_{7}+m b_{14}\right) y_{7}$
$+\left(m b_{6}+m b_{15}\right) y_{6}+\left(m b_{5}+m b_{16}\right) y_{5}+\left(m b_{4}+\right.$ $\left.m b_{17}\right) y_{4}-\left(m b_{3}+m b_{18}\right) y_{3}-\left(m b_{2}+m b_{19}\right) y_{2}-$ $\left(m b_{1}+m b_{20}\right) y_{1}$. On measuring ordinates to the scale of distance and computing the sum of the products above, we find $\Sigma(m b . y)=90.90$.
28. It is a principle of the equilibrium polygon that if the ordinates $m b$ are altered in a given ratio, the pole distance is altered in the inverse ratio. The ordinates $m b$ are now altered in the ratio 41.9 to 90.9 , which is easily done graphically) and the pole distance in the ratio 90.9 to 41.9 .

The new ordinates $m b$ are laid off vertically above or below $k k_{1}$, according to sign, to find all the points $c_{1}, c_{2}, \ldots c_{20}$ in the same vertical with $a_{1} a_{2}, \ldots a_{20}$ respectively. The points c are points in the true equilibrium polygon for the arch, for the loads assumed. The centre of
pressure on the crown joint is similarly found.

To find the true pole, draw from the trial pole, Fig. 6, a parallel to $m m_{1}$ to intersection with the load line, then horizontally to the right, a line of length $=$ $10000 \times \frac{90.9}{41.9}=21695$ lbs., measured to the scale of loads. The new pole is thus located and the true horizontal thrust of the arch found to be

$$
\mathrm{H}=21695 \text { pounds }
$$

Beginning at the centre of pressure at the crown, the equilibrium polygon c_{1}, c_{2}, $\ldots c_{20}$ can be tested by the usual graphical construction.

Those familiar with Prof. H. T. Eddy's "Researches in Graphical Statics," will recognize my indebtedness to him in the general treatment of the equilibrium polygon b and its final location in true position on the arch.

ARCH LOADED WITH ITS OWN WEIGHT.

29. The arch loaded with its own weight only can be easily treated when the previous constructions have been made, since the part of the equilibrium polygon required, b_{1}, \ldots, b_{10} has already been drawn. The closing line $m m_{1}$ is quickly determined, as in Art. 24, and the line $k k_{1}$ is already established (see Art. 25). Then as in Arts. 26 and 27, find $\Sigma(k a . y)$ and $\Sigma(m b . y)$ for the half arch only, and proceed as in Arts. 28 and 29 to alter all the $m b$'s in the ratio $\sum(k a, y)$ to $\sum(m b, y)$, and lay off vertically above and below $k k_{1}$ to fix the points c_{1}, \ldots, c_{10}, and change the pole distance in the inverse ratio to find the true pole (Art. 29). In this example, the closing line $m m_{1}$ is found to be $72.22 \div 10=$ 7.22 above $v_{1}, \therefore \sum_{0}^{\frac{l}{2}}(m b . y)=+38.05$ and (Art. 26), $\sum_{0}^{\frac{l}{2}}$ (ka.y) $=+20.95$. Hence the $m b$'s are all altered in the ratio $38.05: 20.95$ and the true horizontal thrust (pole distance) $=$ $10,000 \times \frac{38.05}{20.95}=18,160$ pounds. On laying off the new $m b$'s from $k k_{1}$, it is found that

$$
\begin{aligned}
& a_{1} c_{1}=+0.1, \quad a_{2} c_{2}=+0.1, \quad a_{3} c_{3}=+0.07 \\
& a_{4} c_{4}=+0.06, \quad a_{5} c_{5}=+0.08, \quad a_{6} c_{6}=a_{7} c_{7}=0 \\
& a_{8} c_{8}=-0.09, \quad a_{9} c_{9}=-0.1, \quad a_{10} c_{10}=-0.1
\end{aligned}
$$

distances above a being plus; below, minus.
30. Demonstration. Since the equi. librium polygon b with ordinates all al. tered in the same ratio is now in position on the arch as polygon c, the closing line $m m_{1}$ now coinciding with $k k_{1}$, we have from Eq. (17), Art. 23,

$$
\Sigma(k c)=0, \quad \Sigma(k c . x)=0
$$

Also from Art. 25, Eq. 18, the line $k k_{1}$ was located to satisfy the conditions,

$$
\Sigma(k a)=0, \quad \Sigma(k a \cdot x)=0
$$

the summation extending over the entire arch. On subtracting the last equations from the preceding,

$$
\Sigma(a c)=0, \quad \Sigma(a c \cdot x)=0
$$

and it is seen that the first two conditions, Art. 14, Eq. (13), for an arch without hinges, are fulfilled. Finally, since each $m b$ has been altered in the ratio 41.9 to 90.9 to the corresponding $k c, \Sigma(m b . y)=$ 90.9 has been changed to $\Sigma(k c . y)=41.9$.

But, Art. 26, $\Sigma(k a . y)=41.9$; therefore, by subtraction,

$$
\Sigma(a c . y)=0
$$

and the third condition of Art. 14, Eq. 13 , is fulfilled by equilibrium polygon c. It is thus the true one for the arch "fixed at the ends," and with no hinges.

Unit Stresses, etc.
31. The normal component T at any radial section, as the one through a_{1}, is found by resolving the thrust there, as given by the proper ray of the force diagram, measured to the scale of force, into two components normal and parallel to the section, and measuring the normal component to scale. Thus T at $a_{1}=$ 24470 lbs. The moment, $\mathrm{M}=\mathrm{H} t=$ H. $a_{1} c_{1}$ at a_{1}, is found by measuring $a_{1} c_{1}$ to scale of distance, giving $a_{1} c_{1}=.41$, and multiplying by $\mathrm{H}=21700$ to get the moment $\mathrm{M}=8897$ in foot pounds. The stress on the concrete at the extrados or
intrados is now found from Art. 11, Eq. (9), to be, as $d_{1}=2.3$

$$
\begin{aligned}
& =\frac{24470}{2.3+0.2} \pm \frac{8897 \times 1.15}{\frac{1}{12}(2.3)^{3}+2(0.98)^{2}} \\
& \left.=\begin{array}{c}
18,274 \\
1,306
\end{array}\right\} \text { pounds per square foot }
\end{aligned}
$$

or 127 lbs. per sq. in. compression at the extrados and 10 lbs . per sq. in. compression at the intrados.

This will suffice to explain the general method of procedure at any section.

Note that $a c$ is now regarded as + when c is above $a,-$ otherwise.

At the crown, $a c=-0.04$, and at a_{8}, $a_{8} c_{8}=-0.13$, giving compression at the intrados on the concrete $=154$ at the crown and 214 at a_{8}, and likewise compression at the extrados, 97 at the crown and 34 at a_{8}, all in pounds per square inch.

The section at a_{8} was found to give the maximum compression at the intrados. These stresses will ultimately be combined with the stresses due to temperature.
32. It may be thought that a good check should be afforded by actually measuring $a_{1} c_{1}, a_{2} c_{2}, \ldots a_{20} c_{20}$ accurately to scale and computing $\Sigma(a c), \Sigma(a c . x)$, and $\Sigma(a c . y)$, which should each approximate zero if the points c have been correctly located. As it is perhaps impossible to locate any c to two or three hundredths of a foot, the check is not a good one as the distances $a c$ are very small at most points. It will be found in this case, however, that although $\Sigma(a c)$, $\Sigma(a c . x), \Sigma(a c . y)$ are not zero, yet if each $a c$ is diminished by 0.02 foot, the sums change sign, so that it seems here that the points c have been located within two hundredths of a foot of their correct positions.
33. The resultant on the right springing section is found by producing the resultant at c_{1} to intersection with the vertical through the centre of gravity of the remaining part of the arch and load to the right of the vertical through a_{1}, combining the above resultant with the
weight of this remaining portion (this is effected on the force diagram) an 1 drawing a parallel to this final resultant through the intersection mentioned to the springing. Similarly we proceed for the left springing. The centres of pressure at both springs are well within the middle third, so that the radial depth there could be diminished to about 4 feet. The greatest departure of the polygon c from the centre line a is at a_{1} already noted. Here c_{1} is above a_{1}. Polygon c then passes through a_{2} and falls below the neutral line, its maximum departure being $a_{8} c_{8}=-0.13$. At the crown it is 0.04 below, at a_{19} it crosses the neutral line and remains above until near the left springing, the maximum $+t$ being $a_{17} c_{17}$ $=0.13$.
34. The line of the centres of pressure varies for different arches, but for the -upper half of the arch, its position relative to the neutral line is about the same for all circular arches similarly loaded.

For a three-centred arch of 89.55^{\prime} span and 15.10^{\prime} rise, having a radial depth at the crown 1.83^{\prime}, at 25 feet horizontally from the crown 2.29^{\prime} and at the springs 7.56^{\prime}; and loaded with 125 pounds per foot on the left half, the pressure line was very similar to the one above except that at the left springing, the centre of pressure was at the lower middle third limit, at the right springing it was slightly below the centre and it passed exactly through a_{1}.
The backing here extended 1 foot above the crown and its density was taken as $0: 8$ that of the concrete. The central angle was $32^{\circ} 06.2^{\prime}$, corresponding to the radius 90.41 , the remaining portion of the intrados being described with a radius 46.55 . Also the steel bars were placed as above,

$$
\mathrm{A}_{2}=\frac{1}{72} \text { sq. ft. and } 20 \mathrm{I}_{2}=\frac{10}{36}\left(\frac{d}{2}-0.17\right)^{2}
$$

The stresses on the concrete in pounds per square inch at the left springing were 129 at the intrados and 4 at the extrados, both compression ; at the crown the stresses were 288 compression at the intrados and 59 at the extrados. There was no tension exerted anywhere. .
35. Arches of variable section of any material, as concrete, stone, brick or
steel, without the ribs enclosed, are to be treated exactly as above, except that $\mathrm{A}_{2}=0, \mathrm{I}_{2}=0$ in the formulas. In Art. 17 the method of dividing up the arch ring is indicated.

The brick arch should be built of the best brick in Portland cement, with thin joints ($\frac{1}{4}$ inch say). An approximation is of course introduced in regarding the brick arch as a homogeneous one, but the Austrian experiments go to show that the theory applied on this hypothesis is sufficiently reliable. In the brick or stone arch, if the mortar cannot take appreciable tension, the theory is only valid when the centres of pressure on the joints are found to lie everywhere within the middle third of the arch ring. The stone arch of constant section is fully treated in the author's "Theory of Voussoir Arches" as regards vertical loads.

In all arches, the theory considers the backing to act vertically only. This is nearly true if the weight of roadway with its load is carried to the arch through
pillars of steel, stone, etc. In the case of earth backing, a certain passive resistance to the tendency to spread at the haunches is exerted by the earth which may be taken as adding to the stability. This becomes very pronounced when a series of longitudinal spandrel walls form part of the backing. This may be considered as adding so much to the factor of safety, since it cannot be directly evaluated.

Skew arches are treated exactly as right arches, the span being taken on the skew and not at right angles to the axis of the arch. Full centre or elliptical arches are always built with solid masonry backing up to a certain height. The part above this can be treated as the arch proper and the part below as the abutment. Attention has been called to the reason for this in Article 16.

TEMPERATURE STRESSES.

36. The stresses due to temperature in in the arch with no hinges are very high and should be carefully considered. The
theory is simple. Suppose the arch without weight, and that it exactly fits between the skewbacks without stress anywhere, at a certain mean temperature. That is, if the arch was laid on its side on a horizontal platform, with the assumed span, skewbacks and rise, it would be without stress at the mean temperature. Denote the greatest deviation above or below this by t^{0} in Celsius degrees, and the expansion of the material of the arch for a unit of length and one degree by ε. The total change in length of span of neutral line is $l \varepsilon t^{\circ}$, where l represents the length of span of neutral line in feet, since this is made up of the horizontal projections of the changes for each elementary portion of the arch.

As the abutments resist this tendency to a change of shape, a horizontal thrust and bending moment will be experienced at each abutment. For a symmetrical arch, these will be the same for each abutment, and the result will not be altered if we conceive horizontal forces H ,
to act at a distance e above the centre of each springing section, both acting inwards for a rise, and outwards for a fall of temperature. On conceiving at the centre of each section at the springs, two horizontal forces H opposed to each other, the force H acting a distance e above this centre with one of the opposed H's, forms a couple whose bending moment is $\mathrm{H} e$, and the remaining H gives the horizontal thrust at the abutment. If the section is unsymmetrical, substitute throughout for centre of the section at the springs, the point where the neutral line meets the section. If the arch ring is divided into lengths s_{1}, s_{2}, \ldots, as in Art. 14, so that $s \div\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)$ is constant, then as before, since the end tangents are fixed and the vertical displacement of the end sections zero,

$$
\therefore \quad \Sigma_{0}^{l} t+=0, \quad \Sigma_{0}^{l}(t x)=0
$$

In Fig. 6 (plate), where this division of the arch ring was effected, if we suppose the H at either end to act along $k k_{1}$,
the two conditions are fulfilled, since

$$
\mathrm{M}=\mathrm{H} \cdot k a \quad \therefore \quad t=k a,
$$

and by Art. $25, k k_{1}$ was located so that

$$
\Sigma_{0} l(k a)=0, \quad \Sigma_{0} l(k a \cdot x)=0 .
$$

A rise of temperature increases the span for a free arch; hence between rigid abutments, the new span must now be decreased by the same amount to fit it in place. Similarly for a fall of temperature. In this example, the distance between centres of sections at the springs $=l=53.6$ feet.

By Art. 12, the change of span of neutral line $l \varepsilon t^{\circ}$ is given by,

$$
\begin{aligned}
& l \varepsilon t^{0}=2 \Sigma \frac{\mathrm{M} y s}{\mathrm{E}_{2}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)}= \\
& 2 \mathrm{H} \frac{s}{\mathrm{E}_{1}\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)} \sum(k a \cdot y)
\end{aligned}
$$

the summation extending over the half span.

Since $k a=y-e$,

$$
\begin{equation*}
\Sigma(k a \cdot y)=\Sigma y^{2}-e \Sigma y \tag{19}
\end{equation*}
$$

$\therefore \mathrm{H}=\frac{\mathrm{E}_{1} l \varepsilon t^{\circ}}{2\left(\Sigma y^{2}-e \Sigma y\right)} \frac{\mathrm{I}_{1}+n \mathrm{I}_{2}}{s}$
(See Art 25 for e).
From Art. 26,2($\left.\Sigma y^{2}-e \Sigma y\right)=41.90$ for the arch of Fig. 6. Let $e=0.000012$, and suppose a fall of $35^{\circ} \mathrm{C}$. (corresponding to $63^{\circ} \mathrm{F}$.), \therefore
$l \varepsilon t^{\circ}=53.6 \times 0.000012 \times 35=0.022512$.
The modulus of elasticity of the concrete will be taken at $1,400,000 \times 144 \mathrm{lbs}$. per square foot.

By Art. $15, s \div\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)=11.5$. Substituting the above values in the formula, and we find, $\mathrm{H}=9418.6$ pounds, for the pull exerted for an arch 1 foot thick for a fall of temperature of $63^{\circ} \mathrm{F}$. Let us assume a mean temperature of $53^{\circ} \mathrm{F}$, and the extremes, $93^{\circ} \mathrm{F}$. and $-10^{\circ} \mathrm{F}$., corresponding to the fall $63^{\circ} \mathrm{F}$. and a rise $40^{\circ} \mathrm{F}$. Then H for $40^{\circ} \mathrm{F}$. rise is
$9420 \times \frac{40}{63}=5980$, and the corresponding stresses are in the ratio $40: 63$ to those corresponding to 63° fall, but of opposite character.

In finding the stresses by aid of Eq. (9), Art. 11, the work proceeds as in Art. 31, H being resolved into components \perp and \| to the section. The normal component of H is T of the formula, and $\mathrm{M}=\mathrm{H} . k a$.
It conduces to clearness, to find the character of the stresses at a section of the right half of the arch, as that at a_{1}, to conceive the left half removed, and to replace its action on the right half by a single force H along $k k_{1}$, acting to the left for a fall and to the right for a rise of temperature. As $k k_{1}$ lies above a_{1}, this causes compression at the intrados, tension at the extrados for a fall, and the reverse for a rise of temperature.

On computing all the stresses due to temperature and combining results with those due to the loads, it is found that
the maximum tension ever experienced is at the intrados at the crown, corresponding to a $63^{\circ} \mathrm{F}$. fall of temperature. Its amount is 213 pounds per square inch. The maximum compression corresponds to 40° rise of temperature and is at the intrados for section at a_{8}, the stress being 428 pounds per square inch. The stresses where no live load is on the bridge, should be ascertained and combined with the temperature stresses as above. The rise or fall of temperature to be allowed will be discussed in Art. 40.
37. To ascertain the approximation involved in the above method for finding H for temperature stresses, a solid homogeneous circular arch of constant section was assumed, the neutral line for the half arch divided into 16 equal parts and, for the dimensions assumed and a rise of temperature of $30^{\circ} \mathrm{C}$., the thrust was found to be $\mathrm{H}=201.6$ tons. By the formula below it was 204.6 tons, a very satisfactory agreement.

The formula is exact, except that the
uniform compression due to T is neglected as in the method above, and is given by Greene, Howe, Winkler, and others. (Winkler's approximate formula gives results differing widely from this exact one.) The formula involves the quantities used above, also the radius r of the neutral line and the half central angle α, and in the most convenient form is,

$$
\mathrm{H}=\frac{2 \mathrm{EI} t^{\circ} \varepsilon}{r^{2}\left(\frac{\alpha}{\sin \alpha}+\cos \alpha-2 \frac{\sin \alpha}{\alpha}\right)}
$$

A six or seven place table must be used in computing the parenthesis in the denominator.
38. For the arch of variable section having any curves for intrados and extrados, the formula of Art. 36 can be put into another form, which can be used when $s \div\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)$ is not constant. Let $\mathrm{I}=\left(\mathrm{I}_{1}+n \mathrm{I}_{2}\right)$ for brevity, and putting $s \div \mathrm{I}$ under the summation signs, Eq. (19) can be written,

$$
\begin{equation*}
\mathrm{H}=\frac{\mathrm{E}_{1} l \varepsilon t^{\circ}}{2\left[\Sigma\left(y^{2} \frac{s}{\mathrm{I}}\right)-e \Sigma\left(y \frac{s}{\mathrm{I}}\right)\right]} \tag{20}
\end{equation*}
$$

Formula (10), Art. 12, gives

$$
\begin{gathered}
\Sigma \frac{\mathrm{H.ka.s}}{\mathrm{E}_{1} \mathrm{I}}=0, \quad \therefore \Sigma\left(k a \frac{s}{\mathrm{I}}\right)=0 \\
\therefore \Sigma(y-e) \frac{s}{\mathrm{I}}=0, \quad \Sigma y \frac{s}{\mathrm{I}}=e \Sigma \frac{s}{\mathrm{I}} \\
\therefore \quad e=\frac{\Sigma y \frac{s}{\mathrm{I}}}{\Sigma \frac{s}{\mathrm{I}}}
\end{gathered}
$$

The summation in the formulas of this article, extends over half the span only on account of symmetry.
[This formula for e reduces to the previous value, Art. 25, when $s \div \mathrm{I}$ is constant, as it becomes then $e=(\Sigma y) \div n$, where Σy is the sum of the ordinates on the half arch and n is their number.]

On substituting the above value of e in (20), we are conducted to the formula
given by Howe, page 49, in his valuable work on Arches.

In using this formula (20), it is most convenient to divide the neutral line into parts of equal length, scale off the ordinates to the centre of each division above the span line of the neutral axis (generally from centre to centre of skewbacks), and tabulate quantities as follows:

Point	Dist. from abot- ment	I	$\frac{1}{I}$	y	y^{2}	$\frac{y}{I}$	$\frac{y^{2}}{I}$

Formula (20) saves the tentative division of the arch ring, to make $s \div \mathrm{I}$ constant. It furnishes some check upon the former method. To compare them, a steel-concrete arch of 100 ft . span, 3 ft . depth of key, and 7.5 ft . radial depth at spring was treated by both methods, using 14 divisions of the semi-arch by either method. The first one ($s \div$ I constant), gave a result about 4 per cent. smaller
than the second where s was taken constant.

These determinations should give confidence in the methods used. It was found however that it was highly desirable to use as many divisions as possible, say 20 to 30 for the half arch, to attain accuracy by use of (19). Possibly 16 should be a minimum and then the result will be too small by a few per cent.

PROPERTIES OF CONCRETE.

39. Trautwine gives the following crushing loads for concrete, reduced to pounds per square inch :

Age in months	1	3	6	9	12
Pounds persq. in.	230	623	1010	1320	1560

Under favorable conditions, these figures may be increased 50 to 100 per cent. Several times these figures have been found by some experimenters. Possibly 500 pounds in two months can safely be counted on in practice.

The experiments on tensile strength
are very meagre. About 300 pounds per square inch ultimate may be given as an average, and 150 to 200 is recommended by some as a safe stress, and 50 to 60 by others. The modulus of elasticity has been given all the way from $1,400,000$ to $4,000,000$ pounds per square inch for concrete. The smaller figure refers to experiments on a 74.5 feet span and is possibly better adapted to practice. The modulus for permanent set ranged from $9,000,000$ to $32,500,000$. Mr. Hyatt proved the expansion of steel and concrete to be equal, whether under load or fire. Bauschinger however gives the coefficient of expansion for $1^{\circ} \mathrm{C}$., referring to $1: 2 \frac{1}{2}: 5$ concrete, as $\alpha=0.0000088$, whereas a usual figure for iron is $\alpha=$ 0.000012 . The coefficient for shrinkage from setting of cement mortar in air is given as about 0.0010. Mr. Rafter* found for cement ($1: 2$ to $1: 4$) mortar weighing from 119 to 128 lbs . per cu. ft. and sand-

[^3]stone weighing 155 lbs. per cu. ft., the concrete formed varied in weight from 139 to 148 lbs. per cu. ft., the volume of mortar varying from 33% to 40% of the broken stone.
40. What rise and fall of temperature shall be allowed? Steel arches readily take the temperature of the air and are quickly heated by the sun, so that the extreme fall and an equal rise, at least, above the mean should be allowed.

For concrete, stone or brick, it seems certain that no such extremes are experienced, otherwise many of the hundreds of concrete bridges built in recent years would show cracks, for many of them are built of very light section. Concrete, stone, brick, and earth are very poor conductors, and where the arch is covered with earth, doubtless its top does not vary a great deal in temperature. The same may be said for the lower side of arch, as it is next the water and screened from the direct rays of the sun. As concrete or masonry bridges are usually fin-
ished in the warmer months, the mean temperature of $53^{\circ} \mathrm{F}$. was assumed in Art. 36, and a rise and fall of 40° and 63° respectively. Doubtless half of these quantities would be nearer the truth for the changes in temperature of the arch ring, if 40° and 63° rise and fall referred to the air, and the amounts should decrease as the depth of arch or span increases, though, of course, experiment alone can decide the whole matter.

The exact determination of the maximum stresses in concrete arches is complicated too by other considerations : the shrinkage of the concrete and permanent set under stress.* The shrinkage should not prove so great, if the concrete is well rammed, still there will always be some shrinkage which will have the effect of taking off some of the computed stress from the concrete and adding more to the steel ribs.

[^4]It may be thought that increasing the depth at the crown may be the remedy for temperature and allied stresses, but as this increases the horizontal thrust, the tensile stresses are not greatly altered.

It is suggested that more steel should be used than strict theory requires, with the ribs spaced closer together, to make the practice conform more to the hypothesis. This increase can be made to satisfy the condition, at any critical point in the arch, that all the bending moment due to loads and temperature should be borne entirely by the steel ribs at some stress under the elastic limit-say 20,000 pounds.

It is very evident from the foregoing that the steel concrete arch is, in every way, superior to the concrete arch, as the unit stress actually sustained by the steel is small, and it thus furnishes a reserve of strength which may be called for nometime under exceptional loading.

CHANGE OF SPAN.

41. If the abutments give a small amount, the span of the neutral line increases a small amount d. On replacing $l \varepsilon t^{0}$ in the formulas above by d, the full H is found as before. The effect is equivalent to a fall of temperature which requires the unstrained arch to be fitted to a larger span. The result is the same for the elastic shortening of the arch due to the tangential forces T , hitherto neglected. The sum of the horizontal projections of the shortening of each part s of the neutral line, due to T, which can be computed, is the change of span, and replaces $l \varepsilon t^{\circ}$ above.

If the stress f, in pounds per square foot, due to T alone, is taken roughly as the same on each cross-section of the arch, the change of the span of the neutral line is $\left(\frac{f}{\mathbf{E}} l\right)$ where E is the modulus in pounds per square foot, and l the span of the neutral line : f might here be found as a rude average for the whole arch.

ARCH HINGED AT ENDS ONLY.

42. For an arch hinged at the ends only, the reactions pass through the centre of the hinges, neglecting any friction there. As the span is invariable, the condition to be fulfilled by the equilibrium polygon is given by Eq. (11), Art. 12, or putting $\mathrm{I}=\mathrm{I}_{1}+n \mathrm{I}_{2}$ for brevity,

$$
\Sigma \frac{\mathrm{M} y s}{\mathrm{I}}=0
$$

where $\mathrm{M}, \mathrm{I}_{1}, \mathrm{I}_{2}$, and y are taken at the middle of the corresponding s, and the summation covers the entire span. Two solutions may be given: In the first, suppose the neutral line to pass through the hinges A, B, and that AB is horizontal. Divide the neutral line of the arch ring into equal parts, each of length s, and measure on a drawing the vertical ordinates y from AB to the centre a of each division, and estimate $\mathrm{I}=\mathrm{I}_{1}+n \mathrm{I}_{2}$ at each point a. Next, draw, with a trial pole, an equilibrium polygon due
to the loads, through A and B. Thus, through any point A^{1} in the vertical through A, construct an equilibrium polygon and suppose that it meets the vertical through B at B^{1}. The ordinates through the points a from $\mathrm{A}^{1} \mathrm{~B}^{1}$ to the polygon are the values of y^{1} below, which can now be supposed laid off from AB to give the required polygon passing through A and B. It need not be actually drawn. For the greatest accuracy, the successive weights should be taken as the weights of arch and load between the successive a ',s (as in Fig. 6).

Then the preceding condition reduces to

$$
\Sigma \frac{\left(y^{1}-y\right) y}{I}=0, \therefore \Sigma \frac{y^{1} y}{I}=\Sigma \frac{y^{2}}{I},
$$

since $\mathrm{M}=\mathrm{H}\left(y^{1}-y\right)$, where H is the horizontal thrust. Both members of the last equality can be estimated. If the equality does not obtain, alter all the ordinates of the type y^{1} in the ratio

$$
\Sigma\left(\frac{y^{2}}{I}\right) \div \Sigma\left(\frac{y^{1} y}{I}\right)
$$

to locate the points of the true equilibrium polygon satisfying the conditions. The true horizontal thrust is equal to the trial thrust multiplied by

$$
\Sigma\left(\frac{y^{1} y}{I}\right) \div \Sigma\left(\frac{y^{2}}{\mathrm{I}}\right) .
$$

The second solution requires the division of the neutral axis to be made as in Art. 14, thus leading to the simple condition,

$$
\Sigma \mathrm{M} y=0 \text { or } \Sigma y^{1} y=\Sigma y^{2},
$$

and the solution proceeds as above.
Also see "Theory of Solid and Braced Elastic Arches" for I constant and for temperature stresses.

abutments.

43. Lack of space prevents an extended treatment of abutments. The reader may consult for partly empirical formulas

Trautwine's " Pocket Book," Dubosque's "Ponts et Viaducts," or Van Nostrand's Magazine for Dec. 1883. The resultant acting on any joint of the abutment is at once found by combining the ascertained thrust of the arch with the weight of abutment and load over the joint. It should pass within the middle third. To avoid sliding it is well to construct the courses perpendicular to the resultant.

the spandrel resistance for vousSOIR ARCHES.

44. It will prove interesting to give a construction for spandrel resistance at this point.* It is found by assuming that the resultants on the successive joints or sections, are tangent to the centre line of the arch ring. Thus in the full centre arch of Fig. 7, lay off, on the extreme left vertical upwards, the loads from the crown to each joint in turn. Thus $0-11$

[^5]
is the load (to scale) of arch and spandrel from the crown to joint 11 . Draw $\overline{o e}$ parallel to the centre line at joint 11-the construction shown effects this easily, by drawing $\overline{0,11}$ through the intersection of $\overline{c, 11}$ with the semi-circle. Next draw a horizontal line throngh 11 on the scale of loads, to the intersection e with the line just drawn; then $\overline{0 e}$ represents the magnitude and direction of the resultant at joint 11, whose two components $\overline{0,11}$ and $\overline{e, 11}$ are respectively, the load from the crown to joint 11, and the total horizontal thrust exerted below joint 11.

On repeating this construction for each joint, we find the horizontal thrust exerted below each joint; the horizontal thrust, then exerted upon a single voussoir, as that between joints 11 and 12 , by the spandrel, is thus the difference between the line $\overline{e, 11}$ and the horizontal $\overline{f, 12}$. At joint 8, called " the joint of rupture," the horizontal thrust obtains its maximum ; and above this point, in this case, the spandrel would have to
exert tensile forces to cause the centre line to become the true line of pressures; but if it cannot do this, the horizontal thrust from joint 8 to the crown is constant.

In the latter case, the tangent to the centre line at joint 8 is produced to intersection n with the vertical through the centre of gravity of the load from the crown to joint 8 , and from this point $n m$ is drawn horizontal to intersection m with the crown joint. From this centre of pressure, the line of the centres of pressure is drawn as usual, as shown by the dotted line down to joint 8, from whence it follows the centre line as assumed. (Of course this is not the true curve, as we shall see further on.)
45. This tacitly assumes incompressible spandrels, for as an actual semi-circular arch, on striking the centres, tends to spread outwards at the haunches, if this tendency is entirely prevented by the spandrels, this can only happen with incompressible spandrels.

To illustrate, in Fig. 8 is drawn a line of resistance (not the true one) for the arch subjected to an eccentric load on the supposition that no spandrel resistances are experienced.

This curve or any other that may be drawn (including the true one) would pass near or outside of the extrados, at joints 16 , so that the arch would tend to rotate outwards about these joints. and thus spread at the haunches. If the spandrels really form an extension of the abutment upwards with equal solidity of construction, especially if they are bonded with the voussoirs, as is usual, their action is approximately as indicated above, and as a basis for computation, the arch and spandrel from joints 8 down, with the abutments proper, can be regarded as an immovable abutment, and the part of the arch above joint 8 can be treated as an elastic arch by preceding methods. The equilibrium polygon for this upper part of the arch is then found as in Art. 18, et seq., if it nowhere leaves the middle
third.* It of course does not agree with the dotted curve from m down to centre of joint 8 , but lies on either side of the centre line. At joint 8 the true centre of pressure lies below the centre of that joint. Below that, the spandrels exert just so much resistance as to cause the line of the centres of pressure to keep near the centre line, so that no appreciable spreading occurs. These resistances could easily be estimated by a method somewhat analogous to that given in Art. 43, but the results, even when known, are of but little importance.

A better disposition of the masonry would be to omit the spandrels and to increase the radial depth of the arch ring from joint 8 (about) to the abutments, so that the true line of the centres of pressure, should everywhere be contained in the middle third for the loading assumed.

This plan is actually cheaper for a con-

[^6]crete arch. If spandrels were used here, and the whole, from crown to abutment, was treated as a solid arch, after the method of Art. 18, etc., it would be found, as in the example treated there, that the part from joint 8 down, exercises but little influence upon the curve of pressure, so that it can practically be treated as a part of the abutment.

METHODS OF FAILURE OF ARCHES.

Fig. 9
46. In Fig. 9 is shown the method of failure of semi-circular arches when the abutments are too narrow : the crown
sinks and the joints open at the intrados at V and at the extrados at R and R^{1}, the spandrels crack above R and R^{1}, and a portion m RCKX of spandrel, arch and abutment, detaches itself, rotating about X. A portion XKS of the abutment is left standing when the mortar is weak.*

In Van Nostrand's Magazine for March, 1873, page 193, is described the Pont-y-Tu-Prydd arch bridge of 140 ft . span, 35 ft . rise and only 1 ft .6 in . depth of rubble arch ring in the body of the arch! The curve is an are of a circle. On striking the centres, the arch fell, the weight of the haunches forcing up the crown. The mason, noticing this, lightened the spandrels with cylindrical openings, filling the space between with charcoal, and succeeded in making the bridge stand. The resistance line is found to be everywhere contained within the arch ring and the bridge stands to this day. It may not only prove instructive as a precedent to

[^7]be avoided as regards the very thin arch ring, but it illustrates the only method of failure of a segmental arch with immovable abutments (when crushing of the voussoirs is not in question) and shows besides, that the stability of the segmental arch is increased by lightening the spandrels. This lightening the load over the haunches can be effected in various ways, as by substituting walls parallel or perpendicular to the outer spandrel walls connected by flags or arches, for the solid backing, or using a steel framework for the interior walls, etc. An approximate construction will give at once the height of surcharge (supposed homogeneous and and of same density as the voussoirs) in order that the centre line of arch ring may be the true equilibrium curve.

HEIGHT OF SURCHARGE FOR EQUILIBRIUM.

47. In Fig. 10, divide the half span of centre line into equal parts, and erect verticals meeting the centre line of arch ring

in $a_{1}, a_{2}{ }^{6} \ldots$; call the mid points of $a a_{1}$, $a_{1} a_{2}, \ldots, c_{1}, c_{2}, \ldots$, respectively and consider $a c_{1} c_{2} c_{3}, \ldots$, the equilibrium polygon for the arch. From some point A, draw A1 horizontal, $\mathrm{A} 2\left\|c_{1} c_{2}, \mathrm{~A} 3\right\|$
$c_{2} c_{3}, \ldots$, and draw the vertical $123 \ldots$, such a distance to the right of A, that the intercepted length 12 is equal to the median (vertical from soffit to top of surcharge) at c_{1} or depth at crown nearly. Then the length of medians at c_{2}, c_{3}, \ldots, are $23,34, \ldots$, respectively and the load acting at c_{1} or c_{2}, \ldots, is thus equal to the corresponding median, multiplied by horizontal projection of $a a_{1}$, or $a_{2} a_{2}$, . . ., multiplied by unit of weight.

The walls, arches, charcoal, etc., can now be designed to give these weights at the respective points, in which case the centre line is the equilibrium polygon for dead load, assuming all loads to act vertically. The latter hypothesis is nearer the truth when cross walls are used.
48. If the cross walls are at other points than those marked c, the weight of any one with its load, must equal the median along its vertical centre line, multiplied by the sum of the horizontal distances from this median to verticals drawn midway between the vertical axes of adjacent
cross walls and this product then multiplied by the weight per unit. This assumes the cross walls spaced equal horizontal distances apart.

When longitudinal walls are used, their whole weight first rests upon the arch; but if the arch sinks appreciably, a small amount may be carried directly to the abutment, through cantilever action aided by friction. The theory of vertical loads would then seem to be admissible. But an important fact must be noted, i.e., that these walls resist spreading of the arch at the haunches and thus add materially to the stability for arches of large central angle.

Compacted earth filling can furnish little or no active horizontal thrust, but it likewise adds to the stability by resisting appreciably any tendency to spread at the haunches.
49. If the centre line is a parabola, it is easy to show that the upper limit of the surcharge must be everywhere the same vertical distance from the soffit; so
that where the surcharge is very high the parabola is the best form of arch ring.

This may be shown analytically, in an easy manner. Thus conceive $a_{1}, a_{2}, \ldots a_{0}$, Fig.10, to consist of a thin metallic ring, that is to sustain a uniform horizontal load, w per foot, without bending; required the form of the curve $a \ldots a_{9}$. It is necessary that the line of pressures coincides throughout with the rib, for if it departs from it at any point, the resultant for that point multiplied by its lever arm to that point, gives a berding moment M , which the thin rib is supposed incapable of resisting.

Let $\overline{a \mathrm{~A}}$ be the axis of X , the vertical down from a the axis of Y. The resultant at a is the horizontal thrust Q. Take moments of this force, and the downward acting weight on the part $a a_{6}$, about a_{6}, whose coördinates are y and x,

$$
\therefore \quad \mathrm{M}=\mathrm{Q} y-\frac{w x^{2}}{2} .
$$

Now M must equal zero for every point of the arch, in which case the line of pressures will coincide with the figure of the rib.
Placing $\mathrm{M}=0$, we deduce,

$$
x^{2}=\frac{2 Q}{w} y,
$$

the equation of a parabola, Q.E.D.

CHAPTER II.

UNDERGROUND ARCHES.

FORMULAS FOR PASSING A LINE OF RESISTANCE THROUGH THREE GIVEN POINTS.
50. In the arch ADB, Fig. 11, suppose it required to pass a line of resistance through the points A, E and B.

Let C be another point of this curve, at the crown, where the horizontal component of the pressure is Q, the vertical component P. Call the vertical compo-
nents of the loads on the segments AD , DB and ED, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, respectively; their horizontal components, $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, respectively.

Call the perpendicular distances from P_{1} and T_{1} to A, a_{1} and c_{1}; from P_{2} and T_{2} to B, a_{2} and c_{2}; and from P_{3}, and T_{3} to E, a_{3} and c_{3}, respectively.

Also call the vertical distances of C , the point of application of the inclined thrust at the crown, above A, B and E , b_{1}, b_{2} and b_{3}, respectively; and the horizontal distances of the same points, A, B, E, from the crown, g_{1}, g_{2} and g_{3}.
51. We now take moments in turn about A, B and E. In Eqs. (1) and (3), we suppose the arch to the right of the crown removed, and its effect replaced by the resultant of P and Q acting to the left, P being + when acting upwards; in Eq. (2), the part left of the crown is supposed removed, and a force equal and directly opposed to the resultant of P and Q acting to the right.

We thus find :

$$
\begin{align*}
& a_{1} \mathrm{P}_{1}-g_{1} \mathrm{P}+c_{1} \mathrm{~T}_{1}=b_{1} \mathrm{Q} \tag{1}\\
& a_{2} \mathrm{P}_{2}+g_{2} \mathrm{P}+c_{2} \mathrm{~T}_{2}=b_{2} \mathrm{Q} \tag{2}\\
& a_{3} \mathrm{P}_{3}-g_{3} \mathrm{P}+c_{3} \mathrm{~T}_{3}=b_{3} \mathrm{Q} \tag{3}
\end{align*}
$$

Equating the values of Q in (1) and (2), we find,
$\mathbf{P}=\frac{b_{2}\left(a_{1} \mathrm{P}_{1}+c_{1} \mathrm{~T}_{1}\right)-b_{1}\left(a_{2} \mathrm{P}_{2}+c_{2} \mathrm{~T}_{2}\right)}{b_{2} g_{1}+b_{1} g_{2}}$
From (1) we obtain,

$$
\begin{equation*}
\mathrm{Q}=\frac{a_{1} \mathrm{P}_{1}-g_{1} \mathrm{P}+c_{1} \mathrm{~T}_{1}}{b_{1}} \tag{5}
\end{equation*}
$$

These equations suffice to determine P and Q , when the position of O is known. When, however, we can only locate the points A, E and B , the values of P and Q and the position of C is found as follows:

For convenience let us make the following abbreviations :
$g_{2}+g_{3}=d_{1}, g_{1}-g_{3}=d_{2}, \quad g_{1}+g_{2}=d_{3}$, $b_{2}-b_{3}=e_{1}, b_{1}-b_{3}=e_{2}, b_{1}-b_{2}=e_{3}$.

Now subtract (2) from (1),
$a_{1} \mathrm{P}_{1}-a_{2} \mathrm{P}_{2}-\mathrm{P} d_{3}+c_{1} \mathrm{~T}_{1}-c_{2} \mathrm{~T}_{2}=\mathrm{Q} e_{3}$.
also, subtract (3) from (1),

$$
a_{1} \mathrm{P}_{1}-a_{3} \mathrm{P}_{3}-\mathrm{P} d_{2}+c_{1} \mathrm{~T}_{1}-c_{3} \mathrm{~T}_{3}=\mathrm{Q} e_{2}
$$

Equating the values of Q drawn from these last two equations, and noting that $a_{1} \mathrm{P}_{1}\left(e_{2}-e_{3}\right)=a_{1} \mathrm{P}_{2} e_{1} ; c_{1} \mathrm{~T}_{1}\left(e_{2}-e_{3}\right)=c_{1} \mathrm{~T}_{1} e_{1}$ we have,
$\mathrm{P}=$
$\frac{e_{1}\left(a_{1} \mathrm{P}_{1}+c_{1} \mathrm{~T}_{2}\right)-e_{2}\left(a_{2} \mathrm{P}_{2}+c_{2} \mathrm{~T}_{2}\right)+e_{3}\left(a_{3} \mathrm{P}_{3}+c_{3} \mathrm{~T}_{3}\right)}{e_{2} d_{3}-e_{3} d_{2}}$

Substituting in Eq. (6) the value of P just found, reducing the terms of one member to the same denominator, collecting like terms, whose coefficients are of the type ed, and noting that $e_{2}-e_{1}=e_{3}$ and $d_{3}-d_{2}=d_{1}$, we have,
Q =
$\frac{d_{1}\left(a_{1} \mathrm{P}_{1}+c_{1} \mathrm{~T}_{1}\right)+d_{2}\left(a_{2} \mathrm{P}_{2}+c_{2} \mathrm{~T}_{2}\right)-d_{3}\left(a_{3} \mathrm{P}_{3}+c_{3} \mathrm{~T}_{3}\right)}{e_{2} d_{3}-e_{3} d_{2}}$

From (1) we have,

$$
\begin{equation*}
b_{1}=\frac{a_{1} \mathrm{P}_{1}-g_{1} \mathrm{P}+c_{1} \mathrm{~T}_{1}}{\mathrm{Q}} \tag{9}
\end{equation*}
$$

to fix the position of C at the crown.*
We have always for the reactions at A and $\mathrm{B}, \mathrm{P}^{\prime}=\mathrm{P}_{1}-\mathrm{P}, \mathrm{P}^{\prime \prime}=\mathrm{P}_{2}+\mathrm{P}, \mathrm{Q}^{\prime}=$ $\mathrm{Q}-\mathrm{T}_{1}, \mathrm{Q}^{\prime \prime}=\mathrm{Q}-\mathrm{T}_{2}$.
52. The above equations apply directly to unsymmetrical arches, solicited only by vertical forces by making $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and Ts zero.

When the arch and load is symmetrical, $\mathrm{P}=0$. If the point of application at the crown is known, we have from (5),

$$
\begin{equation*}
\mathrm{Q}=\frac{a_{1} \mathrm{P}_{1}+\mathrm{c}_{1} \mathrm{~T}_{1}}{b_{1}} \tag{10}
\end{equation*}
$$

If two points A and E are given, we have then $g_{1}=g_{2}, h_{1}=h_{2}, d_{3}=2 g_{1}, e_{3}=0$, $\mathrm{P}_{1}=\mathrm{P}_{2}, \mathrm{~T}_{1}=\mathrm{T}_{2}, a_{1}=a_{2}, c_{1}=c_{2}$; whence from (8),

[^8]\[

$$
\begin{equation*}
\mathrm{Q}=\frac{a_{1} \mathrm{P}_{1}+c_{1} \mathrm{~T}_{1}-\left(a_{3} \mathrm{P}_{3}+c_{3} \mathrm{~T}_{3}\right)}{e_{2}} \tag{11}
\end{equation*}
$$

\]

The position of Q is then found from (9) by making $\mathrm{P}=0$.

Eq. (11) is very easily deduced independently.

APPLICATION TO CULVERTS.
53. Let Fig. 12 represent a culvert having no masonry backing, with the embankment above it partially completed; so that when the material of the embankment is reduced to the same specific gravity as that of the arch, a line $\overline{a i}$ (taken straight for simplicity) will limit its top; the earth being level to the left of a and to the right of i.

The tables for the vertical forces are made out as usual.* The mean heights of the trapezoids are represented by the dotted lines and the sum of the first three trapezoids will be considered as the sur-

[^9]face from the crown to the third joint; similarly for other joints.

Fig. 12

The horizontal forces are due to the earth pressure and are very difficult to estimate exactly, In a mass of earth with an unlimited level surface, the hori-
zontal pressure per square unit at a depth x,*

$$
p=w x \frac{1-\sin . \Phi}{1+\sin . \Phi}=w x \tan ^{2}\left(45^{\circ}-\frac{1}{2} \Phi\right)
$$

When the upper surface is at the angle of repose Φ, the pressure per square unit of a vertical plane parallel to the slope, is,

$$
p^{\prime}=w x \cos \Phi
$$

w represents the weight per cubic unit of the earth.

These formulæ are modified, when the earth is not of unlimited extent, the friction of the abutting surfaces causing a change in the direction of the pressure.

As the surface above is sloping from a to i, and level elsewhere, only a rough approximation to the pressure is possible.

Cohesion, likewise, plays an important role in earth pressure; its influence becoming much more marked as the em-

[^10]bankment grows older. For new embankments it is well to neglect it.

Let us assume, as a rough approximation, that the horizontal pressures, due to the earth, on voussoirs $1,2,3$ and 4 , correspond to the heights x measured along the dotted lines from the extrados of each voussoir to the surface $a i$, and are given by formula for p above.

The surfaces against which these pressures act for voussoirs $1,2,3,4$, are, $\overline{b c}$, $\overline{c d}, \overline{d e}, \overline{e f}$, respectively; so that the horizontal pressure acting on the third voussoir, for instance, is equal to the product of the height $\overline{d e}$, by the height of the surcharge from the extrados to the surface, by $\tan ^{2}\left(45-\frac{1}{2} \Phi\right)$, (w being taken as unity). In the following examples let $\Phi=30^{\circ}$, so that, $\tan ^{2}\left(45-\frac{1}{2} \Phi\right)=\frac{1}{3}$.

The horizontal pressure then upon the third voussoir is, $\overline{d e} \times x \times \frac{1}{3}$. It may be written $\frac{y x}{3}$ for any voussoir. The lever arms of these forces, about the top of the arch, are the vertical distances from the
line $\overline{b h}$ to the middle of the segmen:s $\overline{b c}, \overline{c d}, \overline{d e}$ and $\overline{e f \text {. The sum of the mo- }}$ ments of these forces, down to any joint, divided by the sum of the same forces, gives the vertical distance from the line $\overline{b h}$ to the resultant of the forces taken.
54. Example.-Let the span of the semi-circular culvert, Fig. 13, be 11.30 units of length, the depth of voussoir 0.94 , the height $\overline{a b}$ of the reduced surcharge 25.12 , and the height $\overline{h i}, 12.56$. If the backing was solid up to $\overline{b h}$, the horizontal forces would be due more nearly to the depth from a to the voussoirs on the left, and from i on the right.

Now let it be required to pass a curve of resistance, 0.41 , below the top of the crown joint, and through the lower middle third limits, at joints six on either side.

The vertical loads from the crown to joints six on left and right are $\mathrm{P}_{1}=$ $133.23, \mathrm{P}_{2}=101.28$; the distances of their resultants from the verticals through the crown are 3.01 and 2.79 respectively,
whence by measurement on the drawing, $g_{1}=g_{2}=5.1$ and $a_{1}=5.1-3=2.1, a_{2}=$ $5.1-2.8=2.3$.

Similarly,

$$
\begin{aligned}
& \mathrm{T}_{1}=26.41, c_{1}=3.5-1.7=1.8 \\
& \mathrm{~T}_{2}=18.51, c_{2}=3.5-1.6=1.9
\end{aligned}
$$

whence, by Eq. (4),

$$
\mathrm{P}=\frac{a_{1} \mathrm{P}_{1}+c_{1} \mathrm{~T}_{1}-\left(a_{2} \mathrm{P}_{2}+c_{2} \mathrm{~T}_{3}\right)}{2 g_{1}}=5.8
$$

Also, by Eq. (5), Q $=96$.
Now lay off on vertical lines, $\overline{08}$, to left and right of the centre, the vertical loads from the crown to the joints in order. Also lay off the distances, on the horizontal through the summit, from the crown to the centres of gravity of the total vertical loads in order. Thus $\overline{\mathrm{S} 6}=$ 3.01 , corresponding to $\mathrm{P}_{1}=133.23$.

Next, lay off on the horizontals through $1,2, \ldots$, to $1^{\prime}, 2^{\prime}, \ldots$, the total horizontal forces for the leftand right side respectively. Also lay off on vertical lines their
points of application. Thus the total horizontal earth thrust from the crown to joint 6 on the left is $T_{1}=26.41$; and its point of application is $\overline{g 6}=1.71$ below the summit. To find the thrust at the crown, lay off $\overline{m n}=\mathrm{Q}$ horizontally, and $\overline{n_{0}}=\mathrm{P}$ vertically downwards: $\overline{m_{0}}\left(=v_{0}\right.$ drawn $\| m o$) is then the resultant at the crown joint in position and magnitude. Now, to find the centre of pressure on a joint, as the 6 th on the left, draw vertical and horizontal lines $\overline{6 b}, \overline{6 b}$, through the points of application of P_{1} and T_{1}, to in. tersection b; which is thus the point of application of the resultant of P_{1} and T_{1}, represented by a straight line from 0 to 6^{\prime} in the force polygon on the left. From b draw $b a \| \overline{06^{\prime}}$ to intersection a with $\overline{m o}$ produced; from a draw $\overline{a c} \| \overline{v 6^{\prime}}$ to intersection with joint 6 at its centre of pressure. It is evident that the resultant there is represented by the line $\overline{v 6^{\prime}}$, the resultant of $\overline{06}, \overline{66^{\prime}}$ and $\overline{v o}$, or of $\mathrm{P}_{1}, \mathrm{~T}_{1}$, and the inclined thrust at the crown;
similarly on the right side, to find the position of the resultant on joint 8 , we find $d, 3.29$ to the right of S and 3.34 below it; thence draw de $\| \overline{08^{\prime}}$ to intersection e with $\overline{m o}$ produced; thence draw $\overline{e f} \| \overline{v 8^{\prime}}$ to f the required point ; the magnitude and direction of the resultant being represented there by the line $\overline{v 8^{\prime}}$.

The line of the centres of pressure thus found, represented by the dotted line, leaves the middle third at joints 4,5 and 8 on the right, and at joint 8 on the left.

A line nearer the truth, if the passive resistance of the earth is still neglected, would probably have m raised somewhat and f nearer the extrados.
55. The earth is next supposed level at $t o p$, the distance $b a=h j$, Fig. 12, being 25.12 units. On making out vertical and horizontal forces as before, for one side only, we find from Eq. (10), $\mathrm{Q}=$ 122.2 cubic units of stone, on passing a curve of resistance through the upper middle third limit at the crown and the lower middle third limit at joint 6.

The curve thus found keeps every--where in the middle third except at joints 8 , where it nearly reaches the extrados.
56. If the arch stones are not increased in depth near the abutment, joints 8 will tend to open at the intrados; but this they cannot do unless the haunches spread; which is in turn resisted by the spandrels; or if there are none, by an increased horizontal thrust which the earth is capable of putting forth, thus keeping the line of resistance within the arch ring, e.g., within the middle third, if the deformation that the earth permits is small.

Experience shows that very thin arch rings, built in rubble, often can fulfill the conditions of stability when embanked over carefully; the centres being struck after the embankment is mostly completed.*

The theory of earth pressure \dagger demon-

[^11]strates that the earth is capable of exerting much greater passive resistances than active thrusts, but their exact amounts are uncertain; though if a line of centres of pressure is assumed from about joints 5 down, to lie near the centre line, their magnitudes can be found after the method of Art. 43. If the arch stones are increased in size near the abutment, so that a line of centres of pressure can everywhere be inscribed in the middle third, the arch will need but little aid from the passive resistance of the earth, and this precaution is strongly urged.
57. The dimensions of the preceding culvert and surcharge may be taken in any unit, as feet, meters, etc.

If the unit taken is the meter, it corresponds to a railroad culvert at Schwelm, the top of the embankment being $31 .{ }^{\text {m }} 40$ above the top of the arch, corresponding to a weight $25 .{ }^{\mathrm{m}} 12$ high of materials as dense as the voussoirs, as given by Scheffler.

The normal pressures on joints 6 or 8 are
about 41.5 tons per square foot, if uniformly distributed, and 83 tons when the pressure acts at the middle third limit. Granite or limestone has a crushing weight of 400 to 500 tons per square foot when of good quality, which was not the case here, and a large number of voussoirs were crushed in various parts of the arch in consequence. If the unit of the drawing, Fig. 13, is the foot, the uniformly distributed normal pressure per square foot, is 11.3 tons, and if the centre of pressure on the critical joint was at the middle third limit, the stresses would be 22.6 tons per square foot at the intrados, which sandstone and best brick are able to sustain.

In the case of very high embankments, the full height of the surcharge does not bear on the culvert or tunnel arch, part of it being carried by friction and a natural arch action to the sides.*

In designing the abutment for a cul-

[^12]vert, it is well not to count on this action, and since the ground generally rises abruptly from the foundation, it is advisable not to count on any horizontal earth thrust against the back of the abutment unless the earth is well rammed. The thrust of the arch on the abutment can be found approximately as in Art. 54, taking the centres of pressure at the crown and haunches (about joint 5, Fig. 13), at the centre of the joints for additional safety.

TUNNEL ARCHES.

58. The indetermination as to the real acting forces is much more pronounced for tunnels, so that experience has to be resorted to. Rankine gives the following formula, founded on practice, for the minimum thickness, t of tunnel arches,

$$
t=\sqrt{.12 r}, \quad r=\frac{a^{2}}{b}
$$

where $a=$ rise and $b=$ half span.
"This is applicable where the ground
is of the firmest and safest kind. In soft and slippery materials, the thickness ranges from $\sqrt{.27 r}$ to $\sqrt{.48 r}$."

The arch is peculiarly adapted for a tunnel support ; for it is the great advantage of the arch, that it will not be forced in in one place without it is forced out at another. The latter the enveloping mass generally prevents, if stones and earth are packed in tight back of the arch; so that the arch so constructed should generally stand unless crushed from a too heavy load.

As, in practice, tunnel arches are not thus crushed, we may infer, as stated before on theoretical grounds, that only a part of the superincumbent material presses on them. In every deep tunnel, the thickness of the arch ring is not increased over that due to a comparatively small height, as is inferred from the preceding formula.

If a quicksand is encountered on one side or the other, the curvature of the arch must be sharply increased there, or
the arch may be forced in, as has happened in certain treacherous clays.
59. Assuming the preceding formulas for earth thrust and the depth of surcharge that is supposed to press, in accordance with this theory, the stability of a tunnel arch is investigated as previously explained in the case of culverts.

Thus take the tunnel arch under the Thames, Fig. 14, whose dimensions in feet are as follows : the thickness of the arch ring is about 3 , the radius of the upper part $\overline{0 . .6}$ is 7; and of the inferior part $\overline{6 . .10}, 28.25$ feet; the upper part being formed of three concentric rolls without bond, but supposed to act as one mass.

The earth and water above the tunnel is supposed to exercise upon the arch a pressure corresponding to a load $24 .{ }^{175} \mathrm{ft}$. high of material like that of the voussoirs; the reduced surcharge being supposed level at top for simplicity.

One line of resistance drawn is represented by the dotted line, and leaves the inner third of the arch ring at joints 9
and 10. However, if the earth is packed tight around the arch, joint 10 cannot open on the inside as the haunches cannot spread, and in fact, the induced (passive) resistance of the earth, giving greater horizontal forces than assumed, will cause the centres of pressure below c to lie nearer the centre of the joints. It is better thus than to have the centre line coincide with the dotted curve throughout; for then, if the active earth thrusts are actually greater than computed the arch ring may be forced in somewhere. We conclude that this arch is well designed as to form.

When a tunnel is constructed through firm earth, the active horizontal earth thrusts are small and even nil in some cases, so that the portion from joints 6 to 10 may be made vertical. This should not be done if the material is a kind of clay that swells when exposed to air and moisture. In Fig. 14, the inverted arch at the bottom is intended to prevent the forcing in of the sides.

THE ELLIPSE THE PROPER FORM FOR A TUNNEL ARCH.
60. The resistance line in Fig. 14, resembles a portion of an ellipse.

We can easily prove analytically that the ellipse is the proper form for a tunnel arch, when the depth of surcharge is so great that the in-

tensity of the thrust of the earth at any part of the arch is practically the same. To take the most general case, let the top surface of the earth be \|OY in the adjoining Figure. Call the pressure, per unit of inclined plane OY, in a vertical direction, p; the conjugate pressure
in a direction \| OY, per unit of a vertical plane OA, can be represented, according to the theory of earth pressure, by $c p, c$ being a constant. Let $\mathrm{OA}=x, \mathrm{AB}=y, \mathrm{OAB}=\theta$, and call the thrust at 0 in the direction OY, tangent to the rib BOD at $0, p \mathrm{~T}$. This rib, or "linear arch," is not supposed to have any bending moment at any point, otherwise a deformation would ensue, The total vertical pressure on OB is $p y$, the con. jugate pressure is $c p x$. Being uniformly distributed, their lever arms about B are

$$
\frac{y \sin . \theta}{2}, \frac{x \sin . \theta}{2} \text { respectively. }
$$

Now, if any point, as B, of the are is to be a point in the line of pressures, we must have, taking moments about B ,

$$
\begin{gathered}
p \mathrm{~T} x \sin . \theta=\left(\frac{p y^{2}}{2}+\frac{c p x^{2}}{2}\right) \sin \theta \\
\therefore y^{2}=2 \mathrm{~T} x-c x^{2}
\end{gathered}
$$

the equation of an ellipse,
Q.E.D.

The equation of an ellipse referred to a diameter and the tangent at its vertex, a and b being the semi-conjugate diameters, is

$$
y^{2}=\frac{b^{2}}{a^{2}}\left(2 a x-x^{2}\right) .
$$

Comparing with the above, we have,

$$
\mathrm{T}=\frac{b^{2}}{a}, \quad c=\frac{c p}{p}=\frac{b^{2}}{a^{2}} .
$$

Or, The intensities of the conjugate pressures are as the squares of the diameters to which they are parallel.

If in the equation above we make, $x=0 \mathrm{~A}=a$, we find, $y=\mathrm{AB}=b$; whence from the last equation,

$$
\frac{a \cdot c p}{b \cdot p}=\frac{b}{a} .
$$

Now the thrust at $0=p \mathrm{~T}=a c p$, whilst that at the ends of the conjugate diameter DB, acting $\| \mathrm{OX}$, is $b p$; hence, these forces are proportional to the diameters to which they are parallel.

To construct the arch, c and a or b must be given to find the other semi-diameter from the equation, $c=b^{2} \div a^{2}$.

When the Top Surface of Earth is Level, $O \mathrm{Y}$ becomes level, and $\theta=90^{\circ} . a$ and b are now the semi-axes of the ellipse. From the theory of earth pressure, $\frac{c p}{p}=\tan ^{2}\left(45^{\circ}-\frac{1}{2} \theta\right)$, whence, for a tunnel arch,

$$
\frac{\text { horizontal semi-axis }}{\text { vertical semi-axis }}=\frac{b}{a}=\tan .\left(45^{\circ}-\frac{1}{2} \theta\right) \text {; }
$$

θ being the angle of repose.

Next, make $c=1\left(\theta\right.$ being $\left.90^{\circ}\right)$ and the ellipse becomes a circle. At any point of the circle consider the two equal forces, p, p, at right angles and acting on a unit of area of planes \perp to them. Their resultant acts normally to the circle, and its intensity is easily found to be p, the intensity of the vertical and horizontal com. ponents.

Calling $r=a=b$, the radius of the circle, we have the thrust at $0=p \mathrm{~T}=p r$, or the product of the intensity on a unit of circumference by the radius. This thrust is the same all around the ring. The above are the principal deductions by Rankine for the arches considered above, but the proof is entirely different to that given by him. The last formula is sometimes used to find the horizontal thrust at the crown for a symmetrical arch uniformly loaded, as the pressure there is normal to the equilibrium curve, and its intensity p is equal to the depth of arch and reduced surcharge at the crown, multiplied by the weight of stone per cubic unit. As the radius r of the linear arch at the crown, is not known, it may be assumed equal to that of the intrados there, and the approximate thrust $=p r$ computed.

Du Bosque uses this formula of Navier's for the thrust, in dealing with the arches of certain proportions examined by him, but, of course, for
other proportions it would not work. Sometimes a rough approximation to the thrust is all that is wanted; in that case, the formula is serviceable.

OHAPTER III.

GROINED AND CLOISTERED ARCHES.

61. Groined and cloistered arches are formed by the intersection of two cylindrical arches, having the same rise and their axes in the same plane. The groined arch is formed by removing those portions of each cylinder which lie under the other and between their common curves of intersection; the cloistered arch by removing the portions of each cylinder above the other and exterior to their common intersection.

The forces exerted in any part of a groined arch of masonry are best shown by an example.

> GROINED ARCH.
62. Let the square ABCD, Fig. 16, be the plan of a groined arch, AC and BD representing the groins; the elevation is

shown, at BMC of the front face AD . There are abutments at A, B, C and D, one of which is shown at A in plan.

Let us divide the portion of the arch and load between the groins into simple (cylindrical) arches, as AID, $a_{3} \mathrm{I} 0, \ldots$. which rest at their extremities on the groins AE, DE. We can estimate the stability of any one of these arches by principles previously established, and find the resultant pressure that it exercises upon the groin. The latter supports a similar pressure from each side; the resultant of these two pressures, which is generally oblique, can then be decomposed into horizontal and vertical components, which are the forces to be used, in their proper positions, in ascertaining the stability of the simple arch constituting the groin, and also of the abutment against which it leans.

In this example the dimensions are given in meters, though any unit may be taken. Let $\overline{\mathrm{AD}}=7.54$; the arc AFD in plan, a semicircle whose radius is thus,
$\overline{\mathrm{OB}}=3.77$; depth of keystone $\overline{\mathrm{KL}}=$ 0.47 ; the height of surcharge above it, $\mathrm{LM}=1.26$. Divide the semi-groin AE into a number of equal parts, four in the figure, and suppose each simple arch, as AID, to terminate at the middle, a_{4}, of its corresponding division. Project up $a_{1}, a_{2}, a_{3}, a_{4}$ to $b_{1}, b_{2}, b_{3}, b_{4}$, in elevation. Then on this supposition the weight AIF sustained at a_{0}, is represented in elevation by MN $b_{4} \mathrm{~K}$, supposing the joints vertical. Similarly for arch $a_{3} \mathrm{JI}$, etc. If an elementary arch $a_{3} \mathrm{~J} o$ could change shape under stress independently of the adjacent arches, its resistance line would be uniquely determined by the theory of the elastic arch, and the centres of pressure for the successive arches $b_{1}, b_{2}, b_{3}, b_{4}$, at their respective springings, could be found. As this hypothesis cannot be said to obtain, the points b are indeterminate. It is perhaps safe to take them on or near the centre line down to the vertical through B , which limits the construction. In this example another plan (not so
good) was adopted. Thus, for arch a_{4} IFe, the centre of pressure at the crown was taken at the upper middle third limit, and at b_{4} at the lower middle third limit, from which the resultant at $\left(a_{4} b_{4}\right)$ can be found. For the other arcs, as $a_{3} \mathrm{IJ}$, retain the same value aud position of Q at the crown. We thus find from the diagram for are AID the resultants in amount, position and direction at the points $\left(a_{3}, b_{3}\right),\left(a_{2}, b_{2}\right),\left(a_{1}, b_{1}\right)$ of the groins, due to all the arcs in the space AEF.

In the following table of volumes and centres of gravity corresponding to MN4K $v=$ volume of trapezoidal prism lying just to right of joint to which it refers $=$ width \times mean height $\times \overline{\mathrm{IF}}$.
In this case $\mathrm{IF}=\mathrm{JI}=0.94 . \quad l$ is the distance of the centre of gravity of the trapezoid from the crown, and m the corresponding moment. V is the volume from the crown to the joint to which it refers, found by adding the numbers in column v. Similarly M is formed from
m, and the quotients $\frac{\mathrm{M}}{\mathrm{V}}=\mathrm{C}$, give the distances of the centres of gravity of these volumes V from the crown.

Joint	v	l	m	V	M	C
1	. .78	.24	.1872	.78	.1872	$\frac{.24}{}$
2	1.68	.96	1.6128	2.46	1.8000	$\frac{.73}{}$
3	2.04	1.91	3.8964	$\frac{4.50}{}$	5.6964	1.27
4	2.74	2.87	7.8638	$\frac{7.24}{}$	13.5602	1.87
	7.24		13.5602			

Laying off $1^{\mathrm{m}} .87$ from the crown to the left on Q prolonged and drawing from this point a straight line to \vec{b}_{4}, we have the direction of the resultant at \dot{o}_{4}. Its amount is found by laying off $\mathrm{P}_{4}=7.24$ on the vertical, through the point 1.87 to left of the crown, downwards, and then drawing a horizontal line to the resultant, which may now, as well as Q , be scaled off. We thus find $Q=5.45$.

Next, combining the forces at a_{1}, a_{2}, a_{35} and a_{4}, due to the arcs on either side of the groin AE, we have for the vertical components of the resultants at a_{1}, a_{2}, a_{3}, $a_{4}, 1.56,4.92,9 ., 14.48$ respectively, being double the numbers given in column V above.

The horizontal component at each point is Q $\sqrt{2}=7.7$.*

It is evident that the greater the number of divisions IF, JI, \&c., the more accurate the result. It is well to test the above volumes analytically.

FORMULAS FOR VOLUME.

63. Let $\mathrm{OB}=\mathrm{OK}=r, \mathrm{KM}=c$, and the variable distance $\mathrm{E} d=a_{4} d=x$. An are $a_{4} d e$ in plan is shown in elevation by 4321 K , where $44^{1}=x$ and $04^{1}=\sqrt{r^{2}-x^{2}}$.

Draw a tangent at K to intersection H with N4. The area between this tangent, H 4 and arc

[^13]4 K is easily found by subtracting from the rectangle $r x$, the triangle $\frac{1}{2} x \sqrt{r^{2}-x^{2}}$ and the sector $04 \mathrm{~K}=\frac{r^{2}}{2} \sin .^{-1} \frac{x}{r}$, so that the area of KMN4 is

$$
c x+r x-\frac{1}{2} x \sqrt{r^{2}-x^{2}}-\frac{r^{2}}{2} \sin .^{-1} \frac{x}{r} .
$$

On multiplying this by $d x$, we find the volume of an elementary arch, parallel to AD, of thickness $d x$ and at a distance x from E . The integral between $x=r$ and $x=0$ gives the total volume of the solid AEF or $\frac{1}{8}$ the groined arch; equal to,

$$
\frac{c r^{2}}{2}+\left(\frac{5}{6}-\frac{\pi}{4}\right) r^{3}=\frac{c r^{2}}{2}+0.0479 r^{3}
$$

As $r=3.77, c=0.47+1.26=1.73 \therefore$ vol. $\mathrm{AEF}=14.85$. From the Table this volume $=$ $(.78+2.46+4.50+7.24)=14.98 . *$

ARCH OF GROIN AND ABUTMENT.

64. It will conduce to clearness to lay off on an elevation of the groin and abutment, Fig. 17, the forces just found,

[^14]directly over a_{1}, a_{2}, \ldots at the same heights as b_{1}, b_{2}, \ldots are above the springing, viz., 4.03, 3.76, 3.15 and 2.12.

Fig. 17

The distance t of the resultant T of the horizontal forces above the springing is thus,

$$
t=\frac{7.7(4.03+3.76+3.15+2.12)}{T=30.8}=3.26
$$

from which T can be located. Similarly take moments of the vertical forces about A, to find the distance, p, that their resultant, P , acts to the right of A .

$$
\therefore p=
$$

$14.46 \times .68+9 \times 2.01+4.9 \times 3.35+1.56 \times 4.69$

$$
\mathrm{P}=29.92
$$

$=1.73$
The resultant of T and P passes outside of the arch ring above the springing. On combining it in turn with the weight of the abutment $8 \times 3 \times 2$, the final resultant cuts the base at S , $\frac{1}{6}$ the depth from the outer edge.
65. The arch ring of the groin in the actual example, has a depth of $0^{\mathrm{m}} .94$; being double that of the ring as drawn, which may thus be supposed to represent its middle half.

To test its stability, combine the resultant of the forces 7.7 and 1.56 , being the pressure on the joint midway between a_{1} and a_{2}, with the resultant of the next two concurrent forces, 7.7 and 4.9 , to
find the resultant on the joint midway between a_{2} and a_{3}; next, combine this last resultant with that of the next two concurrent forces and so on. The final resultant on the springing joint should coincide with the resultant of P and T just found.*

The line of the centres of pressure is thus found to keep very near the centre line down to a_{4}, below which it passes out of the arch ring, on the extrados side.

The heavy backing will exert horizontal forces to modify this line of resistance, probably keeping it in the arch ring near the springing; for otherwise the intrados joints about the springing must open; but this cannot happen unless the extrados joints open about a_{3}. If the backing prevents the latter, the former cannot occur, and the centres of pressure are found somewhere in the middle third.

A horizontal thrust, H , at the crown

[^15]of the groin will be exerted only when the resistance line $b_{1} b_{2} b_{3} b_{4}$ approaches the intrados too nearly. If it is desired that the centre of pressure should fall at a certain point on the vertical through a_{4} call the arms of H, T and P about this point h, t and p; then,
$$
\mathrm{H} h+\mathrm{T} t-\mathrm{P} p=0 .
$$
from which H can be found. It may be assumed to act at the centre of the crown joint.

In all ordinary cases no thrust at the crown is needed and an opening can be made there with safety for light and ventilation. This is done in vaulted coverings of reservoirs and filter beds, which are generally rectangular in plan and consist of groined and cylindrical arches springing from the interior piers, and cloistered arches springing from the abutments, which last are walls surrounding the rectangular space.
66. It is usual in such constructions to place the abutments as in Fig. 18.

The space between them is usually covered with simple arches as ABCD. The horizontal thrusts of the two leaning against one abutment, acting at the crown joints combined into one, $Q^{\prime} \sqrt{2}$ acting directly over the centre of the abutment, and in

Fig. 18
the direction of a diagonal, as EA. The weights of the two semi-arches acting at their centres of gravity are combined into one, $2 \mathrm{P}^{\prime}$, acting at a on the diagonal AE. On drawing now a section of the abutment along AE produced and laying off the forces $\mathrm{Q}^{\prime} \sqrt{2}, 2 \mathrm{P}^{\prime}, \mathrm{T}, \mathrm{P}, \mathrm{H}$ if any,
and the weight of abutment, in their proper positions and combining these forces into one resultant, we ascertain if the centre of pressure at the base of the abutment lies within proper limits. It will be found that the addition of the encompassing arches conduces to stability, the effect of the downward force $2 \mathrm{P}^{\prime}$, more than counteracting the effect of the force $Q^{\prime} \sqrt{2}$.
67. The question of stability has so far alone been considered. As to strength, the simple arch of largest span is to be designed by usual methods and the maximum stress ascertained. If the resultants have been assumed to act at the centre of certain joints, double the uniform intensity of stress there for safety. The same remarks apply to the arch along the groin (if any). Where equal arches spring from a pier in four directions, at right angles to each other, the resultant thrust on such a pier passes through its centre.

For a single vault, as in Fig. 18, the
resultant meets the base of the pier AB on the diagonal EA produced, say at a distance e from its centre. If we call N its normal (vertical) component the maximum and minimum stresses per unit are (\%, Art. 11),

$$
\left(\frac{1}{d^{2}} \pm \frac{6 \sqrt{2} e}{d^{3}}\right) \mathrm{N}
$$

where $d=\mathrm{AB}=$ side of square base.
The minimum stress is zero when

$$
e=\frac{d \sqrt{ } 2}{12}
$$

and for greater values of e, the stress at A is tensile, which should be avoided, as it is best not to count on the tensile stress of the mortar.

Where concrete is used for the arch, the previous investigation holds, though there is certainly decided gain in strength for the arches from the tensile strength of the concrete, both in the arch and backing.*

[^16]Scheffler* has deduced approximate formulas, from which is found (for the case shown by Fig. 18 and a safety factor $n=3$, by which the horizontal thrust is multiplied), that a groined arch should have the same size of abutment as a cylindrical arch of the same span. For $n=1$, the case of limiting stability, it was found that the width AB for the groined arch, was $1 \frac{1}{2}$ times that for a cylindrical arch of same span AC. As he assumes the horizontal thrust to act at the top of the keystone and makes a number of rude approximations besides, sometimes on the safe side, at other times otherwise, the results are open to doubt. For $n=1$, however, they seem to be confirmed by the experiments of Rondelet (see Art. 69).

CLOISTERED ARCH.

68. In the cloistered arch, shown in plan, in Fig. 19, ABCD is a square lying in a horizontal plane, whilst EF is a sim-

[^17]ple arch of span EF, and rise equal to the height of the crown at G above the springing. AD and BC are the groins, forming the re-entrant angles on which the smaller arcs, as $a b, b e, c d, f g$, etc., meet

Fig. 19
with an inclined tangent. Thus $a b$ is precisely similar in form to the part EH of the full centre arch EF. The elements $b c$ or $f b$ are thus horizontal. Now the thrust at the crown G of the simple arch EF of small width, is horizontal,
and is computed as for a simple arch. The arcs $a b$ and $c d$ sustain at b and c horizontal thrusts communicated through the horizontal element $b c$. When the centres are struck, the tendency to fall causes pressure on the voussoirs in four directions, \perp and $\| \mathrm{AB}$, so that the elements, as $b c$ and $b f$ of the cylinders sustain a uniform horizontal compression in the directions $b c$ and $b f$, and the voussoirs composing these elements sustain likewise an inclined thrust (except at the groins, where it is horizontal), in a direction perpendicular to the elements, whose amount is easily determined by the methods affecting simple arches.
69. Thus divide EG into any number of equal parts, and find by usual methods the weights and the positions of their centres of gravity, from the springing AC to any joint, in place of from G to the joint, as hitherto. Part of the table made out then directly applies to each partial arc, as $a b$. On the elevation of the semi-arch EG and of each partial
arch, as $a b$, construct resistance lines, lying as near the centre line as possible, down to the "joint of rupture" (Art. 44). In doing this, proceed as shown in the latter part of Art. 62, to find the horizontal thrust and the resultant at the abutment. With the tables made out as above, the resultant at the abutment must be combined, in turn, with the weights from the abutment to the joint considered, to find the centres of pressure on those joints.

We thus find the various horizontal thrusts, acting at the groins CG and AG in a direction LAC. On multiplying each of these thrusts by its vertical distance above the springing, and dividing the result by the sum of the thrusts, we find the vertical distance above the springing at which the resultant of the horizontal thrust T, of the part AGC, acts. Similarly, find the horizontal distance tc the resultant of the vertical forces, P acting on the part AGC; this resultant representing the weight of

AGC. On combining these resultants, T and P acting in the vertical plane EG with the weight of the abutment, as shown in Fig. 17, we ascertain whether the centre of pressure on the base of the abutment falls within proper limits. Since the arc EF (Fig. 19) causes the greatest thrust, unless the abutment is made to act as one piece, as supposed above, its width should vary, being greatest at E and diminishing to naught, theoretically, at C; the intermediate widths being found in the usual manner from the thrusts of the partial arches resting there. If the curve limiting these widths is assumed to be a parabola, which is doubtless safe, then it is easy to show (see Scheffler, §58) that the abutment AIJC ((Fig. 19) of rectangular section, having the same moment as the one of parabolic section, has a width,

$$
e=0.7303 e^{\prime}=\frac{3}{4} e^{\prime} \text { (say) }
$$

where e^{\prime} is the width of abutment at E
for the simple arch EF, which can be found by usual methods.

In view of the indetermination existing as to the true curves of resistance of arches such as EF, $a b$, the practical solution is suggested of designing EF as for a simple arch, and giving the same radial depth of arch ring to all the other arches. The width of abutment is then to be found by the last formula.

This last formula is agreeable to the experiments of Rondelet on models; that for limiting equilibrium and for the same span, the widths of the abutments of domes, cloistered arches, cylindrical arches, and groined arches are as the numbers, 1, 3, 4 and 6.

CHAPTER IV.

DOMES OF MASONRY.

70. The soffit of the dome will be supposed to be generated by revolving a curve about the vertical line representing the rise of the arch called the axis, so

Fig. 20
that every horizontal section of the soffit is a circle. The extrados may be generated by revolving a similar curve or any other figure about the axis similarly for the upper limit of the backing. If we
pass two meridian planes, making a small angle, ψ, with each other, through the axis, we cut from the dome and backing, if any, a solid FC, Fig. 20, being a part of a wedge-shaped figure whose soffit is a portion of a lune, when the generating curve is an are of a circle. This solid, for want of a better name; we shall call a lune solid.

Now pass conical joints, perpendicular to the soffit, at certain distances apart; the part of the dome proper, as DE , lying between any two conical joints, will be called a crown.

It is proper first to examine the conditions of equilibrium of such a crown; which can moreover form the superior part of a dome open above.

There are developed in these crowns horizontal pressures q, q, whose directions are normal to the joints of the crown, and more intense in the upper than in the lower crowns.

When we afterwards consider the lune solid, CF, limited by meridian planes, it
is necessary to combine the two forces q, q into a single horizontal force Q , acting outwards. It is necessary in all cases that the horizontal thrust at the upper joint may be null.

This is evident for an open dome; for the dome closed at top, which is only a particular case of the open dome, it sesults from the fact, that the surface of the joint at the summit reduces to a line, which cannot support a finite pressure.*
71. Let Fig. 21 represent a lune solid of the open dome considered, and let P_{1} $\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$, laid off in order on the vertical line $\mathrm{P}_{1} \mathrm{P}_{4}$, represent the weights of voussoirs $1,2,3,4$, respectively, with their loads. Let us assume, for the present, that the forces q, q, of the preceding figure act at the centres of the voussoirs; so that the forces Q_{1}, Q_{2}, \ldots,

[^18]act through the centres of their corresponding voussoirs, $1,2, \ldots$, and horizontally to the left in Fig. 21.

Fig. 21

Now the horizontal thrust at joint o is null. The weight P_{1} of the first voussoir
and load, acts through a and does not meet joint 1 , so that there is no stability unless the " crown" inclu ding this voussoir, in tending to fall, exerts a horizontal pressure. The resultant Q_{1} of the pressures exerted on both sides of voussoir 1 should be so great that when combined with P_{1}, the resultant shall cut the joint to which it refers, and make with the normal to this joint an angle not less than the angle of friction. These two conditions hold for every joint. If no joints open the resultants will lie in the middle third. Therefore, if Q_{1} be made so large that a line drawn through $a \| \mathrm{S}_{1}$ the resultant of P_{1} and Q_{1}, satisfies the above conditions, the point where it cuts joint 1 may be regarded as a possible centre of pressure.

If the above conditions are not satisfied for an assumed value of Q_{1}, Q_{1} must be increased.

Now extend the line through a, just drawn, to intersection with the vertical through the centre of gravity of the sec-
ond voussoir and load, whose weight is P_{2}; from this point draw a parallel to R_{2}, the resultant of S_{1} and P_{2}, and extend it upwards to intersection b, with the horizontal through the centre of the second voussoir along which Q_{2} acts. On drawing through b a line to some point on joint 2; a parallel to it, in the force diagram, gives S_{2}, and cuts off Q_{2}, as shown in the figure. As before, if S_{2} does not make an angle with the normal to joint 2 less than the angle of friction, Q_{2} must be increased and the line through b made parallel to S_{2} thus found. Similarly we proceed for other joints, until finally we get to a joint, as 3 , below which no more forces of the type Q are needed to prevent the resultants on succeeding joints from falling below certain limits. The part of the lune solid below joint 3, called the "joint of rupture," thus acts as any simple arch; therefore we determine the resultant on joint 4 by combining S_{3} and $\mathrm{P}_{4}-i$. e., by drawing through al a parallel to R_{4} of the force diagram,
the resultant on joint 4, to intersection with that joint.

Similarly, if we combine the resultant S_{3} on joint 3 with the weight of the entire abutment, we find the centre of pressure on joint 5, which should lie within the middle third.
72. It is evident from the foregoing that an infinite number of equilibrium polygons can be drawn, all satisfying the conditions stated, so that it seems impossible to select the true one. Some of the indetermination, however, can be removed, by considering the elastic yielding of the dome. Thus, since the voussoirs are compressible, and if, as is usual, the actual resultant on the springing joint passes to the left of the centre, the outer edge is most compressed, and to allow this the haunches must spread and the top of the arch descend, so that about joint 3, the centre of pressure passes below and at the top, above the centre line. This is all the more evident if the springing joint opens at the inner edge. This
view will be illustrated by an example in Art. 82.

As a modification of the above hypothesis, we may assume that the resultants $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots$, are tangent to the centre line, from the crown to the joint of rupture. It will be found that this involves raising Q_{1}, Q_{2}, \ldots slightly above the centres of the voussoirs. The construction is much simplified by this assumption, which will be illustrated more fully in Art. 7%.
73. From the definition of Art. 70, and a plan of a voussoir bounded by the two meridian planes whose included angle in are is ψ, and which is solicited by the two horizontal forces q, q, (acting perpendicular to its vertical faces), whose resultant is Q, we have,

$$
\frac{1}{2} \mathrm{Q}=q \sin . \frac{1}{2} \psi .
$$

If $a=$ half span, and $\varepsilon=$ horizontal width of voussoir at the springing, then $a \psi=\varepsilon$. When the angle ψ is small, i.e.,
when ε is made small enough, we have from the above equation,

$$
q=\frac{\mathrm{Q}}{\psi}=\frac{a}{\varepsilon} \mathbf{Q}
$$

from which $q_{1}, q_{2} \ldots$ can be computed, as soon as Q_{1}, Q_{2}, are found by the construction above.

NUMERICAL EXAMPLE.

74. Let us take the half span (Fig. 21) equal to 9.42 units, the depth of arch ring 0.94 ; and let the inclined line $f g$ limit the load, the point f being 12.24 above the centre e of the soffit, and $g, 1.98$ lower than f. The radius $f k=1.86$. Now divide the horizontal $h k$ into six parts, each 1.26 wide, in place of three as before; drop verticals through the points of division, and from their intersection with the extrados draw the joints 0 to 6 . We shall suppose approximately that the figures so formed are trapezoids, whose area equals the mean height multiplied by the width.

The volume of a voussoir and load can be exactly determined by the theorem of Pappus:

The volume of a solid of revolution is equal to the product of the area of the generating surface
and the distance described by its centre of gravity while generating the body.

Let $x=$ distance from axis $e f$ to the medial vertical of a trapezoid,
\therefore volume of trapezoidal solid $=$

$$
\mathrm{A} x \psi=\mathrm{A} \frac{x}{a} \varepsilon
$$

where $\mathrm{A}=$ area of trapezoid and $a=$ radius $e 4$.
Take $\varepsilon=1$ for simplicity. The thickness of voussoir at the springing $=\varepsilon$ selected is immaterial except in finding q, since multiplying the weights of voussoirs and abutments by the same quantity does not change their ratios.
In the following table, column (1) refers to joint, column (2) gives the height of the trapezoidal solid, column (3) its width, column (4) its thickness $=\frac{x}{a}$, and column (5) their proauct representing the forces $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$

(1)	(2)	(3)	(4)		(5)
1	2.65	1.26	. 25	P_{1}	0.83
2	2.83	1.26	. 38	P_{2}	1.35
3	3.23	1.26	. 50	P_{3}	2.03
4	3.92	1.26	. 63	P_{4}	3.11
5	5.03	1.26	. 76	P_{5}	4.82
6	7.05	1.26	. 89	P_{6}	7.90
7	10.99	0.94	1.00	P_{7}	10.33

The construction is now proceeded with exactly as described for Fig. 21, which is in fact a drawing to these dimensions.

The induced forces Q_{1}, Q_{2}, \ldots, were conceived to pass through the centres of the voussoirs. The resultants $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots$, on the joints were made first to pass through the lower middle third limits, and afterwards through the centres of those joints. In both cases the joint marked 3 in Fig. 21, was the joint of rupture; the resultant on the springing joint, in the first instance, coinciding with the resultant as drawn in Fig. 21 ; in the last case passing nearly through the extrados. The total horizontal thrust in the first case $=7.75$; in the last, 8.13. If we take the width of abutment at 3 , its height above the springing 10.99, its depth below it 7.01 ; its mean thickness is $\frac{10.92}{9.9}=1.1$, and its total volume, including a part of the arch is $3 \times 18 \times$ $1.1=59.4 ;$ which combined with the resultant S_{6} on the joint marked 3 in Fig. 21, cuts the base, for the first case noted above, only 0.05 outside of the middle third, in the last case 0.18 outside.

The force $Q_{2}=2.3$ is the largest of the forces $Q_{1}, Q_{2} \ldots$, whence by Art. 94 ,

$$
q=\frac{a}{e} \mathrm{Q}_{2}=9.9 \times 2.3=22.77 \text { cubic units }
$$

of stone. The force q acts on an area of 1.23 square units. There is evidently no danger of crushing from the horizontal thrust around the second crown from the top, as stone will bear on a square unit a pillar of a square unit section and several thousand units high. Similarly for resultants on all the joints. We conclude that with the backing used and by increasing the depth of arch ring at the springing about onethird, the arch will be stable.

FORMULAS FOR VOLUME.

75. When the soffit and exterior surface of the dome are both surfaces of spheres having the same centre, the volumes of the voussoirs are easily obtained. Thus, by geometry, the area of the zone formed by revolving an arc as $r s$ (Fig. 22) about the axis $a c$ is equal to the altitude h of $r s$ multiplied by $2 \pi r, r$ being the radius $\overline{a s}$ of the sphere. Pass now two meridian planes through $a c$, whose included angle is $\frac{1}{n}$ of a circumference. The part of the zone included between them has an area $\frac{2 \pi r h}{n}$ so that the pyra-
mid formed on this base with a vertex at a, has a volume $\frac{2 \pi r^{2} h}{3 n}$.

Similarly the pyramid having the part of the zone represented by $t v$ as a base, has a volume, $\frac{2 \pi r^{\prime 2} h^{\prime}}{3 n}$ where $r^{\prime}=$ radius $a t$ and $h^{\prime}=$ altitude of arc $t v$. Therefore the volume of the voussoir rstv included between the meridian planes and the conical joints $r v$ and $s t$ is,

$$
\mathrm{V}=\frac{2 \pi}{3 n}\left(r^{2} h-r^{\prime 2} h^{\prime}\right)
$$

where r and h are the radius and altitude of the exterior arc, r^{\prime} and h^{\prime} of the interior. If the altitudes of the type h are made equal in successive arcs, the values h^{\prime} will all be equal. This can be shown as follows: Draw horizontal lines through r and v, Fig. 22, and drop verticals h and h^{\prime} from s and t to them, and call the chords $r s$ and $v t, c$ and c^{\prime}, \therefore from similar triangles,

$$
\frac{h}{h^{\prime}}=\frac{c}{c^{\prime}}=\frac{r}{r^{\prime}} \therefore h^{\prime}=\frac{r^{\prime}}{r} h .
$$

\therefore When h is constant for successive arcs of the extrados, h^{\prime} is similarly constant for the corresponding ares of the intrados. Similarly the centre line of the arch ring will be divided into arcs of the same altitude when h is constant-and conversely.

It follows, that if de, Fig. 22, represents the centre line of part of a lune solid, having exterior and interior radii r and r^{\prime}, if d is projected on the axis at c and e at b; also if $b c$ is divided into equal parts, and horizontals are drawn through the points of division to intersection with are $d e$, the normal joints being passed through these intersections, then by the formula above, the voussoirs so formed are all equal in volume.
76. Let us refer again to the inner dome de (Fig. 22).

If we pass horizontal planes midway between the horizontals first drawn, also pass conical joints through their intersec-

tion with the centre line de, we divide the previous voussoirs exactly in half, so that the centres of gravity of the first voussoirs. lie on these supposed intermediate conical joints. They also lie nearly on the centre line $d e$, and the error of so regarding them can be made as small as wechoose by sufficiently diminishing ψ, the angle included between the two meridian planes and the height of the voussoir.

The centres of gravity of the voussoirs will therefore be assumed to be on the centre line of the elevation of the medial meridian section de, at the intersections of the horizontals drawn midway between the first horizontals drawn that divide $b c$ into equal parts.

DOME OF TWO SHELLS WITH LANTERN.

77. Fig. 22 represents a meridian sec- , tion of the Church of St. Peter at Rome. The dimensions given by Scheffler, as I understand them,* are as follows :
[^19]The radius of he soffit is 72 feet, and of the outer surface, $\overline{a s}=83.8$. At 31 feet above the springing, the structure is composed of two domes, the outer having a thickness of 2.6 feet, the inner being 4.1 thick at d and 5.1 at e, so that the centre line $d e$ is described from a centre slightly below a on the vertical $\overline{a c}$ produced. The dome has an opening at top 12.4 radius, and the lantern supported at the top is equivalent in weight to a stone of section 2.1×56.6, of which the outer shell supports one-third and the inner two-thirds. The first voussoir at the top, in both shells, is made 2.1 , horizontal width ; the altitude of the centre line, $\overline{b c}$, for the part $d e$, is then divided into 8 equal parts and the joints drawn as in the figure, a similar construction applying to the outer shell. The part below the two shells is similarly divided into 3 equal parts. Applying the formula just deduced in Art. 75, measuring the altitudes on a drawing to a scale of 4 feet to the inch, we find the volumes 0_{i}^{a} the voussoirs
like $r s t v, \frac{2 \pi}{3 n} 28696$, the voussoirs of the outer shell, $\frac{2 \pi}{3 n} 395 \%$, except the top one, whose volume is $\frac{2 \pi}{3 n} 359$ cubic feet. The volume of the top voussoir of the inner shell is $\frac{2 \pi}{3 n} 501$ cnbic feet. The voussoirs 2 to 9 of the inner shell, were each, in turn, assumed to have an outer surface concentric with the soffit, of radius equal to the mean radius of the outer surface for the voussoir considered, i.e., equal to $72+$ mean thickness in feet of voussoir. We thus find the volumes of voussoirs 2 to 9 equal to the constant $\frac{2 \pi}{3 n}$ multiplied in turn by $4695,4805,4915,5000,5124$, 5206,5267 and 5400 .

The volume of the lantern, by the law of Pappus (Art. 74) $=2.1 \times 56.6 \times$ $\frac{2 \pi \times 13.45}{n}=\frac{2 \pi}{3 n} 4794$, one-third of which is added to the volume of voussoir 1 of
outer shell and two-thirds to that of roussoir 1 of the inner shell. The part $f g h$, 10.3 wide and 23.7 high, has a volume, $10.3 \times 23.7 \times \frac{2 \pi \times 77.15}{n}=\frac{2 \pi}{3 n} 56500$.

This part has not the full width of the bottom voussoirs as drawn in the figure.

TENSION IN IRON BANDS. THRUSTS.

78. We now lay off on vertical lines the weights just found, omitting the common constant $\frac{2 \pi}{3 n}$.

The loads affecting the outer shell are laid off to its left ; those pertaining to the inner shell are not shown in the figure.

To be on the safe side, we shall assume that the resultants on the joints from the summit to the joint of rupture are tangent to the centre line of the ring. Thus for the outer shell, draw through the points $1,2, \ldots$, of the force line, parallels to tangents to the centre line at
joints $1,2, \ldots$ (or \perp to radii). These lines cut off successive distances on the horizontal through 0 , equal to the radial forces Q_{1}, Q_{2}, \ldots exerted by the successive crowns $1,2, \ldots$

We find that below joint 6 there is no longer a radial force needed; so that below that joint the curve of resistance is continued to joint 9 as in a simple arch.

Similar results were found for the inner shell. The centres of pressure on joints 9 of the outer and inner shells are at the outer middle third limit for the outer shell, and slightly above the centre line for the inner shell. This necessitates spreading about joints 6 , so that the centre of pressure there is below the centre line, hence the actual horizontal thrust is less than estimated, as stated above.

Now combining the resultants at joint 9 into one, its position being found by moments, and laying off $\overline{x 9}$ equal and parallel to it, we continue the line of resistance as per dotted line to joint hg . The suc-
cessive volumes of voussoirs are laid off on the force line $9 \ldots 13$. This second force diagram is drawn to a smaller scale than the preceding.
79. At joint $h g$ the centre of pressure passes outside the joint, so that the dome cannot be regarded as sufficiently stable in itself. If rotation occurs, the line of resistance would approach the extrados at the summit, the intrados at the joints of rupture, and the extrados at joint hg .

By encircling the dome just above or below the springing by a band of iron of sufficient cross section, stability may be assured.

The total horizontal thrust of the lune solid (being $\frac{2 \pi}{3 n} \times$ the horizontal component of $\overline{x 9})$ is

$$
\mathrm{Q}=39600 \frac{2 \pi}{3 n}=13200 \psi
$$

cubic feet of stone $=924 \psi$ tons, if we put the weight of a cubic foot of stone at 157 lbs. $=.07$ ton.

If this is to be entirely destroyed by the iron band, so that the resultants below the springing will all be vertical, we have the tension in the band by Art. 73, when ψ is small,

$$
q-\frac{\mathrm{Q}}{\psi}=924 \mathrm{tons}
$$

Now iron, exposed to a dead stress alone, may safely be subjected to a stress of $7 \frac{1}{2}$ tons per square inch; so that the bar may have a cross section of 123 square inches.

If the iron stretches $\frac{1}{12000}$ of its length for every ton per square inch, the ring whose diameter is 168 feet will elongate 0.33 feet, so that the diameter is increased 0.04 feet. There will consequently be a slight deformation of the arch; in consequence, the top of the abutment moves slightly outwards, and the pressure on its base is not generally vertical; i.e., the iron band has not totally destroyed the horizontal thrust.

A similar effect follows from a rise of
temperature, the reverse for a fall; for the temperature of the iron will suffer greater deviations from the mean than the masonry. This result is modified again by the different coefficients of expansion of stone and iron; granite and marble expanding less than iron, sandstone, more.

There is no necessity in the voussoir dome for additional hoops below the first, unless the first is too small to destroy the outward thrust. The problem is then really indeterminate of ascertaining the precise amounts of the stresses sustained by the several hoops. The one nearest the joint of rupture of course will sustain by far the greatest part; the hoops, at joints where no spreading would occur, if they were not applied, not sustaining any. It would seem best to make these hoops of steel as it does not stretch as much as iron. Wire cables with a means of tightening would be especially convenient.
80. We see that the thrust of the type

Q is greatest on voussoirs 1 of both shells.

Thus for outer shell,

$$
\mathrm{Q}_{1}=16900 \frac{2 \pi}{3 n}=5633 \psi ;
$$

and for the inner shell, $\mathrm{Q}_{1} 6000 \psi$,
which multiplied by .07 give the thrusts in tons. By Art. 73, we have $q=\frac{\mathrm{Q}_{1}}{\psi}$ or 394 tons and 420 tons respectively. Now voussoir 1 of outer shell has a lateral area of 6 square feet; the lower voussoir 1 , an area of 10.45 square feet, so that the pressures per square foot are 66 and 40 tons respectively, which good stone can stand easily.

The thrusts Q_{1} of both shells is probably less than assumed, for the force diagrams indicate a small value for Q_{2}-in fact, for the lower shell Q_{2} nearly vanish-es-but the compression around the ring of the first crown would necessarily bring the second more in action thereby increasing its thrust. The tendency then is to equalize more nearly the values of the
thrusts Q_{1}, Q_{2}, \ldots than as given by our construction.
81. It is evident that the greatest economy is subserved, by the employment of one or more thin domes to a short distance below the joint of rupture, as is the practice generally in large domes. One shell would suffice if the weight of lantern (if any) could be carried by it; otherwise two or more should be used.

The abutment below joint $h g$ is counterforted so as to present a greater width than shown in the figure. The introduction of the hoop of course prevents any movement in it, so that the stability of the whole structure is assured. .

DOME WITHOUT LANTERN. - SUGGESTION.

82. We shall give now the spherical dome closed at top to illustrate the other view taken in Art. 72 of the position of the line of resistance, besides other points not noticed before. This dome, Fig. 23,
has a thickness of one-fifteenth the span, and is supposed to have immovable abutments.

Divide the altitude of the centre line of the ring into eight equal parts, draw horizontals, \&c., as before. The lune solid is thus divided into eight equal parts which lay off on the force line 0 . . 8.

Now a dome of this kind only fails by rotating about the outer edges of joints at the crown and abutment, and the
inner edges about joint 4; each lune solid separating from the others and acting as a simple arch. It cannot fail by the haunches falling in.

For a dome then of small stability, the line of the centres of pressures passes nearly through the top, the intrados edge at joint 4 , and the outer edge at joint 8 .

For a dome of greater stability its position depends upon the amount of spreading at the haunches, and the consequent rocking at joint 8 . If a line of resistance can just be inscribed in certain limits, equally distant from the centre, then it is probable, from a consideration of the way in which an arch settles, that the actual resistance line nearly touches these limiting curves towards the extrados side at the top and abutment, and next the intrados side at the joint of rupture.

For example, take the middle third limits and draw an arc of a circle through the upper limit at the summit and the lower limit at joint 4 with a centre c and
assume that this arc coincides with the line of resistance a certain distance from the top, the resultants being tangent to it.

Then at some joint as 2 continue the resistance line down to the springing with the horizontal thrust found at 2. If the line so found does not keep within the middle third, let it be commenced at another joint, until one is found that will satisfy the conditions if possible. On dividing voussoir 2 into four others, it was found that a line of resistance, continued as for a simple arch, from where the arc above cuts the upper joint of voussoir $1 \frac{3}{4}$, keeps almost entirely in the middle third, as shown by the dotted line : cutting joints 4 and 5 nearly at the lower limits and joint 8 at the onter limit.
83. In case no such line can be found, the radial depth of arch ring must be increased until the requirement obtains. Where only one such line can be found, the true centres of pressure are doubtless slightly outside the limiting curves at
joints 4 and 8, as in the case of a cylindrical arch.*

The simple arch is found to begin slightly below joint 1 when the upper middle third limit is assumed as the resistance line above it. Where the centre line of the arch ring is assumed for the upper curve, the horizontal thrust becomes constant, and simple arch action begins lower down, between joints 3 and 4 (Art. 78), so that much less of the dome acts as a simple arch in this case.

The true resistance line, even for immovable abutments, depends upon the cutting of the stones as well as the elastic yielding of the dome, and probably lies between the two given by the above construction and that of Art. 78. If domes are designed then on both hypotheses, so that the resistance line can just be contained within the middle third, a mean

[^20]of the results should give a good working value to the thickness.

In the example above, if we divide voussoir 1 into four equal ones, we find that the circumferential thrusts per square unit on each crown going from the top are proportional to $2.5,2.3,1.9$, and 1.8 respectively, so that the unit stresses decrease going from the summit.

With a heavy lantern a very small crown of voussoirs next the summit exerts a comparatively large thrust; so that the upper crown is compressed sufficiently to bring the next crown more in action, and so on down. In this case, the point 0 of the force line (Fig. 23) is moved upwards, and since the inclined thrusts above the joint of rupture do not change direction, the joint of rupture is much higher than when there is no lantern. The reverse happens when weight is removed from the top, as in the case of the open dome, so that the lantern with the open dome may have the joint of rupture near the usual position.

REINFORCED CONCRETE OR METAL DOME.*

84. In domes that can supply tensile resistances where needed, the force diagram can be given another form, which is more convenient for estimating the tensile forces.

To take the most general case, for a closed spherical dome, suppose the thickness t, always small, to increase in going from the summit down. The intrados of a meridian section will be supposed a quadrant of a circle described with a centre C, Fig. 24(a), and the extrados, an arc of a circle having a centre below C on the vertical axis AC produced, giving the desired thickness at summit A and base B. Now mark the centres of the sections at A and B and find by trial the centre of a circle, on AC produced, that will pass through these two

[^21]points. The arc of this circle between A and B will be taken as the centre line of the meridian section, and its radius to

Fig. 24 (a)

Fig. 24 (b)
scale in feet will be called r. Suppose AB , Fig. 24(a), to represent this centre line.

Divide AC into equal parts, each of length a. Only eight divisions are shown in the figure; three or four times as many are desirable. Also draw the horizontals y_{1}, y_{2}, \ldots, through the points of division, meeting the centre line at c_{1}, c_{2}, \ldots.

The area of the zone generated by
revolving any of the arcs, as $\mathrm{A} c_{1}, c_{1} c_{2}$, etc., about AC is $2 \pi \mathrm{ra}$, and the weight of the corresponding shell or crown is 2π rawt, approximately ;
where $w=$ weight of material per cubic foot in pounds,

$$
\begin{gathered}
t=\text { mean thickness of part of } \\
\text { shell considered in feet. }
\end{gathered}
$$

The weight of a "voussoir" contained between the two meridian planes making an angle $\psi=\frac{2 \pi}{n}$ with each other is

$$
\frac{1}{n} 2 \pi r a w t=\psi \cdot r a w t
$$

On giving to t the value of the thickness at the centre of arcs $\mathrm{A} c_{1}, c_{1} c_{2}, \ldots$, in turn, we find the weights of voussoirs $\mathrm{A} c_{1}, c_{1} c_{2}, \ldots$, by this formula.*

* The sum of the weights of all the voussoirs thus computed $=\frac{2 \pi}{n}$ raw $\Sigma(t)$.

This sum can be checked by an exact computation. Thus, if the radius of the intrados is 50 feet, the thickness at summit 1 foot and at $B, 2$ feet, on denoting the radius of the extrados by. r^{\prime}, we have

Lay off on the vertical 08, Fig. 24(b), the values, to scale, of rawt of voussoirs $\mathrm{A} c_{1}, c_{1} c_{2}$, etc., in turn; whence,
weight of voussoir $\mathrm{A} c_{1}=\psi .01$,
weight of voussoir $c_{1} c_{2}=\psi .12$, etc.
The meridional thrusts at c_{1}, c_{2}, \ldots, are assumed to be tangent to the centre line $\mathrm{A} c_{1} c_{2}, \ldots$; hence draw $01^{\prime}, 02^{\prime}, \ldots$, perpendicular to the radii at c_{1}, c_{2}, \ldots, to intersection with horizontals through $1,2,3 \ldots$ Also mark off the horizontal projections of $1^{\prime} 2^{\prime}, 2^{\prime} 3^{\prime}, \ldots$, as shown, and the force diagram is completed.

From the triangle 011', we see that three forces act on voussoir $\mathrm{A} c_{1}$: its

$$
r^{\prime 2}=\left(r^{\prime}-51\right)^{2}+52^{2} . \quad \therefore r^{\prime}=52.01 .
$$

By geometry, the volume of the entire shell is the difference between the volume of the spherical segment, having the radius r^{\prime} and altitude 51, and that of the hemisphere of radius 50 .

$$
\therefore \text { vol. }=\pi\left[51^{2}\left(52.01-\frac{51}{3}\right)-\frac{2}{3}(50)^{3}\right]=7728 \pi .
$$

$\frac{w}{n}$ of this should nearly equal $\frac{2 \pi}{n} \operatorname{raw} \Sigma(t)$. If not, the number of divisions of AC must be increased until an approximate equality obtains.
weight $=\psi .01 ; \mathrm{Q}_{1}=\psi .11^{\prime}$, the resultant of the two forces q, q, Art. 70, and the upward meridional thrust $=\psi \cdot 1^{\prime} 0$ of the second voussoir upon the first.

The force polygon for the voussoir $c_{2} c_{2}$ is $01^{\prime} b 2^{\prime} 0$: where $\psi .01^{\prime}=$ downward meridional thrust of first voussoir at c_{1} upon the second; $\psi \cdot 1^{\prime} b=$ weight of voussoir $c_{1} c_{2} ; \psi \cdot b 2^{\prime}$ (acting to left) $=\mathrm{Q}_{2}$ and $\psi \cdot 2^{\prime} 0=$ upward meridional thrust of voussoir $c_{2} c_{3}$ upon voussoir $c_{1} c_{2}$. The directions in which the forces act are found, as usual, by following around the force polygon in the proper order. We thus have Q_{1}, Q_{2}, Q_{3}, acting to the left \therefore the crowns in which voussoirs $\mathrm{A} c_{1}, c_{1} c_{2}$, $c_{2} c_{3}$, lie, are in compression. All the other crowns are in tension. Thus, for voussoir $c_{5} c_{0}$ the force polygon in order is $05^{\prime} c 6^{\prime} 0$; whence $\mathrm{Q}_{6}=\psi .5^{\prime} c$ acts to the right, giving the corresponding q, q, tension.

MERIDIONAL THRUST PER UNIT OF LENGTH OF HORIZONTAL OIRCUMFERENCE.
85. The meridional thrust at c_{2} is $\psi .02^{\prime}$; it acts on a horizontal width of voussoir $\frac{2 \pi y_{2}}{n}=\psi \cdot y_{2}$; hence the thrust per unit of horizontal circumference is $\psi .02^{\prime} \div \psi \cdot y_{2}=\frac{02^{\prime}}{y_{2}}$.

In this way we find the meridional thrusts per unit of length of horizontal circumference at
to be $\frac{01^{\prime}}{y_{1}}, \frac{02^{\prime}}{y_{2}}, \frac{03^{\prime}}{y_{3}}, \ldots$;
where, e.g., 02^{\prime} means the numerical measure of the line 02^{\prime} to the scale of force used in Fig. 24(b), and y_{2} the measure, to the scale of feet, of the length marked y_{2} on Fig. 24(a).

The thrust is thus given in pounds. On dividing by the area on which it acts,
$t \times 1=t$ (where t is the thickness at the joint considered), we obtain the stress in pounds per square foot on the conical joint in question.

HOOP TENSION.

86. Let us conceive that the dome only extends from A to c_{3}, where it is supported by a cylindrical wall. If the part of the latter contained between the two meridian planes is too narrow to withstand the meridional thrust $\psi .03$ ', a steel hoop can be made to encircle the dome at the level of c_{3} to withstand the horizontal component $\psi .33^{\prime}$ of the thrust, and, by Art. 73, the tension in it will be

$$
\mathrm{T}=\frac{\psi \cdot 33^{\prime}}{\psi}=33^{\prime} \text { pounds }
$$

We can similarly suppose the abutment successively at c_{1}, c_{2}, \ldots, and thus find the hoop tensions, $11^{\prime}, 22^{\prime}, 33^{\prime}, \ldots$ pounds.

8\%. To illustrate the method of finding crown stresses, let us consider voussoir $c_{1} c_{2}$. For it, we have seen that $Q_{2}=\psi \cdot b 2^{\prime}$, acts to left, whence the thrust around the crown including this voussoir is, Art. 73,

$$
q_{2}=\frac{\mathrm{Q}_{2}}{\psi}=b 2^{\prime} \text { pounds. }
$$

Similarly for voussoir $c_{s} c_{\theta}, \mathrm{Q}_{6}=\psi .5^{\prime} c$, acts to the right, whence the crown including this voussoir is, in tension,

$$
q_{\mathrm{t}}=5^{\prime} c \text { pounds. }
$$

Denote the horizontal projections of

$$
\begin{array}{ccc}
01^{\prime}, & 1^{\prime} 2^{\prime}, & 2^{\prime} 3^{\prime}, \ldots, \text { by } \\
b_{1}, & b_{2}, & b_{3}, \ldots,
\end{array}
$$

and the lengths to scale in feet of arcs

$$
\begin{array}{ccc}
\mathrm{A} c_{2}, & c_{1} c_{2}, & c_{2} c_{3}, \ldots, \text { by } \\
s_{1}, & s_{2}, & s_{3}, \ldots,
\end{array}
$$

then the average stress on the vertical
faces of the voussoirs $\mathrm{A} c_{1}, c_{1} c_{2}, c_{2} c_{3}, \ldots$, per unit of meridian length, will be

$$
\frac{b_{1}}{s_{1}}, \frac{b_{2}}{s_{2}}, \frac{b_{3}}{s_{3}}, \ldots, \text { pounds }
$$

where b_{1}, b_{2}, \ldots, must be measured to the scale of force. Evidently these ratios are greatest for the highest and lowest voussoirs in compression and tension respectively. Above 3', these average crown stresses, as they will be called, are compressive ; below 3', tensile.

The crown stress on any voussoir divided by the area $t \times 1=t$, on which it acts (t being measured at the centre of the voussoir), gives the unit stress on the vertical face of the voussoir in pounds per square foot.

These crown stresses, when tensile (as from c_{3} to B), can be resisted by steel chains embedded in the concrete, each chain extending around one crown. Since the expansion by heat of concrete and steel are the same, no inconveniences will be caused by temperature changes.

Reinforced concrete is thus admirably fitted for the construction of domes, as it can withstand every stress imposed upon it. In such a dome, the meridional thrust at B is vertical, since all horizontal thrust has been taken up by the successive embedded chains.

Where the dome has a constant thickness t, the construction is simplified in that $01=12=23$, etc.; otherwise there is no change. The joint of rupture for this case is at a point (near c_{3}) $0.618 r$ above BC.

OPEN SPHERICAL DOME WITH A LANTERN.

88. Let $c_{0}-c_{9}$, Fig. 25, represent the centre line of the shell of a half meridian section of a spherical dome with the portion above the level of c_{0} removed. A lantern of weight W pounds rests on the crown including $c_{0} c_{2}$, its weight per horizontal square foot being called p.

Divide the vertical projection of $c_{0} c_{2}$ into (two) equal parts, each of length a^{\prime},
and the vertical projection of $c_{2} c_{0}$ into (seven) equal parts, each of length a. Therefore, taking the thickness of the

Fig. 25.
shell $=t$ feet, constant for simplicity (the modifications where t varies will be apparent from preceding articles), the weight of each of the voussoirs $c_{0} c_{1}$ and
$c_{2} c_{2}$ will be $\psi r a^{\prime} w t$, and of each of the remaining voussoirs, $c_{2} c_{3}$, etc., ψ rawt.

The horizontal radii at c_{0}, c_{1}, c_{2}, to scale in feet being called y_{0}, y_{1}, y_{2}, we have

$$
p=\frac{\mathrm{W}}{\pi\left(y_{2}{ }^{2}-y_{0}{ }^{2}\right)}
$$

Whence the weight of lantern resting on voussoir $c_{0} c_{1}$ is

$$
\frac{1}{n} p \pi\left(y_{1}^{2}-y_{0}^{2}\right)=\psi \frac{p}{2}\left(y_{1}^{2}-y_{0}^{2}\right)
$$

and the weight of lantern resting on voussoir $c_{1} c_{2}$ is

$$
\psi \frac{p}{2}\left(y_{2}^{2}-y_{1}^{2}\right)
$$

Lay off on the vertical load line,

$$
\begin{aligned}
& 01=r a^{\prime} w t+\frac{p}{2}\left(y_{1}{ }^{2}-y_{0}{ }^{2}\right), \\
& 12=r a^{\prime} w t+\frac{p}{2}\left(y_{2}{ }^{2}-y_{1}{ }^{2}\right), \\
& 23=34=\text { etc. }=\text { rawt }
\end{aligned}
$$

thus completing the load line $0-9$.

As before, from 0 draw 01', $02^{\prime}, 03^{\prime}$, $04^{\prime}, \ldots$, perpendicular to radii of sphere at $c_{1}, c_{2}, c_{3}, c_{4}, \ldots$ The horizontals through $1,2,3, \ldots$, cut these rays at $1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots$. The horizontal projections of $01^{\prime}, 1^{\prime} 2^{\prime}, 2^{\prime} 3^{\prime}, \ldots$ (measured to scale of force) will be called $b_{1}, b_{2}, b_{3}, \ldots$, and the lengths of arcs $c_{0} c_{1}, c_{1} c_{2}, \ldots$ (to scale of distance), s_{1}, s_{2}, \ldots.

Then, precisely as in Arts. 85, 86, 87, the meridional thrusts per unit of horizontal circumference at $c_{0}, c_{1}, c_{2}, c_{3}, \ldots$,
are

$$
0, \frac{01^{\prime}}{y_{1}}, \frac{02^{\prime}}{y_{2}}, \frac{03^{\prime}}{y_{3}}, \ldots
$$

The tension in a hoop, taking up all the horizontal thrust at c_{2}, is 22^{\prime} pounds, at $c_{3}, 33^{\prime}$ pounds, etc.; finally, the crown stress per meridian unt on the vertical faces of voussoirs

$$
\begin{array}{lll}
c_{0} c_{1}, & c_{1} c_{2}, & c_{2} c_{3}, \ldots, \\
\frac{b_{1}}{s_{1}}, & \frac{b_{2}}{s_{2}}, & \frac{b_{3}}{s_{3}}, \ldots,
\end{array} \text { respectively. }
$$

The greatest compressive crown stress is that on voussoir $c_{0} c_{1}$. With a greater
number of divisions of are $c_{0} c_{2}$, this would increase and will always be greater than the average on voussoir $c_{0} c_{2}$, which is $22^{\prime} \div$ length of arc $c_{0} c_{2}$.

For this unusual thickness and weight of lantern, all crowns below the level of c_{2} are in tension. As the thickness and weight of lantern diminish, the curve $01^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} \ldots$ approaches in shape that shown in Fig. 24(b), giving often some crowns in compression below the lantern load. But the characteristic of the curve $0^{\prime} 1^{\prime} 2^{\prime} 3 \ldots$, hitherto unnoticed, is that its slope at 2^{\prime} is discontinuous. The crown stresses under the lantern are compressive ; outside (below) the lantern they are tensile, though as W diminishes they ultimately pass to compressive. In any case, there is a sudden jump in the slope of the curve at 2^{\prime}. This is in agreement with the fact that in the analytical solution that follows, different formulas are obtained for the intensities of the crown stresses on either side of c_{2}, however near the points are taken to c_{2}.

The case is analogous to the sudden change in shear on passing an isolated load on a beam. In the dome, the elastic yielding under stress will modify the curve $01^{\prime} 2^{\prime} 3^{\prime}$. . . considerably, and doubtless make its slope continuous by altering the direction, amount, and points of application of the meridional and crown thrusts as regards those assumed.

OPEN SPHERICAL DOME WITHOUT A LANTERN.

89. This case can be represented by Fig. 24(a), if we suppose the portion of the dome above c_{1} removed. The point 0 drops to 1 in the force diagram; consequently the radiating lines are now drawn from $0=1$, and the subsequent constructions and conclusions are as before.

THEORY OF THE OPEN SPHERICAL DOME.

90. Analytical theory of the open spherical dome of constant small thickness t , supporting a cylindrical lantern of weight W .

In Fig. 25, take the origin of coördinates at 0 , on AC at the level of c_{0}, x vertical, y horizontal. The coördinates of any point, as c_{3}, will be $x=\mathrm{ON}, y=\mathrm{N} c_{3}$ (marked y_{3} in the figure). The mean radius of the dome $=r=\mathrm{CA}$ and $\mathrm{CN}=h$. Angle $\mathrm{OC} c_{3}=\alpha$ (in circular measure, and $s=\operatorname{arc} A c_{3} \therefore s=r \alpha$; whence, on differentiating,

$$
\frac{d \alpha}{d s}=\frac{1}{r} .
$$

On constructing a differential triangle at c_{3}, it is seen that

$$
\frac{d x}{d s}=\sin . \alpha=\frac{y}{r} ; \quad \frac{d y}{d s}=\cos . \alpha=\frac{h}{r} .
$$

The weight on the voussoir at c_{3}, when $c_{3}=$ (x, y) is below the lantern, is,

$$
\psi r w t x+\frac{\mathrm{W}}{n} .
$$

This is the vertical component of the meridional thrust at (x, y); hence (from force triangle 033') the latter is found, by multiplying this component by $\operatorname{cosec} \alpha=\frac{r}{y}$, to be

$$
\left(\psi r w t x+\frac{W}{n}\right) \frac{r}{y} .
$$

On dividing this by $\frac{2 \pi y}{n}=\psi y$, we find the meridional thrust M per unit of horizontal circle, at (x, y) when (x, y) is below the lantern,

$$
\mathrm{M}=\frac{r^{2} w t}{y^{2}} x+\frac{\mathrm{W}}{2 \pi} \frac{r}{y^{2}} .
$$

When (x, y) is directly under the lantern, adopting the notation of Art. 88, $\frac{W}{n}$ is replaced by

$$
\begin{gathered}
\frac{1}{n} p \pi\left(y^{2}-y_{0}{ }^{2}\right)=\psi \cdot \frac{p}{2}\left(y^{2}-y_{0}{ }^{2}\right), \text { giving } \\
\mathrm{M}=\left[r w t x+\frac{p}{2}\left(y^{2}-y_{0}{ }^{2}\right)\right] \frac{r}{y^{2}}
\end{gathered}
$$

where

$$
p=\frac{\mathrm{W}}{\pi\left(y_{2}{ }^{2}-y_{0}{ }^{2}\right)^{.}}
$$

At $c_{0}\left(x=0, y=y_{0}\right), \mathrm{M}=0$; at c_{2}, both values of M are equal.

To find the intensity of the crown stress at a point (x, y), say c_{3}, below the lantern : from the force triangle 033^{\prime}, if we let 03 , to scale, $=\phi r w t x+\frac{\mathrm{W}}{n}$, and calling the total horizontal thrust $\mathrm{H}=33^{\prime}$, we have

$$
\mathrm{H}=\left(\psi r w t x+\frac{\mathrm{W}}{n}\right) \cot . \alpha .
$$

Let the coördinates of c_{4} be $(x+\Delta x, y+\Delta y)$. When x takes the increment $\Delta x, y, s$, and α take the increments $\Delta y, \Delta s$ and $\Delta \alpha$, and H the increment $\Delta \mathrm{H}=44^{\prime}-33^{\prime}=\mathrm{Q}$ for voussoir $c_{3} c_{4}$.

Now $\frac{Q}{\mathrm{C}_{3} c_{4}}=\frac{\Delta \mathrm{H}}{\Delta 8}=$ average rate of increase of H per unit of meridian length.

As c_{4} approaches c_{3} indefinitely, i.e., as Δx, $\Delta y, \Delta s, \Delta \alpha, \Delta \mathrm{H}$, approach zero indefinitely, this ratio approaches a limit,

$$
\lim \frac{\mathrm{Q}}{c_{3} c_{4}}=\lim \frac{\Delta \mathrm{H}}{\Delta s}=\frac{d \mathrm{H}}{d s},
$$

which is defined to be the intensity of Q per meridian unit at the point (x, y). On differentiating the value of H above as to s,

$$
\begin{gathered}
\frac{d \mathrm{H}}{d s}=\left(\psi r w t x+\frac{\mathrm{W}}{n}\right)\left(-\operatorname{cosec}^{2} \alpha \frac{d \alpha}{d s}\right) \\
+\psi r w t \frac{d x}{d s} \cot \alpha=\psi r w t\left(\frac{h}{r}-r \frac{x}{y^{2}}\right)-\frac{\mathrm{W} r}{n y^{2}} .
\end{gathered}
$$

On dividing this by $\frac{2 \pi}{n}=\dot{\psi}$ (Art. 73), we have the crown thrust or pull per unit of meridian length at (x, y), when the point is below the lantern,

$$
\mathrm{C}=w t\left(h-r^{2} \frac{x}{y^{2}}\right)-\frac{\mathrm{W} r}{2 \pi y^{2}} .
$$

When C is positive, it indicates compression; when negative, tension.

For a point (x, y) under the lantern, we have

$$
\mathrm{H}=\psi\left[r w t x+\frac{p}{2}\left(y^{2}-y_{0}{ }^{2}\right)\right] \text { cot. } \alpha .
$$

x, y, and α are the variables in the right member; hence, differentiating as before, substituting the values

$$
\begin{gathered}
\operatorname{cosec} \alpha=\frac{r}{y}, \quad \frac{d \alpha}{d s}=\frac{1}{r}, \quad \frac{d x}{d s}=\frac{y}{r}, \\
\frac{d y}{d s}=\frac{h}{r}, \text { cot. } \alpha=\frac{h}{y},
\end{gathered}
$$

and dividing by ψ, we have, for points (x, y) under the lantern,

$$
\mathrm{C}=w t\left(h-r^{2} \frac{x}{y^{2}}\right)+p \frac{h^{2}}{r}-\frac{p}{2}\left(y^{2}-y_{0^{2}}\right) \frac{r}{y^{2}} .
$$

The greatest compression in a crown is at c_{0}, where $x=0, y=y_{0}, h=\mathrm{C} 0$.

$$
\therefore \mathrm{C}\left(\text { at } c_{0}\right)=w t . \overline{\mathrm{CO}}+\frac{p}{r} \overline{\mathrm{CO}}^{2} .
$$

For points just above c_{2} and just below c_{2}, the values of x, y, and h are practically identical, but the two formulas for C differ by $\frac{p h_{1}{ }^{2}}{r}$. This discontinuity in the value of C at the outer edge of the lantern agrees exactly with the corresponding result by the graphical method. If the values of C on either side of c_{2} have dif-
ferent signs, "the joint of rupture" is at c_{2}; otherwise, if both are positive, the joint of rupture is lower down where C changes sign.

At the base $c_{7}, x=\mathrm{CO}, y=r, h=0$,

$$
\therefore \mathrm{C}=-\left[w t \cdot \overline{\mathrm{CO}}+\frac{\mathrm{W}}{2 \pi r}\right], \text { tension. }
$$

For an open dome with no lantern, $\mathrm{W}=0$, $p=0$, and the two formulas for M as well as the two for C become identical.
For a closed dome with no lantern, $\mathrm{W}=0$, $p=0$, and the point 0 will now be moved to A , so that $x=r-h$,

$$
\begin{gathered}
\therefore \mathrm{M}=w t r^{2} \frac{x}{y^{2}}=w t r^{2} \frac{r-h}{r^{2}-h^{2}}=w t \frac{r^{2}}{r+h}, \\
\mathrm{C}=w t\left(h-\frac{r^{2}}{r+h}\right) .
\end{gathered}
$$

C is zero at $h=0.618 r$, corresponding to $\alpha=$ $51^{\circ} 49^{\prime}$. Above this so-called "joint of rupture" C is positive, indicating compression; below, negative, indicating tension.

To find the hoop tension in a metal band encircling the dome at a height h above C, for the case of an open dome with a lantern, note that when (x, y) is below the lantern, the total horizontal thrust at (x, y) is

$$
\mathrm{H}=\left(\psi r w t x+\frac{\mathrm{W}}{n}\right) \cot . \alpha=\left(\psi r w t x+\frac{\mathrm{W}}{n}\right) \frac{h}{y} .
$$

\therefore Art. 73, the tension T in the band that is to resist all the horizontal thrust is

$$
\mathrm{T}=\frac{\mathrm{H}}{\psi}=\left(r w t x+\frac{\mathrm{W}}{2 \pi}\right) \frac{h}{y} .
$$

For a closed dome with no lantern, $\mathrm{W}=0$, and 'taking the origin 0 at A, the maximum hoop tension is at the joint of rupture, where $h=0.618 r$, and is found to be $\mathrm{T}=0.3 w t r^{2}$.

The thrust M, in all the formulas above, acts upon a conical joint whose area is $t \times 1=t$ square feet. Similarly C acts upon a vertical joint of area t. Hence, to find the stress in pounds per square foot, we divide either M or C by t.

On dividing the values of M and C for either a closed or an open dome with no lantern by t, the latter cancels with the factor t of the formulas; hence the remarkable fact, that for r constant, the unit meridional or crown stresses are the same, whatever the thickness of the shell.

Of course the elastic yielding of the dome modifies this materially, for the forces are rarely applied at the centre of the joints, and a certain departure from the centre in a thin dome will cause a much greater increase in the maximum unit stress at an edge than for a thick dome.
For the closed dome, the meridional (compressive) unit stresses very near the summit and
at the base are $\frac{1}{2} w r$ and $w r$ respectively; the crown unit stresses at summit and base are $\frac{1}{2} w r$ (compression) and $w r$ (tension). The last two are maximum crown stresses of their kind; $w r$ is the maximum meridional unit stress and is experienced at the base.

The thickness of very large domes should be increased in going from the summit, to more nearly equalize the unit stresses at summit and base; but it is well to count the extra cost for domes of usual radius. Thus, when $w=150$ (lbs. per ,cu. ft. for concrete) and $r=50$ feet, the average stress at the base is only 52 lbs. per sq. in. and at the summit half as much, provided $t=1$ foot in this case.

Then for a dome 1 ft . thick at summit and 2 ft , at base, the meridional stress at the base is the total weight of dome divided by the area of the base, which amounts to 39.6 lbs . per sq. in. The stress at the summit remains the same, since the intrados and extrados are parallel there, and usual formulas apply.

The unit stress at base has been decreased in the ratio 52 to 39.6 , but the volume has been increased in the ratio 7728 to 5101 .

If we further reduce the thickness at the summit to 6 inches and retain the 2 feet thickness at base, the average stresses at summit and base are now 26.3 and 32.7 lbs . per sq. in. ; but
the volume has been increased over that for a constant thickness of 6 inches, in the ratio 6410 to 2525 .

Fig. 26.
CONICAL DOME.
91. Let Fig. 26 represent a meridian section of a conical dome open at top. Divide the altitude $\overline{c d}$ into (eight) equal
parts, and pass horizontal planes through the points of division, giving the joints $1,2, \ldots$ Midway between these joints draw the horizontal radii of the centre line shown by the dotted lines. If we call the horizontal thickness of the ring $a b=t$, the vertical distance between any two joints h, and the mean radius of the centre line between these joints r, we have for the volume of the voussoir included between the two joints and two meridian planes, making an angle ψ with each other,

$$
\mathrm{V}=h t r \psi,
$$

according to the law of Pappus.
The weights of the successive voussoirs vary therofore as r. Therefore lay off on the vertical force line, $0 \ldots 8$ successive distances, proportional to the dotted radii, beginning with the first voussoir. The line ef cuts off one-fourth of these radii counting from $\overline{c d}$.

Next draw the line $\overline{06}{ }^{\prime} \| \overline{b g}$ and pass horizontals through the points $1,2, \ldots$,
of the force line. If the resultants on the joints are assumed to coincide with or be parallel to the centre line, the hypothenuses of the triangles just formed represent the stresses on the joints. Thus $\overline{06}$ ' is proportional to the stress on joint 6, and $\overline{66^{\prime}}-\overline{55}{ }^{\prime}$ is proportional to force Q exerted by the sixth ring, from which the ring compression $q=Q \div \psi$ can be found. Similarly for the other rings or crowns.

In order that the centres of pressure fall on the centre line all the way down to the base, it is necessary that the drum on which the base rests can resist the total horizontal radial thrust at the base, as the resultant there must act parallel to $b g$ and have a vertical component equal to the weight of the lune solid considered.
92. The least horizontal thrust, consistent with no joints opening, may be found as follows:

Assume the centres of gravity of the voussoirs to lie on the centre line midway between the joints. Then combine the
thrust at joint $6, \overline{06^{\prime}}$ (as found above), supposed to act at the exterior middle third limit, with the weight of voussoirs below it ; if the resultant, $\overline{08^{\prime}}$, strikes the base at the inner limit, the horizontal thrust, $66^{\prime}=88^{\prime}$, is a minimum in order that no joints open. In the above figure it was found, on a second trial, that at joint $6 \frac{1}{4}$ the horizontal thrust first became constant, so that the part of the dome below it exerted no circumferential thrust.* The part below joint $6 \frac{1}{4}$ thus acts as a simple arch. If the drum gives slightly the true thrust is doubtless found between the two limits. If the drum cannot resist the horizontal thrust proportional to 66', the resistance line will approach the extrados just above joint 6 and the intrados at the base; at the same time the lowest "crown" spreads and meridian joints open at the base if it cannot resist tension. The horizontal radial thrust is

[^22]now less than 66^{\prime} and becomes less as the drum gives still farther, until finally the resistance line nearly touches the contour lines and the lower part of the dome, acting as a series of isolated arches, falls, followed by the upper portion.

The metal dome, or the one of concrete, is investigated as in Art. 84. It is better, in both cases, that the lower ring should be strong enough to furnish all the tension needed, so that the drum be subjected only to vertical forces.

When the dome is surmounted by a lantern, the proportionate weight is laid off vertically above 0, Fig. 26, and the construction is proceeded with as before.

THEORY OF CONIOAL DOME.

93. Analytical theory of the conical dome with a lantern of weight W pounds.

In Fig. 27, let AB represent the centre line of the lune solid, the part of the weight of lantern resting at A (the top of the dome) being $\frac{\mathrm{W}}{n}$.
Extend BA to meet the vertical axis MN of the dome at 0 , which take for the origin, x vertical,
y horizontal. The coördinates of A are x_{0}, y_{0}; of $\mathrm{P}, x=\mathrm{ON}, y=\mathrm{NP}$. Also let $s_{0}=\mathrm{OA}$, $s=\mathrm{OP}$, and let the constant thickness of the shell at right angles to AB be t. All dimensions may be supposed in feet.

Fig. 27.
Wher t is small, the weight of the lune solid AP will be nearly equal to its convex surface multiplied by $w t$, where $w=$ weight of material per cubic foot. Hence weight of lune solid $\mathrm{AP}+$ lantern load $\frac{\mathrm{W}}{n}$, is,

$$
\begin{aligned}
& \frac{1}{n}\left(2 \pi y \frac{s}{2}-2 \pi y_{0} \frac{s_{0}}{2}\right) w t+\frac{\mathrm{W}}{n} \\
& =w t \frac{\psi}{2}\left(y s-y_{0} s_{0}\right)+\frac{\mathrm{W}}{n} .
\end{aligned}
$$

Let DEF represent the force triangle for the point P, DE representing the load,
$w t \frac{\psi}{2}\left(y s-y_{0} s_{0}\right)+\frac{\mathrm{W}}{n}, \quad \mathrm{DF}=\mathrm{DE} . \sec . \alpha, \quad$ the meridional thrust, and $\mathrm{FE}=\mathrm{DE} . \tan . \alpha$, its horizontal component.
It follows that on dividing DF by $\frac{2 \pi y}{n}=\psi y$, we have the meridional thrust at $\mathrm{P}(x, y)$ per foot of horizontal circumference,

$$
\mathrm{M}=\left\{\frac{w t}{2}\left(y s-y_{0} s_{0}\right)+\frac{\mathrm{W}}{2 \pi}\right\} \frac{s}{x y} .
$$

The hoop tension at (x, y) is $\mathrm{FE} \div \psi$, or

$$
\mathrm{T}=\left\{\frac{w t}{2}\left(y s-y_{0} s_{0}\right)+\frac{\mathrm{W}}{2 \pi}\right\} \frac{y}{x} .
$$

To find the intensity of the crown thrust at (x, y), conceive x, y, and s to take the simultaneous increments h, k, and l. The total weight $=\mathrm{DK}$ at $\mathrm{P}^{\prime}(x+h, y+k)$, is,

$$
\mathrm{DK}=\frac{w t \psi}{2}\left\{(y+k)(s+l)-y_{0} s_{0}\right\}+\frac{\mathrm{W}}{n} .
$$

On developing and subtracting from this the value of DE above, we find,

$$
\mathrm{EK}=\mathrm{FI}=\frac{w t \psi}{2}\{k(s+l)+y l\} .
$$

The horizontal radial thrust Q acting on voussoir $\mathrm{PP}^{\prime}=\mathrm{GI}=\mathrm{FI}$.tan. α, since from the force polygon DFIGD, we see that the voussoir is in equilibrium from the downward acting
meridional thrust DF at P , the weight of the voussoir $=\mathrm{FI}$, the radial thrust $\mathrm{Q}=\mathrm{IG}$ (acting to left), and GD, the meridional thrust at P^{\prime} acting upwards.
By Art. 73, the thrust around the crown including voussoir PP^{\prime} is $q=\frac{\mathrm{Q}}{\psi}$, and dividing this by $l=\mathrm{PP}^{\prime}$, we get the average side thrust per foot of meridian length,

$$
\frac{q}{l}=\frac{\mathrm{Q}}{\psi l}=\frac{w t}{2}\left\{\frac{k}{l}(s+l)+y\right\} \tan , \alpha .
$$

As P^{\prime} approaches P , this tends to a definite limit C, the intensity of the crown pressure at $\mathrm{P}(x, y)$ per meridian unit.

$$
\therefore \mathrm{C}=\frac{w t}{2}\left\{\frac{y}{s}(s)+y\right\} \frac{y}{x}=w t \cdot \frac{y^{2}}{x} .
$$

C is always compression in the conical dome, and is the same whether the dome is with or without a lantern.

The conical dome is admirably adapted to carrying a heavy lantern load, as is illustrated at St. Paul's, London. There, the conical dome carries the lantern; below and above it are spherical domes, the lower one of brick with an eye, the upper, of wood.

From the equations for M, T, and C above, when $\mathrm{W}=0$, on dividing by t, we observe the same peculiarity as for the spherical dome, that the unit stresses are independent of t.

APPENDIX. RESUMÉ OF OPERATIONS,

 Arts. 21-28, Fig. 6.(Estimate by scale all distances to hundredths of a foot.))
(1) Measure $y_{1}, y_{2}, \ldots, y_{10}$ to scale of distance and write numbers in column 2 of Table I. below.

Add, and multiply by 2 to get $\Sigma(y)$ for the entire arch ($=162.86$ in this example).

Let $e=\Sigma(y)$ divided by total number of ordinates ($=162.86 \div 20=8.143$).

Lay this length $e(8.143 \mathrm{ft}$.) off to scale above C and C_{1} (the points where the neutral line cuts the springing joints), fixing points, through which draw $k k_{1}$, the closing line for arch.
(2) In column 3, Table I., write down the values of $y_{1}{ }^{2}, y_{2}{ }^{2}, \ldots, y_{10}{ }^{2}$ from the numbers given in column 2; add, and multiply by 2 to get $\Sigma\left(y^{2}\right)$ for entire arch $[=2(684.79)=1369.58]$.
(3) Measure to scale of distance, $v_{2} b_{2}, v_{3} b_{3}, \ldots$, $v_{10} b_{10}$, and write the corresponding numbers in columns 4 and 5 , arranged as shown in the table. Add both columns and then take their sum (which equals 169.00). Call this sum $\mathrm{R}=\Sigma(v b)$. In this example, $\mathrm{R}=\Sigma(v b)=169.00$.
(4) Measure the horizontal distances z_{2}, z_{3}, \ldots, z_{10} from AB to $b_{2}, b_{3}, \ldots, b_{10}$ respectively,

207

to the scale of distance, and put results in column 6.
(5) Form the products in column 7 by use of columns 4, 5, and 6 (using the divider method, p. 48 , as a check), giving the moments about AB of the $v b$'s treated as forces. Add, and divide the sum (38.0797) by $\mathrm{R}(=169.00$), giving (0.225) the distance in feet the resultant R of the $v b$'s acts to the left of AB. Lay this off to scale as in the figure.
(6) In place of drawing a trial closing line $n n_{1}$ at random, as in the figure, it simplifies the work somewhat to lay off $v_{20} n=v_{1} n_{1}=\mathrm{R} \div$ number of ordinates N or $\mathrm{R}=\mathrm{N} . v_{1} n_{1}=\operatorname{sum}$ of ordinates included in parallelogram $v_{20} n n_{1} v_{1}$.

In this example, $R=169.00=20 v_{1} n_{1} . \quad \therefore$ $v_{1} n_{1}=v_{20} n=8.45$ feet, which lay off to scale and draw $n n_{1}$, also $n v_{1}$.

It follows that " trial T" = sum of ordinates in triangle $v_{20} n v_{1}=\mathrm{R} \div 2(=84.5)$.

Similarly "trial T_{1} " $=$ sum of ordinates in triangle $v_{1} n v_{1}=\mathrm{R} \div 2(=84.5)$ or trial $\mathrm{T}=$ trial $\mathrm{T}_{1}(=84.5)$.
(7) Designate the ordinates at $v_{2}, v_{3}, \ldots v_{20}$ from line $v_{20} v_{1}$ to $n \mathrm{D} v_{1}, v_{2} d_{2}, v_{3} d_{3}, \ldots v_{20} n$ respectively.

The sum $\left(v_{2} d_{2}+v_{3} d_{3}+\ldots+v_{20} n\right)=$ trial T ($=84.5$, as found above).

Next compute the moments of the $v d$'s,

208

treated as forces, about AB , as shown in column 8. The differences, such as ($v_{19} d_{19}-v_{2} d_{2}$), are evidently the lengths between $v_{20} \mathrm{D}$ and $n \mathrm{D}$, and can be at once measured to the scale of distance.
The values of z are given in column 6 . Divide the sum of the moments given in column 8 by trial T, giving the distance in feet (4.57) that trial T acts to left of $A B$. Trial T_{1} acts the same distance to the right of AB .
Lay off trial T and trial T_{1} in position on the figure, and mark their distances from $\mathrm{R}, l=$ 4.35 ft . and $l^{\prime}=4.79 \mathrm{ft}$, respectively. The distance from T to T_{1} is $l+l^{\prime}=2 \times 4.57=9.14 \mathrm{ft}$. (See p. 50 for meaning of true T and true T_{1}.)
Since true T acts along the same vertical as trial T, and true T_{1} along trial T_{1}, and R is the resultant in position and magnitude of true T and true $\mathrm{T}_{1}, \therefore$ taking moments about T_{1}, and we have,

$$
\begin{aligned}
& \text { true } \mathrm{T}\left(l+l^{\prime}\right)=\mathrm{R} l^{\prime}=2 l^{\prime} \text { trial } \mathrm{T} . \\
& \therefore v_{20} m=\frac{\text { true } \mathrm{T}}{\text { trial } \mathrm{T}} v_{20} n=\frac{2 l^{\prime}}{l+l^{\prime}} \frac{\mathrm{R}}{\mathrm{~N}} .
\end{aligned}
$$

Similarly, taking moments about T,

$$
\begin{array}{r}
\text { true } \mathrm{T}_{1}\left(l+l^{\prime}\right)=\mathrm{R} l=2 l \text { trial } \mathrm{T} \\
\therefore v_{1} m_{1}=\frac{\text { true } \mathrm{T}_{1}}{\text { trial } \mathrm{T}_{1}} v_{1} n_{1}=\frac{2 l}{l+l^{\prime}} \frac{\mathrm{R}}{\mathrm{~N}} .
\end{array}
$$

By this method, $v_{20} m$ and $v_{1} m_{1}$ can be found
without computing true T and true T_{1}, as in the text, p. 51.

For another equilibrium polygon corresponding to a different loading, the positions of T and T_{1} are unchanged, so that the values of $v_{20} m$ and $v_{1} m_{1}$ are at once found from the above formulas on inserting the new values of R, l, l^{1}.

As shown on p. 52 , the conditions $\Sigma(m b)=0$, $\Sigma(m b, x)=0$, are now fulfilled. To check the first, add the positive $m b$'s (those lying above $m m_{1}$) ; also the negative $m b$'s (those lying below $m m_{1}$). If the two sums are numerically equal, $\Sigma(m b)=0$.
(8) To find $\Sigma(k a . y)$ for the entire arch, by aid of columns 2 and 3 , we have

$$
\begin{aligned}
& \quad \Sigma(k a . y)=\Sigma(y-e) y=\Sigma y^{2}-e \Sigma y=1369.58 \\
& -8.143 \times 162.86=41.90 .
\end{aligned}
$$

(9) A similar sum, $\Sigma(m b . y)$, is now made out as indicated in column $9 ; m b$ representing an ordinate from $m m_{1}$ to polygon b, to be written with a + sign when b is above $m m_{1}$, but with a - sign when b is below $m m_{1}$.

The sums as $\left(m b_{1}+m b_{20}\right)$ can be taken by dividers and read off to the scale of distance. We thus find $\Sigma(m b, y)=90.90$.
(10) The ordinates $m b$ are now altered in the ratio $\frac{\Sigma(k a . y)}{\Sigma(m b . y)}=\frac{41.9}{90.9}$, and the assumed pole distance in the inverse ratio. The subsequent operations are given in the text, Arts. 28, 31, 32, 33.
210
TABLE I.

Point	y	y^{2}	$v b$	$v b$	Equlibriox Polygon.		Triangle $v_{20} n v_{1}$.	$\Sigma(m b . y)$.
$\begin{aligned} & \text { NEU- } \\ & \text { TRAL } \\ & \text { LINE. } \end{aligned}$					$\begin{gathered} \text { Arms } \\ \text { about } \\ \text { AB } \end{gathered}$	Moments about AB.	Moments about AB.	
1	2	3	4	5	6	7	8	9
		$y_{1}{ }^{2}$	0.00	0.00	z_{1}	0.00	-	$-\left(m b_{1}+m b_{20}\right) y_{1}$
a_{2}	y_{2}	$y_{2}{ }^{2}$	$v_{19} b_{19}$	$v_{2} b_{2}$	z_{2}	$\left(v_{19} b_{19}-v_{2} b_{2}\right) z_{2}$	$\left(v_{19} d_{19}-v_{2} d_{2}\right) z_{2}$	$-\left(m b_{2}+m b_{19}\right) y_{2}$
a_{3}	y_{3}	$y_{3}{ }^{2}$	$v_{18} b_{18}$	$v_{3} b_{3}$	z_{3}	$\left(v_{18} b_{18}-v_{3} b_{3}\right) z_{3}$	$\left(v_{18} d_{18}-v_{3} d_{3}\right) z_{3}$	$-\left(m b_{3}+m b_{18}\right) y_{3}$
a_{4}	y_{4}	$y_{4}{ }^{2}$	$v_{17} b_{17}$	$v_{4} b_{4}$	z_{4}	$\left(v_{17} b_{17}-v_{4} b_{4}\right) z_{4}$	($v_{1} d_{17} d_{17}-v_{4} d_{4} z_{4} z_{4}$	$+\left(m b_{4}+m b_{17}\right) y_{4}$
a_{5}	y_{6}	$y_{0}{ }^{2}$	$v_{16} b_{18}$	$v_{5} b_{5}$	z_{5}	$\left(v_{18} b_{16}-v_{5} b_{5}\right) z_{5}$	$\left(v_{16} d_{16}-v_{5} d_{5}\right) z_{5}$	$+\left(m b_{5}+m b_{10}\right) y_{5}$
a_{6}	y_{6}	$y_{6}{ }^{2}$	$u_{15} b_{15}$	$v_{0} b_{6}$	z_{6}	$\left(v_{15} b_{15}-v_{6} b_{6}\right) z_{0}$	$\left(v_{15} d_{15}-v_{6} d_{6}\right) z_{6}$	$+\left(m b_{6}+m b_{15}\right) y_{6}$
a_{7}	y_{7}	$y_{7}{ }^{2}$	$v_{14} b_{14}$	$v_{7} b_{7}$	z_{7}	$\left(v_{14} b_{14}-v_{7} b_{7}\right) z^{2}$	$\left(v_{14} d_{14}-v_{7} d_{7}\right) z_{7}$	$+\left(m b_{7}+m b_{14}\right) y_{7}$
a_{8}	y_{*}	$y_{0}{ }^{2}$	$v_{13} b_{13}$	$v_{8} b_{8}$	z_{8}	$\left(v_{13} b_{13}-v_{8} b_{8}\right) z_{n}$	$\left(v_{13} d_{13}-v_{8} d_{\mathrm{s}}\right) z_{\mathrm{s}}$	$+\left(m b_{8}+m b_{13}\right) y_{8}$
a_{9}	y_{0}	$y_{9}{ }^{2}$	${ }_{112} b_{12}$	$v_{9} b_{0}$	z_{9}	$\left(v_{12} b_{12}-v_{\mathrm{s}} b_{9}\right) z_{9}$	$\left(v_{12} d_{12}-v_{9} d_{0}\right) z_{9}$	$+\left(m b_{9}+m b_{12}\right) y_{9}$
a_{10}	y_{10}	$y_{10}{ }^{2}$	$v_{11} b_{11}$		z_{10}	$\left(c_{11} b_{11}-v_{10} b_{10}\right) z_{10}$	$\left(v_{11} d_{11}-v_{10} d_{10}\right) z_{10}$	$\underline{+\left(m b_{10}+m\right.}$
$\Sigma y=\frac{81.43}{2}$		684.79	$\begin{aligned} & \mathrm{R}=\Sigma(v b) \\ & =169.00 \end{aligned}$		$\mathrm{Sum}=38.0797$ $\frac{\mathrm{Sum}}{\mathrm{R}}=0.225 \mathrm{ft}$. R acts 0.225 ft. to left of AB		Sum	$\Sigma(m b . y)=90.90$
					Trial T			
		1369.58						
		$=\Sigma y^{2}$			to left			

211

(11) To reduce the ordinates of the type $m b$ in the given ratio graphically, lay off on a straight line $\mathrm{OK}=\Sigma(k a . y)$, $\mathrm{OB}=\Sigma(m b . y)$. Draw BM $=$ ordinate $m b$ and connect O and M. The line BM should be given such a direction that angle OMB is not less than about 60°.
 On drawing $\mathrm{KC} \| \mathrm{BM}$ to intersection C with OM, it follows that $\mathrm{KC}=$ reduced length of $m b=k c$; for from similar triangles,

$$
\frac{\mathrm{KC}}{\mathrm{BM}}=\frac{\mathrm{OK}}{\mathrm{OB}} \quad \therefore(k c)=\frac{\sum(k a . y)}{\sum(m b \cdot y)}(m b) .
$$

Similarly, if $(m b)=M^{\prime} \mathbf{B}, \therefore \mathrm{KC}^{\prime}=(k c)$ corresponding. The successive lengths $k c_{1}, k c_{2} \ldots$, having been laid off above or below kk, Fig. 6, according as the corresponding $m b$ is positive or negative, the points where $a c$ is a maximum can be noted and the corresponding moments, $=($ true H$) \times a c$, tabulated.
(12) If preferred, however, the successive values of $m b$ can be scaled off and the corresponding values of (kc) computed from the last formula above, since the numerical value of the ratio $\Sigma(k a . y) \div \Sigma(m b . y)$ is known.

A table can then be made out giving, in succession, the numerical values of $m b, k c$ thus computed, $k a, a c=k c-k a, \mathrm{M}=\mathrm{H} . a c, \mathrm{~T}($ Art.

212

31), and the computed values of the stresses s_{1} and s_{2} from the formulas of Art. 11.

Generally,'only the values at the points where $a c$ is a maximum need be tabulated. The moments, values of T , and stresses due to temperature, may now be included, and the final maximum stresses computed and tabulated due to loads as well as a rise and fall of temperature.

This may lead to a revision of the arch sections. If one section is changed, the other sections may be changed so as to satisfy (14), p. 35, assuming now, however, the values s and computing d (by trial) by an equation of the form (15), p. 37.

If appropriate circular curves can now be found to pass (approximately) through the new intrados and extrados, the arch will not have to be divided anew in making the new constructions and computations pertaining to the new arch and loads,

CATALOGUE

SCIENTIFIC PUBLICATIONS

OF

D. VAN NOSTRAND COMPANY,

23 Murray Street and 27 Warren Street, N. Y.
A. B. C. CODE. (See Clausen-Thue.)
ABBOTT (A. V.). The Electrical Transmission of
Energy. A Manual for the Design of Electrical
Circuits. Fourth edition, revised. Fully illustrated.
8vo, cloth... $\$ 500$

ABBOT (Gen'I HENRY L.). The Defence of the Seacoast of the United States. Lectures delivered before the U. S. Naval War College. 8vo, red cloth. 200
ADAMS (J. W.). Sewers and Drains for Populous Districts. Embracing Rules and Formulas for the dimensions and construction of works of Sanitary Engineers. Fifth edition. 8vo, cloth...... 250
A1. CODE. (See Clausen-Thue.)
AIKMAN (C. M., Prof.). Manures and the Princl- ples of Manuring. 8vo, cloth 250
ALEXANDER (J. H.). Universal Dictionary of Weights and Measures, Ancient and Modern, reduced to the Standards of the United States of America. New edition, enlarged. 8vo, cloth 350
ALEXANDER (S, A.). Broke Down: What Should I Do? A Ready Reference and Key to Locomotive Engineers and Firemen, Round House Machinists, Conductors, Train Hands and Inspectors. With 5 folding plates. 12 mo , cloth. 150
ALLEN (C. F.). Tables for Earthwork Computation. 8vo, eloth 150
ANDERSON (J. W.). The Prospector's Hand-book; A Guide for the Prospector aud Traveller in search of Metal-bearing or other Valuable Minerals. Seventh edition, thoroughly revised and much enlarged. 8vo, cloth 150
ANDERSON (WILLIAM). On the Conversion of
Heat into Work. A Practical Hand-book on Heat- Engines. Third edition. Illustrated. 12 mo , cloth. 225
ANDES (LOUIS). Vegetable Fats and Oils; their Practical Preparation, Purification and Employment for various purposes. Their Properties, Adulteration and Examination. A Hand-book for Oil Manufac- turers and Refiners, Candle, Soap and Lubricating Oil Manufacturers and the Oil and Fat Industry in general. Translated from the German. With 94 illustrations. 8vo, cloth 400
Animal Fats and Oils. Their Practical Production, Purification and Uses for a great variety of purposes, their Properties, Falsification and Examination. A Hand-book for Manufacturers of Oil and Fat Products, Soap and Candle Makers, Agriculturists, Tanners, etc. Translated by Charles Salter, With 62 illustrations. 8vo, cloth 400
ARNOLD (Dr. R.). Ammonia and Ammonium Compounds. A Practical Manual for Manufacturers, Chemists, Gas Engineers and Drysalters. Second edition. 12 mo , cloth 200
ARNOLD (E.). Armature Windings of Direct CurrentDynamos. Extension and Application of a GeneralWinding Rule, Translated from the original Germanby Francis B. DeGress, M. E. With numerousillustrations. 8vo. cloth.200
ATKINSON (PHILIP). The Elements of ElectricLighting, including Electric Generation. Measure-ment, Storage, and Distribution. Ninth edition.Fully revised and new matter added. Illustrated.12 mo , cloth.150The Elements of Dynamic Electricity and Mag-netism. Third edition. 120 illustraticns. 12 mo ,sloth200

ATKINSON (PHILIP). Power Transmitted by Elec-
tricity and its Application by the Electric Motor,
including Electric Railway Construction. New
edition, thoronghly revised, and much new matter
added. Illustrated 12mo, cloth........................... of
ATKINSON (Prof. A. A., Ohio Univ.). Electrical and Magnetic Calculations, for the use of Electrical Engineers and Artisans, Teachers, Students, and all others interested in the Theory and Application of Electricity and Magnetism. 8vo, cloth, illustr.....net 150
AUCHINCLOSS (W. S.). Link and Valve Motions Simplified. Illustrated with 29 woodcuts and 20 lithographic plates, together with a Travel Scale, and numerous useful tables, Thirteenth edition, revised. 8vo, cloth.

AXON (W, E. A.). The Mechanic's Friend. A Collec
tion of Receipts and Practical Suggestions. 12mo,
cloth

BACON (F. W.). A Treatise on the Richards, Steam
Engine Indicator, with directions for its use. By
Charles T. Porter. Revised, with notes and large
additions as developed by American practice; with
an appendix containing useful formulæ and rules for
engineers. Illustrated. Fourth edition. 12 mo , cloth 100

BADT (F. B.). New Dynamo Tender's Hand book. With 140 illustrations. 18 mo , cloth100
_ Bell Hangers' Hand-book. With 97 illustrations. Second edition. 18 mo , cloth 100

- Incandescent Wiring Hand-book. With 35 illus-trations and five tables. Fifth edition. 18 mo , cloth.100
- Electric Transmission Hand-book. With 22 illus- trations and 27 tables. 18 mo , cloth 100
BALE (M. P.). Pumps and Pumping. A Hand-book for Pump Users. 12mo, cloth. 150
BARBA (J.). The Use of Steel for Constructive Purposes. Method of Working, App ying, and Test- ing Plates and Bars With a Preface by A. L Holley, C. E. 1:mo, eloth 150
BARKER (ARTHUR H.). Graphic Methods ofEngine Design. Including a Graphical Treatmentof the Balancing of Fngines. 12mo, cloth.150

BARNARD (F. A. P.). Report on Machinery and
Processes of the Industrial Arts and Apparatus of
the Exact Sciences at the Paris Universal Exposi
tion, 1867. 152 illustrations and 8 folding plates.
8 vo , cloth 503
BARNARD (JOHN H.). The Naval Militiaman's Guide. Full leather, pocket form. 125
BARWISE (SIDNEY, M. D., London). The Puri- fication of Sewage. Being a brief account of the Scientific Principles of Sewage Purification and their Practical Application. 12mo, cloth. Hustrated. 200
BAUMEISTER (R.). The Cleaning and Sewage of Cities. Adapted from the German with permission of the author. By J. M. Goodell, C. E. Second edition, revised and corrected, together with an additional appendix. 8 vo , cloth. Illusirated. 200
BEAUMONT (ROBERT). Color in Woven Design. With 32 Colored Plates and numerous original illus trations. Large 12 mo 750
BEAUMONT, W. and DUGALD CLERK. Auto- cars and Horseless Carriages (In Press.)
BECKWITH (ARTHUR). Pottery. Observations on the Materials and Manufacture of Terra-Cotta, Stoneware, Fire-Brick, Porcelain, Earthenware, Brick, Majolica, and Encaustic Tiles. 8vo, paper. Second edition $6 C$
BERNTHSEN (A.). A Text-Book of Organic Chemis- try. Translated by George M'Gowan, Ph.D. Fourth English edition. Revised and extended by author and translator. Illustrated. 12mo, cloth. 25
BERTIN (L. E.). Marine Boilers: Their Construc- tion and Working, dealing more especially with Tubulous Boilers. Translated by Leslie S. Robertson, Upward of 250 illustrations. Preface by Sir William White. 8 vo , cloth. Illustrated 7 50
BIGGS (C. H. W.). First Principles of Electricity and Magnetism. Being an attempt to provide an Elementary Book for those intending to enter the profession of Electrical Engineering. Second edition. i2mo, cloth. llustrated 200

BINNS (CHAS. F.). Manual of Practical Potting.
Compiled by Experts. Third edition, revised and
enlarged. 8vo, cloth

750
-Ceramic Technology; being some aspects of Technical Science as applied to Pottery Manufacture. 8vo, eloth

500

BLAKE (W. P.). Report upon the Precious Metals. Being Statistical Notices of the Principal Gold and Silver producing regions of the world, represented at the Paris Universal Exposition. 8vo, cloth
 200

BLAKESLEY (T. H.). Alternating Currents of Elec- tricity. For the use of Students and Engineers. Third edition, enlarged. 12 mo , eloth 150
BLYTH (A. WYNTER, M. R. C. S., F. C. S.). Foods: their Composition and Analysis. A Manual for the use of Analytical Chemists, with an Introductory Es- say on the History of Adulterations, with numerous tables and illustrations. New edition.(In Press)

Poisons : their Effects and Detection. A Manual
for the use of Analytical Chemists and Experts,
with an Introductory Essay on the growth of Modern
Toxicology. Third edition, revised and enlarged.
8vo, eloth 750
BODMER (G. R.). Hydraulic Motors ; Turbines and Pressure Engines, for the use of Engineers, Manu- facturers and Students. Second edition, revised and enlarged. With 204 illustrations. 12mo, cloth. 500
BOILEAU (J. T.). A New and Complete Set of Traverse Tables, Showing the Difference of Latitude and Departure of every minute of the Quadrant and to five places of decimals. 8vo, eloth. 500

BOTTONE (S. R.). Electrical Instrument Making for Amateurs. A Practical Hand-book. With 48 illustrations. Fifth edition, revised. 12mo, eloth50

Electric Bells, and all about them. A Practical Book for Practical Men. With more than 100 illustrations. 12mo, cloth. Fourth edition, revised and enlarged$5 C$

The Dynamo: How Made and How Used. A Book for Amateurs. Eighth edition. 12mo, cloth... 100
BOTTONE (S. R.). Electro Motors: How Made and How Used. A Hand-book for Amateurs and Practical Men. Second edition. 12 mo , eloth 75
BONNEX (G. E.). The Electro-Platers' Hand-book.A Manual for Amateurs and Young Students onElectro-Metallurgy. 60 illustrations, 12 mo , cloth.120
BOW (R. H.). A Treatise on Bracing. With its appli-cation to Bridges and other Structures of Wood orIron, 156 illustrations. 8vo, eloth150
BOWSER (Prof. E. A.). An Elementary Treatiseon Analytic Geometry. Embracing Plane Geometry,and an Introduction to Geometry of three Dimen-sions. 12 mo , cloth. Twenty-first edition.................175- An Elementary Treatise on the Differential andIntegral Calculus. With numerous examples.12 mo , eloth. Seveateenth edition.25- An Elementary Treatise on Analytic Mechanics.With numerous examples. 12 mo , cloth. Fourteenthedition.300
An Elementary Treatise on Hydro-Mechanies.With numerous examples. 12 mo , cloth. Fifthedition.250A Treatise on Roofs and Bridges. With NumerousExercises. Especially adapted for school use. 12 mo ,cloth. Illustrated225
BOWIE (AUG. J., Jun., M. E.). A Practical Treatiseon Hydraulic Mining in California. With Descriptionof the Use and Construction of Ditches, Flumes,Wrought-iron Pipes and Dams; Flow of Water onHeavy Grades, and its Applicability, under HighPressure, 10 Mining. Fifth edition. Small quarto,cloth. Illustrated.500
BURGH (N. P.). Modern Marine Engineering, appliedto Paddle and Screw Propulsion, Consisting of 36colored plates, 259 practical woodcut illustrations,and 403 pages of descriptive matter. The wholebeing an exposition of the present practice of JamesWatt \& Co., J. \& G. Rennie, R. Napier \& Sons, andother celebrated firms. Thick quarto, half morocco. 1000
BURT (W. A.). Key to the Solar Compass, and Surveyor's Companion. Comprising all the rules necessary for use in the field ; also description of the Linear Surveys and Public Land System of the United States. Notes on the Ba- ometer, Suggestions for an Outfit for a Survey of Four Months, etc. Seventh edition. Pocket-book form, tuck250
CALDWELL, (G. C.), and A. A. BRENEMAN. Manual of Introductory Chemical Practice. For the use of Students in Colleges and Normal and High Schools. Fourth edition, revised and corrected. 8vo, cloth Illustrated 150
CAMPIN (FRANCIS). On the Construction of Iron Roofs. A Theoretical and Practical Treatise, with wood cuts and Plates of Roofs recently executed. 8vo, cloth. 200
CARTER (E. T.). Motive Power and Gearing for Electrical Machinery. A Treatise on the Theory and Practice of the Mechanical Equipment of Power Stations for Electric supply and for Electic Traction. 8vo, cloth. Illustrated 500
CATHCART (Prof. WM. L.). Machine Elements: Shrinkage and Pressure Joints. With tables and diagrams. 8vo, eloth. Illustrated 250

- Marine Engine Design (In Press.)
CHAMBER'S MATHEMATICAL TABLES, con- sisting of logarithms of Numbers 1 to 108,000, Trigo- nometrical, Nautical, and other tables. New edition. 8vo, cloth. 175
CHAUVENET (Prof. W.). New Method of Correct- ing Lunar Distances, and Improved Method of Finding the Error and Rate of a Chronometer, by Equal Altitudes. 8vo, eloth 200
CHRISTLE (W. WALLACE). Chimney Design and Theory. A Book for Engineers and Architects, with numerous half-tone illustrations and plates of famous chimneys. 12 mo , eloth 300
CHURCH (JOHN A.). Notes of a Metallurgical Journey in Europe. 8vo, cloth 200
OLARK D. (KINNEAR, C. E.). A Manual of Rules,Tables and Data for Mechanical Engineers. Based
on the most recent investigations. Illustrated with numerous diagrams. 1,012 pages. 8 vo, cloth. Sixth edition 500 750
Half morocco
Half morocco
CLARK D. (KINNEAR, C. E.). Fuel : its Combust-ion and Economy, consisting of abridgements ofTreatise on the Combustion of Coal. By C. W.Williams; and the Economy of Fuel, by T. S.Prideaux. With extensive additions in recent prac-tice in the Combustion and Economy of Fuel, Coal,Coke, Wood, Peat, Petroleum, etc. Fourth edition.12 mo , cloth150The Mechanical Engineer's Pocket-book of Tables,Formulæ, Rules and Data. A Handy Book ofReference for Daily Use in Engineering Practice.16 mo , morocco. Second edition.300
Tramways, their Construction and Working, em- bracing a comprehensive history of the system,with accounts of the various modes of traction, adescription of the varieties of rolling stock, andample details of Cost and Working Expenses.Second edition. Re-written and greatly enlarged,with upwards of 400 illustrations. Thick 8vo. cloth.900
- The Steam Engine. A Treatise on Steam Enginesand Boilers; comprising the Principles and Practiceof the Combustion of Fuel, the Economical Genera-tion of Steam, the Construction of Steam Boilers, andthe Principles, Construction and Performance ofSteam Engines, Stationary, Portable, Locomotiveand Marine, exemplified in Engines and Boilers ofrecent date. 1,300 figures in the text, and a seriesof folding plates drawn to scale. 2 vols. 8vo, cloth. 1500
CLARK (JACOB M.). A new System of Laying Out Railway Turn-outs instantly, by inspection from Tables. 12 mo , leatherette 100
CLAUSEN-THU F (\mathbf{W}_{2}). The A. B. C. Universal Com-mercial Electric Telegraphic Code; especiallyadapted for the use of Financiers, Merchants, Ship-owners, Brokers, Agent, etc. Fourth edition. 8vo,cloth.500
Fifth edition of same 700
The A1 Universal Commercial Electric Telegraphic Code. Over 1,240 pp., and nearly 90,000 variations. 8vo, eloth 750
CEEEMANN (THOS. M.). The Railroad Engineer's Practice. Being a Short but Complete Description of the Duties of the Young Engineer in the Preliminary and Location Surveys and in Construction. Fourth edition. Revised and enlarged. Illustrated. 12 mo , cloth
CLEVENGER (S. R.). A Treatise on the Method of Government Surveying as prescribed by the U.S. Congress and Commissioner of the General Land Office, with complete Mathematical, Astronomical and Practical Instructions for the use of the United States Surveyors in the field. 16 mo , morocco.250
COFFIN (Prof. J. H. C.). Navigation and Nautical Astronomy. Prepared for the use of the U.S. Naval Academy. New Edition. Revised by Commander Charles Belknap. 52 woodcut illustrations. 12 mo , eloth

net. 3 50
COLE (R. S., M. A.). A Treatise on Photographic Optics. Being an account of the Principles of Optics, so far as they apply to Photography. 12 mo , cloth, 103 illustrations and folding plates
250
OOLLINS (JAS. E.). The private Book of Useful Alloys, and Memoranda for Goldsmiths, Jewelers, ete. $18 \mathrm{mo}^{2}$, cloth 50
CORNWALL (Prof. H. B.). Manual of Blow-pipe Analysis, Qualitative and Quantitative. With a Complete System of Determinative Mineralogy, 8vo, cloth. With many illustrations. 250
CRAIG (B. F.). Weights and Measures. An Account of the Decimal System, with Tables of Conversion for Commercial and Scientific Uses. Square 32 mo , limp cloth 50
CROCKER (F. B.). Electric Lighting. A Practical Exposition of the Art, for use of Engineers, Students, and others interested in the Installation or Operation of Electrical Plants. Sixth edition, revised. 8vo, cloth. Vol. I. The Generating Plant 300
Vol. II. Distributing Systems and Lamps. Fourth edition 300
CROCKER, (F. B.), and S. S. WHEELER. The Practical Management of Dynamos and Motors. Fourth edition (twelfth thousand). Revised and enlarged. With a special chapter by H. A. Foster. 12 mo , cloth. Illustrated.
CUMMING (LINNAES, M. A.). Electricity treated Experimentally. For the use of Schools and Students New edition. 12 mo , cloth 150
DAVIES (E. H.). Machinery for Metalliferous Mines. A Practical Treatise for Mining Engineers, Metallur- gists and Managers of Mines. With upwards of 400 illustrations. Second edition, rewritten and en- larged. 8vo, eloth. net 800
DAY (CHARLES). The Indicator and its Diagrams. With Chapters on Engine and Boiler Testing; Including a Table of Piston Constants compiled by W. H. Fowler. 12 mo , cloth. 125 illustrations. 200
DERR (W. L.). Block Signal Operation. A Practical Manual. Oblong, cloth 150
DIXON (D. B.). The Machinist's and Steam Engineer's Practical Calculator. A Compilation of Useful Rules and Problems arithmetically solved, together with General Information applicable to Shop-Tools, Mill- Gearing, Pulleys and Shafts, Steam-Boilers and Engines. Embracing valuable Tables and Instruc- tion in Screw-cutting, Valve and Link Motion, etc. 16 mo , full morocco, pocket form 125
DODD (GEO.). Dictionary of Manufactures, Mining, Machinery, and the Industrial Arts. 12mo, cloth 150
DORR (B. F.). The Surveyor's Guide and Pocket Table Book. 18 mo , moroceo flaps. Fifth edition, revised, with a second appendix 200
DRAPER (C. H.). An Elementary Text Book of Light, Heat and Sound, with Numerous Examples. Fourth edition. 12 mo , cloth. Illustrated. 100
Heat and the Principles of Thermo-Dynamics. With many illustrations and numerical examples. 12 mo , eloth. 150
DUBOIS (A. J.). The New Method of Graphic Statics. With 60 illustrations. 8vo, cloth............ 150
EDDY (Prof. H. T.). Researches in GraphicalStatics. Embracing New Constructions in Graphi-cal Staties, a New General Method in GraphicalStatics, and the Theory of Internal Stress in Graphi-cal Statics. 8vo, cloth150

- Maximum Stresses under Concentrated Loads. Treated graphically. Illustrated. 8vo, cloth 150
EISSLER (M.). The Metallurgy of Gold; a PracticalTreatise on the Metallurgical Treatment of Gold-Bearing Ores, including the Processes of Concentra-tion and Chlorination, and the Assaying, Meltingand Refining of Gold. Fifth Edition, revised andgreatly enlarged. 187 illustrations. 12 mo , cloth....750
-The Metallurgy of Silver ; a Practical Treatise onthe Amalgamation, Roasting and Lixivation of SilverOres, including the Assaying. Melting and Refiningof Silver Bullion. 124 illustrations. Second edition,enlarged, 12 mo , cloth400
cal Treatise on the Smelting of Silver Lead Ores andthe Refining of Lead Bullion. Including Reportson Various Smelting Establishments and Descrip-tions of Modern Smelting Furnaces and Plants inEurope and America. With 183 illustrations. 8vo,cloth500
- Cyanide Process for the Extraction of Gold andits Practical Application on the Witwatersrand GoldFields in South Africa. Third edition, revised andenlarged. 8vo, eloth. Illustrations and folding plates300Practical Treatise on the Manufacture and use ofDynamite, Gun Cotton, Nitro-Glycerine and otherExplosive Compounds, including the manufactureof Collodion-Cotton, with chapters on explosives inpractical application. Second edition, enlarged with150 illustrations. 12 mo , cloth500ELIOT (C. W.), and STORER (F. H.). A compen-dious Manual of Qualitative Chemical Analysis.Revised with the co-operation of the authors, byProf, William R. Nichols. Illustrated. Twentiethedition, newly revised by Prof. W. B. Lindsay. 12mo,cloth.125

ELLIOT (Maj. GEO. H.). European Light-House Systems. Being a Report of a Tour of Inspection made in 1873. 51 engravings and 21 woodcuts. 8vo, cloth500

ELLISON, (LEWIS M.). Practical Application of the Indicator. With reference to the adjustment of Valve Gear on all styles of Engines. Second edition, revised. 8vo. cloth, 100 illustrations
EVERETT (J. D.). Elementary Text-book of Physics. Illustrated. Seventh edition. 12 mo , cloth $=50$
EWING (Prof. A. J.). The Magnetic Induction in Iron and other metals. 159 illustrations. 8vo, cloth 400
FANNING (J. T.). A Practical Treatise on Hydraulic and Water-Supply Engineering. Relating to the Hydrology, Hydro-dynamies, and Practical Construction of Water-Works in North America. 180 illustrations, 8vo, cloth. Fifteenth edition, revised, enlarged, and new tables and illustrations added. 650 pages
FISH (J. C. L.). Lettering of Working Drawings. Thirteen plates, with descriptive text. Oblong, $9 \times 121 / 6$, boards100

FISKE (Lieut, BRADLEY A., U, S. N.). Electricity in Theory and Practices or, The Elements of Electrical Engineering. Eighth edition. 8vo, cloth 250
FISHER (H. K. C. and DARBY, W. C.). Students' Guide to Submarine Cable Testing. 8vo, eloth....... 250
FISHER (W. C.). The Potentiometer and its Adjunets. 8vo, cloth.225

ELEISCHMANN (W.). The Book of the Dairy. A. Manual of the Science and Practice of Dairy Work. Translated from the German, by C. M. Aikman and R. Patrick W right. 8vo, cloth

FLEMING (Prof. J. A.). The Alternate Current Transformer in Theory and Practice. Vol. 1-The Induction of Electric Currents; 611 pages. New edition. Illustrated. 8vo, eloth.

- Electric Lamps and Electric Lighting. Being a course of four lectures delivered at the Royal Institukion, April-May, 1894. 8vo, cloth, fully illustrated 300
FLEMING (Prof. J. A.). Electrical Laboratory Notes and Forms, Elementary and advanced. 4to, cloth, illustrated 500
FOLEY (NELSON), and THOS. PRAY, Jr. TheMechanical Engineers' Reference Book for Machineand Boiler Construction, in 2 parts. Part 1-GeneralEngineering Data. Part 2-Boiler Construction.With fifty-one plates and numerous illustrations,specially drawn for this work. Folio, half mor. ...25 ot
FORNEY (MATTHIAS N.). Catechism of the Loco-motive. Second edition, revised and enlarged.Forty-sixth thousand. 8vo, cloth350
FOSTER (Gen. J. G., U. S. A.). Submarine Blasting in Boston Harbor, Massachusetts. Removal of Tower and Corwin Rocks. Illustrated with 7 plates 4to, eloth 350
FOSTER (H. A.). Electrical Engineers' Pocket Book. 1000 pages with the collaboration of Eminent Specialists. Third edition, revised. Pocket size, full leather 500
FOSTER (JAMES). Treatise on the Evaporation on Saccharine, Chemical and other Liquids by the Multiple System in Vacuum and Open Air. Second edition. Diagrams and large plates. 8vo, cloth 750
FOWLER. Mechanical Engineers' Pocket Book fer 1905 100
FOX (WM.), and C. W. THOMAS, M. E. A Practical Course in Mechanical Drawing, second edition, revised. 12mo, cloth, with plates. 125
ERANCIS (JAS. B., C. E.). Lowell HydraulicExperiments. Being a selection from experimentson Hydraulic Motors, on the Flow of Water overWeirs, in open Canals of uniform rectangularsection, and through submerged Orifices anddiverging Tubes. Made at Lowell, Mass. Fourthedition, revised and enlarged, with many new experi-ments, and illustrated with 23 copper-plate engrav-ings. 4to, eloth.1500
IEROST (GEO. H.). Engineer's Field Book. By C. S. Cross. To which are added seven chapters on Railroad Location and Construction. Fourth edition. 12 mo , cloth100
FULLER (GEORGE W.). report on the Investiga-tions into the Purification of the Ohio River Waterat Louisville, Kentucky, made to the President angDirectors of the Louisville Water Company. Pub-lished under agreement with the Directors. 4to,cloth. 3 full page plates....................................... net 1000
GELPEL (WM.), and KILGOUR, (M. H.) APocketbook of Electrical Engineering Formula. Il-lustrated. 18 mo , moroceo.300
GERBER (NICHOLAS). Chemical and Physical Analysis of Milk, Condensed Milk and Infant's Milk- Food. 8vo, eloth. 125
GESCHWIND (LUCIEN). Manufacture of Alum and Sulphates, and other Salts of Alumina and Iron; their uses and applications as mordants in dyeing and calico printing, and their other applications in the Arts, Manufactures, Sanitary Engineering, Agri- culture, and Horticulture. Translated from the French by Charles Salter. With tables, figures and diagrams. 8vo, cloth, illus 500
GIBBS (WILLIAM E.). Lighting by Acetylene, Gen-erators, Burners and Electric Furnaces. With 66illustrations. Second edition revised. 12 mo , cloth.. 150GHLLMORE (GEN. Q. A.). Treatise on Limes, Hy-raulic Cements, and Mortars. Papers on PracticalEngineering, United States Engineer Department,No 9, containing Reports of numerous Experimentsconducted in New York Cityduring the years of 1858to 1861, inclusive. With numerous illustrations. 8vocloth.400
- Practical Treatise on the Construction of Roads. Streets, and Pavements, with 70 illustrations. 12 mo , eloth. 200
__ Report on Strength of Building Stones in theUnited States, etc. 8vo, illustrated cloth100
GOLDING (HENRY A.). The Theta-Phi Diagram. Practically applied to Steam, Gas, Oil and Air En- gines. 12mo, cloth. Illustrated. net 125
GOODEVE (T, M.). A Text-Book on the Steam En- gine. With a Supplement on Gas-Engines. Twelfth Edition, enlarged. 143 illustrations. 12 mo , eloth. 200
GORE (G., F. R. S.). The Art of Electrolytic Separa- tion of Metals, etc. (Theoretical and Practical.) Illustrated. 8vo, cloth 350
GOULD (E. SHERMAN). The Arithmetic of the Steam Engine. 8vo, cloth 100
GRIFFITHS (A.D., Ph. D.). A Treatise on Manures, or the Philosophy of Manuring. A Practical Hand- Book for the Agriculturist, Manufacturer and Student. 12 mo , cloth 300
GROVER (FREDERICK). Practical Treatise on Modern Gas and Oil Engines. 8vo, cloth. Illustrated 200
GURDEN (RICHARD LLOYD). Traverse Tables:computed to 4 places Decimals for every ${ }^{\circ}$ of angleup to 100 of Distance. For the use of Surveyors andEngineers. New Edition. Folio, half morocco.750
GUY ARTHUR (F.). Electric Light and Power, giving the Result of Practical Experience in Central Station Work. 8vo, cloth. Illustrated. 250
HAEDER (HERMAN C. E.). A Hand-book on the Steam Engine. With especial reference to small and medium sized engines. Engllsh edition re-edited by the author from the second German edition, and translated with considerable additions and altera-
€ tions by H. H. P. Powels. 12 mo , eloth. Nearly 1100 illustrations. 300
HALL (WM. S. Prof.). Elements of the Differential and Integral Calculus. Second edition. 8vo, cloth. Illustrated net 225
HALSEY (F.A.). Slide Valve Gears; an Explanation of the action and Construction of Plain and Cut-off Slide Valves. Illustrated. 12mo, cloth. Sixth edition. 150
-The Use of the Slide Rule. Illustrated with diagrams and folding plates. 16 mo , boards 50
HAMULTON (W. G.). Useful Information for Rail- way Men. Tenth Edition, revised and enlarged. 562 pages, pocket form. Morocco, gilt 200
HANCOCK (HERBERT). Text Book of Mechan- ics and Hydrostatics, with over 500 diagrams. 8vo, cloth 175
HARRISON (W. B.). The Mechanics' Tool Book. With Practical Rules and Suggestions for use of Machinists, Iron-Workers, and others. Illustrated with 44 eogravings. 12 mo , eloth. 150
HASKINS (C. H.). The Galvanometer and its Uses.A Monual 1 or Electricians and Students. Fourthedition. 12mo. cloth150
HAWKE (WILLIAM H.). The Premier Cipher Telegraphic Code Containing 100,000 Words and Phrases. The most complete and most useful general code yet published. 4to, cloth 500
- 100,000 Words; Supplement to the Premier Code.All the words are select d from the official vocabu-lary. Oblong quarto, cloth.420
HAWKINS (C. C.) and WALLIS (F.). Th + Dynamo; its Theory, Design and Manufacture. 190 illustra- tions, 12 mo , cloth. 300
HAT (ALFRED). Principles of Alternate-Current Working. 12 mo , cloth, illustrated 200
HEAP (Major D. P., U. S. A.). Electrical Appliances of the Present Day. Report of the Paris Electrical Exposition of 1881. 250 illustrations. 8vo, cloth. 200
HEAVISIDE (OLIVER). Electromagnetic Theory. 8 vo , c otn, two volumes (acu 500
HENRICI (OLAUS). Skeleton Structures, Applied to the Building of Steel and Iron Bridges. Illustrated 150
HERRMANN (GUSTAV). The Graphical Statics of M chanism. A Guide for tre Use of Machinists, Architec S, and Engineers; and also a Texc-book for Technical Schools. Translated avd annotated by A. P. Smith, M. E. 12mo, cloth, 7 folding plates. Third Edition 200
HERMANN (FELIX). Painting on Glass and Porce- laiu and Enamel Paioting. On the Basis of Personal Practical Expe ience f the (ondition of the Art up to date Translated by Charles Salter. Second greatly enlarged edition. 8vo, cloth, Illustrations, net 350
HEWSON (WM.). Princ ples and Praciice of Em- banki, g L inds form River Floods, as applied to the Levees of the Mississi i_{j} pi. 8vo, cloth 200
HILL (JOHN W.). Th ${ }^{\text {P Purification of Public Water }}$ Supplies. Illustrat d with va vable Tables, Dia- grams and Cuts. 8vo, clota, 304 pages 300
The Interpretaticn of Water Analyses.. (In Press)
EOBBS (W. R. P.). The Arithmetic of Electrical Measurements with numerous examples. Fully Worked, 12 mo , cloth 50
HOFF (WM. B., Com. U. S. Navy.). The Avoidance of Collisions at Sea. 18 mo , morocco 75
HOLLEY (ALEXANDER L.). Railway Practice. American and European Railway practice in the Economical Generation of Steam. 77 lithographed plates. Folio, cloth 1200
HOLMES (A. BROMLEY). The Electric Light Pop- ularly Explained. Fifth Edition. Illustrated. 12mo, paper 50
HOPKINS (NEVIL M.). Model Engines and small Boats. New Methods of Engine and Boiler Making with a chapter on Elementary Ship Design and Construction. 12 mo , eloth 125
HOSPITALIER (E.). Polyphased Alternating Cur- rents. Illustrated. 8vo, cloth. 140
HOWARD (C. R.). Earthwork Mensuration on the Basis of the Prismoidal Formulae. Containing Simple and Labor-saving Methods of obtaining Pris- moidal Contents directly from End Areas. Illustra- ted by Examples and accompained by Plain Rules for Practical Uses. Illustrated. 8vo, eloth. 150
HUMBER (WILLIAM, C. E.). A Handy Book for the Calculation of Strains in Girders and Similar Structures, and their Strength; Consisting of Formulae and Corresponding Diagrams, with numerous details for practical application, etc. Fourth Edition. 12mo, cloth 250
HURST (GEORGE H.). Colour; A Hand-book of theTheory of Colour. Containing ten coloured platesand 72 diagrams. 8vo, cloth. Illustrated. Price.... 250Lubricating Oils, Fats and Greases. Their Origin,Preparation, Properties, Uses and Analysis, 313pages, with 65 illustrations. 8vo, cloth300
Soaps; A Practical Manual of the Manufacture of Domestic, Toilet and other Soaps. Illustrated with 66 Engravings. 8vo, cloth 500
HUTCHINSON (W. B.). Patents and How to MakeMo ey out of Them. Member of New York Bar.12mo, cloth. New York, 1899125
HUTTON (w. S.). Steam Boiler Construction. A Practical Hand-book for Engineers, Boiler Makers and Steam Users. Containing a large collection of rules and data relating to recent practice in the design, construction, and working of all kinds of stationary, locomotive and marine steam boilers. With upwards of 500 illustrations. Third edition. Carefully revised and much enlarged. 8vo, cloth.. 600
- Practica Engineer's Hand-book, Comprising a treatise on Modern Engines and Boilers, Marine, Locomotive and Stationary. Fourth edition. Care- fully revised with additions. With upwards of 570 illustrations. 8vo, cloth 700
_ The Works' Manager's Hand-book of Modern Rules, Tables, and Data for Civil and Mechanical Engineers. Millwrights and Boiler Makers, etc., etc. With upwards of 150 illustrations. Fifth edition. Carefully revised, with additions. 8vo, cloth 600
INNES (CHARLES H.). Problems in Machine Design. For the Use of Students, Draughtsmen and others. 12 mo , cloth 150
_Centrifugal Pumps, Turbines and Water Motors. Including the Theory and Practice of Hydraulics. 12 mo , cloth 200
ISHERWOOD (B. F.). Engineering Precedents for Steam Machinery. Arranged in the most practical and useful manner for Engineers. With illustra- tions. 2 vols. in 1. 8vo, eloth 250
JAMESON (CHARLES D.). Portland Cement. Its Manufacture and Use. 8vo, cloth 150
JAMIESON (ANDREW C. E.). A Text-Book on Steam and Steam Engines. Specially arranged for the use of Science and Art, City and Guilds of London Institute, and other Engineering Students. Tenth edition. Illustrated. 12mo, cloth. 300
Elementary Manual on Steam and the SteamEngine. Specially arranged for the use of First-Year Science and Art, City and Guilds of LondonInstitute, and other Elementary EngineeringStudents. Third edition. 12 mo , cloth150
JANNETTAZ (EDWARD). A Guide to the Deter- mination of Rocks: being an Introduction toLithology. Translated from the French by G. W.Plympton, Professor of Physical Science at Brook-lyn Polytechnic Institute. 12mo, eloth150
JOHNSTON, Prof. J. F. W., and CAMERON, Sir CHAS. Elements of Agricultural Chemistry and Geology. Seventeenth edition. 12mo, cloth. 260
JOYNSON (F. H.). The Metals used in Construction. Iron, Steel, Bessemer Metal, etc. Illustrated. 12mo, cloth 75
- Designing and Construction of Machine Gearing. Illustrated. 8vo, eloth. 200
KANSAS CITY BRIDGE (THE.) With an Account of the Regimen of the Missouri River and a Descrip- tion of the Methods used for Founding in that River. By O. Chanute, Chief Engimeer, and George Morri- son, Assistant Engineer. Illustrated with 5 litho- graphic views and 12 plates of plans. 4to, eloth. 600
KAPP (GISBERT C. E.). Electric Transmission of Energy and its Transformation, Subdivision, and Distribution. A Practical Hand-book. Fourth edition, revised. 12 mo , cloth 350
Dynamos, Alternators and Transformers. 138
Illustrations. 12 mo , eloth 400
KEMPE (H. R.). The Electrical Engineer's Pocket- Book of Modern Rules, Formulæ, Tables and Data. Illustrated. 32 mo , mor. gilt 175
KENNELLY (A. E.). Theoretical Elements of Elec- tro-Dynamic Machinery. 8vo, cloth. 150
KILGOUR, M. H., SWAN, H., and BIGGS, C. H. W. Electrical Distribution; its Theory and Practice. 174 Illustrations. 12mo, cloth 400
KING (W. H.). Lessons and Practical Notes onSteam. The Steam Engine, Propellers, etc., forYoung Marine Engineers, Students, and others.Revised by Chief Engineer J. W. King, United StatesNavy. Nineteenth edition, enlarged. 8vo, cloth.... 200
KINGDON (J. A.). Applied Magnetism. An intro- duction to the Design of Electromagnetic Apparatus. 8vo, eloth. 300
KIRKALDY (WM. G.). Illustrations of David Kirk-aldy's System of Ne. hanical Testing, as Originatedand Carried On by him during a Quarter of a Century.Comprising a Large Selection of Tabulated Results,showing the Strencth and other Properties of Mate-rials used in Construction, with explanatory Textand Historical Sketch. Numerous engravings and25 lithographed plates. 4to, cloth.2000
KIRKWOOD (JAS. P.). Report on the Filtration ofRiver Warers for the supply of Cities, as practised inEurope, made to the Board of Water Commissionersof the City of St. Louis. Illustrated by 30 double-plate engravings. 4to, cloth750
KNIGHT (AUSTIN M., Lieutenant-Commander, U.S. N). Modern Seamanship. Illustrated with 136 full-page plates and diagrams. 8vo, cloth. Second edition, revised 600
Half moroceo 750
LARRABEE (C. S.). Cipher and Secret Letter andTelegraphic Code, with Hog's Improvements. Themost perfect Secret Code ever invented or discov-ered. Impossible to read without the key. 18 mo ,cloth60
LEASK (A. RITCHIE). Breakdowns at Sea andHow to Repair Them. With eighty-nine Illustra-tions. 8vo, cloth. Second edition.200Triple and Quadruple Expansion Engines andBoilers and their Management. With fifty-nineillustrations. Third edition, revised. 12 mo , cloth.200
Refrigerating Machinery : Its Principles andManagement. With sixty-four illustrations. 12 mo ,cloth200LECKY (S. T. S.). "Wrinkles " in Practical Naviga-tion. With 130 illustrations. 8vo, cloth. Ninthedition, revisednet 800
LEVY (C. L.). Electric Light Primer. A Simple andComprehensive Digest of all of the most importantfacts connected with the running of the dynamo, andelectric lights, with precautions for safety. For theuse of persons whose duty it is to look after theplant. 8vo, paper.50

LIVACHE (AOH., Ingenieur Civil Des Mines).
The Manufacture of Varnishes, Oil Crushing, Refin
ing and Boiling and Kindred Industries. Translated
from the French and greatly extended, by John
Geddes McIntosh. 8vo, cloth. Illustrated.........net 500

LOCKE (ALFRED G., and CHARLES G.) A Practical Treatise on the Manufacture of Sulphuric Acid. With 77 Constructive Plates drawn to scale Measurements, and other Illustrations. Royal 8vo, cloth. 1000
LOCKERT (LOUIS). Petroleum Motor-Cars. 12mo, cloth
LOCKWOOD (THOS. D.). Electricity, Magnetism, and Electro-Telegraphy. A Practical Guide for Students, Operators, and Inspectors. 8vo, cloth. Third edition 250Electrical Measurement and the Galvanometer ;its Construction and Uses. Second edition. 32 illus-trations. 12 mo , eloth150
LODGE (OLIVER J.). Elementary Mechanics, including Hydrostatics and Pneumatics. Revised edition. 12 mo , cloth. 150
LOKING (A. E.). A Hand book of the Electro-Mag- netic Telegraph. Fourth edition, revised.
LUCE (Com. S. B.). Text-Book of Seamanship. The Equipping and Handling of Vessels under Sail or Steam. For the use of the U. S. Naval Academy. Revised and enlarged edition, by Lt. Wm. S. Benson. 8vo, cloth 1000
LUNGE (GEO.). A Theoretical and Practical Treatiseon the Manufacture of Sulphuric Acid and Alkaliwith the Collateral Branches. Vol. I. SulphuricAcid, Second edition, revised and enlarged. 342illustrations. 8vo, clothVol. II. Second edition, revised and enlarged.8vo, eloth.1500
1680Vol III. 8vo, cloth. New edition, 1896LUNGE. (GEO.), and HURTER, F. The AlkaliMaker's Pocket-Book. Tables and Analytical Meth-ods for Manufacturers of Sulphuric Acid, NitricAcid, Soda, Potash and Ammonia. Second edition.12 mo , eloth3 w

LUQUER (LEA MCILVAINE, Ph. D.). Minerals in Rock Sections. The Practical Method of Identifying Minerals in Rock Sections with the microscope, Especially arranged for Students in Technical and Scientific Schools. 8vo. cloth. Illustrated..net 150
MACKROW (CLEMENT). The Naval Architect's and Ship-Builder's Pocket-Book of Formulæ, Rules and Tables; and Engineers' and Surveyors' HandyBook of Reference. Eighth edition, revised and enlarged. 16 mo , limp leather. Illustrated. 50 C
MAGUIRE (Capt. EDWARD. U, S. A.). The
Attack and Defence of Coast Fortifications. With
Maps and Numerous Illustrations. 8vo, cloth.......250
MAGUIRE (WM. R.). Domestic Sanitary Drainage and Plumbing Lectures on Practical Sanitation. 332 illustrations, 8vo.
MARKS (EDWARD C. R.). Mechanical Engineering Materials: their Properties and Treatment in Construction. 12 mo , cloth. Illustrated.

- Notes on the Construction of Cranes and Lifting Machinery. 12 mo , cloth
MARKS (G. C.). Hydraulic Power Engineering: a Practical Manual on the Concentration and Transmission of Power by Hydraulic Machinery. With over 200 diagrams, figures, and tables. 8vo, cloth. Illustrated.
MAVER (WM.). American Telegraphy: Systems, Apparatus, Operation. 450 illustrations. 8 vo , cloth. 350

MAYER (Prof. A. M.). Lecture Notes on Physics. 8vo, cloth.200

McCULLOCH (Prof. R. S.). Elementary Treatise on the Mechanical Theory of Heat, and its application to Air and Steam Engines. 8vo, cloth.350

MeNEILL (BEDFORD). MeNeill's Code. Arranged to meet the requirements of Mining, Metallurgical and Civil Engineers, Directors of Mining, Smelting and other Companies, Bankers, Stock and Share Brokers, Solicitors, Accountants, Financiers, and General'Merchants. Safety and Secrecy. 8vo, cloth. 600
MePHERSON (J. A., A. M. Inst, C. E.). Waterworks Distribution: a practical guide to the laying out of systems of distributing mains for the supply of water to cities and towns. With tables, folding plates and numerous full-page diagrams. 8vo, cloth. Illustrated
250
METAL TURNING. By a Foreman Pattern Maker. Illustrated with 81 engraviogs. 12mo, cloth.150
MINHFEE (WM.). Mechanical Drawing. A Textbo k f Geometrical Draw ng for the use of Mechanics and Schools, in which the Definitions and Rules of Geometry ere familiarly explained; the Practical Problems are arranged from the most simple to the more complex, and in their description technicalities are avoided as much as possible. With illustrations for Drawing Plans, Sections, and Elevations of Railways and Machinery; an Introduction to Isometrical Drawing, and an Essay on Linear Perspective and Shadows Illustrated with over 200 diagrams engraved on steel. Ninth thousand. With an appendix on the Theory and Application of Colors. 8vo, cloth
-Geometrical Drawing. Abridged from the Octavo edition, for the use of schools. Illustrated with 48 steel plates. Ninth edition. 12 mo , cloth
MODERN METEOROLOGY. A Series of Six Lectures, delivered under the auspices of the Meteorological Society in 1870. Illustrated. 12mo, cloth. 150
MOREING (C. A.), and NEAL (THOMAS). Telegraphic Mining Cose Alphabetically arranged. Second edition. 8vo, cloth.

MORRIS (E.). Easy Rules for the Measurement of
Earthworks by means of the Prismoidal Formula.
8vo, eloth. Hlustrated. 150

MOSES (ALERED J.), and PARSONS, C. L. Ele
ments of Mineralogy, Crystallography and Blowpipe
Analysis from a practical standpoint. Fourth
thousand. 8vo, cloth. 366 illustrations....... ...net 250

MOSES (ALERED J.). The Characters of Crystals. An Introduction to Physical Crystallography, containing 321 Illustrations and Diagrams. 8vo, 211
\qquad

MOORE (E. C. S.). New Tables for the Complete Solution of Ganguillet and Kutter's Formula for the flow of liquids in open channels, pipes, sewers and conduits. In two parts. Part I, arranged for 1,080 inclinations from 1 over 1 to 1 over 21,120 for fifteen different values of (n). Part II, for use with all other values of (n). With large folding diagram. 8vo, cloth. Illustrated.....................................net
MULLIN (JOSEPH P., M. E.). Modern Moulding and Pattern-Making. A Practical Treatise upon Pattern Shop and Foundry Work; em racing the Moulding of Pulleys, Spur Gears, Worm Gears, Bal-ance-Wheels, Stationary Engine and Locomotive Cylinders, Globe Valves, Tool Work, Mining Machinery, Screw Propellers. Pattern-Shop Machinery, and the latest improvements in English and American Cupolas; together with a large collection of original and carefully selected Rules and Tables for everyday use in the Drawing Office, Pattern-Shop and Foundry. 12mo, eloth. Illustrated
MUNRO (JOHN C. E.), and JAMIESON ANDREW C. E. A Pocket-book of Electrical Rules and Tables for the use of Electricians and

- Engineers. Thirteenth edition, revised and enlarged. With numerous diagrams. Pocket size. Leather.. 250
MURPHY (J. G., M. E.). Practical Mining. A Field Manual for Mining Engineers. With Hints for Investors in Mining Properties. 16mo, morocco tucks
NAQUET (A.). Legal Chemistry. A Guide to the Detpetion of Poisons, Falsification of Writings, Adulteration of Alimentary and Pharmaceutical Substances, Analysis of Ashes, and examination of Hair, Coins, Arms, and Stains, as applied to Chemical Jurisprudence. Translated from the French, ly J. P. Battershall, Ph D., with a preface by C. F. Chaudler, Ph. D., M. D., LL. D. 12mo, cloth.
NASMITH (JOSEPH). The Student's Cotton Spinning. Third edition, revised and enlarged. 8vo, cloth. 622 pages. 250 Illustrations. 300
NEWALL (JOHN W.). Plain Practical Directions for Drawing, Sizing and Cutting Bevel-Gears, showing how the Teeth may be cut in a Plain Milling Machine or Gear Cutter so as to give them a correct
shape from end to end; and showing how to get out all particulars for the Workshop without making any Drawings. Including a Full Set of Tables of Reference. Folding plates. 8vo, cloth. 150
NEUBURGER (HENRY) and HENRI NOAL- HAT. Technology of Petroleum. The Oil Fields of the World; their History, Geography and Geology. With 153 illustrations and 25 plates. Translated from the French by John Geddes McIntosh. 8vo, cloth.. net 1000
HEWLANDS (JAMES). The Carpenters' and Join-ers' Assistant: being a Comprehensive Treatise onthe Selection, Preparation and Strength of Mate-rials, and the Mechanical Principles of Framing.Illustrated. Folio, half morocco1500
NIPHER (FRANCIS E., A. M.). Theory of Mag- netic Measurements, with an appendix on the Method of Least Squares. 12 mo , cloth 100
NOAD (HENRY M.). The Students' Text-Book of Electricity. A new edition, carefully revised. With an Introduction and additional chapters by W. H. Preece. With 471 illustrations. 12 mo , cloth 400
NUGENT (E.). Treatise on Opties; or, Light and Sight theoretically and practically treated, with the appli- cation to Fine Art and Industrial Pursuits. With 103 illustrations. 12 mo , cloth. 150
O'CONNOR (HENRY). The Gas Engineer's Pocket- Book. Comprising Tables, Notes and Memoranda; relating to the Manufacture, Distribution and Use of Coal Gas and the Construction of Gas Works. 12mo, full leather, gilt edges 350
OUDIN (M. A.). Standard Polyphase Apparatus and Systems. With many photu-reproductions, dia- grams, and tables. Third edition, revised. 8vo, cloth. Illustrated. 300
PAGE (DAVID). The Earth's Crust, A Handy Out- line of Geology. 16mo, cloth 75
PALAZ (A., SeD.). A Treatise on Industrial Pho- tometry, with special application to Electric Light- ing. Authorized translation from the French, by George W. Patterson, Jr. Second edition, revised. 8vo, cloth. Illustrated 400
PARSEALL (H. F.) and H. M. HOBART. Armature Windings of Electric Machines. With 140 full-page plates, 65 tables, and 165 pages of descrip- tive letter-press. 4to, cloth 750
PEIRCE (B.). System of Analytic Mechanics. 4to, eloth 1000
PERRINE (F. A. C., A.M., D.Sc.). Conductors for Electrical Distribution; their Manufacture and Materials, the Calculation of Circuits, Pole-Line Construction, Underground Working and other Uses. 8vo, eloth. Illustrated. 350
Postage 25
PERRY (JOHN). Applied Mechanics. A Treatise for the use of students who have time to work experimental, numerical and graphical exercises illustrating the subject. 8 vo , cloth. 650 pages., net 250
PHILLIPS (JOSHUA). Engineering Chemistry, APractical Treatise for the use of Analytical Chem-ists, Engineers, Iron Masters, Iron Founders,students and others. Comprising methods of Analy.sis and Valuation of the principal materials used inEngineering works, with numerous Analyses, Exam-ples and Suggestions. 314 illustrations. Secondedition, revised and enlarged. 8vo, cloth.450
RICKWORTH (CHAS. N.). The Indicator Hand- book. A Practical Manual for Engineers. Part I. The Indicator: Its Construction and Application. 81 illustrations. 12 mo , eloth 150
The Slide Rule, A Practical Manual of Instruc-tion for all Users of the Modern Type of Slide Rule,exhibiting the Application of the Instrument to theEveryday Work of the Engineer, -Civil, Mechanicaland Electrical. 12mo, flexible cloth. Fifth edition.80
PLANE TABLE (THE). Its Uses in Topographical Surveying. From the Papers of the United States Coast Survey. Illustrated. 8vo, cloth 200
PLANTE (GASTON). The Storage of Electrical Energy, and Researches in the Effects created by Currents, combining Quantity with High Tension. Translated from the French by Paul B. Elwell. 89 illustrations. 8vo 400PLATTNER. Manual of Qualitative and QuantitativeAnalysis with the Blow-Pipe. Eighth edition, re-
vised. Translated by Henry B. Cornwall, E.M., Ph.D.,assisted by John H. Caswell, A.M. From the sixthGerman edition, by Prof. Friedich Kolbeck. Illus:trated with 87 woodcuts. 463 pages. $8 v o$, cloth.. net 400 -
PLYMPTON (Prof. GEO. W.). The Aneroid Ba-rometer: its Construction and Use. Compiled fromseveral sources. Fourth edition. 16 mo , boards,Illustrated50
POCKET LOGARITHMS, to Four Places of Deci- mals, including Logarithms of Numbers, and Loga- rithmic Sines and Tangents to Single Minutes. To which is added a Table of Natural Sines, Tangents, and Co-Tangents. 16 mo , boards 50
POPE (F. L.). Modern Practice of the Electric Tele- graph. A Technical Hand-book for Electricians, Managers and Operators. Fifteenth edition, rewrit- ten and enlarged, and fully illustrated. 8vo, cloth. 150
POPPLEWELL (W. C.). Elementary Treatise on Heat and Heat Engines, Specially adapted for engineers and students of engineering. 12mo, cloth. Illustrated. 300
POWLES (H. H.). Steam Boilers.............(In Press.)
PRAY (Jr., THOMAS). Twenty Years with theIndicator; being a Practical Text-Book for theEngineer or the Student, with no complex Formulæ.Illustrated. 8vo, eloth250
- Steam Tables and Engine Constant. Compiledfrom Regnault, Rankine and Dixon directly, makinguse of the exact records. 8vo, eloth.200PRACTICAL IRON FOUNDING. By the Authorof "Pattern Making," \&c., \&c. Illustrated withover one hundred engravings. 12 mo , cloth.150
PREECE (W, H.). Electric Lamps (In Press.)
PREECE (W. H.), and STUBBS, A. T. Manual
of Telephony. Illustrations and plates. 12 mo , cloth. 4 450
PREMIER CODE. (See Hawk, Wm. H.)
PRESCOTT (Prof. A. B.). Organic Analysis, AManual of the Descriptive and Analytical Chemistryof certain Carbon Compounds in Common Use: aGuide in the Qualitative and Quantitative Analysisof Organic Materials in Commercial and Pharma-
ceutical Assays, in the estimation of Impurities under Authorized Standards, and in Forensic Exam- inations for Poisons, with Directions for Elementary Organic Analysis. Fifth edition, 8vo, cloth 500
PRESCOTT (Prof. A. B.). Outlines of Proximate Organic Analysis, for the Identification, Separation, and Quantitative Determination of the more com- monly occurring Organic Compounds. Fourth edi- tion. 12 mo , cloth 175
——First Book in Qualitative Chemistry. Eighth edition. 12mo, cloth 150
and Otis Coe Johnson. Qualitative ChemicalAnalysis. A Guide in the Practical Study of Chem-istry and in the work of Analysis. Fifth fully re-vised edition. With Descriptive Chemistry extendedthroughout..350
PRITCHARD (O. G.). The Manufacture of Electric Light Carbons. Illustrated. 8vo, paper 60
PULLEN (W. W. F.). Application of Graphic Meth- ods to the Design of Structures. Specially prepared for the use of Engineers. 12mo, cloth. Illustrated. net 250
PULSIFER (W. H.). Notes for a History of Lead. 8vo, cloth, gilt tops 400
PYNCHON (Prof. T. R.). Introduction to Chemical Physies, designed for the use of Academies, Col- leges, and High Schools. Illustrated with numerous engravings, and containing copious experiments with directions for preparing them. New edition, revised and enlarged, and illustrated by 269 illustra- tions on wood. 8vo, cloth. 300
RADFORD (Lieut. CYRUS S.). Hand-book on Naval Gunnery. Prepared by Authority of the Navy Department. For the use of U. S. Navy, U. S. Marine Corps and U. S. Naval Reserves. Revised and enlarged, with the assistance of Stokely Morgan,
${ }^{\prime}$ Lieut. U. S. N. Third edition. 12 mo , flexible leather. 200
RAFTER (GEO. W.), and M. N. BAKER. Sew- age Disposal in the United States. Illustrations and folding plates. Second edition. 8vo, cloth 600
RAM (GILBERT S.). The Incandescent Lamp and its Manufacture, 8vo, cloth 300
RANDALL (J. E.). A Practical Treatise on the Incandescent Lamp. Illustrated. 16 mo , cloth 50
RANDALL (P. M.). Quartz Operator's Hand-book. New edition, revised and enlarged, fully illustrated. 12 mo , cloth 200
RANKINE (W.J. MACQUORN.) Applied Mechan- ics. Comprising the Principles of Statics and Cine- matics, and Theory of Structures, Mechanism, and Machines. With numerous diagrams. Fifteenth edition. Thoroughly revised by W. J. Millar. 8vo, cloth 500
Civil Engineering. Comprising Engineering Sur- veys, Earthwork, Foundations, Masonry, Carpentry, Metal Work, Roads, Railways, Canals, Rivers, Water Works, Harbors, etc. With numerous tables and illustrations. Twentieth edition. Thoroughly revised by W. J. Millar. 8vo, eloth 650
- Machinery and Millwork. Comprising the Geom- etry, Motions, Work, Strength, Construction, and Objects of Machines, etc. Illustrated with nearly 300 wood cuts. Seventh edition. Thoroughly revised by W. J. Millar. 8vo, eloth 500
The Steam Engine and other Prime Movers.With diagram of the Mechanical Properties ofSteain-folding plates, numerous tables and illustra-tions. Thirteenth edition. Thoroughly revised byW. J. Millar. 8vo, eloth500
Useful Rules and Tables for Engineers andOthers, With appendix, tables, tests, and formulæfor the use of Electrical Engineers. ComprisingSubmarine Electrical Engineering, Electric Lighting,and Transmission of Power. By Andrew Jamieson,C. E., F. R S. E. Seventh edition. Thoroughlyrevised by W. J. Millar. Crown 8vo, cloth.400
A Mechanical Text-Book. By Prof. Macqưorn Rankine and E. F. Bamber, C. E. With numerous illustrations. Fourth edition. 8vo, eloth 350
RAPHAFL (F. C.). [Localisation of Faults in Electric Light Mains, 8vo, cloth 200
RECKENZAUN (A.). Electric Traction on Railways and Tramways, 213 illustrations. 12 mo , cloth. 400
REED'S ENGINEERS' HAND-BOOK to the Local Marine Board Examinations for Certificates of Competency as First and Second Ciass Engineers. By W. H. Thorn. With the answers to the Elementary Questions. Illustrated by 297 diagrams and 36 large plates. Seventeenth edition, revised and enlarged. 8vo, cloth.500
Key to the Seventeenth Edition of Reed's Engineer's Hand-book to the Board of Trade Exami- nations for First and Second Class Engineers and containing the working of all the questions given in the examination papers. By W. H Thorn. 8vo, eloth 300
Useful Hints to Sea-going Engineers, and How to Repair and Avoid "Break Downs; " also Appendices Containing Boiler Explosions, Useful Formulæ, etc. With 36 diagrams and 4 plates. Second edition, revised and enlarged. 12 mo , eloth
Marine Boilers: A Treatise on the Causes and Prevention of their Priming, with Remarks on their General Management. Illustrated. 12 mo , cloth... 200
REINHARDT (CHAS. W.). Lettering for Draftsmen, Engineers and Students. A Practical System of Free-hand Lettering for Working Drawings. Thoroughly revised and largely rewritten. Thirteenth thousand. Oblong, boards.
RICE (J. M.)., and JOHNSON, W. W. On a New Method of obtaining the Differential of Functions, with especial reference to the Newtonian Conception of Rates or Velocities. 12mo, paper...
RINGWALT (J. L.). Development of Transportation Systems in the United States, Comprising a Comprehensive Descriptlon of the leading features of advancement from the colonial era to the present time. With illustrations. Quarto, half morocco..
RIPPER (WILLIAM). A Course of Instruction in Machine Drawing and Design for Technical Schools and Engineer Students. With 52 plates and numerous explanatory engravings. Folio, eloth600
ROEBLING (J. A.). Long and Short Span Railway Bridges. Illustrated with large copperplate
λ engravings of plans and views. Imperial folio, cloth
ROGERS (Prof. H. D.). The] Geology of Pennsylvania. A Government Survey, with a General View of the Geology of the United States, essays on the Coal Formation and its Fossils, and a description of the Coal Fields of North America and Great Britain. Illustrated with plates and engravings in the text. 3 vols., 4to, cloth, with portfolio of maps. 1500
ROSE (JOSHUA, M. E.). The Pattern-Makers' Assistant. Embracing Lathe Work, Branch Work, Core Work, Sweep Work, and Practical Gear Constructions, the Preparation and Use of Tools, together with a large collection of useful and valuable Tables. Tenth edition. Illustrated with 250 engravings. 8vo, cloth
Key to Engines and Engine-running. A Practical Treatise upon the Management of Steam Engines and Boilers for the Use of Those who Desire to Pass an Examination to Take Charge of an Engine or Boiler. With numerous illustrations, and Instructions Upon Engineers' Calculations, Indicators, Diagrams, Engine Adjustments, and other Valuable Information necessary for Engineers and Firemen. 12 mo , cloth

SABINE (ROBERT). History and Progress of the Electric Telegraph. With descriptions of some of the apparatus. Second edition, with additions. 12 mo , eloth.
SAELTZER (ALEX.). Treatise on Acoustics in connection with Ventilation. 12 mo , cloth
SALOMONS (Sir DAVID, M. A.). Electric Light Installations. A Practical Hand-book. Eighth edition, revised and enlarged, with numerous illustrations. Vol. I. The management of Accumulators. 12 mo , eloth
Vol. II., Apparatus, 296 illustrations. 12 mo , cloth. 225 Vol. III., Applications. 12mo, cloth
SANFORD (P. GERALD). Nitro-Explosives, A Practical Treatise concerning the Properties, Manufacture and Analysis of Nitrated Substances, includ-
\rightarrow ing the Fulminates, Smokeless Powders and Celluloid. 8 vo, cloth, 270 pages
SAUNNIER (CLAUDIUS). Watchmaker's Handbook. A Workshop Companion for those engaged

in Watchmaking and allied Mechanical Arts. Translated by J. Tripplin and E. Rigg. Second edition, revised with appendix. 12 mo , cloth.

SCHELLEN (Dr, H.). Magneto-Electric and DynamoElectric Machines: their Construction and Practical Application to Electric Lighting, and the Transmission of Power. Translated from the third German edition, by N. S. Keith and Percy Neymann, Ph. D. With very large additions and notes relating to American Machines, by N. S. Keith. Vol. I., with 353 illustrations. Second edition
SCHUMANN (F.). A Manual of Heating and Ventilation in its Practical Application, for the use of Engineers and Architects. Embracing a series of Tables and Formulæ for dimensions of heating, flow and return pipes for steam and hot-water boilers, flues, etc. 12 mo , illustrated, full roan.
SCRIBNER (J. M.). Engineers' and Mechanics' Companion. Comprising United States Weights and Measures. Mensuration of Superfices and Solids, Tables of Squares and Cubes, Square and Cube Roots, Circumference and Areas of Circles, the Mechanical Powers. Centres of Gravity, Gravitation of Bodies, Pendulums, Specific Gravity of Bodies, Strength, Weight, and Crush of Materials, Water-Wheels, Hydrostatics, Hydraulies, Statics, Centres of Percussion and Gyration, Friction Heat, Tables of the Weight of Metals, Scantling, etc., Steam and the Steam Engine. Twentieth edition revised. 16 mo , fullmorocco

SEATON (A. E.). A Manual of Marine Engineering. Comprising the Designing, Construction and Working of Marine Machinery. With numerous tables and illustrations reduced from Working Drawings. Fourteenth edition. Revised throughout, with an additional chapter on Water Tube Boilers. 8vo., cloth.
—— and ROUNTHWAITE (H. M.). A Pocketbook of Marine Engineering Rules and Tables. For the use of Marine Engineers and Naval Architects, Designers, Draughtsmen, Superintendents, and all engaged in the design and construction of Marine Machinery, Naval and Mercantile. Fifth edition, revised and enlarged. Pocket size. Leather, with diagrams. 12 mo , morocco Illustrated.............. 300
SEXTON (A. HUMBOLDT). Fuel and Refractory Materials. 8vo, cloth 200
SHIELDS (J. E.). Notes on Engineering Construc- tion. Embracing Discussions of the Principles involved, and Descriptions of the Material employed in Tunnelling, Bridging, Canal and Road Building, etc. 12 mo , cloth 150
SHOCK (WM. H.). Steam Boilers: Their Design, Construction and Management. 4to, half morocco. 1500
SHREVE (S, H.). A Treatise on the Strength of Bridges and Roofs. Comprising the determination of Algebraic formulas for strains in Horizontal, Inclined or Rafter, Triangular, Bowstring, Lenticu- lar, and other Trusses, from fixed and moving loads, with practical applications and examples, for the use of Students and Engineers. 87 woodcut illus. Fourth edition. 8vo, cloth 350
SHUNK (W. F.). The Field Engineer. A Handy Book of practice in the Survey, Location, and Truck- work of Railroads, containing a large collection of Rules and Tables, original and selected, applicable to both the Standard and Narrow Gauge, and pre- pared with special reference to the wants of the young Engineer. Fourteenth edition, revised and enlarged. 12 mo , morocco, tucks 250
SIMMS (F. W.). A Treatise on the Principles and Practice of Levelling. Showing its application to purposes of Railway Engineering, and the Con- struction of Roads, etc. Revised and corrected, with the addition of Mr. Laws' Practical Examples for setting out Railway Curves. Illustrated. 8vo, cloth 250
IMMS (W. F.). Practical Tunnelling. Fourth edition, revised and greatly extended. With additional chapters illustrating recent practice by D. Kinnear Clark. With 36 plates and other illustrations. Im- perial 8 vo , cloth. 1200
SLATER (J. W.). Sewage Treatment, Purification, and Utilization. A Practical Manual for the Use of Corporations, Local Boards, Medical Offlcers of Health, Inspectors of Nuisances, Chemists, Manu- facturers, Riparian Owners, Engineers, and Rate- payers. 12mo, cloth 225
SMITH (ISAAC W., C. E.). The Theory of Deflec-tions and of Latitudes and Departures. With specialapplications to Curvilinear Surveys, for Alignmentsof Railway Tracks. Illustrated. 16 mo , morocco,tucks300
SNELL (ALBION T.). Electric Motive Power: The Transmission and Distribution of Electric Power by Continuous and Alternate Currents. With a Section on the Applications of Electricity to Mining Work. Second edition. 8vo, cloth, illustrated 400
SPEYERS (CLARENCE L.). Text-Book of Physi- cal Chemistry. 8vo, cloth 225
STAHL (A. W.), and A. T. WOODS. Elementary Mechanism. A Text-Book for Students of Mechanical Engineering. Eleventh edition, enlarged. 12 mo, cloth 200
STALEY (CADY), and PIERSON, GEO. S. The Separate System of Sewerage: its Theory and Con- struction. Third edition, revised, 8vo, cloth. With maps, plates and illustrations. 300
STEVENSON (DAVID, F.R.S.N.). The Principles and Practice of Canal and River Engineering. Re- vised by his sons David Alan Stevenson, B. Sc., F. R. S.E., and Charles Alexander Stevenson, B. Sc., F.R. S.E., Civil Engineer. Third edition, with 17 plates, 8 vo , cloth 1000
The Design and Construction of Harbors, 1 Treatise on Maritime Engineering. Third edition with 24 plates, 8 vo , cloth 1000
STEWART (R. W.) . A Text Book of Light, Adapted to the Requirements of the Intermediate Science and Preliminary Scientific Examinations of the Uni- versity of London, and also for General Use, Numerous Diagrams and Examples. 12mo, cloth.. 100
STEWART (R. W.). A Text Book of Heat, Illus- trated, 8vo, cloth. 100
A Text Book of Magnetism and Electricity, 160 Illus. and Numerous Examples. 12mo, cloth 100STILES (AMOS). Tables for Field Engineers. De-signed for use in the field. Tables containing allthe functions of a one degree curve, from which acorresponding one can be found for any required
degree. Also, Tables of Natural Sines and Tangents. 12mo, morocco, tucks 200
STILLMAN (PAUL). Steam Engine Indicator and the Improved Manometer Steam and Vacuum Gauges; their Utility and Application. New edition. 12 mo , flexible cloth 100
STONE (General ROY). New Roads and Road Laws in the United States. 200 pages, with Aumerous illustrations. 12 mo , cloth. 100
STUART (C. B., U. S. N.). Lives and Works of Civil and Military Engineers of America. With 10 steel- plate engravings. 8vo, cloth 500
The Naval Dry Docks of the United States. Illus- trated with 24 fine Engravings on Steel. Fourth edition. 4to, cloth 600
SWINTON (ALAN A. CAMPBELL). The Elemen- tary Principle of Electric Lighting. Illustrated. 12 mo , eloth 60
TEMIPLETON (WM.). The Practical Mechanic'sWork-shop Companion. Comprising a great varietyof the most useful rules and formulæ in MechanicalScience, with numerous tables of practical data andcalculated results facilitating mechanical opera-tions. Revised and enlarged by W. S. Hutton.12 mo , morocco.200
THOM (CHAS.), and WILLIS H. JONES. Tele- graphic Connections: embracing Recent Methods in Quadruplex Telegraphy. Oblong, 8vo, cloth. 20 full page plates, some colored 150
THOMPSON (EDWARD P., M. E.). How toMake Inventions; or. Inventing as a Science and anArt. A Practical Guide for Inventors. Secondedition. 8vo, boards100

- Roentgen Rays and Phenomena of the Anode and Cathode Principles, Applications and Theories.For Students, Teachers, Physicians, Photographers,Electricians and others. Assisted by Louis M,Pignolet, N. D. C. Hodges, and Ludwig Gutmann, E.E. With a Chapter on Generalizations, Arguments,Theories, Kindred Radiations and Phenomena. ByProfessor Wm. Anthony. 8vo, cloth. 50 Diagrams,40 Half tones.150
TODD (JOHN), and W. B. WHALL. PracticalSeamanship for Use in the Merchan Service: Includ-ing all ordinary subjects; also Steam Seamanship,Wreck Lifting, Avoiding Collision, Wire Splicing, Dis-placement, and everything necessary to be knownby seamen of the present day. Second edition, with247 illustrations and diagrams. 8vo, eloth800TOGTHED GEARING. A Practical Hand-book forOffices and Workshops. By a Foreman Pattern-maker. 184 Illustrations. 12 mo , cloth225
TRATMAN (E. E. RUSSELL). Railway Track and Track Work. With over two hundred illustrations. 8vo, eloth 00
TREVERT (EDWARD). How to Build DynamoElectric Machinery, embracing Theory Designingand Construction of Dynamos and Motors. Withappendices on Field Magnet and Armature Winding,Management of Dynamos and Motors, and UsefulTables of Wire Gauges. Illustrated. 8vo, cloth250
- Electricity and its Recent Applications. A Prac- tical Treatise for Students and Amateurs, with an Illustrated Dictionary of Electrical Terms and Phrases. Illustrated. 12 mo , cloth 200
TUCKER (Dr. J. H.). A Manual of Sugar Analysis, including the Applications in General of Analytical Methods to the Sugar Industry. With an Introduc- tion on the Chemistry of Cane Sugar. Dextrose, Levulose, and Milk Sugar. 8vo, cloth. Illustrated. 350
TUMLIRZ (Dr. O.). Potential and its Application to the Explanation of Electric Phenomena, Popularly Treated. Translated from the German by D. Robert- son. Illustrated. 12 mo , eloth 125
TUNNER (P. A.). Treatise on Roll-Turnlng for the Manufacture of Iron. Translated and adapted by John B. Pearse, of the Pennsylvania Steel Works, with numerous engravings, wood-cuts, 8vo, cloth, with folio atlas of plates 1000
URQUHART (J. W.). Electric Light Fitting. Em-bodying Practical Notes on Installation Management.A Hand-book for Working Electrical Engineers-with numerous illustrations, 12 mo , cloth.......200Deposition of Copper, Silver, Nickel, Gold, Brass,Aluminum, Platinum, etc. Fourth edition. 12mo.. 200
URQUHART, (J. W.). Dynamo Construc-tion: a Practical Hand-book for the Use of Eugineer Constructors and Electricians in Charge, embracing Frame Work Building, Field Magnet and Armature Winding and Grouping, Compounding, etc., with Examples of Leading English, American and Continental Dynamos and Motors, with numerous illusrations. 12 mo , cloth300
Electric Ship Lighting. A Hand-book on the Practical Fitting and Running of Ship's Electrical Plant. For the Use of Ship Owners at 1 Builders, Marine Electricians and Sea Going Engineers-inCharge. Numerous illustrations. 12mo, cloth 300
UNIVERSAL TELEGRAPH CIPHER CODE. Arranged for General Correspondence. 12mo, cloth. 100
VAN NOSTRAND'S ENGINEERING MAGAZINE. Complete sets, 1869 to 1886 inclusive. Complete sets, 35 vols., in cloth
Complete sets, 35 vols., in half morocco 10000

VAN WAGENEN (T. F.). Manual of Hydraulic
Mining. For the Use of the Practical Miner.
Revised and enlarged edition. 18mo, cloth 100
WALKER (SIDNEY F.). Electric Lighting forMarine Engineers, or How to Light a ship by theElectric Light and How to Keep the Apparatus inOrder. 103 illustrations. 8vo, cloth. Second edition. 200
WALLIS-TAYLER (A. J.). Modern Cycles. A Practical Hand-book on their Construction and Repair. With 800 illustrations. 8vo, cloth 400

- Motor Cars, or Power Carriages for Common Roads. 8vo, cloth, with numerous illustrations 180
——Bearings and Lubrication. A Hand-book forevery user of Machinery. 8 vo , cloth, fully illus-trated150
- Refrigeration and Cold Storage, and Ice-making.A practical treatise on the art and science of refrig-eration. With 361 cuts and diagrams. 8vo. Cloth.Illustrated.450
- Sugar Machinery. A Descriptive Treatise devoted to the Machinery and Apparatus used in the Manu- facture of Cane and Beet Sugars. 12mo, cloth. Illustrated 200
WANKLYN (J. A.). A Practical Treatise on theExamination of Milk and its Derivatives, Cream,Butter, and Cheese. 12mo, cloth100
Water Analysis. A Prartical Treatise on the Examination of Potable Water. Tenth Edition. 12 mo , cloth 200
WANSBROUGH (WM. D.). The A. B. C. of the Differential Calculus. 12 mo , cloth 150
WARD (J. H.). Steam for the Million. A Poptlar Trea ise on Steam, and is application to the Useful Arts, especially to Navigation. 8vo, cloth 100
WARING (GEO. E., Jr.). Sewerage and Land Drainage, Illustrated with wood-cuts in the text, and full-page and folding plates. Quarto. Cloth. Third edition 600
Modern Methods of Sewage Disposal for Towns,Public Institutions and Isolated Houses. Secondedition, revised and enlarged. 260 pages. Illus-trated. Cloth200- How to Drain a House. Practical Informationfor Householders. New and enlarged edition, 12 mo ,cloth125
WATSON (E. P.). Small Engines and Boilers. AManual of Concise and Specific Directions for theConstruction of Small Steam Engines and Boilers ofModern Types from five Hurse-power down to modelsizes. 12 mo , cloth. Illustrated with Numerous Dia-grams and Half Tone Cuts. New York, 1899125
WATT (ALEXANDER). The Electro-plating andElectro-refining of Metals : being a new edition ofAlexander Watt's "Electro-deposition." Revisedand iargely rewritten by Arnold Philip, B.Sc. Withnumerous figures and engravings. 8vo. Cloth. Il-lustrated ..450- Electro-Metallurgy Practically Treated. Tenthedition, considerably enlarged. 12 mo , cloth.100
The Art of Soap-Making. A Practical Hand-bookof the Manufacture of Hard and Soft Soaps, ToiletSoaps, \&c. Including many New Processes, and aChapter on the Recovery of Glycerine from WasteLers. With illustrations. Fourth edition, revisedand enlarged. 8vo300
WATT (ALEXANDER). The Art of Leather Manufacture, Being a Practical Hand-buok, in which the Operations of Tanning, Currying, and Leather Dressing are Fully Described, and the Principles of Tanning Explained, and many Recent Processes Introduced. With numerous illustrations. Second edition. 8vo, cloth
WEALE (JOHN). A Dictionary of Terms Used in Architecture, Building, Engineering, Mining, Metal- lurgy. Archaeology, the Fine Arts ete., with explana- tory observations connected with applied Science and Art. Fifth edition, revised and corrected. 12 mo , cloth 250
- Weale's Rudimentary Scientific Series (Catalogue sent on application).
WEBB (HERBERT LAWS). A Practical Guide to the Testing of Insulated Wires and Cables. Illustrated. 12 mo , eloth
-The Telephone Hand-book. 128 illustrations. 146 pages. 16 mo , cloth100
WEEKES (R. W.). The Design of Alternate Current Transformers. Illustrated. 12 mo , cloth 100
WEISBACH (JULIUS). A Manual of Theoretical Mechanics. Ninth American edition. Translated from the fourth augmented and improved German edition, with an Introduction to the Calculus by Eckley B. Coxe, A. M., Mining Engineer. 1,100 pages, and 902 wood-cut illustrations. 8vo, eloth. 600
Sheep 750
WESTON (EDMUND B.). Tables Showing Loss ofHead Due to Friction of Water in Pipes. Secondedition. 12 mo , leather,150
WEYMOUTH (F. MARTEN). Drum Armaturesand Commutators. (Theory and Practice.) A com-plete Treative on the Theory and Construction ofDrum Winding, and of commutators for closed coilarmatures, together with a full resume of some ofthe principal points involved in their design, and anexposition of armature re-actions and sparking.8vo, cloth300
WHITE (W. H., K.C.B.). A Manual of Naval Archi-tecture, for use of Offlcers of the Royal Navy, Offl-cers of the Mercantile Marine, Yachtsmen, Ship-owners and Shipbuilders. Containing many figures,diagrams and tables. Thick 8vo, cloth, illus.900

WHEELER (Prof. J. B.). Art of War. A Course of Instruction in the Elements of the Art and Science of War, for the Use of the Cadets of the United States Military Academy, West Point, N. Y. 12 mo , cloth

- Field Fortifications. The Elements of Field Fortifications, for the Use of the Cadets of the United States Military Academy, West Point, N. Y. 12mo. 175
WHIPPLE (S., C. E.). An Elementary and Practical Treatise on Bridge Building. 8vo, cloth.
WILKINSON (H. D.). Submarine Cable-Laying, Repairing and Testing. 8vo, cloth.

400
WILLIAMSON (\mathbf{R}. S.). On the Use of the Barometer on Surveys and Reconnoissances. Part I Meteorology in its Connection with Hypsometry. Part II. Barometric Hypsometry. With illustrative tables and engravings, 4to, cloth

1500
WILLIAMSON (E. S.). Practical Tables in Meteorology and Hpsometry, in connection with the use of the Barometer. 4to, cloth

250
WILSON (GEO.). Inorganic Chemistry, with New Notation. Revised and enlarged by H. G. Madan. New edition. 12 mo , cloth
WOODBURY (D. V.). Treatise on the Various Elements of Stability in the Well-Proportioned Arch. 8vo, half morocco

400
WRIGHT (T. W.). A Treatise on the Adjustment of Observations. With applications to Geodetic Work, and other Dieasures of Precision. 8vo, cloth 400
Elements of Mechanics; including Kinematics, Kinetics and Statics. With application. 8vo, cloth.. 250
WYLIE (CLAUDE). Iron and Steel Founding. Illus-trated with 39 dingrams. Second edition, revisedand enlarged. 8vo, cloth..200
YOUNG (J. ELTON). Electrical Testing for Tele- graph Engineers, with Appendices consisting of Tables. 8vo, eloth. Illustrated 400
YOUNG SEAMAN'S MANUAL. Compiled from Various Authorities, and Illustrated with Numerous Original and Select Designs, for the Use of the United States Training Ships and the Marine Schools. 8vo, half roan. 300
ZIPSER (JULIUS). Textile Raw Materials, and their Conversion into Yarns. Translated from the Ger- man by Chas. Salter. 8vo, cloth. Illustrated. 500

No. 60.-STRENGTH OF WROUGHT-IRON BRIDGE MEMBERS. By S, W. Robinson, C.E.
No.61.-POTABLE WATER AND METHODS OF DETECTING IMPURITIES. By M. N. Baker.

No. 6.-THE THEORY OF THE GAS-ENGINE. By Dougald Clerk. Second edition. With additional matter. Edited by F. E. Idell, M.E.
No. 6s.-HOUSE DRAINAGE AND SANITARY PLUMBING. By W. P. Gerhard. Sixth edition. Revised.

No. 64.-ELECTRO-MAGNETS. By A. N. Mansfield.
No. ©5.-POCKET LOGARITHMS TO FOUR PLACES OF DECLMALS.
No. 66.-DYNAMO-ELECTRIC MACHINERY. By S. P. Thompson. With nittes by F. L. Pope. Third edition.
No. 67.-HYDRAULIC TABLES BASED ON "KUTTER'S FORMULA." By P. J. Flynn.
No. 68.-STEAM-HEATING. By Robert Briggs. Third edition, revised, with additions by A. R. W olff.
No. 69.-CHEMICAL PROBLEMS, By Prof. J. C. Foye. Third edition, revised and enlarged.
No. 70.-EXPLOSIVE MATERIALS. John P. Wisser, U, S. A.
No. 71.-DYNAMIC ELECTRICITY. By John Hopkinson, J. N. Shoolbred, and R. E. Day.

No. $78 .-T O P O G R A P H I C A L ~ S U R V E Y I N G . ~ B y ~ G e o r g e ~ J . ~$ Specht, Prof. A. S. Hardy, John B. McMaster, and H. F. Walling.

No. 78.-SYMBOLIU ALGEBRA; OR, THE ALGEBRA OF algebraic numbers. By Prof. w. Cain.
Mo. 74.-TESTING MACHINES : THEIR HISTORY, CONSTRUCTION, AND USE. By Arthur V. Abbott.
Na. $\%$ O-RECENT PROGRESS IN DYNAMO-ELEOTRIC MACHINES. Being a Supplement to DynamoElectric Machinery. By Prof. Sylvanus P. Thompson.
No. 76.-MODERN REPRODUCTIVE GRAPHIO PROCESSES. By Lieut, James S. Pettit, U.S. A.
No. 77 .-STADIA SURVEYING. The Theory of Stadia Measurements. By Arthur Winslow.
No. 78.-THE STEAM-ENGINE INDICATOR, AND ITS USE. By W. B. Le Van.
Mo. 79.-THE FIGURE OF THE EARTH. By Frank C. Roberts, C.E.
Yo. $60 .-$ Healithy FOUNDATIONS FOR HOUSES. By
Gtemn Brown.

No. 81,-WATER METERS: COMPARATIVE TESTS OF ACCURACY, DELIVERY, ETC. Distinctive features of the Worthington, Kennedy, Siemens, and Hesse meters. By Ross E. Browne.

No. 82--THE PRESERVATION OF TIMBER BY THE USE OF ANTISEPTICS. By Samuel Bagster Boulton, C. E.
No. 88.--MECHANICAL INTEGRATORS. By Prof. Henry S. H. SHAW, C. E.

No. 84-FLOW OF WATER IN OPEN CHANNELS, PIPES, CONDUITS, SEWERS, ETC. With Tables, By P. J. Flyan, C. E.

No. 85.-THE LUMINIFEROUS ATHER. By Prof. de Volson Wood.
No, 86.-HAND-BOOK OF MINERALOGY: DETERMINA. TION AND DESCRIPTION OF MINERALS FOUND IN THE UNITED STATES. By Prof. J. C. Foye. Fourth edition, revised.

No. 87.-TREATISE ON THE THEORY OF THE CONSTRUCTION OF HELICOIDAL OBLIQUE ARCHES. By John L. Culley, C. E.
No. 88.-BEAMS AND GIRDERS. Practical Formulas for their Resistance. By P. H. Philbrick.
No. 89.-MODERN GUN COTTON: ITS MANUFAOTURE, PROPERTIES, AND ANALYSIS. By Lieut. John P. Wisser, U. S. A.
No. 90.-ROTARY MOTION AS APPLIED TO THE GYROSCOPE. By Gen J. G. Barnard.
No. 91.- LEVELING: BAROMETRIC TRIGONOMETRIC AND SPIRIT. By Prof. I. O. Baker.
No. 92.-PETROLEUM: ITS PRODUCTION AND USE. By Boverton Redwood, F. I. C., F. C. S.
No. 93.--RECENT PRACTICE IN THE SANITARY DRAINAGE OF BUILDINGS. With Memoranda on the Cost of Plumbing Work. Second edition, revised. By William Paul Gerhard, C. E.
No. 94.-THE TREATMENT OF SEWAGE. By Dr. C. Mey* mott Tidy.
No, 95,-PLATE GIRDER CONSTRUCTION. By Isami Hiroi, C. E. $2 d$ edition, revised and enlarged.

No. 96.-ALTERNATE CURRENT MAOHINERY. By Gisbert Kapp, Assoc. M. Inst., C. E.
No. 97.- THE DISPOSAL OF HOUSEHOLD WASTES. By W. Paul Gerhard, Sanitary Engineer.

No. 98.-PRACTICAL DYNAMO BUILDING FOR AMATEURS. HOW TO WIND FOR ANY OUTPUT. By Frederick Walker. Fully illustrated.
No. 99-TRIPLE - EXPANSION ENGINES AND ENGINE TRIALS. By Prof. Osborne Reynolds. Edited, with notes, eto., by F. E. Idell, M. E.

THE VAN NOSTRAND SCIENCE BERIER.

No. 100.-HOW TO BECOME AN ENGINEER, or the Theoretical and Practical Training necessary in fitting for the duties of the Civil Engineer. By Prof. Geo. W. Plympton.
No, 101,-THE SEXTANT, and other Reflecting Mathematical lnstruments. With Practical Hints for their adjustment and use. By F. R. Brainard, U. \&. Navy.
No. 102.-THE GALVANIC CIRCUIT INVESTIGATED Mathematically. By Dr. G. S. Ohm, Berlin, 182\%. Translated by William Francis. With Preface and Notes by the Editor, Thomas D. Lockwood, M.I.E.E.
No, 108.-THE MIOROSCOPICAL EXAMINATION OF POTABLE WATER. With Diagrams, By Geo. W. Rafter.

No. 104.-VAN NOSTRAND'S 'TABLE BOOK FOR CIVIL AND MECHANICAL ENGINEERS. Compiled by Prof, Geo, W, Plympton,
No. 105.-DETERMINANTS. An Introduction to the Study of, with Examples and Applications. By Prof. G. A. Miller.

No, 106.-COMPRESSED AIR. Experiments upon the Transmission of Power by Compressed Air in Paris. (Popp's System.) By Prof. A. B. W. Kennedy. The Transmission and Distribution of Power from Central Stations by Compressed Air. By Prof. W. C. Unwin.
No. 107.-A GRAPHICAL METHOD FOR SWING-BRIDGES. A Rational and Easy Graphical Analysis of the Stresses in Ordinary Swing-Bridges. With an Introduction on the General Theory of Graphical Statics. By Benjamin F. La Rue. 4 Plates.
No. 108,-SLIDE VALVE DIAGRAMS. A French Method for Constructing Slide Valve Diagrams. By Lloyd Bankson, B.S., Assistant Naval Constructor, U. S. Navy, 8 Folding Plates.

No, 109.-THE MEASUREMENT OF ELECTRIC CURRENTS. Electrical Measuring Instruments. By James Swinburne. Meters for Electrical Energy. By C. H. Wordingham, Edited, with Preface, by T. Commerford Martin. Folding Plate and numerous illustrations.
No, 110.-TRANSITION CURVES. A Field-Book for Engineers, containing Rules and Tables for Laying out Transition Curves. By Walter G. Fox, C.E.
No. 111.-GAS-LIGHTING AND GAS-FITTTING. Speeifieations and Rules for Gas-Piping. Notes on the advantages of Gas for Cooking and Heating, and Useful Hints to Gas Consumers. Second edition. rewritten and enlarged. By Wm. Paul Gerhord C. E.

No. 112,-A PRIMER ON THE CALCULUS, By E, Sherman Gould, M, Am. Soc. C. E.

No. 113.-PHYSICAL PROBLEMS and their Solution. By A. Bourgougnon, formerly Assistant at Bellevue Hos pital.
No. 114.-MANUAL OF THE SLIDE RULE. By F.A. Halsey, of the American Machinist.
No. 115.-TRAVERSE TABLES showing the difference of Latitude and Departure for distances between 1 and 100 and for Angles to Quarter Degrees between 1 degree and 90 degrees. (Tieprinted Irom Seribner's Pocket Table Book.)
No. 116.-WORM AND SPIRAL GEARING. Reprinted from "American Machinist." By F, A. Halsey.
No. 117.-PRAOTIOAL HYDROSTATICS AND FORMULAS with Diagrams and Illustrations, By E. Sherman Gould, Mem. A, S. C. E.
No. 118.-TREATMENT OF SEPTIC SEWAGE, with Tables, By George W. Hafter, Mem. A, S, C. E.
No. 119.-LAY-OUT OF CORLISS VALVE GEARS with Folding Plates and Diagrams. By Sanford A. Moss, M. S., Ph. D.

No. 120.-ATT OF GENERATHNG GEAR TEETH. By Howard A. Coombs, With Figures, Diagrams and Folding Plates. Reprinted from the "American Machinist."
No. 121.-CURRENT PRACTICE IN GAS ENGINE DESIGN. By H, Lee Koenig and G. W. Rice, with Folding Plates.

TEXT BOOKS
 FOR

Colleges and Technological Institutions. THEORETICAL MECHANICS,

With an Introduction to the Calculus. Designed as a Text-Book for Technical Schools and-Colleges, and for the use of Eugineers, Arehitects, dee. Dy Jutus Whetsmath, Ph.D. Translated from the German by Eckley B. Coxe, A.M., Mining Engineer. One Volume, large Svo, III2 pages, 902 Illustrations, Cloth $\$ 6.00$. Sheep $\$ 7.50$.

The Graphical Statics of Mechanism.
A Guide for the use of Machiniats, Archirects and Engineers; and also a Pext- Book for Technical Schools. By Gustav Hermann, Professor in the Royal Polytechnic Sehoolat Aix-la-Chapelle. Translated and Ammotated by A. P. Smrit, M.E. Fourth Ed. J2mb, cloth, illus. $\$ 2.00$.

Elementary Mechanism.

Text-Book for Students of Mechanical E: gineeringBy Arthus F. Woons, Assistant Engineer XI. S. Navy, Assistant Professor of Mechanical Enginecring, 1tthois State Uaiversity, ctc., and Almert W. Stahl. M.E., Assistant Engineer U. S. Navy, Professor of Mechanical Engineering, Purdue University, La Fayette, Ind., etc. Tourth Edition. 12 mm , cloth, iflustrated . . . $\$ 2.00$.

Elements of Mechanics,
Including Kinematics, Kinetics and Statics. With applications. Ey ProfemerT. W. Whatrr, ef Union College. Third Edition, revised. Svo, cloth, illustrated , \$2,50. Bowser's Analytic Mechanics.
An Elementary Treatise on Analytic Meghanics. With tumerous examples. By Enw, A. Fowsek, ML.D, Thih Edition. T2mo, eloth $\$ 3.00$

Elementary Mechanics, including Hydrostatics and Preumatics.

[^0]: * The title of previous edition was "Voussoir Arches Applied to Stone Bridges, Tunnels, Domes, and Groined Arches."

[^1]: * Mr. Edwin Thacher, M. Am, Soc. C. E., published the formulas (7) and (8) above in "Engineering News " for Sept. 21, 1899, without demonstration. His article may be referred to as an excellent presentation of the practical aspects of steel-concrete construction and as giving an account of the various systems that have been used, and closing with his own specifieation.

[^2]: * See the author's "Theory of Voussoir Arches," 2nd ed., for the most accurate scheme for arches not so flat as shown in Fig. 6, and for sections not vertical as taken here for simplicity. The theory which determines the subsequent constructions is given in full on pages 154 to 174. The author's "Solid and Braced Elastic Arches " may also be referred to.

[^3]: * Trans. Am. Soc. C. E., Vol. XLII, p. 152.

[^4]: * See Mr. Molitor's paper on Three-Hinged Masonry Arches, in Trans. Am. Soc. C, E., Vol. XL, p. 56, not only on this point, but for a complete discussion of the threehinged concrete arch.

[^5]: * See Rankine's Civil Engineering, Art, 138.

[^6]: * Also see the author's "Theory of Voussoir Arches, ${ }^{\text { }}$ 2d edition.

[^7]: * See other methods of failure of arches given in "The. ory of Voussoir Arches, 2 d ed., Art. 23 and Appendix.

[^8]: * A graphical construction can be given for the general case, but is omitted for want of space.

[^9]: * See the author's "Theory of Voussoir Arches."

[^10]: * See Rankine's " Civil Engineering," p. 322; also Van Nostrand's Science Series, No. 3, pp. 99, 100.

[^11]: * See Trantwine's "Engineer's Pocket Book," p. 342.
 + See Van Nostrand's Science Series, No. 3, p. 46.

[^12]: * See Van Nostrand's Science Series. No' 3, pp. 11, 12,

[^13]: * If the centres of pressure are all assumed to lie on the centre line (as suggested above) Q must be determined separately for each elementary arch, as just explained for $a_{4} \mathrm{FI} e$.

[^14]: * For volumes of groined and cloistered arches, see a full discussion in Mr. Leonard Metcalf's paper on the Groined Arch in Transactions Am. Soc. C. E. Vol. 43: also, see Engineering News for August 23, 1900.

[^15]: * Where the groin is a distinct arch, the weight of its successive portions should be combined with these forces in the proper order.

[^16]: * See Transactions Am. Soc. C. E., Vol. 43, p. 65.

[^17]: * "Théorie des Voutes," §57.

[^18]: * Dr. Scheffler, in his "Theorie der Gewolbe" (1857,) also, a French translation, "Théorie des Voutes," states that previous authors (Navier, Rondelet) have treated the lune solids as simple arches. I infer that Dr. Scheffler himself is the first who has introduced the forces q above and given a more rational theory.

[^19]: * I have used the dimensions given in his Tables, which differ, in some respects, from those in the text,

[^20]: * See Prof. Eddy's "New Constructions in Graphical statics," p. 56, for a direct method of locating the resistance line to satisfy certain conditions.

[^21]: * The substance of the following was first published in "Proceedings Am. Soc. C. E." for April, 1905.

[^22]: * In Prof. H. T. Eddy's "New Constructions in Graphical Statics," a direct method is substituted for this tentative one.

